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Abbreviations
LP is Linear Prediction
MA is Moving Average
AR is Autoregressive
FT is Fourier Transform
LPCC is Linear Predictive Cepstral Coefficients
PFCC is Pole filtered Cepstral Coefficients
CCF is Channel Compensation Filter
CMN is Cepstral Mean Normalization
CMS is Cepstral Mean Subtraction
LTM is Long Term Mean

Terms

Terms Channel distortions and Convolutional distortions have been used interchangeably.

Terms Channel compensation and Channel normalization have been used interchangeably.

Terms Cepstral Mean Normalization and Cepstral Mean Subtraction can be used interchangeably.

Term Pole-filtering is different from conventional filtering. It implies a filtering, weighting or a selection of
poles.

Terms True Speech and Clean Speech refer to speech not subjected to any environmental degradations.



Downloaded from http://www.everyspec.com

Abstract

Performance of Speech and Speaker recognition systems generally degrade when there is a mismatch be-
tween training and testing conditions. A significant part of this mismatch is caused by the differences
in transmission channels and transducers. Performance is particularly impaired when short training and
testing utterances are used. There is much interest in making systems robust to these variations. Conven-
tional methods attempt to minimize the channel mismatch by attenuating or modifying features sensitive
to channel differences.

Speech is usually modeled using an all-pole filter representation of the vocal tract. The poles represent
the eigenmodes of the vocal tract in the time domain. Thus, a multimodal model of the vocal tract
is implied. Each mode can be represented in the frequency domain as a spectral component with a
constituent center frequency and a bandwidth. The components which represent the formant structure,
provide sufficient information to recognize the speech sounds and the speaker under matched conditions.
However, these components are adversely affected by channel distortions which deteriorate the system
performance under cross channel conditions.

This report describes a new methodology for extracting robust features based on systematic selection
and filtering of the eigenmodes. The poles and the corresponding modes of speech are investigated under
mismatched conditions caused by varying channel conditions for speaker identification systems. A method
based on Pole filtering is introduced to estimate and normalize cross channel differences. Experiments on a
few standard databases show improved recognition accuracy over conventional methods. In addition, Pole
filtering is shown to be useful in identifying the type of channel present.

vi
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Chapter 1

Introduction

1.1 Problem Definition

Robustness in Speech and Speaker recognition by computers has been a challenging research problem for
the past several decades [1, 2, 3, 4, 5, 6, 7]. The ability to recognize the content of a spoken message is
called Speech Recognition, while, identifying or verifying the person conveying the message falls in the
category of Speaker Recognition. The robustness issue has been of much interest in applying speech based
recognition systems to several practical applications. Applications embody numerous scenarios where
voice is employed as a communication medium such as commercial transactions over telephones, air-to-
tower communications, military and forensic applications. Many applications are designed to alleviate the
burden on the end-user by providing a hands-free communication alternative.

It has been found that the performance accuracy of such recognition systems is reasonably high when
the quality of speech being processed is clean (that is, not subjected to environmental degradations). The
performance of the systems also depend on the abundance of phonetic components or sounds which embody
the speech and speaker information. The issue of robustness arises when the estimates of these components
are perturbed by either

o degradations in the application environment, or,
¢ physiological factors that affect the spoken dialog.

The spoken message may have been acquired over a noisy transmission channel with a limited bandwidth
or the message may have been conveyed in the presence of substantial background noise. Variations in
the quality of acquisition equipment (microphone transducers, coders, A /D) typify undesirable application
environment conditions. Physiological degradations may be caused due to stress, health, dialect and mood
of the speaker conveying the message. Changes in the speaker’s physiological characteristics over time (also
called aging) degrades the recognition accuracy. A robust speech or speaker recognition system may need
to address one or all of the aforementioned degradations based on the application requirements. Figure
(1.1) illustrates the factors affecting a typical recognition system.

Degradations incurred on the spoken message changes its characteristics and affects the performance
of the system. Recognition systems deployed in the field (application environment), assuming a cooper-
ative user !, are most significantly degraded by transmission channels, varying ambient noise levels and
other practical distortions caused by recording device characteristics. Locational constraints such as room
reverberations, cross-talk, distance from microphone are also critical to consistent performance. Improv-
ing recognition performance of systems where the speech signal has been subjected to channel distortions

'a user unaffected by physiological and psychological factors such as unwillingness to communicate, stress, mood etc.
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Figure 1.1: Factors influencing the performance of Recognition systems.

(due to a transmission channel, or transducer characteristics) has been of significant practical interest
[26, 28, 29, 30, 32, 39, 68, 76]? and defines the problem of research for this report.

1.2 Focus of Research

Design and development of robust speaker recognition systems has been actively addressed in the literature
due to its commercial viability engendered by the rapid increase in computational power of computers
[2, 9, 32, 41]. Speaker recognition applications primarily focus on security issues in commercial areas such
as accessing customer banking or credit-card accounts through the use of telephonic transactions, entry of
personnel in restricted areas, routing and acquiring personal messages etc. Secure access issues in military
communications and forensic applications have also been addressed in the past [96, 97].

The performance of a speaker recognition system is primarily limited by availability of acquired speaker
information and environmental degradations. The acquisition of a speech signal over a limited transmission
bandwidth results in a substantial loss of speaker information. Speech utilized in training and testing of
recognition systems acquired via different calling conditions or spoken using different handsets or micro-
phones, causes a mismatch in the representation of a speaker’s identity. Such channel mismatch causes
a signification degradation in the recognition or verification of the speaker’s identity. Proper channel
compensation must be carried out on the speech representation in order to normalize the effects of the
distortion and retain maximum speaker information contained within the available bandwidth. Developing
improved methods for channel normalization (or compensation) in speaker recognition systems is the focus
of research in this report.

The remaining sections in the chapter briefly review the different elements in a speaker recognition

system.

2]ocational variations are usually assumed to be consistent.
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Figure 1.2: Types of speaker recognition systems.

1.3 Dichotomy of Speaker Recognition Systems

Voice recognition systems can be viewed as performing two distinct steps. The first step is feature extraction
and the second is classification. The feature extraction phase involves encoding the relevant information
from a speech signal in a robust manner into features or patterns. The classification phase involves modeling
and matching the patterns on the basis of the observations.

A speaker recognition system may be concerned with identifying or verifying the person conveying a
spoken message. Speaker recognition systems are generally classified into Speaker Identification or Speaker
Verification systems [2, 3.

A Speaker Identification system determines the identity of a person from a spoken utterance, whose
voice best matches one of the N voices known to the system. A speaker identification system can be closed
set wherein the system identifies the voice of an unknown speaker that is among the N voices known to the
system. An open set speaker identification system on the other hand, would be able to determine whether
an unknown speaker belongs to the group of speakers enrolled in the system or not, and determines the
speaker’s identity, if enrolled [3]. A speaker verification system, verifies that the utterance belongs to the
person who the speaker claims to be. Figure (1.2) illustrates the categories of speaker recognition systems.

In either case, the systems could be text-dependent or text-independent (or free-text). In a text-
dependent system, the system is provided with a fixed phrase (decided apriori) during training and testing,
as opposed to a text-independent system where the vocabulary of the spoken utterance is unconstrained.

In speaker recognition systems, both training and testing phases involve a preprocessing and feature
extraction stage. In this stage, the speaker information is encoded from the speech signal into features
that form a compact representation. In the training phase, the extracted features are used to build
parametric or non-parametric models for each speaker in the recognition system. The testing phase involves
extracting features and finding a best match to the existing speaker models built during training. Such
pattern matching is carried out using a classifier. Figure (1.3) illustrates the basic elements of a speaker
identification system and Figure (1.4) illustrates a typical speaker verification system over a telephone link.

Practical speaker recognition requires robust feature extraction methods that demonstrate an invari-
ance to uncontrollable application environment parameters. Robust classification schemes are also required




——— O /11 02ded from http://www.everyspec.com

TRAINING PHASE
Speaker Models

Q

=]
é " | Feature Speaker #2
Extraction __g —

Training Speech Speaker #3

o

TESTING PHASE }

4— Feature _—— Pattern ——= Decision
Matching

Extraction

Testing Speech
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that best model the characteristics of speech unique to an individual in order to maximize the discrim-
inability among speakers, independent of the population. The overall recognition system may be expected
to exhibit a graceful degradation in the accuracy with increased speaker population.

Besides channel distortions and additive noise, limited availability of data for training and testing in
practical speaker recognition systems is a critical factor in their viability. Insufficient availability of speech
data negatively affects the quality of the features and results in poor estimates of distortions. Insufficient
training data also imposes a modeling constraint on the richness of the classifiers. Classifiers that offer
improved performance without the need for substantial training data for modeling are desirable for practical
speaker recognition.

The issue of robust speaker recognition can be addressed by categorizing it into modeling stages that
involve preprocessing and feature extraction followed by optimized training and classification. Past litera-
ture is replete with methods that have focused on all stages of speaker recognition. Comprehensive reviews
have been published in references [1, 2, 3, 4, 24, 41]. Robust feature extraction has predominantly focused
on the issues of channel degradations and ambient noise.

In this report a robust feature extraction methodology called Pole Filtering is introduced to improve
the performance of conventional speaker recognition systems degraded by convolutional distortions 3. A
significant part of the report focuses on using a conventional signal modeling technique called Linear
Predictive (LP) modeling for spectral analysis of speech. The eigenmodes of a linear system modeling a
segment of speech and its relation to LP analysis is investigated. The study of eigenmodes of speech and
their perturbations to convolutional distortions forms the basis of the contribution. The new technique
constitutes a filtering, weighting and selecting of the eigenmodes of speech so as to reduce the effect
of channel distortions.

The report is organized as follows: Chapter two provides a review of conventional speaker recognition.
Chapter three reviews methods for robust features for channel normalization. Chapter four introduces the
philosophy of Pole-filtering for robust feature extraction in speaker recognition, followed by experimental
results on various benchmark databases in Chapter Five. Chapter Six introduces an upshot of the pole-
filtering methodology an approach to channel identification based on speech. Chapter seven gives the
summary and conclusions of our findings along with a perspective on future work to consolidate the
methodology.

3consisting of an overall convolutional distortion due to the transmission channel and the microphone or handset.
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Chapter 2

Conventional Speaker Recognition

The process of speaker recognition and the underlying issue of robustness can be investigated by subdividing
it into
e Front-end modeling for preprocessing and feature extraction, and,

¢ Back-end modeling for Classification,

as shown in Figure (2.1). The recognition process can also be unified under a signal modeling paradigm,
where the speech signal is first parameterized into a “perceptually meaningful” representation and then
modeled statistically for robust classification.

The speech signal is usually acquired digitally through an A /D conversion process, the purpose of which
is to produce a digital representation of the speech signal with as high a signal-to-noise ratio (SNR) as
possible.

The non-stationary characteristics of a speech signal necessitates that the signal be parameterized in
time slices (frames) short enough to assume stationarity so that conventional signal modeling techniques
can be applied. For robust recognition, parameterizations are sought that are invariant to transmission
channel variations, transducer characteristics and ambient noise. Parameters from a signal, also called
feature vectors or observations are then modeled and classified. The subsequent sections elaborate on each
stage of the speaker recognition process.

Front-end modeling Back-end modeling
Classification
Para- Decision
Speech . Spectral meters ‘ _
— o | Preprocessing |— ) > —_
Analysis r I
i vr Supervised ~ Unsupervised
acquisition modeling .
spectral shaping transformations Nﬁi{%?r?;fttric

Figure 2.1: Speaker recognition process.
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2.1 Conventional Front-end Modeling

Front-ends for speaker recognition typically consist of a preprocessing step followed by a feature extraction
step.

2.1.1 Preprocessing

A short-time analysis of the speech signal is carried out by segmentation into overlapping frames which
are typically 15-30 msec, with an overlap of 10-15 msec. Within this duration the properties of a speech
signal can be assumed to be stationary.

Speech analysis is effectively carried out in the spectral domain since speech signal parameters are found
to be more consistent in the spectral domain, and information from the spectral domain is more easily
encoded. Thus, speaker recognition systems have generally employed features obtained via processing in
the spectral domain. The preprocessing step involves spectral shaping of the speech signal to emphasize
important frequency components in the speech signal. Voiced sections of a speech signal, which are pre-
dominantly used for speaker recognition, naturally have an attenuation of approximately 20 dB per decade
due to the physiological characteristics of the speech production system [13]. The spectral shaping is done
with the use of a Preemphasis filter that offsets the negative spectral slope thereby improving the analysis
of speech [13, 14]. A single tap preemphasis filter,

Hpre(2) =1+ aprez™ !, (2.1)

where, apre € [~1.0,—0.4] ! is normally employed.

For speaker recognition, preemphasis has an effect of enhancing the speaker information in the higher
frequency bands of the spectrum. However, preemphasis is helpful only in modest signal-to-noise ratios
since noise affects the estimates of higher frequency components adversely. Preemphasis often degrades
the performance of speaker recognition systems under low SNRs.

2.1.2 Feature extraction based on Spectral Analysis

Spectral analysis is used to extract features by encoding the speech waveform into meaningful parameters
that assist classification. Spectral analysis retains only those components in the spectral representation of
the speech frame that are sufficient for modeling and recognition purposes.

Two spectral analysis methods have been widely employed based on the application domain. The
methods are either based on

e Fourier transform (FT) modeling, or,
e Linear Prediction (LP) modeling.

Parameterizations are usually derived from these modeling techniques using either Filter bank analysis
or Cepstral analysis as shown in Figure (2.2). The filter bank analysis technique has been improved by
spacing the banks along a perceptual frequency scale to analyze the information content of speech in the
different subbands. Many perceptual spacing techniques for the filters have been proposed [69, 70]. The
energy within each subband yields an encoded representation of the spectra. An equally spaced ()—channel
filter bank has been shown in Figure (2.3).

Modeling using Fourier transforms computes the filter bank amplitudes using a DFT (Discrete Fourier
Transform) or an FFT (Fast Fourier Transform) by simply evaluating the spectrum at a discrete set
of frequencies. Filter bank amplitudes for the Linear Prediction model are derived by sampling the LP

'A typical value of —0.95 is frequently used.
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Figure 2.4: LP model of speech.

spectrum instead of the signal spectrum at the appropriate filter bank frequencies with the desired nonlinear
warping. Another way involves computing the power spectrum from the autocorrelation of the impulse
response of the LP filter [7].

For speaker recognition, a parametric transformation called the Cepstral transformation has been
proven to be the most robust for extracting features [1, 7, 32]. LP derived cepstral transformation in
particular has been found to provide robust statistics for speaker recognition. Filter bank amplitudes
derived from the Fourier Transform based modeling are transformed into the cepstral domain via a DCT
(Discrete Cosine Transform). Cepstral analysis based on linear prediction is the focus of investigation in
this report. The cepstral transformation has been proven to exhibit invariance to transmission channel
distortions [29, 32], an important property that shall be exploited in this report for extracting robust
features. The subsequent sections outline the Linear Prediction modeling and cepstral analysis which form
the nucleus of the Pole-filtering methodology.

2.1.3 Linear Prediction based modeling

Autoregressive (AR) models have been employed to model the speech production process for some time
[1, 13]. The speech signal primarily consists of voiced and unvoiced sounds that can be modeled using an
AR process. Thus, speech production can be viewed as an acoustic filtering operation in which an acoustic
source excites a vocal tract filter [14, 17]. The effect of the excitation (glottal) and the vocal tract (acoustic

filter) can be represented by a time-varying (all-pole) digital filter whose transfer function is given by,

S(z) G
Uz) 11—k apz*’

where, U(z) is the glottal excitation transfer function corresponding to an excitation u(n), G is the gain
parameter, a; are the vocal tract filter coefficients and p is the order of analysis.

