```
\infty
    N
0
:-TR-77-417
Final Terhnical Report
\[
\text { December } 1977
\]
DEVELUPMENT OF NONELECTRONIC PART CYCLIC FAILURE RATES
```

Csorge F. Gut'

```
Martin Marietta Corporation
```

Approved for public release; distribution unlimited.

Air Force Systems Command
Griffiss Air Force Éase, New York 13441
'Phis report has been reviewed by the RADC Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NT: it will be releasable to the general public, including soreign nations.

RADC-TR-77-417 has been reviewed and is approved for publication.

APPROVED:

APPROVED:

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (RBET) Griffiss AFB NY 13441. This will assist, us in maintaining a current mailing list.

Do not return this copy. Revain or destroy,

UNCLASSIFIED

17. DISTRIBUTION STATEMENY (ol the abstract entored in Block 20. It dilforent fom Report)

Same

18 SUPPLEMENTARY MOTES
RADC Project Ergineer: Lest.er J. Gubbins (RBRT)

19 KEY WOROS Continue on reverte alse if necessary and tidentify by hlock number)

Connectors
Connectors, Fallure Rates
Connectors, Reliability Models
Connectors, Reliatility Prediction
Relays \qquad
Relays, Failure Rates
Relays, Reliability Prediction
Reliability Information
Switches
Switches, Failure Rates (Cont'd on back)
Ha (
Martin Marietta Corporation conducted a 12 -month program to develop base fallure
rates and failure rate mathematical models for relays, switches, and connectors These models are provided in the format of MIL-HDBA-2i7B and include the model and instructions for its use. More than 10 billion part-hours of operating field data were collected from inductrial and Government data sources. Data was andlyzed manually and sorted by computer.
(Cont'd on hack)
DD , FORM JAN?3 1473 EDITION OF: NOV 65 IS OBSOLETE

INCLASSIFIED
SESURITY CLASSIFICATICN OF TMIS PAGT (When DEIAEnioled)

19. (Continued)

Switches, Reliability Models
Switches, Reliability Prediction

20. (Continued)

Conclusions are summarized in the revised base failure rates and mathematical models described. Failure rates for connectors and switches show a significant decrease from present rates and, for relays, show a marginal decrease. A mating factor, (π), has been developed for the connector model, and a stress factor has been added to the switch model.

EVALUATION

This contractual effort is part of the broad RADC. Reliability Program intended to provide reliability prediction procedures for military electronic equipment and systems. These prediction procedures are contained in MIL-HDBK-217B for which RADC is the preparing activity. The failure rate models developed in this study will replace the models for switches, relays, and connectors that are presently in MIL-HDBK-217\%.

Lester y. !ishim
LESTER J. GUBBINS
R\&M Engineering Techniques Section Reliability Branch

The reliability of relays, switches, and connectors, as described in Sections $2.9,2.10$, and 2.11 of MIL-HDBK-21\%B, was studied from September 1976 to September 1977. Major objectives of this study were to develep base failure rates and failure rate mathematical models using rates in terms of cycles of actuation for relays and switches and in terms of cycles of engagement for connectors. The models can be used in conjunction with base failure rates to apply appropriate environmental, circuit use, application, and packaging factors for estimating device failure rates.

The study was initiated by mailing a survey questionnairc to industrial and Government facilities, followed by telephone contact with survey respondents and personal visits to facilities having the most favorable data response. Simultaneously, in-house equipment data and library data were reviewed. All data collected were programmed into a computer for sorting and analyzed by hand.

Collected data on relays, switches, and connectors were irouped, analyzed, and tested for homogeneity before combination. A 60 percent confidence limit was calculated for all data under evaluation. A complete component type listing was developed for data used to generate operating fallure rates for MIL-HDBK-217B.

More than 10 billion part hours of operating data were collected in this study. These data cover relays, switches, and connectors in rround fixed, ground nobile, naval sheltered, airborne inhabited, airborne uninhabited, and space flight environments. Failure rate mathematical models and revised base fadiure raies were also developed for the relays, switches, and connectors.

PREFACE

Under Contract F30602-76-C-0437, this final technical redort for Development of Nonelectronic Part Failure Rates was prepared by the Product Support Engineering Laboratory of Martin Marietta Corporation, Orlando, Florida, for the Rome Air Development Center, Griffiss C ir Force Base, New York. Major objectives of this study were to develop base failure rates and failure rate mathematical models for relays and switches in terms of cycles of actuation, and to develop base failure rates and failure rate mathematical model:s for connectors in terms of cycles of engagement. The relays, switches, and connestors studied arc identified in Section 2.9, 2.10, and 2.11 of MIL-HOBK-217B, Reliability Prediction of Electronic Equipment.

The contract was issued in September, 1976, by Rome Air Development Center. Mr. Les Gubbin: 'RBRT) was the RADC Project Engineer. The period of contrast performance was September 1976 to September 1977.

Technical consultation and assistance in acquisition of data was provided by Messrs. Edwin Kimball, Donald Cottrell, Wi.lliam Maynard, Thomas Kirejczyk, Thomas Gagnier, Edward French, and Bradley Oison. In addition, other Martin Marietta study team members were Messrs. Aaron Penkacik, Roisert Whalen, Thomas Young, and Mmes. Lynn Westling, Lynn Mercer, and Betty Jean Thomas.
'fABLE OF CONTENTS
Section Page
Suminar 1
Pref:ce 3
I Introduction 7
II Data Collection 9
2.1 literatire Review 9
2.2 Data Source Contacts 9
III Failure Mode Mechanism Data and Reliability Design No:es 11
3.1 3elays 11
3.1.1 General Purpose Relays 11
3.1.2 Dry-Reed Relay 11
3.1.3 Mercury Wetted Contact Relays 12
3.1.4 Mercury Werted Reed Relays 12
3.1.5 Magnetic Latching Relays 12
3.1.6 Solenoid-Activated Relays 13
3.1.7 Thermal Time Delay Relays 14
3.1.8 Power Type Relays 14
3.2 Switches 14
3.2.1 Snap Action (Toggle or Push Button) 14
3.2.2 Pusin Button (Nonsnap Action) 15
3.2.3 Rotary Selector Switches 15
3. 3 Connectors 16
3.3.1 Regular Connectors 16
3.3.2 Circular Connectors 18
3.3.3 RF Coaxial Connectors 20
IV Data Analysis 25
4.1 Statistical Analysis 25
4.2 Calculation of Failure Rates 25
4.3 Part Classes and Failure Rates 26
V Failure Rate Models 29
5.1 Connector Failure Rate Prediction Models 29
5.1.1 Connector Base Failure Rate (λ_{b}) Evaluation 29
5.1.2 Comnector Cycling Factor (π_{K}) Evaluation 31
5.1.3 Connector Pin Density Factor (π p) Evaluation 33
5.l.4 Connector Failure Rate Model 34
5.1.5 Connector Pin Environmental Factor (πE) 35
5.1.6 Tomperature Rise in RF Connectors 36
5.1.7 Validation of Revised Failure Rates for Connectors 36
5.2 Relay Failure Rate Prediction Model 40
5.2.1 Relay Base Failure Rate (λ_{b}) Evaluation 40
5.2.2 Environmental Factor (πE) Evaluation 42
5.2.3 Failure Rate Factor (πF) Evaluation for Relay Application and Construction Type 44
5.2.4 Evaluation of Quality Factor (π_{Q}) for Established Reliability Relays 45
5.2. 5 Validation of Revised Factors for Relays 47
5.3 Swit, h Failure Rate Prediction Models 53
5.3.1 Switch Base Fallure Rate (λ_{b}) Evaluation 53
5.3.2 Normalization of Environmenta! Factor (IE_{E}) 56
5. :. 3 Development of Stress Factor (π_{1}) 57
5.3.4 Base Failure Rate Evaluat ion for Toggle and Pushbutton Switches 57
5.3.5 Base Failure Rate Evaluation for Sensitive Switches 60
5.3.6 Base Failure Rate Evaluation for Rotary Switches 60
5.3.7 Evaluation of Environmental Factor (π_{E}) 61
5.3.8 Evaluation of New Mathematical Model with Modified Factors 62
VI Conclusions and Recommendations 67
6.1 Conclusions 67
6.2 Recommendations 68
References 69
Bibliography 71
Appendices 75
A Data Sources 75
B Section 2.11, MIL-HDBK-217B 77
C Section 2.9, MLL-HDBK-217L 80
D Sectior 2.10, M - MDBK-2173 99

SECLION I

INTRODUC̃IION
MIL-HDBK-217B, "Reliability Prediction of Electronic Equipment", is the current source of reliability prediction models for estimating reliability of proposed equipment desagns. However, models in this handbook to predict relay, switch, and connector failure rates have fallen behind current trends and technology.

The purpose of the contract was to revise and update models for predicting failure rates of relays, switches, and connectors. These models have been constructed and validated. They facilitate reliability assessment based on device type, complexity, application, stresses, operational environment, and other significant influence factors. Results of the contractual effort include a complete listing of data collected by component type, methodology for data analysis and modeling, and assumptions and procedures followed for constructing reliability prediction models and failure rate data for incorporation in to Section 2.9 of MIL-HDBK-217B for relays, Section 2.10 for switches, and Section 2.11 for connectors.

SECTION II
dATA COLLECTION

2.1 Literature Review

Data for operating failure rates of relays, switches, and connectors have been collected from contractors, institutions, and Government agencies. A comprehensive literature review was also made to obtain information and pertinent data on the components. Martin Marietta's Technical Information Center (TIC) was researched for up-to-date information. A bibliography, constructed using key words, was formulated and reviewed for applicability. Data sources used in this computer search included Martin Marietta in-house documents and documents listed by other documentation centers, such as the Defense Documentation Center (DDC), NASA Scientific and Aerospace Reports (STAR), and National Technical Information Services (NTIS).

2.2 Data Source Contacts

Upon contract initiation, a list of rotential data were generated from sources used in previous study contracts and from Government-Industry Data Exchange Program (GIDEF) memberships. Other suggested sources resulted from consultation with RADC. A total of 560 companies and agencies were on the mailing list for the data survey letter. Of these, answers were received from about 260 companies. Every survey sheet returned was reviewed carefully to determine whether the data would be useful in this study. Each respondent to the survey was contacted by telephone to further detail the amount and type of reliability information available. Where possible, the data we:e mailed directly to Martin Marietta. In areas where significant data retrieval was possible, visits by Martin Marietta parsonnel were arranged. During these visits, operational data was reviewed, reduced as necessary, and returned to Martin Marietta for further analysis. A total of 47 data sources were visited, with trips completed to the Northeast, the Midwest, Los Angeles, San Francisco, the Southwest. These trips resulted in the accumulation of the majority of data.

A summary of data sources contributing to this study program is shown in Appendix A.

SECTION III

FAILURE MODE MECHANISM DATA AND RELIABILITY DESIGN NOTES
Failure mode and mechanism data and design note information were ontained from telephone conversations and visits to major component and sy item manufacturers, as well as from a b vad cross-section of users. The cbjective of this comprehensive industry survey was to identify problem areas. Failure mode data wert collected for various categories of relays, switches, and connectors.

3.1 Relays

3.1.1 General Purpose Relays

The commonly recognized general purpose relay usually has a clapper type armature, leaf springs, and button contacts, with the core pulling directly on the clapper armature and movable contacts at ached to the armature (Figure 1). These relays are rated as :ight duty (up to 2 amperes), medium duty (2 to 10 amperes), and power type (contacts rated for more than 15 amperes). The general purpose relays are zelatively low cost components and are generally available from open stock. They have the disadvantages of general design, position sensitivity, and little shock or vibration resistance.

The major fallure wodes associated with general purpose relays are contamination problems which occur between contacts or between pole pieces and the armature, resulting in failure to make a guod connection.

3.1.2 Dry-Reed Relay

In the dry-reed relay, an electromagnet gemerates fiux that acts directly on the contacts with no mechanical linkages. Two elements, in a sealed glass envelope, are attracted to each other due to the flux generated in the coil, and they complete an electrical circuit. This relay is shown in Figure 2.

This relay switch is inherently a low-current, low-voltage device. Because of low contact pressures and a small gap between contacts, the dryreed relay has limited use in vibration and shock environments.

Figure 1. General Purpose Relay

Figure 2. Dry-Reed Relay

Failures most frequently result from contamination problems affecting contact performance and hampering the reed action. Random contact sticking is caused by tiny magnetic wear fragments at the contact gap. Arcing across the contacts causes metal transfer, resulting in spike and crater formation that produce sticking contacts.

Dr:r-reed relays require careful handling. Switch contact menbers extend veyond each end of the glass capsule and are used as switch terminals. Bending, cutting, or heating the leads can change the sensitivity of the switch. They are also affected by other magnetic fields. Stray magnetic fields in the order of 5 to 10 gauss can cause reed relays to malfunction. The operation of one dry-reed relay adjacent to another can change its sensitivity.

3.1.3 Mercury Wetted Contact Relays

In this type of switching relay, electrical contacting is accomplished by mercury-to-mercury contact. The contacting faces are renewed by capillary action, which draws a film of mercury over the surfeces of the contact switching members when the movable contact member is moved from one transfer position to the other (Figure 3). No solid metal to solid metal contacting takes place, and the contacts are actually renewed for each operation.

These relays are posicion sensitive and must be used in the upright pesition with less than a 30 degree tilc from the vertical. Another disadvantage is that it is temprature sensitive at low temperatures. Mercury becomes solid at $-37.8^{\circ} \mathrm{F}$, and failure occurs in this range of temperature.

3.1.4 Mercury Wetted Reed Relays

Mercury wetted reed relays are basically similar to dry-reed relays, except that mercury has been added to the reed capsule during manufacture. Contacting takes plice from mercury film to mercury film (Figure 4). Characteristics of this type relay are similar to those in mercury wetted contact relays, with vertical positioning and low temperature sensitivity being the major disadvantages.

3.1.5 Magnetic-Latching Relays

Magnetic-latching relays are armature type electromagnetic relays ir. which latching is iccomplished by utilizing permanent magnets in conjunction witn the normal soft-iron circuit. The permanent magne f flux holds the armature in the operated conditior, after electromagnetic coll energy has been removed (Figure 5). They are all dc relays that must either be polarjzed or requise reverse polarity for operation. They can be in open or sealed version:s, but sealed versions are recomaerded to prevent the permanent magnet from picking up iron particles that might interfere with operation. Relays of this type are generally applicable to memory applications, overload response, and as an did in resistance to vibration and shock.

Figure 5. Magnetic Latching Relay

Figure 4. Mercury Wetted Reed Relay

3.1.6 Solenoid-Actuated Relays

Solenoid actuation of relay rontacts is generally used where relatively large movemeni of the contacts is desirable, or where a large amount oi contact pressire is required. Solenoid relays are usually considered as onoff devices and are not generally used in applications where precise pick-up voltage or sensitive operation is required (Figure 6).

Solenoid relays can be operated with ac or dc voltage. In ac operation, the change in impedance of the solenoid due to the closing of the armature produces an in-rush surge current much larger than rated current for a short duration. The dc operation allows the current to build up to rated value during energization with no overshoot. Protective devices, such as resistance; capacitance (RC) networks, diodes, or short-circuited secondary windings, are required to absorb energy when the solenoid is disconnected to prevent high voltage transients from discharging through the disconnecting gap or bleed off through the insulation.

3.1.7 Thermal Time Delay Relays

Thermal relays have a heating element to provide a temperature differential for thermal expansion and consequent movement to actuate the contacts (Figure 7). Time is required for the element to heat and attain desired temperature, so these relays can be used for time-delay functions. Thermal relays are voltage-sensitive devices that operate equally well on ac or dc voltage.

Figure 6. Solenoid-Actuated Relays

Figure 7. Thermal Time Delay Relay

3.1.8 Power Type Relays

Power relays resemble the general puryose relay, except they are larger (Figure 8). The insulation is thicker, and the terminals are larger. Contacts in power relays are capable of handling heavy current and highly inductive loads. The most widely used contact uaterials are silver-cadmium oxide and tungsten. These materials are well. suited for heavy motor loads in which the inrush current may be five to six times the steady state currant. This type of contant moterial is well suited for power applications, but it should be avoided for low energy applications.

3.2 Switches

3.2.1 Snap Action (Toggle or Push Button)

A snap action switch has a specially formed and prestressed main spring or blade (Figure 9). By prestressing, the center section of the bipositional blade is compressed, but the two outside sections are in tension, causing it to remain in an unoperated or normal position. Depressing the center section by means of a plunger rapidly changes the blade to operated position. This action provides good contact pressure, allowing heavier load currents through the switch. Advantages of this type switch are:

- High contact pressure
- Fast tranı،fer times
- Variety of operating forcer
- Good repeatibility, due to only one moving part
- No wear points and long life in the one-piece blade.

Figure 8. Power Relay

Flgure 9. Snap Action Switch

The major contributor to switch failures is the presence of contamination, either as jarticulate matter or as corrosion. Particulate matter can be solder balls, metal flushings, etc., which can result in wedging or jamming of the operating parts of the switch. Nonconductive material can also be present within the switch, such as flashings from case material. Corrosion is usually the result of sulfides or halides that occur on contact surfaces. These materials are caused by reaction with the sulfur compounds in industrial locations.

3.2.2 Push Button (nonsnap action)

Fush button switches are available with the contacts that remain operated after the bution has been depressed and with nonmajntained operation after finger removal (nonlatching), as shown in Figure 10. In most cases, visual observation is required to determine whether the switch is in the operated state. Indicating lamps are used with push button switches, either separate or self-contained. Contact ratings and switch life vary between switch types and veadors so that it is difficult to generalize push button switch data.

3.2.3 Rotary Selector Switches

The rotary switch is a manually operated multideck switch offering a varying number of contacts per deck (Figure 11). Contacts of the rotary switch are formed into double finger grips that provide good contact pressure and wiping action that provides low and constant contact resistance. Characteristics of the switch are determined by the shape of the rotor, which rotates with the shaft, to switch from one contact to another. The rotor may contain single or multiple notches, tabs, or combinations of both. The tab is a radial projection of metal designed to touch the short cerminal contacts. The notch is a cutout designed to avoid contact with the short termirals but to make

Figure 10. Push Button Switch

Figure 11. Rotary
Switch
contact with the lung terminals. Tab and notch widths are designed so that adjacent contait terminals are either momentarily bridged or so that a complete ircuit break is made as the switch is moved from me position to the next. Bridging circuits are usually referred to as shorting, and non-bridging circuits as non-sherting. Many switching combinations are available with the number of poles, throws, and decks utilized in each switch. Common failure modes of rotary switches are famed shafts, cracked wafers, and contact contamination.

3.3 Comnectors

3.3.1 Kectangular Connectors

Rectangular connectozs generally fall into two generic types: rack and panel, and pius and receptacle. A wide variety of rectangular connectors are available, fron rugged heavy-duty types to very-igigh-density, light-duty types. Contact ratiags depend on contact size.

