UNCLASSIFIED

RELIABILITY PREDICTION - MECHANICAL STRESS/STRENGTH INTERFERENCE
Charles Lipson
Narendra J. Sheth
Ralph L. Disney
University of Michigan

TECHNICAL REPORT NO. RADC-TR-66-710
March 1967

Rame Air Duvelopment Center
Rescarch ond Technology Division
Air Force Syatems Command Griffiss Air Force Bese, Now York*

When US Government dreminge, apecificitions, or other data ate used for any purpose other than a definitely related novornment procurement operation, the government thereby incurs no responsibility nor any obligation whataoever; and the fact that the government may have data is nor to be red, or in any way supplied the said drawings, apecifications, or other holder or any other person or implication or otherwise, as in any manner licensing the facturer, use, or sell any patenced invention conveying any rights or permission to manufacturer, use, or sell any patenced invention that may in any way be related thereco.

Do not remra this copp. Retuin or destroy.

Charles Lipson
Narendra J. Sheth
Raiph L. Disnay
University of Michigan

Thats document is mabject to apecial oxport controls and each tramuilttal to fortign forvomancats, foroign motiouale or repperentiatives thereto may be made caly with plor mpoval of RADC (EML), GAFS, N. Y. 13440

FOREWORD

This final report was prepared by Charles Lipson, Narendra i. Sheth and Ralph L. Disnmy nf \pm the initiciaiiy or michigan, Ann Arbor, Michigan, under Contract AF30(602)-3684, project number 5519, task number 551902.
rhis report outiines a nonelectronic reliablilty prediction technique subject to special export controls.

This report has been reviewed and is approved.

Approvo/:
Ppeyl (hainter
Chjer, En En (neerin
Diviaion
for the commander: for gore

- MVING J. GABELMAN

Chief, Advanced Studies Group

Abstract

This study addressed itself to the development of a stress-strength Interference Theory in the form of a practical engineering tool, to be used for deaigning ana quaniiiaiivixiz pandinting the reliability of mechanical parts and components subjected to mechanical loading.

Early practices in stress-strengin relationahip dealt almost entirely along the lines of factors of safety. Utilization of such factors is justified when they are based on considerable experience with parts not too different from the one under consideration. However, when substantial changes in the geometry, the processing, or the function of the part are contemplated, a major error may result if the old factors of safety are projected to the new set of conditions.

In the present investigation an approach was used which attempted to recogntze the above limitations. Instead of an indiscriminate grouping of all the variables affecting atress and strength into one index (factor of safety) these variables were individually recognized. The principal vailabie is the scatter in the stresses imposed on the part and fin the strength of the material resisting these stresses.

The prevailing practice is to use the mean values of the calculated stress and strengti, ignoring the natural acatter that each may possess. However, the variability in these two factors results in a statistical distribution of stress and strength. When these two distributions interfere, that is when stress becomes higher than strength, fallure results. Means of expresing thesf diatributions, in a practical engineering aense, and means of calculating the resulting interferences, represent the heart of the present study.

The problem of strength distribution was approached with the aid of 5 -N curves. A great deal of fatigue date was gathered for various materials, heat treatments, surface conditions, etc. About 75\% of these da; were obtained from the Mechanical Propertias Data Center, Traverse City, Michigan, which also provided aome tenaile and strength rupture information. The rent of the data came from literatura and other sources.

The fatigue data thus obtained were then converted into strength data which portrayed the scatter of etrength at a given life, Several methods of expressing the resultant distribution were atudied and the Weibull distribution was decided on as the moat' effective means of expreaning the strength distribution in the Interference Theory. For aach material, heat treatment, surface condition, etc. studied Waibull parameters were calculated, and these are tabulated in Appendix 1 . Pertinent information was then plotted and the grapha were incorporated in the body of the report (Section 6).

The problem of streas dincribution (Saction 7) turned out to be much more involved. When one speakic of "atress distribution" he uaually refers to apectrum of loading or atresses to which a part is subjected.

Indeed, most of the available data on the subject is expressed in this manner. In an engineering sense, this kind of a distribution means number of times that a given part is subjected to a given load or stress. In the Interference Theory, however, this is not what is wanted. For consistency with the strength distribution the number of parts subjected to a given stress is reçuired instead.

In the present study the required stress distribution was obtained by converting the stress spectrum, which generally has some mean stress, into a spectrum with zero mean, with the aid of the Goodman diagram. This was done to facilitate the conversion of the resultant spectrum into an equivalent stress, based on zero mean stress. The conversion was accomplished by means of Miner's rule. 'The requi.ed stress distribution was then expressed in terms of the equivalent stress. This distribution was then compared with the strength diatribution to deterinine the degree of interference.

From an extensive literature survey made in the course of this study, it was found that inost investigations have assumed both the stress and atrength distribution to be nomal. In those cases when they were not normal a Monte-Carlo technique was employed. This involved a sophisticated means of randomly selecting a sample from one distribution and comparing it with a sample from a different diatribution.

In view of serious limitations of the Monte-Carlo technique a method of Integrals was developed (Appendix 3 and Appendix 4) and used in the present study. This method involved developing an integral resulting from the interference of two distributions and calculating this complex integral with the IBM - 7090 computer using MAD language.

Although the interference of several distributions was considered the final cabulated interference values were restricted to the cases when the stress distribution was normal and strength distribution was Weibull, and when both distributions were Weibuli (Appendix 2). This representa diatributions most frequently encountered in actual engineering practice.

In order to show the application of the Interference Theors Technique, developed in the present etudy, an example was solved, as described in Section 9.

TADEE UY Clinitanis

8. Interference of Stress Distribution with Stren oth Distribution 169
9. Application of Interference Theory to Design Problems 174
9.1 Weibull Parameters 174
9.2 The Equivalant Stress 174
9.3 Percent Interference 176
9.4 The Effect of Design Factors 179
Conclusions 182
Recommendations 184
References 185
Bibliography 187
Appendix 1 Tables of Weibull Parameters 194
A-1.1 Weibul1 Parameters for Fatigue Strength 195
Index to Weibull Parameters for Fatigue Strength of Various Materials 196
Reference Data for Weibull Parameters 198
Tables 206
References for Fatigue Strength Data 241
A-1.2 Weibull Parameters for Tensile Strength 242
Index to Weibull Parameters for Tensile Strength of Various Materials 243
Tables 244
References for Tensile Strength Data 249
A-1.3 Welbull Parameters for Rupture Strength 250
Index to Weibull Parameters for Rupture Strength 251of Various Material.s
Tables 252
References for Rupture Strength Data 257
Appendix 2 Tables of Interference Valizes 258
A-2.1 Stress Distribution - Normal, Strength Distribution - Weibull 459
A-2.1.1 Stress Standard Deviation $=0$ 260
A-2.1.2 Stress Slandard Deviarion $\$ 0$ 264
A-2.2 Stress Distribution - Weibuil, Strength Distri- bution - Weibull 306
Appendix 3 Mathematical Theories oi Analytical Expression 397
A-3.1 Introduction 398
A-3.1.1 The Concept of a Random Variable 350
A-3.1.2 Interference Theory and Random Variable 398
A-3.2 Determination of Probability of Failure 399
A-3. 3 Some Examples 409
A-3.3.1 Normally Distributed Strength (X) and Normally Distributed Stress (Y) 409
A-3.3.2 Exponentially Distributed Strength (X) and Exponentially Distributed Stress (Y) 410
A-3.3.3 Gamma Distributed Strength (X) and Gamma Dis- tributed Stress (Y) 41.1
A-3.3.4 Weibull Distributed Strength (X) and Weibull Distributed Streas (Y) 418
A-3.3.5 Weibull Distributed Strength (X) and Normally Distributed Stress (Y) 422
Appendix 4 Discussion of the Evaluation of Integrals in A-3.3.4 and A-3.3.5 425
A-4.1 Numerical Analysis 426
A-4.1.1 The Problem 426
A-4.1.2 Method of Solution 426
A-4.1.3 Properties of Simpson's Rule 427
A-4.1.4 Error Analysis-Weibuli-Welbull Case 427
A-4.1.5 Concluaions Concerning Errors 440
A-4.1.6 A Note on Interpolation 441
A-4.1.7 Error Analysis-Weibull-Normal Case 441
A-4.1.8 Conclusions Concerning Errors 448
A-4.1.9 A Note on Interpolation 448
'rins study was addressed to the development of a practical reliability enfrineering, tool to be used in predictinf tae reliability of mechanical parts fabricated from ferrous metals and subjected to dynamic loadinf. 'ri.: tool was to be bascd on the itress-itreneth Interference rneory and to be usable by desirn encineers with little or no stintistical backrround.

IThe study has provided a prediction technique which is almost "cookbook" in nature and requires a minimum amount of computation. Once the values of the parameters of the interferinc aistributions nave veen determined, the probability of failure is obtained directly from tables contained in the report. Within the limitations that the material must be ferrous and the failure mechanism must be fatifue, the reliability of an almost unlimited number of parts car be predicted. For example, f few are gears, bolts, shafts, sprincs, torsion bars, vehicle frames and auspensions, landinf gears, forfed air frame members, etc. The engineerint: and statistical basis for the technique are such that there is every reason to believe that predictions based on this technique will be realistic. However, the precision will depand to a larpe extent on the accluracy of the stress distribution. If this distribution is based on measurements much areater precision will result than for the case where only the mean stress io known and the variability is estimated.

SECTION 1 INTRODUCTION

Abstract

A complete cyole of relisbility ig made up of Eour stagea: 1. Specification of Relialility; 2. Prediction of Reliability; 3. Verification of Reliability: 4. Preservation of Reliability. The heart of the second stage, namely, the Prediction of Reliability, is the Interference Theory.

The basic idea behind reliability is that a given part has certain physical properties, which, if exceeded, will result in failure. The factor which may cause these properties to be exceeded is the stress imposed by the opersting conditions. Thus, in prediction of reliability it is not the stress alone or the strength alone that are the datermining factors but the combined effect of the two.

Early prectices in stress-strength relationship deait almost entirely along the lines of factors of safety. Once a part was designed and the ratio of strength to stress was in the range of approximately 5 to 10 it was considered to be safe for service. In certain industries and in certain applications factors of safety ao high as 20:1 were empioyed.

The definition of the factors of safety varled fron user to user, depending on the sophistication and the complexity of the problem.

Some of these definitions, found in literature, are listed below:
Factor of Safety $=\frac{\text { Ultimate Strength }}{\text { Nominal Striss }}$
Factor of Safety $=\frac{\text { Yield Strength }}{\text { Nominal Stress }}$
Factor of Safety $=\frac{\text { Ultimate Strength }}{\text { Actual Working Stress }}$
Factor of Safery $=\frac{\text { Yield Strength }}{\text { Actual Working Stress }}$
Factor of Safety $=\frac{\text { Maximum Safe Load }}{\text { Normal Load }}$
Factor of Safety $=\frac{\text { Computed Strength }}{\text { Computed Load }}$
Margin of Safety $=\frac{\text { Strength-Stress }}{\text { Stress }}$
Design Factor $=\frac{\text { Strength }}{\text { Design Stress }}$
Factor of Utilization m Stress

$$
\text { Functiena! Reseziv Fa=toi = } \begin{gathered}
\text { Magnitude of Variable } \\
\begin{array}{c}
\text { Magnitude of Variable at } \\
\text { Operating Conditions }
\end{array}
\end{gathered}
$$

> where the variable could be force, power, torque, material, surface finish, fillet radius, etc.

Apparently the factor of safety was meant to account for all the variables which were known to affect the stress and strength of the member. The utilization of a factor of afety of this kind has justification, only when its value is based on considerable experience, with parts not too different from the one under consideration. However, when substantial changes in the genmetry, the processing, or the function of the part are contemplated, a major error may result if the old factor of safety is projected to the new set of conditions.

This is illustrated by the problem of automotive axle shafts which have been failing in service in large sumbers. These shafts have been fabricated from a steel with a tensile atrength of 240,000 psi, and yet, the operating stresses as measured in actual service were found to be only $13,000 \mathrm{psi}$. This produced an apparent factor of safety of $240,000 / 13,000$. 18.5. This is obviousiy a ficticious value, since the shafts were failing in service, and the true factor of safety was less than one. The explanation lies in the fact that axle strength to be compared with the 13,000 psi operating stress should not have been the ultimate strength of the material ($240,000 \mathrm{ps} \frac{1}{\text { i }}$) but the fatigue strength corresponding to the surface finish of the shafts, the mode of loading to which the shaft was subjected, etc. When the ultimate strength was reduced by these derating factors the resultant value was found to be 12,000 psi. This strength, when compared with the 13,000 psi stress produced the realistic factor of safety of 0.9.

Examples e:-h as this lead to the next phase in the relationship between siress and strength, namely to the concepts of a significurit stress and a significant stcength. By significant stress is meant the actual stress imposed on the part and it may include the effect of stress raisers, magnification due to impact loaring, reaidual stresses, atc. By significant strungth is meant the actual strength of the part in its fabricated form, under actial operating conditions. A rational approsch, to significant strength still employs ultimate strongth as the basis. However, instead of an indiscriminate grouping of all the factors affecting the ultimate strength into one index, it attempts to evaluate quantitatively the effect of each individual factor pertaining to the part and the conditions under consideration. The result is a value which is strictly applicable to the part under coneideration and to the set of loading conditions to which the part is subjected in service. The principal factors affecting strength and which must be considered in determining the significant strength are; life expectancy, type of loading, (axial, bending, torsional, or a combination),
 loading (static, completely reversed dynamic, or combination).

These concepts of significant stress and significant strength represent a major step toward a more realistic prediction of reliability and, as such, they have been included in the present investigation. By themselves, however, they are not sufficient. This is because the prevalling practice is to use the mean values of the calculated strength and stress, ignoring the natural scatter that stresses and strengths may have.

The variability in these two factors results in the existence of a statistical distribution function of stress and strength (See Figure 2.1) and is the heart of the Interference Theory. Thus, for proper prediction of reliability, an estimate must be made of both the mean value and the dispersion characteristics of both the strength and stress.

The strength of the part, as all properties of non-homogeneous materials, varies from specimen to specimen, in view of the variation in hardness, surface finish, degree of stress concentration, etc. The operating stress imposed on the part varies too. These stresses vary from time to time in a particular part, from part to part in a particular design, and from environment to environment. Therefore, both the mean value and the dispersion characteristics of stress and strength must be determined.

Once these parameters are found, percent interference and thus probability of failure can be determined from the interference area (shaded area in Figure 2,1). Means of computing theae interferences represent one of the principal objectivea of the present investigation.

sectron 2 Iniñivekence theury

Suppose there are two barrels containing life of paper, each having a number printed on it. The numbers in barrel Y are distributed according to distribution Y, as in Figure 2.1, and the numbers in barrel X are distributed according to distribution X. If, at random, elips of paper from each barrel are selected and paired, they may be classified into successes and failures. A success is constituted by a strength value exceeding a stress value, as for example, when $x_{1}>y_{1}$. Failure will occur if $x_{2} \leqslant y_{2}$ as shown. It will be noted that, although the shaded area is measure of interference, it is not interference itself: a pair of points x_{3} and y_{3}, although in the shaded area, will not produce failure. ! By continued pairing of streases and strengths, at randon, paira will be found where the stress will exceed the strength. By continued experimentation a good estimate of the probability of interference can be found.

2.1 Two Normal Distributions

From an exhaustive arvey of literature made during this investin gation it was found that most atudies have assurad both the stress and the strength diatribution to be normal. Thie is natural assumption to make in order to solve a practical problem, as no work was found dealing with an analytical expression for two interference diatributions when they are not normal.

When the stress and strength distributionp are asumed to be normal the probability of interference can be determined from the equation: ${ }^{1}$

$$
\text { Where } \begin{align*}
& 2=\frac{\mu_{y}-\mu_{x}}{\sqrt{\sigma_{x}^{2}+\sigma_{y}^{2}}} \tag{2.1}\\
& \mu_{y}=\text { mean atress } \\
& \mu_{x}=\text { mean strength } \\
& \sigma_{y}^{2}=\text { stress variance } \\
& \sigma_{x}^{2}=\text { strength variance } \\
& z=\begin{array}{l}
\text { standardized normal variate determined frin } \\
\\
\\
\text { standard tables. (See Table 2.1) }
\end{array}
\end{align*}
$$

r
1

Figure 2.1 Intarfarance of Strase and 8trangth Diatributions

Tabulation of the values of α versun K_{α} for the Btandardized Normal Curve.

- Area under the 8tandardized Normal Curve
from $==K_{\dot{\alpha}}$ to $z=-$

K.	+	01	. 0	03	0	08	∞	07	0	
0	5000		. 40	. 480	. 840	. 4001			. 201	
0.1	.	. 102	. 488	40	. 14.4	. 4012	4044	2030	20m	
	3ill	5100	23	200	2000	${ }_{203}$	\%	3	140	313
			2015	2n		312		. 29		\%
			3nt	3	\%	\%	\%	\%		
	2181		5	50	2006	.	140	10	$1 \pm$	1011
	.	.104								
	.19\%	.1483	.1209	${ }^{1} 1838$: 12081	:1200	:1200	${ }_{1}^{11210}$	1109	11180
	\%iti	.1912	11414	1009	, 1071	lotes	1000	1	去	
	Stem	20\%	2007	.	20	.033	$\underline{\omega 12}$	0	\%	$\underline{01}$
	cme	0	204	0	2045	\%		ane	onn	
	0	\%	. 4.4	018	0	201	4		\%	
	Lem	${ }_{2}$	20n	0	\%	2000	20	com	200	
	\%ex	com	2017	2018	. 0200	.eme	O197	O1m	${ }^{1}$	
	017	20174	0178	018	O119	0.114	014	0110	2018	
4	0107	. 210	O200	0	Som					
		dor								
4	800		Soite	.010	8010					

Table 2.1 Normal Discribution ${ }^{1}$

Thus, if the avarage stress is 30 ksi , with astandard deviation of 3 ksi , and the average atrength is 50 kui with atandard deviation of 10 kai , $z=1.91$ and from Table 2.1 o, which representa interfarence, is found to be .0281. Thus, percent interference, (probability of failure) 1: 2.81\%.

In practical applications of the Interfarence Theory the following problem arisas: both distributions under coneideration extend to plus and minus infinity. It is apparent, therefore, that any two distributions will overlap and cause interference. This, of coursa, is erroneous because some diatributions, such an etrength, must have finite lower bound of zero. In many aituations the physical set-up and the ample size adjust for this lowar bound. For example, apppose a part were designed so thet the etrength distribution is placed 60 away from the tress distribution, both distributiona having tandard deviation equal to σ. From equation 2.1 it is found:

$$
z=\frac{60}{20^{2}}=4.24
$$

and the probability of interferance comes out to be . 00001 . This means that only one part will fall in 100,000 parta produced. If actually only 50,000 parta are mada, the phyical problem han effectively truncated the distributions. however, the probability of one part remains . 00001 . This means that due to sample ifize the extrema portions of these distributiona are no longer important since the sample size is such that not even one failure can be expacted.

For the case of application of the Interference Thoory, a graph we conatructed, an shown in Figure 2.2. The example solved previounly through equation (2,1) now yields: $\frac{\mu_{1}-\mu_{2}}{\sigma_{m I n}}=\frac{50 \mathrm{ks} 1-30 \mathrm{kBI}}{3 \mathrm{ksi}}$.

$$
=6.67 \text { and } \frac{\sigma_{\max }}{\sigma_{\min }}=\frac{10 \mathrm{kBi}}{3 \mathrm{ksi}}=3.3
$$

and the probability of interferance comes out approximately 0.03 , as before.

2.2 Conalatency of Two Diatributione

In the application of the Interforence Theory the following important point must be conaidared; the distribution of atrese and the diatribution of etrength must be conaietent with each other. In a fatigue test or in actual application in cervice, aingle part hai a single fatigue life for agiven loding condition. Subsequent teating of additional parto under the ame load will uhow acattor in 11fe, leading to a life dietribution. Through more axtenaive teating a atrength diatribution for a given ilfi can be obteined, such as the dietribution in Figure 2.1 (the method

of obtaining a strength diatrioution from a life distribution ds described in Section 6). tion muet be of che same nature we merength distribution. That is, it should represert the piot of the frequency of occurrence versus the epplied stress. This is not the same as ticrese distribution comventionally dewived from the opectrum of londing acting on the part. The conversion of one to the other muat be accomp:ishad through the use of the equivelent stress ($S_{\text {equ }}$) and Miner's or Corten-Dolan's Rules. 'Tlis is the methor used in the present investigation, as aescribed in sactimin.

2.3 Non-Norma 1 Di atributioris

So far the ditacuaion has haen limited to the cases when both the atrans and strength distrabutions can ba assumed to be rormat. In canos when eithar one or both are not normal the problam is uuch more involved. For axample, the intertection of a normal and a logenormal diatsibution produces a distribution of an unknown origin.

In the past, problema such as this ware solvad largely through "hrut force't by method cowamiy raferrad to to the Monte-Carlo I'nchnique. Euentially, the Monte-Cerlo Techrsique consiste of a sophiaticated meano of randomly alecting mawie from one diutribution and comparing it with a eample takun from a diffaront diutribution, This in accomplished with the aid of Tables of Randon Numbers. The reoultent paired data wre ploted an Cumulative Dencicy Function on a Probability, Woibull, otc. puyer and percent interference is rend from the graph.

2.4 The Intearal Method

In the prosent Inveatigation Method of Integrale was used in preferance to the Monte-Carlo Technique. This mathod involves determining the erpreaston reaciting from the intexference of the two distributions. under consideration and establishing percent interterence frum this intagral.

The advantagee of tha Intagral ilethod are:

1. For sme Cierributione the intagrale have buen already tabulated and percent interference can be raed directiy from the table.
2. In those camas where the integrais hava not been already tabuiated, they can be avmluated by Numerical Analyoit aa done in the prament investigation.
3. The major shortconing of the Monte-Carlo Technique is that it requires very large sample size for any accuracy. This shortcoming is avolded when the Iniegrais are used.
4. One of the objectivas of the present atudy ia to develop and avalute an analytical expression for interference of any two distributions. Such an expression is nossible when the Method of Integrals is used, but not when the Monte-Carlo Technique is employed.

SECTION 3 OBJECTIVES OF THE PRESENT STUDY

The objectives of the study described in this report were:

1. To refine and to reduce to practice the stress/strength Interference Theory technique for designing for and predicting the quantitative reliability of mechanical parts and components undar mechanical loading. Maximum use was to be made of empirical practical engineering values as well as a sound theory.
2. To study the effect of such factors as type of loading, surface finish, temparature, heat treatment, tress concentration, and surface treatment on the atatistical distribution of fatigue strength.
3. To determine from the exiating available eapirical data the diatribution of the fatigue atrength under the effect of each of the above factors.
4. To devalop the means of synthesiaing the atrength distribution function when such function is non-time variant, i.e., infinite life design (infinite fatigue atrength), and when such function is time variant i.e. finite life derign (tinite fatigue otrength).
5. To devalop an analytical expresaion of the diatribution of interference for the general case whare the interfering distributions are different.

SFCTTON 4 STUDY APPROACH

4.1 LITERATURE SEARCH

 of two interfering distributions. This would include cases such as WeibullWeibull, Weibull-Norma 1, Normal-Normal, Exponential-Exponential, atc. It was then necessary to find the way of solving the complex integrals expressing such interferences, Numerical analysis was carried out using an IBM 7090 Computer with MAD language to solve these integrals. Tables were then prepared for the interforence as a function of the distribution parameters.These tables included the combinations:
Stress Distribution Strength Distribution
Norma 1 Weibull
Wexbull Weibull
because Normal and Weibull are the distributions most frequently found in actual enginering practice. The reason for choosing Weibull as the strength disiz? bution for the two cases was that strength data, particularly
fatigue data, can be more conveniently expressed in cerms of Weibull parameters ($X_{0}, 0, b$) than Nomal yarameters (u, σ). It was felt that this restriction would not apply to the Stress Distribution.

As to the strength distribution it was found necessary to collect s great deal of data in order to arrive at meaningful distribution. The search for these data turned out to be an involved task. To systematize the effort a format was prepa ed which included the factors which are known to affect the final distribution of strength. An attempt was made to collect data in different areas in order to determine the effect of such factors as type of loading, size, processes, surface conditions, hes treatment, surface envisonment, temperature, surface treatment, stress concentration etc.

An initial step was to gather scatter data from presently available published work. Many sources of information were examined, puch as: RAND Reports, NASA Technical Notes, NACA Technical Notes, ASTM Transactions, ASM Tranaactions, SAE Transactions, ASME Transactions, etc.

Most of these data, however, were found to be in a graphical form, in many cases with test points not indicated, whereas statistical analysis requires data in a tabular form, for higher accuracy. The Mechanical Properties Data Center in Traverse City, Michigen was founc to be a very useful
scurce of information for tabular data. . Lney nave deen very couperative in providing the necessary information. Although it was not posalble to find data for every fingle fartor affecting strength, stijla graat deal of fatigue data was found and these data were systematized, evaluated in terms of Weibull parameters (Section 6), tabulated (Appendix 1) and plotted (Section 6).

While scanning through literature and other sources for possible fatigue data, some useful data for determining the statistical distribution of tensile strength and rupture strength of various ferrous materials was found. The effect of temperature and heat treatment on tensile strength and the effect of time and temperacure on rupture strengtt. were studied and the resuitis were tabulated and plotted in the same manner. (see Appendix 1 and Section 6.4).

4.4 FACTORS AFFECTING TIE STATISEICAL DISTRIBUTION OF FATIGUE STRENGTH

Since fatigue strength represents the major interest in the engineering applications of the Interference Theory, this problem was studied in some detail. The statistical distribution of the fatigue strength of a mechanical component is a function of a number of factors, such as type of loading, surface finish, stress concentration, heat treatment, temperature, processes, and time. Each shows variability which is characteru ized by some form of a distribution. The effects of these factors on the statistical distribution of strength were studied in the present investigation.

Fatigue strength can be defined as the maximum stress that can be sustained for a specified number of cycles without failure, the stress being completely reversed within each cycle. In the case of steels a compongnt is gaid to have finite fatigue strength if it falls between 10^{3} and 10° or. 10^{9} cycles due to a given magnitude of cyclic load.

Type of Loading: The three major types of fluctuating load encouncered in designing parts are axial, bending and torsion. Experimentally determined values of the ratio of average farigue strength for axial. loading, as compared to bending, 1 nad were reported in literature as ranging generally from 0.75 to $1.0^{2},{ }^{3}$ Although graat deal of work has bean done to obtain precise values for this ratio, no detailed study has ever been made as to thi" statistical aspects of these strengths. Investigations have been conducted to find statistical distribucions (Nomal, Exponential, Weihuli, etc.) of fatigue strength tested under a given tyre of loading, such as bending. No work was done to datermine the effect on the distribution if the loads were other than bending. In the present investigation an attempt was made to study the effect of different loads on the statistical dietritution of the fatigue strength. The statistical parameters of the distribution for various materials under different loads were determined, tabulated according to materials (Appendix 1) and plotted (Section 6).

Effect of Surface Finish: The surface finish of a part does affect its endurance strength. Hence, the condition of finish should be taken into account when the design is based on fatigue. Surfaces which have an effect on the significant strength can be classified into five broad categories: polished, ground, machined, hot-rolled, and as-forged. The worse the surface the lower will be the mean fatigue strength but the higher will be the scatter. As a result, the degree of interference is likely to be pronouncedly affected by the type of surface finish imparted to the member. Different aurface effects were studied in the present investigation and the Weibull parameters were tabulated (Appendix 1) and plotted in Section 6.

Effect of Stress Concentration: A notch or a stress raiser in a part subjected to fatigue loading can be regarded as a factor causing a local increase in stress or as reduction in strength. For example, notch with a stress concentration factor of 2 can be thought of as doubling the stress or as halving the strength. In the present investigation this factor was taken as a stranget reduction factor.

If ali parts were made of materials which are completely homogeneous and have perfectly polished surface finishes, the effect of a notch would be to increase the stress by the factor K_{t}. Since actual materials are not perfectly homogeneous and actual surfaces are seldom perfectly polished, there exist internal and surface stress raisers. For this reason, the addition of a notch to a part, already having stress concentration due to geometry, generally produces a smaller effect than would be predicted from the theoretical stress concentration factor, K_{t}. The extent to which a notch reduces the endurance limit of a part is referred to as the fatigue stress concentration factor, or the fatigue strength reduction factor, and is designated by the aymbol K_{f}. This is defined as:4

$$
\mathrm{K}_{\mathrm{f}}=\frac{\text { endurance limit of specimen without the notch }}{\text { endurance limit of spe imen with the notch }}
$$

In this atudy an attempt was made to determine the effect of stress concentration on the statistical scatter of the fatigue strength. More specifically, the objective was to find out whether this factor changes the mean strength only, whether it has an effect on the standard deviation or whether it completely changes the nature of the distribution itself. The data were collected for various materials at different termeratures, because, for example, the scatter of fatigue strength at 1.0^{4} life cycles with $K_{t}=2.0$ for AISI 1040 steel ticated at 700F may be different than at bay $1000 \mathrm{~F}, 200{ }^{\circ} \mathrm{F}$, or $500^{\circ} \mathrm{F}$. Arames in the parameters of the atatiatical diatribution of the etrmasis aism to the effect of
 ials are tabulated in Appendix 1 and plotess is: steion 6.

The effect of itress concentration to decrease the values of X_{0} and θ and in some cases of b, where X_{0} is the lower bound of strength, θ is the charactertatic strength, where $6, .26$ of the population have strengths less than or equal to this value, and b is the Weibsill slope.

Effect of Heat Treatment: Different leat treatments such as

annealing, fuenching, tempering, aging etc. fan he friravica to uaicaiais iu ciange cheir mechanical properties. Heat treatment may change the average fatigue strength but also the statistical scatter. Pertinent parameters are tabulated in Appendis 1 and plotited in Section 6.

The effect of heat treatment is to increase or to decrease X and θ, depending on the dasign life. In most of the materials which were Investigated the slope b increased with life for a given heat treatment.

Effect of Temperature: In a similar manner the effect of tempersture on the statisticai scatter is shown in Appendix 1 and Section 6.

With few exceptions the effect of temperature is to decrease X_{0} and θ and increase b with increased temperat ure.

4.5 FACTORS AFFECTING THE STATISTICAL DISTRIBUTION OF TENSILE, RUPTURE STRENGTH

In this phase of the study dispersion characteristics of the tensile strength and its statistical distribution were studied for several materials, heat treatments and operating temperatures. The scatter data were plotted in the same manner as the fatigue data, and the Weibull parameters were determined. These parameters were tabulated in Appendix 1. From these tables'graphs were prepared with abecissa as temperature and ordinate as Weibull parameters (Section 6.)

Rupture strength can be defined in terms of that static stress which will result in a fracture within a apecified time for a specified temperature. Data were collected to determine the statistical distribution of the rupture strength of various materials. The distribution parameters were computed for different operating temperature and for different times such as $100,1,000$ or 10,000 hours. These parameters were then tabulated according to the temperature and time (See Appendix 1).

4.6 ANALYSIS OF STRENGTH DATA

Data collected during this phase of the investigation were organized and systematized according to materiala and conditions. In the case of fatigue, these data were plotied on S N diagrams, Fatigue life data were subsequently converted to fatigue atrength data for a given iife. (Section 6.) The fatigue atrength date thus obtained were plotted on the modified Weibull probability paper to determine Weibull paramerer's. The same procedure was repested for different ilfe cycles, for various materials and under diffarent conditions. The Weibull parameters thus found were then tabulated in Appendix 1 and plotted in Section 6.

3.1 INIRODUCTION

5.1.1 Interference Probabilities

In interference theory one suppopes that the strength of a manufactured part is not known with certainty prior to performing soine test on it and that the stress induced by a load is not known wit'. certairity prior to actually loading the part. Thus, for example one does not know with certainty that the strength of a part is exactiy 50 ksi . He may know that the part cannot have a strengch greater than 58 ksi or less than 40 ksi . Or he may know that the average atrength that has been obtained in previous tests on these parts is 49 ksi . He may have some measure of how dispersed the strenrth meazures are around this average strength. The point, of course, is that tinis type of knowledge is quite different from knowing precisely what the strength is prior to testing. For a muitiplicity of reasons strengths of seemingly inentical parts are not exactly the same and precisely what strength a part will have cannot be known until some type of strength test is parformed. In the theory of probability one savs that the strength of a part is a random varlable. Certainiy the some type of reasoning applies to the stress. Thue for a mathematical theory of interference one starta with the idea that strength is a random variable, say X and strean is a random variable, \mathbf{Y}.

In describing the properties of random variables, since their values are not known exactiy, one mpposes that associated with every set of vaiues "bat the random variable can take there is a real number called the probability that the random variable takes values in the set. These probablilities are non-negative rasil numbers, they are all less than 1 and in the fanse given belor: they "sum" to 1.

If x is any real number then there is a probability that the random variable takes some value less than or gqual to x. Symbolically,

$$
\operatorname{Pr}(x \leq x)
$$

Is a number such that $0 \leq \operatorname{Pr}(X \leq x) \leq 1$. Surel.y (1.e. with probability 1) $X \leq \infty$ so that

$$
\operatorname{Pr}(X<\alpha)=1,
$$

and

$$
\operatorname{Pr}(-\infty>x)=0
$$

Clearly $\operatorname{Pr}(X \leq x)$ depends on the real number $\%$. ConsequentIy one delines a probability distribution function $F(x)$ by the relution

$$
F(x)=\operatorname{Pr}(X \leq x)
$$

One sees immediately that

$$
\begin{array}{r}
0 \leq F(x) \leq 1 \\
F(-\infty)=0 \\
F(\infty)=1
\end{array}
$$

and that $F(x)$ is a non-decreasing function.
In most engineering applications $F(x)$ has a derivative for every value of x anc! one defines the probability density function, $f(x)$, by

$$
f(x)=\frac{d F(x)}{d x}
$$

One takea

$$
f(x) d x=\operatorname{Pr}(x<X \leq x+d x)
$$

(i.e. the probability density function multiplied by $d x$ is the probability that X taices velues in the neighborhood of x). Since

$$
f(x) d x=d F(x)
$$

one has

$$
\int_{-\infty}^{\infty} f(x) d x n=\int_{-\infty}^{\infty} d F(x)=\left.F(x)\right|_{-\infty} ^{\infty}=1
$$

the probabilities given by $f(x) d x$ "sum" to 1 .

In the mathematical theory of interference one assumes thet the probebility density function for the randon variables X (strength) and Y (stress) ara known. Sactions 5 and 6 following show how these functions can be found frcm engineering data. Thus the "givena" of the mathemstuted) to define an random variable z by the reintion

$$
Z=X-Y,
$$

Then if one can find the probability density function of $z, h(z)$, the probability of fallure will be aingly the probehility that $z \leq 0$. In tarms of $h(x)$ this is foum by

$$
\operatorname{Pr}(\text { fallure })=\int_{\infty}^{0} h(z) d z .
$$

The problen in genaral is then to find $h(z)$ from the rnown probability density functions $f(x), g(y)$. A ncmplete discuanion of this method und 1ts applications ia found in section A-3. $2^{\text {* }}$

[^0]In the important special case in which both stress and strenpth are normulity distributed random variables it is well known that Z is alsu nurnaily disiributed with parameters. An outine of the proot of these results is given in Section A-3.3.1.

$$
\mu_{\mathrm{Z}}=\mu_{\mathrm{X}}-\mu_{\mathrm{Y}}
$$

and

$$
\sigma_{Z}^{2}=\sigma_{X}^{2}+\sigma_{Y}^{2}
$$

Consequentily the probability of failure can be found directly from tables of tha normal curve areas. One wants the area from $-\infty$ to 0 from these tables. A compolatie alscusaion of how to do this is given.

A complete eximpoce of how tinis metbod can be usci fer nonnormally distributed rarior varisbles is given in aection A-3.3.3 for the case in which stress and gixeristh wre ench random variables with sama denaity functions.

A comparison of this metron of iltuolag the probability of failure with the method of part b below is giver in section A-3.3.2 for the case of negative exponential probability deasitiy functicasa,
(b) For most applications method (u) above is unnecessarm ily complex bacause one must first sint the entira dinsity function of the random variable Z before finding tie probaility or failure. Since the randum variable Z iE of no practical value for $Z<0$ the approach in pait (a) is unduly long. The methois deseribed in this section are more direct and from our expericnce more usothl in general.

On: can derive the probability of fallure as foll.ows. Sipprose we supertapose the atress and strength density function on the ame graph as nhown in Plgure 5.1.

Although Y is a random variable let us fix attention on a particulnis, smil interval that X can take values in. Let us fix $y<Y \leq y+d y$. Then let ua flud the probability that the random varioble X traces veluas less than this fixared Y. Ono can show thet this probability is

Figure 5.1 Tnterferance of Strean and strength Dhetributions

$$
\star
$$

-

$$
\operatorname{Pr}(x \leq y \mid y<Y \leq y+d x)=\int_{0}^{y} f(x) d x
$$

The left hand side of this expression is cailed a comidinumi pruvainiliuy. It is the probability that the random variable X takes values less than Lite deal minibei \bar{y} when it is know ("given that") the random variarife Y is "nearly" y. By the definition of $f(x)$ this probability is obviousiy the same as the right hard side of the expression. Jf now we multiply this conditional probability by

$$
\operatorname{Pr}(y<Y \leq y+d y)=g(y) d y
$$

we obtain the joint probability that $X \leq y$ and $u<Y \leq y+d y$ which symbolically is

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{X} \leq \mathrm{y} \mid \mathrm{y}<\mathrm{Y} \leq \mathrm{y}+\mathrm{dy}) \operatorname{Pr}(\mathrm{y}<\mathrm{Y} \leq \mathrm{y}+\mathrm{dy}) \\
& \quad=\operatorname{Fr}(\mathrm{X} \leq \mathrm{y} ; \mathrm{y}<\mathrm{I} \leq \mathrm{y}+\mathrm{dy}) .
\end{aligned}
$$

This probability is given by the integral

$$
\int_{0}^{y} f(x) d x \quad E(y) d y
$$

From the joint probability on obtains the probability of failure by:

$$
\operatorname{Pr}\left(f^{\prime}(\mathrm{llur} e)=\int_{0}^{\infty} \int_{0}^{y} f(x) g(y) d x d y\right.
$$

Thus this double integral gives the probablility of failure dirently.
If one recalls the relation betroen $f(x)$ and $r^{\prime}(x)$, it is clear that the doubile intiegral is eusily reduced to the single intiegral

$$
\operatorname{Pr}(\operatorname{fosiure})=\int_{0}^{\infty} F(y) g(y) d y .
$$

If $F(x)$ is easily obtainable then this expression is easier to work with than the double integral. Fox exmmple one knows, that for a atrength with e Weibull probability density function the probability distribution
function $F(x)$ is given by

$$
F(x)=1-e^{-\left|\frac{x-x_{0}}{\theta_{x}-x_{0}}\right|^{i}}
$$

In these cases the probability of failure is then given by

$$
\begin{aligned}
\operatorname{Pr}(\text { faillure }) & =\int_{0}^{\infty}\left(1-e e^{\left.-\left(\frac{y-x_{0}}{\theta_{x}-x_{0}}\right)^{b_{x}}\right) g(y) d y}\right. \\
& =1-\int_{0}^{\infty} e^{-\left(\frac{y-x_{0}}{\theta_{x}-x_{0}}\right)^{b_{x}}} s(y) d y
\end{aligned}
$$

The latter exrression follows because

$$
\int_{0}^{\infty} g(y) d y=1
$$

if the random variable y takes only positive values which is tine usual case in interference theory.

Similar expression to those above can be found as shown in Section A-3.3.4. In any event one is free to use whichever expression is easiest to work with.

Examples of the use of this method for non-normally distributed random variables is found in Section A-3.3.

5.1.3 Interference Tables, pages 258-396.

In Section 5.1.2 it was shown that the probability of failure could be expressed as an integrai involving the known probability density or distribution functions. In certain cases this integral can be evaluated in closed form (e.g. when $f(x)$ and $g(y)$ are both exponential functions). In some cases this integral can be evaluated in terms of other well known and tabuiated functions (e.g. when $f(x)$ and $g(y)$ are both gamma functions or when $f(x)$ and $g(y)$ are both normal functions). In general itt is not to be expected that the integral for the probability of fallure can be evaluated in closed form or in a form involving other well known functions. (e.g.

When $f(x)$ and $g(y)$ are hath Wothuly fometion uix witr fix) is a Weibull function and $g(y)$ is a normal function). In those cases one must resort to numerical evaluation of the integral.

From the discussion in Section 2 it is apparent that two cases are of importance to interference theory. They are
(a) $f(x)$ ard $g(y)$ are each Weibull functions
(b) $f(x)$ is a weibull function and $g(y)$ is a normal function.

Since the integrals giving the probability of failure cannot be expressed in terms of well known functions, in general, we have evaluated the integral numerjca.lly. I'ables of the probability of failure are given in Section A-2. Λ full discussion of the numerical methods used and the errors of approximation appropriate to the tables are given in Section A-4.

5.2 USE OF INTERFERENCE TABLES, pages $258-396$.

5.2.1 Parameters for the Weibull-Weibull Case

The form of the integral evaluated for finding the probaioility of failure when both the strength and stress are Wribull distributed random variables is given in Section A-3.3.4. Tables of this probability of fallure are given in Section A-2.2. A discussion of the numerical analysis, errors and accuracy of the tables is given in Section A-4..

For each of the random variables X and Y the probability density function is of the form

$$
f(x)=\frac{b_{x}}{a_{x}-x_{0}}\left(\frac{x-x_{0}}{\theta_{x}-x_{0}}\right)^{b_{x}-1} e^{-\left(\frac{x-x_{0}}{\theta_{x}-x_{0}}\right)^{b_{x}}}, x_{0} \leq x<\infty
$$

Each density function is completely characterized by three parameters $b_{x}\left(o r b_{y}\right) ; \theta_{x}\left(\right.$ or $\left.\epsilon_{y}\right), x_{0}$ (or y_{0}). These parameters are called the slope, the charactertstic value and the truncation parameter respectively. These names follow from the facts that

$$
\text { (1) } f(x)=0 \text { if } x<x_{0} \text {. }
$$

Hence the s+,yength (or stress) has zero probability of taking values iess than x_{0} - the probability density function is "truncated" at x_{0}.
(2) If one plots $1 /(1-F(x))$ vs $\left(x-x_{0}\right)$ on \ln vs

In. In paper the greph will be a straight ine with slope b_{x}.
(3) If $\left(x-x_{0}\right)=\theta_{x}^{\prime}, 63.2 \%$ of the area under $f(x)$ falls beldw $\left(x-X_{0}\right)$. Herice θ_{x}, the "characteristic" of ${ }^{\prime} x$, is equal to $\left(\theta_{x}^{\prime}+X_{o}\right)$.

It is to be noted that since $f(x)$ is characterized by three parsmeters one expects ine probability of failure to be characterized by six parmmeters (3 for strength and 3 for stress). Fortunately, this is not the case. As is shown in section, A-3.3.4 the integral for the probability of failure is determined by four parameters. These are used in the tables as:
(1) b_{x} - the slope of the strength distribution. In the tables this is called B_{1}.
(2) b_{x} / b_{y} - the ratio of the slopes of the strength distribution (b_{x}) and the stress distribution (b_{y}). In the tables this is called $\mathrm{B}_{1} / \mathrm{B}_{2}$.
(3) $\left(x_{0}-y_{0}\right) /\left(\theta_{x}-x_{0}\right)$ - the difference of the truncation parameters divided by the difference of characteristic value ind the truncation parameter of the strength distribution. In all of the tables it is assumed that $x_{0} \geq y_{0}$. This appears to be the most useful case for interference theory. In the tables this is called ($X_{0}-Y_{0}$)/THETA 1 .
(4) $\quad \theta_{y}-y_{0} / \theta_{x}-x_{0}$ - the ratio of the difference of the characteristic values and the truncation parameters. In the tables this is called Theta 2/Theta 1 .

The following values of these parsmeters are used in the table. They are considered to be the most useful values for interference theory in mechanical problems.

$$
\begin{aligned}
& B_{1}, B_{2}=1,1.5,2, \ldots 10 . \\
& B_{1} / B_{2}=.1, .2, \ldots 1 \text { and } 1,2, \ldots 10 . \\
& \left(X_{0}-Y_{0}\right) / \text { THETA } 1=.000, .250, .500, .750,1.000
\end{aligned}
$$

THETAL/MHITMA $1=1 / 1,1 / 1.25,1 / 1.50,1 / 1.75, \ldots, 1 / 3$. or

PHETAE/THEAA $1=1, .800, .667, .571, \ldots .033$.
The valucs in the body of each table arc the probability of failure for the parameters given at the heading of the tables. From the discussion given in Section A-4.1.4 our estimate is that these tables are correct to $\pm 1 \times 10^{-4}$ and most of the values are correct to $\pm 5 \times 10^{-5}$.

5.2.2 Parameters for the Weibull Distributed Strength, Normai Distributed Stress Case

The form for the integral anvolved in finding the probsibility of failure when the strenctin is Welbull distributed and the stress is normally distributed is given in Section A-3.3.5. Tables of these probabilities are given in section A-2.1. A discusston of the numerical analysis, exror and accuracy of the tables is given in section A-4.1.7.

