
RADC-TR-77-188
Final Technical Report
June 1977

SOFTWARE SYSTEMS RELIABILITY: A RAYTHEON PROJECT HISTORY

Raytheon Company

Approved for public release; d is t r ibut ion unlimited.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griff iss Air Force Base, New York 13441

Downloaded from http://www.everyspec.com

This report has been reviewed by the RADC Information Office (01) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public including foreign nations.

This report has been reviewed and is approved for publication.

O.
APPROVED: \JzyrUO / / | A . C

JAMES V. CELLINI, JR.
P ro jec t Engineer

APPROVED: HMv.
ROBERT D. KRDTZ, ColVhel USAF
Chief, Information Sciences Division

FOR THE COMMANDER fc> ̂^ %£*^s
JOHN P. HUSS
Acting Chief, Plans Office

Do not return this copy. Retain or destroy.

Downloaded from http://www.everyspec.com

file:///JzyrUO

2.7/
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE
t. REPORT NUMBER

RADfl-TR-77-lfla

2. GOVT ACCESSION NO.

A. TITLE (and Subtitle)

SOFTWARE SYSTEMS RELIABILITY:
A RAYTHEON PROJECT HISTORY

7. AUTHORfsJ

H.E. Willman, J r . A.A. Beaureguard
T.A. James P. Hilcoff

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Raytheon Company
Bedford Labora to r ies
Hartwel l Road, Bedford MA 01730
I t . CONTROLLING OFFICE NAME AND ADDRESS

Rome Air Development Center (ISIS)
G r i f f i s s AFBNY 13441
14. MONITORING AGENCY NAME & ADORESSf/f different from Contro//Jng Office)

Same

• READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT 4 PERIOD COVERED

Fina l Technical Report
Feb 76 - Nov 76
6. PERFORMING O^G. REPORT NUMBER

BR-9568
8. CONTRACT OR GRANT NUMBERfsJ

F30602-76-C-O140

10. PROGRAM ELEMENT, PROJECT, TASK
AREA 4 WORK UNIT NUMBERS

62702F
55811405

12. REPORT DATE

June 1977
13. NUMBER OF PAGES

84
15. SECURITY CLASS, (of this report)

UNCLASSIFIED
15a. DECLASSIFICATION/DOWN GRADING

SCHEDULE

N/A
16. DISTRIBUTION STATEMENT (of this Report)

Approved for publ ic r e l e a s e ; d i s t r i b u t i o n un l imi ted .

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Same

18. SUPPLEMENTARY NOTES

RADC Pro jec t Engineer: James V. C e l l i n i , J r . (I S I S)

19. KEY WORDS (Continue on reverse side if necessary end identify by block number)

Software Data Co l l ec t ion Software R e l i a b i l i t y <Mode-l-i-ng
Software F a u l t Taxonomy Software Tools , /— • />
Software Development AA^eJjlM-^-H **-<$ ^ n ^ ^ u A ^ " 7 > A

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

This r epo r t p r e sen t s r e s u l t s of a p ro j ec t to c o l l e c t software da ta from the
records of development of a l a rge Department of Defense ground-based system. A
d e s c r i p t i o n of the sub jec t systems software development p rocess , c h a r a c t e r i s t i c s ,
t o o l s , and t e s t methods a r e p resen ted . Q u a l i t a t i v e and q u a n t i t a t i v e data
gathered from conf igura t ion management f i l e s a re included as wel l as s t a t i s t i c a l
summaries of t h i s d a t a . A d e t a i l e d d e s c r i p t i o n of the da ta base f i l e s i s
included as wel l as p o r t i o n s of the a c t u a l da ta base . Recommendations are made

_ : ,
D D 1 j AN"73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Downloaded from http://www.everyspec.com

z?y
UNCLASSTFTFH

SECURITY CLASSIFICATION OF THIS PAGEflfTian Data Entered)

for the use of the data as well for the future collection of such data.

The data consists of three files, viz:

1) Module Description File (109 entries)

2) Software Problem Report File (2165 entries)

3) Error Category File (193 entries)

Each problem report was assigned an error category from the fault taxonomy
and the data was cross correlated and summarized. The most frequent problems
were in the categories of:

a) User Requested Changes (35%)

b) Data Handling (19%)

c) Logic (18%)

UNCLASSIFIED
SECURITY CLASSIFICATION OF T u " ' PAGEfWhan Data Entered)

Downloaded from http://www.everyspec.com

PREFACE

This report is the final technical report (CDRL Item A003) for the

Software Data Acquisition contract, Number F30602-76-C-0140. It presents

results of a project to collect historical software development data from the

records of development of a large Department of Defense ground-based system.

It includes a general description of the subject systems software character­

istics, the software development approach and the software tools that were

used. Qualitative and quantitative data gathered from configuration manage­

ment files are presented. Software reliability model development and evalua­

tion is expected to be a primary use of this data and therefore, a summary of

project characteristics useful to the modeling task is also included.

The following personnel participated in this project:

A. Beaureguard R. Leary

C. Braun W. Polak

N. Goddard A. Shores

P. Hatton I. Wescott

P. Hilcoff H. Willman, Jr.

T. James

Acknowledged for their contributions in establishing the procedures and

collecting the original data are G.J. Kacek, W.R. Murphy, and J.J. Shanley.

iii

Downloaded from http://www.everyspec.com

TABLE OF CONTENTS

Page

PREFACE iii

1. INTRODUCTION 1-1

2. SOFTWARE DEVELOPMENT PROCESS 2-1

3. OPERATIONAL SOFTWARE CHARACTERISTICS 3-1'

3.1 Object Computer Description 3-1

3.2 Data Base Structures . . . ; 3-2

3.3 Control Structures and Mechanisms. 3-4

3.3.1 Task Management 3-4

3.3.2 Memory Management 3-5

3.3.3 I/O Management 3-5

3.3.4 System Auditing 3-5

3.3.5 Centralized Error Processing 3-5

3.3.6 System Service Routines 3-6

3.4 Build Characteristics 3-8

4. SUPPORT SOFTWARE CHARACTERISTICS 4-1

4.1 Cross Compiler 4-1

4.2 Compiler Support Software 4-2

4.3 Cross Assembler- • • 4-4

4.4 Digital Simulator 4-5

4.5 Operating System 4-5

4.6 Digital System Simulator 4-6

4.7 Data Collection/Data Reduction 4-6

5. TEST METHODS 5-1

5.1 Unit Testing 5-1

5.2 Integration Testing , 5-2

5.3 Operational Testing 5-3 -

IV

Downloaded from http://www.everyspec.com

TABLE OF CONTENTS (Cont.)

Page

DATA BASE 6-1

6.1 Data Base Development Task 6-1

6.2 Data Base Contents 6-2

6.2.1 Software Module Descriptions 6-2

6.2.2 Software Problem Report File 6 _ 5

6.2.3 Error Category File 6-8

6.3 Supplementary Information 6-10

6.3.1 Build Analysis 6-10

6.3.2 Acceptance Test Data. 6_2°

6.3.3 Operational Data 6-21

RECOMMENDATIONS. . 7-1

7.1 Subject Project Characteristics That May Affect

Modeling 7-1

7.2 Data Collection 7-3

7.3- Use of Fresh Data 7-4

v

Downloaded from http://www.everyspec.com

TABLE OF CONTENTS (Cont.)

REFERENCES.

Page

APPENDIX A

DATA BASE DESCRIPTION FILE FORMATS A _ 1

APPENDIX B

SOFTWARE MODULE DESCRIPTIONS
FILE NO. 1 LISTING B _ 1

APPENDIX C

SOFTWARE PROBLEM REPORTS
SAMPLE OF FILE NO. 2 LISTING » 1

APPENDIX D

ERROR CATEGORIES (FAULT TAXONOMY)
FILE NO. 3 LISTING D-l

APPENDIX E

STATIC STATISTICS FOR JOVIAL SOURCE MODULES E _ 1

APPENDIX F

CONSTITUENT PROGRAM MODULES OF
BUILDS "F" AND "G" F _ 1

R-l

BIBLIOGRAPHY B G _ 1

vi

Downloaded from http://www.everyspec.com

LIST OF ILLUSTRATIONS

Figure Page

2-1 Software Development Process 2-2

2-2 Program Unit Release Notice 2-3

2-3 Build Release Notice 2-4

2-4 Software Problem Report. 2-5

2-5 Software Modification Notice 2-7

3-1 Data Accessing Techniques . 3-3

3-2 State Control Table Structure 3-7

4-1 JOVIAL Compiler System . 4-3

6-1 Distribution of SPRs 6-7

6-2 Build "F" Problem Reports by Month and Error Category. . . 6-13

6-3 Build "G" Problem Reports by Month and Error Category. . . 6-18

vii

Downloaded from http://www.everyspec.com

LIST OF TABLES

TABLE PAGE

6-1 MODULE SIZE DISTRIBUTION 6-3

6-2 DISTRIBUTION OF SPRs BY MODULE TYPE 6-4

6-3 SPRs NORMALIZED TO 1000 LINES OF SOURCE 6-4

6-4 SERIOUSNESS OF SPRs 6-5

6-5 OCCURRENCE OF SPRs . 6-6

6-6 SPRs BY CATEGORY GROUP 6-9

6-7 BUILD "F" PROBLEM CATEGORY DATA 6-14

6-8 COMPUTER TIME FOR SOFTWARE INTEGRATION IN WALL CLOCK HOURS. . .. 6-16

6-9 BUILD "G" PROBLEM CATEGORY DATA 6-19

6-10 ACCEPTANCE TEST ERRORS BY CATEGORY 6-20

6-11 OPERATIONAL ERRORS BY CATEGORY 6-21

6-12 EXECUTION LOADING BY MODULE TYPE 6-22

viii

Downloaded from http://www.everyspec.com

EVALUATION

The mandate for producing reliable, maintainable and quality software,

has been expressed in various "studies" and "working groups," that have been

generated by different departments of DOD. In addition, there have been

other meetings held concerning the same topics, with participation of indi­

viduals from concerned DOD organizations. As a result, the requirement for

devising methods to analyze software error data to attain these goals, has

continually surfaced as a need that has to be dealt with. However, recent

error data analysis has been deterred by the lack of ample data from large

softmre developments, that can be utilized for analysis as well as in soft­

ware model testing.

This effort was undertaken in response to these needs and lack of soft­

ware error data. It fits into the goals of RADC TPO No. 5, Software Cost

Reduction (formerly RADC TPO No. 11, Software Sciences Technology); specif­

ically in the area of Software Quality (Software Data). The report presents

results of collecting software error data from the records of a large DOD

ground-based software development project. The significance of obtaining

this data, is that it will be used to support current software model develop­

ment projects as well as be analyzed with the goal of developing software

measurements. By utilizing this data as stated, it is expected that we will

be better able to determine the causes of software errors and develop means

to predict and possibly prevent them. Additionally, this data will be used

ix

Downloaded from http://www.everyspec.com

along with other acquired software error data, to aid in establishing a base­

line for ground-based software projects in quantitative terms. This type of

information will, in the future, lead to better methods of developing ground-

based software projects.

^AMES V. CELLINI, Jr
Project Engineer

x

Downloaded from http://www.everyspec.com

1. INTRODUCTION

This is the final report of a task which provided a software error data

base to be used in support of further research in software error analysis and

software error prediction model analysis. The effort provided a complete

error history from a large Department of Defense software development project.

The subject project was the development of software for a large, ground-based,

radar data processing dominated system. The error data base was extracted

from 2165 Software Problem Reports (SPRs) written against 109 operational

software modules. The data base developed by this task consists of three

files, viz:

1) Module Description File (109 entries)

2) Software Problem Report File (2165 entries)

3) Error Category File (193 entries)

The task included assigning each of the SPRs to one of the error types

contained in the error category file. This fault taxonomy is a modification

of one developed by TRW as, reported in Reference 1. This report discusses

the modifications made to the fault taxonomy and makes recommendations for

further usage.

The subject project was an advanced development phase project whose pur­

pose was to demonstrate new concepts. The software development was a formal

process with full documentation required. Engineering change order (ECO)

control was used for all software and its documentation from unit release to

operational (demonstration) testing. Software Modification Notices (SMNs)

were written to close out each opened SPR. This formality resulted in a very

successful project and produced a wealth of documentation which formed the

basis for this data base generation effort.

Because one of the problems of software reliability modeling is the sim­

plistic assumptions made about the software development and testing process,

this report includes discussions which are intended to assist the model users

1-1

Downloaded from http://www.everyspec.com

and developers in placing the error data base in context of the software

development process (Section 2), the type of operational software and its

modularity (Section 3), the tools used (Section 4), and the testing process

(Section 5). The data base section (Section 6) discusses the data collected

and provides additional summary and statistical information. Recommendations

(Section 7) are made with respect to the data collection process, the fault

taxonomy, and the modeling process.

1-2

Downloaded from http://www.everyspec.com

2. SOFTWARE DEVELOPMENT PROCESS

Figure 2-1, the Software Development Process, provides an overview of the

process followed during the development of the software for the subject proj­

ect. All activity flowed from the system requirements. These were developed

by a System Engineering group who also developed the software requirements

with the aid of senior software engineers. Software requirements were devel­

oped and released for design in several functional packages over a two year

period. This lengthy "requirements phase" resulted in considerable redesign

which contributed to the high percentage (35 percent) of SPRs prompted by

changes in requirements.

Following the release of a set of requirements, the software functional

specification would be updated to reflect the new requirements and software

modules would be identified and described functionally. Next, a design speci­

fication for each software module was developed and the "module" or "program

unit" was then tested and released for integration. Figure 2-2 is the release

notice that is filed when such a release takes place. The module then enters

build integration testing. This integration phase was responsible for the

largest number (1984) of SPRs of any of the test phases. Integration testing

is the testing of program modules with the system executive and the system

data base. This constitutes a build. Following successful integration test­

ing, the build was then released (see Figure 2-3) for acceptance testing.

this took place at the hybrid test facility or at the demonstration site.

Acceptance testing accounted for a very small number of SPRs (19). Follow­

ing acceptance testing the build was. released for operational demonstrations.

SPRs were filed for any problems, changes, or suspected problems to a program

unit after that unit had been released for integration testing.

Figure 2-4 is the SPR form. It may be filled by anyone, e.g., systems

analyst, programmer, or user of the software. The program unit author may

issue SPRs against his own program unit to alert others to deficiencies under

correction.

2-1

Downloaded from http://www.everyspec.com

(U)

H-
OQ
C
H
ft)

ho
I

C/2
O

B3
l-l
ft)

O
ft) <
ft)
M
O

3
(D
3

H,
O
n
tD
en
en

REQUIREMENTS
REVIEW

SYSTEM
REQUIREMENTS

SOFTWARE
REQUIREMENTS

INTERFACE
SPEC

FUNCTIONAL
DESIGN
REVIEW

FUNCTIONAL
SPEC

TEST
REQUIREMENTS

TEST
PLANS

DOCUMENT

)
PROCESS

DETAILED
DESIGN
REVIEW

DESIGN
SPEC

COD
DEBL
PROC
UNIT

E A N D \
G \

3RAM /

s /

PRO
UN
TEST

G R A M \

I N G /

TEST
PROCEDURES

DEBUG S
PROGRA
TO FOR^
OR SUBSN

ivERAL \
v\ UNITS) - » -
\ BUILD / i,
fSTEM / "

BUILD \
SUBSYSTEM V -
TESTING /

Downloaded from http://www.everyspec.com

PROGRAM UNIT RELEASE NOTICE

I. IDENTIFICATION

ACRONYM

TITLE

VERSION,

MACHINE AREA

CONTRACT/PROJECT

CUSTOMER

PHASE DM() ED(.

