

SMC-TR-03-09

AEROSPACE REPORT NO. TR-2002(8565)-7

Thermomechanical Properties of Selected Space-Related Materials

30 September 2002

Prepared by

W. H. CHILDS Space Materials Laboratory Laboratory Operations

Edited by Tom Park and Sandra Gyetvay

Prepared for

SPACE AND MISSILE SYSTEMS CENTER AIR FORCE SPACE COMMAND 2430 E. El Segundo Boulevard Los Angeles Air Force Base, CA 90245

Engineering and Technology Group

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

20030312 132

This report was submitted by The Aerospace Corporation, El Segundo, CA 90245-4691, under Contract No. F04701-00-C-0009 with the Space and Missile Systems Center, 2430 E. El Segundo Blvd., Los Angeles Air Force Base, CA 90245. It was reviewed and approved for The Aerospace Corporation by P. D. Fleischauer, Principal Director, Space Materials Laboratory. Michael Zambrana was the project officer for the Mission-Oriented Investigation and Experimentation (MOIE) program.

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication. Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

wheen

Michael Zambrana SMC/AXE

				E	orm Approved
		UMENTATION		OME	3 No. 0704-0188
Public reporting burden for gathering and maintaining	r this collection of informa the data needed, and cor	tion is estimated to average 1 hour per npleting and reviewing this collection o	response, including the time fo f information. Send comments	r reviewing instructions, s regarding this burden est	earching existing data sources, imate or any other aspect of this
collection of information, in Reports (0704-0188), 121 shall be subject to any per	ncluding suggestions for re 5 Jefferson Davis Highwa nalty for failing to comply v	educing this burden to Department of E y, Suite 1204, Arlington, VA 22202-43 vith a collection of information if it does	Defense, Washington Headquar 02. Respondents should be aw not display a currently valid ON	ters Services, Directorate are that notwithstanding a AB control number. PLEA	earching existing data sources, imate or any other aspect of this for Information Operations and any other provision of law, no person ASE DO NOT RETURN YOUR FORM
TO THE ABOVE ADDRES 1. REPORT DATE (30-09		2. REPORT TYPE			/ERED (From - To)
4. TITLE AND SUB				5a. CONTRAC F04701-00-C	
Thermomechanic	al Properties of S	elected Space-Related Ma	terials	5b. GRANT N	JMBER
				5c. PROGRAM	ELEMENT NUMBER
6. AUTHOR(S)		····· ·		5d. PROJECT	NUMBER
W. H. Childs				5e. TASK NUN	/BER
Edited by Tom Pa	ark and Sandra G	yetvay		5f. WORK UN	TNUMBER
7. PERFORMING C	RGANIZATION NA	AME(S) AND ADDRESS(ES)		8. PERFORMI REPORT N	NG ORGANIZATION
The Aerospace C	· .	·			
Laboratory Opera El Segundo, CA 9				TI	R-2002(8565)-7
Space and Missile	e Systems Center	ENCY NAME(S) AND ADDR	ESS(ES)	10. SPONSOF	X/MONITOR'S ACRONYM(S) SMC
Air Force Space				11 SPONSOF	/MONITOR'S REPORT
2450 E. El Segun		00245		NUMBER(
Los Angeles Air Force Base, CA 90245				S	MC-TR-03-09
12. DISTRIBUTION Approved for pub	olic release; distri				
14. ABSTRACT		to the second			
Room-temperature tabulated in this r to survivability a The nine properti (constant volume modulus, and vol Various appropri	report. These dat ssessments of spa ies tabulated for e), Poisson's ratio umetric coefficie ate elements, oxid included in the ta	thermomechanical materi a are essential for analyses ice systems based on abov ach of the 130 materials in , Grüneisen constant, adia nt of thermal expansion. des, carbides, halides, met abulation. The majority o	s to determine materia e- and below-ground include density, specific batic sound velocity, allic alloys, semicond	al response to pul nuclear weapons fic heat (constant Young's modulu ductors, optical m	sed radiation that relate effects experiments. pressure), specific heat s, isothermal bulk naterials, glasses, plastic
15. SUBJECT TEF		üneisen volumetric therma	ll expansion, Poisson	's ratio, Heat cap	acity, Young's modulus,
Sound velocity	, .		-	•	·
16. SECURITY CL	ASSIFICATION OF	:	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Tom Park
				160	
a. REPORT UNCLASSIFIED	b. ABSTRACT UNCLASSIFIE	c. THIS PAGE D UNCLASSIFIED			19b. TELEPHONE NUMBER <i>(include area code)</i>
					(310)336-5503
L	I				andard Form 298 (Rev. 8-98)

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18

Dedication

For Bill Childs; colleague and friend.

Foreword

The analysis of radiation interaction with, and damaging effects to, operational military systems requires a comprehensive database of thermophysical and other properties, covering the diversity of materials to be found in such systems, including spacecraft, launch and reentry vehicles, and their components. Computations of nuclear weapon or directed-energy weapon effects requires specialized knowledge and expertise, together with experience using the appropriate computer codes.

With the cessation of the cold war, efforts addressing the vulnerability, survivability, and hardening of military systems were severely scaled back. Consequently, the personnel who had maintained the associated analytical technologies were reassigned, retired, or discharged. Much knowledge and capability was lost in the process.

The Editors of this report have attempted to partially mitigate such losses by preserving this previously unpublished database of equation-of-state and related materials properties data, together with a tutorial on the derivation of equations for computing the Grüneisen constant. The data presented herein was collected and used by Mr. William H. "Bill" Childs in the analysis of thermal stress-related effects, and was found among his files at The Aerospace Corporation Space Materials Laboratory following his death in September, 1997.

During the period, 1965 through 1992, researchers in The Aerospace Corporation's Laboratory Operations conducted experiments on some 28 underground nuclear tests (UGTs) at Mercury, Nevada. Concurrently with these UGTs, and subsequent to the termination of underground testing in 1992, innumerable experiments were conducted using high-energy pulsed-power facilities at government and contractor laboratories in so-called "above ground tests" (AGTs). Bill Childs' career spanned the entire era of underground testing of space-related materials. His analytical efforts were critical to the support of virtually every nuclear weapon effects experiment conducted by Aerospace, whether underground or above ground, as well as the many "paper" studies related to vulnerability, survivability, and hardening done during that time.

In 1981, Childs published the first volume of his compendium of temperature-dependent thermophysical properties. Volume I^{*} presented tables of data for 112 materials, together with curve fits suitable for computer code input. This was followed in 1986 by the publication of Volume II, which presented data on an additional 107 materials. These volumes have become industry standards as data reference for radiation effects modeling and analysis. Childs was in the process of preparing a third volume, intended for the presentation of his collection of thermomechanical properties data, but

^{*} Childs, W. H., "Thermophysical Properties of Selected Space-Related Materials", Vol. I, Aerospace Report No. TOR-0081(6435-02)-01, 20 February, 1981.

^{**} Childs, W. H., "Thermophysical Properties of Selected Space-Related Materials", Vol. II, Aerospace Report No. TOR-0086(6435-02)-01, 15 February, 1986.

this was not completed during his lifetime. With its publication at this time, it is appropriate that this volume be dedicated to its original author.

The reader is cautioned that the information and data contained herein are presented as found among Childs' papers. These are known to be the data personally used by Childs, and informally provided by him to other workers in the field of radiation effects. Only minimal attempts have been made to compare the data in Childs' tables against data that might be found in the listed source materials. However, when comparisons were made, no inconsistencies could be found between Childs' data and those of other workers. In particular, Ho (ref. 88) presents a table of data calculated using a somewhat different method but that, nevertheless, agrees with Child's data to within about 10%.

The text has been edited and organized to comply with Corporation document standards. Corrections have been made where errors were found and some editorial changes have been made for clarity. However, the technical text remains essentially as written by Childs.

Data selection was made on the basis of Childs' judgement, in consultation with others. In particular, Dr. Robert Cooper is known to have given much advice and support to Childs' analytical activities. Cooper's editorial notes and comments on a draft copy of the text were found among Childs' papers and have been incorporated in this present document.

The list of data sources and references has been particularly a concern because Childs left multiple versions, including several pages of handwritten notes citing intended additions to the list of references. Explicit reference citations for the properties data selected by Childs and presented in his database could not be found. In an attempt to somewhat compensate for this lack, we have superficially reviewed the referenced documents to identify content related to the 130 materials in the database, without determining the actual source of data selected and tabulated by Childs. These observations of content have been appended to the materials list given in Section 7. However, the uncertainty of specific data origins remains a caveat to the reader.

Some of the referenced documents are quite obscure and will be difficult to locate using ordinary library services. Accordingly, the editors intend to preserve those reference documents found among Childs' holdings by transferring their possession to the Corporate Archivist of The Aerospace Corporation. Interested readers may obtain access to those reports by contacting the Corporate Archivist.

Symbols and Units

C _B	Bulk wave velocity	(cm/s)
C _L	Longitudinal wave velocity	(cm/s)
Cs	Shear wave velocity	(cm/s)
CP	Heat capacity at constant pressure	(cal/g-°C)
C _v	Heat capacity at constant volume	(cal/g-°C)
E	Internal Energy	(cal/g)
G _R	Reuss averaged shear modulus	(dynes/cm ²)
G _V	Voigt averaged shear modulus	(dynes/cm ²)
B _H	Hashin averaged shear modulus	(dynes/cm ²)
G _S	Shtrikman averaged shear modulus	(dynes/cm ²)
К	Hashin and Shtrikman averaged bulk modulus	(dynes/cm ²)
K _R	Reuss averaged bulk modulus	(dynes/cm ²)
К _V	Voigt averaged bulk modulus	(dynes/cm ²)
K _A	Adiabatic bulk modulus	(dynes/cm ²)
KI	Isothermal bulk modulus	(dynes/cm ²)
P	Pressure	(dynes/cm ²)
S	Entropy or degree of disorder	
Т	Absolute Temperature	(°K)
v	Volume	(cm ³)
X _A	Adiabatic compressibility	(dynes/cm ²) ⁻¹
XI	Isothermal compressibility	(dynes/cm ²) ⁻¹
Y	Young's modulus of elasticity	(dynes/cm ²)

,

.

β	Volumetric coefficient of thermal expansion	$(10^{-6} \circ C^{-1})$
γ	Grüneisen constant	
λ	Lamè elastic constant	(dynes/cm ²)
μ	Shear modulus	(dynes/cm ²)
ν	Poisson's ratio	
ρ	Density	(g/cm^3)

Contents

1.	Introduction	1
2.	Methods of Analysis for the Grüneisen Constant	3
3.	Derivation of Equations to Calculate the Grüneisen Constant Using Various Experimental Parameters	7
4.	Equations Linking Five Elastic Constants	11
5.	Development of Equations to Calculate Aggregate Material Properties from Those of Single Crystals	15
6.	References	19
7.	List of Materials with their Associated Data References	25
8.	Compendium of Thermomechanical Property Data for 130 Materials	29

1. Introduction

The thermomechanical material properties tabulated in this report are a consistent set of roomtemperature data compiled for 130 space-related materials. These data are essential for analyses to determine material response to pulsed radiation, which relates to survivability assessments based on above and below ground weapons effects experiments. The need for such a compilation has been expressed by analysts on many occasions in connection with DoD, AFSD, AFRL, and DTRAsponsored programs. The nine properties tabulated for each of the 130 materials include density, specific heat (constant pressure), specific heat (constant volume), Poisson's ratio, Grüneisen constant, adiabatic sound velocity, Young's modulus, isothermal bulk modulus, and volumetric coefficient of thermal expansion. Although the units are admittedly inconsistent, they have been selected for usage without conversion by the majority of users.

Among the 130 materials included in the tabulation are representative elements, oxides, carbides, halides, metallic alloys, semiconductors, optical materials, glasses, plastics, and graphites. The majority of the materials are high density, low porosity, isotropic and polycrystalline in form, unless otherwise stated. However, in a few cases, the materials are not completely characterized.

The tabulated values of material properties have been extracted from the literature without undertaking a complete or thorough search. The selected values represent the results of both experimental measurements and calculations. No attempt was made to validate the data. The bibliography, although not complete, provides the opportunity to consult the original references in most cases.

Whenever possible, experimentally measured isothermal properties were compared with values calculated from adiabatic measurements. The approach in this report was to calculate the Grüneisen constant, first based on an equation derived from thermodynamics relating to the adiabatic state, and second by means of an equation derived from thermodynamics relating to the isothermal state. These values are also compared with the Grüneisen constants that have been determined experimentally. This comparison was extended to provide a test of the consistency of the tabulated properties.

Sections 2, 3, and 4 of this report present the derivation of equations used for calculating the Grüneisen constants. Alternate methods of calculating elastic properties for isotropic materials from the anisotropic single-crystal elastic constants are presented in Section 5.

Section 6 provides the list of reference documents used by Childs as data sources for generating the compendium of material properties presented in Section 8. Section 7 presents an alphabetical list of the 130 space-related materials included in the database, together with citations to the specific data sources, to be found in the list of reference documents, for each material.

1

2. Methods of Analysis for the Grüneisen Constant

The format for the Compendium of Thermomechanical Properties presented in Section 8 provides for reporting values of the Grüneisen constant obtained using one or more of three distinct methods. For those materials for which no experimental data were available, values of the Grüneisen constant have been calculated using one of the two algorithms developed below.

<u>Method 1</u> presents experimentally determined values of the Grüneisen constant for materials, when available in the literature.

The <u>second method</u> of calculating the Grüneisen constant uses the relation for isothermal conditions given in Eq. (3.15) of Section 3:

$$\gamma = \frac{\beta K_{\rm I}}{C_{\rm V} \rho},\tag{2.1}$$

where β is the volumetric coefficient of thermal expansion, K_{I} is the isothermal bulk modulus, C_{V} is the heat capacity at constant volume, and ρ is the density.

To be consistent throughout this report, the values for the heat capacity at constant volume, C_v , will be calculated from the thermodynamic expression given in Eq. (2.3).

$$C_{P} - C_{V} = -T \left(\frac{\partial V}{\partial T}\right)_{P}^{2} \bullet \left(\frac{\partial P}{\partial V}\right)_{T}$$
(2.2)

$$C_{\rm V} = C_{\rm P} - \left(\frac{\beta^2 T K_{\rm I}}{\rho}\right),\tag{2.3}$$

where T is the absolute temperature. This equation applies equally to solids, liquids, and gases. There are many methods of calculating the heat capacity at constant volume, such as those given by Dulong and Petit, Einstein, Drude, Debye, and Born and Karman. It is felt that the above relationship should not introduce any appreciable errors in the calculations.

The isothermal bulk modulus, which is not always available for many materials, can be calculated by other expressions as given in Section 4. The table in Section 4 presents the relationships among five elastic constants: bulk modulus (K), Young's modulus (Y), Poisson's ratio (v), Lamè constants (λ and μ (shear)). The table is organized to facilitate computation of the remaining three of these parameters when any two of the five are known, for isotropic linear elastic materials.

It would be desirable to calculate the elastic properties for random, macroscopically isotropic aggregates of crystals from the single-crystal anisotropic elastic constants. This is not yet possible, but bounds have been obtained for the aggregate properties from the single-crystal constants (Section 4). These are called the "Voigt" and "Reuss" averages. Voigt averaged the elastic stiffnesses (C_{ij}) over all space, and Reuss averaged the elastic compliances (S_{ij}). [2] These values are considered the least upper bound and the greatest lower bound, respectively, for the aggregate.

The <u>third method</u> of calculating the Grüneisen constant uses the relation for adiabatic conditions given in Eq. (3.22) of Section 3.

$$\gamma = \frac{\beta K_A}{C_P \rho},\tag{2.4}$$

where K_A is the adiabatic bulk modulus, C_P is the heat capacity at constant pressure, and

$$K_{A} = \rho C_{B}^{2}.$$
 (2.5)

The adiabatic bulk wave speed (C_B) is calculated from shock wave measurements, where the longitudinal, C_L , and the shear, C_S , speeds have been determined. The shear wave is also referred to as the transverse wave. Then the bulk wave speed can be expressed as

$$C_{\rm B} = \left(C_{\rm L}^2 - \frac{4}{3}C_{\rm S}^2\right)^{\frac{1}{2}}.$$
 (2.6)

The adiabatic bulk modulus can also be calculated from the isotropic elastic properties when shock wave measurements are not available. The longitudinal and shear wave speed can be expressed as follows:

$$C_{L} = \left(\frac{3K_{A}(1-\upsilon)}{\rho(1+\upsilon)}\right)^{\frac{1}{2}}; \quad C_{S} = \left(\frac{3K_{A}(1-2\upsilon)}{2\rho(1+\upsilon)}\right)^{\frac{1}{2}}.$$
 (2.7)

The wave speeds can also be expressed in terms of the Lamè elastic constants.

$$C_{L} = \left(\frac{\lambda + 2\mu}{\rho}\right)^{\frac{1}{2}}; \quad C_{S} = \left(\frac{\mu}{\rho}\right)^{\frac{1}{2}}.$$
(2.8)

The same relationship exists as given in Section 5 by substituting values calculated from C_L and C_S .

$$\upsilon = \frac{C_{L}^{2} - 2C_{S}^{2}}{2(C_{L}^{2} - C_{S}^{2})}$$
(2.9)

$$Y = \frac{\rho C_{S}^{2} (3C_{L}^{2} - 4C_{S}^{2})}{(C_{L}^{2} - C_{S}^{2})}$$
(2.10)

$$K_{\rm A} = \rho \left(C_{\rm L}^2 - \frac{4}{3} C_{\rm S}^2 \right) \tag{2.11}$$

5

3. Derivation of Equations to Calculate the Grüneisen Constant Using Various Experimental Parameters

For most solids, a simple relationship has been shown by Grüneisen to have experimental validity:

$$\gamma = \frac{\text{Volume Coefficient of Thermal Expansion \times Specific Volume}}{\text{Compressibility \times Specific Heat (Constant Volume)}},$$
(3.1)

and γ is called the Grüneisen constant.[5] Experimental values of γ for most solids lie between 1.5 and 2.5. A theoretical basis for the Grüneisen constant has been established by Slater in his derivation of the Mie-Grüneisen equation of state:

$$(\mathbf{P} - \mathbf{P}_0)\mathbf{V} = \gamma(\mathbf{E} - \mathbf{E}_0), \qquad (3.2)$$

where the subscripted values of pressure (P) and internal energy (E) are the volume (V) dependent values at zero Kelvin. [6]

A number of expressions relating the Grüneisen constant to various thermoelastic and thermodynamic parameters can be derived from the Mie-Grüneisen equation of state. A simple and straightforward demonstration of their interrelationships, which follows, involves the use of Jacobians. By differentiating Eq. (3.2) while holding volume constant, we obtain:

$$\gamma = V \left(\frac{\partial P}{\partial E}\right)_{V}$$
(3.3)

$$\left(\frac{\partial P}{\partial E}\right)_{V} = \frac{J(P, V)}{J(E, V)} = \frac{J(P, V) / J(T, V)}{J(E, V) / J(T, V)} = \frac{\left(\frac{\partial P}{\partial T}\right)_{V}}{\left(\frac{\partial E}{\partial T}\right)_{V}}.$$
(3.4)

