Downloaded from http://www.everyspec.com

I FILE CopY o &
AD-A213 896

RADC -TR-89-8, Vol Il (of two)
Final Technical Report
April 1989

SCANNABLE MILLIMETER WAVE
ARRAYS

Polytechnic University

Arthur A. Oliner

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

THIS DOCUMENT CONTAINED
BLANK PAGES THAT HAVE
BEEN DELETED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

REPRODUCED FROM
BEST AVAILABLE COPY ~

ot
4F,

¢

-~
il
bt : " i -~ i
A e e T ~ire

Yt



'5’»_-“,‘:\.» o ’ Downloaded from http://www.everyspec.com

. -

R This report has been reviewed by the RADC Public Affairs Division (PA)
5 ' and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign natioms.

RADC-TR-89-8, Vol II (of two) has been reviewed and is approved for
publication.

APPROVED: \P-4° S'P“V’M

HANS P. STEYSKAL
Project Engineer

JOHN K. SCHINDLER
Director of Electromagnetics

FOR THE COMMANDER: 92 ;1 ( Q

JOHN A. RITZ
Directorate of Plans & Programs

If your address has changed or 1if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your urganization,
please notify RADC (EFAA ) Hangscom AFB MA 01731-5000, This will agsist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document re¢juire> that iL be returned.




Downloaded from http://www.everyspec.com

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE
Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188
1a. REPORT SECURITY CLASSIFICATION 1bv./RESTRlCTIVE MARKINGS
UNCLASSIFIED N/A
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT
N/A Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distrtbution unlimited.
NZA
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORINC. ORGANIZATION REPORT NUMBER(S)
POLY-WRI-1543-88 RADC-TR-89-8, Vol II (of two)
6a. NAME OF PERFORMING ORGANIZATION 6b. O;FICEISYS;;nIBOL 7a. NAME OF MONITORING ORGANIZATION
. (} icable
Polytechnic University (1f appli ) Rome Air Development Center (EEAA)
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Weber Research Institute
333 Jay Street Hanscom AFB MA 01731~-5000
Brooklyn NY 11201
8a. NAME OF FUNDING /SPONSQORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT 1DENTIFICATION NUMBER
ORGAN!ZATION (If applicable)
Rome Air Development Center EEAA F19628-84-K-0025
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Hanscom AFB MA 01731-5000 PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.
61102F 2305 J3 44
11, TITLE (Include Security Classification)
SCANNABLE MILLIMETER WAVE ARRAYS
12. PERSONAL AUTHOR(S)
Arthur A. Oliner
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) ]15. PAGE COUNT
Final FrROM Apr 84 t10Jan 87 April 1989 250
16. SUPPLEMENTARY NOTATION
"17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Millimeter waves, antennas, leaky waves, scanning arrays,
09 05 printed circuit arrays, nonradiative dielectric (NRD) guide,
09 0L groove guide, microstrip line.

9. ABSTRALT_ (Continue on reverse if necessary and identify by block number) .
The complexity usually associated with scanning arrays at millimeter wavelengths produces

fabrication difficulties. so that alternative methods are needed that employ simpler
structures. This Final Report describes such an alternative scanning approach, and presents
a group of new and simpler radiating structures suiltable for millimeter-wave applications.

N Ny
The new class of scanning arrays described here achieves scanning in two dimensions by
creating a one dimensional array of leaky-wave line-source antennas, The individual line
sources are fed from one end and are scanned in elevation by electronic means or by varying
the frequency. Scanning in the cross plane, and therefore in azimuth, is produced by phase
shifters arranged in the feed structure of the one-dimensional array of line sources>

Within the sector of space over which the arrays can be scanned, the radiation has negligibldg
cross polarization, no blind spots and no grating lobes. . These are significant, and also

\ (Cont'd)
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
Bl unciassirieorunLimired O3 same as RPT. [ oTic users | UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) | 22¢c. OFFICE SYMBOL
HANS STEYSKAL (617) 377~2052 RADC/EEAA
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
¢

\ } p UNCLASSIFIED




_Downloaded from http://www.everyspec.com

UNCLASSIFIED

Block 19 (Cont'd)

unusual advantages. The novel features in the etudy reported here relate mainly
to the new structuree employed for the individual leaky-wave line sources and
their combination into arrays, but also to analyses of the interactive effects
produced when scanning occurs in both planes simultaneously,

The analyses of the various antenna structures are believed to be accurate, and
for most of the antennas they are notable for resulting in transverse equivalent
networks in which all the elements are in closed form, so that the dispersion
relations for the propagation properties of the leaky-wave structures are also
in closed form. It should be added that for all the array structures the
analyses take all mutual coupling effects into acecount.

Although these studies are predominantly theoretical in nature, sets of careful
measurement 3 were made for two of the novel leaky-wave line-source antennas: the
foreshortened NRD guide structure and the offset-groove~guide antenna. The
agreement with the theoretical calculations was excellent in both cases.

In the Final Report, seven different novel antennas are described, of which four
are leaky-wave line sources that scan in elevation, and three¢ are arrays that

scan in two dimensions., They represent examples of the new class of scannable
antennas that are aimple in configuration and suitable for millimeter wavelengths.

This Final Report is compoased of 12 Chapters, of which the first 1s an introduction
and summary, the seccid discusses some general features of our approach to the
analysis of arrayas, and the twelfth contains the list of references. Chapters

111 through XI discuss in detail our comprehensive studies on the various specific
antennas; the material is presented under three broad categoriea: NRD guide antennas,
groove guide antennas, and printed-circuit antennas. Because of the binding prob-
lems created by the size of this report, it 1s being printed in a two-volume format,

Accession For
NTIS GRA%I
DTIC TAB
Unannounced O
Justification — ]

By
Distribution/
Availarility Cndes

Avail cag/or
Dist Speeial .

Al

UNCLASSIFIED




Downloaded from http://www.everyspec.com

-28S8-

PRINTED-CIRCUIT ANTENNAS




-287-
IX. MICROSTRIP LINE LEAKY-WAVE
STRIP ANTENNAS 289
A.  BACKGROUND AND MOTIVATION 289

B. THE NATURE OF THE LEAKAGE FROM HIGHER MODES

ON MICROSTRIP LINE 292
1. The Radiation Region and Leaky Modes 292
2. The Two Forms of Leakage 294
3. The Ratio of Powers in the Surface Wave
and the Space Wave 296
C. ANALYSIS AND PROPERTIES OF THE LEAKY MODES 304
1. Derivation of Accurate Expression for the
Propagation Characteristics 304
2. Numerical Comparisons with the Literature 310
D. STEEPEST-DESCENT PLANE FORMULATIONS 315
1. Motivation 315
2. Review of Some Properties of the Steepest-Descent
Representation 316
3. Steepest-Descert Plane Plots for Microstrip
Line Higher Modes 324
a. Microstrip Line with Open Top Using the |
Cross-Section Dimensions of Boukamp and Jansen 325
b. The Boukamp-Jansen Structure with a Covered Top 334
¢. The Menze! Antenna Structure 336
E. INVESTIGATIONS RELATING TO MENZEL’S ANTENNA 341
1. Descriptior of Menzel’s Antenna 341
2. Analysis of Menzel’s Antenna in Leaky Mode Terms 343
3. Parametric Dependences for Antenna Design 350
4. Performance When Properly Designed as a

Leaky-Wave Antenna 355

Downloaded from http://www.everyspec.com ————— e,



Downloaded from http://www.everyspec.com

. 289 -

IX. MICROSTRIP LINE LEAKY-WAVE STRIP ANTENNAS

(With: Dr. K. S. Lee, former Ph.D. student,
now at Texas Instruments, Dallas.)

A. BACKGROUND AND MOTIVATION

During the late 1970’s, a paper presented by H. Ermert at the European
Microwave Conference stimulated instant controversy. That paper and a subsequent
publication [25] presented a thorough mode-matching analysis of modes on microstrip
line, treating numerically the dominant mode and the first two higher modes. A
principal conclusion was that a “radiation” region exists close to the cutoff of the
higher modes, although no mention was made of the characteristics of this "radiation”
region or of the nature of the radiation. Because the description of this region, made
in that talk and in published papers [25,26], was incomplete and therefore unclear to
many, confusion persisted and certain practical consequences remained hidden.

Also in this general period, a paper by W. Menzel [27] presented a new traveling-
wave antenna on microstrip line fed in its first higher mode and operated near to the
cutoff of that mode. Menzel proposed his structure as a competitor to a microstrip
patch antenna, and he therefore made his antenna short in terms of wavelength. He
also assumed that the propagation wavenumber of the first higher mode was real in
the very region where Ermert said no such solutions exist; since his guided wave, with
a real wavenumber, was fast in that frequency range, Menzel presumed that it shouid
radiate. His approximate analysis and his physical reasoning were therefore also
incomplete, but his proposed antenna was valid and his measurements demonstrated
reasonably successful performance.

The first feature of interest or challenge here thus involves the clarification of the
confusion or contradictions implicit in the paragraphs above. The second feature of
interest relates to the stark simplicity of Menzel's antenns; it consists simply of a length
of uniform microstnip line fed in its first higher mode. Menzel’s antenna is incompletely
understood; for example, it seems to be too short since a large back lobe was found
experimentally, but it is puzzling why the antenna should radiate so well in traveling
wave fashion even though it is so short (2.23) ). Thus, an accurate analysis of that

structure should explain the questions about its behavior, and indeed tell us how to
improve its performance features. In view of the structural simplicity, one is
stimulated to perform such an analysis in case it may result in a practical new antenna

type.
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The upparent contradictions are resolved when it is realized that leaky modes are
present in this "radiation” region, and particularly so if the region can be characterized
by only a single leaky mode. Not all leaky modes are physically significant, and more
than one leaky mode may be present at the same time; each case must be examined
separately for the physical significance of the role of leaky waves in any given
“radiation” region. We conduct such an examination in Sec. D of this chapter, making
use of the steepest descent plane, and we show that Ermert's "radiation” region is
characterized in a highly convergent manner by essentially a single leaky mode.

Once we recognize the relevance of leaky modes to the “radiation” region of
microstrip line higher modes, the application to leaky-wave antennas becomes evident.
In particular, it is clear that Menzel's traveling-wave patch anteana is a leaky-wave
antenna in principle, even though he did not recognize this fact and did not discuss the
antenna’s design or behavior in those terms. A leaky-wave analysis is necessary to
answer the questions raised above, and to learn how to improve the antenna
performance in a controlled way.

The existing literature does not contain any solutions relevant directly to this
problem. Neither Ermert’s [25,26] nor Menzel’s [27] papers contain any complex
solutions for the propagation constant. The only complex solutions for microstrip
higher modes are given by J. Boukamp and R.H. Jansen [28] as part of a larger paper,
but those solutions hold for a line with a top cover such that only the surface-wave
mode can leak away.

None of these papers discusses the nature of the leakage produced. It turns out
that the leakage is composed of two types, a surface wave and a space wave, and that
each occurs at different onset conditions. These interesting features, and the ratio of
the powers radiated into each type, are discussed in Sec. B.

Motivated by the reasons above, we have conducted studies along the following
lines:

(a) Examination of the nature of the leakage: the types, onset conditions, and
proportion of power into each type (Sec. B).

(b) Derivation of an accurate solution and computation of numerical values for the
properties of microstrip line higher modes in their leakage range when there is no top
cover, corresponding to the case of an antenna (Sec. C).
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(c) Employment of the steepest descent plane to assess the validity of the intuitive
presumption that the "radiation” region is characterized essentially by only a single
leaky mode (Sec. D).

(d) Analysis of Menzel's antenna, and numerical comparisons with his
experimental and theoretical results, together with an evaluation of his antenna (Sec.
E).

(e) Presentation of performance characteristics of properly designed leaky-wave
antennas of the Menzel type (Sec. E).

Some of the contents of Secs. B, C and E have been presented at symposia and
appear in their Digests [29-31].*

After the writing of this chapter was completed, some of the material that was presented at an
URSI Symposium [31] was included in a short paper that appeared in Radio Science [32]. One of
the reviewers of that paper indicated that some Russian publications contained material that
overlapped some parts of Secs. B and C of this chapter. Those references, and how their contents
relate to those of Secs. B and C of this chapter, arc given in [32].

e e e e e NI

- o - iy
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B. THE NATURE OF THE LEAKAGE FROM HIGHER MODES ON
MICROSTRIP LINE

The dominant mode on open microstrip line is always purely bound, but the higher
modes can leak power away when the frequency goes below some critical value.
When the open microstrip linc is operated in its first higher mode, the electric field
lines are roughly those shown sketched in Fig. 9.1. We see, therefore, that radiation
can be expected to occur directly above the strip and with horizontal electric field
polarization. Power can also te leaked away in the horizontal direction in the form of
a surface wave.

Fig. 9.1 Rough sketch of electric field lines for open microstrip
line operated in its first higher mode.

The complex wavenumber «, of the guided leaky mode is in the form
k, =8-ja 9.1

where § is the phase constant :and a is the attenuation constant, which represents loss
due both to leakage and to metal and dielectric losses. We assume here, however, that
the metal and dielectric losses are negligible, so that a may be viewed directly as a
leakage constant.

1. The Radiatlon Region and Leaky Modes

One of the figures presented by Ermert [25,26) is reproduced here, with
modifications, as Fig. 9.2. His curves are the solid ones shown, for the lowest mode
and the first two higher modes of microstrip line. All of his wavenumber values are
real, meaning that the modes are purely bound in those ranges. He states, however,
that in the region shown lined no real solutions exist, and he called this region the
"radiation region." We have added the dashed lines appearing in this region in Fig. 9.2,
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Fig. 9.2 Dispersion curves for the lowest mode and the first

two higher modes in microstrip line with a top cover.
The normalized phase constant 8/k, is plotted against
frequency. The solid lines (given by Ermert [25,26])
represent real wavenumbers, whereas the dashed lines
correspond to the real parts of thz leaky mode
(complex) solutions in the “radiation region." The
microstrip line dimensions are: strip width = 3.00
mm; dielectric layer thickness = 0.635 mm, ¢, = 9.80,
and the height of the top cover is five times the
dielectric layer thickness.

Fig. 93 Top view of the strip of microstrip line and the
dielectric region around it. Wavenumbers g and &,
correspond, respectively, to the phase constant of the
leaky mode guided by the strip and the wavenumber of
the surface wave that propagates away at some angle
during the leakage process.
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which corresponds to complex solutions, and where, of course, only the real part is
plotted. Physically, these complex solutions signify that this mode has become leaky in
this region.

Ermert selects a spectral description for the modes of microstrip, and in his second
paper [26] he rejects any inclusion of leaky modes since they are non-spectral (true).
He then concludes that these leaky modes are "no longer of importance” in his analysis
(false). His rejection of leaky modes not only caused much initial confusion, but it
prevents one from understanding certain practical consequences. Not all leaky modes
are physically significant, but we show in Sec. D, by reference 10 steepest-descent
plots, that for this problem the continuous spectrum in Ermert’'s region is
characterized in a highly corivergent manner by essentially a single leaky mode. The
physical importance of leaky modes despite their non-spectral nature is quite an old
story, but it must be shown in each case that a particular leaky mode is physically
valid; in this case, we have shown that it is, in agreement with obvious physical
intuition,

2. The Two Forms of Leakagc

The leakage can occur in two forms: a surface wave and a space wave.
Furthermore, the onset of leckage for each form is given by simple conditions.

A top view of the strip ind the dielectric region around it is shown in Fig. 9.3.
With this figure, we examine the case of leakage away from the strip in the form of a
surface wave on the dielectric layer outside of the strip region. When there is leakage
into the surface wave, the 1nodal field propagates axially (in the z direction) with
phase constant 3, and the surface wave propagates away (on both sides) at some angle
with phase constant k_, as shown in Fig. 9.3. The surface-wave wavenumber k has
components k, and k_ in the z and x directions, respectively, where k, must be equal
to B, since all field constituents are part of the sume leaky modal field. We may
therefore write:

kP=k?.- 9.2)

For actual leakage, k, must te real, so that the condition for leakage is kx2>0. (When
there is no leukage, i.e., the inode is purely bound, the modal field decays transversely
and k is imaginary.) Applying this condition to (9.2), we find that, for leakage,

B<k (9.3)
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Relation (9.3) defines the lined region in Fig. 9.2; the upper boundary of that region is
actually the dispersion curve for the surface wave, of wavenumber k_, that can be
supported by the dielectric layer on a ground plane, if the microstrip line is open
abave, or by the dielectric layer between parallel plates, if there is a metal top cover.
At the onset of the surface wave, it emeiges essentially parallel to the strip axis,
consistent with the condition 8 = k_.

As S (by lowering the frequency) is decreased below the value k_, power leaks
away in the form of a surface wave, as discussed above. As § is decrcased further,
power is then also leaked away in another form, the spacc wave. If the microstrip line
is open above, this wave actually corresponds to radiation at some angle in the yz
plane, the value of this angle changing with the frequency. At the onset of this space
wave, the wave emerges essentially parallcl to the strin axis, so that 4 = k, then,
where k (=2x/) ) is the free-space wavenumber. This boundary corresponds to the
horizontal line 8/k =1 in Fig. 9.2. For values of 8/k <1 or

B <k, 9.4)

power will leak into a space wave in addition to the surface wave. Condition (9.4)
corresponds to the statement that the mode will radiite when its velocity is fast
relative to that for free space, in conformity with standard antenna thinking.

What happens when the microstrip line has a fop cover, of height H? If H <) /2,
approximately, such that only the surface wave can prop:gate in the dielectric-loaded
parallel-plate region, then all the other modes are below cutoff, and power cin leak
away only in surface wave form. If the plate spacing is increased, then some of the
non-surface-wave modes are above cutoff, and these nodes can also carry away
power. The "space wave" then corresponds to the sum of those modes.

At what value of § do these "space wave" modes begin to contribute to the
leakage? The value depends on the height H of the top cover. In most microstrip
lines, the dielectric layer is only about a tenth of a wavelength thick. If the top layer is
two wavelengths high, for example, the dielectric layer occupies a very small portion of
the cross-section, and it affects only slightly the properties of the non-surface-wave
modes. As a good approximation for such modes, therefore, let us neglect the
dielectric layer in computing the mode propagation constants so that we can obtain a
simple condition for the onset of that form of leakage. The first above-cutoff
parallel-plate mode will then have the wavenumber
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k =V k? (x/H)}

PP °

and thc condition for the leakage into that mode, following the reasoning used
previously, is

Bk, (9.5)
or
1/2
¢ A
k—<[1.[?ﬁ-]2] (9.6)

For H large with respect to wavelength, the critical value of ﬂ/ko is almost unity,

which is the value correspanding to the open microstrip line. As examples, for
H/A , = 5,2, and 1, respectively, B8/k » is 0.99S, 0.97, and 0.87.

3. The Ratio of Powers in the Surface Wave and the Space Wave

The last consideration in this section relates to the ratio of power leaked into the
surface wave to that into the "space wave” in either the open or covered cases. As one
extremc, when the height of the top cover causes all of the non-surface-wave modes to
be below cutoff, all leaked power must be in surface wave form. As the height of the
top cover is increased, so th: t both forms of leakage may be present simultaneously,
this ratio will decrease. To determine this ratio quantitatively, we set up a mode-
matching analysis that permitted us to know how much power leaks into each of the
above-cutoff modes, including the surface-wave mode. The mode matching was
established at the vertical plane corresponding to the side (or edge) of the strip, and
the computer program for the procedure was furnished through the courtesy of Prof.
S.T. Peng of the New York Irstitute of Technology.

We define R as the ratio of the power radiated into the surface wave to the total
radiated power. The structure into which the radiation occurs is a parallel-plate
waveguide of height H, in which we vary the height H of the top cover to determine
how the ratio R changes with height /. We achieve the open microstrip line in the
limit as H— oo. Curves of -atio R as a function of height H were obtained for a
specific set of microstrip line dimensions, for three different frequencies. The line
parameters are (see Fig. 9.1'w = 1500 mm, A = 0,794 mm and €, =2.32, and the
three frequencies are 8.20 GHz, 8.00 GHz and 6.70 GHz. These cross-section
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dimensions are those used by Menzel [27] for his antenna; his operating frequency was
6.70 GHz. In order to simplify the calculation, since /1 /A << 1 and H >> h, we
assume that the dielectric material does not extend outside of the strip region, so that
the region outside is a pure parallel-plate region. The resulting geometry is shown in
the insets in Figs. 9.4 to 9.6. The error introduced is belicved to be very small, but the
calculation procedure is simplified substantially.

To summarize the objective here, we take the microst:ip line to be operatin in the
leakage range of the first higher mode. When there is a top cover present, of height
H, the power that leaks goes into parallel-plate modes. As the frequency is lowered
into the leakage range, the power at first leaks only into the n =0 parallel-plate mode
(a TEM mode, which corresponds to the surface-wave mode that would be present if
the thin dielectric Jayer of height A continued into the parallel-plate region). As the
frequency is lowered further, or as the top cover is raised, additional parallcl-plate
modes carry power. We wish to know, for the anienna application later, the
proportion of power going into the surface wave (here the TEM mode) to the total
power radiated. We thus define the ratio R as

P

= -2 =
P, + 3P, + 3P,
n n

R 9.7

where P is the power in the TEM (n =0) mode, and P, and P,“ are the powers
carried by the nth TE and TM modes, respectively, where these various modes

propagate at various angles in the parallel-plate region, the angles changing as the
frequency or the plate height H changes.

The variations of ratio R with normalized plate height H /A for three different
frequencies are presented in Figs. 9.4 to 9.6. The frequency of 8.2 GHz for Fig. 9.4 is
the one closest to the onset of leakage. We note that for small values of //A) the
ratio R =1, indicating that only the TEM mode is above cutoff. As H /A increases,
we observe first a very sharp drop and then a recovery to a much smaller value since
now the n =1 modes share the total power. This behavior continues in characteristic
fashion as H /A ) increases further. For the curves in Figs. 9.5 and 9.6, corresponding
to lower values of frequency, we see that the range over which only the TEM mode is
present becomes greatly reduced, and that the value of the ratio R becomes very small
when H /) becomes large. The latter feature is especially pronounced in Fig. 9.6,
where a dashed line is introduced to represent the average behavior of the curve since
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Fig. 9.4 The ratio R of the power radiated into the lowest

mode to the total power radiated into all the
propagating modes in the external parallel plate guide
as a function of the height H of the metal top cover
(sce inset). For frequency f = 8.20 GHz, near to the
onset of leakage.
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Fig 9.5 Same as Fig. 9.4 except that frequency f = 8.00 GHz.
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Fig. 9.6
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Same us Fig. 9.4 except that frequency f = 6.70 GHz,
the operating frequency that Menzel {27) employed for
his antenna. The dimensions in the inset correspond
to thos: of his antenna.
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the sharp variations then become individually small and very close together. At a
value of H /A, of 15 or so, for this case, we see that the ratio R is only about 0.02,
signifying that very little of the radiated power actually ends up in the lowest mode
when the top cover height is electrically large. This result is very encouraging for
antenna applications, where one wants as much power as possible to go into the space
wave,

The extremely sharp dip that is seen in Figs. 9.4 to 9.6 at the value of H /A at
which the next higher mode begins to propagate deserves further examination. Since
P =Y |V | 2 for any given mode, we may rewrite (9.”) in these terms. The mode
voltages V, are excited by the electric field in the vertical plane defined by the side of
the strip region, and are different for each mode. The characteristic admittances Y,
could be phrased either in terms of TE and TM modes propagating at an angle or as
H-type and E-type modes propagating in the x direction. It is more direct to use the
H-type (LSE) and E-type (LLSM) modes, for which ([33) or [14})

. \2
) CAY
Y, = ——— (9.8)
wi, km
e “Jeokm
Y =—— (9.9)
2
T )

where km is the propagation wavenumber of the nth parallel-plate mode in some
direction §, , and k_, is the component of that mode in the x direction, perpendicular
to the strip axial direction.

Relation (9.7) for R is then rewritten as

2
Y, |V,

2 rl rd 2 2, s, e 2
AR AN AR AR DN AR A
n n

R = (9.10)

or
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R - (9.11)
Yn’ an 2 y"l i Vno 4 2 *
1+ | = | +
B Yo Vo n Yo Vo

The forms of Y,” and Y,"“ are given by (9.8) and (9.9); we see from (9.8), for H-
type (LSE) modes, that when k; ~+90, Y’ — oo, corresponding to the condition for
cutoff of that mode. Thus, as that mode just begins to propagate, the term
corresponding to it in the decnominator of (9.11) then greatly exceeds all the others,
and R—0 as a result. The effect should be v.ry sharp, and it should therefore result in
a strong deformation of a curve of R vs. H /X . The question as to whether R actually

goes to zero at that point is still open, however, since V, may simultaneously go to
zero. One cannot be sure from the numerical solutions, and we have not checked this

point analyticaily.

Finally, we wish to find at what values of f/ /) the ratio R approaches zero. For
any given mode, the sum-of-squares relation oecomes

2 2 2
1 [km] [k’"] g 9.12)
=l +|7—| +|— .
ko ko [ko ]
where
k
yn n
= (9.13)
ko 2H /A %

and 4, = 8 for all the parallcl-plate modes since the whole guided mode moves in the
z direction with phase constant 8. Relation (9.12) thus becomes

K 2 2 2
= " LA
1-["0] + [2H/'\o] + ["o] (9.14)

For Y’ to become infinite, we must set k., [k, =0, so that (9.14) yields
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H n/2
X, (- (8K, )21 G

The sharp dips in the curves in Figs. 9.4 to 9.6 are fourd to occur exactly in accord
with condition (9.15).
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C. ANALYSIS AND PROPERTIES OF THE LEAKY MODES
1. Derivation of Accurate Expression for the Propagation Characteristics

H. Ermert [25] has performed a careful mode-matching analysis for the
propagation characteristics of higher modes on microstrip line, but two limitations
exist with respect to his solution. The first is that he obtains only real solutions, so that
he provides no information with respect to the leaky wave range, which requires
complex solutions. The second is that his microstrip line structure has a top cover with
a height only five or so times the substrate thickness, so that even if he had furnished
leaky mode numerical values they would not be directly applicable to antenna
problems.

J. Boukamp and R.H. Jansen (28] do present complex solutions valid for the leaky
wave region of the first higher mode, but their structure also has a top cover that
permits only the surfuce wave to propagate in the region away from the strip. Their
radiated power therefore occurs only in surface wave form, whereas we showed in the
previous section that in an antenna application very little of the radiated power
appears in that form since almost all of it goes into the space wave. Since the
Boukamp-Jansen results are not directly applicable, we felt it was necessary to derive
a reasonably accurate result for such leaky waves when there is no top cover present.
We present such a derivation below in this section, but a little later we compare
numerical values obtained from it with the values given by Boukamp and Jansen, and
we note the differences that ¢rise when a top cover is present or absent.

The cross section of microstrip line is shown again in Fig. 9.7, where the mid-plane
is seen to be an electric wall, or short circuit, in agreement with the electric field lines
indicated in Fig. 9.1, We also draw attention to the vertical plane T, located at the
side (or edge) of the metal strip. The width w of the strip is also much wider than
typical values for dominant mode use. Below the cross section in Fig. 9.7, we have a
transverse equivalent network, representing the bisected structure, consisting of a
transmission line of length equal to w /2, the half-width of the strip, with a short circuit
on onc side corresponding to the electric wall mid-plane, und a terminating
admittance on the other. The transmission line represents the dielectric-filled
parallel-plane region under tae metal strip; the only mode that can propagate there is
the TEM mode at an angle. The only element still needing characterization is the
admittance element Y, evaluated at reference plane T. A transverse resonance of this
network would then yield the transverse wavenumber k e which is related to the

desired longitudinal propagation wavenumber k, = §- ja by
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k' =k'e -k’ (9.16)

The propagation of the guided first highet microstrip mode can, of course, be
viewed in terms of this TEM mode under the strip boincing back and forth at an
angle between the two sides of the strip. In the frequency range corresponding to real
values of k, (see Fig. 9.2), total reflection occurs at each bounce, and the reflection
coefficient " at the strip side has magnitude unity. As the frequency is reduced, the
angle of the bounce gets closer to the normal. In the leaky wave region (the lined
region in Fig. 9.2), this angle is no longer beyond the total reflection value, and
| T'| <1, where T is the reflection coefficient at T for ti1e TEM wave incident at an
angle on the strip side, the geometry for which is shown in Fig. 9.3.

We therefore need an expression for either the output admittance Y, or the
reflection coefficient T' at the strip side (they are simply related, of course). It turns
out that a rigorous solution for I' for the structure in Fig. 9.8 has been provided by
D.C. Chang and E.F. Kuester [34). Their solution is based on a Wiener-Hopf
approach, but unfortunately it is difficult to extract a usc¢ ful analytical form from this
paper. In a later paper, however, E.F. Kuester, R.T. Johnk and D.C. Chang [35]
present a simpler formulation valid for electrically thin substrates (k 4 /e, <<1),
which corresponds to our needs. They give numerical comparisons for sever:l cases
between their approximate simpler solution and their rigcrous one, and they show that
their approximate expression is very good under the thin-substrate condition. We
therefore employ their approximate formulation, which th.ev phrase in the form

I=elX (9.17)
which is most directly useful when total reflection occurs, since x is then real. When

[ T| <1, corresponding to the leakage range, x becomes complex.