RELEASE: INITIAL _

PROGRAMMER

BUILD

DATE:.

MOD.

FINAL.

I I . DOCUMENTATION

REQUIREMENTS

FUNCTIONAL DESIGN SPEC

DETAILED DESIGN SPEC

ACCEPTANCE TEST PLAN

ACCEPTANCE TEST PROC

DOCUMENT NO. DOCUMENT N O .

ACCEPTANCE TEST RESULTS

TEST RESULTS DATA

MAINTENANCE MANUAL

USERS MANUAL

LISTING

I I I . PROGRAM MEDIA

ASSOCIATED COMPOOL

ASSOCIATED INITIAL CONDITIONS.

SOURCE TAPE NO ./FILE NO

CARD DECK (DATE)

ED JOVIAL KEYWORDS
(i f appropriate)

TAPE NO./FILE NO

OBJECT TAPE NO./FILE N O . .

CURRENT LISTING (DATE)

IV. CAPABILITY

A) DESCRIPTION:

B) CHANGES FROM PRIOR VERSION/MOD

C) GOVERNING DOCUMENTS (MEMOS)

D) SPR/SMN CORRECTION NO's .

E) STATUS OF UNIT ACCEPTANCE
TESTING (CIRCLE ONE)

FULLY PARTIALLY * N O N E *

F) TESTED WITH ALL REQUIRED
HARDWARE (CIRCLE ONE)

YES

DATE

NO

INITIALS.

V..RELEASE TYPE

SECTION APPROVAL

BUILD LEADER APPROVAL

CARDS/TAPE ON MASTERS _

DOCUMENTATION COMPLETE.

DATE

DATE

DATE

DATE

INITIAL
RELEASE

•
FINAL
RELEASE

Figure 2-2 - Program Unit Release Notice

2-3

Downloaded from http://www.everyspec.com

ATTACHMENT D

BUILD RELEASE NOTICE

BUILD VERSION/MOD V

SYSTEM BUILD TITLE_

BUILD LEADER

CUSTOMER

RELEASE: INITIAL FINAL

II. DOCUMENTATION

FUNCTIONAL SPEC.

REQUIREMENTS

BUILD PLAN

TEST PLAN

TEST PROCEDURE

TEST REQUIREMENTS SPEC.

TEST RESULTS

TEST DATA

USERS MANUAL

MAINTENANCE MANUAL

DOCUMENT NO. ER CONTROL NO.

III.

i.

2._

3.

4.

5.

6.

7.

8.

9.

10.

ACRONYM

BUILD COMPONENTS

A. ASSOCIATED COMPOOL _̂

B. PRECEDING BUILD(S)

C. THIS BUILD CONSISTS OF FOLLOWING PROGRAM UNITS (Sea Below)

D. BUILD CORE IMAGE TAPE NO.
V/M FILE NO. ACRONYM V7M" FILE NO.

11.

12._

"•.

!5._

16.

17.

18.

19._

20.

IV. OPERATIONS OFFICE CONCURRENCE
I CERTIFY THAT THE OPERATIONS OFFICE FILES CONTAIN CARD DECKS, MAGNETIC TAPES, UP-TO-DAT

LISTINGS FOR EACH OF THE BUILD COMPONENTS LISTED IN III ABOVE.

DATE OPERATIONS OFFICE MANAGER

V. INTEGRATION
I CERTIFY THAT ENTRIES IN I, II AND III ABOVE ARE CORRECT. TUB SYSTEM BUILD DKSCKI »KI> IN I

ABOVE IS UP-TO-DATE, MEETS ALL KNOWN SPECIFICATIONS, AND IS READY FOR RELEASE AS OF TIMS DATE.

DATE INTEGRATION/SECTION MANAGER

Figure 2-3 - Build Release Notice

2-4

Downloaded from http://www.everyspec.com

SUBMITTED BY:.

APPLICATIONS SOFTWARE DEPARTMENT
(SOFTWARE PROBLEM REPORT)

Log No.

Associated Bui ld:
(Signaruro)

Date:.
(I f Appl icable)

Program Uni t : Vers ion /Mod: Computer:

STATEMENT OF THE PROBLEM: (Tyrx: or Print Pla in ly)

(Describe the problem both in programming and operational terms.
Indicate the manifestation and the significance of the problem.)

PROPOSED SOLUTION: (I f Known)

PRIORITY: (Op t i ona l) CLASSIFICATION

Design Change! I

Improvement I I

Error CZ3

ECO N o . •

Special I 1

Figure 2-4 - Software Problem Report

2-5

Downloaded from http://www.everyspec.com

SPRs are generated as soon as a problem is identified and are not delayed

until a solution is devised and tested. Their purpose of to give technical

and management personnel early visibility of problem areas for earliest solu­

tion and correction. They are submitted to the department control activity.

The department control activity logs.in the Software Problem Report and

routes copies of the SPR to the report originator, the appropriate program

unit author and his immediate supervisor, integration manager (within one

working day), Department Management, designated personnel in Systems Analysis,

and other specified activities (within four working days).

The Software Modification Notice (SMN) shown in Figure 2-5 is used by the

program author to log and correct a specific program problem which corresponds

to a Software Problem Report. An SMN may be issued directly by a program

author to correct an error even though no SPR has been filed. A total of

822 SMNs were filed to record such corrections. SMNs were submitted to the

control activity, with the corrections properly sequenced to reflect their

position in the original source. SMNs are distributed by the control activity

in similar fashion to SPRs.

For each submitted Software Problem Report the control activity obtains

a corresponding Software Modification Notice form. For example, a submitted

Software Problem Report which does not identify a legitimate program problem

still must be closed with a Software Modification Notice form. The control

activity insures that the Modification form is correctly approved (signed by

the program author, Section/Group Manager, and systems integration activity

Manager) when the change in implemented. The control, activity maintains the

master file for both forms, issues a weekly log report, and maintains a his­

torical file of SPR/SMN submissions and disposition.

2-6

Downloaded from http://www.everyspec.com

SOFTWARE MODIFICATION NOTICE Log N o . Date: SPR, if any, Submitte

PROGRAM UNIT

H-
TO
C

ro

i

a.
Hi
H-
O

rt
H-
O
3

o

n
i-i

ro

o
rt
H-
O
ro

Version Mod. to which this S

1 Description of Modi f icat ion (or Disposition of Problem)

(I f explanatory materials are required, please attach them to this form)

CORRECTION CARDS: If correcHon cards ore required, enter them on ihe fonn below. If there are more
SMN forms. NOTE: Columns 73 80 M A Y BE USED EITHER FOR DECK SEQUENCE DATA OR TO INDIC
LISTING.

APPROVED:

Proyiam Author Group Leader
System Integra
Group Leader

5-

iO

15-

l 10 20 30 40 50 60
I 1 : 1 ! 1 i i 1 1 1 1 | 1 | ,1 | 1 1 | • 1 1 | 1 1 1 j I | 1 1 1 1 1 | | | J ! | | | i | L 1 _ 1 ' I 1 ' J _ L 1 ' ' ' ' ' 1

1 1 1 1 1 1 1 1 1 1 1 i 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

> 1 t ! 1 I 1 > 1 1 1 J t 1 1 1 1 1 1 1 1 ! 1 t 1 > 1 I 1 1 1 1 i 1 1 1 1 > 1

1 1 1 1 1 1 1 1 i 1 1 I 1 1 I 1 1 1 1 1 I 1

1 1 1 i 1

! 1 1 1 | | f 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I t 1 1 1 1 1

I 1 1 1 1 1 1 1 I 1 1 1 1 1 I 1 1 1 1 1 ' 1 1 1 1 1 1 1 ! 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 I I I I 1 I I 1 I I

1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 | | 1 | | | J _ l . j J I _ | |. 1 L _ L . . I i - l 1 - 1 . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 J 1 [| | 1 1 1 1 1 1 1 1 | ! 1 I 1 1 1 1 1 1 1 I 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1

1 1 I l ! 1 ! 1 . 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 ! 1 I

1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 J 1 1 1 1 1 1 1 1 1 1 1 I . J J _ l . 1 1 1 1 1 1.. 1 1 L . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1. 1 1 1 1 1 1 1 1 . .L.J_i_l 1 l J _ L J _ J J 1 1 1 1 | 1

1 1-1 1 1 1 J.. 1 I 1 1 1 1 1 1 J 1 1 l_J L_l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 L J _ L 1 . 1 . J _ 1 1 1 1 1 1 1 1 1 1 1 1 1_L 1 l 1 i i 1

Downloaded from http://www.everyspec.com

Downloaded from http://www.everyspec.com

3. OPERATIONAL SOFTWARE CHARACTERISTICS

The subject project is a real-time control system for a land-based radar

system. The operational software was developed by Raytheon and executes in

a multiprocessor computer built by Raytheon.

Operational software was developed in a modular fashion. Nearly all of

the modules are written in JOVIAL/J3. The chief exception is the Executive

program, which, along with a few other modules and subroutines, is written in

assembly language.

3.1 Object Computer Description

The Raytheon computer consists of two identical processors and 81,920

words of 24-bit core memory. One of the processors is utilized as a Central

Processing Unit (CPU) and the other as an I/O Control Unit (IOCU); either

processor is physically capable of assuming either role without any special

reconfiguration. Each processor has its own set of internal registers. Both

processors have common access to all primary memory locations.

Each processor contains two accumulators, two accumulator extension regis­

ters, 16 index registers, 16 program counter registers, 16 pairs of I/O control

registers and miscellaneous special-purpose registers. A repertoire of 61

instructions includes hardware square root and register-to-register operations.

Add time is 2/LIS. All arithmetic is fixed-point.

Other features of interest include:

• Unlimited indirect addressing

• A "register-substitution mode," which allows registers other
than the accumulators to be specified in arithmetic operations

• A linked-list "search within limits" capability which automati­
cally stacks list elements successfully meeting the search
criteria

• Special arithmetic instructions for evaluating nested
polynomials

• Interprocessor communication capability

3-1

Downloaded from http://www.everyspec.com

I/O is performed via 16 independently-programmable, bidirectional chan­

nels. The I/O channels operate in accordance with a multiplex scheme based on

channel priority and channel mode of operation. A single channel may be con­

nected to several individually-selectable devices. Data transfers can be

performed in either block mode or single-word mode.

3.2 Data Base Structures

The subject system features a common data base, whose overall layout is

defined by means of a COMPOOL. The JOVIAL compiler is COMPOOL-sensitive, and

so it creates at compile time the linkages necessary for operational programs

to gain access to the data base.

COMPOOL data is segmented into blocks, and the absolute location of a

particular data item is defined in terms of the base address of the block con­

taining the item and displacement of the item within the block.

In general, the compiler generates code to look up block base addresses

in a directory (see Figure 3-la). A.limited subset of COMPOOL blocks, however,

is accorded a special status: whenever the compiler determines that a data

item resides in one of these so-called "special blocks," it assumes that

block base address to be preset in a uniquely associated index register (see

Figure 3-lb).

Data sets which are subject to heaviest use are assigned to the special

blocks and significant reduction in accessing overhead results. It is the

responsibility of the Executive program to maintain the special block base

addresses in the associated index registers for use at run-tiine.

Initialization of COMPOOL data is accomplished by means of an Environment

Generation program. Series of JOVIAL assignment statements are used to assign

values to data items and thus create data sets which can subsequently be

loaded into memory. All nonvolatile data is initialized in this fashion.

In addition to nonvolatile data, which consists of system parameters,

constants and permanent files, there are two classes of volatile data —

"volatile data tables" and program working storage.

Volatile data tables are used to contain raw or processed data whose

source is external to the system and whose life span is relatively short. Radar

input data is an example. Application programs call system service routines to

3-2

Downloaded from http://www.everyspec.com

SYMBOL TABLE BASE ADDRESS TABLE

ITEM NAME
1

BLOCK N DISPLACEMENT D

\
N

{
~~

' ' \

BLOCK BASE ADDRESS

INDEX REGISTER X

BLOCK BASE ADDRESS

DATA ITEM ADDRESS = D + (X)

(a) GENERAL SCHEME

SYMBOL TABLE

ITEM NAME

r"
I
I

BLOCK NS DISPLACEMENT D

'~l

INDEX REGISTER XS
SPECIAL BLOCK BASE ADDRESS

DATA ITEM ADDRESS = D + (XS)

(b) SPECIAL BLOCK SCHEME

Figure 3-1 - Data Accessing Techniques

3-3

Downloaded from http://www.everyspec.com

assign and deassign volatile data tables of various types as necessary.

Unused tables of each type are held in free pools. Table structures are

defined in the COMPOOL and allocated to special blocks. From the JOVIAL com­

piler's viewpoint, there is only a single table of each type defined. The

Executive, however, updates the address in the special block index register

to link an application program to a particular data table and thereby makes

that table the "current" one of its type.

Program working storage is allocated and deallocated by the Executive and

is intended strictly as a local scratch area, rather than a medium for passing

data from program to program. In order to avoid usage conflict, two working

storage areas are available — one for interrupt programs and one for noninter-

rupt programs (only one level of interrupt program is possible). Each area

consists of a chain of blocks, with the first block provided for main programs

and successive blocks provided for successively nested subroutines. The

JOVIAL compiler automatically generates code requesting working storage as

part of the standard calling sequence for subroutines; the Executive responds

to these requests by advancing the working storage index pointer to the next

block in the chain. The procedure is reversed when exiting from a subroutine.

This design allows reentrance.

3.3 Control Structures and Mechanisms

The subject system operates under the control of a highly centralized,

modular Executive program which supervises all real-time activity on both the

CPU and the IOCU. The functional units comprising the Executive and described

in the subsections that follow.

3.3.1 Task Management

This unit regulates the scheduling, selection and sequencing of appli­

cation program modules. Tasks are selected for execution on a priority basis

in adherence to a limited multiprogramming philosophy: The limitation is that

only a task of the maximum priority value can cause immediate preemption of

the current program module; in the absence of such tasks, program modules are

always allowed to run to completion. In order to assume timely execution of

3-4

Downloaded from http://www.everyspec.com

all program modules under this scheme, application functions are deliberately

segmented into small, logically coherent program units. The Executive uses

a device called the State Control Table (discussed below) to sequence from

one module to the next to form processing threads. At the completion of each

program unit in the thread, the Executive checks for higher-priority tasks,

whose presence will result in temporary suspension of the current thread. .

New tasks are scheduled either in response to the arrival of fresh

input data or in response to an explicit request from a program module. Sched­

uled tasks are placed either in a "Run Queue," for execution as soon as

resources become available, or in a "Delay Queue," to delay execution until

a specified time interval has elapsed.

3.3.2 Memory Management

This unit is responsible for the allocation and deallocation of work­

ing storage and volatile data tables. All such memory areas are predefined;

the Executive performs no dynamic carving of memory.

3.3.3. I/O Management

This unit governs IOCU activity, including coordination and activa­

tion of data transfers and processing of external interrupts. It also reports

the arrival of new input data to the Task Manager.

3.3.4 System Auditing

This unit records information about program executions, service

routine usage and error occurrences in a table in memory to assist in system

performance analysis and debugging.

3.3.5 Centralized Error Processing

This unit processes errors detected by other software modules or by

hardware error traps. Responses vary for different types of errors as dictated

by an Error Response Table. This table, moreover, contains two sets of

responses, one for the tactical environment and one for the test and develop­

ment environment.

3-5

Downloaded from http://www.everyspec.com

3.3.6 System Service Routines

A variety of system-level subroutines are collected within the Exec­

utive to eliminate programming redundancies and promote visibility. Functions

provided include program queuing services, data management services, I/O

device handlers, math routines and miscellaneous special-purpose services.

(Some of these services fall within other Executive units as noted prior.)

