24551-000

24551-000

RADC-TR-90-72 Final Technical Report May 1990

RELIABILITY ANALYSIS/ASSESSMENT OF ADVANCED TECHNOLOGIES

Westinghouse Electric Corporation

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Rome Air Development Center Air Force Systems Command Griffiss Air Force Base, NY 13441-5700 This report has been reviewed by the RADC Public Affairs Division (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-90-72 has been reviewed and is approved for publication.

APPROVED: Bruch Audley

BRUCE W. DUDLEY Project Engineer

APPROVED:

JOHN J. BART

JOHN J. BART Technical Director Directorate of Reliability & Compatibility

FOR THE COMMANDER:

JAMES W. HYDE, III. Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (RBER) Griffiss AFB NY 13441-5700. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document require that it be returned.

REPORT D	OCUMENTATION	N PAGE	Form A	Approved No. 0704-0188
Public reporting burden for this collection of info manuaning the data needed, and revening the of for reducing this burden, to Washington Headque the Office of Information and Reductatory Alters (mation is estimated to average 1 hour per tespona- tolecton of information. Send comments i coarding arters Services, Directorate for Information Operatio Withor of Maximement and Butcher (Mathration, DC	I. Including the time for revier this burden estimate or any of ns and Reparts, 1215 Jeffers 20503	wing instructions, salarch her appect of this collect on Devis Highway, Suite	ing existing data sources gathering and lan of information, including suggestions 1204, Arlington, VA 22202-4302, and to
1. AGENCY USE ONLY (Leave Blank)	2. REPORT DATE	· 3. REPOR	TT TYPE AND DATES	COVERED
	May 1990	Fina	1 Oct 88	8 to Jul 89
A TITLE AND SUBTITLE RELIABILITY ANALYSIS/	ASSESSMENT OF ADVANCED	TECHNOLOGIES	S.FUND	NG NUMBERS - F30602-87-C-0186 - 62702F - 2338
CAUTHOR(S) W. J. Garry, R. E. Twist, G. E. Di A. Dasgupta, D. M. Ay	R. H. Seidl, T. A. Jenn x, S. J. Whelan, M. G. lward, W. Ko, P. Lall,	nings, J. S. Pecht, A. Kumar	Rapa, TA - WU -	- 02 - 3Q
7. PERFORMING ORGANIZATION NAME	S) AND ADDRESS(ES)		8. PERFO	DRMING ORGANIZATION
Westinghouse Electric P.O. Box 1693 Baltimore MD 21203	Corporation		N/A	RI NUMBER
9. SPONSORING/MONITORING AGENCY	NAME(S) AND ADDRESS(ES)		10. SPOP	
Rome Air Development Griffiss AFB NY 13441	Center (RBER) -5700		RADO	C-TR-90-72
124. DISTRIBUTION/AVAILABILITY STATE Approved for public r	MENT elease; distribution un	nlimited.	12b. DIS	TRIBUTION CODE
13. ABSTRACT (Maximum 200 words) This report has been mine the reliability existing reliability were investigated were Hybrid Circuits, Micro grated Circuits (GaAs other factors that we are: reliability mod diction models for in- assessment. These da use by government and equipments.	prepared to summarize characteristics of adva- models and the develop e: Very Large Integrat oprocessors, and Gallin MMIC). Packaging, en- re considered in this els that extend the ran- depth circuit and pac ta will be transitioned contractor personnel	the technical anced technol ment of new m ted Circuits um Arsenide M vironmental q investigation nge of MIL-HD kaging design d from the re in estimating	study perf ogies. The odels. The (VLSI), Mer icrowave Mo uality, and . The rest BK 217, end and new fa port to MII the reliat	formed to deter- e study covered e devices that mory Circuits, onolithic Inte- d maturity were ults of the study d of life pre- actors quality L-HDBK 217 for pility of new
14. SUBJECT TERMS	<u> </u>			15. NUMBER OF PAGES
Reliability Failure Rate	VHSIC Hybrid	Gallium Ars Microelectr	enide onics	586 16. PRICE CODE
17 SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19 SECURITY CLASS OF ABSTRACT UNCLASSI		20. LIMITATION OF ABSTRACT

Downloaded from http://www.everyspec.com

TABLE OF CONTENTS

<u>PAGE</u>

1.0	INTRODUCTION	۱
1.1	OBJECTIVES	1
1.2	BACKGROUND	1
1.3	LIST OF ACRONYMS	2
2.0	REPORT ORGANIZATION	5
3.0	APPROACH	7
3.1	METHODOLOGY	8
3.2	MODELS	11
4.0	MODEL DEVELOPMENT	14
4.1	VLSI/ULSI MICROCIRCUITS AND MICROPROCESSORS	14
4.1.1	MODEL OVERVIEW - THE SUPERPOSITION MODEL	16
4.1.2	EARLY AND MIDDLE LIFE PREDICTION MODELS	21
4.1.3	END LIFE FAILURE MECHANISM MODELS	30
4.2	MEMORY DEVICES	67
4.2.1	DATABASE	67
4.2.2	MODEL	68
4.3	MONOLITHIC GAAs DEVICES	107
4.3.1	GaAs DATABASE - SUMMARY OF SOURCES AND DATA	107
4.3.2	GaAs FAILURE RATE MODELS	111
4.4	HYBRIDS	124
4.4.1	DATABASE	124
4.4.2	MODEL DEVELOPMENT	128
4.4.3	CHIP JUNCTION TEMPERATURE CALCULATION	130
4.5	FAILURE MECHANISMS OF MICROELECTRONIC PACKAGES	134
4.5.1	INTRODUCTION	134
4.5.2	FATIGUE FAILURE MODELS OF WIRE AND WIRE BONDS	138
4.5.3	FAILURE MODELS FOR THE DIE, DIE ATTACH AND	
	SUBSTRATE ATTACH, FRACTURE AND FATIGUE	147
4.5.4	FAILURE MODELS OF METALLIZATION AND WIRE BOND CORROSION	161

LIST OF TABLES (cont)

TABLE		PAGE
4.5-11	Bond Pad Corrosion Volume	193
4.5-12	Corrosion Properties of Metals	193
4.5-13	Coating Integrity Index	194
4.5-14	Equipment Operating Time Factor	194
4.5-15	Electrolyte Resistivity	195
4.5-16	Galvanic Electro-Chemical Potential	195
4.5-17	Recommended Value for Component Operating ΔT	196
4.5-18	Typical Values for Die/Substrate Attach Thickness	197
4.6-1	Failure Totals vs. Failure Mechanisms by Device Types	202
4.6-2	Recommended Screens/Tests for Various Failure Mechanisms	203
4.6-3	IC Failure Mechanisms/Screening Methods	204
4.6-4	Weighting Factor Determination	204
4.6-5	Calculating Burn-In Effectiveness (Fallout)	205
4.6-6	Semiconductor Industry Association Quarterly Report	
	for Military Products Mean Defect Densities	208
4.6-7	Failure Rates by Hybrid Types	212
4.6-8	Life Test Data	213
4.6-9	Environmental Temperature Ranges	217
4.6-10	Integrated Circuit Environmental Factors	218
5.1	Model Validation	220

1.0 INTRODUCTION

1.1 OBJECTIVES

The main objectives of this study have been: (1) to examine the existing failure rate prediction models in the Microcircuit Section of MIL-HDBK-217E, to determine if they are applicable to state-of-the-art devices; (2) to revise or extrapolate the existing models as necessary to reflect current and future device reliability; (3) to perform a reliability assessment of device types, being designed into state-of-the-art systems, for which no models presently exist; and (4) to develop new reliability prediction models for emerging technology devices. These objectives support the goal of developing accurate, user-friendly models for possible inclusion in a future revision to MIL-HDBK-217.

1.2 BACKGROUND

MIL-HDBK-217 has been used as a guide for predicting system reliability for many years. The consistent approach used by the authors of the handbook (RADC) has been to examine field and life test component failure data to identify key elements to which this data best fits. These key elements are then combined in an additive and multiplicative form to develop a component failure rate value dependent upon the type and application of the specific component. Component failure rate values can be combined, according to the specified system architecture, to obtain a predicted value of the system failure rate. Using this approach, the authors have been successful in maintaining a usable model. However, because of increasing microcircuit complexities and new component types, there is a need for an improved, updated prediction model for advanced microcircuits.

To develop a set of requirements for a reliability prediction model, it is necessary to understand the intended use of the model. Reliability prediction models, such as MIL-HDBK-217E, are used extensively to determine the reliability trade-offs between various system designs, in order to produce the

optimum reliable design. The requirement to deliver systems with higher reliability is being pursued aggressively by DOD. The seriousness with which the Air Force views system reliability is demonstrated in the goals of R&M 2000, with similar initiatives being pursued by the Army and Navy. In order to achieve these goals, it is imperative that the major reliability risks in the system design be accurately identified and eliminated without unnecessary reliability design complications, such as over-redundancy or the use of inappropriate cooling system strategies. The reliability prediction model must be capable of realistically approximating the reliability of each component comprising the system, including the advanced microcircuits. The methods of reliability prediction modeling investigated address the requirements of accuracy of the predicted failure rate, comprehensiveness of microcircuit types, integration with microcircuit screening, and model maintainability, all with minimal impact on usability.

1.3 LIST OF ACRONYMS

A list of acronyms with their associated meanings as used in this report is as follows:

AC - Assignable Cause Ag - Silver Al - Aluminum ALSTTL - Advanced Low-power Schottky Transistor-Transitor Logic ASIC - Application Specific Integrated Circuit ASTTL - Advanced Schottky Transistor-Transistor Logic Au - Gold B - Boron BIMOS - Bipolar/Metal Oxide Semiconductor BIR - Built-in Reliability CCD - Charge Coupled Device CERDIP - Ceramic Dual Inline Package CGA - Configurable Gate Array CHE - Channel Hot Electron CI - Charge Injection

Cl – Chlorine	
CML - Current-Mode Logic	
CMOS - Complementary Metal Oxide Semiconductor	
CPU - Central Processing Unit	
CVD - Chemical Vapor Deposition	
DIP – Dual In-line Package	
DOD - Department of Defense	
DRAM – Dynamic Random-Access Memory	
DTL - Diode-Transistor Logic	
Ea – Activation Energy	
ECL - Emitter-Coupled Logic	
EEPROM - Electrically Eraseable Programmable Read-Only Mem	юrу
EM – ElectroMigration	
EMI - Electromagnetic Interference	
EMP - Electromagnetic Pulse	
EPROM – Eraseable Programmable Read-Only Memory	
ESD – ElectroStatic Discharge	
eV - Electron Volt	
F - Fluorine	
FET - Field-Effect Transistor	
FGMOS - Floating Gate Metal-Oxide Semiconductor	
FLOTOX - Floating Gate Tunnel-Oxide	
FPMH - Failures Per Million Hours	
FR – Failure Rate	
FTTL – Fast Transistor-Transistor Logic	
GaAs – Gallium Arsenide	
Ge - Germanium	
H - Hydrogen	
HAL - Hard Array Logic	
HBT - Heterojunction Bipolar Transistor	
HEMT - High-Electron Mobility Transistor	
HMOS - High-performance Metal-Oxide Semiconductor	
HTRB – High Temperature Reverse Bias burn-in	
IC – Integrated Circuit	
IEEE - Institute of Electrical and Electronics Engineers	

IIL - Integrated Injection Logic In - Indium IRPS - International Reliability Physics Symposium K - Boltzman's constant K – Potassium K - Thermal conductivity KÅ - Kilo Angstroms LCC - Leadless Chip Carrier LEFM - Linear Elastic Fracture Mechanics LSI - Large-Scale Integration (1,001 to 10,000 logic gates) LSTTL - Low-power Schottky Transistor-Transistor Logic LTTL - Low-power Transistor-Transistor Logic MDR - Microcircuit Device Reliability (RAC publicatons) MESFET - Metal Semiconductor Field-Effect Transistor MHP - Multichip Hybrid Package MIL-HDBK - Military Handbook MIL-STD - Military Standard MIMIC - Millimeter-wave Monolithic Integrated Circuit MLA - Masked-Logic Array MLO - Multi-level Oxide MMIC - Monolithic Microwave Integrated Circuit MNOS - Metal-Nitride-Oxide Semiconductor MOS - Metal-Oxide Semiconductor MOSFET - Metal-Oxide Semiconductor Field-Effect Transistor MSI - Medium-Scale Integration (10) to 1,000 logic gates) MTBE - Mean Time Between Failures MTTF - Mean Time To Failure N - Nitrogen Na - Sodium NDP - Numerical Data Processor NMOS - N-channel Metal-Oxide Semiconductor 0 - Oxygen P - Phosphorous P-DIP - Plastic Dual In-line Package PAL - Programmable Array Logic

- PCB Printed Circuit Board
- PGA Pin Grid ArrayPLA Programmable Logic Array
- PMOS P-channel Metal-Oxide Semiconductor
- PPM Parts Per Million
- PROM Programmable Read-Only Memory
- PSG Phosphosilicate Glass
- RAAAT Reliability Analysis/Assessment of Advanced Technologies
- RAC Reliability Analysis Center
- RADC Rome Air Development Center
- RAM Random-Access Memory
- RH Relative Humidity
- RMC Representative Microcircuit Configuration
- ROM Read-Only Memory
- SAW Surface Acoustic Wave
- SF Screening Factor
- Si Silicon
- SIA Semiconductor Industry Association
- PHP Power Hybrid Package
- SRAM Static Random-Access Memory
- SSI Small-Scale Integration (1 to 100 logic gates)
- STTL Schottky Transistor-Transistor Logic
- Tch Channel Temperature
- TDDB Time Dependent Dielectric Breakdown
- Tj Junction Temperature
- TTL Transistor-Transistor Logic
- ULSI Ultra Large-Scale Integration (greater than 100,000 logic gates)
- UVEPROM Ultra-violet Eraseable Programmable Read Only Memory
- VHSIC Very High-Speed Integrated Circuit
- VLSI Very Large-Scale Integration (10,000 to 100,000 logic gates)
- WEC Westinghouse Electric Corporation
- WSI Wafer-Scale Integration

2.0 REPORT ORGANIZATION

Section 3.0 presents the approach which was taken in the conduct of this study

contract. It lists the microcircuit types which were the subject of study, and it summarizes the methodology employed, the types of models which were developed, and their intended usage.

Section 4.0 is the main body of the report. It discusses the model development for each of the primary categories of devices, as listed below:

- VLSI/ULSI Devices (including microprocessors and gate array devices)
 Section 4.1
- □ Memory Devices (including programmable logic devices) Section 4.2
- Monolithic GaAs Devices (including microwave and digital devices) -Section 4.3
- Hybrid Microcircuits (including all styles of multi-chip hybrids) -Section 4.4
- Packaging Models (including corrosion, cracking, and wire-bond failure models) generic to all packages - Section 4.5

In addition, the development of failure rate adjustment factors (π factors) to account for different quality levels, product maturity, device functions and operating environments, is presented in Section 4.6.

Section 5.0 discusses predictive model validation, where it was possible to validate the models. Section 6.0 presents our conclusions and recommendations for follow-on analysis and study, and section 7.0 is the combined bibliography for the report.

Appendix A is a page-for-page replacement for Section 5.1.2 of MIL-HDBK-217E.

Appendices B and C are, respectively, mathematical derivations and Fortran programs supporting the development of the VLSI/ULSI models.

Appendix D contains tables of probability of sucess and hazard rate at 10,000 operating hours for the predominant wearout failure mechanisms, electromigration and time-dependent dielectric breakdown. Appendix E contains memory devices life test data.

Appendices F, G and H are detailed summaries of the work performed in the development of the deterministic package failure models, presented in the format of technical papers.

Appendix I provides the derivation of ΔT default values to be used for various part usage environments.

3.0 APPROACH

The approach which was pursued in assessing the reliability of advanced technology microcircuits consisted of a five-step process.

1. A review of MIL-HDBK-217 identified the component styles and the device technologies which needed to be addressed. If the validity of the existing model was questionable, or if no model existed, it was added to the list. The following areas were selected for research and analysis:

Application Specific ICs (ASIC) Very Large-Scale Integration (VLSI) Ultra Large-Scale Integrated Circuits (VHSIC) Random-Access Memory (RAM) Read-Only Memory (ROM) Programmable Read-Only Memory (PROM) Programmable Array Logic, Logic Array, Hard Array Logic (PAL, PLA, HAL) Configurable Gate Array (CGA) Current-Mode Logic (CML) Pin Grid Array (PGA) Monolithic Microwave IC, Gallium Arsenide (MMIC, GaAs) Hybrids (MHP, PHP) Packaging (Materials, Seals, Die Attach, Wire Bonds, Corrosion)

2. A literature search was conducted to determine if the reliability of these component/technology types had been documented. Emphasis was placed on device failure mechanisms and data relative to failure physics, because it was

intended to develop deterministic models to the maximum extent possible. A partial listing of the references is included in the bibliography and the appendices.

3. Data was collected from several sources, including the Reliability Analysis Center (RAC) Microcircuit database, technical journals, technical periodicals, manufacturers' device data books, and the Westinghouse Failure Analysis and Field Failure databases. In addition, an industry survey was made, by mail and by telephone, of 227 suppliers and users of advanced microelectronic devices. The data was categorized for the primary model development areas, and each of these databases is discussed in the appropriate paragraphs of Section 4.0 of this report.

4. The data was analyzed for applicability to the model development effort.

5. Predictive models were developed, based on the data collected. Where possible, the models were validated by using additional sources of information and/or by comparison of the results with MIL-HDBK-217E.

3.1 METHODOLOGY

Initially, the attempt was made to develop only deterministic models for all of the component types identified for study. However, several pitfalls became evident in this approach. First, the resultant form of the model, a combination of all failure distributions, although inherently accurate and mathematically correct, is not user-friendly. It is not possible to improve model accuracy and comprehensiveness without adversely affecting the model development and use. Second, the resulting model form does not readily lend itself to inclusion in MIL-HDBK-217, which is an ultimate goal. And third, deterministic models cannot account for the early and middle life microcircuit failures - those which typically occur within the useful life of the components, and which appear to occur randomly. Since these failures are of significance to the user of the model, they must be included.

Therefore, the reliability prediction model which was developed for advanced

microcircuits estimates the early, middle, and end-life of these microcircuits. In general, early and middle-life microcircuit failures are "assignable cause" failures. These failures are premature failures whose causes can be "assigned" to specific random defects or events. The early and middle-life failures typically exhibit a substantially greater failure rate than do end-life failures. The end-life failures of microcircuits are "common cause" failures. These failures are material wearout failures whose causes are "common" because of the common materials used in the fabrication of the microcircuits. MIL-HDBK-217E and its predecessors only considered assignable cause failures in the development of prediction models, since common cause failures did not typically occur within the lifetimes of military systems. However, the geometry scaling required to attain the complexity of the advanced microcircuits in question may result in common cause failures that contribute significantly to the overall failure rate of the microcircuits under standard operating conditions.

Much of the prediction modeling effort was dedicated to distinguishing between assignable cause failures and common cause failures. Since the failure models for early, middle and end life are not typically the same, a generic model was developed to combine these individual failure models. This Superposition Model is described in detail in section 4.1.1, but it is also described briefly below.

As previously mentioned, the early and middle-life failures, or "assignable cause" failures, are defect-related, and they can be accurately modeled by a constant (time-independent) failure rate, as was done in MIL-HDBK-217. If there are n independent assignable cause failure mechanisms operating on a component population, then

$$\lambda_{AT} = \sum_{i=1}^{n} \lambda_{Ai}, \qquad (3.1.1)$$

where:

$$\lambda_{AT}$$
 = the total component failure rate due to assignable causes
 λ_{Ai} = the component failure rate due to the ith assignable
cause

Further, the reliability of the component, or the probability of its operating without failure for some time, τ , may be expressed as

$$- \frac{-\lambda}{AT^{\tau}} R = e$$
 (3.1.2)

However, this model does not account for the end of life (wearout) failure mechanisms, which are typically distributed log-normally - implying non-constant failure rates. Equation 3.1.2 may be expanded to include these failure mechanisms, and thus becomes

where:

 $F_{i}(\tau)$ is the time-dependent probability of failure for the i^{th} failure mechanism, and

m is the number of independent wearout mechanisms.

The problems presented by this model are: (1) the non-constant (time dependent) failure rate of the wearout mechanisms, implying that the time in the component's life used to evaluate the reliability will alter the result; and (2) the fact that failure rates of components can no longer be added to derive a total system failure rate. The first problem is overcome if a common time is chosen for comparative analysis of the reliability of all components. Ten thousand operating hours is a common design criteria for avionics systems (programs such as ALQ-165 and APG-68), and it has been chosen in our modeling effort. A failure rate for each wearout mechanism can then be calculated, as described in section 4.1. The second problem is overcome by using reliability, rather than failure rate, as the figure of merit, or by ignoring the common causes (by reverting to use of equation 3.1.2). The latter may be done legitimately if the calculated value of the effective failure rate due to

assignable causes. Even then, the common cause models are useful as design tools, both in the assessment of inherent reliability (failure free operating period) and in the verification of adequate derating margins.

3.2 MODELS

Models have been developed for the primary categories of advanced technology devices as shown in Table 3.2-1.

DEVICE	ASSIGNABLE CAUSE	COMMON CAUSE	
CATEGORY	(EARLY-MIDDLE-LIFE)	(END-LIFE/WEAROUT)	REMARKS
VLSI/ULSI	Ε	N	E = extrapolated or modified 217 model based on new data
Memories	E	N	N = new model
GaAs	N	-	Insufficient data for commone cause model development
Hybrids	N	N	Common causes addressed in chip, package models
Packages	E	N	

Table 3.2-1	NEW	MICROCIRCUIT	MODELS
-------------	-----	--------------	--------

¹ Quality, learning, environment and hybrid function failure rate adjustment factors are modifiers of the assignable cause failure rates only.

With the exception of the hybrid model, which has been greatly simplified, the assignable cause models are similar in form to the models in MIL-HDBK-217E. A comparison is presented in Table 3.2-2.

DEVICE CATEGORY	MIL-HDBK-217E	NEW MODEL
(ISI) NLSI/ULSI	$\lambda_{p} = \pi_{Q} (C_{1} \pi_{T} \pi_{V} + C_{2} \pi_{E}) \pi_{L}$	$\lambda_{P} = \pi_{Q} (C_{1} \pi_{T} + C_{2} \pi_{E}) \pi_{L}$
MEMORIES	$\lambda_{p} = \pi_{Q} (C_{1} \pi_{T} \pi_{V} + C_{2} \pi_{E}) \pi_{L}$	$\lambda_{p} = \pi_{Q} (C_{1} \pi_{T} + C_{2} \pi_{E} + \lambda_{CYC}) \pi_{L}$
GaAs	NONE	$\lambda_{p} = \pi_{Q} ((C_{1A} \pi_{TA} + C_{1P} \pi_{TP}) \pi_{A} + C_{2} \pi_{E}) \pi_{L}$
HYBRIDS	$\lambda_{P} = [\Sigma N_{C} \lambda_{C} \pi_{G} + (N_{R} \lambda_{R} + \Sigma N_{I} \lambda_{I} + \lambda_{S}) \pi_{F} \pi_{E}^{-1}$	$\lambda_{p} = \pi_{Q}^{(\Sigma N_{C} \lambda_{C}^{(1)} + .2 \pi_{E}^{(1)})} \pi_{L} \pi_{F}$
	^π Q ^π D	
PACKAGES	С ₂ тЕ	C2 π _E

LEGEND TO TABLE 3.2-2

			<i>c</i>
ЪP	is	the	device failure rate in F/10 ⁶ hours
"Ο	is	the	quality factor
πŢ	is	the	temperature acceleration factor (MOS and Bipolar)
۳TA	is	the	GaAs temperature acceleration factor (active devices)
^π TP	is	the	GaAs temperature acceleration factor (passive devices)
c,	is	the	circuit complexity factor (MOS and Bipolar)
C _{1A}	is	the	GaAs circuit complexity factor (active devices)
CIP	is	the	GaAs circuit complexity factor (passive devices)
ΨE	is	the	application environment factor
- ″L	is	the	device learning factor
c,	is	the	package complexity factor
^A CYC	is	the	EEPROM cycling-induced failure rate
^π F	is	the	circuit function factor (hybrids)
N _C	is	the	number of each particular component (within hybrids)
^λ C	is	the	<pre>component failure rate (for each component within hybrids)</pre>
‴G	is	the	die correction factor
NR	is	the	number of chip or substrate resistors
λ _R	is	the	failure rate of the chip or substrate resistor
NT	is	the	sum of the hybrid interconnections
λ _t	is	the	failure rate per interconnect
י דס	is	the	hybrid density factor
λs	is	the	failure rate of the hybrid package
ΠĂ	GaA	s MM	IIC application factor

4.0 MODEL DEVELOPMENT

4.1 VLSI/ULSI MICROCIRCUITS AND MICROPROCESSORS

The device list which was considered for an updated VLSI/ULSI prediction model included bipolar and MOS digital devices (including shift registers. programmable logic arrays (PLA) and programmable array logic (PAL)), bipolar and MOS linear devices, bipolar and MOS digital microprocessor devices (including controllers), bipolar and MOS analog microprocessor devices, charge coupled devices (CCD), and wafer scale integration (WSI). For the end-life failure model, several class modifications were made (see Table 4.1-1). The first two classes of devices were renamed bipolar digital and linear devices (including gate/logic arrays) and MOS digital and linear devices (including gate/logic arrays), since the wearout mechanisms are similar within these classes. From discussions with microprocessor suppliers,^[8] bipolar VLSI/ULSI microprocessor devices do not have a moderate to high probability of being used in near future military systems; therefore, the next two classes of devices were renamed MOS digital microprocessors (including controllers) and MOS analog microprocessors (including controllers). Because of insufficient data on the manufacturing technology of MOS analog microprocessor devices and CCDs, adequate life-prediction models could not be developed. WSI was not modeled as a separate category since it comprises many different microcircuit types whose failure rates can be calculated separately and then combined using the model of section 4.1.1.

During the development of the prediction model for VLSI/ULSI microcircuits, several assumptions were made that could not be fully substantiated during the course of the contract. The assumptions are highlighted in section 6.0 with possible direction in verifying these assumptions.

The literature search for the VLSI/ULSI model development spanned the RAC database, the Proceedings of the International Reliability Physics Symposia (IRPS), the Proceedings of the Reliability and Maintainability Symposia, the Transaction of the Reliability Society of the IEEE, and numerous other technical journals. The data collected for the end-life model development was sparse.

Table 4.1-1

VLSI/ULSI Device Category Changes

<u> 0LD</u>

NEW

Monolithic Bipolar & MOS Digital	Bipolar Digital & Linear Devices [1]
Devices	(Including Gate/Logic Arrays)
Monolithic Bipolar & MOS Linear	MOS Digital & Linear Devices [1]
Devices	(Including Gate/Logic Arrays)
Monolithic Bipolar & MOS Digital	Bipolar Digital Microprocessors [1]
Microprocessor Devices	(Including Controllers)
	MOS Digital Microprocessors [1]

Monolithic Bipolar & MOS Analog Microprocessor Devices Bipolar Analog Microprocessors [2] (Including Controllers) MOS Analog Microprocessors [3] (Including Controllers)

(Including Controllers)

Charge Coupled Devices (CCDs) [3]

Wafer Scale Integration (WSI) [4]

- [1] Model developed
- [2] Model not viable
- [3] Insufficient data
- [4] End of life models for VLSI/ULSI can be used by extrapolation

Except for sources such as the IRPS (papers identified in the references), very little information was available to understand why system failures occur. Trend analysis of system data is not appropriate for developing values for the parameters in the wearout models developed. Therefore, sources such as the RAC database, the WEC field database, most industry contacts, and the bulk of the available literature on failures, all of which heavily depend on trend analysis, lack the detail necessary to pinpoint the failure mechanism, parametric stress conditions and the time-to-failure.

4.1.1 Model Overview - The Superposition Model

The approach to the updated VLSI/ULSI reliability prediction model development initially concentrated on the types and causes of system failures. By definition, a system failure is that event in which the specification of a performance parameter of the system is exceeded due to physical processes operating on the system that proceed naturally during the life of the system. Table 4.1-2 outlines the results of a recent survey^[40] of system failures with respect to percent contribution of component replacement for a particular component type. The survey shows that the microcircuit is still the leading component to which many system failures are attributed.

	Hughes	% Contribution	
Source:	Aircraft	Collins	GE
<u>Part Type</u>	Company	Avionics	
ICs	27	32	33
Transistors	14	14	15
Hybrid Circuits	12	**	**
Capacitors	12	19	6
Resistors	12	* *	16
Diodes	10	**	**
Solder Joints	3	* *	5
(and interconnections)			
Others (** included)	10	35	22

Table 4.1-2 Summary of Parts Replacement Distributions^[40]

A survey^[36] of the causes of VLSI/VHSIC microcircuit failures specifically, outlined in Table 4.1-3, shows VLSI/VHSIC microcircuits of similar complexity

failing for totally different reasons. A VLSI/VHSIC prediction model that cannot account for this inconsistency in observed failure mode/mechanisms may result in a grossly inaccurate prediction. To address this inconsistency, microcircuit failures were classified into two categories: common cause failures and assignable cause failures. These two categories of failures were then modeled separately.

			Survey	Responses		
Failure Mode / Mech	_1	2	3	4	_5	6
Electromigration						13%
Dielectric Breakdown	Х	50%	<.1%	98%		2%
Soft Errors						
Parametric Drift	Х		1%			38%
Hot Electrons	Х					
Latch-Up	Х	10%	.1%		Х	
Electrical Overstress		20%		2%	Х	
Package Related		20%	<.1%		Х	28%
Other					Х	19%

Table	4.1-3	Vendor	Data	L36.
aure		Venuor	σαια	

X = failure mode occurs but no percentage given in survey response.

By modeling the common cause microcircuit failure rate separately from the total microcircuit failure rate, it is possible to evaluate the system reliability improvement due to the use of mature microcircuits which have minimized the assignable causes of failure. It is noted that these assignable cause failures can be minimized or eliminated by use of built-in-reliability (BIR) techniques or screening. The "band" of potential reliability improvement is displayed graphically in Figure 4.1-1. Assuming a bathtub-like system failure rate curve, it is reasonable for the failure rate of a system that has not eliminated the assignable causes of component failures to be an order of magnitude (or more) greater than the common cause system failure rate. Therefore, the failure rate value that should be used to predict the system reliability depends on the maturity of the microcircuits and the effectiveness of the microcircuit and system screens prior to system delivery. In the early- and middle-life defect model, these effects are addressed by the learning and guality factors.

Figure 4.1-1

System Failure Rate

A general reliability prediction model, the Superposition Model, was developed to combine the early-, middle- and end-life prediction models. In addition, this model is used to combine the individual failure mechanism models developed as part of the end-life prediction model. This model can also be used to address end-life failure rates of WSI devices by making the assumption that the WSI device is composed of many different device styles competing to cause failure of the total WSI device.

The Superposition Model is a modified competing-risk model used to combine the early-, middle- and end-life failure distributions, as well as the individual failure mechanism distributions. According to the competing-risk model, ^[37] the probability of failure at time t for a microcircuit has the form

$$F(t) = 1 - \prod_{i=1}^{k} (1 - F_{i}(t)), \qquad (4.1.1)$$

where $F_i(t)$ is the probability of failure for the i^{th} failure distribution of k total failure distributions identified at time t.

$$F_{i}(t) = \int_{0}^{t} f_{i}(t),$$
 (4.1.2)

where $f_i(t)$ is the ith failure probability density function. Rearranging terms in equation 4.1.1, and making the substitution that the probability of success at time t, P(t), is the complement of the probability of failure at time t,

$$P(t) = 1 - F(t),$$
 (4.1.3)

equation 4.1.1 can be rewritten

$$P(t) = \prod_{i=1}^{k} P_{i}(t).$$
 (4.1.4)

This model is not limited to specific types of failure distributions and does not require that the failure distributions be of the same type; however, the model does require independence of the failure distributions. The Superposition Model can be used to estimate the lifetime of a microcircuit given the early-life, middle-life and end-life failure models. Since early-and middle-life failures are assignable cause failures, the model used to approximate these failures is the exponential probability density function. The functional form is given by

$$f(t) = \lambda \exp[-\lambda t]$$
(4.1.5)

where λ can be shown to be the hazard (time-independent) rate. Given λ_{early} and λ_{middle} , the hazard rates for early and middle-life respectively, the probability of success for the microcircuit is defined as

$$P(t) = \exp[-\lambda_{early}t] * exp[-\lambda_{middle}t] * P_{end}(t), \qquad (4.1.6)$$

where:

Equation 4.1.6 can also be written in the form of a microcircuit hazard rate at time t_{Ω} :

$$\lambda(t_0) = \lambda_{early} + \lambda_{middle} - \ln (P_{end}(t_0))/t_0$$
(4.1.7)

It must be noted that $-\ln(P_{end}(t_0))/t_0$ is not a true hazard rate for endlife at time t_0 since the end-life failure distribution is not necessarily an exponential distribution; however, this "effective hazard rate" transforms properly to a worst-case probability of success using the standard equation

$$P = \exp[-\lambda t]. \tag{4.1.8}$$

A log-normal distribution is a wear-out distribution in which the hazard rate increases with time; therefore, the hazard rate at time t_0 will be greater than the hazard rate at time t_1 for $t_1 < t_0$. The associated probability of success at time t_0 will be less than the probability of success at time t_1 ; therefore, for all time less than t_0 , a worst-case probability is derived.

All end-life probability of successes, hazard rates, and effective hazard rates are calculated for $t_0 = 10,000$ hours, a standard avionics system lifetime requirement which is typically specified in the contract statements of work for avionic equipment.

4.1.2 Early- and Middle-Life Prediction Models

Early- and middle-life of VLSI/ULSI microcircuits are limited by random failures that similarly plague non-VLSI/ULSI microcircuits. Random failures can be due to pinholes or particles in dielectrics resulting in electrical shorts, ionic contamination causing shifts in transistor parameters, and many other types of random defects. MIL-HDBK-217E is based upon exponential failure distributions which describe random failures. The exponential model is appropriate for these failures because in aggregate (at the system level where failures are reported) they appear random even though they have physical causes. This is due to the overlap of many distinct defect distributions, each having its own MTTF and standard deviation. Furthermore, the temperature dependence of the failure rate is defensible because the predominant defect failure mechanisms - dielectric breakdown and metallization failure - are accelerated by temperature. This has been shown in the literature and through life testing. While it is true that perfectly made IC's would not experience these "random" defects, it is also true that periodically flawed components go undetected in environmental screening and later manifest themselves as field failures. The literature search did not discover any failure mechanisms for VLSI/ULSI devices which do not also pertain to SSI, MSI and LSI devices. A reasonable approximation of early and middle-life for VLSI/ULSI microcircuits would therefore be an extrapolation of MIL-HDBK-217E to the complexity of these advanced technology components. From an evaluation of available VHSIC data, the extrapolation for MOS VLSI devices seems reasonable, but the activation energy requires modification.

The IITRI/Honeywell SSED VHSIC Report^[36] endeavored to create time-dependent failure rates (hazard rates) for early- and middle-life failure mechanisms. The mechanisms addressed included oxide failures, metal failures, hot carrier effects, ESD effects, and miscellaneous defect failures. In the

present study efforts, that data was analyzed to determine the actual shape of the distributions (as opposed to assuming a decreasing exponential based upon two points). The three primary defect areas contributing to the early-life failure rate were found to be oxide, metal, and miscellaneous; all others were at least an order of magnitude smaller in contribution. The oxide data is plotted in figure 4.1-2, the metal data in figure 4.1-3, and the miscellaneous data in figure 4.1-4. The intervals were those given in the IITRI/Honeywell VHSIC report, and were so chosen because in many cases sources reported failures occurring within a time interval. The failure rates were determined by dividing the number of failures in each interval by the accelerated parthours from operating life tests, burn-in, and various environmental tests (adjusted to 25°C based on the Arrhenius relationship) for that interval. As can be seen, the defects are not distributed as decreasing exponentials which would be straight lines with negative slope on a logarithmic scale. Instead, since the failures are assumed to be random, an average failure rate was calculated at 25°C as shown in the figures. The failure rates were then adjusted for temperature by use of the appropriate activation energy for the failure mechanism, as extracted from the VHSIC report, and summed to get a total failure rate. Once this was done, a combined activation energy, (E_) was calculated by using the Arrhenius relationship (see Table 4.1-4) and weighting according to the partial contribution of each mechanism to the total failure rate. The activation energy is not constant, but increases with temperature; the range is .31 eV at 30°C to .325 eV at 150°C. However, for MOS devices, a value of .35 has been selected because this value is conservative (all errors are positive), and it is equal to the value calculated in derivation of the early-life MOS microprocessor model (.35 eV). The failure rate using .35 eV is presented over temperature in the column "FR using EA =0.35." The value at 25°C is .029 failures per million hours, implying a C1 complexity value (in the format of the MIL-HDBK-217E model) of .29 for VLSI/ULSI microcircuits (C_1 is equal to ten times the failure rate at 25°C). MIL-HDBK-217E may be considered accurate if (a) the .29 value is used for VLSI/ULSI complexity levels, and (b) the activation energy for MOS devices, (HMOS, NMOS, CMOS, etc) is changed to 0.35 eV. Insufficient data was available for this contract to develop VLSI/ULSI bipolar failure rates.

FIGURE 4.1-2

OXIDE EARLY-LIFE FAILURE DATA^[36], $e_A = 0.3 \text{ eV}$

RANGE (HOURS)	MIDPOINT	In MIDPOINT	LAMBDA (25°C)
0 - 2,344	1,172	7.0665	.004652
2,345 - 8,204	5,275	8.5707	.008119
8,205 - 16,950	12,578	9.4397	.000606
16,951 - 24,417	20,684	9.9371	. 01 3848
24,418 - 48,834	36,626	10.5085	.053133
48,835 - 49,224			
	49,640	10.8126	.142502
49,225 - 50,446			
50,447 - 138,452	94,450	11.4558	.003812
138,453 - 193,123	165,788	12.0185	.084240
AVERAGE LAMBDA			.0269

FIGURE 4.1-3

METAL EARLY-LIFE FAILURE DATA^[36], $e_A = 0.55 \text{ eV}$

RANGE (HOURS)	MIDPOINT	In MIDPOINT	LAMBDA (25°C)
0 - 59,872	29,936	10.3068	.000182
59,873 - 209,553	134,713	11.8109	.000146
209,554 - 623,669	416,612	12.9399	.000115
623,670 - 1,247,337	935,504	13.7488	.000323
AVERAGE LAMBDA			.000219

FIGURE 4.1-4

MISCELLANEOUS FAILURE DATA^[36], $e_A = 0.423 \text{ eV}$

RANGE (H	OURS)	MIDPOINT	<u>In MIDPOINT</u>	LAMBDA (25°C)
0 -	11,543	5,572	8.6607	.000630
11,544 -	20,183	15,864	9.6718	.000422
20,184 -	40,402	30,293	10.3187	.007634
40,403 -	66,083	53,243	10.8826	.000202
66,084 -	70,642	68,363	11.1326	.001151
70,643 -	82,514	76,579	11.2461	.000910
82,515 -	112,394	97,455	11.4871	.000286
112,395 -	120,244	116,320	11.6641	.004195
120,245 -	210,243	165,244	12.0152	.000984
210,244 -	240,488			
		226,328	12.3297	.001777
240,489 -	242,412			
242,413 -	355,239	289,826	12.6076	.000796
355,240 -	393,352	374,296	12.8328	.002183
393,353 -	420,487	406,920	12.9164	.003678
420,488 - 1	,510,862	965,675	13.7806	.019915
AVERAGE LAM	BDA			.001872

0.0	2.61	5. 13	7.57	2 5 6	12.18	14.34	16.39	18, 34	20. 19	21.93	23.55 23	25.06	26.46	27.75	28.91	29.97	30.91	31.73	32.4	8.8	8 8	8.8	34.20	34.37	94.48 14
0620 .	. 0963	. 0451	. 0557	. 0682	.0832	. 1007	. 1213	. 1453	. 1731	. 2051	.2420	. 2842	.3322	.3867	. 4484	.5178	. 5968	. 6830	. 7802	888 8.	1, 0082	1. 1407	1.2867	1.4473	1.6233
	.310	.311	.311	.312	.312	.313	.313	.314	.314	.315	.315	.316	.317	.317	.318	.319	.319	3 <u>2</u> 0	.3Z0	8.	æ.	8	88: 	.324	.325
1.000	1.220	1.480	1.786	2.143	2.559	3.041	3, 597	4.237	4,971	5, 808	6.762	7.844	g. 069	10.451	12.007	13, 754	15, 710	17.897	20.336	23. 049	26.06 3	29,404	33, 100	37. 182	41.683
0620 .	. 0353	. 0429	. 0517	. 0621	. 0741	. 0881	.1042	.1221	. 1440	. 1682	. 1959	ZZZ.	. 2627	3027	. 3478	3064	. 4551	.5184	.5891	.6677	. 7550	.8518	. 9588	1.0771	1.2075
. 0019	. 0025	. 0032	.0041	. 0053	. 0067	. 0084	. 0105	. 0131	. 0162	. 0199	. 0243	. 1295 2020 .	. 0356	.0428	.0511	. 0609	1270.	. 0850	. 0998	. 1168	. 1360	. 1579	. 1826	.2105	.2418

Table 4.1-4

VLSI/VHSIC MODEL

* ERROR EA=0.35

FR USING EA=0.35

E SUB A AVG=. 317

FR/. 0290

 TEP
 TEP
 THE NL
 FR-ICNIL
 FR-ITISC.
 FR-IDIAL

 (C)
 (K)
 (FPH)
 (FPH)
 (FPH)
 (FPH)
 (FPH)

 25
 228
 0002
 0063
 0063
 0033
 0033

 303
 303
 0006
 0041
 0053
 0035
 0053

 40
 313
 0006
 0470
 0041
 0053
 0053

 50
 303
 0001
 0053
 00057
 0429
 0429

 50
 323
 0001
 0053
 00057
 0429
 0429

 50
 323
 0006
 1742
 01067
 0741
 0517

 50
 323
 00061
 1242
 01067
 0741
 0517

 70
 343
 00066
 17466
 10667
 0741
 0517

 70
 343
 00067
 1742
 01067
 11440
 1242

 70
 343
 00061
 1242
 01062
 1242
 11440

MIL-HDBK-217E does not distinguish between MOS and bipolar devices in the Cl terms for SSI. MSI and LSI devices. The predominant failure mechanism for MOS devices is TDDB which, as is well documented in the literature, has an activation energy of 0.3 eV, whereas the most common bipolar mechanisms are metallization defects and electromigration which have activation energies ranging from 0.42 to 0.9 eV. This implies that bipolar devices, having higher activation energies, will have higher failure rates than will MOS devices of similar maturity and complexity. This would be plausible if the failure rates of the two technologies were similar at 25°C; however, reliability data published by British Telecom^[101] indicates that, for each level of IC</sup>complexity, the intrinsic failure rate of MOS devices is approximately 3.6 times higher than that of bipolar devices in benign environments. Assuming that this ratio holds for ICs at 25°C, the value of Cl for bipolar VLSI devices should be .08, rather than .29. Using the complexity progression of MIL-HDBK-217E yields Cl values ranging from .0025 (SSI) to .08 (VLSI) for bipolar devices. The failure rates of bipolar devices will thus be lower than those of CMOS devices up to a temperature of 109°C (assuming the MIL-HDBK-217E energy of 0.5 eV for LSTTL).

To develop the microprocessor failure rates, data was compiled from two sources, ^[97, 104] and a summary is presented in Table 4.1-5. As was done in MIL-HDBK-217E, the devices were grouped by bit complexity although some of the assignments were subjective (based upon device description). Several points need to be made concerning the data for these devices:

- 1. The database was very small.
- 2. Some manufacturers' data show no distinction in failure rate due to device complexity.
- 3. Very little, if any, correlation was found between device package type and die-related failure mechanisms for hermetic versus molded plastic packages. The reason for this is that microcircuit manufacturers today employ die passivation in non-hermetic applications. Corrosion will not be a problem, particularly for the short duration and controlled environment of a burn-in or life test from which this data was derived.

:		D level	Blevel 2 @ 70°C	EA (AVG)	Blevel X@25°C	Cl	CI
TECHNOLOGY	TYPE	(FPMH)	(FPMH)	(60)	(FPMH)	Computed	Proposed
SOMH	8 Bit Microprocessor	. 190	.0576	.4	.0075	.07	
NMOS	8 Bit Controller	. 324	.0982	Э	.0212	.21	
SOMH	8 Bit Controller	.313	.0948	е.	.0205	.20	
	8 Bit Average (MOS)	.275	.833	.33	.0154	. 15	.14
111	8 Bit Controller (Bipolar)	.214	.0648	.62	.0027	.03	.06
SOMH	16 Bit CPU	. 757	.2294	4.	.0297	.30	
SOMH	16 Bit Coprocessor	.566	.1715	.42	.0201	.20	
SOMH	16 Bit Microprocessor	.510	.1545	Е.	.0334	. 33	
SOMH	16 Bit Microprocessor	.577	.1748	. 38	.0251	.25	
	16 Bit Average (MOS)	.603	.1827	.37	.0276	.28	.28
111	16 Bit Controller (Bipolar)	.595	.1803	.54	.0114	Π.	.12
SOMH	32 Bit Controller	1.147	. 3476	с.	.0751	. 75	
HMOS	32 Bit Microprocessor	1.069	.3239	. 45	.0325	.33	
SOMH	50 Process Numerical Data Processor (NDP)	l.333	.4039	. 36	.0642	. 64	
	32 Bit Average (MOS)	1.183	. 3585	.37	.0541	.54	.56
111	Bus Arbiter (Bipolar)	1.213	.3676	5.	.0286	.29	.24
	MOS Average Bipolar Average			.35 .55			

Table 4.1-5 Microprocessor Data

Downloaded from http://www.everyspec.com

1

- The assignment of complexity factors to devices such as CPUs, controllers, coprocessors, clock-drivers, bus arbiters, and other microprocessor peripherals is difficult to do.
- A microprocessor comprised of one or two microcircuit chips will be more reliable than one comprised of more, but lower-complexity, microcircuits.

As shown in Table 4.1-5, the data was presented in the form of failure rates from life tests of commercial devices (D quality level) at 70°C. These failure rates were then adjusted to B-level by dividing by 3.3, the value of π_Q for the D quality level (see paragraph 4.6.1 for derivation of this value). The database provided activation energies for each failure mechanism experienced by each device type listed. Failure rates were also presented for each failure mechanism. Average activation energies were obtained by weighting according to their percentage contribution to the total failure rate at 70°C. An example calculation is given below:

mechanism A:	.3 eV	.04 fpmh
mechanism B:	.5 eV	.20 fpmh
mechanism C:	.4 eV	.56 fpmh
average E _A :	((.3 x .04)	+ (.5 x .20) + (.4 x .56)) / .80 = .42 eV

Using the average activation energies, the failure rates at 25°C were calculated by employing the Arrhenius relationship:

The C₁ values for these devices were derived to be consistent with the MIL-HDBK-217 convention (a π_T value of 0.1 at 25°C) by multiplying the failure rates at 25°C by 10. It should be noted that the failure rates and

 C_1 values approximately double for each increase in microprocessor bit complexity. Consequently, the proposed values of C_1 to be used are presented in the last column of Table 4.1-5. The values for bipolar devices are less than half the MOS values at 25°C. This is because the failure rates of the two technology devices at 70°C were similar, but the bipolar devices had higher activation energies.

Two factors which had been considered for inclusion in the models were omitted. The first is a voltage-acceleration factor for MOS devices. While it is true that the predominant MOS failure mechanism, oxide failure, is accelerated by higher voltages, most MOS devices now operate at 5 volts. To attempt to correct for higher voltages in a defect model is inconsistent with ease of use, and that level of accuracy is not supported by the database. Furthermore, devices made to operate at higher voltages should have thicker oxides; the end-life model presented in section 4.1.3.1 should be used to assess the voltage effect.

The second factor is an electrostatic-discharge factor to reflect the device susceptibility to ESD damage. While the susceptibility can be quantified, the probability of failure due to that susceptibility cannot because it is dependent upon how the device is handled. From our experience in the Westinghouse Reliability Analysis Laboratory, approximately 0.1% of all failures are attributable to ESD; therefore, if an ESD factor was desired, a value of 1.001 could be used. It has been omitted from our models in the interest of simplicity, and also because it is "in the noise" of the accuracy of the early-middle-life models. Other electrical overstress failure rates, which are purely secondary events, should not be included in any early-midlife prediction model.

4.1.3 End-Life Failure Mechanism Models

Figure 4.1-5 shows graphically how the Superposition Model is developed for modeling end-life failure prediction. With three failure mechanisms competing on a particular microcircuit, it is necessary to know the failure rate of the microcircuit at a particular time, tl. If the values of the cumulative
.

failure distributions (probability of failure functions) for each mechanism (appropriately scaled) at time t1 are small (i.e., less than 1% - a reasonable assumption at the time the microcircuit is delivered as part of a system), then the value of the total cumulative failure distribution is approximately the sum of the cumulative failure distributions of each mechanism. Although many potential failure mechanisms can be identified, their impact on the total cumulative failure distribution. An understanding of which mechanisms must be modeled for each VLSI/ULSI technology was pursued.

From literature searches and in-house failure analyses, a list of failure mechanisms affecting VLSI/ULSI microcircuits was developed. The electrical mechanisms are outlined in Table 4.1-6. Of those failure mechanisms, it was necessary to identify those which are related to common cause failures. The list was reduced to three failure mechanisms: time dependent dielectric breakdown (TDDB), electromigration (EM), and charge injection (CI). The latter mechanism was further discounted as being a design consideration rather than an inherent physical property and therefore should not contribute to the total end-life failure distribution (see section 4.1.3.3). With the common cause failure mechanisms identified, each mechanism was quantified using available data from literature and in-house reliability analysis programs. A survey of these microcircuits was performed to make the model user-friendly. The methodology for applying the end-life failure mechanism models to specific microcircuits can be found in section 4.1.4.

4.1.3.1 TDDB Model

According to the literature on time-dependent dielectric breakdown (TDDB),^[16] failure occurrences are distributed normally with the logarithm of time. The general form of the failure density function is

$$f(t) = \frac{1}{\sigma t \sqrt{2\pi}} \exp \left[(-1/2) \left(\frac{\ln t - (A_A * \ln (t_{50\%} / (A_T * A_{EF})))}{\sigma} \right)^2 \right], \qquad (4.1.9)$$

Figure 4.1-5

Downloaded from http://www.everyspec.com

4

Table 4.1-6 Potential Electrical Failure Mechanisms for Advanced Technologies

<u>Mechanism</u>	Failure Mode	Accelerating Conditions
Time Dependent Dielectric Breakdown	Gate shorts, interlayer shorts in interconnection system	Voltage, increased temperature
Electromigration	Interlayer or intralayer shorts in interconnection system, and open circuits	Current, increased temperature
Hot Carriers	Threshold shifts, g _m shifts	Source/drain voltage, decreased temperature
Mobile Ions	Threshold shifts	Gate/source voltage, decreased temperature
Surface State Movement	Leakage	Radiation, current
Latent ESD Damage	Gate shorts, protection network shorts	Voltage, current
Corrosion	Opens in interconnections	Humidity, increased temperature
Unequal Metal Diffusion Rates	Contact resistance change	Current, increased temperature

where:

 $t_{50\%}$ = median of the reference distribution σ = standard deviation of the reference distribution A_A = acceleration factor due to area A_T = acceleration factor due to temperature A_{EF} = acceleration factor due to an electric field.

Area Acceleration Factor

Dielectrics are inherently defective because of their amorphous structure. Defects will always exist no matter how small an area is being stressed. It is assumed that dielectric defects are randomly distributed along two dimensions and are indistinguishable. Bose-Einstein statistics allow the determination of the defect density, $[^{138]}$ D(t), knowing the area of the structure in question, A, and the probability of failure function, F(t). For this uniform defect density,

$$D(t) = (1/A)(F(t) / (1 - F(t))). \qquad (4.1.10)$$

From this expression, the probability of failure function can be obtained for structures of different areas, assuming the defect density and the failure mechanism are the same. That is,

$$(1/A_0)(F_0(t) / (1 - F_0(t))) = D(t) = (1/A_S)(F_S(t) / (1 - F_S(t))),$$

(4.1.11)

where A_0 = area of the reference structure A_s = area of the new structure

Rearranging terms gives

$$F_{O}(t) = [1 + (A_{S} / A_{O})((1 / F_{S}(t)) - 1)]^{-1}.$$
(4.1.12)

This equation describes the relationship between the probability of failure for the new structure, $F_S(t)$, and the probability of failure for the reference structure, $F_O(t)$, at any time t.

The area acceleration factor, $A_{\underline{A}},$ is defined by

$$A_{A} = \mu_{S} / \mu_{O} = \ln(t_{S 50\%}) / \ln(t_{O 50\%}), \qquad (4.1.13)$$

where $t_{S = 50\%}$ = median of the distribution of the new structure $t_{O = 50\%}$ = median of the distribution of the reference structure.

Although μ_0 is known, μ_S must be determined to calculate the value of A_A for the new structure. One method for determining the value of μ_S is to realize that $F_S(t=t_{S-50\%}) = 0.5$, by definition. Substituting this value into equation 4.1.12 gives

$$F_{0}(t_{S,50\%}) = A_{0} / (A_{0} + A_{S}).$$
(4.1.14)

 $F_O(t_{S~50\%})$ is the probability of failure of the reference structure at the time in which 50% of the new structures would fail. Since the $F_O(t)$ function is known, and the associated number of sigmas away from the reference median, Z, can be approximated by the area under the normal (gaussian) density function provided by tables in most comprehensive statistics texts or by the software program in Appendix C, it is possible to determine μ_S directly by

$$\mu_{S} = \mu_{0} + (Z * \sigma). \tag{4.1.15}$$

The variance, σ^2 , for a uniform defect density is 1, and equation 4.1.15 can be rewritten

$$\mu_{\rm S} = \mu_{\rm O} + Z. \tag{4.1.16}$$

Substituting equation 4.4.16 into equation 4.1.13 gives

$$A_{A} = 1 + (Z / \mu_{0})$$
 (4.1.17)

where $\mu_0 = \ln(t_{0.50\%})$.

For convenience, Table 4.1-7 provides Z values for some values of $F_0(t)$.

[able 4.1-7	Common Z-Values
F _O (t)	Z-Value
0.0013	3.00
0.0228	2.00
0.1587	1.00
0.5000	0.00
0.8413	-1.00
0.9772	-2.00
0.9987	-3.00

Temperature Acceleration Factor

The acceleration factor due to temperature, A_T , is given by the well-known Arrhenius relationship:^[16]

$$A_{T} = \exp \left[\frac{E_{a}}{K}\left(\frac{1}{T_{O}} - \frac{1}{T_{S}}\right)\right],$$
 (4.1.18)

where:

 E_a = experimentally determined activation energy (0.3 eV) k = Boltzmann's constant = 8.617 E-5 eV/°K T_S = operating stress temperature, user supplied (°K) T_O = reference temperature (295°K)

Electric Field Acceleration Factor

The acceleration factor due to the applied electric field, A_{EF} , is given by ^[16]

$$A_{EF} = \exp [B * (E_{S} - E_{O})],$$
 (4.1.19)

where:

E_S = operating electric field stress (user supplied Mv/cm)
E_O = reference electric field stress (2.222 Mv/cm)
B = experimentally determined electric field constant (4.5 cm/Mv)

Reference Distribution

A literature review identified reasonably consistent values for the acceleration coefficients, E_a and B while accelerated life data on Westinghouse test structures was used to develop the reference distribution statistics, μ_{Ω} and σ .

Table 4.1-8 lists the pertinent parameters and references from which the values of E_a and B were derived. The value of $E_a = 0.3$ eV was consistent for dielectric thickness between 100 Å and 1100 Å. The value of B varied considerably between authors. Crook^[16] identified a B of 16.1 for known defective oxides of 400 Å to 1100 Å. Abadeer^[17] identified a B of 6.4 for oxides of 150 Å to 450 Å. Baglee^[12] identified a B of approximately 4.5 for 100 Å oxides. Hokari^[13] identified a B of 4.0 for 600 Å to 1000 Å. The value of B is apparently dependent on the type of dielectric defect; however, since the end-life failure distribution is defined as wear out of the dielectric, not random defects, the value of B = 4.5 was most consistent for dielectric thickness between 100 Å and 1000 Å.

The test structure used in the accelerated life test had total gate area, field oxide periphery and polycrystalline silicon gate periphery comparable to a 4k SRAM. The gate area, specifically, was $1.782E5 \text{ um}^2$ (5.25 log um²). The thermally grown oxide thickness was 225 angstroms. The life test was a ramped voltage-breakdown test where the voltage on the gate was ramped at 5V/second, starting at 0 volts with the silicon substrate at 0 volts. The breakdown voltage was the voltage at which >1 uA of current was measured between the gate and substrate. Subsequent isolation tests of the structures verified catastrophic breakdown had occurred. All testing was performed at 22°C on a Keithley 350 tester.

Because of the linear relationship between breakdown voltage and the normal distribution of cumulative percent failure, a linear least squares fit to the data was performed to obtain the median breakdown voltage, $V_{b\ 50\%}$, and the standard deviation, σ_{b} . Table 4.1–9 shows the results of the life tests of seven wafers of 15 test structures each.

Table 4.1-8 Observed Dielectric Breakdown Parameter Values

dielec type	dielec thick (A)	dielec area (cm2)	cap	dielec temp (C)	stress temp (C)	brkdun cond (Mv/cm)	stress cond. (Mv/cm)	defect type	defect density	Ea (eV)	B (cm/Mv)	mu (hrs)	sig	ref	-
thermal SiO2	32	0.1	1 4000 A poly Si	1000	25	ĉ	constant field time	Si surface	>65X					Ξ	
						1 to 8	vary	Si u defect	X 0						
	110	0.1	_	1000	25	>8 <1 1 to 8		intrinsi	c <25% <15% 0%						
	348	0.1	_	1000	25	×8 <1 1 to 8			<55% <5% <75%						
	621	0.1	_	1000	25	>8 <1 1 to 8			<25 % <5 % <25 %						
oxide1 oxide2	198 198	0.1	l poly Si			8	7.5		<50 X			3.04	1.54		
thermal SiO2	100	0.0097	r 5000A LPCVD poly	006	25	10-11v	stress votage short	electric breakdow	45 %					12	
	<u>5555555555555555555555555555555555555</u>	7900.0 7900.0 7900.0 7900.0 7900.0 7900.0 7900.0		0006 0066 0066 0066 0066 0066	<u> </u>	11-12v	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		55%	0.3 0.3	4.25-4.6 4.25-4.6 4.25-4.6	2.02 1.11 0.34 1.5.42 1.6.03 1.6.03 1.0.38	0.93 0.12 1.63 4.3 1.38 1.38		
										-	4.01			13	

Table 4.1-8 Observed Dielectric Breakdown Parameter Values CONTD

lielec hick A)	dielec area (cm2)	cap	dielec temp (C)	stress temp (C)	brkdwn cond (Mv/cm)	stress cond (Mv/cm)	defect type	defect density	Ea (eV)	B (cm/Mv)	mu (hrs)	sig	ref
පිළ	esn' t tter	doesn't matter		-196 tc	-12	voltage ramp but doesn't matter	enlarged weak spot and increased leakage	_	6.0				*
50.1	0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.00229	poly Si Al		85555555555555555555555555555555555555		88.5 202 202 254 2.4.4 2.4.4				8.5.00 2.5.28 2.5.57 2.5.57 2.5.57 2.5.57 2.5.57 2.5.57 2.5.57 2.5.57 2.5.57 2.5.57 2.5.57 2.5.57 2.5.57 2.5.57 2.	7.07 6.25 3.28 13.28 12.21 7 2	22222222 22222222 222222222 2222222222	5

ef	16		17
	2.84		
mu s (hrs)	5.44 1	14.34 15.34 15.44 15.44 15.44 15.64 13.24 14.24	
B (cm/Mv)	16.12	6. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	6.45 6.45 6.45
Ea (eV)	0.3	0000000000 NNNNNNNNNN	
defect density			
de fect t ype			
stress cond (Mv/cm)	const volt until	00003450	
brkdwn cond (Mv/cm)			
stress temp (C)		<u> </u>	90 20 20
dielec temp (C)			
cap	n-type poly	SOL	
dielec area (cm2)	0.015	0.017 0.015 0.0035	
dielec thick (A)	660	850 850 400 400 400 400 400 400	150 300 450
di el ec type	thermal SiO2		

Downloaded from http://www.everyspec.com

Lot	Wafer	V _{b 50%} (V)	σ _b (V)	r ²
6424	- 11	20.73	0.15	0.84
6424	- 12	20.36	0.17	0.96
6424	- 17	20.76	0.11	0.91
6424	- 19	20.74	0.08	0.83
6424	- 24	20.42	0.25	0.90
6431	- 10	20.39	0.26	0.80
6431	- 13	20.21	0.35	0.85
Avera	age	20.52	0.20	
Error	^	0.21	0.09	

Table 4.1-9 TDDB Experiment Results

Worst case estimates of V $_{b}$ 50% and σ_{b} were obtained using

$$V_{b \ 50\%} = average(V_{b \ 50\%}) - 3 * error(V_{b \ 50\%})$$
(4.1.20)
$$\sigma_{b} = average(\sigma_{b}) + 3 * error(\sigma_{b})$$
(4.1.21)

The conservative estimates of V and σ_b were calculated to be 19.90 volts and 0.47 volts, respectively.

The relationship between breakdown voltage under ramped voltage stress and time at a constant voltage stress is given by [17]

$$t = (t_{OX}^{BR}) \exp [B(E_{R} - E_{O})]$$
 (4.1.22)

where:

- t = the time required to attain a probability of failure under a constant electric field stress, E_O, that is the same as the probability of failure obtained by ramping when electric field reaches a value, E_D.
- t_{ox} = dielectric thickness
- R = ramp rate
- E_{p} = breakdown electric field when ramping
- E_{0} = electric field at desired constant operating voltage
- B = experimentally determined constant.

Using this relationship, the values of μ_0 and σ were determined to be 8.4 and 0.4 log hours, respectively, for a constant operating voltage of 5 volts.

With the TDDB reference distribution statistics identified, the user must determine the acceleration factors for total transistor gate area, dielectric temperature, and electric field stress to obtain the TDDB distribution statistics for the microcircuit in question. Figures 4.1-6 through 4.1-8 are plots of equations 4.1.17-4.1.19 and may be used instead of equations 4.1.17-4.1.19 to determine the area acceleration factor, A_A , the temperature acceleration factor, A_T , and the electric field acceleration factor, A_{EF} , respectively. From the TDDB distribution statistics for the microcircuit, the user can calculate probability of success, hazard rate, and effective hazard rate at any time t for TDDB. Alternatively, the user can use the tables in Appendix D to determine the probability of success at 10,000 hours and the hazard rate at 10,000 hours given total transistor gate dielectric area, junction temperature and electric field stress.

Note: Tables 4.1-10 and 4.1-11 provide one example of each of the TDDB probability of success and effective hazard rate distributions, respectively. The comprehensive associated tables for TDDB effective hazard rate may be found in Appendix A.

5.0	.53442 .53442 .41663 .30961 .21964 .09705 .09705 .02152 .01223	.00677 .00366 .00194 .00101 .00051 .00056 .00013 .00006 .00006	.0000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	00000.000000.00000000000000000000000000
4.8		.09611 .06467 .06467 .02244 .02722 .02722 .01710 .01710 .00539 .00539	00075 00043 00043 00014 00014 000014 00001 00001 00001 00001	00000
4.6	99216 98298 96661 96661 96661 96661 96022 90141 84886 78289 78289 78289 78289 78289 78289 78289 78289 78289 78289 778289	.44473 .36254 .28842 .22417 .17040 .17040 .09262 .09262 .06641 .06641	02225 01504 01504 00663 006334 000382 000116 00074 00074	.00029 .00018 .00011 .00007 .00004
4.4	99983 99949 998675 99864 998598 98598 98598 97223 985598 97423	.84757 .79199 .79199 .5794 .558413 .56413 .56413 .56454 .36766 .36766 .36766	19925 15766 15766 15307 09486 007226 05444 05444 05444 05409 01597	.01153 .00827 .00589 .00589 .00295 .00295
4.2	00000 00000 00000 00000 00000 00000 0000	.98578 .97606 .96181 .94201 .94201 .91582 .88273 .88273 .79588 .74331 .74331	62580 56392 56392 56392 56392 56392 56392 336432 336432 33662 366662 36662 366	.13405 .10899 .08795 .07047 .05609 .05609
4.0	00000 100000 100000 100000 1000000 1000000	.99960 .99917 .99834 .99834 .99690 .99650 .99650 .98501 .98552 .95552	93133 90757 90757 90757 90757 87582 90510 95730 62384 62384 62384 57340	.52296 .47334 .42526 .37932 .37932 .33600 .33600
s (MV/cn 3.8				88927 86394 83561 80449 77085
and Stres 3.6		1 000000	99993 99997 99997 99959 99959 99988 99988 99823 99823 99823 99823 99728	.99152 .98819 .98389 .97845 .97172
tric Fie 3.4			00000 000000 000000 000000 00000000000	99981 99970 99953 99928 99894
3.2		000000		80000
3.0		00000	00000 0 00000 0 00000 0 000000 0 000000	00000
2.8		00000. 00000. 00000. 00000. 00000. 00000. 00000. 00000. 00000. 00000. 00000. 00000. 00000. 00000.		00000
2.6				1 00000 00000 00000 00000 00000 00000
2.4	00000 - 00000 - 00000 - 00000 - 00000 - 00000 - 000000	1 00000 - 1 00000 - 1 00000 - 1 00000 - 1 00000 - 1 00000 - 1 00000 - 1 0000000 - 1 0000000 - 1 0000000 - 1 0000000 - 1 0000000 - 1 0000000 - 1 0000000 - 1 0000000 - 1 0000000 - 1 0000000 - 1 0000000 - 1 0000000 - 1 0000000 - 1 0000000 - 1 0000000 - 1 0000000 - 1 00000000	1 00000 · · · · · · · · · · · · · · · ·	00000.
2.2	00000	000000	00000 · · · · · · · · · · · · · · · · ·	00000
2.0		00000	00000.1	00000
1(C)	\$ \$ \$ % \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	88888888888888888888888888888888888888	100. 110. 110. 110. 110. 110. 110. 110.	150. 150. 166. 177.

Table 4.1-10 TDDB: PROBABILITY OF SUCCESS AT 10000. HOURS FOR AREA = 4.00 LOG SOUARE MICROWS

5.0	62.658 87.556 87.556 90.339 90.333 33.252 33.252 30.333 83.335 80.018 80.018 80.018 80.333	9.480 60.985 24.611 57.294 57.294 25.928 95.833 95.833 95.833 99.000 99.000	88888888888888888888888888888888888888	888888
4.8	11.137 11.137 29.040 1 29.040 1 29.862 1 30.542 2 30.542 2 31.372 3 33.284 3 33.284 3	5, 226 4 5, 226 5 5, 245 5 5, 217 8 5, 217 9 5, 217 8 5, 217 9 5, 217 8 5, 217 8 5, 217 9 5, 217 8 5,	9,000 9,000	******* 888.84 8
4.6	787 3.396 6.164 6.164 6.386 7.724 104 19 104 19 104 19	2.634 66 11.029 21 2.634 66 45 11.195 55 2.634 66 11.195 55 2.635 55 2.655 555 55 2.	0.540 737 71 0.109 88 7.193 88 7.193 88 7.193 98 7.191 99 7.061 99 7.061 99	3.355 % 0.043 % 7.065 % 7.065 % 9.000 % 9.000 %
4.4		6.539 8 3.320 10 3.320 10 1.733 12 1.733 12 3.763 11 3.763 12 7.442 20 7.442 20 7.442 20 0.059 27 8.903 30 8.903 30 9.349 34	1.319 9.479 9.479 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517 5.517	5.294 81 9.561 86 3.416 90 7.800 95 2.659 99 7.940 99
4.2		1.432 2.423 3.894 5.974 5.974 4 5.974 4 5.974 4 5.974 4 3.893 5.474 6 6 11 9.664 11 9.664 11 7.659 13	6.873 16 6.873 15 6.873 15 6.872 20 5.672 20 5.672 20 5.733 35 2.046 38 3.938 35 2.046 38 1.068 41	0.954 44 1.649 47 3.102 51 5.261 54 8.076 58 8.076 58
4.0		.040 .084 .311 .311 .334 .552 .3346 .33509 .3509 .3509 .3509 .3509 .3509 .3509 .3509 .3509 .3509 .3509 .3509 .3552 .3555 .3552 .35555 .35555 .35555 .35555 .35555 .35555 .355555 .355555 .355555 .3555555 .355555 .355555555	7.114 4. 7.114 4. 6.745 890 6. 6.745 887 1. 7.187 16. 7.187 16. 7.187 16. 7.187 16. 187 16. 187 16. 187 16. 187 16. 187 16. 187 16. 187 16. 187 16. 198 16. 10	4.824 20 4.794 22 5.506 24 5.938 26 9.065 28 9.065 28
(MV/cm) 5.8		.000 .001 .002 .005 .005 .043 .043 .143	402 402 402 402 460 110 460 110 22 40 266 32 40 266 32 40 266 32 40 266 32 40 266 32 40 26 32 40 26 32 40 20 32 40 20 32 40 20 30 30 20 30 30 20 30 30 30 30 30 30 30 30 30 30 30 30 30	1.736 6 7.959 8 7.959 8 7.755 9 8.027 10 7.785 12 0.785 1
d Stress 3.6	888888888888888888888888888888888888888		.007 .013 .023 .023 .069 .069 .069 .069 .069 .069 .069 .077 .172 .172 .273 .597	
-ic Field			.000 .000 .000 .001 .001 .002 .002 .002	019 030 047 072 155
Electi				
.0				000.000.000
8				000.000.000
2.6				000.000.000
2.4				000000000
2.2				000.000.000
0.0				000.000.000
1(C)	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	8.88.97 8.88 8.99 8.98 8.99 8.99 8.99 8.	100. 110. 115. 115. 125. 130. 130. 156.	150. 155. 165. 175.

TDDB: EFFECTIVE HAZARD RATE (x 10E-6) AT 10000. HOURS FOR AREA = 4.00 LOG SQUARE MICROWS

Table 4.1-11

Area Acceleration Factor

Figure 4.1-7 Temperature Acceleration Factor for TDDB

Temperature Acceleration Factor

Field Acceleration Factor (log factor)

4.1.3.2 Electromigration Model

According to the literature on electromigration (EM),^[23] failure occurrences are distributed normally with the logarithm of time, similar to TDDB. The general form of the failure density function is

$$f(t) = \frac{1}{\sigma t \sqrt{2\pi}} \exp \left[(-1/2) \left(\frac{\ln t - (\ln(t_{50\%} / (A_T * A_J)))}{\sigma} \right)^2 \right],$$
(4.1.23)

where:

 $t_{50\%}$ = median of the reference distribution σ = standard deviation of the reference distribution A_T = acceleration factor due to temperature A_J = acceleration factor due to current density.

Temperature Acceleration Factor

The acceleration factor due to temperature, A_T , is given by the well-known Arrhenius relationship:^[16]

$$A_{T} = \exp \left[\frac{E_{a}}{k}\left(\frac{1}{T_{O}} - \frac{1}{T_{S}}\right)\right], \qquad (4.1.24)$$

where:

 E_a = experimentally determined activation energy (.5 eV) k = Boltzmann's constant = 8.617 E-5 eV/K T_S = operating stress temperature (user supplied K) T_O = reference temperature (488 K)

Current Density Acceleration Factor

The acceleration factor due to current density, A_{1} , is given by ^[18]

$$A_{J} = (J_{S} / J_{O})^{n}$$
(4.1.25)

where:

 J_{S} = effective operating current density (user supplied MA/cm²) J_{O} = reference current density (1 MA/cm²) n = experimentally determined exponent (2)

Reference Distribution

A literature review identified consistent values for the acceleration coefficients, E_a and n, and the reference distribution statistics, μ_0 and σ . Table 4.1-12 lists the pertinent parameters and references from which the values of E_a and n were derived. The most thorough work in understanding electromigration was done by Schafft^[22] and associates. From this work, consistent values of E_a and n were determined to be 0.5 eV and 2, respectively. These values were determined for Al-1% Si metallization. This metallization system is expected to be the worst-case system for interconnect on VLSI/ULSI microcircuits, since pure Al is never used because of process considerations such as over-sintering of shallow junctions. Other metal systems, such as Ti-AL-TiW, do not readily electromigrate because of the heavier metal ions. (There is, however, concern that resistance changes may occur to cause performance problems which are difficult to quantify.)

In addition to the values of the acceleration coefficients, Schafft also developed the reference distribution statistics, $t_{0.50\%}$ and σ . The values of these statistics were determined to be 32.12 and 0.33 hours with associated errors of 2.38 and 0.04 hours, respectively, for an operating temperature of 175°C, a current density of 1 MA/cm², for all interconnect lengths greater than 800 μ m. Worst-case estimates of $t_{0.50\%}$ and σ were obtained using

$$t_{0 \ 50\%} \text{ (worst case)} = t_{0 \ 50\%} - 3 \text{ error } (t_{0 \ 50\%}) \tag{4.1.26}$$

$$\sigma \text{ (worst case)} = \sigma + 3 \text{ error } (\sigma). \tag{4.1.27}$$

Table 4.1-12 Observed Electromigration Parameter Values

Conditions	J (A/cm2)		c	Ea t	50 (hrs)	o (hrs)	Temp (deg C)	ref
Al-Cu-Si Films	1E5 - 2E6		2	s.		.25	150 - 250	24
Al-Ti-W Stripes w/thermal gradient wo/thermal gradient	2.5E6 2.5E6					.52	185 185	23
Constant Current	2E6		\sim	.43	174 176 176 176 177 177 177 177 177 177 177	8.5.5. 8.6.5. 8.6.5. 8.6.5. 8.6.5. 7.6. 7.6. 7.6. 7.6. 7.6. 7.6. 7.6.	888888888888888888888888888888888888888	22
				4.			150 - 250	20
Al-Si Alloy Films	6.6E5			.54		.2365	< 230	28
Al-Cu-Si Films	1.6E6 - 21	E6	2	5.		.25	195 - 250	54
Au-Gu Alloys	2E6				1600 819 354 15	7. 73 73 73	220 220 220 220 220	41
Al-Poly Si Metal				٥.			150 - 220	29
Al-Si Films leakage open		20	mm	.9 +/1 .5				30
Al Ti-W / Al	2E6 1E6 - 4E6	2.	80	.56 +/04 .53			125 - 300	31
Al /.5% Cu / 1% Si	2E6	-	.7	.55			125	32
	< 1E5 1E5 - 1E6 .45E6 - 2 1E6 - 2E6	.88E6 4	<u>ن</u> ، ۷.					33

Observed Electromigration Parameter Values (CONTD)

Conditions	J (A/cm2)	c	Ea	t50 (hrs)	o (hrs)	[emp (deg C)	ref
Small Grain Large Grain Glassed Large Grain	.55E6 - 2.88E6 .5E62E6 .45E69E6		.48 .84 1.2			180 180 180	33
Al	4E6	2			.56	125	34
٩١	.333E6 & .242E6 .283E6 & .189E6 .268E6 & .179E6	~~~	.511 .525 .529	10 3 9 2 318 2672	~- 8,	191 271 271	35
Al / 1% Si	1E6	2	s.	32.12	.33	175	22

The conservative estimates of $t_{0.50\%}$ and σ were calculated to be 24.98 hours and 0.45 hours, respectively.

Since metals do not have an intrinsic defect density, the variance in lifetime is most probably due to process variations. It is noted that the variance for EM is much smaller than the variance for TDDB.

With the EM reference distribution statistics identified, the user must determine the acceleration factors for metal film temperature and current density to obtain the EM distribution statistics for the microcircuit in question. Figures 4.1-9 and 4.1-10 may be used to determine the temperature acceleration factor, A_T , and the current density acceleration, A_J , respectively. From the EM distribution statistics for the microcircuit, the user can calculate the probability of success, hazard rate, and effective hazard rate at any time t for EM. Alternatively, the user can use tables 4.1-13 and 4.1-14 to determine the probability of success and effective hazard rate at 10,000 hours given junction temperature and effective current density.

Downloaded from http://www.everyspec.com

Temperature Acceleration Factor

Current Density Acceleration Factor

;	: 8888888	3388:	88888	333333;	888888888	888888
1.30	1.000 1.000 1.000 1.000 1.000	8888	99999	88888	88888888888888888888888888888888888888	<u>88888888</u>
1.00	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000	00000	00000. 00000. 00000.	00000	00000.	00000.
.80	00000 . 1 . 000000 . 1 . 00000 . 1 . 000000 . 1 . 000000 . 1 . 000000 . 1 . 000000 . 1 . 000000 . 1 . 000000 . 1 . 000000 . 1 . 000000 . 1 . 000000 . 1 . 000000 . 1 . 000000 . 000000 . 1 . 000000 . 1 . 000000 .	98748	00000.	00000.		00000. 00000. 00000.
60	1.00000 1.00000 1.00000 1.00000 1.00000	00000.1	.98977 .00000 .00000 .00000	00000.		00000 00000 00000 00000
.50	00000	1.00000	1.00000 1.00000 .00000 .00000	00000.		00000 00000 00000 00000
07	1.0000 1.00000 1.00000 1.00000 1.00000 1.00000	1.00000	1.00000 1.00000 1.00000 1.00000	00000.		00000 00000 00000 00000
/cm2) .30	00000	00000	00000 1.000000 1.00000000	00000 00000 00000 00000 00000		00000.
sity (MA, .25	00000	00000	00000	1.00000 1.00000 .97869 .00000 .00000		00000.
rent Den: .20	00000	00000	1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000 1.00000		00000
.17	1.0000 1.0000 1.00000 1.00000 1.00000	1.00000	1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000	1.0000 .00397 .00300 .00000 .00000 .00000 .00000 .00000	00000.
. 13	1.00000	1.00000	1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000		00000.
. 10	1.00000	1.00000	1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000		00000 00000 00000
80.	1.0000011.00000011.00000011.000000011.000000	1.00000	1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	00000.
80	1.0000	1.00000	1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000	1.0000 1.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	1.0000
.05	1.00000	1.00000	1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000	1.0000 1.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	1.0000 1.00000 1.00000 1.00000 1.00000
70	1.0000011.00000011.00000000000000000000	1.00000	1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.00000 1.00000 1.00000 1.00000 1.00000
1(C)	25.25°.	55. 55.	8.8.8.5 	K 8 8 8 8	100. 115. 120. 130. 130. 150.	150.150.150.150.150.150.150.1551.1551.1

55

Downloaded from http://www.everyspec.com

1.30		% .000 % .000	80.000 80.0000 80.000 80.000 80.000 80.000 80.00000 80.0000 80.00000 80.00000 80.00000 80.00000000	88.00 80.00 80.000
1.00	8888 888888888888888888888888888888888	99.000 90.000 90.000 90.000 90.000 90.0000 90.0000 90.0000 90.0000 90.0000 90.00000 90.00000000	900 99 900 99 90 90 90 90 90 90 90 90 90 90 90 90 9	8.000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.00000 9.00000000
.80	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8.000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.00000 9.0000 9.0000 9.00000 9.00000 9.00000 9.00000 9.0000000 9.0000000000	8 .000 .000 .000 .000 .000 .000 .000 .0	% % % % % % % % % % % % % % % % % % %
- 60		2.000 2.0000 2.000 2.000 2.0000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.00	6 000 6 0000 6 0000 6 0000 6 000 6 000 6 000 6 000 6 000 6 000	
.50		· · · · · · · · · · · · · · · · · · ·	9.00 9.00	8.000 8.0000 8.00000 8.00000 8.0000 8.00000 8.00000 8.0000 8.000000 8.00000 8.00000 8.00000000
.40			9.000 9.0000 9.0000 9.0000 9.00000000	9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000
	888888888888888888888888888888888888888	: 333 338 338 358 358 358 358 358 358 358	9.000 99 9.000 90 9.000 90 9.0000 90 9.0000000000	9.000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.00000000
ty (MA/ci .25			000 99 90 90 99 90 90 99 90 90 99 90 90	000.000 000.000000
t Densi 20		888 000 000 000 000 000 000 000 000 000	000.0000000000000000000000000000000000	000 000 000 000 000 000 000 000 000 00
Curren 17 .	888888888888888888888888888888888888888			
13			000 000 000 000 000 000 000 000 000 00	666 000 666 000 666 000 666 000
0				666 000 666 000 666 000 666 000
8			000 000 000 000 000 000 000 000 000 00	
9	888888888888888888888888888888888888888		000 000 000 000 000 000 000 000 124	000 000 000 000 000 000 000 000 000 00
				000 000 000 927. 000 999. 718 999.
0			000000000000000000000000000000000000000	000000000000000000000000000000000000000
,00. (
: : 1 2				22222222

4.1.3.3 Charge Injection/Hot Carrier Model

A literature review of articles written on charge injection/hot carrier failure modes resulted in three conclusions. First, charge injection is only a concern for MOS transistor channel lengths less than 1.5 um. Second, many authors make the distinction that charge injection is a design consideration rather than a reliability consideration. Third, the inconsistency in reported failures due to charge injection, either reported as microcircuit failures or laboratory test structure failures, reflects the inconsistency of microcircuit failures due to ionic contamination 15 years ago. At present, charge injection is not considered a wearout mechanism, but a quality/design factor.

4.1.3.4 Other Mechanism Models

The other mechanisms outlined in Table 4.1-3, including mobile ions, surface state shift, leakage, and latent ESD are considered assignable cause mechanisms. These mechanisms contribute to the early and middle life failure rate, outlined in section 4.1.2.

4.1.4 End-Life Prediction Models

With the contributing end-life failure mechanism models identified, these models must be addressed in terms familiar to the user. Figure 4.1-11 is a breakdown of the end-life failure mechanism models and the parameters which must be supplied to complete the model. The parameters highlighted by bold outlined boxes must be supplied by the user. The parameters shown in the remaining boxes have default values available if the user does not have sufficient knowledge about the microcircuit to supply actual values. Table 4.1-15 identifies the failure mechanisms that apply to the microcircuits in question. Only time-dependent dielectric breakdown (TDDB) and electromigration (EM) are considered end-life limiting failure mechanisms; therefore, the effective hazard rate for end-life predictions has the form

where: $\lambda_{\text{TDDB}}(t_0) = \lambda_{\text{TDDB}}(t_0) + \lambda_{\text{EM}}(t_0)$ (4.1.28) $\lambda_{\text{TDDB}}(t_0) = \text{effective hazard rate for TDDB at time } t_0$ $\lambda_{\text{FM}}(t_0) = \text{effective hazard rate for EM at time } t_0$. Figure 4.1-11

		Microprocessors		Gate Logic Arrays	
		MOS	BIPOLAR	MOS	BIPOLAR
1)	Time Dependent				
	Dielectric Breakdown	С		С	
2)	Electromigration	С	С	С	С
3)	Charge Injection	D		D	
4)	Mobile Ions	А	А	А	Α
5)	Surface State Shifts	А	A	А	А
6)	Latent ESD	А	A	А	А
7)	Contact Resistance				
	Change	А	A	А	Α
8)	Other Random Defects	А	A	А	А

Table 4.1-15 Electrical Failure Mechanisms

Key: C indicates common cause failure mechanism

D indicates design consideration

A indicates assignable cause mechanism

For those microcircuits whose lifetimes are limited by TDDB, the user will use representative sample Tables 4.1-10 and 4.1-11 (more comprehensive tables are available in Appendix D). To identify which tables are appropriate, the user must know the total transistor gate oxide area on the microcircuit. If the user does not know total gate area, Table 4.1-16 provides default area values dependent upon the number of transistors in the microcircuit. Alternatively, the dependence of total gate area on transistor count is shown graphically in figures 4.1-12 and 4.1-13 for MOS microprocessor devices and MOS digital and linear devices, respectively. The data in these figures is bounded by an upper (worst-case) limit defined by

$$A = \log (4 * TR * 10^{-0.744} * (\log(TR) - 5.50)) (\log \mu m^2), \qquad (4.1.29)$$

for MOS microprocessor devices, and

 $A = \log (6 * TR * 10^{-0.580} * (\log(TR) - 5.78)), (\log \mu m^2), \qquad (4.1.30)$

Figure 4.1-12

(# poi) anotaianonT to redmuN

Figure 4.1-13

Number of Transistors (log #)

for MOS digital and linear devices,

where TR = number of transistors on the device in question.

Next the user must determine the electric field stress given the operating voltage. The electric field stress, $E_{\rm S}$, is given by

$$E_{S} = .1(V_{op}/t_{ox}) (Mv/cm),$$
 (4.1.31)

where:

 V_{op} = operating voltage (user supplied V) t_{ox} = oxide thickness (user supplied K^A)

Again, if the user does not know oxide thickness, by knowing the number of transistors in the microcircuit, the user can obtain a default value for oxide thickness from Table 4.1-17. Alternatively, the dependence of oxide thickness on transistor count is shown graphically in figures 4.1-14 and 4.1-15 for MOS microprocessor devices and MOS digital and linear devices, respectively. The data in these figures is bounded by a lower (worst-case) limit defined by

$$T_{OX} = 10^{-0.406} * (log(TR) - 3.68) (KA),$$
 (4.1.32)

for microprocessor devices, and

$$T_{OX} = 10^{-0.296} * (log(TR) - 3.14), (KA),$$
 (4.1.33)

for MOS digital and linear devices,

where TR = number of transistors on the device in question.

After identifying the electric field stress, the user must determine the appropriate dielectric temperature stress. A calculated junction temperature, T_1 , results in the worst-case approximation of the dielectric

Figure 4.1-14

Number of Transistors (log #)

Number of Transistors (log #)

temperature. The value of the junction temperature may be supplied by the manufacturer or may be developed in a standard fashion, where

$$T_{J} = T_{case} + \Theta_{JC} * P (°C), \qquad (4.1.34)$$

where:

 T_{case} = operating case temperature (user supplied °C) Θ_{JC} = junction to case thermal resistance (user supplied °C/W) P = worst-case power (user supplied W).

Once the total transistor gate oxide area, oxide thickness, and junction temperature have been identified, the user can determine the associated probability of success or hazard rate for the microcircuit due to TDDB.

For those microcircuits whose lifetimes are limited by electromigration, the user will use Tables 4.1-13 and 4.1-14. If the user does not know the maximum current density through the metal on the microcircuit, a default value of 0.125 MA/cm² should be used. (See Appendix B for the derivation of this default value.) The appropriate metal film temperature stress is determined in a similar fashion as the temperature stress for TDDB. Once the current density and junction temperature have been identified, the user can determine the associated probability of success or hazard rate for the microcircuit due to electromigration.

It is noted here that many microprocessors utilize on-chip static RAM. The contribution of the failure rate of this SRAM to the total microprocessor failure rate is insignificant. Since the technology used to fabricate the SRAM transistors is similar to the technology used to fabricate the processor transistors, the mechanisms which result in end-life failures are similar; therefore, the SRAM, which comprises only 1% to 5% of the total active circuitry of the microprocessor, has minimal impact when predicting the total failure rate of the microprocessor.

Table 4.1-16 Total Transistor Gate Area (log μm^2)

Complexity	Digital Microprocessors	Digital and Linear	
(# of trans.)	(including Controllers)	Gate / Logic Arrays	
100 - 500	5.39	5.24	
500 – 1k	5.47	5.37	
1k – 5k	5.64	5.67	
5k – 10k	5.72	5.80	
10k – 50k	5.90	6.10	
50k – 100k	5.97	6.23	
100k - 500k	6.15	6.52	
500k - 1M	6.23	6.65	
1M – 5M	6.41	6.95	
5M - 10M	6.48	7.08	

Table 4.1-17 Dielectric Thickness (KÅ)

Complexity	Digital Microprocessors	Digital and Linear
(# of trans.)	(including Controllers)	Gate / Logic Arrays
100 - 500	4.81	2.17
500 – 1k	2.50	1.35
1k – 5k	1.89	1.10
5k – 10k	0.98	0.68
10k – 50k	0.74	0.56
50k – 100k	0.39	0.35
100k - 500k	0.29	0.28
500k - 1M	0.15	0.17
1M – 5M	0.11	0.14
5M - 10M	0.06	0.09
4.2 MEMORY DEVICES

4.2.1 Database

Literature Survey - This was one of the first activities conducted for the modeling task, and, although most sources were identified early in this effort, it continued throughout the program. A total of 63 articles and papers from trade journals and symposiums were identified as being relevant to memory reliability modeling. They were reviewed and filed. Most of the literature was related to non-volatile memories (e.g., EPROMs and EEPROMs), which is appropriate since these device types were recognized from the start of the modeling task as ones that required the most study. Others were specific to device types such as SRAMs and DRAMs, or were directed towards various technology areas (for example, CMOS and BiMOS). Relatively little literature on older, less complex technologies and devices such as MOS ROMs, bipolar ROMs/PROMs/PLAs/PALs was found during the search. Direct and indirect contributions by this literature to the memory model development will be noted, as appropriate, throughout this section of the report.

The primary use of the literature was to aid in determining the true failure modes and mechanisms of the device types investigated and the relative contribution of these modes and mechanisms to the overall failure rates of these devices. The literature was used to a limited degree in the evaluation of the sensitivity of device failure rates to parameters such as temperature and complexity.

Industry Contacts – A key source of information for the modeling task was the semiconductor industry. At the start of the program, questionnaires were sent to a large number of companies requesting whatever support that could be provided. For memory devices, 11 companies expressed initial interest in the project, with 9 of them ultimately providing various degrees of information. These companies were exclusively semiconductor device manufacturers. The industry information was used in conjunction with the literature data to identify the applicable failure modes and mechanisms for memory devices. This information included life test data and device parameter information, and was

also helpful during development of the actual models.

The following is a list of the industry contacts that provided data and answered questions regarding memory devices:

Raytheon	National S	emicond	uctor
Intel	Advanced M	icro De	vices
Seeq	Signetics		
Xicor	Atmel		
Inmos			

Most of the data collected from the various manufacturers was in the form of already published data books, reliability reports and pamphlets. The life test data that was gained from the manufacturers was collected and put on a computer database for reference throughout the project. See Appendix E for the life test results. It should be noted that a significant amount of requested information could not be provided by the manufacturers because of manpower and/or data confidentiality constraints. As with the literature search, the largest portion of the information gained from the manufacturers related to non-volatile memories.

4.2.2 <u>Model</u>

4.2.2.1 Approach/Mechanism Identification

In the development of the memory model, the various sources of information described earlier in this section (literature, manufacturer data, in-house experience) were used to identify the applicable failure mechanisms involved with the various device types. These mechanisms were then evaluated individually to determine whether they are defect-related or intrinsic to the device. This information provided guidance in the overall approach to the development of the actual model in addition to the form that the model ought to take. Table 4.2-1 presents the results of the failure mechanism investigation task that is documented in this section.

Table 4.2-1 Memory Failure Mechanisms

	Flash EEPROMs UVEPROMs FG MOS PROMs FG MOS PALs	FLOTOX & Tex-Poly EEPROMs	MNOS EEPROMs	Bipolar ROMs/PROMs and PALs	MOS ROMs	MOS SRAMS	Bipolar SRAMs∗∗	DRAMS
Electron Irapping In Oxide	*1	I	* [×	×	×	×	×
Time Dep. Dielectric Breakdown	Ι	I	I	×	Ι	I	×	I
Oxide Defect - Contamination	0	0	0	×	Q	0	×	0
Oxide Defect - Pinholes, faults	D	0	0	×	0	٥	×	D
Silicon Defect	0	0	D	0	Q	D	D	D
Metallization Defect	D	0	۵	٥	٥	0	0	O
Electromígration	I	Ι	Ι	1	1	I	Ι	I
Intrinsic Charge Loss	*]	* [*1	NA	NA	NA	NA	NA
Hot Carrier Injection	×	×	×	NA	NA	* [NA	×Ţ
Saft Errors		x	×	NA	NA	See Iext	NA	See Text
I – Intrinsic failure mechanism * – Not a significant contributor ** – See discussion for BiMOS		D - Defec NA - Not / FG MOS - I	t induced f Applicable Fluating Ga	ailure mechar ite Metal Oxio	nism de Semi	conducto	Ŀ	

Downloaded from http://www.everyspec.com

UVEPROMs, Flash EEPROMs

Flash EEPROMs are treated similarly to EPROMs in this analysis. Flash EEPROMs use the same CHE (Channel Hot Electron) programming mechanism as do UVEPROMs, and use the same one transistor/cell approach. The primary difference between the two is that Flash cells incorporate a thin floating gate-source or - drain gap to allow for a Fowler-Nordheim tunneling erase mechanism (UVEPROMs use a UV light photocurrent erase mechanism).

The life test data reviewed for UVEPROMs showed the primary failure mode to be storage gate charge loss, with a secondary mode of charge gain. These modes result in the lowering or raising of the cell threshold voltage, thus narrowing the cell read margin. The literature search also supported the selection of these modes as the most prevalent.^[47,48,49,71] Either of the two modes can be caused by ionic contaminants or defects in the gate oxide. A defect in the oxide or an induced breakdown of the oxide can cause a pathway for stored charge to leak off, or it can attract unwanted electrons under read bias. Charge gain or loss are the primary causes of retention failures (a cell changing state on its own over time) in these devices. The only other failure modes found in the UVEPROM life test data collected were parametric test failures, with no hint as to the mechanism(s) involved. The small amount of Flash EEPROM life test data found also indicated charge loss as the primary failure mode.^[45] Charge gain can be caused by the trapup of electrons in the gate oxide as a consequence of movement of electrons through the gate oxide during programming and erasure. This must be considered for devices (standard EEPROMs) that experience a high number of erase/reprogram cycles. However, UVEPROMs and Flash EEPROMS are expected to experience a much lower number of cycles during their lifetime; therefore the failure rate contribution by charge trapup is considered to be negligible.

The phenomenon of intrinsic charge loss in UVEPROMS/Flash EEPROMs has been identified in literature, ^[45,47] and may be due to the detrapping of electrons trapped during erase; ^[47] however, evidence strongly suggests that the amount of degradation is limited in nature (the total charge lost by a storage transistor in this manner is not enough to cause a failure in an

otherwise good cell) and is a negligible contributor to UVE/Flash failure rates.

The failure modes of spurious programming and erasure have been identified in literature^[45,49] for both UVEPROMs and Flash EEPROMs. Spurious programming is a defect-induced failure mode resulting in unwanted cells being programmed. Spurious erasure is also defect-induced and results in unwanted cells being erased during the program cycle.

As mentioned, charge loss may be caused by a breakdown in the oxide. A high electric field is present across the gate dielectric during the programming step for both UVEPROMs and Flash EEPROMs. Time Dependent Dielectric Breakdown (TDDB) is greatly accelerated by increased voltage and has been identified by a number of sources as being a contributing failure mechanism for all MOS devices, particularly as geometries get smaller and smaller. This mechanism was therefore identified for further analysis during the development of the model. Electromigration, the other intrinsic failure mechanism, was also selected for further study. Both of these mechanisms influence the reliability of the peripheral circuitry, as do the defect-related mechanisms found in other IC types.

Because of the information found in the various literature sources, the reliability of Flash EEPROMs and UVEPROMs was considered to be equal during the initial stages of the model development task, at least when the total number of reprogram cycles during the life of the part is 100 cycles or fewer.

Refer to the SRAM paragraphs in this section for a more general discussion regarding HCI (Hot Carrier Injection). None of the literature researched named this as a significant failure mode for Flash and UVEPROMs. This can be compared to the charge trapup mechanism as (at least for the array storage transistors) these devices use hot injection as a programming mechanism. For this modeling effort, HCI was considered to be an insignificant contributor, provided that a limit is placed on the number of reprogram cycles (about 100 cycles).

Soft errors like HCI have become more of an issue with memories as geometries have been reduced. See the DRAM paragraphs in this section for a further discussion on this mechanism. None of the literature reviewed considered this to be a relevant failure mechanism for nonvolatile memories. An alpha particle striking the floating gate loses little of its energy there and creates fewer carriers, and few of these escape over the floating gate's high energy barrier.^[44]

MOS PLAs, PALs, and PROMs using UVEPROM style cells in place of fuses were considered equivalent to UVEPROMs with respect to reliability during the development of the model, the primary difference being that these devices are one - time programmable.

EEPROMS

This class of device consists of all EEPROMs except for "Flash" (discussed earlier), and MNOS (Metal Nitride Oxide Semiconductor), which will be discussed later. It can further be broken down into two types: FLOTOX (Floating gate Tunnel Oxide), and Textured Polysilicon (Tex-Poly). Both types store charge on a floating gate that is isolated by oxide and use Fowler-Nordheim (F-N) tunneling for both programming and erasure. FLOTOX devices use a thin tunnel oxide (generally less than 100 Å) to achieve the F-N tunneling. Textured-Poly devices use a thicker tunnel oxide (greater than 150 A) and achieve tunneling through enhanced localized E-fields created by a textured ("bumpy") Si-SiO2 interface. The cell structures for these two EEPROM types also differ: FLOTOX generally uses two transistors per cell (one for storage and one for a support transistor), whereas Tex-poly cells use a single, more complex storage transistor. ^[44,67,68] Both of these EEPROMs may experience thousands of reprogram cycles during their lifetime. The literature search indicated a strong relationship between reprogram cycling and device failure rate. Two primary failure mechanisms are associated with this cycling: oxide breakdown and charge trapping in the tunnel oxide (trapup). Both of these mechanisms can result in memory retention failures or stuck bit failures in the memory array, depending upon the degree of degradation. The literature also indicated that the two EEPROM types have very different sensitivities to

reprogram cycling and the associated failure mechanisms.^[44,68,72] For this reason, part of the EEPROM modeling approach was to treat these two EEPROM types separately and incorporate a cycling relationship into the model. Other failure mechanisms such as oxide breakdown can occur with little or no cycling and can be caused by things such as oxide pinholes or contaminants, just as with other IC types. This was supported by a small amount of life test data (it does not include any reprogram cycling) that was collected. The failures that occurred during this testing (for which the cause could be determined) were caused by either contaminants or oxide breakdown. Time dependent dielectric breakdown was incorporated into the modeling approach for EEPROMs, as was electromigration. These two mechanisms are intrinsic to EEPROMs by the nature of their construction and may be significant under certain circumstances (for instance, very small geometry devices). Intrinsic charge loss was not mentioned by any of the literature researched, nor did it appear in any life test data. It is therefore being treated as it is for UVEPROMs and is not considered to be a significant contributor to the failure rate of the device.

MNOS Metal Nitride Oxide Semiconductor EEPROMs

This device type gained early popularity at the start of EEPROM device development but has in recent years been used much less frequently by industry as compared to FLOTOX and Textured-Poly. MNOS devices store charge at a nitride layer as opposed to storage on a floating gate. This permits a simpler cell structure than that of either FLOTOX or Textured-Poly. The tunnel oxide used for MNOS is thinner than that of FLOTOX, making the device more susceptible to any defects or contaminants in that oxide layer, and it also results in loss of data retention over a period of time. The literature also indicates that MNOS EEPROM retention characteristics are degraded by repeated reprogram cycles and are more susceptible to corruption of cell contents by read operations (read disturb)^[74] than to other EEPROMs. Because the tunnel oxide is very thin, charge trapup in the oxide should not be a contributing mechanism, and none of the literature researched considered trapup in the oxide to be a significant problem; however, cycling can introduce electron migration into the nitride layer after being trapped at the Si-SiO $_2$ interface, [75]although this effect seems to be significant only at very high levels of

cycling (in excess of 1x10E6 cycles) and is influenced by device design and process parameters. The other failure mechanisms such as silicon defects, time-dependent dielectric breakdown, and electromigration were considered to be contributing failure mechanisms during the model development program just as they were for the other device types. No MNOS life test data was found during the model development program.

Bipolar ROMs, PROMs, PALs

This group includes PALs (Programmable Array Logic), PLAs (Programmable Logic Array), and HALs/MLAs which are hard-wired versions of the first two. Together with bipolar ROMs/PROMs, these devices are very similar in that they consist of an array of fuses (if programmable) supported by conventional bipolar logic. Very little literature data was found that directly addresses the reliability of these devices. The initial approach during the memory model development program was to separately treat two aspects of the programmable versions of these devices: the fuses that make up the array, and the peripheral logic. A substantial amount of life test data was found from manufacturer sources. There were zero failures (due to either a defectinduced or intrinsic failure mechanism) attributed to fuses. Conversations with representatives from device manufacturers also supported the assertion that fuses are not significant contributors to device failure rate. For this reason, a failure rate for fuses was not considered during the development of the model. This left the supporting peripheral circuitry in addition to the simple diode structures that reside in the array. No failures due to oxide defects were found in the life test data, which is appropriate since these are bipolar devices. The failure mechanisms of electromigration, silicon defects, and metal defects were judged to be the contributors to the overall device failure rate. This was supported by the life test data, and these mechanisms were considered during the development of the model.

MOS ROMS

Members of this class of devices are MOS-based with a hard-wired array and

are the simplest of the memory devices modeled. As with PROMs/PLAs, virtually no literature regarding the reliability of this device type was available; however, the life test data collected indicated that the failure modes of silicon, oxide, and metal defects were contributors to the failure rate of the device. Electromigration and TDDB were also chosen for evaluation during the development of the model as these are intrinsic to the structures found on MOS ROMs.

Static RAMs

These devices are implemented using bipolar, MOS, and (more recently) BiMOS (which combines the two technologies on one chip). Memory contents are stored as memory-cell transistors that are constantly biased "on" or "off". They do not incorporate exotic charge storage structures as are found in UVEPROMs or EEPROMs, and in that respect they may be compared to more conventional logic devices. MOS versions of these devices can fail because of defects in the oxide (causing threshold shifts or leaky/shorted FETs), silicon or metal defects, or contaminants. [76,77] This is supported by the life test data collected, which identified FET leakage, oxide and metal defects among the failure causes. Time Dependent Dielectric Breakdown was considered to be a possible contributor to the MOS SRAM failure rate because it is intrinsic to the technology. For both bipolar and MOS technologies, electromigration was selected for further analysis during the model development task, as it was for all memories.

The phenomenon of Hot Carrier Injection (HCI) has been identified in literature as a potential MOS SRAM failure cause.^[50,76] HCI occurs when available carriers gain energy as they move through the E-field associated with the FET channel. A sufficiently high field may cause some of these carriers to be injected into the gate dielectric, thus influencing the threshold voltage of the FET. This mechanism is accelerated by lower temperatures and higher voltages and becomes an issue as device geometries are scaled down without any scaling of the supply voltage used to operate the device. None of the literature contained data hinting at the percent contribution of HCI failures to the overall failure rate of the device, and the life test data collected

showed no HCI failures. Although this can be considered an intrinsic mechanism, it can be minimized or eliminated by special design or processing techniques. ^[50] There is also evidence that HCI has a self-limiting effect, at least for NMOS structures, ^[60] which makes it difficult to accurately model any failure rate contribution by the mechanism. This mechanism was not considered for modeling during the modeling task. Also refer to the VHSIC/logic section of this report.

Although no failure rate data was found either in the literature search or in the available life test data regarding BiMOS reliability, for the purposes of the modeling effort, this technology was considered to have some failure rate contribution by the failure mechanisms identified independently for both MOS and bipolar SRAMs.

DRAMS

These devices store data as parasitic capacitance in a specialized one-transistor memory cell. This charge-storage structure has built-in leakage, and therefore requires frequent "refreshing" or voltage pulse application, which is done automatically on the device. The simplicity of the DRAM cell allows it to be much smaller than a SRAM cell, which requires 4 or 6 transistors to implement a cell. The available literature indicated that the various defect mechanisms identified for other devices are also valid for DRAMs.^[78,79] Time Dependent Dielectric Breakdown was also considered to be a potential contributor; this is also supported by the literature.^[78]

Hot Carrier Injection is an issue with DRAMs, as it is for SRAMs. DRAMs are more susceptible than SRAMs because some internal circuitry can temporarily raise the voltage on part of the chip to relatively high levels.^[58] The literature indicated that hot carrier stress can potentially affect parameters such as retention time, subthreshold leakage currents, and substrate current, which may cause device failure depending upon the application and degree of degradation.^[57,58] Life test data that was collected was very limited for DRAMs but did not identify HCI as a failure cause. As with SRAMs, HCI effects can be minimized or eliminated by careful design and process techniques. Also

1

refer to logic/VHSIC section of this report. During the model development task, HCI was not modeled as a contributing mechanism because of its dependence on design, process, and application parameters.

Soft Errors (non-permanent failures) are also an issue with DRAMs. They are caused by electrical transients or particle radiation that upset charge levels within the device, typically affecting one bit. ^[80,81,82] This mechanism is more of a problem for DRAMs than SRAMs because of the simplicity of the memory cell and the need to constantly refresh the parasitic capacitance in each cell. It has become progressively more of a problem as DRAM geometries have been decreased to permit 2 Mbit and larger device capacities, which in turn results in decreased normal operating charges within the device. The difficulty of modeling the soft-error failure rate is due to the number and nature of influencing parameters and the lack of any empirical data. Soft errors may be caused by solar or cosmic radiation particle strikes, alpha particles emitted by the package of the device, or electrical transients. The factors that need to be accounted for when modeling this mechanism include:

- System application (Space, Airborne, Etc.)
- If airborne, system operating altitude, and possibly latitude
- Degree of external radiation shielding related to the system
- Memory cell dimensions
- Cell construction technique (specialized design to minimize susceptibility)
- Type of packaging used in the memory device
- Any error correction circuitry internal or external to the device

Because of the large amount of effort required to adequately model soft-error failures, they were not modeled during this project.

4.2.2.2 Model Development

Development of reliability prediction models for memory devices commenced once the applicable memory failure mechanisms were identified in the first phases of the program. Two objectives were kept in mind during the development process:

- Make the model representative of what is physically causing failure.
- Make the model user-friendly, i.e., require only easily-found user input parameters.

A few observations regarding the memory devices to be modeled were made that helped to define the form of the model. One observation is that the basic technologies and processes used to fabricate memory devices are very similar to those of logic devices, especially when one looks at the peripheral circuitry of the memory as opposed to the array. Based on this, close coordination with the logic/VHSIC model development task was deemed to be desirable. Another observation is that the primary functions required to be performed on a memory circuit are basically the storage of data and the transfer of this data into and out of the storage. These two functions are segregated physically on the device in the form of the memory array and the interface or peripheral circuitry.

A basic approach used in the development of the model was to use the superposition approach. For the memory model, this requires analysis of the causes of failure individually, determining the contribution of each of these causes to the overall device failure rate, then adding the contributions together, which yields the device failure rate. It should be noted here that, for the purposes of the memory model discussion, the term "device" actually refers only to the "die", or chip, failure rate. This failure rate is added to the package failure rate in the final memory model. Refer to the package model section for the package failure rate determination.

This section will address the modeling of the applicable failure mechanisms individually and then present the final form of the model.

Electromigration

This failure mechanism was identified as being a potential failure rate

contributor for all memory devices. As part of the logic/VHSIC modeling task, a deterministic model representing electromigration was developed (see section 4.1.3.2). This same model is used to represent the electromigration failure rate for memory devices.

Because of the failure distribution determined as part of the electromigration modeling task, it is used here as essentially a "go-no go" check. Given a current density (such as the default value of .125 MA/cm²), the resultant probability of success is basically either 1.000 or zero. Therefore, it is not considered an additive contributing failure rate to the overall model. The user must only check the operating junction temperature in addition to either the known current density or the default value in order to determine the acceptability of using the device in that application.

Time Dependent Dielectric Breakdown

1

Earlier in the approach/failure mechanism section, this was identified as a contributing failure mechanism for all MOS devices. To model the effect of this failure mechanism on memory device reliability, the TDDB modeling effort as part of the logic/VHSIC model development task was used as a basis (also see section 4.1.3.1). A basic assumption made here is that the oxides used for memory devices are the same as the oxides used for logic devices, which is a reasonable assumption. To determine $\lambda_{\rm TDDB}$ (the failure rate due to TDDB), some physical parameters of the device must be known. These are: total gate oxide area, gate oxide thickness, oxide electric field, and temperature of the oxide (or T₁).

At the start of the λ_{TDDB} modeling effort for memories, the approach was taken to evaluate the memory array and peripheral circuitry separately. This was done because for some memory devices the physical parameters required differ significantly between the array and periphery. So, for some device types, the total λ_{TDDB} equals the λ_{TDDB} (array) added to the λ_{TDDB} (periphery). For FLOTOX and Tex-Poly EEPROMs, only the λ_{TDDB} for the periphery was considered, since the array oxide failure rate due to voltage stress is assumed to be accounted for by the reprogram cycling failure rate

model (see the Trapup section). The various manufacturer sources were asked to provide data regarding oxide thickness and area. Based on the data provided by the manufacturers, tables were developed that show the parameter values to be used for each memory device. A range is given for each device capacity value. If the user does not know the value for the device, then the most conservative value in the range provided is used (thinnest oxide, or largest gate oxide area). These values are shown in Tables 4.2-2 through 4.2-3.

TDDB Discussion

In most cases for memory devices, the resultant failure rate due to TDDB turns out to be negligibly small (for the typical 5 V operation). The exception to this is for the thinner oxide devices that experience relatively high field stress. In general, the memory TDDB failure rate is insignificant for an applied voltage of 5 V or less.

The TDDB model presented here was determined to be inadequate for modeling the oxide failure rate due to programming stress. This affects the UVEPROM, Flash, MNOS, and FG PROM arrays, and the portion of EEPROM periphery circuitry that is exposed to a high programming voltage. The programming stress condition is characterized by a very high field stress for a very short period of time. Using the TDDB model to calculate the failure rate due to programming results in very high hazard rate values that are not valid when compared to the actual experience that the industry has with reprogrammable devices.

The evidence gained during the memory reliability modeling effort suggests that oxide failures due to programming on UVEPROMs, Flash_EEPROMs, and MNOS EEPROMs are primarily due to either contaminants in the oxides, or microscopic physical faults in the oxide itself that precipitate failure upon repeated pulses of high electric fields. For this model, the cycling failure rate for the devices just mentioned will be considered to be zero, providing that a limit of 100 cycles is not exceeded. The great majority of UVEPROM, Flash EEPROM, and MNOS EEPROM applications do not require in excess of 100 cycles during the life of the system.

Table 4.2-2 Total Gate Oxide Area - Memories

UVEPROMS, Flash EEPROMS, MNOS EEPROMS, Floating Gate PROMS - ARRAY ONLY MOS PALs/PLAS - ARRAY ONLY*

Capacity (<u># bits)</u>	Total Gate Ox Lower Limit	ide Area (um ²) Upper Limit
2K	8192	16384
4K	16384	32768
8K	32768	65536
16K	65536	131072
32K	131072	262144
64K	147456	327680
128K	294912	655360
256K	589,824	1,310,720
512K	1,179,648	2,621,440
1 M	2,359,296	5,242,880
2M	4,718,592	10,485,760

* - For MOS PAL/PLA devices, determine the number of bits in the programmable array, then use next highest bit count category listed in the above table.

UVEPROMS, Flash and MNOS EEPROMS, Float. Gate PROM/PAL/PLA - PERIPHERY ONLY MOS ROMS/HALS/MLAS - ENTIRE DEVICE

For all devices memory capacities, use range of $260,000 - 1,209,000 \text{ um}^2$.

Table 4.2-2 Total Gate Oxide Area - Memories (Continued)

FLOTOX and Textured-Poly EEPROMs - PERIPHERY EXPOSED TO PROGRAMMING STRESS

For all devices, use $103,000 - 602,500 \text{ um}^2$.

FLOTOX and Textured-Poly EEPROMs - PERIPHERY EXPOSED TO SUPPLY VOLTAGE STRESS

For all devices, use 260,000 - 1,209,000 um².

