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NOTATIONS

1>

Represents a MxM square matrix

XY Are Mxl matrices

Aij Represents the element belonging to the ith row and jth column

x!  Is the 1th element of X

gn Represents the matrix obtained after n iterations in iterative methods

and in direct methods it is just another matrix obtained after pro-
cessing it n times.

| |X|| Represents the norm of X

cond [A] Is the condition number of A A largest eigenvalue of (4)
ninimum eigenvalue of (A)
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1. INTRODUCTION

The problem of radiation and scattering from electromagnetic structures
may be formulated in terms of the E-field, the H-field or the combined field
integral equations. The integral equations are then reduced to matrix
equations by the method of moments. Hence, the maximum size of an electro-
magnetic field problem that can be solved by this technique depends on how
efficiently solutions of a set of simultaneous equations are obtained.

In system identification, on the other hand, the problem is formulated
in terms of a convolution integral. When any of the standard techniques
is utilized to identify the system, one again encounters a set of simul-
taneous equations. The only difference between the two cases is that in
the former one often encounters a matrix which has large elements on the
diagonal, whereas in the latter case the matrix may be nearly singular.

The objective of this report is to survey many of the popular
methods for the solution of large matrix equations.

In section 2, a review is made of the direct methods for solving matrix
equations. An analysis of round-off error is also made for these methods.
In section 3, we present the philosophy of various iterative methods. In
section 4, we discuss the various linear iterative methods and in section 5,
the Monte Carlou methods. The Monte Carlo methods are statistical methods
and are quite efficient in evaluating one component of the solution. Next,
in section 6, comparison of efficiencies is made between Monte Carlo methods,
Gaussian elimination, and linear iterative methods. In section 7, the
various nonlinear iterative methods are discussed. The rates of convergence
for the various methods are discussed in section 8. Section 9 presents the

analysis of round-off errors associated with various iterative methods.
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Section 10 extends the various methods to complex unsymmetric matrices. In
section 11, we present a method for accelerating various iterative methods
and reducing the round-off errors of direct methods. Sections 12 and 13
present the core storage and the work required for all the methods presented
in this report. Section 14 presents a discussion on the conjugate gradient
method.

Thus this presentation provides a comparison of the popular methods
used to solve large systems of matrix equations.

In our discussion of the various methods, only references which are
directly relevant are noted. No attempt has been made to cite the earliest
sources. In many cases, additional references may be found in the papers

mentioned.

PENE PP S VR S

i
{

L




Downloaded from http://www.everyspec.com

PO N

Y

2. DIRECT METHODS FOR SOLVING MATRIX EQUATIUN:

Summary

In this section we present all the direct methods. These include

Cramer's rule and the two versions of Gaussian elimination (LU decompo-

ARy .

sition and the compact method]. 1t is shown that the Caussian elimination
for the solution of A X = Y is optimum (insofar as the total number of
operations is concerned) if one is restricted to handling one ros or one

column only of the matrix at a time for processing. The method due to

Volker Strassen takes lesser computation than Gaussian elimination if one 1

works with a block of the matrix at a time. Als> 1t has beep waown that
Winograd's method of computing matrix products is much faster than the

conventional way of multiplying matrices. Finally ws :*c¢w zhat tne rouad- i

-~

off error in direct methods is proportional to the ¢undition number of A,

if AA and AY are the inaccuracies in the representation of & and Y, then

the uncertainty AX in the solution X is given by

Ceall, el

cond [A] 1L 2,
) ||.A_X|lz _<_ { _A_‘ 2 TTX_ [2 < :"t [V’i‘i“’l] \:(‘fld(_‘:‘:'

-t -

-t

,,EJ’Z 1 ~/N. cond [A) . 2 1 - /Ncond [a) . 2

where t is the number of binary digits with which compuiration is actually

carried out in the computer and N is the dimension of A.
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In this section we describe exact methods for the numerical solution of
systens of linear equations. By exact methods, we mean methods which give
a solution of the problem by using a finite number of elementary arithmetic
operations. If the initial elements of the matrix are given exactly and if
the computations are carried out exactly, then the solution is also exact.
In exact methods the number of computational operations necessary for
solving a problem depends only on the type of computational scheme and on
the order of the matrix which defines the problem.
2.1 CRAMER'S RULE (THE ADJOINT METHOD) {1]

This method is too well-known to elaborate and too cumbersome for pract-

ical use. Hence, only the final result is given, If

AX = Y (2.1)
where A is’a given NxN square matrix and X and Y are Nxl column matrices,

then the unknown ith element of X is given by

i

X" = }él'lz{adjoint A}ij ) (2.2)

3

where {adjoint ﬁ}ij are the cofactors of the determinant of A denoted as (A|,
and the superscripts represent rhe elements of the matrix. The solution of
a system of N linear equations by use of Cramer's rule requires the evalu-
ation of (N¥+1) determinants of order N. 1If evaluated directly, each
determinant requires a(M+1)! multiplications, where 1 <a < 1.71828.

Solution of all the unknown elements of X requires a(N+l)! multiplications,
N divisions and (i+1)! additions or subtractions. The other methods which

we are going to discuss next require much less work.

PO S
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2.2 GAUSSIAN ELIMINATION AND LU DECOMPOSITION (1,2,3]

Carl Frederick Gauss used this method to solve a system of linear
algebraic equations. This method is based on the idea of eliminating the
unknowns one at a time. A series of successive eliminations is carried out
by which the given system AX = Y is transformed into a system with a tri-
angular matrix, whose solution presents no difficulty. The factorization of
A as the product LU is the basic idea of all Gaussian elimination schemes.
Equivalently AX = Y can be rewritten as LUX = Y. Here L is a lowver tri-
angular matrix (i.e. Lij = 0 for 1 < j) and U is an upper triangular matrix

ij . . .
(1.e. UM = 0 for i > j). Thus LUX = Y represents two triangular systems

[y

©

"
]

iX=6 (2.3)
which can be very easily solved. The calculation of L and U together with
the solution of LG = Y is usually called the forward elimination and the
solution of UX = G is the backward substitution. The computation of L and U
iz referred to as triangular decomposition. The various Gaussian elimination
methods differ in the order in which computations are carried out in the
forvard elimination. Next we describe how the LU decomposition is carried

out without pivoting.

Given the matrix A and the vector Y, we use elementary row operations

to put zeros below the main diagonal of A. Assume Al1 # 0. [A1J represent
. i1
il _ A -

. Ne i
All |

il . . . . .
then subtract M~ times the first equation from the ith equation, and also

the element belonging to the ith row and jth column]. Let M

1
subtract Mil times Y from Y:L to obtain a set of equations which do not
involve Xl. This new set of N-1 equations along with the first equation

of the original set can be written as




Downloaded from http://www.everyspec.com

— -
5_25 =Y, (2.4)
where
5_2 = y-lé- 3 12 = ‘11‘{ , and
— -
1
w o= |-t O
o 0 1
2 900080 a0s 0t et estesece (2'5)
N1
L—m‘ 0o o0 1 Ly
Next we assume Aiz # 0. Let Miz = 5-2—2— . Then premultiply éZ and }{_2 by
A
1_1_2 which is given by
-l B
;1_2 =10 -—M32 1
0 -M42 0 1
0 M2 0, 1]

Thus A, = M,A, and Y, = MY This corresponds to eliminating X2 from the

3 E2=2 =3 22"

last N-2 equations. We continue the process until we obtain the following

structure
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w-g
or
p— . r_ - — =
At 412 a3 N X '
22 23 2N 2 2 (2.7)
A2 Az see e Az x X = YZ
NN N N
0 BEE
L - e o e =

Let M =M, M, ......M . Then since MA = U we have A = Mty Thus

-1 -1 -1 -1 -
{l{} = {}_(1} x {)_12} x...X{gLN} . We now define L = {M} 1 and obtain

‘ 1
L=t | O
M M

(2.8)

S T -

Observe A = {ﬂ}—l U= LU Note that thevmatrix _1‘3 is never actually formed.
As the elimination progresses, the below diagonal elements Mij of L are
stored in place of the below diagonal elements of A, and the elements Uij
of U are stored in place of the diagonal and above diagonal elements of A.

At the end we have

q
(vl 12 23 ... ¥
2l 22 23 2N
Wl 32 33 3N (2.9)

LR I I I A N N N I B A N A I SR Y A A Y

P
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stored in place of A. Triangular decomposition is thus summarized by the
facts that L is siwply the matrix of multipliers Mij with a diagonal of 1's
and the U Is the matrix éN of (2.7). Also note that the intermediate
solution G of (2.3) is XN' The processing of Y, i.e. the transformation of

Y into Y

Yy» can be done simultaneously with the processing of A. Since we

have all the necessary nmultipliers stored however, it can just as well be
done at the end.

This describes ordinary Gaussian elimination without pivoting. The
term “pivoting" is used to describe row and column interchanges at the kth
stage of elimination to move the largest element in absolute value in the
remaining unchanged (N-k+1) x (N-k+1) matrix to the kth diagonal element.
Thus the pivot at the kth stage (or the diagcnal element Atk) is chosen
as the element of largest absolute value in the submatrix ék composed of
columns k through N and rows k through N. Hence, both row and column
interchanges are necessary to bring the pivot to the kth diagonal position.
Use of pivots has two advantages. First, it relaxes the assumption that
Atk # 0 and secondly, the use of a pivoting strategy reduces the rcund-
off error of the LU decomposition process. The analysis of round-off
error for this process is presented in section 2.5. Also note that
pivoting requires more operations.

2.3 COMPACT METHOD (CROUT AND DOLITTLE OR CHOLESKY'S METHOD) {1,2,3]:

This method depends explicitly on the triangular resolution of A as
LU, that is, the elements of L and U are all computed and used. It is
termed a compact scheme since the elements in the final triangular form
are obtained by accumulation, dispensing with the computation and recording
of the intermediate Aij elements and thereby reducing round-off error.

Since A = LU, the equation for the elements of L and U is




Downloaded from http://www.everyspec.com

e
min(i,j) . . s
. P gkl g1
=1
, kk 2 . L2
Letting L =1, for k = 1, 2, ... N, we have N~ equations in N” unknowns.
ka = 1
. k-1
UkJ = AkJ -z Lkm UmJ for j = k, s N
w=1
. k-1 .
TR S e R I IR TR S TR
kk
U m=1
Lik =0 fori<k
M -0 for j <k (2.10)

Hence, the order of elimination is first row of U, first column of L, second
- ik ki

row ¢f U, second column of L and so on. As the elements L and U are

computed they are written over A in the obvious way. After obtaining

elements of L and U, we solve AX = Y by writing LUX = Y which is then

equivalent to solving the triangular systems LUX = G and LG = z.

The accuracy of the method can be improved if pivoting is introduced.
After the row Uik, i=k, ..., N is computed, the largest Uik in absolute
value, say Ujk may be selected as Ukk, and its column the (jth) inter-
changed with the kth column in both U and A. This should not cause any
problem even when L and U are written over A. Then the next row of L,

ij, for j = K+1, ..., N is computed. Whenever a new row of U is computed,
the largest of its elements in absolute value is chosen as diagonal. The
L and U matrices so obtained are not the triangular decomposition of A

but are the deco.position of A, where

9

B WAl o el il ol A e ) kst ¢ i s vae
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tad
of A, where

~ inN 122 ill
A= (1 eeee I I " ) A, obtained from A by a sequence

of row interchanges, I k , of the ik row with the kth row, where k=1, ...,
N.

When the matrix A is symmetric, this method is often referred to as the
square-root method.

2.4 TS GAUSSIAN ELIMINATION REALLY OPTIMUM? [2]

Gaussian elimination, as presented in the previous section, is really
optimum if and only if one is interested in handling the elements of the
matrices by rows or by columns. Under those conditions Klyuyev and
Kokovkin-Scherbak [4] have proved that no general system of linear equations
can be solved with fewer arithmetic operations than are required by

Gaussian elimination. If G(Nz) is defined as the terms of the order of NZ,
3
then in general Gaussian elimination requires %— + 0 (Nz) multiplications
3
and %— + 9 (Nz) additions. However, Winograd [5,6] has shown that a
3

general system of linear equations can be solved in N + 0 (Nz) multi-

3 6
. . N - . .
plications and %~ + 0 (Nz) additions. Since multiplications require more

time than additions, Winograd's method would be faster than Gaussian
elimination. It is interesting to observe that the total number of mul-~

tiplications and additions for both Gaussian elimination and Winograd's

method is %-N3 + 0 (NZ). Recently Volker Strassen [7] has shown that it

is possible to solve a general system of linear equations with O (NP)
]

arithmetic operations, where in this case p = log2 7 = 2.807. However, it

is not known whether this value of p is the minimum exponent.

10
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2.5 ANALYSIS OF ROUND-OFF ERRORS FOR DIRECT METHCLS 5. . NG A
SYSTEM OF LINEAR EQUATIONS [2,8]

The solution of a set of equations by Gaussian elimination is based
on the triangularization of a matrix. If we start with
A=Y or Aﬁ’!l
in Gaussian elimination,then the following (N-1) equivalent sets are

produced.

1 ér'é = Xr forr=2,3 ..., N (2.11)

The matrix éN of the final set is of upper triangular form. In general
Ar is of triangular form as regards to its first r rows, and it has a
square matrix of non-zero elements in the bottom right hand corner. The

square matrix is of order N+1 - r. The matrix ér is derived from AL

+1
by subtracting a multiple_ggir of the rth row from the ith row for values of
i fromr + 1 to N. The multipliers M'T are defined by

ir
ir r (2.12)

The rth row of A 1is calle’ the rth pivoted row and A:r is callied the rta
pivot.

In order to obtain the elements Aij for i < j, we write

A;j - Aij -l g1, 1

1 2
iy _ 13 _ 42 ,2j ij
A3 AZ o AZ + €5
13 ij i, r-1 r-1, i ij
A = A o i i (2.13)
T Ar—l ! Ar—l’ + Er

11 K
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PUTIPT . T T |

3

i i i
where all Ar and M7 refer to computed values and eij is the difference

i3
between the exact ArJ and the value which is obtained using the computed

ij i, r-1 r-1, j

Ar—l’ M and Ar—l “. After summing the equations in (2.13) we obtain
ij _ i _ 41 15 i2 .25 ... _ mi,r=l ,r-1,j ij
A=Al - AT - M A M AT +e (2.14)
where I I exd 4 aees 4ot (2.15)
2 3 r
. . ij
For i > j the elements of ér are modified until éj is obtained. AjJ
; WL i1 ij
is then used to conmpute M ', and Aj+1 to Am are all taken to be -exactly equal
to zero. The equations are therefore
ij _ 1] B i1 1j ij
A2 Al M Al + €2
ij - ij - 12,23 ij
A3 AZ M A2 + 63
A31 = AlJ Mlaj"l AJ,-l, 1 + E:,LJ
3 j-1 j=1 i ,
14 ii ,3i ij
0=4, -M A, + ¢, 2.
i i j*l (2.18)
Again summing all the equations in (2.16) we have :
|
s s Py . . . . s s . i
0= ald _atl AL aEZ 20 Lo i 0 (2.17) ‘
1 1 2 h/ |
15 i1 . 43 13 |
. + - es e -
where e 82 £, + + €j+l (2.18) :
i '
If we take the terms involving M T to the left hand sides in equations (2.14)
)
and (2.17) the set of N° equations then reduce to the single matrix equation

LU = A +E=é+£ (2.19)

—_ =1 -

where L is the lower triangular matrix defined bv
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1 o o o 0]
21
L= M1 0 e eenn O

2 3

M31 MJ'“ 1 .. 0 f
X

2 (2.20) ;

by —

and U is the upper triangular matrix defined as

m 11 .12 ]
A7 AT A
22 2N
u o 4 oo eeen A
NN
Lo 0 ANJ (2.21)

and E is the error matrix defined bv (2.15) for i < j and by (2.18) for i > 1.

