Downloaded from http://www.everyspec.com

Q

RADC-TR-77-188
Final Technical Report
June 1977 N

SOFTWARE SYSTEMS RELIABILITY: A RAYTHEON PROJECT HISTORY

Raytheon Company

Approved for public release; distribution unlimited.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

pROPERTY ©F BACS

Downloaded from http://www.everyspec.com

)
This report has been reviewed by the RADC Information Office (OI) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public including foreign nations. '

This report has been reviewed and is approved for publication.

)) -

APPROVED: g:czmw 4 %%,oc L\
4 -
“JAMES V. CELLINI, JR.

Project Engineer

APPROVED: /e/(-fjb

ROBERT D. KRUTZ, Col¥nel USAF
Chief, Information Sciences Division

FOR THE COMMANDER: %0/ %4 P

JOHN P. HUSS N
Acting Chief, Plans Office Y

Do not return this copy. Retain or destroy.

file:///JzyrUO

T R
=%
I

Downloaded from http://www.everyspec.com

294

UNCLASSIFIED .
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered), .
READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE ' BEFORE COMPLETING FORM

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

RADC-TR-77-188 AL AO%y - 552

1. REPORT NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

SOFTWARE SYSTEMS RELIABILITY: Final Technical Report
A RAYTHEON PROJECT HISTORY Feb 76 - Nov 76

6. PERFORMING OXG. REPORT NUMBER

BR-9568

8. CONTRACT OR GRANT NUMBER(S)

F30602-76~C-0140

7. AUTHOR(S)

H.E. Willman, Jr. A.A. Beaureguard

T.A. James P. Hilcoff

9. PERFORMING ORGANIZATION NAME AND ADDRESS . 10. iS(E)AG\R&zAwOERLKE’dEr‘TT'NPURMOBJEEI(R:ST' TASK
Raytheon Company _ -1 62702F

Bedford Laboratories 55811405

Hartwell Road, Bedford MA Q1730

12. REP‘ORT DATE
June 1977

Rome Air Development Center (ISIS) 13. NUMBER OF PAGES
Griffiss AFB. NY 13441 84

11, CONTROLLING OFFICE NAME AND ADDRESS

14, MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

Same)
UNCLASSIFIED

158, DECL ASSIFICATION/DOWNGRADING
SCHEDULE
N/A i

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, {f different from Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: James V. Cellini, Jr.(ISIS)

19, KEYAWORDS (Continue on reverse side if necessary and identify by block number)
Software Data Collection Software Reliability Modelding
Software Fault Taxonomy "Software Tools

Software Development AMM/:? MWW.’W M@

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

This report presents results of a project to collect software data from the
records of development of a large Department of Defense ground-based system. A
description of the subject systems software development process, characteristics,
tools, and test methods are presented. Qualitative and quantitative data
gathered from configuration management files are included as well as statistical
summaries of this data. A detailed description of the data base files is
included as well as portions of the actual data base. Recommendations are made

DD , j‘:s”;a 1473 EDITION OF ' NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Downloaded from http://www.everyspec.com

294

UNCLASSIEIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

for the use of the data as well for the future collection of such data.

The data consists of three files, via:
l)‘ Module Desbription File (109 entries)
2) Software Problem Report File (2165 entries)
3) Error Category File (193 entries)

. Each problem report was assigned an error category from the fault’ taxonomy
and the data was cross correlated and summarized. The most frequent problems
were 1n the categories of:

a) User Requested Changes (35%)

b) Data Handling 197%)

c) Logle (18%)

UNCLASSTIFIED

SECURITY CLASSIFICATION OF Tu'c pPAGE(When Data Entered)

[V

v

Downloaded from http://www.everyspec.com

PREFACE -

This report is the final technical report (CDRL Item A003) for the
Software Data Acquisition contract, Number F30602-76-C-0140. It presents
results of a project to collect historical software development data from the
records of development of a large Department of Defense ground-based system.
It includes a general description of the subject systems software character-
istics, the software development approaéh and the éoftware tools tﬁat were
used. Qualitative and quantitative data gathered from configuration manage-
ment files are presented. Software reliability model development and evalua-
tion is expected to be a primary use of this data and therefore, a summary of
project characteristics useful to the modeling task is also included.

The following personnel participated in this project:

A. Beaureguard R. Leary

C. Braun W. Polak

N. Goddard A. Shores

P. Hatton I. Wescott

-P. Hilcoff H. Willman, Jr.
T. James

Acknowledged for their contributions in establishing the procedures and

collecting the original data are G.J. Kacek, W.R. Murphy, and J.J. Shanley.

iii

Downloaded from http://www.everyspec.com

TABLE OF CONTENTS

PREFACE.
1. INTRODUCTION
2. SOFTWARE DEVELOPMENT PROCESS .,

3. OPERATIONAL SOFTWARE CHARACTERISTICS |,
3.1 Object Computer Description,
3.2 Data Base StTUCLUTES ¢ + « o « o o « o o e o o 3+ o

3.3 Control Structures and Mechanisms.

3.3.1 Task Management« .« « « o« . o

3.3.2 Memory Management .

3.3.3 1I/0 Management

3.3.4 System Auditing

3.3.5 Centralized Error Processing.

3.3.6 System Service Routines
3.4 " Build Characteristics. « « .« « « + « « « « . . .

4. SUPPORT SQFTWARE CHARACTERISTICS .
4.1 Cross Compiler . .
Compiler Support Software.

Cross Assembler- . o « « « « « o« + « o+ o« 4 . .

4.2

4.3

4.4 Digital Simulator.

4.5 Operating System .

4.6 Digital System Simulator .
4.7

Data Collection/Data Reduction .

5. TEST METHODS - - - « - = + - -
5.1 Unit Testing -
5.2 Integration Testing

5.3 - Operational Testing. Coe e

iv

il

Q

Downloaded from http://www.everyspec.com

TABLE OF CONTENTS (Cont.)

6. DATA BASE.

6.1 Data Base Development Task .
6.2 Data Base Contents .
6.2.1 Software Module Descriptions.
6.2.2 Software Problem Report File.
6.2.3 Error Category File
6.3‘ Supplementary Information.
6.3.1 Build Analysis.
6.3.2 Acceptance Test Data. « . . .
6.3.3 Operational Data,
7. RECOMMENDATIONS. . . v & 2 v v v v v v v v u o .
. 7.1 Subject Project Characteristics That May Affect
Modeling .
7.2 Déta Collection. « «
7.3 Use of Fresh Data.

Downloaded from http://www.everyspec.com

TABLE OF CONTENTS .(Cont.)

APPENDIX A
DATA BASE DESCRIPTION FILE FORMATS

APPENDIX B

SOFTWARE MODULE DESCRIPTIONS
FILE NO. 1 LISTING

APPENDIX C

SOFTWARE PROBLEM REPORTS
SAMPLE OF FILE NO. 2 LISTING

APPENDIX D

ERROR CATEGORIES (FAULT TAXONOMY)
FILE NO. 3 LISTING

APPENDIX E
STATIC STATISTICS FOR JOVIAL SOURCE MODULES

APPENDIX F

CONSTITUENT PROGRAM MODULES OF
BUILDS "F'" AND "G"

REFERENCES.

BIBLIOGRAPHY.

vi

BG-1

Figure

Downloaded from http://www.everyspec.com

LIST OF ILLUSTRATIONS

Software Development Process
Program Unit Release Notice . .
Build Release Notice
Software Problem Report.
Software Modification Notice . . .
Data Accessing Techniques.
State Control Table Structure. .
JOVIAL Compiler System
Distribution of SPRs
Build "F" Problem Reports by Month
Build "G" Problem Reports by Month

vii

and Error

and Error

Category.
Category.

6-13
6-18

TABLE

6-1
6-2

6-4
6-5
6-6
6f7A
6-8
6-9
6-10
6-11
6-12

 OCCURRENCE OF SPRs

Downloaded from http://www.everyspec.com

LIST OF TABLES

MODULE SIZE DISTRIBUTION... . .

DISTRIBUTION OF SPRs BY MODULE TYPE ., .
SPRs NORMALIZED TO 1000 LINES OF SOURCE .

SERIOUSNESS OF SPRs

.
. « s .

SPRs BY CATEGORY GROUP

BUILD "F" PROBLEM CATEGORY DATA

COMPUTER TIME FOR SOFTWARE INTEGRATION IN
BUILD "G" PROBLEM CATEGORY DATA . .

ACCEPTANCE TEST ERRORS BY CATEGORY
OPERATIONAL ERRORS BY CATEGORY. . . .
EXECUTION LOADING BY MODULE TYPE . .

viii

WALL CLOCK HOURS.

PAGE

6-3
6-4

6-5
6-6
6-9
6-14
6-16
6-19
6-20
6-21
6-22

Downloaded from http://www.everyspec.com

EVALUATION

The mandate for producing reliable, maintainable and quality software,
has been expressed in various "studies" and 'working groups," thét have been
generated.by different departments of DOD. In addition, there have been
other meetings held concerning the same topics, with participation of indi-
viduals from concerned DOD organizations. As a result, the requirement for
dévising methods to analyze software error data to attain these goals, has
continually surfaced as a need that has to be dealt with. However, recent
error data analysis has been deterred by the lack of ample data from iargg
software developments, that can be utilized for analysis as well as in sdft—

ware model testing.

This effort was undertaken in response toltheée needs and lack of soft-
ware error data. It fits into the goals of RADC TPO No. 5, Software Cost
Reduction (formerly RADC TPO No. 11, Software Sciences Teéhnology); specif-
ically‘in the area of Software Quality (Software Data). The report presents
results of collecting software error data from the records of a iarge DOD
ground-based software development.project. The significance of obtaining
this data, is that it will be used to support cu;rent software model develop-
ment projects as well»as be analyzed with the goal of developing software
measurements. By utilizing this data as stated, it is expected that we will
be better able to determine the causes of software errors and develop means

to predict and possibly prevent them. Additionally, this data will be used

ix

Downloaded from http://www.everyspec.com

along with other acquired software error data, to aid in establishing a base-
line for ground-based software projects in quantitative terms. This type of
information will, in the future, lead to better methods of developing ground-

based software projects.

JAMES Vv, CELLINI, Jr.
Project Engineer

Downloaded from http://www.everyspec.com

1. INTRODUCTION

This is the final report of a task which provided a software error data
base to be used in support of further research in software error analysis and
software error prediction model analysis. The effort provided a complete
error history from a large Department of Defense software devélopment project.
The subject project was thé development of software for a large, ground-based,
radar data processing dominated system. The error data base was extracted
from 2165 Softwére Prbblem Reports (SPRs) written against 109 operational
software modules. The data base developed by this task consists of three

files, viz:

1) Module Description File (109 entries)
2) Software Problem Report File (2165 entries)

3) Error Category File (193 entries)

The task included assigning each of the SPRs to one of the error types
contained in the error category file. This fault taxonomy is a modification
of one developed by TRW as reported in Reference 1. This report discusses
the modifications made to the fault taxonomy and makes recommendations for
further usage.

The subject project was an advanced development phase project whose pur-
pose was to demonstrate new concepts. The software development was a formal
process with full documentation required. Engineering change order (ECO)
control was used for all software and its documentation from unit release to
operational (demonstration) testing. Software Modification Notices (SMNs)
were written to close out each opened SPR. This formality resulted in a very
successful project and produced a wealth of documentation which formed the
basis for this data base generation effort.

Because one of the problems of software reliability modeling is the sim-—
plistic assumptions made about the software development and testing process,

this report includes discussions which are intended to assist the model users

1-1

Downloaded from http://www.everyspec.com

and developers in placing the error data base in context of the software
development process (Section 2), the type of operational software and its
modularity (Section 3), the tools used (Section 4), and the testing process
(Section 5). The data base section (Section 6) discusses the data collected
and provides additional summary and statistical information. Recommendations
(Section 7) are made with respect to the data collection process, the fault

taxonomy, and the modeling process.

1-2

Downloaded from http://www.everyspec.com

2. SOFTWARE DEVELOPMENT PROCESS

Figure 2-1, the Software Development Process, provides an overview of the
process followed during the development of the software for the subject proj-
ect. All activity flowed from the system requirements. These were developed
by a System Engineering group who also developed the software requirements
with the aid of senior software engineers. Software requirements were devel-
oped and released for design in several functional packages over a two year
period. This lengthy "requirements phase" resulted in considerable redesign
which contributed to the high percentage (35 percent) of SPRs prompted by
changes in requirements;

Following the release of a set of requirements, the software-functional
specification would be updated to reflect the new requirements and software
modules would be identified and described functionally. Next, a design speci-
fication for each software module was developed and the "module" or "program
unit" was then tested and released for integration. Figure 2-2 is the release
notice that is filed.when such a release takes place. The module then enters
build integration testing. This integration phase was responsible for the
largest number (1984) of SPRs of any of the test phases. Integration testing
is the testing of program modules with the system executive and the system
data base. This constitutes a build. Following successfui integration test-
ing, the build was then released (see Figure 2-3) for acceptance testing.

This took place at the hybrid test facility or at the demonstration site.
Acceptance testing accounted for a very small number of SPRs (19). Follow-
ing acceptance testing the build was released for operational demonstrations.
~SPRs were filed for any problems, changes, or suspected problems to a program
unit after that unit had been released for integration testing.

Figure 2-4 is the SPR form. It may be filled by anyone, e.g., systems
analyst, programmer, or user of the software. The program unit author may
issue SPRs against his own program unit to alert others to deficiencies under

correction.

2-1

¢-¢

ssav0ag jududoleAd] 31BMIJOS - [-7 92An3T4g

Downloaded from http://www.everyspec.com

DOCUMENT

PROCESS

(V)
TEST
REQUIREMENTS | FUNCTIONAL DETAILED RESULTS
REV 1w DESIGN DESIGN
REVIEW REVIEW
CODE AND \ MAINTE-
SOFTWARE FUNCTIONAL | | DESIGN DEBUG PROGRAM NANCE PROGRAM
REQUIREMENTS SPEC SPEC PROGRAM TESTING MANUAL RELEASE
UNITS
SYSTEM
REQUIREMENTS
USERS
MANUAL
(OPTIONAL)
SOFTWARE
LIBRARY
TEST
INTERFACE RESULTS
SPEC
INTERFACE AND
DEBUG SEVERAL BUILD MAINTE-
PROGRAM UNITS SUBSYSTEM NANCE BUILD
TO FORM BUILD MANUAL EASE
TESTING REL
OR SUBSYSTEM
USERS
MANUAL
TEST TEST TEST (OPTIONAL)
REQUIREMENTS PLANS PROCEDURES

Downloaded from http://www.everyspec.com

'PROGRAM UNIT RELEASE NOTICE

I. IDENTIFICATION
ACRONYM
TITLE

VERSION

MACHINE AREA

CONTRACT/PROJECT

CUSTOMER

DATE:
MOD

PHASE DM(__) ED(_—)

RELEASE: INITIAL FINAL ______
PROGRAMMER
BUILD

I1. DOCUMENTATION
REQUIREMENTS
FUNCTIONAL DESIGN SPEC
DETAILED DESIGN SPEC
ACCEPTANCE TEST PLAN
ACCEPTANCE TEST PROC

DOCUMENT NO.,

DOCUMENT NO.
ACCEPTANCE TEST RESULTS '
TEST RESULTS DATA
MAINTENANCE MANUAL
USERS MANUAL

LISTING

HI. PROGRAM MEDIA
ASSOCIATED COMPOOL

ASSOCIATED INITIAL CONDITIONS

TAPE NO./FILE NO.__

SOURCE TAPE NO./FILE NO

OBJECT TAPE NO./FILENO.—

CARD DECK (DATE)

CURRENT LISTING (DATE)

ED JOVIAL KEYWORDS

(if appropriate)

IvV. CAPABILITY
A) DESCRIPTION:

B) CHANGES FROM PRIOR VERSION/MOD

C) GOVERNING DOCUMENTS (MEMOS)

E) STATUS OF UNIT ACCEPTANCE
TESTING (CIRCLE ONE)

* *

FULLY PARTIALLY = NONE

F) TESTED WITH ALL REQUIRED
HARDWARE (CIRCLE ONE)

D) SPR/SMN CORRECTION NO's. YES NO
DATE INITIALS
V. RELEASE TYPE INITIAL
SECTION APPROVAL DATE RELEASE
BUILD LEADER APPROVAL DATE HNCEL
CARDS/TAPE ON MASTERS DATE RELEASE
DOCUMENTATION COMPLETE DATE -

Figure 2-2 - Program Unit Release Notice

2-3

Downloaded from http://www.everyspec.com

ATTACHMENT D

BUTLD RELEASE NOTICE

1. BUILD VERSION/MOD V M
SYSTEM BUILD TITLE
BUILD LEADER : RELEASE: INITIAL FINAL
CUSTOMER____

I1. DOCUMENTATION | DOCUMENT NO. ER CONTROL NO.
FUNCTIONAL SPEC.
REQUIREMENTS
BUILD PLAN
TEST PLAN
TEST PROCEDURE
TEST REQUIREMENTS SPEC.
TEST RESULTS
TEST DATA
USERS MANUAL
MAINTENANCE MANUAL -

III. BUILD COMPONENTS
A. ASSOCIATED COMPOOL
B. PRECEDING BUILD(S)
C. THIS BUILD CONSISTS OF POLLOWING PROGRAM UNITS (See Balow)

D. BUILD CORE IMAGE TAPE NO. -
ACRONYM V/M FILE NO. ACRONYM v/M FILE NO.
11.

1

2 12.
3 13.
4 14.
5. 15,
6
7
8
9

. 16.
. 17.
18,

) 19.
10. B A 20.

