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CHAPTER 1
INTRODUCTION AND BACKGROUND

The subject of redun-incy has been a popular topic for papers on reliability since the late 1950's.
Most probably Von Neumann's contributions in the 1940°s relative to the application of Majority
Voting schemes to computers provided the nucleus for much of this work (although his original efforts
were not concemed primarily with improving electronic hardware reliability). Aithough many authors
wrote on the more simplistic features of redundancy, three stand out as those who are referenced
frequently in papers by other authors; Balaban (4)*, Moskowitz (28), and Kneale (25). They wrote
primarily about unuttended redundant systems, for the most part ignoring the effect of sensing and
switching elements. The impact of such factors was considered later by such people as Grisamore (11)
and Aroian (2). In all of these, the figures of merit of concern weie Reliability, expressed as the
probability that the systems would remain operational over a given period of time, and Mean Time to
First System Failure.

In the early 1960's, interest began to center on formulations for redundant systems which were
maintained. At this time, the traditionai reijability figures of merit were augmented by an additional
figure of merit called Availability. During this era the primary tool used was the Markovian process.
The foremost pioneer investigators in the arex of maintained systems were Barlow and Hunter (6),
who introduced what is iow known as the Ava;lability measures (both time dependent and limiting)
for full on systems. Shortly thereatter, Epstein and Hosford (17) for the first time defined the
reliability, probability of no system faiture over a oeriod of operating time, and mean time to first
failure of both full and standby redundant configurations. Later Dick (12) defined the Availability
figures of merit for a group of two unit redundant systems under different operational scenarios.

The Markovian Procedure was in general rather cumbersome to use and as a consequence, in the
years that followed, approximation procedures were a topic of quite a few papers; for example,
McGregor (27), Applebaum (1), and Einhom (16). Dick (13) was the first to develop a rather simple
appreach to evaluate the mean time to first failure of a full on redundant system.

The purpose of this report is twofold:

(@) 1o present the information and tools necessary to evaluate mosi of ths types of
redundancy problems with which a reliability engineer is faced;

(b) to presznt new simplified approaches to redundancy analyses which provide time savings
compared to the classical methods.

As indicated previously, many papets have been published about redundancy. Most are repetitions,
except for minor variations. Those that are nor repetitious are published in various reports or
symposium proceedings, widely separated by years.

To the typical analyst charged with the cvaluation of the reiiability of a redundant method, this
presents serious problems. What is required, and part of the subject to which this document pertains,
is a survey of the basic redundancy literature to make available in a single document, information such
that the vast majerity of redundancy design applications encountered can be evaluated.

For the most part, the most widely used and strongest evaluation techniques available are complex
and time-consuming to apply (especially for repairable redundant networks). This document contains
unique evaluation approaches and/or results which are in many instances less complex and less
time-consnming than the traditional approaches.

A summary of the subjects coverced in this thesis is shown in Table I.1.

Background

In order to cope with the military technological developmients of the past fifi. ~n years, electronic
systems have been compelled to cxpand in toth sizc and complexity at a rapid «.ve. Of equivalent
importance to the need for this growth has been the coincidentai need for greaicr system rcliability and
maintainability. As military and space requiicments necessitate the construction of ¢ven more
complex systems, the contemporary philosophies of reliability and maintainability will become
inadequatc for the successful performance of mission objectives. The most severely affected systems
will be thosc on which maintenance cannot be performed, such as satellite-borne systems, and

i
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TABLE 1.1
A SUMMARY OF REDUNDANCY TOPICS
NON-REPARRABLE SYSTEMS REPAIRABLE SYSTEMS
Fuil on Redundancy Full on Redundancy
* Traditional Approach » Markovian Approach
» State Analysis Approach + Combined Unit Approach
+ Expectation/Transition Approach
¢ System Failure Rate Approach
Standby Redunduncy ¢ Periodically Maintained
* Traditional Approach Systems
* Perfect Switching ¢ Impact of Redundancy on
* Imperfect Switching Maintainability
Efficient Levels of Redunancy Standby Redundancy

« Markovian Approach .
¢ Expectation Transition Model

strategic wilitary systemis where the luxury of even a small down iime cannot be afforded. At this
time, the only recourse to such situations is the creation of components of increased refiability or the
application of redundancy,

In order to increase the reliability of complex clectronic systems, a constant ‘effort is made to
improve the reliability of the component parts comprising s.«ch systems. The rate of improvement of
component part rejiability, however, lies significantly below the rate of increase of system
complexiiy. In addition, it must be realized that the atainmen: of 100% reliability for 4 component
part is impossible. The only recourse then is redundancy (the addition of duplicate ¢iemenis).

Redundancy may be achieved in many ways. Each has its advantages (reliability gain) and its
disadvantages (the number of duplicative elements required which inpact on total system weight,
cost, volume). The purpose of this report is to explain the rationale for cach type of redunduccy
considered and 16 develop means of evaluation such that the reliability potential of cach may be
assessed and tradeoffs made.

1.2.1 Measures of Reliability

The following reliability measures will be used in this study. (1) Mean Time to Failure M; (2)
Probability of Failure frec operation for specified time t, denot..d by R(1); (3) P(t). the probability that
a system will be functioning at time t. For the non-maintained system R(t) = P(t) and for the
maintained system R(\) # P(0).

The following relationships exist:

M s7t W()de (1.1)
0

where W(t} denotes the failure density function.
Now:

d

dR{t -
W(t)= - N T (1.2)
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Hence:
Mo 7 0 SREL g (1.3)
0
Integrating by parts:
Me - t R(E)] T + STR(U)de (.4)
0 o
Nnw O-R(O) = 0 and
t
- f h(x)dx
lim t R(t)= lim te ©
toro tHo +0
B . W(x)
where h(x) denotes the hazard rate, i.c. h(x) = TR
Hence: (
M= /7 R(t)dt (1.5}
6

1.2.2 Definition of R():

Since the expression for R(1) is a probabilistic function, its fonmulation will itfvolve Ehe
combination of probabilitics (Reliabilitics) of success, or survival (over a given period of time), for ull
the units mauking up the system in question. Where redundancy does not exist, the faiture of any one
unit results in system ailure and R() is comprised of the product of the reliabilities (probabilitics of
survival fov a given period of time) of all units comprising the system,

R() = 7RO, (1.6)

When the system is composed of redundant units, numcrous possibilities for system survival cxist
(with no redundancy the system can survive only if no units fail in the given period of time), hence
R(1) must be defined in terms of complex combinations of probabilities rather than as a simple
product. For this reason, the following section on simple probability theory will serve as necessary
background for the definition of R(t).

1.2.3 Probability Basics
Given t=> mutually exclusive events A and B, the probability of either occurring is the sum of their
probabilit'«:, -

P{a+B)= P(A) + P(B)
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This follows from the fact that, in general, if we have K mutually exclusiveevents B, B,, B, . . . B,,
then:

X
P(81+B . .Bk)- b

2 P(B,)

Epos |
F S 8

If i\wo events exist that are not mutvally exclusive (say A and B), the probability of one or more
occurring is:

P(A+B)= P(A) + P(B) - P(AB)

For three such events:

P(A+B+C)= P(A) + P(B) + P(C) - P(AC) - P(AB) -~ P(BC)

+ P{ABC)

Generalizing to K non-mutually exclusive events B, B, . . .B,, the probability of one or more of
the evenis occurring may be defined as:

P(B, + B,...B) = I P(B) - P(B)
- P(B,B) ~ ....P(B, B,) + P(B/B,3,)
+ P(BB,B,) + P(B,,B, ,B) + .....
+CD® PBB, .. B ...

i_f events A, A;, A, . . .A, are independent and the probability of occurtence of ali events is
desired, the prebability that ali occur P(A A4, . . .A,) may be calculated as:

PAA, .. A; = P(A)
=}

Equgqng the term, event, with either a failure or a success and the probability of an event with the
pmbabl_lny of failure or the probability of success, the relationship between R(t) and probability
theory is immediately evident.

1.2.4 The Block Diagram

In onder to complete the picture for evaluation of R(t), the concepts of probability must be applied
to the system block diagram. From the reliability block diagram, and the definition of each block’s
reliability (probability of survivai for 2 given period of time) an expression défining cystem reliability
may be developeq.

Figure 1.1 shows such a block diagram made up of two units, A and J. The system will opecate
successfully if cither unit A or unit B or both units are operative and will be considered as faiied if
both A and B fail.
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Let us consider the event that A survives a period of operation and define the probability of such an
event as R(t,).

Letus consider the event that B survives 4 period of operation and define the probability of such an
event as R(ty). .

Note that the survival or failure of either A or B does not and will not affect the survival or failure of
the other, hence A und B are considered independent.

Note also that just because unit A survives, unit B does not have to fail and vice versa (both units
can fail or survive); hence the events are not muually exclusive.

Therefore, the probability of system survival is equal to the probability that A or B or both survive.

P(A+B)= P(A) + P(B) -~ P(AB)

or R(t)= R(:A) + R(tB) - R(rA)-R(cB)

Figure 1.2 shows a block diagram made up of three units: A,B, and C in series. The system will
operate successfully only if al! threc units are operative. The system will fail as soon as one of the
three fails.

Let us consider the events that A, B, and C survive a period of operation and define respectively the
probability of such an event for each R(t,), R(ty), R(1.).