One type of connector is the heavy-duty connector, which is suitable for heave slifing drawer applications. This connector is available with solder, taper pins, and crimp/removable contacts (Figure 12). The miniature rectangular connector is used very widely. It is available as a plain rack and panel connector with polarizing guide pins (Figure 13). Another variation of the miniature rectangular connector utilizes a center jackscrew to provide positive connection (Figure 14). The general purpose rectangular connector is available with 12 gage, 16 gage, and 20 gage contacts, making it useful for a combination of power and signal connections in the same connector. Contact types can be molded in with solder terminations, or removable with crimp terminations. The D subminiature series connector is
another type of rectangular connector in common usage (Figure 15). Pin arrangements are available from 9 to 50 contacts in size 20. Other types of rectangular connectors available are Jones connectors, micro ribbon connectors, and miniature rectangular connectors with floating molded inserts.

Figure 12. Heavyduty Connector

Figure 13. Miniature Rectangular Connector

Figure 14. Center Jackscrew Miniature Rectangular Connector

Figure 15. D Series Subminiature Connector

Rectangular rack and panel connectors with removable contacts have the capability to intermix various sizes of pin and socket contacts, as well as miniature and subminiature coaxial contacts, within the same connector. Another advantage is the ability to change from single wire leads to twisted pairs if there is a noise problem in the circuit.

Three military specifications cover the rectangular connectors most commonly ised:

- MIL-C-28748 "Connectors, Electrical, Rectangular, Rack and Pans1, Solder Type and Crimp Type Contacts"
- MIL-C-83733, "Connectors, Electrical, Miniature, Rectangular Type, Rack to Panel, Environmental Resisting, $200^{\circ} \mathrm{C}$ Total Continuous Operating Temperature"
- MIL-C-24308, "Connectors, Electrical, Rectangular, Miniature, Polarized She11, Rack and Panel".

3.3.2 Circular Connectors

Circular connectors consist of two parts, a plug assembly and a receptacle assembly mated with a coupling device that is part of the plug assembly. Coupling methods include a threaded coupling ring, a bayonet lock, or push-pull coupling. The plug is usually movable, while the receptacle remains fixed. Connector contacts are held in place by a dielectric insert which insulates each contact from another.

A common connector is one covered by MIL-C-5015 (Figure 16). This connector is the standard an type connector and is available in six cypes of connector (wall-mounting receptacles, cable receptaclea, box-mounting receptacles, quick-disconnect plugs, straight plugs, and angle plugs). The connector contacts may be either solder or removable crimp types. The connectors are rated for operation from -55 to 125,175 or $200^{\circ} \mathrm{C}$, depending on class. These connectors are for use in electronic, electrical power, and control circuits.

Miniature circular connectors are included under Mill-C-26482 (Figure 17). This specification covers the general requirements for two series of environment-resisting, quick-disconnect, miniature circular electrical connectors. Each series contains hermetic receptacles. Series 1 is a connector which is bayonet-coupled, with solder or front releaje ' \because nnnections. Ií is temperature rated at $125^{\circ} \mathrm{C}$. Series ? is also a bayonet-....d connector, with rear release crimp removab'e contacts. It is temperature rated at $200^{\circ} \mathrm{C}$.

Another type of circular connector covered under a military specification is MIL-C-38999 (Figure 18). This specification includes two series of miniature, high density, quick-disconnect, bayonet-coipled connectors: They are capable of operation within a temperature range of -65 to $200^{\circ} \mathrm{C}$. Both series employ rear release removable oin and socket contacts with crimp termination. Series I provides electrical continuity between mated shells prior to contact engagement and has the contacts located for protection from handling damage and inadvertent electrical contact. Series II providas low silhouette for minimum size and weight and includes connectors that provides shell-to-shell electrical continuity when mated. Restrictions on the use of the connecturs are:

- Series I - Army: Limited to environmentally protected applications on ground equipinent

Navy: Not for shipboard-jacketed cábla applications.

Air Force: No restrictions except for Class P, which is inactive for new design.

- Series II -Army: Not for use.
 Navy: Not for use.

Air Force: No restrictions except for Class P, which is inactive for new design.

Figure 16. MIL-C-5015 Connectors

Figure 17. MIL-C-26482 Connectors

Figure 18. MJL-C-3899? Connectors

MIL-C-81511 (Figure 19) covers a miniature, high contact density cylindrical connector. It provides environmental resistance and prevents contact damage by recessing contacts beyond the outer shell and providing closed entry hard inserts for socket contacts.

One predominant failure mode associated with circular connectors is cocked, beat, or broken pins or contacts within the connector. This condition can be reduced with use of connectors that require all connections to be made simultaneously using special "scoop proof" connectors. These connectors ajign the mating shells prior to making contact with the pins and sockets within the connector. Contamination may also appear from conditions in which the pin fails to seat correctly in the socket. Contamination may result in a open or high resistance electrical circuit.

3.3.3 RF Coaxial Connectors

Radio frequency (RF) connectors normally consist of only one pin and socket connector coaxially mounted within a shell. Physical features are similar to the cylindrical connector except for construction of the female contact and rigidity of the insert material.

Three basic areas in a coaxial connector design are important in achieving stable perfurmance in the frequency ranges required and under the environmental conditions observed. These are dielectric insert material, coupling mechanism, and assembly procedure.

Coupling of RF coaxial connectors nay be accomplisled by screw-thread, bayonet-coupling, and push-on connections. The coupiant davice is critical to stable electrical performance and environmental protectiun. The doublelead coarse thread design provides the best features of couplang. It is rugged, non-fouling, vibration resistant, and electrically stable. Assembly techniques for coaxial cable utilize the crimp extensively, which simplifies the proceiture for assembly and improves mechanical and electrical performance.

RF connectors vary in size and are classified into four types.

- Miniature connectors
- Small connectors
- Medium connectors
- Large connectors.

Small connectors are used with flexible coaxiai cables in protected and exposed environments. Some types of small connectors are the MHV (Ficure 20), the BNC (Figure 21), and TPS (Figure 22). These connectors are bayonetcoupled. The TNC type is similar to the BNC, but is a thread-coupled connector. Small connectors are not especially rugged and should be used with care.

Figure 19. MIL-C-81511 Connectors

MHV

Figure 20. MHV-Type Connector

Figure 21. BNC-Type Connector

Figure 22. TPS-Type Connector

Medium comectors are used for flexible and semi-rigid cable. They are generaliy used as interconnections between an antenna and recelver or transmitter. The C type connector (Figure 23) is a two-point bayonet connector, while the N (Figure 24) and SC (Figure 25) types are fine-thread coupling. These connectors are not exceptionally rugged but perform well where environmental hazards are not overly severe.

While there is a great variety of large connectors, many are special types or for special applications. Some generally used connectors are the LC (Figure 26), QM, and QL (Figure 27). The QM and QL are rugged connectors and utilize a course double lead-thread coupling. Other large connectcis utilized in $R F$ applications are the $B N, H N, L N, Q D C, S K L$, and $U H F$ types. These are available from manufacturers, but aze generally decreasing tr usge.

Large
Typu

Figure 23. C-Type Connector

Figure 24. N-Type
Connecror

Figure 25. SC-Type Connector

Figure 26. LC-Type Connector

Figure 27. QL and QMType Conizectors

Military RF connectors are specified basically in MIL-C-39012, "Kilitary Specification, Coaxial Radiofrequency Connectors." Connector types included in MIL-C-39012 are:

- QNC	- SC	- SMC
- SMA	- N	
- SMB	- C	
- QSC	- BNC	
- QM	- TNC	
- QL	- OSC	

MID-C-3643 covers the series HN type connector. The series LC connector is covered under MIL-C-3050. Other MIL Specs for RF coaxial connecters are:

- Mil,-C-3607, "General Specification for Series Pulse Radiofrequency Coaxial Connectors"
- MIL-C-3655, "General Specification for Series Twin Radiofruquency Coaxial Connectors"
- MIL-C-25516, "General Spacification for Miniature Coaxial Electrical Connectors, Environmental Resistant Type."

4.1 Statistical Analysis

As part of this study, data were collected on relays, switches, and connectors. The data were analyzed and sumarized in the form of failure rates for individual components. Basic ground rules and assumptions were established for these analyses, along with defining statistical tests for combining the data. Numerical examples are given for the statistical tests and the calculation of fatlure rates.

4.2 Calculation of Fallure Rates

All. fallure rates were calculated at the upper single-sided 60 percent conf!denct ievel. Before calculating failure rates, component data were identified as time- cr failure-truncated. As far as could be determined, no failure-rruncated data were received. All data were assumed to be timetruncated. The upper confidence level failure rate was calculated by using the component part-hours and the 40 percent chi-square value at $2 \mathrm{r}+2$ degrees of freedom. If the data had been fallure-truncated, the value would be obtained at 2 r degrees of treedom. The general equation used for calculating the iailure rate was oftained from Reference 1 and is:

Where: $\quad \mathbf{r}=$ The number of fallures and determines the degree of freedom wordinate used in determining x^{2} (chi-squared)
$2 \mathrm{r}+2=$ Total number of degrees of freedom
a = Acceptable risk of error (40 percent in this study)
i-a $=$ Confidence level (60 percent in this study)
$T=$ Total number ni component farthours.
As an example, three fatlures occurred during $133.679 \times 10^{\circ}$ part hnurs of ground fixed operation were us ad to calculate the failure rate at the upper singlesided 60 percent confidence level on connectors conforming to MIL-C-5015. A table from Reference 1 was used as the source of the chisquared value:

$$
\begin{aligned}
& \text { Failure Rate }(60 \text { percent confidence })=\frac{x^{2}(0.40,8)}{2 T}=\frac{8.35}{267.358 \times 10^{6}} \\
& \text { Failure Pate }(60 \text { percent confidence })=0.031 \text { failures } / 10^{6} \text { hours. }
\end{aligned}
$$

Since the refcrence statistical tables are limited to chi-squared values up to 100 degrees of freedom, it was necessary to calculate an estimate of the chi-squared percentile points whenever more than 49 failures were observed in the data. In accordance with Reference $1, x^{2}$ confidence level values are approximated by:

$$
x_{P}^{2}=1 / 2\left(z_{P}+\sqrt{2 f-1}\right)^{2}
$$

Where:
$x_{p}^{2}=$ Approximated Chi-Squared value
$f=$ Total number of degrees of freedom
$z_{p}=0.25335$ and is the value of the standard normal variable at the 60 percent significance level.

Using actual data from " D " type insert comectors in the airborne uninhabited environment, which had 363 failures in $1,160.87$ million part-hours of operation, the failure rate is calculated as:

Failure Rate $(60$ percent confidence $)=\frac{1 / 2\left(0.25335+\sqrt{2 \times 728-1)}^{2}\right.}{2(1,160.87 \times 106)}$
Failure Rate ($\$ 0$ percent confidence) $=0.318 \times 10^{-6}$ failures/hout

4.3 Part Classes and Pailure Rates

To update Sections 2.9, 2.10, and 2.11 of MIL-HDBK-217B, failure rate mathematical models and base fallure rates were revised for relays, switches, and connectors utiilzed in military equipment. Field operational data and ir. ormation on these components were collected, studied, analyzed, and categorized by specific component type and environmental application. Results are presented in Tables 1-3. No component testing was performed to obtain data, but an extensive data survey and collection effort was undertaken to lacate and obtain necessary data. Components studied were typical of those used in military ground, airbirne, satellite, ground mobile, and shipbeard applications.

The data listed are in the form of failures per million hours and are calculated at the point estimate where failures occurred, and also at the 60 percent upper confidence level for all categories. Failure rates were not caicuiate. when less than 1.0 million part-hours of data were collected. The environmental abbreviations are the same as MIL-HDBK-2I7B, except for airborne values, where an additional letter designation was added. The subscript T on airborne abbreviations designates data generated in subsonic type aircraft, such as transpurt and cargo planes, while the subscript F has been reserved to designate supersonic aircraft, such as fighters and interceptors.

TABLE 1
Summary of Operating Data Collected on Connectors by Type and Environment

lusert Type	Envirunuent	Failures	Part Hours (× 106)	Failure bate	
				Point [stimate (x 10-6)	$\begin{gathered} 60 \\ \text { Confidence } \\ \left(x 10^{-6}\right) \end{gathered}$
8	Ground fixed	26	5123.56	0.005	0.0054
C	Ground fixed	4	187.7	0.021	0.0278
0	Ground flaed	38	153.17	0.248	0.263
8	Maval sheltered	0	31.99	-	0.029
0	Raval sineltered	1	7.42	0.135	0.272
8	Airborne uninhabited	0	4.792	-i	0.19
c	Airborne uninhabited	6	49.531	0.121	0.148
0	Airborne uninhabited	363	1160.87	0.312	0.118
8	Ground mosile	0	0.035	0.31	-
0	Ground moblle	0	0.028	-	3
B	Airborne inhabited	0	2.48	*	0.369
$\hat{1}$	Airborn Inhabited	0	0.116	-	-
C	Airborne inhal.fted	0	0.015	-	-
0	Airborne inhabited	0	0.10	-	\cdots
8	Space flight	0	63.859	0	0.014
6	Space flight	1	12.584 25.478	0.08	0.16
0	Space flight	0	25.478	.	0.035

TABLE 2
Summary of Operating Data Collected on Relays by Iype and Envir inment

Part iype	Enviroment	Fallures	Part-Rgurs$\left(x 10^{6}\right)$	fallure Rate	
				Point Estimate ($\times 10^{-6}$)	$\begin{gathered} 60 \\ \text { Contijences } \\ (x 10.6) \end{gathered}$
General purpose	Ground fixed	54	242.86	0.22	0.23
High voitage Reed	Ground fixed	15	3.617	3.71	4.198
Thernal	Ground fixed	2	4.596	0.435	0.676
Arnatup: (lower quality)	Grcund mobile	0	4.167	-	0.19
Armiture (lower quality)	Ground benign	113	19.25	5.07	6.04
General purpose	Ground benign	0	3.77		0.243
Reed (lower quality)	Ground benign	45	28.0	1.6	1.69
M1L-R-6016	Maval saeltered	1	2.571	0.388	0.786
General purpose	Naval sheltered	5	15.5	0.323	0.406
Thermal	Naval sheltered	611	1765.17	0.346	0.351
MIL-R-39015	Airborne inhabited	31	392.04	0.054	0.058
MIL-R-6016	Airborne inhabited	1	23.41	0.043	0.086
Latching relay	Space flight	0	5.133	0.0.	0.178

TABLE 3
Summary of Operating Data Collected on Switches by Type and Environment

Part Type	Enviroment	Failures	Part-Hours$\left(x 10^{6}\right)$	fallure Rate	
				Point Estimałe (x $10 \div 1$	$\begin{gathered} 602 \\ \text { Conidence } \\ \left(\times 10^{-6}\right) \end{gathered}$
Push button	Airborne inhabited	1	9.921	0.10	0.203
Rotary	Airborne inhabited	0	4.47	0.0	. 204
Themostat	Airborue Inhabited	7	1.163	6.02	7.22
Yoggle	Ground fixed	0	4.329	- ${ }^{-112}$	0.211
Rotary	Ground fixed	3	26.61	0.112	0.157
Push button	Ground fixed	3	23.84	0.125	0.175
Rotary (lower)	Ground fixed	6	26.68	0.224	0.275
Sensitive	Ground fixed	0	2.99	-	0.306
Thermostat	Ground fixed	0	38.45	\cdots	. 024
Reed (lower)	Ground mobile	?	16.252	0.123	0.19
Tuggle	Maval sheltercd	0	1.934	0.1	¢ 473
Toggle (lower)	Maval sheltered	4	367.3	0.01	0.914
Thermostatic	Haval sheltered	0	4.137	.	0.12
Sensitive	Space flight	0	5.48	-	0.157

Component fallure is defined as the inability of the part to properly perform its intended function, resulting in its repair or replacement. When detailed failure information was available, all secondary failures, premature removals, and procedural and personnel errors were censored.

Since most of the data obtained listed only the quantity of fałlures and experience with no elaboration of failure modes and mechanisms, much of the data are dependent on the source's ability to properly categorize their equipment failures. As a result of direct contact with most of the sources, the majority of data contributed to this study were felt to have been properly screened by contributors.

SECTION V
FAILURE RATE MODELS

Failure rate models for connectors, relays, and switches described in Sections $2.9,2.10$, and 2.11 of MIL-HDBK-217B were reviewed with respect to the operating failure rates derfved from field data collected during the study. Many variations were found to exist between failure rates derived from MIL-HDBK-217B and those derived from field data. In most cases, operating failure rates were lower than those in MIL-HDBK-217B.

5.1 Connector Failure Rate Prediction Models

5.1.1 Connector Base Failure Rate (λ_{b}) Evaluation

Failure rates were calculated for connectors in each environment for which sufficient data had been collected. Each set of connectors was categorized within environment by type of insert material used. Operating failure rates for each set of data were calculated at point estimate (where failures had occurred) and at the upper 60 percent confidence level in every case. Results of these calculations are summarized in Table 4. The failure rates calculated at the 60 percent confidence level are used for comparisons and further computations presented in this report.

TABLE 4

Observed Failure Rate (Failures/Million Hours)

Environment	Insert Type			
	A	B	C	D
Ground fixed	-	0.0054	0.0278	0.263
Naval sheltered	-	0.029	-	0.272
Airborne uninhabited	-	0.19	0.148	0.318
Airborne inhabited	-	0.369	-	-
Space flight	-	0.014	0.16	0.035

The present mathematical model used to determine the predicted failure rate of a conmertor as shown in Section 2.11 of MIL-HDBK-217B is:

$$
\lambda_{p}=\lambda_{b}\left(\pi_{E} x \pi_{p}\right)+N \lambda c y c
$$

where:
$\lambda_{b}=$ base failure rate
"E = environmental factor

```
#
N = number of active pins
```

$\lambda c y c=$ cycling rate factor.
Using this equation and substituting parameters from operating field data, a typical failure rate is calculated for a connector ground fixed enviroument having a " B " type insert material, and 50 active pins. The ambient temperature is $25^{\circ} \mathrm{C}$, and the current through che 20 gage contact is 2.5 amperes. Cycling rate is less than 40 cycles/1000 hours.

Constants are derived from MIL-HDBK-217B are:
$\pi_{E}=4.0$ (for ground fixed environment)
$\pi_{\mathrm{p}}=9.5$ (for 50 active pins)
$\lambda_{b}=0.009 \times 10^{-6}$ (for " B " material at $30^{\circ} \mathrm{C}$)
$\lambda c y c=0$ (for cycling rate <40 cycles $/ 1000$ hours).
$\mathrm{N}=50$

Substituting these constants into the failure rate model results in:

$$
\begin{align*}
& \lambda_{p}=0.009 \times 10^{-6}(4 \times 9.5)+0 \tag{50}\\
& \lambda_{p}=0.342 \times 10^{-6} \text { failures/hour. }
\end{align*}
$$

This value is the predicted failure rate for the given connector.
Failure rates were calculated in the same manner for each of the categories of connectors listed in Table 4. Predicted failure rates for these connectors are shown in rable 5 .

