$$
\text { AD-AO13 } 939
$$

DEVELOPMENT OF A TRANSMISSION ERROR MODEL AND AN ERROR CONTROL MODEL

Joseph L. Hammond, Jr., et al
Georgia Institute of Technology

Prepared for:
Rome Air Development Center

May 1975

DISTRIBUTED BY:

Mational Technical Information Service U. S. DEPARTMENT OF COMMERCE

Best Available Copy

SECURITY CLASSIFICATION OF THIS PAGE When Date Enterad,

classified as senewal and nonrenewal models. Wireline and most microwave channels can be accurately represented by renewal models and model parameters have been chosen to represent practical AUTOVON chanr. is. Nonrenewal models, which are necessary to represent for example, troposc.iter channels, require more statistical parameters and are not developed to tne extent of renewal models.

Part II of the report describes the development and evaluation of an algorithm for evaluating error detecting codes for use on renewal channels. The algorithm is sufficiently efficient in its use of computer time to permit an exhaustive study of possible codes with a fixed number of redundant digits.

The algorithm has been used to rank all 900 irreiucible 16th degree polynomials with respect to the Pareto channel model.

For 32 check bit codes with bluck lengths of 2000 bits, it is shown that six classes of b:H-Fire codes encompass many of the commonly used types of codes. Three of these classes are investigated in detajil in a study that considered a total of approximately 350 polynomials. There is no evidence to indicate that different zesults would be obtained from a study of the other three classes of BCH-Fire codes.

From this study it can be concluded that a group of possibly a dozen codes will provide the lowest undetectable error probability in general applications for which a precise channel model cannot be specified. The estimated probability of undetected errors for these "good" codes is on the order of 10^{-12}, a value which would produce one undetected error in something like fifty years at bit rates of 10^{6} bits/second. Four polynomials were found to have undetected error probabilities as large as four or more orders of magnitude greater than those for good polynomials.

The code polynomial, $x^{32}+\mathrm{x}^{26}+\mathrm{x}^{23}+\mathrm{x}^{22}+\mathrm{X}^{16}+\mathrm{x}^{12}+\mathrm{i}^{\mathrm{il}}+\mathrm{x}^{10}+\mathrm{X}^{8}+\mathrm{X}^{7}+$ $\mathrm{x}^{5}+\mathrm{X}^{4}+\mathrm{x}^{2}+\mathrm{X}+1$, is recommended as specific choice. The characteristics of this polynomial are investigated in detail and it is shown that the polynomial has a probabils y of undetected error no larger than on the order of three times that of the best polynomial tailozed to each specific channel model. For four of the channel models considered this polynomial is the best of those considered.

Part III of the report details preliminary wor: done in extending the resulis of Part II. An elementary nonrenewal Chien-Haddad model is studied. The sensitivity of the probability of undecected rror to the parsmeters of the model and differences between pattern probsbilities computed with this model and others investigated are noted.

A first step is made in developing a channel model which places in evidence the effect of physical parameters such as signal-to-noise ratio. A chanrel mondel for a DPSK modem and additive Gaussian noise is developed which, surprisingly, seems to be almost identica). to models developed from practical data.

An approach to approximating nonrenewal models with renewal models is suggested. The report is concluded with recomendations for future work.

GORENOR1:

The Post-Doctoral Program at Rome Air Development Cente, is pursuc. via
 Propram is a cooperative venture between RADC and the participatang unjersities: Syracuse lniversity (Department of Elcotrical and Computer Encineering), the L. S. Air Force Academy (Department of Elecirical Engineering), Corncil University (School of Electrical Engineering): Purdue University (Srhool of Electrical Engineering), Iniversity of Kentucky (Department of Electrical Engineering), (eorgia Institure of Technology (Schorl of Electical Fngineering), Clarkson College of Technology (Department of Electriaxl Finineering, State University of Xew York at Buffalo (nepartment of Electricai Engineering), North Carolina State Lniversity (Denortment of Electrical Encineering), Florida Technological Iniversity (bepartment of Blectrical Engineering), Flcrida Institute of Technology (follege of Engineering), Air Force Instit.ie of Technology (Deparment of Eiectrical Engineering), the Naval Postgraduatc School (Department of Fiectricai Eringering), and the University of Aielaide (Departant of Electrical Engineerian) ia South Australia. The Post-Doctoral Program provides, via contract, the opportunily for iaculty and visit:as faculty at the participating universities to spend a year full tire on expior.itory deveiopment and operational problen-solving efforts with the most-doctirals splitting their time between RADC (or the ultimate customer) and the aducatimai institutions.

The Post-Doctoral Program is totally customer funded with pro;e:s undertaken fir Air Defense Command (NORAD), Aif Force Communicatinas Servira, Federal Aviation Administration, Deiense Communcations Agencv, Aeronit icai

Systems Division (AFSC), Air Force Aero Propulsion Laboratory (AFSC), Rome Ai: Development Certer (ASSC), Electronics System Divisicy (AFSC), NASA, Air Force. Avionics Laboratory (AFSC), and Air Force Weapons Laboratory (AFSC).

This effort was undertaken for Defense Communications Agency via RADC Job Order 95670033 with Dr. Harry Helr: and Dr. Ray Bittel as the responsible individuals at $D C A-D C E C$.

The authors wish to acknowl 1ge the assistance of Hong Wah Li and Robert Dougan during a portion of the study. The authors are with Georgia Institute of Technology: Joseph L. Hammori, Jr., is Professor of Electrical Engineering; James E. Brown is Assistant Proiessor Electrical Engineering (now with Atlantic Richfield); and Shyan-Shiang S. Liu, Research Assistant.

table 3 EC CONTETS

PART I - IN1RODUCTION AND BACKGROUND 1

1. Introduction 1
2 Review of the Literature: 4
a. Channel Models 4
b. Matching of Channel Models to Experimental Data 26
c. Properti.s of Error Dctecting Codes 36
2. Channel Mod:1s Chosen for the Code Situdy 43
3. References 47
PART II - CODE EVALUITION USING RENEWAL CHANNEL MODELS 49
4. Probability of Undetectable Errors Ecr Renewal 49
Channel Hodels
5. Approaches to Code Evaluation 52
6. Development of an Efficient Algorithm for 53
Code Evaluation
7. Evaluation of $\sum \mathrm{P}$ Algorithm 58
8. Results of Studies using the $\sum \mathrm{P}_{\mathrm{g}}$ Algorithm 61
9. Choice of a Code Polynomial 70
10. Conclusions for Part II 73
PART III ~ GENERALIZATIONS 75
11. The Chien-Haddad Renewal Model: Results for a 75
Special Case
12. Approaches to Developing Channel Models Based 75on Physical Parameters
13. Approaches to the Approximation of Nonrenewal 82
Models with Renewal Models
14. Conclusions for Part III 85
APPENDIX T - TYPICAL CHANNEL SHARACTERISTICS 88
APPENDIX II ~ PROGRAM MAINTENANCE MANUAL 115

LIST OF MAJOR SYMBCLS
$p(j)$ - probability of an error gap of length j
$F(m+1)$ - probability of an error gap greater than or equal to $m+1$
$a(j)$ - probability that the j th bit after an error is an error
$P(m, n)$ - probability that exactly m bit errors occur in a block of n bits
$B(m, n)$ - probatility of an error burst of length m in n bits
$R(m, n)$ - probability of $m-1$ errors in the $n-1$ bits after an error
$S(m, n)$ - probability of $m-1$ errors in the $n-1$ bits after an error and the $m-1$ st error is in the $n-1$ st bit
$g(X)$ - code generator polynomial
$M(X)$ - message polynomial
$R(X)$ - sheck bit polynomial
$V(X)$ - code vector polynomial
$P\}$ - probability of an even
$\left\{0^{x} 1^{y}\right\}$ a sequence of x nonerrors followed by y errors
$\sum P_{g}$ - figure of merit for a code
$S_{p}(n, b)-\frac{1}{n} \sum_{d_{1}=1}^{n-b+1} F\left(d_{1}\right) F\left(n-b-d_{1}+2\right)$
(${ }^{*}$ - Lower cound on the probability of message patterns
ξ - lower bound on the prolvability of $P_{g}=\prod_{i=2}^{W} P\left(d_{i}\right)$

PART 1

INTRODUCTION AND BACRGROUND

1. Introduction

This study is concerned with designing error detecting codes for links, of the type shown in Figure 1.1 , such as aight be used in future digital Defense Communications Systems.

Since the code must be designed to match the channel, the problem is two fold, namely: choosing realistic channel models and choosing good cones for specified channel models. In the most general formulation, almest any channel, line-of-sight microwave, troposcatter, wireline, or satellite, can be of interest. The codes considered have been restricted to binary linear cyciic block codes. The code should have a large block size-on the order of 200 C bits. Since the number of message bits is not to be fixed, efficient truncation of the block length should be possible. The redundancy of the code should be a multiple of 8 bit bytes with a probable choice of four such bytes for 32 bit redundancy. Finally, scrambling schemes such as NRZI should not degrade the properties of the code.

An extensive survey of the literature in the two areas of channel models and error detecting codes has been carried out. The survey reveals channel models have been studied in detail and a number of mathematical models have been matched to measured error data. The most tractable model seems to be the renewal model which is specified by the distribution function of the error gaps. Such models are good representations of line-of-sight microwave and wireline channels, while their representation for other charnels is much less accurate.

Other models, typically of a Markov type, have been used io approximate various channels. The choice of models to represent stach channels as troposcatter channels remains an open question, however, for two reasons, namely: (i) there seems to be no theoretical analysis to indicate how many moments of error gap distribution are required to determine code behavior and (if) the very large amount of experimental data required at typical error rates hamers an extensive purel; empirical approach.

Given this background, it was decided to emphasize in the study the renewal type channel models which have been matched to praztical channels. Thus the major portion of the contributions of the study are contained in Part II of the report on codes matched to renewal channel models.

Sone preliminary work was done on more general channel models, on the problem of developing chanrel models based on physical parameters ard on the problem of approxinating normenewal models with renewal models. This preliminary work is presented in Part ill of the report.

The remainder of part I of the reporic details the review of the literature. Appendix II provides a description of the computer programs developed in the study and gives a Program Maintenance Manual.

2. Review of the Literature

The literature review is presented in three parts, nameiy:
(a) Channel Models, (b) Matching of Modeis to Empirical Data and
(c) Properties of Error Detecting Codes.

(a) Channel Models

In most of the work reviewed for binary communication systems, i.t was assumed that the message source generates a sequence $\left\{x_{i}\right\}$ of binary digits whicn are transmitted through a channel. The channel output sequence $\left\{y_{i}\right\}$ is a binary sequence which is the modulo-2 sum of the message sequence and an error sequence $\left\{e_{i}\right\}$, which is assumed to be statistically independent of the message sequence. For this structure the statistical properties of the channel are exhibited in the statistical properties of the error sequence.

A number of mathematical models are described which provide differing degrees of approximation to the measured output error patterns from typical communication equipment. The most trantable mathematical model is a renewal model which uses Pareto statistics. Most other models are Markov processes of some sort. A number of Markov processes, differing in order and definition of parameters, have been investigated. The more important general models ard the references in which they are discussed are listed below:

General Model
Renewal
Fritchman
Gilbert
Generalized Gilbert
Spreading Markov
Tsai
Chien-haddad
Pareto
Munter*
Blank and Irafton*

References ${ }^{*}+$

Ellio: 11$],[2$?
Fritchman [3]
Gilbert [4]
Eiliot: [1], Gallagur [12]
Ač".1, et.al. [5]
Fritchman [3], Tsai [6]-[8]
Chien et.al. [9]
Berger et.al. [10], Sussman : '11]
Munter et.al. [13j
Blank et.al. [14]

[^0]Efforts have been made to choose the parameters of the various models to match experimentaliy measured characteristics of reai channels. The simplest models match the first order statistics, of such parameters as the error gaps in experimental data, to corresponding statistics of. the model. More sophisticated models attempt to match higher order statistics.

The models in the above iist all represent attempts to match output error statistics. Parameters in these models are not related to physical channel or modem variables. Although a considerable amount of work, such as that done by Bello [15], has been directed toward modeling analos channels in terms of their physical parameters, this work has not been carried to the point of representing digital modem output error statistics. A step in this direction, however, has been taken by Goldman [16] who computes the probability of multiple errors for a differential PSK modem for a clannel represented by additive Gaussian noise and cochannel interference.

The remainder of this section defines some of the parameters necessary in discussing channel models and then presents a concise quantitative discussion of most of the models listed on page 4. Basic Parameters: A basic paraneter for the present study is the probability, $P(m, n)$, that exactly m bit errors occur in a transmitted block of n bits. The computation of $P(m, n)$ is based on the statistical analysis of the number cf error free bits between two bit errors. The sequence of zeroes (no errors) between the errors are alled error gaps. The length of a gap is defined as one plus the total number of zeroes in the sequence between the two ones (errors). The binary error process can be equivalently described in terms of the associated gap
process $\left\{G_{i}\right\}$, where G_{i} is the length of the i th gap. Define

$$
\begin{equation*}
\operatorname{Pr}\left\{G_{n}=j\right\}=p(j)=P\left(0^{j-1} 1 \mid 1\right), \tag{1.1}
\end{equation*}
$$

where 0^{j-1} denctes a sequence of $j-1$ zeroes. The error-gap distribution

$$
\begin{align*}
F(m+1) & =\sum_{j=m+1}^{\infty} p(j) \tag{1.2}\\
& =P\left(0^{m} \mid 1\right)
\end{align*}
$$

is the probability of at least m error-free bats foliowing an error. The parameters $p(j)$ and $F(m+1)$ are useful as well as $P(m, n)$.

The autocorrelation, $a(j)$, is the probability that the jth bit following an error is aiso an error; i.e.

$$
\begin{equation*}
a(j)=\left(x^{j-1} 1 / 1\right) \tag{1.3}
\end{equation*}
$$

where x^{i} denotes an arbitrary sequance of length i.
The term "error burst" plays a useful role in error analysis even though no generally accepted definition seems to exist. Intuitively an error burst is identified as a sequence beginning and ending with an error with relatively large gaps in either side of it compared to the gaps within the burst. The notation $B(m, n)$ will be used to designate the probability of an error bursc of length m in a sequence of n bits.

The probability that m - 1 errors occur in the $n-1$ bits following an error is denoted $R(m, n)$. A related starisific of interest is the probability of $m-1$ errors in the $n-1$ bits following an error with the (m-1)th error in the ($n-1$)st bit. The notation $S(m, n)$ will be used for this statistic.

The more important of these basic parameters are evaluated for certain specific models and are plotted in Appendix I.

Renewal Channels: For a renewal channel (lengths of gaps independent) the probability of error patterns are easily computed. Let $B\left(d_{1}, d_{2}, \ldots, d_{m+1}\right)=B(\vec{d})$ correspond to an error pattern consisting of n consecutive bits containing merrors where there are d_{i} zeroes before the ith error and $\mathrm{d}_{\mathrm{m}+1}$ zeroes after the last error. The probability of this pattern is expressed as

$$
\begin{align*}
P^{\Gamma} P(\vec{d})^{\urcorner} & =P\left(0^{d} 1\right) \cdot \prod_{i=2}^{m} P\left(0^{d_{i}} 1!1\right) \cdot P\left(0^{d_{m+1}} \mid 1\right) \tag{1.4}\\
& =P(1) F\left(d_{1}+1\right) \prod_{i=2}^{m} p\left(d_{i}+1\right) F\left(d_{m+1}+1\right) .
\end{align*}
$$

Eliiot [2]

$$
\begin{align*}
& \text { proceeds to establish } \\
& P(m, n)=\sum_{j=1}^{n-m+1} P(1) I(j) R(m, n-j+1), 1 \leq m \leq n_{n} \tag{1.5}
\end{align*}
$$

and

$$
R(m, n)= \begin{cases}F(n) & m=1, n \geq 1 \tag{1.6}\\ \sum_{j=1}^{n-m+1} p(j) R(m-1, n-j) & 2 \leq n \leq n, n \geq 2 .\end{cases}
$$

Alternatively, for renewal channels, the autocorrelation, $a(j)$, of the bit errors can be used to specify the channel. Elliott [2] determines $a(j)$ by the recursion

$$
a(j)=\left\{\begin{array}{lll}
1 & j=0 \tag{1.7}\\
p(1) & j=1 \\
p(j)+\sum_{s=1}^{j-1} p(s) a(j-s) & j>1
\end{array} .\right.
$$

The Binary Symetric Channel Model: The simplest renewal channel is the binary symmetric channel. The channel is a memoryless channel witi che probability of either type of error being given by q. It is straightforward to establish that

$$
\begin{align*}
& P(j)=q(1-q)^{j-1} \tag{1.8}\\
& F(m+1)=(1-q)^{m}, \tag{1.9}
\end{align*}
$$

and

$$
\begin{equation*}
P(n, n)=\binom{n}{\dot{m}} q^{m}(1-q)^{n-m} \tag{1.10}
\end{equation*}
$$

This channel is almost trivial to analyze. Unfortunately, it is seldom applicable to a physical communication system.

Pareto Model [10]: Berger and Mandelbrot proposed a renewal model with the error gap distribution given by the Pareto distribution

$$
\begin{equation*}
F(m)=1 / m^{\delta}, \tag{1.11}
\end{equation*}
$$

where δ is a positive constant less than 1 . Since

$$
\begin{equation*}
\sum_{\mathrm{m}} F(\mathrm{~m})=\infty \tag{1.12}
\end{equation*}
$$

the channel model does not have finite recurrence times; i.e. the average number of symbols between two errors is infinite. This problem is resolved by letting δ rake on a new constant value greater than unity at sons value $m=m^{*}$. The value of δ for $m<m^{*}$ and the value of m^{*} are the parameters of the model.

The more common application of the model is to consider two truncation parameters, $m_{火}$ and m^{*}. In this study, the error gap distribution was chosen to be of the form

$$
F(m)= \begin{cases}1 & , m=0 \tag{1.13}\\ \left(\frac{L^{\alpha}}{L^{\alpha}-1}\right) & {\left[\frac{1}{m^{\alpha}}-\frac{1}{L^{\alpha}}\right], 1 \leq m \leq L .} \\ 0, m>L\end{cases}
$$

where

$$
L=\left[\begin{array}{cc}
\frac{1-\alpha}{\alpha} & (E(n)+1) \tag{1.14}
\end{array}\right] \frac{1}{1-\alpha}
$$

and $E(n)$ is the average gap length given by

$$
\begin{equation*}
E(n)=\frac{\alpha}{I-\alpha} L^{1-\alpha}-1 . \tag{1.15}
\end{equation*}
$$

Gilbert Cnannel Model [4]: The chamel model proposed by Gilbert onnsists of a two-state first-order Markov chain composed of a good state C_{1} and a bad state C_{2}. The good state is error free; the bad state has error probability 5 . The state transitions occur synchronously with the transmission of the input symbols according to the state transition probabilities

$$
\begin{equation*}
t_{i j}=P\left(C_{i} \rightarrow C_{j}\right) \tag{1.16}
\end{equation*}
$$

The process is assumed to be stationary.
The Gilbert model can be transformed into a three-state first-order Markov chain composed of two error-free states C_{1}^{\prime} and C_{2}^{\prime} and an error state C_{3}^{\prime} with the transition matrix
$T^{\prime}=\left[\begin{array}{lll}t_{11} & (1-\delta) t_{12} & \delta t_{12} \\ t_{21} & (1-\delta) t_{22} & \delta t_{22} \\ t_{21} & (1-\delta) t_{22} & \delta t_{22}\end{array}\right]$

A generalization of this chammel mociel is the Fritchman model discussed below.