A

Figure 1.1 Two Redundant Units

Figure 1.2 Three Series Units
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P(A, B, C )= P(A)*P(B)P(C)
or R{t)= R(CA)'R(tB)'R.(tc)

1.2.5 Types of Redundancy:

The discussions that follow will concern themselves with two basic classes of Redundant Systems:
A. Systems which are redundant and which are non-maintained (failed units of a redundant
complex are not repa/red or replaced). This situation is commor, to unattended applications,
i.e., an unmanned field site, a satellite etc.
B. Systems which are redundart and maintained (fajted units of a redundant comple.; are
~ repaired and replaced). This situation is common to attended applications, i.c., manned site.
For each class several types or varieties of redundancy are considered. In all cases we will assume
g:::: the fl‘l:ﬁts have times to failure heving an exponential distribution described by the probability
' ty functi~a;

r(t,A)= Ae~At

> e
v v

QD

A= failure rate of unit
t= gpexating time in question, and
R(t)= fwz*(t.i)dt- e At probability that unit will not fail

t
during operating time t,
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CHAPTER 2
RELIABILITY MODELS FOR NON-REPAIRABLE SYSTEMS

2.1. Fuil on Redundancy (Single Unit Necess:ty For Survival)

The most widely discussed form of resundancy for a situstion not invoiving repair has been a
series amangement of & number of (N) redundan. elements as shown in Figure 2.1. In this type of
recundancy, ali L*N units are continuously energized,* and it is assumed that so long as at least one

unit is functioning properly on ::uch of the L cascaded subsystems, the system a5 a whole will uperate
successfully. The reliability of such a redundant system is obtained as follows:
Let: L:-  number of cescaded subsystems composing €e system.
N= aumber of continuously energized units comprising each subsystem.
A= failure rate of cach redundant unit.
(For convenience, N and A arc taken to bz the same for all units comprising the system).
* - Hence the tena Fuli on Redundancy.

Y L—-—-—-T———ﬁv
0 l ] -

j | AN
! i
} \
i |

| '
i 1 i
i |
1 Lo

Ruwran!
‘M #

da—ncwmu R £ e “b
Figure 2.7, L Rodundant Subsystems in Series

7
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We assuine that the fuilure rate of cach unit is given by an exponential distribution with parameter
A. Then we have:

— The reliability of any unit (i) equal R(t) = e*¢,

- [The probability of any unit failing in time t] = 1-¢™,

— [The probability of all N ynits in a subsystem failing in time 1] = (1—¢)'. .
~ The peobability of at lesst one unit in a given subsystem surviving = [ 1—(1--¢™)"].

The probability of al! L subsystems having at lesst one operating unit is thus given by:
R() = [1- (1= Q.0
As shown carlier, the mean time to failure is | ® R(t)dt. Therefore, the system meun time to
first failure de: *

o )
M 1 (ee 35Nl (2.2)
0

p After some manipulstions, (sec Appendix A), this expression reduces to the following simple
Lt 114

L KN
e 1/h 1 UMYy Toays (2.3
k=l R
8

The quantity of interest, AM, where:

MIBF of the system
M MTBF of aﬁ%-

ir: dhus given by:

L ‘ kN
AN CE DAt O I VE (2.4)
k=1 gw]

The mean times o failure of redundant systems which selected values of N and L are shown ir.
Figure 2.2. As can be noted from this figure, order of magnitude intreases in systern mean life over
element mean life are not possible unless extremely large values of N are emplioyed.

A special case is considered when L= {. This defines a single subsystem composed of N paralicl
(redundant) units. It follows froni Equati mn (2.1) that the relativnship depicting reliability is:

a

R(t)e 1- (l-e *H¥ (2.5)
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,0 =

AM

01 1 10 100 1000

RL

e |

‘N!,é Totai number of components in system. A facior of | ;;eipwvam%ut of Eeﬁi&;tdﬁﬁi
stem mean lif2 over simplex system mean iife may be found by muitiplying the value
ﬁ?temtlned for \M by L. A= fallure rate of a single system element: M = system mean
e
t

Figure 2.2. AM Relationships For Full On Systems l

with corresponding meantime to first failurc:

¥ [~ Q-eHNar

0
N A Y
= 1/A ¥ 1fr= 1fa-4 L/Zx + 1/3% 4... 1/NA(2.8)
ared
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Note that when Ns« 2, the familiar 2 unit redundancy example, we have:

3

M-z)‘

The above equations provide a means to develop the R(t) relationship for a system containing L
subsystems each with a different number of units N in parallel. Thus:

L N
R(t)= tnl [1- a-eY Y @.n

with coresponding mean time to first failure given by:

« I, A Ni
Me s T [1- (-e*F) Tlge (2.8)

g i=]

2.2 Binomisl Redundancy (multiple operating units required); Full on Redundancy
This type of redundancy is identical to the one described above except that the system may be
considered a3 & large subsystem composed of N fully energized paraliel units and requires & minimum
of IXD«<N) operating units (non-failed units) in order to operate.
This type of a system may be described peobabiiistically by the binomial distribution:

H
R(t)= I

Ny -Atk -At N-k .
kn(k)t! ) (1~e ") (2.9)

with corresponding mean time to first failure given by:

N
Me SOR(e)dt= 1/A L 1/k (2.10)
0 k=D

2.3 State Transition Madel: Full on Redundancy

An alternate micans of developing the reiationship for mcan time to first failure is to consider the
concept of system states and the concept of transition from one state to another.

The system starts out initially with N units operating. Since we are not considering the concept of
repair in this perticulur situation, the system will experience a unit failure aud be reduced to (N-1)
operating units; will eventually experience a second unit failure and be reduced io (N-2) opstating
units, etc., until only D units are operating, The next failure which occurs vesults in onty (D-1) units
operating and will cause the system to fail.

Let B, (k = 0,1,.. .N—D+1) represent the state that thc sy:-=m has (N-k) units operating. Since
this is a non-rep~ivable systems, the system will transition from state By, to state Ey. . Each state has
an average time to transition into the next possible state (E,,, 10 Ey,.,) given by:

10
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“(N-k/u_k..l)- 1/5(N-k)

A= failure raic of each uait.

Since the transitions must occur in sequence, the mean time to transition from state By to By, is given
by:

N~D N-D
M= I M = L L/x(¥-k)
=0 (N-k/N-k=1) " g
N
w 1/3a 5 1/k
k=D

and which corresponds to eguation (2.10).
Nommalizing as before yiclds:

N
A= I L/k (2.11)
k=D

Figure 2.3 shows a plot of refiubility improvemcnt for this type of redundancy.

2.4 Standby Redundancy (sirgle unit nccessary for survival)

A second type of redundant system which possesses & similar configuration o the system
preiously described, but employs switched-in redundsncy is that illusteated in Figure 2.4.

In this instance only one clement of each of the cascaded subsystems is activaied at & time. Upon
failure of this clement, the next elensent of the subsystem will automatically be switched iwo
operation. Until such a switch oceurs, the standby clement is not energized gnd hience 2 failurc rate
X= 0 is assumed. In order to hypothesize an apper bound for the relinbility of such a system, the
fuilure rate of the switching device will be equated to 0.

Tn this model, the successive failures form a Poisson process with rate A. Then the reliability of the
system will be given by:

N-1
R(t)- b P( r}t)
=0
N-1 r
o -ht (A
LI ¢ ..g...‘t)_... (2.12)
=0 r!

where P(r,t) = Probability of r failures in time t and At represents the number of failures expected in
the time period t, and N the number of redundant units compusing cach subsystem.
Hince:

) 4
femAt £25)_ dgm 1/
0 r!

11



Downloaded from http://www.everyspec.com

we have the mean time to first failure as before,

M= SUR(r)dt
0
S R (LI N
w [ L e e dt
0 r-0 r!
N-1
- I 1/x
=0
- N/A

N = number of units in a subsystem
A = faliure rate of any active subsystem unit
D = number of units necessary for subsystem operation

Figure 2.3 AM Relationships for Full on Subsystems
12

| SN S S0 1 & RN S— .
ol | .
1 2 4 6 Nﬂ) 20 100

(2.13)
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and
AM» N. (2.14)
The relisbility of a system composed of 1. such subsysiems may be shown fo be
-Atn'l AT L
weys [oAp SRR (2.15)

™0 r!

The mean time to first failure of such a system is given by:

- N-1 r_L
M SO R(Dde= [ BETT g 2.6
0 0 =0 !

b 3
r—am
T
‘
f
|
l
|
|
SWITcH :
T 1
. i
— Pt "
Figure 2.4. Switched-In Redundancy Example S |

13
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A general evaluation of this equation for various values of L and N is difficult. However, if a
specific value of N is stipulated, an explicit form can be obtained for any valie of L by a serics
expansion.

Let N= 2, then;
N-1 r _L
we LMy QEL T4
0 =0 r!

. %o IAE ;‘ gA:)”)L de
0 =0 r!

o S B ant ae
0

L
- M r D aota

0 =0

é Lt €2.17)
- - v L QA

=0 ALY (pye

where the last equation is obtaincd by integration by parts.

A plot of improvement of N= 2 appears in Figure 2.5. In ovder to more easily cvaluate the ocders of
improvement in meen life reali; 'd in this type of redundiney, o comparison on a subsystem level is
miade in Figure 2.6 of this concept of redundancy, vs. the concept depicied in Figure 2.3,

As may be noted from Figure 2.6, greater increases in magnitude in system mean life over element
mean lifc may be realized by utilizing this concept rather than the full on redundancy concept
previously described.

Examining this redurdam design carcfully, it becomes obvious that sensing devices are necessary
to detcet each fuiluwre, and switching mechanisms are ragr ired to activate and deactivate clements, In
practical situations, the present limits on the rcliability of conventional sensing and switching devices
limit the reliability putential of the scheme.