MOS SRAMS - ENTIRE DEVICE BIMOS SRAMS - ENTIRE DEVICE*

Capacity	Total Gate Oxid	e Area (um ²)
<u>(# bits)</u>	<u>Lower Limit</u>	<u> Upper Limit</u>
1K	99,176	497,056
2K	149,352	798,112
4K	45,864	192,888
8K	82,728	358,776
16K	156,456	690,552
32K	303,912	1,354,104
64K	598,824	2,482,600
128K	1,188,648	2,681,208
256K	1,052,576	4,730,592
512K	3,101,152	9,449,184
1M	4,198,304	18,886,368
2M	8,392,608	37,760,736

* - For BiMOS SRAMs, multiply oxide area by .667

MOS DRAMS - ENTIRE DEVICE

Capacity	Total Gate Oxide	Area (um ²)
<u>(# bits)</u>	Lower Limit	<u>Upper Limit</u>
1K	98,588	394,352
2K	123,676	494,704
4K	31,932	95,796
8K	50,364	151,092
16K	87,228	261,684
32K	160,956	482,868
64K	308,412	925,236
128K	603,324	1,809,972
256K	530,288	1,590,864
512K	1,054,576	3,163,728
1 M	2,103,152	6,309,456
2M	4,200,304	12,600,912

Table 4.2-3 Gate Oxide Thickness - Memories

UVEPROMS, Float. Gate PROMS - ARRAY ONLY MOS ROMS/PLAS/PALS/MLAS/HALS - ENTIRE DEVICE*

Capacity (# bits)	Gate Oxide Thi Lower Limit	ckness (Angstroms) <u>Upper Limit</u>
2K	600	700
4K	600	700
8K	600	700
16K	600	700
32K	600	700
64K	400	600
128K	400	500
256K	400	500
512K	400	500
1 M	250	400
2M	250	400

* - For MOS ROMs/PLAs/PALs/MLAs/HALs determine number of bits in array, then use above table, rounding up to the next highest bit category.

Flash EEPROMs - ARRAY ONLY

Capacity	Gate Oxide Thickness (Angstroms)		
<u>(# bits)</u>	Lower Limit	Upper Limit	
32K	250	250	
64K	250	250	
128K	250	250	
256K	105	250	
512K	105	250	
1 M	105	250	
2M	105	250	

MNOS EEPROMS - ARRAY ONLY

Use Range of 15 - 30 Angstroms.

Table 4.2-3 Gate Oxide Thickness - Memories (Continued)

UVEPROMS, MNOS/Flash EEPROMS, Float. Gate PROMS - PERIPHERY ONLY

Capacity	Gate Oxide Thic	kness (Angstroms)
<u>(# bits)</u>	<u>Lower Limit</u>	<u> Upper Limit </u>
2K	600	700
4K	600	700
8K	600	700
16K	600	700
32K	600	700
64K	400	600
128K	300	400
256K	300	400
512K	235	400
1M	235	400
2M	235	400

FLOTOX and Tex-Poly EEPROMs - PERIPHERY ONLY

Capacity	Gate Oxide Thi	ckness (Angstroms)
(# bits)	Lower Limit	<u>Upper Limit</u>
.	<u></u>	750
8K	600	/50
16K	600	750
32K	600	750
64K	400	600
128K	340	500
256K	340	500
512K	300	500
1 M	300	500
2 M	300	500

Table 4.2-3 Gate Oxide Thickness - Memories (Continued)

MOS SRAMS, DRAMS - ENTIRE DEVICE BIMOS SRAMS - ENTIRE DEVICE

Capacity (# bits)	Gate Oxide Thickne Lower Limit	ess (Angstroms) Upper Limit
1K	1200	1500
2K	1200	1500
4K	410	1000
8K	410	1000
16K	250	410
32K	250	410
64K	250	410
128K	250	410
256K	200	300
512K	200	300
1 M	200	300
2M	200	300

Charge Trapping

This was identified as an intrinsic failure mechanism for FLOTOX and Textured-Poly EEPROM devices. The literature information showed that the Tex-Poly device type is more susceptible to failures caused by trapup than FLOTOX devices (by virtue of the fact that the threshold voltage change due to trapup is related to oxide thickness).^[44] On the other hand, the very thin tunnel oxide used for FLOTOX devices makes them more sensitive to defect-related oxide breakdown failures. A number of papers have been written on the subject of charge trapping. The point at which a failure actually occurs because of charge trapping is determined by a number of variables such as the trap density of the oxide (influenced by the intrinsic characteristics of the oxide), charge injected into the oxide, E-field within the oxide, threshold voltage of the memory cell, and even the time duration between reprogram cycles. Based on the nature of these variables, a decision was made not to try to model this mechanism using strictly deterministic methods. Instead, this contribution to the overall failure rate of EEPROM devices was modeled using empirical data from device manufacturer sources as well as information provided as part of the literature search.

Charge trapup is an issue only when the EEPROM is repeatedly reprogrammed. Reprogramming also accelerates certain defect-induced failure mechanisms within the tunnel/gate oxides. Indeed, high voltage stress is one method used to screen out such defects, although the voltage used in such a screen must be carefully chosen so as not to damage good oxide. EEPROM manufacturers perform "endurance" testing (read/erase/write cycling) to evaluate the failure rate of a device type due to reprogramming. Failures that occur during this testing are basically due to either oxide failures caused by defects, or failures caused by excessive charge trapping. A typical failure mode during such endurance testing is a single-bit failure in the memory array. Vendor endurance test data was used to derive a reprogram cycling portion of the overall memory device failure rate model.

The EEPROM read/erase/write failure rate, or λ_{cvc} , is the following:

$$\lambda_{cyc} = [A_1B_1 + (A_2B_2/\pi_Q)] \pi_{ECC}$$

where:

A ₁ and A ₂	represent the cycling base failure rate (dependent on
	total number of cycles and EEPROM type)
B_1 and B_2	represent the multipliers which modify the base failure
. –	rate for temperature and device complexity
πO	is the quality factor
"ECC	is the on-chip error correction factor

Endurance test results for two EEPROM device types, each from a different manufacturer (a 16K FLOTOX device and a 64K Tex-Poly device), were used for the analysis. The test results were in the form of percent failures for a given number of cumulative reprogram cycles. For the FLOTOX device, the test results showed a constant failure rate of .0225% failures per 1000 cycles. This indicates that all failures are defect-induced, which is supported by literature data. ^[44] Although some trapup could be occurring, the data indicates that FLOTOX failures caused by trapup are not significant until very high cycling rates (on the order of 1 X 10^6 cycles) are achieved. The Textured-Poly endurance test data was more complex. Two separate test results were used. One test evaluated cycling reliability at the lower region of total cycles (up to 10K cycles) by using a cycling reliability at the upper region of total cycles. The second test evaluates cycling reliability at the upper region of total cycles (more than 100K cycles) using a method that enhances trapup related failures. The results of the two tests are presented in figures 4.2-1 and 4.2-2.

From these test results, a failure rate expression in failures per million hours was derived using the following relationships:

Figure 4.2-1

Figure 4.2-2

Then:

 $MTBF = ((Cumulative % F.R. at Total # Cycles) \times (# Cycles/Hr.))^{-1} \times (1\times10^5)$ (Total # cycles) / 1000

The failure rate is taken to be the reciprocal of the calculated MTBF. It can be shown that for a 10,000 hour system lifetime, the failure rate equals the cumulative percent failure rate at the total number of cycles. See Tables 4.2-4 and 4.2-5 for the resulting A_1 and A_2 values. Note that "base" and "B Normalized" values are given for A_1 . The test data that yields A_1 values per the above formulas are for commercial grade parts, which correspond to "D" quality. The π_{Ω} factor developed for all models in this project is normalized to a B-level quality. Therefore, the A_1 values must be adjusted to be consistent with "B" quality. Using the $\pi_{\underline{O}}$ values developed in this project, this adjustment is a 3.3 divisor. These adjusted values (to be used when calculating device failure rates) are the "B" normalized numbers. These values are provided for a baseline system operating lifetime of 10,000 hours. For different assumed lifetimes, the user must multiply A_1 or A_2 by (10,000)/(system lifetime). The A₂ table addresses only the upper region of cycling for Tex-Poly devices. It is divided by the π_{Ω} factor in the final model because it is related to an intrinsic mechanism that is <u>not</u> influenced by screening. This π_0 divisor negates the influence of the π_0 multiplier on the overall defect failure rate of the device. The next paragraph details an example of how the "A" factors were derived.

Determine the A_1 cycling factor for a FLOTOX device experiencing between 100 and 200 reprogram cycles during its lifetime.

1) Two initial assumptions are made here. One is that the worst case number of cycles (200) is used to derive an A_1 factor applicable to the 100-200 cycle category. Also assumed is a 10,000 hour system lifetime.

2) Note the relationship that is used to derive "MTBF" due to cycling: MTBF = $((Cumulative \% F.R. at Total # Cycles) \times (# Cycles/Hr))^{-1} \times (1 \times 10^{5})$ (Total # Cycles) / 1000

3) The FLOTOX endurance test data used (figure 4.2-1) gives a constant failure rate of .0225% per 1000 cycles.

At 200 cycles, $.0225 \times 200/1000$ yields .0045 cumulative percent F.R. and # cycles/hr. = 200/10000 hrs. = .02 cycles/hr. Then,

MTBF = $((.0045) \times (.02))^{-1} \times (1 \times 10^{5}) = 2.222 \times 10^{8}$ hrs.

This equals .0045 failures/million hrs.

The vendor endurance testing was performed on devices screened to D-level quality. To be compatible with the π_Q factors developed for all microcircuit models, the A factors needed to be normalized to B-level quality. To do this, the derived A factors need to be divided by 3.3, which is the B-level to D-level quality factor ratio.

This yields .0045/3.3 = .0014 for the A₁ factor.

This same process was used to derive A values for Tex-Poly devices; however, the Tex-Poly endurance data does not yield a flat cumulative percent failure rate per 1000 cycles. Rather, the data consisted of a curve from which a percent failure rate could be found once the number of cycles is known.

The A factor must now be modified to account for the effects of temperature and complexity. The A-table values are normalized at 60°C T_J for a 16K device for FLOTOX and 30°C T_J for a 64K device for Tex-Poly. The temperature sensitivity was derived using a combination of vendor and literature data. The endurance test data taken from the FLOTOX manufacturer is based on the testing done at 60° T_J . The Tex-Poly endurance test data used is based on testing done at 30° T_J . Therefore, normalization for the A tables was done at both temperatures depending on whether the part is Tex-Poly or FLOTOX. The

1

available information indicated an E_a of between .12 and .15 eV for FLOTOX. ^[43,44,67] A .15 value was chosen. The E_a for Tex-Poly endurance failures is dependent on the total number of cycles. For high number of cycles, trapup dominates the Tex-Poly failure rate. The available data^[44,68] indicates -.1 eV as being appropriate (negative because of the detrapping effects of elevated temperature) for more than 300K total cycles. For the lower region of endurance (< 300K cycles), .12 eV was selected, because it represents the lower range of the E_a found for EEPROM defect-related endurance failures. An E_a lower than that of FLOTOX was deemed appropriate because any latent defects in the thicker Tex-Poly oxide should be less sensitive to increasing temperature.

No empirical data was available showing the relationship of cycling failure rate to the complexity of the EEPROM device (number of reprogram cycles). All relevant sources of data indicated that FLOTOX was more sensitive to scaling effects than Textured-Poly because the thinner oxide for FLOTOX is more difficult to scale down than Tex-Poly. The same sensitivity to complexity as the MIL-HDBK-217E MOS PROM model was chosen for FLOTOX as this is consistent with the fact that the failures are defect-driven and is supported by literature data. ^[44] A complexity sensitivity of half the FLOTOX sensitivity was chosen for Tex-Poly EEPROM types. This assumption is also supported by literature data. ^[44] The temperature/complexity multipliers (B₁, B₂) are shown in tables 4.2-6 through 4.2-8.

Error Correction Factor

A few EEPROM manufacturers have incorporated on-chip error correction circuitry into some or all of their devices. One objective of the memory model effort was to develop a factor in the model which takes this into account. Two error correction schemes were found during the literature search and manufacturer survey activities: a Hamming code approach using 4 correct bits for 8 data bits, and a redundant cell approach which uses an extra storage transistor in every cell. The approach taken was to evaluate the failure rate improvement for a single memory cell and apply this improvement factor to the memory-array failure rate.

Total Number	FL	отох	Textur	ed-Poly
Of Cycles (X)	Base "B	"Normalized	Base "B	<u>Normalized</u>
up to 100	.0023	.0007	.0320	.0097
100 < X <u><</u> 200	.00 45	.0014	.0460	.0139
200 < X <u><</u> 500	.0113	.0034	.0760	.0230
500 < X <u><</u> 1K	.0225	.0068	.110	.033
1K < X <u><</u> 3K	.0675	.0204	.200	.061
3K < X <u><</u> 5K	.1125	.0341	. 300	.091
5K < X <u><</u> 7K	.1575	.0478	. 450	.136
7K < X <u><</u> 9K	. 2025	.0614	.700	.212
9K < X <u><</u> 10K	. 2250	.0682	1.000	. 303
10K < X <u><</u> 15K	. 3375	. 1023	1.000	. 303
15K < X <u><</u> 20K	.4500	.1364	1.000	. 303
20K < X <u><</u> 30K	.6750	.2045	1.000	. 303
30К < X <u><</u> 50К	1.125	. 3409	1.000	. 303
50К < X <u><</u> 100К	2.250	.6818	1.000	. 303
100K < X <u><</u> 200K	4.500	1.364	1.000	. 303
200K < X <u><</u> 300K	6.750	2.045	1.000	. 303
300K < X <u><</u> 325K	7.313	2.216	0*	
325K < X <u><</u> 350K	7.875	2.386	0*	
350K < X <u><</u> 400K	9.000	2.727	0*	
400K < X <u><</u> 450K	10.13	3.070	0*	
400K < X <u><</u> 500K	11.25	3.409	0*	

Table 4.2-4 A1 Cycling Factor

If using a system life of other than 10000 hours, multiply A1 by $\frac{10000}{Sys.}$ Life

* - See A2 Table 4.2-5

Table 4.2-5 A₂ Cycling Factor

For FLOTOX, $A_2 = 0$

For Tex - Poly:

Total # of Cycles	A2
Up to 300K	0.0
300K < X <u><</u> 325K	2.50
325K < X <u><</u> 350K	10.0
350K < X <u><</u> 400K	20.0
400K < X <u><</u> 450K	30.0
450K < X <u><</u> 500K	40.0

If using a system life of other than 10000 hours, multiply A1 by <u>10000</u>. Sys. Life

9	
~	
4	
e	
_ هـ'	
-	

(.15 eV) Table B₁ for fLOTOX

()°) [

Memory	_	-			_	-	—			_			_	_	-		_	_	-	
(Capacity	×	0	30	40	2	-	60	70	80	4	0	100	011		20	130	1 140	-	50	160
(bits)	, '¶ 	25	35	45	5	5	65	75	85]	<u>15</u>	105	115		25	135	1 145	-	55	165
4k	·? —	245	.298	.358	4	25	500	.582	672	'`· —	1 0/1	.876	86.	9 1.	1 111	1.240	1.37	6 1.1	521	1.672
	, , , , , , , , , , , , , , , , , , ,	270	.327	.391	4	62	.540	.626	. 720		322	.932	1 1.04	9 1 1.	174	1.307	1.44	8 1.	596	1.750
8k		343	417	.501	-5	75	669.	.814	940	1.(1 110	1.225	1.38	4 1.	553	1.734	1.92	5 2.	126	2.338
		378	.457	.546	6	46	. 755	.876	1.007		150	1.303	1.46	<u>, 1 1 7</u>	642	1.828	2.02	4 2.	231	2,449
16k	· ·	190	.596	J16.	.8	1 19	000.	1.165	1.345		540	1.752	1.97	9 2.:	221	2.480	2.75	3 3.(041	3.344
	"! 	[4]	.654	. 782	<u>e.</u>	23 1	.080	1.253	1.441	<u>)</u> .[544	1.863	2.09	8 2.	349	2.614	1 2.89	5 3.	191	3.502
32k	۱. د	95	.845	1.015	1.2	06 I	418	1.651	1.907	2.1	184	2.484	2.80	6 3.	150	3.516	3.90	3 4.	312	4.742
	[] 	101	.728	1.108	11.3	1 1 10	.532	1.776	2.043	12.5	32	2.642	2.97	5 3.	330	3.707	4.10	5 4.	525	4.965
64k	5.	1 080	. 192	l.432	1.7	01 2	000	2.329	2.688	3.6	181	3.504	3.95	8 4.	443	4.959	5.50	6 6.(083	6.689
	0-1-1	182 1	.308	1.563	1.8	47 2	. 161	2.506	2.881	13.2	388	3.727	4.19	6 4.(597	5.228	5.79	0 6.	382	7.003
128k	-	384 1	.683	2.022	2.4	02 2	.824	3.289	3.798	4.	350	4.947	5.58	8 6.:	273	7.002	וו.ין	4 8.9	589	9.445
	<u> </u>	528 1	.848	2.207	12.6	08 3	.051	3.538	4.068	4.6	543	5.262	5.92	5 6.1	632	7.383	8.17	6 9.(012	9.888
256k	5.1	360 2	384	2.864	3.4	02 4	000.1	4.659	5.379	0.1	162	7.007	16.7	5 8.1	386	9.918	10.11	1 12.	165 1	3.378
	2.1	165 2	.617	3.126	3.6	94 4	.322	5.011	5.762	1 6.5	576	7.453	1 8.39	2 9.	394 11	0.457	111.58	1 112.	164]]	4.006
512k	2.7	5 <i>111</i> 3	3.378	4.059	4.8	21 5	.668	6.602	7.622	8.7	1 181	9.929	111.21	6 12.4	1 165	4.054	15.60	3 17.2	238 1	8.956
	1 3.6	168 3	3.708	4.430	1 5.2	34 6	. 124	7.101	8.165	<u>.6</u>	11 618	0.561	11.89	2 13.	311 11	4.817	16,41	0 18.(087 11	9.846
HI	3.5	5 616	1.768	5.729	6.8	04 8	000	7.318	10.758	112.3	323 1	4.014	15.83	0 17.	1 11	9.836	22.02	2 24.0	330 2	6.755
	4.	330 1 5	.234	6.252	17.3	87 8	1.643_11	0.022	11.525	113.1	153 11	4.906	16.78	5 118.	788 2	0.914	23.16	2 25.5	529_12	8.012

Table 4.2-7

B₁ for TEX-POLY (.12 eV)

()°) [1

Memory	-	-				-		_	-			-	-		-	-		-	-	-	-
[Capacit	<u></u>	20	30	40	_	50	60	1 70		80	90	10	-	011	1 12(130	1 140	115(60
(sits)	-	25	35	45	_	55 -	65	1 75	-	85	95	10	5	115	1 125		135	145	15		65
4k	-	. 454	.531	1 .615		1 902	.803	06°	1 1	1.018	1.135	1.2	1 15	1.386	1 1.53	- 17	1.660	1.80	5 1.9	55 2.	1 011
	4	.491	.572	. 659		754	.854	<u> 96. </u>	15	1.075	1.195	11.3	21	1.453	1 1.50	50 1	1.732	1.88	0 1 2.0	32 2	188
8k	-	.529	619.	117.		823	.937	1.05	- 80	1.187	1.323	11.4	167	1.617	1.7	73	1.936	2.10	5 2.28	80 2	400
	4	.573	.667	292		879	<u>. 996</u>	<u></u>	5	1.254	1 1.394	1.5	41	1.694	11.8	54 1	2.020	2.19	2 2.3	70 2.	552
16k		.623	. 729	. 844		968	1.102	1.24	15 J	1.397	1.557	1.7	26	1.903	2.08	37 2	2.279	2.47	8 2.68	84 2.	896
	4	-675 -	.785	- 905		034	1.173	1.32	4	1.476	1.640	1.8	14	1.994	1 2.18	32 1 3	2.378	1 2.58	0 2.78	89 3.	004
32k	_	.730	.855	966 ·		136	1.293	1.46	0	1.638	1.827	2.0	124	2.232	2.4	18 -	2.673	2.90	6 3.14	47 3.	396
	4	1 162.	126.	1.061		213.1	1.375	1.55	13	1.731	1.924	2.1	27	2.339	12.5	5 63	2.789	3.02	6 3.2	21 1 3.	523
64k		.855	1.000	1.156		329	1.513	1.76	6(1.917	2.138	2.3	1 69	2.612	2.8	65 C	3.128	3.40	1 3.68	83 3.	974
	-+	.926	1.077	1.242		420	1,609	1.81	8	2.026	2.252	12.4	89	2.737	2.9	35	3.263	3.54	1 3.8	28 4	123
128k	_	.031	1.206	1.397	 	603	1.825	2.06	119	2.312	2.578	2.8	157	3.150	3.45	55 3	3.773	4.10	2 4.44	42 4.	193
	4	1911.	1.299	1.495		212 -	1.941	1 2.15	12	2.443	1 2.716	13.0	102	3.301	1 3.6	12 3	3.936	4.27	1 4.6	16 4.	972
256k	_	.246	1.457	1.688	<u> </u>	937	2.204	2.45	06	2.794	3115	3.4	152	3.805	4.1	14 1	1.556	4.95	6 5.3	67 5.	1 162
	-	.349	1.570	1.810	1 2.	068	2.345	2.64	1 61	2.952	3.281	13.6	27	3.988	4.3	64 4	1.755	1 5.16	0 5.5	3 1 12	008
 512k	_	.505	1.761	2.039	1 2.	341	2.664	1 3.01	1 0	3.376	3.764	4.1	72	4.599	5.0	45 1	5.508 S	5.98	9 6.4	86 6	866
	-	.630	1.897	2.187	12.	500	2.834	3.20		3.568	3.965	4.3	83	4.819	15.2	14	147	6.23	6 1 6.7	40 7	260
HI I	_	815	2.123	2.459	1 2.	822	3.212	3.62	8	4.071	4.538	5.3	30	5.544	6.0	32 (5.641	1.22	1 7.8	20 8	437
	-	1 336.	2.287	2.637	3.	014 [3.417	1 3.85	1 63	4.301	4.781	15.2	84	5.810	6.3	59 1 (5.928	12.51	8 8.13	27 1 8	753

-

.2-8
e 4
abl
-

B₂ for TEX-POLY (-.1 eV)

۲_] (°C)

Memory	-	-	-		-		-						_		
[Capacity	v 20	30	40	50	60	70	80	90	100	011	120	130	140	150	160
(bits)	25	35	45	55	65	75	85	95	105	115	125	135	145	155	165
4k	608	.531	.468	.415	.372	.335	303	.276	.253	.233	.215	.200	186	174	.163
	. 567	. 498	.440	.393	.353	.318	.289	.264	.243	.224	.207	.192	.180	.168	.158
8k	607.	619.	.546	.485	.434	390	.354	322	.295	.272	.251	.233	.217	.202	061.
	. 662	.580	.514	.458	.411	.371	.337	.308	.283	.260	.241	.224	.209	1961.	.184
16k	.834	.729	.642	.570	1013.	.460	.416	379	.347	.320	.295	.274	.255	.238	.223
	- 677.	.683	.605	.539	.484	.437	- 397	.363	.333	.307	.284	.580	.246	.231	-315
32k	876.	.855	.753	699.	598	683.	.488	.445	.407	.375	.346	.321	299	.278	.262
	1 .913	108.	1 607.	.632	.568	1 213	.466	.425	. 390	.360	. 333	.310	.289	.280	.254
64k	1.145	1.000	188.	.783	1 007.	1 169.	.572	.521	477	.439	405	.376	350	.327	306
	1 000 1	.938	.830	740	.664	.600	.545	.798	.457	.421	. 390	.363	.338	.316	.970
128k	1.381	1.206	1.063	. 944	.845	191.	689.	.628	575	.489	.453	.422	.394	.394	670
	1 1.289	1.131.1	1.00.1	.892	.801	.724	.657	1 109.	.551	.508	.470	.437	.408	.382	.358
256k	1 1.668	1.457	1.284	1 141.1	1.020	616.	.833	1 657.	.695	639	112	.548	1 013.	.476	.446
	1.557	1.366	1.209	.078	.968	.874	.794	.726	.666	.614	.568	.528	.493	.461	.433
512k	2.016	1.761	1.552	1.378	1.233	1.111	1.006	116.	839	172	.714	.662	616	.576	.540
	1.882	1.651	1.461	1.303	1.169	1.056	1 096.	1 118.	.805	.742	.687	.638	. 595	- 570	.523
M	2.430	2.123	1.871	1.662	l.487	1.339	1.213	1.105	1.012	186.	860	1 867.	.743	694	1 159.
	1 2.269	1.991	1.761	1.570	1.410	1.274	1.157	1.057	070.	.894	.828	077.	1 817.	.672	.630

For a redundant cell approach, the conventional M out of N reliability for Time = infinity relation was used:

MTBF = Sum from J=0 to J=K the term _____1____(N-J)L

where:

N = Number of active assemblies (N=2)
M = Min. number of assemblies required (M=1)
L = Assembly Failure Rate (L normalized to 1)
J = Number of assembly failures
K = N-M

This becomes MTBF = $\frac{1}{(2-0)}$ + $\frac{1}{(2-1)}$ = 3/2 MTBF improvement, or 2/3 Fail. Rate reduction

This .6667 factor is multiplied by the cycling failure rate to determine the equivalent failure rate.

For the Hamming code approach, the failure rate improvement factor (π_{ECC}) is derived as follows:

Ordinary 8 bit word failure rate = $(\lambda_w) = 8 \times Bit$ failure rate = $8 \times \lambda_b$ "New" word reliability = $R_w = R^{12} + 12R^{11}Q = R^{12} + 12R^{11}(1-R)$ = $R^{12} + 12R^{11} - 12R^{12} = 12R^{11} - 11R^{12} = 12e^{-11\lambda t} - 11e^{-12\lambda t}$

Integrating the above expression from zero to infinity yields an effective "new" word failure rate of:

 $\frac{n(n-1)}{2n-1} = \frac{(12)(11)}{23} = 5.74 \lambda_b$ This yields an improvement factor (π_{ECC}) of : $\frac{\lambda w}{\lambda w} = \frac{5.74\lambda b}{8\lambda b}$ where

 $\lambda w' = New word failure rate$ $<math>\lambda w = Old word failure rate$ $\lambda b = bit failure rate$

This factor is applied to the cycling failure rate. It is a conservative approach because it affects only the cycling failure rate portion of the model. If device types other than EEPROMs incorporate on-chip error correction in the future, this factor can also be applied to the defect failure rate (although careful judgment must be made regarding the percentage of defect failures that are correctable).

Defect Failure Rate

Earlier in this section, defects were identified as a very significant contributor to the overall device failure rate for all memory device types. This was evident from the literature search in addition to the life test data collected. The life test data provided much information regarding failure modes and mechanisms that basically were defect-related. The life test data was then used to determine the defect failure rate of the devices.

Table 4.2-9 is a summary of the life test data collected as part of this study. All of the life tests were conducted at 125°C. The column titled "Hrs (M)" indicates the total number of millions of device hours at 125°C for all devices of the designated type and complexity. The column titled "Hrs (M) @ 25°C" indicates the equivalent part hours at 25°C, assuming an activation energy of 0.8 eV for memories. "FPMH @ 25°C" is the calculated failure rate in failures per million hours using the Chi-square distribution at 50% confidence. The column "217E @ 25°C" is the MIL-HDBK-217E base failure rate ($C_1\pi_T$) at 25°C, and the final column is a ratio of the calculated value to the MIL-HDBK-217E value.

The 0.8 eV value was derived by analyzing the published activation energy distributions for different memory failure mechanisms provided by the memory model literature search; these were categorized as metallization, oxide, and

Derived	Table 4.2-9 Failure Rates - Memc	ories	
014604770 014604770	ວິຕິດີ ຕິດ -	2.7 .6	► 8 3 0 0 0 0 0
4 888888885	22.23.88 2.2.25	. 12 . 24 . 24	27 28 88 27 28 88 28
.001494 .001291 .001291 .001354 .001354 .001602 .001614 .001617	.000543 .000549 .000549 .001267 .001267 .000366	. 003293 . 001381 . 000471	.000839 .000967 .001245 .001245 .001267 .001267
00000000		000	مەمەمە
იიიო-ო 4 იო	40-4 000	1 <u>3</u> 6 – 1	8892559
ထံထံထံထံထံထံထံထံ	ထံထံထံတံ ထံထံထံ	ຜຸໝຸໝຸ	ထံထံထံထံထံထံ
A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	VAR VAR VAR	747 X X X X X X X X X X X X X X X X X X
. 187 . 096 . 096 1. 051 1. 053 1. 349 1. 747 1. 414 . 474	3,47 8,94 8,94 4,669 4,669 1,513 1,513 3,243	18, 15 . 49 5. 705	12.66 13.902 13.068 23.533 20.901 2.102

₩¥₽₩₩₩

 $\vec{v}_{3} \neq \vec{v}_{3} \neq \vec{v}_{4} \neq \vec{v}_{2} \neq \vec{v}_{3} \neq \vec{v}_{3}$

1

NEW/217E (%)#250

217E

HHH SSC SC

טרער

EA(eV) #FAIL

FAILURE

HRS(M) 1250

NBITS

EG

Ъ

Table 4.2-9 (CONTD)

Derived Failure Rates - Memories

NEW/217E (%) a250	2.6 1.7	۲.	5. 3	9.4	4.5	1.2	6.	1.2	1,4	.6	9.	4.7	5.7	1.2	1.2	ġ	લં	1.2	1.2	2.3	1.3	3.8	.2	1.0	۲.	<u>د</u> .
217E a25C	 8 .	8.	8.	8.	8.	8.	. 12	8.	8.	. 006	. 12	. 12	. 12	.24	.24	.24	.24	.24	.24	. 24	·24	88.	6.	60.	. 14	. 14
erth ersc	. 002575	. 000373	. 002635	. 00169	9EZZ00.	. 000741	.001028	. 000724	. 000856	. 000036	. 000695	. 005589	. 006823	. 002852	. 002869	. 001338	. 000563	. 002975	. 002937	.005589	. 003028	.001325	. 000139	. 000673	. 000933	. 000728
<u> ዓ</u> -ተለ	00	۵	۵	٥	۵	۵	۵	۵	۵	ß	٥	٥	۵	٥	٥	٥	٥	٥	٥	٥	۵	٥	٥	٥	٥	۵
#FAIL	80 10	0	1	2	8	7	-	8	8	0	ഹ	0	-	0	-	0	-	0	0	0	ო	0	0	4	4	8
EA(ev)	ຜ຺ຜ຺	ø.	ø.	8.	ø.	8.	æ.	8.	ø.	80.	8.	8.	ø.	ø.	8.	ø.	ω.	Ø.	ø.	Ø.	8	8.	ø.	ø.	ø.	8.
FAILURE MECHANISM	VARIOUS	N/A	VARIDUS	NIONN	Nignan	NIONN	NIONN	VARIOUS	NNONN	VARIOUS	NIONN	NA	VARIOUS	N/A	NIONN	N /A	ž	N/A	R/N	N/A	VARIDUS	NA	N A	NIONN	VARIDUS	VARIOUS
HRS(M) a1250	12.423 5.109	. 75	1. 786	.638	28 4.	1.456	. 658	1, 49	1.26	7.73	3.29	8	660 .	. 098	.236	.209	1.202	1 60 .	. 095	8	489	.211	2.009	2.799	1.896	1.482
STIB	₽ġ	576	5	226	2000	Ř	₹ ¥	¥	₽	₽	₹ S	762	5 5	1832	1842	1852	1928	2011	2016	3360	3552	Ř	Ř	₹ ¥	128X	2952 2952
TECH	<u> </u>	Ę	:	:	I	ğ	1	SOM	Ξ	I	I	TILNIC	:	:	z	z	:	z	2	:	5	SOM	z	ï	:	:
TYPE	HAR	HADS	I	:	I	EEPROM	1	EEPROM	I	=	:	₽ L	1	:	2	1	:	I	1	1	I	Đ	=	I	I	:

miscellaneous defect-related mechanisms. The average E_a s were computed to be .84, .37, and .85, respectively. RAC-MDR-21 was consulted to determine the weighting factors to be associated with each of these mechanisms for bipolar and MOS memories. Table 4.2-10 provides the results. Interestingly, the results for the two technologies were nearly the same, hence the value of 0.8 eV for all memory devices. This relatively high activation energy is driven by the preponderance of oxide step coverage metallization defects in the MDR-21 database. If oxide defects had been predominant, the activation energy would have been much lower.

From the life test analysis, a defect failure rate model (similar to MIL-HDBK-217E) was derived that uses two factors: a temperature acceleration factor (π_{T}) and a base failure rate/complexity modifier (C_{1}) . The π_{T} relationship is taken from MIL-HDBK-217E and is as follows:

$$\pi_T = 0.1(e^X)$$
 where: $x = -A(1)$
 $(T_1 + 273)$ 298

In most instances, insufficient test data was available to make a detailed evaluation of the impact of device complexity on failure rate. The complexity factors of MIL-HDBK-217E were therefore used as guidance in the C_1 factor development. The following paragraphs describe the defect failure rate model for each memory device category. Refer to Appendix E for the life test data, and Table 4.2-9 for the derived failure rates.

MOS PROMs (Including UVEPROMs, EEPROMs, Floating gate MOS PALs/PLAs)

The data collected did show some correlation between device complexity (capacity in bits) and failure rate. The average failure rate of the 64K, 128K, and 256K UVEPROM test data was used as a baseline failure rate. This value is .00112 FPMH (Failures Per Million Hours) at 25°C for D-level quality. This equals .000339 FPMH after normalizing to B-level quality. The .8 eV activation energy is used to determine the failure rates at temperatures other than 25°C. This activation energy yields an A value of 9270. The FLOTOX and Tex-Poly derived failure rate data is consistent with the UVEPROM

calculations, and the 16K EEPROM resultant failure rate (together with the UVEPROM calculated values) supports the 217E complexity relationship. A complexity relationship equal to that of MIL-HDBK-217E is used, which results in the following C_1 values (these are multiplied by π_E to determine the overall defect failure rate):

C1

Up to 16K bits .00085 16K < X < 64K .00169 64K < X < 256K .00339 256K < X < 1M .00678

(Note: the 25°C normalized failure rates have been multiplied by 10 to get C_1 values – this is to compensate for the 0.1 multiplier in the π_T expression.)

Bipolar PALs/PLAs

The 0.8 eV activation energy (9270 "A" value) is used for π_T . Very little correlation between programmable array bit count and defect failure rate was found for these device types; however, the devices for which life test data was available all contained 200 gates or less. The average failure rate for these devices was determined to be .003456 FPMH at 25°C for D-level quality. This is .001047 after normalizing to B-level quality. A complexity relationship similar to MIL-HDBK-217E is assumed for higher gate count devices, which yields the following complexity factors:

 C_1

Up	to	200	gates	.01047
200) <	Χ <	1000 gates	.02094
100	00	< X <	< 2000 gates	.04188
Bipolar PROMs

Most of the life test data available was for low complexity (less than 16K bit) devices. The derived failure rates for \leq 16K devices are roughly equal; the 32K part failure rate was about triple this. The average failure rate for the < 16K group was .003104 at 25°C for D-level quality or .000941 when normalizing to B quality. The 32k bit device test data was deemed insufficient to warrant departure from the 217E complexity relationship. Using the 217E relationship yields the following C₁ values:

			C1
Up to	16K	bits	.0094
16K <	Х <	64K	.0188

i.

64K < X <u><</u> 256K	.0376
256K < X < 1M	.0753

MOS ROMs

A weak correlation of complexity to failure rate was found. The 128K and 256K device failure rate data was used to develop an average failure rate of .0008605 FPMH for that device category at 25°C and D-level reliability. This yields .000261 FPMH when normalizing for B-level quality. Using the 217E complexity relationship results in the following:

С	1
	ľ

Up to 16K bi	ts .00065
16K < X <u><</u> 64	K .0013
64K < X <u><</u> 25	6K .0026
256K < X < 1	M .0052

Bipolar SRAMs

Test data for low complexity SRAMs of this type were available (under

16K bits). The average failure rate was calculated to be .001734 FPMH at 25°C for D-level quality, or .000525 for B-level quality. The C₁ values are:

```
C<sub>1</sub>
```

Up to 16K	bits	.0052
16K < X <	64K	.0105
64K < X <	256K	.0210
256K < X	< 1M	.0420

MOS SRAMS

Life test data for 16K MOS SRAMs was used and is .002575 FPMH for that complexity at 25°C and D-level quality. Normalizing for B-level quality gives .000780 FPMH. The same C_1 values as are used for bipolar SRAMs are then applied.

с₁

Up to	16K	bits	.0078
16K <	X <	64K	.0156
64K <	X <	256K	.0312
256K <	< X <	< 1M	.0624

DRAMs

Data for 64K DRAMs was available. The average failure rate is .000842 FPMH for this device at 25°C and D-level quality. This equals .000255 for B-level quality. The 217E complexity relationship yields:

C₁

Up to	16K	bits	.0013
16K <	Χ <	64K	.0025
64K <	X <u><</u>	256K	.0051
256K <	< X -	< 1 M	.0100

|--|

	REPORTED FAILURE MECHANISM ACTIVATION ENERGIES FROM SIX VENDORS								JRE ANISM TITY
FAILURE MECHANISM	VEN- DOR 1	VEN- DOR 2	VEN- DOR 3	VEN- DOR 4	VEN- DOR 5	VEN- DOR 6	MECHANISM E ⁽⁴⁾ AVERAGE	FAI EVE BIP	LURE NTS MOS
Metallization ⁽¹⁾	. 9	.7	.75	1.0	.7	1.0	. 84	34	202
Oxide ⁽²⁾	. 52	. 3	. 35	. 45	. 3	. 3	. 37	3	37
Miscellaneous ⁽³⁾	. 9	1.06	. 95	. 62	. 62	1.0	.85	3	18
	I			<u> </u>	<u> </u>	Even	t Total	40	257
	Ave	erage Ad	ctivati	ion Ene	ergy *((Eg ave	g.) (5)	0.806	0.773

- Notes: (1) Metallization includes metallization/mask defects, open tracks, electromigration.
 - (2) Oxide includes all dielectric defects.
 - (3) Miscellaneous includes bulk defects, package-related defects, latch-up defects and various lesser-occurring events.
 - (4) The mechanism E_A average is the arithmetic mean of the six reported values for each mechanism. Since the six vendors did not report numbers of failure events, these values could not be weighted by vendor.

MOS Memory:
$$(202 \times .84) + (37 \times .37) + (18 \times .85) = 0.773 \text{ eV}$$

Bipolar Memory: $(34 \times .84) + (3 \times .37) + (3 \times .85) = .806 \text{ eV}$

4.2.2.3 Memory Model Form

Based on the information and data just presented, the memory device model form that has been developed for this project is as follows:

$$\lambda_{P} = \lambda_{EM} + \lambda_{TDDB} + [(C_{1})(\pi_{T}) + \lambda_{cyc} + (C_{2})(\pi_{E})](\pi_{Q})(\pi_{L})$$

where:

- λ_p is the device predicted failure rate in failures per million hours.
- $\lambda_{\mbox{EM}}$ is the "go no go" failure rate due to electromigration. Also refer to section 4.1.3.2.
- λ_{TDDB} is the failure rate due to Time dependent dielectric breakdown. Also refer to section 4.1.3.1.
- C_1 is the base failure rate for defect-related failures.
- π_{T} is the temperature multiplier for the defect-related failure rate.
- λ_{Cyc} is the EEPROM* read/write cycling induced failure rate and is:

$$\lambda_{cyc} = [A_1B_1 + A_2B_2/\pi_Q] \pi_{ECC}$$

where:

 A_1 and A_2 are the base cycling failure rates. B_1 and B_2 are the temperature/complexity multipliers. ^{m}ECC is the on-chip error correction factor: = .7174 for Hamming Code with 8 data bits and 4 correct bits. = .6667 for a two-needs-one redundant cell approach. = 1.0 for any device not using on-chip error correction.

* - λ_{cvc} = 0 for all devices other than Flotox or Textured Poly EEPROMs.

 C_2 is the package base failure rate. π_E is the environmental factor. Refer to sect. 4.6.4. π_Q is the quality factor. Refer to sect. 4.6.1. π_1 is the learning factor. Refer to sect. 4.6.2.

4.3 MONOLITHIC GaAs DEVICES

4.3.1 GaAs Database - Summary of Sources and Data

The GaAs model database relied on information from an industry survey, telephone contacts with additional companies, and published literature. The published literature includes papers, articles, books, company data books, and company application notes. The GaAs industry survey by mail was largely unsuccessful since only one useful set of data was obtained from the thirteen companies that responded (see Table 4.3-1). General Electric supplied accelerated life test data on a power MMIC amplifier through the survey format. Litton and Harris formally withdrew from the survey after receiving specific instructions for the type of data that would be required. Seven additional companies (see Table 4.3-1) were contacted independently of the industry survey and NEC Corp. supplied useful accelerated life test data from an application note. Other data in the form of accelerated life test reports on discrete GaAs field effect transistors and diodes was obtained from Alpha, Sanders, Avantek, Fujitsu, Harris, NEC Corp., and Texas Instruments although the data was not useful for this study. There appears to be a tendency among the GaAs integrated circuit manufacturers to carefully guard specific process details and reliability test results especially in this area where emerging technology is being built. This tendency is understandable since much of the technology is considered proprietary and many of the company contacts from the industry survey expressed this view. The most useful data was obtained from published papers and data books which discussed the results of accelerated life tests on GaAs integrated circuits and other circuit elements.

Approximately ninety six papers, articles, and books were reviewed during the literature search for failure mechanism information and this source also provided most of the data for the development of models. The results of accelerated life test studies from the six most useful papers or articles and three company data books are summarized in Tables 4.3-2, 4.3-3 and 4.3-4. The integrated circuit element summary data (see Table 4.3-4) was developed from a paper by Roesch and Stunkard^[92]. The other papers are referenced in Tables 4.3-2, and 4.3-3.

107

Table 4.3-1

GaAs Data Collection and Industry Contacts

COMPANIES RESPONDING TO SURVEY	BUILDS MMIC GaAs	BUILDS DIGITAL GaAs	WITH- DREW FROM SURVEY	DOES NOT BUILD GaAs	SENT DATA	DATA USEFUL
Litton Electron Devices <u>Microwave Solid State</u>			x			
Harris Microwave Semiconductor	X	X	X			
Mostek	ļ			x		ļ
Pacific Monolithics	X		ļ			ļ
Tachonics Corp	X	ļ	·	ļ		
TriQuint Semiconductor	X	<u>X</u>				ļ
Watkins Johnson Co	X		 			
Vitesse Semiconductor	ļ	<u> </u>	ļ			
Gain Electronics	 	<u> </u>				
Anadigics	X	X	ļ			
M/A-COM AAD	<u>x</u>	ļ	ļ	ļ	<u> </u>	.
Microwave Semiconductor Corp.	X		ļ			<u> </u>
Alpha	X	x	ļ		<u> </u>	
<u>G.E.</u>	X				<u> </u>	X
Avantek	X				<u> </u>	+
Sanders Microelectronic Center	X				<u> </u>	
ADDITIONAL TELEPHONE CONTACTS						
NEC Corp	<u>x</u>	x			<u>x</u>	<u>x</u>
David Sarnoff Research Center Raytheon Special Microwave				X		
Devices Operation	X	+	<u> </u>			
Adams Russell Electronics	X	<u> </u>	··	+		+
Eaton-AIL-Division	<u> </u>				_	

Table 4.3~2

		ļ	TEST	ļ	ACTIVATION	FAILURE RATE	
			TEMP	SAMPLE	ENERGY	REFERENCED	REFERENCE
MANUFACTURER	TEST TYPE	DEVICE TYPE	(°C)	SIZE	(ev)	T0_150°C	NO .
TriQuint Semiconductor	Accelerated Life Test	 TW9111U <u> Amplifier</u>	225 225	131	1.6	4.26 × 10 ⁻⁷	83 & 84
Harris Microwave _Semiconductor	Accelerated	 HMM-11810 <u> Amplifier</u>	200 200	31	1.6	4.36 x 10 ⁻⁷	83 & 85
General	Accelerated Life Test	 MMIC Power Amplifier	 200 	 	1.5	1.29 x 10 ⁻⁶	89
NEC Corporation	Accelerated Life Test	 Amplifiers & Interface ICs	220	30	1.17	7.85 x 10 ⁻⁷	90
M/A-COM Inc.	Accelerated Life Test	 MA4GM201 MA4GM211 SPST_Switches	250	20	1.35	2.06 x 10-7	91
WEIGHTED AVERAGES					1.5	4.51 x 10 ⁻⁷	

GaAs MMIC Data Summary

Table 4.3-3

GaAs Digital Data Summary

Ì			TEST TEMP	SAMPLE	ACTIVATION	FAILURE RATE	REFERENCE
MANUFACTURER	TEST_TYPE	DEVICE TYPE	(°C)	SIZE	(ev)	TO 150°C	<u>NO.</u>
NEC Corporation	Accelerated Life Test	ECL Compatible OR-NOR Gates, T&D Flip-Flops	220 220 	30 	1.4 	3.33 x 10 ⁻⁸ 	86
TriQuint Semiconductor	Accelerated Life Test	MSI Circuits	225	130	1.6	3.51 x 10-7	83
Giga Bit _Logic Inc	Accelerated	SSI, MSI, LSI Circuits	150	658 	1.4	4.58 × 10-6	88
WEIGHTED AVERAGE		 		 	1.4	2.53 × 10 ⁻⁶	

Table 4.3-4

GaAs Integrated Circuit Element Data Summary

INTEGRATED CIRCUIT ELEMENT	TEST TYPE	TEST TEMP (°C)	SAMPLE SIZE	ACTIVATION ENERGY (ev)_	FAILURE RATE REFERENCED TO 150°C
Implanted Resistors & Ohmic Contacts	Accelerated Life Test	203	~90		1.57 x 10-7
Thin Film Resistors	Accelerated Life Test	125 150 175 200	70	1.0	3.05 x 10-7
First Level Metallization	Accelerated Life Test	250 275 300	80	1.8	0.059 x 10-7
Air Bridge Metallization	Accelerated Life Test	170	~70	0.43	0.68 x 10-7

4.3.2 GaAs Failure Rate Models

No GaAs integrated circuit models currently exist in MIL-HDBK-217E. The only reference to GaAs in MIL-HDBK-217E is in the discrete semiconductor FET section where an application factor and a quality factor are applied to GaAs FETs. The 217E model is basically a silicon model. Significant material and processing differences ^[88,93,94] exist between silicon and GaAs (see Table 4.3-5) and these differences result in different failure mechanisms for the two materials and require different failure rate models.

The literature search revealed that the primary failure mechanism affecting GaAs integrated circuits centers around metallization and GaAs interdiffusion ^[83,93,95]. In particular Au-GaAs interdiffusion involves a slow degradation in the GaAs contact regions and in the Schottky gate regions of the MESFET components. The MESFET channel regions become reduced and hot spots can develop. Ohmic contact resistance will increase in the drain and source contacts on the MESFETs and in the other contacts in the integrated circuit. Failures will initially involve parametric changes in performance but will eventually involve catastrophic damage. Other failure mechanisms including electromigration, corrosion, backgating, and capacitor dielectric defects have been reported to occur rarely in comparison to the Au-GaAs interdiffusion failure mechanism^[83].

The circuits selected for failure rate modeling were the GaAs MMIC (Monolithic Microwave Integrated Circuit) and the GaAs digital circuits. Significant processing differences exist between the two circuit types and the differences resulted in two different models. GaAs MMICs use depletion mode MESFETs with fewer transistors dissipating more power than on digital circuits which use larger numbers of smaller size depletion or enhancement mode MESFETs that dissipate less power^[83]. MMICs use many capacitors (metal insulator metal, interdigited, stub, Schottky barrier), inductors (lumped or distributed), resistors (implanted or thin film), and Au based air bridge interconnects^[93]. Digital GaAs circuits make limited use of implanted resistors and Schottky diodes. No air bridge interconnects are used on

digital GaAs circuits. Higher frequency GaAs MMIC devices require more control of interconnect and substrate dimensions to maintain good quality transmission line interconnections. MMIC devices use more extensive backside processing steps because of the low inductance ground connections that are required^[93]. This step can also serve to increase the thermal conductivity through the MMIC substrate and this is not applicable on digital GaAs circuits.

Accelerated life test studies in industry indicate that the MESFETs (active devices) used in MMIC and digital GaAs devices fail at higher rates than the other components on the integrated circuits. This requires that the failure rate models must be dominated by the MESFET failure mechanism (Au-GaAs interdiffusion). Since the failure mechanism of the MESFET is based on a diffusion process, temperature was determined to be the driving factor in the active device failure rate model (λ_A in figures 4.3-1 and 4.3-2) which was then based on the modified Arrhenius equation^[96] as follows:

$$\frac{E_A}{K} \left\{ \frac{1}{T_1} - \frac{1}{T_2} \right\}$$

$$\lambda_2 = \lambda_1 e \qquad (4.3.1)$$

where:

Ea = Activation energy (ev) T1 & T2 = Temperatures (Kelvin) $\lambda_1 & \lambda_2$ = failure rates at T1 & T2 K = Boltzmann's constant

The complete GaAs MMIC and digital failure rate models are presented in figures 4.3-1 and 4.3-2 with all of the symbols and equations defined except for $C_2 \pi_E$, π_L , and π_Q which are found in other sections of this report. The active device base failure rate (λ_A) for both MMICs and digital GaAs devices were developed from equation 4.3.1 by calculating weighted averages (based on sample size) of the MMIC and digital GaAs accelerated life test failure rates and activation energies that were listed in Tables 4.3-2 and 4.3-3. The reference temperature is 150°C (423°K) and the only remaining unknown is the channel temperature T_{CH} (see figures 4.3-1 and

4.3–2). The application factor for MMICs (π_A) was developed by comparing the ratio of the 150°C failure rates (see Table 4.3-2) for a known low noise MMIC ($\pi_A = 1$) made by Harris Semiconductor and a power amplifier MMIC made by General Electric ($\pi_A = 3.0$ for power devices). The General Electric MMIC was also used to establish the maximum power range (3000 mw) for the application factor. The MMIC active device complexity factor ($\pi_{\mbox{\footnotesize CA}}$) was derived from a set of MMIC failure rate data from NEC Corporation^{CC[90]} (see Table 4.3-6). A ratio of failure rate data was found by dividing the data with greater than one hundred transistors at three given quality levels by data with less than one hundred transistors. This ratio was then averaged and used as the MMIC active device complexity factor ($\pi_{\mbox{CA}})$. The digital GaAs active device complexity factor (π_{CA}) was derived from failure rate data in a paper by Venkataraman, Kotz, and Welch^[87] (see Table 4.3-7). Small scale and medium scale integration failure rates were averaged together as a group and compared to large scale integration failure rates to develop the digital complexity factor ($\pi_{CA} = 2.0$). The passive device failure rates $(\lambda_p \text{ in figures 4.3-1 and 4.3-2})$ for MMICs and digital GaAs devices were derived from a paper by Roesch and Stunkard^[92] (see Table 4.3-8) where accelerated life tests were performed on GaAs integrated circuit elements. Composite digital passive failure rates were developed by summing the failure rates for the implanted resistors, ohmic contacts, and first level metallization used in digital GaAs circuits. The failure rates of thin film resistors and air bridge metallization (used in MMICs) was added to the digital composite failure rate to establish a passive MMIC failure rate since all of the passive circuit elements are used on MMIC devices. The failure rate data for integrated circuit elements in Table 4.3-8 (75% current level) were derated from the maximum current levels (100%) given in the referenced paper to represent a more typical operating level for the circuit elements. A composite activation energy (.43 eV) was used for both MMIC and digital GaAs passive failure rate models. The complexity factor ($\pi_{\mbox{CP}}$) appearing in the MMIC failure rate model was derived from an engineering estimate based on the much wider use of passive components in MMIC devices when compared to digital GaAs devices. The digital passive device GaAs model does not have a complexity factor because of the more limited use of passive devices on

digital circuits and because this information is more difficult to determine on digital circuits. When information for the model factors is unknown, the default values revert to the maximum numbers listed for each factor. The temperature term (T) required for the passive failure rate models (see figures 4.3-1 and 4.3-2) is meant to apply to the maximum passive device temperature on each circuit. If this temperature is unknown, the default value becomes the active device channel temperature (T_{CH}) which must be known. Also, the weighted averages of the failure rates listed in Tables 4.3-2 and 4.3-3 which determine λ_{Δ} for both models and the failure rates developed from Table 4.3-4 for λ_{p} were based on B-level quality devices to correspond to a quality factor π_0 of "one". Table 4.3–9 contains calculated values for active and passive base failure rates from 25°C to 175°C for both MMIC and digital GaAs devices. The failure rates are carried to four places (failures/10⁶ hours) which results in zero values for the active device failure rates at the lower temperatures. The maximum channel temperature listed in Table 4.3-9 is 175°C which was the highest maximum operating temperature reported by any of the manufacturers.

The original proposed form for MMIC devices is shown in equation 4.3.2.

$$\lambda_{p}(MMIC) = \sum_{i=1}^{n} (\lambda_{mi} \pi_{Ai} \pi_{CLi}) + (\lambda_{R} \pi_{CR} + \lambda_{L} \pi_{CL} + \lambda_{C} \pi_{CC}) \pi_{Q}$$

$$(4.3.2)$$

The base failure rate (λ_{mi}) was designed to account for different size active device operating at different channel temperatures on the same chip. This would require a careful thermal survey of the device and this information was not available for this study. Individual integrated circuit element failure rate terms for resistors (λ_R) , inductors (λ_L) , and capacitors (λ_C) were also proposed but the minimal amount of data on circuit elements made this concept difficult to implement and the resulting composite or lumped passive failure rates were developed in this study.

The final model equations and symbols were modified in order to make them compatible with MIL-HDBK-217E.

A temperature factor (π_T) was defined by including only the exponential terms from λ_A and $\lambda_p.$

The modified equations are shown in equations 4.3-3 and 4.3-4 below.

$$\lambda_{M} = [(C_{1A} \pi_{TA} + C_{1P} \pi_{TP}) \pi_{A} + C_{2} \pi_{E}] \pi_{L} \pi_{Q}$$

$$\lambda_{D} = [C_{1A} \pi_{TA} + C_{1P} \pi_{TP} + C_{2} \pi_{E}] \pi_{L} \pi_{Q}$$
(4.3.4)

where:

ЪM	H	MMIC GaAs Part Failure Rate
λD	2	Digital GaAs Part Failure Rate
CIA	=	GaAs Active Device Complexity Factor (For
		transistors and diodes)
C _{1P}	=	GaAs Passive Device Complexity Factor (For
		resistors, capacitors, inductors)
^π TA	~	GaAs Active Device Temperature Factor
πтр	=	GaAs Passive Device Temperature Factor
π _A	=	MMIC Application Factor
^C 2 ^π E	=	Package Failure Rate
π	=	Experience or Learning Factor
π0	=	Quality Factor

FIGURE 4.3-1

GaAs_MMIC_FAILURE_RATE_MODEL

 $\lambda_M = [(\lambda_A \pi_{CA} + \lambda_P \pi_{CP}) \pi_A + C_2 \pi_E] \pi_L \pi_Q$ 10⁶ hours

^х м	=	MMIC PART FAILURE RATE
λA	=	MMIC ACTIVE DEVICE BASE FAILURE RATE
^π CA	=	MMIC ACTIVE DEVICE COMPLEXITY FACTOR
λ _P	=	MMIC PASSIVE DEVICE BASE FAILURE RATE
‴СР	=	MMIC PASSIVE DEVICE COMPLEXITY FACTOR
πA	=	MMIC APPLICATION FACTOR
C ₂ π _E	=	PACKAGE FAILURE RATE
πL	=	EXPERIENCE OR LEARNING FACTOR
ΨQ	=	QUALITY FACTOR

$$(\frac{1}{T_{CH} + 273} - \frac{1}{423}) \frac{\text{failures}}{10^{6} \text{ hours}}; E_{A} = 1.5 \text{ ev}$$

$$\lambda_{A} = 0.4506 \text{ e}$$

$$\pi_{A} = 1.0 \text{ FOR LOW NOISE AND LOW POWER LESS' THAN OR EQUAL TO 100 mw}$$

$$3.0 \text{ FOR DRIVER AND HIGH POWER GREATER THAN 100 mw TO 3000 mw}$$

$$\pi_{CA} = 1.0 \text{ FOR LESS THAN 100 ACTIVE DEVICES}$$

$$1.6 \text{ FOR 100 TO 1000 ACTIVE DEVICES}$$

$$\pi_{CP} = 1.0 \text{ FOR LESS THAN OR EQUAL TO 10 PASSIVE DEVICES}$$

$$1.2 \text{ FOR 11 TO 100 PASSIVE DEVICES}$$

$$1.3 \text{ FOR 101 TO 1000 PASSIVE DEVICES}$$

$$(\frac{1}{2} - \frac{1}{2}) \frac{\text{failures}}{1}$$

$$-4980$$
 T + 273 423 10^6 hours; E_A = 0.43 eV

 $\lambda p = 0.2263 e$

FIGURE 4.3-2

GAAS DIGITAL FAILURE RATE MODEL

$$\lambda_D = [(\lambda_A \pi_{CA} + \lambda_P) + C_2 \pi_E] \pi_L \pi_Q \frac{failures}{106 hours}$$

= DIGITAL GAAS PART FAILURE RATE
= DIGITAL GAAS ACTIVE DEVICE BASE FAILURE RATE
= DIGITAL GAAS ACTIVE DEVICE COMPLEXITY FACTOR
= DIGITAL GAAS PASSIVE DEVICE BASE FAILURE RATE
= PACKAGE FAILURE RATE
= EXPERIENCE OR LEARNING FACTOR
= QUALITY FACTOR

$$(\frac{1}{T_{CH} + 273} - \frac{1}{423}) \frac{failures}{10^{6} \text{ hours}}; E_{A} = 1.4 \text{ ev}$$

$$\lambda_{A} = 2.5303 \text{ e}$$

$$\pi_{CA} = 1.0 \text{ FOR LESS THAN 1000 ACTIVE DEVICES (1)}$$

$$2.0 \text{ FOR 1000 TO 10,000 ACTIVE DEVICES (2)}$$

$$(\frac{1}{T + 273} - \frac{1}{423}) \frac{failures}{10^{6} \text{ hours}}; E_{A} = 0.43 \text{ ev}$$

$$\lambda_{P} = 0.0687 \text{ e}$$
(1) THIS FACTOR INCLUDES SMALL SCALE AND MEDIUM SCALE INTEGRATION PARTS.

(2) THIS FACTOR INCLUDES LARGE SCALE INTEGRATION PARTS.

Table 4.3-5

GaAs Material and Process Comparison With Si

MATERIAL PROPERTIES (300 K)	GaAs	<u>Si</u>	COMMENTS
Electron Mobility (cm ² /v.s)	8500	1 500	GaAs has higher mobility (5.7 times) which translates to at least twice the speed of Si
Carrier Drift Velocity (cm/s)	2.2 x 10 ⁷	6.5 x 106	GaAs has a faster switching speed.
Electric Field at Peak Electron Velocity (v/cm)	7 x 10 ³	3 x 104	GaAs has potential for lower power dissipation.
Intrinsic Resistivity (ohm-cm)	2.3 x 10 ⁵	1 x 108	A semi-insulating substrate for GaAs means no problems with oxide or junction isolation.
Energy Bandgap (ev)	1.42	1.12	GaAs has special optical properties and a better radiation tolerance.
Intrinsic Temp (°C at 10 ¹³ cm-3 background concentration)	300	130	At more than twice the intrinsic temperature of Si, GaAs has potential to operate at higher temperatures.
Linear Coefficient of Thermal Expansion (°C ⁻¹)	6.86 x 10-6	2.6 x 10-6	Thermal mismatches between materials will be a more difficult problem on GaAs.
Thermal Conductivity (W/cm°C)	0.46	1.5	The higher thermal resistance (more than 3 times greater) of GaAs means that heat sinks are usually required and other thermal management issues are a serious concern.
Melting Point (°C)	1238	1415	

Table 4.3-5 (cont)

GaAs Material and Process Comparison With Si

PROCESSING STEPS	GaAs	Si	COMMENTS
Transistor Structures	Schottky Barrier	Bipolar & MOS	GaAs MESFETs are free from the surface effects, ionic contam- ination, charge trapping, and time dependent dielectric breakdown problems seen in Si.
Metallization	Au, Ti, Pt Based	Al and Polysilicon Based	GaAs is less susceptible to the electromigration and corrosion mechanisms on Si products.
Native Oxide	None Stable	SiO ₂	Construction of MOS devices and use of traditional processing techniques is not possible on GaAs.
Backside Processing	Required	Minimal	Thinner wafers and backside processing creates more handling problems (breakage and damage) on GaAs.

Table 4.3-6 NEC GaAs MMIC Failure Rates at 125°C⁽⁹⁰⁾

QUALITY LEVEL	n <u><</u> 100	100 < n <u><</u> 1000	RATIO 100 < n < 1000 n < 100
JAN-S Equivalent	50	100	2.0
JANTXV Equivalent	200	300	1.5
JANTX Equivalent	300	400	1.33
AVERAGE RATIO FOR MMIC COMPLEXITY			1.61

Table 4.3-7

Venkataraman's Digital GaAs Failure Rates at 100°C⁽⁸⁷⁾

	PART TYPES	FAILURE RATES (Failures/10 ⁹ Hours)	AVERAGE FAILURE RATE (Failures/10 ⁹ Hours)
SSI	NOR Gate Exclusive OR Gate Buffer Comparator Flip-Flop	77 82 91 90 50	75
MSI	COUNTERS MULTIPLEXER/ DEMULTIPLEXER	80 55	
LSI	1 K STATIC RAM	153	153
RATI FAIL GaAs	O OF LSI/MSI & SSI URE RATES FOR DIGITAL COMPLEXITY		2.04

Table 4.3-8 GaAs Passive IC Element Failure Rates⁽⁹²⁾

	FAILURE RATE AT		
PASSIVE INTEGRATED	150°C DERATED TO	COMPONENT	COMPONENT
CIRCUIT ELEMENT	75% CURRENT LEVEL	USE ON MMIC	USE ON DIGITAL
Implanted Resistors		1	
and Ohmic Contacts	6.62 x 10 ⁻⁸ 	X	X
			<u> </u>
Thin Film Resistors	 1.29 x 10 ⁻⁷ 	X	
First Level	 	 	
Metallization	2.48 x 10 ⁻⁹	X	X
Air Bridge			
Metallization	2.86 x 10 ⁻⁸	X	· .
Composite Passive		1	 c
Fallure Rates	 	2.26 X 10	ιο.ö/ΧΙΟ΄

Table 4.3-9 GaAs MMIC & Digital Base Failure Rate Table (Failures/Million Hours)

	GaAs MMIC		GaAs DIGITAL IC		
T _{CHANNEL}	λ _Α	مر ا ا	Ι ^λ Α	Ъ	
25	0.0000*	0.0016	0.0000*	0.0005	
35	0.0000*	0.0028	0.0000*	0.0008	
45	0.0000*	0.0046	0.0000*	0.0014	
55	0.0000*	0.0075	0.0000*	0.0023	
65	0.0000*	0.0117	0.0002	0.0036	
75	0.0000*	0.0179	0.0007	0.0054	
85	0.0003	0.0267	0.0024	0.0081	
95	0.0010	0.0389	0.0082	0.0118	
105	0.0034	0.0557	0.0263	0.0169	
115	0.0111	0.0782	0.0796	0.0237	
125	0.0341	0.1080	0.2275	0.0328	
135	0.0995	0.1468	0.6178	0.0445	
145	0.2757	0.1966	1.5993	0.0596	
155	0.7283	0.2597	3.9605	0.0788	
165	1.8406	0.3387	9.4095	0.1028	
175	4.4633	0.4367	21.5088	0.1325	

* Value carried to four places only

GaAs MMIC

$$\begin{array}{r} -17380 & (1 \\ T_{CH} + 273 - \frac{1}{423}) \\ \lambda_{A} &= 0.4506 \ e \\ -4980 & (1 \\ T + 273 - \frac{1}{423}) \\ \lambda_{P} &= 0.2263 \ e \\ GaAs Digital IC \\ \lambda_{A} &= 2.5303 \ e \\ -16220 & (1 \\ T_{CH} + 273 - \frac{1}{423}) \\ \lambda_{A} &= 2.5303 \ e \\ -4980 & (1 \\ T + 273 - \frac{1}{423}) \\ \lambda_{P} &= 0.0687 \ e \end{array}$$

4.4 HYBRIDS

4.4.1 Database

The data collected came from two sources: field data on the APG-68 radar system, and data from life testing conducted both in-house and in the industry. Table 4.4-1 lists the hybrid part types used on the APG-68 radar and the cumulative removal rate based on 263,990 hours of system operation over the period studied.

Table 4.4-2 lists the data collected from the life tests. Part of this data was collected as the result of the survey conducted. Both 1000 hour life (extended burn-in) and extended temperature cycling tests are included.

Table 4.4-1 APG-68 Hybrid Cumulative Removal Rate (Nov 1984 - June 1988)

PART NUMBER	NAME	CLASS	QTY USED /SYS	QTY <u>REMOVED</u>	FIELD REMOVAL RATE (/MILLION HRS)
583R379A01	Digibus	Digital	3	49	61.87
585R927A02	Dumped Intg.	Digital	2	14	26.52
585R928A02	RAM	Digital	2	. 9	17.05
586R291A01	μP/RAM	Digital	1	1	3.79
586R517A01	Mux	Digital	1	8	30.30
12604356	10 Bit D/A	Linear	2	5	9.47
583R352H01	A/D	Linear	1	15	56.82
583R505H01	D/A	Linear	1	117	443.18
583R979H01	D/A	Linear	2	4	7.58
585R056H01	S/D Conv	Linear	1	20	75.76
585R150A03	SW Driver	Linear	1	32	121.21
585R209A01	BORAM I/O	Linear	20	61	11.55
585R587A01	Timing	Linear	1	95	359.85
585R588H01	A/D	Linear	1	116	439.39
585R972H01	D/A	Linear	2	12	22.73
585R974H02	S/D	Linear	2	7	13.26
586R290A01	RAM I/O	Linear	1	60	227.27
586R292A01	Monitor	Linear	1	10	37.88
635A870H01	A/D	Linear	1	0	
583R407H01	Buffer	Linear	2	31	58.71

Table 4.4-1 APG-68 Hybrid Cumulative Removal Rate (contd.)

(Nov 1984 - June 1988)

PART NUMBER	<u>NAME</u>	CLASS	QTY USED /SYS	QTY REMOVED	CUMULATIVE FIELD REMOVAL RATE (/MILLION HRS)
583R412H01 583R495H02	Amp Volt. Ref. Driver	Linear Linear	2 1	9 0	17.05
5948032803	Amp	Linear	1	2	7 50
584R353H04	Amp	linear	1	12	45 45
584R548H03	Sample/Hold	Linear	2	41	77 65
585R149A02	Control	Linear	1	19	71.97
583R504H04	Reg-SV, 3.5A	РНР	2	19	35.98
583R504H23	Reg-5V, 2V, 19A	РНР	1	13	49.24
583K504H24	Reg-15V,9.5A		1	14	53.03
503K311H12	Reg5.3V,29A		1	32	121.21
5920512401	Reg15V, 4.4A Reg +15V 15V 20		1	25	18.94
5838512810	$P_{P} = 28V 3\Delta$	Г П Г Р Н Р	J 1	20	J2.0J 56.92
583R520H03	Reg = 15V = 0.5A	PHP	5	23	17 42
584R550A04	INV PreReg	РНР	2	138	261 36
584R551A04	INV, Bridge	РНР	2	124	234 85
585R151A03	Reg-20V, 1.5A	PHP	1	9	34.09
586R508A01	Reg-	РНР	1	8	30.30
586R509A02	Reg-2.75V	РНР	1	6	22.73
586R509A03	Reg-5.45V,21A	РНР	1	13	49.24
12604360-6	Switch	µwave	1	7	26.52
583R405H01	SWITCH	µwave	2	19	35.98
583R4U5HU2	Switch	µwave	1	2	/.58
595D736H01		µwave	1	4	15.15
585P736H05	Δπρ	hwave	2	Q	20.83
585R736H09	Атр	µwave µwave	i	4	15.15
12604361-1	Switch	Video	1	0	
12604427	Amp	Video	2	16	30.30
583R154H16	Amp	Video	5	16	12.12
583K154H30	Атр	Video	}	2	7.58
583K154H31	Атр	Video	3	5	6.31
303K134H33	Amp	Video	2	/	13.26
503K134N30 503D15AU61	Amn	Video	4	9 6	8.52
5838161421	Amn	Video	כ 1	0 1 1	4.00
584R213H01	Switch	Video	ו כ	2	41.0/
JUTICIUUI		VIGEO	۷	2	3.19

ΤΥΡΕ	P/N	<u>01Y</u>	FALLURES	FAILURE MECHANISM	TEST CONDITIONS	CASE	COMMENT S
Digital	586R291	22	0		1000 Hr. Life, T = 125°C	_	Teledyn <i>e</i>
Linear	586R292	S	0		1000 Hr. Life, T = 125°C	-	Teledyn <i>e</i>
Video Amp	12604427	38	1 @ 504	Unknown	1000 Hr. Life, T = 125°C	_	Teledyne
Linear	586R5 8 7	22	0		1000 Hr. Life, T = 125°C	-	Teledyne
Linear	586R290	22	0		1000 Hr. Life, T = 125°C	-	Teledyne
Digital	585R927	22	1 @ 1000	Al/Au intermetallic	1000 Hr. Life, T = 125°C	-	Ieledyne; improper
ı							test, T _C = 200°C
Digital	585R927	91	0		1000 Hr. Life, T = 125°C	-	Ieledyne
Digital	586R517	2	0		1000 Hr. Life, T = 125°C	-	Teledyne
Digital	5 8 5R928	22	1 @ 504	Al/Au intermetallic	1000 Hr. Life, T = 125°C	-	Teledyne; PR 1216;
			6 @ 1000				improper test,
							$T_{C} = 200^{\circ}C$
Digital	5858928	22	0		1000 Hr. Life, T = 125°C	-	Teledyn <i>e</i>
Linear	587R322	5	0		1000 Hr. Life, T = 125°C	-	Teledyne
Digital	587R323	1	2@1000	Overstressed in test	1000 Hr. Life, T = 125°C	-	Teledyne
Digital	583R379	5	0		1000 Hr. Life, T = 125°C	-	Teledyne
Power Inv	584R550	3	1 @ 504	Cracked die	1000 Hr. Life, T = 125°C	2	WEC
Power Inv	584R550	3	0		1000 Hr. Life, T = 125°C	2	Solitron
Power Inv	584R550	2	10115	Cracked substrate	Temp Cycle/Thermal Shock	2	WEC
					ll5 Cycles		
Power Inv	584R550	-	1 @ 115	Detached substrate	Temp Cycle/Thermal Shock	2	WEC, FA M30487
					115 Cycles		
Power Inv	584R551	5	0		1000 Hr. Life, T = 125°C	2	Solitron
Power Inv	584R551	2	1@15shock	Cracked die	Temp Cycle/Thermal Shock	2	WEC
					115 Cycles		
Linear	581R772	2	0		Temp Cycle/Thermal Shock	-	WEC, FA M24087
					1120 Cycles		Leads damaged due
							to mishandling
Linear	581R772	2	2 @ 1500	Al/Au intermetallic	3000 Hr. Life, T = 125°C	_	WEC, FA M20287
Linear	584R555	2	0		Temp Cycle/Thermal Shock	2	WEC, Test terminated
					1120 Cycles		@ 675
Linear	5818555	2	1 @ 750	Lifted bond wire	2500 Hr. Life, T = 125°C	2	WEC, FA M00188
Linear	585R149	2	0		1000 Hr. Life, T = 125°C	2	WEC
Linear	585R149	-	1@15shock	Leak	Temp Cycle/Thermal Shock	2	WEC
					115 Cycles		
Linear	585R150	З	1 @ 1000	Overstressed in test	1000 Hr. Life, T = 125°C	2	WEC, FA M18387

Table 4.4–2 Life Test Data

COMMENTS	WEC, FA M26187	WEC, FA M29287	WEC, FA M14687		WEC	WEC		WEC		WEC	WEC		WEC, FA M26787			WEC	Q-Bit, No failures after	insulation change	Q-Bit	Q-Bit	Anaren		Anaren						Anaren				Anaren		Anaren	
CASE	2	2	2		2	2		2		2	2		2			2	3		3	-	4		4						4				4		4	
TEST CONDITIONS	Temp Cycle/Thermal Shock 115 Cycles	3000 Hr. Life, T = 125°C	Temp Cycle/Thermal Shock	1120 Cycles	1000 Hr. Life, T = 125°C	Iemp Cycle∕Thermal Shock	115 Cycles	Temp Cycle/Thermal Shock	115 Cycles	1000 Hr. Life	Temp Cycle/Thermal Shock	115 Cycles	Temp Cycle/Thermal Shock	115 Cycles		1000 Hr. Life, T = 125°C	1000 Hr. Life, T = 125°C		1000 Hr. Life, T = 125°C	1000 Hr. Life, I = 125°C	Lite, T = 125°C		Life Test, T = 125°C						Life lest, $I = 125^{\circ}C$				Life Test, T = 125°C		Life Test, T = 125°C	
FAILURE MECHANISM	Cracked solder lid seal	Substrate attach	Overstressed in test							Unknown	Unknown		Substrate attach,	cracked solder	Lid seal	Poor die attach	Wire-wire short	on torroid					Seal	Seal	- 3 1				Seal	Electrical	Electrical	Electrical	Seal	Electrical	Electrical	
FAILURES	16115	1 @ 2500	2 @ 75		0	0		0		10168	1 @ 15 shock		l@15 shock		1 @ 115	1 @ 504	2@1000		0	0	0 @ 5760		-1 @ 1440	1 0 3600	0 0 2160	0 6 2880	0 0 2 2 0 0	00/c a 0	1 @ 720	1 @ 1440	1 @ 2943	1 @ 5281	1 @ 720	1 (0 1440	2 @ 6323	
017	2	2	2		2	2		-		2 2	5 5		3 2			2	941		6	76	3		S					,	9				q		~	
P/N	5858150	581R082	584R082		5858151	5858151		586R508		586R509A0	586R509A0		586R509A0			586R508	Several		Several	Several	20858		20864	5	-				24552				22306		22078	
TYPE	Linear	Power Reg	Power Reg		Power Reg	Power Reg	•	Power Reg		Power Reg	Power Reg		Power Reg			Power Req	Video Amp		Video Amp	Video Amp	Video	Digitizer	Video	DC Doctore					Video	Digitizer			Video	Blanking	Video	Ihreshold

Table 4.4-2 (contd)

i.

4.4.2 Model Development

The present version of the hybrid model as it appears in MIL-HDBK-217E is unnecessarily complex. It invokes failure rate dependency on the number of interconnects within the hybrid, the failure rates of the chips and film resistors, the substrate density, the seal perimeter and several multipliers. Some of the equations - such as the one indicating a temperature-dependence of the seal failure rate - have no physical basis. Therefore, the current effort has focused on simplifying the model while retaining reasonable accuracy. The new model presents the early life failure rate as being equal to the sum of the chip failure rates multiplied by π factors. The contributions due to wearout mechanisms are computed separately. The preliminary form of the model is therefore:

$$\lambda = \left[\begin{array}{c} \lambda_{C} + \lambda_{S} \end{array} \right] \pi_{i} \dots \pi_{n} \tag{4.4.1}$$

See Sections 4.1 – 4.3 for VLSI chip failure rate calculations and 4.5 for packaging models. For all other semiconductor devices, the models in MIL-HDBK-217E are to be used. The chip capacitor model in MIL-HDBK-217E is to be used also.

No contributions to the hybrid failure rate from resistors, either chip or substrate, are considered. These failure rates are considered insignificant based on failure analysis experience and the life test data available. Published data on field reliability for hybrids (a paper published in the 1984 ISHM Proceedings, "Demonstrated Field Failure Rate for Custom Hybrids" by Murphy and Sainer, page 95) showed the failure rates for chip and substrate resistors to be 0.0008 and 0.000053 failures per million hours at 99% C.L.

The π_{G} factor has been eliminated from the model. The additional process steps and handling that the die are exposed to during the construction of a hybrid compensate for any reduction in failure rate due to the absence of the discrete package.

The package failure rate, as explained in section 4.5, is comprised of a base failure rate and failure rates which represent several wearout mechanisms. The

128

1

base package failure rate for hybrids, λ_S , is represented as being equal to a percentage of the total failure rate. The basis for this is that several studies have shown that packaged related failures represent approximately 40% of the total hybrid failures. MDR 14, "Hybrid Circuit Data, Winter 79/80" lists 40.6% of the field failures and 45.2% of the equipment test failures as being caused by package related defects. The previously referenced paper, "Demonstrated Field Failure Rate for Custom Hybrids" lists 39% of the verified hybrid failures to be package related. Furthermore, 40% is consistent with the percentage of hybrid failures attributable to package failures at Westinghouse. If the percentage of package failures is represented as K, then

$$\lambda = \left[\lambda_{C} + \frac{K}{1-K} \lambda_{C} \right] \pi_{i} \dots \pi_{n}$$

$$= \left[\lambda_{C} \left(1 + \frac{K}{1-K} \right) \right] \pi_{i} \dots \pi_{n}$$

$$(4.4.2)$$

Since the system environment will accelerate the failure of devices with point defects, an environmental factor is necessary to modify the base package failure rate.

To determine the relationship between the portion of failures due to package defects and the application environment, the data in MDR-14 was grouped by the application environment. The results are shown in Table 4.4-3 below.

Table 4.4-3: MDR-14 Data Summary

APPLICATION ENVIRONMENT	PACKAGE DEFECTS	TOTAL ANALYZED <u>DEFECTS</u>	<u>K</u> <u>1-K</u>	(FROM SECTION 4.6.4)
AU	18	32	1.2	5.5
AI	5	10	1.0	4.4
GF	24	63	0.6	2.5

A relationship of K = 0.2 π_E was established by plotting the data. The general form of the model now becomes

$$\lambda = [\lambda_{C} (1 + .2 \pi_{E})] \pi_{i} \dots \pi_{n}$$
(4.4.3)

It is our experience that, excluding secondary failures and erroneous removals,

the majority of hybrid failures experienced during life testing and field usage are caused by process related defects such as die attach and wire bonding. Therefore, the sum of the chip and package failure rates are multiplied by factors which are related to the difficulty of the process (π_F) , the experience with the process (π_L) , and the degree of screening employed to remove process related defects (π_O) .

The final form of the model is

$$\lambda_{\rm P} = \left[\sum_{k} \lambda_{\rm C} \, N_{\rm C} \, (1 + .2 \, \pi_{\rm E}) \right] \, \pi_{\rm Q} \pi_{\rm L} \pi_{\rm F} \tag{4.4.4}$$

where:

 $\begin{array}{l} \lambda_C \text{ is the chip failure rate} \\ N_C \text{ is the number of each chip} \\ \pi_Q \text{ is the quality factor} \\ \pi_F \text{ is the circuit function factor} \\ \pi_I \text{ is the learning factor} \end{array}$

The quality factor will be determined as detailed in section 4.6.1, the learning factor will be determined as detailed in section 4.6.2, and the function factor will be determined as detailed in section 4.6.3.

Additionally, the end of life package models of section 4.5 should be used to assess the mean time to failure (or cycles to failure) for the hybrid package, including the wirebonds, substrate and die attach, and hermeticity.

4.4.3 Chip Junction Temperature Calculation

Since the hybrid model is so heavily dependent upon the failure rates of the chips, it is imperative that the operating junction temperatures be calculated accurately. The best way to do this is through actual measurement (thermal survey) or finite element analysis, but this may not be practical for the reliability analyst. The following is a reasonable alternative for estimating the operating junction temperatures of the chips in a hybrid device.

A hybrid is normally made up of one or more substrate assemblies mounted within a sealed package. Each substrate assembly consists of active and passive chips with thick or thin film metallization mounted on the substrate, which in turn may have multiple layers of metallization and dielectric on the surface. Figure 4.4-1 is a cross-sectional view of a hybrid with a single multi-layered substrate. The layers within the hybrid are made up of various materials with different thermal characteristics. Table 4.4-4 provides a list of commonly used hybrid materials with typical thicknesses and corresponding thermal conductivities (K). The thermal resistance of each layer is determined by the expression.

 $\Theta = (1/K)(L/A)$, where: Θ is the thermal resistance of a layer in °C/Watt (°C/W). K is the material thermal conductivity from Table 4.4-4 (or user provided). L is the material thickness in inches from Table 4.4-4 (or user provided). A is the top surface area of the chip (user provided).

An estimated thermal resistance value for junction to case $(\Theta_{\rm JC})$ can be developed for each chip in the hybrid by summing the resistances of all the material layers of the hybrid structure from the chip down to the case:

$$\theta_{\rm JC} = \frac{i=1}{A}$$
, (4.4.6)

where n is the number of material layers. Then,

 $T_{J} = T_{C} + 0.9 \ (\Theta_{JC})(P_{D}), \text{ where}$ (4.4.7)

 $T_{\rm J}$ is the junction temperature of the chip (°C) $T_{\rm C}$ is the case temperature of the hybrid (°C) $\Theta_{\rm JC}$ is defined as above (°C/W), and $P_{\rm D}$ is the power dissipated by the chip (W)

The factor of 0.9 in equation 4.4.7 represents the cosine of 26°. This angle accounts for the fact that the heat is not all conducted vertically from the chip to the case, but rather "spreads" radially as well as downward.

	1	TYPICAL	FEATURE FROM	K
MATERIAL	TYPICAL USAGE	THICKNESS (")	FIGURE 4.4-1	(W/°C-in)
Silicon	chip device	0.01	A	2.20
GaAs	chip device	0.007	A	0.76
Au Eutectic	chip attach	0.0001	В	6.91
Solder	chip/substrate attach	0.003	B/E	1.27
Epoxy (diel)	chip/substrate attach	0.0035	B/E	0.006
Ероху	chip attach	0.0035	В	0.15
(conductive)	{			
Thick film	glass insulating	0.003	С	0.66
dielectric	layer			
Alumina	Substrate, MHP	0.025	D	0.64
BeO	Substrate, PHP	0.025	D	6.58
Kovar	Case, MHP	0.02	F	0.425
Aluminum	Case, MHP	0.02	F	4.58
Copper	Case, PHP	0.02	F	9.96

Table 4.4-4 Hybrid Materials

4.5 FAILURE MECHANISMS OF MICROELECTRONIC PACKAGES

4.5.1 <u>Introduction</u>

The non-electrical failure mechanisms of a microelectronic device can be classified into package related failures, die failures and failures due to interconnects. Based on data from MDR-21, die failures constitute about 25-30% of the total failures, the package accounts for 40-50% of the failures, and interconnects involve 20-30% of the non-electrical failures in microelectronic packages.

In this section of this report we are concerned with package, interconnect and thermo-mechanical die, die attach and substrate attach failures. The package related failure sites include the package seal, package lid, package body, the lead frame, external leads and the package encapsulant. The die failure sites include the die, the die attach and the substrate attach. The interconnect failure sites include the wire, the wire bond and the conductor paths in the die and the substrate.

For simplicity we define all these failures as package failures. Package failures can be divided into two categories. The first includes failures that result from poorly controlled or poorly designed manufacturing processes. The second category consists of the failures caused during the normal operation of the device. This approach is justified when failures in the first category are removed during quality control inspection and screening processes. The package modeling effort has concentrated on the latter category, and the derived models are deterministic in nature.

In general, early and middle life failures are premature failures where causes can be "assigned" to specific defects or events. The early life failures typically exhibit a greater failure rate than do middle life failures. End of life failures are considered "common cause" failures. These failures are attributable to wire bond failure mechanisms, corrosion related failure mechanisms, and die attach related failure mechanisms. MIL-HDBK-217E and its predecessors only consider assignable cause failures in the development of prediction models, since common cause failures do not typically occur within the life-times of military systems. The $C_2 \pi_E$ term as presented in Table 5.1.2.7-6 of MIL-HDBK-217E will continue to be used for the early and middle life failure predictions for the different package types. In addition, the pin grid array (PGA) package has been added to this table under the column "Hermetic Dual-In Line Package (DIP) with Solder Weld Seal."

For the most part, the DIP pin counts are in the 14 to 18 leads range (80 percent of devices produced annually) with the balance going up to 64 leads. However, when more than 40 external pins are needed, the conventional DIP becomes impractical because of increased internal density, pin spacing, increased weight and thermal limitations. At this point, the PGA becomes more practical, typically having pin counts of 14 or more, with 128, 224 and 525 being common variants, reference [98].

The justification for including the PGA packages with the DIP and LCC packages may be reviewed in references [99 and 100]. Briefly, it has been observed that the PGA packages are on a par with the industry standard DIP as to reject rate and failure modes during equivalent environmental screening. Many thousands of these packages have been tested by several different vendors. The recorded data indicate that the same controls and assembly techniques used for DIP's have been successfully transferred to PGA's with similar reliable results. Furthermore, no new failure modes characteristic to these packages have emerged. The thermal performance (junction to case thermal resistance) of a PGA package is equal to or less than that for a DIP, when selected package material, chip attach material, and heatsink attach epoxy and heatsink configurations are employed. The use of "fin" heatsinks configurations and aluminum-filled heatsink-attach epoxy with a lower bulk thermal resistance have produced thermal resistances less than 6°C/watt in PGA applications.

Therefore, based on these facts it would appear that the logical choice is to include the PGA packages under the DIP column in the C_2 table.

135

In the following paragraphs we discuss the end of life, or wearout, failure mechanisms and failure life models for the package, the interconnects and the die due to mechanical, thermo-mechanical and other environmental stresses.

Mathematical models developed used material properties which were in some cases estimated due to lack of experimental data. The accuracy of the models can be improved by using properties obtained from more extensive experiments on the material properties.

The failure prediction models recommended in this report can be described in generic terms as power law relationships between the mean cycles to failure and the local state of stress/strain in the specimen. This approach can be implemented either for crack initiation, as in Basquin's or Coffin-Manson equations, or for fatigue crack propagation, as in Paris's power law. The latter method is preferred when the material is likely to experience brittle crack propagation. In either situation the stress amplitude in the specimen has to be monitored and expressed in terms of the fatique life of the material. Estimating the stress amplitude in the specimen can be a non-trivial task and needs a numerical scheme such as the finite element method. However, since the aim of the failure models cited below is to identify simple closed-form expressions for quick, on-line stress/strain analysis and for fatigue failure predictions, only approximate models are presented, with appropriate simplifications. For more accurate stress analysis, the user will need to employ the finite element or other appropriate numerical methods.

It is reiterated at this point that the accuracy of all the models depends on the simplifying assumptions about the material properties and associated constitutive equations. Due to the lack of appropriate data on electronic materials, simplified linear elastic behavior has been assumed in many cases, and the temperature dependence of all the material properties is ignored. It is clearly understood that material property data is essential for accurate life predictions and it is recommended that an extensive experimental program be undertaken to determine all the required data.

136

4.5.1.1 Wire-Wire Bond Related Failure Mechanisms

Fatigue is the dominant phenomenon causing the failure of the wire bond during normal life of microelectronic devices. Temperature and electrical power cycling can induce failure of the bond due to flexure and shear fatigue.

Repeated flexure of the wire due to temperature cycling can cause cracking of the wire at the heel due to bending fatigue. The differential thermal expansion of the bond pad and the substrate can result in a detachment of the bond pad from the substrate or the cracking of the substrate as a result of stresses generated. The differential thermal expansion between the bond pad and the wire can cause shear fatigue of the bond pad resulting in detachment of the wire from the substrate or cratering of the substrate. In plastic encapsulated packages, differential thermal expansion between the encapsulant and the wire can cause axial fatigue of the wire, resulting in tensile fatigue failure of the wire.

4.5.1.2 Corrosion Related Failure Mechanisms

Moisture and other contaminants can ingress into a package through flaws in the construction material or permeation through the wall of the package. Moisture can also be inherently trapped in the cavity of the package before being sealed. An extreme drop in temperature will cause the sealed cavity to attain its dew point and the moisture can condense on the surface of the chip and the wire bond. The condensed vapor together with other ionic contaminants will form an electrolyte for the transfer of ions essential for the wet corrosion process to occur.

The use of a passivation layer on integrated circuits has greatly reduced the corrosion problem although an imperfect passivation layer would promote pitting and eventually lead to corrosion of the metallization. In addition, due to the necessity of wire bonding, bond pads remain unpassivated and consequently are exposed to the package environment. Bond wires and bonds between dissimilar metal bond wires and bond pads or lead frames are

especially susceptible to corrosive attack. In practice, the die and die attach are not significantly affected by corrosion.

4.5.1.3 Die Related Failure Mechanisms

Another failure site in the microelectronic packages is the die assembly consisting of the die, die attach and the substrate attach. The major concern here is the mechanical failure, fracture and fatigue of the die die attach and substrate attach. Thermal stresses are induced in the die, the substrate and the case as a result of temperature fluctuations. Typically, microcracks present on the top surface or edges of the die or the edges of the die attach or the substrate attach can propagate under the influence of thermal stresses produced due to temperature cycling. This can cause the failure of the die due to horizontal or vertical cracking. A vertical crack is the result of large tensile stresses in the central portion of the top surface of the die. A horizontal crack of the die is the result of high shear stresses at the edges of the die. A failure of the die attach or the substrate attach is often the result of the presence of voids or microcracks near the edges, which propagate towards the center resulting in failure of the attach.

The die attach and substrate attach models delineated herein assume that the attach failure occurs in the bulk of the attach material. Each attach material forms an adhesive bond to the adjacent layer, i.e., an adhesive bond is formed between the die and the die attach and between the substrate and the die attach. Similarly, adhesive bonds are formed between the substrate attach and the adjacent substrate and package base surfaces. Failure of these adhesive bonds is not addressed in this report because it is felt that such failures are fabrication process related and will be detected during screen testing.

4.5.2 Fatigue Failure Models of Wire and Wire Bonds

4.5.2.1 Description of the Models

Failure of the wire bond occurs predominantly as a result of fatigue caused by

138
repeated flexure of the wire, shear stresses generated between the bond pad and the wire and shear stresses generated between the bond pad and the substrate, all resulting from temperature or power cycling.

Flexure of the wire will produce stresses at the heel of the bond in the case of wedge bonds and stitch bonds. Reversals in the bending stresses cause the eventual fatigue (breakage) of the wire at the heel. Due to the absence of any reduced section on the ball bond, failure due to flexure is uncommon for the ball bonds.

Shear stresses between the bond pad and the substrate result from the differences in the coefficients of thermal expansion between the substrate and the bond pad. This in turn results in the eventual detachment of the bond pad from the substrate, an increase in the thermal resistance between the die and the substrate, or the cratering of the substrate.

Shear stresses between the wire and the bond pad result from the differential thermal expansion between the wire and the substrate.

In encapsulated packages, if the encapsulant is in contact with the wire, the differential thermal expansion between the encapsulant and the wire can cause axial fatigue of the wire. This failure mechanism will not occur in encapsulated packages with a low modulus buffer coating between the wire and the encapsulant.

The number of cycles to failure of the wires and wire bonds in a microelectronic package depends on the environmental conditions, the geometry of the wire bond and the materials of the substrate, wire and bond pad. The fatigue failure prediction models take into account the environmental conditions and the geometry of the bond, which is consistent with the fact that the number of failures vary with the environmental conditions to which the wire bond is subjected. The stresses generated are a function of the geometry of the wire bond, the temperature fluctuation and the material properties. The development of the models for wire and wire bond failure mechanisms are more fully discussed in Appendix F.

4.5.2.2 Wire and Wire Bond Failure Models

As discussed in 4.5.2.1, models have been developed for one bond wire and two bond pad failure mechanisms, as follows:

(1) Bond Wire Flexure Fatigue

The model for the number of cycles to flexure fatigue failure is defined by equation F5.8 as follows:

$$N_{f(flex)} = A_1 (\varepsilon_f)^{n_1}$$
(F5.8)

where:

 $N_{f(flex)}$ is the number of cycles to failure for the wire in flexure.

- A₁ is a material property dependent coefficient for the wire material obtained from Table 4.5-4.
- N₁ is a material property dependent exponent for the wire material obtained from Table 4.5-4.
- ε_f is the wire strain magnitude and is defined by equation F5.7a as follows:

$$\varepsilon_{f} = \frac{r}{35.1} \left[\frac{\cos^{-1}(0.966 \ (1 - (\alpha_{W} - \alpha_{S}) \ \Delta T))}{15} - 1 \right]$$
(F5.7a)

where:

- r is the radius of the wire, mm.
- $\alpha_{\rm W}$ is the coefficient of thermal expansion of the wire obtained from Table 4.5-1.
- α_s is the coefficient of thermal expansion of the substrate obtained from Table 4.5-2.

 ΔT is the temperature difference obtained from Table 4.5-17.

(2) Shear Fatigue at Bond Pad/Substrate Interface

The model for the number of cycles to shear fatigue failure is defined by equation F5.10 as follows:

$$N_{f(shear)s} = A_2 (\varepsilon_{fs})^n 2$$
(F5.10)

where:

N_{f(shear)s} is the number of cycles to failure in shear at the bond pad/substrate interface.

- A_2 is a material property dependent coefficient for the bond pad material obtained from Table 4.5-5.
- n_2 is a material property dependent exponent for the bond pad material obtained from Table 4.5-5.
- ϵ_{f} is the bond pad shear strain magnitude and is defined by equation F5.9 as follows:

$$\epsilon_{fs} = K \Delta T$$

(F5.9)

where:

- K is a constant for a particular pad/substrate combination obtained from Table 4.5-6.
- ΔT is the temperature difference encountered, obtained from Table 4.5-17.

(3) Shear Fatigue at Bond Pad/Wire Interface

The model for the number of cycles to shear fatigue failure at the bond pad/wire interface is identical to the model for shear fatigue failure at the bond pad/substrate interface and is defined by equation F5.10 as follows:

$$N_{f(shear)w} = A_2 (\varepsilon_{fs})^n 2$$
(F5.10)

where:

- N_{f(shear)w} is the number of cycles to failure for the wire in shear at the bond pad/wire interface.
- A_2 is a material property dependent coefficient for the wire material obtained from Table 4.5-5.

(F5.14)

- n_2 is a material property dependent exponent for the wire material obtained from Table 4.5-5.
- ε_{f} is the wire shear strain magnitude and is defined by equation F5.14 as follows:

$$\varepsilon_{fs} = (1/2) |\alpha_w - \alpha_s| \Delta T$$

where:

- α_{W} is the coefficient of thermal expansion of the wire obtained from Table 4.5-1.
- α_s is the coefficient of thermal expansion of the substrate obtained from Table 4.5-2.
- ΔT is the temperature difference encountered by the component obtained from Table 4.5-17.

4.5.2.3 Application Examples for Wire/Wire Bond Failure Models

(1) Bond_Wire_Flexure_Fatigue

(A) Assume a microcircuit with a Representative Microcircuit Configuration (RMC) as defined in paragraph 4.5.6 and used in a MIL-HDBK-217 ground-fixed (G_F) application environment. Then the mean number of cycles to failure due to bond wire flexure fatigue is found from equations F5.7a and F5.8, which are combined following:

.

$$N_{f(flex)} = A_{1} \left\{ \frac{r}{35.1} \left[\frac{\cos^{-1} (0.966(1 - (\frac{\alpha_{w} - \alpha_{s})\Delta T}{15}) - 1] \right\}^{n_{1}} \left\{ \frac{k}{8} \right\}$$
(F5.7a)

The variables in this equation are defined in paragraph 4.5.2.2(1) and data are obtained from the following sources:

VARIABLE	VALUE	UNITS	SOURCE
Α,	3.9323 x 10 ⁻¹⁰	N/A	Table 4.5-4
'n	-5.134	N/A	Table 4.5-4
r	1.6×10^{-2}	mm	RMC-Para 4.5.6
aw	23.2×10^{-6}	m/m/°c	Table 4.5-1
α ζ	4.67 x 10 ⁻⁶	m/m/°c	Table 4.5-2
ΔĪ	55	°c	Table 4.5-17

Substituting in equations F5.7a and F5.8:

$$N_{f(f|ex)} = 3.9323 \times 10^{-2} \{ \frac{1.6 \times 10^{-2}}{35.1} [\frac{\cos^{-1}(0.966(1-(23.2\times10^{-6}-4.67\times10^{-6})55))}{15}]] \}^{5.134}$$

= 5.6 x 10⁷ [$\frac{\cos^{-1}(0.9650155011)}{15} - 1]^{-5.134}$
= 2.357 x 10¹⁷ cycles

(B) Assume the same conditions as paragraph 4.5.2.3(1)(A) except bond wire diameter is 0.127mm (5 mils). Then $r = 0.127/2 = 6.35 \times 10^{-2}$ mm and all other variables remain the same. Substituting in equations F5.7a and F5.8:

$$N_{f(f|ex)} = 3.9323 \times 10^{-10} \{ \frac{6.35 \times 10^{-2}}{35.1} [\frac{\cos^{-1}(0.966(1 - (23.2 \times 10^{-6} - 4.67 \times 10^{-6})55))}{15}] \}^{-5.134}$$

= 1.987 x 10¹⁴ cycles

(C) Assume the same conditions as 4.5.2.3(1)(B) except bond wire material is gold. Then $A_1 = 3.5844 \times 10^{-11}$ and $n_1 = -4.9828$ from Table 4.5-4, and all other variables remain the same. Substituting in equations F5.7a and F5.8:

$$N_{f(flex)} = 3.5844 \times 10^{-11} \{ \frac{6.35 \times 10^{-2}}{35.1} [\frac{\cos^{-1}(0.966(1-(23.2 \times 10^{-6}-4.67 \times 10^{-6})55)}{15})_{-1}] \}^{-4.9828}$$

= 3.636 x 10¹² cycles

(2) Bond Pad/Die Interface Shear Fatigue

(A) Assume a microcircuit with a Representative Microcircuit Configuration (RMC) as defined in paragraph 4.5.6 and used in a MIL-HDBK-217 ground-fixed (G_F) application environment. Then the mean number of cycles to failure due to bond pad/die interface shear fatigue is found from equations F5.9 and F5.10, which are combined following:

$$N_{f(shear)s} = A_2 (K\Delta T)^n 2$$
(F5.9 & F5.10)

The variables in this equation are defined in paragraph 4.5.2.2(2) and data are obtained from the following sources:

VARIABLE	VALUE	UNITS	SOURCE
A ₂	4.3386×10^{-11}	N/A	Table 4.5-5
n ₂	-5.134	N/A	Table 4.5-5
ĸ	1.46 x 10 ⁻⁵	N/A	Table 4.5-6
ΔT	55	°c	Table 4.5-17

Substituting in equations F5.9 and F5.10:

$$N_{f(shear)s} = 4.3386 \times 10^{-11} (1.46 \times 10^{-5})(55))^{-5.134}$$

= 3.377 × 10⁵ cycles

(B) Assume the same conditions as paragraph 4.5.2.3(2)(A) except bond pad material is gold. then from Table 4.5-5, $A_2 = 4.2948 \times 10^{-12}$ and $n_1 = -4.9828$, and from Table 4.5-6, $K = 0.90 \times 10^{-5}$. All other variables remain the same. Substituting in equations F5.9 and F5.10:

$$N_{f(shear)s} = 4.2948 \times 10^{-12} (0.90 \times 10^{-5}(55))^{-4.9828}$$

= 1.268 × 10⁵ cycles

- (3) Bond Pad/Wire Interface Shear Fatigue
- (A) Assume a microcircuit with a Representative Microcircuit Configuration (RMC) as defined in paragraph 4.5.6 except wire material is gold. The device is used in a MIL-HDBK-217 ground-fixed (G_F) application environment. Then the mean number of cycles to failure is found from equations F5.10 and F5.14, which are combined following:

$${}^{N}_{f(shear)w} \equiv {}^{A}_{2} \left[\begin{array}{c} \frac{\alpha_{w} - \alpha_{s}}{2} \\ 2 \end{array} \right] {}^{n}_{2}$$
(F5.10)
$${}^{N}_{F(shear)w} \equiv {}^{A}_{2} \left[\begin{array}{c} \frac{\alpha_{w} - \alpha_{s}}{2} \\ 2 \end{array} \right] {}^{n}_{2}$$
(F5.14)

The variables in this equation are defined in paragraph 4.5.2.2(3) and data are obtained from the following sources:

VARIABLE	VALUE	<u>UNITS</u>	SOURCE
A ₂	4.2948 x 10 ⁻¹²	N/A	Table 4.5-5
n ₂	-4.9828	N/A	Table 4.5-5
αw	14.2×10^{-6}	m/m/°c	Table 4.5-1
αζ	4.67 x 10^{-6}	m/m/°c	Table 4.5-2
ΔŤ	55	°c	Table 4.5-17

Substituting in equations F5.10 and F5.14:

$$N_{f(shear)w} = 4.2948 \times 10^{12} \left[\frac{|14.2 \times 10^{-6} - 4.67 \times 10^{-6}|(55)|}{2} \right]^{-4.9828}$$

= 3.014 × 10⁶ cycles

(B) Assume the same conditions as paragraph 4.5.2.3 except pad material is gold and wire material is aluminum. Then the following data is obtained:

VARIABLE	VALUE	UNITS	SOURCE
A ₂	4.3386 x 10 ⁻¹¹	N/A	Table 4.5-5
n ₂	-5.134	N/A	Table 4.5-5
a	23.2×10^{-6}	m/m/°C	Table 4.5-1
as	4.67×10^{-6}	m/m/°C	Table 4.5-2

Substituting in equations F5.10 and F5.14:

$$N_{f(shear)w} = 4.3386 \times 10^{-11} \left[\frac{23.2 \times 10^{-6} - 4.67 \times 10^{-6}}{2} \right]^{-5.134}$$

= 3.488 × 10⁶ cycles

4.5.2.4 Evaluation

The results from the application examples given in paragraph 4.5.2.3 are summarized following:

FAILURE MECHANISM	MICROCIRCUIT	CONFIGURAT	ION*	Nf (cy	<u>cles)</u>
Bond Wire	RMC			2.4 x	1017
Flexure	RMC except:	5 mil bond	wire	2.0 x	1014
Fatigue	RMC except:	5 mil bond gold bond	wire wire	3.6 x	1012
Bond Pad/Die				3 4 4	105
Interface				J.4 X	
	RMC except:	gold bond	pad	1.3 x	105
Shear Fatigue					
Bond Pad/Wire	RMC except:	aold bond	wire	3.0 x	106
Interfa ce					
Change Estimut	RMC except:	gold bond	pad	3.5 x	106
Snear Fatigue					
*RMC is defined in pa	ragraph 4.5.6				

These failure predictions are consistent with the fact that flexure failures are less often seen as compared to the failures do to shear fatigue. Nevertheless, this does not rule out the possibility of failure due to flexure. Given a different set of environmental conditions, flexure could be the dominant mechanism, since the stress due to flexure depends not only on the temperature conditions and the materials in consideration but also on the geometry of the bond wire e.g. wire diameter, radius of curvature at the bond, the angle of the bond wire with the substrate, etc. Therefore, a change in wire diameter for the same environmental conditions may cause an increase in the flexure stresses without significantly changing the shear fatigue stresses. The relative importance of each of these failure mechanisms is subject to the various factors on which each of the mechanisms depend.

From the summary table it is seen that the bond pad material has negligible effect on the bond pad/die interface shear fatigue mechanism. This supports existing knowledge gained from failure analysis that the failure usually occurs in the bulk die material immediately below the pad due to bulk defects in the die acting as failure initiation sites.

The bond pad/wire interface shear fatigue mechanism can occur only when the pad and the wire are of dissimilar materials. The summary table shows that the choice of material for either member has little effect on life when the same two materials are paired.

4.5.3 <u>Failure Models for the Die, Die Attach and Substrate Attach, Fracture</u> and Fatigue

4.5.3.1 Description of the Models

The die attach unit of microelectronic component packages consists of the die or chip and the substrate and the case, which are usually made of different materials and therefore have different thermal expansion coefficients. During environmental thermal and power cycling, as the temperature fluctuates, longitudinal and shear stresses are introduced in the package.

147

Microcracks are typically introduced in the die during manufacturing operations and are present at the edges of the die. If a microcrack is large enough, i.e. if it is equal to or greater than a critical crack size, the die may fail in the first power cycle. If the microcrack is less than the critical crack size, then during temperature cycling, it may propagate and eventually the die would fail when this crack reaches the critical size.

Different thermal expansion coefficients of the die, substrate and case and the presence of edge voids in the attach materials introduce high stresses and are responsible for the failure of the die attach and the substrate attach. The voids in the attach materials may act as microcracks, which may propagate during temperature cycling and eventually cause delamination of the die or the substrate.

A fracture mechanics approach is taken to calculate the critical crack size in the die. If the initial crack size is smaller than the critical crack size then Paris's power law of fatigue crack propagation is used to calculate the number of cycles for the crack to grow to critical size. The die attach and substrate attach materials fail by ductile mechanisms and hence the linear elastic fracture mechanics (LEFM) approach is not appropriate in this situation. The Manson-Coffin relationship is used therefore, to calculate the number of cycles to failure in die attach and substrate attach.

The development of the models for die, die attach and substrate attach fracture and fatigue are more fully discussed in appendix G.

4.5.3.2. Die, Die Attach and Substrate Attach Failure Models

As discussed in 4.5.3.1, models have been developed for die brittle cracking, die fatigue cracking, die attach fatigue and substrate attach fatigue and fatigue failure mechanisms, as follows:

(1) Die Brittle Cracking

148

Brittle failure of a die with a vertical edge crack can occur upon first application of thermomechanical stress when the criterion defined in equation G.4 is satisfied:

$$a_i \geq a_c$$
 (G.4)

where

a, is the initial crack length, meters

ı.

a_c is the critical crack length, meters, required to cause rapid propagation of the crack through the die, and is defined by equation G.5 as follows:

$$a_{C} = \frac{\kappa_{IC}^{2}}{\pi \sigma_{app}^{2}}$$
(G.5)

where

- K_{IC} is the fracture toughness of the die material obtained from Table 4.5-7.
- σ_{app} is the maximum applied tensile stress in the die and is defined by equation G.6 as follows:

$$\sigma_{app} = 2 \times 10^{-7} | \alpha_s - \alpha_d | \Delta T \sqrt{E_s E_a L/x}$$
(G.6)

where

- α_s is the coefficient of thermal expansion of the substrate to which the die is mounted, obtained from Table 4.5–9.
- α_d is the coefficient of thermal expansion of the die obtained from Table 4.5-7.
- ΔT is the temperature difference encountered, obtained from Table 4.5-17.
- E_s is the tensile (Young's) modulus of the substrate obtained from Table **4**.5-9.
- E_a is the tensile (Young's) modulus of the die attach obtained from Table 4.5-8.
- x is the die attach thickness, meters obtained from Table 4.5-18.
- L is the diagonal length of the die, meters, and may be approximated by equation G.7 as follows:

$$L = 1.5 \times 10^{-3} + 1.0 \times 10^{-4} P$$
 (G.7)

where P is the number of active pin terminals in the microcircuit.

(2) Die Fatigue Cracking

The model for the number of cycles to die fatigue cracking failure is defined by equation G.10e as follows:

$$N_{f} = \frac{2}{(n-2) A \sigma_{app} \pi} \left| \begin{array}{c} -\frac{1}{((n-2)/2)} - \frac{1}{((n-2)/2)} \\ a_{i} \\ \end{array} \right|$$
(G.10e)
for n <> 2

where

- N_{f} is the number of cycles to die fatigue cracking failure.
- n is a material property dependent exponent for the die material obtained from Table 4.5-7.
- A is a material property dependent coefficient for the die material obtained from Table 4.5-7.
- a, is the initial crack length, meters
- a_{f} is the final crack length at failure, meters

MIL-STD-883, Method 2010 visual criteria for die cracks prohibits any surface cracks in an active circuit area of the die and prohibits any edge cracks with a total length greater than tabulated below, or edge cracks with a total length greater than tabulated below, or edge cracks of lesser length that extend more than 1 mil past the scribe grid line along the die edge:

Quality Level	<u>Maximum Crack Length</u>
В	5 mils
S	3 mils

It can be expected than any population of microcircuit dice will contain a

proportion of cracks up to the limit of acceptability. It can be further expected that these cracks will propagate during operational use of the completed microcircuits due to thermomechanically induced stress. The increase in crack length required for an allowable crack to enter active areas of the die and cause failure will vary depending upon the inital directional orientation of the crack and its proximity to the die active area pattern geometry. It is believed that it is conservative to assume that crack propagation to a total length of 15 mils is the maximum that can be permitted before penetration of an active area is imminent. From the visual acceptance criteria and this assumption, appropriate values for a_i and a_f are proposed as follows:

Quality Level	a _i	af
В	$1.3 \times 10^{-4} m (5 mils)$	3.8 x 10 ⁻⁴ m (15 mils)
S	7.6 x 10 ⁻⁵ m (3 mils)	3.8 x 10 ⁻⁴ m (15 mils)

(3) Die Attach Fatigue

The model for the number of cycles to die attach fatigue failure is defined by equations G.11 and G.12 which are combined as follows:

$$N_{f} = 0.5 \left| \frac{L |\alpha_{s} - \alpha_{d}| \Delta T}{x \gamma_{f}} \right|^{1/c}$$
(G.11) & (G.12)

where:

- N_f is the number of cycles to die attach fatigue failure.
- α_{s} is the coefficient of thermal expansion of the substrate obtained from Table 4.5-9.
- α_d is the coefficient of thermal expansion of the die obtained from Table 4.5-7.
- ΔT is the temperature difference encountered, obtained from Table 4.5-17.
- x is the height of die attach, meters, obtained from Table 4.5-18.
- γ_{f} is the fatigue ductility coefficient (defined as the shear strain required to cause failure in one load reversal) obtained from Table 4.5-8.

- c is the Manson-Coffin fatigue exponent (slope of low cycle fatigue curve of log shear strain vs. log cycles to failure) obtained from Table 4.5-8.
- L is the diagonal length of the die, meters, and may be approximated by equation G.7 as follows:

$$L = 1.5 \times 10^{-3} + 1.0 \times 10^{-4} P$$
 (G.7)

where P is the number of active pin terminals in the microcircuit.

(4) Substrate Attach Fatigue

The model for the number of cycles substrate attach fatigue failure is similar to the die attach fatigue failure model and is defined by equation (G.13) as follows:

$$N_{f} = 0.5 \left[\frac{L_{s} \left[\alpha_{c} - \alpha_{s} \right] \Delta T}{x_{sa} Y_{f}} \right] 1/c \qquad (G.13)$$

where:

- $\rm L_{\rm c}$ is the diagonal length of substrate, meters.
- α_{c} is the coefficient of thermal expansion of the case obtained from Table 4.5-10.
- α_{S} is the coefficient of thermal expansion of the substrate obtained from Table 4.5-9.
- ΔT is the temperature difference encountered obtained from Table 4.5-17.
- x is the thickness of the substrate attach, meters obtained from Table 4.5-18.
- Yf is the fatigue ductility coefficient of substrate attach
 (defined as the shear strain required to cause failure in one load
 reversal) obtained from Table 4.5-8
- c is the Manson-Coffin fatigue exponent (slope of low cycle fatigue curve of log shear strain vs. log cycles to failure) obtained from Table 4.5-8

4.5.3.3 Application Examples for the Die, Die Attach and Substrate Attach Failure Models.

(1) Die Brittle Cracking

(A) Assume a microcircuit with a Representative Microcircuit Configuration (RMC) as defined in paragraph 4.5.6 and use in a MIL-HDBK-217 ground-fixed (G_F) application environment. Brittle failure of a die will occur upon first application of thermomechanical stress if criterion equation G.4 is satisfied. Evaluation of this criterion requires solution of equations G.5 and G.6, which are combined following:

$$a_{c} = \frac{\kappa_{IC}^{2}}{\pi(2 \times 10^{-7} |\alpha_{s} - \alpha_{d}| \Delta T \sqrt{E_{s}E_{a} L/x})^{2}}$$
(G.5
&
G.6)

The variables in this equation are defined in paragraph 4.5.3.2(1) and data are obtained from the following sources:

ole 4.5-7
ole 4.5-9
ple 4.5-7
ole 4.5-9
2
2
ole 4.5-17
2

Substituting in equations G.5 and G.6:

$$a_{c} = \frac{(0.82)^{2}}{\pi(2\times10^{-7}|7.3\times10^{-6}-4.67\times10^{-6}|(55)\sqrt{(255\times10^{9})(2.8\times10^{9})(3.22\times10^{-3})5.1\times10^{-5})^{2}}}$$
$$= \frac{0.6724}{\pi(37.7295)} = 5.673 \times 10^{-3} \text{m} (223 \text{ mils})$$

From the specified MIL-STD-883 quality level for the RMC it is found from paragraph 4.5.3.1(2) in the discussion following equation G.10e that $a_i = 1.3 \times 10^{-4} m$ (5 mils). Applying the criterion equation G.4:

$$a_i \geq a_c$$
 (G.4)

Substituting in equation G.4:

$$1.3 \times 10^{-4} < 5.673 \times 10^{-3}$$

Hence, die brittle cracking will not occur.

