AFWAL-TR-86-4120

EFFECT OF MANUFACTURING PROCESSES ON STRUCTURAL ALLOWABLES—PHASE II

BATTELLE COLUMBUS DIVISION 505 KING AYEN: JE COLUMBUS, OHIO 43201-2693

NOVEMBER 1986

FINAL REPORT FOR PERIOD 29 JUNE 1985-29 JULY 1986

Approved for public release; distribution unlimited

MATERIALS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6533

CONTROL OF THE CONTRO

NOTICE

When government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related government procurement operation, the United States government thereby incurs no responsibility nor any obligation whatsoever; and the lact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

NEAL R. ONTKO Project Engineer

Materials Engineering Branch

CLAYTON L. HARMSWORTH

Technical Manager for Engineering & Design Data

Materials Engineering Branch

FOR THE COMMANDER

THEODORE J. REINHART, Chief Materials Engineering Branch Systems Support Division

Materials Laboratory

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify MLSE, W-PAFB, OH 45433-6533 to help us maintain a current mailing list."

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

ERRATA FOR AFWAL-TR-86-4120, DATED NOVEMBER 1986

Please make the following corrections:

Page <u>Number</u>	Correction
46	For 0.078 in. thickness, L direction, change shear ultimate strength value of 140.8 to 114.5 ksi and change average from 122.2 to 113.4 ksi. Add footnote indicator (5) to "Shear Ultimate Strength" in column heading.
47	For 0.093 in. thickness, L direction, change both shear ultimate strength values of 153.4 to 120.7 ksi and change average from 140.7 to 118.9 ksi. Add footnote indicator (5) to "Shear Ultimate Strength" in column heading.
48	For 0.125 in. thickness, LT direction, replace shear ultimate strength value of 130.6 with footnote indicator (4). Add footnote (4) to table as follows: "Excessive load inadvertently applied". Add footnote indicator (5) to "Shear Ultimate Strength". Add footnote (5) to table as follows: "Shear ultimate strength values not considered valid due to excessive deformation in test area".
49	For 1.98 mm thickness, L direction, change shear ultimate strength value of 970.8 to 781.9 GPa and change average from 842.3 to 779.4 GPa. Add footnote indicator (5) to "Shear Ultimate Strength" in column heading.
50	For 7.36 mm thickness, L direction, change both shear ultimate strength values of 1057.7 to 832.2 GPa and change average from 969.8 to 819.5 GPa. Add footnote indicator (5) to "Shear Ultimate Strength" in column heading.
51	For 3.175 mm thickness, LT direction, replace shear ultimate strength value of 900.3 GPa with footnote indicator (4) and change average to 784.3 GPa. Add footnote (4) to table as follows: "Excessive load inadvertently applied". Add footnote indicator (5) to "Shear Ultimate Strength". Add footnote (5) to table as follows: "Shear ultimate strength values not considered valid due to excessive deformation in test area".

UNCLASSIFIED

THIT	CLASSE	CATION	OF THIS	PAGE

SECOND CONSTRUCTION OF THIS PAGE	REPORT DOCUM	MENTATION	PAGE			
1a. REPORT SECURITY CLASSIFICATION		16. RESTRICTIVE	MARKINGS	_=		
UNCLASSIFIED 2a. SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION	/AVAILABILITY OF	REPO	ėt	
_		<u> </u>	for public re			tribution
2b. DECLASSIFICATION / DOWNGRADING SCHEDU	ILE	unlimited				
4. PERFORMING ORGANIZATION REPORT NUMBER	R(S)		ORGANIZATION RE	PORT	NUMBER(S)
		AFWAL-TR-	86-4120			
64. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL	7a. NAME OF MO	ONITORING ORGAN	IZATK	ON AFW	AL/MLSE
Battelle Columbus Division	(if applicable)	Engineeri	ing and Desig Engineering	ın Da	ata	,
6c. ADDRESS (City, State, and ZIP Code) 505 King Avenue		76. ADDRESS (CIT	y, State, and ZIPC Wright Aero	ode)		
Columbus, Ohio 43201-2693	i		e wright Aero e Systems Com			aboratories
1020. 200		Wright-Pa	itterson Air	Ford	ce Base.	. Ohio 45433
8a. NAME OF FUNDING/SPONSORING	86. OFFICE SYMBOL					
organization Materials Laboratory		F33615-84	-C-5030			
8c. ADDRESS (City, State, and ZIP Code)	AI WAL/ALSE	10 SOURCE OF E	UNDING NUMBERS			
	aboratories	PROGRAM	PROJECT	TASK	***************************************	WORK UNIT
Air Force Systems Command		78011F	NO. 2865	NC.	00	ACCESSION NO. 07
Wright-Patterson Air Force Base 11. Title (Include Security Classification)	Ohio 45433		<u> </u>		(**	
	sses on Structur	al Allowable	s - Phase II			
12. PERSONAL AUTHOR(S)						
Paul E. Ruff						
	Wright-Patterson Air Force Base, Ohio 4 Station (If applicable) AFWAL/MLSE State, and ZIP Code) Ce Wright Aeronautical Laboratories Ce Systems Command Patterson Air Force Base, Ohio 45433 Include Security Classification) To Manufacturing Processes on Structural Allowables - Phase II Include State, and III Include Security Classification) Wright-Patterson Air Force Base, Ohio 45433 Include Security Classification) Work unaccession Task No. 78011F Include Security Classification) To Manufacturing Processes on Structural Allowables - Phase II Include Security Classification (III) Inclu					
16. SUPPLEMENTARY NOTATION	1985 .0 .11117 100.0	november	1986			
17. COSATI CODES	18. SUBJECT TERMS (C	ontinue on reverse	if necessary and	iclorei	for her black	(oumber)
FIELD GROUP SUB-GROUP	tensile yield					
11 6	sive yield str	ength, shear	ultimate st	reng	ith bea	ring yield -
19. ABSTRACT (Continue on reverse if necessary	1 (UVER)		· · ·		- 4	
This report contains the resu	ilts of tests to	determine th	e effect of m	anut	facturi	ng processes
on the mechanical properties aged bar, Inconel 625 anneal	of three aerospa	ce materials	: Incone! /	18 SC	olution	treated and
snear, bearing, and fatigue (notched and unno	tched for \th	area sheet. Iree stress r	atio	isiie, c	erties were
obtained. New words: Nick	of allow Inco	res.			, , _F , _V _F	
•	1	/ ر				
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT			CURITY CLASSIFICA	TION		
ZIUNCLASSIFIED/UNLIMITED SAME AS I	RPT. DTIC USERS	UNCLASSI	FIED Include Area Code)	122e	OFFICE SY	MROL
Neal R. Ontko		513-255-506				AL/MLSE

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

						TIO				

18. (CONTINUED)

strength; bearing ultimate strength; elongation; tensile modulus of elasticity; com-pressive modulus of elasticity; fatigue properties; Inconel 718 bar, Inconel 625 bar, and Inconel 625 sheet.

Income! bors.

Income! sheets.

UNCLASSIFIED

FOREWORD

This project was conducted by Battelle Columbus Division under Contract Number F33615-84-C-5030, Project Number 2865, over the period June 29, 1985, through July 29, 1986. Mr. Neal R. Ontko (MLSE), Engineering and Design Data, Materials Engineering Branch, was the project engineer for the Materials Laboratory, Air Force Wright Aeronautical Laboratories, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio. This final report covering Phase II was submitted by the author, Mr. Paul E. Ruff, in July 1986.

The author wishes to express his appreciation to Mr. Dana Jones for his effort on this project.

TABLE OF CONTENTS

	Page
SUMMARY INTRODUCTION OBJECTIVE TECHNICAL APPROACH TEST PROCEDURE TEST PROGRAM	1 2 2 3 3
Inconel 718 Bar (Solution Treated and Aged)	4
Background Material Location of Test Specimens Specimen Configuration Test Results	4 4 6 6
Inconel 625 Bar (Annealed)	25
Background Material Location of Test Specimens Specimen Configuration Test Results	
Inconel 625 Sheet (Annealed)	40
Background	40 40 40 40 45
APPENDICES	
	Page
APPENDIX A. TESTING PROCEDURES	57 59

FIGURES

Figure		Page
1.	Plan view showing location of long transverse specimens for Inconel 625 and Inconel 718 bar	7
2.	Cross-sectional location of longitudinal tensile, compression, and shear specimens for all diameters of Inconel 625 and Inconel 718 bar	8
3.	Cross-sectional location of longitudinal bearing specimens for all diameters of Inconel 625 and Inconel 718 bar	8
4.	Location of short transverse tensile, compression, and shear specimens for Inconel 625 and Inconel 718 bar2-inch diameter	9
5.	Location of short transverse tensile, compression, and shear specimens for Inconel 625 and Inconel 718 bar2-1/4-inch diameter	10
6.	Location of short transverse tensile, compression, and shear specimens for Inconel 625 and Inconel 718 bar2-1/2-, 2-3/4-, and 3-inch diameter	. 11
7.	Location of short transverse tensile, compression, and shear specimens for Inconel 625 and Inconel 718 bar3-1/4-, 3-1/2-, 3-3/4-, and 4-inch diameter	12
8.	Specification identification code for Inconel 718 bar	13
9.	Typical tensile stress-strain curves for Inconel 718 STA bar	20
10.	Typical compressive stress-curves for Inconel 718 STA bar	20
11.	Unnotched axial-stress S/N curves for 3/4-inch-diameter Inconel 718 solution treated and aged barlongitudinal direction	24
12.	Notched axial-stress S/N curves for 3/4-inch-diameter Inconel 718 solution treated and aged barlongitudinal direction	24
13.	Specimen identification code for Inconel 625 bar	28
14.	Typical tensile stress-strain curves for annealed Inconel 625 bar	35
15.	Typical compressive stress-strain curves for annealed Inconel 625 bar	35
16.	Unnotched axial-stress S/N curves for 3/4-inch-diameter annealed Inconel 625 barlongitudinal direction	39

FIGURES (Continued)

Figure		Page
17.	Notched axial-stress S/N curves for 3/4-inch-diameter annealed 625 barlongitudinal direction	3 9
18.	Location of test specimens for annealed Inconel 625 sheetall thicknesses except 0.093 inch	42
19.	Location of test specimens for annealed Inconel 625 sheet0.093-inch thick	43
20.	Specimen identification code for Inconel 625 sheet	44
21.	Typical tensile stress-strain curves for annealed Inconel 625 sheet	52
22.	Typical compressive stress-strain curves for annealed Inconel 625 sheet	52
23.	Unnotched axial-stress S/N curves for 0.093-inch-thick, annealed Inconel 625 sheet	55
24.	Notched axial-stress S/N curves for 0.093-inch-thick, annealed Inconel 625 sheet	55

TABLES

Table		Page
1.	CHEMICAL COMPOSITION OF INCONEL 718 BAR	5
2.	MECHANICAL PROPERTIES OF INCONEL 718 STA BAR	14
2(a).	MECHANICAL PROPERTIES OF INCONEL 718 STA BAR	17
3.	UNNOTCHED FATIGUE DATA FOR INCONEL 718 STA BAR LONGITUDINAL DIRECTION	22
4.	NOTCHED, K, = 3, FATIGUE DATA FOR INCONEL 718 STA BAR LONGITUDINAL DIRECTION	23
5.	CHEMICAL COMPOSITION OF INCONEL 625 BAR	26
6.	MECHANICAL PROPERTIES OF ANNEALED INCONEL 625 BAR	29
6(a).	MECHANICAL PROPERTIES OF ANNEALED INCONEL 625 BAR	32
7.	UNNOTCHED FATIGUE DATA FOR ANNEALED INCONEL 625 BAR LONGITUDINAL DIRECTION	36
8.	NOTCHED, K, = 3, FATIGUE DATA FOR ANNEALED INCOMEL 625 BARLONGITUDINAL DIRECTION	37
9.	CHEMICAL COMPOSITION OF INCONEL 625 SHEET	41
10.	MECHANICAL PROPERTIES OF ANNEALED INCONEL 625 SHEET	46
10(a).	MECHANICAL PROPERTIES OF ANNEALED INCONEL 625 SHEET	49
11.	UNNOTCHED FATIGUE DATA FOR ANNEALED INCONEL 625 SHEETLONG TRANSVERSE DIRECTION	53
12.	NOTCHED, K, = 3, FATIGUE DATA FOR ANNEALED INCONEL 625 SHEETLONG TRANSVERSE DIRECTION	54

SUMMARY

To evaluate the effect of newly established manufacturing techniques and processes on the MIL-HDBK-5 design allowable properties of aerospace materials, various mechanical properties, including fatigue, were determined at room temperature for multiple lots of three products. The data which were obtained are suitable for the determination of statistically based design values or can be used to supplement existing data so that design values can be determined. (Statistical analysis of the data to determine design allowables was not performed in this test program.)

Specifically, the following tests were conducted in Phase II:

Inconel 718 (STA Bar). Tensile, compression, shear, and bearing tests in two grain directions were conducted on ten lots of solution treated and aged Inconel 718 bars, which varied in thickness from 2 through 4 inches in diameter. Unnotched and notched, $K_{\pm}=3$, axial-stress fatigue tests were performed at three stress ratios, R=-0.5, R=0.1, and R=0.5, using longitudinal specimens from 3/4-inch-diameter bar. S/N curves were constructed.

Inconel 625 (Annealed) Bar. Tensile, compression, shear, and bearing tests in two grain directions were conducted on ten lots of annealed Inconel 625 bars, which varied in thickness from 2 through 4 inches in diameter. Unnotched and notched, $K_{\rm t}=3$, axial-stress fatigue tests were performed at three stress ratios, R=-0.5, R=0.1, and R=0.5, using longitudinal specimens from 3/4-inch-diameter bar. S/N curves were constructed.

Inconel 625 (Annealed) Sheet. Tensile, compression, shear, and bearing tests in two grain directions were conducted on ten lots of annealed Inconel 625 sheet, which varied in thickness from 0.050 through 0.250 inch. Unnotched and notched, $K_t=3$, axial-stress fatigue tests were performed at three stress ratios, R=-0.5, R=0.1, and R=0.5, using long transverse specimens from 0.093-inch-thick sheet. S/N curves were constructed.

INTRODUCTION

One of the major problems in the utilization of new manufacturing techniques for metallic materials used in advanced aircraft is the lack of

sufficient comparative mechanical property data to determine the effect of a new manufacturing technique or process on the design properties of the basic material. According to DoD and FAA regulations, a material cannot be used in a structural aircraft design unless the design allowable properties are available in MIL-HDBK-5 or a statistically significant quantity of data are available to provide acceptable documentation to support the values used in the design.

Sale of the Best

Consequently, test programs were needed to evaluate the effects of new manufacturing techniques or processes on the basic mechanical properties, such as tension, compression, shear, and bearing properties, as well as fatigue characteristics. These data, when suitably obtained, can be used by the MIL-HDBK-5 Program to determine statistically based design values for incorporation into MIL-HDBK-5. The availability of these data will reduce the time lag between the establishment of a new manufacturing process (or alloy) and its use in aerospace vehicles and components.