The specific heat (constant volume) is defined:

$$C_{V} = \left(\frac{\partial E}{\partial T}\right)_{V} = \left(\frac{\partial S}{\partial T}\right)_{V}.$$
(3.5)

Substituting:

$$\gamma = \frac{V}{C_V} \left(\frac{\partial P}{\partial T}\right)_V,\tag{3.6}$$

and using Maxwell's relation:

$$\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial P}{\partial T}\right)_{V}.$$
(3.7)

Eq. (3.6) can also be written:

$$\gamma = \frac{V}{C} \left(\frac{\partial S}{\partial V} \right)_{T}.$$
(3.8)

But

$$\left(\frac{\partial P}{\partial T}\right)_{V} = \frac{J(P, V)}{J(T, V)} = \frac{(-)J(V, P)/J(T, P)}{J(V, T)/J(P, T)} = \frac{(-)\left(\frac{\partial V}{\partial T}\right)_{P}}{\left(\frac{\partial V}{\partial P}\right)_{T}},$$
(3.9)

so

$$\gamma = \frac{(-)V}{C_V} \bullet \frac{\left(\frac{\partial V}{\partial T}\right)_P}{\left(\frac{\partial V}{\partial P}\right)_T}.$$
(3.10)

The volume coefficient of thermal expansion is defined:

$$\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{\rm P},\tag{3.11}$$

and the isothermal compressibility is defined:

$$X_{I} = \frac{(-)I}{V} \left(\frac{\partial V}{\partial P}\right)_{T} = \frac{1}{K_{I}},$$
(3.12)

where K_I is the isothermal bulk modulus. Substituting in Eq. (3.10):

$$\gamma = \frac{\beta V}{C_V X_I} = \frac{\beta V K_I}{C_V}.$$
(3.13)

Usually the Mie-Grüneisen equation of state, Eq. (3.2), is expressed in terms of the specific volume which is related to the density:

$$V = \frac{1}{\rho}.$$
 (3.14)

Therefore, Eq. (3.13) becomes

$$\gamma = \frac{\beta}{C_V X_I \rho} = \frac{\beta K_I}{C_V \rho}.$$
(3.15)

Using the alternate definition of C_V , Eq. (3.10) can be rewritten:

$$\gamma = \frac{(-)V}{T} \left(\frac{\partial V}{\partial T}\right)_{P} \bullet \frac{\left(\frac{\partial P}{\partial V}\right)_{T}}{\left(\frac{\partial S}{\partial T}\right)_{V}}.$$
(3.16)

But

$$\frac{\left(\frac{\partial P}{\partial V}\right)_{T}}{\left(\frac{\partial S}{\partial T}\right)_{V}} = \frac{J(P,T)/J(V,T)}{J(S,V)/J(T,V)} = \frac{J(P,S)/J(V,S)}{J(S,P)/J(T,P)} = \frac{\left(\frac{\partial P}{\partial V}\right)_{S}}{\left(\frac{\partial S}{\partial T}\right)_{P}},$$
(3.17)

and the specific heat (constant pressure) is defined:

$$C_{P} = \left(\frac{\partial H}{\partial T}\right)_{P} = T\left(\frac{\partial S}{\partial T}\right)_{P}.$$
(3.18)

Substituting in the equation above:

$$\gamma = \frac{(-)V}{C_{\rm P}} \left(\frac{\partial V}{\partial T}\right)_{\rm P} \left(\frac{\partial P}{\partial V}\right)_{\rm S}.$$
(3.19)

The adiabatic (isoentropic) compressibility and bulk modulus are defined:

$$X_{A} = (-)\frac{1}{V} \left(\frac{\partial V}{\partial P}\right)_{S} = \frac{1}{K_{A}}.$$
(3.20)

Substituting in Eq. (3.19):

$$\gamma = \frac{\beta V}{C_P X_A} = \frac{\beta V K_A}{C_P}$$
(3.21)

$$\gamma = \frac{\beta}{C_{\rm P} X_{\rm A} \rho} = \frac{\beta K_{\rm A}}{C_{\rm P} \rho}.$$
(3.22)

Equation (3.19) can be rewritten:

$$\gamma = \frac{(-)V^2\beta}{C_P} \left(\frac{\partial P}{\partial V}\right)_S.$$
(3.23)

The adiabatic (isoentropic) sound speed is defined:

$$C_{\rm B} = V \left[\left(-\right) \left(\frac{\partial P}{\partial V} \right)_{\rm S} \right]^{\frac{1}{2}}.$$
 (3.24)

$$\gamma = \frac{\beta}{C_{\rm P}} C_{\rm B}^{\ 2}. \tag{3.25}$$

Several facts are evident from the equations that have been derived. It is evident that Eq. (3.13) is identical to Eq. (3.1), which was the original definition of the Grüneisen constant, γ . It is possible to evaluate γ from several different sets of experimental data:

- (1) Using Eq. (7), γ can be obtained from the specific heat (constant volume), density, volumetric thermal expansion, and isothermal compressibility (or bulk modulus).
- (2) Using Eq. (10), γ can be obtained from the density, specific heat (constant pressure) volumetric thermal expansion, and adiabatic compressibility (or modulus).
- (2) Using Eq. (12), γ can be obtained from the specific heat (constant pressure), volumetric thermal expansion, and adiabatic sound velocity.

4. Equations Linking Five Elastic Constants

K	$\frac{3\lambda + 2\mu}{3}$	$\frac{(3\lambda + Y) + \sqrt{(3\lambda + Y)^2 - 4\lambda Y}}{6}$	$\frac{\lambda(1+v)}{3v}$		$\frac{\mu Y}{3(3\mu - Y)}$	$\frac{2\mu(1+\nu)}{3(1-2\nu)}$		$\frac{Y}{3(1-2v)}$		
v	$\frac{\lambda}{2(\lambda+\mu)}$	$\frac{-(Y + \lambda) + \sqrt{(Y + \lambda)^2 + 8\lambda^2}}{4\lambda}$		$\frac{\lambda}{3K - \lambda}$	$\frac{Y-2\mu}{2\mu}$		$\frac{1}{2} \left[\frac{3K - 2\mu}{3K + \mu} \right]$		$\frac{1}{2} \left[\frac{3K - Y}{3K} \right]$	
Y	$\frac{\mu(3\lambda+2\mu)}{\lambda+\mu}$		$\frac{\lambda(1+v)(1-2v)}{v}$	$\frac{9K(K-\lambda)}{3K-\lambda}$		$2\mu(1+v)$	$\frac{9K\mu}{3K+\mu}$			3K(1-2v)
ц		$\frac{(Y-3\lambda)+\sqrt{(Y-3\lambda)^2+8\lambda Y}}{4}$	$\frac{\lambda(1-2v)}{2v}$	$\frac{3(K-\lambda)}{2}$		-		$\frac{Y}{2(1+v)}$	$\frac{3YK}{9K-Y}$	$\frac{3K(1-2v)}{2(1+v)}$
۲					$\frac{(2\mu - Y)\mu}{Y - 3\mu}$	$\frac{2\mu v}{(1-2v)}$	$\frac{3K-2\mu}{3}$	$\frac{vY}{(1+v)(1-2v)}$	$\frac{3K(3K-Y)}{9K-Y}$	$\frac{3Kv}{1+v}$
	λ, μ	λ, Υ	λ, ν	λ, Κ	μ, Υ	н, v	н, К	Y, v	Y, K	v, K

13

5. Development of Equations to Calculate Aggregate Material Properties from Those of Single Crystals

Downloaded from http://www.everyspec.com

Editor's Note: The text of this section presents the author's unabridged development and rationale for the calculation of aggregate properties from those of single crystals—it has been reproduced with only minor formatting changes from Childs' original draft. It is recognized that the uninitiated reader will likely have some difficulty in following this development because of the lack of rigor and other lapses. However, it is hoped that the inclusion of this section will provide useful insight into Childs' approach. The interested reader may find additional insights by referring to other treatments of this subject to be found in the literature. (cf. Ref. 88.)

The Voigt and Reuss bulk modulus averages are given by

$$K_{\rm V} = (A + 2B)/3$$
 and $K_{\rm R} = 1/(3a + 6b)$, respectively, (5.1)

and the shear moduli of rigidity averages are

$$G_{\rm V} = (A - B + 3C)/5$$
 and $G_{\rm R} = 5/(4a - 4b + 3c)$. (5.2)

The constants A, B, C and a, b, c are related to the elastic stiffnesses and compliances by the relations

$$3A = C_{11} + C_{22} + C_{33} \qquad 3a = S_{11} + S_{22} + S_{33}$$

$$3B = C_{23} + C_{31} + C_{12} \qquad 3b = S_{23} + S_{31} + S_{12} \qquad (5.3)$$

$$3C = C_{44} + C_{55} + C_{66} \qquad 3c = S_{44} + S_{55} + S_{66}$$

Again, knowing any two of the elastic properties, the rest can be calculated from the isotropic elastic relations given in Section 4. No distinction is made between adiabatic and isothermal elastic properties, which should not differ by more than a few percent.

Crystalline Structure	Definition of Constants A, B, & C	
Cubic	$A = C_{11}$	
	$\mathbf{B} = \mathbf{C}_{12}$	(5.4)
	$C = C_{44}$	
Hexagonal and Trigonal	$A = 1/3 (2C_{11} + C_{33})$	
	$B = 1/3 (2C_{13} + C_{12})$	(5.5)
	$C = 1/3 (2C_{44} + C_{66})$	
	where $C_{66} = 1/2(C_{11} - C_{12})$	(5.6)
Tetragonal	$A = 1/3 \ (2C_{11} + C_{33})$	
	$B = 1/3 (2C_{13} + C_{12})$	(5.7)
	$C = 1/3 \ (2C_{44} + C_{66})$	
Orthorhombic and Monoclinic	$A = 1/3 (C_{11} + C_{22} + C_{33})$	
	$B = 1/3 (C_{13} + C_{23} + C_{12})$	(5.8)
	$C = 1/3 (C_{44} + C_{55} + C_{66})$	

The constants, A, B, and C have been further reduced for six specific crystalline structures as follows [7]:

Improvements have been made for the upper and lower bounds for cubic crystals and are known as the "Hashin" and "Shtrikman" averages. [2] For single-phase aggregate of a cubic material, the bulk modulus, K, is given unambiguously by

$$K = \frac{1}{3} (C_{11} + 2C_{12})$$
 (5.9)

and the modulus of rigidity is bounded by

$$G_{\rm H} = G_1 + 3 \left(\frac{5}{G_2 - G_1} - 4\sigma_1 \right)^{-1}$$
(5.10)

and

$$G_{S} = G_{2} + 2 \left(\frac{5}{G_{1} - G_{2}} - 6\sigma_{2} \right)^{-1},$$
 (5.11)

where

$$G_1 = \frac{1}{2} (C_{11} - C_{12})$$
(5.12)

$$G_2 = C_{44}$$
 (5.13)

$$\sigma_1 = -\frac{3(K+2G_1)}{5G_1(3K+4G_1)} \tag{5.14}$$

$$\sigma_2 = -\frac{3(K+2G_2)}{5G_2(3K+4G_2)}.$$
(5.15)

 G_H is termed the Hashin rigidity, and G_S is the smaller Shtrikman rigidity.

In general, crystals are anisotropic with respect to their elastic properties. That is, the values of these moduli differ with direction in the crystal. A measure of the anisotropy of a cubic crystal is given by the anisotropy factor (\tilde{A}) and is defined as

$$\tilde{A} = \frac{2C_{44}}{(C_{11} - C_{12})} \tag{5.16}$$

For those crystals with $\tilde{A} > 1$, such as germanium and silicon, Young's modulus has its maximum value along the <100> direction and the minimum value along the <111> direction. For crystals with $\tilde{A} < 1$, such as sodium chloride, Young's modulus has its maximum value along the <111> direction and its minimum along the <100> direction. The variation in elastic properties with direction may be as great as 30%.

6. References

- 1. Gray, D. E., Ed., <u>American Institute of Physics Handbook</u>, Third Edition, McGraw-Hill Book Co., New York, NY, (1972)**
- 2. Simmons, F.S., Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties Handbook, MIT Press, MA, (1971)**
- 3. Marsh, S.P., <u>Los Alamos Scientific Laboratory Shock Hugoniot Data</u>, University of California Press, Berkeley and Los Angeles, CA (1980)
- Urzendowski, R., Guenther, A.H., <u>The Grüneisen Parameter and Thermal Properties of</u> <u>Polymers</u>, Air Force Weapons Laboratory, AFWL-TR-71-6, Air Force Weapons Laboratory, Kirtland Air Force Base, NM, (May 1971)*
- 5. Grüneisen, E., "Zustand des festen Korpers," HandBuch der Physik, 10, 1-59, (1926)*
- 6. Slater, J.C., <u>Introduction to Chemical Physics</u>, McGraw-Hill 1939, Chapter XIII, Section 4, (1939)
- 7. Hearman, R.F.S., <u>An Introduction to Applied Anisotropic Elasticity</u>, Oxford University Press, (1961)
- 8. Wolfe, W.L., Zissis, G.J., <u>The Infrared Handbook</u>, Office of Naval Research, Department of the Navy, Washington, D.C., (1985)**
- 9. Childs, W.H., <u>Thermophysical Properties of Selected Space-Related Materials</u>, TOR-0081(6435-02)-1, Vol. I, The Aerospace Corporation, El Segundo, CA, (1981)*
- Childs, W.H., <u>Thermophysical Properties of Selected Space-Related Materials</u>, TOR-0086(6435-02)-1, Vol. II, The Aerospace Corporation, El Segundo, CA, (1986)*
- McQueen, R.G., Marsh, S.P., "Equation of State for Nineteen Metallic Elements from Shock-Wave Measurements to Two Megabars," <u>Journal of Applied Physics</u>, Vol. 31, No.7, (July 1960)*
- Touloukian, Y.S., Buyco, E.H., <u>Thermophysical Properties of Matter</u>, The Thermophysical Properties Research Center Data Series, Purdue University, IFI/Plenum New York–Washington (1970)*
- 13. Kelley, K.K., <u>Contribution to the Data on Theoretical Metallurgy</u>, BOM Bulletin 476, U.S. Government Printing Office, Washington, D.C., (1949)

^{**} Report available through The Aerospace Corporation Lauritsen Library.

^{*} Report available through The Aerospace Corporation archivist

- 14. Corning Glass Works, <u>Properties of Selected Commercial Glasses</u>, B-83, New York, NY, (1965)
- 15. Moses, A.J., "Optical Materials Properties," <u>Handbook of Electronic Materials</u>, Vol 1, Hughes Aircraft Co. Electronic Properties Information Center, Plenum Press, New York, (1971)*
- 16. Taylor, R.E., Groot, H., <u>Thermophysical Properties of POCO Graphite</u>, Properties Research Laboratory, Report AFOSR-77-3280, Purdue University, West Lafayette, IN, (July 1978)*
- 17. Modern Plastics Encyclopedia Annual Issue, McGraw-Hill, New York, NY, (1964)**
- Morey, G.W., <u>The Properties of Glass</u>, 2nd Edition, Reinhold Publishing Corp., New York, NY, (1960)*
- 19. Vier, D.T., <u>Thermal and Other Properties of Refractories</u>, Tech. Report No.. R056, U.S. Dept. of Commerce, VA, (1975)
- 20. Kingery, W.D., Introduction to Ceramics, John Wiley and Sons, Inc., New York, NY, (1960)*
- 21. Neuberger, M., <u>Group IV Semiconducting Materials</u>, Handbook of Electronic Materials, Vol. 5, Hughes Aircraft Co. Electronic Properties Information Center, IFI/Plenum, New York, (1971)*
- 22. Crotwell, G.P., Ward, H.P., <u>Hugoniot Data on Several Materials</u>, AFWL TR-68-82, Air Force Weapons Laboratory, Kirtland Air Force Base, NM, (Oct. 1968)*
- Touloukian, Y.S., "Elements," <u>Thermophysical Properties of High Temperature Solid</u> <u>Materials</u>, Vol. 1, The Thermophysical Properties Research Center, Purdue University, Macmillan Company, New York (1967)**
- 24. Morris, C.E., et al, Los Alamos Shock Wave Profile Data, University of California Press, Berkeley, CA, (1982)**
- 25. Kohn, B.J., <u>Compilation of Hugonoit Equation of State</u>, AFWL-TR-69-38, Air Force Weapons Laboratory, Kirtland Air Force Base, NM, (1969)*
- 26. Cost, J.R., Janowski, K.R., Rossi, R.C., <u>Elastic Properties of Isotropic Graphite</u>, TR-0158(3250-10)-13, The Aerospace Corporation, El Segundo, CA, (Jan. 1968)*
- 27. Kolsky, H., Stress Waves in Solids, Oxford at the Clarendon Press, (1953)**
- 28. Inconel 600, Maxi, (1963)
- 29. E.I. DuPont DeNemours & Co. (Inc.), <u>Kapton[®] Polyimide Film</u>, DuPont Technical Bulletin H-1A, DuPont Co., Electronics Department, Wilmington, DE
- 30. Weast, R.C., Ed., <u>Handbook of Chemistry and Physics</u>, 53rd Edition, Chemical Rubber Company Press, Cleveland, OH, (1969)**
- Hanlein, S.L., Hinckley, W.M., Stecher, F.P., <u>Comparison of Mechanical and Acoustic</u> <u>Properties for Selected Nonferrous, Ferrous, and Plastic Materials</u>, NOLTR 70-141, Naval Ordnance Laboratory, Report, White Oak, MD, (July 1970)*