Sequencing of application program modules, while carried out by the

Executive, is prescribed by a "State Control Table." This table is broken

down into a number of sections called "states." Each state corresponds to a

single program module and consists of a group of entries representing all the

various queuing and sequencing options for that module (see Figure 3-2).

Two indices are used to access State Control Table entries: a "cur­

rent state" index is maintained by the Executive; a "condition" index is

supplied by any program module that exits to the Executive or calls the Exec­

utive to queue a new program. These indices determine a unique table entry,

^ from which the Executive retrieves the identity of the new program to call a

queue, the new state associated with the program, and the priority of the

program. The State Control Table entry may alternatively indicate that there

is no new program (end-of-thread situation), in which case the Executive will

select the next program module from the Run Queue.

The State Control Table may be viewed mathematically as a state-

input device defining a function of such that, given a current state S and an

input condition C, the new state is S'=f(S,C).

The State Control Table enhances modularity by eliminating the need

for program modules to call one another explicitly; program module control

interfaces are under centralized management and can be modified without impact­

ing the program modules. During the development phase of the subject system,

the State Control Table facilitated substitution of dummy programs and driver

modules, and also proved to be a convenient tool for tuning the system by

adjusting program priorities.

3-6

Downloaded from http://www.everyspec.com

STATE 1 •

STATE 2 4

STATE n <

•CONDITION 1

-CONDITION 2

NEW STATE S
NEW PROGRAM P
NEW PRIORITY Q

CONDITION m

STATE n+1

Figure 3-2 - State Control Table Structure

3-7

Downloaded from http://www.everyspec.com

3.4 Build Characteristics

The method of construction of the subject system was a synthesis of top-

down and bottom-up techniques. Program module specifications were derived

from the top-down, beginning with system-level requirements and progressing

through functional and detailed design specifications.

The highest level component of the system, the Executive, was the first

program designed and the first to be up and running. Beyond providing the

control functions and services described above, the Executive, in conjunction

with the State Control Table, served in a broader sense as a development

medium for the rest of the operational software.

Within the framework and ground rules established by the Executive, inte­

gration of the remainder of the system was performed in a rigorously controlled

series of incremental steps called "builds." The initial builds consisted of

groups of functionally related program modules. More advanced builds were

formed by combining elementary builds and introducing additional new modules.

The last build in the sequence was the fully integrated system.

Each build represented an increment in hardware capability as well as

software capability. The purpose of a particular build was not only to check

the interrelationships among the component software modules, but also to check

program interfaces with new hardware (some of which was itself being tested

for the first time under realistic conditions).

Program modules which were not part of a given build were replaced with

dummy modules. Driver programs .performed whatever functions T,ere necessary

to keep the system cycling smoothly. Owing to the modular nature of the

system, early builds, such as the initial radar and display builds, were

functionally independent to a significant degree and thus were able to be

developed in parallel.

3-8

Downloaded from http://www.everyspec.com

BR-9568

4. SUPPORT SOFTWARE CHARACTERISTICS

A modest array of software development tools were used in the production

of the subject project's operational software:

• Cross Compiler

• Compiler Support Software

• Cross Assembler

• Digital Simulator of the Object Computer

• Operating System with a Debugging Package

• Digital System Simulator

• Data Collection/Data Reduction Software

Much of the software was developed at a dedicated software development

facility using a UNIVAC 1108 as the host computer. All of the above mentioned

software, except for the operating system, executed on the 1108. Software

development and maintenance statistics for these software development tools

are not included in the software reliability data base, but brief descriptions

of each of these tools follow to provide a more complete understanding of the

software development process of the subject project.

4.1 Cross Compiler

The Higher Order Language specified for use in the subject project was

JOVIAL/J3. JOVIAL/J3 is the standard programming language for Air Force

Command and Control Applications (Reference 3). As a general purpose procedure

oriented language, JOVIAL has been widely used for many other types of appli­

cations. It has been used by all three services. A cross compiler for

J0VIAL/J3 was implemented on the host computer to produce binary code for the

object machine. The computer implemented the full J3 standard except for the

features listed on the following page.

4-1

Downloaded from http://www.everyspec.com

Boolean Items

Dual Items

Exchange Operator

Alternative Statement

Input/Output Commands

The compiler does allow embedded direct code and this feature was used

extensively in eight of the subject programs. These programs have been

identified as DIRECT (rather than JOVIAL or ASSEMBLER) and consist of at least

50 percent assembly language embedded in a JOVIAL program. (See Appendix Bv)

All system input/output was centralized in the executive program, thus

relieving the JOVIAL programmer of this aspect of coding.

The average processing rate of this compiler is 33 source statements

per second, including the use of the COMPOOL (central data base definition)

and the generation of Set/Used information.

Appendix E contains statistics about the static occurrence of various

elements of the JOVIAL language taken from a sample of 9 programs from the

subject project.

4.2 Compiler Support Software

The JOVIAL Compiler Support Software consists of the following:

(Communications Pool) COMPOOL

COMPOOL Assembler

COMPOOL Disassembler

Data Base Picture Generator

Environment Generator

Source Library

Source Reformatting Program

Set/Used Program

Figure 4-1 depicts the relationships of these support programs. The

COMPOOL Assembler is used to create and maintain the COMPOOL. The COMPOOL is

the system data base description and contains the global data item definitions,

4-2

Downloaded from http://www.everyspec.com

-IN
I

(N

e
n>
i

t-H

o
<5

>

I
*T3

i - l

en
r f
(t>
3

REFORMATING
PROGRAM

STANDARDIZED
JOVIAL

LANGUAGE
SOURCE

SET/USE
FILE

SET/USE
LISTING.

PROGRAM

JOVIAL
LANGUAGE

SOURCE
PROGRAM

JOVIAL
COMPILER

COMPOOL
ASSEMBLER

COMPOOL

COMPOOL
DISASSEMBL

COMPOOL
DEFINITIONS

DATA BASE
PICTURE

GENERATOR

SYMBOLIC
TEST DATA

ENVIRONMENT
GENERATOR

Downloaded from http://www.everyspec.com

primary memory mapping information, and parameter information for system

subroutines. It is used by the JOVIAL Compiler and also used by environment

generation and data reduction software. The COMPOOL Disassembler produces

formatted listings and summaries of the COMPOOL contents to aid in the manual

housekeeping of the data base. The Data Base Picture Generator provides a two-

dimensional graphic listing of the data base and is useful in maintaining

densely packed or overlayed data.

Data may be generated for initial conditions or for testing by the

Environment Generator software which accepts symbolic test data, converts it to

object code using the COMPOOL, and creates a load file ready for use.

The Source Library contains subroutines for inclusion directly in a source

module prior to compilation.

The Source Reformatting Program produces well formatted, indented listings

and will optionally resequence the source file.

The Set/Used Program is actually an optional pass of the JOVIAL Compiler

and provides information on which data items are set (updated) and/or referenced

(used) by the compiled program.

4.3 Cross Assembler

To provide the capability for generating programs at the instruction level,

a cross assembler was developed. Since the JOVIAL Compiler produced no code

to support input-output processing, multiprocessing control, diagnostic code

sequences, and special instructions*, assembly language was used in these

instances. The cross assembler was created by utilizing the PROC statement of

the UNIVAC assembler to develop a macro for each object computer instruction.

Thus, the cross assembler was a simple extension of the UNIVAC Assembler with

a format conversion added to provide the proper binary formatted output for

loading into the object machine. The advantage of this approach is a rapidly

and inexpensively developed, highly reliable assembler. The disadvantage is

that the macro processing of instructions is relatively slow, yielding an

*e.g., a linked list search/compare instruction was used for rapid correlation
of track data.

4-4

Downloaded from http://www.everyspec.com

assembler that averages 11 lines of source input processed per second. This

is one-third the rate of the JOVIAL compiler; less if object instructions are

compared.

4.4 Digital Simulator

Unit testing of individual program modules was not generally done on the

object machine, but via a digital simulator of it, which executed on the

UNIVAC 1108. The simulator was more accessible to the individual programmer

because of the limited availability of the object computers. In addition, the

fidelity of simulation was excellent and extensive debugging capabilities were

provided. All instructions were simulated except for Input/Output and Multi­

processor Control instructions. This exception did have an impact, as the

highest incidence of SPRs were written for problems relating to Input/Output.

The job control language for the digital simulator was syntactically

identical to the object machine operating system control language and most

of the commands were provided. This allowed most unit tests developed on the

simulator to be executed without alteration on the object machine. The effect

of this on testing was not measured but was believed to be highly beneficial.

4.5 Operating System

The operating system which supported software development for the object

machine was not primarily resident on the object machine, but instead resided

on a Honeywell DDP-124. The DDP-124 was linked via direct memory access to

the object machine. This support computer provided an early test bed capable

of supporting the development of a new object machine. The DDP-124 was also

used as a real time Input/Output satellite processor for the object machine.

The DDP-124 Operating System also provided a program load capability for the

object machine and was used to host a variety of debugging aids.

The DDP-124 included the following peripheral devices:

• Magnetic Tape Drives (2)
• Line Printer
• Paper Tape Reader/Punch
• Typewriter
• Disc Drive

4-5

Downloaded from http://www.everyspec.com

4.6 Digital System Simulator

Integration of software modules into builds was accomplished with the

use of a large digital system simulator as the test bed. The test facility

included the object computer with its peripherals and operator stations. The

object computer was linked via an interface device to a UNIVAC 1108. The 1108

based digital system simulation software provided a real time model of both the

radar and the environment against which the object machine was exercised.

Test scenarios were developed by hand and processed by an environment

preprocessor. This data was then used by the real time simulation to provide

realistic test conditions for the object computer. The vast majority of SPRs

were generated during the integration phase which occurred in this digital

simulation environment.

4.7 Data Collection/Data Reduction

The data collection and data reduction software provided the capability

for selective recording of data in real time and selective postprocessing of

this collected data. This process was aided by the use of the previously

discussed C0MP00L which provided data structure and location information for

the collection process, and data format and content information for the post-

process reduction.

The data collector executed under control of the real time executive

module and selectively recorded data before and/or after program module

execution. The data was recorded on magnetic tape for later reduction on the

1108.

4-6

Downloaded from http://www.everyspec.com

5. TEST METHODS

Testing of the subject system was performed in conformance with a

meticulously planned and structured regimen. The overall approach to testing

closely paralleled the combined top-down/bottom-up approach described in

Subsection 3.4 for system integration.

Testing proceeded in three phases: unit testing of individual program

modules, including the Executive program; integration (build) testing; and

operational testing of the system in the field.

5.1 Unit Testing

The first stage of testing was unit testing of individual program modules.

In accordance with the Software Management Plan for the subject system, a Test

Plan was conceived for each program module as it was being developed. The

purpose of the Test Plan was to outline the tests necessary to demonstrate

that the module fulfilled its functional requirements and to verify the

module's logical integrity.

When the design of a particular program module was completed, a detailed

Test Procedure was produced. Based on the parent Test Plan, the Test Procedure

spelled out the specific techniques to be used in the tests, and included lists

of input and output data as well as step-by-step instructions for performing

the tests. The Test Procedure also described test driver program functions;

such functions typically included interfacing with the test operator, simulating

interfaces with other modules, and data base reinitialization between test cases

Unit testing was carried out on the Digital Simulator (see Section 4)

rather than the live computer in order to take advantage of the simulator's

extensive repertoire of debugging tools, including a full instruction trace

capability. An additional benefit of this approach was to conserve live

machine time, which became an increasingly precious commodity as system

5-1

Downloaded from http://www.everyspec.com

development progressed. The Simulator not only proved entirely adequate for

unit testing of application program modules, but was also utilized successfully

in later stages of testing to help debug system problems.

Unit testing of the Executive program deviated slightly from the standard

pattern in that it was further subdivided into testing stages of its own, and

was performed on the live computer as well as the simulator. Due to its com­

plexity, the Executive was tested at the individual routine level, and at the

fully interactive level, where it operated as a skeletal version of the system.

Because system I/O is one of the Executive's principal functions, and because

the simulator was weak in the I/O area, the Executive unit tests performed on

the simulator were repeated on the actual computer. This dual testing approach

also provided an opportunity to use the Executive as a benchmark to evaluate

the accuracy with which the simulator modeled the computer's behavior.

In most cases, unit testing of program modules was performed by the pro­

gram authors. After a module had successfullly passed its unit tests, it was

formally released to an integration team for incorporation into a software

build.

5.2 Integration Testing

Integration was performed in a series of "builds" as described in Sub­

section 3.4. Each build was tested separately in a manner specified by its

associated Test Plan and Test Procedure (counterparts to the program module

Test Plan and Test Procedure). Because of the complex hardware interfaces

required (whether actual or simulated), all build testing took place on a real

machine.

Several facilities, each with a computer but otherwise featuring different

hardware complements, were provided to support integration testing. All builds

were initially tested at a software facility which contained a minimum hardware

configuration (computer, peripherals, display unit) supplemented by a large

scale simulation program to take the place of the remaining hardware and

simulate the physical environment. The simulation program ran in a separate

computer, which was connected to the tactical computer by means of a special

interface device.

5-2

Downloaded from http://www.everyspec.com

The chief purpose of integration testing at the software facility was to

check out control and data interfaces among the program modules comprising the

build. A special Executive service allowed temporary suspension of real time

processing in order to return control to a build test driver program for

varying test parameters or interacting with the operator. Test driver modules

and dummy modules were also employed to fill processing gaps left by programs

which were not included in the build.

After successful completion of integration testing at the software

facility, a build was released to a facility which contained the actual hard­

ware of central interest to the build; other hardware, where needed, was

simulated by various means. The integration tests were repeated at the hard­

ware facility, this time to check out interfaces between build software and

pertinent hardware components. Acceptance testing was done at this facility.

5.3 Operational Testing

Following successful integration testing, the more advanced builds,

including the full-scale system, were released as integrated hardware/software

packages for operational testing In the field.

Operational testing consisted of a series of increasingly demanding

missions designed to exercise the system and evaluate its response under various

loads and in different physical environments. Operational missions were first

rehearsed in conjunction with a Mission Simulator, then performed with a full

hardware complement under actual field conditions.

5-3

Downloaded from http://www.everyspec.com

Downloaded from http://www.everyspec.com

6. DATABASE

This section describes the subject project data base development task,

discusses the data base contents, and supplies supplementary information use­

ful in interpreting the data.

6.1 Data Base Development Task

The Application Software Department at the Bedford Laboratories has col­

lected a file of approximately 10,000 SPR/SMNs. The format and use of these

was discussed in Section 2. The first task was to extract each of the SPR/

SMNs belonging to the subject project from the central file and reproduce it

for use in the categorization task. Two files were then defined to constitute

the data base (the third was added later). The SPR file was defined based on

a format used by TRW for the Project 3 data. Changes were required because

additional data was being collected and some data items were deleted. The

second file defined was the software module file which was to contain the

characteristics of the software modules against which the SPRs were written.

See Appendix A for a detailed format of each of these files. Each SPR/SMN

was then reviewed by a programmer who had worked on the subject projects

integration task, and an error category was assigned using the TRW fault

taxonomy as presented in Table 4-1 of Reference 1. Several programmers worked

at this task which required about seven man/months to complete. Over 2400

SPR/SMNs were reviewed. Other historical documentation, some on microfilm

files, were then reviewed and data on module characteristics were extracted.

At this point the data was keypunched and placed on a computer for editing.

A program was written to match the module description file against the SPR/

SMN file to correlate program names. This program also presented formatted

output and did some editing of the datâ (see Appendices B and C). At this

Doint a third file was developed which contained the error categories.

6-1

Downloaded from http://www.everyspec.com

This file was used to verify that the error category codes on the SPR/SMN

file were valid (see Appendix D). Later code was added to accumulate the

number of SPRs written against each program module and against each error

category. Statistical routines were then added to produce summary statistics.