Fritchman Channel Model [3]: The channel moatl proposed by Fritchman consists of an N-state Markov chan whose state space is partioned into two groups of states. The first K states are error-free and the last N-K states are error states. The state transitions occur synchronoisly with the transmission of the input symbols according to the state transition probabilities

$$
\begin{equation*}
t_{i j}=p\left(c_{i} \rightarrow c_{j}\right) \tag{1.18}
\end{equation*}
$$

The process is assumed to be stationary.
The error process $\left\{e_{t}\right\}$ is generated as follows: Partition the N states into the two subsets

$$
\begin{equation*}
A=C_{1}, C_{2}, \ldots, C_{k} J \tag{1.19}
\end{equation*}
$$

and

$$
\begin{equation*}
B=C_{k+1}, \cdots, C_{N J} \tag{1.20}
\end{equation*}
$$

Let $\left\{{ }^{2}\right\}$ denote the state process. Define

$$
\phi\left(c_{i}\right)= \begin{cases}0 & c_{i} \in A \tag{1.21}\\ 1 & c_{i} \in B\end{cases}
$$

The process is defined by

$$
\begin{equation*}
e_{t}=\phi\left(z_{t}\right) \tag{1.22}
\end{equation*}
$$

The transition matrix $T_{A}=\left\{t_{i j}^{A}\right\}$ among the A states is assumed to be similar to a diegonal matrix with

$$
\begin{equation*}
L^{(i)}=\left(\ell_{1}^{(i)}, \ldots, \ell_{K}^{(i)}\right), 1 \leq i \leq K, \tag{1.23}
\end{equation*}
$$

and

$$
\begin{equation*}
R^{(i)}=\left(r_{i}^{(i)}, \ldots, r_{K}^{(i)}\right), 1 \leq i \leq k \tag{1.24}
\end{equation*}
$$

corresponding to the left and right eigenvectors of T_{A} for the eigenvalue λ_{i}. The m-step transition protabilities may be expressed as

$$
\begin{equation*}
t_{i, j}(m)=\sum_{k=1}^{N} a_{k} r_{i}^{(k)} \ell_{j}^{(k)} \lambda_{k}^{m} \tag{1.25}
\end{equation*}
$$

where

$$
a_{k}=\left[\sum_{i=1}^{K} r_{i}^{(k)} \ell_{i}^{(k)}\right]^{-1}
$$

Fritchman proceeds to e:tablish that the error-gap distribution is given by

$$
\begin{equation*}
F(m+1)=\sum_{i=1}^{K} f_{m}(i) \lambda_{i}^{m} \tag{1.26}
\end{equation*}
$$

where

The μ_{j} correspond to the steady-state probabilities of the channel states c_{j} 。

If the transition matrix $T_{B}=t_{i j}^{B}$, among the B states is assumed to be similas to a diagonal matrix with

$$
\begin{equation*}
L^{(i)}=\left(\ell_{K+1}^{(i)}, \ldots, \ell_{N}^{(i)}\right), K+l \leq i \leq N, \tag{1.28}
\end{equation*}
$$

and

$$
\begin{equation*}
R^{(i)}=\left(r_{K+1}^{(i)}, \ldots, r_{i}^{(i)}\right)=K+1 \leq i \leq N, \tag{1.29}
\end{equation*}
$$

corresponding to the left and right eigenvectors of T_{B} for the eigenvalue ${ }^{\prime}+$, then the error-cluster discribution may be expreased as

$$
\begin{equation*}
P\left(I^{m} \mid 0\right)=\sum_{i=K+1}^{N} f_{m}(i) \lambda_{i}^{m-1} \tag{1.30}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{m}(i)=\left(\frac{a_{i}}{\lambda_{i}}\right) \frac{\sum_{j=1}^{K} \sum_{\ell=K+1}^{N} \sum_{n=K+1}^{N} H_{j} t_{j \ell} r_{l}^{(i)} \ell_{m}^{(i)}}{\sum_{j=1}^{K} H_{j}} \tag{1.31}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{k}=\left[\sum_{i=k!i}^{N} \quad r_{i}^{(k)} i_{i}^{(k)}\right]^{-1} \tag{1.32}
\end{equation*}
$$

Tsai Channel Model: Fritchman [31] identifics a special case of hys general model consisting of $K=N-1$ error-free states and a single error
 has a zransition matrix given ty

Note that there are no transitions between the error-free states. The state transitions occur synchronously with the transmitted bits.

It follow directly from Fritchman's model that the error-gap
distribution is given by

$$
\begin{equation*}
F(m+1)=\sum_{k=1}^{N-1} t_{N k}\left(t_{k k}\right)^{m-1}, \quad m \geq 1 \tag{1.34}
\end{equation*}
$$

The error-gap mass density function is given by

$$
\begin{align*}
& p(j)=F(j)-F(j+1) \\
& = \begin{cases}t_{N N} & j=1 \\
\sum_{k=1}^{N-1} t_{N k} t_{k k}^{j-2} t_{k N} & j \geq 2\end{cases} \tag{1.35}
\end{align*}
$$

Tsai uses an error burst defined by Brayer [24] as a sequence:

1. beginning and ending with an error,
2. the ratio of the number of errors to the number of digits larger than or equal to a specified number δ,
3. if the inclusion of the next error keeps the ratio above the specified number δ, the burst is continued; otherwise the burst ends, and
4. not beginning with an error belonging to the prevjous burst.

A burst interval is the region between two bursts. Obviously, the length of an error burst and the burst interval will be affected by the choice of δ.

The probability of a burat of length m with n errors, $B_{n}(m)$, is calculated as following: Let $S(n, m)$ be the probability of a sequence of m digits with n errors satisfying $m_{1}=1, n_{n}=m$, and

$$
\frac{i}{m_{i}} \geq \delta, \quad 1 \leq i \leq n,
$$

where m_{i} is the length up to the ith. Exror. It follows that

$$
S(n, m)= \begin{cases}p(m-1) & 1:=2, m \geq 2 \tag{1.36}\\ \\ \min \left\{\frac{n-1}{5}, m-1\right\} & n>2,2 \leq m \leq 2 / 8\end{cases}
$$

where fractions are to be taken as the largest integer less than the fraction. Thus,

$$
\begin{equation*}
B_{n}(m)=S(n, m) \operatorname{Pr}\left\{m_{n+1}>(n+1) / \delta\right\} \tag{1.37}
\end{equation*}
$$

where the fraction is to be taken as the integer greater than the fraction. Noting that

$$
\begin{align*}
\operatorname{Pr}\left\{\mathrm{m}_{n \div 1}>(n+1) / \delta\right\} & =\operatorname{Pr}\left\{\left\{_{n+1}-n>(n+1) / \delta-m\right\}\right. \\
& \left.=F_{[}^{r}(n+1) / \varepsilon-m^{7}\right] \tag{1.38}
\end{align*}
$$

one concludes

$$
\begin{equation*}
B_{n}(m)=S(n, m) F_{1}^{r}(n+1) \delta-m, \quad n \geq 2 \tag{1.39}
\end{equation*}
$$

For $\mathfrak{n}=1$, a burst consists of a single error. Hence,

$$
\begin{equation*}
B_{1}(1)=F[(n+1) \delta-1] \quad, \quad n=1 \tag{1.40}
\end{equation*}
$$

The probability, $B(\mathbb{m})$, of a burst of length m is given by

$$
\begin{align*}
B(m) & =\sum_{n=m \delta}^{m} B_{n}(m) \tag{1.41}\\
& =\sum_{n=m, \delta}^{m} S(n, m) \Gamma[(n+1) \delta-1]
\end{align*}
$$

since $n / \pi_{n} \geq \delta$ by definition of burst.
Slowly Spreading Markov Chain Model [5]: This channel model, suggested by Adoul, is an extension of the Fritchman model to a denumerably infinitestate Markov chain (slowly spreading Markov chain). Let $\left\{z_{n}\right\}$ denote the state process. The error sequence $\left\{e_{n}\right\}$ is defined by

$$
e_{n}= \begin{cases}1 & z_{n}=0 \tag{1.42}\\ 0 & z_{n} \neq 0\end{cases}
$$

The state-transition piobabilities are given by

$$
t_{i j}= \begin{cases}q_{i} & j=0 \tag{1.43}\\ p_{i} & j=i+1 \\ 0 & \text { otherwise }\end{cases}
$$

The state transitions are assumed to occur synchronously with the transmitted symbols.

It is obvious that for this mod ${ }^{7}$, the error-gap distribution is given by

$$
\begin{equation*}
F(m+1)=\prod_{k=1}^{m} P_{k} \tag{1.44}
\end{equation*}
$$

and the error-gap mass density function is giver by

$$
\begin{equation*}
p(j)=q_{j} \prod_{k=i}^{j-1} p_{k} . \tag{1.45}
\end{equation*}
$$

This model allows a very general specification of a renewal process. The only constraint is that the error state must be recurrent; i.e. the probability of eventually returning is unity. The return to the error state can take a very large number of transitions. The expected or average number of states for the first return to the error state is

$$
E\left[G_{n}\right]=\sum_{j=1}^{\infty} j p(j)
$$

$$
\begin{equation*}
=\sum_{j=1}^{\infty} j[F(j)-F(j+1)] \tag{1.46}
\end{equation*}
$$

$$
=\sum_{j=1}^{\infty} F(j)
$$

Hence, the specification is arbitrary up to the constraint.

$$
\sum_{j=1}^{\infty} F(j)<\infty
$$

Munter and Wolf Channel Model [13]: The model proposed by Munter and Wolf consists of combining M renewal channels in such a manner that the resulting composite channel is not itself a renewal process. Specificaliy, the error bits occurring in a time interral $n_{0}+\ell N, n_{0}+(\ell+1) N-1$, are generated by a renewal process (channel) C_{i} with probability λ_{i}. At time $n_{0}+(\ell+1) N$ a new renewal prosess C_{j} is chosen with probability λ_{j}, independently of the previous renewal processes. The error bits occurring in the time interval $n_{0}+(\ell+1) N, n_{0}+(i+2) N-1 j$ are generated by the renewal process C_{j}. In general, a new renewal process is selected every N samples, independently of the previous choices. The startine time n_{0} is equally likely to be $0,1, \ldots, N-1$.

The autocorrelation, $a(j)$, of the errors is given by

$$
\begin{equation*}
a(j)=\frac{\sum_{i=1}^{M} \lambda_{i} P_{i}(1) \frac{\Gamma \frac{N-j}{N} a_{i}(j)+\frac{j}{N} \sum_{i=1}^{M} \lambda_{\beta_{2}} P_{i}(1) 7}{\sum_{i=1}^{M} \lambda_{i} P_{i}(1)}, 0 \leq j \leq N_{2}, 0}{} \tag{1.47}
\end{equation*}
$$

where

$$
a_{i}(j)=\text { error autocorrelation for } C_{i}
$$

and

$$
P_{i}(1)=\text { probability of bit error for } C_{i}
$$

The derivation is based on the assumption that at each channel selection time, $n_{0}+\ell N$, a new error sequence begins independent of the proceeding,
error sequences; i.e. even if the same renewal process remains in effect, the new error sequence is independent f the previous one. This assumption can be relaxed such that if the same process remains in effect, the new error sequence is a contiruation of the preceeding process. The resultang autocorrelation is

$$
\begin{aligned}
& a(j)=\frac{\sum_{i=1}^{M} \lambda_{i} P_{i}(1) \Gamma_{i}\left(\frac{N-i}{N}+\frac{j}{T} a_{i}(j)+\frac{j}{N} \sum_{\substack{=1=1 \\
j}}^{M} \lambda_{\ell} P_{\ell}(1){ }^{?}\right]}{M}, 0 \leq j \leq N . \\
& \sum_{i=1}^{M} \lambda_{i} P_{i}(1)
\end{aligned}
$$

BLank and Trafton Channel Model [14]: Blank and Trafton consider a generalization of Elliott's renewal channel roodel for which the error process is characterized by an n-state m-th order Markov error-state model with each error state consisting of a renewal error process. The state of the chanal is allowed to change onfy when an error occurs. The renewal processess are re-initialized ar that time. The composite channel is non-xenewal, in general. An anaiysis of this model is given in the reference cited. Generalized Gilbert Channel Model, 「1]: The gencralized Giloert channel model consists of a two-state first-orier Markov chain. Each state (channel) is citaracterized as a binary symmetric cnannel witn error probability g_{i}; $i=1$, 2. The state transitions occur synchronousiy with the trarsmitted bits. The state transition matrix is given by $T=t_{i j}$; , where $t_{i j}$ denotes the probability of moving to state C_{j} from C_{i}. The characteristics of this model may be obtained from the analysis of the Chien-Haddad model which is a generalization of this model.

Chien-Haddad Model [9]: The channel model proposed by cinien, at. al. consists of an N state first-order Markov process. Corresponding to each state C_{i}, the channel is characterized by a binary sumetric channei with error probability q_{i}. The state-transition protabilities are given by

$$
t_{i j}=\operatorname{Pr}\left[C_{i} \rightarrow C_{j}\right.
$$

with the transitions occuring synchronously with the trarsmitted symiols. The steady-state probabilities $i_{i j} j$ are given as the elements of the verior π satisfying

$$
\pi \mathrm{T}=\pi
$$

To establish the error-gap discribution proceed as follows: Note that

$$
F(m+1)=?\left(0^{m} ; 1\right)
$$

$$
\begin{equation*}
=\sum_{k} \sum_{j} \operatorname{Pr}\left\{0^{m}, \text { last state } C_{2}, \text { one in state } c_{k}\right\} P\left\{C_{5} \mid 1\right\} \tag{1.49}
\end{equation*}
$$

$$
\left.=\frac{1}{P(1)} \sum_{k} \sum_{l} P_{r}\left\{0^{m}, \text { last state } C_{l} \mid x \text { in state } C_{k}\right\} \Gamma_{k}\right\}_{k}
$$

where

$$
\begin{equation*}
P(1)=\sum_{i=1}^{N} \pi_{i} q_{i} \tag{1.j0}
\end{equation*}
$$

Define

$$
\begin{equation*}
Q_{k \ell}(m)=\operatorname{Pr}_{[} 0^{m}, \text { last a fate } C_{\ell}!x \text { in staie } C_{k!} \tag{1.51}
\end{equation*}
$$

Note tnat

$$
\begin{equation*}
Q_{k!}(m)=\Gamma_{j} t_{k j}\left(1-q_{j}\right) o_{j},(n-1) \tag{1.52}
\end{equation*}
$$

In matrix notation

$$
\begin{equation*}
Q(m\rangle=\operatorname{mol}(m-1) \tag{1.53}
\end{equation*}
$$

writ $0(\%)=:$, where

$$
\begin{aligned}
& Q(: I)=\left\{Q_{i j}(i:)\right\} \\
& I=T^{\prime} I-i(q) \vdots \\
& \left.I=\ddots_{i}, \ldots, q_{i}\right),
\end{aligned}
$$

and $\Delta(q)$ correanyuls to the diagona; matrix whose diagoalal elements are the elements of the vector q. Hence,

$$
\begin{equation*}
Q(m)=D^{n} \tag{1,54}
\end{equation*}
$$

and

$$
\begin{align*}
F(\cdots+2) & =\frac{1}{\rho(1)} \sum_{k=1}^{N} \sum_{2=1}^{N}{ }_{2} q_{k} q_{k} Q_{k j}(m) \tag{?..5}\\
& =\frac{1}{P(1)}=\Delta(q) D^{21} e^{\prime}
\end{align*}
$$

Where e^{-}denotes the transpose of che vector

$$
e=(1, \ldots, 1)
$$

In terms of the eigenvalues λ_{i} of D,

$$
\begin{equation*}
F(m+1)=\frac{1}{P(1)} \sum_{i=1}^{n} a_{i} \lambda_{i}^{n} \tag{1.56}
\end{equation*}
$$

where

$$
a_{i}=i: \therefore(q) B(i) e^{\prime},
$$

and

$$
\begin{equation*}
[I-20]_{i}^{-1}=\sum_{i=1}^{N} B(i)\left(1-\lambda_{i} z\right)^{-1} \tag{1.57}
\end{equation*}
$$

Note that the form of the error-gap distribution is equivalent to the Isai channel model. However, the deceminztion of the parameters $\left\{a_{i}\right\}$ and $\left\{\lambda_{i}\right\}$ are not sufficient to uniquely characterize this model since it does not correspond to a renewal model. The Tsai channel model can be obtained as a special case of this model if the only non-zero elements of T are $t_{i j}, t_{i M}$, and $t_{M i}$ together with $q_{i}=0,1 \leqslant i \leqslant N-1$, and $q_{N}=1$.

The unique characterization of the Chien-Haddad channel model depends on determining the higher order statistics of the gap process $\left\{\begin{array}{c}\mathrm{G}\end{array}\right\}$. Designate

$$
\begin{equation*}
\left.F(m+1 ; n+1)=\operatorname{Pr}^{\{ } G_{i+1} \geq m+1, G_{i}=n+1\right\} \tag{1.58}
\end{equation*}
$$

A similar derivation to the preceeding one yields

$$
\begin{align*}
F(m \dot{r} 1 ; n+1) & =\frac{1}{P(1)} \pi \Delta(q) D^{n} T \Delta(q) D^{m} e^{\prime} \tag{1.59}\\
& =-\frac{1}{P(1)} \sum_{i=1}^{N} \sum_{j=1}^{N} a_{i j} \lambda_{i}^{n} \lambda_{j}^{m}
\end{align*}
$$

where

$$
z_{i j}=\pi C(q) B(i) T A(q) B(j) e^{\prime}
$$

The conditional error-gap distribution is given by

$$
\begin{aligned}
F(n+1 \mid n+1) & =\frac{F(n \div 1 ; n+1)}{F(n \div 1)-F(n+2)} \\
& =\frac{\sum_{i=1}^{N} \sum_{i=1}^{N} a_{i j} \lambda_{i}^{n} \lambda_{j}^{m}}{\sum_{i=1}^{n} a_{i} \lambda_{j}^{n}\left(1-\lambda_{i}\right)}
\end{aligned}
$$

$$
=\sum_{j=1}^{N} a_{j}(n) n_{j}^{n}
$$

where

$$
a_{j}(n)=\frac{\sum_{i} a_{i j} \lambda_{i}^{n}}{\sum_{i} a_{i}\left(1-\lambda_{i}\right) \lambda_{i}^{n}}
$$

The quantily $P(m, n)$ can be computed for the Chien-Haddad model using a recursion relation which is now given. The probability $\mathrm{P}(\mathrm{m}, \mathrm{n})$ is given by

$$
P(m, n)=\sum_{i} P_{i}(m, n)
$$

where the sum exteads cuer the states, C_{i}, of the model and

$$
\begin{aligned}
P_{i}(m, n)= & P\{m \text { errors in a block of length } n, \text { last } \\
& \text { bit is from } \left.C_{i}\right\} .
\end{aligned}
$$

The quantity $P_{1}(m, n)$ is then expressed as

$$
\begin{gather*}
P_{i}(m, n)=\sum_{j=1}^{N} \sum_{j}(m-1, n-1) t_{j i} q_{i}+P_{j}(m, n-1) \tag{1.61}\\
\left.t_{j i}\left(1-q_{i}\right)\right]
\end{gather*}
$$

with the initial condition

$$
\begin{aligned}
& P_{j}(0,1)=\left(1-q_{j}\right) \pi_{j} \\
& P_{j}(1,1)=q_{j} \Gamma_{j},
\end{aligned}
$$

The result can be expressed in matrix form by defining a vector $P(m, n)$ as

$$
\begin{align*}
\underline{P}(m, n) & =\left[P_{1}(m, n), P_{2}(m, n), \ldots, P_{N}(m, n)\right] \tag{1.62}\\
& =\underline{P}(m-1, n-1) T \Delta(q)+\underline{P}(m, n-1) T[I-\Delta(q)]
\end{align*}
$$

The probability $P(m, n)$ is then given by

$$
\begin{equation*}
P(m, n)=\underline{P}(m, n) e^{\prime} \tag{1.63}
\end{equation*}
$$

where

$$
\underline{P}(0, n)=\pi D^{n}, \quad n \geq 0 .
$$

The result for computing $B(b, N)^{\dagger}$ is given in matrix notation as

$$
\begin{equation*}
B(b, N)=\Pi \sum_{d=0}^{N-b} D^{d} R(b) D^{N-b-d} e^{\prime} \tag{1.64}
\end{equation*}
$$

where

$$
\begin{aligned}
& R(b)=T \Delta(q) T^{b-1} \Delta(q) \\
& B(0, N)=\pi D^{N} e^{\prime} .
\end{aligned}
$$

A useful summary of the channel models is given by the state transition diagrams of Figure 1.2 for renewal models and Figure 1.3 for nonrenewal models.