Standby Redundancy: I) operating Usits Necessary for Survival,

Another form of biromial redunancy may be encountered when the system (subsystem) is
composed of N identical units. A subsct of ID units out of N is chosen to foria a working system
(subrystem). Llements of the working system (subsystem) which fail may be replaced. The units
which are not a part of the working system arc assumed to be standby units and have a failure rate A=
0. Itis ussumed that failure-free switching, sensing, and interconncction methods are utilized in order
to determine an upper bound reliability for this system type.

In this type of redundant system, since I units arc always working, the failurcs of this subsysecm
form a Poisson process with rate AD, Then the system reliability will be the probability that the system
has & maximum number (N-D) of failures in the time period t, i.c.:
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N-D

R(t)= L P(N(t)= k)

k=0

N-D ~ DAt %k
- ¥ 2——___(.12.‘.2).... -
]

k=0 ks

where

N{t)= the number of failures in the time period t.
N= total number of elements composiug the system.

D= number of elements necessary for the system to operate.

A= failure rate of cac' operating clement.

10

AM 1

0.y 4 ——

NL

NL = total number of units In system

100

(2,18)

A figure of improvement of redundant system mean life over simplex system mean life
may be found by multiplying the value determined for \M by L. A= fallure rate of a single

system unit: M ~ systerm mean life.
Figure 2.5, AM Reiationship for Standby Redundancy

15
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2.6 Reliability of Paralle] Units when the Reliability of Switching is Considered.

In the previous sections, we have discussed the reliability of non-repairable redundant systems,
ignoring the failure rate of any sensing or switching mechianisms. As such, the previous evaluation
and analysis procedures should be considered as providing an upper bound for system reliability.

Various ways have been suggested through which the failure rates of sensing and switching devices
can be accounted for in the analysis of redundant systems. These range from simply adding a failure
mate increment equal to the failure rate of a switching and scnsing device to the failure rate of one or
more redundsnt units, to anaiysis procedures which take into account ihe operaiional modes of the
sensing and switching dsvice. The following is an example of the latter (for a two-unit redundant
systemn) which provides information on how such an analysis may be performed, and also provides
some insig..t into the complexities of the cnalysis.

Consider units A and B connected in a standby paralle] configuration. If either A or B is functioning
and properly connected, the required system function is realized. The sensor/switch S provides the
necessary connection, disconnection function,

If A fails, S senses this failure, and if § iz operating properly it switches to B. The system
composed of A,B, and S operates as follows:

100 , —~

e

&
10 Qﬁ -
AM
24 ~
1k
8
i B
4
2
0.1 f ,
1 2 4 6 10 20 100

N = number o7 redundant units in a subsystem
A = fallure rate f any active subsystem
N - mean e (i a subsystem

Figure 2.6 Comparison of 5tandby ar»d Full On Redundancy .

16
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a. IfS operates properly, it checks A. If A has failed, it turns on B. § is then in 4 fail safe position.
The system operates until B fails.
b. § fails (and no switch possible) while A is operating. The system operates until A fuils,
¢. §fails in a way that a switch to B is mandated, while A is still capable of operating. 3 is energized
“and the system operates until B fails.
d. S fails while A is still operating. 1t fails in such a way that A and B arc unable to operste and the

system faifs.

Let P(t), Py(1), P(t), and P,(t) denote the probability that the system fails at time t according to the
above events, a,b,c, and d, respectively. Then, noting that the above events are all mutuatly exclusive
at t, we have the probability of failure at t:

PL(t)~ P‘(t) + Pb(t) + Py (t) + Pa(t)

Let the density functions of time to failure for A,B,S, be exponential and let A and B have identical
density functions.

£(r)= re 't for A and B

g = Ae™™ for 8

Note that (b), (¢) and (d) indicate three different modes of possible tailure predicated on the single
cailure density function. In ovder to cope with this, define:

P,= probability when § fails, the switch stays on A
P,= probability when § fails, the switch goes to B
Py~ probability when S fails, the switch makes A & B inoperative.

The events described by Pi, Pz, Ps are also mutually exclusive and exhaustive and:

P +P2+1’3-1

1
We will now develop probabilistic relationships for P,(t), Pu(8), P () and Py(3):
Les:

t,== the time at which § fails.
t,= the time at which A fails.
=" the time at which B fails.
"Noting that:
ta
P(t)= 1- [ g(ty) dt,
o

17
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= probability that S does not fail before ¢,
t
P(rgl= 1- I fa(t‘-) aty
0 .

= probability that A doesn't fail before ¢, wc have:

t t"'tb , d dt
Pa(t)- I .r P(ca) fa(ta) fﬂ(tb') ta' B
t‘b"o th'o

This follows from:

t-
"(t"tb)' , :b

ta

/
Pit,) £5(tg) dr,

== probability that A fails before § fails ji 10, 4],
and:

t
! W(t—-tb)fb(tb) dt, = probability that B falls

ty
b tn [0,t] after the switch

was made upon the failure of

By the assumption of exponentiu! failure, we have:
- A — e A oM ~e AHyT 2.19)
P A f1-¢ W ( i (

Using the memoryless property of the exponential distribution, it can be seen that A fias the same
density as before, after S fails.

Then we have:
P R a(t) £.00
P (t)=P, I P(e) g(t) £ .(x) dt_ dx,
b ! x=0 t,~0 B s & 8
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‘This foilows from the foflowing:

t=-x
Wit-x)» [ P(t;) g(tg) dt'.

)

b
= probability that S fails before A fails

and it follows:

t
Py (t) = P, x‘{o W(t~x) f,(x) dx= probability that A fails
in [0,t]) sftec S fails,

Similarly we have: #

; t;% P(!Q) s(z;g) fE(?B) dt_ dt,

P (4)=P
G 2 _tg;g ﬁﬁ‘o

t
- {
Pd(t)"‘3 ‘ig ?(ts) su:s) dtg.

t
[ ]

The assumption of the exponential density gives:

A -0
P (o= b, [ —2 - e 4 ohe o TOFIE (2.20)
1 M A

- ~ - ont]
P () P, 22 1 e o R o)t ] J (2.21)
o 0

A,

Pd(t)“ p3 Ao —'1_. e'(ko"'Ut]

AR,

19
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From the above results the system relicbility can be obtained as follows:

R(E)= 1 Pp(t) = 1-P (t)-Py (¢ )«Pc(t)—!’d( t)

rl R (At _ ~OHA)E 1

L A,

.3
A ¥A

o

. } X »
- (3, + P, l-—AQ- P Y B ‘H‘Ao):}

A-H\o 3\4%0

A
0 [ 1 - e (ME (2.22)

A4A
o

-

®y

IfP =0, P + P2 = | (fail safe provisions built into system such that a switch/sensc failure cannot

cause system (o directly fail.)

At LA - -
R(t) = e”*C 4 A o7t (o o), (2.23)
lO
o0
M=/ R(E)de =2 4L A (2.24)
o A lo Xo()\o'ﬂ)

20
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Note that by (2.23) and (2.24)

: - - -t
ln  R(t) = 1ta o4 A it (1~e % )
A°->o ‘ A =>0 A

° o

we” 4+ lim A (2.25)

-
A‘ L]

- (1 4+ At) e7'€

m Mwltm 241 O A

Xe-:-a )\o.")G A Ao la (}.o-i-lj

1 . A
= - + PG .
M= W Tl

1 (2.26)

which are identicai to (2.12) and (2.13), respectively, for a two-unit standby sedundant system,

21
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CHAPTER 3
RELIABILITY OF REPAIRABLE SYSTEMS

The previous section was concerned with the reliability of redundant systems which were not
maintained; tha. is, the sssumption was made that the redundant configuration was maximally operative at
time zero and no unit repairs were performed until the system failed. At that time, all the units were
repaired or replaced and the system put in a maximum operative coadition egain. This section makes the
assumption that as units of a redundant system fail, they may be repaired. In particular, we will assume
that the “ime to failure of cach unit and the time to repair of each unit follow exponential density functions.

(D) = Ae B for time to failure
gt = pe™ for time to repair
A = failure rate
B = repair rate

In the picvious section we were concerned only with two reliability figures of merit: (1) Reliability
expresscd as a probability P(t) which denotes eiiher the probability of operating satisfactorily over a period
of time (0,T) or the probability that the system will be operating satisfactorily at the end of a period of time
(0, 7), 1. (2) Reliability expressed as mean time to first system failure M. Since the concept of mainteined
systems torces u change in the operational scenario, the figures of merit of intcrest are somewhat modified
and augmented. The figures of merit with which we will be concerncd wili be as follows:

(1) rteliahility capiossed as the probability that the system will be operative at any time t, P(Y).

(2) System mean time to ifnst failure M (detined in the sume way as in the non-repairable case), and
system stewdy stalc mean tine fo tailure M,

(3) The expected fractional amount of time that the system will be functional during a period of time
(G,T) - {Note that this figure of merit could be applicd ta the non-repairable case, however, it is
rarcly used and it is not as meaningful as it is in the repairable casc).

(4) Reliability expressed as the probability thoat the system will not fail during the time period (0.T).

It i interesting to note that while (1) and (3) are mathemarically different, both are commonly referred
to as "'Availability” (actually while the development of both measures is different and their *‘time
oriented’’ forms are different, their limiting cases are identical.)

