
AEROSPACE REPORT NO.
ATR-2011(8404)-11

The Elements of an Effective Software Development Plan
Software Development Process Guidebook

November 11, 201

Marvin C. Gechman
Software Engineering Subdivision
Computers and Software Division

Contributing Author:
Suellen Eslinger
Software Engineering Subdivision
Computers and Software Division

Prepared for:

Space and Missile Systems Center
Air Force Space Command
483 N. Aviation Blvd.
El Segundo, CA 90245-2808

Authorized by: Engineering and Technology Group

Distribution Statement: Public release is authorized; distribution unlimited.

P.ouo^^o^'ö

Assuring Space Mission Success

Downloaded from http://www.everyspec.com

AEROSPACE REPORT NO
ATR-2011(8404)-11

The Elements of an Effective Software Development Plan
Software Development Process Guidebook

November 11, 201

Marvin C. Gechman
Software Engineering Subdivision
Computers and Software Division

Contributing Author:
Suellen Eslinger
Software Engineering Subdivision
Computers and Software Division

Prepared for:

Space and Missile Systems Center
Air Force Space Command
483 N. Aviation Blvd.
El Segundo, CA 90245-2808

Authorized by: Engineering and Technology Group

Distribution Statement: Public release is authorized; distribution unlimited.

(2h AEROSPACE
>»-*' Assuring Space Mission Success

Downloaded from http://www.everyspec.com

AEROSPACE REPORT NO.
ATR-2011(8404)-11

The Elements of an Effective Software Development Plan -
Software Development Process Guidebook

Approved by:

£ya CampbeTl, Principal Director
Software Engineering Subdivision
Computers and Software Division
Engineering and Technology Group

All trademarks, service marks, and trade names are the property of their respective owners.

SP0036(1, 5840, 219, MLM)

Downloaded from http://www.everyspec.com

Abstract

Every software development program must have a Software Development Plan (SDP). The SDP is
required by the software development standards, it is prepared by the contractor, and it is usually
submitted with their proposal. The SDP is the vehicle by which the contractor, responsible for
software development, documents how the software will be designed, developed, integrated, tested
and managed.

The principal objectives of this SDP Guidebook are to: (1) Assist the acquisition agency in evaluating
SDPs during source selection and during subsequent update deliveries; (2) Provide guidance to
contractors in developing and updating their SDP; and (3) provide a convenient source of reference,
during conduct of a software development program, documenting the systematic steps of the process
during the full software development life cycle. The Guidebook contains examples and recommended
contents of a program-level SDP for large software development efforts.

in

Downloaded from http://www.everyspec.com

IV

Downloaded from http://www.everyspec.com

Foreword

A poorly planned software development effort is likely to fail—that makes the SDP a critically
important software management tool for both large and small software development efforts.

An incomplete or inadequate SDP is a clear red flag. Contractors with a deficient SDP. who are
awarded a contract, have historically a high probability of cost and schedule overruns. This
Guidebook is intended to significantly increase the probability of a successful software-intensive
contract. The principal objectives of this SDP Guidebook are:

• To assist the acquisition agency in evaluating SDPs during source selection and during
subsequent updated deliveries of the SDP

• To provide guidance to contractors in preparing and updating their SDPs

• To provide a convenient source of reference, during conduct of a software development
program, describing the systematic steps of the software development process during the full
software development lifecycle.

The contractor-developed SDP must address at least the following software development concerns:

What specific process will be followed for software requirements analysis, design, coding,
testing, integration, and qualification?

Who is responsible for each software development task and what is their reporting chain?

How will software development be managed and with what controls?

What is the software development schedule and what are the reportable milestones?

How will management know if the current software project is consistent with planned
schedules?

What documentation will be produced, in what format, and when?

What standards, practices, and guidelines will be followed and how will they be enforced?

What reviews will take place, who are the attendees, and when will they take place?

How will compliance with the SDP be assured?

What methods will be employed to identify and mitigate software risks?

How are software development responsibilities managed and flowed down to subcontractors?

What development and testing support software, environment, and tools are required?

What is the process for ensuring systematic testing of the developed software?

What software management measurements (metrics) are planned and what is the process for
collection, reporting, analysis and corrective action?

What process and methods will be used to ensure the quality of the software product?

How will errors be detected, documented and corrected?

What software products will be subject to formal configuration management and when?

What software is deliverable to the acquisition agency and what are the transition plans?

How will classified data and products be controlled?

Downloaded from http://www.everyspec.com

Although software planning is performed throughout the software lifecycle, strategic planning up-
front usually makes the difference between success and failure of a software development program.
The quality and attention to detail in the SDP are major source selection evaluation criteria. A good
SDP, at the start of a program, builds the foundation for the teamwork and disciplined trust vital to
software lifecycle cooperation and success. The existence of a comprehensive SDP does not
guarantee project success. However, a poor SDP at the start of a program is essentially a guarantee of
serious problems ahead.

VI

Downloaded from http://www.everyspec.com

SDP Guidebook Reading Recommendations

Because of the comprehensive nature of this Guidebook, it is expected that individual sections will be
used as a reference, when needed, as opposed to assuming the reader will always read the entire
Guidebook. However, it is highly recommended that all users of this Guidebook read, at a minimum,
the six-page Introduction of Part 1 and paragraph 1.2.3 of Part 2 describing the software classes and
categories referred to throughout Sections 4 and 5 of Part 2.

If the user is planning to read any of the sections dealing with software integration and testing
(subsections 5.7 through 5.11), it is highly recommended that they begin by reviewing subsection 3.7
as it provides an overview of the software integration, testing, and verification process described in
more detail in subsections 5.7 through 5.11.

To facilitate the lookup of specific topics of interest in this Guidebook, a Subject Index is included in
Part 3 as Additional Guidebook Information AGI-5 of this Guidebook. It refers to the subsection,
paragraph or subparagraph where the subject is addressed.

Ml

Downloaded from http://www.everyspec.com

Vlll

Downloaded from http://www.everyspec.com

Contents

Abstract iii

Foreword v

SDP Guidebook Reading Recommendations vii

Part 1. SDP Guidebook Introduction 1-1

1. Scope and Perspective 1-1

2. Organization of this SDP Guidebook 1-1

3. Electronic Data Management 1-2

4. Example Text and Highlights 1-2

5. Terms and Acronyms Used 1-2

6. Format of the Process Descriptions 1-3

7. Integrated Product Teams (lPTs) 1-4

8. Analysis and Design Methodologies 1-4

9. Format Options for the SDP 1-4

10. Tailoring of the SDP 1-5

11. Large Versus Small Software Developments 1-5

12. Recommended SDP Numbering Format 1-6

Part 2. Recommended Contents of a Program-Level SDP for Large Software Development
Efforts 1-1

1. Scope 2-1
1.1 Identification 2-1
1.2 System Overview 2-2

1.2.1 System Architecture Overview 2-2
1.2.2 Software Architecture Overview 2-3
1.2.3 Software Classes and Categories 2-4

1.3 Document Overview 2-7
1.3.1 SDP Component Parts 2-7
1.3.2 SDP Organization 2-8
1.3.3 SDP Updates 2-8

1.4 Relationship to Other Plans 2-9
2.1 Government Documents 2-1

2.1.1 Government Referenced Documents—Example 2-1
2.1.2 Government Applicable Documents—Example 2-1

2.2 Non-Government Documents 2-1
2.2.1 Non-Government Referenced Documents—Example 2-1
2.2.2 Non-Government Applicable Documents—Example 2-1

3. Overview of Required Work 2-13
3.1 System Acquisition Lifecycle 2-13
3.2 Software Requirements and Constraints 2-13
3.3 Software Item Overview 2-14

IX

Downloaded from http://www.everyspec.com

3.4 Required Software Lifecycle Activities 2-15
3.5 Software Process Overview 2-15
3.6 Software Documentation Requirements and Constraints 2-16
3.7 Requirements and Constraints on Development Strategy 2-19

3.7.1 Development Strategy Factors 2-19
3.7.2 Software Integration, Testing, and Verification Approach 2-19
3.7.3 Software Integration, Testing, and Verification Objectives 2-20
3.7.4 Software Integration, Testing, and Verification Process 2-20

3.8 Requirements and Constraints on Schedule and Resources 2-20
3.9 Other Requirements and Constraints 2-20

4. General Requirements 2-23
4.1 Software Development Process 2-23

4.1.1 Mission Critical Software Development Process 2-23
4.1.2 Support Software Development Process 2-26
4.1.3 Iterative Process 2-26

4.2 General Requirements for Software Development 2-27
4.2.1 Software Development Methods 2-27
4.2.2 Standards for Software Products 2-28
4.2.3 Traceability 2-29
4.2.4 Reusable Software Products 2-30
4.2.5 Assurance of Critical Requirements 2-33
4.2.6 Computer Hardware Resource Utilization 2-37
4.2.7 Recording Rationale for Key Technical Decisions 2-37
4.2.8 Access for Acquirer Review 2-37
4.2.9 Software Data Management (Recommended Optional Addition) 2-38
4.2.10 Software Plans and Work Products (Recommended Optional Addition) 2-39

5. Detailed Requirements 2-43
5.1 Project Planning and Oversight 2-43

5.1.1 Software Development Planning 2-44
5.1.2 Software Item Test Planning 2-49
5.1.3 System Test Planning 2-50
5.1.4 Planning for Software Transition to Operations 2-50
5.1.5 Planning for Software Transition to Maintenance 2-51
5.1.6 Following and Updating Plans 2-51

5.2 Establishing a Software Development Environment 2-51
5.2.1 Software Engineering Environment 2-51
5.2.2 Software Integration and Test Environment 2-52
5.2.3 Software Development Libraries 2-53
5.2.4 Software Development Files 2-55
5.2.5 Non-Deliverable Software 2-56

5.3 System/Segment Requirements Analysis 2-56
5.3.1 Analysis of User Input 2-57
5.3.2 Operational Concept 2-57
5.3.3 System/Segment Requirements 2-58

5.4 System/Segment Design 2-58
5.4.1 System-wide/Segment-wide Design Decisions 2-60
5.4.2 System/Segment Architectural Design 2-61

5.5 Software Requirements Analysis 2-62
5.6 Software Design 2-68

Downloaded from http://www.everyspec.com

5.6.1 Software Item-wide Design Decisions 2-70
5.6.2 Software Item Architectural Design 2-71
5.6.3 Software Item Detailed Design 2-73

5.7 Software Implementation and Unit Testing 2-77
5.7.1 Software Implementation 2-79
5.7.2 Preparing for Unit Testing 2-81
5.7.3 Performing Unit Testing 2-81
5.7.4 Unit Testing Revision and Retesting 2-82
5.7.5 Analyzing and Recording Unit Test Results 2-82

5.8 Unit Integration and Testing 2-82
5.8.1 Preparing for UI&T 2-86
5.8.2 Performing UI&T 2-87
5.8.3 UI&T Revision and Retesting 2-87
5.8.4 Analyzing and Recording UI&T Results 2-88

5.9 Software Item Qualification Testing 2-88
5.9.1 Independence in Software Item Qualification Testing 2-92
5.9.2 Testing on the Target Computer System 2-92
5.9.3 Preparing for Software Item Qualification Testing 2-93
5.9.4 Dry Run of Software Item Qualification Testing 2-94
5.9.5 Performing Software Item Qualification Testing 2-95
5.9.6 SIQT Revision and Retesting 2-96
5.9.7 Analyzing and Recording SIQT Results 2-97

5.10 Software/Hardware Item Integration and Testing 2-98
5.10.1 Preparing For SI/HI Integration and Testing 2-100
5.10.2 Performing SI/HI Integration and Testing 2-102
5.10.3 Analyzing and Recording SI/HI Integration and Test Results 2-103
5.10.4 SI/HI I&T Revision and Retesting 2-103

5.11 System Qualification Testing 2-104
5.11.1 Independence in System Qualification Testing 2-106
5.11.2 Testing On the Target Computer System 2-106
5.11.3 Preparing For System Qualification Testing 2-106
5.11.4 Dry Run of System Qualification Testing 2-107
5.11.5 Performing System Qualification Testing 2-107
5.11.6 Analyzing and Recording System Qualification Test Results 2-107
5.11.7 System Qualification Testing Revision and Retesting 2-108

5.12 Preparing for Software Transition to Operations 2-108
5.12.1 Preparing the Executable Software 2-109
5.12.2 Preparing Version Descriptions for User Sites 2-109
5.12.3 Preparing User Manuals 2-109
5.12.4 Installation at User Sites 2-111

5.13 Preparing For Software Transition to Maintenance 2-111
5.13.1 Preparing the Executable Software 2-112
5.13.2 Preparing Source Files 2-113
5.13.3 Preparing Version Descriptions for the Maintenance Site 2-113
5.13.4 Preparing the "As Built" Software Item Design and Related Information .2-113
5.13.5 Updating the System/Subsystem Design Description 2-113
5.13.6 Updating the Software Requirements 2-114
5.13.7 Updating the System Requirements 2-114
5.13.8 Preparing Maintenance Manuals 2-114
5.13.9 Transition to the Designated Maintenance Site 2-115

XI

Downloaded from http://www.everyspec.com

5.14 Software Configuration Management 2-115
5.14.1 Configuration Identification 2-117
5.14.2 Configuration Control 2-118
5.14.3 Configuration Status Accounting 2-120
5.14.4 Configuration Audits 2-120
5.14.5 Packaging, Storage, Handling, and Delivery 2-121

5.15 Software Peer Reviews and Product Evaluations 2-122
5.15.1 Software Peer Reviews 2-123
5.15.2 Software Product Evaluations 2-126

5.16 Software Quality Assurance 2-127
5.16.1 Software Quality Assurance Evaluations 2-128
5.16.2 Software Quality Assurance Records, Including Items to Be Recorded 2-129
5.16.3 Independence in Software Quality Assurance 2-129
5.16.4 Software Quality Assurance Non-Compliance Issues 2-130

5.17 Corrective Action 2-130
5.17.1 Problem/Change Reports 2-130
5.17.2 Corrective Action System 2-131

5.18 Joint Technical and Management Reviews 2-132
5.18.1 Joint Technical Reviews 2-133
5.18.2 Joint Management Reviews 2-134

5.19 Software Risk Management 2-136
5.20 Software Management Indicators 2-138

5.20.1 Principal Objectives of Measurement 2-138
5.20.2 Continuous Improvement 2-139
5.20.3 Approach to Management Measurements 2-139
5.20.4 Key Software Management Questions 2-141
5.20.5 Software Measurement Set 2-141
5.20.6 Software Measurement Construct 2-141
5.20.7 Analysis and Reporting of Software Management Indicators 2-145
5.20.8 Software Indicator Thresholds and Red Flags 2-146

5.21 Security and Privacy Protection 2-146
5.22 Subcontractor Management 2-147
5.23 Interfacing with Software I V&V Agents 2-148
5.24 Coordination With Associate Developers 2-149
5.25 Improvement of Project Processes 2-149

5.25.1 Software Engineering Process Group 2-150
5.25.2 Process Audits 2-151
5.25.3 Change Implementation 2-152
5.25.4 SEPG Infrastructure 2-152
5.25.5 Process Training 2-152
5.25.6 Software Process Engineer/Lead 2-153

5.26 Software Sustainment (Optional) 2-153
5.26.1 Software Sustainment Objectives 2-153
5.26.2 Planning for Software Sustainment 2-154
5.26.3 Software Maintenance Plan 2-155
5.26.4 The Software Sustainment Organization 2-156
5.26.5 Key Software Sustainment Issues 2-156

6. Schedules and Activity Network 2-159

7. Project Organization and Resources 2-161

Ml

Downloaded from http://www.everyspec.com

7.1 Project Organization 2-161
7.2 Project Resources 2-162

7.2.1 Personnel Resources 2-162
7.2.2 Development Facilities 2-165
7.2.3 Government Furnished Equipment. Software and Services 2-165
7.2.4 Other Required Resources 2-165
7.2.5 Software Training Plans (Optional) 2-166

8. Notes 2-167

Part 3. Additional SDP Guidebook Information 2-1

AGI-1. Software Roles and Responsibilities 3-3

AGI-2. Bibliography 3-15

AGI-3. Software-Related Definitions 3-17

AGI-4. Software Acronyms 3-19

AGI-5. Subject Index to the SDP Guidebook 3-21

Xlll

Downloaded from http://www.everyspec.com

Figures

Part 1. SDP Guidebook Introduction

Figure 1-1. Organization of This SDP Guidebook 1-2
Figure 1-2. Components of a Typical SDP Package—Example 1-5

Part 2. Recommended Contents of a Program-Level SDP for Large Software Development
Efforts

Figure 1.1. Software Organization and Software Item Structure Overview—Example 2-2
Figure 1.2.1. XMPL System Overview—Example 2-3
Figure 1.2.2. XMPL Software System Architecture Overview—Example 2-4
Figure 1.3.3. XMPL SDP Update Plan—Example 2-8
Figure 1.4. Relationship Between the XMPL SDP and Other Key Plans—Example 2-9
Figure 3.1. XMPL System Acquisition Lifecycle Phases—Example 2-13
Figure 3.2. Software Process Levels Used In This Guidebook 2-14
Figure 3.4. Software Lifecycle Development Domains—Example 2-15
Figure 3.5-1. XMPL Software Development Process Overview—Example 2-16
Figure 3.5-2. Principal Software Development Process Activities—Example 2-17
Figure 3.7.4. Software Testing and Integration Process—Example 2-22
Figure4.1.1. Mission Critical Software Development Process—Example 2-25
Figure 4.1.2. Support Software Development Process—Example 2-27
Figure 4.2.2. Hierarchical Software Product Levels—Example 2-29
Figure 4.2.4.1. COTS/Reuse Management Process—Example 2-31
Figure 5.1.1. SDP Waiver Approval Process—Example 2-45
Figure 5.1.1.4. Software Management from a Measurement Perspective—Example 2-49
Figure 5.2.3. Electronic SDL Logical Partitioning—Example 2-54
Figure 5.4. System/Segment Design Process Flow—Example 2-59
Figure 5.5-1. The Origin of Software Requirements 2-63
Figure 5.6.2. Software Item Architectural Design Process Flow—Example 2-72
Figure 5.6.3. Software Item Detailed Design Process Flow—Example 2-74
Figure 5.7. Software Coding and Unit Testing Process Flow—Example 2-80
Figure 5.8. Software Ul&T Process Flow—Example 2-85
Figure 5.9. SIQT Process Flow—Example 2-92
Figure 5.10. Hardware/Software Item Integration and Test Process—Example 2-100
Figure 5.14. Relationship of the SDLs to the MSDL—Example 2-117
Figure 5.14.2.2. Relationship of the Configuration Control Boards—Example 2-119
Figure 5.15. Software Peer Review Process Overview—Example 2-123
Figure 5.16.1. SQA Staffing Projection—Example 2-129
Figure 5.16.3. SQA Independent Reporting Structure—Example 2-129
Figure 5.17.2. Corrective Action Process Overview—Example 2-131
Figure 5.19. Risk Management Process Overview—Example 2-136
Figure 5.20.2. Closed Loop Software Control Process—Example 2-139
Figure 5.20.3. Software Measurement Framework—Example 2-140
Figure 5.20.4. Categories and Indicators Support the Key Management Questions—Example..2-141
Figure 5.20.6. Elements of the Software Measurement Construct—Example 2-143
Figure 5.25. Software Process Improvement Process Overview—Example 2-150
Figure 5.25.4. SEPG Infrastructure—Example 2-152
Figure 7.1. Overall Program Organization—Example 2-161
Figure 7.2.1.2. Estimated Software Staff-Loading—Example 2-164

xiv

Downloaded from http://www.everyspec.com

Tables

Part 1. SDP Guidebook Introduction

Table 1-1. Common Acronyms Used in this Guidebook 1-3

Part 2. Recommended Contents of a Program-Level SDP for Large Software Development
Efforts

Table 1.2.3.1. Mission Critical Software Class and SI Categories—Example 2-5
Table 1.2.3.2. Support Software Class and SI Categories—Example 2-5
Table 1.2.3.3 COTS/Reuse Software Class and SI Categories—Example 2-6
Table 3.3. XMPL Software Items and Team Responsibilities—Example 2-14
Table 3.6. XMPL Software Documentation Production Matrix—Example 2-18
Table 3.7.2. Software Integration, Testing, and Verification Stages—Example 2-19
Table 3.7.3. Software Integration. Testing and Verification Objectives—Example 2-20
Table 4.1. Overview of Software Development Process Models—Example 2-24
Table 4.2.3. Traceability Requirements by SI Category—Example 2-29
Table 4.2.10.1. Candidate Software Management and Quality Control Plans—Example 2-39
Table 5. Contents of SDP Section 5 2-43
Table 5.1. Readiness Criteria: Project Planning and Oversight—Example 2-44
Table 5.1.1.1. Software Planning Tasks—Example 2-46
Table 5.1.1.3. SI Build Delivery Plan-Example 2-47
Table 5.1.2. Readiness Criteria: Software Test Plan—Example 2-50
Table 5.2.1-1. Program-wide SEE CASE Tools—Example 2-52
Table 5.2.1-2. SEE Development Sites—Example 2-52
Table 5.2.4. Electronic SDF Organization—Example 2-55
Table 5.3. Readiness Criteria: System/Segment Requirements Analysis—Example 2-57
Table 5.4-1. Readiness Criteria: System/Segment Design—Example 2-58
Table 5.4-2. System/Segment Design Tasks—Example 2-60
Table 5.5-1. Readiness Criteria: Software Requirements Analysis—Example 2-64
Table 5.5-2. Software Requirements Analysis Work Products—Example 2-64
Table 5.6-2. Required Software Design Activity Work Products—Example 2-70
Table 5.6-3. Roles and Responsibilities During Software Design—Example 2-70
Table 5.6.2. Software Item Architectural Design Tasks—Example 2-73
Table 5.6.3. Software Item Detailed Design Tasks 2-75
Table 5.7-1. Readiness Criteria: Software Coding and Unit Testing—Example 2-78
Table 5.7-2. Required Software Coding and Unit Testing Work Products—Example 2-78
Table 5.7-3. Roles and Responsibilities During Software Coding and Unit Testing—Example 2-79
Table 5.7-4. Software Coding and Unit Testing Tasks—Example 2-80
Table 5.8-1. Readiness Criteria: Software Unit Integration and Testing—Example 2-84
Table 5.8-2. Software UI&T Work Products—Example 2-84
Table 5.8-3. Software UI&T Responsibilities—Example 2-85
Table 5.8-4. Software UI&T Tasks—Example 2-86
Table 5.9-1. Readiness Criteria: Software Item Qualification Testing—Example 2-89
Table 5.9-2. Software Item Qualification Testing Work Products Per Build—Example 2-90
Table 5.9-3. SIQT Roles and Responsibilities—Example 2-91
Table 5.9.3. SIQT Preparation Tasks—Example 2-94
Table 5.9.4. SIQT Dry Run Tasks—Example 2-95
Table 5.9.5. Perform Formal SIQT Tasks—Example 2-96
Table 5.9.7. Analyzing and Recording SIQT Results—Example 2-97

xv

Downloaded from http://www.everyspec.com

Table 5.10. Readiness Criteria: Software/Hardware Item Integration and Testing—Example..2-99
Table 5.10.1. SI/HI Integration and Testing Preparation Tasks—Example 2-101
Table 5.10.2. Performing SI/HI Integration and Testing Tasks—Example 2-102
Table 5.10.3. Analyzing and Recording SI/HI Integration and Test Tasks—Example 2-103
Table 5.10.4. Revision and Retesting SI/HI Integration and Test Tasks —Example 2-104
Table 5.11. Readiness Criteria: System/Segment Qualification Testing—Example 2-105
Table 5.14-1. Division of SCM Responsibilities—Example 2-116
Table 5.14-2. Software Library Levels and Controls—Example 2-117
Table 5.15.1.2. Software Development Peer Reviews—Example 2-125
Table 5.18.1. Software Product Reviews By Activity and Category—Example 2-134
Table 5.18.2. Software Documentation Maturity Mapped to Reviews—Example 2-135
Table 5.20.5. Software Measurement Set—Example 2-142
Table 5.20.6-1. Format of the Measurement Information Specification—Example 2-143
Table 5.20.6-2. Example of a Measurement Information Specification for Staff Profile 2-144
Table 5.20.6-3. Base and Derived Measure Specifications—Example 2-144
Table 5.20.6-4. Format for the Measurement Indicator Specification—Example 2-145
Table 5.20.8-1. Software Indicator Thresholds—Example 2-146
Table 5.20.8-2. Software Indicator Program Red Flags—Example 2-146
Table 5.22. Subcontractor Management Team Members and Responsibilities—Example 2-148
Table 5.23. Software IV&V Evaluations—Example 2-149
Table 5.25.1. SEPG Membership and Responsibilities—Example 2-150
Table 5.25.2. Focus of the Process Improvement Initiative—Example 2-151
Table 5.25.6. Typical SPE Functions—Example 2-153
Table 5.26.3. Example Outline of the Software Maintenance Plan 2-156
Table 5.26.5. Key Software Sustainment Issues 2-157
Table 7.2.1. Chief Software Engineer Team Responsibilities—Example 2-163
Table 7.2.1.3. Estimated Skill Levels By Location and Function—Example 2-164
Table 7.2.2-1. Team Locations and Software Activities—Example 2-165
Table 7.2.2-2. Facilities Allocation—Example 2-165
Table 8.1. Acronyms—Example 2-167
Table 8.2. Software-Related Definitions—Example 2-167
Table 8.3. Work Instructions and Procedures—Example 2-168

Part 3. Additional SDP Guidebook Information

Table AGI-1. Roles and Responsibilities of the Chief Software Engineer—Example 3-4
Table AGI-3. Roles and Responsibilities of the Software Process Lead—Example 3-6
Table AGI-4. Roles and Responsibilities of the IPT Software Lead—Example 3-7
Table AGI-5. Roles and Responsibilities of the IPT Software Integration and Test Lead—

Example 3-8
Table AGI-6. Roles and Responsibilities of the Software Item Lead—Example 3-9
Table AGI-7. Roles and Responsibilities of the Software Engineer—Example 3-10
Table AGI-8. Roles and Responsibilities of the Software Test Engineer—Example 3-11
Table AGI-9. Roles and Responsibilities of the Software Configuration Management—

Example 3-12
Table AGI-10. Roles and Responsibilities of the Software Quality Assurance Management—

Example 3-13
Table AGI-11. Roles and Responsibilities of the Software Subcontract Management—Example.3-14

xvi

Downloaded from http://www.everyspec.com

Part 1. SDP Guidebook Introduction

1. Scope and Perspective

The contents and organization of the Software Development Plan (SDP) recommended in this
Guidebook is based on guidelines as defined in:

• Section E.2.1 of the "EIA/IEEE Interim Standard J-STD-016-1995 " (hereafter referred to as
J-16).

• Department of Defense (DoD) Data Item Description (DID) DI-IPSC-81427A, Software
Development Plan, and

• The Aerospace Corporation software development standard Technical Operating Report,
TOR-2004(3909)-3537B, "Software Development Standard for Space Systems " (hereafter
referred to as TOR-3537B). Appendix H of TOR-3537B contains the SDP content template.

This Guidebook is compliant with those standards, however, TOR-3537B is the cited standard as it
is newer (published 11 March 2005) and is currently being used as the compliance standard on United
States Air Force (USAF) Space and Missile Systems Center (SMC) programs. TOR-3537B has also
been published as SMC Standard SMC-S-012, "Software Development for Space Systems" dated
13 June 2008. If the guidance being applied appears only in J-16, then J-16 is the cited standard.
There is no intent to duplicate the information contained in those standards. The intent of this
Guidebook is to supplement the standards with detailed guidance, recommend contents, and
examples, to assist in the preparation and review of SDPs. Therefore, this Guidebook should be used
in conjunction with the standards.

The contents of a SDP, as defined collectively by the above standards, consists of the following eight
sections plus Addendums and Annexes as needed:

1.Scope
2. Referenced Documents
3. Overview of Required Work
4. General Requirements
5. Detailed Requirements
6. Schedules and Activity Network
7. Project Organization and Resources
8. Notes

• Addendums
• Annexes

2. Organization of this SDP Guidebook

This Guidebook is organized into three parts as shown in Figure 1-1. Part 1, the introduction, covers
the basic approach and general information of special importance to the reader. Part 2 of this SDP
Guidebook constitutes the bulk of the document as it contains the recommended contents of a
program-level SDP in terms of what is expected and recommended to be included within each
subsection or paragraph and examples of expected contents, figures, and tables. The Notes section
(Section 8) contains acronyms, definition of terms, and an example list of work instructions that
document how to carry out tasks described in the SDP. Part 3, Additional Guidebook Information,
contains a suggested list of software roles and responsibilities, references, definitions, acronyns, and a
Subject Index to this Guidebook.

1-1

Downloaded from http://www.everyspec.com

• PART 1: SDP Guidebook Introduction

• PART2: Recommended Contentsofa
Program-Level SDP for Large
Software Development Efforts

• PART 3: Additional Guidebook Information

Figure 1-1. Organization of This SDP Guidebook

3. Electronic Data Management

This Guidebook is written with the assumption that the contractor's parent organization has in place
an effective and comprehensive Electronic Data Interchange Network (EDIN) for the storage,
retrieval and distribution of program related software documentation and work products (see
subparagraph 5.2.3.1).

4. Example Text and Highlights

Tailoring. Throughout this Guidebook the name of a fictitious example program will be called
"XMPL." All of the figures and tables used in this SDP Guidebook are examples and they are
expected to be tailored for each program's SDP and be compliant with the developer's Standard
Software Process (SSP).

Example Text. In some sections of this Guidebook, example text is included as a guide for
preparation ofthat section. Example text is identified as follows:

Example Text:
The example text provided in this Guidebook is outlined with a solid outside border and
includes the words "Example Text" in the upper left corner.

Highlights. Paragraphs or sentences containing essential or key information are highlighted with a
light yellow background. When the term "<corporate>" is used in example text, the intention is to
replace it with the name of the parent organization of the program producing the SDP.

5. Terms and Acronyms Used

Terms used in this Guidebook are consistent with the definitions in Section 3 of TOR-3537B.

This Guidebook is not a standard! Therefore, there are no mandatory "shalls." Instead, the following
terms—and what they mean—are used throughout this Guidebook:

• Must; Highly recommended for compliance with TOR-3537B and J-16. The word "must"
is in bold letters to highlight that it is, or is implicitly, a "shall" in the standards.

• Should: Recommended for completeness
• Can: Discretionary but should be seriously considered for inclusion
• May: Discretionary or used to show examples

Using the term "may" implies that other good options exist—choosing between them is left up to the
program.

1-2

Downloaded from http://www.everyspec.com

Acronyms. Acronyms are used extensively in this Guidebook. Acronyms and definition of terms
used are included in Part 3 of this Guidebook. Table 1-1 is a list of the most common acronyms used
throughout the Guidebook. It is expected that individual sections of this Guidebook will likely be
used as a reference when needed (as opposed to assuming the reader will always read the entire
Guidebook). Consequently, acronyms are typically redefined when first encountered in each section.

Table 1-1. Common Acronyms Used in this Guidebook

CSWE

CCB

CDRL

COTS

C/R

CUT

IPT

IMP

IMS

MC

MSDL

SCM

SCR

Chief Software Engineer

Configuration Control Board

Contract Data Requirements List

Commercial Off-The-Shelf

COTS/Reuse (a software class)

Code and Unit Test

Integrated Product Team

Integrated Master Plan

Integrated Master Schedule

Mission Critical (a software class)

Master SDL

Software Configuration Management

Software Change Request/Report

SDF

SDL

SDP

SDR

SEIT

SEPG

SI

Software Development File (or Folder)

Software Development Library

Software Development Plan

Software Discrepancy Report

System Engineering, Integration, and Test

Software Engineering Process Group

Software Item

SPR

SQA

SS

SU

SW/CCB

TIM

Software Peer Review

Software Quality Assurance

Support Software (a software class)

Software Unit

Software Configuration Control Board

Technical Interchange Meeting

The "Program Office" or the "Acquisition Program Office" and the "customer," as referenced in this
Guidebook, refers to the government organization responsible for the program's contract and
implicitly includes their representatives—such as personnel from The Aerospace Corporation, other
Federally Funded Research and Development Centers (FFRDCs). and System Engineering and
Technical Assistance (SETA) contractors.

6. Format of the Process Descriptions

A graphical and tabular emphasis is heavily displayed in this SDP Guidebook and is the
recommended format to more clearly describe the software development processes. Details of the
software development process are contained in subsections of SDP Section 5, especially
subsections 5.3 through 5.11, covering the principal activities of the software development process.

The following four inter-related items (three tables and a flowchart) are recommended for inclusion in
SDP subsections, 5.3 through 5.11, to provide a comprehensive definition of the software tasks
involved in each activity:

• Readiness Criteria Table: Should contain: Entry Criteria; Exit Criteria; Verification Criteria;
and Measurements for each software development activity

• Software Work Products Table: Should contain: A list of work products required, or
typically produced, for each software development activity organized by software category

• Input/Process/Output (IPO) Flowchart: Should show: the input documents and work
products, process tasks, and outputs for each software development activity

• Task Table: Must be linked to the process activities in the IPO flowchart but containing more
details of the tasks and sub-tasks for each software development activity. The IPO flowchart
can be considered optional, but the Task Tables should be included in subsections 5.3 through
5.11.

1-3

Downloaded from http://www.everyspec.com

Examples of these tables, and the flowchart, are included in subsections 5.3 through 5.11 of this
Guidebook. Example figures throughout this Guidebook are intentionally made simple to convey the
general content expected in the figure. In most cases, it is expected that the figures produced by the
contractor for their SDP will have more content and detail than the examples shown.

7. Integrated Product Teams (IPTs)

The establishment of effective software IPTs is one of the most important ingredients to a successful
software development program. The software IPTs, referenced extensively throughout this
Guidebook, must be composed of relevant stakeholders who make and implement decisions for the
work being developed. The software IPTs are collectively responsible for delivering the product(s)
and its members should:

• Share a common understanding of the IPTs tasks, objectives, and responsibilities
• Collectively provide the skills and expertise needed to accomplish the tasks and objectives
• Collaborate internally and externally with other IPTs and relevant stakeholders
• Provide the advocacy and representation to address all phases of the lifecycle

8. Analysis and Design Methodologies

The recommendations in this Guidebook are applicable to all software analysis and design
methodologies; however, the examples presented in this Guidebook assume the software is being
developed using an Object-Oriented approach since Object-Oriented Analysis (OOA) and Object-
Oriented Design (OOD) have, to a large extent, replaced the Structured Analysis (SA) and Structured
Design (SD) approach commonly used for the past 30 years. The scope of this SDP Guidebook does
not permit a discussion and evaluation of the advantages and disadvantages of various methodologies.
Newer methodologies, such as Agile and Extreme Programming, may be appropriate for some types
of software development.

9. Format Options for the SDP

A comprehensive SDP is composed of multiple parts. Typically, there are two basic approaches to
SDP formats: programs with a single SDP and programs with a program-level SDP plus site-specific
SDPs.

The Single SDP Approach. A program may elect to have a single SDP and mandate that it be
followed by all software team members. That approach works very well when all developers,
including subcontractors, are co-located and using the prime's infrastructure.

The Site-Specific SDP Approach. On large programs, typically involving numerous corporations
that are geographically dispersed, site-specific SDPs are often needed because of significant corporate
differences in software organization, management policies, development environments, and unique
operational processes and procedures. Site-specific SDPs are written and maintained by the
development sites and provide additional standards and procedures specific to each site. They expand
upon, but must not conflict with, the processes and procedures defined in the program-level SDP
unless a waiver has been approved. Figure 1-2 is a typical organization of the complete "SDP
package" containing three parts including site-specific annexes. Programs with a single SDP would
not have Part 3.

1-4

Downloaded from http://www.everyspec.com

SDP Plans. All of the plans listed as SDP Addendums in Figure 1-2 are recommended as long as they
are applicable. Some programs will require the plans listed as SDP addendums embedded in the SDP
itself; other programs may require them to be separate documents. Software management and quality
control plans are briefly described in subparagraph 4.2.10.1 of this Guidebook.

PART 1
Program-Level Software Development Plan

Appendices

PART 2
SDP Addendums

SDP Management Plans
* Software Quantitative Management Plan
* Software Metrics Plan
. Software Subcontract Management Plan
* Software Risk Management Plan
* Software Reviews Plan
* Software COTS/Reuse Plan
* Software Resource Estimation Plan
. Software Integration and Test Plan
. Software Maintenance Plan

SDP Quality Control Plans
. Software Configuration Management Plan
. Software Quality Assurance Plan
. Software Process Improvement Plan
. Software Corrective Action Plan
. Software Product Inspection Plan
• Software Standards (Coding, Design, etc.)

PART 3
Site-Specific SDPs

Annex A: Site 1 Specific SDP
Annex B: Site 2 Specific SDP
Annex C: Site 3 Specific SDP

Figure 1-2. Components of a Typical SDP Package—Example

10. Tailoring of the SDP

The SDP must be tailored to the specific requirements of a particular program, program phase, or
contractual structure to which it applies. Although tailoring is generally a responsibility of the
acquirer, prospective and selected software developers may provide suggested tailoring. Generic
tailoring guidance is provided in J-16 Annexes A, B, and C. Tasks that add unnecessary costs, and
data that does not add value to the product, must be eliminated. Tailoring can include deletion,
alteration, or addition of activities as long as the result satisfies program requirements. Acquirer-
generated tailoring is normally specified in the Statement of Work (SOW), Compliance Documents or
in the Contract Data Requirement List (CDRL) section of the contract.

11. Large Versus Small Software Developments

SDP tailoring guidelines apply to both large and small development efforts. If a specified task or
activity does not make sense because of the size of the development effort, it should be deleted. There
is no intention to shoot a mouse with an elephant gun. However, a sound software process
management philosophy dictates that all software developments (large and small) go through the
same procedural steps—the difference is a matter of scale.

1-5

Downloaded from http://www.everyspec.com

12. Recommended SDP Numbering Format

To enhance readability, it is recommended that the SDP numbering format does not go beyond four
levels plus two additional unnumbered levels as follows:

• Level 1: Section (Example 5)
• Level 2: Subsection (Example 5.1)
• Level 3: Paragraph (Example 5.1.1)
• Level 4: Subparagraph (Example 5.1.1.1)
• Level 5: Bold key word(s) to lead off the paragraph
• Level 6: Bullets indented under Level 5 (Note: Bullets can also be used at

Levels 2 through 4)

1-6

Downloaded from http://www.everyspec.com

Part 2. Recommended Contents of a Program-Level SDP
for Large Software Development Efforts

1. Scope

The SDP starts with the Scope and is defined by TOR-3537B' as containing four subsections:
Identification (1.1), System Overview (1.2), Document Overview (1.3). and Relationship to Other
Plans (1.4).

1.1 Identification

The purpose of this subsection is to fully identify the system, the software to be produced, and the
activities to which the SDP applies. It includes applicable identification numbers, version numbers,
and release numbers. Subsection I. I can be as short as one paragraph or a half page or longer to
introduce the SDP and organization of the Software Item (SI)2. For example, an introduction to the
SDP may be similar to the following:

Example Text:
This Software Development Plan (SDP) establishes the management and technical plans to be used
during Phase-C, Complete Design, by the XMPL Integrated Product Teams (IPTs), in the
development of software items for all segments and their development sites.

This SDP describes the organization, processes, controls, and tools applied to the management,
design, development, and test of the XMPL software products. This plan applies to all software
integrated into XMPL during its lifecycle, including newly developed software, reused software and
modifications to it. and commercial off-the-shelf (COTS) products.

The SDP provides software management with the controls necessary to oversee the XMPL software
development activities. It provides software engineers with the standards and practices required for
all XMPL software development. This SDP implements the <corporate> Standard Software Process
(SSP). as tailored for the XMPL program.

Subsection l. I should contain a software organization overview as shown in the example Figure l. I.
This figure should show the program segments containing software, the Software Items (Sis), and a
top-level view of the software organization. A description of the software organization must also be
addressed in subsection 7.1 of the SDP. Unfortunately, subsection 7.1 of TOR-3537B and J-16 is
titled "Project Organization" and many SDP authors take that literally to mean "project" and do not
show details of the software organization. In the context of an SDP, subsection 7.1 must be
interpreted to mean a view of the software organization from a project perspective.

Some programs may not have all the software titles shown in Figure I. I. In that event, responsibilities
identified for the Chief Software Engineer (CSWE), Chief Software Architect, and Chief Process
Engineer should be performed by the person(s) having those responsibilities regardless of their job
title. This Guidebook assumes the program has a CSWE and contains descriptions of the
responsibilities typically performed by the CSWE (see AGI-l Tables AGI-land AGI-2 and
subparagraph 7.2.LI).

1 TOR-3537B is cited throughout this Guidebook, however. J-16 can also be used as the referenced standard since this
Guidebook is compliant with both standards.

2 The SI was called a Computer Software Configuration Item (CSCI) in MILSTD-2167A and MILSTD-498.

2-1

Downloaded from http://www.everyspec.com

XMPL Chief Systems Engineer

XMPL Chief Software Engineer

Software Configuration
Management

Software Quality Assurance

Chief Software Architect

Chief Software Process Engineer

Space
Software

Spacecraft
Pay loads

Ground
Software

MMC
• Test Beds

Field
Software

JKL
MNO

Command, Control, and
Communications Software

ABC
DEF

Figure 1.1. Software Organization and Software Item Structure Overview—Example

1.2 System Overview

The intent of this subsection is to describe the general nature of the system and the software. To
provide a clear overview of the "system" versus the "software," it is recommended that subsection 1.2
be broken into two paragraphs: System Architecture Overview (1.2.1) and Software Architecture
Overview (paragraph 1.2.2). Paragraph 1.2.1 should be further broken down into a general system
description followed by short descriptions of the segments comprising the overall system.

1.2.1 System Architecture Overview

The purpose of the system must be briefly stated in paragraph l .2.1. As applicable, it must
summarize any historical aspects of the system to be developed and identify the project sponsor,
acquirer, user(s), developers, as well as planned maintenance organizations and operating sites. The
segments that comprise the system must be listed and an overall graphical diagram of the system
should be included similar to the example shown in Figure 1.2-1.

The remainder of SDP paragraph 1.2.1 should contain as many single paragraphs as necessary to
describe the segments that involve software responsibilities for the system. In the XMPL example
there would be descriptions of the following four segments:

• Space Segment: Top-level functions of the spacecraft and pay load software

• Command, Control, and Communications (C3) Segment: Top-level functions of C3
software

• Ground Segment: Top-level functions of the ground-based software

• Field Segment: Top-level functions of the field software

2-2

Downloaded from http://www.everyspec.com

Figure 1.2.1. XMPL System Overview—Example

1.2.2 Software Architecture Overview

This paragraph provides an overview of the software system (or functional) architecture, a definition
of the software categories, and an overview of the Software Items (SI) and responsibilities.

The overall software system architecture should be depicted in a diagram; Figure 1.2.2 is an example
of such a diagram. An additional, or optional approach, would be to include a "functional matrix"
table showing the software "functionality" for each segment or SI. A physical overview of the system
may also be necessary.

2-3

Downloaded from http://www.everyspec.com

Space Segment (SS)
Spacecraft (FSW)

• Spacecraft Control
Processor (SCP)

• Data Server Unit (DSU)
• Payload Support Processor

(PSP)

Payloads
• One
• Two
• Three
• Four

Command, Control, and
Communications Segment

Field Segment
• Infrastructure (INF)
' Ingest (ING)
•Processing (PRO)
• Data Delivery System (DDS)
' Data Management System (DMS)

Items preceded by a bullet are
Deliverable Software Items

.2

55
•o c
O

MMC Backup

Mission Management Center
•Satellite operations (SO)
•Orbit operations (00)
• Mission management (MM)
•Ground operations (GO)
• Stored telemetry analysis (STA)
•Enterprise management (EM)

s
Data Routing and Retrieval
• Data monitorand recovery (DMR)
• Data handling node (DHN)

TT
Ground Segment
•Infrastructure (INF)
•Ingest(ING)
•Processing (PRO)
•Data delivery (DDS)
• Data management (DMS)
• Calibration/validation (CVS)

Figure 1.2.2. XMPL Software System Architecture Overview—Example

1.2.3 Software Classes and Categories

There are typically three generic classes of software in a software-intensive system: mission critical
software, support software, and COTS/Reuse software as described in example Tables 1.2.3.1
through 1.2.3.3. Each software class can be further sub-divided into categories as needed for the
program, resulting in the identification of 4-8 categories of software for a typical program.

The number of software classes, the number of categories within those classes, and the names of each
are not critical. What is important is that there must be a definition of the category assigned to each
software entity because not every software entity needs to have the full set of documentation, the full
set of reviews, the full set of metrics, and the same level of testing.

Assigning categories to software entities can result in cost savings by eliminating unnecessary
documents, reviews, metrics, and testing. However, the simplicity of this approach is deceiving since
obtaining agreements from all stakeholders on the appropriate category to assign is not always simple.

1.2.3.1 Mission Critical Software

Mission Critical (MC) software is physically part of, dedicated to, and/or essential to the mission
performance of the system. It includes both space and ground software. MC software may be
expanded to two software categories as defined by the example in Table 1.2.3.1.

2-4

Downloaded from http://www.everyspec.com

Table 1.2.3.1. Mission Critical Software Class and SI Categories—Example

Class Definition Category Category Definition

MC MC-1
Deliverable applications software that
plays a direct role in system operation
and system development.

MISSION CRITICAL SOFTWARE
Applications software used to perform
real time operations and non-real time

functions implicitly required for a mission.

MC-2
Same as MC-1 but the software is
embedded in deliverable hardware.
Firmware is software and is treated in the
same way as software that executes in
general purpose computers.

1.2.3.2 Support Software

Support Software (SS) aids in system hardware and software development, test, integration,
qualification, and maintenance. The SS class may be composed of three SI categories, SS-l, SS-2,
and SS-3 as defined in Table 1.2.3.2. MC-1, MC-2, and SS-l software categories (but not SS-2 or SS-
3) are usually deliverable and contractually obligated, must pass through all of the developmental
phases, including all of the relevant software documentation, reviews, metrics, and testing, and are
subject to external Software Discrepancy Reports (SDRs).

SS-2 software is used in non-operational environments, may be deliverable, but normally not
contractually obligated. Both SS-2 and SS-3 software categories do not go through the full software
lifecycle or receive external SDRs and are normally not deliverable. However, in some cases,
important support software may be contractually deliverable. For example, deliverable support
software may include training software, database-related software, software used in automatic test
equipment, and simulation software used for diagnostic purposes during the maintenance activity.
The contractor must decide the appropriate category for all software entities in compliance with
contractual requirements.

Table 1.2.3.2. Support Software Class and SI Categories—Example

Class Definition Category Category Definition

SS SS-1
Software items that play a direct role in program and
system development including software and system
requirements qualification and acceptance testing for
final "sell-off."

SUPPORT SOFTWARE
Software that aids in system

hardware and software
development, test,

integration, qualification and
maintenance.

SS-2
Support software that is typically prototype software,
simulation software, or performance analysis and
modeling tools (although some of this type of
software may be selected to be in category SS-1).

SS-3
Non-deliverable and non-critical tools or test drivers
that indirectly aid in the development of the other
categories of software.

1.2.3.3 Commercial Off-The-Shelf and Reuse Software

COTS/Reuse software is non-developmental software items including commercial and government
off-the-shelf (COTS or GOTS) software as well as reused software obtained from internal libraries,
previously developed under an internal research and development effort, or developed by other
programs, set up specifically for reuse. The C/R class may be composed of two categories as
described by the example in Table l .2.3.3.

2-5

Downloaded from http://www.everyspec.com

Table 1.2.3.3 COTS/Reuse Software Class and SI Categories—Example

Class Definition Category Category Definition

Non-developmental software that is
C/R C/R-1 unmodified COTS or Reused software.

COTS/REUSE SOFTWARE Non-developmental software that is
Non-developmental software items C/R-2 modified COTS or Reused software*

including commercial and government (A distinction between vendor-provided
off-the-shelf and internally reused software may be

(COTS or GOTS) software. All C/R made for C/R-1 and C/R-2 if meaningful to
products must be treated and controlled the program)
as defined for the category targeted for

its end use.
'Modifying vendor-provided COTS is generally a high-risk approach and is not recommended.

Calculating ESLOC. When software design and/or code is reused, the costing of it is usually based
on an approach called the "Equivalent Source Lines of Code" (ESLOC) count. The premise is that
some portion of the design, code and/or testing does not have to be redone and can be reused. The
method to be used for calculating ESLOC must be described in the SDP.

One common approach to calculating ESLOC is to set the proportionate weighting factors for
designing, coding and testing the reused software product to 40%, 30%, and 30% respectively.
Programs may deviate from these standard proportions (40%, 20%, and 40% is also often used). The
ESLOC count is calculated by estimating the percentage of new design, coding and testing needed for
the deliverable product, and multiplying the sum of these weightings by the lines of code in the
reused product.

For example, assume an existing documented software product with 1000 source lines of code was
selected for reuse by another program having a need for similar functionality. Upon examination of
the reused product, an estimate is made that only 10% of the design needs to be changed, 30% of the
code must be redone, and 60% of the software needs to be retested. In this example, the ESLOC is
310 and is calculated as follows: 1000 [(.1 * .4) + (.3 *.3) + (.6 * .3)] = 1000 [.04 + .09 + .18] = 1000
[.31] = 310.

1.2.3.4 Software Category Features

A single Software Item (SI) may consist of different classes and/or categories. In that event, each part
of the SI must be compliant with the documentation, review, and testing requirements of the category
assigned to it. All software releases must be configuration controlled by a Software Development
Library (SDL) at the segment level or by the Master Software Development Library (MSDL) at the
program level as described in SDP paragraph 5.2.3.

Software cannot be moved up or "promoted" to a higher category level without additional
development and testing. To achieve a higher category level, the software must be "re-engineered"
and conform to the documentation, review, and testing requirements imposed on the higher category
level. All COTS and reused products must be treated and controlled as defined for the category
targeted for its end use.

2-6

Downloaded from http://www.everyspec.com

1.3 Document Overview

This overview of the SDP document must include its constituent parts and organization, and should
include a plan for updating. If applicable, it must also describe any security, distribution, or privacy
protection considerations associated with its use.