An "error burst" is defined here as starting with an error and ending
with an error.

Gilbert Model

Tsai Model (Special Case of Fritchman Model)

Spreading Markov Model

Figure 1.2. Special Cases of pe sal Models

Generalized Gilbert Model

Chien-Haddad Model

Fritchman Model

Figure 1.3. Special Cases of Nonrenewal Models

b. Metching of Channel Models to

Experimental Data

Most of the authors listed in the previous section have made an attempt to match their channel models to empiracal data taken from real channels. For example, Elliott [1], [2], Gilbart [4] and Munter and Wolf [13] work with data for switched telephone networks such as presented by Townsend and Watts [22]. Tsai [7], [8], and Fritchman [3] use data for HF channels and Chien et.al. [9] and Tsai [6] treat troposcatter channels.

Possibly the most thorough study concerned with matching channel models to real channel data has been conducted by Brayer [23], [24], [25], [26] who considers HF , troposcatter, satellite and wireline channels. Extensive empirical data for troposcatter channels is analyzed by Chien et.al. [27].

As a concise summary of the literature, it can be stated that wireline and HF channels have the characteristics of renewal models and hence can be modeled with good accuracy. Troposcatter channels are definitely not renewal in nature. For these channels the modeling problem is much more complicated and the choice of good models seems to ve still an open question. The remainder of this section will discuss techniques for matching, channel models to experimental data.

Renewal channel models have the tractable property that a first order statistic such as the error gap distribution, $F(m+1)$, completeiy defines the mocel. For many renewal channels, the model paxameters $\left.\boldsymbol{t}_{\mathrm{i} j}\right\}$ can be obtained by fitting the function

$$
\sum_{k=1}^{N-1} a_{k} \lambda_{k}^{m}
$$

to the experimentally measured error-gap distribution $F(m+1)$. The model parameters are found from

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{kk}}=1-\mathrm{t}_{\mathrm{kN}}=\lambda_{\mathrm{k}}, 1 \leq \mathrm{k} \leq \mathrm{N}-1, \\
& \mathrm{t}_{\mathrm{Nk}}=\mathrm{a}_{\mathrm{k}} \lambda_{\mathrm{k}}, 1 \leq \mathrm{k} \leq \mathrm{N}-1,
\end{aligned}
$$

and

$$
\begin{equation*}
t_{N}=1-\sum_{k=1}^{N-1} t_{N k} \tag{1.66}
\end{equation*}
$$

The Munter and Wolf model [13] effectively consists of M renewal channels $C_{1}, C_{2} \ldots C_{i}, \ldots C_{n}$ and hence represents a more complicated channel than the renewal one. If the model is applied to codes with fixed block lengths much less than N, (recall that N determines the time spacing of the renewal process), ard the component channels have the same error rate, the error autocorrelation may be approximated by

$$
\begin{equation*}
a(j) \approx \sum_{i=1}^{M} \lambda_{i} a_{i}(j) \quad j \ll N \tag{1.67}
\end{equation*}
$$

for both channel models.
It is also possible to establish that

$$
\begin{equation*}
p(j) \approx \sum_{i=1}^{M} \lambda_{i} p_{i}(j), \quad j \ll N \tag{1.68}
\end{equation*}
$$

and

$$
\begin{equation*}
P(m, n) \approx \sum_{i=1}^{M} \lambda_{i} P_{i}(m, n), m(n-1) \ll N, \tag{1.69}
\end{equation*}
$$

where

$$
p_{i}(j)=\text { the error-gap mass-density function for } C_{i}
$$

and

$$
\begin{aligned}
\mathrm{P}_{\mathrm{i}}(\mathrm{~m}, \mathrm{n})= & \text { the probability that exactly } m \text { bit errors occur } \\
& \text { in a transmitted block of } n \text { bits for } C_{i} .
\end{aligned}
$$

The particular class of renewal channel used in these formula will depend upon the error data. Munter and Wolf [6] consider the Gilbert [9] renewal channel model in which

$$
\begin{equation*}
a_{i}(j)=\alpha_{i} K_{i}^{j}+P_{i}(1), \quad j \geq 1 \tag{1.70}
\end{equation*}
$$

Assuming that

$$
P_{i}(1) \ll{\underset{y}{i}}^{k_{i}^{j}}, \quad 1 \leq j \ll N
$$

and

$$
\frac{\alpha_{i} k_{i}}{1-k_{i}\left(1-\alpha_{i}\right)} \quad \approx 1
$$

it is shown that*

$$
\begin{equation*}
P_{i}(m, n)=P_{i}(1) \frac{\binom{n}{m} \alpha_{i}^{m+1} k_{i}^{n+1}\left(1-\alpha_{i}\right)^{n-m}}{\left[1-k_{i}\left(1-\alpha_{i}\right)\right]^{2}}, 1 \leq m \leq n \tag{1.71}
\end{equation*}
$$

The application of this model to actual data consists of the following steps:

[^1]1. Plut the experimentally measured error data $P(m, n) /\binom{n}{m}$, as a function of m for various values of n.
2. Approximate each curve by straightline segments parallel to one another for different values of n.
3. From the theoretical model, one has

$$
P(m, n) /\binom{n}{m}=\sum_{i=1}^{M} \lambda_{i} P_{i}(1) \frac{\alpha_{i}^{m+1} k_{i}^{n+1}\left(1-\alpha_{i}\right)^{n-m}}{\left[1-k_{i}\left(1-\alpha_{i}\right)\right]^{2}}
$$

Let $P_{i}(1)$ be the average error rate of the data. The ith set or straightline approximations are matched to the ith term in the summation. The slope of the ith approximation is

$$
\log \left[\alpha_{i} /\left(1-\alpha_{i}\right)\right] ;
$$

the vertical separation between the ilh approximations resulting from changing n by Δn is

$$
\Delta n \log \left[k_{i}\left(1-\alpha_{i}\right)\right] ;
$$

and the vertical positioning of the i th segments is specified by λ_{i}.
The Chien-Haddad model, which is one of the mos: general reviewed in this report, requires both first and second order statistics of the error process. Consider the problem of determining the model based on knowledge of $P(1), F(m+1)$, and $F(m+1 ; n+1)$ as defined in (1.58). Restrict attention to the case for which D is similar to a diagonal matrix; i.e.

$$
\begin{equation*}
D=M \Delta(\lambda) M^{-1} . \tag{1.72}
\end{equation*}
$$

Note that

$$
\begin{align*}
{[I-z D]^{-1} } & =M[I-z \Delta(\lambda)]^{-1} M^{-1} \\
& =\sum_{i=1}^{N} r_{i}^{\prime} u_{i}\left(1-\lambda_{i} z\right)^{-1} \tag{1.73}
\end{align*}
$$

where

$$
\begin{aligned}
& M=\left[\begin{array}{ll:l:l}
r_{1}^{\prime} & r_{2}^{\prime}: & \ldots & r_{N}^{\prime}
\end{array}\right], \\
& r_{i} \text { is the right eigenvector of } D \text { corresponding to } \lambda_{i} \text {, } \\
& M^{-1}=\left[\begin{array}{c}
u_{1} \\
\cdots-\cdots \\
u_{2} \\
\cdots-\cdots \\
\vdots \\
-\cdots \\
u_{N}
\end{array}\right] \\
& u_{i} \text { is the loft eigenvector of } D \text { corresponding to } \lambda_{i} \text {, }
\end{aligned}
$$

and

$$
u_{i} r_{j}^{\prime}=\delta_{i j}
$$

Hence,

$$
\begin{equation*}
B(i)=r_{i}^{\prime} u_{i} \tag{1.74}
\end{equation*}
$$

For convenience, normalize the eigenvectors \{r r_{i}^{\prime} \} such that ${ }^{\dagger}$

$$
M e^{\prime}=\sum_{i=1}^{N} r_{i}^{\prime}=e^{\prime}
$$

Note that

$$
e^{\prime}=M^{-1} M e^{\prime}=M^{-1} e^{\prime}
$$

Ore, therefore, has

$$
\begin{equation*}
F(m+1)=\frac{1}{P(1)} \sum_{i=1}^{N} a_{i} \lambda_{i}^{m} \tag{1.76}
\end{equation*}
$$

where

$$
a_{i}=\pi \Delta(q) r_{i}^{\prime} .
$$

Define the vector

$$
\begin{equation*}
a=\left(a_{1}, \ldots, a_{N}\right) \tag{1.77}
\end{equation*}
$$

Note that

$$
\begin{aligned}
a & =\pi \Delta(q) M \\
& =\pi T \Delta(q) M \\
& =\pi\left[T-M \Delta(\lambda) M^{-1}\right] M \\
& =\pi M-m M(\lambda) .
\end{aligned}
$$

The fact that this can be done is based on observing that the eigenvectors may be expressed as $r_{i}^{\prime}=c_{i} e_{i}^{\prime}$, where $e_{i} e_{i}^{\prime}=1$ and c_{i} is an arbitrary constant. Hence, $M e^{\prime}=\sum_{i=1}^{N} c_{i} e_{i}^{\prime}$. Moreover, the e_{i}^{\prime} forms a basis. Hence $e^{\prime}=\sum_{i=1}^{N} d_{i} e_{i}^{\prime}$. Therefore, choosing $c_{i}=d_{i}$ results in the appropriate normalization.

Similarly, for the foint error-gap distributior one obtains

$$
\begin{align*}
a_{i j} & =\pi \Delta(q) r_{i}^{\prime} u_{i} T \Delta(:) r_{j}^{\prime} \\
& =a_{i} u_{i} T \Delta(q) r_{j}^{\prime} . \tag{1.78}
\end{align*}
$$

Define the matrix

$$
\begin{align*}
A & =\left\{a_{i j}\right\} \\
& =A(\rho) \ddots^{-1} T \Delta(q) M \tag{1.79}
\end{align*}
$$

Observing that

$$
\begin{aligned}
T & =D[I-\Delta(q)]^{-1} \\
& =M \Delta(\lambda) M^{-1}[I-\Delta(q)]^{-1}
\end{aligned}
$$

enables one to express

$$
\begin{align*}
A & =\Delta(a) \Delta(\lambda) M^{-1}[I-\Delta(q)]^{-1} \Delta(q) M \\
& =\Delta(a) \Delta(\lambda) M^{-1}[I-\Delta(q)]^{-1} M-\Delta(a) \Delta(\lambda) \\
& =\Delta(a) B-\Delta(a) \Delta(\lambda), \tag{1.80}
\end{align*}
$$

where

$$
B=\Delta(\lambda) M^{-1}[I-\Delta(q)]^{-1} M
$$

Note that

$$
T H B=\pi T M
$$

$$
=\pi M
$$

and

$$
\begin{align*}
B e^{\prime} & =\Delta(\lambda) M^{-1}[I-\Delta(q)]^{-1} \\
& =M^{-1} M \Delta(\lambda) M^{-1}[I-\Delta(q)]^{-i} e^{\prime} \\
& =M^{-1} T e^{\prime} \\
& =M^{-1} e^{\prime} \\
& =e^{\prime} \tag{1.81}
\end{align*}
$$

These two relations are essentially constraint relations placed on the choice of M and B since they do not depend on the data. It is seen from above that

$$
\Delta(\lambda) M^{-1}[I-\Delta(q)]^{-1} e^{\prime}=e^{:}
$$

or, equivalently,

$$
\begin{equation*}
[I-\Delta(Q)]^{-1} e^{z}=M[\Delta(\lambda)]^{-1} e^{s} \tag{1.82}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\frac{1}{1-q_{i}}=\sum_{j=1}^{N} M_{i j} / \lambda_{j} \tag{i.s:}
\end{equation*}
$$

1) Measure $P(1)=\sum_{i=1}^{i} \prod_{i} q_{i}$
2) Measure $f(m+1)=\frac{1}{P(1)} \sum_{i=1}^{N} a_{i} \lambda_{i}^{m}$ or, equivalently, measure $P\left(0^{m} 1\right)=\sum_{i=1}^{N} a_{i} \lambda_{i}^{m}$. Fron these measurements
determine $\left\{a_{i}\right\}$ and $\left\{_{\lambda_{i}}\right\}$.
3) Measure $F(m+1 ; n+1)=\frac{1}{P(1)} \sum_{i=1}^{N} \sum_{j=1}^{N} a_{i j} \lambda_{i}^{n} \lambda_{j}^{m}$
for a set of at least $N(N-1)$ different values of m and n and use the constraint relation $B e^{\prime}=e^{\prime}$ to obtain a set of linear equations for B (or A).
4) Obtain the model matrix M and the vector q from

$$
[\Delta(\lambda)]^{-1} B=M^{-1}[I-\Delta(q)]^{-1} M
$$

and

$$
M e^{\prime}=e^{\prime}
$$

5) Obtain the vector \rightarrow from $P(1)=\sum_{i=1}^{N} \pi_{i} \eta_{i}$.

Note that Step 3 may be replaced by measuring

$$
\begin{equation*}
F(m+1 \mid n+1)=\sum_{j=1}^{N} a_{j}(n) \lambda_{j}^{m} \tag{1.84}
\end{equation*}
$$

for at least $\mathrm{N}-1$ values of n to determine the values of

$$
\begin{aligned}
& a(n)=\left(a_{1}(n), \ldots, a_{N}(n)\right) \\
& =\frac{e[\Delta(\lambda)]^{n} A}{e \Delta(a)[I-\Delta(\lambda)][\Delta(\lambda)]^{n} e^{\prime}}
\end{aligned}
$$

for $n=n_{1}, n_{2}, \ldots, n_{N-1}$. Solve for A using the constraint $B e^{\prime}=e^{\prime}$. Another usefal substitution for Step 3 is to measure

$$
\begin{align*}
F\left(m+1 \mid n_{j} \leq n \leq n_{j+1}\right) & =\sum_{n=n_{j}}^{n_{j+1}} F(m+1 ; n+1)\left[F\left(n_{j}+1\right)-F\left(n_{j+1}+1\right)\right]^{-1} \\
& =\sum_{i=1}^{N} a_{i}\left(n_{j}, n_{j+1}\right) \lambda_{i}^{m} \tag{1.85}
\end{align*}
$$

where

$$
\begin{align*}
a_{i}\left(n_{j}, j_{n+1}\right) & \left.=\sum_{n=n_{j}}^{\sum_{j+1}^{-1}} \frac{\sum_{k} \sum_{k} a_{k} l^{\lambda_{k}^{n}}}{\sum_{k} a_{k}\left(\lambda_{k}^{n}-\lambda_{k}^{n} j+1\right.}\right) \\
& =\sum_{n=n}^{n_{j+1}-1} \tag{1.86}
\end{align*} \frac{e[\Delta(\lambda)]^{n} A}{e \Delta(a)\left\{[\Delta(\lambda)]^{n_{j}}-[\Delta(\lambda)]^{n_{j+1}}\right\}} .
$$

The procedure for using this approach is the same as in Step 3.

(c) Propercies of Error Derecting Codes

A number of texts such as Peterson [17] and Liu [18] discuss basic properties of error detecting codes. However, the main thrust of these texts, and, in fact, of recent work in coding theory, seems to be the study of error correcting, rather than error detecting, codes. Although tractable relations between the error detecting and error correcting properties of codes are weli known, a good error correcting code is not necessarily a good error detecting code.

Only a few papers devoted to error detecting codes, such as those by Corr [19] and by Peterson [20], were found in the review of the literature. Whereas synthesis procedures were found for error correcting codes, none could be found for error detecting codes.

This section of the report sumarizes material from the literature, (principally Peterson [17j and i,iu : 18]), pertaining to basic properties of error detecting codes which are gernane to the remainder of the study. Attention is restricted to linear, binary, cyclic, block codes.

In the present context an encoder maps a sequence of binary message digits into a sequence of binary code digits. The message and its code word image both have fixed lengths for the type of codes being considered and hence they can be regarded as vectors. Consider a message vector of k digits. A code vector of n digits is formed to correspond to each message vector. The code vector can be constructed in a "systematic form" consisting of the k message digits preceeded (or followed) by $n-k$ redundant digits. The problem of code design amounts to finding an algorithm for choosing the $n-k$ redundant digits in the code vector so that error detection, or error correction, is carried out with the smallest possible probability of error.

In the study of linear binary cyclic ondes it is convenient to treat the components of code and messays: vectors as coefficients of a polynomial. This results in a one-to-one correspondence between, for example, a code vector v and a code polynomial $\mathrm{V}(\mathrm{X})$ as given by

$$
\begin{equation*}
v=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right) \Leftrightarrow v(x)=v_{0}+v_{1} x+\ldots+v_{n-1} x^{n-1} \tag{1.87}
\end{equation*}
$$

A similar correspondence is set up for message vectors. Using this artifice, it is possible to investigate the structure of codes through a study of appropriate binary polynomials.

Some of the more important properties of codes, with respect to the present study, will be summarized below in terms of these binary polynomials. Proofs of the properties will be found in the references, particularly [18] and [20].

Every code polynomial $V(X)$ in a (n, k) cyclic code can be expressed as

$$
\begin{equation*}
V(X)=M(X) g(X) \tag{1.88}
\end{equation*}
$$

where

$$
\begin{equation*}
M(x)=m_{0}+m_{1} x+\ldots+m_{k-1} x^{k-1} \tag{1.89}
\end{equation*}
$$

can be the message polyncmial and

$$
\begin{equation*}
g(x)=1+g_{1} x+g_{2} x^{2}+\ldots+g_{n-k-1} x^{m-k-1}+x^{n-k} \tag{1.90}
\end{equation*}
$$

is termed a "code generator" polynomial.
In a (n, k) cyclic code there exists one and only one generator polynomial, $g(\%)$ of degree $n-k$. (The degree of a polynomial is the largest power of X in a term with a nonxero coeff:cient.) Every code
polynomial, $V(X)$, is a multiple of $g(X)$ and every polynomial oi degree r - 1 or less which is a muitiple of $g(X)$ must be a code polynomiai. Therefore the code is completely specified by the generator polymomial, $g(X)$.

If $a(X), b(X)$ and $c(X)$ are ?olynomials and

$$
a(X) b(X)=c(X),
$$

then $a(X)$ and $b(X)$ are said to be "factors" of $c(X)$ or $c(X)$ is divisible by $a(X)$ and $b(X)$. A polynomial $p(X)$ of degree n greater than 0 winich is not divisible by any polynomial of degree less than n is called "irreducible."

The generator polynomial of $a(n, k)$ cyclic code is a factor of $x^{n}+1$, i.e.

$$
\begin{equation*}
x^{n}+1=g(x) h(x) \tag{1.91}
\end{equation*}
$$

Converse!y, if $g(X)$ is a polynomial of degree $n-k$ and is a factor of $x^{n}+1$, then it generates a (n, k) cyclic code.