IV. OPERATIONS OFFICE CONCURRENCE
1 CERTIFY THAT THE OPERATIONS OFFICE FILES CONTAIN CARD DECKS, MAGNETIC TAPES, UP-TO-DAT
LISTINGS FOR EACH OF THE BUILD COMPONENTS LISTED IN III ABOVE.

DATE OPERATIONS OFFICE MANAGER
V. INTEGRATION ' .
I CERTIFY THAT ENTRIES IN I, II AND III ABOVE ARE CORRECT. THE SYSTEM BUILD DESCRIBED IN |

ABOVE IS UP-TO-DATE, MEETS ALL KNOWN SPECIFICATIONS, AND IS READY FOR RELEASE AS OF 'I'HIS ‘DATE.

DATE - TINTRGRATION /SECTION MANAGER

Figure 2-3 - Build Release Notice

2-4

Downloaded from http://www.everyspec.com

APPLICATIONS SOFTWARE DEPARTMENT
(SOF TWARE PROBLEM REPORT)

Log No.
SUBMITTED BY: Associated Build:
(Signature) . (If Applicable)
Date:_
Program Unit:e __—_______ Version/Mod: _ Computer:
STATEMENT OF THE PROBLEM: (Typc or Print Plainly)
(Describe the problem beth in programming and operational tems.,
‘Indicate the manifestation and the significance of the problem.)
PROPOSED SOLUTION: (If Known)
PRIORITY: (Optional) CLASSIFICATION

Design Change (]
improvement [

Error -
ECO No. 1
Special]

Figure 2-4 - Software Problem Report

2-5

Downloaded from http://www.everyspec.com

SPRs are generated as soon as a problem is identified and are not delayed
until a solution is devised and tested. Their purpose of to give technical
and management personnel early visibility of problem areas for earliest solu-
tion and correction. They are submitted to the department cOntrol‘actiVity.

The department control activity logs in the Software Problem Report and
routes copies of the SPR to the report originator, the appropriate program
unit author and his immediate supervisor, integration manager (within one
working day), Department Management, designated personnel in Systems Analysis,
and other specified activities (within four working days). A

The Software Modification Notice (SMN) shown in Figure 2-5 is used by the
program author to log and correct a specific program problem which corresponds
to a Software Problem Report. An SMN may be issued directly by a program
author to correct an error even though no SPR has been filed. A total of
822 SMNs were filed to record such corrections. SMNs were submitted to the
control activity, with the corrections properly sequenéed to reflect theif
position in the original source. SMNs are distributed by the control act.vity
in similar fashion to SPRs.

For each submitted Software Problem Report the control activity obtains
a corresponding Software Modification Notice form. For example, a submitted
Software Problem Report which does not identify a legitimate program problem
still must be closed with a Software Modification Notice form. The control
activity insures that the Modification form is correctly approved (signed by
the program author, Section/Group Manager, and systems integration activity
‘Manager) when the change in implemented. The control activity maintains the
master file for both forms, issues a weekly log report, and maintains a his-

torical file of SPR/SMN submissions and disposition.

L~C

9DTI0N @21eM31J0S UOTIBDTITPOW - G- 2an3T4

Downloaded from http://www.everyspec.com

SOFTWARE MODIFICATION NOTICE [Log No. Date:

SPR, if any, Submitted by:

PROGRAM UNIT Version Mod.

to which this SMN applies. Build

- Description of Modification (or Disposition of Problem)

(If exnlenatory materials are required, clease attach them to this form)

DISPOSITION

Design Change ()

ECO No. _____
Improvement ()
Error ()
No Error ()
Special ()

CORRECTION CARDS: If correction cards are required, enter them on the forn below. If there are more than twelve cards,use additional
SMN forms. NOTE: Columns 73 -80 MAY BZ USED EITHER FOR DECK SCQUENCE DATA OR TO INDICATE THE LINE NUMBER IN A

15

LISTING,
AFPROVED:
System Integration
Program Author Group Leader Group Leader
[10 20 30 40 50 60 70 73 80
.'[__L_;A_L,,’____L“L_,L,_,L__l hde b bbb l_J |+14__JVA|_711J77]>L_1 T S T I N l I U T S U N W | lJ N I S T U | (JAJ | T W S S P | l 1) T U

v taa b v by s cia o g s c oo i g

ll]J_LLJLllllLlJlliLJ U I I |

IO I S0 W B BN ¢ _,l_,L_,I_J_,L,L,l,J_LLL_.L.L,J.,.l..l,_l, ALk 1,_L,1J,,.l S0 Y TR O T Y WO 6 l _,l.ul._l,_J._l___l_l..lA_L_l_J,MIA X L_,Ll,J,_l_LJ_l,_l OO W Y I 1 1 I |

IJ_LILJII

TR RN SN TN SN NN RN A NN EE N RN NIRRT
wesvegnnd v g g vy e b g s dov g g s aa e s s b ag s s o biaaeaag
NN NN NN NN EE TSN NN E S R NN NE Pl SN
sty vy b s b b oo s by v il a g aaaa Y saavecali bia s
IR NN ST YNE S NSNS NS NSRS SN NS NS RN
NS RN NNl RN ENE NN NN SN NN NN SN B TN NE.
JlLJllllllJllll‘lllJJ_llnglllLllllllLLllll_Lll'l]lllLlllLlllllll]lllllJll [|

b o vaaa be v v aaas deraaaaan oo o biv e g L

LlJIIJlJ i

1 111 41 1
,_!A.J..J_L_L,l_l_LL_J_J_l_‘L_l_J._I_L .l_.l,__l_.l._l_l_LJ_L_l,.l_.L_l_LJ_,_l,_I_L.J_L_J-_l_l_l.,.L_L_L..L_l,_L_LJ_LLl 1 1 311 1 i1t ll 11 £ 11} 1 1 | | I |
SENTEUNTNE IR TSR NN ST N ST e Ty
}J._J_J,_JNLJJ,.AI,J_IJ._l_L_L_I_LLLLJ.__LJALJ_L_LJ_Ll_l-1_.J_L1_1_J_L.1_LJ_,_J_LJ_1 RN RSN IS N EEE NS IR
BTN ST NE SN IS I NN FEN NSNS T Y T

Downloaded from http://www.everyspec.com

e

- Downloaded from http://www.everyspec.com

3. OPERATIONAL SOFTWARE CHARACTERISTICS

The subject project is a real-time control system for a land-based radar
system. The operational'software was developed by Raytheon and executes in
a multiprocessor computer built by Raytheon.

Operational software was developed in a modular fashion. Nearly all of
the modules are written in JOVIAL/J3. The chief exception is the Executive
program, which, along with a few other modules and subroutines, is written in

assembly language.

3.1 Object Computer Description

The Raytheon computer consists of two identical processors and 81,920
words of 24-bit core memory. One of the processors is utilized as a Central
Processing Unit (CPU) and the other as an I/0 Control Unit (IOCU); either
processor is physically capable of assuming either role without any special
reconfiguration. Each processor has its own set of internal registers. Both
processors have common access to all primary memory locations.

Each processor contains two accumulators, two accumulator extension regis-
ters, 16 indei-registers, 16 program counter registers, 16 pairs of I/0 control
registers and miscellaneous special-purpose registers. A repertoire of 61
instructions includes hardware square root and register-to-register operations.
Add time is 2us. All arithmetic is fixed-point. '

Other features of interest include:

. Unlimited indirect addressing

° A "register-substitution mode," which allows registers other
than the accumulators to be specified in arithmetic operations

) A linked-list "search within limits" capability which automati-
cally stacks list elements successfully meeting the search
criteria

° Special arithmetic instructions for evaluating nested
polynomials

® Interprocessor communication capability

3-1

Downloaded from http://www.everyspec.com

I/0 is performed via 16 independently-programmable, bidirectional chan~
nels. The I/0 channels operate in accordance with a multiplex scheme based on
channel priority and channel mode of operation. A single channél may be con-
nected to several individually-éelectable devices. Data transfers can be

performed in either block mode or single-word mode.

3.2 Data Base Structures

- The subject system features a common data base, whose overall layout is
defined by means of a COMPOOL. The JOVIAL compiler is COMPOOL-sensitive, and
so‘it creates at compile time the linkages necessary for operational programs
to gain access to the data base.

COMPOOL data is segmented into blocks, and the absolute location of a
particular data item is defined in terms of the base address of the block con-
~taining the item and displacement of the item within the block. | .

In general, the compiler generates éode to look up block base addresses
in a difectory (sée Figure 3-1a). A limited subset of COMPOOL blocks, however,'
is accorded a épecial status: whenever the compiler determines that a data

' it assumes that

item resides in one of these so-called "special blocks,’
block base address to be preset in a uniquely associated index register (see
Figure 3-1b). '

‘ Data sets which are subject to heaviest use are assignea to the special
blocks and significant reduction in accessing overhead results. It is the -
responsibility of the Executive program to maintain the special block base
addresses in the associated index registers for use at run-time.

Initialization of COMPOOL data is accomplished by means of an Environment
Generation program. Series of JOVIAL assignment statements are used to assign
values to data items and thus create data sets which can subsequently be
1oaded'inpo memory. All nonvolatile data is initialized in this fashion.

In addition to nonvolatile data, which consists of system parameters,
‘constants and permanent files, there are two classes of volatile data --
"wolatile data tables" and program working storage.

Volatile data tables are used to contain raw or processed data whose
source is external to the system and whose life span is relatively short. Radar

input data is an example. Application programs call system service routines to

3-2

Downloaded from http://www.everyspec.com

SYMBOL TABLE BASE ADDRESS TABLE

=z

[
ITEM NAME[BLOCK N DISPLACEMENT D

BLOCK BASE ADDRESS

INDEX REGISTER X

—={ BLOCK BASE ADDRESS I——]
Y +

DATA ITEM ADDRESS = D + (X)

(a). GENERAL SCHEME

SYMBOL TABLE

|
ITEM NAME|BLOCKNS| DISPLACEMENT D INDEX REGISTER XS

[SPECIAL BLOCK BASE ADDRESS |7

l

DATA ITEM ADDRESS = D + (XS)

(b) SPECIAL BLOCK SCHEME

Figure 3-1 - Data Accessing Techniques

3-3

Downloaded from http://www.everyspec.com

assign and deassign volatile data tables of various types as necessary.
Unused tables of each type are held in free pools. Table structures are
defined in the COMPOOL and allocated to special blocks. From the JOVIAL com-
piler's viewpoint, there is only a single table of éach type defined. The
Executive, however, updates the address in the special block index register
to link an application program to a particular data table and thereby makes
that table the "current'" one of its type.

Program working storage is allocated and deallocated by the Executive and
is intended strictly as a local scratch area, rather than a medium for passing
data from program to program. In order to avoid usage conflict, two working
storage areas are available -- one for interrupt programs and one for noninter-
rupt programs (only one level of interrupt program is possible). Each area
consists of a chain of blooks, with the first block provided for main programs
and successive Blocks provided for successively nested subroutines. The
JOVIAL compiler automatically generates code requesting working storage as
pért of the standard calling sequence for subroutines; the Executive responds
to these requests by édvancing the working storage index pointer to the next
block in the chain. The procedure is reversed when exiting from a subroutine.
This design allows reentrance.

3.3 Control Structures and Mechanisms

The subject system operates under the control of a highly centralized,
modular Executive program which supervises all real-time activity on both the
CPU and the IOCU. The funétional units comprising the Executive and described

in the subsections that follow.

3.3.1 Task'Management

This unit regulates the scheduling, selection and sequencing of appli-~
cotion program modules. Tasks are selected for execution on a priority basis
in adherence to a limited multiprogramming philosophy: The limitation is that
only a task of the maximum prlorlty value can cause immediate preemption of
the current program module; in the absence of such tasks, program modules are

always allowed to run to completion. 1In order to assume timely execution of

3-4

- Downloaded from http://www.everyspec.com

all program modules under this scheme, application functions are deliberately
segmented into sméll, logically coherent program units. The Executive uses
a device called the State Control Table (discussed below) to sequence from
one module to the next to form processing threads. At the completion of each
program unit in the thread, the Executive checks for higher-priority tasks,
whose presence will result in temporary suspension-of the current thread. .

New tasks are scheduled either in response to the arrival of fresh
input data or in response to an explicit request from a program module. Sched-

" for execution as soon as

uled tasks are placed either in a "Run Queue,
resources become available, or in a '"Delay Queue," to delay execution until

a specified time interval has elapsed.

3.3.2 Memory Management

This unit is responsible for the allocation and deallocation of work-
ing storage and volatile data tables. All such memory areas are predefined;

the Executive performs no dynamic carving of memory.

3.3.3 . 1/0 Management

This unit governs IOCU activity, including coordination and activa-
tion of data transfers and processing of external interrupts. It also reports

the arrival of new input data to the Task Manager.

3.3.4 System Auditing

This unit records information about program executions, service
routine usage and error occurrences in a table in memory to assist in system

performance analysis and debugging.

3.3.5 Centralized Error Processing

This unit processes errors detected by other software modules or by
hardware error traps. Responses vary for different types of errors as dictated
by an Error Response Table. This table, moreover, contains two sets of
responses, one for theitactical environment and one for the test and develop-

ment environment.

3-5

Downloaded from http://www.everyspec.com

3.3.6 System Service Routines

A variety of system-level subroutines are collected within the Exec-
utive to eliminate programming redundancies and promote visibility. Functions
provided include program queuing services, data management services, I/0
device handlers, math routines and miscellaneous special—purpose services.
(Some of these services fall within other Executive units as noted pridr.)

Sequencing of application program modules, while carried out by the

Executive, is prescribed by a "State Control Table."

This table is broken
down into a number of sections called "states.” Each state correéponds to a
single program module and consists of a group of entries representing all the
various queuing and sequencing options for that module (see Figure .3-2).

Two indices are used to access State Control Table entries: a "cur-
rent state" index is maintained by the Executive; a "condition'" index is
supplied by any program module that exits to the Executive or calls the Exec-
utive to queue a new program. These indices determine a unique table entry,
from which the Executive retrieves the identity of the new program to call a
queue, the new state associated with the program, and the priority of the
program. The State Control Table entry may alternatively indicate that there
is no new program (end-of-thread situation), in which case the Exeéutive will
select the next program module from the Run Queue.

