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1.0 Introduction

In many applications, such as the phased array radar problem, we have an
observed J channel data vector z(n) at time n which may contain a desired signal
s(n) and an unwanted additive disturbance y(n) which may contain additive
temporally correlated noise (clutter) c(n) and uncorrelated thermal white noise
w(n). For the detection problem, a decision must be made between the two

hypotheses
Hy: z(n) = y(n) n=1,2,...,.N
H,: z(n) = s(n) + y(n) : ' n=1,2,....N. (D)

For high resolution radar, the spatial clutter statistics deviate from the
Gaussian model [1,2]. The non-Gaussian nature of the clutter can cause severe
performance reduction in applications such as space-time processing and bearing
estimation using phased array systems. In these applications, a covariance matrix
is used to estimate the unwanted interference noise in the data cell under test.
Ensemble averaging is replaced by averaging over available adjacent secondary
data cells (i.e., range cells assumed to be free of the desired signal) assuming
independence between range cells. This estimator is the sample matrix estimator
and we refer to this case as that of a spatially-averaged estimate. The presence of
the spatially non-Gaussian clutter causes a considerable increase in the variance of
the sample covariance matrix estimator as compared to that for the Gaussian case.

In other applications such as the airborne radiometer [3], a time-averaged
estimate is used by averaging over a time sequence of data. In this paper, the
variance of the spatially-averaged and time-averaged covariance estimators are
described analytically in terms of parameters of non-Gaussian models pertinent to
these applications.

Two families of distributions for SIRP's have received considerable
attention; namely, the K-distribution [1]

_ Ea+1ra
=0, —— K,.,(Br) r>0 B,oc>0 (1)

-
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and the Weibull [2],

fr(r) = Bar®*lexp(-Pr®) r=0 B,0>0 )

where I'(*) is the Eulerian function and K(¢) is the modified Bessel function of the
second kind of order a. The parameters B and o are the scale and shape
parameters, respectively. The former is related to the variance of the quadrature
components of the clutter, while the latter controls the tails of the distribution.

The complex envelope y(nk) at time n and range cell k of the compound-
Gaussian clutter model [2,4] has been considered; i.e.,

y(nk) = v(nk)x(nk) 3)

where the complex Gaussian process x(n,k) (the speckle component) modulates a
nonnegative process v(n,k) containing discretes (texture) which is statistically
" independent of x(n,k). When v(n,k) has a long coherence time, it can be considered
to be a random variable with respect to k, but constant over time n $o that eq(3)
reduces to the case of a spherically invariant random process (SIRP) [5,6]

y(nk) = v(k)x(nk). (4)

Eq(4) is known as the representation theorem [5] and the probability density
function (pdf) f,(v) is called the characteristic pdf. It controls the pdf of y(n.k).
The Weibull and K-distributed processes are both special cases of the SIRP's [6].
We note that conditioned on v(k), the time sequence y(n) is Gaussian. This implies
that a sequence of data from a specific range cell is locally Gaussian, but non-
Gaussian when observed across cells. Furthermore, y(nk) is non-ergodic; i.e.,
averaging over range cells where v(k) is a random variable from cell-to-cell does
not provide the same statistic when averaging over time with v(k) constant.

In this paper, the variance of both the spatially-averaged and time-averaged
covariance estimates is derived. The special cases of Weibull and K-distributed
processes are noted specifically. Another important contribution of this paper is
the use of the representation theorem of eq(4) in the derivation. This theorem
enables a significant simplification of the procedure.

2
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2.0 Derivation

2.1 Spatially Averaged Estimator

We first consider the spatially-averaged covariance estimator; i.e. averaging
performed over range cells as described above. Consider the J channel vector
y(n,k) with JxJ covariance matrix R=E[y(n,k)y*¥(n,k)] where H denotes the
Hermitian transpose. Suppressing the time dependence, let y(k) be a J channel
vector of observation processes from the kth sample (or secondary range cell).
Consider the JxJ covariance matrix estimate defined as

K
- %kzl YY), 5)

Assuming statistical independence over k, R is the sample covariance matrix,
and provides a maximum likelihood estimate for Gaussian processes [7]. The ijth
element £; of R is defined as

1 ¥ *
B =§k§1 yi®)y; (). ©6)

The estimator Pij is unbiased since E[i‘ij] = 1;;. Thus the variance and error variance

are identical. The variance V ¢ of fij is defined as,

Vrs =E{ [ﬁj 'E(Pij)] [?ij - E(fij)]*}
= E(#;fy) - E@E@y) ©Q

where the subscript s on V denotes the spatially -averaged case. Using (6) in (7)
and interchanging the summation and expectation operations,