An irreducible binary polynomial of degree m is "primitive" if and only if it devides $x^{n}+1$ for n no less than 2^{m} - 1 . Thus a primitive polynomial of degree $n-x$ will divide $x^{n}+1$ for no less than $2^{n-k}-1$ and hence generates a code of length at least $2^{n-k}-1$. A code generated by a primitive polynomiel is called a Hamming code.

The class, $[V]$, of code vectors for a binary, cyclic (n, k) code generated by $g(x)$ l.as the properties:

$$
\begin{aligned}
& \text { i. iv\} contains the zero vector } \\
& \text { ii. V\} contains the sum of any two vectors in }\{v\} \\
& \text { iii. if } v_{1}=\left(v_{0}, \ldots, v_{n}\right) \text { is in }\{v j \text { then so is } \\
& \quad v_{2}=\left(v_{n-\ell}, \ldots, v_{0}, \ldots, v_{n-l-1}\right) \text { for } \ell=1,2, \ldots, n .
\end{aligned}
$$

Code vectors can be expressed in the systematis form

$$
\begin{equation*}
V(x)=R(x)+x^{n-k} M(x) \tag{1.92}
\end{equation*}
$$

Since, $V(X)=g(X) Q(X),(1.92)$ can be written as

$$
\begin{equation*}
g(X) Q(X)=R(X)+X^{n-k} M(X) \tag{1.93}
\end{equation*}
$$

showing tka: $?(X)$ can be constructed as the remainder resulting from the division of $X^{n-k} M(X)$ by $g(X)$. Note that the vector corresponding to the polynomial of (1.92) is

$$
\begin{equation*}
v(X) \oplus v=\left(v_{0}, v_{1}, \ldots v_{n-k-1}, m_{0}, m_{1}, \ldots m_{k-1}\right) \tag{1.94}
\end{equation*}
$$

the systematic form of the code vecior with $n-k$ check bits, v_{i}, folloved by k message bits, m_{i}.

Non
A "shortened" code results if all the code vectors having z higher order information digits equal to zero (i.e. $m_{k-1}=m_{k-2}=m_{k-2-n}=0$) are deleted from $\{V\}$. The resilt is a linear ($n-z, k-z$) code which is not cyclic. Note that the code vector set of the shortened code is \{V\} with some code vectors deleted.

Let the received code vector after transmission through some channel be denoted $W(X)$. Then $W(X)$ is given by

$$
\begin{equation*}
W(X)=V(X)+E(X) \tag{1.95}
\end{equation*}
$$

where $E(X)$ is a polynomial corresponding to the vecior of additive errors introduced by the channel.

Error detection is achieved by observing the "synirome", $S(X)$, which is the remainder resulting from dividing $W(X)$ by $g(X)$. Since $W(X)$ is the sum of $V(X)$, (which is a multiplc of $\delta(X)$), and $E(X), S(X)$ will be zero for the case of no errors for which $E(X)=0$. Unforrunately
$S(X)$ is also zero if $E(X)$ is some multiple of $g(X)$, in which case there are "undetectable errors." Note that the class $\{V(N)\}$ of code vectors is generated by multiples of $g(X)$. Therefore the class of undetectable error vectors is identical with the class of code vecturs $\{V(X)\}$.

The following are some error detecting properties of cyclic codes:

All single errors are detected if $g(X)$ has more than one term. If $g(X)$ contains a factor $1+X^{C}$, any odd number of errors will be detected.

A code generated by $g(X)$ detects all single and double errors if the length n of the code is no greater than the exponent e to which $g(X)$ belongs. ($g(X)$ belongs to exponent e if e is the least positive integer such that $g(X)$ evenly divides $\left.X^{e}+1.\right)$.

For any m there is a double error detecting (Hamming) code of lengtin $n=2^{m}-1$ generated by a $g(X)$ of degree m.

Any cyclic code generated by a $g(X)$ of degree $n-k$ detects any error burst of length $n-k$ or less.

The fraction of bursts of leni,th $b>n-k$ that are detected is

$$
\begin{aligned}
& 2^{-(n-k-1)} \text { if } t=n-k+1 \\
& 2^{-(n-k)} \text { if } b>n-k+1
\end{aligned}
$$

Cyclif (Fire) codes generated by

$$
g(x)=\left(x^{c}+1\right) g_{1}(x)
$$

will detect any combination of two bursts if:
(i) $c+1 \geq$ sum of burst lengths
(ii) $g_{1}(X)$ is irreducible and a degree at least as great as the length of the shorter burst
(iii) $n \leqslant l e a s t$ common multiple of c and the exponent e to which $g_{1}(X)$ belongs

An important class of codes, which will be used in Part II of this report, are referred to as BCH codes. These codes can be constructed in a systematic manner. For any choice of m and t there exists a BCH
code of length $2^{\mathfrak{m}}-1$ which is guaranteed to detect any combination of 2: errors. The generator polynomial of such a code is of degree no greater than mt.

The procedure for constructing the most important type of BCH codes, referred to as narrow-sense or primitive BCH codes, is the following.

Let α be a root of a primitive polynomial of degree m. The polynomial $m(X)$, which is the binary polynomial of smallest degree for which $m(\alpha)=0$, is referred to as the "minimal polynomial" of α. Consider the sequence $\alpha, \alpha^{2}, \alpha^{3}, \ldots \alpha^{2 t}$ of consecutive powers of α and denote by $m_{i}(X)$ the minimum polynomial of α^{i}. Then the generating polynomial of a 2 -error-detecting $B C H$ code is the least common multiple of $m_{1}(X)$, $m_{2}(X), \ldots m_{2 t}(X)$. Since it can be shown that every even power of α has the same minimum polynomial as some previous odd power, the generating polynomial can be expressed conciseiy as

$$
\begin{equation*}
g(x)=\operatorname{LCM}\left[m_{1}(x), m_{3}(x), \ldots m_{2 t-1}(x)\right] \tag{1.96}
\end{equation*}
$$

The degree of each minimal polynomial $m_{i}(X)$ constructed as indicated from α, which is a root of a primitive polynomial of degree m, is m or less. Thus the degree of $g(X)$ is at most mt.

Tables of primitive and minimal polynomials of various degrees are available in the literature. Perhaps the most widely used table is found in Peterson [17], pp. 472-492. This table lists all irreducible polynonials (including primitive polynomials) of degree 16 or less and a primitive polynomial with a minimum number of nonzero coefficients and polynomials belonging to all possible exponents for each degree 17 through 34 . For each degree, m, the table lists a primitive polynomial with a minimum number of nonzero coefficients. Denoting α as a rool of
this primitive polynomial, the table also lists minimum polyomtal:- of α^{j} for J odd.

To illustrate the use of the table in constructing BCH codes, consider the problem of constructing a code of length at least 2000 bits with 32 check bits which can detect as many errors as possible.

The degree of $g(X)$ is equal to the number of check bits and the length of the code is $2^{m}-1$. This results in the constraints

$$
32=m t
$$

$$
2000 \geq 2^{m}-1
$$

Since $2^{11}-2048$ and $2^{10}=1024$, the last constraint forces m to be greater than or equal to 11 . If there are to be exactly 32 check bits, then $t=1, m=32$ and $t=2, m=16$ are possible combinations. ${ }^{\dagger}$ For $\mathrm{t}=1$ any primitive 32 degree polynomial from the table would serve for $g(X)$. For $t=2$,

$$
g(x)=\operatorname{LCM}\left[m_{1}(x), m_{3}(X)\right]
$$

where $m_{1}(X)$ is a primitive 16 th degree polynomial selected from the tabie. If α is a root of $m_{1}(X)$, then $m_{3}(X)$ is the minimum polynomial of α^{3}, a polynomial which can also be found in the table.
$+$
These codes are guaranteed to detect any combination of $2 t$ errors since a shortened cyclic code has at least as great a minimum distance as the cyclic code from which it is derived and it can detect any burst-error patterns that the original code could detect.

Since the second code with $t=2$ has the greater guaranteed crror protection, one would be inclined to chose it. However, a principle result of this research is to show that this approach is not the best for real channels.

3. Charnel Models Chosen for the Code Study

Renewal models were chosen for the code study for three reasons, namely: they accurately approximate $H F$ and wireline channels which are important in the Defense Commications system, data has been compiled and used to determine the parameters of such models to match practical systems and finally work with nonrenewal models in terms of both theory and the necessary practical data does not seem to be sufficiently advanced to justify a general code study base: on these models.

Ten renewal models were chosen for the study, namely:
a) The Pareto model used by Johnson [21] and developed by Bolkovic et.al. [28] for a switched telephone network.
b) A model tenned the Markov-Fritchman model developed for an $H F$ lirik.
c) A model termed the Markov-Tasi model developed for a different lif link from that of (b).
d) Seven models developed by Brayer [26] to match experimental data from tine AUTOVON system.

The models developed by Brayer are part of an extensive stiudy done by MITRE in conjunction with the DICEF facility at RADC. Brayer's report [26] should be consulted for the details of developing the models. Generally speaking the experimental data was taken from paris of the continental AUTOVON system involving two to five switches at data rates of $4800 \mathrm{~b} / \mathrm{s}$ and $9600 \mathrm{~b} / \mathrm{s}$. A total of approximately 20,000 error bursts of length greater than 32 bits was found in the data with approximately 5000 of these bursts in the $4800 \mathrm{bit} / \mathrm{sec}$ data and approximately 15,000 in the $9500 \mathrm{bit} / \mathrm{sec}$ data.
A. summary of the models is given below:

$$
\begin{aligned}
& \text { Pareto Mnde1 } F(n+1)=\frac{(1+n)^{-\alpha}-L^{-\alpha}}{\left(1-L^{-\alpha}\right)}, 0 \leq n \leq L-1 \\
& L=\left[\frac{1-\alpha}{\alpha}(E(n)+1 ;] \frac{1}{1-\alpha}\right. \\
& \alpha=0.3, E(n)=3 \times 10^{4} \\
& 43
\end{aligned}
$$

Markov-Fritchman

$$
T=\left[\begin{array}{lll}
0.66 & 0 & 0.34 \\
0 & 0.9991 & 0.0009 \\
0.44 & 0.34 & 0.22
\end{array}\right]
$$

Markov-Tsai
$T=\left[\begin{array}{lll}0.99911 & 0 & 0.00089 \\ 0 & 0.73644 & 0.26356 \\ 0.36258 & 0.58510 & 0.05232\end{array}\right]$

Brayer Table 3 (two switches - $4800 \mathrm{~b} / \mathrm{s}$)
$T=\left[\begin{array}{llll}0.9754047 & 0.0 & 0.0 & 0.0245953 \\ 0.0 & 0.9995566 & 0.0 & 0.0004434 \\ 0.0 & 0.0 & 0.9999969 & 0.0000031 \\ 0.5131625 & 0.2505878 & 0.0895789 & 0.1466708\end{array}\right]$
$P(1)=3.39 \times 10^{-5}$

Brayer Table 4 (three switches - $4800 \mathrm{~b} / \mathrm{s}$)
$T=\left[\begin{array}{llllll}0.2156599 & 0.0 & 0.0 & 0.0 & 0.0 & 0.7843401 \\ 0.0 & 0.8886233 & 0.0 & 0.0 & 0.0 & 0.1113767 \\ 0.0 & 0.0 & 0.9987018 & 0.0 & 0.0 & 0.0012982 \\ 0.0 & 0.0 & 0.0 & 0.9999393 & 0.0 & 0.0000607 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.9996977 & 0.0000023 \\ 0.1124190 & 0.1780878 & 0.1994085 & 0.2057504 & 0.0209361 & 0.2833981\end{array}\right]$
$P(1)=7.93 \times 10^{-5}$

Brayer Table 5 (four switches - $4800 \mathrm{~b} / \mathrm{s}$)

T	$=\left[\begin{array}{llllll}0.9611693 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0388307 \\ 0.0 & 0.8898716 & 0.0 & 0.0 & 0.0 & 0.1101284 \\ 0.0 & 0.0 & 0.9988276 & 0.0 & 0.0 & 0.0011724 \\ 0.0 & 0.0 & 0.0 & 0.9999507 & 0.0 & 0.0000483 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.9999969 & 0.0000031 \\ 0.2044374 & 0.2271502 & 0.0585721 & 0.0422230 & 0.0166381 & 0.4509793\end{array}\right]$
$P(1)=1.58 \times 10^{-4}$	

Brayer Table 6 (five switches - $4800 \mathrm{~b} / \mathrm{s}$)
$\mathrm{T}=\left[\begin{array}{lllll}0.9068574 & 0.0 & 0.0 & 0.0 & 0.0931426 \\ 0.0 & 0.9930199 & 0.0 & 0.0 & 0.0019801 \\ 0.0 & 0.0 & 0.9999507 & 0.0 & 0.0000493 \\ 0.0 & 0.0 & 0.0 & 0.9999981 & 0.0000019 \\ 0.3606889 & 0.0668155 & 0.0379466 & 0.0305986 & 0.5039504\end{array}\right]$
$P(1)=5.05 \times 10^{-5}$
Bray'er Table 7 (two switches-9600 o/s)
Brayer lable 8 (three switches-9600 ri's)
$T=\left[\begin{array}{lll}0.9995636 & 0.0 & 0.0004364 \\ 0.0 & 0.9999922 & 0.0000078 \\ 0.4874004 & 0.1026200 & 0.4099796\end{array}\right]$
$T=\left[\begin{array}{lll}0.9982991 & 0.0 & 0.0017119 ; \\ 0.0 & 0.9993714 & 0.0000286 ; \\ 0.3635153 & 0.2268990 & 0.4095857 ;\end{array}\right.$
$P(1)=1.23 \times 10^{-4}$

Brayer Table 9 (four switches-96n3 b/s)
$T=\left[\begin{array}{ll}0.9999391 & 0.0000609 \\ 0.3979892 & 0.6020108\end{array}\right]$
$P(1)=1.52 \times 10^{-4}$

Useful relations for renewal models of several types, including thrse chosen for further study, are sumarized in Table 1.1.

4. References

1. E. O. Elliott, "Estimates of Error Rates for Codes on Burst Noise Channels," Bell Syst. Tech. J., Vo]. 42, Sept, 1963, pp. 1977-1997.
2. E. O. Elliott, "A Model of the Switched Telsphone Network for Data Comanications," Bell Syst. Tech. J., Vol. 44, Jan. 1965, pp. 85-109.
3. B. D. Fritchman, "A Binary Channel Characterization using Partitioned
 pp. 2.21-236.
4. E. N. Gilbert, "Capacity o." a Burst Noise Channel," Bell Syst. Tech. J., Vol. 39, Septemier 1960, pp. 1253-1265.
5. J. P. Adoul, B. D. Fritchatan, and L. N. Kanal, "A Critical Statistic for Channels wich Memory," IEEE Trans. Iaform. Theory, Vol. IT-18, Jan. 1972, pp. 133-141.
6. S. Tsai, "Simp 1e Zaititioned Markov Chain Model and Troposcatter Channel," NTC-73, Atlanta, Georgia, November 1974, pp. 16F-1-16F-6.
7. S. Tsai, "Markov Characterization of the iF Channel," IEEE Trans. on Communications Technology; Vo1. COM-17, Feb. 1969, pp. 24-32.
8. S. Tsai, "Analytic Method for Evaluating Error Correcting Codes on a Real Channel," ICC-72.
9. R. T. Chien, A. H. Haddad, B. Goldberg, and E. Meyers, 'An Analytic Error Model for Real Channels," ICC-72, Philadelphia, Pa., June 1972.
10. J. M. Berger and B. Mandelbiot, "A New Model for Error Clustering in Telephone Circuits," IBM J. Ree. Div.: Vol. 7, July 1963, pp. 224-236.
11. S. M. Suseman, "Analysis ci che Fayeto kodel for Error Statistics on Telephone Circuits," IERE Traus. on Commin. Systems, Vo1. CS-11. June 1963, pp. 213-221.
12. R. G. Gallager, Information Tl.eory and Reliable Communication, Wiley, Sew York, 1968 (Chapter 6).
13. M. Nunter and J. K. Wolf, "Prodicted Performances of Error-control Techniques over Real Channels," IEEE Trans. Inform. Inform. Theory, Vol. IT-14, Sept. 1968, pp. 640-650.
14. H. A. Blank and P. J. Trafton, "A Markov Error Channel Model," NTC-73, Atlanta, Georgia, November 25-28, 1973, pp. 15B-1 - 15B-8.
15. P. A. Bello, "A Troposcatter Channel Model," IEEE Trans. on Communication Tecinology, Vol. COM-17, April 1969.
16. J. Goldman, "Multiple Error Performance of PSK Systems with Cochannei Interference and Noise," IEEE Trans. on Communication Technology, Vol. COM-19, August 19:1, pp. 420-430.
17. W. W. Peterson and E, J. Weldon, Jr., Error Correcting Codes, (Second Edition), MTT Press, Camoridge, 1972.
18. S. Liu, An Introduction to Error-Correcting Codes, Prentice-Hall, Englewood Cliffs, 1970.

1\%. F. P. Corr, "Statistical Evaluation of Error Detection Cyclic Codes for Data Transmission," IEEE Trans. on Communications Systems, June 1964, Pp. 211-216.
20. W. Peterson and D. Brown, "Cyclic Codes for Errar Detection," Proc. IRE Vol. 49, Jan. 1961, pp. 228-235.
21. D. C. Johnson, "Performance of the SDLC, CRC-16 and CCITT Polynomials with NRZI Coding," X3S34 and CRC Ad Hoc Group Memo, April 1972.
22. R. E. Townsend and T. N. Watts, "Effectiveness of Error Control in Data Communication over the Switched Telephone Network," BSTJ, Vol. 43, Nov. 1964.
23. K. Brayer and 0. Cardinale, "Evaluation of Error Correcting Block Encoding on High-Speed HF Data," IEEE Trans. Corm. Tech, June 1967. pp. 371-382.
24. K. Brayer, "Error Patterns Measured nn Transequatorial HF Communcation Links," IEEE Trans. Comm. Tech, April 1968.
25. K. Brayer, "Error Correction Code Performance on HF, Troposcatter, and Sattellite Channels," IEEE Trans. Comm. Tech, Vol. Com-19, Oct. 1971, pp. 781-789.
26. K. Brayer, "Characterization anc. Modeling of the Digital High-Speed Autovon Channel," Interim Report MTR2802, 1 May 1974 MITRE Corp.
27. R. T. Chien, et.al., "Analytical Mathematical Models of Tactical Military Communications Channels, Quarterly Report, September 1973, Research and Development Technical Report ECOM-0292-7.
28. M. D. Baikovic, et.al., "High-Speed Data Transmission Performance on the Switched Telecommunications Network," B.S.T.J., April 1971.
29. J. Salz and B. R. Saltzberg, "Double Error Rates in Differentially Coherent Phase Systems," IEEE Trans. on Communication Systems, Vol. CS-12, June, 1964, pp. 202-205.
30. R. Ash, Information Theory, New York: Interscience Publishers, 1965.

3i. B. i. Fritchman, "A Binary Channel Characterization Using Partitioned Marks, ${ }^{\text {Chains with Applications to Error Correcting Codes," Ph.D. }}$ Thesis, Lehigh University, 1967.

PART II

CODE EVALUATEON USING RENEWAL CHANNEL MODELS

1. Probability of Undetectable Errors for Renewal Channel Models

As discussed in Part I, several channel models are discussed by a number of authors, typical references arf. 1] and $\left[10^{\circ}\right.$. . The basic assumption of renewal models is that the "gap" intervals between errors are independent random variables. Figure 2.1 illustrates the definition of gap length, d, as one plus the number of nonerrors between two errors.