The Linear Predictive (LP) technique provides a tool for parameterizing the all-pole vocal tract filter
model. The technique attempts to optimally model the spectrum of a segment of speech as an autoregressive
process [13]. Given a speech signal s(n), the signal is modeled as a linear combination of its previous
samples. The sampled signal s(n) and the excitation u(n) are related by the following difference equation,

H(z) = (2.2)

p
s(n) = Z ags(n — k) + Gu(n). (2.3)
k=1

The interpretation of equation [2.3] is given in Figure (2.4).
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A linear predictor with prediction coefficients, o, is defined by a system whose output is
. P
s(n) = Z ags(n — k). (2.4)
k=1
The prediction error can then be defined as
3 P
e(n) = s(n) — s(n) = s(n) — Z oxs(n — k). (2.5)
k=1
The error sequence can be interpreted as an output of a system with a transfer function
P
AZ) =1~ gz, (2.6)
k=1

If o), = ay, and the speech signal obeys the difference equation, then e(n) = Gu(n). This allows the
prediction error filter to be an inverse filter for the system, S(z), [14],

G

S5(2) = ——. 2.7
&) =40 (27)
The equation [2.5] may also be rewritten in 7-transform notation as a linear filtering operation,

E(z) = A(2)S(2). (2.8)

The basic goal of linear predictive analysis is to solve for the set of predictor coefficients. The inverse
filter, A(z), provides a good estimate of the spectral properties of the speech signal. In fact the filter A(z),
effectively models the short-time spectrum of the signal as a smooth spectrum [13]. Since the spectral
properties of speech vary over time, the predictor coefficients at a given time need to be estimated from
a short windowed segment of the speech signal occurring around that time. The basic approach finds the
set of prediction coefficients that minimizes the mean square prediction error over the short windowed
segment of the speech waveform. There are two common methods to solve for the predictor coefficients:
the Autocorrelation analysis and Covariance analysis methods. The LP filter parameters derived using
autocorrelation analysis guarantee a stable (minimum-phase) filter. Details of the methods can be obtained
in standard references on spectral analysis [13, 11].

The predictor coefficients represent a normalized spectrum independent of the power of the signal. In
order for the spectrum from the LP model to match the spectrum of the original signal, the gain term has
to be evaluated. The gain term is usually ignored for recognition purposes to allow the parameterization to
be independent of the signal intensity. The gain term, however, is essential for applications such as speech
coding and synthesis. The roots of the LP inverse filter correspond to the poles of the filter. Predictor
coefficients or the derived poles of the filter and their transformations have often be used for recognition
purposes. The transformations include [13],

e LP filter coefficients
e LP cepstral coefficients (LPCC)
e Line spectral frequencies

o Pseudo Vocal tract area functions

10
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Atal [29] provided a comprehensive review and comparison of parameters based on LP analysis like
autocorrelation, pseudo vocal tract area function, fundamental frequency and LP cepstral coefficients for
the purpose of speaker recognition. The following section reviews the cepstral domain analysis of speech
and its inherent property of robustness against channel distortions. There exists an important relationship
between the LP parameters and cepstral parameters which shall be established in the subsequent chapters.

2.1.4 Homomorphic processing and Cepstral analysis

The problem of deconvolving and separating a signal s(¢) convolved with another signal h(t) appears in
many contexts in signal processing such as image restoration {102, 103], echo removal [101], communication
[104, 105] etc. In the case when both the signals are unknown, the problem of estimating and eliminating
one of the unknown signals is referred to as Blind Deconvolution [99, 100, 106]. The problem of blind
deconvolution of the convolutional distortion for a speech signal transmitted over a telephone line and/or
acquired via a transducer occurs frequently in speech processing.?

For speech signals the channel distortion is assumed to be time-invariant or varying much more slowly
than the variations in the signal. Due to the non-stationary nature of speech signals, channel estimation
is carried out on speech segments over which the signal can be assumed to be stationary.

Homomorphic systems are a class of nonlinear systems that obey the generalized principle of superpo-
sition for convolution [18]. The homomorphic theory maps the process of convolution into one of addition
which simplifies the deconvolution process into a subtraction.

For a voiced frame of a speech signal, let,

Y(w) = Sw)H(w), (2.9)

where, S(w) corresponds to the frequency response of speech and H(w) is the response of the channel. In
time domain, H(w) corresponds to h, the impulse response of the convolutional distortion.
Taking the logarithm (complex), on both sides,

log(Y (w)) = log(S(w)) + log(H (w)). (2.10)

The complex cepstrum of a signal is defined as the Fourier transform of the log of the signal spectrum.
Then, for a magnitude-square spectrum |Y(w)|, which is symmetric with respect to w = 0, the Fourier
series representation of log(|Y (w)|) can be expressed as,

log(|Y (w Z cpe™Hem, (2.11)

n=—00

where ¢, = c_,, and ¢, are referred to as the cepstral coefficients.
For a stable (minimum phase) all-pole filter modeling of speech which is generally obtained using the
autocorrelation analysis method for LP modeling,

, o
Y (w)| = TA()E (2.12)
and it is possible to define the cepstral coefficients as,
lOg(IA py ’2 Z cne I, (2.13)
n==o0

*In practice it would be impossible to estimate the individual distortions caused by a transmission channel or the transducer.
The term convolutional distortion implies an overall convolutional effect of the distortions.

11
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Figure 2.5: Homomorphic processing approach.

where, the cepstrum derived from the minimum-phase all-pole power spectrum is referred to as the LP

cepstrum.

In either case, when investigating the cepstral coefficients of speech from a speech signal degraded by a
channel, one can observe that the invariant distortion due to the channel appears as an additive component
in equation [2.10].

In the case of LP derived cepstrum evaluated for M frames of the speech utterance, one can formulate
equation [2.10] as,

M-1 M-1
3" log([Y (wym)]) = Y log(1S(w;m)l) + log(H(w))- (2.14)
m=0 m=0

A time invariant distortion H(w), can be eliminated by averaging in the cepstral domain, and then
subtracting this average component. Such a cepstral bias (corresponding to log(Hw)) can be used to
eliminate channel distortions as well as estimate or detect a channel as shown in Figure (2.5).

" However, this method of eliminating the time-invariant convolutional distortion relies on the broad
assumption that

M—-1
Z log(|S(w;m)|) — 0. (2.15)
m=0
Equation [2.15] implies that the average component due to actual speech is zero-mean.

Hence, the subtraction of the average component in the cepstral domain would essentially correspond to
a deconvolution term or a channel normalization term. This term also yields an estimate of the freqeuncy
response of the degradation. Since for speech systems the convolutional distortion is not known apriori, it
implies a method of performing a blind deconvolution in the cepstral domain.

For speech signals, the emphasis is only on the log magnitude spectra or the log amplitudes. An
accurate estimate of the channel can only be obtained if equation [2.15] is satisfied for large M. However,
in practice, the number of frames available for processing a speech utterance is always limited by the
application and the theoretical consideration in equation [2.15] is never satisfied. The amount of speech for
training or testing is invariably too limited to yield accurate estimates of log(H(w)). Hence, the average
term on the left-hand side of equation [2.10] reflects the presence of,

12
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e a gross spectral distribution of the phonetic content of the spoken material and speaker
characteristics and

e a spectral distribution of the channel.

This report focuses on a methodology to decouple the two components, the speech information and the
channel] information, to obtain an improved cepstral estimate of the underlying distortion corresponding
to H(w). LP derived cepstral features have been considered as tools to develop improved methods for
channel compensation. The relation between the poles of the all-pole LP filter and their corresponding
transformation to the cepstral domain is studied under convolutional distortions. A Pole filtering ap-
proach is developed to normalize the effects of a channel. The approach uses intelligent filtering of the
pole parameters of the all-pole LP filter, that correspond to the eigenmodes of speech, in order to yield a
better estimate of the channel in the cepstral domain.

For speech based recognition systems, several conventional techniques have been developed in the
cepstral domain (derived via FFT or LP techniques) to compensate for the convolutional degradations
[29, 30, 32, 45, 68]. Cepstral parameters are usually derived after modeling speech using LP analysis using
a recursive relationship between the LP prediction coefficients and cepstral coeflicients [29, 87].

Features based on LP or FFT derived cepstra have been shown to yield the best speaker recognition
results. In recent speaker recognition literature, the use of cepstral coefficients as features has been dom-
inant [2, 28, 29, 34, 36, 37, 39]. Characteristics of the cepstral coefficients have been extensively studied
for minimizing mismatch caused between training and testing features due to the transmission channel.
Processing has been emphasized in two domains: the Intraframe domain (processing within each speech
frame) [30, 72, 73], and the Interframe domain (processing across an ensemble of speech frames) [29, 32, 68].

The subsequent chapter provides a comprehensive overview of the approaches along with conventional
features for channel normalization. The remaining sections in this chapter survey back-end modeling or
classification schemes that have been employed for speaker recognition.

2.2 Back-end Modeling or Classification

Robust classification is concerned with the decision making process in determining or verifying the identity
of the speaker of a spoken utterance. In general, parameterizations of the training utterance of a speaker
are modeled to form a reference template. The test utterance is then parameterized and a pattern matching
algorithm is used to determine which reference template best matches the test utterance.

The parameters derived from an utterance normally represent a set of points in a multidimensional
parameter space. A statistical average of the features may be used to distinguish the speakers [53, 33,
54]. The simplest template matching technique compares the test utterance to the training template by
computing the distance between the feature means. A Euclidean distance is used for minimum distance
classification given by

(Z - '@ —p). (2.16)
where p is the mean that corresponds to a reference parameters and z is the mean of the test parameters.
The superscript ' denotes a transpose. If the mean and the covariance ¥ are known then a weighted
Euclidean distance measure also known as the Mahanalobis distance given by,

(& — )=z - ), (2.17)

and the estimated covariance (%) is given by,

5= (z; — Z)(z; — 7, (2.18)
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where z; corresponds to the feature for the it? frame. The long term average of feature vector is however
sensitive to variations in the background noise and channel distortions.

More sophisticated methods of analyzing speaker information in feature space have been investigated
in the past [8, 34, 35, 24, 40]. The classification methods can be broadly characterized from their training
methodologies. The speaker modeling for classification can either be Supervised or, Unsupervised.

In supervised training methods, the classifier is trained by associating the feature data to a category
or a class label. In case of speaker recognition systems, each speaker would correspond to a category. In
unsupervised training methods, the classifier is allowed to model each speaker usually based on a clustering
of speaker-dependent sounds from the spoken utterance or utterances. During the testing phase, the speaker
is classified as being the speaker which is most likely to have generated those sounds, by matching the test
patterns to all existing speaker models. :

Classifiers that have been designed based on Supervised and Unsupervised training for speaker recog-
nition are reviewed in the subsequent sections.

2.2.1 Unsupervised Classifiers

For unsupervised classification, speaker information is modeled statistically by imposing a model on the
data [1]. Generally, a multivariate Gaussian density function is chosen. The modeling could be parametric,
where a continuous underlying distribution is assumed or non-parametric, wherein a discrete distribution
is assumed. The Gaussian density function has the property that it is completely characterized by its mean
vector and the covariance matrix. Most classifiers assume this distribution when modeling the speaker.

For some classifiers, parametric fits that are based on gaussian statistics may not be appropriate since
abundant data may be required to model the underlying statistics of the speaker. In case of limited training
data, a non-parametric fit is often performed by hypothesizing a discrete probability distribution. Figure
(2.6) illustrates the difference between parametric and non-parametric fits to the data. One such method
of realizing a non-parametric fit is used in the Vector Quantizer (VQ) classifier [84, 85].

Vector Quantization is an unsupervised classification method. The feature parameters from the speaker’s
utterance are grouped or clustered into data representatives that form a compressed representation of the
speaker’s feature space. All vectors falling inside a cluster are represented by a centroid or a local statistical
mean. Thus the feature space of the speaker is quantized to a Codebook of centroids called Codewords.

14
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Heuristically, each codeword may be thought of modeling speech components, such as speaker dependent
phonemes or sounds.

Several clustering algorithms exist in the literature [84, 34, 11, 15, 85]. The techniques involve selecting
an initial estimate of the codewords and then iteratively updating the centroids such that the average
distance of vectors from their nearest centroid is minimized. Unsupervised k-means is a commonly used
algorithm for building codebooks representing the speaker model [84]. During the testing phase, an accu-
mulated distance measure is used to match the test patterns to each speaker’s codebook. The speaker that
corresponds to a minimum accumulated distance is selected.

Several parametric models based on unsupervised training have been proposed wherein a likelihood
approach is used to classify the speaker. The distribution for a speaker is assumed to have continuous
densities p; and a likelihood p;(z) is associated with a feature z, generated by the ith speaker. Using
Bayes’ theorem, the probability that the speaker is the ith speaker is given by,

pi(z)F;

p(z)
where P, is the apriori probability that the utterance was spoken by speaker 4, and p(z) is the probability
of the feature z occurring from any speaker. If the prior probabilities are equal and p(z), which is the
average of the speaker densities, is the same, the classified speaker will be chosen as the speaker that has
the highest likelihood score.

Given, n independent feature vectors, from a speaker’s utterance, X = 1,23, -, 2y, for a gaussian

model with parameters p and X, the likelihood of the test utterance is given by [41],

P(speaker =i|z) = (2.19)

L(X: i 5) = [275| e~ 3 Lim (@i mB T @imn), (2.20)

For computational convenience, log-likelihoods are generally calculated. Gaussian models attempt to model
the gross distribution of the speaker. In recent literature, Gaussian Mixture Models (GMM) [37, 41, 58]
have been shown to offer a viable robust speaker recognition model. GMMs model the speaker information
as a mixture of Gaussian distributed data clusters with weighted sum of densities. The mixture model is
trained by partitioning the frames of an utterance into a predetermined number of clusters. This is usually
carried out with a clustering algorithm or by automatic speech segmentation. The training is then carried
out with an Estimation-Maximization algorithm[95].

In recent literature, Hidden Markov Models (HMMs) have also been used for speaker recognition[57,
59, 60, 56]. HMMs comprise of employing a stochastic finite state machine to model sequences. HMMs
employ a markov chain consisting of a sequence of states. For each state, a posteriori probability is
computed along with a transitional probability from state to state. HMMs attempt to model the state
transitional probabilities of a specific speaker. In fact, an HMM modeled with a discrete distribution may
be considered as a Vector Quantizer that additionally utilizes transitional information from state to state.
A comprehensive comparison of VQ and HMM classifiers was reviewed by Matsui and Furui wherein it was
concluded that an HMM is as robust as VQ for a text-independent speaker identification task (which shall
be focussed in this report) when enough data was available [56]. Unsupervised classifiers have a drawback
in that they do not have discriminatory information. Such discriminatory information is particularly useful
in case of short training and test utterances.

2.2.2 Supervised Classifiers

Supervised classifiers involve training a classifier for a speaker with the knowledge of all other speakers as a
“pool of anti-speakers” or “not-the-speaker”. In general, individual classifier models are trained for all the
speakers. Each classifier is trained with the feature vectors from a speaker labeled as “ones” and the feature
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vectors for the remaining speakers labeled as “zeros”. The classifier is trained with all these labeled feature
vectors. A classifier for each speaker in the population is trained using this method. During testing, the
test vectors for a specific speaker should yield a “one” response for that speaker’s classifier and a response of
“reros” for the feature vectors of all other speakers or “anti-speakers”. For speaker identification, the test
vectors are applied to each speaker’s classifier and the speaker is selected as corresponding to the classifier
with the maximum accumulated output. Supervised classifiers such as Neural tree Network (NTN) [86],
Multi-layer Perceptrons (MLP) [21], Time Delay Neural Networks (TDNN) [78] and Radial Basis Function
(RBF) [98] have been successfully employed for speaker recognition [24, 48, 61, 62, 63].

