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Augmented Electric and Magnetic-Field
Integral Equations

1. INTRODUCTION

In 1949 Maue I derived the following two alternative integral equations for
the surface current density excited by arbitrary harmonic fields incident upon a

perfect electric conductor in free space:

n X E in c -- &o [k 2 K( '')- IVs Ks)v-01 dS' (1)

0 S

nXHn c  2 T n X Rs!(71) X ' dS' . (2)

S

(Strictly speaking, Eq. (1) is an integro-differential equation because it involves
the divergence of Ks as well as Ks. However, because the divergence of Rs lies
under the integral sign and because it is possible to recast Eq. (1) in a form
involving only Ks [but involving the highly singular operator VVI it will be referred

(Received for publication 2 March 1981)
1. Maue, A. W. (1949) On the formulation of a general scattering problem by

means of an integral equation, Zeitschrift fur Physik 126(7):601-618.
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... 2to simply as an integr I equation. Also, Maue and recently Kisliuk and Gozani

have pointed out that the MFIE Eq. (2) was presented without derivation by Fock3

in 1946. ) In these two equations, which are popularly referred to as the electric

field integral equation (EFIE) and the magnetic field integral equation (MFIE)
4-respectively, K s is the unknown surface current density, 4(F,-r) is the free

space scalar Greents function exp (iklF' - *F)/IF' - Fl, Einc and Hinc are the

given electric and magnetic incident fields in the absence of the conductor, and F

is the position vector to any nonedge point on the closed regular surface S5 of the

conducting body, with the unit normal n to S at F in a direction away from the in-

terior region. As usual, c 0 denotes the free space permittivity and k the free

space propagation constant (equals w/c where c is the speed of light); exp (-iot)

time dependence (with real o) has been suppressed and the International System of

Units (mksA) is used throughout. The surface integrations in Eqs. (1) and (2) are

evaluated by excluding the singular point, Ft = F, of the integrand by a circular
"principal area" of diameter 6 centered on F and letting 6 approach zero. (In

Sections 5 and 6 we generalize the integral equations to allow for arbitrarily

shaped principal areas or self patches.)

The integral Eqs. (1) and (2) hold for both exterior and interior regions, with

the only explicit change occurring in the sign of the Ks/2 term of Eq. (2)-the

positive sign applying for exterior (scattering or radiating) problems and the

negative sign for interior (cavity) problems. An additional implicit change occurs,

of course, in terms of the incident fields. The incident fields for the scatterer

are generated by sources applied outside S; those for the cavity are generated by

sources inside S.

Maue 1 noted two major difficulties with the integral equations: nonuniqueness

of the exterior solution at interior or cavity resonant frequencies, and conditional

convergence of the EFIE integral.

When applied to an exterior region, both Eqs. (1) and (2) fail to yield a unique

solution for KS at frequencies equal to the resonant frequencies of the correspond-

ing interior cavity-even though the exterior solution to Maxwell's equations plus

boundary and radiation conditions for a perfectly conducting scatterer exists

2. Kisliuk, M. and Gozani, J. (1980) An alternate formulation of Maue's integral
equation, Digest of URSI Sympos;um on EM Waves, Munich, 122B/1-2.

3. Fock, V. (1946) The distribution of currents induc,-d by a plane wave on the
surface of a conductor, J. of Phys. 10(2):130-136.

4. Poggio, A.J. and Miller, E. K. (1973) Integral equation solutions of three-
dimensional scattering problems, Computer Techniques for Electro-
magnetics, R. Mittra, ed., Pergamon, New York, pp. 159-264.

5. Kellogg, 0. D. (1929) Foundations of Potential Theory, Stringer-Verlag,
New York, p. 112.
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uniquely. 6 (The solution to Eqs. (1) and (2) in an interior region enclosed by a

perfect conductor also becomes nonunique at the cavity frequencies, but it can

be shown (see Section 2 below) that the homogeneous solutions respunsible for

the nonuniqueness in the interior region are simply the proper cavity mode solu-

tions exhibited by Maxwell's equations plus boundary conditions at the resonant

frequencies).

Ever since the first numerical solutions were programmed using Eqs. (1)

and (2) for both 2-dimensional (2-D)7 and 3-dimensional (3-D) problems 8,9,

these spurious solutions in the exterior region at the interior resonant frequen-

cies have interfered with the useful application of the integral equations.

Although, in principle, the spurious solutions occur only at exactly the resonant

frequencies, in numerical practice the solution to both the EFIE and MFIE for

Rs deviates (coefficient matrices become ill-conditioned) within a significant

bandwidth about (or near) the resonant frequencies and imitates a valid resonant
phenomenon. 7, 8, 9, 10, 11, 12 Consequently, the solution for the fields and, in

particular, the far fields computed fro. KS become spurious in a bandwidth about

the resonant frequencies for both the EFIE and MFIE, even though it can be shown

analytically that the spurious currents of the EFIE do not, in theory, radiate (see

Oshiro, 11 Mautz, 13 and Section 2). The problem accentuates at larger body

dimension to wavelength ratios because the interval betwe-r successive resonant

frequencies decreases as this ratio increases. For example, a spherical cavity

of radius "a" has 4 resonant modes between ka equal to 6 and 5 but 15 resonant

modes between ka equal to 5 and 10. Moreover, numerical filtering and

6. Saunders, W. K. (1952) On solutions of Maxwell's equations in an exterior
region, Proc. Natl. Acad. Sci. 38(4):342-348.

7. Mei, K. K. and Van Bladel0 J. G. (1963) Scattering by perfectly-conducting
rectangular cylinders, IEEE Trans. Antennas Propagat. AP-11(2):
185-192.

8. Oshiro0 F. K. (1965) Source distribution techniques for the solutions of
general elect romagnet ic scattering problems, Proc. First GISAT

MitrE Corp., 1:83-107.

9. Oshiro, F. K. and Su, C.S. (1965) A Source Distribution Technique for the
Solution of General Electromagnetic Scattering Problems, Northrop Norair
Rept. NOR 65-271.

10. Andreasen, M.G. (1964) Comments on scattering by conducting rectangular
cylinders, IEEE Trans. Antennas Prol'.a-at. AP-;2(2):235-236.

11. Oshiro, F.K., et al (1967) Calculation of Radar Cioss Section, Pt 1, Vol 1,
Air Force Tech. Rept. AFAL-TR-67-308.

12. Oshiro, F. K., Mitzner, K. M., and Locus, S.S. et al (1970) Calculation of
Radar Cross Section Pt. II Akr Force Tech. Report AFAL-TR-70-21.

13. Mautz, J. R. and Harrington, R. F. (1978) H-field, E-field, and combined-
field, solutions for conducting bodies of revolution, AEU Electronics and
Communication 32(4):159-164.
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regularization techni.ies have been shown to be inadequate to eliminate the spur-

ious resonant soluflons. 14, 15

Three basic methods have been applied successfully for eliminating the

spurious resonances from the electromagnetic exterior surface integral equation

solution. They will be referred to as the combined field, combined source, and

hybrid methods. In acoustics a fourth method, the modified Green's function

method, has also been applied to eliminate the spurious resonances by introducing

a more complicated Green's Lunction into the kernels of the integral

operators. 16, 17, 18, 19

The combined field method constructs a single integral equation by adding
Y"" (1) (multiplied by an arbitrary constant) to Eq. (2). This linear combina-

tion of the EFIE and MFIE yields an integral equation which has a unique solution

in the exterior region at all frequencies. 12,4,13 Burton and Miller 2 0 formulate

another combined field method which has been used2 1,22 to eliminate the spurious

resonances from the exterior Neumann acoustics problem. Specifically, after

noting that the normal derivative of potential is not necessarily restricted to zero

by the integral equation, they add to the double-layer integral equation a second

integral equation formed by taking the normal derivative of the extended double

layer equation. Kleinman, Roach and Angell combine, through augmentation

14. Klein, C.A. and Mittra, R. (1975) An application of the "condition number"
concept to the solution of scattering problems in the presence of the
interior resonant frequencies, IEEE Trans. Antennas Propagat.
AP-23(3):431-435; also 448-45.

15. Seidel, D. B. (1974) A new method for the detection and correction of errors
due to interior resonance for the problem of scattering from cylinders of
arbitrary cross section, M.S. Thesis, The University of Arizona.

16. Roach, G. F. (1967) On the approximate solution of elliptic seif-adjoint
boundary v lue problems, Arch. Ration. Mech. Anal. 27(',):243-254; also
(1970) 36(l):79-88.

17. Ursell, F. (1973) On th- exterior problems of acoustics, Proc. Camb. Phil.
Soc. 74(1):117-125.

18. Jones, D.S. (1974) Integral equations for the exterior acoustic problem,
Q. JI. Mech. Appl. Math. 27(l):129-142.

19. Colton, D. and Windland, W. (1976) Constructive methods for solving the
exterior Neumann problem for the reduced wave equation in a sphet ically
symmetric medium, Proc. Roy. Soc. Edin. 75A(8):97-107; also (0O7.)
SIAM J.Math-Anal. 9(5):935-942.

20. Burton, A.J. and Miller, G. F. (1971) The application of integral equation
methods to the numerical solution of some exterior boundary-value
problems, Proc. Roy. Soc. Lond., Series A, 323(1553):201-210.

21. Meyer, W. L., et al (1978) Boundary integral solutions of three dimensional
acoustic radiation problems, J. of Sound and Vibration 59(2):245-262.