OBJECTIVE

The objective of this program was to evaluate the effect of newly established manufacturing techniques and processes on the MIL-HDBK-5 design allowable properties of structural materials used in aerospace applications.

TECHNICAL APPROACH

The technical approach was to fabricate (including heat treatment, when required) test specimens, to perform the mechanical property tests which are required for the development of design allowable properties, and to present the mechanical property data in a format suitable for use by the engineering community. The materials tested were:

Inconel 718 Bar (Solution Treated and Aged)
Inconel 625 Bar (Annealed)
Inconel 625 Sheet (Annealed)

TEST PROCEDURE

Triplicate specimens, except for fatigue, were conducted for each mechanical property and grain direction. The test specimen location and configurations are described under the individual alloy in the Test Program section. All test specimens were fabricated by Metcut Research Associates, Inc., Cincinnati, Ohio. In general, all mechanical property tests were conducted in accord with ASTM standards. A detailed description of testing procedures is provided in Appendix A. All tests were conducted at room temperature.

TEST PROGRAM

A description of the test program and the data obtained for each material are presented in this section.

Inconel 718 Bar (Solution Treated and Aged)

Background

Because of its many attractive characteristics, Inconel 718 is being used for applications other than for parts exposed to high temperatures. Therefore, data for mechanical properties other than those critical for high temperature performance are needed. Inconel 718 is currently contained in MIL-HDBK-5, but design values for properties other than tensile yield and ultimate strengths are missing. Consequently, a test program was needed to determine the mechanical properties of Inconel 718 bar in the solution treated and aged condition so that design values can be subsequently determined.

Material

Eleven lots of Inconel 718 bar were procured from Inco Alloys International (formerly Huntington Alloys) in the solution treated condition to AMS 5662. The eleven lots represented nine heats. The chemical compositions, as determined by Inco Alloys International, are shown in Table 1. Bars were obtained in the following sizes: 3/4, 2, 2-1/4, 2-1/2, 2-3/4, 3, 3-1/4, 3-1/2, 3-3/4, and 4 inches in diameter. Two heats of 2-inch-diameter bar were procured. Inconel 718 bar is not produced in rectangular shapes; consequently, round bars with sufficient diameter to accommodate bearing specimens in the longitudinal grain direction at the T/4 location were selected. For economy, 3/4-inch-diameter bar was obtained for fatigue tests.

Bars were supplied in the solution heat treated condition (1775-1825 F). After machining, test specimens were precipitation heat-treated in a vacuum furnace according to AMS 5662, as follows: heat to 1325 F \pm 15 and hold for 8 hours, cool at 100 ± 15 F degrees per hour to 1150 ± 15 F, hold at 1150 ± 15 F for 8 hours, and cool to room temperature. This heat treatment is used primarily for parts requiring maximum resistance to creep and stress rupture. (Tensile properties after heat treatment conformed to AMS 5662.)

Location of Test Specimens

For mechanical property data to be usable for the determination of MIL-HDBK-5 design values, tensile, compression, shear, and bearing

TABLE 1. CHEMICAL COMPOSITION OF INCONEL 718 BAR

1							Element, percent	, perce	nt						
Number	ادا	훈	Fe	S	Si	3	ž	ئ	A1	1	ප	Ş	Cb+Ta	Ба	Ва
VT03A1EY	0.01	0.01 0.06 18.44	18.44	0.002	0.05	0.04	53.55	17,93	17.93 0.63 0.96 0.02 3.00	96.0	0.02		5,31	0.005	0.003
HT2860EY	0.03	0.03 0.10 17.35	17.35	0.001	0.012	0.13	53.86	18.48 0.52 0.95 0.21	0.52	0.95	0.21	3.01	5.22	0.012	0.003
HT2877EY	0.05	0.02 0.07	17.00	0.002	0.08	0.04	54.30	18.48	18.48 0.59 0.95	0.95	0.13	3.02	5.31	0.007	0.003
HT3111EY	0.03	0.03 0.14	17.42	0.001	0.13	0.13	53.85	18.68	18.68 0.53 0.94	0.94	0.08	2.96	5.10	0.010	0.002
HT36KSEY	0.03	0.10	0.10 18.26	0.002	0.11	0.12	53.68	18.28	18.28 0.48 0.84	0.84		0.08 2.94	5.06	0.012	0.002
HT2859EY	0.03	0.10	17.80	0.001	0.14	0.15	53.73	18.39	0.52	0.94	0.12	2.97	5.09	0.012	0.002
HT3101EY	0.03	0.14	17.45	0.001	0.10	0.13	54.18	18.35	0.53	0.90	0.07	2.99	5.12	0.010	0.002
нТ22к9ЕY	0.03	0.10	17.79	0.002	0.12	0.15	54.56	17.39 0.56	0.56	0.95	0.19	3.04	5.12	0.011	0.002
HT31K1EY	0.03	0.03 0.08	18.48	0.001	0.15	0.11	0.11 53.48 17.97 0.42 1.06 0.19 3.03 5.00	17.97	0.42	1.06	0.19	3.03		0.001	0.002

^aIncluded in reported iron.

Note: Composition of all heats conformed to the requirements of AMS 5662.

specimens must be located within the cross section in accord with AMS 2371. Therefore, all specimens, except fatigue, were located with the axis of the specimen at the T/4 location. Since all bars were round, mechanical property tests were conducted on two grain directions, longitudinal and short transverse, except that bearing tests were performed only in the longitudinal direction, since the short transverse dimensions of most bars would not accommodate bearing specimens. Longitudinal fatigue specimens were located at the T/2 location in the 3/4-inch-diameter bar. The location of the test specimens is shown in Figures 1 through 7. Figure 8 shows the code system used to identify test specimens.

Specimen Configuration

The configurations of test specimens are shown in Appendix B. Subsize tensile specimens were employed for the short transverse grain direction.

Test Results

Tensile. The results of tensile tests are shown in Tables 2 and 2(a). In addition to tensile yield and ultimate strengths, elongation and modulus of elasticity values are indicated. Typical tensile stress-strain curves for each grain direction are presented in Figure 9. The shape parameter was determined in accord with Section 9.3.2 of MIL-HDBK-5D. The average tensile yield strengths and the average tensile moduli of elasticity determined in this test program were used with the shape parameter to construct typical stress-strain curves.

<u>Compression</u>. The results of compression tests are shown in Tables 2 and 2(a). Compressive modulus of elasticity values are listed in addition to the compressive yield strengths. Typical compressive stress-strain curves are presented in Figure 10 for each grain direction. The shape parameter was determined in accord with Section 9.3.2 of MIL-HDBK-5D. The average compressive yield strengths and average compressive moduli of elasticity determined in this test program were used with the shape parameter to construct typical stress-strain curves.

Figure 1. Plan view showing location of specimens for Inconel 625 and Inconel 718 bar.

Figure 2. Cross-sectional location of longitudinal tensile, compression, and shear specimens for all diameters of Inconel 625 and Inconel 718 bar.

Figure 3. Cross-sectional location of longitudinal bearing specimens for all diameters of Inconel 625 and Inconel 718 bar.

Figure 4. Location of short transverse tensile, compression, and shear specimens for Inconel 625 and Inconel 718 bar--2-inch diameter.

Figure 5. Location of short transverse tensile, compression, and shear specimens for Inconel 625 and Inconel 718 bar--2-1/4-inch diameter.

Location of short transverse tensile, compression, and shear specimens for Inconel 625 and Inconel 718 bar--2-1/2-, 2-3/4-, and 3-inch diameter. Figure 6.

Location of short transverse tensile, compression, and shear specimens for Inconel 625 and Inconel 718 bar--3-1/4-, 3-1/2-, 3-3/4-, and 4-inch diameter. Figure 7.

Figure 8. Specification identification code for Incomel 718 bar.

TABLE 2. MECHANICAL PROPERTIES OF INCONEL 718 STA BAR

ecar (11) (-2.0 (1) (-2.0 (1))	Strength,		5 442.2 3 442.2 3 442.5	200 TO	442.2	442.5	442.2 442.2 442.2 441.0 440.9 440.9	442.2 442.2 442.2 441.0 441.0 444.0 444.0 444.0 441.9	442.2 442.2 442.2 442.3 442.3 442.3 442.3 442.3 443.3 444.0 441.9	444.0 441.0 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	442.2 442.2 442.2 442.3 443.3	4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	442.2 442.2 442.2 441.0 441.0 441.2 441.2 441.2 441.2 441.2 441.2 441.2 441.2 441.2 441.2	44.7 44.7 44.7 44.7 44.7 44.7 44.7 44.7 44.7 44.7 44.7 44.7 44.7 44.7 44.7 44.7 44.7	44.2 2 4 4 4 5 7 7 7 7 7 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9
Strength,		263.5 263.3 265.3		264.0	264.0	264.0	264.0 258.7 256.9 258.4	258.7 258.7 256.9 256.9 258.4	258.7 256.9 256.9 258.4 258.4	258.7 258.7 256.9 258.4 258.0	258.7 258.7 256.9 258.4 258.0 258.0 266.7 266.7	264.0 258.7 256.9 258.0 258.0 258.0 266.7 266.7 266.7	258.7 258.7 258.7 258.0 258.0 258.0 265.7 260.1	264.0 258.7 258.4 258.4 258.0 266.7 266.7 260.1	264.0 258.7 258.7 258.7 258.7 260.1 260.1 263.0 263.0 263.0 263.0 263.0
Strer		350.3		_				346.9							
~	136.3	136.2	135.4		136.0 135.8 136.9	136.0	136.0 136.9 136.9 136.7 136.7 134.7	136.0 136.9 136.9 136.7 134.3	136.0 136.9 136.9 136.9 134.7 134.3 134.3 134.3 134.7	136.0 136.9 136.9 136.9 134.7 134.3 134.7 135.0	136.0 136.9 136.9 136.9 134.7 134.7 134.7 135.0 135.4 135.4 135.4	136.0 136.9 136.9 136.9 134.7 134.7 134.7 135.0 135.4 135.6 135.4	136.0 136.9 136.9 136.9 136.9 136.9 136.9 137.8 137.8 137.8 137.8 137.8	136.0 136.9 136.9 136.9 134.7 134.7 134.3 135.0 135.6 135.6 135.8 137.3 137.3 137.3	136.0 136.9 136.9 136.9 136.9 137.1 137.8 137.8 137.8 137.8 137.8 137.8 137.8
Modulus, 5 103 ks;		30.1 31.0 31.1	30.7	_	30.1	30.1	30.1	30.1 30.2 30.7 30.2 31.3 31.3	30.1 30.2 30.2 31.3 31.3 31.3 31.3 31.3 30.2 30.0	30.1 30.2 30.7 30.2 31.3 31.3 31.3 31.3 30.0 30.0	30.1 30.2 30.2 31.3 31.3 31.3 31.6 31.4 31.4 31.6	30.1 30.2 30.2 30.2 31.3 31.3 31.4 31.0 31.0 31.0	30.1 30.1 30.2 30.2 31.6 31.0 31.0 31.0 31.0 31.0	30.1 30.2 30.2 30.2 31.3 31.3 31.4 31.0 31.0 31.0	30.1 30.2 30.2 30.2 31.3 31.0 31.0 31.0 31.0 31.0 31.0 31.0
_	ksi	187.3 191.0 190.0	189.4		189.1 188.9 189.1	189.1 188.9 189.1 189.0	189.1 188.9 189.0 189.0 189.0 178.5	189.1 188.9 189.0 189.0 177.6 178.9	189.1 188.9 189.0 189.0 178.5 177.6 178.9 182.4 183.0	189.1 188.9 188.9 189.0 178.5 178.5 178.5 184.0 182.4	189.1 188.9 188.9 189.0 178.5 178.5 178.5 184.0 182.4 182.9 182.9	189.1 188.9 188.0 189.0 177.6 178.9 178.9 182.4 182.9 182.9 189.0	189.1 189.1 188.9 188.0 178.5 178.5 178.5 178.5 187.5 189.0 189.1 189.1	189.1 188.9 188.9 188.6 178.9 178.9 187.5 187.7 189.0 189.0 189.0 189.0 189.0 189.0	189.1 189.1 188.9 189.0 178.5 178.5 178.5 178.5 178.5 187.5 189.0 186.7 186.7 186.7 186.7
_	Mgdulus, Str 10 ³ ksi	27.7 34.2 31.0	31.0	!	1	30.5 28.0 28.0 29.0									
	percent 103	22.0 22.0 22.0	22.0		21.5 22.0 22.0	21.5 22.0 22.0 22.0	21.5 22.0 22.0 21.8 24.5 24.5	21.5 22.0 22.0 21.8 24.5 24.5 24.5 24.5 24.5 24.5 24.5	21.5 22.0 22.0 21.8 24.5 24.5 24.0 24.0 24.0	21. 5 22. 0 22. 0 24. 5 24. 5 24. 0 24. 0 24. 0 24. 0 24. 0 24. 0 24. 0 26. 5 26. 5 27. 0 27. 0	21.5 22.0 22.0 24.5 24.5 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0	21.5 22.0 22.0 24.5 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0	21.5 22.0 22.0 24.0 24.0 24.0 24.0 24.0 26.0 26.0 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5	22.0 22.0 23.0 24.5 24.5 24.5 24.0 24.0 24.0 26.0 26.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27	22.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0
	ksi	182.1 181.3 181.7	181.7	-	9/1	176.0 166.9 175.0 172.6	176.0 166.9 175.0 172.6 172.9 173.2	176.0 166.9 175.0 172.6 173.2 173.2	176.0 166.9 175.0 172.6 173.2 173.2 173.2 173.2 173.2 173.2 173.2	176.0 166.9 175.0 172.6 173.2 173.2 173.2 173.2 173.2 173.2	176.0 166.9 175.0 172.9 173.2 173.2 173.4 173.4 173.4 173.4 173.4 173.4 173.4 173.4 173.4 173.4 173.6 173.6	176.0 166.9 175.0 172.6 173.2 173.2 173.4 173.4 173.4 173.4 173.4 173.6 173.6 173.7 169.7 174.9 171.4	176.0 166.9 175.0 172.6 173.2	176.0 166.9 175.0 172.9 173.2 173.2 173.4 173.4 173.4 173.4 173.2 173.2 173.2 173.2 173.2 173.2 173.2 173.2 173.2 173.2 173.5 177.0	176.0 166.9 175.0 172.6 173.2 173.2 173.2 173.4 173.4 173.6 174.9 180.0 180.0 180.0 180.0 180.0 177.0 176.6 176.6
Strengtn, Str ksi		212.0 212.7 209.0	211.2	203.1	196.7 202.3	202.3	202.3 200.7 200.7 204.6 204.7 204.7	202.3 200.7 200.7 204.6 204.7 204.7 204.7	202.3 200.7 200.7 204.6 204.7 204.7 204.5 204.7 204.5 204.5	202.3 200.7 200.7 204.6 204.7 204.1 204.5 197.4 199.9 199.9	202.3 200.7 200.7 204.6 204.7 204.7 204.7 204.5 204.6 199.9 199.9 199.9 199.8	202.3 200.7 200.7 200.7 204.6 204.7 204.5 204.9 199.9 199.9 199.9 199.8	202.3 200.7 200.7 200.7 200.1 204.6 204.7 204.5 204.6 199.8 199.8 210.6 210.7	202.3 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.9 199.9 199.9 199.8 199.8 199.8 199.8 210.4 210.4 210.4 210.4 210.7 210.4 210.7 204.5 210.4 210.4	202.3 200.7 200.7 200.7 200.1 200.1 204.1 202.0 199.9 202.0 199.9 202.0 199.9 204.1 210.4 210.4 210.4 210.4 210.7 210.4 210.7 210.4 210.7
Mo. Str		- 2 E	Avg.	25	_	Avg.	Avg.	Avg.	Avg. 122	Avg.	Avg. 12 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Avg. 12 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Avg. 12 2 3 3 3 4 4 9. N. V. G	Avg. 12 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Avg. 1 1 2 2 3 3 4 4 9. Avg. Avg. 1 1 2 2 3 3 4 4 9.
Direc-		٠		12			-		۶۵ د	J 15	, ts ,	-	- L		
	Diameter, inches	(Heat A)		(Heat A)			(Heat B)								