1 K K « "
Vi = @m; pzl E{ym)y; (m)y; (p)y;p) }

K K * *
- -ézlzlmyi(m)yj (m)IELy; P)y;®)] (8)
m=1p=
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where m and p denote the mt and ph range cells, respectively. Using the

representation theorem from eq(4) and noting the statistical independence of v and
X;, the first expectation in eq(8) becomes

E{ym)y; m)y; @)y} = Elvav] B{xmx; mx; (p)x(p) ). ©

For zero mean, jointly Gaussian scalar random variables x;(¢), xj(-), eq(9)
reduces to ‘

E{ym)y; @m)y; p)y®} = Elvava] {Elx,m)x; m)JE[x; (p)x,(p)]
+ E[x;(m)x; (p)]E[x; (m)x;(p)]}
+ E[x;(m)x,()IE[x; (m)x; (p)]. (10)

Furthermore, when these processes are complex, circularly symmetric, the
expectations in the last term of eq(10) are zero, so that :

E{y,m)y; m)y; @)y} = Evaval { Elxm)x m)]ELx; p)x,(p)]
+Elxm)x @EXmx@]}.  dD)
Assuming spatial stationarity over range cells, eq(11) becomes

N * 2 2 X X x
E {ym)y; (m)y; @)y;®)} = Elvmvp] {1502 + r(m-p){rj(m-p)1* } (12)
where the superscript x denotes that the correlation functions describe the Gaussian

~ processes defined in eq(4). Similarly, the expectations in the second summation
term of eq(8) become

Ely,m)y; @m)] = E[vi,] 55(0) | (13a)
and
Ely; ®)y;®)] = E[vy] [5O)]*. (13b)

Using eqs(12) and (13) in (8),
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Vamih3 3 ZE[vmvp1 (IE5()P + £ m-p){im-p)1*}

m=1p=1
- %3 LS S ER2) E[v3] Ij(0)12
m=1p=1
K K
RI—Z 2 {E(vavpl im-p)jm-p)l* + D IO} (14)
where
D=E[vovil-EVA]Elv]l  m#p | (15a)
=E[v4] - [Elvy P m =p. (15b)

Deﬁning g=m-p, eq(14) becomes

KL ZK K-Ag){EVivhl @I @I + DIOP) m=12...K. (16

Eq(16) can be rewritten as

= t{ BV O + (Ev - B2 Jigoe )

1 Kl
> [ ]{E[vmvmql ri(@[r5(@]* + D I ()12}
q=-(é<$-01)

m=12,..K 17)
where the first term is the g=0 (i.e. the m=p) term. Eq(17) is a general expression
for the variance of the sample matrix estimator in non-Gaussian SIRP disturbance.
We note that the summation term involves the correlation of the disturbance

processes over the range cells.

In the special case where v is statistically independent over range cells,

E[VoVmql = EIva] E[va] m=12,.K (q#0). (18)
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From eq(15a), D=0 for this case. Further, if the Gaussian processes x;(k) are
uncorrelated (and therefore statistically independent) over range cells,

2

rop(Q) = {g" S:g for b=1ij. (19)

where oi denotes the channel variance associated with x;(k) and will be assumed

equal on all channels for simplicity. When eq(19) holds, all terms in the
summation of eq(17) are zero, so that

Vi =% EviIo! + (BIv] - BP0 ) 20)

We note that the quantities 0: and r’{j(O) relate to the statistics of the
processes x(k) which are not directly measurable. However, recognizing that
63=E[V2]20': and Ir}; (O)IZ—E[VZ]ZIr1 (0)12, we can easily express eq(20) in terms of the
statistics of the observed data processes y(k) with the result that

1
V.= 'IIZ E[v2]2{ Elv4los + {E[v4] -Ev2P) } g0y } @1)

We note that the variance of this estimator converges to zero as K
approaches infinity. Thus, the sample matrix (using spatial averaging) is a
consistent estimator for non-Gaussian SIRP's. However, this quantity is now
dependent upon the second and fourth moments of v.