In actual computation, we select pivotal rows so as to ensure

|

IA

1 (2.22)

There are two main ways this is done. In the first case the columns may be

eliminated in the natural order, but at the rth staece, the pivotal rowv is

taken to be that one of the remaining N+1 - r rows which has the largest

element in magnitude in column r. This is called partial pivoting. {
Secondly, if at each rth stage we select the largest element in mag-

nitude from the remaining N+l - r rows, this is called complete pivoting.

Wilkinson has shown that [ 8]

| Aii l < 2t1 a (for partial pivoting) (2.23)
and 1
1 1 -7 1
| A:r j_r1 {21 .37 4173 ceeth o (for complete
pivoting)
13
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L e e _
j
o
!
2
!
where 2 is given bv %
i
: {3 . ;
Ioati 4 all <a (2.25) f
Wilkinson claims that for almost all matrices A, {
| AT < ra (2.26) 2
r - i
We denote
max | Ai] L= g (2.27)
i A ) ..
[1ad 10 2 max ¢ p oAt D < g (2.28)
and r i §=1 r

3

Now we try to find !'Ef' ~ the total error encountered in the trian-ular

decomposition of A . Ue observe

R TS S B B e TR T3 '
“r . Ar—l ; Ar-l (L+“l)’ (‘+“2) (2.29) {

where El and €, are the round-off errors made in the multiplication and sub-
traction, respectivelv. e know
-t (in binary) (2.30)

! 2

IA

101" (in decimal) (2.31)

IA

1
2

where t is the number of digits in which actual computation is carried out.

Thus 13 1
ij ij A i, r=1 ,r-1,j Ar 2 i, -1 r-1,]
erd = alloq i 4t FULE P Q. S S PN
T r 1+ 52 r-1 1 1+ EZ r-1
t+1
< gz't ﬂ 1 + 1-} = lt -1 é,z't (2.32)
- 1-27°F PR | i
This applies to EiJ excent ifil for i » j. For these we find
J

M) <1 (from 2.22)

1Ai3. < g (from 2.27)
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[— y - e e " -
. . AJJ € tr! |
\ gll e ) A, Ay gt o 21 2,33,
i+l 3 ji - L
Aj ~ L
so that we need not give these elements special t-edtments. Loeoliing

(2.15), (2.18), (2.32), and (2.33) we have for cowplete pivotineg

[0 0o 6 ... o0 o0
t+l
-1 -
B < H—2 g2t 1 o o1 . 11
2 -1
1 2 2 .. 2 2
1 2 3 ... 3 3
12 3 ..o (D (1) (2.39)
- -
N e+
Thus ||E|] A max & JEY] < 221 oot | G+ (D (239
T 1= = 2t -1

So in summary, what we have done so far is expressed A = Y in the form
LUX = Y. The computed L and U satisfy LU = A + E and, hence, if we solve ﬁ
LUX = Y without any further rounding error, we would obtain

A+ X=%Y (2.36)

Gaussian elimination solves (2.36) in two steps

|

(2.37)

IS 15

=G (2.38) 1
each of which requires the solution of a set of equations having a triangular

matrix of coefficients. We therefore now consider the errors made in

solving triangular matrix equations. From (2.37) we find [3]

1 G1 a+ G)rl) _LrZ GZ A+ erZ)__”._Lr,r-l Gr-l(l + Sr,r—l) +yF (1 +Er)

er (1 +6f)

4
Gr - -L

(2.39)

where Ori, e’ and 6" are the round off errors associated with Lrl, v" and

15
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L respect .vely.  we have trom |8
(:fl <t (2.40)
s« ot (2.41)
and ’,Grii < (r+2=-1) 27" 2.42)
Rewriting (2.39) we find
y > 9 2 - - -
_Lrl S N 1—‘“:_6& L +aF “”..Lr, r-1 of~1, _ of» ¥ 1+ s
ot - 1+ &f 1 +ef L+ et
LT q 4
r
1+ € (2.43)
Qri
and if = = 14y (2.44)
N
L+ 8° Y
anu EURNCAU QN (2.45)
1+ ef
then (2.43) can be expressed as
4 , . .
- LR N SRR S (2.46}
i=1
- - -t
Since 27t o8t o« S <2 ¢ we have ‘vrrx <2Zx2
(2.47)
and from (2.42) and (2.44)
(r+2-1) 27" > ?Cri! > }rbri} + 16t
' (2.48)
or  (r+1-~1)2° > [P

Equations (2.43), (2.47) and (2.48) show that the computed vector is

the exact solution of
(L+AL g =1

waere AL is bounded by { 8]

16

oy

Ty
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-
r? U '
- !
-t ! ,jl _'7 "
jaL! -2 x S A C LT |
1 32 33,
3 L31 2L 2 0L
N ‘V2 N
vttt ey Kt ;
(2.4
nence | 8 ]
d i1 2 ~-t
[JAL]} & max £ faL™'l < 5 (8T 4 N+ 2) 2 (050
1 J'_'l
17
as  max .l 1' < 1
i,]
Similarlv we can trove [ 8 |
[ ! 1 2 N S L .
,,lgli‘ff(N + N+ 2) ¢ 2 (.51
Also we nave [8]
N i3
ULl A max oz XY <o (2,32
©oget
and [ B ]
h i
HEH 4 max T fu=1 < Ng (2.53)
i 4=1
Beuce X satisfies
L+ 8D U+ a0 X+ 45 = (Y + AY) (2.54)
where AX is the uncertainty in the solution due to the uncertainties iss~ciared

with the computing processes. Thus if E is the error associated with

the representation of A, (l.e. A+ E = LU), then

~~
I3

+E+ L.OU 4 ALY + ALLAU) (X + AX) = (Y + AY)

or

[
I
+

MY (T4 X)) = (V4 AY) (2.55)

’

naaaifn

., s

PRI




Downloaded from http://www.everyspec.com

where A = E + L.AU + AL.U + AL.AU

and so from (2.35), (2.50) - (2.53) we obtain

4 -t t
[laall <th[N -2 + N (z’t'1+1)+m2 (2 2"+1+2—'-0—'2) + ...
=02 4 4 t
27 -1
4, -t
ig2t[N3+2N2+NZ +] (2.56)
So far we have discussed only the infinity norm, i.e.
N
max 15
all, 8 ™5 (5, 1at]
We next introduce the Euclidean norm. The Euclidean norm is defined as
N N .
! v T 13124
[allg a (g if1 AT %) (2.57)
It can be shown that under the Euclidean norm (8]
t+l 2
let], < 2L g2 ny/B2E (2.58)
='"'E— ,t 6
2°-1
N(N+1)
L < Y =3 (2.59)
ol < ey T2 (2.60)
+ 2. -t
H_L?fEi—————(N 2) 2 (2.61)
iz
2 -t
4
[lapjj <282 (2.62)
k /12
4 -t 3
H%HEf_gZ't{“N Lo+ T } (2.63)
V6
However, Wilkinson claims that for all practical purposes [8]
Haall, < Mgz and |8l < g2
So for both the Euclidean and infinity norms
|12al] -t
—_— 2 ".N.g -t
TRT £ % < 2 (2.64)

Since l]ﬁllE and II&]LD are not related to the eigenvalues of the matrix A,

we introduce the spectral norm. It is defined as

|1a]l, & |maximum eigenvalue of Al 4 M ax (Al (2.65)
- A
and cond [A] . condition number of A A |[A lilz'llAllz A max (4]
Amin [éj
(2.66)

-2 A

§ APE. ¥ P

aadber odie o




Downloaded from http://www.everyspec.com
I . — -

For the spectral norm it can be shown that [8]

Hall, < 11allg < A 1iai, (oo
Thus,

L1aall,< Tlaall, < 27° Jlall < /& 275 il (258
and

Haall, < gt .

[1al1,

However, note that for a row or column matrix [8]

. 2 \
el = il s robhieetR ot
In order to find AX from (2.535) we obtain
ax = {1+ (a1 )™t L ofartiay - (a1 tosanx) (2.70)
where I is the identity matrix. If {_:}._-l:_i[ i2 < 1 then it cdn be shown
(8, p. 92]
Ilz+[51'l-g!iz < _1'1 : (2.71)
1 - [t pal,
Then we have
_l ! 1 \
Haxll, a7, al (Maxil, feal!,)
< + Y
— -1, i ! i !
Al
cond [A] . .
< — (2% No. 2]
l-f_ﬁ.cond[éJ.Z
2°% [/N +1] cond [A]
< (2.72)

1-/N. 2t cond [A}

Thus there is absolutely no way to recognize an accurate solution X given

by Gaussian elimination unless
/R.27% . cond [A] << 1 (2.73)
Thus (2.72) relates the accuracy of the solution to the dimension of A,

its condition number, and the number of digits with which computation has

been carried out.
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As an example consider the solution of the following problem AX=Y
by Gaussian elimination. Let A be the ill-conditioned Hilbert matrix and
Y be that vector for which X = {1,2,3,...., N}. The problem then is to
find X given A and Y. We simulated this problem on the Xerox Sigma-9
computer where computation is carried out using twenty four binary digits.
For a 4th order Hilbert matrix the condition number is obtained as

cond (éa)=l.55 X lO4 [(2]. Thus for a 4th order Hilbert matrix (2.72)

114X
reduces to J]X‘ ! < .00278

i

and hence a very good accuracy in the results is expected. However for a
|1ax]]
Iixll

fifth order Hilbert matrix < . 09825

since cond (AS) = 4.77 x 10S [2]. This is reflected in the following results:
X + 0.996 2.067 2.708 4,442 4,783
Hax]|
— > 07772
Hxl

Note that the theoretical error bound is large. For a sixth order

Hilbert matrix we have

X - 1.007 1.786 4,509 -.0342 9.543 4.182
X + 1,0 2.0 3.0 4.0 5.0 6.0
- exacg
Hex]|

In this case —TTEQT-= -2.59 (from 2.72)

since cond (éﬁ) =1.5 x 107 from {2]}.

These results prompt us to look for alternate methods in which we
could reduce the effects of round-off error in golving a system of
equations. The effect of round-off error may become pronounced not only
for very ill-conditioned matrices but also for large systems of equations
in which a large number of arithmetic operations must be carried out.
Iterative methods are good alternatives to rectify this problem of
round-off error. For example, for a 7th order Hilbert matrix, where

we know direct methods would not work, we obtained this result by the

20
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conjugate gradient method at the end of seven ireratious.
X + .993; 2.099; 2.678; 4.024; 20205, £.121, LTS

X exact +1. 2. 3. 4l S.; FI 7

2.6 CONCLUSIONS

The direct mechods are quite efficient when we have & well-cenditioned
matrix of small rank N. However, if the matrix A is ill--onditioned, then
the direct methods wmay fail even for a 5 x 5 matrix. Alsc ¥ the rank of
the matrix is very large, then the round-off error wmay huild p to aarke
"N * cond (é).Z_t comparable to unity. So we must Jook for alteinative
methods of solving svstems of linear equations when we have a inry: wntris
or a very ill-conditioned matrix. Even though the two conditions vndey
which the direct methods fail are quite different. the visease is (u:
round~off ccrer. Thus we next lock inte the iterative me“li ., where i

unknown is vetined at each stage until we get the exact solii.on. In

(s

iterative methods, the round-off error is generaliy limited =¢ the last

iteraticn ovnly. This we demonstrated by solving a 7 x 7 Hilbert matrix

using single precision computation. We know that for this problem direct

Llag!
Sl

, ¢ i _—
methods would fail as ' '"='" = -1, 47 (from 2.72)

§
DX
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3. PHILOSOPHY OF ITERATIVE METHODS FOR SOLVING MATRIX EQUATIONS

Summary

The basic philosophy of the iterative methods is discussed in this
section. It is shown that the solution of the set of equations A X = Y
is equivalent to the maximization/minimization of the functional F (5) =
%—<é§, X> - <Y, X> if A is negative/positive definite. The contours of
constant F (X) are generally N-dimensional ellipsoids. Also the residu-
als R, {= éég - Y) at the end of each step are normals to the ellipsoid

at gﬂ. The paths P by which one reaches the center point of the ellip-

soid (which is the. solution, X

) are different for the different i:-
Zexact

erative methods. An iterative process is called linear if the present
estimate X is a linear combination of the past estimates X , X., X
- —o’ =1’ =2
seee X0 Otherwise the iterative process is nonlinear. A process is
called a stationary iterative process if the rule by which En is deter-
mined does not change from iteration to iteration. Otherwise the itera-
rive process is called nonstationary. Nonstationary methods are not pur-
sued in this presentation because some ideas are needed about the magni-

tudes of the maximum and the minimum eigenvalues of A for these methods to

be effective.

22
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3.1 MATHEMATICAL APPROACH OF ITERATIVE METHODS (i, 9, 13, 11]

Many boundary value problems of marhematical phvsics mav be reduced to

the solution of a matrix equation

Ax=y

(3.1)

The iterative method consists of choosing a trial function_go for

b

in (3.1). For this trial vector we have a residual 30 givea by
R = AX -Y (3.2)
- —n -
The objective of any iterative scheme is to alter the vector X0 svstematically

in such a way that the residuals eventually disappear. To achieve our goal

we introduce the quadratic functional F (X) defined as [9].

T =3 AR, K> - <L (3.3)

Here < , > is the usual definition of the inner product. {In the present

i
chapters we will assume A to be symmetric and A, X, Y are real matrices.

We will derive the rates of convergence pE various ilterative schemes based
on this assumption., Later wgvy;llﬂ~extend the discussions to uompiex matrices
by>changing the deéinition of the inner product.] If we want to minimize
or maximize the quadratic functional F (X) defined bv (3.3) then the first
functional derivative should be made equal to zero. [This functional ‘ :
derivative is often referred to as the Frechet differential of F (X)].
The first differential is obtained as

F' (X) = <AX-Y, AX> = <R, AX> (3.4)
The second differential of F"(E) is obtained as

F' (X)) =  <AAX, &% (3.5)
Thus the solution of a symmetric svstem of matrix equations in (3.1) is
equivalent to the problem of finding the minimum/maximum of a quadratic

functional F (X)) of (J.3) depending on whether A is positive/nepative definite.