TABLE 2. (Continued)

┢	Tens 11e	11e		Comor	Compressive	Shear	0/	f.5 Bearing	-fng e/0 = 2.0(1)	(L)Q-12
Ultimate Yield Strength, Strength, ksi		tion, percent	Mgdulus. 10 ksi	Yield Strength, ksi	Modulus, 10 ksi	Ultimate Strength, ksi	Ultimate Strength, ksi	Yield Strength. ks i	Ultimate Strength, ksi	Yield Strength, ksi
211.7 180.8 211.1 179.6 212.4 180.1		22.0 22.0 24.0		184.7 186.0 185.6	30.6 31.0	137.8 137.1 138.6				
7 180.2		22.7	27.7	185.4	31.2	137.8				
192.8 191.3 159.6		24.6 25.5	29.1	180.7	30.2	130.4	327.4		420.2	286.8
0.1.0		25.0	29.4	180.6	30.7	130.7	330.8	236.8	422.3	270.2
190.8 161.5 191.7 160.1 191.6 162.1		26.0 24.0 26.0	27.5 30.8 30.2	171.3 169.7 177.4	31.6	130.3 131.1 130.2				
191.4		25.3	29.5	170.8	31.4	130.5				
198.4 164.1 197.3 165.6 199.1 166.1	 _	25.6 25.0 24.0	28.8 28.2 28.7	174.2 176.3 174.9	31.8	133.6 133.7 133.3	337.8 338.1 338.4	241.2 245.5 248.5	431.6 439.2 426.1	284.3 298.2 277.4
198.3 165.3		24.9	28.6	175.1	31.3	133.5	338.1	245.1	432.3	286.6
		26.0 26.0 24.0	26.2 28.2 28.6	181.3 180.4 178.7	30.9	132.9				
197.8 170.0		25.3	27.7	190.1	31.4	132.7				
209.3 176.0 208.4 176.1 209.0 176.1	′	22.5	27.8	183.1	30.8	136.0	348.0	254.2 253.4 258.6	446.7	297.4
		22.0	59.62	183.7	31.4	136.0	347.8	255.4	44.0	301.2
205.7 173.4 206.5 172.4 206.5 172.8		20.0 21.0 20.0	28.9 27.9 28.6	182.4 182.3 182.2	31.1	136.3 136.4 137.6				
206.2 172.9						1 1 1				

TABLE 2. (Continued)

Comments of the second second

				Tensile	1)e		Compre	Compressive	Shear		Bear	Bear ing	(1)
Bar Diameter, inches	Grain Direc- tion	Specified No.	Ultimate Strength, ksi	Yield Strength, ksi	Elonga- tion, percent	Madulus. 103 ksi	Yield Strength, ksi	Modulus, 103 ksi	Witimate Strength, ksi	e/D = Ultimate Strength, ksi	1.5 Yield Strengt ksi	e/0 ltimate ength, ksi	strength,
3-1/2		725	199.3 199.3 198.9	171.9 173.0 170.6	23.6 24.5 24.5	28.8 27.7 29.3	178.6 181.1 180.8	30.6 31.8 31.7	133.5 134.3 133.8	337.3 338.2 338.4	243.9 249.1 246.8	422.1 439.0 438.0	296.1 302.4 288.8
		¥49.	199.2	=	24.2	28.6		31.4	133.9	·	246.6		
3-1/2	S-1	-05	196.4 196.0	119	21.0	29.6 26.2 31.0		30.7 30.9 31.0	133.4 133.5 133.1		tel design of the second of the		
	, and the second	Avg.	196.4	; -	21.5	28.9		30.9	133.3				
3-3/4	ر.	126		161.0 162.6 163.7	26.6 25.0 26.6	30.4 31.6 29.4		30.9	129.6 130.5 130.1	328.7 329.3 329.9	235.9 240.6 235.1		284.4 286.9 278.6
		Avg.	190.8	162.4	26.1	30.5	168.4	31.2	130.1	329.3	237.2	423.1	283.3
3-3/4	St	1 2 3 3 Avg.	187.3 187.6 195.1	155.1 156.4 156.3	24.0	27.9 31.0 29.2 29.2	169.8 170.2 168.4 169.5	31.1	130.4 129.6 129.6 129.9				
•	ر	1 2 Avg.	192.6	165.8 167.8 164.8 166.1	22.5	27.2 30.3 20.3 27.5 28.3	173.8 174.9 173.8 174.2	30.9	131.1	328.3 329.1 321.3 326.3	237.7 236.9 226.6 233.7	425.5 421.4 429.1	287.2 285.7 299.0 290.7
•	15	1 2 3 3 4 4 G.	190.4 190.7 188.6 188.6	160.4 164.9 163.1 162.8	22.0 22.0 21.0 21.0	26.9 29.7 27.0 27.0	173.3	30.7	132.3 130.7 130.2 130.2				
3/4	J.	1 2 Avg.	204.0 204.7 204.4	177.7	24.5	28.8							
								T				Ţ	-

(4) Specimen numbers for e/0 = 2.0 were 4 through 6.

TABLE 2(a). MECHANICAL PROPERTIES OF INCONEL 718 STA BAR

Diameter, D mm 50.8 (Heat A)	Grain Direc- tion	Spec									-		
50.8 (Heat A)			Strength,	Yield Strength, MPa	Elonga- tion, percent	Modulus, GPa	Yield Strength. MPa	Modulus, MPa	Ultimate Strength, GPa	Ultimate Strength, NPa	Strength,	Ultimate Strength, MPa	Strength,
	_1	1 2 3	1461.7	1255.6 1250.1 1252.8	22.0	191.0 235.8 213.7	1291.4 1316.9 1310.1	207.5	939.8 939.1 921.9	2415.2 2386.1 2415.0		3021.6 3048.8 3050.8	2117.3 2137.9 2110.4
		AVG.	1456.5	1252.8	22.0	213.5	1306.1	211.9	933.6	2405,4	1820.5	3040.4	2121.9
50.8 (Heat A)	T2	32.	1400.4 1356.2 1394.9	1213.5 1159.8 1206.6	21.5 22.0 22.0	210.3 193.1 197.2	1303.8 1302.5 1303.8	207.5 206.2 211.7	937.7 936.3 943.9				
		Avg.	1383.8	1190.3	21.8	200.2	1303.4	208.5	939.3				
50.8 (Heat B)		126	1410.7 1411.4 1407.3	1192.1 1194.2 1195.6	24.5 24.5 24.5	200.0 192.4 208.9	1245.2 1230.8 1224.6	215.8	933.6 928.8 926.0	2405.8 2384.4 2373.3	1783.7 1771.3 1781.5	3040.0 3061.4 3039.3	2117.3 2074.7 2037.2
		Avg.	1409.8	1194.0	24.3	200.4	1233.5	215.6	929.4		1778.8	3046.9	2076.4
50.8 (Heat B)	72	3 3 3	1361.1 1378.3 1392.8	1170.1 1168.7 1205.9	24.0 24.0 20.0	207.5 183.4 191.0	1257.6 1268.7 1257.6	199.3 208.2 206.9	930.8 928.8 933.6				
		Avg.	1377.4	1181.6	22.7	194.0	1261.3	204.8	931.1				
57.2	ر ا	25	1 2 1 2	1250.1 1241.1 1259.7	22.6 21.5 22.0	209.6 202.7 195.1	1292.8 1314.9 1303.2	216.5 213.7	945.3 940.5 935.0	2422.2 2413.1 2425.6	1807.5 1838.7 1793.3	3110.9 3066.0 3073.4	2098.1 2131.9 2095.2
		Avg.	1453.0	1250.3	22.0	202.5	1303.6	213.7	940.2	2420.3	1813.2	3083.4	2108.4
57.2	15	125	1407.3 1410.0 1415.5	1210.1 1216.3 1220.4	24.0	159.3 155.8 158.6	1294.2 1286.6 1287.3	211.7	936.3 946.7 950.1				Organization of the state of th
		Avg.	1410.9	1215.6	23.3	157.9	1289.4	213.7	944.4				
63.5		3 2 3	1458.3 1453.5 1459.7	1217.7 1211.5 1237.0	22.5	197.9 190.3 208.2	1287.3 1290.7 1270.1	208.2 202.0 204.8	948.8 952.2 943.9	2420.4 2401.2 2427.3	1851.6 1811.7 1814.2	3089.5 3062.9 3078.8	2136.4 2112.5 2169.7
		Avg.	1457.1	1222.0	22.0	198.8	1282.7	205.0	948.3	2416.3	1825.8	3077.1	2139.5

TABLE 2(a). (Continued)

				Tensile	Je		Compressive	ssive			Bear ing		
Bar Diameter, MR	Grain Oirec- tion	Speci- men No.	Ultimate Strength, MPa	Yield Strength. MPa	Elonga- tion, percent	Rodulus, GPa	Yield Strength,	Modulus,	Strength, GPa	Ultimate Strength, MPa	Yield Yeld Strength,	Vitimate Strength.	Yield Yield Strength,
63.5	ST	1 2 3 3 Avg.	1459.7 1455.5 1464.5 1459.9	1246.6 1239.7 1241.8 1242.7	22.0 22.0 24.0 22.7	188.2 191.7 192.4 190.8	1273.6 1282.5 1279.7 1278.6	212.4 213.7 219.3 219.1	950.1 945.3 955.6 950.4				
69.8	ب	1 2 3 3 Avg.	1329.4 1319.0 1328.0 1325.4	1131.5	24,6 25.5 25.0 25.0	200.6 201.3 205.5 202.5	1245.9 1243.9 1245.2 1245.0	208.2 215.1 211.7	899.1 901.9 902.6 901.2	2257.4 2244.5 2280.9 2260.9	1646.2 1602.6 1650.1 1633.0	2897.5 2933.3 2911.6 2914.1	1977.8 1966.4 1863.3 1935.8
69.8	R	1 2 3 3 Avg.	1315.6 1321.8 1321.1 1319.5	1113.5	26.0 24.0 26.0 25.3	189.6 212.4 208.2 208.2 203.4	1181.1 1170.1 1181.8 1177.7	216.5 217.9 215.1 215.1	898.4 903.9 897.7				
76.2	١	3 3 4 4 9.	1368.0 1360.4 1372.8 1367.1	1131.5	25.6 25.0 24.0 24.9	198.6 194.4 197.9 197.0	1201.1 1215.6 1205.9 1207.5	212.4 219.3 216.5 216.0	921.2 921.9 919.1 920.7	2329.4 2311.0 2332.9 2331.1	1662.9 1693.0 1713.5 1689.8	2976.2 3028.3 2938.0 2980.8	1960.2 2056.2 1912.3 1976.2
76.2	ST	2 3 Avg.	1362.5	1163.2 1176.3 1177.0 1172.2	26.0 26.0 24.0 25.3	180.6 194.4 197.2 190.8	1250.1 1243.9 1232.1 1242.0	213.1 217.9 217.9 217.9 216.3	916.3 905.3 922.6 914.7				
82.6	٦	1 2 3 Avg.	1443.1 1436.9 1441.1 1440.4	1213.5 1214.2 1214.9 	22.5 21.5 22.0 22.0	191.7 203.4 217.2 204.1	1262.5 1271.4 1265.9 1266.6	212.4 216.5 220.0 216.3	937.7 935.7 940.5 937.9	2399.1 2391.3 2403.1 2397.9	1752.9 1747.5 1782.9 1761.1	3080.3 3052.0 3052.8 3061.7	2050.8 2099.5 2079.5 2076.6
82.6	5	1 2 3 Avg.	1418.3	1195.6 1188.7 1191.5	20.0	199.3 192.4 197.2 196.3	1257.6 1257.0 1256.3 1257.0	214.4 216.5 215.1	939.8 940.5 948.8				

TABLE 2(a). (Continued)

				Tensile	j		Compre	Compressive			Bearing		(1)
Bar Diameter,	Grain Ofrection	Speci- men No.	Ultimate Strength, MPa	Yield Strength, MPa	Elonga- tion, percent	Modulus, GPa	Yield Strength, MPa	Modulus, MPa	Strength, GPa	e/D = Ultimate Strength, MPa	1.5 Yield Strength, MPa	e/D Itimate rength, MPa	Yeld Yeld Strength, NPa
98.9	-	24.5	1374.2		24.5	198.6 191.0 202.0	1231.4 1248.7 1246.6	211.0 219.3 218.6	920.5 926.0 922.6	2325.8 2332.1 2333.3	1681.9 1717.8 1701.6		2041.5 2085.2 1991.3
		Avg.	1373.3	1164.8	24.2	197.2	1242.2	216.3	923.0	2330.4	1700.4		2039.3
88.9	ST	1 2 3 3 3 4 4 9.	1354.2 1351.4 1356.9 1354.2	1163.2 1158.4 1167.3	21.0 22.0 21.5 21.5	204.1 180.6 213.7 199.5	1248.7 1243.2 1224.6 1238.8	211.7 213.1 213.7 213.7 212.8	919.8 920.5 917.7 919.3	1 1 2 3 4 4 4 1 1			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
95.2	ر ا	1 2 3 3 Avg.	1311.4	1110.1 1121.1 1128.7 1120.0	26.6 25.0 26.6 26.6	209.6 217.9 202.7 202.7	1164.2	213.1 215.8 217.2	888 80 888 80 888 90 888 90 90 90 90 90 90 90 90 90 90 90 90 90 9	2266.3 2270.9 2274.3 2270.5	1626.5 1659.0 1620.8 1635.5	2929.4 2882.9 2939.4 2917.2	1960.9 1978.1 1921.1 1953.4
95.2	St	1 3 3 Avg.	1291.4 1293.5 1276.3 	1069.4 1078.4 1077.7 1075.2	24.0 24.0 25.6 24.5	192.4 213.7 201.3 202.5	1170.8 1173.5 1161.1 1168.5	214.4 221.3 220.6 218.8	899.16 893.6 893.6 895.4				
101.6	٠	1 2 3 3 4 4 9.	1328.0 1325.2 1316.3 1316.3	1143.2 1157.0 1136.3 1145.5	22.5 21.5 22.0 22.0	187.5 208.9 189.6 195.4	1198.4 1205.9 1198.4 1200.9	213.1 214.4 219.3 215.6	903.9 915.0 915.7	2263.9 2269.5 2215.5 2249.6	1639.1 1633.7 1562.3 1611.7	2933.7 2905.3 2959.0 2932.6	1980.3 1970.0 2061.9 2004.1
101.6	SI	1 2 3 3 Avg.	1312.8 1314.9 1300.4 1309.4	1106.0 1137.0 1124.6 1122.5	22.0 22.0 21.0 21.0	185.5 204.8 186.2 192.1	1188.0 1194.9 1202.5 1195.1	211.7 216.5 218.6 218.6	912.2 901.2 897.7 903.7				
19.0	ر	1 2 2 Avg.	1406.6	1225.2	24.0	198.6 194.4 196.5							
15	Spec tmen	Pumbers	for e/0 = 2.0	0 were 4 through	, y			L					

19

Figure 9. Typical tensile stress-strain curves for Inconel 718 STA bar.