1.3.1 SDP Component Parts

The SDP is more than just a program-level document since it usually contains addendums and
annexes that may be bound separately from the main volume. These SDP components can be shown
in graphical form on the page following the title. The following is an example of text that may be
used for paragraph l .3.1:

Example Text:
The complete XMPL SDP is organized into three parts as follows:

Part 1: This is the program-level SDP (also called the SDP "main volume")

Part 2: Addenda to the SDP containing XMPL plans or processes documents:

Addendum A: Software Metrics Plan

Addendum B: Software Roles and Responsibilities

Addendum C: Software Subcontractor Management Plan

Addendum D: Software Quality Assurance Plan

Addendum E: Software Configuration Management Plan

Addendum F: Software Reviews Plan

Addendum G: Software Resource Estimation Plan

Addendum H: Software COTS/Reuse Plan

Addendum I: Software Integration and Test Plan

Addendum J: Software Risk Mitigation Plan

Addendum K: Software Maintenance Plan

Addendum L: Software Training Plan

Part 3: Annexes to the SDP—Site-Specific SDPs as required for software team members

2-7

Downloaded from http://www.everyspec.com

1.3.2 SDP Organization

This paragraph of the SDP is essentially "boiler-plate" as it describes the format required in the
standard used to produce it—in this case, TOR-3537B. The following example text may be used for
this paragraph:

JCI eText:
This SDP was produced using the compliance standard entitled "Technical Operating Report,
TOR-2004(3909)-3537B, "Software Development Standard for Space Systems." The XMPL SDP
is organized into the following eight sections:
• Section 1: Provides overviews of the XMPL system, the software system, SDP updates,

software classes and categories, and the relationship of the XMPL SDP to other XMPL
documents

• Section 2: Identifies all documents referenced by this SDP
• Section 3: Discusses an overview of the work to be performed. It describes the requirements

and constraints on the software, documentation, schedules, and resources
• Section 4: Describes the general software development activities to be performed. This

includes an overview of the software development process, standards that apply to the
development activities, the approach to developing and incorporating reusable software,
information on computer resource utilization, and the handling of critical requirements

• Section 5: Provides details on each of the individual software development phases and
activities that are to be performed, or may be performed. It covers project planning, methods,
and the tools that support these methods

• Section 6: Identifies the schedules and activities to be performed
• Section 7: Provides details on the XMPL project organization and the resources to be applied
• Section 8: Provides the definition of acronyms and selected terms used in this document plus

identification of lower level standards and procedures

1.3.3 SDP Updates

The SDP is considered a "living" document that must be updated periodically throughout the
software development lifecycle. Updates are usually planned to occur at the Program Milestones, and
a figure similar to the example Figure 1.3.3 can be included in the SDP—or the same information
provided in table format.

March
2012 Preliminary Delivery With Proposal)

December
2012 ATP • 90 day Delivery |

PDR Update Delivery I November
2013

October
2014 CDR Update Delivery

-2016 Lessons
Learned)

Figure 1.3.3. XMPL SDP Update Plan—Example

2-8

Downloaded from http://www.everyspec.com

1.4 Relationship to Other Plans

The relationship of the SDP to other key project management plans is important to establish
document subordination in the event of conflicts between plans. Figure 1.4 is an example overview of
the relationship of the SDP to other key plans; software documents are highlighted. Example text for
this subsection may be:

Example Text:
The XMPL SDP is compliant with the <corporate> Standard Software Process and serves as the
compliance document for all XMPL software development. Contractor specific plans, development
policies, and practices are incorporated as annexes to this program-level SDP.

Team members shall comply with this SDP based on tailoring guidance provided in subsection 4.1
and captured in their annexes to this document. The XMPL SDP is subordinate to the Integrated
Master Plan (IMP) and, in the event of a conflict, the IMP takes precedence. The SDP is not
subordinate to, but must be consistent with, the other plans at the same peer level as shown in
Figure 1.4 (e.g., SEMP, CM, etc.).

IMP IMS
Integrated Management Plan Integrated Master Schedule

System
Test Plan

Software
Development Plan

Software Test and
Verification Plans

Software
Metrics

Plan

Other Software
Plans and Manuals

Configuration and
Data Management

Plans

Program Quality
Assurance Plan

System
Engineering

Management Plan

Software
Configuration

Management Plan

Risk Management
Plan

Contractor-Specific
SDP Annexes

Software Quality
Program Plan

Software Risk
Management Plan

Figure 1.4. Relationship Between the XMPL SDP and Other Key Plans—Example

2-9

Downloaded from http://www.everyspec.com

2-10

Downloaded from http://www.everyspec.com

2. Referenced Documents

All referenced and applicable documents in the SDP must be listed in Section 2 and must contain the
document number, document title, and date of the revision used. A tabular format is an easy way to
display this information and should be organized by government and non-government documents and
then broken down into referenced and applicable documents as shown in the examples below.
Referenced documents are guidelines, but Applicable documents must be adhered to. Non-
Government Applicable documents are usually mandated by the developer*s organization or by the
program.

2.1 Government Documents

2.1.1 Government Referenced Documents—Example

Document Number Document Title Revision Date

Document Number Document Title Document Date

Document Number Document Title Document Date

2.1.2 Government Applicable Documents—Example

Document Number Document Title Revision Date

Document Number Technical Requirements Document (TRD) Document Date

Document Number Interface Control Document (ICD) Document Date

2.2 Non-Government Documents

2.2.1 Non-Government Referenced Documents—Example

Document Number Document Title Revision Date

Document Number Software Estimating Guide Document Date

ISO 9001 Quality Program Document Date

ISO/IEC 15939 Software Engineering—Software Measurement Process 2002

Document Number Software Peer Review Guide Document Date

IEEE-1471 Software Architecture Descriptions Document Date

AIAA R-023A Recommended Practice—Human Computer Interface for Space

System Operations

1995

2.2.2 Non-Governmi jnt Applicable Documents—Example

Document Number Document Title Revision Date

Aerospace Report No TOR-
2004(3909)-3537B

Software Development Standard for Space Systems 11 March 2005

J-STD-016-1995 Standard for Information Technology September 1995

ANSI/ISO/IEC 9899 c 1990

ISO/IEC 14882 c++ July 1998

Document Number <Corporate> Standard Software Process Document Date

Document Number Software Subcontract Management Guidebook Document Date

Document Number Configuration and Data Management Plan Document Date

Document Number Risk Management Plan Document Date

Document Number Integrated Management Plan (IMP) Document Date

Document Number Integrated Management Schedule (IMS) Document Date

Document Number Security Implementation Plan Document Date

Document Number Integration and Test Plan Document Date

2-11

Downloaded from http://www.everyspec.com

2-12

Downloaded from http://www.everyspec.com

3. Overview of Required Work

There are no specific numbered subsections required for Section 3 in TOR-3537B. However,
TOR-3537B describes Section 3 as containing an overview of requirements and constraints on the:
system, software, documentation, development strategy, schedule, resources, and other areas, such as
contractual and non-contractual constraints, plus a requirement to show the position in the system
lifecycle where the SDP applies. The following organization is recommended.

3.1 System Acquisition Lifecycle

A figure similar to example Figure 3.1, or a table, should be included in SDP subsection 3.1 to
provide a top-level overview of the system acquisition lifecycle phases combined with a clear
indication as to where in the system lifecycle the SDP being written applies. Also, the program's
Integrated Master Plan (IMP) must be referenced in the SDP since the IMP includes important
information on program tasks, events, and milestones for software activities.

Acquisition Phases

Phase A:
Technology
Development

This version of the SDP applies to the
EMD phase of the XMPL Contract

Phase B:
Engineering and
Manufacturing
Development

-*-

Phase C:
Production and
Deployment

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Figure 3.1. XMPL System Acquisition Lifecycle Phases—Example

3.2 Software Requirements and Constraints

Figure 3.2 is a depiction of the basic levels of abstraction for describing the software process used in
this Guidebook. The top level is focused on programmatic phases. The middle level incorporates the
principal software development activities required by subsections 5.3 through 5.11 of the SDP. The
lowest process level involves the specific tasks required to carry out the software development
activities.

There are many types of system requirements and constraints that may become drivers for the
software. Such drivers may include: specific standards that must be followed; precise performance
mandates; requirements to execute on a government platform; preliminary deliveries of software
such as an interim version needed to support military exercises; mandated severe schedule constraints
to meet launch or delivery dates; etc. (see subsections 3.8 and 3.9).

A fundamental aspect of the software development process is the system lifecycle model to be
followed. A detailed discussion of process models is beyond the scope of this document. However,
six of the most common software development process models (Prototype, Waterfall, Incremental,
Evolutionary, Spiral, and Compound—such as the Rational Unified Process•) are briefly defined in
subsection 4.1. The process models are also discussed in the Air Force Space and Missile Systems
Center Instruction 63-104. dated 21 November 2005, and in many other sources.

2-13

Downloaded from http://www.everyspec.com

Technology Development Phase
Engineering and Manufacturing Development Phase
Production and Deployment Phase

SDP Sections 5.3 through 5.11
5.3 System Requirements Analysis
5.4 System Design
5.5 Software Requirements Analysis
5.6 Software Design
5.7 Software Implementation and Unit Testing
5.8 Unit Integration and Testing
etc.

5.8 Unit Integration and Testing
Task 1: Prepare for UI&T
Task 2: Perform UI&T
Task 3: Perform Revision and UI&T Testing
Task4: Analyze and Record UI&T Results

Figure 3.2. Software Process Levels Used In This Guidebook

3.3 Software Item Overview

Although not specifically required by TOR-3537B, an overview of the planned Software Items (SI)
should be provided in this SDP subsection. An overview of the Sis that are to be developed can be
best displayed in a table that defines the Sis in terms of the responsible Integrated Product Teams
(IPTs), where in the system the SI is used, the developing organization, the programming languages
used, and the software category for each SI. An example is shown in Table 3.3.

Table 3.3. XMPL Software Items and Team Responsibilities—Example

Software Item IPT System Element Developer Languages SW Category

Spacecraft Controller
Processor

Space Spacecraft Able Corp. C MC1, MC2

Payload Support
Processor

Space Spacecraft Able Corp. C MC1

Vehicle Dynamic
Simulator

Space Spacecraft Able Corp. C SS1

Data Management Ground Data Processor Baker Corp. C++, Java MC1
Data Delivery Ground Data Processor Baker Corp. C++, Java MC1
Infrastructure Ground Data Processor Baker Corp. C++, Java, IDL MC1.SS1.C/R1
Calibration and
Validation

Ground Data Processor Baker Corp. C, C++, Java,
Visual Basic

SS1.SS2.SS3

Satellite Operations C3S Mission Management
Center

Charlie
Corp.

C, C++, Java
FORTRAN

MC1,SS1,SS2,
SS3,
C/R1

Mission
Management

C3S Mission Management
Center

Charlie
Corp.

Java, C++ MC1,SS1,SS3

Ground Operations C3S Mission Management
Center

Charlie
Corp.

CC++ MC1,SS1,SS2,
SS3

Table 3.3 can become a very long table; in that case it should be included in an SDP Appendix and
referenced in subsection 3.3. This table can be expanded with additional columns, such as percent
new versus reuse code, and developer contact information.

2-14

Downloaded from http://www.everyspec.com

3.4 Required Software Lifecycle Activities

Figure 3.4 is an example illustration of the required software activities during the software lifecycle
development organized into four domains. Figure 3.4 also identifies the subsections within the SDP
where each activity of the software development process is described.

5.1 - Project Planning and Oversight
5.19 - Risk Management
5.20 - Software Management Indicators
5.21 - Security and Privacy
5.22 - Subcontractor Management
5.23 - Interfacing With Software IV&V Agents
5.24 - Coordination With Associate Developers

5.3 - System
Requirements Analysis
5.4 - System Design
5.10 - Software / Hardware
Item Integration and
Testing
5.11 - System
Qualification Testing
5.12- Preparing for
Software Transition to
Operations
5.13- Preparing for
Software Transition to
Maintenance

SDP Sub-sections
5.3 -5.13 are
applicable to

specific activities
of the software

development life
cycle

5.2 - Establishing a Software Development
Environment
5.14 - Software Configuration Management
5.15 - Software Peer Reviews and Product
Evaluation
5.16 - Software Quality Assurance
5.17 - Corrective Action
5.18 - Joint Technical & Management Reviews

5.5 - Software
Requirements Analysis
5.6 - Software Item
Design
5.7 - Software
Implementation & Unit
Test
5.8 - Software Unit
Integration and Test
5.9 - Software Item
Qualification Test
5.25 - Software Process
Improvement
5.26 - Software
Sustainment (Optional)

SDP Sub-sections 5.1,
5.2 and 5.14-5.26 are

activities that support
the entire software
development life

cycle

Figure 3.4. Software Lifecycle Development Domains—Example

3.5 Software Process Overview

In addition to overviews of the Sis and development activities in the previous subsections, it is
recommended and extremely useful to include in subsection 3.5 an overview of the software
development process that the program expects to follow and cover in more detail in SDP Section 4.

Figure 3.5-1 is one example of how to illustrate an overview of the software development process. It
shows the principal software areas of responsibility as well as where software supports System
Engineering for system-related activities. Figure 3.5-2 is a depiction of the specific software
development activities and the sections of the SDP (subsections 5.3 through 5.13) where the activity
is described. Although Figure 3.5-2 implies a sequential process, the actual process is dictated by the
software development process model used (see SDP Appendix B) as well as an overlap of the
activities consistent with the build plan.

2-15

Downloaded from http://www.everyspec.com

c
o
o
c
o
Ü
<
>
Ü
CD
l_

o
o

Performance Specifications

•*-L System Requirements and Design J

System Requirements and Design

SOFTWARE REQUIREMENTS AND DESIGN

Software Requirements and Desiqn

T* H SOFTWARE IMPLEMENTATION

Readiness Reviews

i TRD = Technical Requirements >
Document
CDD = Capabilities Development
Document
ICD = Initial Capabilities Document
SPS = System Performance
Specification
CONOPS = Concept of Operations /

\+ »J INTEGRATION AND TEST

Qualification Reviews

3.6

** -L System Qualification Testing 1

Operations Turnover

Figure 3.5-1. XMPL Software Development Process Overview—Example

Software Documentation Requirements and Constraints

•
/

Software
Responsibilities

1 Software Support to
k System Engineering A

\

During the software development process, various documents are required at different phases of the
lifecycle. It is recommended and extremely useful to include an overview of the plans for production
of software documentation in subsection 3.6. An example of a Software Documentation Production
matrix is shown in Table 3.6.

The example document production matrix in Table 3.6 is an important guide as it summarizes the
preparation of required work products (i.e., documentation) during the software development and test
lifecycle covering SDP subsections 5.5 through 5.13. It identifies the normal preparation of draft (D),
preliminary (P), and baselined (B) documents as well as when baselined documents are updated (U).
Some documents that are prepared may not be required to be delivered. They may be prepared to be
compliant with TOR-3537B but not contractually deliverable (such as unit test plans, descriptions,
and reports). The contract must identify the required work products to be delivered.

2-16

Downloaded from http://www.everyspec.com

SDP 5.3 % System Requirements Analysis

SDP 5.4 % System Design

]
•

SDP 5.5 •. •

SDP 5.6 •

Software Requirements Analysis

I = System Engineering Activity

with Software IPT Support

] = Software Engineering Activity
with System Engineering

Support

•

SDP 5.7 %

Software Design

•
•

SDP 5.8%

Software Implementation and Unit Testing

Unit Integration and Testing

•

SDP 5.9 •
• _
•

Software Item Qualification Testing

5.10 • 4 Software/Hardware Item Integration and Testing

•

SDP 5.11 • System Qualification Testing

SDP 5.12% Preparing for Software Transition To Operations

•
SDP 5.13 ^ Preparing for Software Transition To Maintenance

Figure 3.5-2. Principal Software Development Process Activities—Example

Documents, and other software products required at each activity of the lifecycle. are discussed in
subsections 5.5 through 5.13. and the matrix must be consistent with the required work products
tables appearing in each of those subsections. See Table 5.18.1-2 for a breakdown of software
documentation mapped to formal reviews.

Non-document software work products, as defined in subparagraph 4.2.10.3, are not included in the
documentation production matrix in Table 3.6.

In addition. Table 3.6 does not include software management and quality control plans such as the:
Software Development Plan; Risk Management Plan; Data Management Plan; Subcontractor
Management Plan; Software Safety Plan; Software Configuration Management Plan; Software
Quality Assurance Plan; Software Process Improvement Plan; Software Peer Review Plan: Software
COTS/Reuse Plan; Software Metrics Plan; Software Reviews Plan. etc. (see subparagraph 4.2.10.1).

It is also recommended to include in the SDP a master index of all software documentation. That
index can be included as an SDP Appendix. For more information on software deliverable
documentation see TOR-2006(8506)-5738, Recommended Software-Related Contract Deliverables
for National Security Space System Programs, dated 14 February 2008.

Data Item Descriptions (DIDs) must be listed (as applicable) on the Contract Data Requirements List
(CDRL) to ensure the software work products are delivered under the contract. TOR-3537B provides
a list of the software DIDs. Each DID provides a full description of the contents of each deliverable
software document. Annexes E through J in J-16 also provide a similar description of software
document contents. Note that the Master Test Plan is not a software document.

2-17

Downloaded from http://www.everyspec.com

Table 3.6. XMPL Software Documentation Production Matrix—Example

Software Documentation

Determent SDD ,DD SVD SUM F*M

Activities (5) SRS IFCD SMBP SAD DBDD STP STD STR SPS STrP CPM
Software
Requirements
Analysis

P
(1)

B D

SI Architectural
Design B U P P D/P P

Software Item
Detailed Design (2) U B B B B D

Software
Implementation
and Unit Testing (2)

U U U D

Unit Integration
and Testing (2) U D/P D

SI Qualification
Testing (3) u P/B B P P P

SI/HI Integration
and Testing (3) U B

System
Qualification
Testing

U

Preparing for SW
Transition to
Operations

U B

Preparing for SW
Transition to
Maintenance

U B

MATURITY LEGEND
D = Draft In Process
P = Preliminary Baseline Completed
B = Basel ined
U = Updated Baseline (as needed)

SOFTWARE DOCUMENTATION:
SRS = Software Requirements Specification
IFCD = Interface Control Document
SMBP = Software Master Build Plan
SAD = Software Architecture Description
SDD = Software Design Description
IDD = Interface Design Description

DBDD = Data Base Design Document
STP = Software Test Plan
STD = Software Test Description
STR = Software Test Report
SVD = Software Version Description
SPS = Software Product Specification
SUM = Software Users Manual
FSM = Firmware Support Manual
CPM = Computer Programming Manual
STrP = Software Transition Plan
SI = Software Item

(1) In this example, the SRS contains the Interface Requirements Specification (IRS), Software Requirements
Traceability Matrix (SRTM) and Requirements Test Verification Matrix (RTVM).

(2) Iterative for each build.
(3) This activity may be iterative, in reverse order, or concurrent.
(4) Other optional user manuals include: Computer Operation Manual (COM); Software Center Operations

Manual (SCOM); Software Input/Output Manual (SIOM).
(5) The 'Development Activity' name is equivalent to the principal activity being performed at that time.

2-18

Downloaded from http://www.everyspec.com

3.7 Requirements and Constraints on Development Strategy

3.7.1 Development Strategy Factors

There can be many factors, and constraints, that impact the development strategy. For example, if the
program involves a large number of geographically dispersed subcontractors from different
companies, the overall approach to management and communication will have a significant impact on
the development strategy and those issues need to be addressed. Another example involves programs
that plan to utilize a significant amount of COTS/Reuse software. SDP paragraph 4.1.3 is devoted
entirely to the management and implementation of COTS/Reuse software. However, its impact on the
development strategy should be briefly addressed in this paragraph.

3.7.2 Software Integration, Testing, and Verification Approach

Subsections 5.7 through 5.11 of the SDP describe the software Integration, Testing, and Verification
(1T&V) activities. It is recommended, and would be extremely useful, to include in this paragraph of
the SDP an overview of the software IT&V approach and process before describing the details in
subsections 5.7 through 5.11. It must be stated that the software IT&V approach is consistent and
compliant with the system-level integration and verification test plan (sometimes called the System
Master Test Plan).

The rationale for software testing, described as an example in this Guidebook, is based on an
incremental buildup of tested requirements with a simultaneous incremental verification buildup. The
software IT&V process involves four generic testing stages as shown in Table 3.7.2.

Table 3.7.2. Software Integration, Testing, and Verification Stages—Example

Stage Description

Stage 1:
Development Testing

Stage 1 testing covers Software Unit (SU) testing and integration by the software
developers, unit integration testing, and individual Software Item (SI) qualification
testing. These stages of software l&T are covered in SDP subsections 5.7, 5.8,
and 5.9.

Stage 2:
Element Testing

Stage 2 testing includes: integration of multiple Software Items; integration of the
Hardware Items (HI) with Sis; and the Element Acceptance Test (EAT) that may
also be referred to as the "Factory Acceptance Test" (FAT) It normally takes place
at the Segment Level depending on where the software entities are developed.
The SI/HI integration is covered in subsection 5.10 of the SDP

Stage 3:
Segment Testing

Stage 3 of testing takes place in a location where elements are integrated and
SI/HI elements are tested with other SI/HI elements. Generally, this stage can be
viewed as the location where all of the elements of a segment come together. It
includes the functions of Installation. Checkout and Test plus Interface Testing.
This stage of software testing is normally concluded with a Segment Acceptance
Test (SAT and is described in subsection 5 11 of the SDP.)

Stage 4:
System Testing

Stage 4 of testing is focused on the process of integrating all of the segments (and
sites) into the full system or portions of the full system being tested. This stage of
testing is normally concluded with a System Qualification Test (SQT) and is also
described in subsection 5.11 of the SDP. Software has a suDDOrt role in seament
and system testing as those activities are typically the responsibility of (SEIT).

2-19

Downloaded from http://www.everyspec.com

3.7.3 Software Integration, Testing, and Verification Objectives

The objectives of each of the above four stages of the software IT&V process are summarized in
example Table 3.7.3. That table identifies the subsection of the SDP containing details of the testing
process at each stage and highlights key functions at each step of the IT&V buildup.

Table 3.7.3. Software Integration, Testing and Verification Objectives—Example

SDP Subsection and Title Integration. Test, and Verification Objectives

Stage 1a:
5.7 Software Implementation and

Unit Test

• Convert Software Unit (SU) design into computer source code, compile, and
debug

• Test/Inspect to ensure source code is compliant with expected results
• Verify that the source code meets the design

Stage-1 b:
5.8 Unit Integration and Testing

• Integrate SUs that have successfully passed Code and Unit Test (CUT) and
build them up to higher level SUs and to a SI

• Assure SUs are successfully integrated for the current build
• Perform design inspection through functional testing for current build
• Perform initial SI to SI interface testing, with stubs, drivers, or current Sis

Stage 1c:
5.9 Software Item Qualification

Testing

• Demonstrate that the Sl(s) satisfies the software and interface requirements

Stage 2:
5.10 Software/Hardware Item

Integration and Testing

• SI to SI Integration and Testing integrates individual Sis of an element or
segment to produce a complete software segment build

• SI to HI Integration and Testing integrates software with hardware
• Element Acceptance Test (EAT), verifies that: (a) software and hardware

functional requirements defined in the element specifications, have been
satisfied; and (b) functional and physical interface requirements have been
satisfied for the current build

Stage 3:
5.11 Segment Qualification Testing

• Segment Acceptance Test (SAT) verifies that the segment hardware and
software functional and interface requirements have been satisfied

Stage 4:
5.11 System Qualification Testing

• System Qualification Test verifies that the system performance specifications
and all interface requirements (functional, physical, and external) have been
satisfied for the entire system or that portion of the full system being tested

3.7.4 Software Integration, Testing, and Verification Process

It is recommended, and it would be extremely useful, to include in paragraph 3.7.4 an overview of the
software IT&V process. An example of the software integration and testing process is graphically
depicted in Figure 3.7.4. The figure is, and must be, consistent with paragraph 3.7.2 and Table 3.7.3.

3.8 Requirements and Constraints on Schedule and Resources

SDP Section 6 covers the program schedule and activity network, and SDP subsection 7.2 is focused
on project resources. However, TOR-3537B mandates a brief discussion of key requirements and
constraints, for both schedule and resources, in SDP Section 3. References must be made to the
program's Integrated Master Schedule (IMS) and all software schedules must be consistent with the
IMS.

Reference should also be made to the Contract Data Requirements List (CDRL) Form 1423 that
identifies documentation and product content, format, and delivery schedule. This subsection should
also be used to identify who is responsible for software compliance with the IMS delivery schedule.

3.9 Other Requirements and Constraints

Subsection 3.9 can be anything it needs to be to define other actual or potential requirements and
constraints. Frequently, this subsection is organized in two paragraphs: Contractual Constraints and
Non-Contractual Constraints. The following example text may be used as a guide:

2-20

Downloaded from http://www.everyspec.com

Example Text:
3.9.1 Contractual Constraints
During System Acquisition phases, the software activities are constrained by the XMPL IMP, IMS
and System Specification. Technical Operating Report, TOR-2004(3909)-3537B, "Software
Development Standard for Space Systems" will be used as a compliance document for software
processes, and organization of this SDP.

3.9.2 Non-Contractual Constraints

3.9.2.1 Company Policies and Practices
Additional constraints on the XMPL software development process are levied by virtue of
compliance of this SDP with the <corporate> standard software process and the related
<corporate> Standard Software Process Manual. The corporate software policies are based on
commercial standards such as ISO 9001 as well as the SEI's CMMI .

3.9.2.2 XMPL Program Policies and Practices
Software development activities are also constrained by key program plans and approved program
procedures. The key XMPL program plans include the:

Software Development Plan (SDP)
Contract Implementation Plan (CIP)
Configuration Management Plan (CMP)
Risk Management Plan (RMP)
System Engineering Management Plan (SEMP)

2-21

Downloaded from http://www.everyspec.com

LEVEL -1
Software

Unit
Verification

LEVEL -1
Software

Item
Verification

LEVEL-3
Sl/Hl

Integration
Verification

LEVEL - 4
Segment

Verification

LEVEL-5
System

Verification

Unit Testing
Integration

Testing
Element
Testing

Segment
Testing

System
Testing

System
Qualifi-1
cation
Test

Segment
Qualification

Test

UI&T = Unit Integration and Test
SIQT = SI Qualification Test
Sl/Hl = Software/Hardware item
HIQT = HI Qualification Test
l&T = Integration and Test
EQT = Element Qualification Test
SQT = Segment Qualification Test
PCA & FCA = Physical and
Functional Configuration Audit

(*) Breakdown of Software Units for Software Items B, C & D are not shown
(**) Some contractors call this Element Acceptance Test (EAT) or Factory Acceptance Test (FAT)
(***) Some contractors call this Segment Acceptance Test (SAT)

Figure 3.7.4. Software Testing and Integration Process—Example

2-22

Downloaded from http://www.everyspec.com

4. General Requirements

To be compliant with TOR-3537B, Section 4 of the SDP must include two subsections:

• Subsection 4.1 must contain an overview of the software development process to be used
including the process for each software class, the lifecycle software model(s) to be used, and the
plans for software builds including the software development activities to be performed for each
build. Although there is no specific organization for subsection 4.1, paragraphs 4.1.1 through
4.1.3 as described below are recommended as the minimum content for this subsection.

• Subsection 4.2 must cover general plans for software development in eight paragraphs as
required by TOR-3537B. Two additional optional additions to subsection 4.2 are recommended:

4.2.1 Software Development Methods
4.2.2 Standards for Software Products
4.2.3 Traceability
4.2.4 Reusable Software Products
4.2.5 Assurance of Critical Requirements
4.2.6 Computer Hardware Resource Utilization
4.2.7 Recording Rationale
4.2.8 Access For Acquirer Review
4.2.9 Software Data Management (Recommended Optional Addition)
4.2.10 Software Work Products (Recommended Optional Addition)

4.1 Software Development Process

Software development lifecycle models should be used to describe, organize, and monitor the
software development activities. A detailed discussion of the various models (e.g., Waterfall,
Incremental, Evolutionary, Spiral, and Unified) is beyond the scope of this Guidebook; however.
Table 4.1 is an overview of the most commonly used software development process models. Each
program must select the strategy appropriate to the software being developed and that process must
be defined in the SDP. More than one software development lifecycle model may be needed for
different types of software.

The example software development process described in this Guidebook is an incremental (or multi-
build) development approach using the development processes defined in TOR-3537B as a guideline.
A graphical overview is recommended as the ideal approach to depict the software development
process. Separate process charts should be created for Mission Critical and Support Software classes
and. if necessary, separate figures for the categories within the classes (as described in
paragraph 1.2.3).

4.1.1 Mission Critical Software Development Process

Figure 4.1.1 is an example graphical overview of a software development process for Mission Critical
(MC) software as described in subparagraph 1.2.3.1. The MC software process is the most
comprehensive process since it provides critical application software functionality. It must support
development of as many Sis and builds as needed to meet program milestones.

2-23

Downloaded from http://www.everyspec.com

Table 4.1. Overview of Software Development Process Models—Example

Process Model Description

Rapid Prototyping

This development approach involves building an early experimental system, or portions of the
system, to better understand the requirements and interfaces, to test throughput speeds, develop
environment testing, etc. Since the product produced is built fast, without sufficient documentation,
and not designed to be maintainable, it cannot be used as the final product.

Waterfall

This is a sequential software development model that requires each activity to be completed before
the next activity begins, although some overlap is allowed. The requirements and design activities
are defined up front. The entire functional software product is not available until the last testing
activities are completed.

Incremental

This model requires that all of the requirements must be defined up front; the software product is
then developed in a series of builds, or blocks, with increasing functionality. A portion of the software
product is built and tested—one small increment at a time. This is a "build-a-little, test-a-little"
approach that can provide an early operational capability for a portion of the entire system.

Evolutionary

With this model the software product is developed in a series of builds, or blocks, with increasing
functionality. However, the requirements are defined for each evolutionary build as that build is
developed. This is also a "build-a-little, test-a-little" development process model that can provide an
early operational capability for a portion of the entire system, and it is highly amenable to evolving
requirements.

Spiral

This is a risk-driven software development process model that has two main features: (1) A cyclic
approach that grows a system's functionality and implementation incrementally while focusing on
decreasing its degree of risk; and (2) A set of anchor point milestones for insuring stakeholder
commitment to acceptable system solutions. Implementations using this model are often done in
conjunction with either the incremental or the evolutionary model.

Unified Process

A variation of the Spiral Model is the Unified Process exemplified by the IBM Rational Unified
Process*(RUP®). RUP is an iterative software development framework. However, it is not a single
prescriptive process but an adaptable process framework intended to be tailored by selecting
elements of the process applicable to each user. It has an underlying object-oriented model using
the Unified Modeling Language (UML).

2-24

Downloaded from http://www.everyspec.com

Mission Critical Activities
Responsibilities

System
Engineering

[With Software
Support]

System Requirements
Analysis

System
Engineering

And Software

System Design

2
Formal Reviews

SRR [System
Requirements Review]

'Software Requirements
Analysis

Software
Engineering

[With System
Engineering

Support]

SFR [System Functional
Review] (1)

Software Item
Architectural Design

1

SAR [Software
Requirements and

Architecture Review] (2)

Software Item
Detailed Design

PDR [Preliminary
Design Review] (3)

oftware Implementation
and Unit Testing

CDR [Critical Design
Review] (4)

IRR [Integration
Readiness Review]

Software Unit Integration
and Testing

Software Test
[With Software
Development

Support]

System Test
[With Software

Support]

Software Item
Qualification Testing (6)

SI TRR [Software Item
Qualification Test

Readiness Review]

Software / Hardware
Integration and Testing J

PTR [Post Test Review]
- or -BTR [Build
Turnover Review]

System Qualification
Testina 1

System TRR [System
Qualification Test

Readiness Review]

L j = Systems Engineering Tasks with Software Engineering support (_") = SDP Section

(1) Also called the System Design Review (SDR).
(2) SAR and PDR may be combined for object-oriented development because requirements definition and architectural design

are usually iterative. The SAR was formerly called the Software Specification Review (SSR).
(3) An optional SBRAR (Software Build Requirements & Architecture Review) may also be held in addition to the PDR
(4) An optional SBDR (Software Build Design Review) may also be held in addition to the CDR.
(5) This range is for the Incremental Development Model; the Evolutionary Model would extend to activity 5.5.
(6) Software Qualification Testing may be done within each build.

Figure 4.1.1. Mission Critical Software Development Process—Example

The following example text may be used for paragraph 4.1.1:

Example Text:
As shown in Figure 4.1.1, the MC software development process begins with requirements definition
for each XMPL SI using system-level documents such as the Technical Requirements Document
(TRD) and segment-to-segment Interface Specifications. Requirements from these specifications are
allocated to software and hardware, and the allocated software requirements are decomposed,
elaborated, and documented in the Software Requirements Specification (SRS) and Interface
Requirements Specification (IRS). For this iterative lifecycle model, detailed design, code,
integration, and test activities are performed for each SI within a build. Once the Sis are integrated
and tested for a build, the build is delivered, with the Software Version Description (SVD), to the
cognizant software development library for Configuration Management control.

2-25

Downloaded from http://www.everyspec.com

4.1.2 Support Software Development Process

Figure 4.1.2 is an example graphical overview of a software development process for Support
Software (SS) as described in subparagraph 1.2.3.2. Although SS operates only in non-operational
environments, the SS-1 category normally requires the same level of documentation as MC software.
However, reviews for Support Software may not be as formal or as frequent. The principal
differences between the examples for MC (Figure 4.1.1) and SS-1 (Figure 4.1.2) processes are:

• There is no formal SSR, PDR, CDR, IRR, PTR, and BTR as shown for MC software in
Figure 4.1.2.

• The formal reviews are replaced by Technical Interchange Meetings (TIMs)
• Architecture and detailed design phases are merged and followed by a TIM

The SS-2 development process, as described in subparagraph 1.2.3.2, should be expected to be similar
to the SS-1 process, but less stringent, usually having principal differences such as the following:

• SS-2 requirements information is normally maintained in a requirements database and
referenced in SDFs, just as it is for SS-1. However, a formal SRS document may not be
required.

• Design material is maintained in the SDFs, just as it is for SS-1. However, a formal SDD and
IDD is not usually required.

• Informal SI and software build test descriptions and test results are maintained in SDFs.
However, formal STP, STD, and STR documents are not usually required.

• TIMs performed for SS-1 may be replaced by Peer Reviews for the inspections and
verifications of work products developed for SS-2.

• Applicable software metrics data should be collected for SS-2 software. However, the metrics
data set and the reporting frequencies may be reduced.

4.1.3 Iterative Process

The vertical arrows between the phase boxes in Figures 4.1.1 and 4.1.2 are misleading as they imply a
straight through process. In reality, it is an iterative process with corrective action control loops as
depicted graphically in the process overview Figure 3.5-1. The selected software lifecycle model(s)
for the planned software task should be described in subsection 4.1 with a description of the
consistency between the software development model(s) and the system lifecycle model(s).

If there are software builds, there is a requirement in TOR-3537B, as part of the description of the
process to be used, for subsection 4.1 to identify the planned software builds, their objectives and the
software development activities to be performed in each build. Those issues are covered later in
subparagraph 5.1.1.3 Software Build Planning.

2-26

Downloaded from http://www.everyspec.com

SDP Section - Support Software Activities

Responsibilities

System
Engineering

[with Software
Support]

System Requirements
Analysis

Reviews and Technical
Interchange Meetings

(TIMs)

System
Engineering

And Software

System Design

SRR [System
Requirements Review]

• Software Requirements
Analysis

SFR [System

Functional Review (1)

"f
•o

m 3
JZ CQ
u

LU

LU
O

o

Software

Software Item Design

Support Software
Requirements TIM

(2)

oftware Implementation
and Unit Testinq

Support Software
Design TIM

Software Unit Integration
and Testing

nSoftware Test
[with Software
Development

Support]

Software Item
Qualification Testing

SI TRR [Software Item
Qualification Test

Readiness Review]

System Test
[with Software

Support]

Software / Hardware
Integration and Testing (1)

System Qualification
Testing (3)

System TRR [System
Qualification Test

Readiness Review]

(1) Optional (2) Can be a Peer Review for SS-2 software (3) Not required for SS-2

Figure 4.1.2. Support Software Development Process—Example

4.2 General Requirements for Software Development

The following paragraphs and subparagraphs describe general requirements for software
development. Details of the software development process activities must be provided in SDP
Section 5, and in related tables and addenda. Software test and integration details can also be
provided in an addendum.

4.2.1 Software Development Methods

The software development method(s) to be employed must be described, or referenced, in SDP
subparagraph 4.2.1. As noted in TOR-3537B, "automated tools and procedures to be used in support
of these methods" need to be described. However, references should be made to SDP subsection 5.2
where automated tools are discussed in depth as part of the Software Development Environment
(SDE). The following example text may be used as a guide:

2-27

Downloaded from http://www.everyspec.com

Example Text:
XMPL software development will follow an object-oriented (OO) methodology. The OO
methodology includes Object Oriented Analysis (OOA) and Object Oriented Design (OOD)
utilizing the Unified Modeling Language (UML) notation. Segments must declare in their SDP
Annex which methodology will be used if not using OO. The UML notation standards and
programming standards for C++ and Java are defined in the Appendices to the program-level SDP.
Structured analysis and design will be used for applications such as coding scientific/mathematical
algorithms or emulation models and applications involving extremely data-intensive or high
performance computing.

4.2.2 Standards for Software Products

The following bullets are references to software standards and practices that must be addressed in the
SDP:

• COTS/Reuse software must adhere to requirements definition and testing processes, standards,
and practices as specified in SDP paragraph 4.2.4 or in the program's Software COTS/Reuse
Plan.

• The programming language standards to be used must be defined in an Appendix or Addendum
to the SDP or preferably in a Software Standards and Practices Manual as discussed in
subparagraph 4.2.2.1. That manual can also contain standards for architecture/design, software
requirements, and software test documentation.

• Operational details of the program's defined software process should be elaborated through
detailed Work Instructions and/or Procedures (see subparagraph 4.2.10.2). Relevant Work
Instructions and Procedures should be listed in an Appendix or Addendum to the SDP if the list
is long.

• Software development for the program must be guided by the applicable standards listed in
Section 2 of the SDP.

Hierarchical Software Product Levels. The hierarchy of software related specifications must be
produced in accordance with the program's Specification Tree. Typical hierarchical software product
levels and terminology are depicted in Figure 4.2.2. References to a "Software Unit (SU)" in this SDP
Guidebook can be interpreted as a single SU or as a group of integrated SUs as applicable.

4.2.2.1 Software Standards and Practices Manuals

Standards for software requirements, architecture, design, code, and test must be documented. The
recommended location for these standards is in Software Standards and Practices Manuals that can be
addenda to the SDP. These standards ensure that developers produce consistent software development
products. Coding standards, for example, can include standards for formatting, comments, naming
conventions, and restrictions on programming language constructs and features. Standards also help
ensure the similarity of the structure of all code/design units so that lines of code counts and software
measurements can be applied consistently.

2-28

Downloaded from http://www.everyspec.com

SYSTEM

SEGMENT-Alpha | SEGMENT-Beta |

Element-A]

SEGMENT 3
Element-B Element 3 -Optional

Software Item - L Software Item - «] Software Item - n

Software Unit-1 Software Unit-2 Software Unit- d
Figure 4.2.2. Hierarchical Software Product Levels—Example

The SDP should also document the process for waivers or deviations to these standards. Changes
must be justified, documented, and submitted by the cognizant Software Item Lead, approved by the
IPT Lead and SQA, submitted to the Software Engineering Process Group (SEPG) for concurrence,
and made part of the appropriate Software Development Files (SDF) or Software Engineering
Notebook (SEN). The SEPG should review software standards and tools usage and provide the means
for sharing knowledge and lessons learned across the program and with the SEPGs at the segment or
system level.

4.2.3 Traceability

An automated traceability and requirements management database must be used by every large
software intensive program. Examples of such tools are: Dynamic Object-Oriented Requirements
System (DOORS). System Level Automation Tool for Engineers (SLATE), Requirements and
Traceability Management (RTM) and Requisite Pro. In this Guidebook, the requirements
management and traceability tool will be called the "Requirements Database." Table 4.2.3 is an
example of traceability products that should be produced for each software category.

TOR-3537B requires the SDP to describe the approach to be followed for establishing and
maintaining bi-directional traceability between:

Levels of requirements

Requirements and design

Design and the software that implements it

Requirements and qualification test information

Required and measured computer hardware resource utilization

Table 4.2.3. Traceability Requirements by SI Category—Example

MC-1 and SS-2 and CR-1 and
Software Requirements Traced to: MC-2 SS-1 SS-3 CR-2

Parent Requirements Required in tool Required Required Required
Software Builds Required Required Required Required
Use Cases Required Required Not Required Not Required
Software Units Required Required Required Not Required
Software Test Cases Required Required Required Required
Software Test Procedures Required Required Not Required Required

2-29

Downloaded from http://www.everyspec.com

4.2.4 Reusable Software Products

The term "reusable software product" is normally defined as any existing software product (i.e.,
specifications, designs, test documentation, executable code, and source code) that can be effectively
used to develop the software system. COTS/Reuse software has become much more important and
widely used over the past decade. Programs that plan to use a significant amount of COTS/Reuse
software must address COTS/Reuse in considerable detail in their SDP.

Reusable software products may include software that is not modified, migrated software that
requires changes, and newly developed software usable in other application areas of the program.
Software development teams should consider the use of reusable software products wherever
possible. Reusable software products can include Commercial Off-The-Shelf (COTS) and
Government Off-The-Shelf (GOTS) software products as well as reuse libraries.

Two options are suggested for addressing the COTS/Reuse issues in the SDP: (1) cover all of the
topics in SDP paragraph 4.2.4; or (2) include an informative overview in SDP paragraph 4.2.4 and
refer to a Software COTS/Reuse Plan for the details. This Guidebook favors the second option.

Two subparagraphs, 4.2.4.1 and 4.2.4.2, are required by TOR-3537B. They should provide an
overview and point to the Software COTS/Reuse Plan for the details. That plan should be an
addendum to the SDP and should include a discussion of the following reuse topics:

• Establishing and managing the Software COTS/Reuse Plan

• Heritage reuse base programs

• Controlling, testing, and upgrading COTS/Reuse baselines

• Developing and integrating reusable software products

• Approach to managing COTS/Reuse software implementation

• COTS/Reuse software selection criteria and responsibilities

4.2.4.1 Incorporating Reusable Software Products

The approach to be followed for identifying, evaluating, and incorporating reusable software products
must be described in this subparagraph. It must include the scope of the search for such products, the
criteria to be used for their evaluation, and address all of the related contractual clauses. If reusable
software products have been selected, or identified at the time the SDP is prepared or updated, they
must be identified and described including their known benefits, risks, constraints, and restrictions.
The SDP should cover the entire COTS/Reuse lifecycle, including identification, investigation,
evaluation, selection, implementation and maintenance as depicted in example Figure 4.2.4.1.

2-30

Downloaded from http://www.everyspec.com

IDENTIFICATION

Identify generic
software functions
and code for
potential COTS or
Reuse

Identify specific
software functions
and code for
potential COTS or
Reuse

Prepare product
selection criteria

INVESTIGATION

Refine product
selection criteria

Identify vendor
candidates

Collect product
information and
evaluate against
criteria

Eliminate vendors
not meeting the
criteria

EVALUATION
AND SELECTION

Recommend final
candidates to ERB

Perform license
review

Obtain evaluation
copy of software;
perform evaluation

Make final
selection and
submit to change
board for approval

MAINTENANCE

Monitor current
products for
obsolescence or
end of support

Track new
technologies

Monitor changing
requirements

Recommend
upgrades or
evaluation of new
alternatives

Obtain selected product(s) and related training. Design configuration interfaces and data models.
Submit implementation design to ERB for approval. Build scripts, adapters, data models, etc., to
integrate the product(s). Send request to Software CCB to schedule the product integration(s).
Integrate the product into the software system. Perform required testing. Validate product(s)
through normal software subsystem qualification testing.

Figure 4.2.4.1. COTS/Reuse Management Process—Example

Reusable Software Criteria. Reusable software products must meet the specified technical and
contractual requirements and be cost-effective over the life of the system. The following factors
should be considered in an evaluation of candidate reusable software products:

Technical capabilities or applicable functionality
Safety, security, and privacy requirements
Demonstrated reliability and product maturity
Testability and availability of test cases and data
Short- and long-term cost impacts of using the software product
Technical, cost, and schedule risks and tradeoffs in using the software product
Data rights transferable to the software product
Interoperability with target software environment
Availability and quality of documentation and source files
The need for required changes and the feasibility of making those changes
Supplier maintainability and warranty
Restrictions on copying/distributing the software or documentation

Note that a bad evaluation report on any single factor can be a sufficient condition to reject a reuse
candidate. Appendix B of TOR-3537B contains criteria for evaluating reusable software products.

Approach to Using COTS Software. Using COTS software allows developers to be selective in
what functions and capabilities can be acquired without having to pay the price for custom
development. The use of COTS software can also have a major impact on the reduction of schedule
risk and cost risk. However, the process of including COTS components is often difficult and care
must be taken to avoid a number of potential risks.

2-31

Downloaded from http://www.everyspec.com

If a COTS product requires modification of the code, it is no longer considered a COTS product. It
becomes the responsibility of the contractor unless the vendor is hired to make the modifications and
that can be an expensive and risky approach. Generally, if any COTS or reused product requires more
than 30 percent recoding, it is usually more cost-effective to build it from scratch. Industry estimates
for this threshold ranges from 15 to 35 percent.

The principal risk is the loss of control over the formalized development process when COTS
products are acquired. Software vendors have their own agendas that are different from those who
adopt their tools. Therefore, a tradeoff must be made to enjoy the benefits from using COTS
software. To be successful in using COTS software the following major factors must be considered.

COTS Software Functionality. A selected COTS product may not have the exact functionality
required to be responsive to specific allocated requirements. The COTS product may have more
capability than is needed, or may not provide all the required functionality, thus necessitating
integration with other components or making potentially sophisticated modifications. Key COTS-
related questions include:

• How mature is the COTS product and how easy is the COTS product to use?
• Are the COTS product capabilities and operation fully understood?
• How are allocated requirements not satisfied by the COTS product handled?
• How are unneeded capabilities of the COTS product handled?
• How have known problems in the COTS product been rectified?

COTS Software Integration. Tradeoffs may be necessary because the constraints and requirements
imposed by the selected COTS products typically results in less flexibility available to the software
architect. The method of integrating selected COTS components may impose additional constraints
on the architecture, and planners must account for the additional effort required to understand the
behavior of the COTS products. Key COTS-related questions may include:

• Was the software architecture designed first and the COTS products selected to fit it?
• Is the development team trained and qualified to integrate the COTS product?
• Does the COTS product have an Application Programming Interface (API), and does the

development team understand the API's capabilities and complexities?
• Have the impacts of the COTS product on system resources been analyzed?
• Has the size of the integration effort for the COTS product been estimated, and what is the level

of confidence for the estimate?

Management of COTS Implementation. The implementation of COTS products introduces new
issues that do not exist when an entire system is developed in-house. For example, licensing will have
to be considered as well as other vendor relationships. Also, the cost of adopting and adapting the
components must be considered as well. When all factors are considered, it may be more cost
effective to build than to buy. Key COTS-related questions include:

Was the COTS product selected using a defined selection and evaluation process?
Have all the integration and related costs been properly estimated?
How long has the vendor been in business and what is its financial stability?
What relationship does the <corporate> team have with the vendor?
Have the vendor's technical support capabilities been fully evaluated?
Is the vendor willing to modify the product to meet the requirements? [Note: Requesting the
vendor to modify their COTS product to meet the needs of the program is generally considered
a high risk and is not recommended].

2-32

Downloaded from http://www.everyspec.com

Have mutual non-disclosure agreements and data rights been negotiated?
Have cost-effective licensing agreements been worked out with the vendor?
Has configuration management of the COTS product been properly planned for?
Has integration testing of the COTS product been thoroughly planned?
Have the risks related to using the COTS product been identified and managed?

Reusable Software Responsibilities. The Software IPT should be responsible for identification and
evaluation of reusable software products for the Sis and SUs of the system. Beginning in the software
requirements definition activity, and continuing through the testing activity, the Software IPT should
identify appropriate candidate reuse products for each software activity.

Depending on the specific functionality being considered for reuse, the Software IPT may need to
perform trade studies or perform some modeling or analysis with the candidate products to determine
sufficient information to make an evaluation. If any technical or non-technical issue is not fully
resolved prior to the point that the product is selected for use. the Software IPT must define the issue
as a risk and resolve it before a final selection is made.

4.2.4.2 Developing Reusable Software Products

In addition to reusing existing software products, there may be opportunities for new software
products developed that can be used elsewhere. The Software IPT should carefully review the Sis
under development for opportunities where software products can be used elsewhere to improve
efficiency of the software development effort.

The use of object-oriented design naturally produces cohesive objects that encapsulate functionality
and data, have well defined interfaces, and are therefore suitable for reuse in many instances. In
addition, class hierarchies and design patterns capture commonality and provide for abstractions that
can lead to reuse. Specific activities in software analysis and design processes identify opportunities
for not only design and code reuse, but also use case and scenario reuse for requirements traceability
and testing. These opportunities for reuse should be recorded in the design documentation.

The task of identifying, evaluating, and reporting opportunities for developing reusable software
products is often tailored out in the typical environment addressed by this Guidebook.

4.2.5 Assurance of Critical Requirements

Critical strategies must be identified in the SDP to ensure that software groups provide additional
oversight and focus on incorporating critical requirements into the Sis. There are always some key
software requirements that are critical cornerstones for safety, security, privacy protection, reliability,
maintainability, availability, performance, etc. Strategies must be developed and employed to ensure
that these critical requirements are satisfied

The strategies must be documented in the SDP, including both test and analyses, to ensure that the
requirements, design, implementation and operating procedures, for the identified computer hardware
and/or software, minimize or eliminate the potential for violating the established mitigation strategies.
The SDP should also indicate how evidence is to be collected to prove that the assurance strategies
have been successful.

The following five subparagraphs may be used as a starting point for developing specific details on
the approach to be used by the program for handling these critical requirements.

2-33

Downloaded from http://www.everyspec.com

4.2.5.1 Software Safety

Safety requirements involve Sis or SUs whose failure may result in a system condition that can cause
death, injury, occupational illness, damage to or loss of equipment or property, or damage to the
environment. Each software-related safety-critical requirement identified must be documented in the
Safety Requirements section of the SRS and identified by a unique product identifier. If aviation
safety standards are specified in the contract as compliance documents, this subparagraph must
describe the approach for complying with those standards.

The activities required for ensuring that safety-critical software requirements are met for the program
must be shared between the System Safety group, at the program level, and the segment software
team. Each IPT should assign responsibilities for safety issues and for coordination with System
Safety. The software team is responsible for developing system software that is safe to operate and
compliant with all appropriate safety standards and requirements.

The general approach to managing software safety-critical development activities for the program
should be to integrate safety management into the software lifecycle activities. System Safety should
play an integrated role in the software development process and the CCBs. This provides System
Safety with visibility into the software development activities that are critical to program safety
issues, and provides the IPTs with the input required to ensure that safety issues are addressed
effectively. Details regarding software safety should be included in the System Safety Program Plan.