Figure 2.1 A Typical Error Gap

Two gap statistics are useful, namely:

$$
\begin{aligned}
& p(d)=P\left\{0^{d-1} 1 \mid 1\right\}-\text { the probability of exactly } d-1 \\
& \text { nonerrors followed by an error in } \\
& \text { the error pattern, given an error } \\
& \text { starting the pattern. } \\
& F(d)=P\left\{0^{d-1} \quad \mid 1\right\} \text { - the probability of at least } d-1 \\
& \text { nonerrors followed by an error, } \\
& \text { given an error stanting the pattern. }
\end{aligned}
$$

The two statistics are related by the equations

$$
\begin{align*}
& F(d)=\sum_{k=d-1}^{\infty} P\left\{0^{k} 1 \mid 1\right\}=\sum_{k=d}^{\infty} p(k) \tag{2.1}\\
& p(d)=F(d)-F(d+1) \tag{2.2}
\end{align*}
$$

A central objective in the study of error detecting codes is an evaluation of the probability, $P_{u}(n)$, of undetected error Eor a particular code for blocks of length n. Techniques are vailable for identifying
undetectable error patterns for given codes. Given a particular error pattern, e, its probability, $P(e)$, can be computed for a particular channel model. The sum of the probabilities of all undetectable error patterns is the undetected error probability for the code based on the assumed channel mode 1.

Figure 2.2 shows a particular undetectable error pattern, e, for a block of length n.

Figure 2. 2 Undetectable Error Pattern

It is useful to identify the "burst length," b, containing all of the errors and a particular "burst pattern," e_{b}, beginning with the first error and ending with the last error.

For a cyclic code an undetectable error pattern will result from every position of the burst pattern within the block n. Thus undetectable error patrerns exist for every d_{1} in the interval $1 \leq d_{1} \leq n-b \perp 1$, where d_{w+1} is constrained to satisfy

$$
\begin{equation*}
d_{w+1}=n-b+1-d_{1} \tag{2.3}
\end{equation*}
$$

The probability of the pattern, e, of Figure 2.2 can be computed as follows. The internal gaps of length $d_{2}, d_{3}, \ldots d_{w}$ each have a probability given by $P\left(d_{i}\right)$. Since the gap lengths are independent for renewal models, the probability, $P_{g}\left[e_{b}(w, h)\right]$, of the internal gap
pattern in the burst is given by

$$
\begin{equation*}
P_{g}\left[e_{b}(w, b)\right]=\prod_{i=2}^{w} P\left(d_{i}\right) \tag{2.4}
\end{equation*}
$$

where each d_{i} has a value corresponding to the particular pattern, e_{b}. Note that v is the number of errors, or the weight, of the burst pattern.

The probability of the gap beginning the pattern is the probability of at least $d_{1}-1$ zeros in the erfor pattern followed by a one. Note that the one starting the gap is at an unspecified position outside the block being considered. The probability of the beginning gap can be expressed as

$$
\begin{equation*}
P\{\cdots 00 \cdots 01\}=P\left\{0^{d-1} \mid 1\right\} P(1)=P(1) F\left(d_{1}\right) \tag{2.5}
\end{equation*}
$$

using the relation for conditional prohability. Similarly the probability of the ending pattern is just the probability of at least d_{w+1} zeros given a one to start the pattern, or $F\left(\dot{d}_{w+1}+1\right)$. Note that in this case the one ending the pattern is outside of the block being considered.

Since the gaps beginning and ending the block are statistically independent of the others for a renewal channel, the probability, $P(e)$, of all of the gaps in a particular patterr is given by

$$
\begin{equation*}
P(e)=P(1) F\left(d_{1}\right) F\left(d_{w+1}+1\right) P_{g}\left[e_{b}(w, b)\right] \tag{2.6}
\end{equation*}
$$

The total probability, $P\left(e_{b} ; n\right)$, of all undetectable error patterns which include the burst pattern e_{b} in all of its possible positions can be expressed as

$$
\begin{equation*}
P\left(e_{b} ; n\right)=P(1) P_{g}\left[e_{b}(w, b)\right] \sum_{d_{1}=1}^{n-b+1} F\left(d_{1}\right) F\left(n-b+2-d_{1}\right) \tag{2.7}
\end{equation*}
$$

Note that the total probability is just the sum of the separate pattern probabilities since the patterns are mutually exclusive.

[^2]It is useful to define a variable $S_{p}(n, b)$ by the equation*

$$
\begin{equation*}
S_{p}(n, b)=\frac{1}{n} \sum_{d_{1}=1}^{n-b+1} F\left(d_{1}\right) F\left(n-b-d_{1}+2\right) \tag{2.8}
\end{equation*}
$$

so that $P\left(e_{b} ; n\right)$ is expressed simply as

$$
\begin{equation*}
P\left(e_{b} ; n\right)=n P(1) P_{g}\left[e_{b}(w, b)\right] S_{p}(n, b) . \tag{2.9}
\end{equation*}
$$

The probability of undetectable errors Cor a particular code is obtained by sumning over the probability of all undetectable patterns for the code. Equation (2.9) gives the probability of all cyclical shifts of a pattern with: (i) fixed burst length, b, (ii) fixed weight, w, and (iii) a fixed distribution of the errors widhin the burst, as specified by fixed $d_{i}, i=2, \ldots w$. To obtain the total probability of undetectable errors for a given code, probabilities $P\left(e_{b} ; n\right)$ must be computed and sumned over the class, W, of all of the variables listed above, namely: all burst lengths, all weights and all distributions of errors of fixed weight within a given burst length. The result can be expressed as

$$
\begin{equation*}
P_{u}(n)=n P(1) \sum_{W} S_{p}(n, b) P_{g} r_{b} e_{b}(w, b) j=\sum_{W} P\left(e_{b} ; n\right) \tag{2.10}
\end{equation*}
$$

2. Approaches to Code Evaluation

Probability of undetected error is the chief measure of the quality of an error detecting code. In principle for a given code and channel model all undetectable error patterns can be identified, the probability of each can be computed and the probability of undetected error obtained from (2.10). The difficulty with this procedure is the fact that if the number of message bits is k, then there are 2^{k} undetectable error patterns. The last statement follows from the fact that the set of undetectable error patterns is identical with the set of code vector patteras.

[^3]For exanple if the block length is 2000 and there ary 32 check hits, k is 1968 and 2^{k} is 10^{592}, a number too large to permit computation a ill pattern probabilities.

Johnson. in his unpublished memo [21] estimates the probability of undetected error by computing and summing the probabilities of undetectable error petterns with fairly short bursts and relatively few errors. Johnson's computational algorithm requires a search through all patterns of fixed length and weight to find the undetectable patterns. Computing time limits such a search to weights on the order of 6 and less and bursts of length on the order of 100 bits. Using 10 to 15 minutes of large general purpose computer time, thirty to fifty undetectable error patterns can be found and processed in this way to produce an astimate of the probability of undetectable error. 3. Development of an Efficient Algorithm for Code Evaluation

Consider (2.10) which expresses the probability of undetectable errors for a given code, a given block length and a given channel model. In particular consider the quantity, $S_{\Gamma}(n, b)$, in this equation. Curves of $S_{p}(n, b)$ versus b have been computed for a number of reneval shannei models with different choices for the sap distribution function and the results are given in Appendix I as Figures A. 17-A.20. Examination of these curves shows empiricaliy that, (at least for the models considered), $S_{p}(n, b)$, can be approximated by a constant, $\bar{S}_{P}(n)$, which is independent of b.

Thus a reasonable approximation for $F_{u}(n)$ is given by

$$
\begin{equation*}
P_{u}(n) \cong n P(1) S_{p}(n) \sum_{W} P_{g}\left[e_{b}(w, b)\right] \tag{2.11}
\end{equation*}
$$

It also follows from (2.10) that exact upper and lower bounds on $P_{u}(n)$ are given by

$$
\begin{equation*}
n P(1) S_{P}^{*}(n) \sum_{W} P_{g} \leq P_{u}(n) \leq n P(1) S_{p}^{* *}(n) \sum_{W} P_{g} \tag{2.12}
\end{equation*}
$$

where

$$
\begin{align*}
& S_{p}^{*}(n)=\min _{b} S_{p}(n, b) \tag{2.13}\\
& S_{p}^{* \dot{*}}(n)=\max _{b} S_{p}(n, b) \tag{2.14}
\end{align*}
$$

Note in (2.11) that $P_{u}(n)$ is expressed as the product of the term $n \mathrm{P}(1) \overline{\mathrm{S}}_{\mathrm{p}}(\mathrm{n})$, which is independent of the code, and the term $\stackrel{\Sigma}{\mathrm{W}}^{\mathrm{F}} \mathrm{P}$ which depends on the code. The vounds in (2.12) break up into two terms in a similar way with $\sum_{W} P_{g}$ again being the code dependent term.
in comparing two codes with respect to probability of undetectable errors, it thus seems reasonable to use $\sum_{W} P_{g}$ as a figure of merit. The figure of merit is proportional to probability of undetectable errors, or bounds on this quantity, for a fixed block length, n, and a fixed channel model.

A tractable algorithm for computing an approximation to $\sum_{W} P_{g}$ is now developed. First consider the expression

$$
\begin{equation*}
\sum_{W} P_{g}=\sum_{W_{1}} P_{g}+\sum_{W_{2}} P_{g} \tag{2.15}
\end{equation*}
$$

which partitions the sum over all undetectable error patterns into two parts. The quantity $\sum_{W_{1}} P_{g}$, summing the probability of selected undetectable error patterns, will be used co approximate $\sum_{W} P_{g}$. The set W_{1} will be chosen to include all of the high probability error patierns so that $\sum_{W_{2}^{\prime}} P_{g}$ is made negligible in comparison to $\sum_{W_{1}} P_{g}$.

To specify the set W_{1}, consider the code vector pattern, or equivalontly the undetectable error pattern, with γ check bits shown in Figure 2.3

Figure 2.3 A Typical Code Vector Pattern with y Check Bits

For the pattern of Figure 2.3. ${ }^{{ }^{g}} \mathrm{~g}$ is determined as the product of the probabilities of che speciried gaps beginning after the first error and continuing to include the last error, as expressed it. (2.4).

The error gaps involved in corrputing P_{g} can be classified as contributing to three probabilities, namely:
P_{C} - probability of the gaps in the check bit portion of the pattert
P_{T} - probability of the cransition gap between the check bits and the message bits
P_{1} - probability of gaps in the message portion of the pattern.

Thus P_{g} is expressed as

$$
\begin{equation*}
P_{g}=\prod_{i=2}^{W} P\left(d_{i}\right)=P_{C} P_{T} P_{M} \tag{2.15}
\end{equation*}
$$

Since $\sum_{W} P_{g}$ contains a term for every possible message pattern, the message patterns can play the role of an independent variable in constructing undetectable error vectors through use of standard coding algorithms. Furthermore, from (2.15), it can be noted that large values of P_{8} will res ilt if both P_{M} and $P_{C} P_{T}$ are large. Large P_{M} is a necessary but not sufficient condition for a large P_{g}.

Now consider a set, \hat{W}_{1}, of message patterns constructed so that for each pattern

$$
\begin{equation*}
P_{M} \geq \beta^{*} . \tag{2.16}
\end{equation*}
$$

The patterns in this set can be used to construct code vectors which satisfy the necessary condition for large P_{g}.

With reference to the typical code vector pattern of figure $2 . j$: note that only the probabilities of the gaps within the error burst, fi.e. the bits following the first error and extending to and including the last error), effect P_{g} by the way in which it is defined. Furthermore, since the code is cyclic, every possible shifted position of a basic pattern will also appear in a code vector. The cyclic shifts of a ixso bisic pattern are accounted for by the factor $\bar{S}_{p}(n)$ in (2.11) and henct oniy one position of a basic pattern should be included in a final set W_{1}. This is accomplisned by including in W_{1} only those code vectors of \hat{W}_{1} which begin with a one in the first position.

Relative to constructing the message pattern set, consider the case for which the first one in a message pattern being considered is iocated at $\{$ as shown in Figure 2.3. The combined length of the gaps in the check bit pattern and the transition gap is thus ℓ.

It is convenient in computational work to construct the class of message vectors so that

$$
\begin{equation*}
p(i) P_{M} \geq 5, \tag{2.15}
\end{equation*}
$$

which partiaily accouncs for the transition gap in setting the bound. (It can be shown that $p(\ell)$ is the maximum probability of the check and transitions gaps, given that the first message bit is located at ., Since ℓ and hence $P(\ell)$ is determined by each particular message pattern, in theoretical work it is more convenient to maximize $p(\rho)$ over all values of ℓ to obtain $p(v)$ which is independent of the particular message pattern. In such a case message vectors would be constructed to satisfy

$$
\begin{equation*}
p(y) P_{M} \geq 3, \tag{2.19}
\end{equation*}
$$

which yields a slightly different class. Either (2.18) or (2.19) can be solved for a bound on P_{M} and the results can be expressed as

$$
\begin{equation*}
P_{M} \geq \frac{\beta}{p(l)} \geq \frac{\beta}{p(\gamma)}=B^{*} \tag{2.20}
\end{equation*}
$$

It is now possible to state the following efficient algorithm, termed the $\sum p_{g}$ algorithm, for code evaluation.

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{g}} \text { Algorithm } \\
& \hline
\end{aligned}
$$

Step 1. Find a set, \hat{W}_{1}, of message patterns such that for each pattern $p(\ell) P_{M} \geq g$, or alternately $P_{M} \geq \beta^{*}$. (This set can be used for any code polynomial but the set depends, weakly, on the distribution function for the error gaps as specified by the channel model.)
Step 2. For a given code polynomial compute the check bit pattern corresponding to each misssage pattern of step (1).
Step 3. Construct the code vector patterns correspondong to each me;sage in the set \hat{W}_{1}. These patterns are also undetectable error patterns.
Step 4. Discard those patterns which do not begin with a one to obtain a reduced set of patterns, W_{1}.
Step 5. Compute P_{g} for each undetectable error pattern of step 4. Step 6. Compute $\sum_{W_{1}}^{8} P_{g}$ where the sum extends over all message patterns in the set, W_{1}, determined in step (4).

Note that through use of (2.11) $\sum_{W_{1}} P_{g}$ can be used to conpute the following estimate, $\tilde{F}_{u}(n)$ of $P_{u}(n)$,

$$
\begin{equation*}
\tilde{P}_{u}\left(n ;: n P(1) S_{p}(n) \sum_{W_{1}} P_{g}\right. \tag{2.21}
\end{equation*}
$$

4. Evaluation of $\sum P_{g}$ Algorithm.

Three sets of message vectors have been constructed according to the data in Table 2.1. Message patterns were generatec using the condition of (2.18) for the values of β specified for 16 check bits. The set of message

Table 2.1 Data on Mfrbage Patterns

No. of Patterns	e^{*}	$8(16$ check bits $)$	$\equiv(32$ check oits)
864	7.3×10^{-3}	5.8×10^{-5}	2.4×10^{-5}
6,117	1.3×10^{-3}	1.0×10^{-5}	4.2×10^{-6}
32,362	2.7×10^{-4}	2.1×10^{-6}	8.7×10^{-7}

patterns generated is slightly different than would have been obtained from using the ε^{*} bound and the tabulated values. In the table note that values of β and β^{*} are related by (2.20).

The number of code vector patterns comprising W_{1} is approximately one-half of the number of message patterns in the table since only code vector patterns with ones in the first bit are retained. The smallest sei (864 message patterns) includes $a^{1} 1$ patterns with $i, 2$ and 3 errors (as well as other patterns) while the largest set includes all patterns with $1,2,3,4$ and 5 errors and othei pa¿terns.

To satisfy a given bound on P_{M}, in principle a new set of message sequences should be chosen for sach channel model since gap probabilities are specified by the model. However, for any distribution function which assigns uniformly less probability to any given gap than the Pareto distribution, the Pareto message set will also satisfy the given bound.
 several channel models of interest, such as the Markov-Fritiona: model, are bounded by the Pareto distribution so that the Paretc message sets ezactly satisify the given bound. In several other cases, whiie the Pareto distribution does not exactly bound the distribution function of other models, it is approximately equal to several of them over regions where it does not bound. The only case of a substantial difference between the Pareto distribution, either as a bound or as approximately equality, is the case of Brayer Table 3 . Even in this case the difference is not an order of magnitude.

In the body of the study only the Pareto message sets were used for all channel models. Convergence of the $\sum \mathrm{P}_{\mathrm{g}}$ values with mors and more message sequences, as discussed below, is taken as evidence that a sufficient number of patcerns is being used in all cases.

The $\sum P_{g}$ algorithm was found to be very efficient, using an average of 15 seconds of Univac 1108 Computer CPU time co evaluate typical 32 nd degree polynomials.
rable 2.2 presents results for evaluation of the \int_{g} algorithm in several respects. The table is constructed to tabulate $\hat{\hat{P}}_{\mathrm{u}}$ defined by

$$
\hat{p}_{u}=\frac{\tilde{p}_{u}(n)}{n P(1)}
$$

for comparison to Johnson's [21] determination of this quantity for several codes, where the quantity $\tilde{\mathrm{P}}_{\mathrm{u}}(\mathrm{n})$ is computed from (2.21).
Table 2.2 $\sum P_{g}$; Probability of Undetected Exror, P_{u}, fo:

Notes	$\begin{aligned} & \text { 16th Degree } \\ & \text { Code } \\ & \text { Polynomials } \\ & \text { (oc:al) } \end{aligned}$	$\begin{gathered} B=5 \times 10^{-5} \\ 864 \text { message sequences } \end{gathered}$		$B=1.0 \times 10^{-5}$ 6117 message sequences		$8=\dot{\alpha} \times 10^{-6}$ 32,362 message sequences		.Johnson$\hat{\mathbf{p}}_{u}$
		\sum_{8}	$\stackrel{P}{P}^{\text {u }}$	$\sum \mathrm{P}_{\mathrm{g}}$	\hat{P}_{u}	$\sum \mathrm{P}_{g}$	$\hat{\mathbf{p}}_{\mathrm{u}}$	
CRC-16	100003	2.59×10^{-3}	2.93×10^{-5}	2.68×10^{-3}	3.03×10^{-5}	2.71×10^{-3}	3.06×10^{-5}	2.83×10^{-5}
CCITT	170037	3.81×10^{-5}	4.31×10^{-7}	4.03×10^{-5}	4.55×10^{-7}	4.55×10^{-5}	5.14×10^{-7}	4.1×10^{-7}
SDLC	117615	7.99×10^{-6}	9.03×10^{-8}	1.19×10^{-5}	1.34×10^{-7}	2.04×10^{-5}	2.31×10^{-7}	9.5×10^{-8}
A BCH	142631	5.77×10^{-4}	7.50×10^{-6}	1.19×10^{-3}	1.55×10^{-5}	1.52×10^{-3}	1.98×10^{-5}	
PRIMITIVE	16011	3.57×10^{-6}	4.64×10^{-8}	7.91×10^{-6}	1.03×10^{-7}	1.52×10^{-5}	1.98×10^{-7}	6.7×10^{-8}
FIPE	176053	4.00×10^{-6}	5.20×10^{-8}	6.45×10^{-6}	8.38×10^{-8}	1.07×10^{-5}	1.39×10^{-7}	6.1×10^{-8}
FIRE	101617	7.47×10^{-6}	9.71×10^{-8}	1.57×10^{-5}	2.04×10^{-7}	2.25×10^{-5}	2.92×10^{-7}	
FIRE	107713	8.73×10^{-6}	1.13×10^{-7}	1.19×10^{-5}	1.55×10^{-7}	1.58×10^{-5}	2.05×10^{-7}	
FIRE	165523	9.44×10^{-6}	1.23×10^{-7}	1.74×10^{-5}	2.26×10^{-7}	2.14×10^{-5}	2.78×10^{-7}	
NON-PRIM	150355	1.16×10^{-6}	1.51×10^{-8}	1.17×10^{-4}	1.52×10^{-6}	2.37×10^{-4}	3.08×10^{-6}	
NON-PRIM	154163	1.20×10^{-6}	1.56×10^{-8}	1.01×10^{-5}	1.31×10^{-7}	7.28×10^{-5}	9.46×10^{-7}	
NON-PRIM	151717	1.24×10^{-6}	1.61×10^{-8}	2.30×10^{-4}	2.99×10^{-6}	3.51×10^{-4}	4.56×10^{-6}	
PRIMITIVE	133231	1.39×10^{-6}	1.81×10^{-8}	6.28×10^{-6}	8.16×10^{-8}	1.09×10^{-5}	1.42×10^{-7}	
PRIMITIVE	121617	1.78×10^{-6}	2.31×10^{-8}	1.84×10^{-5}	2.39×10^{-7}	3.34×10^{-5}	4.34×10^{-7}	
PRIMITIVE	123735	1.81×1.0^{-6}	2.35×10^{-8}	1.10×10^{-5}	1.43×10^{-7}	1.70×10^{-5}	2.21×10^{-7}	
PRIMITIVE	111713	1.82×10^{-6}	2.37×10^{-8}	1.55×10^{-5}	2.02×10^{-7}	2.85×10^{-3}	3.70×10^{-7}	
Primitive	175043	1.82×10^{-6}	2.37×10^{-8}	7.61×10^{-6}	9.89×10^{-8}	2.14×10^{-5}	2.78×10^{-7}	

Table is constructed for a block size $\mathfrak{n}=3200$, except for the CRC-16, CCITT and SDLC polynulals
for which $n=4000 ; \hat{\mathrm{P}}_{\mathrm{u}}=\mathrm{F}_{\mathrm{u}} /(\mathrm{n} F\{1\})$

Note that Johnson's results for the CRC, CCITT and Sill codes correspond closely to the $\sum P_{g}$ results for 864 message sequences. For the two other codes evaluated in the present study using his method, the results seem to fall between the 864 and the 6,117 message sequence data.