Figure 10. Typical compressive stress-strain curves for Inconel 718 STA bar.

Shear. The results of shear tests are shown in Tables 2 and 2(a). Values for shear ultimate strength are listed.

Bearing. The results of bearing tests are shown in Tables 2 and 2(a). Values for longitudinal bearing yield and ultimate strengths for e/D = 1.5 and e/D = 2.0 are listed. Bearing tests were not conducted in the short transverse direction.

Fatigue. The results of axial-stress fatigue tests are shown in Tables 3 and 4. Fatigue tests were conducted in the longitudinal grain direction utilizing unnotched and notched, $K_{\rm t}=3$, specimens from the 3/4-inch-diameter bar. Tests were conducted at three stress ratios, R=-0.5, R=0.1, and R=0.5. The fatigue data were analyzed in accord with Section 9.3.4 of MIL-HDBK-5 and S/N curves in Figures 11 and 12 constructed accordingly.

TABLE 3. UNNOTCHED FATIGUE DATA FOR INCONEL 718 STA BAR--LONGITUDINAL DIRECTION

Specimen		imum		Cycles to
ID	Stro ksi	ess, MPa	R-ratio	Failure
	V 2 I	nra		
7FL7		(1,172.2)	-0.5	14,820
7FL21	160.0	(1,103.2)	-0.5	18,710
7FL47	140.0	(965.3)	-0.5	46,120
7FL51	130.0	(896.4)	-0.5	76,500
7FL35	120.0	(827.4)	-0.5	109,930
7FL13	110.0	(758.5)	-0.5	241,760
7FL15	100.0	(689.5)	-0.5	238,970
7FL3	90.0	(620.6)	-0.5	518,780
7FL1	80.0	(551.6)	-0.5	4,490,470
7FL27	77.5	(534.4)	-0.5	DNF
7FL19		(1,241.1)	0.1	36,466
7FL43	170.0		0.1	48,140
7FL57	160.0		0.1	75,240
7FL5	140.0		0.1	91,320
7FL17	120.0		9.1	199,950
7FL37	100.0		0.1	461,620
7FL39	100.0		0.1	DNF
7FL29	95.0		0.1	DNF
7FL53	90.0	` ,	0.1	DNF
7FL59	80.0	(551.6)	0.1	DNF
7FL49	180.0		0.5	19,950
7FL33	170.0		0.5	260,340
7FL23	170.0		0.5	260,610
7FL31	160.0		0.5	282,140 307,230
7FL45	150.0		0.5	307,230
7FL9	140.0		0.5	753,940
7FL55	130.0	· · /	0.5	1,051,710
7FL11	130.0		0.5	DNF
7FL25	120.0		0.5	DNF
7FL41	100.0	(689.5)	0.5	DNF

⁽¹⁾ DNF - did not fail; test ran 10,000,000 cycles and stopped.

TABLE 4. NOTCHED, K₊ = 3, FATIGUE DATA FOR INCONEL 718 STA BAR--CONGITUDINAL DIRECTION

Specimen	Maxim			Cycles to
ID	Stres ksi	is, MPa	R-ratio	Failure
7FL56	100.0	(689.5)	-0.5	2,720
7FL54	90.0	(620.6)	-0.5	7,570
7FL50	80.0	(551.6)	-0.5	11,490
7FL48	60.0	(413.7)	-0.5	22,700
7FL42	50.0	(344.8)	-0.5	64,450
7FL44	40.0	(275.8)	-0.5	56,680
7FL60	40.0	(275.8)	-0,5	126,640
7FL46	30.0	(206.9)	-0.5	283,400
7FL52	20.0	(137.9)	-0.5	1,058,530
7FL58	15.0	(103.4)	-0.5	DNF
7FL20	120.0	(827.4)	0.1	10,060
7FL18	110.0	(758.5)	0.1	11,710
7FL2	100.0	(689.5)	0.1	20,310
7FL14	90.0	(620.6)	0.1	21,930
7FL4	80.0	(551.6)	0.1	30,430
7FL6	70.0	(482.7)	0.1	94,770
7FL8 .	65.0	(448.2)	0.1	84,830
7FL10	55.0	(379.2)	0.1	297,710
7FL12	50.0	(344.8)	0.1	160,830
7FL16	45.0	(310.3)	0.1	302,000
7FL38	35.0	(241.3)	0.1	DNF
7FL36	140.0	(965.3)	0.5	9,850
7FL34	130.0	(896.4)	0.5	26,540
7FL28	120.0	(827.4)	0.5	21,260
7FL26	100.0	(689.5)	0.5	65,880
7FL40	80.0	(551.6)	0.5	163,500
7FL22	80.0	(551.6)	0.5	184,320
7FL24	60.0	(413.7)	0.5	647,210
7FL32	55.0	(379.2)	0.5	834,600
7FL30	50.0	(344.8)	0.5	DNF

⁽¹⁾ DNF - did not fail; test ran 10,000,000 cycles and stopped.

Figure 11. Unnotched axial-stress S/N curves for 3/4-inch-diameter Inconel 718 solution treated and aged bar--longitudinal direction.

Figure 12. Notched axial-stress S/N curves for 3/4-inch-diameter Inconel 718 solution treated and aged bar--longitudinal direction.

Incomel 625 Bar (Annealed)

Background

Inconel 625 has high tensile, creep, and rupture strength, outstanding fatigue and thermal fatigue strength; oxidation and corrosion resistance, and excellent weldability and brazeability. These properties make this alloy attractive for aerospace applications, such as ducting, engine exhaust systems, thrust-reversers, resistance welded honeycomb structures, fuel and hydraulic line tubing, bellows, turbine shroud rings, and heat exchanger tubing. This widely used alloy is currently contained in MIL-HDBK-5, but design values for properties other than tensile yield and ultimate strengths are missing. Consequently, a test program was needed to determine the mechanical properties of Inconel 625 bar in the annealed condition so that design values can be subsequently determined.

Material

Eleven lots of Inconel 625 bar were procured from Inco Alloys International to AMS 5666. The eleven lots represented eight heats. The chemical compositions, as determined by Inco Alloys International, are shown in Table 5. Bars were obtained in the following sizes: 3/4, 2, 2-1/4, 2-1/2, 2-3/4, 3, 3-1/4, 3-1/2, 3-3/4, and 4 inches in diameter. Two heats of 2-inch-diameter bar were procured. Inconel 625 bar is not produced in rectangular shapes; consequently, round bars with sufficient diameter to accommodate bearing specimens in the longitudinal grain direction at the T/4 location were selected. For economy, 3/4-inch-diameter bar was obtained for fatigue tests. Bars were supplied in the annealed condition and tested "as-received."

Location of Test Specimens

For mechanical property data to be usable for the determination of MIL-HDBK-5 design values, tensile, compression, shear, and bearing specimens must be located within the cross section in accord with AMS 2371. Therefore, all specimens, except fatigue, were located with the axis of the specimen at the T/4 location. Since all bars were round, mechanical property tests were

TABLE 5. CHEMICAL COMPOSITION OF INCONEL 625 BAR

400						Element,	Element, percent	1.5				
Number	ပ	Æ	Fe	S	Si	N.	Ç	Al	ĭ	Mo	Cb+Ta	ط
NX4474AG	0.01	0.14	4.10	0.001	0.26	61.35	21.80	0.12	0.19	8.51	3.51	0.011
NX4385AV	0.03	0.13	4.21	0.001	0.29	61.07	21.64	0.31	0.21	8.57	3.53	0.012
NX4117AG	0.01	0.15	4.04	0.001	0.28	60.65	22.09	0.22	0.27	8.56	3.72	0.010
NX4154AG	0.02	0.16	4.11	0.001	0.28	60.89	21.94	0.17	0.19	8.50	3.73	0.013
NX4192AG	0.01	0.19	4.15	0.001	0.28	61.37	21.58	0.15	0.22	8.50	3.54	0.013
NX4234AG	0.01	0.14	3.60	0.001	0.20	61.74	21.91	0.14	0.20	8.53	3.52	0.013
NX3648AG	0.05	0.12	4.09	0.001	0.22	61.57	21.74	0.18	0.21	8.47	3.37	0.011
NX4550AV	0.02	0.14	3.77	0.001	0.26	61.92	21.50	0.12	0.18	8.54	3.47	0.009

Note: Composition of all heats conformed to the requirements of AMS 5666.

conducted in two grain directions, longitudinal and short transverse, except that bearing tests were performed only in the longitudinal direction, since the short transverse dimensions of most bars would not accommodate bearing specimens. Longitudinal fatigue specimens were located at the T/2 location in the 3/4-inch-diameter bar. The location of the test specimens is shown in Figures 1 through 7. Figure 13 shows the code system used to identify test specimens.

Specimen Configuration

The configurations of test specimens are shown in Appendix B. Subsize tensile specimens were employed for the short transverse grain direction.

Test Results

Tensile. The results of tensile tests are shown in Tables 6 and 6(a). In addition to tensile yield and ultimate strengths, elongation and modulus of elasticity values are indicated. The longitudinal tensile yield and ultimate strength of the 4-inch-diameter bar (Heat NX3648A6) did not meet the minimum values specified in AMS 5666. Typical tensile stress-strain curves for each grain direction are presented in Figure 14. Tensile stress-strain curves were constructed in the same manner as those for Inconel 718 bar.

<u>Compression</u>. The results of compression tests are shown in Tables 6 and 6(a). Compressive modulus of elasticity values are listed in addition to the compressive yield strengths. Typical compressive stress-strain curves are presented in Figure 15 for each grain direction. Compressive stress-strain curves were constructed in the same manner as those for Inconel 718 bar.

Shear. The results of shear tests are shown in Tables 6 and 6(a). Values for shear ultimate strength are listed.

Bearing. The results of bearing tests are shown in Tables 6 and 6(a). Values for longitudinal bearing yield and ultimate strengths for e/D = 1.5 and e/D = 2.0 are presented. Bearing tests were not conducted in the short transverse direction.

<u>Fatigue</u>. The results of axial-stress fatigue tests are shown in Tables 7 and 8. Fatigue tests were conducted only in the longitudinal grain direction

Figure 13. Specimen identification code for Inconel 625 bar.

TABLE 6. MECHANICAL PROPERTIES OF ANNEALED INCONEL 625 BAR

26.0 Strength, S					Tensile	11e		Сомрг	Compressive	Shear		Pet	Bearing	(1)
Ay Str. 1 130.6 65.2 65.4 65.5 65.5 65.5 65.5 65.5 65.5 65.5	Bar Olameter inches	Grain Direc tion	Speci- men No.		Yield Strength, ksi	Elonga- tion, percent	Modulus. 103 ksi	Yield Strength, ksi	Modulus, 10 ³ kst	Ultimate Strength, ks1	1. 1	Strengt ksi	timate ength, ks i	Strength,
A VI ST 2 1 1132 2 664.7 52.0 281.2 662.4 27.3 865.7 131.3 652.6 52.0 281.3 662.2 27.1 865.9 131.3 652.6 52.0 281.3 662.2 27.1 865.9 131.3 652.0 131.3 652.0 281.3 662.2 27.1 86.9 181.3 652.0 131.3 652.0 281.3 662.2 27.1 86.9 181.3 652.0 131.3 662.2 27.1 86.9 181.3 662.0 131.3 662.2 27.1 86.9 181.3 662.0 131.3 662.2 131.3 662.2 131.3 662.3 131.3 1	2 (Heat A)	-	1 2 3 Avg.	130.0 129.5 130.1 129.9	,	54.0 53.0 54.0 54.0	26.2 25.4 22.4 24.7	66.55 86.88 66.56	25.0 27.7 24.7 24.7	83.7 85.1 86.7 85.2	216.0 213.1 215.9 215.0	97.3	269.0 275.3 272.9 272.4	114.4 118.0 116.5 116.3
B) ST 1 130.4 65.0 53.0 24.8 64.2 27.7 86.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.		Į2	1 2 3 3 4vg.	133.6	;	52.0 52.0 52.0 52.0	28.2	62.4	27.3	86.7 86.4 87.7 86.9				
8) ST 2 130.8 66.8 52.0 24.9 65.0 25.9 87.8 87.8 87.8 130.9 64.1 52.0 25.0 65.0 65.0 27.3 87.8 87.8 87.8 130.9 64.1 52.0 26.6 64.3 27.8 87.8 87.8 87.8 87.8 87.8 87.8 87.8		٠	1 2 3 3 Avg.	130.4 130.0 130.1 130.2	65.0	53.0	24.8 31.3 24.0	63.2	27.1	88.89 6.00 8.1.5	216.4 211.3 216.4 214.7	99.0 97.4 100.8	257.5 265.6 259.7 260.6	113.4
L 1 137.4 74.7 48.0 25.7 77.5 29.3 91.1 33.4 79.1 47.0 28.9 75.9 75.9 31.8 90.9 90.9 138.2 76.7 75.9 75.9 75.9 90.9 90.9 90.9 90.9 75.0 36.0 26.3 76.7 29.4 90.9 90.9 90.2 3 137.3 75.4 40.0 25.1 73.4 28.3 90.2 3 137.5 75.4 40.0 25.1 73.4 28.3 90.2 90.2 3 137.5 75.0 37.3 25.1 77.4 28.3 90.2 90.3 75.0 77.4 28.3 90.2 90.3 75.0 77.4 28.3 90.5 75.0 77.4 28.3 90.5 75.0 77.4 28.3 27.2 90.0 77.4 27.3 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89) c o	rs	A 32.1	130.8 130.9 129.7 130.5	60.8 62.9 64.1 62.6	52.0 52.0 52.0 52.0	24.9 28.0 26.8 26.8	65.0	26.9	87.8				
ST 2 137.3 76.6 36.0 26.3 76.8 27.9 90.3 36.0 24.0 73.7 27.4 90.2 36.0 24.0 73.7 27.4 90.2 36.2 34.0 73.7 27.4 90.2 37.3 25.1 73.7 27.4 90.5 90.5 37.3 25.1 74.6 27.9 90.5 90.5 37.3 25.1 74.6 27.9 90.3 37.3 25.1 74.6 27.9 90.3 37.3 25.1 74.6 27.9 90.3 37.3 25.1 74.6 27.9 90.3 37.3 25.1 74.6 27.9 90.3 37.3 25.1 77.4 27.7 89.5 90.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 2	2-1/4	٦	Avg.	137.4 139.3 138.0	74.7	48.0	25.7 28.9 26.2 26.9	77.5		90.9	217.2 216.5 221.4 218.4	109.1 107.3 113.0 109.8	268.0 276.8 271.6 272.1	129.5 120.2 130.9 126.9
L 2 136.5 72.1 49.0 26.9 72.4 27.1 89.9 89.5 3 135.7 71.1 51.0 28.6 74.3 27.7 89.5 89.5 Avg. 136.3 72.0 49.7 27.5 73.6 27.3 89.8	2-1/4	72	1.22.3.3.4Vg.	136.6	75.0	36.0	26.3 24.0 25.1 25.1	76.8	27.9	90.2				
	2-1/2		3 3 4 Avg.	136.5 136.7 135.7 136.3	72.1	49.0 49.0 51.0	26.9 27.0 28.6 27.5	72.4 74.2 74.3 73.6	27.1	89.9 89.5 90.0	216.5 214.2 220.6 217.1	105.3 103.9 96.7 101.9	261.6 266.2 258.4 258.4	130.0 123.1 123.0 125.4