Finally a fourth file was developed and a code was added to translate the sub­

ject project's program module names into innocuous names to preserve project

anonymity.

6.2 Data Base Contents

The resulting data base as delivered to RADC consisted of the three files

whose formats appear in Appendix A. Each will be briefly discussed in this

section. Those data items requiring interpretation are specifically discussed.

6.2.1 Software Module Descriptions (Refer to Appendices A and B)

This file consists of 109 entires, each containing the characteristics

of an individual program module. Ther version identification shown is that of

the last released version/modification of that particular program. The version

number represents a major functional release of the program. Thus version 2

indicates that three major functional releases had been made. The modification

letter represents the number of modification releases (minor functional changes

or error corrections) within the version. E represents the fourth modification

release. PROG027 A0 would be the initial release of PROG027. PROG036 4J

indicates that the program has had five major functional releases and the

current version has had nine modification releases. This data is generally

inadequate to allow determination of the total number of releases since each

version may have from no modification releases to many.

The next field indicates the generic function of the module and is

somewhat subjective although few programs were difficult to assign to a generic

function. The complexity characteristic was also assigned in a subjective

fashion, although again no difficulty was encountered in assigning complex or

simple to a module. Mode of construction was limited to modular or unstructured,

as top-down or structured development was not used. Appendix B contains a

complete listing of the module description file.

6-2

Downloaded from http://www.everyspec.com

d
£

W
N
CO

H
O

w 1 - 1

O
W
^ D
Q
O
S

d £

w
N
co

. W

o

O
CO

W

Q
O
2

-̂
en

T J
^ t

O

£
v-»

o

o
£

, .

it
s

<u

4->

ni
4->

cn
v-»
o

o

-—

LO

CT-
CT-
<—i

o
o

o
o
o
o
o

a-
• *

o
o
o

1

o
o
o
o

1 O

• *

O -

UO v O o • *

cr- cr- cr- cr-
CT- CT- CT- CT- CT-

m
o
o

1

o
r v l

o
o
o

-"*

un r-
o o o "o

i i

o o
o o
• * v D
O O

o o

r~ un

CT- — '
O — '
o o

1 1

o o
o o
0 0 O
o .—•

o o

v D v D

CT- 0 s 0 s CT- CT-

t r -^1 o
o
o
o
(o

un
o
o
o

• — * , — '

o o
o o

[1

o o
O IT,
,—1 ; — 1

o o
o o

• * a -
<-\J <-\J

o o
o o

1 1

o o
o in
f \ l (NJ

o o
o o

ro

a-
a-
m
: 1

o
1

o
o
(M
1 — 1

o

0 0

^ — r \ i

cr- cr- cr-

(M

CT-
CT- CT- CT- CT-

m r-
• — i i — i

o o
1 [

o o
o o
• * v D
.— i ,— i

o o

(M un

cr- cr- cr-
• *

r o

o
o

t

o
o
OO

o
o

a - • *
r o ^
O O
O O

1 <
O O
u n O
cn rf

o o
o o

a-
. — i

o
1

o
o
0 0
1 — 1

o

un

i—i

r \J
o

1

o
o
o
(M

o

a- a-
a-
• *

o
o

1

o
i n

^ o
o

• *

i n

o
o

i

o
o
m
o
o

r J

a-
a-
m
<-\j
o

i

o
o
r \]
(M
O

i n

o
o
r~
<-\j

o

o
o
v O
CM

o

c i

a-
a-
a-
<-\J
o

1

o
o
0 0
(M
O

cr- cr- cr- cr- o
0 s 0 s 0 s 0 s 0 s

en in r- cr- —<
M n n n ^ o o o o o

[1 1 t 1

o o o o o
, o o o o o
' (M 1 < v D CO O
r o ^ m f O ^ f

o o o o o

CT- CT- 0 s CT* 0 s CT-
O -

m
• *

o
i

o
o
• *

• *

o

0 s CT- CT- CT- CT-

r̂
• *

o
i

o
o
v D

• *

o

CT-
• *

o
I

o
o
CO

• *

o

r o i n CT-
i n m i n
o o o

I I I

o o o
o o o
r\l ^ oo
i n i n i n
o o o

CT-
CT-
I—I

v D
O

I

o
o
o
v D
O

CT- CT- CT- CT-
CT- CT- CT- CT-

r̂
v D
O

I
O

o
v D
v D
O

0 s 0 s C T - C T - C T - C T - C T - C T - C T - C T - C T - C T - C T - C T - C T - C T -
CT-
i n

o
o

t

o
i n
i n

o
o

• *

O

o
o

i

o
o
v O

o
o

a-
v D
O
O

1

o
i n
v D

o
o

^ ^ 0 s ^ ^

r- co co o o

o o o o o
I I I I I

o o o o o
o o m o o
r- co co a- o

o o o o o

O -

o

o
I

o
un
o

o

• *

• — I

o
[

o
o
i — I

o

CT-
i—(

o
[

o
i n
. — i

o

CT- CT- - ^
^ J cn ^

O O O
I- I (

O O O

un un o
cvj oo ^

o o o

CT-

• *

O
[

o
i n

^
o

• *

i n

o
t

o
o
i n

o

i—i

0 0

o

o
o
o
0 0

o

CT-
CT-
vO

o
I

o
i n
•xi

o

o- l
0 0
o

I

o
o
r \]
0 0

o

CT-
• *

r̂

o
I

o
o
r̂

o

r̂
0 0
o

I

o
o
v D
0 0
O

CT-
CT-

r-

o
i

o
LTl

r̂

o

CT- CT-
CT- CT-
— i o- l

o m
I I

o o
o o
O r \ l
O o- l
^ - l .—I

-•

CT- CT-
• * • *

CT- O

O O
I I

o o
o o
CT- O

O O

CT- CT-
CT- CT-
—i CT-
0 0 CT-

-̂. ^̂
o o
o o
O CO
0 0 CT-
.— i i—i

-

CT- CT-
CT- • *
O —i
f M rs l
O O

t i

o o
in o
o —
r g r s l

o o

CT

a
• —

r\
o
o
i n
• —

f M
O

Downloaded from http://www.everyspec.com

, Table 6-2 contains the distribution.of SPRs by module type and also

gives the distribution of module types.

TABLE 6-2

DISTRIBUTION OF SPRs BY MODULE TYPE

Module Type

Logical

Control

Mathematical

I / O

DATA BASE

Microcode

COMPOOL

Data Manipulation

Test Driver

Pe rcen t of Total

20. 2

8. 3

19.3

5. 5

8. 3

0 .9

0 . 9

11. 0

5. 5

Pe rcen t SPRs

9 . 6

9. 5

18. 7

5. 0

17. 5

1.3

2. 3

18. 4

10. 3

This table reveals that the DATA BASE modules should have been given

more attention. The DATA BASE modules for the subject project are not data

base definitions (that is the COMPOOL) but are initial conditions for a build.

Perhaps better tools could have helped here. One problem with this table is

that the size of the modules is not taken into consideration.

Table 6-3 shows the number of SPRs normalized to 1000 lines of

source code.

TABLE 6-3

SPRs NORMALIZED TO 1000 LINES OF SOURCE

Control

Data Manipulation

Logical

I / O

Mathematical

SPRs/1000 Lines of Source

18

29

34

36

40

P e r c e n t of Total Size

25

31

14

7

23

6-4

Downloaded from http://www.everyspec.com

The five module types represent the operational executable modules

and were ratioed to 100 percent. The relatively low figure for the control

module can be attributed to the fact that significant portions of the real

time executive program were derived from a previous project.

6.2.2 Software Problem Report File (Refer to Appendices A and C)

The SPR file consists of 2165 entries each containing data on a

single SPR/SMN pair or SMN only, if no SPR was filed. Note that the SPR

numbers are not a dense set since they are not project specific. The termina­

tion code is "SOFTWARE" if an unexpected test termination attributed to a soft­

ware problem was specifically mentioned on the SPR; similarly "hardware" for

hardware problems which caused an unexpected test termination which was thought

to be software (thus an SPR was filled out) but later attributed to hardware.

Of the 2165 SPRs, 47 resulted in specifically identified unexpected software

terminations and seven resulted in specifically identified unexpected hardware

terminations originally though to be software problems. The seriousness of

the error was determined to be CRITICAL if the discoverer indicated that it

was impeding project development, LOW if it was not really necessary for a

correction to be made for the current development to proceed, IMPROVEMENT if

it was a suggestion for improvement but not necessary for satisfactory opera­

tion, and MEDIUM otherwise. Table 6-4 lists the occurrence of each of these

levels of seriousness.

TABLE 6-4

SERIOUSNESS OF SPRs

Ser iousness Type

Cri t ical

Medium

Low

Improvement

Number

134

1642

105

285

Percen t of Total

6 . 2

75. 8

4 . 9

13. 1

6-5

Downloaded from http://www.everyspec.com

The test periods of concern to this data base are the Integration,

Acceptance, and Operational periods. Integration occurs following unit

development and formal release, and occurred at a software development facility.

Acceptance tests were then run at a hybrid test facility. SPRs which speci­

fically mentioned acceptance testing or were known to be found during accep­

tance testing by integration programmers were identified as Acceptance SPRs.

All SPRs filed from the operational site were identified as Operational SPRs.

Table 6-5 lists the occurence of SPRs during each of these periods.

TABLE 6-5

OCCURRENCE OF SPRs

Test Per iod

Integrat ion

Acceptance

Operational

Number

1984

19

162

Percen t of Total

. . 91 .6

0 . 9

7. 5

The error category code is the code indicating the error category as

listed in file 3 (see Appendix D).

The SMN number should in all cases be the same as the SPR number;

except that some clerical errors were made during the original assignment of

numbers. Cases of this are indicated by an * to the right of the SPR number.

As mentioned in Section 2, some SMNs were filed without a corresponding SPR.

These were usually the result of a programmer discovering the error, correct­

ing it, and then issuing an SMN to release the correction. A total of 822

SMNs (38 percent) were filed without SPRs.

The Correction Type indicates the type of change or update made as

a result of the SMN. Unfortunately this data was not generally captured and

is insufficient for statistical use.

The Days Open data was extracted from the Raytheon Manufacturing

Days calendar and represents the number of working days between the date open

and date closed. SMNs filed without SPRs were set to 1 day opened.

6-6

Downloaded from http://www.everyspec.com

The 2165 SPR/SMNs were opened for a total of 17,015 days, or an

average of 7.9 days. This is distorted somewhat by the relatively high per­

centage of SMN-only reports. Removing the SMN-only reports yields 1343 SPR/

SMNs opened for a total of 16,193 days or an average of 12.1 days.

Because of the file length only a small portion is included in

Appendix C. RADC does, however, have the entire file.

File 6-1 shows the distribution of the SPR/SMNs by month opened

during the 38 months of integration through operational testing.

The curve peaks at 133 SPRs opened during month 5 of the second year,

and drops to a low of three opened during month 10 of the third year.

140-1

130-

120-

110-

100-

9 0 -

~ 8 0 -
N0.
OF 7 0 -

SPR's
6 0 -

5 0 -

4 0 -

3 0 -

2 0 -

10 -

Ci
u 1

2
i
4

1
6

1
8

1
10

i
2

MONTHS

1
4

1
6

1
8

l
10

1
2

1
4

l
6

1
8

i
10

Figure 6-1 - Distribution of SPRs

6-7

Downloaded from http://www.everyspec.com

6.2.3 Error Category File (Refer to Appendices A and D)

The error category file consists of 193 entires, one per error

category. The error categories were based on the 184 as defined by TRW in,!,.;

Reference 1. Added categories are flagged with an asterisk to the right in

Appendix D. Additions were made to categorize the following errors:

a) Scaling

b) New of enhanced function - display

c) Modifications for special test purposes

d) Unidentified hardware error

e) Nonrecurring problems

f) No error

g) Insufficient information for error analysis

h) Missing cards (source lines) in a compiled program

i) Inadequate/Inefficient requirements

j) Enhancement requirements

Table 6-6 contains the summary of SPRs by category group. Refer to

Appendix D for the meaning of the category group code.

The most frequent errors by category group were the User Requested

Changes (35.3 percent), with Data Handling Errors (18.9 percent) and Logic

Errors (17.6 percent) making up the largest percentage of the remainder. The

high incidence of user requested changes is most likely a characteristic of

the evolutionary development approach.

6-8

Downloaded from http://www.everyspec.com

TABLE 6-6

SPRs BY CATEGORY GROUP

Category-
G r o u p

AA

BB

CC

DD

E E

F F

GG

HH

J J

KK

L L

MM

NN

P P

QQ

RR

SS

T T

uu
vv

C o m p u t a t i o n a l

L o g i c

I / O

Da ta Hand l ing

O p e r a t i n g S y s t e m / S u p p o r t Sof tware

C o n f i g u r a t i o n

R o u t i n e / R o u t i n e I n t e r f a c e

R o u t i n e / S y s t e m I n t e r f a c e

U s e r I n t e r f a c e

D a t a B a s e I n t e r f a c e

U s e r R e q u e s t e d C h a n g e s

P r e s e t D a t a B a s e

C O M P O O L Re jec t i on

R e c u r r e n t

C o m m e n t s

R e q u i r e m e n t s C o m p l i a n c e

Unident i f ied

O p e r a t o r

Q u e s t i o n s

R e q u i r e m e n t s Spec i f i ca t ion

No.
S P R s

115 ,.

382

21

409

4

18

16

17

10

32

7 64

162

45

39

15

10

77

15

3

11

P e r c e n t

5. 3

17. 6

1. 0

18. 9

0. 2

0. 8

0. 7

0. 8

0. 5

1. 5

3 5 . 3

7. 5

2. 1

1.8

0 .7

0 . 5

3 . 6

0. 7

0. 1

0 . 5

6-9

Downloaded from http://www.everyspec.com

6.3 Supplementary Information

This subsection contains supplementary information of possible use to

modelers. It presents an analysis of build information, acceptance test data,

and operational data.

6.3.1 Build Analysis

As mentioned previously, there were several builds implemented during

the life of the project. As a final deliverable item, there were two builds

delivered. These builds consisted of an Initialization Build (Build G) and an

Operational Build (Build F). The Initialization Build performed hardware

diagnostics, hardware and software confidence test, and initialized both hard­

ware and software data bases. The Operational Build was comprised of 55 pro­

gram modules which were implemented and tested in Builds A through E and then

put together as a system. Appendix F contains the list of program modules

for those two builds for possible use in further analysis.

During the life of the project, records were kept to be used for

estimating new projects in the future. The types of data collected were:

• Record of all software problems by number and date

• Amount of computer time using wall clock time

• Manpower allocated to each build within the project

The following subsections discuss the software problems associated

with each of the two delivered builds.

6.3.1.1 Build "F" Discussion

6.3.1.1.1 Background

Integration testing of Build F was performed over a 35

month.period. Within this time frame, there were a total of 41. releases of

the build reflecting error corrections, design changes and improvements.

Months 1 through 7 were devoted to testing the build using the Digital System

Simulator. During the next five months the build was tested at a test site

with hardware and also in parallel on the Digital System Simulator.

6-10

Downloaded from http://www.everyspec.com

It is appropriate here, to mention that the software was

being tested on hardware that was not completely checked out, thus adding to

the amount of time necessary to resolve problems. Hardware diagnostics were

not sophisticated enough to diagnose all problems and many were found during

operational software testing.

Testing for the remaining 20 months was accomplished by

first testing a particular release of the build on the Digital System Simulator

and then shipping to a field site for operational testing on the hardware in a

live environment.