We now consider two special cases of the non-Gaussian SIRP models;
namely, the Weibull and the K-distribution. For K distributed processes with
shape parameter o and scale parameter b, E[v/]=o(c+1)b* and E[vZ]=0/b? (see
Appendix A). We let E[v2]=1 without loss of generality so that E[v4]= 1+l/oc For
simplicity, consider a diagonal element term [i.e., i=j so that rIJ(O)-ru(Q)—-GX] In
this case eq(20) becomes
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V, = %{1 + é}ci i=i (22)

For Gaussian processes, 0t—oo so that eq(22) reduces to the well known
result 64/K However, for K-distributed processes with high tails (a<1), the 1/o

term causes a s1gn1f1cant increase in the variance of the estimator. For example,
with a=0.5, V, is five times larger than the corresponding Gaussian case. For

Weibull processes with E[v2]=1 (see Appendix B),

I'(4/a)
E[vY] = ( )[I‘2(2/oz)jl O0<as<?2
and eq(20) becomes
T'(4/0)) L
{“[P(z/a)] } =) (23)

For the case of Weibull processes with Rayleigh amplitudes, a=2 and eq(23)

also reduces to o:/K. For Weibull processes with high tails (i.e. low o values), V¢
increases rapidly with decreasing o.. Finally, we note that V ¢ is inversely related

to the beta function B(n,m) with m=n=2/c. where B(n,m)=I"(m)I"(n)/T"(m+n).

2.2 Time-Averaged Estimator
We now consider the time-averaged covariance estimator; i.e. averaging
performed over N time samples. In this case,

1N 151

R@) = 2 y()yH(n-5) (24)

where & denotes temporal lag. Eq(8) is now rewritten as

1 N-I8IN-18
Va=fe 2 X E{yn)y; @-3)y; (Oy;(-)}
= 1 N-I6IN-|8l
-2 2 Elym)y; (n-8)]ELy; ()y;(t-5)] 25)

n=1 t=1
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where n and t denote the n? and tth time samples, respectively, and the subscript t
on V denotes the time-averaged case. Again, using the representation theorem

from eq(4), but now noting that v(k) has no temporal dependence, the expectations
in €q(25) become

E{y@y; 0-8)y; Oy;(t-) } = Elv4] E {x@m)x; (0-8)x; (x,(t-5) }. (262)

Ely,m)y; @-8)] = E[V2IE[x;(n)x; (n-8)] (26b)
and

Ely; ()y;(t-8)] = E[v2] E[x; (Ox,(t-5)]. (26c)

Again, for zero mean, jointly Gaussian scalar random variables x,(), xj(-),
and assuming temporal stationarity, it follows that

1N 151 N-16
Va=ga X ZEVI{I®P + ha-ole-l)
e lN SIN-16! 5 x
E‘Z > E[v2) Irg(8)1
n=1 t=1
1 N [ |&+|vl] " e \
-~ 2 U [EviIgwigo* |+ (Ev -Env2PIE@)R. 27

where v= n-t and we have used the fact that |x§§(5)12 is independent of v. We

emphasize that the second term in eq(27) is independent of N. Thus, the variance
of the time-averaged estimator does not converge to zero for increasing N which
implies that this estimator lacks consistency. This result can be explained by
noting the non-ergodic nature of the SIRP clutter process described in section I.

In the special case for i=j and 6=0, V, expresses the variance Var( 62) of the
estimated power 82 on a given channel as [8]

1 & Ivi X 2y 4
Var(8?)=x 3, [1 - W] E[v4lic(v)? + { E[v4] - E[v?]*} o, (28)
v=-N
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Furthermore, for white noise processes, only the v=0 term in the summation

remains, so that with r(0)=c-

var(®?) = x Elv4lo! + {Elv4 - Ev2)?) o (29)

which compares to the result presented in [3]. Again, we note the inconsistency of
the estimator. Using the previously defined expressions of E[v?] and E[v*], for K-
distributed processes

Var®?) = x [1+ é] o +i o (30)

while for Weibull processes
1 (o I'4/a) | 4 o) I'(4/0) 4
Var(82) = = |~ el )
ar(% ) =N (2)[r2(2/(l):| Oy + {(2)[F2(2/(X)J 1 }O'x (31)

For the Gaussian case, oi=cc and a=2 in eqs(30) and (31), respectively, and
Var(82) reduces to the known result 6/N.
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3.0 Simulated Results

Validation of eqs(22) and (23) was obtained via Monte-Carlo using 1000
statistically independent realizations. The normalized term KVl/o: is plotted as a
function of the shape parameter o for the K-distributed noise and the Weibull noise
in Figures 1 and 2, respectively. These curves approach unity (the Gaussian case)

as a—oo in Figure 1 for K-distributed noise and at a=2 (Rayleigh amplitudes) in
Figure 2 for Weibull noise. These curves show the dramatic increase in the

variance as a function of the shape parameter. In Figure 3, VI/O'i is plotted as a
function of K, the number of independent range cell samples, for the Gaussian and
K-distributed (0.=0.1 and 0.5) cases. These curves show that Vr/csf decreases
linearly with increasing K. Thus, the estimator is consistent when averaging over
range cells. This is unlike the time-averaged covariance estimator in which V,/Gi

converges to a bias level with increasing number of time samples due to the non-
ergodic nature of the SIRP's. Finally, they reveal the number of samples K
required to reduce the variance of the estimator for the non-Gaussian processes to
that of the Gaussian case.