23 ' .
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In orde” to maszinizesminimize F (X) we start with a trial vector & .

We select some direction Eh and correct 50 in the direction of 20 with the

intention of approaching the maximum/minimum of F (X¥). From now on let us
assume A is positive definite so that we can explain the principles of an

iterative scheme. The new trial vector X, obtained at the end of the first

1
iterative step is related to EO by
X, =X +¢t?P (3.6)
-1 -0 -0
where t is a scalar parameter. Then
X = X +
P F R er)
t2
=— <AP , P>+t <AX -Y,P>+F (X)
2 —0 ' -0 —0 =’ = -0

(3.7)
- ' k \ . : . -
[NOTt: X represents the kth element of X obtained after n iterations
~—— 'n

The parameter t is now selected in such a wav F (Xl) reaches a mininmum

{as A has been assumed to be positive definite), i.e.

dF (X))
— = < SIS AN - = < P T >
dt tAr, 20 \ éfo A Eo> ¢ ézo ’ -o> +W<Eo Eo
= 0
or t = —<§0———’ £O> 1.3
i - AP 3.
nin <é£o’ l)0>

The second derivative of F (Xl) with respect to t yields

4 ¥ (1))
———— = <ar , B> > 0 (3.9)

dt
since A 1s positive definite.

When A is nonsincular but indefinite, its solution makes the

corresponding quadratic function stationarv but not maximum/minimum.

24
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e dnacasncintagiins che

In the event A is positive definite, t ‘ really vields a uniqu. minir.s:-
- min

as seen by (3.9). Also the functional F (X) is a quadratic in t as shown hv

{3.7). tlence it forms a parabola when plotted against t as showm in Figure 1. l

Fip) y
4
F(X)
4
t=
0 tmin 2tmin t
b
vigure 1: Plot of F (X) against t. ;?
|
Hence for 0 <t <2 toin the value of F (X) is smaller than F (;‘{0). The point ‘l‘
|
Xl which is reached by moving in the direction P with t = t | is then the
- —0 min
minimum point. The decrease in F (5) is given by
1 <§o’ —P-0>2
= - E e — ,—————— < O 3.10)
AF = F (X)) = F (X) 2 <AP_, P> (
-0 ’ —o
for <R, P > $# 0 (3.1D)
- ’ —o
Thus to obtain anv reduction in F (5) the search direction 30 shauld not bhe
orthogonal to the residual vector 30. Ntherwise we remain at the trial noint
i, 3

25
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It is also interesting to note that at the minimum point_)f1 with t::tmin

the new residual vector R, is orthogonal to Eo' This is because

=1
< = - =< k: - >
Ry» P> = <AX) = Y, P> =<(A +c . AP - Y P,
= <R, s B> g, AR, EB>=0 (3.12)

For example, im the coordinate system of the unknovmns, X = (xl s X,),
contours of F (X) = constant form concentric ellipses whose common center
coincides with the minimum point of F (X) and constitutes the solution point.

At X , the residual R is orthogonal to the contour through the noint X as
-0 —o o

it is the gradient of F (50). In one iterative step we pass fron 50 in

direction go to X,, where F (X) is a nminimum along the direction Eo. Here 31

ek

is perpendicular to go' This is illustrated in Figure 2.

Solution

~
~

Figure .: Interpretation of Iterative Scheme

I . VY

ad
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The various iterative schemes discussed next L:

T S ST
general iterative scheme, as the various methods differ onlv in che Boio.
of the iterative direction Pi for the individual iterative steps and in i

patih followed (through the choice of t). An iterative metheod 1o cu!

el

pet

stationary iterative method if the function Dn defined as

B = % [ L X0 X g X))

is independent of n. Thus in a stationary iterative method Ql = ﬂ: = Wj and
so on. Otherwise the process is called a nonstationarv iterative methed,
The iteration method is linear if Qn is a linear functicn of En' in—i’ e X

Otherwvise the unetnhod is nonlinear. In these discussions we will confine o.r

attention to only stationaryv iterative methods because for noastaticnarw

iterative zetnods the parameters vary with the problem.
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4. LINEAR ITERATIVE METHODS

Summary

This section describes the various linear iterative schemes. It is
shown that for Gauss's hand relaxation method the search directions P are
the coordinate vectors whose only non-zero element is 1 at the kth row,
corresponding to the largest residual. In Jacobi's method, however, the
search directions P are chosen cyclically, i.e., starting with a vector
whose only non-zero element is 1 at the first row and then gradually going
down to the nth row and back to the first row again. In Seidel's process,
we modify Jacobi’s method by substituting a refined estimate for element
Xi when we compute X; and so on. However, the disadvantage with Seidel's
process is that convergence is irregular if the largest eigenvalue of the
iteration matrix is complex. This problem is remedied in the back-and-
forth Seidel process. Basically it consists of two normal Seidel's pro-

cesses. We proceed in the nth iteration as a normal Seidel process by com-

1 . The

. 1 N ] . . N
puting kn RN Xn. Then at © + 1 iteration we compute Xn+l to Xn+l

rate of convergence of linear iterative schemes can be increased by the suc-~
cessive overrelaxation method presented in the last subsection of this

section.

L aw e Ao

O ke~ ot meadina ¢ el




Downloaded from http://www.everyspec.com
y R —

S

Sl CATL T L WAl AZLARWITON HETHOD 11, 5,9,12,13)
~ils nolnod wat o aeveloped by Jauss for hand calculation and is mostly of
) o : k
cant Tivar sigellicance.  in tiiis case, the elements Pn (from 3.6) of the

warch direction vector Ep are chosen corresponding to the greatest residjual

1

in absolute value. Thus En is a N X 1 column vector whose only non-zero elc-

ment is 1 at the kth row, where the kth row nas the largest residual Rn in
absolute value at the end of n iterations. By using (3.6) and (3.8), we

arrive at the following equation in terms of the components

RK
k Uk a k
akl - Ya T Akk - P (4.1)

Thus tmi" tor this problem is

<R ,PS R -
+ S ¢ S 1 R (4.2
“min <AP_, P > Kk
~n ’ - A

-y

This netnod is pot very sultable for automatic cowmputation as it is a very
iabcrious process to search tor the larcest absolute element in the residual.

<. JACCBEI'S CUCLICAL ITERATION “(ETHOD (SUCCESSIVE DISPLACENLNT MLTHID)
(1,3,9,12,13]

In contrast to Gauss's method, the relaxation direction I now runs

/ y) -7

cyclically thrcugh the coordinate directions in the sequence El’ By weony o

regardless of the residuals. Here Eé is a column vector with 1 at position &

and zero elsewhere. This method is then equivalent to solving each of the
original equatiors in turn for a single unknown,and hence the solution vector

i s changed one component at a time, Here tmin is defined as

<R , P > <R, ‘{> Rk (6.3)
" -, _n -n . _ . =i _ __n_
@in <A, D > <AL, ©'> ki

—n - —i7 = A

i

i

Ittt - 03 atrea Migean
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{
¥
Hence .
N ,
R N
k k n . I 1 k kj,j
X = X - —_ E = — [y - I AFX']
k - -
n+l n Ak k Akk j=1 n
j
. . - . . ij i1 ij
Suppose A is decouposed into a diagonal matrix D (with elements D = A 570
a lower left triangular matrix k_(with elements L1J = A13 for 1 > j and zero
for 1 < j) and an upper right triangular matrix U (with elements U1J woqt
for { < j and zero for 1 > j). Hence
A=D+L+1U (4.4)
Thus the Jacobi iteration for solving AX = Y takes the form
DX, *(L+UIX =¥
or,
~1 -1
X, == Leulx +07y
5 G'X_ +H (5.5
=——~n —

The Jacoubi iteration converges as long as the largest absolute eigenvalue cf

g' is less than unity. Other equivalent convergence conditions are de-
scribed in section 8.1.
Observe that when the matrix equation AX = Y is scaled such that D = I

(identity matrix) then

~1 1 ’ b
= - - = - = X - (
X4 =X [D] [AX Y] X o] r X R (4.6) ;
k
i.e. each individual component Xn is altered such that the residual of the i

xth equation is zero, without regard to the connection of the other
components.

4.3 SEIDEL'S METHOD (SUCCESSIVE DISPLACEMENT “METHOD)
(often incorrectly called the Gauss~Seidel method) [1,3,9,12,13,14]

The rut: of convergence of Jacobi's method was improved by Seidel in

modifyin,; (4.3) ia the following way
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H k-1 .
'.l(+w - l-‘.‘ LY!‘ - : .\\({ ) - “.?-{ . :
n+. <K ot a7
A n=1 : q=k+1 ‘

(D + L) X + UX =Y “.
or - - ~n+l —n - ’
This is acnieved by updatine cthe - iamn oo v ] A t

A o

components Yhas heen calentersd 207 uniog thoon ool : e
iteration rather than waiting tor the aexs iieraticn o
Thus

X = - [D+ 1 X + D+ 1177V

N+l [—‘ __] -1 I -

o+ S fa.8)
—= 20 2

The necessary and sufficient condition for the convelgence o .o S L al

the largest eigeavalue of A be less than unity
gence criteria will be discussed latcr on in v

The zajor drawback of the linear itersciv

in magnitad. .

eCLiCh "l

e sClieles G

CLRer ooaver-

carticularly that of Seidel's method is that the convergeace s ~ulcwe

irregular if the d- :inant «:senvalue of @ in ¢

-onusider the Iolicwing Ic.. W
SXdToie 1o Lot A te tne matrin
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’pr' T —————— erero— —m
; % 4y 3} A 29 g 4 %
f 1 1.00  -l.uu  =0.85  -0.41  -0.18  -0.062  -.0080  .01220
2 1.00 0.32 0.00  =0.12  -0.13  -0.107  -.0761  .04927
3 1.00 0.80 0.56 0.36 0.21 0.115 .0577  .02561
4 1.00 0.21 0.11 0.06 0.03 0.012 .003  -.0007 .
Xg 4 %0 ‘
.01656 014576 .010786 1
~.02953 -.016425 008403
.00907 .001421 -.001527 é
-.00127 -.001514 -.0011604 b
Tabie 1: The varicus components of X at the end of each iteration 1
ot oladodad kIt dad kil g 4
1 -1.60  0.52  0.49  0.44 0.344 0.1290 -1.525
2 0.32  0.00 oo 1.08 0.823 0.7112  0.6474
3 0.80  0.70  0.64  0.58 0.548 0.5017 0.4438
4 0.21  0.52  0.55  0.05 0.400 0.2833 =-0.0205
| X5 /X Ko/ XD,/ Xs
1.2574 0.8802 0.739983 Q
.5994 0.5562 0.511597 §
.3542 0.1567  -1.074603 |
‘ 18.1429 1.1114 0.822614

approach any 1

s
« REARG o . st ibP P e
k- .

imit. This is shown in Table 2.

32

Table 2: Ratios of x;+l/x; for Seidel's process.

In this present example it is interesting to note that the ratios do not
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Such erratic behavior i{s to be expected since the eigenvalues of the

sotrix Q in (4.8) are ‘omplex. The eigenvalues of Q

"o 0 0 o ]

R R R (A 0 49 L147 L0763
0 <147 .5341 .0439

| o .0763 .0439 .0228 |

are ) =0, 0.028333, 0.566733 + §.157158. That is, the dominant eigenvalu.s
of Q are complex conjugates. Thus, aithough the Seidel sclieme is convergent
in this case, the convergence is erratic. This erratic behaviour of the
Seidel process is rcmedied by the "back-and-forth" Seidel process.
4.4 BACK AND FORTH SEIDEL PROCESS (1,13}

The back-and-forth Seidel process was designed by Aitken and Rosser to
~vercome the irregular convergence of the Seidel process. This is
ichieved by making all the eigenvalues of the iterative matrix real.
It proceeds as feollows: Start with a first approximation vector Eo and then

sbtain Ei bv the regular Seidel process as

- - p— ' -l
%, =-[+LI"ux +#[D+L] ¥ (4.9)

Then find the next iterate by applving the Siedel process to the equations in

reverse order, i.e.

-+ tLx sty
s+utrp+utux -n+ut i+ v e ety
. . . . (4.10)
Thus we see that for this process the iteration matrix is
-1 -1
s=[D+U] " L [D+1] U (4.11)

Since A is assumed to be symmetric L = UT and U = LT (here T denotes transpose)

and so the iteration matrix can be rewritten as

33
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|
s=+utdp+vity
=+ ult T o s Ty et (6.12)

where M = [D + U] U, Thus S is similar to a non-negative matrix.

Since det[M] = det[U] = 0O, Eﬂ? is semi~definite. So we can conclude that

all the eigenvalues of S are on the real half line x > O and hence the

dominant eigenvalue of S is unique, though possibly may be a multiple root.
Example 2: We now apply the back-and-forth Seidel process to example

1. Wwe again start with the same initial guess. The results are sum-~

marized in table 3

L& & % 4 ) %3 33 2

1 1.0 -1.60 -0.92 -0.99 - 0.64 -0.64 -0.42 ~3.417

2 1:0 0.32 0,48 0. 06 0.23 -0.01 0.12 -0.032

3 1.0 0.80  0.88 0.63 0.64 0.43 0.45 0.305

4 1.0 0.21 0.21 0.13 0.13 0.09 0.09 C.056
X X 2.5} L5 X
-0.277  -0.27650 -0.18437 -0.18437 -0.12332
0.070  -0.02835 0.04305 -0.02144 0.02746
0.309  0.20780 0.20966 0.14033 0.14157
0.056 0.03736 0.03736 0.€2499 0.2499

Table 3: Various iterates of "back-and-forth" Seidel process

. i i .
The ratios §n+l/§n are obtained as

34
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Loxyxy o xgxd o oxbxd o xbxd o oxexi o xg A
1 -0.99 0.65 0.66 0.660 0.66560 0.6687
2 0.48 0.48 0.52 0.583 0.61500 0.63737
3 0.88 0.73 0.70 0.687 0.67851 0.67524
4 0.21 0.62 0.70 0.622 0.56, 14 0. 063840
Table 4: Ratios of xt ,/Xi for "back-aad-forth" Seide: procoers
n+i n

The results from table 4 indicate that these ratios are tendine to 0.67. i.e,
that the dominant eigenvalue of S is about 0.67. A simple calculation reveals
that the eigenvalues of S in this case are 0.65611, 0.36368, 0.02720 and O.