The form of the distribution of the strength nas been given in section 5.2.1. The parameters were discussed in that section. If the stress is normally distributed the probability density function is given by

$$
g(y)=\frac{1}{\sqrt{2 \pi} \sigma} \quad e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}} \quad,-\infty<y<\infty
$$

Each density function ot this form is completely characterized by two parameters, μ and 0 . Thess parameters are called the mean stress (average stress, expected stress are also used) and standard deviation of the stress (the square σ^{2} is called the variance of the stress.) If one plots $f(x)$ on rectangular coordinates μ is the value of x at which the peak of $f(x)$ ocours. It is also the point of symmetry of $f(x)$ and mathematically is the value of the integral

$$
\mu=\int_{-\infty}^{\infty} x \underset{\sim}{f}(x) d x
$$

σ can be interpreted as the value for which the following probability statcment is true.

$$
\operatorname{Pr}(\mu-\sigma<Y<\mu+\sigma) \approx .68 .
$$

 meters $\left(b_{x}, \theta_{x}, x_{0}\right)$ and the stress distribution is characterized by two prometors H, c one expects that the integral for the probability of failure in this case is characterized by five parameters. Fortunately this is not the case. As show in Section A-3.3.5 the integral for the probability of failure is characterized by three parameters. These three parameters as used in the tables are:
(1) b_{x} - the slope of the strength distribution. In the tables this is called $B(x)$.
(2) $\theta_{x}-x_{0} / \sigma$ - the ratio of the difference of the characteris.tic strength and the truncation parameter to the standard deviation of the stress. In the table this is called C for typographical simplicity.
(3) $\left(x_{0}-\mu\right) / \sigma$ - the difference between the strength truncation parameter and the mean stress divided by the standard deviation of the stress. In the tables this is called A for typographical s: aplicity.

The foliowing values of these parameters are used in the table. They are considered to be the most useflul values for interference theory in mechanical problems.

$$
\begin{aligned}
\mathrm{B}(\mathrm{x}) & =1,1.2,1.3, \ldots 3.2 \\
\mathrm{C} & =10,15,20 \ldots 100 \\
\mathrm{~A} & =0,0.2,0.4, \ldots 2.8, \text { and from }-0.2 \text { to }-10.0 \ldots
\end{aligned}
$$

The values in the body of each table are the probabilities of failure for the parameters given at the heading of the tables. From the discussion given in Section A-4.1.7 these probabilities are comrect to $\pm 5 \times 10^{-5}$.

5.2.3 Use of the Tables, Explanation of Missing Values and Interpolation

Numerical examples of the use of the tables are given in Section 5.3. In general the user will enter the table with known parameters (b_{x}, θ_{x}, x_{0} and the appropriate parameters for the stress distribution) and wish to find the probability of failure. This is a direct table look-up. In some design ynoblems the user will have a given probability of failure to achieve and will know the general
shape of the distribution of stress and strength appropriate to the matixial that he is ucing. The tehle will then give him the relative parameters (there may be many of these) to design for. It would be expected that a cost analysis would give the acceptable parameter values for each distribution. As long as the relative values are as given in the teble the probability of f'ailure will be the same no matter what the values for each distribution are.

In the tables there are some values not tabulated. For example in the Tables A-2.ć for the Weibull strength and Weibull stress there is a row of nort-tabulated values for $B 1 / B 2=.1$ and $B 1>1$ for every value of $\left(X_{0}-Y_{0}\right) / 1 H L E 1 ' A 1$ and THETA 2/THETA I . These values were not tepulated because they require values of the parameters (i.e. B1 and B2) that are outside the limits considered useful for mechanical problems in interference theory. For example the value in the table $\left(X_{0}-Y_{0}\right) / T I[T A 1=.000$, THITA $2 / T H E T A=.571$ at $B 1=5, B 1 / E 2=.1$ is missing. To include this value in the table would have required determining the probability of failure for the case $B 2=50$. But $B 2=50$ is a value seldom found in mechanical interference theory. Hence this probability of failure was not computed.

Some of the non-tabulated values are nearly zero and hence have not been tabulated. This occurs only in the Weibull Strength-Normal Stress tables. For example when $A>3.5$ one knows that $\left(x_{0}-\mu\right) / \sigma>3.5$. From the theory of the normal curve one knows that the area under the normal curve from 3.5 to ∞ is less than 3×10^{-4} and the probability of fallure is less than 1×10^{-4}. We take these values to be too small to be significant for the mechanical interference theory.

It can be seen that the tables are non-1inear for almost all values of the parameters. This can cause inaccuracies when the tables are interpolated. The absolute value of the interpolation error depends on which tables are interpolated. For precise values the user should use a higher order interpolation formula rather than linear interpolation. We have not explored the relative errors of interpolation closely. In those cases checked, the relative errors are small.

5.3 EXAMPLES OF USE OF THE TABLES

For an example fllustrating the use of these tables in an appli~ cation of the Interference Theory see Section 9 .

SECTTON 6 STATISTICAL DISTRIBUTION OF STRENGTH

As an altarnative method, the atrongth reaponae tept was conefdered. The cumalative percentage point of fatigue strength distributions can be detmrifind at any etress leval 8 by teting a large mumber of specisans at this lavel and counting the fraction of apacimans failing at the preasigned life N. If thie procedure ie repeated at different
levels, several points of the strength distribution ste obtained and can be uat for the analyais of strength distribution.

For example, suppase, the fat' aue atrength dietribution at life N_{1} ig desirad. (See Figure 6.2). A large number of mpecimen, say 50 , are teated at atresn level S_{1} and if only one out of thase 50 fail. before or at the preassigned life N_{1} then it can be sald that on an avarage onl- $F_{1}=2 \%$ from the lot of opecimens have fatigue etreagth less than or equal to S_{1}. The same procedure can be repeated for several other atress levels $S_{2}, S_{3}, \ldots, S_{1}$, and corresponding percentage points $\left(\mathrm{F}_{2}, \mathrm{~F}_{3}, \ldots . \mathrm{F}_{1}\right)$ can be deternined. These points represent the cumulative belavior of strength, and can be plotted on the several probability papore (such as Waibull, Normal, Logiatic, Extrame value, etc.) with S as its abscisan and $\% F$ ats ordinates, (Figure 6. ${ }^{*}$).

The parcentage points of the atrength diatribution megeured by this method are independent of each other and mecordingly she method of least equares can be applind.

An this mathod requiras casting of a large number of apecimans at any one atrean level, very limited date of thite type are avaliable: although recently a method was proposed for generating auch date. Hence, in the present study the eteigue atrangth dintributions wort analyeed by converting the directly obsarvad scatter in fatigue life into a satter in fatigue strength, as divcuaned in Section 6.1.1, rather than by evaluating the dath from responae teata.

6.2 PLOT OF STRENGTH DATA

In order to datersine the distribution of atrangth at a given life, it was noceamary tiset to cbtain eapirical data from 1itarature and other sources (aee Saction 4.3) and thon to plot cheae data ao that the parametars of the diatributiona could be decermined. The type of information desired is illustrated in Figure 6.4 where it is shown that the strength diatribution mag be ditgerent at the differant lives.

The usual method of determiniug this atatiatical distribution is to conetruet a hiatogran. Thia was triad in the preaent investigation for a number of canes, one of which ia nown in figure 6.5. Thie rafers to etrangth data obtained Soow Machsaical Propertice Data Center for' Dac steel under conditione at follow:

Type of load - completely reversed; Surface finish - Mechunically Pollahed; streas Concentration factor - $\mathrm{K}_{\mathrm{t}}=1.0$; Teat Temperature 80° F. Fatigue streagth distribution data at 10^{6} cycles are: $55.3,57.3$, $59.2,61.4,62.5 \mathrm{kel}$.

Mgure 6.3 Plot of Etrength raponse Data on Probability Paper

Figura 6.4 Change in the Fatigue Strength Diatribution with Life
3
i

Figure 6.5 Histogromg for Fatigue Strangth of $D_{6 A C}$
Steal al $80^{\circ} \mathrm{F}$ for 10^{6} Life Cycies

In Figure 6.5 this data are plotted for 3, 4, and 5 ksi
intervals. It can readily be seen that each interval suggests a different form of distribution. Furthermera, fer the histognan mithua to be effective, a large amount of data, well in excess of the data avail. able in the presen : investigation, is required.

For this reason, the histogram method was not used here, and, instead, the Weibull distribution was adopted.

The Weibull distribution is of great usefulness in the analysis of fatigue data. The utility and value of the Weibull distribution results from the fact that it covere a considerable variety of distribution patterns, and data which fit any of these patteins plots as a straight Ine on special graph paper, known as Weibull probability paper. (For explanation see page 44). Although the Welbull distribution provides a versatile means for describing the life characteristifes, it can also be used for describing the mechanical properties, such as, fatigue, tensile and rupture strengthe studied in the present investigation,

The Weibull equation is a three parametric mathematical function having x a
function is:
a variable. The giction

and the general expression for the cumulative distribution function is:

$$
x_{0} \leq x \leq \infty
$$

where, as uoed in this study,
X_{0} is the lower bound of strength
θ Is the characteristic strength, where 63.2% of the population have strehgths less than or equal to this value.
b is the Welbul? slope.

Versatility of che Weibull distribution is illustrated in Figure 6.6 and figure 6.7 which show different forms of the :'土atifintion for various values of b. The Weibull slope b defines the shape of the curve, whereas θ, the characteristic strength, defines the scale of the curve (see definition on page 36). It is therefore possible to have several forms of a particular distribution depending on:

1. The value of b (where g and X_{0} are constant)
2. The value of θ (where b and X_{0} are constant)
3. The value of X_{0} (where θ and b are constant).

As to special cases of Weibuil distribution, it reduces to the truncated normal distribution when b is approximately equal to 3.5 and te the truncated exporential distribution when b is equal to 1.0 .

6.3 DETERMINATION OF THE WEIRULL PARAMETERS

In order to determine the Weibull parameters for the strength data the following steps are required:

1. The scatter of fatigue life at a given stress level, as obtained from the 1 iterature or other sources, is converted to the scatter of fatigue 3 trengths at a giver life in the manner discussed in Section 6.1.1.
2. The fatigue sitrengths obtained from above are then arranged in the increasing order of value and median rank is assigned to each value as described in the example that follows.
3. The strengths are then plotted on the modified Weibull probahility paper on the abscissa against the mediar. ranks on the ordjnate.
4. A correction is then made to the resultant curve by determining the probable value of the lower bound of atrength X_{0}.
5. From the crve thus modified the three parametere of Weibul. 1 are then determined.

This method is illustrated by the following example.

Iaterial:	D $_{6 A C}$ Steei, $S_{u}=270 \mathrm{Ksi}$
Conditions:	Type of Lcad - Completely Reversed Pending
	Surface Finish - Mechanically Polished

Figure 6.6 Plot \mathfrak{f}. x vs $\mathrm{f}(\mathrm{x})$ in a Weibull Distribution

FLgure 6.7 Weibull plota for Various slopae on Walbull Probability Paper

Stress Concentration Pactua, $\pi_{t}=1.0$
Test Temperature, $80{ }^{\circ} \mathrm{F}$
Fatigue Strength distribution data at 10^{5} cycles are (in ksi):

$$
57.3,59.2,62.5,55.3,61.4
$$

In order to make the Weibull cumulative plot, it becomes necessary to decide what rank is to be assigned to each particular atrength value. The lowest strength in a group tested will have a definite percentage of the total population having strengths lower than this, if the entire population were tested. If we knew exactly the percentage of the population having strengths lower than the lowest in the sample, that percentage would be the true rank of the lowest strength in the sample. However, since. we do not know the true rank, we make an estimate of it. We use an estimate such tiat in the long run the positive and negative errors of the estimate cancel each other. That is, half the time we would give the lowest atrength a rank that is too high and the other half of the time a rank too low. A rank with this property is called median rank. A table of median ranks is given in Table 6.1. The test data are then arranged in an increasing order of value and the appropriate median ranks for aample size $n=5$ are read from Table 6.1 as follows:

x, K.si	Median Rank	
55.3		12.94
57.3		31.47
59.2		50.00
61.4		68.53
62.5	87.06	

These data are then plotted on the modified Weibull probability paper as shown in Figure 6.8, curve A.

In plotting these data an assumption was made that the lowerbound of atrength X_{0} (i.e. the minimum strength that can: be expectad in the whole population) is zero. This is obvioumly not the case, as mechantcal parts must have a strength greatar than zero. Therefore the next step was to determine the probable value of X. This value should be somewhere between the lowest value of the gample (55.3 kgi) and zero. As the first trial therefore assume that X_{0} is 35 kai .
ing is obtained:
By aubtracting X_{0} frow the original set of data, the follow-

d Weibull plot fer Detarminution of the matiar for the Above Conditions
$\left(x-X_{0}\right) \quad K=1$
Median Ranka, z

20.3	12.94
22.3	31.47
24.2	50.00
26.4	68.53
27.5	87.06

When these are plotted (Figure 6.8, curve B) the ramultant curve is not a traight lina. Therafore, other values of X_{0} are amamed, and the sme procedure is rapeatad until, for a certain agumed. X_{0}, one can bent innarize all the test pointe. In this case the bent Ine nearent to a straight line is for $X_{0}=50 \mathrm{Kai}_{1}$ curve C. Through these pointa, then, a etraight line ia fitted uning the Leasi Square Method.

The ralue of $\left(x-X_{0}\right)$ at 63.2% is read off to deternine the characteriatic strencth θ :

$$
\begin{aligned}
\theta & =x a t 63.2 \% \\
\left(x-x_{0}\right)_{63.2 \%} & =\theta_{1}=10.3 \mathrm{Kei} \\
\theta & =(x)_{63.2 \%}=\theta_{1}+x_{0}=10.3+50 \\
& =60.3 \mathrm{Ksi}
\end{aligned}
$$

The Waibull slope b is deternined by drawins a linc parallel to the straight inn of $X_{0}-50$ and pandis it through the pivot point. The point where this line intersacts the Weibuil slope scale is the value of the Weibull slope. In this case, $b=3.0$. Hence, the Weibuli parmoters for the siven eat of fatipuo streagth deta are:

$$
\begin{aligned}
& x_{0}=50 \mathrm{Net} \\
& \theta=60.3 \mathrm{xel} \\
& b=3.0
\end{aligned}
$$

The analytical form for the corrempondint Wadbull equation ie:

$$
F(x)=1-e^{-\left(\frac{x-50}{80.3-50}\right)^{3.0}}
$$

These parameters were tabulated for various materials under various conditions, (see TablegAppendix l) on the baris of all the available test data obtained. The most representative parameters were the. plotted, as shown in Figure 6.9 to Figure 6.115.

Aa stated on page 36, one of the advantayes of the Weibull distribution is that it plots a a straight line on a Weibull probability paper. This is hown below:

Equation 6.2 gives:

$$
F(x)_{y}=1-a
$$

b
or $\frac{1}{1-P(x)}$ e

$$
\frac{x-X_{0}}{\left(\frac{x-x_{0}}{}\right)}
$$

$\ln \ln \left[\frac{1}{\ln T(x)}\right], b \ln \left(x-x_{0}\right)-b \ln \left(\theta-x_{0}\right)$

This aquation has a form $Y \quad b(X)+C$ which rapresenta a atraight line with slope b and intercept C on the Cartemian X, Y co-ordinates. Hence, plot of $\ln 1 n \quad 1 / 1-F(x)$ againgt $\ln \left(x-X_{0}\right)$ will also be atraight line with alope b.

6.4 GRAPHS OF WETBULL PARAMETERS

Weibu 1 parameters $0, b$ and X_{0} for fatipue strength determined, as shown in Section 6.3, were then ploted ugainst life on log-log scale for various materials including the nffect of heat treatment, stress concentration, cemperature, typa of loading: surface finish, etc. Weibull parameters for tensile otrength determined in the same manner were then plotted against temperacure on Cartesian coordinates for vaxious materials.

For case of locating apecific information the following Table of Contents is offered.

MLANJNG OF SYMBOLS

S_{11}	Ulimate Tensile Strength of Sperimen
S_{y}	Yield Strength of Specimen
0	Characterigtic Strength, tey
x_{0}	Lower Bound of Strengthyksi Weibull Slope
T of \mathbf{L}	Type of Loading
R	Rotary Bending
P	Plate Bending
A	Axial Bending
Spec	Type of Specimen
$\mathrm{V}-\mathrm{N}$	Vee Notched, Flank Angle - 60°
$\mathrm{H}-\mathrm{N}$	Hole Notch
$\mathrm{No}-\mathrm{N}$	Unnotched
Sm	Mean Stress, kai
K_{t}	Theoreticyl Strowa Concentration Factor
Melt.	Type of Melt Practice
Sec. Op. T.I.G.	Secondary Oparation Applied to Teat Specimen Tungsten Inert Gas Welded
Surf. Cond.	Test Surface Condition
S.P.	Shot Peened
C.P.	Chrome Plated
C.B.	Chromed und Baked
M.P.	Mecianical Poilsh
G.	Ground
Scr.	Scratchad Mechanically
N.P.	No Preparation to Surface
H.T.	Heat Truatment Applied to Spectmen
W.Q.	Watur Quenched
A.C.	Air Coeled
0.9.	011 Quenched
Sol.Tr.	Solution Treated
T \quad mp.	Tompared
Aust.	Austinitized
Norm.	Normalired
Cond.	Conditioned

INDEX TO GRA:HS OF WEIRULI PARAMETERS

Material:

Fatigue Strength

Material

> Weibull Parameters can be found:

1. AISI 3140 Steel

Effact of Stress Cencentration, H.T. $=\mathrm{K}_{3}$
Effect of Stress Concentration, H.T. - K \mathbf{K}_{4} Effect of Heat Treatment, Unnotched
$\begin{array}{lll}\text { Effect of heat Treatment, } V \text {-Notched } & 54 & 6.12\end{array}$
Page No.
Figure No.
2. AISI 1045 Stee.

Eiffeut of Heat Treatment, V-Notshed
55
6.13

Effect of Stress Concentration, H.T. K_{1}
56
6. 14
3. AISI 2340
$\begin{array}{llll}\text { Effact of Heat Treatment, V-Notched } & 57 & 6.15\end{array}$
Effect of Heat Treatment; Unnotched . 58
Effect of Streme Concentraticn, 011 Quar =h $\quad 59.17$
Effect of Strese Concentration, A1r Blast Quench Temp. $60 \quad 6.18$
Effect of Stress Concentraticu, Air Biast Quench,no 61 6.19
Temp.
4. 4140 Stael

Etfact of stress Concentration 62
5. Desic Steal

Effect of Tmperature, $K_{t}=1.0 \quad 63.21$
Effect of Tamperature, $K_{t}=3.0 \quad 64 \quad 6.22$
Effect of Tomparature, $K_{t}=3.0 \mathrm{Sm}=30-50 \mathrm{ksi} \quad 65 \quad 6.23$.
tffect of Temperature, $K_{t}=1.0 \mathrm{Sm}=70-80 \mathrm{k}=1 \quad 66 \quad 6.24$
Effect of Streas Concentration, $T=80^{\circ} \mathrm{F} \quad 67 \quad 6.25$
Effect of streas Concantration, $T=450^{\circ} \mathrm{F} \quad 68 \quad 6.26$
$\begin{array}{llll}\text { Effect of strans Concentration, } T=550^{\circ} \% & 69 & 6.27\end{array}$
6. H-11 Stael
sffect of Surfece Treatment, N.P. $70 \quad 6.28$
Effect of Surface Treatuant, N.R. 71
Effect of Surface Tremtment, Preteat Exposure at 375° F 72
6.29

Hfect of Suriace Irmatant, Pretest Exponure at 500° F 73 - 6.31
Effact of Surface Treatmant, Protest Exposure at 750 ${ }^{\circ} 74$ 6.32
Effect of Surface Treatment, Pretast Exponure at $1000^{\circ} 75$. 6.33
Effoct of Beat Treatment, N.F., M.P. 76
Effect of Heat Treatment, S.P., M.P. 77Effect of Heat Treatment, C.P., C.B.
Effect of Heat Treatment, V-Notched, Vac. Melt
Effect of Heat Treatment, Unnotched, Vac. Melt
Effect of Heat Treacment, V-Notched, Vac. Melt
Effect of Melt Practice, V-Notched, H.T.A.
Effect of Melt Practice, V-Notched, H.T.B.
Effect of Melt Practice, Unnotched, H.T.A.
Effect of Melt Practice, Unnotched, H.T.A.
Effect of Stress Concentration, H.T.A. Air Melt
Effect of Stress Concentration, H.T.B. Air Melt
Effect of Stress Concentration, $\mathrm{H}_{\text {, }}$...A. Vac.Melt
Effect of Stress Concentration, H.T.B. Vac.Melt
Effect of Stress Concentration, H.T.A. Vac.Melt
Effect of Stress Concentration, . T.B. Vac.Melt
82
83
6.40
6.41
6.42
6.43
6.44
$\begin{array}{rr}86 & 6.44 \\ .87 & 6.45\end{array}$
$\begin{array}{ll}87 & 6.45 \\ 88 & 6.46\end{array}$
6.47
6.48
6.49
6.50
6.51
6.52
8. AISI 4340 Steel
Effect of Heat Treatment, Hot Rolled and Lathed
95
6.53
Effect of Heat Treatment, Forged and Ground 96
6.54
9. Thermold J.
Effect of Stress Concentration 97
6.55
6.56
Effect of Stress Concentration - 98
10. $\mathrm{Fe}, 5.5 \%$, Mo, $2.5 \% \mathrm{Cr} ., 5 \% \mathrm{C}$
11. M10 Tool Steel
Effect of Heat Treatment 99
6.57
i2. 321 Stainless Steel
Effect of Stress Concentration at $80^{\circ} \mathrm{F} \quad 100$
Effect of Stress Concentration at $-320^{\circ} \mathrm{F} \quad 101$
Effect of Stress Concentration at $-423^{\circ} \mathrm{F}$
Effect of Process at $80^{\circ} \mathrm{F}, \mathrm{K}_{\mathrm{t}}=1.0$
Effect of Process at $-320^{\circ} \mathrm{F}, \mathrm{K}_{\mathrm{t}}=1.0$
Effect of Process at $-423^{\circ} \mathrm{F}, \mathrm{K}_{\mathrm{t}}=1.0$
Effect of Temperature, M.P., $K_{t}=1.0$
Effect of Temperature, M.P., $\mathrm{K}_{\mathrm{t}}=3.5$
Effect of Temperature, T.I.G. Welded, $K_{t}=1.0$
6.58
6.59
6.60 .
6.61
6.62
6.63
6.64
6.65
6.56
13. A-286 Stainless Steel
Effect of Temperature, M.P., $K_{t}=1.0 \quad 109$
6.67
Effect of Temperature, M.P., $K_{t}=3.5 \quad 1.10$
Effect of Temperature, T.I.G. Welded, $K_{t}=1.0$
111
6.68
6.69
Effect of Stress Concentration at $80^{\circ} \mathrm{F} t=1.0 \quad 112$
6. ${ }^{7} 0$
Effect of Stress Concentration at $-320^{\circ} \mathrm{F}$
Effect of Stress Concentration at $-423^{\circ} \mathrm{F}$
Effect of Process at $80^{\circ} \mathrm{F}$
Effect of Process at $-320^{\circ} \mathrm{F}$
Effect of Process at $-423^{\circ} \mathrm{F}$

113	6.71
114	6.72
115	6.73
116	6.74
117	6.75

14. Multiment $\mathrm{N}-155$

Effect of Temperature, Axial Load 118
6.76

Effect of Temperature, Rotary Bending $\quad 119$ 6.77
Effect of Surface Treatment, Axial Load 120 6.78
Effect of Type of Loading, $1200^{\circ} \mathrm{F}$ 121
Effect of Type of Loading, $1350^{\circ} \mathrm{F}$
Effect or Type of Loading, $1500^{\circ} \mathrm{F} \quad 123$
15. Multiment N1-155
$\begin{array}{ll}\text { Effect of Surface Finish } & 124 \\ \text { Effect of Surface Fintsh } & 125\end{array}$
Effect of Surface Finish 126
16. 27-7 PH

Effiect of Stress Concentration 127
17. Duralumin

Effect of Salt Water Corrosion 128
18. Ti-6A1-4V

Effect of Temperature, $H . T . A$. 12
Effect of Temperature, H.T.B. 130
6.87

Effect of Heat Treatment $80^{\circ} \mathrm{F} \quad 131$
Effect of Heat Treatment, $400^{\circ} \mathrm{F}$ - 132
Effect of Heat. Treatment $; 600^{\circ} \mathrm{F} \quad 133$
Effect of Heat Treatment $800^{\circ} \mathrm{F}$: 134
Effect of Heat Treatment $80^{\circ} \mathrm{F}, \mathrm{Sm}=82-107 \mathrm{ksi} \quad 135$
Effect of Heat Traatment, $400^{\circ} \mathrm{F}, \mathrm{Sm}=30-42 \mathrm{ksi}$
136
Effect of Heat Treatment, $400^{\circ} \mathrm{F}, \mathrm{Sm}=77-100 \mathrm{ksi}$
Effect of Heat Treatment; $800^{\circ} \mathrm{F}$, Sm $=40-64 \mathrm{ksj}$.
137
Miscellaneous-Effect of Mean Stress
138
Miscellaneous-Effect of Mean Streas
139
Miscellaneous-Effect of Mean Stress
Miscellaneous-Effect of Mean Stress
140

- 142
6.88
6.89
6.90
6.91
6.92
6.93
6.94
6.95
6.96
6.97
6.98
6.99
6.100

Miscellaneous-Effect of Mean Stress 143

Tenaile Strenyth

1. Low Carbon, Low Alloy Steel, (Xilled) 144
2. Low-Medium Carbon, Low Alloy Steel, 145
3. Killed, Low Carbon, Low Alloy Steel, 146
4. Low-Medium Carbon, Low Alloy Steel, 147
5. Low Carbon, High Alloy Steel. 148
6. Low Carbon, High Alloy Steel, 149
7. Stainless Steel (17% Cr., 1.2%) 150
8. Low Carbon, High Alloy Stee1 151
9. Stainless Steel (25% Cr., $12 \% \mathrm{~N} 1,2 \% \mathrm{C}$) 152
10. Stainless Steel (18% Cr., $8 \% \mathrm{NL}, .8 \% \mathrm{IL}$; (.04-.09)\%C) 153
11. Stainless Steel ($18 \% \mathrm{Cr.} 8 \% ,\mathrm{Ni} ., .8 \% \mathrm{Cb} . .06 \% \mathrm{C}$) 154
12. Stainless Steel (18% Cr., $8 \% \mathrm{Ni},(.02-.09) \% \mathrm{C}$) 155
13. Stainless Steel ($18 \% \mathrm{Cr} ., 12 \% \mathrm{Ni}, 2 \% \mathrm{MO}, .08 \% \mathrm{C}$) 156
14. Stainless Steel (25% Cr., $20 \% \mathrm{Ni},. 2 \% \mathrm{Mn}, 2$ Si,. $25 \% \mathrm{C}$) 157

FATIUGE BITEKGH

AISI 3140

$$
s_{u}=108 \mathrm{ks1} \quad S_{y}=87 \mathrm{ksi}
$$

Effect of Stress Concentration

Rotary Beam Bending
Rocm Temperature

Composition:

$.4 \$ \mathrm{C}, .8 \% \mathrm{Mn}, .2 \% \mathrm{Si}$,
$1.2 \times \mathrm{NL}, .6 \% \mathrm{Cri}$
FHgure: 6.9 (For Tabulated Data See Page 207)

Hot Rolled, Lathe Turned, Hand Polished
Mean Stres: $=0$
Heat Ireatment:
Kjssee Page 198, Item 1

AISI 3140
$\mathrm{s}_{1}-109 \mathrm{ksi} \quad \mathrm{s}_{\mathrm{y}}-75 \mathrm{ksi}$
Bffect of Stress Concentration

Rotary Beam Bending Room Temperature Composition:
$.4 \% \mathrm{C}, .8 \% \mathrm{Mn}, .3 \% \mathrm{si}$, 1.2\% N1, .6\% Mr

Megure: 6.10

Hot Rolled, Lathe Turned, Hand Polished
Moen Strden ?nto
Meat Trathment:
K_{L} : Sec Pate 190, Ity 1.
(For Tabulated Data See Page ${ }^{+} 207$)

FAIIGUE SMPEHOME

AISI 3140

$$
\mathrm{s}_{1_{2}}=108,109 \mathrm{ksi} \quad \mathrm{~g}_{\mathrm{y}}=87,75 \mathrm{ksi}
$$

Effect of Heat Treatment

Rotary Beam Bending
Unnotched
Composition: . $4 \mathrm{c} \mathrm{C}, ~ 8 \% \mathrm{Kn}, ~ .3 n ~ 51$ 2.2\% X1, . $6 \times 1 \mathrm{Cr}$!

Hgure: 6.11 (Pbr Tabulated Data See Page 2.07)
Hot Rolled, Lathe Turned, Finnd Pallimed
Man Strans - 0
Heat TreatmantI
$K_{3} K_{4}$! See Yase $1988^{\prime \prime}$ "It"m 1

*

$\triangle T Q T$ IIM

Effect of Heat Ireatment

Rotary Beam Bending V-Notehed Composition:
. $4 \% \mathrm{C}$. .8\% Mn, .3\% $\$ 1$
1.2\% N1, . $65 \% \mathrm{cr}$! Figure: 6.12

Hot Rolled, Lathe Turned, Hand Polished
Mean Streas $=0$
Meat Ireathent:
$\mathrm{K}_{3} \nleftarrow \mathrm{~K}_{4}$: See Page 190 , Itwm 1 (For I'abulated Data See Page 20\%.)

AISI 1045 Steel

$$
\mathrm{s}_{1}: \mathrm{K}_{1}=105 \mathrm{kB1}, \mathrm{~K}_{2}=120 \mathrm{kB1}
$$

Effect of Heat Treatment

```
Rotary Beam Bending
Vee Notch, Flank Angle = 60
Compomition:
    .43-.50% C, .60-.90% Mn,
    .040% max. P, .05% max. }
        Figure: 6.13
```

Hot Rolled, Lathed, Hand Polished
Mean Stres. 0
Heat Treatment:
! Seë Päge 198, Item 2
(FÖr I'abulated Data See Page. 208)

AlSl 23 , Steel \quad FATIGUE SINENGTH $\quad S_{n}=116-122 \mathrm{ksi} . \mathrm{S}_{\mathrm{y}}=76-06 \mathrm{ket}$

Unnotched
Composition:
Unknown

Hand Pollithed
Mean Stress $=0$
Heat Treatment: See Page 1,98 , Itm 4

Figure: 6. 16 (For Taioulated Data Bee Page ${ }_{2} 210$)

Mpure: 6.19 (Por Tabulated Data See Page'z10)

Rotary Beam Bendins
Strese Conc. Factor $K_{t}=2.0$ for unnotched
Compositions standard 4140

Mangerreta - 0

Heat Ireatment:
AuFt. $1550^{\circ} \mathrm{F}$
$1 \mathrm{hr}, O Q$, Temp. $1230^{\circ} \mathrm{F} 1 \mathrm{hr}$.

Fguras 6.20 (For Tabulated Date Bee Page, 210)

Axial Lond, Completaly Reversed
Strese Cono. Factor $X_{t}=2.0$
Compositionk see Pape 198, I'

Hot Rolled, Polisher
Mean Atrean $=0$
Heat , Treatment:
See Pape 198, Item 6 Mrure: 6.21 (Har Tabulated Date. Soe Face.243!)
DGAC Ladish Steel

$$
x_{u}-270 \text { bit } g_{y}=237 \mathrm{ksi}
$$

Axial Ioad, Completely Revaried
Strean Conc. Yactor $\quad X_{t}=3.0$
Componitionk sea Pete 190, Ition 6..

Hot Molled; Polinhed
Man strens $=0$
Hoat Ireatment: 8- Pate 198, Itel 61
Figure8.6.22 (For Tabriatosd Date 800 Page 213:)

Effect of Temperature

Arial Load
Btreat Conc. Fector $X_{t}=3.0$
Componitionk see. Pate 198; Ite 6

Hot Holled, Polished
Man Streas - 30 m 50 ko1
Heat Treatrmant: Sen Inja 298, Item 6

Fgure: 6.23 (For Tabulated mate See Fase 213)

DGAC Indish Steel

FATICHES BTRETCME

Aviel Ionded
Stress Conc. Mmetor $X_{t}=1.0$

Hot Rolled, Folluhed
Mon strean $=70-80$ kni
Soet 2reatmonts 6

Moure:6.24 (For Tabolated Duta See Fage:211)

Axial Load, Completely Reversed
Temperature $=80^{\circ}$ F
Componitior sec Page 198, Iten 6

Hot Rolled, Polished
Man Strese = 0
Hat Ireatment: 8ee Fage 198, Itma 6

Migure: 6.25. (Tor' Tabulated Data See Page 213)

$$
D_{\text {SAC }} \text { Ladish Steel }
$$

PAIIGUE STRENTGH

Axial Load, Conpletely Roverfed
Temperature $=550^{\circ} \mathrm{F}$
Compomition: gee Page 198, Item 6

Hot Rolled, Polished
Man Btress = 0
Heat Treatment:
See Page 198, Item 6

Figure: 6.27 (Por Tabulsted Data See Pagei213)

Rotiry Beam Beniliny
Mean Stress = 0
Composition:
$5 \% \mathrm{Cr}, 1.5 \% \mathrm{Mo}, .4 \% \mathrm{~V}, .35 \% \mathrm{C}$

Hot Rolled, Lathe Turned.
Grain Direction is Iransverse
to Lengthwiae Axir.
Surface Treatment Code:
See Page 4C,
No (Pretest) Conditioning
Initial Heat Irestment:
ste page 199 , 'Iten 7

THgure: 6 (20) (Yor Tabrlated Data See Page:214)

FATIGUE STLREMOMA

H-11 Steel $\quad S_{u}=272 \mathrm{ksi} \quad \mathrm{S}_{\mathrm{y}}=228 \mathrm{ksi}$

Rotary Bamm Bending
Mean Straat = 0
Composition:
5\% Cr, 1. $50 \% / \mathrm{MO}, .4 \% \mathrm{~V}$, .35\% C

Hot Rolled, 耳athe Turned Grain Direc $\ddagger 10$ Transverse
to Lengthwise Axis
Surface Ireatment Code:
Sea Page 46
Mo Ire-Test Coaditioning
Initial Eeat Tremtment:
See Page 199, Ttam 7
FHgure:6.29. (For Tabulated Data See Page 214)

FATIOUE GPRRHOHIR

H-11 Steel
$\mathrm{s}_{\mathrm{u}}=272 \mathrm{ksi} \quad \mathrm{g}_{\mathrm{y}}=228 \mathrm{kB1}$

H-11 Steel

FALICUR ELRENOLA

$$
s_{u}=272 k \in 1 \quad s_{y}=228 k a 1
$$

Rotary Bean Bonding
Man Btracs $=0$
Composition:
\% Cr, 2.7 No, 4%, 3 .3\% C
Fot Holled, yathe Inrmad Crain Darection Tranoverse to Iengthrise Axis Ehremee Irmetmant Code: 800 Page 46
Inpromed 4 hr . at $500^{\circ} \mathrm{F}$
Initial Bent Ireapmant:
sea Fage 1iv, Itm 7 Fgure: 6.132' (For Tabulated Deta Bee Pege 21 h).


```
\[
s_{\mathbf{1}}=272 \mathrm{k}=1 \quad \mathrm{~s}_{\mathbf{y}}=228 \mathrm{ks} 1
\]
Rotary Bomm mondins
Rotary Bomm mondins
Moan sureas = 0
Moan sureas = 0
Cenpositicul
Cenpositicul



Hot Rollind, Lathem murread Grain Direction Traneverea to zongtimion Aedn Aurevee srentriont codes conten 4 :
megead 4 me at \(750^{\circ} 7\)
 Y \% The 19\%; Itin 7


\section*{}
\[
\mathrm{s}_{\mathrm{L}}=272 \mathrm{kmi} \quad \mathrm{~g}_{\mathrm{y}}=228 \mathrm{k}=1
\]

Effect of Burfuce Mrontment

```

Notary Maen Danding
Mman Etrevere - 0
Compositicar
2% Cr, 1.7.No,.4* v, .3y% 0

```

Hot Roliad, Lathe Turned Grain DAteotion Traneverme to Lengtimise Arele Duresee mrestzent Codes Bae Page 46
Expoead 4 hr , at \(1000^{\circ} \mathrm{F}\) Indtial Heat Treationts (gene 254, Ite \(7 \%\)


\[
s_{u}=272 x=1 \quad s_{y}=228 k 81
\]


\section*{FATIOUEP BYRMHOHE}

H-11 8tee? \(\quad s_{u}=272 \mathrm{ksil} \quad \mathrm{s}_{\mathrm{y}}=228 \mathrm{ksi}\)


Rotary goam Bondias
Mean Streat - 0
Compositioni
\% \(\mathrm{or}, 1.5 \% \mathrm{Mo}, .4 \% \mathrm{~V}, .3 \% \mathrm{O}\)

Hot Rolled, Iathe Turbed Grain Dlrection Mrancierive to Lencthwice Axis Burface Ireatruent: Charceid Plated-Chirame Bryad Pratent Couditioning Codel See Page 46
Initial Feat Treptimant
Soe Page 199, Itcil
FIgurni6d35'. (For Mabulated Data See Page 215)

PAKTOUE SIREMCHI
E-11 8teel
\[
\mathrm{s}_{\mathrm{i}}=272 \mathrm{ksi} \quad \mathrm{~s}_{\mathrm{y}}=228 \mathrm{ksi}
\]
refent of Heat Ireatment
(Protait Conditioning)


Rotrary Sola Beaning
Mean 9tress 0 Courposition:


Hot Noiled, Inthi Murnod Orain Direotion Trunaverse to Leastmine Jxis Gurtwe trantmat: 'Bhot-Pnemaim-Ohrome Beked. Prateet Conditiontin Codes 8ue Fage 46
Inftial peat: Trestmant:

\[
\begin{aligned}
& s_{u_{A}}=246 \mathrm{ksi} \\
& s_{u_{B}}=292 \mathrm{ksi}
\end{aligned}
\]


> Melt Practice:
> Air Melt, Vacuum Arc Remalt Composition:

Figure: 6.39: (For Tabulated Data See Page Z17)


4340 Steel




\section*{Rotaxy Berm Bonding}

Mel.t Practice ( (Vacium Induction Nelt)
Compoaition: (Vacuum ARC Remait
\((.37-.44) \% \mathrm{C},(.55-90) \% \mathrm{M}_{2}\)
\((.20-35)\left\langle s_{1},(1.55-.20) N_{1}\right.\)
\((.65-.95) \mathrm{gC}_{\mathrm{r}},(.20-.30) \mathrm{NE}\)

Lethe Thurnest
TMachanic. at midihed
V-Hotober Plum: nade \(=60^{\circ}\)
Menn Stresi: \(\because G\)



4340 Steel.
FATIDUE Birmiant
\(s_{\mathbf{u}_{8}}=246 \mathrm{kmin}, \mathrm{s}_{\mathrm{u}_{\mathrm{g}}}=268 \mathrm{ksi}, \mathrm{s}_{\mathrm{u}_{10}}=280 \mathrm{ksi}\) Erfect of Malt Practice


\section*{Rotary Bome Bonding}

Mit Praotioe:
Sle Pege 199, Itw BA 1
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{}} \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

Lathe Turned/Mach. Folished Man 8traen - 0

V-motchad
Evet Treatmenti A
See Pay 1199, Item 8A
(Por Tabulatiod Mate Bue Page 2it)

430 Exeol
FATICNE STRMOTH

mefoct of Milt Practice




\section*{Rotary Bonem Bonding}

Molt Practicel Sea Page 199, Itim 8a



Rotiany Beme Boarting
Kit: Practica: sea Pars 199, tien en
Compcattiont




Rotary Bem Boading
Melt Practice: see Page 199; Item 8A


Lathe Turned
in Mechanically Poliohed
Whotched
Heat Ireatmont iA see Pece
1199, Item

F1guret 6.46 (Dor Tabralated Data see Pagei2i日̈)

\section*{4340 steal}
pantaus surymena
4. Hffect of Stress Concentration
\[
g_{u}=246 \mathrm{kai}
\]


Rotary Bem Bonding
Mint Prectice
Alr Malt-Vucuiva AréRmelt Componition:




\section*{Hotary Howry Banding}

Molt Practice: Air Minlt, Vacoura Asic
Remelt Compoition:

Mgure: 6.48. (For Tabulated Data 8ee Page 218)

Eathe Turadd
Machanically Polished
Hent Irreatment:

quacubed, TRmper. \(775^{\circ} \mathrm{F}\); 10


Hotary Rema Bemalng
Mult Procticas Vocure Induction NeIt

\section*{Componitiont}

Lathe Turned,'Mceh. Yoilehad
Menea Btreas = U
that. Trwatmont:
A1 Ghemalise \(1550^{\circ} \mathrm{F}\); \(\mathrm{OA}_{4}\) Tumani: 4c001, AIYCSOL
\begin{tabular}{|c|c|}
\hline Compositiont & (.35-.90) \({ }^{\text {M }}\) M \\
\hline  & (1.55-1.0) \({ }^{\text {ch }}\) \\
\hline . \(650.954 \%\) & (.20-.30) \({ }^{\text {\% }}\) \\
\hline
\end{tabular}


\(S_{2}=207 \mathrm{ksi}\)


Rotary Boam Rending
Melt Practice: Vacumi Induction Melt Composttion:


Lathe Turned Mechanically Polished
Mean Stress = 0
Heat Treatment:
H: I Normalize \(1550^{\circ} \mathrm{F}\),
quenched, Temper at \(775^{\circ} \mathrm{F}, \mathrm{AC}\)

Hgure: 6.50
(Mor Tahulated Data See Page 219)

\section*{TATTNTE STRENMTM}

4340 steel


Rotary Ream Bending.
Melt Pract"ce: Vacuum Induction Me] \(t\) Composition:
\[
\begin{array}{llll}
(.37-.44) \% & C, & (.55-.90) \% & M_{1} \\
(.20-.35) \% & N_{1}, & (1.55-2.0) \% & N_{1} \\
(.65-.95) \% & c_{r}, & (.20 m .30) \% & M_{0}
\end{array}
\]

\section*{Lathe Turned}

Mean Stress = 0
Heat Treatment:
(B: Normalize \(1550^{\circ} \mathrm{F}\), Quenched, rempar. \(775^{\circ} \mathrm{F}\). AC

Mgure: 6.52 (For'Tabulated Data See Page 219)

AISI 4340 Stesl
\(\mathrm{s}_{\mathrm{u}}: \quad \mathrm{B}-158 \mathrm{ksi}, \mathrm{C}-171 \mathrm{kal}\) grfect of Heat Iremtment

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Hotary Boam Bending} \\
\hline Streses Cone. Yacter \(K_{t}=1.0\) & Heat \\
\hline \multicolumn{2}{|l|}{Counvoritsians une} \\
\hline . \(37-.44 \% \mathrm{C}, .55-.90 \% \mathrm{~mm}\) & \\
\hline . \(20-.3 \geqslant 1\) si, \(1.55-2.0 \%\) mi, & \\
\hline \(.65-.9 \%{ }^{2} \mathrm{Cx}, .20 \mathrm{omos} \mathrm{Mo}\) & 20 220 \\
\hline
\end{tabular}

\section*{FATICRUE SERTM}

8.: D - 275 kai : \(\mathbf{~ I}-290 \mathrm{kal}\)

Pffect of Heat Ireatment


Rotary Bean Bending
Stress Conc. Factor \(K_{t}=1.0\) Composition:
\(.37 \times .4+\% \mathrm{C}, .55-.50 \% \mathrm{Mr}\),
\(.20-.35 \% \mathrm{Sij} 1.55-2.0 \% \mathrm{NL}\), \(.65-.95 \% \mathrm{Cr}\). \(20 \mathrm{o} .30 \% \mathrm{Mo}\)

FHgure:6.54 (Mor Tabulated Datn gee Page ;220)

Effect of Btreas Concentration