In general, the procedure which must be followed in the analysis mid evaluation of a repairable
redundant system is the definition of its relevant system states followed by an analysis of possible
transitions. This means that the system can be in any one of various states Eq, E,, E, . . . .Ey. Forexample,
a single unit has two possible states (i) operating and (2) failed. A two-unit redundant systein as in Figure
3.1 has three possible states: (1) both units on, (2) one unit on, one unit failed, (3) both units failed.
Purther, the system can pass from adjacent state to adjacent state at rates defined by the state’s failure and
repair rates. (For purposes of clarity, let us define adjacent state as that state accessible to another state by
a single repair or a single failure. For example, in the case of tue two redundant units in Figure 3.1, the
s-ate of both units on is not adjacent to the state of both units failed - the state of both units on is adjaceni to
the state of one unit on, one unit failed). It is impossible to pass from one state to anotiier unless 5 chain
path of adjacent states is established. Given such ryles, many means arc available to anclyze reduwndant
repairable systems; some are more complex than others. This section will discuss several of these means.

3.1 Analysis of a Single Unit.

To start, we will discuss the reliability of a single unit. As will be seen later, the reliability
expressions for a single unit can serve as time saving building blocks for the definition of the
reliability expressions for complex redundant repairable systems.

Consider a unit having a failure rate A an+ a repair rate u.

L.et Py (1) denote the probability of a unit ; :ing in state j at time t given it was in state i at 1= 0.

0 = an operating state (an up state)

22
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1 = a failed statc (a down state)

then:
Poo(t-Mt)- P (unit is operating at t+it, given
1t was up at ¢= 0)
= P(unit doesn't fail ini(t,t+At)| unit 4s up at ¢,
gilven it was up at t= 0).P (unit ic up at t, given
it was up at tw 0)
+ P(a repair is completed in (t,t+At)| unit 1is down
at t, given it was up at t= 0).-P(unit is down at ¢,
given up t= 0)
= (i=A8t) Py,(t) + vat POl(:)

Using:

Poo(t) + ?m(c)- 1,
Pw(tmr.)- (i.-AAt)Poo(t) + pat(l- Poo(s))

P (t+at) - P (t) dap_ . (t)
00 00T .00 "
it H~ (A+u) Peom it

Solving this differential equution yields:

Pyl )= s ke~(Au)t

Using Py(0)=1, then K=A/(A+; ).
Then:

Poo(t)e p vy o (Au)t

(3.1

23
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In a simlar fashion the expression for Py, can be derived using P (0)=1, (i.¢., uait

in doaen as o—h} than

W WYV B R W

K= ""K—%}“.

Thuy;

Pt = r%;. - .:%7‘. € 3.2

Since P (0= 1-PJ0) and P, ()=1-P (1)

Py = I%"F - 1—:..—.“ o O (3.3
PO~ a4

» A
The reletionships (3.1) to (3.4) ave composed of a constant ierm (is,:) or 15, snd & term
which varies with time (Ko ~@*#" }, Az the tine period in time gets avbitearily large,
we gel!

E“' Apt + 0

"' e
and; ool t 1 i fand vgy(t)e 4 | (3.5)
i A
P:w(”‘ mﬁna Pn(t)-* -ﬁ_..dmj {3.6)

These denote the limiting probability that the unit will he operating at eny arbitrary

point in time distant from 10, It will be noted that the relationships above indicate

that as the time of interest 1 becumes distant from 1:=0, the ori: inal state of the unit is

of nv consequence. The stochastic behavior of the transition probability P& is

;hown in Figure 3.2, Equations (3.5 and {3.6) above me det?ned &9 Availability given
y:

24
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|3 M
A= et - Py
p¥T) [T (3.7)
where: = R = meantime to repair of the unit
¥heire : Dépail i wLo unav

M = meantime to fuilure of the unit,

s S < L]
i

Equetions (3.1) to (3.4) define the time dependent Availability of a unit, P(t). The
concept of expectation indicates that:

m

}P(t) dt (3.8)
0

defines the mean up or operational time, over a period of time (0,T) reolizing A usit
can fail, be repaired, fail again, etc. It then follows that the expectod fraction of time
that the uni? will be operating during the interval (0,T) is gives by:

1 )t
K(F )~ T J r(t) dt (3.9)
0

From equation (3.1):
T SRTCT DL

>3 1 ] .!'., ‘ ..,.H..... o
Eoo(z')' F ﬁ! *.'.5")‘“ T Gf (M~u T oy ¢

S SR A o (AT

M TOHE  TO+?

(3.10)

which denotes the expecied fractional amounst of time that the unit is on in the interval
(0,T) given that the unit is operating at t=<0. Similarly from equation (3.2):

25
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T
L] —1- d {
‘810(.1) T of '['lo(r.)dl:

w o K L o= (At)T

2t 2
AMu o T(A+n) T(x+u)

~
[7)
e
et
ot

which denotes the expested fractional amount of time thet the unit is on in the interval (0,T) given that
the unit is down at t=0. y

Both relationships (3.10) and (3.11) are composed of & constant term A+ 44 and terms which vary
with the time interval in question. As the time period (0,T) gets arhitrarily lacge, these equations
reduce to the limiting case such thut the expected fractional amount of time that the unit ix on during a
very large period of time is:

E_(Fl#,o(F)= 2 _ .
00 1.0 pwen {3.12)

Again, it will be noted that the relationships above indicate that as the time of interest t becomes
distant from t=0, the original state of the unit is of no consequence, Note that relationship (3.12) is
identical to relutionship (3.7). Hence Availability is defined as either:

(s The expected fractions! amount of time that the unit is operaring uver an arbitrarily long

period of time,

()] The probability that the unif is operating at any point in time distaut from (=0,

In cither case, then

-t M
A TEsY =

The foct that availability can have a dual definition is obvious when definition (a) is considered first,
for if a unit can be expected to be operational P percent of the tine and is cupable of numerous repatirs
and fa:;inres, then it follows that at any random point in time the probability is P percent that the unit is
operating.

Relationship (3.7) was developed using a differential equation and assumptions relating to the
distributions of repair and failure times. It need not be developed by that means, using such
gassu‘mpt‘ions. It may be developed quite simply and non-parometrically as follows:
et

T = thc interval of tiine in question
To== the time during the interval that the unit is operating
T,= the time during th> interval that the unit is down

Then:
Yo
A= T - (definitlon (a) of avatllability)

But:

20
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T= T, + T
iy L
%o
ol number of failures expected in opersting time 'ro
Tﬂ -
' '1‘1'4 e R= tife that the unit 18 down over intecrval {ia question
T -
L] x o L4 1 M
s v AW —@Mr- B ey o
T ¥ R R (3113)

A
O 1ty

which is identicsl to (3.7)
Hence the limiting relationship for Availability is non-parameiric.

There will be situations where evaluation requites the use of one or more of the measurcs
previously discussed. Tn summary, the most important arc repcated und defined below:

3 - i LA O
(a) Poott = T Y e ©

The prebability a unit will be operating satisfactorily at a given point in time, given that the unit
way operating satisfactorily at t:=(0),

A e ~(+) T
. 2 2 ¢
T{A+u) T(+n)

] - 1

‘The expected fractional amount of time that the unit is on in the interval (0,T), given that the unit is
opetrating at t= 0,

(c) Aw %— - -—.I-‘.i—.
A wR

The probability a unit will be oparating at a random point in time, distant from t=:0, or the expectu
fractional amount of time that the unit is on during an arbitrarily long time interval (0,T).
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3.2 The Combined Units Approsch: (Full on Redundancy)

This can be considered one of the most iasic approaches in exisience. ii siaris with the definition of
Poo(t) or Availability, for a single unit and treats these as basic probabilities of eurvival, as discussed in
Chapter | (in a rcliahility block diagram).

Take, for example, a two-unit puralle] sysiem as in Rigure 1.1. Both units are identical and
originally opcrable (on at t= 0) and both are operating simultaneously. 1f one of the units fails, repairs
are begun on it and the other unit performs the function. As soon as the failed unit is repaired, it is
mwd to operation. Al the first instant of time when both of the units are failed, the system lhas

The probebility that Unit A is operating at t= P_(1)

The probasbility that Unit B is operating at t= P(t)

The probability that either A or B or both are operating at  is the Availability of the system P(t).

P{t)= Pao(t) + Peg(z) - (Poe(t))z

- _ 2
2 Paa(t> Puo(t)

| 2
Y I SR SO 2 L A =)
ety ® T

which when expanded and combined reduces to:

2 - -
P(tym B 20 _ Aze‘ z(xfu)t: . 22 (e (3.14)
e (A1) 4 I
Note that as t gets arbitrarity large (3.14) reduces to:
2
| + ZA!!
B(E) ;'hystem (3.15)

(M) ?

28
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which is the limiting availability for the two-unit redundant case. To show this directly define as
before:

The probability that unit A and unit B will be operating at a random point in time, distant from t= 0,
a3 respectively:

A=

<. O _
TRl and AB

uti

The probability that cither A o7 B or both are operating at the same random point in time is:

- A - S S I TR Y -
Aaya tem AA + AB AAA'B Aty + Ay (u#-x

whicl reduces to:

2
A o U 22 (3.16)

system (4 ..)2

This is identical to (3.15).

In general, this approach is one of the simplest to usc when an evaluation of either the lmiting or
the time dependent availebility of a system or subsystem is required (snean time to first failure or
Probebility of no system failurc over time t cannot be evaluated using this spproach).

The following formula may be utilized to determine the system or subsystem redundancy and
gencral philosophy of operation as discussed in the beginning of this seation.

Let X = time dependent or limiting availability of any uuit.