The dominant eigenvalue is real and is equal to the ratio of

[ i}
limit X
n+l
n-+o i
X
n
In this example, the convergence of the "back-and-forth" -cilvi srocess,

while slower than that of the crdinary Seidel process, is much nere res . lav
than the ordinary Seidel process. However, the "back-and-forty” Seldel
process can easil. be 1:ne’erated. It is not certain, howewver, wirich proces
would give the wost accarac, per unit of jabor,

Alsc, in most method of moments problems, we encouater a marrix A whose
eigenvalues are often complex. The use of the "back-and-rarih' Seidel pro-
cess in these problems will be justified; but, as we shall show later, there
are faster schemes to treat these problems.

4,5 THE METHOD OF SUCCESSIVE OVER/UNDER XELAMNATION {l1,2,1.,13,14,15,:6]

In the case of large systems of equations, the Jacobi or teidel process
converges poorly when the maximum absolute eizenvalue (often referred to as
the spectral radius) of the iteration matrix G' in (4.5) or Q in (4.3) lies

close to uaity. Convergance of the Scidel »recess couid he iipreved {f




Downloaded from http://www.everyspec.com

instead of just reaching the minimum point at tmin of Figure 1 we gu be-
yoad this point by a certain amount. It seems paradoxical at first to re-

frain from minimizing the quadratic tunctional at each iteration step with

the goal of achieving better couvergence. Instead of choosing t = tmin ,
we choose t = “t o al where w is a factor which may or may not change with

each iteration. Thus (4.7) is now modified in the following way:

+ +UX =
@+L) K, +UL -
or DXy ¥ ) =Y - X - -y

We now introduce the parameter w and define the new iteration

-1

WThD gy KD LUK - -
_ -1 -1 -1 -1
or X~ I-( " D+L)7ALX +( " D+L) " Y

1 D + L)_l A) where I is the

In this case the iteration matrix is [l - (w
identity matrix. We are now interested in determining w so as to give this
matrix a small maximum eigenvalue. It is interesting to note that in syvmmetric
definite systems of equations, the relaxation methods converge to the solution
for any fixed value of W in the range 0 < w < 2. This probably could be
expected intuitively as the quadratic functional is reduced in value for

0 <t < 2tmin' For O < w < 1, the method is referred to as underrelaxation

and 1or | < w < 2, the method is called overrelaxation. It has been observed
by Kahan and Young [l4-16] that values of w < 1 tend to reduce the rate of
convergence whereas w > 1 accelerates the rate of convergence. For w < 1

we overcorrect the solution vectors and hence we speak of overrelaxation

methods. Unfortunately, for a given problem it is difficult to find the

optimum choice of the relaxation parameter w. For this, additional {nformation

36
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abaut the structure of matrix A is necessary. UNonetheless, we can say that the

worgse the condition of the matrix, the closer the optimum value of w lies to 2.

lu such a case, at each iterative step we jump far beyond the minimum point

to a new approximation which leaves the quadratic functional F {5) almost as

iarge as ir wacs before. Hence the strategy of making the best improvement in '
each individual iterative step by going to the minimum point is not the best

way of achieving the optimum long-term result,

The successive overrelaxation method has found wide application in the
solution of boundary value problems by the finite difference method. In this
particular tvpe of problem one often encounters a very sparse matrix. For
such special type of matrix equations optimum values of w have been given
L oy Kekan and  ouag [14-16]. In the case of a full matrix it is difficult to
find the optimum @ theoretically unless there is a certain structure to the

matrix. Jtherwvise for each individual problem the optimum value of w has

to be obtained experimentally.
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/ 3. VONTE CARLO ETHOD* (1, 17-21]
} Sa.l.alv
In this section we apply the law of large numbers to solve a system of
linear equations. A Monte Carlo method is capable of giving a rough
estimate (5~10), accuracy) of the solution in a reasonable amount of time,
or when tne problem is too big or complex for anv other method to handle.
The Monte Carlo method is applicable if m?x Ai(T)<l, where T = A-~1.
However, this can be achieved by prescaling the matrix. The method
presented in this section starts with an initial guess 50 of the solution X
and computes various components of X by

I
= ¢ - Z
X ko i=}

-1,j1 , .
where [A )3 represents the element corresponding to the ith column

-1.3i _oqd
(4 117 (ax ~¥]

and j .th row of the inverse matrix of A. This requires slightly more
work than the computation of the unknown X by
N

SR N PNR R O
i=1

i

However, the results given by the former converge much faster if the

; initial estimate Eo is reasonable.

* It has become quite widespread nowadays in mathematical literature

to speak of Monte Carlo methods (plural). This is because the same problem

can be solved by simulating random variables in various ways. But here we

will use Monte Carlo method (singular).

38
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5.1 SOLUTION OF A SYSTEM OF LINEAR EQUATIONS

The Monte Carlo method 1s a numerical method of solving mathemaiical
problems by means of random sampling. The method was first .. by Lo
von Neumann and Stanislav Ulam. Even though the theo:r i1..ae 10 qut o of
this method has been known for a very long tiwe, this metncd could net ce

used on any significant scale because of the manual simuiiticca 1 fanoer

variables, which is often a very laborious procedure. With rhe advent of the

electronic computer, this method has become an extremelv versatile numerical
technique. The Monte Carlo method is useful in any of the following situa-
tions:

a) A quick rough estimate of the colution is desired, which is then
refined by some other means. This is because the first few steps of a Monte
Carlo method tend to improve results significantly, wunercas =.:v additional
steps are needed to achieve a high degree of accuracy. This metnod is
especially efficient in solving problems which require 5 - 10 per cent
accuracy.

b) The probleas i1s tco bip ¢r oo compiex for anv ofhwer teihogs,

¢) Just one component of the solution vector of a large system of
matrix equations or only one element of the inverse of a matrix is desired.
Under such circumstances it would be very impracticali tuv solve the complete
probiem.

Ay

It was shown in Chapter 4 that the solution of AX = Y (s equivalent

to the iterative scheme
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"H
En+l N Lr—X—n v (5.1)
where W= (I-1T) [A]-l Y (5.2) L

For Jacobi's method, T and W are defined by

T=2¢=- (D] (L + U] {from (4.5)}
- - @7 a-p) (stace 4 = L + U + D)
=1-mta (5.3)
and W=ty (5.4) 3
For Seidel's method |
T=Q=-~[D+ ;J_]'l {u] {from (4.8)}
=-[D+L]-1[§—2-L] ?
=1-+L™a (5.5)
and g=[g+5r11 (5.6)

The residual corresponding to X in (5.1) is denoted by En and is defined as

- -y
AL-T X -¥ 1

(-7 (A7 (A, -y) = (1-71) (A1 R

E
="}

]

_ 5.7
X~ X .7

#

Observe that if AX = Y is put in the form of (5.1) then A =1 - T with

proper scaling. Under this circumstance W = Y and En = 31, = 2({1 - 2(-n+1’

i.e., the residual is equal to the negative of the improvement in the

approximate solution _)Sn We also observe that

- ™t (5.8)
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S S
Hence, X1 % " E - E -... - E
X - AT+ (D4 HTE (5.9)
X - {i+ I+ (D ") E_

This scheme converges if the magnitude of the dominant eigenvalue of T (or
the spectral radius of T, or the matrix norm of T denoted by {[IJ]) is less

than unity. Under these circumstances

-1

= - T _
=X, - I-I1 K (5.10)

X
-exact —o

In order to obtain a statistical estimation of the ith component of EGKdCC

{ 11 . . "l

denoted by iX }7 we need to have an estimation of one row of [I - T] .
—exact - -

The Monte Carlo Method of computing one component of Eexact is to play the

cy s i . . .
solitaire games {g Q} a=1, 2, ...., N simultaneouslv., It will be shown

s
that each game Gij has an expected payment of {[I - T]-l}ij Eg. This is

equivalent to one component of the matrix product in (5.10). Based on the
theory of large numbers Kolmogoroff has shown that if one plavs game Gij
repeatedly, the average payment of M successive plays will converge to
{{r - Zj-l}ij Eg as M> =, for almost all sequence of plays. The rules of the

gauwes will now be expressed in terms of balls in urns, whereas a computer

will use a random number generating function.

For 1 < i, j < N we pick probabilities piJ > 0 and the corresponding

"weight'" factors ViJ subject to the conditions that
N 1
1) £ pJc< 1 for i=1,...,N and (5.11)
i=1
ij 1] ij
2) P v~ =T (5.12)

wvhere 'I'1j is the element belonging to the ith row and jth column of T. One

way of doing this is to choose pij = |TiJl and V'3 = sgn [TlJ]. By proper
N

scaling of tiie matrix equations we also make sure that = le <1.
j=1

- o
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Now consider N urns. In each urn Ui, we put an assortment of N + 1
types of balls, Each ball of the jth type is marked j and will be drawn from
u* with probability p'J. Thus the balls are loaded. The (N + 1)th type ball

is marked "STOP" and will be drawn from Ul with the stop probability p’ defined

N .

The game 6*3 is now played as follows. Draw a ball from Ui (all drawings

are with replacements). If it is a stop ball, the payment is

i
. E
it 4 o (5.14)
i

o

< N}. This would entitle us

Otherwise the ball would carry a mark il (1< il <

ii i
to a partial payment of v . We then go to urn U 1 and draw a ball. This
in turn tells whether one has to stop or draw again. So we follow the treasure

hunt from urn to urm until a STOP ball is drawn. Say the STOP ball is drawn

irom urn U7 on the kth drawing. If we have arrived at u) via the route @

T s S PR

defined by i -+ il -+ i2 T oeee. ik—l + j, then the payment total payment is
; R . . 3
‘. ii i i i j E
¢ty =y tyl2 kLT o (5.15)
p pJ

Thus the probability of obtaining a STOP ball via the route p is

ii, i.d i J .
1 172 k-1
=P Tp o p P (5.16)

Hence the expected payment (i.e. the average payment received extended over

all routesp ) would then be

€ (¢ - X {pr}p {cij}o (5.17)

where & [.] is the expectation operator and the sum is taken over all routes
» which originate at i and end at j. Since we assumed pij vij = Tij

we have

42
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® N N N ii i

by ] ,-j
E[Gij] = [61:} + I T T . 5 T 1 T 1 2 3 el I Lo
k=l il=l 12=1 1k-l =]
: -1 -1 @ Mo 2
After rearranging the terms and using [A] "={I-T] =n§OT = I+T+T ... we get
o .
gty st e ool ag (5.18)

k=1

= (1 - 117 8

where Gij is Kronecker delta function and I is the identity matrix. Thus we
i . \
have shown that the expected payment of the game is G i {or mathematically the

i
expectation of the random variable G J) is indeed only one component of the

ith element of the solution vector X. To obtain the ith element of X we nzed

to play all the games {Giu}, a=1, 2, +e.., N, as){i = g {Cim}
-oa=l ;
. i
Computationally the game is plaved in the following v, As an /
exaﬁple, let the matrix_é_be [20]
’ 4 2 -l
A=1-7T-= ez s aa
Cul -.2 +.§J
1 1
Let Y =1].2 . So that X= 1 Now we select
.3 1
0 -.J‘l
the initial approximation §O= 0 , so that go =]=.2 = é§o-i
0 ]
6 2 .1
By the terms of the problem we find T = 2 o5 1
1 W2 A

]




Downloaded from http://www.everyspec.com

R,
M
1 1 1 .1
i3 N 13
and [p] = (|T{} and (vI] =1 1 1}, Thus [p) = 1 R I Y
1 11 .3

In this case N = 3. To play the game we select a random variable £ between

0 and 1. If j is the point to which the walk has proceeded, we find the

smallest integer k for which the cumulative probability ( ¥ er) of going
r=1

from j to k is greater than {. We then calculate the parctial contribution of

the score of the step from j to k. This is equivalent to picking a ball

=z

jr

marked k from the jth urn. However if ¥ p § , the random walk stops.
r=1

This implies that the picked ball marked k from jth urn is a STOP ball. If

we are interested in finding any elements belonging to the second row of the

inverse matrix, we choose i = j = 2 (say) and the random variable { = 0.82.

We now observe that

P=p =.2
b = p21 + p22 . .7
D = le + p22 + 923 - .8
and hence §1 pjr < & ond the walk has to stop. So the pavment obtained is
r=
2
g2 o2 (5.18a)
p2 .2

Now let us pick £ = .15 and let i = j = 2. In this case

21
p=p =.2>¢

. - 2 .
So we are entitled to a partiai payment of v L 1. YNext pick another

tdtig, e £ e e e v
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ra-dom number, say 4 = .95, Tue walk will now proceed frem j to some

poine K (i.e., we picked a ball marked j from the ith urn and we are

nuow guing te tue jth urn te pick a ball). In this case, 3 = 1 and let
us odserve % pjr. We see
r=1
P'pu--ﬁ
b= pll + plZ -8
b = pll + plZ + nlj -9 < ¢

Hence the total payment is

E
21 _ o 21 _ .1 _ (5.189)
G =7 v =3 1

p

We thus find all the components {Gla}, i, a =1, 2,

component cf :tite solution X is
i 1 ¥ iy
XT=%T T G (5.1¢
N
x=1

Iun a Monte Carlo calculation, the problem of round-off and truncatiocn
nas very little effect on accuracy. The statistical variation of the resul:

is a moere important factor. Accordingly, a measure o

by

accuracy of the resulit

. .. . i .
i{s how the mean square deviation or the variance of the pavrment G J about its
q P

expected value ichaves. The variance Gij of ¢' is given by [21].

2 S R T S R IV E
9 g (r -z 17 E) :

= 8ct)S) - - oM )’
_ 13,2 _ooqmlyiy 342 5 }
=5let. (67 (L -1 E) (5.20) |

2 .
Thus it can be seen thatn)ij is finite if the magnitude of the largest

cs oA
1714 = . . - . .
“17] is less than unitv., 1Tt is interesting

cigervalue of the zatrix [pli "

45
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L ..
to observe that if v J 21 and TlJ >0 then (5.20) becomes

. Ej 2 . N
oij = {[I - E]‘l}ij 4 2} (1 - pd (1 - 11-1}13] (5.21)
P

which is the variance due to a binomial distribution. If the variance after
K random walks is sufficiently small we have obtained a good approximation
to the one element of the solution vector. In our Monte Carlo computations
we find the smallest integer K such that the probabilitv of the required
solution 1s within the + 3 standard deviagions (o). This is equivalent to
stating that the obtained solution Gij is within Gij +3 Oij with 99.77%
probability.

In this example since we have done two random walks, the estimates for

GZ2 and G21 are

22
%2 52;—- = 0.5 (from 5.182)
21
¥l S— =05 (fFrom 5.18b)
In this case
D
6%% = 597402 and G°Y = .168831
exact exact

822 , . ~21 . .
Even though is close to the exact solution, G is not. The variance is

2

22,2 22
2 2=2iz{c}12_{c} - 0.5

2

Thus Gij lies between Eij + g,.. Obviously in this case Tgs is very large.
exact ij

However after 2376 random walks the estimate is obtained as

22
G = .5988
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which is in error by .0014, and the variance i. x0T T
many random walks are often required to obtain tolerable accuracy. Tie \

amount of work required by various methods is discussed in seciion 6.