While MLP and RBF classifiers require a predetermined architecture, NTNs [86] are flexible as they
impose no architectural constraints since the architecture is determined while training. An NTN is a
hierarchical classifier that combines the properties of feed-forward neural networks within a decision tree
structure. For speaker recognition, a modified neural tree network (MNTN) [24] has been used wherein,
a binary NTN (dual decision) is grown for each speaker with speaker labels and a common anti-speaker
labeling. All training vectors are applied to the MNTN and the tree is recursively grown until a classification
criterion is satisfied [24, 48].

Speaker recognition in NTNG is carried out by recording the labels for all the test vectors. The corre-
sponding speaker likelihood is computed as,

M

= N1 M (2:21)

Prin(2]5;)
where M is the number of vectors classified as the speaker, N is the number of vectors classified as “anti-
speaker”. Figure (2.7) [24] illustrates the recursive tessellation process in the speaker and anti-speaker’s
feature space.

For the MNTN, the likelihood score is weighted by a confidence measure. In either case, the speaker
corresponds to the model most likely to have generated the observed sequence of vectors based on an accu-
mulated likelihood. NTN/MNTNs have fast retrieval times and are efficient for hardware implementations
of speaker recognition systems. Recently, a fusion of classifiers has been proven to yield improved results
over using individual classifiers. Farrell [49] considers the fusion of NTNs and VQ for speaker identification.
The fusion approach exploits the advantages of VQ, which determines how close the test utterance is to
the speaker’s model, and NTN, which determines how different the test utterance is of the speaker from
that of other speakers in the population. Soong and Rosenberg [35] used fusion of separate VQ codebooks
formed using static and dynamic features of speech.

With an emphasis on short training and testing utterances, non-parametric modeling techniques, par-
ticularly VQ, have prevailed as an unsupervised classifier due to its simplicity and robustness, while the
NTNs have prevailed as a supervised classification scheme, due to its fast retrieval time and discriminatory
capacity. In this report, the VQ classifier is employed with empirically fixed training parameters while the
features are evaluated for comparison.
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Figure 2.7: Neural Tree Network for speaker recognition (Adapted from Farrell and Mammone [24]).
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Chapter 3

Robust Features for Channel
Normalization

For speaker recognition systems to be practical, they must be made robust to convolutional distortions.
There is a need to acquire features invariant to significantly mismatched conditions caused by:

e transmission channels (local, long-distance, radio-links). Figure (3.1) illustrates frequency responses
of typical transmission channels obtained from a simulator [88],

e transducer equipment such as microphone used for recording, handsets (electret or carbon-button for
telephone applications) and,

e usage condition such as a speaker phone or cellular phone.

The degradations due to channel differences incurred by the above distortions is the most critical
limitation of state-of-the-art speaker /speech recognition systems [9, 41]. In practice, all these degradations
are assumed to correspond to an overall convolutional distortion component that degrades the spoken
utterance to be trained or tested.

Current research in channel normalization has attempted to improve recognition accuracies of speech
and speaker recognition systems by either

1. extracting features invariant to channel mismatch, or,
2. modeling and estimating the composite effect of the convolution in a probabilistic framework.

This chapter outlines the conventional approaches to channel normalization with respect to extracting
features invariant to mismatch caused by the convolutional distortions. It will be proven that all con-
ventional approaches share a common underlying basis for channel normalization, which in itself has a
drawback. The investigation of the inherent limitations of these approaches shall be used as a basis for
developing improved methods for normalizing the convolutional differences. Probabilistic channel modeling
and estimation will be reviewed briefly towards the end of the chapter and is not focussed in this report.

3.1 Features for Channel Normalization

Spectral modeling of practical speech signals require modeling the channel and noise distortions in addition
to sub-glottal effects, vocal tract resonances and other physiological characteristics. A proper spectral
modeling technique would ideally need to model each of the effects with their respective transfer functions.
A pole-zero approximation of the transfer functions consists of an Autoregressive (AR) component and
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Figure 3.1: Various transmission channel characteristics.

a Moving Average (MA) component. In general, these factors can be represented by individual transfer
functions consisting of poles and zeros multiplicative to the transfer function of speech. «

In practice, a transfer function for speech that takes into consideration all the factors can be represented
by,

Nnasals(Z)Nchannel(z)Nnoise(z) + Nadd(z)
Aresonances (z)Dchannel(z) Dadd (z) ‘

where Ngga(z) and Dggq(z) model additive noise. Nenanner(2) and Depanner(#) represents the zeros and
poles of the channel distortion. Ny,s(2) models the nasal zeros in the speech spectra.

ARMA modeling of speech has been found to be very complicated and computationally exhaustive in
practice. Optimization techniques based on maximum likelihood estimation (MLE) and related concepts
have often been used to determine the AR and MA parameters [22]. Many of these optimal and sub-
optimal techniques are unreliable and have convergence problems. For recognition purposes, AR modeling
of the speech signal has been found to suffice within modeling constraints such as filter order and numeric
precision [14]. '

An autoregressive fit to the spectrum of a segment of speech, however, corresponds to an all-pole
approximation that subsumes all environmental factors affecting speech. Linear Prediction modeling yields
an all-pole fit to the spectra representing all the above convolutional and additive factors in equation [3.1].
A robust parameterization based on LP analysis would ideally require a modeling and compensation for the
individual distortions and a methodology to decouple the spectral information related to only the speech
or the speaker.

Parametrizations based on AR modeling are particularly significant when derived for speech signals
employed in practice. Although telecommunication systems today, regularly deliver SNR’s in excess of 30

S(z) = (3.1)
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Figure 3.2: Spectral mismatch due to different channels.

dB for many recognition applications, the sensitivity in the performance accuracy is predominantly due
to mismatched conditions between training and testing data due to convolutional distortions. Hence, it is
of practical interest, to study the degradations caused by poor transmission channel conditions. In cases
where the speech has been processed through a transmission channel or acquired via a microhone or a
handset (for example in telephony applications), the transfer function corresponding to a speech segment

can be simplified as,

1 Nch(z)
Aspeech (z) Dep (Z) I

where Agpeech (%) represents an autoregressive fit solely due to speech in the frame while, Nep(2) and Dep(2)
represent the zeros and poles of the overall channel distortion. The effect of noise has been left out in the
formulation.

An AR fit to the spectra of a speech frame would yield a constrained all-pole representation of all zeros
and poles of speech as well as of the channel. Thus, the parameters derived from the LP analysis not only
represent the speech, but also perturbations caused by the transmission channel. Figure (3.2) illustrates an
example of spectral mismatch caused to a frame of speech due to different transmission channels obtained
from a simulator [88].

Since these perturbations vary with the channel, a mismatch occurs in evaluating the performance using
these parameters. Moreover, such convolutional noise may affect each parameter differently. Parameters
are sought wherein a simple transformation, or weighting attenuates the effect of convolutional distortions,
thereby resulting in a more robust representation. In case of spectral modeling based on Fourier transform,
the distortions affect the parameters (log spectral magnitudes) that are derived by sampling the spectrum
of speech. Tt is possible to investigate the distortions caused by the transmission channels on model
parameters in order to achieve channel normalization.

Channel invariant feature extraction algorithms in speech based systems have generally focussed on
techniques that either,

S(z) = (3.2)

e de-emphasize the effect of the channel on individual feature parameters, or,
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e estimate and eliminate the convolutional distortion to obtain a robust feature representation.

Typically, parameters of speech are extracted using conventional signal modeling and then modified to
yield an invariance to distortions. Compensation for convolutional distortions after feature extraction has
a computational advantage since speech is processed in short segments. Channel compensation would be
required only on those segments where there is necessary speech information while the rest of the signal
can be eliminated from processing.

In practice, for spectral modeling of speech, the distortions caused by the communication channel or
transducers are assumed to have a fixed frequency response (or time-invariant) and varying much more
slowly than the speech signal itself.

A channel normalization approach would effectively deconvolve (inverse filter) the channel from speech.
Channel normalization for recognition systems has frequently relied on a blind deconvolution approach
based on homomorphic processing reviewed in Section (2.1.4).

For speaker recognition, features have generally been extracted using an LP derived cepstral transfor-
mation [1, 2, 31, 32]. For features based on Fourier transform modeling, the cepstral transformation has
been proven to be superior for speech recognition applications. In contemporary recognition literature, fea-
ture extraction in the cepstral domain has widely been accepted as a standard. Tn fact, most investigative
efforts in speaker as well as speech recognition systems have focused on features in the cepstral domain.
The rest of the chapter reviews the significance of cepstral feature analysis and several related techniques
that have been developed to minimize the mismatch caused by convolutional distortions.

3.2 Cepstral feature analysis

The cepstral parameterization of a short-time spectra of speech depends on the spectral modeling technique
employed. In the case of LP modeling of the spectrum, if the all-pole filter A(z) is stable (or minimum-
phase), the cepstrum can be derived recursively. For a minimum phase all-pole filter that has all its roots
inside the unit circle, log(A(L)) is analytic inside the unit circle and can be represented via a Laurent
expansion ([13], pp. 230)

G o0
log(A ) = log(G) — log(A(2)) = log(G Z c(k (3.3)
(2) = .
Representing A(z) in terms of its predictor coefficients,
P
z) = Z arz® ag=1;ap #0, (3.4)
k=0 .

and differentiating both sides by with respect to 2~! and then multiplying by z~!, an expression can
be derived that expresses, the cepstral coefficients in terms of the predictor coefficients. The predictor
coefficients ax and cepstral coefficients are related via a recursive relationship 1, 13],

C1 = —a1;
1 n—1
1=l
=—— Z keyGp—p n>P (3.5)

where P is the order of the filter and ¢, is the n® cepstral coefficient.
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In case of Fourier Transform modeling of the spectra, the cepstral coefficients are calculated by first
taking the log of the spectral magnitudes. An inverse Fourier transform (IFFT ~ FFT™') of the log
spectrum yields the cepstral transformation as shown,

s(n) = FFT(s(n)) = S(w) = log(|S(w)]) = FFT™! = ¢(n). (3.6)
Conventionally the sequence ¢(n) is truncated by windowing to a low order of 8-14 to form a feature
vector, ¢ = [c1, ¢, -, ¢g|, of a speech frame for recognitionpurposes, where () is the order of the cepstral

sequence.

For speaker recognition purposes, LP-derived cepstral coefficients have a computational advantage due
to the recursive relationship in equation [3.5], although either of the modeling techniques have shown
comparable results in the cepstral domain [64].

Robustness techniques to convolutional distortions in the cepstral domain have relied on

1. Intraframe processing, and,

2. Interframe processing

of the cepstral parameters. The Intraframe approach involves modifying the cepstral features for an
individual frame of speech to de-emphasize the coefficients that are sensitive to channel mismatch. The de-
emphasis attenuates the mismatch in the cepstral parameters for a speech frame across varying distortions.
The modification may either involve a weighting, selection.or normalization. On the other hand, the
Interframe approach involves investigating the time evolution of the parameters across an ensemble of
speech frames or even the entire training or testing utterance. An estimate of the time-invariant distortion
is often obtained by examining many speech frames representing the speech utterance. The estimate is then
filtered or eliminated to generate robust parameters. Figure (3.3) illustrates the processing approaches.
Both approaches are reviewed in the subsequent sections.

3.2.1 Conventional Intraframe processing

Cepstral coefficients used for recognition are generally weighted in order to minimize their sensitivity to
channel differences, talker differences and ambient noise [11]. Conventional weighting schemes use a fixed
cepstral window designed by studying the sensitivities of the cepstral coefficients. The first order cepstral
coefficient, ¢1, (co correponds to the zeroth order coefficient) represents the tilt of the spectrum which is
most drastically affected by differences in the channel characteristics. Lower order cepstral coefficients,
in general, are more sensitive to channel differences. The higher order coeflicients are sensitive to noise
[11, 72, 73].

A simple cepstral weighting scheme applies an asymmetric triangular window, or a ramp weighting
[72], given by,

Cm = MCm; (37)
where m is the coefficient index. Ramp liftering (weighting in the cepstral domain) de-emphasizes the
lower order cepstral coefficients which are more sensitive to channel variations. Linear weighting has the
effect of a differentiator in the frequency domain or taking the first derivative of the log spectra. Distance
measures based on the difference between the slopes of the log spectra have been shown to be robust to
transmission channel variations [67]. A more complicated weighting scheme involves Bandpass liftering
using a raised sine window,

where,
Q ., ™
wm=1+—2-31 (—6-) 1<m<aQ, (3.9)
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Figure 3.3: Processing of cepstral features.

where (@ is the order of cepstral coefficients and the weighting, wy,, de-emphasizes the lower order cepstral
coefficients to alleviate channel differences and the higher order cepstral coeflicients to reduce the sensitivity
to noise [73]. Figure (3.4) illustrates different lifters commonly employed for recognition purposes.

A more powerful intraframe approach to channel normalization was developed by Assaleh and Mam-
mone [30, 45] wherein an adaptive cepstral weighting scheme was developed to minimize the effect of
channel variations on the speech spectra. The approach derives a subtractive cepstral component for each
frame of speech to attenuate channel differences. This approach will be unified in Chapter Four along with
the Pole-filtering approach.

A cepstral weighting scheme based on the statistics of the variations in the cepstral parameters weights
the cepstral coefficients by their individual variances over the test or training utterances. Cepstral coefli-
cients have been observed to have variances that are inversely proportional to the square of the cepstral
coeflicient index, n, [73]

B{leal?) % (3.10)

When cepstral vectors are used for comparing the training and testing utterance using a Fuclidean
distance metric, the result is likely to be dominated by terms that have large amplitude and variances.
More often, the dynamic range and variance of the lower order cepstral coeflicients is greater than the higher
order cepstral coefficients. Weighting the cepstral coefficients by the variances, normalizes the contribution
due to each dimension of the cepstral feature vector. Variance normalization also theoretically signifies
a Prewhitening Transformation of the parameters, wherein the variances are assumed to correspond to
the diagonal terms of a covariance matrix which are often used to decorrelate the parameters [15]. Since
the cepstral features have generally been found to be uncorrelated (i.e, they correspond to a diagonal
covariance matrix, with the off-diagonal terms being zero or a small value), a Euclidean distance metric

H
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Figure 3.4: Liftering schemes on cepstral coefficients.

has often been a reasonable choice {7].
Intraframe techniques attempt to only minimize the sensitivity of the cepstral features to convolutional

distortions, but do not necessarily eliminate them. Interframe approaches on the other hand explicitly
attempt to filter or eliminate the contribution due to channel from each frame of speech. Such estimation
of the components due'to the channel is discussed in the following section.

3.2.2 Conventional Interframe processing

Interframe processing exploits the temporal variability of a sequence of cepstral vectors. In practice, the
sequence may correspond to a training or testing utterance recorded via a microphone and transmitted
over 5 comunication channel. Interframe processing is invariably based on the assumption that the convo-
lutional noise is slow-varying or time-invariant over the interval of analysis. The transmission channel and
microphone are assumed to have a fixed frequency response over the duration of the training or testing
utterance. Based on this assumption, cepstral domain processing renders the time-invariant convolutional
distortion as a constant (dc) bias (refer to section 2.1.4).