22. Meyer, W. L., et al (1979) Prediction of the sound field radiation from
axisymmetric surfaces, J. Acoust. Soc. Am. 65(3):631-638.
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rather than addition, a similar supplementary integral equation to obtain unique-

ness for the exterior Dirichlet 2 3 and Robin 2 4 problems as well as the Neumann

problem. When applied to 2-D problems (infinite cylinders), the augmentation

introduced in the present paper becomes identical to using the 2-D EFIE and

MFIE simultaneously, or identical mathematically to the Kleinman and Roach2 3

augmentation for 2-D acoustic problems.

The combined source method derives an alternative integral equation to Eq. (1)

which expresses the electric field in terms of ficticious electric and magnetic sur-

face currents. The ficticious magnetic current is specified as equal to a constant

times n X the ficticious electric current; and the resulting integral equation is25-33
shown to have a unique solution in the exterior region at all frequencies.

When certain multiplicative constants are chosen, the combined source and com-

bined field integral operators become the adjoint of each other. 25

23. Kleinman, R. E. and Roach, G. F. (1974) Boundary integral equations for the
three-dimensional Helmholtz equation, SIAM Review 16(2):214-236.

24. Angell, T.S. and Kleinman, R. E. (1980) Boundary integral equations for the
Helmholtz equation; the third boundary value problem, Applied Math. Inst.
Tech. Report 73A, Univ. of Delaware, Newark, Delaware.

25. Mautz, J. R. and Harrington, R. F. (1979) A combined-source solution for
radiation and scattering from a perfectly conducting body, IEEE Trans.
Antenna Propagat. AP-27(4):445-454.

26. Brakhage, H. and Werner, P. (1965) Uber das Dirichletsche Aussenraum-
problem fxir die Helmholtzsche Schwingungsgleichung, Arch. Math.
16(415):325-329.

27. Greenspan, D., and Werner, P. (1966) A numerical method for the exterior
Dirichlet problem for the reduced wave equation, Arch. Ration. Mech.
Anal. 23(4):288-316.

28. Kussmaul, R., and Werner, P. (1968) Fehlerabschatzungen fMr ein
numerisches Verfahren zur Auflosung Linearer Integralgleichungen mit
Schwachsingulaten Kernen, Computing (Arch. Elektron. Rechnen) 3(l):
22-46.

29. Kussmaul, R. (1969) Ein Numerisches Verfahren zur Losung des Neumann-
schen Aussenraumaufgabe fur die Helmholtzsche Schwingungsgleichung,

Ibid.. 4(3):246-273.

30. Panic, 0.1. (1965) On the solubility of exterior boundary value problems for
the wave equation and for a system of Maxwell's equations, Uspehi Mat.
Nauk 20(1):221-226.

31. Bolomey, J. C. and Tabbara, W. (1973) Numerical aspects on couoling
between complementary boundary value problems, IEEE Trans. Antenna
Propagat. AP-21(3):356-363.

32. Knauff, W. and Kress, R. (1979) On the exterior boundary-value problem
for the time-harmonic Maxwell equations, J. Math. Anal. Appl. 72(1):
215-235.

33. Schenck, H.A. (1967) Improved integral formulation for acoustic radiation
problems, J. Acoust. Soc. Am. 44(1):41-58.
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The hybrid method, sometimes referred to as the method of Schenck, who
used the scheme for the analogous acoustic integral equations, 33 supplements

either Eq. (1) or (2) when applied in an exterior region with its corresponding
"extended integral equation" which holds throughout the interior region. 3 4 ' 35,36

It the extended integral equation is satisfied at a limited number of judiciously

chosen interior points, the spurious resonant solutions will be suppressed in the

EFIE and MFIE solution. 14 , 15, 37 It should be mentioned that the extended inte-

gral equations alone satisfied within the interior region produce a unique solution

and have been applied separately to solve both electromagnetic 3 5 and acoustic 3 8 ' 3 9

problems. The idea of the hybrid approach, however, is to use the extended inte-

gral equations in a limited fashion to overdetermine the surface integral equations

sufficiently to reject the spurious resonances from their exterior solutions.

Certain disadvantages accompany each of the basic methods which have been
used to eliminate the spurious resonances. Some of these have been discussed in

the papers by Jones 1 8 ,36 and Mautz and Harrington. 13, 25

In applying the hybrid method one has no reliable criterion for selecting the

number and position of interior points at which the extended integral equations

must be satisfied to assure convergence to the correct unique solution for the
exterior EFIE and MFIE at all frequencies, * Moreover, because the extended
integral equations are 3-component equations, unlike the 2-component surface
EFIE and MFIE, there remains an uncertainty as to what components of the ex-

tended integral equations should be utilized.

*For the acoustics problem Jones 18 has devised an alternative hybrid approach

which suggests a systematic way of choosing the interior points. Recently, for
2-dimensional, scalar EM problems, Morita has also applied "some lower order
equations of the extended boundary coniition method" to help remove the arbitrar..
iness in choosing the interior points. 40

34. Stratton, J.A. (1941) Electromagnetic Theory, Sec. 8-14, McGraw-Hill,
New York.

35. Waterman, P.C. (1965) Matrix formulation of electromagnetic scattering,
Proc. IEEE 53(8):805-812.

36. Jones, D.S. (1974) Numerical methods for antenna problems, Proc. IEE
121 (7):573 -582.

37. Morita, N. (1978) Surface integral representations for electromagnetic scat-
tering from dielectric cylinders, IEEE Trans. Antennas Propagat.
AP-26(2):261-266.

38. Waterman, P.C. (1968) New formulation of acoustic scattering, J. Acoust.
Soc. Am. 45(5):1417-1429.

39. Copley, L.G. (1967) Integral equation method for radiation from vibrating
bodies, J. Acoust. Soc. Am. 41(4):807-816; also (1968) 44(l):28-32.

40. Morita, N. (1979) Resonant solutions involved in the integral equation
approach to scattering from conducting and dielectric cylinders,
IEEE Trans. Antennas Propagat. AP-27(6):869-871.
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The combined field and combined source equations each present a unique solu-

tion to the exterior problem at all frequencies but at a substantial increase in com-

plexity and programming over the original EFIE and MFIE. (Matrix fill time also

increases but this is inconsequential for most scattering problems where matrix

inversion time eventually dominates matrix fill time.) The increased complexity

is especially pronounced in contrast to the MFIE which involves only Ks, Hc

, and conforms well to efficient, straightforward point matching or "subsectional

collocation" 4 moment methods of solution. The combined field and combined source

integrals involve all the operators present in both the EFIE and NIFIE as well as

the derivatives of Rs present in the EFIE which is not as receptive as the MIFIE

to an accurate solution by the simpler numerical techniques. The combined field

equation demands input of the incident (or impressed) electric and magnetic fields,

and thus becomes inconvenient for antenna or aperture problems which specify

only the impressed electric field. The combined source equation requires only

the incident electric field but yields a solution in terms of ficticious surface cur-

rents. To obtain the actual surface currents and fields, an indirect computation

of A X H must be performed at a sacrifice of simplicity and computer time. 25

The primary objective of this paper is to augment the EFIE and MFIE sepa-

rately to eliminate the spurious resonant solutions from the exterior regton with-

out sacrificing the basic simplicity, solution capability, and pure electric and

magnetic field character of the original two equations. To accomplish this we

begin by revealing exactly why the EFIE and IFIE are deficient in the exterior

region, that is, why they do not yield the unique Maxwellian solution at frequencies

equal to the interior resonant frequencies. In particular, it is proven that the

electric field tangent to the scatterer is not restricted to zero by the MFIE, and

the magnetic field tangent to the scatterer is not restricted to equal K s X A in the

EFIE solution at (and only at) the interior resonant frequencies. This, in turn,

implies that A. • 1 and (fi. E - V . Ks/icwo) are not necessarily restricted to zero

by the exterior MFIE and EFIE, respectively, at the interior resonant frequencies.

Except for helicoids, which for our purposes mean bodies of revolution and

infinite cylinders, augmenting the MFIE with the equation n • f" = 0 and the EFIE

with the equation i • If = Vs • Ks/iwo is then prover to immediately remedy these

deficiencies, eliminate the spurious resonances, and compel the solution to the

augmented integral equations to equal the unique Maxwellian sQlution in the exte-

rior region for all frequencies. Moreover, the augmentation transforms the elec-

tric field integral equation from an integral equation of the first kind to an integral

equation of the second kind which, like the MFIE, is more amenable to a stable

numerical solution than the original EFIE. (Integral equations of the first kind

135.
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depend strongly upon the singular nature of their kernels for their solvability, 4

see also Jones (Sec. 5i] 36)

For finite bodies of revolution except the sphere, and for infinite cylinders,

the augmented electric and magnetic field integral equations (AEFIE, AMFIE) also

eliminate the spurious resonance solutione but only after the incident field is

divided into E z and Hz axial components and the AEFIE and AMFIE are applied

separately. (Of course, this division of incident fields and separate applications

of both integral equations is commonly done by choice when applying the original

EFIE and MFIE to the infinite cylinders.)

Thus, the sphere (which has a simple eigenfunction solution) remains the one

scatte. -r for which the augmented integral equations cannot be applied to eliminate

all the spurious resonances. This, plus the necessity to use both the augmented

electric and magnetic integral equations for bodies of revolution when the solution

for both arbitrary Ez and H z incidence is required, constitutes the main disad-

vantage of the augmented Integral equations.