- 32. Salama, M.A.,, et al, Thermoelastic Analysis of Solar Cell Arrays and Their Material Properties
- 33. General Electric, <u>Silicones</u>, Technical Data Bank S-35, Silicone Products Division, Waterford, NY.
- 34. Rinehart, J.S., <u>Compilation of Dynamic Equation of State Data for Solids and Liquids</u>, U.S. Naval Ordinance Test Station," NRS TP 3798, China Lake, CA, (May 1965)*
- 35. Brandrup, J., Immergut, E.H., <u>Polymer Handbook 2nd Edition</u>, Wiley-Interscience Publications, New York, (1975)*
- 36. Urzendowski, R., Guenther, A.H., <u>Thermal Properties and Grüneisen Parameters for Several</u> <u>Polymers, Concretes, and Composite Materials</u>, AFWL-TR-72-37, Air Force Weapons Laboratory. Kirtland Air Force Base, NM, (Sept. 1972)*
- 37. Weast, R.C., Astle, M.J., Beyer, W.H., <u>Handbook of Chemistry and Physics</u>, 64th Edition, CRC Press, Boca Raton, FL, (1984)
- 38. Samsonov, G.V., Ed, The Oxide Handbook 2nd Edition, IFI/Plenum, New York, NY, (1982)*
- Ballard, S.S., McCarthy, K.A., Wolfe, W.L., <u>Optical Materials for Infrared Instrumentation</u>, R.N. 2389-11-S, University of Michigan, Willow Run Laboratories, Ann Arbor, MI, (Jan. 1959)
- 40. Auld, B.A., Acoustic fields and Waves in Solids Vol. I, Wiley-Interscience, (1973)**
- 41. Darwin, G.E., Buddery, J.H., Beryllium, Academic Press, Inc., New York, (1960)**
- Walsh, J.M., Rice, M.H, McQueen, R.G., Yarger, F.L., "Shock-Wave Compressions of Twenty-Seven Metals, Equations of State of Metals;" <u>Physical Review</u>, Vol. 108, No. 2, pp 196-216; (October 1957)*
- 43. Spedding, F.H., Daane, A.H., The Rare Earths, John Wiley and Son, Inc., New York, (1961)
- 44. Filyand, M.A., Semenova, E.I., <u>Handbook of the Rare Elements, Trace Elements and Light</u> <u>Elements Vol I</u>, Boston Technical Publishers, Inc., Cambridge, MA, (1968)
- 45. Filyand, M.A., Semenova, E.I., <u>Handbook of the Rare Elements, Refractory Elements Vol II</u>, Boston Technical Publishers., Inc., Cambridge, MA, (1970)
- 46. Filyand, M.A., Semenova, E.I., <u>Handbook of the Rare Elements, Radioactive Elements and</u> <u>Rare Earth Elements Vol III</u>, Boston Technical Publishers., Inc., Cambridge, MA, (1970)
- 47. Krishnan, R.S, et al, Thermal Expansion of Crystals, Pergamon Press, New York, (1979)**
- DeWitt, D.P., <u>Handbook of the Optical, Thermal, and Mechanical Properties of Six</u> <u>Polycrystalline Dielectric Materials</u>, TPRC Report No. 19, Thermophysical Properties Research Center, Purdue University, West Lafayette, IN, (Dec. 1972)*
- 49. McQuillan, A.D., McQuillan, M.K., Titanium, Butterworths Scientific Pub., London, (1956)**

- 50. Burke, J.J., Weiss, V. Ed., <u>Shock Waves and the Mechanical Properties of Solids</u>, Syracuse University Press, Syracuse, NY, (1971)*
- 51. Floyd, H.L., <u>Material Properties</u>, <u>Measured and Estimated</u>, Laboratory Report No, 68-6020, Sandia Corporation, Division 2635, (Sept. 1968)*
- 52. Corning Glass Works, Low Expansion Materials, Corning, NY, (1969)
- 53. Hodges, E.S., et al, <u>Tin and Its Alloys</u>, Edward Arnold LTD, London, (1960)
- 54. Bakken, L.H., Anderson, P.D., <u>An Equation-of-State Handbook (Conversion Relations</u> <u>Between the Wondy/Tody and the PUFF/KO/HEMP Classes of Shock Wave Propagation</u> <u>Computer Codes</u>, SCL-DR-68-123, Sandia Laboratories, Livermore, CA, (Jan. 1969)*
- 55. Neuberger, M., <u>IV-V Semiconducting Compounds Data Tables</u>, Hughes Aircraft Co. Electronic Properties Information Center, Report S-12, Culver City, CA, (Oct. 1969)*
- 56. Oswald, R.B., et al, <u>Grüneisen Data from the Free Surface Velocity of Thermoelastic Materials</u>, HDL-TR-1629, Harry Diamond Laboratories, Washington, DC, (May 1973)*
- 57. Oswald, R.B., McLean, F.B., <u>Grüneisen Data from the One-Dimensional Response of Solids</u>, HDL-TR-1502, Harry Diamond Laboratories, Washington, DC, (June 1970)*
- 58. Smithells, C.J., Metals Reference Book, Vol. 3, Plenum Press, New York, (1967)*
- McLean, F.B., Oswald, R.B., Schalborn, D.R., Buxton, L,D., <u>Temperature Dependence of the Dynamic Response of Silicon, Germanium, and Indium Antimonide to a Pulse Electron Beam, HDL-TR-1503</u>; Harry Diamond Laboratories, Washington, D.C., (June 1970)
- Barron, T.H.K., "Grüneisen Parameters for the Equation of State of Solids," <u>Annals of Physics</u>: 1, 77-90 (1957)*
- Dugdale, J.S., MacDonald, D.K.C., "The Thermal Expansion of Solids," <u>Physical Review</u>, Vol. 89, No. 4 832-834; (Feb., 1953)*
- 62. Golian, S., Grandey, R., Bandaruk, W., <u>Methods of Calculating Thermal Shock Coefficients</u>; <u>Calculated Coefficients for Most Metals and Various Non-metals</u>, Philco, Corporation, Aeronautic Division, (July 1964)*
- 63. Touloukian, Y.S., et al, "Thermal Expansion, Metallic Elements and Alloys," <u>Thermophysical</u> <u>Properties of Matter</u>, Volume 12, (1975)*
- 64. Brugger, K., Fritz, T.C., "Grüneisen Gamma from Elastic Data," <u>Physical Review</u>, Vol. 157, No. 3, pp 524-531, (May 1967)*
- 65. Ree, J.R., Radiation Damage Study (RADS Program), AFBSD and AVCO Missile Systems
- 66. Wimmer, J.M., <u>Mechanical and Physical Properties of Chemically Vapor-Deposited (CVD)</u> <u>Zinc Sulfide</u>, AFML-TR-70-4013, Air Force Materials Laboratory, Wright-Patterson Air Force Base, OH, (March 1979)*

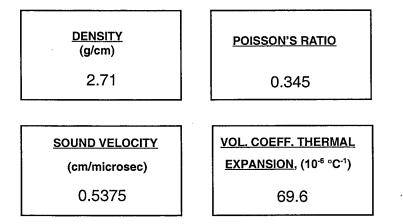
- 67. Penning, J.R., et al. <u>Negative Equation of State and Spall Criteria</u>, RTD-TDR-63-3039, Boeing Co., Seattle, WA, (Sept. 1963)*
- Morgan, D.T., Rockowitz, M., Atkinson, A.L., <u>Measurement of the Grüneisen Parameter and</u> the Internal Energy Dependence of the Solid Equation of State for Aluminum and Teflon, AFWL-TR-6 5-117, AVCO Corp., Wilmington, MA, (Oct. 1965)*
- Anderson, G.D., Fahrenbruch, A.L., <u>Equation of State of Solids II, Aluminum and Teflon</u>, AFWL-TR-67-43, Stanford Research Institute, Poulter Laboratories, Menlo Park, CA, (Sept. 1967)*
- 70. Rauschenbach, H.S., <u>Solar Cell Array Design Handbook: The Principles and Technology of</u> <u>Photovoltaic Energy Conversion</u>, Van Nostrand Reinhold Publishers, (April 1980)*
- 71. Slater, J.C., <u>Note on the Grüneisen Constant for the Incompressible Metals</u>, Physical Review, Vol. 57, 744-746; (April 1940)*
- Ballard, S.S., Browder, J.S., "Thermal Expansion and Other Physical Properties of the Newer Infrared–Transmitting Optical Material," <u>Journal of Applied Optics</u>, Vol.5, No. 12, (Dec. 1966)*
- 73. <u>Materials Properties Data Handbook</u>, LMSC F286269, Lockheed Missiles and Space Co., Inc., Sunnyvale, CA, Jan. 1991.**
- 74. Brian, J.K., <u>Compilation of Hugonoit Equation of State</u>, AFWL-TR-69-38, Air Force Weapons Laboratory, Kirtland Air Force Base, NM, (1969)
- 75. Yen, C.C.S., <u>Dynamic Shear Stress Strain, Strain Rate Relations of Iron</u>, TR-0158(3250-40)-3, The Aerospace Corporation, El Segundo, CA, (1967)
- 76. Rice, M.H., PUFF74 EOS Compilations, AFWL-TR-80-21, S-Cubed, La Jolla, CA, (1980)**
- 77. Durvasula, L.N., et al, <u>Handbook of the Properties of Optical Materials</u>, GACIAC HB 84-01, ITT Research Institute, Chicago, IL, (1984)*
- 78. Knupp, P., <u>Stage III Materials Properties Handbook</u>, PITR-1348-5-R4, Physics International, San Leandro, CA, (March 1983)
- 79. Adachi, S., "GaAs, AIAs, and Al_xGa_{1-x}As: Material Parameters for Use in Research and Device Applications," Journal of Applied Physics, Vol. 58, No. 3, 1, (August 1985)
- 80. <u>Specification for Manufacture and Quality Assurance of CMX Solar Cell Covers</u>, PS 292 (Issue 2), Pilkington Space Technology, United Kingdom, (1984)
- 81. <u>Structural and Materials Engineering Bulletin, Aluminum-Lithium 8090</u>, M&P 6867, Lockheed Missiles & Space, Co, Palo Alto, CA, (1991)
- Urzendowski, R., et al, <u>Ultrasonic and Thermal Studies of Selected Plastics</u>, <u>Laminated</u> <u>Materials and Metals</u>, AFWL-TR-67-91, Air Force Weapons Laboratory, Kirtland Air Force Base, NM, (1965)

- 83. E.I. DuPont DeNemours & C., Delrin[®] Aceta 1 Resins, Wilmington, DE
- 84. Pennsalt Chemicals Corp., KYNAR, Bulletin VFZR-62, 3 Penn Center, Philadelphia, PA,
- 85. <u>Metals Handbook, 1948 Edition</u>, The American Society for Metals, Materials Park, Cleveland, OH, (1948)**
- Salama, M.A., et al, <u>Stress Analysis and Design of Silicon Solar Cell Arrays and Related</u> <u>Material Properties</u>, TR 32-1552, Jet Propulsion Laboratory, Pasadena, CA, (March 1972)**
- 87. Bogaard, et al, <u>Effects of Rapid Heating Rate on Materials Properties</u>, TEPIAC/CINDAS Report 87, (1986)
- Ho, C.Y. (Ed.), Taylor, R.E., <u>Thermal Expansion of Solids</u>, CINDAS Data Series, Materials Park, OH, ASM International, (1998)**
- 89. Shea, Jr. et al., <u>Above ground Test/Underground Test (AGT/UGT) Validation Program (U)</u>, DNA-TR-88-116, Physics International Co., San Leandro CA, 18 May 1988.

1	Aluminum	1, 2, 5, 8, 22, 25, 27, 31, 34, 42, 47, 51, 56, 57, 58, 62, 68,
		69, 70, 85
2	Aluminum 2024	24, 25, 51, 54, 76
3	Aluminum Oxide (Poly)	2, 24, 38, 47, 48 51, 62, 88
4	Aluminum Oxide (S.C.)	2, 8, 24, 39, 47, 51, 72
5	Aluminum 6061-T6	24, 25, 31, 50, 51, 76
6	Antimony	7, 11, 25
7	ATJ Graphite	24, 25, 34, 36, 47, 62, 76
8	Barium	30
9	Beryllium	1, 2, 24, 25, 31, 34, 41, 42, 44, 47, 51, 54, 62, 76, 85
10	Beryllium Oxide	2, 24, 38, 41, 47, 51, 62
11	Bismuth	2, 8, 11, 25, 34, 42, 47
12	Boron	34, 45
13	Boron Carbide	24, 25
14	Brass 70/30	8, 22, 25, 31, 34, 42, 51, 54, 58, 62
15	Cadmium	1, 2, 5, 11, 25, 34, 42, 47, 51, 62
16	Cadmium Sulphide (S.C.)	2, 8, 39, 40, 47, 51, 77
17	Calcium	30
18	Calcium Carbonate (Calcite)	2, 8, 24, 39, 47, 77
19	Carbon Phenolic	22, 25, 36, 54
20	Cerium	46, 62
21	Chromium	2, 11, 25, 34, 42, 51, 54, 58, 62
22	Chromium Oxide	38
23	Cobalt	1, 2, 6, 11, 25, 31, 34, 42, 47, 51, 54, 62, 64
24	Cobalt Oxide	38, 51, 85
25	Copper	1, 2, 6, 8, 11, 22, 24, 25, 27, 31, 34, 42, 47, 50, 51, 54, 56, 57, 58, 62, 64, 70, 88
26	Corning 7740 (PYREX)	1, 8, 40, 51
27	Corning 7940 (Fused Silica)	1, 8, 14, 39, 40, 47, 48, 51, 62, 64, 72
28	Corning 7971 (ULE)	
29	Corning 9606 (PYROCERAM)	
30	Dysprosium	2, 46, 47, 62
31	Erbium	2, 46, 47, 62
32	Europium	46, 62
33	Gadolinium	2, 46, 47, 62, 77
34	Gallium Antimonide (S.C.)	2, 8, 39, 47, 77, 88
35	Gallium Arsenide	8, 21, 39, 40, 47, 51
36	Germanium (S.C.)	1, 2, 8, 9, 21, 24, 39, 40, 44, 47, 51, 56, 57, 64, 72, 88
37	Gold	1, 2, 5, 11, 25, 31, 34, 42, 47, 51, 54, 62, 64
38	Hafnium	2, 25, 31, 45, 47, 54

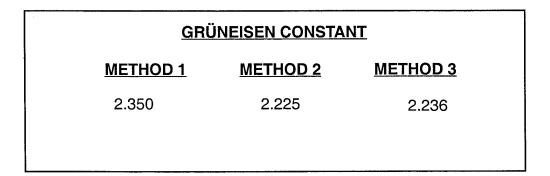
7. List of Materials with their Associated Data References

25

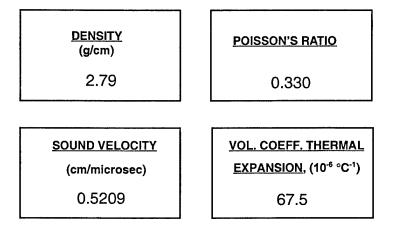

39	Hafnium Carbide	45, 47
40	Holmium	46, 47, 62
41	Indium	2, 34, 42, 44, 47, 51, 62
42	Indium Antimonide (S.C.)	2, 8, 39, 40, 47, 57, 77
43	INVAR 36/74	47, 58, 70
44	Iridium	2, 31, 47
45	Iron	1, 2, 5, 6, 8, 11, 24, 25, 34, 42, 47, 51, 54, 58, 62, 85
46	Iron (Ni 10)	51
47	Iron (Ni 18)	51
48	Iron (Ni 26)	51
49	Iron Oxide	34, 38
50	IRTRAN-1 (MgF2)	2, 38, 39, 48, 72, 73
51	IRTRAN-2 (ZnS)	2, 36, 59, 46, 72, 75
52	IRTRAN-2 (Zais)	
53	IRTRAN-4 (ZnSe)	2, 5, 34, 39, 48, 72
		2, 34, 72, 77, 88
54	IRTRAN-5 (MgO)	2, 34, 39, 48, 62, 64, 72
55	INTRAIN-0 (Culle)	2, 8, 39, 51, 72, 77, 88
56	Kapton	35, 70
57	KEL-F	7, 39, 51
58	Kovar	51,70
59	Lanthanum	46, 62
60	Lead	1, 2, 5, 8, 11, 24, 25, 31, 34, 42, 47, 51, 54, 58, 62, 85
61	Lead Sulphide (S.C.)	2, 5, 8, 39, 47, 55, 77
62	Lithium Flouride (S.C.)	2, 8, 34, 39, 40, 47, 64, 77, 88
63	Lithium Niobate (S.C.)	2, 40, 47, 77
64	Lucite	1, 2, 25, 34, 35, 50, 67
65	Leutetium	40, 46, 47, 62
66	Magnesium	1, 2, 25, 31, 34, 42, 47, 51, 54, 58, 62, 85
67	Magnesium Oxide	2, 8, 38, 39, 40, 47, 48, 62, 64, 88
68	Molybdenum	2, 5, 11, 31, 34, 42, 45, 47, 51, 54, 58, 62, 70, 88
69	Mylar	25, 35, 51
70	Neodymium	46, 47, 62, 76
71	Nickel	1, 2, 5, 6, 11, 25, 31, 34, 42, 47, 51, 54, 58, 62
72	Nickel Oxide	38
73	Niobium	2, 6, 24, 25, 34, 42, 45, 47, 54, 58
74	Niobium Carbide	45, 47
75	Nylon 6	1, 4, 7, 17, 25, 35, 51, 67
76	OTWR (Quartz phenolic)	7, 22, 25, 54
77	Palladium	2, 5, 6, 25, 31, 34, 42, 47, 51, 54
78	Platinum	1, 2, 5, 6, 8, 25, 31, 34, 42, 47, 51, 54, 62, 88
79	Plutonium (alpha)	46
80	POCO Graphite (AXF)	16, 26
81	Polyethylene (high density)	1, 8, 17, 24, 25, 34, 35, 40, 54, 62
82	Polystyrene	1, 4, 17, 25, 31, 34, 35, 40, 51, 62
83	Polyvinylchloride	17, 35
84	Potassium Bromide (S.C.)	1, 2, 5, 8, 34, 39, 47, 77, 88

85	Potassium Chloride (S.C.)	1, 2, 5, 8, 34, 39, 47, 64, 77, 88
86	Potassium Iodide (S.C.)	2, 8, 34, 39, 47, 77, 88
87	Praseodymium	46, 47, 62
88	Pyrolytic Graphite	16, 26, 47
89	Quartz Phenolic	25, 50, 54
90	Quartz (S.C.)	2, 8, 34, 39, 40, 47, 48, 51, 54, 64, 76, 88
91	Rhenium	2, 44, 47
92	Rhodium	31, 34, 42, 47, 62
93	Scandium	46
94	Silicon	2, 8, 9, 21, 39, 40, 47, 51, 56, 57, 72, 77, 88
95	Silicon Carbide	9, 25, 62
96	Silver	1, 2, 5, 6, 8, 11, 25, 31, 34, 42, 47, 51, 54, 57, 58, 62, 64,
90	Silver	70
97	Silver Chloride (S.C.)	1, 2, 5, 8, 39, 47, 77
98	Sodium Chloride (S.C.)	2, 4, 5, 8, 24, 34, 47, 64, 72, 77, 88
99	Stainless Steel 304L	24, 25
100	Strontium	30
100	Tantalum	2, 5, 24, 25, 31, 34, 42, 45, 47, 51, 54, 58, 62
101	Tantalum Carbide	2, 24, 45, 47
102	Teflon	4, 8, 25, 35, 51, 68, 69, 70
103	Terbium	4, 8, 25, 55, 51, 68, 69, 70
104	Thallium Bromide (S.C.)	
105	Thallium Bromide-Chloride	2, 34, 39
100	Thallium Bromide-Iodide	2, 34, 39
		2, 39
108 109	Thallium Chloride (S.C.) Thorium	2, 39 2, 11, 24, 25, 31, 34, 42, 46, 54
1109	Thorium Dioxide	
110	Thulium	2, 38, 47 46
111	Tin	1, 2, 8, 11, 24, 25, 31, 34, 42, 47, 51, 53, 58, 62, 85
112	Tin Oxide	38, 55
113	Titanium	1, 2, 11, 24, 25, 31, 34, 42, 45, 47, 49, 51, 54, 58, 62, 76,
		85
115	Titanium Carbide	2, 24, 45, 47, 62
116	Titanium Dioxide	8, 38, 39, 47, 48, 49
117	Tungsten	1, 2, 5, 6, 11, 24, 31, 34, 45, 47, 51, 54, 58, 62, 88
118	Tungsten Carbide	24, 25, 45, 58
119	Uranium	2, 24, 25, 31, 46, 47, 54
120	Uranium Oxide	2, 38
120	Vanadium	2, 11, 25, 31, 34, 45, 54, 58, 62
122	VYCOR	
122	Ytterbium	46, 47, 62
124	Yttrium	2, 46, 47
125	Yttrium Aluminate (YAG,	40, 47
	S.C.)	
126	Zinc	1, 2, 5, 8, 11, 25, 34, 42, 47, 51, 54, 58, 62, 85
127	Zinc Oxide	2, 38, 47, 50
L		