TABLE 5
Predicted Failure Rates From MIL-HDBK-217B
(Failures/Million Hours)

Enviornment	Insert Type			
	A	B	C	D
iround fixed	-	0.342	0.32	3.16
Naval sheltered	-	0.404	-	3.78
Airborne uninhabited	-	3.39	0.467	6.03
Airborne inhabited	-	0.608	-	-
Space flight	-	0.076	0.16	0.655

Comparing predicted Eailure rate to observed failure rate shows that the observed field failure rate was less than the predicted failure rate from MIL-HDBK-217B in each case except one. These comparisons are shown in Table 6 and indicate improvement ranging from 1.0 to 63.3. The demonstrated improvement in the reliability of each set of connectors implies that the base failure rate has been improved. Using the ground fixed environment as a normalizing value, the improvement factor is 16.0 . Thus, the scaling factor A in the basz failure rate equation ($\lambda_{b}=A e^{x}$) is reduced from 0.324 to 0.02 for "A" type insert material, from 6.9 to 0.431 for " B " type insert materfal, from 3.06 to 0.19 for " C " type insert material, and from 12.3 to 0.77 for " D " type insert material.

TABLE 6
Ratio of Predicted Faj.Lure Rates to Observed Failure Rates

Environment	Insert Type			
	A	B	C	D
Ground fixed	-	63.3	15.20	12.74
Naval sheltered	-	13.9	-	28.00
Airborne uninhabited	-	21.0	3.15	18.97
Space flight	-	5.43	1.0	18.7

5.1.2 Connector Cycling Factor (π_{K}) Evaluation

Connectors ate subjected to stress and wear with each mating or unmating of the connector. These conditions relate directly to failure rate of the connector.

In the prest:r mathematical model for connectors in Section 2.11 of MIL-HDBK-217B, failure rate due to mating and unmating of connectors is added to the connector failure rate and depends on the cycling rate and number of active pins in the connector. The cycling failure rate is described as.

$$
\lambda c y c=0.001 \mathrm{e}^{(\mathrm{f} / 100)}
$$

where f is the cycling rate in cycles/1000 hours (Table 7).
This tactor is ignoied for connectors experiencing cycling rates ≤ 40 cycles/ 1000 hours.

Evaluation of cycling data (Reference 2) on all types of connectors showed a defiuite relationship between mating/unmating cycles and environmental usage of the connector. In the space flight environment, one connection was assumed, and a multiplying factor for the cycling of connectors was developed. This factor was labeled π_{K}. The base factor π_{k} for space flight was set co 1.0. Table 8 adicates Ehe frequency of mating/

TABLE 7
Cycling Failure Rate Versus Cyclirg Rate from Existing MIL-HDBK-217E

f	λ_{c}	f	λ_{c}
10	0.0011	260	0.0135
20	0.0012	270	0.0149
30	0.0013	280	0.0164
40	0.0015	290	0.0182
50	0.0016	300	0.0201
$j 0$	0.0018	310	0.0222
70	0.0620	320	0.0245
80	0.0022	330	0.0271
90	0.0025	340	0.0300
100	0.0027	350	0.0331
110	0.0030	360	0.0366
120	0.0033	370	0.0404
130	0.0037	380	0.0447
140	0.0041	390	0.0494
150	0.0045	400	0.0546
160	0.0050	410	0.0603
170	0.0055	420	0.0667
180	0.0060	430	0.0737
190	0.0067	440	0.0815
200	0.0074	450	0.0900
210	0.0082	460	0.0995
220	0.0090	470	0.1099
230	0.0100	480	0.1215
240	0.0110	490	0.1343
250	0.0122	500	0.1484

where λ_{c} is failures; million hours and f is cycling rate in cycles/ 1000 hours.

TABLE 8

Frequency of Mating/ Connecting Cycles

Environment	Operatiny Hours Between Mating
Space flight	2000
Naval	2000
Ground	200
Airborne	20

unmating cycles determined from the evaluation of cycling data. The frequency of cycling connectors is set at C for space flight and increases to once every 20 operating hours for airborne equipment. Evaluation of predicted failure rates íreduced by a factor of 16) indicates a range of from 1.0 to 4.0 for π_{K}. This range was determined from observation of the cycling rate of the connectors and the effects of the cycling rate on the predicted fallure rates. Table 9 lists the π_{K} factors derived in terms of mating cycles/1000 hours. The new factor includes all cycling rates. From 0 to 1 cycle every 20,000 operating hours, the factor π_{K} is 1.0 , not affecting the base failure rate. Between 1.0 cycle every 20,000 hours and 1 cycle every 2000 hours, π_{k} becomes 1.5 . Between 1 cycle every 2000 hours and 1 cycle every 200 hours, π_{K} is 2.0. From 1 cycle every 200 hours to 1 cycle every 20 hours, π_{K} is 3.0 . For cycling rates above 50 cycles/ 1000 hours, the π_{K} is 4.0 .

TABLE 9

$$
\text { Coupling Factors } \pi_{K}
$$

Cycles/1000 Hours	$\pi^{\prime} K$
$0-0.05$	1.0
$0.05-0.5$	1.5
$0.5-5.0$	2.0
$5.0-50.0$	3.0
>50	4.0

5.1.3 Connector Pin Density Factor (π_{p}) Evaluation

π_{p}, as determined in MIL--1DBK-217B, is a factor which increases exponeftially as che number of active pins in the connector increase. π_{p} modifies the base failure rate. The equation used to determine π_{p} is:

$$
\pi_{p}=e\left(\frac{N-1}{N_{0}}\right)^{q}
$$

where:
$N_{0}=10$
$q=0.51064$
$\mathrm{N}=$ number of active pins.
\#p was evaluated for its contribution to the total failure race prediction and was found to be not substantially changed. Tite unchanged value of π_{p} in the base model is therefore valid.

5.1.4 Connector Failure Rate Model

With development of the π_{K} factor as a multiplicative modifying factor, a new failure rate mode] was dêveloped:

$$
\lambda_{p}=\lambda_{b}\left(\pi_{E} \times \pi_{P} \times \pi_{K}\right)
$$

where:
$\lambda_{p}=$ predicted failure rate
$\lambda_{b}=$ base failure rate
$\pi_{E}=$ environmental factor
$\pi_{p}=$ pin density factor
$\pi_{K}=$ cycling rate factor.
Using the developed failure rate model, failure rates were calcula;ed in the same environmental categories as listed in Table 1 . Table 10 lists calculated failure rates and compares them to the observed failure rates from field data.

TABLE 10
Observed Fa:lure Rates versus Predicted Failure

insert Type	Environment	Failure Rate	
		Observed $\left(x \quad 10^{-6}\right)$	$\begin{aligned} & \text { Predicted } \\ & \left(\times 10^{-6}\right) \end{aligned}$
B	Ground fixed	0.0054	0.043
C	Ground fixed	0.0278	0.044
D	Ground fixed	0.263	0.35
B	Navail sheltered	0.029	0.037
D	Naval sheltered	0.272	0.383
B	Airborne uninhatited	0.19	0.635
C	Airborne uninhabited	0.148	0.296
D	Airborne urinhabited	0.318	0.968
B	Airborne is habited	0.369	0.109
B	Space flinht	0.014	0.01 -
C	Space flight	0.16	0.0055
1	Space flight	0.035	0.02

A typical calculation is performed for the " D " type insert connector in the ground fixed environment. Ambient temperature is $30^{\circ} \mathrm{C}$, and current stress through the contacts is assumed to be 50 percent. Active pin density is 30 pins, and the cycling rate is one mating/unmating cycle every 200 operating hours. These constants apply:
$\pi_{E}=4.0$
$\pi_{P}=5.6$
$\pi_{K}=2.0$
$\lambda_{b}=0.0078 \times 10^{-6}$ failures/hour.

Substitutirg the constants into the mathematical model equation results in:
$\lambda_{p}=0.0078 \times 10^{-6}(4.0 \times 5.6 \times 2.0)$
$\lambda_{p}=0.35 \times 10^{-6}$ fallures/hour

5.1.5 Connector Environmental Factor (π_{E})

Examination of failure rates determined using the new mathematical model showed that the environmental factors required further adjustment. Comparison of the failure rates in the ground fixed environment indicated a reduction of the πE factor should be from 4.0 to 2.0 . The naval sheltered environmental factor was found to drop from 4.0 to 3.0. Airborne uninhabited values showed a decrease in πE from 10.0 to 5.0. A.rborne inhabited values showed an increase of 4.0 to 5.0. Space flight values indicated a decreasing π_{E} factor; however, a review of collected data from the space flight environment showed a minimum amount of data has been collected in this area. Since space flight is a benign environment and there is a minimum of connector mating and unmating, more collected data was expected to show an improved failure rate. Thus, the environmental factor for space $f l i g h t$ should remain at 1.0 .

The present table in MIL-HDBK-217B lists an environmental factor for lower quality connectors in comparison to military-type connectors. Present values show a quality factor of $1 / 10$ in the ground benign environment, reducing to a factor of $1 / 2$ for the most severe environment (missile launch).

Envirommental factors for ground benign environments have littie effect on connectors, while factors associated with missile launch greatly affect lower quality connectors. Therefore, the π_{E} factors for lower quality connectors were revised for each environment to reflect more accurately the severity of the environment with regard to the connector.

The airborne environment was expanded to four categories to separate supersonic aircraft from subsonic aircraft. It is generally accepted that supersonic aircraft are exposed to higher levels of shock, vibration, and acouscic noise, and to a more severe operating temperature range than equipment o.l other aircraft. Mission duration is usually much shorter for supersonic aircraft.

In this study, only data from the subsonic aircraft equiprent were collected. From other studies (References 3 and 4), analyses of data have been made and a factor of $2: 1$ for supersonic versus subsonic environmental stress was developed. This value was determined to be a good general factor to differentiate between subsonic and supersonic aircraft. The tean supersonic aircraft includes fighters and interceptors, while the subsonic category encompasses transport, heavy bomber, cargo, and patrol aircraft. The sevised environmental factors are shown in Table 11.

TABLE 11
Reviscd Environmental Factors (π_{E})

Environment	"E	
	M!L-SPEC	$\begin{aligned} & \text { Lower } \\ & \text { Quality } \end{aligned}$
Ground benign	1.0	1.5
Space flight	1.0	1.5
Ground fixed	2.0	4.0
Maval shaltered	3.0	6.0
Airbornc innabited F	5.0	15.0
Airborne uninhabited T	5.0	15.0
Ground mobile	5.8	15.0
Maval unsheitered	9.0	19.0
Airborne inhabited F	10.0	30.0
Airbome unimhablted F	10.0	30.0
Missile launch	15.0	30.0

5.1.6 Temperature Rise in RF Connectors

Table 2.11-4 of MIL-HDE: -217B presently derives the insert temperature rise for connectors by determining current in the contacts and temperature rise based on contact size and current. This approach is not applicable to RF connectors. RF connectors do not have a sl.gnificant heat rise due to current flow. Therefore, a standard temperature rise of $5^{\circ} \mathrm{C}$ was added to the ambient temperature for $R F$ connectors to determine λ_{b} (base failure rate).

5.1.7 Validation of Revised Failure Ratez for Connertors

Failure rates for eart - gory of conncctors shown in Table 1 were calculated using the new marnu: *..al model and modified factors:

1 Ground fixed, insert type B

$$
\begin{aligned}
\lambda_{p}= & \lambda_{b}\left(\pi_{E} \times \pi_{P} \times \pi_{k}\right) \\
\lambda_{b} & =0.00056 \text { (for } B \text { material at } 30^{\circ} \mathrm{C} \text {) } \\
\pi_{E} & =2.0 \text { (ground fixed) }
\end{aligned}
$$

$$
\begin{aligned}
\pi_{p} & =9.5 \text { (for } 50 \text { pins) } \\
\pi_{K} & =2.0 \text { (for } 5 \text { cycles } / 1000 \text { hours) } \\
\lambda_{p}= & 0.005 \dot{n}(2.0 \times 9.5 \times 2.0)=0.021 \times 10^{-6} \text { failures } / \text { hour }
\end{aligned}
$$

$\underline{2}$ Ground fixpd, insert type C

$$
\begin{aligned}
\lambda_{p}= & \lambda_{b}\left(\pi_{E} \times \pi_{P} \times \pi_{K}\right) \\
\lambda_{b} & \left.=0.0041 \text { (for } C \text { material at } 30^{\circ} \mathrm{C}\right) \\
\pi_{E} & =2.0 \text { (ground fixed) } \\
\pi_{P} & =1.36 \text { (for } 2 \text { pins) } \\
\pi_{K} & =2.0 \text { (for } 5 \text { cycles } / 1000 \text { hours) } \\
\lambda_{P}= & 0.0041(2.0 \times 1.36 \times 2.0)=0.022 \times 10^{-6} \text { failures/hour }
\end{aligned}
$$

3 Ground fixed, insert type D

$$
\begin{aligned}
\lambda_{p}=\lambda_{b} & \left(\pi_{E} \times \pi_{P} \times \pi_{K}\right) \\
\lambda_{b} & =0.0078 \text { (for } D \text { material at } 30^{\circ} \mathrm{C} \text {) } \\
\pi_{E} & =2.0 \text { (ground fixed) } \\
\pi_{P} & =5.6 \text { (for } 30 \text { pins) } \\
\pi_{K} & =2.0(5 \text { cycles } / 1000 \text { hours) } \\
\lambda_{p}= & 0.0078(2.0 \times 5.6 \times 2.0)=0.1 / 5 \times 10^{-6} \text { failures/hour }
\end{aligned}
$$

4 Naval sheltered, insert type B

$$
\begin{aligned}
\lambda_{p}=\lambda_{b} & \left(\pi_{E} \times \pi_{P} \times \pi_{K}\right) \\
\lambda_{b} & =0.00075 \text { (for B type material at } 40^{\circ} \mathrm{C} \text {) } \\
\pi_{E} & =3.0 \text { (Naval sheltered) } \\
\pi_{P} & =8.42 \text { (for } 45 \text { pins) } \\
\pi_{K} & =1.5 \text { (for } 0.5 \text { cycles } / 1000 \text { hours) } \\
\lambda_{p}= & 0.00075(3.0 \times 8.42 \times 1.5)=0.028 \times 10^{-6} \text { failures } / \text { hour }
\end{aligned}
$$

5 Naval sheltered, insert type D

$$
\lambda_{F}:=\lambda_{b}\left(\pi_{E} \times \pi_{P} \times \pi_{K}\right)
$$

$$
\begin{aligned}
& \lambda_{\mathrm{L}}=0.0099 \text { (for } \mathrm{D} \text { type material at } 40^{\circ} \mathrm{C} \text {) } \\
& \pi_{\mathrm{E}}=3.0 \text { (naval sheltered) } \\
& \pi_{\mathrm{P}}=6.46 \text { (for } 35 \text { pins) } \\
& \pi_{\mathrm{K}}=1.5 \text { (for } 0.5 \text { cycles } / 1000 \text { hours) } \\
& \lambda_{\mathrm{p}}=0.0099(3.0 \times 6.46 \times 1.5)=0.288 \times 10^{-6} \text { failures } / \text { hour }
\end{aligned}
$$

6 Airborne uninhabited, transport, insert type B

$$
\begin{aligned}
\lambda_{p}= & \lambda_{b}\left(\pi_{E} \times \pi_{P} \times \pi_{K}\right) \\
\lambda_{b} & =0.00075 \text { (for B type material at } 40^{\circ} \mathrm{C} \text {) } \\
\pi_{E} & =5.0 \text { (airborne uninhabited, transport) } \\
\pi_{P} & =21.19 \text { (tor } 90 \text { pins) } \\
\pi_{K} & =4.0 \text { (for }>50 \text { cycles } / 1000 \text { hour: }) \\
\lambda_{p}= & 0.00075(5.0 \times 21.19 \times 4.0)=0.318 \times 10^{-0} \text { failures/hour }
\end{aligned}
$$

1 Airborne uninhabited, transport, insert material C
$\lambda_{p}=\lambda_{b}\left(\pi_{E} \times \pi_{P} \times \pi_{K}\right)$
$\lambda_{b}=0.0054$ (C type material at $45^{\circ} \mathrm{C}$)
$\pi_{E}=5.0$ (airborne uninhabited, transport)
$\pi_{p}=1.36$ (for 2 pins)
$\pi_{K}=4.0$ (for cycling 750/1000 hours)
$\lambda_{p}=0.0054(5.0 \times 1.36 \times 4.0)=0.147 \times 10^{-6}$ failures $/$ hour
$\underline{8}$ Airborne uninhabited, transport insert material D

$$
\begin{aligned}
& \lambda_{P}= \lambda_{b}\left(\pi_{E} \times \pi_{P} \times \pi_{K}\right) \\
& \lambda \\
&\left.=0.0112 \text { (for } D \text { type material at } 45^{\circ} \mathrm{C}\right) \\
& \pi_{E}=5.0 \text { (airborne uninhabited transport) } \\
& \pi_{P}=2.16 \text { (for } 7 \text { pins) } \\
& \pi_{K}=4.0 \text { (for cyciing }>50 / 1000 \text { hours) } \\
& \lambda_{P}= 0.0112(5.0 \times 2.16 \times 4.0)=0.484 \times 10^{-6} \text { failures/hour }
\end{aligned}
$$

y Airborne inhabited, transport, insert material B

$$
\begin{aligned}
\lambda_{p}= & \lambda_{b}\left(\pi_{E} \times \pi_{P} \times \pi_{K}\right) \\
\lambda_{b} & =0.00106 \text { (for B type material at } 55^{\circ} \mathrm{C} \text {) } \\
\pi_{E} & =5.0 \text { (for airborne inhabited, transport) } \\
\pi_{p} & =6.46 \text { (for } 35 \text { pins) } \\
\pi_{K} & =4.0 \text { (for cycling }>50 / 1000 \text { hours) } \\
\lambda_{p}= & 0.00106(5.0 \times 6.46 \times 4.0)=0.137 \times 10^{-6} \text { failures/hour }
\end{aligned}
$$

10 Space ilight, insert material B

$$
\begin{aligned}
\lambda_{p}=\lambda_{b} & \left(\pi_{E} \times \pi_{P} \times \pi_{K}\right) \\
\lambda_{b} & =0.00056 \text { (for B type material at } 30^{\circ} \mathrm{C} \text {) } \\
\pi_{E} & =1.0 \text { (for space flight) } \\
\pi_{P} & =8.42 \text { (for } 45 \text { pins) } \\
\pi_{K} & =1.0 \text { (for } 1 \text { cycle } / 1000 \text { hours) }
\end{aligned}
$$

$$
\lambda_{p}=0.00056(1.0 \times 8.42 \times 1.0)=0.0047 \times 10^{-6} \text { faillures } / \text { hour }
$$