(B) Assume the same conditions as 4.5.3.3(1)(A) ewxcept the die attach material is Au-Si eutectic and the die diagonal length is 0.01m (400 mils) and all other variables remain the same. Then from Table 4.5-18, x = 2.5×10^{-6} m (0.1 mil) and from Table 4.5-8, E_a = 59.2×10^{9} Pa. Substituting in equations G.5 and G.6:

$$a_{c} = \frac{(0.82)^{2}}{\left[(2 \times 10^{-7} | 7.3 \times 10^{-6} 4.67 \times 10^{-6} | (55) \sqrt{(255 \times 10^{9})(59.2 \times 10^{9})(1 \times 10^{-2})/(2.5 \times 10^{-6})}\right]^{2}}$$

= $\frac{0.6724}{\Pi(50538)} = 4.235 \times 10^{-6} \text{m} (0.17 \text{ mils})$

Substituting in criterion equation G.4:

 $1.3 \times 10^{-4} > 4.2 \times 10^{-6}$

Hence, die brittle cracking will occur upon first application of thermomechanical stress (provided a maximum acceptable size crack from MIL-STD-883 visual criteria is present).

(2) Die Fatigue Cracking

(A) Assume a microcircuit with a Representative Microcircuit Configuration(RMC) as defined in paragraph 4.5.6 and use in a MIL-HDBK-217

ground-fixed (G_F) application environment. Then the mean number of cycles to failure due to die fatigue cracking is found from equation G.10e:

$$N_{f} = \frac{2}{(n-2)A \sigma_{app}} \prod^{n} \frac{1}{n^{2}} \left[\frac{1}{a_{j}} - \frac{1}{a_{f}^{((n-2)/2)}} \right], n \neq 2 \qquad (G.10e)$$

where σ_{app} is found from equation G.6:

$$\sigma_{app} = 2 \times 10^{-7} |\alpha_s - \alpha_d| \Delta T \sqrt{E_s E_a L/x}$$
 (G.6)

The variables in these equations are defined in paragraphs 4.5.3.2(1) and 4.5.3.2(2) and data are obtained from the following sources:

VARIABLE	VALUE	UNITS	SOURCE
n	4	N/A	Table 4.5-7
А	1×10^{-12}	N/A	Table 4.5-7
a _i	1.3×10^{-4}	m	RMC
af	3.8×10^{-4}	m	Para 4.5.3.2(2)
к _{тс}	0.82	M Pa √m	Table 4.5-7
aç	7.3×10^{-6}	m/m/°C	Table 4.5-9
αd	4.67×10^{-6}	m/m/°C	Table 4.5-7
Ε	255×10^9	Pa	Table 4.5-9
E	2.8×10^9	Pa	Table 4.5-8
x	5.1 x 10^{-5}	m	RMC
L	3.22×10^{-3}	m	RMC
ΔΤ	55	°C	Table 4.5-17

Substituting in equation G.6:

•

 $\sigma_{app} = 2x10^{-7} |7.3x10^{-6} - 4.67x10^{-6} |(55)\sqrt{(255x10^9)(2.8x10^9)(3.22x10^{-3})/(5.1x10^{-5})}$ = 6.142 MPa Applying this result to equation G.10e:

$$N_{f} = \frac{2}{(2)(1 \times 10^{-12})(6.142)^{4} \pi^{2}} \begin{bmatrix} 1 \\ 1.3 \times 10^{-4} \end{bmatrix} - \frac{1}{3.8 \times 10^{-4}}$$
(G.10e)
= 3.603 × 10¹¹ cycles

(B) Assume the same conditions as paragraph 4.5.3.3(2)(A) except the die attach material is Au-Si eutectic and the die diagonal length is 1 x 10^{-2} m (400 mils) and all other variables remain the same. Then from Table 4.5-18, x = 2.5 x 10^{-6} m (0.1 mil) and from Table 4.5-8, E_a = 59.2 x 10^{9} MPa. Substituting in equation G.6:

$$\sigma_{app} = 2x10^{-7} | 7.3x10^{-6} - 4.67x10^{-6} | (55) \sqrt{(255x10^9)(59.2x10^9)(1x10^{-2})/(2.5x10^{-6})} = 212.5 \text{ MPa}$$

Applying this result to equation G.10e:

$$N_{f} = \frac{2}{(2)(1 \times 10^{-12})(212.5)^{4} \pi^{2}} \left[\frac{1}{1.3 \times 10^{-4}} - \frac{1}{3.8 \times 10^{-4}} \right]$$

= 2.515 × 10⁵ cycles

(C) Assume the same conditions as paragraph 4.5.3.3(2)(B) except the MIL-STD-883 quality level is Class S. This implies that $a_i = 7.6 \times 10^{-5} m$ (3 mils) and all other variables remain the same. Applying the previous result for equation G.6 and substituting in equation G.10e:

$$N_{f} = \frac{2}{(2)(1 \times 10^{-12})(212.5)^{4} \pi^{2}} \frac{1}{7.6 \times 10^{-5}} - \frac{1}{3.8 \times 10^{-4}}$$

= 5.230 × 10⁵ cycles

- (3) <u>Die Attach Fatigue</u>
- (A) Assume a microcircuit with a Representative Microcircuit Configuration (RMC) as defined in paragraph 4.5.6 and used in a MIL-HDBK-217 ground-fixed (G_F) application environment. Then the mean number of cycles to failure due to die attach fatigue is found from equations G.11

and G.12, which are combined following:

$$N_{f} = \frac{1}{2} \left[\frac{L|^{a}s - a^{d}d| \Delta T}{x\gamma_{f}} \right]^{1/c}$$
(G.11)

&

G.12)

The variables in this equation are defined in paragraph 4.5.3.2(3) and data are obtained from the following sources:

VARIABLE	VALUE	UNITS	SOURCE
L	3.22×10^{-3}	m	RMC
α	7.3 x 10^{-6}	m/m/°c	Table 4.5-9
αd	4.67 x 10 ⁻⁶	m/m/°c	Table 4.5-7
ΔŤ	55	°c	Table 4.5-17
x	5.1 x 10 ⁻⁵	m	RMC
Ύf	1.1	N/A	Table 4.5-8
c	-0.49	N/A	Table 4.5-8

Substituting in equations G.11 and G.12:

$$N_{f} = \frac{1}{2} \begin{bmatrix} \frac{(3.22 \times 10^{-3})}{7.3 \times 10^{-6}} & \frac{10^{-6}}{-4.67 \times 10^{-6}} \end{bmatrix} \frac{11}{-0.49}$$

= 8.820 × 10³ cycles

(B) Assume the same conditions as paragraph 4.5.3.3(3)(A) except the die attach material is Au-Si eutectic, and all other variables remain the same. Then from Table 4.5-18, $x = 2.5 \times 10^{-6}$ m (0.1 mil). Substituting in equations G.11 and G.12:

$$N_{f} = \frac{1}{2} \begin{bmatrix} \frac{(3.22 \times 10^{-3})}{7.3 \times 10^{-6}} & \frac{10^{-6}}{-4.67 \times 10^{-6}} \end{bmatrix}^{1/-0.49}$$

= 19 cycles

(4) Substrate Attach Fatigue

(A) Assume a hybrid microcircuit used in a MIL-HDBK-217 ground-fixed (G_F) application environment with the following configuration:

Package Material – Copper Substrate Material – Alumina Ceramic Substrate Attach – Au-Si eutectic Substrate Size – 1.91 x 10⁻²m square (.75 in square)

Then the mean number of cycles to failure due to substrate attach fatigue is found from equation G.13:

$$N_{f} = \frac{1}{2} \left[\frac{L_{s} \left| \alpha_{c} - \alpha_{s} \right| \Delta T}{x_{sa} Y_{f}} \right]^{1/c}$$
(G.13)

The variables in this equation are defined in paragraph 4.5.3.2(4) and data are obtained from the following sources:

VARIABLE	VALUE	UNITS	SOURCE	
L	2.7×10^{-2}	m	configuration:	$(\sqrt{2} (1.91 \times 10^{-2}))$
α	16.9×10^{-6}	m/m/°c	Table 4.5-10	
αζ	7.3 x 10 ⁻⁶	m/m/°c	Table 4.5-9	
ΔT	55	°c	Table 4.5-17	
׺a	2.5×10^{-6}	m	Table 4.5-18	
Υ _f	1.1	N/A	Table 4.5-8	
C	-0.49	N/A	Table 4.5-8	

Substituting in equation G.13:

$$N_{f} = \frac{1}{2} \left[\frac{(2.7 \times 10^{-2})|16.9 \times 10^{-6} - 7.3 \times 10^{-6}|(55)}{(2.5 \times 10^{-6})(1.1)} \right]^{1/-0.49}$$

= 1.7 x 10⁻² cycles i.e. will not survive the first thermal cycle.

(B) Assume the same conditions as paragraph 4.5.3.3(4)(A) except the die attach material is 70-30 In-Pb solder, and all other variables remain the same. Then from Table 4.5-18, $x_{sa} = 1.5 \times 10^{-4} \text{m}$ (6 mils). Substituting in equation G.13:

$$N_{f} = \frac{1}{2} \begin{bmatrix} \frac{(2.7 \times 10^{-2})|16.9 \times 10^{-6} - 7.3 \times 10^{-6}|(55)}{(1.5 \times 10^{-4})(1.1)} \end{bmatrix}^{1/-0.49}$$

= 74 cycles

(C) Assume the same conditions as paragraph 4.5.3.3(4)(A) except the package material is Kovar, and all other variables remain the same. Then from Table 4.5-10, $\alpha_c = 5.2 \times 10^{-6} \text{ m/m/°c}$. Substituting in equation G.13:

$$N_{f} = \frac{1}{2} \left[\frac{(2.7 \times 10^{-2}) | 5.2 \times 10^{-6} - 7.3 \times 10^{-6} | (35)}{(2.5 \times 10^{-6}) (1.1)} \right]^{1/-0.49}$$

= 3.9 x 10⁻¹ cycles i.e. will not survive the first thermal cycle.

(D) Assume the same conditions as paragraph 4.5.3.3(4)(A) except the package material is Kovar and the die attach material is 70-30 In-Pb solder, and all other variables remain the same. Then from Table 4.5-10, $\alpha_c = 5.2 \times 10^{-6} \text{ m/m/}^{\circ}\text{c}$ and from Table 4.5-18, $x_{sa} = 1.5 \times 10^{-4} \text{m}$ (6 mils). Substituting in equation G.13:

$$N_{f} \approx \frac{1}{2} \left[\frac{(2.7 \times 10^{-2}) | 5.2 \times 10^{-6} - 7.3 \times 10^{-6} | (55)}{(1.5 \times 10^{-6}) (1.1)} \right]^{1/-0.49}$$

$$\approx 1646 \text{ cycles}$$

(E) Assume the same conditions as paragraph 4.5.3.3(4)(D) except the substrate size is $1.27 \times 10^{-2}m$ square (0.5 in square). Then L_s = $\sqrt{2}(1.27 \times 10^{-2}) = 1.8 \times 10^{-2}m$. Substituting in equation G.13: $N_{f} = \frac{1}{2} \left[\frac{(1.8 \times 10^{-2})|5.2 \times 10^{-6} - 7.3 \times 10^{-6}|(55)}{(1.5 \times 10^{-4})(1.1)} \right]^{1/-0.49}$ = 3765 cycles

4.5.3.4 Evaluation

The results from the application examples given in paragraph 4.5.3.3 are summarized following:

FAILURE MECHANISM	MICROCIRCUIT CONFIGURATION*	Nf (cycles)
Die Brittle	RMC	Note 1
Cracking	RMC except: Au-Si eutectic : die attach : L = 1 x 10 ⁻² (400 mils)	Note 2
	RMC	3.6 x 10 ¹¹
Cracking	RMC except: Au-Si eutectic die attach : L = 1 x 10 ⁻² m(400mils)	2.5 x 10 ⁵
	RMC except: Au-Si eutectic die attach : L = 1 x 10 ⁻² m(400 mils) : MIL-STD-883, Class S	5.2 x 10 ⁵
Die Attach	RMC	8.8 x 10 ³
Fatigue	RMC except: Au-Si eutectic die attach	19
	Case: Cu; Substrate: Al ₂ O ₃ Substrate Attach: Au-Si eutectic Substrate size: 1.91 x 10 ⁻² m square (.75 in square)	will not survive first cycle
Substrate Attach	Same except 70-30 In-Pb solder attach	74
Fatigue	Same except Kovar case	will not surive first cycle
	Same except Kovar case, 70–30 In-Pb solder attach	1646
	Same except Kovar case, 70-30 In-Pb solder attach, substrate 1.3 x 10 ⁻² m square substrate (0.5 in square)	3765
*RMC is defined in	paragraph 4.5.6	

Note 1. Die brittle cracking will not occur. 2. Die brittle cracking during first thermal cycle will occur.

From the summary table it is clear that the microcircuit designer's choice of materials, fabrication processes and geometry strongly influence the presence and severity of the failure mechanisms considered in this section.

Die brittle cracking is not normally seen in typical microcircuits. However, it could become a frequently occurring problem if the trend to larger die sizes is accompanied by the use of thin layer eutectic attach materials. Thick layer attach materials are preferable for larger die sizes.

Die fatigue cracking is rarely experienced in most current production microcircuits. However, mean cycle life can be reduced by 6 or more orders of magnitude if the trend to larger die sizes is accompanied by the use of thin layer eutectic atach materials. It is noted that upgrading the quality level from MIL-STD-883, Class B to Class S has negligible effect on life cycle improvement.

Die attach fatigue is frequently seen in power microcircuits and hybrids, and will become of greater prevalence if thin layer eutectic attach materials are employed. This failure mechanism frequency can be reduced by using thick layer low modulus of elasticity attach materials.

Substrate attach fatigue is found only in hybrid or multi-chip microcircuits where microcircuit components are mounted on substrates. The summary table deomonstrates the extreme importance of evaluation of package materials and substrate attach materials to optimize mean cycles to failure. Additionally, this mechanism can be further reduced by the strategy of using several smaller substrates in lieu of a single large substrate.

4.5.4 Failure Models of Metallization and Wire Bond Corrosion

4.5.4.1 Description of Models

The time to failure of a microelectronic package due to corrosion is dependent upon the package type, corroding material, and environmental conditions. The package type is defined in terms of package geometry, encapsulating materials and lid and lead seals. These attributes together with the environmental conditions (relative humidity and temperature) determine the rate of moisture ingress, hermeticity and the moisture induction time for the package. The properties of the corroding material, contaminant and condensed moisture will control the rate of the corrosion process. For example, corrosion is less likely to occur in a cool, dry environment while a hot and humid environment will shorten the induction time and promote the galvanic transfer of ions for the corrosion process.

As the temperature increases, the rate of moisture ingress increases which leads to a shorter induction time. However, if the microelectronic device is electrically activated such that the temperature surrounding a potential corroding material is high enough to prevent moisture condensation, then corrosion will not occur. Thus the non-operating environment of the package is more severe than the operating environment for the corrosion failure mechanism.

The induction time between hermetic and non-hermetic packages can differ by four orders of magnitude. However, with new encapsulating package materials, such differences are being minimized and permeation is playing a smaller role on moisture ingression as compared to moisture flow.

Corrosion of metallization and bonding materials occurs predominantly on aluminum subjected to a chlorine or other halogen ionic contaminant. However, as the component dimensions are miniaturized and the current densities are increased, even gold will corrode provided there is an electrolyte for galvanic transfer. Furthermore a high quality and contaminant-free passivation layer can extend the time to failure by as much as 4 orders of magnitude compared to an unprotected counterpart.

The development of the model for corrosion induced failure is more fully discussed in Appendix H.

4.5.4.2 Metallization and Wire Bond Corrosion Failure Models

162

As discussed in 4.5.4.1, models have been developed for conductor metallization and bond pad corrosion failure. The total time to corrosion failure is the sum of two terms as defined by equation (H2.1):

$$\tau = \tau_1 + \tau_2$$
 (H2.1)

where

- τ is the time to corrosion failure.
- τ_1 is the induction time necessary for the internal package volume to reach the threshold moisture content to support the corrosion process.
- τ_2 is the time required for the corrosion process to terminate in failure.

In Appendix H it is shown that $\tau_2 >> t_1$. Therefore, the total time to corrosion failure can be effectively approximated by equation (H2.1a), as follows:

 $\tau = \tau_2 \tag{H2.1a}$

It is useful to evaluate t_1 to compare the effect of varying package leak rates for hermetically sealed packages, or to compare the effectiveness of alternate encapsulation materials for a non-hermetic package. Figure 4.5-2 delineates τ_1 for hermetic packages as a function of the package volume and the allowable leak rate of the package from MIL-STD-883. The induction time for a non-hermetic package is defined by equation (H2.2) as follows:

$$\tau 1(\text{non-hermetic}) = \frac{12L^2}{\pi^2 D}$$
(H2.2)

where:

,

L is the effective thickness of the package barrier between the microcircuit and the external ambient, cm, which may be approximated by one-half of the overall package thickness. D is the permeability of the encapsulant material, cm³-cm/cm²-sec-bar (i.e. cubic centimeter volume of permeant at standard temperature and pressure per square centimeter of barrier area per second bar differential pressure across the barrier per centimeter of barrier thickness).

The two principal sites for corrosion failure are discussed below.

(1) Conductor Metallization Corrosion Failure

The model for the time required for conductor metallization failure is defined by equation (H3.8).

$$\tau_{2m} = 8 \times 10^{11} \frac{k_1 k_2 k_3}{k_4} \frac{w^2 hnd\rho}{MV} \quad (sec) \tag{H3.8}$$

where:

ŧ

- τ_{2m} is the time to failure for conductor metallization, seconds.
- k₁ is the physical properties index of the conductor material obtained from Table 4.5-12.
- k_2 is the coating integrity factor obtained from Table 4.5–13.
- k_3 is the equipment operating time factor obtained from Table 4.5-14.
- k₄ is the temperature-humidity environment acceleration factor obtained from figure 4.5-1.
- w is the width of the conductor metallization, cm.
- h is the height of the conductor metallization, cm.
- n is the chemical valence of the conductor material obtained from Table 4.5-12.
- d is the density of the conductor material obtained from Table 4.5-12.
- M is the atomic weight of the conductor material obtained from Table 4.5-12
- V is the applied or galvanic electrical bias, volts, chosen as described in Table 4.5-16.
- ρ is the resistivity of the electrolyte, ohm-cm, Table 4.5-15.

(2) Bond Pad Corrosion Failure

The model for the time required for bond pad metallization failure is defined by equation (H3.10) as follows:

$$\tau_{2W} = 8 \times 10^{11} \frac{k_1 k_2 k_3}{k_4} \frac{V_C^{ndp}}{MV}$$
(H3.10)

where:

- $\tau_{2\mu}$ is the time to failure for conductor metallization, seconds.
- k₁ is the physical properties index of the bond pad material obtained from Table 4.5-12.
- k₂ is the coating integrity factor obtained from Table 4.5-13, which for an uncoated bond pad is equal to unity.
- $k_{\rm 2}$ is the equipment operating time factor obtained from Table 4.5-14.
- k₄ is the temperature-humidity environment acceleration factor obtained from Figure 4.5-1.
- $V_{\rm C}$ is the bond pad volume, cm³, obtained from Table 4.5-11.
- n is the chemical valence of the anodic member of the bond pad/bond wire combination, obtained from Table 4.5-16 and 4.5-12.
- d is the density of the anodic member of the bond pad/bond wire combination, obtained from Tables 4.5-16 and 4.5-12.
- M is the atomic weight of the anodic member of the bond pad/bond wire combination, obtained from Tables 4.5-16 and 4.5-12.
- V is the applied or galvanic electrical bias, volts, chosen as described in Table 4.5-16.
- ρ is the resistivity of the electrolyte, ohm-cm, obtained from Table 4.5-15.
- 4.5.4.3 Application Examples for Conductor and Bond Pad Metallization Corrosion Failure Models

(1) Conductor Metallization Corrosion

(A) Assume a microcircuit with a Representative Microcircuit Configuration

(RMC) as defined in 4.5.6 and used in a MIL-HDBK-217 ground-fixed (G_F) application environment in which the equipment is operated an average of three hours per day. Then the mean time to failure due to conductor metallization corrosion is found from equation H3.8:

$$\tau_{2m} = 8 \times 10^{11} \frac{k_1 k_2 k_3}{k_4} \frac{w^2 \text{hnd}\rho}{MV}$$
(H3.8)

The variables in this equation are defined in paragraph 4.5.4.2(1) and data are obtained from the following sources:

VARIABLE	VALUE	UNITS	SOURCE
k1	0.1	N/A	Table 4.5-12
k2	10	N/A	Table 4.5-13
k3	1.14	N/A	Table 4.5-14
k4	0.34	N/A	Figure 4.5-1
W	1.5×10^{-4}	CM	RMC
h	7.5 x 10 ⁻⁵	cm	RMC
n	3	N/A	Table 4.5-12
d	2.7	gm/cc	Table 4.5-12
ρ	7.3 × 10 ⁶	ohm-cm	Table 4.5-15
М	27	amu	Table 4.5-12
V	5	volts	RMC

Substituting equation H3.8:

$$\tau_{2m} = (8 \times 10^{11}) \frac{(0.1)(10)(1.14)}{(0.34)} \frac{(1.5 \times 10^{-4})^2 (7.5 \times 10^{-5})(3)(2.7)(7.3 \times 10^6)}{(27)(5)}$$

= 1.983 × 10⁶ seconds = 551 hours

(B) Assume the same conditions as paragraph 4.5.4.3(1)(A) except the conductor metallization is gold. Then from Table 4.5-12, $K_1 = 1.0$, M = 197, d = 19.32, n = 3 and all other variables remain the same. Substituting in equation H3.8:

$$\tau_{2m} = (8 \times 10^{11}) (\frac{1.0}{(0.34)} (\frac{1.5 \times 10^{-4}}{(0.34)})^2 (7.5 \times 10^{-5}) (3) (19.32) (7.3 \times 10^{6}) (197) (5)$$

= 1.944 x 10⁷ seconds = 5400 hours

(C) Assume the same conditions as in paragraph 4.5.4.3(1)(A) except the conductor metallization line width is 5 x 10^{-5} m (0.5 microns). The w = 5x10⁻⁵m and all other variables remain the same. Substituting in equation H3.8:

$$\tau_{2m} = (8 \times 10^{11}) \frac{(0.1)(10)(1.14)}{(0.34)} \frac{(5 \times 10^{-5})^2 (7.5 \times 10^{-5})(3)(2.7)(7.3 \times 10^6)}{(27)(5)}$$

= 2.203 × 10⁵ seconds = 61 hours

(D) Assume the same conditions as in paragraph 4.5.4.3(1)(A) except the microcircuit will be used in an environment with a significantly higher chlorine content than normal. Then from Table 4.5-15, $\rho = 2.3 \times 10^6$ ohm-cm and all other variables remain the same. Substituting in equation H3.8:

$$\tau_{2m} = (8 \times 10^{11}) \frac{(0.1)(10)(1.14)}{(0.34)} \frac{(5 \times 10^{-4})^2 (7.5 \times 10^{-5})(3)(2.7)(2.3 \times 10^6)}{(27)(5)}$$

= 6.246 × 10⁵ seconds = 174 hours

(E) Assume the same conditions as in paragraph 4.5.4.3(1)(A) except the signal power supply voltage is 1.5 volts and all other variables remain the same. Substituting in equation H3.8:

$$\tau_{2m} = (8 \times 10^{11}) \frac{(0.1)(10)(1.14)}{(0.34)} \frac{(1.5 \times 10^{-4})^2 (7.5 \times 10^{-5})(3)(2.7)(7.3 \times 10^6)}{(27)(1.5)}$$

= 6.609 × 10⁶ seconds = 1836 hours

(F) Assume the same conditions as paragraph 4.5.4.3(1)(A) except the microcircuit metallization has been covered by a protective coating that has been demonstrated to provide a strong chemcical bond to the metallization that is inherently free from cohesive or bulk defects and is not detrimentally affected by a G_F environment e.g. silicon gel or equivalent. Then from Table 4.5-13, $K_2 = 100$ and all other variables remain the same. Substituting in equation H3.8:

$$\tau_{2m} = (8 \times 10^{11}) \frac{(0.1)(100)(1.14)}{(0.34)} \frac{(1.5 \times 10^{-4})^2 (7.5 \times 10^{-5})(3)(2.7)(7.3 \times 10^6)}{(27)(5)}$$

= 1.983 x 10⁷ seconds = 5507 hours

(G) Assume the same conditions as paragraph 4.5.4.3(1)(A) except the equipment is operated an average of 16 hours per day. Then from Table 4.5-14, $K_3 = 3$ and all other variables remain the same. Substituting in equation H3.8:

$$\tau_{2m} = (8 \times 10^{11}) \left(\frac{0.1}{(0.34)} \right) \left(\frac{1.5 \times 10^{-4}}{(0.34)} \left(\frac{27}{(0.5 \times 10^{-5})} \right) \left(\frac{27}{(5)} \right) \right)$$

= 5.217 x 10⁶ seconds = 1449 hours

- (2) Bond Pad Corrosion
- (A) Assume the same conditions as paragraph 4.5.4.3(1)(A). Then the mean time to failure due to bond pad corrosion is found from equation H3.10:

$$\tau_{2w} = 8 \times 10^{11} \frac{k_1 k_2 k_3}{k_4} \frac{C^{V ndp}}{MV}$$
(H3.10)

The variables in this equation are defined in paragraph 4.5.4.2(2) and the data values and data sources for this equation are the same as tabulated in paragraph 4.5.4.3(1)(A), except V_C is obtained from Table 4.5-11. For the assumed conditions V_C is defined as the least value of equations H.8a and H.8b:

$$V_c = 0.3 s^2 t_b$$
 (H.8a)
 $V_c = 0.236 D_3$ (H.8b)

The variables in these equations are defined in Table 4.5-11. From the RMC definition in paragraph 4.5.6 the following values are obtained:

VARIABLE	VALUE	UNITS	SOURCE
D	3.2×10^{-3}	cm	RMC
S	1×10^{-2}	cm	RMC
t _h	7.5 × 10 ⁻⁵	cm	RMC

Substituting in equations H.8a and H.8b and choosing the least value:

$$V_{\rm C} = 2.25 \times 10^{-9} \, {\rm cm}^3$$

Substituting in equation H3.10:

$$\tau_{2w} = (8 \times 10^{11}) \frac{(0.1)(10)(1.14)}{(0.34)} \frac{(2.25 \times 10^{-9})(3)(2.7)(7.3 \times 10^{6})}{(27)(5)}$$

= 2.643 × 10⁹ seconds = 7.343 × 10⁵ hours

(B) Assume the same conditions as paragraph 4.5.4.3(1)(A) except the bond wire material is gold. Since the bond wire and bond pad are dissimilar metals, from Table 4.5-16, it is determined that the bond pad material (aluminum) is anodic to gold and that

$$V_{galvanic} = 1 + (V_{cathode} - V_{anode}) = 1 + (1.5 - (-1.66))$$

= 4.16 volts

Since $V_{galvanic} < V = 5$ volts, the latter value is used in equation H3.10. From Table 4.5-11 it is determined that the corrosively attacked member is the bond pad and that equation H.8a defines the corrosion volume:

$$V_{\rm C} = 0.3 \, {\rm s}^2 \, {\rm t}_{\rm b}$$
 (H.8a)

The variables for this equation are defined in Table 4.5-11 and the variable values are determined from the RMC definition in paragraph 4.5.6. The values tabulated in paragraph 4.5.4.3(2)(A) apply. Substituting these values in equation H.8a:

$$V_{\rm C} = (0.3)(1 \times 10^{-2})^2 (7.5 \times 10^{-5}) = 2.25 \times 10^{-9} \,{\rm cm}^3$$

Since the corrosively attacked member is the bond pad all the applicable variable values tabulated in paragraph 4.5.4.3(1)(A) apply to this condition. Substituting these values in equation H3.10:

$$\tau_{2w} = (8 \times 10^{11}) \frac{(0.1)(10)(1.14)}{(0.34)} \frac{(2.25 \times 10^{-9})(3)(2.7)(7.3 \times 10^{6})}{(27)(5)}$$

= 2.643 x 10⁹ seconds = 7.343 x 10⁵ hours

(C) Assume the same conditions as paragraph 4.5.4.3(1)(A) except the bond pad is gold and the bond wires are attached with wedge bonds. Since the bond wire and bond pad are dissimilar metals, from Table 4.5-16, it is determined that the bond pad material is cathodic to the bond wire material (aluminum) and that

$$V_{galvanic} = 1 + V_{cathode} - V_{anode} = 1 + 1.5 - (-1.66)$$

= 4.16 volts

Since $V_{galvanic} < V = 5$ volts, the latter value is used in equation H3.10. From Table 4.5-11 it is determined that the corrosively attacked member is the bond wire and for wedge bonds equation H.8b defines the corrosion volume:

$$V_{\rm C} = 0.236 \ {\rm D}^3$$
 (H.8b)

The variable for this equation is defined in Table 4.5–11. From the RMC definition in paragraph 4.5.6 the value $D = 3.2 \times 10^{-3}$ cm is obtained. Substituting in equation H.8b:

$$V_{\rm C} = (0.236)(3.2 \times 10^{-3})^3 = 7.733 \times 10^{-9} \,{\rm cm}^3$$

Since the corrosively attacked member is the bond wire, all the 'applicable variable values tabulated in paragraph 4.5.4.3(1)(A) apply to this condition. Substituting these values in equation H3.10:

$$\tau_{2w} = (8 \times 10^{11}) \frac{(0.1)(10)(1.14)}{(0.34)} \frac{(7.733 \times 10^{-9})(3)(2.7)(7.3 \times 10^{6})}{(27)(5)}$$

= 9.085 x 10⁹ seconds = 2.524 x 10⁶ hours

.

4.5.4.4 Evaluation

The results from the application examples given in paragraph 4.5.4.3 are summarized following:

FAILURE MECHANISM	MICROCIRCUIT CONFIGURATION*	N f (hours)
	RMC: operating 3 hrs/day	551
	RMC except: Au conductors - operating 3 hrs/day	5400
Conductor	RMC except: 0.5 micron line width - operating 3 hrs/day	61
Metallization Corrosion	RMC - operating in corrosive environment - operating 3 hrs/day	174
	RMC except: 1.5v power supply - operating 3 hrs/day	1836
	RMC - exceptional conductor protective coating - operating 3 hrs/day	5507
	RMC - operating 16 hrs/day	1449
	RMC – operating 3 hrs/day	7.3 x 105
Bond Pad	RMC except: Au bond pad - operating 3 hrs/day	7.3 x 105
Corrosion	RMC except: Au bond pad : wedge bonds - operating 3 hrs/day	2.5 x 10 ⁶

* RMC is defined in paragraph 4.5.6

Comparison of the mean time to failure for the two corrosion sites described in the summary table clearly demonstrates that conductor metallization corrosion is predicted to be much more prevalent than bond pad corrosion.

The conductor metallization corrosion mechanism can cause three or more orders of magnitude variation in mean time to failure, dependent on design, materials, fabrication processes and operating conditions. Significant improvement in microcircuit resistance to this failure mechanism can be achieved by two steps, either separately or in combination viz3.

- develop improved conductor protective coatings (passivation)(order magnitude increase)
- use of more corrosion resistant conductor metals (order of magnitude increase)

The trend to higher density microcircuits has contradictory effects on conductor metallization corrowion. On one hand narrower conductor widths can reduce mean time to failure by an order of magnitude. On the other hand the lower signal voltage levels can increase mean time to failure by a factor up to three. This suggests that the overall effect of higher density microcircuits will be an increasing susceptability to the corrosion mechanism. Thus it is emphasized that it will become increasingly important to implement the reliability improvement steps highlighted above.

Finally, it is observed that increasing equipment operating time per day will increase the mean time to failure from corrosion mechanisms. Continuously operating equipment will not experience corrosion failure. Not only do the models predict this result, but it is in agreement with experience. Corrosion is an electrochemical process and liquid phase moisture is a necessary condition for the process to occur. Under the thermal conditions of equipment operation only vapor phase moisture is present within microcircuit enclosures.

4.5.5 Differential Temperature for Use in Failure Models

Transient differential temperature at the failure site is the principal source of stress that drives the failure mechanisms discussed in paragraphs 4.5.2 and 4.5.3. The models developed for these mechanisms utilize the differential temperature raised to a power. Hence, the model predictions are sensitive to the differential temperature value employed. Development of realistic delta temperature values for use in the models is discussed in Appendix I.

4.5.6 Representative Microcircuit Configuration (RMC)

4

The objective for the failure mechanism models developed in this report was to obtain "easy to use" models with variables that are reasonable and accessible for use by reliability analysts and that accurately predict the time or number of cycles to failure. This dual objective is self-contradictory in that accuracy requires inclusion of all variables with significant effect on the failure mechanisms and simplicity requires minimization of variables. Our solution to this dilemma is two-fold:

- (1) Develop models in accordance with the applicable laws of physics, chemistry and engineering that fully and accurately relate all significant variables to their effect on component life.
- (2) Simplify the models for use by reliability analysts using the concept of a Representative Microcircuit Configuration (RMC), as further described.

When mature technology microcircuits are produced to established performance and package standards by numerous manufacturers, competitive pressures ensure that a high degree of similarity will exist between parts of equivalent performance housed in interchangeable packages. Hence, many of the failure mechanism variables will be approximately equal for all MIL-M-38510 microcircuits. Production efficiency requirements will ensure repetitive usage of materials and certain geometric features throughout a complete technology product line. The RMC concept exploits this similarity.

Westinghouse experience in application, reliability characterization and

173

failure analysis of microcircuits and design and manufacturing of multichip hybrids, combined with discussions with the microcircuit suppliers [102,103] has resulted in the following definition of an RMC:

•	PACKAGE	:	Hermetically sealed
		:	Al ₂ O ₃ Alumina ceramic base and lid
•	DIE	: : :	Silicon Diagonal length = 3.23 x 10 ⁻³ m (127 mils) Thickness = 3.7 x 10 ⁻⁴ m (14.5 mils)
•	DIE ATTACH	: : :	Mounted to package base Ag-glass epoxy After cure thickness = 5.1 x 10 ⁻⁵ m (2 mils)
•	CONDUCTORS	: : :	Aluminum Passivation coated Width = 1.5 x 10 ⁻⁴ cm (1.5 microns)(0.06 mils))
•	BOND PADS	: : :	Thickness = 7.5×10^{-5} cm (7500 Å)(0.03 mils). Aluminum Not passivation coated Size = 1×10^{-2} cm x 1 x 10^{-2} cm (4 mils x 4 mils)
•	BOND WIRE	•	Thickness = 7.5×10^{-5} cm (7500 Å)(0.03 mils) Aluminum Diameter = 3.2×10^{-2} mm (1.25 mils) = 3.2×10^{-3} cm
٠	APPLIED VOLTAGE	:	5 Volts
•	QUALITY LEVEL	:	MIL-STD-883, Level B Allowable vertical edge crack length = 1.3 x 10 ⁻⁴ m (5 mils)
٠	AMBIENT	:	Temperature = 70°C Humidity = 90% RH
4.5.7 Model Simplification

4.5.7.1 Failure Mechanism Models

The following non-electrical (package related) failure mechanism models have been developed in Section 4.5 of this report.

- (1) Bond Wire Flexure Fatigue (Equations F5.7a and F5.8, Paragraph 4.5.2.2(1)).
- (2) Shear Fatigue at Bond Pad/Substrate Interface (Equations F5.9 and F5.10, Paragraph 4.5.2.2(2)).
- (3) Shear Fatigue at Bond Pad/Bond Wire Interface (Equations F5.10 and F5.14, Paragraph 4.5.2.2(3)).
- (4) Die Brittle Cracking (Equations G.4, G.5 and G.6, Paragraph 4.5.3.2(1)).
- (5) Die Fatigue Cracking (Equations G.5, G.6 and G.10e, Paragraph 4.5.3.2(2)).
- (6) Die Attach Fatigue (Equations G.11 and G.12, Paragraph 4.5.3.2(3)).
- (7) Substrate Attach Fatigue (Equation G.13, Paragraph 4.5.3.2(4)).
- (8) Conductor Metallization Corrosion (Equations H2.1a and H3.8, Paragraph 4.5.4.2(1)).
- (9) Bond Pad Corrosion (Equations H2.1a and H3.10, Paragraph 4.5.4.2(2)).

4.5.7.2 Failure Mechanisms Present in an RMC

Using the parenthetical numbers assigned to the failure mechanisms in paragraph 4.5.7.1, only the following mechanisms are potentially present in an RMC:

- (1) Bond Wire Flexure Fatigue
- (2) "Shear Fatigue at Bond Pad/Substrate Interface
- (4) Die Brittle Cracking
- (5) Die Fatigue Cracking
- (6) Die Attach Fatigue
- (8) Conductor Metallization Corrosion
- (9) Bond Pad Corrosion

The mechanisms which are not included in an RMC, and the reasons for their

omission, are discussed below.

(3) Shear Fatigue at Bond Pad/Bond Wire Interface

This mechanism is not present because the bond pad and bond wire are made from the same material, thus eliminating the cause of the mechanism (differential thermal expansion). Single-metal bonds have greater industry usage than do bi-metallic bonds, so the former is used in the RMC.

(7) Substrate Attach Fatigue

This mechanism is not present because the predominant practice in microcircuit construction is to directly attach the die to the package base. This mechanism can be of significance in hybrids, however.

4.5.7.3 Simplified Failure Mechanism Models for an RMC

The applicable fully delineated failure mechanism models defined in paragraphs 4.5.2, 4.5.3 and 4.5.4 have been simplified by the Representative Microcircuit Configuration (RMC) concept described in paragraph 4.5.6 and are presented below. The simplification applies only to the seven applicable models discussed in paragraph 4.5.7.2.

4.5.7.3.1 Bond Wire Flexure Fatigue

The fully delineated model for this mechanism is defined by equations F5.7a and F5.8 given in paragraph 4.5.2.2(1). Following is a list of the variables in this model for which numerical values are obtained from the sources noted, using the RMC concept:

VARIABLE	VALUE	<u>UNITS</u>	SOURCE
A	3.9232×10^{-10}	N/A	Table 4.5-4
n	-5.134	N/A	Table 4.5-4
r	1.6×10^{-2}	mm	RMC
a	23.2 x 10 ⁻⁶	m/m/°c	Table 4.5-1
α ζ	4.67 × 10 ⁻⁶	m/m/°c	Table 4.5-2

Incorporating these values provided the following simplified model:

$$N_{f(flex)} = 5.6 \times 10^{7} \left[\frac{Cos^{-1} (9.66 - 1.79 \times 10^{-5} \Delta T)}{15} - 1 \right]^{-5.134}$$
(4.5.1)

where

.

 ΔT is the temperature difference encountered in the application, obtained from Table 4.5-17, or user supplied.

4.5.7.3.2 Shear Fatigue at Bond Pad/Substrate Interface

The fully delineated model for this mechanism is defined by equations F5.9 and F5.10 given in paragraph 4.5.2.2(2). Following is a list of the variables in this model for which numerical values are obtained from the sources noted, using the RMC concept:

VARIABLE	VALUE	UNITS	SOURCE
A ₂	4.3386 × 10 ⁻¹¹	N/A	Table 4.5-5
n ₂	-5.134	N/A	Table 4.5-5
ĸ	1.46 x 10 ⁻⁵	N/A	Table 4.5-6

Incorporating these values provides the following simplified model:

$$N_{f(shear)s} = 2.9078 \times 10^{14} \Delta T^{-5.134}$$
 (4.5.2)

where

 ΔT is the temperature difference encountered in the application, obtained from Table 4.5-17, or user supplied.

4.5.7.3.3 Die Brittle Cracking

The fully delineated model for this mechanism is defined by equations G.4, G.5 and G.6 given in paragraph 4.5.3.2(1). Following is a list of the variables in this model for which numerical values are obtained from the sources noted, using the RMC concept:

VARIABLE	VALUE	UNITS	SOURCE
κ _{τς}	0.82	MPa √m	Table 4.5-7
ας	7.3×10^{-6}	m/m/°c	Table 4.5-9
αd	4.67×10^{-6}	m/m/°c	Table 4.5-7
E	255×10^9	Pa	Table 4.5-9
Ea	2.8×10^9	Pa	Table 4.5-8
x	5.1 x 10^{-5}	m	RMC
L	3.22×10^{-3}	m	RMC
a _i	1.3×10^{-4}	m	RMC

Incorporating these values provides the following simplified criterion for the presence of this failure mechanism:

$$a_{c} = \frac{17.2}{\Delta T^{2}} \le a_{1} = 1.3 \times 10^{-4}$$
 (4.5.3)

where

ΔT is the temperature difference encountered in the application, obtained from Table 4.5-17, or user supplied.

The maximum value of ΔT obtainable from Table 4.5–17 is $\Delta T = 55^{\circ}C$. Substituting this value in equation 4.5.3 yields the following:

$$a_{c} = \frac{17.2}{(55)^{2}} = 5.67 \times 10^{-5} \text{m} > a_{i} = 1.3 \times 10^{-4} \text{m}$$

Since a_c is two orders of magnitude greater than a_i, this failure mechanism will not occur in any MIL-HDBK-217 application environment defined in Table 4.5- 17 for the Representative Microcircuit Configuration presented in paragraph 4.5.6.

4.5.7.3.4 Die Fatigue Cracking

The fully delineated model for this mechanism is defined by equations G.5, G.6 and G.10e given in paragraph 4.5.3.2(2). Following is a list of the variables in this model for which numerical values are obtained from the sources noted, using the RMC concept:

VARIABLE	VALUE	UNITS	SOURCE
n	4	N/A	Table 4.5-7
A	1×10^{-12}	N/A	Table 4.5-7
a;	1.3×10^{-4}	m	RMC
a _f	3.8×10^{-4}	m	Para. 4.5.3.2(2)
κ _{τς}	0.82	MPa√m	Table 4.5-7
ας	7.3×10^{-6}	m/m/°c	Table 4.5-9
αd	4.67 x 10^{-6}	m/m/°c	Table 4.5-7
Ε	255 x 10^9	Pa	Table 4.5-9
Ea	2.8 x 10^9	Pa	Table 4.5-8
x	5.1 x 10^{-5}	m	`RMC
L	3.22×10^{-3}	m	RMC

Incorporating these values provides the following simplified model:

$$N_{f_{x}} = 3.3 \times 10^{18} / \Delta T^{4}$$
 (4.5.4)

where

 ΔT is the temperature difference encountered in the application, obtained from Table 4.5-17, or user supplied.

4.5.7.3.5 Die Attach Fatigue

The fully delineated model for this mechanism is defined by equations G.ll and G.l2 given in paragraph 4.5.3.2(3). Following is a list of the variables in this model for which numerical values are obtained from the sources noted, using the RMC concept:

VARIABLE	VALUE	UNITS	SOURCE
مر	7.3 x 10^{-6}	m/m/°c	Table 4.5-9
αd	4.67×10^{-6}	m/m/°c	Table 4.5-7
x	5.1 x 10 ⁻⁵	m	RMC
γ'f	1.1	N/A	Table 4.5-8
С	-0.49	N/A	Table 4.5-8
L	3.22×10^{-3}	m	RMC

Incorporating these values provides the following simplified model:

$$N_{f} = 3.217 \times 10^{7} \Delta T^{-2.041}$$
(4.5.5)

where

 ΔT is the temperature difference encountered in the application,

obtained from Table 4.5-17, or user supplied.

4.5.7.3.6 Conductor Metallization Corrosion

The fully delineated model for this mechanism is defined by equations H2.1a and H3.8 given in paragraph 4.5.4.2(1). Following is a list of the variables in this model for which numerical values are obtained from the sources noted, using the RMC concept:

VARIABLE	VALUE	UNITS	SOURCE
k,	0.1	N/A	Table 4.5-12
k,	10	N/A	Table 4.5-13
k _a	0.34	N/A	Figure 4.5-1
W	1.5×10^{-4}	cm	RMC
h	7.5 × 10 ⁻⁵	Cm	RMC
n	3	N/A	Table 4.5-12
d	2.7	gm/cc	Table 4.5-12
М	27	amu	Table 4.5-12
٧	5	Volts	RMC
ρ	7.3 × 10 ⁶	ohm-cm	Table 4.5-15

Incorporating these values provides the following simplified model:

$$\tau_{2m} = 1.7 \times 10^6 K_3$$
 seconds (4.5.6)

or
$$\tau_{2m} = 483 \text{ K}_3$$
 hours (4.5.6a)

where

 K_3 is the equipment operating time factor obtained from Table 4.5-14.

4.5.7.3.7 Bond Pad Corrosion

The fully delineated model for this mechanism is defined by equations H2.1a and H3.10 given in paragraph 4.5.4.2(2). Following is a list of the variables in this model for which numerical values are obtained from the sources noted, using the RMC concept:

VARIABLE	VALUE	UNITS	SOURCE
k	0.1	N/A	Table 4.5-12
k ₂	10	N/A	Table 4.5-13
k ₄	0.34	N/A	Figure 4.5-1
Vc	2.2×10^{-9}	cm ³	Table 4.5-11
n	3	N/A	Table 4.5-12
d	2.7	gm/cc	Table 4.5-12
М	27	amu	Table 4.5-12
V	5	Volts	RMC
ρ	7.3 x 10 ⁶	ohm-cm	Table 4.5-15

Incorporating these values provides the following simplified model:

$$\tau_{2w} = 2.3 \times 10^9 K_3$$
 seconds (4.5.7)
or $\tau_{2w} = 6.3 \times 10^5 K_3$ hours (4.5.7a)

where

 K_3 is the equipment operating time factor obtained from Table 4.5-14.

4.5.7.4 Other Simplified Failure Mechanism Models

Two failure mechanisms are identified in paragraph 4.5.7.2 that are not present in an RMC, and hence would be expected to form a minor part of the total package-related failures experienced in military electronic equipment. These mechanisms can be simplified for evaluation purposes by assuming probable material combinations and construction practices that would cause the mechanisms to be activated. The two remaining mechanisms are discussed below.

4.5.7.4.1 Shear Fatigue at Bond Pad/Bond Wire Interface

The fully delineated model for this mechanism is defined by equations F5.10 and F5.14 given in paragraph 4.5.2.2(3). This mechanism can be activated in a microcircuit only when the bond pad and bond wire are made from dissimilar materials. If these two elements are made from dissimilar materials, the most probable combination would be gold wire bonded to aluminum pads. Assuming the bond pad is on a silicon die and that this combination is chosen, following is a list of the variables in this model for which numerical values are obtained from the sources noted:

VARIABLE	VALUE	UNITS	SOURCE
A ₂	4.2948 x 10 ⁻¹²	N/A	Table 4.5-5
n ₂	-4.9828	N/A	Table 4.5-5
aw	14.2 x 10 ⁻⁶	m/m/°c	Table 4.5-1
α,	4.67 x 10 ⁻⁶	m/m/°c	Table 4.5-2

Incorporating these values provides the following simplified model:

$$N_{f(shear)w} = 1.4 \times 10^{15} \Delta T^{-4.983}$$
 (4.5.8)

where

 ΔT is the temperature difference encountered in the application, obtained from Table 4.5-17, or user supplied.

4.5.7.4.2 Substrate Attach Fatigue

The fully delineated model for this mechanism is defined by equations G.13 given in paragraph 4.5.3.2(4). This mechanism can be activated only when a substrate is inserted between a microcircuit die and the package base. Normally, this type of construction is employed in hybrid/multichip microcircuits. The substrate will usually be a base for conductor metallization to provide interconnections between passive and active leadless (chip) components. Hybrid circuits dissipating several watts of power are typically housed in hermetically sealed copper alloy packages with aluminum nitride substrates, employing 70 - 30 In - Pb solder for efficient heat transfer. Assuming this type of construction, following is a list of the variables in this model for which numerical values are obtained from the sources noted:

VARIABLE	VALUE	UNITS	SOURCE
ας	4.5×10^{-6}	m/m/°c	Table 4.5-9
مر	16.9×10^{-6}	m/m/°c	Table 4.5-10
×sa	1.5×10^{-4}	m	Assumed
Ϋ́f	1.1	N/A	Table 4.5-8
c	-0.49	N/A	Table 4.5-8

Incorporating these values provides the following simplified model:

$$N_{f} = 98.4 (L_{s} \Delta T)^{-2.041}$$
(4.5.9)

where

1

 L_s is the diagonal length of the substrate, meters. ΔT is the temperature difference encountered in the application, obtained from Table 4.5-17, or user supplied.

4.5.8 Relationship Between Cycles and Time

The reliability analyst requires knowledge of the time to failure for the various failure mechanisms that may be present in an electronic component being analyzed. However, seven of the nine models developed in this report for package related failure mechanisms are a function of temperature change magnitude and can only predict the number of stress/strain cycles to fatigue or cracking failure. The duration of the temperature change cycles has negligible effect on these mechanisms, as discussed in Appendix I.

Temperature change cycles are caused by the following conditions:

 Air transportation in non-temperature controlled cargo compartments while the equipment is not operating.

- (2) Climatic diurnal temperature variations when the equipment is not operating.
- (3) Temperature increase above ambient due to internal heat dissipation during equipment operation.

The first condition is infrequently encountered and the second is of negligible temperature magnitude, as discussed in Appendix I and delineated in Table I-5. Hence, the third condition is the principal source of temperature variation.

In the context of this report an equipment operating cycle is defined to be the time elapsed between equipment turn-on and turn-off. Some types of equipment have varying power levels during an operating cycle while other types have a constant power level. The operating power level directly affects the temperature change magnitude at each component.

Equipment operating cycles vary from nearly continuous for certain types of equipment to short intermittent periods for other types. Hence, accurate determination of mean time to failure for these mechanisms depends upon accurate determination of operating cycle duration for the type of equipment being analyzed.

Little published data exists on the relationship between operating cycle duration and equipment type. Accumulation and analysis of such data are beyond the scope of this report. Time and temperature analysis of specified equipment mission profiles are the best source of data for operating temperature cycle magnitude and duration.

Appendix I, Table I-1, records the results of measured temperature variation during a flight mission for an unidentified airborne electronic equipment. This data suggests that the major temperature variations recorded had an average duration of 1.1 hours per cycle. When more accurate information is not available, it is conservative to assume a short thermal cycle duration. Based on this data the following relationship between temperature cycles and

185

time is tentatively offered:

$$T_{f} = 1.25N_{f}$$

(4.5.10)

where

- T_{f} is the mean time to failure, hours
- N_f is the mean number of cycles to failure obtained from equations 4.5.1, 4.5.2, 4.5.4, 4.5.5 and 4.5.8 through 4.5.9 (or the fully delineated equations from which these are derived).

4.5.9 Failure Mechanism Model Assessment

Operational use of electronic equipment subjects the microcircuits employed therein to various levels of electrical, mechanical, thermal, chemical and environmental stresses. These stresses activate latent failure mechanisms that have not been removed by microcircuit quality control inspections, tests and screens. Many of these mechanisms are wearout type which cause the microcircuit probability to increase with time. In general the probability increase rate is different for each mechanism. Hence, meany mechanisms are simultaneously competing to cause device failure. Evaluation of the mean time to failure for each competing mechanism permits ranking to identify the most probable mechanisms.

The nine package related failure mechanisms modeled in this report are ranked following, based on the following assumptions:

- (1) The microcircuits conform to the Representative Microcircuit Configuration (RMC) defined in paragraph 4.5.6.
- (2) The relationship between the mean number of cycles to failure and the mean time to failure conforms to equation 4.5.11.
- (3) The two mechanisms not present in an RMC conform to the probable configuration discussed in paragraph 4.5.7.4.
- (4) The microcircuits are used in an equipment used in an application environment, as delineated in Table 4.5–17, for which a maximum ΔT

4

is expected, i.e. either $A_U^{},~G_B^{}$ or $N_U^{},~for$ which ΔT = 55°C is expected.

(5) While substrates are not utilized in an RMC, for ranking purposes, a substrate size of 2.5 x 10^{-2} m square (1 inch square) attached with 70 - 30 In - Pb solder with an attach thickness of 1.5 x 10^{-4} m (6 mils) is assumed.

Tabulated following are these nine mechanisms listed in order of increasing mean time to failure:

		T _f	
		MEAN TIME T	O FAILURE
	FAILURE MECHANISM	HOURS	YEARS
(1)	Substrate Attach Fatigue	30	-
(2)	Conductor Metallization Corrosion	724	-
(3)	Die Attach Fatigue	1.1×10^4	1.25
(4)	Bond Pad/Die Interface Shear Fatigue	4.2 x 10 ⁵	48
(5)	Bond Pad/Wire Corrosion	9.4 x 10 ⁵	107
(6)	Bond Pad/Bond Wire Interface Shear Fatigue	3.0 x 10 ⁶	433
(7)	Die Fatigue Cracking	4.5 x 10 ¹¹	5.1 x 10 ⁷
(8)	Bond Wire Flexure Fatigue	2.9 x 10 ¹⁷	3.4×10^{13}
(9)	Die Brittle Cracking	ω	-

4.5.9.1 Discussion

The package related failure mechanism models contain material dependent coefficients and exponents. The values utilized in these models are based upon available data for materials similar to those used in microcircuit construction, due to the unavailability of data for the actual materials. Hence, it is emphasized that the mean time to failure values predicted above are useful only for ranking the mechanisms relative to each other. When data on the actual materials of construction are available, the models will be capable of estimating the mean time to failure for microcircuits used in various application environments.

Wire Properties

Wire Material	∝ _₩ m/m/c	E Pa
Aluminum	23.2 x 10 ⁻⁶	69 x 10 ⁹
Copper	17.6 x 10 ⁻⁶	118 x 10 ⁹
Gold	14.2 x 10 ⁻⁶	Up to 82 x 10 ⁹
Palladium	11.7 x 10 ⁻⁶	124 x 10 ⁹

Table 4.5-2

Bond Pad Substrate Properties

Bond Pad Substrate Material	ας m/m/c
Gallium Arsenide	5.73 x 10-6
Silicon	4.67 x 10-6

Encapsulant Properties

ENCAPSULANT	∝e m/m/c
Epoxy Rigid, Unfilled Rigid, Filled Flexible, Unfilled Flexible, Filled	55 x 10-6 30 x 10-6 100 x 10-6 70 x 10-6
Polyester Rigid, Unfilled Flexible, Unfilled	75 x 10-6 130 x 10-6
Silicone Flexible, Unfilled	400 x 10-6
Urethane Flexible, Unfilled	150 x 10-6

Table 4.5-4

Constants for Fatigue Stress in Bending and Axial Loading

MATERIAL	A1	n†
Aluminum	3.9323 × 10-10	-5.134
Copper	1.0133 x 10-21	-9.1169
Gold	3.5844 x 10-11	-4.9828

* Values are engineering estimates

Constants for Fatigue Stress in Shear

MATERIAL	A <u>*</u>	nž
Aluminum	4.3386 x 10 ⁻¹¹	-5.134
Copper	1.9897 x 10-23	-9.1169
Gold	4.2948 x 10 ⁻¹²	-4.9828
-		

* Values are engineering estimates

Table 4.5-6

Bond Pad-Substrate Shear Constant

	K	
BONDPAD MATERIAL	SUBSTRATE MATERIAL	
	Si	GaAs
Aluminum	1.46 x 10-5*	1.56 x 10-5*
Gold	0.90 x 10-5*	1.02 x 10-5*

* Values are engineering estimates

Die properties

DIE MATERIAL	E Pa	∝ m/m/c	K _{IC_} MP√m	A	n
Silicon	128 x 10 ⁹	4.67 x 10 ⁻⁶	0.82	*10 ⁻¹²	*4
Gallium Arsenide	89 x 10 ⁹	5.73 × 10 ⁻⁶	0.31	*10 ⁻¹²	*4

* Values are engineering estimates

Table 4.5-8

Die attach properties

.

Die Attach Material	Percentage of different constituents	Tg or melting temperature °C	E _a Pa	Ύf	с
Eutectic	Au-3% Si Au-12% Ge Au-40% Ge	280 363 356	59.2 x 10 ⁹ 83.0 x 10 ⁹ 69.3 x 10 ⁹	*).) *).) *).) *).]	*49 *49 *49
Solder	In-70% Pb -30% Sn-40% Pb -60% Sn-5% Pb -95% Sn-10% Pb -90%	175 *100 *170 200	*11.7 x 109 *3.8 x 109 3.8 x 109 3.8 x 109 3.8 x 109	*1.1 *1.1 *0.18 *1.1	*49 *49 *13 *49
Epoxy - Conductive Non Conduct	 ive	155 155	4.1 x 10 ⁹ 2.8 x 10 ⁹	*1.1 *1.1	*49 *49
Polyimide		275	4.5 x 10-9	*1.1	*49

* Values are engineering estimates

Substrate properties

Type of substrate Material	α _S m/m/c	E _s Pa
Silicon	4.67 x 10-6	164 x 10 ⁹
Alumina	7.3 x 10-6	255 x 10 ⁹
Copper	16.9 x 10-6	118 x 10 ⁹
Beryllium Oxide	8.3 x 10 ⁻⁶	265 x 10 ⁹
Aluminum Nitride	4.5 x 10-6	2.75 x 10 ⁹
Silicon Carbide	3.7 x 10-6	>331 x 10 ⁹

Table 4.5-10

Package Case properties

Package Material	 ش _د m/m/c
Kovar	5.2 × 10-6
Copper	16.9 x 10-6
Aluminum	23.0 x 10-6

BOND PAD CORROSION VOLUME

GALVANIC RELATIONSHIP OF BOND PAD MATERIAL TO BOND WIRE MATERIAL (FROM TABLE 4.5-16)	BOND TYPE	CORROSION VOLUME V _C cm ³	Equation Number	CORROSIVELY ATTACKED MEMBER
ANODIC	ALL	$V_{c} = 0.3s^{2} t_{b}$	H.8a	BOND
CATHODIC	WEDGE OR CRESCENT	$V_{c} = 0.236 D^{3}$	H.8b	BOND
	BALL	$V_{c} = 3.77 D^{3}$	H.8c	WIRE
	UNKNOWN	$V_{c} = 0.236 D^{3}$	H.8b	
NONE (ie. same material for pad and wire)	ALL	LEAST VALUE OF $V_c = 0.3s^2 t_b$ and $V_c = 0.236 D^3$	H.8a H.8b	MEMBER WITH LEAST V _C

NOTE: D = Bond wire diameter, cm

s = Bond pad size, cm (for a square pad)

 t_b = Bond pad thickness, cm

Table 4.5-12

Corrosion Properties of Metals

Material	Physical Property Index (kj)	Atomic Weight (M)	Density (d) gm/cc	Chemical Valence (n)
Aluminum	0.1	27	2.7	3
Copper	0.5	64	8.93	2
Gold	1.0	197	19.32	3

Coating Integrity Index

COATING TYPE	COATING INTEGRITY INDEX (k ₂)
No Coating	1
Partially Bonded	10 - 50 (NOTE 1)
Completely Bonded	100

NOTE 1: When a metallization passivation layer is present and the defect level is unknown, use $K_2 = 10$.

Table 4.5-14

Number of Operating Hours Per Day	Кз
1	1.04
2	1.09
3	1.14
4	1.20
5	1.26
6	1.33
7	1.41
8	1.50
9	1.60
10	1.71
11	1.85
12	2.00
13	2.18
14	2.40
15	2.67
16	3.00
17	3.43
18	4.00
19	4.80
20	6.00
21	8.00
22	12.00
23	24.00
24	Infinity

Equipment Operating Time Factor

Electrolyte Resistivity

ENVIRONMENT	p (ohm/cm)
Normal	7.3 x 106
Corrosive	2.3 x 106

NOTE: Assume a normal environment unless there is compelling reason to assume a corrosive environment.

Table 4.5-16

Galvanic Electrochemical Potential

Material	Standard Electrode Potential, Volts				
Gold	1.5 More Cathodic				
Palladium	0.95				
Silver	0.8				
Copper	0.34				
Chromium	-0.74				
Aluminum	-1.66 More Anodic				

NOTE: The electrical bias voltage shall be chosen as follows:

(1) For dissimilar bond wire/bond pad metals use the larger of the applied signal or power supply voltage or the galvanic potential determined from the Table as follows:

 $V_{galvanic} = 1 + (V_{cathode} - V_{anode})$

(2) For similar metals use the applied signal or power supply voltage.

Downloaded from http://www.everyspec.com

Table 4.5-17

USAGE ENVIRONMENT CLASSI	FICATION	ΔT
MIL-HDBK-217E	PROPOSED	°C
A _{IA} A _{IB} A _{IC} A _{IF} A _{IT} A _{RW}	AI	30
A _{UA} A _{UB} A _{UC} A _{UF} A _{UT}	AU	55
CL	СL	NOTE 2
G _B G _{MS}	GB	30
G _F	G _F	55
G _M M _P	GM	NOTE 3
M _{FA} M _{FF} M _L	M _F	NOTE 2
N _H N _S N _{SB}	N _I	50
NU	NU	55
^U SL	NUL	NOTE 2
N _{UU}	NUU	35
S _F	S _F	35

Recommended Value for Component Operating ΔT (See Note 1)

- 2. Application environments referring to this note are of short duration and have negligible effects on the package (non-electrical) related failure mechanisms, for which the pre-launch storage conditions will have the dominant effect. Use $\Delta T = 5^{\circ}C$ for storage under controlled storage conditions and $\Delta T = 20^{\circ}C$ for uncontrolled storage conditions.
- 3. Use G_B application environment for equipment mounted in temperature controlled compartments and G_F for uncontrolled compartments.

NOTE 1. Table 4.5-17 Δ T values are for use when thermal analysis or test data are not available.

ATTACH MATERIAL	TYPICAL THI	CKNESS
	METERS	MILS
Au - Si Eutectic	2.5×10^{-6}	0.1
Au - Ge Eutectic	2.5×10^{-6}	0.1
Au - Ge Solder	7.6 x 10 ⁻⁵	3
Sn 62 Sold e r	7.6 x 10 ⁻⁵	3
80 - 20 Au - Sn Solder	7.6 x 10 ⁻⁵	3
Dielectric Epoxy (Die)	8.9 x 10 ⁻⁵	3.5
Conductive Epoxy (Die)	8.9 x 10 ⁻⁵	3.5
Dielectric Epoxy (Substrate)	1.3×10^{-4}	5
70 - 30 In - Pb Solder	1.5×10^{-4}	6

Typical Values for Die/Substrate Attach Thickness

Figure 4.5-1 TEMPERATURE-HUMIDITY ENVIRONMENT ACCELERATION FACTOR

Time to Reach 3 Monolayers of H²O as a Function of Package Internal Volume and Air Leak Rate

TIME (hours)

4.6 ADJUSTMENT (Pi) FACTORS

4.6.1 Quality Factor (π_0)

The quality factors for microcircuits found in MIL-HDBK-217E are multipliers of the base failure rate, and they are intended to reflect the differences in quality to be found in parts made to differing process controls. However, the factor descriptions reflect part qualification, screening performed, procurement practices, and package material. In reality, the quality of an IC is dependent upon the manufacturer's process controls alone, and that information cannot be quantified in a reliability model. However, there is good correlation between the amount of screening performed and the ultimate field reliability of the parts: the more screening, the less probability of infant mortality failures in the field. Consequently, the approach taken in developing the quality factors has been to concentrate on the effects of screening and to quantify the effectiveness of MIL-STD-883 screens. The quality factors are modifiers of the early-mid life failure rate only and do not affect the failure rates associated with common cause (wearout) failure mechanisms.

At a meeting held in Monterey, California as part of this contract, several IC manufacturers stated that there is no difference between their commercial lines and their military lines, but the military product is screened more. Others stated that their screening of commercial product in some cases exceeds the military requirements, and they should be given credit in a model for more rigorous screening. The π_Q model developed in the following paragraphs is flexible in allowing for variations in the amount of screening performed.

* Attendees included representatives from the following companies: Anadigics; LSI Logic; Intel Corp.; Teledyne Microelectronics; SEEQ Technology; D. Steward Peck Consulting; and Westinghouse.

200

Adjusted failure mechanism quantities for all technology types listed in MDR-21 (1985) were itemized and totaled; the percentage contribution of each failure mechanism was computed. See Table 4.6-1. The MIL-STD-883 screens which are effective at precipitating the various failure mechanisms were identified by analysis of MDR-22 (1987) and are presented in Table 4.6-2. Table 4.6-3 lists the failure mechanisms, their distributions, and the associated screens. The percentages of each failure mechanism which are precipitated by the screens were summed, then normalized to form a total of 100; each screen's percentage of the total was then calculated, as in Table 4.6-4, and these percentages are referred to as "weighting factors" for their respective screens. The screening methods which are associated with the S, B, D and D-1 quality levels were also identified, and the weighting factors for each were summed to provide the "screening factor" for that guality level. The weighting factor for burn-in was adjusted to differentiate between S- and B- level burn-in. This was accomplished by calculating the expected fallout using the two time - temperature combinations and an average activation energy of 0.37 ev, which was derived from the MIL-STD-883 burn-in curves, as in Table 4.6-5 (high temperature reverse bias (HTRB) is an optional replacement for S-level burn-in). The screening factors for S, B, D and D-1 are 100.0, 71.3, 21.8 and 10.9, respectively. To develop π_{Ω} , the value for B-level was chosen as unity because (1) it is consistent with the current value, and (2) most of the data collected in the model development activity was on B-level product. Two points on the curve were thus known: $\pi_0 = 1.0$ for B-level (screening factor = 71.3), and $\pi_0 = .7$ for maximum screening, S-level. The relationship $\pi_{\Omega} = 71.3$ /screening factor (S.F.) was easily established. This relationship is depicted graphically in figure 4.6-1. It is intuitive that the most benefit is achieved with the first screens applied, and that the marginal improvement with succeeding screens is lower; the shape of the $\pi_{
m O}$ curve reflects that fact.

In order to calculate π_Q , the user must identify which of the Table 4.6-4 screens apply to the product, sum the weighting factors associated with those screens to compute the screening factor, and then use the expression $\pi_Q = 71.3/S.F.$ to determine the value of the quality factor.

201

Table 4.6-1: Failure Totals vs Failure Mechanisms By Device Types*

							PERCENT
		(DEVICE TYPES			SUM	OF
FAIL - MECH	DIGITAL	LINEAR	INTERFACE	MEMORY	VLSI	TOTAL	TOTAL
METALLIZATION	89	27	16	236	10	378	10.7
DIFFUSION	23	7	3	0	2	35	< 1
OXIDE FAULT	386	38	6	40	4	474	13.5
BULK	48	56	0	3	2	109	3.2
SURFACE	405	313	16	8	17	759	21.5
INTERCONNECTS	260	19	10	7	2	298	8.5
WIREBOND	3	21	6	0	6	36	1.1
PACKAGE	1341	42	10	35	8	1436	40.5
FAILURE TOTALS:	2555	523	67	329	51	3525	100

*Source: RAC MDR-21

Table 4.6-2

Recommended Screens/Tests f	For Various Failure Mechanisms [*]
SURFACE DEFECTS	
 Contamination/Leakage Foreign Material/Particles Inversion/Channelin 	- 1008, 1015/5005 - 2001, 2012, 2020, 2010 - 1008, 1015/5005, HTRB
BULK DEFECTS	
 Crystal Imperfections Cracked Die 	- 1008, 1010, 1015/5005, 5007 - 1010, 1015/5005
OXIDE DEFECTS	- 1010, 1015/5005, HTRB
DIFFUSION DEFECTS	
 Isolation Defects Mask Faults 	- 1015/5005 - 1015/5005
METALLIZATION DEFECTS	
 Open At Oxide Step/ Contact Window Short In Interlayer Pitted/Corroded Smeared/Scratched Electromigration 	- 1010, 1015/5005 - 1010, 1015/5005 - 2010/2017 - 2010/2017 - 1015/5005
BOND DEFECTS	
D Die Attach Defect	- 1010, 2001, 1015/5005, 2012,
Intermetallic Formation	- 1015/5005
INTERCONNECT DEFECTS	
 Broken Wire Shorted Wire Poor Lead Dress Corroded Wire 	- 1010, 1015/5005 - 1015/5005 - 1010, 2001 - 1010, 1015/5005
PACKAGE DEFECTS	
 Non Hermetic Seal Solder Balls (Excessive Seal Material External Lead Defect 	- 1010, 2001, 101 4 - 2009, 2020, 2012 - 2009

.

* Source References MIL-STD-883C and RAC MDR-22

Table 4.6-3: IC Failure Mechanisms/Screening Methods

FAILURE MECHANISM	DISTRIBUTION	ASSOCIATED SCREENS				
Metallization	11%	1015/5005, 2010/2017, 1010				
Diffusion	1%	1015/5005				
Oxide Faults	14%	1015/5005, HTRB				
Bulk	3%	5007, 1008, 1010, 1015/5005				
Surface	21%	2010, 2012, 2020, 2001, 1008,				
		1015/5005, HTRB				
Interconnect	9%	1010, 1015/5005, 2001				
Wirebond	1%	2023, 1008, 1010, 2001, 2010,				
		1015/5005, 2012, 2020				
Package	40%	2020, 2012, 1014, 2009, 1010, 2001				

Table 4.6-4: Weighting Factor Determination

		883					
SCREEN	METHOD	<u> </u>	W.F. %	<u>s</u>	B	D	<u>D-1</u>
Wafer Lot Accept	5007	3	0.05	Х			•
N.D. Bond Pull	2023	۱	0.2	X			
Internal Visual	2010/17	33	6.0	X	х		
Stabilization Bake	1008	25	4.5	X	Х		
Temp Cycling	1010	64	11.6	X	Х		
Constant Acceleration	2001	71	12.8	X	Х		
Pind	2020	62	11. 3	X			
Burn-In (S/B)	1015	90/60	16.3/10.9	X	Х	Х	
Final Electrical	5005	60	10.9	Х	Х	Х	Х
Seal Test	1014	40	7.3	Х	Х		
Radiography	2012	62	11.3	Х			
External Visual	2009	40	<u> 7.3</u>	<u>x</u>	<u>X</u>		
SUM 🔨		551	100.0	100.0	71.3	21.8	10.9

W.F. = Weighting Factor

Table	4.6-5:	Calculating Burn-In Effectiveness	(Fallout)
		With $E_A = 0.37 \text{ eV}$	

Burn-In Level	rn-In Time/Temp vel (Hrs)/(°C) F(FPMH)		Expect e d Fallout (Failures x 10 ⁻⁶⁾	Ratio To B-Level
В	160/125	20.84	3334.4	1.0
S	240/125	20.84	5001.6	1.5
HTRB	72/150	39.41	2837.5	0.85
	$F = e^{-(0.37)}$	((273 + temp) * 8.625 x 10-5))	
	Expec	ted Fallout	= F x Time	

Figure 4.6-1 π_Q vs. Screening Factor (S.F.)

4.6.2 Learning Factor (π_1)

U.S. military integrated circuit manufacturers, through the Semiconductor Industry Association's Government Procurement Committee (GPC), established an ongoing quality statistics program to monitor and report industry data on various quality control indices and parameters. The data indicates that there has been a steady improvement in the level of American quality such that today, for every 10,000 parts shipped, there averages only one part with electrical defects (approximately 100 parts per million or PPM).

Military quality reporting procedures are strictly defined. Companies supplying data utilize the JEDEC Standard No. 16 (Assessment of Microcircuit Outgoing Quality Levels in Parts Per Million) guidelines for reporting outgoing quality levels. The procedures for accumulating and summarizing the data are carefully defined and follow accepted statistical quality control methods. Data reported represents Joint Army-Navy (JAN), Standard Military Drawing (SMD), 883C complaint and military source control drawing (SCD) products. Defect levels are calculated on first submission data only, covering room, hot and cold temperature extremes. The final PPM calculations use a weighted average technique. The PPM and sampling techniques are stated on conservative, statistically sound methods and are described in the JEDEC standard.

Currently there are nine SIA member companies reporting into the system, and these companies supply approximately 90% of all military microcircuits, providing a significant sample of total product consumed by the military.

These companies are:

Advanced Micro Devices General Electric/RCA Harris Intel Motorola National Semiconductor Rockwell Signetics Texas Instruments Downloaded from http://www.everyspec.com

Data is reported on the following technology groups:

1

Linear:	Op Amp Based A/D, D/A Converters Other Linear
Bipolar Digital:	Memory Logic Processor/Peripheral
MOS Digital:	Memory Logic Processor/Peripheral

For each product category, reported data includes (a) number of firms responding, (b) total samples tested, and (c) mean defect density levels. Summaries are provided for the three principal product sectors, as well as a total across all products. Hermeticity and visual/mechanical results are reported as aggregate measures. See Table 4.6-6.

In order to develop the learning factor (π_L) from this data, the following assumptions were made:

 The data presented in Table 4.6-6 represents a mix of mature and immature product for each of the technology lines specified.
 Mature product may be defined as reaching the 100 PPM level.
 The definition of mature product will change as the PPM defect density continues to drop, which provides flexibility in the learning factor.
 The data can be used to represent the "learning curve" experienced by IC manufacturers in general.

5.Although a quality index, PPM defect densities can be used validly to scale failure rates since any defect represents a potential screening escape and future field failure.

207

Table 4.6-6

SEMICONDUCTOR INDUSTRY ASSOCIATION QUARTERLY REPORT FOR MILITARY PRODUCTS MEAN DEFECT DENSITIES

ELECTRICAL QUALITY LEVELS	1Q86	2Q86	3Q86	4Q86	1087	2Q87	3Q87	4Q87	1Q88	2Q88
<u>Total Linear</u>	431	486	180_	192	<u>191</u>	104	165	106	172	86
Total Digital Bipolar	73	65	65	159	43	35	111	27	87	44
Total MOS Digital	338	259	469	332	223	237	179	294	211	152
Grand Total: All ICs	191	168	169_	203	111	93_	136	81_	133	76
Product Type: All ICs			 							
Electrical Defects	191	168	169	203	111	93_	136	81	133	76
Mean Defect Density							434	344	304	254
Hermeticity Density							278	234	378	260

The data in Table 4.6-6 was linearly regressed both as PPM vs. time and as in (PPM) vs. time. The latter yielded better correlation coefficients (0.6 for the composite "all integrated circuits" case). See figure 4.6-2. The composite data was used instead of the individual technology data for two reasons. First, not all technology areas are addressed, e.g., there is no GaAs data. Second, the PPM levels for digital bipolar are already below the value assumed for mature product, presumably because the technology is mature and testing requirements are well defined. However, a new IC manufacturer or one introducing a new line of components would still have to develop his processes in order to realize 100 PPM, and two years is a reasonable amount of time in which to do so.

Invoking assumption 2 above, mature product is achieved after 2.129 years, or during the first quarter of 1988 (ln 100 = 4.605). Since this time-frame is coincident with the data being collected on the RAAAT program, failure rates can be normalized to the 100 PPM point on the learning curve. When this is done, the value of π_{L} is unity at time = 2.129 yrs. Then, π_{L} can be defined as the ratio of the PPM defect density at any time Y to 100 PPM. The equation for π_{I} becomes:

 $\pi_1 = EXP (-0.35Y + 5.35)/100 = 0.01 * EXP (5.35 - 0.35Y)$

where Y is in years. A plot of π -L vs. time is shown in figure 4.6-3.

The curve indicates that the failure rates of ICs will drop by an order of magnitude over a seven year interval, which seems reasonable. The learning curve factor (π_{L}) , as with the quality and environmental factors, is a modifier of the early life (defect-related) IC failure rate; it does not affect the wearout mechanisms.

Figure 4.6-2 SIA Data Plot

Figure 4.6-3 π_L vs. Product Line Years

4.6.3 Hybrid Function Factor (π_F)

The concept of an application function factor was retained in the hybrid model. The basis for this factor is the variations in the processes used in different types of hybrids and the relative difficulty of these processes. Listed below are the hybrid technology groups and some examples of their unique features.

- Digital Standard packaging techniques. Base line for factor. Linear - More custom package styles.
- Video Higher frequency packaging techniques, use of discrete inductors.
- Microwave Packaging techniques, use of transmission line structures, greater variety of materials, smallgeometry.
- Power Die attach critical, layout based on voltage considerations.

Data collected from field experience on the APG-68 radar and from 1000 hour life tests of various hybrid types were used to determine the function factors. A summary of the field data which was presented in Table 4.4-1 is shown in Table 4.6-7 below. The averages have been computed by adding the total number of failures within a family and dividing by the total number of device hours for the time in which the data was accumulated (263,990 system hours). This data along with the life test data is plotted in figure 4.6-4.

The life test data was taken from the data in Table 4.4-2 of section 4.4.1. Only the 125°C life test data was used. The only data omitted from the calculation of failure rates was improper test temperatures or devices which were overstressed in test. The data used is shown in Table 4.6-8. The point estimates of failure rates for each family were calculated at 50% confidence using the Chi-square distribution. The results are shown in Table 4.6-7.

It should be noted that the number of secondary failures and erroneous removals cannot be separated from the field data. The relative family ranking within the two sets of data seems to verify differences between most of the classes defined. Since the life test is the more accurate of the two, the π_F factor is based on these failure rates. The π_F factors chosen are shown in Table 4.6-7. They have been normalized to the digital family since this is the more standardized technology and is also the reference point in the present model. The number for the microwave family was obtained by interpolating the relative ranking in the field data and applying the same percentage to the life test ranking.

Table 4.6-7 Failure Rates By Hybrid Types

FIELD DATA (REMOVAL RATE/MILLION HR.) (FAILURE RATE/MILLION HR).

LIFE TEST DATA 50% CONFIDENCE

Digital	34.1	9.9
Video	11.2	12.4
µWave	23.1	
Linear	52.7	57.2
Power	73.3	205

۳F NORMALIZED TO DIGITAL

Digital	1.0				
Video	1.2				
μWave	2.6	(interpolated	using	field	data)
Linear	5.8				
Power	21				

Table 4.6-8 Life Test Data

OTV		SAMPLE	TEST	DEVICE			
TYPE	<u>P/N</u>	QTY	HOURS	HOURS	FAIL	FAILURE	VENDOR
Digital	586R291 585R927 586R517 585R928 583R379	22 16 5 22 5	1000 1000 1000 1000 1000	22,000 16,000 5,000 22,000 5,000	0 0 0 0		WEC WEC WEC WEC WEC
			TOTALS	70,000	0		
Linear	586R292 586R587 586R290 581R772 587R322 584R555 584R555 585R149 585R150	5 22 22 5 1 1 2 2	1000 1000 1500 1500 750 1500 1000 1000	5,000 22,000 22,000 3,000 5,000 750 1,500 2,000 2,000	0 0 2 0 1 0 0	Al/Au intermetallic Lifted wire bond	Teledyne Teledyne WEC Teledyne WEC WEC WEC WEC
			TOTALS	64,250	3		
Video	24552 24552 24552 24552 24552 24552 22306 22306 22306 22078 20858 20864 20864 20864 20864 20864 20864 12604427 12604427 12604427 Various Various Various	1 1 1 2 1 2 3 1 1 1 1 3 7 1 9 3 9 2 2	2880 5760 720 1440 2943 5281 1440 720 1440 5760 6323 5760 2880 5760 2160 1440 3600 1000 1000 1000 1000	2,880 5,760 720 1,440 2,943 5,281 4,320 720 2,880 5,760 12,646 17,280 2,880 5,760 2,160 1,440 3,600 37,000 504 9,000 76,000 939,000 2,000	0 0 1 1 1 1 0 2 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0	Seal Electrical Electrical Seal Electrical Electrical Seal Seal Unknown	Anaren Anaren Anaren Anaren Anaren Anaren Anaren Anaren Anaren Anaren Anaren Anaren Anaren Anaren Anaren Eledyne WEC Q-Bit Q-Bit Q-Bit

TOTALS 1,185,884 14

Table 4.6-8 (cont) Life Test Data

TYPE	P/N	SAMPLE QTY	TEST HOURS	DEVICE	QTY FAIL	FAILURE	VENDOR
Power	584R550	2	1000	2,000	0		WEC
	584R550	1	504	504	1	Cracked die	WEC
	584R550	5	1000	5,000	0		Solitron
	584R551	5	1000	5,000	0		Solitron
	581R082	1	3000	3,000	0		WEC
	581 R082	1	2500	2,500	1	Substrate attach	WEC
	585R151	2	1000	2,000	0		WEC
	586R509	1	1000	1,000	0		WEC
	586R509	1	168	168	1	Unknown	WEC
	586R508	1	1000	1,000	0		WEC
	586R508	1	504	504	_1	Die Attach	WEC
			TOTALS	22,676	4		

i.

Figure 4.6-4 Hybrid Failure Rates

4.6.4 Environmental Factor (π_F)

The environment influences the failure rate of integrated circuit dice by accelerating the precipitation of package related defects in the early life model. In the long term, the magnitude and frequency of temperature cycling has a pronounced effect upon the package related mean time to failure, as discussed in section 4.5.

The development of environmental factors for advanced technology devices was hampered by the fact that there are not many of these devices in the field. In addition, part of the tasking was to develop a new set of factors such as would be compatible with the current MIL-HDBK-217E models for SSI, MSI and LSI packaged devices. These constraints dictated the use of the $C_2 \pi_E$ term to model the contribution of package related defects to the early life failure rate.

In order to satisfy the requirement for fewer environmental factors, the environments were grouped by usage environment based on equipment classifications. The environmental temperature ranges and the military specifications from which they were derived are presented in Table 4.6-9. These groupings accounted for 25 of the 27 environments listed in MIL-HDBK-217E. Default values for the average component case temperature and the worst case temperature excursion for each of the grouped environments were calculated, and these values are used in the package wearout models of section 4.5

The early life environmental factors were derived by calculating the geometric mean of the MIL-HDBK-217E values given for the grouped environments. These values are presented in Table 4.6-10.

 \mathbf{r}

Table	4.6-9	Environmental	Temperature	Ranges
Table	4.6-9	Environmental	Temperature	Ranges

USAGE ENVIRONMENT CLASSI	FICATION						•
MIL+HOBK-217E	PR0P0SED	TCASE °C				CNUTION	
-					MIL-E-5400		
		DE OL	CLASS 1/1A	CLASS 1B	CLASS 2	CLASS 3	CLASS 4
AUA AUB AUC AUF AUT	Ð	ט- נע	-54/+55°C		-54/+71°C	-54/+95°C	-54/+125°C
AIA AIB AIC AIF AIT ARW	AI	95°C		-40/+55°C			
					MIL-E-16400		
			UNSHELI	ERED	SHELT	ERED	
			SHORE	SHIP	SHORE	SHIP	
2	z⊃	80°C	-54/+65°C	-28/+65°C			
NUU	NUN	25°C					
u _{St}	N N	40°C			-40/+50°C	0/+50°C	
N _H N _S N _{SB}	N N	45°C					
					000-E-8983		
MFA MF ML	ΣĿ	60°C			-51/+49°C		
SF	S _F	45°C			-34/+71°C		
					MIL-E-4158		
			COLD		TEMPERATE	DESER	RIZTROPICAL
GB GMS	 	35°C					
G M P	۳ى	50°C	-54/+52	 , c	-40/+52°C)/+81°C
GF	يى ا	45°C					
L C	-ر	45°C					

MIL-HDBK-217 E ENVIRONMENT	PROPOSED ENVIRONMENT	GEOMETRIC
$A_{UA} = 6.0$ $A_{UB} = 7.5$ $A_{UC} = 3.0$ $A_{UF} = 9.5$ $A_{UT} = 4.0$	A _U (AIRBORNE UNINHABITED)	5.5
$A_{IA} = 4.0$ $A_{IB} = 5.0$ $A_{IC} = 2.5$ $A_{IF} = 6.0$ $A_{IT} = 3.0$ $A_{RW} = 8.5$	A _I (AIRBORNE INHABITED)	4.4
N _U = 5.7	NU (NAVAL UNSHELTERED)	5.7
N _{UU} = 6.3	N _{UU} (NAVAL UNDERSEA UNSHELTERED)	6.3
$U_{SL} = 11.0$	NUL (NAVAL UNDERSEA LAUNCH)	11.0
$N_{H} = 5.9$ $N_{S} = 4.0$ $N_{SB} = 4.0$	N _I (NAVAL INHABITED)	4.6
M _{FA} = 5.4 M _{FF} = 3.9 M _L = 13	M _F (MISSILE FLIGHT)	6.5
S _F = 0.9	SF (SPACE FLIGHT)	0.9
$G_{B} = 0.38$ $G_{MS} = 0.65$	GB (GROUND BENIGN)	0.5
$G_{M} = 4.2$ $M_{P} = 3.8$	G _M (GROUND MOBILE)	4.0
$G_{F} = 2.5$	G _F (GROUND FIXED)	2.5
$C_{L} = 220$	CL (CANNON LAUNCH)	220

Table 4.6-10

Integrated Circuit Environmental Factors

5.0 MODEL VALIDATION

.

Data to model the failure rates of new technology devices was sparse since most of these devices have only recently become available commercially. The collection of data was further hampered by the proprietary nature of much of the data. Consequently, all of the data which was collected was used in the development of the models and could not be used for validation. The alternative validation methodology was to compare the predicted early life failure rates of representative microcircuits with the observed range of values from the database. The resulting values of the predicted to observed ratio were then evaluated for model accuracy. When only one data point was found, the high, low, and average values are the same. In addition, a comparison to the extrapolated MIL-HDBK-217 model has been made where appropriate. Table 5-1 presents the results of this effort. Some of the models are optimistic, some conservative; some yield higher failure rates than MIL-HDBK-217, some lower. All average failure rates are within the realm of acceptability, and most are conservative. No models for GaAs microcircuits exist in the current version of the MIL-HDBK. However, figure 5-1 compares the integrated circuit digital and MMIC GaAs models to the silicon based 217E GaAs driver FET model, the 217E Notice-1 GaAs low noise FET model, and the 217E Silicon ALS digital integrated circuit model. The higher activation energies for the GaAs integrated circuit models are apparent and indicate a higher temperature dependence of the failure rate at higher temperatures where the active device failure rates dominate the models. The effect of the passive failure rate term of the model is observed at the lower temperature. The comparison also indicates that the integrated circuit GaAs model failure rates lie between the discrete GaAs models and the silicon ALS digital integrated circuit model.

The hybrid model was validated by calculating several hybrid examples and comparing results with MIL-HDBK-217E. The calculations and results are shown below. For these calculations, it was assumed that the effects of the wearout failure mechanisms for the die and package were negligible.

~									
DEVICE	уO	у0 Х	у0 Х	To	λ217E*	λp	0۲/q۲	0۲/q۲	0۲/q۲
ТҮРЕ	(HIGH)	(AVG.)	(ILOW)	(0.)	(at T ₀)	(at T ₀)	(HIGH)	(AVG)	(MOT)
CMOS VLSI (30K-60K Gates)	.1627	.0290	6000.	25	.0320	.0290	. 18	1.00	32.2
CMOS VLSI (30K-60K Gates)	.6677	.6677	.6677	125	. 6942	.06942	1.03	1.03	1.03
16 bit μp (MOS)	.2294	.1827	.1545	70	.0768	.1456	. 63	.80	.94
16 bit mp (ITL)	.1803	. 1803	. 1803	70	.0768	.1188	. 66	.66	.66
GaAs MMIC	1.29	.515	.206	150	!	.451	.35	.88	2.19
GaAs Digital	4.58	.391	.033	150	ł	2.53	.55	6.47	76.0
GaAs Passive	.305	.0424	.0059	150	:	.125	.41	2.94	21.1
DRAM, NMOS, 64K bit D level	2.09	2.09	2.09	125	6.5	2.05	.98	. 98	. 98
SRAM, NMOS, 16k bit D level	6.39	6.39	6.39	125	13.0	6.38	. 998	866.	866.
SRAM, TTL, 2K bit D Level	5.55	5.55	5.55	125	5.0	4.25	.766	.766	.766
EEPROM, Tex-Poly NMOS 16K bit, D level	2.12	2.12	2.12	125	7.8	717.	. 338	. 338	. 338
EEPROM, FLOTOX NMOS 16K bit, D level	1.83	1.83	1.83	125	7.8	. 697	. 38	. 38	. 38
I									

Table 5-1 MODEL VALIDATION

\lambda_217E = \lambda Predicted Per MIL-HDBK-217E
 (Extrapolated As Necessary) λ_p = λ Predicted, New Model $\lambda_0 = \lambda$ Observed

-
\sim
_
~
0
Ū
\sim
_
-
ഹ
പ
-
_
0
_
ര

MODEL VALIDATION

DEVICE	0 _۲	у0 У	у0 У	T ₀	λ217E*	γp	λρ/λ0	0χ/dχ	0γ/dγ
TYPE	(HJIH)	(AVG.)	(TOM)	(°C)	(at T _O)	(at T _O)	(HJIH)	(AVG)	(MOT)
EEPROM, Tex-Poly NMOS 64K bit,	1.72	1.72	1.72	125	15.6	1.41	.82	.82	.82
D level) EE) ה ה) 5 6	125	IE 6	1 30	Ц	54	БА
64K bit. D Levell	rr.7		rr. 7	r 71		cc · 1	+ -	ד י	.
UVEPROM, CMOS	8.16	4.53	16.	125	26.4	1.38	.17	.30	1.51
64K, D Level									
UVEPROM, NMOS	6.04	6.04	6.04	125	52.8	2.77	.46	.46	.46
UVEPROM, NMOS	3.14	3.14	3.14	125	105.6	5.55	1.76	1.76	1.76
512K, D Level									
FPLA, TTL							1		
< 100 gates	13.86	7.62	1.39	125	3.0	8.57	. 62	1.12	6.16
D Level									
ROM, NMOS	.34	.34	. 34	125	9.1	1.06	3.12	12	3.12
32K, D Level									
ROM, NMOS	1.67	1.67	1.67	125	9.1	1.06	.63	.63	.63
64K, D Level									
ROM, NMOS	1.80	1.80	1.80	125	18.2	2.13	1.18	1.18	1.18
256K				1				•	
PROM, TTL	4.00	4.00	4.00	125	3.0	1.69	1.92	1.92	1.92
8K, U Level				105			00	50 5	
PKUM, HL	4.01	4.01	4.01	C71	0.0	60.1	76.1	76.1	76.1
DDOM TTI	7 70	7 70	7 70	125	6.0	15 4	0 6	2.0	2.0
32K D Level))))	•)		8
LS TTL	2200.0	57.2	31.5	125	12.3	36.2	.016	.63	1.15
Linear Hybrid									
						ictod Dov	0 11 UDBV 3	175	
$v_0 = v \text{ obset ver}$		I eulcieu,	New MOUEL	^217E	Extrag	olated As	11 L-HUDA-2 Necessary		
							,		

Downloaded from http://www.everyspec.com

ł

Temperature (°C)

4

<u>Example 1</u>

```
Hybrid Microcircuit Description: RAM I/O, Digilog
Part Number: 586R290
Package: Hermetic, Butterfly; 1.0 x 2.0 in seal; 1.75 x 0.8 in.
                                substrate
Interconnections: Bimetal 165; single metal 74
Active Components: 4-54LS374; 1-54LS154; 1-54LS175; 1-54LS74;
                                                              1-54LS04; 1-54LS08; 1-7820
Passive Components: 2-Ceramic chip capacitors, 15% stress ratio,
                                                                  0.1 µf
                                                                  1-Ceramic chip capacitor, 15% stress ratio,
                                                                   .001 µf
                                                                  4-Thick film resistors
Environment: AUF; 45°C package temperature screened to MIL-STD-883,
                                           Method 5008, \pi_0 = 1.0
Calculation per MIL-HDBK-217E:
               Failure rate of ICs (\lambda_{C} \pi_{G}) = 0.0584
                Failure rate of chip capacitors (includes \pi_G) = 0.0594
                Failure rate of resistors = 0.0004
                Failure rate of interconnects = 0.1141
                Failure rate of package = 0.1016
                Density factor (\pi_D) = 2.10
                Function factor (\pi_F) \approx 1.25
              .Environmental factor (\pi_F) = 4.0
               Quality factor (\pi_0) = 1.0
                \lambda = \{ (\Sigma N_C \lambda_C \pi_G) + [N_R \lambda_R + \Sigma N_I \lambda_I + \lambda_S] \pi_F \pi_F \} \pi_O \pi_D
                      = \{ [(0.0584)+(0.0594)]+[0.0004+0.114]+0.1016](1.25)(4.0) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) \} (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10) ] (1.0)(2.10
                 = \{0.1178+1.0805\}(1.0)(2.10)
                    \approx 2.52 failures/10<sup>6</sup> hours
```

Calculation - per equation 4.4.4:

 $\lambda = \{ \Sigma N_C \lambda_C (1 + .2\pi_E) \} \pi_O \pi_L \pi_F$

```
= \{[.0584 + (.0594 / 0.8)](1 + (.2)(4.0)\} (1.0)(1.0)(5.8) \\ = \{(.13265)(1.8)\}5.8 \\ = 1.38 \text{ failures/10}^6 \text{ hours}
```

Example 2

```
Hybrid Microcircuit Description: Inverter Bridge, Power

Part Number: 584R551

Package: Hermetic, PHP, 1.3 x 1.7 in seal; 1.5 x 1.0 in. substrate

Interconnections: Bimetal 14; single metal 36

Active Components: 4-Si NPN Darlington transistors (MJ10009)

27% stress ratio for voltage,

12.7% stress ratio for power;

Switching application, 175 W rating

4-Si General purpose diodes (Solitron ZLX-C-101);

54% stress ratio, switching application 10 A rating

Passive Components: 4-Tantalum chip capacitors, 10% stress ratio, 0.27 µf

8-Thick film substrate resistors

Environment: AUF; 100°C package temperature screened to MIL-STD-883,

Method 5008, \pi_{\Omega} = 1.0
```

Calculation per MIL-HDBK-217E:

```
Failure rate of transistors (includes \pi_{G}) = 0.0196

Failure rate of diodes (includes \pi_{G}) = 0.0029

Failure rate of capacitors (includes \pi_{G}) = 0.4307

Failure rate of resistors = 0.0016

Failure rate of package = 1.1336

Failure rate of interconnects = 0.1712

Density factor (\pi_{D}) = 1.02

Function factor (\pi_{F}) = 1.25

Environmental factor (\pi_{E}) = 4.0

Quality factor (\pi_{Q}) = 1.0

\lambda = \{(\Sigma N_{C} \lambda_{C} \pi_{G}) + [N_{R} \lambda_{R} + \Sigma N_{I} \lambda_{I} + \lambda_{S}] \pi_{F} \pi_{E} \} \pi_{Q} \pi_{D}

= { 0.4532 + [0.0016 + 0.1712 + 1.1336] (1.25)(4.0)} (1.0)(1.02)

= (0.4532 + 6.532) (1.02)
```

```
= 7.125 failures/10<sup>6</sup> hours
```

ì.

Calculation per equation 4.4.4:

$$\lambda = \{ \Sigma N_C \lambda_C (1 + .2\pi_E) \} \pi_0 \pi_L \pi_F$$

= {[(.0196 / .4)+(.0029 / .2)+(.4307 / .8)][1+.2 (4.0)]}(1.0)(1.0)(21)
= (.6019)(1.8)(21)
= (1.083)(21)

= 22.75 failures $/ 10^6$ hours

Example 3

```
Hybrid Microcircuit Description: Dumped Integrator, Digital

Part Number: 585R927

Package: Hermetic, Butterfly, 1.0 x 2.0 in seal; 1.75 x 0.8 in. substrate

Interconnections: Bimetal 212; single metal 58

Active Components: 4-10581; 1-10579; 3-10576

Passive Components: 4-Ceramic chip capacitors, 10% stress ratio, 1000 \rhof

8-Chip resistors

Environment: AUF; 80°C package temperature screened to MIL-STD-883,

Method 5008, \pi_0 = 1.0
```

Calculation per MIL-HDBK-217E:

```
Failure rate of ICs (\lambda_C \pi_G) = 0.176

Failure rate of chip capacitors (includes \pi_G) = 0.0365

Failure rate of resistors = 0.0012

Failure rate of interconnects = 0.6077

Failure rate of package = 0.5143

Density factor (\pi_D) = 2.24

Function factor (\pi_F) = 1.0

Environmental factor (\pi_E) = 4.0

Quality factor (\pi_Q) = 1.0

\lambda = \{(\Sigma N_C \lambda_C \pi_G) + [N_R \lambda_R + \Sigma N_I \lambda_I + \lambda_S] \pi_F \pi_E \} \pi_Q \pi_D
```

= (0.2125 + 4.4928) (2.24)= 10.540 failures/10⁶ hours

Calculation per equation 4.4.4:

 $\lambda = \{ \Sigma N_{C} \lambda_{C} (1 + .2\pi_{E}) \} \pi_{Q} \pi_{L} \pi_{F}$ = \{ [0.176 + (0.0365 / .8)] [1 + (.2)(4.0)] \}(1.0)(1.0)(1.0) = \{ (.2216)(1.8) \} 1.0 = 0.39 failures/10⁶ hours

6.0 CONCLUSIONS AND RECOMMENDATIONS

The base failure rate of a VLSI/ULSI microcircuit is due to common cause failures. The final failure rate is adjusted for the lack of ability to eliminate assignable causes of failure from the device population. Development of the failure distributions, early in the life cycle of the microcircuit, by use of test structures designed explicitly for reliability stress testing should be evaluated. It is realized that the test structure stress tests initially only consider the intrinsic reliability of the microcircuit failures are due to random point defects. The ability to model this defect density is imperative in the development of an accurate, comprehensive early and middle life VLSI/ULSI reliability prediction model. Therefore, the development of a succinct set of test structures to evaluate the failure rates due to random defects is needed. These structures may have a form similar to those structures used in the generic MIL-M-38510/605 qualifications of product lines.

For the end life prediction models developed, two follow-on efforts were identified: determining the current density dependence on microcircuit complexity, and determining the cause of variability in the TDDB electric field constant B.

If the user does not know the maximum current density in the microcircuit, he must use a default value of 0.125 MA/cm^2 , regardless of technology. It is realized that VLSI/ULSI microcircuits approach the MIL-M-38510 current density

1

limit of 0.5 MA/cm² more than the earlier technologies because of the greater circuit densities. A review of metal interconnect widths and thicknesses should be performed to determine the relationship between current density and microcircuit complexity.

From a review of papers which develop the TDDB electric field acceleration constant, β , it is observed (with one exception^[13]) that different oxide thicknesses have different values for β . The cause of the "variability" in this "constant" should be identified.

The scope of the memory reliability modeling project necessitated limitations on certain aspects of the model development. In addition, information gained regarding some areas of memory suggest the desirability of continuing analysis in specific areas.

Perhaps the most important area that requires further evaluation in UVEPROM, and Flash/NMOS EEPROM is endurance (the failure rate contributed by erase/ write cycling). The Time Dependent Dielectric Breakdown model was found to be inadequate for representing the effect of reprogramming. The available data suggest that the combination of high electrical stress and thin oxides precipitate failure in "non-perfect" oxides, and does not lend itself to modeling using deterministic methods. A recommendation in this area is to gather endurance test data for these devices, or generate such data in the event that sufficient test results are not available. An approach similar to that taken for Flotox/Textured-Poly EEPROMs (see section 4.2.2.2) may then be used.

Soft Errors (see section 4.2.2.1) were found to be a significant failure mechanism, at least for certain MOS RAMs under certain circumstances. Further investigation should be devoted to this area. A suggested approach is to use deterministic methods, evaluating the influencing factors outlined in 4.2.2.1 in conjunction with data regarding the sensitivities of different devices. No field data was found during this modeling task that could be used to derive soft error failure rates, and it is likely that such data is not available in sufficient quantity to derive failure rates using probabilistic methods.

Other recommendations relative to memories are as follows:

(1) Refine gate oxide thickness and area charts for all memories. This will permit a more accurate representation of the contribution of time dependent dielectric breakdown.

(2) Collect more life test data to develop a refined model of the defect related failure rate.

MDR-21 was used in the development of several models for this contract. However, MDR-21 needs to be updated to reflect the latest data in the RAC database. This will allow for more accurate determination of screening effectiveness (π_Q values) and activation energies for assignable cause failure mechanisms. The RAC database itself needs to be evaluated for its format and content: it is difficult to read and it contains fields with little or no data of use.

Recommendations for follow-on activities in the packaging area are contained in appendices F, G and H of this report.

The MMIC and digital GaAs failure rate models are believed to be reasonably representative of failure rates for GaAs integrated circuits using MESFET technology and gold based metallization because the models are based on current GaAs integrated circuit failure data. Although the data was limited in quantity, a consensus appeared in the data with regard to the dominant failure mechanism, failure rates, and activation energies especially in the case of the MMIC model. The failure rate data came from published accelerated life test reports and could therefore be relatively optimistic although the data should be representative of good processes under control.

The GaAs models' developed in this contract should be continually refined and updated based on new data sources as new data becomes available. The application and complexity factors can be updated as new and more varied applications and higher complexity GaAs devices appear. As field data becomes available on devices with a high number of operating hours, new failure

1

mechanisms may appear and will have to be added to the models. Careful observation of the passive element failures may improve the passive device factors in the models. More digital GaAs failure rate data should be monitored and compared to the failure rates appearing in the digital model since the model is strongly influenced by a large sample of devices from one manufacturer (GigaBit).

Additional failure rate model efforts should also include new technology GaAs devices which are beginning to emerge. Microwave/Millimeter-wave Integrated Circuits (MIMICs) are higher frequency (30 - 300 GHz) GaAs devices and will be using high electron mobility transistors (HEMT) or heterojunction bipolar transistors (HBT) as the active devices on these integrated circuits. Linear GaAs integrated circuits (op amps, comparators, ...) are also emerging and their failure rates should be monitored for possible model development or the inclusion of an application term.

Due to the experiences encountered on this contract with regard to proprietary information, limited reliability testing and data, and limited or questionable reliability analysis (for failure mechanisms) on advanced emerging technologies, it is highly recommended that independent accelerated life tests be performed by a single contractor to address these concerns. For companies building and selling emerging devices, reliability issues are often a secondary concern. The single contractor would have to have excellent failure analysis capabilities (for determination of failure mechanisms), adequate environmental facilities (for accelerated temperature exposure), adequate electrical testing (for proper biasing, protection, and parametric measurements), and extensive experience in reliability data analysis (for correct interpretation of results and modeling). The major advantage of this recommendation is complete control of part section (all applicable devices can be purchased and covered), conditions (all applicable electrical and environmental conditions can be explored), and analysis (failure mechanism, data, and model analysis). The effort would be expensive but would be the best way to get complete, accurate, and timely failure rate models for emerging technologies.

- 7.0 BIBLIOGRAPHY
- 1. Pucknell, Douglas A., et. al., Basic VLSI Design Systems and Circuits. Prentice Hall, 1988.
- 2. Einspruch, Norman G., VLSI Handbook, Academic Press, 1985.
- 3. Westinghouse Electric Corporation (Advanced Technology Labs), Integrated Circuit Fabrication Line.
- Holton, William C., et. al., "A Perspective on CMOS Technology Trends". 4. Proceedings of the IEEE, December 1986, p. 1646.
- Mavor, J., et. al., Introduction to MOS LSI Design, Addison-Wesley, 1983. 5.
- Ferry, David K., et. al., Ultra Large Scale Integrated Microelectronics. 6. Prentice Hall, 1988.
- Meindl. James D., "Ultra-Large Scale Integration", IEEE Transactions on 7. Electron Devices, November 1984, p. 1555.
- Whelan, Bill, Intel Corporation, telecon April 1989. 8.
- Myers, Glenford J., et. al., "Microprocessor Technology Trends". 9. Proceedings of the IEEE, December 1986, p. 1605.
- Ning, Tak H., et. al., "Bipolar Trends", Proceedings of the IEEE, 10. December 1986, p. 1669.
- Yamabe, Kikuo, et.al., "Thickness Dependence of Dielectric Breakdown 11. Failure of Thermal SiO2 Films", Reliability Physics 1983, IEEE, p. 184.
- 12. Baglee, David A., "Characteristics & Reliability of 100 A Oxides", Reliability Physics 1984, IEEE, p. 152.
- Hokari, Yasuaki, "Reliability of 6-10 nm Thermal SiO2 Films Showing 13. Intrinsic Dielectric Integrity", IEEE Transactions on Electron Devices, November 1985, p. 2485.
- Nguyen, Thao N., et. al., "A New Failure Mode of Very Thin (<50 A) 14. Thermal SiO2 Films", Reliability Physics 1987, IEEE, p. 66.
- Anolick, Eugene S., et. al., "Low Field Time Dependent Dielectric 15. Integrity", Reliability Physics 1979, IEEE, p. 8.
- Crook, Dwight L., "Method of Determining Reliability Screens for Time 16. Dependent Dielectric Breakdown", Reliability Physics 1979, IEEE, p. 1.
- Abadeer, Bill, et. al., "Dielectric Integrity Test at Wafer Level", 1985 17. Workshop Final Report, WRAW, p. 195.
- Black, James, R., "Mass Transport of Aluminum by Momentum Exchange with 18. Conducting Electrons", Reliability Physics 1968, IEEE, p. 148. Olier, C.B., et. al., "Theory of the Failure of Semiconductor Contacts by
- 19. Electromigration", Reliability Physics 1970, IEEE, p. 116.
- Nagasawa, Eiji, et. al., "Electromigration of Sputtered Al-Si Alloy 20. Films", Reliability Physics 1979, IEEE, p. 64.
- Ghate, P.B., "Electromigration Testing of Al-Alloy Films", Reliability 21. Physics 1981, IEEE, p. 243.
- Schafft, H.A., et. al., "Report on an Interlaboratory Electromigration 22. Experiment," IEEE VLSI Workshop on Test Structures, February 1986, p. 305.
- Schafft, Harry A., "Electromigration Guidelines for t50 Measurements", 23. 1986 Workshop Final Report, WRAW, p. 149.
- Vaidya, S., et. al., "Electromigration Resistance of Fine-Line Al for 24. VLSI Applications", Reliability Physics 1980, IEEE, p. 165.
- RADC-TR-83-244. 25.
- Towner, Janet M., et. al., "Aluminum Electromigration Under Pulsed D.C. 26. Conditions", Reliability Physics 1983, IEEE, p. 36.
- 27. RADC-TR-85-175.

- Black, James R., "Electromigration of Al-Si Alloy Films", Reliability 28. Physics 1978, IEEE, p. 233.
- Vaidya, S., et. al., "Electromigration Induced Leakage at Shallow 29. Junction Contacts Metallized with Aluminum/Poly-Silicon", Reliability Physics 1982, IEEE, p. 50.
- Gargini, P. A., et. al., "Elimination of Silicon Electromigration in 30. Contacts by the Use of an Interposed Barrier Metal", Reliability Physics 1982, IEEE, p. 66.
- Towner, Janet M., "Electromigration-Induced Short Circuit Failure". 31. Reliability Physics 1985, IEEE, p. 81.
- Root, Bryan J., et. al., "Wafer Level Electromigration Tests for 32. Production Monitoring", Reliability Physics 1985, IEEE, p. 100. Partridge, J., et. al., "Aluminum Electromigration Parameters",
- 33. Reliability Physics 1985, IEEE, p. 119.
- Wu, C. J., et. al., "Effects of Substrate Thermal Characteristics on the 34. Electromigration Behavior of Al Thin Film Conductors", Reliability Physics 1983, IEEE, p. 24.
- Partridge, J., et. al., "Electromigration, Thermal Analysis and Die 35. Attach - A Case History", Reliability Physics 1982, IEEE, p. 34.
- RADC-TR-pending, "VHSIC/VHSIC-Like Reliability Prediction Modeling", ITT 36. Research Institute, Honeywell SSED. December 1988.
- 37. Anello, C., "On the Maximum Likelihood Estimation of Failure Probabilities in the Presence of Competing Risks", Technical Paper RAC-TP-291, Research Analysis Corp., McLean, VA., 1968.
- Price, J., Proceedings of the IEEE, Vol. 58, 1970, p. 1290. 38.
- Anolick, E. S., et. al., "Application of Step Stress to Time Dependent 39. Breakdown", Reliability Physics 1981, IEEE, p. 23.
- Wong, Kam L., et. al., "Culprits Causing Avionic Equipment Failures". 40. 1987 Proceedings Annual Reliability and Maintainability Symposium, p. 416.
- Merchant, P., et. al., "Comparative Electromigration Tests of Al-Cu 41. Alloys", Reliability Physics 1984, IEEE, p. 259.
- 42. Calculation of EEPROM Board MTBF. SEEQ Technology Inc. 11/87.
- Reliability Data for EEPROMs. SEEQ Technology Inc. 10/86. 43.
- Mielke, Fazio, and Liou, "Reliability Comparison of Flotox and 44. Textured_Polysilicon EEPROMs", 1987 IEEE/IRPS.
- Verma and Mielke, "Reliability Performance of ETOX Based Flash Memories", 45. 1988 IEEE/IRPS.
- 46. Sweetman and Haifley, "Reliability Enhancements - Million Cycle EEPROMs", 1987 IEEE Annual R&M Symposium Proceeding.
- 47.
- Mielke, "New EPROM Data Loss Mechanisms", 1983 IEEE/IRPS. Alexander, "Accelerated Testing in FAMOS devices 8K EPROM", 1978 Proc. 48. Rel. Physics.
- Baker and Mielke, "Detecting Quality and Reliability Defects in EPROMs", 49. Electronics Test, 11/83.
- 50. Conn, Eachus, Klema, Pyle, Schwiesow, "Update of Reliability concerns on MOS memory integrated circuits" 1986 IEEE Proc. Region 5 Conf..
- Martin, "Static RAMs Progress, Diversify and Specialize", Computer Design 51. 10/15/87.
- Meyer, "Programmable Logic Overview" VLSI Systems Design, 10/87. 52.
- Palm, "Determining System Reliability Data From EEPROM Endurance Data", 53. 1988 Xicor data book.
- 54. Caywood, "Endurance of Nonvolatile Memories", 1988 Xicor data book.

- 55. Wegener and Guterman "The Prediction of Textured Poly Floating Gate Memory Endurance", 1985 IEEE/IRPS.
- 56. Haifley, "Endurance of EEPROMs with On-Chip Error Correction", 1987 IEEE.
- 57. Duvvury, Redwine, Kitagawa, Haas, Chuang, Beydler, Hyslop, "Impact of Hot Carriers On DRAM circuits", 1987 IEEE/IRPS.
- 58. Cahoon, Thornewell, Tsai, Gukelberger, Sylvestri, and Orro, "Hot Electron Induced Retention Time Degradation in MOS DRAMs", 1986 IEEE/IRPS.
- 59. Yao, Tzou, Cheung, Chan, "Structure and Frequency Dependence of Hot Carrier Induced Degradation in CMOS VLSI", 1987 IEEE/IRPS.
- 60. Cham, Hui, Vande Voorde, Fu, "Self-Limiting Behavior of Hot Carrier Degradation and its Implication on the Validity of Lifetime Extraction by Accelerated Stress", 1987 IEEE/IRPS.
- 61. Itsumi, "Positive and Negative Charging of Thermally Grown SiO2 induced by Fowler-Nordheim Tunneling", Journal of Applied Physics 5/81.
- 62. Meyer, Crook, "Model for Oxide Wearout Due to Charge Trapping" 1983 IEEE/IRPS.
- 63. Brewer, "MNOS Density Parameters" IEEE Trans. on Reliability 5/77.
- 64. White, Dziminski, Peckarar, "Endurance of Thin Oxide Nonvolatile MNOS Memory Transistors", IEEE Trans. on Electron Devices 5/77.
- 65. Yatsuda, Nabetani, Uchida, Minami, Teresawa, Hagiwara, Katto, Yasui, "Hi-MNOS II Technology For a 64 Kbit Byte-Eraseable 5v Only EEPROM, IEEE Journal of SS Circuits 2/85.
- 66. Schadel, "Device Failure Mechanisms In Integrated Circuits", Institute Of Physics Conf ser. no. 69 1983.
- 67. Seeq data book 1987/88.
- 68. Xicor data book 1988.
- 69. Intel reliability report RR-35F.
- 70. Signetics Std. Product Reliability Summaries 1986, 87, 88, 89.
- 71. Gear, "FAMOS PROM Reliability Studies", 1976 Proc. Rel. Physics.
- 72. Prickett, Caywood, Ellis, "Trapping In Tunnel Oxides Grown On Textured Polysilicon", 1983 IEEE/IRPS.
- 73. Yatsuda, et. al., "Hi-MNOS II Technology for a 64 kbit Byte-Eraseable 5v only EEPROM, 2/85 IEEE Journ. SS Ckts.
- 74. Ajiki, Sugimoto, Higuchi, Kumada, "Temperature Accelerated Estimation of MNOS Reliability, 1981 IEEE/Proc. IRPS.
- 75. White, Dzimianski, Peckerar, "Endurance of Thin Oxide MNOS Memory Transistors", IEEE Trans. on Elec. Devices 5/77.
- 76. Arsenault, Roberts, "MOS Semiconductor RAM Failure Rate",
- Microelectronics and Reliability Vol. 19 1979.
- 77. Salvo, Sasaki, "Reliability Evaluation Of CMOS RAMs", 1982 ISTFA Proceedings.
- 78. Wendell, Segers, Wang, "Predicting Oxide Failure Rates Using The Matrix Of a 64K DRAM chip, 1984 IEEE/IRPS.
- 79. Lechner, Mohr, Papp, "Holding Time Distribution in dynamic MOS RAMs", Int. J. Elec. 1986.
- 80. Takeda, et. al., "Key Factors In Reducing Soft Errors In Mega-Bit DRAMs", 1987 IEEE/IRPS.
- 81. Ishiuchi, et. al., "Soft Error Rate Reduction In Dynamic Memory With Trench Capacitor Cell", 1986 IEEE/IRPS.
- Trench Capacitor Cell", 1986 IEEE/IRPS. 82. Miller, Hecht, Morris, "Accounting For Soft Errors In Memory Reliability Prediction", 1989 IEEE Proc. R&M Symp..
- 83. William J. Roesch, "Gallium Arsenide IC Reliability", Tutorial Notes, IRPS, 1988.