Most of the preceding conclusions on the uniqueness of solution for the aug-

mented integral equations follow from a basic theorem and central result of the

paper proven in Appendix A for the electromagnetic field interior to a cavity;

namely, that Maxwell's equations inside a perfectly conducting cavity can be satis-

fied by electric modes transverse with respect to the normal to the surface of the

cavity only if the surface is a helicoid. And the only helicoids which represent

scatterers or antennas solvable directly by surface integral equations are bodies of

revolution and infinite cylinders.

A second objective of this paper is to correct the second difficulty noted by
1

Maue, that of the conditional convergence of the EFIE, a subtlety which to the

author's knowledge, has been ignored in subsequent treatments. The EFIE, unlike

the MFIE, is conditionally convergent in that the form of Eq. (1) depends critically

upon choosing a circle centered upon the singularity of the integrand as the prin-

cipal area (self patch) used when evaluating the principal value integral. A side

effect to augmenting the integral equations is to make the integral in the AMFIE

as well as the EFIE (and AEFIE) conditionally convergent with respect to the

geometry of the principal area. Thus, our second objective is actually to deter-

mine the exact dependence of the EFIE, AEFIE, and AMFIE on the geometry of

the principal area and to provide alternative forms of these three integral equations

that remain independent of the chosen principal area.

Finally, some numerical results are obtained to test the theory. First, the

MFIE and AMFIE are appli' to the problem of planewave scattering from a

41. Courant, R. and Hilbert, D. (1953) Methods of Mathematical Physics, Ch. 3,
Sec. 10. 11, Interscience, New York.

14
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perfectly conducting cube, demonstrating that the augmented equation did indeed

remove the spurious resonances which severely denigrated the original solution

beyond a cube size Parameter of about 2. 5.

The original and augmented integral equations are applied to the problem of

planewave incidence upon infinite circular cylinders for which the exact solution

is known-again demonstrating the predicted elimination of the spurious resonances

by the augmented integral equations.

Scattering from the perfectly conducting sphere is also determined numerically

using the EFIE, MFIE, and their augmented counterparts, the AEFIE and AMFIE,

with comparison being made to the exact eigenfunction (Mie) solution. The surface

values of n • H for the MFIE and ( V . E- sli K/io) for the EFIE were also mon-
itored as the frequency was changed. As the theory of Section 3 predicts, the

surface values ofn . Hand (fi . E - s. K/iw 0 ) for the MFIE and EFIE respec-

tively became nonnegligible at the TM spherical cavity frequencies where the aug-

mented integral equations eliminated the spurious resonances, but remained neg-

ligible at the TE spherical cavity frequencies where the augmented integral equa-

tions retained the spurious resonances.

In brief, the numerical results confirmed the theoretical predictions that,

except for the sphere, the augmented integral equations eliminate the spurious

resonances; and, for 3-D scatterers, require, as Section 3 explains, an insignif-
icant increase in computer programming, run time, and central memory require-

ments over that of Maue's original integral equations. For 2-D problems, the

augmented integral equation approach becomes identical mathematically to the

method of Kleinman and Roach, 23 and equivalent to the combined field method.

Many of the results contained in this report were first presented at the 1980
42International URSI Symposium on Electromagnetic waves.

2. PRECISE DETERMINATION OF WHY THE MFIE AND EFIE ALLOW
SPURIOUS SOLUTIONS

Maue provided in his original paper1 that the EFIE and MFIE (and their acous-
tic analogues) have a unique solution except at the frequencies equal to the resonant

frequencies of the interior cavity bounded by the perfectly conducting surface S.

Nonunique solutions at the resonant frequencies are, of course, present when

applying the integral equations to the interior region because Maxwell's equations

(from which the integral equations are derived) allow homogeneous solutions (the

42. Yaghjian, A.D. (1980) Augmented electric and magnetic-field integral
equations which eliminate the spurious resonances, Proceedings of the
1980 Intl. URSI. Symp., 121B/1-121B/4.
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cavity modes) at the resonant frequencies. However, for the exterior problem

Maxwell's equations with the boundary conditions and outgoing radiation condition

demand a unique solution for fields and currents scattered or radiated from a per-
6feet conductor. Thus, the homogeneous solutions to the exterior MFIE and EFIE

are spurious solutions which do not satisfy entirely the Maxwelllan boundary value

problem. (A direct way to show that these spurious homogeneous solutions exist

in the exterior region is to note that the homogeneous solutions to Eq. (1) are the

same for both the Interior and exterior problems, and that the homogeneous interior

and exterior operators of Eq. (2) are effectively adjoints of each other 4 3 ' 4 _

adjoint linear operators for an even determined set of equations having identical

real eigenvalues; that is, resonant frequencies.)

Although Maxwell's equations and boundary conditions are used to derive

Eqs. (1) and (2), it must be concluded that Eqs. (1) and (2), when applied in the

exterior region, are not equivalent to Maxwell's equations plus boundary conditions.

The initial step in eliminating the spurious resonances from the exterior problem

will therefore be to determine the basic reasons for this nonequivalence. Con-

comitantly, it will be proven that Eqs. (1) and (2) applied to the interior problem

are equivalent to the Maxwellian system even at the resonant frequencies; that is,

the only homogeneous solutions to Eqs. (1) and (2) in the interior region are indeed

the surface currents of the cavity modes.

As a preliminary to the analysis, we supply the expressions to compute the

scattered fields (E SO H s) from K s determined by Eqs. (1) and (2). For either

the interior region with all applied sources inside S, or the exterior region with

all applied sources outside S, the formal expressions are the same:

(7) = -1 I[k 2 Ks0 - (Vs • Ks)V'I dS' (3a)
se f2~o [ks (3 S)

-7 f z V S (3 b)

S

'raking the curl of Eqs. (3a) and (3b) shows that the scattered fields obey Maxwell's

homogeneous equations within their region of application. Since the incident fields

obey Maxwell's equations in free space, the total fields

43. Muller, Claus (1969) Foundations of the Mathematical Theory of Electro-
magnetic Waves, Sec. 25, Springer-Verlag, New York.

44. Marin, L. (1973) Natural-mode representation of transient scattered field,
IEEE Trans. Antennas Propagat. AP-21(6):809-818.

16

Downloaded from http://www.everyspec.com



E Esc + E inc H Hsc + H inc (4a, b)

obey Maxwell's equations within their region of application; specifically,

V X E i(4 Ro (5a)

VXiH = -i o0 E + Jnc ( 5b)

where Jinc is the incident applied current density.

Let the observation point F in Eq. (3a) approach the surface S of the conductor

from its region of validity, and convert the surface integration to a circular

principal value integration using the following formula (derived by a straightforward

integration near the singularity of 0):

jf V,1dS,-- V'dS*2vn (6)jS(*.S) s

where the +and - sign apply to the exterior and interior problem respectively.
Combining this result with Eqs. (1) and (4a) shows immediately that the EFIE solu-

tion yields zero tangential E-field on S. that is,

iXE 0 onS (for the EFIE) . (7a)

Thus, in principle, the fields (but not necessarily the surface current) deter-

mined from the solutions to the EFIE are the correct Maxwellian fields.

Similarly letting the observation point IFapproach the surface S in Eq. (3b)

reveals from Eqs. (2), (6), and (4b) that the solutions Rs to the MFIE will satisfy

Ks = ±iX H onS (for the MFIE) . (7b)

(Again the + and - signs in Eq, (7b) are associated witn the exterior and interior

regions respectively.) It is emphasized that we have not proved, however, that

the EFIE satisfies this latter boundary condition Eq. (7b), nor that the MFIE satis-

fies the former boundary condition Eq. (7a) of zero tangential E-field on S.

17
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2.1 Proof That the Surface Tangential E.Field Determined by the Exterior MFIE
is Unequal to Zero at the Interior Resonant Frequencies

Because the fields determined through Eqs. (3a) and (3b) from the Rs of Eq.

(2) satisfy Maxwell's Eqs. (5a) and (5b) in the region of application (interior or.4 34
exterior), the Stratton-Chu formulas apply; and, in particular, Eq. (20) of

Stratton-Chu 3 4 combines with Eqs. (3b) and (7b) to yield the following equation for
the electric field tangential to S:

f [k2( X - (' X E)v'41 dIS 0 (8)
S

for all F" within the region of application.

2. 1. 1 APPLICATION TO THE INTERIOR MFIE

Apply Eq. (8) to an Interior region (F inside S), let 'F approach S, use Eq. (6),
and take n X the resulting equation to get

X [k2(fi' X E  V, - (;I' X E)')'] dS' = 0 , FonS . (9)
S

Denoting the left side of Eq. (8) by P(Tr), we see that by taking the curl of Eq. (8)
twice we get

VX X F- k2 F 0 (10a)

tin the exterior as well as interior region, and from Eq. (9)

F X = 0 onS . (10b)TI In addition, T satisfies the outgoing radiation condition as r -. 0 and thus r = 0 is

is the only solution6 for all 7 outside S as well. Because F is zero both inside and

outside S, the curl of F is also zero inside and outside S. Thus, letting F - S in
the equation V X F = 0 from inside and outside, converting the resulting intgrals

to principal value integrals via Eq. (6), and subtracting the two equations yields

X E = 0 on S. Since we proved in Eq. (7b) that the boundary condition on current
• is satisfied by the MFIE, we have completed the proof that the MFIE applied to an

interior region is equivalent to Maxwell's equations and all boundary conditions,

even at the resonant frequencies of this interior region (cavity). In particular,

the homogeneous solutions to Eq. (2) (with the minus sign) are simply the proper
surface current densities of the cavity modes.
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2.1.2 APPLICATION TO THE EXTEIOR MFIE

The same method of proof does not apply in total for the MFIE applied to an

exterior region, because in that case when Eqs. (10a) and (10b) are considered for

the corresponding interior region it is found to possess a nontrivial solution at

(but only at) the cavity resonant frequencies. Thus, the above method of proof also

shows the equivalence of the exterior MFIE and the Maxwellian system except at

the cavity resonant frequencies.

