

NOTICE

٤

f,

Downloaded from http://www.everyspec.com

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any lights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical report has been reviewed and is approved for publication.

allan W. Sunderson

ALLAN W. GUNDERSON Engineering & Design Data Materials Integrity Branch

C L Harmouth

C. L. HARMSWORTH Technical Manager Engineering and Design Data Materials Integrity Branch

FOR THE COMMANDER

THOMAS D. COOPER Chief, Materials Integrity Branch Systems Support Division

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document. AIR FORCE/56780/6 February 1978 - 300

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
1. REPORT NUMBER / 2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
AFML-TR-77-102√	
4. TITLE (and Subtitie)	S. TYPE OF REPORT & PERIOD COVERE
EXPLORATORY DEVELOPMENT FOR DESIGN DATA	FINAL
REPRESENTATIVE AIRCRAFT ENVIRONMENTS	A PERFORMING ORG. REPORT NUMBER
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(*)
D. J. BROWNHILL, R. E. DAVIES	TOOLE THE FORM
G. E. NORDMARK, B. M. PONCHEL	F33015-74-0-5089
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
ALCOA LABORATORIESV	73810743
ALCOA CENTER, PA. 15069	I water L
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
AIR FORCE SYSTEMS COMMAND	13. NUMBER OF PAGES
WATERIALS LABORATORY 45433 WRIGHT-PATTERSON AIR FORCE BASE, OHIO	178
4. MONITORING AGENCY NAME & ADDRESSII dillorent from Controlling Office)	18. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	154. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distribution 17. DISTRIBUTION STATEMENT (of the abstract enfored in Block 20, if different in	n unlimited.
Approved for public release; distribution	n unlimited.
Approved for public release; distribution 17. DISTRIBUTION STATEMENT (of the abstract enfored in Block 20, if different in 18. SUPPLEMENTARY NOTES	n unlimited.
Approved for public release; distribution 17. DISTRIBUTION STATEMENT (of the obstract enfored in Block 20, if different in 18. SUPPLEMENTARY NOTES	n unlimited.
Approved for public release; distribution 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different for 10. SUPPLEMENTARY NOTES 10. SUPPLEMENTARY NOTES 10. SEY WORDS (Continue on reverse elde if necessary and identify by block number 2048 Plate Rearing	Crack Propagation
Approved for public release; distribution 7. DISTRIBUTION STATEMENT (of the obstract enfored in Block 20, if different in 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse elde If necessary and identify by block number 2048 Plate Bearing 7050 Hand Forgings Modulus of Elasti	Crack Propagation City Stress-Corrosion
Approved for public release; distribution 7. DISTRIBUTION STATEMENT (of the obstract enfored in Block 20, if different in 10. SUPPLEMENTARY NOTES 10. SUPPLEMENTARY SUPPLEMENTARY NOTES 10. SUPPLEMENTARY	n unlimited. Raper) Crack Propagation city Stress-Corrosion Exfoliation
Approved for public release; distribution Approved for public release; distribution T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in Supplementary notes Supplementary notes Supplementary notes Stress-Strain 2219 Compressive Fracture Toughnes Sheap Forture Toughnes	n unlimited. Raper() Crack Propagation city Stress-Corrosion Exfoliation s
Approved for public release; distribution Approved for public release; distribution T. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different for SUPPLEMENTARY NOTES Supplementary notes Supplementary notes Supplementary notes Approved for public release; distribution Supplementary notes Supplementary notes Suppleme	n unlimited. Report) Crack Propagation city Stress-Corrosion Exfoliation s
Approved for public release; distribution Approved for public release; distribution TO DISTRIBUTION STATEMENT (of the obstract enfored in Block 20, if different in SUPPLEMENTARY NOTES Supplementary notes Supplementary notes Supplementary notes Approved for public release; distribution Supplementary notes Supplementary notes Supplemen	n unlimited. Crack Propagation city Stress-Corrosion Exfoliation s toughness, fatigue,
Approved for public release; distribution Approved for public release; distribution T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different in SUPPLEMENTARY NOTES Supplementary notes Supplementary notes Supplementary notes Approved for public release; distribution Supplementary notes Supplementary notes Supplemen	Crack Propagation Crack Propagation city Stress-Corrosion Exfoliation s toughness, fatigue, ronments and corrosion
Approved for public release; distribution Approved for public release; distribution T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different for SUPPLEMENTARY NOTES Supplementary notes Supplemen	Crack Propagation Crack Propagation City Stress-Corrosion Exfoliation S toughness, fatigue, ronments and corrosion T851, 7050-T7351 and ings baye been conjusted
Approved for public release; distribution Approved for public release; distribution TO DISTRIBUTION STATEMENT (of the obstract enforced in Block 20, if different in SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES Supplementary notes Supplementary notes Approved for public release; distribution Supplementary notes Supplementary notes Supplementary notes Approved for public release; distribution Supplementary notes Supplementary notes Supplementary notes Approved for public release; distribution Supplementary notes Supplementary notes Supple	Crack Propagation city Stress-Corrosion Exfoliation s toughness, fatigue, ronments and corrosion T851, 7050-T7351 and ings have been evaluated lues, including modulus
Approved for public release; distribution T. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different in SUPPLEMENTARY NOTES Supplementary notes 2048 Plate Bearing 7050 Hand Forgings Modulus of Elasti 7475 Tensile Stress-Strain 2219 Compressive Fracture Toughnes Shear Fatigue C. ASTRACT (Continue on reverse side if necessary and identify by block manber Shear Fatigue C. ASTRACT (Continue on reverse side if necessary and identify by block manber provide the stress of the st	Crack Propagation Crack Propagation city Stress-Corrosion Exfoliation s toughness, fatigue, ronments and corrosion T851, 7050-T7351 and ings have been evaluated lues, including modulus ented.
Approved for public release; distribution T. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different for SUPPLEMENTARY NOTES Supplementary notes Supplement	Crack Propagation Crack Propagation City Stress-Corrosion Exfoliation s toughness, fatigue, ronments and corrosion T851, 7050-T7351 and ings have been evaluated lues, including modulus ented. actors, KIc, for the
Approved for public release; distribution T. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different for SUPPLEMENTARY NOTES E. KEY WORDS (Centinue on reverse olds if necessary and identify by block number 2048 Plate Bearing 7050 Hand Forgings Modulus of Elasti 7475 Tensile Stress-Strain 2219 Compressive Fracture Toughnes Shear Fatigue D. ABSTRACT (Centinue on reverse olds if necessary and identify by block number fatigue-crack growth rates in three envi characteristics of 10 lots each of 2048- 7475-T7351 plate and 2219-T852 hand forg Data for establishing MIL-HDBK-5 va of elasticity and stress-strain are pres The plane-strain stress-intensity f plate products are generally higher. par	Crack Propagation Crack Propagation city Stress-Corrosion Exfoliation s toughness, fatigue, ronments and corrosion T851, 7050-T7351 and ings have been evaluated lues, including modulus ented. actors, KIC, for the ticularly for 7475-T735

and the second second

. 2

•

*

i i

÷

-

2

ł

Downloaded from http://www.everyspec.com

Alexan .

Canal Succession

a come any

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

than those of other commercial alloys of comparable yield strength levels. The 2219-T852 hand forgings exhibit toughness levels higher than those of most other hand forging alloys.

Downloaded from http://www.everyspec.com

Axial-stress fatigue strengths and rates of fatigue-crack propagation are generally comparable to those of corresponding products of 2XXX and 7XXX alloys. At medium stress intensities, fatigue-crack propagation rates in moist air and sump water are, respectively, 1.5 to 2 times and 2 to 9 times as fast as in dry air. However, at low stress intensities, crack arrest sometimes occurred in the sump water.

All of the products tested display the expected excellent resistance to exfoliation and stress corrosion. The only indications of any susceptibility to intergranular stresscorrosion cracking were obtained for short-transverse specimens from three lots of 2048-T851 plate when tested at an applied stress of 75 per cent of the minimum long-transverse yield strength. The tests of precracked double-cantilever beam specimens showed the same general trends as tests with smooth stress-corrosion specimens.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

PREFACE

This investigation was conducted by Alcoa Laboratories, Aluminum Company of America, Alcoa Center, Pennsylvania under USAF Contract No. F33615-74-C-5089, Project No. 7381, for the Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio, with Mr. A. W. Gunderson (AFML/MXA) as project engineer.

This report covers work done from May 1, 1974 through April 30, 1977.

The investigation was made under the supervision of Mr. D. J. Brownhill as project manager with Mr. R. E. Davies as project engineer for the phase covering the mechanical properties including fracture toughness and axial fatigue. The phase covering the fatigue-crack propagation rates was under the supervision of Mr. R. A. Kelsey, with Mr. G. E. Nordmark as project engineer. The phase covering the exfoliation and stress-corrosion characteristics was under the supervision of Mr. D. O. Sprowls, with Mr. B. M. Ponchel as project engineer. Significant advisory and technical assistance were supplied by Messrs. J. G. Kaufman, A. B. Thakker, G. T. Sha and D. J. Lege.

というないないないないであるの

TABLE OF CONTENTS

Downloaded from http://www.everyspec.com

SECTION		PAGE
I.	INTRODUCTION	1
II.	MATERIAL	2
III.	PROCEDURE	
	A. MECHANICAL PROPERTIES	4
	B. FATIGUE-CRACK PROPAGATION TESTS	8
	C. CORROSION CHARACTERISTICS	11
IV.	RESULTS OF TESTS	17
v.	DISCUSSION OF RESULTS	
	A. MECHANICAL PROPERTIES	18
	B. FATIGUE CRACK-PROPAGATION TESTS	26
	C. CORROSION CHARACTERISTICS	31
VI.	SUMMARY AND CONCLUSIONS	
	A. MECHANICAL PROPERTIES	41
	B. FATIGUE-CRACK PROPAGATION	43
	C. CORROSION CHARACTERISTICS	44
	REFERENCES	46

v

Ħ

LINGSTEINE PAGE NOT TILL

ШÓ

LIST OF ILLUSTRATIONS

Downloaded from http://www.everyspec.com

FIGURE		PAGE
1	General Dimensions of Tensile, Compressive and Shear Specimens	50
2	General Dimensions of Bearing Specimens	51
3	Compact Fracture Toughness Specimen	52
4	Fracture Specimen Orientations	53
5	Setup for Fatigue Precracking of Compact Fracture Toughness Specimens	54
б	Setup for Testing Compact Fracture Toughness Specimens	55
7	Smooth and Notched Axial-Stress Fatigue Specimens .	56
8	Dimensions for Compact Fatigue Crack-Propagation Specimen	57
9	Fatigue Crack Growth Tests of Compact Specimens	58
10	Four Degrees of Severity of Exfoliation Corrosion Per ASTM Standard Method Test G34-72	59
11	1/8-In. Diameter Tensile Specimen, Various Parts of the Stressing Frame and Final Stressed Assembly for Stress-Corrosion Tests	60
12	Synchronous Loading Device Used to Stress Specimens. Stressed Assembly and One Assembled Finger Tight Ready For Stressing are Shown to the Left	60
13	Configuration of Double Cantilever Beam (DCB) Specimen Used for SCC Tests	61
14	Configuration of Reduced Thickness Double Cantilever Beam (DCB) Specimen Used for SCC Tests	62
15	Typical Stress-Strain and Tangent-Modulus Curves for 2048-T851 Aluminum Alloy Plate at Room Tempera- ture	63
16	'Typical Stress-Strain and Tangent-Modulus Curves for 7050-T7351 Aluminum Alloy Plate at Room Temperature.	64

1.6 1.14

2'

Downloaded from http://www.everyspec.com

Carlo Carlo Carlo Carlo

ne ne

FIGURE		PAGE
17	Typical Stress-Strain and Tangent-Modulus Curves for 7475-T7351 Aluminum Alloy Plate at Room Temperature	65
18	K _{IC} Vs Tensile Yield Strength of 7475 Plate, 1.0 to 4.0-In. Thick	66
19	K_{IC} Vs Tensile Yield Strength of 2048-T851, 7050-T7351 and 7475-T7351 Plate	67
20	K _{IC} Vs Tensile Yield Strength of 2219-T852 Hand Forgings, 2.0 to 7.5-In. Thick	68
21	Axial-Stress Fatigue Data For Smooth Specimens of $2048-T851$ Plate, R = 0.0	69
22	Axial-Stress Fatigue Data For Notched Specimens of 2048-T851 Plate, R = 0.0	70
23	Axial-Stress Fatigue Data For Smooth Specimens of $7050-T7351$ Plate, R = 0.0	71
24	Axial-Stress Fatigue Data For Notched Specimens of 7050-T7351 Plate, R = 0.0	72
25	Axial-Stress Fatigue Data For Smooth Specimens of $7475-T7351$ Plate, R = 0.0	73
26	Axial-Stress Fatigue Data For Notched Specimens of $7475-T7351$ Plate, R = 0.0	74
27	Axial-Stress Fatigue Lata For Smooth Specimens of $7475-T7351$ Plate, R = 0.0 (Current Practice)	75
28	Axial-Stress Fatigue Data For Notched Specimens of 7475-T7351 Plate, R = 0.0 (Current Practice)	76
29	Axial-Stress Fatigue Data For Smooth Specimens of 2219-T852 Hand Forgings, $R = 0.0$	77
30	Axial-Stress Fatigue Data For Notched Specimens of 2219-T852 Hand Forgings, $R = 0.0$	78
31	Fatigue Crack-Growth Data For 1-In. 2048-T851 Plate, L-T Orientation	79

;

- T.

		LIST OF ILLUSTRATIONS (Continued)	
	FIGULE		PA
	32	Fatigue Crack-Growth Data For 1-In. 2048-T651 Plate, T-L Orientation	
	33	Fatigue Crack-Growth Data For 4-In. 2048-T851 Plate, L-T Orientation	
	34	Fatigue Crack-Growth Data For 4-In. 2048-T851 Plate, T-L Orientation (dry air)	
	35	Fatigue Crack-Growth Data For 4-In. 2048-T851 Plate, T-L Orientation (sump water)	
	36	Fatigue Crack-Growth Data For 4-In. 2048-T851 Plate, S-L Orientation	
	37	Fatigue Crack-Growth Data For 2-In. 7050-T7351 Plate, L-T Orientation	
	38	Fatigue Crack-Growth Dava For 2-In. 7050-T7351 Plate, T-L Orientation	
	39	Fatigue Crack-Growth Data For 4-In. 7050-T7351 Plate, L-T Orientation	
	40	Fatigue Crack-Growth Data For 4-In. 7050-T7351 Plate, T-L Orientation (dry air)	
	41	Fatigue Crack-Growth Data For 4-In. 7050-T7351 Plate, T-L Orientation (sump water)	
	42	Fatigue Crack-Growth Data For 4-In. 7050-T7351 Plate, S-L Orientation	
	43	Fatigue Crack-Growth Data For 1-In. 7475-T7351 Plate, L-T Orientation	
	44	Fatigue Crack-Growth Data For 1-In. 7475-T7351 Plate, T-L Orientation	
	45	Fatigue Crack-Growth Data For 4-In. 7475-T7351 Plate, L-T Orientation	
	46	Fatigue Crack-Growth Data For 4-In. 7475-T7351 Plate, T-L Orientation (dry air)	
ماله المرجمين			
		viii	

Downloaded from http://www.everyspe

2

;

i

ઝ™જ્ર" જ**ં**≴ં

.com

FIGURE		PAGE
47	Fatigue Crack-Growth Data For 4-In. 7475-T7351 Plate, T-L Orientation (sump water)	95
48	Fatigue Crack-Growth Data For 4-In. 7475-T7351 Plate, S-L Orientation	96
49	Fatigue Creck-Growth Data For a 0.75-In. 7475-T7351 Plate, (Current Practice), T-L Orientation	97
50	Fatigue Crack-Growth Data For 3.5-In. 7475-T7351 Plate, (Current Practice), T-L Orientation (dry air).	98
51	Fatigue Crack-Growth Data For 3.5-In. 7475-T7351 Plate. (Current Practice), T-L Orientation (sump water)	99
52	Fatigue Crack-Growth Data For 3.5-In. 7475-T7351 Plate, (Current Practice), S-L Orientation (dry air).	100
53	Fatigue Crack-Growth Data For a 2 x 8-In. 2219-T852 Hand Forging, L-T Orientation	101
54	Fatigue Crack-Growth Data For a 2 x 8-In. 2219-T852 Hand Forging, T-L Orientation	102
55	Fatigue Crack-Growth Data For a 5.5 x 22-In. 2219-T852 Hand Forging, L-T Orientation	103
56	Fatigue Crack-Growth Data For a 5.5 x 22-In. 2219-T852 Hand Forging, T-L Orientation (dry air)	104
57	Fatigue Crack-Growth Data For a 5.5 x 22-In. 2219-T852 Hand Forging, T-L Orientation	105
58	Fatigue Crack-Growth Data For a 5.5 x 22-In. 2219-T852 Hand Forging, S-L Orientation	106
59	Comparison of Fatigue-Crack Growth Rates for Thick Plate, T-L Orientation	107
60	Sump Water Induced Arrest of Low Growth Rate Fatigue Crack in 7475-T7351 Plate (S.E.M.)	108

ix

Downloaded from http://www.everyspec.com

ł

and the state of the second second

10.00

FIGURE		PAGE
61	Illustrates Type of Attack in Center Plane Test Panel From a 2.5-In. Thick 2219-T852 Alloy Hand Forging Exposed to EXCO Test	109
62	View of Figure 61 At a Higher Magnification	109
63	Environmental Crack Growth of Short-Transverse 2219-T852 Alloy DCB Specimens Removed From a 2.5-In. Thick Hand Forging	110
64	Environmental Crack Growth of Short-Transverse 2219-T852 Alloy DCB Specimens Removed From a 4.5-In. Thick Hand Forging	111
65	Environmental Crack Growth of Short-Transverse 2219-T852 Alloy DCB Specimens Removed From a 7.5-In. Thick Hand Forging	112
66	Environmental Crack Growth of Short-Transverse 2048-TC51 Alloy DCB Specimens Removed From a 2-In. Thick Plate	113
67	Environmental Crack Growth of Short-Transverse 2048-T851 Allcy DCB Specimens Removed From a 4-In. Thick Plate	114
60	Environmental Crack Growth of Short-Transverse 7050-T7351 Alloy DCB Specimens Removed From a 2-In. Thick Plate	115
69	Environmental Crack Growth of Short-Transverse 7050-T7351 Alloy DCB Specimens Removed From a 4-In. Thick Plate	116
70	Environmental Crack Growth of Short-Transverse 7050-T7351 Alloy DCB Specimens Removed From a 6-In. Thick Plate	117
71	Environmental Crack Growth of Short-Transverse 7050-T7351 Alloy DCB Specimens Removed From a 6-In. Thick Plate	118
72	Environmental Crack Growth of Short-Transverse 74/5-T7351 Alloy DCB Specimens Removed From a 2-In. Thick Plate	119

esteris (etc.) State

Downloaded from http://www.everyspec.com

THE W

9

्रम् स्वाहरू क्रम्

ADDRESS DALLER

FIGURE		PAGE
73	Environmental Crack Growth of Short-Transverse 7475-T7351 Alloy DCB Specimens Removed From a 4-In. Thick Plate	120
74	K-Rate Comparison of the Materials	121
75	Environmental Crack Growth of Short-Transverse 2048-T851 Alloy DCB Specimens Removed From a 4-In. Thick Plate (Specimen Thickness: 0.25-In.)	122
76	Environmental Crack Growth of Short-Transverse 2048-T851 Alloy DCB Specimens Removed From a 4-In. Thick Plate (Specimen Thickness: 0.50-In.)	123
77	Environmental Crack Growth of Short-Transverse 2048-T851 Alloy DCB Specimens Removed From a 4-In. Thick Plate	124
78	Environmental Crack Growth of Short-Transverse 7050-T7351 Alloy DC3 Specimens Removed From a 4-In. Thick Plate (Specimen Thickness: 0.25-In.)	125
79	Environmental Crack Growth of Short-Transverse 7050-T7351 Alloy DCB Specimens Removed From a 4-In. Thick Plate (Specimen Thickness: 0.50-In.)	126
80	Environmental Crack Growth of Short-Transverse 7050-T7351 Alloy DCB Specimens Removed From a 4-In. Thick Plate	127
81	Environmental Crack Growth of Short-Transverse 7475-T7351 Alloy DCB Specimens Removed From a 4-In. Thick Plate (Specimen Thickness: 0.25-In.)	128
δ2	Environmental Crack Growth of Short-Transverse 7475-T7351 Alloy DCB Specimens Removed From a 4-In. Thick Plate (Specimen Thickness: 0.50-In.)	129
83	Environmental Crack Growth of Short-Transverse 7475-T7351 Alloy DCB Specimens Removed From a 4-In. Thick Plate (Specimen Thickness: 0.80-In.)	130

xi

Downloaded from http://www.everyspec.com

FIGURE		PAGE
84	Environmental Crack Growth of Short-Transverse 7475-T7351 Alloy DCB Specimens Removed From a 4-In. Thick Plate	131
85	Environmental Crack Growth of Short-Transverse 7475-T7351 Alloy DCB Specimens Removed From a 2.25-In. Thick Plate	132
86	Environmental Crack Growth of Short-Transverse 7475-T7351 Alloy DCB Specimens Removed From a 3.5-In. Thick Plate	133

The second second

. 1910 -

e.

LIST OF TABLES

The section of

がたいのの言語がなるが

124,121

いいである

and the second second

/ww.everyspec.com

- - -

TABLE		PAGE
1	Chemical Compositions of 2048-T851 Plate	134
2	Chemical Compositions of 7050-T7351 Plate	135
3	Chemical Compositions of 7475-T7351 Plate	136
4	Chemical Compositions of 2219-T852 Hand Forgings	137
5	Mechanical Properties of 2048-T851 Plate	138
6	Mechanical Properties of 7050-T7351 Plate	139
7	Mechanical Properties of 7475-T7351 Plate	140
8	Mechanical Properties of 7475-T7351 Plate (Current Practice)	141
9	Mechanical Properties of 2219-T852 Hand Forgings	142
10	Ratios Among the Tensile, Compressive, Shear and Bearing Properties of 2048-T851 Plate	143
11	Ratios Among the Tensile, Compressive, Shear and Bearing Properties of 7050-T7351 Plate	144 1
12	Ratios Among the Tensile, Compressive, Shear and Bearing Properties of 7475-T7351 Plate	145
13	Ratios Among the Tensile, Compressive, Shear and Bearin, Properties of 7475-T7351 Plate (Current Practice	146
14	Ratios Among the Tensile, Compressive, Shear and Bearing Properties of 2219-T852 Hand Forgings	147
15	Results of Tensile and Compressive Modulus cf Elasticity Tests of 2048-T851, 7050-T7351 and 7475-T7351 Plate and 2219-T852 Hand Forgings	148
1.6	Typical Stress-Strain Data for 2048-T851 Plate	149
17	Typical Stress-Strain Data for 7050-T7351 Plate	150
18	Typical Stress-Strain Data for 7475-T/351 Plate	151

xiii

LIST OF TABLES (Continued)

Downloaded from http://www.everyspec.com

- ~ Y . C

and a state of the second s

TABLE		PAGE
19	Data for Establishing Typical Stress-Strain Curves for 2219-T852 Hand Forgings	152
20	Data for Typical Compressive Tangent-Modulus Curves for 2048-T851, 7050-T7351 and 7475-T7351 Plate	153
21	Results of Fracture-Toughness Tests of 2048-T851 Plate	154
22	Results of Fracture-Toughness Tests of 7050-T7351 Plate	155
23	Results of Fracture-Toughness Tests of 7475-T7351 Plate	156
24	Results of Fracture-Toughness Tests of 7475 Plate (Current Practice)	157
25	Results of Fracture-Toughness Tests of 2219-T852 Hand Forgings	158
26	Rates of Fatigue-Crack Propagation	159
27	Results of Tests to Evaluate the Resistance to Exfoliation of Samples of 2219-T852 Hand Forgings .	160
28	Results of Tests to Evaluate the Resistance to Exfoliation of Samples of 7050-T7351 Alloy Plate	161
29	Results of Tests to Evaluate the Resistance to Exfoliation of Samples of 2048-T851 Alloy Plate	162
30	Results of Tests to Evaluate the Resistance to Exfoliation of Samples of 7475-T7351 Alloy Plate	163
31	Results of Stress-Corrosion Testing of 0.125-In. Diam. Tension Specimens of 2219-T852 Alloy Hand Forgings By Alternate Immersion in a 3.5% Sodium Chloride Solution for 8^{μ} Days (ASTM G44-75)	164
32	Results of Stress-Corrosion Testing of 0.125-In. Diam. Tension Specimens of 7050-T7351 Alloy Plate By Alternate Immersion in a 3.5% Sodium Chloride Solution for 84 Days (ASTM G44-75).	165

LIST OF TABLES (Continued)

Downloaded from http://www.everyspec.com

TABLE		PAGE
33	Results of Stress-Corrosion Testing of 0.125-In. Diam. Tension Specimens of 2048-T851 Alloy Plate By Alternate Immersion in a 3.5% Sodium Chloride Solution for 84 Days (ASTM G44-75)	166
34	Results of Stress-Corrosion Testing of 0.125-In. Diameter Tensicn Specimens of 7475-T7351 Alloy Plate By Alternate Immersion in a 3.5% Sodium Chloride Solution for 84 Days (ASTM G44-75)	167
35	Results of Stress-Corrosion Tests of 0.125-In. Diameter Short-Transverse Tension Specimens of 2219-T852 Alloy Hand Forgings In Outdoor Atmospheres.	168
36	Results of Stress-Corrosion Tests of 0.125-In. Diameter Short-Transverse Tensior Specimens of 7050-T7351 Alloy Plates In Outdoor Atmospheres	169
37	Results of Stress-Corrosion Tests of 0.125-In. Diameter Short-Transverse Tension Specimens of 2048-T851 Alloy Plates In Outdoor Atmospheres	170
38	Results of Stress-Corrosion Tests of 0.125-In. Diameter Short-Transverse Tension Specimens of 7475-T7351 Alloy Plates In Outdoor Atmospheres	171
39	Results of Initial Stress Intensity, K _{IC} , Loads of Double Cantilever Beam Specimens	172
40	Avearge Crack Growth Velocities for Double Cantilever Beam Specimens Exposed to 3.5% NaCl Solution Dropwise for 30 Days	173
41	Average Crack Growth Velocities of Reduced Thickness DCB Specimens Exposed to 3.5% NaCl Solution Dropwise for 30 Days	174
42	Results of Stress-Corrosion Testing of 0.125-In. Diameter Short-Transverse Tension Specimens of 7475-T7351 Alloy Plate By Alternate Immersion In a 3.5% Sodium Chloride Solution for 84 Days (ASTM	3 7 E
	(44 - (5))	113

LIST OF TABLES (Concluded)

i i i

Downloaded from http://www.everyspec.com

· ····

TABLE		PAGE
43	Results of Stress Corrosion Trans of 0.125-In. Diameter Short-Transverse Tension Specimens of 7475-T7351 Alloy Plates In Outdoor Atmospheres	176
44	Results of Initial Stress Intensity, K _{Ic} , Loads of Double Cantilever Beam Specimens	177
45	Average Crack Velocities for Double Cantilever Beam Specimens From 7475-T7351 Alloy Plates and Exposeć to 3.5% NaCl Solution Dropwise	178

SUMMARY

everyspec.com

The mechanical properties, fracture toughness, fatigue, fatigue-crack growth rates in three environments and corrosion characteristics of 10 lots each of 2048-T851, 7050-T7351 and 7475-T7351 plate and 2219-T852 hand forgings have been evaluated.

Date for establishing MIL-HDBK-5 values, including modulus of elasticity and stress-strain are presented.

The plane-strain stress-intensity factors, K_{Ic} , for the plate products are generally higher, particularly for 7475-T7351, than those of other commercial alloys of comparable yield strength levels. The 2219-T852 hand forgings exhibit toughness levels higher than those of most other hand forging alloys.

Axial-stress fatigue strengths are in the same general range as those of corresponding products of 2XXX and 7XXX alloys.

In dry and moist air, rates of fatigue-crack propagation are generally similar for the hand forging and the three plate alloys and comparable to rates reported for other high-strength aluminum alloys. At medium stress intensities, fatigue-crack propagation rates are 1.5 to 2 times as fast in moist air as in dry air and 2 to 9 times as fast in sump water as in dry air; rates in sump water were slower for the 2XXX products than those for the 7XXX plate. However, at low stress intensities, propagation in the 7XXX plate and the 2219 hand forging slowed or arrested in che sump water, apparently due to a buildup of corrosion product on the fracture surface.

xvii

All of the products tested display the expected excellent resistance to exfoliation and stress corrosion. The only indications of any susceptibility to intergranular stress-corrosion cracking were obtained for short-transverse specimens from three lots of 2048-T851 plate when tested at an applied stress of 75 per cent of the minimum long-transverse yield strength. All of the lots of 2048-T851 plate display the expected excellent resistance to stress corrosion in the cricical short-transverse direction at a test stress of 50 per cent of the minimum long-transverse yield strength. The tests of precracked double-cantilever beam specimens showed the same general trends as tests with smooth stress-corrosion specimens.

THE REAL PROPERTY AND A DESCRIPTION OF A

an and the second se

C. Star

Downloaded from http://www.everyspec.com

A STREET STREET

SECTION I INTRODUCTION

Downloaded from http://www.everyspec.com

The high performance required of aerospace structures demands that adequate consideration be given to the influence of service environments, and therefore the development of design related data must take such influence into account. The data in this investigation were generated to support the AFML service failure analysis efforts and to serve as a basis for evaluating the alloys for use in new Air Force systems. A considerable amount of this type of data has been developed previously for other alloys, tempers and products intended for such critical service[1-11].

The purpose of this investigation was to evaluate environmental fatigue crack-growth rates and corrosion characteristics as well as data for establishing design mechanical properties for four alloys which might be subjected to critical environmental service, i.e., 2048-TC51, /050-T7351 and 7475-T7551 plate and 2219-T852 hand forgings. Specifically, sufficient data have been developed for these products to establish statistically meaningful design mechanical properties for use in MIL-HDBK-5[12] and to provide a level of confidence in the data on fracture toughness, fatigue strength, fatigue-crack propagation rates, exfoliation and stress-corrosion resistance.

SECTION II

MATERIAL

The products tested in this investigation included ten lots each of the following:

Alloy and Temper	Product	Thickness Range, in.	Producer
2048-T851	Plate	0.5 to 4.0	Reynolds
7050-T7351	Plate	2.0 to 6.0	Alcoa
7475-T7351	Plate	0.5 to 4.0	Alcoa
2219-T852	Hand Forgings	2.0 to 7.5	Alcoa

These products were produced by commercial practices in use at the time of fabrication. The chemical compositions of each sample, determined at Alcoa Laboratories and shown in Tables 1 through 4, are within the specified limits shown in the same tables.

The tensile properties of all samples met their respective tentative minimum properties, Tables 5 through 9. Minimum properties have been established for the 2048-T851 plate in thicknesses 2.001 to 3.000 in. only. The minimum values can be expected to be about 5 to 6 ksi below the expected typical properties shown in Table 5.

Tentative minimum K_{Ic} values have been established for 7475-T7351 plate. The fracture toughness data obtained for the samples tested in this investigation developed K_{Ic} , or K_Q , values above the tentative minimum values. However, it was realized, after comparision with data from tests of lots produced prior to the contract, that the levels of fracture toughness developed

were not representative of current production. The relatively low values obtained for the lots produced for the contract were attributed to the fabrication practices utilized at that time. These practices were subsequently revised to eliminate the possibility of conditions which lead to toughness levels lower than normally achievable in 7475-T7351 plate. Because the ten samples of 7475-T7351 plate were not considered to be representative of the capabilities of current production material, ten additional lots were fabricated and tested for toughness to demonstrate the high toughness of this product. A few of these samples were also tested for mechanical properties, fatigue, fatigue-c ack propagation and corrosion characteristics.

Downloaded from http://www.everyspec.com

SECTION III

PROCEDURE

A. Mechanical Properties

A.1. Tensile, Compressive, Shear and Bearing

「こがないたいたいない

The tensile, compressive, shear and bearing tests were made using the smallest suitable range of an Amsler 20,000-1b (type 105XBDA58), an Olsen Electromatic 30,000-1b and an Olsen Super-L 20,000-1b or a Southwark-Tate-Emery 50,000-1b capacity Universal Testing Machine. The machines were calibrated prior to and during the investigation. The accuracy of these machines was within that required by ASTM Method E4[13].

The test specimens and procedures used were, where appropriate, the same as those used in previous investigations of sheet, plate, extrusions and forgings[1-3, 6, 9-11, 14]. Single specimens were tested except where initial results indicated check tests were necessary. Where check tests were made for tensile properties, duplicate tests were made. Specimens were taken in the test directions and locations specified in ASTM B557[15]. Specimens (L and LT) from 0.5 to 1.0-in. thick plate were taken from T/2 (thickness/2) and for plate 1.75-in. thick and greater from T/4; short-transverse specimens were taken from T/2. All specimens from the 2219-T852 hand forgings were from T/2.