The expression for x under the thin-substrate approximation is given in reference
(35] as Eqgs. (13) to (16), together with Egs. (7) and (9). Their notation is quite
different from ours, and the following correspondences apply:

2 1/2
n=\e.a=k/k, d=h, [’ =k [k (9.18)
1/2 2 .,1/2 .
(-2 =k ko (o®1)V% = jk_Jk, (9.19)
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Fig. 9.7 Cross-s.ction of microstrip line operated in its first
higher mode, so that the strip is wider than usual and
the mid-plane has short-circuit symmetry. Below it we
have the transverse equivalent network for the
structur 2, where terminating admittance Y, is located
at reference plane T.

metal top

Fig. 9.8 Geometry of side of strip in microstrip line when
isolated {rom the other side. This is the structure for
which T is derived in reference [35], but the notation
and coordinate system used in our equations are those
indicateu here.
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For total reflection, k, =-j | k_ |, so that then

1/2

12 = |k | /k, (9.20)

When our notation is employed in their equations, the exprression for x actually looks a
bit simpler, and becomes

kZ
X = 2tan’ [;— tanhA] -f (k, /k,) (9:21)
with
kzh 1
A= —-w—{ [;,--1] [ln(jkxh)-o» '1-1] +2Q,(-6,) -2Q0(5")} (9.22)
2kx¢h 1
fe(-k"/ko) =.— { — [ln(jkxh)wy-l] - 2Qo( -6,) -ln21r} 9.23)
n €
where

6 = =0 (9.24)

Q,@) = f‘j lm , |z|<1 (9.25)

m=1

0,(0) =0, v=05T72

We find that for € = 9.70, Qo = 0.175, while for g, =232, Y = 0.064.

Expressions (9.17) and (9.21) through (9.25) provide only the reflection coefficient
at the side of the strip; this reflection coefficient is simply an element in the transverse
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equivalent nctwork shown in Fig. 9.7, and it must be utilized in the transverse
resonance coodition. 1f we wish to employ the admittance form of this condition, we
recall that

S rr o oox 026
Yo.'ur"’mz (9.26)

using (9.17). For the short-circuit bisection of the structure shown in Fig. 9.7,
corresponding to the first higher mode and other odd-numbered higher modes of
microstrip line, the transvers: resonance condition

Y(T)+Y(T)=0 (9.27)
in admittance form yiclds
w X
cotk., -2- + tan-2- =0 (9.28)

For the even-numbered moxles, for which the mid-plane is a magnetic wall or open
circuit, relation (9.27) yields

w

X
tank,, - -tan " =0 (9.29)

The complex phase term x is of course given by (9.21) and the equations following it;
the finil desired longitudina’ wavenumber k (=4 - ja) is obtained by using (9.28) or
(9.29) together with (9.16).

Although expressions (9.8) and (9.29) are simple enough, even simpler transverse
resonaince relations are ob-ained by using the reflection coeff.cient form of the
transverse resonance conditicn

TMT @) =1 (9.30)

When the mid-plane is a short circuit, I' at the mid-plane is -1, and

— f2, W /2
L (T)= -e 9.31)
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Since T(T) is given by (9.17), we find on use of (9.30) that

J(xHew) tinw
e = e

= , noid (9.32)

or

x-k, w==%nn,nodd (9.33)
When the mid-plane is an open circuit, ' at the mid-plane becomes unity, and the
relation corresponding to (9.33) is

X-k, w=2%2mm , m integer (9.34)
Of course, (9.33) and (9.34) can be combined as

x-kw=2z2nr,n=012,... (9.35)
where n =0 yields the dominant (quasi-TEM) mode, n =1 produces the first higher
mode, which is our primary interest, and the higher even and odd values of n
correspond to higher modes with open-circuit and short-circuit mid-planes,
respectively.

Some additional considerations are required before compuiations can progress for
complex values of k,. The quantities k__ and k_ occurring in (9.21) to (9.23) and in
(9:35) involve square roots in their relation to k,, as secn in (9.18) and (9.19). It is

necessary to select the proper signs of these square roots so that our solutions appear
on the proper sides of the branch cuts associated with these square roots. In reference
(35] the authors considered all wavenumber quantities to be either real or imaginary,
so that the considerations mentioned above were simpler. Here, the wavenumbers in
the leaky wave region are all complex.

The square roots involved are those indicated in (9.18) and (9.19) (it is seen that
the last equation in (9.18) is the same as that in (9.16)). The sign of each square root
must be taken consistent with the requirement that the guided mode field decay in the
z (longitudinal) direction, and therefore increase transversely in the x direction, such
that

kz =8-ja, kxc = kxcr+jk

xa ’

k, =k + jkg (9.36)
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where all constituent quantities are positive real. The signs to be taken are already
indicated in (9.18) and (9.19).

Lastly, we should appreciate that two types of approximation are present in this
analysis of higher modes on microstrip line. The first one has already been
mentioned; it is that express on (9.21) for x is valid only for thin substrates, and is a
simplification {35) of a rigorous (Wiener-Hopf) solution derived earlier [34]. The
error introduced should be small, since our microstrip dielectric thicknesses 4 all
satisfy the thin substrate conlition.

The second type of apprcximation may be expressed as the neglect of interaction
between opposite sides of the microstrip line. Our transverse equivalent network (Fig.
9.7) recognizes the symrietry present, and accurately represents it. The
representation for the strip side, however, comes from a solution, (9.21), that
corresponds to an isolated strip side, as shown in Fig. 9.8, with the other side infinitely
far awiy. There can exist some field interaction between the two sides that is not
taken into account in our an:lfysis, but such interaction should be very small when the
strip is reasonably wide, as it is for all the cases we consider.

It is believed that the analysis presented is accurate for the structures and the
conditions considered here, and such belief is vindicated by the comparisons shown
next with special cases in the literature where the results have been derived by
different approaches.

2. Numerical Comparisons with the Literature

In order 10 check the accuracy of the analysis presented above, we have made
numerical comparisons witt two cases in the literature, the first for purely real
solutions for the propagation wavenumber and the second for complex values. These
two cases have already been inentioned at the beginning of subsection 1.

The case for which all tte numerical values of the propagation wavenumber are
real is the one by Ermert {25]). He computes numerical results for three modes: the
dominant mode (n =0), and the first two higher modes (n =1 and 2), but only in the
range for which the modes are purely bound. His analysis involves & mode-matching
procediire in the horizontal direction, and it is therefore completely different from the
one presented here. Furthermore, his structure is somewhat different; it has a
metallic top cover whereas ours is completely open above.
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A comparison between the wavenumber values computed by Ermert (25] and by
us is presented in Fig. 9.9, where the solid lincs represent our numerical values and the
dashed lines those of Ermert. It is seen that the agreement between the two sclutions
is excellent for all three modes over most of the frequency range. A sma!l discrepancy
between the two solutions appears for each mode near the low frequency end for each
of the modes. Such a discrepancy is to be expected since in those regions the vertical
decay rate of the field is less, so that the effect of the top cover is more proncunced.
We may therefore conclude that the difference between tle two solutions is due to the
presence of the top cover in Ermert’s structure, and that the accuracies of both
solutions are quite good.

The second comparison is miade with the results presented by Boukamp and
Jansen [28], which apply to the leakage range, where the wavenumbers are complex.
They present results only for the first higher mode; their method of analysis is
completely different from ours, being based on a spectral domain approach tuken in
the vertical direction; and their structure differs from ours in that they employ a
metallic top cover, as does Ermert. We should therefore :xpect certain differences in
our comparison, and indeed we find some.

The dispersion data are presented by Boukamp and Jansen in a different sort of
plot, reproduced here as Fig. 9.10.

o0 100 200 ky'/m”! =
| 135 1o
o
/ 130 T 2
hyz0,635mm
-100 12.5 hy/hyz 10
ky' 2wihz S
T €z 97¢,
I lﬁ €= 10¢,
-200L—L122
Fig. 9.10 Dispersion data computed by Boukamp and Jansen

(28] for a covered microstrip line for the first higher
mode in the range of complex values. The notation is
different from ours; in particular k” and k,~ are our §
and -a, respectively.
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h = 0.635mm

w = 3.000mm

H = 6h

er" 9-80 er

J€=3.13

aof

1.0 ~—— Our Theory (open top)

~ - = Ermert's Theory (covered top)

0 1 | A1 | J
0 10 20 30 40 50
f in GHz
Fig. 9.9 Compar sons between real values of 8/k, computed by
us and by Ermert (25] for the lowest three modes of
microstrip line. Ermert’s structure has a metal
covered top whereas ours is completely open above.
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The wavenumber components ky‘ and ky * are our § and - a, respectively, their 2w is
our strip width w, h, is our dielectric thickness &, and h, is the height of the top
cover measured from the strip. The frequency is indicated as a parameter along the
curve of ky" vs. ky'. We have obtained their values of a and 8 as a function of
frequency by interpolation from this plot.

Since k, is now complex, comparisons are made fcr both a/k  and B/k , and
these comparisons appear in Fig. 9.11(a) and (b). The effect of a top cover is
obviously more pronounced in the leakage range since the nature of the space wave is
seriously modified by it. In fact, for the dimensions of the structure in Fig. 9.11, the
top cover permits the presence of the surface wave only, whereas the leakage from our
open-topped structure is due almost completely to a space wave, as shown in Sec. B,3.
We should therefore expect significant differences betwecn our solution (solid curves)
and those of Boukamp and Jansen [28] (dashed curves).

We observe from Fig. 9.11(b) that in the neighborhood of the onset of leakage the
values of B/k  for the structure with a top cover are slightly higher than those for the
completely open structure. That same behavior is secn in Fig. 9.9 for Ermert’s
structure as one approaches the onset of leakage. Also :hown in Fig. 9.11(b) are the
very slightly curved solid and dashed lines corresponding to f/k =k /k  for the open
structure and for the one with the top cover, where k_ is the wavenumber of the
surface wave in the outside region in each case. Those values are different for the two
structures because the top cover increases the value of k.. As explained in the
discussion surrounding (9.3) in Sec. B,2, the leakage begins in the form of a surface
wave when the 8/k | curve crosses the k /k  dispersion curve corresponding to it. We
may note that the onsets of leakage in Fig. 9.11(a) correspond to those crossings in
Fig. 9.11(b), as they should. The space wave contribution to the leakage from the
open structure begins at the frequency at which the 8/k | curve crosses the f/k =1

- line,

It is interesting to observe that despite the stnuctural differences and the
differences in the nature of the leakage, the basic curve shapes are very similar, and
the onsets of leakage occur at almost the same frequency. Regarding the performance
differences, some points have been noted above; another feature is that the top cover
seems to enhance the leakage rate. It should also be observed that for both cases the
leakage rate becomes large rather rapidly as the frequency is lowered.
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Fig. 9.11 Vari.tion of leakage constant a/k, (figure (a)) and
phase constant 8/k, (figure (b)) with frequency for .
the first higher microstrip mode in its leakage range.
The solid lines in both (a) and (b) represent our
solution for an open microstrip line, and the dashed
lines are the numbers presented by Boukamp and
Jansen [28] for a line with a top cover of small height.
The microstrip line dimensions are those given in
refercnce [28): dielectric layer thickness A, = 0.635
mm, strip width = 5 h,, ¢, = 970, and for the

cover 3d case, the height of the top cover = 104, .
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D. STEEPEST-DESCENT PLANE FORMULATIONS
1. Motivation

The two related reasons for undertaking an alternative representanon of the field
in terms of the steepest-descent plane are:

(a)  to assess whether or not the complex (leaky mode) solutions for microstrip line
higher modes are physically realizable; and

(b)  to determine whether or not more than one such leaky mode can contribute
physically to the field at the same time.

Solutions to the dispersion relation for a given structure may or may not be
physically meaningful. We must examine whether or not that solution will contribute
to the field of an arbitrary source placed in the neighboriood of that structure. Even
a solution that satisfies all boundary conditions in addition to the field equations need
not contribute directly to the actual field, and may therefore not be actually physically
realizable. A well-known example is the Zenneck wave, which can at best contribute
weakly to the total field only as a correction term, in the inathematical sense of a pole
located close to a saddle point with the pole itself not contributing.

When the solution is a leaky mode, a further doubt is .ntroduced because the leaky
mode does not satisfy the boundary conditions at infinity in the cross-section. The
solution thus implies that the field increases transversely away from the structure and
diverges at infinity. This non-physical feature of the leaky wave solution disqualifies it
from inclusion in a "proper” or "spectral” field representation, but the leaky wave can
itself be physical because it exists only in a restricted region of space and never reaches
infinity. These subtle features have historically been the subject of much confusion
and speculation, but they have been explained in quite simple terms many years ago in
various contexts [for example, 36-38). The fact that leaky waves can indeed be
physical and can indeed represent a physically realizable and practical portion of an
antenna’s near field is a well-known old story, but in each case one’s intuition must be
supplemented by a determination as to whether or not a particular leaky wave actually
contributes to the field.

The usual field representations are the "proper” or "spectral” representations,
consisting of all the discrete modes plus the continuous spectrum of an open structure.
All of these modes are proper in the sense that, suitably defined, they satisfy all
boundary conditions, including those at infinity for an open structure. Since leaky
waves do not satisfy the boundary conditions at infinity, they are "improper” modes

I ra T T AT A
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and they are not included in :\ spectral representation.

On the other hand, leaky waves are included in a hidden way within the continuous
spectrum of proper modes, and may in fact in many cases be viewed as a highly
convergent rephrasing of this continuous spectrum. The continuous spectrum has
rarely been found to be useful directly in practical problems, whereas leaky waves
have been shown to be enormously practical both in the design of leaky-wave antennas
and in the explanation of many physical phenomena, including Wood’s anomalies on
optical gratings {39), Cerenkov and Smith-Purcell radiation [40,41], radiation from
plasma-sheathed reentry vehicles [42,43), blind spots in phased-array antennas (44),
optical prism and grating couplers [45), and so on. Ermert [26] realized that leaky
waves were included in the continuous spectrum description of his "radiation” region
of microstrip higher modes. but he chose to describe that region only in spectral
terms, and he rejected any further consideration of leaky modes, thereby neglecting
the only practical way to evaluate explicitly the properties of the "radiation” field.

We stated above that leaky modes are contained within the continuous spectrum,
but a rephrasing of the continuous spectrum in terms of leaky modes is most practical
if the field in the “radiation” region can be represented essentially by only a single
leaky mode. Although we 1nay believe intuitively that this should be the case, the
purpose of this section is to assess quantitatively the validity of this supposition.

In order 10 determine waether or not the leaky mode corresponding to the first
higher mode on microstrip L ne contributed to the "radiation” region field, and also if
other leaky modes may ccntribute at the same time, it is necessary to use a
represcntation that is not spectral. The customary alternative representation for this
purpose is the steepesi-descent representation. It is simple in formulation, and it
possesses many virtues. For example, the representation automatically has a polar
form, v/ith a saddle point given directly by the observation angle ¢. Before we make
use of the stcepest-descent representation, we review some of its properties in the
next subsection.

2. Review of Some Properties of the Steepest-Descent Representation

We are concerned with evaluating the field in the vertical plane above the center
of the strip; that plane is the sz plane in Fig. 9.12, and it bisects the cross section. The
field E at and above the inteiface (y >0) is then given as
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E _1_°° ik,y ik,
0.2 = [r)ye™ e a, (9.37)

when we adopt the time dependence exp (<iwt ). This time dependence was selected in
this section so that the more customary form for the stuepest-descent plane can be
employed; however, all relations here can be made consistent with the usual
engineering choice (exp (jurt)) for the time dependence, used everywhere else in this
report, by simply replacing i by -j wherever it appears.

Cross Section Longitudinal
View View
Fig. 9.12 Cross-section and longitudinal views of microstrip line,

showing the coordinate system used.

The wavenumber variables ky and k, in (9.37) are evidently related to each other
by

k, = £ (k) -k (9.38)

where k is the free-space wavenumber. The term f (ky) depends on the structure
and the manner of excitation. Relation (9.37) expresses the field as a Fourier
transform with respect to k,, the integration being carried out along the real axis of
the complex k, plane. Physically, this representation is phrased in terms of
transmission in the transverse (y) direction, with modes of the form exp(ik,z). Thus,
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this representation consists of a continuous spectrum with purely real eigenvalues
varying between positive an! negative infinity. Lastly, because of the opea nature of
the structure we must imposc a radiation condition at infinity in the y direction as

Im(k,) = k, >0 (9.39)

where Im means the "imaginary part of," condition (9.39) thus implies that the waves
are decaying properly in the cross section asy — oo.

Because of the square root in (9.38), the k, plane contains two branch points and
therefore consists of two Riomann sheets. It is convenient to choose the branch cuts
so that those solutions satisfying (9.39) lie on the upper of the two Riemann sheets;
the appropriate branch cuts are shown in Fig. 9.13, which presents the upper (or top)
sheet of the k, plane. The cuts, corresponding to ky =0, and the locations of the
branch points above and below the real k, axis, are consistent with the consideration
that the medium in space possesses infinitesimal lasses, that is,

0<Imk’<< | k|2 (9.40)

The integration in (9.37) car. then be carried out along the entire real k. axis in the
top sheet of the two-sheeted k, plane.

The usual first approach :0 evaluating this integral is to deform the original path P
of integration into the path 2 along the semicircle at infinity, as shown in Fig. 9.13
for pasitive z; for negative z, the semicircle would be in the lower half of the top sheet
of the k, plane. The semicircle at infinity contributes nothing to the integral; hence,

by Cauchy’s theorem for complex integration, the representation in (9.37) may be
written as

d,
dk,

xky ik,z

E(y,_)=-~[f lf(k) dk, + 2ri EResidues] (9.41)

The integration in (9.41) is cirried out along the entire real ky axis, and it corresponds
to & pa'h around the branch cut in Fig. 9.12. The residue contributions may be present
becausc ot possible pole singularities which occur in the top sheet of the k, plane.

The alternative represemtation effected by the path deformation and indicated in
(9.41) corresponds to transmission longitudinally along the z direction, with modes
defined in the plane transver:e toz. The representation in (9.37) irvolved a
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Fig. 9.13 Top Riemann sheet of the complex k, plane, showing

branch cuts and paths of integration.

continuous spectrum only, but the one in (9.41) is seen to comprise both a continuous
spectrum and discrete modes, corresponding to the pole residues. These poles are
classified as "proper” or "spectral” poles since their fields comply with radiation
condition (9.39) and therefore decay at infinity. Such poles correspond to surface
waves or proper complex waves. On the other hand, leaky-wave poles are located on
the bottom sheet of the k. plane and are never captured by the deformed path P*;
they therefore never contribute to a spectral representation, and are classified as
improper, or non-spectral.

The continuous spectrum in (9.41) corresponds precisely to the continuous
spectrum representation of Ermert [26] in his "radiation” region. Unfortunately, the
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B2 B3 Ta Ty

Fig. 9.14 The stecpest-descent plane, showing the original path
P and the steepest-descent path SDP. The semi-
infinite strips marked T, through T, correspond to
quadran:s similarly labeled on the top surface of the k,
plane in Fig. 9.13; the ones marked B correspond to
quadran:s on the bottom Riemann sheet of the k,
plane.

integral in (9.41), corresponding to this continuous spectrum, is still very difficult to
evaluate, and another mettod is often used. This other method employs a
transformation to the steepest-descent representation.

For the steepest-descent representation, a transformation
k.=k,sing , ky =k, cos ¢ (9.42)

is emploved, where ¢ = ¢, +i, is the complex plane in which the steepest-descent
integration is carried out. The transformations in (9.42) plot the entire two-sheeted k A
plane into a strip 2x wide in the ¢ plane, as shown in Fig. 9.14. It is noted that each of
the eight quadrants in the k, plane transforms into a semi-infinite strip in the ¢ plane
identified as T (top) or B (bottom) und the quadrant number. The original path P,
also shown in Fig. 9.14, is deformed into the steepest-descent path SDP which passes
through the saddle point at ¢ = 8 and is defined by

cos(g, - @) cosh¢, = 1 (9.43)
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The saddle point integration is straight-forward since simple recipes are available
for it. We need not consider that integration procedure here except to point out some
features concerning it. The result of that integration yiclds the asymptotic far field,
valid only when r is large, in a direct polar form with the observation point
represented by (r,6) rather than (y ,z). Also, the saddle point is given directly by the
angle of observaticn & (As seen from Fig. 9.12, r and 9 are respectively the radius
vector and the polar angle of the field point in space.)

The saddle point integration is only a partial solution of the integral in (9.37), and
it represents a contribution to the field that is called the "space wave." Additional
discrete contributions may be present because of poles located between the original
path P and the deformed path SDP in the ¢ plane. As se:n from Fig. 9.14, these poles
between the two paths will be captured independently of whether they lie on a strip
marked T or B; in other words, the poles will contribute to the field whether or not
the poles are proper. Improper poles, such as leaky waves, which lie on the bottom
sheet of the two-sheeted k, plane, will contribute just as surely as proper poles, such
as surface waves, as long as they are captured during the deformation between the two
paths.

Whether or not a pole will be captured also depends on the angle of observation &
As one scans the field from broadside to endfire as a function of 8, the steepest-
descent path (SDP) moves parallel to itself from its iniersection with ¢, = 0 to its
intersection with ¢ = /2. Thus, if one wishes to be sure that all possible poles will be
capwred, the SDP curve should intersect the ¢, line at #/2. Let us label that SDP
curve as SDP *, and note from (9.43) that for 8 = n/2 the SDP * curve is defined by

sin¢, cosh¢,. =1 (9.44)

Since our primary interest is in the leaky wave poles, the relevant steepest-descent
plane is shown in Fig. 9.15, where a typical improper pole of this type is illustrated.
The pole is seen to be located on strip B1, which corresponds to the "wrong” Riemann
sheet of the k, plane as regards the spectral solution. When the pole is located as
shown, between the furthest steepest-descent path (SDP +) and the original path (P),
it is clearly captured, and it will contribute to the field. The condition for the leaky-
wave pole to be captured is thus

sing, cosh¢, < 1 (9.45)

making use of (9.44).
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Fig. 9.15 Leaky-wave pole located on strip corresponding to
improper solutions; also shown are the observation
angle 6., and the furthest steepest-descent path,
SDP ", incicating pole capture.

y
A
|
8.
\
\ \
4’p—r'1 ) \\ \\
e )/( NI

Fig. 9.16 Near field contours of a leaky-wave pole, where 6, is
the observa ion angle and ¢, is the real part of the
leaky-wave pole location. Within the wedge-shaped
domain of validity, the solid lines represent equi-
amplitude contours and the dashed lines signify equi-
phase contosrs. The arrow represents the direction of
power flow ind increasing phase.




Downloaded from http://www.everyspec.com

-33-

When the observation angle is ¢, the SDP, will go through the pole, as seen in
Fig. 9.15. We note, however, that angle 6. is always greater than the angle
corresponding to ¢p,. This fact has important physical significance, as illustrated in
Fig. 9.16, which presents some field characteristics associated with the leaky wave.
The pole at 4>p contributes to the field when 6> , but is not included in the field for
8<6_. The region for which 8> thus defines the donain of validity for the leaky
wave; it is physically significant only in that region. As seen in Fig. 9.16, the field
amplitude decays along = and is constant in the ¢P, dir:ction, so that the amplitude
must decay in all directions inside the domain of validity. Hence, the leaky wave field
exists only in the near field, and it cannot contribute directly t0 the far field. The
direction of power flow is also shown to occur in the ¢p, direction, however, so that
e power in the lcaky wave field continually moves out of the valid domain as the
field amplitude decays, thereby transferring its power 10 the space wave in steady
fashion.

Having discussed the physical meaning of the ieaky wave, let us return to how one
can locate the leaky-wave pole in the steepesit-descent plane. Writing
k, =B8-ja=p+ia,and ¢ = ¢ +ig,, the first of the two relations in (9.42) becomes

8/k, = sin 4, cosh, (9.46)

a/ko = cos ¢, sinh¢, (9.47)

We thus can readily find « and 8 from the pole location, but an expression for the
reverse is not easy to locate in the literature. After inverting (9.46) and (9.47),
however, we can obtain ¢; and 4, in terms of a/k, and B/k, by means of the following
expressions:

1/2
cosh’d; = + [+~ (8/k,)’ ] (9.48)

2 2 2 12
sing; = - [ - (B/k, )’ ] (9.49)

where ~ is defined as

2v= 1+ (a/k,) + (B/k ) (9.50)
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These expressions were eriployed to obtain the various leaky-wave pole plots
described in the next subsection.

The field at the interface (in our case, the field at the top swface of the strip,
constituting an "aperture” field) due to a pole at ¢p = ¢p, +i¢p, is of the form

e'P* e forz >0 (9.51)
where a and 8 are found from ¢p using (9.46) and (9.47). The terms 3 and a are
respectively the phase and the leakage constants along the interfuce. For low decay
rates, it is clear from (9.47) that either cos¢, or sinh ¢, must be small; the
corresponding poles must therefore be located close to either the ¢, = x/2 axis or the
¢, =0axis. If wesetk z =1in the exp (-az) factor, we see that if

| o'k,

= | cos4,, sinhg, |21 (9.52)

the wave is very strongly attenuated, since the amplitude then decays by 1/e
(e = 2.718) in a travel of afrproximately one-sixth of a wavelength. In Fig. 9.17, the
region defined by (9.52) is shown unlined; if poles exist in this region, their
contribution to the total field can usually be disregarded since these waves may be
significant only within a very small region. Conversely, poles located in the lined
region of Fig. 9.17 yield fields that are more slowly damped and therefore extend out
for a larger distance. Contrisutions to the total field from these poles outside of the
lined region are generally negligible compared to contributions from poles within the
lined region.

3. Steepest-Descent Plane Plots for Microstrip Line Higher Modes

Using thce steepest-descent plane, we next determine the locations of the
microstrip-line higher-mode leaky-wave poles in this plane, to find out, first, whether
or not these poles are captur.:d and therefore contribute to the total field, and second,
if more than one higher-mode pole may contribute at the same time. Before that,
however, we must obtain the: values of a/k and f/k over a much larger range of
frequencies than we did in Se:. C. In that section, we computed the values for the first
higher inode (N=1) only; here, we present results for the N=2 and N=3 higher modes
as well. o




3_‘“"*‘"“,?"-‘;*—-."-- e Downloaded from http://www.everyspec.com

<325 -

SDP* (sin , cosh§, = 1) cos P, sinh §, =1

T

3.0

AN

Region of Strorgly
Contributing Poles

0 0.2 0.4 0.8 0.8 1.0 1. 1.4 1.8

Fig. 9.17 Steepest-descent plane, showing the lined region
within which leaky-wave poles contribute strongly to
the aperture field.

Numerical results are presented below for three structures: (a) a microstrip line
having the cross-section dimensions used by Boukamp and Jansen [28] but with an
open top, (b) the actual Boukamp and Jansen structure with a covered top, and (c) the
antenna structure described by Menzel [27], which of course has an open top. For

. cases (a) and (c), we have results for the first three higher modes; for case (b), only
the first higher mode is treated, and the numerical values used for a/k, and 3/k, are
those computed by Boukamp and Jansen [28].

a. Microstrip Line with Open Top Using the Cross-Section Dimensions of Boukamp and
Jansen

The microstrip line structure treated in this subsection has the cross-section
dimensions of the line considered by Boukamp and Jansen (28], except for their top
cover. We have removed their top cover so that the line is completely open above; as
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a result, space wave radiation occurs when the frequency is lowered enough to cause
B/k , to becomes less than unity (see Sec. B,2). The cross-section dimensions (see Fig.
9.1) are h = 0.635 mm, w = 3.175 mm, ¢, = 9.70. The numerical values of a/k  and
B/k,, were computed using the theory described in Sec. C,1; in particulur, condition
(9.35) was employed together with (9.21) and its corollary relations.

In Sec. C,2 numerical values for a/k  and §/k were presented for the first higher
mode only, and also for a restricted frequency range, only that corresponding to small
values of a/k . Here we must consider a much wider frequency range, and we also
present calculations for other higher modes. The first higher mode, which we label as
the N=1 mode, possesses field symmetry corresponding to an electric wall at the
vertical bisection plane (x =()). The next higher mode, designated the N=2 mode, has
a magnetic wall at the bisection plane, as does the dominant mode, whereas the N=3
mode is the next higher mode with electric wall symmetry.

In Fig. 9.18, the values of a/k, are given as a function of frequency for the N=2
and N=3 higher modes. Thc onset of leakage for these modes occurs at much higher
frequencies, of course, but one notes that the values of "‘/ko continue to increase
monotonically as the frequency is lowered. The corresponding values of B/k as a
function of frequency are presented in Fig. 9.19. The behavior for frequencies just
below the onset of leakage is similar to that found in Fig. 9.11(b) for the first higher
(N=1) mode; i.c., the values of f/k, decrease as the frequency is lowered. When the
frequency is reduced further. however, an interesting effect occurs: the values of 5/k
reach a4 minimum and then slowly increase. For significantly lower frequencies, the
B/k,, values actually exceed unity, but it is to be noted that for those frequencies the
values of a/k | are substanti:lly larger than those of §/k . The concept of "cutoff” for
these higher modes requires some modification in the light of this behavior.