```

Axcal Load, complatedy mevarmea;
certa
Commenticas
.57-.44% (1, .35-.90% Mn,.20-dums 81
1.55-8.0% W1, .65-.9N1/Crh .20%. 50% mo
Fgure:6.35 (Fe Tabulated Data See Page zal)

```
    Meun Streas \(=0\)
    Hant Irentment:

\section*{}
\(\mathrm{Fe}, 5.5 \% \mathrm{Mo}, 2.5 \% \mathrm{Cr}, .5 \% \mathrm{C} \quad \mathrm{Bu}_{\mathrm{u}} 314 \mathrm{ksi}, \quad \mathrm{S}_{\mathrm{y}}=267 \mathrm{ks}\)


Rotary Beam Bendinis
V-notch: \(K_{t}=2.6\)
Unnotehed: \(K_{t}=1.0\)
Componitions
Fe, \(5.5 \% \mathrm{MO}, 2.5 \%\) Criv. 51 C

Forged, Sireyed

Mean Strime \(=0\)
Heat Treatranat:
sac Yage 199; Itw 10

P1guret6.56 (For Tabulated Data See Page 222)

\section*{}

M-10 Tool steel
Sy: 330 kan
Fitcouk of Rimat meatment



- -..

Rotary remum Bending
Streas Cone. Factor K \(\mathrm{K}_{\mathrm{t}}=1.0\) Compestions
.8pic, 4p Ce, 8\% \(\mathrm{V}, \mathrm{ep} \mathrm{kp}\)
F1 Bure:0.57


\section*{Finfota}

501 8tainlas: 8toel
\[
s_{u}=96 \mathrm{k}=1, \quad g_{y}=38 \mathrm{kel}
\]
siffect of 8treas Concentration


Axial Loed, Completely Reverwed
Tomperature \(=80^{\circ} / \mathrm{T}\)
Componition:
 \(.00 \%\)
| Mocheatratery Molembid
Mean Strase - 0
Hoat Ireatentisēe Fape 200, Hot Rolled, Ansealed

Figure: \(6.38{ }^{\prime}\) (For Tabulated Date gee Pasee22al) \({ }^{\prime}\)

\section*{parione gmaning}

321 8tainiene Steel
\[
\mathrm{s}_{u}=86 \mathrm{kmi}, \quad s_{y}=3<i \operatorname{kec}
\]

Effoct of Stress Concentration


Axial Load, Complately Reveraod
Temerature \(=-300^{\circ} \mathrm{F}\)
Composition:
 .081 C

Nechaticeliy Pollehad.
Nann 9trues \(=0\)
Foat Treatumnts 'gia Pate 200 . Iot Rollad, Amomind Fgrane 6.39d (For Iomblatad Date Boe Jugi 24c)

\section*{Panture shanimis}


Fefeat of guress Conoentration


\section*{Axial toad, Compiettily Reverred \\ Tempanture - -4239}

Compontiont

\(.00 \% \mathrm{C}\)


Got Rolled, Anmaled

Figurer 6.60! (For Tabulited Dati see Page 224)

\section*{Paytocm sxithorg}

Nol 8tentilese steel
\[
\mathrm{s}_{\mathrm{at}}=86 \mathrm{k}=1, \quad \mathrm{~s}_{\mathrm{y}}=38 \mathrm{k}=1
\]



Axial Load, Completaliy Rewreed
Strome Conc. Factor Xt \(=210\) Componition:
 \(.0 \% \mathrm{c}\)

IIG - Paigoton Inort Gam Welded
mann 8 tress \(=0\)
Heat Ireatmontifid Page2U0, Item 12
Enot Rolledy Ammalad

\section*{FATIGUE STHENGAR}

\[
g_{\mathrm{k}}=86 \mathrm{ksi}, \quad S_{y}=38 \mathrm{ksi}
\]


Axial Load, Completioly Reveraed

Streas Conc. Factor \(K_{t}=1.0\)
Composition:
 . Of C

TIG a Tuugnten Inerticher Welded MP - Mechanically Polished
NiAn Atrees =0
Hest'Trectment:Sed Pagezotytem 12 Hot Rolled, Anameled

P1gure: 6.62 (For Tabukated Data Seie Page 224")
\(\mathrm{s}_{\mathrm{u}}=86 \mathrm{ksi}, \quad \mathrm{s}_{\mathrm{y}}=38 \mathrm{ks} 1\)
mefect of Procent at \(-423^{\circ} \mathrm{F}\)

Axial Load, Completely Reverned

Stress Conc. Fuctor \(K_{t}=1.0\)
Compromition:
18\% Cn, \(10 \% \mathrm{RI}, 2 \% \mathrm{Na}, 2 \% \mathrm{BL}\), \(.00 \% \mathrm{C}\)

TIG = Turgetzn Inert Gae Wolded
MP B Machmentcally Polishind
Moen Etreses - 0
Reat Trentmentr8ae Page 200 , It min. Eot Rolled, Annoaled

Figuxe: 6.63! (For Trabilated Data Hes Page 22i4)

FATIGUE SIREMNTM
\[
S_{u_{i}}-86 \text { kat } \quad A_{j}=38 \text { kal }
\]

OL1 Stainiess ōteci
\[
s_{u}=86 \mathrm{ksi} ; \quad \mathrm{s}_{\mathrm{y}} 38 \mathrm{ksi}
\]

.

Axial Iond, Completely Revarced
Strens Conc. Factor \(\mathbb{K}_{t}=3.5\) Cemposition:
Lep Grl \(10 \% \mathrm{ML}, ~ 2 \% \mathrm{Mn}, 2 \% \mathrm{B1}\), \(.00 \% \mathrm{c}\)

Meciratemily Polished
Mana 8tream -0
Feat Iremtesnt: \(\int^{80}\) Page 200 , Hot Rolled, Anmiled

Item 12.

Hgure:6.65. (For Tabuleted Data gee Page 22i.)

\section*{FATTMTE SHPE4ETE}

321 Stainless Steel
\[
s_{u}=86 \mathrm{kss}, \quad \mathrm{~s}_{\mathrm{y}}=38 \mathrm{k}=1
\]


Axial Load, Completely Reversed.
Stress Conc, Factor \(K_{t}=1.0\)
Compoaition:
18\% Cr|, \(10 \% \mathrm{Ni}, 2 \% \mathrm{Mn}, 1 \% \mathrm{Si}\), .08\% C

Tungeten Inert Gas Welded
Mean Streas = 0
Heat Treatment: See Page 200, Hot Rolled, Annealed

Item 12.

Pigure: 6.66
(For Tabulated Data See Page


\section*{ERTICUE BTRMGITHE}

A-286 Stminlean Steel
\[
s_{u}=90 \mathrm{kgi} \quad \mathrm{~s}_{\mathrm{y}}=46 \mathrm{ksi}
\]
srrect of ivemparaiture


Axial Load, Completely Reversed
Btrene Conc. Factor \(K_{t}=3.5\)
Composition:
15\% (GEt 26\% \(11, ~ i .25 \% \mathrm{Mn}, 2 \% \mathrm{T1}\), .20\% Al

Mechanice11yr Polished
Mean Streas \(=0\)
Hent Irectmenturage 200 ytan 3 Solution Ireated, Hot Rolled

Fgure: 6.68 (For Tabulated Dete See Page'226)

\section*{}

A-286 Stainleac 3teel
\(\mathrm{s}_{\mathrm{L}}=90 \mathrm{ksi} \quad \mathrm{g}_{\mathrm{y}}-46 \mathrm{ksi}\)


Axcur road, compleswiy Rerorend Strose One. Factor Kt \(=1.6\)


Tungston zuaxit gan He.Lded








Arial Leind, Completely. Revereed
Terperature m \(80^{\circ} \mathrm{F}\)
Vomporitiona
 .251 A1

Mechanically Polished
- Mean Etrers \(=0\)

Heat Ireatmontpege 200,1tem 13' Bolutinn Treated, Eot anolind.

Pigure: 6.70 (Hor Takulated Data San Page 226)

\section*{FATIOUS: ByRmuth}

A-286 stainleae Steel \(\quad \mathrm{B}_{\mathrm{u}}=90 \mathrm{kgi} \mathrm{Byy}_{\mathrm{y}}=46 \mathrm{kel}\)




\section*{FATIOUR EETREXYTM}

A-256 Stainless Steel


Axdinl Iead, Completely Movarend

Compostticas


Keommieally Polianind
Mana Itrans = 0
Eat Ereataont mane 200 8ten 33 Folution greated, Wot Dolled


Effect of Proness at \(80^{\circ} \mathrm{F}\)



\section*{FATIGOE STHEXIYH}

A-285 Stal:uless 8teel
\[
S_{u}=90 \mathrm{k} 日 1 \mathrm{~S}_{\mathrm{y}}=46 \mathrm{kBi}
\]

Effect of Process at \(-320^{\circ} \mathrm{F}\)



Axial Ioal, Completmly Revereed

Streas Conc. Factor \(\mathrm{K}_{\mathrm{t}}=\therefore 0\)
Camongtion:
2"Nin, \(26 \%\) H. \(1.25 \%\) mo, \(2 \%\) TH,
Figurer 6.74 (For rabuinatif Data see Pnep 22́6.)

\section*{PATICUE ETHENGTH}

A-286 Stainleas Stefl \(\quad A_{u}=50 \mathrm{ksi} s_{y}=46 \mathrm{ksi}\)
Errienc or Firucese at \(-43^{\circ} \mathrm{F}\)


Axial Lond, Completely Fevoreed

8tireun Cape. Paotipr Kt - 1.0
Cureonition:


TIG a Muxgeten Inert Gas Weldad.
MP - Meubanicelly Poliwhed
Mans 8treate - 0
Beet SrentmatiPare 20ufition 13 Bolution greated, Bot Rollided

Fonres 6.75 (For Trabulated Data gee Pago 126)

\section*{}

Multament Nol 255
\[
s_{u}=119 \mathrm{k}=1 \quad \mathrm{~s}_{\mathrm{y}}=60 \mathrm{ksi}
\]

Effect of Temperature


Axial Load, Completely Reversed Composition: 21\% \(\mathrm{Cri}, 20 \% \mathrm{NI}, 20 \% \mathrm{CO}\), \(5 \% \mathrm{S1}, 3 \% \mathrm{Mo}, 3 \% \mathrm{~W}\), \(1.5 \% \mathrm{Mn}, 2 \% \mathrm{Cb}, .15 \% \mathrm{C}\) Figure: 6.76

Lathe Turned or Brred, Mechanically Pollahed Mean Stresa 0 Heat Treatment: See Page, 200, Item 15A (For I'abulated Data See Page 228:)

Multiment N-155
FATIONE GTRTMKIMH \(\quad S_{u}=219 \mathrm{ksi} \quad S_{y}=60 \mathrm{ksi}\)


Rotary Beam Benaing
Composition: 21\% Cry, \(20 \%\) NI, \(20 \%\) CO 5\% 31 , 30 Mo , 30 K , \(1.5 \% \mathrm{kn}\), \(2 \$ \mathrm{Cb}, .2 \mathrm{~K} \mathrm{C}\) FIgure: 6.77 (For Tabulated Data See Page 228 )

\section*{FAITOUE STRMMOTE}

Multiment N-155
\[
s_{u}=119 \mathrm{kai} \quad \mathrm{~s}_{\mathrm{y}}=60 \mathrm{ksi}
\]

Effect of Surface Treatment


Axial Lond Completely Reversed
Temperature \(=1350^{\circ} \mathrm{F}\)
Composition:
21\% Cr; 20\% \(\mathrm{NI}, 20 \% \mathrm{CO}\), 5\% S1, \(3 \% \mathrm{MO}\), \(3 \% \mathrm{~W}\),
\(1.5 \% \mathrm{Mn}, 1 \% \mathrm{Cb}, .25 \% \mathrm{C}\) Figure:6.78 (For Tabulated Data See Page .228)

\section*{FATHOUS STHOMOTH}

Multiment N-155
\[
s_{u}=219 \mathrm{ksi} \quad S_{y}=60 \mathrm{ks1}
\]

Effect of Type of Loading


Temperature \(=1200^{\circ} \mathrm{F}\)
Composition:
21\% |Cr| 20\% \(\mathrm{HI}_{2}\), 20\% Co
2" si, 3\% Mo, 3\% W,
\(1.5 \% \mathrm{Mn}, 1 \% \mathrm{Cb}, .25 \% \mathrm{C}\)
Pigure: 6.79
(For Tabulated Data see Puge 228, )

Lathe Turned or Bored, Mechanically Pulished
Mean Stress = 0
Heat Treatment:
Sêe páge \(20 \dot{0}\), Itm \(15 \ddot{A}\)

\section*{fatcone strenoty}
\[
\mathrm{s}_{\mathrm{i}}=11 \underline{\mathrm{kFi}} \quad \mathrm{~S}_{j}=\mathrm{f}=\mathrm{kst}
\]

Effect of Type of Loading


Temperature \(=13 \times 0^{\circ} \mathrm{F}\)
Conposition:
21\% Cri, 20\% N1, 20\% CO,
5\% Si, 3\% MO, 3 W,

Lathe Murned or Bored,
Mechanically Polished
Mean Stress = 0
Heat Trea'vment:
See Page 200, Irem 15A
(For Tabulated Data See Page 228 )

Multiment N-195 \(\quad S_{\mu}=119 \mathrm{ksi} \quad S_{y}=60 \mathrm{ksi}\)

\section*{Effect of Type of Loading}


Tmpperature \(=1500^{\circ} \mathrm{F}\)
Componitions
21\% Crb 20\% N1, 20\% Co
5\% 84, \(3 \% \mathrm{MO}, 3 \% \mathrm{~W}\), 1.5\% \(\mathrm{Na}, 1 \% \mathrm{Cb}, ~ .15 \% \mathrm{C}\)

FY gue: 6.81
(for Tabulated Data See Page 228 )

Effect of Surface Finish


Axiel Loaded, Completely Reversed
Stress Conco Fractor \(K_{t}=\).. 0
Composition: \(21 \% \mathrm{C}_{n}, 20 \% \mathrm{~N}_{1}, 20 \% \mathrm{C}_{0}\) \(3 \% \mathrm{M}_{0}, 3 \% \mathrm{~W}, 1.5 \% \mathrm{M}, 1 \% \mathrm{C}_{\mathrm{h}}, .15 \% \mathrm{C}\)

Mean Stress \(=0\)
Heat Treatment: So1. Treated \(2200^{\circ} \mathrm{F}, 1 \mathrm{hr}, \mathrm{WQ}\), Aged \(1400^{\circ} \mathrm{F}\) \(16 \mathrm{hrs}, \mathrm{A} . \mathrm{C}\).

F1gure:6.82 (For Tabul.ated Data See Page.229)


FATIGUE STRENGTH
Effect of Surface Finish


Plate Bending, Completely Reversed


Mean Stress \(=0\)
Heat treatment: SOI. Treated \(2200^{\circ} \mathrm{F}, 1 \mathrm{hr}\), WQ, Aged \(1400^{\circ} \mathrm{F}\) 16 hrs ; A.C.

\section*{FATIGUE BTRENGTH}

17-7 PH
\[
S_{u}=\mid 205 \mathrm{k} 81 \quad S_{y}=195 \mathrm{ks1} .
\]

Effect of Stress Concentration


Axiel Losd, Completely Reversed
Temperatura \(=800 \% \mathrm{~J}\) Composition:

17\% Crb \(7 \% \mathrm{Mr}, 1.15 \% \mathrm{Al}\),
\(.4 \% \mathrm{Si}, .7 \% \mathrm{Mn}, .07 \% \mathrm{C}\) Flgure: 6,85

Hand Pollwhed-Longitualat
Mewn 8trese =0
Eat Treatment:
See Pâge 201, Item 17

\section*{}

Duraiumin
\(A_{11}, S_{y}-\) Unknown
EfPect or Salt Water Corrozion



Rotary Beam Benaing
Stress Conc. Factor \(K_{t}\) - Unknown
Composition:
Specimen Condition: Unknown
Mean Stress - Unknown
Heat Treatment: Uniknown
Figure:6.86
(For Tabulated Data See Page'236i)


Rotary Beam Bending
Composition:
\(6 \% \mathrm{Al}, 4 \% \mathrm{~V}, \mathrm{Max} .07 \% \mathrm{NH}_{1}\), max \(.10 \% \mathrm{C}\),

Hot Rolled
Nean Stress \(=0\)
Heat Treatment:
(A: sol. treated \(1690^{\circ} \mathrm{F}\), 12 min .
(Na, aged \(900^{\circ} \mathrm{F}, 4 \mathrm{hrs}\). air cooled)

Migurer6.87 (For Mriventied Data Bee Pagei 237.)

\section*{FATIGUE SIREMGTH}
\(\operatorname{TI}-6 A 1-4 V\)
\[
S_{u}=177 \mathrm{ksi}, S_{y}=166 \mathrm{ksi}
\]

Hifect of remperature


\section*{Rotary Beam Bending}

Composition:
\(6 \% \mathrm{Al}, 4 \% \mathrm{~V}, \max .07 \%, \mathrm{H}_{1}, \max .10 \%\)
C, \(\max .015 \% H\), max \(.40 \% F_{e}, \max .30 \% 0\)

Hot Rolled
Mean Stress \(=0\)
Heat Treatmant:
B: sol. treated \(1675^{\circ} \mathrm{F}, 20 \mathrm{~min}\). WQ, aged \(900^{\circ} \mathrm{F}\), 4 hrs air cooled

Figure:6.88 (For Tabulated Data See Page 237')


FATTITRE STLRENGTH
\[
S_{u}=177 \mathrm{ksi}, s_{y}=106 \mathrm{kB} 1
\]


Ti-6Al-4V

                        \(\mathrm{S}_{\mathrm{u}}=177 \mathrm{ksj}, \mathrm{S}_{\mathrm{y}}=166 \mathrm{ksi}\)

FATIGUE STRETGTH
Rotary Batm Banding
Rotary Batm Banding
Temperature = 600%%
Temperature = 600%%
Composition:
Composition:
6/N1, 4%N, tax .07/N, max . 10% C.
6/N1, 4%N, tax .07/N, max . 10% C.
max .015%:, max . 40%%, max. 30%0
max .015%:, max . 40%%, max. 30%0
Effect of Heat Trentment

Yot enn1ed
Maan Strses or
Hए-A and KILB
see Fige 202, Item 28

T1-6A1-4V TAITGUE STREMNGTH \(\quad \mathrm{S}_{\mathrm{u}}=177 \mathrm{ksi}, \mathrm{S}_{\mathrm{y}}=166 \mathrm{kB1}\)

Effect of Heat Treatment


Rotary Beam Bending Temperature \(=800^{\circ} \mathrm{F}\) Composition: \(6 \% 13 ; 4 \%\), max \(.07 \% \mathrm{I}_{1,}\) max . \(10 \% \mathrm{c}\), \(\max .015 \% \mathrm{H}, \max .40 \% \mathrm{~m}_{0}, \max .30 \% 0\)

Hot Rolled
1Mean Strens - 0
Heat Trieatment:
HIL-A and HI-B
See Page 202, Item 28

Figure: 6.92 (For Tabulated Data See Page 238 )
\begin{tabular}{|c|c|}
\hline \multirow[b]{2}{*}{TI-6AI-4V} & FAITIME GTREXGTH \\
\hline & \\
\hline & fect of Heat Mreatment \\
\hline
\end{tabular}


Hot Rolled
Mean Strese \(=82-107 \mathrm{Ksi}\)
Beat Treathmant:
BINA and KI-B
See Fage 202, Itma 28

Mguref6.93 (Nor Tabulated Date See Page 238:)

PATIGUE STRENGTH
\[
s_{u}=1 T_{i 01}, s_{y}-1 \leqslant \epsilon 2=1
\]

Effect of Heat Ireatment


Rotary Beam Bending
Hot Rolled
Temperature \(=400^{\circ} \mathrm{F}\)
Composition:

Mean Strese = 30-42 hes
Heat Treatment:
HT-A and HT-B
See Page 202, Item 28.
Figure: 6.94 (For Tabulated Data See Page 238.)
failluus strengiti

Effect of Heat Treatment


Rotary Beam Bending
Temperature \(=400^{\circ} \mathrm{F}\)
Compoaition:
\(6 \alpha_{a 1}, 4 \% \mathrm{~V}, \max .07 \mathrm{~K}_{3}\), max \(.10 \% \mathrm{C}\),


Hot Kolled
Mean Stress \(=77-100 \mathrm{ksi}\)
Hoat Treatment:
His-A and KM-B
See Page 202, Itcm 28

Mgure: 6.95 (For Tabulated Data Bee Page 238)

\section*{FARIGUE STRENGIH}
\[
s_{u}-17 n: s=s_{y}-166 v=1
\]

\section*{Effect of Heat Treatment}


Rotary Beam Bending
Temperature \(=.800^{\circ} \mathrm{F}\)
Composition:
\(6 \% A 1,4 \% V\), max \(.07 \% N_{1}\), max \(\therefore 0 \% C\),


Hot Rolled
Maan Stress = 40-64 ksi
Heat Ireatment:
HP-A and HITB See Page

FHgure: 6.96 (For Mabulated Data, See Page 238;)

\section*{FATIGUE STRENGTM} \(\mathrm{g}_{\mathrm{u}}=277 \mathrm{kE1}, \mathrm{~S}_{\mathrm{y}}=156 \mathrm{kE1}\)

> Mascellaneous Results (Effect of Mean Stress)



Rotary Beam Eending Temperature \(=400^{\circ} \mathrm{F}\) Composition:
\(6 \% A 14,4 \% \mathrm{~V}, \max .07 \% \mathrm{~N}_{1}, \max .10 \% \mathrm{C}, \max\) \(.015 \%\) m, max . \(40 \%\) e, max \(.30 \% 0\)
'Mot Rollen
Heàt Treazinent:
A: sol. treated \(1690^{\circ} \mathrm{F}, 12\) min.
WQ, aged \(900^{\circ} \mathrm{F}, 4 \mathrm{hrs}\), air cooled

Figure: 6.98 (For Tabulated Data See Fage.239i)


Figure: 6.99 (Nor Tabulated Data See Page 2.239)

\section*{FATIGUE STRENGTH}

T1-6Al-4V
\[
S_{u}=177 \mathrm{ksi}, S_{y}=166 \mathrm{ksi}
\]

Macellaneous Results (Effect of Mean Stress)


Rotary Beam Beading Temperature \(=800^{\circ} \mathrm{F}\) Comoonition:
\(6 \% 11,4 \% \mathrm{~V}, \max .07 \% \mathrm{I}_{1}, \max .10 \% \mathrm{C}, \max\) \(.015 \% \mathrm{H}\), max \(.40 \% \mathrm{Pe}\), max \(.30 \% 0\)

Hot Rolled
Heat Ireatment:
A: sol. treated \(1690^{\circ} \mathrm{F}, 12 \mathrm{~min}\). WQ, aged \(900^{\circ} \mathrm{F}, 4 \mathrm{krs}\). Air cooled

FHgure:6.100 (For Tabulated Data See Page'239)

FATIOUE SIREMOH

> Mscellaneous Results
> (Hffect of Nan. Stress)


Fotary Beam Bending


Mgure:86.101 (For Tabuleted Data see Page i239.1)

MHMLL EMPMEIGH
Low ciarion, i Low Alloy Bteel \(\quad \mathrm{B}_{\mathbf{L}}=60 \mathrm{kal} \quad \mathrm{g}_{\mathrm{y}}=4 \mathrm{kol}\)


Heat Treatment: Arnealdd, \(1550^{\circ} \mathrm{F}\)

\(g_{1}\) T62 kni \(\quad g_{y}=42 \mathrm{kmi}\)


\section*{TERTSITM STREENCTH}



\section*{}

Low-Medium Carbon, Low Alloy Steel
\(8_{u}-63 \mathrm{ksi} \quad 8_{y}=40 \mathrm{ksi}\)


\section*{TETSITIS SITREMOCH}

Low Carbon, High Alloy Steel
\[
\mathrm{s}_{\mathrm{u}}=65 \mathrm{kei} \quad \mathrm{~s}_{y}=21 \mathrm{kel}
\]



\section*{TENSILE SATENGTH}

Stainless Steel
\[
s_{1}=72 \mathrm{ksi} \quad s_{y}=39 \mathrm{ks1}
\]


\section*{TEHTSITE STREMTMTI}

Low Carbon, High Alloy Steel
\(s_{u}=120 \mathrm{kwi} \quad \mathrm{s}_{\mathrm{y}}=75 \mathrm{kbi}\)


\section*{TEMSILE STRENGTH}

Stainiess Steel


\section*{}

Stainlesg Steel
\[
s_{u}=-85 \mathrm{ksi} \quad s_{y}+35 \mathrm{k} \cdot i
\]



\footnotetext{
Compnsition:

}
feat Trientment:
Figure: 6.112 (For Tabulated Data See Page'247)
Stiginiern Eteel
\({ }^{\prime} g_{u}=85 \mathrm{kmi} \quad 8_{y}=38 \mathrm{kvi}\)


Hegres 6.213 ( For Inbulatied Date see Page|sty)

Effect of Temperature


\section*{Componition:} \(.00 \% \mathrm{c}, 18 / \mathrm{Cr}, 12 \mathrm{Na}, \mathrm{adNo}\) Figure: 6.114

Beat Treatment: Anpealed \(1950^{\circ} \mathrm{Y}\)


SECTION 7 STATISTICAL DISTRIBUTION OF STRESS

\subsection*{7.1 STRESS SPECTRUM VS STRESS DISTRIBUTION}

The problem of streas distribution, in the Interference Theory, appeare to be much more involved than the problem of atrangch distri. bution. Consider, for axample, the problem of a connecting rod in a reciprocating engina. Because of the variation in hardness, aurface finish, atc, the fatigue atrength will vary from one rod to another. This will rasult in distribution curve, in which the atrength will be plotted on the absciasa and the number of rois having agiven otrangth (1:e. frequency of occurrence) on the ordinate.

Conaider now the treas diatribucion in the connecting rods. The stresses in the rod reault from the combined effect of gas preasure loading and inertia loading. If the attantion is now focused on a single rod, then the variation in the two typea of loading will produce a dietribution of atraseas in this particular rod. The resultant curve will be a plot of the stresses in the rod on the absciace and the number of times that this strese occure in this particular rod on the ordinate (Figure 7.1 (a)).

This, howevar, is not what is mantad in the application of the Interfarence Theory, because this distribution of atreses cannot be matched with the diatribution of strength. In the atrength distribution the ordinate gives the number of rode having a given etrength. Therefore in the stress distribution the ordinate must read number of rode having a given atrase (and not the number of times given strass occura in a ingle rod). Thie can be obtained by conaiderint the fact that differant onginas will be aubjected in service to difforent oparating conditione and, tharefore, the diatribution of gas prassure lading and inertia loading will vary from ongine to engine. As pointed out in section 7.2 e epectrum of atrasses must be convarted to an equivalent stress for the purpose of Interfarunce Theory. Therefore, if a pectrum of landing due to diffarent aervice conditione varies from angine to angine, in a population of connecting rode the equivalent utrese will vary from rod to rod, Thus the atatiatical strese dietribution deaired for the Interference Theory may be obtained (Figure 7.1 (b)). In this distribution the equivalent atrase will ba plotted on the abseciasa and the number of rode (frequancy of occurrance) having that etrese on the ordinate. This dietribution then can be compared with the atrungth distribution to obtain the probability of interference.

\subsection*{7.2 CONVERSION OF STRESS SPECTRUM TO AN EqUVVALENT STRESS ( \(\mathrm{s}_{\text {equ }}\) )}

By dofinition, equivalent strew is a completuly reveraed streas of constant amplicude wich, when imposad on part, should cause failure


Fifure 7.1 streas Distribution for the Interterence Theory
at the eame life as if the strese iapectrum was imposed insteid. Thus, the damsge accumulated at any givan life, dua to this equivalent etrean; will be the same as if due to the apectrum of stresses.

The first step towards converting the epectrum to a ingle stress ( \(\mathrm{S}_{\text {equ }}\) ) is to convert the operating atresses, which may have some mean atrag anaciated with them, to zaro mean atrese, that. in, the completely reveraed atress. (Figure 7.2). This can be done by meana of the modified Goodman diagram, Draw the Goodman diagram as ahown in Figure 7.3. From the apectrum of operating stresses plot each atress cycle on this diagram es ahown, for exumple, line AB. Connect \(C A\) and CB and extend to thi vertical line where maan etrese is equal to zero. Hence, \(X Y\) is the zero mean atrame equivalent to ABr After reducing all much streas cycles to zero mean streas the atrese apectrum will have all the stress cycles completely reversed. The magnitude XY will be different for different atrese cyclea. Therefors, the original operating atrises apectrum (Figura 7.2(a)), with various mean streas levele, is thue raduced to a atrasa apectrum with cero man otress level, that is, a completely reversed atrene (Figure 7.4).

This apectrum can then be reduced to a aingle equivalant atress of constant amplitude; by heane of Kiner' or Corten-Dolan's Rules.

\subsection*{7.2.1 Miner's Rule}

Miner'a rule \({ }^{7}\) asumes that the total life of a couponent can be eatimated by aimply adding the fraction of life conamad by aach overstreas cycle. Ovaratress can be defined as the atress above the endurance limit of the material which, if applied, will damge the part.

This rule is expreaned ma:
\[
\frac{n_{1}}{N_{1}}+\frac{n_{2}}{N_{2}}+\frac{n_{3}}{N_{3}}+\cdots \cdot \frac{n_{k}}{N_{k}}=1
\]
or
\[
\begin{equation*}
\sum_{i=1}^{i m k} \frac{n_{i}}{N_{1}}-1 \tag{7.1}
\end{equation*}
\]
where \(n_{1}, n_{2}, n_{3}, \ldots n_{k}\) raptement the number of cyclae at epecific overstress levala, and \(\mathrm{N}_{1}, \mathrm{~N}_{2}: \mathrm{N}_{3}\). . . \(\mathrm{N}_{\mathrm{k}}\) the life cycies to failuze at these levele, es read from the s-N curve.

The equivalant lifa of a part ( \(\mathrm{N}_{\mathrm{equ}}\) ) under a apectrum of stresses may be found by rearrenging the above equation:



Figure 7.3 Modified Goodman Diagram


Figure 7.4 , Completely Reversed Stress Reducea from the Stress Spectrun Through Modified Goodman Dilagram


Suppose, for example, there are three stress levels, 91), 70 , and 50 ksi , in a giyen spectrum. With the reference to the curve in Figure \(7.51 /\left(6 \times 10^{4}\right)\) life is consumed by each 90 ksi stress cycle, \(1 /\left(5 \times 10^{5}\right)\) by each 70 ksi cycle, \(1 /\left(8 \times 10^{5}\right)\) by each 55 ksi cycle. etc. Using equation (7.2).
\[
N_{\text {equ }}=\frac{1+1+1}{\frac{2}{6 \times 10^{4}}+\frac{1}{5 \times 10^{5}}+\frac{1}{8 \times 10^{5}}}=1.5 \times 10^{5} \text { cycles }
\]

Thus, the ilfe of the part under the above spectrum of stresses will be equivalent to a life of \(1.5 \times 10^{5}\) cycles. The stress equivalent to this 1ife is (from Figure 7.5 ) 75 ksi . Hence, the damage that the part accumulates due to the above apectrum of varying atress amplitude will be the same as if stresa cycles of consiant amplitude equal to \(\mathrm{S}_{\text {equ }}\) (In this case, 75 ksi ) were imposed for \(N_{\text {equ }}\left(1.5 \times 10^{5}\right.\) cycles). Thus, the spectrum of stresses can be replaced by a single stress.

Miner's rule, as stated in equation (7.1), gives one (1.0) as the critcrion for failure. Miner's original tests showed that the value for the summation in Equation 7.1 actually varied between 0.61 and 1.45 . His more recent data gives a range of 0.7 to 2.2. Other sources \({ }^{9}\) quote a range as high as 0.18 to 23.0 . In view of all this scatter it is generally agreed that the value of one (1.0), originelly proposed by Miner, is probably the best overall estimate that can be made at this time.

\subsection*{7.2.2 Corten-Dolan'a Rule}

The application of this rule in converting the stress spectrum to a ringle equive"ent stress (Sequ) is identical to that of Miner's rule, except that the \(S-N\) curve used to obtain the life values \(N_{1}, N_{2} \ldots N_{K}\) is modified. This modification is done, as shown in Figure 7.6, by changing che slope of the \(S-N\) curve. A \(1 \leq n e\) is drawn with an inverse alope \(d\) and pasaing through the point \(N_{1}\) on the \(\mathrm{S}-\mathrm{N}\) curve, of maximum stress amplitude (in this case, \(\mathrm{Si}_{1}\) ) occurring in the streas spectrum. This new ine is known as the Corten-Dolau line.


Figure 7.5 Minar's Rule


Figure 7.6 Corten-Dolan Line Ve SmN Curve

From avalluble data 10.11 it appane that for atructural ateel apecimens, havirg no strees concentration ( \(\mathrm{K}_{\mathrm{f}}=1\) ), the value of \(\mathrm{d} / \mathrm{d}^{\prime}=0.8\) is rasomable accimate. A recent atudy by Harris and Lipson \({ }^{12}\) indicates that when strase coacentrations are prosent the following relationship can be used

Thia can be sraphienily capreseed as in Figure 7.7. It will be noted that if \(K_{f}=3,5, d / d^{\prime} \# 1\) and thim baceme equivalent to the criterion obtained from Miner' Rule.


Figure 7.7 Corten-Dolan's Lines for Various Itrese 12 Concentration Factors, According to Harria and Lipion 12

\section*{SLCTIOA 8 TNTERTEREACE OE STRE88 DISTRIEUTION WITH} STRENGTH DISTRIBUTIOM

After the strength distribution and the etrese distribution are determined (Suctions 6 and 7 respectively) the two are compared and the percent interference is determined, as discused in section 2, gection 5, and in detail, in Section 9. For a given atrength distribution the percent interference will depend on the dietribution of the equivalent strese 8 aqu. A search through literature and other sources produced cousidersble mount of data leading to atrength distribution but vary little information on atrens distribution.

In uome enginecring applications there is very ilttle scatter in stresses. This leads to a streas distribution with etandard deviation oqual to zero. Thie distribution can be represented by atraight lineg as in Figuri 8.1, and the interforance can be deternined as ohown.

For sivan 8equ, intarfartnce my increase or decrace, if the iife to which the componentie are dealgned io changed. Thit is chown in Figure 6.2, and in terme of 8-8 diagrem in Figure 8.3. The shape of the distribution curve in Figure 8.2 is different irom those in Figure 8.3 because the formar are ploted on a lincar scale whlle the latter on a log-los scale.

In those ongineering applications where the acater in atreases is appraciable the above approach will abvioualy not apply. On the basia of past experiance, in the present iuvastigation the atreal distribution ( \(8_{\text {gqu }}\) ) was assumed to be normal and the range of atandard deviations to be not Leas than \(.01 \mu\) and not more than \(.10 \mu\) whare \(\mu\) is equal to 8 . \({ }^{\circ}\). The requiting interference is rapresonted qualitatively in Figura 8. qu. \(^{\circ}\).

Extmples of deaign problem employing thia method ara given in Section 9.


Pigure 8.1 Intarfezence with Standard Deviation of Strese equal to Zaro


Life, cyoles

Figure 8.3 S-N Diagram Representing the Dependence of Interferance on Life


\section*{SECTION 9 APPLICATION OF INTERFERENCE THEORY TO DESIGN PROBLEMS}

Once the parameters of the strength distribution ( \(X_{0}, b, \theta\) ) and atress diatribution \(\left(\mu=S_{\text {equ }}\right.\) and \(\sigma=k \mu\), where \(k\) representa a fraction of the average stress) are datermined, as shown in Sactions 6 and 7 respectively, the percent interference can be computed with the aid of Tables on pages 258-396. Spectific steps to be taken are illustrated by the following example.

A certain machine part was designed to withatand in service 10,000 overload cycler. The problem was to predict, its reliability under the following conditions:

Material: \(T_{1}-6 A 1-4 V, \quad S_{u}=177 \mathrm{ksi}, S_{y}=166 \mathrm{ksi}\)
Dasign Life: \(10^{4}\). cycles
Type of Loading: Bending, completely reveraed
Slze: 0.25 in.
Surface Finish: Hot roiled
Theoreticai Strese Concentration Factor: \(k_{t}=1.0\)
Oparating Temparature: \(600^{\circ} \mathrm{F}\)

\subsection*{9.1 Weibuli Parameterg}

The first step was to determine the strength distribution in telms of the Welbull parameters. From the graph on page 129 or Table on page 237. Waibull parametern corresponding to the above conditiona vere found to be:
\[
\begin{aligned}
& x_{0}=50 \mathrm{kai} \\
& b=2.65 \\
& \theta \quad=77.1 \mathrm{kai} .
\end{aligned}
\]

\subsection*{9.2 The Equivalent Streas}

As to the atreas distribution, the part was instrumented and the streas spectrum was recorded as ahown in columas 1 and 2 of Table 9.1.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Spectrum of Stress} & \multicolumn{2}{|c|}{Miner's Rule Data} \\
\hline Completely*
reversed
stress S,
1
1 & \begin{tabular}{l}
Occurrences \(n\), cycles \\
2
\end{tabular} & Number of cycles to failure, N 3 & \[
\frac{\mathbf{n}}{\mathrm{N}}
\] \\
\hline 52.0 & 200 & \(3.5 \times 10^{5}\) & \(5.710 \times 10^{-4}\) \\
\hline 54.1 & 80 & \(2.4 \times 10^{5}\) & \(3.333 \times 10^{-4}\) \\
\hline 56.5 & 50 & \(1.6 \times 10^{5}\) & \(3.125 \times 10^{-4}\) \\
\hline 58.0 & 60 & \[
1.2 \times 10^{5}
\] & \(5.000 \times 10^{-4}\) \\
\hline 59.3 & 20 & 1.0 : \(10^{5}\) & \[
2.000 \times 10^{-4}
\] \\
\hline 62.0 & 10 & \[
6.6 \times 10^{4}
\] & \[
1.315: 10^{-4}
\] \\
\hline 64.8 & 5 & \(4.3 \times 10^{4}\) & \(1.162 \times 10^{-4}\) \\
\hline \multicolumn{4}{|l|}{\[
\sum n_{t}=425 \quad\left[\frac{n_{1}}{N_{i}}-21.845 \times 10^{-4}\right.
\]} \\
\hline
\end{tabular}

Table 9.1 Stress and Life Data for Miner's Rule
*Actually, stress was not completely reversed. It was reduced with the aid of the Goodman diagram to a completely raversed atress using the procedure given in Section 6.1.1.

In ordex to determine the parameters of the stress distribution (Sequ* \(\mu\), and \(\sigma\) ) Miner's rule whs used. From the \(s-N\) curve of the material (Figure 9.1), the number of cycles to failure, \(N\), corresponditig to stresses in Column 1, Table 9.1 were detexmined. This is shown in Column 3, Table 9.1. Using Miner's rule, as expressed in equation (7.2) and tabulated data in Table 9.1, \(N_{\text {equ }}\) was determined:
\[
\begin{aligned}
& \mathrm{N}_{\text {equ }}=1 \times \frac{\sum n_{1}}{\sum \frac{n_{i}}{N_{i}}} \\
& \mathrm{~N}_{\text {equ }}=1 \times \frac{425}{21.845 \times 10^{-4}}=1.945 \times 10^{5} \text { cycles . }
\end{aligned}
\]

From the \(S-N\) curve (Figure 9.1), the stress corresponding to \(N_{\text {equ }}=1.945 \times 10^{5}\) cycles was found to be 5 equ -55 ksi . Hence, a completely reversed stress application of 55 ksi can be substituted for the recorded stress spectrum (Columns 1 and 2, Table 9.1).

\subsection*{9.3 Percent Interference}

Once the strength and stress distribution parameters are established, percent interference can be determined.

In some engineering applications the scatter in the operating stresses is very small and, therefore, the standard deviation of the stresic can be assumed to be zero. In those cases the percent interference can be determined as follows:
\[
\text { Interference }=F(x)=1-e^{-\left(\frac{x-x_{0}}{\theta-x_{0}}\right)} \text { a shaded area under }
\]
the curve shown in Figure 0.1
where \(x=S_{\text {equ }}=55 \mathrm{ksi}\)
\(X_{0} \quad 50 \mathrm{ksi}\)
b \(\quad 2.65\)
\(\theta=77.1 \mathrm{kB1}\).
\(T \mathrm{TH}\)
H1]-5

 (14010
\[
\begin{aligned}
& N_{\text {equ }}=1.945 \times 10^{5} \\
& \text { Life } N-\text { cycles }
\end{aligned}
\]
\[
\text { Figure } 9.1 \mathrm{~s}-\mathrm{B} \text { Relationship }
\] \(\square=\) -

2m-8
ITM
```

