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NOTATIONS

A Represents a HxM square matrix

X Y Are Mxi matrices

AJ Represents the element belonging to the ith row and jth column

X Is the ith element of X

X Represents the matrix obtained after n iterations in iterative methods
and in direct methods it is just another matrix obtained after pro-
cessing it n times.

I jXjI Represents the norm of X

cond ~] Is the condition number of A A largest eigenvalue of (A)

minimum eigenvalue of (A)

Ce1<-
kY4

eSkV,
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1. INTRODUCTION

The problem of radiation and scattering from electromagnetic structures

may be formulated in terms of the E-field, the H-field or the combined field

integral equations. The integral equations are then reduced to matrix

equations by the method of moments. Hence, the maximum size of an electro-

magnetic fiEld problem that can be solved by this technique depends on how

efficiently solutions of a set of simultaneous equations are obtained.

In system identification, on the other hand, the problem is formulated

in terms of a convolution integral. When any of the standard techniques

is utilized to identify the system, one again encounters a set of simul-

taneous equations. The only difference between the two cases is that in

the former oue often encounters a matrix which has large elements on the

diagonal, whereas in the latter case the matrix may be nearly singular.

The objective of this report is to survey many of the popular

methods for the solution of large matrix equations.

In section 2, a review is made of the direct methods for solving matrix

equations. An analysis of round-off error is also made for these methods.

In section 3, we present the philosophy of various iterative methods. In

section 4, we discuss the various linear iterative methods and in section 5,

the Monte Carlo methods. The Monte Carlo methods are statistical methods

and are quite efficient in evaluating one component of the solution. Next,

in section 6, comparison of efficiencies is made between Monte Carlo methods,

Gaussian elimination, and linear iterative methods. In section 7, the

various nonlinear iterative methods are discussed. The rates of convergence

for the various methods are discussed in section 8. Section 9 presents the

analysis of round-off errors associated with various iterative methods.
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Section 10 extends the various methods to complex unsymmetric matrices. In

section 11, we present a method for accelerating various iterative methods

and reducing the round-off errors of direct methods. Sections 12 and 13

present the core storage and the work required for all the methods presented

in this report. Section 14 presents a discussion on the conjugate gradient

method.

Thus this presentation provides a comparison of the popular methods

used to solve large systems of matrix equations.

In our discussion of the various methods, only references which are

directly relevant are noted. No attempt has been made to cite the earliest

sources. In many cases, additional references may be found in the papers

mentioned.

2
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2. DIRECT MtETHODS FOR SOLVING MATRIX EQJATICLW.

Summary

In this section we present all the direct methods. 'These include

Cramer' s rule and the two versions of Gaussian elimination f-U. decumpo-

sition and the compact method]. it is shown that the Caussian elimirnat-on

for the solution of A X =Y is optimum (insofar as the total nu--ber c

operations is concerned) if one is restricted to hanviling onc ro.; ur ane

column only of the matrix at a time for processing. The method due to

Volker Strassen takes lesser computation than Gaussian elimination if one

works With a block of the matrix at a tinie. Ali.: it has beev ,.r~wn x

Winograd's method of computing matrix products is much faster than thie

conventional way of multiplying matriceb. Finally w- ' -uat Lne r-)u~id-

off error in direct methods is proportional to Eh-, n~dtz u::ler of A

if AA and AY are the inaccuracies in the representation of A and Y, theni

the uncertainty A~X In the solution X is given by

2< cond [A) ( AI 12~cnd<

1112l -. cond [A) - -N cond PA] 2 -

where t is the number of binary digits with which Conjiu ation is actually

carried out in the computer and N is the dimension of A.

3
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r

In this section we describe exact methods for the numerical solution of

systems of linear equations. By exact methods, we mean methods which give

a solution of the problem by using a finite number of elementary arithmetic

operations. If the initial elements of the matrix are given exactly and if

the computations are carried out exactly, then the solution is also exact.

In exact methods the number of computational operations necessary for

solving a problem depends only on the type of computational scheme and on

the order of the matrix which defines the problem.

2.1 CRAMER'S RULE (THE ADJOINT METHOD) [i]

This method is too well-known to elaborate and too cumbersome for pract-

ical use. Hence, only the final result is given. If

AX = Y (2.1)

where A is'a given NxN square matrix and X and Y are Nxl column matrices,

then the unknown ith element of X is given by

xi = ;A4-1i{adjoint A}ij YJ (2.2)

jj
where {adjoint A} are the cofactors of the determinant of A denoted as A,

and the superscripts represent the elements or the matrix. The solution of

a system of N linear equations by use of Cramer's rule requires the evalu-

ation of (N+l) determinants of order N. If evaluated directly, each

determinant requires t(N+l): multiplications, where 1 < a < 1.71828.

Solution of all the unknown elements of X requires ct(N+l)! multiplications,

N divisions and (N+1)! additions or subtractions. The other methods which

we are going to discuss next require much less work.

14
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2.2 GAUSSIAN ELIMINATION AND LU DECOMPOSITION [1,2,3]

Carl Frederick Gauss used this method to solve a system of linear

algebraic equations. This method is based on the idea of eliminating the

unknowns one at a time. A series of successive eliminations is carried out

by which the given system AX = Y is transformed into a system with a tri-

angular matrix, whose solution presents no difficulty. The factorization of

A as the product LU is the basic idea of all Gaussian elimination schemes.

Equivalently AX = Y can be rewritten as LUX = Y. here L is a lo,er tri-

angular matrix (i.e. L1 3 = 0 for i < j) and U is an upper triangular matrix

(i.e. U 3 = 0 for i > j). Thus LUX = Y represents two triangular systems

LG= Y

UX =G (2.3)

which can be very easily solved. The calculation of L and U together with

the solution of LG = Y is usually called the forward elimination and the

solution of UX = G is the backward substitution. The computation of L and U

it referred to as triangular decomposition. The various Gaussian elimination

methods differ in the order in which computations are carried out in the

forward elimination. Next we describe how the LU decomposition is carried

out without pivoting.

Given the matrix A and the vector Y, we use elementary row operations

to put zeros below the main diagonal of A. Assume A1 # 0. [Au represent

the element belonging to the ith row and jth column]. Let Mi l - AlAI-.  
e

then subtract Mu times the first equation from the ith equation, and also

subtract Mil times Y from Y to obtain a set of equations which do not

involve X1. This new set of N-i equations along with the first equation

of the original set can be written as

5
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A2- -2 (2.4)

where

A2 - MIA Y2 MY ' and

M.1 _21 1Q

-M 1  0 1

....................... (2.5)

-MNl 0 0 1

22 M12 =Al2  Te
Net easum2 # 0. Let M 2 = A 2

Next we assume A2 A.-- 22 Then premultiply A2 and Y2 by

M2 which is given byI
00

0 1

M LI 
-M 3

2  1

0 _ZP2 0 ........... 1

Thus A3 = M 2A and Y3 =  Y2" This corresponds to eliminating X2 from the
-2-242-3 -2

last N-2 equations. We continue the process until we obtain the following

structure

6
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UX- G

or

A11  A 2  A1 3 . . . . .. AiN X y

22 23 2N 2 2 (2.7)
A2  A 2  A2  X 2

0N N  XN YN

Let M -MN- ...... MI' Then since MA - U we have A= {M} - I U. Thus{xl{1- *x{2}-i
- }- x...x{MN}-I We now define L = {M} -I and obtain

1

L" {M} - 1 M 2 1  1
M3

1  M3
2  0

(2.8)

N MN2  ....... 1

Observe A - {M}- I U = LU Note that the matrix M is never actually formed.

As the elimination progresses, the below diagonal elements M of L are

stored in place of the below diagonal elements of A, and the elements U
ij

of U are stored in place of the diagonal and above diagonal elements of A.

At the end we have

1i u1 2  u1 3  
1 N"i U2 UI ..... uN

M21  U22  U2 3  ..... U2N

M31 M 3 2  U3 3  ..... u3N (2.9)

MI MN2  MN3 ..... u

7
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stored in place of A. Triangular decomposition is thus summarized by the

facts that L is simply the matrix of multipliers M ij with a diagonal of l's

and the U is the matrix N of (2.7). Also note that the intermediate

solution G of (2.3) is YN . The processing of Y, i.e. the transformation of

Y into Y, can be done simultaneously with the processing of A. Since we

have all the necessary multipliers stored however, it can just as well be

done at the end.

This describes ordinary Gaussian elimination without pivoting. The

term "pivoting" is used to describe row and column interchanges at the kth

stage of elimination to move the largest element in absolute value in the

remaining unchanged (N-k+l) x (H-k+l) matrix to the kth diagonal element.

kkThus the pivot at the kth stage (or the diagonal element Ak ) is chosen

as the element of largest absolute value in the submatrix 4k composed of

columns k through N and rows k through N. Hence, both row and column

interchanges are necessary to bring the pivot to the kth diagonal position.

Use of pivots has two advantages. First, it relaxes the assumption that

kk
k# 0 and secondly, the use of a pivoting strategy reduces the rcund-

off error of the LU decomposition process. The analysis of round-off

error for this process is presented in section 2.5. Also note that

pivoting requires more operations.

2.3 COMPACT METHOD (CROUT AND DOLITTLE OR CHOLESKY'S METHOD) [1,2,3]:

This method depends explicitly on the triangular resolution of A as

LU, that is, the elements of L and U are all computed and used. It is

termed a compact scheme since the elements in the final triangular form

are obtained by accumulation, dispensing with the computation and recording

of the intermediate k elements and thereby reducing round-off error.

Since A = LU, the equation for the elements of L and U is

8
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r..in (I ,j)
ik j i

L ukJ = AiJ
k=l

Letting Lkk  1, for k = 1, 2, ... N, we have N equations in ;2 unknowns.

Ltkk = 1

k-i
Uk: = AkJ-"- Lkm  Umj for j= k,.....N

k 1kL k Lia U mk] for i = k+l, .... N

Um1l

Lik =0 for i < k

Ukj =0 for j < k (2.10)

Hence, the order of elimination is first row of U, first column of L, second

row cf U, second column of L and so on. As the elements Lik and Ukj are

computed they are written over A in the obvious way. After obtaining

elements of L and U, we solve AX = Y by writing LUX = Y which is then

equivalent to solving the triangular systems UX = G and LG = Y.

The accuracy of the method can be improved if pivoting is introduced.

ik i
After the row U , i=k, ..., N is computed, the largest Ui k in absolute

.k kk
value, say U- may be selected as U , and its column the (jth) inter-

changed with the kth column in both U and A. This should not cause any

problem even when L and U are written over A. Then the next row of L,

Lkj , for j - K+I, ..., N is computed. Whenever a new row of U is computed,

the largest of its elements in absolute value is chosen as diagonal. The

L and U matrices so obtained are not the triangular decomposition of A

but are the deco.position of _, where

. . . . i . . . . . i fn i.. . . . . . ]lli I~d .. . -- " ' 9
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of A, where
i N i22 illn2 1

A (I .... I I ) A, obtained from A by a sequence
ik

of row interchanges, I , of the ik row with the kth row, where k=l, ... ,

N.

When the matrix A is symmetric, this method is often referred to as the

square-root method.

2.4 1S GAUSSIAN ELIMINATION REALLY OPTIMUM? [23

Gaussian elimination, as presented in the previous section, is really

optimum if and only if one is interested in handling the elements of the

matrices by rows or by columns. Under those conditions Klyuyzv and

Kokovkin-Scherbak [41 have proved that no general system of linear equations

can be solved with fewer arithmetic operations than are required by

2 2Gaussian elimination. If 6(N ) is defined as the terms of the order of N,
3

then in general Gaussian elimination requires 2-+ 0 (N) multiplications
N3

and 3- + 0 (N2 ) additions. However, Winograd [5,61 has showi that a

N 32general system of linear equations can be solved in - + 0 (N ) multi-
N3
2

plications and -+ 0 (N2 ) additions. Since multiplications require more

time than additions, Winograd's method would be faster than Gaussian

elimination. It is interesting to observe that the total number of mul-

tiplications and additions for both Gaussian elimination and Winograd's

method is I N + 0 (N 2). Recently Volker Strassen [7] has shown that it
3

is possible to solve a general system of linear equations with 0 (Np)

arithmetic operations, where in this case p = log 2 7 = 2.807. However, it

is not known whether this value of p is the minimum exponent.

10
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2.5 ANALYSIS OF ROUND-OFF ERRORS FOR DIRECT ?.THICL LS " N3, A

SYSTEM OF LINEAR EQUATIONS [2,81

The solution of a set of equations by Gaussian elimination is based

on the triangularization of a matrix. If we start with

AX - Y or AIX = Y
Z-1- -l

in Gaussian eliminationthen the following (N-i) equivalent sets are

produced.

A X = Y for r = 2,3 .... N (2.11)-r - -r

The matrix A of the final set is of upper triangular form. In general

A is of triangular form as regards to its first r rows, and it has a-r

square matrix of non-zero elements in the bottom right hand corner. The

square matrix is of order N+l - r. The matrix Ar + 1 is derived from A
-r+ -r

by subtracting a multiple Mir of the rth row from the ith row for values of

i from r - 1 to N. The multipliers Mi r are defined by

Air
Mir r (2.12)

Arr
r

The rth row of A is call&, the rth pivoted row and Arr is ,calied the rth-r r

pivot.

In order to obtain the elements Auj for i < j, we write
r

A , ]Mi, r-l A r-1, i + £i * (2.13)
3 2A1 r- r

ij ii

A A - 1i rl -
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where all A ij and M ir refer to computed values and ii is the differencer r

between the exact Ar j and the value which is obtained using the computedr

Arl, 1' and A 1  . After summing the equations in (2.13) we obtain

iii

r- I r-i

For i > -the elements of A are modified until A is obtained. A.

is then used to comDute 'i , and A I to A"l are all taken to be exactly equalj+1

to zero. The equations are therefore

A2J - A 1  X il Alj  + E .
2 11 2

A3 A2 M A2 _3

...............................