Figures 9.20 and 9.21 shcw how these values of a/k, and §/k , for higher modes
N=2 and N=3 compare with those for the first higher mode (N=1) in the frequency
range in which the N=1 mo«le is most important. One sees that the behavior for the
N=1 mode is qualitatively similar to that for the other modes in Fig. 9.18 and 9.19,
and that, although the values for the N=2 and N=3 modes are considerably higher
than those for the N=1 mode, these other higher modes are still around and may
therefore contribute to the total field.

The ways in which these higher modes may contribute to the total field are more
clearly revealed by the use of the steepest-descent plane. Using the values of a/k | and
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w=3.176 mm
& €« =9.70
K, ,
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2.0
1.0}
o 1
10 15 20 2% 30 35 49
f in GHz
Fig. 9.18 The leakage constant a/k, forthe N =2 and N = 3
higher modes of open microstrip line as a function of
frequency over a very wide frequency range.
1.0
O.ST' h=0.8636 mm
w=3.176 mm
£ «=9.70
ko
0.6
0.4
0.2~
o 4 i A [ - 1
10 18 20 28 30 3s 40
fin GH2
Fig. 9.19 The normalized phase constant 8/k, for the N = 2

and N = 3 higher modes of open microstrip line as a
function of frequency over a very wide frequency
range.
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1000 = N-e
h=0.635 mm
w=3.1786 mm
8.0 ¢r~9.70
a 6.0}
ko
N=1
4.0
2.0r
0 [ 1 { 1 j
6 8 10 12 14 16

t in GHz

IFig. 9.20 Values of a/k, for the first three higher modes of
open microstrip line in the frequency range over which
the leaky N = 1 mode is most important.
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2.0
N=3 h=0.635 mm
w=3.175 mm
1.5F N=2 €r=9.70

0 L L 1 Nl —
6 8 10 12 14 16
f in GHz

Fig. 9.21 Values of 8/k, for the first three higher modes of
open microstrip line in the frequency range over which
the leaky N = 1 mode is most important.
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B/k, ia Figs. 9.20 and 921, the pole locations ¢P for various frequencies were
obtained on use of relations (9.48) through (9.50). The results for the first higher
mode (N=1) are presented ia Fig. 9.22. The pole locations are shown corresponding
to a very wide frequency range, from 13.5 GHz down to 1.0 GHz, where the points are
numbered to permit ideatification with the corresponding frequencies. We first note
that most of the pole locations lie between the furthest steepest-descent path (SDP +)
and the original path P (see Fig. 9.15), so that those poles are captured. This plot
therefore proves that when the higher modes possess complex wavenumbers those
solutions correspond to leaky modes that are indeed physically realizable and that do
contribute to the field.

We further see from Fig. 9.22 that for the lower frequencies the trajectory of pole
locations rises steeply and becomes essentially vertical; this behavior is a consequence
of a/k becoming much greater than f/k . For sufficiently low frequencies (here for
f<5.0 GHz), the poles liec on the other side of the SDP * curve, so that they are no
longer captured and therefore cannot contribute to the field. Finally, by comparison
with Fig. 9.17, we observe that for frequencies between about 11.5 GHz and 5.0 GHz,
the pole locations lie outside of the lined region in Fig. 9.17. The leaky mode for this
frequency range does contribute to the field, but corresponds to a very rapidly
decaying wave (decaying by it least 1/e in a travel of about a sixth of a wavelength).
As explained in subsection 2 above, contributions from these poles are generally
negligible compared to thos: from the poles lying in the lined region of Fig. 9.17,
which in Fig. 9.22 corresponds to the frequency range from about 11.5 GHz to about
13.5 GHz, near the onset of lzakage for this mode.

We next consider the N=2 and N =23 higher modes to determine if they contribute
in a significant manner to th: field in the frequency range for which the N=1 higher
mode is complex and important. The behaviors in the steepest-descent piane for those
modes are presented in Figs. 9.23 and 9.24. Their pole locations are plotted for the
same runge of frequencies a« that appearing in Fig. 9.22 for the N=1 mode, namely,
from £::13.5 GHz down to 1. GHz. The first feature to note is that the poles already
lie on un essentially vertical line in both plots, because the values of a/k, (see Fig.
9.20) are all so high in this frequency range. The second principal feature is that for
the N=2 higher mode most of the pole locations lie above the SDP* curve, and that
for the N=3 higher mode all of them do. We therefore see that the N=3 higher mode,
which is the next higher mod: of the same symmetry as the first higher mode (N=1),
does not coruribute at all to th: field in this frequency range.
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For the N=2 higher mode, we see that the pole is captured for some frequencies,
but not for most. Even for those poles that are captured, however, corresponding to
frequencies greater than 11.0 GHz, the poles for the N=1 mode occur much closer to
the ¢, =0 axis. We thus find that the captured poles for the N=2 mode are located far
away from the lined region in Fig. 9.17, so that they decay extremely rapidly and could
contribute only over a very short distance. Compared to the N=1 values, therefore,
they can clearly be neglected.

From the steepest-descent plots presented above, we conclude first that the leaky
N=1 mode does indeed contribute to the field, and second that the other higher
modes contribute negligibly, when they do at all. These were the two points we set out
to determine in this section. It is therefore correct to assert, as we speculated earlier,
that the "radiation” region may be represented in a highly convergent fashion by
essentiully a single leaky mode.

b. The Boukamp-Jansen Structure with a Covered Top

The structure treated in this subsection differs from that considered above only in
that this one has a covered top whereas the one above has no top. The values of a/k
and B/« for the structures with and without a top are only slightly different from each
other, and comparisons between them were illustrated in Fig. 9.11. The nature of the
radiation from each is quite different, however, since power leaks from the covered top
structure in surface wave form only (when the dimensions are those chosen by
Boukarnp and Jansen [28]) whereas that from the open-topped structure is primarily
in spacz wave form. This di:tinction becomes of vital importance when the steepest-
descent plot is employed, especially near the onset of leakage.

When leakage occurs in swface wave form, the relevant plane is the xz plane, not
the yz plane, as shown in Fig. 9.3 in Sec. B. A two-dimensional representation is still
possible, however, when it it recognized that the equivalent of the free-space
wavenumber is k,, the surface-wave wavenumber. All expressions relating « and 3 to
#, such as (9.42), (9.46) through (9.50), and (9.52), must be appropriately modified;
whenever k| appears, it should be replaced by k, .

With this simple but esscntial modification, the steepest-descent plane correctly
reflects the onset of radiation and the separation between bound and leaky solutions.
The steepest-descent representation for the N=1 (first higher) mode on the
Boukarap-Jansen structure with a covered top is presented in Fig. 9.25. All of the
numerical data for a and 8 came from their paper [28], but we transformed these data
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into appropriate steepest-descent form. Results are shown for both the leaky mode
range (the numbered points) and the bound mode range (the lettered points). As they
should, the bound mode solutions lie on the vertical line ¢, = x/2 and have negativc .
values of ¢,; they are "proper” solutions, and the line ¢, = x/2 corresponds to the
boundary of strip T ,, (see Fig. 9.14). The leaky mode solutions again appear in strip
B, u “"improper” solutions, hut, for all the frequencies shown, the poles lie below the
SDP curve and are therefore captured when the original path P is deformed into the
SDP* curve. It is therefore clear that the leaky mode indeed represents the
“radiation” region whether the radiation is in surface-wave form or in space-wave
form.

¢, The Menzel Antenna Structure

The microstrip line cross-section dimensions chosen by Menzel {27] for his
antenni are h = 0.794 mm, w = 15.00 mm, and ¢, = 2.32. The structure is of course
completely open at the top. These structural parameters are quite different from
those sclected by Boukamp and Jansen; Menzel's strip is much wider and his dielectric
constant is much smaller. It was therefore considered worthwhile to see what
differences occur in the stcepest-descent plots for parameter values that are so
dissimilar.

Values of a/k and /k, as a function of frequency for the first higher mode are
presented in Sec, E,2; they will not be repeated here even though the frequency range
covered now is somewhat wider. The pole locations in the steepest-descent plane for
this N=:1 mode are shown i Fig. 9.26 for both the bound mode range and the leaky
mode range. As in Fig. 9.5, the bound mode poles are located on the vertical
¢, = x/2 axis, and the leaky mode poles appear in strip B ,, as in all the other plots.
The usc of k, implies that space wave radiation is assumed here, as in subsection (a).
(1t is understood, of course, t"at for a given frequency only a single pole is present.)

Wh:n we compare the t-ajectory of leaky-mode pole locations in Fig. 9.26 with
that in Fig. 9.22 for the open-topped Boukamp and Jansen dimensions, we note two
importunt differences. The first is that the vertical portion here occurs at a much
smaller value of ¢, (approximately 0.05 as compared with roughly 0.15), and the
second is that in the neighborhood of the onset of leakage the ¢, values for the pole
locations are smaller here. In general, the leakage rate for the Menzel structure
seems {0 be sinaller. Also, because the vertical portion occurs closer to the ¢, =0 axis,
the polcs are more likely to b captured, but there is a larger frequency range over
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which the poles correspond to waves that decay extremely rapidly, and are therefore
not very meaningful. Menzel operated his structure as an antenna at f = 6.70 GHz,
corresponding to point S in Fig. 9.26, for which ¢ =0.7. By reference to Fig. 9.17,
frequencies for which the mode does not decay excessively vary from about 5.6 GHz
to about 8.2 QHz.

Steopest-descent plots for the N=2 and N=3 higher modes for the Menzel
antenna dimensions are given in Figs. 9.27 and 9.28. It is interesting to see here that
the pole locations are now such that the poles are much more likely to be captured,
and in principle, to be able to contribute to the field. In part, this feature is related to
the above-mentioned observation that the vertical portions for the Menzel structure
occur much closer to ¢, =0 «xis. The poles that are captured, however, generally lie
far away from the lined region in Fig. 9.17, so that they all decay extremely rapidly and
are therefore not likely to contribute to the field in any significant way.

We found in subsection (a), for the Boukamp-Jansen structure without a top
cover, that the higher modes (beyond the first higher mode) would contribute
negligibly to the field and that, in fact, for most frequencies the poles would not even
be captured. Here, for the Menzel structure, the poles would for most frequencies be
captured, but the waves they represent would decay so rapidly that at most they could
yield some wide-angle background radiation. It seems, therefore, that for most cases
it is sufficient to consider only the first higher mode, but one should also keep in mind
that the next higher modes ~ould perhaps, under some circumstances, furnish some
small contribution to the radiation pattern.
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E. INVESTIGATIONS RELATING TO MENZEL’S ANTENNA
1. Description of Menzel’s Antenna

Based on good intuition but incomplete scientific understanding, W. Menzel [27)
proposed, designed and measured an antenna that counsisted of a short length of
microstrip line fed in its first higher mode and operated near to its "cutoff.” Although
it was not operated in optimum fashion, it performed reasonably well. It is of interest
because of its structural simplicity.

As a result of the current investigations, we are now sure that the structure is
basically a leaky-wave antenna. Menzel made the structure short because he conceived
it as a traveling wave competitor to a microstrip patch antenna. In the next
subsection, we analyze the performance of his antenna in leaky wave terms, and we
show why it behaved as well as it did despite its short length, and why, from a leaky
wave viewpoint, its performance would be improved if it were made longer. In this
subsection, we summarize the properties of his antenna and indicate the theoretical
approach that he used.

The cross-sectional shape of his antenna is of course that shown in Fig. 9.1. The
aspect ratio of his antenna is unusually flat, with parameter values £ = 0.79 mm,w =
15.00 mm, and ¢, = 2.32. The antenna length is 10.00 cm and the operating frequency
he chose is 6.70 GHz, so that the length becomes 2.23) , which is very short for
customary leaky-wave antennas, where we expect lengths of 20 to 40 free-space
wavelengths.

In his theoretical approach, he assumes that the propagation wavenumber k, of
the first higher mode is purely real but with B<k  and above cutoff. He calculates a
value of # based on this assumption, and then further assumes that the field along the
strip length has constant amplitude. The aperture distribution therefore has a
constant amplitude and a traveling wave phase. From this aperture distribution, he
computes a theoretical radiation pattern that appears to agree reasonably well with his
measured radiation pattern. The comparison, in terms of amplitude rather than
power, and plotted in polar form, is shown in Fig. 11 of his paper [27], and is
reproduced here in Fig. 9.29 the same size as in his paper.
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Fig. 9.29 Experiinental and theoretical far field (amplitude)
patterns presented by W. Menzel as Fig. 11 in his
paper {27], reproduced here the same size. The
antenna parameters are: ¢, = 2.32, 1 = 0.794 mm, w
= 1.500cm, L = 10.00 cm, and f = 6.70 GHz.

Because this figure is so small, we made a copy double in linear size.
Unfortunately, due to printing and copying distortions, the origin is not precisely
centered and the vertical and horizontal axes are slightly unequal radially, making
reproducibility and accurate comparison difficult. Our best estimate for the angle §,,
of maximum radiation for Mecnzel's experimental curve is 40°+3° as measured from
broadside (his 0 is the complement of ours). The estimate is made more difficult by
the fact that his experimental curve is somewhat distorted and seems to have a flat
top. The 3 dB beam width of the experimental curve is estimated to be A9 = 28°£3°

His theoretical curve is shown dashed in Fig. 9.29, and is seen to be shifted slightly
closer to broadside. An expression for that theoretical curve is given by Menzel as the
H-plane portion of his Eq. (2), based upon his Eq. (1) and consistent with the aperture
distribution discussion above. The value of B/k, needed in that expression, taken
from the curve in his Fig. 4 and found to be 8/k, = 0.645, is then inserted into his
expression (2) to yield that dashed curve in Fig, 9.29. From our calculation, which is
more accurate than the dashed curve itself in Fig. 9.29, we obtain § = 36.2° and
A9 = 26.1° as Menzel's correspronding theoretical values.

The ugreement with the measured curve is rather good, considering all the
uncertainties and approximations. Menzel's theoretical value for g,, is slightly low,
but the beam width A4 lies within the experimental uncertainty. We comment in the
next section on why the agreement is as good as it is.

The other important feature evident in Fig. 9.29 is the large back lobe, with a
maximum amplitude about 0.4 times that of the main beam, and with the angle of the
maximum approximately equal to - 6 . It seems clear that much of the power reaches
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the end and that some of that power travels back along the strip, radiating power into
this back lobe. Menzel discusses this point, and on¢ of his conclusions is that
"efficiency is improved using longer lines." We also cominent on this point in the next
subsection in the context of leaky modes.

Menzel also discusses other aspects in his paper [27], such as ways to feed the
antenna and measurements on an array of four strips, but we need not consider them.

2. Analysis of Menzel’s Antenna in Leaky Mode Terms

Our view of the antenna structure as a leaky-wave antenna provides us with much
additional insight; with this view we are able to explain the performance features of
the antenna and, in addition, to know how to modify the structure to improve its
performance.

As a leaky-wave antenna for which the cross-section dimensions are maintained
constant, the aperture distribution along the strip in Menzel’s antenna does not have
constant amplitude, but one that decays in accordance with the leakage constant « of
the leaky mode. From a leaky mode analysis of the cross-section, we compute that
Blk, = 0.661and a/k, = 3.78x10” at the operational frequency of 6.70 GHz.

Let us first utilize this information to indicate the difference between his and our
aperture distributions, and then, as a corollary, to obtain the power remaining at the
end of the strip and to discuss the back lobe found experimentally. His assumed
aperture distribution is

E(z) = Ae7#* (9.53)
whereas our leaky wave distribution is ,
E@) = Ae ®e7P? (9.54)

where A is simply a constant. From the exp(-az) factor in (9.54), we see that for a
strip length L of 10.00 cm and a value of a/k, = 3.78<107, we have that the
amplitude at the end strip is 0.588 4, and that the power remaining at the end is 0.346
of that which is incident, or about 35%. Thus, abowt 65% of the power has leaked away
into the forward beam, and about 35% has reached the end of the strip. Two interesting
conclusions result from these numbers:

(a) Despite the relatively short length of the antenna, L = 223) ), almost two-
thirds of the power is radiated away. That is why the antenna works as well as it does.
The large radiated power follows from the fact that the o value is larger than those
usually encountered in leaky-wave antennas.
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(b) Since approximately one-third of the power reaches the termination of the
antenn:, and since Menzel states that he did not place a load at the termination, part
of that power is transmitted onward and part is reflected. The reflected portion
produces a leaky wave in the reverse direction, creating a back lobe in the radiation
pattern at an angle that would be the mirror image of that for the main beam. Since
we do not know how much power is reflected at the end and how much continues
onward, we cannot compute theoretically the size of the back lobe; from the measured
curve in Fig. 9.29, however, a back lobe amplitude of 0.4 means about 16% reflected
power, which may be reasonable.

In connection with the reflected power from the end, Menzel finds experimentally
(his Fig. 14) that the antenna efficiency (meaning the percentage of power radiated)
decreases as the frequency is increased, and that the efficiency is increased when the
antennu length is increased. The leaky wave interpretation, which includes the
concept of a whereas Menzel's viewpoint did not, easily explains both of these
findings. When the frequency is increased, the value of & decreases, so that less power
is radiated for the same antenna length; then, when the length is increased but the
frequency is kept the same, and therefore a remains the same, more power is leaked
away and the efficiency improves.

Since the actual antenna :iperture distribution is given by (9.54) rather than (9.53),
which Menzel assumed, we cin compute a more accurate radiation pattern than his by
employing the correct aperture distribution. His theoretical expression is no longer
valid, however, since it applics only to aperture distributions with constant amplitude.
We need instead to use expression (2.35), the derivation of which is presented in
Chap. IL.

Another difference arises, and it is that the value of 8/k, used by Menzel is not
quite correct. He assumed that the valuc of g is real within the range in which the
propag:tion wavenumber must be complex. The actual values for both /k , and a/k,
as a function of frequency are shown in Figs. 9.30 and 9.31; the values were computed
from the theory described ir Sec. C,1, employing (9.35) together with (9.21) and its
corollary relations. The gencral shapes of the curves are similar to those in Fig, 9.11
or in Figs. 9.20 and 9.21 over a wider range of frequencies. In Fig. 9.30 for B/k,,
however, we have added a dashed curve corresponding to Menzel’s calculations; his
numbeis come from his Fig. 4, where we have changed the values from (B/k, )2 to
ﬂ/ko. I is interesting that fo- f = 6.70 GHz, the operating frequency of his antenna,
the diffcrence between his value and the correct one is small, the values being 0.645
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Fig. 9.30 Normalized phase constant 8/k, as a function of

frequency for Menzel's antenna structure. The solid
line represents the accurate leaky wave result, while
the dashed curve corresponds to Menzel's
approximation in which the mode is assumed to be
purely real.
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and 0.661, respectively. For the higher frequencies, his dashed curve and our sclid one
are coincident; for lower frequencies, they differ strongly.

The biggest distinction between the two curves in Fig. 9.30 is conceptual, relating
to the concept of cutoff, which has a strict and sharp significance only when the mode
is lossless and purely bound. When the anticipated "cutoff® occurs in a leaky wave
region, the considerations become complicated. and the “cutoff’ degenerates into a
spread-out region which "ends" only when the value of o becomes so high that the
mode can contribute only some small wide-angle background radiation, if anything at
all. These considerations are quantified in Sec. D, in the context of the steepest-
descent plane.

Using our accurate values of a/k, and B/k, in expression (2.35) for the radiation
pattern corresponding to aperture distribution (9.54), we obtain the amplitude pattern
shown as the solid line in Fig. 9.32, which covers the complete angular range.
Superimposed on this plot as a dashed line is the Menze) theoretical pattern, which is
the same as the dashed pattern in his Fig. 11, except that this plot is not a polar one.
These plots are seen to be very similar to each other, but two important differences
should be noted. The first is that the curves are shifted with respect to each other,
with the peak of the dashed-line curve, corresponding to a constant aperture
distribution (Eq. (9.53)), occurring slightly closer to broadside. The second difference
relates to the minima in the patterns. The pattern based on the constant aperture
distribution has a null (since it is basically a sin x /x pattern), whereas that null
becomes filled in when the aperture distribution has a decaying factor.

To permit a better comparison between the data in Fig. 9.32 and the original
curves presented by Menzel and reproduced here as Fig. 9.29, we replot in Fig. 9.33 in
polar form the data from Fig. 9.32. It is seen that our more accurate data appear
closer to the Menzel experimental data (from Fig. 9.29) than do the theoretical values
of Menzel, but the two theoretical curves agree rather well, as noted above.

In order to obtain a more accurate comparison between the two patterns with
respect to 6, and A6, however, we replot in Fig. 9.34 the portion near the peaks. We
then find the following:
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Fig. 9.32 Normalizcd far field over the complete angular range
for the Menzel antenna (27). The dashed line
represents his theoretical calculation, assuming a
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Menzel'’s Theory Our Theory Experiment
B/k, = 0.645 B/k, = 0.661
' afk, =0 ofk, = 3.7810°
Aperture :
constant exponential decay
0, =362° 6, =31.1° 0, =40°t3°
Ad = 259° Al = 265° AG=28°¢+3°

It is seen that the theoretical values of A# differ by only about 1/2°, whereas those for
0, are about 1° apart. This distinction can be observed directly from Fig. 9.34, where
the two curves appear primarily to be shifted with respect to each other. One also
sees more clearly now that our theory produces results that are slightly closer to the
experimental values.

It was pointed out above that these two theoretical results differ in two ways: the
different aperture distributions, and the different values of 3/k 5 At this stage it is not
clear which of these two ways is the more important. To help us in that assessment,
we have also computed the pattern that results when we assume the accurate value of
B/k,(=0.661) together with a constant aperture distribution. The result is
illuminating; it shows that the major part of the discrepancy between the two curves in
Fig. 9.34 is due to the inaccurate value of 3/k , rather than the shape of the aperture
distribution. The new values of § and A8 obtained from this third calculation are
0, =37.1°and Ad = 26.3° The angular shift between the two curves in Fig. 9.33 or
Fig. 9.34 effectively disappears when the correct value of B/k , is employed, and the
A0 discrepancy is reduced, but the beam width is still slightly larger and the sidelobes
are somewhat higher when the exponentially decaying aperture field is utilized.

3. Parametric Dependences for Antenna Design

We must know the parametric dependences for a given structure in order to know
how to design that structure as an antenna. First of all, we must determine if it is
possibl: to change some parameter so that the leakage rate a can be modified while
simultaneously keeping the phase constant 3 essentially the same. If that can be done,
then it 1s possible to taper the value of a to achieve a specified aperture distribution in
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accordance with some sidelobe requirement on the radiation pattern. If that is not
possible, we must then keep the dimensions constant along the length, and be satisfied
with the patterns that result from an exponentially decaying aperture distribution.
One cannot then modify the sidelobe level or distribution, but at least clean narrow
beams are achieved. If tapered aperture disiributions are feasible, it is necessary to
know the parametric dependences in more detail, but in either case one has design
contro] only if it is known what effects are produced by various dimensional changes.

With these microstrip line leaky-wave antennas, the only parameter that can be
varied easily along the antenna length is the strnip width w. The other two parameters,
the dielectric height 4 and the dielectric constant e , cannot be altered easily along the
antenn: length but their values can be specified beforehand in the design. The strip
width, however, can be readily specified as a function of distance along the antenna by
lithogrup® - r other means. Let us therefore consider that parameter first.

O ... riBlk, and a/k, as a function of strip width w over a wide range of
widis are presented in Figs. 935 and 9.36, respectively. The indicated points
correspond to the value of w in Menzel's antenna. The curve shapes are broadly
similar to those seen in Figs. 9.30 and 9.31, where the abscissa is the frequency. The
most important feature about the curves in Figs. 9.35 and 9.36 is that, when w is altered
1o change the leakage constant a, the phase constant 8 changes as well We are thus
forced to the unfortunate conclusion that we caot taper the amtenna aperture
distnbution, since differemt portions of the aperture would then poim the beam in
different directions. The cross-section dimensions of these leaky-wave strip antennas
must therefore be maintained constant along their lengths; as a result, they will possess
exponersially decaying aperture distributions, given by (9.54), for which the resulting
radiation patterns can be computed from (2.35).

The variations of 3/k, and a/k, with the relative dielectric constant ¢, are seen in
Fig. 9.37; the indicated poiits show Menzel's value for ¢. The general pattern is
retained bere as well; that is, when the value of a/k, rises, the value of B/k
decreases. The leakage increases as ¢, decreases, but here ugain the effect is

qualisatively similar to what we find when the frequency is lowered or the width is
decreased. The reason is that the electrical length of the transmission line in Fig. 9.7,
corresponding to the region under the strip, is [k 02" -kzzl,l/ 2y /2, so that all three of
these parameters vary qualitatively in the same way. In Fig. 9.37, the onset of leakage
oceurs for ¢ about 3.0; if a higher value of ¢, is used, it is therefore necessary to
reduce w appropriately, or to operate at a lower frequency.
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The bebavior as a function of dielectric height h is somewhat different, as seen in
Fig. 9.38. Even though h varies over a large range of values, a/k, and f/k, do not
change as much as when the other parameters are altered; Menzel's value for 4 is
indicated by the circled points. As 8/k increases, a/k , decreases for larger values of
h, as with the other parameters, but for very thin dielectric substrates a/k | decreases
again, as though the mode were being shorted out. These variations with & are more
involved, and depend more heavily on the discontinuity junction itself.

4. Performance When Properly Designed as a Leaky-Wave Antenna

We showed earlier that Menzel made his antenna too short, only 223X ) long at
his operating frequency of 6.70 GHz. He wanted to keep the length small to
"compete” with microstrip patch antennas, but, as a result. only about 2/3 of the power
was radiated away and a sizeable back lobe was produced. In addition, the short
length caused a rather large beam width for a traveling wave antenna, but not a beam
suitable for a patch element either. When we view the structure as a leaky-wave
antenna, we automatically select a greater length so as to radiate more of the power
and thereby increase efficiency. Simultaneously, the back lobe is essentially
eliminated and the beam width is narrowed to a more practical value,

A common procedure for leaky-wave antennas is to chose the aperture length so
that about 90% of the power is radiated; the choice is a compromise between
efficiency and excessive length, When we apply that choice to the cross-section
dimensions and the frequency taken by Menzel, we find that the length L of the
antenna becomes 21.7 ¢cm, actually only a bit more than twice the 10.0 ¢cm value
adopted by Menzel. The antenna is still quite short, about 4.84 A , because the value
of a is relatively high.

Since the cross-section dimensions are maintained constant along the length, the
aperture field distribution is exponentially decaying and the analytical expression for
the radiation pattern is provided by (2.35). A linear plot of the normalized far field,
similar to those in Figs. 9.32 and 9.34, appears as the solid line in Fig. 9.39. For
comparison, the dashed line plot in Fig. 9.39 presents the far field behavior obtained if
the aperture field distribution were constant, computed via (2.32). The same f/k Y,
value is used in computing each of these two plots.

We note first, from Fig. 9.39, that the two curves peak at essentially the same value
of 4, but that the one for a constant aperture field has a slightly narrower beam width.
- In addition, the nulls become filled in and the side lobes are a bit higher when the
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Fig. 9.39 Normalized far field vs. angle @ from broadside for a
leaky microstrip structure when the length L
corresponds to 90% power radiation. The solid and
dashed curves correspond, respectively, to the actual,

exponentially decaying, aperture distribution and an
assumed constant one.
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aperture field decays. Quantitatively, the §, and A6 values for the exponentially
decaying aperture field and the constant one, respectively, are 6, =40.2° and
A0 = 140°versus § = 403°and A0 = 13.4° As compared with the shorter Menzel
structure, §, has moved about 3° away from broadside, which is not much, but the
beam width became reduced from about 26° to about 14° which is substantial.

Leaky-wave antenias can, of course, be frequency scanned. We therefore
computed the far field patterns corresponding to two other frequencies, 7.50 GHz and
8.00 GHz, maintaining the same length and cross-section dimensions and changing
only the frequency. The results are plotted in Fig. 9.40 in polar form, but the sidelobe
information is omitted for clarity. Nothing special occurs in the sidelobes except that
they increase slightly upon frequency scan. The aperture field distribution was taken
to be exponentially decaying in these calculations.

We observe from Fig. 9.40 that the patterns do indeed scan with frequency, and
that the beam widths remain roughly the same. A quantitative comparison reveals:

fin GHz 6 Ad

6.70 40.2° 14.0°
7.50 58.0° 16.1°
8.00 66.5° 16.5°

There is a problem here, however. As the frequency is increased, the value of a/k o
decreases significantly, so that less power is radiated and antenna efficiency suffers. In
fact, the power radiated at 7.50 and 8.00 GHz become only 54% and 24%,
respectively. Thus, the patte-ns look good but the efficiency becomes poor, and back
lobes will be present unless a matched load is placed at the end of the strip. We have
been wifair here, however, because we placed the starting point at the low frequency
end. If instead we scanned in frequency from 6.30 GHz to 7.00 GHz, about a 10%
range, the values for § would have gone from 28° to 50°, and the radiated powers
would have been 98% and 80% at the two ends of the scan range.