11 Space flight, insert material C

$$
\begin{aligned}
& \lambda_{P}=\lambda_{b}\left(\pi_{E} \times \pi_{p} \times r_{K}\right) \\
& \lambda_{b}=0.0041 \text { (for } C \text { ty!e naterial at } 30^{\circ} \mathrm{C} \text {) } \\
& \pi_{E}=1.0 \text { (for space flight) } \\
& \pi_{P}=1.36 \text { (for } 2 \text { pi.ss) } \\
& \pi_{K}=1.0 \text { (for } 1 \text { cycle/ } 1000 \text { hours) } \\
& \lambda_{P}= 0.0041(1.0 \times 1.36 \times 1.0)=0.0054 \times 10^{-6} \text { failares/hour }
\end{aligned}
$$

12 Space flight, insert material D

$$
\begin{aligned}
\lambda_{p}=\lambda_{b} & \left(\pi_{E} \times \pi_{P} \times \pi_{K}\right) \\
\lambda_{b} & =0.0078 \text { (for } \mathrm{D} \text { type material at } 30^{\circ} \mathrm{C} \text {) } \\
\pi_{E} & =1.0 \text { (for space flight) } \\
\pi_{P} & =2.58 \text { (for } 10 \text { pins) } \\
\pi_{K} & =1.0 \text { (for } 1 \text { cycle } / 1000 \text { hours) }
\end{aligned}
$$

$$
\lambda_{p}=0.0078(1.0 \times 2.58 \times 1.0)=0.02 \times 10^{-6} \text { failures/heur }
$$

These values are summarized and compared to the observed failire rates in Table 12 ,

TARLE 12
Observed Failure Rates versus Predicted Ezilure Rates
Using New Model and New Environmental Factors

Insert Type	Environment	Failure Rate	
		Obseived $\left(x 10^{-6}\right)$	Predicted $\left(x 0^{-6}\right)$
B	Ground fixed	0.0054	0.021
C	Ground fixed	0.0278	0.022
0	Ground fixed	0.263	0175
B	Naval sheltered	0.029	0.028
0	Naval sheltered	0.272	0.287
${ }^{6}$	Airborne uninhabited	0.19	0.317
C	Airborne uninhabited	0.148	0.146
0	Airborne uninhabited	0.318	0.418
B	Airborne inhabited	0.369	C. 137
B	Space flight	0.014	0.0047
C	Space flight	0.16	0.0055
0	Space flight	0.035	0.02

5.2 Relay Failure Rate Prediction Models

5.2.1 Relay Base Failure Rate (λ_{b}; Evaluation

For relays in each environment, failure rates were calculated by categories where sufficient data had been collected. Each group of relays is cacegorized fither by MIL-SPCC classification or part type, as applicable. Operating failure rates for each set of data were salculated at point estimates (where failures had occurred) and at the upper 60 percent confidence level in every case. Pesults of these calculations appear in Table 13. Failure rates calculated at the upper 60 percent confidence level were used for comparisons and fu"sher computatiuns.

Zine present mathematical model to predict fajlure rate of a relay appears in Secticn 2.9 of MIL-HDBK-217B:

$$
\therefore_{\rho}=\lambda_{b}\left(\pi_{E} \times \pi_{c} \times \pi_{c y c} \times \mu_{F}\right)
$$

TABLE 13
Observed Failure Rates for Relays (Failures/Million Hours)

Environment	Relay Type	Failure Rate (x 10^{-6} hours)
Ground fixed	Geineral purpose	0.23
Griund fixed	High voltage	0.198
Ground fixed	Reed	1.19
Ground fixed	Thermal	0.676
Ground mobile	Armature (lower quality)	0.425
Ground benign	General purpose	0.243
Naval sheltered	MIL-R-6015	0.786
Naval sheltered	General purpose	0.406
Naval sheltertd	Thermal	0.351
Airborne inhabited	MIL-R-39016	0.058
Airborne inhabited	MIL-R-6016	0.086
Space flight	Latching relay	0.09

where:
$\lambda_{p}=$ predicted fallure rate
$\lambda_{b}=$ base fallure rate
$\pi_{E} \quad$ = environmental factor
$\pi_{c}=$ contact form and quantity factor
$\#_{c y c}=$ cycling rate factor
$\pi_{F}=$ relay applivation anc sonstruction type factor.
Using this equation and substituting parameters from operating field data, a typical failure rate is calculated for the relay (MIL-C-39016) in an airboine inhahited enviromment. The relay is rated at $125^{\circ} \mathrm{C}$, and is a double-pole double-throw configuration. Seven constants appiy:

```
#
#E = 8.0 (for airborne inhabited)
TF = 5.0 (for balanced armature)
#cyc}=0.1 (less than 1 cycle/hour
\primet = 0.0065 < 100
```

$$
\begin{aligned}
& \pi_{\mathrm{L}}=1.48(50 \text { percent stress }) \\
& \lambda_{\mathrm{b}}=\left(\lambda_{\mathrm{T}} \times \pi_{\mathrm{L}}\right) \\
& \lambda_{\mathrm{b}}=0.0101 \times 10^{-6} \text { failures/hour } \\
& \lambda_{\mathrm{p}}=0.0101 \times 10^{-6}(8.0 \times 3.0 \times 0.1 \times 5.0)=0.121 \times 10^{-6} \text { failures/hour. }
\end{aligned}
$$

This value is the predicted failure rate for the relay given. In the same manner, failure rates were calculated for each relay type and environment listed fa Table 13. Predicted failure rates are shown in Table 14.

TABLE 14
Predicted Failure Rates from MIL-HDBK-217B
(Failures/Million Hours)

Environment	Predicted Failure Rate				
(x $10-6$ hours $)$		$	$	Ground fixed	Relay Type
:---	:---				

Predicted failure rates were compared with observed failure rates, and these ratios are shown in Table 15. Examination of the data does not show a clear cut trend of improvement or degradation of the failure rate. Consequently, the base failure rate, λ_{b}, has not been changed in MIL-HDBK217B.

5.2.2 Environmental Factor (π_{E}) Evaluation

Data were collected for the relay study using six environments:

- Ground fixed
- Ground mobile
- Ground benign
- Naval sheitered
- Airborne inhabited
- Space flight

One type of relay, general purpose, exhibited data in three environments that could be used for evaluation of environmental factors. In the ground fixed environment, the predicted failure rate for general purpose relays was 1.17 times the observed value, and in the ground benign environment, the predicted failure rate was 1.5 times the observed failure rate. In naval sheltered environment, the predicted failure rate was 3.1 times the observed value, indicating a reduction of π_{E} for naval slieltered. The environmental factor for the naval sheltered environment has been 9.0 and is reduced to 5.0 .

TABLE 15

Ratio of Predicted Failure Rates to Observed Failure Rates

Environment	Relay Type	Ratio of Predicted to Observed Failure Rates
Ground fixed	General purpose	1.17
Ground fixed	High voltage	1.09
Ground fixed	Reed	0.18
Ground fixed	Thermal	4.0
Ground mobile	Armature (lower quality)	19.11
Ground benign	General purpose	1.5
Naval sheltered	MIL-R-6016	1.4
Naval sheltered	General purpose	3.1
Naval sheltered	Thermal	35.9
Airborne inhabited	MIL-R-39016	2.08
Airborne inhabited	MIL-R-6016	2.56
Space flight	Latching relay	1.46

Data for relays specified by MIL-R-6016 are shown in two environments, naval sheltered and airborne inhabited. Since the naval sheltered environment values were reduced by 1.8 , the ratio of predicted to observed failure rates for MIL-R-6016 relays in the naval sheltered environment is reduced from 1.6 to 0.9 . The ratio of predicted to observed failure rates for the airborne inhabited environment is 2.56 , indicating that π_{E} (which is 8.0) must be reduced by factor of 2 to 4.0 .

One set of data exists for the lower quality armature type relay in the ground mobile environment. Based on a ratio of predicted to observed failure rate of 19 , the factor π_{F} must be reduced by the same factor as naval sheltered and airborne inhabited. This adjustment reduces the π_{p} factor for ground mobile to 5.0 .

The aircraft environment was expanded to four categories to separate supersonic aircraft from other types. It is generally accepted that equipment on supersonic aircraft are exposed to higher levels of shock, vibration, and acoustic noise, and to a more severe operating temperature range than equipment on other aircraft. Mission duration is usually much shorter for supersonic aircraft. In this study, only data from the subsonic aircraft equipment were collected. From other studies, (References 3 and 4) analyses of data have been made, and a facter of $2: 1$ for supersonic versus subsonic environmental stress was developed. This value was determined to be a good general factor to differentiate between subsonic and supersonic aircraft. The term subsonic aircraft includes fighters and interceptors, while the subsonic category encompasses transport, heavy bomber, cargo, and patrol aircraft.

No other data justify further changes in environmental factors. These factors are summarized in Table 16.

TABLE 16
Environmental Factors π_{E} for Relays

Environment	π_{E}	
	MIL SPEC	Lower Quality
Ground benign	1.0	2.0
Space flight	1.0	2.0
Ground fixed	2.0	4.0
Airborne inhabited T	4.0	8.0
Naval sheltered	5.0	15.0
Ground mobile	5.0	15.0
Airborne inhabited	8.0	16.0
Naval unsheltered	11.0	30.0
Airborne uninhabited T	12.0	30.0
Airborne uninhabited	24.0	60.0
Missile launch	100.0	300.0

5.2.3 Failure Rate Factor (π_{F}) Evaluation for Relay Application and Construction Type

Environmental factor reductions were calculated intc predicted failure rates for relays, and predicted rates were compared to observed failure rates using the new π_{E} factors. These values are summarized in Table 17. Four categories of latching relays (armature, lower quality, thermal, and general purpose) exhibited fallure rate ratios with predicted higher than observed. One category (reed switch) exhibited a predicted failure rate lower than observed. The factor for relay application and construction type required modification in each of these categories. Five changes were made in the π_{F} factor:

TABLE 17

Ratio of Predicted to Observed Failure Rates
 Using Modified π_{E} Factors

	Environment	Ratio of Predicted to observed Failure Rates
Ground fixed	General purpose	1.17
Ground fixed	High voltage	1.09
Ground fixed	Reed	0.18
Ground fixed	Thermal	4.0
Ground mobile	Armature (lower quality)	9.5
Ground benign	General purpose	1.5
Naval sheltered	MIL-R-6016	0.89
Naval sheltered	General purpose	2.6
Naval sheltered	Thermal	17.9
Airborne inhabited	MIL-R-39016	1.04
Airborne inhabited	MIL-R-6016	1.78
Space flight	Latching relay	1.46

- Decrease the factor for high voltage (ceramic) from 10 to 5
- Decrease the factor for thermal time delay relays from 50 to 10
- Decrease the factor for armature relay (lower quality) by a factor of 1.5
- Decrease the factor for latching relays from 6 to 4
- Increase the factor for reed relays from 2 to 6 .

Table 18 sumarizes the π_{F} factors as modified.

5.2.4 Evaluation of Quality Factor (Π_{Q}) for Established Reliability Relays

Relays specified by MLL-R-39016B, Established Reliability Electromagnetic Relays, are designated in four categories for failure rate level designation (levels L, M, P, R). The designations are included as a suffix on the part numbers, i.e., MIL-R-39016/10-001M. The four levels of failure rate designation require a factor ($\mathrm{N} Q$) to be added to the failure rate model for relays to modify failure rates of established reliability (ER) relays, based on their failure rate level. The only daia collected on ER relays in this study was at the M level. The fajlare rate calculations were made on this level relay, thus the π_{Q} factor for level MER relays should be equal to i. 0 . Uther MILSPEC relays should be set equal to 1.0 also, based on the failure rate calculations made in the previous sections. No other data on other levels of ER relays were collected, therefore the levels set in other portions of MIL-HDBK217B apply. The factor of improvement between levels for ER devices in both the resistor and sepacitor sections is 3 , and "O values for relays are set accordingly. Values of " Q are shown in Table 19.

TABLE 18
Bailure Rate Factor π_{F} for Relay Application and Construction Type

Contact Rating	Application Type	Construction Type	π_{F}	
			MIL SPEC	Lower Quality
Signal current (low mv and ma)	Dry circuit	Ar: 'ure 'long) Diy reed Mercury wetted Magnetic latching Balanced armature Solenoid	$\begin{aligned} & 4 \\ & 6 \\ & 1 \\ & 4 \\ & 7 \\ & 7 \end{aligned}$	$\begin{array}{r} 8 \\ 18 \\ 3 \\ 8 \\ 14 \\ 14 \end{array}$
0-5 Amp	General purpose	Armature (long and short) Balanced armature Solenoid	$\begin{aligned} & 3 \\ & 5 \\ & 6 \end{aligned}$	$\begin{array}{r} 6 \\ 10 \\ 10 \end{array}$
	$\begin{aligned} & \text { Sensitive } \\ & (0-100 \mathrm{mw}) \end{aligned}$	Armature (long and short) Mercury wetted Magnetic latching Meter movement Balanced arinature	$\begin{array}{r} 5 \\ 2 \\ 6 \\ 100 \\ 10 \end{array}$	$\begin{array}{r} 10 \\ 6 \\ 12 \\ 100 \\ 20 \end{array}$
	Polarized	Armature (short) Meter movement	$\begin{array}{r} 10 \\ 100 \end{array}$	$\begin{array}{r} 20 \\ 100 \end{array}$
	Vibrating reed	Dry reed Mercury wetted	6 1	12 3
	High speed	Armature (balanced and short) Ory reed	$\begin{array}{r} 25 \\ 6 \end{array}$	NA NA
	Thermal time delay	Simetal	10	20
	Eiectronic time delay (nontherma:;		9	12
	Latching (magnetic)	Dry reed Mercury wetted Galanced armature	10 5 5	$\begin{aligned} & 20 \\ & 10 \\ & 10 \end{aligned}$
5-20 Amp	Hion voltage	$\begin{aligned} & \text { Vacuum (giass) } \\ & \text { Vacuum (ceranic) } \end{aligned}$	$\begin{array}{r} 20 \\ 5 \end{array}$	$\begin{aligned} & 40 \\ & 10 \end{aligned}$
	Medium power	Armature (!org and shert) Mercury wetted Magnetic latching Mechanical latching Balanced armature Sclenoid	$\begin{aligned} & 3 \\ & 1 \\ & 2 \\ & 3 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 6 \\ & 3 \\ & 6 \\ & 9 \\ & 6 \\ & 6 \end{aligned}$
25-6.00 Amp	Contactors (high current)	Arnature (short) Mechanical latching Balanced armature Solenoid	$\begin{array}{r} 7 \\ 12 \\ 10 \\ 5 \end{array}$	14 24 20 10

TABLE 19

Quality Factor π_{Q} for Established Kellakility Relays

FailurL Rate Level	π_{0}
L	1.5
M	1.0
P	0.3
R	0.1

5.2.: Validation of Revised Factors for Relays

Failure rates for each c : :he categories of relays shown in Table 2 were calculated using the modified π_{E} and π_{F} factors. Sample calculations, compared in Table 20 to observed values, show the methodology employed:

1 Ground fixed, general purpose relay
$\pi=30^{\circ} \mathrm{C}$
$\lambda_{p}=\lambda_{b}\left(\pi_{E} \times \pi_{c} \times \pi_{c y c} \times \pi_{F} \times \pi_{Q}\right)$
$\lambda_{b}=\lambda_{T} \pi_{L}$
$\lambda_{\mathrm{T}}=0.0061 \times 10^{-6}$ (based on $30^{\circ} \mathrm{C}$)
$\pi_{L}=1.48$ (based on 50 percent stress)
$\lambda_{b}=0.009 \times 10^{-6}$ faillures/hour
$\pi_{\mathrm{E}}=2.0$ (ground fixed)
$\pi_{c}=3.0$ (double-pole, double-throw)
$\pi_{Q}=1.0$ (quality factor)
$\pi_{F}=5.0$ (general purpose, balanced armature)
$\pi_{\text {cyc }}=1.0$ ($10 \mathrm{cyc} 1 \mathrm{es} / \mathrm{hour}$)
$\lambda_{\mathrm{p}}=0.27 \times 10^{-6}$ failures/hour
$\underline{2}$ Ground fixed, high yoltage relay (lower quality)
$\mathrm{T}=30^{\circ} \mathrm{C}$
$\lambda_{p}=\lambda_{b}\left(\pi_{E} \times \pi_{c} \times \pi_{c y c} \times \pi_{F} \times \pi_{Q}\right)$

```
\lambda
\lambda}\mp@subsup{\textrm{T}}{}{=}=0.0061\times1\mp@subsup{0}{}{-6}(\mathrm{ based on }3\mp@subsup{0}{}{\circ}\textrm{C}
\pi
\lambda
\pi}\mp@subsup{\textrm{E}}{\textrm{E}}{=4.0 (ground fixed)
\pi
#
\pi
#
\lambda
3 Ground fixed, reed relay, lower quallty
T}=3\mp@subsup{0}{}{\circ}\textrm{C
\mp@subsup{\lambda}{p}{}}=\mp@subsup{\lambda}{b}{}(\mp@subsup{\pi}{E}{}\times\mp@subsup{\pi}{c}{}\times\mp@subsup{\pi}{cyc}{}\times\mp@subsup{\pi}{F}{}\times\mp@subsup{\pi}{Q}{}
\lambda
\mp@subsup{\lambda}{T}{}}=0.0061\times1\mp@subsup{0}{}{-6}\mathrm{ (based on }3\mp@subsup{0}{}{\circ}\textrm{C}
\pi
\lambda
\pi}\mp@subsup{E}{}{=}=4.0\mathrm{ (ground fixed)
"c = 1.0 (based on single-pole, single-throw)
\pi
#cyc}=1.0 (based on 10 cycles/hour)
\pi}\mp@subsup{Q}{Q}{}=1.0 (for quality facror
\lambda
4 Ground fixed, thermal, MLL-SPEC
T = 30 %
\mp@subsup{\lambda}{p}{}}=\mp@subsup{\lambda}{D}{}(\mp@subsup{\pi}{E}{}\times\mp@subsup{\pi}{c}{}\times\mp@subsup{\pi}{cyc}{c}\times\mp@subsup{\pi}{F}{}\times\mp@subsup{\pi}{Q}{}
\lambda
```