During the entire integration period, a total of 136 man-

months of effort was expended. There is no record for computer time used

while testing with the hardware. The computer time (wall clock time) utilized

for testing with the Digital System Simulator amounted to 1890 hrs and 47 min.

See Table 6-8 for the monthly usage of computer time for the builds.

6.3.1.1.2 Discussion

In a 35 month period, there were 1198 problems reported,

investigated, and resolved. Figure 6-2 depicts the number of problems

reported each month. After investigating the file of problem reports, it was

discovered that the peaks and valleys shown in Figure 6-2 tracked each major

release of the build. The peaks represent the time of build release when

several problems had been resolved. The valleys represent the end of testing

particular functions and preparing to work on the next release, which is based

on the results of the tests and addition of new functions of complicated test

aimed at final checkout of the system.

Another factor which attibuted to the rise and fall in

numbers of problems was the parallel effort of hardware integration and hard­

ware downtime. When hardware is malfunctioning or down, the software problems

are not readily found.

Months 12 through 15 reflect the period which had the

largest number of problems reported. While reviewing the problem reports, it

became visible that the build during this time period was being tested for

the first time at the field site in preparation for the first mission. During

6-11

Downloaded from http://www.everyspec.com

I

C

(^
i

w
c

o
h-1

(D
3

fl>

O
1

o
3

(a
CL

M
H

O
n
n
(a
r f

n>
o

NUMBER OF SOFTWARE PROBLEM REPORTS

w

FTW

x>'^; °"-ys '., ."?
a:

' 3 ^ m
tt^^M^-^^Nd

ii^:f £^ffe^m; * ^fxUo.0 (t x ' 1 ' ' ' • J^ 'XT^t j 'gy1 ; " " •-J?^-V,x"'*.

ĵs|p
ZZI- " i :i

r~~R

Downloaded from http://www.everyspec.com

the testing, it became evident that some of the interfaces with site hardware,

which could not be tested with simulation tools, and the environmental data,

were different than had been anticipated. New software logic had to be added.

Software was also modified to adapt to environmental interference (ground or

weather clutter) which was overloading the system.

After the 15th month of integration testing the number of

software problems decreased, which also resulted in a decrease of manpower

levels. In essence, the remaining months were devoted to fine tuning the

system. Software errors were found in areas that had not been completely

tested using simulation. However, most of the problems were user requested

changes, product improvements, and modifications to initial conditions due

to environmental conditions.

Table 6-7 lists the number of total problems and the per­

centage of total problems reported for each problem category. It is readily

observed that the majority of problems, in fact 38 percent, were due to design

changes and improvements. Logic errors and data handling errors were 18 and

16 percent respectively. These three categories of problems constituted the

major system problems.

It was rather difficult to collect data with respect to an

individual build release. For example, Build F had 41 releases and the pro­

blem reports did not usually connect a problem to a build release. To generate

this report, a great deal of time was devoted to correlating the problems and

build releases using supervisor status reports and bracketing build release

dates with problem report dates.

6-13

Downloaded from http://www.everyspec.com

TABLE 6-7

BUILD " F " PROBLEM CATEGORY DATA

Prob lem Category

AA

BB

CC

DD

E E

F F

GG

HH

II

J J

KK

L L

MM

NN

P P

Q Q

RR

SS

T T

UU

VV

Total

Number of P rob lems

72

223

10

199

3

8

3

5

1

7

11

458

80

28

15

11

4

45

5

1

9

1198

Percen tage of Total
P rob lems

6. 01

18. 61

0. 83

16. 61

0.25

0. 67

0.25

0. 48

0. 08

0. 58

0. 92

38.23

6. 68

2. 34

1. 25

0.92

0. 33

3. 75

0. 48

0. 08

0. 75

6-14

Downloaded from http://www.everyspec.com

6.3.1.2 Build "G" Discussion

6.3.1.2.1 Background

Build G had a 37 month span of integration testing. The

Build was comprised of hardware diagnostics, hardware confidence tests, and

hardware/software initialization programs. The diagnostics verified the

operability of the computer while the confidence tests verified each subsys­

tem within a radar system such as, receiver, transmitter, signal processor,

etc.

In developing the programs, the majority of them could be

tested individually on an off line computer, except for the actual I/O inter­

faces. The hardware interfaces had to be tested on the actual hardware as it

became available. For Build G, the hardware and software development was

being performed in parallel. A simulator was not available to test the I/O

interfaces.

It should be pointed out that the programs in this Build

at the start of the system were designed as independent programs. It was not

until some time into system generation that a decision was made to automate

the programs to operate sequentially without operator intervention as a Build.

Therefore, testing of a majority of the programs had been completed indepen­

dently. The Build testing basically consists of hardware integration testing.

Table 6-8 shows the monthly use of computer time (wall

clock time) used to integrate the software before testing with actual hardware.

Over the three year period, a total of 720 hours and 18 minutes were utilized.

6-15

Downloaded from http://www.everyspec.com

TABLE 6-8

COMPUTER TIME FOR SOFTWARE INTEGRATION
IN WALL CLOCK HOURS

'

Month

1

2

3

4

5

6

7

8

9

10

11

12 .

13

14

15

16

17

18

I

Build F

7:15

3:10

7:05

7:20

7:15

12:35

1.9:55

52:30

47:11

95:06

. 55:45

. 59:15

43:35

44:45

42:20

75:00

62:50

73:35

1

Build G

57:45

46:23

34:10

28:55

12:42

27:04

54:12

51:50

50:24

68:08

24:40

21:30

27:15

8:15

22:10

15:35

9:50

31:55

Total
Usage

127:45

122:10

122:52

109:53

97:56

82:54

110:23

160:53

150:12

238:16

134:20

177:25

121:30

141:19

140:20

124:05

94:05

178:37

Month

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Build F

42:45

40:40

96:45

88:35

56:45

79:15

73:30

65:20

67:50

116:55

88:05

78:05

37:55

41:05

54:30

6 3 : 0 0

39:30

-

• i

Build G

23:40

18:15

16:10

16:15

13:20

35:40

1:00

-

-

-

-

3:15

-

-

-

-

-

Total
Usage

73:55

74:50

134:55

157:5.5

117:20

121:30

99:20

67:55

70:20

116:55

•89:05.

78:05

41:10

41:05

54:30

63:00

43:50

39:30

Note: Months without computer t ime indicate test ing per formed at
acceptance tes t site or operat ional s i t e .

6-16

Downloaded from http://www.everyspec.com

6.3.1.2.2 Discussion

There were 173 problems and 59 man months of effort

reported over a 37 month period, which appears to be low, compared to Build F.

However, the low number of problem reports is attributed, on the most part,

to only hardware integration versus the combination of software and hardware

integration. The logic and data handling errors were found only in a few

programs which had not been completely tested on the hardware prior to being

put into the Build.

The peak months of problems reported in Build F occurred

in the field when intensive testing and fine tuning of the system was being

performed. In some instances, data formats and interface bit configurations

were changed to make the system more efficient. There were also changes made

to software to bypass hardware fixes which were more costly.

Figure 6-3 shows the errors that were reported each month

and the problem categories they represented. The Build was so dependent on

hardware scheduling that it is impossible to generate curves representing

software reliability. The software was tested in spurts over the 37 month

period. The other variable in the software testing was that all hardware was

not available for testing until late in the 25th month of the Build.

While analyzing the types of problem reports, there was a

definite resemblance to all other builds with respect to percentage of prob­

lems by problem category. Table 6-9 reflects the types of problems and their

percentage of the total number or problems.

Approximately 50% of the problems were devoted to user

requested changes or product improvements. The data handling errors reflected

22% of the problems and logic errors 14%. All remaining problems only accu­

mulated to 14% of the total problems.

6-17

Downloaded from http://www.everyspec.com

8T-9

NUMBER OF PROBLEMS REPORTS

Downloaded from http://www.everyspec.com

TABLE 6-9

BUILD "G" PROBLEM CATEGORY DATA

Prob lem
Category

AA

BB

CC

DD

E E

F F

GG

HH

I I

J J

KK

L L

MM

NN

P P

QQ

RR

SS

TT

UU

vv
Total

Number of
P rob lems

0

25

1

38

0

0

0

9

0

2

3

86

0

0

3

2

0

2

2

0

0

173

Percen tage of
Total P rob lems

14.45

0.58

21.96

5.20

1. 15

1.73

49.71

1.73

1. 15

1. 15

1. 15

6-19 ;

Downloaded from http://www.everyspec.com

6.3.2 Acceptance Test Data.

Acceptance test data is sparse and unreliable. Most often the

authors of SPRs did not indicate on the SPR that the problem occurred during

an acceptance test. Only 19 SPRs were so marked. This made it impossible to..

gather significant information about the impact of software problems: on the

acceptance test process including the impact on other, testing. There were a

total of 19 Acceptance Test SPRs or 0.9% of the total. Of the 19, 17 were

critical, one was an Improvement, and one was Low Seriousness. The 17

critical SPRs were corrected in an average of A.3 days, with a standard devia­

tion of A.3 days. The distribution of errors by category group is shown in

Table 6-10.

T A B L E 6-10

A C C E P T A N C E TEST E R R O R S BY C A T E G O R Y

AA

BB

CC

KK

L L

SS

Category Group

Computational

Logic

I / O

Data Base Interface

User Requested Changes

Unidentified

Number of SPR's

2

3

1

1

11

1

6-20

Downloaded from http://www.everyspec.com

6.3.3 Operational Data

Operational demonstrations took place at a remote site. Again data

is sparse with respect to the impact of software errors on the entire test

effort. Of the 162 operational SPRs, 31 were designated as critical. The 31

critical SPRs were corrected in an average of 11.6 days, with a standard devia­

tion of 11.3 days. The distribution of errors by category group is shown in

Table 6-11.

T A B L E 6-11

O P E R A T I O N A L ERRORS B Y C A T E G O R Y

r~

AA

BB

CC

DD

GG

HH

J J

KK

L L

MM

P P

RR

SS

TT

uu
vv

Category Group

Computational

Logic

I / O

Data Handling

Interface - Routine/Routine

Interface - Routine /Sys tem

Interface - User

Interface - Data Base

User Requested

P r e s e t Data Base

Recur ren t

Requi rements Compliance

Unidentified

Opera tor

Questions

Requi rements Specification

Number of SPR's

4

24

3

35

1

5

1

3

45

5

6
2

24

2

1

1

6-21

Downloaded from http://www.everyspec.com

Again the high level of user requested changes reflects the evolution­

ary nature of the development.

Table 6-12 indicates the load placed on the software in the opera­

tional environment. This may be useful in the analysis of operational errors.

T A B L E 6-12

EXECUTION LOADING BY M O D U L E T Y P E

Module Type L igh t Load Heavy Load

C o n t r o l

M a t h e m a t i c a l

Log ic

Da ta M a n i p u l a t i o n

I / O

10%

0

1 1 %

13%

3%

37% L o a d e d

10%

44%

16%

26%

3%

99% L o a d e d

6-22

Downloaded from http://www.everyspec.com

7. RECOMMENDATIONS

As mentioned in the introduction the intended use of this data base is

to support the development of software reliability models. During the pro­

cess of building the data base, the primary purpose of this project, some

thought was given to the significance of the data and the uses to which data

of this type might be put. This section identifies some of the characteris­

tics of the subject project and data which may influence the accuracy of the

models. Recommendations are also made with respect to the collection of

such data in future projects and the potential uses of the data while it is

still "fresh."

7.1 Subject Project Characteristics That May Affect Modeling

Several characteristics of the subject project may be of some interest

to those constructing software models. While quantitative data was not

gathered for this project, these characteristics might serve to assist in the

selection of an applicable model as well as indicating possible areas for

future extension of models. For the subject project these characteristics

were:

1) evolutionary development of software requirements

2) evolutionary development of the system

3) parallel hardware development.

4) multiple system configurations

5) build process

6) uneven application of resources

7) previously existing software

8) lack of development phase data

7-1

Downloaded from http://www.everyspec.com

As mentioned earlier in this report, the software requirements for the

subject project were issued in several releases over a two year period. Due

to schedule pressure, informal or preliminary releases were also made. This

characteristic probably contributed heavily to the large percentage of "User

Requested" changes to the software. Many large DOD system developments have

this characteristic. It is really related to the evolutionary approach to

system development which seeks to minimize risk by testing concepts and

evolving the system in a step-by-step orderly fashion. This approach is com­

mon when a system is being developed which does not use off-the-shelf compo­

nents and proven technology.

Another characteristic of this project was parallel hardware development.

Early users of the new hardware suffered from the "serial-number 1" syndrome

and the high incidence of hardware failures had a pronounced effect on the

software development. However, since most of the early failures were imme­

diately recognized as being hardware problems, no software problem reports

were filed. The data was not captured.

Software developed for the subject project was executed on three similar

computer configurations, each "slightly" different in its usage of input/

output channels and its suite of peripherals. These "slight" differences

contributed to the high incidence of Input/Output errors. Software checked

out at the integration facility would require minor modifications in input/

output areas when executed at the acceptance test facility and later at the

operational site. Each of these modifications was recorded via a SMN to main­

tain configuration control, and so entered the error data base. This type of

"error" should be filtered out before using the data in a reliability model

as these modifications are really adaptations.

Another possible problem for the modeling effort is the build process.

In such a process, each successive build jeopardizes the reliability function

(R(t)) of the previous build. Therefore, R(t) should increase as build testing

progresses. Then, at the next build, it would probably decrease. The new

functions that are added to each build differ in size and complexity. As one

would expect, the simple functions were integrated before the more complex

7-2

Downloaded from http://www.everyspec.com

functions. Therefore, succeeding builds became more difficult to test

because of the larger number of interconnections and interactions between

the various modules. Therefore, the total errors (E) increase with each

succeeding build.

A careful look at Figure 6-1 reveals several sharp dips in the number of

SPRs opened. Several of these occur at the end of the calendar year, the

end of the fiscal year,'and at the time of summer vacation. Most likely, the

intense activity just preceding the dip occurred at a build release or a major

system milestone which are likely to fall just prior to these above-mentioned

times and are followed by a lull in activity. These indicate uneven applica­

tion of resources, primarily manpower, and supplementary data on applied

manpower is needed to normalize the data and accurately relate error dis­

covery to applied effort.

Another area which affects software reliability is the extent to which

previously developed software is used. Previously developed software may

occur as library routines, entire programs, or as published algorithms. It

is known that a small percentage of the software (probably <10%) of the

subject project was developed previously, but the actual data is lost in the

past.

Software error data from the development phase is not available. Many

of the error categories (e.g., compiler errors, job control errors, etc.)

would show up predominantly in this early phase. It is a reasonable suspicion

that a program with poor reliability during the development phase is likely

to have poor reliability in later phases, but it would be helpful to have hard

facts in this area. On the other hand a program may have high reliability

during the development phase and poor reliability during integration. This

would indicate problems in development testing, or interface design.

7.2 Data Collection

Reference 1' emphasizes the need to provide accurate error categorizing

at the time the error is identified. To do this at a later date requires some

degree of interpretation from historical documentation which can introduce

further error and distort the reliability information. We recommend that

7-3

Downloaded from http://www.everyspec.com

the programmer who creates the fix for the problem also does the error

category assignment. The assigned category should be independently verified,

possibly by a software quality assurance engineer. Since the error, category.

assignment does involve an element of interpretation, this concurrence would ,

enhance the reliability of the assignment. , ,.

One problem with the fault taxonomy used for this data base development

was the large number of categories, some of which were overly specific (e.g.,

time conversion error). This overspecifying of error categories led to incom­

pleteness and it seemed to us that a level of generality was needed (e.g.,

conversion error). The major complaint by the category assigners was that

the number of categories was too large and the amount of subjectivity involved

in assignment led to an uncomfortable feeling that some assignments were

ambiguous. Subsequent to our categorization of errors, the final report was

issued (reference 2) and the number of categories were reduced to 79, less

than half the original list. (See Table 3-2, of reference 2). We believe

that this taxonomy is a significant improvement.