- 84. W.J. Roesch and M.F. Peters, "Depletion Mode GaAs IC Reliability", GaAs IC Symposium, 1987.
- 85. J. Tenedorio, S. Porro, G. Mathur & P. Bacon, "Reliability and RF Performance Stability of a 6-18 GHz MMIC Amplifier", ManTech Conference, 1987.
- 86. Y. Hosono, "Stability and Reliability Investigation on Fully ECL Compatible High Speed GaAs Logic ICs", Microwave and Millimeter-wave Monolithic Circuits Symposium, 1987.
- 87. R. Venkataraman, J.I. Kotz & B.M. Welch, "Baseline Reliability of Commercial Gallium Arsenide Integrated Circuits", ManTech Conference, 1987.
- 88. R. Venkataraman, "GaAs IC Reliability and Quality Assurance Handbook," GigaBit GaAs IC Databook, 1988.
- 89. D.J. LaCombe, Response from survey mailing, General Electric Co., 1988..
- 90. "GaAs Analog MMICs", NEC Corp. Databook, 1988.

ı.

- 91. "GaAs FET MMIC Control Product Process Screening and Quality Procedures", M/A-COM Semiconductor Databook, 1988.
- 92. William J. Roesch and Douglas Stunkard, "Proving GaAs Reliability with IC Element Testing."
- 93. Ralph E. Williams, <u>Gallium Arsenide Processing Techniques</u>, Artech House Inc., 1984.
- 94. S.M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, 1981.
- 95. James V. DiLorenzo and Deen D. Khandelwal (editors), <u>GaAs FET Principles</u> and Technology, Artech House, Inc., 1982.
- 96. F. Wilhemsen, R. Yee, T. Zee & N. Osbrink, "Temperature vs. Reliability in Power GaAs FETs and MIC GaAs FET Power Amplifiers", Microwave Journal, May 1984.
- 97. Microprocessor Reliability Report, Intel Corporation, 1985.
- 98. Eva Freeman; "Cost Device Speed, Size, and Reliability Determine the Best Package for an ASIC," EDN, April 30, 1987.
- 99. E.R. Hnatek, VLSIO Packages. How They Stand Up to Environmental Stress Testing, Evaluation Engineering, Vol. 24 No. 5, May 1985, pp. 47-49.
- 100. P.B. Wesling, Thermal Characterization of a 149-Lead VLSI Package with Heatsink, IEEE Semiconductor Thermal and Temperature Measurement Symposium, 4th, 1988.
- 101. HRD4, <u>Handbook of Reliability Data for Components Used in</u> <u>Telecommunications Systems</u>, British Telecom, January 1987.
- 102. C. Anderson, Advanced Micro Devices, Inc., Private Communication, 1989.
- 103. T. Hancock and L. Schonian-Hill, National Semiconductor Corp., Private Communication, 1989.
- 104. Reliability Analysis Center (RAC) microcircuit database, 1988.

Downloaded from http://www.everyspec.com

APPENDIX A

- 5.1.2 MIL-HDBK-217 (REV) Microelectronic Devices
- 5.1.2.1 Monolithic Bipolar Digital and Linear Gate/Logic Array Devices
- 5.1.2.2 Monolithic MOS Digital and Gate/Logic Array Linear Devices
- 5.1.2.3 Monolithic Bipolar and MOS Digital Microprocessor Devices
- 5.1.2.4 Monolithic Bipolar and MOS Memory Devices
- 5.1.2.5 Monolithic GaAs Digital Devices

ł.

- 5.1.2.6 Monolithic GaAs MMIC Devices
- 5.1.2.7 Tables for Monolithic Model Parameters
- 5.1.2.8 Example Failure Rate Calculations (Monolithic)
- 5.1.2.9 Multi-chip Hybrid Microcircuits
- 5.1.2.10 Magnetic Bubble Memory Devices
- 5.1.2.11 Surface Acoustic Wave (SAW) Devices

MIL-HDBK-217(REV)

MICROELECTRONIC DEVICES

5.1.2 Microelectronic Devices. This section presents updated MIL-HDBK-217 failure rate prediction models for nine major classes of microelectronic devices, which are denoted by an asterisk (*).

Monolithic Bipolar Digital and	
Linear Gate/Logic Array Devices (*)	Section 5.1.2.1
Monolithic MOS Digital and	
Linear Gate/Logic Array Devices (*)	Section 5.1.2.2
Monolithic Bipolar and MOS Digital	
Microprocessor Device (Including Controllers) (*)	Section 5.1.2.3
Monolithic Bipolar and MOS Memory Devices (*)	Section 5.1.2.4
Monolithic GaAs Digital Devices (*)	Section 5.1.2.5
Monolithic GaAs MMIC Devices (*)	Section 5.1.2.6
Tables for Monolithic Models Parameters	Section 5.1.2.7
Example Failure Rate Calculations	Section 5.1.2.8
Hybrid Microcircuits (*)	Section 5.1.2.9
Magnetic Bubble Memories (*)	Section 5.1.2.10
Surface Acoustic Wave Devices (*)	Section 5.1.2.11

This revision of MIL-HDBK-217 addresses these technologies and provides new prediction models for bipolar and MOS VLSI microcircuits with gate counts up to 60.000. linear microcircuits with up to 3000 transistors, bipolar and MOS digital microprocessors and co-processors up to 32 bits, memory devices with up to 2 million bits. GaAs monolithic microwave integrated circuits (MMICs) with up to 1,000 active elements, and GaAs digital ICs with up to 10,000 transistors. A major departure from previous versions of the handbook is made in the monolithic bipolar and MOS models by the inclusion of effective hazard rates for the two predominant wearout failure mechanisms, electromigration and time-dependent dielectric breakdown. The early life, or assignable cause, failure rate continues to be represented by C_1 and C_2 factors which account for the contributions of the die and package, respectively, as functions of complexity. The C₁ factors have been extensively revised to reflect new technology devices with improved reliability, and the activation energies representing the temperature sensitivity of the dice (π_T) have been changed for MOS devices and for memories. The C₂ factor remains unchanged from the previous version. but includes pin grid arrays using the same model as hermetic, solder-sealed dual in-line packages. New values have been included for the quality factor (π_0) , the learning factor (π_{I}) , and the environmental factor (π_{F}) . The model for hybrid microcircuits has been revised to be simpler to use, to delete the temperature dependence of the seal and interconnect failure rate contributions, and to provide a method of calculating chip junction temperatures.

In the title description of each monolithic device type, Bipolar represents all TTL, ASTTL, DTL, ECL, CML, ALSTTL, HTTL, FTTL, LTTL, STTL, LSTTL, IIL, I³L and ISL devices. MOS represents all metal-oxide microcircuits, which includes MNOS, PMOS, CMOS and MNMOS fabricated on various substrates such as sapphire, poly crystalline or single crystal silicon. The hybrid model is structured to accommodate all of the monolithic chip device types and various complexity levels. 1

MIL-HDBK-217(REV) MICROELECTRONIC DEVICES

Monolithic memory complexity factors are expressed in the number of bits in accordance with JEDEC STD 21A. This standard, which is used by all government and industry agencies that deal with microcircuit memories, states that memories of 1024 bits and greater shall be expressed as K bits, where 1K = 1024 bits. For example, a 16K memory has 16,384 bits, a 64K memory has 65,536 bits and a 1M memory has 1,048,576 bits. Exact numbers of bits are not used for memories of 1024 bits and greater.

The monolithic device models, along with parameter descriptions and instructions for quantifying the parameters are presented in Sections 5.1.2.1 through 5.1.2.6. The tables used for quantifying the model parameters are presented in Section 5.1.2.7.

Models for magnetic bubble memories and model for Surface Acoustic Wave (SAW) devices are listed after the hybrid section.

For devices having both linear and digital functions not covered by MIL-M-38510, use the linear model. Line drivers and line receivers are considered linear devices. For linear devices not covered by MIL-M-38510, use the transistor count from the schematic diagram of the device to determine circuit complexity.

Microprocessors (including controllers) are classified by the number of bits in the data word. This notation is used in data sheets and application notes. For example, the 8080 is an 8 bit microprocessor, the 8086 is a 16 bit microprocessor, etc.

For digital devices not covered by MIL-M-38510, use the gate count as determined from the logic diagram. A J-K to R-S flip flop is equivalent to 6 gates when used as part of an LSI circuit. For the purpose of this Handbook, a gate is considered to be any one of the following functions; AND, OR, exclusive OR, NAND, NOR and inverter. When a logic diagram is unavailable, use device transistor count to determine gate count using the following expressions:

Bipolar: No. Gates = No. Transistors ÷ 3.0 CMOS: No. Gates = No. Transistors ÷ 4.0 Other MOS: No. Gates = No. Transistors ÷ 3.0

The prediction models for monolithic VLSI/ULSI microcircuits have the form

 $\lambda_{P}(t_{0}) = \lambda_{AC} + \lambda_{TDDB}(t_{0}) + \lambda_{EM}(t_{0})$

where

5.1.2.1 Monolithic Bipolar Digital and Linear Devices (Including Gate / Logic Arrays)

ſ

$$\lambda_{P}(t_{0}) = \lambda_{AC} + \lambda_{EM}(t_{0}) + \lambda_{TDDB}(t_{0})$$

$$\lambda_{AC} = \pi_{Q} (C_{1} \pi_{T} + C_{2} \pi_{E}) \pi_{L} \qquad (in Failures / 106 hours)$$

where:

 π_Q is the quality factor, Table 5.1.2.7-1 π_T is the temperature acceleration factor, Table 5.1.2.7-4 π_E is the application environmental factor, Table 5.1.2.7-3 π_L is the device learning factor, Table 5.1.2.7-2 C_1 is the circuit complexity failure rate based on gate or transistor count as follows:

DIGITAL		LINEAR	
# GATES	Cl	# TRANSISTORS	C
1 TO 100 101 TO 1,000 1,001 TO 3,000 3,001 TO 10,000 10,001 TO 30,000 30,001 TO 60,000	.0025 .005 .01 .02 .04 .08	1 TO 100 101 TO 300 301 TO 1,000 1,001 TO 10,000	.01 .02 .04 .06

 C_2 is the package complexity failure rate, Table 5.1.2.7-15.

 $\lambda_{FM}(t_0)$ is taken from Table 5.1.2.7-17 (in Failures / 10⁶ hours)

 $\lambda_{\text{TDDB}}(t_0) = 0$ for bipolar devices due to the thick oxides used in the bipolar fabrication process.

5.1.2.2 Monolithic MOS Digital and Linear Devices (Including Gate / Logic Arrays)

$$\lambda_{P}(t_{0}) = \lambda_{AC} + \lambda_{EM}(t_{0}) + \lambda_{TDDB}(t_{0})$$

$$\lambda_{AC} = \pi_{Q} (C_{1} \pi_{T} + C_{2} \pi_{E}) \pi_{L} \qquad (in Failures / 106 hours)$$

where:

 π_Q is the quality factor, Table 5.1.2.7-1 π_T is the temperature acceleration factor, Table 5.1.2.7-4 π_E is the application environmental factor, Table 5.1.2.7-3 π_L is the device learning factor, Table 5.1.2.7-2 C_1 is the circuit complexity failure rate based on gate or transistor count as follows:

DIGITAL		LINEAR	
# GATES	C1	# TRANSISTORS	Cl
1 TO 100 101 TO 1,000 1,001 TO 3,000 3,001 TO 10,000 10,001 TO 30,000 30,001 TO 60,000	.01 .02 .04 .08 .16 .29	1 TO 100 101 TO 300 301 TO 1,000 1,001 TO 10,000	.01 .02 .04 .06

 C_2 is the package complexity failure rate, Table 5.1.2.7-15.

 $\lambda_{EM}(t_0)$ is taken from Table 5.1.2.7-17 (in Failures / 10⁶ hours) $\lambda_{TDDB}(t_0)$ is taken from Table 5.1.2.7-16 (in Failures / 10⁶ hours)

5.1.2.3 Monolithic Bipolar and MOS Digital Microprocessors (Including Controllers)

ı.

$$\lambda_{P}(t_{0}) = \lambda_{AC} + \lambda_{EM}(t_{0}) + \lambda_{TDDB}(t_{0})$$

$$\lambda_{AC} = \pi_{0} (C_{1} \pi_{T} + C_{2} \pi_{E}) \pi_{L} \qquad (in Failures / 10^{6} hours)$$

where:

 π_Q is the quality factor, Table 5.1.2.7-1 π_T is the temperature acceleration factor, Table 5.1.2.7-4 π_E is the application environmental factor, Table 5.1.2.7-3 π_L is the device learning factor, Table 5.1.2.7-2 C_1 is the circuit complexity failure rate based on bit count as follows:

	-								_
.		# 8	BITS	5	L	BIPOLAR	1	MOS	_
	Up	to	8	Bits	1	0.06	1	0.14	
ł	Up	to	16	Bits	1	0.12	ł	0.28	ł
.	Up	to	<u>32</u>	Bits	l	0.24		0.56	_

 C_2 is the package complexity failure rate, Table 5.1.2.7-15. $\lambda_{EM}(t_0)$ is taken from Table 5.1.2.7-17 (in Failures / 10⁶ hours) $\lambda_{TDDB}(t_0)$ is taken from Table 5.1.2.7-16 (in Failures / 10⁶ hours)

5.1.2.4 Monolithic Bipolar and MOS Memory Devices

Read Only Memories (ROMs) - MOS and Bipolar Programmable ROMS (PROMs) - MOS and Bipolar including: Ultraviolet Eraseable "Flash", MNOS, and Floating gate Electrically Eraseable (UVE, Flash, MNOS models valid up to 100 reprogram cycles) RAMs - including: MOS, Bipolar, and BiMOS Static RAMs (SRAMs) Dynamic RAMs (DRAMs) Programmable Array Logic (PALs) - MOS and Bipolar including: Programmable Logic Arrays (PLAs) Masked Logic Arrays (MLAs), and Hard Array Logic (HALs)

The Model Form is:

$$\lambda_{P}(t_{0}) = \lambda_{AC} + \lambda_{EM}(t_{0}) + \lambda_{TDDB}(t_{0})$$
$$= \pi_{Q}[C_{1}\pi_{T} + \lambda_{cyc} + C_{2}\pi_{E}]\pi_{L} + \lambda_{EM}(t_{0}) + \lambda_{TDDB}(t_{0})$$

where:

$\lambda_{P}(t_{0})$	is the predicted failure rate in failures per million hours.
$\lambda_{\rm FM}(t_0)$	is the failure rate due to electromigration, taken from
	Table 5.1.2.7-17.
$\lambda_{TDDB}(t_0)$	is the failure rate due to Time Dependent Dielectric
	Breakdown, from Table 5.1.2.7-16. Refer to section 5.1.2.4.1.
С,	is the base failure rate for assignable cause failures.
I	Refer to Table 5.1.2.4-1.
π _T	is the temperature multiplier for the assignable cause
I	failure rate. Refer to Table 5.1.2.7-10.

 λ_{cyc} is the EEPROM* read/write cycling induced failure rate, and is:

$$\lambda_{cyc} = [A_1B_1 + A_2B_2/\pi_Q] \pi_{ECC}$$

i

where:

A₁ and A₂ are the base cycling failure rates. Refer to Tables 5.1.2.4-2 and 5.1.2.4-3. B₁ and B₂ are the temperature/complexity multipliers. Refer to Tables 5.1.2.4-4 through 5.1.2.4-6. π_{ECC} is the on-chip error correction factor: = .7174 for Hamming Code with 8 data bits and 4 correct.bits = .6667 for a two-needs-one redundant cell approach = 1.0 for any device not using on-chip error correction * λ_{cyc} = 0 for all devices other than flotox or Textured Poly EEPROMs. C₂ is the package base failure rate. Refer to Table 5.1.2.7-15

 $\pi_{\rm E}$ is the environmental factor. Refer to Table 5.1.2.7-3 $\pi_{\rm Q}$ is the quality factor. Refer to Table 5.1.2.7-1 $\pi_{\rm L}$ is the learning factor. Refer to Table 5.1.2.7-2

5.1.2.4.2 C₁ Factor (Memories)

Table 5.1.2.4-1 C1 Factors

MOS PROMs (Including UVEPROMs, EEPROMs, Floating gate MOS PALs/PLAs)

MOS PROMs	<u>C1</u>	Bipolar SRAMs	<u>C1</u>
Up to 16K bits	.00085	Up to 16K bits	.0052
16K < X < 64K	.00169	16K < X <u><</u> 64K	.0105
64K < X < 256K	.00339	64K < X <u><</u> 256K	.0210
256K < X < 1M	.00678	256K < X < 1M	.0420
Bipolar PALs/PLAs Up to 200 gates 200 < X <u><</u> 1000 gates 1000 < X <u><</u> 2000 gates	<u>C1</u> .01047 .02094 .04188	MOS, BiMOS SRAMs Up to 16K bits 16K < X < 64K 64K < X < 256K 256K < X < 1M	<u>C1</u> .0078 .0156 .0312 .0624
Bipolar PROMs	<u>C1</u>	DRAMs	<u>C1</u>
Up to 16K bits	.0094	Up to 16K bits	.0013·
16K < X <u><</u> 64K	.0188	16K < X < 64K	.0025
64K < X <u><</u> 256K	.0376	64K < X < 256K	.0050
256K < X < 1M	.0753	256K < X < 1M	.0100
MOS ROMs Up to 16K bits 16K < X <u><</u> 64K 64K < X <u><</u> 256K 256K < X < 1M	<u>C1</u> .00065 .0013 .0026 .0052	-	

.

.

MIL-HDBK-217(REV)

MICROELECTRONIC DEVICES

Table 5.1.2.4-2 A, Factor

.0007 .0014 .0034 .0068 .0204 .0341 .0478	.0097 .0139 .0230 .033 .061 .091
.0014 .0034 .0068 .0204 .0341 .0478	.0139 .0230 .033 .061 .091
.0034 .0068 .0204 .0341 .0478	. 02 30 . 03 3 . 06 1 . 09 1
.0068 .0204 .0341 .0478	.033 .061 .091
.0204 .0341 .0478	.061 .091
.0341 .0478	.091
.0478	100
	. 136
.0614	.212
.0682	. 303
.1023	. 303
.1364	. 303
. 2045	. 303
. 3409	. 303
.6818	. 303
1.364	. 303
2.045	. 303
2.216	*
2.386	*
2.727	*
3.070	*
3.409	*
	.0682 .1023 .1364 .2045 .3409 .6818 1.364 2.045 2.216 2.386 2.727 3.070 3.409

Table 5.1.2.4-3 A₂ Factor

For FLOTOX, $A_2 = 0$				
For Tex - Poly:				
	Total # of Cycles	<u>A2</u> *		
	Up to 300K 300K < X < 325K 325K < X < 350K 350K < X < 400K 400K < X < 450K 450K < X < 500K	0.0 2.50 10.0 20.0 30.0 40.0		
* If using a sys by <u>10000</u> Sys. Life	tem life of other than 10	000 hours, multiply A ₂		
If the EEPROM t	ype is not known, assume	FLOTOX		
Table 5.1.2.4-4 B₁ for FL0T0X

1001	
F	

		} .		.	.						-		.	-		-	-		-	-	-	
Memory										_	_		_	-		_	_		_		-	-
Capacit		20	30	4(50	60	-	70	80	4	96	0	0	110	_	20	130		40 1 1	50	160
(bits)		25	35	45		55	65	-	75	85	-	95	01 1	5	115		25	135		45 1	55	165
4k	_	245	.298] .35	58	.425	. 50	1 0	.582	<u>.</u> 67	12	.770	4. - -	76	986.	 	Ξ	1.24		376 1.	521	1.672
	-	270	.327		116	.462	.54	1 0	.626	<u></u>	0	.822	6.	32	1.049	-	174	1.30		448 1.	596	1.750
8k	-	343	417.	.5(1 10	.575	59·	60	.814	ŀ6.	01	1.077	1.2	25	1.384		553	1.734		925 2.	126	2.338
	-	378	.457	.52	191	.646	. 75	5	.876	1.00	11	1.150	11.3	03	1.467	-	642	1.82	3 1 2.	024 2.	231	2.449
] 16k	· _	490	.596		191	158.	1.00	1 00	. 165	1.34	12	1.540	1.7	52	1.979	2.	221	2.48(1 2.	753 3.	041	3.344
		541	. 654	37.	32	.923	1.08	1 1 0	.253	1.44	=	1.644	1.8	63	2.095	1 2.	349	2.614	1 2.	895 1 3.	1 161	3.502
] 32k		695	.845	1.0	1 31	.206	1.41	1 8	.65 ا	06.1	1 1	2.184	2.4	84	2.806	3.	150	3.516	6 3.	903 4.	312	4.742
	-	767	. 728	1.1	1 80	.307	1.53	2 1 1	.176	2.0	13 1 2	2.332	1 2.6	42	2.975	13.	330	3.70	14.	105 4.	525	4.965
64k	- -	1 086	1.192	1.4	32 1	102.	2.00	0 2	.329	2.68	88	3.081	3.5	04	3.958	1 4.	443	4.95	9 5.	506 6.	083	6.689
		082 1	. 308	1.54	53 1 1	.847	2.16	112	.506	2.85		3.288	3.7	27	4,196	4.	697	5.22	3 5.	290 6.	382	7.003
128k	- 1	384 1	.683	2.02	22 2	.402	2.82	4 3	.289	3.79	, 8t	1.350	4.9	47	5.586	6.	273	7.00	2 7.	774 8.	589	9.445
		528 1	. 848	2.21	17 1 2	.608	3.05	1 1 3	538	4.06	8	1.643	1 5.2	62	5.925	16.	632	7.38	8 1 8.	176 1 9.	012	9.888
256k		960 2	.384	2.8(5 4 3	.402	4.00	0 4	.659	5.37) 6,	5 . 162	7.0	07	316.7	8.	886	916.6	3 <u> </u>].	011 12.	165 [1	3.378
	12.	165 2	.617	3.15	26 1 3	.694	4.32	2 1 5	110.	5.76	2 7	2.576	1 7.4	53	8.392	6	394	10.45		581 112.	764	4.006
512k	2	7 <i>11</i>] 3	378	4.05	59 4	1.821	5.66	8 6	.602	1 7.62	2 8	3.731	6.6	29 1	1.216	12.	165	14.05	t 15.	603 17.	238 11	8.956
	3.1	068 1 3	1.708	4.4	30 5	.234	6.12	4 1 7	101	8.16	5 7	9.319	10.5	61 13	1.89	113.	3114	14.81	116.	410 118.	087 11	9.846
MI	- 3. -	919 4	1.768	5.72	29 6	.804	8.00	1 1	.318	10.75	8 1;	2.323	14.0	14	5.830	117.	1 1/1	19.830	5 22.	022 24.	330 [2	6.755
	4.	330 1 5	.234	6.25	2 1 7	.387	8.64	3 110	.022	11.52	5 11	<u> 3. 153</u>	14.9	06	6.785	118.	788	16.07	1 123.	162 125.	529 12	8.012

5.1.2.4-6

()°

Memory			-			-	-			_			-	-	-
Capacity	20	30	40	50	60	70	80	06	100	011	120	130	140	150	160
(bits)	25	35	45	55	65	75	85	95	105	115	125	135	145	155	165
4k	.454	185.	1 519.	1 901.	803	206.	1.018	1.135	1.257	1.386	1.521	1.660	1.805	1.955	2.110
	165.	.572	.659	.754	.854	.965	1.075	1.195	1.321	1.453	1.590	1.732	1.880	2.032	2.188
8k	.529	619.	111.	.823	937	1.058	1.187	1.323	1.467	1.617	1.773	1.936	2.105	2.280	2.400
	.573	.667	1 691.	1 678.	996	1.125	1.254	1.394	1.541	1.694	1.854	2.020	2.192	2.370	2.552
16k	.623	.729	.844	968	1.102	1.245	1.397	1.557	1.726	1.903	2.087	2.279	2.478	2.684	2.896
	.675	. 785	. 905	.034	1.173	1.324	1.476	1.640	1.814	1.994	2.182	2.378	2.580	2,789	3.004
32k	.730	.855	t 066.	.136	1.293	1.460	1.638	1.827	2.024	2.232	2.448	2.673	2.906	3.147	3.396
	162.	.921	1.061	.213	1.375	1.553	1.731	1.924	2.127	2.339	2.559	2.789	3.026	3.271	3.523
64k	.855	1.000	1.158 1	.329	1.513	1.709	1.917	2.138	2.369	2.612	2.865	3.128	3.401	3.683	3.974
	.926	1.077	1.242	.420	1.609	1.818.1	2.026	2.252	2.489	2.737	2.995	3.263	3.541	3.828	4.123
128k	1.031	1.206	1 265.1	.603	1.825	2.061	2.312	2.578	2.857	3.150	3.455	3.773	4.102	4.442	4.793
	1.116	1.299	1.498 1	.712	1.941	2.192	2.443	2.716	3.002	3.301	3.612	3.936	4.271	4.616	4.972
256k	1.246	1.457	1.688 1	.937	2.204	2.490	2.794	3.115	3.452	3.805	4.174	4.556	4.956	5.367	5.791
	1.349	1.570	2 018.1	.068	2.345	2.649	2.952	3.281	3.627	3.988	4.364	4.755	5.160	5.577	6.008
512k	1.505	1.761	2.039 2	1 148.	2.664]	3.010	3.376	3.764	4.172	4.599	5.045	5.508	5.989	6.486	6.998
	1.630	1.897	2.187 1 2	.500	2.834	3.201	3.568	3.965	4.383	4.819	5.274	5.747	6.236	6.740	7.260
μ	1.815	2.123	2.459 2	.822	3.212	3.628	4.071	4.538	5.330	5.544	6.082	6.641	7.221	7.820	8.437
	1.965	2.287	2.637 1 3	1 014	3.417	3.859	4.301	4.781	5.284	5.810	6.359	6.928	7.518	8.127	8.753

5.1.2.4-7

Table 5.1.2.4-6

 B_2 for TEX-POLY ($B_2 = 0$ for FL0TOX)

<u> </u>
ō
\sim
. —
- ·

Memory	_	_	-	-	-		-	-	-	-	-	_	-	_	_
Capacity	20	1 30	40	50	60	70	80	90	00	101	120	130	140	150	160
(bits)	25	35	45	55	65	75	85	95	105	115	125	135	145	155	165
4k	.608	1 .531	.468	415	.372	.335	303	. 276 .	253	.233	1 315.	.200	. 186	174	.163]
	.567	. 498	. 440	.393	.353	.318	.289	. 264	243	.224	.207	. 192	180 -	. 168	.158
8k	. 709	619.	.546	.485	.434	390 [.354	322	295	.272	.251	.233	.217	.202	061.
	.662	. 580	.514	.458	1114.	.371	.337	.308	283	.260	.241	.224	.209	961.	. 184
16k	.834	927.	.642	.570	915.	.460	416	. 379 .	347	.320	.295	.274	.255	.238	.223
	677.	.683	.605	.539	.484	.437	165.	.363	333	.307	.284	.580	.246	.231	.216
32k	978.	855]	. 753	699.	598	.539	.488	. 445	407	.375	.346	1321	1 662.	.278	.262
	.913	108.	- 709 L	.632	.568	.513	.466	.425	390	.360	.333	310	.289	.280	.254
64k	1.145	1 1.000	188.	.783	1 007.	189.	.572	. 521	477	.439	. 405	.376	350	.327	.306
	1.069	. 938	.830	.740	. 664	- 009.	.545	. 198	457	.421	1 065.	.363	.338	316	076.
128k	1.381	1.206	1.063	.944	.845	197.	689.	.628	575	.489	.453	422	.394	394	670
	1,289	1.131	1.00.1	.892	.801	124	.657	109.	551	.508	.470	.437	.408	.382	.358
256k	1.668	1.457	1.284	1.141	1.020	616.	.833	. 759	695	.639	112	548	1015.	.476	.446
	1.557	1.366	1.209	1.078	.968	.874	.794	. 126	666	.614	.568	.528	.493	.461	.433
512k	2.016	1.761	1.552	1.378	1.233	1.111	1.006	. 116.	839	112	714	.662	919.	.576	.540
	1.882	1.651	1.461	1.303	1 691 . 1	1.056	. 960	. 1	805	.742	.687	.638	.595	.570	.523
H HI	2.430	2.123	1.871	1.662	1.487	1.339	1.213	1.105 1.1.	012	186.	.860	1 867.	.743	969.	.651
 	2.269	166.1	1.761	1.570	1.410	1.2.14	1.157	1.057 1	970	.894	.828	1.011	11817	.672	0:07

I

5.1.2.4-8

5.1.2.4.1 $\lambda_{\text{TDDB}}(t_0)$

For Bipolar memory devices, $\lambda_{\text{TDDB}} = 0$

For MOS/BiMOS memories:

1) Determine the following parameters of the device: Total gate oxide area in square microns (DRAMs, SRAMs, ROM/HAL/MLAs only) Total periphery circuitry gate oxide area in square microns (PROM/PAL/PLAs, EEPROMs, UVEPROMs only) Gate oxide electric field stress due to normal operating voltage (in MV/cm) Operating junction temperature of the device in degrees celsius

If these values cannot be derived, refer to the following tables in selecting values:

Table 5.1.2.7-20 for gate oxide area Table 5.1.2.7-21 for gate oxide thickness

2) Once the parameters have been determined, find $\lambda_{\mbox{TDDB}}$ by referring to Table 5.1.2.7–16.

Note that the $\lambda_{\mbox{TDDB}}$ values are valid only for a 10000 hour assumed system lifetime.

5.1.2.5 Monolithic GaAs Digital Devices.

Includes small scale, medium scale, and large scale integrated circuits using MESFET transistors and gold based metallization.

Digital GaAs part failure rate model:

 $\lambda_{\rm D} = \pi_{\rm Q} \left[C_{\rm 1A} \pi_{\rm TA} + C_{\rm 1P} \pi_{\rm TP} + C_{\rm 2} \pi_{\rm E} \right] \pi_{\rm L} (failures/10^6 hrs)$

where the C_1 factors are shown in Table 5.1.2.5-1.

> Table 5.1.2.5-1: C_{1A} and C_{1P} FOR MONOLITHIC GAAS DIGITAL DEVICES

COMPLEXITY	CIA	С1р
(NO. OF IC ELEMENTS)		
<u>1 - 1000 (SSI & MSI)</u>	25.3	.687
1001 - 10,000 (LSI)	50.6	.687
Unknown	50.6	.687

5.1.2.6 Monolithic GaAs MMIC Devices.

Includes GaAs MMIC devices using MESFET transistors and gold based metallization.

GaAs MMIC part failure rate model:

$$\lambda_{\mathbf{M}} = \pi_{\mathbf{O}} \left[\left(C_{1\mathbf{A}} \pi_{\mathbf{T}\mathbf{A}} + C_{1\mathbf{P}} \pi_{\mathbf{T}\mathbf{P}} \right) \pi_{\mathbf{A}} + C_{2} \pi_{\mathbf{E}} \right] \pi_{\mathbf{L}} \left(\text{failures/10}^{\text{b}} \text{hours} \right)$$

where the C₁ factors are shown in Table 5.1.2.6-1, the π_T factors are shown in Table 5.1.2.7-12 and 5.1.2.7-14, and the π_A factor is shown in Table 5.1.2.6-2. The π_Q , π_L and π_E factors are shown in Tables 5.1.2.7-1, 5.1.2.7-2 and 5.1.2.7-3. C₂ is shown in Table 5.1.2.7-15.

- λ_{M} = MMIC GaAs Part Failure Rate
- C_{1A} = GaAs Active Device Complexity Factor (For transistors and diodes)
- C_{1P} = GaAs Passive Device Complexity Factor (For resistors, capacitors, inductors)
- π_{TA} = GaAs Active Device Temperature Factor
- π_{TP} = GaAs Passive Device Temperature Factor
- π_A = MMIC Application Factor
- π_1 = Experience or Learning Factor
- $\pi_0 = Quality Factor$
- C_2 = Package Complexity Factor
- π_F = Environmental Factor

Table 5.1.2.6-1: C_{1A} and C_{1P} FOR MONOLITHIC GaAs MMIC DEVICES

COMPLEXITY (NO. OF IC ELEMENTS)	C _{1A}	Сір
1 - 10	4.5]	2.26
11 - 100	4.51	2.71
101 - 1000	7.22	2.94
Unknown	7.22	2.94

Table 5.1.2.6-2 $\pi_{\rm A}$ FOR MONOLITHIC GaAs MMIC DEVICES

APPLICATION	ΨA
Low noise & low power less than or equal to 100 mw	1.0
Driver & high power greater than 100 mw to 3000 mw	3.0
Unknown	3.0

5.1.2.7 Tables for Monolithic Model Parameters

Table 5.1.2.7-1

π_0 Quality Factors

QUALITY LEVEL	DESCRIPTION	πQ
	Procured in full accordance with MIL-M-38510,	
S	Class S requirements. Class S listing on QPL-38510.	0.7
	Procured in full accordance with MIL-M-38510	
В	Class B requirements. Class B listing on QPL-38510.	1.0
D	Parts with normal reliability screening and manufacturer's quality assurance practices. Burn-in per MIL-STD-883 Method 1015 (Series) Class B and final electrical test	
	required.	3.3
 D_1	Commercial (or non-MIL standard) parts with no screening other than final electrical test at temperature extremes*	6!5
OTHER	Parts screened to intermediate quality levels per screening methods of MIL-STD-883. Screening factor and π_Q as determined below.	_

* Non-hermetic parts should be used only in controlled environments(G_B)

MTLSTD		
-883	SCREEN	POINT
METHOD		VALUATION
5007	Wafer lot acceptance testing	0.5
2023	Non-destructive bond pull	0.2
2010/17	Internal visual examination	6.0
1008	Stabilization bare, condition B minimum	4.5
1010	Temperature cycling, condition B minimum	11.6
2001	Constant acceleration, condition B minimum	12.8
2020	PIND (particle impact noise detection)	11.3
1015	Burn-in (S-level/B-level)	16.3/10.9
5005	Final Electrical	10.9
1014	Seal Test (test conditions A. B or C)	7.3
2012	Radiography	11.3
2009	External visual inspection	7.3

Note 1: The screening factor is the sum of the point valuations of all MIL-STD-883 screens conducted on the parts in question.

Note 2: $\pi_0 = 71.3 \div$ screening factor.

Table 5.1.2.7-2 Experience Factor π_L

YEARS IN PRODUCTION	πL FACTOR
0 .25 .5 .75	2.1 1.9 1.8 1.6
1 2	1.5
3	0.67 0.52
5	0.37

 $\pi_{L} = [0.01 \exp (5.35 - 0.35 Y)]$

where Y = no. years in production

Table 5.1.2.7-3 Application Environment Factor π_E

ENVIRONMENT	πE
G _B	0.5
G _F	2.5
G _M	4.0
NT	4.6
N	5.7
N _{UILI}	6.3
N _{UL}	11.0
AI	4.4
A	5.5
M _F	6.5
S _F	0.9
С	220

Table 5.1.2.7-4 Technology Temperature Factor Tables

TECHNOLOGY	EFFECTIVE ACTIVATION ENERGY	π _T TABLE NUMBER	A
ASTTL, CML, TTL, HTTL, FTTL, DTL, ECL & ASTTL	.4 ev	5.1.2.7-5	4635
LTTL & STTL	.45 ev	5.1.2.7-6	5214
LSTTL	.5 ev	5.1.2.7-7	5794
IIL, I3L, ISL & MNOS	.6 ev	5.1.2.7-8	6952
DIGITAL MOS	.35 ev	5.1.2.7-9	4060
MEMORIES (BIPOLAR & MOS)	.8 ev	5.1.2.7-10	9270
LINEAR (BIPOLAR & MOS)	.65 ev	5.1.2.7-11	7532
GaAs MMIC ACTIVE DEVICES	<u>1.</u> 5 ev	5.1.2.7-12	17380
GaAs DIGITAL ACTIVE DEVICES	1.4 ev	5.1.2.7-13	16220
GaAs PASSIVE DEVICES	.43 ev	5.1.2.7-14	4980

NOTE 1.
$$\pi_{T} = 0.1 \ (e^{X})$$

(5.1.2.7.3)

where

 $x = -A \left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)$ For Silicon Devices

 $x = -A \left(\frac{1}{T_{CH} + 273} - \frac{1}{423}\right)$ For GaAs Devices

A = value from above Table T_J = device worst case junction temperature (°C) T_{CH} = average active device channel temperature (°C) e = natural logarithm base, 2.718

(Notes continued for Table 5.1.2.7-4)

Т

NOTE 2. T_j, the worst case junction temperature, shall be measured or estimated using the following expression:

$$T_{j} = T_{C} + \Theta_{JC} P \qquad (5.1.2.7.4)$$

where:

- T_{C} is case temperature (°C).
- Θ_{JC} is junction to case thermal resistance (°C/watt) for a device soldered into a printed circuit board. If Θ_{JC} is not available, use a value contained in a specification for the closest equivalent device or use the Tables on pages 5.1.2.7-5 through 5.1.2.7-7.
- P is the worst case power realized in a system application. If the applied power is not available, use the maximum power dissipation from the specification for the closest equivalent device.

If $T_{\rm C}$ cannot be determined, use the following:

ENVIRONMENT	AU	AI	NU	NI	NUU	NUL
т _с (°С)	76	60	80	45	25	40
ENVIRONMENT	M _F	SF	GB	GM	G _F (L
T _C (°C)	50	35	35	50	45 4	45

Table 5.1.2.7-4a

 Θ_{JC} Values for MIL-M-38510 Devices (from MIL-M-38510G, Appendix C)

JAN P/N LETTER <u>1</u> /	SPECIFICATION DESIGNATION OUTLINE NO. <u>1</u> /	MAX Θ _{JC} (°C/W) <u>3</u> /, <u>4</u> /	DESCRIPTION 5/
ABCD EF GHIJK LMPQRS VW	F-1 F-3 D-1 F-2 F-2A D-2 F-5 F-5A A-1 F-4 A-2 D-3 F-6 F-6A D-9 A-3 D-4 D-5 D-8 F-9 F-9A D-6 D-7 F-8 F-10 F-11 F-11A D-10 D-11 D-12 D-13	22 22 28 22 28 22 22 70 22 65 28 22 22 28 65 28 22 22 28 28 28 28 28 28 22 22 28 28	14-lead FP 14-lead FP 14-lead FP 14-lead FP 14-lead FP 16-lead DIP 16-lead FP 16-lead FL 8-lead can 10-lead FP 10-lead can 24-lead DIP 24-lead FP 24-lead FP 24-lead DIP 12-lead can 8-lead DIP 20-lead DIP 20-lead FP 20-lead FP 20-lead FP 18-lead FP 18-lead FP 28-lead FP 28-lead FP 28-lead FP 28-lead DIP 24-lead DIP 24-lead DIP 24-lead FP 28-lead FP 28-lead DIP 24-lead DIP 2

See footnotes at end of table.

1

MIL-HDBK-217(REV)

MICROELECTRONIC DEVICES

Table 5.1.2.7-4a (continued)

JAN P/N LETTER <u>1</u> /	SPECIFICATION DESIGNATION OUTLINE NO. <u>1</u> /	MAX ΘJC (°C/W) <u>3</u> /, <u>4</u> /	DESCRIPTION 5/
2 3	C-1 C-1A C-2 C-2A C-3 C-3A C-4 C-4 C-4 C-5 C-6 C-7 C-8	20 20 20 20 20 20 20 20 20 20 20 20 20 2	<pre>16-terminal SQ. LCC 16-terminal SQ. LCC 20-terminal SQ. LCC 20-terminal SQ. LCC 24-terminal SQ. LCC 24-terminal SQ. LCC 28-terminal SQ. LCC 44-terminal SQ. LCC 52-terminal SQ. LCC 68-terminal SQ. LCC 84-terminal SQ. LCC</pre>
	C-9 C-9A C-10 C-11 C-11A C-12 C-12A C-13 C-13A	20 20 20 20 20 20 20 20 20 20	18-terminal RECT. LCC 18-terminal RECT. LCC 18-terminal RECT. LCC 28-terminal RECT. LCC 28-terminal RECT. LCC 32-terminal RECT. LCC 32-terminal RECT. LCC 20-terminal RECT. LCC 32-terminal RECT. LCC
	C-J1 C-J2 C-J3 C-J4 C-J5 C-J6 C-G1 C-G2 C-G3 C-G4 C-G5 C-G6	20 20 20 20 20 20 20 20 20 20 20 20 20 2	44-terminal JCC 68-terminal JCC 84-terminal JCC 68-terminal JCC 68-terminal JCC 84-terminal JCC 44-terminal GCC 68-terminal GCC 68-terminal GCC 84-terminal GCC 84-terminal GCC

ŧ.

See footnotes at end of table.

Table 5.1.2.7-4a (continued)

JAN P/N LETTER <u>1</u> /	SPECIFICATION DESIGNATION OUTLINE NO. 1/	MAX ӨJС (°С/W) <u>3</u> /, <u>4</u> /	DESCRIPTION 5/
	P-AA P-AB P-AC P-AD P-AE P-AF P-AG P-AH P-AJ P-AJ P-AK P-AL P-AM P-BA P-BB P-BC P-BD P-BE P-BF P-BF P-BG P-BH P-BJ P-BK P-BL	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	81-pin SQ PGA 100-pin SQ PGA 121-pin SQ PGA 144-pin SQ PGA 169-pin SQ PGA 225-pin SQ PGA 225-pin SQ PGA 256-pin SQ PGA 324-pin SQ PGA 361-pin SQ PGA 100-pin SQ PGA 100-pin SQ PGA 121-pin SQ PGA 144-pin SQ PGA 144-pin SQ PGA 169-pin SQ PGA 225-pin SQ PGA 225-pin SQ PGA 256-pin SQ PGA 256-pin SQ PGA 289-pin SQ PGA 324-pin SQ PGA
{	P-BM	6	400-pin SQ PGA

a

1/ The letters in this column may be alphabetic or numeric and are used in paragraph 1.2.3 of detail specifications and are dedicated to specific case outlines. Where there are no letters, the letters S, Y, Z, U, T and N are used (in the order shown) but are <u>not</u> dedicated until they appear in the detail specification. Thus a letter X, for example, can be used to label more than one type of case outline provided <u>each</u> application is in a different detail specification.

Notes to Table 5.1.2.7-4a

- 2/ The chip carrier case outline drawing describes features which are optional. These options enhance the utility of the chip carrier, not only for end use but also for manufacturing and testing. Specific case outline configurations are designated by a single letter which is used in the JAN part no. The following excerpt from a typical detail specification shows how the option is added.
- $\underline{3}$ / Values shown are worst case (MEAN + 2σ) for 60 x 60 mil die and applicable for devices with die sizes up to 14400 sq. mil.
- 4/ For devices die sizes greater than 14400 sq. mil. use the following values:

Dual-in-line	11°C/W
Flat pack	10°C/W
Chip carrier	10°C/W
Pin grid array	3°C/W

- 5/ LCC = Leadless chip carrier, ceramic; GCC = Gullwing leaded chip carrier, ceramic; JCC = J bend leaded chip carrier, ceramic; PGA = Pin grid array, ceramic; FP = Flat pack; DIP = Dual-in-line package.
- <u>6</u>/ Caution: Some outline configurations listed in this column are prohibited for new equipment design or redesign on and after 29 November 1986 (see 3.5.1 and case outline drawings and notes).

Table	5.1.2.	7-5	πτ vs	Juncti	on Te	mpera	ature	for	ASTTL,	CML,
		TTL,	HˈTTL,	FTTL,	DTL,	ECL	& ALS	TTL		

Tj(°C)	πŢ	Tj(°C)	πŢ	Tj(°C)	πŢ	Tj(°C)	πτ
25 30 35 40 45 50 55 60	.10 .13 .17 .21 .27 .33 .41 .51	65 70 75 80 85 90 95	.63 .77 .93 1.13 1.36 1.62 1.93 2.28	105 110 115 120 125 130 135 140	2.69 3.16 3.69 4.29 4.98 5.75 6.62 7.60	145 150 155 160 165 170 175	8.69 9.91 11.26 12.77 14.42 16.25 18.27

•

Table 5.1.2.7-6 π_T vs Junction Temperature for LTTL & STTL

Tj(°C)	πŢ	Tj(°C)	πŢ	Tj(°C)	πŢ	Tj(°C)	πŢ
25 30 35 40 45 50 55 60	. 10 . 13 . 18 . 23 . 30 . 39 . 50 . 63	65 70 75 80 85 90 95 100	.79 .99 1.24 1.53 1.88 2.29 2.79 3.37	105 110 115 120 125 130 135 140	4.06 4.86 5.79 6.87 8.11 9.55 11.19 13.06	145 150 155 160 165 170 175	15.19 17.60 20.32 23.39 26.84 30.70 35.01

Tj(°C)	πŢ	Tj(°C)	πŢ	T _J (°C)	πŢ	Tj(°C)	πŢ
25 30 35 40 45 50 55 60	.10 .14 .19 .25 .34 .45 .59 .77	65 70 75 80 85 90 95 100	1.00 1.28 1.63 2.07 2.60 3.25 4.04 4.99	105 110 115 120 125 130 135 140	6.12 7.48 9.09 10.99 13.23 15.85 18.90 22.45	1 45 1 50 1 55 1 60 1 65 1 70 1 75	26.55 31.28 36.71 42.92 50.00 58.05 67.18

Table 5.1.2.7-7 π_T vs Junction Temperature for LSTTL

Table 5.1.2.7-8 $\,\pi_{T}$ vs Junction Temperature for IIL, I^3L, ISL & MNOS

Tj(°C)	πŢ	T _J (°C)	πŢ	T _J (°C)	πŢ	Tj(°C)	πŢ
25 30 35 40 45 50 55 60	.10 .15 .21 .31 .43 .61 .84 1.16	65 70 75 80 85 90 95 100	1.58 2.13 2.86 3.79 4.99 6.52 8.46 10.89	105 110 115 120 125 130 135 140	13.94 17.72 22.39 28.13 35.13 43.63 53.90 66.24	145 150 155 160 165 170 175	81.02 98.6 119.5 144.1 173.1 207.1 246.8

T _J (°C)	πŢ	Tj(°C)	πŢ	T _J (°C)	πΤ	T _J (°C)	πŢ
25 30 35 40 45 50 55 60	. 10 . 13 . 16 . 19 . 24 . 29 . 35 . 42	65 70 75 80 85 90 95 100	.50 .60 .71 .84 .98 1.15 1.34 1.55	105 110 115 120 125 130 135 140	1.79 2.06 2.36 2.69 3.07 3.48 3.94 4.44	145 150 155 160 165 170 175	5.00 5.60 6.27 6.99 7.78 8.64 9.57

Table 5.1.2.7-9 π_T vs Junction Temperature for MOS Digital Gate/Logic Array and MOS Digital Microprocessor Devices

Table 5.1.2.7-10 π_{T} vs Junction Temperature for Memories, Bipolar, MOS & BIMOS

T _J (°C)	ΨŢ	Tj(°C)	πŢ	Tj(°C)	πΤ	Tj(°C)	πŢ
25 30 35 40 45 50 55 60	.10 .17 .27 .44 .71 1.11 1.72 2.63	65 70 75 80 85 90 95 100	3.97 5.92 8.73 12.73 18.37 26.25 37.14 52.05	105 110 115 120 125 130 135 140	72.31 99.6 136.1 184.4 248.0 331.1 438.9 577.8	145 150 155 160 165 170 175	755.8 982 1269 1629 2081 2642 3337

Tj(°C)	πŢ	T _J (°C)	πŢ	Tj(°C)	πŢ	Tj(°C)	πŢ
25 30 35 40 45 50 55 60	.10 .15 .23 .34 .49 .71 1.01 1.42	65 70 75 80 85 90 95 100	1.99 2.75 3.78 5.13 6.91 9.24 12.25 16.11	105 110 115 120 125 130 135 140	21.04 27.30 35.17 45.02 57.28 72.44 91.09 113.9	145 150 155 160 165 170 175	141.7 175.3 215.8 264.5 322.5 391.6 473.5

Table 5.1.2.7-11 π_T vs Junction Temperature for Linear

Table 5.1.2.7-12 π_T vs Channel Temperature for GaAs MMIC Active Devices

T _{CH} (°C) ¶T	T _{CH} (°C) π _T	^T CH ^(°C) πT	^T CH ^(°C) πT
25 3.274E-9 30 8.571E-9 35 2.175E-8 40 5.357E-8 45 1.283E-7 50 2.989E-7 55 6.788E-7 60 1.504E-6	65 3.255E-6 70 6.888E-6 75 1.427E-5 80 2.894E-5 85 5.756E-5 90 1.123E-4 95 2.153E-4 100 4.055E-4	105 7.511E-4 110 1.369E-3 115 2.457E-3 120 4.344E-3 125 7.571E-3 130 1.301E-2 135 2.208E-2 140 3.698E-2	145 6.117E-2 150 1.000E-1 155 1.616E-1 160 2.583E-1 165 4.084E-1 170 6.391E-1 175 9.903E-1

T _{CH} (°C) ^π T	T _{CH} (°C) π _T	^T CH ^(°C) πT	^т сн ^(°C) ‴т
25 1.034E-8 30 2.539E-8 35 6.055E-8 40 1.404E-7 45 3.172E-7 50 6.986E-7 55 1.502E-6 60 3.156E-6	65 6.488E-6 70 1.306E-5 75 2.576E-5 80 4.985E-5 85 9.471E-5 90 1.768E-4 95 3.244E-4 100 5.857E-4	105 1.041E-3 110 1.823E-3 115 3.146E-3 120 5.355E-3 125 8.994E-3 130 1.491E-2 135 2.442E-2 140 3.952E-2	145 6.321E-2 150 1.000E-1 155 1.565E-1 160 2.424E-1 165 3.718E-1 170 5.647E-1 175 8.498E-1

Table 5.1.2.7-13 π_T vs Channel Temperature for GaAs Digital Active Devices

Table 5.1.2.7-14 π_T vs Junction Temperature for GaAs Passive Devices

Тј(°C) тт	Tj(°C)	πŢ	Tj(°C)	πŢ	Tj(°C)	πŢ
25 7.166E-4 30 9.442E-4 35 1.233E-3 40 1.596E-3 45 2.050E-3 50 2.612E-3 55 3.305E-3 60 4.151E-3	65 70 75 80 85 90 95 100	5.178E-3 6.419E-3 7.908E-3 9.685E-3 1.179E-2 1.429E-2 1.721E-2 2.064E-2	105 110 115 120 125 130 135 140	2.462E-2 2.924E-2 3.458E-2 4.071E-2 4.773E-2 5.575E-2 6.487E-2 7.520E-2	145 150 155 160 165 170 175	8.686E-2 1.000E-1 1.147E-1 1.312E-1 1.497E-1 1.702E-1 1.929E-1

MIL-HOBK-217(REV)

MICROELECTRONIC DEVICES

1		PACKAGE	TYPE*		
ļ	Hermetic DIPs				
j.	w/Solder or Wel	d		Hermetic	
1	Seal Leadless			Flatpacks	
Number of	Chip Carriers	Hermetic DIPs		with Axial	
Functional	(LCC) Pin Grid	with Glass	Nonhermetic	Leads on 50	Hermetic
Pins	Array (PGA)	Seal	<u>DIPs</u>	Mil Centers	Cans
3					0.0003
4				0.0004	0.0005
6	0.0019	0.0013	0.0018	0.0008	0.0011
8	0.0026	0.0021	0.0026	0.0013	0.0020
10	0.0034	0.0029	0.0034	0.0020	0.0031
12	0.0041	0.0038	0.0043	0.0028	0.0044
14	0.0048	0.0048	0.0051	0.0037	0.0060
1 16	0.0056	0.0059	0.0061	0.0047	0.0079
18	0.0064	0.0071	0.0070	0.0058	
22	0.008	0.010	0.009	0.008	
24	0.009	0.011	0.010	0.010	
28	0.010	0.014	0.012		
36	0.013	0.020	0.016		
40	0.015	0.024	0.019		
64	0.025	0.048	0.033		
80	0.032				
128	0.053				
180	0.076				
224	0.097				
525	0.243				

Table 5.1.2.7-15 C₂, Package Complexity Failure Rates in Failures Per 10^6 Hours

*If seal type for hermetic DIP is unknown, assume glass seal.

The tabulated values are determined by the following equations:

Hermetic DIPs with solder or weld seals	, , , , , , , , , , , , , , , , , , , ,	
Leadless Chip Carrier (LCC) & PGAs.	$C_2 = 2.8 \times 10^{-4} (N_p)^{1.08}$	(5.1.2.7.5)
Hermetic DIPs with glass seals	$C_2 = 9.0 \times 10^{-5} (N_p)^{1.51}$	(5.1.2.7.6)
Nonhermetic DIPs	$C_2 = 2.0 \times 10^{-4} (N_p)^{1.23}$	(5.1.2.7.7)
Hermetic Flatpacks	$C_2 = 3.0 \times 10^{-5} (N_p)^{1.82}$	(5.1.2.7.8)
Hermetic Cans	$C_2 = 3.0 \times 10^{-5} (N_p)^{2.01}$	(5.1.2.7.9)

where: $N_{\rm p}$ is the number of pins on a device package which are connected to some substrate location.

0	658 658 1339 1339 1339 1339 1339 1339 1339 133	6111 6111 833 834 928 833 928 834 928 833 928	888888888	888888
5.	62. 87. 151. 151. 151. 151. 151. 151. 151. 15	560.5 560.50	88888888888888888888888888888888888888	888888
80	1.137 3.622 3.622 3.622 7.200 5.284 4.743 5.284 5.284 5.284 5.284 5.301	4.226 5.850 5.850 5.845 5.845 5.845 5.845 5.845 5.917 5.217	441 705 804 804 804 804 804 804 804 804 804 804	888888
		· 6.6.7.7.8.9.4.6.4.1.		8888888
4.6		20.1.65 6.1.192.65 6.1.192.65 7.1.22 7.23 7.23 7.23 7.23 7.23 7.23 7.23 7	7.22.91.27.93.93.93.93.93.93.93.93.93.93.93.93.93.	8 2 2 3 2 0 0 8 3 3 3 9 0 8 3 3 9 0 8
	2282828223		\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$	727883 28888888
4.4	00-WV-402WV	116.0 33.7.23 553.7.2 667.4 118.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	861.3 862.5 91.0 91.0 91.0 91.0 91.0 91.0 91.0 91.0	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
8	800 800 800 800 800 800 800 800 800 800	666 1 1 666 1 1 773 7 773 7 775 7 77	873 873 873 887 886 886 886 886 886 886 886 886 886	954 549 102 50 102 50 50 50 50 50 50 50 50 50 50 50 50 50
4		22.22 22.22 22.22 22.22	46. 57. 68. 68. 81. 95. 95. 95. 95. 1110. 1110. 1110. 1110. 1110.	200.5 221.6 265.3 275.3
. 0	000 000 000 000 000 000 000 000 000 00	040 086 087 087 087 087 087 087 087	698 698 890 890 890 890 613 613 543 543 543 543	824 938 938 958
cm)			252828252	228882
3.8 (MV/		000.0022.002	.402 .639 .981 .981 .969 .969 .2069 .2069 .2069 .2069 .2069 .2069 .2069 .2069 .2069 .2069 .2069 .2069 .2069 .2070 .2010	1.736 7.959 7.959 1.755 6.027 6.027
ress		000000-NM 1	NMM-ONNM85	- 8 4 8 6 9
ld St 3.6	888888888888888888888888888888888888888	8888888888	86224	
Fiel	: 88888888888	; ; 888888888;	; ; 5358338888	287283
stric 3.4		•••••••••••	0000000000	0000
Elec 2				8885558
, m	· · · · · · · · · · · ·			
0				
m				
2.8			88888888888	9999999
		: : 22222222222	:	222222
2.6			8888888888	888888
			· · · · · · · · · · · · · · · · · · · ·	888888
2.4				
2			88888888888	888888
2.				
0			000000000000000000000000000000000000000	888888
5				
(C)	\$ \$ \$ 32 5 5 4 2 ° 0	<u> </u>	145.051125.051135.050000000000	85 8 9 5 E K

			~ ~	* •0			8	•	0	0,	- 1	6		5	0	m	~ (_ c			. 0	0	0	00			0	0		0	00		0	0	
	5.0	i	17.54 24 24	29.10	35.18	82.57	33.50	87.66	Ř. 3	5 5 5	66.43	30.50	96.40	63.90	32.2	02.87	73.97 20	8. 8	8.6	8.0	: 8.6	8.0	8.8	8.8	38	88	99.00	8.8	8 : •	80.0 0	88	88.	8 .0	8.8	
	1		25	19	015	88	62 3	24	4 99	2 2 1 2	2 5 1 2	48 6	92 6	54 7	35.8	47.9	5 (2	20	29	5	- 6 - 5	93.9	ñ	88	38	38	6 00	88	8:	6 0	8 8 8	38	8	8	
	4.8	, ,	52.1	65.5 5	87.7	13.4	42.7	<u>г</u> К	11.0	49.6	6.06	34.6	80.5	28.5	78.3	20.7	82.6	200	0.284 1.847	05.5	363.4	21.9	81.0	88	2.0		8	88		0.00	88	2 2 2 2 2 2	0. 8	0. &	
		ļ	ž	. 69	28	8	74 1	56 1	11 2	12	8	33	19	ŝ	ž	2	ŝ	53		5	12	397 5	28 5	2		5 12	5 S	88		88	88	ŝŝ	800	ğ	
	4.6		4 a	13.4	20.8	30.	42.7	57.6	R	8	18	143.4	17.0	200.1	232.6	8	5	20	17	58	200	543.1	587.5	532	200	220.1	817.9	3 22).519 	960.5	8 8	88	8	8	
ł		5	205	225	8	261	082	105	553	29	813	89	ŝ	630	ž	ŝ	80			88	242	808	ş	181		0 M 2 S 2 M	510	260		80	888		Ŗ	858	
	4			-	~	4	~	Ξ	16.	2	32	43.1	55.	2.2	8	10	124	142	6 <u>6</u>	219.2	247.	23.	305.	336.		133	467.	502.	537.	572.	89	88	719.	756.	
	~	Ļ	ŝ	66	10	234	488	942	203	895	8	156	517	880	354	027	961 201	22		22	13	714	5	337	35	296 296	547	137	25	302	867	202	788	202	
;	4		•	•	•••	•	•	•	-	~.	4	۲.	10.	14.	20.	27.			; X	Ŕ	94.	109.	126.	144	105.	203.	225.	248.	271.	295.	319.	220.	396.	423.	
ł	• :				5	00	012	028	20	135	8	495	870	453	318	547	225	6.5 6 7 6	202 200	<u>5</u> 8	134	045	818	465	287 287	- 92 628	707	593	526	663	82	2.6	31	628	
Ê	4		•	•	• •	•	•	•	•	•		•	•	-	~i	m		. ;	⊇ ¥	2 22	3	8.	35.	ц;		2.2	82.	8	.701	120.	134.	165.	181.	197.	
MV/c	80				8	g	80	00	6	005	502	.012	.025	.051	8	180	314	47C		939	808	952	419	522	25	382	081	310	087	423	322	800	36	468	
) ss	m		•	•		•	•	•	•	•			•	•	•	•	•	•	·-	:	Ň	m	ŝ	~ (<u>י</u> כ	Ϋ́Ϋ́	19	ង់	28	ŝ	ŝ	\$ <u>}</u>	3	83	
Stre	•				8	8	00	80	000	8	8	000	000	60	<u>6</u>	003	8	513	47N	63	129	210	331	505	247	527	105	8	28	883	238		800	379	
eld	m		•	•				•	•	•		•	•	•		•	•	•	•				•	•	•		N.	N, I	m ;	4	-Ó I	- o	Ξ	14.	
i Ei	4				00	8	80.	00	8	8	8	000	000.	80.	80.	8	80.	88	Be	89	002	004	.007	.012		55	086	131	. 196	.285	405	86	043	.381	
sctri	m		•	•				•	•																				1				-	-	
Ele	2		88		8	8	00.	80.	8.	8	8	000.	000.	80.	80.	00.	80.	8	Be	88	000	000.	000.	80.	<u>n</u>	38	00	.002	.003	.006	60.	.014	.033	.048	
į	m			•					·										•		-								1						
	•		89		8	8	000.	000.	80.	00.	8	,000	000.	80.	<u>8</u>	000	88	8	B e	88	000	000.	00.	000	<u> </u>		000	80.	000	00.	00.		8	.00	
	m																				;								1						
	8		89		00	8	.000	80.	8.	00.	000.	000.	000.	80.	8.	8	80.			88	000	000.	000.	000.	<u> </u>		000.	80.	000.	000.	000.		80	<u>00</u> .	
÷	N . [;														
;	9				00	80.	.000	000.	80.	000	8	000-	00.	<u>8</u> 0.	80.	80.	80.			88	.000	80.	00.	80.			000.	00.	000.	000.	000.		000.	00.	
i	2										:										;								;						
ł	4		88		80.	80	00.	000.	80.	8	8	000,	80.	8.	8.	8	8.	8	Be	88	.00	80.	80.	80.	8.9		80	00.	8 i	80.	8.		8	80.	
ļ	N :				_	_	_	_	_	_	-	_	_	_	_	_	_		_	_	-	_	_	_			_	_	:	_	_		_	_	
	2		8.8	g		8	80.	80.	80.	8	8	000.	<u>8</u>	80.	8	8	000.	80.		88	000.	00.	00.	80.	<u> </u>		000.	80.	8 ;	<u>8</u>	000-		80.	000.	
	2				. –	. –	~	_	-	-	}	-	_	_	_	_	_			_	-	_	_	_	_		_	_	:	_	_		-	_	
ļ	0			28		8	000-	000.	8	8	000.	000.	00.	8.	8	8.	8.			88	000	80.	000.	80.	<u> </u>	000	00.	80.	.000	000	000.		80.	8.	
	2			_	_	_															:														
:	(3)			. 5	. <u>5</u>	20.	χ.	8.	35.	40.	45.	50.	<u>5</u> 5.	<u></u>	<u>6</u> 5.	ຂູ່	Ŕ	8.8	6 8	. X.	100.	105.	110.	115.	120. 120.	5 <u>6</u>	135.	140.	145.	150.	155.	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	170	13.	
,	н н																				•									I					

ī

5.0	2.505 8.653 8.653 8.653 8.653 8.259 8.299 8.299 8.299 7.445 7.445 7.445 7.445 5.648 5.648	4.329 5.141 9.000 9.000 9.000 9.000 9.000	000.00 000.000000	9.000 9.000 9.000 9.000
	222272822228222 28822282222	: 88888888; : 8288888; : 82888;	: \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	888888 888888
4.8	82.8 1170.8 246.9 279.2 288.0 288.0 288.0 288.0 288.0 288.0 288.0 288.0 288.0 288.0 288.0 288.0 288.0 288.0 288.0 288.0 288.0 288.0 289.0 289.0 280.0 290.0 290.0 200.00	531.0 531.0 531.0 539.8 539.8 539.8 539.8 539.8 533.0		
4.6	21.672 32.033 45.128 61.054 79.831 101.409 1125.692 1152.552 1152.552 1152.552 1152.552 1152.552 1152.552 1152.552	247.020 282.583 359.200 359.200 359.200 440.874 483.717 483.717 5527.602 572.408	664.358 711.303 711.303 806.677 806.776 854.991 854.991 903.589 903.589 903.589 903.000 999.000	800 000 800 000 800 8
4.4	3.057 5.411 8.938 8.938 13.908 20.552 29.050 39.528 39.528 39.528 39.528	101.907 122.449 144.814 168.897 168.897 168.897 194.591 194.591 250.360 250.360 250.215 280.215 280.215 280.215 280.215 3313.333	704.101	742.624 781.369 820.294 859.359 898.528 937.765
4.2	. 188 . 417 . 851 . 851 . 851 . 851 . 851 2. 830 4. 690 7. 362 7. 362 11. 016 15. 804 15. 804	29,256 38,079 48,354 60,087 73,264 87,851 103,801 103,801 1121,056 159,223	179.994 201.796 2201.796 2248.2555 2248.203 272.671 297.893 272.671 297.893 377.468 405.105	433.210 461.735 490.636 519.869 549.395 579.176
(W	.004 .013 .013 .078 .078 .078 .169 .169 .1.148 1.932 3.094	4.738 6.970 9.889 13.587 13.587 13.587 13.141 18.141 18.141 18.141 18.141 18.141 18.141 18.141 18.141 18.141 18.141 18.141 18.141 18.141 19.1411 19.1411 19.1411 19.14111 19.141111 19.141111111111	65.700 77.069 89.372 102.577 1116.643 131.530 147.194 147.194 1163.590 180.675	216.734 235.623 255.029 274.914 295.240 315.969
3.8 3.8	.000 .000 .000 .001 .010 .010 .100 .100		15.479 19.527 24.206 29.534 35.522 42.173 49.484 49.2173 57.447 57.447	85.097 95.502 106.462 117.952 129.947 142.419
ield Stre 3.6		.010 .020 .020 .021 .022 .027 .022 .027 .027 .027 .026 .027 .026 .026 .026 .026 .026 .026 .026 .026	1.875 2.627 3.592 4.804 6.295 8.094 10.229 12.229 12.229 13.869 18.869	22.547 26.642 31.157 36.094 41.451 47.223
sctric Fi 3.4	8000.000.000.000.000.000.000.000.000.00	.000 .000 .001 .001 .005 .034 .034 .034		3.239 5.195 6.444 7.892 9.552
3.2	000.000.000.000.000.000.000.000.000.00		.002 .003 .006 .010 .017 .017 .017 .017 .017 .017 .017	.203 .394 .534 .712 .935
3.0	89999999999999999999999999999999999999		.000 .000 .000 .000 .000 .001 .001 .001	.005 .008 .012 .018 .026
2.8	0000 0000 0000 0000 0000 0000 0000 0000 0000	000 000 000 000 000 000 000 000 000 00		8.8.8.8.9 8.8.8.8.9 8.8.9
2.6	000 000 000 000 000 000 000 000 000 00	000.0000		88.898.89 88.898.898 89.898
2.4	000 000 000 000 000 000 000 000 000 00	000 000 000 000 000 000 000 000 000 00		88.88 88.888
2.2	000 000 000 000 000 000 000 000 000 00			000.000 000.000 000.000
2.0	8000 8000 8000 8000 8000 8000 8000 800		888. 888. 888. 888. 888. 888. 888. 888	000.000.000.000
T(C)	0 ~ 0 £ 8 8 9 9 5 5	88.85 88.35 88.35 88.55 88.55 88.55	100. 115. 120. 130. 130. 130. 150.	150. 155. 175.

TABLE 5.1.2.7-16 (CONT) TDDB: EFFECTIVE HAZARD RATE (x 10E-6) AT 10000. HOURS FOR AREA = 5.00 LOG SQUARE MICRONS

			0000000000	000000
5.0	555.08 555.08 534.13 598.55 598.55 598.55 598.55 598.55 598.55 598.55 598.55 598.55 598.55 598.55 598.55 598.55 598.55 50			88888 8888 8888 8888 8888 8888 8888 8888
4.8	8.761 3 6.742 6 7.742 1 7.813 6 1.693 1 1.693 1 1.693 1 1.693 1 7.529 6 6.047 1 0.047 1 6.145 1 6.145 1 6.145 1 6.145 1 6.145 1 6.145 1 6.145 1 6.145 1 6.145 1 7.529 1 7.559	2.298 2.298 2.274 2.1880 2.1880 2.181 2.181 2.181 2.181 2.181 2.181 2.181 2.181 2.000 2.000 2.000 2.000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
.	661 17 066 17 066 21 066 21 066 25 066 25 000000000000000000000000000000000000	88.5 2 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3		888888
4	71 256 356 356 356 356 356 356 356 356 356 3	397 440 440 530 530 530 530 530 530 530 530 530 53	816 816 826 866 866 866 866 866 866 866 866 86	****
4.4	20.130 29.041 40.148 69.187 69.187 69.187 53.525 69.187 53.504 179.482	07.169 07.169 09.168 09.168 09.168 01.972 01.972 01.972 01.972 01.972 01.972 01.972 01.972 01.972	50.825 89.541 89.541 88.252 68.255 88.593 88.593 129.100 129.100 129.725 10.429	51.174 91.925 99.000 99.000 99.000
4.2	3.328 5.593 8.859 8.859 9.156 9.156 9.197 7.14 197 197 197 197	2.12.2.812 2.12.2.812 2.1842 2.1842 2.1842 2.122	3.624 5 9.1559 5 9.334 6 9.334 6 9.255 7 9.255	15.378 9.475 9.475 9.475 9.475 11.726
0	.274 .557 .652 .052 .052 .052 .052 .052 .052 .052 .0	666 8 185 10 185 11 716 14 776 14 776 16 750 16 16 350 23 16 350 23 16 350 23 16 37 26 23 26 23 26 23 26 23 26 23 26 23 26 26 26 20 26 20 26 20 26 20 26 20 26 20 20 20 20 20 20 20 20 20 20 20 20 20		
(E)	16846510	87875556667	151 169 166 166 166 166 166 166 166 166 16	4203383
3.8 3.8	.010 .026 .059 .125 .249 .249 .249 .249 .249 .249 .249 .249	4.956 7.050 9.723 9.723 13.039 17.053 17.053 21.810 21.810 21.339 21.339 21.339 48.702 48.702	57.409 66.889 77.117 77.117 88.068 88.068 88.068 88.068 112.015 112.015 124.945 138.468 152.548 157.548	182.243 197.790 213.760 213.760 230.122 246.846 263.902
ld Stres 3.6	.000 .001 .009 .009 .009 .009 .009	. 727 . 767 . 777 . 767 . 777 . 767 . 777 . 767 . 777 . 7777 . 7777 . 777777 . 7777 . 77777777	14.714 18.264 22.323 22.904 37.652 37.652 56.504 55.393 55.393	73.566 82.203 91.285 00.793 10.707 21.005
tric Fie 3.4	000 000 000 000 000 000 000 000 000 00	.021 .039 .070 .120 .220 .220 .2320 .495 .7495 .7495 .7495 .7495	2.139 2.901 3.852 5.018 6.423 8.087 8.087 10.030 112.230 117.690	20.889 24.422 28.292 32.499 37.042 11.915 11.915
Eleci 3.2		.000 .001 .002 .004 .007 .007 .007 .007 .007 .007	. 151 . 228 . 334 . 480 . 674 . 674 . 674 . 674 . 251 1.658 2. 161 2. 773	3.507 4.375 5.390 6.562 9.417
3.0			.005 .008 .013 .013 .013 .021 .033 .035 .035 .035 .035 .035 .035 .035	.294 .398 .529 .694 .898 1.146
2.8			.000 .000 .000 .000 .000 .000 .000 .00	-011 -017 -024 -034 -048 -066
2.6			000000000000000000000000000000000000000	.000 .000 .001 .001 .002
2.4				000.0000
2.2				000.0000
2.0				000. 000. 000. 000. 000.
T(C)	٥.25.52.25.85.65.45 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	126. 127. 127. 127. 127. 127. 127. 127. 127	150. 155. 166. 175.

TABLE 5.1.2.7-16 (CONT) TDDB: EFFECTIVE HAZARD RATE (x 10E-6) AT J0000. HOURS FOR AREA = 5.50 LOG SOUARE MICRONS

4

	8 2 8 7 8 7 8 0 0 0 0	88888888888	8888888888	888888
5.(530.6 596. 732. 8873. 999.6 999.6	888. 898. 897. 897.	886.00 866.00	888888 888888
	649 581 709 160 709 709 709 709 709	K 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		8888888
4	315. 364. 578. 578. 578. 578. 578. 578. 578. 578	75.98 88.98 89.98 89.98 80 80 80 80 80 80 80 80 80 80 80 80 80	**************************************	**********
•	147 371 371 371 234 234 234 235 234 235	940 251 251 251 251 252 252 252 252 252 252	8888888888	888888
4	232 232 232 232 232 232 232 232 232 232	579 678 678 829 881 778 881 778 881 932 932 932 932	*****	888888
4	887 977 476 476 476 476 193 116 116 872 872 872 872 872 872 872 872 872 872	.152 .152 .659 .602 .553 .553 .553	.527 .674 .969 .969 .969 .969 .969 .960 .000 .000	8888888
4	69 88 110 110 110 110 110 110 110 110 110	3888 3886 5567 5675 5675 5675 5675 5675 5675 5	832 832 832 832 832 832 832 832 832 832	****
2	.021 .021 .629 .088 .088 .088 .088 .088 .073 .719	742 981 981 981 981 582 582 562 634 634 634 634 101	87117 321 321 871 871 871 871	
	28228282233	188	287 287 287 287 287 287 287 287 287 287	820 827 886 827 886 827 886 827 886 827 886 827 886 827 827 827 827 827 827 827 827 827 827
0	4.488 7.071 7.071 5.230 5.496 5.496 5.496 5.496 5.496 5.496 5.496 5.496 5.242		22100 3.387 3.683 3.683 3.683 3.683 3.683 3.683 3.683 3.683 3.683 3.653 3.653 3.653 3.653 3.653 3.653 3.653 3.653 3.653 3.653 3.655 5.755 5.7555 5.75555 5.75555 5.75555 5.75555 5.75555 5.755555 5.755555 5.755555555	128-5 106-5 12-22-5 11-090-1 12-22-5 11-090-1 12-22-5 11-090-1 12-22-5 11-090-1 12-22-5 12-22-
Ē		881555555783		
3.8		86.45 86	0.92.92.92.92	0.17 0.98 0.67 0.98 0.67 0.7 0.98 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Less		00040-408070 		0.000000 000000 0000000000000000000000
d St 3.6		6.35 8.66 7.94 9.00 9.00 9.00 9.00	6 - 33 - 24 - 26 - 33 - 26 - 28 - 26 - 26	7.92.54
Fiel	- <u> </u>	0 0 M 3 3	8089078458 8089078458 8097886 819786 819788 81978 819788 810788 810788 810788 81008 81008 81008 81008 81008 81008 810008 810008 8100000000	286228 285228
3.4			2000 2000 2000 2000 2000 2000 2000 200	25554D 343825
Elect	8888583828	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 2282322235 - 66668962325	2855285 26251
3.2		9,9,5,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9	WW 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4	22.22.22.22
	888888888	84655568454	. 535888555586 :	823883
<u>з.</u> 0		00000000	M 3 9 8 - 4 6 3 0 8	4.2 8.9 1.5 1.5 1.5
-			· • • • • • • • • • • • • • • • • • • •	213 213 213 213 213 213 213 213 213 213
2.8				
	888888888888888888888888888888888888888	888888888888	001 001 011 011 012 003 003 001 011 011 011	087 116 152 152
5		, , , , , , , , , , , , , , , , , , ,		
4				002 002 005 005 007
2.				
2				888888
N		1 1 1		
0	888888888888888888888888888888888888888			888888
8		())	!	
. (j)	5. 60 33. 20 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		100. 110. 115. 115. 135. 135. 145.	150. 155. 160. 175.

	000000000000000000000000000000000000000	888888888888888888888888888888888888888		888888
0.0	7716. 7878. 932. 9999. 9999. 9999.		88888888888888888888888888888888888888	888888
60	740 971 357 677 677 677 677 677 677 677	888888888888888888888888888888888888888	888888888888	8888888
4	647 6530 6647 707 707 768 892 892 9995	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	88888888888888888888888888888888888888	<u>888888</u>
5	596 8827 910 545 545 618 932 932 932	00000000000000000000000000000000000000	8888888888888	8888888
4	287 229 229 2529 2529 2515 2566 2566 2515 2515 2515 2515	769. 928. 9999. 9999.	88888888888888888888888888888888888888	888888
4	718 76/18 76/18 77/18 86/13 86/13 86/13 86/13 86/13 86/13 86/13	188 7754 967 967 1152 1152 406	192000000000000000000000000000000000000	
4	154 183 247 255 355 355 474	516. 558. 558. 558. 558. 558. 774. 774. 772. 863. 863.	951. 9999. 9999. 9999. 9999. 9999. 9999.	***
~	883 3483 2128 2212 2212 2212 2212 2212 2212 22	331 735 992 992 992 992 992	817 9817 9825 9966 9066 9066 9129	
4	69. 87. 175. 175. 175. 175. 288. 288. 288.	319. 351. 383. 383. 383. 417. 417. 520. 555. 555. 556.	8662. 5698. 771. 771. 771. 7735. 735. 880. 989. 989.	888888
	23 23 23 23 24 23 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	\$362252383255 \$3622552383255	845 845 836 836 836 836 836 836 836 836 836 836	044 119 119 162 162 162
 	24 32.5 57.6 88 135 55.6 88 135	245. 245. 245. 245. 249. 376. 376.	431 431 546 534 505 593	752.752.752.752.940
	000 000 000 000 000 000 000 000 000 00	20000833408002	716	282 282 282 282 282 282 282 282 283 283
3.5 3.5	708.58 708.58 708.58	82.5 96.6 98.6 97.9 11.1 11.2 11.2 11.2 11.2 15.5 15.5 15.5	555. B	82.652.62
tres	1 28 28 22 23 22 23 2	£5582552833	- 5255555555555555555555555555555555555	28677£
1d S 3.6	24.12 24.12 24.13 24.14	20.98.73.93.94	34.0 477.9 662.9 777.2 777.2 7 7 7 7 7 7 7 7 7 7 7 7 7 7	91.5 91.5 92.29 90.3 90.3
Fie	5252325513338 5252325551333	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		40 M M M M M M M M M M M M M M M M M M M
tric 3.4	0-028000000	8.1 8.1 13.7 13.7 13.7 17.2 21.4 221.4 221.4 221.3 331.3 331.3 331.3 50.4 50.4 50.4 50.4 50.4 50.4 50.4 50.4	57.9 57.9 74.3 83.3 83.3 92.7 92.7 12.8 12.8 12.8 745.7 45.7	57.3 69.3 81.4 93.9 19.4 19.4
Elec	**********	885288288 12288288	· 8288989858	2222266
3.2	00000-0440	15.94.94	19.0 19.0 335.6 535.0 552.0 55	71.4
	885346468	************************************		603 603 7
3.0	0000000000	32.54.7.04.6.28	6.6 6.6 6.6 6.6 6.6 7 11.8 11.1 12.1 12.1 12.1 12.1 12.1 12.1	25.25.2 32.28.5 40.2 44.5
	6622666666	85225252333333		288570
2.8	0000000000	000000-004	2.2.2.7.7	6.2 7.3 8.6 11.6 13.3
	8888888888	36968888888	· · · · · · · · · · · · · · · · · · ·	282253
2.6		00000000000	000	0,0,0,0,0,0 0,0,0,0,0,0,0,0,0,0,0,0,0,0
	8888888888	88888888555	·	1928256
2.4	0000000000	00000000000		0 <u>0</u>
	888888888888888888888888888888888888888		- 88888825588 -	3886588
2.2	00000000000	•••••	00000000000	999999
	8888888888	888888888888888888888888888888888888888		8888855
2.0				0000000
 T(C		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	55555555555555555555555555555555555555	2222255

	0.5		9.187	3.685	800	000	000	000	000.0	000	000.0	00°.					000.0	000.0	000.0	0.00	000.0	00 00	000	000.0	80.0	8	8.8	38	8.8	000.0	000.0	000.0	80.0	88	88.	000.0
			80	26 0	8 8	8	8 2	8	0 8	8 0	8 8	8 8				8	8	8	8	8	8	8 8	: ×	8	8	8	۵ رو ۲	۶ § ۶ §	. % . %	8	<u>8</u>	8	8	8 8 8 8 8	8	<u>8</u>
:	4.8	1 7 1	8.52	0. 19 0	Ŕ	6.03	3 3	3	8.8	8	8.8	8.6		38	32	38	8	8	8	8.6	8.8	8.0	. 0	8	8	<u>8</u> .6	88	32	88	<u>8</u> .6	<u>0.0</u>	00.0	8.6	88	88.6	00. 00
	;	1 1 1	5 2	2	92 9	7 23		ድ ፡ ድ ፡	8 	ጽ: ድ:	s 8	8 8	:8 	28	28	\$? 9	8	8	8	8	8	8 9	: 8	8	8	8	8 8 9 9	S 8 ⊇ ⊆	: & - @	8	8	: 8	8	88	8	8
	4.6		7.47	6. 62	7-02	8.48	20	3.8 7	7.51	1.59	6.01	0.65		7 S	32	38	8.8	8	8	8.6	8.6	8.8	9.0	0.0	8.8	8.8	8.8	25	8.8	9.8	8.0	0.0	00.0	88	38.6	0. 00
;			15 15	9 47	2 2 2	12 21	5 0 0	88	2 2	2	2 2	<u>8</u>	: 5	2 6	8 : 3	:8 : M	:8 .9	:8 : N	8 8	8	8	2 2	:8	8	8	8	88	2 8 2 9	: 8 : 9	8	8	:8 ·9	8	88 88	2 2 2 2	8
	4.4		4. N	1.51	0.18	5 9	1.3	3.57	6.63	0.42	× 82	5. 6			5	2	8.54	3	0.70	8.0	9.6	8.8	00	0.0	0.0	9.6	8.8	32	80.0	8.6	8.8	0.0	8	88	38	0 0.6
			9 26		Я і 2 (20	24 2	846	202	55	8	59 59		8 F 2 X	2 F 2 5	: 2 : 2	8	210	8	5	5	8 x	:8	8	: 8 ! =	200	88 88	S 8 2 5	22	8	8	:8	8	88	28	8
;	4.2		6.56	2.5	0.12	82°6	6 8	1.59	4.47	8.31	8.8	8.43				2	3.30	1.27	9.41	7.67	6.0	k.36	2.70	1.00	9.21	7.30	5.26	20	88	8.6	8.0	00.0	8.8	88	38	8 ⁻ 8
			8 14	6 1	8 8 6	1 22	23 6	ຊີ ຊີ	6 8	ድ 0	6 6	4 7 7	- 77			22	- 9 7	0 0 0	3	2	7 76	8 8	28 -	- 88 - 88	6 9	8 8	88	8 8 ¤ c	8 8	8 m	& ∾	: 8	8	58 88 88	88 10	8
1	4.0		9.62	8 8	3.40	5°69 5	3.42	5.51	8.82	3.27	8.72	5. J	8	, . , .	; R) 	7.54	7.59	8	8.70	9.65	0.81	2,12	3.54	5.9	6.58	8.14	9.6 9.6	2.59	3.93	5.16	 6.26	7.22	8.03 57) 9 9 9	9.00
(cm)	-	:	0 ~ 1	80	₽ 6	6 12 6	2	1 16	4 18	2	1 23	6 26	: 2	5 6 7 0		\$ } > ~	; 7	7 43	2 2 2	6 49	7 52	7 56	: 02 0	62	9 65	7 68	۲ ۲	ルガマ	580	4	4 87	: 08	2 93	ко и Ко и	8 1 M	8
NNO.	8.8		5.56	.82	1	5.42	2.7	2 2 2	Š.	5°.3	9.02	8.	: 8			7.61	0.50	6	8	8.38	2.21	6.39	. 88.0	5.62	0.58	2.3	8	38	2.52	3.12	8.74	- 32 72	9.94	6 6 6 6	0 7 7 0 7 0 7	К. К
ess.			ລັ ດ	m.	31		õ		×	Ē		14		5 ē	200	5	2	2	iŘ	Ē	ž	7 30	i pr	7 41	44	146	÷.		20	7 59	5	3	8	<u>8</u>		2
I Str	9		, 1 8	69. 1	ž	2	29.	. 52	.418	Š.	. 14	- <u>8</u>	907	ŝ×	2	52	36	.81	. 87	K4	.592	0.16	15	52	R.	.241	.51		3	8	. 83	9	15	80°	, 8 , 8	200
ielo			-		23	<u>د</u>	N 1	m	4	\$	3	~ 20	à	5 ð		2	Ř	15	167	8	201	213	5	12	272	5	E	25	5	391	411	27	455	14	15	534
ic F	4		.430	-272	456	020	. 141	5	.012	86.	.458	.718	787	5		776	486	830	Ē	302	.367	.940	8	482	385	.66	62.	192-	Š,	740	107.	855	180	.656	. 88 88	808
ectr	m -		-	~	M 1	ŝ		o j	₽	16	21	26	;	200		24	5	28	28	8	10	115	127	140	153	166	8	76L	222	237	252	267	283	82 2	# 62 M	345
Ē	2		5	310	529	8	344	021	935	.132	.655	545	010			603	544	Ŕ	ĸ	8	.983	.528	523	8	80	.023	631	192.	487	382	548	865	615	480	28	190
:	m		•	•	•	•	-	N I	Ň	4	ń	~	0	÷ Ç	i y	2	ž	8	B	80	44	2	5	5	R	82	8	8 5	318	128	138	148	159	21	19	204
-	0	1 1 1	013	026	020	8	8	268	429	<u>3</u>	8	444	920			ġ	8	8	8	37	626	907	19	747	3	8	461	220 220 220	85	ž	789	i S	632	416	\$78 \$72	20
;	m.	1 1 7 1	•	•	•	•	•	•	•	•	•	-		i r	i M	i 4			9	12.	14.	17.	2	2	8	32.	37.	27	22	80.	ż	7	2	aj s	8	106.
i	80	1	<u>6</u>	<u>6</u>	003	g	012	022	39	067	110	Ę					3	581	2	748	528	459	: 5	12	276	924	12		228	271	178	: ð	623 623	155	815 815	932
	<u>۲</u>	1 	•	•	•	•	•	•	•	•	•	•) 	•	•	•	-	-	~	i vi	m	4	5		່ຄ່	°.	=	<u>5</u> 3	<u> </u>	21.	24.	2	ŝ	ž	24	4 5.
;	` 0		8	8	8	g	5	5	002	ğ	200	013	: 8				14	5	281	5	543	733	: 2	267	627	5	Ķ	178	2	8	616	761	58	459 459	- 29	38
	<u>~</u>		•	-	-	-	•	•	-	٦.	-	•	1 1 1	•	•	•	•	•	• •	• •	•	•		-	-	~	~	m n		5	\$	-	0	2:	- -	15.
ļ			8	8	8	g	g	8	ğ	8	g	5	Į	5 2		32	38	35	23	18	052	ĸ	: 6	07	ž	274	2	ç;	22	8	218	.07	2	198	110	\$57
	2.4	•				٩				٩.	٩.	•		•								٦		•							-	-	-	~ ~	N M	i m
		, ,	8	8	8	ğ	8	8	8	õ	8	8		2 3	38	38	35	35	5	20	03	õ	: 6	E	2	22	32		35	8	42		38	5		8
	2.2	, , ,			9	Ģ		•	•		Ģ											9		2				90			7	-				
			8	Ş	8	8	Ş	8	8	8	8	8	: 8	<u>g</u> g	38	38	38	38	88	88	8	8	: 8	38	35	5	6 2	80	58	20	10	- 1	10	ន្លះ	0 M	S
	2.0		°.	°.	°.	•	•	•	°.	°.	•	•		20	. c	ļ	, c	? C	ġ	<u>; 0</u>	0	•	: •	• •	0	•	•	o c	0	0	•		? ?	oʻ (•
	~	:	Ċ.	<u>،</u>		<u>،</u>		<u>،</u>	ë.	<u>،</u>		<u>،</u>										<u>۲</u> .				<u>د</u>					<u>ې</u>					5
	T(C)		-	- 1	ž		2	Ň	ň	m	4	4		ñü		ŏ₹	Ä	. K		6 60	5	<u>9</u> .	ļ	Ē	2	1	12		n m	14	14:	151	5	2	<u>∘</u> ⊑	1

TABLE 5.1.2.7-16 (CONT) TDDB: EFFECTIVE HAZARD RATE (x 10E-6) AT 10000. HOURS FOR AREA = 7.00 LOG SQUARE MICRONS

(Notes for Table 5.1.2.7-16)

÷.

- NOTE 1: Temperature axis refers to T_1 as detailed in note of Table 5.1.2.7-4.
- NOTE 2: Electric Field Stress axis refers to worst case voltage applied to the thinnest transistor gate oxide using the following expression:

E_S = .1(V_{op} / t_{ox}) (in MV / cm)
where:
 V_{op} = operating voltage (in volts)
 t_{ox} = oxide thickness (in KA)

If oxide thickness is not known, Table 5.1.2.7-19 gives default values based on the number of transistors on the device in question.

NOTE 3: The correct page for use is determined by the total amount of active transistor gate oxide area. If total amount of active transistor gate oxide area is not known, Table 5.1.2.7-18 gives default values based on the number of transistors on the device in question.

		•	0	0	0	2 9	2:	- 9	2 0		0	0	Q	Q	0	Q	Q,	0	0	0 0	•	0	0	0	0	- -	, c		0	0	0	0		0	0
i	8		8	9,8	9,8	3,8	3.5	29	38	38	8	8	8.	8.	8	8	8	8,8	8,8	8,8	8	8	8	8	8,8	88	38	38	8	8	8	8	88	8	8
į	.						ŭ	ĥ	£ 8	<u> </u>	Š.	Š	<u>Š</u>	<u>Š</u>	Š	Š.	Š.	Š.	<u>8</u> 8	8	8 I	8	8	8	88	88	68	8	8	8	8	88	88	: §	8
	_		8	88	88	B	B	38	B	32	8	8	8	8	8	g	8	83	83	89	8	8	8	8	89	33	38	38	8	8	8	8	88	88	8
-	ē		7		-	•	•		- 8	38	8	8	8	8	8	8	8	8.8	8.8	8.8	8	8	ŝ	8	8.8	2 2	28	2	Š.	8	8	8.9	2, C 8, 8	8	8
ł	1	1	0		2 9	2 9	2 9	2 9	2 2 9	29	20	0	о 0	0 0	е С	o Q	ው ፡ ወ	о (0 (0-0 0-0	5-0 0-0	ъ. С	8	8. 0	8. 0	а 0 (53	5 8 5 6	50	<u>8</u> .	8. i 8. i	8	5. i 5. i	5.8 0 0	5 5 0	8. 0
ł	80		8	8.8	S' S	3.8	3.5	3,8	38	3,%	8	8	8.0	8	8	8	8	8	8,8	8,8	8	8	8	8	83	8,8	38	38	8	8	8	8	88	38	8
i	•									•	8	8	Š	<u>&</u>	Š	§.	Š.	8	8	8	8	8	8	8	8	ŝ	88	8	8	8	8	8	<u>8</u> 8	8	8
į	0		8	88	33	B	38	38	38	38	8	028	8	8	8	8	8	88	88	8	8	8	8	8	8	88	38	38	8	8	8	83	88	88	8
-	9		•	•	•	•	•	•	•	•	•••	-	8	8	8	8	8	8	8 8	8	8	8	8	8	8	88	8	8	8	8	8	8	8.8	8	8
ł	4		8	g	2 2	2 2	2 2	2 2	2 2	2 2	28	່ຂ	ŝ	ŝ	ğ	ŝ	8	8	8	89	8		8	8	8	29	2 2	2 2	8	8 2	. 0	8	0-0 22	20	0
į	.50		9	s, s	s, s	5,5	5 č	5,5	5,5	s s	ĕ	ĕ	Š	9.0	9.Q	2	8	8	2.5	20	9.0	0.0	S.S	8.0	2.5	2,5	5,5	58	8.0	9.0	8	8	8,5	88	8
											1			8	8	8	8	8	8	8	8	8	8	8	8	8.8	5 8	8	8	8	: Š	8	<u>8</u> 8	8	8
ł	0		8					38		38	8	8	8	8	110	8	8	8	8	83	8	8	8	g	8	88	B	38	8	8	: 8	8	88	38	8
	4		•	•	•	•	•	•	•	•	•••	•	•	•	•	8	8	8	8	8	8	8	8	8	8	8.8	28	8	8	8	8	8	88	8	8
;			8	82	22	2 2	2 2	22	2 2	38	8	2	8	8	g	ğ	g.	8	8	23	8	2	ğ	ğ	8	22	2 9	28	ŝ	8	: 8	8	88	22	, or
ନ୍ସି	Ř		õ	<u>s</u> a	5,3	5,3	5,3	ק פ	5,3	s s	2	ŏ	ē	ş	ĕ	ē	ĕ	8	8 8	8 8	8	0.0	9.9	ð,	8	8.8	53	50	0.0	<u>8</u>	9.0	8	50	50	8
NC			_					_	_		_	-	_	_	_	_	_	8	8	88	8	8	8	8	8	88	\$8	84	8	8	: 8	8	88	8	8
S	5		80		88	B	33	B	88	Be	8	8	8	8	8	8	8		155	8	8	8	8	8	8	88	38	38	8	8	8	8	88	38	8
sity			•	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	Ni g	8	8	8	Š.	Ś	8	Ś	Ś	È ĝ	8	ŝ	8	8	88	8	8
Den:			8	88	88	38	38	38	38	38	88 :	8	8	8	8	8	8	8	8	81	20	8	8	ŝ	8	88	38	88	8	8	: 8	8	88	38	8
Dt.	8		<u>.</u>	ō, d	<u>.</u>	<u>,</u>		<u>,</u>		<u> </u>	? •	•	•	•	•	•	•	Ō,	•	Ģ	•	0	0.0	0. 0	0.0	0,0	20		0.0	0.0 0	0	0.0	0 0 0 0		0.0
JLLE			_	_ /									_	_	~	_	_	~	_	~	_	8	8	8	8	88	38	8 2	8	8	8	8	88	8 2	8
ú	2		8	ğ	<u>s</u> s	88	ğ	<u>s</u>	<u>s</u>	ğ	ŝ	ğ	ğ	ğ	Š	8	ğ	8	Š	S,	<u>s</u> g	ŝ	ŝĕ	8	8	8	ŝ	ğğ	ŝŚ	8					
-	•											•) 	552	8	8	88	\$ {	88	8	8	: &	8	88	8	8
-		1	8	8	89	39	B	39	3	38	88	8	8	8	8	8	8	8	8	8	8	8	8	ğ	8	88	39	38	8	8	8	8	88	38	8
-	Ξ.																9				•				2	2 9 2 9	29	22	8	8	8	8	88	2	8
į			0	0 (- a	- o		-	- -		. 0	0	0	0	0	0	0	0	0	0		0	0	0	с 3 С 2	5 5 2	~ ~ ~	8	<u>8</u>	: X: : X:	8	88	5 8 5 8	8
	9		<u></u> .	<u>ē</u>	8.8	33	<u>s</u>	<u></u>	<u>s</u> a	<u>8</u> 8	88	8	Õ.	§.	ş	§.	§.	<u></u>	<u></u>	<u>ē</u>	<u>Š</u>	ğ	ğ	§.	<u>Š</u>	<u>Š</u>	<u>S</u> 8	ŝ	Š	8	Ìð	§.	88	ŝŝ	8
-	·																					-						8	8	8	8	8	88	8	8
	~	1	8	8	gg	B	B	B		88	88	20	8	8	8	8	8	8	8	8	8	8	8	g	8	83	S	SS	8	• 81	: 8	8	88	38	88
ļ	õ.						-		•				7	٦.	٦	٦.	•	٦.	7	٦,	٦.			7	٦.	-	- '			24.1	8	8	8.8	8 8	8
1		•	o	0	0	2 9	2 9	2 9	2 9		20	' ' 0	2	2	Q	Q	Q	o	2	o	Q		0	Q	Q	9	29	è ç	2	0	· 6• : 9	8	000	09	20
	8		8.	8.3	8.8	3.8	9.8	8.8	3,8	9,8	38	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	38	38	8	8	8	8	8,8	32	8
i	•																					ļ						•				_	Ś	<u>×</u> 8	8
:	5	:	000	8	88	88		88	33	88	88	: 8	8	80	8	8	8	8	8	8	8	: 00	8	8	8	8	88	ΒE	38	8	: 8	8	88	38	718
ł	9	• •	•	•	•	•	•	•	•	•	•••		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•••	•		•	•	•	ંજી
		!	2	2	2	2 9	g	2 2	2 9		22	' ! g	2	2	2	8	2	2	8	8	8	! 8	2	8	2	8	22	2 2	22	8	: s	8	89	2 2	22
	8		Ř	Š	ຊຸ	e i	s, s	z, S	s, S	۲,2	ξ, Ξ	į	ğ	3	Š	2	Š	s.	ĕ.	ĕ.	s.	i a	8	ĕ.	Š	2	a's	ק צ	Š	ĕ	0	ð	a's	s s	ğ
į	•	1										1										Ì									ł				
	ទ	:	<u>.</u>	Ś	; ;	5.5	20.	32.	s.	<u>ی</u>	£2.	50.5	22.	<u>6</u> 0.	65.	20.	Ŕ.	80.	85.	8.	8.	: 0	22	0	15.	s.		ې ۲	; ; ; ;	£5.	50.	5	8:	<u>ہ</u> ہ	έŔ
1	ĭ	1										:										: =	-	-	-	-				-	1 -	-	- '		

(Notes for Table 5.1.2.7-17)

- NOTE 1: Temperature axis refers to T_J as detailed in note of Table 5.1.2.7-4 ($T_J = T_C + \Theta_{JC} \times P$).
- NOTE 2: Current Density axis refers to worst case current density on device. The default value is .13 MA / ${\rm cm}^2$.

Table 5.1.2.7-18 Total Transistor Gate Area ($\log \mu m^2$)

Complexity	Digital Microprocessors	Digital and Linear
(# of trans.)	(including Controllers)	Gate / Logic Arrays
100 - 500	5.39	5.24
500 - 1K	5.47	5.37
1K - 5K	5.64	5.67
5K - 10K	5.72	5.80
10K - 50K	5.90	6.10
50K - 100K	5.97	6.23
100K - 500K	6.15	6.52
500K - 1M	6.23	6.65
1M - 5M	6.41	6.95
5M - 10M	6.48	7.08

NOTE Total Transistor Gate Area refers to the total amount of active transistor gate oxide area on the device based on the number of transistors on the device using the following expression:

 $A = \log(4*TR*10^{-0.744*(\log(TR)-5.50)}) \quad (in \log \mu m^2)$

for MOS Digital Microprocessors (Including Controllers), and

 $A = \log(6^{*}TR^{*}10^{-0.580^{*}(\log(TR) - 5.78)}) \quad (in \log \mu m^{2})$

for MOS digital and Linear Devices (Including Gate / Logic Arrays)

TR is the number of transistors on the device in question

5.1.2.7-25

1

MIL-HDBK-217(REV) MICROELECTRONIC DEVICES

Complexity	Digital Microprocessors	Digital and Linear
(# of trans.)	(including Controllers)	Gate / Logic Arrays
100 - 500	4.81	2.17
500 - 1K	2.50	1.35
1K - 5K	1.89	1.10
5K - 10K	0.98	0.68
10K - 50K	0.74	0.56
50K - 100K	0.39	0.35
100K - 500K	0.29	0.28
500K - 1M	0.15	0.17
1M - 5M	0.11	0.14
5M - 10M	0.06	0.09

Table 5.1.2.7-19 Dielectric Thickness (kÅ)

NOTE 1: Dielectric Thickness refers to the thinnest transistor gate oxide on the device based on the number of transistors on the device using the following expression:

 $t_{OX} = 10^{-0.406*(log(TR)-3.68)}$ (in KÅ)

for MOS Digital Microprocessors (Including Controllers), and

 $t_{ox} = 10^{-0.296*(log(TR)-3.14)}$ (in kÅ)

for MOS Digital and Linear Devices (Including Gate / Logic Arrays)

TR is the number of transistors on the device in question

NOTE 2: The electric field stress, E_S , is given by $E_S = .11 V_{op}/t_{ox}$ (Mv/cm), (5.1.2.7.14)

where:

 V_{op} = operating voltage (user supplied V) t_{ox} = oxide thickness (user supplied KÅ)

5.1.2.7-26

Table 5.1.2.7-20 Gate Oxide Area, Memories

MOS SRAMS AND BIMOS SRAMS*											
Capacity (# bits)	Total Gate Oxi Lower Limit	ide Area (µm²) Upper limit									
1K	<u>99,176</u>	497,056									
2K 4K	149,352	798,112									
8K	82,728	358,776									
16K	156,456	690,552									
64K	598,824	2,482,600									
128K	1,188,648	2,681,208									
256K 512K	3,101,152	4,730,592									
1 M	4,198,304	18,886,368									
2M	8,392,608	3/,/60,/36									
*For BiMOS SRAMs, multiply oxide area by .667											
MOS DRAMS											
Capacity	Total Gate Ox	ide Area (um2)									
/# h:+-\	اطنعسة المحمد برصا										
<u>(# bits)</u>	Lower Limit	Upper Limit									
(<u># bits)</u> K	Lower_Limit 98,588	<u>Upper Limit</u> 394,352									
(# bits) 1K 2K 4K	Lower_Limit 98,588 123,676 31,932	<u>Upper Limit</u> 394,352 494,704 95,796									
(<u># bits)</u> 1K 2K 4K 8K	Lower_Limit 98,588 123,676 31,932 50,364	Upper Limit 394,352 494,704 95,796 151,092									
(# bits) 1K 2K 4K 8K 16K 32K	Lower_Limit 98,588 123,676 31,932 50,364 87,228 160,956	Upper Limit 394,352 494,704 95,796 151,092 261,684 482,868									
(# bits) 1K 2K 4K 8K 16K 32K 64K	Lower_Limit 98,588 123,676 31,932 50,364 87,228 160,956 308,412	Upper Limit 394,352 494,704 95,796 151,092 261,684 482,868 925,236									
(# bits) 1K 2K 4K 8K 16K 32K 64K 128K 256K	Lower_Limit 98,588 123,676 31,932 50,364 87,228 160,956 308,412 603,324 530,288	Upper Limit 394,352 494,704 95,796 151,092 261,684 482,868 925,236 1,809,972 1,590,864									
(# bits) 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K	Lower_Limit 98,588 123,676 31,932 50,364 87,228 160,956 308,412 603,324 530,288 1,054,576	Upper Limit 394,352 494,704 95,796 151,092 261,684 482,868 925,236 1,809,972 1,590,864 3,163,728									
(# bits) 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M	Lower Limit 98,588 123,676 31,932 50,364 87,228 160,956 308,412 603,324 530,288 1,054,576 2,103,152 4,200,304	Upper Limit 394,352 494,704 95,796 151,092 261,684 482,868 925,236 1,809,972 1,590,864 3,163,728 6,309,456 12,600,912									
(# bits) 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M UVEPROMS, EE	Lower Limit 98,588 123,676 31,932 50,364 87,228 160,956 308,412 603,324 530,288 1,054,576 2,103,152 4,200,304 PROMS, FLOATING GA	Upper Limit 394,352 494,704 95,796 151,092 261,684 482,868 925,236 1,809,972 1,590,864 3,163,728 6,309,456 12,600,912 TE PROMS, PALS,									
(# bits) 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M UVEPROMS, EE PLAS, MOS RO capacities:	Lower Limit 98,588 123,676 31,932 50,364 87,228 160,956 308,412 603,324 530,288 1,054,576 2,103,152 4,200,304 PROMS, FLOATING GA MS, HALS, MLAS For 260,000-1,209,00	Upper Limit 394,352 494,704 95,796 151,092 261,684 482,868 925,236 1,809,972 1,590,864 3,163,728 6,309,456 12,600,912 TE PROMS, PALS, all device Oum ²									

NOTE: If gate oxide area is unknown, assume upper limit.

5.1.2.7-27

Table 5.1.2.7-21 Gate Oxide Thickness, Memories

MOS ROMS/PLAS/PALS/MLAS/HALS*										
Capacity	Gate Oxide Thickr	ness (Angstroms)								
(# bits)	Lower Limit	Upper Limit								
2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M	600 600 600 600 400 400 400 400 250 250	700 700 700 700 600 500 500 500 400 400								
*For MOS ROMs/PLAs/PALs/MLAs/HALs determine number of bits in the array, then use above table, rounding up to the next highest bit category. UVEPROMs, MNOS/Flash EEPROMs, Float. Gate PROMs										
Capacity	Gate Oxide Thickr	ness (Angstroms)								
(# bits)	Lower Limit	Upper Limit								
2K	600	700								
4K	600	700								
8K	600	700								
16K	600	700								
32K	400	700								
64K	300	600								
128K	300	400								
256K	235	400								
512K	235	400								
1M	235	400								
2M	235	400								

Table 5.1.2.7-21 Gate Oxide Thickness, Memories (continued)

FLOTOX and Tex-Poly EEPROMs											
Capacity (# bits)	Gate Oxide Thickr Lower Limit	ness (Angstroms) Upper Limit									
8K 16K 32K 64K 128K 256K 512K 1M 2M	600 600 400 340 340 300 300 300	750 750 750 600 500 500 500 500 500									
MOS SRAMS, DRAMS BIMOS SRAMS											
Capacity (# bits)	Gate Oxide Thickr Lower Limit	ness (Angstroms) Upper Limit									
1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M	1200 1200 410 250 250 250 250 250 250 200 200 200 20	1 500 1 500 1 000 4 10 4 10 4 10 4 10 4 10 3 00 3 00 3 00 3 00 3 00									

NOTE:	If	gate	oxide	thickness	i s	unknown,	assume	lower	limit.
-------	----	------	-------	-----------	-----	----------	--------	-------	--------
Table 5.1.2.7-22: Cross Reference for Commercial Type to MIL-M-38510 Type

COMMERCIAL	M38510/	COMMERCIAL	M38510/	COMMERCIAL	M38510/
REF10	12403	LM1 39	11201	PAL 16R6A-2	50409
LMIOIA	10103	LM140H-05	10702	PAL16L8A	50401
LM102	10601	LM140H-12	10703	PAL16R8A	50402
10501	06001	LM140H-15	10704	PAL16L8A-2	50407
10502	06002	LM140H-24	10705	PAL16R8A-2	50408
10504	06201	LM140K-05	10706	18020	47001
10505	06003	LM140K-12	10707	DG181A	11101
10506	06004	LM140K-15	10708	DG182A	11102
10507	06005	LM140K-24	107 09	1832	47201
10509	06006	14013B	05151	DG184A	11103
10524	06301	14023B	05053	0G185A	11104
10525	05302	1409 3B	17701	1853	47401
10531	06101	PAL14H4	50303	DG187-A	11105
10535	06104	PAL14L4	50308	DG188A	11106
10576	06103	LM14TH-05	10702	DG190A	11107
10597	06202	LM141H-12	107.03	DG191A	11108
LM105	10303	LM141H-15	10704	LM193	11202
10631	06102	UM141H-24	10705	LF198	12501
LMIOBA	10104	14502	17403	LM199A	12401
PAL TOH8	50301	MC 14069	17401	LM199	12404
PALIOLS	50306	LF147	11906	0G200	12301
LM109	10701	(LM148	11001	HI200	12301
	10602		11002	2003	14103
	10304		11/05	06201	12302
	11/03		11904		12302
	10107	1024	12501	PALZUR4A	50504
	10107		12601	PALZUKOA	50503
LM120H-05	11501	16402	00601	PALZULBA	50507
	11502	13462	11401	PALZUKOA	10105
	11503	LF 133	11401		10105
LM120H-24	11504	LF135A	10109		10603
LM120K-05	11505	1350 1 F156	11402		10305
LM120K-15	11507	1 E156A	11405	2114	23802
LM120K-13	11508	L F157	11403	21144	23804
04012210	12707	E1574	11406	2117	24001
1 M1 24	11005		50305	2117	24002
PAL 12H6	50302	PAL 16H2	50304	2117	24003
PAL 12L6	50307	PAL16L2	50309	2147	23801
LM129A	12402	PAL 16R4A	50404	2147H	23803
LM1298	12406	PAL 16X4	50405	2147H-3	23805
LM137H	11803	PAL 16A4	50406	2147H-2	23807
LM137K	11804	PAL 16R4A-2	50410	2148H	23806
LM1 38K	1170 6	PAL 16R6A	50403	2164	24401

Table 5.1.2.7-22: Cross Reference for Commercial Type to MIL-M-38510 Type (continued)

COMMERCIAL	M38510/	COMMERCIAL	M38510/	COMMERCIAL	M38510/
2164	24402	DG300	11601	4014B	05752
2164	24403	DG301A	11602	4015A	05703
2316E	40301	3018A	10801	4015B	05753
24401	24401	DG302A	11603	4016A	05801
2500	12204	DG303A	11604	40168	05851
2510	12205	DG304A	11605	4017A	05601
2516	22101	3045	10802	4017B	05651
25LS174	33106	DG305A	11606	40174B	17505
25LS175	33107	DG306A	11607	4018A	05602
2520	12206	DG307A	11608	40188	05652
2532	22201	MC3101	15501	4019A	05302
0025	03501	MC3106	15502	4019B	05352
DS0026	03501	MC3111	15503	4020A	05603
MH0026	03501	MK 34 000	40301	4020B	05653
2600	12202	34069	17401	4021A	05704
2515	40301	3516E	40301	4021B	05754
2620	12203	3636	21002	4022A	05604
OP27A	13503	4000A	05201	4022B	05654
2700	12201	4000B	05 25 1	4023A	05003
2708	22001	4001A	05202	4023B	05053
2716	22101	4001B	05252	4024A	05605
275180	20903	4002A	05203	4024B	05655
275181	20904	4002B	05253	4025A	05204
275191	21002	4006A	05701	40258	05254
2732	22202	4006B	05751	4027A	05102
NMC2816	22601	4007A	05301	4027B	05152
285166A	21002	4007UB	05351	4028A	05901
285166A	21004	4008A	05401	40288	05951
2901A	44001	4008B	05451	4030A	05303
29010	44001	4009A	05501	4030B	05353
2905	44101	4009UB	05551	4031A	05705
2905	44102	4010A	05502	4031B	05755
2907	44 103	40108	05552	4034A	05705
2915A	44104	40106B	17702	40348	05756
2916A	44105	40107B	17402	4041A	05505
2917A	44106	401098	1/404	404108	05555
2918	44201	4011A	05001	4043A	05103
29611	20402	4011B	05051	40438	05153
29521	20805	4012A	05002	4048A	05304
29631	20904	4012B	05052	4048B	05354
29651	20902	4013A	05101	4049A	05503
29651	20908	4013B	05151	4049UB	05553
29681	21002	4014A	0 5702	4050A	05504

.