An estimate of this bias can be estimated by averaging in the cepstral domain and then subtracting
this average component from the cepstral vector of each frame. All interframe techniques in the cepstral
domain implicitly utilize this estimate as the premise for Channel normalization.

Cepstral Mean Normalization (CMN)

CMN (1], proposes that the effect of any fixed frequency response distortion introduced by the recording
apparatus or the transmission channel can be eliminated from the cepstral sequence of a speech utterance
by subtracting its long-term mean. The process is also referred to as Cepstral Mean Subtraction (CMS).
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If a speech utterance S, consists of M overlapping short-time segments, then long-term mean of the
cepstral coeflicients is given by,

cs = ( (T clm) (&S em) - (M m) ), (3.11)

where m is the frame index, and @ is the order of dimensionality of the cepstral vectors. The cepstral
mean normalization for the m* frame of speech is given by,

¢ — Cg, (3.12)

where ¢, is the cepstral sequence for the m** frame.

Since the long-term cepstral average represents the cepstral estimate of the convolutional distortion,
it is also frequently called the Channel Cepstrum. Although simple, CMN has been proven to be the
single-most powerful method for normalizing channel differences and minimizing the mismatch between
training and testing utterances [80, 64, 31, 32]. CMN, however, has major shortcomings when the speech
data available for training and testing is limited ( also discussed in Section 2.1.4, equation [2.15]). This
is due to the short utterance duration, cepstrum corresponding to the underlying speech tends to have
an invariant component. This invariant component relates to the gross spectral distribution of the speech
utterance. This aspect will be analyzed in greater detail in Chapter four wherein the spectral distribution
of the cepstral mean will be investigated.

To verify that, for short utterances, the cepstrum corresponding to clean speech has an invariant
component or that it is not zero-mean, an experiment was performed on clean speech from the KING
database [89]. The cepstral mean for various utterance durations * is plotted in Figure (3.5) for a male
speaker from the KING database. The figure represents the cepstral mean coefficients (12 order) of a
clean speech utterance ? (obtained from the wideband speech portion) and the same utterance degraded
by a real telephone channel (obtained from the narrowband portion). It can be observed that the cepstral
features are not zero mean but constitute a bias that corresponds to clean speech representing a gross
spectral distribution for a speaker. One can also observe that although the cepstral coefficients for clean
speech may tend to zero over a very large time durations [73], this property is not apparent for short
utterances.®. A discussion of the zero-mean property of cepstral coefficients is also discussed in Appendix
B. An alternate method for proving that cepstral mean of short duration clean utterances is not zero-mean
was also tried wherein speaker recognition experiments were conducted of cepstral features of clean speech
and repeated on the same cepstral features after CMN. The speaker recognition accuracy was found to
degrade by twenty percent when the cepstral mean for clean speech utterances was eliminated. When
CMN is carried out in the presence of a convolutional distortion, this underlying invariant component
due to clean speech is also eliminated from each frame. Clearly, an inaccurate estimate of the channel
cepstrum, biased by an invariant cepstral component due to speech is eliminated. In order to maximize
the discriminability among the speakers, the information that corresponds to the cepstrum of the gross
spectral distribution of speech must be retained.

Hence, although CMN performs a reasonably good job in normalizes the channel mismatch between
training and testing data, it tends to attenuate speech information when subtracted from the cepstral
vector corresponding to a speech frame.

For short utterances, the presence of invariant speech information in the cepstral mean causes an
elimination of useful spectral information from the cepstrum of an individual speech frame.

Representative of durations for training and testing in many practical applications.

*The notion of a clean speech utterance in this thesis implies speech collected using a high quality microphone and not
acquired over a telephone channel.

3Short utterances are considered to be of the order of one to ten seconds in this thesis. All simulations and experiments
have focussed only on durations of this order
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The degradation in the performance accuracy due to CMN has been addressed in the past when the
training and testing data were subjected to same convolutional distortion [4, 28] for speaker recognition.
Recently, this issue has also been addressed critically for speech recognition by Neumeyer et.al. [80]. This
effect will be discussed later in detail in Section (4.3.1), wherein an improved estimate of the mean will be
developed using pole-filtering.

It should be noted that subtracting the long-term mean in the cepstral domain is equivalent to dividing
by the geometric mean in the spectral domain. Hence the effect of subtraction in the cepstral domain,
effectively filters the spectral information in the frequency domain as a blind deconvolution process (refer
to Appendix A).

Dynamic cepstral features

The dynamic aspects of features are often represented by a temporally differentiated feature set. One
approach was suggested by Furui [32], wherein the temporal sequence of the cepstral features was approx-
imated by a polynomial approximation. This approximation has the effect of bandpass filtering the time
trajectories of the cepstra. The filtered coeflicients are called delta-cepstral coefficients and are given by,

k=K
Ncn(m) = Y calm —k)(K), (3.13)
k=—K

where m is the cepstral frame index, and n is the feature dimension index. J(k) represents the impulse
response corresponding to a 2K + 1 tap bandpass filter which approximates the derivative of ¢,(m). The

filter taps are given by:
k

8(k) = =3
ke k2

(3.14)
where K takes typical values of 2 or 3 [11].

The effect of such bandpass filter is also to eliminate the dc-component of the log spectra. Hence the
delta-cepstral feature implicitly performs a CMN. It has been shown that such dynamic features improve
the performance only when they are concatenated with the static cepstral features of each frame of speech.
The static cepstral features, however, need to be normalized via CMN before the dynamic features are
appended. The incorporation of dynamic features has been shown to improve the performance of most
speech recognition systems. This is due to the fact that the derivative emphasizes the fast varying spectral
transitions in speech [32, 35].

RASTA processing approach

A related interframe processing technique which has recently gained more prominence is known as RASTA
(RelAtive SpecTrA) [68]. In a manner similar to the delta-cepstrum, RASTA has the effect of bandpass
filtering the time trajectories of the cepstral coefficients. This filtering effectively eliminates the temporal
average of the cepstral sequence. The high pass portion of the bandpass filter is expected to alleviate the
effect of the convolutional distortions, whereas the low pass portion smoothes some of the fast frame-to-
frame spectral changes in the short-term spectral estimate attributed mainly due to the analysis artifacts
[79].
The RASTA LP cepstrum Agc,(m) is given by,

K
Agep(m) = Y ca(m —k)5(k) + algen(m — 1), (3.15)
k=—K

where a corresponds to the tap of a first order autoregressive filter.
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Figure 3.6: A typical RASTA filter.

The moving average (MA) part of a typical RASTA filter (K = 2) that helps minimize the convolutional
distortion by eliminating the dc component in the log spectral domain is,

MA(z) = 2402 + 01271 — 01273 = 0.227%). (3.16)

The frequency response of the filter is shown in Figure (3.6).

Since RASTA processing applies the filter locally, besides making the long-term average of the log-
spectrum identically zero, it also combines a weighted average of all the past log-spectra with the current
log-spectrum thus allowing an exponentially decaying mean of all past analysis frames with the use of an
autoregressive portion. Such exponentially decaying running average can follow the slow changes in the
communication environment. For speaker recognition however, it has been found that with local frame
differencing carried out by RASTA (similar to computing delta-features), an unreliable channel estimate is
eliminated from the cepstral vector [64]. It is conjectured that RASTA processing implicitly suffers from
the same drawback as ordinary CMN for short duration utterances.

A RASTA processing on cepstral trajectories is illustrated in figure (3.7).

Combined Interframe and Intraframe approaches

Channel normalization techniques proposed in the past have evaluated interframe and intraframe ap-
proaches independently. While intraframe approaches have focused on schemes to enhance spectral infor-
mation relating to speech in the presence of distortions, interframe techniques emphasize the elimination
of degradations due to the channel for computation of robust cepstral features. Several hybrid approaches
have been proposed which combine intraframe techniques typically followed by cepstral mean removal to
eliminate the time-invariant distortion. In this report a new hybrid approach is proposed wherein an esti-
mate of the channel distortion is deconvolved from the speech signal in a first pass followed by intraframe
processing to further minimize the channel mismatch. The combined processing, although involves a
computationally expensive two-pass approach, is shown to perform better than individual interframe and
intraframe approaches for channel normalization. This approach shall be outlined in detail in Chapter
four.
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Figure 3.7: RASTA processing of cepstral trajectories.

The subsequent chapter introduces the pole-filtering approach and establishes the basis for improved
channel normalization over conventional techniques. The need for an improved cepstral mean estimate
also justifies improving all conventional approaches that implicitly perform cepstral bias elimination with
a refined cepstral bias.

3.3 Probabilistic Channel normalization

Several methods have been developed in the past to statistically model and estimate the channel in a
probabilistic framework [28, 74, 80, 77, 76]. The channel is modeled as a Gaussian random vector and
the information is incorporated in a maximum likelihood framework. Such probabilistic modeling is easily
integrated into a Hidden Markov Model or a Gaussian Mixture Modeling framework for classification.
The mismatch, due to channel differences between training and testing, may be minimized in the cepstral
domain by [74],

e estimating the bias due to the channel component, or,

¢ adapting the testing conditions to that of the trained models using a stochastic mapping approach.

In a probabilistic framework, the cepstral bias is eliminated by maximizing the likelihood of a speech
model wherein the cepstral bias is considered an unknown parameter. Another method estimates the
bias by evaluating a maximum-likelihood channel estimate given a collection of observations and model
parameters [28, 51, 80]. In either case, the maximum-likelihood estimate of the speech model or the channel
is obtained using an iterative Estimation-Maximization (EM) [95] algorithm.

The stochastic matching method [77] maps the distorted features Y corresponding to the testing con-
ditions to an estimate of the features X that correspond to the training conditions such that X= F,, (Y).
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The matching between the training and testing is carried out by estimating the unknown parameter v it-
eratively using an EM algorithm, to maximize the likelihood of the observed features Y, given the models
corresponding to features X.

Probabilistic channel modeling and adaptation has been prevalent in speech recognition applications
that frequently employ a Hidden Markov Modeling framework. However, these techniques rely on a notion
of a cepstral bias that is different from the cepstral mean bias employed in ordinary CMN. The cepstral
bias is defined when a mismatch exists between a training model and the testing data. Thus, the bias
may be considered as zero-mean for training and testing on clean speech and non-zero quantity to be
estimated using Maximum-Likelihood estimation in case of environmental degradations. Probabilistic
modeling techniques have been shown to perform comparably or sometimes better than cepstral mean
subtraction [74, 80]. Parametric modeling for speech and speaker recognition generally requires substantial
training data to model the underlying statistics of the speech or speaker properly. This report focusses
on acquiring improved channel estimates for short training and testing durations and hence, only non-
parametric modeling such as VQ shall be emphasized.
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Chapter 4

Feature extraction based on Pole-filtering

A new methodology for extracting robust features for speaker recognition is introduced in this chapter.
The methodology called Pole filtering, is shown to yield features that are robust to channel differences in
performing a speaker recognition task. The Pole-filtering approach is used to perform channel normalization
using intelligent filtering of the eigenmodes of speech corresponding to the pole parameters of the all-pole
LP filter. Channel normalization is achieved via a transformation to the cepstral domain, wherein an
improved estimate of the channel cepstrum is obtained by studying the effect of channel variations on
eigenmodes of speech.

Intrinsic to this philosophy is an explanation why the LP derived cepstral transformation of speech is
a powerful feature set for recognition systems. The approach is outlined by introducing the concept of
natural modes of vocal tract in section (4.1), followed by the relationship between the cepstrum and the
natural modes in section (4.2). The effect of channel variations on modes of vocal tract and coresponding
cepstral transformation is then investigated in section (4.3). Based on this investigation, an Interframe pole
filtering approach is developed. A previously developed Intraframe processing approach [30, 31] is unified
under the pole-filtering methodology. A general method of achieving improved channel normalization by
utilizing channel estimates from the interframe approach followed by conventional intraframe processing is
introduced at the end of the chapter.

4.1 Modeling based on eigenmodes of speech

A segment of speech can be modeled by a difference equation. The natural modes of the resulting linear
time-invariant system can be obtained in the following way. The difference equation for stationary frame
of speech can be reformulated as,

P

Z ags(n —k) =0 ag=1; (4.1)
k=0

where s(n) is the speech sample and a;, are the predictor coefficients.
From linear system theory, the homogeneous solution of this difference equation is given by [19]

i

P
sp(n) = Zbkzl?’ (4.2)
k=1
where sj is the homogeneous solution and, zx,k = 1,2,---, P, are the distinct roots of the difference

equation. The constants by are evaluated from the initial conditions for the linear system. Hence the
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general solution is a weighted power sum of the natural modes of the system that correspond to the roots
of the difference equation.

For a speech frame,
1 1

S(z) = = , (4.3)
=) Alz) 1+ Thoaxe*
where,
P
A(z) = Z arz ¥ ag=1;a, #0. (4.4)
k=0
The transfer function can be viewed as an all-pole filter of order P with roots zx, k = 1,2,---, P of A(z).

Thus the roots z, correspond to the modes of the linear system of speech. These roots form the dominant
modes in the speech segment. Each root z; has associated with it a bandwidth, By, and a center frequency,
wg, given by the relation,

2 = e~ Bretivs, ' (4.5)
where, ()
1 S 2k
=— —, 4.
i arctan Rzr)’ (4.6)
and 1
By, = ——In(|zl), (4.7)

in units of 7 radians.
It is possible to interpret equation [4.3] in various forms such as,

1 1 1

P
A(Z) Tl + Zlf:l akz—k Hllc3=1(1 _ Z]gZ_l) k2=:1 (1— zkz_1)7 (4.8)

S(z) =

where 2z; are the poles of the all-pole filter. Figure (4.1) shows the interpretation of poles on the unit circle
(Z-domain).

Thus, the linear system modeling the speech segment can be considered as a cascade of P (being the
order) first order filter sections having transfer function mi—sz A partial fraction expansion leads to a
parallel form representation weighted by their corresponding residues, r, which are evaluated using,

(=2
}gﬁ(w)- (4.9)
The roots of the all-pole filter A(z) either occur in complex conjugate pairs or are real roots. An
all-pole filter having P poles, may have ¢ pairs of complex poles and the remaining (P — 2q) real poles.
The impulse response of a complex conjugate pole pair corresponds to a damped sinusoid at an angular

z

frequency wy = -2—17; arctan %Z—B and a damping factor corresponding to |z;|. The resulting impulse response

is given by,
1

(1 —zpz~ ) (1 — z52z71)

-1
. |2k|™ cos(wgn). (4.10)
Each complex conjugate pole pair represents a component in the spectral domain (referred to as a

spectral component) corresponding to a frequency wy, and bandwidth By, where k = 1,2,---,4¢. The
real poles correspond to roots on the real-axis of the unit circle at frequencies of wy = (0, 7). The poles of
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Figure 4.1: Pole domain interpretation.

the all-pole filter closer to the unit circle correspond to narrow-band components with smaller bandwidths
and larger decay factors |2/ (i.e, |2;] — 1), while the poles closer to the origin of the unit circle correspond
to large bandwidth components and have a small decay factor (|zx] — 0). The real poles correspond to the
spectral tilt. Figure (4.2) illustrates components in the Z-domain, frequency domain and the time domain.

For relatively clean speech, some of the dominant modes often represent the formant modes of speech
that correspond to components with narrower bandwidths. Broad-band components corresponding to real
poles attempt to model the spectral tilt, sub-glottal effects etc. In the case of modeling practical speech
signals, the transmission channel and ambient noise have an adverse influence on the natural modes of
speech. The all-pole model then represents modes which are perturbed by the transmission channel and
noise. In addition to this, under low SNRs, spurious poles tend to appear in the all-pole fit to the speech
spectra. A study of how channel degradations affect the modes and the components representing a frame
of speech forms the basis of the pole-filtering methodology developed later in this chapter. It should be
noted that the effect of noise on the components is not investigated in this report.