The data in Table 2.2 can also be used to form a judgement as to the rate of convergence of $\sum P_{g}$ to a liriting value as more and more message sequences are used. In this regard, note that for the CRC-16 polynomial, for which $\sum \mathrm{P}_{\mathrm{g}}$ is large, little change in $\sum \mathrm{F}_{\mathrm{g}}$ results from the change from 6,117 message sequences to 32,362 message sequences. For the polynomials with smaller $\sum P_{g}$, however, the results converge less rapidly with the number of message sequences. For the smallest $\sum \mathrm{P}_{\mathrm{g}}$ in the table, (that for polynomial 150355), the fractional increment for $\sum P_{g}$ between 864 and 6,117 message sequences is 101 whereas that between 6,117 and 32,362 message sequences is 2.02 .

Rate of convergence was studied in more detail for a specific 32 degree polynomial and several channel models. The polynomial chosen hac close to the smallest $\sum \mathrm{P}_{\mathrm{g}}$ for all channei models. The results presentec in Figuze 2.4 seem to indicate satisfactory convergence, and hence a good estimate of $P_{u}(n)$, for ali channel models, including the Brayer Table 3 ..vael.
5. Results of Studies using the $\sum \mathrm{P}_{\mathrm{g}}$ Algorithm

Two extensive computer stucies of classes of codes, as determined by generator polynomials, were carried out. All 900 irreducitle 16 th degree polynomials, as listed for example by Peterson [17", were evaluated using $g=5 \times 10^{-5}$. The results are given in Table 2.3 along with the results for three gond nonprimitive pulynomials.

All 32nd, 3ist and 30th degree irreducible polynomials listed in the Peterson tables were used to construce 32 check bit code polynomiais,

Table 2.3 - Figures of Merit for Selected 16 th Degree Polynomials Calculated with $\beta=5 \times 10^{-5}$ (864 information bit sequences)

Ranking	Polynomial (Octal)	$\sum \mathrm{P}_{\mathrm{g}}$	Notes
1	133231	. 139323-05	Ranking with
2	121617	. 177967-05	
3	123735	. $181136-05$	
4	111713	.182194-05	
5	175043	. 182496-05	polynomials
450	157315	.609053-03	
895	177775	. $529630-03$	
896	114011	. 558423-03	
897	172621	.613355-03	
898	100201	.625100-03	
899	100021	. 728813-03	
900	100003	.258801-02	
	150355	.116297-05	Best nonprimitive
	154163	.119776-05	
	151717	.123954-05	polynomials (limited search)

the 31 st and 30 degree polynomials being multiplied by $1+x$ and $1+x^{2}$ respectively. The table lists 10930 th degree, 1131 st degrec and \therefore 32nd degree polynomials. Codes based on each of these polynomials lierr investigated for the Pareto model. The $\sum \mathrm{P}_{\mathrm{g}}$ for the best ones in each group is ribulated in Table 2.4 for $\beta=4.2 \times 10^{-6}$ and 8.7×10^{-7}. Numbers in parentheses in the first colum indicate the rank for $B=4.2 \times 10^{-6}$ within groups of the same degree polynomials. Similar numbers in the fourth column indicate the rank for $\beta=8.7 \times 10^{-7}$ over the whole group of codes.

Table $2.4 \sum P_{g}$ Vaiues for "Good" 32nd Degree Polynomials for two Values of β using the Pareto Model

Polynomial	Class	Polynomial (Octal)	$\begin{aligned} & \sum P_{g} \times 10^{-12}, \\ & E=4.2 \times 10^{-6} \end{aligned}$	$\begin{aligned} & \sum P_{g} \times 10^{-11} \\ & \beta=8.7 \times 10^{7} \end{aligned}$	
32 degree		60537314115	. 96	1.150	(6)
32 degree		40460216667	1.00	. 270	(1)
$31(1+X)$		60120240653	66.77	84.016	(7)
$30(1+X)$		52414670717	. 601	. 749	(4)
$30\left(1+\mathrm{X}^{2}\right)$		62613476131	. 970	. 291	(2)
$30\left(1+x^{2}\right)$		51474633517	1.094	. 459	(3)
$30\left(1+X^{2}\right)$		54114300535	1.420	. 815	

Several classes of BCH-Fire codes were constructed to satisfy the requirement of 32 check bits and a block length of 2000 bits. Such codes have generator polynomials of the form [18]

$$
\begin{equation*}
g(X)=(X+1)\left(x^{2 \ell-1}+1\right) g_{B C H}(X) \tag{2.22}
\end{equation*}
$$

As discussed in Part I of the report, the $B C H$ polynomial, $g_{B C H}(X)$, can be expressed as

$$
\begin{equation*}
g_{B C H}(X)=\operatorname{LCM}_{-m_{1}}(X), m_{3}(X), \ldots, m_{2 t-1}(x) \tag{2.23}
\end{equation*}
$$

where LCM denotes least common multiple, and $m_{i}(X)$ is the minimum polynomial of α^{i} where α is a root of a primitive mth degree polynomial. For an effective code the block length, n, must satisfy

$$
\begin{equation*}
n=2^{m}-1 \geq 2000 \tag{2.24}
\end{equation*}
$$

from which $m \geq 11$.
Since each $m_{i}(X)$ in (2.23) has degree m or less, the possible code classes of the form given in (2.22) which have 32 check bits and a block longth $n \geq 2000$ are the six listed below:

$$
\begin{aligned}
& \text { 1. }\left(x^{10}+1\right) \cdot\left(n_{1}^{11)}(x) \stackrel{m}{2}_{11)}^{(X)}\right. \\
& \text { 2. }\left(x^{8}+1\right) \stackrel{(12)}{m}_{1}^{(X)} \stackrel{(12)}{2}_{2}^{(x)} \\
& \text { 3. }\left(X^{6}+1\right) \stackrel{(13)}{1}_{1}^{(X)} \stackrel{(13)}{2}_{2}^{(X)} \\
& \text { 4. }\left(x^{4}+1\right) \stackrel{m}{m}_{14}^{(14)}(x) \stackrel{m}{m}_{2}^{(x)}(X) \\
& \text { 3. }\left(X^{2}+1\right) \stackrel{125}{2}_{1}^{(x)} \stackrel{(15)}{2}_{2}^{(X)} \\
& \text { 6. }\left(x^{2 \ell}+1\right) \stackrel{m}{m}_{1}^{(32-2 \ell)}(x)
\end{aligned}
$$

$\sum \mathrm{P}_{\mathrm{g}}$ was computed for all 104 codes of type 5 for $\beta=4.2 \times 10^{-6}$ and 8.7×10^{-7}. The results, for the best and worst codes, are given in Table 2.5 with a ranking in parentheses in the first column for $\mathfrak{F}=4.2 \times 1 \mathrm{C}^{-6}$ and a similarly denoted ranking in the third column for $\sum=8.7 \times 10^{-7}$.

Table $2.5 \sum P_{g}$ Values for a Selection of Code Polynomials of the For: $\left(X^{2}+1\right){ }^{(15)}(X){ }_{1}^{(15)}(X)$ for Two Values of 9 using the Pareto Model

Polynomial (Octal)		$\begin{aligned} & \sum P_{g} \times 10^{-12}, \\ & \beta=4.2 \times 10^{-6} \\ & (6117 \text { message } \\ & \text { seq̧uence }) \end{aligned}$	$\begin{aligned} & \sum P_{g} \times 10^{-11}, \\ & \beta=8.7 \times 10^{-7} \\ & (32,362 \text { message } \\ & \text { sequence }) \end{aligned}$	
47665475341	(1)	. 636	. 380	
56111263425	(2)	. 718	. 260	
72450733617	(3)	. 768	. 251	
54766326031	(4)	. 858	. 185	
53760445455	(5)	1.188	. 880	
43611250751	(6)	1.365	. 353	
67007252603	(7)	1.441	. 849	
70425300155	(8)	1.473	. 480	
42323255113	(100)	87.03		
53614073271	(101)	101.67		
76577327771	(102)	124.22		
74467714763	(103)	222.11		
51224036761	(104)	3348.39		

With reierence again to the six classes of codes wiven on pare 6 the following classes were also exhaustively studied for $E=8.7 \times 10^{-7}$ (32,362 message sequences) using ten channel models :
codes of class 6 for $\ell=0,1$ and 2 for available tabulated polynomials
all codes of class 5
all codes of class 3 (4 channel models)
polynomials 75626604261 and 40050004005 suggested by Brayer and McKee

A sumary of the results for the best polynomials is given in Table 6 .
\dagger Personal Correspondence

6. Choice of a Code Polynomial

From the data presented in Section 5 , it is clear that the $\sum \mathrm{p}_{\mathrm{g}}$ figure of merit varies over many orders of magnitude for the polynomials investigated. Furthermore, Table 6 shows that the figure of merit is sensitive, to some extent, to the channel model. On the other hand, the sensitivity to the channel nodel is not severe and a relatively large number of the codes considered in Table 6 could be considered essentially equivalent.

The best code polynomial in Table 6 for a particular channel model can be easily selected. For general use with the channel model unspecified, however, there seems to be no clear cut basis on which to choose between several polynomials which perform exceptionally well for some channel models and less well for others. For example, a good case can be made -or the polynomiais (octal) $: 0460216667,54766326031,70425300155$, 42370206413 and 75626604261 as well as for several other polynomials.

To be specific, the polynomial (octal) 404602!6667 or

$$
\begin{align*}
g(x)=x^{32}+x^{26}+x^{23}+x^{22} & +x^{16}+x^{12}+x^{11}+x^{10}+x^{8} \\
& +x^{7}+x^{5}+x^{4}+x^{2}+x+1 \tag{2.25}
\end{align*}
$$

was chosen for recommendation and for further study.
rable 2.7 lists the following information for the recommended polynomial:
a) The rank of the polynomial for each of 10 models with respect to all 32nd degree polynomials evaluated
b) The figure of merit, $\sum \mathrm{P}_{\mathrm{g}}$
c) $P(1)$ - the probability of an error
d) S_{p}
e) $\vec{P}_{u}(n=2000)=n \vec{S}_{P} P(1) \sum P_{G}$ - an estimate of $\mathrm{P}_{\mathrm{u}}(2000)$
Table 2.7 Characteristics of Recommended Polynomial

Channel Model	Kecommended Polynomial (Octa1) 40460216667					Best Polynomial for each model	
	Rank *	$\sum \mathrm{P}_{\mathrm{g}}$	P(1)	$\stackrel{\sim}{S}^{\text {p }}$	$\stackrel{\sim}{\mathrm{P}}$	$\Sigma \mathrm{P}_{\mathrm{g}}$	P_{4}
Pareto	4	2.7×10^{-12}	3.3×10^{-5}	1.75×10^{-2}	3.12×10^{-75}	1.85×10^{-12}	2.14×10^{-15}
Tsai	1	2.71×10^{-12}	1.8×10^{-3}	2.25×10^{-2}	2.2×10^{-13}		
Fritchman	7	1.25×10^{-11}	2.6×10^{-3}	2.0×10^{-2}	1.3×10^{-12}	9.34×10^{-12}	9.71×10^{-13}
Brayer Table 3	1	3.4×10^{-15}	3.4×10^{-5}	6.8×10^{-2}	1.57×10^{-17}		
4	20	2.36×10^{-12}	7.9×10^{-5}	8.0×10^{-2}	2.98×10^{-14}	7.56×10^{-13}	9.5×10^{-15}
5	1	$5.43 \times 10^{-1.2}$	1.6×10^{-4}	5.8×10^{-3}	1.18×10^{-14}		
6	1	9.7×10^{-12}					
7	3	3.71×10^{-19}				1.34×10^{-19}	
8	2	5.67×10^{-18}				4.38×10^{-18}	
9	4	4.89×10^{-21}	$1.52 \times 10^{\circ}$	1.4×10^{-1}	2.08×10^{-22}	1.41×10^{-21}	6.0×10^{-23}

* For all polynomials studied.

The table also lists the figure of merit and estimated probability of undetected error for the best polynomial, (of those evaluated), for each channel model, if it is different from the recommended polynomial. The parameter S_{p} was not computed for channel modeis Brayer Table 6, 7 and 8 to conserve computer time. The values of \bar{S}_{p} for these channel models are not expected to differ significantly from values for other models.

It can be noted from Table 2.7 that the recommended polynomial has an estimated probability of undetected error within a factor of approximately 3 of the best polynomial tailored to each channel model. The exact ratios of \tilde{P}_{u} for the recommended polyncmial to that of the best polynomial for each channel model are 1.45 (Pareto), 1.33 (Fritchman), 3.14 (Bra's Table 4) and 3.47 (Brayer Table 9). For four models the recomuended polynomial is the best for the particular channel. For the two models for which S_{p} and hence \tilde{P}_{u} was not computed, the ratio of $\sum P_{g}$ for the recommended polynomial to that of the best polynomial for the channel is 2.77 (Brayer Table 7) and 1.3 (Brayer Table 8).

As noted in Section 4, the curves of Figure 2.4 indicate the rate of convergence of the $\sum \mathrm{p}_{\mathrm{g}}$ al.goiithm for the recommended polynomial as more and more message sequences are used in the computation. Note that in most cases the change in $\sum P_{g}$ is almost negligible as the number of patterns is increased from 24,000 to 32,000 .

As a final comment on the recommended polynomial, consider the following typical use. At a bit rate of $10^{6} \mathrm{bits} / \mathrm{sec}$, approximately $5 \times 10^{7} 2000$ bit patterns are transmitted per day. Interpreting probability as relative frequency, the largest estimated probability of error in Table 2.7, namely 1.3×10^{-12}, produces approximately one error on the average for every $10^{12} 2000$ bit patterns. This oucurs in 2×10^{4} days or something like 50 years.

7. Conclusions for Part II

Part II of the report has dealt with the development, evaluation and application of an efficient algorithm for studying error detecting codes with respect to use on renewal channels.

With respect to the algorithm per se, it is efficient, using only tens of seconds of Univac 1108 CPU time on the average to compute the figure of merit for evalıating a polynomial, even for the largest coliection of approximate? 32,000 message patterns.

Even though the number of patterns for which probabilities are computed in evaluating $\sum \mathrm{P}_{\mathrm{g}}$ is a very small fraction of the total number of undetectable patterns, there is good evidence that $\sum \mathrm{P}_{\mathrm{g}}$ will change little through use of many more patterns. This evidence is provided by data on $\sum \mathrm{P}_{\mathrm{g}}$ as computed with more and more message patterns. The most extensive study of convergence, made for the recommended polynomial, shows an almost negligible change in $\sum \mathrm{P}_{g}$ when the number of patterns is increased from 24,000 to 32,000 for all ten channel models.

Additional work done in an attempt to bound probability of undetected error and thus provide a further check on the accuracy of the algorithm did not give useful results. Bounds related to the $B C H$ code were considered in detaii in this part of the study. Generally speaking, typical bounds are too loose to be of significant value.

A further check on the accuracy of the algorithm is provided by the comparison with the work of Johnson [21] who estimates probability of undetected error using a different, although related, method. Agreement between the results of Johnson and those obtained with the $\sum \mathrm{P}_{\mathrm{g}}$ ylgorithm is good.

The $\Sigma \mathrm{p}_{\mathrm{g}}$ algorithm has been used to rank all 900 irreducible l6th degree polynomials with respect to the Paretc channel model.

For 32 check bit codes with block lengths of 2000 bits, it is shown that sis classes of BCFi-Fire codes encompass many of the commonly used types of codes. Three of these classes are investigated in detail in a study that considered a total if approximately 350 polynomials. There is no evidence to indicate that different results would be obtained from a study of the other three classes of BCH -Fire codes.

From this study it car be concluded that a group of possibly a dozen codes kill provide the lowest undetectable error probability in general applications for which a precise channel model cannot be specified. The estimated probability of undetected errors for these "good" codes is on the crider of 10^{-12}, a value which would produce one undetected error in something like fifty years at bit rates of 10^{6} bits/secend. Four polynomials were found to have undetected error probabilities as large as four or more orders of magnitude greate than those for good polynomials.

The code polynomial, $x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^{8}+$ $x^{7}+x^{5}+x^{4}+x^{2}+x \div 1$, is recommended as a specific choice. The characteristics of this polynomial are investigated in detail and it is shown that the polynomial has a probability of undetected error no larger than on the order of three times that of the best polynomial tailored to each spezific channel model. For four of the channel models considered this polynomial is the best of rhose considered.

1. The Chier-Haddad Renewal Model: Results for a Special Case

The work repo:fed \therefore Part II of this report all uses renewal channel modisls which depend on first order gap statistics and hence are straightferward to identify. As liscussed above, renewal models have been matched to a variety of practical chanrels; however, it is clear that not
channels can be modeied as renewal channels. The Chien-Haddad modyl is one of the most general nonrenewal model which has been consijered in the literature.

Berause of the complexity of nonrenewal models; such as the Chien-:ładiad, the properties of such models are less clearly unaerstood than the pioperties of renewal models and furthermore there is less agreement as to appropriate choices of parancters to match practical channeis. As a part of the present study, two Chien-Haddad models were investigated and the results are compared to corresponding results for reneral models.

For simplicity a Chien-Haddad nodel using two by two matrices was assumed (corresponding to four elementary states). Reference io the discussion of the Chien-haddad model in Part I indicates that to fefine such a model requires :pecification of $-_{1}, \Pi_{2}, q_{1}, q_{2}$ and a $2 x 2$ matrix T.

Since typical parameter valuss were not available, a somewhat
arbitrary choice was made for the first model as noted below:
Chien-HaAdad Model B

$$
\begin{aligned}
& T=0.5: 143,0.42857 \\
& G=10^{-5}, 0.3 \\
& \left.T=\begin{array}{ll}
0.7 & 0.3 \\
0.4 & 0.6
\end{array}\right]
\end{aligned}
$$

For this model $P(m, n)$ was computed through use of (1.62) and (1.63) and the resulting curves are given in Figures A. 21 and A. 22 of Appendix 1.