We can complete the analysis for the exterior MFIE by returning to Eq. (9),

which is equivalent to Eq. (8) in the exterior region because E.i. (9) also derives

from Eq. (8) in an exterior region, and Eqs. (10a) and (10b) along with the

radiation condition can be applied to derive Eq. (8) from Eq. (9) in an exterior

region. * Moreover, Eq. (9) is merely the homogeneous EFIE with ni X E replacing

K In Section 2. 2 it is proven that the only nontrivial solutions to the homogeneous

EFIE are the cavity mode surface current densities. Moreover, Appendix B proves

that Eq. (9) is also a sufficient as well as necessary condition for fi X E, obtained

from the system of Eqs. (2) and (3a), to satisfy in the exterior region. Conse-

quently, we conclude that at and only at the resonant frequencies of the associated

cavity, the exterior MFIE is not equivalent to the Maxwellian system of equations

and boundary conditions simply because of these frequencies the exterior MFIE

allows nonzero tangential electric fields (f X E on S) equal to the surface current

densities of the interior cavity modes.

It is emphasized that it is not the spurious exterior MFIE currents, but the

spurious tangential electric fields (fi x E) which equal the cavity mode currents.

Moreover the spurious exterior MFIE eleciric currents are not equal to the effec-

tive modal electric currents (fi x magnetization) for the cavity with perfect magnetic

walls. There is a simple relationship between the modes of a perfect magnetic

cavity and the spurious MFTE solutions but it is between tangential electric fields,

that is, magnetic "currents," and not electric currents. Consider Eq. (9). Apply-

ing the same method of analysis used in Sections 2. 1, 2. 1. 1, and 2. 2, proves that
the solutions to Eq. (9) for i X 'fare the homogeneous solutions to the tangential

electric field (6 x m) on the surface of a cavity with perfectly magnetically con-

ducting walls S; that is,

VX VXIBrn 2fm o (Ila)

Em= -VX o n/iwe (lb)

To avoid confusion with the resuii3 obtained in Section 2. 1. 1 for the interior

region, note that Eq. (9) is not equivalent to Eq. (8) for the MFIE applied to the
interior region.
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nX HR - 0 onS . (11c)

There is no simple relationship between the spurious MFIE electric currents and

the fields of either the perfectly electric or magnetic cavity resonator. Mathe-

matically, the spurious MFIE current densities are simply the homogeneous solu-

tions to the exterior MFIE given by Eq. (2) with the plus sign, or equivalently,

essentially the adjoint solutions of the interior homogeneous Eq. (2) with the
minus. 43, 44

P1 ically, there is a fairly straightforward interpretation for the spurious

MFIE surface currents. In the wuill of the magnetic cavity with the solutions

obeying Eqs. (11a), (11b), and (llc) there will be a surface magnetization M at

the resonant frequencies equal to -4 X E;-i0 o on S. Now suppose the inside of

the cavity is filled with perfect electric conductor and Vs is maintained at its

original value everywhere in the magnetic wall of the cavity. A surface current

density will be excited on the surface of the electrical conductor which will reduce

the tangential electric field inside S to zero and a tangential electric field equal

to fn x 'Em will be produced on the outside of the caviy wall S. Thus, one can

interpret physically the spurious MFIE currents as the electrical surface currents

that the surface magnetization of the perfectly magnetic cavity modes would produce

if the Intvrlor cavity were filled with perfect electric conductor and the surface

magnetization maintained the same.

rhe spurious MFIE magnetic field just outside S wilf equal (as Eq. (7b) indi-

c%,es) -; x, this spurious surface current density. However, the fundamental

reason that the MFIE allows spurious currents and fields on S and therefore spuri-

ous fields throughout the exterior region is that at the cavity resonant frequencies

the MFIE does not demand that the tangential E-field (calculated from Eqs. (3a)

and (4a)) be zero as one approaches the surface S from the exterior region. In

Section 3 the spurious MFIE solutions are eliminated by forcing the tangential

E-field to equal zero even at the cavity resonant frequencies.

2.2 Proof that the Surfaev CurrentDensity Determined by the Exterior EFIE is

Unequal to the Sulace ; X H at the Interior Resonant Frequencies

Proceeding as we did in Section 2. 1 with the Stratton-Chu formulas, Eq. (19)
of Stratton crrbines with Eqs. (3a) and (7a) to derive Eqs. (8), (9), (10a), and

(10b) but with Ks  (n x H) replacing n x E. (The upper and lower sign refer to

the exterior and interior problem, respectively.) Thus the analysis of Section 2. 1. 1,

can be invoked immediately to prove the following results for the interior EFIE.
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The EFIE applied to an interior region is equivalent to Maxwell's equations and

boundary conditions, even at the resonant frequencies of this interior region

(cavity). In particular, the homogeneous solutions to Eq. (1) are simply the

proper surface current densities of the cavity modes.

For the exterior EFIE (as for the exterior MFIE), the problem of determining

uniqueness reduces to investigating the solutions to Eq. (9), specifically the homo-

geneous EFIE with M S - fi x P) as the unknown surface vector. But we just proved

that the solutions to the homogeneous EFIE were identical to the surface currents

of the resonant cavity modes. Thus, we can conclude immediately that at and only

at the resonant frequencies of the associated cavity, the exterior EFIE Is not

equivalent to the Maxwellian system of equaticns and boundary conditions simply

because at those frequencies the exterior EFIE allows nonzero (K - f x P) on S

equal to the surface current densities of the Interior cavity modes. In other words,

at the cavity resonant frequencies the tangential H-field calculated from Eqs. (3b)

and (4b) for the exterior EFIE problem will not equal s 1 fi (calculated from

Eq. ()) as the perfectly conducting surface S is approached from the exterior

region and as the Maxwellian solution demands. In principle, since the EFIE

spurious currents are identical to the cavity currents, they, unlike the MFIE

spurious currents, produce zero Y and IT fields outside S - a fact reassured by

Eq. (7a). In practice, numerical inaccuracies associated with the ill-conditioned

matrices at the resonant frequencies contaminate Ihe exterior fields with spurious

solutions as well. In Section 3 we show how the spurious EFIE currents can be

eliminated In principle and practice by forcing them equal to their associated zero

i x f" fields just outside S.

3. AUGMENTING THE MFIE AND EFIE TO YIELD THE UNIQUE EXTERIOR
SOLUTION AT ALL FREQUENCIES

Answering the question in Section 2 of exactly why the exterior integral equa-

tions allow spurious solutions at the eigenfrequencies of the cavity leads one quite

naturally to a method of eliminating these unwanted solutions. First consider the

exterior MFIE. At the internal resonant frequencies the E-field tangential to S

calculated from the MFIE surface currents are not zero; it follows that the H-field

normal to S will not necessarily be zero. Thus, we immediately consider augment-

ing the exterior MFIE with the equation

n.FO0 onS (12a)
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to hopefully eliminate its spurious resonances. By a similar argument we conclude

that the exterior EFIE should be augmented by demanding that the normal compo-

nent of cOR on S equal the surface charge density; that is,

n . -V . Rs/*t o - = G on S (12b)

in hopes of forcing 1K equal to n X H on S for all frequencies and thus eliminating

its spurious resonances. Note that the auxiliary boundary conditions Eqs. (12a)

and (12b) are equ.valent to Vs  (X R) -0 and Vs - (fix R - R,) = 0 on S,
respectively.

T1,e boundary conditions Eqs. (12a) and (12b) are written in terms of incident

and scattered fields by substituting from Eqs. (3a), (3b), (4a), and (4b), to obtain

n'l'lcr} ' sX V'O dS' (13a)

S

. k - • + V (13b)
Inc "fTWC° s

If the original exterior integral Eqs. (1) and (2) are now augmented with Eqs. (12a)

and (12b) by adding Eq. (13b) to Eq. (1) and Eq. (13a) to Eq. (2), we obtain the
"augmented" exterior electric and magnetic field integral equations (AEFIE and
AMFIE):

E 7.) r ( ( _k -(Vs, . Ks)V'l dS' + S so (14)

inL 4ffiwe 0  2iWC0

inc 2

S

Note that Eq. (1) and Eq. (2) in the exterior region are reclaimed by taking fi x
Eq. (14) and Eq. (15), respectively. Also, the augmentation has transformed the
EFIE from an integral equation of the first kind to an integral equation of the

second kind, which, like the MFIE is more amenable to a stable numerical solu-

tion. (Integral equations of the first kind, unlike those of the second kind, depend

strongly on the singular nature of their kernels for their solvability (Courant 4 1

36
and Jones, Section 5iJ.)
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Before leaving this section, we point out that Eqs. (12a) and (12b) can be ob-

tained by taking the surface divergence (Vh) of Eqs. (1) and (2), respectively.

Thus, the AMFIE Eq. (15) is simply the original MFIE Eq. (2) augmented with

V , the original EFIE Eq. (1); the AEFIE Eq. (14) is simply the original EFIE

Eq. (1) augmented with Vh. the original MFIE Eq. (2). Alternatively, the aug-

mented integral Eqs. (14) and (15) derive directly from the corresponding extended

integral equations by letting the observation point F approach the surface S from
the interior region (see Section 3. 2).