MIL-HDBK-217(REV) MICROELECTRONIC DEVICES

Table 5.1.2.7-22: Cross Reference for commercial Type to MIL-M-38510 Type (continued)

COMMERCIAL	M38510/	COMMERCIAL	M38510/	COMMERCIAL	M38510/
40508	05554	4564	24401	53\$841	20902
TMS4050	23502	4564	24402	535841	20908
IMS4050	23504	4564	24403	5400	00104
4060A	05X01	4/4	1003	54100	02004
1M54060	23501	500	19001	5400	02304
1054060	23503	500A	19002	54300 EALCOO	
4000A	05802	507	12003	546300	10005
40000 10670	17801	50/A 6094	12004	54FUU	33001
400/B	17401	5004	10006	54AL 300	57001
400300 40700	1/401	JUSA UDDOME12	20101	547LUU 6401	03001
40/05 4070P	1/203	51067	20101	5401	00107
40/05 40719	17101	5160/	23103	54LUI 64M01	02000
407 10 10720	17101	5160/	23100 10201	54001 5402	02300
40722	17102	MME220	70501 23606	541 02	00401
4075B	17103	MM5280	23505	54502	07301
4076R	17501	5300-1	20301	541 502	30301
4077R	17204	5301_1	20302	54F02	33301
40818	17001	MCM5303	20101	54AL 502	37 30 1
4082B	17002	MEM5304	20102	5403	00109
4085B	17201	5305-1	20401	54L03	02006
4086B	17202	5306-1	20402	54503	07002
409 3B	17701	5351680	21001	54LS03	30002
4095B	17502	5351681	21002	5404	00105
40968	17503	AD5325	13903	54004	17401
MKB4096	23602	5330	20701	54L04	02005
MKB4096	23604	5331	20702	54H04	02305
40978	17802	AD534T	13901	54504	07003
40988	17504	AD5345	13902	54LS04	30003
40998	17601	5340-1	20801	54F04	33002
4116	24001	5341-1	20802	54AL SO4	3700 6
4116	24002	53\$440	20601	5405	00108
4116	24003	535441	20602	54505	07004
4136	11004	5348-1	20804	54LS05	30004
4156	11003	5349-1	20805	5406	00801
4213	13904	5352-1	20601	5407	00803
4502B	17403	5353-1	20602	5408	01601
4508B	17602	5380-1	20903	54508	08003
45148	1/301	5380-Z	20903	54808	10001
40158	1/302	5381-1	20904	54108	15504
43328	1/303	5381-2	20904	546508	31004
4555B	1/304	535840	20901	54F08	34001
40008	1/305	535840	20907	54AL 308	3/401

Table 5.1.2.7-22: Cross Reference for Commercial Type to MIL-M-38510 Type (continued)

1

MIL-HDBK-217(REV) MICROELECTRONIC DEVICES

Table 5.1.2.7-22: Cross Reference for Commercial Type to MIL-M-38510 Type (continued)

COMMERCIAL	M38510/	COMMERCIAL	M38510/	COMMERCIAL	M38510/
54LS173	36101	54H21	15503	54LS273	32501
54174	01701	54LS21	31003	54LS279	31602
545174	01705	54H22	02307	5428	16201
54LS174	30106	54522	07007	54LS28	30204
54F174	34107	54LS22	30008	54AL S28	38402
54AL 5174	37201	54LS221	31402	54LS280	32901
54175	01702	5423	00402	54F280	34901
545175	07106	54LS240	32401	54LS283	31202
54LS175	30107	54F240	33201	54F283	34201
54F175	34 104	54AL S240	38301	545287	20302
54ALS1/5	3/202	541524	32402	545288	20702
54 180	01901	541241	33202	54LS290	32003
54 18 1	01101	54AL 524 1	38302	5415293	32004
545181	0/801	54AL 5242	38506	54152958	30606
5415181	30801	54AL 5243	38507	5415298	30909
54182	01102	5465244	32403	5430	00101
545 182	0/802	547244	33203	54L30	02001
5415190	31513	54AL 5244	38303	54H30	02301
5415191	31509	5425	00403	54530	0/008
54 192	01308	545251	0/905	54LS30	30009
54102	31507	5413251	30905	54ALS30	3/004
54193	01309	545251	33905	548630	65004
546193	02503	545253	0/908	5432	10101
5465193	31508	546363	30908	546532	30501
54154	00905	547233 5441 5253	33308	54F 32	33501
545194	20601	34AL3233	37706	54AL 532	3/501
5415194	20601	543237	20005	54L3324	31702
54E104	33601	54L3257 6AL 92579	20205	54L3340	30002
54195	00906	545257	33906	545352	22010
545195	07602	545259	07007	54555	16201
541 5195	30602	541 5258	30907	5415365	32201
541 51954	30602	541 52588	30907	54366	16302
541 5196	32001	546258	33907	541 5366	32203
54LS197	32002	541 5259	31603	54367	16303
5420	00102	54L S259B	31605	541,5367	32202
54L20	02002	5426	00805	54368	16304
54H20	02302	54LS26	32102	54LS368	32204
54520	07006	54LS261	31801	5437	00302
54LS20	30007	54LS266	30303	54LS37	30202
54F20	33004	5427	00404	54AL \$37	38401
54AL S20	37003	54LS27	30302	54LS373	32502
54HC20	65003	54AL S27	37 30 2	54LS374	32503
-					

Table 5.1.2.7-22: Cross Reference for Commercial Type toi MIL-M-38410 Type (continued)

COMMERCIAL	M38510/	COMMERCIAL	M38510/	COMMERCIAL	M38510/
54F374	34105	54\$51	07401	54H74	02203
54LS375	31604	54LS51	30401	54574	07101
54LS377	32504	54F521	34701	54LS74	30102
54F378	34108	5453	00503	54F74	34101
54F379	34109	54H53	04003	54ALS74	37101
5438	00303	54F534	34106	5475	01501
54LS38	30203	5454	00504	54LS75	31601
54LS390	32701	54H54	04004	5476	00204
54L5393	32702	54L54	04102	54H76	02204
54L5395A	30607	54LS54	30402	54L\$76	30110
5440	00301	54LS540	32404	54LS76A	30110
54H40	02401	54LS541	32405	5477	01502
54540	07 20 1	54H55	04005	54L78	02104
54LS40	30201	54L55	04103	5479	00207
54AL 540	38407	545570	20401	5480	00604
545412	42101	545571	20402	5482	00601
5442	01001	545572	20601	5483	00602
54142	02901	545573	20602	54LS83A	31201
54L542	30703	54AL \$574	37104	54585	08201
54LS424	42201	54AL 5576	37105	5485	15001
545428	42301	54564	07402	54LS85	31101
5443	01002	54F64	33401	54AL \$857	37901
54143	02902	54LS640	32804	5486	00701
5444	01003	54AL 5640	38501	54L86	02601
54644	02903	54AL 564 1	38502	54586	07501
5445	01004	54AL 5642	38503	54L86	30502
3440 571 76	01006	54AL 5643	38504	54186	34501
5440	02304	54AL 3043	20202	54AL 38/4	37100
541 A7	01007	54L3040	32004 32005	54AL30/0	3/ 10/ 01207
541 547	30704	5463040 54666	J20UJ 07/07	5430	01307
545472	20205	541 5670	1001	541 500	31501
545473	20803	5470	00206	5402	01301
545474	20802	54171	02101	541 592	31510
545475	20801	5472	00201	540929	23901
5448	01008	54L72	02102	5493	01302
5449	01009	54H72	02201	54193	02502
541 5490	32703	5473	00202	541 593	31502
5450	00501	541.73	02103	541 934	02502
54850	04001	54H73	02202	540930	23902
5451	00502	54LS73	30101	5495	00901
54H51	04002	5474	00205	541.95	02801
54L51	04101	541.74	02105	541 595	30603

÷.

MIL-HDBK-217(REV) MICROELECTRONIC DEVICES

Table 5.1.2.7-22: Cross Reference for Commercial Type to MIL-M-38510 Type (continued)

Table 5.1.2.7-22:	Cross	Reference	for	Commercial	Туре	to	MIL-M-38510	Туре
(continued)								

5.1.2.7-37

Table 5.1.2.7-22: Cross Reference for Commercial Type to MIL-M-38510 Type (continued)

COMMERCIAL	M38510/	COMMERCIAL	M38510/	COMMERCIAL	M38510/
93L422 93422A 93L422A 93L425 93L425 93425 93425A 93L425A 93L425A 934427 93436 93448 93446 93448 93448 93450 93451 93452	23112 23114 23115 23102 23104 23106 23108 23113 20302 20401 20801 20402 20802 20903 20904 20601	93453 93460 93461 935 93510 932510 932511 932511 932511 936 9380 9382 9383 940 944 945	20602 20906 20905 03002 21001 21003 21002 21002 21004 03003 06604 00601 00602 03002 03102 03301	946 948 950 951 9LS51 9LS54 957 958 9601 9602 9614 9615 962 SBP9900A SBP9989	03004 03302 03303 03201 30401 30402 03103 03104 01204 01205 10403 10404 03005 46001 46501

.

Table 5.1.2.7-23: Microelectronic Parameters

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	No
TTL					Π				-
00101-A	7.	0.04	1G	14	00203-C	7.	0.22	15G	14
	' .	0.04	16	14	1 00204-5	' .	0.22	150	15
	· · ·	0.04	10	14	00204-5	.	0.22	16G	16
	' .		26	14	00205-4	' .	0.22	126	14
00102-8	7	0.08	20	14	00205-0	/. 7	9.22	1/6	14
00102-0	7	0.08	26	14	00205-0	· · ·	0.72	126	14
00102-0	7	0.08	25	14	00205-5	7.	0.12	123	14
00103-A	7	0.12	1G	14	00206-8	ý•	0.11	116	14
00103-8	7	0.12	3G	14	00206-0	7		116	14
00103-C	7.	0.12	3G	14	00205-0	7	0.11	116	14
00103-0	7.	0.12	3G	14	00207-A	7	0.22	12G	14
00104-A	7.	0.16	4 G	14	00207-8	7	0.22	12G	11
00104-3	7.	0.16	4G	14	00207-C	7.	0.22	12G	14
00104-0	7.	0.16	4G	14	00207-0	7.	0.22	12G	14
00104-D	7.	0.16	4 G	14	00301-A	7.	0.20	2G	14
00105-A	7.	0.24	6G	14	00301-8	7.	0.20	2 G	14
00105-8	7.	0.24	6G	14	00301-0	7.	0.20	2G	14
00105-0	<u>/</u> .	0.24	5G	14	00301-0	7.	0.20	2G .	14
00105-0	<u>/</u> .	0.24	56		00302-A	7.	0.40	4 G	14
00106 2	' .	0.12	36	14	00302-5	' .	0.40	4 G	14
00106-5	7.	0.12	30	14	00302-0	' .	0.40	46	14
00106-0	7.	0.12	20	14	90302-0	' .	0.40	46	14
00107-4	' .	0.12	46	14	00303-4	' .	0.40	40	14
00107-8	7	0 16	46	14	00303-0	7.	0.40	46	14
00107-C	7	0.16	4 G	14	00303-0	7	0.40	4 G	14
00107-0	7.	0.16	4 G	14	00401-A	7	0.24	4 G	11
00105-A	7.	0.24	6G	14	00401-B	7	0.24	4 G	14
00108-5	7	0.24	6G	14	00401-C	7.	0.24	4 G	14
00108-0	7.	0.24	6G	14	00401-0	7.	0.24	4 G	14
00108-D	7.	0.24	6G	14	00402-E	7.	0.12	2 G	15
00109-C	7.	0.16	4 G	14	00402-F	7.	0.12	2G	15
00201-A	7.	0,11	8G	13	00403-A	7.	0.12	2G	14
00201-8	7.	0.11	8G	13	00403-8	7.	0.12	ZG	4
00201-0	7.	0.11	8G	13	00403-C	7.	0.12	26	4
00201-0	7.	0.11	8G	13	00403-0	7.	0.12	26	14
00202-A	7.	0.22	16G	14	00404-A	7.	0.18	36	14
00202-8	.	0.22	16G	14	00404-5	7.	0.18	26	14
00202-6	/. -	0.22	100	14	00404-0	' .	0.18	20	1 / 1
00202-0	1.	0.22	106	14	00404-0	1.	0.18		14

Table 5.1.2.7-23: Microelectronic Parameters

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
TTL					π				
00501-A 00501-C 00501-C 00502-A 00502-C 00502-C 00503-A 00503-A 00503-C 00503-C 00503-C 00504-A 00504-A 00504-C 00601-A 00601-A 00601-A 00601-C 00602-E 00603-F 00603-F 00603-F 00603-F 00604-C 00604-A 00604-A 00604-C 00604-A 00604-A 00604-C 00604-A 00604-A 00604-A 00604-A 00604-C 00604-A 00604-A 00604-C 00604-A 00604-C 00604-A 00604-C 00604-A 00604-C 00604-A 00604-C 00601-A 00604-C 00604-C 00604-C 00604-C 00601-A 00604-C 00604-C 00604-C 00801-A 00801-A 00801-A 00801-A 00801-A 00801-A 00801-A 00801-A 00801-A 00801-A 00801-A 00801-A 00801-A 00801-A	777777777777777777777777777777777777777	$\begin{array}{c} 9.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.07\\ 0.02\\ 0.03\\$	6G 6G 6G 6G 6G 6G 6G 6G 6G 6G 6G 6G 6G 6	14 14 14 14 14 14 14 14 14 14 14 14 14 1	00803-8 00803-0 00803-0 00804-A 00804-B 00804-C 00804-0 00805-A 00805-A 00805-A 00805-C 00805-0 00901-A 00901-A 00901-C 00905-F 00905-F 00906-F 01001-F 01002-F 01002-F 01003-F 01003-F 01005-F 01005-F 01005-F 01005-F 01005-F 01005-F	7	$\begin{array}{c} 0.32\\ 0.3222222222222222222222222222222222222$	6G 6G 6G 6G 6G 6G 4G 4G 37G 37G 37G 37G 37G 37G 37G 37G 37G 37	144444444444444444444444444444444444444

Table 5.1.2.7-23: Microelectronic Parameters

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
ΠL					ΠL	_			
01008-E 01009-A 01009-A 01009-B 01009-C 01009-D 01101-J 01101-J 01101-Z 01102-E 01201-A 01201-A 01201-B 01201-C 01201-D 01202-A 01202-A 01202-C 01202-C 01202-C 01202-C 01203-E 01203-E 01203-F 01204-A 01204-A 01204-B 01204-C 01204-C 01204-C 01205-F 01204-C 01205-F 01205-F 01301-A 01301-B 01301-C 01301-D 01302-A 01302-C 01302-C 01302-C 01303-F 01303-F 01304-E 01304-F	7. 7.	$\begin{array}{c} 0.47\\ 0.47\\ 0.47\\ 0.47\\ 0.47\\ 0.47\\ 0.80\\ 0.80\\ 0.80\\ 0.80\\ 0.80\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.27\\ 0.27\\ 0.27\\ 0.27\\ 0.27\\ 0.27\\ 0.27\\ 0.27\\ 0.27\\ 0.50\\$	37 G 37 G 37 G 34 G 34 G 34 G 34 G 34 G 34 G 63 G 63 G 63 G 63 G 63 G 63 G 63 G 63 G 8 G 8 G 8 G 8 G 10 G 10 G 10 G 10 G 10 G 20 G 20 G 20 G 20 G 20 G 26 G 25 G 25 G 25 G 25 G 58 G 58 G	$\begin{array}{c} 16\\ 16\\ 14\\ 14\\ 14\\ 14\\ 24\\ 24\\ 24\\ 24\\ 24\\ 16\\ 14\\ 14\\ 14\\ 14\\ 16\\ 16\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16$	11L 01305-F 01306-E 01307-A 01307-C 01404-E 01402-E 01403-F 01403-F 01403-F 01403-F 01404-E 01405-F 01405-F 01405-F 01405-F 01501-F 01502-A 01503-J 01503-J 01503-Z 01501-C 01601-C 01601-C	7. 7.	0.50 0.50 0.27 0.27 0.27 0.49 0.49 0.49 0.38 0.38 0.38 0.38 0.27 0.29 0.29 0.29 0.25 0.25 0.25 0.28 0.29 0.20 0.20	60G 57G 57G 15G 15G 15G 50G 26G 26G 26G 26G 26G 26G 17G 16G 16G 16G 16G 16G 16G 16G 17G 17G 24G 24G 24G 24G 24G 24G 24G 24	15 16 14 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16

Table 5.1.2.7-23: Microelectronic Parameters

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
TTL					LTTL				
01602-B 01602-C 01602-D 01701-E 01701-F 01702-E 01702-F 01801-E 01801-F 01901-A 01901-B 01901-C 01901-D	7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	0.20 0.20 0.44 0.44 0.26 0.26 0.77 0.27 0.27 0.27 0.27 0.27	4G 4G 36G 36G 24G 24G 100G 100G 14G 14G 14G	14 14 16 16 16 16 16 16 14 14 14	02101-8 02101-C 02101-0 02102-A 02102-8 02102-C 02102-D 02103-A 02103-A 02103-B 02103-C 02103-0 02104-A 02104-8 02104-6	888888888888888888888888888888888888888	0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02	8G 8G 8G 8G 8G 14G 14G 14G 14G 16G 16G	14 14 14 14 14 14 14 14 14 14
LTTL					02104-0	8.	0.02	16G	14
02001-A 02001-B 02001-C 02001-D	S. 8. 8.	0.00 0.00 0.00 0.00	1G 1G 1G 1G	14 14 14 14	02105-A 02105-B 02105-C 02105-D	8. 8. 8. 8.	0.02 0.02 0.02 0.02	12G 12G 12G 12G	14 14 14 14
02002-8 02002-C 02002-C 02003-A 02003-8 02003-C 02003-D 02004-A 02004-A 02004-C 02004-C 02004-C 02005-A 02005-A 02005-C 02005-C 02005-C 02006-A 02006-C 02006-D 02101-A		0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02	2G 2G 2G 3G 3G 3G 4G 4G 4G 4G 4G 4G 4G 4G 4G 4G 4G 4G 4G	14 14 14 14 14 14 14 14 14 14 14 14 14 1	02201-A 02201-B 02201-C 02201-D 02202-A 02202-B 02202-C 02202-C 02203-A 02203-A 02203-B 02203-C 02203-C 02204-E 02204-F 02205-A 02205-A 02205-C 02205-D 02205-D 02206-A	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	0.14 0.14 0.14 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27	8G 8G 8G 16G 16G 16G 12G 12G 12G 12G 12G 10G 10G 10G 12G	14 14 14 14 14 14 14 14 14 16 16 14 14 14

Table 5.1.2.7-23: Microelectronic Parameters

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
нттц					LTTL				
02206-8	7.	0.42	12 G	14	02501-0	8.	0.07	15G	14
02206-C	7.	0.42	12G	14	02502-A	8.	0.06	25 G	14
02206-0	7.	0.42	12G	14	02502-8	3.	0.06	25 G	14
02301-A	7.	0.20	1 G	14	02503-C	9.	0.05	25 G	14
02301-8	7.	0.20	1G	14	02503-E	3.	0.13	48 G	16
02301-C	7.	0.20	1 G	14	02503-F	3.	0.13	48 G	16
02301-0	7.	0.20	1 G	14	02504-0	8.	0.06	25 G	15
02302-A	7.	0.40	2G	14	02504-8	8.	0.17	38 G	15
02302-8	7	0.40	2 G	14	02504-F	З.	0.17	38 G	15
02302-C	7	0.40	2 G	14	02505-E	5.	0.17	38 G	15
02302-0	7.	0.40	2G	14	02505-F	8.	0.17	38 G	16
02303-A	7.	0.59	3 G	14	0260J-A	7.	0.04	4 G	14
02303-8	7.	0.59	3 G	14	02601-8	7.	0.04	4 G	14
02303-C	7.	0.59	3 G	14	02601-C	7.	0.04	4 G	14
02303-0	7.	0.59	3 G	14	02601-0	7.	0.04	4 G	14
02304-A	7.	0.80	4G	14	02701-A	7.	0.02	4 G	14
02304-8	7.	0.80	4 G	14	02701-9	7.	0.02	4 G	14
02304-C	7.	0.80	4 G	14	02701-C	7.	0.02	4 G	14
02304-0	7.	0.80	4 G	14	02701-0	7.	0.02	4 G	14
02305-A	7.	1.20	6G	14	02801-A	8.	0.02	37 G	14
02305-3	7.	1.20	6G	14	02801-8	8.	0.02	37 G	14
02305-C	7.	1.20	6G	14	02801-0	ς.	0.02	37 G	11
02305-0	7	1.20	6G	14	02801-0	S.	0.02	37 G	11
02306-A	7.	0.79	4 G	14	02902-A	7.	0.12	36G	11
02306-8	7.	0.79	4 G	14	02802-3	7.	0.12	36G	14
02306-C	7.	0.79	4 G	14	02802-C	7.	0.12	36G	11
02306-0	7.	0.79	4G	14	02802-0	7.	0.12	36G	14
02307-A	7.	0.40	2G	14	02803-E	7.	0.27	72G	16
02307-8	7.	0.40	2G	14	02803-F	7.	0.27	72G	16
02307-C	7.	0.40	2G	14	02804-E	7	0.12	40G	. 15
02307-0	7	0.40	2 G	14	02804-F	7.	0.12	40G	15
02401-A	7.	0.27	2G	14	02805-A	7.	0.05	36G	14
02401-8	7.	0.27	2 G	14	02805-8	7.	0.05	36G	14
02401-C	7.	0.27	2G	14	02805-C	7.	0.05	36G	14
02401-0	7	0.27	2G	14	02805-0	7.	0.05	36G	11
					02901-E	7.	0.12	18G	14
LTTL					02901-F	7.	0.12	18G	15
					02902-E	7.	0.12	18G	15
02501-A	8.	0.07	15G	14	02902-F	7.	0.12	18G	16
02501-8	<u>s</u> .	0.07	15G	14	02903-E	7.	0.12	18G	15
02501-C	8	0_07	15G	14	02903-F	7.	0.12	18G	15
	Ψ.					-			

Table 5.1.2.7-23: Microelectronic Parameters

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
LTTL					DTL				
02904-E 02904-F 02905-E 02905-F 02906-E 02906-F 02907-E 02907-F	7. 7. 7. 7. 7. 7. 7.	0.24 0.24 0.24 0.24 0.03 0.03 0.03 0.07 0.07	44G 44G 44G 18G 18G 18G 18G	16 16 16 16 16 16 16	03103-C 03103-D 03104-A 03104-B 03104-C 03104-C 03104-D 03105-A 03105-B 03105-C	8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8	0.13 0.13 0.17 0.17 0.17 0.17 0.2 0.02 0.02	4G 4G 4G 4G 4G 2G 2G 2G	14 14 14 14 14 14 14
ΟΤΙ					03105-0 03201-A	3. 8	0.02	2G 6G	14
03001-A 03001-B 03001-C 03002-A 03002-B 03002-C 03002-C 03003-A 03003-A 03003-C 03003-C 03004-A 03004-B 03004-C 03004-C 03004-C 03005-A 03005-B 03005-C 03005-D 03101-A 03101-B 03101-C	888888888888888888888888888888888888888	0.05 0.05 0.05 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14	2G 2G 2G 2G 2G 2G 2G 2G 2G 2G 2G 2G 2G 2	$ \begin{bmatrix} 14 \\ 1$	03201-B 03201-C 03201-C 03301-A 03301-B 03301-C 03301-C 03302-A 03302-C 03302-C 03302-C 03303-A 03303-C 03303-C 03303-C 03303-C 03304-A 03304-A 03304-B 03304-C 03304-C 03304-C 03501-C	88988888888888888888888888888888888888	0.18 0.18 0.18 0.07 0.08 0.07 0.08 0.07 0.08 0.07 0.08 0.08 0.08 0.08 0.08 0.80	6G 6G 6G 8G 8G 8G 8G 8G 8G 8G 8G 16G 16G 16G 18T 18T 18T	14 14 14 14 14 14 14 14 14 14 14 14 14 1
03101-0 03102-A	8. 8.	0.13 0.10	2G 2G	14 14	HTTL				
03102-B 03102-C 03102-D 03103-A 03103-B	8. 8. 8. 8.	0.10 0.10 0.10 0.13 0.13	2G 2G 2G 4G 4G	14 14 14 14	04001-A 04001-B 04001-C 04001-D 04002-A	7. 7. 7. 7. 7.	0.14 0.14 0.14 0.14 0.14	6G 6G 6G 6G	14 14 14 14

Table 5.1.2.7-23: Microelectronic Parameters (continued)

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
нтт∟					LTTL				
04002-B 04002-C 04002-D 04003-A 04003-B 04003-C 04003-D 04004-A 04004-S	7. 7. 7. 7. 7. 7. 7. 7.	0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14	6 G 6 G 5 G 5 G 5 G 5 G 5 G 5 G	14 14 14 14 14 14 14 14 14	04502-J 04502-K 04501-E 04601-F 04602-E 04602-F 04603-E 04603-F	7. 7. 7. 7. 7. 7. 7. 7.	0.34 0.34 0.15 0.15 0.14 0.14 0.13 0.13	50G 50G 16G 17G 17G 19G 19G	24 24 16 16 16 16
04004-C 04004-D 04005-A 04005-B 04005-C 04005-D	7. 7. 7. 7. 7. 7.	0.14 0.14 0.08 0.08 0.08 0.08	5G 5G 3G 3G 3G 3G	14 14 14 14 14 14	05001-C 05001-D 05002-A 05002-C 05002-D	13. 13. 13. 13. 13. 13.	0.20 0.20 0.20 0.20 0.20 0.20	4 G 4 G 2 G 2 G 2 G	14 14 14 14 14
LTTL 04101-A 04101-B 04101-C 04101-D 04102-C 04103-A 04103-B 04103-C 04103-D 04201-A 04201-B 04201-C 04201-D 04202-A 04202-D 04202-C 04202-D 04301-E 04401-E 04401-E 04401-E	7 7 7 7 7 7 7 7	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	6G 6G 6G 5G 3G 3G 3G 3G 8G 8G 8G 10G 10G 10G 10G 24G 28G 28G 30G	14 14 14 14 14 14 14 14 14 14 14 14 14 1	05003-A 05003-C 05003-C 05051-A 05051-C 05051-D 05052-A 05052-C 05053-A 05053-C 05053-C 05053-C 05101-A 05101-C 05101-D 05102-A 05103-A 05103-B 05103-D 05151-C 05151-D	13. 13. 13. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15. 13. 13. 13. 13. 13. 13. 15. 1	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	3G 3G 3G 4G 4G 2G 2G 3G 3G 24G 24G 30G 24G 24G 24G 24G 24G 24G 24G 24G	$\begin{array}{c} 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\$

Table 5.1.2.7-23: Microelectronic Parameters

M38510/ XXXXXXX	Vcc (V)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
CMOS					CMOS				
05152-C	15.	0.20	30G	14	05353-A	15.	0.20	4G	14
05152-0	15.	0.20	30G	14	05353-0	15.	0.20	4G	14
05153-A	15.	0.20	245	14	05353-0	15.	0.20	46	14
05153-0	13.	0.20	243	14	05354-6	15.	0.20	36	16
05153-0	13.	0.20	240	12	05354-7	12.	0.20	30 590	10
05201-0	13	0.20	36	12	05401-2	12	0.20	500	16
05201-0	13	0.20	36	12	05451-F	15	0.20	586	16
05202-A	13	0.20	4G	14	05451-F	15	0.20	586	16
05202-C	13.	0.20	4G	14	05501-E	13.	0.20	6G	16
05202-0	13.	0.20	4G	14	05501-F	13.	0.20	6G	16
05203-A	13.	0.20	2G	12	05502-E	13.	0.20	6G	16
05203-C	13.	0.20	2G	12	05502-F	13.	0.20	6G	16
05203-0	13.	0.20	2G	12	05503-E	13.	0.20	6G	16
05204-A	13.	0.20	3G	14	05503-F	13.	0.20	6 G	16
05204-C	13.	0.20	3G	14	05504-E	13.	0.20	6G	16
05204-0	13.	0.20	3G	14	05504-F	13.	0.20	6G	16
05251-A	15.	0.20	3G	14	05505-A	13.	0.20	12G	14
05251-0	15.	0.20	3G	14	05505-C	13.	0.20	12G	14
05252-0	15.	0.20	4G	14	05505-0	13.	0.20	126	14
05253-A	15.	0.20	26	14	05551-2	15.	0.20	56	16
05253-6	15.	0.20	26	14	05551-1	15.	0.20	56	15 16
05253-0	13.	0.20	29	14	05552-6	15.	0.20	0U 6C	10
05254-A	15.	0.20	30	14	05552-5	15.	0.20	66	10
05254-0	15.	0.20	30	14	05553-6	15.	0.20	66	15
05201-4	12	0.20	36	14	05554_F	15	0.20	66	16
05301-C	13	0.20	36	14	05554-F	15	0.20	66	16
05301-0	13.	0.20	36	14	05555-A	15	0.20	126	14
05302-E	13.	0.20	12G	16	05555-C	15	0.20	126	14
05302-F	13.	0.20	12G	16	05555-0	15.	0.20	12G	14
05303-A	13.	0.20	4G	14	05601-E	13.	0.20	47G	16
05303-C	13.	0.20	4G	14	05601-F	13.	0.20	47 G	16
05303-D	13.	0.20	4G	14	05602-E	13.	0.20	57G	16
05304-E	13.	0.20	24G	16	05602-F	13.	0.20	57G	16
05304-F	13.	0.20	24G	16	05603-E	13.	0.20	132G	16
05351-A	15.	0.20	3G	14	05603-F	13.	0.20	132G	16
05351-C	15.	0.20	3G	14	05604-8	13.	0.20	39G	15
05351-D	15.	0.20	3G	14	05604-F	13.	0.20	39G	16
05352-E	15.	0.20	12G	14	05605-A	13.	0.20	81G	14
05352-F	15.	0.20	IZG	14	05605-C	13.	0.20	8 I G	1

Table 5.1.2.7-23: Microelectronic Parameters

M38510/ XXXXXXX	Vcc (V.)	Pd (₩.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
CMOS					CMOS .				
05605-D 05651-E 05652-E 05652-F 05653-E 05653-F 05654-E 05655-A 05655-C 05655-D 05655-D	13. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	8 1G 47G 57G 57G 132G 132G 39G 8 1G 8 1G 8 1G 8 1G 99G	14 16 16 16 16 16 16 16 16 14 14 14	05802-A 05802-C 05802-D 05851-A 05851-C 05851-C 05852-A 05852-C 05852-C 05901-E 05901-F 05951-E 05951-F	13. 13. 15. 15. 15. 15. 15. 15. 13. 13. 15. 15.	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	4G 4G 4G 4G 4G 4G 4G 4G 38G 38G 38G 38G	14 14 14 14 14 14 14 16 16 16
05701-0	13.	0.20	109G	14	ECL				
05/02-E 05703-E 05703-F 05703-F 05704-E 05705-E 05705-F 05706-J 05706-K 05751-C 05751-C 05752-F 05753-F 05753-F 05755-E 05755-F	13. 13. 13. 13. 13. 13. 13. 13.	0.20 0.20	556 556 586 556 2636 2636 566 1096 556 556 556 556 556 556 556 556 556 5	16 16 16 16 16 16 16 16 16 16 16 16 16 1	06001-E 06002-E 06002-F 06003-E 06003-F 06004-E 06004-F 06005-E 06005-F 06005-F 06006-F 06101-E 06102-F 06102-F 06102-F 06103-F 06103-F 06103-F 06104-E 06104-F 06201-E 06202-E 06202-F 06301-E	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	0.22 0.22 0.22 0.22 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.11 0.11	4G 4G 4G 3G 3G 3G 3G 3G 2G 24G 24G 24G 24G 24G 24G 24G 24G 24G	16 16 16 16 16 16 16 16 16 16 16 16 16 1

4

MIL-HDBK-217(REV) MICROELECTRONIC DEVICES

Table 5.1.2.7-23: Microelectronic Parameters

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
ECL					STTL				
06301-F	7.	0.15	4G	16	07010-F	7.	0.14	1G	16
06302-E 06302-F	7.	0.13	4G 4G	16	07101-A	7.	0.27	12G 12G	14
STTL					07101-C	7. 7.	0.27 0.27	12G 12G	14 14
					07102-E	7.	0.27	16G	16
07001-A	<u>7</u> .	0.20	4G	14	07102-F	7.	0.27	16G	16
07001-8	7.	0.20	4G	14	07103-A	7.	0.27	16G	14
0/001-0	1.	0.20	4G	14	07103-8	1.	0.27	16G	14
	<i>'</i> .	0.20	46	14	07103-C	.	0.27	166	14
07002-A	<u>'</u> .	0.20	46	14	0/103-0	<u>/</u> .	0.27	166	14
	<u>'</u> .	0.20	40	14	U/104-A	/ .	0.27	100	14
07002-0	7 .	0.20	40	14	07104-8	/. 7	0.27	100	14
07003-4	7.	0.20	40	14	07104-0	' .	0.27	160	14
07003-8	7.	0.30	60	14	07105-5	' .	0.27	260	14
07003-0	7.	0.30	66	14	07105-E	'	0.75	366	16
07003-0	7	0.30	66	14	07105-5	' .	0.75	246	16
07004-A	7	0.30	66	14 .	07106-5	· ·	0.52	240	16
07004-8	7	0.30	6G	14	07201-4	7	0.32	26	14
07004-C	7	0.30	6G	14	07201-8	7	0.24	26	14
07004-0	7	0.30	6G	14	07201-0	7	0.24	26	14
07005-A	7	0.15	3G	14	07201-0	7	0 24	26	14
07005-8	7.	0.15	3G	14	07301-A	7	0.25	46	14
07005-C	7	0.15	36	14	07301-8	7	0.25	46	14
07005-0	7	0.15	3G	14	07301-0	7	0.25	4G	14
07006-A	7.	0.10	2G	14	07301-0	7.	0.25	4 G	14
07006-C	7.	0.10	2G	14	07401-A	7.	0.12	8G	14
07006-0	7.	0.10	2G	14	07401-8	7.	0.12	6 G	14
07006-0	7.	0.10	2G	14	07401-C	7.	0.12	6 G	14
07007-A	7.	0.10	2G	14	07401-D	7.	0.12	6G	14
07007-8	7.	0.10	2G	14	07402-A	7.	0.09	5 G	14
07007-C	7.	0.10	2 G	14	07402-8	7.	0.09	5 G	14
07007-0	7.	0.10	2G	14	07402-C	7.	0.09	5 G	14
07008-A	7.	0.06	1 G	14	07402-0	7.	0.09	5 G	14
07008-8	7.	0.06	1 G	14	07403-A	7.	0.09	5 G	14
07008-C	7.	0.06	1 G	14	07403-8	7.	0.09	5 G	14
07008-D	7.	0.06	1 G	14 [07403-C	7.	0.09	5 G	14
07009-E	7.	0.06	1 G	16	07403-0	7.	0.09	5 G	14
07009-F	7.	0.06	IG	16	07501-A	7.	0.55	4 G	11
07010-E	7.	0.14	1 G	16	07501-8	7.	0.55	4 G	14

Table 5.1.2.7-23: Microelectronic Parameters (continued)

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
STTL					STTL				
07501-C 07501-D 07502-E 07502-F 07601-E 07602-E 07602-F 07701-E 07701-F 07702-F 07702-F 07801-J 07801-K 07801-L	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	0.55 0.42 0.42 0.70 0.70 0.70 0.70 0.70 0.33 0.33 0.41 0.41 0.99 0.99 0.99	4G 4G 8G 47G 47G 41G 16G 16G 18G 63G 63G 63G	14 16 16 16 16 16 16 16 16 16 24 24 24	08002-D 08003-A 08003-B 08003-C 08003-D 08004-A 08004-A 08004-C 08004-C 08101-A 08101-B 08101-C 08101-D 08201-E 08201-F	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	0.23 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.3	3G 4G 4G 4G 4G 4G 4G 2G 2G 2G 2G 31G 31G	14 14 14 14 14 14 14 14 14 14 14 16 16
07801-2 07802-E	7.	0.99	63G 19G	24 16	LINEAR				
07802-F 07901-E 07901-F 07902-E 07903-E 07903-F 07904-E 07905-E 07905-F 07906-F 07906-F 07907-E 07908-E 07908-F 08001-A 08001-B 08001-C 08002-A 08002-B 08002-C	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	0.99 0.39 0.39 0.39 0.43 0.43 0.43 0.43 0.44 0.55 0.55 0.48 0.55 0.55 0.23 0.25 0.23 0.23 0.25 0.23 0.25 0.23 0.25 0.23 0.25 0.23 0.23 0.25 0.23 0.23 0.25 0.23	19G 17G 17G 16G 15G 15G 15G 15G 15G 15G 15G 15G 16G 36G 36G 36G 36G 36G 36G 36G	16 16 16 16 16 16 16 16 16 16 16 16 16 1	10101-A 10101-B 10101-C 10101-C 10101-G 10101-H 10101-P 10102-A 10102-A 10102-C 10102-C 10102-C 10102-C 10102-C 10103-C 10103-G 10103-H 10103-P 10104-C 10104-G 10104-H 10105-E 10105-F 10106-E	22. 22. 22. 22. 22. 22. 22. 22. 22. 22.	0.35 0.35 0.40 0.35 0.33 0.33 0.40 0.35 0.40 0.35 0.40 0.33 0.40 0.33 0.40 0.33 0.40 0.33 0.40 0.40	23T 23T 23T 23T 23T 23T 23T 23T 23T 46T 46T 46T 46T 21T 21T 21T 21T 29T 29T 29T 29T 29T 29T 29T 58T	14 14 14 14 14 14 14 14 14 14 14 10 14 3 10 3 14 3 10 3 16 15

Table 5.1.2.7-23: Microelectronic Parameters

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Nр
LINEAR					LINEAR				
LINEAR 10106-F 10107-C 10107-G 10107-H 10107-P 10108-G 10201-A 10201-B 10201-C 10201-D 10201-H 10201-I 10301-C 10301-G 10301-G 10301-G 10302-F 10302-F 10302-H 10302-F 10302-H 10303-A 10303-G 10304-G 10304-H 10305-E 10401-A 10401-B 10401-C 10401-D 10402-A 10402-C	22. 21. 21. 21. 21. 21. 21. 21. 21. 21. 21. 21. 21. 21. 21. 21. 21. 2	$\begin{array}{c} 0.40\\ 0.40\\ 0.33\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.55\\$	58T 36T 36T 36T 20T 20T 20T 20T 20T 20T 20T 20	16 14 10 18 14 14 14 14 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16	LINEAR 10407-F 10601-C 10601-G 10601-G 10601-H 10602-C 10602-H 10603-E 10603-F 10701-X 10701-X 10705-X 10705-X 10705-X 10705-X 10705-X 10705-X 10705-X 10705-Y 10705-X 10705-Y 10705-Y 10705-X 10705-Y 10705-Y 10705-X 10901-C 10901-C 10901-C 10901-C 10901-C 10901-C 10902-C 10902-C 10903-C 10002-A 10002-A 10002-C 10002-C 10002-C	7. 36. 36. 36. 36. 36. 36. 36. 35. 35. 40. 15. 15. 15. 15. 18. 18. 18. 18. 18. 18. 18. 18	0.22 0.40 0.35 0.33 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.35 0.40 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.3	9T 19T 19T 19T 19T 19T 19T 19T 1	16 14 8 10 14 8 10 14 8 14 14 14 14 14 14 14 14 14 14 14 14 14

Table 5.1.2.7-23: Microelectronic Parameters (continued)

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
LINEAR					LINEAR				
11004-C 11005-A 11005-C 11005-D 11101-A 11101-C 11101-C 11101-C 11102-A 11102-C 11102-C 11102-C 11102-C 11103-A 11103-C 11103-E 11104-A 11104-C 11105-A 11105-C 11105-C 11105-I 11105-A	22. 36. 36. 36. 36. 36. 36. 36. 36	$\begin{array}{c} 0.40\\ 0.35\\ 0.40\\ 0.35\\$	60T 102T 102T 22T 22T 22T 22T 22T 22T 22T 22T 22T	14 14 14 14 14 14 14 14 14 14 14 16 14 14 14 14 14 14 14 14	11401-P 11402-G 11402-H 11402-P 11403-G 11403-H 11403-P 11404-G 11405-G 11405-H 11405-H 11405-H 11406-H 11406-H 11406-H 11501-X 11502-X 11503-X 11503-X 11505-Y 11506-Y 11508-Y	22. 22. 22. 22. 22. 22. 22. 22. 22. 22.	0.40 0.33 0.33 0.33 0.33 0.33 0.40 0.33 0.33	19T 19T 19T 19T 19T 19T 19T 19T 19T 19T	8 8 10 8 8 10 8 8 10 8 8 10 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
11106-C	36.	0.40	15T	14	CMOS				
11106-0 11106-1 11107-A 11107-C 11108-A 11108-C 11108-C 11108-C 11201-A 11201-C 11201-C 11201-C 11202-G 11202-G 11202-F 11301-E 11302-E 11401-H	36. 36. 36. 36. 36. 36. 36. 36. 36. 36.	0.35 0.35 0.35 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.33 0.40 0.40 0.40 0.40 0.33 0.40	157 157 307 307 307 307 307 327 327 327 167 167 847 847 197 197	14 14 14 14 14 14 14 14 14 14 14 14 14 1	11601-C 11601-D 11601-I 11602-C 11602-D 11602-I 11603-C 11603-C 11604-C 11604-C 11605-C 11605-C 11605-I 11605-I 11606-C 11606-I	15. 15. 15. 15. 15. 15. 15. 15. 15. 15.	0.40 0.35 0.25 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.35 0.25 0.40	42T 42T 42T 27T 27T 54T 54T 54T 54T 38T 38T 38T 25T 25T	14 14 10 14 14 14 14 14 14 14 14 10 14

i.

MIL-HDBK-217(REV) MICROELECTRONIC DEVICES

Table 5.1.2.7-23: Microelectronic Parameters

M38510/ XXXXXXX	Vcc (V.)	Pd _(W.)	Complexity	Np	M38510/ XXXXXXX	¥cc (V.)	Pd (W.)	Complexity	Np
CMOS					CMOS				
11607 -C 11607 -D 11608 -C 11608 -D LINEAR	15. 15. 15. 15.	0.40 0.35 0.40 0.35	50⊺ 50⊺ 50⊺ 50T	14 14 14 14	12301-C 12301-I 12302-E 12303-C 12303-I 12304-E	15. 30. 15. 15. 15.	0.40 0.35 0.40 0.40 0.35 0.40	36T 36T 72T 18T 18T 18T	14 10 16 14 10
11701-X	40.	0.89	17T	4	LINEAR				
11702-X 11703-X 11704-Y 11801-X 11802-Y 11803-X 11804-Y 11901-G 11901-G 11901-G 11902-G 11902-G 11902-G 11902-G 11903-C 11903-C 11905-C 11905-G 11905-G 11905-G 11905-G 11905-G 12201-G 12201-H 12202-G 12203-H 12203-G 12205-H 12205-H 12205-H 12205-H	444444444444444444444444444444444444444	3.60 0.89 3.60 0.89 3.60 0.33 0.40 0.33 0.30 0.30	17T 26T 23T 23T 23T 30T 30T 30T 33T 66T 66T 132T 132T 28T 28T 54T 54T 124T 124T 50T 40T 40T 30T 30T 30T 30T	4 3 3 4 4 3 3 8 8 4 8 8 4 4 8 8 4 8 8 4 4 8 8 4 4 8 8 4 8	12401-X 12401-Y 12401-G 12402-X 12402-Y 12402-G 12403-X 12403-Y 12403-G 12404-X 12404-Y 12404-G 12406-X 12406-Y 12406-G 12501-G 12501-F 12502-P 12502-P 12502-P 12502-C 12901-C 12901-C 12902-C 12903-C 12903-C 12905-C 12905-C	30. 7. 7. 7. 7. <td< td=""><td>0.12 0.14 0.18 0.12 0.14 0.18 0.12 0.14 0.18 0.12 0.14 0.18 0.12 0.14 0.18 0.12 0.14 0.18 0.12 0.14 0.18 0.33 0.33 0.40 0.33 0.40 0.33 0.27 0.21 0.27 0.21 0.27 0.21</td><td>19T 19T 19T 19T 8T 8T 21T 21T 21T 21T 19T 19T 19T 19T 62T 62T 62T 61T 71T 16T 16T 10T 10T 14T 14T 14T 14T 18T</td><td>24824824824824888888 18848181818181818181818181818181</td></td<>	0.12 0.14 0.18 0.12 0.14 0.18 0.12 0.14 0.18 0.12 0.14 0.18 0.12 0.14 0.18 0.12 0.14 0.18 0.12 0.14 0.18 0.33 0.33 0.40 0.33 0.40 0.33 0.27 0.21 0.27 0.21 0.27 0.21	19T 19T 19T 19T 8T 8T 21T 21T 21T 21T 19T 19T 19T 19T 62T 62T 62T 61T 71T 16T 16T 10T 10T 14T 14T 14T 14T 18T	24824824824824888888 18848181818181818181818181818181

Table 5.1.2.7-23: Microelectronic Parameters

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
LINEAR					Πι				
12906 -P 12907 -C 12907 -P 12908 -C 12908 -P 12909 -C 12909 -P 12910 -C 12910 -P 13001 -E 13002 -E 13003 -E 13101 -G 13101 -P 13102 -G 13102 -P 13301 -E 13301 -Z 13401 -V 13901 -I 13902 -C 13903 -I 13903 -C 14103 -E	7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	0.21 0.27 0.21 0.27 0.21 0.27 0.21 0.27 0.21 1.40 1.40 1.40 1.40 0.33 0.40 0.33 0.40 0.50 0.50 0.80 0.33 0.40 0.50 0.40 0.40 0.50 0.50 0.50 0.50	10T 10T 10T 14T 14T 14T 14T 14T 18T 32T 32T 32T 32T 32T 32T 32T 32T 32T 32	8 14 14 14 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16	15103-A 15103-B 15103-C 15103-C 15201-J 15201-J 15201-L 15201-L 15202-E 15202-F 15203-E 15203-E 15204-A 15204-A 15204-A 15204-C 15204-C 15205-F 15205-F 15205-F 15205-F 15205-F 15301-C 15302-C 15302-0 HTTL	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	0.18 0.18 0.18 0.27 0.27 0.27 0.20 0.20 0.20 0.20 0.20	4G 4G 4G 21G 21G 21G 21G 15G 15G 15G 15G 15G 15G 15G 15G 18G 18G 18G 18G 18G 4G 4G 4G	$ \begin{array}{r} 14 \\ 14 \\ 14 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 14 \\ 14 \\ 14 \\ 16 \\ 16 \\ 16 \\ 14 \\ 14 \\ 14 \\ 16 \\ 16 \\ 14 \\$
πι					15501-A	7.	0.35	4G	14
1 5001 -E 1 5001 -F 1 5002 -E 1 5002 -F 1 5101 -A 1 5101 -B 1 5101 -C 1 5101 -C 1 5102 -A 1 5102 -B 1 5102 -C 1 5102 -0	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	0.49 0.49 0.49 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18	31G 31G 32G 2G 2G 2G 6G 6G 6G	16 16 16 14 14 14 14 14	1 5501 -8 1 5501 -C 1 5502 -A 1 5502 -8 1 5502 -C 1 5502 -D 1 5503 -A 1 5503 -A 1 5503 -C 1 5503 -C 1 5503 -0 1 5504 -8	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	0.35 0.35 0.26 0.26 0.26 0.26 0.18 0.18 0.18 0.18 0.18 0.35 0.35	4G 4G 3G 3G 3G 2G 2G 2G 4G 4G	14 14 14 14 14 14 14 14 14 14 14

1

MIL-HDBK-217(REV) MICROELECTRONIC DEVICES

Table 5.1.2.7-23: Microelectronic Parameters

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
HTTL					CMOS				
15504-0	7.	0.35	4G	14	17001-A 17001-C	15. 15.	0.20	4G 4G	14 14
<u>π</u>		<u>.</u>			17001-0 17002-C	15. 15	0.20	4G 2G	14 14
15601-E 15601-F	7. 7.	0.39 0.39	31 G 31 G	16 16	17002-0 17003-C	15. 15.	0.20	2G 3G	14 14
1 5602-E 1 5602-F	7. 7.	0.33 0.33	29G 29G	16 16	17003-0 17101-A	15. 15.	0.20	3G 4G	14
15603-E 15603-F	7. 7.	0.42	24G 24G	16 16	17101-C 17101-D	15. 15.	0.20	4G 4G 2C	14 14
15701-E	7. 7. 7	0.74	98G 186	16 16	17102-C	15.	0.20	2G 2G 2G	14
15801-F 15802-E	7. 7.	0.28	18G 46 G	16 16	17103-A 17103-C	15. 15.	0.20	3G 3G	14 14
15802-F 15901-E	7. 7.	0.40 0.47	46 G 40G	16 16	17103-0 17201-A	15. 15.	0.20	3G 6G	14 14
15901-F 15902-E	7. 7.	0.47	40G 72G	16 16	17201-C 17201-0	15. 15.	0.20	6G 6G	14
16001-E	7. 7. 7	0.42 0.47 0.47	726 59G	16	17202-C	15. 15.	0.20	5G 5G	14
16101-A 16101-8	7. 7.	0.21	4G 4G	14 14	17203-A 17203-C	15.	0.20	4G 4G	14
16101-C 16101-0	7. 7.	0.21	4G 4G	14 14	17203-0 17204-A	15. 15.	0.20 0.20	4G 4G	14 14
16201-A 16201-8	7. 7.	0.32	4G 4G	14	17204-C 17204-D	15. 15.	0.20	4G 4G	14
16201-0 16301-E	7. 7. 7	0.32	4G 4G 7 G	14	17301-X	15.	0.20	1 20G 1 20G 1 20G	24 24 24
1 63 01 -F 1 63 02 -E	7. 7.	0.28	7 G 7 G	16 16	17301 - Y 17302 - J	15. 15.	0.20 0.20	1 20G 1 04G	24 24
16302-F 16303-E	7. 7.	0.55	7 G 8 G	16 16	17302-K 17302-X	15.	0.20	104G 104G	24 24
16304-E	7. 7. 7	0.28	8G 8G 8G	16	17302-1 17303-E 17303-F	15. 15. 15	0.20	34G 34G	15 15
	<i>.</i>	0,10			17304-E 17304-F	15. 15.	0.20	34G 34G	16

Table 5.1.2.7-23: Microelectronic Parameters

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
CMOS					CMOS	_			
17305-E 17305-F 17401-A 17401-C 17401-D 17402-A	15. 15. 15. 15. 15.	0.20 0.20 0.20 0.20 0.20 0.20	26G 26G 6G 6G 6G	16 16 14 14 14	19001-X 19002-X 19003-X 19004-X 19005-E 19006-E	30. 30. 30. 30. 30. 30.	1.20 1.20 1.20 1.20 0.73 0.73	52T 52T 36T 36T 28T 18T	29 28 29 29 16 16
17402-C 17402-D	15. 15.	0.20	5G 6G	14	TTL PROM		_	·	-
17403-E 17403-F 17404-E 17501-E 17501-F 17502-C 17502-C 17503-C 17503-C 17504-E 17504-E	15. 15. 15. 15. 15. 15. 15. 15.	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	12G 12G 32G 32G 52G 20G 21G 21G 20G 20G	16 16 16 16 16 16 14 14 14 14	20101-J 20101-K 20101-Z 20102-J 20102-K 20102-Z 20201-E 20201-F 20202-E 20202-F	7. 7. 7. 7. 7. 7. 7. 7. 7.	0.58 0.58 0.58 0.58 0.58 0.58 0.72 0.72 0.72 0.72	5125 5128 5128 5128 5128 5128 5128 5123 10248 10248 10248 10248	24 24 24 24 24 24 15 16
17505-E	15.	0.20	36G	16	STTL PRON	1			
17505-F 17601-E 17601-F 17602-J 17602-Z 17701-A 17701-C 17701-C 17702-A 17702-C 17702-C 17801-J 17801-Z 17801-Z 17802-J 17802-K 17802-Z 17803-F	15. 15. 15. 15. 15. 15. 15. 15. 15. 15.	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	36G 76G 76G 56G 56G 4G 4G 6G 6G 80G 80G 80G 92G 92G 92G 92G 41G 41G	16 16 24 24 14 14 14 24 24 24 24 24 24 24 16	20301-E 20301-F 20302-E 20302-F 20303-F 20304-E 20304-F 20401-E 20401-E 20402-F 20402-F 20601-V 20601-Z 20602-V 20602-Z 20603-E 20603-F 20701-E	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74	1 0248 1 0248 1 0248 1 0248 1 0248 1 0248 1 0248 2 0488 2 0488 2 0488 2 0488 2 0483 4 0968 4 0968 4 0968 4 0968 4 0968 2 5 68	16 16 16 16 16 16 16 16 16 18 18 18 18 15 15

.

MIL-HDBK-217(REV) MICROELECTRONIC DEVICES

Table 5.1.2.7-23: Microelectronic Parameters

_

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
STTL PROM	1				CMOS EPRO	M			
20701-F 20702-F	7.	0.74	256B 256B	16 16	21901-J	8.	1.80	4096B	24
20702-F	7.	0.74	256B	16	NMOS EPRO	M			
20801-J 20801-K	7.	1.00	40968 40968	24 24	22001-J	30.	1.80	81928	24
20801-X 20802-J	7.	1.00	40968 40968	24 24	22101-J 22201-J	5. 6.	1.90	163848 327688	24 24
20802-K	7	1.00	4096B	24	22202-J	6.	1.00	327688	24
20802-X 20803-J	7.	1.00	4096B 4096B	24 24	22601-J	<u> </u>	1.00	153848	
20803-K	7.	1.00	40963	24	TTL RAM				
20803-X 20804-Y	7.	1.00	40968 40968	24	23001-E	7.	0.80	256B	16
20805-Y	7.	1.00	4096B	20	23001-F	7.	0.80	256B	16
20901-V 20902-V	7.	0.72	81928 81928	18	23002-E 23002-F	7.	0.80	2568	16
20903-J	7	1.40	81928	24	23003-E	7.	0.80	256B	15
20903-K 20904-J	7.	1.40	81928	24 24	23003-F 23004-E	7.	0.80	256B	16
20904-K	7.	1.40	81928	24	23004-F	7.	0.41	256B	15
20905-J 20905-K	7.	1.40	81928 81928	24 24	23101-F	7.	0.94	10248	16
20906-J	7.	1.40	81928	24	23101-Y	7	0.94	10248	24
20906-X 20907-J	7.	1.40	81928 81928	24 24	23102-E 23102-F	7.	0.94	10248 10248	16
20907 - K	7	1.40	8192B	24	23102-Y	7	0.94	10248	24
20908-J 20908-K	7.	1.40	81928 81928	24 24	LSTTL RAN	1			
21001-J 21001-K	7.	1.00	163848 163848	24 24	23103-E	7.	0.41	10248	15
21002-J	7	1.00	163848	24	23103-F	7	0.41	10248	15
21002-K	7.	1.00	163848	24	23103-Y 23104-E	7.	0.41	10248	15
21003-K	7.	1.00	16384B	24	23104-F	7	0.41	10248	16
21004-J 21004-K	7.	1.00	163848	24	23104-1		0.41	10248	
21005-J 21005-K	7.	1.00	163848 163848	24	STTL RAM				
~ · · · · · · · · · · · · · · · · · · ·	· •	1.00			23105-E	7.	0.94	1024B	16
					23105-F 23105-Y	7. 7.	0.94 0.94	1024B 1024B	16 24

Table 5.1.2.7-23: Microelectronic Parameters

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
STTL RAM					STTL RAM		_		
23106-E 23106-F 23106-Y	7. 7. 7	0.94 0.94	10248 10248 10248	16 16 24	23201-Y 23201-Z	7. 7.	0.94 0.94	575B 576B	28 28
23107-E	7.	0.94	1024B	16	NMOS RAM		_		
23107-Y 23108-E	7. 7.	0.94 0.94	10248 10248 10248	24 16	23501-U 23501-W	20. 20.	1.00 1.00	40965 40968	24 22
23108-F 23108-Y 23109-W	7. 7. 7	0.94 0.94	10248 10248 10248	16 24 22	23502-U 23502-V 23502-U	20. 20. 20.	1.00	40968 40968 40968	24 18 24
23109-X 23109-Y	7. 7. 7.	0.94	1024B 1024B	24 24	23503-W 23504-U	20.	1.00	40968 40968	22 24
23110-W 23110-X 23110-Y	7. 7. 7.	0.94 0.94 0.94	10248 10248 10248	22 24 24	23504-V 23505-W 23506-W	20. 20. 20.	1.00 1.00 1.00	40963 40968 40968	18 22 22
LSTTL RAM	1				23601-W 23602-E 23603-W	20. 20. 20	1.00	40968 40968 40968	22 16 22
23111-W 23111-X 23111-Y	7. 7. 7.	0.50 0.50 0.50	1024B 1024B 1024B	22 24 24	23604-E 23701-X 23702-X	20. 7. 7.	1.00 0.50 0.60	4096B 4096B 4096B	16 22 22
23112-W 23112-X 23112-Y	7. 7. 7.	0.50 0.50 0.50	10248 10248 10248	22 24 24	23703-¥ 23703-X 23704-¥	7. 7. 7.	0.69 0.69 0.69	40963 40963 40963	22 22 22
23113-E 23113-F	7.	0.41 0.41	10248 10248	16 16	23704-X 23705-X 23705-X	7. 7.	0.69	4096B 4096B 4096B	22 22 22
STTL					23708-X 23707-W 23707-X	7. 7. 7	0.44	4096B 4096B 4096B	22 22 22
23114-¥ 23114-Y	7. 7.	0.94	10248 10248	22 24	23708-W 23708-X 23708-X	7. 7. 7. 7	0.44	4096B 4096B 4096B	22 22 22
LSTTL					23710-X	7	0.60	40968 40968	22
23115-W 23115-Y 23115-X	7. 7. 7.	0.50 0.50 0.50	10248 10248 10248	22 24 24	23711-X 23712-W 23712-X	7. 7. 7.	0.69	4096B 4096B 4096B	22 22 22
STTL RAM					23713-X 23714-X	7. 7.	0.39	40968 40968	22
23201-X	7.	0.94	5768	28	23715-W	7.	0.44	40968	22

Table 5.1.2.7-23: Microelectronic Parameters

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	No
NMOS RAM	_				CMOS				
23716-W 23716-X 23801-V 23802-V 23802-V 23803-V 23804-V 23805-V 23806-V 23807-V	7. 7. 7. 7. 7. 7. 7. 7. 7.	0.44 0.44 1.20 1.20 1.00 1.00 1.00 1.20 1.20 1.20	40968 40968 40968 40968 40968 40968 40968 40968 40968 40968 40968	22 18 18 18 18 18 18 18 18 18	29101-X 29102-J 29102-X 29103-R 29103-Y 29104-J 29104-X 29105-J 29105-X 29106-R 29106-Y	7. 7. 7. 7. 7. 7. 7. 7. 7.	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	163848 163848 163848 163848 163848 163848 163848 163848 163848 163848 163848	32 24 32 20 20 24 32 24 32 20 20
CMOS RAM					LSTTL				
23901-E 23901-F 23902-V	7. 7. 7.	0.20 0.20 0.20	1024B 1024B 1024B	16 16 18	30001-A 30001-B 30001-C 30001-D	7. 7. 7. 7.	0.02 0.02 0.02 0.02	4G 4G 4G 4G	14 14 14 14
24001-E 24001-F 24001-Z 24002-E 24002-F 24002-Z 24003-E 24003-F 24003-Z 24401-E 24401-Z 24402-E 24402-E 24402-Z 24403-E 24403-Z	20. 20. 20. 20. 20. 20. 20. 20. 20. 7. 7. 7. 7. 7. 7. 7. 7.	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	163848 163848 163848 163848 163848 163848 163848 163848 163848 163848 655368 655368 655368 655368	16 18 16 16 18 16 18 16 18 16 18 16 18 16 18	30002-A 30002-C 30002-D 30003-A 30003-B 30003-C 30003-C 30004-A 30004-A 30004-C 30004-C 30005-A 30005-A 30005-C 30005-D 30006-A 30006-B	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	0.02 0.02 0.02 0.04 0.04 0.04 0.04 0.04	4G 4G 4G 6G 6G 6G 6G 6G 6G 3G 3G 3G 3G 3G 3G	14 14 14 14 14 14 14 14 14 14 14 14
CMOS					30006-C	7.	0.02	3G 3G	14
24501-V 24502-V 29101-J	7. 7. 7.	0.20 0.20 1.00	40968 40968 153848	18 18 24	30007-A 30007-B 30007-C	7. 7. 7. 7.	0.02 0.01 0.01 0.01	2G 2G 2G	14

Table 5.1.2.7-23: Microelectronic Parameters

(continued)

_

M38510/ XXXXXXX	Vcc (V.)	Pd (₩.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
LSTTL					LSTTL				
30007-J 30008-A 30008-A 30009-A 30009-A 30009-C 30009-C 30101-A 30101-B 30101-C 30101-D 30102-A 30102-A 30102-C 30102-C 30102-C 30102-C 30102-C 30102-C 30102-C 30103-F 30104-A 30104-A 30104-C 30104-A 30104-C 30105-A 30105-A 30105-C	7. 7.	$\begin{array}{c} 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.05\\$	2G 2G 2G 2G 2G 2G 1G 1G 1G 1G 1G 1G 1G 1G 1G 12G 12	$\begin{array}{c} 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\$	30201-C 30202-A 30202-C 30202-C 30203-A 30203-A 30203-C 30203-C 30203-C 30204-A 30204-C 30204-C 30204-C 30204-C 30301-A 30301-A 30301-C 30301-C 30302-A 30302-C 30302-C 30303-A 30303-A 30303-A 30303-A 30303-A 30303-C 30303-C 30303-C 30303-C 30303-C 30303-C 30303-C 30303-C 30303-C 30303-C 30303-C 30401-C 30401-C 30401-C 30401-C 30401-C 30401-C 30402-C 30402-C 30402-C 30402-C 30402-C 30501-A 30501-C 30501-C 30501-C 30501-C	7. 7.	$\begin{array}{c} 0.03\\ 0.03\\ 0.07\\ 0.07\\ 0.07\\ 0.07\\ 0.07\\ 0.07\\ 0.07\\ 0.07\\ 0.07\\ 0.07\\ 0.07\\ 0.07\\ 0.07\\ 0.03\\ 0.05\\$	2G 2G 4G 4G 4G 4G 4G 4G 4G 4G 4G 4G 4G 4G 4G	$ \begin{array}{c} 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\$

1

MIL-HDBK-217(REV) MICROELECTRONIC DEVICES

Table 5.1.2.7-23: Microelectronic Parameters

(continued)

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
LSTTL					LSTTL				
30502-D 30601-E 30601-F 30602-E 30603-A 30603-B 30603-C 30603-D 30604-E 30605-A 30605-A 30605-C 30605-C 30605-C 30605-C 30606-D 30606-C 30606-C 30606-C 30606-C 30606-C 30607-F 30608-E 30608-F 30608-F 30608-F 30609-F 30701-E 30701-F 30702-F 30703-F 30703-F 30704-F 30704-F 30801-J 30801-K 30801-Z 30902-F	777777777777777777777777777777777777777	0.06 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	4G 47G 41G 37G 37G 37G 37G 37G 37G 36G 36G 36G 36G 48G 62G 68G 68G 16G 18G 18G 63G 63G 63G 63G 17G 16G	14 16 16 16 14 14 14 14 14 14 14 14 14 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16	30903-E 30903-F 30904-F 30905-E 30905-F 30906-E 30906-F 30907-E 30907-F 30908-E 30908-F 30908-F 30909-F 31001-A 31001-A 31001-C 31002-A 31002-A 31002-A 31002-C 31002-C 31002-C 31003-A 31003-A 31003-A 31003-C 31003-C 31004-D 31005-A 31005-A 31005-A 31005-C 31005-C 31201-F 31201-F 31201-F 31201-F 31201-F 31201-A	777777777777777777777777777777777777777	0.09 0.04 0.04 0.07 0.07 0.11 0.11 0.11 0.11 0.11 0.12 0.08 0.08 0.12 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.0	15G 15G 15G 17G 15G 15G 15G 16G 16G 16G 16G 16G 16G 16G 16G 16G 16	166 166 166 166 166 166 166 166 166 166

•

Table 5.1.2.7-23: Microelectronic Parameters

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
LSTTL					LSTTL				
LSTTL 31301-B 31301-C 31302-A 31302-A 31302-C 31302-C 31302-C 31303-A 31303-A 31303-A 31303-C 31303-C 31303-C 31401-F 31401-F 31402-E 31402-F 31402-F 31403-A 31403-A 31403-A 31403-C 31403-C 31501-A 31501-A 31501-C 31502-C 31502-C 31502-C 31502-C 31502-C 31502-C 31502-C 31502-C 31503-F 31503-F 31504-F 31505-F 31505-F	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	0.04 0.04 0.04 0.12 0.12 0.12 0.12 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.0	2G 2G 2G 6G 6G 6G 4G 4G 4G 20G 20G 16G 10G 10G 10G 10G 10G 15G 15G 25G 25G 60G 60G 57G 63G	14 14 14 14 14 14 14 14 14 14 14 14 14 1	LSTTL 31510-A 31510-B 31510-C 31510-C 31510-C 31511-E 31512-E 31512-F 31512-F 31513-F 31601-E 31601-F 31602-F 31603-F 31603-F 31604-F 31604-F 31605-F 31605-F 31801-E 31801-F 31901-F 31901-F 31902-F 32001-A 32001-D 32002-A 32002-B 32002-C	7. 7.	0.08 0.08 0.08 0.08 0.08 0.18 0.18 0.18	26G 26G 26G 26G 60G 58G 62G 24G 24G 24G 24G 24G 59G 24G 24G 59G 24G 305G 305G 100G 43G 43G 43G 43G 42G	14 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16
31506-E 31506-F 31507-E 31507-F 31508-E 31508-F 31509-E	7. 7. 7. 7. 7. 7.	0.19 0.19 0.19 0.19 0.19 0.19 0.19	60G 60G 50G 48G 48G 59G	16 16 16 16 16 16	32002-0 32003-A 32003-B 32003-C 32003-D 32004-A 32004-B	7. 7. 7. 7. 7. 7.	0.08 0.08 0.08 0.08 0.08 0.08 0.08	42G 19G 19G 19G 25G 25G	14 14 14 14 14 14

Table 5.1.2.7-23: Microelectronic Parameters

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
LSTTL					LSTTL				
32004-0 32102-A 32102-8 32102-C 32102-0 32201-E 32201-F 32202-E 32203-F 32203-F 32204-E 32204-F 32301-C 32301-0 32302-C	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	0.08 0.02 0.02 0.02 0.02 0.13 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.11 0.11 0.11	25 G 4G 4G 4G 7G 7G 7G 7G 8G 8G 8G 8G 4G 4G	14 14 14 14 16 16 16 16 16 16 16 16 16	32702-A 32702-B 32702-C 32703-E 32703-F 32801-C 32801-C 32802-C 32802-C 32803-R 32803-R 32803-S 32901-A 32901-B 32901-C 32901-0	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	0.14 0.14 0.14 0.14 0.14 0.14 0.30 0.30 0.30 0.30 0.30 0.52 0.52 0.15 0.15 0.15	66G 66G 66G 82G 10G 10G 10G 18G 46G 46G 46G	$ \begin{array}{c} 14 \\ 14 \\ 14 \\ 16 \\ 16 \\ 16 \\ 14 \\ 14 \\ 14 \\ 20 \\ 20 \\ 14 \\ 14 $
32401-R	7.	0.12	10T	20	ASTTL				
32401-S 32402-R 32402-S 32403-R 32403-S 32404-R 32405-R 32405-S 32501-R 32501-S 32502-R 32502-S 32503-R 32503-R 32504-R 32504-S 32501-E 32601-F 32601-F 32602-F 32701-F	/	0.28 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	10T 10T 10T 10T 12T 12T 12T 12T 12T 12T 80G 80G 74G 80G 74G 80G 90G 15G 15G 15G 15G 15G 60G	20 20 20 20 20 20 20 20 20 20 20 20 20 2	33001-A 33001-B 33001-C 33001-C 33001-X 33001-Y 33002-A 33002-A 33002-C 33002-C 33002-C 33002-C 33002-Y 33003-A 33003-C 33003-C 33003-C 33003-Y 33004-A 33004-C 33004-C	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	0.06 0.06 0.06 0.06 0.06 0.08 0.08 0.08	4G 4G 4G 4G 4G 6G 6G 6G 6G 6G 6G 3G 3G 3G 3G 3G 3G 2G 2G 2G	$ \begin{array}{c} 14\\ 14\\ 14\\ 20\\ 20\\ 14\\ 14\\ 14\\ 20\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14$

Table 5.1.2.7-23: Microelectronic Parameters

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
ASTTL					ASTTL				
33004-X 33004-Y	7. 7.	0.03	2G 2G	20 20	33905-F 33906-E	7. 7.	0.13	17G 15G	16 16
LSTTL					33906-F 33907-E	7	0.13	15G	15
33106-E 33106-F 33107-E 33107-F	7. 7. 7. 7.	0.15 0.15 0.10 0.10	36G 36G 24G 24G	16 16 16 16	33907-F 33908-E 33908-F 34001-A 34001-B 34001-C	7. 7. 7. 7. 7. 7.	0.14 0.12 0.07 0.07	15G 16G 16G 4G 4G	16 16 14 14
ASTTL					34001-D	7.	0.07	4G 3G	14
33201-R 33202-R 33202-R 33202-S 33203-R 33203-S 33301-A 33301-B 33301-C 33301-C 33401-A 33401-A 33401-C 33401-C 33401-C 33501-A 33501-C 33501-C 33501-C	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	0.41 0.50 0.50 0.50 0.50 0.07 0.07 0.07 0.07	10G 10G 10G 10G 10G 10G 4G 4G 4G 5G 5G 5G 5G 5G 4G 4G 4G 4G	20 20 20 20 20 20 14 14 14 14 14 14 14 14 14 14	34002-R 34002-C 34002-C 34101-A 34101-B 34101-C 34101-D 34102-E 34102-F 34102-F 34103-E 34103-F 34501-A 34501-A 34501-C 34501-C 34501-C 34501-C	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	0.05 0.05 0.05 0.09 0.09 0.09 0.09 0.09	3G 3G 3G 12G 12G 12G 12G 12G 12G 16G 16G 16G 16G 46G 46G 46G 46G 266G 266G	14 14 14 14 14 14 14 16 16 16 16 16 16 14 14 14 20 20 20
33601-E	7.	0.25	47 G 47 G	16	LSTTL				
33901-E 33902-E 33902-F 33903-E	7. 7. 7. 7.	0.12 0.11 0.11 0.13	17G 17G 16G 19G	16 16 16 16	36001-E 36001-F 36002-E 36002-F	7. 7. 7. 7.	0.11 0.11 0.14 0.14	29G 29G 30G 30G	16 16 16 16
33904-E	7.	0.13	196 15G	16	ALSTTL				
33904-F 33905-E	7.	0.13	17G	16	37001-A	7.	0.07	4 G	14

4

MIL-HDBK-217(REV)

MICROELECTRONIC DEVICES

Table 5.1.2.7-23: Microelectronic Parameters

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
ALSTTL					ALSTTL				
37001-В	7.	0.07	4G	14	37302-A	7.	0.07	3G	14
37001-C	7.	0.07	4G	14	37302-8	7.	0.07	36	14
37001-0	7.	0.07	46	14	1) 37302-C	7.	0.07	36	14
37002-8	7.		36	14	1 37401-4	7.	n ng	30	14
37002-C	7.	0.04	3G	14	37401-3	7.	0.09	46	14
37002-D	7.	0.04	3G	14	37401-C	7	0.09	4G	14
37003-A	7.	0.02	2G	14] 37401-D	7.	0.09	4 G	14
37003-8	7.	0.02	2G	14	37402-A	7.	0.04	3G	14
37003-C	7.	0.02	2G	14	1 37402-8	7.	0.04	3G	14
37003-0	' .	0.02	26	4 1.4	3/402-0	/.	0.04	36	14
37004-8	7.	0.00	16	14	37501-4	7.	0.04	3G 4G	14
37004-C	7.	0.00	16	14	37501-8	7	0.11	46	14
37004-0	7.	0.00	16	14	37501-C	7	0.11	4G	14
37005-E	7.	0.00	1G	16	37501-0	7.	0.11	4 G	14
37005-F	7.	0.00	1G	16	37701-E	7.	0.06	16G	16
37006-A	7.	0.14	6G	14	37701-F	<u>7</u> .	0.06	16G	16
37005-8	7.	0.14	6G	14	3/901-K	7.	0.20	44G	24
37006-0	7.	0.14	50	14	1 3/901-L	7.	0.20	106	20
37101-A	7.	0.01	6G	14	38301-5	7	0.14	106	20
37101-В	7.	0.01	6G	14	38 302 - R	7.	0.17	106	20
37101-C	7.	0.01	6G	14	38302-5	7.	0.17	10G	20
37101-D	7.	0.01	6G	14	38303-R	7.	0.17	10 G	20
37102-E	7.	0.01	8G	16	38303-5	7.	0.17	10 G	20
37102-F	7.	0.01	8G	16	38401-A	7.	0.03	4G	14
3/103-E	' .	0.01	.89	16	38401-5	7.	0.03	46	14
37104-R	7.	0.02	426	20	38401-0	7.	0.03	4G	14
7104-5	7	0.02	42G	20	38402-A	7	0.04	4 G	14
105-R	7.	0.02	42G	20	38402-8	7.	0.04	4 G	14
37105-5	7.	0.02	42G	20	38402-C	7.	0.04	4G	14
3/105-L	7.	0.02	62G	Z4	38402-0	7.	0.04	4G	14
37100-K	7.	U.UZ	02G 62C	24	38403-A	7.	0.03	46	14
37107-K	7	0.02	626	24 24	38403-5	7.	0.03	46	14
37301-A	7	0.09	4G	14	38403-0	7	0.03	4G	14
37301-8	7.	0.09	4Ġ	14	38404-A	7	0.04	4 G	14
87301-C	7.	0.09	4G	14	38404-3	7.	0.04	4 G	14
37301-0	7.	0.09	4 G	14	38404-C	7.	0.04	4 G	14

Table 5.1.2.7-23: Microelectronic Parameters

(continued)

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
ALSTTL					ALSTTL				
38404-0 38405-A 38405-B 38405-C 38405-0 38406-A 38406-B	7. 7. 7. 7. 7. 7.	0.04 0.03 0.03 0.03 0.03 0.03	4G 3G 3G 3G 3G 3G	14 14 14 14 14	38505-R 38505-S 38506-C 38506-D 38507-C 38507-D	7. 7. 7. 7. 7. 7.	0.35 0.35 0.18 0.18 0.18 0.18	18G 18G 10G 10G 10G	20 20 14 14 14
38406-C	7.	0.03	3G	14	NMOS				
38405-0 38407-A 38407-B 38407-C 38407-0	7. 7. 7. 7. 7.	0.03 0.02 0.02 0.02 0.02	3G 2G 2G 2G 2G	14 14 14 14 14	40001-Q 40201-J 40301-J 42901-Q	7. 7. 7. 20.	1.00 1.00 1.00 1.70	1300G 1024G 15384G 1100G	40 24 24 40
38408-8	7.	0.06	4G 4G	14	STTL				
38408-C 38408-D 38409-A 38409-B 38409-C	7. 7. 7. 7. 7.	0.06 0.06 0.07 0.07 0.07	4G 4G 6G 6G 6G	14 14 14 14	42101-J 42101-K 42101-L 42201-E	7. 7. 7. 7.	0.80 0.80 0.80 0.79	70G 70G 70G 70G	24 24 24 16
38409-0 38410-A	7.	0.07	6G	14	NMOS				
38410-8 38410-C 38410-D	7. 7. 7.	0.07 0.07 0.07	6G 6G 6G	14 14 14	42301-Z	7.	1.20	120G	29
38411-A	7.	0.08	6G	14	LSTTL				
38411-C 38411-D 38412-A 38412-C 38412-C 38501-R 38501-S 38502-R 38502-S 38503-R 38503-R 38503-S 38504-R 28504-S	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	0.08 0.08 0.08 0.08 0.08 0.26 0.25 0.25 0.25 0.15 0.15 0.29 0.29	6G 6G 6G 6G 18G 18G 18G 18G 18G 18G 18G	14 14 14 14 14 20 20 20 20 20 20 20 20 20 20 20 20	44001-Q 44001-Z 44101-T 44101-Z 44102-J 44102-Z 44103-R 44103-R 44104-J 44104-J 44104-Z 44105-J 44105-Z 44106-R 44106-S	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	1.60 1.60 1.00 1.00 1.00 1.00 1.00 1.00	537G 537G 77G 85G 85G 77G 77G 77G 85G 85G 85G 77G 77G 77G	40 42 24 24 20 24 20 24 20 24 20 24 20 24 20 24 20 20

5.1.2.7-65
.

MIL-HDBK-217(REV) MICROELECTRONIC DEVICES

Table 5.1.2.7-23: Microelectronic Parameters

(continued)

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Ňp	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
LSTTL					STTL				
44201-E 44201-F	7. 7.	0.83 0.83	24G 24G	16 16	50401-R 50401-Y	12. 12. 12.	0.10	98 G 98 G 98 G	20 20 20
IIL					50407-Y	12.	0.10	98G	20
46001-Y	6.	0.75	3100G	64	50501-2	12.	1.20	100G	28
CMOS					NMOS				
47001-0 47201-J 47201-K 47401-E 47401-F	11. 11. 11. 11. 11.	0.50 0.50 0.50 0.50 0.50	1 375 G 4096 G 4096 G 27 G 27 G	40 24 24 16 16	52001-Q 52001-X 52002-Q 52002-X 52003-Q	7. 7. 7. 7. 7.	2.20 2.20 2.20 2.20 2.20 2.20	5833G 5833G 5833G 5833G 5833G 5833G	40 48 40 48 40
NMOS					52003-X 52004-0 52004-X	7. 7. 7.	2.20 2.20 2.20	5833G 5833G 5833G	48 40 48
48001-0 48002-0 48003-0	5. 5. 5.	1.00 1.00 1.00	2833G 2833G 2833G	40 40 40	CMOS				
STTL					55001-C 65001-2	7. 7.	0.30	4G 4G	14 20
50301-R 50301-Y 50203-R 50302-Y 50303-R 50303-Y 50304-R 50304-Y 50305-R 50305-Y 50306-R 50306-Y 50307-R 50307-Y 50308-R 50208-Y 50309-R	12. 12. 12. 12. 12. 12. 12. 12. 12. 12.	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	34G 34G 36G 34G 34G 34G 35G 35G 35G 34G 34G 34G 34G 34G 34G 34G	20 20 20 20 20 20 20 20 20 20 20 20 20 2	65002-C 65003-C 65003-C 55003-2 65004-C 65004-2 65005-C 65005-2	7 . 7 . 7 . 7 . 7 . 7 . 7 .	0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30	3G 3G 2G 1G 1G 4G 4G	20 14 20 14 20 14 20

5.1.2.8 Example Failure Rate Calculations for Monolithic Devices.

Example One: Bipolar VLSI

Description: A custom gate array with 54,000 gates implemented in a five year old TTL bipolar process. The package is a 64-pin hermetic DIP with solder seal for use in a space application at an average case temperature of 45°C. The device dissipates 150mW at 5 volts, and the die size is 130,000 square mils. The part is screened to S-level quality per MIL-M-38510.

From Section 5.1.2.1, the operating failure rate model is:

 $\lambda_{p}(t_{0}) = \lambda_{AC} + \lambda_{EM} (t_{0})$

	$\lambda_{AC} = \pi_0 (C_1 \pi_T + C_2 \pi_E) \pi_L$
Table 5.1.2.7-1	Quality Level S: $\pi_0 = 0.71$
Section 5.1.2.1	$C_1 = 0.08$
Equation 5.1.2.7.4	$T_{1} = T_{C} + \Theta_{1C} \times P$
Table 5.1.2.7-4a	$= 45^{\circ}C + (28^{\circ}C/W) \times 0.150W = 49.2^{\circ}C$
Table 5.1.2.7-5	$\pi_{T} = 0.32$
Table 5.1.2.7-15	$C_2 = 0.025$
Table 5.1.2.7-3	$\pi_{\rm F}^2 = 0.9$
Table 5.1.2.7-2	$\pi_{1} = 0.37$
	$\lambda_{AC} = (0.71)[(0.08)(0.32) + (0.025)(0.9](0.37)]$
	= 0.0126 failures/10 ⁶ hours
Table 5.1.2.7-17, Note 2	J = .13 Ma/cm ² (default value)
Table 5.1.2.7-17	λ _{EM} (10K hours) = 0 failures/10 ⁶ hours
	λ _p (10K hours) = 0.0126 failures/10 ⁶ hours

Example Two: CMOS MSI

ı.

Description: A CMOS digital timing chip (4046) in an airborne inhabited application, case temperature of 45°C, 75mW power consumption at 10 volts. The device is procured with normal manufacturer's screening consisting of final electrical test, temperature cycling, B-level burn-in and seal test. The package is a 24 pin CERDIP with glass seals. The die size is 48.4K square mils, has 1000 transistors, and an 800 angstrom gate oxide in a seven year old process.

From Section 5.1.2.2	$\lambda_{P}(t_{0}) = \lambda_{AC} + \lambda_{TDDB}(t_{0}) + \lambda_{EM}(t_{0})$			
Table 5.1.2.7-1	$\lambda_{AC} = \pi_Q (c_1 \pi_T + c_2 \pi_E) \pi_L$ Quality level calculated by:			
	Temp Cycling - 11.6 points			
	Burn-in – 10.9 points			
	Electrical Test – 10.9 points			
	Seal Test – 7.8 points			
	Total - 40.7 points			
	$\pi_{O} = 71.3/40.7 = 1.75$			
Section 5.1.2.2	$C_1 = .02$ (1000 transistors $\simeq 250$ gates)			
Equation 5.1.2.7.4	$T_{1} = T_{C} + \Theta_{1C} \times P$			
Table 5.1.2.7-49	= 45°C + (28°C/W) x 0.075W = 47.1°C			
Table 5.1.2.7-9	$\pi_{T} = 0.26$			
Table 5.1.2.7-15	$C_2 = 0.011$			
Table 5.1.2.7-3	$\pi_{\rm F} = 4.4$			
Table 5.1.2.7-2	$\pi_1 = 0.01 \text{ exp} (5.35 - 0.35 (Y)) = 0.18$			
	$\lambda_{AC} = (1.75)[(.02)(.26) + (.011)(4.4)](.18)$ = 0.0169 failures/10 ⁶ hours			
Table 5.1.2.7-16, Note 1	$E_{S} = .1 V_{op}/t_{ox}$			
	V _{op} = 10 volts			

Table 5.1.2.7-19	t _{OX} = 1.10KÅ (worst case for 1000 transistors) E _c = 0.9 Mv/cm
Table 5.1.2.7-18, Note 1	$A = \log(6(TR)10^{58(\log(TR)-5.78)})$ = 5.39 log um ²
Table 5.1.2.7-16	λ_{TDDB} (10K hours) = 0.0 failures/10 ⁶ hours
Table 5.1.2.7-17, Note 2	J = .13 Ma/cm ² (default value) ^λ EM (10K hours) = 0.0 failures/10 ⁶ hours
	λ _P (10K hours) = 0.0169 failures/10 ⁶ hours

Example 3: MOS Digital Microprocessor

Description: A CMOS 80386 microprocessor (three year old process) in a 124-pin pin grid array used in an office environment and screened to D-1 level. The average junction temperature is 60° C, and average power consumption is 2 watts at 5 volts. The die size is 76K mils² and it contains 275K transistors.

From Section 5.1.2.3, the part failure rate model is: $\lambda_{p}(t_{0}) = \lambda_{AC} + \lambda_{EM}(t_{0}) + \lambda_{TDDB}(t_{0})$

Section 5.1.2.3	$\lambda_{AC} = \pi_{O} (C_1 \pi_T + C_2 \pi_F) \pi_I$
Table 5.1.2.7-1	π_0 for D-1 quality level = 6.5
Section 5.1.2.3	C_1 for > 16 bits = 0.56
Table 5.1.2.7-9	$\pi_{\rm T}$ for 60° T ₁ = 0.42
Table 5.1.2.7-15	C_2 (124 pin PGA) = 0.051
Table 5.1.2.7-3	$\pi_{\rm F} = 0.5$
Table 5.1.2.7-2	$\pi_1 = 0.67$
	$\lambda_{AC} = (6.5)[(.56)(.42) + (.051)(.5)](.67)$
	= 1.1353 failures/10 ⁶ hours

i.

MIL-HDBK-217(REV) MICROELECTRONIC DEVICES

Table 5.1.2.7-17	J = .125 Ma/cm ² (default value)
Table 5.1.2.7-17	λ _{EM} (10K hours) = 0.0 failures/10 ⁶ hours
Equation 5.1.2.7.14	$E_{S} = .1 V_{op}/t_{ox}$
Table 5.1.2.7-19	$t_{ox} = 10^{-0.405(log(TR)-3.68)}$
	= 1.931 KÅ E _c = 2.59 Mv/cm
Table 5.1.2.7-18	$A \approx \log(4(TR)^{774(\log(TR)-5.5)})$
	≈ 6.09 log µm²
Table 5.1.2.7-16	$\lambda_{\text{TDDB}}(10\text{K hours}) = 0.0$
	λ _P (10K hours) = 1.1 353 fai lures/10 ⁶ hours

Example Four:

Description: A 128K FLOTOX EEPROM that is expected to have a T_j of 80°C, and experience 10000 read/write cycles during its lifetime. The part is exposed to an operating voltage of 5v, is "B" level quality, and has been in production for three years. It is packaged in a hermetic 28 pin DIP (glass seal), and will operate in an uninhabited aircraft environment.

- 1) Determine the Electromigration failure rate (λ_{EM}) from Table 5.1.2.7-17. Using the default value of .125 MA/cm² yields a failure rate of <u>0</u> for 90°C.
- 2) Determine λ_{TDDB} : Obtain the oxide area value from Table 5.1.2.7-20. Choosing the most conservative value (largest area) yields 1,209,000 μ m² (6.1 Log μ m²). Obtain the gate oxide thickness from Table 5.1.2.7-21. Choosing the most conservative value (smallest thickness) yields 340 Angstroms, or 340 X 10⁻⁸ cm. Determine the field stress by dividing the operating voltage by the oxide thickness. The result is 1.5 MV/cm. Determine the λ_{TDDB} by referring to Table 5.1.2.7-16 (estimate using the 6.0 log μ m² table). The result is <u>0</u>.
- 3) Determine the defect failure rate $C_1 \pi_T$ Refer to section 5.1.2.3.2 for C_1 . Checking the appropriate table provides a value of .00339 for a 128K EEPROM. Refer to Table 5.1.2.7-10 for π_T . This equals 12.73 for 80°C The total defect failure rate is (.00339)(12.73) = 0.0432.
- 4) Determine λ_{cyc} For a Flotox device, we need only consider the A_1B_1 term

5.1.2.8-5

Refer to Table 5.1.2.4-4. For a Flotox device that will be reprogrammed 10000 times, the A₁ value is .0682 Refer to Table 5.1.2.4-6. For 80°C and a 128K device, B₁ = 3.7977 $\lambda_{cvc} = (.0682)(3.7977) = .2590$

- 5) Determine C₂ value from 5.1.2.7-15. For a hermetic 28 pin DIP, the value is $\underline{.014}$
- 6) Determine the π_E value from Table 5.1.2.7-3. π_E is 5.5 for an uninhabited aircraft environment.
- 7) Determine π_Q from Table 5.1.2.7-1. $\pi_Q = 1.0$ for a "B" level part
- 8) Determine π_1 from Table 5.1.2.7-2. $\pi_1 = 0.67$
- 9) Determine the total device failure rate:
- $\lambda_{\mathsf{P}} = [(C_1)(\pi_{\mathsf{T}}) + \lambda_{\mathsf{cyc}} + (C_2)(\pi_{\mathsf{E}})](\pi_{\mathsf{Q}})(\pi_{\mathsf{L}}) + \lambda_{\mathsf{TDDB}} + \lambda_{\mathsf{EM}}$

= [(.0432) + (.2590) + (.077)] (1.0) (0.67) + 0 + 0

= <u>.2541</u> Failures Per Million Hours

Example Five:

Description: A 64K MOS SRAM "D" level quality part, has been in production for 2 years, has an operating voltage of 5v, and is expected to operate at a T_j of 90°C. It is packaged in a hermetic 24 pin DIP (glass seal), and will operate in an uninhabited aircraft environment.

- 1) Determine the Electromigration failure rate (λ_{EM}) from Table 5.1.2.7-17. Using the default value of .125 MA/cm² yields a failure rate of 0 for 90°C.
- 2) Determine λ_{TDDB} : Obtain the oxide area value from Table 5.1.2.7-20. Choosing the most conservative value (largest area) yields 2,482,600 μ m² (6.4 Log μ m²) Obtain the gate oxide thickness from Table 5.1.2.7-21. Choosing the most conservative value (smallest thickness) yields 250 Angstroms, or 250 X 10⁻⁸ cm Determine the field stress by dividing the operating voltage by the oxide thickness. The result is 2.0 MV/cm Determine the λ_{TDDB} by referring to Table 5.1.2.7-16 (estimate using the 6.5 log μ m² table). The result is <u>0</u>.
- 3) Determine the defect failure rate $C_1 \pi_T$ Refer to Table 5.1.2.4-1 for C_1 . Checking the appropriate table provides a value of .0105 for a 64K SRAM Refer to Table 5.1.2.7-10 for π_T . This equals 26.25 for 90°C The total defect failure rate is (.0105)(26.25) = 0.2756

5.1.2.8-1

⁴⁾ λ_{CYC} value is <u>0</u>.

1

MIL-HDBK-217(REV) MICROELECTRONIC DEVICES

- 5) Determine C₂ value from 5.1.2.7–15. For a hermetic 24 pin DIP, the value is .011
- 6) Determine the π_E value from 5.1.2.7-3. π_E is <u>5.5</u> for an uninhabited aircraft environment.
- 7) Determine π_Q from Table 5.1.2.7-1. $\pi_Q = 3.3$ for a "D" level part
- 8) Determine π_{L} from Table 5.1.2.7-2. $\pi_{L} = 1.05$
- 9) Determine the total device failure rate:

$$\lambda_{p} = [(C_{1})(\pi_{T}) + \lambda_{cyc} + (C_{2})(\pi_{E})] (\pi_{Q})(\pi_{L}) + \lambda_{TDDB} + \lambda_{EM}$$
$$= [(.2756) + (0) + (.0605)] (3.3) (1.05) + 0 + 0$$

= <u>1.1646</u> Failures Per Million Hours

Example_Six: PAL

Description: A data book shows a PAL to have 150 gates, and 24 pins. The operating junction temperature is 100°C, and operates in a ground benign environment. It is "B" Level Quality, and has been in production for four years. It is hermetically packaged in a DIP with a glass seal.

- 1) Determine the electromigration failure rate (λ_{EM}) from Table 5.1.2.7-17. Using the default value of .125 mA/cm² yields a failure rate of 0 for 100°C.
- 2) $\lambda_{\text{TDDB}} = \underline{0}$
- 3) Determine the defect failure rate $C_1 \pi_T$. Refer to Table 5.1.2.4-1 for C_1 . $C_1 = 0.01047$ for a 150 gate PAL. Refer to Table 5.1.2.7-10 for π_T . $\pi_T = 52.05$ at 100°C. The total defect failure rate is (.01047)(52.05) = .5450
- 4) $\lambda_{CYC} = 0$
- 5) Determine the C₂ value from Table 5.1.2.7–15 for a hermetic 24 pin DIP, C₂ = .011.
- 6) Determine π_E from Table 5.1.2.7-3. $\pi_E = 0.5$ for a ground benign environment.
- 7) Determine π_0 from Table 5.1.2.7-1. $\pi_0 = 1.0$
- 8) Determine $\pi_{|}$ from Table 5.1.2.7-2. $\pi_{|} = 0.52$
- 9) Determine total device failure rate.

 $\lambda_{P} = [(C_{1})(\pi_{T}) + \lambda_{CYC} + (C_{2})(\pi_{E})] (\pi_{Q})(\pi_{L}) + \lambda_{TDDB} + \lambda_{EM}$ = [(.5450) + 0 + (.011)(0.5)] (1.0)(0.52) + 0 + 0

= .2863 Failures Per Million Hours

Example_Seven: GaAs Digital

ſ

Description: 10G000A Quad 3 Input Nor Gate, SSI, $P_D = 875$ mw, 36 I/O LCC package, maximum $T_{CH} = 125^{\circ}$ C in a ground benign environment. The process is three years old and the device is a B-level part.

Table 5.1.2.7-13

$$\pi_{TA} = 0.1e^{-16220} \left(\frac{1}{125 + 273} - \frac{1}{423} \right) = 8.994 \times 10^{-3}$$

$$\pi_{TP} = 0.1e^{-4980} \left(\frac{1}{125 + 273} - \frac{1}{423} \right) = 4.773 \times 10^{-2}$$
Table 5.1.2.7-14
Table 5.1.2.7-15 C₂ = 0.013
Table 5.1.2.7-3 $\pi_{E} = 0.5$
Table 5.1.2.7-1 $\pi_{Q} = 1.0$
Table 5.1.2.7-2 $\pi_{L} = 0.67$
Table 5.1.2.5-1 C_{1A} = 25.3
Table 5.1.2.5-1 C_{1P} = 0.687
 $\lambda_{D} = [(C_{1A} \pi_{TA} + C_{1P} \pi_{TP} + C_{2} \pi_{E}] \pi_{Q} \pi_{L} (From Section 5.1.2.5)$

=
$$[25.3 (8.994 \times 10^{-3}) + 0.687 (4.773 \times 10^{-2}) + 0.013 (0.5)](1.0)(0.67)$$

= .1788 failures/10⁶ hours

Example Eight: GaAs MMIC

Description: MA4GM212 SPDT Switch, DC-12 GHz, 4 transistors, 4 inductors, 4 resistors, Maximum Input $P_D = 30$ dbm, 4 pin hermetic can, Maximum $T_{CH} = 145^{\circ}$ C in a ground benign environment. The process is three years old and the device is a B-level part.

 $-17380 \left(\frac{1}{145 + 273} - \frac{1}{423} \right)$ Table 5.1.2.7-12 $\pi_{TA} = 0.1e$ $-4980 \left(\frac{1}{145 + 273} - \frac{1}{423} \right)$ Table 5.1.2.7-14) $\pi_{TP} = 0.1e$ $= 8.686 \times 10^{-2}$ Table 5.1.2.7-15 C₂ = 0.0005
Table 5.1.2.7-3 $\pi_E = 0.5$ Table 5.1.2.7-1 $\pi_Q = 1.0$ Table 5.1.2.7-2 $\pi_L = 0.67$ Table 5.1.2.6-2 $\pi_A = 3.0$ Table 5.1.2.6-1 C_{1A} = 4.51
Table 5.1.2.6-1 C_{1P} = 2.26 $\lambda_M = \left[(C_{1A} \pi_{TA} + C_{1P} \pi_{TP}) \pi_A + C_2 \pi_E \right] \pi_L \pi_Q \text{ (From Section 5.1.2.6)}$ $= \left[\{4.51(6.117 \times 10^{-2}) + 2.26 (8.686 \times 10^{-2}) \} 3.0 + 0.5 (0.0005) \right] 0.67 (1)$ = .9492 failures/106 hours

5.1.2.9 Hybrid Microcircuits

The hybrid failure rate model is:

$$\lambda_{\mathsf{P}} = [\Sigma \lambda_{\mathsf{C}} \mathsf{N}_{\mathsf{C}} (1 + .2\pi_{\mathsf{E}})] \pi_{\mathsf{Q}} \pi_{\mathsf{L}} \pi_{\mathsf{F}}$$

where:

 $\begin{array}{l} \lambda_{p} \text{ is the hybrid failure rate in failures/10}^{6} \text{ hours} \\ N_{C} \text{ is the number of each particular component} \\ \lambda_{C} \text{ is the specific component failure rate} \\ \pi_{L} \text{ is the experience (learning factor) from Table 5.1.2.7-2} \\ \hline \pi_{F} \text{ is the circuit function factor from Table 5.1.2.9-1} \\ \pi_{Q} \text{ is the quality factor from Table 5.1.2.7-3} \end{array}$

5.1.2.9.1 Active Components and Capacitors

The sum of the adjusted failure rates for the active components and capacitors shall be calculated as follows:

 N_{C} is the number of each particular component λ_{C} is the failure rate contribution for a particular component predicted using the correct model from the following sections in this handbook:

Integrated Circuits	Section 5.1.2
Discrete Semiconductors	Section 5.1.3
Capacitor	Section 5.1.7

Note: Inductor and Resistor failure rates are insignificant and are not included.

5.1.2.9-1

When calculating $\lambda_{\rm C}$ for integrated circuits, use quality factor "B". For discrete semiconductors, use quality factor "JANTXV." For capacitors, use quality factor level "M." Use the environmental factor corresponding to the application environment of the hybrid, and assume a component ambient temperature equal to the temperature of the hybrid package. For IC dice let C2 = 0 when calculating $\lambda_{\rm C}$.

If the maximum rated stress for a die is unknown, it shall be assumed to be the same as that for a discretely packaged die of the same type. If the same die has several ratings based on the discrete package type, the lower value will be assumed. Power rating used should be based on case temperature for discrete semiconductors.

Table 5.1.2.9-1

Circuit Function Factor

ТҮРЕ	πF
Digital	1.0
Video, 10 MHz < f < 1 GHz	1.2
Microwave, f < 1 GHz	2.6
Linear, f < 10 MHz	5.8
Power	21

5.1.2.9.2 Chip Junction Temperature Calculation

A hybrid is normally made up of one or more substrate assemblies mounted within a sealed package. Each substrate assembly consists of active and passive chips with thick or thin film metallization mounted on the substrate, which in turn may have multiple layers of metallization and dielectric on the surface. Figure 5.1.2.9-1 is a cross-sectional view of a hybrid with a single multi-layered substrate. The layers within the hybrid are made up of various materials with different thermal characteristics. Table 5.1.2.9-2 provides a list of commonly used hybrid materials with typical thicknesses and corresponding thermal conductivities (K). The thermal resistance of each layer is determined by the expression,

 $\Theta = (1/K)(L/A), \text{ where:}$ $\Theta \text{ is the thermal resistance of a layer in °C/Watt (°C/W) }$ K is the thermal conductivity of the material in watts/°C-in L is the material thickness in inches from Table 5.1.2.9-2 (or user provided) A is the top surface area of the chip (user provided or estimated by the following expression: $A=[27.8(1.5x10^{-3} + 10^{-4}P)]^2 \text{ (square inches), }$ (5.1.2.9.1) where P is the number of active device pin/wire terminals)

An estimated thermal resistance value for junction to case (Θ_{JC}) can be developed for each chip in the hybrid by summing the resistances of all the material layers of the hybrid structure from the chip down to the case:

$$\Theta_{JC} = \frac{i=1}{A},$$
(5.1.2.9.2)

where n is the number of material layers. Then,

 $T_{J} = T_{C} + 0.9 (\Theta_{JC})(P_{D}), \text{ where}$ (5.1.2.9.3)

5.1.2.9-3

 $T_{\rm J}$ is the junction temperature of the chip (°C) $T_{\rm C}$ is the case temperature of the hybrid (°C)

- $\boldsymbol{\theta}_{1C}$ is defined as above (°C/W), and
- P_{D} is the power dissipated by the chip (W)

The factor of 0.9 in equation 5.1.2.9.3 represents the cosine of 26°. This angle accounts for the fact that the heat is not all conducted vertically from the chip to the case, but rather "spreads" radially as well as downward.

		TYPICAL	FEATURE FROM	К
MATERIAL	TYPICAL USAGE	THICKNESS (")	FIG. 5.1.2.9-1	(W/°C-in)
Silicon	chip device	0.01	A	2.20
GaAs	chip device	0.007	A	0.76
Au Eutectic	chip attach	0.0001	B	6.91
Solder	chip/substrate attach	0.003	B/E	1.27
Epoxy (diel)	chip/substrate attach	0.0035	B/E	0.006
Ероху				
(Conductive)	chip attach	0.0035	B	0.15
Thick film	glass insulating	0.003	C	0.66
dielectric	layer	ļ		
Alumina	Substrate, MHP	0.025	D	0.64
BeO	Substrate, PHP	0.025	D	6.58
Kovar	Case, MHP	0.02	F	0.425
Aluminum	Case, MHP	0.02	F	4.58
Copper	Case, PHP	0.02	F	9.96

Table 5.1.2.9-2 Hybrid Materials

If the hybrid internal structure cannot be determined, use the following default values for the temperature rise from case to junction: microcircuits, 10° C; transistors, 25°C; diodes, 20°C. Assume capacitors are at T_C.

1

MIL-HDBK-217(REV) MICROELECTRONIC DEVICES

5.1.2.9.3 Example Failure Rate Calculations for a Hybrid Device.

Microcircuit Description: Driver, Linear MHP in a hermetically sealed Kovar package. The substrate is alumina and there are two dielectric layers. The die- and substrate- attach materials are conductive epoxy and solder, respectively.

Active Components:	1 - LM106				
	1 - LM741A				
	2 – Si NPN Transistor, 60% stress ratio (power and				
	voltage), linear application < 1 watt.				
	2 – Si PNP Transistor, 60% stress ratio (power and				
	voltage), linear application < 1 watt.				
	2 – Si General Purpose Diodes, 60% stress ratio (power				
	and voltage), small signal, metallurgically bonded.				
Passive Components:	2 - Ceramic Chip Capacitors, 60% stress ratio, 1000 pf.				
	17 - Thick Film Resistors				
Environment:	Naval Unsheltered, 65°C package case temperature				
Maturity:	2.1 Years in production, $\pi_1 = 1.0$				

Screened to MIL-STD-883, Method 5008, in accordance with Appendix G to MIL-M-38510. From Table 5.1.2.7-1, $\pi_0 = 1.0$

Example Calculation:

1. Calculate Active Device Junction Temperatures.

Since all chips are silicon, $\sum_{i=1}^{n} L_i/K_i$ is the same for each. From Table 5.1.2.9–2, i=1

ł.

MIL-HDBK-217(REV) MICROELECTRONIC DEVICES

Layer	L _i /K _i	(<u>°C-in²/W</u>)
Chip	0.01/2.20	= .0045
Epoxy (Cond)	0.0035/0.15	= .0233
Dielectric(2)	(2)(0.003/0.66) = .0091
Substrate	0.025/0.64	= .0391
Solder	0.003/1.27	= .0024
Kovar case	0.02/0.425	= .0471
Total		= .1255

LM106	<u>LM741A</u>	SINPN	Sipnp	SIDIODE
8	14	3	3	2
.33W	.35W	.6W	.6W	.42W
.004	.0065	.0025	.0025	.0022
31.4	19.3	50.2	50.2	51.1
74.3	71.1	92.1	92.1	84.3
	LM106 8 . 33W . 004 31.4 74.3	LM106 LM741A 8 14 .33W .35W .004 .0065 31.4 19.3 74.3 71.1	LM106 LM741A SiNPN 8 14 3 .33W .35W .6W .004 .0065 .0025 31.4 19.3 50.2 74.3 71.1 92.1	LM106 LM741A SiNPN SiPNP 8 14 3 3 .33W .35W .6W .6W .004 .0065 .0025 .0025 31.4 19.3 50.2 50.2 74.3 71.1 92.1 92.1

2. Calculate Failure Rates.

 $\lambda_{p} = [\Sigma N_{C} \lambda_{C} (1 + .2 \pi_{E})] \pi_{Q} \pi_{L} \pi_{F}$ Failure Rates for Components (λ_{C}):

LM106 die, 13 transistors, page 5.1.2.2-1:

 $\pi_{Q} \begin{bmatrix} C_{1}\pi_{T} + C_{2}\pi_{E} \end{bmatrix} \pi_{L}$ 1.0 [(0.01 x 3.6) + (0 x 5.7)] 1 = <u>0.036</u>

LM741A die, 23 transistors, page 5.1.2.2-1 (same model as LM106 above):

 $1.0 [(0.01 \times 2.9) + (0 \times 5.7)] 1 = 0.029$

Si NPN transistor die, 60% stress ratio, Section 5.1.3, where T + $\Delta T(S)$ = 92.1°C:

 λ_b ($\pi \in \pi A \pi \circ \pi R \pi S 2 \pi C$)

(.0019)(21)(1.5)(0.12)(1.0)(0.88)(1.0) = 0.0063

Si PNP transistor die, 60% stress ratio, Section 5.1.3: (same model as NPN transistor above):

```
(.0018)(21)(1.5)(0.12)(1.0)(0.88)(1.0) = 0.0060
```

Si general purpose diode die, 60% stress ratio, Section 5.1.3 where T + $\Delta T(S) = 84.3^{\circ}C$:

λ_b (πεποπRπAπS2πC)

(.0005)(21)(.15)(1.0)(1.0)(0.7)(1.0) = 0.0011

Ceramic chip capacitor, 60% stress ratio, 1000 pf., Section 5.1.3, where $T=65^{\circ}C$ case temperature:

λ_b (πεποπCV)

(.0063)(12.4)(1.0)(1.0) = 0.075

 $\pi_{\rm F} = 5.7$, Table 5.1.2.7-3

 $\pi_0 = 1.0$, Table 5.1.2.7-1

 $\pi_1 = 1.0$, Table 5.1.2.7-2

 $\pi_{\rm F}$ = 5.8, Table 5.1.2.9-1

 $\lambda_{p} = \{[.36 + .029 + 2 (.0063) + 2(.0060) + 2 (.0011) + 2 (.075)] \\ [1 + (.2)(5.7)\} (1.0)(1.0)(5.8) \\ = 3.00 \text{ failures}/10^{6} \text{ hours}$

MIL-HDBK-217E

MICROELECTRONIC DEVICES

5.1.2.10 <u>Magnetic Bubble Memories*</u>. The magnetic bubble memory device in its present form is a non-hermetic assembly of two major structural segments:

a. A basic bubble chip or die consisting of a memory or a storage area (e.g., an array of minor loops), and required control and detection elements (e.g., generators, various gates and detectors), and,

b. A magnetic structure to provide controlled magnetic fields consisting of permanent magnets, coils, and a housing.

These two structural segments of the device are interconnected by a mechanical substrate and lead frame. The interconnect substrate in the present technology is normally a printed circuit board. It should be noted that this model does not include external support microelectronic devices required for magnetic bubble memory operation. The general form of the operating failure rate model is:

$$\lambda_p = \lambda_1 + \lambda_2$$

1

where:

 λ_p = operating failure rate in failures/10⁶ hrs. λ_1 = failure rate of the control and detection structure. λ_2 = failure rate of the memory storage area.

*See Bibliography Item No. 60

MIL-HDBK-217E

MICROELECTRONIC DEVICES

5.1.2.10.1 Failure Rate of the Control and Detection Structure (λ_1) . The expansion of λ_1 is: $\lambda_1 = \pi_Q \left[N_C C_{11} \pi_{T1} \pi_W + (N_C C_{21} + C_2) \pi_E \right] \pi_D \pi_L$ where: π_0 = quality factor, Table 5.1.2.7-1 N_{c} = number of bubble chips per packaged device $C_{11} \& C_{21}$ = device complexity failure rates for the control and detection elements, Table 5.1.2.10-1 C_2 = package complexity failure rate, Table 5.1.2.7-16 π_{T1} = temperature acceleration factor. Use the values in Table 5.1.2.7-12. Use $T_J = T_{CASE} + 10$ (all in ^oC.) $\pi_{\rm LI}$ = write duty cycle factor, Table 5.1.2.10-4 π_r = application environment factor Table 5.1.2.7-3 π_n = duty cycle factor, Table 5.1.2.10-3 π_1 = device learning factor, Table 5.1.2.7-2. Because this is a relatively new technology, justification should be given for use of $\pi_1 = 1$. Failure Rate of the Memory Storage Area (λ_2) . 5.1.2.10.2 The expansion of λ_2 is: $\lambda_2 = \pi_0 N_C (C_{12} \pi_{T2} + C_{22} \pi_E) \pi_L$ where: π_0 = quality factor, Table 5.1.2.7-1 N_r = number of bubble chips per packaged device C_{12} & C_{22} = device complexity failure rates Table 5.1.2.10-2. π_{T_2} = temperature acceleration factor. Use the values in Table 5.1.2.7-8. Use T_J = T_{CASE} + 10 (all in C.)

i.

MIL-HDBK-217E

MICROELECTRONIC DEVICES

 $\pi_{\rm E}$ = application environment factor, Table 5.1.2.7-3

 π_1 = device learning factor, Table 5.1.2.7-2. Because this is a relatively new technology, justification should be given for use of π_1 = 1.

TABLE 5.1.2.10-1: C11 & C21, DEVICE COMPLEXITY FAILURE RATES FOR CONTROL & DETECTION STRUCTURE IN MAGNETIC BUBBLE DEVICES IN FAILURES PER 10 HOURS.

N ₁	c ₁₁	C ₂₁	Nl	C ₁₁	c ₂₁
4	.0017	.00014	500	.011	.00041
50	.0045	.00024	550	.012	.00042
100	.0060	.00028	600	.012	.00042
150	.0070	.00031	650	.013	.00043
200	.0079	.00033	700	.013	.00044
250	.0086	.00035	750	.013	.00045
300	.0093	.00036	800	.014	.00046
350	.0099	.00038	850	.014	.00046
400	.010	.00039	900	.014	.00047
450	.011	.00040	950	.015	.00047
Į			1000	.015	.00048

Tabulated values are determined from the following equations: $C_{11} = .00095(N_1)^{.40} \& C_{21} = .0001(N_1)^{.226}$

where:

 N_1 = the number of dissipative elements on a chip (gates, detectors, generators, etc.) and is ≤ 1000 .

MIL-HDBK-217E

MICROELECTRONIC DEVICES

TABLE 5.1.2.10-2: C12 & C22 DEVICE COMPLEXITY FAILURE RATES FOR MEMORY STORAGE STRUCTURE FOR MAGNETIC BUBBLE DEVICES IN FAILURES PER 10⁶ HOURS.

NO. BITS IN (10 ³)	c ₁₂	C ₂₂	NO. BITS IN (10) ³	C ₁₂	с ₂₂
66	.0020	.00028	1049	.0045	.00064
92	.0022	.00031	2097	.0055	.00079
131	.0024	.00035	4194	.0068	.00097
262	.0030	.00042	8389	.0084	.0012
524	.0036	.00052			

Tabulated values are determined from the following equations:

 $C_{12} = .00007 (N_2)^{.3} \& C_{22} = .00001 (N_2)^{.3}$

where:

$$N_2$$
 = the number of bits and is $\leq 9 (10)^{6}$.

		.2.10-3.	<u>"D'</u>	0011	UIULL		, 101	INGIL	10 00		
D*	0	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
π _D	.10	. 19	.28	.37	.46	. 55	.64	.73	.82	.91	1.0

TABLE 5.1.2.10-3: π_{D} , DUTY CYCLE FACTOR, FOR MAGNETIC BUBBLE DEVICES

* - The tabulated values are determined from

$$\pi_n = .9D + 0.1$$
 for $0 \le 0 \le 1.0$

D is the device duty cycle and is application dependent. It is a function of the usage the bubble device experiences during the time the power is applied to the equipment using the device.

Average device data rate for the application

0 = ____

manufacturer's maximum rated data-rate

where: the application data rate is averaged over the time that the power is applied to the using equipment.

<u>_____ <</u>1.

5.1.2.10-4

ī.

MIL-HDBK-217E

MICROELECTRONIC DEVICES

•

TABLE 5.1.2.10-4.	πu, WRI	TE-DUTY	CYCLE	FACTOR	FOR	MAGNETIC	BUBBLE
_	DEVICES						

D				R/W	
	1	10	100	1000	>2154
1.0	10	5.0	2.5	1.3	1
.9	9.1	4.6	2.4	1.2	٦
.8	8.2	4.2	2.2	1.2	٦
.7	7.3	3.8	2.1	1.2	1
.6	6.4	3.4	1.9	1.2	1
.5	5.5	3.0	1.8	1.1	1
.4	4.6	2.6	1.6	1.1	1
.3	3.7	2.2	1.5	• 1.1	1
.2	2.8	1.8	1.3	1	1
.1	1.9	1.4	1.2	1	1
.05	1.5	1.2	1.1	1	1
<.03	1	1	1_1	1	1

Tabulated values are determined from the following equations:

$$\pi_{W} = \left(D \frac{10}{(R/W)} \cdot 3^{-1} \right) + 1 \text{ for } 1 \le R/W < 2154$$

= 1 for R/W <1 and R/W \geq 2154

where:

R/W = no. of reads per write

D = device duty cycle (see footnote in Table 5.1.2.10-3) For seed-bubble generator use table value divided by 4, or use 1, whichever is greater.

5.1.2.10-5

5.1.2.10.3 Example Failure Rate Calculations.

<u>Example One</u>: Find the operating failure rate for a single chip 92K bit magnetic bubble memory, 40°C case temperature, ground benign environment. The device has a 14 pin nonhermetic DIP enclosure with 10 pins connected, one major loop, three dissipative control elements (generate, replicate and detector bridge), and 144 transfer gates. Device has been in continuous production for two years and is used at D = 1.0 and R/W = 10.