Aji = A _ Mi,- 1 AJ-l, j + ij] J-I j-i

Aj 1  
4. -M A i+ (2.16)

Again summing all the equations in (2.16) we have

0 = A'1 -M i l  -M i2 A2 j  
..... Mi] AJ + e ii

i (2.18)
2 3 1+1

If we take the terms involving M ii to the left hand sides in equations (2.14)

and (2.17) the set of N2 equations then reduce to the single matrix equation

LU = A +E = A +E (2.19)
- -1 - -

where L is the lower triangular matrix defined bv

12
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1 0 0 0 .... 0

"Ij
L M 1 0 ........ 0

M31 M32 1 . 0

......el.ee..e .........

Mi MN2 . (2.20)

and U is the upper triangular matrix defined as

11 A 12 AIN-
1 1 1

U0 A22 A2N
222U... ..2 ............ . 2

0 0..............AN (2.21)

and E is the error matrix defined by (2.15) for i < j and by (2.18) for i >

In actual computation, we select pivotal rows so as to ensure

M ij < 1 (2.22)

There are two main ways this is done. In the first case the columns may be

eliminated in the natural order, but at the rth staze, the nivotal row is

taken to be that one of the remaining N+l - r rows which has the larzest

element in magnitude in column r. This is called partial pivoting.

Secondly, if at each rth stage we select the largest element in mag-

nitude from the remaining N+1 - r rows, this is called complete pivoting.

Wilkinson has shown that [ 8]

i < 2 r-  a (for partial pivoting) (2.23)r

and i,

Ar (21 3. 41/3 .... rrl} a (for complete

pivoting)

13

hill.-
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where a is given by

A A < <a (2.25)

Wilkinson claims that for almost all mat.rices A,

rr II
A I < ra (2.26)
r

TWe denote

max A1  g (2.27)
r

A

an ' ! max E A < N F (2. 28)

Now we trv to find 11I1- the total error encounteredI in the r:7Ii

decomp~osition of A .'2e observe

r r- r-II ' -2(2.29)

where E£1 and ,are the round-off errors made in the multiplication and sub-

traction, respectively. "e know

E = E:, < 2- (in binary) (2.30)

< 1 10 It(in decimal) (2.31)

where t is the number of digits in which actual computation is carried out.

Thus

ij 1= r Mi, r-l Ar- , j r 1  r-1 r-l,ir r +- E r-l j 1+ £2 r-l

t+l-
<____ t2 ?1- (2.32)

r t +1 )

rr

14
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E 1
1 -j A . <~- g. 2- < 2 - :,

2 3 3
,,+ 33 1

A ' - L*

so that we need not give these elements special t-t!3trT-ntS. 1 1.

(2.15), (2.18), (2.32), and (2.33) we have for Cowple~e p-vrti

o 0 0 .... 0 0

ij2 -1 '-t
.g. Y1-9 1 1 .... 1 1

2 -1
1 2 2 .... 2 2

1 2 3 .... 3 3

L1 2 3 .... (N-i) (N-i) j(2.34)

N ij <2t+1 -1 . -t N-) (.5Thus IIEHJ amax Z JE ij < 1- g.2 . + 1) (N-) (35

i j=l 2 t-i1

So in summary, what we have done so far is expressed AX = Y in the form

LUJX - Y. The computed L and U satisfy LU = A + E and, hence, if we solve

LUX - Y without any further rounding error, we would obtain

(A + "-; X Y (2 36)

Gaussian elimination solves (21.36) in two steps

LG - (2.37)

UX = G (2.38)

each of which requires the solution of a set of equations having a triangular

matrix of coefficients. We therefore now consider the errors made in

solving triangular matrix equations. From (2.37) we find [3]

G Lrl G1 (1+arl ) Lr2 G2 (1+ r2 ) .- Lrr-l r-l1 + - r r1+j

L rr (l 1 -6)
(2.39)

ri r r ri r
where e , and 5 are the round off errors associated with L , Y and

15
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rr

. .:(2.40)

r! -- (2.41)

and r r, r+ i)2t (2.42)

Rewriting (2.39) we find

r l  1 r2 Lr, r-i r-i + r,

S + i + 
+ Er

Lrr i+ r
r

1 + J (2.43)

and if i + ri 1 + pri (2.44)+ j 2.4

1 +

-r

an I+ C r + rr (2.45)
1

then (2.43) can be expressed as

Lri vr (2.46)'.. (i + ) --
i~ 1

Since t .-r < we have rri < 2rx

(2.47)

and from (2.42) and (2.44)

(r + 2 - ,-t > > ! , + s
(2. 48)

or (r + 1 - 1) 2- ' >

Equations (2.43), (2.47) and (2.48) show that the computed vector is

the exact solution of

(L + AL) 6 = Y

wiere LL is bounded by 8 1

16
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2 1  
-1

A 2 -. - I!

N IL'' N IL' .. . . .. . .. .

hence L
N -

IIAI -Amax L' < ;(N+ N + 2) (2.3o,.

j=1

.35 max LL '

Si:ia rIv wt.' !::in urive

AU , <-tN

Also we nave [j

-.ax L'

and

l1Ull max 13"' 1 N (2.53)

Heaice X satisfies

(L + AL) (U -AU) (X + AX) = (Y -4 Y) (2.54.)

where AX is the uncertainty in the solution due to the fn(erti 3cAt,

with the computing processes. Thus if E is the error associated with

the representation of A, (i.e. A + E = LU), then

(A + E + L.2.U + A L.U + AL.,'Y) (X -4 Ax) =(y +~ ,,y)

or (A + V,) '. -. X) = Y+ AY) (2.55)

17
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where AA = E + L.AU + tiL.U + AL.AU

and so from (2.35), (2.50) - (2.53) we obtain

< g -t [N4.2-t N3 (t1 N2 (51 22"+l + +2t  +2_4 N g4 (2-t-+1) + 2 42 N-tI +

< g 2-t [N 3 + 2N2 + - + .. (2.56)

So far we have discussed only the infinity norm, i.e.

IA = i j=ll

We next introduce the Euclidean norm. The Euclidean norm is defined as

AE N N AiJ I 2 } (2.57)

It can be shown that under the Euclidean norm [8]
2t+l-i 2- :2
2_ 1 E 2- N N-i (2.58)-- 2t-l6

< [7 N(N+1) (2.59)Et 'YE2

_ _ N(N+l) (2.60)

(N+2)2 2- t (2.61)

< (N+2) 2g 2- t  (2.62)

2- t 12---A2 ! + + 3 N2 +."' (2.63)

However, Wilkinson claims that for all practical purposes [8]

HA E < N'g.2 and l _ < N'g.2-t

So for both the Euclidean and infinity norms

2<[ N.g < 2-t (2.64)

Since IAIIE and HAHI are not related to the eigenvalues; of the matrix A,

we introduce the spectral norm. It is defined as

IAII , Imaximum eigenvalue of Al A X [A] (2.65)
_ _ max -

1 A [A)
and cond [A) condition number of Amal xA I i ]2 A (2.66)1 -mi

n Aj

(2.66)

18
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For the spectral norm it can be shown that [8]

IIA11 2 <I IAIIE < 2

Thus,

IAA[ 1 2 <--. f IAA E < 2-t IIA'! < . 2t

and

< 7N-. 2-  (2.69)

I IAI 2
However, note that for a row or column matrix [8]

2( 22?
''Y1 12  {(Y 1 )2+(y2)+

In order to find AX from (2.55) we obtain

-1 "A-1 -lY AAX = {I + [A]-I.AA} {[A]-.AY - [A]-.AA.X (2.70)

where I is the identity matrix. If i AI 2  I then it can be shown

(8, p. 921

(2.71)IIL -I - ![A] 1" K.; VXA

Then we have

II.xl 2 -I AI I_ f_ !lAM ,
12 1-A 2* 2 2A AII 2 Y 2

cond [A]< -~ [2-t+ / . 2 t

- 1-FN.cond [A .2

2- t [AN +1] cond [A]
< (2.72)
- 1 - 2- t cond [A

Thus there is absolutely no way to recognize an accurate solution X given

by Gaussian elimination unless

vN.2 cond [A] << 1 (2.73)

Thus (2.72) relates the accuracy of the solution to the dimension of A,

its condition number, and the number of digits with which computation has

been carried out.

19
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As an example consider the solution of the following problem AX=Y

by Gaussian elimination. Let A be the ill-conditioned Hilbert matrix and

Y be that vectr for which X = (1,2,3 ..... , NJ. The problem then is to

find X given A and Y. We simulated this problem on the Xerox Sigma-9

computer where computation is carried out using twenty four binary digits.

For a 4th order Hilbert riatrix the condition number is obtained as

cond (A )=1.55 x 104 [2j. Thus for a 4th order Hilbert matrix (2.72)

reduces to AX- .0027

and hence a very good accuracy in the results is expected. However for a

fifth order Hilbert matrix < .982< .09825

since cond (A5) = 4.77 x 105 [2]. This is reflected in the following results:

X 0.996 2.067 2.708 4.442 4.783

.07772

Note that the theoretical error bound is large. For a sixth order

Hilbert matrix we have

X * 1.007 1.786 4.509 -.0342 9.543 4.182

X ea 1.0 2.0 3.0 4.0 5.0 6.0

- exact

In this case -7®RT = -2.59 (from 2.72)

since cond (A6) 1.5 x 107 from [21.

These results prompt us to look for alternate methods in which we

could reduce the effects of round-off error in polving a system of

equations. The effcct of round-off error may become pronounced not only

for very ill-conditioned matrices but also for large systems of equations

in which a large number of arithmetic operations must be carried out.

Iterative methods are good alternatives to rectify this problem of

round-off error. For example, for a 7th order Hilbert matrix, where

we know direct methods would not work, we obtained this result by the

20
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,ionjugate gradient 2'ietrind at the end of sever, ireration;.

X -. 9; 2.;90 3. ; 4. 0; 7 Q.

exact

t. CONCLUS TONS

The direct mechods arc quite ef ficient when we have well--condiciorned

matrix of small rank N. However, if the matrix -A is il1-2_ondjtufl*.ed, then

the direct methods miay fail even for a 5 x 5 matrix. Also -' tht! rank -)T

the matrix is very large, then thu round-off erroL ma,, V!,i i pt

,''*cond (A).2- comparable to unity. So we must look for Ien~v

methods of solving systems of linear equations when we have &i

or a very ill-conditioned matrix. Even though the two conditi ns o;~

which the direct mcethods fail are quite ditferant. t'i, i's.~ ii

cound-off error. Thus we next looc: in to t he it (- _ Ve Tlie '-I 2ere - I

unknown is iefined at each stage until we get the exact soii on. in

iterative mtthuods, the round-otf error i. generally i4n,.lted 7L; Lhe IaSt

iteraticn oHilv. This we demonstrated by solving a 7 x 7 HIlbeicL Matrix

wiing tiing,' prtecl-sion computation. We know that fr rh-, orobiem di <Pct

methods would fal I as -'L.') (f:rom 2.72).
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3. PHILOSOPHY OF ITERATIVE METHODS FOR SOLVING MATRIX EQUATIONS

Summary

The basic philosophy of the iterative methods is discussed in this

section. It is shown that the solution of the set of equations A X = Y

is equivalent to the maximization/minimization of the functional F (X)

1<AX, X> - <Y, X> if A is negative/positive definite. The contours of

constant F (X) are generally N-dimensional ellipsoids. Also the residu-

als R (= AX - Y) at the end of each step are normals to the ellipsoid

at X . The paths P by which one reaches the center point of the ellip-

soid (which is the. solution, X ) are different for the different i:-
-exac t

erative methods. An iterative process is called linear if the present

estimate X is a linear combination of the past estimates oX, X 1' 2

.X n_ ,. Otherwise the iterative process is nonlinear. A process is

called a stationary iterative process if the rule by which X is deter--- n

mined does not change from iteration to iteration. Otherwise the itera-

rive process is called nonstationary. Nonstationary methods are not par-

sued in this presentation because some ideas are needed about the agni-

tudesof the maximum and the minimum eigenvalues of A for these methods to

be effective.
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3.1 MATHEMATICAL APPROACU OF ITERATIVE METHODS '.L, 9, 2)3, 11]

Many boundary value problems of mathematical physics may be reduced to

the solution of a matrix equation

AX = Y (3.1)

The iterative method consists of choosing a trial. tunction X for X

in (3.1). For this trial vector we ha~ve a residual R, given by

R AX- (3.2)

The objective of any iterative scheme is to alter the vector X systematically

in such a way that the residuals eventually disappear. To achieve our goal

we introduce the quadratic functional F (X) defined as [9J.

F (X) <k ,x> - <Yx>

2 (3.3)

Here <., > is the usual definition of the inner product. (In the oresent

chapters we will assume A to be symmetric and A, X, Y are real matricfes.

We will derive the rates of convergence of various :terntive schemcs base~d

on this assumptiorn. LaL !r we~will extend the discussions to complex matrices

by changing the definition of tho inner toroduce.] If we teant to min imiz e

or maximize the quadratic functional F (X) define'd by (3.3) then the first

functional derivative should be made equal to zero. [This functional

derivative is often referred to as the Frechet differential of F (X)]J.

The first differential is obtained as

F' Mx = <AX-Y, Ax> <R AX> (3.4)

The second differential of F"t(X) is obtained as

F" (AA- < ,AX> (3.5)

Thus the solution of a symmetric system of matrix equations in (3.1) is

equivalent to the problem~ of finding the min i'um/maxinum ot' a quadratic

functional F ()of (3.3) depending on whtitlhLr A is posttive/negitive definite.

23 .
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In orde to M-×txn ize/minimi7e F (_) we start with a trial vector X

We select some direction P and correct X in the direction of P with the-o -O 0

intention of approaching the maximum/minimum of P (X). From now on let us

assume A is positive definite so that we can explain the principles of an

iterative scheme. The new trial vector X obtained at the end of the first

iterative step is related to X by
-0

X = X + t P (3.6)-1 -o --O

whiere t is a scalar parimeter. Then

F (X F (X + t P )

-0 1--o

2
<AP P > + t <AX -y P>+F ()

2 ----0 -0 ---O -

(3.7)

FNOTE: X represents the kth element of X obtained after n iterations'
"n

The parameter t is now selected in such a way F (XI ) reaches a minimum

,as A has been assumed to be positive definite), i.e.

dF (X )
<A P + 'tV - Y , P > = t <AP

dt -- ---o-0 --0 -o

=0

or tmin = -o P (3.8

The second derivative of F (X1 ) with respect to t yields

2
d F (XF)

-- 2APO I P D > 0 
(3.9)

since A is positive definite.