LNy .
Systes Availability= 11 % (4 x) (-x)Ntd (3.17)
1=1 3D, J

=  numbes of subsystems in serics
i=  defines the ith subsystem

=  minimum number of working units requircd for the i subsystem to operate
N,= total nember of paralle] units comprising the ith subsystem,

3.3 The Markovian Approach (For Full on Redundancy)

Of ull the approsches to the analysis of repairable redundant configurations, the Markovian is the
most powerful. It is particularly appropriate to the analysis of redundant systemns and through its
application to such characteristics as:

. Avsilability (time dependent and limiting)

. Mean Time between system failure

. Reliability (we saw earlier a simple Markovian approach analysis for a non-repairable system).

29



Downloaded from http://www.everyspec.com

A redundant repairable system composed of N units has 2" potential states. Each time a different
combination of units is failed and operating a new state is defined. This means for every single repair
action completed, the system enters a new state. Likewise, for each failure which occurs, the system
enters a new state. The repairs and failures which occur cause the tronsitions from one state to the
next. The rates of transition (the failure rates, and repair rates) from one state to the next are
determined by the failure rate and repair rate characteristics of the current state znd also the
probability of more than one transition occurring simultaneously is zero. .

In order to apply the procedure, all possible system states must be identified and probabilistic
cquations developed describing such states. The casiest way to define and write the probabilistic
relations of the states is to draw a state space diagram or a truth table. The diagram shows vieually the
evolution of different system states possible and the means of transition, if any, between states, either
by feilcre or repair. Becsuse small increments of time are considered in the analysis, the probability of
a double transition is considered to be zero. The truth table (Figure 3.2) shows the results of the space
dizgram in tabuler form. Examples of both will follow.

‘The definition of:

(A) Availability (time dependent, and the limiting case)

(B) Reliability and Mcan time to syster failure
require the utilization of slightly different constraints and formulation of slightly different sets of state
equations. The primary difference lies in the fact that if we wish to determine the probability that at
any time the system is in any state K (necessary to determine Availgbility) we must allow for a
transition from a system failed state to an operating state. In the event we wish to determine the
relinbility (the probability of no system failure in an interval (0,T)) that i§, the probability that the
system remains in the set of non failed states during the interval (C,T),

R(t)= R’ (t) i = Set of all non failed
fl : states,

or the mexn time to failure of the system, we nist structuie our statc cquations such that there is no
teansition from & failed state.

The space diagram for a two-unit system (both units operating simultancously, only one of which is
required for systems operation) is shown in figure 3.1. As can be seen, the possible states are:

a)  Unit A and Unit B are bath operating (State 2) '

b)  One unit is in a failed state (repairs are being made) and the other is successfully operating
(State 1)

c) Both unity are failed (State 0)

The truth table can be tabulated as in Figure 3.2. ,
Values of the A’s and p's define transition probabilitics between adjacent states. The arrows indicate
which direction the tansitions take.

V]:\\ /1 |
% \'§3‘ 73 \

27 2™ Availabllity Measures 0 27 7%

(=]

State Space Diagram For Reiiability And Mean Time Yo Failure Measures
Figure 3.1
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STATE A B SYSTEM

2 é 1 Cnuxngﬁg

1 1 Operating

1 1 0 Operating

0 0 O Failed

Truth Table For A Redundant System
Figure 3.2

3.3.1_Markovian Approach for Availability Measures (Time Dependent and Limiting Case)

(Full on Redundancy)
The following set of state equations may bz developed

Pz(t-i»At)-w P (unit A and B are both nperating at t+At)
= P (nelther A nor B fail in (t,t+st) | both units
are operating at t)'P(both un'ts are operating at t)
+ P (the repair of A(B) is completed in (t,t+at) |
B(A) is operating st t)-P(B(A) is operating at t)

= (J-2aat) Pp(t) 1 At P (t) (3.18)

Similarly, we have:

Pyée#at)= 228t Py(e) + [1- wdar]) B () + 2uae Po(t)  (1.19)

=y .s'] 3-
?0(-+Ax) ANE Pl(t) + [1 zuA::}. _O(t) (3.20)
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where:
Pn(t) * Pl(t) + Pz(c)* 1 (3.21)

Expanding snd rearranging the state equations as follows:

= e R

. - P, (t
pz(crac)v 2(€) w SP208) | p (o) 2P, (t} (3.22)
At dt 1

Pl(t+At)- Pl(t) i} dPl(t)

= - (A+u)P1{t)
At d¢

+ 20, (t) + 2uPy(E) (3.23)

PQLL-Mt) - Pov(t) ) d?g(t)

= APIQt) - Euro(t)
at dt )

be 24)

Taking Leplace transfirms and realizing that:
l?2 (0)= 1, P1 (0= 0, PD (0)= 0

(initial conditions if we xssume all units operative at t=0).

8 P,y(a)- 1= uPlﬁs) ~ 2)P,(8)
8 Pl(a)' ~(a+n) Pl(ﬂ) + 2) Pz(ﬂ) + ZuPo(s)

RO AR, (8) ~ 21 Byie)
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Solution of these simultaneous equations and finding the inverse transformation (as shown in

Appendix B) results in:

2 2 =2(A+u)t 2 ~(Aru)t
P(t)= 1~ By(t)= pA L de + 228 ; (3.25)
(Atu) (A+y) (A+u)
and taking the limiting case (letcing ¢ —» )
P(t) + Am _-...m_“z"‘z"f“_ (3.26)
(Mp}z

Notz that results (3.25) and (3.26) are identicel to resuits (3.14) and (3.15) and (3.16) which came
about as a consequence of an entirely different approach to the problem (sn spproach which was
consicerably Icss involved then the classical Markovian approac’ discussed previously),

3,3.2 Markovian Approach for Reliability Mcasures and Mean Time to System Failure

(Full on operation)
The following set of state equutions may be developed (derivation similar (o previous, except
natice that aace a unit rerches a failed state Py(?) it is rot allowed to pass 10 a working staie

P,(1)).
Pz(c-é-Al:)-' P,(t) (1-2X4t) + pl(c)ua: (3.27)
Pi{rkat)= 2,(t) 20t + P, () (1-(Mu)it) €3,28)
Po(t+at)~ P, (EDAAL + Po(E) (3.29)
P,(t) + P, (c) + Pot)= 1 " (3.30)
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As before manipulation of the state equations results in the differential equations:

dP,(t)
—S— = - 2P, () + upl(:) (3.31)

dt

‘ dp, (t)
g —5e " 2k Pyle) - (A+u) P, (t) (3.32)

dPa(e)
T APl(t) (3.33)

Taking Laplace transforms and realizing that:
P0) = 1,P(0) =0, P0O) = 0

(initial conditions if we assume all units operational at t= 0) we obtain:

1= (8+23) P,is) - WP, (e} (3.34)
0= ZAPZ(S} = (Muts) *Pl(g) {3.35)
0= e‘Po('a) - J\?l(s) (3.36)
(in a manner similar to Appendix B). The same argument of the previous section results in:
8,t s, t
ae LI 8,8 1
R(t)m ~~
®17 %2
(avhy) 3.0 562
B, Bum = ot 3O H6u+y (3.37)
1’ "2 2
s before:
M fR(x) dt
0
- 3
222 (3.38)
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(assuming the system at t= 0 ha'l both units in satisfactory opesation). Note that if u= Q (that
means non-repairable system)

M=2Ll (3.39)

which is exactly the value which would have resulted from relationship (2.6) for 2 units in a
non-repairable system, and if w= 0 relationship (3.37) reduces to:

R(t)= 2¢ MCug 2AE (3.40)

which is exactly the value which would have resulted from relationship (2.7) for 2 units in
a non-repairable sysiem,

3.4 The Markovian Approach For Stand-by Redundancy, Markovian Approach for Availability Mrasures
(Time Dependent and Limiting Case) (System in Stand-by Conditions)

In this situation our intent is to setup the probability state equations relevant to the case where the
redundant configuration has one unit in actusl operation and the ouer uniis are in stand-by (such units
are not energized) and have failure rates = 0. The unit in operation operates until it faiis, at which
time one of the stand-by units begins operation, and repairs are begun on the failed unit. When the
failed unit has been repaired, it becomes a stand-by unit. When a failure occurs when no repaired {or
good) stand-by units are available, the system fails.

As before, an excinple is presented as to how such a problem is solved. We take again a two-unit
redundant system and define its respective states.

(1) Unit A and Unit B, both ar¢ operable - one is opcrating (State 2)

(2) One unit is in a failed state (repairs are being made) and the other is operable (State 1)

&) Both A and B are in a failed state (State 0). Then we have the following state cquatioss;

Pz(t'!-[))a Pz(t)(l—-vAAt) + Pl(t)uAt (3.41)

Pl(t+At)= P, (L)A0t + P-l(r.)(l-(h‘u)dt)

+ Po(t)ZuAt: (3.42)

PU(,t+At)- Pl(_t) ADt + Pu(r.) (1-2uhct) (3.43)
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Expanding and remrranging the equations:

dp,(t)
~—Se = uB (£ = AP, (D)

dvlkt) o
~FE— = ~(u) Py(t) + APy(E) + 2uPy(t)

D ey (®)
it | 1 0 |

Taking Laplace transforms and solving for:
P(t)= 1~ Fol®)

2 2 92° 20t
X 2%e A"

P(L)» la e ¢ + .

(£)= "1-‘2 82&2“" ) .l(.l..'d) (3.44)

22+ 3 YuSe &y

81,5~ > - 4

Note as t gets arbitrarily large:
N 2u2 + 2ui

P(t)= A= ~==5 n (3.45)

2nT + A% 2ua
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3.4.1 Markovian Approach for Religbility and Mean Time to Failure Measures

(System in Stand-by uperation)

Assume a redundant stand-by configuration and operating philosophy ds described in the
previous section. Again, the primary objective is to develop the probability state equations
Fepresenting the system, its operational philosophy and the measures to be evaluated.