Tensile tests were made in accordance with ASTM E8[16] with 1/2-in. diameter tapered-seat specimens, except where it was necessary to use subsize round specimens (Fig. 1). The yield

Downloaded from http://www.everyspec.com

strengths were determined from autographically recorded loadstrain diagrams.

Compressive tests were made in accordance with ASTM E9[17] using a subpress (Fig. 3 of ASTM E9). All specimens were the cylindrical type shown in Fig. 1. The yield strengths were determined from autographically recorded load-strain diagrams.

Shear tests were made using cylindrical specimens (Fig. 1); these specimens were tested in an Amsler double-shear tool in which a 1-in. length is sheared from the center of a 3-in. long specimen, the end thirds being supported throughout their length. In tests of longitudinal and long-transverse specimens, the loads were applied in the direction normal to the major surface of the product; in tests of short-transverse specimens, the loads were applied in the longitudinal direction[18].

Bearing tests were made in accordance with ASTM E238[19] using longitudinal and long-transverse specimens of the type shown in Fig. 2. Specimens were 0.094-in. thick. The bearing ultimate and yield strengths were determined at edge distance of 1.5 and 2.0 times the pin diameter. The bearing yield strength was obtained by determining the load at a permanent deformation of 2 per cent of the pin diameter as indicated on an autographic load-deformation diagram. Bearing specimens were taken flatwise from plate and edgewise from the hand forging. The specimens and test fixtures were cleaned ultrasonically as prescribed in ASTM E238.

Tensile and compressive stress-strain tests, including modulus of elasticity determinations, were made of longitudinal, long-transverse and, where possible, short-transverse specimens from four or five samples of each alloy and product. The tests were, in general, conducted in accordance with ASTM Ell1[20]. The tensile and compressive specimens were of the type shown in Fig. 1.

oaded from http://www.everyspec.com

For the stress-strain tests, loads were measured with Revere Super Precision-type load cells having an accuracy, traceable to the National Bureau of Standards, of 0.1 per cent of rated output. Strains were measured with Micro-Measurements Types CFA-13-062UW-350 strain gages. These gages have a gage factor accuracy of 0.5 per cent and a resistance accuracy of 0.3 per cent. Overall accuracy of load measurement did not exceed 0.5 per cent of reading or 0.25 per cent of full scale, whichever was larger. Strain measurement accuracy was 0.7 per cent of reading or 0.5 per cent of full scale, whichever was larger; the accuracy of the gages was well within the requirements established for Class Bl extensometers in ASTM E83[21].

The specimens were tested to the 0.2 per cent offset yield strength of the material. The stress and strain data were recorded in computer storage for use in establishing typical stress-strain and compressive tangent-modulus curves. The modulus of elasticity values were determined from Tuckerman analysis plots of these data as described in ASTM Elll.

Downloaded from http://www.everyspec.com

The plane-strain stress-intensity factor, K_{Ic}, was determined with fatigue-cracked compact specimens of the type shown in Fig. 3. Triplicate specimens were tested for the L-T, T-L and S-L orientations, Fig. 4. The dimensions and notches of the specimens and the fatigue-cracking and testing procedures were essentially in accordance with ASTM E399[22]. The specimens were fatigue cracked by axial loading (R = +0.1) in Krouse fatigue machines. The test setups for fatigue precracking and fracture toughness testing are shown in Figs. 5 and 6, respectively. Plots of load versus crack-opening displacement were recorded using 2 Mosley X-Y recorder. Candidate values of critical plane-strain stress-intensity factor, K_{Ω} , were calculated using the load at 5 per cent secant offset which is equivalent to about 2 per cent of crack extension. If all the validity criteria specified in ASTM Method E399 were met, the candidate value was designated as K_{Ic} . Values of K_{O} which failed to meet certain validity criteria by no more than 10 per cent were considered to be meaningful values, in that they were indicative of the fracture toughness of the material.

A.3. Axial-Stress Fatigue (Ambient Air)

Axial-stress smooth and notched fatigue specimens tested were of the type shown in Fig. 7. Longitudinal and long-transverse specimens were tested from each product and short-transverse specimens were tested from products equal to or greater than 3.5-in. in thickness. The specimens were taken from the same

locations as the tensile specimens. Tests were made at a stress ratio of $R^* = 0.0$. Sufficient tests were made of two lots of each alloy and product to determine fatigue strengths between about 10^3 and 10^7 cycles. Generally, three to five tests were made of the remaining lots tested. All tests were made in Krouse fatigue machines operating at 13.3, 25.0 or 28.8 Hz.

B. Fatigue-Crack Propagation Tests

Fatigue-crack propagation rates were determined for two sizes of hand forging and each plate alloy. The following additional variables were included for one or more of the four alloys: environment, frequency, stress ratio, specimen orientation, specimen size, and specimen location. One T-L specimen was taken from the surface of a 2219-T852 forging; all other specimens had their test sections taken from the middle third of the material. Specimens were taken in the L-T, T-L and, where possible, the S-L orientations. Typical dimensions for the compact specimens are shown in Fig. 8; because of product or material limitations, the plan dimensions of a few S-L specimens were used to obtain data at medium to high-stress intensities whereas the 1/4-in. thick specimens were used for obtaining data at low-stress intensities approaching threshold.

* R, Stress Ratio = Minimum Stress Maximum Stress

and the second s

The cracks in some L-T specimens deviated considerably from the plane of the notch. Data for such specimens are of questionable value since neither length measurements nor the stress-intensity solutions are correct; a proposed specification[23] would classify data for crack fronts deviating by more than 5° as invalid. To reduce the likelihood of angled propagation, many of the L-T specimens had their widths (W) reduced to provide an H/W ratio = 0.6 instead of 0.485. Previous tests [10] have demonstrated that equivalent results are obtained for the two geometries of specimens.

Tests were made in load control using closed loop, servocontrolled, test systems in three environments: dry air, moist air and sump water. Humidity was controlled within test chambers such as shown in Fig. 9. Dry air (relative himidity <10 per cent) was obtained using dessicants; moist air (relative humidity 96 to 99 per cent) was obtained by forcing moist air through the chamber. Synthetic sump water was contained in small troughs bonded to the test section. The sump-tank water, composed of chlorides of various metals, was prepared as reported in Ref. 24. Its composition is shown below:

	JAIL				
	Ppm	Weight, per cent	Metal Ion, ppm	Chloride ppm	
CaCl ₂	50	0.005	18	32	
CdCl ₂	1000	0.100	490	310	
MgCl ₂	50	0.005	6	18	
NaCl	100	0.010	20	30	
$ZnCl_2$	10	0.001	4.7	5.2	
CrCl_3.6H_20	1	0.001	0.2	0.3	
CuCl_3.2H_20	1	0.001	0.4	0.4	
FeCl ₃	-5	0.005	1.7	3.3	
MnCl ₂ .4H ₂ 0	5	0.005	1.4	1.8	
NiCl ₂ .6H ₂ 0	1	0.001	0.2	0.3	
Total	1224	0.135	<u> </u>	401.6	

To study the effect of test frequency, tests of many specimens were alternated between 20 and 2 Hz. For the large number of loadings required for the low-growth rate tests, data was obtained at 30 to 40 Hz. Some tests were slowed in late stages to maintain load stability or for running the test overnight.

an manana kananan kananan kananan kananan kanan kanan kananan kananan kananan kananan kanan kanan kanan kanan k

Downloaded from http://www.everyspec.com

The normal stress ratio for these tests was 1/3. To obtain some data on the effect of stress ratio, the minimum load for some low-growth rate specimens was increased when the test reached medium stress intensities to produce a stress ratio of 2/3.

Fatigue precracks for the high-growth rate tests were started at R = 0.1. For the low-growth rate tests, it was necessary to approach the test loads by successive load reductions of 10 to 15 per cent. The final portion of precracking was accomplished at test conditions. Visual-crack length measurements were made using low power magnification (15X) and a series of reference grid lines (0.02 in.) photographically printed on both sides of the specimen (Fig. 9). To increase the range of data obtained, the test loads were increased periodically during the test.

The rate of fstigue-crack growth, $\Delta a/\Delta N$, was determined from crack length (a) versus number of cycles (N) data evaluating incrementally the derivative of a versus N. These growth rates were plotted against the range in stress intensity evaluated at the average crack length over which the Δa increment was taken.

The expressions for stress intensity were:

$$\Delta K = \frac{\Delta P \sqrt{a}}{BW} Y,$$

Where: P = load, thousand pounds,

Y,
$$(H/W=0.485) = 30.96-195.8 \left(\frac{a}{W}\right) + 730.6 \left(\frac{a}{W}\right)^2 - 1186.3 \left(\frac{a}{W}\right)^3$$

+ 754.6 $\left(\frac{a}{W}\right)^4$, [Ref. 25]
Y, $(H/W=0.6) = 29.6-185.5 \left(\frac{a}{W}\right) + 655.7 \left(\frac{a}{W}\right)^2 - 1017.0 \left(\frac{a}{W}\right)^3$
+ 638.9 $\left(\frac{a}{W}\right)^4$, [Ref. 26]

a, B, W, and H (see Fig. 8).

C. Corrosion Characteristics

C.l. Resistance to Exfoliation

The resistance to exfoliation of the various products was evaluated by means of 2 x 4 in. panels machined to the T/10 and the T/2 planes (10 or 50 per cent of the section thickness machined from one of the fabricated surfaces) and exposed to the EXCO test per ASTM G_{3}^{4} -72[27]. The EXCO test involves total immersion in a 4N NaCl + 0.5 N KNO₃ 0.1N HNO₃ solution. In addition, 3 x 5 in. panels from selected lots of each product were machined to the T/10 and the T/2 plane and exposed to the acidified salt-spray test (MASTMAASIS) as specified in MIL-A-8978, 8979, and 8980[28]. Specimens exposed to the two accelerated tests were rated visually using the photographic standards contained in ASTM G34-72[27], Fig. 10. The lots of each product selected for testing in the acidified salt-spray test were also evaluated by the exposure of 3 x 9 in. panels from the T/10 and T/2 plane to the seacoast atmosphere at Point Judith, Rhode Island. The Alcoa exposure station at Point Judith is located about 300 feet from tr water's edge with the accompanying elements of considerable salt mist, persistent fog, and prevailing off-shore winds. Corrosive conditions at this location are severe and are comparable to those at the ASTM seacoast station at La Jolla, California.

and the second days of the second second

and the second states and the second s

Downloaded from http://www.everyspec.com

C.2. Resistance to Stress-Corrosion Cracking (SCC) - Smooth Specimens

The resistance to stress-corrosion cracking of aluminum alloy wrought products is most critical in the short-transverse direction; consequently the majority of the tests were made on specimens oriented in that direction. Four lots of each product were, however, selected for testing of longitudinal and longtransverse specimens in the accelerated stress-corrosion test at an applied stress of 75 per cent of the specified or tentative minimum long-transverse yield strength for the specific product and thickness. Short-transverse specimens from all lots of each product that were at least 2.0-in. thick were exposed to the accelerated stress-corrosion test at applied stresses of both 75 per cent and 50 per cent of the minimum long-transverse yield strength. The short-transverse specimen exposure program was

duplicated for a seacoast and an industrial atmospheric exposure. Unstressed control specimens were included for each combination of product lot, test direction, and test environment. Unstressed specimens were exposed in duplicate and stressed specimens were exposed in triplicate.

arren eranden ander bereiten bestehen der den socher socher beiden bereiten ander socher ander socher ander so

The test specimens for all three test directions were 0.125-in. diameter threaded-end tension specimens meeting the requirements of ASTM E8. The short-transverse specimens were centered on the midplane of the products and the longitudinal and long-transverse specimens were taken on or immediately adjacent to the midplane. The stressed specimens were axially loaded in tension in a constant strain-type fixture, Fig. 11, using the syrunronous loading device shown in Fig. 12.

The accelerated stress-corrosion test method was the 3.5 per cent sodium chloride by alternate immersion conforming to ASTM G44-75[29], and Federal Test Standard 151b, Method 823[30]. The alternate-immersion cycle consists of 10 minutes of total immersion followed by aeration and drying above the solution for the remaining 50 minutes of each hour, 24 hours per day. The exposure period for the accelerated test was 12 weeks with daily inspection of the test specimens for failures. All fractured specimens were subjected to visual and microscopic examination to determine the nature of the failure. Specimens that did not fail during the 12 week test were tension tested to determine the loss in strength as compared to the unstressed control specimens.

The atmospheric stress-corrosion testing in a seacoast environment is being conducted at Point Judith, Rhode Island. The conditions at this exposure station were previously discussed for the exfoliation testing being conducted at that location. The stress-corrosion tests in an inland industrial atmosphere are being conducted at the Alcoa Technical Center test station near New Kensington, Pennsylvania. Data obtained at New Kensington may be used to indicate conservatively the resistance of aluminum alloys to the atmosphere in most inland industrial areas and to atmospheres in substantially all non-industrial, non-marine areas.

Downloaded from http://www.everyspec.com

C.3. Resistance to SCC - Precracked Specimens

Stress-corrosion cracking tests of precracked specimens were conducted on selected lots of the various products with double bolt-loaded double cantilever beam (DCB) specimens of the type shown in Fig. 13. Laboratory tests to evaluate the effect of DCB specimen geometry indicated that the optimum a/h ratio (crack length/half beam height) would be obtained by testing a specimen having a 1.0-in. beam height and a chevron-type notch 1.0-in. in depth. Specimens of this geometry were machined using short-transverse sections of S-L orientation removed from the center plane of the selected lots of the various products. The DCB specimens were precracked in tension to an initial crack length of approximately 0.1 in. Duplicate specimens were exposed to 3.5 per cent sodium chloride solution, to the inland industrial

atmosphere at the Alcoa Technical Center, and to the searcoast atmosphere at Point Judith, Rhode Island.

http://www.everyspec.com

The DCB specimens that were to be exposed to 3.5 per cent sodium chloride solution were precracked after a few drops of 3.5 per cent sodium chloride solution were placed in the notch. During the 30 day test the specirens were placed vertically and kept in a laboratory environment having a controlled temperature of $27^{\circ}C \pm 1^{\circ}C$ and a controlled relative humidity of 45 ± 6 per cent. A few drops of the 3.5 per cent sodium chloride solution (reagent grade NaCl and deionized water) were added to the crack three times during each normal working day and once on Saturdays, Sundays, and holidays. Crack lengths at the half and quarter planes were measured three or four times each week using an ultrasonic detection device developed at the Alcoa Technical Center.

The average of the three crack-length measurements was used to calculate the pertinent stress-intensity values as a function of crack-opening displacement and crack length using the formula developed by Hyatt[31]. At the end of the 30 day exposure the specimens were unloaded and broken open to permit examination of the crack fronts.

Reduced specimen thickness DCB specimens, Fig. 14, from the center plane of 4.0-in. thick 2048-T851, 7050-T7351, and 7475-T7351 alloy plate were also tested by exposure of duplicate specimens

15

to the 3.5 per cent sodium chloride solution for 30 days, although previous tests of 2024-T351 and 7075-T651[32] have suggested that crack-growth rates and threshold levels may be independent of the stress state. A plane-strain stress state was expected for the 1.0-in. thick specimen used for the bulk of the testing of precracked specimens. Reduced specimen thickness of 0.25 and 0.5 inches expected to result in a mixed mode stress state were used for the DCB specimens from the 4.C-in. thick plate of each alloy. A reduced specimen thickness of 0.8 in. was also tested for the 4.0-in. thick 7475 alloy contract plate.

from http://www.everyspec.com

SECTION IV RESULTS OF TESTS

Downloaded from http://www.everyspec.com

The results of the tensile, compressive, shear and bearing tests, the ratios among these test results, and the modulus of elasticity data are shown in Tables 5 through 15. Data for developing stress-strain and tangent-modulus curves are shown in Tables 16 through 20; the curves are shown in Figs. 15, 16, and 17 for the plate alloys.

The results of fracture toughness test, are shown in Tables 21 through 25 and plotted in Figs. 18, 19, and 20.

The axial-stress fatigue data are plotted in Figs. 21 through 30.

The results of the fatigue crack-growth tests are presented in the form of $\Delta a/\Delta N$ versus ΔK plots in Figs. 31 through 58; the results are grouped to demonstrate environmental effects. Comparison of average crack-growth curves for T-L specimens from thick plate is shown in Fig. 59. Table 26 lists average rates of propagation along with rates determined for other tempers or alloys.

The results of the exfoliation tests are given in Tables 27 through 30. The results of accelerated stress-corrosion tests of smooth specimens are presented Tables 31 through 34. Atmospheric stress-corrosion results are contained in Tables 35 through 38. The results for precracked specimens are shown in Tables 39 through 41 and Figs. 63 through 86.
SECTION V

DISCUSSION OF RESULTS

://www.everyspec.com

A. Mechanical Properties

A.l. Tensile, Compressive, Shear and Bearing

ada ana ang sana ang

The tensile properties of the four alloys tested in this investigation met their respective tentative minimum values where established (Tables 5 through 9). The ten lots of 7475-T7351 plate produced by current practices, exhibited tensile properties (Table 8) a little higher than those tested under the contract (Table 7).

The long-transverse tensile ultimate and yield strengths were used for computing ratios among the tensile, compressive, shear and bearing properties (Tables 10 through 14). This procedure was in accordance with recent revisions in Chapter 9 of MIL-HDBK-5, Guidelines for Presentation of Data[12]. Under terms of the modified contract (F33615-74-C-5089), the statistical analyses of the ratios for determining reduced ratios were not included in the investigation. The reduced ratios will be computed prior to proposing design allowables for each alloy for inclusion in MIL-HDBK-5.

Although present, but not recognized in previous Air Force Contract data for 2XXX and 7XXX aluminum alloy plate[9, 14], the shear and bearing ratios for plate up through 1.500 in. thick usually differ from those greater than 1.500 in. thick. This difference can be attributed to the specification test location in the plate thickness, T/2 as opposed to T/4. The

ratios for 7475-T7351 contract plate (Table 12) and those for the current production plate (Table 13), when combined, indicate the aforementioned differences for the two thickness ranges; these shear and bearing ratios should be analyzed separately. These differences are also indicated for the 7050-T7351 plate, but are not as evident for the 2048-T851 plate data.

w.everyspec.com

The results of the modulus of elasticity tests obtained from the stress-strain tests are shown in Table 15. Average modulus values for use in MIL-HDBK-5 are as follows:

Alloy and Temper	Product	$\frac{Modulus, 10^3 \text{ ksi}}{\text{Tension}, (E) \text{ Compression}(E_C)}$		
2048-T851	Plate	10.4	10.7	
7050-T7351	Plate	10.3	10.6	
7475-T7351	Plate	10.3	10.6	

The modulus values for plate are in the same range as those for other 2XXX and 7XXX plate alloys. The values for 2219-T852 hand forging average about 3 per cent lower than those for 2014-T652 and 2024-T852 hand forgings[6]. The modulus values for the two lots of current production 7475-T7351 plate (Table 8) are in agreement with those of the 7475-T7351 contract plate.

The longitudinal and short-transverse modulus values for plate average 1 per cent and 1 to 2 per cent, respectively, lower than the corresponding long-transverse values. The 2219-T852 hand forging modulus values are the same for the longitudinal and long-transverse directions; short-transverse values average 2 per cent lower than those for the long-transverse direction.

The typical tensile and compressive stress-strain curves and compressive tangent-modulus curves are plotted in Fig. 15, 16, and 17 for 2048-T851, 7050-T7351 and 7475-T7351 plate, respectively. Curves for 2219-T852 hand forgings could not be developed due to insufficient production data to establish typical tensile properties. The typical stress-strain data are shown in Tables 16 through 18 for the plate and Table 19 for the 2219-T852 hand forgings. The typical stresses are also shown in the tables for each strain departure as a percentage of the typical yield strength in the event that the typical yield strengths are revised for the plate, or developed for the 2219-T852 hand forgings; these percentages can then be applied to the new typical yield strength values to establish stress-strain curves.

The data for the typical compressive tangent-modulus curves for the plate are shown in Table 20. These data are applicable to the typical yield strengths shown for the stress-strain curves. Revisions in the typical yield strengths will require recomputing of the tangent-modulus data.

A.2. Fracture Toughness

The results of the fracture toughness tests, $K_{\rm IC}$, are shown in Tables 21 through 25. These data generally indicate that there is an increase in toughness as the product thickness decreases. While the L-T data for the 7475-T7351 contract plate seem to suggest a decrease as the plate thickness decreases, this results from the use of relatively small specimens in which large-scale yielding is obtained. The same trend is suggested

by the T-L data for the same plate less than 2 in. in thickness. In fact, the K_Q values obtained with the smaller sizes of specimens are not indicative of the high levels of toughness of this alloy[33].

In order to obtain more meaningful estimates of the toughness of the current production plate (Table 24), the plan-view dimensions, W and 2H (Fig. 3), were increased for the L-T and T-L specimens in accordance with the guidelines developed by Kaufman[33] and shown in Aluminum Association Document T-5[34]. Kaufman showed that for a given lot of plate, essentially the same value of K (K_{Q} or K_{Ic}) is obtained with different thicknesses of specimen of a given plan size, so that if a specimen plan size is selected on the basis of obtaining valid data for thick specimens (i.e., $a \ge 2.5 \left(\frac{K_{IC}}{y_S}\right)^2$ and $\frac{P_{max}}{P_G} \ge 1.1$) estimates of toughness can be obtained with relatively thin specimens. In these tests, W and 2H were 4 and 4.8 in., respectively, for the T-L specimens of the 0.50 and 0.75-in. plate and 6 and 7.2 in., respecively, for the remaining L-T and T-L specimens from plate up to 3.50-in. With the exception of the 0.50 and 0.75-in. specimens, thick. all dimensions were within the standard or alternative limits specified by ASTM E399.

On this basis, it is evident from data in Table 24 that the toughness of 7475-T7351 plate less than about 2 in. in thickness, like that for thicker plate of all of the alloys tested, increases as thickness decreases. To ascertain that the difference in toughness indicated between the contract plate and the current

production plate were not solely a specimen size effect, similar large plan-size specimens from the 0.50 and 1.00-in. contract plate were also tested. The results are summarized below for the two groups of thin 7475-T7351 plate:

http://www.everyspec.com

	K _Q , k	si√in. (Large	Plan View Spe	cimens)
Thickness, in.	L Current	Contract	Current	Contract
0.50 0.75 1.00	60.0 58.9	53.6 <u>51.6</u>	42.6 43.7	40.5 <u>38.0</u>
Average	59.4	52.6	43.2	39.2

The above K_Q values for the current production plate average about 10 per cent higher than those obtained for the contract plate, and comparison of K_{Ic} values for the thicker plate (Tables 23 and 24) show similar differences. The plots of K_{Ic} versus yield strengths in Fig. 18 show that, for the levels of yield strength, the fracture toughness of the contract plate is outside the ranges of data for material produced with current optimum fabricating practices as well as those for plate fabricated prior to the contract[35]. Consequently, for reasons discussed in Section II, Materials, the levels of toughness developed by the contract plate are not indicative of the capabilities of current production, and so K_{Ic} values for the newer lots (Table 24) should be used in establishing the levels of toughness to be expected for 7475-T7351 at present and in the future.

22

State Margare and the

たちいいしかいたかというになっていたので、

where a start where the

Average values of K_{Ic} , including K_Q values considered meaningful in Tables 21 through 25, are summarized as follows:

Alloy and		Thickness Range	K _{Ic} , ksi√in.		
Temper	Froduct	in	L-T	T-L	S-L
2048-T851	Plate	1.0-4.0	38.0	30.6	25.4
7050-T7351	Plate	2.0-4.0 5.0-6.0	37.0 31.4	31.2 27.7	28.2 27.5
7475-T7351 ^(a)	Plate	1.75-3.5	50.2	37.4	32.9
2219 - T852	Hand Forgings	2.0-7.5	39.3	27.3	24.6

(a) Current Practice (Table 24) for contract plate
(Table 23), 1.0-4.0 in. thick, values average: 45.1 (L-T),
33.3 (T-L) and 29.6 (S-L).

The K_{Ic} data (valid and meaningful values) for the 2048, 7050 and 7475 (current practice) plate are plotted in Fig. 19. The shaded areas indicate ranges of 2124-T851 plate and other 2XXX and 7XXX plate data. Most of the data points are, at comparable yield strengths, above the data represented by the shaded areas, the largest differences being for the L-T orientation. The 7475-T7351 values for the L-T orientation are twice the 2XXX and 7XXX mid-range data and the highest of all the three plate alloys tested. A similar comparison of data is made in Fig. 20 for the 2219-T852 hand forgings. The level of toughness for relatively large 2219-T852 hand forgings (up to 7.5 x 22 in.) is within, or a little above, the range for smaller sizes of forgings of other alloys, but the yield strengths are in the low end of the range.

A.3. Axial-Stress Fatigue

The results of the axial-stress fatigue tests (ambient-air environment, \cap .0) of smooth and notched, $K_t = 3$, specimens are plotted in Fig. 21 through 30. Prior to this investigation no fatigue data were developed for the short-transverse directions of other alloys so short-transverse comparisons cannot be made. Generally, the fatigue strengths for short-transverse specimens of plate, from 10^6 to 10^7 cycles, are about 2/3 to 3/4 of the strengths for longitudinal and long-transverse specimens. For 2219-T852 hand forgings, the data for the three test direction are about the same.

2048-T851 Plate (Smooth-Fig. 21 and Notched-Fig. 22)

The data for smooth specimens are generally comparable to, or beyond 10^6 cycles a few ksi higher than, those of 1-3/8-in. thick 2024-T851 plate[2]. The data for both smooth and notched specimens indicate the fatigue strengths of 2048-T851 plate to be somewhat higher than those represented by the curve for 2124-T851 plate[9], but they are in the same range as other data indicated by the bands[35]. Beyond 10^6 cycles, the data for smooth specimens of the 1 and 2-in. thick 2048-T851 plate and, beyond 10^5 cycles, the data for notched specimens are in the upper half of the respective bands.

7050-T7351 Plate (Smooth-Fig. 23 and Notched-Fig. 24)

For smooth specimens the data are comparable to data of 7050-T73651 plate[10]. Relative to 7075-T7351 plate[1, 35], 1.25 to 1.75-in. (Fig. 25), the data for 2 to 6-in. thick 7050-T7351 plate fall at the bottom of the 7075 band, except at 10⁷ cycles where the data are at the center of the band.

Most of the fatigue data for notched specimens are within the band for 7050-T73651 plate, 2 to 6-in. thick. This band was based on a small number of tests and the upper end of the range at 10^7 cycles was established from two data points (L and LT) for 2-in. thick plate[10].

aded from http://www.everyspec.com

7475-T7351 Plate (Smooth-Fig. 25 and Notched-Fig. 26)

n er sen her sin der Sen er sen ander Sen der sen der sen seiter sin der sen sen sen sen sen sen sen sen sen s

The data up to 10^6 cycles for smooth specimens (L and LT) of the 1 to 4-in. thick contract plate fall at the bottom of the band for 7075-T7351 plate, 1.25 to 1.75-in.[1, 35]. At 10^7 cycles the data for the 1 and 2-in. plate are near the center and for the 3 and 4-in. plate in the lower half of the band.

For notched specimens the data are comparable at stresses from 20 ksi and above, but average a few ksi below the curve for 1.375-in. thick 7075-T7351 plate[32] at stresses below 20 ksi. 7475-T7351 Plate, Current Practice (Smooth-Fig. 27 and Notched-Fig. 28)

Fatigue strengths at 10^6 to 10^7 cycles for both smooth and notched specimens from plate produced by current practices are higher than those of the contract data represented by the bands (L and LT) and the curve (ST). Although based on limited data, the improvement in fatigue strength for the short-transverse direction appears to be appreciable. The strengths (L and LT) are comparable to those of 7075-T7351 plate.

2048-T851, 7050-T7351, and 7475-T7351 Plate

Average fatigue strengths for the three plate alloys generally show a spread of no more than 2 to 3 ksi. An exception is that a wider spread is indicated in the average strengths beyond 10^5 to

 10^7 cycles for notched short-transverse specimens; at 10^7 cycles the fatigue strength for 2048 is about 11 ksi and for 7050 and the contract 7475 is 7.5 and 7 ksi, respectively.

As discussed previously, the 7475-T7351 plate fabricated by current practices developed higher fatigue strengths than the contract 7475 plate. The strengths are also equivalent to or higher than those of 7050 and 2048, with the exception that for short-transverse notched specimens the fatigue strength at 10^7 cycles is 9 ksi compared to 11 ksi for 2048.

2219-T852 Hand Forgings (Smooth-Fig. 29 and Notched-Fig. 30)

Except at the high stress levels, the data for smooth specimens are within the band for 2219-T8-type plate[35]. At about 107 cycles the fatigue strengths are a little below those indicated by the curves for 2014-T652 and 2024-T852 hand forgings[6].

There are no hand forging data for comparison of tests of notched specimens; the fatigue strengths are equivalent to those of 2124-T851 plate (Fig. 22).

B. Fatigue Crack-Propagation Tests

The fatigue crack-propagation plots have a scale fcr stress intensity which emphasizes differences but also emphasizes scatter in the test data. Some of the plots show substantial scatter and overlap. Accordingly, differences in fatigue crackgrowth rates of less than 50 per cent as summarized in Table 26 are not considered significant for product comparisons. In both dry-air and sump-water environments, though not in moist air, there is a general tendency for the tests at slower frequencies to

26

and the second se

show somewhat faster propagation. The effects of the other variables are discussed below:

2048-T851 Plate (Figs. 31 to 36)

1. At the higher stress intensities the L-T specimens had lower rates of propagation in dry air than the T-L or S-L specimens.

- 2. Propagation rates in sump water were generally two to three times faster than those in dry air; however, the T-L specimens from the 1.0-in. plate exhibited little environmental effect at high stress intensities.
- 3. Good agreement between the results of tests of 1/4-in. and 1.0-in. specimens is shown in Figs. 34 and 35 for tests in dry air and sump water, respectively.
- 4. The rates of propagation for T-L specimens in the thick plate are similar to those reported for 2124-T851 plate[9].

<u>7050-T7351 Plate (Figs. 37 to 42)</u>

- 1. The rates obtained for the two plate thicknesses and three orientations are essentially equivalent.
- Fatigue-crack propagation rates in moist air and sump water were generally about 1-1/2 and 2 to 5 times faster, respectively, than rates in dry air.
- 3. The crack in the low-growth-rate T-L specimen tested in sump water (Fig. 41) stopped twice and cracking had to be reinitiated at higher loads.

4. The low-growth rate T-L specimen from the 4-in. plate (Fig. 40) was the only T-L specimen which had crack-front angulation; the rates determined for this tests are slower than those shown for the thicker, high-growth rate specimen.

wnloaded from http://www.everyspec.com

5. The rates of propagation are comparable to those reported for 7050-T73651 plate in dry and moist air[10].

7475-T7351 Contract Plate (Figs. 43 to 48)

- Compared to propagation in dry air, propagation is two to three times as fast in moist air and three to eight times as fast in sump water for all orientations.
- 2. The rates of propagation do not vary significantly with plate thickness or specimen orientation.
- 3. Figure 46 shows good agreement between rates determined for the 1/4-in. and 1-in. thick specimens tested in dry air.
- 4. Relatively slow rates of propagation were obtained for the 1/4-in. thick specimen in sump water (Fig. 47) at the low-stress intensities. Attempts to start the tests at lower stress intensities had resulted in crack arrest.

7475-T7351 ^urrect Production Plate (Figs. 49 to 52)

- ... The rates of propagation in the T-L and S-L specimens from the current production lots of 7475-T7351 plate were generally similar to those determined for the comparable contract materials.
- The 1/4-in. T-L specimen tested in dry air had somewhat slower propagation than the 1-in. T-L specimen (Fig. 50).

28

Stary 1

3. The propagation of a 1/4-in. thick specimen (Fig. 51) stopped after sump water was added to a crack initiated at a low-growth rate in laboratory zir.

2219-T852 Hand Forging (Figs. 53 to 58)

- The rates of propagation at the higher stress intensities were slow for the L-T specimens from the larger hand forging (Fig. 55).
- 2. Equivalent rates of propagation were obtained for T-L specimens taken from the surface and T/2 locations (Fig. 56).
- 3. The rates of propagation were 1-1/2 to 2 times as fast in moist air as in dry air and about 3 times as fast in sump water as in dry air at medium stress intensities.
- 4. At low-stress intensities, rates of propagation were much slower in sump water (Fig. 57) than in dry air (Fig. 56). An attempt to obtain sump water data at a somewhat lower stress intensity resulted in crack arrest.
- 5. The large 2219-T852 hand forging did not show the large directional effect reported for the comparable 7050-T73652 hand forging[10]. Also rates are slower than reported for a large 7175-T736 hand forging[9].