TABLE 6. (Continued)

11	ı	 	1	ł.	l marine s	1	l	1
(1)0.7	strength, ksi		122.2 124.9 122.0 123.0	Van angegana	113.7		118.2 129.3 126.6 124.7	
0.79	Ultimate Strength, ksi		269.5		256.7 265.9 261.6 261.4		266.6 277.4 269.2 271.1	
Bearing 1.5	Strength, ksi		163.8 (2) 101.2 102.5		107.0		109.7	
e/0 = 1.5	Ultimate Strength, Ksi		217.1		213.1		217.4 218.6 220.2 218.7	
Shear	Ultimate Strength, ksi	89.86 6.99.6 6.99.3	89.2 89.2 4.6 89.3	89.2 4.88.6 4.7.7	80 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	87.9 86.3 4.7 87.9	8.888 8.588 8.588 8.588 8.588 8.588	91.2 89.0 89.8 90.0
Compressive	Modylus. 10 ³ ks1	29.8	26.0	28.6 27.4 26.8 27.7	26.8 24.9 25.7 25.7	27.1 26.8 . 27.1	82.23 8.23 8.24	27.4
Compr	Yield Strength. ksi	73.6	70.8 69.8 69.7 70.1	70.3 68.6 68.8 69.2	68.68 68.58 67.9	66.0 70.5 68.9 68.5	75.4 75.4	79.9
	Modulus. 10 skst	23.8 23.3 24.6	27.2 29.1 25.9	25.2 26.8 26.5 26.5	29.6 21.4 21.8 24.3	28.8 255.9 29.3	25.8 36.5 25.0 25.1	22.1
116	tionga- tion, percent	37.3 45.1 43.1	50.0	1.15.2	30.00 E.	43.1	50.0 51.0 53.0 51.3	43.0
Tenstie	Strength, ksi	70.5 69.1 67.8 67.8	80.70 80 80.70 80.70 80.70 80.70 80.70 80.70 80.70 80 80.70 80 80 80 80 80 80 80 80 80 80 80 80 80	71.8 67.6 67.8 69.1	0.85.0 0.85.0 6.30 6.30	67.3 65.6 72.3 68.4	74.5 79.0 73.2 75.6	71.0
101.401	Strength, ksi	133.6	133.8	133.6	132.3	131.5	133.0 134.3 133.0 133.4	132.3
9	Fo.	1 2 3 3 4 4 g.	1 2 3 4vg.	1.22.3.3.4.4g.	1 3 3. Avg.	1 2 3 Avg.	1 2 3 Avg.	1 2 3 3,vg.
60.00	Direc- tion	ا		2	۔	15	-1	TS .
	£.]	2-1/2	2-3/4	2-3/4	e,	FF.	3-1/4	3-1/4

TABLE 6. (Continued)

				Tensile	ile		Compressive	ssive	Shear		Bearing		(1)
Bar Diameter, inches	Grain Direc- tion	Speci- men No.	Ultimate Strength, ksi	Yield Strength, ksi	Elonga- tion, percent	Mgdulus, 10 ksi	Yield Strength, ksi	Modulus, 103 kei	Ultimate Strength, ksi	e/D Ultimate Strength, ksi	Ti.5 Yield Strength, ksi	e/D Itimate rength, ksi	* 2.0 (1) Yield Strength,
3-1/2		1 2 3 Avg.	136.2 138.0 136.0 136.7	73.3	84.0 6.0 0.0 0.0 0.0	27.7 26.1 31.8 28.5	60.7 57.6 61.0 59.8	24.9 24.6 25.3 24.9	91.0 89.6 90.2 90.3	221.0 216.1 219.3 218.8	109.8 106.0 111.7 109.1	276.1 276.0 268.6 273.5	128.6 132.4 128.3 129.8
3-1/2	24	1 2 3 3 Avg.	133.3 132.9 132.8 133.0	69.8 69.8 67.9	36.0 37.0 34.0	23.3	73.9 74.8 74.9	27.2 27.4 28.0 28.0 27.5	89.8 90.7 89.7				
3-3/4	٠	1 2 3 Avg.	136.8 136.5 136.6 136.6	73.6 73.1 74.2 73.6	49.0 48.0 48.0	35.3	70.0 67.5 65.7 65.7	25.2	91.4	222.4 219.4 222.2 221.3	(2) 114.3	273.4 282.6 271.3 275.8	126.6 135.0 125.0 128.9
3-3/4	š	1 2 3 3 4vg.	134.2 134.9 136.1 136.1	69.5 65.5 70.7 68.6	31.0 38.0 39.0 36.0	25.0 26.0 25.8 24.9	77.0	27.1	87.7 92.0 90.8				
-	-1	1 2 3 3 Avg.	116.9	56.7 56.7 56.6 56.6	53.0 53.0 50.3	33.6 29.6 26.9 30.0	57.5 56.9 57.4	24.5	79.4 79.0 78.8	186.2	884.0 86.6 6.5 85.4	218.8 214.2 213.1 215.3	101.0
4	ST	1 2 3 3 Avg.	115.1 114.9 114.9	57.0 55.8 56.2 56.3	53.0 49.0 50.0 50.7	27.3 30.6 31.1 29.7	56.6 56.1 56.4 56.4	27.7	76.7				
3/4	J	1 2 Avg.	132.8	73.4 74.1	54.8	34.9							
(1)	ecimen n	umbers f	Specimen numbers for e/D = 2.0 were 4	were 4 through 6.	₫ 6.		1						

TABLE 6(a). MECHANICAL PROPERTIES OF ANNEALED INCONEL 625 BAR

				Tensile]6		Conne	Compressive	Shear	***************************************	Bearing		111
Bar Ofameter,	Grain Direction	Speci- men No.	Ultimate Strength, MPa	Yield Strength, MPa	Elonga- tion, percent	Modulus, GPa	Yield Strength,	lus,	#	Ultimate Strength, MPa	re Yield Yield Strength, KPa	e/D It imate rength, MPa	Strength,
50.8 (Heat A)	ب	1 2 3 3 Avg.	896.4 892.9 897.0	435.8 433.0 438.5 435.8	54.0 53.0 54.0 53.7	180.6 175.1 154.4 170.1	437.8 446.8 454.4 446.3	179.3 191.0 170.3 180.2	577.1 586.8 597.8 587.2	1489.2 1469.2 1488.9 1482.4	670.7 650.5 687.0 669.4	1855.1 1898.3 1881.3 1878.2	788.8 813.4 803.5 801.9
50.8 (Heat A)	Į.	1 2 3 3 Avg.	911.5 922.6 926.7 	446.1	52.0 52.0 52.0 52.0	194.4 161.3 161.3 165.7	430.2 432.3 442.7	188.2 188.2 186.9 187.8	597.8 595.7 604.7 599.4				
50.8 (Heat B)	J	1 2 3 3 Avg.	899.1 896.4 897.0 897.5	448.2 448.2 450.2 448.9	53.0 53.0 53.3	171.0 215.8 165.5 184.1	442.7 428.9 435.8 435.8	186.9 191.0 188.9 188.9	605.4 606.9 598.5 603.5	1492.0 1456.6 1491.8 1491.8	682.3 671.6 695.2 683.0	1775.8 1831.6 1783.9 1797.1	782.0 860.3 824.6 822.3
50.8 (Weat B)	ь	1 2 3 Avg.	901.9 902.6 894.3 899.6	419.2 433.7 442.0 431.6	\$2.0 \$2.0 \$2.0	171.7 193.1 164.8 163.2	432.3	185.5 201.3 186.2 191.7	603.3 605.4 603.3 604.0				
57.2	ر	1 2 3 Avg.	947.4 960.5 951.5 953.1	515.1 545.4 526.1 528.8	48.0 47.0 48.0	177.2 195.3 180.6 185.7	534.4 523.8 523.3 528.8	202.0 186.9 -219.3 -202.7	628.1 626.8 624.7 626.5	1497.7 1493.1 1526.9 	752.1 740.1 779.0 757.1	1848.1 1908.3 1872.6 1876.3	892.8 823.5 902.9
57.2	t s	1 2 3 Avg.	943.2 946.7 948.1 946.0	517.1 514.4 519.9 519.9	36.0 36.0 40.0 37.3	161.3 165.5 173.1 173.3	529.5 508.2 506.1 514.6	192.4 188.9 195.1 192.1	622.6 621.9 624.0 622.8				
63.5	-	1 2 3 Avg.	941.2 942.5 935.7 939.8	497.1 502.0 490.2 	49.0 49.0 51.0	185.5 186.2 197.2 189.6	499.2 5.11.3 5.21.3 5.07.7	186.9 191.0 187.5 188.5	619.9 617.1 620.6 619.2	1492.5 1476.8 1521.0 1496.8	725.9 716.1 666.5 702.9	1803, 7 1835.4 1782.0 1807.0	848.9 848.9 847.9 847.9

TABLE 6(a). (Continued)

100	Strength.		842.3 861.2 841.3		784.1 46.4 789.9		814.7 891.9 873.1 859.9	
ing .	Ultimate Yield Strength, Strength		1843.3 1857.9 1820.4 		1770.1 1833.3 1803.7 1802.4		1838.4 1912.6 1856.3 1869.1	
Bearing	Yield Strength,		715.5 (2) 698.0 706.7		738.0 681.2 719.6 712.9		756.4 757.6 767.1 760.4	
	Ultimate Strength, MPa		1497.1		1469.3 1467.2 1507.1 1481.2		1499.0 1507.0 1518.5 158.2	
Shear	Ultimate Strength, GPa	617.8 617.8 615.7 615.7	615.7 615.0 616.4 515.7	615.0 609.5 590.2 604.9	612.3 609.5 613.0 611.6	606.1 608.8 602.6 605.8	624.7 612.3 608.1 615.0	628.8 613.7 619.2 620.6
issive	Modulus,	205.5 183.4 188.9 192.6	179.3 179.3 182.0 180.2	198.9 188.9 196.8	171.7	186.9 184.8 186.9	175.1 164.1 182.0 173.8	188.9
Compressive	Yield Strength,	508.9 517.1 503.3 569.8	488.2 481.3 480.6 483.3	484.7 473.0 474.4 477.4	473.0 479.2 451.6 467.9	455.1 486.1 475.1	486.8 481.3 519.9 496.0	550.9 506.1 525.4
	Modulus, GPa	164.1 160.7 169.6 164.8	187.5 200.6 178.6 188.9	173.8 184.8 182.7 180.4	204.1 147.6 150.3 167.3	198.6 178.6 202.0 193.1	177.9 210.3 172.4 186.9	152.4
le le	Elonga- tion, percent	37.3 45.1 43.1 41.8	50.0 50.0 50.0 50.0	41.1 45.1 47.1	58.0	47.1	50.0 51.0 53.0 51.3	43.0
Tensile	yield Strength.	486.1 476.4 467.5 476.7	474.4 468.2 473.0 471.8	495.1 466.1 467.5 476.2	468.9 446.8 456.9	464.0 452.3 498.5 471.6	513.7 544.7 504.7 521.0	489.5 566.1 508.2
	Ultimate Strength, MPa	917.0 920.5 907.4 908.3	918.4 922.6 923.9	922.6 907.4 910.8 913.6	912.2 903.9 906.7 907.6	906. 7 899. 8 935. 0	917.6 926.0 917.0 917.0	912.2
_	Speci- men No.	1 2 3 3 4 4 9.	1 2 3 Avg.	1 2 3 3 Avg.	1 2 3 Avg.	1 2 3 3 4 4 9.	1 2 3 3 4 9.	- NF 5
	Grain Otrec- tion	72	_	ts .		ST	-1	St.
	Bar Diameter,	63.5	69.8	8.69	76.2	76.2	82.6	82.6

TABLE 6(a). (Continued)

i i				Tensile	Je		Compre	Compressive	Shear		Bearing		E) K
Bar Diameter,	Grain Otrection	Speci- men No.	Ultimate Strength, MPa	Yield Strength, MPå	Elonga- tion, percent	Modulus, GPa	Yield Strength,	Modulus,	Ultimate Strength, GPa	e/D = e/D = Strength, RPa	Yield Strength, MPa	Ultimate Strength, KPa	Yield Yield Strength, MPa
I	د	1 3 3 4 4 9.	939.1 951.5 937.7 942.8	505.4 533.7 502.0 513.7	48.0 47.0 49.0	191.0 180.0 219.3 196.7	418.5 397.2 420.6 412.1	171.7 169.6 174.4 171.9	627.4 617.8 621.9 622.4	1524.1 1490.3 1512.3 1508.9	756.8 730.6 770.2 752.5	1903.8 1902.7 1851.7 1886.1	887.0 912.6 884.7 894.8
!	15	2 2 3 3 4 4 9.	919.1 916.3 915.7	469.5 454.4 468.4	36.0	164.8 160.7 191.7 172.4	509.5 515.7 516.4 513.9	187.5 188.9 193.1	619.2 625.4 618.5 621.0				
1		1 2 3 3 Avg.	943.2 941.2 941.9	507.5 504.0 511.6 507.7	4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	243.4 215.8 246.2 246.2 235.1	482.7 465.4 453.0 467.0	173.8 173.8 175.8 174.4	630.2 624.2 631.1 525.5	1533.7 1512.5 1532.1 1526.1	(2) (2) 788.4 788.4	1885.2 1948.3 1870.7 1901.4	872.8 930.6 961.9 888.4
	ST	1 2 3 Avg.	925.3 930.1 938.4 931.3	479.2 451.6 487.5 472.8	31.0 38.0 39.0 36.0	157.2 179.3 177.9 171.5	530.9 530.2 528.8 530.0	186.9 188.9 187.5 187.8	605.0 634.5 625.9 621.8				
101.6		Avg.	806.0 800.5 800.5 800.5	387.5 390.9 390.3 389.6	45.0 53.0 53.0	231.7 204.1 185.5 207.1	396.5 392.3 395.8 394.9	168.9 168.2 173.8 170.3	547.5 544.7 543.5 545.2	1283.7 1271.2 1245.8 1266.9	579.2 596.8 588.5 588.5	1508.7 1476.7 1469.0 	696.5 719.3 713.0 709.6
9.101	15	1 2 3 Avg.	793.6 792.2 792.2 792.7	393.0 384.7 387.5 388.4	53.0 49.0 50.0 50.7	188.2 211.0 214.4 204.6	390.3 386.8 388.9 	191.0 188.9 182.0 187.3	529.1 540.2 542.5 537.2				
		1 2 Avg.	915.7 921.2 918.4	506.1 510.9 508.5	54.3	240.6							
125 125	octmen i scharacti	numbers eristic	Specimen numbers for e/D = 2.0 were a Uncharacteristic load-deformation cur	U were 4 through 6. tion curve.	.0 ∰a								

Figure 14. Typical tensile stress-strain curves for annealed Inconel 625 bar.

