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Augmented Electric and Magnetic-Field
Integral Equations

1, INTRODUCTION

In 1949 Maue1 derived the following two alternative integral equations for

the surface current density excited by arbitrary harmonic fields incident upon a
perfect electric conductor in free space:

nXE = n{.‘&: X é[kzﬁa(?‘% - (v} * R )v'él ds! (1
s
nxH, o=t -;-RS(F) - X éksm) X v'¢ dS' 2
S

(Strictly speaking, Eq. (1) is an integro-differential equation because it involves
the divergence of Rs as well as Rs' However, because the divergence of Ks lies
under the integral sign and because it is possible to recast Eq. (1) in a form
involving only l-(s {but involving the highly singular operator v¥] it will be referred

(Received for publication 2 March 1981)

1. Maue, A.W. (1949) On the formulation of a general scattering problem by
means of an integral equation, Zeitschrift fur Physik 126(7):601-618,
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to simply as an integr 1 equation. Also, Maue1 and recently Kisliuk and (,‘1ozani2
have pointed out that the MFIE Eq. (2) was presented without derivation by Fock3
in 1946.) In these two equations, which are popularly referred to as the electric
field integral equation (EFIE) and the magnetic field integral equation (MFIE)

respectively, 4 Rs is the unknown surface current density, ¢(r',T7) is the free

space scalar Green's function exp (ik|F' - h/IF - 7, Einc
given electric and magnetic incident fields in the absence of the conductor, and ¥

and Hinc are the

is the position vector to any nonedge point on the closed regular surface S5 of the
conducting body, with the unit normal nto S at T in a direction away from the in-
terior region, As usual, €, denotes the free space permittivity and k the free
space propagation constant (equals w /¢ where ¢ is the speed of light); exp (-iwt)
time dependence (with real w) has been suppressed and the International System of
Units (mksA) is used throughout, The surface integrations in Eqs. (1) and (2) are
evaluated by excluding the singular point, ' = T, of the integrand by a circular
"principal area" of diameter 6 centered on T and letting é approach zero, (In
Sections 5 and 6 we generalize the integral equations to allow for arbitrarily
shaped principal areas or self patches.)

The integral Eqs, (1) and (2) hold for both exterior and interior regions, with
the only explicit change occurring in the sign of the ES/Z term of Eq, (2)-the
positive sign applying for exterior (scattering or radiating) problems and the
negative sign for interior (cavity) problems, An additional implicit change occurs,
of course, in terms of the incident fields, The incident fields for the scatterer
are generated by sources applied outside S; those for the cavity are generated by
sources inside S,

Mauel noted two major difficulties with the integral equations: nonuniqueness
of the exterior solution at interior or cavity resonant frequencies, and conditional
convergence of the EFIE integral,

When applied to an exterior region, both Eqs. (1) and (2) fail to yield a unique
solution for RS at frequencies equal to the resonant frequencies of the correspond-
ing interior cavity —even though the exterior solution to Maxwellls equations phs
boundary and radiation conditions for a perfectly conducting scatterer exists

2. Kisliuk, M, and Gozani, J. (1980) An alternate formulation of Maue's integral
equation, Digest of URSI Symposium on EM Waves, Munich, 122B/1-2,

3. Fock, V. (1946) The distribution of currents induczd by a plane wave on the
surface of a conductor, J, of Phys, 10(2):130-136,

4, Poggio, A.J. and Miller, E.K, (1973) Integral equation solutions of three-
dimensional scattering problems, Computer Techniques for Electro-
magnetics, R. Mittra, ed,, Pergamon, New York, pp. 159-264,

. Kellogg, O.D. (1929) Foundations of Potential Theory, Soringer-Verlag,
New York, p. 112,
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uniquely. 6 (The solution to Eqs, (1) and (2) in an interior region enclosed by a
perfect conductor also becomes nonunique at the cavity frequencies, but it can

: be shown (see Section 2 below) that the homogeneous solutions respunsible for
the nonuniqueness in the interior region are simply the proper cavity mode solu-
tions exhibited by Maxwell's equations plus boundary conditions at the resonant
‘ frequencies),

Ever since the first numerical solutions were programmed using Egs, (1)
and (2) for both 2-~dimensional (2-D)7 and 3-dimensional (3-D) problems, 89,4
these spurious solutions in the exterior region at the interior resonant frequen-

cies have interfered with the useful application of the integral equations.
Although, in principle, the spurious solutions occur only at exactly the resonant
frequencies, in numerical practice the solution to both the EFIE and MFIE for
Rs deviates (coefficient matrices become ill-conditioned) within a significant
bandwidth about (or near) the resonant frequencies and imitates a valid resonant

7,8,9,10,11, 12 Consequently, the solution for the fields and, in

phenomenon,
particular, the far fields computed fro.n Es become spurious in a bandwidth about
the resonant frequencies for both the EFIE and MFIE, even though it can be shown
analytically that the spurious currents of the EFIE do not, in theory, radiate (see
Oshiro, 1 Mautz, 13

dimension to wavelength ratios because the interval betwe«n successive resonant

and Section 2), The problem accentuates at larger body

frequencies decreases as this ratio increases, For example, a spherical cavity
of radius "a" has 4 resonant modes between ka equal to 6 and 5 hut 15 resonant
modes between ka equal to 5 and 10, Moreover, numerical filtering and

6, Saunders, W, K., (1852) On solutions of Maxwell's equations in an exterior
region, Proc, Natl, Acad, Sci, 38(4):342-348.

7. Mei, K.K. and Van Bladel, J, G, (1963) Scattering by perfectly-conducting
rectangular cylinders, IEEE Trans. Antennas Propagat., AP-11{2):
185-192,

8. Oshiro, F,K, (1965) Source distribution techniques for the solutions of
general electromagnetic scattering problems, Proc., First GISAT
Mitre Corp,, 1:83-107,

9. Oshiro, F,K. and Su, C.S, (1965) A Source Distribution Technique for the
Solution of General Electromagnetic Scattering Problems, Northrop Norair
Rept, NOR 65-271,

10. Andreasen, M,G. (1964) Comments on scattering by conducting rectangular
cylinders, IEEE Trans, Antennas Propagat, AP-; 2(2):235-236,

11, Oshiro, F.K., et al (1967) Calculation of Radar C1o08s Section, Pt I, Vol I,
Air Force Tech, Rept. AFAL-TR-67-308.

12, Oshiro, F.K,, Mitzner, K. M., and Locus, S.S. et al (1970) Calculation of
Radar Cross Section Pt. II, Air Force Tech. Report AFAL-TR-70-21,

13, Mautz, J.R. and Harrington, R, F. (1978) H-field, E-field, and combined-
field, solutions for conducting bodies of revolution, AEU Electronics and
Communication 32(4):159-164.
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regularization technigues have been shown to be inadequate to eliminate the spur-
ious resonant solutions, 14,15
Three basic methods have been applied successfully for eliminating the
spurious resonances from the electromagnetic exterior surface integral equation
solution, They will be referred to as the combined field, combined source, and
hybrid methods, In acoustics a fourth method, the modified Green's function
method, has also been applied to eliminate the spurious resonances by introducing
a more complicated Green's function into the kernels of the integral
operators. 16,17,18,19
The combined field method constructs a single integral equation by adding
n Y ™+ (1) (multiplied by an arbitrary constant) to Eq. (2), This linear combina-
tion of the EFIE and MFIE yields an integlx‘zatl4eci%ation which has a unique solution

Burton and Miller‘20 formulate
21, 22

in the exterior region at all frequencies,

another combined field method which has been used to eliminate the spurious

resonances from the exterior Neumann acoustics problem, Specifically, after
noting that the normal derivative of potential is not necessarily restricted to zero
by the integral equation, they add to the double-layer integral equation a second
integral equation formed by taking the normal derivative of the extended double
layer equation, Kleinman, Roach and Angell combine, through augmentation

14. Klein, C, A, and Mittra, R, (1975) An application of the "condition number"
concept to the solution of scattering problems in the presence of the
interior resonant frequencies, IEEE Trans, Antennas Propagat,
AP-23(3):431-435; also 448-450;,

15, Seidel, D. B, (1974) A new method for the detection and correction of errors
due to interior resonance for the problem of scattering from cylinders of
arbitrary cross section, M.S, Thesis, The University of Arizona.

16, Roach, G.F. (1967) On the approximate solution of elliptic self-adjoint
boundary v -lue problems, Arch, Ration, Mech, Anal, 27(%):243-254; also
(1970) §~§(1):79-88. -

17, Ursell, F, (1973) On th~ exterior problems of acoustics, Proc. Camb, Phil,
Soc, 74(1):117-125,

18, Jones, D.S, (1974) Integral equations for the exterior acoustic problem,
Q. J1, Mech, Appl, Math, 27(1):129-142,

19, Colton, D, and Windland, W, (1976) Constructive methods for solving the
exterior Neumann problem for the reduced wave equation in a srherically
symmetric medium, Proc, Roy. Soc, Edin, 75A(8):97-107; also (1373)
SIAM J, Math-Anal, 9(5):935-942,

20, Burton, A,J. and Miller, G, F, (1971) The application of integral equation

methods to the numerical solution of some exterior boundary-value
problems, Proc, Roy. Soc. Lond., Series A, 323(1553):201-210,

21, Meyer, W.L., et al (1978) Boundary integral solutions of three dimensional
acoustic radiation problems, J. of Sound and Vibration 59(2):245-262,

22, Meyer, W.L., et al (1979) Prediction of the sound field radiation from
axisymmetric surfaces, J, Acoust. Soc, Am. 65(3):631-638.
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rather than addition, a similar supplementary integral equation to obtain unique-
ness for the exterior Dirichlet23 and Robin™ " problems as well as the Neumann
problem., When applied to 2-D problems (infinite cylinders), the augmentation

introduced in the present paper becomes identical to using the 2-D EFIE and
MFIE simultaneously, or identical mathematically to the Kleinman and Roachz3
augmentation for 2-D acoustic problems,