Comparison of Products and Alloys

- In moist air, propagation was similar for the hand forging and three plate alloys.
- 2. At medium and high stress intensities, Fig. 59 shows the propagation in sump water to be faster in 7050-T7351 and 7475-T7351 plate than in 2048-T851 plate; the environmental

effect was greatest for 7475-T7351 plate. At medium stress intensities, rates of propagation in sump water were comparable for 2048-T851 plate and 2219-T852 hand forgings.

Downloaded from http://www.everyspec.com

At low stress intensities propagation in sump water slowed or 3. arrested in alloys 7050-T7351, 7475-T7351, and 2219-1852 but not 2048-T851. Metallographic and scanning electron microscopic (SEM) examinations were made of a 7475-T7351 specimen whose crack arrested after 0.01 to 0.02 in. propagation in sump water. Before the sump water was added, the crack had been propagating in air at a slow rate $(5 \times 10^{-8} \text{ in/cycle})$. SEM examination, Fig. 60, showed that the "river markings," characteristic of Stage 1 propagation, were fanning out and formed scalloped crack fronts in the latter stages of the sump water propagation. SEM examination further revealed that the fracture surface was heavily contaminated with corrosion product. The primary elements in the product (as determined by X-ray analysis) were Cd and Ci, which are the predominant components of the sump water. Examination of the unloaded specimen had shown the crack to be wider in the tip region after the loadings in sump water than after the loadings in air. By partially filling the crack, the buildup apparently increased the load at which crack closure occurred; i.e., the crack was closed for a larger portion of the load cycle. Thus, the effective range of load and stress intensity was decreased. Depending on relative rates of buildup and propagation, progressive buildup of the corrosion product could slow or arrest the crack.

30

.

17. 12. 15 M

4. In each environment the rates of propagation were generally comparable for the 7050-T7351 and 7475-T7351 plate specimens irrespective of specimen orientation.

ed from http://www.everyspec.com

5. The 2048-T851 plate and 2219-T852 hand forgings showed more of a directional effect, with relatively slow rates shown at high-stress intensities for L-T specimens.

C. Corrosion Characteristics

C.l. Resistance to Exroliation

All products except the 2.5-in. thick 2219-T852 hand forging (S. No. 478817, Table 27) displayed a high resistance to exfoliation in the EXCO immersion test (Tables 27 through 30). Panels from the 7050-T7351 and 2048-T851 alloy plates revealed no evidence of exfoliation. Minor exfoliation (E-A) was detected on panels from the other 2219-T852 hand forgings and on the panels from the midplane of the 7475-T7351 plate. The development of minor exfoliation of degree E-A in the agressive EXCO solution is believed to be of no practical importance because it has been shown that products that develop this degree of exfoliation in the accelerated test do not develop any evidence of exfoliation during exposure to the seacoast atmosphere at Pcint Judith, Rhode Islana[36]. The total length of exposure to the EXCO solution was 144 hours for the 2219-T852 panels except for panels from the 2.5-inch thick hand forging and 96 hours for the other alloys. The panels were, how ver, examined and rated at various time periods including the 48 hour exposure specified in ASTM G34-72[27]. The general appearance and the ratings of the test panels did not change during extension

of the test beyond the specified 48 hours.

and the second second second

Visual examination of the panels from the 2.5-in. thick 2219-T852 hand forging after 48 hours of exposure to the EXCO solution resulted in the panels being given an E-D rating using the photographic standards in ASTM G34-72[27]. Metallographic examination of the test panel from the mid-plane, T/2, did not, however, reveal the lifting of the surface normally associated with a high degree of susceptibility to exfoliation. The metallographic examination of the corroded specimen showed pitting plus intergranular attack with some presence of slip plane attack. The nature of the attack on the 2219-T852 specimens is shown in Figures 61 and 62. From the metallographic examination it would have been expected that the specimen rating would be no worse than E-A. The disparity between the visual and metallographic examination of the 2219-T852 specimen may indicate that the EXCO test presently recommended for 7XXX series alloy may not be entirely satisfactory for 2XXX series alloys.

Downloaded from http://www.everyspec.com

No evidence of exfoliation was displayed during exposure to the acidified salt spray by any of the panels from selected lots of each product. The absence of any exioliation in the acidified sult spray on panels from the 2.5-in. thick 2219-T852 hand forging leads to a further questioning of the suitability of the EXCO test for evaluation of the resistance to exfoliation of 2XXX series alloys. On the basis of the metallographic examination of 2219-T852 EXCO parel and the results obtained in the acidified

salt spray it is believed that the accelerated tests indicate a high resistance to exfoliation for all of the tested products.

Downloaded from http://www.everyspec.com

The results of exfoliation testing of selected lots of each product by exposure to the seacoast atmosphere at Point Judith, Rhode Island are encouraging, but the exposures of up to 570 days are not of sufficient duration to provide conclusive results. These specimens which presently show no evidence of exfoliation will continue to be examined during routine periodic inspection of specimens at this exposure station.

C.2. Resistance to Stress-Corrosion Cracking (SCC) -Smooth Specimens

None of the longitudinal and long-transverse specimens of the various products failed during exposure to the 3.5 per cent sodium chloride alternate-immersion test (Tables 31 through 34). This demonstrates the excellent resistance to stress corrosion that is expected of these products in these test directions. The losses in tensile properties of longitudinal and long-transverse specimens after 12 weeks of exposure indicate that 7475-T7351 has the highest resistance to general corrosion. The lowest resistance to general corrosion was displayed by 7050-T7351 with an average per cent loss in tensile properties that was about three times that of 7475-T7351. The 2219-T852 and 2048-T851 specimens displayed losses in tensile properties approximately midway between these two extremes. The reductions in tensile properties were about the same for the stressed and unstressed specimens except for 7050-T7351 alloy. The per cent losses in tensile properties of the stressed

7050-T7351 specimens were about 1.5 times the per cent losses obtained for the unstressed specimens.

A 30-day exposure to the 3.5 per cent sodium chloride alternateimmersion test has been commonly used to evaluate the stresscorrosion performance of high-strength aluminum alloy using 0.125-in. diameter, short-transverse tension specimens (Tables 31 through 34). None of the short-transverse specimens exposed to the alternateimmersion test at an applied stress of 50 per cent of the tentative or specified minimum long-transverse yield strength for the tested product lots failed during this 30-day exposure period. Two short-transverse specimens from the 3.0-in. thick 2048-T851 plate (S. No. 421083) did fail with longer exposure. Although longer exposures are necessary to obtain conclusive results none of the short-transverse specimens stressed to 50 per cent of the tentative or specified long-transverse yield strength have failed during atmospheric exposure at Point Judith, Rhode Island or at the Alcoa Technical Center for time periods of up to 496 days (Tables 35 through 38).

After 30 days of exposure to the alternate-immersion test, failure of short-transverse specimens stressed to 75 per cent of the tentative or specified minimum long-transverse yield strength had occurred for three lots of 2048-T851 alloy plate. Both lots of 2. -in. thick plate (S. No. 421381, 421382) and one lot of 3.0-in. thick plate (S. No. 421083) of 2048-T851 alloy had one of the triplicate specimens failing to complete a 30-day test. These same lots of 2048-T851 alloy plate are the

34

an san di manang manang manang manang kan dalam kan dalam dan manang manang manang manang manang dan san dan sa

only lots of any alloy to have experienced specimen failures during exposure at Point Judith, Ehode Island. Continuation of the alternateimmersion testing of the short-transverse specimens stressed at 75 per cent did not result in any failures of the 7275-T7351 alloy specimens and only one failure of the 2219-T852 alloy specimens. However, nine additional specimens of 2048-T851 alloy and six specimens of 7050-T7351 alloy failed during the extended exposure.

.com

Metallographic examination of the two earliest 2048-T851 failures in the alternate-immersion test revealed the failures to be tensile fractures with no evidence of secondary intergranular cracks. Metallographic examination of short-transverse specimens of 2048-T851 alloy that failed after longer periods of exposure did reveal clear evidence of intergranular cracks. The presence of intergranular cracking in these specimens and the failures obtained at Point Judith, Rhode Island, would seem to indicate that the lots of 2.0-in. thick plate and the one lot of 3.0-in. thick plate of 2048-T853 alloy do have some susceptibility to intergranular stress corrosion at the higher stress.

C.3. Resistance to SUC of Precracked Specimens

Table 39 lists the lots of each product that were selected to be tested with the short-transverse (S-L) tension precracked DCB specimens. The initial average crack length, initial total crack-opening displacement (V), and initial stress intensity (K_{II}) are shown for each individual DCB test specimen. The results of plane-strain fracture toughness tests of the selected materials are also shown. The initial stress-intensity values (K_{II}) are

in very good agreement with the plane-strain fracture toughness values (K_{Ic}). The DCB specimen geometry used in the tests, Figure 13, is believed to be responsible for this good agreement.

from http://www.everyspec.com

Individual crack-growth curves for the specimens exposed to the 3.5 per cent sodium-chloride solution are presented in Figures 63 through 73. The DCB specimens of 7475-T7351 alloy, Figures 72 and 73, displayed a crack growth that was about the smallest change that can be detected with the Alcoa Technical Center ultrasonic measuring device. The crack growth for the other products showed considerable variability for the various lots and in several cases even between duplicate specimens from the same lot. The most significant crack growth, Figure 66, was experienced with the duplicate specimens from the 2.0-in. thick 2048-T851 plate, but the crack growth was considerably less than that incurred by highly susceptible materials such as 7075-T651 and 7079-T651.

Examination of the crack surface of the specimens at the completion of the 30-day test indicated that the environmental crack growth of most of the specimens was the result of typical intergranular stress-corrosion cracking. The stress-corrosion growth generally proceeded on various planes giving a fracture surface with many small steps. The tendency for flat SCC facets was less with thicker sections making the SCC more difficult to recognize. The presence of actual SCC is, however, questionable for the 4.0-in. thick 7475-T7351 plate and for the 4.5 and 7.5-in. thick 2219-T852 hand forgings. Rough measurements of the

environmental crack growth on the fracture surfaces gave a reasonably good check with the ultrasonic measurements except for the 7475-T7351 and 2219-T852 specimens that had very small amounts of crack growth.

Crack-growth rate versus stress-intensity data were calculated for each of the test specimens. The plateau velocities for the K-rate curves were determined by an arbitrary procedure to avoid the erratic shapes of crack-growth curves during the initiation of SCC and the extraneous effect of corrosion product wedging. The total amount of crack-growth that occurred during the first 360 hours (15 days) of exposure was used to calculate the overall average growth rate for that period. These results are shown in Table 40. This procedure has been found to represent best the initial sustained crack growth which is considered to be one of the most significant features of the K-rate curves. The K_T -rate data for the various products are illustrated in Figure 74. Data for plate of alloys 7079-T651, 7075-T651, and 7075-T7351[32] are included for comparison. The overall average plateau velocity of 1.5 x 10^{-4} in. per hour for the 7050-T7351 alloy plate is in good agreement with the average plateau velocity obtained for 7050-T73651 plate in previous investigations[37]. The range in plateau velocities of from 2.8 x 10^{-5} to 4.8 x 10^{-4} is a somewhat larger variation than previously encountered. This larger variation is due to the greatly different performance of the two lots of 6.0-in. thick 7050-T7351 alloy plate. No explanation is available for the difference in performance of these two lots or

37

for the unexpectedly large amount of SCC growth encountered with one of the lots. The overall average plateau velocity for the four lots of 7475-T7351 plate was 2.5 x 10^{-5} in. per hour which compares favorably with the average plateau velocity for 7075-T7351 alloy plate.

いややうもの

したないのない

Downloaded from http://www.everyspec.com

The DCB specimen data provide questionable values for the threshold stress intensity due to the fact that the crack growth did not reach an actual arrest during the 30-day test. It is difficult to be sure of a definite arrest because the formation of corrosion products on the surfaces of the precrack and corrosion crack can form wedges that drive the SCC ahead. A 30-day exposure was selected for the present tests on the basis of previous test experience with similar materials. Actually from the environmental crack-growth curves it would appear that a 20-day exposure was sufficient for all specimens except the specimens for the 2.0-in. thick 2048-T851 alloy plate. Therefore, estimates of threshold stress intensities were calculated for the crack lengths at the end of 20 days. These values would be expected to be good estimates of the true threshold stress intensity for samples that give indications of crack arrest or samples that show very low crackgrowth rates. The estimates would, however, be overly optimistic for specimens, such as those from the 2.0-in. thick 2048-T851 alloy plate, Figure 66, that continue to show significant crack growth after 20 days of exposure. The estimates of the threshold stress intensity presented in Table 40 demonstrate that except for 2.0-in. thick 2048-T851 alloy plate and one of the lots of 6.0-in.

thick 7050-T7351 alloy plate, all of the products had high estimated threshold stresses that ranged from 89 to 99 per cent of the initial pop-in stress intensity. Although it is questionable whether these values are valid for design considerations, they do provide a basis for comparison of the various alloys and tempers at the selected length of exposure. This is also true for the average velocities listed in Table 40.

The alloys and tempers would, on the basis of the precracked DCB specimen data, be ranked in the following order of decreasing performance, 7475-T7351, 2219-T852, 7050-T7351, and 2048-T851. This is the same ranking order that is obtained from the results of the smooth specimen stress corrosion tests

Effect of DCB Specimen Thickness

Previous tests of 2024-T351 and 7075-T651[32] suggested that crack-growth rates and threshold levels may be independent of the stress state. This suggestion was subjected to further examination by the exposure to 3.5 per cent sodium-chloride solution of reduced thickness DCB specimens, Figure 14, from the center plane of 4.0-in. thick 2048-T851, 7050-T7351, and 7475-T7351 alloy plate. The l.0-in. thick DCB specimens for which a planestrain stress was expected had initial stress-intensity values (K_{II}) that were in very good agreement with the plane-strain fracture toughness values (K_{IC}) . The initial stress-intensity values shown in Table 41 for the 0.25-in. reduced thickness DCB specimens expected to have a mixed mode stress state, of course, were considerably higher than the fracture toughness

 (K_{Ic}) values. The high initial stress intensities were the result of the higher total crack-opening displacement of the reduced thickness specimens.

San Stranger

The crack-growth curves for the reduced thickness specimens are presented in Figures 75 through 84. Figures 77, 80, and 84 compare the environmental crack growth of 1.0, 0.5, and 0.25-in. thick DCB specimens of each plate alloy. The reduced thickness specimens generally showed less crack growth than the 1.0-in. thick specimens. This is especially evident for the 4.0-in. thick 7050-T7351 alloy plate, Figure 80. For the stresscorrosion resistant alloys and tempers in this investigation departure from a plane-strain stress state appears to have a tendency to reduce the calculated crack-growth rates and to give higher estimates for the threshold stress intensity. Corrosion Data for Current Production Lots of 7475-T7351

The stress-corrosion data for the current lots of 7475-T7351 plate are presented in Tables 42 through 45 and in Figures 85 and 86. These results are in complete agreement with the main body of test results and provide additional evidence of the outstanding resistance to stress corrosion of all of the tested lots of 7475-T7351 plate.

SECTION VI

ided from http://www.every

SUMMARY AND CONCLUSIONS

The mechanical properties, including fracture characteristics and axial-stress fatigue, fatigue crack-growth rates and corrosion characteristics have been evaluated for 2048-T851, 7050-T7351, and 7475-T7351 plate and 2219-T852 hand forgings produced by commercial practices. Based on the data developed in this investigation, the following summary statements and conclusions have been made:

A. Mechanical Properties

A.l. Tensile, Compressive, Shear and Bearing

- Ratios among the tensile, compressive, shear and bearing properties have been computed. These ratios are suitable for use in developing reduced ratios to establish derived design allowables for inclusion in MIL-HDBK-5.
- The average modulus of elasticity values developed from stress-strain tests are as follows:

. . .

and		Modulus, 10 ³ ksi		
Temper	Product	Tension(E)	$Compression(E_C)$	
2048-T851	Plate	10.4	10.7	
7050-T7351	Plate	10.3	10.6	
7475-T7351	Plate	10.3	10.6	
2219 - T852	Hand Forgings	10.2	10.4	

3. Tensile and compressive stress-strain and compressive tangentmodulus curves have been developed for 2048-T851, 7050-T7351 and 7475-T7351 plate for inclusion in MIL-HDBK-5. Stress-strain data for 2219-T852 hand forgings have been presented in a form suitable for developing curves when sufficient tensile property data have been obtained from production lots to establish typical tensile yield strengths.

A.2. Fracture Toughness

- All three alloys of plate developed levels of fracture toughness appreciably higher than other commercial alloys having comparable yield strengths. Alloy 7475 exhibited the highest fracture toughness in all three orientations, particularily for the L-T.
- 2. The toughness levels of the 7475-T7351 plate, although above current minimum values, were not representative of current production. Data for ten additional lots produced by current production practices (Table 24) demonstrated the hightoughness capabilities expected of this alloy and so these K_{Ic} values should be used in establishing the levels of toughness to be expected for 7475-T7351 at present and in the future.
- 3. The 2219-T852 hand forgings, sizes up to 7.5 x 22 in., developed the levels of toughness higher than those of most other hand forging alloys, but yield strengths are in the low end of the range.

A.3. Axial-Stress Fatigue

1. The axial-stress fatigue strengths for smooth and notched, $K_t = 3$, specimens are in the same general range as those of corresponding products of 2XXX and 7XXX alloys.

- 2. Fatigue strengths of the 7475-T7?51 plate produced by current production practices are comparable to those of 7075-T7351 plate. The fatigue strengths for the plate tested under the contract are generally lower than those of 7075-T7351 plate.
- 3. The average fatigue strengths of the three plate alloys are in the same general range except for short-transverse notched specimens ($K_t = 3$); the fatigue strength of the 2048 plate at 10^7 cycles is 11 ksi compared to 9 and 7 ksi for 7475 and 7050, respectively.

গুলে সময়ত প্ৰথম কিন্তু কিন্তু কিন্তু বিশ্বমাধ কিন্তু বিশ্বমাধ বিশ্বমাধ কিন্তু ক

B. Fatigue-Crack Propagation

- In moist air, propagation was similar for the hand forging and the three plate alloys.
- 2. At medium-stress intensities, crack propagation rates in moist air are 1.5 to 2 times those in dry air, and rates in sump water are 2 to 9 times those in dry air. Propagation in sump water was twice as fast in 7050-T7351 and 7475-T7351 plate as in 2048-T851 plate and 2219-T852 hand forgings. Environmental effects were less at high-stress intensities.
- 3. At low-stress intensities, propagation in alloys 7050-T7351, 7475-T7351 and 2219-T852 slowed or arrested in sump water. This behavior is attributed to a build-up of corrosion product which effectively reduced the stress intensity range.
- 4. In both dry air and sump water, though not in moist air, there is a tendency for crack propagation at the slower loading rates to be somewhat faster than at higher loading rates.
- 5. For the 7050-T7351 and 7475-T7351 plate specimens, rates of propagation are independent of specimen orientation. The 2048-T851 plate and 2219-T852 hand forgings show some

directional effect, with lower rates for L-T specimens at high-stress intensities than for T-L and S-L specimens.

6. In several cases, good agreement was found between growth rates determined for 1/4-in. and 1-in. thick specimens tested in dry air.

NN DUTT N

Downloaded from http://www.everyspec.com

- 7. The rates of propagation determined for the current production lots of 7475-T7351 plate are generally similar to those of the contract materials.
- 8. The rates of propagation obtained for these alloys in dry and moist environments are generally comparable to reported values for similar aircraft alloys.

C. Corrosion Characteristics

- All products have a high resistance to exfoliation in the accelerated tests and after up to 570 days in a seacoast atmosphere.
- 2. All products have the expected excellent resistance to stress corrosion when tested in the longitudinal and long-transverse direction.
- 3. All products display excellent resistance to stress corrosion in the critical short-transverse direction when tested at an applied stress of 50 per cent of the specified or tentative minimum long-transverse yield strength. The only failures encountered at this stress level were for duplicate specimens of 2048-T851 alloy during extended exposure in the 3.5 per cent alternate-immersion test beyond the normal 30-day exposure.

4. Short-transverse specimens of 7475-T7351, 2219-T852, and 7050-T7351 display excellent resistance to stress corrosion at an applied stress of 75 per cent of the specified or tentative minimum long-transverse yield strength. One specimen of 2219-T852 alloy and six specimens of 7050-T7351 alloy failed during extended exposure in the 3.5 per cent sodium-chloride alternate-immersion test (>30 days).

wnloaded from http://www.everyspec.com

- 5. Short-transverse specimen failure: in less than thirty days in the alternate-immersion test and specimen failures in the seacoast environment at Point Judith demonstrate that the lots of 2.0-in. thick plate and one lot of 3.0-in. thick plate of 2048-T851 alloy do have some susceptibility to intergranular stress corrosion at an applied stress of 75 per cent of the minimum long-transverse yield strength.
- 6. Tests of precracked DCB specimens showed the same general trends as tests with smooth specimens and result in the following ranking in order of decreasing performance: 7475-T7351, 2219-T852, 7050-T7351, and 2048-T851.

7. Testing of reduced thickness DCB specimens using tensile pop-in precracking indicates that the stress state can have an effect on the crack-growth rate and estimated threshold stress intensity values for the stress corrosion resistant alloys and tempers evaluated in this investigation.

RFFERENCES

Downloaded from http://www.everyspec.com

- J. G. Kaufman, G. E. Nordmark and B. W. Lifka, "Fracture Toughness, Fatigue and Corrosion Characteristics of 7075-T651, 7075-T7351 and 7079-T651 Aluminum Alloys," Technical Report AFML-TR-65-170, May 1965.
- J. G. Kaufman, G. E. Nordmark and B. W. Lifka, "Fracture Toughness, Fatigue and Corrosion Characteristics of 2020-T651, 2024-T851, 2219-T851 and 7001-T75 Aluminum Alloys," Technical Report AFML-TR-66-291, September 1966.
- 3. D. J. Brownhill, R. E. Davies and D. O. Sprowls, "Mechanical Properties, Including Fracture Toughness and Fatigue, and Resistance to Stress Corrosion Cracking, of Stress-Relieved Stretched Aluminum Alloy Extrusions," Technical Report AFML-TR-68-34, February 1968.

ne in oar of oor multiple-set approximate strategy with the state of the state of the state of the state of the

Ś.

- 4. J. T. Staley, "Investigation to Improve the Stress-Corrosion Resistance of Aluminum Aircraft Alloys Through Alloy Additions and Specialized Heat Treatment," Final Report under Naval Air Systems Command Contract N00019-68-C-0146, February 1969.
- 5. J. T. Staley, "Investigation to Develop a High-Strength, Stress-Corrosion Resistant Aluminum Aircraft Alloy," Final Report under Naval Air Systems Command Contract N00019-69-C-0292, January 1970.
- 6. D. J. Brownhill, C. F. Babilon, G. E. Nordmark and D. O. Sprowls, "Mechanical Properties Including Fracture Toughness and Fatigue, Corrosion Characteristics and Fatigue Crack Propagation Rates of Stress-Relieved Aluminum Alloy Hand Forgings," Technical Report AFML-TR-70-10, February 1970.
- J. T. Staley, "Investigation to Develop a High-Strength, Stress-Corrosion Resistant Naval Aircraft Alloy," Final Report under Naval Air Systems Command Contract N00019-70-C-0118, November 1970.
- J. T. Staley, "Further Development of Aluminum Alloy X7050," Final Report under Naval Air Systems Command Contract N00019-71-C-0131, May 1972.
- 9. C. F. Babilon, R. H. Wygonik, G. E. Nordmark and B. W. Lifka, "Mechanical Properties, Fracture Toughness, Fatigue, Environmental Fatigue Crack Growth Rates and Corrosion Characteristics of High Toughness Aluminum Alloy Forgings, Sheet and Plate," Technical Report AFML-TR-73-83, April 1973.

10. R. E. Davies, G. E. Nordmark and J. D. Walsh, "Design Mechanical Properties, Fracture Toughness, Fatigue Properties, Exfoliation and Stress-Corrosion Resistance of 7050 Sheet, Plate, Hand Forgings, Die Forgings and Extrusions," Naval Air Systems Command Contract N00019-72-C-0512, July 1975.

Downloaded from http://www.everyspec.com

- 11. J. T. Staley, J. E. Jacoby, R. E. Davies, G. E. Nordmark, J. D. Walsh and F. R. Rudolph, "Aluminum Alloy 7050 Extrusions," AFML-TR-76-129, March 1977.
- Military Standardization Handbook, Metallic Materials and Elements for Aerospace Vehicle Structures, Volume 1, August 29, 1975.
- "Standard Methods of Verification of Testing Machines, E4-76," 1976 Book of ASTM Standards, Fart 10.
- 14. G. W. Stickley and D. J. Brownhill, "Mechanical Properties of Stress-Relieved Stretched Aluminum Alloy Plate," Technical Report AFML-TDR-64-105, May 1964.
- "Standard Methods of Tension Testing Wrought and Cast Aluminum and Magnesium Alloy Products, B557-74," 1976 Βοοκ of ASTM Standards, Part 7.
- 16. "Standard Methods of Tension Testing of Metallic Materials, E8-69," 1976 Bock of ASTM Standards, Part 10.

- "Standard Methods of Compression Testing of Metallic Materials, E9-70," 1976 Book of ASTM Standards, Part 10.
- 18. R. E. Davies and J. G. Kaufman, "Effects of Test Method and Specimen Orientation on Shear Strengths of Aluminum Alloys," ASTM Proceedings, Vol. 64, 1974, pp. 999-1010.
- 19. "Standard Method for Pin-Type Bearing Test of Metallic Materials, E238-68," 1976 Book of ASTM Standards, Part 10.
- 20. "Standard Method for Determination of Young's Modulus at Room Temperature, Ell1-61," 1976 Book of ASTM Standards, Part 10.
- 21. "Standard Method of Verification and Classification of Extensometers, E83-67," 1976 Book of ASTM Standards, Part 10.

22. "Standard Method of Test for Plane-Strain Fracture Toughness of Metallic Materials, E399-74," 1976 Book of ASTM Standards, Part 10.

Downloaded from http://www.everyspec.com <

- 23. "Tentative Method of Test for Constant-Load-Amplitude Fatigue Crack Growth Rates Above 10⁻⁰ in./cycle," ASTM Tentative Standard EXXXX.
- 24. "Elastomers for Fuel Systems Containing Micro-organismcontrolling Additives," AFML Technical Documentary Report No. RTD-TDR-63-4195, Part II, January 1965.
- 25. W. G. Clark, Jr., ASTM E24.4, "Fatigue Crack Growth Rate Testing Round Robin Program," Task Group Progress Report No. 3, May 14, 1971.
- 26. E. T. Wessel, "State of the Art of the WOL Specimen for K_{IC} Fracture Toughness Testing," Journal of Engineering, <u>Fracture Mechanics</u>, Vol. 1, No. 1, June 1968, p. 77.

·· ~ 444 645 644

and the second second

- 27. "Stindard Method of Test for Exfoliation Corrosion Susceptibility in 7XXX Series Copper-Containing Aluminum Alloys (EXCO Tests)," G34-72, 1976 Book of ASTM Standards, Part 10.
- B. W. Lifka and D. O. Sprowls, "An Improved Exfoliation Test for Aluminum Alloys," Corrosion, Vol. 22, No. 1, 1966, pp. 7-15.
- 29. "Standard Recommended Practice for Alternate Immersion Stress Corrosion Testing in 3.5% Sodium Chloride Solution," G44-75, 1976 Book of ASTM Standards, Part 10.
- 30. "Federal Test Method Standard No. 151b," November 1967.
- 31. M. V. Hyatt, "Use of Precracked Specimens in Stress-Corrosion Testing of High-Strength Aluminum Alloy," Corrosion, Vol. 26, No. 11, November 1970, pp. 487-503.
- 32. D. O. Sprowls, M. B. Shumaker, J. D. Walsh and J. W. Coursen, "Evaluation of Stress-Corrosion Crack Susceptibility Using Fracture Mechanics Techniques," Final Report - Part I, May 31, 1973, prepared for George C. Marshall Space Flight Center, Contract No. NAS 8-21487.

33. J. G. Kaufman and F. G. Nelson, "More on Specimen Size Effects in Fracture Toughness Testing," ASTM STP 559, American Society for Testing and Materials, 1974, pp. 74-85.

Downloaded from http://www.eve

- 34. J. G. Kaufman, R. L. Lake, G. Schmauch and R. E. Zinkham, "The Aluminum Association Position on Fracture Toughness Requirements and Quality Control Testing," An Interim Report, T-5, September 1974.
- 35. Unpublished Data, Alcoa Laboratories.

.

- 36. B. W. Lifka and D. O. Sprowls, "Relationship of Accelerated Test Methods for Exfoliation Resistance in 7XXX Series Aluminum Alloys with Exposure to a Seacoast Atmosphere," <u>Corrosion in Natural Environments STP 558</u>, American Society for Testing and Materials, 1974, pp. 306-333.
- 37. D. O. Sprowls, J. W. Coursen and J. D. Walsh, "Evaluating Stress-Corrosion Crack-Propagation Rates in High Strength Aluminum Alloys with Bolt Loaded Precracked Double-Cantilever-Beam Specimens," <u>Stress Corrosion-New Approaches, ASTM STP 610</u>, American Society for Testing and Materials, 1976, pp. 143-156.

Fig. 1 General Dimensions of Tensile, Compressive and Shear Specimens

<u> Bizygene</u>r

a de la construcción de la constru La construcción de la construcción d

Ø

d21

Ę

d2

o†9

Reduced Section

R=2D

Gage Length

Downloaded from http://www.everyspec.com

at met

Hand and the second

ACTURE AND ADDING ACTURE

3 × ~ • •

いたがないためのないでいたが

Downloaded from http://www.everyspec.com

新学校的中国的新生产的

1900-0

Γ				<u> </u>		
	1	E/I		1.5		2.0
	•	, 1n.	5615	5635	647	751
-	£ 	4	0	0	0	0
	\$ * -		0.3750	0.3755	0.3750	0.3755
	L. In.		ł	5		9-3/8
	W/2, 1n		0.748	+->c)·n+	0.748	201.0
	W, in.		1.496		1.496	->>・+
	T, in.		0-094		0.094	
	Specimen Type		E/D=1.5		E/D=2.0	

and the second second

. ² General Dimensions of Bearing Specimens

F1g. 2

Downloaded from http://www.everyspec.com

A second a final second

NOTCH ENLARGED VIEW

⊅.4

6500

.0

Fig. 6 Setup for Testing Compact Fracture Toughness Specimens.

anti-start for a bar a bar and a second

ť.

and the second second

NOTE: All dimensions in inches.

See See 1

Fig. 7 Smooth and Notched Axial-Stress Fatigue Specimens

Downloaded from http://www.everyspec.com

and the second second

a = crack length

Special Dimensions - Inches

_	В	2H	W	A	D	d	W ₁	H/W
	1.00	3.72	3.805	1.650	0.75	1.151	4.80	0.485
	1.00	3.72	3.100	1.650	0.75	1.151	4.10	0.6
	0.25	2.48	2.550	1.100	0.375	0.62	3.200	0.485

Fig. 8 Dimensions for Compact Fatigue Crack-Propagation Specimen

STATISTICS OF STATISTICS

25-26-67

Fig. 9 Fatigue Crack-Growth Tests of Compact Specimens.

E-A

E-C

E-D

Fig. 10 Four Degrees of Severity of Exfoliation Corrosion Per ASTM Standard Method Test G34-72.

E-B

Fig. 11 1/8-in. Diameter Tensile Specimen, Various Parts of the Stressing Frame and Final Stressed Assembly for Stress Corrosion Tests.

Same and a second

Fig. 12 Synchronous Loading Device Used to Stress Specimens Stressed Assembly and One Assembled Finger Tight Ready For Stressing Are Shown to the Left.

A CONTRACTOR OF A CONTRACT OF A CONTRACT

£.,

\$9.2

Fig. 13 Configuration of Double Cantilever Beam (DCB) Specimen Used for SCC Tests

Design of the Contract of the

ment there is a subscription of the subscripti

Fig. 14 Configuration of Reduced Thickness Double Cantilever Beam (DCB) Specimen Used for SCC Tests

の時代になったのないない。

- 13 L EV -

Fig. 15

1.00

Fig. 17

C

Andrew Contraction of the contraction

SHIRAN BURN CARACTERS

Sarry Stok Of Statistic

7 × 14.44.5

ίú

www. www.accompropries. . .

- 6 m

1

. .

.

States States

...