When A is nonsinc.ular but indefinite, its solution makes the

correspondin7 quadratic function stationary but not maximum/miniium.

24
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In the event A is positive definite, t i really vields a uniqu.- .nini--,

as seen Ux' (3.9). Al.,o the functional F MX is a quadratic in t as shown

(3.7). Hlence it forms a parabola when plotted against t as sho;*m in Figure 1.

F 00

t=O 2 t t
min min

gu ire 1:- P lot of F (X) against t.

Hence for 0 < t < 2 t. the value of F (X) is smaller than F (X ).The noint
min -0

X, which is reached by moving in the direction P 0with t =t mn is then the

minimum point. The decrease in F (X) is given by

AF = F (X) F (X) -1 -'~ < 0 (3.10)-l -0 2 <AP ,P >
-- 0 -0

for <R ,P> 0 (3.11)

Thus to obtain any reduction in F MX the search direction P should not 1-e

orthogonal to the residual vector R .Otherwise we remain at the trial rboint

25
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It is also interesting to note that at the minimum point X with t=ti

the new residual vector R is orthogonal to P . This is because

<R P > = <AX- Y P > =<(X + t . AP - Y)P >

- -l - o - min o

<R , P > + t m < , P > (3.12)

For example, in the coordinate system of the unkno.ns, X (xi 9 X.), the

contours of F (X) = constant form concentric ellipses whose con-on center

coincides with the minimum point of F (X) and constitutes the solution noint.

At X , the residual R is orthogonal to the contour through the ooint X as

it is the gradient of F (X ). In one iterative step we pass from X in
0 -0

direction P to X, where F (X) is a ninimum along the direction P . Here i
-0 -O

is perpendicular to P This is illustrated in Figure 2.

2
x

Solution P

--0

1
X 

X

Figure 2: Interpretation of Iterative Scheme
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The various iterative schemes discussed next L A

general iterative scheme as the various methods differ --riIv 1r, h

of the iterative direction P, for the individu.al iternitivc- stepwaa -ric n I

path followed (through the choice Of L). An icerative mtid1:~:

stationary iterative method if the function () defined -us

x~= [A, Y, X, X......X
-::n ~ _ n -a --n-i-

is independent of n. Thus in a stationary iterative riethod Ql andm

so on. Otherwise the process is called a aonstationarv iterative mtA

The iteration nethnod is linear if 0) is a linear functicon- of. .A

Otherwise the ziethod. is nonlinear. Im th-ese discussions we wil c:'iri i

attention to only stationary iterative methods because for iuonsta t4cnr

iterative methiods the parameters vary with the problem.-

2 7
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4. LINEAR iTEFATIVE METHODS

Summary

Tnis section describes the various linear iterative schemes. It is

shown that for Gauss's hand relaxation method the search directions P are

the coordinate vectors whose only non-zero element is 1 at the kth row,

corresponding to the largest residual. In Jacobi's method, however, the

search directions P are chosen cyclically, i.e., starting with a vector

whose only non-zero element is 1 at the first row and then gradually going

down to the nth row and back to the first row again. In Seidel's process,

we modify Jacobi's method by substituting a refined estimate for element

i when we compute Xi and so on. However, the disadvantage with Seide 's

process is that convergence is irregular if the largest eigenvalue of the

iteration matrix is complex. This problem is remedied in the back-and-

forth Seidel process. Basically it consists of two normal Seidel's pro-

cesses. We proceed in the nth iteration as a normal Seidel process by com-

1 N N 1
puting Xn ... Xn. Then at n + 1 iteration we compute X n+ l to X n+l. The

rate of convergence of linear iterative schemes can be increased by the suc-

cessive overrelaxation method presented in the last subsection of this

section.
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•~~~~~~ ~~~ ~~~~ ............z .. II N : E ![i , ,], 2, 3

ks : :'Ii-ei by' I;a ,:)r hand calculation and is mostly o

Sri.ax s .- ancc. in this case, the elemenk
r -I S1 P n(from 3.6) of the

11Ch direction vector P are chosen corresponding to the greatest residual.

in absolute value. Thus P is a N X 1 column vector whose onl, non-zer.o,--
--n

:.eut is 1 at the kth row, where the kth row naas the largest residual R nn

absolute value at the end of n iterations. By using (3.6) and (3.8), 'e

arrive at the following equation in terms of the components

Rk

k k n p (4.1 )
n+l n Akk n

Thus t. for this problem is

-R Pk (4.2)
11 i- Ti 2

rain <AP P > kk

-iT -- t.Lthod is not very suitable for automatic co-::putation as it is a very

.. brious process to search ror the larAest absolute element in the residu2i.

JACO,'S C".CLICA.L ITERP.TION METHOD (SUCCESSIVE DISPLACE:.!E';T [ETHDD)

In c,-ntrast to Gauss's method, the relaxation direction P now runs

cvclically tir,, ih the coordinate directions in the sequence E1 , r ....

regardless of the residuals. Here E,' is a column vector with 1 at position k
-K

and zero elsewhere. This method is then equivalent to solving each of the

original equations in turn for a single unknownand hence the solution vect,r

is changed one component at a time. Here t min is defined as

<R P > <R El.> Rk  (4.3)

t --
m <A , P" <A[. k1

-n -i-i - A

29
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tdence

R kN
k Xk n 1 k Nr
X E [ -= - fY Aki X]n+1 n Akk k Akk =1 n1

A A, ji

Suppose A is deco.:iposed into a diagonal matrix D (with elements D' A A

a lower left triangjular matrix L (with elements L ii=A i for i > j and zero

Cor i < j) and in upper right triangular matrix U (with elements U13

for i < and zero for i > j). Hence

A= D +L +U (4.4)

Thus the Jacobi iteration for solving AX =Y takes the form

DX n41+[L+ UX n= Y

or,

X 1.it, [D) - [1. + U] X n+ D_ Y

SGIX + H (4.5)

The Jacobi iteration converges as long as the largest absolute eigenvalue CI_

G' is less than unity. Other equivalent convergence conditions are de-

scribed in section 8.1.

Observe that when the matrix equation A.X = Y is scaled such that D

(identity matrix) then

x [AX -[F Y_ _ = R-C (4.6)
-n+1 --n nA 'n PI

i.e. each individual component X kis altered such that the residual of the
n

Kth equation is zero, without regard to the connection of the other

components.*

4.3 SEIDEL"; METhOD (SUCCESSIVE DISPLACEMENT MIETHOD)
(often incorrectly called the Gauss-Seidel method) [1,3,9,12,13,141

The r~~t2 of convergence of Jacobi's method was improved by Seidel in

modifyin, (4.3) :n the following way
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k-1

A Lq~k+1

or (D + L) Xi + IT\ Y

This is achieved_ uy -- a :e 1-l

iteratioxu ratlior Chani waiting cin ar ix

Thus

x [+ I] - T +r T-1

The necessary and sufficient con (i on fur the- ont 5ui ~

the largest eige-ivalue of A be less than unity in magn~tid>. i'!he~r c ~

gence criteria will bIe diScussed laLtr on iLn>cc~~i

The major drawback of the linear ILLLZI:iVe., .e;

:,articularlv that of Seidel' s method is that the ceziver c'ci

irregular if the d& -,nant - ;envalue off i . is .:ipe:. ar

rSiJder the r ii.c.-zng ;- ..- '

x_____ L- PlC -P:

1.0 0.7 0.7 0.

0.7 1.0 0.7 9.1
0.7 0.7 1.0 ,.

L0.2 0.1 0.1 1i. (J

and we wish to solve the matrix eqjuation

A.x = 0

Since det [A] 1 '0, the ,l1~ o-sible solticn iq ~ T~te v i'-i,

,i r e * i v e n i n t h e . 1- dr' 2 ' .h 
i
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X X 2X 3 X 5. AX-

1 1.00 -1.v -. 8i -0.41 --0.18 -0.062 -. 0080 .01220

2 1.00 0.32 0.d0 -0.12 -0.13 -0.107 -.0761 .04927

3 1.00 0.80 0.56 0.36 0.21 0.115 .0577 .02561

4 1.00 0.21 0.11 0.06 0.03 0.012 .0034 -.0007

-8 -9l -0

.01656 .014576 .010786

-.02953 -.016425 -008403

.00907 .001421 -.001527

-.00127 -.001514 -.001134

Table 1; The various components of X at the end of each iteration

ii ' 3/X 2v VIV yXI/ X6/X 5  x7!iX 6
i X ,/X X X I  X42 /3 i5 X4 6 //X

1 0 2' 1 32 43 54 65 76

1 -. 60 0.52 0.49 0.44 0.344 0.1290 -1.525

2 0.32 0.00 -0 1.08 0.823 0.7112 0.6474

3 0.80 0.70 0.64 0.58 0.548 0.5017 0.4438

4 0.21 0.52 0.55 0.05 0.400 0.2833 -0.0205

i / i i i /i

8/7 9/8 10 9

1.3574 0.8802 0.739983

.5994 0.5562 0.511597

.3542 0.1567 -1.074603

18.1429 1.1114 0.822614

Table 2: Ratios of X II/XI for Seidel's process.
n+1 n

In this present example it is interesting to note that the ratios do not

approach any limit. This is shown in Table 2.
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Such erratic behavior ts to be expected s;-nce the eigenvalues of the

~trIC ~in (4.8) are 'omplp%. The elgenvalues of

0 0 0

[+ LI1 [C; .49 .147 .0763

0 .147 .5341 .0439

0 .0763 .0439 .0228

are =0, 0.028333, 0.566733 + i.157i5S. Th-at is, the dominant eigen-ilurnc

aE Q are complex conjugates. Thus, although the Seidel sceeis convergent

in this case, the convergence is erratic. This erratic behaviour o: "he

Seidel process is remedied by the "back-and-forth" Seidel process.

4.4 BACK A-ND FORTH SEIDEL PROCESS [1,13j

The back-and-forth Seidel process was designed by Aitken anJ Rosser to

*-vercome the i-rregular convergence of the Seidel process. This is

icnieved by making all the eigenvalues of the iterative n-atrix real.

i-t proceeds as follows: Start with a first approximation vector X and then

-ibtain X by thu regular Seidel process as

Y, -D 4- LI U X + [D + L] Y (4.9)
--i.- _ _-

TZhen find the next iterate by applying the Siedel process to the equations in

reverse urder, i.e.

X, D U LX, +[(D +U] Y

[D -4- U] 1 L [D + LF Ux X [D + U-l L [D + L)y + [D + U -i Y

Thus we see that for this process the iteration matrix is (4.10)

S = [D + U] L [D + L]- U (4.11)

Since A is assumed .to ho symmetric L =U Tand U = L T(here T denotes transpose)

and so the iteration mtrix can be rewritten as
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S - [D + U1 uT [D + U T- u

= [D + U_- UT [(D + U_- I] T U = LM__T  (4.12)

where N = [D + U] -I U . Thus S is similar to a non-negative matrix.

Since det[M] = det[U] = 0, !t-_T is semi-definite. So we can conclude that

all the eigenvalues of S are on the real half line x > 0 and hence the

dominant eigenvalue of S is unique, though possibly may be a multiple root.

Example 2: We now apply the back-and-forth Seidel process to example

1. We again start with the same initial guess. The results are sum-

marized in table 3

i -o X1 -X 2 X2 -3 -3 -4

1 1.0 -1.60 -0.99 -0.99 - 0.64 -0.64 -0.42 -0.-:17

2 1.0 0.32 0.48 0.06 0.23 -0.01 0.12 -0.(_32

3 1.0 0.80 0.88 0.63 0.64 0.43 0.45 0.305

4 1.0 0.21 0.21 0.13 0.13 0.09 0.09 0.056

4 5 5 6 -

-0.277 -0.27650 -0.18437 -0.18437 -0.12332

0.070 -0.02835 0.04305 -0.02144 0.02746

0.309 0.20780 0.20966 0.14033 0.14157

0.056 0.03736 0.03736 0.02499 0.2499

Table 3: Various iterates of "back-and-forth" Seidel process

The ratios X' /Xi are obtained as
Un+l -3
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1 -0.99 0.65 0.66 0.tb0 0.66560 0.6687

2 0.48 0.418 0.52 0.583 0.61500 0.63737

3 0.88 0.73 0.70 0.687 0.67851 0.67524

4 0.21 0.62 0.70 0.62/ 0.36/t4 r).u66iC)

Table 4: Ratios of X / IX ifor "back-aad-foArth" T,!i~ onn1+1 n

The results from table 4 indicate that these ratiu-: art- tendi-nf to 0,67. i.e.

that the dominant eigenvalue of S is about 0.67. A simple calcalAtiol reveal,-;

that the eigenvalues of S in this case are 0.65611, 0.36368, 0.02720 and 0.

The dominant eigenvalue is real and is equal to the ratio of

r xiI
limit

IXri
in this ex~imple, the convergence of the "hack- and-for th" .. :.:ccs.

wnile slower than that of th = crdinary Sef.del proceos, i-, mi.h, -c~re re_ 12

than the ordinarY Seidel process. However, the "baick -and -orth" F'0 4el

process can easil% lie i. <e',rated. Ic is not -erta-.n, howezi r, 7-i1C,, ,

would give the mno-t r-~rcjrunto hr

Also, in most Tnethod of moments problems, we enco>.atc:r a m'atrix \'.h~

eigenvalues are often complex. The use of the 'back-and-:yTL'*' qeidei Pro-

cess in these problems will be justified; but, as we shall1 show later, therv

are faster schemes to treat these problems.