The SDP should require software safety engineers to define classifications for safety critical Sis and
SUs. All Sis and SUs should be categorized according to these safety critical classifications. To
prepare these classification levels, consideration should be given to: the severity and probability of
hazards the Sis or SUs may contribute to (as determined by the Hazards Analysis); the potential for
the Sis or SUs to provide safety-critical monitoring or mitigation actions; and how the Sis or SUs
handle and protect safety critical data. System and software safety engineers should:

Participate in system and software requirements analysis to generate additional functional or
performance requirements to assure safe operations and safety contingency actions
Monitor these additional software requirements to assure they are properly specified and traced
to documented safety critical hazards
Assure that unsafe operations are not specified by existing requirements
Participate in design reviews to prevent unsafe approaches from being applied
Track internal and external safety-related interfaces to assure they are fully documented and
unambiguous
Participate in the review of test procedures to assure safety critical requirements are properly
interpreted and tested
Participate in the evaluation of safety-critical code changes and review regression tests
Document safety critical criteria used in selecting COTS, GOTS, and reuse code

4.2.5.2 Software Information Assurance

Security requirements involve Sis and SUs whose failure may lead to a breach of system security or a
compromise of classified data. Each software-related security-critical requirement identified should
be documented in the Security and Privacy Protection Requirements section of the SRS and identified
by a unique product identifier. Information Assurance (IA) requirements should be derived from the
System Specification; IA concerns can have a significant impact on software architecture.

Security services provided by the program must be documented in the IA Plan and should provide
"layers" of structured defense from commercial packages (such as anti-virus software and firewalls)

2-34

Downloaded from http://www.everyspec.com

to elaborate National Security Agency (NSA) approved Type-1 encryption algorithms. The SDP must
state that software subject to IA product certification and accreditation must be developed in
accordance with the IA Plan. Software IA requirements should be flowed down through the normal
requirements analysis process. The software design activity must conform to the IA architecture as
described in the IA Plan. Also, when developing the software schedules, and the build plan, the IA
product certification and accreditation need dates must be accounted for.

4.2.5.3 Privacy Protection

Privacy-critical requirements are those requirements on Sis and SUs whose failure may lead to a
compromise of private personal data such as training scores or personnel evaluations. Each software-
related privacy-critical requirement identified should be documented in the Security and Privacy
Protection Requirements section of the SRS and identified by a unique product identifier.

4.2.5.4 Dependability, Reliability, Maintainability and Availability

Software plays a critical role in the overall dependability, reliability, maintainability, and availability
of each segment. Mission Critical software (discussed in subparagraph 1.2.3.1) can be further defined
as a software function that if not performed, performed out-of-sequence, or performed incorrectly,
may directly or indirectly cause the mission to fail. The SDP should require a Failure Modes, Effects,
and Critically Analysis (FMECA) for software to be performed for all new or modified mission
critical software and require a list of Sis that are mission critical to be identified and maintained.

Dependability, reliability, maintainability, and availability all have quantitative as well as qualitative
definitions. The qualitative and quantitative definitions are allocated to hardware and software from
the higher level specifications. This section of the SDP should address the approaches to be used by
software to ensure that both the qualitative and quantitative requirements are met.

Dependability. Dependability is the sum result of effective strategies for reliability, maintainability,
and availability and the SDP should describe the overall approach proposed to develop these
strategies. Software reliability and maintainability practices must be incorporated throughout all
software development activities; they provide the building blocks for dependability and availability.
Effective strategies for reliability and maintainability also help to ensure the software meets
requirements with minimum risks, maintains the integrity of the software design, and minimizes
lifecycle costs.

Reliability. Software reliability models should be used to assist in making predictions about the
software system expected failure rates. The SDP must show that reliability tasks are integrated with
quality assurance, product evaluations, maintainability, and other engineering activities to avoid
duplication and provide a cost effective program. Software reliability should involve detection,
reporting, quantification, and correction of software deficiencies throughout the software design,
development and testing activities.

Maintainability. There are two aspects of software maintainability: software restoral and software
repair:

• Software restoral is defined as the process of restoring the software to an operational state
after a hardware or software failure has occurred. Software restoral can be a large contributor
to downtime and thus can significantly affect system availability. The need for rapid software
restoral is a major driver of the software architecture and design task.

2-35

Downloaded from http://www.everyspec.com

• Development of maintainable software, from a software repair perspective, involves planning
and establishing the software development methodology, environment, standards, and
processes with an objective of making software maintenance changes efficiently and
effectively.

Some methodologies, such as object-oriented design, development and programming, may produce
software-related products that are more maintainable than other approaches. The design must be
captured and retained in the software engineering tools and subject to configuration management
(CM) processes. Similarly, the software CM tools provide support to software maintenance needs.
Other tactics that can be described in the SDP to improve maintainability may include:

• The Software Engineering Environment (SEE), covered in SDP subsection 5.2, must be sized
to include sufficient capacity to support post-deployment software support requirements, thus
promoting long-term maintainability.

• Software standards must be established for each programming language to ensure that
consistent programming styles are applied by all developers and that the software and
supporting documentation are complete and understandable.

• The software product evaluations should assess compliance with the standards to ensure that
they are consistently applied.

• Software change rates for units and functions may also be tracked as an indicator of more
subtle maintainability factors.

Availability. A high availability rate for access to the system is the by-product of effective reliability
and maintainability practices as well as accurate estimation of user needs. By performing modeling
and trend analysis, based on historical trend data and collected metrics, software reliability and
availability can be predicted and the necessary corrective actions can be taken to achieve the
reliability and availability requirements.

4.2.5.5 Assurance of Other Mission Critical Requirements

Critical software requirements should be tracked and monitored throughout the software development
activities similar to other software requirements. However, in addition to the standard testing and
quality assurance procedures for other software requirements, the Software IPT should follow an
assurance strategy designed to ensure that hazardous or compromised conditions are eliminated or
minimized for each development activity. This strategy should be to:

Identify and document critical requirements in the appropriate SRS sections
Document the specific SUs that contribute to the critical requirements through the traceability
approach described in SDP paragraph 4.2.3
Define specific SI testing procedures that execute all affected SUs to determine compliance
Execute the security and privacy testing procedures at each SI build when affected security-
critical and privacy-critical SUs have changed
Execute the safety related test cases at each SI build for Sis with safety-critical SUs, even if
the units have not changed
Update safety analysis, models, and modeling results at any time

The CSWE and SQA should review the procedures followed by the Software IPT and the products
produced for critical requirements compliance as part of the normal reviews of each development
activity. The CSWE should focus on identifying evidence that the general strategy stated above is
being implemented. SQA should evaluate the process of performing the critical requirements testing,
the successful completion of the testing, and the proper documentation of the results.

2-36

Downloaded from http://www.everyspec.com

4.2.6 Computer Hardware Resource Utilization

Target computer hardware resource utilization must be recorded and monitored throughout the
software development process by each segment for their respective computers. Resource utilization
monitoring should be performed for all computers involved in the operational system. The Software
Measurement (Metrics) Plan should define how computer hardware utilization is to be reported, and
how the utilization data will be managed as Technical Performance Measures (TPMs).

The Integrated Product Teams (IPTs) should initially determine estimates of projected resource
utilization measures. The measures may include memory utilization, processor throughput,
input/output bandwidth, critical timing paths, and disk space or mass media storage. These
measurements should be re-evaluated periodically during a build as actual utilization data becomes
available. Since the software may only be partially completed at a build, the Software IPT analysts
should extrapolate resource utilization.

4.2.7 Recording Rationale for Key Technical Decisions

During the software development process, key technical decisions are made that may include
specifying, designing, implementing, and testing Sis or SUs and issues related to interfaces,
performance, functionality, etc. These decisions are usually captured in the resulting software, but not
necessarily the rationale behind the decisions. Recording these decisions is important and frequently
neglected.

The SDP should require the segments to identify key technical decisions as a natural and continual
part of the development process. They should define those key decisions in the requirements
definition, design, implementation, and testing activities that are determined to significantly impact
the SI. The development teams should use their best engineering judgment. They can use the
following subjective guidelines where an affirmative response indicates a key decision that needs to
be recorded:

• Was a trade study, technical analysis, or software survey required to make the decision?
• Are there requirement, cost, or schedule factors that override the technical rationale for the

particular decision made?
• Does critical rationale information exist that may be needed for future software maintainers?

When a key technical decision is identified, the rationale behind the decision should be documented
in an Engineering Memo or meeting minutes and included, or referenced, in the SDF. The process is
managed by Data Management, but the Software IPT must ensure all critical information is retained.
The Software Item Leads should be responsible for ensuring compliance with this recording rationale.

4.2.8 Access for Acquirer Review

The primary repositories for software products and related information are the Software Development
Folders (SDFs) and Computer Assisted Software Engineering (CASE) tools. The work products
produced during the development of the software must be kept under configuration control, both for
configuration management and for customer review. The SDP must stress full government access to
the program's electronic website. The following is an example of the contents for this paragraph:

2-37

Downloaded from http://www.everyspec.com

Example Text:
In addition to unrestricted on-line access to documentation, the Program Office and their
representatives participate in all joint technical and management reviews (as described in
subsection 5.18). These reviews are held throughout the software development life cycle and consist
of both formal contractual reviews and informal Technical Interchange Meetings. The Program
Office, and their representatives, can also participate in the frequent telephone conferences and are
also members of XMPL IPTs and the Software Engineering Process Group (SEPG).

4.2.9 Software Data Management (Recommended Optional Addition)

This is an optional, but highly recommended, additional paragraph of the SDP since software Data
Management (DM) provides the interchange and access of controlled data to program personnel and
the customer, supports timely delivery of contract deliverables, and addresses key issues such as
disaster recovery and data rights. Software DM and the related concerns covering disaster recovery,
proprietary rights, and international issues are not addressed in TOR-3537B or J-16.

The DM organization should be responsible for the repository and central access point for program
and software documentation, the data accession list, storage media control, and informal documents.
A DM Plan should detail the guidelines for preparation, identification, filing, retrieval, training, and
standards for all program documentation. The DM Plan should be updated in accordance with
evolving requirements of the contractual phases. The DM Plan is generally not a part of the SDP but
there is no restriction preventing it from being an SDP addendum.

The Data Center is typically the hub of the DM task and the source for all configuration controlled
documents including publication and distribution. Software documentation should be made available
to the program team and the Government on the program's electronic website. Software development
documentation must be retained in the Software Development Library (SDL) typically located at
each development site.

4.2.9.1 Disaster Recovery

Plans for disaster recovery should be included in the SDP or in an external plan referenced by the
SDP. Disaster recovery provides an alternate repository and backup system of software, databases,
documentation, and equipment (if necessary). Disaster recovery plans provide an alternate
development/operational capability in case of a catastrophic situation after initial delivery.

The disaster recovery plans ensure protection against loss of, or damage to, organizational assets and
data. They ensure a smooth transition from normal to backup operations and ensure an expeditious
restoration of the site capabilities.

4.2.9.2 Proprietary Nature and Government Rights

Rights restrictions apply as identified in the contractual Technical Data Restrictions. Vendor
trademarked or copyrighted items must be used in accordance with applicable licenses; the
Government must have the right to use these items in accordance with those applicable licenses.
Restrictions on these tools (if any), other than those dictated by commercial practices, must be clearly
described in the SDP and/or in the IMP. Proprietary concerns can be major issues in source selection.
Data rights apply to all software products—not just code or COTS. This SDP paragraph needs to
specify what standard level of data rights applies to each category of software and Software Item on
the program.

2-38

Downloaded from http://www.everyspec.com

4.2.9.3 International Traffic in Arms Regulations (ITAR)

If development leverages technology and products from foreign countries, ITAR is likely to apply and
this issue must be addressed. The local ITAR Compliance office must be consulted for specifics if
this is a program issue.

4.2.10 Software Plans and Work Products (Recommended Optional Addition)

This is an optional, but highly recommended, additional paragraph of the SDP. Software work
products may include documentation, test results, non-document work products, and the source code
itself. Minimum work products vary according to software category and, of course, the program's
Contract Data Requirement List (CDRL). Section 5 of the SDP describes the detailed software
development activities and its subsections contain a list of software work products produced during
each activity.

4.2.10.1 Software Management and Quality Control Plans

Addenda to the SDP, covering management plans and quality control plans, may be an integral part of
the SDP or bound separately. In either case, these management and quality control plans represent
important adjuncts to the SDP that document specific implementation details not covered in the main
body of the SDP. Table 4.2.10.1 contains a list, and a brief description of the purpose, of the typical
management and quality control plans that can be included as addenda to the SDP if they provide
value added to the program.

Table 4.2.10.1. Candidate Software Management and Quality Control Plans—Example

Name of Plan Purpose of Plan

Software Metrics
Plan or Guidebook

Describes the approach, guidelines, and "how to" instructions for establishing a
standard software metrics program across the software development effort. It
contains specific user instructions as to what measurements to make, when to make
them, calculations needed to translate the measurements into useful management
data, analysis techniques, and report format examples.

Software
Subcontract

Management Plan

This plan may be included in the program's Subcontract Management Plan. It
describes what software is subcontracted, and to whom, responsibilities of the
Subcontract Management Team, identification of its members, responsibilities of the
software subcontract technical manager, subcontract tracking and oversight of
software activities, and references to contractual commitments.

Software Risk
Management

(or Mitigation) Plan

The plan for determining and mitigating software related risks. It describes the
approach to identification and management of risks inherent in the development effort
including reliability, design, cost, and schedule risks. It should assign a risk severity
level to each identified risk, define risk handling plans where needed, the process for
assuring implementation, and provide plans for maintaining and improving maturity
levels of team members. It may be included in the program's Risk Management Plan

Software Data
Management Plan

Provides details on the scheduling, formatting, delivery, storage, and control for
program deliverable and non-deliverable software documentation and media. It
describes how the program provides: current program information; expedient
interchange and access of controlled data to program personnel; timely delivery of
contract deliverables; the repository and central access point for software
documentation; the data accession list; document storage media control; and the
focal point for software-related information. It must also include the mechanism for
electronic access to the data by the customer.

Software Reviews
Plan

Provides software management with the controls necessary to oversee software
development review activities and provides software engineers with the standards
and practices required to conduct software development reviews. It describes the
objectives, frequency, and products reviewed, and establishes the entry and exit
criteria for each review.

2-39

Downloaded from http://www.everyspec.com

Name of Plan Purpose of Plan

Software
COTS/Reuse

Plan

Covers COTS/Reuse software evaluation, selection, procurement, development
environment requirements, special COTS/Reuse Configuration Management
procedures, acceptance procedures, integration, and implementation, maintenance,
evolution, and vendor monitoring and management.

Software Resource
Estimation Plan

Describes the derivation of software resources needed and should include: software
size; development effort; schedules and milestones; costs; and critical computer
resources. It should describe the processes for: making estimates and periodic
refinements with actual measurements; documenting results; and using parametric
estimating models.

Software Roles and
Responsibilities

Summarizes the roles and responsibilities for each software engineering skill group
(usually in tabular form) including: IPT Lead, Chief Software Engineer, Segment
Chief Software Engineer, Software Process Lead, IPT Software Lead, IPT Software
Integration and Test Lead, Software Item Lead, software engineers, software test
engineers, software configuration management.

Software Safety Plan
Describes the safety-critical safeguards that must be built into the software when
human safety is involved. It may be incorporated into other documents such as the
"System Safety Program Plan" or the "Risk Management Plan."

Software
Configuration
Management

Plan

Establishes the plan for creating and maintaining a uniform system of configuration
identification, control, status accounting, and audit for software and software work
products throughout the software development process including the Corrective
Action Process.

Software Quality
Assurance Plan (or
(Software Quality

Program Plan)

Establishes a planned and systematic software quality process to ensure that the
software products and software processes comply with program contractual
requirements as well as program process and product standards. It identifies the
activities performed by the SQA organization in the development of all Sis and
describes the SQA policies, procedures, and activities to be used by all software
development team members.

Software
Quantitative

Management Plan

A high-level plan for establishing quantitative management on a program including
quality goals, customer goals, other goals to supplement the IMP, priorities, and
metric limits. It may be incorporated into the Software Metrics Plan or Guidebook.

Software
Process

Improvement
Plan

Describes how process improvement is integrated into the management culture, and
the plans for implementing a managed, iterative, and disciplined process for
improving software quality, increasing productivity, reducing cost and schedule, and
eliminating activities of little value. It should describe the controls, coordination and
information feedback needed from: the software development process; the defect
detection, removal and prevention process; the quality improvement process; and the
software metrics program.

Software Peer
Review Plan

Defines the procedures, data collection, responsibilities, and reporting needs for
inspections and evaluations of software products.

4.2.10.2 Detailed Software Work Instructions and Procedures

The defined software process, as captured in the SDP at a relatively high level, should be elaborated
through detailed Work Instructions and/or Procedures. These instructions or procedures should
contain detailed directions for the day-to-day implementation of the software process. A list of the
Work Instructions and Procedures can be included in an SDP Appendix but the Work Instructions and
Procedures themselves should be bound separately as they are typically voluminous. Table 8.3 in this
Guidebook contains an example list of Work Instructions and Procedures.

Detailed procedures are often based on heritage or organizational sources for similar activities,
customized for the program's use. For activities shared across each program, common procedures
may be developed. The Software Engineering Process Group (SEPG) should maintain an inventory of
approved software procedures for the program.

2-40

Downloaded from http://www.everyspec.com

4.2.10.3 Non-Document Software Work Products

It is important to note that not all of the software work products are documents. The following are
examples of software work products that may be produced during software development:

Software requirements database
Software Architecture diagrams/Data Flow Diagrams/Interface Design Diagrams
Engineering Memos/Software use cases and scenarios/N-squared charts
Simulation models and design captured in Object-Oriented (OO) models
State Transition. Software Hierarchy, and Functional Block diagrams
Management status reports and briefings
Software productivity reports
Design review packages

2-41

Downloaded from http://www.everyspec.com

2-42

Downloaded from http://www.everyspec.com

5. Detailed Requirements

This SDP section describes the activities, tasks, requirements, and responsibilities for developing the
software. The development process described in this section is consistent with the software process
defined in TOR-3537B. On a typical program, Section 5 should also be a tailored version of the
developer's corporate Standard Software Process (SSP).

Table 5 contains a list of the sections comprising Section 5. The left half of Table 5 is a list of
activities for the software development process and includes SDP subsections 5.3 through 5.13 and
5.26. The right half of Table 5 is a list of the activities that are "activity independent" as they support
the entire software development lifecycle and includes SDP subsections 5.1, 5.2 and 5.14 through
5.25. Subsection 5.26 is optional but recommended if applicable.

Table 5. Contents of SDP Section 5

Subsection Process Activities
5.3 System Requirements Analysis
5.4 System Design

5.5 Software Requirements
Analysis

5.6 Software Design

5.7 Software Implementation and
Unit Testing

5.8 Software Unit Integration and
Testing

5.9 Software Item Qualification
Testing

5.10 Software/Hardware Item
Integration and Testing

5.11 System Qualification Testing

5.12 Preparing for Software
Transition to Operations

5.13 Preparing for Software
Transition to Maintenance

5.26 Software Sustainment
(Optional)

Subsection Independent Activities
5.1 Project Planning and Oversight
5.2 Establishing a Software

Development Environment
5.14 Software Configuration

Management
5.15 Software Peer Reviews and

Product Evaluation
5.16 Software Quality Assurance

5.17 Corrective Action

5.18 Joint Technical and
Management Reviews

5.19 Risk Management

5.20 Software Management
Indicators

5.21 Security and Privacy

5.22 Subcontractor Management

5.23 Interface With Software IV&V
Agents

5.24 Coordination With Associate
Developers

5.25 Improvement of Project
Processes

5.1 Project Planning and Oversight

The major objective of this first software activity is to complete and document initial planning for the
software development task. The planning activity is an on-going task because it is initially performed
as part of the draft SDP submission, with the proposal, and may be repeated several times with
changing requirements of the program. This task is critical at the start of the development lifecycle as
it is the foundation for producing the software plans required to implement and perform the software
development process and for the identification and formation of the software teams required to
execute those plans.

2-43

Downloaded from http://www.everyspec.com

Software management has cognizance over the Software Development Plan (SDP) including the
software management and quality control plans shown in Figure 1-2. The preparation of the Software
Configuration Management Plan (SCMP), and the Software Quality Program Plan (SQPP) should be
assigned to the Software Configuration Management (SCM) and the Software Quality Assurance
(SQA) activities, respectively. The SDP contents must be consistent with Appendix-H of TOR-
3537B and should be submitted to the contractor's Configuration Control Board (CCB) for approval
before it is released for implementation. In accordance with TOR-3537B, the software Project
Planning and Oversight activity must be described in six paragraphs in the SDP:

Software Development Planning (paragraph 5.1.1)
Software Item Test Planning (paragraph 5.1.2)
System Test Planning (paragraph 5.1.3)
Planning for Software Transition to Operations (paragraph 5.1.4)
Planning for Software Transition to Maintenance (paragraph 5.1.5)
Following and Updating Plans (paragraph 5.1.6)

A summary example of the readiness criteria for the Project Planning and Oversight activity, is shown
in Table 5.1; it includes the entry and exit criteria, verification criteria to ensure completion of
required tasks, and the measurements usually collected.

Table 5.1. Readiness Criteria: Project Planning and Oversight—Example

Entry Criteria

A management decision to initiate planning has been issued.
Customer system requirements are available.
IMP and IMS are available.
Software WBS has been defined down to the SI level.
Program Risk Management Plan has been established.
Software, Systems, and Project Teams are sufficiently formed to support
the software planning activity.

Verification Criteria

Exit Criteria

Software plans are placed in the
electronic database.
Software size estimates are established:
budgets and schedules are baselined.
SDP is reviewed and approved by all
software team members and the
customer.

Program software plans are reviewed and approved.
Program and senior management are provided status of ongoing product engineering activities (including requirements
definition and management) on a periodic and event driven basis.
SQA performs process and product audits for the software planning activities per SDP Subsection 5.16.

Measurements

Program schedule showing planning activities—estimated and actual.
Staffing levels planned versus actual
Effort hours bid, budgeted and actual
Milestone due dates—contractual, estimated, and actual (see subsection 5.20)

5.1.1 Software Development Planning

The SDP provides an important mechanism for documenting and tracking the software development
effort and activities required by the software-related provisions of the contract. The program-level
SDP must define software activities common to all development sites. Segment or Subsystem SDP
Annexes (also called Site-Specific SDPs) can be produced containing specific and/or unique policies
and procedures applicable to the segment/subsystem that expand on, but do not conflict with (except
for approved waivers), the policies and procedures defined in the program-level SDP.

Software development planning information should be prepared by the Segment IPTs by augmenting
the activities in the Integrated Master Plan (IMP) and the Integrated Master Schedule (IMS) with
more detailed development schedules. Although these schedules may be in the SDP, it is generally
better to reference their location since schedules typically change more often than the SDP is updated.

2-44

Downloaded from http://www.everyspec.com

Once these schedules are complete, development oversight begins by monitoring products and
processes and taking corrective action when necessary.

Unplanned updates to the SDP must be handled through the corrective action process described in
SDP subsection 5.17. All changes to the SDP should require approval by the Chief Software Engineer
(CSWE) and the program Software Engineering Process Group (SEPG). This SDP Guidebook
assumes the program has a CSWE (see last paragraph of subsection 1.1). Changes to the SDP also
should require CCB approval.

Software Item Database. A database, that may be called the Software Entity Database (S WED),
should be produced and periodically updated, to provide a mechanism for identifying and profiling all
Sis on the program. It provides a tracking mechanism for all software on the program. Each segment
should be responsible for their data input to the SWED but the CSWE should be responsible for
compiling this information into a single centralized and controlled database for the program. This
database may include for each SI in the program: a functional description, class, category, size,
percent of new versus reused code, responsible developer(s) and contact information, and language(s)
used.

Waiver Processing. When a software development site has a justifiable reason for not complying
with a required procedure in the SDP, they must submit a request for a waiver in accordance with the
waiver process described in the SDP. All waivers should require the pre-approval of the CSWE and
the SEPG prior to being sent to the CCB for approval. Figure 5.1.1 is an example of a waiver
processing process.

Review Waiver and
Prepare Waiver Request

Software Lead f]

w

Waiver Justification

Reject or Duplicate

Waiver

Initiator

[*] or designee

Analyze Waiver Request

Segment IPT

Notify Software Lead

 1

Approval
4 Request

Forward Waiver Request

CSWE

Figure 5.1.1. SDP Waiver Approval Process—Example

When a waiver is initiated, the justification for it should be presented to the Software Lead. If the
development team Software Lead (or designee) agrees with the need for a waiver, a Waiver Request
should be prepared requesting authority to deviate from the requirements in the SDP. The Software
Lead should forward the Waiver Request to the Segment IPT for approval. The Segment IPT should
review the waiver request, request more information or clarification if necessary, and either approve
or deny the waiver request.

2-45

Downloaded from http://www.everyspec.com

If the Waiver Request is approved, the IPT should forward it to the CSWE. If not approved or found
to be a duplicate, it should be returned to the Software Lead with reason(s) for disapproval. If the
CSWE and SEPG concur with the Waiver Request it should then be forwarded to the CCB for formal
approval.

5.1.1.1 Software Development Planning Tasks

Software planning is iterative and should not start until the assignment of planning roles has been
made. Software planning responsibilities normally resides with the IPT software leads for
development implementation planning and the program-level SEPG for process planning. The first
step in planning is to review software requirements (see subsections 5.3 and 5.5) since the scope of
the software task is established by identifying system requirements to be satisfied by software
products. Table 5.1.1.1 is an example list of typical planning activities as elaborated in the identified
sections of the SDP.

Table 5.1.1.1. Software Planning Tasks—Example

Software Planning Tasks Covered In SDP Section/Subsection

Methods for developing and maintaining the SDP 1.3.3 SDP Updates
Software Data Management (DM) 4.2.9 Software DM
Software size and resource estimation 5.1.1.2 and the Software Estimation Plan
Software build planning 5.1.2 and the Software Build Plan
Software integration and test (l&T) planning 5.1.2 through 5.1.5 and the Software IT&V Plan
Software Development Environment and support tools 5.2 Establishing a SDE
Software acceptance, delivery, installation, transition, operations,
maintenance, and retirement planning

5.12, 5.13, and the Software Maintenance and
Transition Plans

Software Configuration Management (SCM) 5.14 and the SCM Plan

Software evaluations with formal and informal reviews 5.15, 5.18, and the Software Reviews Plan
Software Quality Assurance (SQA) 5.16 SQA
Problem resolution methods and preventive action 5.17 Corrective Action
Software risk management 5.19 and the Software Risk Management Plan

Software metrics covering products and processes 5.20 and the Software Metrics Plan
Security and Privacy issues 5.21 Security and Privacy
Oversight of software subcontracts 5.22 and Software Subcontract Plan
Software schedules with critical interdependencies 6 Schedules and Activity Network
Software organization, roles, and responsibilities 7.1 Project Organization

Required resources, skills and staffing plan 7.2 Project Resources
Training plans and training requirements 7.3 Training Plans
Software Operations and Maintenance 5.26 Software Sustainment

5.1.1.2 Software Resource Estimating

Software resources, including physical, personnel, cost and computer resources, must be estimated
before software development can begin. These estimates are used to establish software development
schedules, risk mitigation plans, and commitments and should be documented in a Software Resource
Estimation Plan.

Software personnel should participate with other affected groups (systems engineering, SQA, SCM,
test, etc.) in the overall program planning throughout the program as members of Integrated Product
Teams (IPTs). Commitments, or changes to commitments, made to individuals and external groups
must be reviewed with management regularly.

Staffing Estimation. To determine the level of staffing required, the planning function should
consider program constraints including milestones, reviews, documentation deliveries, product

2-46

Downloaded from http://www.everyspec.com

deliveries, internal milestones, incremental builds, technical constraints, and any changes in scope.
Estimates of source lines of code and software development productivity play an important role in
staffing estimates.

Re-planning: The software groups should participate, when required, in re-planning activities to
address contract changes, process improvements, or when measured performance varies from planned
performance. The related data that is generated must be maintained and placed in the applicable
Software Development Folders (SDF) or Software Engineering Notebooks. Software personnel also
should participate in contract/subcontract modification activities (such as engineering change
proposals).

5.1.1.3 Software Build Planning

A software "build" is a portion of a system that satisfies, in part or completely, an identifiable subset
of the total end-item or system requirements and functions. There may be multiple internal builds
leading to a deliverable build for an increment in the lifecycle. Requirements met in one incremental
build are also met in all successive increments. The final build is the complete software system. A
"release" is a build version that is delivered for acceptance testing and subsequently may be released
or delivered for operational use. Incremental builds can be planned for each SI. or group of Sis.

Build Requirements. The Software systems engineering function should define the level of
requirements satisfaction needed by each lifecycle increment to implement a specified level of end-to-
end system functionality. Within a segment, additional influences dictate when capabilities are
delivered. This may include such factors as developing required software infrastructure or addressing
areas of high-complexity. Naming conventions for each build must be established up front by
assigning unique alphanumeric designations.

Software Build Plan. A table, similar to the example in Table 5.1.1.3, must be added either to
subparagraph 5.1.1.3 or, if too long, included in the SDP Appendix or a separate document referenced
by the SDP, to show the intended software delivery plan. The table must include a unique number,
often called the Program Unique Identifier (PUI), for each Software Item and its name, the
responsible developing organization, and Equivalent Source Lines of Code (ESLOC) planned for
each build. Part 2 subparagraph 1.2.3.3 provides an explanation of how ESLOC is derived. As shown
in Table 5.1.1.3, the version (preliminary, initial, update, fixes) can be identified for each delivery.

Table 5.1.1.3. SI Build Delivery Plan-Example

PUI Software Item Name Developer Build 1 Build 2 Build 3 Total

Total for 18 Sis: 102,000 65,000 130,000 297,000

1 Decision Support Manager 45,000 28,000 48,000 121.000
1.1 Decision Analysis Able Corp I UDRW u
1 2 Analytical Algorithms Able Corp - I u
1.3 Scenario Analysis Able Corp - I u
1.4 Testbed Controls Baker Co, P I u
1.5 Traffic Control Baker Co, I UDRW u
1.6 Simulation Analysis Baker Co. P I u
2 Services Support Manager 30,000 18.000 12,000 60,000
2.1 Routing Analysis Charlie Co. P 1 u
2.2 User Support Charlie Co. - 1 UDRW
2.3 XYZ Services Charlie Co. I UDRW UDRW

Etc. Etc.

P = Preliminary Version
U = Updated Delivery
UDRW = Updates for Discrepancy Report Work-Offs
PUI = Program Unique Identifier

I = Initial Delivery
- = No Delivery
##.### = ESLOC per Build

2-47

Downloaded from http://www.everyspec.com

Software Master Build Plan (SMBP). A comprehensive SMBP must be provided to map the
incremental functionality, capabilities, and requirements allocated to each build. The CSWE, or Build
Manager, usually maintains the SMBP with the approval of the software CCB. Once approved, the
SMBP should be controlled by SCM and the CSWE, or Software Build Manager, should routinely
report the status and changes to program management. The SMBP may also be called the "Master
Software Integration and Verification Plan" or may be referred to as a "Build Functionality Matrix."

Build Planning Updates. Software build planning should occur for each program increment and each
deliverable build and be updated continuously throughout the program. Build plans are typically
updated only when the plan contents change significantly as determined by the IPT Lead. Schedule,
ESLOC, and functional content estimates must be taken into consideration when planning builds. As
the program matures, additional design, requirements, technical content, and testing approaches
should be added. The build activities should be documented in detailed schedules and then
incorporated into the IMS along with staffing and budget-plan information.

5.1.1.4 Software Development Tracking and Oversight

The software tracking and oversight effort begins once software planning is complete. Segment IPTs,
Leads, the CSWE, and SQA monitor software development status by:

Collecting and evaluating software metrics data (SDP subsection 5.20)
Evaluating software products (SDP subsection 5.15)
Performing product quality and process audits (SDP subsection 5.16)
Supporting software reviews (SDP subsection 5.18)
Performing risk management activities (SDP subsection 5.19)

Software Measurement Oversight. Throughout the development process, software measurement
data must be used to compare actual software size, cost, schedule, and progress against the
established plan (see subsection 5.20). If the metrics indicate out-of-tolerance conditions, the segment
IPT software members perform an analysis to determine the corrective action and potential risks
including cost and schedule impacts. The Software Measurement (or Metrics) Plan is an important
addendum to the SDP.

Software measurement data reported to project management must also be reported to the customer
and corporate senior management. The status of software should be reviewed weekly at segment level
meetings and at monthly program status meetings. In addition, software status should be provided to
the customer monthly and also at quarterly reviews. Software management and control must be
integrated into the overall program management scheme. Figure 5.1.1.4 is a depiction of software
management from a measurement perspective.

Cost Account Oversight. Software work packages are typically cost accounts within the Earned
Value Management System (EVMS) used by all contractors. The cost account must be at a level of
detail sufficient to maintain control of the associated software development activities. Metrics on the
cost accounts/work packages should be reported to program management and available to the
customer.

Schedule Oversight. Schedule review meetings should be conducted weekly. Schedule metrics
(using weekly milestone accomplishments, including subcontractor data) should be reported along
with status of corrective action/recovery plans. IMS and detailed schedules should also be reviewed at
lower levels within the IPTs.

2-48

Downloaded from http://www.everyspec.com

Resources and
Cost

Measurements

Product Quality
Measurements

Schedule and
Progress

Measurements

Risk
Management

Measurements

Growth and
Stability

Measurements

Development
Performance

Measurements

Financial
Management

Measurements

Software
Measurements

Programmatic
Measurements Other Related

Measurements

Figure 5.1.1.4. Software Management from a Measurement Perspective—Example

Headcount Oversight. IPTs should monitor headcount on a weekly basis and strive to identify
potential problems early. Updates of accomplishments, actual headcount, budget and forecast should
be conducted on a monthly basis. Forecasts should be updated and reported in internal cost
performance reports that include significant cost/schedule variances and changes in the latest revised
estimate. Costs and schedules should be controlled by monitoring headcount and expenditures, and by
assessing progress.

Product and Process Oversight. Product evaluations, software reviews, process audits, and
assessments are used by segment IPTs, CSWE, and SQA as a means to determine compliance with
the standards established by the SDP. Non-compliance of baselined products is handled via the
corrective action process (CAP) (see subsection 5.17). Process audits must be performed by SQA,
with support from the CSWE, to determine compliance with the processes specified in the SDP (see
subsection 5.16). SQA must be responsible for documenting and verifying closure of a non-
compliance issue. Subsection 5.15 describes the software product evaluation process. Software
management must implement and maintain the mechanisms for interfacing to and communicating
with the customer.

5.1.2 Software Item Test Planning

This paragraph of the SDP must contain the approach for performing the Software Item Test
Planning. The testing of segment Sis must be performed by the respective segment software test
engineers. They are responsible for documenting the Software Test Plan (STP), Software Test
Description (STD), and Software Test Report (STR) to verify that the Sis meet the allocated
requirements.

A preliminary version of the STP is usually produced during the software design activity (see SDP
subsection 5.6). However, the STP is the result of the SI test planning activity. Data Item Description
D1-1PSC-81438A, or Annex E.2.2, in J-16, should be used as a guide for preparing the STP.
Production of the STD and STR is performed during Software Item Qualification Testing (SIQT) and
is discussed in SDP subsection 5.9. Test activities for MC and SS software classes must also be
documented in the SDFs.

2-49

Downloaded from http://www.everyspec.com

The STP describes plans for qualification testing of Sis and is an important software document. It
describes the test environment to be used, identifies the tests to be performed, provides schedules for
the testing tasks, defines the resources needed, and addresses all of the planning tasks required to
conduct the SIQT. Table 5.1.2 summarizes the readiness criteria in terms of entry, exit and
verification criteria to ensure completeness of the STP.

Table 5.1.2. Readiness Criteria: Software Test Plan—Example

Entry Criteria

The appropriate STP DID and other
reference materials are obtained.
Software requirements are established in
the SRS and IRS and are traceable to a
parent requirement.
The top-level software architecture is
established.
The Verification Cross Reference Matrix
(VCRM) specifies the test verification
method and level for each requirement in
the SRS and IRS.

Exit Criteria

The following tasks have been defined and documented in the STP:
• Test environment (sites, hardware, software, test tools, test facilities,

test data, etc.) needed to conduct the lifecycle tests.
• Test scenarios to be performed including the schedule for executing the

test activities.
• Traceability between SI requirements and the related tests and test

phases where the requirements are verified.
• Personnel, organizations, responsibilities, and management activities

needed to develop and implement the planned testing.
• The objectives for each test including test level, type, conditions, data to

be recorded, qualification method(s), data analysis, assumptions and
constraints, safety, security, and privacy considerations.

• Approach to related issues such as data rights, training, regression
testing, delayed functionality, and deliverable documentation.

« Criteria for evaluating the test results.
Verification Criteria

The tests identified fully test and verify the requirements being tested.
The occurrence and timing of the test phases in the lifecycle, plus the entrance and exit criteria for each test phase, has
been identified and documented.
The terminology and format is consistent between the SRS, RTVM, IRS, and STP.
The STP has successfully passed its peer review.

Measurements

» Statistics from the STP peer review.

5.1.3 System Test Planning

This paragraph of the SDP must contain the approach for providing support to system test planning.
The System Verification and Test Plan (it may also be referred to as an Integration, Test, and
Evaluation Plan) should be prepared by the SEIT and is the key planning document for system
testing. System integration and test activities are described in SDP subsection 5.11.

The System Test Team should be responsible for performing the actual system testing. Software
developers and/or software test engineers have a support role in system test planning that may include
reviewing test preparation materials, and providing software test support items, such as reusable
software test documentation, simulators, drivers, and analysis tools. Software engineers also support
anomaly analysis to determine if the problem is because of software only, hardware only, or a
combination. If regression testing on the software builds is needed, SCM must provide the software
builds against which the tests are conducted.

5.1.4 Planning for Software Transition to Operations

This paragraph of the SDP must contain the approach for performing the software installation
planning. This activity involves the preparation for, and the installation and checkout of, the
executable software at a user site. As described in SDP subsection 5.12, planning and preparation
should start relatively early in the lifecycle to ensure a smooth transition to the user. It should include
the preparation of documentation and software products required by the user to perform operational
tasks. This includes the code for each SI and supporting documentation including the preparation of
user manuals and user training materials as the pertinent information becomes available. Annex E.2.3,

2-50

Downloaded from http://www.everyspec.com

in J-16, should be used as a guide for preparing the Software Installation Plan (SIP). SDP
subsection 5.26 discusses Software Sustainment issues.

5.1.5 Planning for Software Transition to Maintenance

This paragraph of the SDP must contain the approach for performing the software transition
planning. As described in SDP subsection 5.13. transition planning involves advance planning and
preparation that should start early in the lifecycle to ensure a smooth transition to the maintenance
organization. It must include the installation and checkout of the software at the maintenance site.
Either DID DI-IPSC-81429A or Annex E.2.4, in J-16, can be used as a guide for preparing the
Software Transition Plan (STrP). SDP subsection 5.26 discusses Software Sustainment issues.

5.1.6 Following and Updating Plans

The plans noted in paragraphs 5.1.1 through 5.1.5 must be made available via an electronic data
access system accessible to all stakeholders and the customer. Once baselined, unplanned
modifications to these plans should be made via the corrective action process. Modifications that are
planned, such as scheduled updates to baselined documents at major milestones must also be
electronically available. Unplanned modifications, may also be captured as lessons learned. This
section should also cover the contractor's approach to enforcement of planned updates to the plans.

The SEPG should review the software development process at monthly SEPG meetings to determine
the effectiveness of the process through analysis of software metrics, requests from Segment IPTs,
recommendations from SEPG members, the customer and their representatives, and process audit
information from SQA, and program directives.

If other software or program level plans are affected by the approved change to the SDP, the CSWE
must ensure that responsible parties are notified of the SDP update and ensure that all inter-group
commitment changes are coordinated. The SEPG, described in paragraph 5.25.1. should coordinate
this activity. Unplanned changes to this SDP must be initiated and tracked using the corrective action
process described in subsection 5.17.

5.2 Establishing a Software Development Environment

A Software Development Environment (SDE) must be established to meet project software
development and test requirements. In accordance with TOR-3537B, the SDE activity must be
described in five paragraphs in the SDP:

• Software Engineering Environment (paragraph 5.2.1)
• Software Integration and Test Environment (paragraph 5.2.2)
• Software Development Library (paragraph 5.2.3)
• Software Development Files (paragraph 5.2.4)
• Non-Deliverable Software (paragraph 5.2.5)

5.2.1 Software Engineering Environment

The Software Engineering Environment (SEE) must consist of the hardware, software, procedures,
and documentation necessary to support the software development effort. Core Computer Assisted
Software Engineering (CASE) tools used across the program must be identified in a table similar to
Table 5.2.1 -1. The mechanism for making changes to the program-wide SEE CASE tool set should be
by approval of the Software CCB. Additional SEE requirements must be defined—typically in
segment/subsystem SDP Annexes, in a similar table.

2-51

Downloaded from http://www.everyspec.com

Table 5.2.1-1. Program-wide SEE CASE Tools—Example

Purpose of Case Tool Name of Tool Vendor

Object-Oriented Analysis and Design Rose 2000 Rational
Code Development and Testing SparcWorks Sun Microsystems
Large Relational Database Oracle Oracle
Small Relational Database Access Microsoft
Problem Tracking Reports ClearQuest* Rational
Planning and Scheduling Project Microsoft
Configuration Management ClearCase* Rational
Requirements Management DOORS* Telelogic
Software Estimation SEER-SIM Galorath
Software Metrics DataDrill* Distributive Software
'Core software management tools used across the program.
Note: Use of trade names in this material is not intended in any way to infringe on the right of the
trademark holder.

The example Table 5.2.1-1 can be expanded to include all tools and the segments/subsystems using
each tool. This table can become lengthy (e.g., 100 tools) in large programs so it may be put in the
SDP appendix. If it is lengthy, it is recommended that the tools be grouped in categories such as:
Operating Systems, Compilers, Configuration/Change Management, CASE Tools, Requirements
Traceability, Documentation, Metrics Collection and Analysis, Performance Analysis, and Test.

When CASE tools are selected for the program, it is important to remember that new tools are not
likely to make an ineffective process more effective; new tools are not a panacea for fixing
problems—but they can make an effective process more efficient.

The CSWE must coordinate implementation of the common tool suite among all
segments/subsystems to ensure effective information transmittal and maximum commonality. The
CSWE, or designee, should be responsible for monitoring the implementation of the SEE to ensure
that all requirements are implemented, for periodically assessing the continuing adequacy of the
environment, and for identifying additional needed tools. Details of the SEE configuration for each
segment should be maintained in a current inventory list and available from the System Administrator
at each site or segment.

An overview of the data network must be included as a figure in the SDP or referenced to its
location. In addition to a data network diagram, the major operational software development sites
should be listed in an overview table similar to Table 5.2.1-2. This table could incorporate an SI
column, however, Sis are often developed at multiple sites.

Table 5.2.1-2. SEE Development Sites—Example

Location Function Function Name

City, State FSS Flight Software Subsystem
City, State TT&C Telemetry, Tracking, and Command
City, State MPS

FSE
Mission Processing and Services
Field Station Element

City, State MMC Mission Management Center

5.2.2 Software Integration and Test Environment

Each software development segment/subsystem (site or factory) must have a controlled test
environment that supports integration and test of its Sis as part of its integrated SDE. These test

2-52

Downloaded from http://www.everyspec.com

environments should be defined by segment/subsystem test personnel and described in their Software
Test Plan (STP) and their SDP Annexes.

Care must be taken at all levels, including system integration, to procure the needed integration and
test tools far enough in advance to assure they are available when needed and that there is enough
time for user training. Some Sis may be developed at multiple sites. All software developed at
geographically dispersed sites must be fully tested at each development site, preferably on target
hardware, prior to final installation and qualification testing at the integration location.

All planned Integration and Test Environments should support testing using "Test-Like-You-Fly"
principles. This includes high fidelity simulators and target test beds and test facilities that are
representative of the operational environments.

5.2.3 Software Development Libraries

Two levels of software libraries are normally used to implement software CM as follows:

• The Master Software Development Library (MSDL) is a single master program-level repository
of software information.

• Each software development segment/subsystem (or site) should maintain a subordinate Software
Development Library (SDL) at its site for local control of software products.

These libraries must provide repositories for products resulting from software requirements
definition, design, implementation, and test in accordance with the requirements of the SDP. The
MSDL and SDLs must be controlled collections of software, documentation, and associated tools and
procedures used in the development of software. The SDL for each development site must be defined
in its respective SDP Annex. The MSDL and SDLs must be maintained throughout the contract
duration. Also, electronic items must be maintained in a restricted environment and access controlled
by login procedures.

The SDL contains code, test cases, and the electronic version of the software documentation.
Figure 5.2.3 is an example of a typical logical partitioning of the SDL in electronic form. In
Figure 5.2.3 the SDL is shown as three primary logical partitions: the software development area; the
controlled library area; and the verification area as shown in the figure.

2-53

Downloaded from http://www.everyspec.com

ELECTRONIC SDL
SDL • Software Development
Library

MSDL • Master Software
Development Library

ELECTRONIC MSDL

„Software Development Area

Software Development Files
Unit Test
Review Areas

Controlled Library Area

BTv
Controlled by site
Software Developers

Input Receiving
Output Staging
Baselining
Tools and Utilities
Incremental Releases

„Archiving

Verification Area

Integration and Testing

Controlled by segment
Configuration Management

Controlled by SCM and
Integration and Test

y
Figure 5.2.3. Electronic SDL Logical Partitioning—Example

The following paragraphs may be used as sample text describing the three electronic library areas
including ownership and control of the partitions. It is intended to be general guidance as the specific
organization of segment SDLs should be defined and described in the segment annexes.

Example Text:
The Software Development Work Area is maintained and controlled by the software engineers as a working
area to develop the software. This working area is used to create new code and/or documents, modify
previously released code and/or documents, maintain databases, perform unit testing by the software
developers, and for other users to review the products electronically. At the end of each build, the finished
products, and the SDFs, are transferred from the Work Area to the SDL Controlled Library Area.

SDL Controlled Library Area. After code and unit test is complete, the software goes under segment
Configuration Management (CM) control (i.e., it is baselined). The CM group copies finished products
received from the software developers into this area. CM will always rebuild the executables from the source
files before transferring them. CM has ownership, full accountability, and full access privileges; all other users
have read-only privileges in this area. Software products are held here for CM to verify that the necessary files
have been received by doing a preliminary validation of the product. When all files are received, the
executable software products will be built from the source code and transferred to the SDL Verification Area.

The SDL Verification Area is owned, maintained, and controlled by the integration and testing group. They
have write privileges and no other users may modify the data in this area. Before products are transferred to the
Verification Area from the Controlled Area, CM verifies that the product is complete, and is ready for
integration with other parts of the system; when that is done, the code and executables are copied into this area.
All software products promoted into the SDL Verification Area are under the strict control of the chosen
configuration management tool. Following software CCB approval, files are transferred to the Verification
Area in the MSDL.

5.2.3.1 Electronic Data Interchange Network

The SDP must describe the program's ability to provide continuously available, secure, encrypted
remote access such that any authorized individual can view all data (documents, analysis, databases,
or other information) using a standard web browser. The data must be safeguarded at multiple levels
(i.e., Unclassified, Contractor Proprietary and Secret levels) in accordance with Government

2-54

Downloaded from http://www.everyspec.com

requirements and negotiated restrictions to rights in technical data and software. Access must include
data generated by contractors and all subcontractors.

5.2.3.2 Software Process Assets Repository

In addition to the MSDL and SDLs. software documentation should be provided, via electronic
access, from a program-level library that may be called the Software Process Assets Repository
(SPAR). The SEPG should be responsible for defining and maintaining the SPAR; this repository
usually consists of both electronic and non-electronic materials.

5.2.4 Software Development Files

Software Development Files (SDF) are required for all software categories at the segment, SI, and SU
levels. SDFs must be prepared and kept current throughout the program duration. If a SI or SU is
deleted, its data must be retained in an inactive file. Since SDFs are involved throughout the software
development process, subsections 5.3 through 5.11 of the SDP do not always call out the use of
SDFs. The ubiquitous nature of the SDF should be understood when reading these sections.

SDF Audits. SDFs should be inspected and audited throughout the program, to determine compliance
with the SDP, with at least one inspection performed during each build and prior to each major
review. Deficiencies identified during these inspections normally result in corrective action through
the corrective action system. The frequency of SDF audits should be defined in the Software Quality
Program Plan (SQPP). After an SDF inspection by SQA, the CSWE, or the customer, the SDF must
be updated to note that it has been audited.

SDF Format. SDFs can be maintained either in electronic format or non-electronic format for hard
copies. Electronic information should be the preferred format. Information can either be placed
directly into the SDF or provided by pointers to an external location. SDFs should be initiated during
software requirements definition and remain under control of the segment/subsystem development
teams from the time they are created until completion of the contract. Table 5.2.4 is an example
tabular version of the overall SDF organization.

Table 5.2.4. Electronic SDF Organization—Example

SDF Folder Description

SI Name Root folder for each Software Item
Referenced locations File(s) with pointers or links to SDF related materials in another location (to avoid duplication)
SI Level Peer
Reviews

Peer Review materials (checklists, forms, notification; materials; log)

SU Level Peer
Reviews

Peer Review materials (checklists, forms, notification; materials; log) for products for a specific SU

SQA Reports SQA Audit support materials and reports
Assessment Reports Assessment support materials, reports and management information
Lessons Learned Lessons learned support materials and reports/meeting minutes/action items
Meeting minutes Minutes not already stored in another location
Design materials In-work design specifications; design definition; agreements/decisions; database from CASE tools

Plans, tracking, and
support

Administrative, risks, low level schedules; trade studies and evaluations; BOE; prototype plans

Test artifacts In-work plans, procedures; low-level (unit test; unit integration) plans, procedures, results, reports
Reviews and
Presentations

Formal briefing and presentation materials and minutes

Training materials Training and orientation materials and records not already recorded in another location.
Process Improvement Plans, minutes, and reports
Metrics Data, analysis and reports not already stored in another location
Tools Common scripts and tools used that are not stored in another location

2-55

Downloaded from http://www.everyspec.com

5.2.5 Non-Deliverable Software

Non-deliverable software consists of software developed, purchased, or used for software
development but not required by the contract to be delivered to the acquirer or other designated
recipient. It is identified as Category SS-3 in subparagraph 1.2.3.2. Non-deliverable software can be
used during software development only if the operation and maintenance of the deliverable software
does not depend on use of the non-deliverable software or the acquirer either has the software or can
readily obtain it. In any case, the developer must ensure that all non-deliverable software performs its
intended functions.

5.3 System/Segment Requirements Analysis

The major objective of this activity is the analysis and specification of system requirements. The
activities in this activity are also equally applicable to Segment Requirement Analysis or any other
level of requirements above software. The principal tasks performed in this activity should be led by
the Systems Engineering Integration and Test (SEIT) organization with support from the segment
Software IPT members.

In accordance with TOR-3537B, the System/Segment Requirements Analysis activity must be
described in three paragraphs in the SDP:

• Analysis of User Input (paragraph 5.3.1)
• Operational Concept (paragraph 5.3.2)
• System/Segment Requirements (paragraph 5.3.3)

This activity is based on inputs from the customer and user-provided requirements such as: the Initial
Capabilities Document (ICD), Capabilities Development Document (CDD), the Technical
Requirements Document (TRD), the Statement of Objectives (SOO), and the Request for Proposal
(RFP). The major output documents resulting from this activity are preliminary versions of the
System/Subsystem Specifications (SSS), the Operational Concepts Description (OCD), and the
Interface Specification (IS). The system verification and system test plans may also be revisited and
updated if necessary.