$$
\begin{aligned}
& \lambda_{\mathrm{T}}=0.0061 \times 10^{-5}\left(\text { based on } 30^{\circ} \mathrm{C}\right) \\
& \pi_{L}=1.48 \text { (based on } 50 \text { percent stress) } \\
& \lambda_{b}=0.009 \times 10^{-6} \text { failures/hour } \\
& \pi_{E}=2.0 \text { (ground fixed) } \\
& \pi_{c}=3.0 \text { (double-pole, double-throw) } \\
& \pi_{F}=10.0 \text { (thermal relay, MIL-SPEC) } \\
& \pi_{c y c}=1.0 \text { (based on } 10 \text { cycles/hour) } \\
& \pi_{Q}=1.0 \text { (for quality factor) } \\
& \lambda_{\mathrm{p}}=0.54 \times 10^{-6} \text { failures/hour } \\
& 5 \text { Ground mobile, armature ' swer quality) } \\
& \mathrm{T}=30^{\circ} \mathrm{C} \\
& \lambda_{p}=\lambda_{b}\left(\pi_{E} \times \pi_{c} \times \pi_{c y c} \times \pi_{F} \times \pi_{Q}\right) \\
& \lambda_{b}=\gamma_{T} \pi_{L} \\
& \lambda_{\mathrm{T}}=0.0061 \times 10^{-6} \text { (based on } 30^{\circ} \mathrm{C} \text {) } \\
& \pi L_{L}=1.48 \text { (based on } 50 \text { percent stress) } \\
& \lambda_{b}=0.009 \times 10^{-6} \text { failures/hour } \\
& \pi_{E}=15 \text { (ground mobile, lower quality) } \\
& \pi_{c}=3.0 \text { (double-pole, double-throw) } \\
& \pi_{F}=8.0 \text { (armature, lower quality) } \\
& \pi_{\text {cyc }}=0.1 \text { (based on } 1 \text { cycle/hour) } \\
& \pi_{Q}=1.0 \text { (for quality factor) } \\
& \lambda_{\mathrm{p}}=0.324 \times 10^{-6} \text { failures/hour } \\
& 6 \text { Ground benign, general rurpose } \\
& \mathrm{T}=35^{\circ} \mathrm{C} \\
& \lambda_{p}=\lambda_{b}\left(\pi_{E} \times \pi_{c} \times \pi_{c y c} \times \pi_{F} \times \pi_{Q}\right) \\
& \lambda_{b}=\lambda_{T}{ }^{\pi}{ }_{L}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\lambda_{\mathrm{T}}=0.0063 \times 10^{-6} \text { (based on } 35^{\circ} \mathrm{C}\right) \\
& \pi_{L}=1.48 \text { (based on } 50 \text { percent stress) } \\
& \lambda_{b}=0.0093 \times 10^{-6} \text { failures/hour } \\
& T_{E}=1.0 \text { (based on ground beniğ environment) } \\
& \pi_{c}=8.0 \text { (based on six-pole, double-throw) } \\
& \pi_{F}=5.0 \text { (based on general purpose, balanced armature) } \\
& \pi_{c y c}=1.0 \text { (based on } 10 \text { cycles per hour) } \\
& \pi_{Q}=1.0 \text { (for quality factor) } \\
& \lambda_{p}=0.372 \times 10^{-6} \text { failures/hour } \\
& 1 \text { Naval sheltered, M1L-R-6016 } \\
& \mathrm{T}=40^{\circ} \\
& \lambda_{p}=\lambda_{b}\left(\pi_{E} \times \pi_{c} \times \pi_{c y c} \times \pi_{F} \times \pi_{Q}\right) \\
& \lambda_{b}=\lambda_{T} \Pi_{L} \\
& \lambda_{\mathrm{T}}=0.0063 \times 10^{-6} \text { (based on } 20^{\circ} \mathrm{C} \text {) } \\
& \pi_{L}=1.48 \text { (based on } 50 \text { percent stress) } \\
& \pi_{b}=0.0093 \times 10^{-6} \text { fallures/hour } \\
& \pi_{E}=5.0 \text { (based on naval sheltered) } \\
& \pi_{c}=3.0 \text { (double-pole, double-throw) } \\
& \pi_{F}=5.0 \text { (based on balanced armature) } \\
& \pi_{\text {cyc }}=1.0 \text { (based on } 10 \text { cycles/hour) } \\
& \pi_{Q}=1.0 \text { (for quality factor) } \\
& \lambda_{p}=0.699: 10^{-6} \text { failures/hour } \\
& 8 \text { Naval sheltered, general purpose } \\
& \mathrm{T}=40^{\circ} \mathrm{C} \\
& \lambda_{p}=\lambda_{b}\left(\pi_{E} \times \pi_{c} \times \pi_{c y c} \times{ }^{*}{ }_{F} \times \pi_{Q}\right) \\
& \lambda_{b}=\lambda_{T} \pi_{L}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{T}=0.0063 \times 10^{-6} \text { (based on naval sheitered) } \\
& \pi_{L}=1.48 \text { (based on } 50 \text { percent stress) } \\
& \lambda_{b}=0.0093 \times 10^{-6} \text { failures/hour } \\
& \pi_{\bar{E}}=5.0 \text { (based on naval sheltered) } \\
& \pi_{c}=3.0 \text { (double-pole, double-throw) } \\
& \pi_{F}=5.0 \text { (based on balanced armature) } \\
& \pi_{\text {eyc }}=1.0 \text { (based on } 10 \text { cycles/hour) } \\
& \pi_{\mathrm{Q}}=1.0 \text { (quality factor) } \\
& \lambda_{p}=0.699 \times 10^{-66} \text { falliures/hour } \\
& \text { 9. Naval sheltered, thermal } \\
& \mathrm{T}=40^{\circ} \mathrm{C} \\
& \lambda_{p}=\lambda_{b}\left(\pi_{E} \times \pi_{c} \times \pi_{c y c} \times \pi_{F} \times \pi_{Q}\right) \\
& \lambda_{b}=\lambda_{T}{ }^{1} \\
& \lambda_{T}=0.0063 \times i 0^{-6} \text { (based on } 40^{\circ} \mathrm{C} \text {) } \\
& \pi_{L}=1.48 \text { (based on } 50 \text { percent stress) } \\
& \left.\lambda_{b}=0.0033 \times 10^{-6} \text { fallures } / \text { hour }\right) \\
& \pi_{E}=5.0 \text { (naval sheltered) } \\
& \pi_{c}=3.0 \text { (double-pole, double-throw) } \\
& \pi_{F}=10 \text { (thermal travel delay) } \\
& \pi_{\text {cyc }}=1.0 \text { (based on } 10 \text { cycles/hour) } \\
& \pi_{Q}=1.0 \text { (quality factor) } \\
& x_{P}=1.398 \times 10^{-6} \text { fallures/hour } \\
& 10 \text { Airborne inhabited MIL-R-39016 } \\
& \mathrm{T}=55^{\circ} \mathrm{C} \\
& \lambda_{p}=\lambda_{b}\left(\pi_{E} \times \pi_{c} \times \pi_{c y c} \times \pi_{F} \times \pi_{Q}\right) \\
& \lambda_{b}=\lambda_{T}{ }^{\pi} L
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{\mathrm{T}}=0.00685 \times 10^{-6} \text { (based on } 55^{\circ} \mathrm{C} \text {) } \\
& \pi_{L}=1.48 \text { (based on } 50 \text { percent stress) } \\
& \lambda_{b}=0.0101 \times 10^{-6} \text { failures/hour } \\
& \pi_{E}=5.0 \text { (based on airborne inhabited) } \\
& \pi_{c}=3.0 \text { (double-pole, double-throw) } \\
& \pi_{F}=5.0 \text { (balanced armature) } \\
& \pi_{\text {cyc }}=0.1 \text { (based on } 1 \text { cycle per hour } \\
& \pi_{Q}=1.0 \text { (quality factor) } \\
& \lambda_{p}=0.076 \times 10^{-6} \text { fajlures/hour } \\
& 11 \text { Airborne inhabited, MIL-R-6016 } \\
& \mathrm{T}=55^{\circ} \mathrm{C} \\
& \lambda_{p}=\lambda_{b}\left(\pi_{E} \times \pi_{c} \times \pi_{c y c} \times \pi_{F} \times \pi_{Q}\right) \\
& \lambda_{b}=\lambda_{I}, \pi_{L} \\
& \lambda_{\mathrm{T}}=0.00685 \times 10^{-6} \text { (based on } 55^{\circ} \mathrm{C} \text {) } \\
& \pi_{L}=1.48 \text { (based on } 50 \text { percent stress) } \\
& \lambda_{b}=0.0101 \times 10^{-6} \text { failu: es/hour } \\
& \pi_{E}=5.0 \text { (airborne inhabited, transport) } \\
& \pi_{c}=5.5 \text { (four pole. double-throw) } \\
& \pi_{F}=5.0 \text { (balanced armature) } \\
& \pi_{c y c}=0.1 \text { (bised on } 1 \text { cycli./brur) } \\
& \pi_{Q}=1.0 \text { (quality factor) } \\
& \lambda_{p}=0.139 \times 10^{-6} \text {. Lne... }: 2 \text {, } \\
& 12 \text { Space flifit, , "ieq".": } \\
& \mathrm{T}=25^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{b}=\lambda_{\Gamma}{ }^{\mathrm{II}} \mathrm{~L}
\end{aligned}
$$

```
\lambda
* L}=1.48\mathrm{ (based on }50\mathrm{ percent stress)
\lambda
\pi}\mp@subsup{E}{}{=1.0 (for space flight)
\pi}\mp@subsup{c}{c}{}=30\mathrm{ (double-pole, double-throw)
#
#cyc}=1.0\mathrm{ (based on }10\mathrm{ cycles/hour)
\pi}\mp@subsup{Q}{}{\prime}=1.0 (quality factor
\lambda}\mp@subsup{|}{p}{}=0.104\times1\mp@subsup{0}{}{-6}\mathrm{ failures/hour
```

Complete revision of Section 2.9 of MIL-HDBK-2L7B is in Appendix C.
TABLE 20
Validation of Predicted Failure Rates Using Modified Factors

Environment	Relay Type	Failure Rate ($\times 10^{-5}$ hours)	
		Observed	Predicted
Ground fixed	General purpose	0.23	0.27
Ground fixed	High voltage	0.198	0.216
Grouni fixed	Reed	1.19	0.432
Ground fixed	Thermal	0.676	0.54
Ground mobile	Armiature (lower quality)	0.425	0.324
Ground benign	General purpose	0.243	0.372
Naval sheltered	MIL-R-6016	0.786	0.699
Naval sheltered	General purpose	0.106	0.639
Naval sheltered	Thermal	0.35 ?	1.398
Airborne inhabited	MIL-R-39015	0.058	0.076
Airborne inhabited	MIL-R-6016	0.086	0.139
Space flignt	Latening relay	0.899	0.104

5.3 Switch Failure Kate Frediction Models

S.3.1 Switch Base Failure Rate (λ_{E}) Evaluatior

Failure rates were calculated by categories ful switches in each environment in rinich sufficient data had teen collerted. Each group of switches was categorized by MIL-SPEC classification or part type, where applicable. Operating failure rates for each set of data were cal. ifuted at point estimate (where
failures had occurred) and at the upper 60 peicent confidence level \because. y case, Results of these calculations appear in Table 21. Failure rates calculated at the upper 60 percent confidence level were used for comparisons and further computations.

TABLE 21
Observed Failu:e Prites for Switches
(Failures/Mi:ion Hours)

Environment	Switch Type	Failure Rate (x 10-6 hours)
Airtorne inhabited	Pushbutton	0.203
Airborne inhabited	Rotary	0.204
Ground fixed	Togs le	0.005
Ground fixed	Rotary	0.157
Ground fixed	Pushbutton (lower)	0.175
Ground fixed	Rotary (lower)	4.54
Ground fiyed	sensitive	0.306
Ground motile	Reed (lower)	0.19
Naval sheltered	Toggle	0.473
Naval sheltered	Toggie (lower)	0.014
Space flight	Sensitive	0.167

 MLL-KDBK-217B:

$$
\lambda_{P}=\lambda_{b}\left(\pi_{E} \times \pi_{c} \times \pi_{c y c}\right) \mathfrak{f} a: u r t, " \| u
$$

visue:
$\lambda_{p}=$ part failure rate
$\lambda_{b}=$ base failure rate
$\pi_{E}=$ environental iactor
$\pi_{c}=$ contact form factor
$\pi_{\text {cyc }}=$ cycling rate factor
Using this equation ana substituting varamaters from the operating field data, a typical failure rate was calculated for a lower quality non-snap action push button switch, as used in the ground fixed environment. The switch is opersted in an ambient temperature of $30^{\circ} \mathrm{C}$ and is a single-pole, single-throw switch. It is operated at a race of one cycle per hour. Applicable constarts art:

$$
\begin{aligned}
& \lambda_{b}=0.6 \times 10^{-6} \text { failures/hour } \\
& \pi_{E}=1.0 \\
& \pi_{C}=1.0 \\
& \pi_{c y c}=1.0 \\
& \lambda_{P}=0.6 \times 10^{-6} \text { failures } / \text { hour } .
\end{aligned}
$$

This value is the predicted failure rate for the given switch. In the same manner, failure rates were calculated for each of the switch types and environments listed in Table 21. Predicted failure rates are shown in Table 22.

TABLE 22
Predicted Failure Rates from M1L-HDBK-217b
(Failure?/Million Hours)

Environment	Switch Type	Predicted Failure Rate (failures/106 hours)
Airborne inhabiter	Fushbutton	4.8
Airborne Inhabited	Rotary	24.7
Ground fixed	Toggle	0.025
Ground fixed	Rotary	2.06
Ground fixed	Pushbutton	0.6
Ground fixed	Rotary (lower)	4.4
Ground fixed	Sensitive	0.4035
Grcund mobile	Reed (lower)	0.6
Naval sheltered	Toggle (lower)	0.012
Naval sheltered	Toggle (lower)	0.9
Space flight	Sensitive	0.121

Predicted fallure rates were compared with observed fallure rates, resulting in ratios shown in Table 23. These data indicate that the predicted failure rates exceed the observed fallura rates in all cases except one. The toggie switch in the naval sheitered environnient has a high failure rate, based on a minimum amount of data (no faifures in 1.9×10^{0} fours). The togele switch in the ground fixed environment has a lower observed chan predicted failure rate (based on 0 failures in 180×10^{6} hours). Therefore, as the toggle swicch in the naval sheltered environment accumulates more operating hours, the failure rate should decrease accordingly and would be less than predicted.

TABLE 23
Ratio of Predicted Failure Rates to Observed Failure Rates

		Ratio of Predicted to Observed
Failure Rates		

5.3.2 Normalization of Environmental Factor (π_{E})

Table 2.10-4 of section 2.10 in MLL-HDBK-217B lists environmental factors presently applied tc switches (Table 24). The lowest factor is 0.3 for both ground benign anu space flight environments. To normalize this value to 1.0 , each facto: must be multiplied by 3.33. Normalized values of π_{E} appear in Table 25.

TABLE 24
π_{E} Based on Environmental
Service Condition for Switches

Environment	Symbol	${ }^{\prime \prime} E$
Ground benign	G_{B}	0.3
Space flight	S_{F}	0.3
Ground fixed	G_{F}	1.0
Airiorne inhabited	A_{I}	12.0
Naval sheltered	N_{S}	1.2
Ground mobile	G_{M}	5.0
Naval unsheltered	N_{U}	7.0
Airborne uninhabiled	A_{U}	15.0
Missile launch	M_{L}	200.0

TABLE 25

Environmental $\pi_{E} \begin{aligned} & \text { Normalized Based on } \\ & \text { Service Condition for Switches }\end{aligned}$

Environment	π_{E}
Ground benign	1.0
Space flight	1.0
Ground fixed	3.33
Airborne inhabited	40.0
Naval sheltered	4.0
Ground mobile	17.0
Naval unsheltered	23.3
Airborne uninhabited	50.0
Missile launch	666.0

5.3.3 Development of Stress Factor $\left(\pi_{L}\right)$

Processes operative at switch contacts are identical to those in relay contacts. In the relay failure rate model, π_{L} relates the effect of the stress to the part failure rate. Electrical stress is defined as the operating load current divided by the rated resistive load current. It is specified for resistive loads, inductive loads, and lamp loads.

For higher current density in the contacts, heat is generated faster than it can be carried away. When contacts are operated close co the high end of their rated load rarge, the contacts soften and melt upon closure. Some junction points may weld, breaking apart when the switch reopens. Under these conditions, the switch exhibits its rated initial contact: resistance over the initial portion of its of sating life. Later, this resistance rises due to contact wear, pitting, and surface contamination.

Based on the fact that current stress decreases the life of a switch contact anc that relay and switch contacts are identical in operation, π_{L} in the relay failure rate model is also applied to the switch failure rate model. Table 26 defines stress factors for switch contacts.

5.3.4 Base Failure Rate Evaluation for: Toggle and Pushbutton Switches

Normalization of the environmental factor π_{E} and addition of the multiplicative factor π_{L} require revision of che base failure rate to compensate for the increase in predicted failure rate. Failure rates whre cálculated for switch categories of Table 21 , using revised π_{E} factors and assuming the multiplicative factor π_{L} to be 1.48 , based on 50 percent stress. These failure rates are shown ir Table 27.

TABLE 26
π_{L} Stress Factor for Switch Contacts

	Load Type			
Stress	Resistive	Inductive	Lamp	
0.05	1.00	1.02	1.06	
0.1	1.02	1.07	1.20	
0.2	1.06	1.28	2.72	
0.3	1.15	1.76	9.49	
0.4	1.28	2.12	54.60	
0.5	1.48	4.77		
0.6	1.76	9.49		
0.7	2.15	21.40		
0.3	2.72			
0.9	3.55			
1.0	4.77			

TABLE 27
Predicted Failure Rates with π_{L} and T_{E} Modified

	Environment:	Failure Rate $(10-6$ hours)
Airborne inhabited	Pushbutton Airborne inhabited Ground fixed	Rotary Ground fixed
Toggle	23.68	
Ground fixed	Rotary	121.95
Ground fixed	Pushbutton (lower)	0.111
Ground fixed	Rotary (lower:	2.14
Ground mobile	Sensitive	19.66
Naval sheltered	Reed (lower)	1.79
Naval sheltered	Toggle	15.09
Space flight	Toggle (lower)	0.059
	Sensitive	4.44

The data indicate that the predicted fallure rate is higher than the obstryed for all cases but one. Ratios of predicted to observed failure rate are summarized in Table 28.
table 28
Ratio of Revised Failure Rates to
Observed Failure Rates

		Ratio of Predicted to Observed				
Failure Rates			$	$	Airborne inhabited	Sustibutton
:---	:---					
firborne inhabited	Rotary					
Ground fixed	Toggle					
Ground fixed	Rotary					
Ground fixed	Pushbutton (lower)					
Ground fixed	Rotary (lower)					
Ground fixed	Sensitive					
Ground mobile	Reed (lower)					
Naval sheltered	Toggle					
Naval sheltered	Toggle (lower)					
Space flight	Sensitive					

Snap action toggle and pushbutton switches are listed in three environments. For the reasons of section 5.3.1, the naval sheltered toggle switch data has been censored. The data indicate an improvement :atio of between 15.2 ard 317.14 in failure rates. Using these ratios, A_{b} in the fixed ground environment for the non-snap action pushbutton switch in the lower quality grade category should decrease by a factor of 15 . The toggle switch in the same environment shows a decrease of 22. Modified base failure rates for these switches are shown in Table 29.