のないなが、「などの」の

Contraction of the second second second

AND A DESCRIPTION OF A

20

70

MAXIMUM STRESS, Ksi

71

Downloaded from http://www.everyspec.com

A CONTRACT OF CONTRACT

ale and

いたいたいようないないないないないない

ないまたいとないとなったいというないというとうできたいと

with the start of the start of

÷

WAXIMUM STRESS, Ksi

MAXIMUM STRESS, Ksi

「ないたいない」とないのためにないたいであるというとないない

11.00 **T T Z**

Statistic Contraction of the state of the st

ISA (SSEATS MUMIXAM

2 . E. e

A STATE OF COMPANY

North Bandary Ba

Low the set of the set of the

AND AN AN AN AN AND AND AND

MAXIMUM STRESS, Ksi

MAXIMUM STRESS, Ksi

76

Receiver

ないためないないのないので

Downloaded from http://www.everyspec.com

vnloaded from http://www.everyspec.com

in the second second second

description and the second second

and a state of the state of the

Server and the server

WYXIMUM SIBESS' KSI

:

Downloaded from http://www.everyspec.com

Fatigue Crack-Growth Data for 1-in. 2048-T851 Flate T-L Orientation F1g. 32

ł

Fig. 34 Fatigue Crack-Growth Data for 4 in. 2048-T851 Flate T-L Cuientation (dry air)

1000

82

A.

and the second se

;

;

3

シール・ストーレー しんしょうしょうかん あたいかいたいかい かない ひろうちょう しんかんしょう たんたいてん ないないないない かいたいたい

Downloaded from http://www.everyspec.com

84

an a start and the start of the start and the start of the The start of the start

<u>i...</u>.

Fig. 38 Fatigue Crack-Growth Data for 2-in. 7050-T7351 Jate T-L Orientation

Sec. Sec.

States and a state of the

Downloaded from http://www.ev

88

and the second the second

89

Downloaded from http://www.everyspec.com

Section State

中国的政治的政治政治

1 JA 844

Fatigue C ath-Growth Data for 1-in, 7475-T7351 flate L-T Orientation

91

and a constant water and a second

and the state of t

CRAME CONTRACTOR OF THE OWNER OF

Downloaded from http://www.everyspec.com

92 .

ł

Fig. 45 Fatigue Crack-Growth Data for h-in. 7475-T7351 Flate L-T Orientation

93

Downloaded from http://www.everyspec.com

Downloaded from http://www.everyspec.com

94

1.1

ded from http://www.everyspec.com

Downloaded

the second works

95

" . " " " " and " and " and " and the state of the state

Jan. 55

Downloaded from http://www.everyspec.com

Fig. 48 Fatigue Crack-Jrowth Data for 4-in. 7475-T7351 Flate S-L Orientation

unaria tan di m. 4. .

- X

Downloaded from http://www.everyspec.com

Ng Marana in

the color is that t

Fig. 49 Fatigue-Crack Growth Data for 3/4 in. 7475-T7351 Flate (Current Fractice) T-L Orientation

16:404.5

Downloaded from http://www.everyspec.com

Fatigue Crack-Growth Data for 3.5-in. 7475-T7351 Plate (Current Fractice), T-L Orientation (dry air)

98

A STATE AND A STAT

Downlo

DOMESTIC: TOOLE

;

.¥..

 $m_{\rm P}$

¢

Sector States in the

د وزرد به ۲ پاراس

a the same same is a subscription of the second states of the

101

Downloaded from http://www.everyspec.com

Downloaded from http://www.everyspec.com

102

State of the second

and the second second

a sea lite a second on where we will be

Downloaded from http://www.everyspec.com

e constraine de

The same thread and a shaded property and be to be

Downloaded from http://www.every

106

en éxin - +

- -

A STATE OF STATE OF STATE OF STATE

Downloaded from http://www.everyspec.com

4

200X

Fig. 60 Sump Water Induced Arrest of Low Growth Rate Fatigue Crack in 7475-T7351 Plate (S.E.M.)

S. No. 478817-E2 Neg. 205123 Mag: 500X Fig. 62 View of Figure 61 at a higher magnification.

*

、そうとう ちょうかくちょうちょうかんないない

すとうちょうないないのないないない

ł

Downloaded from http://www.everyspec.com

113

- **-** -

from http://www.everyspec.com

114

and the second second

1993 A. 1993

from http://www.everyspec.com

116

A stand the state and set

<u>er en ser der allen hann. Er som stadikter to skantiska för taken i der skantationer skantationer skantation</u>

A DE LA CALENCIA DE L

++ 123

÷

APPLICA.

and the way where the second

119

~~t

loaded from http://www.everyspec.com

120

and a second the second sec

and the second se

Downloaded from http://www.everyspec.com

Downloaded from http://www.everyspe

122

States and a state of the state

//www.everyspec.com

124

and the second se

Section Street Street

aded from http://www.everyspec.com

126

いたちとうないないのない

an de la constitue de la consti

n ver en sternet sterne

ور مرکمار دار ماند.

5.0 - - -

Particular on car

1 767 a 7 Automater

//www.everyspec.com

a the second second

STORE STORE STORES

いたいでいいい

and a succession in the

Downloaded from http://www.everyspec.com

132

in Second

- 40,00 - 10

dege om einen steren som som steren stere at her stere stere stere stere at the steren stere stere stere stere

Downloaded from http://www.everyspec.com

Person Save

133

Ż

ne source of the state of the

and man Designation

CHEMICAL COMPOSITIONS OF 2048-T851 PLATE (F33615-74-2-5089)

						tals Co.	/nulds Me	ed by Rey	l samples fabricat:	(a) Al
	0.10	0.25	1 1	1.2-1.8	0.20-0.6	2.8-3.8	0.20	0.15	(b) (Maximum unless) (range is shown)	Limits ⁽
	0.01 0.01	0.05 0.05	0.00	1.35 1.25	0**0 0*	3.19 3.62 3.62	0.13 0.13	0.00) 421383 1421384	4.000 4.000
,	10.01	0.02	0.00	1.32	0.29	3.63	0.13	0.06	1 421084	3.00(
	10.0	0.02	0.00	1.25	0.34	3.24	0.15	0.08	0 421083	3.00(
, , , , , , , , , , , , , , , , , , ,	0.01	0.05	00.00	1.27	0.38	3.51	0.13	0.06	0 421382	2.00(
	0.01	0.05	0.00	1.29	0.40	3.21	0.13	0.05) 421381	2.00(
νerysμ	10.0	0°05	00.00	1.31	0*10	3.15	0.13	0.05	0 421380	1.00(
ww.ev	0.01	0.06	0.00	1.38	0.37	3.74	0.12	0.05	0 421108	1.00(
.p.// wr	0.01	0.05	00•00	1.25	0.37	3•30	0.12	0.05	3 421379	0.50
1	10.0	0.05	0.00	1.34	0†*0	3.12	0.13	0.05	0 421378	0.50
. Downloaded i	T1	nZ	Cr	ь МВ	Element Mn	οr	e E	- <u>S1</u>	Sample ^(a) sss, Number	Thickne in.
an a				PLATE	0F 2048-T851 3-5089)	MPOSITIONS (F33615-74-0	EMICAL CO	СН		
					1	TABLE				
					• •					er en ser en
このないというになるとうないであるとなるとないためになったのである いってい	and the second to be the second				• • •				· · · · · · · · · · · · · · · · · · ·	" at a Weat to a line of the

Aluminum Association Alloy Designations and Chemical Composition Limits For Wrought Aluminum Alloys, revised September 1976. (p)

٤.

4-74

٤,

CHEMICAL COMPOSITIONS OF 7050-T7351 PLATE (F33615-74-C-5089)

Downloaded from http://www.everyspec.com

Sam	ple ^(a)				ГЭ	lement, %				
Thickness in.	, Number	S1	н	Cu	иМ	Mg	Сr	uZ	Τ1	Zr
2.000	421074	0.04	0.07	2.31	0.00	2.24	0.00	6.05	0.04	11.0
2.000	421075	0.03	0.07	2.32	0.00	2.2I	0.00	6.20	0.03	0.10
3.000	421076	0.03	0.07	2.41	0.00	2.27	0.00	6.07	0.02	0.11
3.000	421081	0.03	0.06	2.35	0.00	2.22	0.00	5.96	0.02	0.11
4.000	421077	0.03	0.07	2.48	0.00	2.27	0.00	6.45	0.02	11.0
4.000	421078	0.03	0.07	2.41	0.00	2.22	0.00	6.19	0.02	0.11
5.000	421073	0.04	0.07	2.36	0.00	2.23	0.00	6.18	0.03	0.10
5.118	421278	0.06	0.09	2.21	00.00	2.11	c.00	6.09	0.06	0.10
6.000	421079	0.04	0.08	2.34	0.00	2.13	0.00	6.27	0.04	0.11
6.000	421080	0.03	0.07	2.43	0.00	2.34	0.00	6.24	0.02	0.11
Limits ^(b)	(Maximum unless) (range is shown)	0.12	0.15	2.0-2.6	0.10	1.9-2.6	0.04	5.7-6.7	0.06	0.08-0.15
11V (e)	samnlas fehntat	ירל זיל הסי	a0.							

(a) All samples fabricated by Alcoa.

Aluminum Association Alloy Designations and Chemical Composition Limits For Wrought Aluminum Alloys, revised September 1976. (q)

÷-

CHEMICAL COMPOSITIONS CF 7475-T7351 PLATE (F33615-74-C-5089)

Milet & Milet & Annal and Annal											
						TABLE	3				
				CHEMI	CAL COMPOS	ITIONS (F 7475-T73	51 PLATE			
					(F3)	3615-74-	C-5089)				
	,										
	Sample ⁴ Thickness.	Number	<u>S1</u>	Fe	Cu	Mp	Elemen Mg	t, % Cr	NI	Zn	Ti
	in.										
	0.500	429422	0.03	0.10	1.47	0.00	2.19	0.19	0.00	5.46	0.0
	0.500	429423	0.03	0.09	1.38	0.00	2.16	0.19	0.00	5-54	0.0
	1.000	429387	0.03	0.10	1.55	0.00	2.18	0.20	0.00	5.48	0.0
	1.000	429388	0.04	0.09	1.42	0.00	2.15	U.20	0.00	5.61	0.0
	2.000	429389	0.03	0.10	1.60	0.00	2.22	0.20	0.00	5.56	0.0
	2.000	429390	0.04	0.10	1.45	0.00	2.16	0.20	0.00	5.57	0.0
	3.000	429391	0.04	0.10	1.48	0.00	2.20	0.20	0.00	5.67	0.0
	3.000	429392	0.03	0.10	1.51	0.00	2.15	0.20	0.00	5.45	0.0
	4.000	429393	0.04	0.11	1.48	0.00	2.19	0.20	0.00	5.69	0.0
	4.000	429394	0.03	0.10	1.54	0.00	2.16	0.20	0.00	5.44	0.0
			1		Current Dr	ation					
-	0.50/	1/20 m - m		0.05	current Pr	eccice				- (-	
	0.500	4/0/1/	0.05	0.07	1.55	0.00	2.19	0.20	0.00	5.00	0.0
	1.750	4/0/10	0.05	0.07	1.54	0.00	2.10	0.19	0.00	5.49	0.0
	1.750	4/0024	0.06	0.09	1.01	0.00	2.30	0.21	0.01	5.91	0.0
	1.750	4/0020	0.06	0.09	1.05	0.00	2.33	0.20	0.00	5.79	<i>v</i> .c
	2.200	410020	0.00	0.09	1.03	0.00	2.21	0.20	0.00	5.74	0.0
	2.290	178828	0.00	0.00	1.00	0.00	2.31	0.20	0.00	5.01	0.0
	2.150	410020	0.00	0.00	1.5/	0.00	2.24	0.20	0.00	5.00	0.0
	2.100	410029	0.00	0.00	1.60	0.00	2.34	0.20	0.00	5.81	J.C
	3.200	410030	0.06	0.09	1.62	0.00	2.30	0.20	0.00	5.73	0.0
	3.500	4/0901	0.06	0.10	1.51	0.00	2.31	0.21	0.00	·,.64	0.0

All samples fabricated by Alcoa.

(b) Aluminum Association Alloy Designations and Chemical Composition Limits For Wrought Aluminum Alloys, revised September 1976.

A weather have been

ŗ

CHEMICAL COMPOSITIONS OF 2219-T852 HAND FORGINGS

(F33615-74-C-5089)

Downloaded from http://www.everyspec.com

Aluminum Association Alloy Designations and Chemical Composition Limits for Wrought Aluminum Alloys, revised September 1976. 2 dill'no o (p)

						TABLE 5						
				MEC	HANICAL PROPE (F336	RTIES OF 204	8-T851 PLATY					
Thickness In.	ple s. Number	Direction ^(b)	Ultimate 3trength, ksi	Yield Strength, (a), kat	Le Elongation En 4D, 4	Reduction in Area,	Compressive Yield (s) Strength(s)	Shear Ultimate Strength,	Ultimete St e.D-1.5	Bearing (F1 rength, ks1 e/D-2.v	etv1se) <u>yleld Stre</u> e/D-1.5	0.2-0/9
0.500	421378	LL LL	66.1 66.3	62.2 61.5	12.0	999 999	63.4 63.4	38.8 39.1	100.3	132.0 132.9	87.6 92.3	100.8 101.4
0.500	421379	ц	68.1 68.4	63.8 63.2	12.0	945 345	64.7 65.4	40.0	105.4	136.2 135.1	92.9 90.5	107.0 102.7
1.000	421108	นั	70.5	67.5 65.4	లాడు బాబా	27 20	66.5 66.5	40.7 39.8	101.4 102.3	131.8 134.4	89.6 90.5	101.6 103.2
1.000	421380	цг	65.3 66.1	62.1 61.1	12.0	181	60.4 61.3	38.6 38.2	97.5 98.6	126.1 126.7	85.5 87.3	99.8 100.9
000.4	181381	4 L	67.3 67.1 64.0	63.7 62.6 59 3	11. 20.7 20.4	900	685 64.43 64.43	38.0 39.2 	9.001 100.6	129.5 131.1 	87.4 90.7	100.4 101.2
2.000	421382	고감함	69.6 69.9 65.7	700 400 90	11.0 6.5 6.5	2000 Children	63.4 64.5 64.5	40.9	104.5	136.1 135.4	92.0 0.52	104.2 103.9
3.000	421083	거리와 영당	67.9 68.0 63.6	64.2 62.9 58.5	6.00 4.00 6.00	30 160 8	60.9 63.09 63.09	38.6 38.6 33.1	101.1 96.7	131.5 130.9	38.6 87.1	104.0 102.1
3.000	η 2 108μ	내	70.2 70.1 65.7	64.7 63.9 58.9	900 900 900	1885	65.9 63.6 63.9	40.2 40.2 36.3	98.0 100.6	132.5 132.0 	87.8 90.1	104.5 107.3
4.000	421383	생님	64.4 63.7 62.5	59.1 57.3 56.0	9.0 37.0	852 875 1755	296.69 596.69	37.4 37.4 34.22	95.1 96.6	122.9 125.4	81.2 82.6 	9.46 96.8
4.000	421384	3 LL	69.5 69.5 65.6	64.2 61.9 59.5	ອ ທີ່ທີ່ອີ ທີ່ມີອີ	16 8 8	60.9 62.4 63.1	80.5 36.5 36.5 36.5	98.3 103.7	131.1 133.2 	87.1 91.4	103.5 105.1
				ы	entative Mini	mum Properti	ea					
2,001-3.	• 000	L ST	055 005	አሄୟ	າ ການ ຄານ							
			-		Typical P	roperties ^(d)	-					
0.500		LT	68	62	10	;						
1.000		ន	68	61	æ	;						
2,000		LT	68	61	6	:						
3.000		L1	67	60	9	1						
		5	66	59	9	;						

(b) 1.-Longitudinal; LT-Long-Transverse; ST-Short-Transverse.
 (c) Offset equals 2 per cent of pin diameter.
 (d) Minimum properties expected. 5 to 6 ksi below typical values; values supplied by Reynolds.

TABLE 6 NECHANICAL PROPERTIES OF 7057-T7351 FLATE

AND A DESCRIPTION OF A DESCRIPTION

e

(F33615-74-c-5089)

· · · · · · · · · · · · · · · · · · ·	1					:		1				
Sample Thickness, in.	Number	Direction ^(b)	Ultimate Strength, kai	<u>Yleid</u> (a) Strength, (a) ksi	Elongation in 4D,	Reduction in Area,	Vield (a) Strength, (a) ksi	Ultimate Strength, ksi	Ultimate Stre e/D=1.5	Bearing (Fl. ngth, ksi Y e/D=2.C	atwise) ield Strengt e/D=1.5	e/D=2.0
2.000	#2012+	125	71.8 72.1 68.9	61.1 60.3 55.6	13.5 12.6 7.8	12033	59.4 62.9 62.9	13.56 13.56	112.3 ^(d) 111.3	141.5 141.3	91.5 ^(d) 93.2	108.0 ^(d) 109.0
2,000	51015 ¹	1 11 12 12 12	71.3 71.6 69.0	60.4 60.4 55.3	14.0 12.0 8.6	16.33 16.33	53.0 65.6 65.6	#3.2 #3.2	110.4 ^(e) 109.2	142.8 ^(e) 142.5	90.1(e) 90.3	107.6 ^(e) 109.0
3.000	421076	1 LI LI	74.25	63.7 63.7 60.1	12.0 10.5 6.5	88 11 12 12 12	61.4 66.2 65.2	55 55 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	113.0	146.3	91.8 95.0	107.3 114.8
3.000	421081	346	72.47	63.9 64.2 51.4	12.5 6.5 6.5	5228	61.7 66.6 65.6	455.6 3.16	114.4 112.8	147.6 146.5	93.9 92.9	111.3
000.4	421077	-118	73.1	63.7 63.0 60.0	10.0 10.0	1260	60°6 60°6 64°3		110.2	146.7	92.5 93.3	107.5 110.4
••000	421078	1125	72.9	63.7 63.4 59.0	11.5 10.0 5.7	89855	60.5 65.7 64.3	244 2004 2005	113.6 115.8	145.9	9.46 97.8	5.111 5.111
5.000	£70754	1 LI LI LI	72.5	63.7 63.7 58.8	11.5 6.0 6.0	188	6259 6551 6655	6.97 17 17 17	112.2 ^(e) 110.2	142.3(d) 144.2(d)	91.5 ^(e)	113.8(d)
5.118	421278	감감다	72.4	63.2 61.4 58.6	0.11 0.6 7.0	102	6559-8 624-9 62-5-9	500 555 557 557 557 557 557 557 557 557	109.60 111.4	142.7	91.3 91.4	107.2
6.000	4:21079	LT ST	69.6 68.0 68.0	60.4 59.1	11.0 10.0	91 161 161	61.73 60.4	6100 6100 6100 6100 6100 6100 6100 6100	108.8 109.6 	139.4 ^(e) 139.4	89.0 90.7	107.5 ^(e)
6.000	421080	3 L L	71.8 72.9 68.5	62.2 60.9 58.1	10.5 9.0 4.0	139	57.7 63.8 62.7	5.77	113.2 ^(d)	143.2{d) 143.4{d}	91.0 ^(d) 93.0	110.2 ^d
					Tentat1v	e Minimum P	roperties					
₹ 2.COO		ц.	67 68	58 38 38	10 7							
2.001-3.000		래머	67 68 64	559	10 7 2.5							
3.001-4.600		L ST ST	66 67 63	53	10 2.5 2.5							
4.001-5.000		str	66 61 61	5555	န္ နိုင္ငံ နိုင္ငံ							
5.001-6.000		1 ST F2	59 59	1933 1933	ورون م							
(a) Offset (b) L Lon (c) Offset (d) Metest (e) Average (OTE. All set	equals 0 gitudina equals 2 value; 0 of orig	2 per cent. 1, LT - Long-1 per cent of p riginal test : inal test ard Arricated by A	ransverse: fin diameter esult quest retest valu	ST - Short-Tran Ionable.	sverse; Spec	ification t	est location a	t T/4.				

....

.

Downloaded from http://www.everyspec.com

				MECH	ANICAL PROPE	TABLE 7 ATTES OF 7475 L5-74-C-5089)	-77351 PLATE					
Sample Thickness, in.	Number	Lrection ^(b)	Ultimate utrength, ksi	Yield Ten Strength, (a)	sile Elongation in 45,	Reduction in Area,	Compressive Yield(a) Strength,	Shear Mitimate Strength, ksi	Ultimate S e/I-1.5	Bearing trength, ks e/D=2.0	(Flatwise) 1 <u>Yield Str</u>	m ^{eta, (c)} ks1 5 e/h=2,0
0.500	129422	(d) [T(d) [T(d)	72.8 71.1 73.7 72.8	62.4 61.6 63.2 62.8	16.0 13.5 14.0	19885	62.5 65.2	43.5	105.8 105.8 105.8	137.4 138.1 138.2 139.2	86 86 86 86 86 86 86 86 86 86 86 86 86 8	102.7 107.7 106.1
0.500	£27627	[(d) [T(d) [T(d)	72.2	62.3 63.9 63.9 63.9	16.0 17.0	44.00 94.00 94.00	63.4 64.8	45.1 141.4	106.9	138.8 141.9 138.8 143.3	0.16 90.10 90.70 97.00	104.7 107.6 101.3
1.000	429387	11	72.5	62.3 61.2	14.2	339	61.6 62.7	42.8 42.3	103.3 103.9	133.8 133.7	83.6 83.8	101.4
1.000	429388	Ľ۲	70.0	20°6	15.0 13.5	41 32	58.3 61.1	42.1 41.6	102.0	130.4 132.8	81.9 82.6	98.2 99.3
5,000	429389	$L^{L}(d)$ $L^{T}(d)$ LT(d) ST	889999 889999 944999	57.0 577.8 577.7 57.7	1212 1212 1212 1212 1212 1212 1212 121	4%%%A	56.0 59.8	42(e) 42(e)	108.5	137.3 136.2 139.3	88855-2 8865-2 9-9-9-1 9-9-9-1 1-1-1-1-1-1-1-1-1-1-1-1	98.3 102.0 105.1
5*000	429390	L(d) 11(d) 117(d) ST	669.77 669.77	2888244 2888244 2888244	7.80 73.55 7.80 7.80 7.80	6887771	57.1 60.1 60.7	43.e)	107.5	139.0 137.9 138.3	87.3 87.4 87.4 88.1	103.9 98.3 101.2
3.000	166624	្ឋានជ	65.7 67.8 67.0	54.9 55.7 7.35	15.7 11.7 8.0	42 77 77	4588 888 999	40.05 64 60.05	104.0	136.4 136.5	83.8 85.2	98.7 99.3
3.000	429392	311 Str	5655 6695 6695	520 520 5400	15.5 11.2 7.0	12011	2885 2885 0 8 9	0.05 73.5 73.5 7	104.5	135.3 135.6	84.3 85.2	98.7 98.3
000*1	429393	고티	63.8 66.0 65.0	52.6 54.2 52.5	5.2 8.2 8.2	422	2005 2005 2005	41.9 11.4 39.1	100.3	131.4	80.5 81.4	93.1 94.2
7.000	429394	L ST ST	64.1 65.8 64.6	52.7 53.1 51.6	15.2 10.7 1.5	14101	50.9 55.33	41.9 38.9	100.9 99.9	129.2	80.5 80.5	92.7
		,	(:	Tentative	dord muminiti	erties					
0.500-1.000		сı	688	57	90							
1.501-2.000		356	67 64	សូសូស	0 ^{∞.4}							
2.501-3.000		325	65 65 65	2222	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
3.501-4.000		3ªL	325	8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9rm							

All samples fabricated by Alcoa.

				NEX	MANICAL FRO	гектир ог '	TABLE 8 17475-17351 . No	FLATE (CURAEN: 6-A)	T PRACTICE)					,
Samp Thickness, in.	'le Mumber	tirection(b)	Ul Timate Strength, kai	Yleid strength, (a) ksi	Tensile Elongation in 4r,	i Reduction in Area,	Modylus, 10 ³ ks1	Tielu Strength, (a) ksi	ssive Modulus, 103ksi	Shear Ultimate Strength,	Ultimate Str e/D-1.5	Bearing (F rength, kai e/D=2.0	latwise) <u>Yield Streng</u> e/Del.5	th, (c) ks1 e/D=2.0
0*500	478717	15	73.4	62.3 63.8	18.0 14.0	45 29		62.3 66.6		43.6 43.6	112.6 114.2	145.7 143.7	91.1 95.2	114.8 112.5
01750	817874	цг	73.2 73.2	63.8 63.7	0.4L	37	10.32	63.4 56.6	10.69	42.6 42.1	107.7 108.2	140.3 136.3	38.5 39.6	108.3
1.750	478824	្នុខខ្ល	72.9	61.9 61.9 58.4	15.5 13.05 9.4	3334				;;;;			111	
1.750	478825	722	72.4 72.8 70.2	61.8 61.9 57.7	15.0 13.5 9.4	11 33 25 25		:::	111	:::				
2.250	4788 <i>c</i> 6	ារខ្	71.1	60.4 61.1 58.7	15.5 12.5 8.0	568 1968 1968		:::		:::			111	
2,250	478827	,156	70.1 71.0 68.7	59.0 59.3 55.7	15.5 12.0 8.0	040 0880 1				:::			[]]	
2.750	478828	355	69.9 68.9	58.3 55.3 55.3	14.5 12.0	ନ୍ଷର୍		:::	111	:::	111			111
2.750	478629	326	68.7 70.8 68.8	588.1 1.05 1.05 1.05	15.0 11.5	1848 1848			111	:::				
3.500	478830	115	67.0 68.4 67.7	5850 57.50 5.51	15.0 12.0	140 140		:::			111			! ; ;
3.500	178961	경갑니	66.6 68.0 67.5	55.5 55.6 54.1	15.0 11.0 8.6	39 16	10.13 10.34 10.23	2807 2807 2807 2807 207	10.48 10.80 10.60	42.5 41.8 37.5	105.9	139.6	84.9 90.8	100.4
0.500-1.000	_	J	68 68	22	10	Tentative	Minimum Pr	operties						
1.501-2.000	~	122	67 67	<i>52</i> 22	28 28 4									
2,001-2,500	~	32L	884	አታዊ	084 H									
2.501-3.000	<i>(</i> ,	개답다	655 655	883	01 8 æ									
3-001-3-500	~	110	961 90	ជជះ	00									

22.22

.....

Transmission Downloaded from http://www.everyspec.com Transmission Transmission <th></th> <th>; 2</th> <th></th>												; 2	
Image: intervert of the second from http://www.everyspec.com Image: intervert of the second from http://www.everyspec.com Image: intervert of the second from http://www.everyspec.com Image: intervert of the second from http://www.everyspec.com Image: intervert of the second from http://www.everyspec.com Image: intervert of the second from http://www.everyspec.com Image: intervert of the second from http://www.everyspec.com Image: intervert of the second from http://www.everyspec.com Image: intervert of the second from http://www.everyspec.com Image: intervert of the second from http://www.everyspec.com Image: intervert of the second from http://www.everyspec.com Image: intervert of the second from http://www.everyspec.com Image: intervert of the second from http://www.everyspec.com Image: intervert of the second from http://www.everyspec.com Image: intervert of the second from http://www.everyspec.com Image: intervert of the second from http://www.everyspec.com Image: intervert of the second from http://www.everyspec.com Image: intervert of the second from http://www.everyspec.com Image: intervert of the second from http://www.everyspec.com Image: intervert of the second from http://www.everyspec.com Image: intervert of the second from http://www.everyspec.com Image: intervert of the second from http://www.everyspec.com Image: intervert of the second from http://www.everyspec.com Image: intervert of the second from http://www.everyspec.com <td< td=""><td></td><td></td><td></td><td>МЕСНАИ</td><td>ICAL FROPERTI (F33</td><td>TABLE 9 ES OF 2219-T 615-74-C-508</td><td>852 HAND FORGI</td><td>NGS</td><td></td><td></td><td></td><td></td><td></td></td<>				МЕСНАИ	ICAL FROPERTI (F33	TABLE 9 ES OF 2219-T 615-74-C-508	852 HAND FORGI	NGS					
Nove Downloaded from http://www.everyspec.com 1, 1	Jimensions, Yumbe In.	r hirection ^(b)	Ultimate Strength, ksl	^{rens1} Strength, (a)	Le Elongation in 4D,	Reduction in Area,	Compressive Yield Strength, (a)	Shear Stear Stength, Ksi	(Ttimate St ~/D = 1.5	Pearing () rength, ks1 e/D = 2.0	dgewise) <u>Yield Strer</u> e/N = 1.5	<u>Eth</u> (c) ks1 e/l = 2.0	
2000mloaded from http://www.everyspec.com 1 0001 0001 0001 0011 00	2.0x8 42924	정말	63.0 66.5 66.6	50.7 50.6 51.5	10.5 9.0 9.0	26 14 12	52.55 53.55 53.55	41.4 41.4	82.7 92.2	116.2 120.6	81.5 84.9	96.8 97.0	
100aded from http://www.everyspec.com 100aded from htttp://www.everyspec.com <t< td=""><td>2.5x26 47881</td><td>7 51 51</td><td>64:9 65:7 65:9</td><td>50°4 519°9</td><td>13.0 13.0</td><td>2014 1 004</td><td>25.52 25.52 25.52</td><td>39°.8</td><td>81.5 85.0</td><td>112.5</td><td> 78.4</td><td></td><td></td></t<>	2.5x26 47881	7 51 51	64:9 65:7 65:9	50°4 519°9	13.0 13.0	2014 1 004	25.52 25.52 25.52	39°.8	81.5 85.0	112.5	 78.4		
1 - 200 1 - 200	3.5x14 42951	. Ht.	64. p 64. p	50.3 19.83	0.11 8.0 8.0	115	8.1 8.1 8.1	1 4 6 F	92.2 89.6	 124.3 117.9	 78.3 76.7	 90.1 88.9	
upth://www.everyspect.com upth://www.everyspect.com	3.5x22 42951	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	65.6 56.1 66.7	51.2	10 8.0 7.0	192	2010 2010 2010	201 201 201 201 201 201 201 201 201 201	84.0 81.9	 117.0 113.1	 L.77	9.68 9.68 6.88	
MAXWAY SALES 4.9502 4.9514 4.562 4.9514 1.1562 4.9514 1.15 1.15 1.15 1.15 1.1572 4.9514 1.15 1.15 1.15 1.15 2.5562 4.9514 1.15 1.15 1.15 1.15 2.5562 4.9514 1.15 1.15 1.15 1.15 2.5562 4.9514 1.15 1.15 1.15 1.15 2.5562 4.9516 1.15 1.15 1.15 1.15 2.5562 4.9516 1.15 1.15 1.15 1.15 1.15 2.5566 1.15 1.15 1.15 1.15 1.15 1.15 1.15 2.5567 1.15 <	4.5x22 4.2924	15t	58.3 58.3 60.03	45.2 45.7 47.0	12.0 5.0	58 6-7 8	600 800 777 777	-1-1-1 6000 6000	81.8 84.0	106.2	 72.3 72.9	 85.5 93.9	
5.5x2 42247 5.5x2 42247 5.5x2 42247 5.5x2 42248 5.5x2 42358 5.5x2 42358 5.5x2 42358 5.5x3 42558 5.5x3 42558 5.5x3 42559 5.5x3 42559 5.5x3 42559 5.5x4 42559 5.	4.5x22 42951	155	64.1 66.1 66.6	50.2 50.6 51.2	12.5 12.5 7.9	53	8.1.9 8.2.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7	8 77 7 77 7 7 7 7 7 7 7 7	1.98 1.94	 121.8 119.3	 79.1 80.0	 91.2 93.1	
5.5x2 1,2348 5.5x2 1,2348 1.5x2 1,2322 1,234 1.5x2 1,2322 1,234 1.5x2 1,2322 1,234 1.5x2 1,2323 1,1 1.5x2 1,2324 1.5x2 1,234 1.5x2 1,234 1.5x1 1,234 1.	5.5x22 42924	3 <u>1</u> 14	62.5 62.3 62.3	17.22 140.2 147.2	11.0 8.5 7.1	55 5 5 6	126.8 17.2	- 0.9 39.6 32-1	88.2 90.2	116.4	75.9 78.2	 91.0 91.1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.5x22 4,2924	s LL ST	60.6 60.0 65.8	44.6 43.1 50.8	न्द्र इ.स. अ.स.	168 168	0,0,C	8.107 177	86.9 90.0	 114.2 116.4	75.2	 86.3 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.5x22 42924	115	55.8 55.8	41.9 42.8 42.4	12.0 5.0 6.5	- 56 9-7-6	4.07 107 107	2. 4.98 2. 98 2. 98 2. 98	81.1 81.7	 107.0 108.2	 67.4 67.7	 78.2 79.8	
b to 4.000(4) L 1 L 0.00 1 1 1	7.5x22 429245	.115	57. r 588: 2 588: 3 58: 3	1.43 4.54 4.54 4.54	11.0 8.0 7.5	13	43.8 43.6 43.6	3399.1 339.1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1	87.4 87.6	 116.7 	71.9 74.0	83.6 85.3 	
OD-9 OOO(e) OOO(e) Sin 1	+ h mn(d)		ţ	;		Minimum Prop	erties	· -					
.001-6.000 ^(e) L 5, 43 6 .001-8.000 ^(e) 5 1 5, 43 5 .001-8.000 ^(e) 1 53 4.0 6 .001-8.000 ^(e) 3 3 .001-8.000 ^(e) 3 3 .001-8.000 ^(e) 3 3 .001-8.000 ^(e) 5 1 5 .001-8.000 ^{(e}		322	00 00 00	009 2099	va≁ m								
.001-8.000 ^(e) I. 53 4.0 6 I.: 53 39 6 ST 51 36 3	.001-6.000 ^(e)	321	አያዩድ	546 1946	vo≠m	<u> </u>							
	.001-8.000 ^(e)	기리다	2323	0 6 9 3 7 7	¢≄00								