4.2 Relationship betweem cepstrum and modes of speech

The LP derived cepstrum from equation [2.11] can be seen to be as being the inverse transform of the
natural logarithm of the short-time LP transfer function, S(z). It is the impulse response of In(S (2))
which is given by,

m(S) = 3 enz ™, (4.11)
n=1

where ¢, is the n® cepstral coefficient.
The predictor coefficients ay and cepstral coefficients are related via a recursive relationship given by
equation [3.5]. Alternately, the cepstral coefficients can also be obtained by relating them to the poles
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of S(z) and hence to the center frequencies and bandwidths. Substitution of equation [4.8] into equation
[4.11] yields,

P o0
Z In(l — 227 %) = — Z cnz ™. : (4.12)
k=1 n=1
The factor In(1 — zxz~!) can be expanded [106] as,
1
In(1 —zgz7t) =) —2f27" (4.13)

By combining equations [4.12] and [4.13], the cepstral coeflicients, ¢,, can be expressed in terms of the
roots of the LP polynomial or poles of the all-pole filter as,

1 P
n k=1

Thus ¢, can be interpreted as the power sum of the LP polynomial roots normalized by the cepstral
index [87].

Comparing equation [4.14] to the homogeneous solution of the difference equation of speech in equation
[4.2], one can see that the liftered cepstral sequence is a special case of the homogeneous solution, with the
coefficients by, k = 1,2,---, P set to unity.

The relationship of the cepstrum to the natural modes of speech can also be expressed as [31],

1 P
ey =~ Z e~ Brtiwr)

3

= =
I Mwha i
= —

e~ Pk cos(nwy). (4.15)

S|

Thus, the n** cepstral coefficient can be interpreted as a nonlinear transformation of the resonance
center frequencies and bandwidths.

More importantly the LP derived cepstral coefficients also form a special case of the homogeneous
solution of speech. These relationships give us a physical insight into why the cepstrum offers a powerful
feature set. On the other hand, with the root power sum formulation of the cepstrum one can study
the effect of each spectral component and hence each pole on the overall cepstrum of a speech frame.
A weighting scheme that de-emphasizes the contribution of spectral components that are sensitive to
environmental degradations to form a robust cepstral feature set is implied. A study of how each spectral
component affects the cepstral transformation can be used to design robust feature extraction schemes.

4.3 Pole-filtering methodology

The process of filtering, selecting or weighting the poles of a speech frame and their respective spectral
components or their parameter transformations will be called Pole Filtering in this context. The basis
for the pole-filtering approaches for robust channel normalization is established by studying

1. the effect of poles of speech on apriori known channel distortions, and,

2. the effect of channel distortions on the poles of speech.
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Figure 4.3: Block diagram of the channel variation experiment (adapted from Assaleh and Mammone [31]).

The study of the effect of poles of speech on the cepstral estimate of the convolutional distortion
degrading a speech utterance forms the premise of the Interframe Pole-filtering approach. An investigation
of the effect of channel variations on the poles forms a basis for the Intraframe pole filtering approach.

The study of channel variations on the different natural modes of speech and the poles of an LP filter
modeling the transfer function for a known frame of speech was carried out by Assaleh and Mammone [31].
The spectral components, zx, parameterized by their respective center frequency wy, a bandwidth By, and
residues 7y, were studied under perturbations caused by channel distortions. Each of these parameters
were found to be sensitive to channel variations. The sensitivities of these parameters were investigated
experimentally. The highlights of the findings will be reviewed here to aid the development of the pole-
filtering methodology.

The experiment illustrated in Figure (4.3), was carried out as follows,

A voiced frame of speech was processed through a random single-tap channel given by

0;(2) =1 — a2, | (4.16)

where a; is a sequence of uniformly distributed random numbers between 0.0 and 1.0.

e The sequences of the parameters (w;, B;, ;) of all components were computed for each j in the
random sequence a;.

e Two sequences of (w;, B;, r;) were selected to represent a narrow-bandwidth component and a broad-
bandwidth component. '

e The sensitivity of the parameters of the selected narrow-bandwidth and broad-bandwidth components
were evaluated by histogram analysis.

By examining the resulting histograms of the parameters of the broad-bandwidth component shown
in Figure (4.4), it was concluded that the three parameters,(w;, B;, ), associated with such components
possess large variances with respect to channel variations, hence are very sensitive to channel differences.

Narrow-bandwidth components were shown to preserve their center frequencies and bandwidths since
their histograms exhibited small variances. Narrow-band components, hence represent the stable modes of
speech, which are more robust to channel variations. The residues however, demonstrated large variance
even for narrow-band components. Observations made from this experiment were used previously to

36




Downloaded from http://www.everyspec.com

) e | gl 131
t €
g H g
0 0
0 | | Hl‘lﬂiﬁr—ll_\ I HH | ] i | | |
801000 1200 1400 1600 1800 2000 2200 200 gOO NI/ R 1 I
certer equency (H) center requency (H)
40 1 I 1 T I T ]
0 std=8609Hz . #i=08H
> Mt ]
2 H ;
i H ;
il Iﬂ Hmﬂlr‘l——”—”—' G | [ | | 1
00 1000 1500 2000 %00 X000 40 02 4 80 & W o W
348 bandvicth (Hz) 308 bandwicth ()
°\,50- sti= 149 o) std= 011
t t
: : H
4 0 0
( J—llﬁf_\fl_lﬁ_l._a_._t_ L HHHHHHHH L !
I T T O I T 8.1 02 03 04 05 06 07 08
Jesicte] [esice]
(a) (b)

Figure 4.4: Histograms of the parameters of (a) a broad-bandwidth component and (b) a narrow-bandwidth
component (adapted from Assaleh and Mammone [31]).
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develop an intraframe adaptive component weigthing method which will be reviewed and unified under the
pole-filtering methodology later in the chapter.

Alternately, observations made in this experiment motivated the study of a variant of the experiment.
The variant consists of studying the effect of narrow-band and broad-band components of speech on the
cepstral estimate of an apriori known channel distortion. An interframe pole-filtering of the channel
cepstrum estimate has been developed for improved channel normalization. The approach is explained in
the following section.

4.3.1 Interframe Pole-filtering approach

The Interframe pole-filtering approach exploits the root power sum relation between the cepstrum and the
poles of the all-pole LP filter stated in equation [4.14]. The long-term cepstral mean [Sections (2.1.4) and
(3.2.2)] for an utterance is analyzed in order to develop the approach.

Analysis of CMN

The long-term cepstral mean for an utterance, S, was shown to provide an estimate of the channel in
Section (2.1.4). The channel cepstrum, cg, corresponds to a sum of the cepstral vectors for individual
frames of speech of the utterance S. If sg corresponds to the cepstral component due to clean speech prior
to being degraded by the convolutional distortion, and h, the actual channel cepstrum estimate, then,

cs =8s + h. (4.17)

The channel cepstrum for the utterance S using a root power sum interpretation is given by,
— 1 P 1 P 1 P
Cs = ( M Zm(Zk:l Z]%,m) i Zm(Z}c:l z}%,m) M Zm(Zk:l ZI?,m) ) s (418)

where m is the frame index for the M frames of the utterance S, the cepstral indices vary from 1,---, @ for
each of the Q dimensions of the cepstral vector cp, and P is the order of the LP filter which corresponds
to the number of roots, zj, in the root power sum formulation. Frequently the order of the LP fit and that
of the cepstral sequence are kept the same, i.e P=qQ.

Alternately, the channel cepstrum can be represented by,

M
cs= Y sm+h, (4.19)

m=1

where sg = Z%zl s, corresponds to the cepstral mean component solely due to underlying clean speech.
As mentioned in Section (2.1.4), the component due to clean speech should be zero-mean in order for the
channel cepstrum estimate ¢g to correspond to cepstral estimate, h, of the actual underlying convolutional
distortion.

It was empirically shown in section (3.2.2) that the mean cepstrum component due to clean speech
is never zero for short utterances. This may often be the case for training and for testing. That is, the
channel cepstrum consists of an invariant component due to speech which is eliminated when ordinary
CMS is performed. Since the channel cepstrum now contains a gross spectral distribution due to channel
as well as speech, the elimination of a distorted estimate of the channel cepstrum from cepstrum of each
speech frame corresponds to effectively deconvolving an unreliable estimate of the channel. In other words,
spectral components that implicitly corresponds to the gross spectral distribution of clean speech is also
deconvolved from the speech utterance.
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An estimate of the channel cepstrum biased by the invariant component due to speech impairs proper
channel compensation in the cepstral domain. A considerable loss in recognition accuracy 15 observed in
speaker recognition systems when the system is trained and tested on similar or different channels[4, 28].

The effect of ordinary cepstral mean removal can be illustrated by introducing the concept of a cepstral
Channel Compensation Filter (CCF).

Channel Compensation Filter (CCF)

The spectral distribution of the channel cepstrum, cg, can be analyzed by observing the frequency response
of a Channel Compensation filter. One can observe from the expression in equation [3.5], that the predictor
coefficients can be transformed into cepstral coefficients recursively. Similarly, the prediction coefficients can
be recursively obtained from the cepstral coefficients. The prediction coefficients, derived from the channel
cepstrum, correspond to a Channel Compensation filter (CCF) which represents an all-pole approximation
of the convolutional distortion. '

Since the long-term cepstral mean of the utterance is obtained from a summation of causal cepstral
sequences ! that correspond to each frame of the speech utterance, the channel cepstrum can be assumed to
be causal. A reasonable approximation can be made that the filter corresponding to the cepstral mean (that
is, the CCF) is minimum phase. A theoretical justification for this assumption is outlined in Appendix A.

The filter coefficients corresponding to the long-term cepstral mean can be evaluated using the reverse
recursion of equation [3.5]. The expression for filter coefficients from the cepstral coefficients can be
obtained by using the recursion [13] given by,

n—1

1
= —Cn — Z cn-rok 1<n<P. (4.20)
k=1

The filter derived from the cepstral mean coefficients is termed as the Channel Compensation Filter.
This filter (henceforth referred to as the CCF) represents an inverse channel filter that deconvolves the
effect of the channel from the speech utterance.

In order to illustrate the effect of the CCF, a speech utterance from the TIMIT database, which was
down-sampled to 8 KHz, was used. The duration of the utterance was approximately 10 seconds. The
utterance was convolved with typical telephone channels obtained from the telephone channel simulator
[88]. The CMV (Continental Mid Voice) channel and the CPV (Continental Poor Voice) channel were
chosen. The frequency responses of the channles are shown in Figures (4.5) and (4.6).

The long-term cepstral mean was obtained by averaging 12th order LP derived cepstral coefficients
(LPCC) derived for each speech frame. The corresponding frequency response of the CCF evaluated by
transforming the cepstral mean to filter coefficients is shown in Figure (4.7). The degrading channel was
the CMV channel. A similar frequency response corresponding to the cepstral mean for speech degraded
by the CPV telephone channel is shown in Figure (4.8).

One can observe from the frequency responses of the filters (CCFs), that they exhibit the characteristic
response of a corresponding inverse channel. The inverse (or deconvolution) filter equalizes or effectively
compensates for the bandpass effect of the convolutional distortion on each speech segment.

Let N..¢(z) represent the channel compensation filter (CCF) that corresponds to the all-pole approx-
imation to the channel Ngp(2) = 'IWch(—ZF A subtractive component in the cepstral domain corresponds
to an FIR filter or a Moving Average (MA) component. Thus, one can represent the channel normalized
spectrum of speech as,

"For a truncated cepstral sequence, one can assume it to be causal by padding infinite zeros to the sequence.
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Figure 4.6: CPV Channel Response.
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Figure 4.8: CPV inverse filter response.
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Ynormalized(z) = A(z) .

Figure (4.9), compares the spectrum of a voiced speech frame convolved with a CMV channel with
the same spectrum of speech normalized by the estimated CCF from the cepstral mean of the utterance
containing the same frame. A similar comparison for speech degraded by a CPV channel is shown in Figure
(4.10).

Important deductions can be made by empirically observing the spectral content of the responses of
the speech spectra. Due to the effect of the inverse filter, the spectral content in some frequency bands has
been significantly attenuated. Such attenuation would typically occur for all speech frames from which the
cepstral mean is being subtracted. This has a degrading effect on the accumulated spectral distortion over
the entire speech utterance which is often calculated during classification.

It can also be observed that the estimate of the resulting inverse filter has a ripple in the passband

when compared to a smooth passband in the actual channel responses.

Basis for Pole filtering

In this section, the effect of the CCF for a cross-channel scenario is investigated, wherein the speech
utterance has been distorted by different transmission channels. A cross-channel scenario is most realis-
tic wherein the convolutional distortions could be from different recording devices or different telephone
channels for training and testing data.

In order to investigate this, the same speech utterance, convolved with a CMV channel and a CPV
channel were investigated. It is apparent from Figures (4.5) and (4.6) that the attenuation of speech due
to the CPV channel is much more pronounced, due to sharper roll-off at higher frequencies, leading to
poorer voice quality.

In order to observe the effective channel normalization across channels, the normalization effect due to
cepstral mean removal for both the channels is compared in Figure (4.11) for the same speech frame. One
can observe that elimination of the cepstral bias does a reasonably good job in minimizing the mismatch
between the two spectra.
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Figure 4.10: Effect of channel normalization for CPV channel.

However, the spectral information is attenuated in either case due to inaccurate estimates of the channel
cepstrum, ¢g, biased by the invariant component due to speech, sg.

From the above discussion, one can make an important deduction. The estimate of the long-term
cepstral mean, cg, can be improved so that,

e the spectral information in every frame of speech is preserved after channel normalization, while,

e the mismatch across channels is minimized.

Clearly, this can be achieved by de-emphasizing the contribution of the invariant component due to
speech, sg, in the channel cepstrum, ¢s. In other words a methodology needs to be derived so that,

cs — h, (4.22)

where h, is the cepstral estimate of the actual convolutional distortion component.

A reasonably accurate estimate of the channel cepstrum, cg, could be obtained if the cepstral mean
solely due to the clean speech, sg, with which the channels were convolved was available. In the case when
the cepstrum due the clean speech is known, a reasonable accurate channel estimate,

h ~ cg5 — sg, (4.23)

can be evaluated. However, the cepstral mean of a speech utterance prior to convolution with the channel
is never available in practice and hence it is impossible to entirely decouple the cepstral component due to
speech from the cepstral component that corresponds to the channel.

From the observations made by studying the characterisitcs of the long-term cepstral mean and its
spectral distribution for short utterances, the effects of the individual poles on the cepstral mean can
be investigated. By studying the effect of the individual poles on the cepstral mean, algorithms can
be developed that reduce the speech component in the cepstral mean and thereby improve the channel
cepstrum estimate. The Pole filtering approach involves weighting and manipulating the poles of a speech
frame in order to de-emphasize the component of the cepstral mean due to speech.
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Figure 4.11: Effect of normalization implied by cepstral mean removal.

44




Downloaded from http://www.everyspec.com

Approaches to Pole Filtering

The estimate of the channel cepstrum, c¢g, depends upon the number of speech frames available in the
utterance. In the case where the speech utterance is sufficiently long, it is possible to get an estimate of the
channel cepstrum that approximates the true channel estimate, h. A key issue is the phonemic diversity
of the utterance. In most practical situations, however, the utterance durations for training or testing are
never long enough to allow for sg — 0. :

The cepstral mean estimate however can be improved by studying the dominance of the poles in the
speech frame and their contribution to the estimate of the channel cepstrum.