Because a is such a sensitive function of frequency in this structure, we must
chauge e length substantially if we wish to keep the radiated power at 90%. But
then the beam width A@ changes as well. When we change the aperture length L as
well as the frequency, maintuining the efficiency now at 90%, we obtain the far field
patterns shown in polar form in Fig. 9.41. The angles 9., are now different from what
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Fig. 9.40 Polar plots of normalized far field for a specific
microstrip leaky-wave antenna for three different
frequencies when the antenna length is maintained
constant. These plots illustrate the effect of frequency
scan on a given antenna.
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they were in Fig. 9.40, and the beam widths A 8 are of course different. A quantitative
ocomparison shows

inGHz 6, A8 L

6.70 402° 14.0° 21..7cm
7.50 61.1° 66° 65.6cm
8.00 747° 34° 21S.1cm

It is therefore possible to achieve fairly narrow beams with these leaky-wave strip
antennis, but only for angles fairly far away from broadside.

To aid in achieving an improved overall perspective with respect to a potential
design, we include two additional figures, Figs. 9.42 and 9.43. In Fig. 9.42, we present
the strip length L required for the antenna to radiate 90% of the power, as a function
of frequency, when the cross-section dimensions are those used by Menzel. The angle
§,, of maximum radiation and the beam width A6 as a function of frequency are
shown in Fig. 9.43. The curves were computed from the simple rule-of-thumb
relations (2.27), (2.28) and (2.29), also presented on the figure. The numbers are not
as accurate for patterns with wide beams, but those for 4, are very good for narrow
beams. The values for A0 depend on the actual aperture distribution. The numbers
on the curve in Fig. 9.43 are based on the simplest form of relation (2.29), which
reflects an "average" tapered distribution; A@ is then given in radians and must be
multiplied by 180/x to yield he angle in degrees. For an aperture distribution that is
exponeatially decaying to 0.1 of its initial power level, one should multiply the simple
expression given for Ad by 0.91; the resulting angles will then be accurate to three
significant figures. The numbers for A8 given in Fig. 9.43 are therefore 10% too large
when we are concerned with microstrip line strip antennas that have untapered
geometries.
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i Fig. 9.41 Same as in Fig. 9.40, except that now the lengths are

changed for each of the three frequencies to
correspond to 90% power radiation, so that different
beam widths are obtained.
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L for 90% power radlation
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w= 15.00mm
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Fig. 9.42
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Curve: of microstrip leaky-wave antenna length L for
2% power radiation as a function of frequency for a
specific cross section, that employed by Menzel [27).
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X. A NOVEL ARRAY OF PRINTED-CIRCUIT
UNIFORM LEAKY-WAVE LINE 5OURCES

(With: Prof. P. Lampariello and Mr. F. Frezza
University of Rome, "La Sapienza," Italy)

The array described in this chapter provides a two-d mensional scan capability of
the tvpe discussed in Chap. II and described in detail in Chap. IV, where the line-
source elements are NRD guides. In the present array, the leaky-wave line-source
elements are in themselves new, being a printed-circuit version of what is basically the
offset-groove-guide line-source antenna discussed in Chaps. VII and VIIL. It evolved
as a cross between that antenna and the uniform microstrip leaky-wave antenna
treated in Chap. IX. The evolution of the new array, and its principle of operation, are
described in Sec. A below.

The basic theoretical approach employed in the analysis of the new array is the
unit-cell approach explained in Chap. II and applied in Chap. IV. However, the
transverse equivalent network that is representative of this unit cell differs in several
important ways from the onc used in Chap. VII for the offset-groove-guide antenna.
The basic tee junction network utilized there required some fundamental
modi{ications before it could be used here because, among other features, the cross
section now contains two different media and includes the periodic waveguide section.
Section B contains the derivations for the elements of this modified tee junction
network; the incorporation of the network into the overall transverse equivalent
network, and expressions for the resulting dispersion relation, are presented in Sec. C.

From the dispersion relation, we obtain numerical values for the array
performance. We first examine the parametric dependences for the simpler case for
which there is no cross-plane scanning. Scanning is then possible in elevation only, but
we study the radiation behavior as various dimensions are changed, and also as a
function of frequency. These important results, which are presented in Sec. D, are
required before any antenna designs can proceed.

The performance of the array when scanning is performed in the cross plane,
resulting in conical two-dimensional scan, is described in detail in Sec. E. Several
interesting and important effects occur during such scanning. They include the
variation of the leakage rate with the height of the array baffies, possible coupling to
another set of leaky modes, the so-called channel-guide modes, deviation from conical
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scan under some conditions, and the possibility of finding blind spots. Many of these
same effects were noted in Chap. IV, for the array of asymmetric NRD guide line
sources, but interesting diffcrences arise. For both arrays, however, no blind spots
were found, and both are characterized by negligible cross polarization and the
absence of grating lobes.

(After the completion of this chapter, it was found that the numerical values
presented in this chapter were obtained using a dispersion relation that contained an
error in a factor of 2. The numerical values for the phase constant are affected only
slightly, but the values for the leakage constant should be 50% to 100% higher than
the oncs shown here. All the qualitative behaviors are the same as those shown here,
and all the conclusions regarding the array performance are completely unaffected.
When the contents of this chapter are submitted for publication, the correct numerical
values will be included. It should be added that all of the equations presented here,
including those pertaining to the dispersion relation, are correct.)

T ———— — —
St e e e R
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A. DESCRIPTION AND OPERATION OF THE ARRAY
1. Evolution of the Array Structure

A cross-section view of the array appears in Fig. 10.1. It is seen to consist of a
parallel array of leaky-wave line sources, with each line source fed from one end, and
with some imposed phase shift between them to produce the scanning in the cross
plane. As explained previously for the array in Chap. 1V, scanning in the elevation
plane is provided by a frequency scan or an electronic scan of the leaky-wave line
source, whereas scanning in the other plane is obtained in the usual phased-array
manner. The combination of techniques produces a pencil beam that can be scanned
over a sector of space in a conical scan fashion.

The leaky-wave line sources themselves are new. The motivation for a printed-
circuit form of array arose as a result of the study in Chap. IX, where we obtained a
uniform microstrip line leaky-wave line source that had a particularly simple form,
consisting only of a length of uniform microstrip line operated in its first higher mode.
A linear array of such line sources would be simple in form but less simple to feed. In
addition, it is likely that blind spots would occur as the beam is scanned in the cross
plane; however, these blind spots would most probably be eliminated by the
introduction of metal baffles between the line sources.

After further manipulation of the location of the line sources relative to the
baffles, it became clear that the simplest and neatest arrangement, particularly when
feed problems are taken into account, is the structure whose cross section is shown in
Fig. 10.1. By comparing a line source in the array with the structure in the lower part
of Fig. 7.1, or the upper part of Fig. 7.4, we note that the line source in Fig. 10.1
closely resembles a printed-circuit version of the offset-groove-guide leaky-wave
antenna. We therefore began with an array of microstrip uniform-strip line sources,
and after a sequence of modifications emerged with an array of modified offset-
groove-guide line sources. In that sense, the array in Fig. 10.1 is a combination of the
two types of line source.

Despite its manner of evolution, the individual line source in the printed-circuit
array in Fig. 10.1 may best be viewed as a flat die'ectric-filled rectangular waveguide
with an unsymmetrical continuous slit in its top wall. That point of view lends itself 10
an easy understanding of the principle of operation, as described immediately below.
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2. Principle of Operation

The individual line source itself is indicated in Fig. 10.2, and we shall now view it as
a dielectric-filled rectangular waveguide coupled by a slit in its top wall to an upper

air-filled stub guide of finite height. Width a must be chosen so as to satisfy two
conditions:

(a) the TE ;, mode with its vertical electric field in the dielectric-filled rectangular

waveguide is above cutoff, and ' .
(b) the mode in the parallel-plate waveguide stub region with vertical electric field o
is below cutoff. )
7?
~ et R
E
Cc
{ 5;;" = ,2?,/. % y
iV .
Y Emi it e e e X
e— 3 -+ Zup
Fig. 10.2 Cross section of the line source employed in the array

in Fig. 10.1.
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When there is no variaiion along the axial direction z (along the slit), these
conditions become

(%/2v%) <a < (2,72 ; (10.1)

when such variation is present, as in our case, (10.1) becomes modified slightly to
include the longitudinal phase constant & Conditions (10.1) then become

N A, /2
—r<a< 71 (102)
[1-(8/,Y7] [1-68/k, Y]

The rectangular waveguice, which is fed from one end, then leaks through the slit
into the parallel-plate stub gnide above. The asymmetric location of the slit excites
both a horizontal and a vertical electric field in the stub region. The horizontal
electric field corresponds to a TEM mode that travels up at an angle between the
paralle] plates of length ¢, and radiates from the open end at the top. The second
condition on width a causes the mode with vertical electric field to be below cutoff, so
that the radiation into space has essentially pure horizontal electric field polarization.

When the line source in Fig. 10.2 is operated individually, its radiated beam can be
scanned in elevation either by changing the frequency or by modifying the value of 8
by electronic means. The angle 6 of the beam maximum is given by 8/k, and the
width of the beam in elevation is proportional to a/k  ; simple expressions that relate
these quantities are given in Chap. 11 as (2.27) to (2.29). Although the beam is narrow
in the elevation plane, it is of course wide in the cross plane. Arranging the line
sources in the form of the array shown in Fig. 10.1 will narrow the beam in the cross
plane in proportion to the rumber of line sources in the array. If phase shifts are
introduced between each line source, the beam will then be scanned in the cross plane,
and therefore in azimuth, in proportion to the phase shift. The arrows in Fig. 10.1
indicate a typical beam scan clue to this cause.

It should also be noted that the second of the two conditions on width a eliminates
any grating lobes with respect to scan in the cross plane. To be completely accurate,
that condition should also include the phase shift itself. If the phase shift per unit cell
is kmpa, then the fully accurate expression is given by (2.8) of Chap. II, which is
repeated herc for convenience:
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A

o

ag 2-I/r (10.3)
[k, + ik,

for grating lobes to be avoided.

The structure in Fig. 10.1 would be neater and simpler if the stubs were not
present. The antenna would then still radiate, but the radiation would be cross
polarized. In addition, there would very likely be blind spots present in the array
application. With the stubs present, however, our accurate analysis indicates that
no blindness effects occur. The stubs are a structural nuisance, of course, but they
serve to eliminate both cross polarization and blindness problems. It is highly likely
that the introduction of such stubs into other forms of phased arrays (where scanning
in both planes is obtained using phase shifters) would also produce both benefits and
thereby improve performance.

If the slit were centered within width a there would be no radiation. Small shifts of
the slit off center result in small leakage rates, whereas larger shifts result in larger
leakage per unit length. Since the width of the radiated beam is directly proportional
to this ieakage rate, we have available a very simple mechanism to control the beam
width. Furthermore, the beam width can readily be varied over a wide range by
simply changing the location of the slit within the width a . The structure therefore
yields versatile performance in addition to pure polarization, no grating lobes, and no
blind spots.
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B. DERIVATION OF THE EQUIVALENT NETWORK FOR THE CONSTITUENT
TEE JUNCTION

In order to obtain numerical information regarding the performance properties of
the array of printed-circuit line sources under scan conditions, we need to determine
the transverse equivalent network for the array structure, and from the network to
derive the dispersion relation for the propagation characteristics. A key constituent of
the required transverse equivalent network is a representation of the tee junction
formed by the asymmetrical slit that couples the lower dielectric-filled region and the
upper air-filled stub guide. The same geometric form occurs in the individual line
source (Fig. 10.2) and in the array (Fig. 10.1). That constituent E-plane tee junction is
shown in Fig. 10.3.

|
|
T

Fig. 103 The constituent tee junction that appears in the cross
sections of both the line source in Fig. 10.2 and the full
array in Fig. 10.1.

This tee junction is similar 'n a basic way to the tee junction that is a constituent of
the offset-groove-guide antenna treated in Chap. VII. That constituent tee junction is
seen in Fig. 5.2 of Chap. V, and the equivalent network representation for it is the one
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shown in Fig. 5.3, and discussed in detail in Chap. V. Its incorporation intc the
transverse equivalent network for the offset-groove-guidc antenna is exhibited in Fig.
7.4 of Chap. VII. Despite the basic similarity between the tee junctions in Fig. 5.3 and
Fig. 10.3, the one in Fig. 10.3 differs from the other one in several important ways.
First, the main guide portion in Fig. 10.3 is dielectric-filled; next, the aperture is not
wide open, but contains a slit; and finally, the slit is not centered. The added
complications in the structure in Fig. 10.3 require a series of detailed considerations
with respect to whether or not the equivalent network in Fig. 5.4 can be modified
appropriately so as to be valid for the structure in Fig. 10.3. It turns out that such
modifications can indeed be made, not rigorously but to a high degree of accuracy.
The reasoning followed, and the derivation of the modifications, are presented here.
The resulting network is then incorporated into the transverse equivalent network for
the array in Sec. C.

In the discussion below, the series of considerations invnlved in the derivation of
the final network parameters is treated sequentially.

1. Can the Network Form be Symmetrical?

The first problem relates to the form of the equivalent network. Can it be
symmetrical, even though the structure is not symmetrical, that is, the parallel-plate
stub guide is located asymmetrically with respect to the "center" plane T (see Fig.
10.3)?

Let us examine the effects of entisymmetric and symmetric electric field
excitations in the main guide portion of the tee structure. First, for antisymmetric
excitation the plane T would become an electric wall, or a short-circuit plane, as
indicated in Fig. 10.4. The position of the stub guide (moving it over or not) would not
change the character of that electric wall because the "TEM mode at an angle” that
propagates in the stub guide has its electric field perpendicular to that plane. The
effective susceptance of the coupling slit will change if the stub guide is shifted over,
but nothing else will be aifected. (We are, of course, assuming that only the lowest
mode can be above cutoff in the stub guide.)

We next examine the effects due to symmetric electric field excitation, as shown in
Fig. 10.5. The plane T then becomes a magnetic wall (open-circuit plane) due to this
excitation. An inspection of the field components in the center of the slit region
reveals that the H, compcnents (along the slit), due to the excitation from opposite
sides, will cancel, whereas the H, components (across the slit) and the E y components
will add. Neither of these two components, however, will couple to the dominant
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Fig. 104 The effect of anfi- Fig. 10.5 The effect of symmetric
symmetric electric field electric field excitation
excitation in the main in the main guide of
guide cof the tee the tee junction in Fig.
junction in Fig. 10.3; 10.3; plane T becomes
plane T becomes an a magnetic wall, or
electric wall, or short- open-circuit plane,
circuit plane.

mode in the stub guide, since these components are orthogonal to those of that
dominant mode. The first higher mode, which would be excited, is below cutoff.
Thus, this excitation does not produce anything different from what it would if the slit
were centered, except for some modifications in the higher mode content of the slit
susceptance due to this excitation.

Because of the simple nature of the dominant mode in the stub guide, we have
here a situation that permits us to employ a symmetric form of equivalent network to
characterize a special type of asymmetric tee junction, provided that the expressions
for the ncetwork elements correctly take the stub guide asymmetry into account.

The network form is basicilly the same as that in Fig. 5.4, but it is phrased now, in
Fig. 10.6, in a slightly more complicated form because of the derivations below. We
must obtain expressions for all of these network elements, and we will attempt to use
the results we derived earlier in Chap. V wherever possible.

2. How the Dielectric Filling in the Main Guilde is Taken into Account

The main guide portion of the tee junction is filled with dielectric material of
dielectric constant ¢, and our second problem is how to take this fact into account in
some simple way, or ways, so that we do not have to reevaluate the various
susceptances. Some approxiimations are required, but we must also assess how
important they are.
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Fig. 10.6 The equivalent network form that is used to represent

the constituent tee junction in Fig. 10.3. The form is
symmetrical even though the structure is not because
of the reasons given in the text. The elements X . and
X, are utilized in reactance form to aid in the
derivations to follow.

Since the network parameters are related to the type of main guide excitation, we
treat the two basic excitation types separately.

. a Symmetric Magnetic Field Excitation

We begin with the symmetric magnetic field excitation case (SH case), which is of
course the same as the antisymmetric electric field excitation case. An electric field is
excited directly across the slit, as seen in Fig. 10.4, and this slit field will in turn excite
higher TM modes in the main guide section (and in the stub guide portion as well).

A short-circuit bisection of the network in Fig. 10.6, corresponding to this field
excitation, yields a two-port network with a shunt susceptance equal to

e e D s e e T U s
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2
2B, +(1/nj)2B, +1/(X, +X ) =28, (104)

where the subscript sh signifies "symmetric magnetic". An expression in variational
form for B, is given in symbolic notation in (5.6) of Chap. V; more explicitly, it is

By, if[f[4.,- @ +B)- M, dsas
i =

p. (10.5)

o

Y, ffM.sh FARFY
where
Moyx,2) =y, xEg (10.6)
8 V(x,z) = b cosk x (10.7)
and the z dependence in both M, and & ) exp(k,z). The integrations are over the

slit in x and per unit length in 2z, and x and y begin at the center of the slit. The
Green's function dyadics B, and B, correspond to the main guide and the stub guide,

respectively.

These Green’s function dvadics are proportional to the sum of the higher modes in
each of the two regions, in the form

BxY Y, hh, (10.8)

where the h  terms are the inode functions for the higher modes in each region, and
Y, represents the higher mode characteristic (or modal) admittance for mode n. As
long as the waveguide cross scction is filled with dielectric material or is empty, the n,
terms are independeni of the dielectric constant ¢,. The Y, terms, however, do
dependone,.

We wish first to consider B for the main guide, which is filled with dielectric

material. Since, for symmetiic magneti: tield excitation, the higher modes excited in
the maia guide are TM mode:, Y, takes the form

e L e O R T — S E— -
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Y = = [ j ] € (10.9)
n km l k.m ' r

Since only higher TM modes are excited, the ¢, factor will multiply' every term in the
sum in (16.8), and it can therefore be taken out of the sum. We may therefore write

B), =¢B), . (10.10)
For the main guide portion of B, /Y _, therefore, we have

[(Bsh /Yo)L L’ =& [(Bsh /YO)L ]3’,1 (10.11)

where the result for ¢, =1 is what we have used previously, as in (7.2) of Chap. VI, for
example. The explicit expression then becomes

[[Bsh] ] [BL 1Ba €, [kxb]
AL I Y NN A

2
[Yo“, Y, 2%, ), atln

2
el l[fffi] 1
1.3a, +2 - (10.12)

where
sink, a’/2
=T .1
n, ka2 (10.13)
which is the same as (7.3). The various dimensions are indicated in Fig, 10.3.

It is important to recognize that two approximations have been introduced intc the
reasoning above. The first is the implicit assumption that the aperture field remains
. the same when the dielectric medium is inserted into the main guide region. The field
does actually change slightly, but for variational expressions, as used here, the effect of
the change should be minimal.

The second assumption is that |k, | in (10.9) is independent of ¢, for all higher
modes. Actually, | k_ | is given by
1/2
2 2
I | = [k ke, ] (10.14)

where k,: = k’: +kz2 in the main guide parallel-plate region. For modes with very
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high values of n, k >>k e, so that |k, | =k, = k)m = nx/b, which is certainly
independent of ¢,. But, for the first few higher modes, k,, is not much greater than
koze,, and the Ik‘,‘ﬂ | values for these modes may be slightly dependent on ¢,. The

error in (10.11) is expected to be small.

For the stub guide portion of B, we do not multiply by €, because the stub guide
region is air-filled. As an additional consideration, the stub guide structure used in
Chaps. VI and VII resembles that in Fig. 5.1 (or Fig. 5.2), whereas the one we employ
now, in Fig. 10.3, is of the rype in Fig. 5.4. The contribution to B, from the stub
guide in Chags. VI and VII was therefore taken to be zero, but now it is clearly finite
and non-negligible. In fact, it can be taken from a result appearing in the Waveguide
Handbook [8], as described in Chap. V; the contribution is derived later in this section.

b. Symmetric Electric Field Excitation

We next consider the effect of symmetric electric field excitation, which produces a
magnetic wall at T in Fig. 10.5, with Ey and H_ present at the midplane of the slit.

This excitation produces only higher TE modes in the main and stub guides, in conirast
to the previously considered excitation, which created only higher TM modes.

This excitation corresponds to an open-circuit bisection of the network in Fig. 10.6,
and it produces a one-port termination, of reactance

X, =X, +X_ (10.15)

where the subscript se means "symmetric electric”. The expression in variational form
comparable to (10.5) for B,, is

x, 1[[ffu. @8 m,asas

iZ (10.16)
o )¢ 2
v [fm, 1@ as |
where
l_‘_flse(x,z) =y, XE (10.17)
1P, z) = hsink x (10.18)

The other comments made aiter (10.7) are applicable here as well. It should be added
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that X /Z  is thc same as the negative reciprocal of B /Y , a fact that will be
utilized below. We use the reactance form now because we wish to consider
. separately the contributions from the main guide and the stub guide.

The Green’s function dyadics are still of the form in (10.8), proportional to the
sum of the higher modes. Again, the mode functions are independent of the dielectric
constant €, so that only the Yn terms need be considered. Since the discontinuity
excites higher TE modes as a result of symmetric electric field main guide excitation,
we write for Y,

km I kXH I
Y, = = (10.19)
wit,, wit,,

which does not involve €, explicitly. Therefore, there is no factor of ¢, to be concerned
about. Of course, |k | is still slightly dependent on ¢_for the lowest few of these
higher modes, and we should remember that we have made such an approximation.
Within this approximation, however, the contribution to X /Z  from the main guide,
whichis X oL /Zo, should be the saime whether or not the dielectric is present.

In the derivation of the expression for B, /Y, (= -1/(Xse /Z,)) used in Chaps. V1
and VII, the dyadic Green's functions in (10.16) were each approximated by dyadic
half-space Green’s functions. The net effect of that approximation is to neglect the
presence of the nearby walls. The terms ti and .BS are thus taken to be the same in

(10.16), and the contributions from each to the total stored power are also the same.
Thus, the expression for X, /Z  (for the main guide) and that for X /Z  (for the
stub guide) turn out to be identical, consistent with this approximation. In addition,
we showed above that the expressions are essentially unaffected by whether or not the
main guide region is filled with dielectric material. We can therefore write

' X, /Z, =X_/Z, = %Xu /2, (10.20)
and
Ba 1
‘}-,0— = - ZZ (10.21)

The final expression for B /Y is thus the same as the one given as (7.1) of Chap. VI,
namely,
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Bav na a 5 a’
yo =% b kx > JO kx 5 (10.22)

The approximation which substitutes the half-space Green’s function for the actual
guide Green’s function may at first seem severe, but the approximation is a good one
becausc the aperture field for symmetric electric field excitation is confined primarily
to the region near the slit. In Chap. V, expression (5.3) for B /Y _, which was derived
employing this approximation, is applied to the case of a slit-coupled tee junction in
rectangular waveguide. Table 5.1 presents comparisons between numerical values
computed using (5.3) and measured values for three different slit widths, and the
agreement is seen to be very good.

Lastly, it is sometimes necessary to have available an expression for network
element B, /Y  separately. Since B, /Y, is not affected by the presence or absence of
dielectric material in the main guide, we may write

B, 1 [BL 1 8, 1 B, (
S| =iy 55| 3 10.23)
Y, L ly, 2v,] "2V,

where explicit expressions for the two terms on the right-hand side of (10.23) appear
in (10.12) and (10.22).

c. Small Aperture Calculatior: for B, /Y

This subsection is a parenthetical one, motivated by the use of half-space Green's
functions in [10.16] for the evaluation of B /Y . Since small aperture theory is in part
based on a similar assumption, it is of interest to see what resuit for B, /Y, would be
furnished by that theory.

The geometry under consideration is the lower portion of Fig. 10.3, which consists
of the main guide portion cf the tee junction; the field excitation employed is the
symmetric eiectric field excitation. We shall use the simple procedure summarized in
[46], and the formulas presented therein, in the derivation of the susceptance for this
longitudinal aperture discortinuity. As a result of the symmetric electric field
excitation, the field components present in the slit are H_and Ey. The expression for
B, /Y, then involves only two terms:
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B, /Y, = wn, Y, M h -weeZ Pe e, (10.24)

where i and e, are the mode functions for the incident dominant mode evaluated
at the center of the slit, M, and Py are the magnetic and clectric polarizabilities of the
slit, and Yo (=1/Z ) is the dominant mode characteristic admittance.

In (10.24) the characteristic admittance Y correspcnds to that of the dominant

mode, which is a TE mode since the TEM mode 1s traveling at an angle. We
therefore have

Y =1/Z =k [wu, (10.25)

The polarizabilities are those for a slit of width a”; using notation consistent with that
in (10.24), we write

x

M =P = —(a) 0.2
i = _\‘_ 16(0) (1())

The remaining terms are the mode functions, which must be normalized
appropriately.
Following the notation in [46], we write

22

.Ik
e@@) =y E,e (10.27)

since there is no variation in the y direction. Using (10.27) in the normalization

condition
1b
[[e e ayaz =1 (10.28)
00
yields
(z) Lk (10.29
e )= "—_——"¢€ 8
y&) =75 )
and
€,y = 1/b (10.30)
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For mode function hx, which is a bit more complicated, we have from (5) of [46),
Z
.92 2
hx(z) = kc Viz) (10.31)
wi

(]

where k, =k, is the cutoff wavenumber, and ¢ is subject to the normalization

[fw'as =1k} (10.32)
From (32) of [46), we have
W) = —= ™ (10.33)
2y="—e
k Vb
so that i, becomes
k -jk,:
h (z) = -] \/—— (10.34)
on use of (10.25), and we find
2
N kz 1
hohg = k— ; (10.35)
X

When (10.25), (10.26), (10.30) and (10.35) are inserted into (10.24) we obtain
B 2

e _m )y L2
Y, 16 bk (k€ k) (10:36)

In the dielectric-filled main guide parallel—plate region we have

k, e - —k (10.37)

sothat B, /Y, tceomes
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B a ma [ kxa’ ] ;
T =-T T T 10.38
Y 8 b 2 ( )
o

We recall that the geometry for which (10.38) is valid is only the main guide
portion of the tee junction. B_ /Y in (10.38) therefore corresponds to -1/(X , /Z ).
When we utilize (10.20) we recognize that the value for B_ /Y, that is valid for both

the main guide and stub guide contributions is actually one-half of that in (10.38),
namely,

Bu T a [kxa’]
Y, 16b L 2 (10.39)

Before comparing this final result with what was derived carlier, we should note
that result (10.38) is independent of ¢, even though the main guide was taken to be
dielectric-filled. If it were air-filled, then the ¢, factor in the second term in (10.24)
would be unity, so that the ¢ that appears in both (10.36) and (10.37) would also
become unity. Thus, any influence due to ¢, is removed, consistent with our earlier
conclusion.

Now we wish 10 compare the small aperture result (10.39) with the variational
result (10.22). We note that they differ only in the added factor J Oz(kxa’/Z) in (10.22),
which accounts for larger slit widths. That factor is an important one that provides
significantly better numerical agreement with measurements in Table 5.1, for
example, but it is interesting that the simple and eusily derived small aperture
expression contains all the major dependences, and agrees asymptotically with the
more accurate result when the slit width a” is small.

3. Putting Together the Remaining Pieces

a The Stub Guide Contribution B, / Y,

Variational expression (10.5) for B

i /Y, comsists of two parts, one invoiving q,_

the dyadic Green's function for the main guide, and the other based on BS , for the stub

guide. The considerations in subsection 2,4 concerned only the first part; the
derivation yielded an expression for (B, / Y, +B,/2Y ) that takes into account the

presence of dielectric filling in the mair guide. It was stated there that the stub guide
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contribution would be considered later, but that in any case it would not be multipled
by €, because the stub guide region is air-filled.

There are two features of concern in this connection. One is how an expression
for B /Y can be obtained from information already available in the literature, aad
the second involves the fact that the Y values for the main and stub guides are not
the same.

In Fig. 5.4 of Chap. V a slit-coupled E-plane tee junction is presented in which the
upper portion is similar to the upper portion of the structure in Fig. 10.3, the
differences between thern bceing the geometry in the direction perpendicular to the
page and the fact that the shit i1s centered in Fig. 5.4 but asymmetrically located in Fig.
10.3. Those differences, however, do not affect the approach employed to determine
the network parameters. Expression (5.6) is a symbolic representation of (10.5), so
that the numerator in (10.5) represents the stored powers on both sides of the slit,
with the part involving -Bs corresponding to the stored power in the stub guide. It is

then explained in Chap. V, by reference to Figs. 5.4 and 5.5, that the stored power in
the stub guide is essentially the same as that in one-half of a transverse slit in a
waveguide of the same width as the stub guide. If B_ is the susceptance corresponding
to the stub guide portion of B3, , and if Y_ is the characteristic admittance of the stub
guide, then

B

1 %
Y ZYO

Y

(10.40)

where B /Y is the normalized susceptance of the corresponding transverse slit in a
parallel-plate waveguide. Since the slit in Fig. 10.3 is off-ccnter in the stub guide, we
require for B, /Y  the normalized susceptance of an asymmetrically located transverse
slit in parallel-plate guide when a TEM mode is incident on it at an angle. That result
is given (with the minor subs itution of ky for 21r/Ag) by equation (1a) on p. 218 of the
Waveguide Handbook [8); incorporating that expression into (10.40) we obtain

Bs kyb na’ L e 04
Y —7rlncs<:2ﬂcsc2ﬂ(awL ) (10.41)

-~

using the notation in Fig. 10.7.