The combined source method derives an alternative integral equation to Eq. (1)
which expresses the electric field in terms of ficticious electric and magnetic sur-
face currents, The ficticious magnetic current is specified as equal to a constant

times n X the ficticious electric current; and the resulting integral equation is

. . . . . 2533
shown to have a unique solution in the exterior region at all [requencies,
When certain multiplicative constants are chosen, the combined source and com-

bined field integral operstors become the adjoint of each other, 25

23, Kleinman, R.E, and Roach, G.F, (1974) Boundary integral equations for the
three-dimensional Helmholtz equation, SIAM Review 16(2):214-236,

24, Angell, T.S. and Kleinman, R, E. (1980) Boundary integral equations for the
Helmholtz equation; the third boundary value problem, Applied Math, Inst.
Tech, Report 73A, Univ, of Delaware, Newark, Delaware,

25, Mautz, J.R. and Harrington, R.F, (1979) A combined-source solution for
radiation and scattering from a perfectly conducting body, IEEE Trans.
Antenna Propagat, AP-27(4):445-454,

26, Brakhage, H, and Werner, P, (1965) Uber das Dirichletsche Aussenraum-
problem fir die Helmholtzsche Schwingungsgleichung, Arch. Math,
16(415):325-329,

27. Greenspan, D,, and Werner, P. (1966) A numerical method for the exterior
Dirichlet problem for the reduced wave equation, Arch, Ration. Mech,
Anal, 23(4):288-316,

28, Kussmaul, R,, and Werner, P, (1968) Fehlerabschatzungen fiir ein
numerisches Verfahren zur Auflosung Linearer Integralgleichungen mit
Schwachsingulaten Kernen, Computing (Arch. Elektron, Rechnen) 3(1):
22"460 -

29, Kussmaul, R, (1969) Ein Numerisches Verfahren zur Losung des Neumann-
schen Aussenraumaufgabe fiir die Helmholtzsche Schwingungsgleichung,
Ibid, 4(3):246-273.

30. Panic, 0.1, (1965) On the solubility of exterior boundary value problems for
the wave equation and for a system of Maxwell's equations, Uspehi Mat,
Nauk 20(1):221-226, ’

31. Bolomey, J.C. and Tabbara, \W. (1973) Numerical aspects on counling
between complementary boundary value problems, IEEE Trans, Antenna
Propagat, AP-21(3):356-363.

32. Knauff, W, and Kress, R, (1979) On the exterior boundary-value problem
for the time-harmonic Maxwell equations, J. Math, Anal, Appl. 72(1):
215-235, -

33. Schenck, H.A. (1967) Improved integral formulation for acoustic radiation
problems, J. Acoust, Soc. Am, 44(1):41-58,
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The hybrid inethod, sometimes referred to as the method of Schenck, who
used the scheme for the analogous acoustic integral equations, 33 supplements
either Eq, (1) or (2) when applied in an exterior region with its corresponding
"extended integral equation" which holds throughout the interior reglon.34' 35,36
If the extended integral equation is satistied at a limited number of judiciously
chosen interior points, the spurious resonant solutions will be suppressed in the
EFIE and MFIE solution, 14, 15,37 It should be mentioned that the extended inte-
gral equations alone satisfied within the interior region produce a unique solution
and have been applied separately to solve both electromagneti035 and acoustic38' 39
problems, The idea of the hybrid approach, however, is to use the extended inte-
gral equations in a limited fashion to overdetermine the surface integral equations
sufficlently to reject the spuricus resonances from their exterior solutions,

Certain disadvantages accompany each of the basic methods which have been
used to eliminate the spurious resonances. Some of these have been discussed in
the papers by Jonesw' 36 and Mautz and Harrington, 13,

In applying the hybrid method one has no reliable criterion for selecting the
number and position of interior points at which the extended integral equations
must be satisfied to assure convergence to the correct unique solution for the
exterior EFIE and MFIE at all frequencies, * Moreover, because the extended
integral equations are 3-component equations, unlike the 2-component surface
EFIE and MFIE, there remains an uncertainty as to what components of the ex-
tended integral equations should be utilized,

*For the acoustics problem Jones18 has devised an alternative hybrid approach
which suggests a systematic way of choosing the interior points, Recently, for
2-dimensional, scalar EM problems, Morita has also applied "some lower order
equations of the extended boundary coggition method" to help remove the arbitrar-
iness in choosing the interior points,

34, Stratton, J.A, {1941) Electromagnetic Theory, Sec. 8-14, McGraw -Hill,
New York,

35, Waterman, P,C, (1965) Matrix formulation of electromagnetic scattering,
Proc, IEEE 53(8):805-812,

36. Jones, D,S. (1974) Numerical methods for antenna problems, Proc, IEE
121(7):573-582,

37. Morita, N, (1978) Surface integral representations for electromagnetic scat-
tering from dielectric cylinders, IEEE Trans, Antennas Propagat.
AP-26(2):261-266,

38. Waterman, P.C, (1968) New formulation of acoustic scattering, J. Acoust,
Soc. Am. 45(5):1417-1429, -

39. Copley, L.G. (1967) Integral equation method for radiation from vibrating
bodies, J. Acoust. Soc. Am,. 41(4):807-816; also (1968) 44(1):28-32.

40. Morita, N, (1979) Resonant solutions involved in the integral equation
approach to scattering from conducting and dielectric cylinders,
IEEE Trans. Antennas Propagat, AP-27(6):869-871,
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The combined field and combined source equations each present a unique solu-
tion to the exterior problem at all frequencies but at a substantial increase in com=-
plexity and programming over the original EFIE and MFIE., (Matrix fill time also
increases but this is inconsequential for most scattering problems where matrix
inversion time eventually dominates matrix fill time,) The increased complexity
is especially pronounced in contrast to the MFIE which involves only -ﬁs' ﬁinc'
V¢, and conforms well to efficient, straightforward point matching or "subsectional
collocation"4 moment methods of solution., The combined field and combined source
integrals involve all the operators present in both the EFIE and MFIE as well as
the derivatives of R-s present in the EFIE which is not as receptive as the MFIE
to an accurate solution by the simpler numerical techniques, The combined Field
equation demands input of the incident (or impressed) electric and magnetic fields,
and thus becomes inconvenient for antenna or aperture problems which specify
only the impressed electric field, The combined source equation requires only
the incident electric field but yields a solution in terms of ficticious surface cur-
rents, To obtain the actual surface currents and fields, an indirect computation
of n X H must be performed at a sacrifice of simplicity and computer time, 25

The primary objective of this paper is to augment the EFIE and MFIE sepa-
rately to eliminate the spurious resonant solutions from the exterior region with-
out sacrilicing the basic simplicity, solution capability, and pure electric and
magnetic field character of the original two equations, To accomplish this we
begin by revealing exactly why the EFIE and MFIE are deficient in the exterior
region, that is, why they do not yield the unique Maxwellian solution at frequencies
equal to the interior resonant frequencies, In particular, it is proven that the
electric field tangent to the scatterer is not restricted to zero by the MFIE, and
the magnetic field tangent to the scatterer is not restricted to equal K X 11 in the
EFIE solution at (and only at) the interior resonant frequencies. This, in turn,
implies that i« Hand (A + E - AR Es/iweo) are not necessarily restricted to zero
by the exterior MFIE and EFIE, respectively, at the interior resonant frequencies,

Except for helicoids, which for our purposes mean bodies of revolution and
infinite cylinders, augmenting the MFIE with the equation n. H =0 and the EFIE
with the equationn « E = Vs 'Ks/iweo is then prover to immediately remedy these
deficiencies, eliminate the spurious resonances, and compel the solution to the
augmented integral equations to equal the unique Maxwellian sqlution in the exte-
rior region for all frequencies, Moreover, the augmentation transforms the elec-
tric field integral equation from an integral equation of the first kind to an integral
equation of the second kind which, like the MFIE, is more amenable to a stable
numerical solution than the original EFIE, (Integral equations of the first kind
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depend strongly upon the singular nature of their kernels for their s;olvability;"‘1
see also Jones [Sec. 5il.%5)

For finite bodies of revolution except the sphere, and for infinite cylinders,
the augmented electric and magnetic field integral equations (AEFIE, AMFIE) also
eliminate the spurious resonance solutions but only after the incident field is
divided into E 2 and Hz axial components and the AEFIE and AMFIE are applied
separately. (Of course, this division of incident fields and separate applications
of both integral equations is commonly done by choice when applying the original
EFIE and MFIE to the infinite cylinders,)

Thus, the sphere (which has a simple eigenfunction solution) remains the one
scette. . r for which the augmented integral equations cannot be applied to eliminate
all the spurious resonances, This, plus the necessity to use both the augmented
electric and magnetic integral equations for bodies of revolution when the solution
for both arbitrary Ez and Hz incidence is required, constitutes the main disad-
vantage of the augmented integral equations,

Most of the preceding conclusions on the uniqueness of solution for the aug-
mented integral equations follow from a basic theorem and central result of the
paper proven in Appendix A for the electromagnetic field interior to a cavity;
namely, that Maxwell's equations inside a perfectly conducting cavity cun be satis-
fied by electric modes transverse with respect to the normal to the surface of the
cavity only if the surface is a helicoid, And the only helicoids which represent
scatterers or antennas solvable directly by surface integral equations are bodies of
revolution and infinite cylinders,

A second objective of this paper is to correct the second difficulty noted by
Maue, ! that of the conditional convergence of the EFIE, a subtlety which to the
author's knowledge, has been ignored in subsequent treatments, The EFIE, unlike
the MFIE, is conditionally convergent in that the form of Eq, (1) depends critically
upon choosing a circle centered upon the singularity of the integrand as the prin-
cipal area (self patch) used when evaluating the principal value integral, A side
effect to augmenting the integral equations is to make the integral in the AMFIE
as well as the EFIE (and AEFIE) conditionally convergent with respect to the
geometry of the principal area. Thus, our second objective is actually to deter-
mine the exact dependence of the EFIE, AEFIE, and AMFIE on the geometry of
the principal area and to provide alternative forms of these three integral equations
that remain independent of the chosen principal area,

Finally, some numerical results are obtained to test the theory, First, the
MFIE and AMFIE are applied to the problem of planewave scattering from a

41. Courant, R, and Hilbert, D. (1953) Methods of Mathematical Physics, Ch, 3,
Sec, 10,1}, Interscience, New York,
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perfectly conducting cube, demonstrating that the augmented equation did indeed
remove the spurious resonances which severely denigrated the original solution
beyond a cube size parameter of about 2, 5.