5.2 ERRORS IN MONTE CARLU METHOD

In a Monte Carlo calculaticn the preblem of round-off and truncition \
errors has very little effect on accuracv. The statisti.al variation of rhe ]
result is a more important factor. Accordinsly, a measure of accuracy of the
solution is the mean square deviation 7 and the variance defined in (5.20). It
is important to note that the first few random walkes tend to improve the i
results markedly while many !diti-~-=al ~andom walls are necesairy o refine ,1

|
them. This is because in a “Yonte Carlo method the variance is direcely

¢

, 1 .
progortional to — , where W is the number of randor walbc taken.

[

¥

Hence,a Monte Carlo method is nignly recormended <hore on o 5 = 107

accuracy is desired. Alsc it may be used to obtain tiw init.al guess for
the various iterative schoemes, Finallv,wheu the problem is too large to

handle by anv oather Tetaee , che Mont Caree method! mav Le the only way

to scive the problexs!
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6. COMPARISON OF EFFICIENCIES BETWEEN MONTE CARLO METHOD, GAUSSIAN
ELIMINATION AND LINEAR I'1ERATIVE SCHEMES (16,19]

Summary

In this section the total amount of computations required for the linear
iterative methods is compared with those for direct methods and Gaussian elim-~
ination. The total amount of work required has been computed for all three
methods for the two uses: 1) when only one component of the solution is de-
sired and 2) when the total solution is desired. A table is presented at the

end which summarizes all these results.

48
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6.1 DERIVATION OF COMPUTATIONAL REQUIREMENTS

To achieve a theoretical rather than empirical comparison we shall re-
strict ourselves entirely to an a priori error analysis. By error we
shall mean truncation error or statistical error or both at once. We have
not considered any round-off error nor the effect of miscellaneous arith-
metical mistakes. The error analysis and consequent appraisal of the amount
of work required to achieve a given accuracy is of necessity carried out
very differently for the Monte Carlo method than for the other two methods.
For the Monte Carlo method it is assumed that the problem is to find only
one component of the solution vector. It is recognized freely that this
restriction on the comparison is a strange one. It is made because the
question of efficient lonte Carlo estimation of all components of the
solutiorr simultaneously has not yet been adequately investigated. Of
course, separate statistically independent estimations can be made for each
of the N components of the solution. This would multiply the measure of
the work by a factor of N. Even though it is quite inefficient, we shall
also use it to find the size N for which it is quite efficient to find all
the components of the solution with this inefficient method.

The amount of work required for a computation will be measured only
by the number of multiplications required, counting a division as one
multiplication. In counting multiplications, the possibility of unit or
zero factors is not taken into account.

For Gaussian elimination the total amount of work required is given

as

[18,19]

o
[]
ulz
+
2z
|
wi=Zz

(6.1)

where N is the rank of the matrix.
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For a linear iteration scheme, the components are obtained as
X = zzn +. W
and since
X = TX + W

—exact —exact -

we have from the two equations above

En - Eexact =T (En—l - Xexact)
2
= (En-Z B Eexact)
n
- {2} (Xo - 2("exac:t)
= {l}n {r - Ij_l E {from (5.10)}
-0
{ 1"
ST - ME (6.2)
Thus if we require L iterations to achieve an error of £ between X
—exact
and gn, i.e. if
X ppgee = Bl < ¢ 6.3
then we have
L
{ }
LT - HE = (6.4)
T 108 5 [E
¢ log TT—~TT-+ log (1 - [|{T| ()}
4 E =il \
or L=1+ ' - \ (6.5)
' log {11 :

- -4

where the dotted brackets represent the truncating to the next lowest
integer. The logarithms can be taken to any convenient base. Thus L
iterations have to be carried out to obtain an accuracy of € in X. Each

iteration counts NZ multiplications and we have computed Eo. This would imply

that to achiev: an accuracy of ¢ in only one component of ze the total

xact’

number of multinlications necessary is
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K = (L -1 N2 + N + N2 (18,19]
1
r= | o
! log -v + log (L - [iTH]) ¢
| L —_
L-. e 1T -

The work required for computing all the components of

[18,19]

X within g will be
—exact

-

log -n———ﬂ—+ log (1 - IITH)

log |[T}|

 (6.7)

KL = (ZN2 + Nz) .
T

]

[}

|

i

t

L=
For the Monte Carlo Method we find the least value K such that the ith

component

I i i ’ < g

iLK - -)-(exact

with at least 95% probability. The values of X in this ca=: for various

confidence ranges are obtained as [19].

"€ g |12
i E‘—E N
K} - NZ + N+ 1 1+ ! ) ! (6.8)

'11 1‘.[I 1 5,2 (l‘I‘T],}Z '

L - e |
where £ = 2.0 for 95.45% confidence level
= 3,317 for 99% confidence level
= 4,5 for 99.7% confidence level

If we use the Monte Carlo method for finding all the components of X within

€ we have from [19]

f'é e |12
2 N ) —0 ; (6.9)
=2N + l+ t
oy 1-TI L (1-||r|[>
r-
Let | logTr—ﬂ— + log (1 - HT")| (6.10)
L T oo Il i |
[ I
S1

USRS )

i s .Y Cal
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£ e | '
A 1 ) o'/ ! (6.11)
and B4 1+ 4
il ek - (g n? ]

To find only one component of the solution vector within €, we conclude
from (6.1), (6.6) and (6.8) that Gaussian elimination is efficient if the

size Nl of the matrix A lies within the range

,, 2
1 < Nl < 3a + 92" + 16 (6.12)

2

The linear iteration scheme is efficient for Nl within che following range

3a + \} 9(12 + 16 < 1 < Bk (6.13)
2 N - (=)
a
1 B ks . .
For N > { a-) the Monte Carlo method 1is the efficient scheme

Next Wwe compare the total amount of work required by all the three methods
to find all the components of the solution X. Comparision of (6.1), (6.7)

: T Co
and (6.9) reveals that Gaussian elimination is efficient if N lies within the

following range

2
D N W R ;J—b 1+ a)® + 12 (6.14)

The linear iteration scheme is efficient within the range

31 + o) +2\]9(1+a)2+12 < T < g (6.15)

and the Monte Carlo method is efficient for

T > 8 (6.16)
o

N

Observe the precarious condition of the linear iterative scheme in (6.13) and
(6.15). Depending on the values of a and B it is quite possible that the
linear iterative scheme may have region where it is not efficient at all!!

dext we compute the favorable ranges of the dimensionality N for the three

- £
methods for typical values of |{T!| and . This is presented in table 5.
Tl e T T
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Note that for III], = 0.9 and TTEETT = 0.1 the linear iterative methods
always require more work than the other two methods. Secondly, as the re-
quirements of accuracy are increased the breakeven point for the Monte Carlo
method also increases significantly. Thus the Monte Carlo method is quite
suitable for use when we have a well-conditioned matrix and about 10% accu-
racy is required in the solutions. It is important to note that we have used
the inefficient Monte Carlo method to compute all the components of the solu-
tion. Also we have not taken into account the effect of round-off errors in
the table just presented.

If we are willing to start with the initial guess X =, then from (6.9)
the amount of work required for a specified accuracy varies as the first
power of N. IF ONE IS INTERESTED ONLY IN ONE COMPONENT OF THE SOLUTION, TEEN
FROM (6.8) THE WORK REQUIRED BY THE MONTE CARLO METHOD BECOMES INDEPENDENT OF

N TO ACHIEVE A GIVEN ACCURACY £.
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7. NONLINEAR ITERATIVE SCHEMES [1,9,10,11]

Summary

Here we present the various nonlinear schemes as variations of the

general iterative process as described in section 3. We also show how
Newton's method is modified to become a steepest desczent Tethod for the
solution of AX = Y. Then we discuss the conjugate direction methods of
which the conjugate gradient method is treated in detail. Unlike the
linear iterative methods, Monte Carlo method and the method of steepest
descent, thne conjugate gradient method yields the solution theoretically
at the end of a finite number of steps which depend cnly on the distribution

of the eigenvalues of A.
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7.1 HISTORY OF NONLINEAR ITERATIVE SCHEMES

Here we briefly discuss the history of nonlinear iterative schemes. 1In
nonlinear iterative methods the refined estimate is no longer a linear
function of the past estimates. Newton's method because of its quadratic con-
convergence { ||X - Xl < ]LEn—l —_Eollz}, is mathematically the most pre-
ferred of the several known nonlinear methods for the solution of systems of
equations. Practically, nowever, a very important limitation on Newton's
method is thar it does not generallv converge to some solution for an arbi-
trary starting point. Thus Newton's method may fail to converge if the init-
ial estimate is not sufficiently close to the solution.

The size of the domain of convergence devends upon the system of equa-
tions. For real algebraic equations, the size of the domain of convergence
is generally inversely related to the degree and the number of equations.
Therefore one finds that for two simultaneous second degree equations almost
any initial-estimate will lead to one of the solutions, while for eight simul~
taneous tentu degree equations the domain becomes much smaller, and it mav be
very difficulct to obtain an initial estimate for which the iteration con-
verges. Kantorovich thus modified Newton's method for optimization problems
to become a rapidly converging descent method. Sunpose again as in (3.1) we
seek to minimize tne functional F (é) given by (3.3). This might be accom-
plished by the ordinary Newton method for solving the nonlinear equation
f (%) = 0, where £'(X) = F(X). The method is now modified to become Kantor-
ovich's descent method. This is done by selecting the direction vectors ac-
cording to Newton's method but moving along them to a point that minimizes

f (X) in that direction.

.-
K R - SR S
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Thus the general iteration formula is

, -1
Xy =& - [F &)1 F ()

" -1 '
=% - [ET )T e ) (7.1)

and an is chosen to minimize f(§n+l).

7.1 METHOD OF STEEPEST DESCENT (1,9,22,23,24]

In the various linear iteration schemes discussed so far, the direction
vector P has been chosen ss one of the coordinate axis vectors as long as P
is not orthogonal to the residual R corresponding to a given trial vector X.
This has been shown in (3.10). The problem is to minimize R and hence the
gradient of the quadratic functional F(X). Hence it is only natural to use
the gradient of F(X) at the approximation point to establish the relaxation
direction. This is because the gradient of F(X) which is R increases locally
in the most rapid manner. The iteration methods using either the current or
even the vast residual vectors are called grad” :nt methods.

In the method of steepest descent, the relaxation direction for the nth
iteration is defined by the negative of the residual vector.

P =-R

P R for n=1, 2, .... (7.2)

This direction is followed to the minimum point. By (3.8) the parameter t

is given by

. - Rp-1 0 Ry 7.3)
min <AR R > ‘

—n-1l, -1

< Y
The value RQ (X) = 2%%Lx%z for X # 9 is called the Rayleigh quotient for the

vector X. Observe that tmin is the inverse Rayleigh quotient of the residual

—n-1

In summary, the steepest descent method generates the various iterates
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according to

§n+1 Eh + tmin —n
_ R B R (7.4)
" Sn <AR , R > —mn
~n ' -n

where K = AX - Y

From a geometric point of view, the steepest descent method involves
describing a piecewise linear path with right angled corners in an N~dimen-
sional Euclidean space, with the path terminating at the minimum of the quad-
ratic functional F(X). This is illustrated in figure 3. Unfortunatelv, it
turns out that despite the choice of the best local direction along the
largest reduction of F(X) in each iterationm, convergence is not good in gen-

eral. This is illustrated by solving the same problem as presented in example

2 of sectiovn 4,

(£><

x ? _

'

Figure 3: Principle of Steepest Descent
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The various iterates are shown in Table 6.

L % L) X5 %, X5 X
1 1.0 -.08125  -.02817  -.04386 -.01563  -.01713  -.00997
2 1,0 -.0397  .04264  .C1892  .01358  .00739  .00690
3 1.0 -.03967  .04264  .01892  .01358  .0073% 00690
4 1.0 .41779  .02524 01373 -.00251  -.0i6s L0002
.§7 2(.3 59 110
-.01002  -.00584  =-.0038/ -.00342
.00408  .00404  .00238  .00237
.00608  .00404  .00238  .00237
.00122  .00119  .00072  .00069

iable 6> Results of various 1terations by method of steepest descent

Note that the method of steepest descent convergesmuch faster than either of
the Seidel methods. However, the tactic of seeking the most efficient goal
by choosing the best local option does not lead to the best overall sirategy.
The rates of convergence of the method of steepest descent iz [’ cu.sed in
section 8.

7.2 CONJUGATE DIRECTION METHOD [1,9,20,23,24,25,26]

Conjugate direction methods are based on the generuc: .- o oset of A-
orthogonal vectors and then minimizing successively in ti- Jroc.iar ~F 2ok
of them. A set of vectors {gn}, n=1, 2, ...., Nis chesen s0 as 1o be A-
conjugate, or A-orthogonal if they satisfy

<AP, , Ej> = 0 for i # j. (7.5)
Geometrically the method of conjugate directions is equivalent to that of
finding the center of an N-dimensional ellipsoid when tie «rarting roint

is on the surface of the ellipsoid. Thus the center i~ ~fL the ¢.lixid
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lies on a line parallel to a fixed non null vector P, which is on the (N-1)

__k
dimensional hyperplane
<P , AX - ¥> =0 (7.6)
K=
whose normal is API' This (N-1) dimensional plane contains the minimum point
-1 . ) S . , , .
Xoxace = A Y of the ellipsoid in the given space and is said to be conjugate

to the vector gk' Thus the coniugate direction methods are finite step meth-

ods. That is, theoretically they all yield the exact solutions st the end of a

finite number of steps (i N), assuming no truncation and round-off error.

The finite number of steps are equivalent to the number of independent eigen-
values of A provided the dependent eigenvalues do not constitute a Jordan can-
onical form. Thus if the eigenvalues are equal, A is proportional to an iden-
tity matrix and hence convergence would be obtained in one step.

But the conjugate direction method does not specify how to compute the
vector Ek: ~ien the vectors Ek are obtained by A-orthogonalization of the
unit coordinate vectors this particular conjugate direction method yields the
popular Gaussian elimination. When the vectors P, are obtained by A-orthogon-

—%k

alizacion of the residual vectors Bk’ a conjugate gradient method results.