The effect of each mode of the vocal tract on the cepstral mean can be investigated by decomposing
the root power sum formulation to evaluate a partial cepstral mean due to each spectral component or a
corresponding complex conjugate pole pair based on their dominance. :

A spectral component, for a frame of speech, is most dominant if it corresponds to a complex conjugate
pole pair closest to the unit circle (minimum bandwidth) and least dominant if it corresponds to a complex
conjugate pole pair furthest from the unit circle (mazimum bandwidth,).

A simple experiment to study this effect was carried out by evaluating the partial long-term cepstral
mean due to the most dominant spectral component (pole pair with the least bandwidth) in every frame
of a speech utterance. The contribution to the long-term mean due to second most dominant spectral
component was then evaluated and so on for the rest of the spectral components. This was carried out by
sorting all complex conjugate pole-pairs (excluding real poles) of the all-pole LP filter according to their
bandwidths in ascending order. Let (zg,,2} ) be the most dominant complex pole-pair and (qu,zgq) for

the ¢** complex pole pair for poles 2,k = 1,---, P for a frame of speech.
The partial cepstral mean cg, can be computed as,

Cs; = ( XI/T Zm<zé1 ,m + Ztli;‘,m> % Zm<221 m + z?l{‘,m> o _1\17 Zm<Z£ M + ZCZ,"J ) : (4'24)

The summation of partial long-term means, cg,,Cs,, -, Cs,, for all spectral components must be equal to
the total long-term cepstral mean cg after considering the spectral components corresponding to the real
poles,

¢s =cCg, +¢g, +---+Cg,. (4.25)

Figure (4.12) shows the partial cepstral means due to each dominant spectral component aggregated
from all the frames of speech of an utterance. Individual CCFs were evaluated for each of the partial
cepstral means to observe their spectral distribution. The individual responses are shown in Figure (4.13)
for CMV channel and Figure (4.14) for the CPV channel.

One can observe from the individual responses of the CCF's, that the contribution to the partial cepstral
mean due to the more dominant poles (or the narrow-band poles) is more biased by the spectral content
relating to speech. In fact the inverse filter due to the narrow band poles exhibit characteristics that would
attenuate, or notch useful spectral information when subtracted in the cepstral domain.

An improper estimate of the channel cepstrum causes a more drastic nulling effect on the spectra of a
speech frame corresponding to an elimination of the channel cepstrum from the cepstrum of the frame of
speech. One can also observe the zeros of the CCF for the CMV and the CPV channels on the unit circle.
It can be seen that certain zeros of the inverse channel estimate (or poles of the channel estimate) obtained
are relatively close to the unit circle, unlike the zeros of a real channel inverse which would be expected to
be composed of generally broad-band spectral components.

The zeros of the inverse channel estimates obtained from the cepstral mean for speech degraded by the
CMV channel and the CPV channel are shown in Figures (4.15) and (4.16).
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Figure 4.12: Partial cepstral means for speech degraded by CMV channel.
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Figure 4.14: Responses for partial cepstral means for speech degraded by CPV channel.

48




____Downloaded from http://www.everyspec.com

Zeros of CCF for CMV channel estimate
90
1

60
0.8

SEL
AR

180

210
*

240 300
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Figure 4.16: Channel zeros estimated from cepstral mean for CPV channel speech.
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1

Figure 4.17: Channel poles estimated from the impulse response of CMV channel.

The contribution to the long-term cepstral mean by the broad-bandwidth poles tends to exhibit
smoother inverse filtering characteristics. Also, the estimate of the inverse chanmel will not attenuate
much spectral information when subtracted in the cepstral domain.

The analysis of the partial cepstral means lends insight into improving the channel cepstrum estimate.
One could empirically observe that the poles of an all-pole filter approximating am actual channel response
comprise of sufficiently broad bandwidth components, and hence implies a smoother bandpass filter (observe
Figures (4.5) and (4.6)). This assumption can be justified by fitting an all-pole model to the impulse
response of the two known channel distortions (CPV and CMV) obtained from the simulator. The all-pole
LP spectra of the impulse responses are shown on the unit circle in figures (4.17) and (4.18). One can
observe that the poles approximate a broad band channel response and exist further away from the unit
circle. The channel estimate generally does not consist of poles close to the unit circle which is often
signified by high-@Q regions in the spectra.

Constraining the poles of speech in order acquire a smoother and hence a more accurate inverse channel
estimate in the cepstral domain, corresponds to a modified cepstral mean, cp that de-emphasizes the
cepstral bias related to the invariant component due to the speech. The reﬁned cepstral mean removal,
devoid of the gross spectral distribution component due to speech offers an improved channel normalization
scheme.

Techniques have been proposed in the subsequent section to improve the channel estimate by intelligent
manipulation of dominant modes in the speech frame.

Channel normalization based on Pole filter Cepstral Coeflicients

Pole filtering using Selective Pole Manipulation

One technique of improving the estimate of the channel uses Pole filtered cepstral coefficients (PFCC)
wherein, the narrow band poles are inflated in their bandwidths while their frequencies are left unchanged.
The effect is equivalent to moving the narrow band poles inside the unit circle along the same radius, thus
keeping the frequency constant while broadening the bandwidths. The procedure has been illustrated in
Figure (4.19).

PFCCs are evaluated for every speech frame concurrently with the LPCC, the only difference being
that if a pole in the speech frame has a bandwidth less than a pre-determined threshold («), the bandwidth
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1

Figure 4.18: Channel poles estimated from the impulse response of CPV channel.

of that pole is clipped to that threshold. The algorithm to calculate the PFCCs is listed below.

For each Speech frame:

Evaluate the roots zx of the LP polynomial.

if |2¢| > @, (a=pole bandwidth threshold),
2| = &

Modify zx to Zx by,
2 = alzg;

endif

Evaluate LPCC using 2.

Evaluate PFCC using 2.

The PFCCs are used to evaluate a modified long-term cepstral mean, cgf . The CCF characteristics
obtained from averaging the PFCCs when the narrow band pole with radius greater than o = 0.9 is
thresholded to 0.9 is shown in Figure (4.20).

An improved inverse filter estimate is obtained by using the mean of PFCCs which better approximates
the true inverse channel filter. The modified cepstral mean, when subtracted from speech cepstra of
individual speech frames tends to preserve the spectral information while more accurately compensating
for the spectral tilt of the channel.

A typical effect of channel normalization using the modified cepstral mean subtraction obtained from
averaging the PFCCs on a voiced frame of speech is shown in Figure (4.21). One can see that substantial
spectral information is preserved with the new channel cepstrum estimate especially in the lower and higher
frequency bands.

It should be noted that the PFCCs are used only to estimate the channel cepstrum i.e. the long-term
cepstral mean. The modified long-term mean obtained from the PFCCs is subtracted from the LP derived
cepstrum of every speech frame of the utterance instead of a conventional cepstral mean. The processing
algorithm is outlined below.

ALGORITHM:

ol
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Figure 4.19: Pole thresholding process on the unit circle.

e Ewvaluate long-term cepstral mean based on PFCCs.
e Normalize LPCCs by subtracting a refined cepstral mean obtained from averaging the PFCCs.

The estimate of the modified cepstral means using PFCCs and their corresponding CCF's for different
bandwidth thresholds is shown in the Figure (4.22).

The justification for the choice of pole bandwidth thresholds, &, can be made from the observing the all-
pole fit to the true channel impulse responses or the zeros of the actual inverse channel estimate in Figures
(4.17) and (4.18). One can observe that the poles of the channel are sufficiently broad-band compared to
the dominant pole in a typical voiced speech frame. In fact a smooth channel characteristics for a given
all-pole filter order would consist of only broad-band poles.

Pole filtering using weighted prediction coefficients

Broadening of bandwidths of pole can also be achieved by weighting the prediction coefficients to

evaluate the spectrum by,
P

Alyz) =1+ Y ar(y2)7F, (4.26)
k=1

and the corresponding cepstral transformation is,

& (n) = y"c(n) (4.27)

where 7y with a value between 0 and 1, is a pole bandwidth broadening factor. Such bandwidth broadening
has been used in speech coding for perceptual shaping of the quantization noise [93] and for improving the
distortion measures in the presence of noise [75]. The value of y = e"(ﬁ%), is based on ¢ Hz, which is the
frequency with which the pole bandwidths can be broadened. The pole-filtered cepstral mean obtained
after weighting the cepstral coefficients with decaying factor, is subtracted from LP cepstra for every frame
of the speech utterance.

52




Downloaded from http://www.everyspec.com

CCF for LPCC (dotted) v/s CCF for PFCC (solid)
20 T T T T T

Decibels (dB)

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

Figure 4.20: Improved channel estimate using cepstral mean of PFCC.

The disadvantage of this method is that it broadens the bandwidths of all the poles modeling the speech
frame. Thus the broad band poles which may be critical in estimating the roll-off due to the convolutional
distortion, also are broadened in bandwidth. The pole-filtered cepstral mean estimates obtained using this
approach are not as effective in channel normalization for improved recognition accuracy as those obtained
via selective pole manipulation.

The interframe pole-filtering approach outlines a technique wherein poles parameters are selectively
modified to improve the channel cepstrum estimate. The pole-filtered cepstral mean subtraction technique
implies a filtering scheme that improves the robustness of cepstral features in the presence of channel
differences. In Chapter Five results are reported using various emperically decided pole bandwidth thresh-
olds. Simulations will be presented that show an improvement in the recognition performance by using a
modified cepstral mean estimate for channel normalization.

In the subsequent section a previously proposed adaptive spectral component weighting intraframe
processing approach is explained in terms of the Pole-filtering paradigm.

4.3.2 Intraframe Pole-filtering approach

The intraframe approach consisting of an adaptive weighting of the spectral components to minimize chan-
nel mismatch within each individual speech frame was proposed previously by Assaleh and Mammone [31].
The technique can be considered as a complementary approach to the interframe pole-filtering approach
and will be reviewed here.

The Adaptive Component Weighting (ACW) approach involves an intraframe pole weighting scheme
which emphasizes the parts of the spectra which correspond to narrowband components due to speech
and attenuates the more channel sensitive broadband components. Note that the complementary nature
of the interframe and the intraframe approach is clear since the narrow bandwidth components that were
de-emphasized in the interframe approach which yield improved channel estimates, are now emphasized
in the intraframe approach. It was shown in the experiment discussed in Section (4.3) [31], that the LP
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Figure 4.21: Channel normalization using ordinary cepstral mean v/s pole filtered cepstral mean.
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Figure 4.22: CCF for PFCC mean for different pole bandwidth thresholds at |2|=0.9,0.88,0.86 compared
to ordinary LPCC mean (dotted).

spectrum should be modified so as to eliminate the spectral parameters that are more sensitive to channel
variations. The ACW approach is based on modifying the LP spectra to minimize the channel mismatch
between training and testing in cross channel conditions.

The ACW approach normalizes the residues 7 (which show the largest amount of variation with
respect to channel differences), by setting rx =1 in equation [4.8], which can be viewed as weighting the
k" component by r—lk This normalization results in a modified spectrum which is referred to as the ACW
spectrum. The ACW spectrum is given by

. P 1 N(2)
5(z) = :L:,l o)~ Tr sl ol (4.28)
where .
N =Y I G-z, (4.29)
i=1 k=1#
which can be rewritten in the form oy
N(z) = P(1+ Y bz ™). (4.30)
k=1

Thus the normalization to the LP spectrum modifies each spectral component to yield a peak value of

1 1 1

mb:em = m =~ —1—3; (4.31)

Equation [4.31] shows that the ACW spectrum emphasizes the formant structure by weighting each com-
ponent by Wlk", Thus narrow-bandwidth components are amplified and broad-bandwidth components are
attenuated.

3(z) is no longer an all pole autoregressive (AR) transfer function, as it now has a MA filter represented
by (P — 1) zeros. This MA filter introduced by normalizing the residues can be viewed as an FIR filter.
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Figure 4.23: The channel effect on the composite LP and ACW spectra (adapted from Assaleh and Mam-
mone [31]).

This filter creates a spectrum wherein the peak values of each component are inversely proportional to
their bandwidths.

The channel effect on the composite LP and ACW spectra is shown in figure 4.23. It is obvious that
the mismatch between the LP spectra before and after processing through the channel is much larger than
that between the corresponding ACW spectra.

In the cepstral domain, the introduction of N(z) results in a subtractive component to the all-pole
cepstrum. This component varies with each frame unlike the common intraframe processing techniques
that apply a set of fixed weights to the all-pole cepstrum, c(n).

The subtractive cepstral component, c¢y(n), which is associated with N(z), can be obtained by its
recursive relation with filter coefficients by in equation [3.5].

Thus the ACW cepstrum, ¢ (n) can be obtained as follows:

¥ (n) = ¢(n) — en(n). (4.32)

This method of intraframe pole filtering was shown to yield substantial improvements under cross
channel scenarios. '

ACW cepstral mean as a pole-filter estimate of the ordinary cepstral mean

It was also shown that ACW intraframe weighting followed by ACW cepstral mean removal further
improved the recognition accuracy [31]. One can prove that the improvement in the performance due to
ACW mean removal may be due to the fact the the ACW mean removal itself, implicitly corresponds to
eliminating another form of a pole-filtered cepstral mean estimate. Averaging the adaptive subtractive
cepstral component ¢y (n) for every frame corresponds to a pole-filtered cepstral mean estimate given by,
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Figure 4.24: Comparison of spectra of ordinary cepstral mean (dotted) with ACW subtractive cesptral
component mean (solid) for CMV channel speech.

ety = ((SMoyen(D) (TMen() - (Eraev(@) ), (4.33)

where Q is the order of the cepstrum and M is the total number of frames in the utterance.

The frequency responses corresponding to the cepstral mean of the subtractive ACW component for
speech degraded by CMV and CPV channels is shown in Figures (4.24) and (4.25). One can observe
that the response curves have similar smooth inverse channel characteristics that were obtained using
pole-filtering.

4.3.3 Combined Interframe and Intraframe pole-filtering

Channel normalization methods in the past have often relied on combining conventional interframe and
intraframe processing. For many intraframe processing techniques, interframe processing such as CMN
have been implicitly assumed. Long-term mean removal following an intraframe cepstral weighting has
been found to help normalize the channel mismatch.

An improved approach proposed here estimates the inverse channel filter using interframe pole-filtering
and equalizes the effect of the channel on a speech utterance by deconvolution in the time domain. The
deconvolution filter is obtained by converting a pole-filtered cepstral mean estimate to the corresponding
CCF. A conventional intraframe weighting followed by cepstral mean removal is then carried out on a
second pass to equalize the residual channel mismatch. The two-pass approach is compared with conven-
tional channel normalization approach in Figure (4.26). Although computationally expensive, the two pass
approach is shown to perform better in minimizing the channel mismatch effects. The results are reported
in Chapter Five.

The advantage of a two-pass channel normalization approach is illustrated in Figures (4.27) and (4.28).
Figure (4.27) compares mismatch in speech spectra degraded by two channel CMV and CPV before and
after deconvolving the estimated channel. Figure (4.28) compares the same for the ACW spectra. In either
case one can observe that the spectral mismatch is minimized by deconvolving the inverse channel estimate,
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Figure 4.25: Comparison of spectra ordinary cepstral mean (dotted) with ACW subtractive cepstral com-

ponent mean (solid) for CPV channel speech.
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Figure 4.26: Combining inter-frame and intra-frame processing.
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Figure 4.27: Spectral mismatch for a frame of speech convolved with CMV (solid) and CPV channel
(dotted), top:one-pass, bottom: two-pass.

obtained from the pole-filtered cepstral mean, from the speech frame prior to the intraframe ACW based
cepstral weighting approach.