In addition, interface definitions must be provided to enable the further definition and management of
the computer software and computer equipment resources. This must be documented in the Interface
Control Documents (IFCD). The acronym TFCD' is used in this Guidebook to avoid confusion with
the ICD defined in the above paragraph. Depending on contract provisions, interface definitions may
also be included in the System/Subsystem Specification (SSS) or the Interface Requirements
Specification (IRS). The IRS may be contained within the SRS.

Inputs can also be derived from systems engineering studies. An early draft version of the SSS may
also be provided to the contractors by the acquisition program office. Table 5.3 summarizes the
readiness criteria for this activity with the entry and exit criteria, verification criteria to ensure
completion of the required tasks, and the measurements usually collected.

2-56

Downloaded from http://www.everyspec.com

Table 5.3. Readiness Criteria: System/Segment Requirements Analysis—Example

Entry Criteria

External system interfaces have been identified
and the related documentation has been reviewed.
Preliminary concept of operations and system
capability definition have been completed
Systems engineering notifies software team of the
need for their support

Exit Criteria

System level requirements analysis and segment requirements
analysis is complete.
Performance allocation, interface requirements, and user
interface analysis are documented
System requirements joint technical and management reviews
are successfully completed.
Software representatives have reviewed system requirements
and the concept of operations.
System/segment requirements are allocated to software
Bi-directional traceability is completed from customer
requirements to/from system specification and from system
specification to/from segment specification.

Verification Criteria

Software IPT personnel participate in the review and approval of the system and segment requirements and interface
requirements documentation.
Program and senior management are provided status of ongoing product engineering tasks (including Segment
requirements analysis and management) on a periodic and event driven basis.
System Requirements Review (SRR) is successfully completed.

Measurements

Requirements analysis task schedule.
Number of system/segment requirements allocated to software.
Planned versus actual level of effort.
Requirements traced versus untraced. (see subsection 5.20)

5.3.1 Analysis of User Input

System Requirements. The SEIT has primary responsibility for the system-level tasks performed
during this activity. The CSWE and/or the Chief Software Architect are often (and should be) part of
the SEIT team. They directly support these tasks so that: (a) decisions involving software can be
made with the appropriate expertise and (b) interface requirements are consistent across the system.

Segment Software IPT personnel support the system requirements analysis to ensure that
requirements involving software are adequately addressed. The segment Software IPT assists and
supports the SEIT in the identification and capture of the software needs by participating in system-
level working groups.

The developers must also participate in analyzing user input to ensure that all interested parties
maintain ongoing communications regarding user needs throughout development of the system. In
addition to the developers, interested parties may include the users, acquirer, test, and maintenance
organizations. Work products of this task may include need statements, surveys, SCRs/SDRs, the
results of prototypes, and documented interviews.

Segment Requirements: Segment requirements analysis must be accomplished by analyzing
allocated segment requirements from the system specification and interface requirements. Segment
system engineering has primary responsibility for the segment tasks performed during this activity.
The segment Software IPT should assist and support segment system engineering in the derivation of
segment-specific requirements from the system-level requirements by participating in their working
groups.

5.3.2 Operational Concept

The segment Software IPT should support the SEIT in defining the system Operational Concept
Description (OCD) by identifying and evaluating alternative concepts for technical feasibility, user
input, cost effectiveness, schedule impact, risk reduction, and critical technology limitations. The

2-57

Downloaded from http://www.everyspec.com

segment Software IPT should also: (a) analyze the operational concepts and other inputs to derive any
software requirements that are not specifically stated and (b) support the refinement of the operational
concept based on current analyses and update it with user interface analysis material as appropriate.

5.3.3 System/Segment Requirements

System-level requirements must be documented in the SSS. This document specifies system
capabilities and allocates requirements to the segments. Segment-to-segment, and system-to-external
system interface requirements must be defined and documented during this activity.

All system, segment-segment, and segment-external requirements and interfaces should be
maintained in a Requirements Database (see paragraph 4.2.3 for example requirements management
databases). Segment Software IPT personnel should participate in working group discussions and
joint IPTs to review and comment on the parent specification requirements related to software.

The segment Software IPT must support segment requirements analysis through the identification
and derivation of software-related aspects for functional performance, interfaces, constraints, and
quality requirements. These requirements must be analyzed for completeness, consistency,
verifiability, and feasibility. Segment Software IPT participants also must identify and recommend
requirements that could be feasibly allocated to and implemented in software and identify possible
software verification methods and traceability for the segment requirements.

5.4 System/Segment Design

Segment Software IPT personnel must support the SEIT in developing the system/segment design
and the specific configuration of hardware, software, and firmware to meet performance and
reliability requirements. In accordance with TOR-3537B, the System/Segment Design activity must
be described in two paragraphs in the SDP:

• System-wide/Segment-wide Design Decisions (paragraph 5.4.1)
• System/Segment Architectural Design (paragraph 5.4.2)

Table 5.4-1 summarizes the readiness criteria for this activity in terms of the entry and exit criteria,
verification criteria to ensure completion, and the measurements usually collected.

Table 5.4-1. Readiness Criteria: System/Segment Design—Example

Entry Criteria Exit Criteria

Pre
•
•
•

iminary versions of:
System and Segment requirements

System OCD and Requirements database

System test approach and the Verification Cross-
Reference Matrix

• System architecture, Software Item definitions, software
system architecture decisions, and non-developmental
software analysis are documented.

• System architecture baseline has been established.

Verification Criteria
•
•

•
•

Software personnel participates in the review and approval of the system architecture, SI definitions, and SI interfaces.

Program and senior management are provided status of ongoing product engineering tasks (including system design)
on a periodic and event driven basis.

SQA performs process and product audits for ongoing product engineering tasks per SDP subsection 5.16.

System Functional Review (SFR) at the SEIT level successfully completed.
..
Measurements

•
•

Product Engineering schedule

SI SLOC and SI requirements estimates (see subsection 5.20)

2-58

Downloaded from http://www.everyspec.com

During the System Design activity, major system characteristics should be refined through trade
studies, analyses, simulation, and prototyping. The primary focus of this activity should be the
definition of segment Hardware Items (HI) and Software Items (SI). System requirements and
interfaces should be refined, allocated, and flowed down to the HI/SI level. In addition, make, buy,
and reuse trade studies can be performed during the System Design activity.

The results of these tasks should be used to determine the system characteristics (performance, cost,
and schedule) and to provide confidence that risks are being resolved or sufficiently reduced in
impact and severity. The System Design activity can also evaluate the maturity of technology and
make decisions about the use of technology. This activity is normally led by the SEIT group. The
System Test Group must review the system/segment design to determine if the requirements
allocated are verifiable.

Six principal tasks are recommended for the system design activity as depicted by the example
flowchart in Figure 5.4. Details of the six tasks in this activity are described in its related Task
Table 5.4-2 that shows the inputs and outputs to each sub-task. In accordance with TOR-3537B. the
System/Segment Design activity must be described in two paragraphs:

• System-wide/Segment-wide Design Decisions (paragraph 5.4.1)
• System/Segment Architectural Design (paragraph 5.4.2)

Inputs System/Segment Design Tasks Outputs

System Spec
andOCD •

Functional Decomposition,
* System Architecture, and

System Design Decisions

1 Support System Architecture Design

i
• Segmentand SI Concepts
• IFCD
• Segment Design Decisions

System |
Architecture,
Functional
Decomposition,
and Segment
Specifications

2 Support Development
of Segment Concepts

« •
3 Support Refinem entof SI Definitions . • Object Oriented Models

• Allocated Software
Requirements 1

4 Support and Update Segment
Performance Prediction Models

• Model Documentation
* • Timing/Sizing Analysis

i • Trade Studies and EMs
• Concept Briefings

«• • SSDD 5 Support System Design Approaches

* • Timing/Sizing
. • SLOC Estimates

• Interface Allocations
6 Support System Functional Review

OCD = Operational Concept Description SI = Software Items IFCD = Interface Control Document
SSDD = System/Subsystem Design Description SLOC = Source Lines of Code

Figure 5.4. System/Segment Design Process Flow—Example

2-59

Downloaded from http://www.everyspec.com

Table 5.4-2. System/Segment Design Tasks—Example

Tasks Inputs Subtasks Outputs

1. Support
System
Architecture
Design

• System OCD

• System
Specification

• Assist SEIT to identify system level architecture

• Assist SEIT to develop functional decomposition

• Coordinate Segment SI definitions with SEIT

• System Architecture

• System Functional
Decomposition

2. Support
Development
and Update of
Segment
Concepts

• System
Architecture

• System
Functional
Decomposition

• Segment
Specifications

• Describe Segment capabilities in context of
system specs, His, and Sis

• Describe Segment interfaces to other Sis and
elements

• Describe individual SI capabilities, including plans
for reuse of non-developmental software

• Segment concepts

• SI concepts

• External interfaces
captured in the SRS or
IRS

• IFCD

3. Support
Refinement of
SI Definitions

• Segment and SI
Concepts

• Develop appropriate object-oriented diagrams
reflecting all software objects needed to achieve
scope with interfaces to other Sis

• Allocate Segment System requirements to SI
classes; verify traceability of system requirements
to Sis

• OO-Based Models

• Allocated software
requirements

4. Develop and
Update
Segment
Performance
Prediction
Models

• Segment and SI
Concepts

Develop and update Segment models to support:

• Updated timing and sizing analysis

• Algorithm development

• Interface analysis

• EMs documenting timing
and sizing analysis

• Performance prediction
models and
documentation

5. Develop
Design
Approaches

• Segment Specs
and SI Concepts

• Performance
Prediction
Models

• Segment OO
Models

• Create Segment-level behavior diagrams for key
design approaches

• Verify approach satisfies associated system
requirements

• Support documentation of technical approaches
and the System/Segment Design Description
(SSDD)

• Trade Study EMs

• Concept briefings

. SSDD

6. Perform
System
Functional
Review (SFR)

• Concept
Briefings

• Segment OO
Models

Conduct analysis to:

• Allocate timing and sizing budgets to Sis

• Establish and update SLOC estimates

• Allocate system and external interfaces

• Flow up changes to system requirements as
needed

• Timing and sizing
budgets

• Updated SLOC estimates

• Interface allocations

5.4.1 System-wide/Segment-wide Design Decisions

System Decisions. System-wide software design decisions and their rationale should be documented
by the SEIT in Engineering Memorandums (EMs) and the System/Subsystem Design Description
(SSDD). EMs are typically maintained in the electronic data management system (see
paragraph 5.2.3). System requirements are generated from the EMs and the SSDD and are flowed
down to the segment product specifications.

Segment Decisions. Segment-wide software design decisions and their rationale should be
documented in EMs residing in the electronic data management system. Segment EMs must be
evaluated by the segment IPT to determine if they impact the software requirements. However, the
principal product is the SSDD. The segment Software IPT should record, in the segment SDF or
equivalent, the rationale for the COTS/reuse/other NDIs approach selected—including rejected
approaches and the studies and analyses that led to the selected approach.

Software system/segment architecture decisions made during system/segment design must be
recorded for later use in developing software requirements and design. Decisions are usually recorded
using EMs. The Segment IPT Lead should participate in establishing the rationale for software

2-60

Downloaded from http://www.everyspec.com

architecture, definitions, interfaces, COTS/reuse/other NDIs approach, and should be responsible for
ensuring that the following data are recorded:

• The overall software architecture that was selected, including the studies and analyses that
lead to the selected architecture

• The Software Item definitions and interfaces, including the studies and analyses that lead to
the selected SI definitions

• The software COTS/reuse/other NDIs approach, including studies and analyses that led to the
selected approach

5.4.2 System/Segment Architectural Design

This task involves organizing a system into segments/subsystems and then decomposing segments or
subsystems into Hardware Items (His). Software Items (Sis), plus manual and other operations.

5.4.2.1 System Architectural Design

During the System Architectural Design task, required segments must be identified along with
segment-to-segment, and segment-to-external systems interfaces, plus a concept of system execution.
The interfaces must be documented by the SEIT in the IFCDs. The segment software IPT personnel
should support the SEIT by:

Participating in the system architectural design and the specific configuration of hardware,
software, and firmware to meet performance and reliability requirements

Assessing the software impact of implementing the operational concept and system
requirements in terms of technical suitability, cost, and risk

Participating in trade studies to select processing, communications, and storage resources

Reviewing the system test approach and test philosophy to ensure testing compatibility

Identifying how each requirement will be tested, what test support software will be needed
for system test, identifying the system test environment, and developing a system test plan

Reviewing and analyzing the system design to determine testability of the requirements
allocated to software

Recommending requirements changes to the SEIT as necessary

5.4.2.2 Segment Architectural Design
Segment architectural design should be documented as part of the segment architecture baseline
process. The basic responsibilities, typically assigned to segment software IPT personnel, during
Segment Architectural Design, are to:

• Support System Engineering in defining the segment architectural design and the specific
configuration of hardware, software, and firmware to meet performance and reliability
requirements

• Assess the software impact of implementing the operational concept and segment
requirements for technical suitability, cost, and risk

• Support System Engineering in performing trade studies to select best processing,
communications, and storage resources

• Ensure the segment test approach is compatible with the test philosophy
• Support segment system engineering in reviewing the segment-level requirements and

identifying how each requirement is tested

2-61

Downloaded from http://www.everyspec.com

Support the identification of test support software and test environment needed for segment-
level test and development of a segment test plan
Review and analyze segment design to determine testability of requirements allocated to
software
Recommend requirements changes to segment system engineering
Support segment system engineering in creating definitions of Software Items, in allocating
segment requirements to the Sis, and in review and refinement of the interfaces among the
defined software products
Identify potential candidates for reuse and COTS software products at the SI level
Review and refine the definition of Software Items

When using the object-oriented (OO) methodology, the segment software high level architecture
design must be captured in SI OO models and placed in the SDF. These architecture models should
be documented with the applicable OO methodology products. These products should then be utilized
to refine and update the development of timing and sizing budgets, SLOC estimates, and to prototype
algorithmic approaches.

5.5 Software Requirements Analysis

Introduction. This subsection of the SDP addresses the objectives, approach, work products, and
responsibilities of the Software Requirements Analysis activity. There are no specific TOR-3537B
SDP sectional breakdowns required for this activity.

Objectives. Software requirements analysis must be accomplished by analyzing the system and
segment requirements to identify allocated and derived software requirements. These resulting
requirements should define what the software system must be able to do, while avoiding
implementation bias (i.e., not describe how to implement a requirement).

As depicted in Figure 5.5-1, software requirements can originate from several sources. The types of
requirements that may be determined include, but are not limited to, capabilities, behavior,
processing, control, interfaces, performance, sizing, timing, packaging, security, safety, reliability,
maintainability, availability, human factors, and software qualification. Requirements should be
analyzed for: completeness, traceability, consistency, testability, criticality, feasibility, correctness,
and accuracy.

In addition, requirements must be specifically evaluated for safety, security, privacy protection,
dependability, reliability, maintainability, and availability. These critical requirements need additional
tracking and monitoring per paragraph 4.2.5. In addition, requirements identified that have significant
risk associated with them must be evaluated by the software IPT for risk assessment and mitigation in
accordance with SDP subsection 5.19.

Approach. The general approach for preparing requirements specifications is to make each
requirement:

• Clear and concise in a single statement with a single "shall"
• Testable or verifiable and traceable via a unique product identifier
• Consistent with all system requirements
• Understandable and independent of other software requirements
• A statement of what the software will do and not how it should do it

2-62

Downloaded from http://www.everyspec.com

SYSTEM REQUIREMENTS

Functional Decomposition

n—
System Requirements
Allocated to Hardware

I
T

System Requirements
Allocated to Software

System
Design

SOFTWARE REQUIREMENTS L— Derived Software

Firmware

Software Design

1

Requirements

Software Implementation and Test

Figure 5.5-1. The Origin of Software Requirements

All software requirements may not meet all of these guidelines, however, these guidelines should be
considered in defining each requirement. In addition to being clear and concise in documenting the
requirements, analysts should: use data dictionary terms and approved acronyms; use consistent
terminology; avoid the use of lists; limit the use of the words "and" and "or;" use positive
requirements; and not use the term "and/or."

A single requirements database should be used to capture all requirements. System Engineering and
Software Engineering should use the same requirements database for documenting and maintaining
requirements to assure full compatibility between these tasks at the system, segment and software
levels. Portions of this database can be partitioned out and updated by the various IPTs; however, a
single master copy should be maintained to ensure a consistent communication of requirements
among the teammates.

Table 5.5-1 summarizes the readiness criteria for this activity in terms of the entry and exit criteria,
verification criteria to ensure completion, and the measurements usually collected.

Software Work Products. One Software Requirements Specification (SRS) should be developed for
each segment SI. The segment Software 1PT personnel must ensure that there is consistency between
software item SRSs for common interface requirements. SS-2 software items do not require an SRS
document; however, all software and interface requirements and traceability data for SS-2 software
must be captured in the SDF.

The software segments should document allocated and derived software requirements in a
Requirements Database, as discussed in SDP paragraph 4.2.3, for all software categories. Each
specific requirement must be assigned a unique program identifier for individual requirement
traceability. Traceability requirements for MC-1 and SS-1 software should include SRS requirements
traced to system requirements and software builds.

2-63

Downloaded from http://www.everyspec.com

Table 5.5-1. Readiness Criteria: Software Requirements Analysis—Example

Entry Criteria

System requirements allocated to software
are available.
Software system architecture is available.
System OCD is available.
Appropriate Software Engineering
Environment (SEE) elements are available for
use.

Exit Criteria

Software system architecture and software system interfaces are
documented in the SDF, SRS, and IRS.
Software requirements, Requirements Test Verification Matrix
(RTVM), and the Software Requirements Traceability Matrix
(SRTM) are documented in, or their location referenced by the SRS,
or in a traceability or requirements management tool.
Lessons learned are recorded.

Verification Criteria

Software management reviews and approves: software system architecture, software system interfaces, software
requirements, RTVM and SRTM as documented in the SRS, or their location referenced by the SRS, or in a traceability
or requirements management tool.
Program and senior management are provided status of ongoing product engineering tasks (including software
requirements) on a periodic and event driven basis.
All software products (see Table 5.5-2) are peer reviewed and the requirements database is inspected.
A Software Specification Review (SSR) or Technical Interchange Meeting (TIM) has been completed.

Measurements

Software requirements added, modified, and deleted during reporting period
Product Engineering schedule
Requirements traceable versus untraceable. (see subsection 5.20)

The traceability data must be documented and the recommended format is a Software Requirements
Traceability Matrix (SRTM). In addition, a Requirements Test Verification Matrix (RTVM) should
also be prepared. The RTVM may also be called the Verification Cross Reference Matrix (VCRM).
The SRTM and the RTVM (or VCRM) may part of the SRS or reside in a traceability or requirements
management tool. It is extremely important to include government overview in this process to assure
simulators are developed with adequate requirements from the stakeholders and users to incorporate
the needed fidelity.

Diagrams for algorithm models and simulations should be captured in SDFs as well as the appropriate
software tools. For COTS/Reuse (C/R) software, the only documentation available may be from the
software supplier. However, MC and SS-1 categories of COTS/Reuse software (defined in
paragraph 1.2.3) once integrated must be fully documented in order to pass the software
documentation reviews.

All of these software products must be made available via an Electronic Data Interchange Network
(EDfN) as described in SDP subparagraph 5.2.3.1. In addition, the draft of the Software Master Build
Plan (SMBP) may be prepared during this activity and the Interface Control Document (IFCD) may
be baselined if it had not reached that level of maturity in the previous activity. The typical software
products for the Software Requirements analysis activity are summarized in example Table 5.5-2.

Table 5.5-2. Software Requirements Analysis Work Products—Example

Software Requirements Analysis Products MC1 SS1 SS2 SS3 C/R

Requirements Database Required Required Required Required Required
Software Requirements Specification (SRS) (May
include IRS, SRTM & RTVM)

Required Required Required* Required* Required*

Interface Requirements Specification (IRS) Required Required Required* Required* Required*
Software Requirements Traceability Matrix (SRTM) Required Required Required* Required* Required*
Requirements Test Verification Matrix (RTVM) Required Required Required* Required* Required*
Software Master Build Plan (SMBP) Required Required Required* Required* Required*
Software Work Products (see subparagraph 4.2.10.3) Required Required Required* Optional Optional

*Document not required, but applicable information is developed and retained in the SDF.

2-64

Downloaded from http://www.everyspec.com

Staff Responsibilities. The segment Software IPT personnel should be responsible for the SI
requirements analyses, the generation of the work products, and the documentation of the
requirements in SRSs or SDFs, as appropriate. Table 5.5-3 is an example of the roles and
responsibilities of the Software IPT personnel and other groups during the requirements analysis
activity. The segment Software IPT personnel should also be responsible for conducting the required
reviews of the analysis process and output documentation as well as the tasks defined in the example
flowchart (Figure 5.5-2) and in its related Task Table (Table 5.5-4).

Table 5.5-3. Roles and Responsibilities During Software Requirements Analysis—Example

Roles Responsibilities

Software IPT

Performs software requirements analysis, definition, and documentation
Generates initial traceability products for SRS requirements to parent specification requirements
in Requirements Database
Identifies software item risk areas
Initiates an SDF for each SI
Collects and reports requirements metrics
Submits problem reports after the requirements documentation is baselined

Software Test Identifies the verification levels and methods in the Requirements Database; prepares RTVM
Chief Software

Engineer
Supports the IPT in the identification and specification of critical requirements, reviews the
SDFs, reviews the activity products, and attends all formal activity reviews

Software Quality
Assurance (SQA)

Evaluates the segments for adherence to: (a) documented policies and procedures; (b) product
quality criteria; and (c) the Requirements Database. Findings are reported to management.

Software
Configuration

Management (SCM)

Manages software requirements baseline and processes all Software Discrepancy
Reports/Software Change Notices (SDRs/SCRs) for documented software requirements
changes to the SRS or SDF as they are generated by the software segments or elements.

IPTCCB Addresses all segment internal change notices and SDRs/SCRs as they are generated

2-65

Downloaded from http://www.everyspec.com

Process Tasks. The software requirements analysis activity involves 10 tasks as depicted in
Figure 5.5-2. Details of these 10 tasks are described in Table 5.5-4 in terms of the inputs and outputs
to each task.

INPUTS SOFTWARE REQUIREMENTS TASKS OUTPUTS

System
Performance
Specifications,
allocated
software
requirements,
work products
[see 4.2.10.3],
ICDs, system
architecture,
system and
segment
OCDs, and SI
SDF

On-Going
Tasks:

• Training
• Software

Metrics
• Problem

Reporting

1- Review/analyze allocated
Software Requirements

• Requirements Analyzed
• Derived Requirements

2- Define Preliminary Software Architecture
• Preliminary SW architecture
• Use Cases List

3- Define SI Interfaces and Requirements
—*—*—W
'it

• SI Interfaces & Requirements
• Models/Work Products
• Requirements Database
. Draft SRS, IRS and SMBP

4- Conduct Work Product Inspections
Inspection Results & Revisions

5- Establish SW Requirements Traceability

6- Define/Verify SW Qualification Requirements

Updated SI Requirements,
Traceability, Database and
Interface Requirements

RTVM and SRTM

7- Perform Resource Use Analysis • Timing / Sizing estimates
• SLOC Estimates

8- Inspect Requirements Database Inspection Results and
Revisions

9- Inspect and Publish SRS

10- Conduct Segment SSR

• Updated RTVM and SRTM
• Inspection Results
• Preliminary SRS & IRS
. Draft SMBP

NOTE: Updated SDFs are outputs for each activity

OCD = Operational Concepts Description SDF = Software Development Folders SLOC = Software Lines of Code
ICD = Interface Control Document IRS = Interface Requirements Specification SMBP = Software Master Build Plan
RTVM = Requirements Test Verification SRTM = Software Requirements Traceability
Matrix Matrix
SRS = Software Requirements
Specification

Figure 5.5-2. Software Requirements Analysis Process Flow—Example

2-66

Downloaded from http://www.everyspec.com

Table 5.5-4. Software Requirements Analysis Tasks—Example

Task Inputs Subtasks Outputs

1 Review and
Analyze
Allocated
Software
Requirements

• See inputs in
Figure 5 5-2

Review and analyze allocated SW requirements • Allocated requirements
analyzed

• Derived requirements
developed

2. Define
Preliminary
Software
Architecture

• Allocated
Software
Requirements

• Define software architecture components
• Develop/update Sl-to-SI interfaces
• Identify segment Use Cases

• Preliminary SW
architecture at SI level

• Segment Use Cases List

3. Define SI
Interfaces
and
Requirements

• ICDs
• Software

Requirements
• Software

Architecture at
SI Level

• Refine SI level SW architecture model
• Model software architecture in 00
• Develop SW requirements and interface

requirements, including data items
• Develop SW work products (see

subparagraph 4.2 10.3 and Work Product
Table 5.5-2)

• Identify software risks
• Enter SW and interface requirements, into

database
• Review database for completeness

• High level analysis and
class models

• SI and interface
requirements

• Work products
• Draft SRS, IRS, and

SMBP
• Populated Requirements

Database

4. Conduct
Work Product
Inspections

• Work Products
• Requirements

Database

• Schedule inspection; distribute review package
• Conduct peer reviews; verify feasibility,

completeness of SW requirements, and
consistency between SW requirements, and
update work products

• Document results and post to SDF
• Fix inspection deficiencies

• Peer Review results
• Work products updated
• Deficiencies recorded

5. Establish
Software
Requirements
Traceability

• Requirements
Database

• Update software requirements tables to add
traceability between system and software
requirements

• Verify both downwards and upwards traceability
between system and software requirements

• Add software requirements or flow up
recommended changes to system requirements
as necessary to complete traceability

• Conduct peer review of Requirements Database

• Updated SI requirements
• Updated traceability
• Updated Requirements

Database
• Updated interface

requirements

6. Define/Verify
Software
Qualification
Requirements

• Draft Software
Requirements

• Update software requirements tables to add a
qualification method (Inspection; analysis; test;
demonstration; other) for each software
requirement

• Verify qualification method satisfies verification
plan

• Create and peer review the RTVM and SRTM

• RTVM and SRTM
• Updated SI requirements,

traceability, interfaces, and
database

7. Perform
Resource
Use Analysis

• Software Work
Products,
Requirements,
and Preliminary
Architecture

• Conduct timing and sizing analysis
• Develop/update SLOC estimates
• Post information to SDF
• Verify that timing and sizing meets requirements

• Timing and sizing
estimates

• SLOC estimates

8 Inspect
Requirements
Database

• Requirements
Database

• Announce inspections, disseminate schedule,
and review products in advance

• Conduct inspection to verify correctness,
completeness, and consistency of data

• Document results and post to SDF
• Fix inspection deficiencies

• Requirements Inspection
results

• Baselined Requirements
Database

9. Inspect and
Publish SRSs

• Requirements
Database

• Update the preliminary SRS and IRS
• Conduct peer reviews utilizing SRS inspection

criteria
• Update the draft SMBP
• Obtain board approval

• Preliminary SRSs and
IRSs

• Updated SI SDF
• Updated RTVM and SRTM
. Draft SMBP

10. Conduct
Segment
SSR

• SRSs/IRSs
• Agenda
• Presentation

slides

• Conduct SSR
• Publish minutes and action items list
• Resolve action items
• Deliver documentation per contract

• SSR minutes
• Action item results

• SRSs and IRSs
• Requirements Database

2-67

Downloaded from http://www.everyspec.com

Exit Criteria. There is no requirement for the software requirements analysis activity to be entirely
completed prior to the start of the software design activity. When following iterative lifecycle models,
the software requirements analysis activity may be repeated for each build so the software
requirements would be developed iteratively. In this case, the Software Specification Review (SSR),
or the support software requirements Technical Interchange Meeting (TIM), would be held on a
build-by-build basis.

When following the Object-Oriented Analysis (OOA) methodology, the software requirements
analysis and software architecture definition can be concurrent resulting in combining the SSR, or
TIM, with the Preliminary Design Review (PDR).

The software requirements analysis activity formally ends upon completion of the Software
Specification Review (SSR) and baselining of all work products. Lessons learned should be captured
in EMs and SDFs.

Verification. Verifying completion of the 10 tasks described in this activity is accomplished by a
combination of approvals by software leads, peer reviews, SQA audits, periodic audits by the CSWE
and Joint Technical Reviews (JTR) or TIMs as determined to be necessary for each task.

5.6 Software Design

Introduction. This subsection of the SDP addresses the objectives, approach, documentation, and
staff responsibilities of the Software Design activity. In accordance with TOR-3537B, the Software
Design activity must be described by three paragraphs in the SDP:

• Software Item-wide Design Decisions: The software designers define the Software Item (SI)-
wide design decisions that affect the selection and design of the Software Units (SU)
comprising the SI. (paragraph 5.6.1)

• Software Item Architectural Design: Software designers develop an architectural design that
partitions the SI into SUs or SUs that may be subdivided into smaller SUs. (paragraph 5.6.2)

• Software Item Detailed Design: Software designers perform a detailed design on the
individual SUs and produce a description of the SI down to the level of algorithms and
procedures, (paragraph 5.6.3)

The process specified in the three tasks pertain to MC-1 and SS-1 software only. For the SS-2
software category, the three tasks are often combined into a single activity.

Objectives. Software Architectural Design is the first focused design activity at the SI level.
Architectural decisions applicable to all Sis should have been made during the System Design activity
(see subsection 5.4). Architecture at the SI level must determine the design for interfacing to other
Sis and to hardware units (if appropriate). Human interfaces may be designed (e.g., using prototypes
to validate the designs with end users). The tasking or operating system process structure for the SI
should be determined in this activity. Additional site-specific products and design reviews may be
specified in the segment's site-specific SDP Annexes.

2-68

Downloaded from http://www.everyspec.com

Approach. The three major tasks of the design activity, as defined by TOR-3537B, are intended to be
performed as consecutive steps of increasing levels of design specificity. However, there is no
TOR-3537B requirement for each activity to be completed for the entire SI before the next design
activity is started. These three tasks usually overlap each other, and when using the iterative lifecycle
model, the three tasks are usually performed iteratively for each build. Table 5.6-1 summarizes the
readiness criteria in terms of entry and exit criteria, verification criteria to ensure completion of the
required tasks, and the measurements usually collected during the design activity.

Table 5.6-1 Readiness Criteria: Software Design—Example

Entry Criteria

Software requirements are allocated to the SI and approved.

Software system architecture has been approved.

System architecture and the OCD are available.

System verification matrix is available in the Requirements
Database.

Software use cases and scenarios, SI definitions, interface
design, updated Requirements Database, and preliminary
database architecture are documented in the SDF.

Exit Criteria

Software architecture and design are captured in
design models.

Performance and sizing analyses are documented
in engineering memos.

SI SLOC estimates are updated

For MC-1 and SS-1 software, a baselined STP,
SAD, SDD, SMBP, DBDD, and IDD are ready.

Design is baselined and placed under SCM
control.

Verification Criteria

Program management is provided status of ongoing product engineering tasks on a periodic and event driven basis

SQA performs process/product audits for ongoing product engineering tasks per SDP subsection 5.16.

All software architecture and design work products are peer reviewed and measurements documented.

A preliminary technical review of the architecture and design has been completed and the software PDR and CDR (or
TIMS) are completed

Measurements

Product Engineering schedule (including software architecture and design tasks)

Results from peer reviews

SLOC estimates (see subsection 5.20)

Software Work Products. The documentation produced during the Software Design activity for each
SI includes the: software architecture and design and interface design descriptions; test plan, models
and diagrams; traceability products in the Requirements Database; and the Software Master Build
Plan (SMBP) that maps each build to the capabilities provided by the build and specific requirements
allocated to the build.

Software interface design descriptions must be documented in the Software Design Description
(SDD). Software Architecture Description (SAD), and the Interface Design Document (IDD). The
SDD documents the SI design decisions and the SAD documents the SI architectural design, and
design of each SU. (Note that section 4 of the SDD describes the architectural design; the SAD
replaces that section by including much more information, such as multiple architectural views). All
software and interface design work products must be recorded in the SDF. Design documentation for
C/R software is limited to data provided by the vendor.

Diagrams for algorithm models and simulations, initiated during the software requirements definition
activity, should be expanded and refined during the Software Design activity. The revised work
models and diagrams must be maintained in the appropriate software tools and captured in the SDF.
The SRS, baselined in the previous activity, may be updated. Also, during the detailed design portion
of this activity, draft versions of the Software Users Manual (SUM as described in
subparagraph 5.12.3.1) and the Software Transition Plan (STrP as described in paragraph 5.13.9) may
also be prepared.

2-69

Downloaded from http://www.everyspec.com

MC-1 and SS-1 software require the traceability of the software architecture and design elements
from the SAD, SDD, and DBDD to the software requirement unique project identifiers in the SRSs.
Also, IDD elements are required to be traced to SRS or IRS requirements. This traceability
information must be documented in a Requirements Database as discussed in SDP paragraph 4.2.3.

An example of required work products for the Software Design activity is summarized in Table 5.6-2.
These software products must be made accessible through an Electronic Data Interchange Network
(EDIN) as described in SDP subparagraph 5.2.3.1.

Table 5.6-2. Required Software Design Activity Work Products—Example

Software Design Products MC-1 SS-1 SS-2

SAD and SDD (per Software Item per build) Required Required Required*
IDD and SMBP (per build) Required Required Required*
STP (per Software Item) Required Required Required*
DBDD (if required) Required Required Required*
SDF capturing revised models and diagrams Required Required Required
Software design elements traced to SRS
requirements in the Requirements Database

Required Required Optional

'Document not required, but applicable information is developed and retained in the SDF.

Roles and Responsibilities. The segment IPT software personnel must be responsible for the
Software Item architectural and detailed designs, the revision of design work products, and the
documentation of the design in SADs, SDDs, IDDs, DBDDs, and SDFs, as appropriate. Table 5.6-3 is
an example of the roles and responsibilities for Software IPT personnel and other groups during the
software design activity.

Table 5.6-3. Roles and Responsibilities During Software Design—Example

Roles Responsibilities

Software IPT

Conducts required reviews of the software architecture and design process and develops outputs
Updates and maintains the SDF
Addresses critical software requirements in the software architecture and design
Generates traceability products for design elements to SRS requirements unique project identifiers
in the Requirements Database
Identifies software architecture and design risk areas and provides identified risks to management
Collects and reports software architecture and design activity metrics
Generates computer hardware resource utilization estimates, comparing to the required threshold
values, and addresses estimates that exceed the requirements
Submits SCRs or SDRs, as necessary, after design documentation is baselined

Software Test Initiates the STP

CSWE
Supports the segment IPT software personnel in the handling of security and critical requirements
in the software design, audits SDFs, reviews activity products, attends all formal activity reviews,
and monitors and analyzes software metrics

SQA
Evaluates the segment IPT software personnel for adherence to documented policies and
procedures, evaluates segment IPT software architecture and design work products for product
quality, and documents and report findings to upper-level management

SCM Processes all SCRs and SDRs for software architecture and design changes to the baselined SAD,
SDD, IDD, DBDD, SMBP, and STP documented design as they are generated

5.6.1 Software Item-wide Design Decisions

Objectives. The objective of this first task in the Software Design activity is to define and record the
Software Item-wide design decisions. These decisions constrain how the designers partition the Sis
into SUs and overall design of the SUs. These are global decisions about the structure of the design
that impact the Sis.

2-70

Downloaded from http://www.everyspec.com

Approach. The Software Design activity normally begins by performing an examination of the
requirements relative to the SI plans, environment and interfaces to determine if there are any Si-wide
design issues. Where such issues are identified, segment 1PT software personnel should analyze the
issues and determine an appropriate design constraint or decision for each. These design decisions
must then be documented and communicated to the software designers as a set of design constraints
in conjunction with the requirements of what they are to design.

Design decisions are program specific, however, key factors that may be considered in determining SI
design issues include:

Safety, security, and privacy-critical requirements

Computer hardware platform and resource utilization requirements

External SI constraints and interfaces

Algorithms and Application Program Interfaces (API) to be used

Uniform exception handling and recovery methods

Major architectural trade-offs

Applicable standards and Graphical User Interfaces (GUI)

Proposed software product reuse

Uniform data storage and access methods

Performance characteristics including response times, software maintainability, reliability, and
availability not allocated to individual architecture components

Human factors, training requirements, and SI operational constraints

Key design decisions identified, and the rationale for making those decisions, must be documented in
the SAD, SDD, DBDD, and IDD for MC-1 and SS-1 software and in the SDFs for SS-2. Key design
decisions are those that could impact or constrain the SI Architectural Design. SI to external
interfaces, software requirements, cost or schedule. Design decisions for SS-2 software should be
reviewed during design inspections. For multiple build Sis, design decisions should be addressed
prior to completion of the Detailed Design for the first build. Design Decision tasks are integrated
into the flowcharts and task tables as described in SDP paragraphs 5.6.2 and 5.6.3.

5.6.2 Software Item Architectural Design

Objectives. The objective of SI Architectural Design is to describe the high-level organization of the
Sis in terms of SUs and their relationships. The IPT developing the SI must prepare an architecture
that meets the system requirements. The main objectives of SI Architectural Design are to:

Decompose the Sis design into SUs

Allocate requirements from SRSs to SUs

Complete allocation of requirements from the SRS to Use Cases (for OOD)

Describe the architectural design and requirements allocation in a preliminary SAD and SDD

Update the SI SDF for the SI and update the baselined SRS if necessary

Prepare the applicable preliminary STP, SAD. SDD, IDD, SMBP, DBDD and update the SRS
and IFCD as needed

Approach. Software Item Architectural Design must be performed by segment IPT software
personnel. Using the documented software requirements, and the initial work products (models and
diagrams) from the requirements definition activity, the software architecture models are refined and

2-71

Downloaded from http://www.everyspec.com

the architectural components, including Software Units (SUs), are identified. SUs are logical
constructs for classes and associations in OOA/OOD or specific capabilities in a structured
development. Use of graphical architecture modeling techniques, e.g., Unified Modeling Language
(UML), is required.

The principal tasks, recommended for the SI Architectural Design Process, are depicted in
Figure 5.6.2 in flowchart form and in its related Task Table 5.6.2 in terms of the inputs and the
outputs of each task.

INPUTS SI ARCHITECTURAL DESIGN TASKS OUTPUTS

• OCD
• SRS
• Draft SMBP
• Require-

ments
Database

• EMs
• System

Design
• Software

System
Architecture

1- Develop & Docume nt Software Architecture

1
Draft SDD and SAD

2-Develop& Document IDDandDBDD »• DraftIDD andDBDD

3- Develop & Document Software Test Plan Prelim inarySTP

4- Conduct Design Inspection ^ Inspection Minutes

On-Going
Tasks:

> Training
• Prototyping

for Detail
Design

• Software
Metrics

5- Prepare Preliminary Test Schedule
• Preliminary Test

Schedule

6- Conduct Internal Review & Update Documents
Updated: SMBP;
SDD:IDD;STP;STD

7- ConductFormal Software PDRorTIM
Preliminary: SAD, SDD,
STP, SMBP, IDD;and
DBDD

OCD = Operational Concepts Description
SRS = Software Requirements Specification
SMBP = Software Master Build Plan
EMs = Engineering Memos
SDD = Software Design Description
SAD = Software Architecture Description

IDD = Interface Design Document
STP = Software Test Plan
DBDD = Data Base Design Description
PDR • Preliminary Design Review
TIM = Technical Interface Meeting

Figure 5.6.2. Software Item Architectural Design Process Flow—Example

2-72

Downloaded from http://www.everyspec.com

Table 5.6.2. Software Item Architectural Design Tasks—Example

Task Inputs Subtasks Outputs

1. Develop and
Document
Software
Architecture

• SRS
• Requirements

Database
• OCD
• EMs
• System Design
• Draft SMBP
• Software

System
Architecture

• Determine SI modes of operation and architectural
approach

• Perform analysis of reusable software and allocate to Sis
• Define software functions, behavior, error conditions,

services, and controls
• Identify architectural components including SUs
• Prepare applicable 00 or SA/SD models
• Perform resource use analysis of timing and sizing budgets

• Allocate requirements from SRS to SUs and Use Cases
• Allocate SUs to processors and determine protocols
• Update RTVM with links to design components
• Prepare draft SDD and SAD
• Conduct internal review of software architecture

• Draft SDD and
SAD

• 00 Models
• SA/SD Models

2. Develop and
Document
Interface
Design

• Preliminary
SDD

• Allocate requirements to SUs and Use Cases
• Define software internal interfaces
• Update software external interfaces and RTVM
• Prepare draft IDD
• Define database logical design and the draft DBDD
• Conduct internal review of software interface design

. Draft IDD
• 00 Models
• SA/SD Models
• Draft DBDD

3. Develop and
Document
STP

• Draft SDD,
SAD, and IDD

Prepare preliminary Software Test Plan (STP) based on
System/Segment Test Plan

• Preliminary
STP

4. Conduct
Design
Inspection

• SAD, SDD,
STP, and IDD

• Requirements
Database

• Design Models

As defined in SDP subsection 5 15:

• Inspect links to the design in the Requirements Database
• Inspect design work products
• Perform document reviews of the SDD and the IDD

• Inspection
Minutes

5. Prepare
Test
Schedule

• Preliminary
STP SAD,
SDD, and IDD

• Identify threads and prepare the preliminary schedule for
integrating threads on target hardware

• Preliminary
Test Schedule

6. Conduct
Internal
Review and
Update
Documents

• Preliminary
SAD, SDD,
IDD, and STP

• Draft DBDD

• For MC-1 software, segment SI IPT conducts an internal
segment software PDR with management

• For SS-1 & SS-2 software, segment SI IPT conducts an
internal segment software TIM with management

• Update the SAD, SDD. IDD, DBDD. and STP as required

• Updated SDD,
IDD, STP, and
SMBP

• Incorporate
SS-2 data into
SDF

7. Conduct
Software
PDR(MC-1)
or TIM
(SS-1)

• Updated SDD,
IDD, STP, and
SMBP

• Schedule the PDR/TIM, identify attendees, and finalize
agenda

• Conduct the PDR/TIM and generate minutes and action
items

• Ensure closure of action items and generate final outputs

• Preliminary
SAD, SDD,
IDD, STP,
SMBP. and
DBDD

The Software Test Plan (STP) is usually produced concurrently with the Software Item Architectural
Activity (SDP paragraph 5.6.2) and is shown as Task 3 in both Figure 5.6.2 and Table 5.6.2.
Production of the STP is actually a product of the Software Item Test Planning activity (see paragraph
5.1.2) and it is prepared by the software test engineers.

5.6.3 Software Item Detailed Design

Objectives. The objective of SI Detailed Design is to determine the implementation details for each
SU. Designers define the specifics of the algorithms or processes an SU is to perform and determine
details of the data structures used by the SU internally—and for interactions with other SUs. The
resulting SU detail design descriptions are normally sufficient for code developers to implement the
design into code. The main objectives are to:

• Complete identification of design components including Software Units

• Complete a description of the design for each SU

2-73

Downloaded from http://www.everyspec.com

• Record all results in the SDF

• Baseline the SAD, SDD, STP, 1DD, SMBP, and DBDD (if applicable)

The Detailed Design activity involves decomposing the SUs from the SI Architectural Design (see
paragraph 5.6.2) into the lowest level SUs. The design must be developed in sufficient detail to map
the design to the features of the selected programming language, the target hardware, operating
system, and network architecture.

The principal tasks recommended for the Detailed Design Process are described by the example
flowchart in Figure 5.6.3 and in the related Task Table 5.6.3 in terms of the inputs and outputs of each
task. At the conclusion of this activity, the Detailed Design products must be baselined and placed
under software configuration control as described in SDP subsection 5.14.

INPUTS SOFTWARE DETAILED DESIGN TASKS OUTPUTS

Preliminary:
• SAD
• SDD
• STP
• IDD
• DBDD
• SMBP

SRSs
SDF
Requirements

Database
EMs

1- Develop Detailed Design
• Design Modelsand

Diagrams
• Updated SAD, SDD, & IDD

2- Update STP and Integration
Testing Approach

I
J Updated STP and Test

Schedules

3- Ensure Design Meets Requirements

i
Modelsand Simulations
Performance, Timelines
and Reliability Verification

On-Going
Tasks:

• Training
• Software

Metrics
• Problem

Reporting

4- Conduct Design Inspection • Inspection Minutes

5- ConductPeerReview
• Updated Design Models

and Diagrams
• Updated SAD, SDD, IDD,

6-Conduct Software CDR or TIM Baselined: SAD, SDD, IDD,
DBDD, STP, and SMBP

SDD = Software Design Description
STP = Software Test Plan
IDD = Interface Design Description
STD = Software Test Description
SMBP = Software Master Build Plan
DBDD = Data Base Design Description

SRS = Software Requirements Specification
SDF = Software Development File
EM = Engineering Memo
TIM = Technical Interface Meeting
SAD • Software Architecture Description

Figure 5.6.3. Software Item Detailed Design Process Flow—Example

Major tasks performed during SI Detailed Design should include:

• Refining the Design Model: Adding additional details to the design model to accommodate
detailed decisions and constructs necessary for implementation

• Defining Implementation Details: Refining internal design to add data structures, attribute
types, visibility, interfaces and usage mechanisms. Factors to consider include: execution time,
memory usage, development time, complexity, maintainability, reusable software and hardware
resource utilization. Analysis and modeling may be necessary to determine the best design
approach.

2-74

Downloaded from http://www.everyspec.com

Generating Class Stubs: Generate code header files and class stubs based on the object model
definitions. Design complex class algorithms or logic

Prototyping and Simulations: Performing prototyping and simulation to validate critical
processing areas, mitigate implementation risk, or to identify optimizations

Generating and Reviewing Products: Holding peer reviews on Detailed Design products, and
adding the Detailed Design information to the SDD. IDD. and DBDD

Table 5.6.3. Software Item Detailed Design Tasks

Task Inputs Subtasks Outputs

1. Develop
Detailed
Design

• Preliminary
SAD, SDD,
IDD, STP,
SMBP, and
DBDD

• Baselined SRS
• Requirements

Database
. EMs

Define Detailed Design including:
• Analyze models to identify additional requirements
• Define, describe, and decompose SU Detailed Design
• Design and develop algorithms, prototypes, control

mechanisms, and support services
• Determine applicability of COTS/Reuse software
• Prepare Design Class Diagrams
• Prepare dynamic behavior diagrams showing sequencing of

component iterations, states and modes, and transitions
• Prepare SDD containing detailed design data
• Update IDD with detailed design data
• Ensure conformance with architecture
• Refine database physical design and the DBDD
• Perform resource use analysis of timing and sizing budgets
• Review requirements and update the Requirements Database

Define Interface Design including:
• Allocate and decompose architecture and user interface

requirements to a detailed design level
• Define interface design external to the SI and between SUs
• Define information flow between SUs
• Develop design of user screens
• Apply human factor standards to user interface design
• Coordinate and review interface design updates

• Design Class
Diagrams

• Updated SAD
and SDD

• Updated IDD

• SA/SDWork
Products such
as data flow
diagrams and
structure charts
(if applicable)

• Data Dictionary

. DBDD

2 Update STP
and
Integration
Testing
Approach

• Outputs of
Task 1

• Generate test software requirements
• Document traceability between software test cases and

software test requirements in the STP
• Update schedules for conducting each test case
• Identify needed integration information (input data, scenarios,

data analysis, etc.)

• Updated STP

• Test Schedules

3. Ensure Design
Meets
Requirements

• Outputs of
Task 1

• Design software performance and reliability models and
develop simulations

• Conduct analysis to determine if design meets requirements

• Models and
Simulations

• Verification of
Performance,
Timelines and
Reliability

4. Conduct
Design
inspection

• Design
Documents

• Requirements
Database

• Design Work
Products

As defined in subsection 5.15 of this SDP Guidebook:
• Inspect for links of requirements to Detailed Design

components
• Inspect object-oriented products
• Perform document reviews

• Inspection
Minutes

5. Conduct Peer
Review

• Preliminary
SAD, SDD,
IDD, STP,
DBDD, and
SMBP

• OO Products
• SA/SD Products

• For MC-1 software, segment SI IPT conducts an internal
design review for the segment software

• For SS-1 and SS-2 software, segment SI IPT conducts an
internal segment software TIM

• Update design documentation as required

• Updated SAD,
SDD, IDD,
STP, DBDD &
SMBP

• Detailed Design
Diagrams

• Peer Review
Minutes

6. Conduct
Software CDR
(MC-l)orTIM
(SS-1 and
SS-2)

• Updated Design
Documents

• Detailed Design
Diagrams

• Schedule the CDR/TIM, determine attendees, and update the
evaluation criteria

• Conduct the CDR/TIM and generate minutes and action items
• Ensure closure of action items and generate final outputs

• Baselined SAD,
SDD, IDD,
STP, SMBP,
and DBDD

2-75

Downloaded from http://www.everyspec.com

Other tasks that may be performed (if applicable) in this activity include:

• Define detailed software user interfaces to the architectural design level and validate it with
software prototypes, working models, simulations, and/or display layouts

Identify concurrency in threads or capabilities

Identify global resources and determine mechanisms for access control

Choose the implementation method of control in software (e.g., procedure driven, event driven,
or independent tasks)

Determine methods for handling boundary conditions (i.e., initialization, termination, and
failure) and establishing trade-off priorities

Prepare computer system hardware diagrams including purpose of each component, its
interfaces and physical processing characteristics

Describe how and where the architecture supports Modular Open Software Architecture
(MOSA) principles

Analyze and document the availability of Non-Developmental Items (NDI), incorporate NDI
into the design, and allocate requirements to it

Consider reusable architecture designs for all or portions of a SI; trade-off studies and analyses
may be necessary to determine the best design approach

Draft versions of the Software Users Manual (SUM) and the Software Transition Plan (STrP)

Approach. During SI Detailed Design, the designers complete the refinement of the work products
(e.g., models and diagrams of the SI). General operations identified in earlier versions of the products
must be defined to the SU level of functions and procedures, and then defined as to how specific
algorithms and support services are implemented in software. This process should occur repeatedly
with each build.

Details of the data structures must be defined, including temporary data items. The physical database
design, if any, must also be defined, including data entities, attributes, relationships, and constraints.
Interfaces determined in architectural design, including user interfaces, are refined and elaborated.
The software Detailed Design tasks must refine the software system architecture until the lowest
level classes and interfaces have been identified and described.

Detailed Design must be performed for each software increment in the current build. There may be
multiple builds and design components concurrently in various overlapping stages of completion. For
an iterative software lifecycle process, components may have been partially designed during prior
software development builds, and only the additional design details for the current build must be
added.

For MC-1 software only, the Detailed Design activity ends with a formal Critical Design Review
(CDR) in which the baselined design documents are evaluated. For software that is developed in
multiple builds, only a subset of the SUs may undergo Detailed Design. The SUs that undergo
Detailed Design should be only those units necessary to meet the SI requirements for that build, as
specified in the Requirements Database.

For SS-1 software, the CDRs are normally replaced with Technical Interface Meetings (TIMs). For
SS-2 software, the CDRs are typically peer reviews held for each build. At the conclusion of the
Detailed Design activity, all work products must be placed under configuration control as described
in SDP subsection 5.14.