4.5 THE METHOD OF SUCCESSIVE OVER/UINDER LAAIN l.i.l32,56

In the case of large systems of equations, the Jacobi or 'e-idel proces.;

converges poorly when the maximum absolute ei-envalue (often referred to as

the spectral radius) of the iteration mitrix G' in (4.5) or )in (4.3) lies

close to uiity. Coivergeiice of the Sc idel. :)roro-;s -ou id he '
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instead of just rea:hing the minimum point at t . of Figure 1 we go be-

yond this point by a certain nouat. It seems paradoxical at first to re-

train from minimizing the quadratic functional at each iteration step with

the goal of achieving better owvergence. Instead of choosing t = t ,

we choose t = -t I where ,: is :i factor which may or may not change with
m.n

each iteration. Thus (4.7) is now modified in the following way:

(D + L) X+I + UX = Y--- n --

or D(X -X = Y - UX -DX -LX

-r n+l - n - M -- n n M+i

We now introduce the parameter w and define the new iteration

-I
D(X - X )=Y - UX -DX - LX
_ n+l - - - -n --- n+l

or X U+l = [I - (t- D + L)- A] X + (o- D + L) Y

In this case the iteration matrix is [I - (w I D + L) - I A] where I is the

identity matrix. We are now interested in determining to so as to give this

matrix a small maximum eigenvalue. It is interesting to note that in symmetric

definite systems of equations, the relaxation methods converge to the solution

for any fixed value of j in the range 0 < to < 2. This probably could be

expected intuitively as the quadratic functional is reduced in value for

0 < t < 2t . . For 0 < < 1, the method is referred to as underrelaxation

and lor I < w < 2, the method is called overrelaxation. It has been observed

by Kahan and Young (14-161 that values of w < I tend to reduce the rate of

convergence whereas u) > 1 accelerates the rate of convergence. For W : i

we overcorrect the solution vectors and hence we, speak of overrelaxation

methods. Unfortunately, for a given problem it is difficult to find the

optimum choice of the relaxation parameter to. For this, additional information
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about the structure of matrix A is necessary. Nonetheless, we can say that the

worse the :onditlon of the matrix, the closer the optimum value of to lies to 2.

la suzh a case. at e.ch iterative step we jump far beyond the minimum point

to a new approximation which leaves the quadratic functional F (X) almost as

iq-ge ;s it waF before. Hence the strategy of making the best improvement in

each individual iterative step by going to the minimum point is not the best

way of achieving the optimum long-term result.

The successive overrelaxation method has found wide application in the

solution of boundary value problems by the finite difference method. In this

particular type of problem one often encounters a very sparse matrix. For

such special type of matrix equations optimum values of w have been given

ob KaLan •nU - [14-.16]. In the case of a full matrix it is difficult to

tind the optimurn w theoretically unless there is a certain structure to the

matrix. Jther.Use for each individual problem the optimum value of w has

Lo be obtained experimentally.
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5. "*:CNT CA.ILO :'IETHOD* [1, 17-21]

In this section we apply the law of large numbers to solvu a system of

linear equations. A Monte Carlo method is capable of giving a rough

estimate (5-10. accuracy) of the solution in a reasonable amount of tire,

or vhen the problem is too big or complex for any other method to handle.

The Monte Carlo method is applicable if a Ai (T)<l, where T = A-I.

However, this can be achieved by prescaling the matrix. The method

presented in this section starts with an initial guess X of the solution X

and computes various components of X by

=N

S= XJ - A]ji

where [A-I]ji represents the element corresponding to the ith column

and j .th row of the inverse matrix of A. This requires slightly more

work than the computation of the unknown X by

N
xj i [_-ljji [y Ii

i=l

However, the results given by the former converge much faster if the

initial estimate X is reasonable.
-o

* It has become quite widespread nowadays in mathematical literature

to speak of Monte Carlo methods (plural). This is because the same problem

can be solved by simulating random variables in various ways. But here we

will use Monte Carlo method (singular).
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5.1 SOLUTION OF A SYSTEM OF LINEAR EQUATIONS

The Monte Carlo method is a numerical method of solving mai..iai,

problems by means of random sampling. The method was first , by .;,...

von Neumann and Stanislav Ulam. Even though t-he tnzu' :7 .1 -t i ,,:

this method has been known for a very long tiaie, tuis nencd , xiJ ... 1t

used on any significant scale because of the waijual simuLK:. .i .

variables, which is often a very laborious procedure. With atde avent of the

electronic computer, this method has become an extremely versatilc numerical

technique. The Monte Carlo method is useful in any of the following sitia-

tions:

a) A quick rough estimaLe of the solution is desired, whicri is trer.

refined by some other means. This is because the first few sLeps of a Monte

Carlo method tend to improve results significantly, wnereas * ,x' alditiona

steps are needed to achieve a high degree of accuracy. lhis tn' tnod is

especially efficient in solving problems which require '\ 5 - i0 per cent

accuracy.

b) The problea. is Co r , cr Li Cwpi.x rt)r , or! ct.r i'clocs.

c) Just one componenL :,f the solution vector o a i:-rge syster. of

matrix equations or only one element of the inverse ot a ruitrix is desired.

Under such circumstances it would be very impracticai to toive the complete

problem.

It was shown in Chapter 4 that the solution if - Y is equivalent

to the iterative scheme
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X n~l TX n4 W (5.1)

where W = [I- T] [A)- Y (5.2)

For Jacobi's method, T and W are defined by

T = - [D]- [L + U] ifrom (4.5))

-- (DI1 [A-D] (sinceA L +U +D)

I1- U]]- A (5.3)

and W= UD]- Y (5.4)

For Seidel's method

T [D + LI [ U] (from (4.8)1

[D + LI [A-D-L]

-I - [D + L) A (5.5)

and W [D + L]- Y (5.6)

The residual corresponding to X nin (5.1) is denoted by Ef and is defined as

EA [I - TI X -W

= [(I [Al [Ax -Y] [I- TI [Al R

- -n - -f - -

Observe that if AX = Y is put in the form of (5.1) then A =I - T ith

proper scaling. Under this circumstance W = Y and E n= R n X n- n1

i.e., the residual is equal to the negative of the improvement in the

approximate solution X n. We also observe that

E =l T E n (T n+l (5.8)
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Hence, X X - - -'"" - E
U 0 o V - -n

- X [ + T + {T} 2 + .... +{T} (5.9)

This scheme converges if the magnitude of the dominant eigenvalue of T (or

the spectral radius of T, or the matrix norm of T denoted by IT.II) is less

than unity. Under these circumstances

X = X - [I - TI- 1 E 0 (5.10)
--exact -o - -

In order to obtain a statistical estimation of the ith component of X-- e xac t

denoted by x we need to have an estimation of one row of [I - T]

The Monte Carlo Method of computing one component of X is to play the--xac t

solitaire games {G = 1, 2 ....... N simultaneouslv. It will be sho..-n

that each game Gi j has an expected payment of {[I - T]- }i j EJ . This is
0

equivalent to one component of the matrix product in (5.10). Based on the

theory of large numbers Kolmogoroff has shown that if one plays game G

repeatedly, the average payment of M successive plays will converge to

{[ - T]-I j Ej as M- , for almost all sequence of plays. The rules of the
a

games will now be expressed in terms of balls in urns, whereas a computer

will use a random number generating function.

ijFor 1 < i, j < N we pick probabilities p > 0 and the corresponding

"weight" factors i subject to the conditions that

N
) Z p < I for i=l,...,N and (5.11)

J=1

2) p ij Vij = TiJ (5.12)

where T1 J is the element belonging to the ith row and jth column of T. One

way of doing this is to choose pi - IT'j and = sgn [T1j]. By proper
N

scaling of tiie matrix equations we also make sure that - p'l <i.
j=l
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Now consider N urns. In each urn U we put an assortment of N + 1

types of balls. Each ball of the jth type is marked j and will be drawn from

U with probability pij. Thus the balls are loaded. The (N + 1)th type ball

ismarked "STOP" and will be drawn from U i with the stop probability pi defined

N
p =1- pij (5.13)

j=1

The game Gij is now played as follows. Draw a ball from Ui (all drawings

are with replacements). If it is a stop ball, the payment is
E 
i  

I

Gii __ (5.14)Gi

p

Otherwise the ball would carry a mark iI (1 < iI < N). This would entitle us
iiI  i1

to a partial payment of v . We then go to urn U and draw a ball. This

in turn tells whether one has to stop or draw again. So we follow the treasure

hunt from urn to urn until a STOP ball is drawn. Say the STOP ball is drawn

from urn Uj on the kth drawing. If we have arrived at Uj via the route P

defined by i - i i2 - .... - I 4. j, then the payment total payment is
1 ii i 2 ik- 1 j Ej

{G __ (5.15)

p 3

Thus the probability of obtaining a STOP ball via the route P is

P p p .p (5.16)
rp

Hence the expected payment (i.e. the average payment received extended over

all routes p ) would then be

I [GiJ] - {prYp {GiJ} O  
(5.17)

where [.] is the expectation operator and the sum is taken over all routes

.1 which originate at i and end at J. Since we assumed pij V'j = TiJ

we have
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00 N N N ii iEj
[6i + [i + Z .... E T T V T 0

k-lil=l i '
1 2 k-i

After rearranging the terms and using [A]-=[I-T] E T = I+T+T... we get
n=o

[ - [~i + z ({T~k)ii (5.S)
k-i

{[I- T]- 1 i Ej

0

where 6ij is Kronecker delta function and I is the identity matrix. Thus we

have shown that the expected payment of the game is G (or mathematically thc

expectation of the random variable Gi3 ) is indeed only one component of the

ith element of the solution vector X. To obtain the ith element of X ie need

to play all the games {Gi = , ..... N, asX i  N
ca=l

Computationallv the gane is played in the [ollowqing -'. As an

example, let the matrix A be [20)

.4 -.2 -. 1

A.: I- T = -2 .5 -.

. -.2 +.6j

Let Y = .2 . So that X = Now we select

3L

the initial approximation X [0] so that E: 2 = AX -Y

33
,6 .2 1

By the terms of the problem we find T .2 .5 .

,i ,2 .41
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and [p) = (IT1] and [vij] = 1 j Thus [] [1 - pij] = [jJ

1 .3

In this case N = 3. To play the game we select a random variable 'between

0 and 1. If j is the point to which the walk has proceeded, we find the
k

smallest integer k for which the cumulative probability ( Y pir) of going
r=1

from j to k is greater than E. We then calculate the partial contribution of

the score of the step from j to k. This is equivalent to picking a ball
N

marked k from the jth urn. However if E p , the random walk stops.
r=1

This implies that the picked ball marked k from jth urn is a STOP ball. If

we are interested in finding any elements belonging to the second row of the

inverse matrix, we choose i j = 2 (say) and the random variable = 0.82.

We now observe that

21
p p =2

21 22
p=p +p =.7

21 22 23
P P +p + =.8

N
and hence Z p jr <,- and the walk has to stop. So the payment obtained is

r=l

i E2

G = G = 2 = 1.0 (5.18a)
2 .2

P

Now let us pick = .15 and let i = j = 2. In this case

21

So we are entitled to a partial payment of 2 
= 1. Next pick another

44
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rj.iom number, say - .95. The walk will now proceed from j to sume

peoc k (i.e., we picked a ball marked j from the ith urn and we are

n. guing to LiAe 9th urn to pick a ball). In this case, I and let

u, observe jr ve see
r=l

11
p-,p = .6

11 12
p= p +p =.8

11 12 13
p =p + p +p =.9 <

Hence the total payment is

21 E 21 .1 5. 18G .

p

We thus find all the components {GiOL} , = 1, 2 ..... .. Then Che itc

component cf zihe solution X is

N
i 1 NX (5.19.

N a~ 1

in a Monte Carlo calculation, the problem of round-off and truncation

,)as very little effect on accuracy. The statistical -arLation of the resu':

is a more impo-tont factor. Accordingly, a measure cf accuracy of the res-it

is how the mean square deviation or the variance of the pavrent G about its

2 iexpected value i,ehaves. The variance o. of G is given by [21].i

02 = (Gi - T 1}ij El) 2

ij - - 0

= (GiJ) - ({[I - T]-I EJ)2

= {i}2 - ([- T] 1 } i j EJ) 2  (5.20)
r o - 0

2
Thus it can be seen that.) .. is finite if the magnitude of the largest

oigervalue of -. ::atrix [pii . { ] is le-;s th an :nitv. It is intere.;ti:-'
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to observe that if ij= 1 and Tij > 0 then (5.20) becomes

2 1 o}_pji

[I T 1 I 2L [ - T1''J (5.21)a.. = -$]l O} { -} 5.

which is the variance due to a binomial distribution. If the variance after

K random walks is sufficiently small we have obtained a good approximation

to the one element of the solution vector. In our Monte Carlo computations

we find the smallest integer K such that the probability of the required

solution is within the + 3 standard deviations (a). This is equivalent to

stating that the obtained solution Gi j is within Gij + 3 a.. with 99.77%

probability.

In this example since we have done two random walks, the estimates for

G2 2 and G2 1 are

%22 G22

= -- = 0.5 (from 5.18a)

,,21 G 2
1

=2l = 0.5 (from 5.18b)

In this case

G2 2 c = .597402 and Gx1  = .168831
exact exact

Even though is close to the exact solution, G is not. The variance is

2 2 2 [Z {G22 }2 -
22 }2

a2 2  a 2 1  22 = 0.5

ij 3i
Thus G eact lies between _ ij Obviously in this case 7 22 is very large.

However after 2376 random walks the estimate is obtained as

%22
G = .5988
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which is in error by .0014, and the variance x

many random walks are often required to obtain tolerable accuracy. 'Fie

amount of work required by various methods is discusscd in s~ecz.ian 6.

5. 2 ERRORS IN MONTE CARLO ME=WD

In a Monte Carlo calculaticn, the problem ,)f round-off -ind trunc-itit)-2

errors has very little effect on accurac-4. The -;tatisti-ai *.,ar:.atkn of 1i1,

result is a more important factor. Ac: -rdinm:ly, i meas-ire of acrurac'; of the

solution is the mean square deviation -,and the variance defined in (5.20). It

is important to note that the first few random walks2 tend to improve the

results markedly h l a' h . onTmwai>" "Irfetei- ~:I

them. This is because 'n a M-nte Carlo ,nethod the variance is :1ir&2tiV

proportional to -- where 'e, is the numLer of r.,i:;do- oi taken.