3.1 Uniquenem of Solution for the Augmented Integral Equations

The augmented integral Eqs. (14) and (15) are very similar in form to the
original Eqs. (1) and (2) and require, as Section 3.3 explains, very little increase
in programming complexity, or computer run time and central memory. However,
they provide no advantage unless we prove they eliminate the spurious resonance

solutions.
As a first step in this proof, repeat the analysis of Section 2 using Eqs. (14)

and (1.5) instead of Eqs. (1) and (2) in the exterior region, noted from Eqs. (12a)
and (12b), which are derivable from Eqs. (14), (15). (3a). and (3b), that the

Vs * (A X R) and Vs * ( x IT - Ks) terms are zero. This procedure shows that
both Eqs. (14) and (15) have spurious solutions if and only if the following system
of equations have a nontrivial solution:

VXVXF-k 2F 0 inside S (16a)

F0 onS . (16b)

In other words, Eqs. (Ia) and (16b) indicate that the AEFIE Eq. (14) and the

AMFIE Eq. (15) eliminate the spurious resonances from the exterior scattering or
radiating problem unless a cavity resonant mode has zero normal field as well as
7-ro tangential field on S.

At first thought one might expect that Eqs. (16a) and (16b) possess no non-
trivial solutions because the cavity modes at the eigenfrequencies are the only
solutions to Eqs. (16a) and (16b) even before the normal component of r is speci-
fied zero on the boundary S. However, the counterexample of a sphere shows that
there exists at least one shape of cavity S for which some of the cavity modes sat-
isfy Eqs. (16a) and (16b). Specifically, the TE modes of a perfectly electrically
conducting spherical cavity resonator have zero normal as well as tangential E-field
on the surface S. Thus, we know immediately that for a sphere Eqs. (14) and (15)
will eliminate the spurious solutions only at the frequencies of the TM (but not the
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TE) resonant modes. Fortunately, it may not be critical that the spherical scat-
terer be solved by the integral equation approach because it is the one 3-D geom-

etry that has a simple eigenfunction solution, the familiar Mie solution. Thus, we
remain undaunted by this one counterexample and ask if there are any shapes S

besides the sphere for which solutions to Eqs. (16a) and (16b) exist.

Appendix A answers this question and thereby performs the proof of the cen-
tral result of this paper: Except for the TE modes of the sphere, the augmented

electric and magnetic field integral Eqs. (14) and (15), eliminate the spurious
resonances and yield the unique solution to Maxwell's equations and boundary con-

4ditions in the exterior region at all frequencies. For bodies of revolution (other

than the sphere) and for infinite cylinders, the theorem holds but requires a special

procedure explained in Section 4.

This crucial proof detailed in Appendix A begins by expressing Eqs. (16a) and

(16b) in orthogonal curvilinear coordinates formed by the family of surfaces parallel
to S and the two families of surfaces generated by the normals to S along the lines

of curvature. It is shown that Eqs. (16a) and (16b) can be satisfied if and only if
the associated PEC solution can have TE modes with respect to the normal direc-
tion, and that this is possible if and only if either: 1) the principal radii of curva-

ture of S are equal for all points on S, or 2) the principal radii of curvature and
the fields depend only on one tangential curvilinear coordinate. The equations of

Malnardi-Codazzi and Gauss 4 5 for the fundamental magnitudes of the surface S are
then invoked to prove that case I holds only for the sphere and case 2 only for heli-
colds which, for our purposes, means bodies of revolution or infinite cylinders.

Finally, Section 4 shows that, except for the sphere, these latter two geometries
can also be solved by the augmented integral equations without introducing spurious

resonances. This is accomplished by applying the A EFIE Eq. (14) or the MFIE

Eq. (15) separately to the appropriate component. (This division is commonly
made when solving infinite cylinder problems using the original integral equations
as well. )

3.2 Derivation of the Augmented Integral Equations from Extended Integral
Equations

The augmented Eqs. (14) and (15) can be derived directly from the electric and

magnetic extended integral equations. The following form of these extended equa-
tions convenient for this derivation is obtained directly by applying the Stratton-Chu

formulas to the exterior surface currents (K (Fr) = fi X I'(F'), F' -. S from outside S)
and mathematically choosing the observation point F inside S:

45. Eisenhart, L. P. (1909) A Treatise on the Differential Geometry of Curves
and Surfaces, Ginn, Boston.
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-. ~ Mo ,4 ' -- -

'fine(F)j I [k 2K (F')o (VS, RT )V'OI dS' (17)
S

P KlF') X v'l dS' (18)
S

Allowing 7F to approach S in Eqs. (17) and (18), and converting the sui'face integra-

tions to circular principal area integrations via Eq. (6), immediately produces the

augmented surface integral Eqs. (14) and (15)., 35
Waterman's technique involves applying a version of Eqs. (17) or (18) to a

subvolume within S. Copley 3 9 raises the question of whether the acoustic equa-
tions corresponding to Eqs. (17) or (18) would produce a unique solution when
satisfied only over a surface S0 lying inside S. In Section 3. 1 we answered that
question for the electromagnetic case when the chosen surface So lying inside S
approaches the surface S itself.

The analysis of 3. 1 can also be applied to the extended integral Eqs. (17) and

(18) satisfied on a surface SO inside S. That is, Eqs. (17) and (18) need only be
applied for 'on a surface S inside S in order to yield the unique solution for the

surface current density Ks excited on the surface S of the scatterer (provided, as
4explained in Section 3. 1. that S is not a sphere, and that for bodies of revolution

0
and for infinite cylinders the appropriate integral equation be applied separately to
E z and H z incident fields). No attempt has been made to program Eqs. (17) or
(18) for 7on any surface SO other than S, where Eqs. (17) and (18) become equal to
the augmented Eqs. (14) and (15), respectively. Intuitively, it is expected that
accurate numerical results would be obtained from Eqs. (17) or (18) applied to F'
on S0 only if S were chosen fairly close to S.

0 0 2Lastly, we point out that Kisliuk and Gozani have recently derived an alternate
and equivalent version of the AMFIE Eq. (15) which holds for Fjust outside S.

3.3 Efficient Solution of the Augmented Integral Equations

The same numerical techniques used to solve Maue's original integral Eqs.
(1) and (2) could be applied directly to the augmented Eqs. (14) and (15) if it were

not for one difficulty. The augmented Eqs. (14) and (15) are overdetermlned.

There are three scalar components to each of the equations but only two unknown

components of surface current Is . Fortunately, because we have been able to
prove that the augmented integral equations poss js a unique solution at all
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frequencies (under the above stated conditions), an elegant theorem of linear alge-
46

bra allows us to solve Eqs. (14) or (15) by simply multiplying the set of equations

by the Hermitian conjugate of its coefficient matrix, and then solving the resulting

evendetermined Hermitian set of equations. This procedure is a standard means

for finding the least squares solution to an overdetermined set of equations. It
46

becomes an especially powerful tool for our purposes because of the theorem4 ,

which says that when the overdetermined set can be proven to have a unique solu-

tion, the least squares solution becomes identical to this unique solution.

Direct inversion of the resulting Hermitian matrix does have the drawback47
that its -onditioning is worse than the original matrix. Alternative solution
tecLh:ii_-. to avoid this degradation in matrix conditioning have been devised,

but no attempt was made nor was it found necessary to incorporate them in the
straightforward, unsophisticated numerical solutions used to test the theory of the

present report.

Specifically, suppose a 3-D surface S is divided into p patches and Eqs. (14)

or (15) has been reduced by the method of moments or some similar numerical

solution technique to the set of linear equations,

CmnXn  m  (19)

where n = 1, 2, ... 2p, m = 1, 2, ... 3p and summation over repeated indices is

understood. (The original integral Eqs. (1) and (2) are contained in Eq. (19) for

n, m = 1, 2, ... 2p.) Multiplying Eq. (19) by the Hermitian conjugate of the

coefficient matrix converts the overdetermined 3p X 2p set of equations to the

evendetermined 2p X 2p set,

C Cm I Xn = C* bm * (20)[1 mCmn] n ml M

Equation (20) can then be solved by any one of the readily available matrix inversion

or solution algorithms. Equivalently, Eq. (19) can be solved directly by any one

of the many least squares solution algorithms that are also readily available.

Equations (19) and (20) reveal that the solving of the augmented integral equa-

tions require two additions to the solving of the original Eqs. (1) and (2): 1) the

2p 2 extra elements of the coefficient matrix C mn for n = 2p + 1 to 3 p must be

46. Mirsky, L. (1955) An Introduction to Linear Algebra, Theorem 5. 5.4 and
Sec. 5. 5. 5, Oxford University Press.

47. Osborne, E. E. (1961) On least squares solutions of linear equations,
J. Assoc. Comp. Mach. 8:628-636.

48. Golub, G. (1965) Numerical methods for solhing linear least squares
problems, Num. Math. 7:206-216.
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computed, and 2) the Hermitian conjugate multiplication must be performed. This

means that matrix fill time and matrix storage requirements will increase by

about 50 percent; and there will be a small increase.in computer run time needed

to perform the Hermitian conjugate multiplication. The multiplication of the

Hermitian conjugate of the matrix by itself can be performed efficiently with little

increase in computer storage because the resulting matrix is Hermitian and thus

the original matrix array can be used to store successively computed elements of

the product matrix without ever requiring a second 2p x 2 p dimensioned array.

Also, the extra computer storage required by the augmented coefficient matrix

can be supplied, if necessary, from outside the central memory core because the

final matrix inversion of Eq. (20) requires the same in-core storage as the co-

4 efficient matrix of the original integral equations.