$F(x)=1-e^{-\left(\frac{55}{77.1-50}-\frac{50}{2.65}\right.}$
$=1-\mathrm{e}^{-.0114}$
. . 0113

```

Percent Interference \(=1.13 \%\)
This can mlso be read directly from the Table on page 262.
\[
\text { Find } X=\left(\frac{x-X_{o}}{\theta-X_{0}^{b}}\right)^{b}=.0114
\]

Corresponding to \(X=.0114\) read interfexence \(F(x)\), . 0113, from the above table: Therefore, Percent Interference \(m\) 1.13\%.

In those engineering applications finere the scatter of stress is appreciable interference may be found as follows. As pointed out before, in actual engineering practice, the standard deviation lies in the range
\[
0.01 \leq \frac{0}{\mu} \leq 0.10
\]

In the absence of any specific information, an average value of \(\frac{9}{4}=0.05\) can probably be assumed. Uaing this value, percent interference is determined:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|r|}{Strength} & \multicolumn{3}{|r|}{Strese} \\
\hline & \(\mathrm{X}_{0}\) & - 50 kai & \(\mu\) & \(\cdots\) & \(S_{\text {equs }}=55 \mathrm{ksi}\) \\
\hline & b & - 2.65 & 0 & & 0.05 \(\mu\) \\
\hline & 9 & - 77.1 ksi & & & \(0.05 \times 55 \mathrm{ksi}\) \\
\hline , & & & & & 2.75 ksf \\
\hline
\end{tabular}

From the above data, parameters \(C, A\) and \(B(x)\), (for definition see page 27) to be used in the interference tabla, were computed:
\[
\begin{aligned}
& C=\frac{\theta-x_{0}}{\sigma}=\frac{77.1-50}{2.75}=10 \\
& A=\frac{x_{0}-\mu}{\sigma}=\frac{50-55}{2.75}=-1.82 \\
& B(x)=b=2.65
\end{aligned}
\]

The interference value corresponding to these parameters was found by interpolation between Table on page 293 (for \(B(x)=2.0\) ) and Table on page 295 (for \(B(x)=3.0\) ). By interpolating between these two sets of data, the interference was found to be
\[
\begin{aligned}
\text { Interference } & \approx .0245 \\
\text { or Percent Interference } & =2.45 \% .
\end{aligned}
\]

Thus, percent interferancas, that is, probabilitias of failure to be expectied are:

In the event of no cattex in stresses - \(1.33 \%\) Failures.
For the scatter of the order of \(0.05 \mu(2.75 \mathrm{ksi})-2.45 \%\) Failures.

\subsection*{9.4 The Effect of Deginn Factore}

In this manner, the effect of various deelgn factors on percant interference, can be determined. Table 9.2 show the effect of temperature on interforence for deeign conditions atated in the above example. Table 9.3 gives the effect of life on interference for a different set of conditions tated below:

Material: M10 Tool Steal, \(S_{u}\) w 330 kas
Deaign Life: \(10^{5}\) cyclea
Type of loading: Bending, completely reversed
Surface Finiah: Mechanically Polished
Theoretical strese Concuntration Factor: \(k_{t}\) - 1.0
Hact Treatmant: \(2 A\) shown on the Table ou page 223.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Matezial} & \multirow[b]{2}{*}{Temperature OF} & \multirow[t]{2}{*}{Equivalent Stress
\[
s_{e q u}, k s i
\]} & \multicolumn{3}{|l|}{Weibull Parameters of Strangth} & \multicolumn{2}{|l|}{Percent Interference} \\
\hline & & & \begin{tabular}{l}
\[
x_{0},
\] \\
ks1
\end{tabular} & b & \[
\begin{gathered}
0, \\
\mathrm{kel}
\end{gathered}
\] & \(\sigma=0\) & \(\sigma=0.05 \mu\) \\
\hline \multirow[t]{2}{*}{\(\mathrm{T}_{1}=6 \mathrm{Al}-4 \mathrm{~V}\)} & 600 & 55.0 & 50 & 2.65 & 77.1 & 1.13 & 2.45 \\
\hline & 30 & 35.7 & 70 & 3.2 & 96.8 & 0.0 & 0.0 \\
\hline
\end{tabular}

Table 9.2 Effect of Temperature on Percent Interference
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Material} & \multirow[b]{2}{*}{Life, cycles} & \multirow[b]{2}{*}{Equivalent Stress, \(S_{\text {equ, }}\) ksi} & \multicolumn{3}{|l|}{Weibull Parameters of Strensth} & \multicolumn{2}{|l|}{Percent Intexference} \\
\hline & & & \[
\begin{aligned}
& X_{0} \\
& { }_{k}=1
\end{aligned}
\] & b & \[
\begin{aligned}
& 6, \\
& \text { ksi }
\end{aligned}
\] & \(\sigma=0\) & \(\sigma \cdots .02 .8 \mu\) \\
\hline \multirow{3}{*}{\[
\left\lvert\, \begin{gathered}
\text { M } 10 \text { Tool } \\
\text { Stael }
\end{gathered}\right.
\]} & \(10^{4 .}\) & & 127 & 1.89 & 163.5 & 0.0 & 0.0 \\
\hline & \(10^{5}\) & 122 & 119 & 1.95 & 153.2 & 0.865 & 2.04 \\
\hline & \(10^{6}\) & & 111 & 2.0 & 143.5 & 10.80 & 12.03 \\
\hline
\end{tabular}

Table 9.3 Effect of Life on Percent Interference

\section*{CONCLUS IONS}
1. A method was developed for employing stresestrength Inierference Theory as a practical engineering tool to be used for designing and quantitatively predicting the reliability of mechanical parts and components subjected to mechanical loading.
2. This method is based on the considerable empirical data gathered (Appandix 1) and it also has sound theoretical basis (Appendix 3 and Appendix 4). This method eliminates the concept of a Factor of Safety and substitutes Percent Interference (Probability of Failure). Tables of interference values are given in Appendix 2 for a variety of stresa and strength conditions.
3. Although a great deal of data were gathered and analyzed in the course of the present study, no data were found to permit the establishment of confidence intervals on the probability of interfarence.
4. This mathod can be used for three cases most comonly encountered in enginearing practice:

\section*{Strass Distribution \\ Normal \\ Normal \\ Weibull \\ Strength Distribution \\ Normal \\ Weibull \\ Weibull}
5. The effect of type of loading, surface finish, surface treatment, temperature, stres: concentration, heat treatment etc, on the statistical distribution was also atudied. These effects were expressed in terms of Weibull parameters \(X_{0}, \theta\), and \(b\) (see graphe in Section 6.4 of the body of the report and Tables papes 194-257.
6. For most of the materials studied, the lower bound of fatigue strangth ( \(X_{0}\) ) and the characteriatic atrangth ( \(\theta\) ) have a linearly decreaaiag relationship with 1ife, on a log-log scale. In the case of the Weibull slope (b) it decreasen or increases linearly with life, on a log-log scale, depending on the material and the loading, surface, atc. conditions.
7. In the case of the tensile strength data were obtained to study the effect of temparature. None of the Weibull pazametera ahowed any racogoizable relationwhip between tensile strength and cemperature, on either Cartestan or log-log scale.
8. Although the relationohip between the fatigue factorn (listed under item 5 above) and the statistical distribution of strength was eatablished on an individual basia (item 6 bove), no data mere found which could be used to detarraine their combined effect. It may be safely assumed that under this condition the fatigue etrength will follow a normal
distribution (a spacial case of Weibuli). As in the prasant study, this distribution will probably vary with the design ilfe.
9. As to the problem of stress distribution, the data found in ifterature and other snurces wre in the spectral form. For use in the Interfarence Theory thay had to be converted into a distribution of equiviant atresmes.

\section*{RECOMMENDATIONS}
 Weibull parameters, mostly for ferrous materials. These parameters are essential for the prediction of interference. In the girciaft induatry the materials are largely non-ferrous. It would be desirable, therefore, that the interference for these materials be determined roo.
2. It is propased that a computer method, instead of the currently used (Section 6) graphical method, be used for the decermination of the Weibull parameters. This method has the advantage of time saving, higher accuracy, and it may allow the eatabliahment of confidence levels associated with interference.
3. An analytical expression for the general case of interference, as a function of time (life, cycles), should be developed. At the present time, Weibuil parameters of strength ( \(X_{0}, b, \theta\) ) have to be specifically determined for each particular life in order to calculate interference
- at that life. By establishing a general expression, once the interference at one life is known, the interference at any other life can be quickly calculated.
4. The problem of strese distribution demands fuxther work. Mean of conversion from stress spactrum to atress diotribution should be refined and a more exact form of the statistical distribution of the equivalent atress should be establiuhed.
5. At present, in using the tables of interference it is necessary to extrapolate and interpolate interference values in a given cable or betwean the tables. Because of the highly non-linaar behavior of these values (as diecused in Appendix 4, Section 4.1.6 and Appendix 4, Sectian 4.1.9) it would be desirable to have tables calculated for a finer grade of values of the paramatara.
6. In the case when both Intarfaring distributiona are Weibull, percent interferance will depand on aix paremeters ( \(X_{01}, X_{02}, \theta_{1}, \theta_{2} ; b_{1}, b_{2}\) ). By appropriate grouping, these parameters can be reduced to four and percent interference calculated. In order to include a reasorable range of values for each partmeter a large aumber of tablea, cumbersome to handle, would be necessary. Bance, four or five dimensional nomographs should be prepared which would give percent interference an a function of a full range of values of the four parmeters.
7. In order to verify the validity of the Interference Technique devaloped hare it should be checked against an actual life situation. That is, percent interference should be computed for an actual engineering problem. These results then should be compared with actual service fellure:.

\section*{REFERERCES}
1. Lipaon: C.; Kerawalla, J.: and Mitchell, L.; Engimaering Appliciations of Reliability. Engineering Summer Conference, University of Michigan, Ann Arbor, Michigan, 1963.
2. Grover, H. J.; Gordon, S. A.; and Jackson, L. R.; "Fatigue of Matals and Structures", Department of Navy, U. S. Government Printing Office, 1960.
3. Heywooc, R. B Dariguing Areingt Fatique. London: Chapman and Hall, Xtd. , 1962
4. Lipson, C.; and Juyinall, R. C.; Handbook of Streeg and Strength, New York: The MacMillan Co., 1963.
5. Weibuil, W, Yatique Tenting and Analyais of Panulte. New York: The Mackillan Co., 1961.
6. Little, R. E. Multiple Sreciman Testing and the Aenociated Fatigue Strength Reaponse. The Univeraity of Michisan, Ann Arbor: Micligen, 1966.
7. Miner, M. A. "Cumulative Damage in Fatigue." Journal of Applied Machan' 3s, Vol. 12, 1945.
8. Minar, M. A. "Eatination of Fatigue Life with Particular Emphasia on Cumulative Damage." Chapter 12 of Yatel Fatigua, edited by Sines, Gworge and J. L. Waiaman, New York! McGram Hill Book Co i, 1959.
9. Dolan, T. J.; Richart, F.E.; and Work, C. E. "Influence of Fluctuations in Strese Amplitude on the Fatisue of Matals." ASTM Procendinge, Vól. 49, 1949.
10. Bichart, Y. E.; and Nomark, M. M. "As Hypothests tor the Daternination of Cumulative Dease in Fatigive," AsTM Proceedinge, Vol. 48, 1948.
11. Grover, H. J.; Bishop, S. M.; and Jackeon, L. R.; "Fatigue Strength of Aircraft Materiale: Axial Load Fatigue Teate on Unnotched Sheet specimane of 24s-T3 and 758-T6 Aluminum Alloys and of SAE 4130 8teel." MCA Tech. Note 2324, 1951.
12. Harria, J. P.; and Lipson, C. "Cumulative Danage Due to Spectral Loacind." Amonace Pelfibility mad Malptatmbility Conference, SAB, ASME, AIM Comirance Froceadinge, JuIy, 1964.
13. Pearson, in.; Stouffer, S. A.; and David, F. N. "Further Applications in Statistics of the \(I^{(x)}\) Bessel Function." Eiometrika, Voi. Kixiv, November, \(19{ }^{7} 2\), Parts III and IV, радев 203-350.
14. Kullback, S. "The Distribution Laws of the Differences and Quotient of Variables Distributed in Pearaon Type III Laws". The Annals of Machematical Statistics, Vol. VII, No. 1, March, 1963, pages 51-53.
15. Abramowitz, M.; and Stegun, I. A.; (Editozs), Handbook of Mathematical. Punctions, U. S. Department of Comarerce, National Bureau of Standsrds, Applied Marhematics Series 55, December, 1965.
16. Pearson, K. (Editor), Tables of the Incomplete Bela Punction, Biometrika Office, Cambridge Univermity Preas, Cambridge, 1948.
17. Thompmon, C. M.; "Tables of the Parcentage Points of the Iucomplate Beta Function," Blometrika, Vol. 32, 1941, pagee 151-181.
1. American Society of Testing and Materiaıs. A quide for Fatigue Testing and the Statistial Analysis of Fatimue Data. Special Technical Publication No. 91-A (Second Edition), 19t3.
2. Baur, E.H. Skewed Load-Strength Distribution in Reliability. Aero General Corporat on, Report No. 9200 C E4, Sacramento, California, AD 434-414. February 10, 1964.
3. Bazovsky, I. Reliability Theory and Practice. Prentice Hall Inc., Space Technology Series, Chapter 15: "Component Failure Rates at System Strese Levels."
4. Bird, G.T. "On the Basic Concepts of Reliability Prediction." (Monte Carlo) p. 54, Seventh National Symposium on Reliability ald Quality Control, \(19 E 1\).
5. Bowker, A. H. and Lieberman, G.J. Ingineering Statistics. PrenticeHall, Inc. 2 New Jersey: 1959.
 and Interfering Strese-Strength Probability Density Distributions with Consideration for Failure Incidence and Property Degradation." Aerospace Reliability and Maintainability Conference, Washington D.C.: July, 1964.
7. Breipohl, A.M. "Statiatical Independence in Reliability Equations. (Failure Models), and (Causal Dependence) p. 2-3, Elgth National Symporium on Rellability and Quality Control, 1962.
8. Bussiere, R. Method for Critiquing Designs and Predicting Rellability in Advance of Hardware Availability." SAE Paper, 343A, 1961.
9. Corten, H.T. "Application of Cumulative Patigue Damage Theory to Farm and Construction Equipmant." SAE Paper, 735 A, September, 1963.
10. Corten, H.T. "Overstressing and Understressing in Fatigue, (Cumulative Fatigue Damage)." in Asive Handbook, Metals EngineeringDesign, 2nd Exition, 1965.
11. Cortien, H.T. and Dolan T.J. "Cumulative Fatigue Damage." The International Conference on Fatigue of Netals, I. M.E. and A \(\overline{s i c}\), september 10-14, 1976.
12. Dieter, G.E. and Mehi, R, F: "Investigation of Statistical Nature of Fatigue of Metals." NACA Technical Note No. 3019, September, 1953.
13. Dolan, T.J. and Corten H. T. "Progresaive Damage Due to Repeated Loading." WADC Symposium, Fatigue in Nircraf't Structures, Augast, 1959.
14. Dolan, T.J.;Richart, F. I. and Work, C.E. "Influence of Fluctuations in Stress Amplitude on the Fatlgue of Mstals." ASIM Proceedings, Vol. 49, 1949.
15. Eckert, L.A. "Design Reliability Prediction for Low Failure Rate Mechanical Parts." Engineering Application of Reliability. The University of Michigans, Engineering Summer Conference, 1962.
16. Epremian, E. and Mehl, R.F. "Investigation of Stetistical Nature of Fatigue Properties, "NACA Technical Note 2719, June, 2952.
17. Faires, V.M. Design of Machine Elements. New York: The MacMilion Co., 4th Edition, 1965.
18. Forrest, P.G. Fatigue of Metals. New York: Pergamon Pxess, 1962.
19. Fralick, R.W. "Experimental Investigation of Effects of Randiom Loading on the Fatigue Life of Notched Centilever Beam Specimens of 7075-16 Aluminum Alloy," NASA Mem. 4-12-59L, 1959.
20. Freberg, D.D. and Spector, R. B. "Reliability Analysis and Prediction for Iurboget Engines - Results versus Needs." Aerospace Reliability and Maintainability Conference, Washington D.C.: 1964.
21. Freudenthal, A.M. Fatigue Sensitivity and Reliability of Mechanical Systems. SAE, Paper 459 A , January, 1962.
22. Freudenthal, A.M. "Fatigue Testing and Test Interpretation," T6AM Technical Report No. 26 on "Behavior of Materials Under Repeated Stress," July 1951.
23. Freudenthal, A.M. "Planning and Interpretation of Fatigue Tests," ASTM STP No. 121, 1951.
24. Freudenthal, A.M. and Cumbel, E.J. "Distribution Functions for the Prediction of Fatigue Life and Fatigue Strength, "The International Conference on Fatigue of Metals. INE and ASME. 195t.
25. Freudenthal, A.M. and Heller, R.A. "Cumalative Damage of Airurutt Structural Materials, Part \(2: 2024\) and 7075 Alumlnum Alloys Additionul Data and Evaluatior." WADC Technical Note je-éli, Part 2, October, 1956.
26. Freudenthal, A.M. and Heller, R.A. "On Stress Interyction in Fatigue and a Cumulative Damage Role, Purt l: 2024 Aluminum and SAE 4340 Steel Alloys," WADC Technical Report 58-69, June, 1958.
27. Gentle, E.J. and Chaple, C.E. Aviation and Space Dictionary. Los Angeles: Aero Publishars, Inc., 4th Fidition, \(19 E 1\).
28. Grey, E. F. "Statistical Methods as Design Tools," Eighth Natiunal Symposium on Reliability and Quality Contrul. pp. 70-71, 1962.
29. Grover, H.J.; Bishop, S.M. and Jacl:son, L. R. Fatigue Strength of Aircraft Materials. NACA Technical Note 2324 and 2383, March, 1951.
30. Grover, H.J.; Gordon, S.A, and Jackson, L.K. Fatigue of Metals and Struetures, Superintendent of Documents, U.S. Government Frinting office, washington D.C.: June, 1966.
31. Gumbel, E.J. and Freutenthal, AiM. "Minimum Life in Fatigue," American Statistical Association Journal, 49, No. 267, September, 1954, p. 575.
32. Hald, A. Statistical Theory with Engineering Applications. John Wiley and Sons, Inc., New York, New York: 1952.
33. Hanne, R.W. and Varnum, R.C. "Interference Risk When Normal Distributions Overlap." Industrial Quality Control Journal. September, 1950, pp. 26-27.
34. Harris, J. P. and Inpson, C. "Cumulative Damage Due to Spectral Loading." Aerospace Reliability and Maintainabi.lity Conference. SAE, ASME, \(\overline{\text { AIAA Conference Froceedings, July, } 1964 .}\)
35. Haugen, E.B. "Implementing a Structural Reliabjlity Program." Eleventh National Symposium on Reliability and Quality Control, pp. 158-168, 1965.
36. Haugen, E. B. "Statiatical Methods for Structural Reliability Analysis." Appendix p. 110-121, Tenth Symposium on Reliability and Quality Control. Pp. 97-109.1954.
37. Haviland, R.P. "Enginaering Reliability and Long Life Design." Van Nostrand, 1964, p. 1-4, Pp. 133-148.
38. Havilard, R.P. "Introduction Lo Theory of Reliability." SAE Paper 343D, 1961.
39. Heywood, R.B. Designing Against Fetigne. London: Chapman and hall, Ltd., 1960.
40. Horger, O.J. and Neifert,H.R. "Fatigue Properties of Large Size Specimens with Related Size and Statistical Effects." ASIM Special Technical Pıblication 137, 1953, pp. 70-89.
41. Howell, G.M. "Factors of Sa-̊ety." Machine Design. pp. 76-81, July 12, 1956.
42. Hsuan-Loh Su. "Lesign by Quantitative Factor of Safety." ASME Transaction, Series B. November 1960, Pp. 387-392.
43. Juvinall, R.C. Stress Considerations in Design. Department of Mechanical Engineering, University of Michigan, Ann Arbor; Michigan. Copyright, 1964.
44. Kechele, L.E. 'Designi:ag to Prevent Fatigue Failures." RAND Report F-3022. February, 1965.
45. Kpechele, L. E. "Probability and Scatter in Cumulative Fatigue Damage." RAND Report, FM-3688-PR. December, 1963.
46. Kaechele, L.E. "Review and Analysis © Cumulative Damage Theories." The RAND Report, RM-3650-PR. September, 1963.
47. Kao, J.H.K., "The Beta Distribuiton in Reliablility and Quality Control." Proceedings of the Seventh National Symposium on Re11ability and Quailty Contro1. pp. 496-511, 1961.
48. Kececioglu, D. and Cormier, D. "Designing a Specified Reliability Directly into a Component." Aerospace Reliability and Maintainability Conference. Washington D.C.: Pp. 546.564, 1964.
49. Kullback, S. "The Distribution Laws of the Differences and Quotient of Vairiables Distributed in Pearson Type III Laws." The Annals of Mathematical Statistics. Volume VII, Number 1, Morch, 1936. pp. 51-53.
50. Langer B. F. "Futigue Frilure from Stress Cycles of Virying Amplitude." Transuctions, ASME. Volumc 92, p. A-1ro, 1937.
j1. Lazan, B.J.; Wu, T. 'Damping, Fatigue und Dynumic Stress-Struin Properties of Mild Steel." proceedings ASIM, No. II. pp. 649-678, 1951.
j2. Leve, H.L. "Element Reliability for an Individual Life History." Aerospace Reliubility and Maintainability Conference. Washington, D.C.: Pp. 24-26, 1963.
53. Lipson, C.; Kerawalla, J. and Mitchell, L. " "Interference Theory." Engineering Applications of Reliability. Chapter 12. The University of Michigan, Ann Arbor, Michigan: Summer, 1963.
54. Lipson, C. und Juvinail, R.C. Handbook of Stress and Strength. New York: The MaxMillan Company, 1963.
55. Lipaon, C. and Noli, G.C. "Design Practice." In ASME Handbook Metals Engineering Design. 2nd Edition, 1965.
56. Lipson, C; Sheth, N.J.; and Sheldon, D.B. "Reliability and Maintainability in Industry and the Universities." Fifth Reliability and Maintainability Conference. Volume 5, 19€も.
57. Little, R.E. Multiple Specimen Testing and the Associated Fatigue Strength Response. The University of Michigan, Ann Arbor, Michigan: January, 1966.
58. IIU, H.W. and Corten, H.T. "Fatigue under Varying Stress Amplitude." NASA Technical Note D-E47. November, 1960.
59. Miner, M.A. "Cumulative Damage in Fatigue." Journal of Applied Mechanics. Volume 12, No. 3, p. A-159, Septeinber, 1945.
60. Miner, M.A. "Estimation of Fatigue Life with Particular Emphasis on Cumulative Damage." Chapter 12 of Metal Fatigue. Edited by Sines, G. and Waisman, J.Lı, New York: McGraw Hill Book Co., 1959.
61. Mittenbergs, A.A. "Fundamental Aspects of Mechanical Reliability." Mechanical Reliability Concepts. ASME Design Engineering Conference, New York: May 17-20, 1965.

E2. Myers, P.J. "Monte Carlo: Rellability Tool for Design Engineers." Ninth National Symposium on Reliability and Quality Control. pp. 487-492, 1963.
63. Palgren, A. "The Endurance of Ball Bearingg." (in German), Z.V.D.I., Volume 68. p. 339, April 15, 1924.
 in Statistics of the \(\mathrm{T}_{\mathrm{m}}(\mathrm{x})\) Bessel Function." Biometrika. Volume XXIV, Parts III, IV, pp. 293-350, November, 1932.
65. Pearson, K. (Editor). Tables of the Incomplete Beta Function. Biometrika Office, Cambridge Office, Cambridge University Press, - Cembridge: 1948.
66. Phelan, R.M. Fundamentals of Machine Design. New York: McGraw Hill Book Co., 2nd Edition, 1962.
67. Piemuschka, E. Principles of Reliability. Prentice Hail, Inc., pp. 99-115, 336-340, 1963.
68. Pope, J.A. "Cumulative Damage in Fatigue." Metal Fatigue. London: Chapman and Hall, Edited by Pope, J. A., 1959.
69. Popp, H.G. "Reliability Through Statistical Material Property Definition." SAE Paper 580B. Octcber, 1962.
70. Ransom, J.T. and Mehl, R.F. "The Statistical Nature of the Endurance Limit," Transactions, AIME, Volume 185. January, 1949.
71. Richart, Jr., F.E. and Newmark, N.M. "A Hypothesis for the Determination of Cumulative Damage in Fatigue." proceedings ASIM, Volume 48. 1948.
72. Rothstein, A.A. "New Cuncepts in Prediction of Mechamicsl and Structural Reliability." Aerospace Reliability and Maintainability Conference, Washington D.C.: pp.93-95, 1963.
73. Sinclair, G.M. and Doian, F.J. "Effect of Stress Amplitude on Statistical Variability in Fatigue Life of \(75 \mathrm{~S}-16\) Aluminum Alloy." Trangactions, ASME, 75. p. 8'7, July, 1953.
74. Sines, G. and Waisman, J.L. Metal Fatigue. New Yorik: McGrawH111 Book Co., 1959.
75. Smith, A.I. "Mechanical Properties of Materials at High Temperatures." Chartered Mechanical Engineering. pp. 278-285, May, 1961.
76. Stulen, F. \(B_{1}\) "On the Statistical Nature of Fatigue" ASTM Special Technical Publication No. 121. 1951.
77. Stulon, F.B. and Cummings, H.N. "Statistical Analysis of Fatigue Data." Froceedings for Short Course in Mechandual Fropertice of Metuls. (Marin, H.U. Editor). The Pennsylvania State University, Department of Engineering Mechanics, 1958.
78. Svensson, N. L. "Factor of Safety Based on Probability." Design Engineering. Volume 191, No. 4845, January 27, 1961. pp. 154-1',
79. Thompson, C.M. "Tables of the Percentage Points of the Incomplete Beta Function." Biometrika. Volume 32, pp. 151-181, 1941.
80. Weibull, W. Fatigue Testing and Analysis of Results. New York: Pergamon Press, 1961.
81. Weibull, W. "Statistical Distribuiton Function of Wide Applicability." Journal of Applied Mechanics. p. 293, September 18, 1951.
82. Weibull, W. "Statistical Representation of Fatigue Failures in Solids." Royal Institute of Technology Transactions. Stockholm: Volume 27, No, 49, 1949.
83. Wilkine, E.W.C. Cumulative Damage in Fatigue. IUTAM Colloquium on Fatigue Springer, Stockholm: p. 321, 1956.

TNDEX TV WETRITRT PARAMETRERS
FOR
FATIGUE STRENGTH OF VARIOUS MATERIALS

\section*{Material}

\title{
Weibull Parameters
} can be found:

\section*{CARBON AND ALIOY STEEELS}
1. AISI \(3140 \quad 207\)
2. AISI \(1045 \quad 208\)
3. AMS 5727209
4. AISI \(2340 \quad 210\)
5. AISI 4140 212
6. DGAC Steel (Iadish) 213
7. H-11 Steel 214

8A. 4340 Steel 217
8B. 4340 Steel 220
9. Thermold .J . 221
10. \(\mathrm{Fe}=5.5\), Mo-2.5, \(\mathrm{Cr}-.5 \mathrm{C} \quad 222\)
11. M 10 Tool Steel 223

STAINLESS SIEETS
12. 321 Stainless 224
13. A - 286 Stainless 226
14. 347 Stainless 227

15A. Mul.timent N-155 228
15B. Multiment N-155 ..... 229
1.t. PH 1.5 - 7 Mo Stainless Steel ..... 231
17. 1.7-7 PH Stainless Steel ..... 323
MISCELLANEOUS BASE MATERIALS
18. Timkin 16-25-6 (AMS 5727) ..... 233
29. Stainless 403 ..... 233
20. Lapelloy 311 ..... 234
21. S-816 (AMS 5534) ..... 234
22. Inco SHS 260 ..... 234
23. GMR - 235 ..... 234
24. \(5-816\) (AMS 5765) ..... 235
25. Udimet 500 ..... \(-35\)
26. Ti - 140 ..... 235
27. Duralumin ..... 236
28. T1-GAL-4V ..... 237
29. Inconel X ..... 240

REF RENTCE DATA FUR WEIBULL PARAMETERS
(COMPUSITTJN, HEAT TREATMENT AND TENSILE STRENGTH)

CARBON AND ALUOY STMEEIS.
1. AISI 3140 Steel: \(\quad\) Su \(=108-109 \mathrm{Ksi}\).

Composition: \(.4 \% \mathrm{C}, .8 \% \mathrm{Mn}, .3 \% \mathrm{Si}, 1.2 \% \mathrm{Ni}, .65 \% \mathrm{Cr}\).
Heat Treatment: \(K 3=O Q\) from \(1520^{\circ} \mathrm{F}\), Tempered at \(1300^{\circ}\). , \(\mathrm{Su}=108 \mathrm{Ksi}\).
K \(4=\) Air blast quenched from \(1520^{\circ} \mathrm{F}\), Tempered at \(1050^{\circ} \mathrm{F}\), \(\mathrm{Su}=109 \mathrm{Ksi}\).
2. ATSI 1045 Steel:
\(\mathrm{Su}=105-120 \mathrm{Ksi}\).
Comporition: \(.43-.5 \% \mathrm{C}, .6-.9 \% \mathrm{Mn}, .040 \% \mathrm{P}(\max ), .05 \% \mathrm{~S}(\max )\)
Heat Treatment: K 1 = Water quenched from \(1520^{\circ} \mathrm{F}\), Tempered at \(1210^{\circ} \mathrm{F}\), Su \(=105 \mathrm{KB1}\), Sy \(=82 \mathrm{Kad}\).
\(\mathrm{K} 2-011\) quenched from \(1520^{\circ} \mathrm{F}\), Tempered at \(1050^{\circ} \mathrm{F}, \mathrm{Su}=120 \mathrm{Ksi}, \mathrm{Sy}=84 \mathrm{Ksi}\).
3. AMS 5727 steel:
\(\mathrm{Su}=120 \mathrm{Kal}\)
Composizion:
Heat Treatment:
Fleishmann hot cold-work, equalize at \(1950^{\circ} \mathrm{F}\), reduce crossection \(18 \%\) from \(1200^{\circ} \mathrm{F}\), s'نress relieve at \(1200^{\circ} \mathrm{F}\) for 8 hours.
4. AISI 2340 Steel:
\(\mathbf{S u}=116-122 \mathrm{Ks} 1\).
Composition:
Heat Ireatment:
\(\mathrm{A}=011\) quenched from \(1450^{\circ} \mathrm{F}\), Tempered at \(1200^{\circ} \mathrm{F}\), \(S u=116 K_{s i}\).
\(B=\) Alr Blat quenched from \(1450^{\circ} \mathrm{F}\), rempered at \(700^{\circ} \mathrm{F}\), \(\mathrm{Su}=119 \mathrm{Ks1}\).
\(C=\) Air Blast queriched from \(1450^{\circ} \mathrm{F}\), no temper; Su = 122 Ksi .

€. DGAC Steel - (Iadish): \(\quad \mathrm{Su}=270 \mathrm{Ksi}\).
Composition: \(\quad .42-.48 \% \mathrm{C}, .6-.9 \% \mathrm{Mn}, .015 \% \mathrm{P}, .015 \% \mathrm{~S}\), .15 - . \(13 \% \mathrm{~s}, .4-.7 \% \mathrm{Ni}, .9-1.2 \% \mathrm{Cr}\), \(.9-1.1 \% \mathrm{Mo}_{3} .05-.1 \% \mathrm{~V}\).
Haat Treatment: Eold at \(1500^{\circ} \mathrm{F}\) in oxidising atmosphere, \(0 Q\) Terur perature \(500^{\circ} \mathrm{F}, 2\) hours.
7. \(\frac{\text { il-11 stcel: }}{\text { Composition: }}\)

Heat Treatment:
\(5 \% \mathrm{Cr}, 1.5 \% \mathrm{Mo}, .4 \% \mathrm{~KB}, .35 \% \mathrm{C}\).
Vacuum are melt, pre heat \(1400^{\circ} \mathrm{F}, 30 \mathrm{~min}\)., Aust. at \(1850^{\circ} \mathrm{F}, 45 \mathrm{~min}\). , A.C., Temperature 2 plus 2 hours at \(1050^{\circ} \mathrm{F}, \mathrm{A} . \mathrm{C} .+\) pre test exposure.
8A. \(\frac{4340 \text { Steel: }}{\text { Composition: }} \quad 37 \quad \mathrm{Su}=206-280 \mathrm{Ksi}\).

> Composition:

Heat Treatment:
.37 - . \(44 \% \mathrm{C}, .55-.90 \% \mathrm{Mn}, .20-.35 \% \mathrm{~s} 1\), \(1.55-2.00 \% \mathrm{~N} 1, .65-.95 \% \mathrm{Cr}, .20-.30 \mathrm{Mo}\), \(A=\) normalize at \(1550^{\circ} \mathrm{F}, O Q\), Temper \(440^{\circ} \mathrm{F}\),
\(B=\) normalize at \(1550^{\circ} \mathrm{F}\), Quench, Tempex \(775^{\circ} \mathrm{F}\), AC.
Melt Practice: \(\quad 8=\) Alr melt, Vacuum arc remelt.
9 = Vacuum Induction melt.
10 - Vacuum Induction melt, Vacuum arc remelt.
80. 4340 Steel: - varied tensile strength.

Composition: same as 8A.
Heat Treaitment: A: Norm, \(1600^{\circ} \mathrm{F}, 1.5\) hours, AC; Aust. \(1525^{\circ}\). , 1.5 hours, \(O Q\), Tempar \(1150^{\circ} \mathrm{F}, 4\) hours, AC.
B: Norm, \(1600^{\circ} \mathrm{F}, 2\) hours, AC, Aust. \(1500^{\circ} \mathrm{F}\), 2 hours, \(O Q\), Temper \(1150^{\circ} \mathrm{F}\), 4 hours, AC.
C: Noxm, \(1600^{\circ} \mathrm{F}, 1\) hour.
D: Aust., \(1550^{\circ} \mathrm{F}\), Salt Bath 20 min ., \(O Q\) to \(220^{\circ} \mathrm{F}\) to \(150^{\circ} \mathrm{F}\), Temper \(400^{\circ} \mathrm{F}, 4\) hours, Meltpractice - lect. Furnace
E: Aust, \(1550^{\circ} \mathrm{F}\), Salt Bath 20 min , \(O Q\) to \(120^{\circ} \mathrm{F}\) to \(150^{\circ} \mathrm{F}\), Tempar \(400^{\circ} \mathrm{F}, 4\) hours, Meltpractice - Vacium furnace.
9. Thermold J

Su \(=294\) Ksi.
\(.37-.44 \% \mathrm{C}, .55-.90 \% \mathrm{Mn}, .20-.35 \% \mathrm{si}\),

- A.C. .Retempered \(1025^{\circ} \mathrm{F}\),' 2 hours A.C. .
10. \(\mathrm{Fe}-5.5 \mathrm{Mo}-2.5 \mathrm{Cr}-.5 \mathrm{C}\) :

Composition: \(\quad\) Su -314 Ksi ,
Heat Treatment: designated in name
Heat Treatment: Prehert \(1400^{\circ} \mathrm{F}, 1 / 2\) hours, harden \(1950^{\circ} \mathrm{F}, 20 \mathrm{~min}\), A.C. Temper \(1050^{\circ} \mathrm{F}, 2\) hours, Ratemper 2 nours after finish machining.
i1. M 10 Tool Steel: Composition: Heat Ireatment:
\(\mathrm{Su}=330 \mathrm{Ksi}\).
\(4 \% \mathrm{cr}, 2 \% \mathrm{v}, .05 \%\).
\(\mathrm{A}=\) Preheat \(1450^{\circ} \mathrm{F}, 1 / 2\) hour, harden \(2150^{\circ} \mathrm{F}\), 5 min., \(O Q\) until bláck, A.C. Temper \(1100^{\circ} \mathrm{F}\) 2 hours, A. C., Retemper \(1100^{\circ} \mathrm{F}, 2\) hours, A. C., after finishing operation, nitrided \(975^{\circ} \mathrm{F}, 48\) hours.
\(B=\) Game as A, but instead of nitriding, stress relleve at \(1000^{\circ} \mathrm{F}\) in protective atmosphere, Furnace cool.

\section*{STAINLESS STETRLS}
12. 321 Stainless Steel: \(\quad \mathrm{Su}=87 \mathrm{Ksi}\).

Composition: \(18 \% \mathrm{Cr}, 10 \% \mathrm{NJ}, 2 \% \mathrm{Mr}, 1 \% \mathrm{Si}, .08 \% \mathrm{C}\). Heat Treatment: Annealed
13. A-286 Stainless Eteel: Su \(=90 \mathrm{Ksi}\).

Uomposition: \(3.5 \% \mathrm{Cr}, 26 \% \mathrm{~N}, 1.25 \% \mathrm{Mo}, 2 \% \mathrm{Ti}, .25 \% \mathrm{~A}\)
Heat Treatment: Hot rolled, solution treated:
14. 347 Stainiess Steel: Su \(\quad 92\) Ksi.

Composition: \(18 \% \mathrm{Cr}, 11 \% \mathrm{Ni}, 2 \% \mathrm{Mn}, 1 \% \mathrm{Si}, .08 \mathrm{C}\).
Heat Treatment: Annealed.
15A. Multiment N - 155:
Su = 119 Ks1.
Composition: \(21 \% \mathrm{Cr}, 20 \% \mathrm{Ni}, 20 \% \mathrm{Co}, 5 \% \mathrm{Si}, 3 \% \mathrm{MO}, 3 \% \mathrm{~W}\), 1. 5\% \(\mathrm{Mn}, 1 \% \mathrm{Cb}, .15 \% \mathrm{C}\).

Heat Treatment: Sol. Treated \(2200^{\circ} \mathrm{F}\), 1 hour, W.Q., Aged \(2440^{\circ} \mathrm{F}\), 16 hours, A.C. .

15B. Multiment N - 155: Su \(=114-126\) Ksi. Composition: Same as 15A.
Heat Ireatment: same as 15A.
axcapt
Some specimens were stress relieved after the Heat Traatment
16. \(\quad \mathrm{Ph} 15-7 \mathrm{Mo}\) Stainless: \(\quad \mathrm{Su}=201 \mathrm{Ksi}\)

Composition: \(\quad 15 \% \mathrm{Cr}, 7 \% \mathrm{~N}, 2.25 \% \mathrm{MO}, 1.15 \% \mathrm{AL}\).
Heat Treatment : Condition at \(1750^{\circ} \mathrm{F}\), 10 hours, A. C, refrigerate at \(-100^{\circ} \mathrm{F}\) for 8 hours, age \(950^{\circ} \mathrm{F}\), for 1 hour, A.C. TH 105.

\section*{17. \(\mathrm{L} 7-7\) PH Stuinless Steel:}

Su a 205 Ksi.
Composition: \(\quad 17 \% \mathrm{Cr}, 7 \% \mathrm{~N}, 1.15 \% \mathrm{A1}, .7 \% \mathrm{Mn}, .4 \% \mathrm{Si}, .07 \% \mathrm{C}\). Heat Treatment: Condition at \(1750^{\circ} \mathrm{F}\) for 10 hours, A.C., Refrigerate at \(-100^{\circ} \mathrm{F}\) for 8 nours, Age \(950^{\circ} \mathrm{F}\) for 1 hour A.C.

MISCELLANEOUS BASE MATHERIALS.
18. Timken \(16-25-6\) :
\(\mathrm{Su}=120 \mathrm{Kmi}\).
19. Stainless 403:
\(\mathrm{Su}=141 \mathrm{Kol}\) (Axial test), 129 Ksi (Rotary test)
Composition: \(\quad .15 \% \mathrm{C}(\max ), 1.0 \% \operatorname{Mn}(\max ), .5 \% \mathrm{Si}(\max ), 11.5 \%\)
- 13.0\% Cr.
20. \(\frac{\text { Lapelloy 311: }}{\text { Composition: }}\)
20. \(\frac{\text { Lapelloy 311: }}{\text { Composition: }}\)

Not Available.

Not Available.
21. \(\frac{\mathrm{S}-816 \text { (AMS 5534): }}{\text { Composition: }}\) Nu avallable. 147 Ksi .
22. Incn SHS 260: \(\quad\) Su \(=260 \mathrm{Rsi}\) (Ax18?)., 129 - 132 (Rotary)

Composition:
Not Avallable.
23. \(\frac{\text { GMR }-235:}{\text { Composition: }} \quad 65 \% \mathrm{Ni}, 15 \% \mathrm{Cr}, 10 \% \mathrm{Fe}, 5 \% \mathrm{Mo}, 3 \% \mathrm{AI}, 2 \% \mathrm{TI}\).
24. S-816 (AMS 5765):

Su \(=147 \mathrm{Ksi}\).
Composition: \(42 \% \mathrm{CO}, 20 \% \mathrm{Or}\), \(20 \% \mathrm{Ns}, 4 \% \mathrm{MO}, 4 \% \mathrm{~W}, 4 \% \mathrm{Cb}, 4 \% \mathrm{Fe}\).
25. Udimet 500: Su = Not Available

Composition: \(\quad \mathrm{Ni}\) oase, \(1 \% \mathrm{C}, 19 \% \mathrm{Cr}, 19 \% \mathrm{CO}, 4 \% \mathrm{MO}, 3 \% \mathrm{TI}\), 2.9\% A1, 4\% Fe .

Composition: \(5.5-6.75 \% \mathrm{AI}, 3.5-4.5 \% \mathrm{~V}, .07 \% \mathrm{Ni}, .1 \% \mathrm{H}(\max )\), . \(4 \% \mathrm{Fe}\) (max).
27. Duralumin: Composition: Al, \(\mathrm{Cu}, \mathrm{Mn}, \mathrm{Mg}\) unknown
unknown
28. \(\frac{\text { T1 }-6 A 1-4 V:}{\text { Couporition: }}\)

Hoat Ireatment:
29. Inconel X: Composition: Heat Treatment:
 \(.015 \% \mathrm{H}(\operatorname{mex}), .4 \% \mathrm{Fe}(\max ), .3 \% \mathrm{O}(\max )\).
A \(=\) Sol treated \(1690^{\circ} \mathrm{F}, 12 \mathrm{~min}\), W. Q., Aged \(900^{\circ} \mathrm{F}, 4\) hours, A.C. .
B - Gol Treated \(1675^{\circ} \mathrm{F}, 20 \mathrm{~min}\), W. Q., Aged \(900^{\circ} \mathrm{F}, 4\) hours, A.C. .

73\% N1, 15\% Cr, 7\% \(\mathrm{Fr}, 2.5 \% \mathrm{TL}, 1 \% \mathrm{Cb}, .7 \% \mathrm{Mn}\), \(.04 \% \mathrm{C}\). Aged \(1350^{\circ}\) F, 16 hours, A.C. .
1. AISI 3140 Steel:

Tested at Room Temperature.
2. AISI 1045 steel:

Hot rolled, lathed; tested at Room Temperature.
3. AMS 5727 Steel:

Ground and lapped, 10 FMS.
4. AISI 2340 Steed:

Hot rolled, lathe turned, hand polished, tested at Room Temperature.
5. AISI 4140 Steel:

Hot rolled, longitudinal machining (mechanical), tested it Room temperature.
6. DGAC Steel (Iadiah):

Vachum furnace melt, hot rolled, machine polished with 600 grit belt.
7. H-ll Steel:

Hot rolled, lathed, grain direction is transverse to lengthwise axis.

8A. AIBI 4340 steel:
Lathe turned, mechatical yolish.
8B. AISI 4340 steel:
for apecimen with Su \(=1 \frac{14}{}\), \(158,271 \mathrm{Kai}\), preparation a hot rolled and lathed. For apecimeno with Bu \(m 275,290\) M13, preparation m forged aind ground. All tested at Room Iomperature.
9. Thermid J:

Tent 3d at Room Tomperature.
10. \(\mathrm{Fe}-5.5 \mathrm{MO}-2.5 \mathrm{Cr} .-.5 \mathrm{C}\) Forged and swaged - 5 RNS.
11. M 10 Trool Steal:

Forged and Swaged, lathe turned, 5 mis, teated at Room Temperature.
12. 321 Stainless Steel:

Hot rolled, mechanical polish.
Some specimens T.I.G. (Tungston Incrt Gab) welded.
'13. A-286 Stainiess Steel:
Hot rolied, mechanical polish.
Some specimens T. I. G, welded.
14. 347 Stainless Steel:

Hot rolled.
15A. Multiment N-155:
Hot rolled, lathed, mecha ical polish. Tested at Room tempara. ture.

15B. Multiment N-255:
Hot rolled, lathed, mechanical polish. Tented at Room Temperature.
Surface proparation code:
A. Stress relieved after surface finishing.
B. . Surface Iiniahed, stress relieved, refinished. ,
C. Hent treated after aurface finishing.
16. Fh 15-7M0, 8tainlen 8teel:

Hot rolled, milled edgen.
17. 17-7 PH, Stainless Steel:

Hot rolled, hand polighed, ground edgen.

MTSOEHLANTROUS BASE MATHRTALS.
18. T1mkin 16-25-6:
completely reveried test, unnotched upentum.
19. Stainleas 403:

Completely reverued tast, unnotched apecimen.
20. Lapelioy 311:

Completely reversed tast, unnotched specimen.
21. S-816 (ANS 5534):
completely reversed tast, unnotched apecimen.
22. Inco GHS 200): Completely reversed test, unnotched specimen.
23. GMR-235: Completely reversed test, unnotched specimen.
24. S-816 (AMS 5765): Completely reversed tent, unnotched specimen.
25. Uaimet 500: Completely reversed test, unnotched specimen.
26. \(\frac{T 1}{C 1}-140\) (AMS 493): Completeily reversed test, unnotched specimen.
27. Duraiumin:

Non corroded and corroded in saltwater.
28. \(T 1-6 A 1-4 V:\)

Hot rolied.
29. Inconel \(x\) : Hot rolled.

AISI 3140 STEEL
ROTARY BENDIHG
Composition \({ }^{1}\)
Heat Treatment \({ }^{2}\)
Specimen Conditions
Meaning of Symbols \({ }^{4}\)
\(\circ\)
\begin{tabular}{|c|c|}
\hline \({ }^{\circ}\) &  \\
\hline 芴 & \\
\hline \[
{ }^{0}{ }_{\sim}^{0}
\] &  \\
\hline Nop & \[
\begin{array}{cc}
\underset{+}{8} & 9 \\
\underset{\sim}{\circ} & \dot{\infty}
\end{array}
\] \\
\hline
\end{tabular}


\(\begin{array}{cc}\text { N } & \text { n } \\ \text { Fon } \\ 0 & 0\end{array}\)
\(68 m a\)
\(68 \leftrightarrows y\)

> Composition Heat Treatment \({ }^{2}\)
\[
10^{3} \quad 10^{4^{\theta \mathrm{ksi}}}
\]
\[
100 .
\]
\[
\stackrel{9}{\infty}
\]
.
\[
10^{6}
\]
\[
\begin{array}{lllll}
\text { Effect of Stress Concentration } \\
& & & & \\
57 & 3.7 & 5.2 & 5 & 5.5 \\
20 & & 5.6 & 6.1 & 5.1 \\
59.0 & 2.2 & 2.2 & 2.4 & 2.2 \\
25 & & 5 & 3.2 & 3.5
\end{array}
\]

Effect of Heat Treatment


\(8 \infty\)

"o
\&

\[
\begin{aligned}
& \text { ज1) } 5^{2}
\end{aligned}
\]
1 Composition - see page 19e, Item 1
A: \(K_{3}-0 Q\) from \(3520^{\circ} \mathrm{F}\), Tempered at \(1300^{\circ} \mathrm{F}, \mathrm{S}_{\mathrm{u}}=108 \mathrm{ksi}, \mathrm{S}_{\mathrm{y}}=87 \mathrm{ksi}\)
3 Specimen condition - see page \(203 \quad 1520^{\circ}\) ?, Temp. at \(1050^{\circ} \mathrm{F}, \mathrm{S}_{\mathrm{u}}=109 \mathrm{ksi}, \mathrm{Sy}=75 \mathrm{ksi}\)

AISI 1045 STEEL
\(S_{u}=105,120 \mathrm{ksi}\)
ROTARY BETJDING

> Composition \({ }^{1}\) Heat Trestment \({ }^{2}\) Specimen Conditions \({ }^{3}\) Neaning of Symbols
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline H.T. & Su & Spec & & ksi & & & \(b\) & & & \(\theta \mathrm{ks1}\) & \\
\hline Life, & Cyc & & \(10^{4}\) & \(10^{5}\) & \(10^{6}\) & \(10^{4}\) & \(10^{5}\) & \(10^{6}\) & \(10^{4}\) & \(10^{5}\) & \(10^{6}\) \\
\hline \multicolumn{12}{|c|}{Effect of Heat Treatment} \\
\hline \(\mathrm{K}_{1}\) & 103 & \(\mathrm{V}-\mathrm{N}\) & 56.0 & 39.0 & 27.0 & 1.67 & 2.25 & 2.75 & 67.3 & 47.3 & 33.4 \\
\hline \(\mathrm{K}_{2}^{1}\) & 120 & \(V-\mathrm{N}\) & 54.0 & 36.0 & 24.2 & 2.72 & 3.1 & 3.25 & 65.3 & 44.25 & 29.9 \\
\hline \multicolumn{12}{|c|}{Effect of Stress Concentration} \\