Hanceya Monte Carlo mnethod 4-6u4.1 rccjro.c-d,1 10"r r.

accuracy is desired. Also it may be uo ,--d tr-) obtain rttc IJi. s;ues.- fcir

the various iterati.o 'hcmc Finall>.74hen the prob',-zi is too lirgle to

handle by any oLher rz. ~ ~ X c roia,,' Le L !t oTly -,ay

to solve the pcbe
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6. COMPARISON OF EFFICIENCIES BEWEEN MONTE CARLO METHOD, GAUSSIAN
ELIMINATION AND LINEAR IIERATIVE SCHEMES (18,191

Summary

In this section the total amount of computations required for the linear

iterative methods is compared with those for direct methods and Gaussian elim-

ination. The total amount of work required has been computed for all three

methods for the two uses: 1) when only one component of the solution is de-

sired and 2) when the total solution is desired. A table is presented at the

end which summarizes all these results.
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6.1 DERIVATION OF COMPUTATIONAL REQUIREMENTS

To achieve a theoretical rather than empirical comparison we shall re-

strict ourselves entirely to an a priori error analysis. By error we

shall mean truncation error or statistical error or both at once. We have

not considered any round-off error nor the effect of miscellaneous arith-

metical mistakes. The error analysis and consequent appraisal of the amount

of work required to achieve a given accuracy is of necessity carried out

very differently for the Monte Carlo method than for the other two methods.

For the Monte Carlo method it is assumed that the problem is to find only

one component of the solution vector. It is recognized freely that this

restriction on the comparison is a strange one. It is made because the

question of efficient Monte Carlo estimation of all components of the

solution simultaneously has not yet been adequately investigated. Of

course, separate statistically independent estimations can be made for each

of the N components of the solution. This would multiply the measure of

the work by a factor of N. Even though it is quite inefficient, we shall

also use it to find the size N for which it is quite efficient to find all

the components of the solution with this inefficient method.

The amount of work required for a computation will be measured only

by the number of multiplications required, counting a division as one

multiplication. In counting multiplications, the possibility of unit or

zero factors is not taken into account.

For Gaussian elimination the total amount of work required is given

as

K +N + N2  N [18,19)
G 3 - 3 [ (6.1)

where N is the rank of the matrix.
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For a linear iteration scheme, the components are obtained as

-x+l = TX +.W

and since

we have from the two equations above

--n -exact - -X 1  exact
f- {T 2 (X2 - X exact)

M Tn  X -- exac t )

-{T}n  - TI E {from (5.10)1
-- o

E 11• E (6.2)

Thus if we require L iterations to achieve an error of c between X--exact

and X, i.e. if

'Xt 'xact - XLII < E (6.3)

then we have

. IE 11= E (.4)

lg + log (If- l_TI)I
or L =1- + (6.5)

* log 1H[11

where the dotted brackets represent the truncating to the next lowest

integer. The logarithms can be taken to any convenient base. Thus L

iterations have to be carried out to obtain an accuracy of C in X. Each
N2

iteration counts N 2 multiplications and we have computed E . This would imply

that to achieve an accuracy of E in only one component of X xact, the total

number of multi-Aications necessary is
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KL (L - 1) N2 + N + N2  [18,191

I--- --1
I log - 1 -J+ log (1- H )

(N2 + N+N 2 ) lo -- 2 (6.6)1 log I r

The work required for computing all the components of X within t, will be
--exact

(18,191
(18,19 ) I log + log (1 - JIT11)

2 2 (67KL(T  ( N ) log 11TJ - (6.7)

For the Monte Carlo Method we find the least value K such that the ith

component

--K -exact

with at least 95% probability. The values of K in this (d:- for various

confidence ranges are obtained as [19].

1 2 1N~ LE (6.8)o~t

-N + N + + 2" ', I~ 2  ,

where = 2.0 for 95.45% confidence level

= 3.317 for 99% confidence level

- 4.5 for 99.7% confidence level

If we use the Monte Carlo method for finding all the components of X within

E we have from [19]

2 -

2T N 5  E 1 1 (6.9)KM 2NZ + i + 2U_ 1.2  I I T If

Let r log +log (1- _

,T1 (6.10)
log 1J1TH
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1I E 1 2
and 1 l 1 I,, (6.11)

To find only one component of the solution vector within c, we conclude

from (6.1), (6.6) and (6.8) that Gaussian elimination is efficient if the

size N of the matrix A lies within the range

1 3ct + 9a + 16
1 N 2 (6.12)

The linear iteration scheme is efficient for N' within the following range

3CL + 90L2 +16( )
3+ 1 _ < N 1 < (6.13)

2

For N1  > ( ) the Monte Carlo method is the efficient scheme

Next we compare the total amount of work required by all the three methods

to find all the components of the solution X. Comparision of (6.1), (6.7)

T
and (6.9) reveals that Gaussian elimination is efficient if N lies within the

following range

1 < NT( + c) + (6.14)
- - 2

The linear iteration scheme is efficient within the range

3 (1 + c)+ c) + 12 < T < - (6.15)
2N

and the Monte Carlo method is efficient for

NT > (6.16)

Observe the precarious condition of the linear iterative scheme in (6.13) and

(6.15). Depending on the values of a and 8 it is quite possible that the

linear iterative scheme may have region where it is not efficient at all!!

Next we compute the favorable ranges of the dimensionality N for the three

methodsfor typical values of JjT j and This is presented in table 5.

52

Downloaded from http://www.everyspec.com



0

C)'0

0) r, 0

-4 
14

II a -4 (N r- ( a, ~
LA z 10 - LA V C 00 z N r- 1 0 i

L) 0 - -4 - sO r- C(N r- -

VI4 v '0 cI
Wo v/ A[A VI 0% Al Ai Alo *Y (N Z Z Z NZ

4j C; 
S

v v c I - C)
- I-4 C LA co

(7s E- ) N C)- (N c4 z C) m~ (NI 14

-vi r- c-o (Ni v~ C m in 'ooM
vj C) All Aj ~ VI c A) A A

K- z

00

cc vi0

Q) -1z o .1 C

I- v)F-z 
^j Al- .

.m 
1- -4, - ,0-!- - -:L -f -:

-4

CD

co 0 LA -4 -IT L) -4 N-
I- z. Z - v(N Lco N z LA -,t -T (N

-4 IN /t ~ N A

VI z z vi zI~ 4 A

'--4

CD)r

III C, *
C) -4 - r

4.) (N (N (N* 4

w C)) C) C)o , 00c)

-l (N-4 -( (Nj C) (N c M
VI Al tv A) 4 Al4. VI (NI I C

1- C,0 a)7 z ;

0 1-4
(120 C) O
4 4 en -4 (N -4

haO LnC (N (li (N
uVI .- 4 CN(4 c-4 v LA) N-

LA z Al /I ON z Al

4)V1 z z V1 Z z z

:0 C0 C

w~ ON

>- 0. (VN r- t4 0) N-
.0- 00 0. -4 0

Cuu Eg .- 4 0 A ) ~ 4L

-4 w Cu 4J3 LI)- a) 0J~ a) f
4O 4-. w 4-. Cu 0 -

-4 -0M aC C: a- V -.
C(1) -4 a) 0 W ~ '-4 r4.- 0 QJu U

m j *-0 C~ - V) w0

f0 -- 4a

-~ ~ '-. T-4 u 0 * L ~ VH ~ 0 ~ -

- 0 * ~ 4J .J~ 4~ 3 4-4. ~ i 40 53-

Downloaded from http://www.everyspec.com



Note that for T! 0.9 and = 0.1 the linear iterative methods

always require more work than the other two methods. Secondly, as the re-

quirements of accuracy are increased the breakeven point for the Monte Carlo

method also increases significantly. Thus the Monte Carlo method is quite

suitable for use when we have a well-conditioned matrix and about 10% accu-

racy is required in the solutions. It is important to note that we have used

the inefficient Monte Carlo method to compute all the components of the solu-

tion. Also we have not taken into account the effect of round-off errors in

the table just presented.

If we are willing to start with the initial guess X = 0, then from (6.9)

the amount of work required for a specified accuracy varies as the first

power of N. IF ONE IS INTERESTED ONLY IN ONE COMPONENT OF THE SOLUTION, TEFEN

FROM (6.8) THE WORK REQUIRED BY THE MONTE CARLO 'METHOD BECOMES INDEPENDENT OF

N TO ACHIEVE A GIVEN ACCURACY 6.
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7. NONLINEAR ITERATIVE SCHEMES 11,9,10,111

Summary

Here we present the various nonlinear schemes as variations of the

general iterative process as described in section 3. We also show how

Newton's method is modified to become a steepest deszent iPerhcd foT the

solution of AX - Y. Then we discuss the conjugate direction methods of

which the conjugate gradient method is treated in detail. Unlike the

linear iterative metnods, Monte Carlo method and the method of steepest

descent, the conjugate gradient method yields the solution theoretically

at the end of a finite number of steps which depend only on the distribution

of the eigenvalues of A.
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7.1 HISTORY OF NONLINEAR ITERATIVE SCIIEMES

Here we briefly discuss the history of nonlinear iterative schemes. In

nonlinear iterative methods the refined estimate is no longer a linear

function of the past estimates. Newton's method because of its quadratic con-

convergence { jjx - X }i < c ,jX - x 1 2 } is mathematically the most pre-

ferred of the several known nonlinear methods for the solution of systems of

equations. Practically, however, a very important limitation on Newton's

method is that it does not generally converge to some solution for an arbi-

trary starting point. Thus Newton's method may fail to converge if the init-

ial estimate is not sufficiently close to the solution.

The size of the domain of convergence depends upon the system of equa-

tions. For real algebraic equations, the size of the domain of convergence

is generally inversely related to the degree and the number of equations.

Therefore one finds that for two simultaneous second degree equations almost

any initial estimate will lead to one of the solutions, while for eight simul-

taneous tentLa degree equations the domain becomes much smaller, and it may be

very difficult to obtain an initial estimate for which the iteration con-

verges. Kantorovich thus modified Netzton's method for optimization problems

to become a rapidly converging descent method. Suppose again as in (3.1) wze

seek to minimize the functional F (X) given by (3.3). This might be accom-

plished by the ordinary Newton method for solving the nonlinear equation

f (X) - 0, where f '(X) = F(X). The method is now modified to become Kantor-

ovich's descent method. This is done by selecting the direction vectors ac-

cording to Newton's method but moving along them to a point that minimizes

f (X) in that direction.

56

Downloaded from http://www.everyspec.com



Thus the general iteration formula is

X = -a [F' ()]- F (X)X-+=n n --n --n

X - a [f" (X)] -I f' (X-n n (-n (7.1)

and a is chosen to minimize f(Xl)

n -n+l

7.1 METHOD OF STEEPEST DESCENT [1,9,22,23,24]

In the various linear iteration schemes discussed so far, the direction

vector P has been chosen as one of the coordinate axis vectors as long as P

is not orthogonal to the residual R corresponding to a given trial vector X.

This has been shown in (3.10). The problem is to minimize R and hence the

gradient of the quadratic functional F(X). Hence it is only natural to use

the gradient of F(X) at the approximation point to establish the relaxation

direction. This is because the gradient of F(X) which is R increases locally

in the most rapid manner. The iteration methods using either the current or

even the ?ast residual vectors are called grad4 .nt methods.

In the method of steepest descent, the relaxation direction for the nth

iteration is defined by the negative of the residual vector.

P = - R for n = 1, 2, (7.2)

This direction is followed to the minimum point. By (3.8) the parameter t min

is given by

<R ,R >

t - 1 _1 (7.3)
min <An-1, R-n-1l

<AX, X> for X 0 0 is called the Rayleigh quotient for theThe value RQ (X) = X-- X>

vector X. Observe that tmin is the inverse Rayleigh quotient of the residual

In summary, the steepest descent method generates the various iterates
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according to

X =X +t R
-n tmin -n

-<R ,R > (4
<RR

-n - -l R ( 7 . 4 )

-n <AR , R > -n
-U-n

where R AX - Y-n -n -

From a geometric point of view, the steepest descent method involves

describing a piecewise linear path with right angled corners in an N-dimen-

sional Euclidean space, with the path terminating at the minimum of the quad-

ratic functional F(X). This is illustrated in figure 3. Unfortunately, it

turns out that despite the choice of the best local direction along the

largest reduction of F(X) in each iteration, convergence is not good in gen-

eral. This is illustrated by solving the same problem as presented in example

2 of sect ion 4.

2 X

N

x1

Figure 3: Principle of Steepest Descent
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The various iterates are shown in Table 6.

£ Y: 4 223 4-15 -6

1 1.0 -.08125 -.02817 -.04386 -.01563 -.01713 -.00997

Z 1.0 -. 03967 .04264 .C1892 .01358 .00739 .00690

3 1.0 -. 03967 .04264 .01892 .01358 .00739 .00690

4 1.0 .41779 .02524 .01373 -.00251 -

-17 18 4 10

-.01002 -.00584 -.00361 -.00342

.00408 .00404 .00238 .00237

.00408 .00404 .00238 .00237

.00122 .00119 .00072 .00069

!able &:- Results of various iterations by method of steepest 2escent

Note that the method of steepest descent convergesmuch faster than either of

the Seidel methods. However, the tactic of seeking the most efficient goal

by choosing the best local option does not lead to the best overall s~raitEgy.

The rates of convergence of the method of steepest desct:Eit ,K*; cmi:seCin

section S.

7.2 CONJUGATE DIRECTION METHOD [1,9,20,23,24,25,26]

Conjugate direction methods are based on the gener.:-, et of A-

orthogonal vectors and then minimizing successively iii co.- 'c ~- - F:I.

of them. A set of vectors {Pi 1, n = 1, 2 ........N is ch~lt. so as -.c, be. A-

conjugate, or A-orthogonal if they satisfy

<AP1 2 P = 0 for i 0 j. (7.5)

Geometrically the method of conjugate directions is equivalent to that of

finding the center of an N-dimensional ellipsoid when tf~-.; ~~~n'pint

is on the surface of the ellipsoid. Thus the center fe .
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lies on a line parallel to a fixed non null vector P which is on the (N-i)
--k

dimensional hyperplane

<Pk , AX -> - 0 (7.6)

whose normal is A?. This (N-i) dimensional plane contains the minimum point

X a A- Y of the ellipsoid in the given space and is said to be conjugate-exact

to the vector P. Thus the conjugate direction methods are finite step meth-

ods. That is, theoretically they all yield the exact solutioDS at the end of a

finite number of steps (< N), assuming no truncation and round-off error.