The original and augmented integral equations are applied to the problem of
planewave incidence upon infinite circular cylinders for which the exact solution
is known-~again demonstrating the predicted elimination of the spurious resonances
by the augmented integral equations,

Scattering from the perfectly conducting sphere is also determined numerically
using the EFIE, MFIE, and their augmented counterparts, the AEFIE and AMFIE,
with comparison being made to the exact eigenfunction (Mie) solution. The surface
values of n + H for the MFIE and (n E'Vs' 'Ks/lweo) for the EFIE were also mon-
itored as the frequency was changed. As the theory of Section 3 predicts, the
surface values of i » Hand (i« E - v, - K, /iwe ) for the MFIE and EFIE respec-
tively became nonnegligible at the TM spherical cavity frequencies where the aug-
mented integral equations eliminated the spurious resonances, but remained neg-
ligible at the TE spherical cavity frequencies where the augmented integral equa-
tions retained the spurious resonances,

In brief, the numerical results confirmed the theoretical predictions that,
except for the sphere, the augmented integral equations eliminate the spurious
resonances; and, for 3-D scatterers, require, as Section 3 explaing, an insignif-
icant increase in computer programming, run time, and central memory require-
ments over that of Maue's original integral equations, For 2-D problems, the
augmented integral equation approach becomes identical mathematically to the
method of Kleinman and Roach, 23 and equivalent to the combined field method.

Many of the results contained in this report were first presented at the 1980

International URSI Symposium on Electromagnetic waves.42

2. PRECISE DETERMINATION OF WHY THE MFIE AND EFIE ALLOW
SPURIOUS SOLUTIONS

Maue provided in his original paperl that the EFIE and MFIE (and their acous-
tic analogues) have a unique solution except at the frequencies equal to the resonant
frequencies of the interior cavity bounded by the perfectly conducting surface S,
Nonunique solutions at the resonant frequencies are, of course, present when
applying the integral equations to the interior region because Maxwell's equations
(from which the integral equations are derived) allow homogeneous solutions (the

42. Yaghjian, A.D, (1980) Augmented electric and magnetic-field integral
equations which eliminate the spurious resonances, Proceedings of the
1980 Intl, URSI. Symp., 121B/1-121B/4.
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cavity modes) at the resonant frequencies, However, for the exterior problem
Maxwell's equations with the boundary conditions and outgoing radiation condition
demand a unique solution for fields and currents scattered or radiated from a per-
fect conductor. 6 Thus, the homogeneous solutions to the exterior MFIE and EFIE
are spurious solutions which do not satisfy entirely the Maxwellian boundary value

problem, (A direct way to show that these spurious homogeneous solutions exist
in the exterior region is to note that the homogeneous solutions to Eq. (1) are the
same for both the interior and exterior problems, and that the homogeneous interior
and exterior operators of Eq. (2) are effectively adjoints of each other43' 4 _
adjoint linear operators for an even determined set of equations having identical
real eigenvalues; that is, resonant frequencies.)

Although Maxwell's equations and boundary conditions are used to derive
Eqs, (1) and (2), it must be concluded that Eqs, (1) and (2), when applied in the
exterior region, are not equivalent to Maxwell's equations plus boundary conditions,
The initial step in eliminating the spurious resonances from the exterior problem
will therefore be to determine the basic reasons for this nonequivalence. Con-
comitantly, it will be proven that Eqs. (1) and (2) applied to the interior problem
are equivalent to the Maxwellian system even at the resonant [requencies; that is,
the only homogeneous solutions to Eqs. (1) and (2) in the interior region are indeed
the surface currents of the cavity modes,

As a preliminary to the analysis, we supply the expressions to compute the
scattered fields (Esc' ﬁsc) from Rs determined by Egs. (1) and (2), For either
the interior region with all applied sources inside S, or the exterior region with
all applied sources outside S, the formal expressions are the same:

I I5) = -1 2z K ' '

E: ESC(F) = m&: f[k KSQS - (Vs: . KS)V ¢] dS (3a)
¥ S

= R R

:; HSC(F) * IF st X ds' (3b)
; S

Taking the curl of Eqs. (3a) and (3b) shows that the scattered fields obey Maxwell's
homogeneous equations within their region of application. Since the incident fields

i
2

TV
N

2

obey Maxwell's equations in free space, the total fields

N

AR

i

43, Muller, Claus (1969) Foundations of the Mathematical Theory of Electro-
magnetic Waves, Sec, 25, Springer-Verlag, New York,

O TR TN
REEL

44, Marin, L. (1973) Natural-mode representation of transient scattered field,
IEEE Trans, Antennas Propagat, AP-21(6):809-818,
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E= E +E, , B=H +H _ , (42, b)

obey Maxwell's equations within their region of application; specifically,

VXE = iwo

el

(5a)

VXH = -iweoE+Jinc ) (5b)

where ilnc is the incident applied current density,

Let the observation point ¥ in Eq. (3a) approach the surface S of the conductor
from its region of validity, and cenvert the surface integration to a circular
principal value integration using the following formula (derived by a straightforward
integration near the singularity of ¢):

V' dS! = év% dS' +2mn (6)
S(r-S) S

where the + and - sign apply to the exterior and interior problem respectively,
Combining this result with Eqs. (1) and (4a) shows immediately that the EFIE solu-
tion yields zero tangential E-field on S; that s,

AXE =0 onS (lorthe EFIE) , (7a)

Thus, in principle, the fields (but not necessarily the surface current) deter-
mined from the solutions to the EFIE are the correct Maxwellian fields,

Similarly letting the observation point ¥ approach the surface S in Eq. (3b)
reveals from Eqs, (2), (8), and (4b) that the solutions Rs to the MFIE will satisfy

RS = +tAXH onS (for the MFIE) . (7b)

(Again the + and - signs in Eq, (7b) are associated witn the exterior and interior
regions respectively.) It is emphasized that we have not proved, however, that

the EFIE satisfies this latter boundary condition Eq, (7b), nor that the MFIE satis-
fies the former boundary condition Eq. (7a) of zero tangential E-field on S,
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2.1 Proof That the Surface Tangential E-Field Determined by the Exterior MFIE
is Unequal to Zero at the Interior Resonant Frequencies

Because the fields determined through Eqs. (3a) and (3b) from the Ks of Eq.
(2) satisfy Maxwell!'s Eqs, (5a) and (5b) in the region of application (interior or
exterior), the Stratton-Chu t‘ormulas34 apply; and, in particular, Eq, (20} of
Stratton-Chu3 combines with Egs. (3b) and (7b) to yield the following equation for
the electric field tangential to S:

f KP@ X B - v, - (3! X E)V'e] dS' = 0 (8)
S
for all T within the region of application.
2.1.1 APPLICATION TO THE INTERIOR MFIE

Apply Eq. (8) to an interior region (F inside S), let T approach S, use Eq. (6),
and take n X the resulting equation to get

n X é (K X B)6 - vl » (&' X E)v'¢l dS'=0 , FonS . (9)
S

Denoting the left side of Eq. (8) by F(F), we see that by taking the curl of Eq, (8)
twice we get

YXVXF-kF=0 (10a)
in the exterior as well as interior region, and from Eq, (9)
0

nXF , ronS . (10b)

1

In addition, F satisfies the outgoing radiation condition as ¥ - « and thus F = 0 is
is the only solution6 for all T outside S as well. Because F is zero both inside and
outside S, the curl of F is also zero inside and outside S, Thus, letting T - S in
the equation v X F = 0 from inside and outside, converting the resulting integrals
to principal value integrals via Eq, (6), and subtracting the two equations yields
nX E=0onS. Since we proved in Eq. (7b) that the boundary condition on current
is satisfied by the MFIE, we have completed the proof that the MFIE applied to an
interior region is equivalent to Maxwell's equations and all boundary conditions,
even at the resonant frequencies of this interior region (cavity), In particular,

the homogeneous solutions to Eq. (2) (with the minus sign) are simply the proper
surface current densities of the cavity modes.
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2.1,2 APPLICATION TO THE EXTFERIOR MFIE

[ NPT

The same method of proof does not appiy in total for the MFIE applied to an
exterior region, because in that case when Eqs, (10a) and (10b) are considered for i
the corresponding interior region it is found to possess a nontrivial solution at
(but only at) the cavity resonant frcquencies, Thus, the above method of proof also !
'3 shows the equivalence of the exterior MFIE and the Maxwellian system except at

’f’ the cavity resonant frequencies,

N We can complete the analysis for the exterior MFIE by returning to Eq, (9),
2

. which is equivalent to Eq, (8) in the exterior region because Eu. (9) also derives

from Eq. (8) in an exterior region, and Eqs. (10a) and (10b) along with the

radiation condition can be applied to derive Eq, (8) from Eq, (9) in an exterior
region, * Moreover, Eq, (9) is merely the homogeneous EFIE with n X E replacing
Rs‘ In Section 2, 2 it is proven that the only nontrivial solutions to the homogeneous
EFIE are the cavity mode surface current densities, Moreover, Appendix B proves
f that Eq. (9) is also a sufficient as well as necessary condition for n X E, obtained
i,z; from the system of Egs, (2) and (3a), to satisfy in the exterior region, Conse-
quently, we conclude that at and only at the resonant frequencies of the associated
cavity, the exterior MFIE is not equivalent to the Maxwellian system of equations
and boundary conditions simply because of these frequencies the exterior MFIE
allows nonzero tangential electric fields (i x E on S) equal to the surface current
densities of the interior cavity modes.