2-76

Downloaded from http://www.everyspec.com

5.7 Software Implementation and Unit Testing

Introduction. The Software Implementation and Unit Testing activity of the development lifecycle is
often referred to as software Coding and Unit Testing (CUT). The latter acronym will be used in
subsection 5.7 to avoid confusing the acronym used for this activity (l&UT) with the Unit Integration
and Testing (Ul&T) activity described in SDP subsection 5.8. In accordance with TOR-3537B, the
Software Implementation and Unit Testing activity must be described in five paragraphs in the SDP:

Software Implementation (paragraph 5.7.1)

Preparing for Unit Testing (paragraph 5.7.2)

Performing Unit Testing (paragraph 5.7.3)

Revision and Retesting (paragraph 5.7.4)

Analyzing and Recording Unit Test Results (paragraph 5.7.5)

The requirements specified in these sections are for MC-1. SS-1, and SS-2 software only (SS-3
compliance should be optional). There are no C/R requirements in this development activity.
Additional products and reviews may be specified in a development's site specific SDP.

Objectives: The objective of the Software CUT activity is to convert the SU detailed design into
computer code and databases that have been inspected, unit tested, and confirmed. The term Coding
is used throughout this process to mean the generation of computer-readable instructions and data
definitions in a form that can be acted upon by a computer.

Process Approach. Major tasks of the Software CUT process include the following:

• The detailed SU design must be converted into computer code in accordance with the coding
standards for the selected programming language. This may include partial units, or
modifications to those created in prior builds

• Specific test descriptions must be generated to unit test the SU that define the test cases, test
procedures, test input, support data, and expected test results

• The completed source code, test description data on all developed units, and documentation,
should be reviewed through a Peer Review inspection, which may include the participation of
SQA. prior to execution of the test

• The test cases should be executed against the executable code to determine the success of the
coding effort. White Box (structural) and Black Box (functional) tests should be performed on
the individual units. Successful completion of unit level testing is a prerequisite for promotion
of units to software integration

• The results of the test cases must be reviewed and the code reworked and retested until all unit
tests have been successfully completed

• The test results must be independently reviewed by someone other than the developer to
confirm successful completion of the test and that the test data and results have been recorded
intheSDF

These steps are highly iterative, in that the code and test tasks are performed for each SU (class)
designated to participate in the threads allocated to the current software build. Groups of SUs may be
coded, reviewed, and tested as a set, according to the development plan and schedule for the
increment. SUs may also be incomplete, in that only the functionality required to support the current
increment is implemented.

2-77

Downloaded from http://www.everyspec.com

The Software CUT activity for a single SU formally ends upon completing confirmation of the test
results and recording of the test data and results in the SDF. After these actions have been completed,
the SU must be brought under configuration control. All changes to the SU thereafter must be
handled using SCRs or SDRs.

Table 5.7-1 summarizes the readiness criteria in terms of entry and exit criteria, confirmation criteria
to ensure completion of the required tasks, and the measurements usually collected during the
software CUT activity.

Table 5.7-1. Readiness Criteria: Software Coding and Unit Testing—Example

Entry Criteria

SU detailed design has been completed.
Software coding standards have been established.
The Software Engineering Environment (SEE) has
been established.
The Requirements Test and Verification Matrix
(RTVM) and Software Requirements Traceability
Matrix (SRTM) is available.
The SDL has been established.

Exit Criteria

Software Unit Test Cases have been completed and accepted
by the Software Lead.
SU test procedure data has been recorded in the SDF.
SU Source Code has been developed, compiled, debugged.
and accepted by the Software Lead.
SU test results have been recorded in the SDF.
Software is put under software integration CM control.

Verification Criteria

Peer Reviews of SU Test Cases, SU test data, Source Code and SU test results are completed and recorded.
Software Development Librarian accepts the source code.
SQA performs process/product audits for ongoing product engineering tasks per SDP subsection 5.16.

Measurements

Actual KSLOC coded versus KSLOC planned
Unit testing planned versus actual test progress
Number of defects found in Peer Reviews
SCRs and SDRs opened versus closed (see subsection 5.20)

Software Work Products. The principal product produced during this activity is SU source code as
shown in example Table 5.7-2. The format for the source code is established by the coding standards
for the particular language used. During the software CUT activity, SU Test Cases, test procedure
data, sizing and timing are prepared and updated. The SRS, STP, IDD, and DBDD may also be
updated as required. In addition, during the CUT activity, draft versions (if applicable) of the
Computer Programming Manual (CPM as described in subparagraph 5.13.8.1) and the Firmware
Support Manual (FSM as described in subparagraph 5.13.8.2) may be prepared.

Table 5.7-2. Required Software Coding and Unit Testing Work Products—Example

Software CUT Products MC-1 SS1 SS2 SS3

Source code or reference to source code in SDFs Required Required Required Optional
SU Test Cases, procedures, data and test results Required Required Required Optional

Roles and Responsibilities. Table 5.7-3 is an example of the roles and responsibilities of the
Software IPT personnel, software developers, and other groups during the software CUT activity.

2-78

Downloaded from http://www.everyspec.com

Table 5.7-3. Roles and Responsibilities During Software Coding and Unit Testing—Example

Roles Responsibilities

Software IPT and
Developers

Codes SUs to the appropriate codinq standards
Develops the unit test description and executes the unit test
Conducts the required inspection of the source code and test documentation
Reworks and retests the SU when problems are identified
Arranges for confirmation of the test results per the Software Reviews Standards (The
SU author participates in the inspection, but someone other than the author performs
the inspection and confirmation of the test results)
Updates and maintains the SDF with source code, unit test descriptions, test code, and
unit test results
Ensures critical software requirements are traced to SUs
Collects and reports software CUT task metrics

Software Test Personnel Continues development of STP
CSWE Reviews the SDFs, reviews task products, and attends activity reviews

SQA
Evaluates the Segment IPT software products for adherence to documented policies
and procedures, evaluates Segment IPT products for product quality, and reports
findings to upper-level management

CCB Addresses segment SCR/SDRs as they are generated

SWCCB Addresses SU SCR/SDRs involving external interface changes or SU changes from
prior build releases as they are generated by the Segment IPT software personnel

SCM Processes all SCR/SDRs for SU changes to the source code and test documentation

Process Tasks. An example of the Software CUT process is shown in Figure 5.7. Since this is an
iterative process, there are no vertical arrows in the process flow chart. The seven process tasks are
expanded with more detail in its related Task Table 5.7-4 containing the inputs and outputs to each
task.

5.7.1 Software Implementation

Objectives. The objective of software implementation is to implement requirements by converting
the software unit detailed design into source code and from the source code generate executable
computer code. The major tasks that must be accomplished are:

Develop the code for each SU based upon the design requirements and detailed design

Code the software using the required coding standards

Create executable code and debug using applicable tools

Update source code estimates with actual measurements of the SU

Document decision to reuse code and identify reuse code modules

Approach. The software developers must generate the source code using the appropriate
programming language for each SU, based on the detailed design, interface requirements, and
supporting design information. Changes made to the executable code must be accomplished through
modification of the source code and subsequent recompilation or reassembly. Once successfully
compiled and executed, a Peer Review inspection of the source code should be performed.

2-79

Downloaded from http://www.everyspec.com

INPUTS

SDD
SAD
SRS
IDD
RTVM
SRTM
STP
DBDD
SMBP
Requirements
Database
Design Models
Reuse Code

On-Going
Tasks:

•Training
• Software
Metrics

• Problem
Reporting

CODE AND UNIT TEST TASKS

Software Implementation
1- Develop SU Source Code

Prepare For Unit Testing
2- Develop SU Test Description Data
3- Inspect SU Code and Test Cases

Perform Unit Testing
4A- Perform SU Testing

Revision and Retesting
4B- Perform Revision & SU Retesting

Analyze & Record Unit Test Results
5- Update SU Resource Estimates
6- Confirm Unit Test Results
7- Update SDF with Test Results

OUTPUTS

• SUCode

SU Test Description Data

Approved SU Code and
Test Descriptions

• Tested SU Code
• Updated SU Test

Cases and
Procedures

Updated: SU Code; Test
Cases; and SDF

Updated: Sizing, Timing
and Metrics

Baselined Code and
Unit Test Results

Updated SDF

NOTE: There are no vertical flow arrows since this is an iterative process

SDD = Software Design Description

IDD = Interface Design Description

SRTM = Software Requirements
Traceability Matrix
SAD = Software Architecture
Description
DBDD = Data Base Design Description

RTVM = Requirements Test Verification
Matrix
STP = Software Test Plan

SRS = Software Requirements
Specification
SMBP = Software Master Build Plan

SU = Software Unit

SDF = Software Development
Files/Folders

Figure 5.7. Software Coding and Unit Testing Process Flow—Example

Table 5.7-4. Software Coding and Unit Testing Tasks—Example

Task Inputs Subtasks Outputs

1. Develop SU
Source Code

• See
Figure 5.7

• Check SUs against input documents, SCRs, and reused
code to confirm definitions and requirements of SUs

• Code SUs

• SU Code

2. Develop SU
Test
Description
Data

• SU Code • Address SU requirements in Test Cases
• Develop test inputs and outputs
• Develop SU Test Cases and test exceptions
• Ensure adequate Test coverage and number of iterations

• SU Test Cases

3. Inspect SU
Code and Test
Cases

• SU Source
Code

• SUTest
Cases

• Schedule SU for Peer Review after successful compilation
• Hold Peer Review inspection of SU source code and Test

Cases
• Close Peer Review findings

• Approved SU
Code and Test
Description
Data

4. Perform SU
Testing,
Revision and
Retesting

• SU Code
. SUTest

Cases

• Follow procedures in SU Test Cases
• Record test results in the SUs SDF
• Fix source code problems
• Modify and approve unit test procedures and results
• Retest; repeat until unit testing is successful

Updates to:
• Tested Code
• SU Test Cases

and Procedures
• Segment SDF

5. Update SU
Resource
Estimates

• Tested
Source
Code

• Measure sizing, timing and complexity of SU as required
• Record SU SLOC count and productivity metrics in the SDF
• Update metrics with measurements from SU testing

• Sizing and
Timing in SDF

• Updated
Metrics

2-80

Downloaded from http://www.everyspec.com

Task Inputs Subtasks Outputs

6. Confirm Unit
Test Results

• SU Test
Results

• Verify correctness of test results
• Capture test procedures, inspection results, and unit test

results
• Place tested code under configuration control
• Update SRS as required
• Release SU for Unit Integration

• Baseline
Source Code

• Updated SRS
as required

7 Update SDF
with Test
Results

• Update
information
from 1-6
above

• Update SDF and document Lessons Learned
• Record test results in the SDF
• Prepare Release Notice to inform availability of SUs

• Updated SDF
• Release Notice

5.7.2 Preparing for Unit Testing

Objectives. Objectives of the Preparing For Unit Testing is to:

Develop overall test objectives and assumptions including constraints

Define, develop, and document the Unit Test Cases and Unit Test Procedures

Develop input test data including data files, databases, algorithm, and simulation data

Identify support resources, including required drivers and stubs

Test preparation (including hardware and software)

Describe the inputs, expected results, success criteria, and evaluation criteria for each test case

Allocate software requirements to each test case and ensure that all SU requirements are tested

Define data files, databases, simulation programs, and additional resources required

Layout a preliminary schedule of when the unit test cases are to be performed

Execute all statements and branches of the software unit at least once

Identify and define interfaces and dependencies between the test cases

Identify start-up, termination, restart, error and exception handling procedures

Verify that the software unit performs its intended operations using nominal and boundary
upper and lower limit input values

Record the above information in the SDF

Approach. The software developers must identify test cases and procedures to be performed on a
software unit. For cases where tests cannot be developed to adequately verify that functionality has
been demonstrated, verification by analysis may be permitted. This situation can arise where: (a) an
event to be tested is difficult to cause or. (b) involves prohibitively extensive testing or cost. Modified
reused SUs require complete re-testing of the software unit. If the reused SU is deemed critical it
must be unit tested even if it has not been modified. The completed test description, including both
test case definitions and test procedures, must be retained in the SDF. The inspection package for
modified reused code should also include a code difference listing.

5.7.3 Performing Unit Testing

Objectives. The objectives of performing unit testing are to:

• Perform unit testing of the developed source code in accordance with the unit test cases and test
procedures

• Verify the unit level functional, interface, and SU performance requirements

• Verify the SUs exception handling capability

2-81

Downloaded from http://www.everyspec.com

• Maintain unit test logs to verify and track SU test execution and completion

• Update the unit source code to correct errors detected during the unit testing

• Record the unit test results and performance measures in the SDF

Approach. Software testers normally begin by ensuring that all necessary data, tools, test
environment, and unit test configuration are available. When all required pieces for the test are
assembled, the test can proceed per the test procedures. The testers must verify the unit level
functional, interface, and performance requirements. The testers must collect and record the test
outputs, logs, notes, results, and discrepancies found. Although software developers must ensure each
SU satisfies its requirements, unit testing may be considered principally "white box" testing, i.e.,
testing against the design.

5.7.4 Unit Testing Revision and Retesting

Objectives. The objectives of revision and retesting are to: (a) modify/rework the source code and
test description to eliminate any problems identified during unit testing; and (b) retest the unit to
verify that the changes have been successful and have not produced side effects. If a unit test fails, the
problem must be fixed and the test(s) repeated. The standard design inspection process must be
invoked again and the SDFs updated. Regression testing of affect ted SU test cases must be
performed after any modification to previously tested software. Changes must be made in accordance
with the Corrective Action Process (see SDP subsection 5.17).

Approach. Test results, and the documented problems, must be evaluated by software developers to
identify needed changes to the SU and test description. This task should be repeated until all the SU
test cases have been successfully completed.

5.7.5 Analyzing and Recording Unit Test Results

Objectives. The objective of analyzing and recording unit test results is to finalize the unit testing for
a SU by ensuring that:

• The unit satisfies the expected results of the test cases

• The test data, test results, unit test dependencies, and supporting analysis material have been
recorded in the SDF

• Root cause analysis of problems has been performed

• The SU is ready to be released for Unit Integration and Testing (see SDP subsection 5.8)

Approach. After completing unit testing, the Software Lead must perform an independent
confirmation of the test results and ensure the results have been recorded in the SDF. If discrepancies
or problems are found, then appropriate corrective actions must be performed.

Once the independent review signifies that the SU has successfully passed the verification process,
the SU can be baselined and brought under configuration control. The SU source code is then
submitted for incorporation into software integration builds. In addition, developers should
incorporate supporting analysis material and unit test dependencies information in the appropriate
SDF. The related metrics measurements obtained during SU testing should also be updated.

5.8 Unit Integration and Testing

Introduction. Subsection 5.8 of the SDP addresses the objectives, approach, readiness criteria,
software work products, roles and responsibilities, and tasks specific to the software Unit Integration

2-82

Downloaded from http://www.everyspec.com

and Testing (UI&T) activity of the development process. In accordance with TOR-3537B. the
software Unit Integration and Testing activity must be described in four paragraphs in the SDP:

• Prepare for UI&T—including updating the STP and test procedure data (paragraph 5.8.1)

• Perform UI&T—including performing the integration and test of a build in accordance with
integration test procedures (paragraph 5.8.2)

• Revision and Retesting—including reworking the source code; perform regression testing for
changes occurring during UI&T and documenting the discrepancies (paragraph 5.8.3)

• Analyze and Record UI&T Results—including analyzing test results, documenting the software
UI&T results in the SDF, and identifying who decides an Integration Build is ready for release
to SI Qualification Testing (paragraph 5.8.4)

UI&T Objectives. The objective of the Ul&T activity is to perform a systematic and iterative series
of integration builds on Software Units (SU) that have successfully completed Code and Unit Test,
and build them up to a higher level SU (formerly called a Software Component), or Software Item
(SI), for the current build. The Software Test Plan (STP) and software test procedure data should be
reviewed for consistency with the Software Master Build Plan (SMBP). and revised if necessary. In
addition, preparation of a draft Software Version Description (SVD) and a draft of the Software Test
Description (STD) for qualification testing (see SDP subsection 5.9) should begin during this activity.

Segment software integration teams must develop the integration plans, integration test cases, and
integration test procedures and test data in preparation for the actual integration and test. The SUs
should be checked out of the controlled area of the Software Development Library (SDL) by the
integrators. As the builds are successfully integrated, the SUs are typically returned to the SDL to be
elevated to a higher level of control. Discrepancies must be recorded on SDRs.

UI&T Approach. The UI&T activity consists of the following major activities:

• The software integration plans, test cases, and test procedures must be developed and peer
reviewed

• Test data, tools, drivers, simulators, etc. must be in place before start of testing

• The integration test procedures must be executed against the executable code

• Needed corrections to the software, and the integration test procedures, must be made and the
affected integration iteration retested; this activity should be repeated until all SUs have been
successfully integrated and have met the test acceptance criteria

• Test results for integrated Sis must be independently analyzed, or with a Peer Review, to verify
successful integration and recording of results in the Software Development File (SDF)

• The SI STP should have been baselined prior to start of actual testing

• Regression testing must be performed as needed to incorporate SUs from prior builds

The UI&T activity formally ends with the verification of the test results and the recording of the test
data and test results in the SDF. The build must then be baselined and moved to the verification area
of the SDL. All changes to a SI thereafter must be handled through the process described in the SCM
Plan.

UI&T Readiness Criteria. Table 5.8-1 summarizes the readiness criteria in terms of entry and exit
criteria, verification criteria to ensure completion of the required activities, and the required
measurements normally collected during the Software UI&T activity.

2-83

Downloaded from http://www.everyspec.com

Table 5.8-1. Readiness Criteria: Software Unit Integration and Testing—Example

Entry Criteria Exit Criteria

• Software Test Plan (STP) is available.
• Coding and testing of the SUs have been completed.
• Software test procedures data is available.
• Integration builds are available from the SDL.
• The RTVM SRTM and SMBP are available.

• SI build is successfully integrated, accepted by the Software
team lead, and turned over to the SDL.

• The draft Software Version Description (SVD) is approved
by the Software Team Lead.

• The STP is updated and ready to support SIQT.

Verification Criteria

• Software Peer Reviews have been successfully completed.
• Unit integration plans, test cases, and UI&T procedures developed and successfully peer reviewed.
• Software Units successfully integrated in accordance with the integration plans.
• The Software Team Lead reviews and approves the integration test reports and integration release notice.
• All SUs in the build per the SMBP are successfully integrated and tested and the results stored in SDFs.
• SQA performs process/product audits for ongoing product engineering activities per SDP subsection 5.16.

Measurements

• Defects found from Peer Reviews
• SDRs opened versus closed
• Units integrated—planned versus actual
• SLOC count—planned versus actual (see subsection 5.20)

UI&T Software Work Products. Examples of software work products for the UI&T activity are
summarized in Table 5.8-2.

Table 5.8-2. Software UI&T Work Products—Example

Software UI&T Work Products per Build MC-1 SS-1 SS-2 C/R

Updated STP Required Required Required* Required*
Draft Software Version Description (SVD) Required Required Required* Required*
Draft Software Test Description (STD) Required Required Required* Required*
SI test cases traced to SRS requirements in the
requirements database

Required Required Required* Optional

UI&T Products:
• Unit integration plans
• UI&T test cases and procedures
• UI&T scripts, drivers and test data
• UI&T test results

Required* Required* Required* Required*

'Document not required, but applicable information is developed and retained in the SDF.

Roles and Responsibilities. Software developers must be responsible for development of the
integration test plans, procedures, data, actual integration of the SUs, and the execution of the tests.
When problems are identified, the software developers must be responsible for reworking SUs and
retestingthe integration of those units. Table 5.8-3 summarizes typical responsibilities and roles for
the UI&T activity.

2-84

Downloaded from http://www.everyspec.com

Table 5.8-3. Software UI&T Responsibilities—Example

Group Roles Responsibilities

Software
Development

Personnel

Conducts the required peer reviews of the UI&T documentation

Updates and maintaining the SDF with test procedures and test results
Address safety, security, privacy and other critical software requirements in the integration test
cases
Collects and reports SU integration and testing activity metrics
Submits SDRs as necessary

Other Groups

Software Test
Update the STP (as needed) and prepare drafts of the
STD and SVD

Chief Software Engineer (CSWEj
Reviews the SDFs, reviews the activity products,
attends activity reviews, and monitors and analyzes
software metrics

SQA

Evaluates the software IPT for adherence to the
documented policies and procedures, evaluates
software IPT products for product quality, witnesses
testing and documents, and reports findings to upper-
level management

Segment CCB Addresses internal SCR/SDRs as they are generated

Software/CCB
Addresses SU SDRs involving external interface
changes and prior build release SU changes as they are
qenerated by the software IPTs

SCM
Processes SDRs for SU changes to the source code
and test documentation

UI&T Process Activities. The Software UI&T process is shown in Figure 5.8. The four process tasks
are also shown expanded with more details in its related Task Table 5.8-4 containing the inputs and
outputs to each UI&T task.

INPUTS SOFTWARE UI&T TASKS OUTPUTS

• STP
• SMBP i
• SU Code
• SRS & IRS
• RTVM
• SRTM
• SW Architecture

and Design

• STP Updated with current plan
for build integration

• Unit integration plans
• Test Cases & Test Procedures
• Test scripts, drivers and data

1-Prepare for UI&T

I
2- Perform UI&T ^

1 • Integrated SUs or partial SUs
• Integration test results
• SCRs/SDRs

3- Perform Revision •
and Retesting .

On-Going
Tasks:
• Training
• Software Metrics
• Problem

Reporting

* • Integrated Build in the SDL
• Draft SVD and STD
• UI&T results
• Updated SDFs

4- Analyze and Record
UI&T Results

STP = Software Test Plan
RTVM = Requirements Test Verification Matrix
SMBP = Software Master Build Plan
SRS = Software Requirements Specification

SVD = Software Version Description
SDF = Software Development Files
SDL = Software Development Laboratory
IRS = Interface Requirements Specification

SCR/SDR = Software Change Request/Software Discrepancy Report

Figure 5.8. Software UI&T Process Flow—Example

2-85

Downloaded from http://www.everyspec.com

Table 5.8-4. Software UI&T Tasks—Example

Tasks Inputs Subtasks Outputs

1. Prepare for
UI&T

• See input
documents
in
Figure 5.8

• Update STP with current plan for build integration
• Link requirements to integration and test cases
• Create and populate the traceability database
• Prepare Unit integration plans, UI&T test cases, procedures,

scripts, drivers, and test data

• Updated STP
• UI&T Products

2. Perform SU
Integration
and Testing

• SU code
• Test Cases
• Test Data
• Test Scripts

and Drivers
• Test

Procedures

• Integrate the SUs per the integration plans
• Conduct integration testing of the current build based on the

test cases
• Record and document anomalies and errors detected during

testing in the Software Discrepancy Report (SDR)

• Integrated SUs
or Partial SU
Build

• SDRs
• Test Results

3. Perform
Revision and
Retesting

• Integrated
SUs

• Updated
SUs to fix
SDRs

• Test
Results

• Perform regression testing to accommodate new functions or
changes to the previously integrated code

• Perform retesting after fixes to test procedures and/or code
• Record and document anomalies and errors detected during

testing in the SDR

• SDRs
• Test Results

4. Analyze and
Record UI&T
Results

• SDRs
• Test

Results

• Analyze results and document findings of the integration tests in
the SDF

• Inform software development and the SDL that the current build
has successfully completed integration testing

• Prepare Draft SVD and STD
• Conduct Independent review of test results

• Integrated
Build in SDL

. SVDandSTD
Draft

• Updated SDF
• Review

Completed

5.8.1 Preparing for UI&T

Objectives. The principal objective of preparing for the UI&T task is to establish test cases, test
procedures, and test data for conducting unit integration and testing to define a systematic and
iterative approach for integrating a subset of SUs until the entire set of SUs are integrated into the
complete SI (for that build).

As a minimum, the test cases must cover a description of:

Execution of all interfaces between software units—including limit and boundary conditions

Integrated error and exception handling across the SUs under test

End-to-end functional capabilities through the SUs under test

All software requirements allocated to the SUs under test

Performance testing—including operational input and output data rates and timing and
accuracy requirements

Stress testing—including worst-case scenarios

Start-up, termination, and restart

Fault detection, isolation, and recovery handling

Resource utilization measurement

Whenever possible, SU integration should be performed on the target hardware in a configuration as
close as possible to the operational configuration. All COTS/Reuse software, whether modified or
unmodified, must undergo software UI&T. Software developers must define integration test cases
that are mapped to use cases, and then mapped to requirements and corresponding test procedures, in
an integration test description to verify success of each partial integration before proceeding to the
next iteration. The specified integration sequences are to: (a) Verify that the SUs operate together

2-86

Downloaded from http://www.everyspec.com

using nominal and exception conditions; and (b) Exercise all interfaces for the SUs that have been
integrated.

5.8.2 Performing UI&T

Objectives. The principal objectives of performing UI&T are to:

Integrate and combine SUs

Execute the integration plan and corresponding test procedures as documented in the
integration test description to produce the integrated SI

Execute the integration runs and verify the complete integration

Verify that SUs within the SI provide the functionality required for that build

Record test results for this level of testing

During this task, coded and tested SUs should be integrated into Sis by a software integration team in
a series of integration builds. The SUs should be obtained from the development controlled area of
the SDL. The software personnel performing the integration usually begin by ensuring that all the
SUs to be integrated and all necessary data and tools are available. The integration build to be tested
should be generated by the developers using baselined SUs obtained from the SDL.

When all required pieces for the integration are assembled, the integration should proceed per the
procedures specified in the test description. During integration and testing, the software developers
collect or record the outputs, logs, test notes, and test results. All problems, errors, and discrepancies
must be recorded as SDRs.

5.8.3 UI&T Revision and Retesting

Objectives. The primary objectives of UI&T revision and retesting are to:

• Revise the source code and regression test in response to problems identified in SDRs, first at
the SU level and then at a combined SU level to ensure that existing functionality has not been
impaired

• Perform regression tests, as required, to accommodate new functions or changes in the current
build

• Document and track integration problems and test errors

The integration team must perform the integration tests, and any necessary regression testing and
record discrepancies on SDRs which are placed into the Corrective Action process for disposition and
rework. The documented problems must be evaluated by the software developers to determine the
necessary changes to SUs or test descriptions. In cases where SUs require changes, SDRs (and
Software Change Requests if used) must be generated and the changes handled by the corrective
action process.

In cases where test descriptions require modification, the appropriate changes must be made and a
version history included in the test description. Retesting must also be performed when test
procedures are changed. Retesting must be repeated as needed until all SUs have been successfully
integrated and tested.

Software personnel determine the necessary modifications to source code, SDFs, and/or
documentation. Source code and documentation are modified based on approved changes by the

2-87

Downloaded from http://www.everyspec.com

SWCCB (typically at the SU Level) and at the segment's CCB or equivalent (typically at the SI
level). Changes must be handled with SDRs in accordance with subsection 5.17.

5.8.4 Analyzing and Recording UI&T Results

Objectives. The primary objectives of analyzing and recording UI&T results are to:

Verify that the tests have been successfully completed and that the test data and results have
been recorded in the SDF

Handle changes to Sis after being brought under SCM control using SDRs

Complete SI level integration by the successful execution of all of the defined integration test
procedure runs

Meet integration completion criteria and perform root cause analysis for deficiencies

Document SI level integration, and modify SDFs, source code, and documentation

Prepare, analyze, and document results of the integration tests, and place in the appropriate
SDF location

Upon successful completion of a round of integration, the Software Lead should authorize the release
of the build by providing the Software Development Librarian with a release notice. The integration
team must document the results of each round of integration and place it in the appropriate location in
the SDF.

After all SUs have been successfully integrated and tested, the software IPT Lead should perform the
independent review of the test results and ascertain that the integration test data and results have been
recorded in the SDF. Peer Reviews may also be used.

The SI can then be submitted to the SCM Librarian and baselined in the SDL Verification Area in
preparation SI Qualification Testing. Specific procedures for recording, analyzing, verifying, and
storing UI&T results should be included in the SDP.

5.9 Software Item Qualification Testing

Introduction. This subsection of the SDP addresses the objectives, approach, documentation, staff
responsibilities, and tasks for the Software Item Qualification Testing (SIQT) activity. In accordance
with TOR-3537B, the SIQT activity must be described in seven paragraphs in the SDP; the last five
of these tasks are the sequential processing steps of the SIQT activity:

• Independence in Software Item Qualification Testing (paragraph 5.9.1)

• Testing on the Target Computer System (paragraph 5.9.2)

• Preparing for SIQT by preparing the SIQT Software Test Description(s) (STD) and updating
the Software Test Plan (STP) (paragraph 5.9.3)

• Performing a dry run of the SI qualification test procedures on the target computer hardware to
ensure that the tests and test descriptions are complete and accurate and ready for the formal
SIQT witnessed testing (paragraph 5.9.4)

• Performing Software Item Qualification Testing by executing the formal SIQT using the STD
and recording the test results, (paragraph 5.9.5)

2-88

Downloaded from http://www.everyspec.com

• Revision and Retesting including implementing all necessary corrections to the software
products and the software test procedures in the STD. then retesting the tests that failed and any
others involving modified SUs and their interfaces. This activity is repeated until all SI tests
have been completed (paragraph 5.9.6)

• Analyzing and Recording SIQT Results and anomalies in a Software Test Report (STR)
(paragraph 5.9.7)

Objectives. The objective of SIQT is to demonstrate that the SI meets the software and interface
requirements allocated to the SI. SIQT must be a controlled and documented activity assigned to
software test engineers who are independent of the software development team. SIQT must
demonstrate that: the software performs correctly; contains the features prescribed by its requirements
at the SI level; and properly interacts and performs its specified functions within the total system as
documented in the SRS for each build.

Approach. For software developed in multiple builds, the SIQT for each build must address the
software and interface requirements allocated to the current build being tested and the SIQT for the SI
being tested will not be completed until the final build for that SI. Regression tests must be
performed as needed throughout the iterative process. The software test results must be documented
after each test.

A Software Test Report (STR) must be published to document the final test results. Any
discrepancies noted must be recorded in Software Discrepancy Reports (SDRs), analyzed, and
dispositioned in accordance with the Corrective Action Process. If the corrections are deferred for a
future release, then the STR, and all related release documentation (e.g., the Version Description
Document), must reflect SI constraints or work-arounds needed.

The activity ends when documentation of the software test results is completed and open SCRs/SDRs
that can be resolved are resolved for the current release. All test materials and results must be
"impounded" to establish the "as conducted" archive. A post-test debrief should be conducted to
evaluate preliminary results, to analyze anomalies that occurred and to collect lessons learned.
Table 5.9-1 summarizes the readiness criteria in terms of entry and exit criteria, verification criteria to
ensure completion of the required activities, and the measurements normally collected during the
SIQT activity.

Table 5.9-1. Readiness Criteria: Software Item Qualification Testing—Example

Entry Criteria

SRS, IFCD. SMBP, SDD, SAD, IDD, DBDD, and
STP have been baselined.
The Requirements Traceability Verification Matrix
(RTVM) is available.

Exit Criteria

Formal Software Item qualification tests are successfully
completed including an action plan generated to close remaining
SDRs.

• STDs and STRs are completed.
• STP is updated as required.

Verification Criteria

Software Peer Reviews have been successfully completed for all required documentation.
SQA and customer witness test execution
SQA performs process/product audits for ongoing product engineering activities per SDP subsection 5.16

Measurements

• Number of Peer Review defects
• Number of SCRs and SDRs opened and closed, aging data, origin, and root cause of problems

Number of test cases completed and number of requirements verified (see subsection 5.20)

If SCR or SDR fixes are incorporated into the software, then portions of the SIQT test procedures
must be re-run to verify that applicable SCR/SDR fixes are implemented and working correctly. In

2-89

Downloaded from http://www.everyspec.com

addition, it must be determined that selected pre-existing functionality is still performing per software
and interface requirements after the fixes have been implemented. SDP paragraph 5.9.6 covers details
on performing revision and re-testing activities.

Work Products. Documentation products normally produced during the SIQT activity for each SI
include: Software Test Description (STD), Software Test Report(s) (STR), an updated Software Test
Plan (STP), and traceability products from the Requirements Database. For MC-1 and SS-1 software
these software products must be documented in the STP, STD, and STR for each SI and the
traceability products contained in the Requirements Database. For SS-2 software, the SI test
description and test results may be documented in the SDF. Annex-H of J-16 describes the
recommended format and contents of the STD and STR and they can be summarized as follows:

• The STD describes the Si-specific test cases and corresponding software and interface
requirements, test environment, test procedures, input data, simulations or emulations, expected
results, and success criteria

• The STR specifies or references the test outputs, logs, notes, and test results

If the SI is reused "as is" and the existing documentation meets the minimum requirements, the
existing documentation can be used "as is" also. Work products for this activity are summarized in
Table 5.9-2. The documentation must be made available via an electronic data repository system.
Test Logs, describing the results of the tests, are not listed, but are required.

Table 5.9-2. Software Item Qualification Testing Work Products Per Build—Example

SIQT Documentation MC-1 SS-1 SS-2 S-3 C/R

STP and STD (separate document per SI) Required Required Required* Optional Optional

SI test description and test results in SDF Required Required Required Required Required

STR Required Required Required* Optional Optional

SI test cases traced to SRS requirements in
the requirements databases

Required Required Required* Optional Optional

'Document not required but applicable information is developed and retained in the SDF.

In addition, preliminary versions of the following software documents (if applicable) may be prepared
concurrently with the SIQT activity:

• Software Product Specification (SPS as described in paragraph 5.12.1)

• Software Version Description (SVD as described in paragraph 5.12.2)

• Software Users Manual (SUM as described in subparagraph 5.12.3.1)

• Computer Programming Manual (CPM as described in subparagraph 5.13.8.1)

• Firmware Support Manual (FSM as described in subparagraph 5.13.8.2)

• Software Transition Plan (STrP as described in paragraph 5.13.9)

Roles and Responsibilities. The software test lead, supported by software test personnel, should be
responsible for the development of the SI test plan and test description. Execution of the SI test
should be performed by the software test engineers. For support software, the software test lead may
have software developers develop and run the tests, provided they are not the same individuals who
performed SI integration. Where problems are identified during SI testing, software developers
should work with test engineers to analyze problems to determine if it is a software issue or a test
procedure issue. Table 5.9-3 is a summary of responsibilities for software developers and roles of
other groups in the SIQT activity.

2-90

Downloaded from http://www.everyspec.com

Table 5.9-3. SIQT Roles and Responsibilities—Example

Roles Responsibilities

Software
Development

Implements software changes as a result of SCRs/SDRs
Addresses critical software requirements in the software test cases
Generates traceability products for SI test cases to SRS requirements Program Unique Identifier
(PUD
Collects and reports software metrics: Updates and maintains the SDF

CSWE

Monitors SI tests, reviews SDFs, reviews software products, attends reviews (or designee), and
monitors and analyzes software metrics. The CSWE must concur that the SI is ready for
qualification testing

Software Test Executes the SI test and submits SCRs/SDRs as necessary for detected problems
System Safety Supports verification, testing, and tracking of safety-critical requirements

SQA
Witnesses program and/or Element SQA and audits the tests, attends reviews and inspections,
evaluates adherence to documented policies and procedures, monitors the quality of output
products, and documents and reports findings to management

Element CCB
Addresses all current build factory/segment internal SCR/SDRs, as they are generated by the
IPT software personnel or software test engineers

Element SWCCB
Addresses all software item SCR/SDRs involving external interface changes and prior build
release SU changes as they are generated by the IPT software personnel and approves all
requests to postpone qualification test cases to later builds

Element SCM
Manages test database, the source code, SCR/SDRs for software item baseline changes to
source code, and test documentation as generated by the software IPTs and software test
engineers

SIQT Process Activities. Figure 5.9 is an example of a flow chart representation of the SIQT
process. As shown in the figure, the SIQT process involves 16 recommended tasks that are organized
into four groups covering the preparation, dry run, performance, and the analysis and recording of
SIQT results.

2-91

Downloaded from http://www.everyspec.com

INPUTS SIQT TASKS OUTPUTS

Baselined:
• SRS
• RTVM
• STP
• IFCD
• IDD
• SAD
• SDD
• DBDD

• Software Build
• SCRs/SDRs
• IS
• Requirements

database

On-Going
Tasks:

• Software
Metrics

• Problem
Reporting

Prepare For SIQT:
1- Review STP
2- Update Baselined STP for SIQT
3- Approve STP
4- Develop Baselined STD
5- Review SIQT STD
6- Update and Approve SIQT STD

I
Perform Dry Run:

7- Dry Run STD and test procedures
8- Document Dry Run Results
[Revisions - Iterate 7 and 8 as needed]

Perform Formal SIQT:
9- Conduct SIQT TRR
10- Execute SIQT Test Procedures
11- Document SIQT Test Results
12- Perform Regression Testing

Analyze and Record SIQT Results:
13-Develop SIQT STR
14- Analyze Test Results
15- Review SIQT STR
16- Update and Approve SIQT STR

• STD and STP
• Test Scenarios and

Databases
• SCR/SDRs

SCM SQA

I
• Updated STD
• Test Logs
• SCR/SDRs

• Redlined STD
• Test Logs / Scenarios
• SCR/SDRs
• Revisions to code or

test procedures

I
SCM SQA

I
Final SIQT STR

SRS = Software Requirements Specification
RTVM = Requirements Test Verification Matrix
STP = Software Test Plan
IFCD = Interface Control Document
IDD = Interface Design Description
STD = Software Test Description
SDD = Software Design Description

STR = Software Test Report
SAD = Software Architecture Description
SCR = Software Change Request
SDR = Software Discrepancy Report
IS = Interface Specification
SCM = Software Configuration Management
SQA = Software Quality Assurance
TRR = Test Readiness Review

Figure 5.9. SIQT Process Flow—Example

5.9.1 Independence in Software Item Qualification Testing

SIQT must be performed to demonstrate that the SI meets the software and interface requirements
allocated to that build. To ensure objectivity, the tests must be performed by independent software
test engineers. They may be either personnel not involved in any of the development activities up to
this point or other software developers who have not been involved with the coding and integration
activities for the SI being tested.

5.9.2 Testing on the Target Computer System

To the maximum extent possible, SIQT should be performed on the target computer system, or as
close as possible to the operational target hardware configuration, to demonstrate that there are no
hardware or operating system incompatibilities. Operation on the target computer can also provide
useful measurements of the computer resource utilization. If the SIQT is to be performed on a
compatible system, an analysis must be conducted to determine that the computer resource utilization

2-92

Downloaded from http://www.everyspec.com

requirements can be met. All target hardware/computer system(s) used for testing must follow
Configuration Management Policies and Procedures.

5.9.3 Preparing for Software Item Qualification Testing

Objective. The objective of preparing for S1QT is to finalize, through reviews or inspections, the
STD and the STP. The software developers must define and record the test preparations, test cases,
and test procedures to be used for SIQT as well as the traceability between the test cases, test
procedure steps, and the SI and software interface requirements. In addition to writing the STD, the
test engineers must run all or portions of the STD, update test scenario procedures and databases, and
perform other necessary test activities to prepare for the SIQT Dry Run. The STP and STD must be
baselined and placed under CM control prior to the run for record.

Approach. All requirements in preparation for SIQT, as described in paragraph 5.9.3 of TOR-3537B,
must be addressed including verification of all software:

• Requirements under conditions as close as possible to those that the software will encounter in
the operational environment

• Interface requirements using the actual interfaces wherever possible or high-fidelity simulations

• Specialty engineering requirements such as supportability, testability, reliability,
maintainability, availability, safety, security, and human systems integration, as applicable

• Reliability requirements including fault detection, isolation, and recovery

• Stress testing performed including worst-case scenarios

Reference to "testing" during SIQT should not be confused with the "verification method" of test.
Software qualification testing may require the use of all verification methods including Inspection,
Analysis, Demonstration, and Test. The STD. supported by the STP, must provide test case
descriptions with test procedures for each test case, special test environments, and test sequencing
requirements for all SRS and IRS requirements allocated to the SI build.

Commercial Off-The-Shelf (COTS) software, reuse code, or newly developed software can be used to
satisfy and verify software requirements during qualification testing. During SIQT, applicable
resource measurements must be collected typically including CPU, memory, storage, and bandwidth
data.

For some SRS or IRS requirements, it may not be possible, or practical, to fully test the requirement
at the SI level for the current SI build. As a result, it may be necessary to satisfy the requirement
using unit integration or SU tests rather than a SI test. This situation can result when data associated
with a SI requirement is not accessible at the SI level or the test requires an inordinate amount of time
or costs to perform. If system hardware or special test environments are not ready for the current
build test, the tests can be deferred to segment or system testing.

The STP and STD should be evaluated at a document peer review. Once the review changes are
incorporated into the documents, they must be baselined and further modifications handled via
change control. Supporting test software (simulations/emulations) and data should also be prepared.
The updated STP and STD must also contain test cases and descriptions for safety-critical
requirements from previous builds. For the final build, the documents must provide test cases and
descriptions for the final build plus regression test cases and descriptions of software requirements
from all previous builds. Table 5.9.3 is an example description of the tasks applicable to the SIQT
preparation tasks.

2-93

Downloaded from http://www.everyspec.com

Table 5.9.3. SIQT Preparation Tasks—Example

Tasks Inputs Subtasks Outputs

1. Review
STP

. STP • Announce the peer review and disseminate schedules and
STP in advance

• Conduct the peer review and document peer review
results

• Schedule next revision and review dates

• Comments
against the
STP

• Action Items

2. Update
Baselined
STP for
SIQT

• See Figure 5.9
Inputs

• System and
Element/Segment
Use Cases

• Define test environment and test schedule
• Develop test categories
• Identify processes for conducting the SIQT
• Identify assumptions and constraints
• Document items in the STP

• STP

3. Approve
STP

• Comments against
the STP

• STP
• Action Items from

previous review
• Updates to the

STP

• Update STP based on review comments
• Provide STP for re-review
• If re-review is required, conduct, document and schedule

next revision and review
• Obtain the proper approvals
• Provide to SCM and to Document Control for distribution

• Approved
STP

4. Develop
Baselined
STD

• See Figure 5.9
Inputs

• Integration Test
Cases

• SCRs/SDRs

• Map SRS ad IRS requirements to test cases
• Populate RTVM with requirement to test-case mapping

data
• Identify requirements to be verified at the SU or SI level
• Develop automated test scenarios and databases
• Develop test procedures including post test analysis steps
• Update scenarios and test databases as required
• Document anomalies in an SCR

• STD
• Test

Scenarios
and
Databases

• Updated
Requiremen
ts Database

• SCRs/SDRs
5. Review

STD
• STDs
. STP
• SCRs/SDRs

• Announce review and disseminate schedules and SIQT
STDs

• Conduct review and document review results
• Schedule next revision and review dates

• Comments
against the
STD

• Action Items

6. Update
and
Approve
STD

• Comments against
the STD

• SCRs/SDRs
• Completed Action

Items from
previous review

• Update STD based on review comments
• Provide STD for re-review
• If re-review required, conduct and document review
• Schedule next revision and review if needed
• If no more review time is required, obtain proper approvals
• Provide STD to SCM and Document Control for

distribution

• Approved
STD

5.9.4 Dry Run of Software Item Qualification Testing

Objectives. The objectives of the SIQT dry run are to exercise the test cases and test procedures to
ensure that they are complete and accurate, and that the SI is ready for witnessed testing. SIQT
readiness testing also verifies that all necessary test data and the test environment are under proper
SCM control and are adequate for verifying the software requirements. Table 5.9.4 contains an
example of the tasks applicable to SIQT dry run.

2-94

Downloaded from http://www.everyspec.com

Table 5.9.4. SIQT Dry Run Tasks—Example

Tasks Inputs Subtasks Outputs

7. Dry-Run • Approved STD • Ensure all test software and hardware are available • Approved
STD and • SCM controlled scenarios and are the correct version STD with
Test and databases • Ensure that all approved test software and the SQA
Procedures • SCM controlled software software to be tested are under SCM control Approved

build • Execute test and post-test analysis as documented in Red-lines

• CM controlled HW test the STD
bed • Redline procedures and obtain SQA approval
and test environment • Update scenarios and databases as needed

8. Document . STP • Document Dry Run results in the test log • SCRs/SDRs
Dry-Run • Approved STD with • Document all anomalies in an SDRs • Test Logs
Test approved redlines
Results

Approach. Testers must obtain the appropriate software SI build from the SDL. When all required
elements are assembled, the tests, including required regression tests, should proceed per the
procedures specified in the STD. The testers must collect, analyze and record the outputs, logs, test
notes, and results (problems, errors, and discrepancies noted by the tester). No modification to the SI.
test data, or environment should be made until after the dry run is complete and the results
documented in the SDF. SQA may audit the dry run and all test results.

After the test procedure is executed, and SQA captures the redlines, data from the test execution must
be analyzed to determine if the software under test produced the correct results and whether the SRS
and IRS requirements allocated to the test procedure were actually verified. Results of the post-test
analysis may be software changes (documented in SDRs), procedure changes, test data/scenario
changes, or test environment changes.

In cases where requirements are not satisfied. SCRs/SDRs must be generated and the changes
handled by the appropriate corrective action process. In cases where test descriptions require
modification, the procedures must be redlined and approved by SQA. Retesting must be required for
all modified SUs, test cases, and test descriptions, and any additional SUs and test cases that directly
interact with the modified Sis and test cases.

5.9.5 Performing Software Item Qualification Testing

Objective. The objective of performing SIQT is to formally execute the test procedures as
documented in the STD, using products under SCM control, and in a witnessed test environment. The
approach in this task should begin with the Test Readiness Review (TRR) that should be described in
an SDP appendix covering software reviews. The material presented at the TRR should include: SU
testing, SU test results and SI dry-run results; formal test environment description (hardware, test
tools, and associated software); formal test approach; SI requirements verification at a lower level;
test schedules; and SIQT tasks as described in the SI STP and the SI STD.

Approach. The TRR ensures that all necessary test documentation, materials, and personnel are
ready, and that coordinated test schedules are in place. The actual execution of the SIQT should be
essentially the same as the dry run. The testers usually begin by ensuring that all necessary software
test data and tools are available. Testers obtain the appropriate SI test build from the SDL. When all
required elements are assembled, the tests, including required regression tests, must proceed per the
procedures specified in the STD.

The test team must collect and record the outputs, logs, test notes, and results. They must execute all
tests specified for the current build, and they must perform regression testing on all safety-critical
requirements from previous builds. The primary difference from the dry run testing is that the

2-95

Downloaded from http://www.everyspec.com

performance of the SIQT is normally witnessed by SQA and the CSWE (or designee) and optionally
by the customer and the Independent Verification and Validation (I V&V) agent. Reasonable notice of
the tests must be provided to the customer and the I V&V agent to permit them the opportunity to
attend. Table 5.9.5 is an example of the tasks applicable to performing the formal SIQT.

Table 5.9.5. Perform Formal SIQT Tasks—Example

Tasks Inputs Subtasks Outputs

9. Conduct • TRR entrance and • Review SU test and integration test status • Pass/fail status
SIQTTRR exit criteria • Review SIQT dry-run status and open SCR/SDR of TRR Exit

• Test environment status Criteria
• Approved STD • Review test environment status and STD status • Test Logs
• SDFs • Review test limitations and test schedule
• SRS and IRS • Prepare TRR Test Log
• SCM controlled • Ensure all test software and hardware are available

software build, test and are the correct version
software & hardware • Ensure that all test hardware and software are

• Open SCRs/SDRs under SCM control
• Test Logs • Assess SIQT test readiness based on the above

10. Execute • Approved SIQT • Perform test steps as documented in the STD • Completed SIQT
SIQT Test STDs • Perform analysis steps as documented in the STD Testing
Procedures • Test environment

• TRR results (test
logs)

• SCM controlled
build

• Open SCRs/SDRs

• Perform retesting as required • Test Logs

11. Document • Completed SIQT • Prepare the test log • SCRs and SDRs
SIQT Test testing • Document anomalies in SDRs and rework source • Test Logs
Results code or STDs to eliminate problems • Revisions to

• Document verification status for SRS requirements Code or Test
and obtain SEIT approval Procedures

• SCM updates to baseline documents • SQA Audits and
Reports

12. Perform • SI builds • Perform regression testing to accommodate new • SCRs and SDRs
Regression • Test Results functions, problems, or changes in the current build • Test Results
Testing • SCRs and SDRs

5.9.6 SIQT Revision and Retesting

Objective. The objective of the revision activity during SIQT is to rework source code or test
descriptions to eliminate any problems identified during qualification testing. Appropriate portions of
the SI must be retested to verify that the changes have been successful and that other problems have
not been produced as side effects. The objective of re-testing is to verify that applicable SCR and
SDR fixes are properly implemented and that selected existing functionality is still performing per
software and interface requirements after the SCR and SDR fixes have been implemented (Regression
Testing).

Approach. The test results, and documented problems, must be evaluated by software developers to
determine if changes need to be made to the SUs or the STD. Regression testing of affected SIQT test
cases must be performed after any modification to previously tested software. In addition to
modifications made to SUs to fix defects, regression testing can also include regression tests of SIQT
test procedures from the last build to show that the current build has not broken any software
requirements that were previously verified.

All modifications to the source code must be handled as SCRs/SDRs by the appropriate change
control board. Unit-level retesting must be required for all modified procedures and functions.
Modified Sis require retesting of safety-critical requirements and previously failed test cases.

2-96

Downloaded from http://www.everyspec.com

Products from previous activities must be reviewed for possible changes resulting from the
implemented software changes, and then updated as appropriate.

This activity must be repeated as needed until all test cases have met the test case success criteria. In
some cases, uncompleted or failed tests can be postponed until a later build if approved by the
SWCCB. Re-testing objectives must be reviewed by the appropriate SEIT IPT prior to the testing and
preparation for testing. An updated set of the STP or STD should not be mandatory for each iteration
of re-testing. STRs must be provided at the end of SIQT testing.

5.9.7 Analyzing and Recording SIQT Results

Objective. The objective of analyzing and recording SIQT results is to finalize the SIQT activity by:

• Documenting test results in the Software Test Report (STR) (for MC-1 and SS-1 software) or in
the SDF (for SS-2 software)

• Performing a review of the STR. or verifying the capture of the test results in the SDF

• Conducting an optional Test Exit Review (TER). that may also be called a Post Test Review
(PTR) or Build Turnover Review (BTR)

Approach. The results of the SIQT must be analyzed for completeness and documented in a STR or
captured in the SDF. This documentation should be prepared by software test engineers who
performed the SI tests. The completed documentation is subject to a document review.

Software Test Reports must be baselined once all review modifications have been incorporated. Any
SI documentation, notes, or data that are not incorporated into the STR should be captured in the
SDF. For MC-1 and SS-1 software developed in multiple builds, an STR must be prepared and
reviewed after each build. The STR, when approved, must be maintained under CM control. The
intent of recording SIQT test results in the SIQT STRs is to document and finalize the test activity
and effectively capture test results. Table 5.9.7 is an example of the tasks applicable to analyzing and
recording SIQT results.