7.3 Use' of Fresh Data ,'•.,,•

We recommend that data also be collected during the development phase.

This could be done in larger systems by automatic collection of data during

compilation and testing and would allow important feedback to the developers

that would allow improvements to be made early enough to have an effect on

the software reliability. This feedback of "fresh" data could be used to pro­

vide improvements in the areas of training and development tools. For example,

a high incidence of improperly formatted data errors might indicate that fur­

ther training in the data definition capability of the HOL in use is necessary.

In the subject project, Input/Output software had a high incidence of soft­

ware errors (36 SPRs/1000 Source Lines). This can partially be attributed to

the fact that different configurations of hardware required different I/O

coding. It is also probable that the fact that the Digital Simulator had no

I/O simulation capability, caused software to be released to integration testing

without actually exercising the I/O code. This feedback early in the project

could have resulted in I/O simulation, being added to the Digital Simulator.

7-4

Downloaded from http://www.everyspec.com

This potential feedback benefit would also justify the collection

during the development process rather than "after-the-fact," and therefore

increase its own reliability.

7-5

Downloaded from http://www.everyspec.com

Downloaded from http://www.everyspec.com

APPENDIX A

DATA BASE DESCRIPTION FILE FORMATS

Downloaded from http://www.everyspec.com

File #1 Software Module Descriptions

The Software Module Description file contains software descriptive data

and consists of one record per module. It is used to validate file #2 data

and provide statistics.

Record Format:

Columns

1

2-6

7-8

9-15

16-17

18

Field

File Identification

Project Identification

Project Code

Module Identification
(left justified)

Version Identification

Module Function

19

20

21-25

X = Control
P = Input/Output
L = Logical
D = Data Manipulation
M = Mathematical
T = Test Driver
C = Confidence Test
B = Data Base
0 = C0MP00L
R = Microcode

Module Complexity

S = Simple
M = Medium
C = Complex

Source Language

A = Assembler
J = JOVIAL
F = Fortran
D = Direct Code

// Source Statements

Right justified

Code

Alphanumeric

Alphanumeric

Alphanumeric

Alphanumeric

Alphanumeric

Alphabetic

Alphabetic

Numeric

A-2

Downloaded from http://www.everyspec.com

Columns Field Code

26-30 Object Size Numeric

Including literals and
local data. Not including
buffers. Must be in deci­
mal. Right justified.

31 Mode of Construction Numeric

0 = Unstructured
1 = Modular
2 = Top Down
3 = Modular Top Down
4 = Structured
5 = Modular Structured
6 = Top Down Structured
7 = Modular Top Down

Structured

File #2 Software Problem Reports

This file consists of data from Software Problem Reports and Software

Modification Notices and consists of one record per module.

Record Format:

Columns Field Code

1

2-6

7-8

9-12

13-19

20-21

File Identification

Project Identification

Project Code

SPR Number

Right justified
Blank if no SPR#

Module Affected
Identification

Left justified

Version Identification

no 11

Alphanumeric

Alphanumeric

Numeric

Alphanumeric

Alphanumeric

A-3

Downloaded from http://www.everyspec.com

Record Format:

Columns Field Code

22-29

30

31

32

33-37

38-41

42-46

Date SPR Opened

(MM/DD/YY)
Blank if no SPR

Termination Code

Blank = Terminated
Normally

S = Software
Aborted

H = Hardware
Aborted

Seriousness of Problem

1 = Critical
2 = Medium priority
3 = Low priority
4 = Suggested important

Test Period

D = Development -
Unit Test

V = Validation -

Unit Acceptance

I = Integration

A = Acceptance of Build
0 = Operational

Demonstration

Error Category

Applicable SMN Number

Type of Correction

New Module Update
X in Col 42

Document Update
X in Col 43

Alphanumeric

Alphabetic

Numeric

Alphabetic

Alphanumeric

Numeric

Alphabetic

A-4

Downloaded from http://www.everyspec.com

Record Format:

Columns .Field Code

42-46 COMPOOL Change

X in Col 44

Data Base Change

X in Col 45

Explanation

X in Col 46

Leave column blank
if not applicable. Use
more than one type if
several apply.

47-54 Date SPR Closed Alphanumeric

(MM/DD/YY)

The SPR is closed
by an SMN, therefore,
this data is taken from
the SMN.

55-57 Days Open Numeric

Total of working
days between the open
and closed date. If only
an SMN appears it reflects
1 day open.

Right justified.

•A-5

Downloaded from http://www.everyspec.com

File #3 Error Categories

This file contains the error categories and descriptions. It is used to

validate file #2 data and is listed for reference. It consists of one record

per error category.

Record Format:

Columns Field Code

File Identification "3"

Error Category Alphanumeric

Error Description Alphanumeric

1

2-6

7-80

A-6

Downloaded from http://www.everyspec.com

APPENDIX B

SOFTWARE MODULE DESCRIPTIONS
FILE NO. 1 LISTING

B- l

A

Downloaded from http://www.everyspec.com

O O C O O O C O O O O O O O O O O O O O O Q O O O O O

Ui UJ UJ UJUl iU UJ UJ UJ UJ Ui toJ UJ UJ UJUJUJUJUJUJUJuJUJ UJ UJ UJ UJ

K H K J J J K » - » - J _ l (> - K J K » - J » - H » - K J K » - » - K K » - K » - » - J » - » - » - » - J t - » - J J J » - » - J J » - J » - » - K

O L Q C O L O O O Q C I t a O O X K O Z I t O X S t t t t O l t l C K X t t i r Q C I T S O Q I Q C Q C Q C O Q C K O O O K a C O O K O K K S iii^iiriiiriiiiiiiiiiiiiiiirir"!!1!!!!

i - i > - i o i c o (0 (M r (\ i (M r - a (\ j * 5 - " 3 3 « - i s r t i r i o r t o » i c 3 «) a (> f t j O ' o < » 5 0 3 i - i S 3 r * . « a ^ « o
H D r t M 3 » « « M M O - - 3 K i \ ^ 3 3 3 1 T 3 ^ I M (r a 3 « 3 N K » m * sJ-*<D l» IM N o r\J O IP IV IT O

I _ « - • » * _* ip _ ly • • LP K>

13 i _ i _ j _ i _ i _ i _ i _ i _ i _ i _ i * - _ j _ i _ j _ i » - . I J J J h J J J J J J J l J J u i J J J J

i > > > > » > > > > x t > > > > a > > > > > i o : > > > > > i t i i i > > > a > > > > > > > i > > ! > • » » >
O O O O O O O C O O * - « O C O O » - , O O C O C U J » - O O O O O » - » U J U J U J O O O ^ - O O O C O O O U J O O U J O O O O

to w co w to to

^ Z 2 Z 2 F £ Z

^ i o o c c o o o o »-

»_ , o U-; U- -4 t_> l u l u l l . ' < - « l (_ i - « J - « U I _ J - « J - a U - U U J to- UJ H J 4 U t (J t - «J U « J
U I J _ l _ I ^ W (0 J _ l _ l _ l » - _ l > > t D _ J _ » _ l » - _ l _ l » - » - _ t _ l > _ l - J » - > _ l t f) _ t _ J t O _ l » _ * ^ - * - . t - * • » _ » » - • -
Z I ^ C - C i * - - * * - * * * 3 •« •« » - •« *— » - < D < j t > - 3 D » - > - D a » - C C » - ^ - ^ < I ^ ^ ^ O » - Z P » - » - » - U - » - ' < I - * -
a i u a [r < ! O i o u O Q . u u < u a Q : t t ! a . L) i < a t t . < < Q . i i Q : a : c o c a o < a u i e u u) i i O Q : i < < < U ' < o < ' <
t,. | H h h X ^ V » - » - * - X » - 0 0 » - » - » - 3 » - » - X I » - r > - C : » - v . V V . (> - v x c : » - »- * - Q . O * - X I X Z X * - X X

l O Z ^ U i - S - ^ O ^ - Z U L S U - U ? < 2 i : 7 > i J k 2 U i l K Z 2 Z » - * - * - 2 » - U J U •« O U < I Z U J U - ' U j U J U J l S U J b J
U - I O C O I » - » - C • « C C X C . » - » - » - * C < I ' « ' * I I - « - « » - C C I » - C I - C C » - 0 » - ^ I I I C X O I X
- j i — i u u * - ^ ^ — » r_ j_ j» -_ imo: '«2:_ iTt -3" i» -» -3"Tcni_ ; i_i K (n _ i 4 J j i u o 3 T r j - i - i j - « i - j » - i -
— I ^ C C < U) U.C -4 -4-4 LL. • « U» t C U J 4 < t f ' 4 h _ « < - 4
c i r •* X » - » - « - « * T - « J - « J T 7 « - « * » - * »- • - ^ r x r: ;r x x x
C I •" i - ,- ,- i - _ ,- , _ c .

i o o o o o c s o « - - * - " - * » - » * — » * » * ' \ J i \ ' \ i ' V j A j M A j n j ' \ t ^ ' ' , ' ' , ^ W M i r i f l i ' , 3 3 a 3 a1 ;? a ? IT ip ip m m tr> in -* *
^ l o o o e o o o o c e o o o o o e o o o o c o o c o o o o c o c o c o c o o G o o o o o o o o o o o o o
_j I L " O U U O t 5 U O O O i : U O O C C C U U C 6 U O C O U U C C i : C l 3 U l 5 U U U U O ' J C O C H 3 U O O (5 U l S L »
3 I C O C O C O O O O O O O C O O C C O O O O C C O C O O O O O C O C O O O O O O O C O O O O O O O O O O

o i i t f f a i t a S f f i t i t i t i t . i t i t i t a a f t i t K i t i a K a a Q ' C r a i f f f f f t D r c t a i t K n a a t r f t f f a i t f f f f c t i r a K K
X I

B-2

Downloaded from http://www.everyspec.com

ir I nj —
r — i - ^) ^ * ^ __Kt»-fr^i

O Q O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UJ bj UJ UJ UJ UJ UJ UJWJUJUJUJhiiUJUJUJuJUJUJUJUJUJUJUJ
octtoLtraoLtroLOLOc ococ ococtzoLOcococtrocococtrtrococtroLOcact
3 3 3 3 < ' « ' « ' « 3 3 3 ' « 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ' « ' « '

o Q o o o O O O O O O C O
UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ

OLOLtracacaoc.oc.aoc.OLtrocacix.oc.oc.tr
• « 3 3 3 - * : 3 ' « 3 3 ' « 3 3 ' « 3 3 3 3 3

U 0 U U 3 3 3 3 O O O 3 U O U 0 O O U U U O O O U O O O U 3 3 3 3 3 O O O 3 U 3 I J O 3 0 I J 3 U 0 1 J O 0
^ ^ 3 3 0 0 0 0 3 3 3 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 0 0 3 3 3 0 3 0 3 3 0 3 3 0 3 3 3 3 3
ttftia o o o o f r a c t r o c r c r t x x x x x d i x K i t t t x i i x a o o o o o n r x o x o x a o a t o a a a t a
»- »~ • - • - x x x x t - » - t - x » - » - » - » - » - » - » - t - » - » - » - » - t - t - t - » _ t - x x x x x » - » - i - x » - x » - » - x » - » - x » - » - » - » - » -
to w> to «a < n a > (0 u x o u x o c o i o o j i o v x n m s x o i o n c o m to to tn o> « t» o > w m m m n t o
Z ^ Z Z Z Z Z * Z 2 Z Z Z Z X Z Z Z Z * Z Z Z ^ 2 2 2 Z ZZ Z Z 2 2 2 2 2
3 ^) 3

r
i
i

i • o v r ^ - 0 (r ^ o - o a 9 ' f M ^ i x) > 0 (r o - 0 (f i f \ j r ^ r \ j o < r ' 9 »* (\ i — - o i r r v j r t o a i r n j K a o i r a o ^ t o i P - ^ N o t f i i r ' V j a

I — — — IT

O S 9 K - A n j O S 4 I A J i < 0 * < i (M C l M 9 3 4 } n i o (> I M | p * * (0 i l) ' 0 - 4 4 i r a K (M C D K 9

t3 I
•4 I
3 I
13 •-
Z I
•< I

UJ •
U I
a i
3 I
O •
to i

^ • a > > > ^ ^ x x > . > ^ ^ ^ ^ . x x > > ^ ^ > ^ . ^ > ^ ^ . ^ . > > > ^ . > > a x x ^ ^ > i - ^ ^ ^ ^ x ^ ^ ^ ^ ^
0 * - * O O O O O U i U J O O O O O O U i u J O O O C O O O O C O C : C O O O O O « - i t i i U J O O O O O O O O b J O O O O O

t o « to to oo to to
< < 4-4 -4-4 4

• • - « 1 t-
1 - *
1 - 1
1 3
1 0 -
1 •->
1 Z
1 •«

— I
• 4

t J
t->
• ~
• 4

X
UJ
X

_ l
• 4

t >

•-•4
T
U
X

_ l
•4
4->

t—
• 4

X
I t !
X

•_ t -
4
_1

~> n

•-• z

<

_ t
• 4

(_)
»-4
X
UJ
X

or
UJ

> •— nr
o

• -

t o
UJ

u. • -
o
O U J
t)
c
or
U)

l_»
z
U J

C

- 1
• 4

l_)

*— 13

UJ
t o
• 4

m

- 4

C » -

UJ -4 UJ •<

_i to •- _i to _i to •- »- .
< 4 4 ^ i O H O l U O D ^ ' I : < l l i O k L < t U l i i < l l l l U l i l U i l U u i l i J l i l b i l l J 4 l U K U H < 4 4 .

i u n u u a : -4 a t_) t t a. < a u u a : u u u u L) u u u u u u u u u u 3 ! U 4 u < u o u u
1 * - I - Z » - X » - Z K - » - X » - » - Z I - Z « ~ Z Z » - Z ^ Z Z Z Z Z Z Z Z Z X Z X » - V . » - » -
u U <r C ' U Z U J 2 U . 7 Z u ; Z U l u 2 U J L ' l i J U i U L : U j U i U j U j U J t t J U , l L i U J 4 1 i l l U U : U J (3 » ' U U
i c - K c c c x c - c c - r t x - r t c e c c ' C C - e c c c c - c c c c o c r - B - c i t x c o c

O I - « X X X - 4 X » -
c » - » -

U- U . l L l L b . L I I . U . t L U . l L U . C a . < l L 4
2 1 Z ^ . 2 . - Z 2 2 ' Z 2 . - Z . - Z - Z - Z I Z X
cc. C C O C C G O C O C e c
O U U O O U U O U U U U (_) U

O I

• - 1 i i V (K t 3 i r - « N < t O ' * f \ i H i u , » * N i c < ? ' 0 - f \ i f > ^ i r ' O i ^ « ^ o - M ^ 5 L r - o ^ ! c ^ o - ' v i K j a i r ^ N a i a o ^ M K) ^

UJ I O C O O O O O O O O - ^ — * - * * - " —* — — * — * — * — * — • — — * — * ^ 4

3 I o o o o o o o o c - o o o o a o o o o o o c o o o o c c a o o c o o t / o o o o o o o o o o o o o o o o c :
o i ft.aiiaiLB-fl-ifl-fl.fl-Q.fl-afl-tt.tt-tt-iiiiiitLia.Q.iii3-aQ.CLiiiLQ.iiiiiiiia.ia.a.o.o.(L
X I

• B-3

Downloaded from http://www.everyspec.com

http://OLOLtracacaoc.oc.aoc.OLtrocacix.oc.oc.tr

MODULE ID VERSION MdDULF FUNCTION COMPLEXITY SOURCE LANGUAGE SOURCE SIZE OBJECT SIZE MOD

PRoom
P R O G 1 U
PR0G1I7
PROG1IS
PROGl 19
PROG120
PROGl?!