\$

RATIOS AMONG THE TENSILE, CONFRESSIVE, SHEAR, AND BEARING PROPERTIES OF 2048-T951 FLATE (F33615-74-6-5089)

	<u>6/0-2-0</u>	1.649	1.625	1.578	1.651	1.617	1,601	1.623	1.679	1.689	1.668
BYSCI	G Tach o	1.501	1.432	1.384	1.429	3.449	1.408	1.385	1,410	1.442	1.477
1	<u>e/b-2.0</u>	2.005	1.975	1.906	1.917	1.954	1.937	1.925	1.883	1,969	1.947
latvise) BUS(e/bel.5	1.543	1.512	1.451	1.492	1.499	1.494	1.422	1.435	1.516	1.516
bearing (F	e/D-2.0	1.639	1.693	1.554	1.633	1.604	1.606	1.653	1.635	1.656	1.674
(T)SKE	e/b-1.5	1.424	1.470	1.370	1.399	1.396	1.418	1.409	1.374	714.L	1.407
	e/D=2.0	1.991	1.991	1.870	1.908	1.930	1.947	1.934	1.870	1.929	1.917
Usna	e/D-1.5	1.513	1.541	1.438	1.475	1.486	1.509	1.487	1.398	1.493	1.437
su(ST)	TUS(LT)	ł	ł	ł	:	1	1	0.487	0.518	0.537	0.538
Shear SU(LF)	TUS(LT)	0.590	0.586	0.565	0.578	0.584	0.582	0.568	0.571	0.587	0.592
su(L)	TJS(LT)	0.585	0.585	0.577	0.584	0.566	0.585	0.568	v.573	0.537	0.588
CYS(ST)	TYS(LT)		!	!	:	1.029	1766.0	1.000	526-0	1.038	1.019
ompressive CYS(LT)	TYS(LT)	1.031	1.035	1.017	1.003	110.1	766.0	1.002	0,995	9886.0	1.008
o (T)SX2	TIS(II	1.031	1.024	1.017	0,989	0.995	0.977	0.968	0.984	0.976	0.984
Number		421378	421379	421108	421380	421381	421382	421083	H21084	421383	421384
Thickness,	in.	0.500	n. 500	1.000	1.000	2.000	2.000	3.000	3.000	4.700	4,000

Downloaded from http://www.everyspec.com

	705
	OF
	PROPERTIES
	DUT
	BEA'
E 11	AND
TABL	SHEAR
	SIVE,

Downloade

w.every

1255

Sa alcontration

10 A A

1. Markerswitch

1	
ò	ř
ì	2
6	1
1	
u	
ý	
Ś	
5	

0F
PROPERTIES
DUT .
BEA
AND
SHEAR
COMPRESSIVE,
TENSILE,
361
AMUNU
COTTAN

15-74-C-5089)

PLATE	
7050-T7351	
OF	
PROPERTIES	
LNG	
BEA'	10803
AND	C C
SHEAR	112-219
OMPREUSIVE,	524/
, TTONET	
Division	
201	

Samp	te	CLEUR	VIESA Iduion	- veren	فلللد مد	Shear					Bearing (Flatwiceľ			
Thickness	, Number	TYS(LT)	TYS(IT)	TYS (Ent		TUS (TT)	TUS (SIT)	EUS		BYB		BUS	(TT)	BYSI	
								e/1-1.5	e/b=2.0	e/ <u>D=1.5</u>	e/b=2.0	e/h=1.5	e/l=2.0	e/b=1.5	entern
2,000	421074	0.975	1.039	1.033	0.605	0.501		1.558	590.1	1 500					
2.000	421075	0.977	1.036	1.033	0.609	0.603		1.542				##C.T	006.1	1.530	1.790
3.000	421076	0.964	1.039	1.020	0.611	0,509	0.575	1.523	620 L		10/-1	ر::ر.1	1.990	1.495	1.805
3.000	421081	0.961	1.037	1.022	0.610	0.504	7.578	1 531	31C • T		+00+T	1.132	1,989	1.441	1.802
4.000	421077	0.956	1,041	1.024	613 V	009 0			0/6.7	1.403	1.734	1.510	1.961	2.447	1.745
4,000	421078	0.954	950 1			000.0	- 506-0	104°T	1.911	1.459	1.696	1.512	1.972	1.472	1.741
5 000	101030			140.1	0.013	0.611	0.562	1.531	1.966	1. ⁴ 92	1.756	1.561	1.966	1.543	1.754
	CINTON	0.932	1.022	0.995	0.606	0.602	0.559	1.514	1.920	1.436	1.786	1.487	1.946	1.419	707.1
011.0	9/2T2+	0.974	1.057	1.024	0.616	0.615	0.583	1.514	1.959	1.487	1.746	1,530	1.071		
6.000	421079	0.953	1,044	1.022	0.613	0.610	0.582	1.541	1.975	1 505	org r		- 20° -	F04.1	<i>с1.1.</i> -т
6,000	421080	0.947	1.048	1.030	0.616	0.613	0.568	1.553	1967	404 L	018 1		1.980	1.535	1.875
NOTE: Co							-				01011	020-1	56.1	1-527	1.750
aar: 19104	I O ATOBL	or basis	of ratio	determins	tions.										

-
~
<u>~</u> `
a co
6
~
ŝ.
- 1 i
0
- 1
~
£ -
ŝ
-
6
m
3
fr
\sim

	Downloaded from http://www.everyspec.com
	1.746 1.746 1.745 1.743 1.746 1.743 1.746
	BYST BYST 1.364 1.364 1.364 1.369 1.369 1.505 1.502 1.516 1.516 1.516
	11.965 1.895 1.895 1.915 1.915 1.915 1.915 1.915 1.958 1.968 1.968 1.968
351 PLATE	(Flatwise)
	Bearting Bearting Bearting 1.672 1.672 1.672 1.730 1.772 1.772 1.770 1.770 1.770
OPERFILES ($\begin{array}{c c} & \underline{BY} \\ \hline & \underline{BY} \\ \hline & \underline{11} \\ \hline \\ \hline \\ \hline & \underline{11} \\ \hline \\ $
JEARING PR	11.995 1.995 1.995 1.995 1.995 1.995 1.995 1.995 1.995 1.964 1.964
3 12 8:≣EAR AND 1 5-74-C-500	1.442 1.442 1.442 1.457 1.532 1.532 1.532 1.532 1.533
TAPLE TAPLE (F3361	TI SUT (1 102.00 100
tte, comp	Sheat 1 105 (D) 1 105 (D) 1 0.591 1 0.591 3 0.591 3 0.591 4 0.591 5 0.619 6 0.619 6 0.619 6 0.631 0 0.633 0 0.633 0 0.633
THE LENS	1) 10-60: 0.60: 0.60: 0.613 0.635 0.637 0.637 0.637 0.637 0.637 0.637
TIOS AMON	2 1) 715(1) 7) 715(1) 1.036 1.036 1.034 1.031 1.031 1.051 1.051 1.051
Ψ. Ω.	Compres Compres Conversion
	1000 1000 1422 0.95 1423 0.95 388 0.97 390 0.97 391 0.97 392 0.97 393 0.91 394 0.97 392 0.97 393 0.91 394 0.97 395 0.91 391 0.91 192 0.91 194 0.95
	Sample Num 1029 100 429 129 1293 00 4293 00 4203 00 4000 00 4203 00 4203 00000000000000000000000000000000000
	Thick In 0.55 0.55 1.00 2.00 3.00 3.00 1.00 4.00 NOTF
	145

N. 103 ANONG LENDLIE, COMPRENDIVE, CHEAN AND HEARING PROPERTIES OF 7475-17351 PLATE (CURRENT FRACTICE)

rearing (Flatwise)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0 698 0.594 1.524 1.905 1.420 1.12 1.52	CONT 1001 1880 1.700 1.478 1.889 1.700 1.478 1.889	0.582 0.575 1.117 1.012 1.633 1.726	0.62k 0.615 0.551 1.557 2.053 1.510 1.000	
	HAC HAC	acit +	1.440	1.389		016.1	
	11) e/h=2.0		499.I	710.1		2,053	
	<u>لالتاني</u>		1.534	ריון ר		1.557	
	(411) II (111) II		1			0.551	
	. hear 		0.594		276.0	0.615	
			0.598	~~~~~	0.532	0.625	
				:		1 058	
1	ssive Tin		1.10	1.044	1.046	040	1.049
) : () () : () () : () : ()			ω	95		β
	SVT (TT)SVT			16.0	c		6.0 0
	e Compre			478717 0.97	0.0 817871		478961 0.9

Downloaded from http://www.everyspec.com

ł

W. W.S. San . W.

たかになったというないないない

and the second

7

いののとことないないというでいたという

						(F336	515-74-0-50	(68				2			
Dimensions,	Nurser		Ompress Ive CYS(LT)	CYS (ST)	(a)as	SUCLT	Lisins	11SUE	2	FYS(L	Cearing (F	DS08	t #	DSA) L
-ut		"TT SLL	(JTT)SLL	(IT)CLI	LITI SOL	(JIT)CDL	(TU)SUT	e/5-1-5	e/D-2.0	e/bell S	e/b=2.0	e/b-1.5	<u>e/b=2.0</u>	e/bel.5	e/D-7.0
2.0x8	429246	1.0.8	1.053	1.059	0.623	0.626	1	1.244	1.747	1.611	1.913	1.386	1.814	1.678	1.917
2.5x20	478817	1.012	1.052	1.056	0.607	0,600	0.536	1.240	1.712	1.527	1.680	1.294	1.799	1.571	1.936
3.5x14	429512	0.50	0.966	0.966	0.651	0.604	0.585	1.432	1.930	1.572	1.809	1.391	1.831	1.540	1.785
3.5x22	429513	0.946	0.958	0.948	0.637	0.613	0.551	1.271	1.770	1.536	1.785	1.239	117.1	1.536	1.77.1
4.5x22	429249	0.926	0,980	0,998	0.676	0.659	0.624	Co4.1	1.822	1.582	1.871	1,441	1.959	1.595	2.055
4.5x2?	429514	0.95	0.931	0.960	0.648	0.626	0.585	1.318	1.843	1.563	1.802	1.348	1.805	1.581	1.845
5.5x22	74502H	1.009	1.050	1.017	0.649	0.642	0.606	1.432	1.890	1.635	196'1	1.464	1.909	1.685	1.963
5.5x22	429248	1.064	1.088	1.021	0.687	0.678	0.632	1.448	1.903	1.756	2.002	1.500	1.940	1.759	2.021
5x22	429244	0.945	0.927	0.963	. 0.652	0.659	6 1 9°0	1.453	1.918	1.539	1.785	1.464	1.939	1.546	1.822
7.5x22	429245	166.0	0.952	0.986	0.672	0.672	0.660	1.502	2.005	1.627	1.891	1.505	1.959	1.674	1.952
					:										

RATIOS AMONG THE TENSILE, COMPRESSIVE, SHEAR, AND BEARING PROPERTIES OF 2219-T852 HAND FORGINGS

TABLE 14

Downloaded from http://www.everyspec.com

R. 19 1

ana di kamaran kunin dagi

South Participation

の記述である

,

	0 ³ ks1		3.95		3.9		3.9		3.85
	103 ^{cks1}		10.7		10.6		10.6		10 . b
	10 ³ ks1		10.4		10.3		10.3		10.2
د	ransverse Compassive, 103 ksi	10.70 10.65 10.70	10.68	10.59 10.71 10.57 10.57	10.62	10.70 10.62 10.61	10.64	10.41	10.26
TY TETTS OF	Short-7 Tensile, 103 ksi	10.22 10.22 10.37	10.27	10.15 10.16 10.21 10.25	10.19	10.21	10.22	10.05 10.05 10.04 9.98	10.10
с581-61.3 н готтелиятия готтелиятия	unsverse ompressive, 103 ks1	10.88 10.71 10.91	10.82	10,74 10,70 10,80 10,63 10,61	10.70	10.94 10.72 10.70 10.61	10.74	10.65 10.57 10.57 10.57	10.49
TABLE יל דעוווסי יידער מינייני יקו-כ-5089)	ionr-Irc iensile, 103 ksi	10.53 10.41 10.44	10.45	10.37 10.41 10.30 10.32	10.34	10.52 10.35 10.27 10.31	10.36	10,45 10,14 10,40 10,21	10.31
, тит сомения 1	idinal ompressive, 103 ks1	10.83 10.68 10.76	J0.76	- 10.52 10.52 10.55 10.55	10.54	10.75 10.75 10.48 10.58	10.60	10.48 10.40 10.57 10.20	en.ot
u 7050-1715,1	on 110	10.36 10.35 10.35 10.44	10.37	10.27 10.25 10.22 10.24	10.2h	10.40 10.23 10.19	2°.01	10.42 10.31 10.29 10.33	10.31
. 119. – بارم. ۲۲۱۱، ۲۲۰	arle amber 1	421378 421378 421381 421083		470154 870154 770154 770154 770154		1294022 429389 429391 429391		429246 429240 42000 42000 42000 420000000000	
		10000 10000		000000		00.00 0000		ເພສ ຄະ ດໍະຳບະຍ	
	,	Plate	AVe! الم	91.1d	Average	Plate	Алегаде	nnd ^P otefng	Avernpe
	L'ICY 1'-' 1'-'	2016- Pist		1950-1730 1910-1910		7476-77351		2019- IB57	
				148	8				

ŝ

5 (C) (A)

TYPICAL STRESS-STRAIN DATA FOR 2048-T851 PLAFE

(F33615-74-c-5089)

Downloaded from http://www.everyspec.com

		itain, itain,	40 7	4707	4853 4962	5057 5244	5397	5525 5639	5742	5838 6016	6178	C474	7362	7943	8170 8281	8392	:	
		103 ks1) Chort-Transve tress, ks1 (« CYr) m	43.4 (68.9) 47.6 (75.5)	49.5 (1' 5)	50.8 (80. 51.8 (82.21	52.5 (83.4) 54.0 (85.7)	55.1 (87.4)	55.9 (88.7) 56.6 (89.8)	51.2 (90.7)	57.6 (91.5) 58.5 (92.8)	59.1 (93.5)	60.9 (96.6) 61 6 707 5	62.6 (99.4)	63.0 (100.0)	53.3 (100.5) 63 h (100.6)	63.5 (100.8)	-	
		· 10.6 x rse ⁽³⁾ tretn, tn./in.	4135	17274	4980 L	5069 5272	5430	5565 5686	9625	5898 6082	6251	6554	7457	8030	8264 , 5276 ,	2001	:	-
		ession (Modulus Lopg-1ransve Ktress, (st cY*) u	43.8 (68.5) 47.8 (74.6)	49.7 (77.6)	51.0 (79.6) 51.9 (81.1)	52.7 (82.3) 54 3 784 81	55.4 (86.6)	56.3 (88.0) 57.1 (89.2)	51.7 (90.2)	58.3 (91.1) 50.2 (92.5)	59.9 (93.6)	61.0 (95.3) 61.8 (20 E)	63.1 (98.7)	(1.001) 0.19	64.3 (100.4) 64 4 (100.4)		£	
4TE		Compr al(a) Strain, a in./in.	3682 4120	4332	4488	0021	5043	5177	5399	5499	5845	6147	7063	7060	7894	3	1	
1 7050-T7351 PL	39)	Iongitudin tress, ksi (* °'))	39.0 (05.0)	45.5 (75.8)	46.7 (78.2) 47.8 (79.7)	48.8 (81.3) E0 2 (82.7)	51.3 (81.5)	52.2 (87.0) 52.9 (88.2)	53.5 (89.2)	54.1 (30.1) 54.0 (91.5)	55.6 (92.7)	56.7 (94.5) 57 5 705 91	59.0 (98.3)	(0.01) (100.0)	60.4 (100.6)	(0.001) (.00	1	5
ABLE 17 N DATA FOI	5-74-0-508	erse (a ¹ 'train, 'train,		3369	3678 3,18	4093 111-00	1651	1:484 1:484	5135	52C1 5473	5672		2007	7631	7872 7000	8108	8226	thick.
T L STRECS-STRAI	(+3361	<pre>ks1)</pre>	22.3 (36.5) 24.8 (51.3)	34.3 (59.1)	37.3 (64.3) 39.5 (68.2)	(6.07) 1.14 (8.07) 0.44	45.8 (79.0)	47.3 (81.5) 48.4 (83.5)	49.3 (85.0)	50.1 (84.3) 51.3 (8P.4)	52.2 (90.1)	53.7 (96)	(r. (6) 2.94	58.c (100.0)	58.4 (100.7)	58.8 (101.4)	20.01 (101.7)	.0 and (.0-in.
TYPICA		.3 , 103 rse(1) strain, fr./in,	2340 2340	3(3)	3966 42 1 6	201711	5661	5197	5513	5645	501 F083	6436	7417 1	8019	64240 1260	5 C C C C C C C C C C C C C C C C C C C	ક કરત	
		n (Modulus, Jo Long-Iransve (treas, *si (*"Y") u	24.1 (38.9) 32.1 (51.3)	31.1 (51.8)	40.2 (64.8) 42.6 (68.7)	14.3 (71.5)	40.4 (79.7)	51.0 (82.2) 52.2 (84.2)	53.2 (85.8)	54.0 (87.1) 45 h (86.4)	5(.5 (91.1)	58.0 (93.6) 50.0 (95.6)	5).2 (92.3) 60.9 (98.3)	(v. 00 (100 v)	62.3 (100.5)	62.6 (100.9)	67 (101.1)	mpler, 2.0, 3.
		Troin, in in	2327	3650	4077 4299	4535 hoea	5241	54f53 5630	5790	5,17	631.5	6455 2943	14.35	8019	8231	8441 1	8546	of five so
		Ionritudin Cress, Ast (* fv.) p	24.0 (38.7)	3%. {60.0}	40.8 (65.8) 13.4 (70.9)	45.7 (73.7)	51.9 (83.7)	53.7 (86.6) 55.0 (88.7)	56.0 (90.3)	56.8 (91.6) 68 0 (03 6)	58.9 (95.0)	50.0 (96.81	60.7 (91.9) 11.7 (99.3)	62.7 (100.0)	(2.00.2) (2.00.2)	62.2 (100.4)	(1.001) 8.59	ased on tests
		rain eparture u in. in.	c e	- 01	S S S S S S S S S S S S S S S S S S S	001	200 200	250 360	350	1100	600	800 ·	1500	P000(Y)	0012	2400	5500	(a) lata b
							1	50										

TYPICAL STRESS-STRAIN DATA FOR 7475-T7351 PLATF (F33615-74-c-5089) TA31,E 18

and a statistic sector construction of the states of the

Short-Transverse(b) Stress, Strain, ksi Strain, (% CVS) u in./in. 5146 5281 5581 5595 5595 6603 6603 6603 7168 4810 4904 4985 4154 4514 7755 7982 8208 1681 3320 49.2 (80.7) 50.3 (82.5) 51.1 (83.8) 51.1 (83.8) 53.0 (86.9) 53.6 (84.9) 55.6 (91.8) 55.6 (91.8) 55.6 (91.8) 55.6 (91.8) 55.1 (92.2) 58.1 (95.2) 58.1 (95.2) (0'101) (101.1) 44.0 (72.1) 47.6 (78.0) 61.0 (100.0) 61.3 (100.5) 60.1 (98.5) Compression (Modulus: 10.6 x 103 ks1) Long-Transverse^(a) Short Stress, strain, ks1 tu, (% CYS) u in./in. (% CVS) 61.6 61.7 4126 4618 4784 8291 ł 52.2 (84.2) 52.9 (85.3) 54.2 (87.4) 55.2 (89.0) 55.9 (90.2) 50.6 (91.3) 57.1 (92.1) 57.5 (92.7) 58.2 (93.9) 58.8 (94.8) (100.6) 43.7 (70.5) 48.7 (78.6) 50.3 (81.1) 51.4 (8.9) 52.2 (100.3) 62.0 (100.0) (6.86) 5.16 59.7 (96.3) 60.3 (97.3) -52.4 Strain, u in./in. Iongitudinal (a) Stress, Strain, ksi buin./in 1 1 42.0 (71.2) 46.5 (78.9) 48.2 (81.7) 49.3 (83.5) 55.3 (93.7) 55.8 (94.6) 56.6 (95.9) 51.9 (87.9) 52.7 (89.3) 53.3 (90.4) 53.8 (91.2) 54.3 (92.0) 54.7 (92.7) 50.1 (84.9) 50.7 (85.9) 59.0 (100.0) 57.2 (96.9) 58.2 (98.6) 59.3 (100.5) 1 1 Short-Transverse^(b) Stress, Strain, ksi strain, (* TYS) u in./in. 3919 5079 5191 5298 2231 3025 3570 4159 4326 4606 66*L*ħ 5660 5.772 6259 1564 5449 6917 7775 7534 8013 3131 43.5 (76.4) 45.9 (80.5) 47.4 (83.1) 23.0 (40.3) 31.0 (54.3) 36.4 (63.8) 39.7 (69.7) 4.2.0 (73.7) 49.2 (86.4) 49.9 (87.5) 52.1 (91.4) 53.3 (93.4) 57.0 (100.0) 57.4 (100.7) 57.8 (101.4) 58.0 (101.8) 48.4 (85.0) 50.5 (88.1) 54.2 (95.0) 55.8 (97.9) 51.4 (90.2) ka1) Tension (Modulus, 10.3 x 10³ Long-Transverse^(a) Strain, u in./in. Long-Transverse^{(a} Stress, Strain ksi Strain (« TYS) u in./1 2276 3145 3729 4072 4319 4523 4859 5090 5269 5421 5550 5669 5874 6054 6369 7258 7825 6644 8045 8370 ł 23.4 (39.1) 32.1 (53.7) 38.0 (63.3) 41.3 (68.9) 43.7 (72.8) 60.5 (100.8) 54.3 (90.5) 55. (92.3) 56.2 (93.6) 57.4 (95.6) 45.6 (75.9) 48.5 (80.8) 52.7 (87.9) 53.6 (89.3) 60.0 (100.0) 50.2 (100.3) 51.7 (86.2) 58.1 (96.9) 59.4 (98.3) 50.4 (83.9) Strain, u in./in. Longitudinal(a) Stress Strain, ksi Strain, (% TYS) m in./** 2102 2980 3530 3530 3925 4218 4461 4889 5178 5386 5558 5693 5810 6014 6182 6470 67.23 7825 8036 8348 7291 ł (100.4) 60.0 (100.0) 60.1 (100.2) 21.5 (36.1) 30.5 (50.8) 36.0 (59.9) 39.8 (66.4) 42.5 (71.0) 51.3 (85.5) 52.9 (88.2) 54.2 (90.3) 55.0 (91.7) 55.7 (92.9) 56.8 (94.7) 57.5 (95.8) 58.4 (97.3) 58.9 (98.2) 59.6 (99.4) 44.9 (74.9) 48.8 (81.3) 60.2 Strain Departure m in./in. 2000(YS 1000 2200 2400 2500 <u>A</u>3

Downloaded from http://www.everyspec.com

based on tests of four samples, 0.5, 2.0, 3.0 and 4.0-in. thick. based on tests of three samples, 2.9, 3.0 and 4.0-in, thick. Data

•

· · · · · · · · · · · · · · ·

مر چر-ن

٠.

DATA FOR ESTABLISHING TYPICAL STRESS-STRAIN CURVES FOR 2219-T852 HAND FORGINGS

(F33615-74-c-5089)

			Percentage of 1	(ield Stress ^(a)		
strain Departure u in./in.	Tensio Longitudinal	n (Modulus 10.2 x Long- ^m r.nsverse	103 ksi) Chort-Transverse	Compress Longitudinal	ton (Modulus 10.4 Long-Transverse	x 10 ³ ksi) Short-Transverse
0	117.8	51.2	44.3	65.2	63.7	57.9
20	61.3	63.5	56.0	74.1	75.9	67.1
40	68.3	70.4	62.9	77.8	79.4	72.9
60	73.3	74.5	67.1	80.4	82.0	75.9
80	76.9	. +1-22	70.2	82.2	83.6	78.2
100	79.6	7.67	73.2	83.7	84.8	80.1
150	84.1	83.4	78.0	86.3	87.2	83.4
200	86.9	85.9	81.4	88.0	88,8	85.8
250	88.9	87.7	84.0	89.3	90.0	87.5
300	90.4	89.1	96.0	90.5	91.0	88.9
350	91.5	90.3	87.5	91.3	91.8	0.06
1100	92.4	91.2	88.8	92.1	92.5	91.0
500	93.8	92.7	90.8	93.3	93.6	92.5
600	6.46	93.8	92.4	94.3	94.5 .	93.7
800	96.3	95.5	94.6	95.7	95.9	95.4
1000	97.3	96.7	96.1	96.7	6•96	96.6
1250	98.2	97.8	97.5	97.8	6.76	97.8
1500	98.9	98.7	98.5	98 . 6	98.7	98.6
1750	99.5	4.66	99.3	4.96	4.66	4 •66
2000(YS)	100.0	100.0	100.0	100.0	100.0	100.0
2100	100.2	100.2	2.001	100.3	100.2	100.2
2200	100.1	100°t	100.5	100.5	100.5	100.4
2300	100.5		100.7	100.7	100.7	100.7
2400	100.7	-	100.9	100.9	100.9	1
2500	100.7	!	1.101	101.2	100.9	8 8 1
(a) Date	based on tests	: of four camples,	2.0, 3.5, 4.5 and	5.5-ån. tháck.		

Downloaded from http://www.everyspec.com

•

TABLE 20 DATA FOR TYPICAL COMPRESSIVE TANCENT-MODULUC CLEVES FOR 2048-T851, 7050-T7351 AND 7475-T7351 PLATE (F33615-74-C-5089)

たいないないでいたのでないで、こことのないないないであるというないとない

5

Downloaded from http://www.everyspec.com

		2048-7851			Stress, ksi				
'antnpoy	Longitudinal	Long-Transverse	Short-Transverse	Long1tudinal	1050-17351 Long-Transverse	Shc t-Transverse	Towerstricter	7475-77351	
10.7	म गग	4 c4					ייינאי ימנידוופד	Long-Transverse	Short-Transverse
		47.4	42.9	1					
0.04	;	!	1	20.00	(
10.5	45.3	ग गग	t	0.40	43.8	43.4	42.0	1 1	
10.0	lic o		1.01	39.8	L.44	111.0		1.04	0.44
	101	45.5	144.9	41.7	he 6		+5°7+	44.3	5.44
10.0	146.8	46.8	45.7	0	0°C+	45.8	43.9	46.0	
9.7	47.7	48.0		0.24	146.6	46.7	44.8	L 7 1	
9.3	18 7		0.01	44.2	48.0	48.0	116		1.04
		44.5	48.3	45.8	ho 6		1.01	48.3	47.2
0.4	£.94	50.4	49.3	116.8		49.4	47.6	49.8	48.4
8°5	50.4	51.7		, ,	50.5	50.3	48.5	2 03	
- - -	(1.00	49.3	52.0	- 13		0.00	49.2
	5.10	52.7	51.7	10.14		1.46	49.6	51.8	50.5
	52.9	54.5	53.5		5.00 	52.8	50.5	52.8	
6. 0	54.2	2 11		1.10	55.4	54.6	۲ ۲		C*TC
			55.0	52.6	57.1	2		U+ 1	53.2
	0.44	57.1	56.2	54.1	58 C	2.00	52.9	55.8	54.4
	6.97	58.2	57 3			57.5	53.9	57.0	
3.0	58.0			7.1	59.9	58.8	5		0.00
u o		2.20	58.5	57.0	61.2			50.2	56.5
	1.00	59.9	59.0	57.9	61.9		56.0	59.2	57.9
0.2	59.5	60.4	59.6	68.8	CT. 7	2°00	56.5	59.9	1
1.5	60.4	L LÀ		0.00	62.6	61.6	67.9		
5.1	A A		1.09	60.1	63.5	Ko K		00.4	54.5
	0.00	61.4	60.3	60.6	0 69		1.05	61.0	60.7
	61. 4	61.7	60.7			05.00	58.7	61.4	61.1
0.7	;	62.5			04.4	63.2	59.4	61.9	616
				ļ	1 ;	 1	ł	60 6	
						•••		2.02	:

÷

1

111 111 **222 223 224 223 2**83

DIEN

1 8 8

14,8

ALL BRANK ALL

মূল হাজ্যপ্রাপ

5				
8				
その歌				
2.8-5				
	,			
100				
ALC: N				
100				
1.100				
100				
10.02				
100				
	(19)		·	
	e E		é	
	Ë		C. T. T.	
		5	ŝ	
		J	FX C	
	Care L	Ì		
		1200		Ş
	2		10115	
	- B		10.00	1.2.0.1
	- 2		- 33	ŝ

		ATC
		r.
	•	21
		Ę.
		8
		Ň
		a
		53
		3
	12	33
	N	Ę
	IQ.	8
	F	Ę
		ŝ
		ĩ
		ž
		5
		4
		SUL
		P.E.

(P33615-74-C-5089)

.