TABLI: 29
Base Failure Rate (λ_{b}) for Snap Action
Toggle and Pashbutton Switches
(Failurcs/Million Hours)

Description	λ_{b}				
	MIL-HDBK-217B	New	MIL-HDBK-217B	New	
	MIL-SPEC			Lower Quality	
Snap action Non-snap action	0.01	0.00045	0.75	0.034	

5.3.5 Base Failure Rate Evaluation for Sensitive Switches

Failure rate data for sensitive switches vere collected in two environments, space fi.ight and ground fixed. Both categories of switches have predicted failur"? rates higher than observed failure rates, indicating the base failure rates for sensitive switches should be reduced by a factor of four. Revised failure rates for sensitive switches are shown in Table 30.

TABLE 30
Base Failure Rate (λ_{b}) for Sensitive Switches (Fiilures/Million Hours)

Description	λ_{b}			
	MIL-HDBK-2	New	MIL-HDBK-217B	New
	MIL-SPEC		Lower Quality	
$\left.\begin{array}{l} \text { Actuation } \\ \text { Differential } \\ >0.002 \mathrm{in} . \end{array}\right\} \lambda_{b c}$	0.0035	0.0009	1.3	0.45
$\left.\begin{array}{l} \text { Actuation } \\ \text { Differential } \\ <0.002 \text { in. } \end{array}\right\} \lambda_{\text {bd }}$	0.007	0.0018	4.9	1.25
$\left.\begin{array}{l} \text { Actuation } \\ \text { Assembly } \end{array}\right\} \lambda_{D E}$	0.4	0.1	0.4	0.1

5.3.6 Base Failure Rate Evaluation for Rotary Switches

Failure rate data for rotary switches were coliected in two environments in three sets of data. One set of data collected in the ground fixed environment consists of lower quality switches, while the other two sets are MIL-3PEC switches in ground fixed and airborne inhabited environments. Lower quality switches indicate an improvement of 4.1 for the observed data over the predicted failure rate data. Data collected on MIL-SPFC switches indicate an improvement of from 58 to 597 in the ground fixed and airborne inhabited environments, indicaiting a reduction or 60 is required in the MIL-SPEC switch category. Revised base failure rates for rotary switches are shown in Table 31.

Base Failure Rate (λ_{b}) for Rotary Switches
(Failures/Million Hours)

Description	MIL-SPEC		Lower Quality	
	MIL-HDBK-217B	New	MIL-HDBK-217B	New
Actuator assembly	0.4	0.0067	0.4	0.1
Ceramic RF wafers	0.002	0.00003	0.08	0.02
Medium power wafers	0.002	0.00003	0.24	0.06

5.3.7 Evaluation of Envircnmental Factor (π_{E})

As discussed in section 5.3.2, $\pi \mathrm{E}$ was normalized, but the relationship between environments remained the same. Base failure rates were revised and the factor π_{L} was added to the base failure rate model. Using the revised mathematical model, failure rates can be calculated to determine the impact of the environmental factor. Table 32 lists failure rates calculated from the new model and compares them to the observed field failure rates, All failure rates correlated well, with the exreption of data in the airborne inhabited environment. Data from pushbutton owitches and rotary switches indicate a ratio of 8 to 10 higher for predicted failure rates. The value of π_{E} is 40.0 for the airborre inhabited environwent. This factor has reduced by a factor of 8 to equal 5.0. Evaluation of fallure rates using the value of $\pi_{E}=5.0$ in the mathematical model shows correlation between the observed and predicred failure rates (Table 33).

TABLE 32
Failure Rates Derived from New Model Compared to Observed Failure Rates

Environment	Switch Type	Observed Failure Rate $\left(\times 10^{-6}\right.$ hours $)$	New Predicted Failure Rate $\left(\times 10^{\circ 6}\right.$ hours $)$
Airborne inhabited	Pushbutton Rotary Airborne inhabited Ground fixed Ground fixed	Roggle Gotary	0.203
Ground fixed fixed	Pushbutton	0.204	1.6
Ground fixed	Rotary (lower)	0.005	2.04
Naval sheltered	Sensitive	0.175	0.0046
Naval sheltered	Toggle	0.54	0.153
Space flight	Toggle (lower)	0.305	5.178

TABLE 33

> Comparison of Failure Rates for Airborne Inhabited Environment after π_{E} Modification

Environment	Switch Type	Observed Failure Rate $\left(\times 10^{-6}\right.$ hours $)$	Predicted Failure Rate $\left(\times 10^{-6}\right.$ hours $)$
Airborne inhabited Airborne inhabited	Pushbuiton Rotary	0.203 0.204	0.20 0.255

The aircraft environment was expanded to four categories to separate supersonic aircraft from other types. It is generally accepted that equipment on supersonic aircraft are exposed to higher levels of shock, vibration, and to a more severe operating temperature rauge than equipment on other aircraft. Mission duration is usually much shorter for supersonic aircraft. In this study, only data from the subsonic aircraft equipment were collected. From other studies (References 3 and 4), analyses of data have been made, and a factor of 2:1 for supersonic versus subsonic envirionmental stress was developed. This value was determined to be a good general factor to differentiate between subsonic and supersonic dircraft. The term supersonic aircraft includes fighters and interceptors, while the subsonic category encompasses transport, heavy bomber, cargo, and patrol aircraft. The revised values of the π_{E} factors are shown in Table 2.10-4 of Appendix D.

5.3.8 Evaluation of New Mathematical Model with Modi."ed Factors

Each category of switches was evaluated using these assumptions and equations:

1 Airborne Inhabited, pushbutton switch

$$
\begin{aligned}
& \lambda_{P}=\lambda_{b}\left(\pi_{E} \times \pi_{c} \times \pi_{c y c} \times \pi_{L}\right) \\
& \lambda_{b}=0.0027 \text { failure } / 10^{6} \text { hours (base failure rate) } \\
& \pi_{E}=5.0 \text { (revised for airborne inhabited) } \\
& \pi_{c}=1.0 \text { (single-pole, single-throw) } \\
& \pi_{c y c}=10.0 \text { (} 10 \text { cycles/hour) } \\
& \pi_{L}=1.48(50 \text { percent stress) } \\
& \lambda_{P}=0.0027(5 \times 1.0 \times 10.0 \times 1.48)=0.2 \text { failures } / 10^{6} \text { hours }
\end{aligned}
$$

2 Airborne inhabited, rotary switch

$$
\begin{aligned}
\lambda_{p} & =\lambda_{b}\left(\pi_{E} \times \pi_{c y c} \times \pi_{L}\right) \\
\lambda_{b} & =\lambda_{b E} \times n \lambda_{b G} \\
\lambda_{b E} & =0.0067 \text { failures } / 10^{6} \text { hours } \\
n \lambda_{b G} & =\cdots \times 0.00 C 03=0.00018 \text { failures } / 10^{6} \text { hours } \\
\lambda_{b} & =0.00688 \text { failures } / 10^{6} \text { hours } \\
\pi_{E} & =5.0 \text { (revised far airborne inhabited) } \\
\pi_{c} & =5.0(5 \text { cycles/hours) } \\
\pi_{L} & =1.48(50 \text { pericent stress) } \\
\lambda_{P} & =0.00688(5.0 \times 5.0 \times 1.48)=0.255 \text { fallures } / 10^{6}
\end{aligned}
$$

3 Ground fixed, togyle switel

$$
\begin{array}{ll}
\lambda_{P} & =\lambda_{b}\left(\pi_{E} \times \pi_{c} \times \pi_{c y c} \times \pi_{L}\right) \\
\lambda_{b} & =0.00045 \text { failures } / 10^{5} \text { nouts } \\
\pi_{E}=3.0 \text { (for ground fixed) } \\
\pi_{c}=2.5 \text { (four-pole, single-throw) } \\
\pi_{c y c}=1.0(1 \text { cycle/hour) } \\
\pi_{L}=1.48(50 \text { percent stress) } \\
\lambda_{P}=\begin{array}{l}
0.00045(3.0 \times 2.5 \times 1.0 \times 1.48)=0.005 \text { failures } / 10^{6} \\
\text { hours }
\end{array}
\end{array}
$$

4 G.ound fixed, rotary switch
$\lambda_{p}=\lambda_{b}\left(\pi_{E} \times \pi_{c y c} \times \pi_{L}\right)$
$\lambda_{b}=\lambda_{b E}+n \lambda_{b G}$
$\lambda_{b E}=0.0067$ failures $/ 10^{6}$ hours
$\mathrm{n} \lambda_{\text {bG }}=6 \times 0.00003=0.00018$ failures $/ 10^{6}$ hours
$\lambda_{b}=0.00688$ failures $/ 10^{6}$ hours
$\pi_{\mathrm{E}}=3.0$ (for ground fixed)
$\pi_{\text {cyc }}=5.0$ (for 5 cycles/hour)

```
    \pi
    \lambda
5 Ground fixed, pushbutton switch (lower)
    \mp@subsup{\Lambda}{P}{}}=\mp@subsup{\lambda}{b}{}(\mp@subsup{\pi}{E}{}\times\times\mp@subsup{\pi}{c}{}\times\mp@subsup{\pi}{cyc}{}\times\mp@subsup{\pi}{L}{}
    \lambda
    #}=\mp@code{m.0 (for r.round tixed environmenci
    \pi}\mp@subsup{c}{c}{}=1.0\mathrm{ (for single-pole, single-throw)
    #cyc}=1.0(fc:z 1 cycle/hour)
    \pi
    \lambda
6 Ground Eised (rotary switrh: iover.)
```



```
    \lambdab
    \lambda
    n
    \lambda ( = 0.22 fallures/10 % howes
    \pi}=\quad=3.0 (for ground fixed
    #
    \pi
    \lambdaP}=0.22(3.0\times5.0\times1.48)=4.88 fallures/106 hours
7 Ground fixed, sensi...e switch
    \lambdaP}=\quad=\mp@subsup{\lambda}{b}{}(\mp@subsup{\pi}{E}{}\times\mp@subsup{\pi}{cyc}{c}\times\mp@subsup{\pi}{L}{}
    \lambda
    \lambda
    n }\mp@subsup{\lambda}{bG}{}=1\times0.0009=0.0009 failures / 10 ' hours
    \lambda
```

```
    #E = 3.0 (for ground fixed)
    \picyc = 1.0 (for 1 cycle/hour)
    #
    \lambdaP}=0.10009(3.0\times1.0\times1.48)=0.{4 fallures/106 hours
8 Naval sneltered, toggle switch
    \lambdap}=\quad\mp@subsup{\lambda}{b}{}(\mp@subsup{\pi}{E}{}\times\mp@subsup{|}{c}{x}\mp@subsup{\pi}{\mathrm{ fyc }}{}\times\mp@subsup{\pi}{L}{}
    \lambdab}=0.00045\mathrm{ failures / }10\mp@subsup{0}{}{6}\mathrm{ hours
    \piE=4.0 (for naval sheltered)
    \pic}=1.0\mathrm{ (for siagle-pole, single-throw)
    #cyc = 1.0 (for 1 cycle/hour)
    #
    \lambdaP}=0.0045(4.0\times1.0\times1.0\times1.48)=0.0027 cailure/106 hour
9 Naval sheltered, toggie switch (lower)
    \lambdap}=\quad=\mp@subsup{\lambda}{b}{}(\mp@subsup{\pi}{E}{}\times\mp@subsup{\pi}{c}{}\times\mp@subsup{\pi}{cyc}{}\times\mp@subsup{\pi}{L}{}
    \lambdab}=0.034\mathrm{ fallures / 10 }=0\mathrm{ hours
    #E = 4.0 (for naval sheltered)
    #c r. 1.0 (for single-pole, single-throw)
    Mcyc = 1.0 (for J. sycle per hour)
    #L}=1.48\mathrm{ (for }50\mathrm{ percent stress)
    \lambdaP}=0.034(4.0\times1.0\times1.0\times1.48)=0.2 failures/10 6 hour
10 Space flight, sensitive switch
    \lambda
    \lambdab
    \lambdabE}=0.1 failures/10' hours
```

$$
\begin{aligned}
n \lambda_{b G} & =1 \times 0.0009 \text { failures } / 10^{6} \text { hours } \\
\lambda_{b} & =0.1009 \text { failures } / 10^{6} \text { hours } \\
\pi_{E} & =1.0 \text { (for space flight) } \\
\pi_{C} & =1.0 \text { (for single-pole, single throw) } \\
\pi_{L} & =1.48 \text { (for } 50 \text { percent stress) } \\
\lambda_{p} & =0.1009(1.0 \times 1.0 \times 1.48)=0.149 \text { failures } / 10^{6} \text { hours } \\
\begin{array}{c}
\text { Complete }
\end{array} & \text { revision of Section } 2.10 \text { of MIL-HDBK-217B is included in }
\end{aligned}
$$

SECTION V2
 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Under the Development of Nonelectronic Part Cycifc Fatlure Rates program, Contract F30602-76-C-0437, more than 10 billion part hours have been collected from all sources. This data base was used to prepare an update of Sections 2.9, 2.10, and 2.11 of MLL-His $9 \mathrm{~K}-217 \mathrm{R}$.

Many categories of part classification were not well defined. Data contributors are generally reluctant to incur large expenditures to further refine data and information they provide without charge. The; are also hesitant to allow visitors unrestricted access to their detailed records. Some data categories were consequeatly modified by similarity to other categories in which valid data were achieved.

All types of connectors (rack and pantl, circular, coaxial, nower) were included in this study. Printad circuit board connectors studied under a separate contract (F30602-76-C-0439) were included in a new subsection of MIL-KDSK-217B (Saction 2.11.1). The failure rate model for connectors was modified to include a multiplicative cycling factor (π_{X}) in place of an additive cycling factor ($\lambda_{\text {cyc }}$). Base failure rates (λ_{b}) were lowered in all categories, and enviromental factors (Π_{E}) were modified. The field failure rates collected in this study were compared with failure rates derived from Section 2.11 of MIL-HDBK-217B and showed significant improvement in reliability of all connectors. These data indicate that reliability growth has been taking place and the state-of-the-art is still improving.

Relay failure rate prediction models were examined, and fallure rate dati from field ubservation were compared to predicted failure rates irom Section 2.9 of MIL-HDBK-217B. No eignificant changes were found in the base failure rate. Some modafi_utions in the re'ationship of environmental stress (π_{E}) were made in the alrborne inhabited enviroments. These data indirate that relays have maintained their previous level of reliability, but bave not improved significantly.

Switch fallure rate prediction models were modified to include a contact stress factor (π_{L}), based on a similar factor used in the relay model. Base failure rates were reduced for ill.categories of switches. The environmental factor ("E) was normalized with the lowest factor, space flight, set to a value oi 1.0 and all other values adjusted accordingly. The environnenta. factor f : airborne inhabited was reduced from 40.0 to 5.0 , indicaling improvement in the design of switches for airborne applications. Fallure rates, from field data collected in this study were compared with failu:e rates from Section 2.10 of MIL-HDBK-217B and showed significant jmprovement in the reliability of switches. These data indicate that rellability growth has been taking place and the state-of-the-art is still improving.

In all theee sections of MiL-HDBK-217B, the environmental factor table was expanded to include envirorments relating to transport and fighter aircrart. Both airburne urinhabited and airborne inhabited environments $a: e$ delineated for transport and fighter aircraft.

6.2 Recommen،ations

Three recommendations are submitted for considaration and possible implementation:

1 Sections 2.4. 2.10, and 2.11 stiould be updated and revised every three years. This revia' on would promote retention and analysis of field data on a curreat basi.. Also, a large amount of data over three years oid are eicher lost or thrown away, and data of this vintage which can be obtained are somelimes difficult to trace. In addition, chariges in the state-ci-the-art would be reflected on a timely basis.
$\underline{2}$ The benefits of a low key effort to collect reliability data on connectors, relays and switches should be investigated. In tnis study, a growing tendeacy was noted that major military systems contractors are increasingly reiuctant to furnish uncontracted data free of charge. This reluctance seems due to material and manpower cists incurred in reconstructing past or present applicable data without economic compensation. This reluctance is further heightened by cutbacks in military defense spending, which directly results ir more austere methods on the part of private cuntractors.

3 A separate effort should be initiated to update the impact of environmental factors on the base failure rate to be incorporated in MIL-HDBK-217B. This effort would include a speclalized data collection program, data analysis, and mathematical model.

REFERENCES

1. Hald, A., "Sratisticai Tablי; and Formulas," John Wiley and Sons, Inc., New York, 1952.
2. Flein, K. M., Funk, J. R., and James, L. E., "Reliability Study Circular Electrical Connectors," Hughes Aircraft Company, RADC-TR-73-171, June 1973, AD765609.
3. Kern, G. A., and Drnas, I. M., "Operational Influences on Reliability," Hughes Aircraft Conpany, RADC-TR-76-366, December 1976, page 5-4, ADA035016.
4. Pearce, M. I., and Rise, G. D., "Tecinnique for Developing Equipment Fatlure Rate K factors," Boeing Aerospace Company, December 1973, page 13.