As before an example is presented as to how such a probiem is sojved. We take again a
two-unit system and define its possible states:

(¢)) One unit is operating and has a failure rate= X, a cecond unit is capable of

operation but is not energized and has a failure rate== 0. (State 2)
¢)) One unit is in a failed state (repairs are being made) and the other is successfully
operating (State 1)

3) Both units are failed (incapable of operation due to malfunction) (State 0).
Note as previously stated, that in order to eveluate Reliability or Mean Time to Failure, the
state equations can permit no transition from a failed state. As before, state equations arc

developed.

Py(t+at)= P,(t) (I~2at) + P, (£) uat (3.46)
By (teat)= Py(e)hat + P (0) [1- Getwdat]  (3.47)

90(:+Ac)= Pl(t).\ﬁt + Po(t} (3.48)

After solving the equations finding the inverse wansformation and performing manipuletion

r,t r.t
rle 2 - !’28 1

R(t)= ,
(t) e

whiere;

tyorys S0P F MG 207 02
2
Again, since 1,, r, < 0and r, > 1, we have:
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Xt r,t
® _rla Lo t'zl
= R == - dt
0 0 ry=¥g
r r.t r et
1 C 3 A 2 b ¢
- - —f . dt = - “e dt
tl’"rz) 0 ‘- zl’l"tgs ,.‘o
Ty Ty
L -:A- .’.
tzirl-?.:,) tIZtl-tz)
I b
L)
- ---E-zi‘; (3.50)

Mote if the system is non-repairable, = 0, then

M (3.51)

H
i

which is identical to the result of Equation (2.14) for a two unit non-repairable system.

By this tim. it is clear that the Markovian approach is capable of cvsluating all of the
melishility mewsures requived. However, it is also clear that this approach is rather cumbersome
snd time-consuming, especially when more than two uits are redundant or when the umits have
different velues of A and ;1 . Note also th * the Markovian approaches discussed are designed to
svaluate specific configurations/operatisnial scenerios, aud not to provide closed form
relstionships, relating failure and repair rates of units, number of units in a sudsystem and
aunber of subsystems to system reliability. The next two sections provide discussions of two
spproaches hich are capuble of making the analysis of repairable subsystems less
cum’ crson-  andd time-consusning than those discussed and have the additional characteristic of

ging i+ clor 2d form or algorithmic form such that a single equation, or procedurc is capable of
eviluuting any numiber of units in pan: el.

3.5 Stase Fxpectation/Transition Model (for Reliability and Mean time to failure)
3.5.1 Full on redundancy

While the other agproacaes ¢ - ussed to evaluate the reliability of redundant systems were
classical, the following must he considered unique. 1t uses as a foundation the basics of a
Markoviar process but treats and combines these into an expectation model.

Given a system comprised of L operating redundant identical units (cach with identical
values of A and u, in addition atl failures and repairs of units take on un exponcntial density as
defincd previously.) Assume that D units (D<CL) as a miniraum must be operating in urder for
the systen to function. The system then has a nuirber of pissible operating states,
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Defined as

L units operating

L-1 units operating  Satisfactory opesating states,
L-2 units operating

w
2
[+ ]

iZQQDQN—o

D unirs operating
D-1 wints operating - a system failure

A

- As indicated previously transitions can take place only between adjacent atates. That is,
given the system is in state of j,(j=>>0), the system can pext yo to cither state (j + 1) or (j - 1), no
other. This follows from the flow chart,

I W<

r

STATE STATE | STATE 1 STATE

b0 1 2 M

imf{,,/ ~_ 7 % J

Naturally, for example, when 2 of L units are failed the next rransition must be cither to 1 of L
units failed (indicating a repair) or 3 of I. units failed (indicating a faiture),

It is also clear that immediately before the system fails (reaches state (N -+ 1)) th system
must be in state (N).

Each state has associated with it unique failure ratz A s» and repuir 1ate @, computed as:

lj- (L-3)A JsN [N 15 the state wumber associnted
with D units operating]
uj- v (assumes that as soon as 4

unit fails repair is begun).
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Since we are dealing with exponential density functions for repair and failure:
Expected time in state j before transition

1
a E(3)= : 3,52)
Aj-l-uj (

Probability of going to state (j + 1) on the next transition, given you are in state j at the present
time, (This, of course, signifies an additional failure)

A
Pl i+1/0) ™ j‘;':ﬁd (3.53)

Probability of going 10 state (j-1) on the next transition, given you are in state j. (This of
course signifies a repair)

) |
= PU-1/D- x;}gj“ (3.54)

P(3-31/4) + P(3+1/3)= 1

_ Given the charscteristics above and using expectation, the expected lenyth of time to go from
state j to atate (j+ 1),E{i+1/j), can b forinulated.

RAHL/II= RURID) - E@F BU-UD i) + EG/-D)
+ E(3+1/1))

Rearranging and grouping teems
P(I+L/Y) - EC4) + p-1/) [ECD + E(/3-1))
B(J““l/j)' . " S -
1-P(§-1/1)
Substituting (3.52) - (3.54) into the above;
31
! by 1M g
B(H+1/)n 5o + 3 BG/3-D= g2 o s “j_fgl (3.33)
h | h | ] I k-0 T Ao
n=K

a0
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It is obvious that in order to fail (assmning the units of the system were all operating stt=0)
the sysiem must gracefuily degrade; that is, from state 1 it must eventuslly go to statc 2, from
state 2 it must eventually go to state 3, etc., and the average time for such graceful degradation
from state j to (j+1) (tsking into account transitions from j to (j-1)) is accounted for by (3.55)

Therefore:

N
I EQJ+1/))~ M (3.56)
=0

that is, the sum of the expected times to transition from state j to (j+ 1), from (j+1) to (j+2),
€., is the expected time to go from state 0 to state (N+1), which is the mean time to system
failure. Repeated use of (3.55) in (3.56) leads to:

N
M I E(j"'lfj)
§=0
3 ]
o, N 3 hfﬁ“.%n‘ln
R T - (3.5%)
a=K

Por exumple, take a two-unit redundant system as before (each unit having identical failure and
repuir rates A, and u) and apply (3.57), The result is:

Mo MER (3.58)
n?

the same result as ficm (3.38) which cvaiuated the two unit system using a conventional
Markovian Process.

As can be observed, this procedure is significantly simpler to apply t.an any of the others
discussed and less time-consuming (due solely to the fact that application of {3.57) is all that is
required). Its drawbacks arc (1) while the menn time to failure of the system may be derived, its
reliability expressed as the Probubility of o system failurc in time # cannot be determined; and
(2) it is capable of handling only redundant systems comprised of units with identical failure
and repair rates.
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3.5.2 Stand-by Redundancy

The concepis of the previous acction can be used to develop a relationship for mean time to
failure for a system employing stand-by redundancy.

Given a system comprised of L redundant, identical units (cach with identical valuzs of A,
end u. In addition, all failure and rcpairs of units take on an exponential densicy as defined
previously). Assume that D units (D<L) must operate at all times in order for the system o
operate. All other units are rot energized and have A = 0, They remait. energized until a failute
occuts and oniy then is one energized. A repair action is immediateiy started on the failed unit.
The system fails when one of the D operating units fails and no energized unit is available 1o
take its place (all (L-D) units under repair when a failure ocrurs). The system has a number of
possible states:

State Defincd as

0 D Units operating, (L-D) energized, O under repair
| D Units operating, (L-D-1) energized, 1 under repair
2 D Units operating, (L-D-2) energized, 2 under repair
N D Units operating, 0 « (L-D) under repair

N+1 D-1 Urits operating ~» Failure

Agein, transition can iske place only among edjeceni states. That is, given the system is in
state j {j>0), the system csn next go to either state (j+ 1) or (j-1), vio others. (See flowchart of
Iast section).

Naturally, for example, when 2 of L units are under;oing repsir (are failed) the next
transition must be cither 10 1 of L units undergoing repairs (one unit repairad) or 3 of L units
undevgoing repairs (an other operating unit failed).

It is also ciear that immediately before the system fails (reaches staie (N+1) ) the system
mast be in state (N).

Esch state (j) has associated with it a failure rate of A, a.d a repair rate of gy

For stand-by redundancy

= jp (assumes that as soon as & unit fails, repairs arc begun).

Since we are dealing with exponential density functions for rcpeirs ard failure:
Expected time in state j before transitio 1

= E( j)nl?i%fq (3.59)

Probability of going to state (j-+ I) on the next transition, given you are in state j at the
present time, (Siguifies an additional failure)

DA
SO R (3.60)
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Probability of goirg :0 state (j-1) on the next transition, given you are in state j (signifies a
Tepair)

= P(§-1/§)s —du

M
AD 4 ”j
(3.61)
P(3-1/1) + P(§+1/§)= 1

The expected length of time to go from state j to state (j+ 1), E(j-+1/j), is formuiated:

E(J+1/9)= P(3+L/Y) « EC3) + P(3-1/1) [EC)) + E(3/4-1)
+ E(J+1/1)

Substituting (3.59) - (3.61) into the above, regrouping and simplifying.

H
EGH1/)= 3p + 31 B(1/3-1) (3.62)

Ivis vbvious that in order to fail (assuming the units of the system would all be in an operable
condition at t= 0} the system must geadually degrade; that is, from say state 1 must eventually
£0 to stute 2, before going to state 3. And the average time for such a degradation from state j to
state (j-+1) (taking into account wansitions from j to (j-1) ) is accounted for by (3.62).