4

nistion	er 2 (1) 2000 (1) 20	.02 0.80 34.8 No(8.6
1111 (1111) 1111	111 111 200 000 200 200 200	33.9 % (b, c 33.9 % (b, c 33.4 % (b, c 33.4 % (b, c 33.5 % (b, c))))))))))))))))))))))))))))))))))))
	000 000 <td>000 000 200 000 202 6888 855 866 200 600 8011 11 200 600 8011 10 200 600 8011 10 200 600 600 600 200 1000 8011 10 200 600 600 600</td>	000 000 200 000 202 6888 855 866 200 600 8011 11 200 600 8011 10 200 600 8011 10 200 600 600 600 200 1000 8011 10 200 600 600 600
NA NA<	44 44 444 444 999 999 999 999	44 44 444 444 444 999 1990 1990 1990 1990 1998 1998 1998 1999 1998
Class Clas Class Class <thc< td=""><td>6656 6656 6656 6656 6656 6656 6656 665</td><td>0.49 0.49 0.49 1.09 1.09 1.09 1.09 1.09</td></thc<>	6656 6656 6656 6656 6656 6656 6656 665	0.49 0.49 0.49 1.09 1.09 1.09 1.09 1.09
110 1d Spe ach, Kunter		· 12 1
1 1 1 1	Tonsi Yiel Kai	61.6
	Ellev .	222 222 222 222 222 222 222 222 222 22
		080
		mmm
ŝ	2 4 (((u)) 2	2.200 2.200 2.200
Orientetion	Crack 2 4 (Kys)?	1.08 0.91
L-T Orientetion	octaon Smack 2 4 (Ko)2	0.49 0.49 0.49 0.49 1.02 0.94 0.94 0.94
1-T Orientation	Spectmer Creck 2 4(K) 2 North 2 4(K) 2	100 0.49 100 0.49 100 0.49 1.00 0.91 0.49 0.49 0.49 0.91 1.00 0.91 1.00 0.91 1.00 0.91 1.00 0.91 1.00 0.91 1.00 0.91 1.00 0.91 1.00 0.91 1.00 0.91 1.00 0.91 1.00 0.91 1.00 0.91 1.00 0.92 1.00 0.92 1.00 0.92 1.00 0.94 1.00 0
L-T Orientation	Tensile Specimer Creck 2 6(Ky.) ² Strength, Number Interess Longth, 2 6(Ky.) ²	62.2 11 0.49 1.09 0.91 3 62.2 12 0.49 1.09 0.91 3 13 0.49 1.00 0.91 3
L-T Orientation	Total (1992) 2000 100 2000 2000 2000 2000 2000 200	62.2 11 0.49 1.00 0.91 3 62.2 12 0.49 1.00 0.91 3 63.0 0.49 1.00 0.97 3 7 0.49 1.00 0.95 1.00 0.
I-T Orientation	Taatair Surveych, Rurster Millerans Langell, 2 (194)?	421376 62.2 1.1 0.49 1.00 0.91 3 421376 62.2 1.1 0.49 1.00 0.91 3 Ave. 1.2 0.49 1.00 0.91 3

		*1(si 0)	.7 Yes	7.5 7.0 7.0 2 2		7.8 Yes 7.0 Yes 7.3 Yes	7.0 Yes 8.3 Yes 7.9	9.2 7 45 9.0 9.0 7 45	7.7 Yes 8.5 Yes 9.4 Yes 8.5	7.9 Yes 8.9 Yes 8.3 Yes	66.2 5.5 7.4 7.4 7.4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	A.9 Yes 	6.3 Yes 66.1 Yes 66.1 Yes
		(.	0.62	1950		222	8555	00000 00000	0.55	22.28	000	0.100	50.00 50.00 60.00
		10 10 10 10 10 10 10 10 10 10 10 10 10 1	 078	0.77		1.28 1.28 1.28	1.27 1.27 1.28	4554 757	1.53	282	1.52	1.52	2252
	e J	men Tokness	1n. 0.75	0.75	0.75	1.25 1.25 1.25	1.25	1.50	1.50	5000	1.50	1.50	1.58
		Spect Number Th	- CN	82 3	22F	n sn	e e e e	IN SN	5 22	un Su Su	NH N	N2 N2 N3 N3	ane Nue
		Tensile Vield	55.6		5.66	60.1	61.4	60.0	29.0	58.9	58 6	6.8	r. Y
		P114				2222 2222	tes ses		K K K	000 000 000 000	A A A A A A A A A A A A A A A A A A A	8 8 8 5 7 7 7 7 7 7	999 444
			1,151 32.6			00000	00000	0000	29.62	62.62	10.00	0.00	39.92
	anvit	2 5(1)	, oya	12.0	000	0.55	0.55 0.55	000 8788 8788	220	0.00 59 59 50 50 50 50 50 50 50 50 50 50 50 50 50	000 17 00 17	0.66 0.63	877.00 197.00
	100 11-000	Creck Creck	2.07	66	88	1.58	1.59	2.10	885 N N N N	2.10	5.02 5.05 5.05	5.08 5.03 5.03	889 899 899
2, ao 1949.	(680	actmen	11 2.00	88	888	1.50	1.50	888	888	888	8.00 5.00 5.00	888	888
TABLE 22	15-74-C-5	5	T1	ដេដូ ដ	345	585 5	ere	1 55	:12E	155	588 5	48;	555
	(F33	TensTI Vield	Strengt ks1 60.6		0.00	63.7	64.2	63.4	63.4	63.7	61.4	1.92	6.03
			Yes Yes			3 Yes	19 Yes	204H	T Yes	Yes Yes	4.48 4.48 4.48 4.48 4.48 4.48 4.48 4.48	es K≺≺ Kes Kes Kes	10.00
	10238	· · ·	2.1	r an	rige:	z Azk	7.89 A	8588	****	<u> </u>	<u>బిబిబి</u>	8888 8	જે જ
		2 GF	5 5 F	35	88.1	0.72	0.73	0.82 0.77 0.82	0.72	0.69	2000 2500	0.77 0.77	5255 2255
		Orleniat Trai	15 Lengt'		558 	*** ***	1.57	502 5102 5102	868 868	603 893 898 898	888	358	558 N N N
		Spectmen.	Thicknes In 2.00	888	888	1.50	1.50	888	888	8000 5000 5000	8.8 8,98 8,0	888	888
			Number	192	333	332	383	392	332	333	385	333	383
		Tens II Yield	trenst: Kai		60.5	6 3. 7	63.9	63.7	63.7	63.7	. 63.2	60.4	62.2 1
			1074	\$7014 • 1014	21075 Ave	21076 Årg	16015 A.G.	21077 Avg.	81078 A.13	21073 A"E	21278 Lug	21C79 Ave	21060 A.2 A.2
		ample	7. 000 M	* .	7300	4 8	7 COC	17 CCO	47	4 000	4 811.	7000	
					·	3 0	5 e.	, 15	55	2-0	7	ć	· (•)

se o ****

TO REAL PROPERTY OF
an a
and the second
- EL MARK
LANS BAL
10110100
uters to all the states
فمطيح مناحقتهم
ar an said
ومعرجه والمحاصين
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
d sail work to fill with
the strained the data
south a state of

TABLE 23 REGULTS OF FRACTURE TESTS OF 7475-17351 PLATE (F33615-74-0-5089)

. Since

C. COSST. 1

			4: 	Orlentatio	ç				ŧ	L Oriente	ation			-		1-2	Outer tatto			
Blarrel 7	n le Sumber	1 19110 Yield Ctrongth,	Sper Bumber	clean Thick he's,	Creak Length th.	2.51 10 13	kg, Valid ksi/In	Tensile Yield Tensth,	Number P	then Storness, In	Crack Crack Iength, 2 in.	5(10)2	N Total		nsile ield rength, Mu kei	Specimen mber Inickn in	Crac Crac tenet	<u>81</u>)५२ ५	2 xst)tr	Valid
0,50	124624	ړي د	38C	888	0051 0.51	2000 2000	$\begin{array}{c} 3.4 & 4a \left(\mathbf{a} \right) \left(\mathbf{b} \right) \left(\mathbf{c} \right) \\ 37 & 4a \left(\mathbf{a} \right) \left(\mathbf{a} \right) \left(\mathbf{b} \right) \left(\mathbf{c} \right) \\ 37.1 & 4a \left(\mathbf{a} \right) \left(\mathbf{a} \right) \left(\mathbf{b} \right) \\ 37.1 & 4a \left(\mathbf{a} \right) \left(\mathbf{b} \right) \\ 37.1 & 4a \left(\mathbf{a} \right) \left(\mathbf{a} \right) \left(\mathbf{b} \right) \\ 37.1 & 4a \left(\mathbf{a} \right) \left(\mathbf{a} \right) \left(\mathbf{b} \right) \\ 37.1 & 5a \left(\mathbf{a} \right) \left(\mathbf{a} \right) \left(\mathbf{b} \right) \\ 37.1 & 5a \left(\mathbf{a} \right) \left(\mathbf{b} \right) \\ 37.1 & 5a \left(\mathbf{a} \right) \left(\mathbf{b} \right) \\ 37.1 & 5a \left(\mathbf{a} \right) \left(\mathbf{a} \right) \left(\mathbf{b} \right) \\ 37.1 & 5a \left(\mathbf{a} \right) \left(\mathbf{b} \right) \\ 37.1 & 5a \left(\mathbf{a} \right) \left(\mathbf{b} \right) \\ 37.1 & 5a \left(\mathbf{a} \right) \left(\mathbf{b} \right) \\ 37.1 & 5a \left(\mathbf{a} \right) \left(\mathbf{b} \right) \\ 37.1 & 5a \left(\mathbf{a} \right) \left(\mathbf{b} \right) \\ 37.1 & 5a \left(\mathbf{a} \right) \left(\mathbf{b} \right) \\ 37.1 & 5a \left(\mathbf{a} \right) \left(\mathbf{b} \right) \\ 37.1 & 5a \left(\mathbf{a} \right) \left(\mathbf{b} \right) \\ 37.1 & 5a \left(\mathbf{a} \right) \left(\mathbf{b} \right) \\ 37.1 & 5a \left(\mathbf{b} \right) \left(\mathbf{b} \right) \\ 37.1 & 5a \left(\mathbf{b} \right) \left(\mathbf{b} \right) \\ 37.1 & 5a \left(\mathbf{b} \right) \left(\mathbf{b} \right) \\ 37.1 & 5a \left(\mathbf{b} \right) \left(\mathbf{b} \right) \\ 37.1 & 5a \left(\mathbf{b} \right) \left(\mathbf{b} \right) \\ 37.1 & 5a \left(\mathbf{b} \right) \left(\mathbf{b} \right) \\ 37.1 & 5a \left(\mathbf{b} \right) \left(\mathbf{b} \right) \\ 37.1 & 5a \left(\mathbf{b} \right) \left(\mathbf{b} \right) \\ 37.1 & 5a \left(\mathbf{b} \right) \\ 3$	63 2	Ë +	0.50 0.50 0.50	00-52 5255 5255	0 10 15 0 0.6j	33-3 No 31-3 No 33-2 No			***		:::	; ; ; ;	:::>
5	207621	£ 29	735 767	64.0 64.0	0025 255	0 % 2.47 2.87	36.5 40(A)(b)(c) 36.7 10(A)(b) 36.7 10(A)(b)	ń3 9	243	0.49 0.49 0.49	005 12 12 12	0 66 0 67 0.67	32.4 No 33.0 No 32.1 No	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		:::	:::	111	: ; ;):::
2	Arr	62.3	333	883	8655	113	41 No(a)(b) 41 No(a)(b) 41 No(a)(b)	× F	182	388	888 11 1	0.23 0.79 0.81	335 F		f 1 1		111	:::	:::	:: : :
ŝ	4547 54	5 bs	232 232	888	885	88% 242	43.2. No(1) 44, 1 No(2) 41, 9 No(2) 41, 9 No(2)	59.4	349	800	1 03	0.88 0.90 0.90	35-7 25-6 25-6 25-6		:::		:::	181	111	:::
8	4 75 HSH	0.75	332	1.97 1.97 1.97	188 882	1 37	42 2 Yes 42 2 Yes 42 4 Yes	2 25	ert	197 197 1.97	2.12	0.78 0.79 0.79	222 222 222 222 222 222 222 222 222 22		57.0	22 0 0 2 EN	000	2 0 58 2 0 65 2 0 65	23 6 239 1 289 1	Yes Yes Yes
8	ALK ALK	2 2 2	ឧងដ	76 197 97	202	414 844	43.6 Yes 43.3 Yes 42.2 Yes	58 3	ere	1.97	802 802 802	0 75 0 75 0 79	2.4.2 2.4.2.2 2.4.2.2 2.4.2.2 2.4.2.2.2 2.4.2.2.2.2		د ع	22.0 IN 27.0 EN	1.000 1.11	0.65	30.6 30.6 28.9 28.9 28.9 28.9 29.8	Yes Yes Yes
ۍ ۲	ANN 1456-27	54.9	สมธ	2.86 95 95	3.15	1.81	46.8 Yes 47.8 Yes 47.7 Yes 47.4	1 55	343	886.	8538	888	33.5 Yes 33.5 Yes 32.7 Yes		4.42	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10.1	0.8 0.77 0.77	31.2 30.1 30.1	Yes Yes Yes
ë.	1/2027	U 55	385	2.92 2.92 2.92	223	1.83 1.80 1.85	17.0 Yes 46.7 Yes 117.4 Yes 117.4 Yes	ورو ال	er.	86. 886.	222	0.82	22.22 22.22		0 75	185 200	858	0.773 0.700	582 582 582 582 582 582 582 582 582 582	Yes Yes Yer
8 .4	4V4	y'25	ತ೫೭	943 943 943	3.15	1 85	200 2 200 200 5 200 200 200 200 200 200 200 200 200 200	54.2	ជពជ	885	2.55 2.55	0.95	23.4 23.6 23.6 25.9 2.9 2.9	<u></u>	52.5	550 520 520	533	0.00		Yes Yes
00 *	m 862t,	/ 7S	รชต	2,93	3.23	1 26	44	53.1	185	9651 9991	રુક્ષર સરસ્ટ	200 200 200	2000 2000 2000 2000 2000 2000			1200 1200 1200		00.89 98.99	-1-020 500 500 500 500 500 500 500 500 500	Yes Yes fes
a) Tuxuf	licitent sy	ecimen tiel	ler webs	B.2 5 (20)	2					1) 1 1	1	,		1	1	1 2 1	•

Downloaded from http://www.everyspec.com

(b) fulgue crack is too short, $2 \in \{\frac{N_{20}}{202}\}^2$ > a for a length) (c) $\frac{P_{20}}{P_{20}} > 1$ ' where PQ and P_{RAX} are 5 percent secant load and seak luad, respectively.

TESTS OF 7475-T7351 PLATE (CURRENT PRACTICE) RESULTS OF FRACTURF TOUGHNESS

(M.T. NO. 110176-4)

				1-1	Orientation						1-T	Ortentati	on					10 1-:	1entation			
Thickness, in.	ple Number	Tenelle Yield Strength,	Spe	cimen Thickness, in.	Crack Length, in.	$2 \frac{\left(\frac{x_{Q}}{dy_{0}}\right)^{2}}{\left(\frac{x_{Q}}{dy_{0}}\right)^{2}}$	keitin.	Valid S	Tensile Yield trength, ksi	Spec Numbe.	cimen Nickness,	Crack Length, 2 in.	$\cdot 5 \left(\frac{K_3}{\sigma_{ys}}\right)^2$	kalin. V	alid	Tensile Yield trength, ksi	Speci umber Ti	lmen hickriess, in.	Crack Length, 2 1n.	$2 - 5 \left(\frac{K_3}{c_{ys}} \right)^2$	aiXfr.	alid
0.500	112624	62.3	สม	67,0 67,0	2.99	2.19 2.44	58.4 61.7	No(a,c) No(a,c)	3.8	45	67°0	2.00	I.H	2.2 2.2 2.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(**c) 0(**c)	::	::		;;;	11	}]	11
0.750	478718	63.8	33	0.76 0.76	5 6	2.20	59-9 51-9	No(a, c)	62.7	55	0.76 0.76	2.01	1.15	43.3 N	(**c) (**c)	ſ I		; ;	: }	11	11	} }
1.750	478824	63.7	23	1.74	8.00	1.72	55-P	No(c.d)	62.0	ដង	1.75	5.5	1.02	39.7 10.2	::	58.4	N N	0.75	0.77	10°2	37.8	(q • •) (q • •)
1.750	era ge 478825	63.0	33	52.1	3.03	1.83	23.9	No(a,d)	61.2	ដូន	1.76	3.02	6.9 86.0	86.5 199.0 199.0	(b, c)0	57.7	4 8	0.75	0.77 0.76	0.85 0.85	33.8	(d =)0;
2.250 Av	етабе 478826 1146	61.9	23	88 88 8	3.89	1.5%	23.5 48.3 48.5 48.5	Yes	60,9	58 1	2.26	3.06	0.95 0.97	37.8 37.8		58.7	42	0.15 0.15	0.76	0.79	1.23	(A. 2) 0)
2+250 Ave	478927 1146	2.92	สม	2.25	3.01	1.72	67 67 67 67 67 67 67	Yes	6.62	43	2.25	3.07	0.95 0.95	899 999 999 999 999 999 999 999 999 999		55.7	IN N	0.75	0.76	0.87 0.91	33.0 33.7	o(a.b)
2.750 Ave	478828 1 786 28	57.9	33	2.75	88° 7'	1.87	50.2 19.6	Yes ies	57.6	ជន	2.75	3.08	1.05	37.5		55.3	CN 2N	1.00	810.1	66°0	35.0	les (es
2.750 Ave	478829 *** *6 *	60.ù	ជន	2.73	3.08	151	6.9 1.91	Yes Yes	58.7	52	2.72 2.74	3.14	0.89 88 88	35.0 35.0 35.0		c.t. 3	CN SN	108	1.00	0.83	31-3	(es
3.500	478830 *** *E e	59.1	33	3.80 3.90	3.15	1.83	50 7 51.2 50.9	Yes Jes	57.0	22 2	3.09 3.09	3.20	1.07	37.4 37.1 37.6		4.45	W	1.25	1.25	0.95	33.5	1 2
3.500	478961	58.8	33	88 88	3.12	1.75	1.67 1.64 1.64	Yes Yes	57.0	22	88° 888	3.17	100	8.95 8.95 5.95		54.2	N2 N2	1.25 1.25	1 26	0.85 0.88	32.5	(es
				0 / 0 E Vo	- 15			1							-							

157

Downloaded from http://www.everyspec.com

(a) Insufficient spectame thickness, B < 2-5, $V_{Q_1}C_{\gamma_B}^{-1}$. (b) instructions erack length, A < 2-5 $(K_Q^{-}\sigma_{\gamma_B})^2$. (c) P_{Max}/V_Q > 1.1. (d) Values considered meaningth.

(63
8
-4-
515
Ë

TALE 25 Heauling of Fractingent Tests of 2219-1652 Hand Foreirigs (F33615-74-0-5069)	(7.1) Artabiston	L ¹ ² K ₂₁ , halid Streach, Number Spectreen Creeck, 2.5(0) ² K ₂₁ , valid Streach, Number Michneus, Leach, 2.5(0) ² K ₂₁ , valid Streach, Number Michneus, Leach, 2.5(0) ² K ₂₁ , valid Streach, Number Michneus, Leach, 2.5(0) ² K ₂₁ , valid Streach, Number Michneus, Leach, 2.5(0) ² K ₂₁ , valid Streach, Number Michneus, Leach, 2.5(0) ² K ₂₁ , valid Streach, Number Michneus, Leach, 2.5(0) ² K ₂₁ , valid Streach, Number Michneus, Leach, 2.5(0) ² K ₂₁ , valid Streach, Number Michneus, Leach, 2.5(0) ² K ₂₁ , valid Streach, Number Michneus, Leach, 2.5(0) ² K ₂₁ , valid Streach, Number Michneus, Leach, 2.5(0) ² K ₂₁ , valid Streach, Number Michneus, Leach, 2.5(0) ² K ₂₁ , valid Streach, Number Michneus, Leach, 2.5(0) ² K ₂₁ , valid Streach, 2.5(0) ² K ₂₁ , valid Streach, Number Michneus, Leach, 2.5(0) ² K ₂₁ , valid Streach, Number Michneus, Leach, 2.5(0) ² K ₂₁ , valid Streach, 2.5(0) ² K ₂₁ , valid	1 32-0 (66)(c) 50-6 7-1 1.50 1.55 0.72 28.5 Yes 51-5 11 0.75 0.60 0.73 28. 1.1.1 V(6)(c) 7-2 1.50 1.55 0.64 29.4 Yes 51-5 12 0.75 0.60 0.63 28. 1.1.1 0.17 0.60 0.62 28. 1.2.1 1.50 1.56 0.84 29.2 Yes 71-5 0.75 0.60 0.62 28. 1.2.1 1.50 1.56 0.84 29.2 Yes 71-5 0.75 0.60 0.63 28. 2.2.1 1.50 1.50 1.50 0.84 29.2 Yes 71-5 0.75 0.60 0.63 28. 2.2.1 1.50 1.50 0.84 29.2 Yes 71-5 0.75 0.60 0.63 28. 2.2.1 1.50 1.50 0.84 29.2 Yes 71-5 0.75 0.60 0.63 28. 2.2.1 1.50 1.50 0.84 29.2 Yes 71-5 0.75 0.60 0.63 28. 2.2.1 1.50 1.50 0.84 29.2 Yes 71-5 0.75 0.60 0.63 28. 2.2.1 1.50 1.50 0.84 29.2 Yes 71-5 0.75 0.60 0.63 28. 2.2.1 1.50 1.50 0.84 29.2 Yes 71-5 0.75 0.60 0.63 28. 2.2.1 1.50 1.50 0.84 29.2 Yes 71-5 0.75 0.60 0.64 28.5 Yes 71-5 0.60 0.64 28.5 Yes 71-5 0.75 0.60 0.64 28.5 Yes 71-5 0.60 0.64 28.5 Yes 71-5 0.60 0.64 28.5 Yes 71-5 0.75 0.60 0.64 28.5 Yes 71-5 0.50 0.64 28.5 Yes 71-5 0.75 0.60 0.64 28.5 Yes 71-5 0.50 0.50 0.64 78.5 Yes 71-5 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.	Ves ¹ / ₂ , 9 7-1 2, ¹ / ₂ , 9 2,51 0.66 26.1 Yes N-1 1<00	L1.1 Yes L9.8 T-1 2.50 2.55 0.80 28.1 Yes L9.7 N-1 1.00 1.02 0.67 25 1 27.4 28.2 2.55 0.80 28.1 Yes N-2 1.00 1.03 0.67 25 1 27.4 2.50 2.55 0.80 28.2 Yes N-2 1.00 1.03 0.65 25 2.55 2.55 2.55 2.55 2.55 2.55 2.63 2.64 2.55 2.64 2.55 2.55 2.63 2.64 2.55 2.55 2.55 2.63 2.64 2.55 2.64 2.55 2.64 2.55 2.64 2.64 2.55 2.64 2.55 2.65 2.63 2.65 2.64 2.55 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.6	bo.d Yes 50.2 T-1 2.50 2.50 2.50 0.62 24.9 Yes 51.1 N-1 1.00 1.01 0.54 23 1 0.0.4 Yes 7.2 2.50 2.55 0.65 26.0 Yes 1.01 0.54 23 1 0.0.4 Yes 7.2 2.50 2.55 0.66 26.0 Yes 1.00 1.08 0.65 25.3 1.00 1.08 0.65 25.3 1.00 1.08 0.65 25.3 1.1 1.1 1.00 1.08 0.65 25.3 1.00 1.08 0.65 25.3 1.1 1.1 1.00 1.08 0.65 25.3 1.1 1.1 1.00 1.08 0.65 25.7 1.1 1.00 1.08 0.65 25.7 1.1 1.00 1.08 0.65 25.7 1.1 1.00 1.08 0.65 25.7 1.1 1.00 1.08 0.65 25.7 1.1	35.1 Yes b5 7 T-1 2.50 0.97 28.8 Yes b7 0 Y-1 1.55 0.68 28.8 37.0 Yes 1-2 2.50 2.54 0.97 28.8 Yes 1.2 1.55 0.68 28.8 37.0 Yes 1-3 2.50 2.54 0.91 28.1 Yes 1.25 1.55 0.66 28.8 35.2 Yes 7.3 2.50 2.54 0.91 28.1 Yes 1.55 1.55 0.66 28.8 35.2 Yes 7.3 2.60 2.71 28.1 Nes 1.55 1.55 0.56 28.8 35.2 Yes Yes Yes Nes Nes Nes 1.55 1.55 0.56 28.8 35.2 Yes Yes Yes Nes Nes Nes 1.55 1.55 0.56 28.3 23 23 23 23 23 23 23	41.3 Yee Sofe T-1 2.50 2.51 0.86 29.8 Yee 51.2 N-1 1.55 1.53 0.68 36 <th< th=""><th>W2.1 Yes 46.4 T.1 2.50 2.74 25.2 6.14 7.2 N-1 2.00 2.64 0.53 21.15 No 100 1.03 0.65 21.15</th><th>1 3.0 Yes 13.1 7.1 2.50 2.57 110 28.6 Yes 50.0 N-1 2.00 2.05 0.68 26. 28.2 Yes 7.2 2.50 2.56 1.07 28.2 Yes 1.2 2.00 2.09 0.50 28.2 Yes 1.2 2.00 2.09 0.50 28.2 Yes 1.2 2.00 2.09 2.53 28.2 Yes 1.2 2.00 2.59 28.2 Yes 1.2 2.50 2.50 2.59 2.53 28.2 Yes 1.2 2.50 2.50 2.59 2.59 2.59 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50</th><th>3 34.8 Yes 43 T-1 2.50 2.60 0.85 25.7 No(d) 42 4.1 2.00 2.03 0.09 22 23.5 No(d) 42 4.1 2.00 2.03 0.09 22 23.5 No(d) 42 4.1 2.00 2.03 0.03 22 23.0 2.06 0.11 22 23.5 0.01 22 23.5 0.01 23.5 0.01 23.5 2.00 2.05 0.01 23.5 23.5 2.00 2.05 0.01 23.5 23.5 2.00 2.05 0.01 23.5 23.5 2.05 0.01 23.5 2.05 0.01 23.5 2.05 0.01 23.5 2.05 0.01 23.5 2.05 0.01 23.5 2.05 0.01 23.5 2.05 0.01 23.5 2.05 0.01 23.5 2.05 0.01 23.5 2.05 0.01 23.5 2.05 0.01 2.05 0.01</th><th>36 Ves Mu. 7-1 250 760 773 33-9 Mu(e) Mu Mu</th></th<>	W2.1 Yes 46.4 T.1 2.50 2.74 25.2 6.14 7.2 N-1 2.00 2.64 0.53 21.15 No 100 1.03 0.65 21.15	1 3.0 Yes 13.1 7.1 2.50 2.57 110 28.6 Yes 50.0 N-1 2.00 2.05 0.68 26. 28.2 Yes 7.2 2.50 2.56 1.07 28.2 Yes 1.2 2.00 2.09 0.50 28.2 Yes 1.2 2.00 2.09 0.50 28.2 Yes 1.2 2.00 2.09 2.53 28.2 Yes 1.2 2.00 2.59 28.2 Yes 1.2 2.50 2.50 2.59 2.53 28.2 Yes 1.2 2.50 2.50 2.59 2.59 2.59 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	3 34.8 Yes 43 T-1 2.50 2.60 0.85 25.7 No(d) 42 4.1 2.00 2.03 0.09 22 23.5 No(d) 42 4.1 2.00 2.03 0.09 22 23.5 No(d) 42 4.1 2.00 2.03 0.03 22 23.0 2.06 0.11 22 23.5 0.01 22 23.5 0.01 23.5 0.01 23.5 2.00 2.05 0.01 23.5 23.5 2.00 2.05 0.01 23.5 23.5 2.00 2.05 0.01 23.5 23.5 2.05 0.01 23.5 2.05 0.01 23.5 2.05 0.01 23.5 2.05 0.01 23.5 2.05 0.01 23.5 2.05 0.01 23.5 2.05 0.01 23.5 2.05 0.01 23.5 2.05 0.01 23.5 2.05 0.01 23.5 2.05 0.01 2.05 0.01	36 Ves Mu. 7-1 250 760 773 33-9 Mu(e) Mu Mu
		Tenalis	8 7 1.1. 1.50 1.57 1.88 1.50 1.59 1.59 1.59 1.59	51.1 L-1 2.49 2.53 1.47 L-2 2.40 2.54 1.33 L-3 2.50 2.45 1.35	50.3 L-1 2.50 2.57 1.67 1.78 L-3 2.50 2.55 1.78 1.78 L-3 2.50 2.55 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97	51.2 L-1 2.50 2.62 1.59 L-2 2.50 2.51 1.55 L-3 2.5058 1.69	45.2 Fri Fri Fri S. 88 2.58 1.66 Fri S. 88 2.58 1.66	50 2 1-1 2 50 2.60 1.69 1-2 2.50 2.55 1.95 1.3 2.50 2.55 2.15	19.2 L-1 2.50 2.53 1.58 L-2 2.50 2.61 1.55 L-3 2.50 2.55 1.56	20.6 L-1 7.50 2.52 1.91 L-2 2.50 2.54 1.08 1-3 2.50 2.55 2.08	41.9 L-1 2.50 2.58 1.73 L-2 2.50 2.57 1.89 L-3 2.50 2.55 1.55	13 4 5-1 2-56 1.97 1-2 2-55 2-61 2-73 1-3 2-55 2-61 2-73 1-3 2-55 2-61

(a) Average of valid K[c values. (b) Specimen not thick mough $[2.5(k_0/\sigma_3)^2 > \text{thickmeas}]$. (c) Taking crack too about. $[2.5(k_0/\sigma_3)^2 > \text{track in with}]$ (c) Taking that to 5. v_1 for the last sing standing. "Oncier, v_1/v_q is 1 meaningful runge of 0.501 to 0.700. (e) V₁ greater than 0.7 N₂ for the last sing of failour cracking. (f) N₁ remains than 0.7 N₂ for the last sing of failour cracking. (a) V₁ greater than 0.7 N₂ for the last sing of failour cracking. (b) Network the subset should be then 0.45 and 0.55. (h) Network remains

-*******,, .

-pie

NUMBER OF

Rates of Fatigue-Crack Propagation(a)