Table 5.9.7. Analyzing and Recording SIQT Results—Example

Task Inputs Subtasks Outputs

13. Develop • SIQT Test Logs • Review SIQT Test Logs, As-Run STD and . STR
STR . SCRs/SDRs SCR/SDRs • SCRs/SDRs

• "As Run" STD • Review verification status of SRS requirements
• Document all of the above in STR

14 Analyze . STR • Perform root cause analysis of test anomalies as • Root Cause
Test • SCRs/SDRs documented in the SCRs/SDRs Analysis
Results • Obtain CCB approval of SCR/SDR resolution plan • Resolution Plan

15. Review • SIQT STR • Announce review and disseminate schedules and • Comments
STR • SCRs/SDRs STR against the SIQT

• SIQT Test Logs • Conduct a TER (PTR or BTR) and document the STRs

• 'As Run" STD review results • Action Items

16. Update • Comments against the • Update STR based on review comments • Approved SIQT
and preliminary SIQT STRs • If re-review required, conduct and document review STR
Approve and STR; Action Items • Schedule next revision and review if needed • SQA Audits and
STR from previous reviews; • If no more review time is required, obtain proper Reports

STR Updates approvals
• Provide STDs to SCM and Document Control for

distribution

2-97

Downloaded from http://www.everyspec.com

5.10 Software/Hardware Item Integration and Testing

Introduction. This subsection of the SDP addresses the objectives, approach, documentation,
responsibilities and activities of the Software/Hardware Item (SI/HI) Integration and Testing (I&T)
activity. In accordance with TOR-3537B, the SI/HI I&T activity must be described in four
paragraphs:

• Preparing for SI/HI integration and testing (paragraph 5.10.1)

• Performing SI/HI integration and testing (paragraph 5.10.2)

• Revision and retesting (paragraph 5.10.3 in the TOR but paragraph 5.10.4 in this Guidebook)

• Analyzing and recording SI/HI integration and test results (paragraph 5.10.4 but
paragraph 5.10.3 in this Guidebook)

The SI/HI I&T process involves integrating Sis with interfacing Sis and His, testing the resulting
groupings to determine if they work together as intended, and continuing this process until all Sis and
His in the system are integrated and tested. Generally, SI/HI I&T is the first integration of the full
software system with the target hardware. SI/HI I&T may test an entire element or segment or a
portion thereof. For activities involving hardware integration, the software team is usually in a
support role to SEIT.

Objectives. The principal objectives of SI/HI Integration and Testing are to:

• Perform the individual SI-to-SI integrations and SI-to-HI integrations to produce the complete
software build for each successive level of test and verify its integration success

• Integrate software into the target hardware system and verify integration success

• Verify SI to SI and SI to HI interface requirements compliance

• Support and successfully complete integration and qualification testing at each level of
integration

Approach. The Software Master Build Plan (SMBP) should be updated to define the SI functionality
that is planned to be operational for each build. The integration sequencing should be documented in
the SMBP and the overall approach to I&T documented in the Master Test Plan (MTP)—sometimes
called the System Test and Evaluation Plan (STEP). Although integration of software with the
hardware is a critical objective of this activity, some aspects of the hardware integration may not be
able to be performed until the full system integration.

The following is an example scenario of SI/HI I&T:

1. SIQT for the spacecraft bus software is performed in the flight test bed
2. SIQT for the payload software is performed in the payload test bed
3. The two test beds are connected and the software-to-software interfaces between the

spacecraft bus and the payload is tested

4. The spacecraft bus software and the payload software are integrated into the actual vehicle
5.The flight and payload software and hardware are integrated.

In addition, there may be early integration points using the two test beds so that all the spacecraft
software and payload software interfaces do not have to wait until the software is completely finished
to be integrated and tested.

2-98

Downloaded from http://www.everyspec.com

Table 5.10 is a summary example of the readiness criteria for this activity in terms of entry and exit
criteria, verification criteria to ensure completion of the required tasks, and the measurements
typically collected during this activity.

Table 5.10. Readiness Criteria: Software/Hardware Item Integration and Testing—Example

Entry Criteria Exit Criteria
• HW/SW integration approach is defined and approved in the Master

Test Plan (MTP)
• IPT software personnel are requested by SEIT to support the HW/SW

integration activities.
• The executable software product has completed the SIQT process and

is capable of supporting HW/SW integration.
• The software release to be integrated and the integration database are

under control of the Software Development Library.
» The integration database is defined and integration tools are available.

• HW/SW Integration and Testing is
successfully completed including an action
plan to close remaining SDRs.

• SW test and SW management reviews and
approves the SDR/SCR closure plan.

• Regression testing is completed and
accepted by the SW test lead.

Verification Criteria

• SI-SI and SI-HI integration is verified and accepted by the SW test lead
• SQA performs process/product audits for ongoing product engineering activities per SDP subsection 5.16.
» SW test lead reviews regression lest logs and accepts completion of the regression testing

Measurements

• Test Coverage: Number of requirements tested and passed
• Number of test cases—planned versus actual
• Percent of interfaces tested
• SDRs and SCRs opened and closed. Aging data, origin and root cause analysis. (see subsection 5 20)

The flowchart in Figure 5.10 shows the inputs, outputs, and relationships between the four SI/HI l&T
tasks: prepare, perform, analyze/record results, and revision/retest.

Roles and Responsibilities. Generally, the SEIT Test and Evaluation team is responsible for
performing SI/HI I&T and the software role in this activity consists primarily of support tasks.
However, the software test team has a vital role—especially for the SI-to-SI integration tasks. The SI-
to-HI integration tasks should involve both hardware and software system engineers/testers. A
comprehensive description of the tasks involved in the full SI/HI integration and testing activity is not
directly addressed in this subsection—focus is on the support provided by the Software IPT
personnel. All testing must be run using documented test descriptions developed collaboratively by
the software and SEIT test engineers.

Work Products. The documentation produced during this activity is focused on testing the
integration of software and hardware at various levels of the cumulative integration. During this
activity the SI/HI I&T test cases, test procedures, test drivers, test scenarios, test stubs, databases, and
other needed test data are produced. The activity concludes with the SI/HI I&T test results and
preparation of Software Discrepancy Reports (SDRs) for all problems encountered.

Developed concurrently with the SI/HI I&T activity is an updated Software Test Description (STD as
baselined during software qualification testing and discussed in subsection 5.9), a baselined Software
Product Specification (SPS as described in paragraph 5.12.1), and the baselined Software Version
Descriptions (SVD as described in paragraph 5.12.2) supporting the current software release.

Approach. The software developers, and software system engineers, assigned to perform integration
of the Sis, must develop an integration strategy that defines a systematic approach for integrating the
Sis into the complete software release. Issues such as SI-SI interfaces, inter-SI timing and sequencing,
and simulations or emulations (for external interfaces) are examples of the issues that go into
determining the order of integration of the Sis.

2-99

Downloaded from http://www.everyspec.com

INPUTS SI/HI INTEGRATION AND TEST TASKS OUTPUTS

• SRS
• ICD
• IDD '
• STD
• STR
• SDD
• SVD
• OCD
• MTP
• SMBP
• Quality

tested
code for
each SI

Prepare For SI/HI Integration & Test:
1-Review & Revise Integration Test Approach
2-Prepare Sl-to-SI Test Case Artifacts
3-Support development of SI-to-HI l&T Artifacts

• Updated MTP, SMBP
and STD

• Test Cases, Drivers,
Scenarios, Databases,
Procedures, Stubs,
test data, etc.

*
Perform and Support SI/HI Integration & Test:

4- Support Test Dry Run
5- Conduct Sl-to-SI integration testing B

6- Support SI-to-HI integration testing
7- Conduct Integrated SI Thread Testing
8- Support Integration of HW and SW

• Test Data
(• Integrated Test

Artifacts
• Test Results
• Thread test results
• SDRs

a
Analyze and Record SI/HI l&T Results:

9- Analyze Integration and Test Results •
10- Record Integration and Test Results

> • Baselined SVD
• Baselined SPS
• Updated STD
• Updated SDF

On-Going
Tasks:

• Software
Metrics

• Problem
Reports

I
SI/HI l&T Revision and Retesting:

11- Perform or Support Revision and Retesting
12- Perform or Support Regression Testing

: SCM :

SRS = Software Requirements Specification
ICD = Interface Control Document
IDD = Interface Design Description
STD = Software Test Description
SDD = Software Design Description
SVD = Software Version Description

STR = Software Test Report
OCD = Operational Concepts Description
SDR = Software Discrepancy Report
MTP = Master Test Plan
SMBP = Software Master Build Plan
SCM = Software Configuration Management
SPS = Software Product Specification

Figure 5.10. Hardware/Software Item Integration and Test Process—Example

5.10.1 Preparing For SI/HI Integration and Testing

Objectives. The objectives of preparing for SI-SI integration and SI-HI integration testing are to
finalize the MTP, SMBP and STD and develop integration test artifacts (test cases, test procedures,
test drivers, test scenarios, test stubs, databases and test data) necessary to verify the success of the
integration effort. Table 5.10.1 contains examples of the tasks applicable to preparation for the SI/HI
l&T activity.

2-100

Downloaded from http://www.everyspec.com

Table 5.10.1. SI/HI Integration and Testing Preparation Tasks—Example

Tasks Inputs Subtasks Outputs

1 Review
and
Revise
Integration
Test
Approach

• See Inputs
to Figure
5.10

• Review SI/HI l&T approach in the MTP, the test
sequence in the SMBP, test requirements in the
STD, and update if necessary

• Define functional capability threads
• Develop integrated schedule and

activity/dependency network
• Identify assumptions/constraints
• Document planning results
• Obtain proper approvals

• Updated MTP. SMBP, and
STD

• Updated SI/HI integration
plans

• Updated integration schedule
• Action items

2. Prepare
Sl-to-SI
Test Case
Artifacts

• Outputs
and Action
Items from
Task 1

• Prepare Sl-to-SI Test Cases, Test Procedures. Test
Drivers, Test Scenarios, Test Stubs, Databases, and
other test data as needed

• Update MTP, SMBP, and STD
• Define integration test, threads, and test cases

• Test Cases, Test Procedures,
Test Drivers, Test Scenarios,
Test Stubs, Databases, etc.

• Functional Capability Thread
Descriptions

3. Support
Developm
ent of Sl-
to-HI l&T
Artifacts

• Outputs
from
Tasks 1
and 2

• Support development of SI-to-HI Test Cases, Test
Procedures. Test Drivers, Test Scenarios, Test
Stubs. Databases, and needed test data

• Update MTP and SMBP, if necessary

• SI-to-HI Test Cases, Test
Procedures, Test Drivers,
Test Scenarios, Test Stubs.
Databases, and test data as
applicable

Hardware and software system engineers must collaborate in the preparation of appropriate test
description information for the hardware/software integration that needs to be accomplished during
this activity. They review in-progress SI/HI l&T Software Test Descriptions, provide
recommendations to test engineers (including software test equipment needed), and ensure that test
cases and corresponding test procedures are sufficiently defined in the updated STD to verify the
success of each partial integration. An updated STD for SI/HI l&T should contain at a minimum:

• The overall test description and test environment for Sl-to-SI and SI-to-HI integration and
testing.

• Specific test cases and corresponding test procedures to verify correct execution of Sl-to-SI
and SI-to-HI interfaces including:

- End-to-end functional capabilities

- Sequencing and timing of events and data flows

- All requirements allocated to software

- Stress testing including worst-case scenarios

- Start-up. termination, and restart procedures

Fault detection, isolation, and recovery handling

- Performance testing including input/output data rates, timing, and accuracy requirements

Operation of multiple Sis on a single computer platform, where applicable

Integrated error and exception handling capabilities

Limit and boundary conditions

- Resource utilization measurements (e.g., CPU, memory, storage, and bandwidth)

Input data definitions (e.g., data files, databases, etc.)

Required simulations and emulations needed for external or hardware interfaces

Specific output data to be collected and recorded in the appropriate SDF

The expected results and success criteria

The SI/HI l&T must be performed using the target hardware in a configuration that is as close as
possible to the operational configuration. All reuse software, including legacy reuse and COTS

2-101

Downloaded from http://www.everyspec.com

software, must also undergo the SI/HI I&T process. The software IPTs provide software system
engineers and test engineers along with applicable software test support items, expertise, and training
as required in using the software.

5.10.2 Performing SI/HI Integration and Testing

Objective. The objective of performing SI/HI l&T is to integrate and test software in accordance with
integration and test strategies in the approved MTP and SMBP. The five principal tasks are: Support
the Dry Run; Conduct Sl-to-SI Integration Testing; Support SI-to-HI Integration Testing; Conduct
Integrated SI Thread Testing; and Support Integration of HW/SW. Integration testing may also be
called Element Qualification Test or Factory Acceptance Test. Table 5.10.2 contains examples of the
tasks applicable to performing the SI/HI I&T activity.

Table 5.10.2. Performing SI/HI Integration and Testing Tasks—Example

Tasks Inputs Subtasks Outputs

4. Support
Test Dry
Run

• Approved test Integration
procedures, plans and
schedules

• SRS for the build
• Integrated SW-HW build
• Integrated SI thread test cases
• Integration test data and tools
• Hardware test equipment

• Ensure all test SW and HW are available,
the correct version and under CM control

• Perform test cases and procedures
• Document HW-SW dry run integration test

results in test log
• Generate SDRs/SCRs as applicable
• Red line procedures and obtain SQA

approval

• Approved
integration
procedures

• Integrated test
stubs, drivers, and
scenarios

• Test results in log
• Integrated build

5 Conduct
Sl-to-SI
Integration
Testing

• Approved STP
• SW plans and schedules
• SRS for the build
• Sis from SCM
• Integration test data and tools

• Integrate Sis in accordance with
integration test procedures in the MTP
and SMBP

• Develop SI thread test cases in
accordance with the SRS and MTP

• Integrated builds
• Integrated SI thread

test cases
• SCRs/SDRs

6. Support
SI-to-HI
Integration
Testing

• Same inputs as Activity 5 plus:
• Integrated HW-SW test

drivers, scenarios, and
stubs

• Same tasks as Activity 5 plus:
• Record test logs
• Document status for interface

requirements
• SQA audit and review test status

• Integrated HW/SW
builds

• EAT completion
• SCRs/SDRs
• Code and test

procedure revisions
• SQA audit report

7. Conduct
Integrated
SI Thread
Testing

• Approved test integration
procedures

• SW plans and schedules
• SRS for Build
• Integrated Sis
• Integrated SI thread test cases
• Integration test data and test

tools

• Develop SI thread test procedures, stubs,
drivers and scenarios in accordance with
integration plan and SI test cases

• Develop HW/SW integration test cases
and procedures

• Perform SI thread test procedures
• Document SI thread test results
• Generate SCRs/SDRs, if applicable

• Integrated build
thread test
procedures, drivers,
stubs, and
scenarios

• Thread test results
• Integrated and

tested builds
• Test cases

8. Support
Integration
of HW and
SW

• Approved test Integration
procedures, plans and
schedules

• Integrated and tested Sis
• Target hardware
• HW/SW Integration test cases
• SRS for Build & SDRs/SCRs
• Integration test data and tools

• Obtain Integrated and tested builds from
SCM

• Integrate software build with the target
hardware.

• Rework source code if required in
response to approved SDRs and SCRs.

• HW/SW Integrated
build

• HW/SW integration
test cases

• SDRs/SCRs

Approach. Software integrators normally begin the integration of Sis by ensuring that all Sis to be
integrated and all necessary data and tools are available and ready. Software test engineers support
CCB and SWCBB corrective actions on any soft-related errors, request re-execution of build
procedures as required, and accept SI builds upon satisfactory verification. When all required
elements are assembled, integration proceeds.

2-102

Downloaded from http://www.everyspec.com

The software test engineers must run test cases using the test procedures, as specified in the STD.
They collect or record the outputs, logs, test notes, and results. All problems, errors, and discrepancies
must be noted. Similarly, segment test engineers run the hardware/software integration tests as
defined in the test descriptions, collect and record test results and problems.

5.10.3 Analyzing and Recording SI/HI Integration and Test Results

Objectives. The objectives of analyzing and recording SI/HI integration and test results are to: (a)
analyze integration tests results to ensure the tests have been successfully completed; and (b) to
document the respective test data and results as required. Table 5.10.3 contains examples of the tasks
applicable to analyzing and recording of the SI/HI l&T activity.

Approach. After all Sis and His have been successfully integrated and tested, the integration and test
team must review the test results for consistency and completeness and to verify that the integration
test data and results have been documented. If discrepancies or problems are found, then the portion
of the integration in question must be retested. It is also a good idea for an independent reviewer, not
involved with the segment hardware/software integration testing or a SEIT team member, to perform
an independent review, however, independent reviews are not required by the TOR-3537B standard.

Table 5.10.3. Analyzing and Recording SI/HI Integration and Test Tasks—Example

Tasks Inputs Subtasks Outputs
9. Analyze • DRs • Collect test results • Analysis results

Integration • Approved Test • Analyze test data to ensure proper
and Test Integration processing of input data by each
Results Procedures

• Integration Test
Results

procedure and correct output data

10. Record • Integration and • Collect test and analysis results • Build Integration Release Notice
Integration Test Results • Ensure that results are correctly • Released build for site and system
and Test • Analysis Results and completely recorded testing
Results • Document test and analysis results

Once the independent reviewer signifies that the integration and testing is complete, and the
integration testing was successfully completed, the release is baselined. At the last stage of integration
and testing, the test results are normally documented by SCM in a Build Integration Release Notice
and the build is then ready for system testing.

5.10.4 SI/HI l&T Revision and Retesting

Objectives. The objectives of retesting are to verify that changes and applicable SDR/SCR
modifications have been implemented correctly and that the functionality is performing in accordance
with requirements after the fixes have been completed. Changes can also involve test procedures, test
data, etc. as well as code changes. Re-integration and retesting must then be performed to verify that
the changes have been successful and have not caused side effects. The documented problems must
be evaluated by software developers to determine the necessary changes to Sis, SUs, or to the test
descriptions. Table 5.10.4 contains examples of the tasks applicable to revision and testing for the
SI/HI l&T activity.

2-103

Downloaded from http://www.everyspec.com

Table 5.10.4. Revision and Retesting SI/HI Integration and Test Tasks —Example

Tasks Inputs Subtasks Outputs

11. Perform or Support
Revisions and Retesting

• Same inputs as
Activity 5 or 6

• Same tasks as Activity 5 or 6 plus:
• Perform DR fixes

• Same inputs as
Activity 5 or 6

12. Perform or Support
Regression Testing

• Same inputs as
Activity 5 or 6

• Same tasks as Activity 5 or 6 plus:
• Perform DR fixes

• Same inputs as
Activity 5 or 6

Approach. Retesting is performed to show that a problem is fixed and the test case executes properly.
Regression testing is performed to show that the fix did not break anything that was previously tested
and working properly before the fix. In cases where software requires changes, SDRs or SCRs are
generated and the changes are handled by the Corrective Action Process (CAP). In cases where test
descriptions require modification, the changes, identified in the SDRs or SCRs, must be made by
software test engineers and a version history included in the test description to record the changes
made.

Modified software requires retesting for the integration tests that previously failed and for any tests
that are dependent on the failed tests. Similarly, test description changes require retesting of the
changed tests plus tests that are dependent on the results of the changes.

This process must be repeated until all the Sis and His have been successfully integrated and all tests
have been completed. If the element IPT lead determines it is impractical to complete certain changes
until a later build, then SCRs/SDRs must be used to document and control the modifications and
integration testing that still needs to be performed. The CCB at the element level must approve all
such delays.

5.11 System Qualification Testing

Introduction. This subsection of the SDP is focused on the objectives, approach, work products,
roles, and responsibilities of System Qualification Testing (SQT). The SQT activity involves
verifying that the system requirements have been met—including the system interface requirements.

Subsection 5.11 is also applicable to the verification of requirements at all levels above verification of
the software requirements. Those levels typically include subsystems, elements, segments, and the
system. The major qualification tasks at each level are similar but details of the required tests,
procedures and documentation may be different. If a system is developed in multiple builds,
qualification testing of the full system will not occur until the final build.

There are seven paragraphs prescribed by TOR-3537B for SQT/SAT. The last five of these tasks
(paragraphs 5.11.3 through 5.11.7) are the sequential processing steps of the SQT activity. The
System Qualification Testing activity must be described in the following paragraphs in the SDP:

Independence in System Qualification Testing (paragraph 5.11.1)

Testing on the target computer system (paragraph 5.11.2)

Preparing for System Qualification Testing (paragraph 5.11.3)

Dry run of System Qualification Testing (paragraph 5.11.4)

Performing System Qualification Testing (paragraph 5.11.5)

Revision and retesting (paragraph 5.11.6 in the TOR but paragraph 5.11.7 in this Guidebook)

Analyzing and recording System Qualification Test Results (paragraph 5.11.7 but
paragraph 5.11.6 in this Guidebook)

2-104

Downloaded from http://www.everyspec.com

SQT Objectives. System Qualification Testing is the formal test demonstrating that the system
software functional and interface requirements have been met for that release of the system. At the
system level, SQT is focused on testing the integrated hardware/software system against the system
requirements. The Technical Requirements Document (TRD) and Interface Specifications (IS) define
the system requirements, and the Software Master Build Plan (SMBP) defines what SI functionality is
to be operational for each release and what segment releases are used for each system release. This
activity must fully test the integrated software with the system hardware it interfaces with. This
activity also tests those portions of the hardware/software integration that have been previously
completed.

SQT Approach. The SQT activity consists of the following similar tasks:

• Prepare the SQT software test data

• Perform SQT test readiness on the target computer hardware to ensure that the tests in the
STDs are complete and accurate

- Perform formal SAT/SQT: Conduct a SQT Test Readiness Review (TRR)

- Execute the tests using the SQT test procedures and record the test results, problems, and
anomalies

• Analyze test results and document the test data and results

• Record test results in the SDF

Table 5.11 is an example summary of the readiness criteria in terms of entry and exit criteria,
verification criteria to ensure completion of the required tasks, and the required measurements to be
collected during the SQT activity.

Table 5.11. Readiness Criteria: System/Segment Qualification Testing—Example

Entry Criteria

System/Segment test plan and approach is
defined and approved.
The software IPT is requested by SEIT to
support SQT activities
The executable software product is capable of
supporting SQT.
The software release to be integrated and the
integration database are under control of the
Master Software Development Library (MSDL).
The System test database requirements have
been defined.

Exit Criteria

The System Test Readiness Review (TRR) is successfully
completed.
Verification of test cases and procedures (e.g., Peer Reviews)
have been completed.
The release being tested is ready and accepted
Required test databases are created, populated, and accepted
by the test conductor.
System/Segment testing is successfully completed with an
action plan generated to close remaining DRs/CRs
Regression testing is completed and accepted
Software and system management reviews and approves the
PR closure plan.

Verification Criteria

Releases provided by the SDL to the MSDL are verified and accepted by the test conductor.
SQA performs process/product audits for ongoing product engineering tasks per SDP subsection 5.16.
Test conductor reviews the test database for completeness.
Test conductor and software Test Lead reviews regression test logs and accepts completion of the regression testing

Measurements

Test Coverage: Number of requirements tested and passed
Percent of paths tested
SDRs, DRs, SCRs, and CRs opened and closed (see subsection 5.20)

Discrepancy Reports and Change Requests (DR/CR) usually replace SDR/CDRs at the system level
of testing and software problems are allocated to the Software IPT. If DR/CRs fixes are incorporated
into the software under test, constituting a new sub-release, then portions of the SQT test procedures
are re-run to verify that applicable fixes are implemented and working correctly. In addition, it must

2-105

Downloaded from http://www.everyspec.com

be determined that selected pre-existing functionality is still performing per software and interface
requirements after the fixes have been implemented. See paragraph 5.11.6 for details on performing
revision and re-testing.

Roles and Responsibilities. Depending on where in the Specification Tree hierarchy the testing is
performed, SQT is the responsibility of the system, segment, subsystem or element integration and
test team. Software developers and software test engineers have no formal role in System
Qualification Testing but typically provide support as needed. Test description preparation, test
execution, and test results documentation are performed by the system, segment, subsystem or
element test engineers.

For SQT, software developers implement software changes resulting from DR/CRs generated during
this activity and support the system test engineers in these activities. Also, software engineers may
support the System Functional Configuration Audit (System FCA) and the System Physical
Configuration Audit (System PC A), if required, as outlined in the Master Test Plan (MTP), and
discussed in paragraph 5.14.4. The MTP is sometimes called the System or Integrated Test and
Evaluation Plan (STEP or ITEP).

Work Products. SQT must be performed using documented test descriptions developed by the test
engineers. The Software Version Description (SVD) and Software Product Specification (SPS) are
updated concurrently if required. Additional products may be specified in a development site's SDP
Annex.

5.11.1 Independence in System Qualification Testing

System qualification testing demonstrates that the system, segment, subsystem or element meets the
performance and interface requirements allocated to it for each release. System qualification testing is
normally the responsibility of the program-level SEIT, however, at the lower levels, SQT can be
performed by the segment, subsystem or element test engineers. To ensure objectivity, the tests must
be performed by independent test engineers. System test engineers have no role in the software
development process and so are inherently independent testers of the software. In any case, software
engineers support the SQT process.

5.11.2 Testing On the Target Computer System

System Qualification Testing must be performed on the target hardware system, in the operational
configuration, to the maximum extent possible to demonstrate that there are no hardware/software
incompatibilities. Testing on the target hardware verifies a successful hardware/software integration
and interoperability. Operation on the target computer or target comparable systems also enables the
collection and analysis of measurements of the computer resource utilization.

5.11.3 Preparing For System Qualification Testing

Objectives. The objective of preparing for System qualification testing is to prepare and finalize,
through reviews or inspections, the segment test description and data. Once the review changes are
incorporated into the documents, they should be baselined and submitted to documentation control. In
addition, all supporting test software (simulations/emulations) and data must be prepared. System test
plans, procedures, and test data should be prepared at the appropriate level of testing and is often
prepared by the SEIT at the level of the test.

Approach. Separate test descriptions should be generated for each release. They should contain test
cases and procedures for the requirements of the current release, plus those safety-critical
requirements from previous releases. For the final release, the documents provide test cases and

2-106

Downloaded from http://www.everyspec.com

descriptions for the final release software requirements plus regression test cases and descriptions for
the software requirements from previous releases.

Software IPTs should review in-progress test plans and test descriptions, and provide
recommendations to system, segment, subsystem or element test engineers. The software IPT
personnel also assist in determining needed software test data, equipment, and test support items as
well as providing expertise and training in using the software. The test data and the software must be
placed under CM control prior to testing. The IPT software personnel can also support applicable
readiness reviews.

5.11.4 Dry Run of System Qualification Testing

Objectives. The objective of the System qualification testing dry run is to exercise the test cases and
test procedures to ensure that they are complete and accurate, and that the segment is ready for
witnessed testing. The test engineers normally begin by ensuring that all necessary data and tools are
available. They must support SWCCB corrective actions on any release errors, request re-execution
of release procedures as required, and accept software releases upon satisfactory verification.

Approach. When required elements are assembled, testers execute the procedures and collect or
record the outputs, logs, test notes, and results. They execute all tests specified for each release, and
perform regression testing on all safety-critical requirements from previous releases. All problems,
errors, and discrepancies must be noted by the tester. No modification to the Sis, hardware,
configuration, test data, or environment should be made until after the dry run is complete and the
results are documented.

There is no formal software developer role for system dry-run testing, except to assist test engineers
in analyzing test discrepancies and generating DRs/CRs. If software code requires changes,
SDRs/SCRs must be generated. In cases where test procedures require modification, the procedures
must be redlined and approved by SQA. Retesting is required for all modified software, test cases,
test descriptions, and test cases that directly interact with the modified software and test cases.

5.11.5 Performing System Qualification Testing

Objectives. The objective of performing System qualification testing is to execute the test procedures
in a formal and witnessed test environment using products under CM control. This task normally
begins with the Test Readiness Review (TRR). This review ensures that all necessary test
documentation, equipment, materials, and personnel are ready, and that coordinated test schedules are
in place.

Approach. The actual execution of the SQT is the same as the dry run, except that the performance
of the testing must be witnessed by SQA and optionally by the Program Office and/or its
representatives. Reasonable notice of the tests must be provided to permit the Program Office an
opportunity to attend.

There are no formal software developer requirements for this system test, except for analyzing
software discrepancies, generating CRs/DRs as needed, and implementing needed software code
changes resulting from the CRs/DRs.

5.11.6 Analyzing and Recording System Qualification Test Results

Objectives. The objectives of analyzing and recording SQT test results are to: (a) analyze SQT tests
results to ensure the tests have been successfully completed; and (b) document test results in the SDF
and in the Software Version Description (SVD) if required.

2-107

Downloaded from http://www.everyspec.com

Approach. There are no formal software developer roles in system qualification testing other than
supporting the S1QT at the level being tested. However, results of the qualification tests must be
analyzed for completeness and then recorded in the SDF by the test engineers who performed the
tests. For software developed in multiple releases, test results must be prepared, reviewed, and
recorded after each release unless a program decision has been made to defer the higher level
(system) test until all the software releases are complete. Segment SVDs should be updated after each
release.

5.11.7 System Qualification Testing Revision and Retesting

Objectives. The objective of the revision and retesting activity is to rework the source code or test
descriptions to eliminate problems identified during the qualification testing, and then to retest the
appropriate portions of the system to verify that the changes have been successful and have not
produced side effects. The test results and documented problems should be evaluated by software
developers to determine the necessary changes to the software and test descriptions.

Approach. Unit-level retesting is required for all modified procedures and functions. Modified
software releases require retesting of all safety-critical requirements and previously failed test cases.
There are no formal software developer roles for this task, except for implementing software code
changes resulting from the change control process. All modifications to the source code must be
handled as DRs/CRs.

Revision and retesting must be repeated as needed until all test cases have met the test case success
criteria. In some cases, resolving incomplete or failed tests can be postponed until a later release if:

a. no segment external interface is involved
b. specific functionality is not required by another SI for the release
c. the delay is approved by the Change Control Board (CCB)

5.12 Preparing for Software Transition to Operations

This activity is concerned with the preparation, installation, and checkout of the executable software,
on the target system, at a customer or user site. Upon successful completion of the System
Qualification Test (SQT) for the final build, and closure of all DRs/CRs allocated to software, SDRs
and SCRs that can be closed, the software development cycle is completed and the software is ready
for transfer to the customer for government system testing. It may also be necessary to provide
interim releases to development sites if needed to facilitate their development and testing process.

Prior to actually releasing the software for use, there remains software and documentation preparation
work that must be completed. This subsection of the SDP addresses the tasks necessary to prepare the
software and software-related products necessary for a user to run the software. In accordance with
TOR-3537B, the Preparing for Software Transition to Operations activity must be described by four
paragraphs in the SDP:

• Preparing the executable software (paragraph 5.12.1)

• Preparing version descriptions for user sites (paragraph 5.12.2)

• Preparing User Manuals (paragraph 5.12.3)

• Installation at user sites (paragraph 5.12.4)

Objectives. Preparing software for use ensures that there is a smooth transition of software into the
actual operational system. These tasks must begin well before completion of the SQT. This activity

2-108

Downloaded from http://www.everyspec.com

cannot be fully completed until SQT of the final build has been completed and all DRs/CRs allocated
to software plus SCRs/SDRs that can be resolved have been dispositioned.

Approach. Although the focus of these tasks, to ensure a smooth transition, is at the end of the
development lifecycle, consideration of these tasks should occur concurrently with design,
development, and testing throughout the lifecycle. During each design period, new or updated user
and operations manuals can be prepared for review by the customer and users. Draft versions of the
Software Transition Plan (STrP) should be started during the software design activity.

For final deliveries, the tasks and products of this activity must be in compliance with the Master
Test Plan (MTP). This planning must be coordinated with the hardware installation schedules.
Schedules are established and resources and personnel required for installation and support are
identified. This activity also involves the planning, preparation, and presentation of required user
training.

Software installation and checkout tasks are performed by software test personnel at the user site.
When SQT has been completed. SCM prepares the software product(s) for use in accordance with the
CM Plan. For software in the Ground Segment, the products are stored on media formatted as
required for installation at the operational site. For on-board software, the preparation of the
executable software includes downloading it into the actual flight hardware. Similarly, software for
user equipment is usually downloaded into target processors.

5.12.1 Preparing the Executable Software

This activity includes preparation of the specific executable code and source files for each SI, batch
files, COTS, command, data, or other software files needed to install and operate the software on the
target computer(s). This data is packaged in the Software Product Specification (SPS) as described in
paragraph 5.13.4. The list of data to be prepared should be specified in the SPS executable software
paragraph.

5.12.2 Preparing Version Descriptions for User Sites

Each software release requires a Software Version Description (SVD) document. Format and contents
of the SVD are described in the Data Item Description (DID) listed in Appendix D and the completed
SVD requires a document review prior to release. The SVD is primarily composed of lists that should
include, as applicable:

• Complete identification of all material released including numbers, dates, abbreviations,
version and release numbers, physical media, and documentation

• Inventory of all computer files that make up the software being released

• History of all changes incorporated since the previous version

• Site-unique data contained in the new version

• Related documentation not included in current release

• Installation instructions

• Possible problems and known errors

5.12.3 Preparing User Manuals

Software customer user manuals are required to be prepared for ground segment software, and
software in user equipment with a human interface. However, not all of the user manuals need to be
produced by all programs because the full set of user manuals normally has some duplication. On-

2-109

Downloaded from http://www.everyspec.com

board software does not require user manuals nor does equipment with embedded software. The
customer and the developer must determine which user manuals are appropriate for each system.
User manuals or user guides should be produced for SS-1 and SS-2 software. Existing vendor
documentation can be used for COTS/Reuse software.

There are various types of user manuals as described below. For each of the required user manual
types, a separate document should be written for each segment. Segments can optionally write
multiple user manuals covering one or more Sis, rather than a single user manual for the entire
segment. This approach is recommended in cases where different users run selected Sis within the
segment. All of the documents below should follow the DID product descriptions, listed in
Appendix D, and they require a document review prior to release.

5.12.3.1 Software User Manuals

A Software User Manual (SUM) must be written to provide information needed at the customer site
if required by the program. Its detailed format and contents are described in the SUM DID listed in
Appendix D. The SUM describes, in depth, how to use the software and includes, as applicable:

• An inventory of software required to be installed for the software to operate

• Resources needed for a user to install and run the software

• Software overview including logical components, performance characteristics, etc.

• Procedures to access the software for first time or occasional users

• Detailed procedures for using the software including organization, capabilities, conventions
used, backup, recovery and messages (Note: The detailed procedures may be organized by
"operator position" rather than following the software structure)

5.12.3.2 Computer Operation Manuals

Computer Operation Manuals (COM) are written to provide information needed by the customer site
to operate the target computers. A COM is typically needed only if the hardware is unique or new. Its
detailed contents are described in the COM DID listed in Appendix D. The COM describes the
computer system operations data including, as applicable:

• Computer system preparation, power on/off, initiation, and shutdown

• Operating procedures including input/output, monitoring, and off-line procedures

• Diagnostic features, procedures, and tools

5.12.3.3 Other User/Operator Software Product Descriptions (Optional)

There are two optional user/operator manuals: the Software Input/Output Manual (SIOM); and the
Software Center Operations Manual (SCOM). The SIOM and SCOM are used for software systems
installed in a computer center or other centralized or networked software installation. There is some
overlap in these documents, as well as with other user manuals, so the appropriate set must be
determined for each system.

SIOM. Detailed contents of the SIOM are described in the SIOM DID listed in Appendix D. The
SIOM describes how to prepare input to, and interpret output from, the software including, as
applicable:

2-HO

Downloaded from http://www.everyspec.com

An inventory of software tiles and databases needed to access the software

Resources needed to access the software

Organization and operation of the software from a users point of view

Contingencies, security, and problem reporting procedures

Input conditions, formats, rules, vocabulary, and examples of each type of input

Output descriptions, formats, vocabulary use, examples, and error diagnostics

Query procedures including file formats, capabilities, and instructions

Terminal processing procedures covering capabilities, displays, updates, retrieval, error
correction, and termination

SCOM. Detailed contents of the SCOM are described in the SCOM DID listed in Appendix D. The
SCOM describes required installation procedures including:

• An inventory of software required to be installed for the software to operate

• Resources needed for a user to install and operate the software

• Software overview including logical components, performance characteristics, etc.

• Detailed description of runs to be performed including: run inventory, phasing, diagnostic
procedures, error messages, control inputs, input and output files and reports, and procedures
for restart and recovery

5.12.4 Installation at User Sites

Preparation for installation of the system at customer sites should be handled by the development
organization. The developers should be responsible for the system setup and checkout, development
of user training, provision of user training, and initial user assistance.

The Software Installation Plan (SIP) is a plan for installing software at user sites. It includes
preparations, user training, and conversion from existing systems. It is prepared only when the
developer is involved in the installation of software at user sites, and when the installation process is
sufficiently complex to warrant the need for a SIP. If the software is embedded in a hardware-
software system, the installation plan for the system usually includes a System Installation Plan
covering both hardware and software. Detailed contents of the SIP are described in the SIP DID listed
in Appendix D.

The installation of the system at user sites for government requirements verification testing and the
final delivery after requirements verification is handled as specified in the contract. Software
developers and SCM support this process by providing technical support and implementing changes
that result from the government testing prior to final delivery.

5.13 Preparing For Software Transition to Maintenance

This subsection addresses the software and documentation preparation work that must be completed
to transition the application and support software for the performance of system maintenance. In
accordance with TOR-3537B, the Preparing for Software Transition to Maintenance activity must be
described by nine paragraphs in the SDP:

• Preparing the executable software (paragraph 5.13.1)

• Preparing source files (paragraph 5.13.2)

• Preparing the version descriptions for the maintenance site (paragraph 5.13.3)

2-111

Downloaded from http://www.everyspec.com

Preparing the "as built" Software Item design and related information (paragraph 5.13.4)

Updating the system/subsystem design description (paragraph 5.13.5)

Updating the software requirements (paragraph 5.13.6)

Updating the system requirements (paragraph 5.13.7)

Preparing maintenance manuals (paragraph 5.13.8)

Transition to the designated maintenance site (paragraph 5.13.9)

If the software is developed in multiple builds, the developer's planning should identify what
software builds are to be transitioned to the maintenance organization. Preparing for software
transition in each build is interpreted to include those activities necessary to carry out the transition
plans for that build.

Objectives. Software transition involves considerable advance planning and preparation that must
start early in the lifecycle to ensure a smooth transition to the maintenance organization. The tasks
and products of this activity must be in compliance with the Software Transition Plan (STrP) that
defines the plans for transitioning the software, test beds and tools to the maintenance center's
facilities (see paragraph 5.1.5).

Approach. The Preparation for Software Transition includes preparation of the documentation and
software products required by maintenance personnel at the maintenance center to perform their
maintenance tasks. This includes the:

Executable code for each SI

Release build files and documentation

Software Version Descriptions (SVD) for the executable code

Source Code for each SI

Applicable test beds and tools

Contents of the Master Software Development Library (MSDL)

Software maintenance may be performed by the software development organization or by another
organization such as: another organization within the company that developed the software; a
different development contractor; or by a government maintenance organization.

The preparation of maintenance manuals, such as the Computer Programming Manual (CPM) and
Firmware Support Manual (FSM), should begin early in the software design activity and continue
into subsequent activities as pertinent information becomes available.

The final updated versions of the system and software requirements and design descriptions are also
included as needed. Finally, the preparation may include the planning, preparation, and presentation
of maintenance training as required by the contract.

5.13.1 Preparing the Executable Software

The executable software is prepared using the SVD (see paragraph 5.12.2) for each SI or related
collection of Sis, and includes the executable code, batch, command, data, test, support, or other
software files needed to install and operate the application and support software on the target
computers. The results must include all applicable items in the executable software section of the
Software Product Specification (SPS). Format and contents of the SPS are described in the Data Item
Description (DID) listed in Appendix D.

2-112

Downloaded from http://www.everyspec.com

5.13.2 Preparing Source Files

The final versions of all source code files should be assembled from the Master Software
Development Library (MSDL—see paragraph 5.2.3) and transferred to the desired transfer media per
the agreement with the selected maintenance center in accordance with the Software Configuration
Management Plan (see subsection 5.14). The results must include all applicable items in the source
file section of the SPS.

5.13.3 Preparing Version Descriptions for the Maintenance Site

As discussed in paragraph 5.12.2, a Software Version Description (SVD) must be prepared for each
software delivery to the maintenance site. The SVD provides an inventory of the software contents
for the final build. It also provides a history of version changes, unique-to-site data, related
documentation, installation instructions, and possible problems for each SI within the segment. The
maintenance center's version requires the additional version information related to the maintenance
center's tools, SDFs. test software, and documentation.

5.13.4 Preparing the "As Built" Software Item Design and Related Information

Software item designs must be documented in SDDs and IDDs for MC-l and SS-l software. In
addition, software development work products for MC-l and SS-l software are documented in SDFs.
These documents and products must be updated with each build to maintain them as the "as built"
software throughout the development process. They are provided to the maintenance center to
describe the SI design. The SPS provides additional information needed by the maintenance center to
maintain the application and support software. The SDP must define and record:

The methods to be used to verify copies of the software

The measured computer hardware resource utilization for the Sis

Other information as needed to maintain the software

Traceability between the software item's source files and Software Units

Traceability between the computer hardware resource utilization measurements and the SI
requirements concerning them

The SDP must indicate that the results of this task are placed in the qualification, software
maintenance, and traceability sections of the SPS. A document review prior to release is required. The
SPS is the "as-built" version and includes or references, as applicable:

Executable software and source files for the SI

The "as-built" versions of the SDD, IDD, and DBDD

Compilation, build, and modification procedures

Measured utilization of computer hardware resources

Requirements traceability data

Packaging requirements

5.13.5 Updating the System/Subsystem Design Description

The system design must be documented in the System/Subsystem Design Description (SSDD). Once
baselined, the SSDD must be maintained under configuration control throughout the development
process. Software development work products evolve from the system requirements definition
activity from the software requirements and design activities to the "as built" system.

2-113

Downloaded from http://www.everyspec.com

If, throughout the development process, these products are maintained as the "as built" system, there
is no special updating required at the end of the development process—except for modifications that
result from finalizing SCRs/SDRs after the last system build qualification test.

5.13.6 Updating the Software Requirements

The baselined SRSs and IRSs must be maintained under configuration control throughout the
software lifecycle process and should require no special updating in preparation for software
transitioning. If this is not the case, the SRS and IRS must be updated to contain the current set of
approved requirements that the software transition to maintenance is to meet.

5.13.7 Updating the System Requirements

The system specifications should be controlled throughout the system lifecycle process, and should
require no specific updating in preparation for software transitioning. If this is not the case, the
System/Subsystem Specifications (SSS), and system level IRSs, must be updated.

5.13.8 Preparing Maintenance Manuals

Preparation of a Software Maintenance Plan (SMP), early in the development process, is discussed in
paragraph 5.26.3. A comprehensive SMP is a major asset in assuring the timely availability of
adequate facilities, support software, personnel, and documentation so that the software can be
maintained in an operational and sustainable condition. Also, if contractually required, the segments
must prepare Computer Programming Manuals (CPM) and Firmware Support Manuals (FSM) for the
maintenance center. For each of the required maintenance manuals, a separate document should be
written for each segment. In addition, a Software Center Operators Manual (SCOM), produced as
described in subparagraph 5.12.3.3, may be useful to the maintenance center.

Segments can optionally write multiple documents for each maintenance manual type covering
individual computers or firmware devices, rather than single maintenance manuals for the entire
segment. This approach is recommended when computers and firmware devices are maintained in
separate locations.

5.13.8.1 Computer Programming Manual

The Computer Programming Manual (CPM) provides information needed by the maintenance center
to program the computers on which the application and support software run. Contents and format of
the CPM are located in the DID number identified in Appendix D. The CPM requires a document
review prior to release to the MSDL. The CPM is primarily intended for unique or newly developed
computers. The CPM basically describes the programming environment and includes, as applicable:

• The components and configuration of the computer system

• Equipment needed including operating characteristics, capabilities, and limitations

• Programming features, control instructions, subroutines, interrupt procedures, timing, memory
protection, etc.

• Description of instructions including use, syntax, execution time, etc.

• Input and output control programming instructions

• Special programming techniques including error detection and diagnostic features

2-114

Downloaded from http://www.everyspec.com

5.13.8.2 Firmware Support Manual

A Firmware Support Manual (FSM) provides the information needed by the maintenance center to
program and reprogram firmware devices with application or support software. Contents and format
of the FSM are located in the DID number identified in Appendix D. The FSM requires a document
review prior to release to the MSDL. The FSM describes the details of a programmed firmware
device and includes, as applicable:

• Relevant vendor information plus model number and a complete physical description

• Operational and environmental limitations

• Software to be programmed into the device and equipment and software needed

• Procedures for programming, reprogramming, installation, and repair

5.13.9 Transition to the Designated Maintenance Site

The completed software, support environment, and the above mentioned documentation must be
delivered to the maintenance center facility in accordance with the Software Transition Plan (STrP).
Contents and format of the STrP are located in the DID number identified in Appendix D. The STrP
identifies and describes all resources needed to maintain the deliverable software. It includes, as
applicable, the following resources needed to maintain the deliverable software:

• The facilities, hardware, software, documentation, personnel, and other resources

• Interrelationships of components and recommended procedures

• Training plans, anticipated changes, and transition plans

The maintenance center staff should be responsible for installation and check out of the system
application and support software in the maintenance center and demonstrating that the software can
be regenerated in the maintenance center. The software IPT supports these tasks including the
transition of licenses, providing training, and other software support to the maintenance center.

5.14 Software Configuration Management

Software Configuration Management (SCM) is an essential activity that begins during requirements
definition. Formal software control starts with the establishment of the Allocated Baseline, which
identifies the Sis that must be formally managed in coordination with the Configuration Control
Boards (CCB). A software baseline is a specific version of controlled software source code,
documentation or data for an increment, build, or release. A requirements baseline involves an
approved Software Requirements Specification SRS) under SCM control. SCM is responsible for the
tasks necessary to control baselined software roducts and to maintain the status of the baselines
throughout the develo ment lifecycle. The basic SCM responsibilities are to:

• Establish baselines of identified products

Identify software configuration items, components, and related products that will be
placed under configuration management and when that takes place

Establish and maintain a configuration management and change management system for
controlling software products

Create and release baselines for internal use and for delivery to the customer

• Track and control changes to products

Track change requests for the configuration items and control the changes

2-115

Downloaded from http://www.everyspec.com

• Establish and maintain integrity ofbaselines

Establish and maintain records describing configuration items and perform configuration
audits to maintain integrity of the configuration baselines

The SCM activities are performed by both the contractor team as well as the Acquisition Program
Office. A general description of the division of SCM responsibilities is shown in Table 5.14-1.

Table 5.14-1. Division of SCM Responsibilities-Example

Contractor Team Acquisition Program Office

Defines and documents software configuration Reviews software processes for quality and ensures
management processes process compliance
Implements software configuration management tools and Reviews software configuration management tools and
environments environments for Quality and process compliance
Conducts software configuration management boards Participates in software configuration management boards
Ensures the integrity of all software configuration items Audits delivered software products for baseline integrity

lncentivizes the contractor to control software baselines
through award fee

Details of the SCM activity must be covered either in subsection 5.14 of the SOP, in an addendum to
the SOP, or in a Software Configuration Management Plan (SCMP). A good option is to include an
SCM overview in the SOP with the details documented in the SCMP. The SCMP is described in
paragraph 5.14.2.

Configuration Management Control Levels. Typically, SCM has a three-tiered configuration
management scheme, as shown in Figure 5.14, consisting of program-level, segment-level, and
software development site controls. SCM tasks should be performed at each software development
site using the site's Software Development Library (SOL) for configuration control of the developed
products. On large programs, the SOLs may be subdivided into two levels-at the developer level and
at the element or IPT level. The SOLs move up the levels to reach the Master Software Development
Library (MSDL).

SCM establishes and maintains the integrity of specified software work products, controls and
promotes stable baselines, maintains status accounting of the baselines throughout the life of a
project, and controls the build rocess throu h roduct delivery. Responsibility for SCM should
reside with the Software Group Lead. The principal SCM performers within segment and
development sites are the SCM Lead and the SCM Librarian.

Library Levels. An example of electronic SOL partitioning was shown in Figure 5.2.3. The specific
organization of the SOL and MSDL must be tailored for applicability to each program, however,
Table 5.14-2 is an example ofthe library levels, names, and who controls them. Specific guidance
regarding structure and control of the software libraries should be provided in the SOP and/or the
SCMP.

2-116

Downloaded from http://www.everyspec.com

DEVELOPMENT SITE SOLs I SEGMENT SOFTWARE I MASTER

I DEVELOPMENT I SOFTWARE
LIBRARIES DEVELOPMENT

Development Site SDL-1
........ I

1+--{}1
SOL Segment - 1

'~@ Development Site SDL-2

I= MSDL I
Development Site SDL-3 '1- ..-r SOL Segment - 2

........ 1
Development Site SDL-4 I Program-Level

SCM Control
.. ... Segment SCM Control

I
Site SCM Control

Figure 5.14. Relationship ofthe SOLs to the MSDL- Example

Table 5.14-2.Software Library Levels and Controls- Example

Library Level Library Name Controlled By SCCB Controls CM Controls

1 Developer Software Developer
2 Integration and Test Site SCM SCCB Controls CM Controls
3 Software Build and Qualification SCM at Site or Segment Promotion Access to Each

Test Between Level
4 Segment Qualification Test Segment SCM Levels
5 System Qualification Test System SCM

In accordance with TOR-35378, the Software Configuration Management activity must be described
by five paragraphs in the SDP:

• Configuration Identification (paragraph 5.14.1)

• Configuration Control (paragraph 5.14.2)

• Configuration Status Accounting (paragraph 5.14.3)

• Configuration Audits (paragraph 5.14.4)

• Packaging, Storage, Handling and Delivery (paragraph 5.14.5)

5.14.1 Configuration Identification

Configuration Identification consists of identifying the software products to be placed under
configuration control. These software products are the development products identified in subsections
5.3 through 5.11 of the SDP, the hardware and software in the software development environment,
plus other documents and data as required by the contract.

The output of Configuration Identification is the configuration controlled list of configuration items.
p ach software product must be uniquely identified by the software IPT with Program Uni ue
adentifiers (PUI . The Chief Software Engineer (CSWE), or designee, should be responsible for
ensuring that a common, and unique, software PUI scheme is used across the entire program. The
identification scheme must be at the level at which the software entities will be controlled, for
example, computer files, electronic media, documents, Sis, SUs, and hardware elements.

2-117

Downloaded from http://www.everyspec.com

CASE tools used to support Configuration Identification should be identified as well as how their
features (e.g. , versioning, branching, and labeling) are used to track and control promotion and
delivery of deliverable items.

5.14.2 Configuration Control

Configuration control is the s stematic control of modifications to baseline products throughout the
product' s lifecycle. The SOP or the SCMP must describe the SCM process for controlling baseUned
products and establishing common SCM change procedures. Segment or element SCM procedures
may be provided in the segment or element SOP Annexes. The policies and process for approving and
implementing changes to baselined software products must be defined in the SOP or SCMP. More
detailed operational procedures may augment the overall direction provided in the SCMP.