The conjugate gradient method applies more constraints on the iteration
process than those imposed by Gaussian elimination. Hence the conjugate
gradient method may yield acceptable results under conditions when
Gaussian elimination fails. This has been illustrated in section 2.5.
7.3 CONJUGATE GRADIENT METHOD (1,9,23,24,25,26]

For the solution of AX=Y, the conjugate gradient method starts with an
initial guess_}fo and obtains

Bt R Y- -

and then develops each successive approximation by

), 1+ i (7.%)
§n+l Y ta

4

..A..‘.\a__
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where t = - > s (7.9)

This value of tn takes F(_)_(n) to a minimum point in the nth iteration. HNext

tue residuals are generated iteratively by

By =B b, AR, (7.10)

and the direction vectors are obtained iteratively as

= - +
'gn+1 —Rn+l 9n —Pn (7.11)
where 9, is defined as
<AP , R >
- —n _ —n+l
qn- <AP , P > (7.12)
—n ' —n

Thus in order to arrive at l(n from 5:1—2 in the conjugate gradient method we go
first to the minimum point along En—Z to En-l and then travel along -gn—l which
is A-conjugate to gﬂ_:,. The directions En are A-conjueate and the residuals
§ﬂ form an orthogonal system. Hence the method of conjugate gradients yields
the solution in at most M steps,where X4 is the number of independent eigneval-
ues of the matrix A, provided these eigenvalues do not constitute a Jordan

canonical form.

Figure 4: 'Metlicd of Conjugate gradient
61
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A more convenient form of computation may be derived for (7.9), (7.11)

and (7.12). 1t is seen that

2
< = - = -
R, P> <R , R> +q  <R,P HEH
since <R , P .> =0 (see figure 4). Thus
-n' -1
R 2
n <AP , En> (7.13)
Also analogous to the method of steepest descent two successive residual vect-
ors are orthogonal as from above <§n, 2n-1> = 0 and En = -_E_{ﬂ_l (from 7.2)
<§i, §j> =9 for i # j (7.14)

Since 20, _Ifl, ceen 31 are obtained by computing a set of A-orthogonal vectors

from_l}o, E\lf veees R, owe have

<Bys AP,> =0 for i # j

<§_i, £k> =0 for i <k

<gi-k-1’ _l_l_i> =0 for i D k

By AR>S - <Ry AP

<£i’ §j> = <§_i, _}_{i> = - <B_i, Ry for j< 1

<£-i’ §j> =0 for j > 1 (7.15)

Also from equations (7.10.) to (7.14) we have

2
R -R R
<R .., AP > = <R ]l oo [To+l]]
—a+l’ —n -+l ° t t
n n
2
R 1]
= ——:ﬂ-il_?___ . <AP,P>
IR 1] B
ﬂ
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Hence 9
q = A R’ - l I—Pﬁnﬂl |
n <_Pn9 £n> H&n”Z Ol

Equations (7.7), (7.8), (7.10),(7.11), (7.13) and (7.16) of the conjugate
1

gradient method are applied to solve the same problem presented in example 1.

The various iterates for the solution are shown in tzable 7.

1 X % % 2! 4

1 1.0 -.08125 -.04848 .6012 x 1072 .7966 x 107"
2 1.0 -.03966 .02373 .6217 x 107 .2905 x 1078
3 1.0 ~.03966 .02373 6217 x 107 caus x 1078
4 1.0 41779 .00599 1281 x 2070 -.avus x 10

Table 7: Results of various iterations given by the comjugate gradient
method

Observe tﬂat there is a sharp increase in the accuracy of the solutivns at X%s.
One has obtained essentially an exact solution after 3 iterations. This is
because the four eigenvalues of the matrix A are 2.4372, .9725, .300 and
.2903. Note that there are spproximately 3 indepeandent &, :n 2iu2s of ..
Thus one would-expect excellent results at the end of 3 stepu. ‘fence the coa-
jugate gradient metnod might converge quite fast for a large system of equa-
tions if the matrix has quite a few eigenvalues buached :::=r-er. This gener-
ally happens in matrices which have dominant diagonals {as in the magne.ic
field integral equation).

Next we derive the various theoretical rates of convergence of the vari-

ous iterative scinemes and show how the method of conjugate gradient converges

much faster than others.
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8. ANALYSIS OF CONVERGENCZ OF VARIOUS ITERATIVE SCHEMES

Summary

The rates of convergence of the various iterative schemes, both linear and
nonlinear, are discussed in tinis section. We show that for the linear itera-
tive schemes, tihe rate at whica the én's approach the exact solution is linear
and the zn's converge geouetrically with the ratio iAlI only in a» asviptotic
sanse, where Kl is the largest eigenvalue of toe iteration matrix., The non-
linear iterative schemes on the other aand have a geometrical rate of conver-
gence to begin with and possess superlinear convergence when A is a Legendre

operator. For the metiod of steepest descent the ratio for the geonetric con-

cond [A] - 1.
cond [A] +1

ike the other iterative methods viel.s t'w solution in a finite nu~h-v o
veond (] - 1

steps) the minimum rate of convergence is given by the ratien ————— |
—
veond [A] + 1

vergence 1is For the uethod of conjugate gradient (hich,un-

The J steps steepest descent method (equivalent to taking J steps of the
steepest descent simultaneously) has the same rate of convergence as the

conjugate gradient method.

64
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8.1 RATE OF CONVERGENCE FOR THE LINEAR ITERATIVE SCHEMES (9]
For the linear iterative scheme we have
L]

as given by (5.1). For (3.1) to converge, a necessary and sufficient condi-

=TX + W (8.1)
12+

tion is that the magnitude of the dominant eigenvalue of the iterative matrix

T be less than unity. To prove this we define the error vector ER for the nth

iterate as

BB, = Xoxace ~ & (8.2)
Since
Zoxact ="E-}'(exacl: td (8-3)
we have
Baa ~ R {l}n - ERy
Thus
lEg |1 = 1@ . &l THD™ ].]1e. < Lzt TErgll
(8.4)
Under the premise fll[[< 1 (i.e., the magnitude of the dominant eigenvalue is
less than unity) it follows from (8.4) that
I;lelﬂnlh 0 (8.5)

and thus X converges to the solution X .
n exact
Next we show that the dominant eigenvalue of T dictates the rate of con-
vergence of the linear iterative process.
Assume for the sake of simplicity that the matrix which is neither symme-

tric nor positive has N independent eigenvectors !1, 22, cacay !N-with eigen-

values kl, \2, eevey A,. The error vector £ o can thus be represented as a

N ==

65
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linear combination of the eigenvectors

N

ER = L ¢V (8.6)
0 i=1 i =i

For the mth error vector, we have [9]

g&m = Ci{)\i}m !i form= 1, 2,%* « (8.7)

LI e I~

i=1

This equation permits us to make a qualitative statement about the asvmptotic
convergence behavior of ER . The dominant eigenvalue Xl of matrix T, that is,
the one with the largest magnitude, generally governs the rate of convergence,
Im

since by (8.7) the smaller eignevalues {Ai}m approach zero faster than {Ai,!

BN

with increasing m. Thus every vector norm ||ER || converges asymptotically to

zero like a geometric series with the ratio }Xll.

So a linear iterative scheme converges linearly, and converges gecometri-
cally only in an asymptotic sense. Let a sequence {sn} converge to a. Then
the sequence {sn} is said to have linear convergence if

e = + 0.) e, 8.8
g = B+ el (8.8)
where e, =a~-s, and for a constant B, |8} <1 and o; > 0as i+ =,

The sequence {sn} is said to have geometric convergence if

€41 = B8 ei (8.9)

]Bi <1, Thus geometric convergence is a special case of linear convergence
in which all 0 = 0. For a large number of iterations the linear iterative

schemes converge geometrically since for sufficiently large m and k > O
k
||§m+k - ).(OH <{)‘1} H-)-(m - KOH (3.10)
Thus the smaller the dominant eigenvalue of T, the faster the convergence.

Converselv when the magnitude of tne dominant eigenvalue is close to one, manv
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iterations are necessary. Hence from (8.10) the number of iteraiions necess-
ary to reduce the error I'Km - goll by a factor of 10 is approximately in-
versely proportional to -1/ {log10 Xl}. Thus to gain an additional signifi-
cant decimal place in gm we need k iterations.

So the fastest rate of convergence that can be achieved by the linear it-
erative schemes can at best be geometric and the successive avv: >ximitione
always converge for a definite system of equations. Equivaleutly the latter
condition may also be stated by saying I]E]] < 1. This condition of converg-
ence may also be stated in several different ways. In order that the linear
iteration schemes converge for every zo and tfor any order N of ti- ecuations
AX = Y it is necessary and sufficient that any of the followin: condi-
tions hold (conditions 3-8 describe the diagonal dominance 21 the marrices):

L%+ 0 ask o

2. the magnitude of the dominant eigenvalue of T, i.e. !Xl (1|, be less
than unity.

N N Aik 2
3. z z [—;; < 1
k=1 1=1 A
14k

{Note: this condition is not valid for Siedel's method. This is valid fer

Jacobi's method only.] {Theorem of E. Schmidt - Miszs - S~lringer]

N Akm

4. P \ K \ < 1 for all k=1, ...., N
m=l A
k#m

{Theorem of Frobenius - Mises - Geiringer}
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N Akm
5 z | ——‘ < 1 for all m™l, ...., N
: kk

k=1 A

k#m

{Theorem of Frobenius - Mises - Geiringer}

N Aik .
6% z ! —H'i < 1 for all 1 =1, «e0ey N
? k=l A
i#k ,
N Aik .
z l Y ‘ < 1 for at least one value of 1
with ii ‘
k=1 "
i#k i
and A 1s irreducible 3
N A1k
7% L i -—i—'l < 1 for all k=1, .c..y N
i —_—
i=1 A
i#+k
1
N Aik : 3
with Z | —_— ‘ < 1 for at least one value of k ;
ii :
i=1 A {
i#$1 |
|
and A is irreducible
* It is important to note that for conditions 6 and 7, there is a

further restriction on the matrix A. A must be an irreducible matrix,

i.e., a matrix which cannot be put in the form P Q| (where R and P

0 R
are square) by simultaneous row and column permutations.
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t+1. N > 1 >
— < = according as t < u
8. ey (“) 4
i
where t = I é;% | ’ u = Ti: l QI% ‘
1>3 A A

{Theorem of Stein - Rosenberg}

The conditions 3-8 have to do with the diagonal dominance of the matrices.

8.2, RATE OF CONVERGENCE FOR NONLINEAR ITERATIVE SCHEMES
8.2.1. METHOD OF STEEPEST DESCENT [22,26-30]

Let us assume A is symmetric positive definite such that the eigenvalues
Ai of A may be arranged as

Ali Azi cees > AN > 0 (8.11)

Let V., -Y-Z’ eoeny Xn be the respective orthonormalized eigenvectors correspon-
ding to the eigenvalues >‘i' Then if Z is an arbitrary vector, it can be rep-
reseated as

= 2
Z=5 ¥V, + 3 U+ oo +B8 Yy

when Bi are constants and
2 2 2

<AZ, 2> = Bl A + By Ay + ... 4 By Ay (8.12)
Thus

>‘(52+32+ +32)=>\ <Z, Z> < <AZ, 2> (8.13)

N 1 2 tee N N == — = :

2 2 2
AL BB+ B =N <E, 2

Consequently one can find two constants b>0 and B>0 for A such that

b <Z, Z> < <AZ, 2> < B <Z, 2> (8.14)
Now we consider the difference F(X;) - F(X)), wherq

F(X) = -;— <AX, X> - <Y, X>. After some calculations using (7.4) we obtain

{<rR_, R >}2
1 " =o' —o

PR - F&) = 7R, s
-0’ —o

and
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1
- = = - - >
F(Zo). F ('Xexact) 2 <l('o Lexacf.’ é(xo Eexact)
Thus
2

F(X) - FE) . {<g, R >}
F(X) - F(X y T -1 8.15

o exact <R, AR > <A "R, R> (8.15)

Next we expand R, as a series in orthonormalized eigenvectors of A i.c.

_!50"(1 V1+Y2 V2+....+‘YN VN (8.16)

where Yi are constants, Then

= V, + ..., \

Bo=v M Yrnh Y o A Yy (8.17)

-1 = 4 -‘l -l -1

A 30 Yy \l Al +v, v2 Xz oot Yy vy AN (8.18)
where Zi are the various normalized eigenvectors of A, So,

2 2 2.2
F(X) - F)) ) (v + Y Feenat ) :
- F (X : ) 2 2 -1, 2 -1 2 -
F&) Eexace) (D AL+ Yy Ay ¥ et Y AD 0 A7 4y AT ety By )
(8.19)
Let
Yf N
7.2 7 =8 3 % 20 ad I 5 =1 (8.20)
Y+, tooeee + Yy i=1
T T = : 1 1 1
F(X) - F(X ) - PRl R VI
) = Flgace) (8, A + 8, Ay + evn + 8y AP(8) AT+ 8, 3 L)
' (8.21)

We replace Ai by the new variable Ai defined as

A, = B AL (8.22)
So if 0 < b s)\is B@A=1,2, ...., N)
then

b 1 B (8.23)

8 S M A0

)

PRI Y SRS T S

¥ g G R S

Sicain,
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T ——
and
N N N N
-1 1 1.-1
Z 8, X, I 6, A = I 98, X L 8.{2)}
1=1 i ii-l i7i i=1 i1 1=l it'i

(8.24)

Since the geometric mean of a series is less than, or equal to the arithmetic

mean, then

N N N
1 1-1 1 1
J i, MM I 8,0 I {I 8 O+ 3P} x0.S5

i=]1 i=1 i=1 )\i
or,

-1 1 N B 5
{Xek}{XQX}f_E{zei}{ 'g+'B-}
i=]1 i=1 i=1

or,
N N .

-1 1 B 2
% 6, XA X 0, A < = F +J:

o S S B LB b]
Thus
F(Xo) - F(Xl)

> —_—t
r(xo) - F (xmct) ~ 5 -+ 5 2
N B b

Here 0 < £ < 1. Hence

P(X,)

F(}—texact) a-8H F(X ) - F(Kexa t

B-b
< EBT-b] {r)) - F(Xoace’ !
Thus for any

B - 2k
F(Zk) - F(—exact E +b {F(X ) - l?Q(e act

71

(8.25)

(8.26)

TN e Y
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So from (8.13)

JESES SN I

<—)Sexact: - -)Sk : l(exact -5< >

1 - .2
Sy M XL K X ae T IFE) -F X )] (8.27)

Thus,

2 QFX ) - F(X ) 2k
R0 SRR [ =2 “e"a“] . (—g-;—t‘:-) (8.20)

So we have proved that the method of steepest descent converges geometrically
to the exact solution. For the case when A has N distinct eigenvalues Akaike
{31]) nas shown that (8.27) is the best possible estimate.