BIBLIOGRAPHY

1. Abbot, W. H., "State-Of-The-Art Survey on Materials for Electrical Contact and Connector Applications," Harry Diamond Laboratoriec, Washington, D.C, AD 918 659L
2. Adams, A. O., "Reliability Goes in Long Before the Wrapper Goes On," Leach Relay Division, Los Angeles, California, April 1968
3. "Advances in Connector Technology Deliver Longer I,ife, Better Performance," Product Engineeritig, Jıly 1977.
4. Atkinson, J. E. "Established Reliabil'ty for Electrical Connectors," Amphenol Connector Division, Chicago, Illincis
5. Ball, M., Harde, F. H., and Struckus, $i, ~ J ., ~ " I n c r e a s ~ C o n n e c t o r ~$ Contact Keliability," Electronic Enginetr, March 1968
6. Bock, E. M., and Whitley, J. H., "Fretting Corrosion in Electric Contacts," Amp Incorporated, Harrisburg, Pennsylvania, October 1974
7. Boylats, A. P., "Contact Capsules - Aid to Relay Reliability," U.S. Signal kesearch and Development Lab, Fort Monmouth, New Jersey
8. Bryezenski, C. J., "Reliability Provisions in Specifications for Relays"
9. Buszkrewicz, B., "Circular Connector Current/Thermal Rating Method," Amphenol Connector Division, Bruadview, Illinois
10. Carr, L. D., "Relay Contact Failures," Sperry Gyroscope Company, Great Neck, New York
11. Curry, J., "Reed Switch Engineering Theory and Practise," Elestronic Eng Ineering, August 1977
12. Cuthrell, R. E., "A Review of Electrical Suitch Design Factors for High Reliability Space and Weapons Aprlications," Sandia Laboratories, Albuquerque, NM, Narch 1975
13. De Lalio: L. D., and Nunn, C. P., "The DC Inductive Loading of Contacts," Filtors, Inc., Port Washington, NY
14. Diamond, E. H., "Field Keport and Specification Improvement Program for Relays," Arinc Research Corporation, September 1964
15. "Exploiting the Lowly Solenoid is an Art as Much as a Science," Froduct Engineering, July 1976
16. "Focus on Multipin Cable/Panel Connectors," Electronic Design, June 1977
1.7. Fontana, W. J., "Life Expectancy of a Form C Dry Reed Switch as a Function of Its Operating Environment," U. S. Army Elecíronics Command, Fort Monmouth, New Jersey, April 1966
17. Fontana, W. J., "Life Expectancy of a New Miniature Power Relay," U. S. Army Electronics Command, Fort Monmouth, New Jersey, March 1966
18. Freudiuger, E., "Contamination on Eleratrical Contacts," Texas Instruments, Attleborc, Mass.
19. Gebauer, B. G., "Prerequisite oi Relay Reliability," Automatic Electric Labs, Northlake, Illinois
20. Ginsberg, G., "Connectors and Interconnections Handbook," Electronic Connector Stuciy Group, Camden, NJ
21. Gwyn, C., "Let's 'Take Some of the Mystery Elements Out of Electrical Cortacts," Gibson Electric Company, Deliuont, PA
22. Hall, R. C., and Penkacik, J., "Reliable Connectors for Tactical Electronic Equipment," Martin Marietta Corporation, Orlando, Florida, Technical Report, liumber TR-ECOM-0458-F, November 1970
23. Harper, C. A., "Handbook of Components for Electronics," McGraw Hill, New York, 1977
24. Harwood, R., "Comectors - Bridging the Speed Gap," Amp. Incorporated, Harrisburg, PA
25. Howell, D., "The SMA Connection," Electronic Products Magazine, September 1977
26. Juris, M. A., "High Density Environmental Circular Connectors Conforming to MIL-C-81511," Amphenol Corporation
27. Lannan, P., "Circular/Plastic - A New Generation of Conneators," Amp fncorporated, Harrisburg, PA
28. Lannan, P., and Rundle, D., "MIL-C-81659/Arinc 404A, Comnon Denominator for Milltary and Comerciai Applications," Amp Inccrporated, Harrishurg, PA, 1974
29. Lightner, L S., "A Modular Zero Insertion Force Cable Connector," Amp Incorporated, Harrisburg, PA
30. Lombard, J. J., "Relav Fillure Analysis Techniques," Grumman Aircraft Corp., Bethpage, New York
31. National Association of Relay Manufacturers, "Engineer's Relay Handbook," Hayden Book Company, Inc., New York, 1966
32. Maeding, C. E., "Spacecraft Electrical Connector Quality Criteria," Hughes Aircraft Company, El Segundo, CA
33. Mahler, P., "The Effects of Contamination on Relay Performance," Picatinny Arsenal, Dover, NJ
34. Morgan, R. W., "Selection anc Application of MIL-C-39012B RF Coaxial Connectors," Boeing Company, Wichita, Kansas, October 1971
35. "Analysis of Failure Rate Data for Electronic Components," 4th R\&M Symposium, April 1974
36. Russakoff, R., and Snowball, R., "Measurement of Contact Resistance," Review of Scientific Instruments, March 1967
37. Sauter, H. D., "The Engineering Approach to Failure Analysis of Switching Devices," Potter and Brumfield, Princeton, Indiana, April 1969
38. Schj.11ing, W. A., "The User-Oriented Connector," Microwave Journal, Octcber 1976
39. Schneider, C., "Military Relay Reliability," Bell Telephone Laboratories, New York, April 1966
40. Schmidts, J., and Sliwinski, E. T., "The Status of Relay Reliability," Guardian Electric Manufacturing Company, Chicago, Illinois
41. Schunaker, W. L., "Precision Coaxial RF Interface," Amp Corporation, Harrisburg, PA
42. Smith, G., "Allocating and Predicting Cabling/Connector Failure Rates For a Complex System," Boeitr, Aerospace Company, Seattle, Washington
43. Snowball, R. F., Williamison, J. B. P., and Hack, R. C., "Ingress Limited Corrosion of Contact Surfaces," IEEE Transactions on Parts, Materials and Packaging, VCl PMP-3, No. 3, September 1967
44. Spergel, J., and Godwin, E. F., "Reliable Int, connections for Army Avionics," U. S. Army Electronics Command, Foıi Monmouth, New Jersey
45. Steinberg, G., "High Reliability Connective Devices," U. S. Army Electronics Laboratories, Fort Monmouth, New Jersey, AD 462503
46. Wagar, H. N., "Impact of the Contact on Electricai Systers," 1976
47. Wendling, L. W., and Thomas, E. U., "Guidelines for Reliable Relay Application and Selection," 17th Annual National Relay Conference, 1969

49. Whitley, J. H., "How to Choose the Right Electrical Connection," Amp Incorporated, Harrisburg, PA

50. Whitley, J. H., "A Measurement of Censtriction Resistance Based on Its
Non-Linearity," Amp Incorporated, Harrisburg, PA, June 1966
51. Whitley, J. H., "Rational Section of Alternate Materials for Electrical Connector Contacts," Amp Incorporated, Harrisburg, PA, May 1974
52. Whitley, J. H., "Connector Requirements and Technology," Amp Incorporated, Harrisburg, PA, October 1974

APPENDIX A

DATA SOURCES
Aerojet CorporationAzusa, California
Autonetics
Anaheim, California
Collins Radio GroupCedar Rapids, Iowa
Electronic Communications, Inc.
St. Petersburg, Florida
E-Systems
Falls Church, Virginia
General Electric CorporationSyracuse, New York
GIDEP
Corona, CA
Harris Corporation
Melbourne, Florida
Lear Siegler Ccrporation
Grand Rapids, Michigan
Litton Industries
Van Nuys, California
Magnavox Corporation
Fort Wayne, Indiana
Martin Marietta Corporation
Urlando, Florida
Philco-Furd Corpr,ration
Paio ilto, Cailfornia
Raytheon Corporation

Reliabilit.y Analysis Center Rome, New York

Sperry Univac
St. Paul, Minnesota
Sperry Systems Management Great Neck, New York

APPENDIX B
SECTION 2.11, MIL-HDRK-217B

Table 2.11-1. Prediction Procedure for Connectors

PART SPECIFICATIONS COVERED (Table 2.11-2 shows connector configurations)			
Type	MIL-C-SPEC	Type	MIL-C-SPEC
Rack and panel	$\begin{aligned} & 24308 \\ & 28748 \\ & 83733 \end{aligned}$	$\underset{R F}{\text { Coaxial, }}$	$\begin{array}{r} 3607 \\ 3643 \\ 3650 \\ 3655 \\ 25516 \\ 39012 \end{array}$
Circuiar	$\begin{array}{r} 5015 \\ 26482 \\ 38999 \\ 81511 \\ 837 \% 3 \end{array}$	Power	3767
Part Failure Rate Model ($\mathrm{lp}_{\text {P }}$)			
The failure rate model (λp) is for a mated pair of connectors:			
$\lambda_{p}=\lambda_{b}\left(\pi_{E} \times \pi_{p} \times \pi_{K}\right)$ failures $/ 10^{6}$ hours			
π_{E} - Table 2.11-6			
π_{p} - Table 2.11-7			
${ }^{K}{ }_{K}$ - Tabie 2.11-8			

Table 2.11-1. Prediction Procedure for Connectors (Cont)

Base Failure kate Model $\left(\lambda_{b}\right)$				
$\begin{aligned} & \lambda_{b}=A e^{x} \\ & e x=\frac{N_{T}}{T+273}+\left(\frac{T+273}{T_{0}}\right)^{P} \end{aligned}$				
Constants	Insert Material			
	A	B	C	D
A	0.02	0.431	0.19	0.77
T_{0}	473	423	373	358
N_{T}	-1592	-2073.6	-1298	-1528.8
P	5.36	4.66	4.25	4.72
Calculated values of λ_{b} for selected operating temperatures are shown in Table 2.11-5.				

Table 2.11-2. Configuration, Applicable Specification, and Insert Material for Connector:

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Configuration} \& \multirow[b]{2}{*}{Specification} \& \multicolumn{4}{|r|}{\begin{tabular}{l}
Insert Material \\
(Table 2.11-3)
\end{tabular}} \\
\hline \& \& A \& B \& C \& D \\
\hline Rack and panel \& \[
\begin{aligned}
\& \text { MIL-C-28748 } \\
\& \text { MIL-C-83733 } \\
\& \text { MIL-C-24308 }
\end{aligned}
\] \& \(X\) \& \(x\)
\(X\)
\(X\) \& \& \\
\hline Circular \& \[
\begin{aligned}
\& \text { MIL-C-5015 } \\
\& \text { MIL-C-26482 } \\
\& \text { MIL-C-38999 } \\
\& \text { MIL-C-81511 } \\
\& \text { MIL-C-83723 }
\end{aligned}
\] \& \(X\)
\(X\) \& \[
\begin{aligned}
\& X \\
\& X \\
\& X \\
\& X \\
\& X
\end{aligned}
\] \& \& \(X\)
\(X\) \\
\hline Power \& MIL-C-3767 \& \& \& \& X \\
\hline Coaxial \& \begin{tabular}{l}
MIL-C-3607 \\
MIL-C-3643 \\
MIL-C-3650 \\
MIL C. -3655 \\
MIL-C-255? \\
MII-C-39012
\end{tabular} \& \& \& \(x\)
\(X\)
\(X\)
\(X\)
\(X\)
\(X\)

X \&

\hline
\end{tabular}

Table 2.11-3. Temperature Ranges of Insert Materials

Type	Common Insert Materials	Temperature Range (${ }^{\circ} \mathrm{C}$)*
A	Vitreous glass, alumina ceramic, polyimide	-55 to 250
B	Diallyl phthalate, melamine, fluorosilicone, silicone rubber, polysulfone, epoxy resin	-55 to 200
C	Polytetrafluoroєthylene (reflon) chlorotrifluoroethylene (kel-f)	-55 to 125
D	Polyamide (nylon), polychloroprene (neoprene), polyethylene	-55 to 125

*These temperature ranges indicate maximum capability of the insert material only. Connectors using these materials generally have a reduced temperature range caused by other consideracions of connector design. Applicable connector specifications contain connector operating temperature.

Table 2.11-4. Insert Temperature Rise (${ }^{\circ} \mathrm{C}$) versus Contact Current

Amperes Per Contact	Contact Size			
	22 GA	20 GA	16 GA	12 GA
2	3.7	2.4	1.0	0.4
3	7.7	5.0	2.2	0.8
4	13.0	8.5	3.7	1.4
5	20.0	13.0	5.5	2.0
6	27.0	18.0	7.7	2.8
7	36.0	24.0	10.0	3.7
8	46.0	30.0	13.0	4.8
9	58.0	37.0	16.0	5.9
10	70.0	45.0	20.0	7.2
15		95.0	41.0	15.0
20			70.0	25.0
25			105.0	38.0
30				53.0
35				71.0
40				91.0

$\Delta T=0.989(i)^{1.85}$ for 22 gauge contacts
$\Delta T=0.64(i)^{1.85}$ for 20 gauge contacts
$\Delta T=0.274(\mathfrak{i})^{1.85}$ for 16 gauge contacts
$\Delta T=0.1$ (i) ${ }^{1.85}$ for 12 gauge contacts
$\Delta T={ }^{\circ} \mathrm{C}$ insert temperatura rise
$i=$ amperes per contact
NOTE: Operating temperature of the connector is usually assullied to be the sum of the ambient temperature surrounding the connector plus the temperature rise generated in the contact. If the connector is mounted on a suitable heat sink, the heat sinik temperature is usually taken as ambient. For those circuit design conditions which generate a contact hot spot, this hot spot temperature rise is added to the ambient to obtain the operating temperature.

For RF coaxial connestors, assume $\Delta T=5^{\circ} \mathrm{C}$.

Table 2.11-5. Operating Temperature versus Base Failure Rate (λ_{b}) (Failures $/ 10^{6}$ Hours)

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Insert Material*				
	A	B	C	D	
0	0.00006	0.00025	0.0020	0.0038	
10	0.00008	0.00031	0.0027	0.0048	
20	0.00009	0.00044	0.0033	0.0061	
30	0.00012	0.00056	0.0041	0.0078	
40	0.00014	0.00075	0.0049	0.0099	
50	0.00017	0.00094	0.0059	0.0125	
60	0.00020	0.0012	0.0073	0.0159	
70	0.00023	0.0015	0.0087	0.0202	
80	0.00028	0.00188	0.0106	0.0258	
90	0.00032	0.00231	0.0131	0.033	
100	0.00038	0.00288	0.0161	0.043	
110	0.00044	0.00352	0.0197		
120	0.00051	0.00450	0.0246		
130	0.09659	0.00556			
140	0.00069	0.00694			
150	0.00081	0.00369			
160	0.00096	0.01093			
170	0.00110	0.01381			
180	0.00133	0.01756			
190	0.00159	0.02243			
200	0.00290	0.02894			
210	0.00229				
220	0.00279				
230	0.00343				
240	0.00426				
	0.00536				

*If a mating pair of connectors uses two types of insert materials, use the average of the base failure rates for the two insert types.

Table 2.11-6. π_{E} Based on Environmental Service Condition

Environment	${ }^{\pi} \mathrm{E}$	
	MIL-SPEC	Lower Quaility
${ }^{(1)}$ B	1.0	1.5
S_{F}	1.0	1.5
G_{F}	2.0	4.0
N_{S}	$6.0{ }^{*}$	3.0*
$A_{1 T}$	5.0*	15.0*
$A_{U T}$	5.2	15.0
G_{M}	5.0	15.0
$N_{1 J}$	9.0	19.0
$A_{\text {IF }}$	10.0*	30.0*
$A_{u F}$	10.0	30.0
M	15.0	30.0
$\begin{aligned} & \text { *For coaxizl connectors in } A_{I T}, \pi_{E} \\ & (\text { MIL-SPEC })=6.0, \text {, } E \text { (lower } \\ & \text { quality) }=24.0 \text {. } \end{aligned}$		
In NS, we (MIL-SPEC) $=6.0, \pi[$ (lower quality) $=36.0$		
$\begin{aligned} & \text { In } A_{I F, ~} \pi_{E}(M I L-S P E C)=12.0, \\ & \pi E(\text { lower quality })=48.0 . \end{aligned}$		

Table 2.11-7. Values of Failure Rate Multiplier, π_{p}, for Number of Active Contacts (Pins) in a Connector

Number Of Active Contacts	π_{p}	Number Of Active Contacts	π_{p}
1	1.00	65	13.20
2	1.36	70	14.60
3	1.55	75	16.10
4	1.72	80	17.69
5	1.87	85	19.39
6	2.02	90	21.19
7	2.16	95	23.10
8	2.30	100	25.13
9	2.44	105	27.28
10	2.58	10	29.56
11	2.72	115	31.98
12	2.86	120	34.53
13	3.00	125	37.22
14	3.14	130	40.02
15	3.23	135	43.08
16	3.42	140	46.25
17	3.57	145	49.60
18	3.71	150	53.12
19	3.86	155	56.83
20	4.00	160	60.74
25	4.78	165	64.85
30	5.60	170	69.17
35	6.46	175	73.70
40	7.42	180	78.47
45	8.42	185	83.47
50	9.50	190	88.72
55	10.65	195	94.23
60	11.89	200	100.00

For coaxial and triaxial connectors, the shield contact is counted as an active pin.
π_{p} is a function of the number of active pins:

$$
\pi_{p}=e^{\left(\frac{N-1}{N_{0}}\right)^{q}}
$$

$$
\text { where } \begin{aligned}
N_{0} & =10 \\
q & =0.51064 \\
N & =\text { number of active pins }
\end{aligned}
$$

Table 2.11-8.
Unmating Factor

π_{K} Mating/	
Mating/Unmating Cycles (per 1000 hours)	π_{K}
$0-0.05$	1.0
$>0.05-0.5$	1.5
$>0.5-5$	2.0
$>5-50$	3.0
>50	4.0

One cycle includes both
こonnect and disconnect.

Connector

EXAMPLE

Connector not experiencing a high cycling rate

Given: A MIL-SPEC connector, with with 20 GA pins, uses insert material, type B. The connector has 20 active pins and is installed in a ground fixed environment with an ambient temperature of $25^{\circ} \mathrm{C}$. The load current is expected to be 5 amperes, and the connector is expected to be connected and disconnected once every 200 operating hours.

Find: The failure rate of the connector.
Step 1. The insert temperature rise is determined to be $13^{\circ} \mathrm{C}$, derived from Table 2.11-4 for size 20 GA pins at 5 amperes.

The operating temperature is determined from:
Operating temperature $=$ ambient temperature + insert temperature rise. Operating temperature $=25^{\circ} \mathrm{C}+13^{\circ} \mathrm{C}=38^{\circ} \mathrm{C}$

Step 2. The insert material is type B. Utilizing Table 2.11-5, the base failure rate for type B insert material at $38^{\circ} \mathrm{C}$ is 0.00073 tailures/ 10^{6} hours.

Step 3. The environmental factor for ground fixed $\left(\pi_{i}\right)$ is 2.0 , as shown in Table 2.11-6. The pin density factor (π_{p}) is 4.0 , as shown in Table 2.11-7 for 20 active pins. The π_{K} factor is 2.0 , as determined from Table 2.11-8, for mating/unmating cycles of $5 / 1000$ hours.

Step 4. The failure rate of the connector is found by substituting the values of $\lambda_{b}, \pi_{E}, \pi_{p}$, and π_{K} into the part failure rate model:
$\lambda_{p}=\lambda_{b}\left(\pi_{E} \times \pi_{P} \times \pi_{K}\right)$
$\lambda_{p}=0.00073(2.0 \therefore 4.0 \times 2.0)$
$\lambda_{p}=0.0117$ failures $/ 10^{6}$ hours.

Connector
EXAMPLE
Connector experiencing a high cycling rate
Given: A lower quality connector, with 16 GA pins, uses insert material, type D. The connector has 10 active pins and is installed in an airborne inhabited, transport environment with an ambient temperature of $40^{\circ} \mathrm{C}$. The load current is expected to oe 5.0 amperes, and the connector is expected to be connected and disconnected once every 20 hours.

Find: The failure rate of the connector.
Step 1. The insert temperature rise is determined to be $5.5^{\circ} \mathrm{C}$, derived from Table 2.11-4, for size 16 GA pins at 5.0 amperes.

The operating temperature is determined from:
Operating temperature $=$ ambient temperature + insert temperature rise. Dperating temperature $=40^{\circ} \mathrm{C}+5.5^{\circ} \mathrm{C}=45.5^{\circ} \mathrm{C}$.

Step 2. The insert material is lype D. Utilizing Table 2.1i-5, the base failure rate for type D insert material at $45.5^{\circ} \mathrm{C}$ is 0.0113 fallures/ 10^{6} hours.