Colds-rB51 Product Size Let With MT With MT With MT Mustation Mit Mustation Mit Mustation Mit Mustation	20045-F551 Fraction Lag 103 Table transmission Lag 133 Lag 133 <thlag 133<="" th=""> Lag 133 <th< th=""><th>Product Size(In.) No. Orientation r_{14} 2045-r951 Plate i 421393 r_{-1} 35 7 14 233 r_{-1} 35 $3-1$ 35 7050-r7351 Plate 2 421074 r_{-1} 35 $35-1$ 46 42 7475-r7351 Plate 1 429333 r_{-1} 46 429333 r_{-1} 46 4</th><th>1</th><th></th><th>Thickness or</th><th>Samule</th><th></th><th></th><th></th><th>7</th><th>Ja / AN at</th><th>Indicate micro-in/</th><th>d AK(cycle</th><th>(q</th><th></th><th></th></th<></thlag>	Product Size(In.) No. Orientation r_{14} 2045-r951 Plate i 421393 r_{-1} 35 7 14 233 r_{-1} 35 $3-1$ 35 7050-r7351 Plate 2 421074 r_{-1} 35 $35-1$ 46 42 7475-r7351 Plate 1 429333 r_{-1} 46 429333 r_{-1} 46 4	1		Thickness or	Samule				7	Ja / AN at	Indicate micro-in/	d AK(cycle	(q		
Coloc-TG51 Plate 1 42108 T.T 33 1.14 10.5 3.0 16 6 4.7 7050-77351 Plate 2 421074 T.T 33 11.4 10.5 3.2 25 15 1.3 11.5 3.2 25 1.5 2.2 1.5 2.2 3.5 2.9 1.5 2.2 3.5 2.9 1.5 2.5 2.5 3.5 2.9 1.5 1.2 2.5 1.5 2.5 2.5 1.5 1.5 1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5 1.5	Converted:1 Plate 1 l_{2133} l_{213} <t< th=""><th>COUD-T951 Flate 1 421393 $\Gamma - \Gamma$ 36 775 1 12333 $\Gamma - \Gamma$ 36 36 7050-T7351 Plate 2 421074 $\Gamma - \Gamma$ 36 7050-T7351 Plate 2 421074 $\Gamma - \Gamma$ 36 7050-T7351 Plate 1 429338 $\Gamma - \Gamma$ 36 7070-T7351 Plate 1 429338 $\Gamma - \Gamma$ 46 7075-T7351 Plate 1 429338 $\Gamma - \Gamma$ 46 7175-T7351 Plate 1 429361 $\Gamma - \Gamma$ 46 7175-T7351 Plate 1 429246 $\Gamma - \Gamma$ 46 7175-T7351 Plate 17202 429246 $\Gamma - \Gamma$ 46 7075 Panding $2x3$ 429246 $\Gamma - \Gamma$ 46 56 7175 Porging $2x1/2xc22$ 429246 $\Gamma - \Gamma$ 56 56 7050-T73651 Plate $4-1/2$ $7-1$ $7-1$ 66 57 $7-1$</th><th>La c</th><th>oduct</th><th>Size(in.)</th><th>No.</th><th>Orienta</th><th>tion Fig.</th><th></th><th>J AIF</th><th></th><th>Moist</th><th>AIF</th><th></th><th>Sump Wa</th><th>ter</th></t<>	COUD-T951 Flate 1 421393 $\Gamma - \Gamma$ 36 775 1 12333 $\Gamma - \Gamma$ 36 36 7050-T7351 Plate 2 421074 $\Gamma - \Gamma$ 36 7050-T7351 Plate 2 421074 $\Gamma - \Gamma$ 36 7050-T7351 Plate 1 429338 $\Gamma - \Gamma$ 36 7070-T7351 Plate 1 429338 $\Gamma - \Gamma$ 46 7075-T7351 Plate 1 429338 $\Gamma - \Gamma$ 46 7175-T7351 Plate 1 429361 $\Gamma - \Gamma$ 46 7175-T7351 Plate 1 429246 $\Gamma - \Gamma$ 46 7175-T7351 Plate 17202 429246 $\Gamma - \Gamma$ 46 7075 Panding $2x3$ 429246 $\Gamma - \Gamma$ 46 56 7175 Porging $2x1/2xc22$ 429246 $\Gamma - \Gamma$ 56 56 7050-T73651 Plate $4-1/2$ $7-1$ $7-1$ 66 57 $7-1$	La c	oduct	Size(in.)	No.	Orienta	tion Fig.		J AIF		Moist	AIF		Sump Wa	ter
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	μ μ_{21383} $\frac{1}{1-\Gamma}$ $\frac{3}{36}$ 7050-77351 Plate 2 $\mu_{2107}\mu$ $\frac{1}{1-\Gamma}$ $\frac{3}{36}$ 7475-77351 Plate 1 μ_{2333} $\frac{1}{1-\Gamma}$ $\frac{3}{36}$ 7475-77351 Plate 1 μ_{2333} $\frac{1}{1-\Gamma}$ $\frac{3}{6}$ 7475-77351 Plate 1 μ_{2333} $\frac{1}{1-\Gamma}$ $\frac{4}{16}$ 7475-77351 Plate 1 μ_{23247} μ_{12} μ_{12} 7475 Paction μ_{12} μ_{12} μ_{12} μ_{12} μ_{12} 747 Plate $\mu_{1-1}/2$ $\mu_{12}/2$	-1951 P	late	ŗ	42110 8	г-т 1	5					¥	*		P1
7050-77351 Flate 2 123074 1.5 3.5 1.5	7050-77351 Plate 2 120014 1.7 36.5 11.3 11.5 3.2 25 36.5 31.6 3.2 25 36.5 31.6 3.6	TO50-TT351 Plate 2 μ_{2107}/μ_{1} Γ_{-1}^{-1} $33'_{-1}$ 70'50-TT351 Plate 1 μ_{22333} Γ_{-1}^{-1} $33'_{-1}$ μ_{21}^{-1} </td <td></td> <td></td> <td>7</td> <td>421383</td> <td>676 111 167</td> <td>1885 3887</td> <td>, ,</td> <td>)</td> <td>13- 13- 13-</td> <td>3.0</td> <td>16</td> <td>φ.</td> <td>440</td> <td>975 875</td>			7	421383	676 111 167	1885 3887	, ,)	13- 13- 13-	3.0	16	φ.	440	975 875
7050-77351 Plate 2 legon 1.5 1.6 <	7050-77351 Plate 2 l_{21074} Γ_{11}^{-1} 33 1.6	7050-T7351 Plate 2 μ_{21} Γ_{12}^{-1} μ_{22}^{-1} μ'''_{7} -T7351 Plate 1 $\mu_{2333333333333333333333333333333333333$					2-L 2-L	36 36	<i>к</i> т.	ч. Т. Ч	មដ	5.2	25	•36		188
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 1	-T7351 PI	late	5	421074	L-T	37		α.						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 ⁴⁷ 5-77351 Plate 1 429338 Γ_{-1}^{17} μ_{0}^{15} $\mu_{17}^{17}5-77351$ Plate 1 429338 Γ_{-1}^{17} μ_{0}^{15} $\mu_{17}^{17}5-77351$ Plate 1 429393 Γ_{-1}^{17} μ_{0}^{15} $\mu_{17}^{17}5-77351$ Plate 3-3/4 479961 τ_{-1}^{12} 5_{0}^{12} Γ_{-1}^{12} Γ_{-1}^{12} Γ_{-1}^{12} (C) Γ_{-1}^{12} (C) Γ_{-1}^{12} Γ_{-1}^{12} (C) Γ_{-1}^{12} Γ_{-1}^{12} (C) Γ_{-1}^{12} Γ_{-1}^{12} (C) Γ_{-1}^{12} Γ_{-1}^{12} Γ_{-1}^{12} (C) Γ_{-1}^{12} (C) Γ_{-1}^{12} Γ_{-1}^{12} Γ_{-1}^{12} (C) Γ_{-1}^{12} Γ_{-1}^{12} (C) Γ_{-1}^{12} Γ_{-1}^{12} Γ_{-1}^{12} Γ_{-1}^{12} (C) Γ_{-1}^{12} Γ_{-1}^{12} Γ_{-1}^{12} Γ_{-1}^{12} Γ_{-1}^{12} (C) Γ_{-1}^{12} Γ_{-1}^{12} $\Gamma_{-1}^$			77		5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13 39 11		10.4.0 10.4.0	ងដ	3.6	19	0.85	0 N C	£86
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1^{175}-77351$ Plate 1 429333 1^{-7} 1_{13} 1_{14} 1_{16} 1_{26}	7475-T7351 Flate 1 429383 1-1 44 4 4 429383 1-1 46 46 4 4 43383 1-1 46 46 4 4 439813 1-1 46 46 5 5 47561 5-1/581 7-1 46 5 5 473961 5-1/582 429246 1-1 56 6 5 7-1 57 56 55 6 5 7-1/2822 429246 1-1 56 6 5 7-1/2822 429246 1-1 56 6 5 7-1/2822 429246 1-1 56 6 5 7-1/2822 1-1 7-1 56 6 5 7-1/2822 7-1 7-1 6 7050-T73651 Flate 4-1/2 7-1 7 6 71 7-1/2822 7-1/2822 7-1 7 7 71 7-1/2822 7-1/2822 7-1 6 70-173652 Hand 2-1/2822 7-1 6 75-T736 Hand 7-1/2822 7-1 7 75-T736 Hand					S-L	42	-	5.0	017	3.2	22		10.01	18°
4 $1.2933,$ $1.7.1,$ $1.6,$ $1.6,$ $1.6,$ $1.6,$ $1.6,$ $1.6,$ $1.6,$ $1.6,$ $1.6,$ $1.6,$ $1.6,$ $1.6,$ $1.6,$ $1.6,$ $1.6,$ $1.6,$ $1.6,$ $1.6,$ $1.2,$ $2.5,$ $0.6,$ $8.2,$ $3.1/2,$ 1.79713 $7.1,$ $1.97913,$ $7.1,$ $1.97913,$ $7.1,$ $1.97913,$ $7.1,$ $1.97913,$ $7.1,$ $1.97913,$ $7.1,$ $1.97913,$ $7.1,$ $1.97913,$ $7.1,$ $1.97913,$ $1.2,$ <	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccc} & & & & & & & & & & & & & & & $	-T7351 P1	ate	гч	429338	Ľ-1	43		7 7	ç					2
[475-77351] Flate 3.71 4.76 1.6 1.6 1.6 1.2 0.6 1.6 1.2 0.6 1.6 1.2 0.6 0.6 0.6 1.6 1.6 1.2 0.6 $0.$	$\begin{array}{c} \begin{array}{c} 3-1 \\ 1/7-77351 \\ 7-77351 \\ 7-77351 \\ 7-77351 \\ 7-77351 \\ 7-77351 \\ 7-77351 \\ 7-7552 \\ 7-17 \\ 7-7552 \\ 7-17 \\ 7-7552 \\ 7-17 \\ 7-7552 \\ 7-17 \\ 7-7552 \\ 7-17 \\ 7-7552 \\ 7-17 \\ 7-7552 \\ 7-17 \\ 7-7552 \\ 7-17 \\ 7-7552 \\ 7-17 \\ 7-7552 \\ 7-17 \\ 7-17 \\ 7-77 \\ 7-75 \\ 7-77 \\ 7-75 \\ 7-77 \\ 7-77 \\ 7-77 \\ 7-77 \\ 7-75 \\ 7-77 \\ 7-77 \\ 7-77 \\ 7-75 \\ 7-77 \\ 7-7$	1/475-77351 Flate 3/4 478719 7-1 49 (-urrent Fractice) 3-1/2 478961 7-1 550 552 219-7952 Hand 2x3 429246 7-1 550 557 219-7952 Hand 2x3 429246 7-1 550 557 200-7952 Forging. 5-1/2822 429247 7-1 56 557 050-173651 Plate 1 7-1 56 557 57 56 57 050-173651 Plate 1 7-1 7 7-1 56 57 56 57 050-173651 Plate 1 7-1 7 7-1 6 5			7	429383	191 111 111 111	14 15 12		1.0	110	4.0	22		م مرم مرم	333
$ \begin{array}{c} \frac{1}{17}7-77351 \text{Plate} \\ \text{(urrent Fractice)} \\ (urren$	$ \begin{array}{c} \frac{1}{175-77351} \ \ \mbox{Fractice} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	^[475-T7351] ^{1476-T7351} ^{1476-T7351} ¹⁴⁷⁹⁷¹⁹ ^{7-L} ⁵⁰⁰ ⁵²⁰ ⁵²⁰ ⁵²¹ ⁵⁰⁰ ⁵²¹ ⁵⁰⁰ ⁵²¹ ⁵⁰⁰ ⁵²¹ ⁵²¹ ⁵⁰⁰ ⁵²¹ ⁵²¹ ⁵¹¹					11	181	6 1 .		10	4.2	25	0.6		448
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19-T952 Hand Forging. 2x3 L_{29246} $S-L$ T-T $S-1/2x22 S_{2247}L-TS-LS-1/2x22 S_{2247}S-L S_{23}S-SS-LS-LS-L S_{23}S-SS-LS-LS-L S_{23}S-SS-SS-LS-L S_{23}S-SS-SS-LS-L S_{23}S-SS-SS-L S_{23}S-SS-SS-L S_{23}S-SS-SS-L S_{23}S-SS-SS-L S_{23}S-SS-SS-L S_{23}S-SS-SS-S S_{24}S-SS-S S_{24}S-SS-S S_{24}S-SS-S S_{24}S-SS-S S_{24}S-S S_{24}S-S S_{20}S-S S_{24}S-S S_{24}S$	 (219-T952 Hand 2x9 4/2924/5 T-1 Forging, 5-1/2x22 4/2924/7 T-1 Forging, 5-1/2x22 4/2924/7 T-1 Forging, 5-1/2x22 4/2924/7 T-1 S-L, 56, 57 S-L, 56, 55 S-L, 56, 55 S-L, 56, 55 S-L, 56, 55 S-L, 56 S-L, 79 S-L, 70 S-L,	ent Practic	ate 2e)	3/1 3-1/2	478718 478961	1-1 1-1 1-1	49 50, 51	-16	2	00		Ì		0.0	35
Forging. Forging. Forging. $5-1/2xc2$ 422247 $7-1$ 55 55 12 12 12 23 33 5.5 11 $21/2xc2$ $32/2xc2$ $33/2c2$ 3	Forging. Forging. Forging. $5-1/2xc2$ 425247 $1-1$ $56, 55$ $12, 2$ $13, 2$ $33, 3$ $23, 7$ $21, 22$ $23, 7$ $21, 22$ $23, 7$ $21, 22$ $33, 6$ $26, 55$ $11, 2$ $12, 2$ 12	Foreing. 5-1/2x22 425247 7-1 56, 55 6 7-1 56, 55 56, 55 050-173651 Plate 1 7-1 56, 55 050-173651 Plate 1 7-1 56, 55 050-173651 Plate 4-1/2 7-1 7 050-173652 Hand 2-1/2x22 7-1 (d) 050-173652 Hand 7-1/2 7-1 (d) 050-173652 Hand 7-1/2 7-1 (d) 050-173652 Hand 7-1/2 7-1 (d) 050-173652 Hand 5-1 (d) (e) 050-173652 Hand 7-1/2x22 7-1 (d) 75-7736 Hand 5-1 (e) (e) 75-7736 Hand 5x20 7-1 (e) 75-7736 Hand 5x20 7-1 (e) 75-7736 Hand 5x20 7-1 (e) 7 Forging 5x20 7-1 (e) 7 Ka1/16 Forging 5x20	т952 наг	pr	č x č	942024	1-S	55	.56 1	ŝ	14				9.0	38
Cference Material T-L $56, 57$ 15 13 32 28 27 12 <t< td=""><td>Eference Material T-L $56, 56, 57$:15 :13 $15, 23$ $23, 9$ 29 $29, 10$ 050-T73551 Plate 1 T-L $66, 56, 57$:12 13 33 33 5.5 41 050-T73551 Plate 1 T-L 66 1.8 19 $41, 2, 22$ 24 5.5 41 050-T73551 Plate $4-1/2$ T-L (6) 1.5 11 $2.6, 230$ 5.5 41 050-T73652 Hand $2-1/2x22$ T-L (4) 2.5 12 4.0 25 28 5.0 $5.$</td><td>eference Material 1 T-L 56, 58 050-T73551 Plate 1 T-L 56, 58 050-T73551 Plate 1 T-L 6 5 6 T-L 7.1 7.1 124-T351 Flate 4-1/2 T-L (c) 50-T7355 Hand 2-1/2 T-L (d) 50-T7355 Hand 2-1/2 T-L (d) 7-1/2X22 T-L (d) (c) 7-735 Hand 2-1/2X22 T-L (d) .75-T735 Hand 5-L (c) (c) .75-T735 Hand 5x20 T-L (d) .75-T735 Forging 5x20 T-L (d) .841/Th. .0 72</td><td>FO.</td><td>rging.</td><td>5-1/2×22</td><td>242524</td><td>- 4 6 - 1 - 1 - 1 - 1</td><td>2 2 2 2 3 7 4 7 7</td><td></td><td>Nino</td><td>10 16</td><td>2.3</td><td>22</td><td></td><td>3.7 3.7</td><td>16 21</td></t<>	Eference Material T-L $56, 56, 57$:15 :13 $15, 23$ $23, 9$ 29 $29, 10$ 050-T73551 Plate 1 T-L $66, 56, 57$:12 13 33 33 5.5 41 050-T73551 Plate 1 T-L 66 1.8 19 $41, 2, 22$ 24 5.5 41 050-T73551 Plate $4-1/2$ T-L (6) 1.5 11 $2.6, 230$ 5.5 41 050-T73652 Hand $2-1/2x22$ T-L (4) 2.5 12 4.0 25 28 5.0 $5.$	eference Material 1 T-L 56, 58 050-T73551 Plate 1 T-L 56, 58 050-T73551 Plate 1 T-L 6 5 6 T-L 7.1 7.1 124-T351 Flate 4-1/2 T-L (c) 50-T7355 Hand 2-1/2 T-L (d) 50-T7355 Hand 2-1/2 T-L (d) 7-1/2X22 T-L (d) (c) 7-735 Hand 2-1/2X22 T-L (d) .75-T735 Hand 5-L (c) (c) .75-T735 Hand 5x20 T-L (d) .75-T735 Forging 5x20 T-L (d) .841/Th. .0 72	FO.	rging.	5 -1/2 ×22	242524	- 4 6 - 1 - 1 - 1 - 1	2 2 2 2 3 7 4 7 7		Nino	10 16	2.3	22		3.7 3.7	16 21
efference Material 5.5 41 050-173651 Plate 1 T_{-T} (c) 1.8 19 4.2 24 050-173651 Plate 1 T_{-T} (c) 1.8 19 4.2 24 050-173651 Plate 1 1 2.6 28 24 2.5 24 050-173651 Plate 4-1/2 T-L (c) 1.5 11 2.6 28 2.6 28 050-173652 Hand 2-1/2222 T-L (d) 2.5 12 4.0 25 24 1.0 25 24 1.0 25 4.0 25 4.0 25 4.0 25 4.0 25 4.0 25 4.0 25 4.0 25 4.0 250 5.0 300 5.0 300 5.0 300 5.0 300 5.0 300 5.0 300 5.0 300 5.0 300 5.0 300 5.0 300 5.0 300 5.0 300 5.0 300 5.0 300 5.0 300 5.0	efference Material 5.5 41 050-173651 Plate 1 T-L (c) 1.8 19 4.2 24 5.5 41 050-173651 Plate 6 T-L (c) 1.8 19 4.2 24 5.5 41 050-173651 Plate 4-1/2 T-L (c) 1.5 11 2.6 28 24 5.6 28 5.6 28 5.6 28 5.6 28 5.6 28 5.6 28 5.6 28 5.4 7.0 2.5 11 2.6 2.6 28 28 5.6 28 5.6 28 5.6 28 5.6 28 5.6 28 5.6 28 5.6 28 5.6 28 5.6 28 5.6 28 5.6 28 5.0 300 5.0 300 5.0 300 5.0 300 5.0 300 5.0 300 5.0 300 5.0 300 5.0 300 5.0 300 5.0 300 5.0 300 5.0 300 <td>efference Material 1 T-L C 050-173551 Plate 1 T-L C 050-173551 Plate 4-1/2 T-L C 050-173552 Hand 2-1/2x22 T-L (d) 7-1/2x22 T-L (d) (e) 7-1/2x22 T-L (d) (e) 7-1735 Hand 5-L (e) 75-1735 Hand 5x20 T-L (d) 75-1735 Hand 5x20 T-L (d) 75-1735 Hand 5x20 T-L (d) 75-1735 Forging 5x20 T-L (d) 75-1736 Forging 5x20 T-L (d)</td> <td></td> <td></td> <td></td> <td></td> <td>7-L S-L</td> <td>56, 57</td> <td>.15</td> <td>١</td> <td>, , , , , , , , , , , , , ,</td> <td>0.0 8</td> <td>28</td> <td></td> <td>0 1</td> <td>33</td>	efference Material 1 T-L C 050-173551 Plate 1 T-L C 050-173551 Plate 4-1/2 T-L C 050-173552 Hand 2-1/2x22 T-L (d) 7-1/2x22 T-L (d) (e) 7-1/2x22 T-L (d) (e) 7-1735 Hand 5-L (e) 75-1735 Hand 5x20 T-L (d) 75-1735 Hand 5x20 T-L (d) 75-1735 Hand 5x20 T-L (d) 75-1735 Forging 5x20 T-L (d) 75-1736 Forging 5x20 T-L (d)					7-L S-L	56, 57	.15	١	, , , , , , , , , , , , , ,	0.0 8	28		0 1	33
O50-173551 Plate 1 $7-1$ (c) 1.8 19 4.2 24 O50-173551 Plate $4-1/2$ $7-1$ (c) 1.5 11 2.6 29 124-7951 Plate $4-1/2$ $7-1$ (d) 2.5 12 4.0 25 950-173552 Hand $2-1/2x22$ $T-L$ (d) 2.5 12 4.0 25 950-173552 Hand $2-1/2x22$ $T-L$ (d) 2.5 12 4.0 25 950-173552 Hand $2-1/2x22$ $T-L$ (d) 2.5 12 4.0 25 950-173552 Hand $5-1/2x22$ $T-L$ (d) 2.5 19 1.5 26 950-173552 Hand $5-1/2x22$ $T-L$ (d) 3.5 24 7.0 40	O50-173551 Plate 1 T-L (c) 1.8 19 4.2 24 Contrasts T-L (c) 1.5 11 2.6 28 Contrasts T-L (c) 1.5 11 2.6 28 Contrasts T-L (d) 2.5 12 4.0 25 D50-T73652 Hand 2-1/2 T-L (d) 2.5 12 4.0 25 D50-T73652 Hand 2-1/2 T-L (d) 2.5 12 4.0 25 D50-T73652 Hand 2-1/2 T-L (d) 2.5 12 4.0 25 D50-T73652 Hand 2-1/2 2.5 12 4.0 25 26 D50-T7365 Foreling 7-1/2 2.5 19 1.5 26 26 D50-T736 Hand 5×200 5.0 300 5.0 300 7.5-T736 Hand 5×20 T-L (d) 3.5 24 7.0 40 D Averace ratees for feetes	050-173551 Plate 1 T-L C 6 T-L T-L C 7-1 T-L C 5-1 S-L C 5-1 T-L C 50-17355 Hand 2-1/2 T-L 050-17355 Hand 2-1/2 T-L (d) 75-1735 Forging 7-1/2 T-L (c) 75-7735 Hand 5-L C (c) 75-7735 Hand 5x20 T-L (d) 75-7735 Hand 5x20 T-L (d) 75-7735 Hand 5x20 T-L (d) 75-7735 Forging 5x20 T-L (d) 75-7736 Hand 5x20 T-L (d) 75-7736 Hand 5x20 T-L (d)	ence Materi	al			1	<u>}</u>	v	-	6 7	8° 8°	33		5.5	11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} 24-7351 & \text{Flate} & 4-1/2 & \text{T-L} & (4) \\ 550-T73522 & \text{Hand} & 2-1/2x22 & \text{T-L} & (4) \\ 7-1/2x22 & \text{T-L} & (c) \\ 7-1/2x22 & \text{T-L} & (c) \\ 7-1 & (c) \\ $	124-7351 Flate 4-1/2 T-L (d), 50-773552 Hand 2-1/2x22 T-L (d), Forging 7-1/2x22 L-T (c) 75-7735 Hand 5x20 T-L (c) 75-7735 Hand 5x20 T-L (d) 75-7735 Hand 5x20 T-L (d) 75-7735 Korging 5x20 T-L (d) 1 Average rates for tests at about 20 Hz.	173651 Pla	te	61		1611 6-60	<u></u>	ннні	ແທ່ 4 ທ	<u>8731</u>	0,000 2000	2800 F			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50-T7352 Hand 2-1/2x22 T-L (c) 1.9 19 1.5 26 Forging 7-1/2x22 L-T (c) 1.9 10 1.4 140 75-T736 Hand 5x20 T-L (d) 3.5 24 7.0 40	50-T7352 Hand 2-1/2x22 T-L Forging 7-1/2x22 L-T F-L (c) 75-T736 Hand 5x20 T-L (c) 75-T736 Hand 5x20 T-L (d) Average rates for tests at about 20 Hz.	1351 Fla	te	7-1/5		T-L	(q)	N	ů. L	ŭ	4.0	55			
75-7736 Hand $5x20$ $T-L$ (d) 3.524 7.040	75-T736 Hand 5x20 T-L (d) 3.5 24 7.0 40	75-T736 Hand 5x20 T-L (d) Forging 5x20 T-L (d) Average rates for tests at about 20 Hz.	73652 Han	g Bing	2-1/2x22 7-1/2x22		1-1-1- 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	0000	<i>⊂</i> (₁)⊒	ດ. ເ ດີ. ເ ດີ. ເ	<i>9</i> 0000	1 m = 1 N a = 0	140 140			
) Average rates for tests at obout 10 Hz) Average rates for tests at about 20 Hz.) ks1/In.	736 Hand Fore	i Sing	5 x 20		Ч-Г Ч	(q)	ŗ.	s 2	4	7.0	01			
)) $k_{SI}(\overline{III}, \overline{JII}, \overline{JII})$		ו) Ref. 10 ו) הפריים	Ref. 10 Ref. o													

2362

983

Downloaded from http://www.everyspec.com

こうちょう シングライン ないない ないない しょうしょう しょうしょう

R

Ë

TABLE 27

RESULTS OF TESTS TO EVALUATE THE RESISTANCE TO EXFOLIATION OF SAMPLES OF 2219-T852 HAND FORGINGS

(q) <u>0</u> ິຍ i i i i İ Point Judith T/10 (q i <u></u> i ļ <u></u>0 i (p) <u>T/2</u> i ļ ļ م ρ. ሲ MASTMAASIS T/10 (F'33615--74-C-5089) İ μ ቢ μ E-D(e) <u>172</u> E-A E-A E-A E-A E-A E-A E-A μ д 1 (a) ----- $\frac{EXCO}{T/10}$ E-D(e) E- A E-A E-A E-A E-A E-A E-A д ۴ 429512 429249 Number .:9246 478817 429513 429514 429247 129248 429245 429244 Dimensions 2.5 x 22 3,5 x 14 3.5 x 22 4.5 x 22 5.5 x 22 5.5 x 22 4.5 x 22 7.5 × 22 7.5 x 22 2.0 × 8 Inches

Downloaded from http://www.everyspec.com

Total inviersion for 144 hours in an acidified chloride-nitrate solution (4 N NaCl + ^.5 N KNO3 + 0 1 N HNO3 at pH 0.4) ASTM G34-72. Notes: (a)

(b) Exposed for 4 weeks in acidified salt spray test MIL-A-8978, 8979, and 8980.

(c) Exposed to the seacoast atmosphere at Point Judith, Rhode Island, 8/20/75.

3/28/77. (d) Exposed to the seacoast atmosphere at Point Judith, Rhode Island,

+ Total immersion of 48 hours in acidified chloride-nitrate solution (4 N NaCl + 0.5 N HNO3 0.1 N HNO3 at 0.4) ASTM G34-72. (e)

ALC: NAME

RESULTS OI	TESTS TO EV	ALUATE THE RESI	S'TANCE TO	EXFOLIATION OF	SAMPLES OF 7	050-T73	21 ALLO	Y PLATE	
			EXCO	(a)					
		T/10		T/2					
	- [umc]	Electrical		Electrical		MAST HA	ASIS	Point Judit	
Inches	Number	CONQUCCITVILY (& IACS)	Results	CUMULCET VICY (% IACS)	Results	T/10	T/2	T/10	T/2
2.000	421074	41.9	Д	42.7	ρι	д	д	(c)	(ບ
2.000	421075	42.2	сı	43.0	<u>е</u> ,	8)]]	1	i
3.000	421076	41.5	д	42.5	р,			!	İ
3.000	421081	41.6	д	42.5	Сł	1 1 1	8	4 1 1	ļ
4.000	421077	41.5	Сı	42.6	ρ,	д	д	(c)	(C)
4.000	421078	41.6	Ъ	42.6	¢,	1 2 1	1	8	i
5.118	421278	40.5	D 4	41.7	а	പ	д	(c)	(c)
5.000	421073	41.4	<u>ρ</u> ,	42.6	¢	# 8 1	1	1 1 1	İ
6.000	421079	41.7	д	42.4	д	ይ	сı,	(c)	(C)
6.000	421080	41.3	ሲ	42.4	<u>е</u> ,	1	1	8	•

ded from http://www.everysp

Total immersion for 96 hours in an acidified chloride-nitrate solution (4 N NaCl + 0.5 N KNO₃ 0.1 N HNO₃ at pH 0.4) ASTM G34-72. (a)

and a support of the second second second

+

Exposed for 4 weeks in acidified salt spray test MIL-A-8978, 8979, and 8980. (q)

Exposed to the seacoast atmosphere at Point Judith, Rhode Island 5/14/76. <u></u>

4
\odot

1694

ないので、「ないの」ないためので、「ないない」

RESULTS OF TESTS TO EVALUATE THE RESISTANCE TO EXFOLIATION OF SAMPLES OF 2048-T851 ALLOY PLATE

			EXCO (a						
		T/10		T/2					
	,	Electrical		Electrical		MASTMA	ASIS	Poin	t,
Thickness Inches	Sample Number	Conductivity (% IACS)	Results	Conductivity (% IACS)	Results	(b) T/10	T/2	Judi T/10	$\frac{th}{T/2}$
0.500	421378	40.6	ይ	40.8	ъ		-	1	
0.500	421379	41.0	Ъ	41.4	<u>с</u> ,	2		6	
1.000	421380	40.5	д	41.0	р,	Å	д	(c)	(c)
1.000	421108	41.0	ф	41.2	Ċ4	1		1	
2.000	421381	41.0	д	41.3	<u>р</u>	ሲ	д	(c)	(c)
2.000	421382	41.9	Ъ	41.3	Q.	**		8	-
з.000	421083	41.6	д	41.8	С4	2		5	
3.000	421084	42.0	Ъ	42.2	¢,	2	1		1
4.600	421383	41.2	ф,	41.6	д,	А	<u>д</u>	(c)	(c)
4.000	421384	41.4	ሲ	41.7	<u>с</u>	1		1	1
(a) Total 0.1 N	immersion f HNO3 at pH	or 96 hours in a 0.4) ASTM G34-72	n acidifie	d chloride-nit	rate solutio	n (4 N l	NaCl + 0	-5 KNO3 -	

Downloaded from http://www.everyspec.com

Exposed for 4 weeks in acidified salt spray test MIL-A-8978, 8978, and 8980. (q

KRIS KRIZTI PRO

Exposed to the seacoast atmosphere at Point Judith, Rhode Island 5/14/76. (c)

RESULTS OF TESTS TO EVALUATE THE RESISTANCE TO EXFOLIATION OF SAMPLES OF 7475-T7351 ALLOY PLATE

<u> </u>	<u>T/10</u>	10	EXCO	0 (a) <u>T/2</u>					
Elect. Sample Cond. Number & LACS	Elect. Cond. & IACS		Results	Elect. Cond. & IACS	Results	MASTMA (b)	ASIS T/2	Poir Judi T/10	t $_{T/2}$
429422 41.3	41.3		<u>م</u>	42.1	E-A	8		1	
429423 41.3	41.3		Сł	41.8	E-A	4 1	8	1	1
429387 41.9	41.9		сı	42.8	E-A		1	1	1
429388 41.6	41.6		ф	42.6	E-A	ዋ	ዲ	(c)	(c)
429389 41.9	41.9		ሲ	42.8	E-A	գ	ዋ	(c)	(c)
429390 41.7	41.7		д	42.9	E-A	1		 	1 1 1
429391 41.5	41.5			42.7	E-A			1	l i t
429392 41.9	41.9		C4	42.8	E-A	1	8	 	
429393 41.6	41.6		Ω ,	42.7	E-A	д,	ዋ	(c)	(c)
429394 41.8	41.8		д	42.7	E-A			1	
		Ι.							

Downloaded from http://www.everyspec.com

Total immersion for 96 hours in an acidified chloride-nitrate solution (4N NaCl + 0.5N KNO₃ + 0.1N HNO₃ at pH 0.4) ASTM G34-72. Notes (a)

Exposed for 4 weeks in acidified salt spray test MIL-A-8978, 8979, and 8980. (q)

Exposed to seacoast atmosphere at Point Judith, Rhode Island on July 11, 1975. <u>0</u>

" the second sec

TABLE 31

a financial sector

RESULTS OF STRESS-CORREGION TESTING OF 0.125-INCH DIAMETER TENSION SPECIMERS OF 2219-T852 ALLOY HAND FORGINGS BY ALTERNATE IMMESSION IN A 3.5% SODIUM CHLORIDE SOLUTION FOR 84 DAYS (A2T9 644-75)

			1	onaitu	idinal Tel	dS uotsu	ectmens		ы ,	TT- Pro-	ansverse	rens 10n	Specime	JIS DIS	Short-	-Transv	erse Ten	sion S _E	ecimans	
District Applied Date: District from the production of the prod	Hand			Failu	tre Data	Aver Icss i	age %	le		Failu	re Data	Aver Loss	age s in Tenst	Je Je		Failur	e Data	Avera Loss	ige & n Tens:	ile
Matrix Matrix<	Dimen- sions	Sample	Applied Stress	E/N	Days to Fallure	Prope	d Spect	f aens	Applied Strees kei	F/N	Days to Failure (b)	Prope Unfail Vield	rties of ed 3peci Ult.	E1.	pplied tress ksi	F/N (a)	Days to Failure (b)	Prope Unfail Yield	ed Speed	of cimens El.
255 x 22 0 001 37 0 02 11 1 1 0 02 37 0 02 11 2 2 2 2 2 0 255 x 14 0 0591 37 0 02 11 1 0 03 37 0 02 11 1 1 2 2 2 1 1 2 255 x 14 0 05911 35 0 01 37 0 02 11 1 1 1 2 2 2 1 1 2 20 0 1 2 1 1 1 2 2 2 1 1 2 255 x 14 0 05911 31 5 x 14 0 05911 31 0 02 11 1 1 1 1 2 2 2 1 1 2 31 0 02 11 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2	Z.0 × 8 2.0 × 8 2.0 × 8	429246 429246 429246	x81 0 37	0 3		15 15 18	20	50 43	0 37	0/2	**	17 18	33	78 78	33 50	0/3 0/3	:::	52 53 73 53	34 37 28	57 80 57
15 × 14 43911 15 × 14 43911 15 × 14 43911 15 × 14 43911 15 × 14 43911 15 × 14 43911 15 × 22 43911 <td< td=""><td>2.5 × 22 2.5 × 22 2.5 × 22</td><td>478817 478817 478817</td><td>37</td><td>0/2 0/3</td><td>* * * * *</td><td>17</td><td>19</td><td>69 48</td><td>37</td><td>0/3 0/3</td><td>* * * * *</td><td>22 14</td><td>24 13</td><td> 60 60</td><td>0 25 37</td><td>0/3 0/3</td><td>* * * * * * * *</td><td>26 21 17</td><td>23 29 27</td><td>75 75 75</td></td<>	2.5 × 22 2.5 × 22 2.5 × 22	478817 478817 478817	37	0/2 0/3	* * * * *	17	19	69 48	37	0/3 0/3	* * * * *	22 14	24 13	 60 60	0 25 37	0/3 0/3	* * * * * * * *	26 21 17	23 29 27	75 75 75
15 x 22 43911 15 x 22 43911 15 x 22 43911 15 x 22 43911 15 x 22 43913 15 x 22 43913 15 x 22 43914 15 x 22 43914 15 x 22 43914 15 x 22 43914 15 x 22 43914 15 x 22 43914 15 x 22 43914 17 x 2 x 2 x 2 1 x	3.5 × 14 3.5 × 14 3.5 × 14	429512 429512 429512													0 37 37	0/3 0/3	+ * * *	30 23 23	45 26 25	75 50 50
4.5 2.5 2.2 4.23 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.3	3.5 × 22 3.5 × 22 3.5 × 22	429513 429513 429513													0 25 37	0/2 0/3	*+ *** 52 *+	(c) 27 27	40 9 60	100 56 56
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.5 x 22 4.5 x 22 4.5 x 22	429249 429249 429249													21 32 32	0/3 0/3	::1	29 24 27	45 26	60 60 60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.5 x 22 4.5 x 22 4.5 x 22	429514 429514 429514													21 32	0/2 0/3 0/3		40 30 31	60 41 41	75 49 49
5.5 x 22 429248 0 0/2 \cdots 35 43 53 5.5 x 22 429248 5.5 x 22 429248 0 \cdots 17 17 33 0/3 \cdots 24 30 77 5.5 x 22 429244 0 \cdots 17 17 33 0 $0/3$ \cdots 24 30 77 7.5 x 22 429244 0 \cdots 17 17 33 0 $0/2$ \cdots 24 30 77 7.5 x 22 429244 0 \cdots 14 13 29 $0/7$ \cdots 21 21 0 24 32 33 77 7.5 x 22 429245 \cdots 14 13 29 $0/7$ \cdots 21 21 0 20 31 33 33 37 7.5 x 22 429245 $\frac{1}{29}$ $\frac{1}{27}$ $\frac{1}{29}$ $\frac{1}{29}$ $\frac{1}{29}$ $\frac{1}{29}$ $\frac{3}{29}$ $\frac{3}{$	5. 5 × 22 5. 5 × 22 5. 5 × 22	429247 429247 429247												<u></u>	0 32 32	0/2 2/3 0/3	:::	55 B #	46 26 28	72 15 44
7.5 x 22 429244 0 ••• 17 17 33 0 0/2 •• 27 34 20 0 0/2 •• 30 41 69 7.5 x 22 429244 29 •• 14 14 33 29 0/7 ••• 21 21 0 20 0/3 ••• 24 32 38 7.5 x 22 429245 ~ •• 16 20 27 0 0/2 •• 18 21 0 20 0/3 ••• 23 31 59 7.5 x 22 429245 ~ ••• 16 20 27 0 0/3 ••• 18 21 0 0 0/2 •• 24 31 33 7.5 x 22 429245 ~ 1/3 ••• 9 14 27 29 0/3 ••• 13 15 0 20 0/3 ••• 26 31 33 7.5 x 22 429245 ~ 1/3 ••• 9 14 27 29 0/3 ••• 13 15 0 20 0/3 ••• 16 24 47	5.5 × 22 5.5 × 22 5.5 × 22	429248 429248 429248													32 20	0/2 0/3 0/3	:	36 24 24	43 33 33	53 77 77
7.5 x 22 429245 ~ ** 16 20 27 0 0/2 ** 18 21 0 0 0/2 ** 24 31 33 7.5 x 22 429245 /9 n/3 *** 9 14 27 29 0/3 *** 13 15 0 20 0/3 *** 22 28 47 7.5 x 22 429245 /9 n/3 *** 9 14 27 29 0/3 *** 13 15 0 20 0/3 *** 16 24 47	7.5 × 22 7.5 × 22 7.5 × 22	429244 429244 429244	59 0		: 1	17	17 14	33	50 0	2/0 F/0	::	27 21	34 21	0 S0	20 29	0/2 0/3	:::	30 24 23	41 31 31 31	69 38 59
	7.5 × 22 7.5 × 22 7.5 × 22	429245 429245 429245	ور	C/3	::	16 9	20	27	0 6 7	0/2 0/3	**	18 13	21 15	00	20 29 29	0/2 0/3 0/3	:::	24 22 16	31 26 24	33 47 47

Downloaded from http://www.everyspec.com

(b) For day to failure

Indicates that the specimen did not fuil during the 84 day test
 Indicates that the specimen completed the 84 day test but suffered mechanical type failure during removal from the testing fixture.