It is emphasized that it is not the spurious exterior MFIE currents, but the
spurious tangential electric fields (i x E) which equal the cavity mode currents,
Moreover the spurious exterior MFIE eleciric currents are not equal to the effec~
tive modal electric currents (n X magnetization) for the cavity with perfect magnetic
walls, There is a simple relationship between the modes of a perfect magnetic
cavity and the spurious MFIL solutions but it is between tangential electric fields,
that is, magnetic "currents," and not electric currents, Consider Eq, (9), Apply-
ing the same method of analysis used in Sections 2.1, 2.1.1, and 2,2, proves that
the solutions to Eq. (9) for it X E are the homogeneous solutions to the tangential
electric field (n x E ) on the surface of a cavity with perfectly magnetically con-

ducting walls &; that is,

- P
vxvx B -kH_ =0 (11a) )
E, = -vx B /ive, (11b)

*To avoid confusion with the resuiis obtained in Section 2, 1.1 for the interior
region, note that Eq. (9) is not equivalent to Eq. (8) for the MFIE applied to the
interior region,
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anm=0 onS . (l1c)

There is no simple relationship between the spurious MFIE electric currents and
the fields of either the perfectly electric or magnetic cavity resonator, Mathe-

i

3 matically, the spurious MFIE current densities are simply the homogeneous solu-
L tions to the exterior MFIE given by Eq. (2) with the plus sign, or equivalently,

f essentially the adjcint solutions of the interior homogeneous Eq. (2) with the

minus,  °*

P* 1cally, there is a [airly straightforward interpretation for the spurious
MFIE surface currents, In the wull of the magnetic cavity with the solutions
obeying Egs. (11a), (11b), and (11lc) there will be a surface magnetization Ms at

A
e e S A

the resonant frequencies equal to =i X Em/iwuo on S. Now suppose the inside of

1 the cavity is filled with perfect electric conductor and Ms is maintained at its

- original value everywhere in the magnetic wall of the cavity. A surface current
density will be excited on the surface of the electrical conductor which will reduce
& the tangential electric field inside S to zero and a tangential electric field equal
’ ’ to n X f}'m will be produced on the outside of the cavity wall S, Thus, one can

" interpret physically the spurious MFIE currents as the electrical surface currents
A that the surface magnetization of the perfectly magnetic cavity modes would produce

il the interior cavity were filled with perfect electric conductor and the surlface
magnetization maintained the same,

The spurious MFIE magnetic field just outside S will equal (as Eq. (7b) indi-
czzes) -n X, this spurious surface current density, However, the fundamental

reason that the MFIE allows spurious currents and fields on S and therefore spuri-
ous fields throughout the exterior region is that at the cavity resonant frequencies
the MFIE does not demand that the tangential E-field (calculated from Egs, (3a)
and (4a)) be zero as one approaches the surface S from the exterior region, In
Section 3 the spurious MFIE solutions are eliminated by forcing the tangential
E-field to equal zero even at the cavity resonant frequencies.

2.2 Proof that the Surfac: Current Density Determined by the Exterior EFIE is
Unequal to the Suiface n X H at the Interior Resonant Frequencies

- Proceeding as we did in Section 2, 1 with the Stratton-Chu formulas, Eq. (19)

of Stratton34 criabines with Egs. (3a) and (7a) to derive Eqgs. (8), (9), (10a), and
(10b) but witk K. ¥ (i x H) replacing i x E. (The upper and lower sign refer to

the exterior amf interior problem, respectively.) Thus the analysis of Section 2,1, 1,

can be invsked immediately to prove the following results for the interior EFIE,
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The EFIE applied to an interior region is equivalent to Maxwell's equations and

boundary conditions, even at the resonant frequencies of this interior region
(cavity), In particular, the homogeneous solutions to Eq, (1) are simply the
proper surface current densities of the cavity modes,

For the exterior EFIE (as for the exterior MFIE), the problem of determining
uniqueness reduces to investigating the solutions to Eq, (9), specifically the homo-
geneous EFIE with (Ks - fi x H) as the unknown surface vector, But we just proved
that the solutions to the homogeneous EFIE were identical to the surface currents
of the resonant cavity modes. Thus, we can conclude immediately that at and only
at the resonant frequencies of the associated cavity, the exterior EFIE is not
equivalent to the Maxwellian system ol equaticns and boundary conditions simply
because at those frequencies the exterior EFIE allows nonzero (KS -axMons
equal to the surface current densities of the interior cavity modes, In other words,

U il

at the cavity resonant frequencies the tangential H-field calculated from Eqs. (3b)
and (4b) for the exterior EFIE problem will not equal KS x fi (calculated from

Eq. (1)) as the perfectly conducting surface S is approached [rom the exterior
region and as the Maxwellian solution demands, In principle, since the EFIE
spurious currents are identical to the cavity currents, they, unlike the MFIE
spurious currents, produce zero E and H fields outside S — a fact reassured by
Eq. (7a). In practice, numerical inaccuracies associated with the ill-conditioned
matrices at the resonant frequencies contaminate *the exterior fields with spurious
solutions as well. In Section 3 we show how the spurious EFIE currents can be
eliminated in principle and practice by forcing them equal to their associated zero
n x H tields just outside S,

3. AUGMENTING THE MFIE AND EFIF. TO YIELD THE UNIQUE EXTERIOR
SOLUTION AT ALL FREQUENCIES

Answering the question in Section 2 of exactly why the exterior integral equa-
tions allow spurious solutions at the eigenfrequencies of the cavity leads one quite
naturally to a method of eliminating these unwanted solutions, First consider the
exterior MFIE, At the internal resonant frequencies the E-field tangential to S
calculated from the MFIE surface currents are not zero; it follows that the H-field
normal to S will not necessarily be zero, Thus, we immediately consider avgment-
ing the exterior MFIE with the equation

n-H=0 onS (12a)
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to hopefully eliminate its spurious resonances, By a similar argument we conclude

that the exterior EFIE should be augmented by demanding that the normal compo-
nent of eof on S equal the surface charge density; that is,

n.E-v,- R five,=C onS (12b)

in hopes of forcing T{s equal to i X H on S for all frequencies and thus eliminating
its spurious resonances, Note that the auxiliary boundary conditions Eqs, (12a)
and (12b) are equivalent to v, + (A XxE) = 0and v - (i xH - Rg) =0onsS,
respectively,

The boundary conditions Eqs, (12a) and (12b) are written in terms of incident
and scattered fields by substituting from Eqs, (3a), (3b), (4a), and (4b), to obtain

-~

LR : G IR é R, X v'6 ds!

(13a)
]
-~ B V » T{’
- ™ - n 2 - k7 8 ]
n- Linc s ﬁme—c; . é [k Ksé (Vg . KS)V'¢]dSl +—2Tw_c-°' . (13b)
S

If the original exterior integral Eqs. (1) and (2) are now augmented with Eqs, (12a)
and (12b) by adding Eq. (13b) to Eq. (1) and Eq, (13a) to Eq. (2), we obtain the

"augmented" exterior electric and magnetic field integral equations (AEFIE and
AMFIE):

— 1 é 2___ . —— . \ (VS . Ks)ﬁ
S
WA LlaxR + LR xve s (15)
inc 2 s 4n s ‘
S

Note that Eq. (1) and Eq. (2) in the exterior region are reclaimed by taking n X
Eq. (14) and Eq. (15), respectively, Also, the augmentation has transformed the
EFIE from an integral equation of the first kind to an integral equation of the
second kind, which, like the MFIE is more amenable to a stable numerical solu-
tion, (Integral equations of the first kind, unlike those of the second kind, depend

strongly on the singular nature of their kernels for their solvability [Courant“
and Jones,  Section 5i}.)
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Before leaving this section, we point out that Eqs. (12a) and (12b) can be ob-
tained by taking the surface divergence (V-s) o! Eqs. (1) and (2), respectively.
Thus, the AMFIE Eq. (15) is simply the original MFIE Eq. (2) augmented with

i the original EFIE Eq. (1); the AEFIE Eq. (14) is simply the original EFIE
Eq. (1) augmented with vy, the original MFIE Eq, (2). Alternatively, the aug-
mented integral Eqs, (14) and (15) derive directly from the corresponding extended
integral equations by letting the observation point T approach the surface S from

the interior region (see Section 3, 2),

3.1 Uniqueness of Solution for the Augmented Integral Equations

etk

The augmented integral Eqs. (14) and (15) are very similar in form to the
original Eqs, (1) and (2) and require, as Section 3,3 explains,l\very little increase :
in programming complexity, or computer run time and central memory. However, P
they provide no advantage unless we prove they eliminate the spurious resonance
solutions,

As a lirst step in this proo!, repeat the analysis of Section 2 using Eqs, (14)
and (15) instead of Eqs, (1) and (2) in the exterior region, noted from Eqgs. (12a)
and (12b), which are derivable from Eqs, (14), (15), (3a), and (3b), that the
Vg (n x E) and Vg (nxH - Ks) terms are zero, This procedure shows that
both Eqs. (14) and (15) have spurious solutions if and only if the following system
of equations have a nontrivial solution:

PR VRN

VXUXF-kF =0 insidesS (16a)

F=0 onS . (16b)

In other words, Fqs. (16a) and (16b) indicate that the AEFIE Eq. (14) and the
AMFIE Eq. (15) eliminate the spurious resonances Irom the exterior scattering or
radiating problem unless a cavity resonant mode has zero normal lield as well as
z=ro tangential field on S.