The following chapter presents the experimental results on various benchmark databases for closed set
text-independent speaker identification. The improved performance obtained using pole-filtered cepstral
mean removal are reported. The improvements in recognition accuracy obtained by using a two-pass
channel normalization approach over one-pass approach are also reported.
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Figure 4.28: ACW Spectral mismatch for a frame of speech convolved with CMV (solid) and CPV channel
(dotted) , top:one-pass, bottom:two-pass.
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Chapter 5

Experimental Results

This chapter presents several experiments on channel normalization for closed set, text independent speaker
identification systems. The improvements obtained using the pole filtering approach are tabulated and
compared with conventional methods. The experiments have been presented in two parts. In the first
part, the experiments were performed on simulated telephone channels obtained from a Wireline simulator
[88]. The clean speech from the TIMIT [90] database was bandlimited and processed through the Wireline
similator to generate telephone quality speech. The second part of channel normalization experiments
were conducted on Benchmark corpuses containing real telephone conversations. The corpora were chosen
from, the NTIMIT [91] (telephone quality TIMIT) and the KING database [89]. The results have been
compared to conventional CMN which was proven to yield superior recognition performance compared to
other interframe cepstral feature processing techniques [31, 64|, for text independent speaker identification.
In all the experiments the emphasis has been on short training and testing utterances. The experiments
emphasize two critical issues in speaker recognition,

e Availability of limited data, and,

e Poor transmission channel conditions.

The TIMIT and the NTIMIT databases have been used to illustrate the limited data availability, while
the KING experiments emphasize performance issues under severe channel mismatches among training
and testing. For training and testing across channels it was found that the ordinary cepstrum (LPCC)
performance was extremely poor and hence the improvements in the recognition accuracy has been reported
by considering the performance using cepstral mean subtraction as the baseline for comparison.

The speech utterances were processed in overlapping speech segments of 30 msec, with a 10 msec
update. The frames were passed through a pre-emphasis filter 1 —0.952"! and windowed using a Hamming
window. The order of Linear prediction was kept constant (P = 12) in all experiments. The order of the
cepstral coefficients was also fixed (Q = 12).

The non-parametric K-means or VQ classifier was used for classification [92]. Training consisted of
building a codebook of 46 codewords to model each speaker. The choice of 46 codewords roughly relates
to number of phonemes spanning the phonetic space. The test utterance corresponding to the unknown
speaker was processed to form test vectors. A Euclidean distance score was computed between the test
vectors and each of the codebooks. The codewords which were closest to the test vectors were evaluated
and the distances stored. The codebook associated with the minimum accumulated distance was classified
as the speaker associated with that codebook.

The following abbreviations have been used in the tabulated results,

- LPCC-MR is ordinary cepstral mean subtraction (section 3.2.2).
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- PFCC-MR is pole-filtered cepstral mean subtraction (section 4.3.1).

LPCC-IC is cepstral feature extraction after deconvolving the actual inverse channel.

FS corresponds to pole based frame selection [31].

- PFCC-MR(ACW) is the pole-filtered cepstral mean estimate obtained by averaging the subtractive
component from the ACW approach (section 4.3.2).

- o is the pole bandwidth threshold, |2|.

The choice of the pole bandwidth threshold, o, was chosen where a € [0.85,0.9]. The justification for
the choice of this range of bandwidth threshold was outlined in section 4.3.1. The experimental results
have been reported below along with an explanation of training and testing conditions on the benchmark

databases.

5.1 Experiments on TIMIT and NTIMIT database

The TIMIT [90] database consists of 10 sentences spoken by each of the 630 speakers from 8 major dialect
regions. There are 438 male and 192 female speakers distributed among the dialect regions. The TIMIT
corpus is divided in the two sets for training and testing. The experiments were performed by choosing
speakers from the “train” section of the database. Out of the 10 sentences spoken by each speaker; 5
sentences are labeled SX, 3 ST and 2 SA sentences. For all the experiments the training was carried out on
the SX sentences and testing was carried out on the SA and the SI sentences (individual or concatenated).
The training sentence durations roughly corresponded to about ten seconds of spoken material for every
speaker. Each of the SA and SI sentences used for testing varied from 0.7 seconds to 3 seconds in duration
after speech/non-speech discrimination.

The NTIMIT (Network TIMIT) [91] corpus consists of the TIMIT database transmitted through a
telephone network. The transmission involved the use of a commercial device to simulate the acoustic
characteristics between a human mouth and a handset. Thus speech in the NTIMIT represents real
telephone speech transmitted after being acquired via a carbon-button telephone handset.

5.1.1 Simulated channel experiments

Experiments on Telephone channels obtained from the Wireline simulator [88] were performed using clean
speech obtained from the TIMIT database. The main purpose of using a simulator was to study the
effect of CMS and pole-filtered CMS for when training and testing were on the same channel and across
channels. The use of a known convolutional distortion also helped in establishing and upper bound on
the ideal recognition performance when the perfect inverse channel estimate were available for Channel
normalization. Simulated CMV and CPV channels discussed in Chapter Four were chosen since they
represent a significant channel mismatch.

The experimental conditions consisted of compiling 2 38 speaker training and testing set from a section
of the TIMIT database. The speakers were chosen from the New England dialect. Of the 10 SA, SI and
SX sentences, the 5 SX sentences were concatenated and used for training while each individual sentence
from the SA and SI was used for testing. The speech was first down sampled from 16 KHz to 8 KHz to
simulate telephone bandwidth. The CMV and the CPV channels were used to simulate telephone channel
conditions wherein the downsampled speech was filtered through the telephone simulator for degradation
by either the CMV or CPV channels. The pole-filtered cepstral coefficients were evaluated by using a
pole bandwidth threshold on |2| = 0.86 on the unit circle. The silence removal was carried out by a
pre-determined energy threshold. All feature calculations were carried out after silence removal.
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[ Method [ Training | Testing [ Accuracy(%) |

LPCC-MR | CMV CMV 63.1
PFCC-MR | CMV CMV 69.5
LPCC-IC CMV CMV 86.8
LPCC-MR | CPV CpPV 62.1
PFCC-MR | CPV CPV 68.9
LPCC-IC CPV CPV 85.7

Table 5.1: Single channel experiment on 38 speaker subset of TIMIT using pole-bandwidth threshold of
|z| = 0.86.

Two sets of experiments were conducted on the TIMIT database,
e Training and Testing on the same telephone channel,

o CMV-CMV
o CPV-CPV

e Training and Testing across telephone channels,

o CMV-CPV
o CPV-CMV.

In either case, the results obtained were compared to those obtained by deconvolving an actual inverse
estimate of the channel. The actual inverse filter was obtained from the impulse responses of the channels
available from the simulator.

In the case of training and testing on the same channel, no channel compensation is necessary and
the recognition accuracy is high. However, it reveals the degradation effected by ordinary CMS from the
LP cepstral coefficients. As seen from Table (5.1), the recognition accuracy of identifying the speaker
degrades when long-term cepstral mean is eliminated from the cepstral vectors. Hence it is evident that
long-term mean removal eliminates important speaker information from the short-time spectra of every
speech frame. It is shown that a performance improvement is obtained by using the long-term cepstral
mean computed using pole-filtered cepstral coefficients. It is obvious that the improvement is due to the
recovery of speaker information by compensating a better inverse channel estimate implicitly realized by
using a refined cepstral mean estimate.

Performance of channel compensation by using pole—filtered cepstral coefficients was observed under
a cross channel scenario, wherein the training data was degraded by one of the telephone channels and
the testing data was degraded by the other. The CMV channel and the CPV channels were used. The
performance improvement is shown in Table (5.2).

Working with known convolutional distortions allows one to decouple the cepstral mean of the training
or the testing utterances into its channel component and speech component. If h is the cepstrum of the
known convolutional distortion and sg is the cepstrum of the clean speech prior to convolution, then the
channel cepstrum cg for the utterance is,

cs X 85 +hep. (5.1)
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[ Method [ Training | Testing | Accuracy(%) |

LPCC-MR | CMV CpPV 59.4
PFCC-MR | CMV CpPV 64.7
LPCC-IC CMV CPV 85.3
LPCC-MR | CPV CMV 56.8
PFCC-MR | CPV CPV 62.6
LPCC-1C CPV CMV 86.8

Table 5.2: Cross channel experiment on 38 speaker subset of TIMIT using a pole-bandwidth threshold of
|z| = 0.86.

Hence for every training or testing utterance, if the cepstral mean due to clean speech were known, one
can estimate the ideal channel estimate, h., as,

~

h., & ¢; — sg. (5.2)

The relative error between the channel cepstrum cg and the channel cepstrum obtained by decoupling and
eliminating the clean speech ceptrum is given by,

—h,
Rel.Error(ordinaryCMS) = ”—c‘i——:—iH (5.3)
”hch”

In the case of pole-filtered cepstral mean cgf , the error is given by,

f _ ~
Rel.Error(PFCMS) = M
”hch”

The relative errors have been plotted in Figure (5.1) for training utterances for ten speakers from the
training set chosen for the simulated channel experiment. One can observe that the relative error due to
the pole-filtered channel estimate is smaller than ordinary channel estimate.

(5.4)

5.1.2 Realistic channel experiments

To examine the improvement in recognition accuracy as a function of the population size and testing
durations, experiments were conducted on the NTIMIT database. The experiments were made on varying
population sizes of 100, 200, 326 male speakers from “train” portion of NTIMIT. The training sentences
were similar to the TIMIT experiments, where all the SX sentences were concantenated. The testing for
each of the population size was carried in two sets,

e Testing on individual SA and SI sentences.
e Testing after concatenating the SA and SI sentences.

The improvement in recognition accuracy when testing on individual SA and SI sentences is given in
Table 5.3.

Table (5.4) shows the recognition accuracy testing on concatenated SA and SI sentences.

One can observe that the improvement in recognition accuracy using pole-filtered cepstral mean sub-
traction is consistent with increase in the population size and the duration of the testing utterances.
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Figure 5.1: Relative error due to ordinary cepstral mean and pole-filtered cepstral mean.

Population | Clean | LPCC-MR | PFCC-MR ]
100 86.6 33.0 39.0
200 82.9 254 31.1
326 79.2 24.1 30.7

Table 5.3: NTIMIT experiments by testing on individual SA,SI sentences. Clean speech testing results
obtained from the corresponding utterances in TIMIT.

5.2 Experiments on the KING database

The King Database [89] consists of speaker data recorded under realistic telephone channel environment.
The database consists of 51 adult male speakers. Ten conversations of each speaker have been recorded in
ten sessions over long distance telephone lines. Conversations from twenty-six subjects were recorded in San
Diego, California, and the rest were recorded in Nutley, New Jersey. The first five sessions were recorded
at intervals of one week and the remaining five were recorded at one month intervals. The recordings were
carried out in quiet rooms. The speech was acquired via a standard carbon-button microphone after being
received over a long distance transmission.

The database has been categorized into two groups consisting of five sessions each. Sessions 1-5 form
one group and sessions 6-10, form the other group. Training and testing within a group has been termed as
experiments within the great divide , and testing across the group as experiments across the divide, which
imply considerable channel mismatch across the groups. The training for all experiments was conducted
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[ Population | LPCC-MR | PFCC-MR |

100 62.0 68.0
200 55.0 65.0
326 47.2 58.9

Table 5.4: NTIMIT experiments by testing on concantenated SA,ST sentences. Clean speech testing results
obtained from the corresponding utterances in TIMIT.

on one session and the testing on the rest of the sessions. Training and testing within the great divide
consisted of training on one session and testing on remaining four while experiments across the divide were
conducted by training on an individual session in group 1 (sessions 1-5) and testing on all sessions in group
2 (sessions 6-10). The training durations used for these experiments is considerably smaller (the emphasis
is on short duration testing and training) than those reported by Kao et.al [39] and Reynolds [58, 64],
where the training data was combined from three sessions.

The experiments below have been conducted on both the San Diego portion and the Nutley portion.
For the San Diego portion the experiments were conducted within and across the divide. For the Nutley
portion the emphasis was placed only on the experiments across the divide. For experiments within the
divide, there were 26 speakers x 4 test sessions X 5 sets = 520 test utterances, while for experiments across
the divide there were 26 speakers x 5 test sessions X 5 sets = 650 test utterances in the San Diego portion.
For the Nutley portion there were 25 speakers x 5 test sessions X 5 sets = 625 test utterances.

5.2.1 Preprocessing for the KING database

In the preprocessing step, a speech/silence discrimination was carried out based on thresholding of energy
in the individual spoken utterance. For each utterance, the energy threshold was decided by constructing
a histogram of frame energies. Only frames of energy higher than a decided threshold are considered for
further processing.

Speech /non-speech discrimination based on energy, tends to remove parts of the utterance that do not
correspond to voiced speech. Features extracted from these frames do not contain reliable speaker infor-
mation and degrade the performance undesirably by affecting the interspeaker and intraspeaker variances.
A pole-based frame selection process [31] was used to eliminate these undesirable frames for experiments
across the divide. The frame selection process chooses only voiced frames of speech indicated by the
number of narrow band components with bandwidths less than a pre-determined bandwidth threshold.
Improvements due to the pole-based frame selection process have been reported below.

5.2.2 Similar training—testing conditions: Within the divide

For experiments within the divide, only energy thresholding was used for speech/non-speech discrimination.
A pole-bandwidth threshold of a = 0.9 was used to generate the Pole-filtered cepstral coefficients. Due to a
relatively good transmission quality in sessions 1-5, no pole-based frame selection was used for experiments
within the divide. Results have been compared to ordinary mean removal in Table (5.5).

5.2.3 Mismatched training—testing conditions: Across the divide

For results across the divide, pole-filtered cepstral coefficients were generated with different bandwidth
thresholds. The performance across different sessions varied. Table (5.6) shows the performance improve-
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[ Method [ Identification rate | Accuracy(%) |

LPCC-MR 383/520 73.6
PFCC-MR 406/520 781

Table 5.5: Training and testing “within the great divide” (San Diego portion).

ment when a pole-bandwidth threshold of |z| = 0.9 was used, for the San Diego portion.

The pole-based frame selection was then carried out in addition to energy based speech/non-speech
discrimination. Further improvement in the performance was obtained using the pole selection strategy.
The results were obtained by using a threshold of pole-radius @ = 0.9 for both selection of voiced frames
and generating the pole-filtered cepstral coefficients. The results have been reported in Table (5.6).

Method Identification rate | Accuracy(%)
LPCC-MR 314/650 48.2
PFCC-MR 346 /650 53.2

FS + PFCC-MR 366/650 56.3

Table 5.6: Testing “across the great divide”, energy based silence removal (San Diego portion).

The pole-filtered cepstral mean derived by averaging the ACW subtractive component was used to
replace ordinary cepstral mean removal for exepriments across the divide. The results have been tabulated
in Table (5.7).

The Nutley portion was found to exhibit poor recogntion performance due to very noisy channel con-
ditions. However, the used of pole-filtered cepstral mean improved the recognition performance slightly as
shown in Table (5.8).

5.2.4 Combined inter-intra frame approaches

It was suggested in Chapter Four that the interframe and the intraframe approaches may be considered to
be complementary approaches. A two-pass approach was discussed in Chapter Four where a pole-filtered
channel estimate is deconvolved from the speech utterance and then followed by conventional intraframe
processing. It can be found from Tables (5.9) and (5.10) that the two approaches complement each other
to yield further improvement over ordinary cepstral mean subtraction. Table (5.9) shows the performance
improvement on the San Diego portion while the Table (5.10) shows the performance improvement on the
Nutley portion.