Figure 15. Typical compressive stress-strain curves for annealed Inconel 625 bar.

TABLE 7. UNNOTCHED FATIGUE DATA FOR ANNEALED INCONEL 625 BAR-LONGITUDINAL DIRECTION

Cycles to		_		Maxim	Specimen
Failure	stio	K	s, MPa	Stres ksi	ID
110	 -0.5	4)	(827.4	120.0	611FL7
8,000	-0.5		(792.9	115.0	611FL15
11,370	-0.5		(775.7	112.5	611FL19
21,310	-0.5		(758.5	110.0	611FL9
92,760	-0.5		(620.6	90.0	611FL3
189,960	-0.5	•	(551.6	80.0	611FL5
206,730	-0.5		(551.6	80.0	611FL11
334,810	-0.5		(517.1	75.0	611FL13
444 466	-0.5		(499.9	72.5	611FL17
444,46U DNF	-0.5		(482.7	70.0	611FL1
20	0.1	21	1055 7	140.0	6115122
	0.1 0.1		(965.3	140.0 125.0	611FL33
47,450 60,570	0.1		(861.9 (827.4	120.0	611FL39 611FL35
128,800	0.1		(758.5	110.0	611FL35
167,230	0.1		(689.5	100.0	611FL27
359,710	0.1		(620.6	90.0	611FL25
642,550	0.1		(551.6	80.0	611FL37
863,260	0.1		(551.6	80.0	611FL23
DNF	0.1		(482.7	70.0	611FL29
7,543,980	0.1		(482.7	70.0	611FL21
20	0.5	4	1006	120.0	C1151 47
_	0.5		(896.4	130.0	611FL47
222,400	0.5		(875.7	127.0	611FL51 611FL49
125,000	0.5		(851.9	125.0	
370,150 626,440	0.5 0.5		(827.4 (792.9	120.0 115.0	611FL45 611FL53
626,440 800,750	0.5		(775.7	112.5	611FL55
622,810	0.5		(7/5.7 (758.5	110.0	611FL59
022,810 DNF	0.5		(758.5	110.0	611FL57
DNF	0.5		(689.5	100.0	611FL43
DNF	0.5		(482.7	70.0	611FL41

⁽¹⁾ Cycle count below 10^3 , not plotted.

⁽²⁾ DNF - did not fail; test ran 10,000,000 cycles and stopped.

TABLE 8. NOTCHED, K, = 3, FATIGUE DATA FOR ANNEALED INCONEL 625 BAR--LONGITUDINAL DIRECTION

	Cycles to	D makin		Maxim	Specimen ID
	Failure	R-ratio	MPa	Stres ksi	10
-	11,350	-0.5	(517.1)	75.0	611FL46
	14,570	-0.5	(482.7)	70.0	611FL38
	24,890	-0.5	(448.2)	65.0	611FL20
(1	58,330	-0.5	(413.7)	60.0	611FL12
' '	104,190	-0.5	(379.2)	55.0	611FL8
	144,300	-0.5	(379.2)	55.0	611FL6
	263,440	-0.5	(344.8)	50.0	611FL34
1	977,110	-0.5	(344.8)	50.0	611FL10
{	DNF	-0.5	(310.3)	45.0	611FL4
•	146,850	-0.5	(275.8)	40.0	611FL2
	8,120	0.1	(689.5)	109.0	611FL48
	36,700	0.1	(551.6)	80.0	611FL50
	67,140	0.1	(482.7)	70.0	611FL40
	98,450 542,249	0.1	(448.2)	65.0	611FL18
	542,249	0.1	(413.7)	60.0	611FL14
	936,100	0.1	(379.2)	55.0	611FL16
(434,270	0.1	(344.8)	50.0	611FL28
(488,750	0.1	(344.8)	50.0	611FL26
	528,550	0.1	(310.3)	45.0	611FL32
	4,868,610	0.1	(310.3)	45.0	611FL44
	21,000	0.5	(827.4)	120.0	611FL60
	24,740	0.5	(758.5)	110.0	611FL54
	39,120	0.5	(689.5)	100.0	611FL56
	90,000	0.5	(620.6)	90.0	611FL52
	426,090	0.5	(517.1)	75.0	611FL42
	677,380	0.5	(482.7)	70.0	611FL30
	845,520	0.5	(448.2)	65.0	611FL58
	906,420	0.5	(448.2)	65.0	611FL22
	7,057,900	0.5	(413.7)	60.0	611FL36
	DNF	0.5	(413.7)	60.0	611FL24

- (1) Inadvertently overloaded.
- (2) DNF did not fail; test ran 10,000,000 cycles and stopped.
- (3) Regripped four times due to hydraulic grip malfunction; specimen may have been subjected to bending.
- (4) Misaligned.

utilizing unnotched and notched, $K_{\rm t}$ = 3, specimens from the 3/4-inch-diameter bar. Tests were conducted at three stress ratios, R = -0.5, R = 0.1, and R = 0.5. The fatigue data were analyzed in accord with Section 9.3.4 of MIL-HDBK-5 and S/N curves in Figures 16 and 17 constructed accordingly.

Figure 16. Unnotched axial-stress S/N curves for 3/4-inch-diameter annealed Incomel 625 bar--longitudinal direction.

Figure 17. Notched axial-stress S/N curves for 3/4-inch-diameter annealed 625 bar--longitudinal direction.

Inconel 625 Sheet (Annealed)

Background

Inconel 625 has high tensile, creep, and rupture strength, outstanding fatigue and thermal fatigue strength; oxidation and corrosion resistance, and excellent weldability and brazeability. These properties make this alloy attractive for aerospace applications, such as ducting, engine exhaust systems, thrust-reversers, resistance welded honeycomb structures, fuel and hydraulic line tubing bellows, turbine shroud rings, and heat exchanger tubing. This widely used alloy is currently contained in MIL-HDBK-5, but design values for properties other than tensile yield and ultimate strengths are missing. Consequently, a test program was needed to determine the mechanical properties of Inconel 625 sheet in the annealed condition so that design values can be subsequently determined.

Material

Ten heats of Inconel 625 sheet were procured from Inco Alloys International to AMS 5599. The chemical compositions, as determined by Inco Alloys International, are shown in Table 9. Sheets were obtained in the following thicknesses: 0.050, 0.063, 0.078, 0.093, 0.125, and 0.250 inch. Two heats of 0.063-, 0.078-, and 0.125-inch-thick sheet were procured to provide ten heats. The sheets were supplied in the annealed condition and tested "as-received."

Location of Test Specimens

The location of test specimens is shown in Figures 18 and 19. Figure 20 shows the code system used to identify test specimens.

Specimen Configuration

The configurations of the test specimens are shown in Appendix B. All specimens were full sheet thickness, except bearing specimens from 0.125-, 0.187-, and 0.250-inch-thick sheets were machined to 0.100 ± 0.005 -inch thickness by removing an equal amount of material from each surface.

TABLE 9. CHEMICAL COMPOSITION OF INCONEL 625 SHEET

Number C Mn F VX0070AK 0.03 0.09 4. VX0030AK 0.02 0.08 4. NX15E8AK 0.01 0.08 4. VX002BAK 0.03 0.10 4. VX0055AK 0.01 0.06 4. VX0037AK 0.02 0.06 4. VX0056AK 0.02 0.08 3. VX0056AK 0.02 0.05 4.	Fe 4.07 4.31	S 0.001	7	¥						
0.03 0.09 0.02 0.08 0.01 0.08 0.03 0.10 0.02 0.06 0.02 0.08	4.31	0.001	5	Contraction of the Contraction o	င်	A.	Ξ	₩	Cb+Ta	م
0.02 0.08 0.01 0.08 0.03 0.10 0.02 0.06 0.02 0.08 0.02 0.05	4.31		0.15	60.80	22.36	0.22	0.24	8.66	3.37	0.006
0.01 0.08 0.03 0.10 0.01 0.06 0.02 0.06 0.02 0.08		0.001	0.13	61.04	21.94	0.23	0.29	8.45	3.50	9000
0.03 0.10 0.01 0.06 0.02 0.06 0.02 0.08	4.39	0.001	0.11	61.22	21.90	0.20	0.21	8.43	3.44	0.006
0.02 0.06 0.02 0.06 0.02 0.08 0.02 0.05	4.33	0.001	0.14	60.75	22.17	0.22	0.25	8.55	3.45	0.007
0.02 0.06 0.02 0.08 0.02 0.05	4.53	0.001	0.09	60.87	21.95	0.22	0.25	8.64	3.37	0.004
0.02 0.08	4.48	0.001	0.07	92.09	22.12	0.24	0.22	8.53	3.49	0.004
0.02 0.05	3.87	0.001	0.14	61.34	22.09	0.19	0.23	8.48	3.55	0.006
	4.50	0.001	0.08	60.78	22.07	0.26	0.25	8.54	3,45	0.004
VX0015AK 0.02 0.07 4.	4.32	0.001	0.14	60.87	22.04	0.20	0.24	8.56	3.53	0.006
VX0069AK 0.03 0.09 3.	3.85	0.001	0.11	62.05	21.75	0.17	0.17	8.36	3.41	0.006

Note: Composition of all heats conformed to the requirements of AMS 5599.

42

Figure

Figure 19. Location of test specimens for annealed Inconel 625 sheet--0.093-inch thick.

Figure 20. Specimen identification code for Inconel 625 sheet.

Test Results

Tensile. The results of the tensile tests are shown in Tables 10 and 10(a). In addition to tensile yield and ultimate strengths, elongation and modulus of elasticity values are indicated. The long transverse tensile yield strength of one heat (VX0037AK) of 0.125-inch sheet was marginally below the minimum value of 60 ksi specified in AMS 5599. Typical tensile stress-strain curves for each grain direction are presented in Figure 21. Tensile stress-strain curves were constructed in the same manner as those for Inconel 718 bar.

<u>Compression</u>. The results of compression tests are shown in Tables 10 and 10(a). Compressive modulus of elasticity values are listed in addition to compressive yield strengths. Typical compressive stress-strain curves are presented in Figure 22 for each grain direction. The compressive stress-strain curves were constructed in the same manner as those for Inconel 718 bar.

Shear. The results of tension-shear tests are shown in Tables 10 and 10(a). Values for shear ultimate strength are listed.

Bearing. The results of the bearing tests are shown in Tables 10 and 10(a). Values for bearing yield and ultimate strengths for e/D = 1.5 and e/D = 2.0 are listed.

Fatigue. The results of axial-stress fatigue tests are presented in Tables 11 and 12. All fatigue test specimens were taken from one heat of 0.093-inch-thick sheet. Fatigue tests were conducted only in the long transverse grain direction utilizing unnotched and notched, $K_t=3$, specimens. Tests were conducted at three stress ratios, R=-0.5, R=0.1, and R=0.5.

Initially, the fatigue data were analyzed according to Section 9.3.4 of MIL-HDBK-5, which specifies that runouts not be included. This analytical procedure resulted in extremely conservative fatigue strength estimates in the high cycle region, ($N_{\rm f} > 10^6$). The data were reanalyzed the ating the runouts as failures. Also, runouts significantly below those exhibiting the highest stress were not included in the analyses. These changes in the analytical procedure produced S/N curves which fit the data better, especially in the high cycle region, ($N_{\rm f} > 10^6$). These S/N curves are presented in Figures 23 and 24.

TABLE 10. MECHANICAL PROPERTIES OF ANNEALED INCONEL 625 SHEET

4.10				Tenstie	()e		Сомрг	Compressive	Shear		Bearing		(1)
Thick- ness, inches	Grain Ofrec- tion	Speci- men No.	Ultimate Strength, ksi	Yield Strength, ksi	Elonga- tion, percent	Madulus, 10 ksi	Yield Strength, ksi	Modulus, 10 ksi	Ultimate Strength, ksi	Ultimate Strength, ksi	yield Yield Strength, ksi	Ultimate Strength, ksi	Yield Yield Strength, ksi
0.050 VX00704K		-12€	138.3 138.9 136.4	74.7 76.0 76.0 69.4	44.5 44.0 5.5	28.5 28.9 28.5	76.5 77.0 76.5	29.9 30.0	113.8	233.6 233.5 236.1	119.0	262.4 295.8 288.5	151.9
		Avg.	137.8	73.4	44.7	28.6	7.97	30.1	115.0	234.4	119.6	282.2	149.5
0.050 VX0070AK	17	1 2 3	135.9 135.3 135.5	74.4	44.5 65.0	28.6 28.1 28.1	78.9 79.3 79.5	31.1	116.5	233.3 233.0 219.4	122.7	274.0 284.3 276.1	145.6 146.5 140.9
		Avg.	135.6	74.6	45.2	28.4	79.2	31.2	113.8	228.6	118.4	278.1	144.4
0.063 VX0030AK	٦	3	125.8 127.0 127.0	000	48.5 49.0 51.0	26.3 28.3 27.5	ł	30.6 30.0	110.2 109.7 109.6	220.9 221.0 221.2	113.5	285.1 291.2 290.7	136.4 135.2 (3)
·····		Avg.	126.6	67.2	5.0	27.4	69.7	30.4	109.8	221.1	115.4	289.0	135.9
0.063 VXD030AK	5	321	129.7 126.6 126.6		8.63	28.8 27.1 28.9	71.8	30.5	109.3 108.9 110.2	220.8 220.5 220.5	1	288.5 283.8 286.8	134.5 137.0 131.0
		Avg.	127.6	64.8	8.6	28.3	71.9	30.4	109.5	220.7	114.5	286.4	134.2
0.063 NX15EBAK	٦	1 2 3 3 Avg.	133.3	73.1	0.35 6.0 6.0 6.0 6.0	28.2 28.2 28.2 28.9	74.8 75.1 74.9 74.9	30.1	111.2	227.5 228.9 228.5 228.5	114.5	301.0 303.3 308.3 304.2	144.1 141.8 140.7 142.2
0.063 NX15EBAK	5	3 3 4 4 9.	134.4	68.2 70.3 70.2 69.6	47.5	28:5 29:2 28:5	74.5	30.7 30.7 31.5	111.7	229.2 229.6 229.8 229.8	118.6	304.9 295.9 299.2 300.0	141.9
0.078 YX0028AK	_	33 Avg.	132.9	72.2	46.5 47.0 47.0	29.5 29.9 30.4	75.6 74.8 77.0	30.2	140.8 112.6 113.1 122.2	230.2 230.3 229.8 230.1	111.8	299.0 305.4 301.4 301.9	136.1