(c)Specimen failed in tensile test prior to reaching 0.2% offset.

TABLE 32 RESULTS OF STRESS-CORROSION TESTING OF 0.125-INCH DIAMETER TENSION SPECIMENS OF 7050-F7351 ALLOY PLATE BY ALTERNATE INVERSION TESTING OF 0.125-INCH DIAMETER TENSION SPECIMENS OF 7050-F7351 ALLOY PLATE BY ALTERNATE INVERSION TESTING OF 0.125-INCH DIAMETER TENSION FOR 0.4 0.75

1000

												the state of the s	T-2.0	fores Tenet	an Sheria	
			NTDD TF	TTENDY TO	Average		- 6107			Average					Average	:
					Loss in Properti	Tensilu es of				Loss in 1 Propertie	rensile se of				Loss in To Properties	nsile of
Plate Thick. In.	Sample Number	Applied Stress ksi	F/N (a)	Days to Failure (b)	Unfail Specim Yield	ed ens Ult.	Applied Stress ksi	F/N (a)	Days to Failure (b)	Unfailed Specimer Yield	ult.	Applied Stress ksi	F/N (a)	Days to Failure (b)	Unfailed Specimer Yield	ult.
2.000 2.000 2.000	421074 421074 421074											32 32	0/2 0/3 0/3	:::	51 51 51	37 56 56
2.000 2.000 2.000	421075 421075 421075											0 32 47	0/2 1/3	** *** 84, **	32 34 X 44 (c)	40 44 63
3.000 3.000 3.000	421076 421076 421076											0 32 47	0/2 0/3 0/3	:::	28 >47(d) >67(d)	32 54 63
3.000 3.000 3.000	421081 421081 421081											0 32 47	0/3 0/3	:::	33 53 53	35 54 59
4.000 4.000 4.000	421077 421077 421077	0.0	0/2 0/3	::	30	24 24 24	04	0/2 0/3	::	24 38	43	31 0 46	0/3 0/3	***	00 00 00 00 00 00 00 00 00 00	34 46 56
4.000 4.000 4.000	421078 421078 421078	46	0/2 0/3	::	25 36	39	4 6	0/2 0/3	* *	28 42	28	0 31 46	0/2 0/3 3/3	** *** 76,78,84	28 46	5 33
5.000 5.000 5.000	421073 421073 421073 421073	04	0/2 0/3	* * * *	33	36 25	44 0	0/3	* * *	28 } 41 (c)	31	0 0 1 4	0/2 1/3	** *** 84,**	30 38 (9)	34 47 57
5.118 5.118 5.118	421276 421278 421278	43	0/2 0/3	::	31 38	31 45	0.4	0/2 0/3	4 4 4 4	32 42	32 48	0 53 63	0/3 0/3		32 38 46	37 41 53
6.000 6.000 6.000	421079 421079 421079											0 67 6 7 9 0	0/2 0/3 0/3	:::	32 36 45	39 41 53
6. 300 6. 000 6. 000	421080 421080 421080											0 29 43	0/3	*** *** 64,**	33 36 47	35 43 54
Notes:	(a) F/N (b) For (c) One (d) Two	denotes day to f specimen specimen	number ailure, failed s failed	of failur * indice 1 in tensi d in tens	res over t ites that ion test f ion test	cotal numb the speci prior to r prior to	per of spi men did 1 reaching (reaching	scimens not fai 0.2% of 0.2% of	tested. 1 during 1 fset. ffset.	the 84 day	y test.			4.		

Downloaded from http://www.everyspec.com

1

in the second second

مشه

..

, **, , ,**

	ALTERIATE	(14-15)	3hort-Transverse Tension Specimens Average N Average N Loss in Tensile Properties of Palure Specimens (a) (b) Yield			0/2 ** 17 17 0/3 *** 17 18 2/3 26(c), 54 47,*	0/2 ** 18 22 0/3 *** 19 21 3/3 9(c),33, 63	0/2 •• 20 33 2/3 46,84,* 77 3/3 29,76(c)	0/2 ** 20 21 0/3 *** 19 20 2/3 77,84,* 20 21	0/2 ** 20 22 0/3 *** 18 20 1/3 68,** 29 36	0/2 ** 19 21 0/3 *** 18 16 1/3 53(c),** 29 35	
	048-T851	VYS (AST	e Applico Stress ks:			13 8 0 13 8 0	4 580	41 60	28 0 41	0 28 41	0 41	
	MENS OF 2	FOR 84 DA	pecimens age * in Tensil rties of ailed cimens Ult.	17 14	16 15					20	20 19	day test.
	33 ON SPECT	NOI INION	Intervention Structure Aver Loss Prope Onf	17	16 14					19	19 18	g the 84
	TABLE FER TENSI	ILORIDE S	nsverse T Days t Failur (b)	::	***					* * * *	::	s tested il during
	H DIAMET	Sobiur G	Long-Trar Led ss F/N (a)	0/2 0/3	0/2 0/3					0/2 0/3	0/2 0/3	specimen d not fa
	0.125-7W	1 A 3.54	Appl Stre Ksi		0 4					0 14		umber of ecimen di
	OP The second second second second second second second second second second second second second second second se	ERSION IN	imens age 1 n Tenvile ties of anled cimens Ult.	16 14	17 15					17 16	21	t total n t the sp
		MWI NOT SO	ion Speu Aver Loss 11 Proper Unf Yaeld	17	17 16					19 17	23	ures over cates tha 1.
	2400 2005 2005		final Tens Days to Failure (b)	**	::					**	::	of fail) * indi(examined
	ם איז מריי מריי	als of si	ted ted ted ted to ted to to ted to to to to to to to to to to to to to	0/2 0/3	0/2 0/3					0/2 0/3	0/2 0/3	s numuer failure phícally
	E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Kesuri	Applı Stres ksi	45	4 5 0					0 1	41	N denote r day to tallogra
;			Samplo Number	421108 421108	421380 421380	421381 421381 421381	421382 421382 421382	421083 421083 421083	421084 421084 42108	421383 421383 421383	421384 421384 421384	(a) F/ (b) Fo (c) Me
			P)ate Ihick.	1.000 1.000	1.000	2.000 2.000 2.000	2.000 2.000 2.000	3.000 3.000 3.000	3.000 3.000 3.000	4 COO 4.000 4.000	4. 000 4 .000 4 .000	Notes:

i -

REGULTS OF STRESS-CONDOSION TECTING OF 0.125-INCH DIAMETER TENSION SPECIMENS OF 7475-T7351 ALLOY PLATE BY ALTERNATE INMERSION IN A 3.5% SCOLUM CHIORIDE SCUUTION FOR 84 DAYS (ASTM 544-75)

			3	ngitudina						Long-Tran:	SVOLGC				Shc	ort-Trans	RISE		
					Ave	rage •					Aver	rage 🖡				}	Aver	age 🖡	:
		6	Fail	ure Data	Loss .	un Tens	ile e	hallad	Failu	re Data	Loss J	in Tensi	le Se	bollout	Failu	re Data	Loss	in Tens	⊾le of
Flate Thick. S Inch N	tample humber	Stress ksi	N (B)	Pays to Failure (b)	Unfaile Vield	artics	1 mens	Applied Stress ksi	F/N (a)	Failure (b)	Unfail Vield	led Spec Ult.	imens E1	stress ksi	F/N (a)	Failure (b)	Unfail Yield	ad Spec Ult.	imens El.
											:	:							
1.000 4	129387	۰. ۱	0/2	*	ព	2	44	0 :	0/2		16	16	2;						
1.000 4	129387	43	6/0	***	15	15	37	43	6/0		1 6	18	64						
1.000 4	29388	0	0/2	:	13	11	27	0	0/2	:	15	14	48						
1.000 4	1 8866	43	0/3	***	13	14	21	43	0/3	***	14	15	56						
2,000 4	29389													0	0/2	:	19	18	35
2.000 4	29389													28	0/3	***	24	28	68
2.000 4	129389													42	6/3	***	99	43	68
v 000 c	00200													a	0/2	:	21	19	49
2.000 4	29390													28	0/3	***	24	26	74
2.000 4	129390													42	c/3	:	40	49	74
3.000 4	19592													0	210	*	15	18	50
3.000	1 9 5 9 2													26	0/3	***	16	19	50
3.000 4	166621						·							39	0/3	***	20	28	75
3.000 4	29392													0	0/2	:	61	21	ß
3.000 4	129392													26 30	55	***	55	21	50
3.000 4	765671														~ ~ ~	•	17	ĥ	3
4.000 4	129393	o	0/2	:	9	7	47	0	0/2	*	13	13	45	0	0/2	*	25	22	51
4, 303 4	129393	36	6/3	*	9	2	26	36	6/3	*	14	15	42	24 36	E/0		20	11	1
	66667													2			2	5	;
4.000 4	29394	0	0/2	*	6	21	19	0	0/2	•	14	16	4	0	0/3	**	18	22	ţ;
4.000 4	29394	36	6/0	4	æ	10	5	36	E/0		15	20	44	36 36	6/3 0/3		18 18	26 26	47 73

Downloaded from http://www.everyspec.com

.

Notes: (a) F/N denotes number of failures over total number of specimens tested.

For day to failure 9

· indicates that the specimum did not fail during the 84 day test.

+ indicates that the specimen completed the 84 day test but fractured during removal from the testing fixture.

:

・こうびしょうこ たいとないが

د. - به مود المراجع مراجع الم

19<u>1</u>0 - 1927

, ~

0

RESULTS OF STRESS-CORROSION TESTS OF 0.125-INCH DIAMETER SHORT-TRANSVERSE TENSION SPECIMENS OF 2219-T852 ALLOY HAND FORGINGS IN OUTDOOR

			ATMO	orneres			L
Size	Sample	Applied Stress Vci	Point Jud E/N(a)	ith Seacoast Atmos. Davs to Failure	ATC F/N(a)	Industrial Atmos. Days to Failure	lω
Incnes	TACIIIN	104	12/11/4				
2 O × 8	429246	0	0/2	OK 492 day a	0/2	OK 496 days	
		25	0/3	OK 492 days	0/3	OK 496 days	
		37	0/3	OK 492 dyas	0/3	OK 496 days	
2.5 x 22	478817	0	0/2	(q)	0/2	OK 24 days	
		25	0/3	(q)	0/3	OK 24 days	
		37	0/3	(q)	0/3	OK 24 days	
						CV 101 3200	
3 5 X 14	429512	0	0/2	OK 492 days	0/2	UK 496 days	
		25	0/3	OK 492 deys	0/3	OK 496 days	
		37	0/3	OK 492 days	0/3	UK 496 GAYS	
о п с <u>с</u> с	5120	C	0/2	OK 492 days	0/2	OK 496 days	
37 V C.C		25	0/3	OK 492 days	0/3	OK 496 days	
		2	0/3	OK 492 days	0/3	OK 496 aays	
	01000	c	0/2	OK 492 dvas	0/2	OK £96 days	
4.5 X 2.4	642624			OK 492 davs	0/3	OK 496 days	
		4 4 6	6/0	DK 492 dave	0/3	OK 496 days	
		40					
		c	0/0	OK 492 davs	0/2	OK 496 days	
4.5 X 22	42024	- 2	* ()	27 407 407	0/3	OK 496 davs	
		17			-	OK 496 davs	
		32	د/n	00 476 UL			
					, , , , , , , , , , , , , , , , , , ,	aver Jok VO	
5,5 x 22	429247	0	0/2	OK 422 ayas	2/0	CITER DOF AC	
		21	0/3	OK 492 dyas	6/0 -	UN 490 UAYS	
		32	0/3	OK 492 dyas	6/0	UK 430 GAYS	
F F X 33	A23248	0	0/2	OK 492 days	0/2	OK 496 days	
		21	0/3	OK 492 days	0/3	OK 496 days	
		32	0/3	OK 492 days	0/3	OK 496 days	
		•		I			
1 1 22	479744	c	0/2	UK 492 days	0/2	OK 496 days	
77 X C./			0/3	OK 492 days	0/3	OK 496 days	
		25	0/3	OK 492 days	0/3	OK 496 days	
		1			_ •		
7.5 x 22	429245	0	0/2	OK 492 dyas	0/2	OK 496 days	
		20	0,3	OK 492 dyas	0/3	OK 496 dyas	
		29	0/3	OK 492 dyas	0/3	OK 496 days	
(a) F/N denotes	number of	failures over	r total numbe	r of specimens expos	sed.		
(b) Exposed to	the seacoas	t atmosphere	at Point Jud	ith, Rhode Island, 3	8/28/17.		

Downloaded from http://www.everyspec.com

592 S

	F STRESS-CORROSION TESTS SPECIMENS OF 7050-2735	ple Applied Point ber Ksi <u>F/N(a)</u>	074 0 0/2 32 0/3 47 0/3	075 0 0/2 32 0/3 47 0/3	076 0 0/2 32 0/3 47 0/3	081 0 0/2 32 0/3 47 0/3	077 0 0/2 31 0/3 46 0/3	078 0 0/2 31 0/3 46 0'3	073 0 0/2 30 0/3 44 0/3	278 0 0/2 0/2 0/3 0/3 0/3 0/3 0/3	079 0 0/2 0/3 0/3 0/3 0/3	080 0 0/2 0/3 0/3 0/3 0/3
	S OF STRESS-CORROSIC SPECIMENS OF	Applied Sample Stress Number ksi	421074 0 32 47	421075 0 32 47	421076 0 32 47	1,21081 0 32 47	421077 0 31 46	421078 0 31 46	421073 0 30 44	421278 0 29 43	421079 0 29 43	421080 0 29 43
•	RESULT	Thickness Inches	2.0	2.0	Э. О	3.0	4.0	4.0	5.0	5.118	6.0	6.0

TABLE 37

RESULTS OF STRESS-CORROSION TESTS OF 0.125-INCH DIAMETER SHORT-TRANSVERSE TENSION SPECIMENS OF 2048-T851 ALLOY PLATES IN OUTDOOR ATMOSPHERES

rial Atmos. Days to Failure	OK 260 Days OK 260 Days OK 260 Days	OK 260 days OK 260 days OK 260 days	OK 260 days OK 260 days OK 260 days	OK 260 days OK 260 days OK 260 days	OK 260 days OK 260 days OK 260 days	OK 260 days OK 260 days OK 260 days
ATC Indust F/N(a)	0/2 0/3 0/3	0/2 0/3 8 0/3	0/2 0/3 0/3	0/2 0/3 3	0/2 0/3 0/3	0/2 0/3 0/3
dith Seacoast Atmos. Days to Failure	OK 288 Days OK 288 Days 71, 128, OK 288 Days	OK 288 days OK 288 days 71, 2 OK 288 day	OK 288 days OK 288 days 73, 128, 1 Ok 288 days	OK 288 days OK 288 days OK 288 days	OK 288 days OK 288 days OK 288 days	OK 288 days OK 288 days OK 288 days
Point Ju F/N(2)	0/2 2/3 2/3	0/2 0/3 1/3	0/2 2/3	0/2 0/3 0/3	0/3 0/3	0/3 0/3
Applied Stress ksi	28 428	0 42 8	41 18	0 41	0 41	0 28 41
Sample Number	421381	421382	421083	421084	421383	421384
Thickness Inches	2.0	2.0	3.0	3.0	4.0	4.0

170

F/N denotes number of failure over total number of specimens tested. (a) TIME SHOP

2545

-14

er soarred

e C

ť

10-5-57

1. N. P. P.

RESULTS OF STRESS-CORPOSION TESTS OF 0.125-INCH DIAMETER SHORT-TRANSVERSE TENSION SPECIMENS OF 7475-T7351 ALLOY PLATES IN OUTDOOR ATMOSPHERES

Thickness Inches	Sample Number	Applied Stress ksi	Point Jud F/N(a)	lith Seacoast Atm Days to Failur	os. A1 e F/N	rc Industrial (a) Days t	L Atmo	s. Iure
2.0	429389	0 28 42	9/2 0/3 0/3	OK 617 days OK 617 days OK 617 days	0/3 0/3	OK OK	622 đ 622 đ 622 đ	ays ays ays
2.0	429390	0 428	0/2 0/3 0/3	OK 617 days OK 617 days OK 617 days	0/3 0/3	OK OK OK	622 đ 622 đ 622 đ	ays ays ays
3.0	429391	0 39 39	0/3 0/3	OK 617 days OK 617 days OK 617 days	0/3	OK OK OK	622 d 622 d 622 d	ауs ауs ауs
3.0	429392	0 39	0/3 0/3	OK 617 days OK 617 days OK 617 days	0/3	OK OK OK	622 d 622 d 622 d	ays ays ays
4.0	429393	0 36	0/2 0/3 0/3	OK 617 days OK 617 days OK 617 days	0/3	OK OK	ଟ୍ଟିଟ୍ ଟ୍ଟେମ ଟ୍ଟେମ ଟ୍ଟେମ	ays yas ays
4.0	429394	0 36	0/3 0/3	OK 617 days OK 617 days OK 617 days	0/3	OK OK	622 g 622 g 622 g 625 g	ays ays ays

Downloaded from http://www.everyspec.com

(a) F/N denotes number of failures over total number of specimens exposed.

and here

		nos. 1 S-L b) K _{I1} (b) ksi Min.	12 23.8 15 24.4 13 24.0 13 25.0	15 25.3 11 24.8 18 25.9	11 27.3 15 26.1	39 23.0 38 24.3	17 27.5 17 26.3	56 32.3	10 22.7 11 22.0	15 26.0	88 20.6 42 21.4	
		strial Atm ck Tota gth V (< n. In.	119 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	000 000 000 000 000	92 000	23 0.0	84 20 0.00 0.00	10 °0 68	00 0.04	63 0.00	50 0.03 86 0.02	
		ATC Indu Cra Dash Ler Number J		ст. 1.1.		4 6 4		. 4	6 - T		4 N	
	VER	8-L S-L KI1 (b) 1 231 VIn. 1	26.5 25.8 25.5 25.9	27.1 29.5 29.8	28.1	26.2 24.3 22.5	27.1	32.8	21.5	21.6	23.4 24.1	
	LE CANTILE	Total S Total S V (c) 1 In. k	0.044 0.043 0.043 6.044	0.043 0.046 0.046	0.043	0.03/ 0.036 0.035	0.048 0.048	0.056	0.039 0.038	0.041 0.041	0.043 0.041	
	LDS OF DOUB	Judith Sea Crack Length In.	1.260 1.282 1.272 1.276	1.224	1.190	1.134 1.170 1.196	1.315	1.285	1.327	1.362 1.393	1.337 1.263	
BLE 39	, K ₁ , LOA	Point Dash Number	ە مە ە مە	س ص د <i>ی</i>	ה יט ה 	<u>م</u> س م	، ن ن ن 	ი დ 	<u>ب</u> مر	ە مە د	<u>م</u> م	
TAI	MATENS ITY BEAM	-Dropwise 1 S-L KI (b) ksi Tin.	5 30.7 2 28.8 3 28.3 50 25.7	59 31.4 52 27.8	17 28.3 17 28.3 14 25.1	12 26.3 16 23.5 19 25.2	5 29.9 53 31.0	6 29.3 2 31.1	18 20.6 6 21 2	8 22.0	1 21.3	ซ
	TIAL STRESS	Cl Solution Crack Tota Length V(c) In. In.	1.332 0.05 1.339 0.05 1.363 0.05 1.405 0.05	1.366 0.05 1.362 0.05	1.315 0.04 1.315 0.04	1.231 0.04 1.196 0.03 1.202 0.03	1.345 0.05 1.292 0.05	1.373 0.05 1.256 0.05	1.331 0.03	1.284 0.03	1.406 0.04 1.387 0.04	ghness test ations.
	LTS OF INI	3 1/2% Na(Dash 1 Number	- 2 - 2	- 0	- 10	0 1 0	- 0	-	40	1 - 1	1	acture toug ity calcula
	RESU	Product	Platc Plate	Plate	Plate Plate	Plate	Plate	Plate	Hand	Hand Forging	Forging	strain fr sed intens int - V.
		S-L (a) KIC ksi VIN.	24.9 25.5	27.0	29.02	26.5	28.7	31.0	21.7	23.7	26.1	erse plane tial stres displaceme
		ample k. Number	421381 421383	421074	421077	421083	429389	429393	5 479817	5 429249	5 429245	lort-transv sverse ini k opening
		& Thic	T851 2 T851 4	T7351 2	T7351 4 T7351 6	T/351 6	T7351 2	T7351 4	T852 2.	T852 4.	T852 7.	Average sh Short-tran Total crac
		Alloy Tempe	2048-1 2048-1	7050-1	7050-1	7050-1	7475-5	7475-1	2219-1	2219-1	2219-1	(p) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
					17	2						

XAR (A)

,

158.33

AVERAGE CAACK GROWTE VELOCITILS FOR DOUBLE CANTILEVER BEAM SPECIMENS EXPOSED TO 3.5% NACJ SOLUTION DROPWISE FOR 30 DAYS

6 Temper	No.	4000		Thickness	KI J	KI 15 Da.	KI 20 Da.	Velocity	Mean Velocity	K _I th ()	ST)
Tadmar a	Jacon	nasn	Product	In.	Kst Gn.	KsıVIn.	KsıVin.	In/Hr (a)	In/Hr (a)	Ksılın.	KI,
2219-T852	478817	SLI	Hand Forging	2.5	20.6	19 6	1 01	4-01 : 01 1			
2219-T852	478817	SL2	Hard Forging		21.2	19.7	19.61	1.75 × 10-4	0T X 9.T	19.4	63
2219-T852	429249	SLI	Hanú Forging	4.5	22.0	21.7	9.01	3 80 4 10 5 11	<pre>< 1 10⁻⁵</pre>		
2219-T852	429249	SL2	Hand Forging	4.5	22.3	5	A 10		(a) ULX 1.0	(q) 5 .0Z	93(b)
2219-T952	429245	SLI	Hand Forging	7.5	20.4	19.6			2 " · ·		
221 9- T852	429245	SL2	Hand Forging	7.5	21.3	21.2	21.2	1.39×10^{-5} (b)		20.4(D)	(q)86
2048-T851	421381	SLI	Place		30.7	24 4	1 66	4	r 4		:
2048-T851	421381	SL2	Plat	2	28.8	22.0	215		07 V 0.C	8-12	5
2048-T851	421383	51.1	Plate	4	28.3	27.0	26.7	0. 73 x 10 4	4-0-1		;
2048-r851	421383	SL2	Plate	4	25.7	24.8	24.4	8.97 x 10 ⁻⁵	1. V 10	9.62	95
7050-T7351	421-74	SLI	Plate	2	31.4	3 90	2 00	4-01 - 2 - 1	9 - C		1
705L -T7351	421074	SL2	Plate		8 LC			2 07 X 07 7	0T X A.C	28.1	95
7050-T7351	421077	SLI	Plate	14	28.1	25.7	1.02	5 15 5 10 4	4-01 T C		:
7050-T7351	421077	SL2	Plate	4	28.3	25.2	25.0	2.68 4 10 4	OT X	1.62	68
7050-T7351	4.1079	SLI	Plate		25.1	24.8	24.7	2 01 × 10 ⁻⁵	3 0 c 10 - 5		00
7050-27351	421079	SL2	Plate	v	26.3	25.9	25.7	2 28 ¢ 10 5	6T X 6.7	7.07	86
7050-77351	421080	SLI	Plate	9	23.5	19.1	18.9	4.78 × 10 ⁻⁴	4 5 4 10-4	6 OI	5
7050-T7351	421080	SL2	Plate	9	25.2	21.0	20.5	4.26 × 10 ⁻⁴		1.61	10
7475-T7351	429389	SLI	Fiate	77	30.0	29.7	29.6	2 14 × 10 ⁻⁵	3 - 10-5		ŝ
7475-T7351	429389	SL2	Plate	7	31.0	30.6	30.6	3.29 × 10 5		1.00	תת
7475-T7351	429393	SLI	Plate	4	29.3	29.2	29.2	1.19 × 10 ⁻⁵ (h)	2 2 2 10 ⁻⁵ (b)	20 0/1/	11,00
7475-T7351	420393	S1.2	Plute	4	31.1	30.7	30.6	3.28 x 1C ⁻⁵ (b)		(1) () (7	(11) 66

Downloaded from http://www.everyspec.com

(b) Presence of actual SCC is gucstionable based on Jual examination.

AVERAGE CRACK GROWTH VELOCITIES OF REDUCED THICKNESS DCB SPECIMENS EXPOSED TO 3.5% Naci solution Dropwise for 30 Days

	~	Spectren								
E Temper	Number	Dash	Thick. In.	KI i KI	KI 15 Da.	K1 20 Da.	Avg. 15 Day Velocity	Mean Velocitu	Krth	(EST)
2048-4061				UTATEV	VB1 VIU.	Ksi VIn.	In/Hr (2)	In/Hr (b)		
2048-T851	421383 471383	SL7 (a)	0.25	37.3	35,8	35.6	2 22 2 22 2			
2048-T851	421383	51.0 51.0	0.25	39.3	37.3	37.3	1.11 × 20-4	9.7 × 10 ⁻³	36.5	95
2048-T85J	421383	SLIC	0.50	28.5 27 0	28.2	28.1	2.58 × 10 5	6.3 × 10 ⁻⁵	5	
1010 - 1111					1.07	26.7	1.01 × 10 ⁻⁴		5.12	97
7050-77351	421077	SL7(a)	0.25	38.8	57.3	د 12	5	5		
7050-T7351	421077	SL8(4)	0.25	39.0	38.4	38.4	8,33 × 10 5	5.6 × 10 ⁻⁵	37.9	97
7050-T7351	421077	610	0.20	28.3	27.6	27.5	6.11 × 10 ⁻⁵			
		0110	 nc*n	27.7	26.6	26.6	8.97 x 10 ⁻⁵	7.5 × 10 2	27.1	97
7475-T7351	429393	SL7(a)	0.25				I			
7475-T7351	429393	SL8 (8)	0.25	0.0c	0.87	47.6	8.33 × 10 ⁻⁵	4.2 × 10 ⁻⁵		
7475-T7351	429393	67S	0.50	11.4	2.50	53.2	0 2	01 6 4 5	9. 00	86
165/T-C/4/	429393	SLIO	0.50	35.8	20.00	5. 5 1 - 75	6.94 × 10 °	1.08 × 10 ⁻⁵	A 45	
165/T-C/4/	429393	SLII	0.80	2.92	2.00	5.55 5.55	1.47 × 10_5			7
196/J-C/#/	429393	SL12	0.80	31.9	a .02	5. 42 0. 05	1.75 x 10 5	5.0 × 10 ⁻⁵	30.1	90
						9.00	8.25 × 10 °			00

Downloaded from http://www.everyspec.com

(a) Results based on surface measurements only.

(b) Overail average velocity for the first 15 days of exposure.

•

;

RESULTS OF STRESS-CORROSION TESTING OF 0.125-INCH DIAMETER SHORT-TRANSVERSE TENSION SFECIMENS OF 7475-T7351 ALLOY PLATE BY ALTERNATE IMMERSION IN A 3.5% SODIUM CHLORIDE SOLUTION FOR 84 DAYS (ASTM G44-75)

Thickness Inches	Sample Number	Appl.ied Stress ksi	F/N (a)	Days to Failure ^(b)	Average in Tensi of Unfai Vield	<pre>% Loss % Loss le Propert: led Specime Ult.</pre>	ies ens E1.
2.25	478826	4 1 1	0/3 0/3	* * *	18 26 35	19 33 46	50 75 75
3 ° 2	478961	38 38 38 0	0/3 0/3	* * * * * * *	21 27 27	23 35	58 65 79

Downloaded from http://www.everyspec.com

F/N denotes number of failures over total number of specimens exposed. (a)

For day to failure â * Indicates that the specimen did not fail during the 84 day test.

A STATE STATE OF A STA

る見

The second state of the se

en beleven ander ander bestellte en son ander ander bestellte en son ander ander bestellte en son ander bestell Der bestellte en son ander bestellte en son ander bestellte en son ander bestellte en son ander bestellte en son

and the second

RESULTS OF STRESS-CORROSION TESTS OF 0.125-INCH DIAMETER SHORT-TKANSVERSE TENSION SPECIMENS OF 7475-T7351 ALLOY PLATES IN OUTDOOR ATMOSPHERES

Downloaded from http://www.everyspec.com

lustrisl Atmos.	Days to Failure OK 24 Days OK 24 Days OK 24 Days	OK 24 Days OK 24 Days OK 24 Days OK 24 Days	
ATC ING	5/M(a) 0/3 0/3	0/3 0/3	
ith Seacoast Atmos. Dave to Failure	(b) (b) (c)	(a) (a) (a)	
Point Jud. F/N(a)	/32	332	
Applied Stress ksi	0 41 41	38 4 J	
Sample Number	478826	¢78961	
Thickness Inches	2.25	3.5	

F/N denotes number of failures over total number of specimens exposed. (a)

Exposed to the seacoast atmosphere at Point Judith, Rhode Island, 3/28/77. (q)

Downloaded from http://www.everyspec.com

RESULTS OF INITIAL STRFSS INTENSITY, KII, LOAD OF DOUBLE CANTILEVER BEAM SPECIMENS

					3 1/20	NaCl Solu	ition-Dr	opwise	Point	Judith Se	acoast 7	tmos.	ATC Ind	ustrial 1	-	
			S-L(a)			Crack	Total	S-L		Crack	Total	S-L		Crack	Neta 1	
Litoy Lemper	In.	Number	ksiVII.	Pa oduct	Pash Number	Length In.	V(c) In.	K _{II} (b) ksiUIn.	Dash Number	Length In.	V (c) In.		Dash	Length	(c)	(a) 11
7475-17351	2.25	478826	33. 1	Plate	1	1.2270	0.051	31.7	2	1.3063	0.057	11111 400				
					7	1.3123	0.054	30.6	v	1.2710	0.056	33.0	1 - 7	1.2297	0.054	33.4
7475-T7351	3.5	478961	32.0	Plate	-4 1	1.2453	0.057	35.0	5	1.2230	0.052	32.8	n	1.3300	0.065	36.0
					N	1.2760	0.056	32.9	9	1.2603	0.057	34.6	-	1.2773	0.059	34.8

(a) Average short-transverse plain strain fracture toughness tests.

vb) Short-transverse initial stress intensity calculations.

(c) Total crack opening displacements - V.

Downloaded from http://www.everyspec.com

AVERAGE CRACK VELOCITIES FOR DOUBLE CANTILEVER BEAM SPECIMENS FROM 7475-F7351 ALLOY PLATES AND EXPOSED TO 3.5% NACL SOLUTION DROPHISE

Specia Number	ten Dash	Plate Thick. In.	Ksi\In.	K _I 15 Day KsiVIn.	K _I 20 Day KsiVIn.	Average 15 Day Velocity In/Hr(a)	Mean Velocity In/Hr.	KIth () Ksi VIn.	SST)
478876	SL1 SL2	2.25 2.25	31.7 30.6	30.5 30.2	30.2 29.8	8.61 × 10 ⁻⁵ 3.14 × 10 ⁻⁵	5.9 x 10 ⁻⁵	30.0	96
478961	SL1 SL2	3.50 3.50	35.0 32.9	33.7 32.4	33.6 32.3	{ 51 x 10 ⁻⁵ 3.14 x 10 ⁻⁵	5.9 x 10 ⁻⁵	33.0	-6

(a) Overall average velocity for the first 15 days of exposure.

A CONTRACTOR OF THE AND A CONT