JA
ID
5G
04
OA
OA
OA

CONFIDENCE TEST
CONFIDENCE TEST

DATA BASE
LOGICAL
LOGICAL
CONTROL
LOGICAL

MEDIUM
MEDIUM
MEDIUM
MEDIUM
MEDIUM
SIMPLE
MEDIUM

JOVIAL
JOVIAL
JOVIAL
JOVIAL
DIRECT
JOVIAL
JOVIAL

1413
2251
146
<>T
1T3

1.493
- 483

58<>8
5563
511
SI
128

2135
7U6

I
4^

Downloaded from http://www.everyspec.com

APPENDIX C

SOFTWARE PROBLEM REPORTS
SAMPLE OF FILE NO. 2 LISTING

Downloaded from http://www.everyspec.com

• i r i r « i \ i i \ i * > r \ i i \ i M n j i \ i r \ i i \ j * < ? 3 3 3 q 3 h - -

I • O i n i 0 4 « i r > 3 f V l l \ l (\ i n ^ n K i a (M > ^ ' V l A l A i (U < M M I \ l (U n i f V | f V l 3 3 3 3 9 9 9 fM 9 9 9 9 9 4 A/ O
| - M V . v » r \ j r O O f M O O O O O O O r \ j r V l l M f \ j O O O G r \) O O O G O G O O O O G O O O f M f M f M A J f M A I O ~

o o o o o o o o o o o o o o — •^-•-*-*oooo — o

I O -« •- <
i u o x OL
I O O t_>
I I O O

|. X X X X X X X M X M X X X X X X X X X X X X X X M X X X X X X X X X X X X X X X X X X

ililllllli!l!!!l!lil!llll!!li!lll!l!!ll!iflfii
or •

(T O I C - * 0 0 0 0 0 0 0 0 0 0 0 0 - * 0 0 0 - * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 € = 0 0 0 0 0 0 0 0 0 0 0

tt kJ I © O O w O O O O O O O ^ « « O O O O O O O O O O O O O O w O O O » * 0 0 0 0 0 0 0 0 0 0 0 0
a r t - • j j a n n j j ^ Q O D Q Q C O O [D O f l i c i ^ o o a i » - D r ^ o f f i (i i O (D < o o o O (D i D Q O O o m (i i
UJ -« I J J I E I D J J K : O O O O Q C C i O S 1 0 I C 1 0 ^ 0 0 I D K (D I ^ Q i C T O (D < O O O C l I l l S O C l O O a i f f i

z z
o o

a: a:
(3 (3

Z 2

Z
o

(E i r i i a i i t a i r i E t r i t i r a i k K i r i E f f i t i i i r i t i r i t i r a i k i i f f i x i E i r i r t r i t i t a i K i t i r a s i t i t
C 9 C 9 t 3 C 3 C 9 t 3 C 9 t 3 U t 3 C 9 C 9 C 3 C 3 t 3 t 3 t 3 l 3 C 9 0 t 3 C 9 t 3 C 3 C 3 C 3 C 9 C 9 C 9 0 t 3 C 9 C 9 C 9 C 9 C S t 3 C 9 C 9 t 3 C 9 t 9 U
U j l U l i j l u U ^ ^ l u l i J t i J k J k j U J U J U U J U i U J t a J b J U I k J U U U j U L J U J I U l l J U J l i J t i J k i l L l l l U l l J k J t i i l i J l U I U k J

Z Z Z Z Z 2 . Z 2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z

l O O C O O C * - » - * - C C C f - f - > ~ > - C O C C C C t - C » - C C . O O Q O O C Q O O Q O Q Q Q O O Q O

x ft. x x x t t a a x a : a : a : c r x x x x x x a . x a r x

z i x r x x x i s x x i x x t ^ x x I X X X X I ^ X T X X X X X I X X X X X X X X X X X X X X

X I O C O O O O f c . O O O O O U . U . C C O O O O O O O O U . O C O O O O O O O O O O O O O O O O O O
ir i 2 Z z z z z e z z z : ? z o o z 2 Z z z z z z z z o z ^ ^ - z z z z z z z z z z z z z z x z z
UJ I tn «o « w
t- I

* *
i \ i ^ f \ j i \ i K > r v i f > i f v ^ < \ j ^ < \ j i \ i i \ i i \ i n j f \ . ^ r v i r \ j r \ j i \ i f v i ^ r v i r v i r \ j ? \ j ^ K ' K ' K i K i ^ r ^ r o ^

»- z i _ _ - * - * (c a > o — » » « a : < c * c c r ^ r , ^ r , ^ r , ^ r , ^ c c c t c » » - * - * < c e 0 f v i f t j ' \ i r v f v i i M r \ . , f V J * \ i 9 9 9 9 9 9 , ^ o
< I D | o o o o o o f \ i r \ i f \ i i \ i — — — r \ j o O " o o f \ j f \ j i \ i < \ i i \ i f \ i o i r \ j r \ i o o o o o o o o o o o o o o o ~ * —*

• o i r \ i f \ j * \ i * \ i f \ j f \ j ^ * \ i i \ i ^ ^ f \ i ' \ j * \ i ' x j r t J ' \ i f x j A j f x j f x j * \ i * \ i * \ i * \ i f x j * \ ! r \ i - * - * - * - - * - * - * * * - * - * » * - * - * - * * * v * » * * *
,^ — — , - . - , _ » * , _ . - . — _ — — . - . — ,— ~ — --. — — — - * ~ * — - » - * . - o e o c : c e c e e o e o G o c o e

i u o u r j L J U U C : D c m i n u u u u L ; u u u u u u u u u u u u u u u u o n "
i i i > 9 K , r v i r \ i r \ j (\ . r ^ p - ^ 9 9 3 9 i r i r u " i r i r ' i r i r i r i r ' c c c o c i r o o o c o c c — •

<i -a •« •* o (_)

c i
U J l i J | X i r K 9 ' * ' 4 X S C C < £ X 4) < X X £ ' 0 ' 0 - C ' £ ' 0 £ ' 0 < C c a ; i C (0 - G i C « i C Q X C C C C 3 i r i r / l i r X i r ' () - £
_ j * - i 4 r \ l > c c l ^ l f ^ ^ ^ ^ ^ ' K l | f l ^ • c o -c -c • C X - O - O - C . O - O - C X . O X I X I x -* x -o x - f c »- — — — — - - -o x>
^ L) • O O O O O O O O C O O O O O C C C e G O O O O O O O O e O G O O O O C O —*»*—*—-t n w ~* O O

o u . l o o o c o o o o o o o o o o o o o o o o o o o c o o o o o o a o o o o o o o o o o o o o o

•4 i Q . t t . Q - Q - a o - Q - a a Q - Q - Q - Q - Q . a a a Q - Q - Q - £ L Q . i i i o . i i Q . i Q . a c L Q . i Q . i i i a L Q . (L Q . i i L i i a .

a: i
ttit | (\ n ^ s t f i e » - r v ^ a i P * ^ * » c — r \ j K i 9 i P X ^ « c C T - o - * f V 3 » / > x r , ^ a) 0 ' c - * f v i K i 9 i f t * h * « D - * i M
ft. a: i o- o- o- » o* a- o o o o e o o o c - * — * * - * * * - * * - — • - * - * i M r \ j r \ i * \ j * \ j r \ j (\ i f \ j f \ j r o K i K i » o r o K i » n » n » ' i 9 9

^ I O
Z I

C-2

Downloaded from http://www.everyspec.com

APPENDIX D
ERROR CATEGORIES (FAULT TAXONOMY)

FILE NO. 3 LISTING

/

D - l

Downloaded from http://www.everyspec.com

ERROR CATEGORY DESCRIPTION

AA000
AAOlft
AAO^O
AAoao
AA041
AA050
AA060
A A O 7 H
AA071
A A O S O
AA090
44100
AA1 10
AA120
AA1 30

»»» COMPUTATIONAL ERRORS »**
TOTAL NUMBER OF ENTRIES COMPUTED INCORRECTLY
INDEx COMPUTATION ERROR
WRONG EQUATION OR CONVENTION USED
MATHEMATICAL MOOELTNG PROBLfM * ',
RFSULTS OF ARITHMETIC CALCULATION INACCURATE/NOT AS EXPECTED
MIXED MODE ARITHMETIC FRROR
I T M E CALCULATION ERROR
TIME CONVFRSTON ERROR
SIGN CONVENTION ERROR
UNITS CONVERSION FRROR
VECTOR CALCULATION ERROR.
CALCULATION FAILS TO CONVERGE
QUANTIZATION/TRUNCATION ERROR
SCALING ERROR.

O
I

88000
B8010
88020
880 JO
BB0«O
SB050
RB060
88061
8806?
B8070
BBoan
88090
881 on
BBI 1 0
88120
88110
asiao
eatso
88160
BB170
88180

»»» LOGIC ERRORS »**
LT^IT DETERMINATION ERROR
•iRnNR LOGIC BRANCH T A K E N
LOOP EXTTFO ON olRONG CYCLE
INCOMPLETE PROCESSING
ENDLESS LOOP DURING ROUTINE OPERATION
«TSSTNG LOGIC OR CONDITION TEST
INDEX NOT CHECKED
FLAG OR SPECIFIED DATA VALUE NOT TESIFO
INCORRECT L"GTC
SFOUENCF OE ACTIVITIES *RDNG
F ILTF.RING ERROR
STATUS CHFCK/PROPOGATTIlt" ERROR
ITERATION STFP SIZE INCORRECTLY DETERMINED
LOGICAL COfJF PRODUCED rfRUNK RESULTS
LOGIC ON WRONG ROUTINE
PHySICAl CHARACTERISTICS Of PRn8LFM. OVEKLOOXFD OR MISUNDERSTOOD
LOGIC NEEOLFSSLY COMPLFX
INEFFICIENT LOGIC
EXCESSIVE LOGIC
STORAGE REEFRFNCE ERROR fSOET^ARE PROBLEM)

CCOOO
CC010
CC020
CC030
ccoao
CC050
cco6o
CC070
ccoso
CCORO
CClon
CC101

»*» I/O ERRORS ***
MISSING OUTPUT
OUTPUT MISSING DATA ENTRIES
tPROR MESSAGE NOT OUTPUT
ERROR MESSAGE GARBLED
OUTPUT OR ERROR MESSAGE NOT COMPATIBLE WITH DESIGN DOCUMENTATION
MISLEADING OR INACCURATE ERROR MESSAGF TEXT
OUTPUT FORMAT ERROR (INCLUDING W R O M G LOCATION)
DiiPI. TCATE OR EXCESSIVE OUTPUT
OUTPUT FIELD STZF INADEOUATE
DEBUG OUTPUT PROBLEM (RFLATIVF TO OESIGN DOCUMENTATION)
LACK OF DEBUG OUTPUT

Downloaded from http://www.everyspec.com

ERROR CATEGORY DESCRIPTION

O
I

CC102
CC110
CC120
CC1 JO
ccuo
CC150
CC160
CC161

ODOOO
ODOIO
00020
00010
DDOilO
oooai
00050
00051
00060
00070
00071
00080
00090
0D100
00110
00120
00150
00140
00150
00151
00160
00170
00180
00190
00200

EEOOO
EE010
EE020

FFOOO
FF010
FF011
FF020
FF050

GCOOO
CG010
GG020
GG030
GG0«O
GG050

TOO MUCH DEBuG
HEADER OUTPUT PROBLEM
OUTPUT TAPE FORMAT ERROR
OUTPUT CARD FORMAT eRROR
ERROR IN PRINTER CONTROL
LINE COUNT/PAGE EJECT FRROR
NEEDED OUTPUT NOT PROVIDED IN DFSTGN
INSUFFICIENT OUTPUT OPTIONS

*»» n
VALID IN
DATA WRT
DATA LOS
DATAi IN
NUMBER 0
DATAi IN
NUMBER 0
EXTRANEO
BIT MAN!
ERROR US
FLOATING
INTERNAL
DATA PAC
ROUTINE
BOUNDS V
DATA CHA
DATA OvE
READ ERR
ALL AVAT
LONG LIT
SORT ERR
OVERLAY
SUBSCRTP
DOUBLE B

ATA H
PUT o
TTEN
T/NOT
DEX
F ENT
OEX,
F ENT
US FN
PULAT
ING B
P O I N

VARI
KING/
LOOK!
IOLAT
INING
RFLOW
OR

LABLE
ERAL
OR
ERROR
TING
UFFFR

ANDLING ERRORS »**
ATA IMPROPERLY SET/USED
ON OR READ FROM WRONG TAPE OR DISK LOCATION
STORED

OR FI.AG NOT SET OR SET/ INJTIALIZED INCORRECTLY
RIES SET INCORRECTLY
OR FLAG MODIFIED OR UPDATED INCORRECTLY
RIES UPDATED INCORRECTLY
TRIES GENERATED (TABLE ARRAY^ ETC)
ION fRROR
IT MODIFIER
T/IwTEGER CONVERSION ERROR
ABLE ERRDR (DEFINITION OR SET/USF)
INPACKTNG ERROR
NG FOR DATA IN NON-EXISTENT RECORD
ION
ERROR
OR OVERFLOW PROCESSING ERROR

DATA NOT READ
PROCESSING ERROR

CONVENTION ERROR
ING ERROR

»»» OPERATING SYSTEM/SYSTEM SUPPORT SOFTWARE ERRORS »»»
jnylAL PRODUCES ERRONEOUS MACHINE CODE
OS MUSING. NEEDED CAPABILITY

*»» CONFIGURATION ERRORS *»*
COMPILATION fRROR
SEGMENTATION PROBLEM
ILLEGAL INSTRUCTION
UNEXPLAINABLE PROGRAM HALT

» ROUTINE/ROUTINE INTERFACE ERRORS »*»
ROUTINE PASSING INCORRECT AMOUNT OF DATA INSUFFICIENT OR TOO MUCH
ROUTINE PASSING WRONG PARAMETERS OR UNITS
ROUTINE EXPECTING WRONG PARAMETERS
ROUTINE FAILS TO USE AVAILABLE DATA
ROUTINE SENSITIVE TO INPUT DATA ORDER

Downloaded from http://www.everyspec.com

ERROR CATEGORY DESCRIPTION

GGObO CALLING SEQUENCE OR ROUTINE/ROUTINE INITIALIZATION ERROR
GGOTO ROUTINES COMMUNICATING THROUGH WRONG DATA BLOCK
GG080 ROUTINE USED OUTSIDE RESIGN LIMITATION
GG090 ROUTINE WONny LOAD (ROUTINE INCOMPATIBILITY)
GGIOO ROUTINE OVERFLOWS CORE WHEN LOADED

HH000 »»» R O I I T T N E / S Y S T F M SOFTWARE INTERFACE EHRORS •**
HHOIO OS INTERFACF ERROR (CALLING SEQUENCE OR INITIALIZATION)
HHO20 ROUTINE USES EXISTING SYSTEM SUPPORT SOFTWARE INCORRECTLY
HH030 ROUTINE USES SENSE/JUMP SWITCH IMPROPERLY

IT 000 *»* TAPE PROCESSING INTERFACE ERROR **»
II01O TAPE UNIT EQUIPMENT CHECK NOT MADE
T1020 ROUTINE FAILS TO READ CONTINUATION TAPE
II030 ROUTINE FAILS TO UNLOAD TAPE AFTER COMPLETION
IIOUO ERRONEOUS INPUT TAPE FORMAT