For control and detection structure, Section 5.1.2.10.1,

	$\lambda_{a} = \pi_{O} \left[N_{C} C_{11} \pi_{T1} \pi_{W} + (N_{C} C_{21} + C_{2}) \pi_{E} \right] \pi_{D} \pi_{L}$
Table 5.1.2.7-1	Quality level D-1, $\pi_0 = 6.5$
Section 5.1.2.10.1	$N_{\rm C} = 1$
	$N_1 = 1$ major loop + 3 dissipative elements + 144 gates
	= 148,
Table 5.1.2.10-1	$C_{11} = .007, C_{21} = .00031$
Table 5.1.2.10-5	$T_1 = 40 + 10 = 50^{\circ}C, \pi_{T1} = 1.1$
Table 5.1.2.10-4	$D = 1, R/W = 10; \pi_W = 5$
Table 5.1.2.7-15	Nonhermetic, 10 pins, $C_2 = .0034$
Table 5.1.2.7-3	For G_B , $\pi_F = .5$
Table 5.1.2.10-3	$D = 1, \pi_{D} = 1$
Table 5.1.2.7-2	π ₁ = 1.05
	$\lambda_{1} = 6.5 \{ [(1)(.007)(1.1)(5)] + [(1)(.00031) + .0034] \}$
	(.5)}(1)(1.05)
	= 6.5 (.0385 + .0019) 1.05
	= 0.28 failures/10 ⁶ hours.

For magnetic storage area, Section 5.1.2.10.2,

1

```
\lambda_2 = \pi_0 N_C (C_{12} \pi_{T2} + C_{22} \pi_E) \pi_L
                             Quality level D-1, \pi_0 = 6.5
Table 5.1.2.7-1
                             N_{C} = 1
Section 5.1.2.10.1
                              No. of bits = 92,000,
Table 5.1.2.10-2
                             C_{12} = .0022, C_{22} = .00031
                             T_{\rm J} = 40 + 10 = 50^{\circ} \text{C}, \ \pi_{\rm T2} = .53
Table 5.1.2.10-6
                             For G_B, \pi_E = .5
Table 5.1.2.7-3
                             \pi_{\rm L} = 1.05
Table 5.1.2.7-2
                              \pi_2 = (6.5)(1)[(.0022)(.53) + (.00031)(.5)](1.05)
                                 = 6.5 [.001166 + .000155]1.05
                                 = .009 failures/10<sup>6</sup> hours.
```

From Section 5.1.2.10,

 $\lambda_{p} = \lambda_{1} + \lambda_{2}$ = .28 + .009 = .29 failures/10⁶ hours.

<u>Example Two</u>: Find the operating failure rate for a single chip one megabit magnetic bubble memory at 40°C case temperature in a benign ground environment. The device has two generators, eight detector elements, 512 replicate/swap gates, four boot loop gates and is contained in a nonhermetic DIP with 19 pins connected. The application requires 10 reads per write and a data rate equal to the maximum rated value of 100kHz. The device uses a seed generator and is in early production.

For control and detect	ion structure, Section 5.1.2.10.1,
	$\lambda_{1} = \pi_{0} [N_{C}C_{11}\pi_{11}\pi_{W} + (N_{C}C_{21} + C_{2})\pi_{E}]\pi_{D}\pi_{L}$
Table 5.1.2.7-1	Quality level D-1, $\pi_0 = 6.5$
Section 5.1.2.10.1	$N_{\rm C} = 1$
	$N_1 = 2$ generators + 8 detector elements + 512 replicate
	/swap gates + 4 boot loop gates = 526
Table 5.1.2.10-1	$C_{11} = .012$ $C_{21} = .00041$.
Table 5.1.2.10-5	$T_1 = 40 + 10 = 50^{\circ}C, \pi_{T_1} = 1.1$
Table 5.1.2.10-4	D = 100 kHz./100 kHz. = 1, R/W = 10
	$\pi_W = 5/4 = 1.25$ for seed bubble generator
Table 5.1.2.7-15	Nonhermetic, 19 pins, C ₂ = .0075
Table 5.1.2.7-3	For G_{B} , $\pi_{F} = .5$
Table 5.1.2.10-3	$D = 1, \pi_{D} = 1$
Table 5.1.2.7-2	Early production, $\pi_1 = 2.1$
	$\lambda_1 = 6.5 \left\{ [(1)(.012)(1.1)(1.25)] + [(1)(.00041) + .0075] \right\}$
	(.5)}(1)(2.1)
	= 6.5 (.0165 + .004) 2.1
	= 0.28 failures/10 ⁶ hours.

5.1.2.10-8

For magnetic storage area, section 5.1.2.10.2,

ı.

```
\lambda_2 = \pi_0 N_C (C_{12} \pi_{T2} + C_{22} \pi_E) \pi_L
                               Quality level D-1, \pi_0 = 6.5
Table 5.1.2.7-1
                              N<sub>C</sub> = 1
Section 5.1.2.10.1
                               C_{12} = .0045, C_{22} = .00064
Table 5.1.2.10-2
                              T_{\rm J} = 40 + 10 = 50^{\circ}\text{C}, \ \pi_{\rm T2} = .53
Table 5.1.2.10-6
                              For G_{B}, \pi_{E} = .5
Table 5.1.2.7-3
                               Early production, \pi_1 = 2.1
Table 5.1.2.7-2
                               \lambda_2 = (6.5)(1)[(.004\overline{5})(.53) + (.00064)(.5)](2.1)
                                   = 6.5 (.002385 + .00032)2.1
                                   = .037 failures/10<sup>6</sup> hours.
```

From Section 5.1.2.10,

 $\lambda_p = \lambda_1 + \lambda_2$ = 0.28 + .037 = 0.32 failures /10⁶ hours.

5.1.2.11 Surface Acoustic Wave (SAW) Devices. The part operating failure rate model (λ_p) is:

$$\lambda_{\rm p} = 2.1 \pi_{\rm Q} \pi_{\rm E}$$
 failures/10⁶ hours.

where:

$$\pi_E$$
 = environmental factor (Table 5.1.2.11-1)
 π_Q = 0.1 for high quality part, subjected to 10 temperature cycles,
(-55°C to 125°C) with end point electrical test
 π_Q = 1.0 commercial part

	TABLE	5.1	.2.1	11-1	Environmental	Mode	Factor
--	-------	-----	------	------	---------------	------	--------

Environment	"E
A	15.0
AI	11.7
NU	16.0
NI	8.8
NUU	17.0
NUL	31.0
M _F	18.0
S _F	1.6
^G в	1.2
G _M	10.5
G _F	3.9
CL	600.0

i.

APPENDIX B

MATHEMATICAL DERIVATIONS

Downloaded from http://www.everyspec.com

B.1 Probability of Success for Ln-Normal Failure Distributions

The failure density functions for many failure mechanisms are modeled by In-normal distributions. This density function is described mathematically by

$$f(t) = \frac{1}{\sigma t \sqrt{2\pi}} \exp \left[(-1/2) (\frac{\ln t - \mu}{\sigma})^2 \right], \qquad (B.1.1)$$

where:

$$\mu = \ln (t_{50\%})$$
(B.1.2)

$$\sigma = \ln (t_{50\%}) - \ln (t_{16\%}) = \ln (t_{50\%}/t_{16\%}).$$
(B.1.3)

The probability of failure at time t, F(t), is

$$F(t) \approx \int_{0}^{t} f(x) dx. \qquad (B.1.4)$$

The probability of success at time t, P(t), is

$$P(t) = 1 - F(t) = 1 - \int_0^t f(x) \, dx. \qquad (B.1.5)$$

The probability of success at time t for the ln-normal probability density function is the same as the probability of success at ln(t) for the normal density function. By making the substitution

$$y = \ln x; dy = (1/x) dx$$
 (B.1.6)

equation B.1.5 can be rewritten

$$P(t) = 1 - \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\ln t} \exp\left[(-1/2)(\frac{y - \mu}{\sigma})^2\right] dy, \qquad (B.1.7)$$

which is the probability of success for the normal density function, $N(\mu,\sigma)$, with random variable ln(t). The integral in equation B.1.7 can be approximated by use of tables provided by a comprehensive statistics text, or by the computer software program in appendix C.

The mechanism models that are described by In-normal density functions are often described in terms of log(t) instead of ln(t). It is again possible to use the probability of success for the normal distribution to evaluate the probability of success for the ln-normal distribution in terms of log(t). Using the relationships between ln(t) and log(t),

$$ln(t) = ln(10) * log(t)$$
 (B.1.8)

$$\mu = \ln(t_{50\%})$$
(B.1.2)
= ln(10) * log(t_{50\%})

$$= \ln(10) * m$$
 (B.1.9)

$$\alpha = \ln(t_{50\%}/t_{16\%})$$
(B.1.3)
= ln(10) * log(t_{50\%}/t_{16\%})
= ln(10) * s, (B.1.10)

and the substitution

$$z = \log(x); dz = (1/\ln(10)) * (1/x) dx,$$
 (B.1.11)

an expression similar to B.1.7 can be derived,

.

$$P(t) = 1 - \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\log t} \exp\left[(-1/2)(\frac{z-m}{\sigma})^2\right] dz. \qquad (B.1.12)$$

which is probability of success for the normal density function, N(m,s), with random variable log(t). Again, the integral in equation B.1.12 can be approximated by use of tables provided by a comprehensive statistics text, or by the computer software program in appendix C. Note that μ , σ , and upper evaluation limit of the integral, ln(t), of equation B.1.7 have been changed to m, s, and log(t), respectively in equation B.1.12.

B.2 Hazard (Failure) Rate Determination for Ln-Normal Failure Distributions

The hazard rate at time t for any failure distribution is given by

$$h(t) = f(t) / (1 - F(t)) = f(t) / P(t).$$
(B.2.1)

For the ln-normal distribution, the functions f(t) and P(t) are given by equations B.I.1 and B.I.5, respectively. These equations must be evaluated in terms of ln(t), not log(t).

In order to evaluate these equations in terms of log(t), the relationships of B.1.8 to B.1.10 must be used to develop f(t) in terms of log(t),

$$f(t) = \frac{1}{\ln(10)} \frac{1}{st\sqrt{2\pi}} \exp \left[(-1/2)(\frac{\log t - m}{s})^2\right].$$
 (B.2.2)

Equations B.2.2 and B.1.12 can be used to determine hazard rate for the In-normal distribution evaluated using log(t).

B.3 Derivation of Worst Case (Maximum) Current Density

According to Mil-M-38510, the maximum current density allowed, by design, is 0.5 MA/cm^2 . Assuming a microcircuit was designed to this limit, and also realizing the worst case step coverage would be 50% of the flat coverage, the maximum current density not at a step would be 0.25 MA/cm². Since electromigration does not occur at a step, or any other location on a microcircuit where there is a change in metal direction, because of electron flux divergence in these areas, the worst case current density is 0.25 MA/cm². Since most integrated circuits operate with complementary logic, on average only half the metallization is affected by a current pulse in any one instance of time. The effective duty cycle is <= 50%. Assuming a worst case duty cycle of 50%, it has been shown^[26] that the effective current density for a, microcircuit designed to the 0.5 MA/cm² limit is actually 0.125 MA/cm².
APPENDIX C

FORTRAN PROGRAMS FOR TODB AND ELECTROMIGRATION CALCULATIONS

PROGRAM TDDB TABLE

С

```
č
               Generates a one page table of probability of success
values, another of hazard rate values and one of effective
hazard rate values for a user supplied amount of total gate
с
с
с
С
                area. Each page has a temperature and electric field axis.
C
                                  C1
С
                IMPLICIT REAL*8 (A-H,O-Z), INTEGER*4 (I-N)
                DIMENSION TS(36), ES(16), PS(16), HR(16), EHR(16)
С
               OPEN (10,FILE=' ',STATUS='NEW')
OPEN (20,FILE=' ',STATUS='NEW')
OPEN (30,FILE=' ',STATUS='NEW')
С
                NOTE: LIMITS ON DO STATEMENTS ARE ARRAY DIMENSIONS
С
C
               DO 400 J = 0,35
T$(J+1) ≈ 0.D0 + 5.D0 * DBLE(J)
                CONTINUE
400
                DO 300 K = 0,15
                     ES(K+1) = 2.00 + 0.200 * DBLE(K)
300
                CONTINUE
               WRITE (*,*) 'ENTER TIME, HOURS'
READ (*,*) TIME
WRITE (*,*) 'ENTER AREA, LOG SQ. MICRONS'
READ (*,*) A
AS = 10.00**A
С
               WRITE (10,200) ES
WRITE (20,200) ES
                WRITE (30,200) ES
С
             DO 2 J=1,36

DO 1 K=1,16

CALL TDDB(AS,TS(J),ES(K),TIME,U,S,PS(K),HR(K),EHR(K))

HR(K) = HR(K) * 1.D6

EHR(K) = EHR(K) * 1.D6

IF (HR(K).GE.999.D0) HR(K) = 999.D0

IF (EHR(K).GE.999.D0) EHR(K) = 999.D0

CONTINUE
                      CONTINUE
1
С
                     WRITE (*,20) TS(J),PS
WRITE (10,1000) TS(J),PS
WRITE (20,2000) TS(J),HR
WRITE (30,2000) TS(J),EHR
C
                      I = (J / 10) + 10
                      IF (J.EQ.I) THEN
WRITE (10,100)
WRITE (20,100)
WRITE (30,100)
                     ENDIF
С
               CONTINUE
2
ē
               write(10,500)time,a
write(20,600)time,a
write(30,700)time,a
с
                STOP
             FORMAT (25x,F5.0,16F4.2)

FORMAT (25x,F5.0,16F4.2)

FORMAT (/////25x,S7('-'),' Electric Field Stress (MV/cm) ',43

('-')/25x,'T(C)',F7.1,15(1X,F7.1)/25X,'----',16(1X,'-----')//)

FORMAT (25x,'----',16(1X,'-----'))

FORMAT (25x,'----',16(1X,'-----'))
20
200
100
               FORMAT (25x,'----',16(1x,'-----'))

FORMAT (///65x,'TDDB: PROBABILITY OF SUCCESS AT',F7.0,' HOURS ',

'FOR AREA = ',F5.2,' LOG SQUARE MICRONS')

FORMAT (///65x,'TDDB: HAZARD RATE (x 10E-6) AT',F7.0,

' HOURS FOR AREA = ',F5.2,' LOG SQUARE MICRONS')

FORMAT (///60x,'TDDB: EFFECTIVE HAZARD RATE (x 10E-6) AT',F7.0,
500
600
700
               'HOURS FOR AREA = ',F5.2,' LOG SQUARE MICRONS')
FORMAT (25x,F5.0,16F8.5)
FORMAT (25x,F5.0,16F8.3)
1000
2000
               END
```

```
PROGRAM EM TABLE
С
С
              current density axis.
С
C
              IMPLICIT REAL*8 (A-H,O-Z), INTEGER*4 (I-N)
DIMENSION TS(36),CDS(16),PS(16),HR(16),EHR(16)
С
              OPEN (10,FILE=' ',STATUS='NEW')
OPEN (20,FILE=' ',STATUS='NEW')
OPEN (30,FILE=' ',STATUS='NEW')
С
             DATA CDS/.04D0,.05D0,.06D0,.08D0,.1D0,.13D0,.17D0,.2D0,
.25D0,.3D0,.4D0,.5D0,.6D0,.8D0,1.D0,1.3D0/
С
               NOTE: LIMITS ON DO STATEMENTS ARE ARRAY DIMENSIONS
С
Ĉ
              DO 400 J = 0,35
TS(J+1) = 0.D0 + 5.D0 * DBLE(J)
              CONTINUE
WRITE (*,*) 'ENTER TIME, HOURS'
READ (*,*) TIME
400
С
              WRITE (10,200) CDS
WRITE (20,200) CDS
WRITE (30,200) CDS
С
              DO 2 J=1,36
DO 1 K=1,16
                         CALL EM(TS(J),CDS(K),TIME,U,S,PS(K),HR(K),EHR(K))
HR(K) = HR(K) * 1.D6
EHR(K) = EHR(K) * 1.D6
IF (HR(K).GE.999.D0) HR(K) = 999.D0
IF (EHR(K).GE.999.D0) EHR(K) = 999.D0
1
                    CONTINUE
С
                   WRITE (*,20) TS(J),PS
WRITE (10,1000) TS(J),PS
WRITE (20,2000) TS(J),HR
WRITE (30,2000) TS(J),EHR
С
                   I = (J / 10) * 10
IF (J.EQ.I) THEN
WRITE (10,100)
WRITE (20,100)
WRITE (30,100)
                    ENDIF
С
2
               CONTINUE
C
               write (10,500)time
write (20,600)time
write (30,700)time
С
              SIUP
FORMAT (25X,F5.0,16F4.2)
FORMAT (/////25X,57('-'),' Current Density (MA/cm2) ',48('-')/
25x,'T(C)',F7.2,15(1X,F7.2)/25X,'-----',16(1X,'-----')//)
FORMAT(25X,'-----',16(1X,'-----'))
FORMAT (///70X,'ELECTROMIGRATION: PROBABILITY OF SUCCESS AT',
F7.0,' HOURS')
20
200
100
500
               FORMAT (///70X, 'ELECTROMIGRATION: HAZARD RATE (x 10E-6) AT', F7.0,
600
               ' HOURS')
          ٠
               FORMAT (///65X,'ELECTRONIGRATION: EFFECTIVE HAZARD RATE ',
'(x 10E-6) AT',F7.0,' HOURS')
FORMAT (25x,F5.0,16F8.5)
FORMAT (25x,F5.0,16F8.3)
700
1000
2000
               END
```

```
SUBROUTINE AA(AO,AS,UO,ACC)

C
SUBROUTINE AA
PURPOSE:
C
Calculate the acceleration factor due to dielectric area
relative to a reference area.
C
USAGE:
C
CALL AA (AO,AS,UO,ACC)
C
DESCRIPTION OF PARAMETERS:
C
AO - reference area (square microns)
AS - operating area (square microns)
AS - operating area (square microns)
C
AS - operating area (square microns)
C
AC - acceleration factor
SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED:
C
UNACC - acculates number of sigmas from the mean
C
IMPLICIT REAL*8 (A-H,O-Z), INTEGER*4 (I-N)
F = AO / (AO + AS)
CALL ZVAL(F,Z)
ACC = 1.00 + (Z / UO)
RETURN
END
```

1

```
SUBROUTINE AEF(EO,ES,B,ACC)
SUBROUTINE AEF
       PURPOSE:
          Calculate the acceleration factor due to electric field stress relative to a reference electric field.
       USAGE:
          CALL AEF (EO,ES,B,ACC)
       DESCRIPTION OF PARAMETERS:
          EO - reference electric field
ES - applied electric field
          B
             - mechanism constant
          ACC - acceleration factor
  SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED:
          NONE
   IMPLICIT REAL*8 (A-H,O-Z), INTEGER*4 (I-N)
ACC = DEXP(B*(ES - EO))
RETURN
       END
```

```
SUBROUTINE AJ(CDO,CDS,N,ACC)

SUBROUTINE AJ

SUBROUTINE AJ

CURPOSE:

Calculate the acceleration factor due to current density
Stress relative to a reference current density.

USAGE:
CALL AJ (CDO,CDS,N,ACC)
CDESCRIPTION OF PARAMETERS:
CCCC CDO - reference current density
CCDS - applied current density
CCDS - applied current density
CCC acceleration factor
CSUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED:
CCCCCC NONE
CTINELICIT REAL*8 (A-H,O-2), INTEGER*4 (1-N)
ACC = (CDS / CDO) ** N
RETURN
END
```

i.

```
SUBROUTINE AT(TO, TS, Ea, ACC)
**
**
    SUBROUTINE AT
        PURPOSE:
          Calculate the acceleration factor due to temperature stress
          relative to a reference temperature
       USAGE:
          CALL AT (TO, TS, Ea, ACC)
       DESCRIPTION OF PARAMETERS:
          TO - reference temperature
          TS - operating temperature
Ea - activation energy (eV/deg K)
          ACC - acceleration factor
        SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED:
          NONE
       IMPLICIT REAL*8 (A-H,O-Z), INTEGER*4 (I-N)
       B = 8.617D-5
ACC = DEXP((Ea/B)*(1.D0/(TO+273.D0) - 1.D0/(TS+273.D0)))
        RETURN
       END
```

ł.

```
SUBROUTINE CNDA(Z,F, IFLAG)

SUBROUTINE CNDA

PURPOSE:

Calculates the value of the cumulative normal distribution at
a given number of sigmas away from the mean. This subroutine
uses a series expansion of the normal distribution to perform
the integration.

USAGE:

CALL CNDA (Z,F, IFLAG)

DESCRIPTION OF PARAMETERS:

Z - number of sigmas from the mean = (x - u) / s
F - area under the normal distribution at Z
IFLAG - error flag = 0 OK
= -1 Z is less than -5.5
= 1 Z is greater than 5.5

SUBROUTINES AND SUBPROGRAMS REQUIRED:
NONE

                              SUBROUTINE CNDA(Z, F, IFLAG)
    Ĉ
                             IMPLICIT REAL*8 (A-H,O-Z), INTEGER*4 (I-N)
                               N = 0 
 F = 0.D0 
   C
                             IFLAG = 0
                             IF (2.GT.5.5D0) IFLAG = 1
IF (2.LT.-5.5D0) IFLAG = -1
IF (IFLAG.NE.0) RETURN
   C
    1
                             FACT = 1.D0
                           FACT = 1.D0

DO 3 N=0,135

RN = N

IF (N.EQ.0) GO TO 2

FACT = FACT * RN

SUMN = (-1.D0)**N * Z**(2*N+1)

SUMD = (2.D0*RN+1.D0) * 2.D0**N * FACT

SUM = SUMN / SUMD

F = F + SUM
   2
                            CONTINUE
F = F / DSQRT(2.D0 * 3.141592653589793) + 0.5D0
RETURN
  3
```

END

SUBROUTINE EM(TS, CDS, TIME, U, S, PS, HR, EHR) C C С 000000 SUBROUTINE EM PURPOSE: Calculate u, s, probability of success, hazard rate and effective hazard rate at any time t, given operating Ċ temperature, and current density. С USAGE: Ċ Č C CALL EM (TS,CDS,TIME,U,S,PS,FR,EFR) Ċ DESCRIPTION OF PARAMETERS: operating temperature (degrees C)
 current density stress (MA/cm2) С TS С CDS TIME - time at which probaility of success, hazard rate and effective hazard rate is to be calculated С Č log of failure distribution median
 square root of the variance of the failure distribution (log hours) С U Ĉ Ŝ С probability of success calculated at time TIME
 hazard rate calculated at time TIME Ĉ PS Ĉ FR EHR - effective hazard rate calculated at time TIME by the equation: EHR = -ln(TIME)/PS č с с с SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED: С С AT. temperature acceleration calculation - current density acceleration calculation С AJ С CNDA - cumulative normal distribution approximation Ĉ C** С IMPLICIT REAL*8 (A-H,O-Z), INTEGER*4 (I-N) С UO = 1.398D0 SO = 0.008D0 TO = 175.D0 Ea = 0.5D0CDO = 1.DON = 2 С STIME = DLOG10(TIME) С CALL AT(TO, TS, Ea, ACCAT) CALL AJ(CDO, CDS, N, ACCAJ) С U = UO - DLOG10(ACCAT*ACCAJ) S = SOС Z = (STIME - U) / SCALL CNDA(Z,F,IFLAG) С IF (IFLAG) 2,2,1 С 1 CONTINUE PS = 0.D0 HR = 999.D0 EHR = 999.00RETURN C 2 CONTINUE PS = 1.D0 - F IF (IFLAG.EQ.-1) PS = 1.0D0 COEF = 1.D0 / (DSQRT(2.D0*3.141592653589793)*TIME*DLOG(10.D0)) Ht = COEF*DEXP(-.5D0*Z**2) HR = Ht / PS EHR = -1.DO*DLOG(PS)/TIME RETURN С END

ī.

SUBROUTINE TODB(AS, TS, ES, TIME, U, S, PS, HR, EHR) С C****** SUBROUTINE TODB PURPOSE: Calculate u, s, probability of success, hazard rate and effective hazard rate at any time t, given total gate area, operating temperature, and electric field stress. USAGE: CALL TODB (AS, TS, ES, TIME, U, S, PS, FR, EFR) DESCRIPTION OF PARAMETERS: AS - total gate area (square microns) TS - operating temperature (degrees C) ES - electric field stress TIME - time at which probaility of success, hazard rate and effective hazard rate is to be calculated log of failure distribution median
 square root of the variance of the failure distribution (log hours) U S PS probability of success calculated at time TIME FR hazard rate calculated at time TIME EHR - effective hazard rate calculated at time TIME by the equation: EHR = -ln(TIME)/PS SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED: с с с AA area acceleration calculation AT - temperature acceleration calculation AEF - electric field acceleration calculation č CNDA - cumulative normal distribution approximation С Č*1 ********** č IMPLICIT REAL*8 (A-H,O-Z), INTEGER*4 (1-N) C UO = 8.4DOSO = 0.4D0 AO = 1.7816D5 TO = 22.DOEa = 0.3D0EO = 2.222D0 BETA = 4.5D0C STIME = DLOG10(TIME) С CALL AA(AO,AS,UO,ACCAA) CALL AT(TO,TS,Ea,ACCAT) CALL AEF(EO,ES,BETA,ACCAEF) C U = ACCAA * (UO - DLOG10(ACCAT*ACCAEF)) S = SOС Z = (STIME - U) / SCALL CNDA(Z,F,IFLAG) С IF (IFLAG) 2,2,1 С CONTINUE 1 PS = 0.00HR = 999.00EHR = 999.D0 RETURN с 2

```
CONTINUE
```

```
PS = 1.D0 - F

IF (IFLAG.EQ.-1) PS = 1.0D0

COEF = 1.D0 / (DSQRT(2.D0*3.141592653589793)*TIME*DLOG(10.D0))

Ht = COEF*DEXP(-.5D0*Z**2)

HR = Ht / PS

EHR = -1.D0*DLOG(PS)/TIME

RETURN
```

END

С

```
SUBROUTINE ZVAL(F,Z)
С
SUBROUTINE ZVAL
         PURPOSE:
             Calculates the number of sigmas away from the mean of a
normal distribution for a given probability of failure
(cumulative percent failure in decimal). This subroutine
uses the Newton-Raphson method of finding roots.
         USAGE:
             CALL ZVAL(F,Z)
         DESCRIPTION OF PARAMETERS:
000000
             F - probability of failure (cumulative percent failure in
                  decimal)
             Z - number of sigmas from the mean of the normal distribution
         SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED:
С
             CNDA - cumulative normal distribution approximation
С
С
         IMPLICIT REAL*8 (A-H,O-Z), INTEGER*4 (I-N)
С
         IF (F.LE.0.5D0) ZNEW = -0.5D0
IF (F.GT.0.5D0) ZNEW = 0.5D0
Z = ZNEW
С
         DO 5 N=1,100
CALL CNDA(2,FNEW,IFLAG)
IF (IFLAG.EQ.-1) FNEW = 0.D0
IF (IFLAG.EQ.1) FNEW = 1.D0
PHI = FNEW - F
PHIDEL - 1 D0((COCOTA(2,DOTA))
             PHIPRI = 1.D0/(DSQRT(2.D0*3.141592653589793)*DEXP(.5D0*Z**2))
             ZNEW = Z
             Z = Z - PHI / PHIPRI
             IF (DABS(Z-ZNEW)/DABS(Z).LT.0.0000001D0) RETURN
5
         CONTINUE
         RETURN
         END
```

APPENDIX D

PROBABILITY OF SUCCES AND HAZARD RATE TABLES

5.0		.00677 .00366 .00194 .00194 .00101 .00026 .00026 .00013	00000 00000 00000 00000 00000 00000 0000	00000
4.8				00000.000000.00000000000000000000000000
4.6	.99216 .98298 .98661 .94022 .94022 .94022 .94022 .94886 .78289 .70558 .70558 .532050	.44473 .36254 .28842 .22417 .17040 .12686 .09262 .06641 .06641	.01504 .01504 .01504 .01004 .00181 .00181 .00116 .00074	.00029 .00018 .00011 .00007 .00003
4.4	99983 99983 99864 99864 99595 97423 97423 97423 97596 95596		19925 15766 17766 17766 17766 17766 177226 09486 05444 05444 05444 05444 05400 05444 05400 05198	.01153 .00827 .00589 .00418 .00295
4.2	000000 000000 000000 000000 000000 00000	.98578 .97606 .97606 .96181 .94201 .94201 .94201 .94201 .94262 .88273 .88273 .79588 .74331 .74331	.62580 .56392 .56392 .50210 .44182 .33062 .33062 .28140 .23707 .19781	.13405 .10899 .08795 .07047 .05609 .05609
4.0	000000 000000 000000 000000 000000 00000		93133 93133 90757 87906 87906 84582 84582 76634 76534 67339 62384 57340	.52296 .47334 .42526 .37932 .33600 .33600
s (MV/сп 3.8		1.00000 .99998 .99998 .99998 .99978 .99957 .99958 .99858 .99756	99599 99363 99363 99024 98551 97075 97075 9606 94677 93065 93065	.88927 .86394 .83561 .80449 .77085 .73503
eld Stres 3.6		1 00000 00000 00000 00000 00000 00000 00000 00000 00000	99993 99987 99987 99959 999592 99823 99823 99728 99728	.99152 .98819 .98389 .97845 .97172
ctric Fie 3.4		00000.100000000000000000000000000000000	88000	. 99981 . 99953 . 99953 . 99928 . 99894
Ele 3.2		00000 00000 00000 00000 00000 00000 0000		
3.0		1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000
2.8		1.0000 1.0000 1.000000 1.0000000 1.000000 1.0000000 1.00000000		
2.6	00000 00000 00000 00000 00000 00000 0000	00000-1 00000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 00000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 0000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 0000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 000000-1 00000-1 00000-1 00000-1 00000-1 00000-1 00000-1 00000-1 00000-1 00000-1 00000-1 00000-1 00000-1 00000-1 00000-1 0000-1 0000-1 00000-1 00000-1 00000-1 00000-1 00000-1 00000-1 0000-10000-1 0000000-1 00000-1 00000-1 00000-1 00000000		00000
2.4	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.00000	1.00000 1.00000 1.00000 1.00000
2.2	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.00000	1.00000
2.0		1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.000000 1.00000000	1.00000
T(C)	0 4 6 7 0 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	88888888888888888888888888888888888888	105. 115. 115. 135. 135. 145.	150. 155. 165. 176.

TDDB: PROBABILITY OF SUCCESS AT 10000. HOURS FOR AREA = 4.00 LOG SQUARE MICRONS

Ŧ

5.0	30869 .21792 .21792 .0519 .059219 .05921 .05921 .05921 .05921 .02072 .01171	.00183 .00054 .00024 .00024 .00012 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	
4.8	72501 .62480 .51928 .51928 .41602 .41602 .332147 .332147 .332147 .17316 .17316 .12117 .08236	.03524 .01377 .01377 .00837 .00500 .00500 .000395 .00172 .00035 .00032 .00003 .00000 .00000 .00000 .00000 .00000	00000 00000 00000 00000
4.6	.95498 .92154 .87404 .87404 .81200 .73688 .65198 .55198 .55198 .55198 .55198 .55198 .55198	23827 13425 13425 13425 13425 09764 00288 01120 00173 00173 00173 00072 00072 00072 00072 00072 00072 00072	.00007 .00004 .00003 .00002 .00001 .00001
4.4	99738 99401 98755 98755 98755 93163 93163 897630 93163 89789 8489 84745 84745 78970		.00325 .00227 .00157 .00109 .00075
4.2	99995 99995 99997 999766 999766 999766 99312 99312 99312 99312 99312	93094 93094 93017 9317 9317 76317 76317 76317 76496 64280 57848 51383 51383 51383 51383 51383 551383 33018 33018 33018 333018 333018 333018 19545 19545 19545 19545 19545 19545 19545 19545 19545 19642 19652 1965	.05218 .04082 .03174 .02455 .01890
	27799 27800 27899	99506 97709 97709 97709 97709 96515 96515 96515 96515 96240 87119 87119 87119 87119 87119 87119 87119 87119 87119 8337 74793 59459 59459 59459 59459 59459 59459 59459	.29920 .25981 .22409 .19205 .16360 .13858
s (MV/cn 3.8	200000 2000000	99998 99975 99975 99901 99920 99871 98711 98711 98711 98711 98713 98713 98713 9733 9733 9733 9733 9733 9733 9733 9	.71589 .67488 .63266 .58978 .58978 .54681
eld Stres 3.6		 00000 <	.95234 .93952 .92454 .90731 .88781 .86607
ctric Fie 3.4		00000110000001100000000000000000000000	.99716 .99595 .99436 .99228 .98629
Ele 3.2		76444	.99994 .99998 .99978 .99978 .99978
3.0		00000 0000 00000 00000 00000 00000 00000 0	1.00000 1.00000 1.00000 1.00000
2.8			00000
2.6			00000
2.4		00000 0000 000 0000 000 0000 0000 0000 000 000 0000 0000 0000 00	00000
2.2			00000
2.0			00000
T(C)	5.6.5 33.0 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.	150. 155. 165. 170.

							Ele	ctric Fi	eld Stre	ss (MV/cn	····· (e					
T(C)	2.0	2.2	2.4	2.6	2.8	3.0	3.2	3.4	3.6	3.8	4.0	4.2	4.4	4.6	4.8	5.0
											, , , , ,	1 1 1 1 1			•	1 1 1 1 1
о.	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	00000.1	96666°	.99812	.96989	.80515	.43690	.11943
<u>ې</u>	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	.99987	.99584	.94733	.72591	.33778	.07528
2	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	.99967	.99153	.91450	.63681	.25173	04570.
15.	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	66666	.99923	-98407	.87016	.54306	.18118	.02681
20.	1.00000	00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	96666.	.99831	.97210	.81423	.45009	. 12622	.01525
<u>5</u> 2.	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	06666	.99659	.95419	.74789	.36273	.08532	.00844
30.	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	12666.	.99357	.92903	67249.	.28453	.05609	.00456
35.	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	6666.	.99951	.98859	.89569	.59421	.21751	.03596	.00241
60.	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	86666	00666	.98087	.85382	.51354	.16229	.02253	.00125
£ 2.	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	-99995	.99809	.96953	.80371	.43483	.11839	.01383	.00064
50.	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1_00000	1_00000	06666	99654	95372	74635	36093	08457	00833	.00032
55.	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	99980	.99405	93268	.68332	.29391	.05926	00494	.00016
60.	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	66666.	09666	.99022	.90584	.61660	.23501	04080	.00289	.00008
65.	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	66666	.99926	.98459	87295	.54833	. 18471	.02765	.00166	.00004
70.	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	26666.	.99869	.97668	.83409	,48064	.14286	.01846	.00095	.00002
Ŕ	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	76666.	11166.	.96595	. 78969	.41540	.10885	.01217	.00054	.00001
80.	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	99989.	.99635	.95194	.74050	.35416	.08179	E6200.	.00030	00000.
85.	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	99980	.99425	.93422	.68756	. 29803	.06068	.00511	.00017	00000.
<u>8</u> .	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	66666.	.99966	.99123	.91250	.63204	.24770	.04449	.00327	.0000	00000.
95.	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	66666.	.99942	.98705	.88662	.57524	.20347	.03228	.00200	.0000	.00000
100.	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	86666.	40666.	.98143	.85660	.51840	. 16531	.02319	.00130	.00003	00000
105.	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	70007.	.99848	.97408	.82261	.46270	.13293	.01652	.00081	.00002	00000.
110.	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	76666.	.9765	.96472	.78501	.40913	.10587	.01167	.00051	.0000	00000.
115.	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	06666.	.99648	.95309	.74428	.35852	.08357	.00819	.00031	00000.	00000
120.	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	.99983	.99485	.93899	.70102	.31148	.06543	.00571	.00019	.00000	00000
125.	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	52666	.99264	.92225	.65591	.26839	.05085	.00396	.00012	00000	00000
130.	1.00000	1.00000	1.00000	1.00000	1.00000	6666.	.99957	52686.	.90277	.60967	.22948	.03924	.00273	-0000	00000	00000.
135.	1.00000	1.00000	1.00000	1.00000	1.00000	66666.	.99935	.98598	.88052	.56300	. 194.78	.03009	.00188	0000	00000	00000.
140.	1.00000	1.00000	1.00000	1.00000	1.00000	86666.	.99903	.98122	.85557	.51660	. 16419	.02294	.00128	.0000	00000	00000
145.	1.00000	1.00000	1.00000	1.00000	1.00000	10000	. 99858	.97532	.82804	.47108	.13751	.01740	.00088	.00002	.00000	00000"
150.	1.00000	1.00000	1.00000	1,00000	1.00000	50000	79799	96813	79814	42700	. 11448	01314	. 00060	.00001	00000	00000.
155.	1.00000	1.00000	1.00000	1.00000	1.00000	26666.	99715	.95952	.76612	.38481	.094.78	00988	0000-	.0000	.00000	00000.
160.	1.00000	1.00000	1.00000	1.00000	1.00000	999988	.99607	.94937	. 73230	.34486	.07806	0740.	.00027	.00000	.00000	.00000
165.	1.00000	1.00000	1.00000	1.00000	1.00000	.99982	.99467	.93759	20269.	.30743	.06398	.00552	.00019	.00000	00000-	00000.
170.	1.00000	1.00000	1.00000	1.00000	1.00000	72666.	.99290	.92411	.66067	.27268	.05221	.00411	.00013	.00000	.00000	00000.
<u>к</u>	1.00000	1.00000	1.00000	1.00000	66666.	.99963	69066.	.90890	.62361	.24070	.04244	.00305	.00008	.00000	00000.	.00000

TDDB: PROBABILITY OF SUCCESS AT 10000. HOURS FOR AREA = 5.00 LOG SQUARE MICRONS

ł

5.0	.02870 .01623 .00893 .00479 .00479 .00130 .00130 .00033	000000000000000000000000000000000000000		00000
4.8	.16736 .11447 .07592 .07595 .077 .07595 .077 .01891 .01139 .01139 .00273	.00128 .00072 .00040 .00022 .00012 .00012 .00007 .00002 .00001		00000
4.6	,48840 .39454 .30941 .23591 .17516 .08986 .08986 .06233	.01871 .01216 .00781 .00789 .007495 .00195 .00195 .00121 .00028		00000.000000.00000000000000000000000000
4.4		.12597 .09401 .06915 .05020 .05620 .01796 .01796 .01251 .00865	.00405 .00275 .00186 .00125 .00084 .00084 .00038 .00038	.00007 .00003 .00003 .00003 .00003 .00001
4.2	.96727 .94560 .91522 .87526 .875267 .82567 .76728 .76178 .76178 .55880 .55880 .55880	.41681 .35165 .29235 .23969 .19396 .19396 .19396 .19396 .19396 .19396 .19396 .19396 .19396 .05586 .07427	.04345 .02345 .03286 .03286 .01844 .01844 .01844 .00746 .00746 .00746	.00213 .00154 .00112 .00081 .00059 .00042
4-0	.99726 .99726 .99445 .98953 .98955 .95209 .952000 .952000 .952000 .952000 .952000 .952000 .952000 .9520000 .952000000000000000000000000000000000000	.76593 .71045 .57138 .55138 .55138 .55138 .55138 .55138 .55138 .55138 .55138 .55138 .55572 .355572 .35555959	21874 18279 152156 15156 15156 15475 10200 08289 06697 05383 05383 05383	.02722 .02152 .01696 .01333 .01045 .00818
ss (MV/cn 3.8		.95165 .93193 .93193 .93193 .87776 .87776 .8405 .76079 .71419 .71419 .61446	.56321 .51228 .51228 .46247 .41450 .36894 .35694 .328666 .25641 .25041 .25041 .25041	.16163 .13836 .11794 .11794 .08472 .08472 .07143
eld Stree 3.6		.99529 .99236 .9810 .9810 .97401 .97401 .95341 .94956 .91340 .91340		.47919 .43954 .40138 .33053 .33053
stric Fie 3.4	06666 000000 000000 000000 000000 000000	.99979 .99950 .99980 .99880 .99880 .99880 .99800 .99800 .998259 .98921 .98921	97884 97141 97141 97141 95210 93779 93779 90456 90456 90455 88453 88453	.81149 .78331 .75358 .75358 .72253 .69045 .65761
Elec 3.2		1.00000 .99999 .99998 .99988 .99988 .99983 .99939 .99939	99849 99849 99521 99521 99328 98757 98755 98755	.96554 .95719 .94753 .93649 .93649 .92403
3.0		00000.1 000000.1 000000.1 000000.1 000000.1 000000.1 000000.1 000000.1 000000.1 000000.1 000000.1 000000.1 000000.1 000000.1		
2.8	00000	00000.000000000000000000000000000000000	500000 - 1 000000 - 1 0000000 - 1 000000 - 1 0000000 - 1 000000 - 1 0000000 - 1 00000000 - 1 0000000000	99989 99985 99996 999969 999969 999969
2.6				1.00000 99999 99999 99999
2.4		1.0000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 1.0000000 1.0000000 1.00000000	1.0000011.00000011.00000000000000000000	1.00000 1.00000 1.00000 1.00000
2.2	00000 00000 00000 00000 00000 00000 0000	1.00000 1.000000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 1.0000000 1.000000 1.000000 1.000000 1.0000000 1.0000000 1.0000000 1.000000 1.000000 1.0000000 1.0000000 1.0000000 1.00000000	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000 1.00000
2.0			1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000
T(C)		88888888888888	100. 1105. 1175. 1175. 1175. 1175. 1175. 1175. 1175. 1175. 1175. 1175.	150. 1750.

D4

5.0	.00496 .00258 .00132	.00033 .00016 .00008 .00008 .00002 .00002	00000 00000 00000 00000 00000 00000 0000		00000
4.8	.04257 .02619 .01575	.00538 .00307 .00173 .000% .00053	.00016 .00009 .00009 .00002 .00001 .00001 .00000 .00000 .00000		00000.000000000000000000000000000000000
4.6	.19370 .13945 .09791	.04518 .02983 .01937 .01240 .00783 .00783	.00303 .00118 .00118 .00041 .00041 .00015 .00005 .00005	.00002 .00001 .00000 .00000 .00000 .00000 .00000 .00000	00000.000000.00000000000000000000000000
4.4	.49715 .41075 .33129 .8116		.02955 .02048 .01406 .00457 .000457 .000433 .00192 .00192 .00127	000055 000024 000024 000015 000007 000004 000004 000003 000004 000003 000003	.0000 .00000 .00000 .00000 .00000
4.2	.80235 .73617 .66307 .86307	.50836 .43292 .43292 .36221 .29798 .24128 .19249	. 15146 . 11768 . 09037 . 06867 . 05866 . 03856 . 03856 . 02854 . 01533	00806 00580 00580 00416 00213 00151 00108 00076 000054	.00027 .00019 .00014 .00010 .00010 .00007
	.95611 .93173 .89938 85873		.43133 .37090 .31516 .26481 .26481 .22018 .18128 .18128 .14791 .11967 .09608	06068 04779 03745 03774 02779 02219 01754 01754 01754 01352 010797	.00466 .00356 .00271 .00206 .00157 .00119
s (MV/cm 3.8	.99483 .99051 .98363 0771	.95866 .93888 .91338 .91338 .84428 .84428		24449 20911 17773 15019 15559 08792 08792 07290 07290	.04069 .03330 .02719 .02215 .01801 .01462
ld Stres 3.6	.99969 .99932 .99862 .00146	. 99524 . 99186 . 98676 . 97939 . 96922 . 95570	.93839 .91696 .89124 .86122 .82711 .78928 .70463 .65916 .61259	.56564 .51902 .47336 .42920 .33711 .34711 .34711 .34711 .27330 .27330 .27330	. 18793 . 16426 . 16426 . 14308 . 12425 . 10759 . 09292
tric fie 3.4	.99999 .99998 .99998		.99177 98752 98752 98171 98171 97399 97399 97365 97364 9786 97854 887354	.84672 .81724 .715137 .71568 .67084 .64084 .64084 .64084 .55609	.48870 .45228 .41708 .3331 .35114 .35068
Elec 3.2	00000.		.99943 .999840 .99840 .99745 .996142 .99142 .98784 .98319 .97728	.96992 .96097 .95028 .93773 .937773 .9377773 .9377773 .937773 .937773 .937773 .937773 .937777773 .937777777777	. 79641 . 76953 . 74145 . 71240 . 68259 . 65226
3.0	00000 - 00000 - 00000 - 00000	66666	. 99998 . 99996 . 99998 . 99998 . 99987 . 999857 . 99857 . 99787	.99690 .99559 .99559 .99387 .99387 .98531 .98531 .98531 .98583 .96966 .96966	.95411 .94459 .93384 .92185 .92185 .90860 .89410
2.8	00000 - 1 00000 - 1 00000 - 1 00000 - 1 00000 - 1 00000 - 1 00000 - 1 00000 - 1 00000 - 1 00000 - 1 00000 - 1 00000 - 1 00000 - 1 00000000		000000 000000 000000 000000 000000 0000	.99988 .99975 .999880 .998880 .998880 .998880 .998880 .998880 .998880 .998880 .998880	.99451 .99289 .99092 .98854 .98854 .98571
2.6	.00000 .00000 .00000 .00000			.00000 .99999 .999997 .999977 .999997 .999997 .999997 .999997 .999993 .999989 .999983 .999983	.99966 .99953 .99936 .99913 .99884
2.4	.00000 1.00000 1.00000 1.00000	00000		. 00000 . 000000 . 00000 . 000000 . 00000 . 00000 . 000000 . 00000 . 000000 . 00000 . 000000 . 000000 . 000000 . 0000000 . 000000 . 000000 . 000000 . 00000000	50000 50000 50000 50000 50000 50000 50000
2.2	.00000	00000	00000 00000 00000 00000 00000 00000 0000		00000
2.0	00000	00000	000000	00000 - 00000 - 00000 - 00000 - 00000 - 00000 - 000000	00000
T(C)	0 v 0 ř	22.122 33.122 40.1	888.37.265.55 88.37.265.65 88.37.265	100. 110. 110. 110. 110. 110. 110. 110.	150.1 155.1 170.1 7.7

TDDB: PROBABILITY OF SUCCESS AT 10000. HOURS FOR AREA = 6.00 LOG SQUARE MICRONS

4

5.0	.00078 .00038 .00038 .00009 .00004 .00002 .00002 .00000			00000
4.8	-00876 -00280 -00280 -00155 -00085 -00085 -00085 -00085 -00085 -00085 -00085 -00085 -00085 -00085 -00085 -00085 -00085 -00085 -00087 -00087 -000876 -000855 -000876 -000855 -000876 -000855 -000876 -000855 -000876 -000855 -000855 -000855 -000855 -000855 -000855 -000855 -000855 -000855 -000855 -000855 -000855 -000855 -000855 -000085 -000085 -000085 -000085 -000085 -000085 -000085 -000085 -000085 -000085 -000085 -000085 -000005 -000085 -000005 -000005 -000005 -000005 -000005 -000000 -000005 -000005 -000005 -000005 -000005 -000005 -000005 -000005 -000005 -000005 -000000 -000005 -000000 -000005 -000000 -000000 -0000000 -000000 -000000	00000 00000 00000 00000 00000 00000 0000		00000
4.6	.05636 .03695 .03695 .01505 .00940 .00579 .000579 .000579	00045 00045 00005 00005 00003 00003 00003 00003 00000		00000
4.4	.21285 .15919 .115666 .08391 .05936 .04136 .02844 .01300	00573 00377 00246 00160 00160 00067 00043 00043 00043	.00007 .00003 .00003 .00001 .00001 .00000 .00000	00000 00000 00000 00000
4.2	.49717 .41750 .34370 .34370 .22044 .17218 .17218 .17218 .17218 .17249 .05590	04104 02155 02155 01545 01101 00780 00551 00551 00387	00132 00082 00084 00084 00031 00031 00015 00015 00007 00007	.00004 .00002 .00002 .00001 .00001
4.0		.17123 .13710 .13710 .08551 .08551 .08551 .08551 .08551 .08551 .03981 .033049 .033049 .01762	01332 01332 01003 00754 00565 00565 00565 001316 00131	,00072 ,00054 ,00040 ,00030 ,00022
is (MV/cn 3.8	.94201 .91476 .88032 .88032 .88032 .88032 .88032 .88032 .79053 .79053 .67877 .67877 .67816 .55656	.43651 .32861 .32861 .32861 .228115 .28115 .2850 .238500 .2385000 .238500 .238500 .2385000 .2385000 .2385000 .2385000 .2385000 .2385000 .2385000 .2385000 .2385000 .2385000 .2385000 .2385000 .2385000 .2385000 .2385000 .23850000 .2385000 .2385000000000000000000000000000000000000	07675 06232 05040 05040 03260 03260 03260 012660 011660 011520	.00831 .00658 .00521 .00521 .00412 .00325
eld Stres 3.6	.99090 .99462 .98462 .97535 .97535 .97535 .97535 .97535 .97261 .92261 .92261 .85217 .85217 .78181	73554 635554 635525 63522 53319 53319 53319 53319 48023 48023 48023 43098 33411 34009 23926	26181 22781 19723 16596 14584 14584 14584 14584 1465 19615 09010 07625	.05418 .04552 .03817 .03817 .03195 .02671
tric Fie 3.4	99919 99841 99841 99489 99489 99489 99151 98653 97739 957739	.92207 .87186 .87186 .87186 .87726 .77032 .77032 .77032 .77032 .68962 .68962 .64701	56029 51731 47526 47526 47526 33552 35846 355846 355846 32355 250093 226003 226003	.20722 .18394 .16285 .16285 .14381 .12672 .11143
Elec 3.2	999996 99991 99991 999961 99926 99926 99769 99398 993398	.98640 .98640 .97287 .95319 .95127 .95692 .93692 .93692 .93692 .93692 .93692 .93692 .9370	82670 79755 76652 73390 70004 66527 665994 559438 559438 55891	.48939 .45583 .455834 .42334 .39210 .36221 .33378
3.0	1.00000 99999 99999 99995 99995 99995 99997 99997 99997 99997 999973	.99864 .99784 .99568 .99504 .99504 .99590 .98590 .98590	95825 94764 93535 92134 92134 92134 92588 82889 86889 86889 86889 86889 86889 86899 86889 86899 86889 86889 86213	.77723 .75128 .72446 .69694 .66892 .64057
2.8	96666 966666 96666 96666 96666 96666 966666 96666 96666 96666 966666 96666 96666 966666 966666 96666 966666 96666 96666 96666 96666 96666 96666 96666 96666 966666 966666 966666 9666666		99413 99206 98946 98622 98622 98622 98622 97756 97756 97758 97738	.93971 .92895 .91707 .90407 .88998 .87482
2.6		69600 266666 266666 26666 26666 26666 26666 26666 26666 26666 26666 26666 2666	.99953 .99953 .99912 .99862 .99862 .99741 .99741 .99544	.99041 .98801 .98519 .98190 .97809 .97809
2.4	00000 00000 00000 00000 00000 00000 0000	00000 00000 00000 00000 00000 00000 0000	800000 8000000	.99913 .99884 .99848 .99804 .99749 .99682
2.2			7990000.1 000000.1 000000.1 000000.1 000000.1 000000.1 000000.1 000000.1	87999. 99999. 19999. 19999. 19999.
2.0				1.00000 1.00000 1.00000 1.00000 1.00000
T(C)	0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	88888888888888888888888888888888888888	100. 110. 110. 110. 110. 110. 110. 110.	55.

TDDB: PROBABILITY OF SUCCESS AT 10000. HOURS FOR AREA = 6.50 LOG SQUARE MICRONS

	5.0	69 .00012	00000 67	26 .00001	14 .00001	00000. 70	00000 700	02 .00000	01 00000	 00000.000	00000.00	00000.00	00000.00	00000.000	00000.00	00000.00	00000.00	00000.00	00000.00	00000.00	00000.00	00000.00	00000, 00000	00000.000	00000.000	00000.00	00000.000	00000.00	00000.000	00000.00	00000.000	00000 00		
	6 4.8	392 .001	000 1 CO	307 .000	182 .000	107 .000	063 .000	036 .000	021 .000	000. 7000	000. 2000	000. 2000	000. 1000	000. 1000	000.000	000. 000	000 0000	000 000	000. 000	000 000	000. 000	000, 000	000. 000	000 0000	000. 000	000 000	000. 000	000. 000	000. 000	000. 000	000.000	000.000	000. UUU	
	4.4 4.	0. 00100	03331 00	02233 .00	01479 .00	00. 07900	00631 .00	00407 .00	00261 .00	00106 .00	00067 .00	00042 .00	00027 .00	00017 .00	00011 .00	00007 .00	00007 00	00003 .00	00002 .00	00001 000	00001 .00	00000 .00	00000 .00	00000 .00	00000	00000	00000	00000 00	00000	00000	00000	00000	.	
	4.2	. 23092 .	13517	.10098	. 07441	.05415 .	.03898 .	. 02779 .	.01964 .	 . 00961	.00666	.00460	.00316 .	.00217	.00148 .	. 00101	. 00069	. 00047	. 00032	00022	.00015	.00010	.00007	. 00005	.00003	.00002	.00002	.00001	. 00001	. 00001	. 00000.	. 00000.	. 00000.	
···· (W	4.0	49844	35555	29320	.23828	.19107	.15133	.11852	.09188	 .05377	.04067	.03056	.02284	.01698	.01258	.00928	.00683	.00501	.00367	00268	.00196	.00143	.00104	.00076	.00055	.00040	.00030	.00022	.00016	.00012	.0000	.00006		
ess (MV/o	3.8	70669	1400/- 0	57450	7 .50801	5 .44352	238253	.32617	27513	5 . 19013	7 .15600	7 .12701	0.10268	1 .08249	I .06589	05236	5 .04143	0.03264	5 .02563	02006	7 .01567	2 .01221	7 .00949	5.00737	00572	3 .00443	.00343	00266	7 .00206	00159	. 00123	.00095		
Field Str	3.6	10 .9278/	00000 C	0 .8211	19577. 80	12236	% .6675	51073. 41073	10 5535	20 .44210	5 .3900	72 .34137	24 .2965(11 .2557	3 .2191	12 .1866	1580	13320	2111. 23	7 0933	1 .0776	70 .0644	38 .0532	31 .0439	503614	2 · 0296	3 0243	.0100. 64	0 .0162	6 .01329	101084	-0088/ 		
Electric	3.4	127 .9858		43 .9507	65 . 9310	3906. 000	2778. 80	53 .8445	02 .8068 7655	30 .7212	93 .6746	31 .6267	104 .5782	123 .5300	47 .4827	80 4370	5565. 57	74 .3521	33 .3136	98 2780	11 .2454	112 .2157	133 .1886	3791 . 1648	39 .1433	61 .1243	701 82	198 . 092	20 .07%	45 .0686	67 .058 5	81 .0504		
	0 3.2	987 .996	200 0200 2000 0200	908 . 991	B40 .986	733 .980	572 .971	338 .959	010 .945 1567 .027	7983 .906	7236 .881	5303 .854	i 167 . 823	5811 . 790	2227 . 754	317. 0140	362 .671	5089 . 637	1605 .597	927 556	3078 .517	081 .478	1964 .440	3756 .404	392 · 369	178 .336	305 .305	570 .276	315 .250	122 . 225	5009 . 20S	181. 181 2002	201 2001	
	2.8 3	66666	90007 . 9	6 76666	99988 .9	90078 .94	99961 .9	99933 . 94	99890 9	9. 05790	99596 .9	99411 .96	99165 .9	98843 .9	98432 .9;	97918 .9(97290 .84	96533 .84	95639 .8	04590 BI	93406 .71	92057 .7	90552 .7	88893 .64	87083 .6	85131 .6;	83046 .58	80839 .5!	78523 .5;	76112 .49	73621 .4(71067 .4	14. CO400	
	2.6	. 00000	. 00000	.00000	. 66666.	. 66666.	. 80000.	. 96666.	. 99993 90087	 . 97978	. 19666.	. 99942 .	. 11000.	. 99866	. 99804	. 91799 .	. 90960.	. 99459 .	. 99270	99033	-98741	.98386 .	. 09670.	. 97458 .	. 96872 .	. 96197	.95428	.94563 .	. 93598	. 92532	. 91366 .	. 66006.	00/00-	
	2.4	1.00000		1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	66666.	86666.	70000.	76666.	16666.	. 99985	11666.	. 99965	. 99948	.99925	00803	. 99851	76766.	.99726	.99637	.99526	. 99389	.99224	. 99025	.98790	.98514	.98194	.97826	20474.	
	2.2	1,0000		1.00000	1.00000	1.00000	1,00000	1.00000	1,00000	 1.00000	1.00000	1.00000	1.00000	1,00000	66666	66666	. 99998	26666.	. 99995	20000	90089	,99984	. 99978	89666. 1	. 99956	. 99940	,99919	. 99892	. 99859	. 99817	.99765	99703	87966	
	2.0	1, 1,00000		1.0000	. 1.00000	1.00000	. 1.00000	. 1.00000	1.00000	. 1.00000	. 1.00000	. 1.00000	. 1.00000	. 1.00000	. 1.00000	. 1.00000	. 1.00000	. 1.00000	. 1.00000		1.00000	56666	56666	36666	86666	96666	56666.	66666 .	06666.	99986	99981	£2666	10000	
	(C)	0.	n Ç	: 5	2	ß	ß	35	404	50	ŝ	3	\$	2	К	80	8	8	ድ	100	105	110	115	120	125	130	135	140	145	150	155	160	<u>6</u>	

ı

.30				
00.1		00000 000000 000000 000000 000000 000000		000000000000000000000000000000000000000
.80	1 00000 000000 000000 000000 000000 1 000000 1 000000 1 000000 1 000000 1 000000 0 000000 0 000000 0 000000 0 00000 0 000000			
-60				000000000000000000000000000000000000000
.50		00000		00000
.40		- 00000 - 000000 - 00000 - 0000 - 0000 - 0000 - 00000 - 0000 - 00000 - 00000 - 00000 - 00000 - 00000 - 00000 - 00000 - 00000 - 00000		00000 00000 00000 00000
cm2) .30		- 00000 - 000000 - 00000 - 0000 - 0000 - 0000 - 00000 - 0000 - 0		00000 00000 00000 00000 00000 00000
ity (MA/ .25		.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000		00000
ent Dens .20		.00000 .000000		00000
Curr .17	00000 - 000000	00000 - 000000		00000
.13		00000 · · · · · · · · · · · · · · · · ·		00000
.10		1 00000 · · · · · · · · · · · · · · · ·		00000
.08		1 00000 · · · · · · · · · · · · · · · ·		00000
.06		00000.1	000000.1	00000 00000 00000
-05		00000 00000 00000 00000 00000 00000 0000		1.00000 1.00000 1.00000 1.00000
70 .			1.0000 1.0000 1.000000 1.000000 1.00000 1.00000000	1.00000 1.00000 1.00000 1.00000
T(C)	9 ~ 5 7 8 % 8 % 9 %	8.K 3.8 K 8 8 8 8 8	865155555555555555555555555555555555555	855 85 8 F

0		.748 	.812 .074 .151	747 747 601 	. 419 . 859 . 878 . 878 . 878 . 638 . 638 . 638 . 638 . 638 . 638 . 600	
5		8 103 8 112 8 112 121 121	4 129 3 128 128 128 128	7 8 8 4 5 1 8 1 6 9 1 6 1 7 1 9 1 9 6 9 1 7 1 9 1 9 6 1 7 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	71 197 215 2197 215 2197 215 2197 215 2197 215 219 219 219 219 219 219 219 219 219 219	8 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
4.8	8.85 24.59 31.28 53.56 53.56	61.35 69.19 77.03	84.81 92.51 100.12	114.96	149.64 156.14 162.50 168.71 174.75 192.15 192.15 192.85 192.85 192.85 192.85 192.85 192.95 192.85 192.95 192.85 192.95 192.75 19	207.85 212.50 216.47 219.38 219.38 218.51
4.6	.942 1.865 3.340 5.486 8.368 8.368 11.989 11.989 21.218	26.639 32.460 38.584	44.925 51.411 57.982	97.144	103.427 109.610 115.689 127.519 127.519 133.269 133.269 144.434 144.434 145.160	160.361 165.456 170.447 175.334 180.118 184.798
4.4		6.310 8.928 12.076	15.715 19.792 24.242	20.799 33.999 39.186 44.507 49.921 55.390	60.884 66.379 71.856 77.297 77.297 882.028 88.028 93.300 93.300 93.501 103.628 108.628	113.639 118.523 123.324 128.042 132.676 137.228
4.2	.000 .003 .003 .003 .005 .005 .137 .137	.538 .956 1.594	2.508 3.747 5.347	9.683 9.683 15.405 15.465 18.826 22.451	26.298 30.329 34.506 38.797 43.173 47.607 55.078 56.568 61.060 61.060	70.002 74.432 78.825 83.175 87.477 91.727
m) 4.0		.013 .029 	.124 .232 .411		6.169 7.926 9.937 12.192 11.673 11.360 20.230 20.230 23.259 23.259 25.424 26.424 26.424	33.075 36.521 40.025 43.570 47.144 50.735
ss (MV/ci 3.8	8888888888		.002 .009	.035 .035 .035 .035 .035 .035 .035 .035	.518 .784 1.145 2.227 2.281 3.893 4.972 6.221 6.221	9.227 10.973 12.870 14.908 17.072 19.352
eld Stre 3.6	888888888888888888888888888888888888888	000 000 000	8888		012 038 038 038 038 038 038 038 038 038 038	1.010 1.354 1.777 2.289 2.896 3.603
stric Fi 3.4	000000000000000000000000000000000000000	00. 00. 00. 00. 00. 00. 00.	8.6.6.6		000 000 001 001 002 002 002 002 002 002	.031 .049 .073 .073 .073 .073 .073 .073
Elec 3.2	000000000000000000000000000000000000000	000.00	8000			
3.0		000	80.00 80.000			000.000.000 000.000.000
2.8			8898			000.000.000 000.000.000
2.6			889			000. 000. 000. 000. 000. 000. 000.
2.4	000.000.000.000	000	8.8.9 8.8.9 8.8.9			000.000.000
2.2		000.	8.9.9.8 8.9.9.8			000.000.000
2.0	888888888888888888888888888888888888888	000	8.8.9			000.000.000
T(C)	౸ ౢౚఀౢఀౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢ	40. 45.	\$6.6.5.	88.33 89.88 89.9	55.53 55.55 55.555	150. 155. 160. 170.

.

t

5.0	9.543	8.687	57.947	7.226	16.454	5.582	14.574	3.407	2.064	0.537	8.818	6.906	662.7	2.499	0.007	7.323	4.44	1.360	8.043	4-430	0.375	5.567	9.343	0.367	6.155	2.838	000	000.6	000.6	000.6	000.6	9.000	0000.6	0 00	8.00 6.00
60	786.	.362	.326	. 720	1.405	.267	218 10	.190 11	.131 12	.003 13	778 13	.435 14	.961 15	1.346 10	.584 17	11 129-	.605 18	.386 15	.015 15	.493 20	822 21	003 21	.038 21	.924 22	.659 21	.229 20	8 8 9 9	20 20	.555 99	- 844 99	. 285 99	.289 99	.852 99	.391 99	.767 99 .815 99
4		59 74	19 19 19	0 40	1487	26	2	27	7 80	88	0 6	2 103	9 110	7 118	0 125	0 132	0 139	1 146	6 153	8 159 -	5 165	4 12	5 178	7 183	2 18	13	500 7	3 205	1 210	9 214	8 218	8 220	9 219	8 215	8 204 9 185
4.6	4.31	6.9	10.28	14.42	19.23	24.62	30.46	36.66	43.10	49.72	56.43	63.20	69.98	76.70	83.39	8.8	96.52	102.94	109.25	115.45	121.54	127.51	133.36	139.09	144.71	150.21	155.59	160.86	166.02	171.06	176.00	180.83	185.55	190.16	194.65
4.4		.742	1.418	2.486	4.041	6.147	8.831	12.084	15.863	20.107	24.744	29.700	34.905	40.297	45.821	51.431	57.088	52.762	68.426	74.061	79.652	35.184	90.650	8.041	01.353	06.581	212	16.74	21.737	26.610	51.394	56.088	10.694	5.213	19.645 13.992
2	600	.026	.065	.151	.318	.616	.105	.851	. 918	. 356	-199	3.457	. 122	. 169	.562	-257	. 208	.369	689.	. 157	112	.330	8	- 669	.350 1	.017 10	.658 1	- 265	.829 1	.344 1	.805	.207 1	.549 1/	.828 14	1 2001
		0	-	m	60	0	5	~	ŝ	8	4	8	E	4	4 17	8 21	8 8	2	6 6	28 28	0 42	2	8 5	B 56	6 61	2 8	8	€; 8	8	26 ~		03	1 97	5	
m) (m 4.0	00.	8	8.	8	8	-02	8	8	6.	ŝ	.62	1.02	1.61	2.41	3.46	4.78	6.39	8.29	10.47	12.92	15.62	18.53	21.63	24.90	28.31	31.83	35.44	39.12	42.85	46.62	50.40	54.20	57.99	61.77	65.53 69.27
s (MV/c 3.8	000	8.	<u>8</u>	8.	8.	000.	<u>.</u>	.002	<u>8</u>	60 .	.020	8	<u>620</u> .	.145	.251	.415	.656	908	1.462	2.071	2.843	3.70	4.934	6.269	7.798	9.516	11.416	13.485	15.710	18.075	20.565	23.164	25.857	28.629	31.467 34.358
d Stres 3.6	. 000.	00.	000.	<u>00</u> .	80.	000.	80.	000.	000	000	000	000	.001	.003	900-	.01	.022	.039	88.	.115	185	.288	.435	.635	-902	i.248	1.685	2.222	2.871	3.637	4.526	5.541	6.681	7.945	9.329 0.828
Field	: 8	8	8	8	8	8	8	2	8	2	8	8	8	8	8	8	8	8	Ξ	2	X	2	2	5	Ł	4	*		2	2	: 2	2	5	2	= 83
ctric 3.4	8	ē	ĕ	ĕ	ĕ	ŏ.	ĕ	ĕ	ē	8	ō	ē	ĕ	ð	ð	ē	ē	ē	ĕ	ē	ð	ð	ò	9	8	0	ਤ :	-	₹.	Ņ	ñ	ŝ	2.	ö	~
Elec 3.2	000	000	000.	00.	<u>.</u>	000.	000.	000.	<u>8</u> 0.	000	000	000	000.	000.	000.	<u>80</u>	<u>8</u>	000.	<u>8</u>	80.	000	00	000	000.	00.	10	.001	-002	20.	.00	010	.016	.024	.035	.052
3.0	000	000.	000.	000.	000.	000.	<u>8</u>	000.	<u>8</u>	.000	000	000-	000-	000.	000-	<u>80</u> .	8.	000.	<u>80</u>	000	000	000	00.	<u>00</u> .	80.	8	000	80.	8	000,	000	000	000.	8	<u>6</u> 6
6	: 00	000	00	00	00	00	000	00	00	00	000	8	8	00	00	8	8	00	8	8		00	00	00	8	00	00	80	8	00	: 00	00	00	00	88
2.1			٦.	-	•	-	٦.	-	-	-		. –	-	-	-	-	-	-	7	7			-	7	-	-	-	-	-	7		-	-	-	-, -,
2.6	000	8	000	80.	000.	80.	00.	<u>80</u> .	80.	8	000	00	000.	80.	000.	8.	8.	8.	8.	8.	0	000	00	000	8.	8	80.	80.	8 S	000.	000	00	00	8.	<u>8</u> 8
2.4	. 000	00	00.	<u>8</u>	000.	000.	000.	000-	<u>8</u>	000	000	00	000	00.	000,	<u>8</u>	8.	00,	8	000,		000	00	00,	<u>8</u>	000	8	80.	8 S	000	000	000	00.	<u> </u>	88
2	. 000	000	000	000	000	000	000	00	00	000		000	000	00	000	000	000	000	00	00			88	000	000	000	000	80	80	000	: 000	000	8	000	88
2.		•	•	•	•	•	•	•	•	•		• •	•	•	•	•	•	•	•	•		•	•••	•	•	•	•	•	•	•		• •	•	•	••
2.0	000	000	000.	000.	000.	000.	000.	.000	000.	000-		000	000	000	00.	000.	<u>8</u> 0.	000.	00.	000.		80	000.	000	8.	<u>8</u>	<u>8</u> 0.	80.	00.	000	000	000	000	000	88. 88.
1(C)	. 0	5.0	10.	15.	20.	25.	8.	35.	40.	45.	202		8	65.	20.	К.	ສີ	8 5.	8.	<u>%</u>	5	<u>8</u>	110.	115.	120.	125.	130.	135.	140.	145.	150	155.	160.	165.	<u>5</u> 5

TDDB: HAZARD RATE (x 10E-6) AT 10000. HOURS FOR AREA = 4.50 LOG SQUARE MICROWS

!	2 2 2	2 C S S	n 2 2 2 2	: 8624328488 :	8882888888	888888
5.0	5 SS	2.00 12.00 12.00	23.23.08	5 % X 5 % X 5 % X 8 % 5 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1	2828282828	888888 9998888
	888	0 % = A	*F 5 8 8	- 2528822888283 - 22288222888283	1 1 5 3 8 8 2 3 5 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	323888
4.8	39.1	2 7 67 C	92	72.53.58.99.99.46	96.09 96.09 111.3 19.4 19.4 19.4 19.4 19.4	05-19 05
-	រ ភ្លេង	5 8 8 8	8-14.90		- 5555555 - 5855555 - 5855555 - 555555 - 55555 - 55555 - 5555 - 5	1988912
4.6	14.8	0 F 8 3	2.58.7	79.6 88.6 93.2 93.2 93.2 93.2 110.6	143.0 154.2 154.2 157.1 170.0 175.1 184.8 189.5 189.5	194.1 198.6 202.9 206.9 214.3
	928 928	2 5 2 2 S		263 1 1 2 2 2 2 3 2 4 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	222 4 202 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	531 124 122 531 124 124 531 124
4	m - 1	048	****	91.68 88 91.68 88 91.68 88 88 88 88 88 88 88 88 88 88 88 88 8	102. 113. 113. 113. 133. 133. 147. 147.	155 165 17 17 12 15 15 15 15 15 15 15 15 15 15 15 15 15
2	238		344	623 623 860 862 862 862 862 862 862 862 862 862 862	294 1186 038 277 2277 2277 2277 2277 2277 2277 227	866 928 221 221 2257 2257 2257 2257
4	· · ·		°.0 = ₹		25. 27. 29. 29. 29. 29. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	1115. 115. 124. 132.
. 0	008	116 236 447	730 065 087	415 667 971 358 971 360 360 3864	386 2555 453 453 343 343 343 343 343 343 343	398 315 189 016 793 520
Ê.			 W	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	37. 37. 53. 53. 53. 53. 53. 53. 53.	88.83 88.83 88.83
WV/c 8	888	100 100 100 100 100 100 100 100 100 100	264 037	737 737 737 737 737 737 737 737 709 709 709 709 709 709 709 709	470 164 3371 3373 3371 5509 5509 5509 5509 5509 5509 5509 550	895 135 392 657 922 180
3ss (3.				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	22.25 29 29 29 29 29 29 29 29 29 29 29 29 29	5. 5 5 6 7 3 2 6 7 9 6 7 3 2 6 7 7 9
Stre 6	800		007000	017 034 034 034 041 715 715 715	012 686 686 686 686 686 686 851 851 851 851 851 851 851 851 851 851	319 374 525 760 439
a Meld					NNNARO CTU	222333
	000	8888	8888	001 001 001 001 001 001 001 001 001 001	141 215 215 319 461 648 891 891 197 197 574 574	209 209 209 209 200 200 200 200 200 200
ectr 3	1 6 5					NN41002
	000	<u> </u>			.004 .011 .011 .011 .011 .028 .044 .044 .044 .028 .028 .028 .028 .028 .028 .028 .028	
ľ	• • •					-
0	000		8888			020
. "						
80	800	<u> </u>	8888		000000000000000000000000000000000000000	8888888
8						
.6	888	3888 8888	8888		<u>8888888888888888888888888888888888888</u>	<u>8888888</u>
2.4	888	<u>.</u>	8888	8888888888	88888888888	8888888
1 1 1				:		000000
2.2	888	3888	8888	88888888888	88888888888	888888
	: • 999			; ,	9999999999	000000
2.0	888		9988		22222222222	999998
())		1222	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	122511255111111111111111111111111111111	255 25 25 <u>7</u>

TDDB: HAZARD RATE (x 10E-6) AT 10000. HOURS FOR AREA = 5.00 LOG SQUARE MICRONS

i

0	255 255 255 255 255 255 255 255 255 255	512 551 877 877 877 877 877 877 877 877 877 87		888888
6	128,555,557,528,58 128,555,557,557,558,557 128,555,557,557,557,557,557,557,557,557,55	181 188 201 201 201 201 201 201 201 201 201 201	848 88 88 88 8 8 8 8 8 8 8 8 8 8 8 8 8	\$\$ \$ \$
4.8	5.009 3.400 9.967 9.967 9.967 9.967 9.824 8.8966 8.167	3.260 0.177 5.920 5.929 5.129 5.129 5.129 5.129 5.129 5.129 5.129 5.324 5.129 5.324 5.129	9.587 9.587 7.727 7.727 7.727 0.164 6.522 6.522 7.069 9.000 9.000	000000 000000 000000
	32782285321 378899515555	58366888888 466555555555	222 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4.6	82888255656 92759656 92759656 9275965 927596 92759 920	112.8 119.3 119.3 119.3 131.9 131.9 155.3 160.9 160.9	2005.00 2007.0	20.15.91 20.15.91 20.15 20.15 20.15
4	531 531 530 530 570 570 570 570	354 479 509 169 169 169 169 169 169 169 169 169 16	5575 591 595 598 598 598 598 598 598 598 598 598	008 2 150 2 150 2 921 2 921 2 921 2 921 2
4	55.52 58.52 58.52 59.55 59.55 59.55 50 50 50 50 50 50 50 50 50 50 50 50 5	77.77 88.83.77 101.10 123.12	128. 133. 138. 153. 166. 157. 157.	71 187 187 187 187
2		. 661 . 661.	104 961 737 737 737 737 737 737 737 737 737 73	902 924 730 730
	M M M M M M M M M M M M M M M M M M M	9607-7966 9552566	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 136 1440 1562 1562 1562
4.0	4 13 9 7 1 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	24, 22, 23, 24, 26, 24, 26, 24, 26, 24, 26, 24, 25, 25, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25	8287.00 82.53	00-12 03-96 07-73 11-44 15-09
V/cm)	14038333388854 1403333388854	82328835888	K888882388:	5378255 5555555
ss (M 3.8	0001.0.00.000	6.1 6.1 12.3 12.3 12.3 23.7 23.7 23.7 23.7 23.7 23.7 23.7 2	33.8 33.8 37.2 53.1 58.7 58.7 58.7 58.7 58.7 58.7 58.7 58.7	65.8 69.3 72.7 76.1 82.9
Stre 6	000 000 000 000 000 000 000 000 000 00	598 921 947 692 692 612 503 503	212 523 203 025 212 52 523 203 025 214 53 525 203 025	107 965 840 840 501 501
ield J.		vu 4.9 4.9		50.44 50.44 50.44
ric F 5.4	000 000 000 000 000 000 000 000 000 00		2.254 2.254 3.713 5.713 5.675 5.675 5.846 8.142 8.142 9.558 8.142 2.721	4.453 6.273 8.174 0.144 7.263
lect			- MOOF-040664	
3.2 E	88888888888888888888888888888888888888	999995555555		2.2.19 2.2.2.19 2.2.2.19 2.2.2.19 2.2.2.19 2.2.2.19 2.2.2.19 2.2.2.19 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
	888888888888	666666666666 666666666666		158 58 58 58 59 50 50 50 50 50 50 50 50 50 50 50 50 50
3.0				
8			000 000 000 000 000 000 000 000 000 00	.019 .028 .039 .074 .099
8				0
2.6	888888888888888888888888888888888888888	888888888888	888888888888	9999999
	88888888888	888888888888888888888888888888888888888	: : 888888888 :	888888
2.4				000000
5		888888888888		888888
2.	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
•	888888888888888888888888888888888888888			8888888
5				
T(C)	6683222350 S		100 110 120 120 120 120 120 120 120 120	051 051 051 051 051 051 051 051

TODB: HAZARD RATE (x 10E-6) AT 10000. HOURS FOR AREA = 5.50 LOG SQUARE MICROWS

			9 N Q Q I		222222
5.0	83.46.2.2.96.7	8 - 2 - 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	88.8	88888888888	888888 888888
-	2022229292 2022229292 2022229292	6 : 227777	≈ − ° ; 2 ≈ 8 ≈ 2	- 222222222222 - 2222222222222222222222	222222
80	88 6 7 7 2 6 6 6 6 7 F	2.2.2.88	22.08	X 7 5 8 8 8 8 8 8 8	888888
	8885598936	3 2 2 2 8 6 6	8855	⊼NNNN ≈ 888888	888888
9	292 292 292 292 292 292 292 292 292 292			282.52 222.52 222.52 222.52 222.52 2	818 878 878 878 800
4	2 3 2 % % 8 6 5 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6	122 - 138 138 152 - 138 132 - 132 152 - 132 153 - 132 15		193 193 193 193 193 193 193 193 193 193	215 200 200 200 215 200 200 200 200 200 200 200 200 200 20
4	850 850 611 611 147 638 638 638 638 638 638 614 7	222 223 223	255 253 255 255		322 238
4	*****	88. 116. 122. 127.	143.	153. 158. 162. 167. 171. 188. 188. 188.	196. 200. 203. 213.
	3655553568	82828	2823	19-26-26-26-18-12-	33 23 25
4.2	2015 237 2015 2015 2015 2015 2015 2015 2015 2015	61.7 672.8 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	5357	233,551,188,00 233,551,188,000,000,000,000,000,000,000,000,00	2328666
	20000000000		N 2 5 9	· 48787888884 ·	888858 555555
- 0- 4	06.2002		7.03	0 7 8 7 7 7 8 6 7 7 8 6 7 7 8 6 7 7 7 8 6 7 7 7 8 6 7 7 7 7	82828
(cm)			0 ~ ~ 0 ;	- 80000222224 - 8000022	0 0 0 0 0 0 0 0 0 0 0 0 0 0
₩ 8.	× 2000 2000 2000 2000 2000 2000 2000 20	12 20 20 20 20 20 20 20 20 20 20 20 20 20	5.88	752899412	822828
Essa E	046766	12 82%88%	3422	58555772888;	<u>8800</u>
Str 6	050 050 103 355 664 497 497 497	253 253 242 242 242 242 242 242 242 242 242 24	278 164 149	2215 520 520 520 520 520 520 520 520 520 52	289 441 563 650 717 717
ыd.	- N M	· · · · · · · · · · · · · · · · · · ·	27.23 27.23	8.8.8.6.4.4.6.6.6.6.	77.78.55
	2623852966	828878		0141233333358473335 0141033353847335	26.2564
3. 4		0 0 0 0 0 0 0	2.2 0.6 0.5	30.255.259 30.255.259 30.255.259 30.16 30.17 30.	335.4 4 5 5 6 7 7 7 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7
elec	. 888584858	8:538395	5895	. 22222222222	223223
3.2	9999999999	8 8 7 N 7 N	2 7 7 7 0 7 7 8 7 0		× 10 0 0 4 1 4
			- 60 - 51 10		
0	888888888888	8.62286	8 7 8 8	5 2 2 8 8 8 9 2 8 9	38 88 88 88 88 88 88 88 88 88 88 88 88 8
					3 M M Ø M Ø
60		000000000000000000000000000000000000000	001	027 027 027 027 027 027 027 027 027 027	686 864 318 921 921
~					
5		8:888888	8885	338 313 300 50 50 50 50 50 50 50 50 50 50 50 50 5	5566555
2.6					
	. 888888888	18 : 8888883	8888	; 8888888222 ; ,	2888838
2.4				00000000000	ففففف
		;		; • • • • • • • • • • • • • • • • • • •	
2.2	68888888888888888888888888888888888888	8 888888	8888	8888888888	<u> </u>
0		8 888888	8888		
8				· · · · · · · · · · · · · · · · · · ·	
10	<u></u>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
100			~ ~ ~ ~ ~		2264222

4

•	: 5	o,	5	Ξ	4	Ň	Σ	Q	m :	<u> </u>	Ξ	0	0	4	4	2	<u>o</u>	2	g	<u> </u>	9	Q	2	2		2 9			0		0	<u> </u>	- c	0	. 0
5.0	9.26	7.44	5.38	8.8	0.53	7.7	59- 7	2.2	7.59		7.80	0.35	9.05	0.85	1.7	8.8	8	8.6	8	8.	9.0	8.8	8.8	8.8	8.8	28	25	38	8		8.8	38	38	8.8	8.0
	- 1	2 15	0 16	6 17	2 18	0 18	6 19	2 7	7 20	ι. α.	5 21	0 22	1 21	121	4 19	8: 0	8: 0	8 8	8 8	8:: N	8	8	8	88	88	32	38	8 8	8		88	32	8 2	:8	8
8.4	7.68	5.63	3.37	8.0	8.21	5.32	2.2	8.93	31	<u></u>	7.89	3.83	9.52	<u>s</u>	0.0	53	8.15	0.27	9 - 82	5.15	4.02	8	8	8	8.8	38	B	88	0		8.6	B 8	38	8	8.
	11	5 12	1	14	14	5	10.	2		2	18	5	Š.	20	211	2	21	22	2	2	20	- 18 - 18	8	8	88	58	58	8	8		8.3	\$ 8	۶§	8	8
0	385	946	.351	. 59	8	-562	8	83	.216	Ĭ	.472	.357	8	.65	<u>к</u> .	.352	474	-41	2	- 52	. 229	8	.936	626	55		2.0	22	885		8	38	38	00	8
. 4	87	8	102	2	116	123	130	5		÷:	155	161	167	172	178	183	8	193	198	202	207	211	214	217	219		212	5	187		8	<u>}</u>	\$8	: §	8
4	270	.159	8	.762	425	972	394	881	831	3	.710	438	.028	480	8	986	645	80	Ř	482	058	519	8	10	220	512	880 - E	3	202		762	244	151	563	448
4	5	8	2	Ŕ	8	8. 25	8	105	=	È	123.	129	135.	140.	145.	150.	156.	<u>8</u>	165	2	Ę	2	183.	188	192.			35	210.		213.	210.	200	220.	219.
	848	ŝ	8	£ 35	<u>f</u> 01	351	258	5	28	2:	113	582	942	191	329	353	267	20	2	351	34	214	493	676	22	2			12		605		ŝ) ĝ	543
4	34	÷0,	46.	25	28.	2	ຂ.	22	8.6	2	93.	<u>9</u> 8.	<u>10</u>	8	114.	<u>6</u>	24.	8	2	8	142.	147.	2	155	20.	2	2 5	ĸ	78.		82	6	66	5	88
<u>.</u>		40	8	ß	¥.	ĝ	5	20	85	5 :	2	8	8 8	8	19	R	4	8	28	ະ ຄີ:	ŝ	97	1 1 1 1 1	67	5	ະ	2 6	ιĶ	22		5		3 8	34	8
, ,	16.2	20.3	24.7	29.1	34.1 24	39. O	44.1	49.2	5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	* · ·	2.2	69.5	74.4	т. 2	8.2	88.9	93.6	98.2 38.2	02-7	07.1	11.4	15.6	19.8	23.9	27.8	יי הו	ດ ຕ ດ ຊ		46.5		50.0	22.22	0 0 0 0 0 0 0 0 0	. E.	3.9
E / C		ñ	õ	Ł	ድ	S.	17	8	23	י ב:	8	2	2	2	5	8	5	្ត្ត			19 1		39 1	53	2	1	2 K	28	2		5	2	2 2	. 62	. .
.8 .8 .8	5.3	7.4(9.8	₹. 8	5.8	9.2	С	к 9	80 (90)	5 1	9.1	4 E	7.7	2.1	9.9	2.0	ъ х	≓ 6	ri ri	3	1.5	ŝ	20	Б.	20	8.0	30	5 ŭ	0		18.4		0 % 3 %	і м 2 —	4
ress	: • • •	2	-	-	۰ و	4	~	(N)			т Ф	7	5	-	5	4	8	0	5	2		2	~ 0	2	5 ; N ;		29 10 0	27	. E		11		2 K	: [] . c) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 St 3.6	1.07	1.70	2.57	8.2	5.11	5.82	8.83	8	2. 5	2.0	9.31	2.43	5.69	8.8	2.51	6. 03	9.59	3.19	8	0.40	8 8	7.57	1.13	4.65	8.13		86°,		58		8.11	\geq	2.4 2.4	13	9 6
iel			_		_	~		÷ :	÷ •	≓ ¦	Ť.	~	N M	يت ص	m m	m M	m m	4	ۍ ۲	ιά 	ini . A	ín O	\$ \$	۰۵ م	3 I	~ 1	ς κ οι μ) @ 		80 (80 (~ (~ (0 د م د	ē	20
1.4	.121	.224	<u>е</u>	3	<u>.</u>	.520	19	5	Ĩ	2	.85	1.55	.43	. 49	. 72	Š	19.	.22	.93	22.	.56	.46(292	Ň	22		03		.928	ē i	(CO. 1	22	8
ectr 3					-	-	2	- רא	31	^	v	80	9	2	7	1	19	2	2	2	R	Ē	Ř	Ĕ.	3	Ģ :	4	2	5		5	3	82	32	: 12
.5 E	.00	.016	.032	8	.112	. 192	.314	494	246	Ì S	.532	.098	ž.	.631	.613	.742	018	435	-987	85	458	.357	349	423	<u>8</u>	ŝ	032	ŝ	617		391	8	83	ŝ	334
l m		•			-	-		•	•	-	-	N	N	m	4	ń	~	ŝ	o,	=	13	5	17	6	2	N	8		n m		8	5	1 1 1 1 1 1	14	13
	8	50	6	<u>603</u>	200	013	025	044	ŝ	21	194	296	437	627	63	190	581	057	623	584	540	803	862	919	88	310	88		19	; ;	3	320	220	35	351
m	•	•	-	•	•	•	•	•	•	•	•	•	•	•	•	-	-	~	~	m	4	4	Š.	۰.	ຮ່	6	e ;	ų ř	5		16.	18.	2 r	; K	jχ
	8	8	8	8	8	8	5	20	25		13	23	37	3	32	38	20	88	é	46	58	53	ស្ត	20	20	5	28	22		3 :	58	64		2 2	: M
2.8							9	9	<u>.</u>		9					-		.,	4.	•		Ÿ.	-	-		N		0 4	4		5	0	~ α	50	10.
1	, : 8	8	8	8	8	8	8	8	83	8 :	8	5	8	8	8	8	14	22	R	8	ן 12	8	44	67	3	6	3		; צ	2;	27	2	5 4	8 %	35
2.6	- -	ē	ē	ē	ē	ē	°.	•	•	•	•	9	•	•	<u>.</u>	٩.	•	o,	°.	•	•	٦.	٦.	۰.	Ņ	m.	4.1	Ϋ́, Ρ	: 0	Ì	:-	- -	00	- 0	2.7
	; ; 8	8	8	2	2	9	2	2	2 :	; 8 !	2	2	2	2	8	2	Ξ	Ξ	2	2	: 1	2	\$	4	2	8	<u>c</u> :	1 C		; ; ;	8	2	<u> </u>	- 2	22
2.4	8	8	8.	8	8	8	s.	s.	8	8	8	8	s.	8	ë.	s.	S.	s.	S.	ë.	8	S.	s.	ē	8	ö	8.8	56	įξ		Е.	÷.	2.5	ų fr	14
	;	0		0	0	_	0	0	_	:	0	0	0	0	0	0	0	0	0	0		0	0	-	_	-	~ •	o ~	+ -c	:	80	-	د د	C	0
2	. 0	8	8	õ.	<u></u>	<u></u>	ē.	<u>8</u>	8	8	00	ō.	<u></u>	<u></u>	<u>8</u> .	<u></u>	§.	ē.	S.	8	8	<u>0</u>	8	8	8	8	8	<u>s</u> s	ŝŝ		00.	5	5	30	19
	i			~	_		-	_	_	-						_		_		_	-		-	-	_	_	_	_		1	_	_			_
0	000	8	80,	000	8	80.	80.	8.	80.	8	000	8	8	8	80.	000	80	8	80.	000	000	8	80.	8	8	80.	89	B	88	8 :	8	8	9 9 8	ŝŝ	85
~		•	•		J			-	-				•	•		•	•	•		•		•	-	Ŧ	•	•	•	-	-			-	-		
10	; 6	5.0	2	15.	20.	3.	30.	35.	•0.	45 .	20.	22.	8.	<u>\$</u> 2.	2.2	ĸ.	8 8	85.	ġ.	<u>8</u> .	8	8	10.	15.	<u>5</u> 0.	ະ ເ	ເ ເ	ភូទ			50.	55.	÷ 8	۶. د د	έĸ
Ξ	;								•		; -		-	-							; =	Ŧ	-	-	-	÷	-				÷	-		÷÷	

9	22.22			888888
: ^	2219 2219 2219 2219 2219 2219 2219 2219	÷ * * * * * * * * * * * * * * * * * * *	&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&	****
-		\$58285858EE88	88888888888	888888
4	87328688888	8648865288	888888888	888888
	000000000y	· ŇŇŇŇŇŇŇŇŇŇŎ · · M©Q ŅOQ QM 4 M ·	- 9999999999999 - 99999999999999	000000 000000
0	7 8 3 7 8 8 7 8 8	30,428,824,624,	88123128	888888
			5722528 8888	****
	900 9335 975 975 975 975 975 975	5238 538 5238 5238 5238 5238 5238 5238 5	588 531 531 531 531 568 565 565 565 565 565 565 565 565 565	899 414 031 807 807
4	34,28,24,93,88	\$2,5,5,5,5,5,5,8,8 8,8,3,3,8,7,8,8,8 8,8,3,4,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,	20 00 00 00 00 00 00 00 00 00 00 00 00 0	899.22
	0-0-232402M	. N % N / 8 9 % 8 % M :		223223
~		MSC23358968	8557.557.826.627	2.22.22
	222558822555		2222228888666	2222222
	760 760 963 965 760 760 760 765 765 765	2555 2718 2718 2718 2572 2572 2572	933 933 122 122 122 122 122 122 122 122 122 1	363 578 722 805 745
<u> </u>	83.72.65.65.68	82,823,224,238,38	NE 44689994	82.22.23
L C U	8 F 4 7 8 N 4 8 N 7	-0.0 N - 0 - 0 M 0 -		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
€ø.	26 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	123,459,651	868.592.593.B	22.22 2.22 2.22 2.22 2.22 2.22 2.22 2.
ss'		3324399925		27222 <u>6</u> 0
o, str	571 571 652 265 265 265	772 7772 7772 7557 6687 6587 6587 6587 6587 6591 6516 6516 6516 6516 6516 6516 6516	627 627 907 907 907 907 907 907 907 907 907 90	501 5556 5554 5554 208 208
p ḿ	33.72 33.72 34.72 37.72	8 2 3 2 X 8 3 8 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2882.288	8.3.8.7.7.1.
Fie	20888825805	. 858878282828	8278358295	0729805 11111
5.0	5.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2		8332 - 833 5 - 2 C	2.5.5
ec t	eeee		00000000000	8888888
ے چ	242 410 508 508 508 508 5111 472		789 474 474 474 474 474 474 474 474 474 47	839 650 708 708 708 708
; m	0 0 0 0 0 0	8 2 2 2 8 2 2 2 8 2 2 2 2 2 2 2 2 2 2 2	52.55	57. 58. 70.
	0,08,00,00,00,00	. 0045000505	P 2 2 P 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	282380
0.5	2070 1.132 1	6 8 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9		
				WWW233
	2460100000000000000000000000000000000000	222288822696	15122333333	693 277 546 918 918
N		-+NNM4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	22.22.22
1	8888284558	. 3285578989 .	00000704004	0.4.8.5.9.0
. 9	888888888	8885528228	55853557885	22.24
4	88888888888 88888888888888888888888888	000 000 000 000 000 000 000 000 000 00	155 280 280 280 280 280 280 280 280 280 280	656 964 555 555 555
~				
-	88888888888		108365882555	555×2×
5.2	99999999999	22222222222	0000000000000	NE 2 2 2
0	888888888888888888888888888888888888888		001 001 001 001 001 001 001 001 001 001	023 031 067 067 084
Ň			•••••	
101		<u></u>	00110000032	2222222

ı.

5 0.6 0.9 1.0 1.1 20 25 30 40 50 60 1.00		8888888888	888888888888888888888888888888888888888	888888
5 0.6 0.9 10 117 20 25 30 0.0 000	1.30	8888	888888888888888888888888888888888888888	88888
5 16 10 13 17 20 25 30 40 50 60 10 000 0		· • • • • • • • • • • • • • • • • • • •	888888888888888888888888888888888888888	888888
5 .06 .01 .10 .17 .20 .25 .30 .40 .50 .60 .00 000	. 0	555555555 \$ \$ \$		888888 888888
5 .06 .01 .10 .17 .20 .25 .30 .40 .50 .60		, 88888888 i , 2,3,3,9		2222222 2222222
5 .06 .09 .10 .13 .17 .20 .25 .30 .40 .50 .60 000	8	8.8.8.8.8.8.8.4		88888
5 .06 .09 .10 .13 .17 .20 .25 .30 .40 .50 .60 000	-	: *	***************************************	888888
5 16 13 17 20 25 30 40 50 000 <t< td=""><td>3</td><td></td><td></td><td>888888</td></t<>	3			888888
5 .06 .08 .10 .13 .17 .20 .25 .30 .40 .50 000 .000	: '			****
5 .06 .08 .10 .13 .17 .20 .25 .30 .40 000 .000	. 03			888888
5				\$\$\$\$\$\$\$
5 .06 .03 .10 .13 .17 .20 .25 .30 .4 000 .000			888228888888888888888888888888888888888	888888
5 06 03 10 13 17 20 25 30 000 <t< td=""><td>1</td><td></td><td>************************************</td><td>888888</td></t<>	1		*** *********************************	888888
5 .06 .08 .10 .13 .17 .20 .23 .31 000 .000	i • •	88888888888		888888
5 .06 .08 .10 .13 .17 .20 .25 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000	ଲ୍ଗୁ ନି		8888888888	888888
5 .06 .08 .10 .13 .17 .20 .25 000 .000	₩)	·	· * * * * * * * * * * * * * * * * * * *	888888
5 .06 .03 .10 .13 .17 .20 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 <t< td=""><td><u>کې</u></td><td></td><td>· 55555555555 · 5555555555555555555555</td><td>555555 552225</td></t<>	<u>کې</u>		· 55555555555 · 5555555555555555555555	555555 552225
5 0.6 0.8 10 13 17 20 000	ensi			2222222 2222222
5 .06 .08 .10 .13 .17 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000	20 1	8888888888	888888885 88888888888888	88888
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ILLE		: \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	888888
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 ⁶			<u> 888888</u>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			· · · · · · · · · · · · · · · · · · ·	***
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m			888888
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			80 66 66 66 66 66 66 66 66 66 66 66 66 66	888888
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			888888888888888888888888888888888888888	8888888
5 .66 .08 900 .000 .000 900	=		8666	888888
5 5 5 5 90 90 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 <td< td=""><td></td><td>88888888888</td><td></td><td>888888</td></td<>		88888888888		888888
5 .06 900 .000 <	8.		21	888888
3 3	1	: 8888888888	888888888888888888888888888888888888888	882288
2233 ↔ · · · · · · · · · · · · · · · · · ·	8			
: ۲۰ : 288888888888888888888888888888888888	ł			× × ↔
	8	88888888888888888888888888888888888888	**********	222223
			; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	M 000000
3 3	8	88888888888888888888888888888888888888		<u>8888888</u>
			i i	
<u>(0)</u>	: 9	\$5.6% 20°.0°	<u> </u>	55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

1

APPENDIX E

MEMORY LIFE TEST DATA

TYPE	PARTNUM	TECH	NBITS	ARRAYTECH	test	YR	DUR	DEVHRS N	ITEST	NFAIL	FDE SC	FMECHNISM
EEPRON	28164	SOM-	16K	FLGATE FLG	A 1250LIFE	: వ		7.72E5		-		* * * * * * * * * * * * * * * *
EEPRON	52813	SOM-	16K	SV FX FLGATE FLG	A 125DLIFE	ą		6.84E5		-		
EEPRON	52833	SON-	64K	5V FX FLGATE FLG	1250LIFE	2		6.58E5		-		
	4718CX	-	471	SV FX	13601166	6		1 3/67				
	760104		5	SV TP		õ		1.6000		v	r, i kelentum	I TONCONTAN, 7
EEPRON	X28168	SOHN	16K	FLGATE FLG	A 125DLIFE	87		7.73E6		0		
EEPRON	X2404	SOM	¥	FLGATE FLG	A 125DLIFE	87		1.49E6		2	i'i	2 OKIDE BRKDAN
EEPRON	X2864A	SOMM	54K	FLGATE FLG	A 1250LIFE	87		3.2966		s	?,7,7,2, 1 RETENTION	4 IONCONTAN, 7
FPGA	82S103	111	297	NICL FUSE NIC	r DHTLIFE	8	1000	~	0	0		
FPLA	8 25101	ш	1832	NICL FUSE NICI	r DNTLIFE	వే	1000	4	æ	0		
FPLA	82S101	Ĩ	1832	NICL FUSE NIC	r DHTLIFE	2	1000	SU.	0	0		
FPLA	82S153	Ĩ	1842	MICL FUSE NIC	r DHTLIFE	202	1000	4 4	eg 6	- (1 SHORTED WIRE	1 ASSY ERROR
FPLA	PLS153		1842	MICT FUSE MIC	r DHTLIFE	82		- 60	3 5			
FPLA	PLS153	ΞĽ	1852	NICL FUSE NICL	r DHTLIFE	87	8 <u>0</u>	,	28			
FPLA	PLS153	111	1852	NICL FUSE NIC	r DHTLIFE	87	1000	-	8	0		
FPLA	82S100	111	1928	NICL FUSE NIC	r DHTLIFE	2	1000	5	5	0		
FPLA	82S100	111	1928	NICL FUSE NIC	r DHTLIFE	23	1000	u n (0	0		
FPLA	825100	Ĕ	8261	NICL FUSE MIC	r DHTLIFE	z :	000	n (ç ç			
	0(2) (0) Di 6100		1028	WICH FUSE WICH	C UNILIFE	6 8		•	2	• •		
FPLA	PL 5100	ĨE	1928	NICL FUSE NIC	r DHTLIFE	6 2		- •	32			
FPLA	PI \$100	Ĩ	1928	NICL FUSE NIC	r DHTLIFF	3 2	1000	~ ~	82	, c		
FPLA	PLS100	Ë	1928	NICL FUSE MICH	L DHILIFE	3 8	<u>8</u> 80 80		88			
FPLA	PLS100	ΠL	1928	NICL FUSE NIC	r DHTLIFE	8	1000	-	8	0		
FPLA	PLS100	111	1928	NICL FUSE NIC	r DHTLIFE	8	1000	-	00	0		
FPLA	PLS100	Ĩ	1928	NICL FUSE NIC	r DHTLIFE	88	1000	•	88	••		
FPLA CDIA	PLS 100		1028	NICT FUSE MIC.	r DMILIFE	8 8		- 4	3.		1 ACPAKAN	~
FPLA	PLS100		1928	MICL FUSE MICH	r DHTLIFF	3 2		1 01	2			
FPLA	PLS173	III	2618	NICL FUSE NICL	r DHTLIFE	8	1000		8	. 0		
FPLA	PLS151	ΠL	564	NICL FUSE NIC	r DHTLIFE	8	1000	æ	\$	-	1 ACFUNC	~
FPLS	PLS159	111	2011	NICL FUSE NIC	r DHTLIFE	8	1000	5	2	0		
FPLS	PLS157	111	2016	NICL FUSE NIC	r DHTLIFE	8	1000	5	æ	0		
FPLS	82S167	TIL	3360	NICL FUSE NIC	r DHTLIFE	వ	1000	5	0	0		
FPLS	82S105	111	3552	NICL FUSE NIC	r DHTLIFE	8	1000	4	ç	0		
FPLS	825105 225105	Ĕ	3552	NICL FUSE NIC	r DHTLIFE	83	1000	47 k	0	0 0		
PLS 505	201228		2005	NICL FUSE NIC	r DHILIFE	3		~ 4	2	-		
5015	C01620		2000	NICT FUSE MIC	r DHILIFE	8 2		n¥	2 9			
	825105		2525	MICT FUSE MIC		6 2		• •		- -	S SHORTEN HIRE	2 ASY FREND
FPLS	825105	Ĩ	3552	NICL FUSE NIC	r DHTLIFE	12	1000	, ro	2.9	10		

¥.

TYPE	PARTNUM	TECH	MBITS	ARRAYTEC	=	TEST	× :	SUR .	DEVHRS 1	ITEST	NFAIL	FDESC	FMECHNSM
FPLS	625105A	III	3552	NICL FUS	ENIC	DHTLIFE	వ	000		0	-	1 OPEN WIRE	1 DEFECT WIREBOND
FPLS	PL S 105	111	3552	NICL FUS	E NICr	DHTLIFE	8	000		2			
PROM	B2HS641B			FUSE	FUSE	HTOL I FE	87	8	~	5	_		
PROM	P/N27C256	CHOS	256K	FLGATE	FLGA	1250LIFE	87		1.2965		0		
MON	P/N27C256	CHOS	256K	FLGATE	FLGA	1250LIFE	87		9.53E5		5	4 GROSSFUMC, 1 LEAKAGE	7, 7
		i		VC.21			é						
	10149	ដ្ឋដ				SHTLIFE	28	88	•••	• 5			
	10147 071284		ADD.	EL CATE	EI CA	STILLE	8 2	3	R 5165 .	2			
	N021124			12.5V		וכארוגב	5		0.1127				
PROM	P27128A	SOMM	12BK	FLGATE 12.5V	FLGA	125VDLIFE	87		4.68E6		~	1 SPEED, 1 MBCG, 3 MBCL, 2 SBCL	7. 7. 7. 7
NON	P27128A	SOMM	128K	FLGATE	FLGA	6.5vDLIFE	87		1.05E5				
MOM	P27256	SOMM	256K	FLGATE 12.5V	FLGA	1250LIFE	87		3.54E6		æ	2 SBCL, 3 DECODE, 2 SBCG, 1 MBCG	2, 2, 2, 2
PROM	P27756	SOMM	256K	FLGATE	FLGA	6.5vDLIFE	87		4.75E4		-	1 SBCL	2
MON	P2732A	SOMM	32K	FLGATE 2	1 VFLGA	1250LIFE	z		3.4TE6		÷	1 TY DECODE, 3 RSB CHARGE Loss	2.2
PROM	P2764A	SOMM	5K	FLGATE	FLGA	1250LIFE	వ		8.94E6		0		
MONIA	82MS187A	111		FUSE	FUSE	HTOLIFE	8	000	•	8	0		
PROM	B2HS641	TTL		FUSE	FUSE	NTOL I FE	8	80	v	2			
PROM	B2S114	111		FUSE	FUSE	DHTLIFE	5	000	v	5			
PROM	B 25115	111		FUSE	FUSE	DHTLIFE	28	80	u n	0			
PRON	B 25115	LTL		FUSE	FUSE	DHTLIFE	5	80	•	0	0		
PROM	B 25115	Ш		FUSE	FUSE	DHTLIFE	వ	8	4	0			
PROM	B2S 135	Ĕ		FUSE	FUSE	HTOLIFE	20	8	~ `	29	_		
	171529 1717	Ë				DNTLIFE	23	88		2 9			
	0/210/ 8/21678					DATLIFE	5 Z			2.4			
	R25191		16K	FUSE	FUSE	DHTLIFE	55	8		-			
PROM	825191	111	Зб Х	FUSE	FUSE	DHTLIFE	2	000	-	5	0		
PRON	B 25191	III	ž	FUSE	FUSE	DHTLIFE	వ	80	•	0			
MON	B 2S191	111	ާ	FUSE	FUSE	DHTLIFE	వ	8		0	_		
MON	B 25191	TTL	ž	FUSE	FUSE	DHTLIFE	25 (8		- -	-		
PROM	B 25191	וור	ž	FUSE	FUSE	DHTLIFE	5	80	- ·	8	_		
NON 4	82S191	Ë	ž;	FUSE	FUSE	NTOLIFE	2	88	- •	- 8			
	025191						8 2	38	- 4	3 9			
	A25101A	Ë	5	FLISE		DMTLIFE	512	88		28) –		
PROM	B 25191A	Ш	ž	FUSE	FUSE	DMTLIFE	5	8	-	8	0		
PROM	82S191A	Ш	16£	FUSE	FUSE	DHTLIFE	5	000	ý	2	0		
PROM	82S191A	Ëi	Ş;	FUSE	FUSE	DHTLIFE	8 8	000		81	- (1 PARAM FAIL	2
PROM	825191A	Ï	2	FUSE	FUSE	DHTLIFE	62			R :			ł
PKUN	825191A 8761018	1 2	Į		FUSE	DHILIFE ANTI IFF	8 2			2 2		Z LINII FAILUKES (ILL TARU)	×.
	0141030	:	ł	1021		0	3	222	•	ĥ			
i.