The State Control Table may be viewed mathematically as a state-
input device defining a function of such that, given a current state S and an
input condition C, the new state is S'=f(S,C).

The State Control Table enhances modularity by eliminating the need
for program modules to call one another explicitly; program module control
interfaces are under centralized management and can be modified without impact-
ing the program modules. During the development phase of the subject system,
the State Control Table facilitated substitution of dummy programs and driver
modules, and also proved to be a convenient tool for tuning the system by

adjusting program priorities.

3-6

Downloaded from http://www.everyspec.com

STATE 1 W

STATE 2 <

STATE n ﬁ

STATE ntl 1

L

e - - - e m - - e - -

NEW STATE S
NEW PROGRAM P
NEW PRIQRITY. Q

CONDITION

CONDITION 2

}CO NDITION m

Figure 3-2 - State Control Table Structure

3-7

Downloaded from http://www.everyspec.com

3.4 Build Characteristics

The method of construction of the subject system was a synthesis of top-
down and bottom-up techniques. Program module specifications were derived
from the top-down, beginning with system-level requirements and progressing
through functional and detailed design specifications.

The highest level component of the system, the Executive, was the first
program designed and the first to be up and running. Beyond providing the
control functions and services described above, the Executive, in conjunction
with the State Control Table, served in a broader sense as a development
medium for the rest of the operational software.

Within the framework and ground rules established by the Executive, inte-
gration of the remainder of the system was performed in a rigorously controlled

series of incremental steps called "builds." The initial builds consisted of
groups of functionally related program modules. More advanced builds were
formed by combiningvelementary builds and introducing additional new modules.
The last build in the sequence was the fully integrated system.

Each build represented an increment in hardware capability as well as
software capability. The purpose of a particular build was not only to check
the interrelationships among the component software modules, but also to check
program interfaces with new hardware (some of which was itself being tested
for the first time under realiétic conditions).

Program modules which were not part of a given build were replaced with
dummy modules. Driver programs performed whatever functions were necessary
to keep the system cycling smoothly. Owing to the modular nature of the
system, early builds, such as the initial radar and display builds, were

functionally independent to a significant degree and thus were able to be

developed in parallel.

3-8

- Downloaded from http://www.everyspec.com

BR-9568

4. SUP'PORT SOFTWARE CHARACTERISTICS

A modest array of software development tools were used in the production

of the subject project's operational software:

° Cross Compiler

. Compilef Support Software

° Cross Assembler

® Digital Simulator of the Object Computer

° Operating System with a Debugging Package
° Digital System Simulator

° Data Collection/Data Reduction Software

Much of the software was developed at a dedicated software development
facility using a UNIVAC 1108 as the host computer. All of the above mentioned
software, except for the operating system, executed on the 1108. Software
development and maintenance statistics for these software develobment tools
are not included in the software reliability data base, but brief descriptions
of each of these tools follow to provide a more complete understanding of the

software development process of the subject project.

4.1 Cross Compiler

The Higher Order Language specified for use in the subject project was
JOVIAL/J3. JOVIAL/J3 is the standard programming language for Air Force
Command and Control Applications (Reference 3). As a general purpose procedure
oriented language, JOVIAL has been widely used for many other types of appli-
cations. It has been used by all three services. A cross compiler for
JOVIAL/J3 was implemented on the host computer to produce binary code for the
object machine. The computer implemented the full J3 standard except for the

features listed on the following page.

Downloaded from http://www.everyspec.com

e Boolean Items

. Dual Items

° Exchange Operator

. Alternative Statement
° Input/Output Commands

The compiler does allow émbedded direct code and this feature was used
extensively in eight of the subject programs. These programs have been
identified as DIRECT (rather than JOVIAL or ASSEMBLER) and consist of at least
50 percent assémbly language embedded in a JOVIAL program. (See Appendix B.)

All system input/output was centralized in the executive program, thus
relieving the JOVIAL programmer of this aspect of coding.

The average processing rate of this compiler is 33 source statements
per second, including the use of the COMPOOL (central data base definition)
and the generation of Set/Used information.

Appendix E contains statistics about the static occurrence of various
elements of the JOVIAL language taken from a sample of 9 programs from the

subject project.

4.2 Compiler Support Software
The JOVIAL Compiler Support Software. consists of the following:
™ (Communications Pool) COMPOOL

‘. COMPOOL Assembler
° COMPOOL Disassembler

. Data Base Picture Generator
. Environment Generator

) Source Library

° Sburce Reformatting Program
. Set/Used Program

Figure 4-~1 depicts the relationships of these support programs. The
COMPOOL Assembler is used to create and maintain the COMPOOL. The COMPOOL is

the system data base description and contains the global data item definitions,

€-9

we3sAs 12T1dwo) TYIAOL - T-% 2in3Tj.

Downloaded from http://www.everyspec.com

SET/USED

LISTING

~——

BINARY
OBJECT
FILES

PROGRAM
ASSEMBLY
LISTING

COMPOOL

Y

/STANDARDIZED
REFORMATING JOVIAL
PROGRAM - LANGUAGE
_ SOURCE
)
SET /USE
LISTING.
SET/USE PROGRAM
FILE
\
JOVIAL
LANGUAGE JOVIAL
SOURCE COMPILER
PROGRAM
A
COMPILER
LIBRARY
COMPOOL | comproolL
ASSEMBLER ™1 DISASSEMBLER
] COMPOOL

/ COMPOOL

DEFINITIONS

B!

SYMBOLIC
TEST DATA

ENVIRONMENT

|_—""| GENERATOR

DATA BASE
~ PICTURE
GENERATOR

LISTING

GRAPHIC
REPRESENTATION
OF COMPOOL

DATA

Downloaded from http://www.everyspec.com

primary memory mapping information, and parameter information for system
subroutines. It is used by the JOVIAL Compiler and also used by.eHVironment
generation and data reduction software. The COMPOOL Disassembler produces
formatted listings and summaries of the COMPOOL contents to aid in the manual
housekeeping of the data base. The Data Base Picture Generator provides a two-
.dimensional graphic listing of "the data base and is useful in maintaining
densely packed or overlayed data.

Data may be generated for initial conditions or for testing by the
Environment Generator software which accepts symbolic test data, converts it to
object code using the COMPOOL, and creates a load file ready for use.

The Source Library contains subroutines for inclusion directly in a source
module prior.to compilation. '

The Source Reformatting Program produces well formatted, indented listings
and will optionally reseduence the source file. Z

The Set/Used Program is actually an optional pass of the JOVIAL Compiler
and provides information on which data items are set (updated) and/or referenced

(used) by the compiled program.

4:3 Cross Assembler

t

To provide the capability for generating programs at the instructioﬁ level,
a cross assembler was developed. Sincé the JOVIAL Compiler producedbno che
to support input-output processing, multiprocessing control, diagnéstic code
séquences, and special instructioné*, assembly language was used in these
instances. The cross assembler was created by utilizing the PROC statement of
tﬁe UNIVAC assembler to develop a macro for each object computer instruction.
Thus, the cross assembler was a simple extension of the UNIVAC Assembler with
a format conversion added to provide the proper binary formatted output for
loading into the object machine. The advantage of this approach is a rapidly
and inexpensively developed, highly reliable assembler. The disadvantage is

that the macro processing of instructions is relatively slow, yielding an

*e.g., a linked list search/compare instruction was used for rapid correlation
of track data.

4-4

Downloaded from http://www.everyspec.com

assembler that averages 11 lines of source input procéssed per second. This
is one-third the rate of the JOVIAL compiler; less if object instructions are

compared.

4.4 Digital Simulator

Unit testing of individual program modules wés not generally done on the
objéct machine, but via a digital simulator of it, which executed on the
UNIVAC 1108. The simulator was more accessible to the individual programmer
because of the limited availability of the object computers. In addition, the
fidelity of simulation was excellent and extensive debugging capabilities were
provided. All instructions were simulated except for Input/Output and Multi-
processor Con;rol instructions. This exception did have an impact, as the
highest incidence of SPRs were written for problems relating to Input/Output.

The job control language for the digital simulator was syntactically
identical to the object machine operating system control language and most
of the commands were provided. This allowed most unit tests developed on the
simulator to be executed without alteration on the object machine. The effect

of this on testing was not measured but was believed to be highly beneficial.

4.5 Operating System

The operating system which supported software development for the object
machine was not primarily resident on the object machine, but instead resided
on a Honeywell DDP-124. The DDP-124 was linked via direct memory access to
the object machine. This support computer provided an early test bed cabable
of supporting the development of a new object machine. The DDP-124 was also
used as a real time Input/Output satellite processor for the object machine.
The DDP-124 Operating System also provided a program load capability for the
object machine and was used to host a variety of debugging aids.

The DDP-124 included the following peripheral devices:

Magnetic Tape Drives (2)
Line Printer

Paper Tape Reader/Punch
Typewriter

Disc Drive

4~5

Downloaded from http://www.everyspec.com

4.6 Digital System Simulator

Integration of software modules into builds was accomplished with the
‘use of a large digital system simulator as the test bed. The test facility

included the object computer with its peripherals and operator statibns. The
object computer was linked via an interface device to a UNIVAC 1108. The 1108
based digital system simulation software provided a real time model of both the
radar and the enviromment against which the object machine was exercised.

Test scenarios were developed by hand and processed by an environment
preprocessor. This data was then used by the real time simulation to provide
realistic test conditions for the object computer. The vast majority of SPRs
were generated during the integration phase which occurred in this digital

simulation environment.

4.7 Data Collection/Data Reduction

The data collection and data reduction software provided the capability
for selective recording of data in real time and selective postprocessing of
this collected data. This process was aided by the use of the previously
discussed COMPOOL which provided data structure and location information for
the collection process, and data format and content inforﬁation for the posf—
process reduction.

The data collector executed under control of the real time executive
module and selectively recorded data before and/or after program module
execution. The data was recorded on magnetic tape for later roduction on the

1108.

4-6

- Downloaded from http://www.everyspec.com

5. TEST METHODS

Testing of the subject system was performed in conformance with a
meticulously planned and structured regimen. The overall approach to testing
closely paralleled the combined top-down/bottom-up approach described in
Subsection 3.4 for. system integration.

Testing proceeded in three phases: wunit testing of individual program
modules, including the Executive program; integration (build) testing; and

operational testing of the system in the field.

5.1 Unit Testing

The first stage of testing was unit testing of individual program modules.
In accordance with the Software Management Plan for the subject system, a Test
Plan was conceived for each program module as it was being developed. ~The
purpose of the Test Plan was to outline the tests necessary to demonstrate
that the module fulfilled its functional requirements and to verify the
module's logical integrity. ' '

When the design of a particular program module was completed, a detailed
Test Procedure was produced. Based on the parent Test Plan, the Test Procedure
spelled out the specific techniques to be used in the tests, and included lists
of input and output data as well as step-by-step instructions for performing
the tests. The Test Procedure also described test driver program functions;
such functions typically included interfacing with the test operator, simulating
interfaces with other modules, and data base reinitialization between test cases.

Unit testing was carried out on the Digital Simulator (see Section 4)
rather than the live computer in order to take advantage of the simulator's
extensive repertoire of debugging tools, including a full instruction trace
- capability. = An additional benefit of this approach was to conserve live

machine time, which became an increasingly precious commodity as system

5-1

Downloaded from http://www.everyspec.com

development progressed, The Simulator not only proved entirely adequate for
unit testing of épplication program modules, buf was also utilized successfully
in later stages of festing to help debug system problems,

Unit testing of the Executive program deviated slightly from the standard
pattern in that it was further subdivided into testing stages of its own, and
was performed on the live computer as well as the simulator. Due to its com-
plexity, the Executive was tested at the individual routine level, and at the
fully interactive level, where it operated as a skeletal version of the system.
Because system I/0 is one of the Executive's principal functions, and because
the simulator was weak in the I/0 area, the Executive unit tests performed on
the simulator were repeated on the actual computer. This dual testing approach
also provided an opportﬁnity to use the Executive as a benchmark to evaluate
the accuracy with which the simulator modeled the computer's behavior.

In most cases, unit testing of program modules was performed by the pro-
gram authors. After a module had successfullly passed its unit tests, it wés
'forﬁally released to an integfation team for incorporation into a software

build.

5.2 Integration Testing

Integration was performed in a series of "builds" as described in Sub-
section 3.4. Each build was tested separately in a manner specified bylits
"associated Test Plan and Test Procedure (counterparts to the program module
Test Plan and Test Procedure). Because of the complex hardware interfaces
required (whether actual or simulated), all build testing took place on a real
machine. '

Several facilities, each with a computer but otherwise featuring different
hardware complements, were provided to support integration testing. All builds
were initially tested at a software facility which contained a minimum hardware
configuration (computer, peripherals, display unit) supplemented by a large
scale simulation program to take the place of the remaining hardware and
simulate the physical .environment. The simulation program ran in a separate
computer, which was connected to the tactical computer ‘by means of a special

interface device.

5-2

- Downloaded from http://www.everyspec.com

The chief purpose of integration testing at the software facility was to
check out control and data interfaces among the program modules comprising the
build. A special Executive service allowed temporary suspendion of real time
processing in order to return control to a build test driver program for
varying test parameters or interacting with the operator. Test driver modules
and dummy modules were also employed to fill processing gaps left by programs
which were not included in the build.

After successful completion of integration testing at the software
faciliiy, a build was released to a facility which contained the actual hard-
ware of central interest to the build; other hérdware, where needed, was
simulated by various means. The integration tests were repeated at the hard-
ware facility, this time to check out interfaces between build software and

pertinent hardware components. Acceptance testing was done at this facility.

5.3 Operational Testing

Foillowing successful integration testing, the more advanced builds,
including the full-scale system, were released as integrated hardware/software
packages for operational testing in the field.

Operational testing consisted of a series of increasingly demanding
missions designed to exércise the system and evaluate its response under various
loads and in different physical environments. Operational missions were first
rehearsed in conjunction with a Mission Simulator, then performed with a full

hardware complement under actual field conditionms.

5-3

Downloaded from http://www.everyspec.com

- Downloaded from http://www.everyspec.com

6. DATA BASE

This section describes the subject project data base development task,

discusses the data base contents, and supplies supplementary information use-

.ful in interpreting the data.

6.1 Data Base Development Task

The Application Software Department at the Bedford Laboratories has col-
lected a file of approximately 10,000 SPR/SMNs. The format and use of these
was discussed in Section 2. The first task was to extract each of the SPR/
SMNs belonging to the subject'project from the central file and reproduce it
for use in the categorization task. Two'files were then defined to constitute
the data base (the third was added later). The SPR file was defined based on
a format used by TRW for the Project 3 data. Changes were required because
additional data was being collected and some data items were deleted. The
second file defined was.the software module file which was to contain the
characteristics of the software modules against which the SPRs were written.
.See Appendix A for a detailed format of each of these files. Each SPR/SMN
was then reviewed by a programmer who had worked on the subject projects
integration task, and an error category was assigned using the TRW fault
taxonomy as presented in Table 4-1 of Reference 1. Several programmers worked
at this task which required about seven man/months to complete. Over 2400
SPR/SMNs were reviewed. Other historical documentation, some on microfilm
files, were then reviewed and data on module characteristics were extracted.
At this point the data was keypunched and placed on a computer for editing.

A program was written to match the module description file against the SPR/
SMN file to correlate program names. This program also presented formatted
output and did some editing of the data (see Appendices B and C). At this

point a third file was developed which contained the error categories.

6-1

Downloaded from http://www.everyspec.com -

This file was used to verify that the error category codes on the SPR/SMN
file were valid (see Appendix D). Later code was added to accumulate the
number of SPRs written against each program module and against each error
category. Statisticai routines were then added to produce summary statistics.
Finally a foufth file was developed and a code was added to translate the sub-
ject project'g program module names intQ innocuous names to preserve project

anonymity.

6.2 Data Base Contents

The resulting data base as delivered to RADC consisted of the three files
whose formats appear in Appendix A. Each will be briefly discussed .in this

section. Those data items requiring interpretation are specifically discussed.