Generally, matrix inversion time rapidly dominates matrix fill time as the

electrical size of the scatterer becomes larger than a small fraction of a wave-

length. 4 However, if matrix fill time forms a significant portion of total com-

puter run time, the extra matrix fill time introduced by the augmented integral

equations can also be reduced by invoking the augmented integral equations only at

frequencies where n . H (for the MFIE) and i. E - Vs . Ks/iwco (for the EFIE)

exceed a present threshold. In short, the 3-D augmented integral equations require

an insignificant increase in computer programming, run time, and central memory

requirements over that of Maue's original integral equations.

4. AUGMENTED INTEGRAL EQUATIONS APPLIED TO INFINITE CYLINDERS
AND BODIES OF REVOLUTION

Appendix A shows that the AEFIE and AMFIE remove the spurious resonances

from all scatterers except at certain resonant freqvencies of helicoids. For prac-

tical scattering problems this is true, except at 1) the E z 2-D cavity mode fre-

quencies of infinite cylinders and 2) the frequencies of the rotationally symmetric
TE (with respect to the surface normals) cavity modes for bodies of revolution

(including the infinite circular cylinder and the sphere). This section shows how

the augmented equations can be applied to also eliminate these remaining reson-

ances from infinite cylinders and bodies of revolution, except the sphere.

4.1 Inf'mite Cylinden (2.D Problems)

The 2-D EFIE corresponding to Eq. (1) was derived in 1950 by Papas 4 9 for

an incident Ez-wave. Later Mei and Van Bladel also derived the 2-D MFIE

49. Papas, C. H. (1950) Diffraction by a cylindrical obstacle, J. Appl. Phys.
21(4):318-325.
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corresponding to Eq. (2) for an incident H-wave. Both the 2-D EFIE and MFIE

for an arbitrary 2-D incident field emerge directly from the transverse components

of the 3-D integral equations by substituting into Eqs. (1) and (2) the integral repre-
senstation for the Hankel function:

Io(Fl,T) dz' = rtH(l)(klT'-TI) T' *T (F =T+ z ' =T' + z'zSI Z

after first showing that for 2-D geometries the circular principal area can be con-
verted to an infinitely long narrow slit (with the singularity at the center of the slit)

without altering the form of Eqs. (1) and (2). Specifically, for a 2-D body (tinfinite

cylinder) with z-axis and cross-sectional boundary curve C,

Ez  k2

Enc(I) - f k K,()H(1)(kIt' -T) dc' (21a)
0 c

-Z I I )
inc 2 K c + rfK c  n-- dc' . (21b)

C

(The line integrations here and below are performed by approaching symmetrically

the singularity of the integrals.) A valuable review of the 2-D electromagnetic

work through 1973, including the spurious resonances, is contained in the thesis

by Seidel. 14

For 2-D problems the augmentations Eqs. (13a) and (13b) can be expressed as

simply the circumferential derivative of the 2-D EFIE Eq. (21a) and the 2-D MFIE

Eq. (21b), respectively; thus by performing the circumferential integration ana-

lytically and setting the arbitrary constant to zero, the 2-D augmentations formed

from Eq. (13) reduce to Eq. (21).

For an incident Ez-wave, the remaining component of the 2-D AMFIE formed

from Eq. (15) is:

c I i f aH
1 )

Hin c . 'f K++ -  z '9ndc' . (22a)
C

Sbmilarly, for an incident Hz -wave, the remaining component of the 2-D AEFIE

formed from Eq. (14) is:
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E Cc k K L ' ' C)Hc(1) + I K dc . (22b)

Appendix A shows that, except of the circular cylinder, the spurious surface

currents for the 2-D AEFIE and 2-D AMFIE with arbitrary incident fields lie in
the z and c-directions, respectively; thus, Eqs. (21a) and (22a), and (21b) and
(22b), will yield unique solutions except possibly for the circular cylinder. But
since the circumferential integrations of the 2-D augmentations formed from
Eq. (13) have been performed to reduce them to the original 2-D Eqs. (21a) and

(21b), all boundary conditions are satisfied, and thus the 2-D AMFIE Eqs. (21a)

and (22a), and the 2-D AEFIE Eqs. (21b) and (22b), also yield unique solutions for
scattering from the circular cylinder.

In summary, the two pairs of scalar equations, Eqs. (21a) and (22a), and
(21b) and (22b), comprise the 2-D AMFIE and the 2-D AEFIE for incident Ez and

Hz-waves, respectively; and each of these 2-D augmented integral equations elim-
inate entirely the spurious resonances for scattering from perfectly conducting
infinite cylinders. This is confirmed in the numerical results of Section 6, The
2-D augmented equations, like the 3-D ones, are overdetermined, but can be
solved efficiently using the Hermitian conjugate multiplication or alternative

solution techniques discussed in Section 3. 3.
The 2-D augmented integral equations presented here are identical mathemat-

ically to the 2-D form of the augmented integral equations proposed by Kleinman and
23

Roach, who also prove their uniqueness of solution. If the components Eqs.
(21a) and (22a) or Eqs. (21b) and (22b) of the 2-D augmented integral equations are

added together, the 2-D combined field integral equations result.

4.2 Finite Bodies of Revolution

For finite rotationally symmetric bodies other than the sphere, we can also
eliminate the remaining spurious resonances by dividing the incident field into E

Iz
and lI z components. Appendix A shows that the spurious currents for finite bodies

of revolution (except the sphere) do not vary with rotation angle 0, and are in the
-direction for the AEFIE Eq. (14) and in the x direction for the AMPIE

Eq. (15).
Now if an incident field has only an Ez or 11 component (where z is the axis

of the body of revolution) there will be excited no rationally symmetric component
of K or KT respectively. Thus the augmented integral Eqs. (14) and (15) also
eliminate the spurious resonances from all finite bodies of revolution except the
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sphere by dividing the incident field into E and Hz components, and applying the
AEFIE Eq. (14) (with the rotationally symmetric part of K set to zero) and the
AMFIE Eq. (15) (with the rotationally symmetric part of Kr set to zero), respec-

tively. Of course, for certain Incident fields such as a plane wave with direction

of -ropagation normal to the z-axis of rotation, no rotationally symmetric compo- I

nent of current is excited and either augmented Eqs. (14) or (15) alone will elim-

Inate the spurious resonances.

5. THE ORIGINAL AND AUGMENTED INTEGRAL EQUATIONS EXPRESSED
FOR ARBITRARY PRINCIPAL AREAS

The original and augmented integral Eqs. (1), (2), (14), and (15) assumed that

a circular "principal area!' excludes the singularity of the freespace Green's func-

tion at F1' in their surface integrals. The integrations are performed centering

the circular principal area of diameter 6 on the singular point and taking the limit

as 6 approaches zero, In solving the integral equations numerically, however, it

may be desirable to choose principal areas, that is, self patches, other than the

circular one. Fortunately, it becomes a simple matter to generalize the integral

equations to arbitrary principal areas once Eq. (6) is generalized. To generalize

Eq. (6) to an arbitrary principal area, note that we can write as an identity,

OVIOdS' 1V'dS' - ' dS' . (23)

S S As

The surface integral on the left hand side of Eq. (23) excludes the singularity by the

arbitrarily shaped principal area, the first surface integral on the right excludes

the singularity by a centered circular principal area, and the second integral on the

right is an integration over the limiting surface 6 S between the arbitrary and

inscribed circular principal area. The geometry (shape, position, and orientation)

of the principal area with respect to the singular point F is specified and maintained

as its size shrinks to zero. Because the integral over AS does not include the

singularity and because A S -, 0 in the limit as the principal area shrinks to zero,

this integral can be evaluated with the help of an integral formula contained in

Van Bladel 5 0 Appendix 2, Eq. (43);

*In numerical work one must also use a finite sized self patch and either determine

how small the self patch need be to produce negligible errors in the solution or
compensate analytically for its finite size. This topic of finite principal areas will
not be discussed in this report.

50. Van Bladel, J. (1964) Electromagnetic Fields, McGraw-Hill, New York.

30

Downloaded from http://www.everyspec.com



substituted into Eq. (6) yields,

S (r.S) S

where

¢- I Ide (2 5b)
•~~~ T-= r I

C

As depicted in Figure 1 the unit vector u, is in the plane of the principal area and

perpendicular to its boundary C. Thus is tangent to the surface S, and vanishes

for a circular or regular-polygonal principal area centered on the singularity.

Applying the identity Eq. (25a) instead of Eq. (6) to the derivation of the orig-

inal and augmented integral equations reveals that the form of the MFIE remains

independent of the principal area (as Maue I proved), but the form of the EFIE,

AEFIE and AMFIE change to, respectively

X- F n Ksx (Vs, R)V'lJdS' (V R (26)Xinc  2 x i•2,x
S

s
Eis [s )7101dS1 + (27)inc T w w

0 S

jj - T)Xs+ I K XvV0dS(

inc 2 TXK5 +d (28)
S

Both augmented integral Eqs. AEFIE (27) and AMFIE (28) and the original EFIE

Eq. (26) (as Maue I stated) are "conditionally" convergent upon the shape of the

principal area (self patch) chosen to exclude the singularity of the freespace

Green's function. The strength of this dependence on principal area is determined
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Uii

Figure 1. Definition of Tangential Princi-
pal Area Vector T

Y

L 
x

Figure 2. Square Principal Area of S de
"a" Excluding the Singularity a Distante
"d" Off-Center in the x-Direction

by Tdefined in Eq. (25b) and Figure 1. T is either zero or negligible unless the

choser. principal area exhibits significant asymmetry with respect to the singular

point. The value of 7 for a square principal area excluding the singularity a dis-

tance •atio d/a off center in the x-direction (Figure 2) was evaluated using Eq.