5.14.2.1 Software Configuration Management Plan

The SCMP documents the policies and procedures for conducting required software configuration
management for all Sis. The SCMP establishes the plan for creating and maintaining a uniform
system of configuration identification, control, status accounting, and audit for the software work
products throughout the software development process.

Organization of the SCMP. The SCMP can be organized into five sections:

• Section 1: " Introduction" presents and defines the scope and purpose of the SCMP

• Section 2: "Applicable Documents" lists the compliance document(s) and other documents that
are referenced, or related to, the SCMP

• Section 3: "Organization and Resources" describes the overall structure of the Software CM
Organization, personnel, and resources to be employed

• Section 4: "Software Configuration Management Activities" details of the major Software CM
functions and activities covered at a higher level in SOP paragraphs 5.14.1 through 5.14.5

• Section 5: "Glossary" lists the abbreviations and acronyms

Objectives ofthe SCMP. The objective of the SCMP is to define the process to be used by SCM
personnel in managing the configuration control of the software work products. Specifically, the
SCMP should provide the following guidelines and direction:

• Identifies the software development baseline identification

• Provides change control and visibility of the changes to software work products through
configuration control procedures

• Controls for incorporation of all approved software changes, and related documentation, to the
Master Software Development Library (MSDL) or the Software Development Library (SOL),
and the subsequent release of the SI to Integration and Test, and System Test

• Provides status accounting of software work product changes submitted to the SOL or MSDL

• Ensures that only approved changes are incorporated into the baselined software work products

• Maintains a configuration audit system to ensure that records, whlch are provided to the MSDL
or SOL, are consistent with documentation and software work product identification

Three levels of configuration control are depicted in Figure 5.14 . Regardless of the number of CM
control levels, overall responsibilities at each level should be defined in the SOP or SCMP including
roles and procedures. In addition, the approach to CM related tasks should also be addressed (such as

2-118

Downloaded from http://www.everyspec.com

support to multiple baselines, a distributed development environment, data integrity and data
restoration).

5.14.2.2 Configuration Control Boards

On large programs, there is typically a hierarchy of configuration control boards with different levels
of control and responsibilities. Software CM supports all of the change boards depicted in
Figure 5.14.2.2. At the very top of the hierarchy is the Acquisition Program Office CCB (APO CCB)
who participates in, and monitors the activities of, the lower level CCBs as needed.

ACQUISITION PROGRAM OFFICE CCB

SOFTWARE
CHANGE
BOARDS

Program
Software
Configuration
Control Board

Segment
Software
Configuration
Control Board

Segment
Engineering
Review Board

BOARD REVIEWS
CHANGES TO:

System-Level Integration
and Test
[Changes Affecting Program-
Wide Constraints]

Segment-To Segment
Integration and Test
[Changes to System Level
Software Integration and Test]

Baselined Software
Items
[Changes to Segment
Software Plans,
Requirements, Design and
nterfaces]

Baselined Software Units
[Changes to Software Unit
Plans, Requirements and
Design]

...Supplier C, D, E,etc.

[Supplier CCB Functions Are Similar To Segment Level CCB Functions]

Figure 5.14.2.2. Relationship of the Configuration Control Boards—Example

The program level includes the Configuration Control Board (Program CCB) and the Software
Configuration Control Board (SW/CCB). At the segment (or element) level there may also be two
lower level boards: the Segment Configuration Control Board (Segment CCB) and the Engineering
Review Board (ERB). The suppliers (subcontractors) may also have similar levels of control boards.

The Responsible Software Engineer (RSE), usually the Software Lead, provides support to the
segment and element boards. All of these boards must be described in the SDP or the SCMP; their
functions and relationships are briefly described below:

2-119

Downloaded from http://www.everyspec.com

• Program Configuration Control Board. The Program CCB operates under authority of the
APO CCB and approves changes to baselined documents that affect cost, schedule, program
constraints or scope issues. There may also be a high-level Program Configuration Evaluation
Board (CEB). The CCB must have cognizance over the program's Allocated and Product
Baselines.

• Software Configuration Control Board. The SW/CCB operates under authority of the
Program CCB; it has control over software changes at the system and segment-to-segment
software integration and test level. The SW/CCB must have cognizance over the Product
Development Baseline for software and the Master Software Development Library (MSDL).

• Segment Change Control Board. The Segment CCB must have control over changes found in
baselined Sis. It reviews SCRs/SDRs, provides impact assessments, assigns appropriate
personnel, and oversees the resolution and verification. The Segment CCB must have
cognizance over the segment's Allocated and Product Development Baselines as well as the
segment's Software Development Library (SDL). This function can take place at the element or
segment level.

• Engineering Review Board. This lower level board performs the same type of functions as
the Segment CCB but controls changes found in baselined SUs. This function can take place at
the element or segment level.

5.14.3 Configuration Status Accounting

SCM must prepare and maintain records of the configuration status for all baselined software
products including the maintenance of the records required to support configuration auditing.
Configuration status accounting data includes the current version of each baselined product, a record
of changes to the software product since being placed under configuration control, and the recording
and reporting of:

The time at which each baseline was created and when each SI completed the initial build
placing the software or database under CM control

Descriptive information about each SI

Description and status of each DR (approved, disapproved, awaiting action, incorporated,
closed)

Change status and traceability of changes to controlled software products

The status of the technical and administrative documentation associated with each product
baseline and/or update to a product baseline

Closure and archive status

Software Version Description (SVD) documents must also be prepared for each release to provide a
history of version changes, segment/element data, references to related documentation, and references
to known problems.

5.14.4 Configuration Audits

SCM must perform periodic configuration audits to verify that changes were made in accordance
with the corrective action process as described in the SDP or SCMP. SQA can witness and support
these audits. Configuration Audits should be used to ensure that submitted software is accompanied
by appropriate documentation and approvals, is correctly delivered and merged, and is correctly
included in the software builds. The audits must ensure that each software entity incorporates only
the approved changes scheduled for inclusion at the time of the audit. The degree of formality of the

2-120

Downloaded from http://www.everyspec.com

configuration audits may differ at the different levels of configuration control. The following is an
example of text that may be used to augment this paragraph:

Example Text:
In the <tool> environment, the SDL and MSDL will be audited at least quarterly. A sampling of
software releases is checked against the SVD for correctness and completeness. A check will also be
made to ensure that there is a SVD for each release. In the <tool> environment. SCM checks a
sampling of closed SDRs/SCRs in the database to ensure they map to the closed SCRs/SDRs in the
SVD.

Functional and Physical Configuration Audits. Software engineers may be requested to support
Functional Configuration Audits (FCA), Physical Configuration Audits (PCA), and in some cases the
System Verification Review (SVR). Both software and system FCAs and PCAs may be conducted.
The SVR is often conducted concurrently with the System FCA.

A Software FCA may be conducted as part of the System Qualification Test or following the SQT.
The purpose of a Software FCA is to demonstrate that each SI was successfully tested and complies
with the software and interface requirements of its functional requirements and design documentation.
To complete the Software FCA, software and system engineers must reach a technical understanding
on the validity and degree of completeness of the Software Test Reports and the applicable software
user documentation. Software FCAs should be conducted on every SI in the system.

The Software FCA is a prerequisite to the Software PCA. The purpose of a Software PCA is to
conduct a formal examination of the as-built, and as-coded SI, against its design documentation to
establish the product baseline. The Software PCA includes a review of the Software Product
Specification (SPS), Interface Design Description (IDD), the Software Version Description (SVD),
and all operational and support documentation. Differences between the physical configuration of the
SI, and the configuration used for the Software FCA. must be identified at the Software PCA.
Approved and outstanding changes against the SI must also be provided along with approved
deviations and waivers to the requirements specifications.

FCAs and PCAs may be conducted on a single SI, a related group of Sis, or incrementally such as
blocks. Results of the Software PCA becomes an entrance criteria for the System PCA. The purpose
of the System FCAs and PCAs are similar to their software counterparts but they address all of the
configuration items covering the entire system.

5.14.5 Packaging, Storage, Handling, and Delivery

The SCM procedures for packaging, storage, handling, and delivery of deliverable software products
must be provided in the SCMP for both the SDLs and the MSDL. Master copies of delivered
software products must be maintained in the MSDL for the duration of the contract.

Packaging. The package for a software delivery normally consists of the SVD and the CD (media)
set and is supported by a verification report. The IPT responsible for the delivery prepares the SVD in
collaboration with SCM. The SVD typically requires Engineering Review Board (ERB) and CCB
approvals. SCM is responsible for providing the appropriate identification labels. SCM and SQA
should perform the package content verification review, using a Verification Checklist. A hardcopy
listing of the files should be attached to the hardcopy signed checklist. Upon successful completion of
the review, a formal contracts letter should be generated and submitted. Copies of the completed
verification checklist and contracts letter must be maintained in the CM Library.

2-121

Downloaded from http://www.everyspec.com

Storage. The storage requirement can be satisfied through the implementation of multiple support
library systems. There should be three basic components of the library system:

1. Software Library Management System. The Software Library Management System allows
the software to be maintained in a central location, yet each host or client has access. A
CASE tool can track the baseline changes, marking the transition throughout the activities of
the software lifecycle. SCM must control the software libraries to provide a disciplined
structure for development, integration, test, and implementation of software within a
controlled, well-defined environment.

2. Documentation Library Management System. The Documentation Library Management
System is a document repository for the most current approved and controlled documentation.

3.Data Storage Backup. The Data Storage Backup component provides daily incremental
backups and system backups (performed at least weekly) to ensure recovery from an
uncontrollable situation.

Handling. A SCM CASE tool is ideally suited to administratively manage the handling of software
through the version database directory structure. All elements in the database must be Read-only—
at all times. They only become Read/Write when they are checked out for updating by an authorized
user.

Delivery. Release packages for each increment must be delivered to the Program SCM organization.
All deliveries must receive 1PT approval prior to shipping. Software deliveries are always on
removable media. Installation and checkout of the delivered products at customer-designated facilities
should be performed if applicable.

If problems arise during the installation, checkout, or test, these problems must be documented on a
Software Discrepancy Report (SDR) and resolved (see subsection 5.17).

Delivery Preparation. SCM is responsible for accumulating the Sis for milestone deliveries. This
responsibility includes overseeing the scheduling, storage, handling, and delivery of the project
media. All Sis to be delivered must be examined by SQA for specification compliance, SOW
compliance, open items to be resolved, DR closure, and test verification status. No delivery should
leave the facility without proper authorization from the Program Director or designate. CM should
retain records of all deliveries

Software Version Description. In preparation for delivery of the system to the customer, the CM
organization must create a formal SVD document. It contains detailed information on all software
components, including COTS and reuse software, and their associated version numbers, plus special
instructions required for system installation.

5.15 Software Peer Reviews and Product Evaluations

The performance of Software Peer Reviews and Software Product Evaluations are mandatory. In
accordance with TOR-3537B, the Software Peer Reviews and Product Evaluations activity must be
described by the following paragraphs in the SDP:

• Software Peer Reviews (paragraph 5.15.1)

- Prepare for Software Peer Reviews (subparagraph 5.15.1.1)

- Conduct Peer Reviews (subparagraph 5.15.1.2)

- Analyze Peer Review Data (subparagraph 5.15.1.3)

2-122

Downloaded from http://www.everyspec.com

• Software Product Evaluations (paragraph 5.15.2)

- In-Process and Final Software Product Evaluations (subparagraph 5.15.2.1)

- Software Product Evaluation Records (subparagraph 5.15.2.2)

- Independence in Software Product Evaluations (subparagraph 5.15.2.3)

Software products must be reviewed for compliance with contract requirements and defined quality
evaluation. Peer Reviews are used to perform segment/element software product evaluations on
software products as defined in the SDP. The Software Lead is responsible for deciding when to hold
software product evaluations. The planning for peer reviews and product evaluations is part of the
software development planning process (see paragraph 5.1.1).

The evaluation criteria for each software product must be supplied to the Peer Review participants.
Figure 5.15 is an example overview of the software Peer Review process.

Plan Peer
Review

L Schedule
Review

Conduct
Review

1
Document

Review
Results

Prepare For
Review

I
Action Items

Closure and Peer
Review

Completion Results

Meeting Minutes
and

Action Items

Analyze
Review
Results

Metrics
Database

Figure 5.15. Software Peer Review Process Overview—Example

5.15.1 Software Peer Reviews

A critical element to the development of the high quality software work products is the performance
of software peer reviews. They must be an integral part of the development process and focus on the
identification and removal of defects as early and efficiently as possible. Peer Reviews evaluate
deliverable (and mission critical non-deliverable) work products for correctness, completeness,
accuracy, and consistency. They ensure completeness prior to transition from one activity to the next.

Peer reviews also identify areas of needed change and improvement in the product, assure compliance
to standards, and ensure satisfaction of functional, performance, and interface requirements. Action
items, defects, technical decisions, and measurements resulting from these reviews are documented.

The SDP must define the processes to be followed for each type of peer review to be used on each of
the software work products and for each software category (described in paragraph l .2.3). All
software work products mission-critical deliverable and non-deliverable software must undergo the
most formal, robust peer review process for their initial development and for significant changes.
Minor changes may undergo a less formal peer review.

The SDP must define the peer review processes for preparation before the peer reviews, conducting
the peer reviews, and analyzing the resulting peer review data.

2-123

Downloaded from http://www.everyspec.com

5.15.1.1 Prepare for Software Peer Reviews

A software project typically adopts the standard peer review process of its parent organization for
conducting software peer reviews. Peer reviews must be scheduled, planned, and tracked by the
Segment and/or Software IPT leads. The software IPT Leads must:

Determine what type of peer review will be conducted on each work product

Identify key reviewers who must participate in each peer review

Ensure that each software work product satisfies the peer review entry criteria

Ensure all reviewers understand their roles in the peer review

Confirm that the participants have reviewed each work product prior to the peer review, using
the predetermined review check list for that product.

The segment or element Software Peer Review (SPR) Plan defines the procedures, data collection and
reporting for peer review and product evaluations. The implementation of the SPR Plan is the
responsibility of the segment/element IPT software personnel Lead. The SPR Plan typically defines
the types of Peer Reviews to be held. Peer reviews have varying levels of formality, ranging from
Formal Inspections to Colleague Reviews:

• Formal Inspection. Formal inspections are performed to verify that software products conform
to established technical decisions and applicable standards and procedures. Formal Inspections
are the most thorough Peer Review and are conducted initially when the product has reached
enough maturity and completeness for a thorough review and when extensive changes are
involved. The Software Lead should review all the changes and determine if additional peer
review need to be held.

• Colleague Reviews. The least formal type of review used primarily to review portions of a
mission critical work product during its development to improve the quality of the product
during its development. A Colleague Review can be conducted by one person and it may be
used for relatively minor updates to software products that have already undergone a formal
inspection. Colleague Reviews are not a substitute for required inspections.

5.15.1.2 Conduct Peer Reviews

Peer Reviews must be conducted, during development tasks, prior to the work products being
released to subsequent activities. This subparagraph of the SDP should include a table similar to
example Table 5.15.1.2 showing the set of development work products that require peer reviews. A
formal, robust type of peer review is used for products establishing deliverable baselines in any
development activity. The goal of each Peer Review is to identify work product defects as early as
possible in the lifecycle. Defects identified early almost always result in a lower cost to resolve.

Peer Review Roles: Peer Reviews should consist of entry/exit criteria, multiple steps, and roles with
appropriate participation. The roles normally include moderator, coordinator, recorder, reviewer,
monitor and author. Inspection training or skills from past experience should be required for all
participants. The Peer Review moderator is instrumental in setting up the inspection, and working
with the author to ensure the key reviewers for the work product are present and prepared for the
inspection.

2-124

Downloaded from http://www.everyspec.com

Table 5.15.1.2. Software Development Peer Reviews—Example

Development Activity Work Products Reviewed
System Requirements Analysis (SDP subsection 5.3) • Product specifications

• Segment SEIT test plan
System Architecture Design (SDP subsection 5 4) • Architecture and data models

• Interface descriptions
• Trade study results

Software Requirements Analysis (SDP subsection 5.5) • Software requirements documents and data models
Software Design (SDP subsection 5.6) • Software design documents and data models

• Software interface descriptions
Code And Unit Test (SDP subsection 5.7) • Source files

• Unit test cases and procedures
Integration Testing (SDP subsection 5.8) • Test cases and procedures
Qualification Testing (SDP subsection 5.9) • Software Test Plan

• Software Test Description (cases and procedures)
Note: The Requirements Test Verification Matrix (RTVM) should be inspected in all activities. The RTVM may be called a
Verification Cross Reference Matrix (VCRM).

Project personnel should be trained to perform various inspection roles. These trained inspectors
participate to identify defects, improvements, and issues in the product(s) being examined and to
contribute in the determination of the product's ability to proceed to the next development activity.
Monitors must ensure peer reviews are held in accordance with the approved tailored peer review
process. Peer review records should be audited to assure they comply with process requirements.

A Coordinator should be selected to ensure the peer review process is followed, to compile and
analyze peer review metrics, maintain the list of qualified inspectors, and oversee the implementation
of continuous process improvement within the peer review process.

The Peer Review Package: A peer review announcement and review package should be distributed
at least one week prior to the Peer Review. Participants must review the work product against higher-
level requirements, using checklists aimed at finding major system problems and for compliance with
templates, standards, and guidelines. Findings must be documented and assigned to responsible
individuals as action items for resolution by a due date that is tracked to closure. Exit Criteria consists
of the peer review meeting being conducted on the original work product or extensive rework tasks,
work product being updated, and actions being closed.

5.15.1.3 Analyze Peer Review Data

The metrics collected during peer reviews can be used to provide visibility into the quality of the
produced documents and code and to indicate the need for corrective or process changes. At the end
of each development activity, participating organizations analyze the root causes of deficiencies to
identify process improvements that can be implemented to avoid future occurrence of those
deficiencies.

Defect Data. The number of defects expected from a Peer Review depends on when in the lifecycle
the review is conducted. Historical data can be used to set expectations for the Peer Reviews
conducted on requirements, design, coding, and test products. For software, code count and
complexity can be used, as well as experience from prior programs, to predict the number of defects
from each lifecycle activity. A defect prevention team can compare predicted versus actual defects to
assess the quality of the product at the end of each activity. They can analyze the defect causes to
initiate defect prevention process improvements for subsequent builds. Required defect data and
associated metrics for peer reviews should be described in the Software Measurement Plan.

2-125

Downloaded from http://www.everyspec.com

Other Peer Review Data. Typical peer review data that should be collected at each review and
analyzed for potential improvement of the peer review process include:

Work product(s) under review

Meeting date, time, location, and completion date

Number of attendees and preparation time spent by each reviewer

Size of the work product(s) reviewed

Inspection type and role assignments

Time to close action items

Peer Review Defect List

Amount of time spent by author in rework of the software work product

5.15.2 Software Product Evaluations

As pointed out in TOR-3537B, it is not the intention of SDP paragraph 5.15.1 or 5.15.2 to require
separate processes for Software Peer Reviews and Product Evaluations. A developer may choose to
have two separate processes; however, it is entirely permissible to accomplish Software Product
Evaluations via the Software Peer Review process—as long as the specific requirements for Software
Product Evaluations are satisfied. The SDP must define the process to be used for Software Product
Evaluations.

For Sis developed in multiple builds, software products of each build should be evaluated in the
context of the objectives established for that build. As long as the software product meets those
objectives it can be considered acceptable even if it is missing functionality designated for inclusion
in a later build. If there are SDP Annexes they must describe procedures and recording mechanisms
to be used at each development site. This information is used to develop schedules for all software
product evaluations.

5.15.2.1 In-Process and Final Software Product Evaluations

The TOR-3537B standard requires the software developers to perform in-process evaluations of the
software work products. In addition, the standard requires the developer to perform a final evaluation
of each product before delivery. Appendix D, in TOR-3537B, contains a list of the minimum in-
process software products to be evaluated, along with the minimum evaluation criteria to be used and
definitions of the criteria.

The developer should enhance the minimum evaluation criteria in Appendix D to ensure a robust set
of evaluation criteria is used that is appropriate to the characteristics of the program and category of
software. The enhanced set of qualification criteria for each software product must be documented in
the SDP. Software product evaluations, both in-process and final, must always be performed against
a documented set of evaluation criteria.

Document Reviews. Document Reviews are conducted on completed software documents, listed in
the Contract Data Requirements List (CDRL), for content and accuracy prior to baselining. Document
reviews are the final software product evaluations performed by the factory/segment/element IPT
software personnel or the software development organization. These reviews should be conducted
prior to formal release of new or modified documents to Configuration Data Management (CDM) or
Software Configuration Management (SCM). Document reviews must be conducted on all CDRL
items.

2-126

Downloaded from http://www.everyspec.com

Risk Analysis. If a software work product fails to meet its completion readiness criteria, an analysis
can be performed to determine the risk of proceeding to the next process. If the risk is acceptable, and
appropriate actions and detailed resolution plans have been put in place, then subsequent process
tasks may begin. However, advancing insufficient products should be discouraged and limited to
cases of extenuating circumstances (e.g., the defect does not impact the implementation process until
a latter part of the schedule allowing ample time for repair). The assessment of product readiness and
the decision to proceed (including signatures of agreement from key leadership personnel) must be
documented and retained in the evaluation records (see subparagraph 5.15.2.2).

Quality Checking. The key gate to in-process quality checking is not allowing products that do not
meet readiness criteria to pass to the next implementation process. This can be achieved by holding a
final Engineering Review Board (ERB) review at the end of each implementation process or activity.
Product readiness can be assessed by determining if output products are complete, have met their
completion criteria, and product defects have been resolved.

5.15.2.2 Software Product Evaluation Records

Software product evaluation records must be maintained for the duration of the contract. The
accepted product evaluation comments are usually stored in the producfs SDF and a summary of
findings should be placed in a database for metrics analysis. Closure of product evaluation comments
must be verified. The following software product evaluation records should be maintained:

• Product evaluation package, including a copy of the product under evaluation

• Review meeting time, date, and attendees

• Review meeting minutes, including technical decisions made, action items captured, and
evaluation problems found in the product

• Action item resolutions and closure

• Software work product problem resolutions and closure

Action items from software product evaluations must be tracked to closure. If the software product
under evaluation is under a level of configuration management above the individual author/developer,
then the problems must be document as Problem/Change Reports and handled by the corrective
action process (see subsection 5.17). If the product is under control of the individual
author/developer, the problems are documented in the SDF and the segment and/or IPT Lead is
responsible for ensuring they are properly closed.

5.15.2.3 Independence in Software Product Evaluation

It is absolutely imperative that evaluators of a software work product under evaluation must not be
the persons responsible for developing the software product. However, this does not preclude
software developers from taking part in software product evaluations or reviews of documents they
produced. Document reviews should be coordinated by the segment/element IPT software personnel
and may include members outside the developer's segment.

5.16 Software Quality Assurance

Software Quality Assurance (SQA) performs the planned and systematic pattern of actions necessary
to assure that software, and software-related products, satisfy system requirements and support
mission success. The SQA organization has a responsibility to provide program management with
visibility into the software development process and products by performing independent audits and
assessments.

2-127

Downloaded from http://www.everyspec.com

These assessments provide assurance that products and processes conform to contractual
requirements and established plans, standards, and procedures. SQA is a member of the Software
Engineering Process Group (SEPG) and participates in process improvement tasks. In accordance
with TOR-3537B, the Software Quality Assurance activity must be described by four paragraphs in
the SDP:

• Software Quality Assurance Evaluations (paragraph 5.16.1)

• Software Quality Assurance Records (paragraph 5.16.2)

• Independence in Software Quality Assurance (paragraph 5.16.3)

• Software Quality Assurance Noncompliance Issues (paragraph 5.16.4)

The Software Quality Engineer (SQE) works directly with the development teams to resolve
identified problems at the lowest level before elevating them for resolution. The SQE identifies SQA
tasks and responsibilities to be implemented on the program.

The evaluations to be performed must be identified and the evaluation criteria for those evaluations
should be defined and described in a Software Quality Program Plan (SQPP). This plan is normally
prepared by SQA to direct the SQE, and the SQE team, in performing the evaluations. SQE tools,
techniques, and methodologies to be employed by each software development team member should
be defined in the SQPP and can be augmented by segments in their SDP Annexes. The SQPP is
maintained and updated as required and is usually an addendum to the SDP. However, in addition to
the SQPP, the SDP Data Item Description (DID) requires SQA planning to be addressed in the SDP.

5.16.1 Software Quality Assurance Evaluations

The segment and program SQA organizations both perform two major categories of evaluations:
process audits and product reviews. Process audits are conducted by SQA to assure effective
implementation of the software development process as defined in the SDP. Product reviews are
performed by program and segment/element level SQAs as a participant in formal reviews. SQA
product reviews verify that the software products conform to product requirements. The following
example text may be used.

Example Text:
The XMPL SQA organization will conduct on-going evaluations of the software development
processes, work products, and software services, in accordance with the XMPL contract and SDP,
to ensure:

• Adherence of the processes, work products, and services, to their applicable process
descriptions, standards and procedures

• That each software product required does exist and that it has undergone software product
evaluations and peer reviews, testing (where applicable), and corrective actions (for identified
problems)

A detailed SQA audit schedule should be provided in the SQPP. In addition, an SQA staffing
projection over the life of the program must be provided as illustrated in example Figure 5.16.1.

2-128

Downloaded from http://www.everyspec.com

10

8

6

4

2

Number of SQEs By Developer

2010

i Able Co

Baker Co

Charlie
Corp

Delta Co

2011 2012 2013 2014

Figure 5.16.1. SQA Staffing Projection—Example

5.16.2 Software Quality Assurance Records, Including Items to Be Recorded

The SQA organization must maintain records for all evaluations performed to provide objective
evidence that the evaluations were conducted. The records should consist of observations or formal
findings along with their resultant corrective actions, disposition, metrics and closure. These records
and reports must be retained in a repository for the duration of the contract and made available to the
government and management as required by the contract.

5.16.3 Independence in Software Quality Assurance

Each SQE supports software development as an active member of their segment. However, SQEs
must maintain a direct reporting line to their SQA organization and not be in a direct reporting line to
the program they are supporting.

Independence in SQA is obtained by having a separate reporting chain to Product Assurance
management. If SQA findings cannot be resolved at the lowest level possible it must be evaluated by
the SQE to the next higher level of management. Figure 5.16.3 is an example of a program's
independent reporting structure for SQA and the typical problem resolution interfaces as the
resolution is elevated. The objective is always to resolve the problem at the lowest possible level.

Vice President XMPL Program Manager

-r S /

/
/

4
Product Assurance Manager

-r t /

SQA Manager XMPL Product Assurance
Manager

Chief Software
Engineer

1

1 T t
1 XMPL SQA Lead Software Lead

T *
Problem Resolution QfiC IDT Software Engineer •* •

Figure 5.16.3. SQA Independent Reporting Structure—Example

2-129

Downloaded from http://www.everyspec.com

In addition, this paragraph of the SDP must make it clear that the person responsible for conducting
the software quality assurance evaluation must not be the person who developed, or is responsible for,
the software work product. The SQE responsible for assuring compliance with the contract must have
the resources, authority and organizational freedom to permit objective SQA evaluations and to
initiate and verify the corrective actions.

5.16.4 Software Quality Assurance Non-Compliance Issues

All noncompliance issues, identified through audits, reviews, normal SQA monitoring, ad hoc
findings, etc., are candidates for corrective action or preventive action as described in subsection 5.17
of the SDP. Correction of non-compliance issues is typically handled with an automated tool, an audit
database, and an established escalation mechanism to ensure that the appropriate level of management
can resolve the issues. In using tools, selected by the program, non-compliance issues should be
documented, tracked to resolution, and resolved within a given time frame. The Quality Assurance
organization also provides metrics data to support management decision making as detailed in the
Quantitative Management Plan and Software Measurement Plan.

5.17 Corrective Action

Corrective action is triggered when performance deviates significantly from the plan, defects are
identified in the software work products, or enhancements and improvements are proposed. A
definition of "significant deviation" must be determined by mutual agreement between the contractor
and the government. The opportunity to measure progress and identify issues that need corrective
action can come from the reviews and evaluations (see subsection 5.14), test results, and other
quantitative management data.

In accordance with TOR 3537B, the Corrective Action activity must be divided into the following
two paragraphs in the SDP:

• Problem/Change Reports (paragraph 5.17.1)

• Corrective Action System (paragraph 5.17.2)

5.17.1 Problem/Change Reports

To report problems or changes with baselined software products, Software Discrepancy Reports
(SDRs) and Software Change Requests (SCRs)—or similar names—must be used as part of the
corrective action process. The SDR may also be called a Software Deficiency Report. The
SCRs/SDRs are inputs to the Corrective Action System (see paragraph 5.17.2). The difference
between SCRs and SDRs is:

• An SCR is typically used to enhance or improve the software product or change commitments,
plans or a baseline. (It is inappropriate to classify a recommended improvement as a
"problem.")

• An SDR documents an unexpected condition or anomaly that occurs and is deemed as an
incorrect action (or reaction) of the software product.

At the element/segment level, SCRs/SDRs are under the control of the Software Lead but may have
to be passed to a higher level board for approval. The CSWE should be responsible for SCRs/SDRs at
the program level. SCRs/SDRs must be used to report a known or suspected problem or discrepancy
or change with software products under any level of configuration control above the developer of the
product (see paragraph 5.17.1 of TOR 3537B). The originator of the SCR/SDR should be responsible
for completion of the issue description but not necessarily the person who fixes the issue.

2-130

Downloaded from http://www.everyspec.com

Candidate data items for inclusion into SCRs/SDRs are: project name, originator, problem number,
problem name, software element or document affected, origination date, category and severity,
description, analyst assigned to the problem, date assigned, date completed, analysis time,
recommended solution, impacts, problem status, approval of solution, follow-up actions, corrector,
correction date, version where corrected, correction time, and description of solution implemented.

5.17.2 Corrective Action System

The corrective action process details can vary from location to location. These details should be
documented in each developer's SDP Annex or in a Corrective Action Plan addendum to the SDP.
The SCR/SDR process can also be detailed in the Software Configuration Management Plan (SCMP)
and/or in lower level procedures. The division of responsibilities for corrective action tasks between
the contractor team and the government's Acquisition Program Office may be confusing. A table
should be included in this subsection to specifically clarify the division of responsibility. It can also
be expanded on the contractor side to identify specific organizations performing each task-

Figure 5.17.2 is an example of a corrective action process overview.

New SDR
Entered
Into
System

Collect Metrics
and Trend
Analysis

Figure 5.17.2. Corrective Action Process Overview—Example

As shown in the process example in Figure 5.17.2, once the SCR/SDR has been generated and logged
at the program level, the SCR/SDR is assigned to a responsible software engineer for investigation.
The investigator must recommend the corrective action needed and record the actions taken to either
correct the problem or provide a work-around solution. When this is accomplished, the SCR/SDR is
returned to the responsible Configuration Control Board (CCB) for disposition.

Once a process problem is defined, it must be assigned a priority and severity (see Appendix C of
TOR 3537B). The status must be reported and tracked. The CSWE and/or SEPG should perform
trend analysis on process problems and report adverse trends. Process issues are closed out when
SQA verifies that the corrective action is in place and there exists objective evidence that the process
is being followed. Process audit corrective action requests must be retained by SQA.

Corrective action measurements must also be collected including: SCRs/SDRs opened, closed and
deferred; and aging metrics for SCRs/SDRs open for 30, 60, and 90 days, plus root cause. SCM is
usually responsible for control and status updating of the SCR/SDR databases and overseeing the
change management process. All SCRs/SDRs should be retained by SCM through the end of the
contract.

2-131

Downloaded from http://www.everyspec.com

Information concerning a non-conformity with the process must be forwarded to the CSWE. Trivial
on-the-spot corrections do not have to be reported to the CSWE. The person reporting the process
non-conformity must supply a problem description and a suggested corrective action. The corrective
action may also be provided to the SEPG for evaluation of its overall program impact. Corrective
actions must be evaluated to determine if: problems/issues have been resolved by someone other than
the implementer; adverse trends, previously identified, have been reversed; and if changes are
correctly implemented without introducing additional problems

Configuration Control Boards: Problems or issues for SUs with only element/segment internal
interface changes, or no interface changes, should be handled with SCRs/SDRs by the segment (or
element) CCB. Baselined software with external element/segment interface changes must be handled
with SCRs/SDRs by the program level Software Configuration Control Board (SW/CCB). The
program level SW/CCB has cognizance over the Product Development Baseline.

Problems or issues for Sis with no interface changes should be handled with SCRs/SDRs by the
respective element's CCB. Software with external interface changes should be handled with
SCRs/SDRs by the program level SW/CCB or CCB. The relationship between, and responsibilities
of, these configuration control boards are discussed in subparagraph 5.14.2.2 of this Guidebook.

The following example text may be used as a partial response to this subsection:

Example Text:
The XMPL software Corrective Action System will use SCRs/SDRs as inputs to the system and the
system will ensure that:

All detected problems and issues are promptly reported and entered into the system

Corrective actions will be initiated

Status will be tracked and resolution will be achieved

Records of the problems and issues will be maintained for the duration of the contract

Software problems will be classified by category and severity

Analysis will be performed to detect trends

Corrective actions will be evaluated to determine if:

- Problems/issues have been resolved by someone other than the implementer

- Adverse trends, previously identified, have been reversed

- Changes are correctly implemented without introducing additional problems

Integration of the Corrective Action Process. The corrective action process must be integrated
across disciplines (software, hardware, systems engineering), IPTs, the contractor organizations
(prime and suppliers), and the system development lifecycle activities (from requirements definition
through system test). In addition, the corrective action process must be integrated with the risk
management, configuration management, and the process improvement processes. For example, risks,
and risk mitigation actions, can become problems that need corrective action. Process improvement
actions can also create the need for corrective actions.

5.18 Joint Technical and Management Reviews

Joint technical and management reviews demonstrate progress to date on project products and provide
a forum for discussing programmatic issues and risks. In accordance with TOR-3537B, the Joint
Technical and Management Reviews activity must be described by two paragraphs in the SDP:

2-132

Downloaded from http://www.everyspec.com

• Joint Technical Reviews (paragraph 5.18.1)

• Joint Management Reviews (paragraph 5.18.2)

Reviews of software products and status must be conducted at the following levels:

• System level: to review system-wide project status, to identify program cost and schedule
issues, and to address system technical issues (e.g., inter-segment interface problems)

• Segment level: to review segment-wide project status and to identify segment-specific cost,
schedule, and technical issues

• Software Item level: to review development progress and to identify software item-specific
cost, schedule, and technical issues

• Software development level: for feedback on in-progress technical tasks

Joint technical and management reviews must be conducted in concert with the Integrated Master
Plan and Schedule (IMP/IMS) events and milestones. There should be a Software Review Standards
addendum to the SDP defining the objectives of each type of review, the entry and exit criteria for
each review, when the reviews occurs, what products are reviewed, and for what software categories
these reviews must be conducted.

The software review process must be structured to support the evolution of natural products during
the software development lifecycle. This should accomplished utilizing the following types of
reviews:

• Joint Technical Reviews (JTR): conducted to review the status, correctness, and completeness
of in-progress and final software products and to discuss technical issues

• Joint Management Reviews (JMR): conducted to demonstrate the current status of products
and as a forum for discussion of status, schedules, programmatic issues, and risks

• Technical Interchange Meetings (TIM): similar to JTRs but are conducted in a less formal
manner and may be focused on support software or specific software requirements,
architecture, or design issues

5.18.1 Joint Technical Reviews

Joint Technical Reviews (JTR) must be conducted to ensure product correctness and completeness
and to elevate management and customer's visibility into the status of evolving products. JTRs focus
on evaluating the adequacy and completeness of in-process or final software products. These reviews
must be attended by persons with technical knowledge of the specific software products and have the
following objectives:

• Review evolving software products using the software product evaluation criteria and guidance
defined in SDP subsection 5.15.2

Review and demonstrate proposed technical solutions; surface and resolve technical issues

Provide insight and obtain feedback on in-progress technical tasks

Review project status

Surface near and long-term technical, cost, and schedule risks

Arrive at agreed-upon mitigation strategies for identified risks, within the authority of those
present, and identify risks to be raised at JMRs and to the Risk Management Board

Ensure on-going communication between software management, developers, and the customer

2-133

Downloaded from http://www.everyspec.com

The review process focuses heavily on the review and evaluation of natural products. Following the
appropriate inspections and document reviews, the overall technical assessment of the product is
typically presented at the JTRs, which ultimately provide software program and project status
information presented at the JMRs.

Table 5.18.1 presents an example of the software product reviews by activity and the type of review
to be utilized for each software category. The frequency of the reviews at each level can vary
depending on the objectives of the specific reviews. When a Software Item includes a mixture of
software categories, the JTR requirement must be at the most stringent category included in the SI.
JTRs should be performed on each build so that the SSR, PDR, CDR, etc. are conducted
incrementally.

Table 5.18.1. Software Product Reviews By Activity and Category—Example

Segment Reviews by Activity MC-1 SS-1 SS-2 SS-3 C/R SW Level Frequency

Software Requirements Definition Activity

Segment Software Specification Review (SSR) JTR NA NA NA JTR Seg Once

Segment Support Software Requirements TIM NA TIM NA NA NA Seg Once

Software Design Activity

Software Preliminary Design Review (PDR) JTR NA NA NA NA SI Once

Software Critical Design Review (CDR) JTR NA NA NA NA SI SSorB

Support Software Design TIM (SSD TIM) NA TIM NA NA NA SI SSorB

Software Item Qualification Testing Activity

SI Qualification Test Readiness Review (SIQ TRR) JTR JTR NA NA JTR SI SSorB |

Segment Qualification Testing Activity

Segment Qualification Test Readiness Review JTR JTR NA NA JTR SI SSorB

Management Reviews

Reviews of Process Compliance Audits JMR JMR JMR JMR JMR Sys/Seg NA

Monthly Status Reviews JMR JMR JMR JMR JMR Sys/Seg M

Program Status Reviews JMR JMR JMR JMR JMR Sys/Seg Q

Type of Review: JMR = Joint Management Review
TIM = Technical Interchange Meeting

Software Level: Sys = System
Frequency: SSorB = Per Segment, Spiral or SI Build
Categories: MC = Mission Critical;

Seg = Segment

JTR = Joint Technical Review
NA = Not Applicable
SI = Software Item
M = Monthly Q = Quarterly

SS = Software Support C/R = COTS/Reuse

5.18.2 Joint Management Reviews

Joint Management Reviews (JMR) must be periodically conducted to ensure product completeness
and to elevate both management and customer visibility into the development process and evolving
products. JMRs are used to review the current state of technical products, as well as project costs and
schedules. Attendees must be persons with the authority to make cost and schedule decisions (with
supporting staff) as needed.

The objectives for software JMRs include the following:

• Keep management informed about project status, directions being taken, technical
agreements reached, and overall status of evolving software products

• Resolve issues that could not be resolved at JTRs

• Arrive at agreed upon mitigation strategies for near and long term risks that could not be
resolved at the JTRs

• Identify and resolve management-level issues and risks not raised at JTRs

2-134

Downloaded from http://www.everyspec.com

• Obtain commitments and acquirer approvals needed for timely accomplishment of the project

• Joint Management Reviews that normally apply to software are:

Program Quarterly Status Reviews

Monthly Status Reviews

- Process Compliance Audits

The CSWE and segment IPT software personnel must support these reviews by providing progress-
to-date and technical overviews of their software products. The SDP in this paragraph must define
the JMRs that apply, the schedule for each, the process to be followed for each, and the personnel
involved.

Specific software documentation product reviews can also be described in a table similar to
Table 5.18.2 that also shows the evolution of document maturity. Table 5.18.2 is complementary to
Table 3.6 in this Guidebook. Table 3.6 relates the development of software documentation to software
development activities whereas Table 5.18.2 relates software documentation to formal software
reviews.

Table 5.18.2. Software Documentation Maturity Mapped to Reviews—Example

Review

Software Document

PTR
SI or EAT SQT

SFR SSR PDR CDR IRR TRR BTR TRR TRR

Software Development Plan (SDP)* B u U U
Software Metrics Report (Monthly) P B u* U U u u U

Software Master Build Plan (SMBP) D p B

Software Requirements Specification (SRS) P B U U
Interface Requirements Specification (IRS) P B u U
Interface Control Document (IFCD) B U
Software Design Description (SDD) P B
Software Architecture Description (SAD) P B
Software Test Plan (STP) P B U u U
Interface Design Document (IDD) D/P B U
Database Design Description (DBDD) D/P B u
Software Installation Plan (SIP) D P

Software Transition Plan (STrP) D P
Software User Manual (SUM) D P

Firmware Support Manual (FSW) D P B

Computer Programming Manual (CPM) D P B

Software Test Description (STD) D/P B U
Software Test Report (STR) B
Software Version Description (SVD) D P B U
Software Product Specification (SPS) D P B u
SDP Subsection: 5.4 5.5 5.6.2 5 6 3 57 5.8 5.9 5.10 5.11

D = Draft P = Preliminary | B | = Baselined U = Updated (As Required)

SFR = System Functional Review
SSR = Software Specification Review
PDR = Preliminary Design Review
CDR = Critical Design Review

SQT TRR = System Qualification Test - Test Readiness Review
IRR = Integration Readiness Review
SI TRR = Software Item - Test Readiness Review
PTR or BTR = Post Test or Build Turnover Review

EAT TRR = Element (or Factory) Acceptance Test - Test Readiness Review

•Draft with Proposal; Preliminary at ATP+ 60-90 days

2-135

Downloaded from http://www.everyspec.com

5.19 Software Risk Management

Software risk management must be a continual process employed throughout the software
development lifecycle. Risks are defined items that may cause a significant deviation from accepted
performance criteria. Software risk management addresses the management process for identification,
mitigation, and tracking of software development risks that involve potential adverse technical,
programmatic, schedule, cost, or supportability impact throughout the software development process.

There is no specific organization required for this subsection by J-16 or TOR-3537B. Figure 5.19 is
an example of an overview of the risk management process.

INPUTS SOFTWARE RISK MANAGEMENT TASKS OUTPUTS

• Requirements
Analysis

• Architecture
Analysis

• Cost/Schedule
Constraints

• Mission Threads
• Performance

Analysis
• Risk Mgt Plan
• Risk Candidates
• External Risks
• Assessment

Results
. TPMs
• CAIV and Trade

Study results
• Metrics

IDENTIFY RISKS
Risk Criteria / Technical / Programmatic /
Schedule/Cost /Supportability Risks

Risk Assessments and
Risk Lists

Risk Watch Lists

ASSESS RISKS
Risk Priorities / Probability and
Consequence of Occurrence

I
Mitigation Plans and
Status

MITIGATE RISKS
Mitigation Plans / Alternative Strategies
and Approaches

Approved Changes
and IMS Tasks

Program
Risk
Management
Board

MONITOR RISKS
Watch Lists / Recommend Corrective
Action / Status Reports / Implement
Mitigation Plans

Risk Tracking Status

Interface

CLOSE RISKS
Document Closures / Update Database

Lessons
Learned
Database

Figure 5.19. Risk Management Process Overview—Example

Software risk management provides direction to ensure that the project makes an early and continuing
identification of its top software risk items, develops a strategy for handling the risk items, identifies,
and sets down an agenda to handle new risk items as they surface, and highlights progress versus
plans for risk items.

All risks must be handled in some manner. Handling risks includes mitigation, where additional
resources are spent to reduce the likelihood of the risk happening, or mitigation to reduce the severity
of the risk if it does happen. Some risks are never resolved. The risk might "go away" over time—an
example is the risk a COTS vendor will go out of business. Risks that are not candidates for
mitigation must still be watched via some tracking metrics so that changes in that risk are known by
management in a timely manner.

Objective. The objective of the software risk management process is the development of a
mechanism for regular monitoring and management of software development risks through the
effective utilization of a Risk Management (or Mitigation-) Plan (RMP). Details of the software risk

2-136

Downloaded from http://www.everyspec.com

management approach and process must be contained in the RMP. The Risk Management Board
(RMB) is the primary entity for evaluating risks, unfavorable event indications, watch list items, and
concerns. The CSWE should be a member of the Risk Management Board.

For most programs, the RMP is a program-level plan—not a software plan. Similarly, the RMB is at
the program level. The software risk management process described in this subsection of the SDP
must be consistent with the program risk management process (described in the RMP) and must
interface with the process for elevation of software risks of sufficient concern.

However, there will likely still be software risks that are not "big" enough to make it to the program
risk list. These risks must be managed using the software risk management process described in this
subsection. Typically, there is no RMB at the software level, but there is nothing to preclude it.

During software development, software risk management involves identifying, assessing,
documenting, and mitigating risks. Individual risk plans define mitigation tracking measures and
corrective action when thresholds exceed the limits defined in these plans.

Goal. The goal of risk management is to reduce or eliminate, early in the program and throughout the
program, potential problems that could adversely affect technical, programmatic, schedule, cost, or
supportability performance. The RMP identifies the process for risk planning, identification,
assessment, prioritization, handling, and monitoring. A Risk Handling Plan (RHP) may be generated
for any identified risk and is the responsibility of the affected IPT. RHPs must be approved by the
RMB. IPT leads are accountable for implementing the RHP and reporting risk status within scope of
their CWBS elements.

Approach. The software RMP, typically an Addendum to the SDP, is the program's plan for
identifying software risks and mitigating the risks as necessary. The software RMP should assign a
risk severity levels, define risk handling plans where appropriate, and describe the process for
ensuring implementation of the risk handling plans. It also provides the program team's plans for
maintaining and improving the software process capability maturity of the software team members
throughout the life of the program.

The program Software Metrics Plan (SMP) describes software metrics used to control and track risks.
The SDP needs to be clear as to what risks are handled at the program level and what is handled at the
software level. Risks are integral to software development, managed, and coordinated across segment
and development tasks. The overall software risk mitigation approach can be summarized as follows:

• Software build planning must be consistent with the Software Risk Management Plan

• The risk handling approach encourages cross-support of software engineering process groups
particularly for process improvement and risk reduction (see subsection 5.25)

• Risk assessment is integral to each review (the CSWE's oversight of software tasks across the
program helps reduce software risk by resolving issues early)

• Incremental software development mitigates risk. For each increment, technical, programmatic,
schedule, cost, or supportability issues and requirement changes are assessed, baselined,
prioritized, tracked, and resolved early in development

• Prototypes can evaluate hardware and software integration, and multi-contractor development
and integration. These tools are used as an integration and demonstration facility to evaluate
risks early in system design and development

• Metrics and critical path analysis are integral to risk management and provide guidance for
reducing, preventing, or eliminating adverse impacts

2-137

Downloaded from http://www.everyspec.com

5.20 Software Management Indicators

There is no specific outline required by J-16 or TOR-3537B for software management indicators (also
referred to as 'software metrics')- The recommended organization for this subsection is based on the
Air Force Space Command, Space and Missile System Center (SMC) Instruction 63-104, dated
21 November 2005. Section 2.10 ofthat Instruction "Metrics, Assessment, and Improvement"
requires that each SMC program office shall:

"...describe how they set and use metrics objectives and thresholds. Include objectives,
thresholds, plans, actuals, and historical data in managing the acquisition, development,
and sustainment (if applicable). The description shall delineate how the metrics are used
to influence program decisions."

That is what the program office needs, so the plans to manage software development using software
measurements must be included in either the SDP, a Software Measurement Guidebook addendum to
the SDP, the Quantitative Management Plan (QMP) that may be an IMP appendix—or in all three at
appropriate levels of detail.

It is permissible to include a few short introductory paragraphs in subsection 5.20 and refer to the
program's Software Measurement Guidebook, or QMP for the details. However, since the use of
software management indicators is so important, it is recommended to include an overview of the
measurement approach in the SDP similar to the example paragraphs below.

Software measurement initiatives must be in accordance with the software measurement standard
imposed on the program as well as:

• Existing contractor organizational and contractually imposed software measurement policies,
standards, and procedures

• The international standard: ISO/IEC 15939-2002, Software Engineering—Software
Measurement Standard

• Practical Software Measurement: Objective Information for Decision Makers, McGary, et al,
Addison Wesley, October 2001

Each software measurement initiative must be tailored to each individual program. The software
development team must use software management indicators to aid in managing the software
development process and communicating the status of the software development effort to the
customer, program management, software management, and software personnel. Management
indicators are critical to the software management process because effective management controls are
dependent on timely and accurate measurements.

5.20.1 Principal Objectives of Measurement

Typical objectives of a software measurement initiative are to provide:

• Relevant and timely information to help software leads and software engineers perform their
responsibilities correctly, on-time, within budgets, and to produce a higher quality product

• Tracking information for project management to facilitate the reduction of the project's
software cost, schedule, and technical risks

2-138

Downloaded from http://www.everyspec.com

• A practical, efficient and up-to-date management methodology and basis for quantitative
software development control, status determination, timely corrective action and activity
replanning.

• Historical records of performance for trend analysis and other value-added information, to
support continuous software process improvement

5.20.2 Continuous Improvement

A fundamental aspect of the software measurement initiative should be a continuous improvement
approach through a closed loop feedback, control system as depicted by the example in Figure 5.20.2.
Feedback information must be provided so that corrective actions can be applied to improve the
development process, maximize resource utilization and predict and adjust the quality of the products.

Timely corrective action must be taken to realize the benefits of a software metrics program. It
should not become merely a historical archive. However, historical information should be used for
trend analysis, productivity calculations, and continuous process improvement.

Figure 5.20.2 depicts the essence of the SEI Software Process Maturity Level-4 Key Process Areas. It
is an important model to use as a goal. However, the simplicity of this diagram belies the inherent
complexity of achieving a smoothly running, unencumbered, skillfully managed closed loop software
development control system.

Product and Quality Indicators

Standards,
Procedures
and Plans

P
Software

Management
Decisions

System
Requirements

Software management indicators are measurable attributes of the software development process, the
resources applied and the products produced—the process and the resources produce the product.

Figure 5.20.2. Closed Loop Software Control Process—Example

5.20.3 Approach to Management Measurements

An example of a top-down management measurement approach is depicted in the framework shown
in Figure 5.20.3. It shows a tailorable hierarchy of four groups. Multiple users may have similar
objectives but each has a different perspective and information needs. The effort to collect, analyze,
and document metrics must be consistent with their value to the program.

2-139

Downloaded from http://www.everyspec.com

PRINCIPAL SOFTWARE CONCERNS

Customer Satisfaction

Risk Management

Software Mission Assurance

Budgets and Productivity

Schedule and Progress

Resources and Cost

Product Size and Stability

Product Quality

Development Performance

GROUPS

Collection Mechanism

Team Support

Team Consistency

Timeliness

Accuracy

PRIMARY MEASUREMENT USERS

Program Office

Program Management

Chief Software Engineer

Chief Software Engineer

Functional Managers

Software Managers

Software Leads

Chief Software Engineer

Software Managers and Leads

Software Team Members

Software Quality Assurance

Software Configuration

Management

ttttt
SOFTWARE BASE MEASUREMENTS

Figure 5.20.3. Software Measurement Framework—Example

GQM Paradigm. This example of a top-down approach is based on the Goal-Question-Metric
(GQM) paradigm. At the top of Figure 5.20.3, software management establishes program/project
goals (Group 1) resulting in a set of Measurement Categories (Group 2) to determine progress in
meeting the goals. The categories identify a set of Measurement Indicators (Group 3) that provides
support to the Group 2 categories. The indicators are composed of detailed software base
measurements (Group 4) that must be collected to provide the data needed by the indicators.
Following is a brief description of the four levels.