Step 3. The environmental factor for airborne inhabited, transport, lower quality is 15.0 , as shown in Table 2.11-6. The pin density factor $\left(\pi_{p}\right)$ is 2.58 , as shown in Table $2.11-7$, for 10 ac.ive pins. The π_{K} factor is 4.0: as determined from Table $2.11-8$ for 50 mating/unmating cycles per 1000 hours.

Step 4. The failure rate of the connector is determined by substituting the values of $\lambda_{b}, \pi_{F}, \pi_{p}$, and $\|_{K}$ into the part failure rate modei:
$\lambda_{p}=\lambda_{b}\left(\pi_{E} X \mu_{p} \times \mu_{K}\right)$
$\lambda_{p}=0.0113(15.0 \times 2.58 \times 4.0)$
$\lambda_{p}=1.75$ failures $/ 1.0^{6}$ hours.

APPENDIX C

SECTION 2.9, MIL-HDBK-217B

Relays

Table 2.9-1. Prediction Procedure for Relays

$$
\begin{aligned}
& \text { Part Specifications Covered } \\
& \text { Military Specifications } \\
& \text { 1. MIL-R-5757 } \\
& \text { 3. MIL-R-19523 } \\
& \text { 5. MIL-R-19648 } \\
& \text { 2. MIL-R-6016 } \\
& \text { 4. MIL-R-39016 } \\
& \text { 6. MIL-R-83725 } \\
& \text { 7. MIL-R-83726 } \\
& \text { Part failure rate model }\left(\lambda_{p}\right) \\
& \left(\lambda_{P}\right)=\lambda_{b}\left(\pi_{E} \times \pi_{C} \times \pi_{c y c} \times \pi_{F} \times \pi_{Q}\right)\left(\text { failures } / 10^{6} \text { hours }\right) \\
& \text { where the factors are shown in these tabl } \because \text { : } \\
& \pi_{E} \text { - Table 2.9-4 } \\
& \pi_{c} \text { - Table 2.9-5 } \\
& \pi_{F} \text { - Table 2.9-7 } \\
& \pi_{c y c} \text { - Table 2.9-6 } \\
& \pi_{Q} \text { - Table 2.9-8 } \\
& \text { Note - Values of } \pi_{c y c} \text { for cycling rates beyond the basic } \\
& \text { design limitations of the relay are not valid. } \\
& \text { Design Specifications should be consulted prior } \\
& \text { to evaluation of "cyc. }
\end{aligned}
$$

Relays

Table 2.9-1. Prediction Procedure for Relays (Continued)

Base failure rate model ($\lambda_{\text {b }}$)					
$\lambda_{b}=\lambda_{T} \pi_{L}$					
where $\lambda_{T}=A e^{x}$					
$\pi_{L}=e^{y}$					
$y=\left(\frac{S}{N_{s}}\right)^{H}$					
$x=\left(\frac{T+273}{N_{T}}\right)^{G}$					
	Ambient oper Operating load 2.718, natur	ing tempera current/ra logarithm	e in ${ }^{\circ} \mathrm{C}$ resisti e.	load current	
Constants	$\lambda_{T}\left(85^{\circ} \mathrm{C}\right)$	$\lambda_{T}\left(125^{\circ} \mathrm{C}\right)$	π_{L} (Lamp)	${ }_{L}$ (Inductive)	${ }_{W}$ (Resistive)
A	5.55×10^{-3}	5.4×10^{-3}	-	-	-
$\mathrm{N}_{\text {T }}$	352.0	377.0	-	-	-
N_{S}	-	-	0.2	0.4	0.8
G	15.7	10.4	-	-	-
H	-	-	21	2.9	2.0
Note - Table 2.9-2 contains λ_{T}					

Table 2.9-2. Relay Failure Rate (λ_{T}) vs Ambient

Temperature

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Relay Temperature Rating	
	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$
25	0.0060	0.0059
30	0.0061	0.0060
40	0.0065	0.0063
50	0.0072	0.0066
60	0.0085	0.0071
70	0.0110	0.0079
75	0.0130	0.0084
80	0.0160	0.0090
85	0.0210	0.0097
90		0.0110
95		0.0120
100		0.0130
105		0.0150
110		0.0130
115		0.0210
120		0.0250
125		0.0310

Table 2.9-3. ${ }^{1}$. - Stress Factor
vs load lype

	Load Type		
S	Resistive	Inductive	Lamp
0.05	1.00	1.02	1.06
0.10	1.02	1.07	1.28
0.20	1.06	1.28	2.72
0.30	1.15	1.76	9.49
0.40	1.28	2.72	54.60
0.50	1.48	4.77	
0.60	1.76	9.49	
0.70	2.15	21.40	
0.80	2.72		
0.90	3.55		
1.00	4.77		
$S=$ Operating Load Current			
Rated Resistive Load Current			

Relays

Table 2.9-4. π_{E} Based on Environmental Service Condition

Environment	π_{E}	
	MIL-SPEC	Lower nual ity
	1.0	2.0
S_{F}	1.0	2.0
G_{F}	2.0	4.0
$A_{\text {IT }}$	4.0	8.0
N_{S}	5.0	15.0
$A_{\text {IF }}$	8.0	16.0
G_{M}	5.0	15.0
N_{U}	11.0	30.0
$A_{\text {UT }}$	12.0	30.0
$A_{\text {UF }}$	24.0	60.0
M_{L}	100.0	300.0

Table 2.9-5. π_{c} Factor
For Contact Form

Contact Form	π_{c}
SPST	1.00
DPST	1.50
SPDT	1.75
3PST	2.00
4PST	2.50
UPOT	3.00
3PDT	4.25
4PDT	5.50
6PDT	8.00

This table applies to active conducting contacts.

Cycle Rate (Cycles per Hour)	$\begin{gathered} { }^{\pi} \mathrm{cyc} \\ (M I L-S P E C) \end{gathered}$
≥ 1.0	$\frac{\text { Cycles per Hour }}{10}$
< 1.0	0.1
Cycle Rate (Cycles per Hour)	$\begin{gathered} { }^{\pi} \text { cyc } \\ \text { (Lower Quality) } \end{gathered}$
> 1000	$\left(\frac{\text { Cycles per Hour }}{}\right)^{2}$
10-1000	$\frac{\text { Cycles per Hour }}{10}$
< 10	1.0

Relays
Table 2.9-7. Failure Rate Factor i_{F}) For Relay
Application and Construction Type

Contact Rating	Application Type	Construction Type	π_{F}	
			MII-SPEC	Lower Quality
Signal current (low mv and ma)	Dry circuit	Armature (long) Dry reed Mercury wetted Magnetic latchins Ba lanced armature Solenoid	$\begin{aligned} & 4 \\ & 6 \\ & 1 \\ & 4 \\ & 7 \\ & 7 \end{aligned}$	$\begin{array}{r} 8 \\ 18 \\ 3 \\ 8 \\ 14 \\ 14 \end{array}$
0-5 amp	General purpose	Armature (long) Balanced armature Solenoid	$\begin{aligned} & 3 \\ & 5 \\ & 6 \end{aligned}$	$\begin{array}{r} 6 \\ 10 \\ 12 \end{array}$
	Sensitive $(0-100 \mathrm{mw})$	Armature (long and short) Mercury "etted Magnetic latching Meter movement Balanced armature	$\begin{array}{r} 5 \\ 2 \\ 6 \\ 100 \\ 10 \end{array}$	$\begin{array}{r} 10 \\ 6 \\ 12 \\ 100 \\ 20 \end{array}$
	Polarizeu	Armature (short) Meter movement	$\begin{array}{r} 10 \\ 100 \end{array}$	$\begin{array}{r} 20 \\ 100 \end{array}$
	Vibrating reed	Jjry reed Mercury wetted	$\begin{aligned} & 6 \\ & 1 \\ & \hline \end{aligned}$	$\begin{array}{r} 12 \\ 3 \end{array}$
	High speed	Armature (balanced) and short) Dry reed	$\begin{array}{r} 25 \\ 6 \end{array}$	NA NA
	Thermal time dolay	Bimetal	10	20
	Electronic time delay, nonthermal		9	12
	Latching, magnetic	Dry reed Mercury wetted Balanced armature	$\begin{array}{r} 10 \\ 5 \\ 5 \end{array}$	$\begin{aligned} & 20 \\ & 10 \\ & 10 \end{aligned}$
5-20 amp	High voltage	$\begin{aligned} & \text { Vacuum (glass) } \\ & \text { Vacuum (ceramic) } \end{aligned}$	$\begin{array}{r} 20 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 40 \\ & 10 \\ & \hline \end{aligned}$
	Medium power	Armature ! long and short) Hercurj; wetted Magnetic latching Balanced armature Solenoid	$\begin{aligned} & 3 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 6 \\ & 3 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$
$\begin{aligned} & \text { 25-600 } \\ & \text { amp } \end{aligned}$	Contactors (hıgh current)	Armature (short) Mechanical latching Balanced armature Solenoir	$\begin{array}{r} 7 \\ 12 \\ 10 \\ 5 \end{array}$	$\begin{aligned} & 14 \\ & 24 \\ & 20 \\ & 10 \end{aligned}$

Relays

Failure Rate Level	${ }^{1} 0$
L	1.5
M	1.0
P	0.3
R	0.1
For relays other than ER (MIL-$R-39016$), use $\pi_{R}=1.0$	

EXAMPLE

Given: A relay rated at $125^{\circ} \mathrm{C}$ is operated in a ground fixed environment with an ambient temperature of $30^{\circ} \mathrm{C}$. The relay is double-pole. double-throw with a resistive load of 50 percent of rated load. The relay is expected to be cysled at an average of 5 cycles per hour. The relay is a balanced armature, general purpose relay.

Find: The fallure rate of the relay.
Step 1. From Table 2.9-2, λ_{T} is 0.006 failures $/ 10^{6}$ hours, based on the ambient temperature of $30^{\circ} \mathrm{C}$ for $125^{\circ} \mathrm{C}$ rated relay.

Step 2. From Table 2.9-3, $\pi_{L}=1.48$ for a resistive load at 50 percent rating.

Siep 3. From Table 2.9-4, " E is 2.0 for ground fixed environment.
Step 4. From Table 2.9-5, π_{c} is 3.0 for double-pole, double-throw contacts.
Step 5. From Table 2.9-6, $\pi_{c y c}$ is 0.5 for 5 cycles $\left(\frac{5 \text { cycles per hour }}{10}\right)$.
Step 6. From Table 2.9-7, π_{F} is a 5 for a balanced armature, general purpose relay.

Step 7. From Table 2.9-8, π_{Q} is 1.0.
Step 8. The failure rate is determined by substituting the factors into the failure rate matheutatical model:

$$
\begin{aligned}
& \lambda_{p}=\lambda_{b}\left(\pi_{E} \times \pi_{c} \times \pi_{c y c} \times \pi_{F} \times \pi_{Q}\right) \\
& \lambda_{b}=\lambda_{T} \pi_{c}=0.006 \times 1.48=0.0089 \text { failures } / 10^{6} \text { hours } \\
& \lambda_{p}=0.0089(2.0 \times 3.0 \times 0.5 \times 5.0 \times 1.0)=0.133 \text { failures } / 10^{6} \text { hours. }
\end{aligned}
$$

APPENDIX D
SECTION 2．10，MIL－HDBK－217B

Switches
Toggle or pushbutton (single body)
TABLE 2.10-1
Prediction Procedure. for Toggle or Pushbutton Switches

Part specifications covered	Description
1. MIL-S-3950	
2. MIL-S-8805	Snap-action toggle or pushbutton
Part failure rate model (λ_{p})	
${ }^{1} p=\lambda_{b}\left(\pi_{E} \times \pi_{c} \times \pi_{c y c} \times \pi_{L}\right)$ failuires $/ 10^{6}$ hours	
where factors are shown in:	
π_{E} - Table 2.10-4	
${ }^{\pi} \mathrm{C}$ - Table 2.10-5	
${ }^{\text {cyc }}$ - Table 2.i0-6	
π_{L} - Table 2.10-7	

Base failure rate model (λ_{b})

	λ_{b}	
Descriptiun	MIL-SPEC	Lower Quality
Sriap-action	0.00045	0.034
Non-snap action	0.0327	0.04

Switches
Basic sensitive
Table 2.10-2. Prediction Procedure for Basic Sensitive Switch

$\frac{\text { Part specifications covered }}{\text { MIL-S-8805 }}$	Description Basic sensitive
Part failure rate model $\left(\lambda_{p}\right)$ $\lambda_{p}=\lambda_{b}\left(\pi_{E} \times{ }_{c}{ }_{c y c} \times \pi_{L}\right)$ where factors are shown in: $\pi_{E}-$ Table $2.10-4$ $\pi_{c y c}-$ Table $2.10-6$ $\pi_{L}-$ Table $2.10-7$	

Base failure rate model (λ_{b})
$\lambda_{b}=\lambda_{b E}+n \lambda_{b C}$ (if actuation differential is >0.002 inches)
$\lambda_{b}=\lambda_{b E}+\eta \lambda_{b D}$ (if actuation differentiai is <0.002 inches)
where $n=$ number of contacts or active poles

Description	MIL-SPEC	Lower Quaiity
$\lambda_{\text {bE }}$	0.1	0.1
$\lambda_{\text {bC }}$	0.0009	0.45
$\lambda_{\text {bD }}$	0.0018	1.25

Switches
Rotary (wafer)
Table 2.10-3. Prediction Proceciure for Rotary Ewitches

Part specification covered MIL-S-3786	Description Rotary, ceramic or glass wafer, silver alloy contacts
Part failure rate model $\left(\lambda_{p}\right)$	
$\lambda_{p}=\lambda_{b}\left(\pi_{E} \times \pi_{c y c} \times \pi_{L}\right)$	failures $/ 10^{6}$ nours
where factors are shown in:	
$\pi_{E}-$ Table 2.10-4	
$\pi_{c y c}-$ Table 2.10-6	
$\pi_{L} \quad-\quad$ Table $2.10-7$	

Base iailure rate model (λ_{b})
$\lambda_{b}=\lambda_{b E}+n \lambda_{b F}$ (for ceramic RF wafers)
$\lambda_{b}=\lambda_{b E}+n \lambda_{b G}$ (for rotary switch medium power wafers)
where n is the number of active contacts

Description	MIL-SPEC	Lower Quality
$\lambda_{\text {bE }}$	0.0067	0.1
$\lambda_{\text {bF }}$	0.00003	0.02
$\lambda_{\text {bG }}$	0.00003	0.06

Switches

Table 2.10-4. T_{E} - Fnvironmental Factors Based on Service Condition for Switches

Envi ronment	π_{E}
G_{B}	1.0
S_{F}	1.0
G_{F}	3.0
N_{S}	4.0
$A_{I T}$	5.0
$A_{I F}$	10.0
G_{M}	17.0
N_{J}	23.0
$A_{U T}$	50.0
$A_{U F}$	100.0
M_{L}	667.0

Switches
Table 2.10-5. π_{C} Factor for Contact
Form and Quantity

Contact Form	${ }^{\pi} \mathrm{C}$
SPST	1.0
DPST	1.5
SPDT	1.75
3PST	2.0
4PST	2.5
DPDT	3.0
3PDT	4.25
4PDT	5.5
6PDT	8.0

Taole 2.10-6. Tc, Factor
for Cycling Fates

Switching Cycles per Hour	"cyc
≤ 1 cycle/hour	1.0
>1 cycle/hour	number of cycies/hour

Switches

Table 2.10-7. π_{L} Stress Factor for Switch Contacts

Stress Load Type Resistive Inductive Lamp 0.05 1.00 1.02 1.06 0.1 1.02 1.07 1.28 0.2 1.06 1.28 2.72 0.3 1.15 1.76 9.69 0.4 1.28 2.72 54.60 0.5 1.48 4.77 0.6 1.78 9.49 0.7 2.15 21.64 0.8 2.72 0.9 3.55 1.0 4.77
where $S=$ operating load current
rated resistive load

Switches

Example

Given: A MII-SPFC toggle switch is used in a ground fixed environment. The switch is a snap-action switch and is single-pole, double-throw. It is operated on the average of one cycie per hour, and load current is 50 percent of rated and is resistive.

Find: The failure rate of the switch.

Stop 1. The base failure rate λ_{b} is found in Table 2.10-1 and is determined to be 0.00045 Eailures/106 houre.

Step " \quad The environmental factor $\pi \mathrm{E}$ for ground fixed eavironment is determined from Table 2.10-4 to be 3.0 .

Step 3. The contact form factor 19 is determined from Table 2.10.0. Far a Eingle-pole, double-throw awitch, π_{C} is 1.75.

Step 4. The :ycling factor $\pi_{c y c}$ 1s detemined Erom Table 2,10-6 to be equal to 1.0 .

Step 5. The stress factor π_{I} from Table $2.10-7$ for 50 percent 3 tress factor and a resistive load is decermined to be 1.48 .

Step 6. The failure rase mathematical model for toggle switches 1s:
$\lambda_{P}=\lambda_{b}\left(\pi_{E} \times \pi_{C} \times \pi_{c y c} \times \pi_{L}\right)$
Substituting for these factors:
$\lambda_{p}=0.00045(30 \times 1.75 \times 1.0 \times 1.48)$
$\lambda_{P}=0.0035$ fallures $/ 10^{6}$ nours.

Switches

Example

Given: A MIL-SPEC rotary switch is installed in an airborne inhabited, transport environment. It has a medium power wafer, one deck, and six contacts. The switch is cycled ar. average of 5 cycles $p \in: H$ hour, and the load current is 50 percent of rated current and is resistive.

Find: The failure rate of the switch.
Step 1. The base failure rate λ_{b} is determined from Table 2, iC-3.
$\lambda_{b}=\lambda_{b E}+n \lambda_{b G}$
Substituting the values from Table 2.10-3:
$\lambda_{b}=0.0067+6(0.00 .303)$
$\lambda_{b}=0.00688$ fa:lures $/ 10^{6}$ hours.
Step 2. The environmental factor for airborne inhabited, transport (π_{E}) is determined from Table $2.10-4$ to be 5.0 .

Step 3. The cycling factor $\pi_{c y c}$ is determined from Table 2.10-6 to be 5.0.
Step 4. The stress factor "cyc is determined from Table 2.10-7 to be 1.48.
Step 5. The fallure rate mathematical model for rotary switches is:

$$
\lambda_{p}=\lambda_{b}\left(\pi_{E} \times \pi_{c y c} \times \pi_{L}\right)
$$

Substituting values determined in the formula:
$\lambda_{p}=0.00688(5.0 \times 5.0 \times 1.48)$
$\lambda_{P}=0.255$ failures $/ 10^{6}$ bours.

Rome Air Development Center
RADC plans and conducts research, exploratory and advanced development programs in command, control, and communications (C^{3}) activities, and in the c^{3} areas of information sciences and intelligence. The principal technical mission areas are communications, electromagnetic guidance and control, survelllance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sclences, microwave physics and electronic reliability, maintainabijity and compatibility.