6.2.1 Software Module Descriptions (Refer to Appendices A and B) .

This file consists of 109 .entires, each containing the characteristics
of an individual program module. Ther version identification shown is that of
the last released version/modification of that particular program.- The version
number represents a major functional release of the program. Thus version 2
indicates that three major functional releases had been made. The modification
letter represents the number of modification releases (minor functional changes
or error corrections) within the version. E represents the fourth modification
release. PROGO27 A0 would be the initial release of PROG027. PROG036 4J
indicates that the program has had five major functional releases and the
current version has had nine modification releases. This data is generally
inadequate to allow determination of the total number of releases since each
version may have from no modification releases to many.

The next field indicates the generic fﬁnction of the module and is
somewhat subjective although few programs were difficult to assign to a generic.
function. The complexity characteristic was also assigned in a subjective
fashion, although again no difficulty was encountered in assigning complex or
simple to a module. Mode of construction was limited to modular or unstructured,
as top-down or structured development was not used. Appendix B contains a

complete listing of the module description file.

6-2

Downloaded from http://www.everyspec.com

€9

66661-00861
66181-00081
66££1-002¢1
66101-00001
66L80-00980
66£80-00280
66180-00080
66L90-00990
66190-00090
66650-00850
66550-00%50
66£50-00250
666%0-008%0
66L%0-009%0
665%0-00%%0
661%0-000%0
666£0-008¢€0
66L£0-009¢€0
665£0-00%€0
66£€£0~002¢0
66620-00820
66.20-00920
66£20-00220
66120~00020
66610-00810
66L10~00910
66S10-00%10
66£10-00210
66110-00010
1 66600-00800
66L00-00900
66500-00%00
66£00-02000
66100-00000

OO F N H =N NN —~ = ot o et O A A (] =~ el —— —

un
—_

Al
—
A N O OO NN N D e et 00 et A AN — e = A o 0N A e e (] e e e —

uwny
—

(sp1om Jo "ON)
‘'ON dZIS 1D0drdo I3TNAoOn ‘ON

66001-05001
67680-00680
"66880-05880
66LL0-0SLLO
66£90-05£90
65650-00650
6%950-00950
6¥150-00150
6F¥E0-00¥€0
65520-00520
66220-05220
66120-05120
65120-00120
66020-05020
65020-00020
6¥610-00610
66L10-06L10
65L10-00L10
66910-05910
6¥510-00510
66710-05%10
65¥10-00%10
66€10-05€10
6621005210
66110-05110
6%110-00110
66010-05010
65010-00010
6¥600-00600
66800-05800
6¥800-00800
6%L00-00L00
66900-05900
6%900-00900
66500-05500
65500-00500
66500-05%00
65%00-00%00
66£00-05€00
65£00-00£00
66200-05200
65200-00200
66100-05100
6%100-00100
66000-05000
6%000~00000

Anu:ogoudun jo 07:
AZIS I0¥9N0S MADQOE

NOILNEI¥ISIA ZIS FTNAOR
T-9 FTIVL

Amvuoz L 1owam ur) °zISs uumm@o £q pue sjusuwalRls

221n0s jo umnE:c £q sanpowm Jo UOTINQTIAISTP @Yl SUTEIUOD - 9 °TqeL

Downloaded from http://www.everyspec.com

, Table 6-2 contains the distribution.of SPRs by module'type and also

gives the distribution of module types.

‘ TABLE 6-2
DISTRIBUTION OF SPRs BY MODULE TYPE

Module Type Percent of Total Percent SPRs
ILogical : 20,2 - 9.6
Control 8.3 9.5
Mathematical - 19.3 18. 7
1/0 _ | 5.5 5.0
DATA BASE ' 8.3 17.5
Microcode ' 0.9 1.3
COMPOOL : 0.9 2.3
Data Manipulation ' 11.0 18. 4
Test Driver 5.5 10. 3

This table reveals that the DATA -BASE modules should have been given
more attention.‘ The DATA BASE modules for the subject project are not data
base definitionsA(that is the COMPOOL) but are initial conditions for a build.
Perhaps better tools could have helped here. One problem with this table is
that the size of the modules is not taken into consideration.

Table 6-3 shows the number of SPRs normalized to 1000 lines of

source code.

TABLE 6-3
SPRs NORMALIZED TO 1000 LINES OF SOURCE
SPRs/1000 Lines of Source | Percent of Total Size
Control 18 : 25
Data Manipulation 29 31
Logical 34 ' 14
1/0 , 36 7
Mathematical 40 23

6-4

— Downloaded from http://www.everyspec.com

The five module types represent the operational executable modules
and were ratioed to 100 percent. The relatively low figure for the control
module can be attributed to the fact that significant portions of the real

time executive program were derived from a previous project.

6.2.2 Software Problem Report File (Refer to Appendices A and C)

The SPR file consists of 2165 entries each containing data on a
single SPR/SMN pair or SMN only, if no SPR was filed. Note that the SPR
numbers are not a dense set since they are not project specific. The termina-
tion code is "SOFTWARE" if an unexpected test termination attributed to a soft-
ware problem was specifically mentioned on the SPR; similarly "hardware" for
hardware probiems which caused an unexpected test termination which was thought
to be software (thus an SPR was filled out) but later attributed to hardware.
Of the 2165 SPRS; 47 resulted in specifically identified unexpected software
terminations and seven resulted in specifically identified unexpected hardware
terminations originally though to be software problems. The seriousness of

the error was determined to be CRITICAL if the discoverer indicated that it
.was impeding project development, LOW if it was not really necessary for a
correction to be made for the current development to proceed, IMPROVEMENT if
it was a suggestion for improvement but not necessary for satisfactory opera-
tion, and MEDIUM otherwise. Table 6-4 lists the occurrence of each of these

levels of seriousness.

TABLE 6-4
SERIOUSNESS OF SPRs

Seriousness Type Number Percent of Total
Critical 134 6.2
Medium 1642 75.8
Low 105 4.9
Improvement 285 ' 13.1

Downloaded from http://www.everyspec.com

The test periods of concern to this data base are the Integration,
Acceptance, and Operational periods. Integratioﬂ occurs following unit
development and formal release, and occurred at a software development facility.
Acceptance tests were then run at a hybrid test facility. SPRs which speci-
fically mentioned acceptance testing or were known to be found during accep-
tance testing by integration programmers were identified as Acceptance SPRs.

All SPRs filed from the operational site were identified as Operationéi.SPRs.

Table 6-5 lists the occurence of SPRs during each of these periods.

| TABLE 6-5
OCCURRENCE OF SPRs

Test Period Number Percent of Total"
hNegraﬁon 1984 .. 91.6
. Acceptance 19 0.9
Operaﬁonal 162 : 7.5
L

The error category code is the code indicating the error category as
listed in file 3 (see Appendix D). .
The SMN number should in all cases be the same as the SPR number;
except that some clerical errors were made during the original assignment of
numbers. Cases of this are indicated by an * to the right of the SPR number.
"As mentioned in Section 2, some SMNs were filed without a corresponding SPR.
These were usually the result of a programmer discovering the error, correct-
ing it, and then issuing an SMN to release the correction. A total of 822
SMNs (38 percent) were filed without SPRs. -
" The Correction Type indicates the type of change or update made as
a result of the SMN. Unfortunately this data was not generally captured and
is insufficient for statistical use.
'The Days Open data was extracted from the Raytheon Manufacturing:
Days calendar and represents the number of working days between the date open

and date closed. SMNs filed without SPRs were set to 1 day opened.

6-6

- Downloaded from http://www.everyspec.com

The 2165 SPR/SMNs were opened for a total of 17,015 days, or an
average of 7.9 days. This i1s distorted somewhat by the relatively high per-
centage of SMN-only reports. Removing the SMN-only reports yields 1343 SPR/
SMNs opened for a total of 16,193 days or an average of 12.1 days.

Because of the file length only a small portion is included in
Appendix C. RADC does, however, have the entire file.

File 6-1 shows the distribution of the SPR/SMNs by month opened
during the 38 months of integration through operational testing.

The curve peaks at 133 SPRs opened during month 5 of the second year,

and drops to a low of three opened during month 10 of the third year.

I40-\
ISO-W
120 -
110
100+

T T
2 4 6 8 10 2 4
MONTHS

Figure 6-1 - Distribution of SPRs

6-7

Downloaded from http://www.everyspec.com

6.2.3 Error Category File (Refer to Appendices A and D)

The error category file consists of 193 entires, one per error

. category. The error categories were based on the 184 as defined by TRW in...

Reference 1. Added categories are flagged with an asterisk to the right in

Appendix D. Additions were made to categorize the following errors:

)
b)

c)

d)
e)
£f)
g)
h)
i)
1

Scaling

New of enhanced function - display

Modifications for special test purposes
Unidentified hardﬁare error

Nonrecurring problems

No error ‘
Insufficient information for error analysis
Missing cards (source lines) in a compiled program
Inadequate/Inefficient requirements

Enhancement requirements

Table 6-6 contains the summary of SPRs by category group. Refer to

Appéndix D for the meaning of the category group code.

4The most frequent errors by category group were the User Requested

Changes (35.3 percent), with Data Handling Errors (18.9 percent) and Logic

Errors (17.6 percent) making up the largest percentage of the remainder. The

high incidence of user requested changes is most likely a characteristic of

the evolutionary development approaéh.

6-8

Downloaded from http://www.everyspec.com

TABLE 6-6
SPRs BY CATEGORY GROUP

Category No.

Group SPRs Percent
AA Computational 115 5.3
BB Logic 382 17. 6
CC 10 | 21 1.0
DD Data Handling 409 - 18.9
EE Operating System/Support Software| . 4 0,2
FF Configuration 18 0.8
GG Routine/Routine Interface 16 0.7
HH Routine /System Interface 17 0.8
JJ User Interface 10 0.5
KK Data Base Interface 32 1.5
LL User Requested Changes 764 35,3
MM Preset Data Base 162 7.5
NN COMPOOL Rejection 45 2,1 -
PP Recurrent 39 _ 1.8
Q0 Comments 15 0.7
RR Requirements Compliance 10 0.5
SSs Unidentified 77 3.6
TT Operator 15 0,7
Uu Questions 3 0.1
\AY Requirements Specification 11 0.5

6-9

Downloaded from http://www.everyspec.com

6.3 Supplementary Information

This subsection contains supplementary information of possible use to
modelers. It presents an analysis of build information, acceptance test data,

and operational data.

6.3.17 Build Analysis

'As mentioned previously, there were several builds implemented during
‘the 1life of the project. As a final deliverable item, there were two builds
delivered. These builds consisted of an Initialization Build (Build G) and an
Operational Build (Build F). The Initialization Build performed hardware
diagnostics, hardware and software confidence test, and initialized both hard-
ware and software data bases. The Operafional Build was comprised of 55 pro-
gram modules which were implemented and tested in Builds A through E and then
put together as a system. Appendix F contains thé list of program modules
for those two builds for possible use in further analysis.

During the life of the project, records were kept to be used for

estimating new projects in the future. The types of data collected were:

° Record of all software problems by number and date
° Amount of computer time using wall clock time
. Manpower allocated to each build within the project

The following subsections discuss the software problems associated

with each of the two delivered builds.

6.3.1.1 Build "F" Discussion

6.3.1.1.1 Background

Integration testing of Build F was performed over a 35
month,period.. Within this time frame, there were a total of 41 releases of
the build reflecting error corrections, design changes and improvements.
Months 1 through 7 were devoted to testing the build using the Digital System
Simulator. During the next five months the build was tested at a test site

with hardware and also in parallel on the Digital Systém Simulator.

6-10

&

- Downloaded from http://www.everyspec.com

It is appropriate here, to mention that the software was
being tested on hardware that was not completely checked out, thus adding to
the amount of time necessary to resolve problems. Hardware diagnostics were
not sophisticated enough to diagnose all problems and many were found during
operational software testing.

Testing for the remaining 20 months was accomplished by
first>testing a particular release of the build on the Digital System Simulator
and then shipping to a field site for operational testing on the hardware in a
live environment.

During the entire integration period, a total of 136 man-
months of effort was expended. There is no record for computer time used
while testing with the hardware. The computer time (wall clock time) utilized
for testing with the Digital‘System Simulator amounted to 1890 hrs and 47 min.

See Table 6-8 for the monthly usage of computer time for the builds.

6.3.1.1.2 Discussion

In a 35 month period, there were 1198 problems reported,
investigated, and resolved. Figure 6-2 depicts the number of problems '
reported each month. After investigating the file of problem reports, it was
discovered that the peaks and valleys shown in Figure 6-2 tracked each major
release of the build. The peaks represent the time of build release when
éeveral problems had been resolved. The valleys represent the end of testing
particular functions and preparing to work on the next release, which is based
on the results of the tests and addition of ﬁew functions of complicated test
aimed at final checkout of the system.

Another factor which attibuted to the rise and fall in
humbers of problems was the parallel effort of hardware integration and hard-
ware dowﬁtime. When hardware is malfunctioning or down, the software problems
are not readily found.

' Months 12 through 15 reflect the period which had the
largest number of problems reported. While reviewing the problem reports, it
became visible that the build during this time period was being tested for

the first time at the field site in preparation for the first mission. During

6-11

¢1-9

£108238) 101ag pue yjuol £q sizodoy woTqoig wd, PTING - Z-9 2in31g

SHINGW

€€ ZE L& 0f 62 82 /T 92 ST vz €2 ZZ 1T O &1 8L ZL 9L SL L €L 2t Il Ol &

Downloaded from http://www.everyspec.com

NUMBER OF SOFTWARE PROBLEM REPORTS

o
& 3
I I

L.go

~0i
0z
Fog

0z

08
06

~86

£

8

SRz

N NNz

R

= N

2 NP O[]<]

AN

TR

=1

N

N 2N
O R

‘K"' \\\3{;\[3 N

Nkl

S SN e

S SRR

NN

TR

O B 8 1

Downloaded from http://www.everyspec.com

the testing, it became evident that some of the interfaces with site hardware,
which could not be tested with simulation tools, and the environmental data,
were different than had been anticipated. New software logic had to be added.
Software was also modified to adapt to environmental interference (ground or
weather clutter) which was overloading the.system.

After the 15th month of integration testing the number of
software probléms decreased, which also resulted in a decrease of manpower
levels. 1In essence, the remaining months were devoted to fine tuning the
system. Software errors were found in areas that had'not been completely
tested using simulatidﬁ. However, most of the problems were user requested
changes, product improvements, and modifications to initial conditions due
to environmental conditions.- ,

Table 6-7 lists the number of total problems and the per-
centage of total problems reported for each problem category. It is readily
observed that the majority of problems, in fact 38 percent, were due to design
changes and improvements. Logic errors and data handling errors were 18 and
16 percent respectively. These three categories of problems constituted the
major system problems.

It was rather difficult to collect data with respect to an
individual build release. For example, Build F had 41 releases and the pro-
blem reports did not usually connect a problem to a build release. To generate
this report, a great deal of time was devoted to correlating the problems and
build releases using supervisor status reports and bracketing build release

dates with problem report dates.

6-13

Downloaded from http://www.everyspec.com

TABLE 6-7

BUILD "F'" PROBLEM CATEGORY DATA

Percentage of Total

Problem Category Number of Problems Problems
AA 72 6. 01
BB 223 18, 61
CC 10 0. 83
DD 199 16, 61
EE 3 0,25
FF 8 0. 67
GG 3 0.25
HH 5 0. 48
II 1 0,08

K 7 0.58
KK 11 0. 92
LL 458 38,23
MM 80 6. 68
NN 28 2,34
PP 15 1,25
Q0 11 0.92
RR 4 0. 33
SS 45 3,75
TT 5 0. 48
Uu 1 0, 08
VA 9 0. 75

Total 1198

6-14

— Downloaded from http://www.everyspec.com

6.3.1.2 Build "G" Discussion

6.3.1.2.1 Background

Build - G had a 37 month span of integration testing. The
Build was comprised of hardware diagnostics, hardware confidence tests, and
hardware/software initialization programs. The diagnostics verified the
operability of the computer while the confidence tests verified each subsys-
tem within a radar system such as, receiver, transmitter, signal processor,
etc. | -

In developing the programs, the majority of them could be
tested individually on an off line computer, except for the actual I/0 inter-
faces. The hardware interfaces had to be tested on the actual hardware as it
became available. ¥For Build G, the hardware and software development was
being performed in parallel. A simulator was not available to test the I/0
interfaces.