It has been shown by Daniel [26] and Hayes [11] that whenever A is a Le-
geandre operator (i.e., & is a sum of a positive definite bounded self-adjoint
operator plus a coumpletely comtinuous operator) the method of steepest descent
converges faster than that of a geometric series with ratio greater than

2
E-b . . .
(=) . This type of convergence is referred to as "superlinear" convergence.

B+b

Thus we have shown that the method of steepest descent converges at worst
like a geometric series, and that in most cases the convergence is superlin-
ear.
8.2.2 METHOD OF CONJUGATE GRADIENT (26,27,31,32]

The method of conjugate gradient generally requires a little more computa-
tion than the method of steepest descent. However this slight increase in the
amount of computation required leads to a significant improvement in the rate

of convergence over that of the method of steepest descent. In the conjugate

gradient method we obtain

2 N~-1
Xexact = %o ¥ By By + B AR+ B A R+ .o b By-1 & &
(8.29)
72
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This results from the fact that

= 1

51 Xo + ao R
2 2

X, = )
2 -o+ao-o+a—Rl
" k

= +
Ek Eo ¢ Bo *ta Bl

(8.30)

k
st By

and so ou, where JJ. are known constants determined by the method. Now we de-
i

fine El’ éZ’ eeees

Z. as the orthonormalized eigemvectors of the symmetric de-
-

1

finite matrix A, corresponding to the eigenvalues A2 )\2 > ieeey 2 XN' So
-1 N
<o~ a4 I- 30 - §exact =z Ci Zi
i=1 © 7 (8.31)
where C, are constants. We find
- _ N
X, e Y=+ yl A)(X - A 1 Y) = L {1+ yl A 2,
- = 6="=o0 = = . o "iT H
i=1
N
-1 2 2 - 2 2
X, - = - N = . X
LA Y- @Y @Y OE - AT I G A
-1 3 3 3 -
X, - Y = (1 5 - -
Xy - A L LAV @AY, ALY, HDE - ATY)
N 3 3 3
= Z
iil o A +y A 0@+ Y, Ai)(l +, A Z
; N k-1
-2 =1 C W 1+ A D Y (8.32)
i=1 * j=o N

. . o . i .
~here 1 is the identity matrix and Yj are known constants determined by the

conjugate gradient method. Therefore
k-1
‘: -1 k -1
1% = Sgaee 171 & = 87 xlle max | mas b apl]] oz -a
< exact xk - 1< i< N | §=0 joi o -
< -
=10, (A)! - X, _)_(exactll (8.33)
73

)

z

i




Downloaded from http://www.everyspec.com
= -

where Ok(k) is a polynomial in X defined as
k-1 X
0, (A) = T Q+yv, 0 (8.34)
k 3
J=o0
The problem is then to find a kth degree polynomial Ok (A) defined for
max

b < A < B such that b<1i<B [ Ok(X)l is a winimum. Such a polynomial was given

by w. Markoff (in 1892) and is defined as (1)

T B+ b - 24,

k Fo—m——
0 () = -0
k Tk [B + b] (8.35)
B~-b

and T, (t) = cos (k arccos t) is the well known Chebyshev polynomial of degree
k adjusted to the interval -1 < t < 1. Thus Ok (1) is a Chebyshev polvnomial

of degree k adjusted to the interval b < A < B and scaled so that Ok (6) = 1.

Thus fron (8.35)

max ; 1
i 0 M| <
b<A<B k - THH’ (8.36)

Note in this case > 1 and so the Chebyshev polynomials are defined :zs

B-b
Tk (t) = cosh (k arccosh t) for t > 1

Hence from the expansion of the Chebyshev polynomials

B+b, 1, B+bH B+b2 k_(B+b _ [B+b2Z .,k
T, =%l 2[{B-b+/(8—b) -1}+{———-—B_b G—) 11 9
Hence from (8.33) (8.37)
-X
0.0 = H:k - f"“t” R — (8.38)
k 2 ‘exact'. { B + /_g} k Hf; - f_t; }k 3
/3 -7/ b s +7b
< 2 {G - /—b_ } k
- Y% 4+ /% (8.39)

74
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Observe that (8.38) 1s a better estimate than (8.39) . Alsc this corirace
(8.38) cannot be improved upon. This fact is well known [31j .,

Also as before, if A is a Legendre operator (most operacors deiined oa
tfinite dimensional spaces are Legendre operators) then the methnd of conju-

gate gradient converges faster than a geometric series with ratio greater

8 -~ /b 2
than {((————)} [31].
7 +
A better estimate than (8.38) can be obtained if it is known that the

largest eigenvalue of A is B and the rest of the eigenvalues lie between b’

and b. Under these circumstances the polyncmials thar satisfy

max

b<Ac<B Ok \) != a .miniman

and Ok (0) = 1 are the ones given by Zolotarev [32]. T.c Lo.ctazev polvnim-
ials are'quite unwieldly.
Samokish [29] has given the approximate formula for the rate of converg-

ence as

2 ‘ 8.3,

85 8- o 465 -a3)

1 +aB 8 -0

instead of (8.38). Here o and B are defined as

' +
B= 2 E24 ﬁ -1 (8.41)

and
Q= a+ a2 -1 (8,57
where
- 2B - B' - b
B' - b

12 an N dimensional quadratic problem the errcr iends to zerc in one srep
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with Newton's method and within M steps with the conjugate gradient method,
where M is the number of independent eigenvalues of A. Hence it is generally
stated that the conjugate gradient method yields "Quadratic convergence"

{llgm - §o|[ <cC {l}m - EOIIZ} in the sense that it converges in M steps for an
N dimensional problem. So it seems appropriate to term this % quadratic
convergence since it requires M steps to achieve the effect of one step of

a method with a true quadratic convergence rate.

8.2.3 THE J STEPS STEEPEST DESCENT METHOD (29]

In the J steps steepest descent method, J steps of the steenest descent

are taken simultaneously rather than J individual steps one at a time. As we

shall see now the J steps steepest descent has a faster rate of convergence

4&44

than the J individual steepest descents, but this is not better than J steps
of the conjugate gradient method.
In the J steps steepest descent method we start from an approximation 50
and obtain the vector }O + Y} when the vector V belongs to the subspace
2 AJ—l

spanned by 50, ABO, A BD, ceeey

Ro. Thus it can be shown that the re-

sult of one step of the .J steps method oI steepest descent coincides with the

result of the Jth approximation for the method of conjugate gradients. Hence

we observe that one step of the J-step process of steepest descent does not i
give a worse result, in the sense of an increasing error function, than J
steps of the steepest descent method. The rate of convergence of i

the J step steepest descent is given by

J .
Ilgk - éexactll =¢ H-éo - zexact|l (8.44)

where CJ is given by (8.38) with k replaced by J. Im particular,
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1 B-5b
B+Db

2 _ (8-b)?
(B + b) + 4bB

3 (B - b)3
(B + b) [(B + b)> +12bB]

Hence it is easy to see that

1 >Cl > \/Cz > a’cﬁ > . e .

The last inequalities mean that for sufficiently large N the result of apply-

ing %-steps of the J steps process gives a better approximation than 3§I
steps of the (J-1) steps pfocesses.

Since the J steps steepest descent process is algebraically more cum-
bersome tfan J one-steps of the conjugate gradient method but yields the
same estimate for the rate of convergence, we will not further discuss the

J steps steepest descent method. Moreover, the J steps steepest descent

method, unlike the conjugate gradient, does not terminate at the end of

at most N steps.




Downloaded from http://www.everyspec.com

9. ROUND-OFF ERRORS ASSOCIATED WITH ITERATIVE SCHEMES [34, 35]):
Summary:

In iterative methods the condition number of A has very little influence
on round-off error. The round-off error in iterative methods is confined to
the last stage of iteration only. We show that if AA and AY are uncertainties
in the matrices A and Y and if R, is the residual at the end of each iteration,
then En is an acceptable solution provided

%mij.|x2|+ayii|Ri] for all i
Note in this case, the number of solutions for AX = Y are infinite. The above
inequality indicates that there is no need to make the residual small (to a
desired accuracy) if the uncertainties in A and Y are large. Since in an it-
erative process one always computes the residual, one could terminate the it-

erative process when the above inequality is satisfied rather than imposing a

more stringent criterion that the residuals be arbitrarily small.

78
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9.1 ERROR ANALYSIS

In actual computation of successive approximations we have

X =I5+ Y ¢.1)
where T is an arbitrary operator whose |]z|1<1. In general, exact determina-
tion of §n+l is impossible, since computation of the values of various mat-
rices and numbers inevitably involves round-off errors. The only possible
general assertion is that the total error in application of the operator T

does not exceed some number § in the norm.

Thus in actual computation of successive approximations

n - -n ) _‘)

LAY

where En is an array of unknown random elements,though we have an estimate

wi
-n

max

<6 for 1 =1, 2, ...., N

(5.3
where § is a constant > 0. The successive approximations in (9.2) mav no

longer converge to the solution X, of (9.1).

exact Nevertheless we may be able

t¢ obtain an estimate of the uncertainty in the solution. We

@ L vaovw frorn
(8.10)

I’-n+l -exactll f-xlllzn --—exactll + ¢

where Al is the largest absolute eigenvalue of T, and is < 2

-

Hence
SRS SIS IVNNES SRS
E.A;+l||_° - Xl ¥ 6+ x?'l 8+ wees + 0
n+1'lx _ Eexactll + E—g—iz (9.4)
Thus
tiﬁ © ':En - Zexactll s Ifgff; (?.5

9

i e Y A -




Downloaded from http://www.everyspec.com

ﬂﬁww

The formula in (9.5) may be used to obtain an approximate solution provided
the required accuracy is at most I—gx;— . However in most practical problems
\i is difficult to estimate or obtain. The amount of work required to obtain
Al may be almost the same as the solution of (9.1). Hence a more practical
approach is taken to estimate whether an iterate Xn 1s essentially an exact
solution or not.

In a system of linear equations that arises from a practical problem, the
elements of matrix A and Y wmay oot be sharply defined. It is nowv assumed that
all that is known about the typical element Aij of matrix A or Yi for the ma-

trix Y is that they are within the following intervals. Here the subscrint

E denotes exact quantities

13 _ 43,40 48 4]
- A
AE AA <A < Al (9.6)
i i i i i
YE - AY < Y < YE + AY 9.7)

It is also assumed that AA™J and AY' are independent distinct quantities due to

round-off error and one does not depend on the other. Thus

(9.8)
& X =1
and denote
R=4, X- Y, (9.9)
We check whether
r aatd | }xj! sort > lgil (9.10)

h|

for i =1, 2, .... n. As was shown by Oettli and Prager [34] the inequality
(9.10) is a necessary and sufficient condition for X to be a solution of
AX = Y under (9.6) and (9.7). So in any iteration method where the residuals

are computed routinely, if for a certain residual the inequality (9.10) is

80
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satisfied, we have obtained an excellent solution under the conditions (9.6)

and (9.7). Note that the introduction of the conditfons (9.6) and (9.7) does

not make the solution of AX = Y unique. In fact, there are many solutions of

AX = Y. But, only those solutions are acceptable which satisfy the inequality

(9.10). Thus, the upper and the lower bounds for a certain component of the

solution X is obtained by solving the linear programming problem {35]

min Rl - aald | ]x5] -yt < 0
]
xJ
max -Ri -z AAij . lle - AYi < 0
i
for i=1, 2, ...., N (9.11)

Thus iterative methods may be quite advantageous for large systems of
matrices or for ill-conditioned matrices as compared to a direct method like

Gaussian elimination. This is because cond (A) does not arise in the round-

off error analysis of iterative methods.

This is the reason we have been able to solve a 7x7 system of equa-

tions when A is a Hilbert matrix by the conjugate gradient method when

Gaussian elimination has failed.

oy oy~
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10. EXTENSION OF DIRECT AND ITERATIVE METHODS TO COMPLEX UNSYMMETRIC MATRICES
Summary
The formulas are presented for the different iterative schemes when A 1is
a complex unsymmetric matrix. The rate of convergence and the analysis of

round-off errors are the same as obtained before, except these are now in com-

plex arithmetic.

PUPESE S

10.1 DIRECT METHODS ;
The methods described in section 2 can be used for complex unsymmetric

matrices. The formulas described there can be used as they stand except now

it . e M. . .

each variable is a complex number instead of real. #
10.2 ITERATIVE METHODS
10.2.1 LINEAR ITERATIVE METHODS 1

The linear iterative methods can easily be extended to complex unsymmet-

ric matrices. For example, in Jacobi's method, the ith element of unknown X

at n+l iteration is refined in the following way

N
i o1 i ij j )
xn+l =37 [ Y - .Z AT, Xn] fort =1, 2, ..., N (10.1)
A j=1 y
JH :

and rhe corresponding formula for Seidel's method is

N .. i-1
xt L wi_ atd xfl— T

i3 3
= A X
n+l Aii i+l 3

. 1 ) (10.2) 1
!

10.2.2 NONLINEAR ITERATIVE METHODS
For unsymmetric complex matrices, the nonlinear iterative methods may be

1 used on the symmetric system of equatiomns é? AX = éT Y instead of on the un-

symmetric equations AX = Y, where T denotes the conjugate transpose of the

matrix. In addition,the definition of the inner products has been redefined

as shown.




Downloaded from http://www.everyspec.com

e

10.2.2.1 METHOD OF STEEPEST DESCENT

In the method of steepest descent, the successive iterates are generated

by
T
= + .
5n+1 Kn tn A -n
<aTr, @' )%
= AX - Y t = -
where Bn AX - X and

T T x
>
<a R, (4 R)
where * denotes the complex conjugate.

10.2.2.2. CONJUGATE GRADIENT METHOD

The conjugate gradient method is now extended to the complex unsymmetric

set of equations AX = Y. We start with an initial guess _)_(o amd generate

= -ATR =-4AT [AX - Y]
-0 - =0 —0 -
and then éevelop
§n+l = l(n + t:n -n
where
T 2
<AP , P * > [1A" R ||
t = - —2=8 (ZP)*> . --»-n2
< AP
n AR, (B IEX

The residuals are generated as
= + .
-n+R 1 l{n tn AP

The direction vectors are obtained iteratively as

T
-P+l -Agn+l+qn2n

y*> | 1aT

Bl

T
where q <A_Pn’ (aa Bn+1
T 2
1IN

a <AP , (AP )*>
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11. MINIMIZATION OF THE CONDITION NUMBER OF A MATRIX FOR ACCELERATING

ITERATIVE METHODS AND REDUCING ROUND-OFF ERRORS IN DIRECT METHODS

[36]:

Summary

We have shown in section 2 that the higher the cond [A] the greater is
the amount of round-off error associated with the process. In section 8, we
have shown that the higher the cond [i] the slower 1s the rate of convergence
for the iterative schemes. Hence it would be useful to preprocess the equa-~
tions AX = Y to form A'X = Y' such that A' has a reduced condition number.
In this section a method is outlined to reduce the condition number of A.
Also for a problem which is to be solved once, this method is impractical.