128	Zirconium	2, 24, 25, 31, 34, 42, 45, 47, 51
129	Zirconium Carbide	2, 24, 45, 47
130	Zirconium Dioxide	38, 47, 62

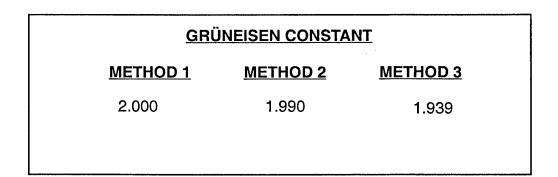

8. Compendium of Thermomechanical Property Data for 130 Materials

ALUMINUM

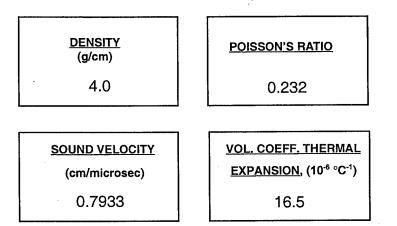


HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.2160	0.2064	

YOUNGS MODULUS	BULK MODULUS
(Dynes/cm	1 [*] 10 ¹²)
0.706	0.752



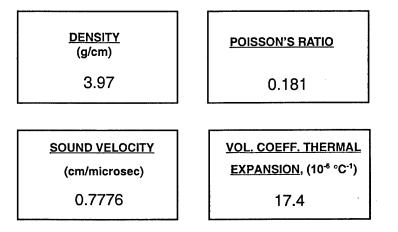
ALUMINUM 2024



HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.2200	0.2117	

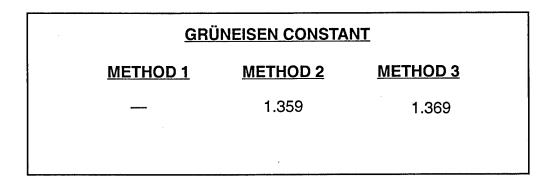
YOUNGS MODULUSBULK MODULUS(Dynes/cm * 1012)0.7240.710

ALUMINUM OXIDE (POLY)

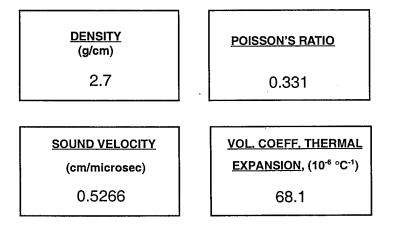


HEAT CAPACITY, (cal/g-C)		
(Cp)	(Cv)	
0.1870	0.1858	

YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
4.060	2.500	

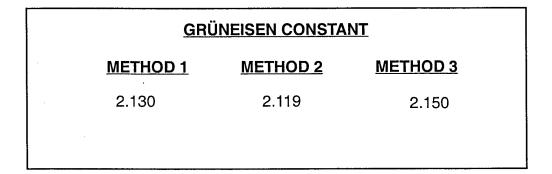

GRÜNEISEN CONSTANT			
METHOD 1	METHOD 2	METHOD 3	
	1.327	1.327	

ALUMINUM OXIDE (S.C.)

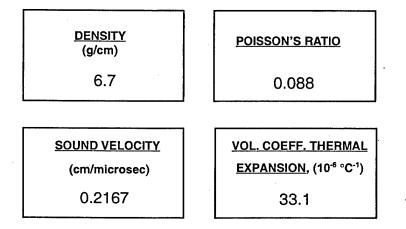


<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.1850	0.1837	

YOUNGS MODULUSBULK MODULUS(Dynes/cm * 1012)4.6002.401



ALUMINUM 6061 — T6

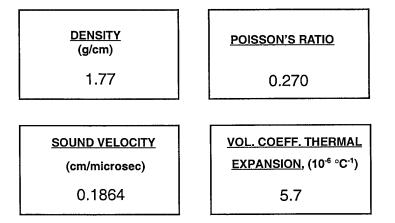


HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.2130	0.2041	

YOUNGS MODULUS	BULK MODULUS	·.	 	
(Dynes/cm * 10 ¹²)				
0.738	0.728			

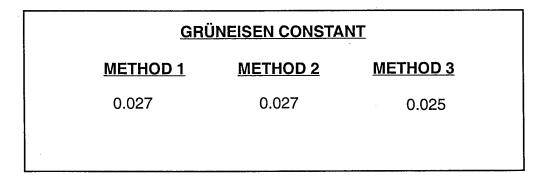
ANTIMONY

HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.0483	0.0479	


<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²)

0.315

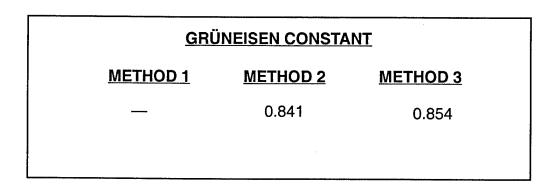
0.778


GRÜNEISEN CONSTANT METHOD 1 METHOD 2 METHOD 3 0.801 0.769 0.775

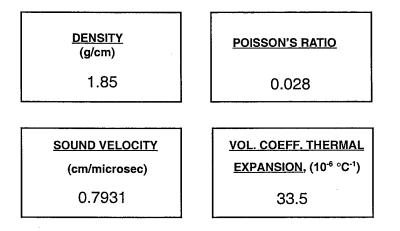
ATJ GRAPHITE

HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.1750	0.1750	

YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
0.079	0.057	

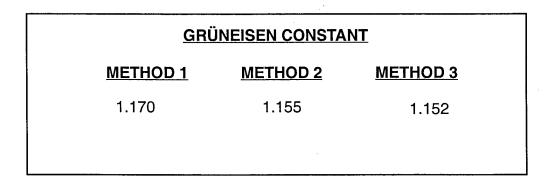

BARIUM

<u>DENSITY</u> (g/cm)	POISSON'S RATIO
3.5	0.229
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.1575	62.0


HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.0437	0.0430	

YOUNGS MODULUS (Dynes/cm * 10¹²)

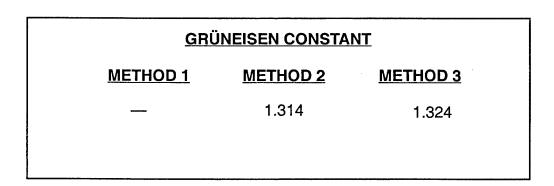
0.141 0.087



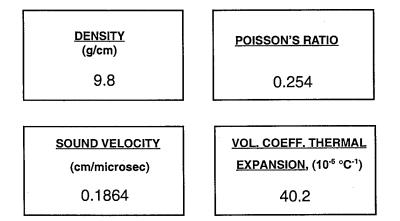
BERYLLIUM

<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.4360	0.4310	

YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
3.095	1.147	

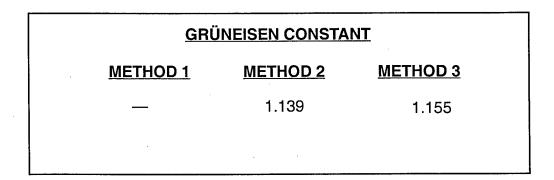


BERYLLIUM OXIDE

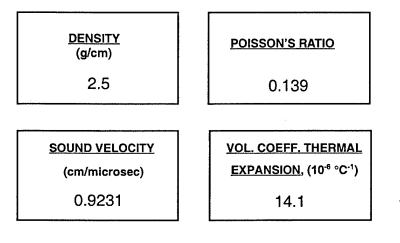

<u>DENSITY</u> (g/cm) 3.03	<u>POISSON'S RATIO</u> 0.224
<u>SOUND VELOCITY</u>	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.8437	19.0

HEAT CAPACITY, (cal/g-C)		
(Cp)	(Cv)	
0.2460	0.2442	

YOUNGS MODULUSBULK MODULUS(Dynes/cm * 1012)3.5702.157



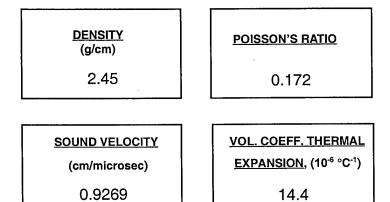
BISMUTH



HEAT CAPACITY, (cal/ g –C)	
(Cp)	(Cv)
0.0293	0.0289

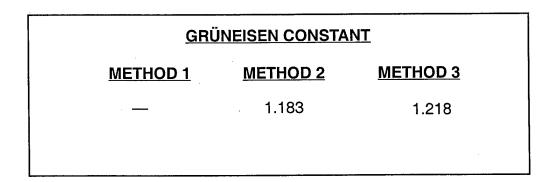
YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
0.503	0.340	

BORON


<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.2643	0.2631	

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 4.613 2.130

GRÜNEISEN CONSTANT METHOD 1 METHOD 2 METHOD 3 — 1.086 1.091

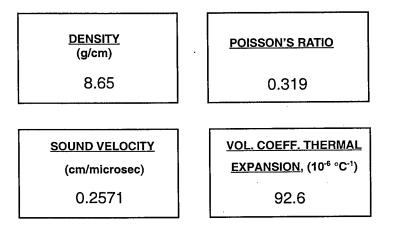

BORON CARBIDE

、 ·

HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.2500	0.2487	

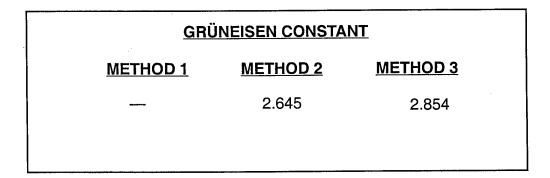
YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
4.249	2.157	

BRASS 70/30

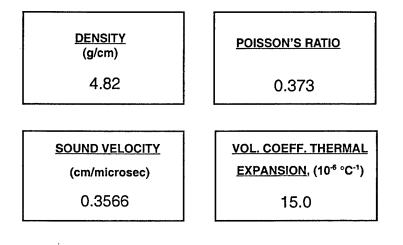

<u>DENSITY</u> (g/cm) 8.52	<u>poisson's ratio</u> 0.350
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.3622	59.7

HEAT CAPACITY, (cal/g-C)		
(Cp)	(Cv)	
0.0905	0.0872	

YOUNGS MODULUSBULK MODULUS(Dynes/cm * 1012)1.0061.118

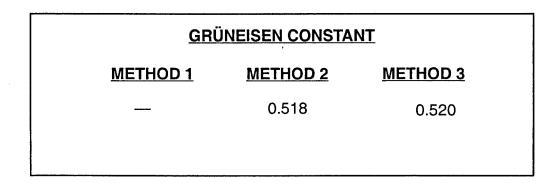

GRÜNEISEN CONSTANT		
METHOD 1	METHOD 2	METHOD 3
_	2.069	2.148

CADMIUM

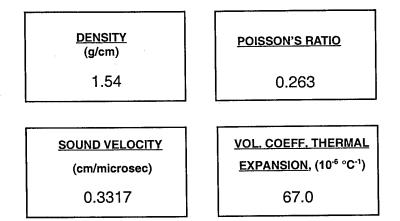


HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.0553	0.0513	

YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
0.621	0.572	

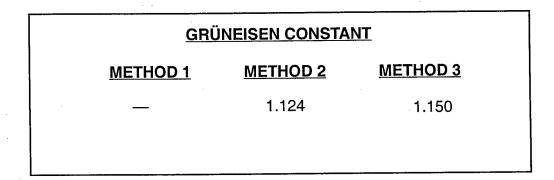


CADMIUM SULPHIDE (S.C.)

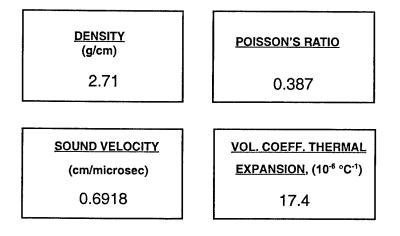


HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.0880	0.0878	

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 0.468 0.614

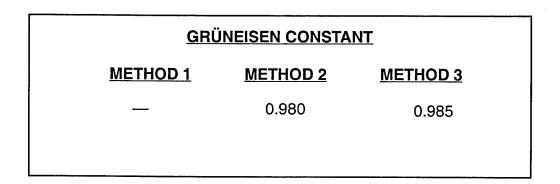


CALCIUM

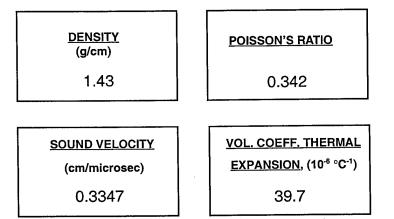


HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.1568	0.1533	

YOUNGS MODULUS	BULK MODULUS
(Dynes	/cm * 10 ¹²)
0.241	0.170

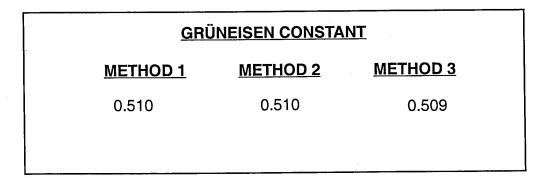


CALCIUM CARBONATE (CALCITE)



HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.2030	0.2020	

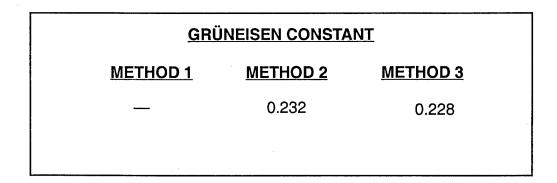
YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
0.883	1.297	



CARBON PHENOLIC

<u>HEAT CAPACITY</u> , (cal/g –C)		
(Cp)	(Cv)	
0.2085	0.2073	

YOUNGS MODULUS	BULK MODULUS
(Dynes/c	:m * 10 ¹²)
0.151	0.159

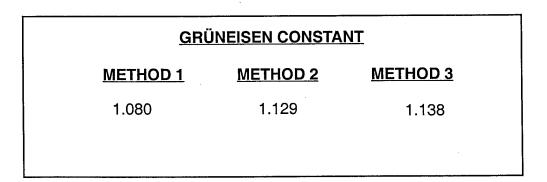


CERIUM

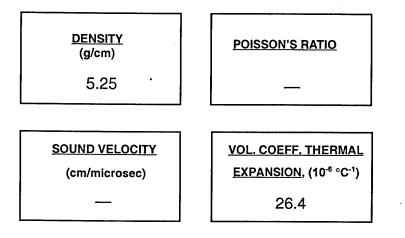
<u>DENSITY</u> (g/cm)	POISSON'S RATIO
6.67	0.248
	· ·
<u>SOUND VELOCITY</u> (cm/microsec)	<u>VOL. COEFF. THERMAL</u> <u>EXPANSION</u> , (10 ⁻⁶ °C ⁻¹)
0.1742	15.7

HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.0490	0.0489	

YOUNGS MODULUSBULK MODULUS(Dynes/cm * 1012)0.3000.198



CHROMIUM

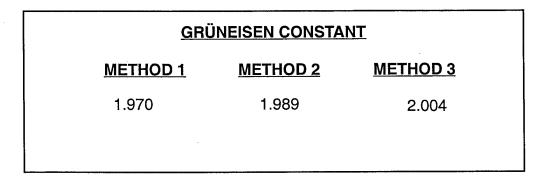

<u>DENSITY</u> (g/cm)	POISSON'S RATIO
7.16	0.210
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.4730	22.7

HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.1075	0.1067	

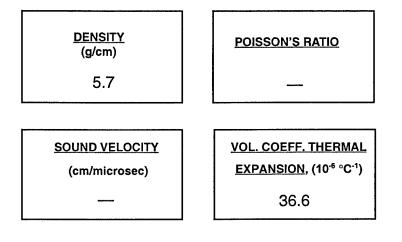
YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
2.790	1.602	


CHROMIUM OXIDE

YOUNGS MODULUS (Dynes/cm * 10¹²)


GRÜNEISEN CONSTANT		
METHOD 1	METHOD 2	METHOD 3
1.400	_	

COBALT



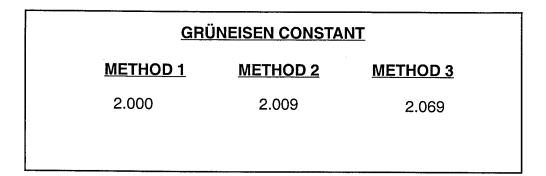
HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.1010	0.0987	

YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm	* 10 ¹²)	
2.040	1.830	

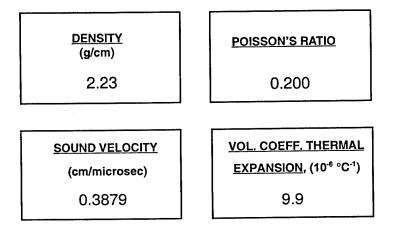
COBALT OXIDE

HEAT CAPACITY	<u>∕</u> , (cal/ g –C)
· (Cp)	(Cv)
0.1750	

YOUNGS MODULUS (Dynes/cm * 10¹²)

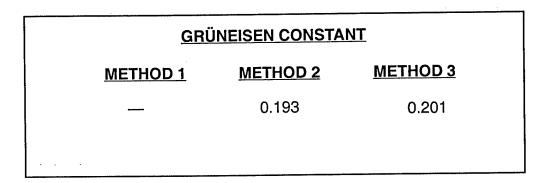

GRÜNEISEN CONSTANT		
METHOD 1	METHOD 2	METHOD 3
1.600	—	—

COPPER

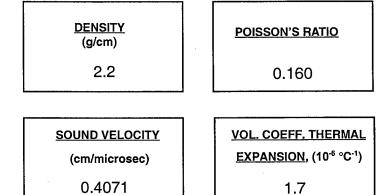

<u>DENSITY</u> (g/cm)	POISSON'S RATIO
8.94	0.343
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.3927	49.6

HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.0910	0.0883	

YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
1.298	1.378	

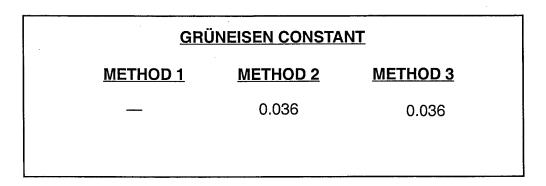


CORNING 7740 (PYREX®)