It should be pointed out that the programs in this Build
at the start of the system were designed as independent programs. It was not
until some ‘time into system generation that a decision was madelto automate
the programs to operate sequentially without operator iﬁtervention as a Build.
Therefore, testing of a majority of the programs had been Completed indepen-
dently. The Build testing basically consists of hardware integration testing.

Table 6-8 shows the monthly use of computer time (wall
clock time) used to integrate the software before testing with actual hardware.

Over the three year period, a total of 720 hours and 18 minutes were utilized.

6-15

Downloaded from http://www.everyspec.com

TABLE 6-8

COMPUTER TIME FOR SOFTWARE INTEGRATION
IN WALL CLOCK HOURS

f

Tof:a.'l

Month | Build F | Build G gSO;ZL Month | Build F | Build G Usage
1 7:15 57:45 | 127:45 19 42:45 | 23:40 73:55
2 3:10 46:23 | 122:10 20 40:40 18:15 74:50
3 7:05 34:10 | 122:52 21 96:45 16:10 | 134:55
4 7:20 28:55 | 109:53 22 88:35 16:15 | 157:55
5 7:15 12:42 97:56 23 56:45 13:20 | 117:20
6 12:35 | 27:04 82:54 24 79:15 35:40 | 121:30
7 19:55 54:12 | 110:23 25 73:30 1:00 99:20
8 - 52:30 51:50 | 160:53 26 65:20 - 67:55
9 47:11 | 50:24 | 150:12 27 67:50 - 70:20
10 95:06. .. 68:08 238:16 28 116:55 - 116:55 |
11 | 55:45 24:40 | 134:20 29 88:05 - 89105
12. | . 59:15 21:30 | 177:25 30 78:05 - .78:05
13 43:35 27:15 | 121:30 31 37:55 3:15 41:10
14 44:45 8:15 | 141:19 32 41:05 - 41:05
15 42:20 | 22:10 | 140:20 33 54:30 - 54:30
16 75:00 15:35 | 124:05 34 163:00 - - 63:00
17 62:50 9:50 94:05 35 39:30 - 43:50
18 73:35 31:55 | 178:37 36 - - 39:30

Note: Months without computer time indicate testing performed at
acceptance test site or operational site.

6-16

Downloaded from http://www.everyspec.com

6.3.1.2.2 Discussion

There were 173 problems and 59 man montﬁs of effort
reported over a 37 month period, which appears to be low, compared to Build F.
However, the low number of problem reports is attributed, on the most part,
to only hardware integration versus the combination of software and hardware
integration. The logic and data héndling errors were found only in a few
programs which had not been completely tested on the hardware prior to being
put into the Build.

The peak mohths of problems reported in Build F occurred
in the field.when intensive testing and fine tuning of the system was being
pérformed. In some instances, data formats and interface bit configurations
were changed to make the system more efficient. There were also changes made
to software to bypass hardwére fixes which were more costly.

Figure 6-3 shows the errors that were reported each month
and the problem categories they represented. The Build was so dependent on
hardware scheduling that it is impossible to generate curves representing
software reliability. The software was tested in spurts over the 37 month
period. The other variable in the software testing was that all hardware was
not available for testing until late in the 25th month of the Build.

While analyzing the types of problem reports, there was a
definite resemblance to all other builds with respect to percentage of prob-
lems by problem category. Table 6-9 reflects the types of problems and their
percentage of the total number or problems.

Approximately 50% of the problems were devoted to user
requested changes or product improvements. The data handling errors reflected
22% of the problems and logic errors 14%. All remaining problems only accu-

mulated to 147% of the total problems.

6-17

£10893€) 10aag puk yauoy £q siiodeay weTqoid .9, PITRE - €-9 o2anbra

SHINOW

Z 1

£

98198 ¥e €8 ¢

JA>

L€ 0F 6C 8¢ /7 9 GC ¥T € ¢C 1T & 61 8L Z1L 9L SL¥L €l 2L 11 OL 6 8 £ 9 § ¥

Downloaded from http://www.everyspec.com

8T-9

NUMBER OF PROBLEMS REPORTS

7/ o]

£

Kk K 3 Wi Y
I

it VY sk Tl 22

ST U

/I

Sk I &3 T)
rass nr

7. .

X

i

/A

Z7
xI /'U w
eyl i

i)

=T

b1 4

74

SIS UIANIN,

IS S U]
T

Downloaded from http://www.everyspec.com

TABLE 6-9

BUILD "G'" PROBLEM CATEGORY DATA

Problem Number of Perqentage of
Category Problems Total Problems

AA 0

BB 25 14.45
CC 1 0.58
DD 38 21.96
EE 0

FF 0

GG 0

HH 9 5.20
II 0

JJ 2 1.15
KK 3 1,73
LL 86 49,71
MM 0

NN 0

PP 3 1,73
QQ 2 1.15
RR -0

SS 2 1.15
TT 2 1. 15
uu 0

\A% 0

Total 173

6-19 :

Downloaded from http://www.everyspec.com

6.3.2 Acceptance Test Data

Acceptance test data is sparse and unreliable, Most often the
authors of SPRs did not indicate on the SPR that the problem occurred during
an acceptance test. Only 19 SPRs were so marked. This made it impossible to.
gatﬁer significant -information about the impact of software problems:on .the
. acceptance test ﬁrdcess including the impact on other testing. There were a -
total of 19 Acceptance Test SPRs or 0.9% of the total. Of the 19, 17 were

critical, one was an Improvement, and one was Low Seriousness. The 17

critical SPRs were corrected in an average of 4.3 days, with a standard devia-

tion of 4.37days. The distribution of errors by category group is shown in

Table 6-10.

TABLE 6-10
ACCEPTANCE TEST ERRORS BY CATEGORY

Category Group - . Number of SPR's
AA Computational 2
BB Logic 3
of@ 'I/o 1
KK Data Base Interface 1
LL User Requested Changes 11
SS Unidentified 1

6-20

Downloaded from http://www.everyspec.com

6.3.3 Operational Data

Operational demonstrations took place at a remote site. Again data
is sparse with respect to the;impact of software errors on the entire test
“effort. Of the 162 operatioﬁal SPRs, 31 were designated as critical. The 31
critical SPRs were corrected in an average of 11.6 days, with a standard devia-
tion of 11.3 days. The distribution of errors by category group is shown in

Table 6-11.

TABLE 6-11
OPERATIONAL ERRORS BY CATEGORY

Category Group Number of SPR's
AA Computational . 4
BB Logic _ 24
oe 1/0 ' 3
DD Data Handling : 35
GG Inwrbce-'RmRhw/Rmnhw_ 1
HH Interface - Routine/System 5
JJ Interface - User 1
KK Interface - Data Base 3
LL User Requested 45
MM Preset Data Base
PP Recurrent
RR Requirements Compliance
SS Unidentified 24
TT Operator 2
Uu Questions 1
Vv Requirements Specification 1

6-21

Downloaded from http://www.everyspec.com

Again the high level of user requested changes reflects the evolution-

'ary nature of the development.
Table 6-12 indicates the load placed on the software in the opera—

tional environment. This may be useful in the analysis of operatlonal errors

TABLE 6-12
EXECUTION LOADING BY MODULE TYPE

Module Type Light Load Heavy Load
Control 109 109,
Mathematical ' 0 449,

" Logic 11% ‘ 16%

Data Manipulation 13% 26%'

I/0 3% 3%,
379, Loaded 999, Loaded

6-22

.- Downloaded from http://www.everyspec.com

7. RECOMMENDATIONS

As mentioned in the introduction the intended use of this data base is
to support the development of software reliability models. During the pro-
cess of building the data base, the priméfy purpose of this project, some
thought was given to the significance of the data and the uses to which data
of this type might be put. This section identifies some of the characteris-
tics of the subject project and data which may influence the accuracy of the
models. Recommendations are also made with respect to the collection of
such data in future projects and the potential uses of the data while it is

still "fresh,"

7.1 Subject Project Characteristics That May Affect Modeling

Several characteristics of the subject project may be of some interest
to those constructing software models. While quantitative data was not
gathered for this project, these characteristics might serve to assist in the
selection of an applicable model as well as indicating possible areas for
future extension of models. For the subject project these characteristics

were:

1) evoiutionary development of software requirements
2) evolutionary development of the system

3) parallel hardware development. '

4) multiple system configurations

5) build process

6) uneven application of resources

7) previously existing software

8) 1lack of development phase data

7-1

Downloaded from http://www.everyspec.com

As mentioned earlier in this report, the software requirements for the
subject project were issued in several releases over a two year period. Due
to schedule pressure, informal or preliminary releases were also made. This
characteristic probably contributed heavily to. the large percentage of '"User
Requested" changes to the software. Many large DOD system developments have
this characteristic. It is really related to the evolutionary approach to
systeﬁ development which seeks to minimize risk by testing concepts and
evolving the sysfem in a step-by-step orderly fashion. This approach is -com-
mon when a system is being developed which does not use off-the- shelf compo-
nents and proven technology.

Another characteristic of this project was parallel hardware development.
Eerly users of the new hardware suffered from the ”serial-numbey’l" syndrome
and the high incidence of hardware failures had a pronounced effeet on the
software development. However, since most of the early failures Were-imme-
diately recognized as being hardware problems, no software problem reports |
were filed. The data was not captured.

Software developed ‘for the subject project was executed on three 51m11ar
computetr configurations, each "slightly" different in its usage of input/
output channels and its suite of peripherals. These '"slight" differences
contributed to the high incidence of Input/Output errors. Software checked
out at the integration facility would require minor modifications in input/
output areas when executed at the acceptance test facility and later at the’
operational site. Each of these modifications was recorded via a SMN to main-
tain configuration control, and so entered the error data base. This type of
"error" should be filtered out before using the data in a reliability model
as these modifications are really adaptations. _

Another possible problem for the modeling effort is the build precess.

In such a process, each successive build jeopardizes the reliability function
(R(t)) of the previous build. Therefore, R(t) should increase as build testing
progresses. Then, at the next build, it would probably decrease. The new
functions. that are added to each build differ in size and complexity. As one

would expect, the simple functions were integrated before the more complex

7-2

- Downloaded from http://www.everyspec.com

functions. Therefore, succeeding builds became more difficult to test
because of the larger number of interconnections and interactions between
the various modules. Therefore, the total errors (Et) increase with each
succeeding build.

A careful lock at Figure 6-1 reveals several sharp dips in the number of
SPRs opened. Several'of thése ogcur at the end of the calendar year, the
end of the fiscal year,” and at the time of summer vacation. Most likely, the
intense activity just preceding the dip occurred at a build release or a major
system milestone which are likely to fall just prior to these above-mentioned
times and are followed by a 1lull in activity. These indicate uneven applica-
tion of resources, primarily manpower, and supplementary data on applied
manpower is needed to normalize the data and accurately relate error dis-
covery to applied effort.

Another area which affects software reliability is the extent to which
previously developed software is used. Previously developed software may
occur as iibrary routines, entire programs, or as published algorithms. It
is known that a small percentage of the software (probably <10%) of the
subject project was developed previously, but the actual data is lost in the
past.

Software error data from the development phase is not available. Many
of the error categories (e.g., compiler errors, job control errors, etc.)
would show up predominantly in this early.phase. It is a reasonable suspicion
that a program with poor reliability during the development phase is likely
to have poor reliability in later phases, but it would be helpful to have hard
facts in this area. On the other hand a program may have high reliability
duriﬁg_the develqpment phase and poor reliability durihg integration. This

would indicate problems in development testing, or interface design.

7.2 Data Collection

Reference 1 emphasizes the need to provide accurate error categorizing

at the time the error is identified. To do this at a later date requires some

degree of interpretation from historical documentation which can introduce

further error and distort the reliability information. We recommend that

7-3

Downloaded from http://www.everyspec.com

the programmer who creates the fix for the problem also does.the error
category assignment. The assigned category should be independentlyAverified,
possibly by a software qﬁality assurance engineer. Since the error-category.
assignment does involve an element of interpretation, this concurrence would-: .
enhance the reliability of the assignment.

One problem with the fault taxonomy used for this data base development
was the large number of categories, some of which were overly specific (e.g.,
time conversion error). This overspecifying of error categories led to incom-
pleteness and it seemed to us that a level of generality was needed (e.g.,
conversion error). The major complaint by the category assigners was that
the number of categories was too large and the amount of subjectivity involved
in assignment led to an uncomfortable feeling that some assignments were
ambiguous. Subsequent to our categorization of errors, the final report was
issued (reference 2) and the number of categories were reduced to 79, less
than half the original list. (See Table 3-2, of reference 2). We believe

that this taxonomy is a significant improvement.

7.3 Use' of Fresh Data

We recommend that data also be collected during the development phase.
This could be done in larger systems by automatic collection of data during
compilation and testing'and'would allow important feedback to the developers
that would allow improvements to be made early enough to have an effect on
the software reliability. This feedback.of "fresh" data could be used to pro-
vide improvements in the areas of training and development tools. For example,
a high incidence of improperly formatted data errors might indicate that fur-
ther training in the data definition capability of the HOL in use is necessary.
In the subject project, Input/Output software had a high incidence of soft-
ware errors (36 SPRs/1000 Source Lines). This can partially be attributed to
the fact that different configurations of hardware required different I/0
coding. It is also probable that the fact that the Digital Simulator had no
1/0 simulation capability, caused software to be released to integration testing
* without actually exercising the I/O code. This feedback early in the project

could have resulted in I/O0 simulation. being added to the Digital Simulator.

7-4

- Downloaded from http://www.everyspec.com

This potential feedback benefit would also justify the collection

during the development process rather than "after-the-fact,'" and therefore

increase its own reliability.

Downloaded from http://www.everyspec.com

Downloaded from http://www.everyspec.com

APPENDIX A
DATA BASE DESCRIPTION FILE FORMATS

Downloaded from http://www.everyspec.com

File #1 Software Module Descriptions

The Software Module Description file contains software descriptive data
and consists of one record per module. It is used to validate file #2 data

and provide statistics.

Record Format:

Columns Field Code
1 File Identification "
2-6 Project Identification Alphanumeric
7-8 Project Code , Alphanumeric
9-15 ' Module Identification Alphanumeric
(left justified)
16-17 Version Identification Alphanumeric
18 Module Function Alphanumeric
X = Control
P = Input/Output
L = Logical
D = Data Manipulation
M = Mathematical
T = Test Driver
C = Confidence Test
- B = Data Base
0 = COMPOOL
R = Microcode
19 . Module ‘Complexity Alphabetic
S = Simple
M = Medium
C = Complex
20 ' Source Language Alphabetic
A = Assembler
J = JOVIAL
F = Fortran
D = Direct Code
21-25 # Source Statements : Numeric

Right justified

e Downloaded from http://www.everyspec.com

Columns Field . Code

26-30 : Object Size Numeric

Including literals and
local data. Not including
buffers. Must be in deci-
mal. Right justified.

31 Mode of Construction , Numeric

0 = Unstructured

= Modular

Top Down

= Modular Top Down

Structured

= Modular Structured

= Top Down Structured

= Modular Top Down
Structured

~Noun SN R
]

File #2 Software Problem Reports

This file consists of data from Software Problem Reports and Software

Modification Notices and consists of one record per module.