TYPE	PARTNUM	TECH	NBITS	ARRAYTECH		TEST	X X	au a	DEVHRS	NTEST	NFALL	FDESC	FMECHNSN
PROM	82S191B	TTL	1 2	FUSE	FUSE	DHTLIFE	58	1000		8	0		
PROM	82S191B	Ш	16¥	FUSE	FUSE	DHTLIFE	5	1000		8	~	2 PARAM (MARG ICC)	~
PROM	825126A	IIL	¥	FUSE	FUSE	HTOL I FE	87	1000		8	0		
PROM	82S129	Щ	¥	FUSE	FUSE	HTOL I FE	87	000		100 100	0		
PROM	82S129	11L	¥	FUSE	FUSE	HTOLIFE	87	1000		ĸ	0		
PROM	825129	11L	¥	FUSE	FUSE	HTOL IFE	8	1000		5	0		
PROM	825129A	ΠL	¥	FUSE	FUSE	HTOLIFE	87	<u>100</u>		8	0		
PROM	82S129A	Ĩ	¥	FUSE	FUSE	HTOLIFE	87	000		8	0		
PROM	825129A	111	¥	FUSE	FUSE	HTOLIFE	8	1000		<u>1</u> 0	0		
PROM	825129A	Ĕ	¥	FUSE	FUSE	HTOL IFE	8	1000		90	-	1 AC PARAM	~
PROM	825185	111	¥.	FUSE	FUSE	HTOLIFE	2	000		165	2	2 ACFUNC SLOPATT	~
PROM	825185A	II	¥	FUSE	FUSE	HTOLIFE	8	8		150	0		
PROM	82S123	Ш	256	FUSE	FUSE	DHTLIFE	8	000		20	0		
PROM	625123	11	256	FUSE	FUSE	DHTLIFE	3	1000		ŝ	0		
PROM	8 25123	Ĩ	256	FUSE	FUSE	DHTLIFE	z	<u>8</u>		<u>1</u> 0	0		
PROM	8 25123	Ĩ	256	FUSE	FUSE	DHTLIFE	z	000		20	0		
PROM	825123A	Щ	256	FUSE	FUSE	DHTLIFE	3 2	1000		<u>8</u>	0		
PROM	B 25123A	Ĩ	256	FUSE	FUSE	DHTLIFE	8 5	<u>8</u>		8	0		
PROM	825123A	Ĩ	256	FUSE	FUSE	HTOLIFE	87	000		1 00	0		
PROM	825123A	IIL	256	FUSE	FUSE	HTOL I FE	8	1000		<u>1</u> 0	0		
PROM	825123A	TTL	256	FUSE	FUSE	HTOLIFE	8	1000		8	•		
PROM	82523	Ш	256	FUSE	FUSE	DHTLIFE	8	1000		54	•		
PROM	82523	11L	256	FUSE	FUSE	DHTLIFE	వ	1000		49	•		
PROM	82523	Ш	256	FUSE	FUSE	DHTLIFE	8	1000		<u>1</u> 0	•		
PROM	B2S23A	Ĕ	256	FUSE	FUSE	DHTLIFE	8	<u>100</u>		8	•		
PROM	B25126A	Ш	ž	FUSE	FUSE	DHTLIFE	32	100		8	0		
PROM	B25126A	111	×	FUSE	FUSE	DHTLIFE	8	1000		8	•		
PROM	82S129	Щ	×	FUSE	FUSE	DHTLIFE	8	100		100	0		
PROM	B2S129A	111	X	FUSE	FUSE	DHTLIFE	28	1000		ጽ	•		
PROM	825129A	Щ	ZK	FUSE	FUSE	HTOLIFE	8	<u>100</u>		<u>8</u>	•		
PROM	825129A	Щ	×	FUSE	FUSE	HTOLIFE	8	000		97	-	1 ACFUNC SLOPATT	~
PROM	82S130	Щ	ž	FUSE	FUSE	DHTLIFE	8	<u>100</u>		40	0		
PROM	825130A	щ	ž	FUSE	FUSE	HTOLIFE	87	80		8	0		
PROM	825131	Ĕ	ž	FUSE	FUSE	DHTLIFE	8	001		8	0 0		
	161820			FUSE	FUSE	DHILIFE	5	0001		88	.		
	825151	Ē	× 2	FUSE		DHTLIFE	5	001		2			
			5	ruse 105			8 1	0001		33	> (
	161626			FUSE		NIGLIFE	8 8	0001		≧g	5 0		
	VICIS70			FUSE		DHILIFE	6			, 2	5.		1 MCTAL DEFECT
PROM	82HS321	Ĕi	NSK N	FUSE	FUSE	DHTLIFE	ទ			2 2 2	- •	I FUNC FAIL	1 DEE VENED
PROM	62HS321		27K	FUSE	FUSE	OHTLIFE	6	0001		3	~ (I FUNC FAIL	I DEL TEMEN
PROM	82HS321	Ĩ	32K	FUSE	FUSE	HTOLIFE	22	0001		8			
PROM	82HS321B	111	32K	FUSE	FUSE	HTOLIFE	20	0001		8	0		ł
PROM	82S321	111	32K	FUSE	FUSE	DHTLIFE	6	0001		8	-	1 AC FUNC	•
PROM	82HS147A	Ш	4¥	FUSE	FUSE	HTOLIFE	8	1000		176	0		
PROM	82S137	Ш	4K	FUSE	FUSE	DHTLIFE	5	000		5	0		
PROM	82S137	ΠL	4K	FUSE	FUSE	DHTLIFE	ຣ	001		22	0		
PROM	82S137	Ĩ	¥:	FUSE	FUSE	DHTLIFE	5	0001		25	- ,	1 FUNC FAIL	1 EUS 1 HIME DAMAGE
PROM	82S137	11L	4K	FUSE	FUSE	DHTLIFE	z	100		100	-	T LEAKAGE FAIL	

TYPE	PARTNUM	TECH	NBITS	ARRAYTECH		TEST	YR C	S.	DEVHRS N	TEST	NFAIL	FDESC		FMECHNSM
PROM	82S137	ш	¥¥	FUSE	FUSE	DHTLIFE	8	00	-	8				
PROM	82S137	ш	¥	FUSE	FUSE	DHTLIFE	8	8	o	•				
PROM	82S137	111	¥	FUSE	FUSE	HTOL I FE	88	8	-	8				
PROM	82S137	III	¥	FUSE	FUSE	HTOL I FE	88	000	-	8	-	1 AC PARAM SL	O PATT	2
PROM	825137A	Ш	¥	FUSE	FUSE	DHTLIFE	8	8	5	0				
PROM	825137A	III	¥	FUSE	FUSE	DHTLIFE	8	8	5	0				
PROM	625137A	111	¥¥	FUSE	FUSE	HTOL I FE	88	8	-	8				
PROM	82S137A	111	¥	FUSE	FUSE	HTOL I FE	88	8	-	8				
PROM	82S137A	111	¥	FUSE	FUSE	NTOL I FE	88	8	-	8	~	2 ACFUNC SLOP	AIT	2
PROM	B25147A	111	¥	FUSE	FUSE	HTOL IFE	88	8	-	8				
PROM	B2S147A	TILL	¥	FUSE	FUSE	HTOLIFE	88	00	•	- -	_			
PROM	82S147A	111	¥	FUSE	FUSE	HTOL I FE	88	8	•	•				
PROM	B 2LS181	111	벌	FUSE	FUSE	DHTLIFE	8	8	ŝ	0				
PROM	B 2LS181	111	ž	FUSE	FUSE	DHTL I FE	80	000	50	0	-	1 FUNC FAIL		2
PROM	62S181	111		FUSE	FUSE	DHTLIFE	83	000	4	- v	0			
PROM	62S181	111	ă	FUSE	FUSE	DHTLIFE	20	000	4	0	~	1 INTERMIT BI	1, 1 UNK	7, 1 ELECTRONIG
PROM	625181A	ш	ă	FUSE	FUSE	DHTLIFE	20	000	50	ō	0			
PROM	625181A	111	¥	FUSE	FUSE	DHTLIFE	8	000	0	9	-	1 AC FUNC (BA	KE RECOV)	2
PROM	62S181C	111	¥	FUSE	FUSE	HTOL I FE	87	000	80	0	0			
PROM	62S181C	111	¥	FUSE	FUSE	HTOL IFE	88	000	-	20	0			
PROM	625183	III	¥	FUSE	FUSE	DHTLIFE	20	80	0	- -	0			
PROM	625163	III	¥	FUSE	FUSE	DHTL IFE	20	80	•	ş	-	1 FAILS AC		7
PROM	6 25185	III	꽃	FUSE	FUSE	DHTLIFE	8	000	5	0				
PROM	62S185	IIL	¥	FUSE	FUSE	DHTLIFE	20	00	<u>د</u>	0				
PROM	62S185A	Ш	¥	FUSE	FUSE	DHTLIFE	83	000	5	0				
PROM	625185A	III	¥	FUSE	FUSE	NTOL I FE	87	8	80	- 5				
PROM	62S185A	111	봂	FUSE	FUSE	HTOL I FE	88	8	-	8	0			
ROM	2643A	SOMN		SOMN	SOMN	DHTL IFE	83	8	-	8				
ROM	23128	SOMM	128K	SOMM	SOM	DHTLIFE	20	000	-	8				
ROM	23128	SOMN	128K	SOMM	SOMM	DHTL IFE	20	8	-	8	_			
ROM	23128	SOMM	128K	SOMM	SOMM	DHTLIFE	20	8	-	8				
ROM	23128	SOMM	128K	SOMM	SOMN	DHTLIFE	20	8	-	8	_	1 IN LEAK FAI	_	1 THR VOLT SHIFT
ROM	23128	SOMN	128K	SOMM	SOMN	DHTLIFE	20	80	-	02	_			
NO2	23128	SOMM	128K	SOMM	SOMN	DHTLIFE	2	8	0	0	<u> </u>			
HON	23128	SOMM	128	SOMM	SOMN	DHTLIFE	2	8		0		T FUNC FAIL		I THR VOLT SHIFT
MDX	87157	SOM	X87	SOMN		DHTLIFE	5	000	.	2	-			
	82162	SOM				DHILIFE	5			2 6	-			
5	07107		X871			DNILIPE	61		- (3,				
	87157	SOMM		SOMM		DHTLIFE	6	8		2		I FUNC FAIL		I UXIDE DEFECT
NON	22128	SOMM		SOMM	SOMIN	DHTLIFE	8	000		3	-			
NON	23128	SOMM	128X	SOMM	SOMN	DHTLIFE	8	00	-	8				
NON	23128	SOMM	128K	SOM	SOMN	DHTLIFE	8	8	-	8	-	1 VCCSUB SHOR	-	1 JUNC LEAK NONION
RON	23128	SOMM	128X	SOMM	SOMN	DHTLIFE	8	000	-	5	0			
ROM	23128A	SOMM	128K	SOMM	SOMN	DHTLIFE	20	000	-	8	_			
ROM	23128A	SOMM	128K	SOMN	SOMN	DHTLIFE	85	000	-	8	0			
ROM	23128A	SOMN	128K	SOMN	SOMN	DHTLIFE	8	000	-	8	_			
ROM	23128A	SOMN	128K	SOMN	SOMN	DHJLIFE	8	000		8	0			
HO2	2616	SOWN	ž	SOMN	SOMN	DHLTIFE	201	000	- •	= :	<u> </u>			
ROM	2616	SOME	16K	SOMN	SOMN	DNTLIFE	8	000	-	8	_			

Downloaded from http://www.everyspec.com

I Y PE	PARTNUM	TECH	NBITS	ARRAYTECH		TEST	¥ :	DUR	DEVHRS N	ITEST	NFAIL	FDESC	FMECHNSM
MO	23256	SOMM	256K	SOMN	SOMN	DHTLIFE	8	1000	-	8	0		
Đ	23256	SOMM	256K	SOMN	SOMN	DHTL IFE	8	1000	-	8	0		
Đ	23256	SOMM	256K	SOMM	SOMN	DHTLIFE	8	1000	0	2	-	1 FAIL	1 IONIC LEAKAGE
N	23256	SOMM	256K	SOMN	SOMN	DHTLIFE	8	1000	5	ø	0		
Đ	23256	SOMM	256K	SOMN	SOMN	DHTLIFE	8	1000	5	\$	0		
Đ	23256A	SOMM	256K	SOMN	SOMN	DHTLIFE	2	1000		8	0		
Đ	23256A	SOMM	256K	SOMN	SOMM	DHTLIFE	z	1000		8	0		
Đ	23256A	SOMM	256K	SOMM	NHOS	DHTLIFE	వ	1000	-	8	0		
Đ	23256A	SOMM	256K	SOMN	NMOS	DHTLIFE	ð	1000	Ŷ	ድ	0		
Đ	23256A	SOMM	256K	SOMN	SOMN	DHTLIFE	వ	<u>100</u>	Υ.	ድ	•		
5	23256A	SOMM	256K	SOMN	NMOS	DHTLIFE	85	1000	-	8	0		
5	23256A	SOMM	256K	SOMN	SOMN	DHTLIFE	8	1000	v	8	•		
Đ	23256A	SOMM	256K	SOMM	SOMN	DHTLIFE	8 5	1000	Ŷ	8	-	1 FUNC FAIL	1 ELECTRONIG
5	23256A	SOMM	256K	SOMM	SOMN	DHTLIFE	8	1000 1	-	8	0		
8	23256A	SOMM	256K	SOMM	SOMN	DHTL IFE	8	1000	-	8	0		
5	2332	SOMM	32K	SOMN	SOMN	DHTLIFE	ą	1000	•	8	0		
5	2632	SOMM	32K	SOMN	SOHN	DHTLIFE	8	1000	•	8	0		
5	2632	SOMM	32K	SOMN	NMOS	DHTLIFE	8	1000	·	2	0		
5	2632	SOMM	32K	SOMN	SONN	DHTLIFE	8	1000	~	5	0		
5	2632	SOMM	32K	SOMM	SOMN	DHTLIFE	8	1000	.	ድ	0		
5	2632	SOMM	32K	SOMN	SOMN	DHTLIFE	81	1000 1	•	102	0		
Ð	2632	SOMM	32K	SOMM	SOMN	DHTLIFE	81	1000	•	102	•		
5	2632	SOMM	32K	NMOS	SOMM	DHTLIFE	81	1000		ŝ	0		
Ŧ	2632	SOMM	32K	SOMN	SOMM	DHTLIFE	81	1000 1	•	19	0		
Ŧ	2632	SOMM	32K	SOMM	SOMN	DHTLIFE	81	100 1	•	8	0		
Æ	2632	SOMN	32K	SOMN	SOMN	DHTLIFE	82	1000 1	•	<u>10</u>	0		
5	2632	SOMN	32K	SOMN	SOMN	DHTLIFE	20	1000	•	103	0		
Ŧ	2632A	SOMN	32K	SOMM	SOMN	DHTLIFE	81	1000	•	101	0		
Ŧ	2632A	SOMM	32K	SOMN	NMOS	DHTLIFE	83	1000	•	8	0		
Ŧ	2632A	SOMN	32K	SOMN	SOMN	DHTLIFE	83	1000	•	8	0		
Ŧ	2632A	SOMN	32K	SOMN	SOMN	DHTLIFE	83	1000	•	8	0		
Ŧ	2632A	SOMN	32K	SOMN	SOMN	DHTLIFE	83	1000	-	8	0		
Ŧ	2632A	SOMM	32K	SOMN	SOMN	DHTLIFE	83	1000	-	8	0		
E :	26M32	SOWN	32K	SOMN	SOMN	DHTLIFE	82	1000	-	8	0		
E :	26M32	SOMM	32K	SOMN	SOMN	DHTLIFE	82	1000	-	8	0		
Ŧ	2364	SOMM	84K	SOMN	SOMN	DHTLIFE	8 5	1000	-	8	0		
Ŧ	2364	SOMM	žž	SOMN	SOMN	DHTLIFE	85	<u>100</u>		8	0		
Ŧ	2364	SOMM	۶¥	SOMM	SOMM	DHTLIFE	8	1000	-	8	0		
Ŧ	2364	SOMN	ž	SOMIN	SOMN	DHTLIFE	8	1000	•	8	0		
₹	2364	SOMM	žž	SOMM	SOMN	DHTLIFE	8	1000	-	8	0		
Ŧ	2364	SOMM	۶¥	SOMN	SOMN	DHTLIFE	8	1000	-	8	0		
Ŧ	2364	SOHN	۶¥	SOMM	SOMN	HTOL	87	1000	•	8	0		
Ð	2364	SOWN	۶¥	SOMM	SOWN	HTOL	87	1000	-	8	0		
Ŧ	2664	SOMN	۶¥	SOMN	SOMN	DHTLIFE	8	1000	-	8	0		
Ŧ	2664	SOHN	۶¥	SOMN	SOMN	DHTLIFE	80	1000	•	8	0		
Ŧ	2664	SOMN	۶¥	SOMM	SOM	DHTLIFE	80	1000	æ	2	0		
Ŧ	2664	SOMN	ž	SOMN	SOMN	DHTLIFE	8	1000	-	8	0		
Ŧ	2664	SOMN	۶X ۲	SOMM	SOMN	DHTLIFE	81	1000	-	02	0		
Ŧ	2664	SOMN	ž	SOMN	NMOS	DHTLIFE	8	1000		5	,	1 PARAM	1 CONTAM?

ı.

2	1 OXIDE DEFECT	

PARTNUM	TECH	NBITS	ARRAYTECH		TEST	YR	BUR	DEVHRS	NTEST	NFAIL	FDESC	FMECHNSM
2664	SOMM	97K	SOMM	SOMM	DMTL LFF	: 18	1000		122	- c		
2664	SOMN	žž	SOMM	SOMN	DHTLIFE	5	1000		2	. –	1 OUTLEAK	2
2664	SOMM	۶¥	SOMN	SOMM	DHTLIFE	82	1000		108	0		
2664	SOMM	ž	SOMN	SOMN	DHTLIFE	83	1000		100	0		
2664	SOMM	۶¥	SOMN	SOMM	DMTLIFE	83	1000		8	0		
2664A	SOMM	ž	SOMM	SOM	DNTLIFE	83	1000		<u>8</u>	0		
2664A	SOHN	¥3	SOHN	SOM	DHTLIFE	83	1000		<u>8</u>	0		
2664.4	SOM	ž	SOM	South in the second sec	DWTLIFE	83	1000		8	0		
2664A	SOMM	¥¥	SOHN	SOM	DHTLIFE	8	1000		8	0		
2664A	SOMM	Š¥	SOMM	SOH	DHTLIFE	83	1000		100	~	2 IN LEAK FAIL	ż
2664A	SOMM	¥¥	SOMN	SOM	DHTLIFE	83	1000		63	0		
2664A	SOMM	۶¥	SOMM	SOMM	DHTLIFE	83	1000		8	0		
2664A	SOMM	ž	SOMM	SOMM	DHTLIFE	83	1000		8	0		
2664A	SOMM	۶¥	SOMM	SOM	DHTLIFE	2	1000		45	0		
2664A	SOMM	۶¥	SOHN	SOM	DHTLIFE	2	1000		8	0		
27C256					DHTLIFE	8	1000		<u>10</u>	0		
27C256					DHTLIFE	8	1000		<u>8</u>	0		
27C256					DHTLIFE	8	1000		20	0		
27C256					DHTLIFE	8	1000		50	0		
27c256					DHTLIFE	8	500		<u>10</u>	0		
27C256					DHTLIFE	8	200		8	0		
27C256					DHTLIFE	8	200		8	0		
270256					DMTL LFE	8	500		47	0		
270256					DHTLIFE	8	200		8	0		
270256					MTON. IFE	87	1000		100	0		
276256					HTOLIFE	87	0001		84		1 PARAM FAIL	1 OXIDE DEFECT
270256					HTON IFE	87	1000		50	0		
270256					HTOLIFE	5	1000		202			
270256					HTOLIFE	87	1000		20	0		
270256					MTOLIFE	87	1000		8	0		
270256					HTOL J FE	87	1000		8	0		
270256					HTOL IFE	8	1000		100	0		
27C256					HTOL IFE	8	1000		<u>1</u> 0	0		
27C256					HTOL I FE	8	1000		<u>1</u> 00	•		
27C256					HTOL I FE	8	1000		8	0		
270256					NTOL JFE	8	1000		8	0		
27C256					HTOLIFE	8	1000		100	0		
27C256					HTOL JFE	8	1000		1 00	0		
27C256					HTOLIFE	8	1000		10	0		
270256					HTOLIFE	8	1000		<u>8</u>	0		
27C256					HTOL I FE	8	1000		8	0		
270256					HTOLIFE	8	1000		100	0		
27C256					NTOL I FE	8	1000		100	0		
27C256					HTOL I FE	8	1000		8	0		
27C256					HTOLIFE	8	1000		10 10	0		
27C256					MTOL IFE	83	1000		<u>1</u> 0	0		
27C256					MTOLIFE	8	1000		21			1 CUANCE LAGE
270256					MTOLIFE	88	0001		د ۽	- (I BIT FAIL	I CUARGE LUBS
275256					HIGUILE	8			3	-		

TYPE	PARTNUM	TECH	NBITS	ARAYTECH	TEST	YR	DUR	DEVHRS	NTEST	NFAIL	FDESC	FMECHNSM
UVEPROM	270256				HTOLIFE	88	1000		8	0		
UNEPROM	270256				HTOI IFF	2	1000		8	0		
INFED	275256				NTOL LEE	2			: 8	0		
	276.47					3 8	8					
						9 9	200		33			
UVEPKUN					DNILIFE	6			* 1			
UVEPRON	27064				DHTLIFE	82	1000		2	-	1 SINGLE BIT	1 JUNC LEAKAGE
UVEPROM	27064				DHTLIFE	85	1000		89	•		
UVEPRON	27064				DHTLIFE	8	1000		100	•		
UVEPROM	27064				DHTLIFE	8	1000		1 06	0		
UVEPROM	27C64				DHTLIFE	8	1000		54	0		
UVEPROM	27064				DHTLIFE	3	1000		24	0		
INFPROM	27064				DHTI IFF	2	1000		5	0		
UNEPRON	27644				DMTLIFE	3 \$			÷۲			
INFPROM	276.64				DNTI IFF	3 2	1000		15			
	27644					3 2			÷ ۲			
INFPROM	27644				DHTLIFF	3 2	800		÷۲	• c		
INFERM	27644				DATI LEE	3 2			÷۲			
INEPROM	27644				DHTI I FE	3 2			÷ ۲			
	27644					8 2	3		÷۲	, c		
						8 2	3		2 5			
UVEPROM	2/004				DHTLIFE	8			2	.		
UVEPRON	27064				DHTLIFE	2	0001		22	0		
UVEPRON	27064				DHTLIFE	8	1000		5	•		
UVEPRON	27C64				DHTLIFE	8	1000		8	0		
UVEPRON	27C64				DHTLIFE	8	1000		8	•		
UVEPRON	27064				DHTLIFE	8	500		8	•		
UVEPRON	27064				HTOL I FE	87	1000		<u>10</u>	•		
UVEPRON	27064				HTOLIFE	22	1000		901	0		
UNEPROM	27064				NTOU LEE	87	1000		100	0		
UVEPRON	27064				HTOLIFE	87	1000		48	0		
UVEPRON	27064				NTOL LEE	87	1000		20	0		
UVEPRON	27064				HTOL LFE	8	1000		100	•		
UVEPROM	27064				HTOLIFE	8	1000		8	•		
UVEPRON	27C64A				DHTLIFE	8	500		50	0		
UVEPRON	27C64A				DHTLIFE	8	500		8	0		
UVEPROM	27C64A				DHTLIFE	2	500		8	•		
UVEPRON	27C64A				DHTLIFE	2	500		8	0		
UVEPROM	27C64A				HTOL I FE	87	1000		8	•		
UVEPROM	27C64A				HTOL IFE	87	1000		8	-	1 BIT FAIL	1 CHARGE LOSS
UVEPRON	27C64A				NTOL I FE	87	1000		20	•		
UVEPRON	27C64A				NTOL I FE	87	1000		8	0		
UVEPRON	27C64A				HTOL I FE	8	1000		<u>8</u>	•		
UVEPRON	27C64A				HTOL I FE	8	1000		<u>8</u>	0		
UVEPRON	27C64A				HTOL I FE	8	1000		<u>10</u>	0		
UVEPRON	27C64A				HTOLIFE	88	1000		100	0		
UVEPRON	27C64A				HTOLIFE	88	1000		100	0		
UVEPRON	27C64A				NTOL LEE	88	1000		100	0		
UVEPROM	27C64A				HTOLIFE	8	0001		8	. 0		
UVEPBON	27C64A				NTON LEF	2	1000		100	0		
INFPROM	27C64A				HTOLIFE	2	1000		202			
						}			5	,		

		4	CT, 7, 1 OXIDE				HOLE				Z	CONTAM, 7, 7, 1					1	EFECT	
FINECHNISM	1 FAB DEFECT 1 FAB DEFECT	1 OXIDE BRKDI	1 OPEN CONTAC BRKDUN, 7		2	2.2	7, 7, 1 PASS	1.1.1			1 OXIDE BRKDI	14 CONTAN, B CONTAN, 7, 7		7, 2 CONTAN		4 CONTAM	1 OXIDE DEFEC	7, 7, 1 PASSD	
fDESC	1 Lak 1 Jak	1 SBIT CHRGE LOSS	1 GRSSFUNC, 2 SBIT CHRGELOSS, 1 OUTLEAK, 1 MBIT CHRGEGAIN		1 ICC STBY PLAR	1 SBIT CHRGE GAIN, 1 ROW FAILURE	1 MBCHRGELOSS, 1 GRSSFUNC, 3 SBIT CHRGE LOSS	2 CHRGE GAIN, 1 CHRGE LOSS, 1 OUTPUT FAIL			2 SBCL	14 INP LKGE, 8 CHRGE GAIN, 2 FUSE LKGE, 1 DECOD, 3 CGLOSS, 2 IMLEV, 1FUSERG		2 MBIT CHRGE LOSS, 2 UNK		4 MBIT CHRGE GAIN	1 UNK	1 ROWFAIL, 1 SPEED, 1 UMK	
NFAIL	000000000	-	ŝ	0	-	~	ŝ	4	0	0	2	31	0	4	0	4	-	ñ	0
NTEST	**************************************																		
DEVHRS		4.965	4.51E6	4.05E5	7.965	1.3666	4.25E6	9.63E6	4.06E5	2.84E5	2.22E6	B.23E6	1.28E6	2.17E6	5.064	1.22E6	1.18E5	9.04E5	7.7464
DUR	00010000000000000000000000000000000000																		
X :	************************	87	87	87	87	వ	87	వ	87	87	87	8	à	87	87	87	87	87	87
TEST	MTOLIFE MTOLIFE OMTLIFE OMTLIFE OMTLIFE MTOLIFE MTOLIFE MTOLIFE	1250LIFE	1250LIFE	6.5VDLIFE	125DL1FE	1250LIFE	1250LIFE	6.5VDL1FE	6.5VDL1FE	6.5VDL1FE	1250LJFE	1250LIFE	1250LJFE	1250LJFE	6.5VDLIFE	1250LIFE	6.5VDLIFE	1250LIFE	6.5VOLIFE
		FLGA	FLGA	FLGA	FIGA	FLGA	FLGA	FLGA	FLGA	FLGA	FLGA	VFLGA	FLGA	FLGA	FLGA	FLGA	FLGA	FLGA	FLGA
ARAYTECH		FLGATE 12.5V	FLGATE 12.5V	FLGATE 12.5V	FLGATE 12.5V	FLGATE 12.5V	FLGATE 12.5V	FLGATE 12.5V	FLGATE	FLGATE	FLGATE 12.5V	FLGATE 21	FLGATE 12.5V	FLGATE	FLGATE 12.5V	FLGATE 12.5V	FLGATE	FLGATE	FLGATE 12.5V
NBITS		128K	226K	256K	X952	ž	ž	۶¥	ž	Š	64K	128K	128K	128K	128K	128K	128K	Ē	Ħ
TECH		CMOS	CNOS	CHOS	CHOS	CNOS	CNOS	CHOS	CMOS	CMOS	CMOS	SOMM	SOMN	SOMM	SOMN	SOMN	SOMM	SOMN	SOMN
PARTNUM	27C64.A 27C64.A 27C64.A 27C64.A 27MC641 27MC641 27MC641 27MC641 27MC641 27MC641 27MC641 27MC641 27MC641	210128	27C256	27C256	87C257	27064	27064	27064	27C64	P/N2764	P/N27C64	27128	2712 8A	2712 8A	2712 8A	271288	271288	27010	27010
TYPE	UVEPRON UVEPRON UVEPRON UVEPRON UVEPRON UVEPRON UVEPRON UVEPRON	UNEPROM	UVEPROM	UVEPRON	UVEPROM	UVEPROM	UVEPRON	UVEPRON	WEPRON	UVEPRON	UVEPRON	UVEPRON	UVEPRON	WEPRON	WEPRON	UVEPRON	UVEPROM	UVEPROM	UVEPRON

E8

TYPE	PARTNUM	TECH	NB17S	ARRAYTECH	_	TEST	۲R ۲	and a	DEVHRS NT	EST N	FAIL	FDESC	FRECHNSM
UNEPRON	27210	SOMN	ij	FLGATE	FLGA	1250LIFE	87		9.4865	m		2 SBCL, 1 SBCL	2, 2
UVEPRON	27210	SOMN	Ĭ	FLGATE	FLGA	6.5VDLIFE	87		1.7365	0			
UVEPRON	27256	SOMM	256K	12.5V FLGATE	FLGA	12501.1FE	2		3.3666	2	0	3 IMP LKGE, 15 CHRGE GAIN,	7, 15 CONTAN, 7, 1 CONTAN
WEPRON	27256	SOMM	256K	FLGATE	FLGA	6.5VDLIFE	2		1.7365	-		1 OPEN VCC, 1 CMARGE LOSS 1 CHRGE LOSS	*
UNEPRON	2732A	SOM	32K	FLGATE 21	IVFLGA	1250LIFE	z		4.3866	~		2 IMPUT LEVEL, 1 GROSS FUNC, 2 LEAKAGE, 1 QUTPUT	1,1,1,1,1
UNEPRON	2732A	SOM	XX	FLGATE 21	IVFLGA	1250LIFE	8		6. 64 E6	*	•	FAIL, 1 100 LEAKAGE 1 SBIT CANGE LOSS, 13 FAIL, 2 AACTINE	7, 13 CONTAN, 7
UNEPRON	2732A 27512	SOM	32K 512K	FLGATE 2'	IVFLEA	6.5VDL1FE 1250L1FE	38		1.44E6 4.21E5	0 N		1 COL FAIL, 1 NB CMGE GAIN	2, 1 CONTAN
WEPRON	21512		512K	12.5V FLGATE	FLGA	1250LIFE	87		9.2366	4		P Mact, 19 Sact, 8 UNK, 8	2, 7, 2004TAN 3000EFECT
UVEPRON	27512	SOMM	512K	12.5V FLGATE	FLGA	6.5VDLIFE	87		7.6724	-		sece 1 seit charge loss	206FECT, 7 ?
WEPRON	2751200	SOM	51 2 K	FLGATE	FLGA	1250LIFE	87		3.2766	÷	-0	4 Sact, 2 Sacc, 9mact, 1	7, 7, 9PASSDEFECT, 7
UNEPRON	2751200	SOM	512K	FLGATE	FLEA	6.5WDLIFE	87		3.1065	4		ukusarumu 1 unk, 3 seci	1 OKIDEBRKDN, 7
UNEPRON	2764.0	SOMM	žž	FLGATE 12.5V	FLGA	1250LIFE	z		5.8966	N	-	S SB CHARGE LOSS, 1 VCC CHTCT SHRT, 14 CHRGE LOSS,	
WEPRON	2764.4	SOM	ž	FLGATE 12. SV	FLGA	1250LIFE	87		7.9466	-	~	z SRSE AMP, 1 DECUDER 1 FAIL, 3 SACL, 3 SACG, 3 LANK 2 SOFEN	1 OKIDE DEFECT, 7, 7, 1 CPACKDASS 20001AM 2 CONTAM
UNEPRON	2764.0	SOMM	ž	FLGATE	FLGA	6.5vbLIFE	87		7.254	0			

I Y PE	PARTNUM	TECH	NBITS	ARRAYTECH	TEST	X :	TSTDURA	NTEST	NFAL		vi LØESCR	FAILMECNSM
SRAM	IMS1400	SOM	16 K	SOM	1250PL1FE	ð	2000	362 3	m		GRSFUNC, 1 WEAK MULTI COL,	1.7.5
SRAM	IMS1400	SOM	ž	SOM	1250PLIFE	à	2000	369 3	11	- m ដ ដ	DEAD ARAY, 2 FULL ADJ L, 2 SING BIT, 1 STUK	?,?,1 xstr leakage,?,?
SRAM	1400 INS 1400	SON	16K	SON	1250PLIFE	ð	2000	389 3	s 10	₹ v	SINGLE BIT, 5 DEAD ARRAY	2 xstr leakage. 7
SRM	INS1400	SON	16 X	SOM	1250PLIFE	వ	2000	387 3	4	-	SINGLE BIT, 3 UNK	1 xstr leakage. 7
SRAM	INS1400	SOM	16X	SOM	1250PLIFE	వే	2000	538 5	•• •	m	SINGLE BIT, 1 CLUSTER	1,1,7
Head	0071044	ŝ	126	ş	136201165	à		1C 4 7		8	IS, 2 DEAD ARRAY	9 9 7
		5	¥0		17JULITE	8			0	v 2	DEAU AKKAT, I PAKI CUL, I NHOLE, 2 UNK	ر» ز» ر» ر
SRAM	INS1400	SON	16k	SON	1250PLIFE	వ	2000	392 3	0 5		•	
SRAM	INS1420	SON	16¥	SOM	1250PLIFE	వ	2000	360 3	0 5	-	CLUSTER BITS, 2 SING BIT,	?, 1 xstr leakage, ?,?,?,?,?,?,
										~ ដ	STK ADR, 1 ARRAY, 1 PART M. 1 IN THR. 1 UNK	
SRAM	IMS1420	SOM	16K	SOM	1250PLIFE	వ	2000	521 5	- s	-	VEAK MULTIBIT	2
SRM	INS1420	SON	16K	SOM	1250PLIFE	వ	2000	23 25	5 12	4	DEAD ARRAY, 4 SINGLE BIT,	?, 1 xstr leakage, 7
										4		
SRAM	INS1420	SOM	ž	SOM	1250PLIFE	వే	2000	308 308	5	ŝ	UNK	~
SRAH	IMS1420	SON	16¥	SOM	1250PLIFE	ð	2000	524 55	m	-	DEAD ARRAY, 2 UNK	7,7
SRAM	IMS1420	SOM	<u>1</u>	SOM	1250PLIFE	వ	2000	57.5	5 7	-	SING BIT, 1 CLUSTER BITS,	7.7.7
										4	UNK, 1 IN THRESH	
SRAM	INS1420	SOM	1 <u>6</u>	SOM	1250PLIFE	z	1000	722	m 10	-	DEAD ARRAY, 2 UNK	7.7
ORAH	INS2600	SON	ž	SOM	1250PLIFE	ð	2000	105	•			
DRAM	IMS2600	SON	ž	SOM	1250PL1FE	వే	2000	210 21	•			
DRAM	IMS2600	SOH	<u>s</u>	SOM	1250PLIFE	ð	2000	147 11	~	2	FULL COLUMN	7
DRAM	IMS2600	SOH	SK K	SOM	1250PL I FE	z	2000	393 34	•			
DRAM	IMS2600	SON	ž	SOM	1250PLIFE	వే	2000	348 3	-	-	FULL COLUMN	7
DRAM	INS2600	SON	<u>Z</u>	SOM	1250PLIFE	ð	2000	247 2	-	-	FULL COLUMN	2
DRAM	IMS2600	SOH	Š	SOM	1250PLIFE	ð	2000	200 200 200	-	-	FULL COLUMN	
DRAM	1NS2620	SON	ž	SOM	1250PLIFE	න්	2000		-	- (GROSS FUNC	
DRAM	INS2620	SON	ž	SOM	1250PLIFE	2	2000		~	N	GROSS FUNC	2
DRAM	IMS2620	SOH	ž	SOM	1250PLIFE	2	1000		~	N	GROSS FUNC	7
M	82509	111	576	111	D/SHTLIFE	8	1000	50	0			
RM	74S189	Ш	z	III	D/SHTLIFE	ଛ	1000	25	0 ~			
M	82525	111	z	111	D/SHTLIFE	5	1000	7	-~~	-	GROSS FUNC	1 BAD WIREBOND
RAH	82S16	TTL.	256	11L	D/SHTLIFE	8	1000	47 41	0 ~			
M	82S16	11L	256	111	D/SHTLIFE	8	1000	52 51	0			
RM	82509	11L	576	111	D/SHTLIFE	8	1000	50	0 ~			
M	82509	111	576	IIL	D/SHTLIFE	5	1000	51 51	0 ~			
M	82S16	Ш	256	111	D/SHTLIFE	5	1000	51 2	0 ~			
M	82S09	111	576	111	D/SHTLIFE	2	1000	52 51	0 ~			
RAH	82S09	11 1	576	IIL	D/SHTLIFE	2	1000 1000	52 51	0 ~			

TYPE	PARTNUM	TECH	NBITS	ARRAYTECH	IESI	Ϋ́R	TSTDURA	NTEST	NFAIL	FAILDESCR	FAILMECNSM
RAM	B2S212	Ш	×	11L	D/SHTLIFE	: 83	1000	50 5R	2	2 AC FUNCTIONAL	
RAM	82S09	E	576	111	D/SHTLIFE	8	1000	50 58	0		
RAM	82S09	111	576	111	D/SHTLIFE	58	1000	50 SR	0		
RAN	74S189	Ш	3	ш	D/SHTLIFE	8	1000	50 SR	0		
111	10155	ECL	il	ECL	SNTLIFE	٤	1000	52 57	0		
111	10155	ECL	Li	ECL	SHTLIFE	5	1000	40 47	0		
RAM	82S16	111	256	III	D/SHTLIFE	వ	1000	50 SR	0		
M	3101A	111	22	11L	D/SHTLIFE	వ	1000	45 4R	0		
M	74S1B9	11L	3	111	D/SHTLIFE	వ	1000	49 4R	-	1 AC FUNC	~
RM	82S09	111	576	111	D/SHTLIFE	వ	1000	48 4R	0		
RAM	82S16	111	256	11L	D/SHTLIFE	వ	1000	50 5R	0		
RAN	3101A	Ш	22	111	D/SHTLIFE	వ	1000	45 4R	0		
RAM	74S1B9	ш	3	ш	D/SHTLIFE	వ	1000	49 4R	~	2 AC FUNC	~
RAN	74S1B9	ш	2	11L	D/SHTLIFE	వ	1000	49 4R	0		
RAM	3101A	IIL	22	111	D/SHTLIFE	వ	1000	81 BR	0		
RAM	3101A	Ш	Li	111	D/SHTLIFE	వ	1000	100 1R	0		
RAM	82S25	Ш	3	111	D/SHTLIFE	వ	1000	50 5R	0		
RAM	82S09	Ш	576	111	D/SHTLIFE	z	1000	48 4R	0		
RAM	82LS16	Ш	256	111	D/SHTLIFE	వ	1000	8 8	0		
RAM	3101A	111	22	111	D/SHTLIFE	2	1000	45 4R	0		
RAM	82LS16	Ш	256	11L	D/SHTLIFE	వ	1000	8 8	2	2 AC PARAM	~
RAM	82S25	וון	2	111	D/SHTLIFE	వ	1000	49 4R	0		
M	74S189	111	2	111	D/SHTL1FE	వ	1000	2 2	•		
M	82S212A	III	ž	111	D/SHTLIFE	33	1000 1	2 2	0		
MA	82S09	Ш	576	111	D/SHTLIFE	3 2	1000	100 1R	•		
M	82S212A	דון	ZK	111	D/SHTLIFE	3 2	1000	2 2	0		
RAM	82S212A	ш	X	111	D/SHTLIFE	3 2	1000	3 3	0		
RAM	3101	וונ	77	11L	D/SHTLIFE	85	1000	ድ ጅ	-	1 AC FUNC	~
MAN	3101A	Щ	22	11L	D/SHTLIFE	3 2	1000 1000	86 88	-	1 AC PARAM	~
RAM	3101A	111	22	111	D/SHTLIFE	3 2	1000	100 1R	~	1 FUNC 0	OKIDE PINHOLES
RAM	3101A	111	22	111	D/SHTLIFE	28	1000	100 1R	0		
RAM	82S09	111	576	111	D/SHTLIFE	8	1000	8 8	0		
RAM	825212	111	ž	11L	D/SHTL1FE	2	1000	3 3	•		
RAM	74S189	111	3	111	D/SHTL1FE	8	1000	8 8	-	1 AC SLOW PATT 7	~
RAM	74S189	Ш	3	111	D/SHTLIFE	2	1000	8 8	-	1 AC FUNC	~
RAH	74S189	111	3	111	D/SHTL I FE	8	1000	100 JR	~	2 FUNC 2	2 METAL DEFECT
RAM	74S189	111	2	זון	D/SHTLIFE	8	1000 000	150 1R	•		
RAM	82516	111	256	11L	D/SHTLIFE	8	1000	96 96	•		
MAR	74S1B9	111	256	11L	D/SHTLIFE	87	1000	100 1R	•		
WW	82S212	111	X	111	D/SHTL1FE	87	1000	176 1R	0		
RAM	82509A	Ë	576	111	D/SHTLIFE	8	000	100 I	0		
W N	74S189	111	2	TTL	D/SHTLIFE	8	1000	100 1R	0		

Downloaded from http://www.everyspec.com

APPENDIX F

WIRE AND WIRE BOND FAILURES IN MICROELECTRONIC PACKAGES

TABLE OF CONTENTS

F1.	INTRODUCTION	F-1
F2.	THE WIRE BOND	F-3
	F2.1. The Wire.	F-3
	F2.2. Wire Materials.	F→
	F2.3. Bonding Surface.	F-4
	F2.4. Gold-Aluminum Intermetallics.	F-6
	F2.5. Bond Types.	F-7
F3.	MANUFACTURING METHODS	F-8
	F3.1. Thermocompression Wire Bonds.	F-8
	F3.2. Ultrasonic Wire Bonds.	F-9
	F3.3. Combination of Thermocompression and Ultrasonic Bonding.	F-10
F4.	BOND FAILURE MECHANISMS	F-10
	F4.1. Failure Mechanisms Due to Manufacturing Process.	F-10
	F4.2. Failure Mechanisms Due to Environmental Stresses	
	and Other Conditions During Operating Life.	F-14
F5.	MODEL DEVELOPMENT	F-21
	F5.1. Concept of Failure Prediction Using the Cycles	
	to Failure Approach.	F-21
	F5.2. Failure Prediction Models for Wire Bonds.	F-22
	F5.2.1. Flexure Induced Failure Prediction Model	
	for Wire Bonds.	F-22
	F5.2.2. Failure Prediction Model for Shear Between	
	the Bond Pad and the Substrate.	F-25
	F5.2.3. Failure Prediction Model for the Shear	
	Between the Wire and the Bond Pad.	F -27
F6.	FAILURE PREDICTION STRATEGY FOR WIRE BONDS	F-29
F7.	FUTURE WORK	F-29
F8.	REFERENCES	F-30

LIST OF FIGURES

Figure	F – 1	The wire-bond assembly.	F-34
Figure	F-2	Per cent of package failures attributable to	
		interconnects.	F-35
Figure	F-3	The wedge bond.	F-36
Figure	F-4	Thermocompression wedge bonding.	F-36
Figure	F-5	The ball bonding operation.	F-37
Figure	F-6	Ultrasonic wedge bonding.	F-38
Figure	F-7	Location of failed bonds in relation to the	
		incoming material flow during molding.	F-38
Figure	F-8	Hertz stress during ball bond formation.	F-39
Figure	F-9	Schematic Cross-section of the bond pad structure.	F-40
Figure	F-10	A schematic representation of wire bond flexure due	
		to device temperature power cycling.	F-40
Figure	F-11	The flexure of the wire as result of temperature change.	F-41
Figure	F-12	Theory of curved beams applied to the wire bond.	F-41
Figure	F-13	Schematic for the shearing of the bond.	F-42
Figure	F-14	Failure prediction of wire bonds.	F-43
Figure	F-15	Bond wire geometry.	F1-7
Figure	F-16a	L/D determination from H/D.	F1-8
Figure	F-16b	L/D determination from H/D.	F1-9
Figure	F-17a	ρ _O /D determination from L/D.	F1-10
Figure	F-17b	ρ ₀ /D determination from L/D.	F1-11

F1. INTRODUCTION

1

Wire bonding is a process which is accomplished by bringing two conductors to be joined into intimate contact such that the atoms of the materials diffuse together. The materials used for wires include silver, copper, aluminum and palladium. The materials used for pads are aluminum, gold, silver, nickel, copper and chromium. The wires serve to connect the small pads on the die to the external package leads (figure F-1).

Large compressive stresses along with ultrasonic vibrations or thermal energy are applied at the wire-pad interface during the bonding process. Cracks in the bond pad or in the substrate may result if the bonding stress is exceedingly high.^[1] Cracks are difficult to detect visually unless the bond is detached and must prevented before such parts are utilized in electronic equipment. Proper control of the bonding parameters usually assures reliable wire bonds. When bonding is achieved by a wire from the package lead to the cavity metallization, it is known as a substrate bond.^[3] When one lead is connected to another without going through the substrate metallization, it is called a control bond. Both destructive and non-destructive tests are used to ensure good performance. The first is the destructive Bond pull test. The purpose of this test is to measure the bond strengths, evaluate the bond strength distribution or to determine compliance with specified bond strength. In this test an external force is applied to the bond until failure occurs. If the bonding parameters are discrepant the bond would fail below the specified value as a result of the bond pull test. The location of the failure is an important clue for the initiation of the corrective action to prevent failure recurrence. The failure could be a wire break at the neckdown point due to a reduction of the cross-sectional area as a result of the bonding process. The failure could also be a break at a wire defect site other than the neckdown region, a failure at the interface between wire and metallization at the substrate or the package post, an interface failure between the pad metallization and the substrate, fracture of the die beneath the bond pad, or fracture of the substrate.

Another test is the non-destructive bond pull test. The purpose of this

method is to reveal unacceptable wire bonds. This procedure is usable for bonds made by either ultrasonic or thermal compression techniques. Any bond pull which results in separation of the bonds at the bond interface or breakage of the wire or interconnect anywhere along the entire length including the bond heels, at an applied force less than the specified force for the applicable material and wire diameter, constitutes a failure. The magnitude of the non-destructive pull force is around 80% of the minimum bond strength for the particular material unless otherwise specified.

A variation of the destructive or non-destructive bond pull test is the bond pull after bake test. In this test the devices are baked at a high temperature and then subjected to the bond pull test. The exposure to temperature accelerates crack propagation if microcracks in the die or substrate already exist.

A common destructive test is the "etch back analysis" test, whereby an aqua-regia solution is used to etch away the ball and metallization, exposing the underlying layers of the bond pad. Any cracks on the oxides or substrate are revealed by such a test.

Wire bond failures are a result of shear of the bond pad and the wire, flexure of the wire, excessive intermetallics, manufacturing parameters, galvanic corrosion and chip outs in Si/SiO_2 . Plastic encapsulated packages also fail as result of stresses resulting from the differential expansion of the epoxy encapsulation and the wire if a low modulus buffer coating is not placed between the encapsulant and the wire.

MIL-HDBK-217E was developed by the Department of Defense in order to standardize the methods employed for reliability prediction procedures. The handbook provides uniform methods for predicting the reliability of military electronic equipment and systems and estabilishes a common basis for comparing and evaluating reliability predictions of designs.

The "Part Stress Analysis" prediction method of MIL-HDBK-217E is applicable during the later design phase where actual hardware and circuits have been

designed. The part operating failure rate model λ_p is based on the following equation

 $\lambda_{p} = \pi_{Q} (C_{1} \pi_{T} + C_{2} \pi_{E}) \pi_{L}$

1

where C_1 is the circuit complexity factor, C_2 is the package complexity factor and the π terms account for the influences of environment, application, complexity, quality, production maturity of the process and relative stress level.

MIL-HDBK-217E does not explicitly discuss how wire bond failure contributes to the device failure rate. The package related term (C_2) of the model depends only on the number of operational terminal pins in the microelectronic device. This term is not affected by any other factors such as temperature change or the rate of temperature change, manufacturing process, fatigue or thermal cycling differential expansion between the wire and the pad; but these factors have been found to affect the wire bond failures. This report presents an alternative to the MIL-HDBK-217E model. A statistical deterministic approach to failure modeling has been used for reliability prediction. This can then be used for design of microelectronic packages.

F2. THE WIRE BOND

F2.1. The Wire.

Wire is usually made of gold or aluminum. The wire bonding process may be thermocompression or ultrasonic. The thermocompression process typically uses a gold wire while the aluminum wire is utilized in the ultrasonic process. Gold tends to age in the amorphous state with a consequential decrease in tensile strength. The hard drawn gold wire ages significantly at room temperature so the softer and relatively more stable stress-relieved wire is recommended. Pure aluminum cannot be hardened sufficiently to allow it to be drawn to a diameter of 1 mil. Therefore aluminum is usually hardened by adding about 1% of an alloying element such as silicon or, less frequently, magnesium.

F2.2. Wire Materials.

Wire materials include gold, copper, aluminum and palladium, with gold and aluminum being the more commonly used. The characteristics of the wire materials are of vital importance to the strength of the wire bond. These include wire dimensions, tensile strength, elongation and contamination.

It is important to have a wire of constant dimensions and known cross-sectional area because the bonding process conditions depend on the mass of the wire involved in making the bond. The tensile strength is an important specification both for ultrasonic as well as for thermocompression bonds. A bond wire is attached at two or more conductor pad or lead frame locations. After formation of the final bond, the continuously fed wire must be broken to permit moving the bonding head to the initial location of the next bond. Breaking the wire induces a very high tensile stress that could cause bond failure. A lower tensile strength wire would reduce the bonding time for satisfactory bonding. Also a softer wire is more difficult to align under the tool. Elongation is required so that the wire may be broken off after the second bond of the wire bond is made. A large elongation would result in an undue deformation of the wire which is used in the first bond of the next wire. This would cause the bond to be inferior. Too great a elongation may result in an excessively long tail in the second bond. Contamination would cause the corrosion of aluminum metallization or later device degradation due to water or ionic contaminants that may be included in the lubricants.

F2.3. Bonding Surface.

The materials for pads on the semiconductor die include gold, aluminum, silver, nickel, copper and chromium. Aluminum is the most commonly used material in semiconductor dice. Gold is used to avoid problems in the formation of gold-aluminum intermetallics. Gold does not adhere well to silicon dioxide and a direct contact between gold and silicon is avoided. Therefore, other metals are used to form a multilayer metallization system.Bonding to the die and the terminal is affected by many film related factors which include surface smoothness, film hardness and thickness, film

preparation and surface contamination. Howell and Slemmons^[27] indicated that for thermocompression bonds the uniformity, composition and the thickness of metallization were important and that, in particular, surface irregularities could prevent adequate diffusion across the wire-metallization interface and hence interfere in the bonding process. Hill^[28] reported that by improving the uniformity of the metallization the reliability of the bond was increased. The hardness of the aluminum metallization is also said to be important. The metallization should be somewhat softer than the wire so that the surface irregularities may be easily smeared out to better conform to the wire. Too soft a metallization may cause other problems. The thickness of the metallization can have an effect on the bondability and the subsequent reliability of the bond. An excessively thick metallization may be very soft which would be very difficult to bond. To avoid subsequent bond failure due to intermetallic compound growth and metallurgical (Kirkendall, see F4.2) voids at the interface. Philofsky $^{[29]}$ suggested that the thickness of the metal film be minimized, consistent with good bonding and device design. This suggestion applied both when bonding gold wire to aluminum on the semiconductor and when bonding aluminum wire to gold plated terminals.

When the device is subjected to thermal or power cycling, wire flexing at the heel will occur. Philofsky^[29] suggested that under these circumstances the thickness of the aluminum metallization should be less than one sixth the wire thickness at the heel of the gold wire wedge or stitch bonds to avoid the growth of intermetallic compounds into this region and the consequent failure of the wire at the heel of the bond. For the case of aluminum wire bonds to gold plated terminals it was suggested that the plating thickness be less than one third the wire thickness at the heel of the heel of the bond.

Excessive roughness of the bonding surfaces has been demonstrated to influence the quality of the wire bonds. The bonding surface roughness should be such that the area of the bond be large compared to the peak to peak variations in the surface.^[24]

Contamination on the wire bonding surface should be avoided. For thermocompression bonding, it interfers with the intimate contact and the

interdiffusion of the wire and the metal film and contributes to making poorer bonds. The problem of contamination may be considered less for ultrasonic bonding because of the ultrasonic agitation. The contaminants could include residues of chemicals used in the photoresist and packaging plating operations, water spots, silicon monoxide, silicon dust and aluminum oxide.^[24]

F2.4. Gold-Aluminum Intermetallics.

In bimetallic bonds, a gold-aluminum interface exists at the wire/bond pad interface. Gold-aluminum compounds form at this interface at a rate which increases with temperature . Above a temperature of about 125-150°C the growth becomes significant with respect to long term reliability of the wire bonds.^[24]

The compounds are formed by diffusion of gold and aluminum across the interface. Gold has a greater diffusion rate and as a result will leave behind vacancies on the gold side. The process of the Kirkendall void formation can lead to two types of failure: a mechanical stress-induced failure along the locus of the voids, and an electrical open circuit caused by the coalescence of the voids. Five different compounds appear in the region where the interface exits. These include Au_2Al_2 , Au_5Al_2 , Au_2Al_3 , AuAl, and $AuAl_2$.

The kind of reliability problems which appear from gold/aluminum interactions depend on the wire bond type and whether a direct or expanded contact is used. Electrical failure occurs when gold wire ball bonds are made to aluminum bond pads because of the formation of an annular Kirkendall opening about the bond. The development of voids at the perimeter of the bond is accompanied by increases in the electrical resistance of the bond with time. The rate of increase in resistance with the exposure to elevated temperature is larger for thinner aluminum metallization. The bond adherence of these ball bonds is unimpaired by intermetallic compounds which react to the oxide. The intermetallic compounds adhere well to the silicon dioxide and, though brittle, can sustain a greater tensile stress than either gold or aluminum.

Mechanical failure can occur when gold ball bonds are made to thick aluminum films. This is because the supply of aluminum for reaction with the gold ball is practically unlimited. The process of void formation therefore continues uninterrupted. In this case the void formation at the interface results in a mechanically fragile bond after high temperature storage. Similar degradation can occur if an aluminum wire bond is made to a gold plated terminal where gold plating is too thick.^[24]

Thus to minimize the degradation effects due to gold aluminum interactions, bonding to thick films and excessive bond deformation should be avoided.

F2.5. Bond Types.

There are several different type of wire bonds including wedge bond, ball bond, and stitch bond.^[4] Wedge bonds (figure F-3), are made with a wedge or chisel-shaped tool. The end of this tool is rounded with a radius one to four times that of the wire being bonded and is made of sapphire or similar hard material. This tool is used to apply pressure to the lead wire located on the bonding pad which has been heated to the bonding temperature. Different methods are provided for precisely coaligning the bonding pad, wire, and wedge. Difficulties with wedge bonding include imprecise temperature control, poor wire quality, inadequately mounted silicon chips, or a poorly finished bonding tool.

Ball bonding is a process in which a small ball is formed on the end of the wire and deformed under pressure against the pad area on the silicon chip (figure F-5). The lead wire is perpendicular to the silicon chip as it leaves the bond area. The number of steps in this bonding operation are few and the strength of the bond obtained is strong. Aluminum wire cannot be used because of its inability to form a ball when severed with a flame. However, gold wire is an excellent electric conductor, is more ductile than aluminum, and is chemically inert. For ball bonding, hard gold wire may be used since the balling process determines the ductility of the gold to be deformed. Among the disadvantages of ball bonding is the fact that a relatively large bonding pad is required (see Appendix H-5).

Stitch bonding combines some of the advantages of both wedge and ball bonding. The wire is fed through the bonding capillary, the bonding area is smaller than for ball bonds, and no hydrogen flame is required. Either gold or aluminum wires can be bonded at a high rate.

F3. MANUFACTURING METHODS

There are several manufacturing methods for wire bonding to thick-film circuits. The most common are thermocompression bonding, ultrasonic bonding and combination of both. All these lead-bonding techniques depend upon obtaining intimate contact between the materials to obtain an atomic interface at the connection.^[5]

F3.1. Thermocompression Wire Bonds.

Thermocompression wire bonding, as the name indicates, depends upon heat and pressure. In general, the bonding equipment contains a microscope, a heated stage, and a heated wedge or capillary that will apply pressure to the wire at the interface of the bonding surface as shown in figure F-4. In addition, a wire-feed mechanism is required, as is some method for manipulation and control. Bonds can be accomplished utilizing thermocompression techniques which will exceed the wire-breaking point in strength, i.e., instead of the bond breaking, the wire will break during a pull test.

Three primary conditions in thermocompression bonding are force, temperature and time. The primary conditions are interdependent and are effected by other conditions and factors. Minor changes in these variables can cause significant differences in the bonding characteristics. It is necessary to optimize the primary conditions to obtain a satisfactory bond. Short bonding time is desirable for production purposes. Low bonding temperature is desirable to avoid the degradation of the wire bonds due to gold/aluminum interactions of the device resulting from alloying effects. Low pressures are desirable to avoid fracturing or otherwise damaging the silicon beneath the bond. Too large a force may damage the semiconductor substrate or excessively deform the wire and too small a force may prevent adequate bonding. In

addition to the bond, the wire may also be the weaker link. In the ball bond the weakest link occurs in the high temperature annealed wire leading to the bond. In the stitch and wedge bonds it occurs in the region of the wire in which the cross-section has been reduced by the bonding tool. The bonding tool used in the process may of tungsten carbide, titanium carbide, sapphire and ceramics.^[24]

F3.2. Ultrasonic Wire Bonds.

Ultrasonic wire bonding also involves heat and pressure, but the heat is supplied by ultrasonic energy rather than by heated stage or capillaries as shown in figure F-6. In addition, with aluminum wire, the ultrasonic energy and the acoustical high-frequency movement of the wire against the conductor pad breaks the refracting oxides surrounding the aluminum wire. Pressure is also used but is incidental to the effect of the ultrasonic energy. The ultrasonic vibratory energy causes a temperature rise at the wire-conductor interface that can approach 30 to 50 percent of the melting point of the metal. One of the advantages of ultrasonic aluminum wire bonding is the absolute avoidance of purple plague. Purple plague, which is the embrittlement of the bond, has been found to be a result of the combination of aluminum, gold, silicon, and heat. Hence it is avoided by eliminating gold and heat.

The three primary conditions are force, time and ultrasonic power. The ultrasonic power available to make the bond is dependent on the power setting of the oscillator power supply and the frequency adjustment of the tool. The force used is large enough to hold the wire in place without slipping and to couple the ultrasonic energy into the bonding site without causing deformation of the wire. It is generally of the order of tens of grams force. The specific values selected depends on the size and the design of the bonding tool face, the size and the hardness of the wire and the sensitivity of the substrate. High power and a short bonding time is usually preferred to avoid metal fatigue and to prevent the initiation of internal cracks. Lower power nevertheless gives a large pull strength when a good surface finish exists.^[24]

F3.3. Combination of Thermocompression and Ultrasonic Bonding.

The third method is the combination of ultrasonic and thermocompression wire bonding. In ultrasonic ball bonders the ultrasonic heat is identical to the usual type except a straight-wire capillary is used, as on a thermocompression bonder. Also included is the flame-off device necessary to form the ball on the gold wire. Whereas in straight ultrasonic gold-wire bonding it is difficult to bond gold wire of less than 0.002 in. diameter, on an ultrasonic ball bonder 0.001 in. diameter gold wire is usually used. The differences are in the capillary design and the fact that, in general, a heated stage is used. This process is almost a complete combination of both thermocompression and ultrasonic bonding, i.e., a heated stage, a capillary-type tool, and an ultrasonic transducer. The only thing missing is the heated capillary, which becomes unnecessary with an ultrasonic transducer.

F4. BOND FAILURE MECHANISMS

Wire bonds involve 20-30% of the microelectronic package failures.^[14] Wire bond failures can be divided into two categories. The first are the failures that result from a poorly controlled or poorly designed manufacturing process that may result in an early device failure. The second category consists of the failure modes that cause adequately made bonds to fail by contamination and/or environmental stresses during the operating life of the device.

F4.1. Failure Mechanisms Due to the Manufacturing Process.

The bond strength depends on the materials and process variables associated with the substrate-metallization-wire composite structure. For example an adequate gold bond requires a bonding load large enough to produce a good interfacial conformity and a bond interface temperature high enough to effect contaminant dispersal. The purpose of compression in the bonding process is always to increase the area of contact, so as to produce a bond between area elements of fresh metal. The surface films get disrupted during the process and the bond occurs between patches of fresh metal. In the process of thermocompression bonding English^[22] discovered that the bonding

ŧ.

temperature or the tool load substantially lower than optimum values resulted in an inadequate bond. It was found that if bonding was attempted at an extra low temperature with a corresponding load increase, little or no bonding took place. It was found that heating was not required for welding of very clean surfaces. These observations are consistent with the view that heating is required for dispersing surface contaminants. Alternatively, use of very low tool loads and high bond temperatures also resulted in bond failure and/or low bond strength. The bonding process was found to be due to a shear displacement at the intended bond interface which disrupted the contaminant layers and contributed to the bond formation. English^[22] noted that leads and metallized substrates were stored in air typically for days, prior to interconnection. The surface therefore carried many adsorbed gases and, in particular, water vapor. When the substrate and the lead frame were heated the bond strength increased with temperature and the time of bake. Post-bond baking did not increase the bond strength significantly if the tool load was too low. It, however, did increase the bond strength of bonds made at low bonding temperatures.

Lang and Pinamaneni^[16] identified parameters affecting wire bond strength during manufacture. These included cleaning and copper plating of the lead frames, die attach cure conditions, atmosphere during bonding, surface finish of the lead frame, bonding time, bonding force, bonding pressure, and temperature. They identified that the presence of an inert atmosphere was essential to prevent oxidation of the lead frame. Further, it was found that a lead frame with a coarse surface finish gave greater bond strengths compared to that with a smooth surface.

Weiner and Clatterbaugh^[18] defined those machine parameters that could affect the shear strength of ball bonds. It was found that an increase in the ultrasonic power resulted in an increase in the shear strength of the bond. The substrate temperature was also found to affect the bond shear strength. The pedestal which supports the substrate during bonding is heated to enhance the formation of metallurgically sound bonds. The increase in pedestal temperature increases the shear strength. Occasionally it was found necessary to leave the substrate on the heated pedestal for periods longer than can be

considered normal. The effect of the extended residence on the pedestal was determined. The results indicated that that even with times up to three hours, there was no significant change in the bond shear strength. The effect of contamination, cleaning techniques and burn in on the ball shear strength was observed. It was observed that an increase in the contaminant concentration resulted in a decrease in the shear strength. The cleaning procedures used to remove the contaminants were found to vary in effectiveness, as measured by the restoration of the shear strength, depending on both the metallization and the contaminant type. Solvent cleaning was found to be the least effective method for restoring the ball shear strength to uncontaminated levels. UV-ozone used for the cleaning process was found to improve the bond shear strength most significantly. The shear strength of the bonds was found to increase after burn-in. The change in the bond shear strength, as a result of burn-in, was found to be highly dependent on both the type of the contaminant and the substrate metallization.

Poonawala^[20] identified the failure of wire bonds in cannon launched devices as result of long wire distances, which caused large wire bonds and die misalignment from the center of the package cavity, skewing the wire routing and bringing some wires too close to the adjacent bond pads on the package. Two failures mechanisms were discovered during the centrifugal testing: wires collapsed straight down and created a possibility of shorting to the cavity bottom, and wires collapsed sideways and created a possibility of shorting to adjacent bond pads or adjacent wire bonds.

Deroian^[17] stated that a low bond pull force could result from bonding tool pressure not uniformly compressing the wire onto the pad. Further, the organic films on the bonding surfaces were found to impair the bond strength. Koch, Richling, Whitlock and Hall^[2] conducted experiments on the molding process of epoxy encapsulation of a 28 lead DIP package using a chase mold. The molding parameters considered were transfer time, mold temperature, mold compound preheat temperature and transfer pressure. Other factors considered included material flow characteristics and the kinetics of the molding compound. The experimental data showed that too fast a transfer time as measured with the mold compound in the mold increases the number of bond

failures. Further it was evident that high material preheat temperatures and high transfer pressure increased the number of bond failures. The results showed that the temperature variations across the cavities increased the variation of bond failures from one cavity to the next. It was also found that these parameters were interdependent because viscosity and flow characteristics are dependent on heat transfer and hydrostatic pressure. Also, the analysis of the material inside the mold showed that greater than 90% of the failures occurred on the opposite side of the die from the mold gate (figure F-7).

Ching and Schroen^[1] Reported a theoretical bond stress model developed by Dr. L.T. Beng. The model is based on the Hertz theory of contact pressure between two spheres modified to represent the geometry of a ball bond/bond pad interface, as depicted in figure F-8. The following simplifying assumptions were made to facilitate solution:

- (1) The ball was assumed to be in contact with a silicon pad.
- (2) The ball was assumed to be fully formed to a spherical shape at point of first contact with the pad.
- (3) The ball was assumed to maintain a spherical shape during application of the bonding force and resultant deformation of the bond pad surface.
- (4) The Al-Si diffusion zone was assumed to be .001 inch thick and fully formed at time of inital contact.
- (5) The ball/pad contact area was assumed to be circular and equal in diameter to either 2 or 3 times the wire diameter.
- (6) Both ball and intermetallic were assumed to be elastic and to possess the mechanical properties of the gold wire.
- (7) The intermetallic diffusion zone was assumed to form a spherical interface with the underlying silicon.
- (8) The effects of applied ultrasonic energy on local bulk temperature and stresses were neglected.

The magnitude of the compression, tension and shear stress as a function of depth below the contact surface was evaluated at two values of bond force. As

expected, the maximum compressive and tensile stresses occurred at the surface and the maximum shear stress occurred at a depth below the surface that was considerably less than the assumed thickness of the intermetallic diffusion zone, i.e. all maximum stresses occurred in the intermetallic zone. The model predicted the existence of significant shear stress levels at the interface between the intermetallic zone and the underlying silicon, suggesting that excessive bonding force was a probable source of microcracks in the silicon. The data obtained from the model at 5 grams and 50 grams bonding force are shown in figure F-8.

The conclusion drawn from this model was that to reduce bond pad cracking the bonding force must be minimized to the lowest feasible value. The manufacturing data included parameters such as time to reach touchdown after ball formation, the moisture content, etc. It was shown that hardness of the gold ball at touch down also contributed to stress exerted on the pad. The factors that contributed to the hardness of the gold ball were the wire impurity level, the temperature of the gold ball at touch down, and the grain size as determined by the rate of cooling.

F4.2. Failure Mechanisms Due to Environmental Stresses and Other Conditions During Operating Life.

One of the failure mechanisms is the cracking of the bond pad. The bond failure in this mechanism is characterized by cracking of the underlying pad structure. Koch and Richling found that silicon nodule precipates from the metallization in the pad acted as points of high stress during the bonding of wire to the pad regions. Si nodules with about 1 μ m⁻diameter, which grew by annealing after metal deposition, were distributed uniformly before bonding. After the bonding process was complete it was observed that Si nodules decreased in the area of bonding and damage on the insulator was observed.

Another failure mechanism is the lifting of the bond. In this mechanism the gold aluminum intermetallic that has been formed during bonding continues its growth during baking and consumes all the aluminum that is left on the pad into a solid solution. The bond pads have oxides below the metallization

which act as insulating media. This permits the MLO (multi-level-oxide) to come into direct contact with the Au-Al intermetallic. As the devices are subject to additional shear stress during temperature cycling, the adhesion between these two materials weakens, the ball is lifted during bond pull test or other loading conditions, and the oxide is exposed.

Metallurgical cracks in the heel of the first bond of the Al ultrasonic bonds was found to be a failure mechanism in bonds by Harman.^[21] Cracks were found to be a result of excessively flexed wire during loop formation especially when the second bond was significantly lower than the first. The flexure was caused by operator motion of the micropositioner or by bonding machine vibration just before or during bonding tool lift-up from the first bond. The sharp metallurgical microcracks were hypothesized to propagate through the wire and cause failure during device operating life. Another metallurgical failure identified by Harman was crystallographic damage to silicon under the bonding pad caused as a result of overbonding. This is often referred to as cratering because in severe cases a hole is left in the silicon substrate after a bond is removed. Cratering in thermocompression bonding was found to result from using too high a bonding force or too great an impact velocity of the tool with respect to the substrate. Cratering could also be caused by too small a ball which allows the hard bonding tool to contact the metallization. In ultrasonic bonding, cratering was found to be a result of too hard a wire which required high power and large bonding force. Wire bond failures resulting from poor process control during wafer fabrication were found to occur if bond pad metallization was poorly adherent or was far too soft or too hard. Poor metallization adherence was found to be a result of improper sintering time and temperature and lack of substrate cleanliness. Another cause for poor bond adhesion was found to be incomplete removal of glassivation or other surface contamination from the bonding pads. Thermocompression bonds were found to be more susceptible to failure from this cause than ultrasonic bonds.

Panousis and Bonham^[23] reported thermocompression bondability degradation with tantalum nitride-chromium-gold metallizations after a two hour air stabilization bake at a temperature of over 250°C. The problem was traced to

a layer of chromium-oxide resulting from diffusion of chromium through the 3 μ m layer gold and its subsequent oxidation at the surface.

Electrical leakage failure during functional test constitutes another failure mechanism of wire bonds. Bonds with no visible evidence of damage or mechanical weakness were found to have intermittent electrical leakage. Leakage failure became significant in devices with an MLO-free bond pad. Failure analysis of these leakage failures revealed that there were no cracks on the pad. The leakage problem is the result of poor insulation from the Si substrate due to the lack of an MLO layer underneath the bond pad.

Cunningham^[25] suggested that metallurgical (Kirkendall) voids, were a cause of bond failure. These voids were formed by the different diffusion rates of gold and aluminum as each diffuses into the other. Under various circumstances the voids may appear on either the gold or on the aluminum side of the bond region.

Aluminum wire bonded to a conventional gold metallization cavity in cerdips (ceramic dual in-line packages)^[9] has been a well known reliability hazard due to "Purple plague" which is a brittle gold aluminum intermetallic which sometimes forms at an interface of a gold-aluminum thermocompression bond. This intermetallic appears purple in the crystalline form. Two types of plague-induced bond failures have been observed. In the first, the bond may be mechanically strong, but it can have a high electrical resistance or even be open circuited. In this case, which typically occurs with gold-wire bonded to thin aluminum metallization, voids form around the periphery limiting the available conduction paths. In the second type of failure, the voids lie beneath the bond. In this case the bond can fail due to mechanical weakness.

The Ag-Al system failure is very different in nature compared to Au-Al system, which is known to fail due to Kirkendall voiding of the diffusion front.^[9] The high resistance in the Ag-Al bond occurs due to oxidation of the Ag-Al alloy, resulting in a thin, insulating oxide layer which completely envelops the alloyed zone.

According to Griffith's theory of brittle fracture, the fracture stress is directly related to Young's modulus of the material. The phospho-silicate glass (PSG) layer beneath the bond pad has a lower Young's modulus than the thermal oxide layer due to the inherently lower density and high impurity concentration of phosphorous in the PSG oxide (figure F-9). The number of bond failures increases as a function of phosphorous concentration in the PSG film. The PSG layer will fracture and the cracks will propagate through the PSG at a lower applied stress compared to the thermally grown SiO₂ layer.

A failure mechanism in dry air was found to be due to selective oxidation of the Ag-Al alloy and activation energies were measured for various atmospheres.^[3] Moisture was shown to decrease the activation energy. When the package absorbs much water before soldering, soldering heat stress causes a peeling off phenomenon of the wire ball from the Si substrate or insulator. The quality of bond will affect the bond failure rate. The Ag-Al substrate bond system has been studied and demonstrated to show an increasing resistance with time. This process is a thermally activated process and was used to assess the long term reliability of microcircuits. The resistance of the bond in this system was shown to change from negligible (0.1 ohm) to 20 ohms or higher. Forrest^[8] found that there was no discernable resistance change until a critical time is reached when it rises in a dramatic manner to bond resistance values ranged as high as 20 ohms or more.

Shukla and Deo^[3] found that the failure mechanism in dry air to be due to selective oxidation of the Ag-Al alloy. The expression for critical time was given as

$$t_{cr} = t_{o}^{*} \exp (\Delta H/KT)$$

where:

t_o : a temperature independent constant ΔH : activation energy K : Boltzmann constant T : absolute temperature The change in the resistivity of the Ag-Al binary system was found to be negligible till a particular critical time is reached, after which it rose to a very large value.

Koyama and Shiozaki^[6] stated that the number, size of the damage and cratering were affected by the applied ultrasonic energy which caused Si nodule damage to the insulator material.

Forrest^[8] noted that another failure mechanism was that of corroded wire bonds. Corrosion opened one end of the wire completely and occasionally both ends of the wire permitting the wire to move freely within the package volume causing intermittent electrical short circuits. It was found that chlorine ions had concentrated around wire bonds during the high purity water rinse. Capillary action of the wire bond to water interface concentrated any dissolved chlorine at that point causing the formation of AlCl, during elevated temperature encountered during burn-in. Exposure of the conductor material to a chlorine environment caused a replacement chemical reaction converting copper oxide to copper chloride at the substrate interface, the presence of which caused the Al wire bonds to corrode or develop high resistance intermetallics. Another failure mechanism noted was electrical noise in the output of the circuit. The cause was detected to be the formation of intermetallics due to high chlorine concentration around bonds in a ball and socket configuration. This type of bond exhibits high mechanical strength in conjunction with low conductivity due to formation of resistive compounds at the interface. When such a bond was subjected to non-destructive bond pull test, an apparent healing of noise occurred due to reduction of the bonding resistance by motion of the wire relative to the bonding surface.

Moore^[19] found that hybrid circuit metallization was very susceptible to aqueous corrosion. A few contributing factors include the applied potential of the circuit power source to drive the corrosion reaction, the close proximity of the biased circuit conductors, ionic process residuals, microscopic and macroscopic galvanic couples and the small mass of the conductors. It was stated that under these conditions any quantity of electrolyte to provide ionic transport could present a significant reliability

problem. The corrosion reaction, dissolution and plating, was found to proceed at a distance up the wire from the die surface. The effect was due to a thin layer of die coat which had wicked up the wire surface. Another failure mechanism was that of silver dendrite growth from the wire bond pads of an integrated circuit. An epoxy was used to attach the gold backed die to the chip carrier die pad. After the epoxy cure the package was oxygen plasma cleaned and rinsed in DI water. The wet package was then placed in an oven to dry. It was at the drying stage that silver dendrite growth was observed. The dendrites extended out over the glass passivation layer. Another site for the corrosion was the copper winding of the chip coil. This was a type of the localized attack called pitting. The ionic process residues participated in the localized attack of the copper at the pitting sites.

Harman^[21] found that vibration forces that occur in the field are seldom severe enough to cause metallurgical fatigue or other bond damage. In general, large components of assembled systems were found to fail before such forces were sufficient to damage the bonds. Schafft^[24] calculated the resonant frequency as well as centrifuge induced forces for gold and aluminum wire bonds having various geometries. The minimum excitation frequency that might induce resonance and thus damage to gold wire bonds having typical geometries was found to be in the range of 3 to 5 kHz. For most aluminum wire bond geometries, the resonant frequencies required to damage the bonds were found to be greater than 10 kHz. Excitation frequencies encountered in military electronic equpment during ground operation and transportation are between 5 Hz and 55 Hz, and in airborne operation and transportation are between 5 Hz and 2000Hz. Hence, for usually employed bond wire materials, diameters and span lengths, the wire resonance is unlikely to be excited.

Harman^[21] stated that in the case of hermetic devices, even if the package does not contain any corrosive materials, metallurgical bond failure modes may result from the effect of high temperature or cyclic temperature changes. If the external temperature is greater than about 150°C for long periods of time, the wire bond will partially anneal, producing a bond that is mechanically weaker in a bond pull test. Coucoulas^[35] however found that in the case of ultrasonic bonds, the work hardening and other strains in the thinned layer

were partially annealed, resulting in a more reliable bond.

Wire bond failures due to temperature cycling were studied by Gaffney.^[31] Villella, ^[32] Ravi, ^[33] and Phillips. ^[34] All of them worked on 0.001 in diameter aluminum, 1% silicon, wire bond metallurgical flexure-fatigue failures that resulted from repeated wire flexing due to the different coefficient of thermal expansion between the aluminum wire and the header as the device heated up and cooled down. The maximum flexure, and therefore the failure, was found to occur at the thinned bond heels. The heel of the chip bond was found to experience a greater temperature excursion and therefore was more prone to fail than the heel of the pad bond. Villella^[32] ran extensive statistical tests with cycled devices and determined that aluminum ultrasonic bonds were more reliable in this service than aluminum thermocompression bonds. Ravi^[33] experimentally investigated the metallurgical flexure fatigue of a number of aluminum alloy wires and showed that aluminum, .1% magnesium alloy wires was superior to the commonly used aluminum, 1% silicon alloy. Phillips^[34] calculated wire bond geometry effects and recommended that the loop height be at least 25% of the bond to bond spacing to minimize the bond flexure.

Another wire bond metallurgical failure mode was identified by Adams^[26] for gold wire in plastic encapsulated devices. A typical case of metal fatigue was encountered when the device was made to undergo thermal cycling. Adams calculated that for a ΔT of 100°C the stress due to different expansion coefficients of the wire and plastic would almost equal the breaking load of the wire, assuming that the plastic was bonded to the wire. At Westinghouse, this falure mode has been observed in packages which have been epoxy-filled.

Mantese and Alcini^[15] found that accelerated Al oxidation occurs as the temperature of the bond material is elevated causing the degradation of contact. Al melts at 660°C and oxidizes readily at lower temperatures, making it unsuitable for devices which experience high temperature. Other parameters found to affect bond quality are the bonding time, ultrasonic power, tool length, tool wear and type of substrate material.

It is clear that a considerable effort has been expended to analyze bond failure mechanisms. Yet, in spite of all the work done, a unifying deterministic failure rate model for wire bonds has not been proposed. Presently, MIL-HDBK-217E serves as a standard for reliability prediction of microelectronic packages but, except in the case of hybrid microcircuits, it does not account for the role of wire bonds in device failure. This report presents an alternative to the MIL-HDBK-217E model. A deterministic approach to failure modeling has been used so that the model can be used to predict the reliability of microelectronic packages during the design phase. This will permit reliability optimization prior to the committal of a design to production.

F5. MODEL DEVELOPMENT

In this study wire bond failure models have been developed. The models address single metal bonds and the fatigue related damage which occurs when bonds between two dissimilar materials (bi-metal bonds) are formed. The models determine the number of cycles to failure as a result of the various bond failure mechanisms. The failure mechanism for which the predicted number of cycles to failure is the least value is the probable failure mechanism for the wire bond being analyzed.

F5.1. Concept of Failure Prediction Using the Cycles to Failure Approach.

Failure of the wire bond occurs predominantly as a result of fatigue caused by repeated flexure of the wire, shear stresses generated between the bond pad and the wire and shear stresses generated between the bond pad and the substrate, all resulting from temperature cycling. Flexure of the wire will produce stresses at the heel of the bond in the case of wedge bonds and stitch bonds. Reversals in the bending stresses cause the eventual fatigue (breakage) of the wire at the heel. Due to the absence of any reduced section on the ball bond failure due to flexure is uncommon for the ball bond (figure F-10).

Shear stresses between the bond pad and the substrate result from the

differences in the coefficients of thermal expansion between the substrate and the bond pad. This in turn results in the eventual detachment of the bond pad from the substrate, increase in the thermal resistance between the die and the substrate or the cratering of the substrate.

Shear stresses between the wire and the bond pad result from the differential thermal expansion between these two elements.

In encapsulated packages, if the encapsulant is in contact with the wire, the differential thermal expansion between the encapsulant and the wire can cause axial fatigue of the wire. This failure mechanism will not occur in encapsulated packages with a low modulus coating covering the wire. Since encapsulation without a low modulus buffer coating is an unacceptable practice, this mechanism is not further considered. The number of cycles to failure of a microelectronic package depends on the environmental conditions, the geometry of the wire bond and the materials of the substrate, wire and the bond pad. The fatigue failure prediction models take into account the environmental conditions and the geometry of the bond, which is consistent with the fact that the number of failures vary with the environmental condition and the material of the substrate are a function of the geometry of the wire bond is subjected. The stresses generated are a material properties.

The number of cycles to failure as a result of each of these mechanisms are calculated, compared, and the lowest value is the dominant failure mechanism. Any component subjected to temperature change would be acted upon by each of these failure modes simultaneously. These failure mechanisms act independent of each other. A component failure would result if the bond fails due to any of these mechanisms. The dominant mechanism would depend on the operating environment, the materials in consideration and the condition of the bond which is an implicit function of the the operating conditions.

F5.2. Failure Prediction Models for Wire Bonds.

F5.2.1. Flexure Induced Failure Prediction Model for Wire Bonds.

í.

A wire bond subjected to temperature cycling undergoes flexure fatigue. An increase or decrease in temperature causes the wire to expand and contract. This, coupled with the differential expansion between the wire and the bond pad, would cause the wire to flex as result of temperature cycling. Inherent as it is in the process, the cross-section of the wire is greatly reduced near the bond site. This makes it the weakest point on the wire and hence the most probable site for failure due to flexing in the wire.

Consider a wedge bond as shown in figure F-11. The two positions shown in the figure indicate the bond wire orientation before and after being subjected to the temperature change, ΔT . If the curved length of the wire considered was to be assumed the same before and after flexure, then

$$\rho \psi = \rho_0 \psi_0 \tag{F5.1}$$

where:

- ρ is the initial radius of curvature
- $\rho_{\rm c}$ is the final radius of curvature
- ψ is the initial angle subtended by the wire with the substrate.
- ψ_{O} is the final angle subtended by the wire with the substrate.

The theory of curved bending was applied to evaluate the stresses in the wire. The stresses would be maximum in the outer portion of the wire towards the center of curvature. The stresses at this inner portion of the surface of the wire would be

$$\sigma = \frac{E(\bar{r} - \rho) d\psi}{\rho_0 \psi_0}$$
(F5.2)
$$\sigma = \frac{Er(\psi - \psi_0)}{\rho_0 \psi_0}$$
(F5.3)

where:

 \overline{r} is the radius of the centroidal axis. ρ is the radius at a desired section of the wire. r = the radius of the wire (figure F-12)

= r - p

Schafft^[24] derived the relation between the initial angle and the final value of the angle subtended by the wire.

$$\cos \psi = (\cos \psi_0)(1 - (\alpha_w - \alpha_s)\Delta T)$$
(F5.4)

On substituting equation (5.4) into equation (5.3) we get,

$$\sigma = \frac{E r ((Cos^{-1} ((Cos \psi_0)(1 - (\alpha_W - \alpha_s) \Delta T))) - \psi_0)}{\rho_0 \psi_0}$$
(F5.5)

where E, α_W, α_S and ΔT are defined following equation F5.8.

$$\varepsilon_{f} = \frac{r ((\cos^{-1} ((\cos \psi_{0})(1 - (\alpha_{W} - \alpha_{S}) \Delta T))) - \psi_{0})}{\rho_{0}\psi_{0}}$$
(F5.6)

where $\varepsilon_f = \text{wire strain} = \sigma/E$

This can be simplified into

$$\epsilon_{f} = \frac{r}{\rho_{0}} \begin{bmatrix} \frac{Cos^{-1} ((Cos \psi_{0})(1 - (\alpha_{W} - \alpha_{s}) \Delta T))}{\psi_{0}} & -1 \end{bmatrix}$$
 (F5.7)

Examination of the geometry of typical bond wire installations suggests that a value of ψ_0 = 15 degrees suitably represents this parameter for most microcircuit wire bond configurations. In Appendix F-1 it is shown that ρ_0 = 35.1mm (1.382 in) suitably represents this parameter.

Incorporating the above values simplifies equation F5.7 as follows:
ł.

$$\varepsilon_{f} = \frac{r}{35.1} \begin{bmatrix} \frac{-\cos^{-1} (0.966 (1 - (\alpha_{W} - \alpha_{S}) \Delta T))}{15} & -1 \end{bmatrix}$$
If $\Delta \alpha = \alpha_{W} - \alpha_{S} = 0$, then $\varepsilon = 0$
If $\Delta T = 0$, then $\varepsilon = 0$

The strains reduce to zero when the temperature difference or the difference in the coefficients of thermal expansion reduce to zero. This is a $\Delta \alpha$, ΔT driven failure mechanism.

The number of cycles to failure can be related to the stress in fatigue calculated using this cycles to failure model, by Basquin's relation^[37]:

$$N_{f(flex)} = A_1 (\epsilon_f)^n l (cycles to failure) (F5.8)$$

where:

- $N_{f(flex)}$ is the number of cycles to failure in flexure. ε_{f} is the strain computed from equation (F5.7) A_1 is a constant for a particular material. is a constant for a particular material. n, is the constant for a particular material combination, Table 4.5-4 Α, is a constant for particular material combination, Table 4.5-4. **n**1 is Young's modulus, from Table 4.5-1. Ε is the radius of the wire. r is the angle of the wire with the substrate. Ψ is the coefficient of thermal expansion of wire from Table 4.5-1. αΨ is the coefficient of thermal expansion of the substrate from α, Table 4.5-2 ΔT is the temperature difference encountered from Table 4.5-17. is the initial radius of curvature of the wire. ρ
- F5.2.2. Failure Prediction Model for Shear Between the Bond Pad and the Substrate.

A component subjected to a temperature change would experience shear stresses between the bond pad and the substrate as a result of the differential expansion. These shear stresses are a result of the large difference in the coefficients of thermal expansion.

Ravi and Philofsky^[30] related the shear strain in fatigue to the temperature change encountered by the relation

$$\epsilon_{fs} = K \Delta T$$
 (F5.9)

where:

- ΔT is the temperature change encountered by the component, Table 4.5-17.
- K is the material constant from Table 4.5-6.
- $\epsilon_{\rm fs}$ is the strain as a result of shear between the bond pad and the substrate.

The constant K is an experimental value which was estimated for other bond pad material-substrate combinations. The value of K was calculated theoretically for the aluminum-silicon dioxide combination, for which the experimental value was given in [30]. A ratio of the theoretical value to the experimental value would therefore factor out the parameters which were not accounted for in the theoretical calculation. The calculated factor, if applied to the theoretically calculated value for other material combinations, would yield a value close to the true experimental value. This strategy was used to calculate the value of the constant K for the various bond pad material and substrate combinations as shown in Table 4.5-6.

The shear stress in fatigue can be related to the number of cycles to failure using Basquin's relation.

$$N_{f(shear)s} = A_2 (\varepsilon_{fs})^n 2$$
 (cycles to failure) (F5.10)

1

where:

N _{f(shear)s}	is the number of cycles to failure as result of shear
	between the bond pad and the substrate.
A ₂	is a constant for a particular material, Table 4.5-5.
ε fs	is the shear strain calculated from the equation (F5.9).
ⁿ 2	is a constant for a particular material, Table 4.5-5.

F5.2.3. Failure Prediction Model for Shear Between the Wire and the Bond Pad.

Bi-metal bonds experience large stresses as a result of differential thermal expansion between the wire and the bond pad. The bond is thus subjected to large shear stresses (figure F-13). The shear stresses vary in magnitude along the surface of the bond pad. They are maximum on the boundary of the bond pad and sharply decrease to more or less a constant value a short distance from the edge. The complex mechanics of the shear mechanism and the lack of experimental data forced the modeling effort to use a uniaxial model for the situation. From classical thermal analysis,

$$l_{sub} (\Delta T) \alpha_{sub} - \frac{p_{sub}}{A_{sub} E_{sub}} = l_{wire} (\Delta T) \alpha_{wire} + \frac{p_{sub}}{A_{wire} E_{wire}}$$
(F5.11)

The substrate being in the bulk, the stresses are evaluated between the substrate and the wire instead.

where:

1 sub	is the contacting length of the bond.						
wire	is the contacting length of the wire with the bond pad.						
p	is the force generated as a result of the differential						
	expansion between the bond pad and the wire.						
A wire	is the area of contact of the wire and the bond pad.						
Asub	is the area on which the force due to differential expansion						
	acts on the substrate.						
^E wire	is Young's modulus of the material of the wire.						
Esub	is Young's modulus of the material of the substrate.						
ΔΤ	is the temperature change encountered due to the operating conditions.						

 α_{sub} , α_{wire} are the thermal coefficients of expansion of the substrate and wire, respectively.

$$\sigma_{wire} = \frac{(\Delta T)(\alpha_{wire} - \alpha_{sub})(1/A_{wire})}{(1/(A_{wire}E_{wire})) + (1/(A_{sub}E_{sub}))}$$
(F5.11a)

Young's modulus of silicon is 15.5 x 10^6 psi and the silicon being in bulk $A_{sub}E_{sub} >>> A_{wire}E_{wire}$. The second term in the denominator is therefore neglected. Since $E=\sigma/E$, the expression for the strain in the wire is reduced to

$$\varepsilon_{\text{wire}} = \Delta T (\alpha_{\text{wire}} - \alpha_{\text{sub}}).$$
 (F5.12)

The strain generated in the wire can be given as

$$\varepsilon = | \alpha_{W} - \alpha_{S} | \Delta T$$
 (F5.13)

where $\alpha_w = \alpha_{wire}$ and $\alpha_s = \alpha_{sub}$.

This strain is a tensile strain therefore the shear strain from the Mohr circle is

$$\varepsilon_{fs} = (1/2) \mid \alpha_w - \alpha_s \mid \Delta T$$
 (F5.14)

The number of cycles to failure can be calculated from Basquin's relation using equation F5.10.

The model in usable form is:

$$N_{fshear} = A_2 (\epsilon_{fs})^n 2$$
 (cycles to failure) (F5.10)

where:

$$\varepsilon_{fs} = (1/2) \mid \alpha_{w} - \alpha_{s} \mid \Delta T$$
(F5.14)

where:

N_{fshear} is the number of cycles to failure due to shear.

^E fs	is the shear strain in fatigue.
A ₂	is a constant depending on the material from Table 4.5-5.
n ₂	is a constant depending on material from Table 4.5-5.
E	is Young's modulus of the material from Table 4.5-1.
α	is the coefficient of thermal expansion of the wire from
	Table 4.5-1.
α	is the coefficient of thermal expansion of the substrate
2	from Table 4.5-2.
ΔT	is the temperature difference encountered by the component from

F6. FAILURE PREDICTION STRATEGY FOR WIRE BONDS.

Table 4.5-17.

1

The number of cycles to failure as a result of each of these mechanisms is calculated, and compared. The lowest value represents the dominant failure mechanism. All these mechanisms act simultaneously and independent of each other; nevertheless, a failure as result of any of these mechanisms would constitute a failure of the wire bond. The dominant mechanism would depend on the operating environment, the materials in consideration and the condition of the bond which is an implicit function of the operating conditions. The dominant mechanism would, therefore, shift with a change in operating environment and the materials under consideration. The analysis methodology is illustrated in Figure F-14.

F7. FUTURE WORK

- 1. The manufacturing parameters need to be evaluated to account for their effect on the failure prediction.
- 2. Coffin-Manson relations, parameters that need to be evaluated are $\rm A_1, \ A_2, \ n_1 \ and \ n_2$
- 3. Evaluation of the constant K for the biaxial stress state.
- 4. Finite element methods are required for more detailed analysis.
- 5. Fracture mechanics concepts are required to address interface failures.

.F8. REFERENCES:

- [1]. T.B. Ching & W.H. Schroen "Bond Pad Structure Reliability", Proceedings, International Reliability Physics Symposium, IEEE, 1988, [pp.64-70].
- [2]. T. Koch, W. Richling, J. Whitlock & D. Hall "A Bond Failure Mechanism"; Proceedings, International Reliability Physics Symposium, IEEE, 1986, [pp.55-60].
- [3]. R. Shukla & J.S. Deo "Reliability Hazards of Silver-Aluminum Substrate Bonds in MOS Device "; Proceedings, International Reliability Physics Symposium IEEE, 1982, [pp.122-127].
- [4]. "Handbook of Materials & Processes For Electronics" Ed. by Charles A Harper, McGraw-Hill Book Company, 1970.
- [5]. "Handbook of Components For Electronics" Ed. by Charles A. Harper, McGraw-Hill Book Company, 1977.
- [6]. H. Koyama, H. Shiozaki, I. Okumura, S. Mizngashira, H. Higuchi and T. Ajiki, "A New Bond Failure Wire Crater In Surface Mount Device"; Proceedings, International Reliability Physics Symposium IEEE, 1988, [pp.59-63].
- [7]. R.J. Thompson, D.R. Cropper and B. Whitaker "Bondability Problems Associated with the Ti-Pt-Au Metallization of Hybrid Microwave Thin Film Circuits"; Proceedings, Electronic Component Conference IEEE, 1981, [pp.1-8] IEEE Catalog No. 81CH1671-7.
- [8]. Neil H. Forrest, "Reliability Aspects of Minute Amounts of Chlorine on Wire Bonds Exposed to Pre-seal Burn-in" International Journal of Hybrid Microelectronics, Volume No. 2 Nov. 1982, ISHM, [pp. 549-551].
- [9]. ASME Handbook "Metals Properties" McGraw-Hill Book Company 1954
- [10]. Y.C. Fung, "Foundations of Solid Mechanics" Prentice-Hall Inc. 1965
- [11]. O.C. Zienkiewicz "The Finite Element Method" McGraw-Hill Book Company, 1977.
- [12]. J.D. Lee, "Three Dimensional Finite Element Analysis of Damage Accumulation in Composite Laminate" Computers and Structures, Vol. 15, No.3, 1982.

- [13]. E. Hinton and D.R.J. Owen "Finite Element Programming" Academic Press, 1977.
- [14]. S.B. Stockman D.E. Rash, "Microcircuit Device Reliability Trend Analysis 198", U.S. Air Force, Rome Air Dev. Ctr., RAC Report MDR-21, [p. 135].
- [15]. Joseph H. Mantese and William V. Alcini, "Platinum Wire Wedge Bonding a New IC and Microprocessor Interconnect Journal of Electronic Materials, vol. 17, no. 4, 1988, IEEE/TMS (AIME).
- [16]. Bill Lang Subbarao Pinamaneni, "Thermosonic Gold Wire Bonding to Precious Metal Free Copper Lead Frames."; Proceedings, Electronic Component Conference IEEE, 1988, [pp.546-551], IEEE Catalog No. 0569-5503/88.
- [17]. David Deroian, "A Study of Several Failure Mechanisms Involving Gold Thermocompression Bonding to a Sintered Mesa Structure", Proceedings, International Symposium Testing & Falure Analysis, ASM International, 1988.
- [18] J.A. Weiner, et al, "Gold Ball Bond Shear Strength-Effects of Cleaning, Metallization and Bonding Parameters." Proceedings, Electronic Component Conference, IEEE, 1983 [pp 208-219].
- [19]. Kevin D. Moore, "Interconnection Failures in Circuit Assemblies"; Proceedings, Electronic Component Conference IEEE, 1988, [pp.521-526]
- [20]. Mazher Poonawala, "Evaluation of Gold Wire Bonds in IC's Used in Cannon Launched Environment"; Proceedings, Electronic Component Conference IEEE, 1983, [pp.189-192]
- [21]. George G. Harman, "Metallurgical Failure Modes of Wire Bonds."; Proceedings, International Reliability Physics Symposium IEEE, 1974, [pp. 131-141].
- [22]. A.T. English, J.L. Hokanson, "Studies of Bonding Mechanisms and Failure Modes in Thermocompression Bonds of Gold Plated Leads to Ti-Au Metallized Substrates", Proceedings, International Reliability Physics symposium", IEEE, [pp.178-186].

- [23] N.T. Panousis and H.B. Bonham, "Bonding Degradation in Tantalum Nitride Chromium-Gold Metallization System" Proceedings, International Reliability Physics Symposium, IEEE, 1973, [pp.21-25].
- [24]. H.A. Schafft, "Testing and Fabrication of Wire Bonds Electrical Connections-A Comprehensive Survey", National Bureau of Standards (U.S.), Tech Note 726, pp. 80 and 106-109 (1972).
- [25]. J.A Cunningham, "Expanded Contacts and Interconnections to Silicon Monolithic Integrated Circuits "Solid State Electronics 8, pp. 735-745, April 1965.
- [26]. Clark N. Adams, "A Bonding Wire Failure Mode in Plastic Encapsulated Integrated circuits" Proceedings, Reliability Physics Symposium, IEEE, 1973, [pp.41-44].
- [27]. J.R. Howell and J.W. Slemmons, "Evaluation of Thermocompression Bonding Processes"; presented to the 9th Welded Electric Packaging Association Symposium, Santa Monica, California, Feb. 27,1964; Autonetics Report No. T4-240/3110, March 1964.(13)[pp.16,19,27,28,30].
- [28]. P. Hill, "Uniform Metal Evaporation" Proceedings, Conference on Reliability of Semiconductor Devices and Integrated Circuits, vol.2,sect.27,pp.27.1-27.10,June 1964. AD 645222 [pp.16,29].
- [29]. E. Philofsky, "Design Limits When Using Gold-Aluminum Bonds", Proceedings, International Reliability Physics Symposium [pp. 17, 18, 22].
- [30] E.M. Philofsky and K.V. Ravi; "On Measuring the Mechanical Properties of Aluminum Metallization and Their Relationship to Reliability Problems"; Proceedings, International Reliability Physics Symposium, IEEE, 1973" [pp.33-40]
- [31]. J. Gaffeny, "Internal Lead Fatigue Through Thermal Expansion in Semiconductor devices", T. Electronic Devices, ED-15, IEEE, [p. 617] (1968).

4

- [32]. F. Villela and M.F. Nowakowaski, "Investigation of Fatigue Problems in 1 Mil Diameter Thermocompression and Ultrasonic Bonding of Al-Wire"; NASA Technical Memorandum, NASA TM-X-64566 (1970). Also M.F. Nowakowaski and F. Villela, "Thermal Excursion Can Cause Bond Problems", Proceedings, International Reliability Physics Symposium", IEEE, 1971, [pp.172-177].
- [33]. K.V. Ravi and E.M. Philofsky, "Reliability Improvement of Wire Bonds Subjected to Fatigue Stresses", "Proceedings, International Reliability Physics Symposium", IEEE, 1972, [pp.143-149].
- [34]. W.E. Phillips, "Microelectronic Ultrasonic Bonding", Ed., National Bureau of Standards (U.S.) spl. publ. 400-2 [pp.80-86] (1974).
- [35]. Coucoulas, A.; "Ultrasonic Welding of Aluminum Leads to Tantalum Thin Films", Met Soc of AIME 236, [pp.587-589] (1966).
- [36]. Commercially Available Software From IMSL, Inc., Houston, TX.
- [37]. R.W. Herdzberg, "Deformation and Fracture Mechanics of Engineering Materials," Third Edition, 1989 John Wiley and Sons, pps. 500-511.

THE WIRE -WIRE BOND ASSEMBLY

Figure F-1

1

Figure F-2

Figure F-3 The Wedge Bond

Figure F-4 Thermocompression Wedge Bonding

ı.

Fig. F-7 Location of failed bonds in relation to the incoming material flow during molding. Most of the failures occured on the Vent side of the die.

i.

Figure F-9 SCHEMATIC CROSS-SECTION OF THE BOND PAD STRUCTURE

Figure F-10 SCHEMATIC REPRESENTATION OF WIRE BOND FLEXURE DUE TO DEVICE TEMPERATURE / POWER CYCLING

ı.

Figure F-11 FLEXURE OF THE WIRE DUE TO TEMPERATURE/POWER CYCLING

Figure F-12 THEORY OF CURVED BEAMS APPLIED TO THE WIRE BOND

Downloaded from http://www.everyspec.com

Fig. F-13 Schematic for the shearing of the gold ball bonds on Al-Au thin film diffusion couples

i

Figure F-14 Failure prediction strategy for wire assemblies

Downloaded from http://www.everyspec.com

j.

APPENDIX F-1

EVALUATION OF BOND WIRE BEND RADIUS P

Consider a wire of length 2L, cross-sectional moment of inertia I, made of an elastic material of stiffness E, bonded at two points separated by a span distance 2D, with a loop height h and wire diameter d, as shown in Figure F-15. When the second attachment bond is completed the curvilinear configuration of the wire induces elastic strain energy in the wire as it settles to a stable configuration. The elastic strain energy stored in the wire is principally due to bending of the wire. It is required to determine the radius of curvature ρ_0 at the wire ends and the stress relief height h.

The profile of the wire in its stable configuration can be approximated with a polynominal series. The coefficients in this series will be determined by satisfying all geometric contraints and minimizing the strain energy of the wire. The minimization can be accomplished by using a standard variational scheme such as the Raleigh-Ritz method. Geometric constraints can be imposed by specifying closed form constraints between constant coefficients in the polynominal series and by introducing Lagrange parameters when closed-form constraints are infeasible.

The wire profile is assumed to be approximated by:

$$u = \sum_{i=0}^{n} a_{i} u^{2i}$$
(F5.16)
$$u = x/D$$

where

Only even powers of x are considered to ensure symmetry about the y-axis.

Then
$$u' = \frac{du}{dx} = \frac{du}{du} \cdot \frac{du}{dx} = \left[\sum_{i=0}^{n} (2i)a_i u^{2i-i}\right] \frac{1}{D}$$

$$= \sum_{i=0}^{n} (2i)b_i u^{(2i-i)}$$
(F5.17)

where
$$b_i = 0$$

Therefore

$$y'' = \frac{d^2 y}{dx^2} = \frac{d}{dx} (y') = \frac{d}{du} (y') \frac{dy}{dx}$$
$$= \left[\sum_{i=0}^{n} (2i)(2i-i) b_i u^{(2i-2)} \right] \frac{1}{D} \qquad (F5.18)$$

The potential energy of the system can be written as:

$$\pi_p = U - W = \frac{1}{2} \int_V E \epsilon_{xx}^* dV - \int_X u_x F_x^* dx \qquad (F5.19)$$

where

U = strain energy W = work done by applied tractions F_X*

but
$$W = 0$$
 since $F_X^* = 0$
Therefore $\Pi_P = U = \frac{1}{2} \int_V E \epsilon_{xx}^2 dV = \frac{EI_{xx}}{2} \int_{-L}^{L} K^2 ds$ (F5.20)

where
$$K = curvature = \frac{y^4}{[1+(y')^2]^{3/2}}$$

 $ds = \sqrt{1+(y')^2} dx$

Then

$$\Pi_{p} = \frac{EI_{zz}}{2} \int_{-D}^{D} \frac{(g'')^{2}}{[1+(g')^{2}]^{3}} [1+(g')^{2}]^{1/2} dx \qquad (F5.21)$$

$$= \underbrace{EI_{22}}_{2} \int_{-1}^{1} \frac{\int_{1}^{2} \left[\int_{1}^{n} (2i)(2i-1) b_{i} u^{(2i-2)} \right]^{2}}{\left\{ 1 + \left[\sum_{i=1}^{n} (2i) b_{i} u^{(2i-1)} \right]^{2} \right\}^{5/2}}$$
(F5.22)

Downloaded from http://www.everyspec.com

i.

or
$$\frac{2\pi p D}{EI_{22}} \int_{-1}^{1} \frac{V_{i}(b_{i}, u)}{V_{2}(b_{i}, u)} du$$
 (F5.23)

Where $\rm V_1$ and $\rm V_2$ are functions of $\rm b_i$ and $\rm u$ as given in equation F5.22.

Integration of equation F5.23 is done numerically using a fifteen point Gaussian Quadrature scheme. We note that minimizing π_p is the same as minimizing the fuctional;

$$\frac{2\pi pD}{EI_{zz}}$$

The following geometric constraints are applicable:

y = 0 at x = 0 (F5.24a)

which implies that
$$B_0 = a_0 = 0$$

y' = 0 at x = 0 (F5.24b)

.

which is automatically satisfied

$$y' = 0$$
 at $x = \pm D$, or $u = \pm 1$ (F5.24c)

which implies that $\frac{n}{\sum_{j=1}^{2}}$ (2i) $b_j = 0$ when equation 5.24c is imposed on b_j

The following displacement boundary conditions are applicable:

$$2L = \int_{-L}^{L} ds = \int_{-P}^{P} \sqrt{1 + (y')^2} dx \qquad (F5.25)$$

Downloaded from http://www.everyspec.com

$$= \int_{-1}^{1} \sqrt{1 + \left[\sum_{i=1}^{n} (2i)b_{i} u^{(2i-1)}\right]^{2}} D du$$
(F5.26)
or $2\left(\frac{1}{D}\right) - \int_{-1}^{1} \sqrt{1 + \left[\sum_{i=1}^{n} (2i)b_{i} u^{(2i-1)}\right]^{2}} du = G = 0.$

The functional G (=0) can now be introduced into our variational formulation through a Lagrange parameter λ . Thus, the new functional to be minimized is the functional H, where

$$H = \frac{2d}{EI_{zz}} \pi_{p} + \lambda G$$
 (F5.27)

It is noted that λ has the physical interpretation of being the force along the x axis at the bond.

The function H is minimized by seeking its stationary value.

Therefore
$$\delta H = 0$$
 (F5.28)

Which implies that $\frac{\partial H}{\partial b_i} = 0$, i=1 to n (F5.29a)

and $\frac{\partial H}{\partial \lambda} = 0 = G$ (F5.29b)

However, noting from equation F5.24c that the b_i are not independent, we rewrite equation F5.29a as follows:

$$\frac{\partial H}{\partial b_{i}} = \frac{\partial H}{\partial b_{i}} + \frac{\partial H}{\partial b_{i}} \frac{\partial b_{n}}{\partial b_{i}} = 0, i=1 \text{ to } (n-1)$$
(F5.29c)

Equations F5.29b and F5.29c now constitute a set of n coupled non-linear algebraic equations in b_i (i=1 to n-1) and λ . These can be solved

iteratively for the unknowns b_i and λ , using any standard solver software. The routine used in this study is the NEQNF subroutine from the IMSL math library. $^{\left[35\right]}$ This subroutine utilizes the Levenberg-Marquardt algorithm.

When the unknowns are determined, $\rho_{\rm o}$ and h can be computed as follows:

$$\frac{\rho_{O}}{D} = \frac{1}{DK_{O}} = \frac{1}{D} \begin{bmatrix} \frac{1 + (y')^{2}}{y''} \end{bmatrix}^{3/2} \\ y''' \end{bmatrix} \begin{bmatrix} 0 & u = \pm 1 \end{bmatrix}$$

$$= \left\{ \begin{bmatrix} 1 + \begin{bmatrix} \frac{n}{2} & (2i)b & \frac{1}{2} \end{bmatrix}^{2} \right\}^{3/2} \\ \frac{1}{(1 + \frac{n}{2})^{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix}^{3/2} \\ \frac{1}{(1 + \frac{n}{2})^{2}} \end{bmatrix}$$
(F5.30)

Values of $(\underline{\rho_0})$ are plotted vs (\underline{L}) in Figure F-15.

.

We note that
$$\frac{h}{D} = \frac{y}{D} \Big|_{\substack{0 \ u = \pm 1 \ i = 1}} = \frac{n}{i = 1} b_i$$
 (F5.31)

Noting that y is negative everwhere for our choice of coordinate frame, the absolute value of $\begin{pmatrix} h \\ D \end{pmatrix}$ is plotted vs $\begin{pmatrix} L \\ D \end{pmatrix}$ in Figure F-17.

It is now necessary to obtain a geometric perspective of the range of h and D. We observe that for typical microcircuit package geometry:

We also note that MIL-STD-883 visual inspection criteria prohibits a bond wire atachment without a visible loop height h, and establishes an effective maximum loop height for a specific package size by requiring a 0.127mm (5 mil) minimum clearance between the package lid inside surface and the wire. No minimum loop height is specified. However, differential thermal expansion of the wire, die and package materials effectively establishes a desireable minimum loop height to prevent axial stress in the wire at maximum temperature difference. It is common practice for visual inspection purposes to express bond wire clearances and loop height in multiples of the wire diameter, as follows:

h = kd (k > 1) (F5.33)

where d and h are defined in Figure F-15.

It can be shown that axial stress will not occur in typical microcircuits for the span distance range shown in equation F5.32 when 3 < k < 8. This result suggests that the typical loop height range is:

0.08mm < h < 0.25mm (0.003 in < h < 0.010 in) (F5.34)

Then the ratio h/D range will be approximately as follows:

0.016 < h/D < 0.192 (F5.35)

From Figure F-16 we obtain an L/D range for equation F5.35 as follows:

1.00016 < L/D < 1.0229 (F5.36)

Then from Figure F-17:

 $1.00 < \rho_0 / D < 13.5$ (F5.37)

Substituting equation F5.32 into equation F5.37:

 $1.3mm < \rho_0 < 68.85mm \quad (0.051 \text{ in } < \rho_0 < 2.711 \text{ in}) \quad (F5.38)$ Choosing a median value: $\rho_0 = 35.1mm \quad (1.382 \text{ in})$ ÷

ł

ı.

Downloaded from http://www.everyspec.com

ł.

APPENDIX G

MECHANICAL FAILURES OF DICE, DIE-ATTACH AND SUBSTRATE ATTACH IN MICROELECTRONIC PACKAGES

TABLE OF CONTENTS

G1.	INTRODUCTION					
G2 .	FAILURE MODELS				G-2	
	G2.1	The die	failure mo	del	G-2	
		G2.1.1	Stresses d	ue to thermal mismatch	G-2	
		G2.1.2	Effect of	thickness of the die	G-3	
		G2.1.3	Brittle fr	acture of die	G-3	
		G2.1.4	Fatigue cr	ack propagation in the die	G-9	
	G2.2	The die	attach fai	lure model	G-10	
		G2.2.1	Stresses d	ue to presence of voids	G-11	
		G2.2.2	Fatigue in	die attach materials	G-12	
			G2.2.2.1	Epoxies and polyimide die attaches	G-13	
			G2.2.2.2	Gold-eutectics solders	G-14	
		G2.2.3	Fatigue fa	ilure of die attach	G-14	
	G2.3 The substrate attach failure model				G-15	
G3.	CONCLUSIONS					
G4.	RECOMMENDATIONS					
G5.	REFERENCES					
FIGU	RES				G-20	

LIST OF ILLUSTRATIONS

FIGURE

G-1	Diagram Showing the Die and the Substrate Mounted	
	in a Hybrid Casing	G-20
G-2	Thermal Stresses in Bonded Die Developed After Cure	G-21
G-3	Tensile Forces Induced in the Die Due to Thermal Expansion	G-22
G-4	Shear Stress Distrigution Over Width of Joint for	
	Different Joint Thicknesses	G-23
G-5	Variations in the Number of Die Cracks as a Function	
	of Die Thickness	G-24
G-6	Effect of Die Diagonal Length and Adhesive Thickness	
	on Thermal Stress of Die	G-25
G-7	Adhesive Tensile Modulus vs. Temperature	G-26
G-8	Maximum Stresses from Equation 2(a)	G-27
G-9	Effect of Void Content and Size on Die Lift, Die	
	Strength and Die Cracking	G-28
G-10	Variations of the Longitudinal Tensile Stresses	G-29
G-11	Schematic Diagram Showing Temperature Drops Across the	
	Silicon Chip, the Die Bond and the Pacakge Materials	G-30
G-12	Basic Crack Surface Displacement Modes	G-31
G-13	Schematic View of Die Crack Growth	G-32

G1. INTRODUCTION

The die attach unit (figure G-1) of a microelectronic component package consists of the die or chip, the die attach, the substrate, the substrate attach and the case. The die is the medium which houses the integrated circuit. Silicon, gallium arsenide and indium phosphide are common die materials. The die attach material bonds the die to the substrate. Common die attach and substrate attach materials include gold-silicon and gold-germanium eutectics, epoxies, polyimides and many solder alloys. Common case materials are ceramic, kovar, aluminum and copper. Most frequently, the die is attached directly to the case. Occasionally, a substrate is used to provide mechanical support for the die, and to provide a thermal path for heat dissipation from the die to the die package case. Common materials used for substrates are alumina, silicon, copper and beryllium dioxide. The failure mechanisms in the die, die attach and substrate attach are interdependent and are governed by the component materials, dimensions, temperature range of thermal cycles, environments and assembly processes.

The die, the substrate and the case have different thermal expansion coefficients. As the temperature rises during manufacture and power cycling, tensile stresses are developed in the central portion and shear stresses are developed at the edges of the die. Therefore, microcracks nucleate at the top surface and at the edges of the die. If the initial crack, after the manufacture of the die, is equal to or greater than the critical crack size, then the die would fail in the first cycle. If the initial crack size is smaller than the critical crack size, then it may propagate during power and thermal cycling due to fluctuations in temperature. Brittle failure of the die follows when this crack reaches the critical size. Vertical cracking of the die is caused by tensile stresses and horizontal cracking is caused by the high shear stresses at the edges.

The most common die attach defects are voids. The presence of edge voids in the die attach induces high longitudinal (shear) stresses during thermal cycling. These voids may act as microcracks, which may propagate during power and thermal cycling resulting in debonding of the die from the substrate or

G-1

the substrate from the case. This appendix discusses the failure mechanisms of the die, die attach and substrate attach and the parameters which contribute to the failure of the die attach unit.

Failure rate prediction models for die, die attach and substrate attach are then developed which consider the failure factors from a coupled mechanistic, empirical and statistical approach. The fracture mechanics approach is taken to calculate the critical crack size in the die. If the initial crack size is smaller than the critical crack size then Paris's law is used to calculate the number of cycles to failure. The die attach and substrate attach materials fail by ductile mechanisms and hence the fracture mechanics approach is not very appropriate in this situation. The Manson-Coffin relationship is used to calculate the number of cycles to failure in die attach and substrate attach.

G2. FAILURE MODELS

The development of a useful prediction model which can aid in design requires an evaluation of the of the fatigue life of the die, die attach and substrate attach due to stresses induced by thermal mismatch.

G2.1 The die failure model

G2.1.1 Stresses due to thermal mismatch

Die materials such as silicon or gallium arsenide have different thermal expansivities than commonly used substrate and case materials. Thus at manufacture, during cool down after the die attachment or during power cycling, the die attach becomes thermally stressed as shown in figures G-2(a), (b) and (c). ^[1] Tensile stresses are developed at the top central portion of the die and shear stresses are developed near the edges of the die. These stresses increase with the size of the chip and are responsible for the initiation and propagation of microcracks. Ultimate fracture of the brittle die can occur suddenly, without any plastic deformation, when surface cracks at the center of the die or at the edge of the die propagate during thermal cycling and become equal to the critical crack size.
Figure G-3 shows the tensile force in the die and how it drops to zero near the edge of the joint.^[2] Figure G-4 shows the maximum shear stresses for different joint thicknesses of .051, .076, .127 and .178 mm.^[2] It illustrates that as the thickness increases by 3.5 times, the shear stress decreases by a factor of 1.8 only. The tensile stresses in the die are responsible for vertical cracking of the die due to surface cracks and vertical edge cracks and the shear stresses in the die are responsible for the horizontal cracking of the die as shown in Figure G-2.

G2.1.2 Effect of thickness of the die

The thickness of the die affects the stress distribution inside the die. For a silicon die attached to an alumina substrate, increasing the thickness of a die increases the average stresses inside the die.^[3] The total tensile stress near the interfacial voids also increases as the thickness of the die increases. These results indicate that a thin die is less likely to fail either due to tensile stress in the active circuit region or due to voids at the die attach interface as shown in figure G-5.^[3]

Lowering the die thickness clearly reduces die cracking. However, excessive reduction of die thickness lowers the mechanical strength of the die and the die becomes prone to cracking during fabrication and handling.^[3]

Die and substrate attach thickness varies dependet upon the attach material type and fabrication process used to apply it. The values given in Table 4.5-18 are obtained from reference [27] and can be considered to be typical practice for die and substrate attachment in hybrid microcircuit design.

G2.1.3 Brittle fracture of the die

Three separate modes of crack surface displacement are recognized in fracture mechanics methodology^[20] and are illustrated in figure G-12. Surface displacements in Mode I cracks are perpendicular to the crack plane. Tensile stresses in the material open the crack and stress concentrations at the crack tip cause crack propagation when the local allowable yield stress is exceeded.

G-3

Modes II and III cracks are caused by shearing displacements in the crack plane. Mode II is caused by an in-plane shearing force in which the crack surfaces slide perpendicular to the crack front, and Mode III is caused by an out-of-plane shearing force in which the crack surfaces produce tearing displacements that slide parallel to the crack front. Only Mode I crack displacements are of concern in microelectronic dice.

MIL-STD-883 , Method 2010 visual inspection criteria define: three types of Mode I cracks viz: surface cracks, vertical edge cracks and horizontal edge cracks as illustrated in Figure G-2 and in MIL-STD-883, Figure 2010-8. The inspection criteria specifies examination of die surfaces and edges at magnification and rejection of surface cracks in active circuit areas and of edge cracks that exceed specified geometry limits. The greatest allowable crack is a Mode I vertical edge crack (see Figures G-2 and G-12) extending more than 3 mils (7.6 x 10^{-5} cm) from the edge for Class S devices, and 5 mils (1.3 x 10^{-2} cm) for Class B devices. This magnitude of allowable crack will propagate to die fracture earlier than any other acceptable crack.

In his classic 1939 paper on cracks in a two dimensional infinite solid, Westergaard^[22] used a complex variable approach to show that

$$K_{I} = \sigma_{app} (\pi a)^{1/2}$$
 (G-la)

where:

 K_I = Mode I crack stress intensity factor σ_{app} = Mode I nominal far-field applied stress a = 1/2 crack penetration depth

In 1946 Sneddon^[23] showed that for a circular penny-shaped surface crack in an infinite three dimensional solid

$$K_{I} = \frac{2}{\pi} \sigma_{app} (\pi a)^{1/2}$$
 (G-1b)

George Irwin^[24] used energy methods in 1962 to extend Sneddon's results to

'semi-elliptical surface flaws on a three dimensional solid to demonstrate that

$$K_{I_{max}} = \frac{1.12}{(Q)} 1/2 \sigma_{app} (\pi a)^{1/2}$$
(G-lc)

where

$$Q = \phi^{2} - 0.212 \left(\frac{\sigma_{app}}{\gamma_{ys}}\right)^{2}$$
 (G-2a)

The geometry of the crack considered by Irwin was a surface flaw of 2c length along the surface with a semi-elliptical shape penetrating to depth "a" below the surface as shown in figure G-13, section A-A.

For a brittle solid it was shown that
$$Q = \phi^2$$
 (G-2b)

where

 $\phi = f(\frac{a}{C})$ and is given in terms of elliptic integrals. In 1982 Brock^[25] derived the result $\phi^2 = 1.41$ when $a/c \simeq 0.4$

Expressing the ratio $(Q)^{1/2}$ / 1.12 as a surface elliptical flaw shape parameter, m_1 , we obtain $m_1 = 1.06$ when a/c ≈ 0.4 . Hence for surface flaws approximating this geometry equation G-lc becomes

$$K_{I_{max}} = \frac{\sigma_{app}}{m_1} (\pi_a)^{1/2}$$
 (G-1d)

A final correction factor M_{K} was introduced in 1965 by Kobayashi et. al.^[8] to account for the free surface ahead of the crack to the far surface of the body in the thickness dimension, resulting in the following expression for the crack stress intensity factor:

$$K = \frac{M_K}{I_{max}} \sigma (\pi a)^{1/2}$$
(G-le)

(G-3)

where

h ≠ Thickness of die

 $M_{K} = 0.953 - 2.369 (a/h) + 2.74 Tan (a/h)$

Note that equation G-3 is valid for semi-elliptical surface cracks for which a/c is approximately equal to 0.4.