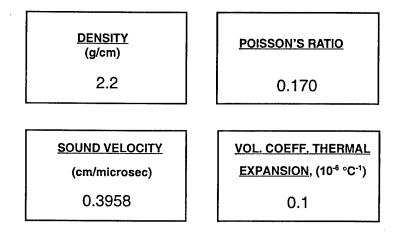


<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.1840	0.1839	

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 0.628 0.349

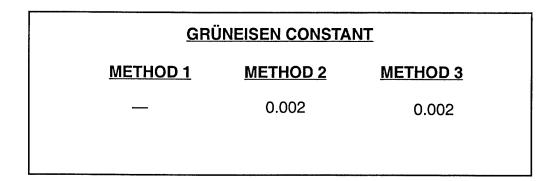


CORNING 7940 (FUSED SILICA)

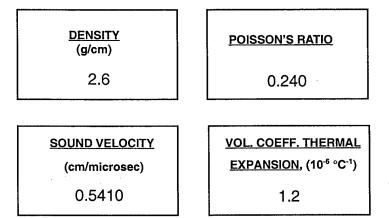


HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.1800	0.1800	

YOUNGS MODULUS	BULK MODULUS
(Dynes/cm	* 10 ¹²)
0.725	0.366

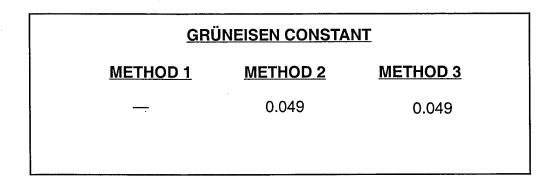


CORNING 7971 (ULE®)



HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.1780	0.1780	

YOUNGS MODULUSBULK MODULUS(Dynes/cm * 1012)0.6760.345



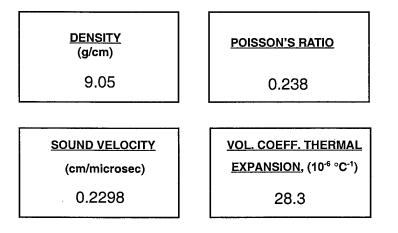
CORNING 9606 (PYROCERAM®)

HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.1720	0.1720	

YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		3
1.187	0.761	

DYSPROSIUM

<u>DENSITY</u> (g/cm)	POISSON'S RATIO
8.54	0.243
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	<u>EXPANSION</u> , (10 ⁻⁶ °C ⁻¹)
0,2280	28.7


HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.0414	0.0411	

YOUNGS MODULUS (Dynes/cm * 10¹²)

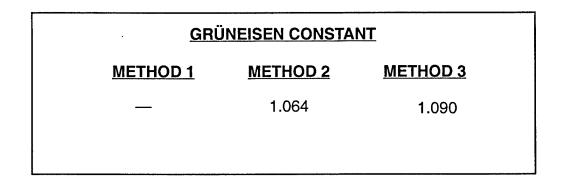
0.631 0.410

GRÜNEISEN CONSTANT		
METHOD 1	METHOD 2	METHOD 3
	0.861	0.801`

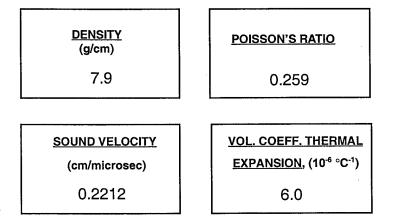
ERBIUM

HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.0401	0.0398	

YOUNGS MODULUS	BULK MODULUS
(Dynes/cm * 10 ¹²)	
0.733	0.465

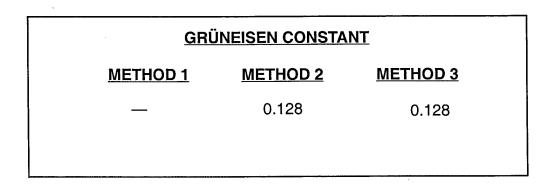

GRÜNEISEN CONSTANT		
METHOD 1	METHOD 2	METHOD 3
_	0.891	0.873

EUROPIUM

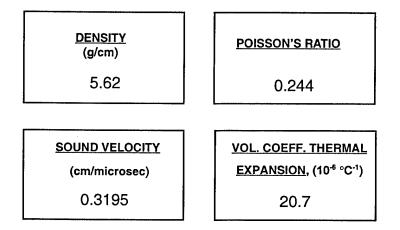

<u>DENSITY</u> (g/cm) 5.25	POISSON'S RATIO 0.286
<u>SOUND VELOCITY</u> (cm/microsec)	VOL. COEFF. THERMAL EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.1581	75.0

<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.0421	0.411	

YOUNGS MODULUSBULK MODULUS(Dynes/cm * 1012)0.1470.131

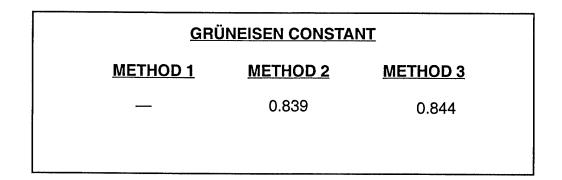


GADOLINIUM

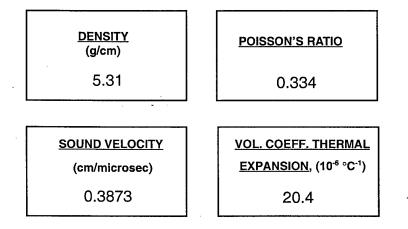


<u>HEAT CAPACITY</u> , (cal/ g –C)	
(Cp)	(Cv)
0.0550	0.0550

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 0.562 0.389

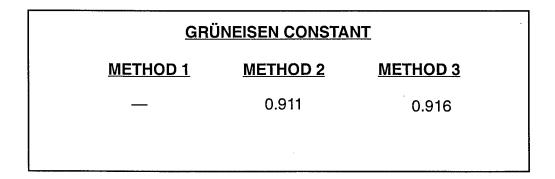


GALLIUM ANTIMONIDE (S.C.)

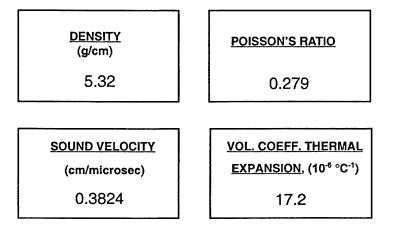


HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.0602	0.599	

YOUNGS MODULUSBULK MODULUS(Dynes/cm * 1012)0.8800.574

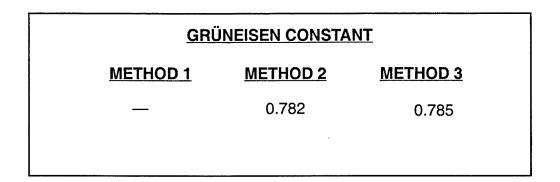


GALLIUM ARSENIDE



<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.0803	0.0799	

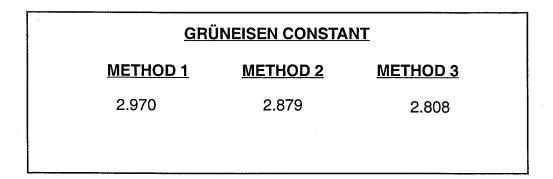
YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
0.791	0.797	


GERMANIUM (S.C.)

HEAT CAPACITY, (cal/g-C)		
(Cp)	(Cv)	
0.0769	0.0766	

 YOUNGS MODULUS
 BULK MODULUS

 (Dynes/cm * 10¹²)
 1.025



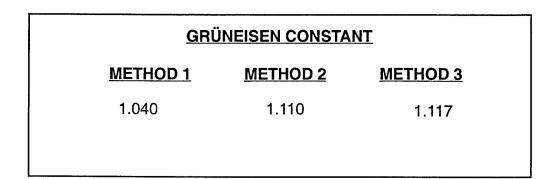
GOLD

<u>DENSITY</u> (g/cm)	POISSON'S RATIO
19.24	0.420
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.3056	42.7

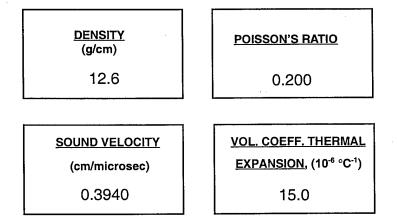
HEAT CAPACITY, (cal/ g –C)	
(Cp)	(Cv)
0.0331	0.0320

YOUNGS MODULUS	BULK MODULUS
(Dynes/cm * 10 ¹²)	
0.812	1.692

HAFNIUM

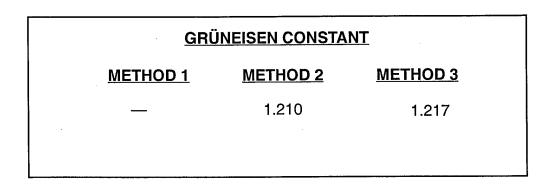

<u>DENSITY</u> (g/cm)	POISSON'S RATIO
13.3	0.284
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.2984	18.0

HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.0345	0.0343	


YOUNGS MODULUS (Dynes/cm * 10¹²)

1.535

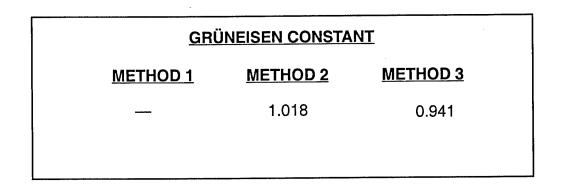
1.184



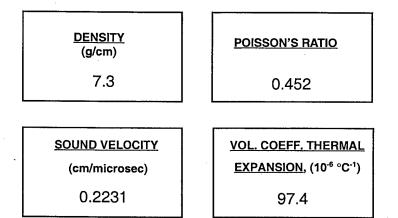
HAFNIUM CARBIDE

<u>HEAT CAPACITY</u> , (cal/g –C)		
(Cp)	(Cv)	
0.0460	0.0458	

YOUNGS	MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)			
3.	521	1.956	

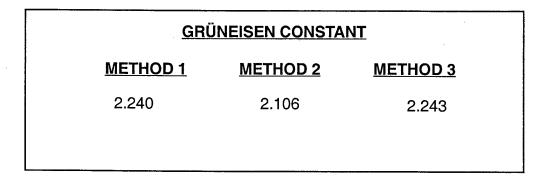


HOLMIUM

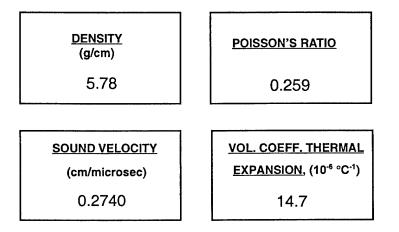

POISSON'S RATIO
0.255
VOL. COEFF, THERMAL
<u>EXPANSION</u> , (10 ⁻⁶ °C ⁻¹)
29.4

<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.0393	0.0390	

YOUNGS MODULUS	BULK MODULUS
(Dynes/cm	ו * 10 ¹²)
0.667	0.458

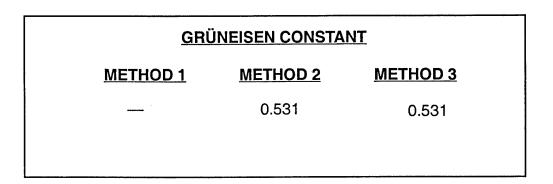


INDIUM

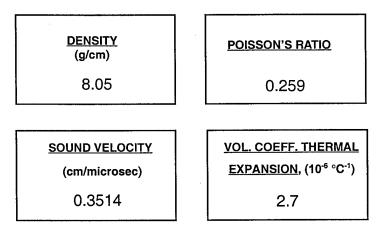


HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.0550	0.0516	

YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
0.105	0.363	



INDIUM ANTIMONIDE (S.C.)



<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.0497	0.0496	

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 0.626 0.433

INVAR® 36/74

HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.1230	0.1230	

YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
1.440	0.994	

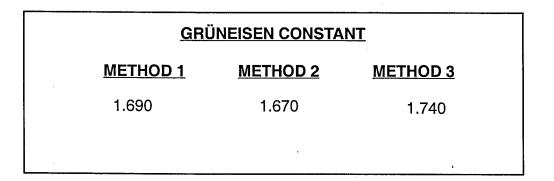
GRÜNEISEN CONSTANT			
METHOD 1	METHOD 2	METHOD 3	
	0.065	0.065	

IRIDIUM

<u>DENSITY</u> (g/cm) 22.5	<u>POISSON'S RATIO</u> 0.190
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.3724	19.3

HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.0308	0.0304	

YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
5.798	3.117	

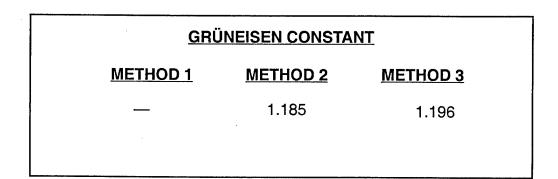

GRÜNEISEN CONSTANT		
METHOD 1	METHOD 2	METHOD 3
_	2.077	2.100

IRON

<u>DENSITY</u> (g/cm) 7.86	POISSON'S RATIO 0.293
<u>SOUND VELOCITY</u>	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.4595	35.4

HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.1070	0.1051	

YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
2.114	1.698	

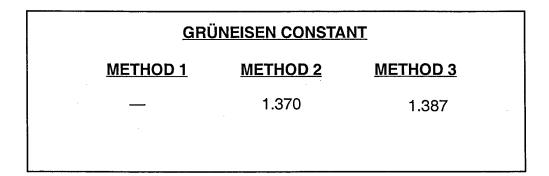


IRON (Ni 10)

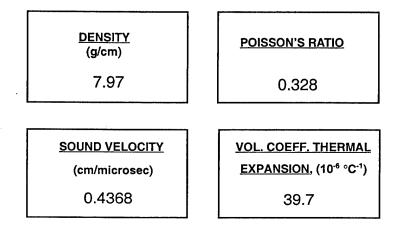
<u>DENSITY</u> (g/cm) 7.88	POISSON'S RATIO 0.285
<u>SOUND VELOCITY</u>	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.4457	28.2

HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.1130	0.1119	

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 2.022 1.565

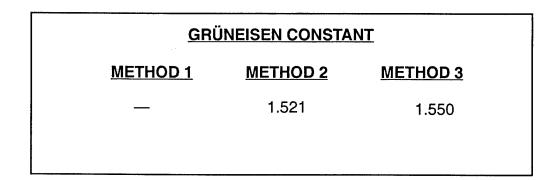


IRON (Ni 18)

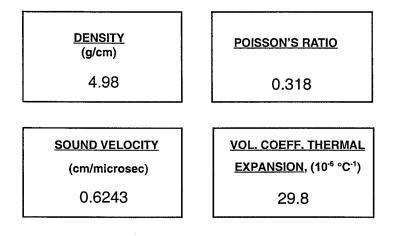

<u>DENSITY</u> (g/cm)	POISSON'S RATIO
7.97	0.306
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.4403	34.0

HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.1150	0.1134	

YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
1.797	1.543	



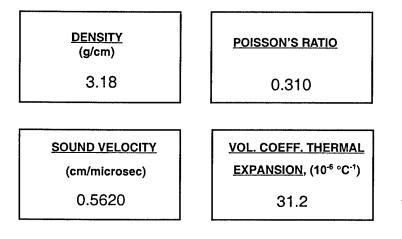
IRON (Ni 26)


HEAT CAPACITY, (cal/g-C)		
(Cp)	(Cv)	
0.1190	0.1169	

YOUNGS MODULUS	BULK MODULUS
(Dynes/cn	n * 10 ¹²)
1.566	1.521

Downloaded from http://www.everyspec.com

IRON OXIDE

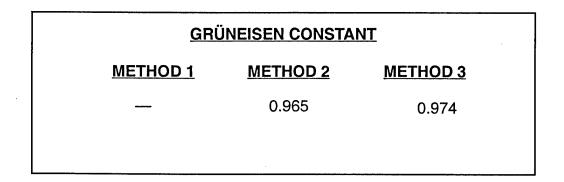


<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.1560	0.1535	

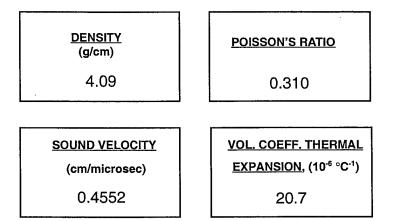
YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
2.121	1.941	

GRÜNEISEN CONSTANT		
METHOD 1	METHOD 2	METHOD 3
	1.779	1.808

IRTRAN® —1 (MgF2)



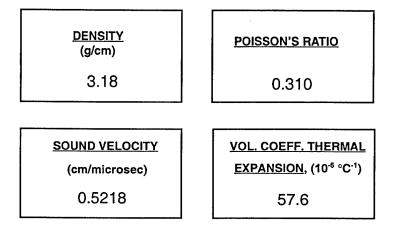
HEAT CAPAC	<u>ITY</u> , (cal/ g –C)
(Cp)	(Cv)
0.2440	0.2418


 YOUNGS MODULUS
 BULK MODULUS

 (Dynes/cm * 10¹²)

 1.145
 1.004

IRTRAN® -2 (ZnS)

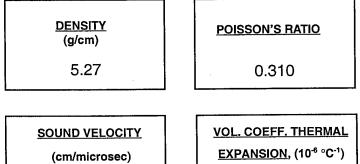


HEAT CAPAC	<u>ITY</u> , (cal/ g –C)
(Cp)	(Cv)
0.1130	0.1124

YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
0.966	0.847	

GRÜNEISEN CONSTANT			
METHOD 2	METHOD 3		
0.907	0.912		
	METHOD 2		

IRTRAN® ----3 (CaF2)

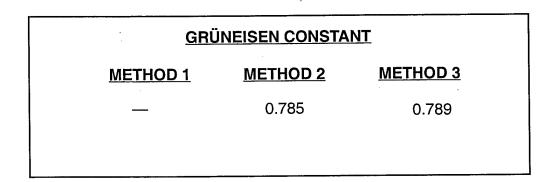


HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.2170	0.2106	

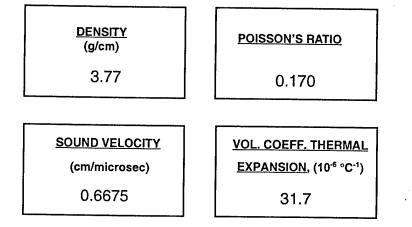
YOUNGS MODULUSBULK MODULUS(Dynes/cm * 1012)0.9870.866

GRÜNEISEN CONSTANT			
METHOD 1	METHOD 2	METHOD 3	
_	1.727	1.780	

IRTRAN® -4 (ZnSe)


.