(25b):
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4

-~ ~ 1L 1 1 ~~(+ 1 (+Ld))1
T 7r [ In (29)1 - + 4l --- %

+ L+ +a a
In the numerical work reported in this paper T was either zero or assumed neg-

ligible.

6. ALTERNATE FORMS OF THE INTEGRAL EQUATIONS WITH INTEGRALS
INDEPENDENT OF PRINCIPAL AREA

In this section alternate forms of the integral Eqs. EFIE (26), AEFIE (27),

and AMFIE (28) are derived that do not involve integrals which depend on the geom-

tetry of the principal area. We accomplish this derivation with the aid of the

identity,

SX (fit X V10) dS' = 2," .(30)
S

Proper use of Eq. (30) in the augmented integral Eqs. (26), (27), and (28) converts

them to the following form independent ct the geometry of the principal area used

to exclude the singularity:

n i x (k2 is(F') -V. T(Fiv'@ -xV• (-)i x (fi' X V10)idS'

0 S

(31)

E .i [k 2Ks(") - Vs, Ks(*'iO - Vs • xs(r); x 0 x V')i] dS'

+Vs Ks (32)
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1

i
-X + X ( + ,+ (X (fi X(fi' XV))J dS,

S

(33)

Moreover, the identity Eq. (30) and its use in Eqs. (31), (32), and (33) remains

valid when 6 is replaced by the static Green's function I/IF, - FI.

As mentioned previously, the integral in the original MFIE Eq. (2) is already

independent of principal area, although a circular principal area was initially

chosen in Eq. (2) to clearly define the surface integration procedure. The inde-

pendence of the integrals in Eq. (31), (32), and (33) on principal area (self patch)

make them attractive for numerical work; however, the author has not experi-

mented with their use in the numerical work of this paper.

7. NUMERICAL RESULTS

Although the main intent of this paper is to report the theory leading to the

augmented integral equations, numerical results have been obtained by applying

the original and augmented integral equations to the problems of scattering from

a cube, sphere, and infinite circular cylinder. In each case the predictions of

the theory were confirmed.

Figure S plots the normalized backscattering cross section from a cube com-

puted using the original MFIE and the AMFIE. Each face of the cube was divided

into nine equal area square patches, simple pulse basis, and delta weighting func-

tions were used with the % value taken constant at its center value of each patch,

and reduction of the matrix based on the symmetry of the cube was purposely

avoided. Figure 3 shows that the augmented integral equation eliminated entirely

the spurious resonances which were introduced by the original integral equation

near the cavity resonances of 4s/X = 2. 8, 4. 5, and 4. 9. (The spurious solution

at 4s/ = 3. 5 evidently does not contribute to the back direction.) Comparison

with previous numerical results and with experimental results obtained out to

about 4s/ -- 3. 5 show close agreement. 51 The programs were run well beyond

the size parameter of 5 shown in Figure 3, with continued elimination of the spur-

ious resonances by the augmented equation.

51. Tsai, L.L., Dudley, D.G., and Wilton, D.R. (1974) Electromagnetic
scattering by a three-dimensional conducting rectangular box, J. Appl.
Phys. 45(10):4393-4400.
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Figure 3. Back Scattering Cross Section vs. Size Parameters for a Cube Using
the MFIE and AMFIE

Figure 4 contains the normalized backscattering cross section for a sphere

computed with the MFIE and AMFIE. In addition, the average over the surface of

the sphere of the absolute value of i • T is plotted. The theory predicted that the

sphere is the one scatterer that retains spurious solutions (at the TE mode fre-

ecueucles) where fi. H is zero and thus they will not be eliminated by the aug-

mented integral equation. Figure 4 confirms this prediction numerically by show-

ing that fi . Tr becomes nonnegligible at the TM (but not the TE) cavity mode fre-

quencies when applying the MFIE, and thus the spurious solutions at the TM fre-

quencies disappear using the AMFIE. However, the spurious solution at the one
TE cavitly mode frequency between ka equal to 0 and 5 remains in the AMFIE
solution. Similar results not shown were obtained for backscattering from the

sphere using the EFIE and AEFIE, plotting the average of the absolute value of

fi E v-s Ks/iw o instead ofn. H.

Finally, backscattering from an infinite circular cylinder under planewave

incidence was also computed using the original Eqs. (21) and augmented integral

Eqs. (21) and (22), with comparison being made with the exact eigenfunction solu-

tion. As specified in Section 4. 1, the AEFIE Eqs. (21b) and (22b) were used for
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HZ incidence, and the AMFIE Eqs. (21a) and (22a) for Ez incidence. As the theory
predicts, Figure 5 shows that the augmented integral equation indeed eliminates

the spurious resonances introduced by the original equations. (The integral equa-

tion solutions deviate further from the exact one for larger ka because the cylinder

was divided into the same number of line segments throughout the range of ka.)

3- AEFIE
MFIE

see** EXACT

~ 2a

0 0.5 1.0 1,5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
KA AMFIE

. EFIE
3 - *sees EXACT

E 0EI, Hol E21

o ,0 1 1 ,i,, t . t
0 0.5 '4.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

KA

Figure 5. Back Scattering Cross Section vs. ka for an Infinite Circular Cylinder
Using Original and Augmented 2-D Intergral Equations

8. CONCLUSION

In theory and numerical practice we have shown that the augmented electric

and magnetic field integral equations remove the spurious resonances from
Maue's original integral equations for all geometries except the sphere, while
preserving the simplicity, solution capability, and basic electric and magnetic

field character of the original integral equations. Effort was made to inciude
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the important derivations and to present the equations and techniques necessary

for solving both 3-D and 2-D problems using the augmented integral equations.

Included was an alternative derivation of the augmented integral equations from

the extended boundary equations.

The principal area (self patch) dependence of the original EFIE and the aug-

mented integral equations was determined explicitly for an arbitrarily shaped

limiting principal area, and alternative forms for the integral equations were pre-

sented that avoid integrals dependent upon the geometry of the principal area.

Implicit in the theory leading to the augmented equations is a method for

determining in numerical practice if the original integral equations are encounter-

ing a spurious solution; namely by monitoring the average for the MFIE

and In'-V s . s/ixo I for the EFIE on the surface of the scatterer, and

noting if they exceed a present threshold.

Some closing suggestions for continued work may be in order. In Section 4. 2

we specified how the augmented integral equations should be applied, in general,

to bodies of revolution. To date this procedure enabling the avoidance of certain

spurious rotationally symmetric solutions has not been tested numerically. Nor

has numerical experimentation with the augmented equations been done to decide

how close the shape of the scatterer can approach the sphere before the TE spher-

ical mode spurious resonances appreciably contaminate the solution in numerical

practice.

The integral Eqs. (26), (27), and (28) holding for arbitrary principal areas

and the alternate Eqs. (31), (32), and (33) independent of principal area hold

promise for more accurate numerical solutions. They also remain to be pro-

grammed.

Surface integral equations applied to homogeneous dielectric problems have
52

also encountered spurious solutions. Although it seems likely that a similar

augmentation could be applied to these dielectric integral equations to eliminate

their spurious resonances as well, we have not performed such an investigation.

Finally, in the time domain electric and magnetic field integral equations, 2

the spurious solutions are also present, since an assumed exp (-iw nt) time depend-

ence converts the time domain solution to the frequency domain solution with its

accompanying homogeneous solutions or spurious resonances in the exterior

region at the discrete cavity mode frequencies w n. Fortunately, most time do-

main scattering solutions also demand zero fields before a finite initial time, and

this initial condition reduces the effect of the discrete spurious resonant frequency

spectrum to zero. A simple proof of this result consists in dividing the exterior

52. Wu, T. K. and Tsai, L. L. (1977) Scattering by arbitrarily cross-sectioned
layered lossy dielectric cylinders, IEEE Trans. Antennas Propagat.
AP-25(4):518-524.
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solution to the time-domain integral equations into a particular solution, which

does not involve the spurious exp (±ic.nt) solutions, plus an infinite sum of the homo-

geneous exp (±iWnt) solutions. If the total and particular solutions are specified

zero before a given time, the homogeneous solution must also be zero before this

given time. Since, the individual exp (:iw t) homogeneous solutions are linearlyn
independent, this implies that their coefficients must all be zero. For the interior

region the same argument applies except that in the interior cavity the particular

time-domain solution is also expressible in terms of exp (iw nt) cavity mode solu-

tions for time greater than the given initial time. In brief, then, for the time-

domain surface integral equations, causality implies uniqueness of solution for both

the interior and exterior regions, and no augmentation is necessary.
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Appendix A

Uniqueness Theorem for the Augmented Integral Equations

The exterior augmented electric and magnetic field integral Eqs. (14) and

(15) have spurious solutions if and only if the interior boundary value problem

Eq. (16) has nontrivial solutions. We investigate this boundary value problem by
choosing an orthogonal curvilinear coordinate system with one coordinate (n)

chosen along the normals to S and the remaining two tantential coordinates (v,, v2 )

chosen along the lines of curvature (contained in Van Bladel, 50 App. 21. The

coordinates (Vl, v2, v3 = n) have metrical coefficients hl, h 2, and h3 = hn = 1.

The vector function Fsatisfying Eq. (16) has components F 1 ,'l, F 2 2, and FnA

in this coordinate system.