\hline \(\mathrm{K}_{1}\) & 105 & No-N & 79.0 & 67.0 & 56.7 & 2.6 & 2.75 & 2.85 & 86.2 & 73.0 & 61.65 \\
\hline \(K_{1}\) & 105 & V-N & 56.0 & 39.0 & 27.0 & 1.67 & 2.25 & 2.75 & 67.3 & 47.3 & 33.4 \\
\hline
\end{tabular}

1 For Composition - see page 198, Item 2
2 Heat Treatment

B: K_ 011 Quenched \(\operatorname{fram} 1520^{\circ} \mathrm{F}\) Tempered at \(1050^{\circ} \mathrm{F}, \mathrm{s}_{\mathrm{u}}=120 \mathrm{kai}, \mathrm{B}_{\mathrm{y}}=84 \mathrm{kai}\).
3 For Specimen Condition - see pag 203
4 For Meaning of Bymbola - see page 46

\section*{AMS 5727 STEEL}


\section*{Effect of Stress Concentration}
\begin{tabular}{lllllllllll}
80 & 1.0 & 68 & 61 & 55 & 2.5 & 2.75 & 2.8 & 74 & 67 & 61 \\
80 & 2.4 & 59 & 42 & 30 & 2.75 & 2.95 & 2.98 & 66 & 47 & 34 \\
80 & 3.4 & 48 & 31 & 19 & 2.15 & 2.15 & 2.33 & 61 & 38 & 25 \\
& & & & & & & & & & \\
1200 & 1.0 & 51 & 47 & 44 & 2.85 & 2.85 & 3.0 & 58 & 54 & 50 \\
1200 & 2.4 & 29 & 24 & 20 & 2.21 & 2.3 & 2.32 & 36 & 31 & 26 \\
1200 & 3.4 & 27 & 20 & 15 & 2.62 & 2.75 & 3.02 & 33 & 25 & 19
\end{tabular}

\footnotetext{
1 For Composition - see page 198 It 3 3.
2 For Heat Trcatment - see page 198 Item 3
3 For Specimen Conditions - see page 203 Item 3
4 For Meaning of Symbole - see page 46
}

1
1 For Composition - see page 198, Item 4
2 Heat Treatment Code \(1200^{\circ} \mathrm{F}\) A: \(0 i l\) Quenched fron 14 Biast Quenched from \(1450^{\circ} \mathrm{F}\), Tempered at \(700^{\circ} \mathrm{F}\) C: Air Blast Quenched from \(1450^{\circ} \mathrm{F}\), no Temper For Specimen Conations see page 46 For Meaning of Symbols - see page
4140 STEBL

1 For Coaposition - see page 198, Item 5
3 For Heat Treatment - see page 198, Iter 5
4 For Meaning of Symbols - see page 46

\section*{DGAC STEEL}
\begin{tabular}{|c|c|c|}
\hline & & 1 \\
\hline \(S_{u}=27 n \mathrm{ksi}\) & AXIAL LOAD & Composition 2 \\
\hline = 23 & Cumplacil, a eversed & "i-ut Trantm \\
\hline \(y=23\) & & Specimen Conditions Meaning of S;mbola \\
\hline
\end{tabular}


Effect of Temperature
\begin{tabular}{llllllllllll}
80 & 000 & 1.0 & 160 & 90 & 50 & 2.8 & 2.9 & 3.0 & 191 & 106 & 60 \\
450 & 000 & 1.0 & 145 & 115 & 90 & 3.15 & 3.3 & 4.6 & 162 & 129 & 102 \\
550 & 000 & 1.0 & 125 & 100 & 78 & 3.7 & 3.8 & 4.0 & 161 & 125 & 98 \\
& & & & & & & & & & & \\
80 & 000 & 3.0 & 52 & 40 & 30 & 3.3 & 3.4 & 3.8 & 82 & 66 & 53 \\
450 & 000 & 3.0 & 73 & 41 & 34 & 2.1 & 2.54 & 3.4 & 81 & 46 & 40 \\
550 & 000 & 3.0 & 63 & 44 & 35 & 2.75 & 3.0 & 3.4 & 70 & 51 & 40 \\
& & & & & & & & & & & \\
80 & \(30-50\) & 3.0 & 55 & 38 & 26 & 2.7 & 3.1 & 3.25 & 66 & 46 & 32 \\
450 & \(30-50\) & 3.0 & 39 & 34 & 29 & 3.8 & 4.1 & 4.7 & 48 & 42 & 37 \\
550 & \(30-50\) & 3.0 & 43 & 35 & 29 & 4.0 & 4.5 & 4.7 & 51 & 42 & 34
\end{tabular}

\section*{Effect of Strese Concpntration}
\begin{tabular}{llllllllllll}
80 & 000 & 1.0 & 160 & 90 & 50 & 2.8 & 2.9 & 3.0 & 191 & 106 & 60 \\
80 & 000 & 3.0 & 52 & 40 & 30 & 3.3 & 3.4 & 3.8 & 82 & 66 & 53 \\
450 & 000 & 1.0 & 145 & 115 & 90 & 3.15 & 3.3 & 4.6 & 162 & 129 & 102 \\
450 & 000 & 3.0 & 73 & 41 & 34 & 2.1 & 2.45 & 3.4 & 81 & 46 & 40 \\
& & & & & & & & & & & \\
550 & 000 & 1.0 & 125 & 100 & 78 & 3.7 & 3.8 & 4.0 & 161 & 125 & 98 \\
550 & 000 & 3.0 & 63 & 44 & 35 & 2.75 & 3.0 & 3.4 & 70 & 51 & 40
\end{tabular}

\section*{Miscellaneoun Ramults}
\begin{tabular}{lrllllllllll}
80 & \(100-135\) & 1.0 & 98 & 81 & 65 & 3.6 & 4.0 & 4.2 & 119 & 96 & 78 \\
450 & \(85-131\) & 1.0 & 75 & 60 & 48 & 3.8 & 4.0 & 4.2 & 115 & 91 & 72 \\
550 & \(90-122\) & 1.0 & 110 & 91 & 82 & 2.6 & 3.25 & 4.0 & 122 & 101 & 90
\end{tabular}

1 For Compoaition - paga 198, Item 6
2 For Heat Treatment - see paga 190, Item 6
3 For Speciman Conditione - see page 203, Itemi 6
4 For Meaning of symbola - Lee page 46

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Fing & & \begin{tabular}{l}
\(\bigcirc \infty\) \\
ぶぶぶが
\end{tabular} & \begin{tabular}{l}
－ 0 にか \\
心家芯
\end{tabular} &  & M M \\
\hline &  & &  &  &  &  \\
\hline &  & &  &  &  &  \\
\hline & \[
\] & &  & \&in Nin & on &  \\
\hline & an Nin ล่ ผ่ & & H. &  & H. &  \\
\hline ＋ & Hi & H &  &  &  &  \\
\hline \[
\begin{aligned}
& \text { B } \\
& \frac{8}{8} \\
& \hline
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { 最 } \\
& \text { 䍘 }
\end{aligned}
\] &  &  & \begin{tabular}{l}
Rの莫m \\
ヘ ม่ ล่
\end{tabular} & \(\infty\) ๓Nめ 8 ヘ่ ต่M～ \\
\hline \[
\mathbb{\&}
\] &  & \[
\begin{aligned}
& H \\
& H \\
& \text { 苟 }
\end{aligned}
\] &  & \[
\begin{array}{r}
\text { H} \\
\text { Hion } \\
\text { Na }
\end{array}
\] &  & \begin{tabular}{l}
ヶKyog \\

\end{tabular} \\
\hline \％ & \＆ロ® & \[
\begin{aligned}
& \text { H } \\
& \text { + }
\end{aligned}
\] & ㅇ．¢588 & \＆RRE & \[
R=\stackrel{M}{2}
\] & －出 \\
\hline  &  & 苟 &  & \[
\mathscr{K} \& \dot{\sim}
\] & \[
90 \text { ñ̊ }
\] & \& 8 B ờ す \\
\hline &  & & \[
8 \text { 云 } 8 \text { 合荷 }
\] & \＃ &  &  \\
\hline & 号 & &  & ¢ \({ }_{\sim}^{\sim}\) & 内界氯式 &  \\
\hline & \(\mathfrak{X O X}\) & & 8980N & 8RKN & 8 RH & 89RAN \\
\hline & 且宫䍖 & &  & 9080 & ¢0¢ &  \\
\hline & 自盛曻 & &  &  & B \％B &  \\
\hline
\end{tabular}







Effect of Melt Practice


 9 O Y KR R R ER

 \(\infty\) ag \(\infty\) ag \(\infty\) a \(\infty \infty\) a \(\infty\) an a


जै





 PR Y F \&氟


\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { Ho } \\
& 90 \\
& \hline
\end{aligned}
\] & ¢0 \\
\hline \(\infty\) & \(\pm\) \\
\hline 25 & － \\
\hline \[
\infty
\] & ソ \\
\hline \[
\stackrel{i n}{N}_{\underset{\sim}{1}}
\] & ソ \\
\hline ¢n¢ & \(\stackrel{\text { ñ }}{ }\) \\
\hline \[
\underset{\sim n i n}{n}
\] &  \\
\hline ¢ & ヘn \({ }^{\text {N }}\) \\
\hline ヘ & －กั่ \\
\hline 08 & \(\stackrel{9}{\sim}\) \\
\hline 9 & ה \\
\hline ＊ 8 & ¢ \\
\hline 5 & 冎枵 \\
\hline 㤩患 & \％ \\
\hline 琞 & \(\pm\) \\
\hline on & as \\
\hline 4 & ＠\({ }^{\text {m }}\) \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { I For Composition - see page 109, Item } 38 \\
& \text { A: norralize } 1550^{\circ} \mathrm{F} \text {, iriench, Temper at } 775^{\circ} \mathrm{F} \text { AC } \\
& 4 \text { For Meaning of Symbols - see page } 46 \\
& \begin{array}{l}
5 \text { Melt Practice code } \\
9 \text { Air Melt, Vacusi are reselt }
\end{array}
\end{aligned}
\]
Pe \(-5.5 \mathrm{Mc}-2.5 \mathrm{Cr}-.5 \mathrm{C}\)
Composition \({ }^{1}\)
Heat Treatment \({ }^{2}\)
Specimen Conditions \({ }^{3}\)
Meaning of Symbols \({ }^{4}\)
\(\stackrel{\rightharpoonup}{9}\)
芯
\(\stackrel{\circ}{9}\)

\(\theta\) ks
\(\stackrel{1}{7}\)
\(\underset{\sim}{\mathbb{O}} \underset{\sim}{\text { i }}\)




\(\mathrm{K}_{\mathrm{t}} \quad\) Spec
Life, cycles
を
\(\begin{array}{ll}0 & 0 \\ -1 & \text { i }\end{array}\)
1 For Composition - see page \(19^{a}\), Item 10 For Heat Treatment - see page 199, Item 10 3 For Specimen Conditions - see page 203, Item 10 4 For Meaning of Symbols - see page 46

\section*{M10 TOOL STHET}
\[
S_{u}=330 \mathrm{ksi}
\]

\author{
ROTARY BENDINC
}

Composition \({ }^{1}\)
Specimen Condition \({ }^{3}\)
Meaning of Symbol \(\mathrm{s}^{4}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline H.T. \({ }^{2}\) & \(\mathrm{K}_{\mathrm{t}}\) & Spec & & \({ }_{0} \mathrm{ks}\) & & & \(b\) & & & O ksi & \\
\hline Life & & & \(10^{4}\) & & \(10^{6}\) & \(10^{4}\) & J.05 & \(10^{6}\) & \(10^{\frac{1}{4}}\) & \(10^{5}\) & \(10^{6}\) \\
\hline \multicolumn{12}{|c|}{Effect of Heat Treatment} \\
\hline A & 1.0 & \(\mathrm{NO}-\mathrm{N}\) & 152 & 133 & 117 & 2.67 & 2.7 & 2.73 & 285.7 & 163.7 & 244 \\
\hline B & 1.0 & \(\mathrm{No}-\mathrm{N}\) & 127 & 119 & 111 & 1.89 & 1.95 & 2.0 & 163.5 & 153.2 & 143.5 \\
\hline
\end{tabular}

\section*{Miscellaneous Results}
\(\begin{array}{lllllllllllll}\mathrm{B} & 2.6 & \mathrm{~V}-\mathrm{N} & 71 & 65 & 59.5 & 3.37 & 3.5 & 3.62 & 94.4 & 86.8 & 79.8\end{array}\)

\footnotetext{
1. For Composition - see page 200, Item 11

2 Heat Treatment
A: Preheat \(1450^{\circ} \mathrm{F} 1 / 2 \mathrm{hr}\), harden \(2150^{\circ} \mathrm{F} 5 \mathrm{~min}, \mathrm{OQ}\) until black, AC , Terap. \(1100^{\circ} \mathrm{F} 2 \mathrm{hrs}, \mathrm{A} . \mathrm{C}\). Retemp \(1100^{\circ} \mathrm{F} 2 \mathrm{hrs}, \mathrm{AC}\), after finishing op. Nitrided \(975^{\circ} \mathrm{F} 48 \mathrm{hrs}\).
B: Same as \(A\) but instead oi' nitriding stress relieve at \(1000^{\circ} \mathrm{F}\) in protective atmosphere F.C.
3 For Specimen Condition - see page 203, Item 11
4 For Meaning of Symbols - see page 46
}



\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { n } \\
& \stackrel{\rightharpoonup}{0}
\end{aligned}
\] & \% 0 \\
\hline \multirow[t]{2}{*}{n NN+} & 8 \\
\hline & 最, 10 \\
\hline \multirow[t]{3}{*}{} & \(y<40\) \\
\hline & \% \\
\hline & \\
\hline
\end{tabular}
Effect of Temperature

0
000
MO
0
0
0
0
0
0
ט ט ט
\(\begin{array}{rr}1.0 & 80 \\ 1.0 & -320 \\ 1.0 & -623\end{array}\)


\section*{A-986 STATMLESS STREL}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \[
\begin{aligned}
& 90 \mathrm{~kg} \\
& 46 \mathrm{ks}
\end{aligned}
\] & \multicolumn{4}{|c|}{AXIAL LOAD Completely Reversed} & \multicolumn{4}{|r|}{\[
\begin{aligned}
& \text { Componition }{ }^{1} \\
& \text { Heat Trestmant }{ }^{2} \\
& \text { Bpecinan Conditiong }^{3} \\
& \text { Maning of Syubols }
\end{aligned}
\]} \\
\hline T, OF & \(\mathbf{R}_{\mathbf{t}}\) & & & & & \(b\) & & & ksi & \\
\hline & & \(10^{4}\) & & & \(10^{4}\) & & \(10^{6}\) & \(10^{4}\) & \(10^{5}\) & \(10^{6}\) \\
\hline \multicolumn{11}{|c|}{Effect of Temperature} \\
\hline 80 & \(1.0{ }^{*}\) & 40 & 31 & 24 & 1.84 & 2.1 & 2.7 & 54 & 43 & 34 \\
\hline -320 & 1.0 * & 61 & 58 & 54 & 2.3 & 2.34 & 2.45 & 78 & 74 & 70 \\
\hline -423 & 1.0* & 73 & 67 & 62 & 2.12 & 2.3 & 2.33 & 84 & 78 & 72 \\
\hline 80 & 3.5* & 30 & 22 & & 7.7 & 2.9 & & 36 & 27 & \\
\hline -320 & 3.5* & 35 & 25 & 17 & 1.58 & 1.58 & 1.8 & 56 & 39 & 27 \\
\hline -423 & \(3.5 *\) & 30 & 12 & 5 & 2.15 & 2.25 & 2.37 & 86 & 36 & 15 \\
\hline 80 & 1.0** & 29 & 18 & 12 & 2.27 & 2.49 & 2.56 & 40 & 25 & 16 \\
\hline -320 & 1.0** & 27 & 13 & 8 & 3.05 & 3.12 & 3.25 & 66 & 37 & 81. \\
\hline -423 & 1.0 ** & 41 & 28 & 19 & 2.48 & 2.31 & 2.52 & 70 & 47 & 32 \\
\hline \multicolumn{11}{|c|}{Effect of etreas Concentration} \\
\hline 80 & 1.0* & 40 & 31 & 24 & 1.84 & 2.1 & 2.2 & 54 & 43 & 34 \\
\hline 80 & 3.5* & 30 & 22 & & 2.7 & 2.9 & & 36 & 27 & \\
\hline -390 & \(1.0 *\) & 61 & 58 & 34 & 2.3 & 2.34 & 2.45 & 78 & 74 & 70 \\
\hline -380 & 3.5* & 35 & 25 & 17 & 1.58 & 1.58 & 1.8 & 56 & 39 & 77 \\
\hline -423 & 1.0* & 73 & 67 & 67 & 2.12 & 2.3 & 2.33 & 04 & 78 & 77 \\
\hline -423 & 3.5** & 30 & 12 & 5 & 2.15 & 2.25 & 2.37 & 86 & 36 & 15 \\
\hline
\end{tabular}
sffect of Procesa
\begin{tabular}{lllllllllll}
60 & \(1.0^{*}\) & 40 & 31 & 24 & 1.84 & 2.1 & 2.2 & 54 & 43 & 34 \\
80 & \(1.0^{*}\) & 29 & 18 & 12 & 2.27 & 2.49 & 2.56 & 40 & 25 & 16 \\
-320 & \(1.0^{* * *}\) & 61 & 58 & 34 & 2.3 & 2.34 & 2.45 & 78 & 74 & 70 \\
-380 & \(1.0^{* *}\) & 27 & 15 & 8 & 3.05 & 3.82 & 3.25 & 66 & 37 & 21 \\
& & & & & & & & & & \\
-423 & \(1.0^{*}\) & 73 & 67 & 62 & 2.12 & 2.3 & 2.33 & 84 & 78 & 72 \\
-423 & \(1.0^{*}\) & 41 & 28 & 19 & 2.46 & 2.51 & 7.52 & 70 & 47 & 38.
\end{tabular}

1 For Compoaition - sec page 200, Item 13
2 For lient Treatmant - seo pege 200, Item 13* Mechanically Polished
3 For Spacimen Condleions - see page 20h, Item Iy Tumgten Inart Gas Welded
4 For Mecaing of gymbole - nee pay 46

\section*{347 Fungress cmy}
\begin{tabular}{|c|c|c|}
\hline \(s_{u}=92 \mathrm{kei}\) & arial & \[
\text { Composition }{ }^{1}
\] \\
\hline \(\mathrm{s}_{\mathrm{y}}=46 \mathrm{kgl}\) & LOAD & Heat Treatmant \({ }^{2}{ }^{3}\) \\
\hline \({ }^{\text {v }}\) & & speoimen Conditiona \\
\hline
\end{tabular}


Effect of stress concautration
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1.0 & 25-35 & & & 28 & 26 & & 5.2 & 1.47
5.6 & \[
1.35
\] & 53 & 38 & 31
30 \\
\hline 2.0 & 25-35 & 54 & 35 & 23 & & 3.8 & 5.2 & 3.0 & & 36 & 25 & 17 \\
\hline 4.0 & 25-35 & 32 & 22 & 15 & & 2.8 & & & & & & \\
\hline 1.0 & 38-45 & 38 & 36 & 35 & & 4.3 & 4.7
5.5 & 4.8 & & 43 & 41
39 & 39
32 \\
\hline 2.0 & 38-4.5 & 42 & 34 & 28 & & 4.9 & 3.5 & 3.0 & & & & \\
\hline
\end{tabular}

MAecellameous lmoults
\begin{tabular}{llllllllll} 
& & & & 34 & 3.9 & 4.0 & 4.8 & 34 & 28 \\
1.0 & \(32-37\) & 39 & 31 & 24 & 18 & 3.9 & 22 & 21 \\
2.0 & \(18-22\) & & 18 & 17 & 8 & 3.0 & 3.8 & 16 & 14 \\
4.0 & \(10-15\) & & & & & & & &
\end{tabular}

1 Tor Componitima - see page 200, It 14
2 Tor heat Ireatmant - see page 200, Item i4
4 For specimen Conditione - ane pade 204, Itim 14
For meaning of syabol: - see page 46

\section*{Mutidemir \(\mathrm{N}-155\)}
\[
\begin{aligned}
& s_{\mathbf{u}_{2}}=119 \mathrm{ksi} \\
& s_{y}=60 \mathrm{ksi}
\end{aligned}
\]

ROTARY, PLATE
AND AXIAL LOADIMG
Completely Reversed
Composition \({ }^{1}\)
Heat Treatment \({ }^{2}\)
Specimen Condition 3
Meaning of Bymbola \({ }^{4}\)


Effect of trent Temperature
\begin{tabular}{lllllllllll} 
Axial & 1200 & 48.0 & 45.0 & 42.5 & 2.25 & 2.4 & 2.59 & 54.7 & 51.95 & 49.0 \\
Axial & 1330 & 43.0 & 40.5 & 38.0 & 2.55 & 2.73 & 2.85 & 49.85 & 46.8 & 43.95 \\
Axial & 1500 & 27.0 & 24.3 & 22.0 & 2.85 & 2.91 & 3.0 & 41.6 & 37.1 & 33.1 \\
Rotary & 1200 & 44.5 & 43.0 & 41.6 & 2.77 & 2.9 & 3.0 & 51.85 & 49.85 & 47.95 \\
Rotary & 1350 & 41.0 & 35.0 & 38.5 & 2.28 & 2.28 & 2.35 & 35.5 & 47.3 & 44.1 \\
Rotary & 1360 & 39.5 & 38.0 & 36.7 & 2.77 & 2.8 & 2.9 & 44.05 & 42.53 & 41.1 \\
Rotary & 1300 & 39.0 & 33.7 & 29.3 & 2.27 & 2.37 & 2.45 & 48.5 & 42.0 & 36.15
\end{tabular}

Mrfoct of Surface Treatment
\begin{tabular}{lllllllllll} 
Axial A & 1350 & 43.0 & 40.5 & 32.0 & 2.55 & 2.73 & 2.85 & 49.83 & 46.8 & 43.95 \\
Axial B & 1350 & 35.0 & 34.0 & 33.0 & 2.23 & 2.27 & 2.32 & 43.2 & 42.1 & 40.9
\end{tabular}

\section*{wffect of Dype of Londing}
\begin{tabular}{lllllllllll} 
& & & & & & & & \\
Rotary & 1200 & 44.5 & 43.0 & 41.6 & 2.77 & 2.9 & 3.0 & 51.85 & 49.85 & 47.95 \\
Axial & 1200 & 48.0 & 45.0 & 42.5 & 2.25 & 2.4 & 2.52 & 54.7 & 51.95 & 49.0 \\
Rotary & 1350 & 41.0 & 35.0 & 32.5 & 2.38 & 2.28 & 2.35 & 55.5 & 47.3 & 44.1 \\
Axial & 1550 & 43.0 & 40.5 & 38.0 & 2.55 & 2.73 & 2.85 & 49.85 & 46.8 & 43.95 \\
Rotary & 1500 & 39.0 & 33.7 & 29.3 & 2.27 & 2.37 & 2.45 & 48.5 & 42.0 & 36.15 \\
Axial & 1500 & 27.0 & 24.3 & 22.0 & 2.83 & 2.91 & 3.0 & 41.6 & 37.1 & 33.1
\end{tabular}

1 For Composition a see page 200, Item 15A
2 For Heat Treatment - wee page 200, Item 15A
3 For Specimen Condition - see page 204, Item 15A
4 For Meanins of Symbols - sce page 46
A Lathed
B Milled

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 119 & 55 & 50.2 & 45.8 & 3.7 & 4.2 & 4.8 & 29.1 & 53.9 & 49.1 \\
\hline 119 & 60 & 53 & 46 & 4.1 & 4.6 & 4.9 & 69.8 & 61.8 & 53.8 \\
\hline 119 & 62 & 47 & 35 & 4.4 & 4. & 5.0 & 76 & 58.8 & 43.6 \\
\hline
\end{tabular}


Gurface lreparation Remerto



\section*{PH 15-7 MO ETATHIESS 8TEEL}
\[
\begin{aligned}
& s_{y}=201 \mathrm{kai} \quad \text { AXTAL LOAD } \\
& 8_{y}^{u}=196 \text { kai Complately Ravaraad }
\end{aligned}
\]

Componition \({ }^{2}\)
Howt Treatment
Specimen Condition
3
Meanitis of Symbol: 4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline T, \({ }^{\mathbf{O}}\) & \(\mathbf{K}_{t}\) & & \(x_{0}\) & & & \(b\) & & & 0 k & \\
\hline Life, & cycles & \(10^{4}\) & \[
.10^{5}
\] & \[
10^{6}
\] & \(10^{4}\) & \[
10^{5}
\] & \(10^{6}\) & \(10^{4}\) & \(20^{5}\) & \(10^{6}\) \\
\hline
\end{tabular}

Bifout of Teaporature
\begin{tabular}{lllllllllll}
80 & 1.0 & 145 & 104 & 75 & 1.68 & 1.73 & 1.78 & 169 & 119 & 86 \\
500 & 1.0 & 120 & 73 & & 2.8 & 2.85 & & 129 & 79 & \\
80 & 4.0 & 42 & 32 & 23 & 2.35 & 2.4 & 2.43 & 56 & 41 & 30 \\
500 & 4.0 & 36 & 32 & 29 & 2.55 & 2.38 & 2.7 & 41 & 37 & 32
\end{tabular}

Effect of gtrese Concentration
\begin{tabular}{lllllllllll}
80 & 1.0 & 145 & 104 & 75 & 1.68 & 1.73 & 1.78 & 169 & 119 & 86 \\
80 & 4.0 & 42 & 31 & 23 & 2.35 & 2.4 & 2.43 & 56 & 41 & 30 \\
500 & 1.0 & 120 & 73 & & 2.8 & 2.85 & & & 129 & 79 \\
500 & 4.0 & 36 & 32 & 29 & 2.55 & 2.58 & 2.7 & 41 & 37 & 32
\end{tabular}

\footnotetext{
1 Tor Compoititon - uan page 200, Item 16
2 Tor hiet Treatment - ean pige 2b0, It 16
3 For specimen Conditions. Ule page 204, Item 16
4 For Meaning of dymbole - aen page 16
}

\section*{17-7 PH}
\[
\begin{aligned}
& S_{u}=205 \mathrm{kbs} \\
& S_{y}=195 \mathrm{kBy}
\end{aligned}
\]

AXIAL LOAD
Completely Reversed

Composition \({ }^{1}\)
Heat Treatment \({ }^{2}\)
Specimen Condstion \({ }^{3}\)
Meaning of Symbols \({ }^{4}\)
\(\theta\) ksi
\(\begin{array}{lllll}10^{4} & 10^{5} & 10^{6} & 10^{4} & 10^{5}\end{array} 10^{6}\)
\(8.3 \quad 6.0 \quad 6.0\)
\(153.6 \quad 226.6 \quad 83.6\)
\(\begin{array}{llllll}3.5 & 3.9 & 4.2 & 80.24 & 58.82 & 43.1 .5\end{array}\)
\(\begin{array}{llllll}4.8 & 4.4 & 4.3 & 47.4 & 33.3 & 23.4\end{array}\)
\(\begin{array}{lll}3.8 & 3.4 & 3.1\end{array}\)
\(41.59 \quad 30.4321 .74\)

1 For Comporition - see page 201, Item I.
2 For Heat Ireatment - see page 201, Itma 17
3 For Specimen Condition - Bee page 204, Itam 17
4 For Meaning of Symbols - see page 46


\section*{TIMKEN 16-25-6}

AXIAL LOAD Completely Reversed

Compoaition \({ }^{1}\)
Heat Treatment \({ }^{2}\)
Meaning oin Symbols \({ }^{3}\)
Effect of Temperature
\begin{tabular}{lllllllllll} 
ixial & Room & 63.0 & 58.0 & 53.0 & 4.8 & 5.0 & 5.2 & 71.1 & 65.4 & 60.1 \\
ixial & 1200 & 47.0 & 43.0 & 40.0 & 4.4 & 5.0 & 5.2 & 56.9 & 53.3 & 50.0
\end{tabular}

\section*{STAINIESS 403}

AXIAL ANID PLATE LOADING
Completely Reversed
Composition \({ }^{1}\)
Completely Reversed
Heat Treatment \({ }^{2}\)

Effect of Temperature
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Axtal & Room & 75.0 & 69.0 & 65.0 & 1.9 & 2.5 & 2.65 & 78.4 & 73.1 & 68.0 \\
\hline Axia]. & 500 & 59.0 & 54.0 & 50.0 & 3.0 & 4.3 & 4.8 & 65.6 & 61.7 & 58.2 \\
\hline Axial & 700 & 58.0 & 53.0 & 49.0 & 4.7 : & 4.82 & 5.1 & 62.2 & \(59.4{ }^{\circ}\) & 53.0 \\
\hline Axial & 900 & 50.0 & 45.5 & 41.6 & 3.2 & 3.8 & 4.1 & 57.2 & 46.6 & 42.68 \\
\hline Rotary & Room & 95.0 & '76.0 & 60.0 & 3.2 & 3.5 & 3.7 & 106.0 & 85.4 & 69.9 \\
\hline Rotary & 700 & 80.0 & 62.0 & 49.0 & 3.8 & 5.1 & 5.9 & 86.5 & 67.2 & 52.6 \\
\hline Rotary & 900 & 71.0 & 58.0 & 47.5 & 3.45 & 3.55 & 4.8 & 74.2 & 60.5 & 49.7 \\
\hline \multicolumn{11}{|c|}{Effect of Type of Loading} \\
\hline Axial & Room & 75.0 & 69.0 & 65.0 & 1.9 & 2.5 & 2.65 & 78.4 & 73.1 & 68.0 \\
\hline Rotesy & Room & 95.0 & 76.0 & 60.0 & 3.2 & 3.5 & 3.7 & 106.0 & 85.4 & 69.9 \\
\hline Axial & 700 & 58.0 & 53.0 & 49.0 & 4.7 & 4.82 & 5.1 & 62.2 & 59.4 & 53.0 \\
\hline Rotary & 700 & 80.0 & 62.0 & 49.0 & 3.8 & 5.1 & 5.9 & 86.5 & 67.8 & 92.6 \\
\hline Axial & 900 & 50.0 & 45.5 & 41.6 & 3.2 & 3.8 & 4.1 & 57.2 & 46.6 & 42.68 \\
\hline Rotary & 900 & 71.0 & 58.0 & 47.5 & 3.45 & 3.55 & 4.8 & 74.2 & 60.5 & 49.7 \\
\hline
\end{tabular}

\footnotetext{
1 For Composition - see page 201, Items 10, 10
2 Heat Treatment Unknown
3 For Meaning of Symbols - see page 46
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{3}{|c|}{\(\mathrm{X}_{0}, \mathrm{ksi}\)} & \multicolumn{3}{|c|}{b} & \multicolumn{3}{|c|}{6, ksi} \\
\hline Type of Loading & Temp.
\[
{ }^{\circ} \mathrm{F}
\] & \(10^{4}\) & \(10^{5}\) & \(10^{6}\) & \(10^{4}\) & \(10^{5}\) & \(10^{6}\) & \(10^{4}\) & \(10^{5}\) & \(10^{6}\) \\
\hline
\end{tabular}

\section*{LAPELLOY 311}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{} \\
\hline & & \multicolumn{6}{|c|}{AXIAL LOAD Completely Reversed} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Composition \({ }^{2}\) \\
Heat Treatment \({ }^{2}\) \\
Meaning of Symbois \({ }^{3}\)
\end{tabular}} \\
\hline \multicolumn{11}{|c|}{Miscellaneous Results} \\
\hline \multirow[t]{4}{*}{Axial} & 1100 & 35.0 & 33.0 & 31.0 & 4.5 & 4.8 & 5.0 & 42.2 & 39.9 & 37.7 \\
\hline & & & & S-816 & MS 5 & & & & & \\
\hline & & & & ROTAR mplete & \[
\begin{aligned}
& \text { BEND } \\
& \text { Rev }
\end{aligned}
\] & & & Compo
Heat
Mean & tion eatm of & \[
\mathrm{t}^{2} \mathrm{mbols}{ }^{3}
\] \\
\hline & \multicolumn{10}{|c|}{Effect of Temperature} \\
\hline & Room & 100.0 & 81.0 & 65.0 & 2.8 & 2.9 & 3.2 & 122.5 & 99.5 & 82.1 \\
\hline Rotas \({ }^{\text {R }}\) & 1350 & 58.0 & 50.0 & 44.0 & 3.5 & 4.1 & 4.6 & 70.2
42.0 & 61.8
39.0 & \\
\hline Rotary & 1650 & 15.0 & 13.0 & 12.0 & 3.3 & 3.4 & 3.5 & 42.0 & & \\
\hline
\end{tabular}

\section*{INCO SHS 260}

AXIAL LOAD Completely Reversed

Composition \({ }^{1}\)
Heat Treatment \({ }^{2}\)
Meaning of Symbols \({ }^{3}\)
Effect of Temperature
\begin{tabular}{lllllllllll} 
& 505 & 110.0 & 80.0 & 60.0 & 3.8 & 4.1 & 4.3 & 190.0 & 136.0 & 102.0 \\
axial & 505 & 100.0 & 75.0 & 55.0 & 5.8 & 6.0 & 6.5 & 160.0 & 119.0 & 89.0
\end{tabular}
\begin{tabular}{cl} 
GNR-235 & \\
AXIAL LOAD & Compoaition \({ }^{1}\) \\
Completely Reversed & Heat Treatment \({ }^{2}\) \\
& Meaning of Sjmbols \({ }^{3}\)
\end{tabular}

Effect of Temperature
\begin{tabular}{lllllllllll} 
& & & 54.0 & 56.0 & 42.0 & 2.4 & 2.7 & 2.8 & 79.9 & 60.81 \\
& 16.05 \\
Axinl & Room & 74.0 \\
AXial & 1200 & 43.0 & 39.0 & 35.5 & 3.9 & 4.0 & 4.1 & 53.4 & 48.43 & 44.18 \\
Axiel & 1650 & 26.5 & 24.5 & 23.0 & 2.43 & 2.7 & 2.8 & 30.95 & 29.2 & 27.53
\end{tabular}

1 For Composition - see page 2n1, Itemis 20, 2; 22, 23
2 Heat Treatment Unknown
3 For Meaning of symbols - see page 46
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Type of \\
L. zeding
\end{tabular}} & \multirow[b]{2}{*}{Temp. \({ }^{\circ} \mathrm{F}\)} & \multicolumn{3}{|c|}{\(\mathrm{X}_{0}\), k8i} & \multicolumn{3}{|c|}{b} & \multicolumn{3}{|c|}{e, ksi} \\
\hline & & \(10^{4}\) & \(10^{5}\) & \(10^{6}\) & \(10^{4}\) & \(10^{5}\) & \(10^{6}\) & \(10^{4}\) & \(10^{5}\) & \(10^{6}\) \\
\hline \multicolumn{11}{|c|}{S-816 (AMS 5765)} \\
\hline & & \multicolumn{6}{|r|}{AXIAL, PLAIT, AND ROTARY BENDING Completely Reversed} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Composition \({ }^{1}\) \\
Heat Treatment \({ }^{2}\) \\
Meaning of Symbols \({ }^{3}\)
\end{tabular}} \\
\hline \multicolumn{11}{|c|}{Effect of Temperature} \\
\hline Axial & Room & 55.0 & 54.0 & 52.0 & 3.7 & 4.1 & 4.6 & 69.2 & 67.1 & 65.2 \\
\hline Axial & 1500 & 39.0 & 37.0 & 36.0 & 3.1 & 4.1 & 4.8 & 42.8 & 41.2 & 39.6 \\
\hline Axial & 1650 & 37.0 & 32.0 & 28.0 & 4.6 & 5.2 & 5.6 & 44.0 & 38.6 & 33.9 \\
\hline Plate & Room & 75.0 & 60.0 & 50.0 & 4.5 & 5.0 & 5.3 & 110.0 & 93.1 & 79.2 \\
\hline Plete & 1200 & 76.6 & 72.4 & 68.8 & 2.05 & 2.48 & 2.95 & 78.88 & 75.04 & 71.22 \\
\hline \multicolumn{11}{|c|}{Effect of Type of Loading} \\
\hline Plate & 1200 & 76.6 & 72.4 & 68.8 & 2.05 & 2.48 & 2.95 & 78.88 & 75.04 & 71.22 \\
\hline Rotary & 1200 & 62.0 & 57.0 & 54.0 & 2.42 & 3.0 & 3.4 & 79.2 & 76.8 & 75.3 \\
\hline
\end{tabular}

\section*{UDTMET 500}

AXIAL IOAD
Completely Reveraed
Composition \({ }^{1}\) Heat Treatment \({ }^{2}\) Meaning of Symbols \({ }^{3}\)
\begin{tabular}{lrrrrrrrrrr} 
& Room & 116.0 & 92.0 & 76.0 & 2.35 & 2.5 & 2.7 & 130.7 & 112.7 & 92.4 \\
Axial & 1200 & 84.0 & 78.0 & 71.0 & 3.1 & 3.13 & 3.25 & 96.4 & 87.65 & 80.45
\end{tabular}

T1-140. AMS 493)
ROTARY BENDLNG
Completely Reversed
Composition \({ }^{1}\)

Effect of Temperature
Heat Troatment \({ }^{2}\)
Meaning of Symbola \({ }^{3}\)
\begin{tabular}{lrrrrllllll} 
& Room & 83.0 & 62.0 & 45.0 & 2.4 & 3.22 & 3.5 & 113.9 & 87.3 & 67.2 \\
Rotary & 600 & 85.0 & 61.5 & 45.0 & 2.35 & 2.6 & 2.85 & 92.1 & 67.8 & 50.28
\end{tabular}

1 For Compostition - see page 201, Items 24, 25, 26
2 Heat Treatment Unknown
3 For Meaning of Symbols - see page 46
か
\[
\begin{aligned}
& \text { Specimen Condition } \\
& \text { Life, cycles } \\
& \text { non-corroded } \\
& \text { corroded in salt water }
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{Mg} \\
& 100^{5} \\
& 30.9 \\
& 25.0
\end{aligned}
\]
H5 5
\[
\begin{aligned}
& \text { unknown }
\end{aligned}
\]








年年
 \(\square\)


呈等䋨离

88줄 \(\qquad\)
 \({ }^{H} H^{8}{ }^{8}\)
 \(\underset{\sim}{c}\)

\section*{Macmer \(x\)}


Effect of Tmperature


Mascollonuoue Raculte
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline totery & 69 & 50 & 38 & 3.0 & 1.12 & 1.54 & 71 & 53 \\
\hline
\end{tabular}

1 For Componitica - see page 202, Item 29
2 For leat Irememant u cee Firge 202, Iten 29
'3 For precimen coaditione - ene page 204, Itm 29
4 Ter manalas of grmbele - aee petge 40

\section*{hepreneczs for pafigus bymenoin data}
\begin{tabular}{|c|c|}
\hline Matarlalat & Soures: \\
\hline 2 through 7 & Machanical Proparties Data Center (MPDC) Traverse City, MiJhigm. \\
\hline 88 & Asprautical syatems Divieion (ASD), Tech. note 61-117, Part III, Mechanical Propertias Information Proceasing Byatem. "Yetigue of Matale, Lew Alloy steele" sec. 1. Fab. 1962, Bolfour Eny. Co., Suttoni Bay, Mich1gan. \\
\hline 88 through 11 & NPDC (8iea Above) \\
\hline 18 through 26 & AsD Tech. Note 61-117 Part II, "Patigue of Metals Corrosion and Heat Resiotant Matala, "Nov. 1961. Belfour Eng. Co., Suttone Day, Michigan. \\
\hline 27 & L. R. Jackeon, H. J. Groover, R. C. Mclanter, Advidory Iaport on the "latisue Properties of Aircraft Materiale and structures." 082D. Rap. 16600 . \\
\hline 28 and 29 & MPDC (8ee Above) \\
\hline
\end{tabular}
\(\qquad\)

INDMX TO WEIBUKL FARAMENURB
DOR
manside striwath OF VARIOUS MATEARIALS
Pare Number
wher
Weibull Parameters for given Material can be locnted
1. (.12 - .17)\$ C steel. ..... 245
2. (.08-.30) © a steel. ..... 245
3. (.18-.24)\% C steel. ..... 245
4. (.08-.35)\% C Bteel. ..... 245
5. \(5 \% \mathrm{Or}, .5 \% \mathrm{Mn}, .5 \% \mathrm{~m}, .12 \% \mathrm{a}\) Steel. ..... 246
(.' 5\% Or, .5\% Mo, . \(2 \% \mathrm{C}\) Steel. ..... 246
7. \(17 \% \mathrm{Cr}, .12 \% \mathrm{a}\) stainless steel. ..... 246
8. 2.25\% Cr, 1\% Mo, . \(25 \%\) O Steel. ..... 246
9. \(1.25 \% \mathrm{Cr}, .5 \% \mathrm{Mo},(.07-.15) \%\) C Steel. ..... 246
10. 25\% Or, 12\% Wi stainlese steel. ..... 246
11. \(18 \% \mathrm{Cr}, \mathrm{B} \mathrm{Ni}+\mathrm{Ti}\) stainloas Steel. ..... 247
12. \(18 \%\) or, \(8 \% \mathrm{Ni}+\mathrm{Cb}\) Stainlens 8teel. ..... 247
13. 18x Cr, ex Mi Stainless Steel. ..... 247
14. \(18 \% \mathrm{Cr}, 12 \% \mathrm{~N}, 2 \%\) Mo Stainless Steel. ..... 247
15. 25\% Cr, 20\% Ni Stainless Steel. ..... 247
16. SAE 4340 Steel. ..... 247
17. SAE 4140 steel. ..... 248
18. \(1.25 \% \mathrm{Cr}\), :5\% Mo, .25\% V, . \(4 \% \mathrm{C}\) Steel. ..... 248
19. \(1 \% \mathrm{Cr}, .35 \% \mathrm{Mo}, .25 \% \mathrm{~V}, .4 \% \mathrm{C}\) steel. ..... 248
20. D6AC Steel. (Ladiah). ..... 248

\section*{TABLES}

Eifect of Iemperacure on Iensiie strengtin
of Various Comercially Available Materiala
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Material & \begin{tabular}{l}
Heat \\
Treatment
\end{tabular} & \[
\begin{gathered}
\text { Temp. } \\
{ }_{\mathrm{O}}^{\mathrm{F}}
\end{gathered}
\] & \[
s_{y}
\]
\[
\mathrm{kgi}
\] & \begin{tabular}{l}
\[
S_{u}
\] \\
ks1
\end{tabular} & \[
\begin{array}{r}
X_{0} \\
k s i
\end{array}
\] & b & \[
\underset{k \in i}{\theta}
\] \\
\hline Killed Carbon Steel & Nomalized & 70 & 41.0 & 60.0 & 52.0 & 1.42 & 61.8 \\
\hline 1. (.12-.17)\% C & at \(1725^{\circ} \mathrm{F}\) & 1000 & 17.0 & 31.0 & 23.0 & 1. 90 & 35.4 \\
\hline \[
\begin{aligned}
& .55 \% \text { (max) Mn } \\
& .09 \% \text { (max) } \mathrm{P} \\
& .06 \% \text { (max) } \mathrm{S}
\end{aligned}
\] & Drawn at \(1200^{\circ} \mathrm{F}\) for 1 hr & & & & & & \\
\hline . 28\% (max) Si & & 70 & 41.0 & 60.0 & 54.5 & 1.55 & 62.2 \\
\hline & Annealed & 900 & 20.0 & 41.0 & 33.0 & 1.70 & 44.0 \\
\hline Low Carbon & at \(1550{ }^{\circ} \mathrm{F}\) & 1000 & 17.0 & 31.0 & 20.0 & 2.05 & 36.0 \\
\hline Low Alloy Steel & for 1 hr & 1100 & 14.0 & 23.0 & 11.0 & 2.40 & 25.4 \\
\hline & & 1200. & 10.0 & 1.6 .0 & 7.5 & 2.49 & 17.4 \\
\hline \multicolumn{2}{|l|}{2. (.08-.30)\% c} & 70 & 42.0 & 62.0 & 36.0 & 2.90 & 65.0 \\
\hline \multicolumn{2}{|l|}{1.0\% (max) Mn} & 300 & 37.0 & 66.0 & 48.0 & 1.70 & 71.2 \\
\hline \multicolumn{2}{|l|}{.050\% (max) P} & 400 & 35.0 & 67.0 & 52.0 & 1.40 & 72.5 \\
\hline \multicolumn{2}{|l|}{. \(060 \%\) (max) S} & 500 & 32.0 & 66.0 & 57.0 & 1.07 & 72.5 \\
\hline \multicolumn{2}{|l|}{. \(25 \%\) (max) Si} & 600 & 29.0 & 63.0 & 61.0 & 1.12 & 65.2 \\
\hline \multicolumn{2}{|l|}{Iow Carbon None} & 700 & 27.0 & 55.0 & 53.0 & 1.23 & 60.9 \\
\hline \multirow[t]{6}{*}{Low Alloy Steel} & Specified & 800 & 23.0 & 45.0 & 28.0 & 1.65 & 51.5 \\
\hline & & 900 & 20.0 & 35.0 & 27.0 & 2.30 & 41.0 \\
\hline & & 1000 & 17.0 & 27.0 & 14.0 & 2.60 & 32.0 \\
\hline & & 1100 & 13.0 & 20.0 & 10.0 & 2.80 & 24.5 \\
\hline & & 1200 & 10.0 & 14.0 & 4.0 & 3.00 & 15.5 \\
\hline & & 1400 & 4.0 & 7.5 & 2.0 & 3.20 & 7.6 \\
\hline \multicolumn{2}{|l|}{3.} & 70 & 37.0 & 63.0 & 59.0 & 1.70 & 64.8 \\
\hline (.18-.24)\% C & & 200 & 35.0 & 59.0 & 57.0 & 1.90 & 60.0 \\
\hline . \(86 \%\) (max) 9 & Strase & 400 & 32.0 & 66.0 & 55.0 & 1.14 & 67.3 \\
\hline .032\% (max) Mn & Relieved & 600 & 28.0 & 63.0 & 57.0 & 1.05 & 64.8 \\
\hline .043\% (max) S & & 800 & 25.0 & 52.0 & 49.0 & 1.80 & 53.7 \\
\hline . \(24 \%\) (max) Si & & 1000 & 20.0 & 34.0 & 26.5 & 2.40 & 35.3 \\
\hline \multicolumn{8}{|l|}{Low Carbon} \\
\hline 4. (.08-.35)\% C & & 70 & 40.0 & 63.0 & 54.0 & 1.45 & 65.5 \\
\hline (.30-.80) \% Mn & & 750 & 30.0 & 62.5 & 53.0 & 1.50 & 64.5 \\
\hline (.10-.50)\% Si & None & 900 & 26.5 & 54.0 & 44.0 & 1.55 & 53.0 \\
\hline .04\% (max) P & Specisied & 1000 & 23.0 & 46.0 & 37.0 & 1.80 & 51.8 \\
\hline .05\% (max) S & & 1100 & 19.0 & 38.0 & 34.0 & 2.00 & 40.2 \\
\hline (.40w.65) Mo & & & & & & & \\
\hline LowmMedium Carbe Low Alloy Steel & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 5. Material & Heat Treatment & \[
\mathrm{Temin}_{\mathrm{F}}
\] & \(S_{y}\) & \(S_{u}\) & \(\mathrm{X}_{0}\) & D & 6 \\
\hline 5.0\% Cr & & 900 & 20.0 & 50.0 & 44.0 & 1.36 & 50.9 \\
\hline 0.5\% Mo (1-.5)\% T.t & & 1000 & 17.5 & 44.0 & 38.0 & 1.43 & 44.8 \\
\hline . \(12 \%\) C & Annealed & 1100 & 15.0 & 37.0 & 31.0 & 1.50 & 36.1 \\
\hline & at \(1550{ }^{\circ} \mathrm{F}\) & 1200 & 13.0 & 28.0 & 21.0 & 1.90 & 28.4 \\
\hline Low Carion & & 1300 & 10.0 & 19.0 & 10.0 & 2.35 & 19.0 \\
\hline High Alloy Steel & & 1400 & 7.5 & 13.0 & 5.0 & 2.70 & 12.6 \\
\hline \multicolumn{8}{|l|}{} \\
\hline 0.5\% Mo & & 400 & 26.0 & 68.0 & 55.0 & 1.55 & 61.5 \\
\hline \multirow[t]{3}{*}{0.2\% C} & & 600 & 24.0 & 58.0 & 53.0 & 2.00 & 59.9 \\
\hline & & 900 & 20.0 & 51.0 & 42.0 & 3.00 & 52.3 \\
\hline & \multirow[t]{5}{*}{None Specified} & 1000 & 18.0 & 43.0 & 32.0 & 3.40 & 44.0 \\
\hline \multirow[t]{4}{*}{Low Carbon High Alloy Steel} & & 1100 & 16.0 & 34.0 & 28.0 & 3.60 & 34.2 \\
\hline & & J200 & 14.0 & 25.0 & 16.0 & 4.20 & 26.1 \\
\hline & & 1300 & 10.0 & 17.5 & 9.0 & 4.70 & 18.9 \\
\hline & & 1400 & 8.0 & 12.0 & 6.0 & 4.80 & 12.1 \\
\hline \multirow[t]{4}{*}{7. Stad.nless steel
\(17 \% \mathrm{Cr}\)
\(.12 \%\) (max) C} & \multirow{4}{*}{\begin{tabular}{l}
Annealed \\
at \(1950^{\circ} \mathrm{F}\)
\end{tabular}} & 70 & 39.0 & 72.0 & 68.0 & 1.50 & 74.0 \\
\hline & & 1300 & 8.0 & 15.0 & 7.0 & 2.10 & 16.2 \\
\hline & & 1400 & 6.0 & 10.0 & 5.0 & 2.50 & 11.5 \\
\hline & & 1500 & 4.0 & 6.0 & 3.0 & 2.60 & 6.95 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \({ }^{3 .} 2.25 \% \mathrm{Cr}\) & Annealed & 70 & 41.0 & 74.0 & 65.0 & 1.35 & 71.9 \\
\hline 1.0\% M0 & at \(1550^{\circ} \mathrm{F}\) & 1100 & 30.0 & 54.0 & 36.0 & 1.50 & 43.5 \\
\hline \multirow[t]{2}{*}{0.15\% C} & Cat & 70 & 65.0 & 92.0 & 65.0 & 1.80 & 93.5 \\
\hline & Cast & 1000 & 40.0 & 58.0 & 46.0 & 1.90 & 60.1 \\
\hline \multirow[t]{4}{*}{Low Carbon
Low. Alloy Steel} & Normalized & 70 & 75.0 & 110.0 & 54.0 & 1.15 & 126.0 \\
\hline & at \({ }^{1.650}{ }^{\circ} \mathrm{P}\) & 800 & 75.0 & 110.0 & 53.0 & 1.90 & 126.0 \\
\hline & Drawn & 900 & 70.0 & 107.0 & 52.0 & 2.40 & 111.0 \\
\hline & at \(1300{ }^{\circ} \mathrm{F}\) & 1000 & 60.0 & 95.0 & 51.0 & 2.45 & 101.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 9. \(1.25 \% \cdot \mathrm{Cr}-0.5 \% \mathrm{Mo}\) 0.07-.15)\% C Low Carbon Low Alloy Steel & \begin{tabular}{l}
Normalized \\
at \(1700^{\circ} \mathrm{F}\) Drawn at \(1300^{\circ} \mathrm{F}\)
\end{tabular} & 70 & 55.0 & 75.0 & 64.0 & 1.90 & 78.8 \\
\hline \multirow[t]{7}{*}{10.
\[
\begin{aligned}
& \text { Stainleas Steel } \\
& 25 \% \mathrm{Cr}-12 \% \mathrm{Ni} \\
& .20 \% \text { (max) } \mathrm{C}
\end{aligned}
\]} & & 70 & 57.0 & 80.0 & 63.0 & 1.15 & 91.0 \\
\hline & & 800 & 41.0 & 69.0 & 62.0 & 1.19 & 74.5 \\
\hline & & 1200 & 31.0 & 52.0 & 37.5 & 1.17 & 56.9 \\
\hline & Anrealed & 1300 & 28.0 & 44.0 & 36.0 & 1.80 & 49.3 \\
\hline & at \(2000{ }^{\circ} \mathrm{F}\) & 1400 & 26.0 & 36.0 & 21.0 & 2.00 & 38.9 \\
\hline & & 1500 & 25.0 & 27.0 & 17.0 & 2.10 & 28.2 \\
\hline & & 1600 & 20.0 & 20.0 & 11.0 & 2.20 & 21.5 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 17. Material & Heat Treatment & \[
\underset{F}{T \operatorname{sinp}} .
\] & \(S_{y}\) & \(S_{u}\) & \(X_{0}\) & \(b\) & 0 \\
\hline SAE 4140 Steel & Quenched & 70 & 115.0 & 125.0 & 113.0 & 3.20 & 130.5 \\
\hline .92\% Cra.6\% Mn- & and & 1000 & 56.0 & 75.0 & 50.0 & 4.00 & 81.5 \\
\hline . \(25 \%\) S1 . \(4 \% \mathrm{C}\) & Tempered & & & & & & \\
\hline Medium Carbon & \[
\text { at } 1200^{\circ} \mathrm{F}
\] & & & & & & \\
\hline \multicolumn{8}{|l|}{Low Alloy Steel} \\
\hline \multicolumn{8}{|l|}{18.} \\
\hline 1.25\% Cr-.5\% Mo & & & \[
122.0
\] & 145.0 & 115.0 & 1.65 & 149.5 \\
\hline - 5 \% Mn-.6\% SI- & at \(1725^{\circ} \mathrm{F}\) & \[
1000
\] & \[
75.0
\] & 95.0 & 70.0 & 2.05 & 99.5 \\
\hline . \(25 \%\) V & & & & & & & \\
\hline & \[
\text { at } 1200^{\circ} \mathrm{F}
\] & & & & & & \\
\hline \multicolumn{8}{|l|}{Low Alloy Steel} \\
\hline \multicolumn{8}{|l|}{19.} \\
\hline 1.0\% Cr-.35\% Mo & & 70 & 125.0 & 146.0 & 133.0 & 1.80 & 150.5 \\
\hline -.25\% V . \(4 \% \mathrm{C}\) & at \(1700{ }^{\circ} \mathrm{F}\) & 900 & 90.0 & 109.0 & 88.0 & 2.40 & 117.5 \\
\hline \begin{tabular}{l}
Medium Carbon \\
Low Alloy Steel
\end{tabular} & Tempared at \(1200^{\circ} \mathrm{F}\) & & & & & & \\
\hline \multicolumn{8}{|l|}{} \\
\hline DGAC & at \(1150{ }^{\circ}\) & & & & & & \\
\hline Unnctched Steel & at \(11200{ }^{\circ}\) & 70 & & & 119.0
139.0 & 2.00
2.30 & 194.0
145.4 \\
\hline & \(1250{ }^{\circ} \mathrm{F}\) & 70 & & & 101.0 & 3.30 & 124.5 \\
\hline
\end{tabular}
referlinces for tensile strengiti data
\begin{tabular}{|c|c|}
\hline Materials: & : Source: \\
\hline 1. & ASTM STP \#180 (1955) \\
\hline 2. & ASTM STP \# 100 (1950) \\
\hline 3. & ASTM STP \# 180 (1955) \\
\hline 4. & ASTM STP \# 100 (1950) \\
\hline 5. & ASTM STP \# 100 (1950) \\
\hline 6. & ASTM STP \# 100 (1950) \\
\hline 7. & Scainless Steei ASTM STP \# 100 (1950) \\
\hline 8. & ASTM STP \# 151 (1953) \\
\hline 9. & ASTM STP \# 151 (1953) \\
\hline 10. & Stainless Steel ASTM STP \# 100 (1950) \\
\hline 11. & Stainleas Steel ASTM STP \# 124 (1952) \\
\hline 12. & Stainlens Steel ASTM STP \# 124 (1952) \\
\hline 13. & Stainless Steel ASTM STP \# 124 (1952) \\
\hline 14. & Stainless Steel ASTM STP \# 100 (1950) \\
\hline 15. & ASTR: STE \# 100 (1950) \\
\hline 16. & ASTM STP \# 199 (1957) \\
\hline 18. & ASTM STP 151 (1953) \\
\hline 19. & ASTM STP \# 199 (1957) \\
\hline 20. & Mechanical Pruperties Data Conter Sear \\
\hline
\end{tabular}

LNDEX TO WEIEUKL PARANEITHRS FOR
RUPIURE STFENGII: OF VARIOUS MATIMRIAIS
\(\frac{\text { Page Sumber }}{\text { Where }}\) where
MaterialWeibull Jarametersfor a given Materialcan be located
1. \(12 \mathrm{Cr}-2.75 \mathrm{Mo}-\mathrm{V}\) ..... 253
2. 12 Or Bteel ..... 253
3. \(12 \mathrm{Cr}-\mathrm{Cb}\) steel ..... 253
4. \(12 \mathrm{Cr}-2.5 \mathrm{~W}-\mathrm{V}\) ..... 253
5. \(12 \mathrm{Cr}-5 \mathrm{Co}-3 \mathrm{~W}-\mathrm{V}\) ..... 253
6. \(\quad 13 \mathrm{Cr}-\mathrm{W}-\mathrm{MO}-\mathrm{V}\) ..... 254
7. \(17-22-A-\) "g" Steel ..... 254
8~. . 12 - . 17 C 8teel ..... 254
9: . \(1.8=.2^{1}+C\) Steel ..... 254
10. ASTM A - 201-B Steel ..... 254
11. \(\quad 17-22\) A-S ..... 254
12. .5 Cr - . 5 Mo Steel ..... 254
13. .5 No Steel ..... 254
14. \(5.0 \mathrm{Cr}=.5 \mathrm{MO}=\mathrm{TI}\) ..... 255
15. \(18 \mathrm{Cr}-8 \mathrm{HL}+\mathrm{Mo}+\mathrm{Cb}\) ..... 255
16. \(18 \mathrm{cr}-8 \mathrm{~W}+\mathrm{Cb}\) ..... 255
17. 18 Cr - 8 Mi ..... 255
18. 4340 steel ..... 255
19. C - . 54 Ko Etcel. ..... 253
20. \(5 \% \mathrm{dr}=1.5 \% \mathrm{mo}\) - IL ..... 255
21. \(18 \%\) or -8 全 ..... 256

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\bigcirc\) & \[
\begin{aligned}
& 0 \times 5 \\
& \infty \\
& \infty
\end{aligned}
\] & & す。 옹 & & \[
\stackrel{9}{i}
\] & & & \\
\hline \％ &  & & \[
\begin{aligned}
& \text { Nin } \\
& \text { Nís }
\end{aligned}
\] &  & \[
\underset{\sim}{m}
\] & \(\cdots\) & \[
\stackrel{\infty}{0} \dot{\sim}
\] & nion \\
\hline \％ & \begin{tabular}{l}
Nั゚ \\
Nin
\end{tabular} & &  & \(0 \times \infty\) カッベ & \[
\stackrel{\underset{\sim}{n}}{\underset{\sim}{n}}
\] & \[
\begin{aligned}
& \text { m } \\
& 0 .
\end{aligned}
\] & \[
\dot{B}
\] & \[
\] \\
\hline Y & \begin{tabular}{l}
ヘnm \\

\end{tabular} & & ↔～か ベカ் &  & \[
\underset{\sim}{\infty}
\] & \[
\begin{aligned}
& 0 \\
& 9 \\
& 90
\end{aligned}
\] & & \\
\hline \[
\underset{\mathbf{Q}}{\boldsymbol{N}}
\] & \[
\begin{aligned}
& \infty \\
& \infty \\
& i \sim \\
& i
\end{aligned}
\] & & \[
\begin{aligned}
& n \\
& \text { nin } \\
& \text { in }
\end{aligned}
\] & & \[
\begin{aligned}
& n \\
& \dot{N}
\end{aligned}
\] & & & \\
\hline \[
\begin{aligned}
& \text { t} \\
& \text { B }
\end{aligned}
\] & \begin{tabular}{l}
n \\
N N \\
nッn \\
NiN
\end{tabular} & \[
\left.\begin{aligned}
& \theta \\
& + \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned} \right\rvert\,
\] & \begin{tabular}{l}
－\({ }_{6}^{6}\) N \\
n Nं
\end{tabular} & \begin{tabular}{l}
89 \\
－N～ \\
合留 \\
N लं \(\dot{\sim}\)
\end{tabular} & \[
\begin{aligned}
& 8 \\
& \text { i } \\
& \text { Ni }
\end{aligned}
\] & \[
\begin{aligned}
& \dot{N} \\
& \dot{N} \\
& \underset{\sim}{n}
\end{aligned}
\] &  & \[
\begin{gathered}
\text { Nin } \\
\text { No } \\
\text { Nin }
\end{gathered}
\] \\
\hline §ِ & ~igy & \[
\underset{\sim}{\infty}
\] & \[
\begin{aligned}
& \text { gn N } \\
& \text { in in }
\end{aligned}
\] &  & \[
8
\] & \[
\begin{aligned}
& \mathbf{~} \\
& \mathbf{i}
\end{aligned}
\] & & \\
\hline no & nin & & \[
\begin{gathered}
\circ \\
\dot{y y}
\end{gathered}
\] & & － & & & \\
\hline \[
6
\] & no n & & \[
0 y
\] & \[
0 \Leftrightarrow
\]
\[
\dot{9}
\] & \[
0
\] & 0 & \[
\underset{\sim}{0} \dot{0}
\] & 90 \\
\hline ? & 0 OO ゅが & &  & 080 Nin & \[
0
\] & \(\stackrel{0}{0}\) & \[
\begin{aligned}
& n \\
& n y y
\end{aligned}
\] & \[
\underset{\sim}{0}
\] \\
\hline \[
{ }_{C}
\] & \(00 m\) nivi & & － 0 n N～～ & \[
89
\] & \[
\dot{\theta}
\] & ¢ & & \\
\hline &  & &  &  & V & \(\cdots\) & － 1 & 1 \\
\hline & 888 & & \[
838
\] & \[
89
\] &  & 8 &  &  \\
\hline
\end{tabular}


\section*{REFERUNCES FOR RUPHURH: STRENGTH DATA}

\section*{Matertala:}

\section*{Source:}
\begin{tabular}{ll}
1 through 6 & ASTM STP 228 (1958) \\
7 & ASTM STP 199 (1957) \\
8 through 10 & ASTM STP 180 (1955) \\
11 through 14 & ASTM STP 151 (1953) \\
1.5 through 17 & ASTM STP 124 (1952) \\
18 & ASTM STP 199 (1957) \\
19 through 21 & ASTM STP 100 (1950)
\end{tabular}

1
```