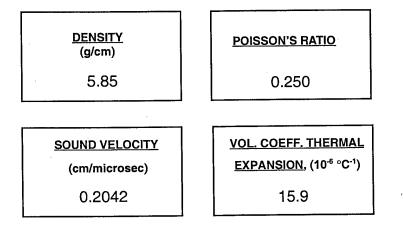
<u>PANSION</u>, (10⁻⁶ 22.2


0.3440

<u>НЕАТ САРАСІТҮ</u>, (cal/g –C) (Cp) (Cv) 0.0800 0.0796

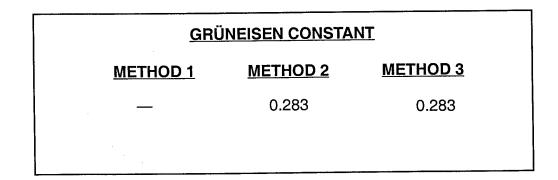
YOUNGS MODULUS	BULK MODULUS
(Dynes/cn	n * 10 ¹²)
0.711	0.624

IRTRAN® --- 5 (MgO)



HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.2220	0.2188	

YOUNGS MODULUS	BULK MODULUS
(Dynes/cm	* 10 ¹²)
3.326	1.680

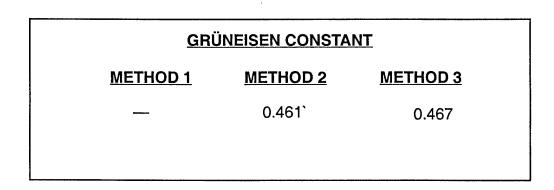

GRÜNEISEN CONSTANT			
METHOD 1	METHOD 2	METHOD 3	
	1.521	1.543	
			-

IRTRAN® —6 (CdTe)

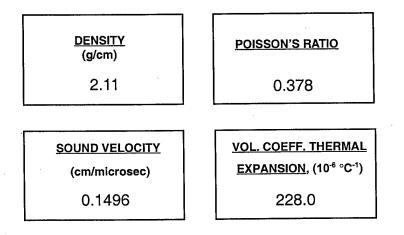
HEAT CAPACIT	<u>'Y,</u> (cal/ g –C)
(Cp)	(Cv)
0.0560	0.0559

YOUNGS MODULUS	BULK MODULUS
(Dynes/c	em * 10 ¹²)
0.366	0.244

KAPTON®


<u>DENSITY</u> (g/cm)	POISSON'S RATIO
1.42	0.433
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.2327	85.2

HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.2390	0.2362	


 YOUNGS MODULUS
 BULK MODULUS

 (Dynes/cm * 10¹²)

 0.031
 0.077

KEL —F®

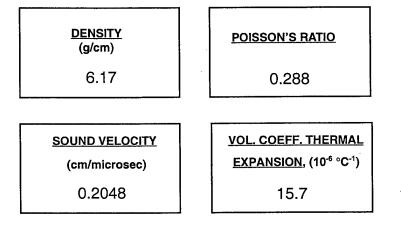
HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.2200	0.2117	

YOUNGS MODULUS	BULK MODULUS
(Dynes/cn	n * 10 ¹²)
0.035	0.047

GRÜNEISEN CONSTANT		
METHOD 1	METHOD 2	METHOD 3
	0.554	0.576

KOVAR®

<u>DENSITY</u> (g/cm)	POISSON'S RATIO
8.34	0.341
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.4038	18.0


HEAT CAPACITY	<u>/</u> , (cal/ g –C)
(Cp)	(Cv)
0.1050	0.1046

YOUNGS MODULUS BULK MODULUS (Dynes/cm * 10¹²)

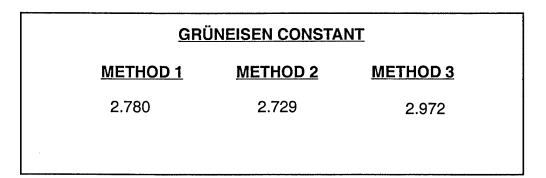
1.297 1.360

GRÜNEISEN CONSTANT METHOD 1 METHOD 2 METHOD 3 — 0.668 0.670

LANTHANUM

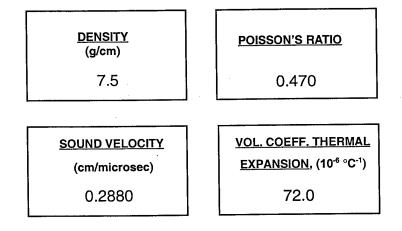
HEAT CAPACITY	<u>HEAT CAPACITY</u> , (cal/ g –C)	
(Cp)	(Cv)	
0.0470	0.0469	

YOUNGS MODULUS	BULK MODULUS
(Dynes/cn	n * 10 ¹²)
0.359	0.243

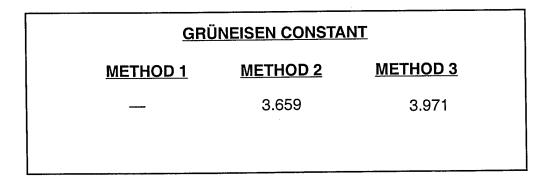

GRÜNEISEN CONSTANT		
METHOD 1	METHOD 2	METHOD 3
_	0.335	0.315

LEAD

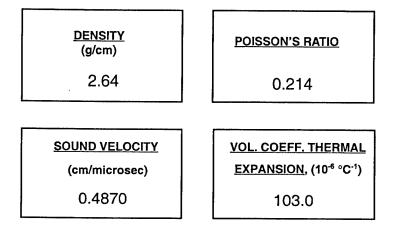
<u>DENSITY</u> (g/cm)	POISSON'S RATIO
11.3	0.440
SOUND VELOCITY	VOL. COEFF, THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.2002	86.9


HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.0305	0.0283	

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 0.161 0.458

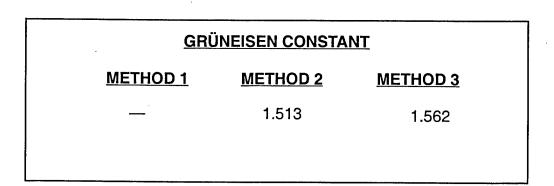

LEAD SULPHIDE (S.C.)

_

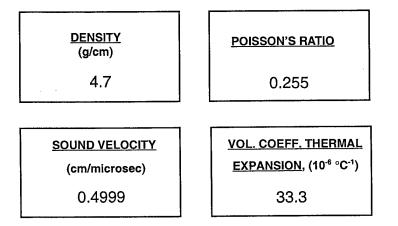


HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.0390	0.0359	

YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
0.113	0.622	

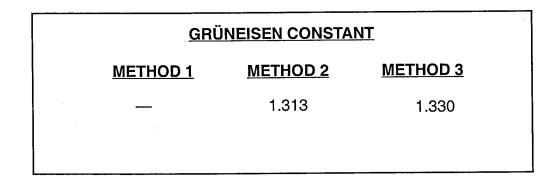


LITHIUM FLOURIDE (S.C.)

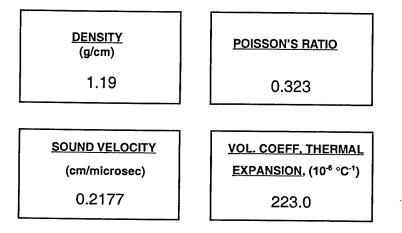


<u>HEAT CAPACITY</u>, (cal/ g –C) (Cp) (Cv) 0.3860 0.3683

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 1.059 0.617



LITHIUM NIOBATE (S.C.)

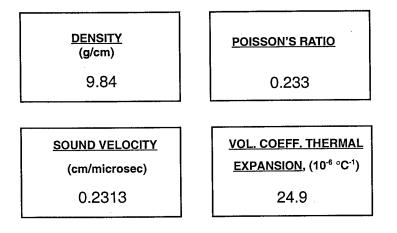


<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.1515	0.1495	

YOUNGS MODULUS	BULK MODULUS
(Dynes/ci	m * 10 ¹²)
1.728	1.174

LUCITE®

HEAT CAPACITY, (cal/g –C)	
(Cp)	(Cv)
0.3100	0.2932


<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²)

0.060

GRÜNEISEN CONSTANT METHOD 1 METHOD 2 METHOD 3 — 0.815 0.862

0.056

LEUTETIUM

HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.0470	0.0468	

YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
0.843	0.526	

GRÜNEISEN CONSTANT			
METHOD 1	METHOD 2	METHOD 3	
—	0.677	0.681	

MAGNESIUM

<u>DENSITY</u> (g/cm)	POISSON'S RATIO
1.74	0.291
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	<u>EXPANSION</u> , (10 ⁻⁵ °C ⁻¹)
0.4444	74.8

<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.2444	0.2362	

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 0.447 0.356

GRÜNEISEN CONSTANT METHOD 1 METHOD 2 METHOD 3 1.460 1.445 1.548

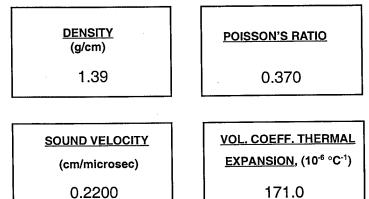
MAGNESIUM OXIDE

HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.2220	0.2190	

YOUNGS MODULUS	BULK MODULUS
(Dynes/cr	n * 10 ¹²)
3.100	1.625

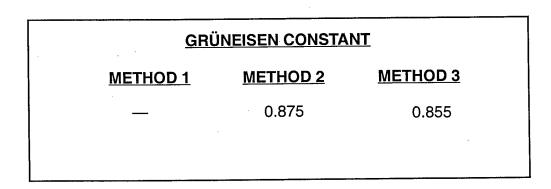
GRÜNEISEN CONSTANT			
METHOD 1	METHOD 2	METHOD 3	
	1.559	1.482	

MOLYBDENUM

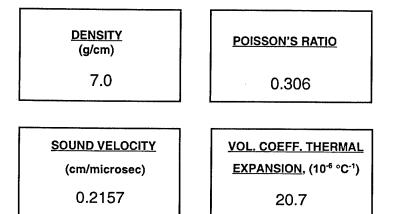

<u>DENSITY</u> (g/cm)	POISSON'S RATIO
10.2	0.293
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.5033	14.4

HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.0592	0.0588	

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 3.248 2.612

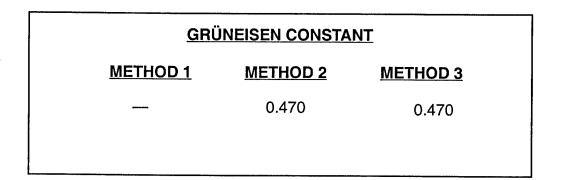

GRÜNEISEN CONSTANT METHOD 1 METHOD 2 METHOD 3 1.520 1.473 1.498

MYLAR®



<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.2260	0.2166	

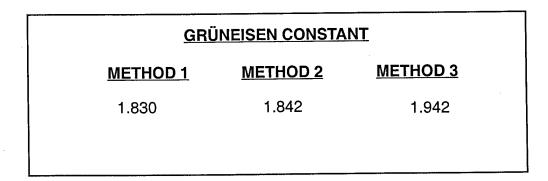
<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 0.055 0.063



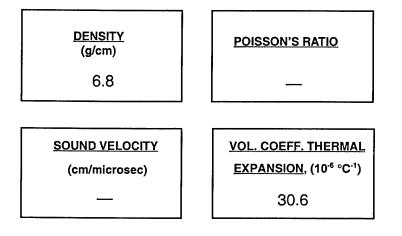
NEODYMIUM

HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.0490	0.0489	

YOUNGS MODULUS	BULK MODULUS
(Dynes/cm	1 * 10 ¹²)
0.379	0.325

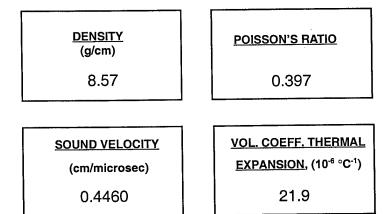


NICKEL

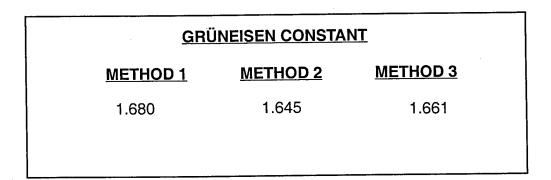

DENSITY (g/cm) 8.9	<u>POISSON'S RATIO</u> 0.306
SOUND VELOCITY	<u>VOL. COEFF. THERMAL</u>
(cm/microsec)	<u>EXPANSION</u> , (10 ⁻⁶ °C ⁻¹)
0.4523	40.3

HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.1070	0.1046	

YOUNGS MODULUS	BULK MODULUS
(Dynes/cm	* 10 ¹²)
2.198	1.876


NICKEL OXIDE

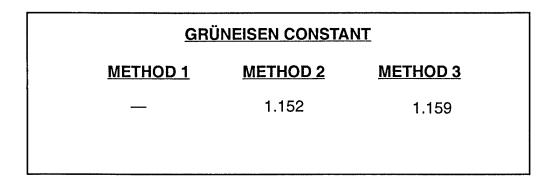
YOUNGS MODULUS (Dynes/cm * 10¹²)


GRÜNEISEN CONSTANT		
METHOD 1	METHOD 2	METHOD 3
1.500	—	

NIOBIUM

HEAT CAPACITY, (cal/g-C)		
(Cp)	(Cv)	
0.0633	0.0626	

YOUNGS MODULUS	BULK MODULUS	
$\frac{100003300000003}{(Dynes/cm * 10^{12})}$		
(Dynesion		
1.049	1.703	

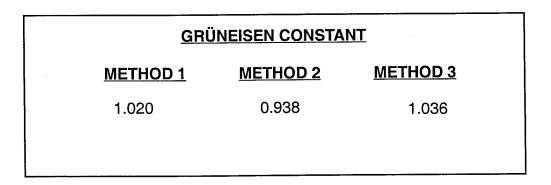


NIOBIUM CARBIDE

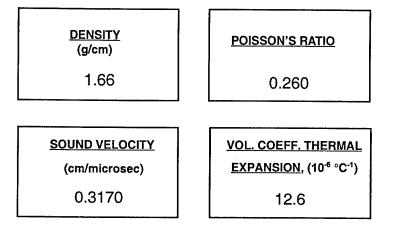
<u>DENSITY</u> (g/cm)	POISSON'S RATIO
7.63	0.200
·	
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	<u>EXPANSION</u> , (10 ⁻⁶ °C ⁻¹)
0.4981	17.1

HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.0880	0.0875	

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 3.407 1.893

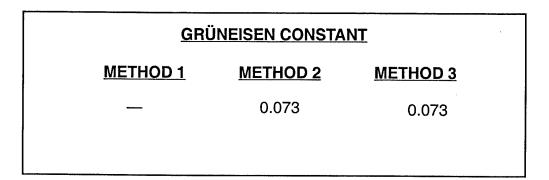


NYLON 6


<u>DENSITY</u> (g/cm)	POISSON'S RATIO
1.11	0.398
SOUND VELOCITY (cm/microsec)	<u>VOL. COEFF. THERMAL</u> <u>EXPANSION</u> , (10 ⁻⁶ °C ⁻¹)
0.2380	257.0

<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.3710	0.3437	

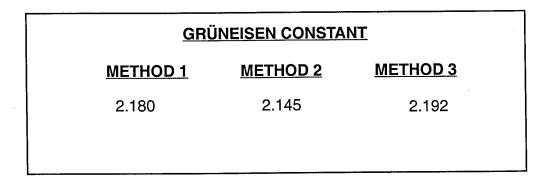
<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 0.039 0.064



OTWR (QUARTZ PHENOLIC)

HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.4160	0.4159	

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 0.240 0.167

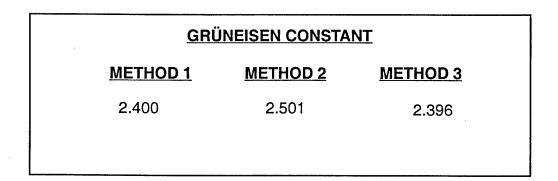


PALLADIUM

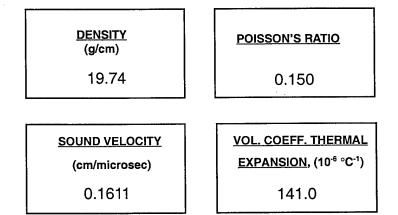
<u>DENSITY</u> (g/cm)	POISSON'S RATIO
11.4	0.335
SOUND VELOCITY	VOL. COEFF. THERMAL EXPANSION, (10 ⁻⁶ °C ⁻¹)
(cm/microsec)	EXPANSION, (10 C)
0.3829	35.5

HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.0580	0.0567	

YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
1.653	1.670	

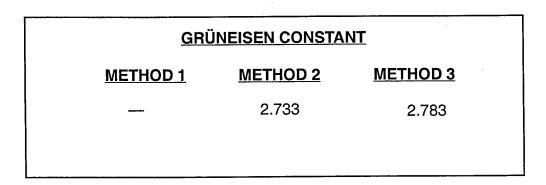


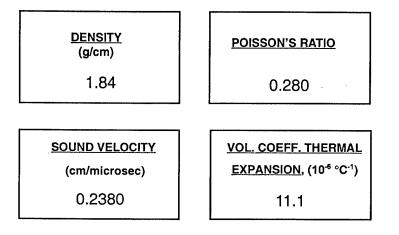
PLATINUM


<u>DENSITY</u> (g/cm)	POISSON'S RATIO
21.5	0.390
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.3538	26.5

HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.0317	0.0311	

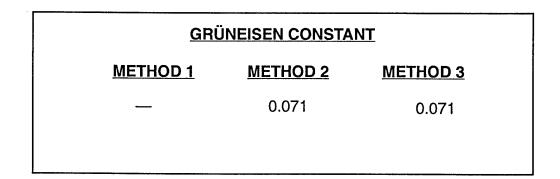
<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 1.670 2.530


PLUTONIUM (ALPHA)


HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.0320	0.0287	

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²)

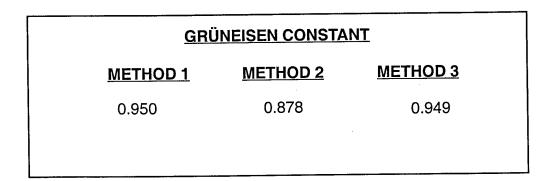
0.993 0.467



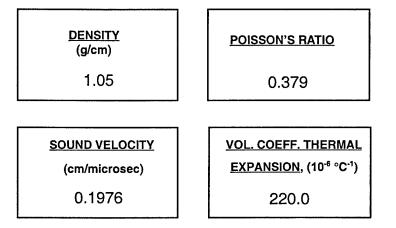
POCO GRAPHITE (AXF)

HEAT CAPACITY, (cal/g-C)		
(Cp)	(Cv)	
0.2110	0.2110	

YOUNGS MODULUS	BULK MODULUS
(Dynes/cm * 10 ¹²)	
0.138	0.104

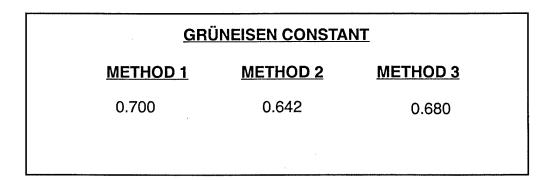


POLYETHYLENE (HIGH DENSITY)

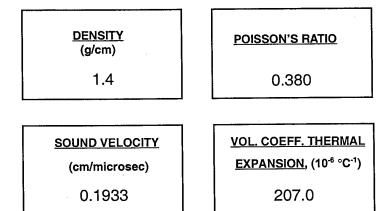


HEAT CAPACITY, (cal/ g –C)	
(Cp)	(Cv)
0.5300	0.4780

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 0.032 0.047



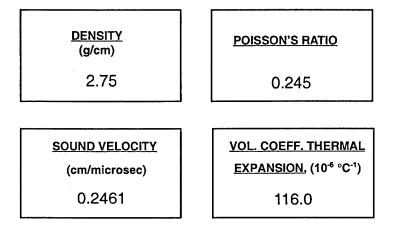
POLYSTYRENE



HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.3200	0.3063	

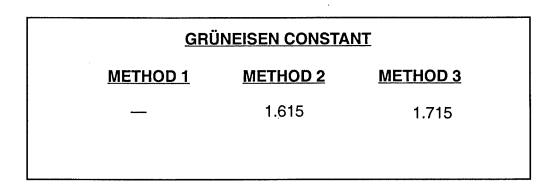
YOUNGS MODULUSBULK MODULUS(Dynes/cm * 1012)0.0300.042

POLYVINYLCHLORIDE

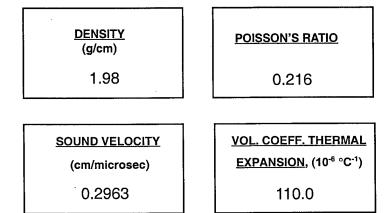


HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.2400	0.2286	

YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
0.038	0.052	

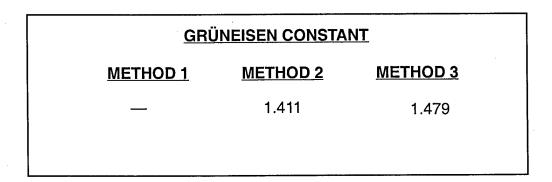

GRÜNEISEN CONSTANT			
METHOD 1	METHOD 2	METHOD 3	
—	0.770	0.808	

POTASSIUM BROMIDE (S.C.)