First, we show that Eq. (16) implies F n will be zero everywhere within the

cavity not just on the surface S. Rtepresent the surface S as the limit of many flat

surface patches. In the narrow cylinder formed by the projection of each patch

along its normal, Fn will equal a rectangular component of field (called F ) satis-

fying Eq. (16a) and will thus setisfy the scalar wave equation

2 2 (l
V2F x + k2F x --0 (Al1)

Moreover Eq. (16a) demands Fx = 0 on this patch; and because v . F equals zero,
8F x

ZF - 0 on this patch as well.

Solving Eq. (AI) by separation of variables in the narrow cylinder about the

normal axis produces the following 1-dimensional problem
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2I
1+ 2f 0 , (A2a)
d x

df 0 forx =0 that is onS , (A2b, c)

which has only the trivial solution f = 0; that is, F x  = 0 everywhere along the

normal direction x = n. Since x can be the normal to any small surface patch,
Eq. (16) implies Fn = 0 throughout the cavity. Thus the boundary value problem
Eq. (16) is reduced to

V XVxF s  (A3a)

F 0 on S (A3b)

The normal component of Eq. (A3a) can be written formally as

(V XV XFTs)n 
= 0. With the help of Eqs. (18), (19), (21), (22), and (16) of

Van Bladel (Appendix 2), and Vs • F s = 0, this normal component converts to

(V X V X Fs)n =v s . [D(Flii 1 - F 2 u 2 )] 0

or simply

D(Vs . A s) + VsD' - s = 0 (A4a)

where

Aam F~ u F2 6 (A4b)

and D is the difference of the reciprocals of the principle radii of curvature,

that is,

D 1 1 (A40

Of course, since V Fs 0, F I and F 2 are related further by

V5 . (F 1 I+F 2 2 ) = 0 (A4d)
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Equation (A4a) is quite a stringent restriction, which emerges from the

property that Fn = 0, and must hold throughout the cavity. The quautities A and

V s  A in Eq. (A4a) depend only on the fields and thus have functional dependence

determined chiefly by the Maxwellian partial differential Eq. (A3a); whereas D

and V D in Eq. (A4a) depend solely on the geometry of S. Consequently, we con-

clude that Eq. (A4a) can hold throughout the cavity only if each term is zero

separately. In view of Eqs. (A4b) and (A4d), each term in Eq. (A4a) is zero

separately only if

1. F and F 2 are both nonzero and D is zero,
8D

2. F 2 is zero and is zero.
2 1

(The case, F 1 and 3 being zero, is redundant because whichever tangential

curvilinear coordinate is labelled v1 and v2 is irrelevant.)

Case 1 above holds only if the principal radii of curvature are equal over the

surface S, and case 2, only if R 1 and R 2 do not depend on vl, that iL, depend only

on one tangential curvilinear coordinate v2 of the surface. The former case holds

only for a sphere (Eisenhart 45), and we prove next that the latter case implies

also that the four 7undamental magnitudes of the surface S also depend only on

this one tangential curvilinear coordinate.

Consider the Mainardi-Codazzi relations of differential geometry describing

the surface S [Eisenhart, p. 157, Eqs. (14)] 45

aL _I (L+ E

2N2 7 (A 5a)

7 WV (A b)

where E G h =  111, and H9 R 2. R 1 and R 2 are not functions of vl,

so 0, or

aN N 3G

Eqs. (A6) and (A5b) are compatible if either E/L = G/N, or if G and thus N are

independent of v I . The first condition (R 1  R2 ) holds only for a sphere which has

already been discovered.
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Taking a/8v2 of the equation L/E 1/R 1 gives

8L L aE + E (A7)

which combines with Eq. (A5a) to give in turn,

a1(v) E (A8a)
1 2

or

In E a2 (v2 ) + b1 (v I ) (A8b)

or

E = a 4 (v 2 )b2 (v 1) (A9a)

and thus

a4 (v2 )
L = __ b2(vI)  (A9b)

!( 2) 2 v1)

Because E and L have the same functional dependence on v1 , we can merely

redefine the v1 curvilinear coordinate as

Sf b2 v1 ) dv1  (AlO)

to make E' and L' independent of v ,

In other words, we have proven that if the principal radii of curvature of a
surface are independent of one tangential curvilinear coordinate, then the four

fundamental magnetides defining the surface are (or can be made) independent of

the same curvilinear coordinate. That is, the only geometries for which Eq. (16)

has nontrivial solutions are the sphere and surfaces described by one curvilinear

coordinate. As evidenced by Section 2 and Eq. (A4a), the fields satisfying

Eq. (16) on these latter surfaces must also depend only on this one curvilinear
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coordinate. Koshlyakov et al (p. 591) also remark that these are the only con-

ditions under which the electromagnetic field can be represented by means of two

scalar functions; for example, divide into TM and TE modes with respect to the

normal direction inside a cavity.

It will enable our application of the augmented integral equations to bodies

of revolution and infinite cylinders to write down the cavity fields when they and

the geometry depend on one curvilinear coordinate. In that case Eq. (16), or

more specifically, Eq. (A3) simplify greatly to the following expressions for the

electromagnetic field inside the perfectly electrically conducting cavity. Assoc-
iating F in Eq. (A3) with the electric field , and letting q h E1 , yields for the

other components of field

SE 2 0 , E n =0 H1 = 0

__h_2 _q H - l (Al )

2  8q r _______
H o 1c~h an n WM 1h2  v2

with q satisfying the partial differential equation

a (r,) .( 2 aq ,2 '12A12
1 q 7 HD)+ 5-q 01

Note that for infinite cylinders, h I  1, and Eq. (A12) reduces to the familiar 2-D

scalar wave equation

V q + k2q = 0 (A13)

We still must answer the question of what shape surfaces have their funda-

mental magnitudes dependent on just one tangential curvilinear coordinate.

Fortunately, there is a theorem of differential geometry (Eisenhart; problem 23,

p. 188 and p. 475 45), which says that all such surfaces must be helicoids, surfaces

generated by a curve which is rotated about a fixed straight line as axis, and at

the same time translated in the direction of the axis with a velocity proportional

to the velocity of rotation. (The theorem is proven using the Mainardi-Codazzi

and Gauss equations.) Bodies of revolution are the only finite helicoids, and

infinite cylinders are the only infinite helicoids which are solvable numerically

by the surface integral equations. (Infinite helicoids in the shape of periodic

Al. Koshlyakov, N.S., Smirnov, M.M., and Gliner, E.B. (1964) Differential
Equations of Mathematical Physics, Ch. 24, North-Holland, Amsterdam
(Interscience, New York).
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twisted ropes or tubes have currents which vary to infinity and thus are not solv-

able numerically by the surface integral equations unless special techniques are

used to accommodate the variation to infinity.)

In summary then, both augmented integral Eqs. (14) and (15) eliminate the

spurious resonances from all geometries except bodies of revolution and infinite

cylinders. For finite bodies of revolution including the sphere (because its

resonant frequencies are independent of the 0 variation of the modes) spurious

solutions remain only at the frequencies where Eq. (All) has solutions with v1equal to 0, the axial rotation angle. For infinite cylinders except the circular :

one, spurious solutions remain only at the frequencies where Eq. (All) has solu-

tions with v 1  z, the axis of the cylinder. For the infinite circular cylinder,

which is also a body of revolution, spurious solutions remain with v1 = as

well. Moreover, Eq. (All) along with the results of Section 2, and remembering

the special case of the sphere, reveal that the spurious R in the AEFIE (or
s

x RE on S in the AMFIE) must be in the z-direction for infinite cylinders ( except

the circular one), and in the -direction but not varying with 4 for finite bodies

of revolution (except the sphere). This observation allows us in Section 4 to

eliminate the remaining spurious resonances from all infinite cylinders and

bodies of revolution, except the sphere, using the augmented integral equations.
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Appendix B

Sufficiency of Eq. (9)

Section 2 showed that the MFIE Eq. (2) and associated fields Eqs. (3a) and
(3b) in an exterior region implied Eq. (9). Here we want to show the converse:

All solutions (a X E) on S to Eq. (9) are valid solutions to Eq. (2a) with Ks from
Eq. (2). Equivalently we want to prove that any nontrivial solutions to Eq. (9)

and homogeneous solutions Eq. (2) obey Eq. (3a), or specifically that (x I E) on S
obtained from Eq. (9) plus Rs1 obtained from

S1 h x V  ds ,  (B31)2 4 7 " 0"

S

satisfies Eq. (3a) on S.

Define a vector T by the integral

1 f h Xv'FdSI F insideS (B2)

S

and note that

VX V 7 -k 22T 0 (B3a)
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and from Eqs. (Bi) and (6)

;XA= , F-.S (B3b)

Now the (a X I) on S in Eq. (9) was shown to be equivalent to the (fi X m) on S

in Eqs. (11). Consequently, comparison of Eqs. (B3) and (11) shows that

F 'Hm (except for arbitrary multiplicative constants). Thus from Eq. (lib)

(- nX(vXA) (B4)
on S m)on S WE

or, upon substitution of " from Eq. (B2) into Eq. (B4), and letting - S,

SS

S(ni X -E-)o S = t jc; 1k kKso - (V . )v'o dS' (Br))

Since Eq. (B5) is identical to Eq. (3a) when F -. S, we have proven that all solu-

tions to Eq. (9) satisfy Eq. (3) for the surface currents T s obtained from the

exterior MFIE. The converse was proven in Section 2. 1. 2.
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