At first thought one might expect that Eqs, (16a) and (16b) possess no non-
trivial solutions because the cavity modes at the eigenfrequencies are the only
solutions to Egs. (16a) and (16b) even before the normal component of F is speci-
tied zero on the boundary S, However, the counterexample of a sphere shows that
there exists at least one shape of cavity S for which some of the cavity modes sat-
isfy Eqs, (16a) and (16b). Specifically, the TE modes of a perfectly electrically
conducting spherical cavity resonator have zero normal as well as tangential E-field
on the surface S, Thus, we know immediately that for a sphere Eqs, (14) and (15)
will eliminate the spurious solutions only at the frequencies of the TM (but not the
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1

TE) resonant modes, Fortunately, it may not be critical that the spherical scat-
terer be solved by the integral equation approach because it is the one 3-D geom-
etry that has a simple eigenfunction solution, the familiar Mie solution, Thus, we
remain undaunted by this one counterexample and ask if there are any shapes S
besides the sphere for which solutions to Eqs. (16a) and (16b) exist,

Appendix A answers this question and thereby performs the proo! of the cen-
tral result of this paper: Except for the TE modes of the sphere, the augmented
electric and magnetic field integral Eqs. (14) and (15), eliminate the spurious
resonances and yield the unique solution to Maxwell's equations and boundary con-
ditions in the exterlor region at all frequencies. For bodies of revolution (other
than the sphere) and for infinite cylinders, the theorem holds but requires a special

procedure explained in Section 4,

This crucial proof detailed in Appendix A begins by expressing Eqs, (16a) and
(16b) in orthogonal curvilinear coordinates formed by the family of surfaces parallel
to S and the two families of surfaces generated by the normals to S along the lines
of curvature, It is shown that Eqs. (16a) and (16b) can be satisfied if and only if
the associated PEC solution can have TE modes with respect to the normal direc-
tion, and that this is possible if and only if either: 1) the principal radii of curva-
ture of S are equal for all points on S, or 2} the principal radii of curvature and
the fields depend only on one tangential curvilinear coordinate, The equations of
Mainardi-Codazzi and Gauss45 for the fundamental magnitudes of the surface S are
then invoked to prove that case 1 holds only for the sphere and case 2 only for heli-
coids which, for our purposes, means bodies of revolution or infinite cylinders,
Finally, Section 4 shows that, except for the sphere, these latter two geometries
can also be solved by the augmented integral equations without introducing spurious
resonances, This is accomplished by applying the AEFIE Eq. (14) or the MFIE
Eq, (15) separately to the appropriate component, (This division is commonly
made when solving infinite cylinder problems using the original integral equations
as well,)

3.2 Derivation of the Augmented Integral Equations from Extended Integral
Equations
The augmented Eqs. (14) and (15) can be derived directly from the electric and
magnetic extended integral equations, The following form of these extended equa~-
tions convenient for this derivation is obtained directly by applying the Stratton-Chu
formulas to the exterior surface currents (KS(F) =a X (), T - S from outside S)

and mathematically choosing the observation point T inside S:

Eisenhart, L, P, (1909) A Treatise on the Differential Geometry of Curves
and Surfaces, Ginn, Boston,

45,
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Allowing T to approach S in Eqs, (17) and (18), and converting the surface integra-
tions to circular principal area integrations via Eq, (6), immediately produces the
augmented surface integral Eqs, (14) and (15),

Waterman's technique™ = involves applying a version of Eqs. (17) or (18) to a
subvolume within S, Copley ° raises the question of whether the acoustic equa-
tions corresponding to Eqs, (17) or (18) would produce a unique solution when
satistied only over a surface So lying inside S, In Section 3,1 we answered that
question for the electromagnetic case when the chosen surface So lying inside S
approaches the surface S itself,

The analysis of 3,1 can also be applied to the extended integral Eqs, (17) and
(18) satisfied on a surlace SO inside S, That is, Eqs. (17) and (18) need only be
applied for T on a surface So inside S in order to yield the unique solution for the
surlace current density KS excited on the surface S of the scatterer (provided, as
explained in Section 3.1, that S0 is not a sphere, and that for bodies of revolution
and for infinite cylinders the appropriate integral equation be applied separately to
E, and Hz incident fields). No attempt has been made to program Egs. (17) or
(18) for T on any sucrface So other than S, where Eqs, (17) and (18) become equal to
the augmented Eqs. (14) and (15), respectively, Intuitively, it is expected that
accurate numerical results would be obtained from Eqs. (17) or {18) applied to ¥
on S only if S were chosen lairly close to S,

Lastly, we point out that Kisliuk and Gozani have recently derived an alternate
and equivalent versioa of the AMFIE Eq, (15) which holds for T just outside S,

3.3 Efficient Solution of the Augmented Integral Fquations

The same numerical techniques used to solve Maue's original integral Eqs.
(1) and (2) could be applied directly to the augmented Egs. (14) and (15) if it were
not for one difficulty. The augmented Eqs, (14) and (15) are overdetermined,
i There are three scalar components to each of the equaticns but only two unknown
{ components of surface current Ks' Fortunately, because we have been able to
: prove that the augmented integral equations poss s a unique solution at all

25

[ P T




syramoownloaded from http://www.everyspec.com o RO
23 A -a‘,W.«\xf&(%wmlﬂwd\w;fﬂq%wﬂwﬂ Y B e S R SR ORE PR oy 2t

i [T NN

frequencies (under the above stated conditions), an elegant theorem of linear alge-
bra46 allows us to solve Eqs. (14) or (15) by simply multiplying the set of equations }
by the Hermitian conjugate of its coefficient matrix, and then solving the resulting
evendetermined Hermitian set of equations, This procedure is a standard means !
for finding the least squares solution to an overdetermined set of equations, It :
becomes an especially powerful tool for our purposes because of the theorem46 :
which says that when the overdetermined set can be proven to have a unique solu-
tion, the least squares solution becomes identical to this unigue solution. \

Direct inversion of the resulting Hermitian matrix does have the drawback -
that its ~ounditioning i{s worse than the original matrix, 41 Alternative solution
techniy.us to avoid this degradation in matrix conditioning have been devised,
but no attempt was made nor was it found necessary to incorporate them in the
straightforward, unsophisticated numerical solutions used to test the theory of the
] present report,

Specifically, suppose a 3-D surface S is divided into p patches and Eqs, (14)
or (15) has been reduced by the method of moments or some similar numerical
solution technique to the set of linear equations,

C X =b (19)

wheren=1, 2, ... 2p, m=1, 2 ... 3p and summation over repeated indices is
understood, (The original integral Egqs, (1) and (2) are contained in Eq. (19) for
n, m=1, 2 ... 2p.) Multiplying Eq. (19) by the Hermitian conjugate of the
coeflicient matrix converts the overdetermined 3p X 2p set of equations to the
evendetermined 2p X 2p set,

-

* = C*
[Cm ]xn le bm * (20)

{ Cmn

Equation (20) can then be solved by any one of the readily available matrix inversion

or solution algorithms, Equivalently, Eq. (19) can be solved directly by any one

of the many least squares solution algorithms that are also readily available,
Equations (19) and (20) reveal that the solving of the augmented integral equa-

4] tiogxs require two additions to the solving of the original Eqs. (1) and (2): 1) the

ﬁ 2p” extra elements of the coefficient matrix Cmn forn=2p+ 1 to 3 p must be

LD

46, Mirsky, L. (1955) An Introduction to Linear Algebra, Theorem 5.5,4 and
Sec. 5.5.5, Oxford University Press.

47. Osborne, E.E. (1961) On least squares solutions of linear equations,
J. _Assoc, Comp, Mach, 8:628-636.

48, Golub, G, (1965) Numerical methods for solving linear least squares
problems, Num, Math, 7:206-216.

T
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computed, and 2) the Hermitian conjugate multiplication must be performed. This
means that matrix [ill time and matrix storage requirements will increase by
about 50 percent; and there will be a small increase.in computer run time needed
to pex:form the Hermitian conjugate multiplication. The multiplication of the
Hermitian conjugate of the matrix by itself can be performed efficiently with little
increase in computer storage because the resulting matrix is Hermitian and thus
the original matrix array can be used to store successively computed elements of
the product matrix without ever requiring a second 2p x 2p dimensioned array.
Also, the extra computer storage required by the augmented coefficient matrix
can be supplied, if necessary, from outside the central memory core because the
final matrix inversion of Eq. (20) requires the same in-core storage as the co-
efficient matrix of the original integral equations,

Generally, matrix inversion time rapidly dominates matrix fill time as the
electrical size of the scatterer becomes larger than a small fraction of a wave-
length, 4 However, if matrix fill time forms a significant portion of total com-
puter run time, the extra matrix fill time introduced by the augmented integral
equations can also be reduced by invoking the augmented integral equations only at
frequencies where n . H (for the MFIE) andn . E - v, 'K_S/iweo (for the EFIE)
exceed a present threshold., In short, the 3-D augmented integral equations require
an insignificant increase in computer programming, run time, and central memory
requirements over that of Maue's original integral equations,

4. AUGMENTED INTEGRAL EQUATIONS APPLIED TO INFINITE CYLINDERS
AND BODIES OF REVOLUTION

Appendix A shows that the AEFIE and AMFIE remove the spurious resonances
from all scatterers except at certain resonant frequencies of helicoids, For prac-
tical scattering problems this is true, except at 1) the Ez 2+-D cavity mode [re-
quencies of infinite cylinders and 2) the frequencies of the rotationally symmetric
TE (with respect to the surface normals) cavity modes for bodies of revolution
(including the infinite circular cylinder and the sphere), This section shows how
the augmented equations can be applied to also eliminate these remaining reson-
ances from infinite cylinders and bodies of revolution, except the sphere.