We next take into account the fact that the Y, values for the main and stub guides
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are different, and that the denominator of (10.5), which is basically a voltage squared,
is also different from that used in the corresponding expression for B /Y . The

denominator of the relation in (10.5) may be written as
2
2
= Yo | Vin | (1042)

on

Y

[

[fm, - nas

—sh

whereas the corresponding denominator in an expression for BS /YO similar to (10.5)
1S
2
2

Y, lffl_lfm'l_z\;dSl =Y, ¥, | (1043)

Then, if we carefully break up (10.5) into its constituent parts, we find

Bsh {Bsh ] [Bsh ]
= + (10.44)
Yom Yom maqin Yom Sy
ouide guude
where
2
[lex ] Bs YosIVSI
= 5 (10.45)
Yom Sll'lge yos Yom v, |

g m

since the stored powers (numerators) are the same.

The factor multiplying B_ /Y__ in (10.45) can be incorporated into the turns ratio
n_. in Fig. 10.6; it is derived below in the next subsection.

b. The Tumns Ratio n.

The factor that multiplies B, /YOS in (10.45) includes a ratio of characteristic
admittances and a ratio of voltage terms. The propagating mode in both the main
guide and the stub guide is the same, being a TEM mode propagating at an angle, and
therefore a TE mode. The difference between them is that the mode propagation
direction is horizontal (x) in the main guide and vertical (y) in the stub guide. The
ratio of the characteristic admittances is therefore
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YOI" k.l /w“O kx (
= = —— 10.46)
Yos k_\' / WHo ky

In the offset-groove-guide antenna, k =ky. Here, because of the dielectric filling of
the main guide, they are different and are given by

2 2 2

k' =k'e -k, (10.47)
2 2 2

ky =k, -k, (10.48)

The voltage ratio involves the mode functions in both the main and stub guides,
and the form of the electric field in the slit. Combining relations (10.42), (10.43) and
(10.7), we may write

1 a’/2
[ [ MV au
m o -a’/2
— = (10.49)
VS 1 a7/2
[ [ M anaz
o -a’/2
where
B V,2) = b (2) cosk x (10.50)

Mode function i~ for the riain guide is subject to the same normalization as that
shown in (10.28) for e { =e,, ); following (10.29), we theiefore write for h,

h@) = = e (10.51)
1 (2)="=e .
- b
Similarly, but for the stub guide cross section, we have
1 -jk,z 5
h.(z) = 7_‘1- e (10.52)

Both h, (z) and l_zJ (z) have units of per unit length in the z direction.
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For simplicity, we assume that the aperture electric field, and therefore M from
(10.6). is a constant across the slit. The same quantity appears in both numerator and
denominator, and the result for Vm/VS is not sensitive to the form of M. This
approximation was used previously in the evaluation of n. in Chap. V, and with
success. With this simple approximation, the result for I/ /V foliows readily on use

of (10.50) through (10.52) in (10.49).

When we define turns ratio n.., in the manner

. 2
1 yas 'Vs l ( )
= 10.53)
n? |V | 2
csn om m

we find, from (10.46) and (10.49),

\ /I'Xa sink a’/2
= (10.54)

'ICSN m k a '/2
. X

Expression (10.54) for n_ =~ permits us to utilize the network in Fig. 10.6 in the

most logical and straightforward way. In practice we must work with nornalized
susceptances or reactances, which is the way in which they occur physically. To use
n_.,, in the form (10.54) would then require us (and permit us) to employ normalized
susceptances in the equivalent network of Fig. 10.6, rather than the artificial absolute
values for them, which is the customary procedure. Then, we would work only with
normalized quantities, and all the susceptances in the stub guide, including B, and the
termination on that guide, would be normalized with respect to YOS of the stub guide;
similarly, the quantities B, , B , and the terminations in the main guide would be
normalized to Y, =~ of the main guide. The transition between the main guide and the

stub guide is absorbed completely into the n__ term.

On the other hand, since it is customary to employ absolute susceptances or
reactances in equivalent networks, it might cause confusion not to do so. It would be
prudent, thercfore, to leave the susceptances in the networks in absolute form, and
modify the turns ratio accordingly. In that case, we would use n_, rather thann___,
where that last subscript (n) signifies "normalized." The only difference is to leave out
the ratio of characteristic admittances in the definition for the turns ratio. 1f absolute
values were to be employed, (10.45) would become
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2
[V, |
B =B ——= (10.5%)
[m]sm s |V |2
g‘“ ¢ nt
so that the definition for turns ratio n. is
2
1 ' Vs l
= (10.56)
n vl
s n

and n., is found to be

Mes = Mesn ‘y' Ex (10.57)

where n_ is given by (10.54).
¢. The Complete Network

We are now able to present the final form of the equivaleni network for the tee
junction shown in Fig. 10.3, and to present expressions for all of the elements in this
network. The structure itself differs in several ways from the earlier tee junction
employed in Chaps. VI and VII; in particular, the main guide is filled here with
dielectric material, and the slit is located asvmmetrically within the stub guide, leading
to the various complications addressed above.

The final form of the equivalent network is presented in Fig. 10.7. As explained
above, we have the alternaiive of expressing the network elements in Fig. 10.7 in
absolute form, which is customary, and then using n_ (as given in (10.57)) for the
turns ratio, or employing the normalized forin for the network elements and utilizing
n_. - as prescented in (10.54). We have chosen here to use the absolute form, simply
because it is customary; the alternative may cause confusion.

The expressions for the individual network elements emerge naturally in
normalized form, and that is the way they are summarized below. To use them in the
network in Fig. 10.7, we must multiply them by their characteristic admittances; for
example, we must write b = (Ba/Yom)Yom, or B =(B,/Y,)/Y,. In the
transverse resonance relation, derived in Sec. C,3, we encounter the ratio Yom / Yo; ,
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Ky, Yos
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Fig. 10.7 The final form of the equivalent network fo: the
constituent tee junction shown in Fig. 10.3.

which is given below and in (10.46). If we used the normalized form of the elements
in the equivalent network, this ratio would not enter explicitly because it is already
incorporated into n_e. - Either way, of coursc, one obtains the identical result for the
resonance relation.

Normalized expressions for the various network elements in Fig. 10.7 are obtained
from (10.22), (10.12), {10.13), (10.23), (10.41) and (10.57). Some have been given
explicitly and some not. For convenience, we present all of them in explicit form in
the following summary:
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i LI i]ﬂ L L 10.58)
Y 16 bh | x2]0x2 (1%

oni

UL PR LI 10.59
N szJ o |2 (169
with

sin(k,a’/2)
=~ T 10.60
e k a2 ( )

X

Bs "',vb me T

Y = ‘;‘ n | cs¢ '2a" cscz—a' (a"+2ul’) (10.61)
os

s TV al/b (10.62)

where n_ is given by (10.60).

),U.\' /YI)I” = k_y /k_\- (10()3)
2 2 2 |

kx =k0 Er'kz (10.64)

K=kl ok} (10.65)
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C. TRANSVERSE EQUIVALENT NETWORK FOR THE ARRAY
OF PRINTED-CIRCUIT LINE SOURCES

When we use the unit-cell approach to the analysis of the array of leaky-wave line
sources, ths transverse equivalent network for the ar-ay reduces to a transverse
equivalent network for a single unit cell. The unit-ccll approach is described in
general terms in Chap. 11, and its appiication to the array of NRD guide line sources is
discussed in detail in Chap. IV. The analysis here of the array of printed-circuit line
sources is similar in the main to that employed in Chap. IV, but of course the
transverse equivalent network used is quite different. The dispersion relation is
substantiallv different as well, in that here the dispersion relation can be explicitly
displayed in an analytic closed form, whereas the analysis in Chap. 1V leads via its
mode-matching procedure to numerical results directly.

In the discussion below, we first summarize the relevant unit cell properties, then
obtain the complete transverse equivalent network, and finally derive the dispersion
relation.

1. Unit Cell Properties

In the unit-cell approach, the array is replaced by a single unit cell, where the
space above the array is represented by a periodic waveguide with phase-shift walls.
When the unit cell is properly characterized, all mutual coupling effects are
automatically taken into account. The unit cell for the array in Fig. 10.1 is shown on
the left-hand side of Fig. 10.8. The lower portion of this unit cell, with metal outer
walls, is the same as the structure of an individual line source of the array, which was
presented in Fig. 10.2. The upper portion of the unit cell, with the phase-shift walls, is
completely different; the radiating open end in Fig. 10.2 is now replaced by a junction
between the parallel-plate stub region and the periodic unit cell with phase-shift walls.

In the transverse resonance that yields the dispersion relation, the transmission
direction in the stub and periodic regions is the y direction. The dominant mode in
that direction in both of these regions is a TEM mode at an angle. In the stub region,
the propagation wavenumber is kyos, where the subscripts o and s refer to "lowest
mode” and "stub”, respectively; in the periodic region, the wavenumber is kyop, where
subscript p means "periodic.” In Chap. IV, these wavenumbers were given as k g and
k‘mp; here we refer to the air-filled parallel-plate region as a "stub”, rather than a
"guide.” Wavenumber kyo , 1s then related to the free-spacc wavenumber & , and the

longitudinal (axial) wavenumber k_ by
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=k’ -k (10.66)

where k (= B-ja) is the unknown that we ultimately seek in the analysis. A
corresponding expression for the higher modes in that region is

2 2,2 2
kym =k, -k, -(m n/a) (10.67)
where m is the mode number of the higher mode. Expressions (10.66) and (10.67) are

analogous to (4.1) and (4.2).

In the periodic (upper) region, with the phase-shift walls, the lowest made is a
TEM mode that propagates in the y direction, but at an angle in the z direction due to
leaky-wave scan in elevation, and at an angle in the x direction corresponding to scan
in the cross plane (and hence in azimuth). The wavenumber components in the y and
x directions are k)_ op and k op" respectively. The value of wavenumber kmp is related
to the phase shift . between the opposite walls of the unit cell of width g, which in

turn depends on the phase shift imposed between the successive parallel line sources
in the array. Thus, we may define

d’C =kx

op @ = phase shift per unit cell . (10.68)

When all the line sources are fed in phase, kmp = 0 and there is no scan in the cross
plane, and therefore in azimuth. In Sec. E below, we use % as a measure of the scan
in the cross plane.

As explained in Sec. B of Chap. II, and used in Sec. B of Chap. IV, space
harmonics are created in the periodic region, where each space harmonic in the x
direction corresponds to a mode in the y direction in the unit cell, The nth space
harmonic kmp is related to kmp by

k =k _ +2m/a (10.69)

xp xop

and wavenumbers kyop and kynp for the lowest mode and the higher modes in the

periodic region are then given by

(10.70)
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2 2 2 2
kynp =k -k, -kmp (10.71)
from (10.69). From (10.66) and (10.70) we obtain the simple but useful relation
2 _,2 ,2
kyop = kym - kmp {10.72)

Relations (10.69) through (10.72) correspond to (4.3) through (4.6) of Chap. IV.

As pointed out in Chap. 1V in the discussion following (4.6), the beam undergoes
conical scan as k_ op increases from zero. Wavenumber kxop is real and is assumed
given. Using Fig. 2.13 of Chap. II and the relations in (2.9) between the wavenumbers
and angles @ and ¢ of the polar coordinate system, we observe that the beam scans in
azimuth (given by ¢) and increases in § (meaning that the beam approaches closer to
the ground) as kmp increases. When kmp reaches kyos the beam hits the ground and
all radiation ceases, in accordance with (10.72). The angles at the two extremes of the
conical scan range are related in a simple way, as given in (2.16) or (2.17).

2, Complete Transverse Equivalent Network

The transverse equivalent network corresponding to the unit cell of the array
shown on the left-hand side of Fig. 10.8 is presented on the right-hand side of that
figure. The difficult portion of the unit cell to represent in network form is the
asymmetrical slit that couples the dielectric-filled lower region to the air-filled stub
region above it. That represcntation in the form of an E-plane tee is derived in Sec. B,
and shown in Fig. 10.7. As seen, it forms the central portion of the transverse
equivalent network in Fig. 10.8; to complete the network, we need only to add the
appropriate terminations.

The terminations on the main guide sections of the tce network are simple, being
only short circuits. The asymmetric location of the slit in the dielectric-filled region is
accounted for by the two ditferent line lengths (d +a7/2) and (d” +a’/2) in the main
guide arms; the length a’/2 must be added because the network in Fig. 10.7 is valid at
the reference planes located at the midplane of the slit. The expressions for the
ciements of the tee network are listed in (10.58) through (10.62). They are given in
normalized form, eaactly the way they would arise naturally, even though the
susceptance elements in the network are shown in absolute form, which is customary.
The characteristic admittances represent TE modes in each line. and their ratio is
presented in (10.46) as
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Yom kX
—}Z— = ;}‘ (10.73)
where the wavenumbers are related by
KP=kle -k? (10.74)
kyz =k2-k} (10.75)

The difficult termination to represent is the one shown as Yop. together with the
length 6 by which the stub guide length ¢ has been chortened. That termination
represents the junction between the stub guide with metal side walls and the periodic
guide with the phase-shift walls, and then the infinite lergth of periodic guide beyond
it. The characteristic admittance Yop serves as the termination because that line is
infinitely long. The mode in the periodic guide, when k op is nonzero, is an LSE or
H® - ype mode, and its characteristic admittance is 'n the form given by (2.18).
Using (2.18) for Yop together with (10.46) for Y _, we have

2 2
Y, (k) ek,

4

Yo kyos Jwp
or
Yop kyos (10.76)
= 10.76
Yos kyop

when (10.66) is employed.

The equivalent network representation for the junction between those two guides
was discussed in detail in Chap. IV, where it was indicated that the network was
available in the Waveguide Handbook (Sec. 5.22, pp. 289-292) for the case of normal
incidence (k, = C) in the stub guide. The required analytic continuation for the case
k. #0, the changes in notation involved, the modifications in going from a longitudinal
to a transverse problem, and the needed interprztation of the results, are all presented
in Chap. IV. The steps are all simple ones in themselves, but one must be careful and
consistent. Two differences in notation appear between what we employ here and
what was chosen in Chap. IV. The first is that the subscript for the stub guide here is
s , where g was uscd there; the second is that the length by which the stub guide length
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c is shortened was d” in Chap. IV, whereas here d° means someihing else (related to
the offcenter location of the slit) so that we employ é instead.

From the detailed discussion in Chap. IV, we may obtain the expression for § that
we still require. From (4.14). after changing kmd’ to k o5 6, we have

k 6=zt‘m2+sm“zx'-sm“—i-sm“3—;
yos 1+y 1y
+8,(2050,0) - S,(x";0,%) - S (x 50,) (10.77)
where
PO - I UL
S,("30,b) = ,.Z.z [sm — ] (10.78)

and where y and x” are symbols used in the Waveguide Handbook which here signify
(from (4.12))

£ = (10.79)

We now have expressions for all the constituents of the trunsverse equivalent
network in Fig. 10.8.

3. The Dispersion Relation

Because the ¢lements in the transverse equivalent network in Fig. 10.8 are all in
closed form (S, in (10.78) converges extremely rapidly), it is possible to derive the
transverse resonance relation, or dispersion relation, in analytical closed form. To
obtain the transverse resonance relation, we first choose as the reference plane
location a plane just below the transformer in Fig. 10.8; then we set equal to zero the
sum of the admittances looking up and looking down from this reference plane.
Looking up, we have

Vip = (/n )G B, +Y,0) (1080)

where Bs is written as Bs = (Bs /Yos )YOS, and Ym is given by
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Yins J+ (Yop /Yos Yeot kyos (c-6) (1081)
Y, cotky(c-6) + (Y, /Y,0) ‘

os yOs

The expression for B, /YOS appears in (10.61); the ky there is now written k} os*
Expressions for n.. Yop / Ym, and § are given by (10.62), (10.76), and (10.77) through
(10.79), respectively.

Looking down, we obtain
(UB, +YR)iB, +Y,)
Y =jB, +- = 10.
down — 1 P jZBa + YR + YL (10.82)
where
Yp =-jY,,cotk(d +aj2) (10.83)
Y, =-jY, cot k (d +a72) (10.84)

and where we write B, = (BL /Yom )Y, and B, = (B, /Y, )Y, . Expressions for

om
B, /Y, andB, /Y, appear as (10.59) and (10.58).

M

When the normalized forms are substituted into (10.80) and (10.82), YOS andY_
multiply all terms in Yup and Y down® respectively. Then, when Yup ansz down 7€
summed to zero, the ratio Y, /Y enters as a multiplier of (1/n ) in effect
csno 10 accordance with (10.57) and the discussion surrounding it,
when (10.46) is used. We thus see, as expected, that the same result is achieved
whether we use n_ and absolute susceptances or n_ =~ and normalized susceptances

changing n_ to n

n
directly.

Since there are three different regions in the cross section of the unit cell of the
array, the dielectric-filled region at the bottom, the air-filied parallel-plate region in
the middle, and the periodic region at the top, the resulting transverse resonance
relation contains ihree different transverse wavenumbers, kx’kyos and ky op* These
transverse wavenumbers are related to each other and to & , and kz , the free-space
and longitudinal wavenumbers, respectively, by (10.64), (10.66), (10.70) and (10.72).
The transverse resonance relation can be rephrased in a variety of ways to exclude
some of these wavenumbers and include others. We have found it convenient to

phrase it to containk _, k. and kmp, using (10.70) to replace kyop with kwp. since the
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latter is given and is real. Effectively, then, the relation contains only the unknown k, .
The other wavenumbers, particularly k (= 8 -ja), which is the ultimate goal, follow
simply from the wavenumber relations quoted just above. The dispersion "relation” is

then the transverse resonance relation taken together with the other wavenumber
relations.
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D. PERFORMANCE WITHOUT CROSS-PLANE SCAN

When all the line-source elements in the array are fec in phase, k, op = 0, and the
cross-plane scan angle is zero. The phase shift across the unit cell is then zero, so that
the phase-shift walls reduce to electric walls in view of the electric field direction. The
periodic region then becomes identical to the air-filled parallel-plate stub guide region
that connects to it; as a result, length ¢ loses its meaning, the metal vertical walis
effectively extend to infinity, and the modified unit cell becomes that shown in Fig.
10.9.

Fig. 10.9 The form to which the unit cell reduces when there is
no cross-plane scan (k,,, = 0) .
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The array is capable of two types of scanning: leaky-wave scanning in elevation,
and phase-shift scanning in the cross plane. The latter produces conical scanning of
the beam, so that the beam moves in azimuth and also gets nearer to the ground in
elevation. When the cross-plane scan is zero, as in this section, the beam is at its
highest position in elevation, and that position can be altered by changing the
frequency or by modifying S/k , in some other way. The zero cross-plane scan case
therefore represents the best case for an examination of the leaky-wave properties of
the array. Such an examination is conducted in this section; the modifications in
performance that arise when kmp is no longer zero are treated in Sec. E.

We present results below for the dependence of the performance on dimensional
ratios in the array cross section and on frequency.

1. Variations with Dimension2: Ratios

We recall that the angle 7~ of the maximum of the beam is given by the value of
B/k - the normalized phase constant, and that the beam width A8 is related to the
value of a/ko, the normalized leakage constant. (See relations (2.27) to (2.29).) We
are therefore interested in the behavior of 3/k and a/k, as various dimensions in the
cross section are changed. In particular, we wish to know which dimensions to vary so
that /k , remains fairly constant while a/k | changes greatly.

The two best candidates to vary in order to modify a/k, strongly are the relative
slit width a’/a and its location in the cross section, measured as d /a, as seen in Fig.
10.9. Let us first obtain the dependence on d /a when the width a and then the height b
of the dielectric-filled region (which is actually the feed guide region) are varied as
parameters.

We first present the varictions of 5/k, and a/k, vs.d /a for three different values
of feed guide width a. The curves in Figs. 10.10, 10.11 and 10.12 correspond to values
of a equal to 2.50 mm, 2.25 mm and 2.20 mm, for a frequency of 50.0 GHz. Other
parameter values are indicated in the inset. The curves in Fig. 10.10 fora = 2.50 mm
are the least desirable because the values of a/k , are the smallest and the values of
B/k, are too close 1o unity, meaning an angle too close to endfire (for example, .
B/k, = 0.90 corresponds to an angle of 26° from endfire). The behaviors in Figs.
10.11 and 10.12, for @ = 2.25 mm and 2.20 mm, are rather similar to each other; we
selected a = 2.25 mm as the guide width for further calculations, but we could just as
well have chosena = 2.20 min.




Downloaded from http://www.everyspec.com

- 403 -

“ww
0S'Z= P PP Spind JOj ‘UONISS SS0II 3Y) Ul UONEDO] IS JO UOHdUNY
g se sjueisuod afexes| pue aseyd pazijpwiou Y JO SUONELIEA oror 314

e/p e/p
VO 80 a0 90 0 060 %0 80 A0 w0 O

30

1
(2]
<.
o

Y

J

% m .
\\ \\\\_ — .|O—xnu|v_. - I%.
q \\A\N D

L
w
<
o

T

Ww eGl-q  WWOol-g  wwesZ-e

9G2=73 ZHO 06 =}




Downloaded from http://www.everyspec.com

ao

ww GZT= o Yipim aping 5o Inq ‘g1 g1 14 se sweg

e/p

11°01 914

ao 900

300 0 0£0 174Y] 8L0
T T T

|

i

T

o

OLxA

n

B

= -
1 1 1 ON.O 1 1 | |

wuwegi=q wwuoo't =.e UWIGZ'2 =e

96219 IHO 05 <}




Downloaded from http://www.everyspec.com

‘Www )77 = 2 Yipim 3pnd 10y Ing ‘0101 ‘St se aweg zrot Sig
e/p
0g0 1740 8L0 900 0 0t0 1744 8.0 ¢lo 900 0
T T Al T \ 1 0 { 1 I { T | I 0
r B - L
- 400 - 4 20
R o 4 o .
R ! 4800 v0
. ¥ § \ oy oy
% I~ D;F _N - .IOP X \NUI — — %
S .
' - &\\ _ 1¢i0 - 90
i P € 1p ] 3 B
- +9t0 - 80
ﬁ - —
) | 1 L1 ! 020 1§ | { { It ot
ww g1 =9  wwool-=e wwozz=e
962-73 KO 057}




Downloaded from http://www.everyspec.com

. 406 -

As expected from similar numerical results for the offset-groove-guide antenna in
Chap. VII, the value of a/A  varies monotonically and smoothly over a very wide
range of values as d /a is changed. The value of /k_ over this range varies only a
little, but we would have hoped for it to be flatter.

The value of feed guide height b in Figs. 10.10 to 10.12 is 1.59 mm, which
corresponds to a 1/16 inch thick printed-circuit board. That height is a very
convenient one, but in Fig. 10).13 we examined the behavior vs. d /a when thickness b
was increased slightly to 2.00 mm. We obscrve that, as compared with the curves in
Fig. 10.11, the values of f/k  are flatter, but the a/ko values are much lower. The
corresponding curves for beam angle §,  and beam width A# are shown in Fig. 10.14
(using (2.27) to (2.29)), where it is seen that §  varies only about 4°or 5° over the full
range of d /a, whereas Af varies monotonically from zero to a max.mum of about 2.3°,
which is not that large. This dimensional combination is therefore useful only for
rather narrow beams. To permit greater flexibility in beam width, and also because it
corresponds to easily available 1/16 inch printed-circuit board, we will stay with b =
1.59 mun,

The next set of curves varies the slir width a” as the parameter, froma” = 0.40 mm
to a” = 1.30 mm in four steps, corresponding to relative slit width values of a’/a =
0.178, 0.311, 0.444 and 0.578. Figures 10.15, 10.17, 10.19 and 10.21 present the
variations of 8/k, and a/k, vs.d /a for a” = 0.40 mm, 0.70 mm, 1.00 mm and 1.30
mm, respectively. Figures 10.16, 10.18, 10.20 and 10.22 show how 6, and Af vary with
d /a for the same set of a” values. The abscissa scales are the same for each curve;
the curves for larger values of a” therefore cover a sialler range of d /a. Inspection
of these curves shows that, of the four values of a” being compared, the value of a” =
1.00 mm seems optimum, corresponding to a maximum beam width of just over 6°
(These beam widths are obt:ined for line-source lengths for which 90% of the power
is radiated, consistent with (2.28) and (2.29).)

So far, the abscissa variation was for d /a, a measure of the offcenter location of
the slit. We next consider the abscissa variation for a’/a, the relative slit width. For an
arbitrary choice of d = 0.20 inm, the behavior of 3/k, and a/k  vs.a’/a is depicted in
Fig. 10.23. We observe that §/k remains rather flat as a’/a is changed from 0.4 to
0.8, and that over this range of a’/a the values of a/k , vary monotonically over a wide

range. The corresponding . _haviors for § and Af are shown in Fig. 10.24, where it is
seen that 0," is indeed flat from a’/a =0.4 to 0.8, while A6 varies from about 3.5° to
nearly zero over the sume rar ge. The maximum
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value for A8 could be increased by simply choosing a smaller value for d, in
accordance with Fig. 10.20.

The last set of dimensional variations involves the ratio b /a, the relative height of
the dielectric-filled feed guide. The dependences of S/k, and o/k, on b/a are
presented in Fig. 10.25, and the corresponding behaviors of § and A6 are shown in
Fig. 10.26. It is seen that varying b /a changes both 8/k  and a/k_ simultaneously,
increasing one while decreasing the other. The 1/16 inch printed-circuit board height
corresponds to b /a = 0.707. Making the guide aspect ratio flatter serves to widen the
beam, and also to raise the beam closer to broadside. We have not, however,
examined how the other dependences would be affected by making b /a smalier. We
suspect that they would be more sensitive, that is, 8/k , Would be less flat as 4 Ja or
a’/a were varied, but we have not checked the behavior.

From the point of view of sidelobe control or pattern shaping, where we would
need to vary a/k, while maintaining 8/k  the same, we find from the above
numerical results that a’/a is the best parameter to vary, although d /a is not bad. It
is important to note that both of those dimensional parameters can be tapered along
the line source length by employing lithographic means, which would permit a mask to
deposit or etch away at one time the whole structure on the dielectric interface.

2. Variations with Frequency

The variations of /k, and a/k, with frequency are shown in Fig. 10.27. There
are three separate frequency ranges, and they are best recognized by looking at the
curve for B/k . For the highest range of frequencies, when f is greater than 56.75
GHz for the set of dimensions given in the inset, the value of B/k, exceeds unity,
because the guided wave is then purely bound and not leaky at all. In that frequency
range, we correspondingly find that a/k =0. This behavior cannot occur for the
offset-groove-guide antenna, discussed in Chap. VII, where the corresponding curves
appear in Fig. 7.12. The slow-wave behavior here is made possible by the presence of
the dielectric material in the feed guide portion.

In the second frequency range, from about 43 GHz (the value is not sharply
defined) to 56.75 GHz, the guided mode is above cutoff, with a fast phase velocity.
The mode is leaky within that range, and the values of a/k , increase monotonically as
the frequency is decreased. Below about 43 GHz the mode goes below cutoff, in the
ihird range. The a/k  values continue to increase strongly, but the attenuation is now

predominantly reactive rather than radiative. The 8/k curve does not approach zero,
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but slowly turns up again and eventually, at very low frequencies, Crosses the B/k, =1
line. It was proved analytically for the offset groove guide in Sec. B,3 of Chap. VIl
that such seemingly odd behavior for A/k, should be expected, and the same bases are
applicable here. Similar behavior was found in the case of the uniform microstrip line
leaky-wave antenna, where it was shown in Sec. D,3 of Chap. 1X that the crossing of
the B/k, =1 line corresponds to the condition for which the pole is no longer
captured in the steepest-descent plane and thus can no longer contribute to the total
ficld.

In Fig. 10.28 sunilar data are reported for a slit that is more symmetrically located,
and therefcre !saks much less. We see that the values of a/k_ in the above-cutofi
frequency range are much lower as compared with those in Fig. 10.27, and also that
the B/k, values below cutoff approach z@ro more closely at the minimura.
Quaiitatively, the performances are similar.

Plots of the unnormalized phase constant 8 and leakage constant a as a function of
frequency are presented in Fig. 10.29. It is seen clearly that both § and a approach
constant values as the frequency approaches zero. Thus, when we divide by k , which
goes to zero linearly with the frequency, it is evident that the curves for B/k " and o/k o
in Figs. 10.27 and 10.28 must continue to increase as the frequency approaches zero.