Therefors:

N
L E(j41/))= M (3.63)
=0

that is, the suin of the expected times to go from state j to j+ 1, from (j+ 1) to (i+2) etc. is the
cxpected titae to go from state 0 to state (N-+1), the mcan time to failure of the system.
Repeated use of (3.62) in (3.63) leads to;

N I AP e e
M=Z B =% <o+ 2 2 .E'WT .....
i = A - TIA

nek

(3.64)
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(L-D+1) ‘il H=K+1
AD jo wea  (DA)FEH

For cxamplc, take a two-unit redundant system in standby (¢ach unit having identical failure
and repair rates A,u) and apply (3.64). The result iz

234
M ‘;‘z‘u (3.65)

the same ss the result from (3.50) which directly evaluated the two unit standby system using a
conventional Markovian Process. o .
As can be sren, this procedurc. like the preceding, has advaniages of simplicity and time
over the classival method to evaluate the mean time to failure of 4 standby system. Its
drawbacks are (1) while the mean time to failure of the system may be derived, its xch:%biliiy
expressed as the probability that the system will operate over an interval of time (0,T) with no
fallure cannot be determined; and (7) it is capablc pf handling only redus-lant systems

3.6 System Failure Rate Approach (For Fisll on Operaticns)

In the previous section, concepts pertaining to trausition rotes (failure and repair rates) between
adjecent states wese used as the foundation on which an evaluation technique was based. In this
section we will discuss an cvaluation techniique based on the concept of Sysiem Failure Raie
associated with each system statr
Let us first define: / ,

{1) System State - The description of the systems operating condition in terms of how many units
arc operating and how many are in a failed state,

The following is a Jist of the possible states for a parallel systems comprised of L units.

States Description of State

0 L Units operating, O failed

1 (L-1) Units operating, 1 failed

2 (L-2) Units operating, 2 failed

3 (L-3) Units operating, 3 failed

. ® [} L] L] L]

. L} L . ] [ ]

L) . L 4 L] L] L)

N 1.-N) Units operating, N failed

N-+1 &N—'I) Unm'egem?ng. (N-+1) failed .

We bear in mind that iransitions can take place only between adjacent states (more than one failure
atone time has a probability = 0; more than one repair u: “ne time has a probability = 1); a failure and
a repair manifesting themselves simultancously has a probability= 0). That is the system which if in
state j (j>>0) can go cither to state (j+ 1) or state (j-1). Further, assoming that the syste.n is in state 0,
att= 0, in order for the system to fail (reach a failed state, say (N+- 1)) it must at some time go fror)
state O to state 1, from state 1 to state 2, from state 2 to state 3, ete, elc.

Further, if one defines:

E(j+1/j), the expected time to go from state j to state (j-+1), thew:
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N
£ E(j+1/4)= M= Msan time to system failure.

3=0

(2) Svstem Substate - A Subgtate of » system state. Many system states as defined above (X units
operating, Y fuiled) may occur in a differens number of ways (for cxampie, take a two-unit rejundant
system comprised of Unit A and Unit B. Unit A may be operating and Unit B failed, or Unit B may be
opersting and Unit A failed. Both are different substates belonging to the system state, one unit

ing, one unit failed) each way in which the system state might occur is called a substate,

(3) Border Staic - A substate of a sysiem state where thc next unit failure will cause a system fajivre.

Examples:

(n A threc-unit redundant system, a minimarn of any 2 units maust be operating in order for the
system: to operate. In this case, the border states would be any 2 units operating, one unit
fatled. Three barder states would result.

) A four-unit redundant system, 2 minimum of one unit must be ope=sting in order for the
system o operate. In this case a border state would be any sne uint operating, 3 units failed.
Four border states would result.

PR lahility as £ - M
(4) Limiting Availability el vy

Defined and desived eariier as a non-paramelric measure which indicates: the proportion of time that a
unitis operating (or up), given its average failure and repair rates, A und u; or the probability that a umtis
operating at a random point in time, given its average fuilure and repair rates A end .

In a system comprised of L parallel units application of the Limiting Avuilability figure of merit can
determine the proportion of the time that the system is operating or the proportion of time that the
system is in a given state, o

Example: A three-unit Redundant System made up of uniis A, B, and C, (A minimum of one unit is
required for satisfactory operation).

Let A, indicate Unit A is on

A, indicate Unit B is Friled
B, indicate Unit B i. On
B, indicate Unit B is Fuiled
C, indicate YInit C is On
C; indicate Unit C is Failed
The system can be in any one of the following states:
AB,G,

AB,C, Border State

ABC, Border State

ARG Border State

AB,C, Failed State
Lat: .
A,. Ay, A represent the Availability of A, B and-C'respectively.
Let:
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(1-A), (1-Ay), (1-Ac) represent the Unavailability of A, B & C (This represents the proportion.
cf time that A, B, or C is in a failed state (undergoing repair), or the probability that A, BorC isina
failod state (undergoing repair}, at a random point in time).

Using the fundamentals of probabiliiy, we can now model each state and determine the proportion
of time that a system is in any particular state. Taking the last example:

State - Proportion of time in Etate Border stats
9
% Bo S ks A ey K No
Ay By Uy AAQ-AY -~ A~ No
Ay By Cp A (1-ADA. - HP— No
M By G MUAYU-AY g Yes
Ay Bg G  Q-ApAg. - m’i;fr—* No
Ap By Cp  (wA)A,01-A0) - ?‘;52%3— Yes
Ay By G (LeA)(1-Ap)A, - ?F%fw Yes
Ap By G UsADO-a) o) = mdop— Failed
TOTAL~ 1 1

The primary concept to grasp in the application of this evaluation technique is the fact that the system hasa
failure rate equal to zero while it is in every state except a Border State; that is, the system can fail directly
only from a Border State; it can not fail directly from any other state. Thc system failure rate A, in &
Border State is the sum of the failure rates of the operating units in that Border State,

D
A= 5 A
B ier !

Ay~ failure rate of a Border Stute
A= r“a‘ill-are rate of the ith operating unit (non failed unit) in the Border State.
D= Mini*-wm number of units required for successful system operation.

If one werc to associate with each Border State, the Product of the Proportion of time in that state (A,,) and
the Sum of the Failure rates of the operating units in that state (A,) snd an srbitrarily long system
operstional period T the (Note T includes the time that the syst-n is operating satisfactorily and the time
the system is down for repair) term:
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Apg 2gy T

B a0

would represent the expecied number of failures cnticipaied from Border steaie i over an arbitrarily
long period of time T.

If one were to sum this result for all Border States, K, making up system state N (recalling system
state N+ 1 is a failed state),

T ;( A m the number of failvres expected in System
1_1"“51 Ri operational time T from Border States., (3.66)

(Recall failures can occur orly from Border States, therefore all system failures occur from Border

States).
If one were to sum the substate availabilities (A,) of all the s*ates in which the system satisfaciorily
operates (including Border States) and multiply that sum by the same arbitrarily long period of time T

N Z
TF .‘:',' A, = the tutal time that the system is (3.67)
§mO 4=1 4 i

operating satisfactourily.

A= 'Qae avajlability of substate i associaied with sysiem state j,
Z, = Number of substates associated with system siate j.
The ratio of (3.66) to (3.67) is:
_number of failures expected  or

otal operating time

)
A=0"1i=1"44. =  Average time to system faflure
K N oad (3.68)
:L-’-:IAM ’\Bi neasured 3teady state = Ms

This measures the actual perceived average time to system failure over the life use of the system. It
is imporiant fo note that since we are using state N as a minimum operating state, the modei indicates
that as *von a8 the system fails, it enters state (N+ 1). The system is then operationat again as soon as
repair puts it into State N, Euch cycle of operation-failure for the system (after the first sysiom failure)
then staris in State N and ends in State (N+1).

The average time to failure (M,) is in reality, the mean time to go from state N to state (N+1) or
E(N+1/N).
Therefore, (3.68) may be rewritten as:
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N 2z
1 o a

1 |
J:f’..!:.—La EQHL/N)= M (3.69)

E A A

Taking a two-unit redundant system as an exumple (A, and g of betl units identical} and applying
(3.69)

E(WL/N)= R(2/1)w SiEA (3.76)

whtich is identical to the result which would occur when equation (3.55) of the previous section is
spplied to evaluate F(N+1/N).

For the next step, dcﬁne a new criteria for system failure follows: if a minimum of D uperating
units out of L were originuily necessary for system operation, assume now that & minisum of (D+1)
operating units out of L is required for system operation. Determine ncw values of Ay, Ay, a8 hefore
aud spply eqguation (3.69) once more making N=(N-1}). By changing the failure criteria from 1) to
D+1)the quhcm of (3.69) really evaluates the expecied time to go from stete (N-1) to state N

E(N/N-1)

Repetition ¢! the above a number of times until the boundary state shifts fr:m N to 1 (scc state chart at
beginning of aection) results in the following summation;

N .
£ E(3+1/4)= M= Mean time to failure for the

=0
gystem assuning all units

were operable at t= 0.

M
TE z-’ A,
or; : {mN+1 {=1 I
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I %A
= {w1 I
1=0 1-1 (3.71)

;o;‘ exemple, take & two-unit system with identical values of A and u with operational scenario as
ore:
M= E(N+1/N) + E(N/N-1)= E(2/1) + E(1/0)

From (3.70), E (/1) =

u+A2
2
2
E(1/0)e )2 1 (3.72)

212 2
Ay 2

M ‘u+§2‘i ,%“ - u-?l
s 2 o

whicl is identical to (3.58) which was derived using the expeciation/transition approach.
In the event that all units have identical values of u and A (3.63) reduces to;

N
L
ook As, ven)

) A3 g

(3.73)

MS=

Ay= Availability of any substate in statc j

&= A,Gi+1), A, (i+2), ........ Ap
A= Availability of any border state (all border states have same availability if all units identical).