4.1 Infinite Cylinders (2-D Problems)

The 2-D EFIE corresponding to Eq, (1) was derived in 1950 by Papa§49

for
an incident Ez-wave. Later Mei and Van Bladel7 also derived the 2-D MFIE

49, Papas, C,H. (1950) Diffraction by a cylindrical obstacle, J. Appl. Phys.
21(4):318-325,
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corresponding to Eq. (2) for an incident Hz-wave. Both the 2-D EFIE and MFIE
for an arbitrary 2-D incident field emerge directly from the transverse components
of the 3-D integral equations by substituting into Eqs. (1) and (2) the integral repre-
senstation for the Hankel function:

00
f.p(?!,?) dzt = miHDKT -7y, T =T, F=T+z8, , F=T+23) ,
-00

after first showing that for 2-D geometries the circular principal area can be con-
verted to an infinitely long narrow slit (with the singularity at the center of the slit)
without altering the form of Eqs, (1) and (2), Specifically, for a 2-D body (iufinite
cylinder) with z-axis and cross-sectional boundary curve C,

2
2 _k (1)
Emc({) = m?c; ][KZ(F)HO (klt' -?l)dC' (21a)
C
-HZ =Llg 4+ )[K aHf,”d ' (21b)
inc 2% ¥ c dnr o 9¢ -
C

(The line integrations here and below are performed by approaching symmetrically
the singularity of the integrals,) A valuable review of the 2-D electromagnetic
work through 1973, including the spurious resonances, is contained in the thesis
by Seidel, 4

For 2-D problems the augmentations Eqs, (13a) and (13b) can be expressed as
simply the circumferential derivative of the 2-D EFIE Eq, (21a) and the 2-D MFIE
Eq. (21b), respectively; thus by performing the circumferential integration ana-
lytically and setting the arbitrary constant to zero, the 2-D augmentations formed
from Eq., (13) reduce to Eq. (21),

For an incident Ez-wave, the remaining component of the 2-D AMFIE formed
from Eq. (15) is:

o)

B¢ = lg 4+l fx o ge 22a)

inc~ 3 277 z 5m . (22a
C

Similarly, for an incident H -wave, the remaining component of the 2-D AEFIE
formed from Eq. (14) is:

28
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c 1 )( (1) aK aHf()l) 1
b Eie® I’E ] k%K (e' . e )H W 35— | de' . (22b) \
1, % Appendix A shows that, except of the circular cylinder, the spurious surface ,
t; B currents for the 2-D AEFIE and 2-D AMFIE with arbitrary incident fields lie in Je
S the z and c-directions, respectively; thus, Eqgs, (21a) and (22a), and (21b) and ;
(22b), will yield unique solutions except possibly for the circular cylinder, But ﬂ
Kz f since the circumferential integrations of the 2-D augmentations formed from E
Eq. (13) have been performed to reduce them to the original 2-D Eqs, (21a) and ;
(21b), all boundary conditions are satisfied, and thus the 2-D AMFIE Eqs, (21a) :
4 and (22a), and the 2-D AEFIE Egs. (21b) and (22b), also yield unique solutions for ’
: scattering from the circular cylinder, #

In summary, the two pairs of scalar equations, Eqs, (21a) and (22a), and
(21b) and (22b), comprise the 2-D AMFIE and the 2-D AEFIE for incident E_ and
I_:I_z-\vaves, respectively; and each of these 2-D augmented integral e@ation; elim-
inate entirely the spurious resonances for scattering from perfectly conducting
infinite cylinders. This is confirmed in the numerical results of Section 6. The
2-D augmented equations, like the 3-D ones, are overdetermined, but can be
solved efficiently using the Hermitian conjugate multiplication or alternative

solution techniques discussed in Section 3, 3.

The 2-D augmented integral equations presented here are identical mathemat-
ically to the 2-D form of the augmented integral equations proposed by Kleinman and
Roach who also prove their uniqueness of solution, If the components Egs,

(21a) and (22a) or Eqs. (21b) and (22b) of the 2-D augmented integral equations are
added together, the 2-D combined field integral equations result,

4.2 Finite Bodies of Revolution

For finite rotationally symmetric bodies other than the sphere, we can also
eliminate the remaining spurious resonances by dividing the incident field into F
and Hz components, Appendix A shows that the spurious currents for finite bodxes
of revolution (except the sphere) do not vary with rotation angle ¢, and are in the
éé—direction for the AEFIE Eq, (14) and in the 7 = n X é¢ direction for the AMFIE
Eq. (15),

Now if an incident field has only an E, or I!Z component (where z is the axis
of the body of revolution) there will be excited no rationally symmetric component
of K¢ or K, respectively, Thus the augmented integral Eqs, (14) and (15) also
eliminate the spurious resonances from all [inite bodies of revolution except the
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sphere by dividing the incident field into Ez and Hz components, and applying the

%

’P AEFIE Eq. (14) (with the rotationally symmetric part of K, set to zero) and the ‘
j AMFIE Eq, (15) (with the rotationally symmetric part of K, set to zero), respec- :;
E& tively, Of course, for certain incident fields such as a plane wave with direction
Eﬁ of rropagation normal to the z-axis of rotation, no rotationally symmetric compo- g

nent of current is excited and either augmented Eqs. (14) or (15) alone will elim- b
inate the spurious resonances, 2
!

5. THE ORIGINAL AND AUGMENTED INTEGRAL EQUATIONS EXPRESSED ‘5
FOR ARBITRARY PRINCIPAL AREAS ‘;

%

%

The original and augmented integral Egs, (1), (2), (14), and (15) assumed that
a circular "principal area" excludes the singularity of the freespace Green's func-
tion at T' = T in their surface integrals, The integrations are performed centering
the circular principal area of diameter § on the singular point and taking the limit
as & approaches zero, In solving the integral equations numerically, however, it
may be desirable to choose principal areas, that {s, self patches, other than the
circular one. * Fortunately, it becomes a simple matter to generalize the integral
equations to arbitrary principal areas once Eq, (6) is generalized, To generalize
Eq. (6) to an arbitrary principal area, note that we can write as an identity,

?V% das! = év'é ds' - é v'é dSt . (23) :
S .

S A8

P

The surface integral on the left hand side of Eq, (23) excludes the singularity by the
arbitrarily shaped principal area, the [irst surface integral on the right excludes ‘
the singularity by a centered circular principal area, and the second integral on the

right is an integration over the limiting surface A S between the arbitrary and

inscribed circular principal area. The geometry (shape, position, and orientation)

of the principal area with respect to the singular point T is specified and maintained

as its size shrinks to zero, Because the integral over AS does not include the

singularity and because AS - 0 in the limit as the principal area shrinks to zero,

this integral can be evaluated with the help of an integral fcrmula contained in

Van Bladel50 Appendix 2, Eq. (43);

*In numerical work one must also use a finite sized self patch and either determine
how small the self patch need be to produce negligible errors in the solution or
compensate analytically for its finite size, This topic of finite principal areas will
not be discussed in this report,

50, Van Bladel, J, (1964) Electromagnetic Fields, McGraw-Hill, New York,

"

30




Downloaded from htt] //Www.everxspec.com oS
RS &q\wv 7, m AT b Ry %

R

g év‘«tdS’: évé¢ds'= ¢-R-dc- gg.Rl. dc . (24)
4 AS as C C

The second integral on the right of Eq, (24) is zero and thus Eqs, (24) and (23)
substituted into Eq, (6) yields,

T
Dl

R SP A CRERAS S Sa R s E P

T gt e iy ‘,mgmwg PN SN S

"’ f v'¢ dS? = év"t dst + 2m + 27T | (25a)
S (F~S) S

§, where

' 1 ¢ .1

. ; Ts g de . (25b)
:‘ B C

N

“ i As depicted in Figure 1 the unit vector ﬁi is in the plane of the principal area and
s | perpendicular to its boundary C, Thus T is tangent to the surface S, and vanishes
A

for a circular or regular-polygonal principal area centered on the singularity,
Applying the identity Eq, (25a) instead of Eq, (6) to the derivation of the orig~
inal and augmented integral equations reveals that the form of the MFIE remains

independent of the principal area (as Mauel proved), but the form of the EFIE,
AEFIE and AMFIE change to, respectively

. n é 92— — ( s * KS) axT
% n x Einc = ﬁwg X / {k KS¢ - (V'S . KS)V'¢] dst - 2iuo (26)
;
i — i
! Eine * T élkzﬁ - (v - K)v'gldst + ¥s X0 D @7
| ¢ * Foe; J gf Vs 0 KV e,
2 -‘ﬁ'inc = %(ﬁ - T X 1‘{' r é K XVv$ ds' . (28)
% S
i
’ Both augmented integral Eqs, AEFIE (27) and AMFIE (28) and the original EFIE

Eq. (26) (as Maue1 stated) are "conditionally" convergent upon the shape of the
principal area (self patch) chosen to exclude the singularity of the freespace

Green's function. The strength of this dependence on principal area is determined

31
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Figure 2, Square Principal Area of S de
"al' Excluding the Singularity a Distance
ng" Off-Center in the x-Direction

by T defined in Eq. (25b) and Figure 1, T is either zero or negligible unless the
chosen principal area exhibits significant asymmetry with respect to the singular
point. The value of T for a square principal area excluding the singularity a dis~
tance ~atio d/a off center in the x-direction (Figure 2) was evaluated using Eq,
(25b):
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(1_2;1)(” 14 (1+~2£-)2) . (29)

In the numerical work reported in this paper T was either zero or assumed neg-
ligible,
6. ALTERNATE FORMS OF THE INTEGRAL EQUATIONS WITH INTEGRALS
INDEPENDENT OF PRINCIPAL AREA

In this section alternate forms of the integral Eqs, EFIE (26), AEFIE (27),
and AMFIE (28) are derived that do not involve integrals which depend on the geom-
etry of the principal area, We accomplish this derivation with the aid of the

identity,

éﬁx (n' X V'¢) dS! = 27T (30)
S

Proper use of Eq., (30) in the augmented integral Eqs, (26), (27), and (28) converts
them to the following form independent cf the geometry of the principal area used

to exclude the singularity:

élkzﬁsﬁ')é -Va + KTV -« K (Pa x @' X 9'¢)] ds!

aL= _ N
nXEinc'meeo X
S

(31)
Eppe - m%e—o é (KPR (74 - v} « K (FIv'6 - v, « K P8 x (3 x v')] ds!
S

(32)
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+ 31? é (K (r") x v'¢ + Kg(P) x (A x (' x v'¢N] ds'
s
(33)

Moreover, the identity Eq, (30) and its use in Eqs. (31), (32), and (33) remains
valid when ¢ is replaced by the static Green's function 1/|'F' - FI .