The variations in the values of the beam angle §_ and the beam width A8 as a
function of frequency in the range above cutoff are shown in Fig. 10.30. For 6 we
observe that the beam angle changes rather quickly with frequency, making frequency
scan in elevation effective for this array. It is possible to cover essentially the whole
angular range by varying the frequency about + 7 GHz, centered at 50 GHz. The
frequency range below 50 GHz seems more attractive because Ad varies more slowly
there; we note that we can scan from about 5° from broadside to about 40° in about 5
GHz, or a 10% change. Because of the presence of the dielectric material, however,
we have lnst the very desirable property possessed by the offset-groove-guide antenna,
namely, that Af remains constant with frequency. Here, Af is seen to change
substantially with frequency, as we also found for the uniform microstrip leaky-wave
antenna in Sec. E of Chap. IX.

The behavior of §  and A9 vs. frequency for a larger value of 4, meaning a lower
leakage rate, is shown in Fig. 10.31. These dimensional values are the same as those
for Fig. 10.28. The 8 dependence on frequency is essentially the same as that found
in Fig. 10.30, but the Ad values are smaller, as expected.




Downloaded from http://www.everyspec.com

- 424 -

adeqeaf Jajews e spaik Yoiym ‘Ww Op'0= P J0) INq ‘L0l 4 se swes

(ZHO) )

ool 08 09 oy 0

‘eld

wworo =p

WWwegL=q WwWoOl =@

962 = '3

8z 01 34
(ZHO) }
039 oY (074 0
LIRS 1 1 O
ﬁ ¢0
-
= 0
i | e
- 490
- -
- 4180
| | 1 1 1 1 | OF
wwezZ=e




Downloaded from http://www.everyspec.com

- 425 -

S

‘a3uel apim & 130 Aouanbayj Jo uonoung e se
‘o pue g ‘siueisuod adexes| pue aseyd pazijewsouun 3yl Jo SUOHIEIIEA

6201 314

962 =43

(ZH9O) ) {(ZHO ) §
08 09 ov 0c 0 oot 08 o9 oy 0c oo
] | I T T T T T vIO—‘ T T 1 T T T —_— T
! L ~
o -4 — -
m o [ e
— — -
. ] - ]
2 .
: ] i 1v°
nr = u..OF I~ ha
e || Lo
: 3 D .%
E q §\ =
- \ . - 180
| A
ol 4 -
m SYCENES ] =
— - Ok ﬁ 101
I ] - i
w M  HN VN VN UL A U W R U 21
S SR U TR RN SR SR I 0l
WWGZ0=p WWEGL=q WWQEOl=g WWGZZ=€

{ -Wi )




Downloaded from http://www.everyspec.com

- 426 -

(ZHO)
09 0% 0¢

ww )= p 10} “Aouanbayy jo uonouny
€ SE gV YIpim weaq ay) pue “p s[3ue uoneasjs weaq ays jo SUONELIEA

o0

p.m —.U

18

loN

lo?
4 &V
10@

o0l

oto1 T4

(ZH9) )
o0 08 09 ov 074 0

T T T T T T T T o0
— -0
- - oov
. 1 Y
| - 08
- .08

) 1 ] 1 ] 1 i L

wwgzo=p wwes't=q
9G¢ =

wwQoo'l=.e wwgee =¢e

i3




Downloaded from http://www.everyspec.com

“)X3] 995 ‘@Y JOJ SIU| PaYsEP pue PIjos Yl US3Aq
uonPUNISIP 3Y) J0 *34nT1) SIY1 0} MU SI 9V 10J U] PIYSEp SY], 31el
a9eyes| Jamoj © SPIRIA Yoym ‘ww pp’p= P 30} 1nq ‘0¢°0l ‘814 se sweg

(ZHO) } (ZH9O)
0oL 08 09 ov 0¢ G oo 08 09 oy 0
o T Oo
] \ T & | 1 Ll I ° ) R [ 1 I
\
\ i 5 i
B /
- ‘- AON - - 08
]
- \ - - .
\
- “ - .v _l = 03
() . E
5 I m 1 ey | 1 v
| - " ] 0@ - -1 08
| 1 _ i
i “
= ] 1«8 - <08
“ ] 1 1 L 1 { 1
-~ '
) 1 1 A “ i ) 1 oUl
wwovo =p wwes'l~q wwool-e wweze-e

962 =19




Downloaded from http://www.everyspec.com

-428 -

Moreover, two curves are shown for Af, to indicate that different behavior is
obtained for different methods of operation. The solid curve here, and the curve in
Fig. 10.30, assume that one chcoses a length L for the antenna and then maintains
that value of L as the frequency is changed. The dashed curve assumes that at each
frequency the length L is changed so that 90% of the power is radiated at each
frequency. From (2.28) and (2.29), we may write the relations that correspond to the
solid and the dashed lines:

52.1
id line: Af = 10.
solid line (L/%)cost, (10.85)
a/k,
dashed line: A8 = 285 (10.86)
cos b

where Af is in degrees in both relations. The value of L /A , 10 be used in (10.85)
depends on the frequency chosen, si:ice L/Ao is determined from (2.28) and a/k,
varies with frequency. For the curve for A8 in Fig. 10.30, the center frequency of 50.0
GHz was selected, and L /A | became 29.7. It is seen from Fig. 10.31 that these two
different ways to compute A0 actually produce oppositely directed dependences. The

more meaningful method of operation, if indeed frequency scanning is intended, is the
one corresponding to the solid line.

The last set of curves relating to behavior with frequency is concerned with the
transverse wavenumbers. We consider only the wavenumber in the air region, which is
k. . in the parallel-plate region with metal walls and k,_ in the periodic region; when

yos yop
kmp = (, corresponding to zero cross-plane scan, they are of course equal to each

other, as explained above. For the offset-groove-guide antenna, we found in Chap.
VII that the transverse wavenumber, although complex, was indeed independent of
frequency. Here there are two different media in the cross section, so that ky op MU
be frequency dependent.

The variations of Re kyop and Im ky op with frequency are presented in Fig. 10.32.
The values for both the real ind imaginary parts are seen to approach constants as the
frequency ncars to zero, but to decrease monotonically as the frequency increases,
reaching zero when /k , becomes equal to unity, which is the transition between the
fast and slow wave ranges of behavior. For still higher frequencies in the slow wave
region, Re kyop remains zero since there is no leakage, and Im ky op becomes negative,
corresponding to exponential decay away from the air-dielectric interface.
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Figure 10.33 indicates the behavior of k op [k, vs. frequency. When normalized to
k,, both the real and imaginary parts increase without limit as the frequency
approaches zero, as we would expect. The behaviors of the unnonnalized and
normalized values of kyop for a different value of offcenter slit location, corresponding
to a lower leakage rate, are given in Figs. 10.34 and 10.35, respectively. It is
interesting to note that the Re kwp values, when Figs. 10.32 and 10.34 are compared,
are not much different; similarly for the normalized values. The Imk op values,
however, are very different, by almost a factor of three.

The reason for the different behavior becomes clear when we examine the
relations between the real and imaginary parts of k op and k,. From
2_ a2 . 2
k, =(B-ja) + (Re kwp +jIm k)vp) (10.87)
we separate the real and imaginary parts, to obtain
2 2 2 2 2
k, =B"-a” +(Re kyop) -(Im kyop) (10.88)
and

afl = (Re kyop)(lmk

op) (10.89)

When k,— 0, a2>>ﬁ2 and (Re kw p )2 >> (Im kyop )2, as seen from Figs. 10.29 and
10.32. Under those conditions, (10.88) reduces to

Re ky op = O (10.90)
Employing (10.90) in (10.89) yields
Im Kop = J¢] (10.91)

When we compare Figs. 10.29 and 10.32, we see that the ordinate values in each do
approach constant values. By an inspection of the curves we may check relations
(10.90) and (10.91), although more precise values may be found from Fig, 10.32. We
find, for f — 0:

Re kyop =148, a=1.5

Im kyop = 0.011;, =001

The computer output resuits for a and 8 are 1.479/mm and 0.0111/mm. Relations
(10.90) and (10.91) are therefore very accurate.
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E. EFFECTS OF CROSS-PLANE SCANNING

Cross-plane scanning, and therefore scanning in the azimuth plane, is achieved by
imposing a phase shift between successive parallel line sources in the array. This
phase shift per unit cell, @ -, is defined in (10.68) as

O = kyypa (10.92)

where a is the unit cell width and ko p is the wavenumber component in the x
direction. When kxop = (, there is no cross-plane scanning, and the junction between
the stub guide with metal walls and the periodic guide with phrse-shift walls
disappears. As a result, the phase-shift walls become electric walls, and the stub guide
becomes effectively infinitely high, as discussed in Sec. D.

When kx # 0, and cross-plane scan is present, the junction between the stub guide
and the periodic guide becomes significant. The larger the phase shift introduced per
unit cell, the bigger is the effective discontinuity due to that junction. Two primary
effects are introduced by the junction discontinuity; the first is that a standing wave is
introduced into the stub guide region, between the slit of width a” located at the air-
dielectric interface and the above-mentioned junction, and the second is that a new set
of leaky modes is introduced, the so-called channel-guide modes. These channel-guide
modes also occur in antenna structures treated in other chapters of this report, and
have been discussed in detail in Chaps. 1V and VII. Due to the standing wave,
subsidiary effects are also introduced, including a small deviation from conical scan
and a variation in the leakage rate as k, p is changed.

When the cross-plane scan angle is small, the junction discontinuity is small, so
that the standing wave is mild and the interaction between the desired leaky mode and
the unwanted channel-guide modes is negligible or completely absent. When the
cross-plane scan angle is large, however, all the effects are magnified, and the
interaction with the channcl-guide modes must be taken into account. In the
treatment below, we first select two separate phase-shift values, one corresponding to
a small cross-plane scan angle and the other to a large one, to illustrate the
performance differences.

Before we can select the two typical phase shift values corresponding to large and
small scan angles, we must know the value of phase shift that causes the beam to
reach the end of the conical scan range. During the conical scan, the beam begins at
azimuth angle ¢ = 0; then, as kmp or <I>C increases, ¢ increases and 6 also increases,
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Fig. 10.36 Polar coordinate diagram, showing the relationships

between the various wavenumbers and angles § and ¢.

meaning that the beam gets closer to the ground. When @ reaches its maximum
value, 6 = 90°, ¢ is at its maximum value, and all radiation ceases. The relation
between the angles ¢ and @ at the two extremes has been derived in Chap. 11 as

(10.93)

0

¢0= 90° = 900-0¢=

which is (2.16).

With the aid of the polar coordinate diagram in Fig. 10.36, we see that
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sin 0¢ -0 =Kk /k, = B/k, (10.94)
and

sindgy _ oo =k, [k, = kmp /k, (10.95)

Combining (10.93) to (10.95), we find for the largest permissible value of kmp
. -1
kxop [k, = cos(sin 0¢ -0 (10.96)
The value of 8 =0 is seen from (10.94) to depend on the properties of the leaky-wave

line source, so that the maximum value of kmp will change as the dimensions of the
line-source cross section are altered. It is also a function of frequency.

For a center frequency of 50.0 GHz, and fora = 225 mm,a” = 1.00 mm, b =
1.59 mm, and d = 0.25 mm, a typical case for which we have many numerical results
in Sec. D, we know that ﬂ/ka = (.737. For that value of 3/k o We have from (10.94)
and (10.96) that

045 0= 47.5° and kxop /ko = 0.676.
Since k& , = 1.047/mm at 50.0 GHz, and a = 2.25 mm, we have obtained for the
maximum value of the phase shift per unit cell, from (10.92),

(@) = 913°

for this set of dimensions. Whend = 0.40 mm, with all other dimensions the same,
we find that the maximum value of phase shift per unit cell becomes 86.6° It is
therefore reasonable to select @ . = 35° and 70° as phase shift values that correspond
to small and large cross-planc scan angles, respectively.

In the figures presented below, the numerical values first demonstrate that for
small, but not negligible, cross-plane scan angles (corresponding to &, = 35°), a mild
standing wave effect is present tut no interactions with channel-guide modes occur.
Next, for QC = 70° interesting interactions with channel-guide modes are found, and
we indicate how to avoid their influence. Numerical values are also presented for
several quantities as a function of stub guide location d /a, showing that the variations
are similar but numerically a bit different, as compared with the case of zero cross-
plane scan. Finally, we examine the performance as a function of phase shift . per

unit cell, to show that the conical scan is affected slightly, and that no blind spots
occur.
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1. Small Cross-Plane Scan Angles

The dispersion relation from which the numerical values presented below are
obtained is given by summing to zero relations (10.80) and (10.82), using the various
supporting expressions in that vicinity. The discontinuity appearing at the junction
between the stub guide and the periodic waveguide is accounted fo: rigorously. That
discontinuity permits the presence of a standing wave in the stub guide region between
it and the slit of width a” at the air-dielectric interface. The extent of that standing
wave and its effect on the phase and leakage constants are illustrated in Fig. 10.37 by
varying the length ¢ of the stub guide.

In Fig. 1037 the phase shift per unit cell ®. is 35° The azimuth angle ¢
corresponding to that phase shift value is readily obtained from the following simple
considerations. From the polar coordinate expression in (2.9) of Chap. II, we write

k =k, sin 6 sin ¢ (10.97)

xop

while we note from the polar coordinate diagram in Fig. 10.36 that
1/2
. 2 2
k, sin = [kmp ) ] (10.98)

where we have set 8 = k,. Combining these two expressions, we have
keop /Ko

(e /%, ) + (B/k,)’ ]

sing = 7 (10.59)

We may therefore compute the elevation and azimuth angles 8 and ¢ of the main
beam from (10.98) and (30.99), respectively, once 3/k , s known.

We do not yet know if §/k , will change as kwp increases, but for small values of

k vop” and therefore small cross-plane scan angles, we may assume for now that it

remains almost the same as its value for kmp = 0. On that assumption, §/k = 0.737
for the set of parameters given in the inset in Fig. 10.37. Furthermore, for @, =355

k.o, k, = 0259, sincek, = 1.047/mm anda = 2.25 mm. Using (10.98), we find that

x0p
the azimuth scan angle ¢ = 19.4°, which is fairly small, but not extremely so.




Downloaded from http://www.everyspec.com

- 438 -

1122 nun sad ajtys aseyd jjews ApaneRl Sy = °%
10} pue ww ¢z:p=p 10} ‘WY apind gmis kP Y Jo uohduny

e se sueisuod adeyuaj pue asryd pazjewlou Yl JO SUOHELIBA g0l "y
o
¥/° v/
0¢ 91 cl 80 0 0 0¢ 91 ¢l 80 40] 0
T T T 71T 7 | R E— 0 LA R B B B B 0
p——
i T - |
0 - q 20
- v00 \ )
Hl/\/\l( -~ U. © ﬂ“» 5 |
- -1800 o | o) y0
o
- 1 Otxg f i
- H{2v0 . 90
- L =
- 490 B 80
" " B
i 1 1 i L 1 L L 1 ON.O 1 1 1 1 i 1 L 1 O—‘
wweego=p wweS't =q wwQoo's =e wwggz=e

962 =73 ZHO 06 =}
oSE = °¢h Wus aseyd

m_l




Downloaded from http://www.everyspec.com

-439 -

The variations of the normalized phase constant 8/k  and the normalized leakage
constant a/k , as a function of the normalized stub guide height ¢ /A, are presented in
Fig. 10.37 for phase shift & . = 35° We observe that /k  remains essentially flat with
c /Ao , whereas a/k | undergoes a "periodic” variation with ¢ /A, as one would expect
in view of the standing wave we know to be present in the stub guide region. The
period of the standing wave is approximately A yos /22, but kyos (=27r/)‘yos) is
complex (and given by (10.66)). A careful inspection of the standing wave pattern in
the curve of a/k, vs. ¢ /A reveals that the amplitude of the pattern increases slowly
with ¢ /A ,» consistent with the complex nature of kyos and the improper nature of
leaky-wave poles for which the field increases to infinity in the transverse direction.

The standing wave is a mild one, consistent with the statement that the
discontinuity is a small one when the cross-plane scan angle is small. For larger scan
angles, the amplitude in the a/k , Plot would increase and a similar ripple would
appear in the B/k, plot, as was found for the array of NRD guide line sources

discussed in Chap. 1V, For still larger scan angles, as is seen later, coupling to
channel-guide modes also occurs.

The angular coordinates 0, and ¢, of the maximum of the radiated beam are
computed from (10.98) and (10.99), using the value of G/k  obtained from Fig. 10.37.
Since (/k,, is essentially flat with ¢ /A , we should expect thatd and ¢ will also be
essentially independent of ¢ /. These expectations are borne out in Fig. 10.38. We
may also note that the azimuth scan angle ¢ is slightly smaller that 20° in close
agreement with the calculation of 19.4° obtained above by assuming that g/k  does
not change when & . is increased from zero to 35° The assumption seems to be a
good one; the actual variation is shown later for several geometric parameter values.

The slit offset position d in Figs. 10.37 and 10.38 is 0.25 mm. When d is reduced
- to 0.10 mm, corresponding to greater offset, or asymmetry, the value of 8/k  changes
a bit and that of a/k , increases substantially, almost doubling. The variations of 8/k
and a/k, with ¢ /A are shown in Fig. 10.39. The qualitative behavior is the same as
that found in Fig. 10.37, but the amplitude of the a/k, variation seems a bit more
pronounced and the 8/k  curve seemns on the verge of oscillating periodically (the
curve is a copy of the actual computer plot, not a tracing of plotted points).

Figure 10.40 is analogous to Fig. 10.38 for 6 and ¢, vs.c /A , but ford = 0.10
mm rather thand = 0.25 mm. The behavior is again qualitatively similar; the greater
leakage rate corresponding to Fig. 10.40 seems to raise the beam slightly in elevation
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and slightly increase the azimuth scan angle.
. 2. Large Cross-Plane Scan Angles

Large cross-plane scan angles, and therefore large azimuth scan angles, are
produced by introducing larger phase shifts between successive line sources in the
array. For this next set of curves, we have chosen the phase shift per unit cell & to
be 70° rather than 35° As a result, the junction discontinuity between the stub guide
and the periodic guide is greatly increased. The standing wave effect discussed above
is enhanced, but we now also must take into account the interactions between the
desired leaky mode and the set of channel-guide leaky modes.

The latter set of modes is discussed in detail in other chapters, but we wish here to
point out the principal distinction between these modes and the desired one, that of
the field polarization in the feed guide portion, as shown in Fig. 10.41. The electric
field in the dielectric-loaded region is vertically polarized initially, giving rise to the
horizontally-polarized field in the stub guide and the periodic guide because the
coupling slit at the air-dielectric interface is located asymmetrically. The fields of the
channel-guide leaky mode are horizontally polarized in all of the regions, and are
affected very little by the asymmetry of the slit, as shown in detail in Chap. VII for the
offset-groove-guide antenna. The primary seat of the coupling between the two mode
types is the junction discontinuity between the stub guide and the periodic guide,
which is more pronounced when the phase shift is greater. Of course, the modes will
couple only when both the 8 and a values of each mode type are equal.

a Variations with Stub Guide Height

The dependence of §/k, and a/k, on the normalized stub guide height c/A,
when the phase shift per unit cell is large is shown in Fig. 10.42. For small values of
c /A, , we have only the original desired mode, which we call n = 0 in that range. The
channel-guide modes before they couple are designated as n = 1 thoughn = 6. No
coupling occurs untii ¢ /A equals about 2.8, although the presence of the n = 2
channel-guide mode nearby distorts the a/k , curve slightly near ¢ /A = 2.2. The first
real coupling occurs between the desired n = 0 mode and the n = 3 channel-guide
mode; we find the usual gap in the 8/k  curves and the cross-over behavior in the
a/k, curves. Since this type of benavior has been discussed in detail in earlier
chapters of this report, we will not comment on it here.

A new feature is present in Fig. 10.42, however, and it is concerned with the
behavior of the channel-guide modes for lower values of ¢ /A . In the plots in other
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Fig. 10.41 Electric field directions in the array unit cell for the
desired leaky mode, on the left-hand side, and for a
channel-guide leaky mode, on the right-hand side. The
polarizations are similar in the stub guide and periodic
guide air regions but opposite in the dielectric region.
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Fig. 10.42 Variations of the normalized phase and leakage
constants as a function of relative stub guide height,
for ®. = 70°, a rela'ively large phase shift per unit
cell. (See text for identification of the various curves.)
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chapters the curves were stopped before they reached this region. Now we have
continued them until the value of ¢ /X is too small for these channel-guide modes to
remain above cutoff. As these modes go below cutoff, however, their very high values
of attenuation constant cause the turn-around in the S/k  values to occur rather
quickly, and their minimum values to be rather large. We believe that this is the first
time that this feature relating to the channel-guide modes has been investigated, or
even recognized.

As to how to use these curves to insure that the mode we are employing is the
desired one and not one of the channel-guide modes, we follow the advice given in
Chap. VII, namely, that we choose only those portions of the curves corresponding to
the flat regions in the 3/k  plot.

The corresponding curves for elevation and azimuth scan angles 8 and ¢, asa
function of ¢ /A, are presented in Fig. 10.43. Here, again, we must employ only those
portions of the curves that are essentially flat. We then see that the values of §, and
¢,, vary a little when ¢ /X, is changed, but not much.

b. Variations with Slit Location

In Sec. D numerical values were presented for the variations of g/k , a/k, and
other quantities with various dimensional parameters for the special case of .~ = 0.
The principal dimensional parameter that was varied was d /a, where d is a measure
of the location of the slit in the guide cross section, and therefore a measure of the
asymmetry. Now, we present numerical results for some of the same variations, but
for the case of & = 70° a large phase shift value, to compare the behaviors.

First, in Fig. 10.44, 5/k and a/k  are plotted as a function of d /a for the same
parameter values as in Fig. 10.11, except that now ¢ = 1.00 mm instead of being
effectively infinite. When we compare Figs. 10.44 and 10.11 with regard to the curves
for B/k,, we find that they are very similar. The curves for a/k  are qualitatively
similar, but the values in Fig. 10.44 are roughly 20% higher.

The reason for higher values for a/k in Fig. 10.44 may be understood by
examining Fig. 10.42. For ¢ = 1.00 mm at 50.0 GHz, we have ¢ /Ao = 0.167. At that
value ofc/Ao, the curve of a/k vs. ¢ /AU is near to a crest in the periodic variation,
and therefore higher than the average value. 1f ¢ /A, were chosen to be 0.40, for

example, the curve would be at a trough, and the values of a/k, in a plot equivalent to
that in Fig. 10.44 would yie!d values lower than those in Fig. 10.11.
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phase shift D, = 70°

t = 50 GH2 S, = 2.58
8w225mm a'e 1.00mm bel5 mm d=010mm
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4
Fig. 1043 Same as Fig. 10.42, except that the ordinate quantities

are now the elevation and azimuth angles.
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As a separate consideration, the value ¢ = 1.00 mm is actually too small for
practical purpeses. The length ¢ must be long enough so that the vertically polarized
component of electric field has effectively dzcayed to zero, to insure negligible cross
polarization in the radiated beam. We had determined earlicr that ¢ /A = 0.5 is
sufficient. With respect to Fig. 10.42, therefore, one can choose any vaiue of ¢ /)
greater than 0.5 or so, but if one wishes to maximize the leakage rate a value of ¢ /A
near 0.8 may be selected.

The next curves, in Fig. 10.45, show how the elevation and azimuth scan angles
and ¢ ~change as d /a is varied. The qualitative behaviors for 6 in Figs. 10.45 and
10.20 are seen to be similar, but the actual values must be different because om is
computed using (10.98), and the values of k op V€ quite different for the two cases. A
point on the curves for 4, and ¢ in Fig. 10.45 must agree with corresponding points
on the curves in Fig. 10.43. The points in Fig. 10.43 correspond to ¢ = 1.00 mm, or
c /A, = 0.167; those in Fig. 10.45 correspond to d = 0.10 mm, or d/a = 0.044.
Direct inspection of the relevant curves show that they are in agreement.

3. Variations with Imposed Phase Shift

In the two preceding subsections we presented the behavior of key quantities
under the conditions of small, and then large, cross-plane scan angles. Here we
consider the behavior as we change the scan angle continuously over its whole range.
In the process, we are concerned about two basic features: the extent of deviation
from strict conical scan, and the possible presence of blind spots. As we see below,
the dewviation is actually very small, and r.o blind spots are found.

a. Wavenumber Variations

The quantities $/k, and a/k  are measures of the leaky-wave behavior, and
therefore of the elevation angle in the longitudinal principal plane (the yz plane, see
Fig. 10.8 or 10.36) and the vertical beam width in that plane. As the beam scans in
azimuth, the elevation angle changes (in keeping with conical scan) and the beam
width becomes modified. As the beam scans in azimuth, the properties of the
discontinuity between the stub guide and the periodic guide change, so that the
termination on the equivalent network representing the unit cell (see Fig. 10.8)
hecomes modified. As a result, the values of ﬂ/ko and a/ko change, and it is
important to know the nature of these changes.
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In Figs. 10.46 through 10.49 we present the variations of 8/k and a/k, as a
function of @, the phase shift per unit cell, over the whole range of permissible
values, for four separate cases. From these four figures, certain qualitative features
may be observed immediately. First, the curves of §/k  are seen to be essentially flas
in all cases. For some, the curves droop down slightly, and for one of them (Fig.
10.47) a sharp change occurs near the end of the scan range, as the beam approaches
the ground. The flatness implies that the deviation from conical scan will be small, as
we shall see below.

The curves for a/k,, vs. phase shift are seen to change in interesting ways from one
case to the next, but for all of them it is clear that no sharp dips occur anywhere
during the scan range. (Of course, all the curves go to zero at the end of the scan
range, when the beam hits the ground and all radiation ceases.) The absence of any
drops during the scan range shows that no blind spots occur.

In order to explain why two of the curves for a/k, rise near the end of the scan
range (Figs. 10.46 and 10.47), while another (Fig. 10.48) remains pretty flat and the
last (Fig. 10.49) drops off, we must determine the specific values of ¢ in each case and
examine, in Figs. 10.37, 10.39 and 10.42, how that value of ¢ corresponds to the crest
and trough nature of the periodic variation with c¢. In Fig. 10.46,c¢ = 1.00 mm, so that
c/A, =0.167; in all three of Figs. 1037, 10.39 and 1042 that value of ¢ /A,
corresponds to a point near the crest of the periodic curve. As the phase shift
increases, the amplitude of the variation increases (since the geometric discontinuity
becomes more pronounced); thus, a point located near a crest gets pushed higher, so
that the curve for a/k, will increase as the phase shift becomes large. Since the stub
guide height is rather small, however, the amplitude increase as the phase shift
increases is only modest; as a result, the rise in a/ko will be small in this case.

For the three remaining figures (Figs. 10.47, 10.48 and 10.49), the values of ¢ are
4.80 mm, 6.00 mm and 7.20 mm, so that ¢ /A = 0.80, 1.00 and 1.20, respectively.
Inspection of Figs. 10.37, 10.38 and 10.42 shows that for each of these figures the
values ¢ /Ao = 0.80, 1.00 and 1.20 correspond to points near a crest, near the middle,
and near a trough, respectively. From the reasoning above, we would therefore expect
that the curves of a/ko vs. phase shift would show, respectively, a rise, a flat behavior,
and a drop. The curves in Figs. 10.47 to 10.49 follow our expectations.

The increase in Fig. 10.47 is sharper than that in Fig. 10.46 because the value of
c /A, for it is closer to the maximum of the crest, as well as corresponding to a higher
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stub guide. The value of ¢ /A for Fig. 10.48 actually occurs a bit below the middle (or
average) of the periodic curve, and the curve for a/k, in Fig. 10.48 therefore droops
somewhat, though much less than the curve in Fig. 10.49. A slightly smaller value of
c /A, would probably permit the flatness to continue for larger values of phase shift.

We therefore see that we can explain the nature of the variations in these curves,
but, even more, by referring to a curve of a/k, vs. ¢ /A, we are able to design
beforehand the curve shape of a/k, vs. phase shift.

b. Conical Scan Dependence

As the phase shift per unit cell, @ ., increases, the value of azimuth scan angle ¢,
increases from zero, and that of the elevation scan angle 6 also increases, but the
beam actually drops since 6, is measured from broadside. To first order, that is,
when a is neglected, 6 ard ¢, depend only on k, op /k, and B/k,, and may be
calculated using (10.98) and (10.99). Though approximate, these expressions are

believed to be rather accurate under most conditions in practice.

For the four cases considered in Figs. 10.46 through 10.49, we present the scan
behavior vs. phase shift in Figs. 10.50 through 10.53. The elevation angle is plotted as
90°-6_, rather than as §  directly, to show that this angle goes to zero as the beam
hits the ground at the end of the scan range. The qualitative behavior is similar for all
of the curves for 90° - g, and for 8, respectively. Furthermore, since the curves for
ﬂ/ko vs. phase shift were found to be rather flat, and since kx op is linear with the
phase shift, the deviations from conical scan are very small.