Figure G-13 is based on figures 1 and 2 from^[21] and demonstrates the concept of a critical crack size. When repeated stress cycles cause a crack of initial penetration depth a_i to reach a critical penetration depth a_c (or critical surface length c_c), the crack will rapidly propagate to complete fracture of the die. The rapid propagation stage can be considered to be instantaneous.

Required visual screening of dice used in military microelectronic devices assures that all surface cracks of visually detectable size under magnification will be rejected. However, the acceptance criteria also assures that vertical edge cracks will be present in most dice. The acceptance criteria for horizontal edge cracks is much smaller than for vertical edge cracks. Hence, the model for prediction of the number of cycles to fracture for the die cracking mechanism need consider only Mode I vertical edge cracks as depicted in Section B-B of figure G-13.

The brittle failure criterion can be represented by the size of the critical crack on the external die edge. Microcracks are developed in the die during manufacture. In some cases these microcracks may be large enough to cause brittle failure of the die. Fracture of the die would occur when the crack size is equal to or greater than the critical crack size. Hence, brittle failure of the die will occur in the first stress cycle if

$$a_i \ge a_c$$
 (G-4)

1

where:

a_i = initial crack length
a_c = critical crack size needed to cause the brittle failure of the die

$$a_{\rm C} = \frac{K_{\rm IC}^2}{\sigma_{\rm app^2} \pi}$$
(G-5)

where:

 K_{IC} = fracture toughness of the die material, Table 4.5-7 σ_{app} = maximum applied stress

The thermomechanical stress level σ_{app} in the die has been investigated by many authors^[1,2,4-6] who have derived equations for stresses developed in the die. An equation proposed by Bolger^[1] is:

$$\sigma_{app} = 10^{-6} \text{ k } |\alpha_{s} - \alpha_{d}| \Delta T \sqrt{E_{s} E_{a} L/x} \text{ MPa}$$
 (G-6)

where:

The geometric constant K is a function of die shape and the amount of die attach filleting. A preliminary finite element study of a square die with normal production filleting practices was conducted to evaluate K. The study suggested that $K \approx 0.2$ was a reasonable value.

It has been found that a highly correlated functional relationship exists between the die diagonal length L and the number of I/O connections on the

die.^[19] A Reliability Analyst will usually know the number of active pins for a packaged microcircuit, and it can be reasonably assumed that the number of active pins is approximately equal to the number of I/O connections on the die. Reference [19] provides the following relationship:

$$L = 1.5 \times 10^{-3} + 1.0 \times 10^{-4} P$$
 meters (G-7)

where: P = number of microcircuit active pins

Using equation G-7 for L, equation G-6a becomes:

$$\sigma_{app} = 2 \times 10^{-7} |\alpha_s - \alpha_d| \Delta T \sqrt{E_s E_a (1.5 \times 10^{-3} + 1.0 \times 10^{-4} P)/x}$$
(G-6b)

Equations G-5 and G-6b assume that the adhesive bond thickness is less than the thickness of either the die or the substrate, the die shape is rectangular, the die and substrate are at the same temperature, and the moduli and thermal coefficients of expansion are not temperature dependent. In this equation the shear modulus of the adhesive G_a has been replaced by the tensile modulus E_a because it is very difficult to measure the shear modulus of the adhesives as compared to the tensile modulus.^[1] It is assumed that the numerical differences can be absorbed into the geometric constant k.

Many terms in equation G-5 are temperature dependent. Young's modulus for two typical die attach adhesives, a silver filled epoxy and a polyimide as a function of temperature are shown in figure G-7.^[7] If the die size is constant, but the adhesive type is varied, then:

$$\frac{\sigma_{app1}}{\sigma_{app2}} = \frac{T_{g1}-T}{T_{g2}-T} = \frac{\sqrt{E_{a1} X_{a2}}}{\sqrt{E_{a2} X_{a1}}}$$
(G-8)

where:

Subscripts 1 and 2 identify the adhesive die attach materials being evaluated.

Figure G-8 shows the use of equation G-8 to compare the stresses produced for different adhesives.^[1] Highest stresses are produced by glass adhesives and lowest stresses are produced by epoxy.

G2.1.4 Fatigue crack propagation in the die

A pre-existing defect may develop into a crack under the influence of thermal cycling in the die. This crack may not be of critical size at the applied service stress, but may grow to critical size gradually by stable fatigue propagation.

In 1961, Paris et. al.^[9] proposed a power law to predict fatigue crack propagation based on the stress intensity factor K at or near the crack tip in the plane of propagation. As the stress varies during thermomechanical cycling, K will proportionately vary as follows:

$$\Delta K = K_{max} - K_{min} \tag{G-9}$$

Then the rate of fatigue crack propagation, da/dN, will be given by Paris's law:

da/dN = A (ΔK)ⁿ
where
a = instaneous crack size
N = number of cycles
A = material dependent coefficient
n = material dependent exponent

Assuming that equation G-6b expresses the magnitude of the stress amplitude at the crack tip in completely reversed loading and equation G-1a describes the proportionate ΔK , then equation G-10 becomes:

$$\frac{da}{dN} = A \left(\left(\sigma_{app} \left(\pi_{a} \right)^{1/2} \right)^{n} \right)$$
(G-10a)

rearranging:
$$dN = \frac{da}{A(\sigma_{app} (\pi a)^{1/2})^n}$$
 (G-10b)

integrating:
$$\int_{a_i}^{a_f} \frac{da}{A(\sigma_{app} (\pi a)^{1/2})^n} = \int_{0}^{N_f} dN = n_f$$
(G-10c)

where

a_i = initial flaw size
a_f = final flaw size
N_f = number of cycles to catastrophic failure

The final flaw size a_f is seen to be identical to the critical flaw size a_c defined in equation G-5 for the given σ_{app} . Hence

$$a_{f} = a_{c} = \frac{K_{IC^{2}}}{\sigma_{app^{2}}\pi}$$
(G-5)

Then N_f =
$$(\frac{1}{A})^n \frac{1}{\pi^{n/2}} \frac{1}{\sigma_{app}} \int_{a_i}^{a_c} \frac{da}{a^{n/2}}$$
 (G-10d)

$$= (\frac{1}{A})^{n} \frac{1}{\pi^{n/2}} \frac{1}{\sigma_{appn}} \left[\frac{a^{1-n/2}}{(1-n/2)} \right]_{a_{1}}^{a_{C}}$$

or
$$N_{f} = \frac{2}{(n-2)A_{\sigma}n_{\pi}n/2} \left[\frac{1}{a_{i}(n-2)/2} - \frac{1}{a_{f}(n-2)/2}\right]$$
 (G-10e)

for n <> 2

where:

G2.2 The die-attach failure model

A common reason for failure of the die attach is fatigue resulting from power

cycling and environmental temperature cycling. In a typical power cycle, when the die is energized, the junction temperature rises. Later the device is turned off and cooled down. Because the die, the die attach, the die substrate and the package experience temperature differences and have different coefficients of thermal expansion, the die attach bonding the die to the substrate can experience cumulative fatigue damage.

G2.2.1 Stresses due to the presence of voids

.

The most common die attach and substrate attach defects are voids. Voids are responsible for weak adhesion, die lifting (figure G-9a), increased thermal resistance, and poor power cycling performance. Voids can form from melting anomalies associated with oxides or organic films on the bonding surfaces, outgassing of the die attach, trapped air in the bonds, and shrinkage of solder during solidification. Insufficient plating, improper storage, lack of cleaning, or even diffusion of oxidation prone elements from an underlying layer can generate voids during melting of die attaches. In other instances, dewetting of solder results in excessive voiding, especially when a solderable surface, a poor solderable underlying metal, or excess soldering time produces an intermetallic compound not readily wetted by the solder. Even under ideal production conditions, voids are often present due to solvent evaporation or normal outgassing during cooling of organic adhesives. Although voids can form from a number of sources, they are normally limited to an acceptable level through process control. The package construction, the die attach materials and the overall void concentration determine the actual effect of voiding on device reliability.

The formation of randomly distributed voids at the die substrate interface is generally unavoidable during the die attach process. The local stresses introduced in the die due to voids are very much dependent on the location of the voids. A finite element study done by Chiang and Shukla^[3] reveals that an edge void at the interface experiences tensile longitudinal stresses while a center void experiences compressive stresses, less in magnitude than the average stress obtained in the absence of the voids, as shown in figure G-10. It is shown that the edge voids are most likely to produce die cracking due to

high longitudinal stresses. The compressive nature of the stress near the center void greatly reduces the possibility for the crack to propagate. Die cracking statistics results for two samples of equal size with edge and center voids subjected to 10 cycles of thermal shock are summarized in reference [3]. The devices with center voids show no cracks, while devices with edge voids show nearly 50% failure rate due to die cracks.

The size of the voids may reduce the thermal performance of the device by creating a large temperature gradient.^[10] In poorer performing thermal packages, small concentrations of random voids have little effect on the peak junction temperature. When a relatively large contiguous void is present, the heat must flow around the void creating a large temperature gradient in the silicon and severely degrading the package's thermal performance. If a large void is instead broken up into many smaller voids, the perturbation to heat flow is less with a much smaller temperature gradient induced in the silicon surface. Figure G-11 shows the temperature drop across the silicon chip, the die bond and the package materials.

Van Kessel^[26] pointed out the potential benefit of a small controlled amount of voids formed due to solvents in the die attach adhesive. Small voids formed during cure may reduce stresses by reducing the modulus of adhesive by an expansion effect, which increases the bond thickness as shown in figure G-9b. Fig G-9c shows the case with no voids, resulting in high modulus.^[7]

G2.2.2 Fatigue failure in die attach materials

Epoxy, solder, polyimide and silver filled glass materials are commonly used as die-attach materials. In today's market 80% of the materials used are epoxies, 10% are gold-eutectic solders and the remaining 10% are other materials. The response of a die attach material to the thermal stresses introduced during die bonding, power and temperature cycling is directly related to its mechanical properties. Therefore, an understanding of the mechanical behavior of each die-attach material as a function of temperature is essential because both the properties and responses of the die-attach change dramatically over a typical temperature range. The mechanisms by which

G-12

a die attach adhesive can contribute to the failure of a hermetic microcircuit are by the release of Cl^- , Na^+ , K^+ or other extractable ions, by the release of NH_3 , BF_3 , or other corrosive vapors, by die cracking or distortion due to thermal stresses and by void formation under the die due to outgassing of solvents or other volatiles.

G2.2.2.1 Epoxy and polyimide die attaches

The mechanisms by which an epoxy die attach adhesive can cause or contribute to the failure of a plastic encapsulated component are discussed in paragraph G2.2.2. Some of these failures show up during production. Most, however, introduce the more serious possibility of causing failure after final packaging and inspection.

The gold and silver-filled epoxy die attach adhesives which were introduced during the 1970's offered important cost savings and process improvements over gold eutectic solders. These generally gave excellent bond strengths, good toughness and thermal shock resistance and could be cured rapidly, in one step, at temperatures of 150°C or below. These early epoxies were sold as "100 percent solids" adhesives. They contained little or no organic solvent which had to be driven off during cure. However, these first generation epoxy die attach adhesives contained relatively high concentrations of water extractable ionic contaminants. These impurities, whether generated from the die attach adhesive or from the encapsulation compound, can severely shorten the operating lifetime of a microcircuit. Silver-filled epoxies used for die attach can be responsible for corrosion failure which occurs during humid conditions. Ions present in the epoxy can migrate in the presence of water vapor to the die surface and initiate a corrosion reaction with aluminum metallization which leads to electrical failure.

Unlike epoxy resins, which are made by a process which yields Na^+ , Cl^- and H_2O as undesirable by-products, polyimide resins are made by a process which does not include ionic impurities. Silver filled polyimide die attach adhesives can be made to a very high degree of ionic purity. Polyimides yield no other corrosive gases, such as NH_3 , as by-products of cure. Hence the

G-13

use of conductive polyimides for die attach, together with a parallel effort to convert to cleaner epoxy molding compounds, can essentially eliminate the previous possibility that a plastic encapsulated component will fail in service by a corrosion or dielectric breakdown mechanism.

G2.2.2.2 Gold-eutectic solders

Gold-based eutectics Au-Si, Au-Sn and Au-Ge are expensive hard solders which do not degrade from fatigue or creep damage during thermal cycling. They are still widely used in military applications and most hermetic packages, where the demand for high performance and reliability overrides the cost, but their high residual stresses lead to cracked dies.

The rigid gold-eutectic systems can not absorb the dimensional changes due to different thermals expansion rates between the die and the substrate material, causing cracks in the die and eventually device failures, mostly during thermal cycling. Fracture in Au-Si eutectic mounting of large chips in ceramic packages have been reported in the literature by several workers.^[11-14] Contributing factors such as voids, non-wetting, improper anneal techniques and preform thickness are discussed and several solutions have been proposed.

G2.2.3 Fatigue failure of die attach

The Manson-Coffin equation [15-18] relates the number of cycles to failure and the plastic strain per cycle,

$$N_{f} = 0.5 \left[\frac{Y_{a}}{Y_{f}'} \right]^{1/c}$$
 (G-11)

where:

N_f = number of cycles to failure Y_a = plastic strain amplitude, equation G-12 Y' = fatigue ductility coefficient, defined as shear strain f required to cause failure in one load reversal, (Table 4.5-8)

c = Manson-Coffin fatigue exponent
= slope of low cycle fatigue curve of log shear
strain vs. log cycles to failure, (Table 4.5-8)

$$\gamma_a$$
 is given by,
 $\gamma_a = \frac{L |\alpha_s - \alpha_d| \Delta T}{x}$ (G-12)
::
L = diagonal die length, meters, (see paragraph G2.1.3 and equation
G-7)
 α_s = substrate expansion coefficient, (Table 4.5-9)
 α_d = die expansion coefficient, (Table 4.5-7)
 ΔT = temperature excursion per cycle, (Table 4.5-17)
 x = height of the die attach

where:

G2.3 The substrate attach failure_model

ī.

Fatigue failure of the substrate attach is similar to the fatigue failure of die attach, except that in this case the dimensions and the materials are. different.

Number of cycles to failure in the substrate attach is given by the Manson-Coffin relationship,

$$N_{f} = 0.5 \left[\frac{L_{s} |\alpha_{c} - \alpha_{s}| \Delta T}{x_{sa} Y' f} \right]^{1/c}$$
(G-13)

where:

 L_s = diagonal length of substrate, meters α_c = thermal expansion coefficient of the case, (Table 4.5-10) α_s = thermal expansion coefficient of substrate, (Table 4.5-9) ΔT = temperature excursion per cycle, (Table 4.5-17) x_{sa} = thickness of the substrate attach, meters

- Y' = fatigue ductility coefficient of substrate attach defined
 f by shear strain intercept at one load reversal, (Table 4.5-8)
- c = slope of low cycle fatigue curve of log shear strain vs. log cycles to failure, (Table 4.5-8)

G3. CONCLUSIONS

1. The stresses in the die can be reduced by reducing the size of the die, by increasing the die attach thickness, by choosing the substrate to match thermal expansion coefficients, by reducing the temperature fluctuations, and by reducing the tensile modulus of die attach, and substrate.

2. The stresses in the die attach can be reduced by reducing the die size, increasing the die attach thickness, by matching the thermal expansion coefficients of die and substrate, and by reducing the edge voids.

3. Traditionally, the substrate covers more than 90% of the area of the case and therefore it has a large diagonal length, resulting in the smallest number of cycles to failure of the substrate attach. Therefore, the substrate should be divided into many small pieces to reduce the diagonal length of substrate. Also thermal expansion coefficients of the case and the substrate must be matched.

G4. RECOMMENDATIONS

```
1. TESTING THE MATERIAL PROPERTIES

DIE MATERIALS:

FRACTURE TOUGHNESS K_{1c}

A, n (FOR FATIGUE CRACK PROPAGATION LAW EQN. FOR DIE)

\alpha_d(T), \upsilon_d (TO COMPUTE STRESSES IN THE DIE)

DIE ATTACH MATERIALS:

E_a(T), \upsilon_a (T) (TO COMPUTE STRESSES IN DIE)

\gamma_f, C (FOR LOW CYCLE FATIGUE IN DIE ATTACH)

SUBSTRATE MATERIALS:

E_s(T), \upsilon_s (T), \alpha_s (T)
```

- 2. FINITE ELEMENT STUDY
 - 1. TO PREDICT THE INDUCED STRAINS

1

- 2. TO STUDY THE EFFECT OF DIE THICKNESS DUE TO BENDING-STRETCHING COUPLING
- 3. TO STUDY THE EFFECT OF TEMPERATURE GRADIENTS

G5. REFERENCES

- J.C. Bolger, "Polyimide Adhesive to Reduce Thermal Stresses in LSI Ceramic Packages", 14th National SAMPE Technical Conference, October 12-14, 1982.
- W.T. Chen and C.W. Nelson, "Thermal Stresses in Bonded Joints", IBM Research Development, Vol. 23, no. 2, 1979.
- S.S. Chiang and R.K. Shukla, "Failure Mechanism of Die Cracking Due to Imperfect Die Attachment", Proceedings, Electronics Components Conference, IEEE, pp. 195-202, 1984.
- 4. K. Niwa, et. al., "Substrate for Large Silicon Chip and Full Wafer Packaging", Semiconductor International, pp. 149–156, April 1980.
- T.E. Lewis and D.L. Adams, "VLSI Thermal Management in Cost Driven Systems", Proceedings, Electronic Components Conference, IEEE, CA, pp. 166-173, May 1982.
- R.L. Krieger, "Stress Analysis in Metal to Metal Bonds", 22nd Annual SAMPE Symposium, San Diego, CA, April 1977.
- J.C. Bolger and C.T. Mooney, "Die Attach in Hi-rel p Dips: Polyimides or Low Chloride Epoxies", IEEE, Transactions Components, Hybrids, Manuf. Technology, Vol. CHMT-7, no. 4, Dec. 1984.
- A.S. Kobayashi, M. Zi, and L.R. Hall, "Approximate Stress Intensity Factor for an Embedded Elliptical Crack Near Two Parallel Free Surfaces", Int. J. Facture Mech., 1 (1965) pp. 81-95.
- P.C. Paris, M.P. Gomez and W.E. Anderson, "A Rational Analytical Theory of Fatigue," The Trend in Engineering, (University of Washington), 13 (1961) pp. 9-14.
- M. Mahalingham, et. al., "Thermal Effects of Die Bond Voids in Metals, Ceramic and Plastic Packages", Proceedings, Electronic Components Conference, IEEE, 1984, pp. 469-477.
- 11. R.K. Shukla and N.P. Mencinger, "A Critical Review of VLSI Die-Attachment in High Reliability Applications", Solid State Technology, July 1985, pp. 67-74.
- 12. S. Okikawa, et. al., "Stress Analysis of Poor Gold-Silicon Die Attachment for LSIs", International Symposium for Testing and Failure Analysis, 1984, pp. 180-189.

- T.D. Hund and S.N. Burchett, "Stress Production and Relief in the Gold Silicon Eutectic Die Attach Process", Proceedings, Annual ISHM Conference, 1983, pp. 243-250.
- K.M. Liechti and P. Theobald, "The Determination of Fabrication Stresses in Microelectronic Devices", Proceedings, Electronic Components Conference, 1984, pp. 203-208.
- R.W. Smith, M.H. Hirschberg and S.S. Manson, NASA TN D-1574, NASA, April 1963.
- S.S. Manson and M.H. Hirschberg, "Fatigue, An Interdisciplinary Approach", Syracuse University Press, Syracuse, NY, 1964, p.133.
- 17. L.F. Coffin, Jr., Trans. ASME 76, 931 (1954)
- 18. J.F. Tavernelli and L.F. Coffin, Jr., Trans. ASM 51, 438 (1959).
- 19. S.J. Whelan, "Investigation of the Functional Relationship Between Microcircuit Die Size and Number of Input/Out Connections," Westinghouse Electronics Systems Group, Report CE-89001 (1989).
- 20. P.C. Paris and G.C. Shih, "Stress Analysis of Cracks"; Fracture Toughness Testing, ASTM STP. 381, pp. 30-81 (1965).
- C.P. Chen, "Prediction of Critical Crack Sizes in Solar Cells", Caltech-JPL Report NPO-17637
- H.M. Westergaard, "Bearing Pressures and Cracks", J. Appl. Mech., Vol. 61, 1939, pp A49-53.
- 23. I.N. Snedden, "The Distribution of Stress in the Neighborhood of a Crack in an Elastic Solid", P. Roy Soc. London, Vol A187, 1946, pp. 229-260.
- 24. G.R. Irwin, "The Crack Extension Force for a Part-Through Crack in a Plate", J. Appl. Mech., 1962, pp. 651-654.
- 25. D. Brock, "Elementary Engineering Fracture Mechanics", Martinus Nijhoff, The Hague/Boston/London, 3rd Edition, 1982.
- 26. G.G.M. Van Kessel, S.E. Gee, T.J. Murphy, N.T. Panousis, "The Quality of Die Attachment and its Relationship to Stresses and Vertical Die-Cracking", Proceedings, Electronic Components Conference (IEEE) 1983, pp. 237-224.
- 27. DU 1.4.2.14, "Hybrid Design Engineering Guide," Appendix G, Westinghouse Elecronic Systems Group (Proprietary).

DIE MATERIALS: SI, FaAs, InP

DIE ATTACH AND SUBSTRATE ATTACH

MATERIALS:

Epoxies, Polyimides, Gold-eutectics, Silver Filled Glass

SUBSTRATE MATERIALS: Alumina, Aluminium

CASE MATERIALS: Kovar, Aluminium, Copper

FIGURE G-1

DIAGRAM SHOWING THE DIE AND THE SUBSTRATE MOUNTED IN A HYBRID CASING

DIE IN ZERO STRESS STATE AFTER CURE

AFTER COOL DOWN TO LOWER TEMPERATURE

FIGURE G-2

THERMAL STRESSES IN BONDED DIE DEVELOPED AFTER CURE

DISTANCE FROM THE CENTER (mm)

FIGURE G-3

TENSILE FORCES INDUCED IN THE DIE DUE TO THERMAL EXPANSION

i

FIGURE G-4

SHEAR STRESS DISTRIBUTION OVER WIDTH OF JOINT FOR DIFFERENT JOINT THICKNESSES

VARIATIONS IN THE NUMBER OF DIE CRACKS AS A FUNCTION OF DIE THICKNESS ì

FIGURE G-6

EFFECT OF DIE DIAGONAL LENGTH (L) AND ADHESIVE THICKNESS ON THERMAL STRESS OF DIE

FIGURE G-7

ADHESIVE TENSILE MODULUS VS. TEMPERATURE

ì

TEMPERATURE, C

MAXIMUM STRESSES FROM EQUATION 2(a)

EFFECT OF VOID CONTENT AND SIZE ON DIE LIFT, DIE STRENGTH AND DIE CRACKING ī.

FIGURE G-10

VARIATIONS OF THE LONGITUDINAL TENSILE STRESSES, ALONG THE DIE ATTACH INTERFACE FOR THE SITUATIONS OF A 10 MIL EDGE AND A 10 MIL CENTER VOID

FIGURE G-11

SCHEMATIC DIAGRAM SHOWING TEMPERATURE DROPS ACROSS THE SILICON CHIP, THE DIE BOND AND THE PACKAGE MATERIALS.

1

<u>APPENDIX H</u>

CORROSION IN MICROELECTRONIC PACKAGES

TABLE OF CONTENTS

PAGE

H1.	BACKGROUND	H_1
	H1.1 Introduction	H-1
	H1.2 Forms of Corrosion In Microelectronic Packages	H-2
	H1.2.1 Uniform Corrosion	H-2
	H1.2.2 Galvanic Corrosion	H-2
	H1.2.3 Pitting Corrosion	H-3
	H1.3 Factors Affecting The Rate of Corrosion	H-4
	H1.3.1 Properties Of The Structural Materials	H-5
	H1.3.2 Fabrication Methodology	H-6
	H1.3.3 Permeability	H-7
	H1.3.3.1 Permeation	H-9
	H1.3.3.2 Leakage	H-10
	H1.3.4 Environmental Conditions	H-11
	H1.3.4.1 Temperature And Temperature Cycling	H–11
	H1.3.4.2 Humidity	H-12
	Hl.3.4.3 Electrical Bias	H-13
	H1.3.4.4 Ionic Contaminant	H-13
H2.	DEVELOPMENT OF THE FAILURE RATE MODEL FOR CORROSION	H-14
	H2.1 General Model For Corrosion Failure	H-14
	H2.2 Moisture Induction Time Model	H-16
Η3.	APPLICATION OF THE CORROSION FAILURE RATE MODEL	H-17
	H3.1 Metallization Corrosion	H-17
	H3.1.1 Model for Metallization Failure Due to Corrosion	H-18
	H3.2 Bond Pad Corrosion	H-23
	H3.2.1 Model for Bond Pad Failure Due to Corrosion	H-24
Η4.	SUMMARY	H-26

APPENDIX H

CORROSION IN MICROELECTRONIC PACKAGES

TABLE OF CONTENTS (CONTINUED)

PAGE

REFERENCES		H-27
Appendix H-1	Development of a Permeation Model	H1-1
Appendix H-2	Defining Equations for Leakage Flow Regimes	H2-1
Appendix H-3	Development of Electrolyte Resistivity Values	H3-1
Appendix H-4	Selection of Bias Voltage for Equations	
	H3.7 and H3.10	H4-1
Appendix H-5	Bond Pad Corrosion Volume	H5-1

ŧ

LIST OF ILLUSTRATIONS

FIGURE		PAGE
H-1 H-2	Diffusion Pressure Gradients Across a Barrier Schematic Illustrating Autocatalytic Nature of Pitting	H-31
	Attack on Aluminum in Oxygenated Sodium Cholride Solution	н–32
H-3	Corrosion Rate Vs. Voltage for Epoxy Encapsulated Devices	н-33
H-4	Influence of Ionic Contamination on the Corrosion Result	н-34
H-5	Percentage Failure of Encapsulated and Unencapsulated	
	Packages Under Corrosion	H -35
H-6	Reliability of Encapsulated Package in a Corrosive Environment	Н-36
H-7	Failure Rate of Encapsulated Package in a Corrosive Environment	
H-8	Time to Reach 3 Monolayers of H ₂ O as a Function of Package	
	Internal Volume and Air Leak Rate	Н-38
H-9	Typical Plastic Encapsulated Package	H-39
H-10	Maximum Allowable Moisture Content as a Function of Internal	
	Package Volume	н-40
H-11	Pitting in Passivated Metallization Layer	H -41
H-12	Schematic Diagram for Metallization Corrosion	H-42
H-13	Typical Bond Pad Structure	н-43
H-14	Path for Contaminants Entering the Package to the Pad	H-44
H-15	Formed Bond Geometry Limits	H-45
H-16	Corrosion Volume Geometry-Bond Pad Anodic to Wire	H-46
H-17	Corrosion Volume Geometry-Wire Anodic to Bond Pad	H-47

LIST OF TABLES

TABLE		
H-1	Metal Uses	Н-48
H-2	Moisture Content vs. Volume (PPM)	Н-50

H1. BACKGROUND

H1.1 Introduction

The corrosion failure mechanism has become more significant as component sizes have been miniaturized with increased functionality, higher component density and faster signal processing, resulting in smaller components with closer spacings and thinner metallic sections. With width, separations, and thicknesses of components measured in micrometers; even small amounts of corrosion can cause problems and device failure.

The presence of water, one of the necessary elements for corrosion, is often a consequence of the materials and processes used for packaging integrated circuits. Consequently, controlling the access of moisture to and ionic contamination of integrated circuit chips has been the chief means of minimizing corrosion as a circuit failure mode. Water vapor may be entrapped within the cavity of hermetic parts at sealing. It may also be released within the cavity by package materials after sealing. At a constant temperature, most hermetic package cavities will contain a moisture level in equilibrium with the cavity walls. Temperature excursions will shift the sealed cavity to attain its dew point, and condensation will form on the inner surfaces of the cavity.

In recent years there has been a rapid increase in the use of plastic encapsulated semiconductor devices. This is primarily because plastics serve as a rugged, durable and low-cost packaging material. However, most plastic molding compounds offer less resistance to moisture ingress from the outside environment than their hermetic counterparts.^[1]

In the following sections, the corrosion mechanisms in microelectronic packages are modeled mathematically to provide the time to failure, τ , of the metallization and bond pad in a package. The results provide a prediction of the reliability of the package in actual operation.

H-1

H1.2 Corrosion In Microelectronic Packages

Corrosion is broadly defined as material deterioration caused by chemical or electro-chemical attack. Although direct chemical attack can occur with most materials, electro-chemical attack usually occurs only with metals. In microelectronic packages, the three most common forms of corrosion mechanisms are uniform, galvanic and pitting corrosion.

H1.2.1 Uniform Corrosion

Uniform corrosion is defined as a heterogeneous chemical reaction which occurs at a metal-electrolyte interface and involves the metal itself as one of the reactants. It occurs uniformly over the surface of a material. The process can either be time dependent or self limiting. If the reaction products are soluble, such as $Al(OH)_3$ or $Al(OH)_2Cl$, the corrosion process will continue linearly with time until all the materials are being corroded. If these products do not dissolve readily in the corrodant, the process becomes a self limiting phenomenon. Since the corrosion rate is proportional to the current which flows from anode to cathode via the electrolyte and if the corrosion products are electrically resistive and eventually the current magnitude decrease as the corrosion product film thickness increases. The corroded material is typically in the form of an oxide which adheres to the corrosion surface and acts as a protective layer to retard further corrosion from occurring. The rate of corrosion will depend upon the stability of this corroded layer. For example, aluminum oxide will protect aluminum from corrosion.

Most commonly, uniform attack occurs on metal surfaces which are homogeneous in chemical composition or which have homogeneous microstructure. The access of the corrosive environment to the metal surface must also be present.^[2]

H1.2.2 Galvanic Corrosion

Electronic component design is unique in the wide variety of metals used

H-2
because of particular physical and electrical properties. Some of the more common metals and their uses in an electronic system are given in Table H-1.^[17] These metals are combined to form a myriad of dissimilar metal couples in electronic equipment. In the presence of moisture, destructive galvanic corrosion can take place.

Galvanic corrosion can occur in metallization when dissimilar metals, such as, the molybdenum-gold system, or in aluminum metallizations with gold bond wire, are used. Corrosion occurs at exposed regions such as bonding pads and can proceed along the passivation-metal interface. An electrical potential difference will usually exist between two dissimilar metals exposed to a corrosive solution. When these two metals are electrically connected the more active metal will become the anode in the resulting corrosion cell, and its corrosion rate will be increased. The extent of this increase in corrosion will depend upon several factors. A high resistance in the electrical connection between the dissimilar metals will tend to decrease the rate of attack. On the other hand if a large area of the more noble metal is connected to a smaller specimen of the more active metal, attack of the more active metal will be greatly accelerated.

The conductivity of the corrosion medium will also affect both the rate and the distribution of galvanic attack. In solutions of high conductivity the corrosion of the more active alloy will be dispersed over a relatively large area. In solutions having a low conductivity, on the other hand, most of the galvanic attack will occur near the point of electrical contact between the dissimilar metals. This latter situation is usually the case, for example, under atmospheric corrosion conditions.^[3]

H1.2.3 Pitting Corrosion

In pitting corrosion, attack is highly localized to specific areas which develop into pits. Active metals such as aluminum, as well as alloys which depend on Al-rich passive oxide films for resistance to corrosion are prone to this form of attack. These pits usually show well defined boundaries at the surface, but pit growth can often change direction as penetration progresses. When solid corrosion products are produced, the actual corrosion cavity may be obscured but the phenomenon can still be recognized from the well defined nature of the corrosion product accumulations. Pitting corrosion is usually the result of localized, autocatalytic corrosion cell action. Thus, the corrosion conditions produced within the pit tend to accelerate the corrosion process. As an example of how such autocatalysis works, consider the pitting attack of aluminum in an oxygenated solution of sodium chloride. Assume that there exists a weak spot in the oxide film covering the aluminum surface so that the corrosion process initiates at this point. The local accumulation of Al³⁺ ions will lead to a local increase in acidity due to the hydrolysis of these ions. That is, the hydrolysis of aluminum ions gives as the overall anodic reaction:

 $A1 + 3 H_20 = > 3 H^+ + A1(OH)_3 + 3 e^+$

If the cathodic oxygen reduction, which produces alkali, occurs at a region removed from this anodic reaction; the localized corrosion of the aluminum will produce an accumulation of acid. This acid destroys the protective oxide film and produces an increase in the rate of attack. In addition, the accumulation of a positive charge in solution will cause the migration of Cl^- ions to achieve solution neutrality. This increased Cl^- concentration can then further increase the rate of attack. This process is illustrated schematically in figure H-2.^[37] Since the oxygen concentration within the pit is low, the cathodic oxygen-reduction reaction occurs at the mouth of the pit, thus limiting its lateral growth. In most cases pits tend to be randomly distributed and of varying depth and size.^[4]

H1.3 Factors Affecting the Rate of Corrosion

There are several mechanisms by which a microelectronic package can be contaminated. Contaminants may be sealed within a microelectronic package depending on the properties of the structural materials and fabrication methodology. Contaminants can also permeate into a package according to the permeability of the package. When corroding contaminants are coupled with the appropriate environmental conditions such as temperature and temperature cycling, moisture content, electrical bias (either applied or galvanic bias), and ionic contamination levels, corrosion occurs.

H1.3.1 Properties of the structural materials

The materials used to fabricate an electronic package will determine the inherent resistance of the package against corrosion, and its capability to minimize the moisture ingress rate and the amount of impurities which enter the package.

To minimize moisture access to the metallization layer in a package, a passivation layer is often applied. The passivation layer is frequently a glass, silicon nitride, silicon dioxide or other dielectric layer deposited onto the device surface. Plasma-deposited silicon nitride is used as a passivating layer because it is an effective barrier for alkali ions which may be left on the device surface after the final wash. However, silicon nitride can give rise to a change in the surface potential, which can introduce charge trapping and storage effects, and give rise to interface conduction due to the activation of traps. These effects can contribute to corrosion as well as contribute to device electrical performance degradation.^[3]

Failures due to corrosion of the metallization are frequently associated with defects in the passivation, such as cracks and pinholes. These defects act as sites for the entrapment of contaminants or moisture which are instrumental in corrosion. The chemical vapor deposition (CVD) process deposits films which are in tensile stress, resulting in localized lifting or cracking of the passivating layer in regions of poor adhesion. This mechanism creates sites at which contaminants can penetrate to protected metallization patterns and initiate corrosive attack.

Aluminum, which is the most common interconnect material, has a stable oxide and is therefore self-passivating in the absence of ionic surface

contamination. In the presence of water combined with ionic contaminants such as sodium and chlorine, the oxide can be broken down and the aluminum attacked when an electrical bias is applied. The phosphorous content of the silicon dioxide layers used in the passivation is an important factor in the reliability of the devices. The phosphorous is added both to provide mechanical stability of the glass coating and as a getter for mobile sodium ions. However, too little phosphorus causes cracks in the passivation layer due to tensile stress of the film while too much phosphorus results in aluminum corrosion. Cracking of the passivation increases the susceptibility of the underlying aluminum to corrosion by impurities.

Die attach materials can affect the contaminant level in a package. When epoxies are used as adhesive, they can act as a source of ionic contamination since the epoxide resin itself is a mixture of hydrolizable chlorine, bromine and sodium.

Moisture, which is required for corrosion to occur, is often trapped in the cavity of a hermetically sealed microelectronic during the assembly process. Additionally, certain materials that are used in the microelectronic fabrication and assembly process inherently contain adsorbed moisture --- polymers used for the die attachments, gold plated surfaces, and even the plastic used for the package itself. Moisture can ingress a package by permeation through polymers used in the seals and the package material, or by leakage through cracks or small voids between the plastic material and lead frame in molded plastic packages. Furthermore moisture may induce crack growth in package materials, destroying the hermetic seal.^[5]

H1.3.2 Fabrication Methodology

Fabrication methodologies affect the amount of contaminants inherent in the package, the potential for contaminant ingression, and the rate at which corrosive damage will lead to a failure.

Throughout the fabrication process, wafers are cleaned with various acids and

solvents. Like water, these chemicals contain other elements that function as contaminants to integrated circuits and thus impact wafer ecology. Wafers are also exposed to industrial and specialty gases at every process step. As dry processing becomes more prevalent, gases are now one of the major raw materials employed in the manufacture of microelectronic packages.

Another factor to consider during the fabrication process is the recontamination of baked out parts during handling. That is, properly baked out parts can be recontaminated by the re-exposure to moisture at ambient environment. Research^[6] indicates that a dry surface will absorb many monolayers of moisture during exposure in less than one second. Therefore, baked out parts should be handled cautiously.

Soldering is a frequently used method in bonding the lid to the package. For high reliability applications, gold is preferred for soldering surfaces since it is more resistive to corrosion. It is usual to deposit a thin layer of gold onto both the lid and package using a plating technique. At the melting temperature, the solder melts and wets both surfaces to form the joint. When wetting occurs, sufficient solder volume must be available to compensate for manufacturing variations in lid and package flatness. Corners of domed lids and sealing edges are typical sites for out-of-flat build up.

Lid sealing process also affects the final moisture content of the package through the silicon used in the chip bonding eutectic.

The amount of silicon available is dependent on the temperature and duration of the sealing process. As the sealing time and, therefore, temperature increases, the amount of silicon diffused from the eutectic bond increases and the silicon produced will react with the water vapor to produce silicon oxide. Hence the level of moisture decreases.

H1.3.3 Permeability

Microelectronic packages are the exterior portions of the device which provide

protection to the internal die and a mating surface to the external circuitry. The permeability of a package determines the ingress rate of contaminants from the ambient environment.

The oxide coating and the seal structure are important in corrosion of the die. In particular, the oxide coating on the lead frame conductor must be sufficiently thick to allow a good chemical bond to the sealing glass, and second, the design of the seal and the residual stress present in the seal must be able to withstand the rigors of thermal shock.

Package enclosures are referred to as hermetic or non-hermetic, which relates to the package's ability to resist moisture intrusion. Hermetic packages are enclosed with inorganic moisture resistant material such as metal, glass and ceramic. Non-hermetic packages are made of organic materials such as plastics which are permeable to moisture. Plastic packages are typically molded from silicone, phenolic or epoxy. Due to their cost, plastic packages are very popular in recent years. However, they offer reduced resistance to ingress of moisture and are not acceptable for military application, but efforts are being made to improve their moisture protection characteristics.

In general, for a non-hermetic package, moisture ingress is dominated by permeation through the package body. For a hermetic package, moisture ingress is by leakage through defect induced leak paths in the lead and lid seal with insignificant diffusion through the housing material. The quantity of the permeated or leaked contaminants is dependent on the construction processes and materials.

The leakage of contaminants into a package is dependent on the leak rate of the package, assuming the package processing was proper. All packages leak at some rate, but a package is defined to be hermetic if its leak rate is less than a specified value. For military microelectronic packages this value ranges from $\leq 1 \times 10^{-8}$ atm cc/sec for package volume < 0.01 cc to $\leq 5 \times 10^{-7}$ atm cc/sec for package volume > 0.4 cc as defined in MIL-STD-883 method 1014. The leak rate is also dependent on the shape of the leak path.

In general, the leak rate decreases as the cross section decreases or as it becomes more elongated and the flow changes from viscous to molecular. Generally, leaks into packages arise due to stress cracks which have elongated rather than circular cross sections. The differential pressure of the leaking medium, and the properties of leaking medium, including viscosity, density, and molecular mean path will also affect the leak rate.

A fluid arrives at one side of a barrier material, such as a seal, and leaves at the other side by the following steps: (1) condensation on or adsorption by the membrane, (2) solution in the membrane, (3) diffusion, (4) dissolution, (5) evaporation or desorption from the membrane. All of these processes together make up permeation. Gases must go through all five steps; liquid are already condensed so that they only go through step 2, 3 and 4. Usually, though not always, step 3, diffusion, the process by which a fluid moves through a membrane, is rate controlling.^[7] When the flow rate is different from the prediction, an argument invariably arises that permeation is not occurring, but leakage.

Permeation is a direct function of the partial pressure differential of the permeating species and to a lesser extent temperature changes. In the following sections, the contribution of moisture ingress will be mathematically modeled and interpreted to provide the platform for developing the time to failure (τ) .

H1.3.3.1 Permeation

The ingress rate of the contaminants into a package can be expressed as a function of the partial pressure of the permeating species, and can be mathematically written as follows:

$$P(L,t) = P_{1} + (P_{0} - P_{1}) e^{-(\frac{\pi^{2}D_{p}t}{4L^{2}})}$$
(H1.1)

where:

P(L,t)	is	the	inside partial pressure at time = t
P	is	the	outside partial pressure
Po	is	the	initial inside partial pressure
Dp	is	the	permeation rate
L	is	the	wall thickness
t	is	the	time

The development of equation H1.1 from fundamental principles is given in Appendix H-1.

H1.3.3.2 Leakage

The sources of moisture in the hermetically sealed packages have been delineated in various papers ^{[8],[9],[10]} and may be categorized as follows: 1) adsorbed water due to poor bake-out procedures; 2) generated internally by decomposition, desorption, or devitrification of sealing glasses; and 3) penetration of cracks and/or faulty seals.^[11]

A review of the fundamental gas flow equations^[12] delineates three definable areas of flow regime for leakage flow; namely, viscous, transitional, and molecular. Each regime has its own equation (see Appendix H-2) describing the effects of the geometric considerations of the leak path along with various gas parameters. Among the three mechanisms, molecular flow is the dominant phenomenon since leakage pin-holes or tortuous capillaries have such small dimensions that, except for quite high pressure differentials, the mass transport will be controlled by wall collision rather than viscous drag.^[7]

Assuming molecular flow, and an external partial pressure, P_1 , of a gaseous species of molecular weight M, and a hermetic package possessing a leak rate Q_S equal to the maximum value allowed by its performance specification, the rate of ingress of the gaseous species into the package is

Downloaded from http://www.everyspec.com

,

Rate of Ingress =
$$\frac{P_1 Q_S}{P_a} \left(\frac{M\partial}{M}\right)^{0.5}$$
 (H1.2)

where:

P_a is the atmospheric pressure M_a is the molecular weight of the gas inside the package

The gaseous species which enters the package through the leak is also able to escape via the leak. For a partial pressure, P_0 , inside the package, the rate of loss is

Rate of Loss = $\frac{P_0 Q_S}{P_a} \langle \frac{M_0}{M} \rangle^{0.5}$ (H1.3) By combining equation H1.2 and H1.3, the rate at which the gaseous species builds up inside the internal cavity is

$$V \frac{dP}{dt} = \frac{(P_1 - P_0) Q_S}{P_a} \left(\frac{M_0}{M}\right)^{0.5}$$
(H1.4)

where V is the internal volume of the package. Solving the differential equation H1.4 for the internal partial pressure gives

$$P(t) = P_1 (1 - e^{-D_L t})$$
(H1.5)

where t is the duration of the exposure to the gaseous species, and

$$D_{L} = \frac{Q_{S}}{V_{P_{a}}} \left(\frac{M_{H}}{M}\right) 0.5 \tag{H1.6}$$

is a leakage coefficient. It should be noted that from the time of fabrication, contamination of the package occurs, even though the device is not in operation or powered. Thus, the shelf life of the device cannot be ignored.

H1.3.4 Environmental Conditions

H1.3.4.1 Temperature and Temperature Cycling

The permeation and the corrosion rates are affected by the surrounding environment, and in particular, temperature combined with moisture is the most deteriorating. Chemical reaction rates are greatly enhanced at elevated temperature. Thus the rate of galvanic corrosion, when a liquid phase electrolyte is present, will increase accordingly due to a more rapid rate of electron transfer.

The primary components of the microelectronic package are the mold epoxy, lead frame, die, and die attach material. Each of these components has its own coefficient of thermal expansion, which determines how great the expansion or contraction of the material will be in response to changes in temperature. Large differences or mismatches in expansion coefficient between components can increase susceptibility of a given device to cracking initiated at the region of maximum stress under thermal cycling.

A microelectronic package undergoes numerous duty cycles in its life and the application and removal of power will subject the package to thermal cycling. This temperature fluctuation will also influence the actual duration of the corrosion process. For example, when a non-operating sealed package is exposed to a temperature below the dew point, the moisture inside the package will condense and the liquid combines with any ionic contaminant present which will provide a conductive path for an electrical leakage path between adjacent metallic conductors. When the package is operating, the heat dissipated by the chip will elevate the temperature inside to above the dew point, consequently the electrolyte will evaporate to the vapor phase and will no longer permit leakage between conductors.

H1.3.4.2 Humidity

Humidity, one of the necessary elements for corrosion to occur, is the largest single risk factor concerning reliability and expected life of the device. ^[13] Moisture ingress occurs through leak paths in the lid and lead seal resulting from cracks or flaws and by permeation through organic

encapsulant. Flaws result from manufacturing process deviations as well as mechanical and thermally induced stresses.

H1.3.4.3 Electrical bias

When sufficient moisture is present to act as an electrolyte and a bias is applied, ions are carried to the anode or cathode (depending on the electrical charge of the impurities involved). The bias may simply be the varying voltage levels on different conductors caused by normal operation of the integrated circuits, or a galvanic bias may be present.

Corrosion kinetics greatly depends on the applied bias as shown in figure H-3 which gives the corrosion rate versus the applied voltage for epoxy encapsulated chips.^[42]

H1.3.4.4 Ionic contamination

Studies^[43] have shown that parts per billion levels of selected pollutants are sufficient under proper conditions of temperature and humidity to accelerate corrosion reactions in electronic equipment. Corrosion can occur during manufacturing, storage, shipping and service. Moisture and corrosive agents such as chlorides, fluorides, hydrogen sulfide, sulfur dioxide, nitrogen compounds such as ammonia, and other airborne contaminants are the major culprits.^[44] Sources of chlorine ions in a package include the chlorine-based dry etches used for microcircuit metallization, or if epoxy is used in the package, the outgassing of the surrounding epoxy. Sodium ions can be produced from the epoxy or glass used in the package.

In decreasing order of importance, the three sources for the ionic contaminants that may reside on the chip of hermetically sealed devices are [33].

1) Die-handling operations post fabrication and pre-sealing. The chip has its highest vulnerability to uncontrolled environment during mechanical and human handling.

- 2) Wafer fabrication. The environment is clean, but inadequate cleaning and rinsing of slices can leave contaminants.
- 3) Package hermeticity failure, allowing the ingress of ions from external sources along with moisture. During subsystem and system assembly, many parts receive detergent washes and/or conformal coatings at the board level. Many of these materials are notorious sources of both positive and negative ions.

One of the standard methods of cooling an electronic enclosure is the use of forced ventilation, with air generally drawn from the surrounding atmosphere. In sites with aggressive atmospheres, this type of cooling will greatly accelerate corrosion because the circulating contaminated air comes in intimate contact with sensitive electronics. Unless the outside environment is benign, the introduction of outside air into an electronic equipment cabinet should be controlled.

Ionic contamination accelerates the corrosion process. Figure H-4 gives a comparison of the corrosion results of unencapsulated chips between chips doped with 10 ppm NaCl and cleaned test chips. The mean time between failure (MTBF) of 50 hours for the doped chips compares poorly to 850 hours for the undoped chips, indicating the strong effect of a small concentration of mobile impurities.^[42]

H2. DEVELOPMENT OF THE FAILURE RATE MODEL FOR CORROSION

H2.1 General Model For Corrosion Failure

Three major failure sites in a microelectronic package are identified in 4.5.1, viz: the wire bond, the die and die attach, and the metallization. An accelerated test was performed at $85^{\circ}C/85\%$ RH with encapsulated packages and the percentage failure was reported^[15] and is shown in figure H-5. The reliability of the package in a corrosive environment was then plotted and best fitted with a Weibull curve as shown in figure H-6. The failure rate was also calculated using the Weibull model (figure H-7) which indicated that the

1

failure mechanism is an increasing function of time, thus is a wear out phenomenon.

The time to failure (τ) of a component due to corrosion can be modeled as the sum of the induction time and the time for the corrosion process to deplete bond pad metallization or segments or conductor metallization. Induction time is an indication of time required for moisture to penetrate the package and for initiation of the corrosion process. Mathematically,

$$\tau = \tau_1 + \tau_2 \tag{H2.1}$$

where:

 τ is the time to failure τ_1 is the induction time to reach the threshold moisture content τ_2 is the time for completion of the corrosion process

Figure H-8 delineates τ_1 for a hermetic package as a function of the package volume and the allowable leak rate from MIL-STD-883, Method 1011, Table II, which provides the following data:

Volume < 0.01 cm³, Allowable leak rate $\leq 1 \times 10^{-8}$ atm cc/sec 0.01 cm³ \leq Volume ≤ 0.4 cm³, Allowable leak rate $\leq 5 \times 10^{-8}$ atm cc/sec Volume > 0.4cm³, Allowable leak rate $\leq 5 \times 10^{-7}$ atm cc/sec

From Figure H-8 it is seen that as the leak rate increases, τ_{l} (hermetic) approaches zero. Hence, if a microcircuit is subjected to environmental or handling stresses before installation which cause a latent flaw to develop into a leak, such as failure of a lid seal, then τ_{l} (hermetic) will decrease and

τ₂ >>> τ₁

Under this circumstance

$$\tau_2 \simeq \tau_2$$

(H2.1a)

Typically, for any type of package, the time required for the corrosion process to culminate in a falure far exceeds the moisture induction time, and

 $\tau_{2} > 10 \tau_{1}$

Therefore, equation H2.1a effectively approximates the total time to corrosion failure. Evaluation of τ_2 is useful for comparison of competing packaging materials and package designs.

H2.2 Moisture Induction Time Model

The time for the corrosion process varies between different mechanisms and sites while the time to reach the threshold moisture content depends only on the package type.

To determine the induction time for a hermetic package, the internal volume and maximum allowable leak rate of the package have to be defined. With these two package parameters defined, τ_1 hermetic can be read directly from figure H-8.

For a nonhermetic package, the permeability rate, Table 4.5-18, and effective thickness, figure H-9, of the package have to be identified. The time for the internal partial pressure of a package to reach 95% of the external partial pressure is derived in Appendix H-1 (equation H4.35). The induction time for a nonhermetic package is governed by the following equation:

$$\tau_{\text{Inonhermetic}} = \frac{12L^2}{\pi^2 D}$$
(H2.2)

where:

L is the effective thickness of the package (cm) D is the permeability rate of the encapsulant material, cm³-cm/cm²-sec-bar Ühlig^[16] states that a critical relative humidity exists, below which corrosion is negligible. Koelmans^[20] presented data that shows a drastic reduction in surface conductivity, as a function of RH, takes place at about 5% RH. It appears that the condensed film must reach a critical thickness in order to dissolve contaminants and support ionic conduction. The absolute minimum of moisture has been described as three monolayers of condensed or adsorbed water molecules.^[32] Table H-2 summarizes the amount of internal water vapor that could result in three monolayer coverage. Figure H-10^[33] shows the same information graphically with a comparison to the allowed leakage rate from MIL-STD-883. Note that the larger the internal volume, the less moisture is required to produce the three monolayers. This is because with the decreasing area-to-volume ratio, there is less package surface area competing for water molecules, and thus the more likely they are to reside on the chip.

After the critical moisture content is reached inside a package, corrosion will take place once the inside temperature is dropped below the saturation temperature for the moisture to condense to form a liquid electrolyte with other ionic contaminants. Therefore, the inside temperature functions as a "switch" to activate or deactivate the corrosion process. The temperature activation function, f'(T), has a value of 0 when the inside temperature is above saturation temperature or below the freezing point, and has a value of 1 when the inside temperature is below saturation temperature and above freezing. Hence, the function can be expressed as:

H3.1 Metallization Corrosion

Corrosion is a potential failure mechanism in electronic modules because of inherent susceptibility of the metal conductor lines. To reduce the occurrence of corrosion in the metallization, a passivation layer is applied to protect it from contact with the environment. The ideal protective coating serves to prevent formation of the moisture film. It should form high energy bonds with the substrate which cannot be broken by moisture adsorption within the coating or by thermomechanically induced shear stress at the coating-substrate interface. It should have a low solubility for water to suppress conductivity in the film itself and have a low sorption coefficient. The passivation should also be chemically stable. However, defects on the passivation layer will promote pitting corrosion and eventually lead to a corrosion failure as shown in figure H-11. For metallization without the passivation layer, a mathematical model can be developed by using Faraday's and Ohm's laws, following the work of Howard.^[22]

H3.1.1 Model for metallization failure due to corrosion

Given the conditions shown in figure H-12, corrosion at the anode will proceed until a length of the electrode, approximately equal to its width, is corroded to an open condition. Dendritic growth (electrochemical metal migration from the cathode to the anode), which can cause shorts between conductors, is often an accompanying effect of corrosion. Steppan, et. al.^[48] reviewed numerous studies initiated to understand and model dendritic growth and described the numerous conditions that contribute to this phenomenon. Zamanzadeh, et. al.^[49] compared theoretical predictions with experimental observations and found differences in dendritic growth rates of several orders of magnitude between the predictions and observations. Dendritic growth has not been considered in this model due to its relative infrequency as a cause of catastrophic failure in microelectronic devices and the difficulty in accurately modeling its mechanism. Initially, the leakage current is given by

$$i = \frac{V}{R} = \frac{V}{\rho S/A}$$
(H3.1)

where A is the cross section of the current path through the electrolyte S is the separation of conductors connected by the electrolyte Therefore,

 $A = Lt \tag{H3.2}$

- and t is the electrolyte thickness (centimeters) in the direction parallel to conductor length
 - L is the length of the conductor edge exposed to the electrolyte and perpendicular to S:

then
$$i = \frac{VL}{(\rho/t)S}$$
 (H3.3)

The term ρ/t is the sheet resistance of the electrolyte. The number of squares is given by S/L and can be quite low. The current is thus summed over S/L parallel paths of which the unit current is given by

$$i_j = \frac{V}{(\rho/t)} \tag{H3.4}$$

Thus if the surface resistivity is lowered due to a higher ionic concentration, or if the potential field is increased, a dominant local corrosion will occur. The quantity of material corroded is given by Faraday's Law:

$$\frac{w^2 \text{hndF}}{M} = \int_{\tau} i_j \, d\tau = \frac{V\tau}{\rho/t} \tag{H3.5}$$

where M is the atomic weight of the metal conductor and d is its density in gm/cm^3 , n is the chemical valence, F is Faraday's constant, 96500 coulombs/mol, and w and h are width and height of the conductor in cm respectively. The time to failure, in seconds, is therefore

$$\tau = \frac{w^2 \text{hndF}}{\text{MV f}^*(T)} \left(\begin{array}{c} \rho \\ t \end{array} \right) = \text{constant } x \quad \frac{\rho}{\tau f^*(T)}$$
(H3.6)

The constant is dependent entirely upon the geometry and composition of the corroding electrode, and it can be calculated from design parameters. The time to failure τ is clearly dependent on the sheet resistivity and thickness of the electrolyte and the value of the function f*(T), as defined

in equation H2.3. Since this function is discontinuous, the evaluation of τ is facilitated by replacing this function with a continuous equipment operating time factor defined as follows:

$$k_{3} = \frac{24}{24 - \tau^{*}}$$
(H3.7)

where τ^* is the number of equipment operating hours per day. When the equipment is energized, the power dissipated in each microelectronic device is transformed to heat which will raise the package inside temperature aboe the saturation temperature. The liquid electrolyte which supports the ion transfer necessary for the corrosion process to continue will evaporate, and the corrosion process will become inactive.

As discussed in paragraph H2.3, it has been postulated that the minimum water film thickness required to provide the ion mobility necessary to support electrochemical corrosion is 3 monolayers of water molecules. A water molecule can be considered to be enclosed by a rectangular prism wth a base of 2.08 x 1.32 angstroms and a height of 1.53 angstroms. Hence a 3 monolayer film thickness can be considered to be approximately 6 angstroms thick (6 x 10^{-8} cm). However, Der Marderosian^[37] has reported that a 3 monolayer film thickness is 1.2×10^{-7} cm. It is conservative to use this value for τ in equation H3.6.

From the above considerations, the following metallization corrosion model is derived:

$$\tau^{2}m = 8 \times 10^{11} \frac{k_{1}k_{2}k_{3}}{k_{4}} \frac{w^{2}hnd\rho}{MV}$$
(H3.8)

where:

t_{2m} is the time to failure, seconds
k₁ is the physical properties index of the material,
Table 4.5-12
k₂ is the coating integrity factor, Table 4.5-13

k _a	is	the operating time factor, Table 4.5-14
k ₄	is	the temperature-humidity environment acceleration
ŗ	fac	tor, figure 4.5-1
W	is	the width of the metal conductor (cm)
h	is	the height of the metal conductor (cm)
n	is	the chemical valence of the material, Table 4.5-12
d	is	the density of the material (g/cc), Table 4.5-12
М	is	the atomic weight of the metal conductor,
	Tab	ble 4.5-12
۷	is	the voltage bias, volts (see Appendix H-4)
ρ	is	the resistivity of the electrolyte (ohm-cm),
	Tab	ble 4.5-15

The metallization corrosion model was developed based on gold bond pads without protection at 85°C/ 85 RH for a continuous corrosion process. To compensate for condition restraints, four correction factors are introduced. The physical properties index, k_1 , is a corrosion resistance factor. Since aluminum corrodes ten times faster than gold, ^[13] k_1 is 0.1 for aluminum and 1 for gold.

The coating integrity factor k_2 accounts for the existence and integrity of a passivation layer covering the metallization on a microcircuit die. Sbar^[45] has experimentally demonstrated that a void and pin hole free completely bonded passivation layer will reduce the metallization corrosion rate by 2 to 3 orders of magnitude. This suggests that a value of $k_2 = 1$ can be assigned to unpassivated metallization, indicating that under this condition, corrosion proceeds without inhibition. A conservative value of $k_2 = 100$ can be assigned to represent a defect free, completely bonded passivation layer. Between these two limits, k_2 can assume values varying from 10 to 50 to account for varying defect levels. For conservatism, a default value of 10 can be assigned when a passivation layer exists and the defect level is unknown. Further investigation should be conducted to develop definitions for passivation layer defect types and magnitudes and associated values for k_2 between the two limits. The temperature-humidity environment acceleration factor, k_4 , is required to determine the time to failure for conditions other than 85°C/85 RH.

Many temperature-humidity correlation relationships have been proposed. [24 to 28] Peck^[29] evaluated these previous models and proposed a modified Arrhenius model based on analysis of published data from 61 tests conducted over the period from 1970 to 1985. He subsequently discarded the less reliable data prior to 1979 and evaluated new data.^[30, 47] He proposed the following acceleration model based on over 90 tests:

$$k_{4} = \frac{(RH_{1})^{n} \exp (Ea/kT_{1})}{(RH_{2})^{n} \exp (Ea/kT_{2})}$$
(H3.9)
where RH is test chamber relative humidity, percent
Ea is activation energy, electron volts
k is Boltzman's constant, eV/°K
T is test chamber temperature, °K

Peck found that n = -3.0 and Ea = 0.90 eV provided excellent correlation between the test data and the predicted acceleration factor over the range of 25% < RH < 100% and T < 150C. Prior to applying equation H3.9, it is necessary to assure that the glass transition temperature (Tg) of the encapsulant is not less than 150C. By using RH₁ = 85% and T₁ = 85C, the following relationship is obtained:

 $k_4 = \frac{7.6 \times 10^6}{(RH)^{-3} \exp(10444/(T + 273))}$ where T is in °C.
(H3.9a)

This equation is plotted as figure 4.5-1.

The resistivity of the electrolyte, ρ , is calculated based on the amount of contaminants in average indoor environment across the country as discussed in Appendix H-3.

H3.2 Bond Pad Corrosion

τ.

Recent advances in device passivation technology have resulted in protective films of high integrity and moisture imperviance. The use of these films on integrated circuits has greatly reduced the corrosion of aluminum conductors when these devices are placed on temperature, humidity, and bias stress. However, for microelectronic devices which incorporate wire bonding, the aluminum bond pads remain unpassivated and consequently are exposed to the packaging environment.^[23]

Figure H-13 is taken from reference [23] and depicts a typical bond pad structure where the edges of the pad and the remainder of the chip are protected by a multi-layer passivation structure.

Bond pad corrosion can be considered to be principally due to three separate mechanisms:

- (1) chemical corrosion due to phosphoric acid formation from P_2O_5 leached from phosphosilicate glass passivation by liquid phase moisture. [35, 36]
- (2) electrolytic corrosion due to current leakage across a wetted surface between adjacent bond pads having different applied electrical potential.
- (3) galvanic corrosion due to the galvanic potential difference between dissimilar bond wire and bond pad metals, as discussed in Appendix H-4.^[23]

Mechanism (1) results in open circuit failure and can be minimized by appropriate choice of passivation materials, and will not be considered further in this study. Mechanism (2) will most likely result in microcircuit performance degradation before significant corrosion can develop. However, to assure conservatism in the corrosion model, this mechanism is considered in Appendix H-4 when choosing the appropriate bias voltage magnitude. Mechanism (3) also results in open circuit failure and requires corrosion of a finite volume of bond wire or bond pad material as discussed in Appendix H-5.

The process whereby contaminants can enter along the plastic/lead frame interface is discussed in reference^[23] and is depicted in figure H-14. The interface gap is shown enlarged for clarity. The effects of temperature, humidity, bias and perhaps capillary action can cause the migration of these contaminants along the interface to the bond wire. As this occurs, the chloride ions and moisture can corrode the bare metal, with iron and nickel ions being dissolved. These ions can then travel along with the water/chloride contamination to the bond wire, up the wire and eventually reach the aluminum bond pad, whereby corrosion of the pad can proceed.

The corrosion chemistry of aluminum is basically a four step process that can be summarized as follows^[4]]:

- Adsorption of an aggressive anion (C1⁻) on to the protective anodic aluminum oxide film
- 2) Chemical reaction of Cl⁻ with Al³⁺ in the oxide lattice Al³⁺ + 2 OH⁻ + Cl⁻ => Al(OH)₂Cl
- 3) Thinning of the oxide by electro-chemical dissolution
- 4) Direct attack of exposed Al by Cl⁻ ions:
 - $A1^{3+} + 4 C1^{-} => A1C1_{4}^{-}$ $A1C1_{4}^{-} + 2 H_{2}O => A1(OH)_{2}C1 + 2 H^{+} + 3 C1^{-}$

As can be seen from the last equation, chloride ions are both a reactant and a product during this process. As such, once the chlorine ions participate in the corrosion of aluminum, they are "re-cycled" and can start the process all over again. The implication is that a small amount of chloride ions can consume a much larger amount of aluminum.

H3.2.1 Model for Bond Pad Failure Due to Corrosion

Equation H3.8 for metallization corrosion can be applied to bond pad corrosion by replacing the metallization corrosion volume by the bond pad corrosion volume. Appendix H-5 discusses the evaluation of the bond pad corrosion volume and provides the following conclusions:

- (1) When the bond pad is anodic to the bond wire in a dissimilar metal coupling:
 - $V_{c} = 0.3 s^{2} t_{b}$ (H-8a)

where s = bond pad size, cm (for a square pad) t_{h} = bond pad thickness, cm

- (2) When the bond wire is anodic to the bond pad in a dissimilar metal coupling:
 - a) for a wedge or crescent bond:

1

$$V_c = 0.236 D^3$$
 (H-8b)

where D = bond wire diameter, cm

b) for a ball bond:

$$V_{c} = 3.77 D^{3}$$
 (H-8c)

- c) for unknown bond type use equation H-8b.
- 3) When the bond wire and bond pad are made from similar materials, use the smaller of equations H-8a and H-8b.

Then equation H3.8 can be rewritten for bond pad corrosion by replacing the terms $\rm w^2h$ with V $_{\rm c},$ as follows:

$$\tau^{2}w = 8 \times 10^{11} \frac{k_{1}k_{2}k_{3}}{k_{4}} \frac{V_{c}nd\rho}{MV}$$
(H3.10)

where:

- τ_{2w} is the time to failure, seconds
- k, is the physical properties index of the anodic, member of the bond pad-bond wire combination, Table 4.5-12
- k_2 is the coating integrity factor, table 4.5-13
- $k_{\rm p}$ is the operating time factor, Table 4.5-14
- k₄ is the temperature-humidity environment acceleration factor, figure 4.5-1
- $\rm V_{\rm C}$ is the corrosion volume as discussed in Appendix H–5 and summarized above, $\rm cm^3$
- n is the chemical valence of the anodic member of the bond pad-bond wire combination, Table 4.5-12
- d is the density of the anodic member of the bond pad-bond wire combination, Table 4.5-12
- M is the atomic weight of the anodic member of the bond pad-bond wire combination, Table 4.5-12
- V is the voltage bias, volts (see Appendix H-4)
- ρ is the resistivity of the electrolyte, ohm-cm, Table 4.5-15

Note: When the bond pad and bond wire are made from similar materials, the choice of values for k_1 , n, d and M is obvious and V_c is chosen as discussed in (3) above.

H4. SUMMARY

Performance over time is key to the reliability of the package and must be predictable to aid in design and trade off studies. The time to failure of different sites in a package due to corrosion was mathematically modeled. The result can be used either to determine the reliability of the package, improve proposed designs or to function as a guide line for maintenance.

The models were developed based on fundamental concepts and validated with existing experimental data. However, more extent experiments are required to further improve the accuracy of the models by reducing the assumptions taken during the model development.

1

REFERENCES

[1]	Hnatek, Eugene R., "Integrated Circuit Quality and Reliability",
	Marcel Dekker, New York, 1987, pp. 427-428
[2]	Cocks, F.H., "Manual of Industrial Corrosion Standards and
	Control", American Society for Testing and Materials 1973, pp. 16-17
[3]	Cocks, F.H., "Manual of Industrial Corrosion Standards and
	Control", American Society for Testing and Materials 1973, pp. 20
[4]	Cocks, F.H., "Manual of Industrial Corrosion Standards and
	Control", American Society for Testing and Materials 1973, pp. 17-18
[5]	Hnatek, Eugene R., "Integrated Circuit Quality and Reliability",
	Marcel Dekker, New York, 1987, pp. 520
[6]	Thomas, R., "Moisture, Myths and Microcircuits", IEEE Trans. on
	Parts, Hybrids, and Packaging, Vol. PHP-12, No. 3 , Sept. 1976, p.169
[7]	"Permeability Data For Aerospace Applications", IIT Research
	Institute, Chicago, Illinois, 1968
[8]	Thomas, R., "Moisture, Myths and Microelectronics", Proc. 26th
	Electronic Component Conf., 1976, p.272
[9]	DerMarderosian, A., "Nichrome Resistor Investigation", Raytheon
	Internal Rep., IS:72:6, 1972
[10]	Traeger, R.K., "Non-hermeticity of Polymeric Lid Sealants",
	IEEE Trans. Parts, Hybrids and packaging, Vol PHP-13, no. 2, June 1977
[11]	Davy, J.G., "Model Calculations for Maximum Allowable Leak
	Rates of Hermetic Devices", J. Vac. Sci. Technol., Vol 12,
	no. 1, Jan./Feb. 1975
[12]	C.E.C. Leak Detection Manual (#992249-0011), pp. 2-3
[13]	Schneider, Gernot. "Non-metal Hermetic Encapsulation of a
	Hybrid Circuit", Microelectronic Reliability, Britain,
	Vol 28 No. 1, pp. 75 - 92, 1988
[14]	Commizzoli, R.B., Frankenthal, R.P., Miner, P.C., Sinclair, J.D.,
	"Corrosion of Electronic Materials and Devices, Science, Vol 234,
	Oct 1986, pp. 340 - 345
[15]	Stojadinovic, N.D., "Failure Physics of Integrated Circuits - A
	Review", Reliability Physics Symposium, 1981

REFERENCES (Continued)

- [16] Uhlig, H.H., "Corrosion and Corrosion Control", Wiley, New York, 1963, p.146
- [17] "Design Guidelines for Prevention and Control of Avionic Corrosion", NAVMAT P 4855-2, Department of the Navy, June, 1983
- [18] Kiely, J.B., "Simulating the Corrosion Threshold of LSI/VLSI Devices Using Moisture Sensitive Test Patterns"
- [19] Rice, D.W., Journal Electrochem Soc. 127.891, 1980
- [20] Koelmans, H., P. Intl Rel Phy Symp, 1974, IEEE, pp. 168 171
- [21] CRC Handbook of Chemistry and Physics, Chemical Rubber Publishing Co, Cleveland, OH, 59th Edition 1978, pp. 205
- [22] Howard, R.T., "Electrochemical Model for Corrosion of Conductors on Ceramic Substrates", T. CHMT, Vol 4, No. 4, 1981 (IEEE), pp. 520 - 525
- [23] Engel, P.R., Corbett, T., Baerg, W., "A New Failure Mechanism of Bond Pad Corrosion in Plastic Encapsulated ICs under Temperature, Humidity and Bias Stress", Proc 33rd Electronic Components Conference, 1983 (IEEE), pp. 245 - 252
- [24] Reich, B., Hakim, E., "Environmental Factors Governing Field Reliability of Plastic Transistors and Integrated Circuits", Proc Intl Rel Phys Symp, 1972 (IEEE), pp. 82 - 87
- [25] Peck, D.S., Zierdt, Jr., C.H., "Temperature-Humidity Acceleration of Metal-Electrolysis Failure in Semiconductor Devices", Proc Intl Rel Phys Symp, 1973 (IEEE), pp. 146 - 152
- [26] Larson, R.W., "The Accelerated Testing of Plastic Encapsulated Semiconductor Components", Proc Intl Rel Phys Symp, 1974 (IEEE), pp. 243 - 249
- [27] Larson, R.W., "A Review of the Status of Plastic Encapsulated Semiconductor Reliability", Br Telecom Technol J, Vol 2, No. 2, April, 1984
- [28] Hallberg, O., "Acceleration Factors for Temperature-Humidity Testing of Al-Metallized Semiconductors", SINTOM, 1979, Kopenhagen, Denmark
- [29] Peck, D.S., "Comprehensive Model for Humidity Testing Correlation", Proc Intl Rel Phys Symp, 1986 (IEEE), pp. 44- 50

REFERENCES (Continued)

- [30] Peck, D.S., personal communications, July 14, 1987
- [31] MIL-STD-889B, Appendix B, (1976)
- [32] Cvijanovich, G.B., "Conductivities and Electrolytic Properties of Adsorbed Layers of Water", Proc NBS/RADC Workshop, Moisture Measurement Technology for Hermetic Semiconductor Devices II, Gaithersburg, MD, pp. 149 - 164, 1980
- [33] Lowry, R.K., "Microcircuit Corrosion and Control", Microcontamination, May 1985, pp. 63 - 69
- [34] Schnable, G.L., Commizzoli, R.B., Kern, W., White, R.K., "A Survey of Corrosion Failure Mechanisms in Microelectronic Devices", RCA Review, Vol 40, pp. 416 - 445, Dec 1979
- [35] Olberg, R.C., Bozarth, J.L., "Factors Contributing to the Corrosion of the Aluminum Metal on Semiconductor Devices Packaged in Plastics", Microelectronic Reliab, 15(6), p. 60
- [36] Paulson, W.M., Kirk, R.W., "The Effects of Phosphorus-Doped Passivation Glass on the Corrosion of Aluminum", Proc Intl Rel Phys Symp, 1974 (IEEE), p. 172
- [37] Der Marderosian, A., "Permissible Leak Rates and Moisture Ingress", Hermeticity Tutorial Notes, Intl Rel Phys Symp, 1984 (IEEE), pp. 1 - 3.32
- [38] DU 1.4.2.14, "Hybrid Design Engineering Guide", Westinghouse Electronic Systems Group (Proprietary)
- [39] Graham, J.W., "Gas Leakage in Sealed Systems", Chemical Engrg, May 1964, pp. 169 - 174
- [40] Dushman, S., "Scientific Foundations of Vacuum Technique", 2nd Edition, J. Wiley, p. 88
- [41] Nguyen, T.H., Foley, R.T., "The Chemical Nature of Aluminum Corrosion", J. Electrochem Soc, Vol 17, No. 12, pp. 2563 - 2566, 1980
- [42] Berg, H.M., Paulson, W.M., "Chip Corrosion in Plastic Packages", Microelectronics and Reliability, V20, pp. 247 - 263, 1980
- [43] Guttenplan, J.D. "Corrosion in the Electronics Industry", Metals Handbook, Vol. 13, pp. 1107 - 1112, ASM International, 1987

REFERENCES (Continued)

- [44] Baboian, R., "Corrosion A National Problem", ASTM Stand News, Mar 1986, pp. 37
- [45] Sbar, N.S., "Bias Humidity Performance of Encapsulated and Unencapsulated T₁-Pd-Au Thin Film Conductors in an Environment Contaminated with Cl₂", P. Electr Comp Conf, IEEE, 1976, pp. 277 - 284
- [46] Latimer, W.M., "The Oxidation States of the Elements and Their Potential in Aqueous Solutions", Prentice-Hall, 2nd Edition, 1952, pp. 339 - 345
- [47] Peck, D.S., Halberg, O., "Recent Humidity Accelerations A Base for Testing Standards", Submitted Oct 1989 for review prior to publication in T. CHMT, IEEE.
- [48] Steppan, J.J. et al, "A Review of Corrosion Failure Mechanims During Accelerated Tests", J. Electrochem Soc, Vol 134, No 1, pp 175 – 190, 1987
- [49] Zamanzadeh, M., et al, "Electrochemical Examination of Dendritic Failure in Electronic Devices", P. Symp on Multilevel Metallization, Interconnection and Contact Technologies, Vol 87-4, pp. 173 - 184, Electrochem Soc, 1987

,

FIGURE H-1 DIFFUSION PRESSURE GRADIENTS ACROSS A BARRIER

 $\frac{\text{FIGURE H-3}}{\text{Corrosion Rate Versus Voltage For Epoxy Encapsulated Devices}}$

TIME (hours)

 $\frac{\text{FIGURE H-4}}{\text{Influence of Ionic Contamination on the Corrosion Result}}$

ł.

Percentage Failure of Encapsulated and Unencapsulated Packages Under Corrosion

TIME (hours)

Ŧ

 $\frac{\text{FIGURE} \text{ H-7}}{\text{Failure Rate of Encapsulated Package in a Corrosive Environment}}$

Effective Thickness = T/2

FIGURE H-9 Typical Plastic Encapsulated Package

ī

Pitting in Passivated Metallization Layer

FIGURE H-12 Schematic Diagram for Metallization Corrosion

i.

 $\frac{\text{FIGURE H-14}}{\text{Path for Contaminants Entering the Package to the Pad}$

i.

ł

Table H-1

METAL	USES
Gold	Electrical connector contacts, printed circuit board edge connectors, leaf-type relays, miniature coaxial connectors, semiconductor leads, and microminiature and hybrid circuits
Silver	Protective coating on relay contacts, wave guide interiors, wire, high frequency cavities, EMI/EMP shields, and EMI gaskets
Magnesium Alloys	Radar antenna dishes and light weight structure, such as chassis, support and frames
Iron, Steel and Ferrous Alloys	Component leads, magnetic shields, magnetic coatings on memory disks, transformers, brackets, racks, hermetic electrical connector shells and fastener hardware
Aluminum Alloys	Equipment housing, chassis, mounting racks, support, frames, electrical connector shell, and printed circuit board heat sinks
Copper and Copper Alloys	Wire, PCB circuitry and heat sinks, component leads, terminals, bus bars, nuts and bolts, and radio frequency gaskets.
Cadmium Plating	Sacrificial protective coating on ferrous fastener hardware and on electrical connectors
Nickel Plating	Barrier-type layer between copper and gold in electrical contacts, for corrosion protection on electrical connectors, PCB heat sinks, electrical bonds in EMI applications and for compatibility in dissimilar-metal junctions

Table H-1 (CONTD)

<u>METALS</u>

<u>USES</u>

Tin Plating For corrosion protection, solderability, and compatibility between dissimilar metals, on electrical connectors, radio frequency shields, filters, small enclosures, component leads and automatic switching devices

Solder and For joining, solderability and corrosion protection Solder Plating

Beryllium Inertial guidance instruments

1

Table H-2

Moisture Content vs. Volume (PPM)

1	/olume		Surface Area	Ratio of Area	Water	Number of	Moisture
l	(cc)		(cm)	to Volume	Thickness (cm)	Monolayers	Content
	0.001		0.08	80		1	13000
	0.01		0.38	38			6200
1	0.1	1	1.7	17	1.2×10^{-7}	3	2700
	1	ł	8.2	8.2		l	1300
	10	1	38	3.8			600
.	100		175	1.75		L	280

.

.

APPENDIX H-1

DEVELOPMENT OF A PERMEATION MODEL

In order to develop a mathematical model, the validity of Fick's Laws have to be assumed as a beginning. This development assumes constant temperature conditions unless specifically noted otherwise. Recall that Fick's Laws are:

$$F = -D \left(\frac{\partial C}{\partial x} + \frac{\partial C}{\partial y} + \frac{\partial C}{\partial z}\right)$$
(H4.1)

$$\frac{dC}{dt} = D \left(\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2} \right)$$
(H4.2)

Assuming the permeation is one dimensional and occurs along the x axis, as shown in figure H-1 based on a semi-infinite mathematical model, in uni-dimensional terms; i.e.,

$$F = -D \frac{dC}{dx} = D \frac{(C_1 - C_2)}{L}$$
 (H4.3)

and
$$\frac{\partial^2 C}{\partial x^2} = \frac{1}{D} \frac{\partial C}{\partial t}$$
 (H4.4)

where:

C is the concentration
x is the membrane thickness
D is the diffusion constant
t is the time

In some practical systems, the surface concentration may not be known but only the gas or vapor pressure P_1 , P_2 on the two sides of the membrane is known. The rate of transfer in the steady state is then sometimes written

$$F = D_p \frac{(P_1 - P_2)}{L}$$
(H4.5)

and the constant D_p is referred to as the permeability constant. Assuming the diffusion coefficient, D, is constant, and there is a linear relationship

between the external vapor pressure and the corresponding equilibrium concentration within the membrane, then equation H4.3 and H4.5 are equivalent, but not otherwise.

Then
$$F = -D_p \frac{dP}{dx}$$
 (H4.6)
and $\frac{\partial^2 P}{\partial x^2} = \frac{1}{D_p} \frac{\partial P}{\partial t}$

Consider the following conditions as in figure H-1:

$$\frac{\partial^2 P}{\partial x^2} = \frac{1}{D_p} \frac{\partial P}{\partial t}, \quad 0 < x < L, \quad t > 0$$
(H4.8)

$$P(x,0) = f(x), \quad 0 < x < L \quad (H4.9)$$

$$P(0,t) = P_1, t > 0 (H4.10)$$

 $\frac{\partial P}{\partial x}(L,t) = 0 t > 0 (H4.11)$

It is easy to verify that the steady-state solution of this problem is $P(x) = P_1$. Using this information, this boundary value-initial value problem can be solved by the transient concentration $w(x,t) = P(x,t) - P_1$

$$\frac{\partial^2 w}{\partial x^2} = \frac{1}{Dp} \quad \frac{\partial w}{\partial t} , \qquad 0 < x < L, \quad t > 0 \qquad (H4.12)$$

$$w (x,0) = f(x) - P_1 = g(x), \qquad 0 < x < L \qquad (H4.13)$$

$$w (0,t) = 0, \qquad t > 0 \qquad (H4.14)$$

$$\frac{\partial w}{\partial x} (L,t) = 0 \qquad t > 0 \qquad (H4.15)$$

Since this problem is homogeneous, it can be solved by the method of separation of variables. The assumption that w (x,t) has the form of a product, $\phi(x)T(t)$, and insertion of w in that form into the partial differential equation H4.12 leads to the separated equations

$$\phi''(x) + \lambda^2 \phi = 0, \quad 0 < x < L$$
 (H4.16)

Downloaded from http://www.everyspec.com

$$T' + \lambda^2 kT = 0, t > 0$$
 (H4.17)

Moreover, the boundary conditions take the form

1

$$\phi(0)T(t) = 0, \quad t > 0$$
 (H4.18)

$$\phi'(L)T(t) = 0, \quad t > 0$$
 (H4.19)

It has been shown that $\phi(0)$ and $\phi'(L)$ should both be zero:

$$\phi(0) = 0, \quad \phi'(L) = 0$$
 (H4.20)

Now, the general solution of the differential equation H4.16 is

$$\phi(x) = a'\cos\lambda x + b'\sin\lambda x \tag{H4.21}$$

The boundary condition, $\phi(0) = 0$, requires that a' = 0, leaving

 $\varphi(x) = b' \sin \lambda x \tag{H4.22}$ The boundary condition at x = L now takes the form

$$\phi'(L) = b'\lambda \cos \lambda L = 0 \tag{H4.23}$$

The three choices are b' = 0, which gives the trivial solution; $\lambda = 0$, and cos $\lambda L = 0$. The third alternative requires that λL be an odd multiple of $\pi/2$, which can be expressed as

$$\lambda_n = (2n - 1) \pi / 2L, \qquad n = 1, 2,$$
 (H4.24)

The eigenfunctions are given by the formula

$$\phi_n(x) = \sin \lambda_n x \tag{H4.25}$$

With the eigenfunctions and eigenvalues determined, the solution to equation

H4.17 becomes

$$T_{n}(t) = exp(-\lambda_{n}^{2}D_{p}t)$$
 (H4.26)

By adopting the Fourier sine series, the solution to the problem is

$$P(x,t) = P_1 + \Sigma b_n \sin \lambda_n x \exp(-\lambda_n^2 D_p t)$$
(H4.27)

Suppose that the initial condition H4.9 is

$$P(x,0) = P_0, \qquad 0 < x < L \qquad (H4.28)$$

Then equation H4.13 becomes

$$g(x) = P_0 - P_1$$
 0 < x < L (H4.29)

and

$$b_{n} = (P_{0} - P_{1}) \frac{4}{\pi(2n-1)}$$
(H4.30)

The complete solution of the boundary value-initial value problem with initial condition $P(x,0) = P_0$ would be

$$P(x,t) = P_{1} + (P_{0} - P_{1}) \frac{4}{\pi} \Sigma \frac{1}{2n-1} \sin \lambda_{n} x \exp(-\lambda_{n}^{2}D_{p}t)$$
(H4.31)
For x = L, t = infinity, p(L, ∞) = P₁
For x = L, t = 0
P(L,0) = P_{1} + (P_{0} - P_{1}) \frac{4}{\pi} \Sigma \frac{1}{2n-1} \sin \lambda_{n}L

$$= P_{1} + (P_{0} - P_{1}) \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin \frac{(2n-1)\pi}{2L} L$$

$$= P_{1} + (P_{0} - P_{1}) \frac{4}{\pi} (1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + ...)$$

$$= P_{1} + (P_{0} - P_{1}) \frac{4}{\pi} \frac{\pi}{4}$$

$$= P_{0} \qquad (H4.32)$$

Now, for any time t at the boundary x = L, the partial pressure is

$$P(L,t) = P_{1} + (P_{0} - P_{1}) \frac{4}{\pi} \sum_{n=1}^{\infty} \sin^{n} \exp\left[-\frac{(N\pi)^{2}}{2L}D_{p}t\right]$$

= P1 + (P_{0} - P_{1}) \frac{4}{\pi} \sum_{n=1}^{\infty} \sin\frac{N\pi}{2} e^{-\frac{(N^{2}\pi)^{2}}{4L^{2}}} D_{p}t]
- \left[\frac{\pi^{2}D_{p}t}{4L^{2}}\right] - \frac{1}{3}e^{-\frac{(9\pi^{2}D_{p}t)}{4L^{2}}} + \frac{1}{3}e^{-\frac{(29\pi^{2}D_{p}t)}{4L^{2}}} + \frac{1}{3}e^{-\frac{(25\pi^{2}D_{p}t)}{4L^{2}}} - \frac{1}{7}e^{-\frac{(49\pi^{2}D_{p}t)}{4L^{2}}} + \frac{1}{3}e^{-\frac{(25\pi^{2}D_{p}t)}{4L^{2}}} + \frac{1}{7}e^{-\frac{(49\pi^{2}D_{p}t)}{4L^{2}}} + \frac{1}{7}e^{-\frac{1}{7}

$$\simeq P_1 + (P_0 - P_1) e^{-\frac{T^2 D_p t}{4L^2}}$$
 (H4.33)

Let $P_0 = 0$

Then
$$\frac{P(L,t)}{P_1} \approx 1 - e^{-(\frac{\pi^2 D_p t}{4 L^2})}$$
 (H4.34)
as $t \neq \infty$, P (L, t)/P ≈ 1
Let $\frac{P(L,t)}{P_1} = 0.95$
Then $1 - e^{-(\frac{\pi^2 D_p t}{4 L^2})} = 0.95$

and
$$e^{-(\frac{\pi^2 D_p t}{4 L^2})} = 0.05$$

Taking logarithms

$$-(\frac{\pi^{2}D_{p}t}{4L^{2}}) = -3$$

$$t = \frac{12L^{2}}{\pi^{2}D_{p}}$$
(H4.35)

APPENDIX H-2

DEFINING EQUATIONS FOR LEAKAGE FLOW REGIMES

Viscous flow occurs when the mean free path of the gas is smaller than the cross-section dimension of the physical leak. Poiseuille's Law for viscous flow through a cylindrical tube is shown.

$$Q = \frac{4}{\pi r} \times 10^{-3} P (P_1 - P_0)$$
(H5.1)

where

Q is the flow rate, in micrometer liters per second r is the radius of tube, in centimeters n is the viscosity of gas in poise l is the length of tube, in centimeters P is the average pressure, $(P_1 + P_0)/2$, in micrometers Hg P_1 is the outside partial pressure, in micrometers Hg P_0 is the inside partial pressure, in micrometers Hg

Transition flow occurs when the mean free path of the gas is approximately equal to the cross-section dimension of the leak and it occurs under conditions intermediate between viscous flow and molecular flow. Again for a long tube, the flow may be expressed as shown below^[39]:

 $\frac{30.48r^3}{Q} \sqrt{T} (P_T P_0)_0 \left[\frac{0.1472rP}{La} + \frac{1 + 2.507rP/La}{1 + 3.095rP/La} \right] (H5.2)$ where: Q is the flow rate, in micrometer liters per second r is the radius of the tube, in centimeters l is the length of the tube, in centimeters M is the molecular weight of gas, in amu P₁ is the outside partial pressure, in micrometers Hg P₀ is the inside partial pressure, in micrometers Hg T is the temperature, in degrees kelvin La is the mean free path, in centimeters, at the average pressure $(P_1 + P_0)/2$ Molecular flow occurs when the mean free path of the gas is greater than the longest cross-section dimension of the physical leak. Knudsen's Law for molecular flow neglecting the end effect is shown^[40]:

$$Q = \frac{30.48r^3}{1} \sqrt{\frac{1}{M}}$$
(H5.3)

where:

Q is the flow rate, in micrometer liters per second r is the radius of the tube, in centimeters l is the length of the tube, in centimeters M is the molecular weight of gas, in amu T is the temperature, in degrees kelvin

APPENDIX H-3 DEVELOPMENT OF ELECTROLYTE RESISTIVITY VALUES

From Rice's data, ^[19] the arithmetic mean of chlorine gas concentration within electronic equipment locations is 0.51×10^{-6} gm/m³.

$$0.51 \times 10^{-6} \text{ gm } \text{Cl}_2 \times \frac{1 \text{ mole } \text{Cl}_2}{71 \text{ gm}} \times \frac{0.0224 \text{ m}^3}{1 \text{ mole } \text{Cl}_2}$$
$$= 1.6 \times 10^{-10} \text{ m}^3 \text{Cl}_2$$

í.

Therefore, the concentration of chlorine gas is $1.6 \times 10^{-4} \text{ ppm}_{v}$. Consider the reaction of Cl₂ with water.

$$C1_2$$
 (g) + $H_2O \leftrightarrow H^+ + C1^- + HOC1$ (H6.1)

This equation can be derived by adding the standard electrode reactions:

$$Cl_2(g) + 2e^- = 2Cl^- E^\circ = +1.3583$$
 (H6.2)

$$H_{2}O + C1^{-} = H^{+} + HOC1 + 2 e^{-} E^{\circ} = -1.49$$
 (H6.3)

Applying the Nernst equations,

$$E_{12} = E_{12}^{\circ} - \frac{RT}{2F} \ln \frac{[C1^{-}]^{2}}{[C1_{2}]}$$
(H6.4)

and

$$E_{13} = E_{13}^{\circ} - \frac{RT}{2F} \ln \frac{[H+][HOC1]}{[H_2O][C1-]}$$
(H6.5)
Adding equations H6 4 and H6 5:

$$E_{11} = E_{12}^{\circ} + E_{13}^{\circ} - \frac{RT}{2F} \ln \frac{[C1^{-}][H^{+}][HOC1]}{[C1_{2}][H_{2}]}$$
(H6.6)

The activities of the H⁺ and Cl⁻ ions are close to their concentration in dilute solution and the activities of Cl₂ is its partial pressure in atmospheres (1.6 x 10^{-10}). The activities of water and HOCl are unity. Therefore equation H6.6 becomes

 $E_{11} = 1.3583 - 1.49 - \frac{(8.314)(358)}{(2)(96500)} \ln \frac{[H+][C1-]}{1.6 \times 10^{-10}}$ = 0 $=> 0.1317 = -0.01542 \ln \frac{[H+][C1-]}{1.6 \times 10^{-10}}$ which

from which

 $[H^+][C1^-] = 3.125 \times 10^{-14}$ $[H^+] \text{ or } [C1^-] = 1.77 \times 10^{-7}$

Equivalent conductivity is defined as

$$\Lambda = \frac{1000}{C\rho}$$

where C is the ionic concentration.

From the CRC Handbook of Chemistry and Physics, [21] combined equivalent conductivity of H⁺ and Cl⁻ is 775 at 85°C, hence

$$\rho = \frac{1000}{1.77 \times 10^{-7} \times 775}$$

For a corrosive environment, the amount of Cl_2 existing is assumed to be ten times the normal environment, or $5.1 \times 10^{-6} \text{ gm/m}^3$. By going through the same calculations as above, the resistivity of the electrolyte for this condition at 85°C/85 RH is found to be 2.3 x 10^6 ohm-cm.

APPENDIX H-4

SELECTION OF BIAS VOLTAGE FOR EQUATIONS H3.7 & H3.10

Corrosion of metals is an electrochemical phenomenon and its rate is proportional to the electrical potential difference between the anodic and cathodic regions of the corrosion site. Hence the time to failure of conductor and bond pad metallization due to corrosive attack, as modeled in equations H3.7 and H3.10, is directly proportional to a voltage bias. The applied voltage difference between adjacent signal or ground metallizations on a microcircuit is the usual driving force in electrochemical corrosion. However, when two dissimilar metals are in contact, such as gold wire bonded to an aluminum pad, corrosion will proceed without an applied electrical bias when an electrolyte is present. The corrosion process is then driven by the galvanic potential difference existing between the two metals. The magnitude of the galvanic potential depends upon the electrolyte concentration, pH. flow, aeration and temperature.^[31] The anodic member of the dissimilar metal pair is usually corrosively attacked, but secondary effects such as varying ion concentration, relative anode/cathode area, electrolyte resistivity, polarization of the wetted metal surfaces by oxide films or gas evolution and the formation of insoluble corrosion products on the metal surfaces can change the corrosion rate or reverse the process to corrosive attack of the cathodic member. Since exact knowledge of the conditions actually present in a microelectronic device during corrosive attack is not feasible, a first approximation to the differing corrosion rates of various dissimilar metal couples can be achieved by assuming the corrosion rate is proportional to the electrochemical galvanic potential difference between the two metals, and by assuming that the anodic member receives the corrosive attack.

Table 4.5-16 has been abstracted from reference [46] and lists the electrochemical galvanic potential for materials commonly used in proximity to each other in microelectronic devices. The galvanic potential difference for any two metals is defined as the algebraic difference between their electrode potentials listed in the table. However, the galvanic potential difference for use in equations H3.7 and H3.10 is defined as follows:

H4-1

$$V_{galvanic} = 1 + (V_{cathode} - V_{anode})$$
 (H7.1)

For example, the galvanic potential difference for a gold wire bonded to an aluminum pad is:

$$V_{galvanic} = 1 + (1.5 - (-1.66)) = 4.16 V$$

The value for the bias voltage V for use in equations H3.7 and H3.10 shall be chosen as follows:

- (1) for dissimilar bond wire and bond pad metals use the larger of the applied signal or power supply voltage as compared to the galvanic voltage from Table 4.5-16
- (2) for similar metals use the applied signal or power supply voltage.

APPENDIX H-5

BOND PAD/BOND WIRE CORROSION VOLUME

The time to failure of microcircuit metallization due to corrosive attack is directly proportional to the quantity of material that must be corroded before the electrical continuity of the circuit is disrupted. As discussed in paragraph H3.1.1, Faraday's Law relates time to the volume of material consumed in an electrochemical reaction. For a metallization conductor, the minimum volume, and consequently the minimum time to failure, is obtained by assuming active corrosion occurs along a conductor length equal to its width, which leads to the simple geometry contribution shown in equation H3.6. However, for corrosion occurring at a bond pad-bond wire interface, the corrosion volume geometry is more complex.

The corrosion volume considered in this study is a function of the bond pad geometry (length, width, thickness), the bond-wire size, the bond type (ball, wedge, crescent), the bond process (ultrasonic, thermocompression), and the position of the bond pad material and the bond wire material in the galvanic electrode potential series (Table 4.5-16). As discussed in Appendix H-4, it is assumed that the anodic member of a dissimilar metal couple will be corroded. Hence, determination of the corrosion volume to be used in equation H3.10 begins with identification of the anodic member of the couple from Table 4.5-16.

MIL-STD-883, Method 2010, paragraphs 3.2.4.1 through 3.2.4.3 delineates acceptable geometry variation limits for four bond types. These data are shown in figure H-15. Typical corrosion volume geometry is shown in figures H-16 and H-17. The following observations are applicable to the relationship between the completed bond geometry and bond pad geometry:

(1) Microcircuit bond pads are typically of equal width and length, with the pad size bearing a restricted relationship to bond wire diameter that is dictated by bond process positioning tolerance limitations and MIL-STD-883 position acceptance criteria.

- (2) For a square bond pad of side S, the relationship of S to bond wire diameter D may vary between 3D \leq S \leq 6D, with a predominant value of S = 4D.^[38]
- (3) Review of figure H-15 indicates that acceptable geometry for formed ultrasonic and thermocompression wedge bonds are nearly identical. Also, the width of a crescent bond is nearly identical to the length of a wedge bond.
- (4) From (2) and (3), it follows that maximum acceptable wedge and crescent bond geometry is greater than the typical bond pad size.
- (5) Acceptable ball bond geometry is greater than acceptable wedge/crescent bond geometry. Hence, a larger pad size is required for ball bonds to permit reasonable bond process positioning tolerances, and the relationship S = 5D is required.
- (6) From (3) and (4), the complexity of bond pad geometry requirements can be reduced by concluding that all wedge and crescent bonds can be considered as approximately equal with respect to the effective corrosion volume associated with each type.
- (7) MIL-STD-883, Method 2023, delineates bond strength acceptance criteria for bond wire diameters from 1.8 x 10^{-3} cm (0.0007 in) to 7.6 x 10^{-2} cm (0.030 in). Low power digital microcircuits typically utilize bond wire diameters from 1.8 x 10^{-3} cm (0.0007 in) to 3.8 x 10^{-3} cm (0.0015 in).
- (8) Bond pad thickness for microcircuits typically range from 5000 angstroms to 10000 angstroms $(5x10^{-5}$ cm to $1x10^{-4}$ cm) $(2x10^{-5}$ in to $4x10^{-5in})$.
- (9) From (7) and (8) the relationship between bond wire diameter D and bond pad thickness t is 13 D < t < 57 D.

From the above, it is clear that for any bond type, when the bond pad material is anodic to the bond wire material, the entire bond pad volume must be consumed before the corrosion process results in an open circuit failure. Since corrosion time is proportional to corrosion volume, a subsidiary conclusion is that a ball bond will have approximately 50% longer corrosion life than other bond types, due to the larger bond pad required, when the pad is anodic to the wire material.

Kiely^[18] has suggested that depletion of 30% of the bond pad volume be considered as corrosion failure. This is not only conservative but also realistic, considering the mechanical and thermomechanical stresses present during military equipment operation. Such stresses could cause premature failure of a corrosion weakened bond pad. Hence, when the bond pad is the anode of a dissimilar metal couple, the corrosion volume is:

$$V_{c} = 0.3 S^{2} t_{b}$$
 (H.8a)

where $V_c = \text{corrosion volume, cm}^3$ S = bond pad size, cm (for a square pad) $t_b = \text{bond pad thickness, cm}$

4

When the bond wire is anodic to the bond pad material, the corrosion volume geometry is shown in figure H-17. For a wedge or crescent bond, the minimum corrosion volume is at the heel of the bond, and can be approximated as:

$$V_c = 0.3 \pi D^3 / 4 = 0.236 D^3$$
 (H.8b)

where D = bond wire diameter, cm

For a bond bond, assuming that the formed ball height is approximately equal to the wire diameter and using the nominal formed ball diameter from figure H-15, the corrosion volume can be approximated as:

$$V_c = 0.3 \pi (4D)^2 D/4 = 3.77 D^3$$
 (H.8c)

Comparison of equations H.8b and H.8c suggests that a ball bond will have approximately 16 times longer corrosion life than other bond types, when the wire is anodic to the pad material.

APPENDIX I

OPERATIONAL AT VALUES FOR APPLICATION ENVIRONMENT CATEGORIES

The microelectronic device reliability prediction models developed in this report for die fracture, die attach fatigue, bond pad shear fatigue, bond wire flexure fatigue and bond wire axial fatigue evaluate the number of cycles to failure for each failure mechanism. Each of these mechanisms is induced by differential thermal expansion during exposure of the device to thermal cycling. The models developed can be described in generic terms as power law relationships between the mean number of cycles to failure and the local state of stress or strain in the device. In all cases, the temperature difference (Δ T) between the maximum and minimum temperatures of the thermal cycle is raised to a power. Hence, the choice of Δ T for use in the model equations has a significant effect on the predicted cycle life magnitude.

The environmental temperature extremes delineated in Military Specifications for various classes of electronic equipment forms an upper boundary for ΔT . A list of these specifications and the extreme operating temperature for each equipment type is given in Table 4.6-9. From this data it can be seen that the ΔT upper boundary limit varies from 30°C to 179°C for different types of electronic equipment used in various application environments.

For electronic equipment used in any application environment, the temperature at the device is principally determined by factors other than the ambient temperature, e.g. power dissipated in the device, thermal resistance of the heat transfer path to the ambient, availability of supplementary cooling, etc. The heat transfer thermal resistance path includes the thermal effects of boundary layer air flow for avionic equipment, and for all equipment the path includes the thermal effects of second and third level packaging materials and structures, shelters, protective cases, vibration/shock isolators and vehicle structures. The thermal capacitance of metallic

I-1

structural elements contributes massively to attenuation and time lag of ambient temperature effects on individual microelectronic device cyclic operating temperature. Hence, it is unrealistic to assume that the specified environmental temperature extremes bear any defineable relationship to cyclic device operating temperature.

Very little published test data exists that provides a basis for determining the cyclic ΔT at device locations in equipment. Most test programs usually monitor temperatures on equipment surfaces or at selected internal locations. Such data, if available, would provide a realistic first order estimate of ΔT at device locations. Reference [1] reported temperatures recorded in the equipment bay of an A-7C aircraft during a 5 hour mission. Most likely the recorded temperature was the bay ambient and not the equipment surface. This data is summarized in Table I-1.

Early in 1989, the Institute for Interconnecting and Packaging of Electronic Circuits (IPC) formed a task group to establish criteria for, among other things, accelerated testing of surface mount technology solder joints. During its deliberations the task group defined 12 electronic product use categories, and for each category defined the extreme operating temperature range, the probable cyclic ΔT experienced under normal operating conditions, and the number of cycles per year that could be expected for each ΔT . Table I-2 summarizes the data from reference [2].

The IPC data was generated by a task group with representation from companies with experience in military avionic, military ground, commercial aviation, computer, telecommunication, industrial and consumer electronic components and equipment. The task group proposal was then circulated to the IPC member companies for concurrence. Hence the data in Table I-2 represents the most realistic evaluation of probable ΔT magnitudes available at this time.

Adaptation of the IPC data to the reliability prediction models developed in this report requires two steps, viz:

I-2

(1) Determination of a single equivalent ΔT for the IPC use categories for which more than one combination of $\Delta T/no$. of cycles/cycle duration groupings exist.

(2) Matching of the IPC use categories with the new MIL-HDBK-217 application environments proposed in 4.6.4 and listed in Table 4.6-10.

The materials to which the prediction models will be applied range in mechanical characteristics from nearly plastic (60-40 solder) through elastic to nearly brittle (ceramics). For near-plastic materials, the temperature cycle duration is unimportant, since plastic creep quickly reduces the level of applied thermomechanical stress. The creep-induced damage in the internal structure of the bulk material occurs during the temperature change portion of the cycle, and the cyclic accumulation of damage is the mechanism of failure. At low temperature and high strain rates the mechanism is drastically accelerated. On the other hand, the failure mechanisms for elastic and near-brittle materials involve intensification of stress fields around local flaws above the average thermomechanical stresses induced in the bulk material. Stress intensification above the yield point of elastic materials and above a critical value for near-brittle materials causes crack initiation at the flaw sites and propagation throughout the bulk material. For these material types, practical thermal cycle durations, i.e. > 3seconds, are sufficient for activation of the mechanism. Hence the variation of cycle duration for various IPC use categories in Table I-2 need not be considered for the step (1) development noted above.

It is reasonable to assume that stress/strain magnitude (and hence ΔT) has a significantly greater influence on the failure mechanisms modeled in this report than does number of cycles. As an appoximation to determining an equivalent ΔT , let a weighting function be derived as follows:

$$\begin{array}{cccc} m & n & m \\ \Delta T_{eq} & \Sigma & (N_i) = \Sigma & (\Delta T_i & N_i), m > 1 \\ i = 1 & i = 1 \end{array}$$
 (I-1)

where m = arbitrary constant $N_i = number of cycles for the ith <math>\Delta T/N$ pair $\Delta T_i = \Delta T$ for ith $\Delta T/N$ pair $\Delta Teq = equivalent \Delta T$

The data given in Table I-3 is derived from Table I-2 using equation I-1 with m = 3 to determine an equivalent ΔT and the data in Table I-4 is derived from Tables I-2 and I-3 with the following considerations in matching the IPC use categories to the proposed MIL-HDBK-217 application elements:

- A_I: This environment is for aircrew inhabited compartments of air vehicles in which temperature and pressure is controlled. Comparable IPC use categories are commercial aircraft and military aircraft-I. For conservatism the higher value is recommended.
- (2) A_U: This environment is for uninhabited air vehicles or compartments of air vehicles with uncontrolled temperature and pressure. Comparable IPC use categories are military aircraft-II and military aircraft-III. For conservatism the higher value is recommended.
- (3) C_L : This environment is for the severe inertial conditions associated with electronically actuated cannon launched projectiles. The duration of this environment is extremely short and will have negligible effect on the failure mechanisms modeled in this report, assuming that the components chosen have been qualified for the inertial conditions. The storage environment prior to launch will have the greatest influence on the modeled failure mechanisms. The existing instructions in MIL-HDBK-217E, paragraph 5.1.1.3 for segmented reliability analysis when multiple application environments are applicable. See Note 2 of table I-4 and the discussion under (7) following for the M_p application environment.
- (4) G_p : This environment is for instruments, computers and test, business,

I-4

medical and laboratory electronic equipment housed in temperature controlled buildings or shelters. Comparable IPC use categories are computers and telecommunication. The recommended value of ΔT lies between the IPC values and is chosen for similarity to the A_I application environment.

- (5) G_F: This environment is for equipment housed in buildings or shelters without temperature control. Comparable IPC use category is military (ground/ship).
- (6) G_M: This environment is for equipment mounted on powered or unpowered vehicles or for manually transported portable equipment. Comparable IPC use categories are military (ground/ship) for equipment mounted in compartments without temperature control and transportation (passenger compartment for temperature controlled vehicles or trailers.
- (7) M_E: This environment is for missile powered or unpowered flight and the severe inertial conditions associated with missile launch, space vehicle boost and re-entry, rocket powered flight and parachute landing. There are no comparable IPC use categories. The contribution of this environment to the package (non-electrical) failure mechanism is negligible because the environment is of short duration e.g. missile launch, missile flight, manned space vehicled boost to orbit and re-entry, etc. For this reason, the storage environment prior to launch or flight has the dominant influence on the package related failure mechanisms. The principal source of thermally related stress during storage is the diurnal temperature cycle. Table I-5 summarizes the diurnal cycle temperature range data given in reference [3], which suggests that $\Delta T=20^{\circ}C$ is a conservative choice for use in the failure mechanism model equations to represent storage under uncontrolled temperature conditions. Ambient climatic temperature changes have a neglibible effect on

temperature cycle range experienced by equipment stored under temperature controlled conditions. The temperature control system sensitivity of approximately $\pm 3^{\circ}$ C is the major contributor to controlled storage temperature cycle variation. For equipment constantly stored under controlled conditions it may be concluded that package related failure mechanisms can be considered as inactive. Assessment of combined controlled and uncontrolled conditions can use $\Delta T = 5^{\circ}$ C for the controlled segments. See MIL-HDBK-217E, paragraph 5.1.1.3 for segmented multiple application environment reliability analysis instructions.

- (8) N_I : This environment is for equipment sheltered from weather exposure and accessible by naval vehicle or shore crew members. In some instances the sheltered volume may be temperature controlled e.g. submarine installations, surface vessel combat information center, etc. When actual installation conditions are known, the reliability analyst may utilze such data in lieu of the table I-4 value. Comparable IPC use category is military (ground/ship). The recommended value of ΔT is chosen to reflect the modifying effect of N_T usage as compared to $N_{\rm H}$ usage.
- (9) N_{U} : This environment is for unsheltered ship and shore equipment exposed to weather conditions. Comparable IPC use category is military (ground/ship.). The recommended value of ΔT is chosen at the conservative higher level.
- (10) N_{UL} : This environment is for undersea missile launch and torpedo mission equipment. The short duration of this environment will have negligible effect on package related (non-electrical) failure mechanisms. The pre-launch and pre-mission storage conditions determine the thermal stresses driving these mechanisms. There is no comparable IPC use category for this environment. From the discussion under (7) for the M_F application environment,

uncontrolled storage temperature conditions should use $\Delta T = 20^{\circ}C$ and the effect of controlled storage conditions on component reliability can be ignored or a value of $\Delta T = 5^{\circ}C$ may be used.

- (11) N_{UU} : This environment is for equipment immersed in sea water. There is no comparable IPC use category. The ambient temperature is relatively benign and constant. The recommended value of ΔT is chosed for compatibility with N_U conditions, taking into account the ambient temperature stability of the N_{UU} environment and the excellent heat transfer to the ambient.
- (12)S_F: This environment is for equipment in earth orbiting space vehicles. The comparable IPC use category is space.

TABLE I-1

THERMAL CYCLE DATA FROM REFERENCE [1]

Cycle		Cycle	Number	∆T
Temperature		Duration	Cycles	°C
Min	Max	Minutes		
17	60	64	3	43
38	58	6	6	20

<u>Table I-2</u>

Thermal Cycle Data from Reference [2]

IPC	OPERATING		CYCLIC	NUMBER	CYCLE
USE CATEGORY	TEMP. RANGE, °C		ΔT	CYCLES/	DURATION
	MIN.	MAX	°C	YEAR	HOURS
CONSUMER	0	60	35	365	12
COMPUTERS	15	60	20	1460	2
TELECOMMUNICATIONS	_40_	85	35	365	12
COMML. AIRCRAFT	-55	95	20	3000	2
INDUSTRIAL	-55	65	20	185	12
			40	100	12
			60	60	12
			80	20	12
TRANSPORTATION		Same	as Indust	trial	
(Passenger Compt)					A
TRANSPORTAION	-55	125	60	1000	1
(Engine Compt)			100	300	1
			140	40	2
MILITARY	-55	95	40	100	12
(Ground/Ship)			_60	265	12
MILITARY	-55	95	20	1000	1
(Aircraft - I)			40	500	2
MILITARY	-55	95	20	1000	1
(Aircraft _ II)_			60	500	2
MILITARY	-55	95	20	1000	1
(Aircraft - III)			80	500	2
SPACE	-40	85	35	3650	2.

Table I-3

Equivalent ΔT

IPC	ATag
USE CATEGORY	°C ^{eq}
CONSUMER	35
COMPUTERS	20
TELECOMMUNICATION	35
COMMERCIAL AIRCRAFT	20
INDUSTRIAL/TRANSPORTATION	
(PASSENGER_COMPARTMENT)	44
TRANSPORTATION (ENGINE COMPARTMENT)	78
MILITARY (GROUND/SHIP)	56
MILITARY (AIRCRAFT - I)	30
MILITARY (AIRCRAFT - II)	43
MILITARY (AIRCRAFT - III)	56
SPACE	35
Table I-4

Recommended Value for Component Operating ΔT (see note 1)

MIL-HDBK-217 APPLICATION ENVIRON	ΔT °C	
PRESENT	PROPOSED	
A _{IA} , A _{IB} , A _{IC} , A _{IF} , A _{IT} , A _{RW}	AI	30
AUA, AUB, AUC, AUF, AUT	AU	55
C	С	Note 2
G _B , G _{MS}	GB	30
G _F	G _F	55
G _M , M _P	G _M	Note 3
M _{FA} , M _{FF} , M _L	M _F	Note 2
N _H , N _S , N _{SB}	NI	50
NU	NU	55
U _{SL}	N _{UL}	Note 2
NUU	NUU	35
S _F	S _F	35

Note 1. Table I-4 Δ T values are for use when thermal analysis or test data are not available.

- Note 2. Application environments referring to this note are of short duration and have negligible effects on the package (non-electrical) related failure mechanisms, for which the pre-launch storage conditions will have the dominant effect. Use $\Delta T = 5^{\circ}C$ for storage under controlled temperature conditions and $\Delta T = 20^{\circ}C$ for uncontrolled storage conditions.
- Note 3. Use G_B application environment for equipment mounted in temperature controlled compartments and G_F for uncontrolled compartments.

<u>Table I-5</u>

Diurnal Cycle Temperature Range

REGIONAL SURFACE		DIURNAL	
CLIMATIC TYPE		∆T, °C	
Basic	Hot		13
	Cold		11
	Constant High Humidity		0
	Variable High Humidity		9
	Cold-Wet		10
Hot	Hot Dry Humid		17
			10
Cold		9	
Severe Cold		0	
World Wide Long Term <u>10 yr.</u>		20	
High Temperature <u>20 yr.</u>		21	
Extremes		30 yr.	22

ī

REFERENCES

- [1] E. Edwards, J. Steinkirchner, S. Flint, "Avionic Environmental Factors for MIL-HDBK-217", Rome Air Development Center, U.S. Air Force, RADC-TR-81-374, Figure 3-5.
- [2] "Minutes of the Surface Mount Solder Joint Reliability Task Group Meeting" dated 31 July/1 August 1989; Institute for Interconnecting and Packaging Electronic Circuits (IPC).
- [3] "Climatic Information to Determine Design and Test Requirements for Military Systems and Equipment", MIL-STD-210C, 9 January 1987.

MISSION

of

<u>}</u>

Rome Air Development Center

RADC plans and executes research, development, test and selected acquisition programs in support of Command, Control, Communications and Intelligence (C³I) activities. Technical and engineering support within areas of competence is provided to ESD Program Offices (POs) and other ESD elements to perform effective acquisition of C³I systems. The areas of technical competence include communications, command and control, battle management information processing, surveillance sensors, intelligence data collection and handling, solid state sciences, electromagnetics, and propagation, and electronic reliability/maintainability and compatibility.

≈≈≈≈≈

ଽଊୢ୵ଊୄ୬ଽଊୄଽଊୢ୳ଡ଼ୢ୬ଽଊୢ୵ଊୢ୳ଡ଼ୢ୶ଽଊୢଽଊୢୢଽୄଊୢୢଽୄଊୢ

ଽୡ୵ଽୡ୵ଽୡ୬ଽୡ୬ଽୡ୬ଽୡ୬ଽୡ୬ଽୡ୬ଽୡ୬ଽୡ୬ଽୡ୬ଽୡ୬

.