The finite number of steps are equivalent to the number of independent eigen-

values of A provided the dependent eigenvalues do not constitute a Jordan can-

onical form. Thus if the eigenvalues are equal, A is proportional to an iden-

tity matrix and hence convergence would be obtained in one step.

But the conjugate direction method does not specify how to compute the

vector. P _ Wen the vectors Pk are obtained by A-orthogonalization of the

unit coordinate vectors this particular conjugate direction method yields the

popular Gaussian elimination. When the vectors Pk are obtained by A-crthogon-

alizacion of the residual vectors k, a conjugate gradient method results.

The conjugate gradient method applies more constraints on the iteration

process than those imposed by Gaussian elimination. Hence the conjugate

gradient method may yield acceptable results under conditions when

Gaussian elimination fails. This has been illustrated in section 2.5.

7.3 CONJUGATE GRADIENT METHOD [1,9,23,24,25,261

For the solution of AX=Y, the conjugate gradient method starts with an

initial guess X 0 and obtains

P = - R Y - AX (7.7)-'o -- o - -- o

and then develops each successive approximation by

X n+l X t (7.)
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where t = - (7.9)
n AP P>

This value of t takes F(Xn ) to a minimum point in the nth iteration. Next

the residuals are generated iteratively by

Rn  - R + t AP (7.10)

and the direction vectors are obtained iteratively as2+i 
- % n n

=-R +q P (7.11)

where q is defined as

q <AP n R n 
(7.12)

Thus in order to arrive at X from Xn 2 in the conjugate gradient method we go

first to the minimum point along Pn-9 to Xn_1 and then travel along Pn-1 which

is A-conjugate to_4 2. The directions P are A-conjugate and the residuals

Un 

-n

R form an orthogonal system. Hence the method of conjugate gradients yields

the solution in at most M stepswhere M is the number of independent eigneval-

ues of the matrix A, provided these eigenvalues do not constitute a Jordan

canonical form.

P
X X -n-

IM-2 Rn
2

Figure 4: >Iethz,! of Conjugate gradient

61

Downloaded from http://www.everyspec.com



_70

A more convenient form of computation may be derived for (7.9), (7.11)

and (7.12). Tt is seen that

<R ,P > <R , R > + q <R , P > -

since <R n P n_> = 0 (see figure 4). Thus

t IIR n 2

tn = AU (7.13)

Also analogous to the method of steepest descent two successive residual 'vect-

ors are orthogonal as from above <R n, P n I> = 0 and P n= -R n-1(from 7.2)

<R., R.> = for i j (7.14)
-1 -3

Since Po PI,.. are obtained by computing a set of A-orthogonal vector;1

from R, 0, R, we have

P AP ?> =0 for i j

<RAP R> =-0 fori> k
=--1 -i.

_, AP > = -<R A >

<P,, R > =<P, R.> < R~ R_ > for j< i

<P ,' R > = 0 for j > i.(.5

Also from equations (7.10l.) to (7.14) we have

R -R R 2
<R AP > = <R -n+1 -n > I II-n+l I I

-U -n+l t n n

-~~ ~ -11. <A
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Hence 2

qn =  < Pno AP > 112-- n HR._ii' (, I")

Equations (7.7), (7.8), (7.10),(7.11), (7.13) and (7.16) of the conjugate

gradient method are applied to solve the same problem presented in example t.

The various iterates for the solution are shown in table 7.

i XO X Xi _0  1 x2  x_3  4

1 1.0 -.08125 -.04848 .6012 x 10
- 5  .7966 x 10 - 7

2 1.0 -.03966 .02373 .6217 x 10
- 5  .2905 x 10

- 6

3 1.0 -.03966 .02373 .6217 x 10 - 5  .>5 x 10 - 6

4 1.0 .41779 .00599 .1281 x 10 -. 'Y x .0

Table 7: Results of various iterations given by the conjatgart@ radient
method

Observe that there is a sharp increase in the accuracy of the s;olutions at X_.

One has obtained essentially an exact solution after 3 iterations. this is

because the four eigenvalues of the matrix A are 2.4372, .9725, .300 and

.2903. Note that there are _iproximately 3 independent e . Li.s of "

Thus one would expect excellent results at the end of i '_r.ce the con-

Jugate gradient metnod might converge quite fast for a large system of equa-

tions if the matrix has quite a few eigenvalues bunched :,.w:. his gener-

ally happens in matrices which have dominant diagonals (as in tile magn-Ac

field integral equation).

Next we derive the various theoretical rates of convetgence of tne vari-

ous iterative schemes and show how the method of conjugate gradient converges

much faster than others.
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8. A-N.LYSIS OF CONVEG'."Cv )F VARIOUS LTERATIVI SCHEMES

Summary

The rates of conver.,ence of the various iterative schemes, both linear and

nonlinear, are discussed in this section. ":e -ho'., that for the linear itera-

tive schemes, the rate at whicn the X 's approach the exact solution is linear-n1

and the X 's converge geomaetrically with the ratio iA I only in a- asymptotic

sense, where Ai is the iar.est eigcnvalu& .If the ituration matrix. T:he n-

linear iterative schemes on the other hand have a geometrical rate of conver-

gence to begin with and possess superlinear convergence then A is a Lec endre

operator. For the =cthod oF steepest descent the ratio for the geo-.etric con-

vergece is - 1 For the uethod of conjugate gradient (vhichun-
cond [A) + 1

like the other iterative methods viel,:. r.- ' oIution in a finite n'-'-r
,cona L,j -

steps) the minimum rate of convergence is given by the ration
,'cond [A) + 1

The J steps steepest descent method (equivalent to taking J steps of the

steepest descent simultaneously) has the same rate of convergence as the

conjugate gradient method.
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8.. RATE OF CONVERGENCE FOR THE LINEAR ITERATIVE SCHEMES 191

For the linear iterative scheme we have

X =+l T X +W (8.1)

as given by (5.1). For (3.1) to converge, a necessary and sufficient condi-

tion is that the magnitude of the dominant eigenvalue of the iterative matrix

T be less than unity. To prove this we define the error vector ER for the nth

iterate as

Ln 4exact -
(8.2)

Since

X =TXW (8.3)
-exact - exact -

we have

EnR +1 - I. On n  ER0

Thus

L~n+lll = ERoH< ;I{T}n 1H.HER < {Tl ni E

(8.4)

Under the premise 11Tj< 1 (i.e., the magnitude of the dominant eigenvalue is

less than unity) it follows from (8.4) that

Lim 1 ER = 0 (8.5)

and thus X converges to the solution Xexact .

Next we show that the dominant eigenvalue of T dictates the rate of con-

vergence of the linear iterative process.

Assume for the sake of simplicity that the matrix which is neither symme-

tric nor positive has N independent eigenvectors.. V....., V with eigen-

values Xl,' .... , XN. The error vector ZR can thus be represented as a
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linear combination of the eigenvectors

N
ER = E Ci (8.6)

For the mth error vector, we have [9]

N
= E C{X }m V for m 1, 2,'- (8.7)

i=l 1 -

This equation permits us to make a qualitative statement about the asymptotic

convergence behavior of ER . The dominant eigenvalue XI of matrix T, that is,

the one with the largest magnitude, generally governs the rate of convergence,

since by (8.7) the smaller eignevalues {X approach zero faster than 1A!

with increasing m. Thus every vector norm J ER 11 converges asymptotically to

zero like a geometric series with the ratio l1.

So alinear iterative scheme converges linearly, and converges geometr o-

cally only in an asymptotic sense. Let a sequence {s } converge to a. Thenn

the sequence {s } is said to have linear convergence ifn

el+1 = (6 + ai) e. (8.8)

where e. = a - s. and for a constant B, 1J < 1 and a. 0 as i .

The sequence {s n  is said to have geometric convergence if

el+I = e. (8.9)

)Bj <l, Thus geometric convergence is a special case of linear convergence

in which all a = 0. For a large number of iterations the linear iterative

schemes converge geometrically since for sufficiently large m and k 0
1X +k -Zoll <(l} k H1- o; 1

-mr ~~I(X~ m 0 (8.10)

Thus the smaller the dominant eigenvalue of T, the faster the convergence.

Conversely when the magnitude of the dominant eigenvalue is close to one, many
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iterations are necessary. Hence from (8.10) the number of iteraLions nL(e.-

ary to reduce the error [IX- X 0I by a factor of 10 is approximately ini-

versely proportional to -1/ {log1 0 X1}. Thus to gain an additional signifi-

cant decimal place in Zm we need k iterations.

So the fastest rate of convergence that can be achieved by the linear it-

erative schemes can at best be geometric and the successive ap!:. .'initio,.

always converge for a definite system of equations. Equivalently the latter

condition may also be stated by saying 11T1I < 1. This condition of converg-

ence may also be stated in several different ways. In order that the linear

iteration schemes converge for every X and tor any order N -f t J,- e,-uatioUS
-o0

AX = Y it is necessary and sufficient that any of the followi'. condi-

tions hold (conditions 3-8 describe the diagonal dominance n) the matrice-,:

1. {T} k -+ 0 as k -

2. the magnitude of the dominant eigenvalue of T, i.e. IX be less

than unity.

N N Aik Z
3 . E E I A <

k=l i=1 Aii

i k

[Note: this condition is not valid for Siedel's method. This is valid for

Jacobi's method only.] {Theorem of E. Schmidt - Mise; -. fringerll

N Akin
4. E < 1 for all kI.

Mul A kk
k~m

{Theorem of Frobenius - Mises- Geiringer}
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N Akm
5. E < 1 for all m-i ....... N

k=l A

k#m

{Theorem of Frobenius - Mises - Geiringer}

N ik
6f E -- < for all i = .....

k - l 
A - -

i #k

N Aik
wt < 1 for at least one value of iwith kl Ai

k=1 A-

i~k

and A is irreducible

N ik

7* E < 1 for all k I . ..... , N

i=l 
A

i~k

N Aik

with A < 1 for at least one value of k

i~1 A
i# 1

and A is irreducible

* It is important to note that for conditions 6 and 7, there is a

further restriction on the matrix A. A must be an irreducible matrix,

i.e., a matrix which cannot be put in the form rPi (where R and P

are square) by simultaneous row and column permutations.
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8. (j) < (-) according as t Z<U

max A" =MaxiA
where t I~ ii' i A i

[Theorem of Stein -Rosenberg)

The conditions 3-8 have to do with the diagonal dominance of the matrices.

8.2. RATE OF CONVERGENCE FOR NONLINEAR ITERATIVE SCHEMES

8.2.1. :IETHOD OF STEEPEST DESCENT [22,26-301

Let us assume A is symmetric positive definite such that the eigenvalues

A of A may be arranged as

A1  X > .> > o (8.11)

LetYV, 13 2 . .. . . ., V be the respective orthonormalized eigenvectors correspon-

ding to the eigenvalues XA.. Then if Z is an arbitrary vector, it can be rep-

resented as

when 6 i are constants and

2x+ a2 A + +82(.2

Thu < ~~ 1  2 2 N,- AN (.2

A 2 2 2
N 1+ 82+ .... + BN AN),z < <,z (8.13)
N 1  2 2 2 31 <AIZ

X (a 2+ 82 + .... A+ $ -x Z

Consequently one can find two constants b>O and B>O for A such that

b <Z, Z> < <AZ, Z> < B <Z, Z> (8.14)

Now we consider the difference F(X1  - F(X ), wherq

F(X) i <A4x X> -<7, X>. After some calculations using (7.4) we obtain
2 -

FX F X 1 {<R 0 R >12
-1 -0~, 2 <R , AR >

and
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0.O F -exacd "2 (-o -exact -( -o X-exact )

F q 1  - F(.1 O) (q______0 __> ___2

F30 -FXexact <R > <A -1 R R > (8.15)
0' 0 o- -o

Next we expand RO as a series in orthonormalized eigenvectors of A i.e.

R 1Y 2 2 V1 (8.16)

where yare constants. Then

AR 0 y 1 X1 V 1 + Y 2 1 2 V 2 +. , + Y NAN VN (8.17)

A- R . YVX1+YV +..0 y 1V 1  1  2 2 2 +N VN IN ~ .

where Z are the various normalized eigenvet'rs of A. So,

I(X) - F(X)( 2 +Y2 22

FQX ) - F -Xexact 2 2X 21 -1 2 -I
0 Y 2+Y + .... +~~4yX Y' 2 Y X"

(8.19)

Let

Y2 N

2 2 1i 2 - 9. > and Z 9. (8.20)

FXFX+ x+..+N )(l1 2 2

-oX0 - exact I +1  2 2 + +eNXI +E

(8.21)

We replace X by the new variable X. defined as

X /B-- X1(8.22)

So if 0 < b X. A --. B (i =1, 2 ...... , N)

then

bV < 1 <4B (8.23)
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and

N N N N
E 0 e1 XL -E 0 1~ X 6ii (8.24)

iul i-i Ju iJul-

Since the geometric mean of a series is less than, or equal to the arithmetic

mean, then

NN 11N 1A 18 Mr X .E 6~(X + -}x 0.5
i- i- iuli i

or,

N N1

Jul Ju i 1 2 Juli vEl

or,

X X (8.25)

Thus

F(x 0) F(X1 )4

F(X F (X 2
0 exact [f 4j(8.26)

Here 0 < C< 1. Hence

F~l -exact) (1FIo Mexact

~j~bj {FC exact)

Thus for any k

-exact~ [FX +- xc
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So from (8.13)

xk --exactil <-exact - -- exact - >

1 2 F14) F (8.27)
b -' k !exact> [ -exact )]

Thus,

Xxactl B-b
SexactF-b (8.2c)

So we have proved that the method of steepest descent converges geometrically

to the exact solution. For the case when A has N distinct eigenvalues Akaike

[31J has shown that (8.27) is the best possible estimate.