As mentioned previously, the integral in the original MFIE Eq, (2) is already
independent of principal area, although a circular principal area was initially
chosen in Eq. (2) to clearly define the surface integration procedure, The inde-
pendence of the integrals in Eq, (31), (32), and (33) on principal area (self patch)
make them attractive for numerical work; however, the author has not experi-
mented with their use in the numerical work ol this paper,

7. NUMERICAL RESULTS

Although the main intent of this paper is to report the theory leading to the
augmented integral equations, numerical results have been obtained by applying
the original and augmented integral equations to the problems of scattering from
a cube, sphere, and infinite circular cylinder, In each case the predictions of
the theory were confirmed,

Figure 3 plots the normalized backscattering cross section from a cube com-
puted using the original MFIE and the AMFIE, Each face of the cube was divided
into nine equal area square patches, simple pulse basis, and delta weighting func-
tions were used with the W value taken constant at its center value of each patch,
and reduction of the matrix based on the symmetry of the cube was purposely
avoided, Figure 3 shows that the augmented integral equation eliminated entirely
the spurious resonances which were introduced by the original integral equation
near the cavity resonances of 4s/A = 2,8, 4.5, and 4.9, (The spurious solution
at 43/A = 3.5 evidently does not contribute to the back direction.) Comparison
with previous numerical results and with experimental results obtained out to
about 4s/A = 3,5 show close agreement, 5 The programs were run well beyond
the size parameter of 5 shown in Figure 3, with continued elimination of the spur-
ious resonances by the augmented equation,

51, Tsai, L.L., Dudley, D.G., and Wilton, D. R. (1974) Electromagnetic
scattering by a three-dimensional conducting rectangular box, J. Appl.
Phys, 45(10):4393-4400,
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Figure 3, Back Scattering Cross Section vs, Size Parameters for a Cube Using
the MFIE and AMFIE

Figure 4 contains the normalized backscattering cross section for a sphere
computed with the MFIE and AMFIE, In addition, the average over the surface of
the sphere of the absolute value of fi + H is plotted. The theory predicted that the
sphere is the one scatterer that retains spurious solutions (at the TE mode [re-
quencies) where i« H is zero and thus they will not be eliminated by the aug-
mented integral equation, Figure 4 conlirms this prediction numerically by show-
ing that n « H becomes nonnegligible at the TM (but not the TE) cavity mode fre-
quencies when applying the MFIE, and thus the spurious solutions at the TM fre-
quencies disappear using the AMFIE, However, the spurious solution at the one
TE cavily mode frequency between ka equal to 0 and 5 remains in the AMFIE
solution, Similar results not shown were obtained for backscattering from the
sphere using the EFIE and AEFIE, plotting the average of the absolute value of
iE- Ve !_(s/iweo instead of i . H.

Finally, backscattering from an infinite circular cylinder under planewave
incidence was also computed using the original Eqs, (21) and augmented integral
Egs, {(21) ard (22), with comparison being made with the exact eigenfunction solu-

tion, As specified in Section 4,1, the AEFIE Eqs. (21b) and (22b) were used for
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Figure 4, Back Scattering Cross Section vs, ka for a Sphere Using Original
and Augmented Integral Equations
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H, incidence, and the AMFIE Egs. (21a) and (22a) for E, incidence, As the theory

predicts, Figure 5 shows that the augmented integral equation indeed eliminates
(The integral equa-

I
3
H
%
.
¢
b3
:
X

the spurious resonances introduced by the original equations,
tion solutions deviate further from the exact one for larger ka because the cylinder
was divided into the same number of line segments throughout the range of ka.)
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Figure 5, Back Scattering Cross Section vs, ka for an Infinite Circular Cylinder
Using Original and Augmented 2-D Intergral Equations

8. CONCLUSION

In theory and numerical practice we have shown that the augmented electric
and magnetic field integral equations remove the spurious resonances from
Maue's original integral equations for all geometries except the sphere, while
preserving the simplicity, solution capability, and basic electric and magnetic
field character of the original integral equations, Effort was made to inciude
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the important derivations and to present the equations and techniques necessary k

A for solving both 3-D and 2-D problems using the augmented integral equations, ;

'f Inciuded was an alternative derivation of the augmented integral equations from fz;
e the extended boundary equations, 2
3& The principal area (self patch) dependence of the original EFIE and the aug- %
; mented integral equations was determined explicitly for an arbitrarily shaped
limiting principal area, and alternative forms for the integral equations were pre- 5
; sented that avoid integrals dependent upon the geometry of the principal area, }%
'3 Implicit in the theory leading to the augmented equations is a method for é
‘ determining in numerical practice if the original integral equations are encounter- .
;5 ing a spurious solution; namely by monitoring the average lﬁ . fﬂ for the MFIE §
: : and |ﬁ - E- Vg -l'{-s/iweol for the EFIE on the surface of the scatterer, and "fz
i noting if they exceed a present threshold,
; Some closing suggestions for continued work may be in order, In Section 4.2 j
5; we specified how the augmented integral equations should be applied, in general, 5
f to bodies of revolution, To date this procedure enabling the avoidance of certain %
" spurious rotationally symmetric solutions has not been tested numerically, Nor %
f ' has numerical experimentation with the augmented equations been done to decide z
how close the shape of the scatterer can approach the sphere before the TE spher- (
ical mode spurious resonances appreciably contaminate the solution in numerical ;
: : practice,

‘ The integral Eqs. (26), (27), and (28) holding for arbitrary principal areas

and the alternate Eqs, (31), (32), and (33) independent of principal area hold

promise for more accurate numerical solutions, They also remain to be pro-

T

grammed,
Surface integral equations applied to homogeneous dielectric problems have

also encountered spurious solutions, Although it seems likely that a similar
augmentation could be applied to these dielectric integral equations to eliminate
their spurious resonances as well, we have not performed such an investigation,
Finally, in the time domain electric and magnetic fleld integral equations,
the spurious solutions are also present, since an assumed exp (~iwnt) time depend-
ence converts the time domain solution to the frequency domain solution with its
accompanying homogeneous solutions or spurious resonances in the exterior
region at the discrete cavity mode frequencies Wy Fortunately, most time do-
main scattering solutions also demand zero fields before a [finite initial time, and
this initial condition reduces the effect of the discrete spurious resonant frequency
spectrum to zero, A simple proof of this result consists in dividing the exterior

0N B 1 ok A AR o ek At #

52, Wu, T.K. and Tsai, L.L., (1977) Scattering by arbitrarily cross-sectioned
layered lossy dielectric cylinders, IEEE Trans, Antennas Propagat.
AP-25(4):518-524,

ORI

38




Downloaded from httﬁ?//www.everyspec.com b

L

solution to the time-domain integral equations intv a particular solution, which
does not involve the spurious exp (tiw t) solutions, plus an infinite sum of the homo-
geneous exp (:tiwnt) solutions, If the total and particular solutions are specified
zero before a given time, the homogeneous solution must also be zero before this
given time, Since the individual exp (iiwnt) homogeneous solutions are linearly
independent, this implies that their coefficients must all be zero, ¥For the interior
region the same argument applies except that in the interior cavity the particular
time-domain sclution is also expressible in terms of exp (d:iwnt) cavity mode solu-
tions for time greater than the given initial time. In brief, then, for the time-
domain surface integral equations, causality implies uniqueness of solution for both
the interior and exterior regions, and no augmentation is necessary,
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Appendix A

‘, : Uniqueness Theorem for the Augmented Integral Equations
3 i The exterior augmented electric and magnetic field integral Eqs. (14) and

E (15) have spurious solutions if and only if the interior boundary value problem

‘ i Eq. (16) has nontrivial solutions, We investigate this boundary value problem by
" choosing an orthogonal curvilincar coordinate system with one coordinate (n)

E chosen along the normals to S and the remaining two tantential coordinates (vl, v2)
’ j chosen along the lines of curvature [contained in Van Bladel, 50 App. 2], The
coordinates (vl, Vo ‘3 = n) have metrical coefficients hl' h2, fmd h3,= hn =1, )
The vector function F satisfying Eq, (16) has components Fl,'ul, F2u2, and F;n
\ 3 in this coordinate system,

Sy
g

First, we show that Eq., (16) implies Fn will be zero everywhere within the
cavity not just on the surface S, Represent the surface S as the himit of many flat
surface patches, In the narrow cylinder formed by the projection of each patch
along its normal, Fn will equal a rectangular component of field (called Fx) satis-
fying Eq, (16a) and will thus satisfy the scalar wave equation

vsz + k2Fx 0 . (A1)

Moreover Eq. (16a) demands F,=0on this patch; and because v+ F equals zero,
oF

<r,}{—’-‘- = 0 on this patch as well.