The only noticeable deviation occurs in Fig. 10.51 at the end of the scan range. It
is noted that, above 83° or so for the phase shift, a mincr bump appears in the curves
for both 90°- 8 and 4, , and the scan range itself becomes extended by a few degrees.
Except for these two features, the curves in Fig. 10.51 agree very closely with those in
Figs. 10.52 and 10.53, for which all the geometric parameters except ¢ are the same.
The reason for the different behavior at the end of the scan range in Fig. 10.51 may be
understood from the curves in Fig. 10.47, where one sees that the value of a/k o
increases by more than a factor of three and that the value of S/k  begins to drop
noticeably for phase shift values greater than 83° or so. A drop in the value of B/k
should raise the beam in elevation, increase it in azimuth, and extend the scan range.
Al} three of these effects occur in Fig. 10.51, as compaicd with what we observe in
Figs. 10.52 and 10.53, consistent quantitatively with the ﬂ/ko behavior in Fig. 10.47.
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The details of the behavior in the various curves have been explained, but the two
. chief points that should be stressed with respect to this subsection on variations with
phase siift are that no blind spots occur and that deviations from conical scan are very

small.
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XI. A NOVEL ARRAY OF PRINTED-CIRCUIT
PERIODIC LEAKY-WAVE LINE SOURCES

(With: Prof. M. Guglielmi, Polytechnic University)

All of the line sources treated so far in this report are longitudinally uniform, to
comply with the need at millimeter wavelengths for structures of simple configuration.
The line source (and the array of them) in Chap. X went further in that the portion
that controlled the radiation was in printed-circuit form, thus permitting its fabrication
by lithographic means. Such fabrication methods actually allow us to utilize somewhat
more complicated printed-circuit structures if there are advantages involved.

Although longitudinally uniform line sources offer simplicity in structure, they
introduce an important restriction in the scan range available. For the line source
itself, the beam can be scanned in the forward quadrant only, and then in only part of
that. For example, the offset-groove-guide antenna in Chaps. VII and VIII possesses
wonderful advantages in versatility of performance, including constancy of beamwidth
during frequency scan, but one cannot approach endfire or broadside too closely, so
that the scan range is limited. The printed circuit version in the array discussed in
Chap. X permits closer access to endfire, but in all of the uniform line-source arrays
we must accept the fact that the two-dimensional conical scan that is available covers
a limited range in space -- very useful and converient within that range, but limited in
coverage.

The problem with uniform line sources posed in the paragraph above leads us to
the array structure discussed in this chapter, in which the line sources are
longitudinally periodic, rather than uniform. To form an array of these new line
sources, we proceed as in Chaps. IV and X, that is, we again take a linear phased array
of them, and we obtain scanning in the cross plane by introducing a phase shift
between successive parallel line sources.

The principle underlying these periodic line sources is the following. One employs
a dielectric section, for two purposes: to establish a slow basic wave, and to provide an
air-dielectric interface on which a printed-circuit periodic structure may be deposited
(or etched away). The longitudinally periodic structure then introduces space
harmonics, and the frequency and dimensions are so chosen that only one of these
space harmonics is radiating. As the beam corresponding to that space harmonic is
scanned, it covers the range from backward endfire, through broadside, and into part
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or all of the forward quadrant. In principle, therefore, the linear phased array of such
line sources can provide two-dimensional scan coverage of vp to the whole of space,
except for narrow regions ncar broadside and endfire. In practice, one may wish to be
more modest in the coverage, but clearly a much wider range is available than that
provided by the longitudinally uriform line sources, which would typically be a cone in
the forward quadrant with elevation and azimuth angles extending to 70° or 75° from
the longitudinal axis of the line sources, and excluding the region near to endlire.

It is evident that a variety of structures may be devised that can provide an array of
longitudinally periodic line sources. In the remainder of this chapter we present one
example, which we feel is simple in configuration and for which we can provide a very
accurate theoretical analysis. It retains the periodic baffle arrangement employed in
the structures described in Chaps. IV and X (although in principle it does not need to)
because we then know that the antenna will not suffer froin blind spots. With this
structure, the array will also radiate with negligible cross polarization and with no
grating lobes.
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A. STRUCTURE AND PRINCIPLE OF OPERATION

The array structure proposed here, which is longitudinally periodic rather than
uniform in order to provide greater scan coverage, is shown in Fig. 11.1. It consists cf
a linear phased array of line sources, in which a phase shift is introduced between each
of the successive parallel line sources to provide scanning in the cross plane. The
principles behind the cross-plane scanning have been described in Chap. Il and they
have been applied in Chaps. IV and X to the specific arrays treated there. We will
therefore not repeat any of those results, but we will instead concentrate on the new
features here.

The array in Fig. 11.1 may be viewed as arising in the following way. We begin
with a wide dielectric-filled parallel-plate waveguide placed horizontally; the guide
height is then equal to b. A series of periodic paralle! slits is then cut into the upper
plate of this parallel-plate guide. The mode introduced into the parallel-plate guide

S

Fig. 11.1 A new array structure in which the individual line
sources are longitudinally periodic, rather thar
uniform, in order to provide greater scan coverags.




Downloaded from http://www.everyspec.com

- 468 -

has a horizontal electric field, and is the lowest TE mode in that guide. Height b must
therefore be large enough to support that mode above cutoff. (We could alternatively
have begun with a diclectric layer on a ground plane, thick enough to support the
lowest surface wave with horizontal electric field polarization, which would then have
a periodic array of strips deposited on the top surface.) To create the array, we then
insert an array of metal plates spaced a apart, as shown in Fig. 11.1 The spacing a is
arbitrary because the electric field is everywhere perpendicular to the plates, but a
should be small enough to avoid any grating lobes, and it could be taken to be equal to
b /2 if the individual elements in the array are each fed by dielectric-filled rectangular
waveguides rotated through 90° (at millimeter wavelengths the aspect ratio of
rectangular waveguides is two by one).

Dimensions a and b can thus be determined by those of feed rectangular
waveguides corresponding to the frequency and the value of ¢, with their ratio equal
to 1/2. Height ¢ should be just sufficient to damp out any higher modes that might be
excited. Because the electric field in this structure is always unidirectional, height ¢
could perhaps be safely reduced to zero without causing any cross-polarized radiation.
However, blind spots could be created over part of the cross-plane scanning range.
Our analysis retains the upper baffles of height ¢, so that no blind spots occur. We
have not checked whether or not any blind spots appear when ¢ =0, but they may not,
if they don't, the structure can be simplified without any deterioration in performance.

Two geometrical parameters remain to be determined: the period of the slits or
strips on the air-dielectric interface, and the ratio of slit width to period. These
dimensions are indicated on Fig. 11.2, which shows the structure before the vertical
inetal walls (spaced a apart) are inserted.

Before we can specify those dimensions, we need to review the principle of
operation of the line source, whicli in this problem is the same as the structure of
infinite width. Let us approach the performance from the small-aperture viewpoint,
meaning ‘hat we begin with a completely metallized top, for which no radiation
occurs, and then open up the slits gradually in the periodic array of slits cut in this top
wail. The slit is of width ¢ in a period of width p. For this electric field orientation,
the slit is actually a smali-aperture perturbation of the upper wall, so that a gradual
opening of the slit, or of the ratio a’/p, permits a gradual control over the leakage rate
o the radiation.

When periodicity is introduced in the z direction, an infinite set of space
harmonics is produced, where the propagation wavenumber ol the nth space
harmonic is relaied to that of the basic slow wave by
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Fig. 11.2 The structure before the vertical metal baffles are
inserted, showing the metallic grating with its periodic
array of slits.

k, =kg,+2nm/p , n =0,21,22,... (11.1)

When there is leakage of power, both k, and k, are complex with the same
attenuation constant ¢, so that (11.1) becomes

B, =B, +2nn/p (11.2)

In the small-aperture “*-uit, the value of 8 is close to the propagation constant of the
TE | mode in the dielectric-filled parallel-plate guide of height b, so that

5 1/2
8,/k, = [0, /20)°] (11.3)

with 8 /k, >1, so that the basic guided wave is a slow wave, and therefore
nonradiating.

When p is selected so that one (or more) of the space harmonics becomes fast, the
guided mode becomes leaky and radiation occurs. For practical antenna operation,
we wish that only the n = -1 space harmonic is fast, with
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By B %

—— = —.— < (11.4)
kO kO p

The period p is thus selected relative to the wavelength so that (11.4) is satisfied; the
elevation angle 8 , of the radiation is then given by

sing, =B /k, (11.5)

where 6, is measured from broadside, consistent with the designation for beam angle
in the other chapters. By changing the wavelength in (11.4), the angle 6, can be
scanned into either the backward or the forward quadrant.

Relation (11.1) is similar to expression (2.2) in Chap. 11, which applies to the space
harmonics preduced by the periodic array of line sources in the cross plane. The basic
physics regarding the space harmonics is the same, but two important differences are
present. The first is related to the direction of the periodicity relative to the
propagation direction. The power is first fed into the individual periodically
modulated line sources in the longitudinal (z) direction, and the pericdicity is in the
same direction. The power leaked as a result of that periodicity emerges in the yz
plane, moving basically upwards. The periodicity in the line-source array is then
located at the top of the array structure, where that periodicity (in x) is transverse to
the direction of the leakage, which is in the yz plane. The more important difference
is that in the line-source array the basic n =0 term is propagating and the intention is
to prevent the other space harmonics from radiating (no grating lobes), whereas in the
periodic line source the basic n =0 mode is nonradiating and we wish the n =-1 term
to radiate.

We shall see in Sec. D below that the angle in elevation of the radiated beam is
determined esseatially by the value of period p relative to the wavelength (in
accordance with (11.4) and (11.5)), although the value of B, and therefore 3 , is also
influenced somewhat by other geometric parameters. The width of the beam is, as
usual, determined primarily by the value of the leakage constant o, which in turn
depends predominantly on the relative slit size a’/p. The azimuth scan angle is of
course determined by the phase shift introduced between the successive line sources.

Clearer insight into how one may select the optimum value for period p is
obtained by the discussion in Sec. B, where use is made of the ko Vs. ﬂn diagram,




Downloaded from http://www.everyspec.com

- 471-

B. GENERAL PERFORMANCE CONSTRAINTS USING THE ko VvS. ﬂn
DIAGRAM

1. Description of the k  vs. 3, Diagram

In attempting to optimize the set of dimensional parameters for the design of the
array of periodically modulated line sources, several aspects must be kept in mind.
First, we wish to have the n = -1 space harmonic be fast and correspond to a radiated
beam, but we want it to be the only space harmonic to do so over its complete scan
range. Second, we wish the feed waveguide to carry only one mode, the dominant one,
over the frequency range of operation (corresponding to the scan range).

A simple and convenient way to gain the necessary insights is to use the k vs. 8,
diagram, shown in Fig. 11.3. The diagram is periodic in 2x/p in the horizontal
dircction along ,@n , and only the first two periods centered about [3" =( are included.
The +45° lines are defined by k) =+f , or shifts in them by +2x/p. The lower solid
curve labelled n =0 represents the basic n =0 space harmonic of the lowest mode.
Exzctly parallel to it but shifted by - 27/p is the (identical) curve labelled n = -1, which
represents the n = -1 space harmonic of that mode. Higher up we note the n =0 and
n = -1 space harmonic curves for the second mode, which we wish (0 remain below
cutoff. The dashed straight lines, parallel to each other but shifted fiom each other by
2n/p, represent the asymptotes for the n =0 and n = -1 curves for both the lowest and
the second modes. Finally, the dashed curve represents a portion of the n = -2 space
harmonic for the lowest mode.

The abscissa is labelled ﬂn because it applies to all the values of n provided we
select the proper curve. For example, broadside radiation occurs when 8 =2n/p, but

it also corresponds to 8, =0. As we see, those points correspond to the same value of
k.

o

The convenience associated with this phrasing of the k 5, VS ﬂn diagram becomes
particularly clear when we consider the "radiation region”, shown in Fig. 11.3 as
occurring between the £45° lines centered at the origin. If the point on tie dispersion
curve lies within that region, the relevant space harmonic is a radiating one. If any
point lies within that region, the mode is leaky, with a complex propagation
wavenumber.

Let us next examine the meaning of the various circled points, labelled 1 through 8.
Point 1 shows the cutoff of the lowest mode in the parallel-plate guide, which is
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dielectric filled and has a periodic array of slits on its top wall. For simplicity in the
discussion below, we shall assume that these slits are very narrow, so that radiation

. can occur but the perturbation on the guide’s properties is small. For frequencies (k)
just above cutoff, in the range between points 1 and 2, the lowest mode is a fast mode,
and radiation will occur in the n =0 space harmonic. After point 2 the curve leaves
the radiation region, and the mode becomes a slow wave (8, >k ). After point 3,
however, the n = -1 space harmonic enters the radiation region, and as ko increases
further the n = -1 curve is seen to continue further into the radiation region.

Point 3 is located on the line g, =-k , so that, from (11.5), the angle of the
radiated beam corresponding to that point is -90° or backward endfire. (From
sind =p_[k_ we recognize that the beam for the n =0 space harmoric moves from
broadside to forward endfire, as the n =0 curve is traversed from point 1 to point 2,
the latter lying on the line 8§ A =k o.) Ask, is increased, and we follow the n = -1 curve,
the angle of the radiated beam due to the n = -1 space harmonic moves up from
backward endfire towards broadside, which it reaches at point 4. After point 4, the
beam points in the forward quadrant.

At this stage, we must take into account the n = -2 space harmonic, and determine
when it enters the radiation region. A portion of the curve for the n =-2 space
harmonic is shown dashed in Fig. 11.3, and it is seen to enter the radiation region at
point 5. Since B ,=-k  at point 5, the beam due to the n = -2 space harmonic will then
point at backward endfire. At that frequency, point S also occurs on the n = -1 curve,
which corresponds to some angle in the forward quadrant. The frequency
corresponding to point S represents the highest useful frequency for this set of
conditions, and the corresponding angle for the n = -1 beam represents the limit of the
useful scan range.

The above considerations assume that point 5 occurs at a Jower value of k| than
point 6, which is the cutoff for the second mode. Either point may come first,
however, and it then determines the end of the useful scan rznge. When the second
mode is just above cutoff, it is seen to be right in the middle of the radiation region,
ana the n =0 space harmonic of that mode will radiate. The n =0 space harmonic will
continue to radiate, traversing the forward quadrant, until point 7 is reached. For
frequencies very near to point 6, however, the n = -1 space harmonic for the second
mode does not radiate. That space harmonic enters the radiation region at point 8,
whichi is seen to occur at a lower value of & | than that for point 7, indicating that for a
ncrrow frequency range both the n =0 and n =-1 space harmonics for the second
m-de will radiate, although at different angles. Clearly, we must insure that that mode
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remains below cutoff.
2. Some Constraint Conditions

In order to keep the conditions simple, we shall assume that the periodic array of
slits exerts only a small perturbation on the wavenumber values; we may thus employ
the equations corresponding to the "closed” waveguide. (We will find later, in Sec. D,
that this assumption is rather accurate.) We can then immediately write down simple
expressions that correspond to the various circled points 1 through 8 on the k_ vs. 8,
diagram in Fig. 11.3.

Since the lowest mode is the TE' | mode in dielectric-filled parallel-plate guide of

height b, the value of k , at the mode cutoff, which is point 1, 1s

I |
k =—
7 b e

The value of k at the cutoff of the second mode (the next mode with the same

(11.6)

polarization), which corresponds to point 6, is

2 1
k, = "
\Y EI'
At point 2, where the basic (n =0) space harmonic of the lowest mode changes from
fast to slow, we have 3 A =k 0 where 3 , is given by

(11.7)

) 12
8, = ke, - (n/b)?] (11.8)

The value of k| at point 2 is thus

7 1
k =—— - (11.9)
¢ b Je 1
vV °=r

For point 3, we must consider the n = -1 space harmonic, which is related to the
n =0 one by

B, =8, -2n/p (11.10)

Since point 3 is characterized by 3 =-k , we have that k_is then obtained from
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. 1/2
ky = 2/p - [kle,-(n/b)’| (11.11)

which is a quadratic equation for k . Point 4 corresponds to broadside radiation, for

which 8, =0; on use of (11.8) and (11.10), we have
2 2 172

o IR ) I

For point 5, which corresponds to the onset of radiation for the n = -2 space harmonic,
we specify

k, =

k, =-p =B, +4r/p (11.13)

where A is taken from (11.8). If one wishes the values of k | corresponding to points

7 and 8, which we will not need, they may be obtained in the manner used above for
points 2 and 3, respectively, but for the second mode.

For the antenna to perform properly, the n = -1 space harmonic of the lowest
mode should produce the only radiating beam. We will next arrive at a simple criterion
for determining the range of values within which period p must be in order that this
condition is satisfied within certain limits.

We first note that, when the n = -1 space harmonic begins to radiate, the n =0
space harmonic must be slow. That is the same as saying that points 2 and 3 in Fig.
11.3 must lie below the top of the triangle on which they appear. If p is made larger,
these two points approach the top of the triangle. Hence, the madmum value that we
can allow p to have is the one for which points 2 and 3 have the same value of k_; at
this maximum value, k, must satisfy relations (11.9) and (11.11) simultaneously.
Their simultaneous solution yields the simple condition

Pou = b VE 1 (11.14)

Another condition relates to the onset of the second mode. Certainly we wish the
second mode to remain below cutoff during the scan range. Relation (11.7) for the
cutoff of the second mode, which corresponds to point 6 in Fig. 11.3, is independent of
period p. The value of k | corresponding to point 4, at broadside, is seen from (11.12)
to increase if p is made smaller. A weak condition for the minimum value of p is then
obtained by asserting that the smallest value of p that we can tolerate is the one for
which the second mode is at cutoff when the n = -1 beam radiates at broadside. (At
least we can scan over one-half of space then.) We then equate the values of k in
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(11.7) and (11.12) to obtain
P =20 N3 (11.15)

If we are to be able to select a value of p that lies between the p . and p
values, we must have, at the least

pmax>pmin

or, from (11.14) and (11.15),
g, >233 (11.16)

An alternative confition for p . . which is a stronger condition than the one in
(11.15), may be obtainea by requiring that the k, value corresponding to point 6 be
greater than or equal to tuat for point S, rather than point 4. That is, the frequency at
which the second mode is at cutoff should be equai to or greater than that for which
the n = -2 space harmonic begins to radiate. To establish that condition, we equate
the values of k  in (11.7) and (11.13) to obtain

NG

= ——— 11.17
2+\/§\/€ ( )

P min

If we then employ (11.14) and (11.17) to set p _ greater than p ... we find the
condition

2 /e + V3 \[g, e, 1-4/e >0 (11.18)
which is satisfied for
g, >2.89 (11.19)

Other conditions or constraints can also be specified to cover more precise
requirements. For our purposes, however, it seems sufficient to select a value of
e, =4.00 for our calculations, and to follow the p . and p . constraints in (11.14)
and (11.15).

We need next to select a frequency range of operation, and from it to choose the
cross-section dimensions. Taking the frequency range of about 40 GHz to about 60
GHz, corresponding to an air-filled rectangular waveguide with cross-section
dimensions 2.388 mm by 1.194 mm, which we wili employ as the basic feed waveguide,
our dielectric-filled region will have b =2.40 mm and ¢ =1.20 mm, since £, =4.00 (note
that b and a in Fig. 11.1 are reversed from the usual rectanguiar waveguide b and g,
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to be consistent with the notation in previous chapters in this report). The
recommanded operating range of this waveguide is then 39.3 GHz to 59.7 GHz, and
the cutoff frequency of the second mode is 62.8 GHz. (Actually, the 62.8 value
corresponds to a nominal guide width of 4.775 mm; when we choose b =2.40mm,
then b/€, =4.80 mm, which corresponds to a cutoff frequency of 62.5 GHz for the
second mode, but these differences are of the order of the fabrication tolerances.)

Consistent with these dimensions, we then need 1o select a value for the period p.
From (11.14) and (11.15), we find p _, =2.77mm and p . =4.16mm Taking an

average of these two values, which is a satisfactory but arbitrary procedure, we obtain
p =3.45 mm,

Corresponding to this set of dimensions and to e, =4.00, wc find the following
values for k , A, and f for the various circled points in Fig. 11.3.
Point 1, the cutoff of the lowest mode (from (11.6)):

k, =0.654/mm , A =9.60mm , f =31.3GHz

Point 2, where the n =0 space harmonic goes from fast to slow (from (11.9)):

k, =0756/mm , A =83lmm , f =36.1GHz

Point 3, where the n = -1 space harmonic begins to radiate, at backward endfire (from
(11.11)):

k, =0822/mm , A =764mm , f =393GHz

Point 4, where the radiating n = -1 space harmonic reaches broadside (from (11.12)):

k, =1.120/mm , A =561mm , f = 53.5GHz

Point 5, where the n = -2 space harmonic begins to radiate, at backward endfire (from
(11.13)):

k, = 1.329/mm AO =473mm , f = 63.5GHz

Point 6, the cutoff of the second mode (from (11.7)):
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/\-0 = 1.308/mm , Ao =480mm , f = 62.6GHz

The useful scan range corresponds to the frequency range from point 3 to beyond
point 4, approaching point 6. Point 3, by coincidence, corresponds exactly to the low
end of the recommended frequency range for this feed waveguide. Point 4, where the
beam is near broadside, occurs near the middle of the waveguide’s frequency range. It
is also seen ihat the beam can scan past broadside into the forward quadrant. A
reminder should be given about the broadside region itself; it corresponds to an open
"stop band" region, so that one must avoid the narrow frequency range exactly in the
neighborhood of broadside. A clearer picture of just what happens there is provided
by the : merical results presented in Sec. D.

The end of the useful scan range for the n = -1 space harmonic corresponds 10
either point S or point 6, whichever comes first as we raise frequency. It does not
matter which it is because one no longer has a single radiating beam in either case.
For this set of numbers, point 6 arrives t:fore point S, but they are close to each other.
We can readily determine how far into the forward quadrant the n = -1 beam goes
before these two points are reached. We simply determine the value of 8 /k_ for
each point, using (11.8) and (11.10), and then find the angle 8 , from (11.5).

For point 6, the cutoff of the second mode, we find
6, =20.1° (11.20)
whereas for point S, where the n = -2 space harinonic begins to radiate, the value is
0, =217 (11.21)

The total scan range in clevation for this type of leaky-wave antenna, for the set of
dimensions chosen above, extends from backward endfire, through broadside, and
20.1%into the forward quadrant.

Obviously, by adjustin;: parameters such as the period p, and the combination of b
and €,, one can move these critical -oints around to extend the scan range further into
the forward quadrant, or to have point 5 occur before point 6, etc. The important
point that is made .ere is that 1tUis possible to control the performance characteristics

by employing the approach and the simple relations presented above.
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C. TRANSVERSE EQUIVALENT NETWORK

The trcatment in Sec. B provides a road map that tells us what dimensions to
choose in order to achieve the scan range we wish over the frequency 1ange of
interest. It yields approximate values for the radiation angles as a function of
frequency on the assumption that the radiating slits perturb the basic guided wave only
slightly. It cannot, of course, provide any information about leakage rates or beam
widths. In order to obtain accurate numerical values for the leakage rates and the
radiation angles, we must develop an accurate transverse equivalent network and then
examine its resonances.

The transverse equivalent network must be complete and must take into account
all portions of the antenna’s cross section. The array is viewed here in the same way
as it is in Chaps. IV and X i.e., in terms of a unit-cell approach, which automatically
takes into account all mutual coupling effects. The transverse equivalent network
therefore needs to include only the contents of a typical unit cell; the description of the
unit cell, its phase-shift walls, its modes, etc., have been presented in Chap. II, and
app'ied in detail in Chaps. IV and X. As before, the unit cell is composed of three
basic sections: the dielectric-filled section at the bottom, the air-filled parallel-plate
section in the middle, and the periodic section, representing the radiating region, at
the top. On the air-dielectric interface, at the transition between the bottom and
middle sections, we have an array of periodic slits, as seen in Fig. 11.1 and described
further in Fig. 11.2. We shall first discuss the equivalent network representation of
that array of peijodic slits, which is a basic constituent of the unit cell, and then
incorporate it into the transverse equivalent network for the full cross cection,

1. Equivalent Network for the Array of Periodic Slits on
a Metal-Coated Air-Dielectric Interface

Since the electric field in this antenna is perpendicular to the vertical metal planes,
we may remove these planes without affecting the field distribution. It is more
convenient, then, to regard that array as a set of infinitely long slits, cut into a metal-
covered air-dielectric interface, with the electric field parallel to the long dimension of
the slits, as shown in Fig. 11.2, except that at this stage the height b is not being
considered. We seek a representation now for only the array at the interface, which
we view as a key constituent in the full transverse equivalent network.

Recognizing that space harmonics along the z direction, along the plane,
correspond to modes in the y direction, perpendicular to the plane, we require the
multimode equivalent network that couples the modes in the air region with those in
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the dielectric region. In the air region, only one mode is above cutoff, corresponding
to the n =-1 space harmonic, since we wish to have one radiating beam. In the
dielectric region, we will have at least two modes above cutoff, for n = -1 and n =0, but
there may also be some others, depending on ¢, and the geometric parameters.

We require an analytical formulation for the equivalent network parameters since
we wish to employ this formulation in a transverse resonance, and it would be nice if it
were also simple and in closed form. Such an analytical formulation, for multimode
operation, on a structure with different dielectrics on each side of the interface, is not

ot available in the literature. We have, however, developed such an analytical
solution recently {47] in a different context. The solution there was actually the dual of
that employed here, with an array of long strips on the interface, and with the
magnetic field parailel to those strips. For application here, we adapt that solution in
the small argument range, and take the dual form for both the network form and the
expressions for the parameters of the network. A detailed derivation of the integral
equation that was solved, together with the new equivalent network developed from it,
are included in a two-part paper that has been accepted for publication [48,49).

The constituent problem that is considered now is shown in Fig. 11.4, and is
phrased as a plane wave incident at an arbitrary angle on a grating of slits with the
electric field parallel to the slits. Superscripts (1) and (2) represent the two different
media, p is the grating period, and a” is the slit width. The aperture integral equation
is formulated rigorously in terms of a kernel that consists of a sum of static, rather
than dynamic, modes, and with the incident excitation correspondingly modified. The
modes are TE modes, so that the dynamic characteristic admittances are

Yoe,n = kye,ll /wuo * Yoa’n = kyﬂ,n /wﬂo (1122)
where
- ) 1/2 5 5 1/2
k) en [koesz.n] : kya,n = [ko'kz.:n] (11.23)

The subscripts are to be interpreted in the following way. The subscript o in the
characteristic admittances mean that they are "dynamic”, the subscript y represents
the transmission direction in the cross section, subscripts € and a signify the dielectric
region and the air region, respectively, and the n at the end indicates the number of
the space harmoric, or mode in the ) direction. The wavenumber kz,,l , which is the
same in each region, is
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x

Fig. 114 A constituent problem in the derivation of the
transverse equivalent network: the scattering of an
incident plane wave by a multimode metal grating on
an air-dielectric interface.

kz'" = ,Oo-ja+27m /p

The "static" characteristic admittances are defined as

lim (k,, ) lim (k, ,)
w—0 w—0
Yu,n = ’ Ysa,n =
WH, Wi,

On use of (11.23) and (11.24), Y, andY_  reduccto

2n|n |
YSc,n =Ysa,n = Ys.n =) wy p
0

(11.24)

(11.25)

(11.26)

where the subscript s signifies that the characteristic admittance is a "static” one.
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Fig. 11.5 A novel and simple equivalent network that provides a
useful solution to the constituent muitimode scattering
problem posed in Fig. 11.4.

When these terms are applied to the constituent scattering problem outlined in
Fig. 11.4, with its different notation (following the usage in [48,49]) the different media
are represented by superscripts (1) and (2), rather than subscripts € and a, so that
(11.26) would be written

2rin |
m_ @ _ 0
Y =Y = o p (11.27)
[+]
and wavenumber kz 0 would become
_ _, M. L) (@) A2)
k5 =B, = kVsind? = k Dsin (11.28)

When the integral equation is solved in the small-aperture range (a7/p << 1). a
very simple equivalent network representation is obtained, in which the network
elements are given by surprisingly simple but accurate expressions. The network is
shown in Fig. 11.5, where it is seen to take a planar form ai the air-dielectric interface.
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Transmission lines are shown for only two modes, the n =0 and the n = -1 modes, but
others may be added on as indicated, in straight-forward fashion.

The expressions for the network elements are

) 2
JWBP I % a
= P 11.29
Zoo 4r [2 P ] ( )
2r|n | 1
y=y® = = = — (1130)
' ' J Wi, P Zs,n
Expression (11.29) may be rewritten as
2
7 Zs,l T a 3
0="2 125 (11.31)
where
wp,p p
ZS'l =j o =J A—-‘/“O 750 (11.32)

where \/u /e =120rohms, and is the characteristic impedance of free space. In
(11.31) and (11.32) we are returning to the notation in (11.26), since we will be using
that form in the full transverse equivalent network. Expression (11.20) may also be
rephrased as

o || 1

Y j — = (11.33)

=
o P Vu,le,  Zsn

The equivalent network in Fig. 11.5 is rapidly convergent with respect to the
addition of transmission lines corresponding to further modes. When |n | becomes
large, and the modes are below cutoff, the dynamic characteristic admittances Y
and the static characteristic admittances Ys,n are almost the same. When the
transmission lines are below cutoff, and they are terminated by their reactive
characteristic admittances, the input admittance at the interface plane is 2Y But,

o,n’
the elements -ZYS , (or -(Ys(ln)+Ys(2”))) shown in the planar network are then added

to the 2Y_  value, and the result approaches zero as |n | increases. Thus, the

added transmission lines have an increasingly negiigible effect.
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The validity and accuracy of this network and the associated expressions have been
verified in [49).