It has been shown by Daniel [26) and Hayes [111 that whenever A is a Le-

gendre operator (i.e., A is a sum of a positive definite bounded self-adjoint

operator plus a completely continuous operator) the method of steepest descent

converges faster than that of a geometric series with ratio greater than

(-b 2
This type of convergence is referred to as "superlinear" convergence.

Thus we have shown that the method of steepest descent converges at worst

like a geometric series, and that in most cases the convergence is superlin-

ear.

8.2.2 METHOD OF CONJUGATE GRADIENT [26,27,31,321

The method of conjugate gradient generally requires a little more computa-

tion than the method of steepest descent. However this slight increase in the

amount of computation required leads to a significant improvement in the rate

of convergence over that of the method of steepest descent. In the conjugate

gradient method we obtain
AR+ 2A2AN-l

R= X + 0 + A-o + AR + .... + R
-exact -1 - 2-- ---

(8.29)
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This results from the fact that

2 2
X X + OtR + a R

.2 -0 0O 10 1 (8.30)

-0+ak R+ak R +ak1R
-Xk X 0 0 -l ** - -

and so on, where xjare known constants deter-mined by the method. Now we de-
1

fine 4, 2.... 7_ as the orthonormalized eigenvactors of the symmetric de-

finite matrix A, corresponding to the eigenvalues X, > X2 > ... , > X. So

X -A-1 
N

X -A Y X -x X E C. Z.-o - 0 - -exact 1~ 8.1

where C4 are constants. We find

X.V (I+ A)X -A 1  N 1
-. -Y A( - A Y) = E C. (1+y .

~2-'Y-(+ 2  2 N 2 2
X -A +- + 'Y' MX - A1ly) = C. (l + Y X.)1 + ~

-; 0 p (1+ 1 )(+y AJ(0y 0 )

N k-1i (8.32)
FkZ C. 171 (1 + y A 9

1=1 j=o

..here I is the identity matrix and y. are known constants determined by the

conjugate gradient method. Therefore

it <1 ma TT (I N -i(+ Y~ X)L X - A' YI

Ok 14 exact'l (8.33)
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where 0 kX) is a polynomial in X defined as

k1l k
0 ( M H (1 + -Y A ) (8.34)

The problem is then to find a kth degree polynomial Ok (M defined for

b< X <B such that ba 1 0(XMI is a minimum. Such a polynomial was givenb < B k

by W. Markoff (in 1892) and is defined as f

T B+ b 2X1

k T k B+ b (8.35)

and Tk (W = cos (k arccos t) is the well known Chebyshev polynomial of degree

k adjusted to the interval -1 < t < 1. Thus 0 k (A) is a Chebyshev polynomial

of degree k adjusted to the interval b < X < B and scaled so that 0 k (0 =I

Thus f rom (S. 35)
max 0OkMI < 1

b <3 1kTkB +[- (8.36)

Note in this case B-+b >I and so the Chebyshev polynomials are defined ;'s

T k t) = cosh (k arceosh t) for t > 1

Hence from the expansion of the Chebyshev polynomials

BItb, B B~ 1 + b 2 k B+ B b 2 k

k B -b B- b + T  b B-b B-

Hence from (8.33) (.7

0 (A) = Jk "xc (8. 38)
o exact: ___+vb_ VB Vbk

k +{ -x-

VT-V b + bT(.9
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Observe that (8.38) is a better estimate than (8.39) . Also this .

(8.38) cannot be improved upon. This fact is well known [31j

Also as before, if A is a Legendre operator (most operators derined oa

finite dimensional spaces are Legendre operators) then the method of conju-

gate gradient converges faster than a geometric series with ratio greater

taan [311.

A better estimate than (8.38) can be obtained if it is known that the

largest eigenvalue of A is B and the rest of the eigenvalues lie between B'

and b. Under these circumstances the polynomials that satisfy

b<X<B O() = a .mimu

and 0 k (0) 1 1 are the ones given by Zolotarev L333. !,.i Zc,.ctZaev po!rinM-

ials are quite unwieldly.

Samokish [29] has given the approximate formula for tne rate of converg-

ence as

k2 +____{k .  a_ s -k.;_

l+a

instead of (8.38). Here and 6 are defined as

B' +b B' + b8- B'-b + V B- b" - (8.41)

and

at a + i4a 2 -_.i

where

2B - B' bB' - b

i ia an N dimensional quadratic problem the e 'rcr .nds t. !erc in one qtep
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with Newton's method and witliin M steps with the conjugate gradient method,

where M is the number of independent eigenvalues of A. Hence it is generally

stated that the conjugate gradient method yields "Quadratic convergence"

2
' 'M - .t0 < C I M - Zo! I2 } in the sense that it converges in M steps for an

I
N dimensional problem. So it seems appropriate to term this I quadratic

convergence since it requires M steps to achieve the effect of one step of

a method with a true quadratic convergence rate.

8.2.3 THE J STEPS STEEPEST DESCENT .METHOD [29]

In the J steps steepest descent method, J steps of the steenest descent

are taken simultaneously rather than J individual steps one at a time. As we

shall see now the J steps steepest descent has a faster rate of convergence

than the J individual steepest descents, but this is not better than J steps

of the conjugate gradient method.

In the J stes steepest descent method we start from an approximation X-O

and obtain the vector X + V, when the vector V belongs to the subspace

spanned bR , ...., AJ -  R. Thus it can be shown that the re-

sult of one step of the J steps method of steepest descent coincides with the

result of the Jth approximation for the method of conjugate gradients. Hence

we observe that one step of the J-step process of steepest descent does not

give a worse result, in the sense of an increasing error function, than J

steps of the steepest descent method. The rate of convergence of

the J step steepest descent is given by

I[-Xk - Aexactll C cJ 1 0  Iexact i l (8.44)

where CJ is given by (8.38) with k replaced by J. In particular,
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cl.B - b
C B+b

2 (B -b)2C2 2

(B + b) + 4bB

C3 (B - b)3

(B + b) [(B + b)2 +12bB]

Hence it is easy to see that

I > C > Vi I4 .9.7.

The last inequalities mean that for sufficiently large N the result of apply-

N N
ing i steps of the J steps process gives a better approximation than N

steps of the (J-1) steps processes.

Since the J steps steepest descent process is algebraically more cum-

bersome than J one-steps of the conjugate gradient method but yields the

same estimate for the rate of convergence, we will not further discuss the

J steps steepest descent method. Moreover, the J steps steepest descent

method, unlike the conjugate gradient, does not terminate at the end of

at most N steps.
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9. ROUND-OFF ERRORS ASSOCIATED WITH ITERATIVE SCHEMES [34, 35]:

Summary:

In iterative methods the condition number of A has very little influence

on round-off error. The round-off error in iterative methods is confined to

the last stage of iteration only. We show that if AA and AY are uncertainties

in the matrices A and Y and if R is the residual at the end of each iteration,

then X is an acceptable solution provided

E A ij X j I + AY i > I R i ] for all i
j n -- n

Note in this case, the number of solutions for AX = Y are infinite. The above

inequality indicates that there is no need to make the residual small (to a

desired accuracy) if the uncertainties in A and Y are large. Since in an it-

erative process one always computes the residual, one could terminate the it-

erative process when the above inequality is satisfied rather than imposing a

more stringent criterion that the residuals be arbitrarily small.
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9.1 ERROR ANALYSIS

In actual computation of successive approximations we have

X -T X + W (9.1)

where T is an arbitrary operator whose I1 11<1. In general, exact determina-

tion of X+1 is impossible, since computation of the values of various mat-

rices and numbers inevitably involves round-off errors. The only possible

general assertion is that the total error in application of the operator T

does not exceed some number 6 in the norm.

Thus in actual computation of successive approximations

X =TX +W+W-n+l - n + n (9.2)

where Wn is an array of unknown random elements,though we have an estimate

max -- < for i = 1, 2 ...... N

where 6 is a constant > 0. The successive approximations in (9.2) may no

longer converge to the solution X of (9.1) Nevertheless we may be able
-exact

tc obtain an estimate of the uncertainty in the solution. We !-" .io to:.

(8.10)

11Xn+l - Xexactil < AiFInX -Xexactl I+

where X1 is the largest absolute eigenvalue of T, and is < 1.

Hence

IX n+l - xactll < A 2 -1 - Xexactil + Al6 + 5

Xn+l1  X - Xnj + An 6 + n-i 6 + .... + c
-1 11' - - exact 1 1

An+ z, 6I + (9,4)
A1 i - - Xexact -- A1  9 X

Thus

Lim _ 6
n '-n -exact -- < - A
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The formula in (9.5) may be used to obtain an approximate solution provided
6

the required accuracy is at most 1 " However in most practical problems

X is difficult to estimate or obtain. The amount of work required to obtain

X. may be almost the same as the solution of (9.1). Hence a more practical

approach is taken to estimate whether an iterate X is essentially an exacta

solution or not.

In a system of linear equations that arises from a practical problem, the

elements of matrix A and Y may not be sharply defined. It is now assumed that

all that is known about the typical element A of matrix A or Y for the ma-

trix Y is that they are within the following intervals. Here the subscriDt

E denotes exact quantities

Aj AA < A < Aj + AA'i (9.6)

YE - Ay < -< YE +  AYi  97
E E (9.7)i

It is also assumed that AA and AY1 are independent distinct quantities due to

round-off error and one does not depend on the other. Thus

(9.8)

AE 2 E !E

and denote

R - AE X - (9.9)

We check whether
_ r ij . +y > (9.10)

for i = 1, 2, .... n. As was shown by Oettli and Prager [341 the inequality

(9.10) is a necessary and sufficient condition for X to be a solution of

AX- Y under (9.6) and (9.7). So in any iteration method where the residuals

are computed routinely, if for a certain residual the inequality (9.10) is
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satisfied, we have obtained an excellent solution under the conditions (9.6)

and (9.7). Note that the introduction of the conditions (9.6) and (9.7) does

not make the solution of AX - Y unique. In fact, there are many solutions of

AX - Y. But, only those solutions are acceptable which satisfy the inequality

(9.10). Thus, the upper and the lower bounds for a certain component of the

solution X is obtained by solving the linear programming problem [35]

m in - E  A  " jXj -Ay < 0

max xJ-y < 0

for i 1, 2. ..... , N (9.11)

Thus iterative methods may be quite advantageous for large systems of

matrices or for ill-conditioned matrices as compared to a direct method like

Gaussian elimination. This is because cond (A) does not arise in the round-

off error analysis of iterative methods.

This is the reason we have been able to solve a 7x7 system of equa-

tions when A is a Hilbert matrix by the conjugate gradient method when

Gaussian elimination has failed.
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10. EXTENSION OF DIRECT AND ITERATIVE METHODS TO COMPLEX UNSYM ETRIC MATRICES

Summary

The formulas are presented for the different iterative schemes when A is

a complex unsymmetric matrix. The rate of convergence and the analysis of

round-off errors are the same as obtained before, except these are now in corn-

plex arithmetic.

10.1 DIRECT METHODS

The methods described in section 2 can be used for complex unsymmetric

matrices. The formulas described there can be used as they stand except now

each variable is a complex number instead of real.

10.2 ITERATIVE METHODS

10.2.1 LINEAR ITERATIVE METHODS

The linear iterative methods can easily be extended to complex unsymmet-

tic matrices. For example, in Jacobi's method, the ith element of unknown X

at n+l iteration is refined in the following way

i 1 N
X = i Y i - Z Ai j . Xi] for i = 1, 2, . N (10.1)
n+ Ai j=1 n

joi

and the corresponding formula for Seidel's method is

N Ij j i-i
U+ 1 ii [Y N AiJX n - AiJ X ] (10.2)

A j=i+l j.n10

10.2.2 NONLINEAR ITERATIVE METHODS

For unsymmetric complex matrices, the nonlinlear iterative methods may be

used on the symmetric system of equations AT AX = AT Y instead of on the un-

symmetric equations AX - Y, where T denotes the conjugate transpose of the

matrix. In addition~the definition of the inner products has been redefined

as shown.
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10.2.2.1 METHOD OF STEEPEST DESCENT

In the method of steepest descent, the successive iterates are glenerated

by

X =X + t R

-~ -n n

where R =AX - Yand t <A A
-a -n - n < &T R ATR

where *denotes the complex conjugate.

XO.;.2.2. CONJUGATE GRADIENT METHOD

The conjug-ate gradient method is now extended to the complex unsymmetric

set of equations AX = Y. We start with an initial guess X amd generate-0

P 0 -A TR 0 -AT [AX - Y

and then develop

X -X + t
n+l -n n -n

where

<AP , * > 11AT

n -nA (AP )*> l''- 12

Th.d residuals are generated as

R -R + t .AP-.;n+l -n Mi -n

The direction vectors are obtained iteratively as

T
In+ q n-

<Pn,(AT 2 ~ * Rh11

where qn -n ~ I*~~~
n <AP n,CA (a > n T R 12
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11. MINIMIZATION OF THE CONDITION NUMBER OF A MATRIX FOR ACCELERATING
ITERATIVE NET}iODS AND REDUCING ROUND-OFF ERRORS IN DIRECT METHODS
[36]:

Summary

We have shown in section 2 that the higher the cond [A] the greater is

the amount of round-off error associated with the process. In section 8, we

have shown that the higher the cond [A] the slower is the rate of convergence

for the iterative schemes. Hence it would be useful to preprocess the equa-

tions AX = Y to form A'X = Y' such that A' has a reduced condition number.

In this section a method is outlined to reduce the condition number of A.

Also for a problem which is to be solved once, this method is impractical.