Solving Eq. (A1) by separation of variables in the narrow cylinder about the
normal axis produces the following 1-dimensional problem
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.‘3_2[_+ 02f=0 , (A23a)
dx
£, 9 .0 forx=0 , thatison$ (A2b, c)
VI C or X = . at is on . y C

which has only the trivial solution [ = 0; that is, Fx = Fn = 0 everywhere along the
normal direction x = n, Since x can be the normal to any small surface patch,
Eq. (16) implies Fn = 0 throughout the cavity, Thus the boundary value problem
Eq. (16) is reduced to

vx vxF, -kF, =0 (A3a)
F,=0 onS . (A3Db)

The normal component of Eq. (A3a) can be written formally as
(v XV sz)n = 0, With the help of Eqs. (18), (19), (21), (22), and (16) of
Van Bladel (Appendix 2), 5 and Vg F’S = 0, this normal component converts to

(VP Xv X Fs)n = Vg [D(Flul - F2u2)] =0

or simply

D(v, - KS) +v DA =0 (Ada)
where

A_ = F, - Fih, , (A4b)

8 11 272

and D is the difference of the reciprocals of the principle radii of curvature;
that is,

1 1
D = H_z_ - RT . (Adc)
Of course, since Vv « -IFS = 0, F, and F, are related further by

Vg (Flﬁ1 + F2ﬁ2) =0 (A4d)
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Equation (A4a) is quite a stringent restriction, which emerges from the

SICSFPOL N T £ V-2

property that Fn = 0, and must hold throughout the cavity, The quautities Ks and
Vs Ks in Eq. (A4a) depend only on the fields and thus have functional dependence

determined chiefly by the Maxwellian partial differential Eq. (A3a); whereas D
and VsD in Eq. (A4a) depend solely on the geometry of S, Consequently, we con-

5 el

clude that Eq, (A4a) can hold throughout the cavity only if each term is zero

At o,

separately, In view of Eqs, (A4b) and (A4d), each term in Eq. (A4a) is zero
separately only if

1. F, and F, are both nonzero and D is zero, i
4 2. F2 is zero and %g— is zero, H
3 1 |

(The case, F1 and g—\%—being zero, is redundant because whichever tangential

curvilinear coordinate is labelled v, and v, is irrelevant,) :
Case 1 above holds only if the principal radii of curvature are equal over the

surface S, and case 2, only if Rl and Rz do not depend on vy that ic, depend only

on one tangential curvilinear coordinate v, of the surface, The former case holds

only for a sphere (Eisenhari45), and we prove next that the latter case implies

also that the four undamental magnitudes of the surface S also depend only on

this one tangential curvilinear coordinate,
Consider the Mainardi~Codazzi relations of differential geometry describing

the surface S [Eisenhart, p.157, Eqs. (14)] 45

ol. _ 1 L N\ 90E
v, "3 (ﬁ*@) 3, (A5a)
where E = h2 G = h2 E. R, and G . R R, and R, are not functions of v
1 2 L. 1 N 2° 1 2 v
3 N :
so 0, or )
5'{71' (G'
3
g"l’if - g.%_ =0 . (A6) 5

Eqs. (A6) and (A5b) are compatible if either E/L. = G/N, or if G and thus N are
independent of Vye The first condition (Rl = R2) holds only for a sphere which has
already been discovered.
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4
‘ Taking a/av._,_ of the equation L,/E = 1/R1 gives
B 3L _ L 9E 9 i
- v, Ev,F o, <17;> an
'” which combines with Eq. (A5a) to give in turn,
4 OE
e — = a,(v,) E (A8a)
i« 57_2- 172
e
Ay,
or
i or
E = a4(v2)b2(v1) (A9a)
and thus
E a4(v2)

T e A o e e et e A R YL e St e 2 S NS T MM T I P, - AT

Because E and L have the same functional dependence on vy, we can merely
redeline the vy curvilinear coordinate as

v'l =f /bz(vl) dvy (A10)

to make E!' and L' independent of v'l.
In other words, we have proven that if the principal radii of curvature of a
surface are independent of one tangential curvilinear coordinate, then the four

fundameutal magnetides defining the surface are (or can be made) independent of
the same curvilinear coordinate. That is, the only geometries for which Eq. (16)

ki
TarT 6

has nontrivial solutions are the sphere and surfaces described by one curvilinear
coordinate. As evidenced by Section 2 and Eq. (A4a), the fields satisfying
Eq. (16) on these latter surfaces must also depend only on this one curvilinear
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coordinate. Koshlyakov et al (p. 591)Al also remark that these are the only con-
ditions under which the electromagnetic field can be represented by means of two
scalar functions; for example, divide into TM and TE modes with respect to the
normal direction inside a cavity,

It will enable our application of the augmented integral equations to bodies
of revolution and infinite cylinders to write down the cavity fields when they and
the geometry depend on one curvilinear coordinate, In that case Eq, (16), or
more specifically, Eq. (A3) simplify greatly to the following expressions for the
electromagnetic field inside the perfectly electrically conducting cavity, Assoc-
iating F in Eq. (A3) with the electric field E, and letting q = hlEl' yields for the
other components of field

E2 =0 , En =0 , H1 =0 ,
2 “"“051 an '’ n 1wu05152 8V2 '

with q satisfying the partial differential equation

h h
9 1 9q ) 2 8q 2 2 -
ﬁ;(ﬁ?@ﬁ;>+ﬁ'(lx'{ﬁ>+k}?{q"°' (A12)

Note that for infinite cylinders, h1 = 1, and Eq. (A12) reduces to the familiar 2-D
scalar wave equation

9
viq+ K%q =0 . (A13)

We still must answer the question of what shape surfaces have their funda-
mental magnitudes dependent on just one tangential curvilinear coordinate.
Fortunately, there is a theorem of differential geometry (Eisenhart; problem 23,
p. 188 and p, 47545), which says that all such surfaces must be helicoids, surfaces
generated by a curve which is rotated about a fixed straight line as axis, and at
the same time translated in the direction of the axis with a velocity proportional
to the velocity of rotation. (The theorem is proven using the Mainardi-Codazzi
and Gauss equations,) Bodies of revolution are the only finite helicoids, and
infinite cylinders are the only infinite helicoids which are solvable numerically
by the surface integral equations, (Infinite helicoids in the shape of periodic

Al. Koshlyakov, N,S.,, Smirnov, M. M., and Gliner, E.B. (1964) Differential
Equations of Mathematical Physics, Ch, 24, North-Holland,” Amsterdam
(Interscience, New York).
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twisted ropes or tubes have currents which vary to infinity and thus are not solv-
able numerically by the surface integral equations unless special techniques are
used to accommodate the variation to infinity,)

In summary then, both augmented integral Egs, (14) and (13) eliminate the
spurious resonances from all geometries except bodies of revolution and infinite
cylinders, For finite bodies of revolution including the sphere (because its
resonant frequencies are independent of the ¢ variation of the modes) spurious
solutions remain only at the frequencies where Eq. (A11) has solutions with vy
equal to ¢, the axial rotation angle. For infinite cylinders except the circular
one, spurious solutions remain only at the frequencies where Eq. (All) has solu-
tions with v, =2 the axis of the cylinder, For the infinite circular cylinder,
which is also a hody of revolution, spurious solutions remain with vy ® ¢ as
well, Moreover, Eq. (All) along with the results of Section 2, and remembering
the special case of the sphere, reveal that the spurious Ks in the AEFIE (or
n x E on S in the AMFIE) must be in the z-direction for infinite cylinders ( except
the circular one), and in the &, -direction but not varying with ¢ for finite bodies
of revolution (except the sphere), This observation allows us in Section 4 to
eliminate the remaining spurious resonances from all infinite cylinders and
bodies of revolution, except the sphere, using the augmented integral equations.
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Appendix B

Sufficiency of Eq. (9)

Section 2 showed that the MFIE Eq. (2) and associated fields Eqs, (3a) and
(3b) in an exterior region implied Eq. (9)., Here we want to show the converse:
All solutions (1 X E) on S to Eq. (9) are valid solutions to Eq, (2a) with K, from
Eq. (2), Equivalently we want to prove that any nontrivial solutions to Eq. (9)
and homogeneous solutions Eq. (2) obey Eq. (3a); or specifically that (n X E) on S
obtained from Eq. (9) plus !_Csh obtamed from

= h 1 - = h
KS “IF nxéKs X V'¢ dS! (B1)
S

0=

0O =

satisfies Eq. (3a) on S,
Define a vector A by the integral

A= Zl'i f Ksh Xv'¢dS' , T insideS (B2)
S

and note that

UXUXA -KE=0 (B3a)
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and from Eqgs. (Bl) and (6)

- %
nXA=0 , TS . (B3b) é
:
. B
,' ; Now the (i X E) on S in Eq, (9) was shown to be equivalent to the (n Xf)'m) on$S 5
kb in Eqs, (11), Consequently, comparison of Eqs. (B3) and (11) shows that §
i F-= -I:I'm (except for arbitrary multiplicative constants), Thus from Eq. (11b) Q
s .
“ ]
s
o R - i
3 ~ L T AU . .nX (v X 4) H
. MXE) o= {@x Eons® -_{U'e';_— (B4) §
b ]
or, upon substitution of & from Eq. (B2) into Eq, (B4), and letting T — §,
4 ;
43 ,
e

n = -n 27 e ' '
(n Xmon g* m?: X ¢ {k Ks¢ - (Vs . KS)V ¢} ds' . (B5)
S

Szt
IR

S

Since Eq. (BS5) is identical to Eq. (3a) whenT ~ S, we have proven that all solu-
tions to Eq, (9) satisfy Eq, (3) for the surface currents Es obtained from the
exterior MFIE, The converse was proven in Section 2,1, 2,
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48 provided to ESD Program Offices (P0s) and other ESD
elements. The princdipal technical mission areas are
communications, electromagnetic guldance and controf, sur-
vedllance of ground and aerospace objects, dintelligence data
collection and handling, {nformation system technology,
L{onospheric propagation, solid state sciences, microwave
physics and electronic neliability, maintainability and
compatibility.
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