JJ00O *»» USFR INTERFACE ERRORS »*»
JJ010 OPERATIONS REQUEST OR DATA CARD/ROUTINE INCOMPATIBILITY
JJ020 MULTIPLE PHYSICAL CARD/LOGICAL CARD PROCtSSING ERROR
JJ030 INPUT DATA INTERPRETED INCORRECTLY BY ROUTINE
JJ040 VALID INPUT DATA REJECTED OR NOT USED BY ROUTTNF
JJ050 INPUT DATA BF.IECTED BUT USED
JJ060 INPUT DATA BEAD FUlT NOT USED
JJ070 ILLFGAL INPUT DATA ACCEPTED AND PRUCESSED

f JJ080 LEGAL INPUT DATA PROCESSED INCORRECTLY
_p- JJ090 POOR DESIGN JN OPERATOR INTERFACE

JJ100 INADEQUATE INTERRUPT AND RESTART CAPABILITY

KK000 *** DATA BASE INTERFACE ERRORS *»»
KK01O ROyTlNE/DATA BASE INCOMPATIBILITY
KK011 UNCOORDINATED USE OF DATA ELEMENTS BY MORE THAN ONE USER

LL000 »»» USER REQUESTED CHANGFS PRODUCT IMPROVEMENTS NOT ERRORS **»
LL010 SIMPLIFIED TNTERFACF AND/OR CONVtNIFNCE
•LL020 NFw AND/OR FNHANCED FUNCTIONS
LL02) CPU
LL022 DISK
LL02J TAPE
LL02« I/O
LL025 CORE
LL026 DISPLAY «
LLOJO SECURITY
LL0«0 NEW HAROWARE/OS CAPABILITY
LL050 SOFTWARE INSTRUMENTATION
LL060 CAPACITY
LL070 DATA BASE MANAGEMENT AND. INTEGRITY
LLOBO EXTERNAL PROGRAM INTERFACE
LL090 MODIFICATION FOR SPECIAL TEST PURPOSES *

U

MM00O *** PRESET DATA BASE ERRORS ***

Downloaded from http://www.everyspec.com

ERROR CATEGORY DESCRIPTION

MM010
MM020
MM010
MMO«0
MMOU1
MM050
MH040

NNOOO
NNOIO
Nson
NN020
NN021
NNOJO
NNOIO
NN050

PPOOO
PPOIO
PP020

DATA OR OPERATIONS REQUEST CARD DESCRIPTIONS
ERROR MESSAGE TEXT
NOMINAL. DEFAULT, LEGAL, MAX/MIN VALUES
PHYSICAL CONSTANTS AN!) MODELING PARAMETERS
EPHEMERIS PARAMETERS
DICTIONARY (BIT STRING) PARAMETERS
MISSING DATA BASE SETTINGS

*** GLOBAL VARTABLE/COHPOOL DEFINITION ERRORS **»
ITEMS IN WRONG LOCATION (WRONG DATA BLOCK)
DEFINITION SEQUENCE ERROR
DATA DEFINITION ERROR
TABLE DEFINITION INCORRECT
LENGTH OF DFFINITTON INCORRECT
COMMENTS FRROR
O F L E T E I-INNEFOFD DFFJNTTTONS

» RECURRENT REPORTS
PROBLEM REPORT REOPENED
PRORLEM REPORT A DUPLICATE OF PREVIOUS REPORT

O
I

QQOOO
fjQOin
QQ020
QQ030
QQOao
OQ050
QQObO
OQ070
QQ080
QQ090
QQ100
03110
QQ120

RR0 00
RR010
MR020

*** PROGRAM COMMENTS
ROUTINE LIMITATION
OPERATING PROCEDURES
DIFFERENCF BETWEEN FLOW CHART AND CODE
TAPE FORMAT
DATA CARD/OPERAHON REQUEST CARD FORMAT
ERROR MESSAGE
R O U T I N E B S FUNCTIONAL DESCRIPTION
OUTPUT FORMAT
DOCUMENTATION NOT CLEAR/NOT COMPLFTE
TEST CASE DOCUMENTATION
OPERATING SYSTEM DOCUMENTATION
TYPO/EDTTORTAL ERROH/COSMTTIC CHANGE

*** REQUIREMENTS COMPLIANCE FRRORS »**
EXCESSIVE RUN TIMES
RFQUIRED CAPABILITY OVERLOOKED OR NOT DELIVERED AT TIME OF REPORT

SS000
SSOIO
SS020
SSOJO
SS040

TT00O
TTOIO
TT020
TTOIO
TT040
TT050

*** UNIDENTIFIED ERRORS ***
HARDWARE ERROR
NON RECURRING PROBLEM
NO ERROR
INSUFFICIENT INFORMATION FOR FRROR ANALYSIS

*** OPERATOR ERROR NOT SYSTEM ERRORS ***
TEST EXECUTION ERROR
ROUTINE COMPILED AGAINST WRONG COMPOOL/MASTER COMMON
WRONG DATA BASE USED
WRONG MASTER CONFIGURATION USED
WRONG TAPE(S) USED

Downloaded from http://www.everyspec.com

ERROR CATEGORY DESCRIPTION

TT060 MIS8INR CARDS IN COMPILED PROGRAM

UUOOO *** QUESTIONS *»*
UUOIO OATA BASE
UU020 MASTER CONFIGURATION
UUOJO ROUTINE

VVOOO *** REQUIREMENTS SPf.CIF TCAT TON
W O I O INADEQUATE/INEFFICIENT REQUIREMENTS
W 0 2 0 ENHANCEMENT REQUIREMENTS

I

Downloaded from http://www.everyspec.com

APPENDIX E

STATIC STATISTICS FOR JOVIAL SOURCE MODULES

Nine modules were examined by the U1108 JOVIAL program (STATGT) to see

how frequently certain statements are used in practice. Tables E-l and E-2

show the distribution of statement types. Also, calculations are provided

for executable statement types. Certain changes were made to the data to

eliminate discontinuities*. The most frequently used language construct is

the = sign. This is because of its use in the assignment statement (23 per­

cent) . The next most used construct is subscription (14 percent), followed

by GOTO (8 percent) and IF (8 percent). Nothing can be said about the pro­

cedure call mechanism because the same construct is used for other features.

The BEGIN-END delimiters are used about 6 percent of the time. This implies

some blocking in the decision making logic. The EQ relational operator was

most highly used (5 percent). The most used executable statements were

assignment (54 percent), IF (19.7 percent), and GOTO (19.6 percent).

A typical program consisted of assignment statements and blocked condi­

tion checking statements. Programming with the use of tables appears to be

prevalent. Some explicit loops are seen. Bit and byte manipulation do not

appear to be frequently used.

*See Note 3 of Table E-l.

E-l-

Downloaded from http://www.everyspec.com

T A B L E E - l

DISTRIBUTION AND MODULE USAGE O F S T A T E M E N T T Y P E S
(9 O P E R A T I O N A L MODULES)

No.

1

2

3

4

5

6

7

8

9

10

11

12

13.

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

C o n s t r u c t s

(i 1

I F

GOTO

F O R ,

T E S T

C L O S E

R E T U R N •

S T O P
2

AND

OR

EQ

GR

GQ .

LQ

LS

NQ

+

-
"'"

L
ABS ()

(/ /)

NENT

NWDSEN

A L L

E N T R Y

N u m b e r

454

512

534

82

19

15

3 3

2

1543

24

64

307

89

23

45

67

67

241

246

138

28

4

13

12

21

13

5

3

P e r c e n t Al l

6. 76

7. 62

7. 95

1. 22

0. 28

0. 22

0. 49

0. 03

2 3 . 0

0. 36

0. 95

4. 57

1. 32

•' 0. 34

0. 67

1.0

1. 0

3. 6

3. 66

2. 0

0. 42

0. 06

0. 19

0. 18

0. 31

0. 19

0. 07

0. 04

E-2

Downloaded from http://www.everyspec.com

TABLE E - l (Cont.)

No.

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Not

Const ruc ts

'LOC

ASSIGN

BIT

BYTE
3

3

' $ 3 .

BEGIN-END

START-TERM

DIRECT-JOVIAL

($ - $)
ITEM

TABLE

ARRAY

PROC

SWITCH

OVERLAY

'PROGRAM

BLOCK

Subtotal

l e ss

Total

Number

13

25

57

97

438

330

3251

401

9

71

929

438

26

4

20

14

6

0

0

10733

4019

6714

e: 1) express ion grouping, procedure , function c
2) ass ignment , FOR, procedure call paramete
3) deleted f rom total for reasons of ambiguity-

Pe rcen t All

0. 19

0. 37

0. 85

1. 4
_ _

- -

- -

5. 98

0. 13

1. 06

13. 8

6. 5

0. 38

0. 06

0. 3

0. 2

0. 09

0

0

100

a l l
r delimiting

E-3

Downloaded from http://www.everyspec.com

TABLE E-2 .

DISTRIBUTION AND MODULE USAGE OF EXECUTABLE STATEMENTS

No.

1

2

3

4

5

6

7

8

Const ruc ts

I F

GOTO

FOR

TEST

CLOSE

RETURN

STOP

= (assignment)

Percen t All

19.70

19.60

3. 18

0. 73

0. 58

1. 27

0.07

54. 00

E-4

Downloaded from http://www.everyspec.com

APPENDIX F

CONSTITUENT PROGRAM MODULES
OF BUILDS "F" AND "G"

Refer to Appendix B (Software Module Descriptions) for further informa­

tion about each of these modules listed.

Build F - Operation Build (55 modules)

PROGOOl, 6, 8, 9, 11, 12, 13, 14, 15, 16, 20, 21, 24, 25,

27, 28, 29, 36, 39, 41, 43, 45, 46, 50, 52, 53,

58, 59, 60, 62, 64, 65, 66, 67, 72, 75, 76, 81, 82,

84, 86, 87, 88, 92, 95, 106, 108, 110, 111, 112, 113,

114, 117, 118, 119.

Build G - Initialization Build (25 modules)

PROG002, 57, 70, 71, 77, 79, 85, 89, 91, 93, 94,

96, 97, 98, 99, 100, 101, 102, 103, 104, 105,

107, 109, 116, 120.

F-l

Downloaded from http://www.everyspec.com

\ Downloaded from http://www.everyspec.com

\

REFERENCES

1) Thayer, T. A., et al, "Software Reliability Study," TRW Defense
and Space Systems Group, Interim Technical Report, RADC-TR-74-250,
October 1974. AD-787-784.

2) Thayer, T. A. et al, "Software Reliability Study," TRW Defense
and Space Systems Group, Final Technical Report (16 Oct 73 - 27
Feb 76), RADC-TR-76-238, August 1976. AD-A030-798.

3) Air Force Manual AFM 100-24, "Standard Computer Programming
Language For Air Force Command and Control Systems," CEC-2400,
21 April 1972.

4) Sukert, A. N., "A Software Reliability Modeling Study,"
RADC-TR-76-247, August 1976.

Downloaded from http://www.everyspec.com

/
Downloaded from http://www.everyspec.com

BIBLIOGRAPHY

1) Tucker, A.E., "The Correlation of Computer Programming
Quality with Testing Effort," SDC, TM-2219/000/00,
26 January 1965.

2) Barney, D. R., Giloth, P. K., and Kiengle, H. G., "System
Testing and Early Field Operation Experience," Bell System
Technical Journal, December 1970, pp. 2975-3004.

3) Knuth, D. E., "An Empirical Study of FORTRAN Programs,"
Software Practice and Experience, 1, 1971, pp. 105-133.

4) Shooman, M. L., "Operational Testing and Software Reliability
Estimation During Program Development," 1973 IEEE Symposium
on Computer Software Reliability, 30 April - 2 May 1973,
pp. 51-57.

5) Boehm, B. W., "Software and Its Input: A Quantitive Assess­
ment," DATAMATION, May 1973.

6) Wagoner, W. L., "The Final Report on a Software Reliability
Measurement Study," ASCO, TOR-0047(4112)-1, 15 August 1973.

7) Brooks, F. D., Jr., "The. Mythical Man-Month-Essays on
Software Engineering," Addison-Wesley, 1975.

8) Thayer, T. A., "Understanding Software through Empirical
Reliability Analysis," Proceedings of the National Computer
Conference, 1975.

9) Elshoff, J. L., "An Analysis of Some Commercial PL/1 Pro­
grams," IEEE Transactions on Software Engineering, Vol.
SE-2, No. 2, June 1976, pp. 113-120.

10) Wichmann, B. A., "A Comparison of Algol 60 Execution Speeds,"
CCU Report No. 3, NPL, Teddington, Middlesex.

BG-I

Downloaded from http://www.everyspec.com

METRIC SYSTEM

BASE UNITS:

Quantity

length
mass
time
electric current
thermodynamic temperature
amount of substance
luminous intensity

SUPPLEMENTARY UNITS:

plane angle
solid angle

DERIVED UNITS:

Acceleration
activity (of a radioactive source)
angular acceleration
angular velocity
area
density
electric capacitance
electrical conductance
electric field strength
electric inductance
electric potential difference
electric resistance
electromotive force
energy
entropy
force
frequency
illuminance
luminance
luminous flux
magnetic field strength
magnetic flux
magnetic flux density
magnetomotive force
power
pressure
quantity of electricity
quantity of heat
radiant intensity
specific heat
stress
thermal conductivity
velocity
viscosity, dynamic
viscosity, kinematic
voltage
volume
wavenumber
work

Unit

metre
kilogram
second
ampere
kelvin
mole
candela

radian
steradian

metre per second squared
disintegration per second
radian per second squared
radian per second
square metre
kilogram per cubic metre
farad
Siemens
volt per metre
henry
volt
ohm
volt
joule
joule per kelvin
newton
hertz
lux
candela per square metre
lumen
ampere per metre
weber
tesla
ampere
watt
pascal
coulomb
joule
watt per steradian
joule per kilogram-kelvin
pascal
watt per metre-kelvin
metre per second
pascal-second
square metre per second
volt
cubic metre
reciprocal metre
joule

SI Symbol .

m
kg
s
A
K
mol
cd

rad
sr

F
S

II
V

V
1

N
Hz
lx

im
Wb
T
A
W
Pa
C
)

Pa

V

i"

Formul

m/s
(disintegration)^
rad/s
rad/s
m
kg/m
A-s/V
A/V
V/m
V-s/A
W/A
V/A
W/A
N-m

J/K
kg-m/s
(cycle)/s
lm/m
cdJm
cd-sr
A/m
V-s
Wb/m

j's
N/m
A-s
N-m
W/sr
J'kg-K
N/m
W/m-K
m/s
Pa-s
m/s
W/A
m
(wave)/m
N-m

SI PREFIXES:

Mul t ip l i ca t ion Factors

1 000 000 000 000 = 10'2

1 000 000 000 = 10"
1 000 000 = 1D*

1 000 = 10J

100 = 102

10 = 10'
0.1 = U) - 1

0,01 = 1 0 " 2

0.001 = 10~3

0.000 001 = 1 0 " *
0.000 000 001 = 1 0 _ *

0.000 000 000 001 = ' 1 0 - 1 2

0.000 000 000 000 001 = 1 0 - "
0.000 000 000 000 000 001 = 10 - ' »

Prefix

(era
«i«a
mega
kilo
hecto"
deka*
dec i*
cen'ti*
miili
micro
nano
pi co
fern to
atto

SI Symbol

T
C
M
k
h
da
d
<:
m
M

* To be avoided where possible.

Downloaded from http://www.everyspec.com

MISSION
of

Rome Air Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and communications
(C-*) activities, and in the C^ areas of information sciences
and intelligence. The principal technical mission areas
are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.

t#K&Z£#*J#*J&**iO^

^oOJT/O/v

;^6-i9l6

Downloaded from http://www.everyspec.com

Downloaded from http://www.everyspec.com