2. The Full Transverse Equivalent Network

The full unit cell consists of three sections, or regions, as stated above. In the
dielectric region, two or more modes with respect to the vertical (y) direction are
above cutoff; those two are the n =0 and n = -1 modes. In the air region, only the
n =-1 mode is permitted to be above cutoff, sincc we wish only a single iatiating
beam. The same is true for the periodic region above, in which the radiation actually
occurs. Since the periodic region is assumed to be unbounded, we can terminate the
propagating transmission line that represents that region with its characteristic
admittance, an )

In the dielectric-filled and air-filled parallel-plate guide regions the modes in the y
direction are TE modes. After the higher modes in the vicinity of the grating at the
air-dielectric interface have decayed to negligible values in the air region, the only
mode remaining above cutoff is a TE mode that is actually a TEM mode propagating
at an angle in the y and z directions. With respect to the space harmonics along z, it
corresponds to the n = -1 space harmonic. The wavenumber of that mode is given by

2 _ 2,2
k,va,-l = ko 'kz,-l (11.34)
where
= po -ja-2x/p (11.35)

which are consistent with (11.23) and (11.24). The modal characteristic admittance
follows from (11.22) as

Yoa,-l = kya ,~1/wo L, (11.36)
where the subscript a signifies the air region.

When the metal baffles are present, and separated by spacing a, the radiating
beam can be scanned in the cross plane, and therefore in azimuth, by inserting a phase
shift between the successive line-source sections in the array. That phase shift per unit
cell, o, is related 10 the wavenumber in the x direction by

o =k, (11.37)
Wavenumber k ; 18 real and is imposed on the system to produce the cross-plane
scan; it is exactly lhe same as the wavenumber k in Chaps. IV and X, which means
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it corresponds to the lowest mode in the periodic waveguide. The subscript -1

. corresponds to the original n = -1 space harmonic in the z direction, associated with
the periodic grating at the air-dielectric interface. When the metal baffles are present,
a second periodic structure is introduced, at right angles to the first, but they are
displaced from each other by height ¢ (see Fig. 11.1) and they therefore do not
interact directly. Of the set of space harmonics set up in the x direction, only the n =0
term is above cutoff in the y direction in the periodic region. We then write for the
transmission wavenumber in the y direction in the periodic region

2 2 2 2
k)‘p.-l =k, 'kz,-l 'kxp,.l (11.38)
which may then be restated as
kg = g ke (11.39)

in view of (11.34).

The fields of the propagating mode in the periodic region have components of
electric and magnetic field in both the x and y directions when kxp '_1,‘-0, but there is
only a component of magnetic field in the z direction. With respect to the y direction,
therefore, the mode is hybrid, but it can be characterized as an H (z )-rype mode or an
LSE mode with respect to the xy plane. The mode has been discussed in detail in Sec.
B,2 of Chap. IV, where it is shown that the characteristic admittance for the mode is,

from (2.18),
Kkl
Yop a= :;;‘)k)p,-l (11.40)
so that we may write
Yop,-l _ kya ,-1 - 1 (11.41)

2
Yoa 1 kyP 1 \/ 1'(kzp - l/k.va .-1)

on use of (11.36), (11.34) and (11.39).

To complete the transverse equivalent network, we still require a representation
for the junction discontinuity between the air-filled parallel-plate guide and the
periodic waveguide. That discontinuity, however, is identical with one that we
encounter in a similar fashion in the arrays treated in Chaps. IV and X. We will
therefore not repeat the material here, but instead refer to the discussion in Sec. B,2
of Chap. IV.
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The representation for the discontinuity is rigorous, is taken from the Waveguide
Handbook (8] after an analytic continuation, and is shown in Fig. 4.3 of Chap. IV. It
is conveniently in the form of a reference plane shift d” from the actual discontinuity
plane, and the expression for d” is presented in (4.14) and (4.15), with some of the
terms defined in (4.12). We must be careful in using these expressions from Chap. IV,
however, to employ the correct terms since the notation used hcre for the
wavenumbers is slightly different. The following substitutions are required: change

kyog and kmp to kya’_l and krp‘_l .

We are finally in a position to put all the pieces together and to construct the full
transverse equivalent network, which appears in Fig. 11.6. Three modes are shown in
the network, the n =0, n = -1 and n =1 modes, but more can be added in the simple
fashion shown. The planar network representing the grating at the air-dielectric
interface is shown coming off at angle; that network is the same as the one presented
in Fig. 115, but slightly modified and employing the present notation. The
transmission lines representing the modes in the dielectric-filled region are shown in
full because they may be above or below cutoff; even if they are below cutoff, they may
still "see" the short-circuit termination. For the air-filled region, we know that only the

= -1 mode is above cutoff, and length ¢ is chosen such that all the other modes have
decayed to negligible values at the radiating junction. Thus, the below-cutoff modes in
the air region may be safely terminated by their (reactive) characteristic admittances,
and only the transmission line for the n = -1 mode needs to be explicitly indicated.

The discontinuity at the radiating junction, between the air-filled parallel-plate
region and the periodic region, is accounted for by the reduction by d” of the height ¢
of the parallel-plate metal baffles. Finally, the termination on that transmission line is
Yop 1 because the periodic region is assumed to continue on into the far fieid. The
expression for Yop s given by (11.40).

The diminishing contribution made by adding modes with higher values of n may
be assessed by the following. As the value of n increases, the input admittance to the
short-circuited below-cutoff transmission line in the dielectric region approaches
YO‘, n+ Which in turn becomes the same as Yoa‘n, and they both approach the static
characteristic admittance Ys’n. Therefore, the sum of that input admittance and
Yoa'n, when added to the term -2YUl that is in shunt with them in the network,
produces a result that approaches zero as n increases.
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. D. ELEVATION ANGLE PERFORMANCE WITHOUT CROSS SCAN

When a phase shift is introduced between successive parallel line sources in the
array, and when this phase shift per unit cell is varied, the beam undergoes a conical
scan. The highest elevation angle for the beam, or the largest scan range in elevation
for the beam, occurs when the cross-plane scan is zero. It is thus best to examine the
elevation angle capability under this condition, and that is the objective in this section.

The unit cell structure simplifies under the condition of zero phase shift per unit
cell because the phase-shift walls then become electric walls, in view of the electric
field direction. This simplification was also found in the array structures treated in
Chaps. IV and X. The transverse equivalent network becomes correspondingly
simplified because the transmission line representing the propagating n = -1 transverse
mode in Fig. 11.6 then becomes infinitely long. We do not have to treat the junction
discontinuity, since it has disappeared, so that the input admittance to that
transmission line becomes its characteristic admittance. The principal complexity in
that network has therefore been removed. In the calculations that follow we have
employed 6 modes in the dispersion relation (meaning that 6 transmission lines have
been included in the transverse equivalent network in Fig. 11.6), namely, the
n=-3-2-101and 2 modes.

The first piece of iiormation we seek is whether or not there is a geometrical
parameter we can vary which will permit us to control the leakage constant a without
changing the phase constant § at the same time. The candidate we have in mind is the
relative slit width a”/p of the grating on the air-dielectric interface (see Fig. 11.2).
Before examining the performance numerically, however, we must specify a
frequency. Since we wish to achieve a large elevation angle, we therefore select a
frequency corresponding to an angle near broadside.

The k vs. B diagram in Fig. 11.3 provides convenient physical insight into how
such a selection is made, but we can determine it directly by simply using relations
(11.3) 1o (11.5). In any case, let us employ the numerical determinations already
made in Sec. B in connection with the various points indicated on the k_ vs. 3,
diagram. First, we must specify the dimensions of the elements in the array.
Referring to Figs. 11.1 and 11.2, the dimensions specified in Sec. B as corresponding
to the frequency range of 40 GHz to 60 GHz are:
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= 1.20mm , e, =4.00

b =240mm , p =345mm

For these dimensions, the frequency corresponding to broadside radiation, evaluated
in the small aperture limit, was found to be 53.5 GHz, corresponding to a value
k, = 1.120 mm’. When the beam begins to radiate, at backward endfire, we had
f=393GHzand k, =0.822mm".

Calculations are presented in Figs. 11.7 through 11.10 for the normalized phase
constant 8 /k , and the normalized leakage constant a/k  as a function of the relative
slit width a’/p for two different values of k= corresponding to radiation near to
broadside. The value of k| =1.096 mm’’ is employed in Figs. 11.7 and 11.8, whereas
k, =1.099 mm was selected for the other two figures.

The variation of 8 /k, with a’/p is seen in Fig. 11.7 to be relatively slight,
although it does increase a little as the slit width increases. It varies from 3_ /k_ =1.60
at one end to 1.64 at the other. The n =0 space harmonic does not radiate, so its value
of normalized phase constant should be greater than unity. The radiating beam
corresponds to 8 , /k , which may be computed from (11.4), and the elevation angle of
the radiation follows from (11.5). For the values at the two ends of the curve in Fig.
11.7 we obtain 6 ;= -3.4° and 8 , = -1.1° these angles are very close to broadside, but
slightly in the backward quadrant. The angular change from one end of the range of
a’/p to the other end is really quite small, however.

From Fig. 11.8, on the other hand, we observe that the normalized leakage
constant a/k varies very substantially and rather rapidly as a’/p exceeds 0.20 or so.
The simple expressions (11.31) through (11.33) that were used in the dispersion
relation are known to be valid up to a’/p =0.3 or so, and we have therefore performed
computations up to that value. We note, however, that the beam width corresponding
to a’/p =0.3 in Fig. 11.8 already corresponds to A=9.4°, which is a rather wide beam.
(The beam width A6 can be obtained by writing

A6 = 285a/k, (11.42)

where A8 is in degrees, by combining (2.28) and (2.29), and recognizing that 8, is
almost zero, being clc e to broadside.)

The data in Figs. 11.9 and 11.10 are similar to those in Figs. 11.7 and 11.8 except
that they apply to a value of k | even closer to that for broadside. The values of 8 /k,
are almost exactly the same in Figs. 11.9 and 11.7, but the a/k  values in Fig. 11.10 are
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seen to be noticeably lar%er than those in Fig. 11.8. The value corresponding to
a’/p =030 is now 3.6x 10", for which the beam width is 10.3°, rather than the 9.4°
obtained from Fig. 11.8. A much bigger change is observed for values for a’/p =0.26
or 0.28; for 0.26, for example, a/k, has changed from 0.50x107 to 1.00x 10'2,
effectively doubling. Such a large change occurs because the angle is so near to
broadside; at angles away from broadside the modifications in a/k | as we vary k, by

small amounts would be much less pronounced.

The important conclusions from this set of four curves are that, as the relative slit
width is varied, the value of 8 /k_ changes very little and that of a/k  changes very
strongly. Thus, the beam angle is determined primarily by the relative values of
A, b,p and ¢, and the beam width by those of a/p, assuming that the antenna
length is chosen so that some specified percentage, like 90%, of the power is radiated.

The next set of curves presents the way the radiation angle and the leakage
constant vary as k_ is changed. The vertical axis in each figure represents the values
of the free-space wavenumber k , the right-hand-side abscissa shows the values of
a/k,, and the left-hand-side abscissa indicates the behavior of the beam angle 8 . The
parameter «/p is different in each of the figures.

We begin with the largest value of a”/p in the set, namely, a”/p =0.27, in Fig. 11.11,
As we go vertically along the k| axis, we first reach the onset of radiation at which the
beam is at backward endfire, i.e., § , =-90° The curve for 6 ,, on the left-hand side, is
plotted in polar coordinate fashion, where 6, can only be positive, so that one reads
the value as 90° rather than -90°. However, the direction of the curve reverses after it
crosses broadside in this plot. Thus, as & , increases, we see that the beam moves in
the backward quadrant from 90° to zero, at broadside, and then, after lingering there
for a bit, the beam continues on into the forward quadrant.

At the same time, the value of leakage constant a/k  increases from zero at the
onset of radiation but then rises sharply and dramatically when the beam approaches
broadside. Only about 1/3 of the full extent of the spike-type rise is shown in Fig.
11.11. The sharp peak corresponds to the open "stop band" near broadside, at which
the n =0 and n = -2 space harmonics become equal in amplitude but are oppositely
directed. (All the other space harmonics pair off in like fashion.) The rise in a is
predominantly reactive, not radiative, so that a sharp increase is observed in reflected
power, together with pattern deterioration. The narrow region near broadside is to be
avoided in practice, but, unless the beam is rather narrow, one can scan through the
region and hardly notice any effect. Just on the other side of the spike ina/k _, the
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= 0.27J
= 120mm
= 240 mm
= 345om
= 4.00
1 ]
0 4s° 20
2
6, a/k o 0109
Fig. 11.11 On the vertical axis is the free-space wavenumber k_;

the right-hand abscissa axis represents the normalized
leakage constant a/k,; and the left-hand abscissa axis
shows the elevation beam angle 4., in degrees. Angle
9, appears in polar coordinate form, so it is always
positive; however, it is in the backward quadrant for
lower values of k, and enters the forward quadrant
after passing through broadside. The sharp peak in
afk, is due to the open "stop band® near broadside.
This case corresponds to relative slit  width
a’/p = 0.27, and to zero cross-plane scan.
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curve drops extremely sharply; we expect that it should go to zero, but the calculation
steps were not fine enough to exhibit that behavior.

The other three figures in this set are Figs. 11.12, 11.13 and 11.14, for which
a’/p =025, 022 and 0.10, respectively. The curves for 6, are hardly distinguishable
from each other, but the ones for a/k , change in systematic ways, as expected. The
magnitude of a/k decreases as a’/p is reduced, consistent with Figs. 11.8 and 11.10,
and the width and extent of the "stop band" spike become smaller as a’/p is reduced.
The leakage rate for the value a’/p =0.10 ir Fig. 11.14 is so small that it was necessary

to expand the abscissa scale by a factor of 50; the "stop band' region was not
comnputed for this case.

Figures 11.7 through 11.14 therefore tell us how §_/k and a/k , behave as we
change either the slit width or the frequency (actually k). Increasing the slit width
changes the 3 /k_ value (and therefore the beam angle 4 ,) relatively little, but it
produces a large change in the value of a/k , which in turn affects the beam width.
As frequency, or k , is increased, the beam swings around as we expect from the
discussion in Sec. B, and the leakage rate increases slowly over most of the scan range,

but behaves wildly in the "stop band” region near broadside, which should therefore be
avoided unless the beam is sufficiently wide.
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1.00
a = 120 mm
b = 240 mm
p = 345mm
e = 4.00

0.75

i 3 i i
0° 45° 90°0 1.0 2.0
0, a/k,  (x107)

Fig. 11.12

Same as Fig. 11.11, but fora“’/p = 0.25.
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|a'/p = 022}

1.00
a = 120 mm
b = 240 mm
P = 345mm
e, = 4.00
Q.75
N i |
0° 45° 90° 0 10 20
6, afk, (107

Fig. 11.13 Same as Fig. 11.11, but for a’/p = 0.22, a much
narrower aperture.
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125 (a/p = 010}
r

1.00
a = 1.20 mm
b = 240 mm
p = 345mm
e, = 4.00

0.75

1 | 1 b | |
0° 45° 90°0 0.10
6, a/k, (=10 Y

Fig. 11.14 Same as Fig. 11.11, but for a’/p = 0.10, a very tiny
aperture electrically. The right-hand abscissa scale
nas been multiplied by 50 as compared with Fig. 11.11,
and the "stop band" region was not calculated.
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E. EFFECTS OF CROSS-PLANE SCANI ING

As in the arrays described in Chaps. IV and X, scanning in the cross plane, and
therefore in azimuth, is accomplished by inserting a phase shift between successive
parallel line sources in the array. The phase shift introduces a wavenumber
component in the x direction, which we have called kxp'_1 because it occurs in the
periodic waveguide and is due to the n = -1 space harmonic for the array of slits on the
air-dielectric interface. With respect to the periodic array of line sources, it represents
the n =0 space harmonic, since that is the only one that is above cutoff in the vertical

(v) direction.

The phase shift per unit cell is then k 44, where a is the width of each unit cell;
this statement is the same as the one in (10 92) or (10.68) of Chap. X. In Chap. X, the
phase shift per unit cell was used as a measure of the cross-plane scan. 1In Chap. 1V, it
was 8 , where sind =k op/ as shown in (4.10), for example, and k is the
equivalent of k - here We have not been consistent in this report wnh respect to
what measure to employ for the cross-plane scan, and it is not clear which one is best.
We have chosen the ratio kxp l/k as the measure in this chapter. The three
measures are, therefore: 0 or sin’ (k‘m p /ko ), in Chap. 1V, kmpa in Chap. X, and

xp'-l /k , in this chapter. Wlth respect to the measure employed now, we see that the
scan range cannot exceed unity, a convenient maximum value.

As discussed in the other two chapters, the radiating open-end discontinuity
between the periodic waveguide and the air-filled parallel-plate guide is no longer
neglectable when k - %0, and it produces two principal effects: a standing wave
between that discontinuity and the one representing the grating on the air-dielectric
interface, and pessible coupling to channel-guide leaky modes excited at the radiating
open end. Two other concerns arise with respect to cross-plane scan: possible
deviations from strict conical scan, and the possible presence of blind spots. The
calculation results discussed below address all these questions.

First, we examine the behavior of B,/k, and a/k  as a function of the relative
height c /) of the metal baffles, i.e., the air-filled parallel-plate region. In Figs. 11.15
and 11.16 we present the variations with ¢ /A of 8 /k and a/k , respectively, for a
relatively large phase shift, corresponding tc k l/k =0.90, and a value of

=1.09mm’. We observe that the curve for g /k possesses a slight periodic
vanduon as ¢ /A changes, but that its amplitude is very small and its average value is
almost the same as that found for km 1 =0, ir. Fig. 11.9, for a’/p =0.25, which is the
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value used here. The curve for a/k  in Fig. 11.16, however, shows a very large
periodic variation with ¢ /A , where the maximum value is nearly five times the
minimum value. The average value of the variation is seen to agree fairly well with
the value for a’/p =0.25 in Fig. 11.10, showing that the average value is approximately
what one would find when the radiating discontinuity is replaced by metal walls
continuing indefinitely.

It is interesting to note that no interactions with channel-guide leaky modes were
found for this set of parameters. The beam width in elevation corresponding to the
maximum value of a/k  in Fig. 11.16 is only about 2.7°, so a larger value of a’/p may
be necessary before these interactions occur.

The curves in Figs. 11.15 and 11.16 correspond to k, =1.099 mm’" which, for the
dimensions listed, would correspond to an angle in elevation equal to about -1° if
kxp ,-1=0' That result agrees with the discussion in Sec. D. Now, with kxp ’_1/k0 =0.90,
the beain position is quite different. We recall that the beam undergoes conical scan;
when the elevation angle before cross scan is close to broadside, however, the azimuth
angle rapidly approaches near to 90° From (2.16) or (10.93), we know that if the
elevation angle before cross scan is 1° the azimuth angle when the beam hits the
ground will be 89° (or -1° and 91°, respectively). For an arbitrary value of k;p RYLN
we may compute the actual values of elevation angle 8 | and azimuth angle ¢, from

(10.98) and (10.99), which are, in present notation,

1/2
sindy = [ (k) 17k, + B4/, ] (11.43)

and

kxp ,»1/ko

sing,, = (11.44)

2 2 12
[k, 1/, 48475,

where kxp alk, 1s imposed and B ,/k  is given by (11.4), with the values of 3, /k
furnished by the various curves.

For the parameters in Fig. 11.15, we find from (11.43) and (11.44) that the
elevation angle 8 ; and the azimuth angle ¢ , corresponding to kxp 1/k, =090, are

6,=642°, ¢, =89°
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In the final sets of curves, our goals are to determine the deviation from conical
scan and to see if there exists any evidence for or tendency towards blind spots during
the cross-plane scan process. Towards these ends, we present numerical resulis for
B,/k, and a/k  as a function of the relative phase shift, measured by kxp ,-1/1‘0' over
the whole scan range, for several cases.

In Figs. 11.17 through 11.19, we have selected a’/p =0.25, and we present results
for B,/k, for three quite different conical scan situations. For Fig. 11.17, the
elevation angle before cross-plane scan is about -1° as in Figs. 11.1S and 11.16. The
conical scan here corresponds to the widest possible one, coming trom almost
broadside down to the ground in elevation, and ending with the beam at ¢ ; =91° For
Fig. 11.18, the value of k_ = 0.932Smm ", so that A =6.738 mm; with 8, /k =145, as
obtained from the figure for kxp '_l/ko =0, we fird that the elevation angle before
cross-plane scan is -29.9°% in the backward quadrant. When this beam reaches the
ground, ¢_1=119.9°. For the third scan situation, in Fig. 11.19, we have
k,=08492mm™ and ), =7.399mm, and from the figure we see that 8 /k_=1313
when kxp _1/k, =0. The elevation angle 8 | before cross-plane scan is therefore -56.3°,

which is much closer to the ground, near backward endfire; the value of azimuth angle
at the other end of the scan range is ¢_, = 146.3%

Let us now look at the behavior of 3 /k, in Figs. 11.17 through 11.19 over the
remainder of the scan range. We see that the curves are almost flat; the one in Fig.
11.17 rises very slightly, the one in Fig. 11.19 drops very slightly, whereas the one in
the middle range of scan, Fig. 11.18, seems completely flat. In all cases, the curves are
so flat that we can assert that any deviaticn from conical scan is very small indeed.

We also note from these figures that the scan range changes as well from one to
the other. The maximum value that k > 1 /k,, can have, corresponding to the end of

the scan range, when the beam reaches the ground, is given in Chap. X as (10.96); we
repeat it here in present notation as

(gp 1755 Ymax = €05(0.1), o = cos(sin™B 1 /k,), g (11.45)

For Fig. 11.17, the original elevation angle was so near to broadside that the maximum
value of kxp ,-1/k , is essentially urity. For Fig. 11.18, the value of @, 6-0= -29.9° so
that km _.l/ko =0.867, in agreement with the curve in the figure. We found that the
clevation angle before cross-plane scan was 56.3° for the parameters in Fig. 11.19, so
that (k_, '_l/ko max 18 found from (11.45) to be 0.555, in exact agreement with the
curve in Fig. 11.19.
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i i
B/%, I .
r —
1 a = 120mm a/p = 025 _
i b = 240mm [ 1
p = 345mm
[~ e = 4.00 -
¢ = 240mm k, = 109mm’
B 7]
-~ -
. -
0 [ 1 1 { 1 1 1 1 1
0.0 0.5 1.0

Fig. 11.17

Cross-plane scan kxp’_1 /K,

Behavior of g, /k, , the normalized phas= constant of
the basic n = 0 space harmonic, as a function of
kxp,-l/ka , a measure of the amount of cross-plane
scan, over the whole scan range. For this case, the
relative slit width a’/p = 0.25, and the free-space
wavenumber k is 1.099 mm’, for which the beam is
almost at broadside when the cross-plane scan is zero.
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a = 120mm lap = 025
b = 240 mm
B P = 345mm -
e, = 4.00
| ¢ = 240mm k, = 09325 mm’ -
0 N 4 1 i 1 1 1 L L
0.0 0.5 1.0

Cross-plane scan lg(p 1%,

Fig. 1118  Same as Fig. 11.17, but for k, =0.9325 mm’", for which
the beam is at -29.9° from broadside when the cross-
plane scan is zero.
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s a = 120om a/p = O.ZSJ i
b = 240mm D
P = 345om
~ ¢ = 4.00 “
¢ = 24mm k, = 08492 mm’
|
T
= -
0 1 L A I TR SR | 4 L1
0.0 0.5 1.0
Cross-plane scan kxp'.1 /k,
Fig. 1119 Same as Fig. 11.17, but for k, =0.8492 mm’", for which

the beam is at -56.3° from broadside when the cross-
plane scan is zero.
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The companion figures to Figs. 11.17 through 11.19, for a/k  instead of 8  /k , are
Figs. 11.20 through 11.22. The most important point to note about these curves is that
they are relatively flat until near the end, where they drop to zero because the beam
has reached the ground and all radiation ceases. There are no sharp dips anywhere, so
that there is no evidence of blind spots. All three figures have the same ordinate scale,
and we have seen in Figs. 11.11 through 11.14 that the value of a/k , decreases as the
value of k_ is reduced, so it is to be expected that the level of a/k  becomes
progressively smaller in these three fizures.

Finally, we can obtain added intormation by referring to Fig. 11.16, which shows
a/k, vs. baffle height c /A~ for kxp’_l/ko =0.90. The value of ¢ chosen for the
calculations in Figs. 11.17 through 11.22 is 2.40 mm; in both Figs. 11.16 and 11.20 the
value of A is 5.716 mm, so that ¢ /A =0.420 in Fig. 11.20. That value in Fig. 11.16
corresponds to a point approximately mid-way in the amplitude variation, and not
much different from the value before cross-plane scan. As k‘\p'_1 increases, we would
therefore expect the value of a/k | to remain relatively flat over the whole scan range,
as we find in Fig. 11.20. If the value of ¢ were chosen to correspond to the bottom of
the periodic variations in Fig. 11.16, the curve in Fig. 11.20 would drop off more
rapidly; if it corresponded to the rop of the variations, the curve in Fig. 11.20 would
peak up before dropping down to zero at the end of the scan range. Such behavior
was obtained in Chaps. IV and X for the same reason. The curve of 8, /k  in Fig,
11.17 would probably not be quite as flat if ¢ were chosen to correspund to the top or
the bottom of the periodic variations, but, again judging from our experience with the
other arrays, the change would be expected to be small.

The last set of curves is shown in Figs. 11.23 to 11.28. They are similar to those in
Figs. 11.17 through 11.22, except that a larger slit aperture was selected, with
a’/p =0.26 rather that 0.25, so that larger values of a/k  are obtained. All of the
behavior characteristics for a/k  and 8 /k | are similar to those for a’/p =0.25.

Instead of choosing the largest elevation angle before cross-plane scan to be
almost at broadside, however, a value slightly removed from it was taken, in Figs.
11.23 and 11.26. The value of ko =1.058mm'1, so that Ao =5.94 mm; the value of
Bo /ko from Fig. 11.23 is seen to be 1.60, so that ﬁ_l/ko =(0.122 and 6, at ¢_1 =0 is -7.0°,
which is still close to broadside but away from the "stop band” region. The maximum
value of kxp ,-1/k , is now 0.99, as found from (11.45), so that essentially the complete
scan range is achieved; this minor distinction is actually discernable in Figs. 11.23 and
11.26.
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- ~
5
0.0 ] L 1 1 1 1 ]
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Cross-plane scan Ig‘p'_l/ko
Fig. 11.20 Behavior of a/k, , the normalized leakage constant, as

a function of k., ,/k, . See caption for Fig. 11.17 for
further information.
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Fig. 1121 Same as Fig. 11.20, but for k, =0.9325 mm’, for which
the caption for Fig. 11.18 contains further information.
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Fig. 11.22 Same as Fig. 11.20, but for k, =0.8492 mm’, for which
the caption for Fig. 11.19 contains further information.
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Fig. 11.23 Same as Fig. 11.17, but for a’/p = 0.26, and for
k,=1058 mm”, for which the beam is at -7.0° from
broadside when the cross-plane scan is zero.
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Fig. 11.24 Same as Fig. 11.23, but for k, =0.9325 mm ", for which
the caption in Fig. 11.18 contains further information.
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Fig. 11.25 Same as Fig, 11.23, but for k, =0.8492 mm ", for which
the caption in Fig. 11.19 contains further information.
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Fig. 11.20 Same as Fig. 11.20, but for a’/p = 0.26, and for
k, =1.058 mm ", for which the caption in Fig. 1123
contains further information.
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Fig. 11.27 Same as Fig. 11.26, but for k, =0.9325 mm " for which
the caption in Fig. 11.18 contains further information.
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Fig. 1128 Same as Fig. 11.26, but for k, =0.8492 mm ", for which
the caption in Fig. 11.19 contains further information.
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We have not examined the effect on performance of changes in width a. The
behavior of the array when the cross-plane scan is zero is unaffected by that
dimension, but some practical considerations are required with respect to the phase-
shift scanning aspects. Although this matter should be considered more carefully,
some preliminary comments can be made now. First of all, the width a will be quite
small unless some structural modifications are made. Let us assume that height b of
the dielectric-filled region is 3) /4, which is 3) | /8 when ¢ =4.00. Thus, width a will
be 3A0/ 16, which is rather small. The width can be increased by tapering, which
introduces mechanical complexity. A small width would require only a small phase
shift per element, but more elements, and therefore more phase shifters, would be
needed for the same beam width in azimuth. An advantage to a narrower width is
that the height ¢ of the metal baffles can be made smaller, since the higher modes in
the air-filled region would then decay more rapidly. It is clear that tradeoffs are
involved that require further consideration.

The array treated in this chapter differs from the other two arrays, discussed in
Chaps. IV and X in that the leaky-wave line sources are periodically modulated here,
as we pointed out at the beginning of the chapter. This distinction has permitted a
larger and more versatile scan range, as desired, but otherwise the behavior during
cross-plane scan is qualitatively similar to what was found for the other arrays.
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