In order to compare the Chien-haddad model to the renewal models studied, undetectable error patterns of small weight and length for several particular codes were determined and the probability of these patterns were determined for the Chien-Haddad model. (In the calculation it was necessary to use (1.55), which gives $F(m+1)$ for the Chien-Haddad mode1.)

For the parameters chosen for the Chien-Haddad model A the probability of iypical error patterns was smaller by 17 orders of magnilude than corresponding probabilities for Pareto, Fritchman, or Tsai models. A model, termed Chien-Haddad Model B was constructed by adjusting the parameters so that typical error patterns for a fixed code had probabilities on the same order of magnitude as those for the renewal models. This resulted in the model specified below:

$$
\begin{aligned}
& \text { Chien-Haddad Model } \mathrm{A} \\
& \Gamma={ }_{\mathrm{L}} 0.985,0.015 \mathrm{j} \\
& G\left.={ }_{\mathrm{L}} 10^{-5}, 0.3\right] \\
& \mathrm{T}=\begin{array}{ll}
0.999 & 0.001 \\
0.066667 & 0.93333
\end{array}
\end{aligned}
$$

Curves of $P(m, n)$ for Chien-Haddad model B are given in Figure $A .23$ and A.2: cE Appondix I.

Table 3.1 compares the total probability of a collection of error patterns For several l6th degree generating polynomials for the ChienHaddad, the Pare: 0 , the Fritchman, and the Tsai modeis. In each case the collection of andetectable error patterns is comr-al te to that used by Johnson ${ }^{-} 21^{-}$, and to that resulting from $\Xi=5.0 \times 1 n^{-5}$ in the method discussed in Part II of the report.

Table 3.1 Comparison of Estimated Undetected Error Probability for ISth Degree Generating
Polynomials and Various Channel Models, for $n=4000$.

The prohabilitios of typical undetectable error patterns ior the generator polynonial (Octal) 176053 were compared for the Pareto and the Chien-Haddad model B. It was observed that the probabilities of individual patterns did not correspond closely for the two models. For example for the group of patterns exanined the largest probability using the pareto model was a pattern of length 42 and weight 4 while the largest probability using the Chier-Haddad model 1 occurred for a pattern of weight 6 and length 23. A similar discrepancy was found for the smallest probability pattern.

The sensitivity of the Chien-Haddad model to a parameter in the T matrix was investigated by determining $B(b, N) i B(0, N$, as a function of p for the model specified below:

$$
\begin{aligned}
& \pi=1 \frac{p}{p+0.0001}, \quad-\frac{0.0001}{p+0.0001} \\
& \left.q={ }^{-} 0.001,0.30\right\rfloor \\
& T=\begin{array}{cc}
0.9999 & 0.0001 \\
\mathrm{p} & 1-p-
\end{array}
\end{aligned}
$$

The results given in Figure A .25 show an extreme sensitivity to \quad. Choices of p on the order of 0.1 would seem to correspond to practical channels which would not seem to strongly favor bursts of a particular lergth.
2. Approaches to Developing Channel Models Based on Physical Parameter:

As noted in the literature review of Part i, most existing channel models used in evaluating codes were developed by matching certain Statisidcal properties of binary random sequences generated by some class of mathematical models to those of experimentally measured error sequences. This approach does not place in evidence the effect :a the
ma"hematical model of charging physical parameters such as signal-tonoise ratio or intersymbol interference, nor does it account directly for different types of modems.

The literature contains a variety of analog channel models, on the other hand, which are paraneterized with physical variables. These models, however, have not been used with particular modem types to compute the statistics of digital error sequences.

In principle it is feasible to combine analog channel models witt. models of typical modems and then compute the statistics of appropriate digital error sequences. Such an approach gives the statistical represertation for error sequences necessary for designing codes and also retairs the parameterization in tum of physical parameters.

A step in this direction is taken in the present studv by considering a very tractable channel/modem model for a binary differential phase shift keying system. An analysis of such a model by Salz and Saltzberg - 30°. is used as a starting point.
:He system considered uses a modem modeled as consisting of a rans:iter shich jenerates an ideal waveform and a receiver consisting of an ideal input and outpul filter, an ideal delay, a sampler, and an optimum decision rule. The channel is represented simply as arioing Gauscian noise which is statistically independent of the message process. Altrigh the channel/modem models have no memory, use of the differentially coherent cetector introduces a mechanism for memory over one past bit and tive the system has a reasoneble probability of double error.

Salz and "ainzierg derive expressions, (equations (19) and (21), p. 204 of 30^{-}), to ine probability, $P(1,1)$, of double errors and
the conditional probability, $P(1 \mid 1)$, of an error given that an error has occurred. The results are

$$
\begin{align*}
P(1,1)= & \frac{1}{4!} e^{-M} j_{0}^{\pi}[\Gamma 1-\operatorname{erf}(\sqrt{M} \cos \vartheta)]^{2} \\
+ & \sqrt{M}-\cos \in e^{M \cos ^{2} \theta}[1-\operatorname{crf}(\sqrt{M} \cos \theta)]^{2} \\
& \because!+\operatorname{erf}(\sqrt{M} \cos ध)]\} d \theta \tag{3.1}\\
P(1!1)= & \frac{P(1,1)}{P(1)}=2 e^{M} P(1,1) \tag{3.2}
\end{align*}
$$

where

$$
\begin{aligned}
& M=1 / 2 \sigma^{2}=\text { signal-to-noise ratio } \\
& P(1)=\frac{1}{2} e^{-M} \\
& \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
\end{aligned}
$$

The expression for $P(1,1)$ can be evaluated numerically for a given valte of M. Note that the assumptions of the model limit the memory to one past bit so that, for example, $P(1 \mid 1,1)=P\left(\left.\right|^{\prime} \mid\right)$.

To study codes, it is desirable to evaluate the statistics of an error sequence. It will be shown, first, that the model specifies a renewal process, which is completely described by the gap probability, $\mathrm{B}(\mathrm{n})$, and the probability, $\mathrm{P}(1)$, of an error. The gap probability, $p(n)$, will then be ootained.

For a rencwal process the gap lengths are independent. Thus if $P\left(g_{1}, \xi_{2}, \ldots, g_{k}\right)$ is the probability of successive gaps of length $b_{1}, y_{2}, \ldots g_{k}$, for a renewal process

$$
\begin{equation*}
p\left(\dot{s}_{1}, r_{2}, \ldots, \xi_{k}\right)=p\left(g_{1}\right) \ldots p\left(g_{k}\right) \tag{3.3}
\end{equation*}
$$

Consider the joint probability of two gaps, $P\left(g_{1}, g_{2}\right)$, which can be expressed as

$$
\begin{equation*}
P\left(g_{1}, g_{2}\right)=P\left(0^{g_{1}^{-1}} 10^{\xi_{2}^{-1}} 1 \mid 1\right) \tag{3.4}
\end{equation*}
$$

using the notation of Part II. Using the well known relations for conditional probability the following equalities result

$$
\begin{aligned}
& P\left(0^{g_{1}^{-1}} 10^{g_{2}-1} 1 \mid 1\right)=P\left(10^{g_{1}-1} 10^{g_{2}-1} 1\right) / P(1) \\
= & P\left(0^{g_{2}^{-1}} 1 \mid 10^{g_{1}^{-1}} 1\right) \frac{P\left(10^{g_{1}-1} 1\right)}{P(1)}=P\left(0^{g_{2}-1} 1 \mid 10^{g_{1}^{-1}} 1\right) P\left(0^{g_{1}^{-1}} 1 \mid 1\right) .
\end{aligned}
$$

Using the fact that $P\left(0^{g_{2}-1} 1: 10^{g_{1}-1} 1\right)=P\left(0^{g_{2}^{-1}} 1 \mid 1\right)$, and the definiton of $p(g)$ results finally in the equation

$$
\begin{equation*}
P\left(g_{1}, g_{2}\right)=p\left(g_{1}\right) p\left(g_{2}\right) \tag{3.5}
\end{equation*}
$$

which shows that the model is a renewal process.
Further manipt:ation based on relations for conditional probability and the fact that memory extends only over one past bit yields an expression for $p(n)$, namely

$$
\begin{equation*}
p(n)=\frac{\left.[P(0,1)]^{2} r p(0,0)\right]^{n-2}}{\left.r_{P}(0)\right]^{n-1} p(1)} \tag{3.6}
\end{equation*}
$$

The gap probability can be determined from the relations for $P(1)$ and P(1, 1) using :he following identities

$$
\begin{align*}
& P(1,0)=P(0,1)=P(1)-P(1,1) \tag{3.7}\\
& P(0,0)=F(0)-P(0,1) \tag{3.8}
\end{align*}
$$

Curves of $p(n)$ versus n for various signal-to-noise ratios here computed and the results are given ir ig gure 3.1. The figure also gives the $p(n)$ curves for several of the Erayer models. Note that the 8 db signal-to-noise ratio curve for the double error model very closaly matches the Brayer Table 8 model. The data also suggests that several other Braver models could be matched with appropriate signal-to-ncise ratios.
3. Approaches to the Approximation of Nonrenewal Models with Renewal Models

The tractable aigorithm for estimating the probability of undetectable error fer specific codes is developed in Part II for renewal channels. There is a reasonable expectation that a similar, more complicated, algorithm can be developed for more general nonreneval channel models. An aiternate approach to studying codes for nonrenewal channels, which is worth exploring, is to approximate the nonrenewal channel model wich a renewal model which is equivalent in some sense. This section of the report suggests an approach which might be used.

A class of Markov processes, termed "urifilar Markov processes," which have useful approximation properties are defined and discussed in the literature of information theory, see for example Ash : 30°. A Markov Chain is said to be unifilar with respect to the function $\hat{\psi}$ if for each state C_{k} the scates $C_{k 1}, C_{k 2}, \ldots$ which can be reached in one step irom C_{k} are such that $Q\left(C_{k 1}\right), \varphi\left(C_{k 2}\right) \ldots$ are distinct values.

A suncet of unifilar processes can be constrained io be reneval pri-esses, although the details of the necessary constraints have not been worked ont. Ir using the unifiliar process to represent the e: for properizes of 3 chantiel, the function $\ddot{*}\left(C_{k}\right)$ would be set egual 100 (no error) for some states and 1 (error) for other states.

Unifiliar processes have the useful property that they can be used to approximate any other siven Markov process of finite order in the sense of matching the "uncertainty" of the prucess arbitrarily closelv. The uncertainty $h(x)$ of a process $\left\{x_{i}\right\}$ is defined as:

$$
\begin{equation*}
H(x)=\lim _{n \rightarrow \infty} H\left(x_{n} \mid x_{1}, x_{2}, \ldots x_{n-1}\right) \tag{3.9}
\end{equation*}
$$

where $H\left(x_{n}{ }^{\prime} x_{1}, x_{2}, \ldots x_{n-1}\right)$ is the conditional uncertainty, or conditional
 a definition of entropy).

The attractiveness of using entropy in generating an approximation is supported by two observations, namely:

1. If the Eunction, $H\left(x_{n} \mid x_{1}, x_{2}, \ldots x_{n-1}\right)$, is the sane for two processes, then the nth order staidstics of the processes are the same, and
2. The capacity of the channel is closely related to the entropy of the error sequence. Channel capacity is a natural parameter to use in describing a commencation channel.

The order of a unifilar Markov process is defined as the minimum numer of pest values required to specify the current value in the sequence. Thus the order of a unifilar process $\left\{x_{i}\right\}$ required to approximate a process $\left\{y_{i} \hat{\}}\right.$ within an uncertainty error, \in, can be detemined by requiring that

$$
\begin{equation*}
H\left(x_{n+1} i x_{1}, \ldots x_{n}\right)-H\left(\left.y_{m+1}\right|_{1}, \ldots y_{m}\right) \leq \leq \tag{3.10}
\end{equation*}
$$

:or all m.n.

Details of matching nonrenewal processes with renewal unifilar process have not yet been worked out. Consideration of a simple example seems to indicate that the method is feasible, although a large number of states may be required of the unifilar process.

4. Conctusions for Part III

Studies with a simple Chien-Haddad channel model have shown chat this model is quite sensitive to its parameter values. Relatively small changes have a pronounced effect on burst error probabilities and hence on the probability of undetectable error sequences for codes, if this m.odel is used.

It is possible to adjust the parameters of the Chien-Haddad model investigated to give sequence probabilities on the same order of magnitude as those for ocher (ranewal) models. If this is done, computation of the procability of a selection of undetectable error sequences shows that sequence probabilities can be quite different for the Chien-Haddad model from other models studied.

The work in Part III, Section 2, shows that it is possible, in a tractable case, to combine analog channel models with modem models and compute the statistics of error sequences for binary operation. It turned out that the simple LPSK system studied gives a renewal process for the error sequence which, for certain signal-to-noise ratios, closely matches that of several empirical models studied in part II.

The comments in the final section of Part III outline an approach to approximating nonrenewal models with renewal models. The method seems feasible but has yet to be evaluated in other than a trivially simple case.
5. Recommendations for Fut:are Work

The work undertaken in the present study might be regarded as a first step in the general problem of choosing and evaluating error detecting (and possibly also error correcting) codes for large scale networks.

An attempt was made in the present study to identify problems that are of significant importance yet at the same time could be solved in a reasonable length of time. This led to the concentration on renewai channel models which are both tractable and represent a major fraction of the iseful channels. Since code selection is based on channel models, almost exclusive emphasis in the study was given to techniques for selecting codes for renewal channels.

Future work should be directed toward a study of more general channel models such as the Chien-Haddad and to code selection procedures for these modils. In dealing with practical systems, especially if degradec operation is to be considered, it would be very desirable to have channel models in terms of measurable physical quantities such as sinnal-to-noise ratio. Future work is also required in this area.

Work wi:h, and related to, the use of empirical data in code selection is also desirable. First of all, the question of a sufficient collection of stdifistics to completely characterize a channel with respec: to the coding problem seems , \rightarrow be completely open. On another aspec: of the problem, because the probability of undetected error for practica! codes is so small (on the order of 10^{-13}), "brute force" processine of recorded error sequences to evaluate codes is essentialiy olt of : A question. Alternatives to the brute force appronch need to be developa.

Finally, it seems likely that complete communication network designs will be evaluated to some extent through simulation. The Monte carlo approach of directly processing simulated data sequences is a natural method to use. Such an approach, however, is limited by the same small error probabilities that plague the use of measured data. Some alcernative, such as conditioning or being near an error or the use of amplified error rates, must be perfected in order to be able to simulate systems under typical operating conditions.

APPENDIX I: Typical Channel Characteristics

10-1

$$
\begin{aligned}
& 1 \\
& p_{S(M, N)} \\
& \text { Fgure A.15. } S(M, N) \text { versur } N \text { with } M \text { Parameter for the } \\
& \text { Binary symmetrlc Channel } \\
& q=P(1)=0.189 ; s(1,1)-1.0 ; s(1, N)-0 N>1
\end{aligned}
$$

APPENDIX II: PROGRAM MAINTENANCE MANUAL

SECTION 1. GENERAL DESCRIPTLON

1.1 Purpose of PMM

The object for writing this PMM is to provide the maintenance programer personnel with the information necessary to effectively maintain the system.

1. 2 System Application

The system described in this manual consists of 11 independent program modules which are written for the evaluation of code generating polynomiai..

Several error statistics are calculated for renewal channels to help Evialuate the polynomials.

1.3 Equipment Enviroment

These 11 program modules were written for Univac 1108 Fortrain V Compiler and have been modified for IBM 360 Compiler H System.

To make use of the built-in logic functions, like $\operatorname{LAND}(a, b), \operatorname{LOR}(a, b)$, LXOR(a,b), etc., an additional compiler option would be coded.

PARM. procstep $=(. . .$. , XL,)
Here XL subparameter is not positional.

1.4 Conventions:

1) Integer Variables aiways begins with I, J, K, L, M, N
2) Abbreviation:
U.D. = Undetectable

ERR. = Error
PROG. = Program
Prob. = Probability
Info. Seq. = Information Sequence

SECIION 2. SYSTEM DESCRIPTION:

2.1 (ieneral Description

Each of the 11 program modules is self-contained and can be compiled and linked to form independent load module.

Each program module contains at least one MAIN program. Some modules may contain one MAIN program and other subprograms.

The interaction between these program modules and the datasets is shown in Figure 1.

2.2 Detailed Description for Each Module

2.2 .1 PROG. MODULE " Z "

a) Module Tag $=2$
b) Given 1. weight of error burst
2. burst size
3. code generating prolynomial
this module does exhaustive search for U.D. ERR. pattern, by doing polynomial division.
d) See comments on program list.
i) Subprograms ERPAT, DIVISN and FLD (J, K, MS, NV, NG, KP) are linked in this module. For ERPAT and DIVISN, argunents are passed from MAIN Drogram through COMMON block.
k) Stop execution, when I / O error occurs on card reader.

2.2.2 PROG. MODULE "A"

a) : Module $\mathrm{rag}=\mathrm{A}$
b) It creates and catalogs Dataset $F(3080), P(3072)$ and $R(128.200)$ for PARETO model with parameters $E T=3 \times 10^{4}, \alpha=0.3$.

$$
\begin{aligned}
& * F(n)=\operatorname{Prob} .\left(0^{n-1} \mid 1\right)=1-\frac{1}{1-L^{-\alpha}} \frac{n^{\alpha}-1}{n^{\alpha}} j, n \geq 1 \\
& \\
& \text { here } L=\frac{1-\alpha}{\alpha}\left(E T+1 j(n)=\operatorname{Prob} .\left(0^{n-1} 1 \mid 1\right)=F(n)-F(n+1)\right. \\
& * R(m, n)=\left\{\begin{array}{l}
F(n), \quad m=1, n \geq 1 \\
\sum_{j=1}^{n \cdot m+1} P(j) R(m-1, n-j), \quad 2 \leq m \leq n, n \geq 2
\end{array}\right.
\end{aligned}
$$

$$
* \mathrm{PE}=\text { individual error probability }
$$

$$
=\frac{1-\alpha}{\alpha} L^{\alpha-1}
$$

d) See comments on program list.
i) Subprogram Function $\overline{\mathrm{F} X}(\mathrm{NA}, \mathrm{SL}, \mathrm{ALP})$ is linked with MAIN.
k) Stop execution when I/O erzor occurs on card reader.

2.2.3 PROG. MODULE "B"

a) Module Tage $=\mathrm{B}$
b) This madule calculates the U.D. ERR pattern's probability

W i.s weight of burst
N is message block length
Refer to comments on program list
d) See comments on program list
h) Exit when card reader reaches tie Delimieter Statement (/*).
k) Stop execution when I/Q error occurs on card reader.

2.2.4 PROG. MODULE "C"

a) Module $\mathrm{Tag}=\mathrm{C}$
b) Creates and cataiogs Datasets F, P and R for Markov models.

$$
\begin{aligned}
& * F(n+1)=\operatorname{Prob} \cdot\left(0^{n} / 1\right)=\sum_{K=1}^{N} t_{N K}\left(t_{K K}\right)^{n-1} \\
& * P(n)=\operatorname{Prob} \cdot\left(0^{n-1} 1 / 1\right)=F(n)-F(n+1) \\
& * R(m, n)= \begin{cases}F(n) & m=1, n \geq 1 \\
n-m+1 & P(j) R(m-1, n-j) \\
\sum_{j=1} & 2 \leq m \leq n\end{cases}
\end{aligned}
$$

$* P E($ individual error probability $)=\left[1+\sum_{K=1}^{N-1} \frac{t_{N K}}{1-t_{K K}}\right]^{-1}$

N - number of states
$t_{N K}$ - entry at Nith row and Kth column of statetransition matrix
d) See comments on program list.
k) Stop execution when I/O error occures on card reader.