<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.1040	0.0982	

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 0.255 0.167

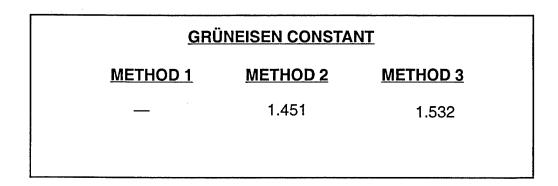


POTASSIUM CHLORIDE (S.C.)

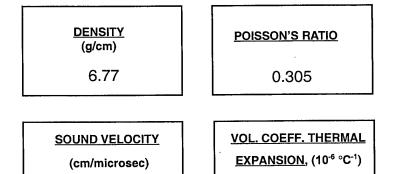
HEAT CAPACITY, (cal/g-C)		
(Cp)	(Cv)	
0.1636	0.1560	

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 0.297 0.174

POTASSIUM IODIDE (S.C.)



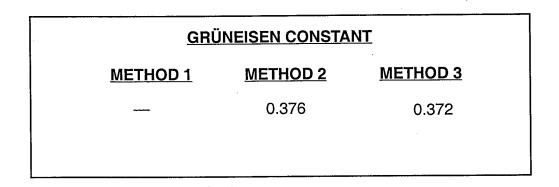
HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.0790	0.0746	


YOUNGS MODULUS (Dynes/cm * 10¹²)

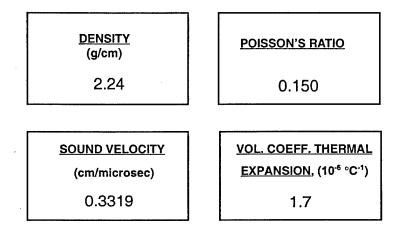
0.175

0.117

PRASEODYMIUM

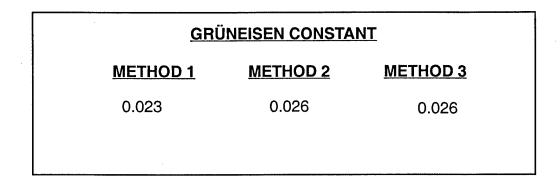

0.2114

	.,	~ `	

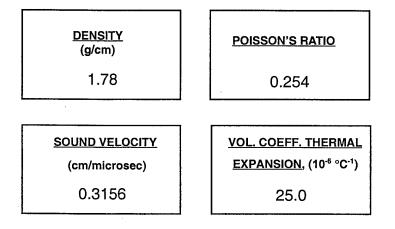

16.2

<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.0460	0.0459	

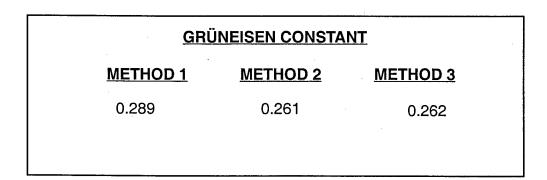
YOUNGS MODULUS	BULK MODULUS
(Dynes/cm * 10 ¹²)	
0.352	0.299



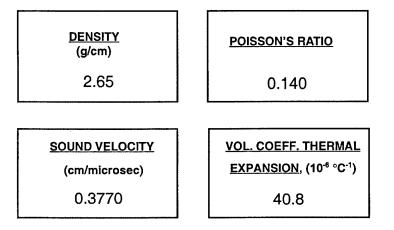
PYROLYTIC GRAPHITE


<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.1650	0.1650	

YOUNGS MODULUSBULK MODULUS(Dynes/cm * 1012)0.5180.247

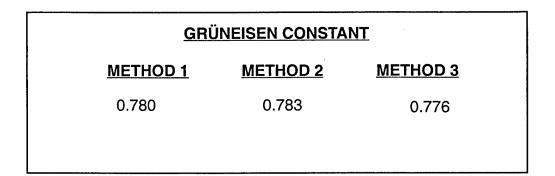

Downloaded from http://www.everyspec.com

QUARTZ PHENOLIC



HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.2276	0.2272	

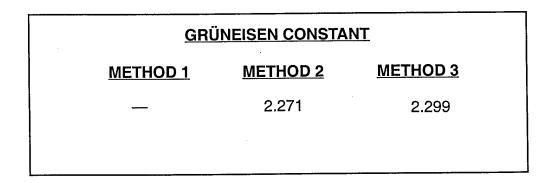
YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
0.262	0.177	



QUARTZ (S.C.)

HEAT CAPACITY,	(cal/g –C)
(Cp)	(Cv)
0.1770	0.1753

YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
0.700	0.370	

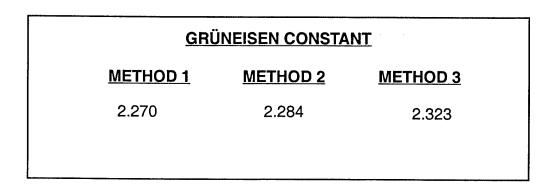


RHENIUM

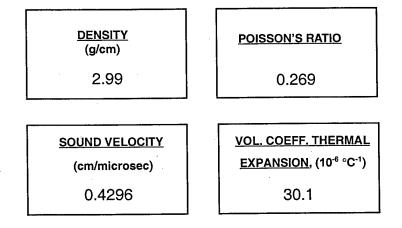
<u>DENSITY</u> (g/cm)	POISSON'S RATIO
21.1	0.288
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.4118	18.6

<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.0332	0.0328	

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 4.541 3.577

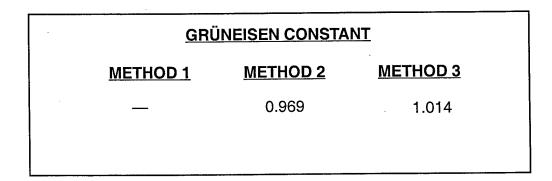

RHODIUM

<u>DENSITY</u> (g/cm)	POISSON'S RATIO
12.45	0.328
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.4778	24.7


HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.0590	0.0580	

YOUNGS MODULUS (Dynes/cm * 10¹²)

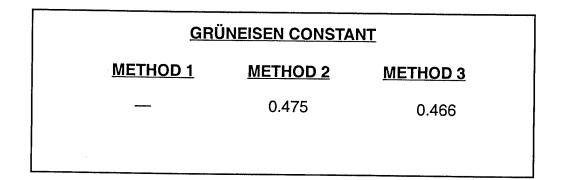
2.940 2.842



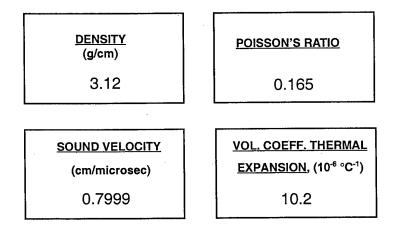
SCANDIUM

HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.1370	0.1358	

YOUNGS MODULUS	BULK MODULUS
(Dynes/cn	n * 10 ¹²)
0.793	0.572



SILICON


<u>DENSITY</u> (g/cm) 2.33	POISSON'S RATIO
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec) 0.6545	EXPANSION, (10 ⁻⁶ °C ⁻¹) 7.9

HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.1700	0.1698	

YOUNGS MODULUS	BULK MODULUS
(Dynes/cm * 10 ¹²)	
1.690	0.979

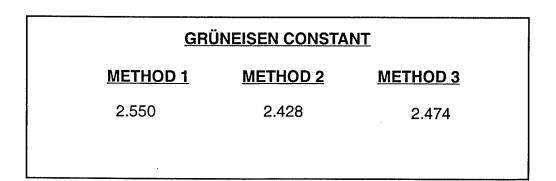
SILICON CARBIDE

<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.1650	0.1645	

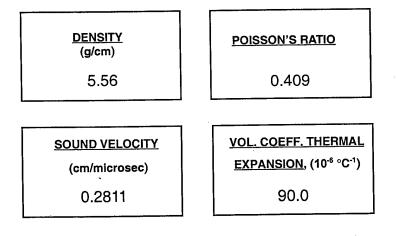
YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
3.862	1.921	

GRÜNEISEN CONSTANT		
METHOD 1	METHOD 2	METHOD 3
_	0.945	0.912

SILVER


<u>DENSITY</u> (g/cm)	POISSON'S RATIO
10.5	0.367
······	
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.3176	56.8

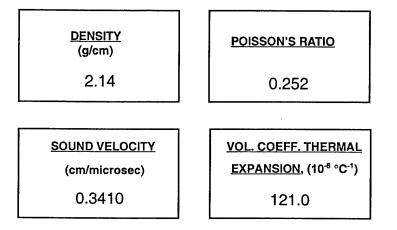
HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.0564	0.0541	


YOUNGS MODULUS (Dynes/cm * 10¹²)

0.827

1.036

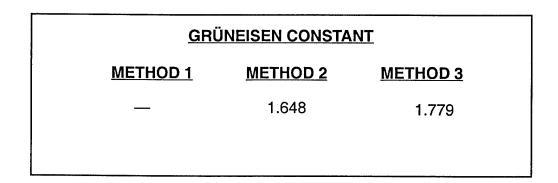
SILVER CHLORIDE (S.C.)

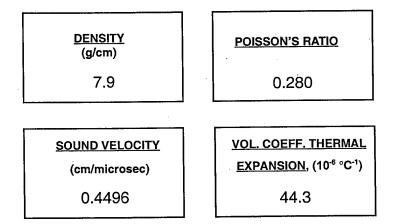


<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.0850	0.0804	

YOUNGS MODULUS	BULK MODULUS
(Dynes/cm * 10 ¹²)	
0.240	0.442

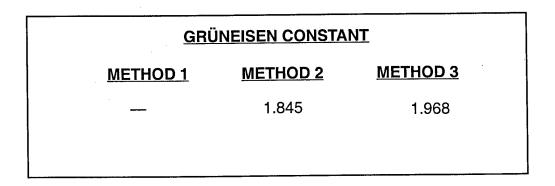
GRÜNEISEN CONSTANT		
METHOD 1	METHOD 2	METHOD 3
_	2.000	2.127


SODIUM CHLORIDE (S.C.)


HEAT_CAPACITY, (cal/gC)		
(Cp)	(Cv)	
0.2040	0.1917	

.

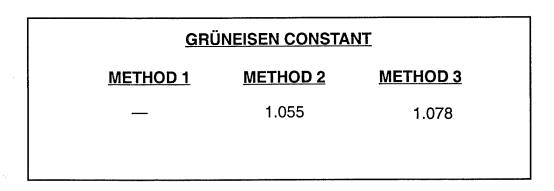
<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 0.375 0.252



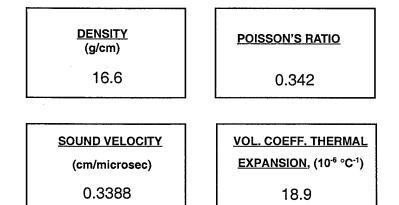
STAINLESS STEEL 304L

HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.1160	0.1131	

YOUNGS MODULUS	BULK MODULUS
(Dynes/cm * 10 ¹²)	
2.153	1.660

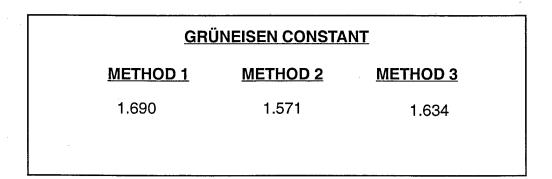

STRONTIUM

<u>DENSITY</u> (g/cm)	POISSON'S RATIO
2.6	0.297
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.2118	67.5

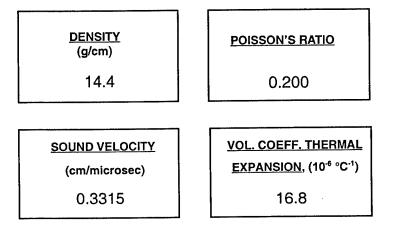

<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.0686	0.0671	

YOUNGS MODULUS BULK MODULUS (Dynes/cm * 10¹²)

0.142 0.117

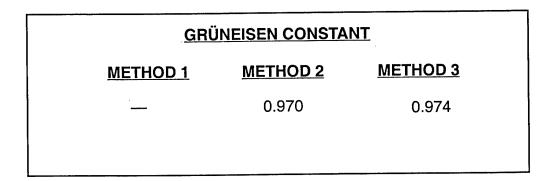


TANTALUM

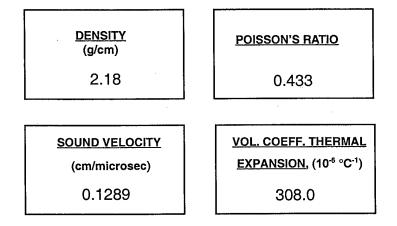


HEAT CAPACITY, (cal/g -C)		
(Cp)	(Cv)	
0.0330	0.0327	

YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
1.857	1.963	

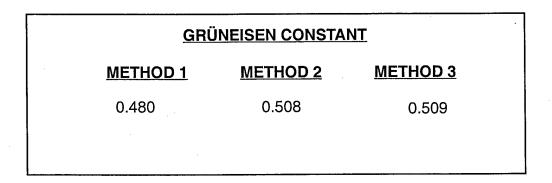


TANTALUM CARBIDE



<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.0455	0.0453	

YOUNGS MODULUSBULK MODULUS(Dynes/cm * 1012)2.8481.582

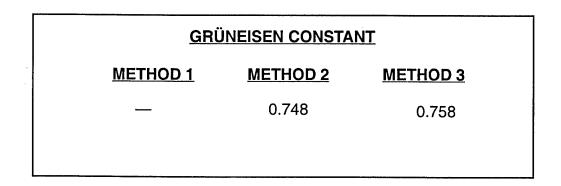


TEFLON®

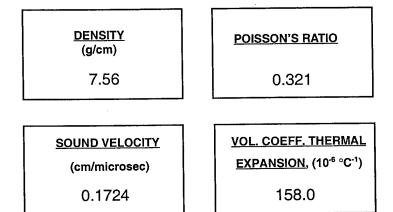
<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.2410	0.2302	

YOUNGS MODULUS	BULK MODULUS	• •
(Dynes/cm * 10 ¹²)		
0.014	0.035	

TERBIUM

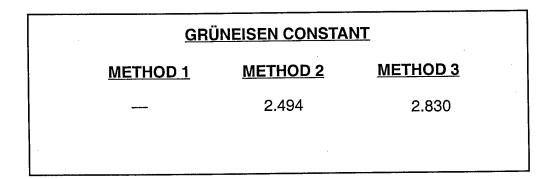

<u>DENSITY</u> (g/cm)	POISSON'S RATIO
8.23	0.261
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.2199	28.3

HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.0437	0.0434	

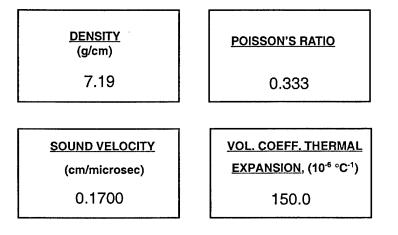

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²)

0.575

0.400



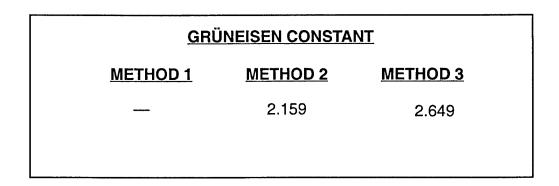
THALLIUM BROMIDE (S.C.)



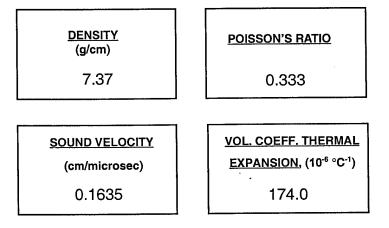
HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.0450	0.0397	

YOUNGS MODULUS (Dynes/cm	BULK MODULUS
0.241	0.225

THALLIUM BROMIDE — CHLORIDE

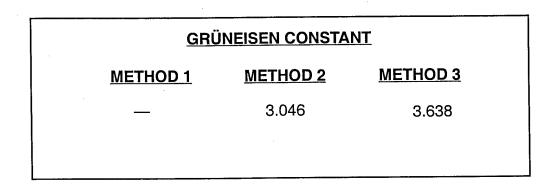


HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.0480	0.0429	

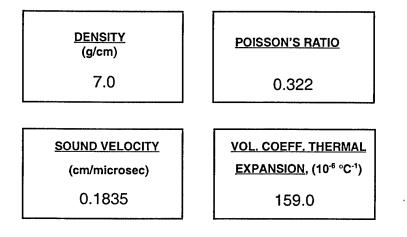

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²)

0.242

0.228

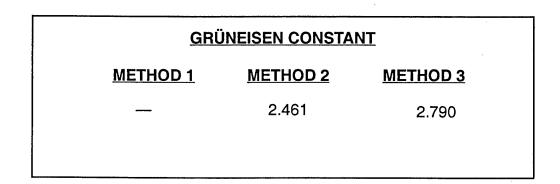


THALLIUM BROMIDE --- IODIDE



<u>HEAT CAPACITY</u> , (cal/g –C)		
(Cp)	(Cv)	
0.0365	0.0307	

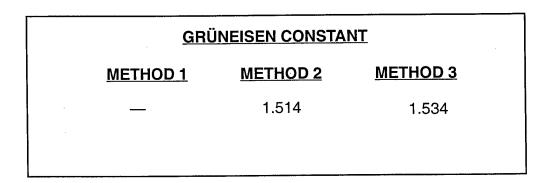
YOUNGS MODULUS	BULK MODULUS
(Dynes/cm	1 * 10 ¹²)
0.199	0.198



THALLIUM CHLORIDE (S.C.)