TABLE 10. (Continued)

				Tensile	ě		Compressive	SSIVE	Shear		Bearing		
Thick- ness, inches	Grain Direc-	Speci- men	Ultimate Strength,	Yield Strength,	Elonga- tion,	Modulus,	Yield Strength,		Ultimate Strength,	Ultimate Strength,	Yiel Strengt	timate ength.	Yeld Yeld Strength,
					31123	- Eu	Ę.	10 483	481	£2.	KSI	S.	KS
0.078	=		136.7	70.9	45.5	29.4	75.4	30.6	113.4	229.8	(2)	299.7	140.3
VX0028AK		v m	137.0	74.0	5.5	28.6		31.3	112.5	230.9	115.6	305.9	141.2
		Avg.	136.9	72.9	45.5	29.4	74.9	30.9	112.8	230.4	116.3	302.4	139.7
92.0			134.5		47.5	29.8	74.4	30.9	113.2	228.2	116.7	300.6	138.5
VX0055AK	J	v m	135.1			3.3	73.9	30.6	113.6	230.0	118.3	294.9	137.0
		Avg.	134.5	71.0	46.8	30.8	74.2	30.6	113.3	229.8	117.5	298.9	138.2
0.078	15	12	134.8	79.6	48.5	33.6	74.1	30.9	113.8	227.9	113.5	300.0	137.0
VX0055AK		C)	134.2	70.6	47.5	31.6	74.5	31.2	113.1	229.3	118.5		135.4
••		Avg.	134.3	70.6	47.8	31.5	74.3	31.1	113.1	228.2	115.6	300.6	136.9
0.093		12	138.4	74.0	65.5 65.5	36.6	72.2	29.2	153.4	231.5	113.7	302.1	143.1
VXUU4IAK		m	137.1	73.7	45.0	29.1	76.2	29.9	115.2	225.3	97.8	304.1	149.0
		¥vg.	137.6	73.6	45.3	29.6	74.8	29.5	140.7	229.7	109.2	302.9	143.7
0.093 YX0041AK	1	-0"	136.6	75.0	45.5	30.8	77.3	30.8	113.6	231.4	115.6	306.7	142.5
		Avg.	135.4	74.6	47.2	30.2	77.6	31.1	11.0	229.7	113.6	305.9	141.6
0.125 VX0037AK		25	127.6 126.7 127.0	58.5 7.95.7 60.2	53.0 52.0 51.5	30.7	61.9	0.00	110.1	209.3	100.4	292.4	124.6
		Avg.	127.1	59.5	52.2	30.6	62.0	30.3	111.5	209.5	98.4	291.0	123.1
0.125 VX00374K	5		126.5 126.9 126.4	55.55	52.0 51.5 51.0	33.0	62.3 62.5 62.4	29.8 30.0	110.8	218.7 221.2 209.7	102.9 105.8 95.5	290.2 292.7 287.6	125.1 124.7 118.4
		Avg.	126.6	59.7	51.5	30.4	62,4	30.0	110.9	216.5	101.4	230.2	122.7
				7									

TABLE 10. (Continued)

1				Tensfle	11e		Compr	Compressive	Shear		Rearies	fan	
Thick- ness, inches	Grain Direction	Speci- men #6.	Ultimate Strength, ksi	Yield Strength, ksi	Elonga- tion, percent	Modulus, 10 ksi	Yield Strength, ksi	Modulus. 103 ks1	Ultimate Strength, ks1	Ultimate Strength, ksi	Strengt ksi	e/D Ultimate Strength, ksi	Z.O(1) Yield Strength, ksi
0.125 VX0056AK	ب	1 2 3 3 Avg.	135.7	71.3 72.2 71.1	47.0 47.0 47.0	29.0 30.1 30.8	73.4 73.4 73.5	30.6 29.8 30.1 30.2	115.0	227.8 221.3 222.2 223.8	101.0 106.5 94.1	304.8 305.5 304.7 305.0	125.5 128.3 124.2 126.0
0.125 VX0056AK	רז	1 2 3 Avg.	134.3	71.4 71.0 71.7	48.0	31.5	74.5 74.6 74.7	30.2 30.5 31.0	113.6	231.0 230.0 226.9 229.3	104.3 108.2 103.1 105.2	308.5 307.6 309.0 308.4	131.3
0.187 VX0015AK	_	3 3 Avg.	128.4 129.7 129.4 129.2	62.6	51.5 51.5 52.0	27.1 29.0	68.0 67.7 67.5 67.5	29.5	110.2	222.2 223.1 223.9	109.2	297.9 294.8 296.2 295.6	133.3 128.2 126.6 129.4
0.187 VX0015AK	5	1 2 3 3 4 4 9.	129.7 129.6 129.7 129.7	63.8 64.1 63.7	50.05 50.05 50.7	28.2 30.1 27.6 28.7	69.0	29.6	109.6	215.9	106.5	294.7 290.0 294.8 293.1	130.2 125.4 131.7 129.1
0.250 VX0069AK	ı,	1 2 3 3 Avg.	128.9 128.0 128.1 128.3	62.5 62.6 63.3	53.5 53.0 53.2	28.6 29.3 27.4 28.4	66.1	29.4 29.0 28.5 28.5 29.0	109.8 109.7 108.8 109.4	221.2	98.4 97.8 102.1	297.6 297.5 296.9 297.1	131.7
0.250 VXD069AK	5	1 2 3 3 Avg.	128.6 129.0 128.2 128.6	63.8 62.6 63.2 63.2	52.5 52.0 52.0 52.2	28.7 27.4 28.7 28.3	6.56 6.7 8.7 8.7 8.7 8.7	5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65	110.2	221.2 215.1 222.6 222.6	105.0 103.2 95.7	295.1 294.0 294.3 294.5	137.3
3	XC free .	imbers f	Specimen numbers for \$10 = 2.0	were 4 through 6.	4	1							

Specimen numbers for e/O = 2.0 were 4 through 6.
 Uncharacteristic load-deformation curve.
 X-Y plotter problem.

TABLE 10(a). MECHANICAL PROPERTIES OF ANNEALED INCONEL 625 SHEET

				Tensile	116		Compressive	ess tve	Shear		Bearing		41.7
Thick- ness,	Grain Direc- tion	Speci- men No.	Ultimate Strength, MPa	Yield Strength, MPa	Elonga- tíon, percent	Modulus, GPa	Yield Strength, MPa	Hodulus, MPa	Ultimate Strength, GP&	e/0 m Ultimate Strength, APa	Vield Strengt	t inste	Strength.
1.27 VX00.70AK	_	1 2 3	953.6	515.1 524.0 478.5	2.23	196.5 199.3 196.5	527.5 530.9 527.5	206.2 206.9 209.6	784.4 805.0 789.7	1610.4 1609.7 1627.6	820.4 823.4 829.7	1808.9 2039.3 1986.9	1047.2
			920.4	505.9	44.7	197.4	528.6	207.5	793.0	1615.9	824.5	1945.7	1030.8
1.27 VX0070AK	17	3 2 3	937.0 932.9 934.3		45.0	197.2 193.7 197.2	544.0 546.8 548.2	214.4 215.8 215.8	803.4 775.5 775.5	1608.4	845.9 806.9 795.8	1869.3 1960.3 1903.7	1004.2 1010.4
		Avg.	934.7	514.4	45.2	196.0	546.3	215.4	784.8	1576.1	816.2	1917.8	995.4
1.60 VX0030AK	ب	126	867.4 875.7 875.7	462.7	48.5 49.0 51.0	181,3 195.1 189.6	480.6 481.3 479.9	211.0 206.9 211.0	759.8 756.5 755.5	1523.2 1524.0 1525.2	782.5 802.7 802.6	1965.8 2008.1 2004.3	942.2 932.4 (3)
		Avg.	872.9	463.6	49.5	188.7	480,6	209.6	757.3	1524.1	795.9	1992.7	937.3
1. 60 VX0030AK	5	N F	894.3 872.9	448.2 445.4 446.1	\$6.0 \$0.0 \$0.0	198.6 186.9 199.3	495.1 496.4 496.4	208.2 211.0 209.6	753.7 751.1 759.9	1522.2 1520.2 1522.1		1989.3 1956.5 1977.5	927.6 944.8 903.5
		Avg.	880.0			194.9	496.0	209.6	754.9	1521.5	789.5	1974.5	925.3
1.60 NX15EBAK		Avg. 3212	919.1 924.6 921.9	504.0	0.88.	194.4	515.7 517.8 516.4	208.9	766.5	1568.4	789.2 798.8 810.2	2075.5 2091.5 2125.8	993.6
1.60	5		926.7	470.2	47.5	196.5	513.7	212.4	770.2	1580.7	817.5	2102.0	978.7
HA15EBAK		Avg.	926.0	479.7	47.0	201.3	516.4	217.2	772.5	1582.8	816.7	2063.0	949.5
1.98 VX0028AK		126	916.3	495.8 497.8	46.5 47.0 47.5	203.4	521.3 515.7 530.9	208.2	970.8	1587.1 1588.0 1584.5	771.0	2061.8 2105.6 2077.9	938.6 926.5 922.3
		ja Na	916.1	432.1	0.7.0	506.4	97229	208.2	842.3	1586.5	775.7	2081.7	5.626

TABLE 10(a). (Continued)

				Tensile	Je		COMPC	Compressive	Shear		Searing		5
Thick- ness,	Grain Direction	Spec 1- men No.	Ultimate Strength, MPa	Yield Strength, MPa	Elonga- tion, percent	Modelus. 6Pa	Yield Strength,	Modelus, MPa	Ultimate Strangth, GPa	Ultimate Strength, MPa	Strength.	e/D It imate rength, MPa	Strength.
1.98 VX0028AK	17	~216	942.5 944.6 944.6	488.9 509.5 510.2	45.55 5.55 5.55	202.7 208.2 197.2	519.9 512.3 517.1	211.0 212.4 215.8	782.0 775.8 775.7		(2) 796.9 806.4	2066.1 2109.3 2080.2	967.2 973.9 948.2
		Avg.	943.9	502.9	45.5	202.7	516.4	213.1	777.8	1588.4	801.6	2085.2	963.1
1.98 VX0055AK	_	321	927.4 922.6 931.5	490.2 490.9 488.2	47.5 46.5 46.5	205.5 215.8 215.8	513.0 513.0 509.5	213.1 211.0 206.2	780.3 783.3 779.7		804.7 815.7 (2)	2072.9 2033.6 2077.1	
		Avg.	927.1	489.8	46.8	212.4	511.8	210.8	781.1			2061.2	•
1.98 VX0055AK	1.1	1 2 3	929.4 922.6 925.3	486.8 487.5 486.8	48.5 47.5 47.5	231.7 202.7 217.9	510.9 512.3 513.7	213.1	784.7 774.7 780.1	1571.6 1568.8 1580.7	782.3 791.0 817.1	2068. 2065. 2085.	944.7 952.9 933.5
		Avg.	925.8	487.0	47.8	217.4	512.3	214.2	779.00	1573.7	796.8	2072.9	943.7
2.36 VX0041AK		2E	954.3 947.4 945.3	510.2 503.3 508.2	45.5 45.5 65.0	211.0 201.3 200.6	497.8 524.7 525.4	201.3 203.4 206.2	1057.7 1057.7 794.0	1596.1 1601.3 1553.7	783.8 891.2 674.6	2082.8 2085.3 2096.7	986.7 957.6 1027.4
		Avg.	949.0	507.2	45.3	204.3	516.0	203.6	969.8	1583.7	753.2	2088.2	990.6
2.36 VX0041AK	5	c> m	941.9 928.8 930.1	517.1 513.0 512.3	47.5	212.4 202.7 208.9	533.0 536.4 535.7	212.4 215.1 215.8	783.1 782.9 791.3	1595.5 1570.3 1584.6	797.3 770.2 782.5	2114.4 2110.2 2102.0	982.7 968.7 978.1
		Avg.	933.6	514.1	47.2	208.0	535.1	214.4	785.7	1583.5	783.3	2108.8	976.5
3.175 VX0037AK	7	3.2	879.8 873.6 875.7	403.4	53.0 52.0 51.5	211.7 216.5 204.8	426.8 428.9 426.1	206.9 209.6 211.0	759.3 784.7 762.7	1443.0 1447.8 1441.8	675.0 692.3 667.8	2016.0 1999.3 2004.2	
		Avg.	876.4	410.0	52.2	211.0	427.3	209.1	768.9	144.2	678.4	2006.5	849.0
3.175 VX0037AK	5	126	872.2 875.0 871.5	410.9	52.0 51.5 51.0	213.7	429.6 430.9	205.5 206.9 207.5	764.0 763.2 766.7	1507.8 1524.9 1445.8	709.2 729.4 658.7	2001.2 2018.0 1982.9	
		Avg.	872.9	411.4	51.5	209.6	430.2	206.6	764.7	1492.8	1.669	2000.7	846.2

TABLE 10(a). (Continued)