A-2,1 STRESS DISTRIBUTTON - NORMAL STRENGTH DISTRIBUTION - WEIBULTA

```

A-2.1.1 STRESS STANDARD DEVIATION \(=0\)

TABLES OF INTERTHAMCE \([F(X)]\)

Stress Distribution: Normal
\[
\begin{aligned}
\mu & =s_{e q u} \\
\sigma & =0
\end{aligned}
\]

Stranteh Distribution
\(X_{0}\) Depend on the material and the
b aperating conditions
0


Figure A-2.1 Interference with Standard Deviation of Stress Equal to Zero
\(f(x)=\frac{b}{\theta-x_{0}}\left(\frac{x-x_{0}}{\theta-x_{0}}\right)^{b-1-\left(\frac{x-x_{0}}{\theta-x_{0}}\right)^{b}}\)
\(F(x)=\int_{x_{0}}^{\infty} f(x) d x\)
Let \(y=\left(\frac{x-x_{0}}{\theta-x_{0}}\right)^{b}, \quad \therefore \quad d y=\frac{b}{\theta-x_{0}}\left(\frac{x-x_{0}}{b-x_{0}}\right)^{b-1} d x\)

where \(x-\left(\frac{x-x_{0}}{\theta-x_{0}}\right)^{b}\)
\(F(X)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline I & .600 & . 001 & . 002 & . 003 & . 004 & . 005 & . 006 & . 007 & .003 & Ce \\
\hline 0.60 & 0 & . 001 & . 002 & . 003 & . 00399 & . 00498 & . 00598 & . 00697 & . 00796 & . 6936 \\
\hline 0.01 & . 00995 & . 0109 & . 0119 & . 0129 & . 0139 & . 0149 & . 0158 & . 0168 & . 0178 & . 0188 \\
\hline 0.02 & . 0198 & . 0208 & . 0217 & . 0227 & . 0237 & . 0246 & . 0256 & . 0266 & . 0276 & .0286 \\
\hline 0.03 & . 0295 & . 0304 & . 0314 & . 0324 & . 0334 & . 0344 & . 0353 & . 0363 & . 0372 & . 0382 \\
\hline 0.04 & . 0392 & . 0401 & . 0411 & . 0420 & . 0430 & . 0440 & . 0449 & . 0458 & . 0468 & . 0377 \\
\hline 0.05 & . 0487 & . 0496 & . 0506 & . 0515 & . 0525 & . 0535 & . 0544 & . 0553 & . 0562 & 2 \\
\hline 0.06 & . 0581 & . 0591 & . 0600 & . 0610 & . 0619 & . 0628 & . 0637 & . 0646 & . 0656 & .0665 \\
\hline 0.07 & . 0675 & . 0685 & . 0694 & . 0703 & . 0712 & . 0721 & . 0730 & . 0740 & . 074 & .0758 \\
\hline 0.08 & . 0768 & . 0776 & . 0786 & . 0795 & . 0805. & . 0814 & . 0823 & . 0832 & . 0841 & . 035 \\
\hline 0.09 & . 0860 & . 0869 & . 0878 & . 0887 & . 0896 & . 0905 & . 0914 & . 0923 & . 0932 & \\
\hline X & 0 & 0.01 & 0.02 & 0.03 & 0.04 & 0.05 & 0.06 & 0.07 & 0.08 & 0.04 \\
\hline 0.1 & . 0952 & . 1042 & . 1131 & . 1219 & . 1306 & . 1393 & . 1479 & . 1563 & . 1647 & .1730 \\
\hline 0.2 & . 1813 & . 1894 & . 1975 & . 2055 & . 2134 & .2212 & . 2289 & . 2366 & . 2442 & . 251.7 \\
\hline 0.3 & . 2592 & . 2666 & . 2739 & . 2811 & . 2882 & . 2953 & . 3023 & . 3093 & .3161 & . 322 \\
\hline 0.4 & . 3297 & . 3363 & . 3430 & . 3494 & . 3560 & . 3624 & . 3687 & . 3750 & . 3812 & . \(388 / 4\) \\
\hline 0.5 & . 3935 & . 3995 & . 4055 & . 4114 & .4173 & . 4231 & . 4288 & . 4345 & . 4401 & .4657 \\
\hline 0.6 & . 4512 & . 4566 & . 4621 & . 4674 & . 4727 & . 4780 & . 4831 & . 4883 & . 4934 & .4984 \\
\hline 0.7 & . 5038 & . 5084 & . 5132 & . 5181 & . 5229 & . 5276 & . 5323 & . 5370 & . 5416 & . 5462 \\
\hline 0.8 & . 5507 & . 5551 & . 5596 & . 5640 & . 5683 & . 5726 & . 5768 & . 5810 & . 5852 & . 5893 \\
\hline 0.9 & . 5934 & . 5975 & . 6015 & . 6054 & . 6094 & .6133 & .6171 & . 6209 & . 6247 & . 6284 \\
\hline
\end{tabular}


A-2:1.2 Stress standard deviation \(\neq 0\)
rABLES OF INTERFERENCE

\[
\text { " } \begin{array}{lllllllllll}
10 & \text { in } & 0 & 0 & n & m & N & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\]
\[
\begin{aligned}
& .0033^{-} \\
& .0222 \\
& .0014 \\
& .0069 \\
& .0006 \\
& .0003 \\
& .0002 \\
& .0 .001 \\
& .0001 \\
& .0096
\end{aligned}
\]
-






\footnotetext{
STKESS DISTRIBUIIOM- Nonai-
STRENGR DISTRIBUTIOA - Weibull
}




STRESS DISTABEELOM - Mormal


STRESS DISTRIBUTIUN - Nurmal
STRENGTH DISTRIBUTION - Heibull
1

STRESS DISTRIBUTION - Normal STRETGGTH DISTRIBUTION - Weibuli

STRESS DISTRIBUITION - Normał
STRENGIE DISTRIBUTION - Weibuli
\[
\begin{aligned}
& 1
\end{aligned}
\]









\(B(x)=2.09\)
\(C=\frac{0-x_{0}}{0}, A=\frac{x_{0}^{-1}}{-\infty}\)
2530




\(\qquad\) \(\square\)



\footnotetext{
82RESS DISIRLDUTION - Normal
8TRENOTH DISTRIBUTION - Weibull
}





 STRESS DISTRIBUTION - Normal
STRENGTH DISTRIBUTION - Weibull




\footnotetext{
STRESS DISTRIBUTION - Normal
STRENGTH DISTRIBUTION - Weibull
}


\section*{A-2.2 STRESS DISTRIBUTIOX - WEIEULL STRENGTH DISTRIDUTION - WEIBULL}



(XJ-YJI/TREIAL \(=-\) ©CO
THETAZ/THETAL \(=\)-OCO
 -3370 \(n\)
\(\underset{y}{d}\)
0 N
N
N
C
 \begin{tabular}{l}
0 \\
0 \\
\(\stackrel{0}{0}\) \\
\hline
\end{tabular} . 2077
 . 2805 .3003 .3130

*

.1703
.1734 \(\stackrel{H}{\text { N }}\)
\begin{tabular}{l}
8 \\
0 \\
0 \\
N \\
\hline 1
\end{tabular}
.2813
.2974
\(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & \cdots \\ 0 & \cdots\end{array}\)
品
\(\cdots\)
\(\cdots\)
.1525
.1549
.1579
\(\stackrel{4}{4}\)
\(-2453\)
\(\stackrel{\text { N }}{\stackrel{\sim}{N}} \underset{\sim}{\sim}\)
.2857

. 1 E63
.1679
.1703
\(\underset{ \pm}{e}\)
.1899
.2334

\begin{tabular}{l}
\(\infty\) \\
\multirow{2}{*}{} \\
\hdashline
\end{tabular}
- 3052
in
\(\cdots\)
\(\cdots\)
\(\stackrel{0}{0}\)
\(\cdots\)
.8
0
1.0
0
\(N\)
0
\(i n\)
4.0
5.0
0
0
7.0
8.0
9.0
10.0




IXO-YJI/THETAL \(=-\) EOO
THETAZ/THETAI \(=.571\)



IXO-YOU/TMEIAI \(=0.45\)
THETAL/THETAI \(=0.444\)
\(\begin{aligned} \text { THETA } 1 & =\theta_{x}-X_{0} \\ \text { TEETA } 2 & =\theta_{y}-y_{c}\end{aligned}\)



\[
\stackrel{ \pm}{\underset{\sim}{ \pm}}
\]
\[
.0964
\]
\[
\begin{gathered}
N \\
0 \\
\mathbf{N} \\
\hline
\end{gathered}
\]
\[
\begin{aligned}
& \ddagger \\
& 0 \\
& 0 \\
& ?
\end{aligned}
\]
\[
.0352
\]
\[
\begin{aligned}
& \boldsymbol{7} \\
& \text { 呙 } \\
& 0 \\
& ?
\end{aligned}
\]
\[
\begin{aligned}
& \stackrel{\rightharpoonup}{N} \\
& \text { N } \\
& \text { N }
\end{aligned}
\]
\[

\]
\[
\stackrel{\Phi}{\stackrel{8}{N}}
\]
\[
\begin{aligned}
& .1361 \\
& .1326
\end{aligned}
\]
\[
\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{\infty}
\]
\[
\begin{array}{ll}
\infty & 0^{i} \\
0 & 8 \\
0 & \vdots \\
\hdashline & 0
\end{array}
\]
－315d
\(-\frac{2844}{8}\)
\[
.1295
\]
\[
.13 \mathrm{Cs}
\]
\[
.1326
\]
\[
.1349
\]
\[
1379
\]
\[
.084 \mathrm{~d}
\]
\[
.3851
\]
.c8484.
\[
9981^{\circ}
\]
\[
\begin{aligned}
& \text { in } \\
& \infty \\
& \text { - }
\end{aligned}
\]

盆品 \(1+\)
\(\therefore\)

\[
\begin{aligned}
& a \\
& \underset{\sim}{2} \\
& \vdots
\end{aligned}
\]
－ 3649
.2961
－2964
81
8
8
8
＋ N
 \(\because\) － \(\begin{array}{r}.2061 \\ .2009 \\ \hline\end{array}\) .1974 \begin{tabular}{l}
\(n\) \\
\multirow{1}{n}{} \\
\multirow{2}{*}{}
\end{tabular}
\(\square\)
\(\square\)
.2.34
.5
\[
1953
\]
\(\square\) \({ }_{0}\) － \(0 \quad 0\) 2.0
3.0
4.0
5.0

\(000^{\circ}=[\mathrm{TH} 3 \mathrm{H}!/ 10 \mathrm{~A}\) - OX\(]\) THETAR/IHETAI...\(\quad .480\)








am - iverinesai \(=-250\)
 .5607 .4757
.4535 -43cJ \(.42 \angle 3\)
.4114
40. . \(3 \neq 74\) 5
\(\vdots\)
\(\vdots\)
\(\Rightarrow\) M M
.6321
.4151
-4ここ1
.3522
-305:
- 3 74
\(.3 / 02\)
\(\stackrel{0}{n}\)
\(\stackrel{\infty}{\infty}\)
\(-3215\)
\begin{tabular}{ll}
\(N\) & 0 \\
\(N\) & 0 \\
\(N\) \\
\(N\) & \(\sim\) \\
\hdashline & 0
\end{tabular}
\(\stackrel{\rightharpoonup}{C}\)
\(\begin{array}{ll}n & n \\ \vdots & j \\ r a & n \\ 0 & n\end{array}\)
\begin{tabular}{ll}
\(n\) \\
\multirow{2}{*}{} \\
\multirow{3}{c}{} \\
0
\end{tabular}
\(n\)
\(N\)
\(N\)
\(\sim\)
\begin{tabular}{c}
\(\infty\) \\
\multirow{3}{*}{\(N\)} \\
\multirow{3}{*}{\(N\)}
\end{tabular}


.3853

\(N\)
N
§
\(n\)
4
\(n\)
\(n\)
\(n\)
4
\(!\)
\begin{tabular}{l}
0 \\
0 \\
0 \\
1 \\
1 \\
\hdashline
\end{tabular}
3
3
4
4
\begin{tabular}{c}
0 \\
+ \\
\hline
\end{tabular}
.3539

0
0
0
0
1

\[
\begin{aligned}
& \because \\
& \because
\end{aligned}
\]



\(\begin{aligned} \text { THETA } 1 & =y_{x}-X_{0} \\ \text { THETA 2 } & =y^{\prime}-Y_{0}\end{aligned}\)
\(\begin{aligned}(X D-\text { YO /TTHETAL } & =.250 \\ \text { JHETAZ/THETAI } & =.271\end{aligned}\)
\(\begin{aligned} \text { theta } 1 & =\theta_{x}-\mathbf{X}_{0} \\ \text { Theta } 2 & =\theta_{y}-\mathbf{Y}_{0}\end{aligned}\)
\[
\begin{aligned}
& \text { STRESS DISTRIBUTION } \\
& \text { STRENGTA DISTRTBUTION }
\end{aligned} \text { Wetbull }
\]
\[
\begin{aligned}
& \text { IXO YO)/IMETAI }=-25 C \\
& \text { THETAZJIHETAL }=.5 C 0
\end{aligned}
\]
\[
\begin{aligned}
\operatorname{THETA} 1 & =\theta_{\mathrm{x}} \\
\text { THETA } 2 & =0
\end{aligned}
\]
\[
\begin{aligned}
& -\infty \\
& *
\end{aligned}
\]

\(\begin{aligned} \text { THETA } 1 & =\theta_{\mathbf{x}}-X_{0} \\ \text { THETA } 2 & =\theta_{0}-\mathbf{I}_{0}\end{aligned}\).
.0000 ．0000
\begin{tabular}{l}
8 \\
\hline 8 \\
\hline
\end{tabular}
N
\(\stackrel{7}{8}\)
\(n\)
\(\infty\)
\(\stackrel{\infty}{\circ}\)
\(\stackrel{\sim}{\sim}\)
\(\stackrel{n}{\stackrel{a}{0}}\)
\(\begin{array}{ll}N & 0 \\ 0 & m \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\)

.0000
茕
\(\begin{array}{ll}\text { H } & - \\ \vdots & 0 \\ 0 & 0\end{array}\)
\begin{tabular}{ll}
0 & \multirow{2}{c}{} \\
\(\vdots\) & 0
\end{tabular}
\(\begin{array}{ll}\vec{M} & 0 \\ \\ & 0 \\ 0\end{array}\)
0
\(\stackrel{0}{0}\)
0
8
\begin{tabular}{l}
8 \\
8 \\
\hline 8 \\
\hline
\end{tabular}

\(\stackrel{\circ}{8}\)
\(\stackrel{N}{0}\)
\(\stackrel{0}{0}\)
0
0
0
3
0
0
0
0
0
0
\begin{tabular}{l}
0 \\
\hline
\end{tabular}
\(\stackrel{\square}{8}\)
\(\stackrel{\text { ® }}{\circ}\)
N
Э
\(\stackrel{\sigma}{\stackrel{9}{6}}\)
\begin{tabular}{ll}
\(n\) & \(1 n\) \\
\multirow{2}{n}{} & + \\
0 & 0 \\
0 & \(?\)
\end{tabular}
． 0001
\begin{tabular}{l}
0 \\
0 \\
0 \\
\hline
\end{tabular}
옹
\begin{tabular}{l}
0 \\
8 \\
3 \\
\hline
\end{tabular}
喜
\(\stackrel{N}{0}\)
.2421


(xu-rof/thetal \(=.250\)
ThetazdThetal
\[
{ }^{*} \quad 31
\]
.0003
.0003
.0004
.0004
.0005
.0006
.0033
.0167
.0460
.0811

\(\begin{aligned} \text { IHETA } 2 & =0-X_{0} \\ \text { THETA } 2 & =1-X_{0}\end{aligned}\)
 STRESS DISTRIBUTION - Weibull STRENGEL DISTRIBUTION - Weibull






THETA \(1=\theta_{0}-X_{0}\)
THETA \(2=\theta_{y}-\mathbf{Y}_{\mathbf{0}}\)


\[
\begin{gathered}
* \\
{ }^{2}
\end{gathered}
\]



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { IXO - } \\
& \text { THETAZ }
\end{aligned}
\] & \begin{tabular}{l}
\[
\begin{aligned}
& \text { YOI/THETAL }= \\
& \text { TTHETAI }=
\end{aligned}
\] \\
\(d 1\)
\end{tabular} & \[
\begin{aligned}
& .500 \\
& .502
\end{aligned}
\] & & & & &  & \begin{tabular}{l}
theta \\
THETA
\end{tabular} & \[
\begin{aligned}
& =\theta \\
& =\theta \\
& =\underline{y}
\end{aligned}
\] & \\
\hline E1/82 & \[
\text { * } 1 . \mathrm{C}
\] & \[
\underbrace{1.5}_{* * * * * * *}
\] & \[
\text { 2. } C
\] & \[
2.5
\] & \[
3.0
\] & \[
\begin{gathered}
3.5 \\
\text {. } \\
\text { ******** }
\end{gathered}
\] & \[
\begin{aligned}
& 4.0 \\
& * * * * * *
\end{aligned}
\] & \[
\begin{gathered}
4.5 \\
0 * * * *
\end{gathered}
\] & \[
5.0
\] & \[
\begin{gathered}
5.5 \\
* * * * *: 2
\end{gathered}
\] \\
\hline . 1 & * .0112 & & & & & & & & & \\
\hline . 2 & * . 0229 & -0C33 & .00c5 & & & & & & & \\
\hline . 3 & * . 0349 & . 0073 & . 0013 & _.0092 & .0coo & & & . & - - & \\
\hline . 4 & * . 0413 & _.0110 & . 0024 & . 30 こ5 & -0r01 & . 0000 & . 0000 & & & \\
\hline . 5 & * .069 & . 0169 & .0040 & . 0029 & .0002 & .coce & . 0000 & . 2000 & .0000 & \\
\hline . 6 & * - - 0727 & . 02229 & . 2961 & . 0.0014 & -0003 & . 0001 - & . 0000 & . 2000 & . 0000 C & .0000 \\
\hline -7 & * . 0 d55 & . 0298 & .0c87 & . 0022 & 0605 & .0001 & .ccoo & . 3000 & - cocos & . 0000 \\
\hline -8 & * .0982 & . 0374 & . 0119 & . 0033 & . 0009 & . 0002 & -0001 & - 3000 & .000c & .000c \\
\hline -9 & * - 1106 & . 0456 & -0157 & .004? & \(\bigcirc 9013\) & -0003 & -0001 & . 3000 & -CDOC & - 0 con \\
\hline 1.0 & * . 1226 & . 0544 & .0261 & . 0065 & . 0019 & .00c5 & . 00.31 & . 3500 & .0300 & .0000 \\
\hline 2.0 & * . & & . 0891 & . 0452 & . 0243 & . 0.08 & . 00.44 & . 0017 & . 0096 & . 0002 \\
\hline 3.0 & * & & & & . 0754 & . 0478 & . 2883 & .2155 & . 0079 & . 3037 \\
\hline 4.0 & * & & & & & & .C634 & . 7475 & . \(0315 \ldots\) & . 2199 \\
\hline 5.0 & * & & & & & & & & \(-643\) & . \(\times 475\) \\
\hline
\end{tabular}
THETA \(1=\theta^{\theta}-X_{0}\)
THETA \(2=\theta_{y}-Y_{0}\)


STRESS DISTRTBUITG - Weibull
SIREGR DISTRIEUITOM - Weibull
\(: \mid\)
THETA \(1=0_{x}-x_{0}\)
TEETA \(2=0-y_{0}\)
- • -
CXO YJHTHETAL \(=-5:-5\)
THETAZ/THETAI \(=-3 C 4\)
\(*\)
\(* 822\)
\(\vdots\)
P
.5000 .0000
.0000 .0000
0
0
0
0
\begin{tabular}{l}
0 \\
0 \\
0 \\
\hline
\end{tabular}
3
8
8
0 \begin{tabular}{l}
8 \\
0 \\
0 \\
\hline
\end{tabular} \begin{tabular}{l}
-1 \\
8 \\
\hline
\end{tabular} \(\stackrel{2}{2}\) 0
0
0
\(?\)
\(?\) N
品
0
0
\(n\)
\(\vdots\)
0
0
.0000
\begin{tabular}{l} 
g \\
\multirow{2}{0}{}
\end{tabular}
.0200
0
8
0
0 0
8
0
0
0
0
0
0
0
\(\begin{array}{ll}M \\ 0 \\ 0 \\ 0 & n \\ 0 & n \\ 0\end{array}\)
\begin{tabular}{ll}
\(N\) & \(n\) \\
\(\underset{y}{n}\) & \multirow{2}{c}{} \\
0 \\
0 & 0
\end{tabular}
\(\begin{array}{ll}n & n \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\)
\begin{tabular}{l}
\(n\) \\
\multirow{1}{n}{} \\
0 \\
0
\end{tabular}
.OCOS
9
0
8
\begin{tabular}{l}
0 \\
0 \\
0 \\
\hline
\end{tabular}
 8
8
8
- \(\mathbf{v e n o}\)
- aces
0
0
0
0
0
4
\(\stackrel{4}{4}\)
0
\(-0 C 00\)
.0000
\(\stackrel{\underset{8}{8}}{\stackrel{8}{6}}\) .0000 \begin{tabular}{l}
0 \\
8 \\
0 \\
\hline
\end{tabular} .0090
.0004

-2
0
0 \begin{tabular}{l}
\(N\) \\
+ \\
\(\mathbf{S}\) \\
\hline
\end{tabular}
\begin{tabular}{ll}
0 & \(n\) \\
0 & \multirow{2}{*}{} \\
-1 & 0 \\
0 & 0
\end{tabular}
THETA \(1=6-X_{0}\)
THETA \(2=y-Y_{0}\)
-
-30こ?
.200 c
- 0.000
.3000
.0000
.0000 - ccol
.3012
.0078
\begin{tabular}{l}
\(N\) \\
\(N\) \\
\(N\) \\
\multirow{1}{n}{}
\end{tabular}


SIRESS DISTRTBUTION - Weibull
SIRENGII DISTRIBUIICR - Weibull






THETA \(1=0_{0}-x_{0}\)
THETA \(2=\mathbf{t}_{0}\)
\(\square\)
(
\(\begin{aligned} \text { IXO－YIMTHETAL } & =.750 \\ \text { THESAZIHLIAI } & =.007\end{aligned}\)

 －ここう： －CEのン

.3097
.2001
\begin{tabular}{lll}
\(\square\) & \(\pm\) & \(N\) \\
\(\vdots\) & \(N\) & \(N\) \\
0 & 0 & \multirow{2}{*}{}
\end{tabular}
\(\infty\)
0
0
0
8

THETA \(1=\theta_{0}-X_{0}\)
TBETA \(2=\theta_{0}-y_{0}\)
 *





\(\begin{aligned} \text { IXO YODJTHETA1 } & =.750 \\ & =.444\end{aligned}\)
-- ———






IXC-YJJ/THETAI \(=1.0 \mathrm{CO}\)
THETAZ/THEIAI \(=1.0 \mathrm{OE}\)
B1
**
 siness Disiaxaurion - Neibnil

* \(\quad 61\)
\(61 / 82^{*}{ }^{*}\)


\(N\)
\(\infty\)
\(\infty\)
0
0
THETA \(1=\theta_{x}-X_{0}\)
THETA \(2=\theta_{y}-Z_{0}\)


STEESS DISTRTBETIOA - Wefbull
STRENGR DISTREATIOG - Hexbull

Thetaçdhetal
\(x-x_{\theta}=\) T HIGHL

-
 Weibul1
Weibull tingram - noijngruisid hiownals

\[
\begin{aligned}
& \text { IXC -YO)/TMETAI }=1.05 C \\
& \text { THETAZ/THETAI }=-5 E C
\end{aligned}
\]
\[
\begin{aligned}
& \text { THETA } 1=0 \quad-X_{0} \\
& \text { THETA } 2=y_{0}-\mathbf{T}_{0}
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 31/82 & * & \[
6.0
\] & \[
\begin{gathered}
6.5 \\
\text { t******* }
\end{gathered}
\] & \[
\begin{aligned}
& 7.0 \\
& * * * * * *
\end{aligned}
\] & \[
\begin{gathered}
7.5 \\
\text { * }
\end{gathered}
\] & \[
\begin{gathered}
8.0 \\
4 * \neq * *
\end{gathered}
\] & \[
\begin{gathered}
8.5 \\
* * * * * *
\end{gathered}
\] & \[
\begin{aligned}
& 9.0 \\
& * * * * * *
\end{aligned}
\] & \[
\begin{aligned}
& 9.5 \\
& k * * *=1
\end{aligned}
\] & \[
1+00
\] \\
\hline -6 & * & .0000 & & & & & & & & \\
\hline .7 & * & - 3 200 & . occc & . 0cco & & & & . & & \\
\hline . 8 & * & . 0000 & . 0000 & .00C0 & . 00000 & . 0000 & & & & \\
\hline . 9 & * & . 0000 & . 0000 & - DOco & . 0000 & .0000 & .0000 & . 0000 C & & \\
\hline 1.0 & * & . 0003 & . 0000 & - ceco & .0000 & .0000 & . 0000 & -cayo & .0000 & .19000 \\
\hline 2.0 & * & . 0000 & -c000.. & .0000 & . 0000 & .0003 & .0000 & . 0000 & .9000 & .2000 \\
\hline 3.0 & * & -0600 & - 0600 & .0C00 & . 0000. & . 0000 & .0000 & -0000 & .0000 & .0?00 \\
\hline 4.0 & * & .0000 & - C003 & . 0001 & .0000 & . 0000 & . 0000 & .00n0 & . 9005 & . 0000 \\
\hline 5.0 & * & .0075 & . 0038 & .0017 & .0007 & . 0.03 & -60n1 & . 3000 & - 2000 & .0200 \\
\hline 6.0 & * & . 0226 & . 0144 & .. 0387 & .0050 & . 0027 & .0013 & -2926 & . 2003 & .0001 \\
\hline 7.0 & * & & & . 0220 & . 0149 & .0c97 & . 0065 & .0936 & .0029 & .0011 \\
\hline 8.0 & * & - & & & & . 0214 & . 0152 & .0105 & . 2073 & 1. 0045 \\
\hline 9.0 & * & & & & & & & .0211 & .3155 & .0112 \\
\hline 10.0 & * & & & & & & & & & .0208 \\
\hline
\end{tabular}

tXO- YOI/THETAL \(=1 . C O C\)
THETAZ/THETAL \(=.444\)
品
**
1182
-
.6
.7
.8
.9
8.0
2.0
3.0
4.0
5.0
6.9
7.0
8.0
9.0
10.0

(xO-YOB/THETA1 \(=1\). EOC IRETA2/IHETAL \(=.4\) ËO * 81
81/B2


 STMESS DISTRIBUITIOK - Weibuli
STREMGH DISTMIBUIOM - Weibull

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
1 \times 0-
\]
THETA: & \[
\begin{aligned}
& \text { HETAI }= \\
&=1
\end{aligned}
\] & \[
\begin{array}{r}
1.500 \\
.364
\end{array}
\] & & \multicolumn{6}{|l|}{\[
\begin{aligned}
& \text { Theida } 1=\theta_{x}-X_{0} \\
& \text { Theta } 2=\theta_{y}-Y_{0} .
\end{aligned}
\]} \\
\hline \multicolumn{10}{|l|}{} \\
\hline \multicolumn{10}{|l|}{} \\
\hline .6 & . 0000 & - & & & & & & & \\
\hline . 7 & . 0000 & .coso & . 0000 & & & & & & \\
\hline . 8 & . 0000 & . 0000 & . 0000 & . 0000 & . 0000 & & & & \\
\hline .9 & . 00000 & . 0000 & . 0300 & . 0000 & . 0000 & .0000 & .0000 & & \\
\hline 1.0 & .0000 & . 0000 & . 3000 & . 0000 & . 0000 & . 0000 & . 0000 & . 9300 & .0030 \\
\hline 2.0 & .0000 & . 0003 & - 2000 & .0000 & . 0000 & . 0000 & . 0 000 & . 0000 & . 0000 \\
\hline 3.0 & .009) & -coco & -9c20 & .0000 & .0000 & .0000 & .n000 & .0000 & . 0000 \\
\hline 4.0 & .0000 & . 0000 & -2000 & .0000 & .0000 & . 0000 & .0000 & . 900 & . 0000 \\
\hline 5.0 & . 0209 & -0003 & . 9001 & .0000 & .0090 & .000c & .0000 & . 0000 & . 0300 \\
\hline 6.0 & .0057 & .0027 & .0011 & .0004 & . 0001 & . 00006 & -0,00 & . 0000 & -60no \\
\hline 7.0 & & & . 0054 & . 0028 & . 0013 & . 0006 & . 0002 & . 2001 & . 0000 \\
\hline 8.0 & & & & & . 0052 & . 0029 & . 0015 & .0308 & . 00003 \\
\hline 9.0 & & & & & & & .0050 & . 3030 & . 0017 \\
\hline tc. 0 & & & & & & & & & C.049 \\
\hline
\end{tabular}
stress distriburion - Weibull
steengti distainution - Weibull
B

THETA \(1=\theta_{\mathbf{x}}-X_{0}\)
THETA \(2=\theta_{\mathbf{y}}-Y_{0}\)


\section*{APPEMDIX 3 MATHEXATIGAL theorles of analytical foression}

\section*{A-3 MATHMA'IICAL 'IHEOKIES OF AVALYTICAL EXPFESSION}

\section*{A-3.1 INTRODUCTION}

\section*{A-3.1.1 The Concept of a Random Variable}

Interference Theory is concerned with the interplay of two variables \(X\) and \(Y\) called the strength and stress respectively. Each varim able is considered to arise as a consequence of performing some action and measuring the resulting value of the variahle. Unlike other such problems frequently considered in engineering, however, one cannot predict with certainty what value of the variable will result as a consequence of a given action. For example, one cannot predict with certainty the strength of a manufactured part prior to performing a strength test on it. One feels from experience that the strength wil. lie in sume finite interval or that in the past the average strength has been some known value. But that is quite different than knowing witk certainty what strength this part will have. Hence it is convenient to consider both strength and stress to be random variables--variables whose values are not known with certainty prior to performing some test.

As is usual in studying random variables one associates with the possible values that the random variable can take, a set of numbers called the probability that the random variable takes less than that value. The function, \(F(y)\) that assigns these numbers is called a distribution function and its derivative, if it exists for all \(y\),
\[
f(y) d y=d F(y)
\]
is called a probability density function. From data analysis of the type performed in Section 6 of this report one estimates the density function or distribution function from given data. Hence one starts the mathematical study of interference assuming that \(X\), the strength and \(Y\), the stress, are random variables with known distribution or density functions, \(F(x)\) and \(G(y)\) or \(f(x)\) and \(G(y)\) respectively.

\section*{A-3.1.2 Interference Theory and Random Variables}

Interference theory is concerned with the problem of determining the probability of failure of a part which is subjected to a stress \(Y\) and which has a strength \(X\). . It is assumed that both \(X\) and \(Y\) are random variables with known probability density functions. One says failure occurs whencver stress eyceeds strenfth. Hence, the probability that fallure occurs
is equivalent to the probebility that stross excecde wirength. In symbols:
\[
\operatorname{Pr}(\text { failure })=\operatorname{Pr}(Y \geq X) .
\]

\section*{A-3.2 Determination of Prokability of Failure}

It is clear from A-3.1.2 that to determine the probability of failure one needs to explore the probability that one random variable, called stress, exceeds another random variable, called strength. In practical application it is to be expected that the random variables are independent of each other in the sense that kiowledge of one does not allow one to predict the other any more closely than would the absence of such knowledge. In symbols one would say that the random variables \(X\) and \(Y\) are independent if'
\[
\operatorname{Pr}(X \mid Y)=\operatorname{Pr}(X) .
\]

Roughiy in words, this statement says that the probability of \(X\) is the same Whether one knows the exact value of \(Y(P(X \mid Y)\) or not, \((P(X))\).

There are four main ways to determine the probability of failure from the above considerations. In any given case we will use the form most easily calculated.
a. One can \(f 1 x\) attention on some particular value of one of the random variables, say \(Y\) and determine the probability that the other random variable does not exceed this fixed value, say \(y\). The probability that \(X\) does not exceed a fixed, given value of \(Y\) is written as
\[
\begin{equation*}
\operatorname{Pr}(X \leq y \mid Y=y) \tag{1}
\end{equation*}
\]

In terms of density and distribution functions this is equivalent to
\[
\int_{0}^{y} f(x) d x
\]
for those cases where \(X\) takes only noninegative values. If one now multiplies (1) by the probability that \(Y\).is in the neighborhood of \(y\),
one obtains a , loint probability function
\[
P(X \leq y ; y<\cdot Y \leq y+d y)=\int_{0}^{y} f(x) g(y) d x
\]

The probability that \(X \leq Y\) for any value that the random variable \(y\) can take on is given by
(2)
\[
P(X \leq y)=\int_{0}^{\infty} \int_{0}^{y} f(x) g(y) d x d y
\]
in the nase the random variable \(Y\) is distributed on the non-negative axis. Since failure occurs whenever \(X \leq Y\), formula (2) gives the probability of failure sought. It is expressed in terms of the double integral of the known density functions.
i. One can defirst a new dumy variable
j
\[
Z x X-Y
\]

Slace \(X\) and \(Y\) ure random variables their difference, \(Z\) is a random variable. Further, if \(X\) and \(Y\) are distributed on \((0, \infty), Z\) is distrivuted on \((-\infty, \infty)\). The probability of failure then is equivalent to the probability that \(z\) is non-positive, \(\operatorname{Pr}(Z \leq 0)\). The problem the \(n\) is to find \(h(z)\), the probability density function for \(Z\). From this the desired probability of failure ca: be obtained in a simple fashion.

To motivate the study of interert, let us solve for the following simple problem in detajl. Assume \(X\) has a probability density function \(f^{\prime}(x)=1 / 6\) and \(Y\) is identizally distributed. Both are distributed on the in+oger \(1,2, \ldots 6\). So formally
\[
\begin{aligned}
2(x) & =\frac{1}{6} \text { for } x=1,2,3,4,5,6 \\
& =0 \text { elstwhere }
\end{aligned}
\]
and \(Y\) is independent and identically distributed.


For \(X=1\) and \(Y=1, Z=0\). The probability that \(X=1\) and \(Y=1\) is \(1 / 36\) since \(X\) and \(Y\) are independent. The probability associated with each cell in the above table is \(1 / 36\). Now notice that if \(Z=0\) then \(X=1 ; Y=1\) or \(X=2 ; Y=2\) or \(X=3 ; Y\) it 3 etc. llence the probability lhat \(Z=0\) is given by \(1 / 36+1 / 36+1 / 36+1,36+1 / 36+1 / 36=1 / 6\). If now, we let \(h(z)=\) the probability that \(X-Y=Z\) for fixed \(Z\) then \(h(z)\) is desired probability density function. From the above discussion, it is clear that. \(f(x) f(y)\) is the probability that both \(X\) and \(Y\) take on desired values. In every case \(X=Z+Y\) for the. \(X, Y, Z\) of interest. Hence \(f(y+z) f(y)\) is the probability that \(X=Z+Y\) and \(Y=Y\) for any \(Y\) and fixed \(Z\). The above probability is the joint distribution of \(Y, Y+Z\), say \(g(y, z)\). It is well known that to get the marginal distribution \(h(z)\). from \(g(y, z)\) one merely "sums over all \(y\)." Une must remember that both \(X, Y\) are distributed on some interval ( \(1,2 \ldots 6\) in this example) and hence the sum must be over "Permissable values of \(Y\)." Low us see what these are in this example.
\(X\) is distributed on \(1,2 \ldots 6\) and \(f(z+y)\) is the probability distribution of \(X\). Henco, \(z+y\) cannot exceed 6 nor fall below 1 . Thus at the upper limit \(z+y=6\) and at the low limit \(z+y=1\). Or \(y=6-z\) and \(y=1-z\). Now let us look at the \(y, z\) plane. (See the Figure A-3.1).

Clearly \(g(y, z)\) can be summed only over the \(y\) values defined in the rectangle. But below the \(y\) axis this mesns \(y\) is summed from \(1-z\) to 6 and above the \(y\) axis, \(y\) is summed from 1 to 6.... Hence we must consider two parts oi the sum as follows.


Figure A - 3.1 Permianible y Valuea for \(Z=\mathbf{Z}-\mathbf{Y}\)
\[
\begin{array}{rlrl}
h(z) & = & \because f(\cdot+y) f(y) \\
& =\sum_{y=1-z}^{0} f(x+y) f(y) \quad \text { if } 0 \because z \geq-5 \\
& =\sum_{y=1}^{E-z} f(z+y) f(y) & \text { if } 0 \leq z \leq 5
\end{array}
\]
(Note that \(Z=0\) could be in either sum-but not both-arbitrarily it has been put into the second.)

Now recall \(f(x)=1 / 6\) for ald \(x=1,2 \ldots 6\) and similarly for \(y\). Hence
\[
\begin{aligned}
h(z) & =-\sum_{y=1-z}^{6} 1 / 36, & & 0>z \geq-5 \\
& =\sum_{y=1}^{6-z} \cdot 1 / 36, & & 0 \leq z \leq 5
\end{aligned}
\]

From this it follows that:
\[
\begin{array}{rlrl}
n(0)=1 / 36[1+1+1+1+1+1] & =6 / 36, \\
h(1)=1 / 36[1+1+1+1+1] & =5 / 36, \\
n(2)=1 / 36[1+1+1+1] & & =4 / 36, \\
h(3)=1 / 36[1+1+1] & & =3 / 36, \\
h(4)=1 / 36[1+1] & & =2 / 36, \\
h(5)=1 / 35[1] & & =1 / 36,
\end{array}
\]
anu
\[
\begin{array}{ll}
n(-1)=1 / 36[1+1+1+1+1] & =5 / 36 \\
n(-2)=1 / 36[1+1+1+1] & \\
h(-3)=1 / 36[1+1+1] & \\
h(-4)=1 / 36[1+1] \\
h(-5)=1 / 36[1] &
\end{array}
\]

A picture of \(h(z)\) is given in Figure A-3.2.

The probability of failure in this case is given by
\[
\sum_{z=-5}^{0} h(z)=1 / 2 .
\]

Having solved the foregoing simple problem one is able to generalize. Because of the special nature of the interference problem we assume: \(X\) has probability density function \(f(x) ; Y\) has probability density function \(g(y)\) and both are distributed on \((0, \infty)\). Note that we are allowing \(f^{\prime}\) and \(g\) to be different. Hence we have dropped the assumption of identically distributed random variailes although we continue to assume that they are independent.

As in the previous work it is clear that the only difficulty in finding \(h(z)\) is in finding the correct limits on the integrals. The probability arguments are trivial. Since we have assumed that both \(X\) and \(Y\) are distributed on ( \(0, \infty\) ) we can give a complete solution to this problem. For consider the \(y, z\) plot again. Since \(x=0\) is the minimum value that \(X\) can take we must have \(y+z=0\) or \(y=-z\) as the lower bound of the area to be considered. Since \(x=\infty\) is the maximum value that \(x\) can take there is no upper bound on area. Hence all values of permiasable \(y^{\prime s}\) are included in the area above. These are shown in Figure A-3.3,


Figure A-3.2 Probability density function \(h(z)\)


Figure A - 3.3 Area of integration for the difference of two non-negative random variables
ard one an parsur the probability aromente preatsely a. it i. . . . . . . t. :! :
\[
\begin{align*}
h(z) & =\int_{y}^{1} f(z+y) g(y) d y,  \tag{3}\\
& =\int_{0}^{\infty} f(z+y) \operatorname{E}(y) d y, \quad z \geq 0 \\
& =\int_{-2}^{\infty} f(z+y) E(y) d y, \quad z \leq 0
\end{align*}
\]

Clearly this solves the problem in geners? for A \(x, y\) extenstons to other domains for \(X, Y\) follow guite rodd.

It follows then that with the above iormulation one need nu. resort to Monte Carlo simulation. At worst one must evaluate, mumericaldy, 4. . . . ye integrals. In some cases the \(h(z)\) cen be obtained in elosed lorm. In the often considered aase in which \(X\) and \(r\) are norinally distributed, the probability density function of \(z\) is known tin be normal. Hence \(\operatorname{Pr}(z \leq 0)\) is obtainable from tables of the normal curve. We wil? show this to be true in \(\mathrm{A}-3.3 .1\).
c. MFrom the definition of a probability distribution function one sess from formula(2) that the probability of failure can be expressed as:
\[
\begin{equation*}
\operatorname{Pr}(X \leq Y)=\int_{0}^{\infty} F(y) g(y) d y \tag{4}
\end{equation*}
\]
where \(F(y)\) is the probability distribution function \(\Delta P X\) evalunted at the point \(y\). Formula (4) is convenient to use whell \(F(y)\) is easily determined as in the case of strength's that are Weibull distributed.

An equivelent representation obtainable from Formula (2) is
\[
\begin{equation*}
\operatorname{Pr}(X \leq Y)=\int_{0}^{\infty}[1-G(x)] f(x) d x \tag{b}
\end{equation*}
\]
where \(G(x)\) is the distribution function of the random variablo \(Y\). Afajn this is convenient to work with in some cases such as stresues that arc Weibull distributed.