Record Format:

Coluﬁns Field Code

1 .+ TFile Identification "

2-6 Project Identification Alphanumeric
7-8 Project Code : Alphanumeric
9-12 . SPR Number Numeric

Right justified
Blank if no SPR#

13-19 Module Affected Alphanumeric
Identification '

Left justified

20-21 Version Identification Alphanumeric

Record Format:

Columns

22-29

30

31

32

33-37
38-41
42-46

Downloaded from http://www.everyspec.com

Field

Date SPR Opened

(MM/DD/YY)
Blank if no SPR

Termination Code

Terminated

Blank =
Normally
S = Software
Aborted
H = Hardware
Aborted

" Seriousness of Problem

1 = Critical

2 = Medium priority
3 = Low priority
4 = Suggested important
Test Period
D = De#elopment -
Unit Test

V = Validation -
Unit Acceptance

I = Integration
A= Acceptance of Build

0 = Operational
Demonstration

Error Category
Applicable SMN Number
Type of Correction

New Module Update
X in Col 42

Document Updéte
X in Col 43

Code N

Alphanumeric

Alphabetic

Numeric

Alphabetic

Alphanumeric
Numeric

Alphabetic

Record Format:

Columns

42-46

47-54

55-57

Downloaded from http://www.everyspec.com

.Field

COMPOOL Change

X in Col 44
Data Base Change

X in Col 45
Explanation

X in Col 46

Leave column blank

if not applicable. Use
more than one type if
several apply.

Date SPR Closed
(MM/DD/YY)

The SPR is closed

by an SMN, therefore,
this data is taken from
the SMN.

Days Open

Total of working

days between the open

and closed date., If only
an SMN appears it reflects
1 day open.

Right justified.

A5

Code "

Alphanumeric

Numeric

Downloaded from http://www.everyspec.com

File #3 Error Categories

This file contains the error categories and descriptions. It is used to
validate file #2 data and is listed for reference. It consists of one record

per error category.

Record Format:

Columns Field o Code
1 File Identification n3n
2-6 Error Category Alphanumeric
7-80 : Error Description Alphanumeric

A-6

Downloaded from http://www.everyspec.com

APPENDIX B

SOFTWARE MODULE DESCRIPTIONS
FILE NO. 1 LISTING

B-1

Downloaded from http://www.everyspec.com

413
01

11

91
1 %4

0s
592
9L

£
(']

L T4

SHdS=N

QIYNLINYEEBNN
QIYNLINYLENN
QI¥NLINYLISND
¥YINQ0W
Q34NLINYLIENND
HyINAOW
¥V INQOW
Q3YNLINMLAENN
Q3dNLINYLISNN
HYINQOW
HyINQOW
¥v INQOW
Q34NLINYLSNN
a3WNLINALENN
3y INQONW
Q3¥NLINHLENN
Q3¥NLINHLENN
Q34NLINHLENN
Q38NLINYLSNN
¥y INQA0wW
Q38NLINYLISNN
Q38NLINYLSNN
Q3UNLINHLSNN
a3uniINyLSNN
Q3¥NLINHYLSNN
QIYNLINMLISNN
Q38NLINYLISNN
QIYNLINMASNN
Q38NLINHLSNN
¥viINAow
Q3¥NLIANALSNN
Q3¥NLINHLSENN
Q3dNLINYLSNN
Q3MNLINHLSNN
HyINA0wW
Q3y¥niINYLSNN
Q3¥NLINNLENA
¥vINA0W
q38NLINHLSENN
Q3¥NLINHLISNN
¥vINQow
¥y INA0W
Q3UNLINYLENN
GIHNLINHLSNN
Q38N1INYLSNN
3y I1NQ0W
Y INQOW
HyINA0NW
YaENLINYLSNN
Q3¥NLINHLSNN
Q3¥NLINALENN

NOLLJNYLASNOD 40 300w

000t
99
nse
n9st
96001
1221
nsot
194
1e2
nes

nogt
681
9in

66
2n9e
626
(39}
gein
niln
esn
69
009
£ing
£ont
Sdb
£82
ing
9n
9946h
nen
nensg
1en
n2s
982
28
6948
X3
S94
(33
ces
sdi
YY)
gng
ose
Bbb
ghn
1822
131
19¢

3218 1J4reo

oor
Seh
S9
129
Song
£1L
199
958
121
L6
anis
anti
86
£82
inoe
S9
LSS
oLfg
S9
11es
I$3)
26n
23
9¢9
Sig
[\-X]
88S
691
Zng
2oen
€261
€61
ns9i
282
LIy
98¢
In
LAYS]
£52
g0t
021
9in
6Le
£8%
ong
82¢
058
in2
§n9
902
8en

321s 3Jun0s

aviaop
AviaOr
aviaop
AvIAOD
43718W3SSY
Aviaor
aviaor
#4378w3sSY
Aviaop
aviaor
AvIAGE
aviAor
aviaor
aviaor
aviaop
4J33¥1q
Aviaor
aviaor
aviAoP
¥INHWIASSY
¥3719Ww3ISSYV
¥314W3ASSY
1J341a
AviAaor
Yviaor
avIAOr
AviAor
Aviaog
1J341q
FEREDEIYN
aviaop
aviagQre
viaor
aviaor
aviaor
1J3u8l1Q
avIiaor
aviaure
aviaorp
aviAor
133410
aviAor
aviAdp
Aviaorp
Aviaor
aviaor
Aviaop
Aviaor
aviaor
aviaor
Aviaor

39vNINY 338008

WNIO 3N
Xx31dw0d
ERPLES
X37dk0J
37dWIS
WNL1Q3NW
P ERLLToR]
WNIU3Iw
WNIQ 3w
37dnW1S
3NdnWl1s
3dn S
AN1Q 3N
x374w02
nhiQan
WilU3n
WOlU3m
x31dW02
WNLUIW
x37d% 03
Wi 3n
WNLA3Iw
WN1d 3w
W10 3w
wWNlOaw
WLUIw
WNALUIN
WN1A3n
ANL1Q3N
wNla3In
WN1UIW
I ERCLTR
WNLQ 3N
WNlAdIR
WALU3wW
ERFLR S
WNLO 3w
WNLO3nW
3av s
WNLQIW
WNLCG3NW
WNLU3INW
R
ANLCIN
WN1G3In
WN1G3W
WNIGaAN
Xx314w02d
WNICaw
WN103IN
wWNIG3w

ALIX31dnUd

AVILLYWIHLYW
AVILAVYWIHIVH
IvI1907
AVILLYWIARLYW
1831 JIN3ULANUD
AVITLVWAMHLIYY
WILLYWIHLI YA
IWILLVWIHLIY W
NOLIVANALINYW VigQ
¥3AAIHU L83
00dW02
3svyg vivy
Ivaloun
Iv21901
IsSve Vivy
Av3idun
43A1480 LS4
AVILLIVWARLY K
o/l
TONINOD
[SP
ar/ié
o/l
044NUD
d4Aluu LS4l
NOLLPINGINY N VAYU
NOLLVINGINY W ViVA
IWILLVAIHLIYA
IVILLYWIHIVYW
NQELYINGINYW ViV
NOLLY INGLNYH ViV
VI ivndHiV W
NOLAVINdINYR vivQ
Iv31901
NOMLYINAINYW VLIVU
3sve vivqQ
H3A180 L1841
H3IAL¥0 183y
Ival901
AVILLYWIHLIY W
IvaL9u7
vIlvud
NOLLYINGINYW VIVU
0/1
IvII%
isve vivd
isve Vivu
AVITLVWIHLIYN
TouinGd
TudiNLD
1va1901

NULLINDG F0dun

NOlsyana

1909044
09090ud
65090ud
8509044
L5090¥d
£5090d¢
25090484
16090ud
0509044
6n090kd
Ln090¥ud
9n090ud
Sh090ug
£5090u4d
enidniud
In090Yd
ono90tyd
62 090y4d
BE09UNd
98 090u4
SE090dd
LARBIL-T]
£8090Hd
2¢090u4d
1£090ud
0§090u8d
620904
8209044
12090¥d
92090d8d
S2090xd
n20u0yd
220904y
1209044
02090ud
610Y0de
9109024
L1090¥d
9109%0u4d
S10904d
n1090yd
¢ 1090¥4g
21090ugyg
11090484
6009084
40090yd
L0090Hg
90090ud
S0090d4d
2009044
1009044

al 31ndow

B-2

Downloaded from http://www.everyspec.com

TN =~ —
F =N

NN T = OO T - =M bt ' — O — O 0D —
N - N —

TN — -
—— I m

o

91

4s1

SHdSeN

NCLLIN¥LSNOD 40 300w

QIUNLINHULENN
Qa¥NLINNLIENN
Q38NLINULIENN
QIYNLINYLIEND
a3UNLINYLENN

¥vINA0wW
QIUNLINMLSNN
Q3dNLINMLIENN

¥y INAOW
a3UNLINYLENN
a3YNLIANBLIENN

¥V INQOW
Q3¥NLINYMLIENN

¥YINQOW
QIUNLINYLENN
Q3UNLINYLASNN
Q3YNLINYLISENN

¥yINaon

4V INA0w

Y INA0w

¥y INAOKW

¥YINQ0OW
a3dnidnuisnn
aI¥NLINKLISNN

.Q3¥8N4INYLSNN

Q3Enidnyisnn
Q3¥NLINYLIENN
QIUNLINELENN
a38NlINKAENN
qAdNLINHMLISNN
QIUNLINMLIENN
Q3YNLINHLISNN
q3¥NLINHLIENN
Q3¥NLINMLISNN
Q38NLINMASNN
Q3¥NLINYLSNN
a3uniInNienn
Q3d8N1IN¥ISNA
Q3UNLINYLSNN
¥vINA0n
a3¥NLINMLISNN
A34NLINYLENN
Q39NLINYLENN
¥vYINAOW
¥y INA0W
¥4vINQ0W
¥vINAOW
Q3¥NLINYLISNN
Jq3¥NLINYLISNN
aq3ay¥niJnalsnn
QI¥NLINYLISNN

Los
129
65§
$8s
§0%
2219
LISt
856
net
niL
2eng
9199
SS9m
002s
8608
6lse
6201
2591
os6te
10§
9E19l
LeLn
951
96§
nie
120861
gint
she
961
L0251
628
1L2g
129
£802
noon
606N
0s1
9991
g0
1k
825
266
nnie
99Ny
LOLn
£L91
6562
692
gLL2
gne
n9031

3218 423re8o

092
£
812
61g
iS1
8LLL
2is
ihp
"9
ang
Mol
1002
9261
802
CELL
1ge8
sBel
222
68L1
02¢
25§59
9412
ns
6gle
2ot
85001
6not
£t
et
22ts
9n2
L1917
oLn
antt
9651
insi

3aZIs 3J5uNos

aviaor
Aviaor
viaor
aviaor
Iviaor
¥431EWISSY
aviaor
viaor
viaof
aviaor
aviAor
viaor
vinaor
Yviaor
FERLEFIIN
EERLEFEI
1J3¥1Q
viaor
viAor
aviaor
viaor
aviaor
Aviaor
GvIaor
Aviaor
aviaor
aviaor
aviaor
aviaor
vIADr
aviaor
aviaor
aviaor
aviAof
EERETEIA
YIHNISSY
aviaor
aviaor
aviaor
aviaoe
aviaor
vinaar
Y¥319W3ESY
4378W3ISSY
viaor
aviaor
aviaor
viaor
aviaorp
133410
viaor

ALIX31dWO

J9YNONYT 308N0S

WNIQO3K
WNld3IW
WNLd 3N
WNLA3IW
WNLA3W
WN103nW
WNLQ3IN
WN1Q3W
37dniS
WALUIW
37anls
WNLA3R
WNLQ3In
WNIUAW
WNIU3IN
WNLQ3W
3T4NWIS
ANfdaw
WN1Q3W
WNIA3IN
WN1Q 3w
WNIQ3Nn
37dwls
WNiU3In
IVdwiS
WNIQ 3N
nWNLA3Iw
ERPLEY
WNTUIN
ANI1Q 3N
37dwWiS
37dWIS
ERFELFSY
X34w0I
WN1CIW
WNIU3W
3dwliS
ERPTS
ERFIIS
WNLGIN
3VdnwlS
Xx3VdW03
WNLQINW
WNLQ 3N
WNIUIN
WN1Q3W
WNL03k
Xx37dW02
W LA3W
X31gW0I
WNLQ3IW

P

IvIL9VY
Iv21907
ori
IvaLov
AVILAVHIHLIYW
1831 FIN3IJTINUI
AVIILVNIAHLY W
4831 3InIAVIdANUD
3Sve Vdvy
L1834 AIN3LIANYD
1831 FINIUTANQD
1831 3IN3ATdNUD
1831 3ION3UIdNDD
1831 JINIULANGD
1831 IINIVIINUI
18314 3INIUIANUD
1S90 3INIULANOD
1S31 FINIVIANGD
1834 FINAULANUD
Ivilvvd
18531 FINIULANGD
1831 3INIULANGD
IvALI07
1834 JIN3ULANGY
Joyinud
1831 FINFUT4NQI
IvILov1
NOLAvINdaNVA ViV(
AVILTAVANINLYW
NOLLYINAANYW Vivy
oHINUD
1834 3IINIUIANGD
J0MiNUD
AVILAVNIAHLYN
084N0D
1831 3IN3VUIANUD
1v21907
Isve VYivd
Ivaloun
IVILLVWIMLIVYR
asva Vivy
Iva31907
1831 3INIUTANQD
J00J0831KW
¥3ALHO 183}
AVITAVAIHAYK
NOLLYINAINYW VivQ
IVITLVWIHAY N
IS PELYS 2T
RIS LY
WNOLLVIANAINYW wiVQ
»

NOLAINNA FTN00UW

g0
g0
HU
40
HU
91
Wl
HO
21
au
al
€0
J1
a4
bl
au
24
ri
vo
el
1Y)
b1
20
Hy

a0
av
g0
30
an
31
HY
HO
ERY
ve
9¢

NOISH3A

nil190ayd
£i190ud
21190yd
T1190ud
01190ud
60190ud
8019044
L01904d
90190¥4d
5019044
n0190y4d
g0190ud
201904d
101904d
001904d
660904d
860908d
260908g
96090ud
S6090484d
600084
$609044d
26090ud
1609084
0609044
6809084
8480904d
L8090¥d
95090ud
S809048d
n8090Nd
£8090ud4d
28090b4g
18090¥4d
0809044
6L090ud
8.4090y4d
L20904d
94090u4d
$1.090ud
tL090ug
2.090ud

-140904d

¢

0L090xad
890904d
190904d
99090xd
69090ud
n9090Nd
£9090ud
2909044

1 37ndow

" B-3

http://OLOLtracacaoc.oc.aoc.OLtrocacix.oc.oc.tr

-4

Downloaded from http://www.everyspec.com

HMODULE 1D VERSTON MODULF PUNCTION COMPLEXITY SOURCE LANGUAGE SOURCE SIZE 0BJECT SIZ2E MODE OF CONSTRUCTION NeSPRS

PROGIIS . 3A CONFINENCE TEST MEDTUM JovIAL 1413 : 5898 UNSTRUCTURED -9
PROG116 T 1D CONFINENCE TEST MEDTUM JOVIAL 2251 5563 UNSTRUCTURED 4

" PROG117 56 DATA BASE MEDTUM JOVIAL 3a6 | S14 MODUL AR 25
PROG118 - 04 LOGTCAL MEDTUM JOVIAL 97 81 ' UNSTRUCTURED [}
PROG119 0A CLOGICAL MEDTUM DIRECT 173 128 UNSTRUCTURED 0
PROG120 0A CONTROL SIMPLE JOVTIAL 1493 2135 UNSTRUCTURED 0
0

PROG12} 0A LAGYCAL MED TUM JOVTIAL - 483 ~T46 UNSTRUCTURED

Downloaded from http://www.everyspec.com

APPENDIX C

SOFTWARE PROBLEM REPORTS
SAMPLE OF FILE NO. 2 LISTING

Downloaded from http://www.everyspec.com

NOO O ONNANNNAUNNNN— T I FTIT
- Ll o I R]