Colored Colo					Tensile	116		Compri	Compressive	Shear		Seer frog		
LT 2 931.5 491.6 47.0 220.0 566.1 211.0 782.9 1150.5 1326.5 1326.5 1326.1 211.0 2 931.6 492.8 47.0 2207.5 566.1 208.5 793.8 1326.2 1326.5 1326.2 1326	Plate Thick- ness,	Grain Direc- tion	Spec1- men No.		Yield Strength, MPs	Elonga- tion, percent	Modulus, 6Pa	Yield Strength, MPa	105	Ultimate Strength, GPa		1.5 Yield Strength, MPa	Ultimate Strength, MPa	Yield Yield Strength, MPd
LT 2 926.0 492.3 47.5 217.2 513.7 210.2 783.3 1592.6 1592.6 499.5 497.0 206.2 513.7 210.8 883.0 1566.3 1566	3.175 VX0056AK	<u> </u>	1 2 3 Avg.	935.7 933.6 932.2 933.8	491.6 497.8 490.2 493.2	47.0	200.0 207.5 212.4 206.6	506.1 506.1 806.1	211.0 205.5 207.5 208.0	792.9 790.2 793.8 793.8	1570.5 1526.2 1532.1 1542.9	696.1 734.4 648.6 693.0	2101.9 2106.4 2101.0 2101.0	865.5 884.6 856.2 8.86.2
LT 2 886.3 431.6 51.5 186.9 466.8 203.4 754.4 1538.0 1532.2 453.0 51.5 186.9 466.8 203.4 754.4 1538.0 1538.1 144.0 1 2 894.3 453.0 51.5 120.0 465.4 202.7 753.1 1538.1 1544.0 1 2 894.3 453.0 51.5 150.0 467.0 204.1 759.1 1538.1 1544.0 1 2 894.3 442.1 51.7 200.9 467.0 204.1 759.1 1538.1 1538.1 144.0 1 2 894.3 442.1 50.7 197.9 475.8 204.8 757.8 1563.1 1588.4 4 40.4 60.7 197.9 475.0 204.8 755.5 1488.4 1467.6 203.4 475.0 204.8 756.5 155.1 1467.6 1475.8 204.8 756.5 155.1 1467.6 1475.0 204.8 756.5 155.1 1467.6 1475.8 204.8 756.5 155.1 1467.6 1475.8 204.8 756.5 155.1 1467.6 1475.8 204.8 756.5 155.1 1467.6 1475.8 204.8 756.5 155.1 1467.6 1475.8 1475.0 1560.4 1750.5 1560.4 1750.5 1750.5 1560.4 1750.5 175	3.175 VX0056AK	1	1 3 3 Avg.	926.0 924.6 924.6			217.2 206.2 213.1	513.7 514.4 515.1 516.4	208.2 210.3 213.7 210.8	783.3 785.3 900.3 823.0	1592.6 1585.8 1564.3 1580.9	719.3 746.4 710.6 725.4	2127.4 2121.1 2130.4 2126.3	905.6 909.5 951.0
LT 2 894.3 443.9 51.5 194.4 475.8 204.8 757.8 1524.3 1488.4 421.3 894.3 439.2 50.5 191.7 475.0 204.8 771.3 1450.1 1450.1 140.4 894.1 440.4 50.7 197.9 476.0 204.8 771.3 1450.1 1450.1 1 888.8 430.9 53.5 197.2 456.4 202.7 757.0 1560.4 1554.9 456.4 200.0 756.5 15324.9 456.4 203.4 772.0 1560.4 1530.7 173.0 1560.4 1530.7 173.0 1560.4 1530.7 173.0 1560.4 1530.7 173.0 1560.4 1530.7 173.0 1560.4 1530.7 173.0 1560.4 1530.7 173.0 1560.4 1530.7 173.0 1560.4 1530.7 173.0 1560.4 1530.7 173.0 1560.4 1530.7 173.0 1560.4 1530.7 173.0 1560.4 1530.7 173.0 1560.4 1530.7 173.0 1560.4 1530.7 173.0 1560.4 1530.7 173.0 1560.4 1530.7 173.0 1560.4 1530.7 15	4.75 VX0015AK		1 2 3 3 Avg.	885.3 894.3 892.2 890.6	431.6 453.0 453.7 446.1	51.5 51.5 52.0 51.7	215.8 186.9 200.0 200.9	4.68.9 4.65.8 4.65.4 4.67.0	206.2 203.4 202.7 204.1	759.8 754.4 763.1 759.1		753.2 752.6 754.6 754.6	2053.7 2032.9 2028.4 2038.4	919.2 864.2 872.7 892.0
LT 2 886.8 430.9 53.5 197.2 456.4 202.7 757.0 1560.4 1560.4 431.6 53.0 202.0 457.1 200.0 756.5 1524.9 1524.9 431.6 53.0 186.9 457.1 200.0 756.5 1532.7 1532.7 186.0 456.0 199.7 754.6 1540.3 1532.7 154.0 456.0 199.7 754.6 1540.3 1532.7 1540.3 1532.9 456.4 203.4 772.0 1533.0 1534.9 456.4 203.4 772.0 1533.0 1534.9 456.4 206.2 759.6 1534.9 1533.0 1534.9 456.4 206.3 753.7 1514.3	4.75 YX0015AR	•	1 2 3 Avg.	894.3 893.6 894.3 894.1	5.32.65		194.4 207.5 191.7 197.9	475.8 478.5 473.7 476.0	204.8 204.1 205.5 205.5		1524. 1488. 1450. 1457.	734.0 727.6 698.7 720.1	2031.9 1999.3 2032.5 	897.4 864.8 907.9
LT 2 886.7 439.9 52.5 197.9 465.4 203.4 759.6 1524.9 1483.0 389.5 431.6 52.0 188.9 456.4 203.4 742.0 1483.0 1483.0 1534.9 474.4 206.2 759.4 1534.9 474.6 206.2 759.4 1534.9 474.6 206.2 759.4 1534.9 474.6 206.2 759.4 1534.9 465.4 204.3 753.7 1514.3	6.35 VX0069AK	1	Av9.	888.8 882.6 883.2 883.2	430.9 431.6 436.5 435.0	88.55 83.50 83.20	197.2 202.0 188.9 196.0	•	202.7 200.0 196.5 196.5	757.0 756.5 750.5 754.6	1560. 1524. 1535. 1535.	678.8 674.4 703.9	2048.1 2051.3 2046.8 2048.7	908.0 927.7 908.2 914.6
	6.35 VX0069AK	_	1 3 Avg.	886.7 889.5 883.9 886.7	8.58.8	52.5 52.0 52.0 52.0	197.9		203.4 203.4 206.2 206.3	759.6 742.0 759.4 753.7		723.9 711.4 659.5 698.3	2034.4 2027.1 2029.3 2039.3	946.5 914.8 906.4 922.6

Specimen numbers for e/O = 2.0 were 4 through 6. Uncharacteristic load-deformation curve. X-Y plotter problem.

Figure 21. Typical tensile stress-strain curves for annealed Inconel 625 sheet.

Figure 22. Typical compressive stress-strain curves for annealed Inconel 625 sheet.

TABLE 11. UNNOTCHED FATIGUE DATA FOR ANNEALED INCOMEL 625 SHEET--LONG TRANSVERSE DIRECTION

Specimen	Maxi			Cycles to	
ID	Stre: ksi	MPa	R-ratio	Failure	
OFT17	120.0	(827.4)	-0.5		(1)
OFT3	120.0	(827.4)	-0.5	7,170	
0FT59	120.0	(827.4)	-0.5	8,230	
OFT11	100.0	(689.5)	-0.5	47,860	
OFT5	90.0	(620.6)	-0.5	47,590	
OFT9	90.0	(620,6)	-0.5	87,020	
0FT19	80.0	(551.6)	-0.5	138,220	
QFT7	80.0	(551.6)	-0.5	848,150	
OFT15	75.0	(517.1)	-0.5	3,034,310	/ ^ 1
OFT13	70.0	(482.7)	- 0.5	DNF	(2)
0.FT1	50.0	(344.8)	-0.5	DNF	
0FT31	140.0	(965.3)	0.1	800	(3
OFT33	130.0	(896.4)	0.1	30,430	
OFT25	120.0	(827.4)	0.1	47,820	
OFT27	100.0	(689.5)	0.1	137,460	
OFT23	90.0	(620.6)	0.1	239,350	
OFT21	85.0	(586.1)	0.1	455,180	
OFT35	80.0	(551.6)	0.1	518,180	
OFT39	70.0	(482.7)	0.1	DNF	
OFT37	70.0	(482.7)	0.1		
OFT29	50.0	(344.8)	0.1	DNF	
0FT53	134.0	(923.9)	0.5	123,150	
OF T51	130.0	(896.4)	0.5	251,300	
OFT49	130.0	(896.4)	0.5	295,760	
OFT57	125.0	(861.9)	0.5	278,210	
OFT47	120.0	(827.4)	0.5	627,230	
OFT55	118.0	(813.6)	0.5	DNF	
OFT45	110.0	(758.5)	0.5	DNF	
OFT43	90.0	(620.6)	0.5	DNF	
OFT41	50.0	(344.8)	0.5	DNF	

⁽¹⁾ Specimen failed on loading.

⁽²⁾ DNF - did not fail; test ran 10,000,000 cycles and stopped.

⁽³⁾ Cycle count below 10^3 ; not plotted.

TABLE 12. NOTCHED, N. = 3, FATIGUE DATA FOR ANNEALED INCONEL 625 SHEET--LONG TRANSVERSE DIRECTION

Specimen	Maxi		,	Cycles to	
ID	Stre: ksi	ss, MPa	R-ratio	Failure	
OFT2	80.0	(551.6)	-0.5	3,410	-
OFT14	70.0	(482.7)	-0.5	8,450	
OFT4	60.0	(413.7)	-0.5	14,960	
OFT12	50.0	(344.8)	-0.5	28,110	(
OFT16	40.0	(275.8)	-0.5	74,690	
OFT6	40.0	(275.8)	-0.5	76,670	
0FT10 0FT18	30.0 30.0	(206.9)	-0.5 -0.5	293,490	
0FT20	25.0	(206.9) (172.4)	-0.5 -0.5	1,649,560 DNF	(
OFT8	20.0	(137.9)	-0.5	DNF	
0 FT32	120.0	(827.4)	0.1	3,290	
OFT26	100.0	(689.5)	0.1	6,510	
OFT24	80.0	(551.6)	0.1	18,450	
OFT40	80.0	(551.6)	0.1	18,890	
OFT22	60.0	(413.7)	0.1	82,360	
OFT34	60.0	(413.7)	0.1	157,080	
OFT28	40.0	(275.8)	0.1	474,770	
OFT36	40.0	(275.8)	0.1	759,780	
OFT38 OFT30	35.0 30.0	(241.3) (206.9)	0.1 0.1	DNF DNF	
OFT54	130.0	(896.4)	0.5	8,090	
OFT44	120.0	(827.4)	0.5	15,780	
OFT46	110.0	(758.5)	0.5	21,520	,
OFT42	100.0	(689.5)	0.5		(
OFT48	100.0	(689.5)	0.5	29,940	
OFT50	90.0	(620.6)	0.5	40,330	
OFT52	80.0	(551.6)	0.5	120,890	
OFT56	70.0	(482.7)	0.5	351,660	
OFT60	60.0	(413.7)	0.5	1,051,090	
OFT58	50.0	(344.8)	0.5	DNF	

⁽¹⁾ Failed in grips.

⁽²⁾ DNF - did not fail; test ran 10,000,000 cycles and stopped.

⁽³⁾ Setup error.

Figure 23. Unnotched axial-stress S/N curves for 0.093-inch-thick, annealed Inconel 625 sheet--long transverse direction.

Figure 24. Notched axial-stress S/N curves for 0.093-inchthick, annealed Inconel 625 sheet--long transverse direction.

TESTING PROCEDURES

Tension Tests. Tension tests were performed at room temperature in accord with ASTM E8. Flat specimens were utilized for sheet, while round specimens were employed for bar. Subsize round specimens were used, as necessary, when the size of the product would not accommodate full-size specimens. The strain rate was 0.005-inch-per-inch-per-minute, as indicated by a strain pacer, until yield strength was exceeded, after which the rate was increased to 0.1-inch-per-inch-per-minute until failure. The tensile yield strength at 0.2 percent offset, tensile ultimate strength, elongation, and the tensile modulus of elasticity were obtained from this test.

Compression Tests. Compression tests were performed at room temperature in accord with ASTM E9. Cylindrical specimens were used for bar. The ends of the cylindrical specimens were parallel to 0.0002 inch, and fixturing was used to maintain alignment during testing. For sheet, flat specimens were utilized and tested in a "North American-type" compression fixture. This fixture will accommodate sheet specimens 1 by 3 inches and up to about 1/4-inch thick. The ends of the specimens were parallel to within 0.0002 inch. An extensometer, similar to the extension type, was fastened to the specimen at very small notches spanning a 2-inch gage length. The strain signal was generated by a linear differential transformer which was part of the extensometer with readout on an autographic recorder. For all tests, the strain rate was 0.005-inch-per-inch-per-minute until yield strength was exceeded. The compressive yield strength at 0.2-percent offset and the compressive modulus of elasticity were obtained from this test.

<u>Shear Tests</u>. Shear tests were conducted at room temperature. For sheet material, the tension-shear specimen, as specified in Standard Test Procedure ARTC-13-S-1, was used. For bar, a 0.250-inch-diameter, double-shear specimen was used. A rivet-shear type fixture was used to test pin-shear specimens from bar. The ultimate shear strength at room temperature was measured.

Bearing Tests. Bearing tests were conducted at room temperature in accord with ASTM E238. Bearing specimens were full thickness except for products over 0.100-inch thickness, for which the bearing specimens were machined to 0.100-inch thick. All tests were "clean pin" tests as, defined in the above specification. The ultimate bearing strength and bearing yield strength at e/D ratios of 1.5 and 2.0 were measured. (The ratio of the distance between the centerline of the test hole in the bearing specimen and the edge of the specimen (e) to the diameter of the bearing hole (D) defines e/D.)

<u>Fatigue Tests</u>. Fatigue tests were conducted at room temperature in accord with ASTM E466. Axial-stress tests were performed on unnotched and notched specimens to define an S/N curve between 10^3 and 10^7 cycles. Tests were conducted in the long transverse direction for sheet and longitudinal direction for bar. Tests were conducted on smooth, $K_t = 1$, and notched, $K_+ = 3$, specimens at three stress ratios.

APPENDIX B

SPECIMEN CONFIGURATIONS

Figure B-1. Tensile specimen (short transverse direction) for 2- and 2-1/4-inch diameter Inconel 718 and Inconel 625 bars. Drawing 8T.

Figure B-2. Tensile specimen (short transverse direction) for 2-1/2-, 2-3/4-, and 3-inch diameter Inconel 718 and Inconel 625 bars. Drawing 10T.

Figure B-3. Tensile specimen (short transverse direction for 3-1/4-, 3-1/2-, 3-3/4-, and 4-inch diameter and longitudinal direction for all diameters) for Inconel 718 and Inconel 625 bars. Drawing 9T.

Figure B-4. Shear specimen for Inconel 718 and Inconel 625 bars. Drawing 3S.

Note: Ends of specimen shall be plane and perpandicular to the axis of specimen within 0.25 degrees. Ends shall be parallel within 0.0002".

Figure B-5. Compression specimen for Inconel 718 and Inconel 625 bars. Drawing 3Co.

Note: Ends of specimen shall be plane and perpendicular to the axis of specimen within 0.25 dugrees. Ends shall be parallel within 0.0002".

Figure B-6. Subsize compression specimen (short transverse for 2-inch-diameter) for Inconel 718 and Inconel 625 bars. Drawing 4Co.

Figure B-7. Bearing specimen for Inconel 718 and Inconel 625 bars.

Figure B-8. Unnotched fatigue specimen for Inconel 718 and Inconel 625 bars.

Figure B-9. Notched, K_t = 3, fatigue specimen for Inconel 718 and Inconel 625 bars.

Figure 8-10. Tensile specimen for Inconel 625 sheet.

Figure B-11. Compression specimen for Inconel 625 sheet.

Figure B-12. Tension-shear specimen for Inconel 625 sheet.

Figure B-13. Bearing specimen for Inconel 625 sheet.

Figure B-14. Unnotched fatigue specimen for Inconel 625 sheet.

Figure B-15. Notched fatigue specimen for Inconel 625 sheet.