Since
\[
\int_{0}^{\infty} f(x) d x=1
\]
formula (5) can also be written as
(6)
\[
\operatorname{pr}(X \leq Y)=1 \cdot \int_{0}^{\infty} G(x) f(x) d x
\]

Each of the formulas (2), (3) , (4) , (5), (6) are easier to work with in special cases than the others. In developing the examples and tables in this report we have chosen the particular integral that appeared easiest for the cases considered.
d. A fourth method that can be used to evaluate the probability of failure is to reconsider the equation
\[
Z=X+(-Y)
\]

From this it is clear that \(Z\) is the sum of tw, independent random variacles \(X\) and \(-Y\). It is well known in probability theory that the Laplace transform for the density function for the sum of two independent random variables is given by the product of the Laplace transforms of the density functions of the individual variables. Hence if \(H^{*}(s)\) is taken for the Laplace transform of \(h(z)\), then
\[
H^{*}(s)=F^{*}(s) G^{*}(-s)
\]

Where \(F^{*}(s)\) and \(G^{*}(-s)\) are respectively the Laplace transforms of \(f(x)\) and \(g(-x)\).

This method of finding the probability density function of \(z\) and thence the probability of failure has not been used in this work.

\section*{A-3. 3 Some Ecamples}

A-3.3.1 Normally Distributed Strength (X), Normally Distributed Stress (Y)
It is well known that if \(X\) and \(Y\) are normally distributed with mean values \(\mu_{X}\) and \(\mu_{Y}\) and variances \(\sigma_{X}^{2}\) and \(\sigma_{Y}^{2}\) then \(Z=X-Y\) is nomalily distributed with mean value \(\mu_{Z}=\mu_{X}-\mu_{Y}\) and variance \(\sigma_{Z}^{2}=\sigma_{X}^{2}+\sigma_{Y}^{2}\). Consequently, the probability of failure will be given by the area under the normal curve whose mean and variance are \(\mu_{Z}\) and \(\sigma_{Z}{ }^{2}\) respectively. The area is to found on the interval ( \(-\infty, 0\) ). We proceed to prove these remarks to exemplify the ideas developed in A-3.2 part b.

The normal density function is given by
\[
f(x)=\frac{1}{\sqrt{2 \pi}}-e^{\frac{(x-\mu)^{2}}{2 \sigma^{2}}},-\infty<x<\infty
\]

Since it is easiest to develop the results using method \(b\) in Section \(A-3 . a\), we consider the random variable, \(Z=X-Y\). It is easy to sae in this case that the probability density function of \(Z\), say \(h(z)\) is given by
\(h(z)=\frac{2}{\sqrt{2 \pi} \sigma_{x} \sigma_{y}} e^{-\frac{\left(y-\mu_{y}\right)^{2}}{2 \sigma_{y}^{2}}} e^{-\frac{\left(2+y-\mu_{x}\right)^{2}}{2 \sigma_{x}}} \quad d y\).

After laborious algebraic manipulation completing the square of the exponent and using the fact that
\[
\int_{-\infty}^{\infty} e^{-r^{2} / 2} d r=\sqrt{2 \pi},
\]
one is able to show
\[
h(z)=\frac{1}{\sqrt{2 \pi\left(\sigma_{x}{ }^{2}+\sigma_{y}{ }^{2}\right)}} e^{-\left(z-\left(\mu_{x}-\mu_{y}\right)\right)^{2 / 2}\left(\sigma_{x}{ }^{2}+\sigma_{y}^{2}\right)} \quad-\infty<z<\infty
\]

That 1s, \(Z\) is normally distributed with mean value \(\mu_{x}-\mu_{y}\) and variance \(\sigma_{x}{ }^{2}+\sigma_{y}{ }^{2}\). From this it follows inmediately that the probability of fallure, \(\operatorname{Pr}(Z \leq 0)\), is the integral of the nomal curve over \((-\infty, 0)\).
 Stress (Y)

Because of the simplicity of the integrals involved one can use this cxample to illustrate several of the methods discussed in Section A-3.2.

We take \(X\) to be distributed as
\(f(x)=8 e^{-a x}, \quad 0 \leq x<\infty\),
and \(Y\) to be distributed as
\[
g(y)=b e^{-b y}, \quad 0 \leq y<\infty
\]
1. Using formula (2) in A-3.2 ore fixes the value of one of the varlables, say \(Y=y\). For this fixed value one determines the probability that \(X \leq y\). This is given by
\[
\operatorname{Pr}(X \leq y \mid Y y)=\int_{0}^{y} a e^{-a x} d x=1-e^{-a y}
\]

If we multiply this by
\[
\operatorname{Pr}(y<Y \leq y+d y)=g(y) d y
\]
we obtain
\[
\begin{aligned}
\operatorname{Pr}(X \leq y \mid Y=y) \operatorname{Pr}(y<x \leq y+d y) & =\operatorname{Pr}(X \leq y ; y<Y \leq y+d y) \\
& =\left(1-e^{-a y}\right) b e^{-b y} d y ; 0 \leq y<\infty
\end{aligned}
\]

Then
\[
\operatorname{Pr}(X \leq Y)=\int_{0}^{\infty}\left(1-e^{-a y}\right) b e^{-b y} d y=1-\frac{b}{a+b},
\]
which is the required probability of failure.
2. Using formula (3) of A-3.2 one must first find the probability density function of \(Z=X-Y\). This is easily accomplished by using the formula
\[
h(z)=\int_{-z}^{\infty} f(z+y) g(y) d y, \quad z \leq 0
\]

Since the probability of failure is equivalent to \(\operatorname{Pr}(Z \leq 0)\), one has, using formula (3) of A-3.2 that
\[
\int_{-\infty}^{0} h(z) d z=\int_{-\infty}^{0} \int_{-z}^{\infty} a e^{-a(z+y)} b e^{-b y} d y d z=\frac{a}{a+b}=1-\frac{b}{a+b},
\]
which slearly agrees with the result found above.
3. Using formula (4) of A-3.2 one sees that
\[
F(y)=\int_{0}^{y} a e^{-a x} d x=1-e^{-a y}
\]

Hence from formula (4) of A-3.2 one obtains the probability of failure as
\[
\operatorname{Pr}(X \leq Y)=\int_{0}^{\infty}\left(1-e^{-a y}\right) \text { be } e^{-b y} d y
\]

This integral, of course. Is
\[
\operatorname{Pr}(X \leq Y)=1-\frac{b}{a+\sigma},
\]
which again agrees with the other results of this section.

A-3.3.3 Gamma Distributed Strength (X) and Gemma Distributed Streas (Y)

In some applications one finds typically that the probability density function for the random variable has a form as shown in figure A-3.4, and that the gamma density function, given by the formula


Fisure A - 3.4 Poseible Data Plot
\[
f(x)=\frac{\lambda^{n} x^{n-1} e^{-\lambda x}}{\Gamma(n)}, n>0, \quad 0 \leq x<\infty, \quad \lambda>0
\]
can be used to closely fit the data. \(\lambda\) in the formula is a scale parameter. \(n\) is a shape parameter. For \(n=1\) the ganma density function is the negative exponential discussed above. For large values of \(n\), the gamma density can be approximated by the normal density. Hence the gamma function supplies a family of densities that roughly fall between the two cases previously discussed.

It has been shown in formula (3) of Section A-3.2 that if one considers the problem of detemining the distribution of the difference variate \(Z\) (i.e., \(Z=X-Y\) ) for given distributions for \(X, Y\), then the density function for \(Z\) can be found from
(2)
\[
h(z) d z=\operatorname{Pr}[z \leq z<z+d z]=
\]
\[
\int_{-z}^{\infty} f(z+y) g(y) d y d z,-\infty<z \leq 0
\]

Hence one is interested in
\[
\int_{-\infty}^{0} h(z) d z=\int_{-\infty}^{0} \int_{-z}^{\infty} f(z+y) g(y) d y d z .
\]

Equivalentiy one is interested in
\[
\begin{align*}
& \quad \int_{0}^{\infty} h(z) d z=\int_{0}^{\infty} \int_{0}^{\infty} f(z+y) g(y) d y, \\
& \text { from which } P(z \leq 0)=1-\int_{0}^{\infty} h(z) d z \text {. Here we suppose } \\
& \text { (3) } \quad f(x)=\frac{\square}{\Gamma(n)} x^{n-1} e^{-x}, 0 \leq x<\infty,  \tag{5}\\
& \text { (4) } \quad g(y)=\frac{1}{\Gamma(n)} y^{n-1} e^{-y}, 0 \leq y<\infty,
\end{align*}
\]
(3)
(4)
tater we shall extend this dafinition of the gaman function to inolude the scale parameter \(\lambda\) in formula 1.)

Straight forward substitution of (3) and (4) into (2) leads to
\[
h(z)=\frac{1}{1(m) \Gamma(n)} \int_{0}^{\infty}(z+y)^{m-1} e^{-(z+y)} y^{n-1} e^{-y} d y, z \geq 0
\]

The substitution \(v=y / z\) lead to
\[
h(z) d z=\frac{d z}{\Gamma(m) \Gamma(n)} z^{m+n-1} e^{-z} \int_{0}^{\infty} v^{n-1}(1+v)^{m-l} e^{-2 z v} d v, z \geq 0
\]

The integral can be expressed in terms of the well known confluent hypergeometric function \(\Gamma(n) U(n, n+m, 2 z)\) and the function \(h(z) d z\) can be expressed in terms of the well known Whittaker function \(W_{k, m}(22)\). In the special case \(m=n\) the kinttaker function can be expressed in terms of the Bessel function \(K_{m}(X)\). Hence in general \(h(z) d z\) can be found in terms of well known functions.

The above results define the density function for \(2 \geq 0\). The probability that \(Z_{1} \geq 0\) is given by
\[
\int_{0}^{\infty} h(z) d z .
\]

From the abrive discussion this is equivalent to
\[
\int_{0}^{\infty} W_{k, m}(x) d x
\]
where \(W_{k, m}(x)\) is the Whittaker function. From the definition of \(h(z) d z\) this is also equivalent to the doubie integral
\[
\frac{1}{\Gamma(n) \Gamma(n)} \int_{0}^{\infty} z^{m+n-1} e^{-z} d z \int_{0}^{\infty} v^{n-1}(1+v)^{m-1} e^{-2 z v} d v .
\]
* The expression of \(h(z) d z\) in terms of \(K_{n}(x)\) wes first found by pearson, et al 13 . The general result of \(h(z) d z\) is terma of the Whittaker function was first found by Kullback \({ }^{14}\). Qur results follow directly from the definition of those funtions 15 .

The last formulation is easiest to work with.
Interchanging the order of integration and noting that the inteeral involving \(z\) is by definilion
\[
\frac{I^{\prime}(m+n)}{(1+2 v)^{m+n}}
\]
leads to the single integral
\[
\frac{\Gamma^{\prime}(m+n)}{\Gamma(m) \Gamma(n)} \int_{0}^{\infty} \frac{(l+v)^{m-1} v^{n-1}}{(l+2 v)^{m+n}} d v,
\]

If now one takes \(u=v /(1+2 v)\) it follows directiy that the integral can be written as:
\[
\begin{equation*}
\operatorname{Pr}(z \geq 0)=\frac{\Gamma(m+n)}{\Gamma(m) \Gamma(n)} \int_{0}^{1 / 2}(1-u)^{m-1} u^{n-1} d u \tag{5}
\end{equation*}
\]

This integral is the well known incomplete beta function \(B_{1 / 2}(m, n)\).
Hence, finally
\[
\operatorname{Pr}(Z \geq 0)=\frac{1}{B(m, n)} B_{1 / 2}(m, n)
\]
where \(B(m, n)=[\Gamma(m+n) / \Gamma(m) \Gamma(n)]^{-1}\). It follows directly that the probability of failure is given by \(1-\operatorname{Pr}(z \geq 0)\).

In all the previous results we have taken the gamm distribution in the form
\[
f(x)=\frac{1}{\Gamma(m)} x^{m+1} e^{-x}, \quad 0 \leq x<\infty
\]

A simple generalization occurs if one admits the acale parameters \(\lambda, \mu\), It is aisy to show that the resultant probability density function is given as
\[
\begin{array}{ll}
f(x)=\frac{\lambda^{m}}{\Gamma(n)} x^{m-1} e^{-\lambda x}, & \lambda>0,0 \leq x<\infty, m>0 \\
g(y)=\frac{\mu^{n}}{\Gamma(n)} y^{n-1} e^{-\mu y}, & \mu>0,0 \leq y<\infty, n>0
\end{array}
\]

If one introduces this into Equation (2) for \(h(z) d z\) it follows by previously used methode that
\[
h(z) d z=\frac{\lambda^{m_{\mu}} \mu^{n}}{\Gamma(m) I^{\prime}(n)} z^{m+n-1} e^{-\lambda z} \int_{0}^{\infty}(1+v)^{m-1} v^{n-1} e^{-(\lambda+\mu) z v} d v, 0 \leq z \leq \infty,
\]

Which leads to \(h(z) d z\) being expressed in terms of the Whittaker function with argument \((\lambda+\mu) z\) instead of \(2 z\) as previous.ly.

From the above one has, again using the previous methods,
\[
\int_{0}^{\infty} h(z) d=\frac{r^{n} \Gamma^{\prime}(m+n)}{\Gamma(m) \Gamma(n)} \int_{0}^{\infty} \frac{(1+v)^{m-1} v^{n-1}}{[I+(1+r) v]^{m+n}} d v,
\]
where \(r=\mu / \lambda\). The change of variable \(u=r v /(l+(l+r) v)\) allows one to express the above integral \({ }^{4}\)
\[
\frac{\Gamma(m+n)}{\Gamma(m) \Gamma(n)} \int_{0}^{\frac{r}{1+r}}(1-u)^{m-1} u^{n-1} d u
\]
which involves \(r\) only in the limit of integration. Hence \(P(z \geq 0)\) can be expressed as, the incomplete beta function whose truncation occurs at \(r /(1+r)\) instead of \(1 / 2\) as found in formula (5).
\[
\left.\operatorname{Pr}(z \geq 0)=\frac{\frac{y}{2+x}}{B(m, n)} \quad \ddots, n\right)
\]

\section*{Special Ceses}
1. It is cleer that for \(\lambda=1, r=1\) and \(r /(1+r)=1 / 2\). Hence mil of the preceeding work involving \(\lambda=\mu=1\) holds for \(\lambda=\mu \neq 1\).
2. If \(m=n=2\) then for \(\lambda=\mu-1 ; \operatorname{Pr}(Z \geq 0)-1 / 2\) and in generni for \(\lambda=\mu \neq 1\) it ia clear from the above that this holds. But this is expected since in the case \(m=n\), both \(X\) and \(Y\) are negetive exponentialily distributed and for
\(\lambda=\mu\) they are identically distributed no matter what \(\lambda\) or \(\mu\) are. Hence this case corresponds to taking tne aififerme between two identical negative exponential variates and as one would expect \(P(L \geq 0)=1 / 2\) for any cholee of \(\lambda\) and \(\mu\) for which \(\lambda=\mu\).
3. If in 1 , above, \(m=n=1\) but \(\lambda \neq \mu\) then it follows that
\[
\begin{aligned}
& P(z \geq 0)=\frac{\Gamma(2)}{\Gamma(1) \Gamma(1)} \int_{0}^{\frac{r}{1+r}} d u, \\
& P(z \geq 0)=\frac{r}{1+r} .
\end{aligned}
\]

The probability of failure \(=1=\frac{r}{1+r}\).
4. If \(m=1, n \neq 1\) then
\[
\operatorname{Pr}(z \geq 0)=\frac{\Gamma(m+n)}{\Gamma(m) \Gamma(n)} \int_{0}^{\frac{r}{1+r} u} n=1 d u=\frac{n \Gamma(n)}{\Gamma(n)}\left(\left.\frac{x}{1+r}\right|^{n} \frac{1}{n}\right.
\]

Thue the probability of failure is \(1-\left\langle\frac{r}{1+r}\right\rangle^{n}\).
In the special case \(r=1\), this gives \(1=(1 / 2)^{n}\).
5. If \(m \notin 1, n=1\) then.
\(\frac{\Gamma(m+n)}{\Gamma(m) \Gamma(n)} \int_{0}^{\frac{r}{1+r}(1-u)^{m-1}}\) du \(=1-\left(\frac{r}{1+r}\right)^{m}\).
Thus the probability of failure is \(\left(\frac{r}{1+m}\right)^{m}\) which gives \((1 / 2)^{m}\)
In the case \(r=1\).
The incomplete beta function has been tabulatied \({ }^{16,17}\). From these tables one can determine other probabilities of fallure from formula (6).

A-ミ.3.4 Weibull distributed Strength (X) and Weibull distributed Stress (Y)

The Weibull density function arises often in reliability studies (see Section 6 of this report). It is defined by the formula
\[
f(x)=\frac{b}{\theta-x_{0}}\left(\frac{x-x_{0}}{\theta-x_{0}}\right)^{b-1} e^{-\left(\frac{x-x_{0}}{\theta-x_{0}}\right)^{b}} d x, \quad x_{0} \leq x<\infty
\]
b is alled the slope, \(\theta\) is the characteristic value (characteristic strength for example) and \(x_{0}\) is a location parameter for the left erd point of the distribution. Graphs of the distribution are given in Section 6. Plotting the Weibull on \(\operatorname{ln-x}\) Vs. Inln \(1 /(1-F(x))\) paper one finds the distribution to plot as a straight line. (see Section 6)

For purposes of interference theory the Weibull density function is rather difficult to work with. The probability of failure can not be obtained in closed form as we have been able to do in the case of the negative exponentíal densities. Neither is the integral expressable, except in certain cases in terms of well-known and tabulated functions as is true of the gamma and normal densities. Hence we derive an integral expression for the probability of failure when \(X\) and \(Y\) are both Weibuil distributed random variables in this section. In the cases for which the resulting integral is well-known we give the results for future use. In section A-4.1 we will discuss numerical evaluations of the integral used to obtain the tabulation of the probability of failure given in the tables in - section A-2.2.

We take
\[
\begin{aligned}
& \text { take } \\
& f(x)=\frac{b_{x}}{\theta_{x}^{\prime}}\left(\frac{x-x_{0}}{\theta_{x}^{\prime}}\right)^{b_{x}-1} \text { e }-\left(\frac{x-x_{0}}{\theta_{x}^{\prime}}\right)^{b_{x}}, 0 \leq x<\infty . \\
& g(y)=\frac{b_{y}}{\theta_{y}^{\prime}}\left(\frac{y-y_{0}}{\theta_{y}^{\prime}}\right)^{b_{y}-1} e^{-\left(\frac{y-y_{0}}{\theta_{y}^{\prime}}\right)^{b_{y}}} 0 \leq y \leq a .
\end{aligned}
\]

In these cases we have taken \(\theta_{x}^{\prime}=\theta_{x}-x_{0}\) and \(\theta_{y}^{\prime}=\theta_{y}-y_{0}\). Then using the formulas (4), (5), (6) of section A-3.2 one obtains:
\[
\begin{aligned}
\operatorname{Pr}(Y \geq X) & =\operatorname{Pr}(Y \geq x \mid X=x) \operatorname{Pr}(X=x) . \\
\operatorname{Pr}(Y \geq x \mid X=x) & =\int_{x}^{\infty} \frac{b_{y}}{\theta_{y}}\left(\frac{y-y_{0}}{\theta_{y}}\right)^{b_{y}-1} e e^{-\left(\frac{y-y_{0}}{\theta_{y}}\right)^{b_{y}} d y}=e=\left(\frac{x-y_{0}}{\theta_{y}}\right)^{b_{y}}
\end{aligned}
\]

The joint probability \(\operatorname{Pr}(\mathbb{y} \geq \mathrm{x} \quad \mathrm{x} \leq \mathrm{X} \leq \mathrm{x}+\mathrm{d} \mathrm{x})\) is then given by
\[
\left.\frac{b_{x}}{\theta_{x}^{\prime}}\left(\frac{x-x_{0}}{\theta_{x}^{\prime}}\right)^{b_{x}-1} e e^{-\left(\frac{x-x_{c}}{\theta_{x}^{\prime}}\right.}\right)^{h_{y}^{-}}=\left(\frac{x-y_{o}}{\theta_{y}}\right)^{h_{y}} d x
\]

The integral of this expression is then the probability of failure desired. Let
\[
\begin{aligned}
u & =\left(\frac{x-x_{0}}{\theta_{x}^{\prime}}\right)^{b_{x}} ; d u-\frac{b_{x}}{\theta_{x}^{\prime}}\left(\frac{x-x_{0}}{\theta_{x}^{\prime}}\right)^{b_{x}-1} ; u^{1 / b_{x}} \theta_{x}^{\prime}+x_{0}=x \\
\operatorname{Pr}(f a i l u r e) & \left.=\int_{0}^{\infty} e^{-u} e^{-\left(\frac{\theta_{x}^{\prime}}{\theta_{y}^{\prime}}\right.} u^{1 / b_{x}}+\frac{x_{0}-y_{C}}{\theta_{y}^{\prime}}\right)^{b_{y}} \quad d u .
\end{aligned}
\]

In table A-2.2 we choose to work with the integral
(1)
\[
\left.\int_{0}^{\infty} e^{-u} e^{\left.-\left\lvert\, \frac{\theta_{x}^{1}}{\theta_{y}^{\prime}}\right.\right)^{b_{y}}} u^{1 / b_{x}}+\frac{x_{0}-y_{0}}{\theta_{x}^{!}}\right)^{b_{y}} d u,
\]
with identifiers for the table taken to be:
\[
\begin{aligned}
\frac{x_{0}-y_{0}}{\theta_{x}^{\prime}} & =\frac{x_{0}-y_{0}}{\text { Theta } 1} \\
\frac{\theta_{y}^{\prime}}{\theta_{x}^{\prime}} & =\frac{\text { Theta' } 2}{\text { Theta } 1} \\
\frac{b_{x}}{b_{y}} & =\frac{B 1}{B 2},
\end{aligned}
\]

Three special cases can be computed in terms of well-known functions using integrai (1). We derive these here for use in checking the tables developed in section A.2.2.

Case 1. \(b_{x}=b_{y}=1\).
We have already consldered this case for \(x_{0}=y_{0}=0, \theta_{x}^{\prime} / \theta_{y}^{\prime}=1\), since the Weibull's are then simply identical exponentials. If \(x_{0} \neq y_{0}\), one has from (1) that the probability of fallure is:
\[
\int_{0}^{\infty} e^{-u} e e^{-}-\left[\frac{\theta_{x}^{\prime}}{\theta_{y}^{\prime}} u+\left(\frac{x_{0}-y_{0}}{\theta_{y}^{\prime}}\right)\right] d u
\]

This integral can be expressed in closed form as


For \(x_{0}=y_{0}\) and \(\theta_{x}^{\prime}=\theta_{y}^{\prime}\) this expression gives the probability of failure as \(1 / 2\). For \(x_{0}=y_{0},\left(\theta_{x}\right) / \theta_{y} \neq 1\) one can check this with the resul.ts given in section \(A-3.3 .2\).

For comparison with table A-2.2 we use the equivalent form


Case 2. \(b_{x}=1, b_{y}=2\).
In this case the integral to be evaluated is:
\[
\int_{0}^{\infty} e^{-u} e-\left(\frac{\theta_{x}^{\prime}}{\theta_{y}^{\prime}} u+\frac{x_{0}^{-} y_{0}}{\theta_{y}^{\prime}}\right)^{2} d y
\]

To evaluate this integral we will expand the square on the exponent to give the integral in the form
\[
\int_{0}^{\infty} e^{-\left(a u^{2}+2 b u+c\right)} d u
\]
which can be expressed in terms of the exror function. If this is done one finds that
\[
a=\left(\frac{\theta_{X}^{\prime}}{\theta_{y}^{\prime}}\right)^{2} ; b=\frac{1}{2}+\left(\frac{\theta_{X}^{\prime}}{\theta_{y}^{\prime}}\right)^{2}\left(\frac{x_{0}-y_{0}}{\theta_{y}^{\prime}}\right) ; c=\left(\frac{x_{0}-y_{0}}{\theta_{y}^{\prime}}\right)^{2}\left(\frac{\theta_{x}^{\prime}}{\theta_{y}^{\prime}}\right)^{2} .
\]

It is well know (formula 7.4 .2 of 'Ref., 15) that the integral (2) can be written in terms of the error function as:
(4)
\[
1 / 2 \sqrt{\frac{\pi}{a}} \quad e^{\left(\frac{b^{2}-a c}{a}\right)} \operatorname{erfc}\left(\frac{b}{\sqrt{a}}\right)
\]

Computer subroutines for the error function exist and thus this expression can be evaluated easily for given values of the parameters \(a\), b, c. This will be discussed further in section A-4.1.5.

Case B. \(b_{x}=2, b_{y}=1\).
This case can be developed in a fashion similar to case 2. The integral to be evaluated is:
\[
\int_{0}^{\infty} e^{-u} e^{-\left(\frac{\theta_{x}^{\prime}}{\theta_{y}^{\prime}} \frac{1}{u_{2}}+\frac{x_{0}-y_{0}}{\theta_{y}^{\prime}}\right)} d u
\]

This can be expressed as:
\[
e-\left|\frac{\theta_{x}^{\prime}}{\theta_{y}^{\prime}}\right\rangle\left(\frac{x_{0}-y_{0}}{\theta_{x}^{\prime}}\right) \int_{u}^{\infty} 2 r e^{-r^{2}-\frac{\theta_{x}^{\prime}}{\theta_{x}^{\prime} r}} \frac{y}{y}
\]
where \(r^{2}=u\). From this one expressed this integral as
\[
\begin{equation*}
e^{-}\left(\frac{\theta_{1}^{\prime}}{\theta_{1}^{\prime}}\binom{x_{0}-y_{0}}{\theta_{x}^{\prime}} \quad\left[1-\frac{\theta_{x}^{\prime}}{\theta_{y}^{\prime}} \int_{0}^{\infty} e^{-\left(a t^{2}+2 b t+c\right)} d t\right]\right. \tag{5}
\end{equation*}
\]
where \(a=1, b=\theta_{x}^{\prime} / \theta_{y}^{\prime}\) and \(c=0\).
Thus the integral can be expressed in terms of the error function as above.

A-3.3.5 Weibull distributed strength ( \(X\) ) and Normally distributed stress ( \(Y\) ).

As shown in Section 8 one is often interested in the case in which the streagth has a welbull distribution and the stress is normally distributed. In this section we take
\[
\begin{aligned}
& f(x)=\frac{b}{\theta^{\prime}}\left(\frac{x-x_{0}}{\theta^{\prime}}\right)^{b-1} e^{-\left(\frac{x-x_{0}}{\theta^{\prime}}\right)^{b},} x_{c} \leq x<\infty . \\
& g(y)=\frac{1}{\sqrt{2 n}} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}} \quad, \quad-\infty \leq y<\infty .
\end{aligned}
\]

In this case the probability of fallure cannot be evaluated in closed form as was done for the negative exponential cases of section A-3.3.2 nor, except in special cases can the integral be reduced to wellknown functions as was done in section A-3.3.3. In this section we will develop the integral that is used in the tables given in section \(\mathrm{A}-2.1\).

Since \(f(x)\) is truncated at \(x_{0}\) one must consider 2 carens.
Case 1. If \(\mathrm{y}<\mathrm{x}_{0}\)
\[
\operatorname{Pr}(x \leq y \mid X=y)=0 .
\]

Case 2. If \(y \geq x_{0}\)
\[
\begin{aligned}
\operatorname{Pr}(X \leq y \mid Y=y) & =\int_{x_{0}}^{y} \frac{b}{\theta^{\prime}}\left(\frac{x-x_{0}}{\theta^{\prime}}\right)^{b-1} \quad e^{-\left(\frac{x-x_{0}}{\theta^{\prime}}\right)^{b}} d x, \\
& \left.=1-e^{-\left(\frac{x-x_{0}}{\theta^{\prime}}\right.}\right)^{b}, x_{0} \leq y<\infty .
\end{aligned}
\]

Hence using formula (4) section A-3.2 me has
\[
\begin{aligned}
\operatorname{Pr}(Y \geq X) & =\int_{x_{0}}^{\infty}\left(1-e^{\left.-\left(\frac{y-x_{0}}{a}\right)^{b}\right)} \frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}} d y,\right. \\
& =\frac{1}{\sqrt{2 \pi \sigma}} \int_{x_{0}}^{\infty} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}} d y-\frac{1}{\sqrt{2 r \sigma}} \int_{x_{0}}^{\infty} e^{-\left(\frac{y-x_{0}}{\theta^{1}}\right)^{b}-\frac{(y-\mu)^{2}}{2 \sigma^{2}}} d y .
\end{aligned}
\]

The first integral 18 the area under the upper taii of the normai distribution. This area is usually denoted by:
\[
1-\$\left(\frac{x_{0}-\mu}{\sigma}\right) \text {. }
\]

The second integral is troublesome because as it stands it contains five parameters which must be considered separately for computing formulas. The problem can be rediced in size by the change of variable
\[
u=\frac{y-x_{0}}{\theta^{\prime}}, \quad d u=\frac{d y}{\theta^{\prime}} .
\]

Then the second integral becomes
\[
\begin{equation*}
\left.\frac{1}{\sqrt{2 \pi}}\left(\frac{\theta}{\sigma}\right) \int_{0}^{\infty} e^{-u^{b}} e^{-\frac{1}{2}\left(\theta^{\prime} u\right.} u^{x_{0}-\mu} \frac{\theta^{\sigma}}{\sigma}\right)^{2} d u . \tag{1}
\end{equation*}
\]

In this form there are only three free parametars, ib, \(\frac{\theta^{\prime}}{\sigma}\), and \(\frac{x_{0}-\mu}{\sigma}\). Tables in section A-3.1 have been built using these three. parameters, Two spucial cases mexpe as checks for the numerical analysis used later.
if \(b=1\) or 2 the integral (1) san be evaluated in terms of the error function whose values have been tabulated.

Case 2: b=1
For \(b=1\) one completes the square on the exponerst inside the integral to obtain the integral in the form
\[
\begin{equation*}
\int_{0}^{\infty} e^{-\left(a t^{2}+2 b t+c\right)} d t \tag{2}
\end{equation*}
\]
whose value in terms of the error function is ell known (see Ref. 15. Pormula 7.4.2): Here
\[
a=\frac{1}{2}\left(\frac{\dot{\theta}^{\prime}}{\sigma}\right)^{2} ; \quad b=\frac{1}{2}\left[\frac{\theta^{\prime} x_{0}-\mu}{\sigma}+1\right] ; \quad c=\frac{1}{2}\left(\frac{x_{0}-\mu \mu^{2}}{\sigma}\right)^{2} .
\]

Hence the probability of failure gan be expressed in terms of: (a) the area under the normal curve \(1-\bar{\sigma} x_{0}-\bar{\mu} ;(b)\) the error function. sines the nrea under the normal curve caln aldo be expressed in terms of the error function, one can find the probability of failura completely from a computer routine that calculates the error function. In checking Table A-2.1 numerical values for the probability of failure have been computed from this computer subroutine. A further discusaion of the ohecking procedure. and results are given in A-4.1.7.
\[
\text { Case } 2: b=2
\]

For \(b=2\); one can once again detemmine the value of integral (1) in terms of the error function. In terms of the parameters \(a, b, c\), given in formula (2) above one finds
\[
\begin{equation*}
a=\frac{1}{2}\left[\left(\frac{\sigma^{\prime}}{\sigma}\right)^{2}+2\right] ; b=\frac{1}{2}\left(\frac{\theta}{\sigma} V \frac{x_{0}-\mu}{\sigma}\right) c=\frac{2}{2}\left(\frac{x_{0}-\mu}{\sigma}\right)^{2} . \tag{3}
\end{equation*}
\]

Again, as for \(b=1\) above, values for the probability of failure ware feterinined from ths computer subrouting giving the error function values. The valies thus determined were ured to chenk Tables A-3.2.2.
. In Table A-2.1 we choose toi identify the neceasary parameters in shorter form for typographical simplification. Hence we identify
\[
\begin{aligned}
& b=B(x), \\
& A=\frac{x_{0}-\mu}{\sigma}, \\
& C=\frac{Q^{\prime}}{\sigma},
\end{aligned}
\]


A-4 DISCUSSION OF TLIT EVALUATIOH OF DTHTRGRALS IN A-3.3.4 AMD A-3.3.5

Both of the integrals obtained in sections A-3.3.4 and A-3.3.5 must be evaluated using numerical methods. We discuss our approach to . this prohlem in the following sections.

A-4.1.2 The Problem.
The integrals to be evaluated in A-3.3.4 are of the form
\[
\int_{0}^{+\infty} e^{-u_{f}}(u) d u
\]
where \(f(u)\) is a negative exponential with exponent of the form \(u^{b}\).
The integrals to be evaluated in A-3.3.5gre of the form
\[
\int_{0}^{\infty} e^{-u^{b}} f(u) d u_{0}
\]
where \(f(u)\) is a negative exponential with exponent of the form \(u^{?}\).
A-4.2.2 Method of Bolution
Integrala of the form given in A-4.1.1 can be evaluated in several. ways. We have choaen to ube simpoon'u sule with variable atep sizes as discuased in section A-4.1.4 and A-4.1.7. The approximation to the integral is given by
(1)
\[
\frac{n_{3}}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right) \ldots+2 f\left(x_{2 n-2}\right)+4 f\left(x_{2 n-1}\right)+f\left(x_{2 n}\right)\right]
\]

With a remainder term given by:
(2)
\[
\frac{n^{5}}{90} t^{ \pm v}\left(n_{1}\right)
\]
\[
x_{1}<\xi_{1}<x_{1+1}
\]

In thie formalation \(h\) is defined to be
\[
n=\left(x_{1+1}-x_{1}\right) / 2 n
\]
wisere it an the number of :tinn taken in the interval \(\left(x_{1}, x_{1+1}\right)\).
The values for the probability of failure were calculated using simpson's rule as an approximation to the integral given in A-4. 1.1. Simpson's rule was computed to \(10^{-6}\) using the University of Mictigan JBM 7090 and the MAD language. Values thus obtained were rounded to \(10^{-4}\) as thiey appear in the table.

A-4.1.3 Properties of Simpson's Rule
The functions to be evaluated are reasonably well behaved. Tables of a few of the inteprands are oiven in Tables A-4.1-A-4.6 on the following pages. It is clear that the functions are monotone decreasing. They are probabilities and hence are bounded above by 1 and below by 0 . The functions themselves decay quite rapidiy.

Unfortunately, derivatives of the function for any value of \(b_{x}\) in those integrala given in section A-3.3.4 are asymtoticaliy infinite at \(u \rightarrow 0\). Cerivatives up to order 4 of the functions for nonintegral \(b<4\) are asmptotically for \(u * 0\) for those integrale given In section A-3.3.5. Because of this propexty of the higher order derivatives, it was dectoed best not to use numerical approximations much as Causs - Laguerre or Gauss - Legendre methods whose error term depend only on higher order derivatives. Insteal Slmpson's rule was chosen so that some attempt could be made to control errors by varying the etep sizes as the higher order derivatives beccime large.

A-4.1.4 Error Anglysis - Meibuil: - Weibuil Case
Since the remainder term of simpson's rule depends on the fourth derivative of the integrand, thif derivative was determined. An anaiytic expresion is given by the following. We are interested in the case:
1. \(b_{y}=1,2, \ldots .10\);
2. \(b_{x}=1,2, \ldots 10\);
3. \(\frac{x_{0}-y_{0}}{\theta_{x}^{\prime}}=0, .25, .50, .75,1.00\);
4. \(\mathrm{C}_{\mathrm{y}}^{\prime}=1,1.25,1,50, \ldots 3\).
\begin{tabular}{|c|c|c|}
\hline Panameters: & \multicolumn{2}{|l|}{B1 m 10, \(\mathrm{BL}^{\text {- }}\) - 1} \\
\hline 4 & \(F(u)\) & \(\mathrm{F}^{1 \mathrm{v}}(\mathrm{u})\) \\
\hline \(1 \times 10^{-20}\) & . 364219 & \(>1 \times 1076\) \\
\hline . 1 & . 150419 & \(7.84551 \times 10^{2}\) \\
\hline . 5 & \(8.77702 \times 10^{-2}\) & 1.63429 \\
\hline 1. & \(4.97871 \times 10^{-2}\) & . 168733 \\
\hline 1.5 & \(2.89733 \times 10^{-2}\) & \(5.58241 \times 10^{-2}\) \\
\hline 2. & \(1.70471 \times 10^{-2}\) & \(2.59855 \times 10^{-2}\) \\
\hline 2.5 & \(1.00925 \times 10^{-2}\) & \(1.36768 \times 10^{-2}\) \\
\hline 3. & \(5.99924 \times 10^{-3}\) & \(7.59447 \times 10^{-3}\) \\
\hline 3.5 & \(3.57617 \times 10^{-3}\) & \(4.33376 \times 10^{-3}\) \\
\hline 4. & \(2.13626 \times 10^{-3}\) & \(2.51207 \times 10^{-3}\) \\
\hline 4.5 & \(1.27819 \times 10^{-3}\) & \(1.47049 \times 10^{-3}\) \\
\hline 5. & \(7.65778 \times 10^{-4}\) & \(8.66458 \times 10^{-4}\) \\
\hline 5.5 & \(4.59272 \times 10^{-4}\) & \(5.12927 \times 10^{-4}\) \\