£L720710
$L/720/710

$4/701710
£€4/720/%0
ti/n2/t0
£i/n2/10
sL/ng/10
s4/92/710
LL/n2/10
£L/02/10
£4720710
i/n0/10
$L/00/10
sL/no/10
£L/00/10
§€L/n0/10
LL/n0/10
€L/n0/10
§L/720/10
£L/720710
§£L/20/10
£€L/780710
84720710
£L/720/10
eL/eersel
£L/720710
£4/720/10
£L/20/10 X
£€L/20710
LA eLregrset
ni elreersel
LA} clrsegrse’
LA el/e2sel
£L/580/10
$4/50/10
£L/720/710

P B B B 3 3 B 35 3> b I 3 3 30 Jb b b 35 3 3 3 35 b b b 5 J5 3> 3 35 35 B 35 3 3 3 3

£L/20/10
L] £L/n2/00 X

i
]
[}
6 §L/80/10
2
L]
1)

88 §4/50/20
119 nL/ise/10
09 . tl/92/20
e LL/81710
0g £4L/81/710
ee £§L/91/710

L Y adw

N3d0 Q3so1
sAva divo

2 0 M

dvdla
Xino0o
3voan
[ds}
3dAl
NO1L1J3nu02D

2ne0
theo
9g60
L1560
9560
$E60
LYY
£560
2560
is60
0g60
6260
8260
4260
"9260
5260
neeo
2260
1260
0260
6160
@160
{160
9160
$160
nieo
$160
2160
1160
0160
6060
@060
1060
9060
S060
n0eo
£060
2060
1060
6680
Q6@0
5680
neeo
$680
2680

*ON NW§

0eosg
02088
68004
05000
05000
06004
0l088
oL088
05004
08000
050Qd
08000
ogtvy
ol0g8
05000
09084
onieg
05000
OFOXM
020HH
oloas
09014
020d8
05000
0500d
010NN
tn0da
oLogd
0%00Q
vioae
14000
ogtaa
oofay
ootaa
onod@a
06000
05000
0004
010X
03071
otol
oLige
otogd
92011
oren

AB093LV)

¥0du3

NOLLlvH93iINI
NOILVH93IN]
NOLLYN9FINI
NOILVHOIUINI
NOILvVH93INI
NOLLVM9ILINI
NOTLVH93LIN]
NOLLIVHOALINI
NOILva93LNI
NDILV¥D3IIN]
NOILVY¥93INI
NOILvH93iINI
NOILVY93INI
NOILVY¥93IINI
NOLivHE93iN]
NOILVY93INI
NOILVH93UNI
NO11va93iNI
NOILVH93INI
NOILVH93LNI
NOILlvH¥93INI
NOILvV¥93INI
NOILlvyd93iINI
NOILlvVH93LINTD
NOILvHOIIN]
NOILV¥93LNI
NOLLVY¥93UNI
NOILvY¥93LNI
NOIivH93UNI
NOILvHO3IUINT
NOLTLvd93INT
NOILVHOIINT
NOIivHd93INI
NOILVH93UINI
NOolivy9aNl
NOILVY¥93INI

NOTLlVv¥93ANT .

NOILVHOILINT
NOILiv¥93UN]
NOLLVHOIUNI
NOILVH93LINI
NOILY¥93INI
NOILVY¥93UNI
NOIivH93UNI
NOJLVY93IINI

001434 1834

WN1Q3W
WNIQ3W
LI
WATAINW
WNIQ3n.
WN1Q3w
WN1Q3aw
WNIG3ANW
WN1Q3n
WN103wW
WNIGANW
WNIQ3nW
WNIU3IW
WNT1Q3AN
WNIGAN
WNIQ3In
WI1Q3nW
WNIQ3NW
WNTA3nW
NITQAW
T¥2I1I¥D
WNIUIW
Iv214lwd
WNIUIW
WNIUIw
WNTUANW
WNIQAW
LRy ED
WNIUIN
WvaIilwd
WIILINMd
w1118
Ivariimd
WNIUGIW
w7
LN
vITLImd
Iva1lIyd
IvJ1lIdD
WNTIQ3IW
WNTUIW
a1
WALIQIW
INANIAOYNANWI
LI ELY

883INSNOIY3S

YWy ON
TywyON
TYndON
ArrgOoN
AVWHON
AYWHON
AvYAHON
TyWHON
TywyON
AYWHON
TYHYON
AVHYON
TYWHON
AYWHON
TyWHON
TVWYON
TYWHON
TywdON
Ay dON
AvwHON
FELLP ¥ 14
AYWHON
TvWHON
AvrHBON
TywWa0N
YWHON
AYWYON
AvREON
TvwyOn
AvwyON
TvryON
IdyMid08
JYyM1d408
AYWHON
AVAHON
AYNHON
AVWYON
AVWHON
ELLLPY IU
TYAHON
TYWHON
TyWyON
TYWYON
AYWHON
"IYHHON

NOILYNIWNIL

sgL/01/710
£4/01/10
si/hoste
§$L/00/10
§L/700/710
€4/00/710
sL/ho/10
cL/n0/10
%£L/20/10
£§L/20/710
§4/€0/10
§4/7€0/10
§L/720/1v
§L/¢0/10
$£4/20/10
$£L/80/10
§L/20/10
2i/8é/21
eL/eesel
eLsiesel
eL/siesen
eLsiersel
eLsvesel
eL/vésel
eLsversel
eLsvesel
eL/Losei
eL/iLu/sei
dl/sLoyel
2L/siarsel
eLsLosel
eLsversel
eLrselsel
els8lsel
2L/el/2d
elsweset
[YAXZX4)
eLsiersel
a2Lsoeset
eLse0/s21)
cL/80/21
2L/s710/21
2istorse)
eLsiozsed
eisiosed
LY LT T Y
Q3N3d0
3i4vd:

uL
¢
22
e
re
14
an
s

NOlSa3A

99040dd
9909048d
siiyoud
Sitv0ad
S1190¥84d
Sl1908d
©119048d
Sitaoud
noivodd
89090484
890404dd
H9090dd
890904d
490950u4d
890908d
8909048d
990404d
890490ud
9909044
§90904d
890904dd
89090ud
990904d
990490¥4d
990408d
990904d
990404d
99090ud
99090484
Q94904a
990404dd
9£0904d
9L 090ud
9£090¥8d
9:090¥8d
840904d
8L090ud
84090ud
920904d
149090¥d
1409084
60090ud
L9090ud
6209044d
990904d
[Pl
4342344y
3ITnUow

eneo
ineg
ete0
L1560
9560
S560
ngE60
L1260
2£60
1260
060
6260
8260
Les0
9260
9260
nee6o
e2e0
1260
0260
6160
¥160
L160
93690
S160
LATY)
L1890
2160
Tleo
oleo
6060
8060
L1060
9060
060
n060
€060
€060
1060
6680
8680
s640
rovo
5680
2680
FELLTL
uds

Cc-2

Downloaded from http://www.everyspec.com

APPENDIX D

ERROR CATEGORIES (FAULT TAXONOMY)
FILE NO. 3 LISTING

z-a

ERROR CATEGORY

AAQOO
AAQDLO
AAD3Q
AAO4D
AAO41Y
AADSO
AAQGD
AAOTD
AAOTI
AADBO
AAD90
AAl00O
ALY 10
AA120
AAL3D

RBOON
RBO1 O
RAN2D
RRO30
BBO4D
RBOSN
RBO60D
ABOG6 1L
RBOL?
RBOTO
RROAN
BHO090
BB10oN
BB110
BB120
AB13n
AB14n
BB1SO
BB160
BB170
BB{&N

ccoon
cco1o
ccoz2o
cco3o0
CCcoyn
ccoso
CCob0
cco7o
CComo
cco9o
ccion
cciot

Downloaded from http://www.everyspec.com

DESCRIPTTON

*3¥ COMPUTATIONAL ERRORS **%*
TOTAL NUMRER OF ENTRIES COMPUTED TNCORRECTLY
INDFX CNMPUTATION ERROR
WRONG ERAUATTIAN OR CNNVENTTON USFD
MATHEMATICA(I MODELING PROHBLEM
RESULTS OF ARTTHMETTC CALCULATTIAN TNACCURATE/NDT AS EXPECTED
MTXED MODE ARTTHMETTIC FRROR
TTME CALCULATTON ERROR
TTME CONVFRSTON ERROR
STGN CONVENTTON ERRNR
UNTTS CONVERSTON FRROR
VECTOR CALCULATINN FRROR.
CALCULATION FATLS TN CONVERGE
QUANTTZATTON/TRUNCATTON ERROR .
SCALTNG ERROR.

**¥ LOGIC ERRNRS ¥xx
LI™TT DETERMINATIAN ERROR
WRNNG LNGYIC BRANCH TAKEN
LNOP EXTTED nN WRONG CYCLE
TNCOMPLFTE PROCESSING
ENNLESS LNNP DURTNG RONTINE QPERATTINN
MTSSTNG LOGTIC OR COMDTTTON TEST
TNNEX NNT CHFCKED
FLLAG OR SPECTFIED DATA VALUF NOT TESTFD
INCORRECT LnGTC
SFRUENCFE OF ACTTVITTES wRNONG
FTLTERING ERROR
STATiIIS CHECK/PROPOGATTINN FRROF
TTERATION STFP STZE TNCNRRECTLY DETERMINED
LOGTCAL CNDF PRODUCED wRUNG RESULTS
LAGIC NN WRANG ROITINF
PHySTCAL CHARACTERISTICS NF PRNABLFMy OVFRLOOKFD OR MTSUNDFRSTOOD
LAGTC NEENLFSSLY COMPLFX
INEFFTCTENT LOGTC
EXCESSIVE LrnTIC
STORAGE REFFRFNCE ERROR (SOFTwARE PROBLEM)

¥x¥ 1/0 ERRORS **¥x
MISSTING CQUTPYT
QUTPUT MISSTNG DATA ENTRIES
ERRNOR MESSAGE NOT QUTPITY
ERROR MFSSAGE GARBLED
OUTPUT OR ERROR MESSAGE NNT COMPATIBLE WITH UESIGN DoCUHkNTATTON
MISLEADTING NR INACCURATE ERROR MESSAGF TEXT
DTPYT FORMAT ERRNR (INCLUNING WRNNG LOCATIONY
DyPlL TCATE OR EXCESSTVE OUTPUT
OUTPUT FIELN STZF INADEQUATE
DEBLG OUTPUT. PROBLEM (RELATIVF T0 DESTGN DOCUMENTATION)
LACK OF DERUG OUTPUT

NeSFRS

i

=~ DD~ NP =DV OHN— =D

N

- No—-
NG NVDN=D2OVWIDIIOINOGI NV P -

N e D - DO DD

ERRQR CATEGORY
ccio2
ccit1o
cctao
cci3o
cci40
cc150
cc160
tCiot .

Doooo
pboto
noo2o
nDoOso
pDo4o
pDody
DDOSo
DDOSH
DD06O
0DO70
noo71
nD08O
- bDo9o
pPD1oo
pDtio
pdt2o
nD130
no140
no150
0D151
DD160
no170
00180
nD190
ndb2oo

EEQOO
EE010
EE020

FFOO00
FFO10
FFOi1
FF020
FFO30

6Gooo
GG010
66020
66030
66040
GGOSOo

" BYIT MANTPULATION FRROR

Downloaded from http://www.everyspec.com

DESCRIPTION NeSPRS
Peemscsewmcseevteccctsnetsanete st r e e Ayt e e neanrasea"anaanao. remawe
T00 MUCK DERLG

HEADER OUTPUT PROBLEM

OUTPUT TAPE PORMAT ERROR

OUTPUT CARD FORMAY ERRQR

ERROR IN PRINTER CONTROL

LINE COUNT/PAGE EJECT ERROR

NEEDED OUTPUT NOT PROVIDED IN DFSTGN
INSUFFICTIENT OUTPUT OPTTONS

DO OO O -

*%% NATA HANDLING ERRURS *%»
VALTO INPUT pATA TMPROPERLY SET/USED
DATA WRTITTEN ON OR READ FROM WRONG TAPE - OR DISK LOCATION
DATA LOST/NOT STORED
NDATAs INDEX, OR FIAG NOT SET NR SET/INITIALIZED INCORRECTLY
NUMBER OF ENTRIES SET INCORRECTLY
DATA, INDEX, OR FLAG MODIFTIEDP OR UPDATED INCORRECTLY
NUMBER OF ENTRIES UPDATED TNCORRECTLY
EXTRANEOUS ENTRIES GENFRATED (TABLE ARRAY, ETC)

N
LV =]

O = O —
i

-
OO=D OO WN-NONDONAOAG —

ERROR USING RTT MODIFIER

FLOATING POINT/INTEGER CONVERSION ERROR
INTERNAL VARTABLE ERROR (DEFINITION OR SET/USF)
DATA PACKING/IINPACKING ERROR

ROUTTINE LOOKING FNR DATA TN NONEXISTENT RECORD
BOuUNDS VINLATTION

DATA CHAINING ERROR

DATA OVERFLNW OR NVERFLOw PROCESSING FRROR - 3
READ ERROR

ALL AVATLABLE DATA NOT READ
LONG LITERAL PROCESSING ERROR
SORT ERROR

OVERLAY ERRONR

SUBSCRTPTING CONVENTINN ERROR
DOUBLE BUFFFRING ERROR

-t

*¢% OPERATING SYSTEM/SYSTEM SUPPORT SOFTWARE ERRORS ¥¥%¥
JOVIAL PRNNIECES ERRONEOUS MACHINE CODE
08 MISSTING. NEEDED CAPABTLITY

oo

¥£% CONFTGURATION ERRORS 3% :

COMPTLATION ERROR 1
SEGMENTATION PROBLEW

TLLEGAL INSTRUCTION

UNEXPLATNABLE PROGRAM HALT

O D e o

*x% ROUTINE/RQUTTINE TNTERFACE ERRORS *u¥
ROUTINE PASSING TNCORRECT AMOUNT NF DATA INSUFFICIENY OR YOO MUCH
ROUTINE PASSING WRONG PARAMETERS OR UNITS
ROUTINE EXPEETING WRONG PARAMETERS
ROYTINE FATLS TO USE AVATLABLE DATA
ROUTINE SENSTTIVE TO INPUT DATA ORDER

OO

ERROR CATEGORY
cmecmmaemcanas
66060
66070
56080
66090
66100

HHO00
HHO10
HHO20
HHO030

11000
r1010
11020
11030
1lo40

JJooo
JJoio
JJo20
JJo3so
JJo4o
JJoso
JJ060
JJovTo
JJoso
JJo9o
JJ1oo

KK000
KK010
KKO§1

LLOOO
LLoio
-LLo2o
LLo2)
LLo22
LLoz23
LLo24
LLo2s
LLo26
LLO30
LLO4O
LLO0SO
LLO&O
LLav7o
LLo80
LLO9O

MMO OO

Downloaded from http://www.everyspec.com

DESCRIPTION .
L T P e P P T Y Y P L P P T L P T Y P LR P Y P P T Y ey Y X
CALLING SEQUENCE OR ROUTTINE/ROUTINE INITIALIZATTON ERROR

ROYTINES COMMUNICATING THROUGH WRONG NDATA BLOCK

ROYTINE USED OUTSIDE DPESTIGN [IMITATION

RAUTINE WONmy LOAD (RQUTTNE INCOMPATTBILITY)

ROUTTNE OVERFLOWS CORE WHEN LOADED

*x% ROUTYNE/SYSTEM SOFTWARE INTERFACE ERRORS %%
0S INTERFACF ERROR (CALLTING SEGUENCE OR INITIALIZATION)
ROUTINE USES EXISTING SYSTEM SUPPORT SOFTWARE INCORRECTLY
ROUTINE USES SENSE/JUMP SwITCM TMPROPERLY

*x% TAPE PROCESSING INTERFACE ERROR ®*x

‘TAPE UNTT ERUTPMENT CHECK NOT MADE

ROYTINE FAILS TO READ CONTINUATION TAPE
ROYTINE FATLS TO UNLOAD TAPE AFTER COMPLETION
ERRONEOUS INPUT TAPE FNRMAT

#%% USFR INTERFACE ERRORS ##%x
OPERATIONS REQUESY OR DATA CARD/ROUTINE INCOMPATIBILITY
MULTIPLE PHYSTICAL CARD/LOGTCAL CARD PROCLSSING ERROR
INPUY DATA TNTERPRETED TNCORRECTLY RY ROUTINE
VALIP INPUT nDATA REJECTED OR NOT LISED BY ROUTINF
INPYUT DATA RFJECTED BUT USED
TNPUT DATA READ HIUT NOT USED
TLLEGAL INPHT DATA ACCEPTED AND PROCESSED
LEGAL INPUT nATA PROCESSED TNCORRECTLY
PONR NESIGN [N OPERATNR INTERFACE
TNADEQUATE TNTERRUPT AND RESTART CAPABTILITY

#%% DATA BASE INTERFACE ERRQORS #*%%
ROTINE/DATA BASE INCOMPATIBILITY
UNCOORDTYNATED USE OF DATA ELEMENTS BY MORE THAN ONE USER

#%*% USER REQUESTED CHANGFS PRODUCT IMPROVEMENTS NOT ERRORS *%%

STMPLTFTED TNTERFACF AND/OR CONVENIFNCE
NFW AND/OR ENHANCED FUNCTTONS

CPU

DT9K

TAPE

1/0

CORE

DISPLAY

SECURTITY

NEW HARNDWARE/0S CAPABTLITY

SOFTWARF INSTRUMENTATINN

CAPACTTY

DATA BASE MANAGEMENT AND. INTEGRTTY
EXTERNAL PROGRAM TINTERFACE
MODTFYCATION FOR SPECYAL TEST PURRDSES

*%% PRESET DATA BASE ERRORS **x

NeSPRS

- =g

>3 o0

———— D e D DO

LY
J~ O

N =
-

e
CO~NOObOONE —~

¢=Q..