Table 5.7: Testing “across the great divide”, energy based silence removal followed by pole-based frame

Method Identification rate | Accuracy(%)
LPCC-MR 314/650 48.2
FS + PFCC-MR(ACW) 349/650 53.7

selection (San Diego portion).
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Method Identification rate | Accuracy(%)
LPCC-MR 184/625 29.4
FS + PFCC-MR 210/625 33.6

Table 5.8: Testing “across the great divide”, energy based silence removal followed by pole-based frame
selection (Nutley portion).

| Method | Tdentification rate | Accuracy(%) |
LPCC-MR 314/650 182
FS + PF + ACW 391/650 611

Table 5.9: Performance improvement “across the great divide” by combining the inter and intraframe pole
filtering approaches (two-pass) (San Diego portion).

Method Identification rate | Accuracy(%) |
LPCC-MR 184/625 29.4
FS + PF + ACW 228/625 36.5

Table 5.10: Performance improvement “across the great divide” by combining the inter and intraframe
pole filtering approaches (two-pass) (Nutley portion).
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The computational complexity involved in a two-pass approach is more than conventional approaches

and the pole filtering approach. However, a multi-pass approach is implied in reducing the effect of a
convolutional distortion.
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Chapter 6

Channel Identification

Besides providing an improved channel normalization scheme, the cepstral domain processing for an ut-

terance can also be utilized for channel detection. The pole-filtered cepstral mean estimate represents a

better estimate of the convolutional distortion than the ordinary cepstral mean. These channel estimates

can be trained using a classifier to provide channel discrimination among significantly different channels.
The channel detection scheme has been applied here to two application scenarios:

1. To discriminate live speech from tape-recorded speech for the purpose of secure access.

2. Classify telephone handset categories for detecting channel mismatch. Experiments have been per-
formed to classify electret phones from carbon-button phones.

6.1 Secure Access

Secure access promises to be one of the most critical issues in the deployment of speaker recognition systems
in the field. During verification of a speaker’s identity, a system would need a method of checking if the
voice is being mimicked by an impostor intending to gain unauthorized access.

One could also expect unauthorized access attempts by using speaker information played back through
a hand-held device. A common example would be when an impostor attempts to break into a system by
playing back the actual speaker’s voice that has been pre-recorded by using a tape recording device.

A speech-based system identification system for secure access would be helpful when discriminating
between speech spoken in person (or spoken live) and speech played via a recording device. It has been
observed that there are enough distortions in the played back speech that would help distinguish a spoken
utterance from a recorded utterance.

Common distortions are:

e The recording device channel.

e Characteristics of the loud-speaker through which the recorded speech is being played.

e Reverberation effects from the hand-held device and the microphone used to acquire the speech.
o Nonlinearities in the sampling devices involved.

It is in general, non-trivial, to decouple these effects from the spoken utterance and identify the dis-
tortions. Either the short-time cepstral information, or the ordinary or pole-filtered cepstral mean, can be
used to get an estimate of the distortions.
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Figure 6.1: Block Diagram for speech-based system identification.

The system developed for this live/taped speech discrimination uses the the cepstral vectors extracted
from the spoken utterances. The training was carried out by building a database of ten speakers. Each
speaker was advised to speak five utterances of ten seconds each. While the speech was being acquired, the
same utterance were also recorded into a high-quality DAT (Digital Audio Tape) recording device. The
spoken utterances consisted of unconstrained text.

The database for tape-recorded speech was collected by recording the live utterances on the DAT and
playing back through a loud-speaker held close to the microphone piece. LP derived cepstral vectors were
collected from individual databases for clean and tape-recorded speech. A Vector Quantization (VQ) based
classifier [92] was used to cluster the twelve-dimensional feature vectors into codebooks consisting of 46
centroids for each of the databases. Hence, a codebook was developed for clean speech and a similar size
codebook was developed for tape-recorded speech.

The testing was carried out by evaluating a minimum Ly distance score to the codebooks. The block
diagram of the system is shown in Figure (6.1). The utterance was classified as being “live” or “tape-
recorded” based on the minimum accumulated distance to each of the codebooks.

The speech-based device identification system could distinguish between tape-recorded speech and live
speech with very high accuracy.

6.2 Classification of telephone handsets

Tt is often desirable to measure the amount of channel mismatch between training and testing utterances
before performing the channel normalization step. A scheme that detects channels may be used to train

71



Downloaded from http://www.everyspec.com

separate models for a particular speaker based on different telephone types. Two distinct telephone hand-
set types that exhibit a significant mismatch are the Electret handset and Carbon-button handset. A
reasonably accurate handset classification scheme would allow categorizing the test utterance to separate
models trained on Electret and Carbon button phones.

Experiments were performed to classify Electret phones from Carbon button phones. An initial
database of 12 speakers was collected. Each speaker had a total of 36 short utterances from each telephone
handset category, the linear and the carbon-button types. The pole-filtered cepstral means were evaluated
on parts of an utterance obtained by sliding a fixed window comprised of 80 percent of the entire utterance.
This window was slid by a single sample at a time. The pole-bandwidth threshold was fixed to a value
corresponding to a frequency of 300 Hz, corresponding to a |z| = .88 on the Z-plane. A Neural Tree
Network classifier was trained on a part of the speaker database and testing was carried out using a set of
speakers that were not present in the training set. The classification accuracy is given in Table (6.1).

| Telephone type | Accuracy(%) |

Linear Phone 76.0
Carbon Button 73.0

Table 6.1: Experiments on Classification of two phones.

Further experiments were conducted on a database with 35 speakers whose utterances were collected
from a variety of linear phones. Carbon-button data was collected on a set of 18 speakers. The recognition
accuracy is reported in Table (6.2).

| Telephone type | Accuracy(%) |

Linear Phone 86.3
Carbon Button 74.0

Table 6.2: Experiments on Classification of two phones categories.

Thus, an ensemble of cepstral vectors of an utterance can be utlized to get an estimate of the convo-
lutional distortion. The method was shown to be particularly helpful for channel detection by eliminating
false rejects due to channel differences for speaker verification [52].
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

A new philosophy for extracting robust features in speech systems, called Pole filtering, was introduced in
this report. The solution of the LP difference equation of speech was interpreted in terms of poles that
correspond to the eigenmodes modeling a speech segment. Consequently it was shown that the cepstral
transformation is simply a homogeneous solution of the linear system implicit in the difference equation
of speech. That is, the cepstral sequence can be derived as a summation of the eigenmodes of a system
whose eigenvalues are the poles of the all pole filter.

The pole-filtering methodology was developed by investigating speech degraded by simulated transmis-
sion channels. Based on a study of the effects of channel variations on the poles of speech, algorithms were
proposed to improve the channel estimates using an interframe processing approach. The algorithms for
channel normalization were developed using the cepstral transformation of the poles of speech. A previously
proposed approach by Assaleh and Mammone [31] was unified under a pole filtering methodology.

By comparing the conventional methods for channel normalization in the cepstral domain, it was
emphasized that all conventional methods share a common basis for channel normalization. The basis is
in effectively removing the long-term cepstral mean. It was shown that the CMS itself has a drawback,
in that it corresponds to eliminating an improper cepstral estimate of the convolutional distortion. A
methodology was developed wherein the deconvolution term in the cepstral domain based on ordinary
long-term averaging of cepstral coeflicients was refined using Pole filtering. The estimates of the channel
were improved by introducing the concept of pole-filtered cepstral coefficients. Utilizing a pole-filtered
cepstral mean estimate for CMS the recognition accuracy in speaker identification was improved due to a
more accurate channel normalization.

The improved cepstral channel estimates obtained by pole-filtering were also used for the purpose of
channel detection in Chapter Six. Channel detection experiments were performed for the purpose of

e Secure access in Speaker identification to disriminate live speech from tape-recorded speech.
e Detection of telephone handset type.

In addition to refining the cepstral mean estimate, a two-pass approach was introduced. The two-pass
approach involved deconvolving the channel estimate obtained using pole-filtered cepstral mean of the
speech utterance on a first pass. A conventional intraframe processing technique was then employed on the
second pass. It was found that the interframe and intraframe methods complement each other and were
used to further improve the recognition accuracy for speaker identification.
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7.2 Future Work

The subsequent sections propose several avenues for future work in improving channel normalization uti-
lizing the concepts investigated in pole-filtering.

Improving conventional channel normalization

Removal of the cepstral bias is the underlying basis for most cepstral channel normalization techniques.
All conventional algorithms need to be re-investigated with the proposed pole-filter cepstral mean estimate
to remove any bias for channel normalization instead of using the ordinary cepstral bias. The RASTA filter
which was reviewed section [3.2.2], can hence be altered to modify the high pass portion that eliminates
the dc component in the log spectra. An appropriate pole filtering step succeeding a modified RASTA
filtering could combine advantages of RASTA and pole-filtering.

Modifying FFT Cepstral mean estimate

In the case of evaluating the LP-derived cepstral mean, channel estimates were improved by selectively
modifying the all-pole parameters of the LP filter. Similar pole-filtering ideas can be applied to FFT
cepstrum by applying smoothing strategies to the log-spectral magnitudes of the frames of speech to
de-emphasize the speech information. One possible approach is to find a least squares polynomial fit
to the magnitude response of the speech frame. After smoothing the magnitude response, a cepstral
transformation can be performed. The cepstral mean of a modified cepstral transformation may represent
a better channel estimate for CMS.

Channel normalization for speech recognition

Speech recognition systems often resort to sentence based or word based cepstral mean removal. Short
utterance duration also affects channel compensation when using ordinary cepstral bias removal. Moreover,
the presence of speech information in the cepstral mean, affects parts of the word or utterance.

By studying the spectral contents of individual phonemes for high quality (clean) speech, one can
store phoneme dependent estimates of the cepstral mean, s@honeme. An estimate of the underlying channel
distortion can then be obtained by computing,

h;ghoneme _ Cghoneme _ sghonema (7.1)

where, c&'"*™ corresponds to the cepstral mean from training, and hgh'meme is the estimate of the distor-

tion. During testing (or decoding), the channel estimate may have to be obtained in a maximum likelihood
framework where the likelihood of the underlying speech model and the channel model are estimated.

Adapting the pole-filtering thresholds

For most experiments, the pole-bandwidth thresholds were fixed apriori based on an empirical estimate of
the pole-bandwidths obtained by performing an all-pole LP fit to the impulse responses of the simulated
distortions. The thresholds however, which control the level of smoothing in the cepstral mean, may be
adaptively modified on a per utterance basis. This is done by observing the spectral content that may
correspond to the speech information in the cepstral mean or the gross spectral distribution of the utterance
prior to convolution.
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Chapter 8

Minimum phase property of the channel
compensation filter

The spectral distribution of the cepstral mean cg for a sentence, S, is obtained by recursively converting
the cepstral coefficients to predictor coefficients in equation [4.20]. Thus, an all-pole approximation to the
channel given by, Nen(2) = ch%@ is implied.

The filter, Necf(z), hence corresponds to a deconvolution filter. The effect of cepstral mean subtraction
is effectively a deconvolution of the channel in the time domain. It is proven below that the deconvolution
filter Necp(2) is an FIR filter that may be minimum phase and stable.! In other words, the truncated
cepstral mean sequence obtained by a superposition of cepstral sequences of individual speech frames of
an utterance is causal and the corresponding filter (CCF) is minimum phase.

The property is derived by investigating the all-pole filter polynomials for each frame of speech, given
by Ai1(2), Aa(2), -+, Am(z), for M frames of an utterance. These filters are minimum-phase, when derived
using autocorrelation analysis, and correspond to poles inside the unit circle. Thus,

1
A = ) (&1
1
420) = iy 2
(8.3)
A (2) ! (8.4)

I (1 =z Y).

The corresponding cepstral transformation may be obtained using the root power sum formulation, given
by,

P
er(n) = % S 2y — Aul2) (8.5)
k=1
1 P
ea(n) = = D 2y +— Aa(2) (8:6)
k=1
(8.7)

'I thank Ravi Ramchandran for showing me this proof.
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P
ewr(n) = = 3 2 — A (), (59
k=1

for the n®* cepstral coefficient.
The corresponding summation of the cepstral sequences for the M frames in the utterance is given by,

1

, 8.9
[l = puez=1) TIicy (1 — parz=t) - - TIEZ (1 — pargz=1)’ (89)

M
3 ciln) «— Non(2) =

and the cepstral mean for the M frames corresponds to the geometric mean of the product of the individual
all-pole filter polynomials in the frequency domain. Hence,

yid 1
M;Q(n) < (Nea(2).) ¥ (8.10)

One can observe from equation [8.9], Nu(2) is a product of minimum-phase polynomials and hence is

essentially minimum phase.
An all-pole channel filter that corresponds to the cepstral mean, can be given by,

1
Neep(z) = ———. (8.11)
(Nen(z))™M
Raising both sides of equation [8.11] to the M power one gets,
P P P
Neesl™ H (1-puzt) H (1~ poxz™ H (1 —pakz™"), (8.12)

which is FIR and minimum-phase of order M P.

The channel compensation filter N..¢(z) of order P is an approximation to the channel filter order
MP in equation [8.12]. Thus the CCF is derived by truncating the impulse response of N;(z). This
approximation may lose its minimum phase property due the truncation of the impulse response. However,
CCF has been employed only to observe the spectral distribution of the cepstral mean and does not affect
the pole-filtering approach.

The filter Ne.s(z), was also used to deconvolve the channel estimate in the first pass of a two-pass
approach described in Chapter Four. The minimum phase property of the filter N, #(#z) is not critical here,
since the deconvolution filter is FIR and hence stability is not a critical issue.
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Chapter 9

Zero—mean property of cepstral
coefficients

Past literature has exploited the channel invariance property of cepstral coefficients under the assumption
that the cepstral coefficients are typically zero-mean under “regular conditions” [11, 73]. Based on this
assumption, the conventional CMN technique has widely been claimed to provide channel normalization.

For most practical training and testing durations, the zero-mean property of cepstral coefficients is not
true. For utterance durations on the order of tens of seconds, the cepstral mean of the speech utterance
tends to represent a gross spectral distribution of the spoken material. When CMN is carried out, this
component is eliminated along with the additive cepstral component due to the channel.

The cepstral mean of clean speech from the TIMIT [90] database is shown in the quefrency domain in
Figure (9.1) and the spectral domain in Figure (9.2(a)). The cepstral mean was obtained from 10 seconds
of voiced speech obtained from a section of the database. The same utterance was then degraded by a
CMV channel and the cepstral mean was observed in the quefrency domain and the spectral domain. The
Figures (9.1) and (9.2(b)) illustrate the changes in the cepstral and spectral domain.
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Figure 9.1: Comparison of cepstral mean of a speech utterance prior to and after channel degradation.

Spectral distribution of cepstral mean (high—quality)

—y
[4,] o

magnitude (dB)
(=]

T T T T T T T

Y

-10 L 1 1 I 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
frequency (Hz)
Spectral distribution of cepstral mean (CMV degradation)
20 T T T i T T T
(b)
@ 10 ]
z
@
) .
=
=
f=1
©
E-10 .
-20 | L L ) L 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
frequency (Hz)

Figure 9.2: Comparison of spectra of the cepstral mean of a speech utterance prior to and after channel

degradation.
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transition them into systems to meet customer needs. To achieve this,

Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.