2.2.5 PROG. ${ }^{\text {PDULE }}$ " D "

a) Module Tag $=\mathrm{D}$
b) Calaulates the L.D. ERR. pattern probability for Markov models.

$$
\begin{aligned}
& \text { Prob. }=\prod_{i=2}^{W}[F(d i)-F(d i+1)] \frac{1}{N} \sum_{d=1}^{N-b+1} F(d) F(N-b+2-d) \\
& W \text { = weight of error burst. } \\
& \text { di's = gap li.ogth of the pattern } \\
& N=\text { message block iength } \\
& \text { Refer to comments on program list. } \\
& \text { d) See comments cn program list. } \\
& \text { h) Exit when card reader reaches the Delimiter Statement }(1 / i) \text {. } \\
& \text { k) S_op execution when } I / 0 \text { error occures on card reader. }
\end{aligned}
$$

a) Module Tag $=\mathrm{E}$
b) Calculates $P(m, n)$ for both PARETO and MARKOV models.
$P(m, n)=\sum_{j=1}^{n-m+1} P E \cdot F(j) \cdot R(m, n-j+1) \quad 1 \leq m \leq n$ $P E($ individual error pros.),$F(j)$ and $R(x, y)$ are all created in module A or C.
d) See comments on frogram list.
h) Exit when card reader reaches the Delimiter Statement (/*).

2.2.7 PROG. MODULE "F"

a) Module Tag $=F$
b) It creates and catalogs vataset $A(j)$ for the use of module G. Applicable to both Markov and Pareto models.

$$
A(j)=\left\{\begin{array}{l}
1 \quad j=0 \\
F(1)-F(2) j=1 \\
{\left[F(j)-F(j+1) ?+\sum_{s=1}^{j-1}[F(s)-F(s+1)] A(j-2) j \geq 1\right.}
\end{array}\right.
$$

d) See comments on program list.

2.2.8 PROG. MODULE "G"

a) Module Tag $=G$
b) Calculate $(B(b, N) / N \cdot P E)$ for Markov and Parets models.

$$
\frac{B(b, N)}{N \cdot P E}=A(b-1) \cdot \frac{1}{N} \sum_{d=1}^{N-b+1} F(d) F(N-b+2-d)
$$

$A(x)$ is autocorrelation arrav created in module F.
(i) See comments on program list.
2.2.9 PROG. MODULE " h "
a) Module Tag $=\mathrm{H}$
b) Calculate quantity $\mathrm{Sp}(\mathrm{b}, \mathrm{N})$

$$
\operatorname{Sp}(b, N)=\frac{1}{N} \sum_{d=1}^{N-b+1} F(d) F(N-b+2-d)
$$

d) See commencs on program list.

Only 1 input data card, it contains $K B$ (limit of b) and $N(b l o c k$ length).

This module will print $\operatorname{Sp}(1, N)$ to $S p(K B, N)$.
2.2.10 PROG. MODULE. "I"
a) Module Tag $=I$
b) This module generates most probable information sequence based on Pareto model's gap statistics $\mathrm{P}(3072)$.

The info. seq. is used in module J to evaluate code generating polynomials.

The info. seq. generated is stored in a 2 dimensional array
INFO($1000, \therefore$) before its being written to Dataset INFSEO.
The Kth info. seq. is stored as follows:
Assume Kth info. seq. is 10001100010010 (weight $=5$)
Integer INFO (K,1) INFO (K,2)

5

Byte S

Note: For weight other than 5 , the byte allocations are different from abrve.
d) See comments on program list.
i) Subroutine WRITER (ICT,II) is link. *with MAIN program in this module.
2.2.11 PKOG. MODULE "J"
a) Module Tag $=J$
b) This module evaluates polynomials according to the following steps:

1) Read in info. seq. (created in module I) and $P(3072)$ dataset (created in Module A or σ)
2) Read in a polynomial $G(x)$

If a Delimiter Statement $(/ *)$ is read, go to Step 6.
3) For each info. seq., get a U.D. ERR. pattern which is INF • $X^{K}+R(x)$. Here INF is info. seq.
K is degree of $G(x)$

$$
\left.R(x) \text { is the remainder of (INF • } X^{K} / G(x)\right)
$$

4) Calculate probabilities of U.D. ERR. patterns obtained in Step 3 and sum it up for all info. seq.
5) Jump back to Step 2 to read one more polynomial.
6) Arrange the polynomials in ascending order according to the total U.D. ERR. probability associat.ed with it.
7) Print the polynomials and its probability in ascending order.
d) See comments on program list.
h) Exit when card reader reaches $/ *$ stat'ment.
i) Subroutine $\operatorname{FLD}(J, K, M S, N V, N G, K P)$ is linked with MAIN program.
k) Stop execution when $I / 0$ error occures on card reader.

SECTION 3. INPUT/OUTPLX DESCRIPTIONS

3.1 General Description

This system uses $51 / O$ data sets -- F, P, R, A, and INFSEQ.
These datasets can be created on Tape or other secondary storage.
The reference number used for each data set is indicated in the comments of each program.
\because Datasets $F, P . R$ and A are created under Format $(5 \mathrm{X}, 5(\mathrm{E} 23.10,2 \mathrm{Y}))$
*Dataset iNFSE? is created without format control.
SECTION4. PROGRAM ASSEMBLYNG, IOADING
a) To obtain lcad modules for each program-mcdule described in Section 2, please refer to
"IBM SYSTEM 360, FORTRAN (G\&H) PROGRAMER'S GUTDE" GC28-6817-3 Page 83.
b) To specify a dataset for a ran, please refer to the same document as above pages 49-52.
c) The test runs for modules $2, B, F, B, H, I$ and J are descrioed beiow Renark:
*The polynomials shown on the Univas 1108^{\prime} s output are in Octal representation. For IBM 300 polynomials will be in Hexadecimal representation.
$\% b=$ blank

Assume Datasets F. P. R. A for Pareto model and Brayer's table 6 model are already created.

1) Module Z.
```
lst input card = bbobbl5
2nd input card = 000E04B
                                    =160113 (Octal)
3rd input card = bl6529
```

The output is shown on page A-1
2) Module B

1st input card $=\mathrm{b} 3200$
2nd card $=$ bbbb4bbbb4bbb....
3rd card $=$ bbb18bbb47bbb61bb...
4 th card $=$ bbb39bbb65bbb70bb...
5t! card $=$ bbb68bbb71bbb90bb...
6th こard $=\mathrm{bbb} 77 \mathrm{bbb} 89 \mathrm{bbb} 93 \mathrm{bb} .$.
7 th card $=/ *$
Output is shown on page A-2
3) Module F

Specify Fareto model's Dataset F as input dataset with reference number $=10$.

No input datacars.

Part of the output is shown on page A-3.
4) Module G

Specify Pareto Model's Dataset F and A as input datasets
with reference numbers $=10$, il respectively
1st input data card $=2000 \mathrm{bbb} .$.
Part of the output is shown on page $A-4$
5) Module H

Specify Pareto Model's Dataset F as input dataset with
reference number $=10$.

1st input data card $=$ bb452000bb. .
The output is shown on page $A-5$
6) Module I

Specify Pareto model's Dataset P as input dataset with reference number $=9$

The output is shown on page $\mathrm{A}-6$.
7) Module J

Specify Brayer iabie 6 model's Dataset P and INFSEQ
(created in Module I test run) as inpur dataset with
reference numbers $=9,8$ respectively.
1st card $=32 \mathrm{bbb} . .$.
2nd card $=$ bbbbbbb104c11Db7bbb...
$[=4046.0216667$ (Octal)]
3rd card $=$ bbbbbbb19262E7C59bbb...
$[=62613476131$ (Octa1)]
4th card $=$ bbbbbbb1857D984Dbbb...
[$=60537314115$ (Octal)]
5th card $=/ *$
The output is shown on page A-7.

$$
\text { For polynomial }=(0000 \mathrm{E} 04 \mathrm{~B})_{16}=(160113)_{8} ; \text { Number of error bits }=6
$$

burst No size er	$\begin{aligned} & \text { of } \\ & \text { ror bits } \end{aligned}$	THE FOLLO ExPOVEVTS	$\begin{aligned} & N I_{V G} E \\ & 0=N 2: \end{aligned}$	$\begin{aligned} & \text { R20R } 3 \mathrm{AT} \\ & \mathrm{~N}-2 E 20 \mathrm{~T} \end{aligned}$	$\begin{aligned} & \text { ERVS AF } \\ & \text { RYS } \end{aligned}$	QF UVJET	CTABLE:			
$(15$.	5)									
1 17,	5)									
$(13$.	5)									
119.	5)									
120.	5)									
$(21$.	6)									
(22.	5)									
123.	5)									
	0	$9 \quad 12$	15	1822						
124,	6)									
125.	5)									
(25,	§)									
	0	$3 \quad 9$	21	$22 \quad 25$						
	0	1113	16	1825						
127.	5)									
(25,	5)									
(29,	5)									
ESTIUAT:	EJ'RUV T	IVE EXCEE	Ȯ̇,							
REENT	AJOR:012	453 351	$\mathrm{OO}_{0} \mathrm{O} \mathrm{O} 4$							
x			$00 \text { noon }$	000007	000000	n00000		noonoo	$\begin{aligned} & 000000 \\ & 777777 \end{aligned}$	
	000000	000000	$00 \mathrm{nOOn}$	000000	000000	000000	000164	012176	777777	
a	777777	777771	000000	134425	000000	071052	000000	n00071	777777	7
	000000	000000	000000	$0 \cap 0000$	000000	n00000	000000	n00000	000000	
	000000	000000	000000	000000						
2			000000	000002	777777	777776	000164	n44516	600000	0
	000000	0000000	$00^{0} \mathrm{nOO}$	000000	000000	n00000	777777	777775	060008	

RUVID: EEASO		AECT: 01,A0134	PROJECT: YURTHY-V-R	
EEASO MAX TIYE				
TIME:	TOTAL:	00:01:00.723		
	CPJ:	00:00:59.376	1/0:	00:00:01.395
	CCIEマ:	00:00:00.951	NAIT	00:0n:00.000
d'AGES	REAJ:	7 PAGES:	2	
START:	22:34	:09 JJi 2a.1974	FIV:	22:35:25 JUL 29.

```
******lUU113 1'ULYNOMIAL 2-y!r.4-..1T,5-H11.0-blT
    N=3200
ョ\lambdaい| |LLULE.FAN|ON
    M:x:3,.डiLITY= 4% 01 00000000300.4
    *:NO Ob 70 
```



```
    Pruembillity= .DUN0000006%0Y
        0 10 18 23 24
    PNummuILITY= .0000000210y%
        0 13 20 20 34
    PnutintliIIY= .00000000147.s
        U 6 15 20 35
    #Bru#̃nuILITY= .00000000115%
        U 10 2% 39 47
    RNUSADILITY= .DUVO00000300
        ) 20 jo 40 48
    FROSAUEILITY= .000000000022
        0}22252\quad44\quad4
    FNUEMEILITY= .0000000000369
        0 9 30 42 49
    HNOSAOSILITY= .000000000<97
        ij 13 14 37 51
    MmOjnuILITY= .000000001104.
        0 8 1% 29 bl
    FRCBnSILITY= .0000000000<33
        J 21 39 43 53
    HNODAUILITY= .00000000050S
        0 ie 27 40 53
    HROEnvILITY= .000000000152
        0 j0 33 30 53
    PnuపnjillfY= .00U000001<21
        0 4 35 53 55
    PROJmSILITY= .000000001\dddot{24}
        0) 18 37 b5 60
    HnNe.asILITY= .000N0000012?
        U 3 jo bri ul
    Prumaiglifit= .0000000000ibl
        0 12 27 33 ól
    ProtinuILITY= .000000000030
        !)}30\quad45\quad57 0
    PN0:ndILITY= .0000000001c0
        0 3 24 41 os
Prujnlilliy= .006000000109
        .) 14 <6 45 64
Fnjs.silfrr= .000000000uses
        u is l: 5% 0́0
PrusnuIlify= .060000.j00s7e
```



```
    \therefore G 12 1:1 1!3 22
```



```
    | 3 9 2: << 2b
```



```
    :1 12 ln 10 < 
```


Copy ovalahle In DrC domen not perall fully legible seproducllors is

い．Ev－1F9264 1 001003 001210

v：．VT：／ESてuH 001211001233

い－111：／Eう々

（111234 001453

いいて2／チコア0ヲーム
001456001723
001724002003 002004002030 002031002142 002143002203 uU2204 002237 002240002252 002203002557 002560003734 003755004611 004612005014 005015006002

2	040012	1140054
2	0400.25	$1.401!11$
2	$04025 ?$	$11+2.3!3$
2	$0423!24$	1.97410
2	042411	142424

？	042425	1,42430
2	042431	．14245\％
2	042470	U42544
2	042545	042703
2	042704	．14．3057
4	043000	1，43131
2	0＇43132	1.43170
2	043171	－4321n
2	043211	［4333n
2	043331	043402
2	043403	－44350
0	044351	1550326
0	050327	1）50342

$A^{\prime}(0)-1.0000$
A（1）－． 19934
A（2）-.12965
A（3）－． 10225
A（4）－5．59553－02
A（5）－7．4．7254－02
A（6）ֹ．．59555－02
A（7）－5．05754－02
$\mathrm{A}(8)-5.57424-02$
$A(9)-5.17021-02$
$A(10)-4,93205-02$
A（11）－4．54412－02
A（12） $4 \cdot 2.3543-02$
$A(13)-4.07304-02$
A（14）－3．43511－02
A（15）$-3 \cdot 71515-02$
A（16）－3．35170－02
A（17）－5．42319－02
A（18）－3． $3772 \%-02$
A（19）－3．1 522う－02
A（20）－3．：7 7 ㄱ72－02
A（21）－٪．77345－02
A（22）－2．
$A(23)-2 \cdot 015 \%-13 ?$
A（24）－\％．12317－9？

$A(26)-\because, \square 75 \leq-v ?$

Pareto Model

U1	25．20ju）＝	
41	2n．20，4）＝	－C00467065こ7157？
H1	2\％0：0．3）$=$	－ $00.045 \mathrm{SEIC1573776}$
01	23．2030）＝	－C00444．275337941
is	27．20．11）$=$	－ 000433516973167
31	3（120心）$=$	－COU425ij65030626
${ }^{7} 1$	$31.20,41=$	． 0004414367875081
51	$32 \cdot 20.101=$	－ 000405376150312
31	$33.20101=$	－con396＇i49？6．8771
19	$34 \cdot 20 \cdot(1)=$	－C00338s＇449214370
51	35，20，0）＝	－C00380743eotis 3
31	30．20．10）$=$	－600373＇401553633
31	37．20：（u）$=$	．C00360397383914
31	30．20：00）＝	． 000357106315066
81	39，20：0）$=$	－000353j00384790
81	$+4.20001=$	－ 000347179124219
31	41，20Jv）$=$	． 0003413043137097
¢ 1	42，205（1）$=$	－0С0335057531678
31	$43.2030)=$	． 000330253489665
31	$44.20 \mathrm{Ju})=$	． 000325047432952
51	＋5．20．5（）$=$	－00032003738，5700
31	46．20：06）$=$	－ 000315212004352
31	$47,20.101=$	． 000310560586513
E1	$4 \mathrm{a} \cdot 20001=$	． 000306973259708
${ }^{\text {a }}$	49．20（0）$=$	． 00030174 C ¢́19761
81	$50.20 .301=$	． 000297554768622
31	51．20001＝	． 0002935 C 7551803
31	52．20．30）＝	． 000289591093351
B1	53．20．9（）$=$	． 0002853181848804
31	$54.20 .301=$	．00028212．9785774
31	55，20，（i）$=$	．000273570．31142
81	E6．20．J（1）$=$	．C00275118225812
31	57．20］（1）$=$	．000271769349638
ai	50，20；（1）＝	． 000263517331278
31	$59.20: 0)=$	． 000265358670731
81	50，20；0）＝	－0002622gE322119
31	$5 i \cdot 20001=$	． 000259303320490
31	52．20：0）$=$	． 0002503399413047
31	$53.20: 01=$	－000253573209193
31	04，2001）$=$	． 000250521311056
of	$55.20 \cdot 0)=$	－ 000248141106567
31	00．20．50）$=$	－ 200245529197855
4	－07．20．1（）$=$	． 200242983074713
21	$08.20 .50)=$	． 000240499765003
U1	99．20（10）$=$	－0c02380775940．36
918	70．20ju）$=$	． 000235713532675
01	$71.20003=$	． 000233405 ？ 16932
01	$72.20: 001=$	． $000231: 51303981$
31	$73.20 .50)=$	－C00223949060329
， 6	$14.20003=$	． 030225796590274
\because	$75.20100)=$	－000224\％93420050
	76020のリ）	－C0122：336144\％？ 7
3	17．20゙J）＝	－0un22u9．24042413
31	13．20．36）$=$	－20021的55：i53964
31	10．20：01）$=$	－Con2157？
יi	$\because 0.200(0)=$	
，	1，20，0）$=$	． $00021 \leq 39045291$.

Pareto Model $5 p(x, 2000)$

****PROS CALCULATION FOR く55:-IR-REDUCIBLE
G(x) - Prots(ti.t.)

	End card
.	4th card 3
	3 ra card ${ }^{-1} 4$
¢	5
	5
-	8

5
6
7
8

> 60537314115 62013470131 52414670717 51474633517 60120240653 51224030761

40400216667 •-96,4273-11 54114300535 . 114413-10
 $.214580-10$
$.218726-10$
-3:1764-10
-125655-09
-8144177-03
ε
$\$$
\leqslant
z
c
\approx
$*$
ω

0

APPENDIX III: A NOTE ON THE MUNTER-WOLF CHANNEL MODEL

Care should be exercised in applying the particular case of the Muster and Wolf model discussed on pages 27 and 28 due to the following inconsistency: Combining (1.69) and (1.71) one has

$$
P(m, n)=\sum_{i=1}^{M} \lambda_{i} P_{i}(1) \frac{\binom{n}{m} \alpha_{i}^{m+1} k_{i}^{n+1}\left(1-\alpha_{i}\right)^{n-m}}{\left[1-k_{i}\left(1-\alpha_{i}\right)\right]^{2}}
$$

$$
\sum_{m=0}^{n} p(m, n)=1
$$

as a fundamental property of $\mathrm{P}(\mathrm{m}, \mathrm{n})$, implies that

$$
\sum_{i} \lambda_{i} P_{i}(1) \frac{\alpha_{i} k_{i}^{n+1}}{\left[1-k_{i}\left(1-\alpha_{i}\right)\right]^{2}}=1
$$

for all n. Hence, $K_{i}=1$ and, therefore,

$$
\sum_{i} \lambda_{i} P_{i}(1) / \alpha_{i}=1
$$

Since $\sum_{i} \lambda_{i}=1$ and from the assumption $P_{i}(1) \ll \alpha_{i} K_{i}^{j}$, it is clear that $\sum_{i}^{i} \lambda_{i} P_{i}(1) / \alpha_{i} \ll 1$. Hence, a contradiction i ri the model,

[^0]: + References will be found at the end of Part I of this report.
 * These models are not strictly Markov processes but related to Markov processes.

[^1]: *There is a possible inconsistency in (1.69) and (1.71). See Appendix III for a discussion of this point.

[^2]: + Code vectors severely truncated from their "natural" length are typical in the present study. Thus patterns shifted to fold over the end of the block are not considered.

[^3]: * This definition is suggested by Johnson [21"; in an unpublished memo.