This is because we need approximately as many computations to solve for

cond [A] as we need to solve the original problem.

oo, oIl . ot M o ks i ame ¥

andie,
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11.1 DERIVATION OF THE OPTLMUM ACCELERATION PARAMETER

In the solution of AX = Y by any standard iterative methods we have ob-

served that the rate of convergence depends inversely on the condition number

of matrix A. For example, for the steepest descent method the rate of conver-

. . cond (A) ~1 A lareest eisenvalue of A.
gence is proportional to ESHE—TST—II’ where cond (A) 2 smallest eigenvalue of A

PGS S .

Also for the conjugate gradient method, the rate of convergence is proportion-
al téVcona (4) -1
Jéona ?i; +1° }

Direct methods of solution of AX = Y are also affected by cond (a). This

is clear from section 2.5 where the round-off error associated with the solu-

tion of AX = Y is directly related to coad (A). ;
In both of the exawples above we see that the lower the cond (A), the

faster the rate of convergence of the iterative methods and the lower the

round-off error for direct methods. Hence in this section we outline a pro-

cedure for the reduction of the cond (A).

Again for simplicity of analysis we shall assume A to be symmetric and

definite, although this method can also be applied to unsymmetric matrices.

We now transform

AX = Y (11.1)

to the following form

2+ A +up ™ [1+wUl[X] = [I+oL])™" (3] (11.2)

where w 1s an acceleration parameter which is to be determined. Also

L 1is the identity matrix and the matrix equations AX = Y are so scaled that

A= l + L + U, where L and U are the lower and the upper triangular matrix,

respectively.
Let DAL+ w)IX] (11.3)
CAIL+all™ ) (11.4)
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then (11.2) is reduced to
(L+ L] (Al + o)™ (D] = [c)

or QT

.A.Q.D=C (11.5)

It is clear that { is in a form which can be readily inverted. Further

1f we define

B=(L+ wil™ o+ et a (11.6)

then
-1 T
[L+wU){BJL+wl] " =% AQ (11.7)
Hence Lg] has the same eigenvalues Xi (w) fori=1, 2, ...., N as that of

T
2 A i, but has different eigenvectors. Thus

Vs ln+wl)h e AN = A ) Y (11.8)

where ¥ are the eigenvectors of matrix B. If we define
VAV =1 (11.9)

¥.L.U.y =98 (11.10)

then by multiplying both sides of (11.8) by

[V III + wLl(L + wy)

we obtain
2 .
T, = l-w+w T4 + w ei) Xi (w) (11.11;
and so
Ty
R C A e T, +ws 0 (11.12)
i i
. Al A .
Hence cond [i é:] is obtained as
A, (W) T, -w+wrT, + mz 5.)
cond (2" AQ) = o Lo A (11.13)
N W Ty (1 -w+w 12 + w 61)

T .y .
For cend {.." Ail]l to have a minimum value we must require

86
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r . W

d T
—_— |§2 ) = 1.14
i cond Ad ] 0 (1 )

This results in a quadratic equation

2
W (Tl GN - T, 0, + 61-8N) + 2w (9

- - Yy = 5 (11,15,
N & Bl) + (TN T

N

Thus the optimum preconditioning parameter w is obtained as

T T

N - 1
u’opt: - 2 . D
(91 - GN) - {(81 - BN) - (TN - Tl)(eN Ty - 61 s m e
Rtread,
and the minimum cond [JET A ] is given by
. T, 1 -w + w T+
min  {cond (@ Al = L opt _opt N 9pt .. /1y

- + & + 07
TN a wopt L‘)opc Tl uopt 1

; PUNPRY S .
The eigenvalues of the matrix 2 A & is bounded by the valurs Aiq aud

A such that
max

0 <A S @ < A (i=1, 2, N
Y,
where )\mi = 5 ;1.1
a 1d-uw +w + W 3 )

Amax = 1 5 1iedd
- + + i
(1 wopt Wopt 3 Yoot 61;
Even though simple analytical expressions are available, tacoe sre ol L. fo¢
use for practical purposes. Only under certala conditions ar: slaiv:ii ..

evaluations possible. For example when matrix A has the fuo.l -~wiiy stiucture

fh o |

]
! I

87




Downloaded from http://www.everyspec.com

where ll & lz are identity matrices and D is a diagonal matrix, then Evans

has obtained wopt as unity. When matrix A is formed as

A=TI+L+L"

then the maximum eigenvalue of A is minimized in Q?é 2 when wopt <2, Thus

the cond [A] is minimized to cond [QT& 2] for 1 <wopt <2, For most cases

however Wopt has to be determined experimentally, or by (11.16), (11.18) and
(11.19). Evans has shown that there is a remarkable correlation between
theoretical and experimental values of wopt obtained for a particular matrix

.
A
—
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12. CORE STORAGE REQUIRED FOR VARIOUS METHODS [1]:
The core storage required for various methods are listed in order of th=

amount of core storage required starting with the method requiring the least

core storage (N is the rank of the matrix A)

METHOD CORE STORAGE
Gaussian elimination N2 + 2N
Seidel's Iterative method Nz + 2N
Gaussian elimination with complete pivoting Nz + 3N
Jacobi's Iterative method N2 + 3N
Monte Carlo method Nz + 3N + 14
Method of Steepest Descent Nz + 4N + 2
Conjugate gradient method Nz + 6N + 3

It is found that Gaussian elimination with no pivoting and Seidel's
method require the least amount of storage and that the conjugate
gradient method requires the largest amount of storage. For complex
matrices the amount of storage is doubled. For symmetric matrices,

however, N2 could be replaced by N2/2.
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13, WORK REQUIRED FOR VARIOUS METHODS (1}]:

The number of divisierns, multiplications and additions/subtractions pro-
vide a rough estimate of the efficiency of the algorithm. For each method it
is possible to estimate the number of arithmetic operations as a function of

N -~ the order of the matrix. Such functions could be discontinuous if N is

large enough that auxiliary storage is required. In the total numper of
arithmetic operations we have not included the timings taken for recording of
intermediate results and the time taken for searching tihe pivotal elecent in

Gaussian elimination.

METHOD NUMBER OF ARITHMETIC OPERATIONS
Divisions Multiplications Additions
: X +
3 . 3 2
Gaussian elimination N %— + N2 - %» %_ + ?— - %l (total)
i V3 N2 Sy;
Gaussian elimination with complete pivoting requires 3—-+ 5 - gi comparisons
in addition to the above arithmetic operations
. . 2 2 .
Jacobi & seidel N N N™ -~ N pet
itera. .o
(we could do with N divisions only once
rather than per iteration at the expensc
of N more storage spaces.)
Steepest Descent 1 2N2 + 3N ZNZ 4+ 4n per
(for unsymmetric A) .teration
Conjugate gradient 2 2N2 + 6N 2N2 + 6N per
(for unsymmetric A) 1teration
Monte Carlo CW 12N + 8C 2[(3N + (W + 2) €] (total)
[W is the average number of steps per random
walk and C is the number of random walks]
Also note that when the matrix is symmetric the number of operations is
1 reduced by about half. Also note in the Monte Carlo method the amount of work

required varies as the first power of N onlv. Thus the Monte Carlo method
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would be quite advantageous in providing an initial guess which may be re~

fined by the nonlinear iterative methods since they have a rfas.ar vace ot

P

coanvergence than linear iterative methods.

For very large values of N, an iterative method applied 1o o fui. @i~

trix would need to converge in less than % steps to bring its operacions

count down to that of a direct method. )

Lwra

For complex matrices, these operations of divisions, wu.t.plications

PUNSIONE TN

and additions refer to complex arithmetic operationmns.
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14. A SPECIAL NOTE ON THE CONJUGATE GRADIENT METHOD

An iterative method called the banded matrix iterative scheme has re-
cently been applied by Ferguson {37] to solve large electromagnetic field pro-
blems by the method of moments. The characteristic features of the method
applied by Ferguson are:

1) The convergence of the iterative scheme is sensitive to the choice of
the numbering scheme used.

2) Because of (1) it requires a person with certain technical background
to run the program.

3) The rate of convergence is irregular and sometimes the solution di-
verges.

4) The banded matrix iterative scheme applied by Ferguson is basically
a Jacobi type of iterative scheme and hence it converges slowly [p. 16 of ref.
371.

5) Finally the method needs theoretically an infinite number of steps to
converge to the exact result if there is no foumd—off error.

An alternative scheme is proposed here to replace the banded matrix it-

erative scheme by the conjugate gradient method in the RADC GEMACS program.

As we shall presently demonstrate, the conjugate gradient method is also capa-

ble of replacing the iterative methods in the RADC nonlinear system identifi~

caticn programs, too.

R oot = ot

As we have seen from the previous sections the conjugate gradient method
1s a nonlinear iterative scheme, in contrast to the linear Jacobi method. Al-
so the conjugate gradient method converges at a faster rate than that of a ge-~
ometric series. Moreover it is highly insensitive to the choice of the init-

ital guess for the solution. Since the conjugate gradient method vields an
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exact result (assuming no round-off errors) in at most M steps (where X is
the number of independent eigenvalues of the N x N matrix), it has the good
points of both an iterative method and a direct method of solution. It has
the advantage of an iterative scheme in that round-off error is limited only
to the final step of the solution. It has the advantage of a direct method in
that it converges in a finite number of steps.

As a first example consider a wire 3m in length and .0lm in radius.
The wire is charged to a potential of 4lle volts. The objective is to find the
charge distribution on the wire. A method of moments formulation has been em-
ployed and the wire is divided into a total number of 30 segments. The moment
matrix formed bv this problem is a tvpical one which often occurs in the meth-
od of moments. The results are presented in Table 8. The first three columns
indicate the charge distribution on the wire obtained by the conjugate gradi-
ent method. The third column represents the charge distribution corresponding
to the segment numbers appearing in colummn two. The first column states that
this result has been obtained at the end of three iterations. The next three
columns indicate the charge distribution obtained after eight iterations by
the conjugate gradient method. And finally the seventh colummn gives the re-
sult due to Gaussian elimination. As is clear from the data presented in

Table 8 the conjugate gradient method yields a result better than 17 after

three iterations (M = %5).
If for this problem the banded matrix technique is used to yield an accu-
racy of 1% in one iteration a bandwidth of approximately 15 may be necessary

(see table 10, p. 34 of ref. 37). Hence for the same accuracy the conjugate

gradient method is faster by a factor of 2.5. Also if the same problem is to

be solved by the symmetric Cholesky decomposition it would have required ap-
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proximately %3 multiplications. The conjugate gradient method required ap-
proximately 3N2 multiplications as compared to SN2 for Gaussian elimination.
Also note that an essentially exact result has been obtained (accuracy
.better than 10-5 in the residuals) after only eight iterations.
As a second example, consider the same problem as above but now the wire
is 25m long. So this time A is 100 x 100 matrix. Again we obtairea au es-

sentially exact result (better than 10-5 in the residuals) after onlv nine it-

erations. This implies that 1in these type of problems the number of independ-
ent eigenvalues is approximately eight or nine. Note that the number .: inde-
peadent distinguishable eigenvalues does not increase as the order ot lue sys-
tem is increased considerably. This is an interesting property of li.gonall~
Jominant matrices which could easily be exploited by the coniugate gradient
method.

As a third example, consider A as a 20 x 20 Hilbert matrix and ¥ {s cho-~

sen in such a way that the solution vector has components 1 to 20. The prob~

lem then is to find X given A and Y. The philosophy behind choosing A to be a
dilbert matrix is that nearly singular matrices are often encountered in 4

s ystem identification problem. So if the conjugate gradient method can efrfi-

¢'ently solve such an ill-conditioned problem, then this method v eass!. te

ayplicable to system-identification problems. The results obtained by two

differeat methods are shown in Table 9.

It i3 clear from Table 9 that the conjugate gradient metic vivlds 4oud

{
results at the end of eight steps. The largest error is only 2.25%. Th-
Caussian elimination method for the same problem completely breaks dowm,
(Note. The Hilbert matrix is extremely ill-conditioned. The condition num-

ber of a 20 x 20 Hilbert matrix is of the order of e 3.58 _ 2.5 x 1030 srom
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Gaussian Exact Conjugate gradient
elimination solution at the end of 8 steps
. 9999954 1 1.000289
2,000349 2 1.990388
2,978199 3 3.056398
4.103616 " 3.909776%
4.355928 5 4.981514
55.54727 6 6.056422
-~20.17007 7 7.066274
-391.4351 8 8.030005
1050.932 9 8.982147
~397.4495 10 9.947065
212.3952 11 10.93533
1407.415 12 11.94698
~1800.392 13 12.97573
~-682.3352 14 14.01228 ;
2770,054 15 15.04653 :
~1692.660 16 16.06884 }
637.3160 17 17.07074 é
559,0285 18 18.04519 %
78.80465 19 18.98660 L
97.65299 20 19.8907

Table 9: Comparison of Gaussian elimination and conjugate gradient method

for the solution vector X = [A)~] ¥.

*The largest error is about 2,25%
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[38].

As a final example consider the solution of the two components of
the current density on a 1A square metal plate irradiated by a plane wave.
When the total number of unknowns for the complex current is 71, we have
to solve a 71 x 71 matrix equation. The total time taken for the solution
of the complete problem utilizing various techniques 1is as follows:

Gaussian elimination: 27 sec. (CPU time)

Conjugate gradient method: 30 sec. (CPU time)

(with 1% accuracy in the residual)

Observe that the conjugate gradient method is quite inefficient in this
case. However, as the dimension of the problem is increased from 71 to
180, the time required by various methods to solve the complete problem

is as follows:

Gaussian eliwination: 500 sec. (CPU time)
Conjugate gradient method:

for 10_. accuracy in the residual: 220 sec. (CPU time)
for 10_, accuracy in the residual: 290 sec. (CPU time)
for 10_. accuracy in the residual: 390 sec. (CPU time)
for 10 ” accuracy in the residual: 520 sec. (CPU time)

So for large systems of equations the conjugate gradient method mav

prove to be quite useful, especially if one is interested in obtaining an
- -4
accuracy of 10 3 to 10 in the solutions.

In summary, it is argued that the application of the conjugate gradient
method tc the analysis of large bodies by method of moments would yield sta-
ble, reliable, consistent and accurate results faster than any methods cur-
rently used to obtain a solution. The same is true for problems in svstem

1

|
identification. However there may be some build-up of the round-off error if i

the residuals are computed iteratively by (7.10) rather than directly from

éﬁk = Y, which would be more time-consuming. At this point it is not known

how serious this problem will be for our problems of interest.
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15. SUMMARY AND CONCLUSIONS

Of all the stationary iterative schemes surveyed the conjugate gradient
method has shown great promise as a possible candidate to replace the banded
matrix iterative scheme in the GEMACS program. This is because the conju-

gate gradient method not only yields the exact solution theoretically at the

end of a finite number of steps but also has the fastest rate of convergence.

The next step of the program should be to develop computer programs

for the various methods and verify experimentally the theoretical results

that have been presented in this report.

D e ma Rl
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