HEAT CAPACITY, (cal/g-C)		
(Cp)	(Cv)	
0.0520	0.0459	

YOUNGS MODULUS
(Dynes/cm * 1012)BULK MODULUS
0.236



THORIUM

<u>DENSITY</u> (g/cm) 11.7	POISSON'S RATIO 0.302
<u>SOUND VELOCITY</u>	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.2327	33.1

HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.0283	0.0279	

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 0.751 0.632

THORIUM DIOXIDE

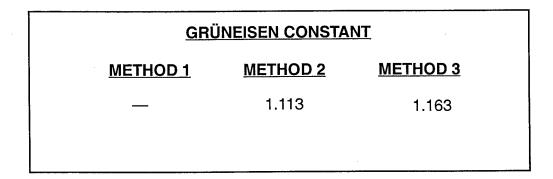
DENSITY
(g/cm)POISSON'S RATIO9.870.170SOUND VELOCITY
(cm/microsec)VOL. COEFF. THERMAL
EXPANSION, (10-6 °C-1)0.265123.2

<u>НЕАТ САРАСІТҮ</u>, (cal/g –C) (Ср) (Сv) 0.0560 0.0557

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²)

0.693

1.373

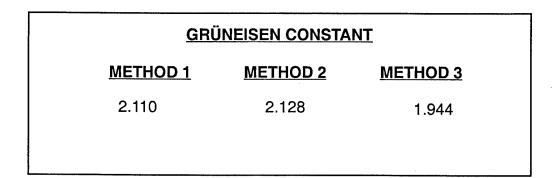

GRÜNEISEN CONSTANT METHOD 1 METHOD 2 METHOD 3 — 0.696 0.699

THULIUM

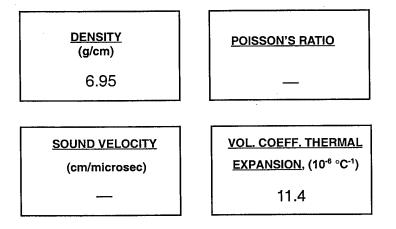
<u>DENSITY</u> (g/cm)	POISSON'S RATIO
9.31	0.235
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.2223	36.0

<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.0382	0.0377	

YOUNGS MODULUS	BULK MODULUS	
(Dynes/cm * 10 ¹²)		
0.755	0.475	

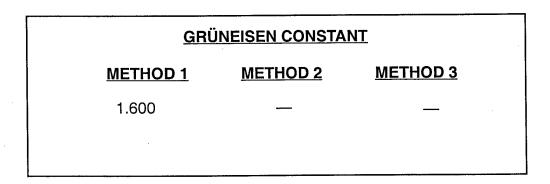


TIN


<u>DENSITY</u> (g/cm)	POISSON'S RATIO
7.29	0.340
SOUND VELOCITY	VOL. COEFF, THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁵ °C ⁻¹)
0.2703	66.4

HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.0545	0.0525	

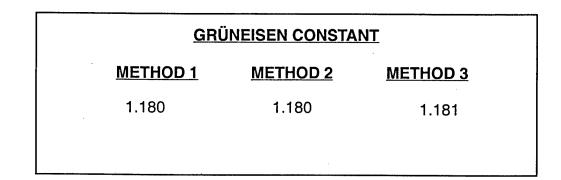
YOUNGS MODULUSBULK MODULUS(Dynes/cm * 1012)0.4500.469



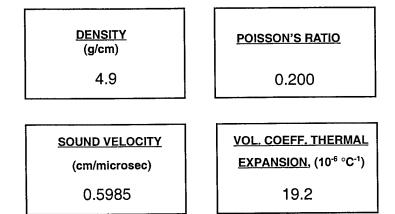
TIN OXIDE

HEAT CAPACITY, (cal/ g –C)		
(Cp)	(Cv)	
0.0830	—	

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²)

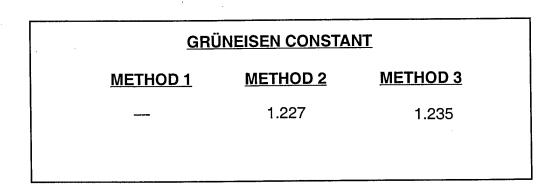


TITANIUM

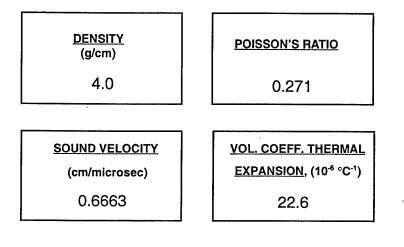

DENSITY (g/cm)	POISSON'S RATIO
4.6	0.340
SOUND VELOCITY (cm/microsec)	<u>VOL. COEFF. THERMAL</u> <u>EXPANSION</u> , (10 ⁻⁶ °C ⁻¹)
0.4919	25.3

HEAT CAPACITY, (cal/g_C)		
(Cp)	(Cv)	
0.1240	0.1229	

YOUNGS MODULUSBULK MODULUS(Dynes/cm * 1012)1.0601.104

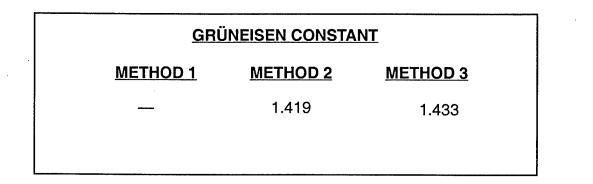


TITANIUM CARBIDE

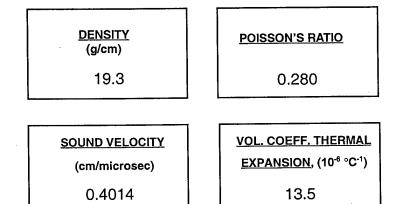


<u>HEAT_CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.1340	0.1331	

YOUNGS MODULUS	BULK MODULUS	÷,
(Dynes/cm	1 * 10 ¹²)	
3.159	1.755	

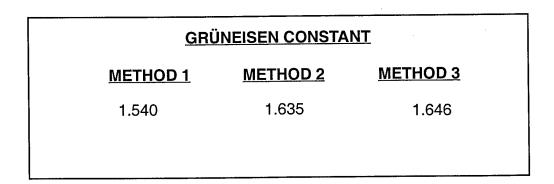


TITANIUM DIOXIDE

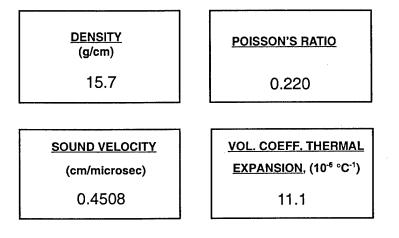


<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.1690	0.1674	

YOUNGS MODULUSBULK MODULUS(Dynes/cm * 1012)2.4401.776

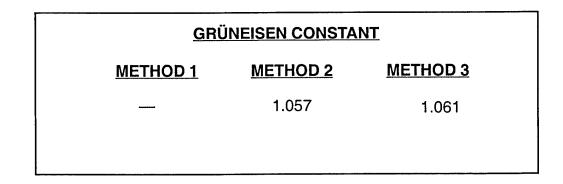


TUNGSTEN



HEAT CAPACIT	<u>ſY</u> , (cal/g –C)
(Cp)	(Cv)
0.0318	0.0316

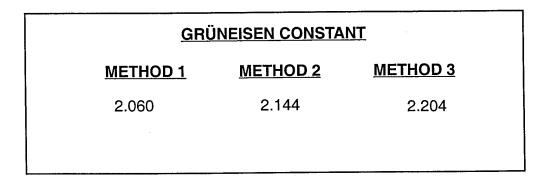
<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 4.110 3.110


TUNGSTEN CARBIDE

<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.0510	0.0508	

 YOUNGS MODULUS
 BULK MODULUS

 (Dynes/cm * 10¹²)
 3.190

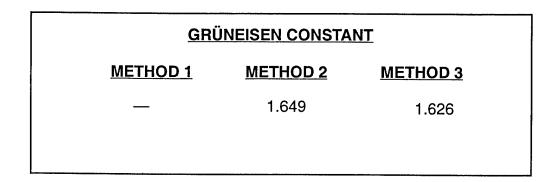


URANIUM

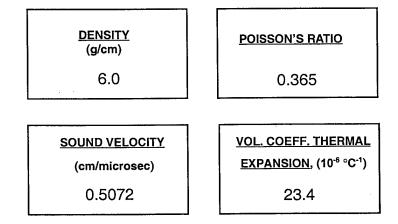
DENSITY (g/cm)	POISSON'S RATIO
19.1	0.197
<u>SOUND VELOCITY</u> (cm/microsec)	<u>VOL. COEFF. THERMAL</u> <u>EXPANSION</u> , (10 ⁻⁶ °C ⁻¹)
0.2431	41.9

HEAT CAPACITY, (cal/g-C)		
(Cp)	(Cv)	
0.0276	0.0269	

YOUNGS MODULUS	BULK MODULUS		
(Dynes/cm * 10 ¹²)			
2.054	1.129		



URANIUM OXIDE


DENSITY (g/cm)	POISSON'S RATIO
10.3	0.310
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	<u>EXPANSION</u> , (10 ⁻⁶ °C ⁻¹)
0.3985	28.2

HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.0649	0.0640	

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 1.814 1.591

VANADIUM

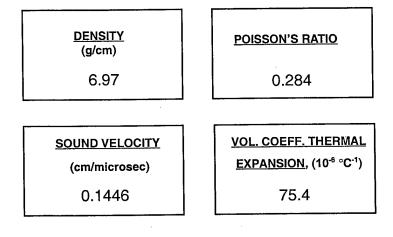
<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.1043	0.1033	

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 1.276 1.580

GRÜNEISEN CONSTANT METHOD 1 METHOD 2 METHOD 3 1.290 1.379 1.426

VYCOR®

<u>DENSITY</u> (g/cm)	POISSON'S RATIO
2.18	0.190
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.4125	2.4


HEAT CAPACITY, (cal/g –C)		
(Cp)	(Cv)	
0.2000	0.2000	

 YOUNGS MODULUS
 BULK MODULUS

 (Dynes/cm * 10¹²)
 0.690
 0.371

GRÜNEISEN CONSTANT			
METHOD 1	METHOD 2	METHOD 3	
	0.049	0.049	

YTTERBIUM

<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.0346	0.0338	

YOUNGS MODULUS	BULK MODULUS
(Dynes/cm	* 10 ¹²)
0.178	0.138

GRÜNEISEN CONSTANT			
METHOD 1	METHOD 2	METHOD 3	
_	1.089	1.053	

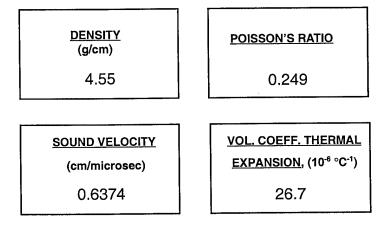
YTTRIUM

<u>DENSITY</u> (g/cm) 4.46	POISSON'S RATIO 0.255
<u>SOUND VELOCITY</u>	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.3274	33.9

 HEAT CAPACITY, (cal/g –C)

 (Cp)
 (Cv)

 0.0680
 0.0671


<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²)

0.663

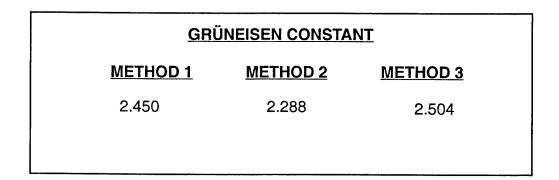
0.469

YTTRIUM ALUMINATE (YAG®, S.C.)

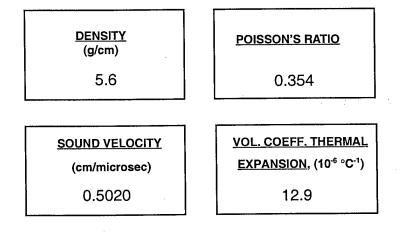
HEAT CAPACITY, (cal/g-C)		
(Cp)	(Cv)	
0.1542	0.1521	

YOUNGS MODULUS	BULK MODULUS	
(Dynes/cn	n * 10 ¹²)	
2.780	1.849	

GRÜNEISEN CONSTANT				
	METHOD 1	METHOD 2	METHOD 3	
		1.681	1.705	

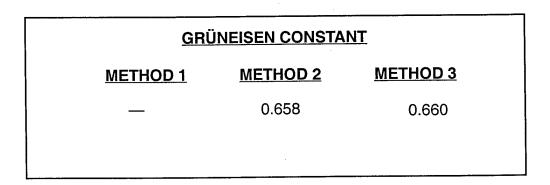

٧.

ZINC


<u>DENSITY</u> (g/cm) 6.92	POISSON'S RATIO 0.249
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.3128	90.9

<u>HEAT CAPACITY</u> , (cal/ g –C)		
(Cp)	(Cv)	
0.0929	0.0870	

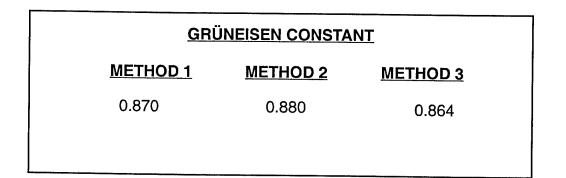
<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²) 1.045 0.694



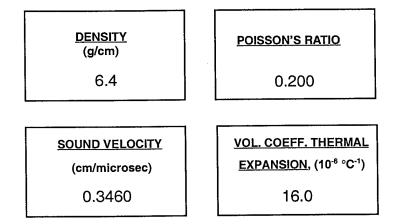
ZINC OXIDE

HEAT CAPACITY, (cal/g-C)		
(Cp)	(Cv)	
0.1180	0.1177	

YOUNGS MODULUS	BULK MODULUS
(Dynes/cm	ו * 10 ¹²)
1.235	1.411

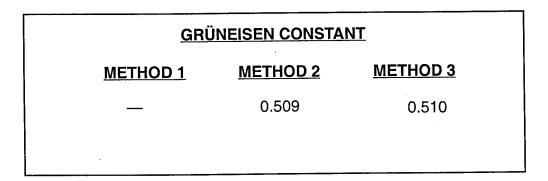


ZIRCONIUM

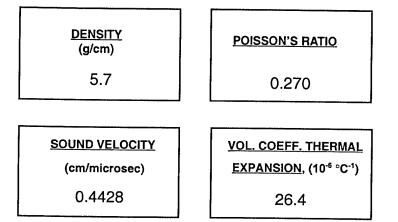

<u>DENSITY</u> (g/cm)	POISSON'S RATIO
6.5	0.332
SOUND VELOCITY	VOL. COEFF. THERMAL
(cm/microsec)	EXPANSION, (10 ⁻⁶ °C ⁻¹)
0.3747	17.1

HEAT CAPACITY,	(cal/ g –C)
(Cp)	(Cv)
0.0652	0.0649

YOUNGS MODULUSBULK MODULUS(Dynes/cm * 1012)0.9510.892



ZIRCONIUM CARBIDE



HEAT CAPACITY, (cal/g-C)		
(Cp)	(Cv)	
0.0900	0.0898	

YOUNGS MODULUS	BULK MODULUS
(Dynes/c	m * 10 ¹²)
1.379	0.766

ZIRCONIUM DIOXIDE

HEAT CAPACITY	, (ca!/ g −C)
(Cp)	(Cv)
0.1090	0.1079

<u>YOUNGS MODULUS</u> (Dynes/cm * 10¹²)

1.222

1.687

<u>GRÜNEISEN CONSTANT</u> <u>METHOD 1 METHOD 2 METHOD 3</u> — 1.135 1.254

LABORATORY OPERATIONS

The Aerospace Corporation functions as an "architect-engineer" for national security programs, specializing in advanced military space systems. The Corporation's Laboratory Operations supports the effective and timely development and operation of national security systems through scientific research and the application of advanced technology. Vital to the success of the Corporation is the technical staff's wide-ranging expertise and its ability to stay abreast of new technological developments and program support issues associated with rapidly evolving space systems. Contributing capabilities are provided by these individual organizations:

Electronics and Photonics Laboratory: Microelectronics, VLSI reliability, failure analysis, solid-state device physics, compound semiconductors, radiation effects, infrared and CCD detector devices, data storage and display technologies; lasers and electro-optics, solid state laser design, micro-optics, optical communications, and fiber optic sensors; atomic frequency standards, applied laser spectroscopy, laser chemistry, atmospheric propagation and beam control, LIDAR/LADAR remote sensing; solar cell and array testing and evaluation, battery electrochemistry, battery testing and evaluation.

Space Materials Laboratory: Evaluation and characterizations of new materials and processing techniques: metals, alloys, ceramics, polymers, thin films, and composites; development of advanced deposition processes; nondestructive evaluation, component failure analysis and reliability; structural mechanics, fracture mechanics, and stress corrosion; analysis and evaluation of materials at cryogenic and elevated temperatures; launch vehicle fluid mechanics, heat transfer and flight dynamics; aerothermodynamics; chemical and electric propulsion; environmental chemistry; combustion processes; space environment effects on materials, hardening and vulnerability assessment; contamination, thermal and structural control; lubrication and surface phenomena.

Space Science Applications Laboratory: Magnetospheric, auroral and cosmic ray physics, wave-particle interactions, magnetospheric plasma waves; atmospheric and ionospheric physics, density and composition of the upper atmosphere, remote sensing using atmospheric radiation; solar physics, infrared astronomy, infrared signature analysis; infrared surveillance, imaging, remote sensing, and hyperspectral imaging; effects of solar activity, magnetic storms and nuclear explosions on the Earth's atmosphere, ionosphere and magnetosphere; effects of electromagnetic and particulate radiations on space systems; space instrumentation, design fabrication and test; environmental chemistry, trace detection; atmospheric chemical reactions, atmospheric optics, light scattering, state-specific chemical reactions and radiative signatures of missile plumes.

Center for Microtechnology: Microelectromechanical systems (MEMS) for space applications; assessment of microtechnology space applications; laser micromachining; laser-surface physical and chemical interactions; micropropulsion; micro- and nanosatel-lite mission analysis; intelligent microinstruments for monitoring space and launch system environments.

Office of Spectral Applications: Multispectral and hyperspectral sensor development; data analysis and algorithm development; applications of multispectral and hyperspectral imagery to defense, civil space, commercial, and environmental missions.

24.65

ð.

2350 E. El Segundo Boulevard El Segundo, California 90245-4691 U.S.A.