. . . . 4
For the time-averaged estimator, we plot the normalized variance Var(’&z)/o‘x

versus N for eqs(30) and (31) in Figures 4 and 5, respectively. These figures reveal
the significance of the inconsistent time-averaged covariance estimator in non-
Gaussian SIRP's.

10
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Figure 1 Normalized variance K(V,/csf) for a diagonal element of the covariance

matrix estimator versus the shape parameter for K-distributed noise.
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Figure 2 Normalized variance K(Vr/(sf) for a diagonal element of the covariance

matrix estimator versus the shape parameter for Weibull distributed
noise.
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Figure 3 Normalized variance (V,/Gb versus the number of independent data

samples for a.) O Gaussian noise, b.) A K-distribution (a=0.5),
c.) ® K-distribution (0=0.1). Simulated experimental values shown by

symbols.
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4.0 Summary

This paper presents analytical expressions for the variance of the the
estimated covariance matrix elements when the observation data processes are non-
Gaussian spherically invariant random processes (SIRP's). Both the spatially-
averaged and time-averaged are considered. These expressions show the
significant increase in the variance of the estimates as compared to the Gaussian
case. For spatial averaging, they indicate the increase in the number of samples
over which averaging must be performed to acheive the same level of performance
as the Gaussian case. For the time averaging, the non-ergodic nature of the SIRP
clutter precludes convergence of the estimator variance. Validation is acheived
through Monte-Carlo simulation.

16
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APPENDIX A

DERIVATION OF THE EXPRESSION FOR E[v4] USING
K-DISTRIBUTED PROCESSES

In this Appendix, an analytic expression for E[v*] is derived in terms of the
shape and scale parameters of £,(v) where f,,(v) is a Gamma distribution and the

random variable v is real and non-negative. In this case, the observation data
vector process y(n,k)=v(k)x(n,k) described by eq(4) has a K-distribution. For the
Gamma distributed f(v) with non-negative v,

fy(v) = - )(bv)2°‘ 1 exp(-b?v2)

so that

E[v4] = r = Oj(bv)za Iv4 exp(-b2v2)dv

20-1y,2043 h2y2 Al
r()oj(b) v20+3 exp(-b2v2)dv. (A.1)

Consider v=\'w/b so that dv/dw=1/2bVw. Now,

f(w) = ﬂlﬁ’(’%ﬁ »‘ (A2)
and

E[v4] = E[w2]/b%. (A.3)
However,

E[w?] = j ﬂ%’%l dw = 41.9(‘% oo+ 1). (A4)
Using (A.4) in (A.3)

Elvé) = E[w?)oé = £ (AS)
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APPENDIX B

DERIVATION OF THE EXPRESSION FOR E[s4] USING
WEIBULL DISTRIBUTED PROCESSES

In this Appendix, an-analytic expression for E[v*] is derived in terms of the
shape and scale parameters for processes with a Weibull distributed amplitude.
The Weibull probability density function (pdf) of the amplitude r denoted as f(r)
with shape parameter o and scale parameter b is expressed as

f(r) =ba r%lexp(-br®) 120, O<a<2. (B.1)

The conditional pdf f(rls) is
f(tlv) = é exp(-12/2v2) 0. (B.2)

Using(B.1), the kt moment of r is

o0

E[rX] = [ f@dr
0

= ba d[ <o lexp(-br¥)dr

= (%jdal“(nk/a) (B.3)

while the kth moment of r conditioned on v is obtained using (B.2), so that

> 2 e+l
E[tlvl = [ tf(rlv)dr = 6[ 2 exp(-r/2v2)dr. (B.4)
0

Let w=r%/2v2, 5o that dw= rdr/v2 and r=\2vw!22. ‘Eq(B.4) now becomes
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o0

E[rklv] = 2¥2 vk oj wk2 exp(-w)dw

= 2K2 vk T(1+k/2).
Now,
E[X] = 0[ E[r¥lv] f(v)dv
= 2K2 T(1+k/2) Oj vk f(v)dv
= 2K2 T (1+k/2) E[v¥]

Using (B.3) in (B.6),

(%)““ T(1+k/a)
2K T(1+k/2)

E[vK] =
Therefore,
B = (5 (51;) I'4/o)

and

B = (5 @ /).

For E[vZ]=1,

,(%)= [1"(;1/00]“/2

so that
‘o I'(4/c)
E[v4] = (2)1-‘2(2/(1)'

#U.S. GOVERNMENT PRINTING OFFICE: 1996-710-126-20143

20

(B.S)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)