This is because we need approximately as many computations to solve for

cond [A] as we need to solve the original problem.
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11.1 DERIVATION OF THE OPTIMUM ACCELERATION PARAMETER

In the solution of AX = Y by any standard iterative methods we have ob-

served that the rate of convergence depends inversely on the condition number

of matrix A. For example, for the steepest descent method the rate of conver-

cond (A) -1 where cond ) A larqest ei-envalue of A.
gence cond (,!) +1' w smallest eigenvalue of A

Also for the conjugate gradient method, the rate of convergence is proportion-

tVcond (A) -1

Direct methods of solution of AX = Y are also affected by cond (A). This

is clear from section 2.5 where the round-off error associated with the solu-

tion of AX = Y is directly related to cond (A).

In both of the exaupies above we see that the lower the cond (A), the

faster the rate of convergence of the iterative methods and the lower the

round-off error for direct methods. Hence in this section we outline a pro-

cedure for the reduction of the cond (A).

Again for simplicity of analysis we shall assume A to be symmetric and

definite, although this method can also be applied to unsymmetric matrices.

We now transform

AX = Y (11.1)

to the following form

[ +  L ] [A][I + I [ + WU][X] = [I + wL] -  I] (11.2)

where w is an acceleration parameter which is to be determined. Also

I is the identity matrix and the matrix equations AX = Y are so scaled that

A - I + L +_Y, where L and U are the lower and the upper triangular matrix,

respectively.

Let D A [I + L 1[X) (11.3)

C [I + L]- (11.4)
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then (11.2) is reduced to

[I + wL ] - I [A(I + wU]-1 (D] = [C]

or Q . A'. 2 . D = C (11.5)

It is clear that 2 is in a form which can be readily inverted. Further

if we define

B = [I + wu]-1 (1 + wL]-I A (11.6)

then

- T
[I + wUJ B [I + wU] - A2 Q11.7)

Hence [B] has the same eigenvalues Xi (W) for i = 1, 2. ..... , N as that of

T A 2, but has different eigenvectors. Thus

BV = [I + wlU -JI [1 + wL]- 1 [A][V] = X. (W) V (11.8)

where 31 are the eigenvectors of matrix B. If we define

VT A V=T. (11.9)
T1

V T . L. U. V 8 (11. 10)

then by multiplying both sides of (11.8) by

[V T [ I + wLJ[l + wU]

we obtain

= U W + W T. + W 8.) (w) (ii.ii

and so
TT

Ii ( ) = 1 - W + W Ti oW e ii1

Hence cond [2T A21] is obtained as

11(W) T I  (I W + W T N + W2 N

cond T = X 1 1 N N (11.13)
(w T N (1 W + WT 1 + W e2

For ccnd [T Ad] to have a mininum value we must require
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d cond T A] 0 (11.14)
dw ~ ~ I =

This results in a quadratic equation

2(T 1 N - TN T 1 + 1 N) + 2w (8N 1) + (T N -T

Thus the optimum preconditioning parameter w is obtained as

T N T 1

o p t (8 a N 2 ( T Topt (81- N)  {(l ) - (CN- r )(8N T -r 01:: 5 - 0
1 UN v1 UN N 1 Ni 1

'T
and the minimum cond (2 A "] is given by

m T 1 (i - + Wopt TN + r~t ".min {cond [ T A P,]I ot !

TN (i - opt opt 1 opt 1

The eigenvalues of the matrix)N T A) is bounded by the values A .- c'

X such that
max

0 < Xmin < i (w) x (i m x, .

T N

where m + + 2

opt opt N opt -N

T

ma= 2

a opt + Wopt T1 Wopt 1

Even though simple analytical expressions are available, .- Ce .;i

use for practical purposes. Only under certa±4 condition- at. i: al.,

evaluations possible. For example when matrix A has the f-_'_)-.,structLre

l 
22
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where I & .12 are identity matrices and D is a diagonal matrix, then Evans

has obtained wopt as unity. When matrix A is formed as

A - I + L + LT

then the maximum eigenvalue of A is minimized in iT A 2 when wopt <2. Thus

the cond [A] is minimized to cond [QTA ] for I <wopt <2. For most casestoht

however w has to be determined experimentally, or by (11.16), (11.18) andopt

(11.19). Evans has shown that there is a remarkable correlation between

theoretical and experimental values of w obtained for a particular matrix

A.

88

Downloaded from http://www.everyspec.com



12. CORE STORAGE REQUIRED FOR VARIOUS METHODS [11:

The core storage required for various methods are listed in order of the

amount of core storage required starting with the method requiring the least

core storage (N is the rank of the matrix A)

METHOD CORE STORAGE

Gaussian elimination N2 + 2N

Seidel's Iterative method N2 + 2N

Gaussian elimination with complete pivoting N2 + 3N

Jacobi's Iterative method N2 + 3N

2Monte Carlo method N + 3N + 14

Method of Steepest Descent N2 + 4N + 2

Conjugate gradient method N2 + 6N + 3

It is found that Gaussian elimination with no pivoting and Seidel's

method require the least amount of storage and that the conjugate

gradient method requires the largest amount of storage. For complex

matrices the amount of storage is doubled. For symmetric matrices,

however, N2 could be replaced by N 2/2.
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13. WORK REQUIRED FOR VARIOUS METHODS (I]:

The number of divisions, multiplications and additions/subtractions pro-

vide a rough estimate of the efficiency of the algorithm. For each method it

is possible to estimate the number of arithmetic operations as a function of

N -- the order of the matrix. Such functions could be discontinuous if N is

large enough that auxiliary storage is required. In the total number of

arithmetic operations we have not included the timings taken for recording of

intermediate results and the time taken for searching the pivotal ele=ent in

Gaussian elimination.

METHOD NUMBER OF A-RITHDIETIC OPERATIONS

Divisions Multiplications Additions
X +

3 3
Gaussian elimination N N + NT + - - (totl)

3 - 3
• N3 N25

Gaussian elimination with complete pivoting requires I- + - - - coparisns

in addition to the above arithmetic operations

Jacobi & Seidel N N2  N2  N per

(we could do with N divisions only once
rather than per iteration at the expense:
of N more storage spaces.)

Steepest Descent 1 2N2 + 3N 2N2 + 4N per
(for unsvmmetric A) teratioi

Conjugate gradient 2 2N2 + 6N 2N2 4- 6N per
(for unsymmetric A) iteration

Monte Carlo CW 12N + 8C 23N + (; + 2) C] (total)

[W is the average number of steps per random
walk and C is the number of random walks]

Also note that when the matrix is symmetric the number of operations is

reduced by about half. Also note in the Monte Carlo method the amount of work

required varies as the first power of N only. Thus the Monte Carlo method
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would be quite advantageous in providing an initial guess which may be re-

fined by the nonlinear iterative methods since they have a ias.ar ,ace ot

convergence than linear iterative methods.

For very large values of N, an iterative method applied o A LUA-.Z--

N
trix would need to converge in less than - steps to bring itS operaionS

3

count down to that of a direct method.

For complex matrices, these operations of divisions, wL ..piictions

and additions refer to complex arithmetic operations.
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14. A SPECLL NOTE ON THE CONJUGATE GRADIENT METHOD

An iterative method called the banded matrix iterative scheme has re-

cently been applied by Ferguson [37] to solve large electromagnetic field pro-

blems by the method of moments. The characteristic features of the method

applied by Ferguson are:

1) The convergence of the iterative scheme is sensitive to the choice of

the numbering scheme used.

2) Because of (i) it requires a person with certain technical background

to run the program.

3) The rate of convergence is irregular and sometimes the solution di-

verges.

4) The banded matrix iterative scheme applied by Ferguson is basically

a Jacobi type of iterative scheme and hence it converges slowly [p. 16 of ref.

37].

5) Finally the method needs theoretically an infinite number of steps to

converge to the exact result if there is no round-off error.

An alternative scheme is proposed here to replace the banded matrix it-

erative scheme by the conjugate gradient method in the RADC GEMACS program.

As we shall presently demonstrate, the conjugate gradient method is also capa-

ble of replacing the iterative methods in the RADC nonlinear system identifi-

cation programs, too.

As we have seen from the previous sections the conjugate gradient method

is a nonlinear iterative scheme, in contrast to the linear Jacobi method. Al-

so the conjugate gradient method converges at a faster rate than that of a ge-

ometric series. Moreover it is highly insensitive to the choice of the init-

ital guess for the solution. Since the conjugate gradient method yields an
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exact result (assuming no round-off errors) in at most M steps (where M! is

the number of independent eigenvalues of the N x N matrix), it has the good

points of both an iterative method and a direct method of solution. It has

the advantage of an iterative scheme in that round-off error is limited only

to the final step of the solution. It has the advantage of a direct method in

that it converges in a finite number of steps.

As a first example consider a wire 3m in length and .Olm in radius.

The wire is charged to a potential of 41TE volts. The objective is to find the

charge distribution on the wire. A method of moments formulation has been em-

ployed and the wire is divided into a total number of 30 segments. The moment

matrix formed by this problem is a typical one which often occurs in the meth-

od of moments. The results are presented in Table 8. The first three columns

indicate the charge distribution on the wire obtained by the conjugate gradi-

ent method. The third column represents the charge distribution corresponding

to the segment numbers appearing in column two. The first column states that

this result has been obtained at the end of three iterations. The next three

columns indicate the charge distribution obtained after eight iterations by

the conjugate gradient method. And finally the seventh column gives the re-

sult due to Gaussian elimination. As is clear from the data presented in

Table 8 the conjugate gradient method yields a result better than 1% after

three iterations (M N

If for this problem the banded matrix technique is used to yield an accu-

racy of 1% in one iteration a bandwidth of approximately 15 may be necessary

(see table 10, p. 34 of ref. 37). Hence for the same accuracy the conjugate

gradient method is faster by a factor of 2.5. Also if the same problem is to

be solved by the symmetric Cholesky decomposition it would have required ap-
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N3
proximately multiplications. The conjugate gradient method required ap-

2 2
proximately 3N multiplications as compared to 5N for Gaussian elimination.

Also note that an essentially exact result has been obtained (accuracy

-better than 10- 5  in the residuals) after only eight iterations.

As a second example, consider the same problem as above but now the wire

-s 25m long. So this time A is 100 x 100 matrix. Again we obtai.ea aa cn -

sentially exact result (better than 10- 5 in the residuals) after unly nine iL-

eiations. This implies that in these type of problems the number of independ-

ent eigenvalues is approximately eight or nine. Note that the number . inde-

,-adent distinguishable eigenvalues does not increase as the order ot i,

tem is increased considerably. This is an interesting property of :JaIaL.

dominant matrices which could easily be exploited by the conjugate gradient

method.

As a third exam.le, consider A as a 20 x 20 Hilbert matrix and Y is crio-

sen in such a way that the solution vector has components 1 to 20. The prob-

lem then is to find X given A and Y. The philosophy behind choosing A to be a

iibert matrix is that nearly singular matrices are often encountertd in a

system identification problem. So if the conjugate gradient method can efi-

c'ently solve such an ill-conditioned problem, then this method :C,, ea .

applicable to system-identification problems. The results obtained by two

diffeicat methods are shown in Table 9.

It is clear from Table 9 that the conjugate gradient rzet,,c .' id-. '3:.,c

results at the end of eight steps. The largest error is only 2.15%. Tlv

Gaussian elimination method for the same problem completely breaks down,

(Note. The Hilbert matrix is extremely ill-conditioned. The condition num-

ber of a 20 x 20 Hilbert matrix is of the order of e 3,5N = 2.5 x 10 _rnm
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Gaussian Exact Conjugate gradient
elimination solution at the end of 8 steps

.9999954 1 1.000289

2.000349 2,1.990388

2.9781.99 3 3.056398

4.103616 1#3.909776*

4.355928 5 4.981514

55.54727 6 6.056422

-20.17007 7 7.066274

-391.4351 8 8.030005

1050. 932 9 8.982147

-397.4495 10 9.947065

2U..3952 11 10.93533

1407.415 12 11.94698

-1800.392 13 12.97573

-682.3352 14 14.01228

2770.054 15 15.04653

-1692.660 16 16.06884

637.3160 17 17.07074

559.0285 18 18.04519

78.80465 19 18.98660

97.65299 20 19.8907

T~able 9% Cozparison of Gaussian elimination and conjugate gradient method
for the solution vector X = A 4 Y.

*The largest error is about 2.25%
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[38.

As a final example consider the solution of the two components of

the current density on a ik square metal plate irradiated by a plane wave.

When the total number of unknowns for the complex current is 71, we have

to solve a 71 x 71 matrix equation. The total time taken for the solution

of the complete problem utilizing various techniques is as follows:

Gaussian elimination: 27 sec. (CPU time)
Conjugate gradient method: 30 sec. (CPU time)
(with 1% accuracy in the residual)

Observe that the conjugate gradient method is quite inefficient in this

case. However, as the dimension of the problem is increased from 71 to

180, the time required by various methods to solve the complete problem

is as follows:

Gaussian elimination: 500 sec. (CPU time)
Conjugate gradient method:

-9

for 10 accuracy in the residual: 220 sec. (CPU time)
-3for 10 accuracy in the residual: 290 sec. (CPU time)

for 10 -4accuracy in the residual: 390 sec. (CPU time)
-5

for 10 accuracy in the residual: 520 sec. (CPU time)

So for large systems of equations the conjugate gradient method may

prove to be quite useful, especially if one is interested in obtaining an

accuracy of 10- 3 to 10- 4 in the solutions.

In summary, it is argued that the application of the conjugate gradient

method tc the analysis of large bodies by method of moments would yield sta-

ble, reliable, consistent and accurate results faster than any methods cur-

rently used to obtain a solution. The same is true for problems in system

identification. However there may be some build-up of the round-off error if

the residuals are computed iteratively by (7.10) rather than directly from

= Y, which would be more time-consuming. At this point it is not known

how serious this problem will be for our problems of interest.

97

!-AIL

Downloaded from http://www.everyspec.com



15. SUMMARY AND CONCLUSIONS

Of all the stationary iterative schemes surveyed the conjugate gradient

method has shown great promise as a possible candidate to replace the banded

I
matrix iterative scheme in the GEMACS program. This is because the conju-

gate gradient method not only yields the exact solution theoretically at the

end of a finite number of steps but also has the fastest rate of convergencf.

The next step of the program should be to develop computer programs

for the various methods and verify experimentally the theoretical results

that have been presented in this report.
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