ERROR CATEGORY
MMO10
MM020
MMO30
MMO 40
MMO4Y
MMOS0
MMO&D

NNOOO
NNO10
NNO11
NNO20
NNO21
NNO3O
NNO4O
NNOSO

PP0OOO
PPO1O
PP0O20

84000
nao1n
ngo20
0Q030
2G040
BQ050
3Q060
9Q070
0Q080
2Q090
90100
oQt110
nQ120

RROOO
RRO10
RRO20

§5000
85010
88020
$3030
‘88040

Y7000
TT010
Y7020
TY030
TT040
TT050

Downloaded from http://www.everyspec.com

DESCRIPTION

LA L LI Y Y PP L AL L LY L P Y P P L L PR L L I P L L P PP S P TP L R P Y Y T
DATA OR OPERATIONS REQUEST CARD DESCRIPTIONS

ERROR MESSAGE TEXT

NOMINAL s DEFAULTe LEGALe MAX/MIN VALUES

PHYSICAL CONSTANTS aAND MODELING PRARAMETERS

EPHEMERTS PARAMETERS

DICTIONARY (BTT STRINGY PARAMETERS

MISSING DATA RASE SETTINGS

¥x% GLOBAL VARTARLE/COMPOOL NEFTNITION ERRORS *%%
TTEMS IN WRDONG LOCATION (WRONG DATA BLOCK)
DEFINTTTON SERUENCE ERROR
DATA DEFINITTON ERROR
TABLE DEFINTTTON TNCORRECT
LENGYH OF DFFINITTON TNCURRECT
COMMENTS FRROR
OFLEYE IINNEFNED DFFINTTTONS

*3% RECIIRRENT REPNORYS
PROBLEM RFPNRY REOPENED
PROBLEM REPNRT A DUPLTCATE OF PREVINUS REPORY

£%¥x PRNOGRAM COMMENTS
ROUTINE LTMTITATION
NPERATING PROCEDURES
DIFFERENCF RETWEEN FLOW CHART AND CODE
TAPE FORMAT
NDATA CARD/OPERATTAN REQUEST CARD FORMAY
ERROR MESSAGE
ROUTINERS FUNCTTONAL DESCRIPYTON
OUTPUT FORMATY
DOCUMENTATINN NOT CLEAR/NOT COMPLETE
TEST CASE DOCUMENTATION
OPERATING SYSTEM NDOCUMENTATION
TYPO/EDTTORTAL ERROR/COSMETIC CHANGE

¥%% REQUIREMENTS COMPLTANCE FRRORS Xx¥x
EXCESSIVE RiyN TIMES .
RFQUIRED CAPARILTTY NVERLONKED NR NOT OELIVERED AT TIME OF REPGRT

¥%% (INIDENTIFTIED ERRORS *x¥
HARDWARE ERROR
NON RECURRING PROBLEM
NO ERROR
INSUFFICTENT TNFORMATION FOR FRROR ANALYSIS

**¥% OPERATOR ERROR NDT SYSTEM ERRORS *xx
TEST EXECUTTON ERROR
ROUTINE COMPYLED AGAINSY WRONG COMPOOL/MASTER COMMON
WRONG DATA RASE USED
WRONG MASTER CONFIGURATTON USED
WRONG TAPE(S8) USED

* % %

O

NaSPRS
rreena
3
2
Sé
69
1]

—— -l
——

- DONDOADD

A
o WD

N-=DONODDIODODDDODD

-

®»no

13
14

10

Wes a Yl O

ERROR CATEGORY

TT060

yuooo
uuoto
yyo20
uuJo3lo

vvooo
Yvoto
vvozo

Downloaded from http://www.everyspec.com

DESCRYPTION

MISSING CARDS IN COMPILED PROGRAM

#xe QUESTIONS %4
DATA BASE

MASTER CONFTGURATTON
ROUTINE

*xx REQUIREMENTS SPEETFYCAYYON
INADEQUATE/INEFFTCIENT REQUIREMENTS
ENHANCEMENT REQUIREMENTS .

NeSPRS

5

-,

= a0

Downloaded from http://www.everyspec.com

APPENDIX E
STATIC STATISTICS FOR JOVIAL SOURCE MODULES

Nine modules were examined by the U1108 JOVIAL program (STATGT) to see
how frequently certain statements are used in practice. Tables E-1 and E-2
show the distribution of statement types. Also, calculations are provided
for executable statement types. Certain changes were made to the data to
eliminate discontinuities*. The most frequently used languége construct is
the = sign. This is because of its use in the assignment statement (23 per-
cent). The next most used construct is subscription (14 percent), followed
by GOTO (8 percent) and IF (8 percent). Nothing can be said abodt the pro-
cedure call mechanism because the same construct is used for other features.
The BEGIN-END delimiters are used about 6 percent of the time. This implies
some blocking in the decision making logic. The EQ relational operator was
most highly used (5 percent). The most used executable statements were
assignment (54 percent), IF (19.7 percent), and GOTO (19.6 percent) .

A typical program consisted of assignment statements and blocked condi-
tion checking statements. Programming with the use of tables appears to be
prevalent. Some explicit loops are seen. Bit and byte manipulation do not

appear to be frequently used.

*See Note 3 of Table E-1.

E-1

Downloaded from http://www.everyspec.com

TABLE E-1

5

DISTRIBUTION AND MODULE USAGE OF STATEMENT T YPES
(9 OPERATIONAL MODULES)

No. Constructs Number Percent All
1| (! 454 6. 76
2 IF 512 7. 62
3 GOTO 534 7. 95
4 | FOR 82 1,22
5 TEST 19 0. 28
6 | CLOSE 15 0.22
7 RETURN .33 0. 49
'8 STOP 2 0. 03
9 | =2 1543 23.0
19 | AND 24 0.36
11 OR 64 0.95
12 EQ 307 4. 57
13 .| GR 89 S 1.32
14 GQ 23 0.34
15 LQ 45 0. 67
16 LS 67 1
17 NQ 67 1,
18 + 241 3,
19 - 246 3. 66
20 ¥ 138 2.0
21 / 28 0,42
22 4 0.06
23 ABS () 13 0.19
24 (/ /) 12 0.18
25 NENT 21 0.31
26 NWDSEN 13 0.19
27 ALL 5 0. 07
28 ENTRY 3 0,04

Downloaded from http://www.everyspec.com

TABLE E-1 (Cont.)

No. Constructs Number Percent All
29 'LOC 13 0.19
30 | ASSIGN 25 0.37
31 BIT 57 0. 85
32 BYTE 97 1.4
33 | 3 438 _
34) 3 330 - -
35 | ¢ 3251 - -
36 | BEGIN-END 401 5.98
37 START-TERM 9 0.13
38 DIRECT-JOVIAL 71 1.06
39 ($-9%) 929 13.8
40 ITEM 438 6.5
4] . TABLE 26 0.38
42 | ARRAY 4 0. 06
43 PROC 20 0.3
44 | SWITCH 14 0.2
45 OVERLAY 6 0. 09
46 "PROGRAM 0 "0
47 BLOCK 0 0

Subtotal 10733

less 4019

Total 6714 100

Note: 1) expression grouping, procedure, function call

2) assignment, FOR, procedure call parameter delimiting

3) deleted from total for reasons of ambiguity

- E-3

DISTRIBUTION AND MODULE USAGE OF EXECUTABLE STATEMENTS

Downloaded from http://www.everyspec.com

TABLE E-2 .

No. Constructs Percent All
1 1F 19.70

2 GOTO 19. 60

3 FOR 3.18

4 TEST 0.73

5 CLOSE 0.58

6 RETURN 1. 27

7 STOP 0,07

8 :(assighmeht)

54. 00

E-4

Downloaded from http://www.everyspec.com

APPENDIX F

CONSTITUENT PROGRAM MODULES
OF BUILDS “F"" AND "“G"

Refer to Appendix B (Software Module Descriptions) for further informa-

tion about each of these modules listed.

Build F - Operation Build (55 modules)

PROGOOL, 6, 8, 9, 11, 12, 13, 14, 15, 16, 20, 21, 24, 25,
27, 28, 29, 36, 39, 41, 43, 45, 46, 50, 52, 53,
58, 59, 60, 62, 64, 65, 66, 67, 72, 75, 76, 81, 82,
84, 86, 87, 88, 92, 95, 106, 108, 110, 111, 112, 113,
114, 117, 118, 119.

Build G - Tnitialization Build (25 modules)

PROGOO2, 57, 70, 71, 77, 79, 85, 89, 91, 93, 94,
96, 97, 98, 99, 100, 101, 102, 103, 104, 105,
107, 109, 116, 120.

F-1

Downloaded from http://www.everyspec.com

1)
2)
3)

SR

Downloaded from http://www.everyspec.com

REFERENCES

Thayer, T. A., et al, "Software Reliability Study," TRW Defense
and Space Systems Group, Interim Technical Report, RADC-TR-74-250,
October 1974. AD-787-784.

Thayef, T. A. et al, "Software Reliability Study," TRW Defense
and Space Systems Group, Final Technical Report (16 Oct 73 - 27
Feb 76), RADC-TR-76-238, August 1976. AD-A030-798.

Air Force Manual AFM 100-24, "Standard Computer Programming
Language For Air Force Command and Control Systems,' CEC-2400,
21 April 1972.

Sukert, A. N., "A Software Reliability Modeling Study,"
RADC-TR-76-247, August 1976.

Downloaded from http://www.everyspec.com

1)

2)

3)

4)

5)

6)

7)

8)

9

10)

Downloaded from http://www.everyspec.com

BIBLIOGRAPHY

Tucker, A.E., "The Correlation of Computer Programming
Quality with Testing Effort," SDC, TM—2219/000/00
26 January 1965.

Barney, D. R., Giloth, P. K., and Kiengle, H. G., "System
Testing and Early Field Operation Experience,"” Bell System
Technical Journal, December 1970, pp. 2975-3004.

Knuth, D. E., "An Empirical Study of FORTRAN Programs,"
Software Practice and Experience, 1, 1971, pp. 105-133.

Shooman, M. L., "Operational Testing and Software Reliability
Estimation During Program Development," 1973 IEEE Symposium
on Computer Software Reliability, 30 Apr11 - 2 May 1973,

pp. 51-57.

Boehm, B. W., "Software and Its Input: A Quantitive Assess-
ment," DATAMATION, May 1973. '

Wagoner, W. L., "The Final Report on a Software Reliability
Measurement Study,'" ASCO, TOR-0047(4112)-1, 15 August 1973.

Brooks, F. D., Jr., "The Mythical Man-Month-Essays on
Software Engineering," Addison-Wesley, 1975.

Thayer, T. A., "Understanding Software through Empirical
Reliability Analysis,' Proceedings of the National Computer
Conference, 1975.

Elshoff, J. L., "An Analysis of Some Commercial PL/1 Pro-
grams," IEEE Transactions on Software Engineering, Vol.
SE-2, No. 2, June 1976, pp. 113-120.

Wichmann, B. A., "A Comparison of Algol 60 Execution Speeds,"
CCU Report No. 3, NPL, Teddington, Middlesex.

BG~-1

Downloaded from http://www.everyspec.com

BASE UNITS:
_Quantity
length
mass
time

electric current
thermodynamic temperature
amount of substance
Juminous intensity

SUPPLEMENTARY UNITS:

plane angle
solid angle

DERIVED UNITS:

Acceleration

activity {of a radioactive source)
angular acceleration
angular velocity

area

density

electric capacitance
electrical conductance
electric field strength
electric inductance
electric potential difference
electric resistance
electromotive force
energy

entropy

force

frequency
illuminance
luminance

luminous flux
magnetic field strength
magnetic flux
magnetic flux density
magnetomotive force
power

pressure

quantity of electricity
quantity of heat
radiant intensity
specific heat

stress

thermal conductivity
velocity

viscosity, dynamic
viscosity, kinematic
voltage

volume

wavenumber

work

S1 PREFIXES:

METRIC SYSTEM

Unit

metre
kilogram

- second

ampere
kelvin
mole
candela

radian
steradian

metre per second squared
disintegration per second
radian per second squared
radian per second

square metre

kilogram per cubic metre
farad

siemens

volt per metre

henry

volt

ohm

volt

joule

joule per kelvin

newton

hertz

lux .
candela per square metre
lumen

ampere per metre

weber

tesla

ampere

watt

pascal

coulomb

joule

watt per steradian

joule per kilogram-kelvin
pascal :
watt per metre-kelvin
metre per second
pascal-second

square metre per second
volt

cubic 1netre

reciprocal metre

joule

~ Multiplication Factors

1 000 000 000 000
1 000 000 000

= 10"
= 10%

1 000 000 = 10

1000 = 10
100 = 10?2
10 = 10'
0.1 = 107!
0.01 = 1072
0.001 = 1073
0.000 001 = 10—*
0.000 000 001 = 10~¥
0.000 000 000 001 = 10~ 12
(.000 000 000 000 001 = 10~ 1
0.000 000 000 000 000 001 = 107'¢

* To be avoided where possible.

SI Symbol .

m

kg

s

A

K

mol

cd ¥

rad

sr

F

H

\

v

]

Hz

1x

Im

Wb

T

A

w

Pa

C

)

Pa

I
Prefix
tera
Biga
mega
kilo
hecto*
deka*
deci*
centi*
milli
micro
nano
pico
femto
atto

m/s

. Formula _

(disintegration)/s

rad/s
rad/s
m
kg/m
A-slV
ANV
Vim
V.siA
W/A
VIA
WIA
N-m
JK
kg-m/s
{cycle)s
Im/m
cd/m
cd-sr
A/m
Vs
wb/m
)is
Nim
A-s
N-m
Wisr
jrkg-K
N/m
Wim-K
m/s
Pa-s
m/s
WIA
m

{wave)m

N-m

S1 Symbol

T
G

)

® =oT 3% 3 -"t:a.g.:r'rz

Downloaded from http://www.everyspec.com

MISSION
of

- Rome Air Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and communications
(C3) activities, and in the C3 areas of information sciences
and intelligence. " The principal technical mission areas

are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.

Downloaded from http://www.everyspec.com