In the event that all units have identical values of A and g (3.71) reduces to:
N-v
z
= 150
A
™0 Gy B ) o)
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A;,,™ Availability of any substate in system state (N-v)

a D+v
(ﬂ"v)- L 11
i=1

A, = failure rate of the ith operating unit in state (N-v).
For the two-unit reduadant example previously described:

2t
H--A-u‘-
8 2)‘2

M 32
2}\2

which of course duplicates the results of (3.72)

As can be seen, this procedure like the preceding, has the advantages of simplification and time
over the classical methods to evaluate the mean time to failure of a full-on system. It has one
advantage over the previous expectation transition, combination method in that it is capable of
handling systems of parallel units of different values of X and . Its shurtcoming is that the reliability
of the system expressed as the probability that the system will operate over an interva! of time (0,T)
with no failure, cannot be determined.

3.7 Systems Periodically Maintzined
In previous sections, we have considered systems which were not mainteined, and systems which
were maintained immediately after failure. In this section, we will consider redundant systems which
are only periovically maintained (a system is placed in operation, then left unattended; every T hours a
mainienance team visits the system and repairs ail unit failures). Let

Thft) = density function of failure for the redundant system.
hen g
RD=1-f , f(t)dt = probability that the system will be on at the end of T.

If the system is still operating at T, then the operating time for system is T. If the system fails at t in
(0,T), then the operating time for system is t. Therefore, the average uninterrupted operating time of a
system in (0,T), My, is given by

T
MT = TR(T) + ] tf(t)dt
0

T
= TR(T) + £(1-R(V)) [] - J (1-R(E))ar
(]

T
- f R(t)dt
0
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Itis possible for s system to fail before the first cycle (0,T) is complete or it is possible that the system
will not fail until the Nth cycle is complete. Therefore, if we had a large number of such systems (X)
in the field and intended to so maintain these over a long period:

R(T)_= proportion of systems surviving the first cycle with no failure

R(D)’ = proportion of systems surviving 2 cycles with no failure

R(T)’ = proportion of systems surviving 3 cycles with no failure

L]

L]
R(TY" Proportion of system surviving the first N cycles with no failure. Therefore, of the original X

Sysiems
Cycle No.
1 X systems would operate uninterruptably for sn average of M; hours each before failure
R(T}X systems would operate uninteiruptably for an sdditional M, hours,
R(T)’X systems would operate unintemxpaab{y for an additional M, hours.

2

3

*

N R(TY** X systems wonld opcrate yninterruptably for an additional M, hours.
nd

And the average uninterrupted opevating time to first failure per system is

N1, .

oy + o [Reft xom et
i=] ~ 3 5

= : - M1+ iz{[ﬂ(*@*}

But
N-1_ N
14+ 121 LR(TB = a progreasion of the form
a, ar, arz...,arn
with sum;
(oM -1

[n
Ll T S
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Since:

N 1
{n('r] <1 sx * IR ) as N gets arbitrarily

large. Hence:
Average uninterrupted operating time to first failure M,

T
/- R(t)de
s ] "HT L --qn
uBI" 1=K 1-R(T}

38 lmpnct of gp_dundancy on Maintaiiabilily

The anelysis of redundant systems is almost always concerned with the impact of that decision on
reliability or mean time to failure. It is seldom related to impact on maintainability and mean time to
sepair R and total maintenance hours required (which impacts support cost), Yet, redundancy impacts

these areas critically, The following sections quantitatively describe such effects.

3.8.1 Redundancy impact on Meen Time to Repair (Full on Redundancy)

Take a systern composed of L units, D of which have to cperate in order for the system to
function satisfactorily. Recalling the notation of the last section define those states in which the
system is considered failed. This would be states:

N+ 1  When (D-1) units are operating, (1.-D-+ 1) under repair
N + 2 When (D-2) units are operating, (1.-D+2) under repair
L 3 L] L] [ ]

. » L] »

[ ] L] L [ ]

L When 0 units arc operating, L. under repair.
Define the substates ussociated with cach state (Z) and the availability of cach substate A,
(where A = the availability of the ith substate associated with each system state j) Through
knowledge of the availability comiponents of such stetés and substates, we will form the ratio:

Expected time the system is in a failed state J
[ Expected number of sransitions from an operational state 10 a failed state (Failures)

= the expected time that the (3.73)
system is in failed state

From (3.67), thc number of failurcs expected in Tt
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K

T A
ety YO 71

L
R
B!

K
z - A
. P T 1

s

Aj N = average system down time (3.76)

)

-

when all units have identical values of A, and u the average system down time

DL

1f1(p-1’ ba, (441
1 ,

(@) Ay 2y

For examplie, for a 2 unit parallel system with equal values of A and i, the average system
down time

A
2 -
- fptn” 1 R
2&2, | 2y 2
(u-M)2

~3.8.2 Redundancy cffect on Total Maintenance Time (Full on Redundancy)
Lo on Redundancy) |
(1-A )= Proportion of time unit is under repair (assumes repair starts as soon as unit fails).

v'l‘( I-A )= Expected time unit is under repair (over a long time interval 0,T).
Given L redundont ynits

L

T (1-~Ai) = Total maintenance time expended (3.77)
1],
on system

If all units have identical values of A, and u (3.77)reduces to

bod
-
)

- = Total malutenance time expended (3.78)
n+ A
on systam
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Comparing the above with a simplex system with total maintenance time expenditure of:
AT
P
It is ciear that with every unit added to increase reliability maintenance time increases proportionateiy.

3.9 Efficient levels of Redundancy
The question arises as to what degree redundancy should be applied.

Shouid it better be applied at the system level, subsystem level or the unit level? There is, of
course, no gencral answer to this question. Much depends on the nature of the application at hand. In
some instances, due to practicality, cost or the engincering nature of the system itself, only one course
of action is possible. In the event, however, that 5o constraints are evident on the level of redundancy,
which-level should be chosen?

Asgume that the system in question is denoted as A in Figure 3.3. A may be partitioned at will into
(L) modules, all having identical failure rates \, and the total failure rate of A=L). Itis necessary to
improve the reliability of A and the only availabic means to realize this improvement is through the
application of redundancy. How does the level of redundancy chosen affect reliability?

Let us assume that due to reasons of econoniy only one redundant unit can be considered. Shall we

(1) mske system A redundant with System B (its redundant entity)?

(2) break up System A into L. modules? break up system B into L modules and make each modale
of B redundant to its corresponding A module? And, if we choose the latter, what is the sensitivity of
relisbillfy to the partitioning scheme chosen?

Using (2.3) the mean time to first failure (M) of the system described equal to

L " 2K
Medop (ML 1L
k=1 K!(L-K)! S=3 3

Since in this cose N= 2
whete: L= number of modules the system can be broken down to

A= failure rate of each module
Ap=LA= failure rate of the single systcm

-tse-i&-m mean time between failure of the single system.

The above cquation may be written as:

L ; . X
L T Ve L
0 K=l K (LK) ! $m1

Treating L in the above as a variable und A, as a constant, M can be evaluated as a function of tie
degree of partitioning practiced (the value of L).
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Assuming that for each module, formed connectors and perhaps even buffers or trarsducers raust
be added such that the failure rate incrcases as the number of moduies increases,

o ool Pt _ 1t Xy
; L,
NE ] €9 KI(L-K}T ¢ S

where pw proportionste iucrease in single module failure rate as a consequence of redundancy
application.

For p= ( and p= .1
M is plotted in Figure (3.4) As a function of (AM).

END

MOLULE MODULE
¥ ¥
1 2

- W™ W o W B W e

Figure .3 Division of Equipment A into Any Number of Modules
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L

L = # of Modules the equipment is partitioned into
A = Failure rate/Module

Reliability Improvement As A Consequence of Partitiuning
Fgure 3.4
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APPENDIX A
From {2.2) we have:
M=]T1 - (-] & (A
]

Let:

Pm Q-A:
Then (A1) is transformed into;

1 L
3 g - Q- ap
A0 D

Recalling the specinf cass of the binomial series:

L= (-p)M
Lopuzaem @

and equating (1-p)" = x, (A2) is transfermed into:

1 L
10 ek o™
16 p k«~0
(A3)
1 L 1 kN

=1 Ldp+F () ¢k ;AR 4

A0 P k=l o P

Now integrating by pasts yiclds:

1, kN kN 1
;AR g Ly Ly g X
0 P 5=l 0
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(A3) can therefure be expressed as:
A kN
wicd e 2
" opel T sl
which implies (2.3)

58



Downloaded from http://www.everyspec.com

APPENDIX B
Taking Laplo<e transforms of equations (3.18) to (3.20) and defining initial conditions yields:

1= (2x48) py(s) - W4 (s)
O= ~ (8+i+u) pl(a) + 21\1:2(8) + Zupo(s)
0= Jp,(s) = (s42p) Po()

the sbove simultaneous equations can be easily solved for Po(s)

2
p,(s)= 22
Bo PYCTITESY) [e+Z(r 1)
which implies
2 .2 . ‘
Pyt~ 5 =2 m200we ke G0de
ae® e’ O

Noting that
p(t)= p,(t) + Py(t)~ 1 - pO(t:)
w¢ have (3.25).
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