\hline 6. & \(2.73691 \times 10^{-4}\) & \(3.04688 \times 10^{-4}\) \\
\hline 6.5 & \(1.65615 \times 10^{-4}\) & \(1.81 .464 \times 10^{-4}\) \\
\hline 7. & \(9.95537 \times 10^{-5}\) & \(1.08298 \times 10^{-4}\) \\
\hline 7.5 & \(5.98766 \times 10^{-5}\) & \(6.47386 \times 10^{-5}\) \\
\hline
\end{tabular}

Table A-4.2 Integrands and Their 4th Derivative for Weibull-Waibuil Case

Parameters: BJ. \(:=10, \mathrm{~B} 2=1\)
Theta \(1=1\), Ineta \(2-1\), Xo-Yo \(=0\)
\begin{tabular}{|c|c|c|}
\hline 4 & F(u) & \(\mathrm{F}^{\underline{i v}}(\mathrm{u})\) \\
\hline \(1 \times 10^{-20}\) & . 99005 & \(>2.9 \times 10^{76}\) \\
\hline . 1 & . 408882 & 2132,63 \\
\hline . 5 & . 238584 - & 4.44245 \\
\hline 1. & . 135335 & . 4588 \\
\hline 1.5 & \(7.87577 \times 10^{-2}\) & .151746 \\
\hline 2. & \(4.63389 \times 10^{-2}\) & \(7.06358 \times 10^{-2}\) \\
\hline 2.5 & \(2.74344 \times 10^{-2}\) & \(3.71774 \times 10^{-2}\) \\
\hline & \(1.63076 \times 10^{-2}\) & \(2.06439 \times 10^{-2}\) \\
\hline 3.5 & \(9.72105 \times 10^{-3}\) & 1. \(17804 \times 10^{-2}\) \\
\hline 4. & \(5.80696 \times 10^{-3}\) & \(6.82852 \times 10^{-3}\) \\
\hline 4.5 & \(3.47449 \times 10^{-3}\) & \(3.99719 \times 10^{-3}\) \\
\hline 5. & \(2.0816 \times 10^{-3}\) & \(2.35528 \times 10^{-3}\) \\
\hline 5.5 & \(1.24843 \times 10^{-3}\) & \(1.39428 \times 10^{-3}\) \\
\hline 6. & \(7.49405 \times 10^{-4}\) & \(8.28227 \times 10^{-4}\) \\
\hline 6.5 & \(4.50188 \times 10^{-4}\) & \(4.93271 \times 10^{-4}\) \\
\hline 7. & \(2.70615 \times 10^{-4}\) & \(2.94384 \times 10^{-4}\) \\
\hline 7.5 & \(1.62762 \times 10^{-4}\) & 1.75978×10 \({ }^{-4}\) \\
\hline
\end{tabular}

Table A-4.3 Integrands and Their 4th Derivative for Weibull-Weibull Case

Parameters: \(B=1, \frac{\theta^{\prime}}{\sigma}=100, \frac{x_{0}-\mu}{\sigma}=-4\)
\begin{tabular}{|c|c|c|}
\hline \(u\) & F(u) & \(\mathrm{H}^{+}(\mathrm{u})\). \\
\hline \(1 \times 10^{-25}\) & \(3.35463 \times 10^{-4}\) & \(5.3985 \% \times 10^{6}\) \\
\hline . 05 & . 57695 & -1. \(20005 \times 10^{8}\) \\
\hline . 1 & 1. \(37807 \times 10^{-8}\) & 1503.39 \\
\hline . 15 & \(4.5713 \times 10^{-27}\) & \(6.3861 \times 10^{-15}\) \\
\hline . 2 & 0 & 0 \\
\hline
\end{tabular}

Table A-4.4 Integrands and Their 4th Derivative
for Weibull -Normal Case

Parameters: \(B=1, \frac{\theta^{\prime}}{\sigma}=10, \frac{X_{0}-\mu}{\sigma}=-7\)
\begin{tabular}{|c|c|c|}
\hline u & \(F^{\prime}(\mathrm{u})\) & \(F^{\perp v}(\mathrm{u})\) \\
\hline \(2 \times 10\) & \(2.28973 \times 10^{-1.1}\) & 4.5 \\
\hline . 05 & \(6.36523 \times 10^{-10}\) & \[
4.54295 \times 10^{\circ}
\] \\
\hline . 1 & \(1.37807 \times 10^{-8}\) & \[
.238616
\] \\
\hline \% .15 & \(2.32355 \times 10^{-7}\) & 1.57617 \\
\hline . 2 & \(3.05113 \times 10^{-6}\) & 13.2852 \\
\hline . 25 & 3. \(12069 \times 10^{-5}\) & 81:6422 \\
\hline . 3 & 2. \(4.8517 \times 10^{-44}\) & 355.588 \\
\hline . 35 & \(1.5415 \times 10^{-3}\) & 1037.02 \\
\hline . 4 & \(7.44658 \times 10^{-3}\) & 1732.68 \\
\hline . 5 & 2.00154×10-2 & 453.278 \\
\hline . 57 & . 1082085 & -4619.66 \\
\hline . 6 & . 332871 & -9212.57 \\
\hline .65 & . 1460704 & -4007.44 \\
\hline . 7 & . 496585 & 9516.3 \\
\hline . 75 & . 416862 & 14600 \\
\hline . 9 & . 272532 & . 764.19 \\
\hline . 85 & .138761 & -7619.72
-8057 \\
\hline . 9 & \(5.50232 \times 10^{-2}\) & -8057.04 \\
\hline . 95 & \(3.69922 \times 10^{-2}\) & - 1382.76 \\
\hline 1. & \(4.08677 \times 1.0^{-3}\) & \[
1540.39
\] \\
\hline 1.05 & \(7.651136 \times 10^{-4}\) & \[
\begin{gathered}
1740.39 \\
713.445
\end{gathered}
\] \\
\hline 1.1. & \(1.11666 \times 10^{-4}\) & 206.265 \\
\hline 1.15 & \(1.26862 \times 10^{-5}\) & 20.265
41.0759 \\
\hline 1.2 & 1. \(12445 \times 10^{-6}\) & \[
5.87556
\] \\
\hline 1.25 & \(7.73443 \times 10^{-8}\) & \(\because .617431\) \\
\hline 1.3 & \(4.15066 \times 10^{-9}\) & \(4.83271 \times 10^{-2}\) \\
\hline 1.35 & \(1.73473 \times 10^{-10}\) & \(2.84342 \times 10^{-3}\) \\
\hline 1.4 & \(5.64642 \times 10^{-12}\) & \[
1.26576 \times 10^{-4}
\] \\
\hline
\end{tabular}

Table A-4.5 Integrands and Their 4th Derivative fur Weibull-Normal Case


Table A-4.5 Integrands and Their 4th Derivative
for Weibull-Normal Case (continued).

Parameters: \(\mathrm{B}=1, \frac{Q^{\prime}}{\bar{\sigma}}=10, \frac{\mathrm{X}_{\mathrm{O}}-\mu}{\sigma}=-10\)
\begin{tabular}{|c|c|c|}
\hline u & \(F(u)\) & \(\mathrm{F}^{\mathrm{Lv}}\) (u) \\
\hline \(1 \times 10^{-25}\) & \(1.92875 \times 10^{-22}\) & \(1.73991 \times 10^{-14}\) \\
\hline . 05 & \(2.40296 \times 10^{-20}\) & \(1.74943 \times 10^{-12}\) \\
\hline . 1 & \(2.33155 \times 10^{-18}\) & 1. \(35275 \times 10^{-10}\) \\
\hline . 15 & 1. \(76184 \times 10^{-16}\) & \(8.03111 \times 10^{-9}\) \\
\hline . 2 & \(1.03685 \times 10^{-14}\) & \(3.65341 \times 10^{-7}\) \\
\hline . 25 & \(4.75219 \times 10^{-13}\) & \(1.27031 \times 10^{-5}\) \\
\hline . 3 & \(1.69628 \times 10^{-11}\) & \(3.3655 \times 10^{-4}\) \\
\hline . 35 & \(4.71548 \times 10^{-10}\) & \(6.76653 \times 10^{-3}\) \\
\hline . 4 & \(1.0209 \times 10^{-8}\) & . 102689 \\
\hline . 45 & 1. \(72133 \times 10-7\) & 1.16765 \\
\hline . 5 & \(2.26033 \times 10^{-6}\) & 9.84193 \\
\hline . 55 & \(2.31157 \times 10^{-5}\) & 60.482 \\
\hline . 6 & \(1.84106 \times 10^{-4}\) & 263.426 \\
\hline . 65 & \(1.24197 \times 10^{-3}\) & 768.245 \\
\hline . 7 & \(5.51656 \times 10^{-3}\) & 1283.6 \\
\hline . 75 & \(2.07543 \times 10^{-2}\) & 335.722 \\
\hline . 8 & \(6.08101 \times 10^{-2}\) & 3422.33 \\
\hline . 85 & . 138761 & -6824.84 \\
\hline . 9 & . 246597 & -2968.78 \\
\hline . 95 & . 341298 & 7049.85 \\
\hline 1. & . 367879 & 10816. \\
\hline 1.05 & . 308819 & 2994.31 \\
\hline 1.1 & . 201897 & -5644.82 \\
\hline 1.15 & . 102797 & -5968.8 \\
\hline 1.2 & \(4.07622 \times 10^{-2}\) & -1635.34 \\
\hline 1.25 & \(1.25881 \times 10^{-2}\) & 1024.41 \\
\hline 1.3 & \(3.02756 \times 10^{-3}\) & 1242.2F \\
\hline 1.35 & \(5.67086 \times 10^{-4}\) & 504.637 \\
\hline 1.4 & \(8.27214 \times 10^{-5}\) & 152.805 \\
\hline 1.45 & \(9.39813 \times 10^{-6}\) & 30.428 \\
\hline 1.5 & \(8.31529 \times 10^{-7}\) & 4.39272 \\
\hline 1.55 & \(5.72981 \times 10^{-8}\) & . +77404 \\
\hline
\end{tabular}

\footnotetext{
Table A-4.6 Integrands and Their 4th Derivative for Weibull-Normal Case
}

Parameters: \(B=1, \frac{Q^{\prime}}{\sigma}=10, \frac{X_{Q}-\mu}{\sigma}=10\)
\begin{tabular}{lll}
\(u\) & \(F(u)\) & \(F^{I V}(u)\) \\
& & \\
1.6 & \(3.07488 \times 10^{-9}\) & \(3.58016 \times 10^{-2}\) \\
1.65 & \(1.28512 \times 10^{-10}\) & \(2.10646 \times 10^{-3}\) \\
1.7 & \(4.18297 \times 10^{-12}\) & \(9.37701 \times 10^{-5}\) \\
1.75 & \(1.06035 \times 10^{-13}\) & \(3.17329 \times 10^{-6}\) \\
2.8 & \(2.09338 \times 10^{-15}\) & \(8.1935 \times 10^{-8}\) \\
1.85 & \(3.21861 \times 10^{-17}\) & \(1.61874 \times 10^{-9}\) \\
1.9 & \(3.85403 \times 10^{-19}\) & \(2.45256 \times 10^{-11}\) \\
1.95 & \(3.59409 \times 10^{-21}\) & \(2.85496 \times 10^{-13}\) \\
2. & \(2.61029 \times 10^{-23}\) & \(2.55729 \times 10^{-15}\) \\
2.05 & \(1.47644 \times 10^{-25}\) & \(1.76487 \times 10^{-17}\) \\
2.1 & \(6.5038 \times 10^{-18}\) & \(9.39437 \times 10^{-20}\) \\
2.15 & \(2.23124 \times 10^{-30}\) & \(3.8605 \times 10^{-22}\) \\
\(2.2 \ldots\) & 0 & 0
\end{tabular}
\[
I(u)=e^{-u_{e}-\left[\frac{\theta^{\prime} x}{\theta_{y}}\left(u^{\frac{1}{b} x}+\frac{x_{0}-y_{0}}{\theta^{\prime}}\right)^{b}\right]^{b}}
\]

Let
\[
\begin{gathered}
q(u)=e^{-u} ; \\
\sigma=\frac{\theta^{\prime}}{\theta_{y}^{\prime}}\left(u^{\frac{1}{b_{x}}}+\frac{x_{0}-y_{0}}{\theta_{x}^{\prime}}\right), \\
h(u)=e^{-\sigma^{b_{y}}} .
\end{gathered}
\]
\[
F^{\prime}(u)=q^{\prime}(u) h(u)+q(u) h^{\prime}(u)=-F(u)-F(u)[w]
\]
where
\[
v=b_{y}(\sigma)^{b_{y}-1}\left(\frac{\theta^{\prime} x}{\theta_{y}}\right)(u)^{\left(\frac{1}{b_{x}}-1\right)}\left(\frac{1}{b_{x}}\right) \text {. }
\]
and \(F^{\prime}(u)\) denotes, an is usual, the first derivative of \(F(u)\) with re.
aspect to \(u\).

\[
\begin{aligned}
& F^{i v}(u)-F^{\prime \prime}(u)[1+w]-3 F^{\prime \prime}(u)\left[w^{\prime}\right]-3 F^{\prime}(u)\left[w^{\prime \prime}\right]-F(u)\left[w^{\prime \prime}\right] \\
& \text { whale } w^{\prime 4}=b_{y}\left(n_{y}-1\right)\left(b_{y}-2\right)\left(b_{y}-3\right)(a)^{b_{y}^{-4}}\left(\frac{o_{x}^{\prime}}{a_{y}^{\prime}}\right)^{4}\left(\frac{1}{b_{x}}\right)^{4}\left(u^{\left(b_{x}\right.}\right)^{4} \\
& \left.\left.+3 b_{y}\left(b_{y}-1\right)\left(b_{y}-2\right)(\sigma)^{b_{y}-3}\left(\frac{a_{x}^{\prime}}{a_{y}}\right)^{3}\left(\frac{1}{b_{x}}\right)^{3}\left(\frac{1}{b_{x}} 1\right)\left(u^{\left(\frac{1}{b_{x}}\right.} 2\right)\right)\left(u^{\left(\frac{1}{b_{x}}\right.} 1\right)\right)^{2} \\
& +3\left(b_{y}\right)\left(b_{y}-1\right)\left(b_{y}-\alpha_{\alpha}\right)^{b_{y}-3}\left(\frac{c_{x}^{\prime}}{\sigma_{y}}\right)^{3}\left(\frac{1}{b_{x}}\right)^{3}\left(\frac{1}{b_{x}}-1\right)\left(u^{\left(\frac{3}{b_{x}}-4\right)}\right) \\
& +3 b_{y}\left(b_{y}-1\right)(0)^{b_{y}-2}\left(\frac{\theta_{x}^{\prime}}{y_{y}}\right)^{2}\left(\frac{1}{b_{x}}\right)^{2}\left(\frac{1}{b_{x}}-1\right)\left(\frac{2}{b_{x}}-3\right)\left(u^{\left(\frac{2}{b_{x}}-4\right)}\right) \\
& +b_{y}\left(b_{y}-1\right)(0)^{b_{y}-2}\left(\frac{\theta_{x}^{\prime}}{\theta_{y}^{\prime}}\right)^{2}\left(\frac{1}{b_{x}}\right)^{2}\left(\frac{1}{b_{x}}-1\right)\left(\frac{1}{b_{x}}-2\right)\left(u^{\left(\frac{2}{b_{x}}+4\right)}\right) \\
& +b_{y}(0)^{b_{y}-1}\left(\frac{\sigma_{x}^{\prime}}{a_{y}^{\top}}\left(\frac{1}{b_{x}}\right)\left(\frac{1}{b_{x}}-1\right)\left(\frac{1}{b_{x}}-2\right)\left(\frac{1}{b_{x}}-3\right)\left(u^{\left(\frac{1}{b_{x}}-4\right)}\right) .\right.
\end{aligned}
\]
gull exploration of this derivative appears to be unreasonable. One would hope that maximum values could be obtained as functions of the parameters so that step sizes appropriate to minimize the error term could be determined, Such appears to be hopeless from the form of the derivative. Instead, tables of the fourth derivative were ohtined in an attempt to find where the derivative took maximum values, how large these maxima were and how they behaved with respect to the four parameters of interest. some examples of theme tables are given in Tables A-4.2, A-4.2, A-4.3. . From examination of the derivactive and it's value at some points, it seems clear that for \(b_{x} \mu \mathrm{~d}\), the fourth derivative mprosches infinity for \(u \rightarrow 0, b_{x}=1\) van considered along with the other \(b_{x}\) values and not troated separately. \(b_{y}\) noninteger and lems than 4 causes the derivative to become infinite for \(u \rightarrow 0\) if \(\left(x_{0}-y_{0}\right) / 0_{1} \quad 0\). In either event, it appear m from the plots of the fourth derivitive that it rapidly approaches zero for \(u\) ' \(>0\). It was therefore decided to evaluate the integral over 5 dieting intervale, \((0, .01),(.01,1),(1,5),(5,10),(10, \infty)\).

For the interval ( 0,01 ) it did not appear feasible to make a full exploration of the fourth derivative to determine the optimum
step size. Instead the value of the integral was found using Simpson's sule with 50 and 500 steps within the interval ( \(0, .01\) ). the integrais did not differ by more than \(10^{-6}\). Hence it was dectaed that in the interval ( \(0, .01\) ) one should take \(n \mathrm{~m} 50\).

Values of \(n\) were determined for the intervals (.01,1), \((1,5)\), \((5,10)\) by looking at the maximum values of the fourth derivatives, as computed, in each of these intervals. From these obsarvations, n wes taken so that the maximum remaindor in the interval wat less than \(10^{-6}\). The values of \(n\) ueed within these intervale were
\begin{tabular}{lr} 
interval & ロ \\
\((.01,1)\) & 50 \\
\((1,5)\) & 20 \\
\((5,10)\) & 10
\end{tabular}

The interval ( \(10, \infty\) ) was eventually eliminated as boing "practically \(G\) " based on the following:

\section*{Conaider}
\[
g(u) \quad-\quad\left(s u^{x}+a c\right)^{y}+u
\]
for
\[
a \geq 1, \quad u \geq 1, \quad 0 \leq c \leq 1, \quad .1 \leq x \leq 1, \quad 1 \leq y \leq 10
\]

For \(x=1\) and any combination of the other parametere:
\[
\begin{aligned}
& \varepsilon(u)=(a u+a c)^{y}+u=a^{y} u^{y}+y^{y-1} u^{y-1}+\ldots+u_{0} \\
& s(u) \geq a^{y} u+u=u\left(a^{y}+1\right)
\end{aligned}
\]
since over the values of \(u, y\) considered \(u y \geq 4\) with equality accurring when \(y=1\). Consequently
and
\[
-\boldsymbol{c}(u) \leq-u\left(a^{y}+1\right) \leq-2 u
\]
\[
e^{-\varepsilon(u)} \leq e^{-u\left(a^{y}+1\right)} \leq e^{-2 u}
\]
and
\[
\int_{10}^{\infty} e^{-\varepsilon(u)} d u \leq \int_{0}^{\infty} e^{-2 u} d u \leq 1 / 2 e^{-20} \oplus 1 \times 10^{-9}
\]

In a similar way it can de shown thai for .iss \(x<i\), but with \(x y \geq 1\) then the value of the integral for the interval \((10, \infty)\) is leas than \(1 \times 10^{-9}\). For suppose \(1 \leq x<1\) and \(x y \geq 1\). Then
\[
\begin{aligned}
g(u) & =\left(a u^{x}+a c\right)^{y}+u \\
& =\left(a u^{x}\right)^{y}+y\left(a u^{x}\right)^{y-1}(a c)^{y}+\ldots+u \\
\ddots & \geq a^{y} u^{x y}+u \geq a^{y} u+u \geq 2 u
\end{aligned}
\]
since \(a \geq 1\). Then as before
\[
\int_{10}^{\infty}-\varepsilon(u) d u \quad \int_{10}^{\infty} e^{-2 u} d u \quad 1 \times 10^{-9}
\]

Hence for \(x y \geq 1\) and \(\cdot 2 \leq x \leq 1\) the contribution that the tail of the function mace to the integral is no bigger than \(10^{-9}\).

For \(x y<1\), the above analysis is no longer valid since uK < Le. However,
since
\[
x(u) \geq a^{y} 10^{x y}+u
\]
\[
g(u) \geq\left(a^{x}\right)^{y}+u \geq a^{y} 10^{x y}+u, \quad \text { for } u \geq 10
\]

Also
\[
10^{x y} \geq 10^{.1}-1.258 \text {, for } x y \geq .1
\]

Hence
\[
g(u) \geq 1.258 \mathrm{a}^{y}+u
\]
and
\[
\begin{aligned}
& -s(u) \leq-\left(1.258 a^{y}+u\right) \\
& -s(u) \leq e^{-\left(1.258 a^{y}+u\right)}
\end{aligned}
\]
\[
\int_{0}^{+\infty} \cdot 0^{-6(u)} d u \leq \int_{10^{-}}^{\infty}-\left(1.258 a^{y}+u\right) \quad e^{-1.258 a^{y}+10}
\]

Since
\[
a \geq 1, \quad e^{-1.258 \mathrm{a}^{\mathrm{y}}+10} \leq e^{-11.258} \approx 1 \times 10^{-5}
\]

Hence if une identiftes a \(a\left(\theta^{\prime} x\right) /\left(\theta^{\prime} y\right) ; \quad c=\left(x_{0}-y_{0}\right) /\left(\theta^{\prime} x\right)\); \(x=1 /\left(b_{x}\right)\) and \(y=b_{y}\) one aees that no matter what the values of orror obtainud by not including the integral in the interval \((10, \infty)\), is at most approximetaly \(1 \times 10-5\). In fact one finds easily that onily one tabular value will have this much truncation error, and that will be the special case \(0^{\prime} x^{\prime} / 0^{\prime} y=1\) (the streneth and stress distributions have the ane characteristic values), \(b_{y} / b_{x}=.1\) (the slope parameter of the atrensth distribution is 10 times the slope of the stress distribution) and the two distributions have the same \(x_{p}\) points. For the values of \(b_{y}\) and \(b_{x}\) used in the tables, this set of conditions requires that the atfess diltribution be exponential (i.e.by \(=1\) ). One expects this case to arise seldom enough to justify this moderate error. Consequently we truncate the integral at \(u=10\) in all cases considered.

A-4.1.5 Conclusions Concerning Errors
In eumany then the integral evaluated was
\[
\left.\int_{0}^{10} e^{-u_{e}-\left[\frac{0}{0}\right.}\left(u^{\frac{1}{5}}+\frac{x_{0}-y_{0}}{e_{x}}\right)\right]^{b y} d u
\]
with paramatert taken an
\[
\begin{gathered}
\frac{x_{0}=y_{0}}{\theta_{x}}=0, .25, .50, .75,1 ; \\
b_{x}=1,2, \ldots 10, \\
b_{y}=1,2, \ldots 10, \\
\frac{\theta_{y}^{\prime}}{\frac{x}{y}-1.00,1.25,1.50,1.75,2.00, \ldots 3 .}
\end{gathered}
\]

The maximu trinicacion-error (the arror caused by not including the value of the integral in \((10, \infty))\) in \(10^{-5}\) which occurs for one tabular valua. For most of the tables, the truncation error is \(1 \times 10^{-6}\) or less, and for \(b_{y} / b_{y}>, 1\), it is as small at \(1 \times 10-9\). The error of approximation unin' Bixpson's mule was not determined precisely. Using the number of etopa given on page 5 , it appears that the maximum error of this type does not exceed, \(1 \times 10^{-6}\). This conjecture was tested
once more by comparing the results obtained for \(b_{x}=b_{y}-1, b_{x}=2\), \(b_{y}=1, b_{x}=1, b_{y}=2\) as discussed in Section A-3.3.4. Tables A-4.1 and \(A-4.8^{x}\) show the computed values of formula 4 in Section A-3.3.4 and formula 5 in Section \(A-3.3 .4\). These tabulated values can be compared to those given in Tables A-2.2. for the corresponding parameters. In no case was the disagreement found to exceed \(1 \times 10{ }^{-6}\). Hence the conjecture is valid in those cases where it can be tested. We conclude on the basis of this verification that the tables are correct to \(1 \times 10^{-4}\) after rounding.

A-4.1.6 A Note on Interpolation
One notes that the tabulated values are highly non-inear in general. Simple inear interpolation can produce errors of the order of \(10^{-2}\). Hence higher order interpolation formulas should be used for more accuracy.

A-4.1.7 Error Analysis - Weibull - Normel_Case
Since the remainder term of Simpson's rule depends on the fourth derivative of the integrand, this derivative was detemined. An analytic expression for it is given by the following. We are inter. ested in



\footnotetext{
Table A-4.7 Numericel Values of Formula 4
} of Section A-3.3.4
\(\frac{\text { Theta } 1}{\text { Theta } 2}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\(X_{0}-Y_{0}\)} \\
\hline & & Theta & & & \\
\hline & . 00 & . 25 & . 50 & . 75 & : 00 \\
\hline 1.00 & .454358 & . 353855 & . 275582 & . 214623 & . 167149 \\
\hline 1.25 & . 383170 & . 280333 & . 205096 & . 150051 & . 109780 \\
\hline 1.50 & . 326107 & . 224130 & . 154042 & . 105871 & . 072764 \\
\hline 1.75 & . 279900 & . 180717 & . 116680 & . 075334 & . 048639 \\
\hline \(2.00^{\circ}\) & . 242128 & . 246858 & . 089073 & . 054026 & . 032768 \\
\hline 2.25 & . 210974 & . 120209 & . 068493 & . 039026 & . 022236 \\
\hline 2.50 & . 185063 & . 099057 & . 053021 & . 028380 & . 015190 \\
\hline 2.75 & . 163345 & . 082135 & . 041300 & . 020767 & . 010442 \\
\hline 3.00 & . 145007 & . 068496 & . 032355 & .015283 & . 007219 \\
\hline
\end{tabular}

Table A-4.8 Numerizal Volues of Formula 5 of Section A-3.3.4
4.rhove
\[
w=\frac{0^{\prime}}{\sigma} s+b\left(u^{2}-1\right) \text {. }
\]
\[
F^{\prime \prime}(u)=-F^{\prime}(u)(w)-F(u)\left(w^{\prime}\right)
\]
where
\[
w^{\prime}=\left(\frac{\theta^{\prime}}{\sigma}\right)^{2}+b(b-1)\left(u^{k-2}\right)
\]
\[
F^{\prime^{\prime}}(u)=-F^{\prime}(u)(u)-2 F^{\prime}(u)\left(w^{\prime}\right)-F(u)\left(w^{\prime \prime}\right)
\]
where
\[
w^{+1}=b(b-1)(b-2)\left(u^{b-3}\right)
\]
\[
F^{i v}(u)=-F^{\prime \prime \prime}(u)(w)-3 F^{\prime}(u)\left(w^{\prime}\right)-3 F^{\prime}(u)\left(w^{\prime}\right)-F(u)\left(w^{\prime \prime}\right)
\]
\[
\text { where : } w^{\prime \prime \prime}=b(b-1)(b-2)(b-3)\left(u^{b-4}\right) \text {. }
\]

One can see some behavior of the fourth derivative from this expression. First, if \(b\) is non-integer and \(b<4\) the fourth derdvative becomes infinite at zero as before. However, this is not true for all b (as it was fo: all \(b_{x}\) in the previous case), for if \(b\) is aninteger, or if \(b>4, u^{b-4} \rightarrow 0\) for \(u \rightarrow 0\) except for \(b=4\) in which case \(u^{b-4}\) a 1 for ali \(u\). If the fourth derivative is not infinite at the origin, then the maxtmum error occurs away from the origin and is of the order of \((0 / \sigma)^{4}\) for \(b \geqslant 4\) and is less than this for \(b\) integer 2 nd \(<4\). Since \(\theta^{\prime} / \sigma\) can be as Iarge as 100, the maximum error is or the order of 100 . The difficulty in using these fects lies in finding where this maximum occurs. In the nelghborhood of the maximum steps of size \(10^{-3}\) will give miximum errors due to approximation on the crder of 10-9.

To locate approximately where the maximum occurs, the fourth derivative was computed for selected values of \(u\), and several values of the parameters. Examples of these calculetions are given in tables A. \(4.4=A-4.6\). One notes from these plots that for \(\left(x_{0}-\mu\right) / \sigma>0\), the maximum occurs near the origin and the derivative falls off rapidly to zero. For ( \(x_{0}-\mu\) )/o \(<0\), such is not the case, and the \(u\) value at which the maximum occurs deptids on the parameters. In all cases in which -10 . \(\leq\left(x_{0}-\mu\right) / \sigma<0\), the maximun occurs between 2 nna \(1 . \circ^{\circ}\). However, this range is toc large to take steps of size \(10^{-3}\) glong, and an approximution is needed to more precisely locate thr u's at which the maximum occurs as a furction of the parasieters. This will be discussed in detail later in this section.

For \(\left(x_{0}-\mu\right) / \sigma>0\), the interval \((0, .1)\) was explored with 50,500 steps and the integrals were found to agree to \(10^{-6}\). Hence 50 steps were tain in this interval for this case. The number of steps in the intervals ( \(0.1,1\) ); \((1,5)\) were chosen to make the error term no larger than 10-6. The number of steps used then were:
\[
\begin{array}{ll}
\frac{\text { interval }}{(.1,1)} & \underline{n} \\
(1,5) & 25 \\
(10
\end{array}
\]

The interval \((5, \infty)\) was not computed for \(\left(x_{0}-\mu\right) / \sigma>0\) since it is "practically 0 " as is shown in the following.

Poor
\(u \geq 1, \quad b \geq 1, \quad \frac{x_{0}-\mu}{\sigma} \geq 0 \quad\) and \(\quad \frac{\theta^{\prime}}{\sigma} \geq 10\),
\[
g(u)=u^{b}+\left(\frac{\theta_{\sigma}^{\prime}}{\sigma}+\frac{x_{0}-\mu}{\sigma}\right)^{2} \geq u+\left(\frac{\theta_{\sigma}^{\prime}}{\sigma}\right)^{2} u_{1}
\]

Hence \(-u=\left(\frac{\theta^{\prime}}{\sigma^{\prime}}+\frac{x_{0}-\mu}{\sigma}\right)^{2} \leq-\left[u+\left(\frac{\theta_{0}^{\prime}}{\sigma}\right)^{2} u\right]\)
\[
e^{-u^{-}-\left(\frac{\theta^{\prime}}{\sigma} u+\frac{x_{0}-\mu}{\sigma}\right)^{2}} \leq e^{-\left[\left(\frac{\theta^{\prime}}{\theta}\right)^{2}+1\right] u}
\]
\[
\int_{5}^{\infty} e^{-g(u)} d u \leq \int_{5}^{1^{\infty}} e^{-\left[\left(\frac{\theta^{\prime}}{0}\right)^{2}+1\right] u}=\frac{e^{-\left(\left(\frac{\theta^{\prime}}{\sigma}\right)^{2}+1\right)^{5}}}{\left(\frac{0}{v}\right)^{2}+1}
\]

Thus, even if \(0 / \sigma\) is as small es 2 , which it is not, the area from ( \(5, \infty\) ) contributes less than \(1 \times 10-9\) to the total area.

In any event (whether \(\frac{x_{0}-\mu}{\sigma} \geq 0\) or not)
\[
\left(\frac{\theta^{\prime}}{\sigma} u+\frac{x_{0}-\mu}{\sigma}\right)^{2} \geq\left(\frac{\theta^{\prime}}{\sigma}(5)+\frac{x_{0}-\mu_{j}}{\omega}\right)^{2} \quad \text { for } u \geq 5 \text {. }
\]

Since we only consider cases in which \(\frac{\rho^{\prime}}{\sigma} \geq 10\) and \(\frac{x_{0}-\mu}{\sigma} \geq-10\),
\[
\left(\frac{\theta^{\prime}}{\sigma}(5)+\frac{x_{0}-\mu}{\sigma}\right)^{2} \geq 10
\]

Consequently
\[
\int_{5}^{\infty} e^{-g(u)} 3 u \leq e^{-20} \approx 2 \times 10^{-9}
\]

Thus the function error in any case is less than \(2 \times 10^{99}\). of course \(\pm t\) is much less than this. However, one sees that it"is negligible.

For \(\left(x_{0}-\mu\right) / \sigma<0\), the function in question is no longer a
monotone decreasing exponential due to the exp. \(\left\{-1 / 2\left[\theta / \sigma(u)+\left(x_{0}-\mu\right) / \sigma\right]^{2}\right\}\) term. Instead it has the properties of Tables A-4.4-A-4.6 and the maximum point \(Y\) can be seen to shift as the parameters change.

For \(\left(x_{0}-\mu\right) / \sigma<1\), the fourth derivative has large values (as large as \(10^{\circ}\) ) at some point \(u>0\). Precisely where that point \(u\) is and how large the neighborhood in which the fourth derivative remains largely depends on all the parameters.

By evaluating the fourth derivative for several values of the perameter, it was found that for fixed \(b\) one had two bounding functions for ad.lacent setting of the parameters iv These bounding functions intersect at some value \(u^{*}\), for \(u<u^{*}, f_{i}^{i v}(u)>f_{2}^{i v}(u)\) while for \(u>u^{*}\), \(f_{i}^{i v}(u)<f_{2}^{i v}(u)\) where \(f_{i}^{i v}\) and \(f_{2}^{d v}\) depend on the parameters \(\left(x_{0} \sim \mu\right) / \sigma\) a.fd \(\theta / \sigma\). It was found Eor
\[
\begin{array}{rlrl}
1 . & \frac{x_{0}-\mu}{\sigma} & =-x, & x=1,2 \ldots 10 \\
\frac{\theta^{\prime}}{0} & =10(1+1), & 1=1,2 \ldots 10
\end{array}
\]
and
\[
\text { 2. } \begin{aligned}
\frac{x_{0}-\mu}{\sigma} & =-(x+1), & x=1,2 \ldots 10 \\
\frac{\Theta^{\prime}}{\sigma} & =101, & 1=1,2 \ldots 10
\end{aligned}
\]
then for some \(u=u^{*}\)
\[
\begin{array}{ll}
f_{1}^{i v}(u)>f_{2}^{i v}(u), & u<u * \\
f_{2}^{i v}(u)>f_{1}^{i v}(u), & u>u *
\end{array}
\]

Furthermore, for uny setting of the parameters in the intervals
\[
[(n(x+1),-x) ;(1,1+1)]
\]
the fourth derivative for these parameters were dominated by either \(f_{i}^{i v}(u)\) or \(f_{2}^{i v}(u)\). Hence \(f(x)\) all \(u<u^{*}\) any setting of the perameters in the interval above, \(f^{i v}(u)\) was largest while for all \(u>u^{*}\) and any setting of the parameters in the interval above \(f_{2}^{1 / v}(u)\) was largest.

First, it was decided to evaluate the integral for \(-10 \leq\left(x_{0}-\mu\right) / \sigma<1\) over from aubintervals, \(0 \leq u<x_{1}, x_{1} \leq u<x_{2}\) \(x_{2} \leq u<x_{3}, x_{3} \leq u<10\). This was done to reduce as much as powible the size of the Interval over which many steps had to ve teken. and \(f_{1}{ }^{i v}(u)^{x}>1 \times 1 c^{3}\) for to \(u=x_{1}+.05\).
\(x_{2}\) was taken to be that \(u\) such that \(f_{2}^{I v}(u)>20: 10^{3}\) for \(x_{1}<u \leq x_{2}^{2}\) while \(f_{2}^{I v}(u)<1 \times 10^{3}\) for \(u=x_{2}+.05\).
\(x_{2}<u<x_{3}\) was taken to be that a such that \(f_{2}^{i v}(u)>1 \times 10^{-9}\) for \(x_{2}<u \leq x_{3}\) while \(I_{2}^{1 v}(u)<2 \times 10^{-9}\) for \(u=x_{3}+.05\).

Since b -1 gave the maximum length of the intervals over which the error of approkimation remained relacively large, the \(x_{2}, x_{2}\); \(x_{3}\) were chosen for that \(h\) and used for all. \(b_{1}\).

It was found that \(x_{1}<.3, x_{2}<1.1\) and for \(f^{i v}(u) \rightarrow 109\), the interval \(x_{2}-x_{1}\) became small. Hence, in the interval ( \(0, x_{1}\) ) 5 stepm were taken, in \(\left(x_{1}, x_{2}\right), 50\) steps were taken and in each of ( \(x_{2}, x_{3}\) ) and \(\left(x_{3}, 10\right), 5\) steps wore taken. For all of the velues of the parameters studied, these intervals and steps gave
\[
\frac{n^{5}}{90} \mathrm{f}^{\mathrm{iv}}(\mathrm{u})<10^{-6}
\]

Hence, in all cases, the errors of approximation were less than \(1 \times 10-6_{2}\) and consequentiy, the maximum error of approximation is less then \(10^{-6}\).

To check the logic used in attempting to reduce the errors of truncation and approximation, the formulas 2 and 3 of section A-3.3.5 were computed using the error function aubroutine available on the University of Michigan 7090. These same integrals were evaluated
using Simpson's rule with the iłtervale discussed above. Comparisions Eañ ive maic Frum Tabies A-4.9-A-1.10 rollowing with those of section A-2.1 for some selected values 0 ' the parameters. In no case do the failure probabilities differ by more than \(10^{-6}\).

A-4.1.8 Conclusions Concerning Erfors.
In sumary the integrial evaluated was
\[
\int_{0}^{10} e^{-u^{b}} e^{-\left(y_{0} u^{2}+\frac{x_{0}-\mu}{\sigma}\right)^{2}} d u
\]
with the parameters taken as
\[
\begin{gathered}
c=1,2 \ldots \ldots 10 ; \\
\frac{\theta^{\prime}}{\sigma}=10,15,20,24, \ldots 100, \\
\frac{x_{0}-\beta}{\sigma}=1,1.2,1.4, \ldots .3 \text { end }-10,-9, \ldots
\end{gathered}
\]

The maximum truncation error is dets than \(10^{-9}\) for all velues of the parameters.

The maximum approximation errors are less than \(10^{-6}\) using the steps noted in A-4.1.7.

The values of the integrals using simgson's rule differs from the values obtained using the error functiof formula of section \(A-3.3 .5\) by no more than \(1 \times 10^{-6}\).

Since the tabular values in Table A-2.1 have been found by rounding off the computed values, the tabulation are correct to \(\pm 5 \times 10^{-5}\).

\section*{A-4.1.9 A Note on Interpolation}

One notes that the tabulated values are non-linear. simple innear interpolation can introduce significant errors (errors greater than \(10^{-4}\) ). Hence higher order interpolation formulas should be used for more accuracy.
\(B=1\)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & -10 & -5 & -1 & 1 & 2 & 3 \\
\hline 10 & . 63028 & . 39043 & . 09935 & . 00797 & . 00082 & . 00004 \\
\hline 20 & . 39271 & .22023 & . 05184 & . 00407 & . 00042 & . 00002 \\
\hline 30 & . 28377 & . 15305 & . 03507 & . 00274 & . 00028 & . 00001 \\
\hline 40 & . 22096 & . 11723 & . 02649 & . 00206 & . 00021 & . 00001 \\
\hline \(\frac{9}{\circ} \quad 50\) & . 18111 & . 09498 & . 02129 & . 00165 & . 00017 & . 00001 \\
\hline 60 & . 15340 & .07883 & .01779 & . 00138 & . 00014 & . 00001 \\
\hline 70 & . 13303 & . 06884 & ,01528 & . 00118 & . 00012 & . 00001 \\
\hline 80 & . 21743 & . 06051 & . 01339 & . 00104 & . 00011 & . 00000 \\
\hline 90 & . 10511 & . 05398 & . 01192 & .00092 & . 00009 & . 00000 \\
\hline 100 & . 09512 & . 04872 & . 01074 & . 00083 & . 00008 & . 0000 \\
\hline
\end{tabular}

\footnotetext{
Table A-4.9 Numerical Values of Fermula 2 of Section A-3.3.5
}


Table A-4.10 Numerical Values of Formula 3 Using Parameters Given by Formula 3 of Section A-3.3.5```


[^0]:    - A11 referencen to Lection A gertain to the Appondis. Thun, section A-3.2 mane sectice 3.2 of Aprapdsx 3.