• Goals (Group-1): Top-level Group-1 program/project goals are of primary interest to senior
managers, the customer, and the CSWE. They provide an effective means to appraise and track
software milestones and overall project trends. Data to support the goals can be derived from a
combination of metrics collected and calculated from lower groups.

• Software Information Categories (Group-2): The Group-2 software categories address the
question: What information do software managers, leads, and developers need to manage their
task in a timely and effective manner and be responsive to program/project goals?

• Software Management Indicators (Group-3: Group-3 focuses on specific software
management indicators that must be collected to support the Information Categories in
Group 2.

• Software Base Measurements (Group-4): Specific measurements (raw data) must be
collected to collect the data needed for the Management Indicators in Group-3. (For example, to
collect the monthly "requirements volatility" management indicator, it is necessary to collect
measurements of the number of requirements added, deleted, and modified this month plus the
total number of active requirements last month). Significant changes should be reported as they
occur, and formally reported at the next reporting period.

2-140

Downloaded from http://www.everyspec.com

5.20.4 Key Software Management Questions

Figure 5.20.4 lists five key questions that Software Leads and Managers must have periodic
responses to effectively manage the software development effort. There is no restriction to adding
more key issues if needed but the five questions listed should constitute a minimum set. Figure 5.20.4
also lists the five Information Categories that directly support answers to the five key questions. The
five categories are supported by specific Measurement Indicators as shown in Figure 5.20.4.

KEY SOFTWARE MANAGEMENT QUESTIONS

Is Progress and
the Schedule

Under Control?

Are Resources
and Costs

Under Control?

-r
(

Schedule
and

\

V
Progress

)

Are Changes
Impacting the

Project?

Are We
Developing a

Quality Product?

Is Development
Performance

Under Control?

Resources
and

Cost

Requirements
Progress

Development
Progress

Test Progress

Schedule
Adherence

Effort Profile

Staff Profile

Computer
Resources

Cost Profile

Product
Size and
Stability

Volatility

Build Content

Product

Quality

Development

Performance

a.

Discrepancy
Resolution

Complexity

Coverage

_~\
Productivity

Maturity

Management
Status

>

5 Information
Categories

17 Management
Indicators

J

Figure 5.20.4. Categories and Indicators Support the Key Management Questions—Example

5.20.5 Software Measurement Set

Table 5.20.5 contains an example software management set. It includes the three levels (Information
Categories, Management Indicators, and Base Measurements) consistent with Groups 2, 3. and 4 as
shown in Figure 5.20.3. It is highly recommended that a table of this nature be included in the SDP or
in a Software Measurement Guidebook that should be an addendum to the SDP.

An optional candidate list of software management indicators is provided in Appendix F of
TOR 3537B. In addition. Chapter 14 of the SMC Software Acquisition Handbook, dated 9 Feb 2004.
contains a description of recommended software indicators with a clear understanding that they
should be tailored to the system being developed and that additional indicators should be added to
address critical or unique needs of each program.

5.20.6 Software Measurement Construct

A software measurement construct defines the data that will be collected, the computations that will
be performed on that data, and how the resulting data will be reported and analyzed. The
recommended construct for software measurement is described in detail in the Software Measurement
Standard for Space Systems (SMSSS), The Aerospace Corporation report number TOR-2009(8506)-
6, dated May 5, 2011. As shown in Figure 5.20.6, the software measurement construct is composed of
four specifications:

2-141

Downloaded from http://www.everyspec.com

Measurement Information Specification

Base Measurement Specification

Derived Measurement Specification

Measurement Indicator Specification

Table 5.20.5. Software Measurement Set—Example

Software Information Categories Management Indicators Base Measurements

Schedule and Progress

Requirements Progress

Requirements Defined
Requirements TBX Closure
Requirements Verified
Qualification Method

Development Progress

Components Defined
Units Defined
Unit Coded and Unit Tested
Unit Integrated and Tested

Test Progress

Test Cases Developed
Test Cases Dry Run
Test Cases Performed
Test Cases Passed

Schedule Adherence
Project Milestones
Scheduled Activities

Resource and Cost

Effort Profile
Labor Hours by Activity
Rework Hours by Activity

Staff Profile
Staffing Level
Staff Experience
Staff Turnover

Computer Resources

CPU Utilization
Input/Output Utilization
Memory Utilization
Response Time

Cost Profile
Earned Value Performance
Schedule and Cost Performance Index
Schedule and Cost Variance

Product Size and Stability

Size

Requirements Size
Requirements by Type
Line of Code Size
Line of Code by Origin
Line of Code by Type

Volatility
Requirements Volatility
Line of Code Volatility

Build Content Requirements per Build

Product Quality

Discrepancy Resolution

Discrepancy Report Status
Discrepancy Report Aging
Discrepancy Report by Type
Discrepancy Report by Source

Complexity Cyclomatic Complexity

Coverage
Requirements to Design Traceability
Requirements to Test Case Traceability

Development Performance

Productivity Development Productivity
Maturity Development Defect Density

Management Status
Action Items Closure
Risk Mitigation Task Status
Schedule Compression

2-142

Downloaded from http://www.everyspec.com

Measurement
Information

Specification

MEASUREMENT CONSTRUCTS

Base
Measure

Specification

Derived
Measure

Specification

Measurement
Indicator

Specification

Figure 5.20.6. Elements of the Software Measurement Construct—Example

The data required by these specifications should be included in the Software Measurement Guidebook
that is normally an addendum to the SDP. The four specifications are briefly described below.

Measurement Information Specification. Each Management Indicator shown in Table 5.20.5 is
specified using a Measurement Information Specification. Table 5.20.6-1 is the format for this
specification used to describe the information need and the measurable concept to address that need.
The template also contains fields for indentifying relevant entities as well as the base and derived
measures that implement the information need.

Table 5.20.6-1. Format of the Measurement Information Specification—Example

Name Measurement Description

Information Need
What the measurement user (e.g., manager or project team member) needs to know to make
informed decisions.

Information Category
A logical grouping of information needs provided to give structure to the measurements. The
five recommended information categories are: schedule and progress, resources and costs,
product size and stability, product quality, and development performance.

Measurable Concept Satisfying the information need by defining the data to be measured.

Relevant Entities
The objects to be measured. Entities include process or product elements of a project such
as project tasks, plans/estimates, resources, and deliverables.

Base Measure The property or characteristic of the data that is quantified
Derived Measure A measure that is calculated as a function of two or more base measures.

To help clarify how the Measurement Information Specification is used. Table 5.20.6-2 is an example
taken from the SMSSS that shows how it can be applied to the 'Staff Profile' Management Indicator.

Base and Derived Measure Specifications. Table 5.20.6-3 is an example format for the Base and
Derived Measurement Specifications. Some base and derived measures are used to define multiple
measurement constructs. Not all measures require the specification of a derived measure. The
appendixes in the SMSSS contains detailed descriptions of the base and derived measurements
including where and how they are obtained, how often reported, the scale, and unit of measurement.

2-143

Downloaded from http://www.everyspec.com

Table 5.20.6-2. Example of a Measurement Information Specification for Staff Profile

Measurement Staff Profile
Information Need Evaluate staffing requirements to see if staffinq assumptions are being realized.

Information Category Resources and Cost

Measurable Concept

• Compare planned staffing requirements to actual staffing provided to determine staffing
status.

• Compare planned experience to actual experience to identify staffing competency
shortfalls.

• Compare staffing gained and lost to plan to identify staffing trends.

Relevant Entities Planned Headcount
Actual Headcount

Base Measures

• Planned Head Count—Total
• Planned Head Count—Experience Level Category 1
• Planned Head Count—Experience Level Category 2
• Planned Head Count—Experience Level Category 3
• Actual Head Count—Total
• Actual Head Count—Lost
• Actual Head Count—Gained
• Actual Head Count—Experience Level Category 1
• Actual Head Count—Experience Level Category 2
• Actual Head Count—Experience Level Category 3

Derived Measure
The following derived measure is used to graph these indicators:

• Staffing Volatility Index

Table 5.20.6-3. Base and Derived Measure Specifications—Example

Measurement Base Measure Specification

Base Measures
A measure of a single attribute defined by a specified measurement method
(e.g., planned number of lines of code).

Measurement Methods The logical sequence of operations defining the counting rules for each base measure.

Type of Method
Method used to quantify an attribute as either (a) subjective, involving human judgment or (b)
objective, using established rules to determine numerical values.

Scale The ordered set of values or categories that are used in the base measure.

Type of Scale

The type of the relationship between values on the scale, either:
• Nominal—the measurement values are categorical, as in defects by their type
• Ordinal—measurement rankings, as in assignment of defects for severity levels
• Interval—measurement values having equal increments
• Range—a range of real numbers for equal quantities of the attribute

Unit of Measurement
The standardized quantitative amount that will be counted to assign value to the base
measure, such as an hour or a line of code.

Measurement Derived Measure Specification
Derived Measures A measure that is calculated as a function of two or more base measures.

Measurement Function The formula that is used to calculate the derived measure.

Measurement Indicator Specification. Table 5.20.6-4 is an example format for the Measurement
Indicator Specification. The first part of this specification includes a description and a sample display
diagram. The purpose of the sample display diagram is to show the preferred format for the
information depiction. The specification also includes fields for analysis guidance and the decision
criteria that triggers a set of actions in response to specific threshold values.

2-144

Downloaded from http://www.everyspec.com

Table 5.20.6-4. Format for the Measurement Indicator Specification—Example

Measurement Measurement Indicator Specification

Indicator Description and Sample
Display Diagram

A description and display of one or more measures (base and derived) to
support the user in analysis and decision making. An example diagram of the
indicator is included.

Analysis Model A process that defines the responses of the measurement user to the
indicators. If decision criteria are specified this field describes their use.

Decision Criteria A defined set of actions that will be taken in response to specific values of
the indicator.

Additional Analysis Guidance Any additional guidance on variations of this measure.

Implementation Considerations Any process or implementation requirements necessary for a successful
implementation.

5.20.7 Analysis and Reporting of Software Management Indicators

Software metrics data must be reported to Program Management and the customer at least monthly to
provide frequent status checks of the development effort. When potential problems are identified, the
affected Software Lead must analyze the problem indicators to determine if the data accurately
reflects a real or developing problem and, where necessary, if timely management action is needed to
correct the problem. Coordination with the Integration and Test team may be necessary for support in
analyzing the potential problem or developing and implementing a correction.

The SEPG should review the software indicators to determine their effectiveness. Software indicators
should be added and deleted as their utility and cost/benefit is determined. The following questions
should be considered:

• Is the metric providing needed information to software IPTs in sufficient time to implement
management actions to minimize cost or schedule impacts?

• Does the metric accurately measure the software development process activity it is intended to
measure and provide a meaningful status?

A recommended best practice is to establish and conduct a joint customer—contractor Software
Measurement Working Group to ensure the information needs of all participants are met as the
development effort proceeds through the lifecycle.

The SEPG at the program or segment level must perform analysis of the software management
indicators in accordance with their scope of control. The SEPG, or the responsible working group,
should meet at least monthly to review the results of the metrics analysis and report their findings to
the segment IPT and the CSWE. Findings should also be distributed to the Software Leads for their
use in managing their daily tasks. The CSWE should report results to program management at regular
intervals.

Quantitative Management Plan (QMP). The QMP, if one is prepared, should define the
establishment of program goals as well as the methods used for collection, analyzing, quantitatively
controlling, and reporting performance data in terms of the goals. In addition, it should present
strategies for achieving the goals, performing causal analysis and determining potential corrective
actions. Understanding the root cause of a problem is an effective path to preventing it.

Reporting Durations. The SDP should also include a table indicating when in the lifecycle the
collection of each software management indicator is started and when it ends as well as the reporting
intervals. This data collection duration table is important since all of the measurements are not
collected all the time (e.g., testing measurements are not collected during requirements analysis). The
SMSSS (referred to in paragraph 5.20.6 above) contains a detailed table with time phasing for all base
measurements.

2-145

Downloaded from http://www.everyspec.com

5.20.8 Software Indicator Thresholds and Red Flags

Software Thresholds. Management decisions based upon the analysis of software management
indicators must use thresholds to flag non-nominal conditions. Thresholds must be established by the
responsible working group for the segment IPT. When a value is outside the nominal conditions, the
segment IPT should determine:

• How the problem can be fixed to bring the values within the stated limits

• If the out-of-limit condition is an acceptable design-related decision

Table 5.20.8-1 is an example format of allowable thresholds for some of the software indicators. A
column containing thresholds could be added to the measurement set in Table 5.20.5.

Table 5.20.8-1. Software Indicator Thresholds—Example

Software Information Categories Software Management Indicators Threshold

Schedule and Progress

Requirements Progress +10% From Plan

Development Progress +10% From Plan

Test Progress +10% From Plan

Schedule Adherence +10% From Plan

Resources and Cost

Effort Profile +10% From Plan

Staff Profile +10% From Plan

Computer Resources +10% From Plan

Cost Profile +10% From Plan

Product Size and Stability Size +10% From Plan

Software Indicator Red Flags. Potential problems with software management effectiveness can be
anticipated at the time the RFP, or contract, is issued if specific requirements for the measurement
program are not identified. For example, the contractor and the Program Office should be aware of
red flags such as the examples listed in Table 5.20.8-2.

Table 5.20.8-2. Software Indicator Program Red Flags—Example

RED FLAG if the RFP, or contract, does not require:

Formal delivery of periodic measurement reports and analysis of software management indicator data

A Software Measurement Guidebook, or Quantitative Measurement Plan, delivered with the proposal

Measurement data to be presented in a useful, unambiguous, and easy to read graphical form

Definition of measurement collection durations

A restriction on the frequency of report format changes

Measurement commitments to be flowed down to subcontractors

Documented allowable indicator threshold deviations

A documented plan to determine root cause for deviations

A clear plan for corrective action when deviations are identified

Sufficient measurements to effectively monitor program status (Note: an excessive number of indicators may also be a red
flag)

5.21 Security and Privacy Protection

There is no required format for this SDP subsection. Each facility in the program must generate its
own security standard practices and procedures document to cover security-related specifics for that
facility. These security practices and procedures documents should include at least the following
items:

2-146

Downloaded from http://www.everyspec.com

• Physical safeguards employed to control access to the development and test environments
during and after classified processing

• An outline of the startup or upgrade procedures for classified processing; the safeguards
employed during classified processing, including the security features and assurances of the
software and the trusted operating system, or equivalent; and the procedures for shutdown or
downgrading the system

• Accountability procedures for the control and dissemination of classified materials and a
description of the procedures for declassification and destruction of storage media

• A description or exhibits of pertinent automated or manual audit trail records and logs

• A contingency plan to be employed in the case of security violations, system crashes, or other
emergencies during classified processing, including recovery procedures. Clearances and
declassification procedures should be emphasized, as appropriate

The IPT software personnel must periodically review requirements for security and privacy contained
in the program's Security Implementation Plan. Also see SDP subparagraph 4.2.5.2 that addresses the
strategy for handling critical security requirements.

5.22 Subcontractor Management

There is no required SDP format for the subcontract management subsection. From a software
development perspective, the management of software subcontractor teams is almost always a
significant challenge. There are usually numerous subcontractors contributing software products, and
they are typically geographically dispersed. Lessons Learned should influence the prime contractor's
development of the Statement of Work (SOW) for each teammate so as to avoid problems
encountered in previous software subcontract management efforts.

Subcontractor Management Team. A Subcontractor Management Team (SCMT) must be
established. It should be led by the Subcontract Program Manager who has overall responsibility for
monitoring technical, schedule, and cost performance of the software subcontractors. A Software
Subcontract Management Guidebook should be prepared. The Software Quality Engineer (SQE) and
the Chief Software Engineer (CSWE) must support subcontract management by technically
monitoring the software portion of the subcontract. Table 5.22 is an example of typical SCMT
membership and their responsibilities.

SDP Compliance. The CSWE should be responsible for monitoring software subcontractors through
attendance at the software subcontractor's formal reviews and status reviews, as applicable, and by
regular metrics reviews. The CSWE must evaluate the performance of the software subcontractors
and prepares subcontract evaluation reports as required. The CSWE can delegate these
responsibilities.

The program-level SDP must apply to all software subcontractors. The CSWE has the authority to
enforce the processes described in the program-level SDP. Software subcontractors must always
follow the processes, procedures, and documentation defined in program-level SDP. As described in
Part 1: Introduction Section 9, site-specific SDPs are written and maintained by the development sites
and provide additional standards and procedures specific to each site. Site-specific SDPs expand
upon, but must not conflict with, the processes and procedures defined in the program-level SDP
unless a waiver has been approved. The CSWE and SQE must perform software subcontractor
product and process audits to determine compliance with program-level SDP and with the contract.

2-147

Downloaded from http://www.everyspec.com

Table 5.22. Subcontractor Management Team Members and Responsibilities—Example

SCMT Member Responsibilities

Subcontract
Program
Manager

Overall management of software subcontract technical, cost, and schedule performance
Ensures all software technical, cost, and schedule requirements are satisfied
Facilitates subcontractor's ability to plan and perform software more efficiently
Works program-level issues and manages software award fee program
Ensures subcontractor compliance with program plans and procedures

Subcontract
Administrator

Single point of contact for contractual matters and administers the software subcontract
Negotiates and awards software subcontracts and approves vouchers/invoices
Ensures proper flow down of software technical requirements and software subcontract terms and
conditions
Maintains configuration control of contractual documentation sent to the subcontractor
Receives, logs, and distributes incoming correspondence from subcontractors

Responsible
Engineer

Develops software specifications and associated technical documentation
Ensures subcontractor understanding of the software technical requirements
Coordinates approval of subcontract software deliverables and documentation
Conducts a technical evaluation of subcontractor's software proposals
Develops and/or approves software test plans and procedures and acceptance plans
Participates in or witnesses subcontractor software acceptance testing, as required
Provides independent evaluation of subcontractor's technical progress and performance

Business/Financial
Operations

Analyzes cost/schedule performance data including key indices and variance analyses
Helps subcontractor develop cost account plans and incremental planning packages
Integrates subcontractor budgets, costs, IMP, and IMS into Prime's database system

Mission Assurance

Monitors data, configuration, and quality processes used by the subcontractor
Ensures the software subcontract quality implementation program is consistent with the program's
SQPP
Ensures that the configurations of all deliverable software items are identified with a clear audit
trail
Chairs the Subcontractor Functional and Physical Configuration Audits (FCA/PCA)

Performance Review. The progress and performance of the subcontractors should be regularly
reviewed and assessed by the SCMT. These reviews address the total performance of each team
toward meeting its objectives. The SEPG oversees the software development process and provides
approval of all subcontractor specific appendices to the program-level SDP to ensure that software
development methods, standards, practices, and procedures are consistent with the contract.

Statement of Work. The subcontractor SOWs should be focused on a clear definition of
responsibilities, software metrics reporting, interfaces with the SCMT for oversight, and the CSWE as
the single point of contact for software within the organization. Each team member performing
software development, algorithm analysis, simulation development, or data set development should
have its own SOW. The SOW should delineate development software products, scope, required
reviews, schedule milestones, status reporting, performance evaluation criteria, and acceptance
criteria.

The SCMT should be responsible for ensuring SOW compliance, flow-down of requirements
changes, updates to the SOW, and for assuring that other applicable documents (specifications,
interface, or performance documents) are current and available to the subcontractor.

5.23 Interfacing with Software IV&V Agents

There is no required format for this SDP subsection. If required on the contract, software Independent
Verification and Validation (IV&V) agents should interface with segment software development as a
member of their respective Integrated Product Teams (IPTs). In addition to supporting software-
related IPT tasks, they may also perform audits of software development files and software processes.

If audits are performed, the IV&V agent must coordinate in advance with the IPT lead and identify
required developer and test support. Additional details for interfacing with software IV&V agents
may be defined in the SDP Annexes.

2-148

Downloaded from http://www.everyspec.com

IPT software personnel, including developers and test engineers, should interface with the 1 V&V
representatives to allow identification and resolution of software issues and problems at the lowest
practical level and as early in the development process as possible. The I V&V representative must
interface with the software IPTs and developers, both formally and informally, through the following
mechanisms:

• At scheduled software development status meetings, reviews. Technical Interchange Meetings
(TIMs), and IPT meetings

• Through the test process, either when the I V&V representative is a test witness or when the
I V&V representative conducts independent testing

• Through periodic inspections and audits of Software Development Files (SDF), other software
products, and the software development process

Table 5.23 is an example of the software products that must be provided to the IV&V agents and how
problems are reported. Problems identified by the 1 V&V agents must be handled through the
corrective action process (see SDP subsection 5.17).

Table 5.23. Software IV&V Evaluations—Example

Tasks Software Products Reviewed Problem Reporting Mechanism
TIMs Development phase documents Action items
Formal software reviews Development phase documents Action items
Audits SDFs, SDP Audit report
Independent testing Software test documents SCR/SDRs

IV&V representatives should be members of appropriate software IPTs. They should offer advice,
assistance, and subject matter expertise in the development of program documentation, but must not
co-author such documentation. This allows the IV&V representatives to preserve the degree of
objectivity required to effectively discharge the IV&V role of verifying and validating both adherence
to the software development process, and the adequacy, sufficiency, and performance of software
products.

5.24 Coordination With Associate Developers

The lead prime contractor should enter into what might be called "Associate Contractor Agreements"
with other prime contractors whose performance will impact the program. Such arrangements
facilitate joint participation and collaboration in meeting program requirements. The objective of
these agreements is to create ground rules and an environment for freely sharing and safeguarding
each other's technical and/or proprietary information and resolving issues, to the maximum extent
possible, without government intervention. As they become known, the lead prime contractor must
advise the other prime contractors, in addition to the organizations that may be defined in the Model
Contract, where such agreements are necessary and then proceed with establishing those
relationships. From a software perspective. Associate Developers are one type of software
stakeholders.

5.25 Improvement of Project Processes

There is no required format for this SDP subsection, however, subsection 5.25 should cover a general
description of the tasks planned for identifying software process improvement areas and developing
new process policies and procedures to implement process improvements. It should also contain an
overview of the software process improvement process. Figure 5.25 is an example of a graphically
depicted process improvement process.

2-149

Downloaded from http://www.everyspec.com

SDP

Lessons
Learned

LA
Plan

Improvements

GOALS

Documented
Procedures

Develop
Process
Changes

Capability
Database

\J
Pilot

Project
OK

Incorporate
Changes Into

Process

Use
Revised
Process

Revisions

Figure 5.25. Software Process Improvement Process Overview—Example

5.25.1 Software Engineering Process Group

A Software Engineering Process Group (SEPG), or an equivalent organization, must be established to
focus on:

• Evaluating the implementation and progress of the defined software development process

• Identifying areas for potential process improvement

• Performing evaluations to determine if the deficiencies are the result of non-compliance with,
or inadequacy of, current policies and procedures

If the deficiency is non-compliance, the SEPG must determine the nature of the non-compliance and
either identify a process improvement or recommend to the CSWE how to correct the compliance
deficiency as described by the corrective action process. If an inadequacy, the SEPG must analyze
the affected process area and develop proposed process improvements with corresponding changes to
the SDP. Table 5.25.1 contains the typical membership of the SEPG and their responsibilities.

Table 5.25.1. SEPG Membership and Responsibilities—Example

SEPG Membership Responsibilities

Chief Software Engineer

The CSWE is the SEPG Chair and: (1) Ensures SEPG tasks are assigned and
performed in a timely manner; (2) Allocates resources for the SEPG, including
people, time and equipment; and (3) Encourages and actively supports SEPG
tasks.

Software Process Engineer

The SPE is typically the SEPG Administrative Chair and: (1) Ensures the SEPG
meetings are organized (agenda, facilities, etc) and meeting results are recorded
(meeting minutes) and tracked (Action Items, Working Group status); (2)
Participates as the expert on software processes and software process
improvement methods; and (3) Is the point of contact for software process
improvement issues and SEPG tasks.

Software Configuration Management The SCM Lead: (1) Participates as the expert on SCM processes and
procedures; and (2) Is the point of contact for SCM process improvement issues.

Software Quality Assurance
The SQA Lead: (1) Is the point of contact for SQA issues; and (2) Audits SEPG
tasks to assure conformance with contractual requirements, plans, standards
and procedures.

SEPG Members

Each organization responsible for a software product assigns member(s) to
represent the organization as their SEPG Representative and who are the
organization's point of contact for software process improvement and SEPG
tasks.

SEPG Focus. The focus of the SEPG is to: assess the current process status; define, document,
maintain, monitor, and improve the program software process; establish software training
requirements; establish a program-specific archive (often called the SPAR—Software Process Assets

2-150

Downloaded from http://www.everyspec.com

Repository); and work to improve the program's software CMMI rating. An example of how to focus
the software process improvement initiative, in terms of goals, approach and the measure of success,
is shown in Table 5.25.2.

Table 5.25.2. Focus of the Process Improvement Initiative—Example

Area Segment IPT Program SEPG

Goals
Produce and maintain quality software and
satisfy system requirements.

Perform continual process improvement through
quantitative feedback from the process and from
innovative process improvement tools

Approach
Use the most effective software engineering
tools and techniques including metrics
collection.

Perform measurement analysis, assess processes,
maintain a library of experiences, and create and
update software standards.

Measure of Success
Delivery of quality software products on time
and within budget.

Improve processes to result in improved products,
reuse growth, and efficient collection, storage, and
retrieval of experiences

SEPG Mechanisms. The SDP should define organizational and procedural mechanisms that support
the SEPG in their role of identifying potential process improvement areas. For example, these
mechanisms can include:

Assigning a program-level Software Process Engineer (SPE) responsible for facilitating
software process tasks for the program.

Conducting SCM and SQA tasks (see subsections 5.14 and 5.16 and their respective plans)

Conducting process and product audits by the CSWE and SQA

Analyzing software management indicators

Performing the problem reporting and the corrective action process (see subsection 5.17)

Leading the joint technical and management reviews (see subsection 5.18)

5.25.2 Process Audits

The initial audit objective is to verify compliance with the documented procedures. Where non-
compliance is found, the cause must be identified and evaluated for potential process problems
(e.g., lack of training, inadequate documentation, difficulty in implementing the procedure, etc.).

The CSWE, SPE, and SQA (or their designee) must attend program and product reviews to witness
process compliance as well as to evaluate product quality. Additionally, they should audit segment
IPT software tasks for compliance with other software development policies and procedures as
defined in the SDP. These audits typically consist of reviewing SDFs, and other software products,
and interviewing the software developers performing the particular process being audited. Audit
results should be presented to the SEPG.

The SEPG must also monitor the monthly software measurement reports to identify problem trends.
Where such trends are found, an analysis should be performed to determine if the trend is caused by a
process deficiency. An examination of software measurement for the other segments should be
performed to determine if similar results are found. Based on these examinations, recommendations
for process improvement should be developed and presented to the CSWE for further action.

Proposals for process improvements may also originate from joint technical and management reviews
or any segment IPT. In either case, these proposed process improvements must be submitted as a
Software Change Request (SCR) against the applicable document, or the SDP, and forwarded to the
SW/CCB. The SW/CCB can then assign it to the SEPG, or a development site, for evaluation and
implementation.

2-151

Downloaded from http://www.everyspec.com

5.25.3 Change Implementation

Recommendation for process improvement must be presented to the SEPG, for review and evaluation
of the cost and schedule impacts, and then to the CSWE for approval. Approved changes at the
program level should be implemented by the CSWE. Approved changes concerning a segment SDP
Annex should be implemented by the development site. For those actions requiring process training
materials, these materials should be generated and used to retrain affected personnel.

Whenever a process change is approved for implementation, the SEPG should provide a
recommendation as to the criteria by which they measure the success or failure of the change. Process
change implementations should include adequate notification to all affected development and
management staff, with a reasonable period of time for resolution of comments, concerns, and
questions.

Once the process improvement is implemented, the SEPG should monitor the effect of the change to
determine its impact on the software development process. This monitoring not only determines if the
desired effect is achieved, but also whether any positive or negative side effects are generated.

5.25.4 SEPG Infrastructure

The SDP must describe the infrastructure within which the process improvement initiative operates.
The segment software Group Lead, or designee, must support the SEPGs at the segment and program
level. The Program SEPG provides direction to the segment SEPG and may receive services from the
corporate SEPG. The Segment IPT Lead is normally a member of the Program SEPG. These
relationships, and general functions provided, are shown in the example Figure 5.25.4.

PROGRAM LEVEL SEPG

PROGRAM SOFTWARE
PROCESS IMPROVEMENT

•Implementation
•Monitoring
•Improvement
•Process and

Product Metrics

TRAINING
•Segment Training
Coordination

•Segment-Specific
Software Training
Development

ASSESSMENTS AND
MEASUREMENTS

I -TRAINING NEEDS
•+•. • MEASUREMENTS '

, • WORKING GROUP SUPPORT I

I
CORPORATE SEPG

•TRAINING
•PROCESSPRODUCTS
• CONSULTING SUPPORT

~E

Segment Software IPT 3-D
Figure 5.25.4. SEPG Infrastructure—Example

5.25.5 Process Training

The cornerstone of an aggressive process improvement program is training. The SEPG (at the
segment, program or corporate level) must support training in the techniques of process improvement
as well as training on the processes.

2-152

Downloaded from http://www.everyspec.com

5.25.6 Software Process Engineer/Lead

The Software Process Engineer (SPE). also referred to as the Software Process Lead, is a trained
change agent who is responsible for facilitating all software process tasks for the program. The SPE is
critical to an effective software process improvement program. The SPE may report to the CSWE, the
SEPG Chair, or the software IPT Lead, and usually is the Administrative Chair of the SEPG. Typical
functions performed by the SPE are listed in Table 5.25.6.

Table 5.25.6. Typical SPE Functions—Example

Function Description

SEPG Administrative Chair
Prepare for SEPG meeting (reserve room, agenda, etc)
Prepare and distribute SEPG meeting minutes
Ensure that the SEPG follows established applicable program software processes.

Working Group Oversight
Ensure that working groups are effective; ensure that each working group
understands roles, responsibilities, and specific task assigned to the working
group; monitor progress of working groups, etc

Software Process Improvement
Monitoring and Appraisals

Ensure that the appropriate measurements on process tasks are collected,
analyzed, and distributed. Focal point for software process appraisals.

Software Process Improvement
Recommendation Coordination

Review, support, and present process improvement recommendations from
program personnel, internal and external groups and customer, industry data on
current best practices, company and industry standards to the SEPG.

Software Process Improvement
Reporting

Report status of SEPG and process improvement activities to software team,
program management, company management, and SEPG as applicable.

5.26 Software Sustainment (Optional)

There is no requirement in J-16 or TOR 3537B for the inclusion of a subsection covering Software
Sustainment (also referred to as Software Support or just as Maintenance). However, it is strongly
recommended to include this subsection because Software Sustainment typically consumes about
two-thirds (or more) of the total software lifecycle cost. Maintaining a deployed system, responsive to
changing customer needs over a long time frame, is as important as the original implementation.

Preparing for software transition to operations and maintenance is discussed in subsections 5.12 and
5.13 of this Guidebook and will not be repeated here. Subsection 5.26 should be focused on the issues
an SDP needs to address during sustainment and how these issues will be managed and resolved.

5.26.1 Software Sustainment Objectives

The key software development objectives are to produce a software product that provides the required
functionality, is easy to access and use, and is cost effective to maintain. The software sustainment
tasks needed to satisfy all of these objectives should be identified in the SDP. Generally, there are
four types of software sustainment tasks:

• Corrective: Fixing errors involves correcting known problems in the software not resolved
during development plus correcting problems identified and errors generated after deployment.
A critical part of corrective fixes is to update the documentation to facilitate future
modifications.

• Adaptive: Software must be modified to interface with inevitable changes in the system
hardware or operational environment so that the software continues to perform its intended
functions. Adaptive maintenance requires identifying the requirements that are affected by the
environmental changes, identifying the design changes needed, and implementing those
changes in the code.

2-153

Downloaded from http://www.everyspec.com

• Perfective: Periodically, the software needs to be enhanced so that it, or the system,
accomplishes new functionality. In some cases, this may involve a complete redevelopment
effort.

• Preventive: Preventive maintenance involves modifications to improve performance, or to
implement improvements in maintainability and reliability. During corrective and adaptive
maintenance, the users know there is a problem. When modifications are made to make the
software "better," users do not perceive there is a problem so great care must be taken to avoid
introducing defects and transforming a good working system into one that does not work well.

Retesting and configuration management play an important part in the process regardless of the type
of sustainment performed. Even if the modifications are small, retesting is always required after
changes are made to the software. Depending on the extent of the changes, retesting, and regression
testing, may be more time consuming, and more complex, than it was for the original system.
Retesting must ensure that the original parts still work, that the modifications work as required, and
that the functionality of the original system is not inhibited by the changes. The retesting process
during sustainment should be documented in detail as this is not a simple task.

Configuration Management (CM), discussed in SDP subsection 5.14, is just as important during
sustainment as it was during development. CM manages the changes, determines when the updates
are released, and ensures that all users in the field are running the proper version of the software.

5.26.2 Planning for Software Sustainment

A Program Office may have three options for planning, addressing, and managing the software
sustainment issues typically encountered:

• A Lifecycle Management Plan (LCMP) is a potential option for containing the software
sustainment information. However, the LCMP may not be required by the program, If it is
required, it may not be produced by the software organization, and typically would not have the
software-related details needed. If there is a LCMP it would normally need to be augmented by
SDP subsection 5.26.

• A Software Maintenance Plan (SMP) is an excellent mechanism for covering the details needed
as described in paragraph 5.26.3. If the SMP is produced by the program, it is recommended
that SDP subsection 5.26 contain an overview of it and refer to the SMP for the details.

• If the LCMP or SMP are not produced by the program, or in equivalent documentation, then all
of the needed software sustainment details must be included in SDP subsection 5.26 or an
addendum.

Software Sustainment must not be treated as an afterthought. Decisions made during early
development activities, especially during software design, can have a significant impact on the cost of
sustaining software. DOD systems normally are operational for a long time, so sustainment must
continue for many years. Planning for software sustainment requires careful consideration in three
key activities:

• Architecture and Design: Efficient and effective sustainment systems must be well architected
and designed. Effective sustainability is a direct result of quality architecture and design. A
good design should be modular, highly cohesive (i.e., each module performs a distinct task),
and loosely coupled (so that each module depends as little as possible on other modules for its
functionality). Design guidelines such as these should be part of, or referenced by, the SDP.
The architecture and design must also consider COTS evolution.

• Coding: Coding is another important area where improved maintainability can be achieved.
Good coding standards are key to this achievement along with an enforcement process.

2-154

Downloaded from http://www.everyspec.com

Frequent peer reviews of the code, during the modifications, also helps to improve
maintainability.

• Documentation: This is probably the most important activity to improve maintainability.
When modifications to the software are needed, software engineers familiar with the system
may not be available. The sustainment personnel will have to try to uncover errors and
implement fixes based on existing code and documentation. It is vitally important that the
software documentation accurately reflects the current state of all parts of the system including
the requirements, design rationale, architecture and design models (e.g.. UML diagrams),
coding, test cases, and test results. Documentation may be hard copy or in electronic format and
frequently embedded in tools. If the documentation ever becomes worthless, the inevitable
result is a maintenance nightmare.

There are also significant issues that must be addressed when upgrading the operational software to
new software releases. For example, answers to the following upgrading issues need to be addressed:

• Does the system architecture support isolating a subset of equipment for installing and testing a
new software release without affecting ongoing operations?

• Can the same networks be simultaneously used for test data and operational data?

• Can a test database be installed with an operational database?

• Can operations be transferred to an off-site backup facility while the new software release is
installed and tested?

• Is the backup facility a full copy and faithful representation of the operational environment?

• Are procedures in place to simultaneously maintain an earlier version of the software while the
new version is being developed? In that context, how will changes made in the version under
maintenance be incorporated in the new version being developed?

The ability to upgrade current operational systems to new software releases, without affecting
ongoing operations, must be planned to be incorporated into system requirements from the beginning.

5.26.3 Software Maintenance Plan

Adequate facilities, support software, personnel, and documentation must be available after the
development activities so that the software can be maintained in an operational and sustainable
condition. A good way to ensure all of this will be available when needed is to require the contractor
to prepare a realistic Software Maintenance Plan (SMP) relatively early during software development.
Periodic status reporting should be in place to ensure the plan is followed to accomplish the desired
sustainment environment.

Even if the details of the SMP cannot be completed during early development activities, a preliminary
draft should be prepared early to ensure the software development process contains the essential
sustainment provisions. The SMP should be revised during the development effort—especially after
key development milestones. The plan should not be allowed to become out of date or the team
responsible for the plan to become dormant. An example outline of the SMP is shown in
Table 5.26.3.

2-155

Downloaded from http://www.everyspec.com

Table 5.26.3. Example Outline of the Software Maintenance Plan

Section
No. Title

1. Introduction (Purpose, goals, and scope of the software maintenance effort)
2. References (Documents that constrain or support the maintenance effort)
3. Definitions (Defines or references all terms required to understand the plan)
4. Software Maintenance Overview (The organization, scheduling priorities, tools, techniques, resources,

responsibilities, and methods used in the maintenance process)
4.1 Organization
4.2 Scheduling Priorities
4.3 Resource Summary
4.4 Responsibilities
4.5 Tools, Techniques, and Methods

5. Software Maintenance Process (Actions performed for each phase of the maintenance process defined in
terms of input, output, process, and control)
5.1 Problem/modification identification/classification and prioritization
5.2 Analysis
5.3 Design
5.4 Implementation
5.5 System Testing
5.6 Acceptance Testing
5.7 Delivery
5.8 Risk Management
5.9 Configuration Management

6. Software Maintenance Reporting Requirements (How information will be collected and provided to members
of the maintenance organization)

7. Software Maintenance Administrative Requirements (The standards, practices, and rules for anomaly
resolution and reporting)
7.1 Anomaly Resolution and Reporting
7.2 Deviation Policy
7.3 Control Procedures
7.4 Standards, Practices, and Conventions
7.5 Performance Tracking
7.6 Quality Control of Plan

8. Software Maintenance Procedures (The procedures to be followed in recording and presenting the outputs
of the maintenance process)

5.26.4 The Software Sustainment Organization

The selected software sustainment organization may be a contractor or a government organization. In
either case, the selected maintenance organization must be able to acquire the knowledge,
documentation, support software, and data rights to the software. The software data rights issue
should have been addressed before awarding the development contract and should not wait until the
sustainment contract.

The Software Sustainment organization must have access to the same support software that was used
during software development. There will be significant cost savings to the government if the contract
specifies that support software, and other related facilities, are included in the contract rather than
attempting to acquire them after development is completed. Personnel with the specific software and
application knowledge for the system are a key element in establishing the project's maintenance
capability. A substantial portion of this knowledge can be retained if key sustainment personnel are
involved with reviews, evaluations, and test activities during the software development effort.

5.26.5 Key Software Sustainment Issues

Sustainment becomes more complicated with the increased use of COTS software products. A COTS-
intensive system may be a suite of multiple off-the-shelf components—including reuse code, legacy
code, and COTS from multiple vendors—plus custom components to achieve desired functionality.
Maintaining such a composite of software elements presents a significant software maintenance
challenge. COTS software is also discussed in SDP subparagraph 1.2.3.3 and paragraph 4.2.4.

2-156

Downloaded from http://www.everyspec.com

Table 5.26.5 is a summary of key software sustainment issues and pitfalls that are typically
encountered; the table pertains to both COTS-intensive systems and systems that are not highly
COTS dependent. Subsection 5.26 should address the planned approach for handling these issues and
the approach to avoiding the pitfalls typically encountered during the use of COTS software.

Table 5.26.5. Key Software Sustainment Issues

Issue Resolution

Parallel Testing Capability Incremental updates and development must take place without affecting ongoing
operations.

Planning for Upgrades and
Obsolescence

Funding for these upgrades must be planned for. Most COTS software products undergo
new releases every two years; old releases will eventually be unsupported

Software Data Rights Rights to the source code and documentation is essential; this issue should be resolved
before awarding the development contract.

Technology Advancement The sustainment group must create and maintain a thorough technology refresh plan.

Vendor Licenses Transition of license management tasks needs to be jointly planned in advance.
Information Assurance
Testing

System regression testing must be performed on all upgrades and patches and information
assurance requirements must be satisfied.

Design for COTS
Interchangeability

Sustainment may be impossible if the COTS vendor goes out of business The system
architecture should isolate the COTS products with minimal interfaces, rather than
intermingling COTS with developed software to facilitate replacement. Obtaining the COTS
source code (e.g., having it put in escrow) is usually not a good idea as it is almost never
adequately documented and is typically so huge that it is impossible to maintain.

Software Risk Management The sustainment organization must have the resources and capability to identify and
analyze risks and perform effective risk mitigation.

Ability to Test Software
Updates

Adequate tools, and trained expertise, must be available at the sustainment site and the
maintenance environment must support running multiple software versions

Supporting Processes Implement an effective and sufficient software fault management process, and other
supporting tasks during sustainment.

Qualified Maintenance
Personnel

Provide formal training for software maintenance personnel, efficient replacement of key
software development staff who leave, and hiring staff members experienced in managing
COTS-intensive systems.

Incomplete Software
Sustainment
Documentation

Keep software documentation up-to-date and usable Specify the delivery of a complete set
of software documentation, in sufficient detail, in the development contract. Documentation
includes text, code, models, diagrams, etc.

Ineffective Configuration
Management

An effective Configuration Management process is essential to a successful sustainment
effort The CM system must be able to handle multiple versions in support concurrently and
must maintain the exact version and configuration of the software at each operational site,
and in each computer at the operational sites. That means the CM system must track the
software version installed in each workstation and server. This is especially important during
upgrades

Version Synchronization Maintain synchronization of development versions by feeding back into the development
versions the changes made to the version being supported. If this is not performed
effectively, the result will be multiple diverging baselines of the same system with a large
cost downstream to get everything in synchronization.

2-157

Downloaded from http://www.everyspec.com

2-158

Downloaded from http://www.everyspec.com

6. Schedules and Activity Network

Every major program must have and follow a formal program management methodology by
maintaining an approved Integrated Master Plan (IMP) coupled with an Integrated Master
Schedule (IMS), or equivalent, to provide a complete schedule and activity network for all
program activities. The IMP and IMS must be maintained electronically and available through an
electronic data management system.

IMP/IMS/CWBS. The IMP and IMS must be organized by a systematic Contract Work Breakdown
Structure (CWBS) to provide a complete schedule and activity network for all program activities. The
IMS must include software activities showing the time-phased interrelationships of events and
accomplishments for software builds, and the IPTs must manage and control their respective
schedules within the IMS structure.

If the IMS is at a relatively high level, it must be augmented with lower-level detailed segment
schedules for software planning, design, development, integration, and test.

These detailed segment schedules must be maintained and monitored at the segment level with
oversight by Program Management and the CSWE. Segment schedules must be integrated with the
IMS. If any conflicts between the IMS and segment schedules occur, the IMS always prevails.

Software Schedules. The summary and detailed schedules for the software activities can be updated
weekly (or monthly) to be consistent with overall program schedules. The software development
schedules must show the details of the proposed builds and how they relate to overall program
milestones. Eventually, the software schedules should get all the way down to the "inch stones" with
tasks identified at the level of individual engineers. Typically, the schedules are prepared by "'rolling
waves" which can be for a six month period or build by build.

To properly account for software related costs, CWBS elements must be created that allow software
costs to be properly assigned to the correct categories. IPT leads and IPT software leads should status
the schedule, perform analysis and trending, identify problem areas, develop action plans, and brief
IPT management.

An overall master schedule may be included in Section 6 with the SDP submitted with the
proposal. However, once the contract starts, the schedules, especially the detailed software
schedules, are typically updated so frequently that they should only be referenced in SDP
Section 6.

Software Activity Network. The SDP should include, or reference, an activity network depicting
sequential relationships and dependencies among software activities, and identify those activities that
impose the greatest restrictions on the project. The activity network identifies the critical path. If any
part of the software development is on the segment or program critical path, then additional
management attention is needed to address the issue.

2-159

Downloaded from http://www.everyspec.com

2-160

Downloaded from http://www.everyspec.com

7. Project Organization and Resources

This section of the SDP must describe the organizational structure to be used on the project,
including the contractor team members involved, their relationships to one another, the authority and
responsibility of each organization for carrying out required activities, and the resources to be applied
to the project. In accordance with TOR-3537B. there must be two subsections:

• 7.1 Project Organization

• 7.2 Project Resources

7.1 Project Organization

An overview of the program organization structure must be provided in this subsection. A top level
view of the software organization, and an overview of the Software Items, was recommended earlier
to be included in SDP subsection I. I (see Figure l. I). Since subsection 7.1 is focused on the "project"
organization, it must contain a project organization chart showing the relationship of the software
organizations to the overall program. This subsection can include references to the software team
responsibilities table (see Table 3.3) and the build delivery plan table (see Table 5.1.1.3). Figure 7.1 is
an example of an overall organization chart with an emphasis on the software elements. The program
organization should facilitate software management visibility and software technical oversight.

XMPL Program
Management

Configuration
Management

Chief Software
Engineer

r^=n
Software

Configuration
Management

SEPG

Chief Network
Architect

I
System Engineering IPT

Business Operations

Subcontract Management

Mission Success

I
 i_

Product
Assurance

Chief Software
Architect

Software
Product

Assurance

Space Segment IPT

Chief
Software
Engineer

System
Engineering IPT

Simulation IPT

Test and
Integration IPT

Ground Segment IPT

Chief
Software
Engineer

Launch
Support IPT

Spacecraft IPT

Payloads IPT

Chief
Software
Engineer

Data Processing
IPT

C4I IPT

Field Terminals
IPT

Figure 7.1. Overall Program Organization—Example

The overall organization, responsibilities, and management approach must be described in the
Integrated Master Plan (IMP). The Integrated Management Schedule (IMS) must provide program
level schedules, timelines and required resources. The program management and Integrated Process

2-161

Downloaded from http://www.everyspec.com

and Product Development (IPPD) process must establish a clear structure and unambiguous
responsibility for program participants. The Contract Work Breakdown Structure (CWBS) must
subdivide the program into clearly defined, tracked and manageable discrete tasks. Contractual work
assignments, based on the IMP, IMS, IPPD, and WBS are the basis for the formal relationship among
the customer, the prime contractor, and the subcontractors. Each contractor should be responsible for
software at the software item (SI) level.

Integrated Product Teams. The most effective organizations consist of a hierarchy of Integrated
Product Teams (IPT). The IMP should identify responsibilities for the IPTs. The contract should
identify key personnel and their responsibilities during software planning, development, test, and
deployment. The IMP should designate software responsibilities through identification of program
events, planned accomplishments, and acceptance criteria for the accomplishment.

IPTs are the basic performing organization. They have resources and authority to deliver products and
execute processes. The IPT is essentially a matrix organization, assembled from members of the
applicable engineering disciplines to manage the design, development, production, and support of a
product system. The team organization is normally consistent with the product hierarchy as defined in
the CWBS, with each CWBS element the primary responsibility of a single IPT. This allows IPTs to
identify clear and measurable outputs and necessary interfaces and it facilitates the flowdown of
requirements to the IPTs.

Software Engineering Process Group (SEPG). Software development activities span
organizational, administrative, geographic, and functional boundaries. The SEPG is an important
organizational element as it ensures consistent implementation of the software development processes
and production of compatible software products. Responsibilities include planning, managing, and/or
coordinating with: Software Configuration Management (SCM); Software Quality Assurance (SQA);
corporate SEPG support; software training; the CCB and SW/CCB; the IPTs to improve development
processes and training; and coordinating, developing, and maintaining internal software work
instructions and procedures (see subsection 5.25 for details on SEPG functions).

7.2 Project Resources

The resources that must be covered in this section cover: key personnel, including staff-loading, skill
levels and responsibilities; developer facilities including geographic locations of team members;
acquirer-furnished equipment; and other required resources needed for the program.

7.2.1 Personnel Resources

Documentation of the software organization must include key supporting roles, including the
Chief Software Engineer (CSWE), Software Process Engineer/Lead, Software Configuration
Management (SCM) Lead, Software Quality Assurance (SQA) Lead; IPT software leads, Software
Integration and Test Lead, SI Leads, Software Engineers, Software Subcontract Management, and
data management. Roles and responsibilities for the major development activities were discussed in
SDP subsections 5.5 through 5.9. In addition, the tables in Appendix A of this Guidebook contain
example summaries of roles and responsibilities for the key software engineering skill groups.

7.2.1.1 Chief Software Engineer

A key element of success, for a software-intensive program, is the establishment of an effective and
proactive CSWE team. It is generally understood that the quality of a software product is directly
related to the process used to create it—and the CSWE is the core of the process.

2-162

Downloaded from http://www.everyspec.com

The CSWE should be accountable to, and report directly to the program manager, or to the
System Engineering manager, and is the primary point of contact with the Program Office for all
software matters across the program. (In some programs, this responsibility may be shared with a
Chief Software Architect). The CSWE should be a voting member of the appropriate control boards
and the risk management board. Table 7.2.1 is an example list of responsibilities the CSWE team
typically has for software oversight as well as process guidance.

Table 7.2.1. Chief Software Engineer Team Responsibilities—Example

Chief Software Engineer - Software Development Oversight Responsibilities
Reviewing the definition of software elements, or subsystems needed to satisfy requirements
Reviewing of high level software architecture guidance to be used in development of software implementing details
through design reviews and technical exchange meetings
Reviewing of software baseline implementation and subsequent changes
Assessing and guiding the IPTs/teammates SCM requirements, build approach, and implementation
Assessing the methods used to transition new builds into the operational baseline
Selecting program tools, developing program-level training
Oversight of architecture development and data architecture, including the database management system, file system
implementations, and support tools to ensure successful execution
Assessment validation and verification approaches and segment operability
Reviewing segment timeline performance analysis
In concert with the SEPG, collecting and consolidating metrics from the IPTs
Analyzing metrics across the program and providing metric summaries and recommendations
Reviewing and approving software plans, specifications, test procedures, and test results
Definition and oversight of software IV&V activities
Technology insertion planning and review

Chief Software Engineer - Software Process Oversight Responsibilities
Developing the Program-wide SDP, and monitoring for compliance by the IPTs/teammates
Reviewing software implementation processes to ensure compatibility with goals of high quality, cost effective
architecture development
Defining and implementing the program's Quantitative Management Plan
Assessing cost, schedule, technical and management risk of all software IPTs/teammates
Sustaining all program level common software tools
Chairing the SEPG and the Software Configuration Control Board (SW/CCB)

Chief Software Engineer - Software Support to SEIT
Participating, assessing, and approving requirements allocations and decompositions to software elements, domains,
or subsystems
Assisting the SEIT in trade studies and margin assessments related to software
Reviewing and approving subcontracts requiring software development or purchase of software

7.2.1.2 Staff Loading

The required time-phasing of software development personnel is normally documented in the
program's Earned Value Management System (EVMS) database. EVMS is the basis for monthly
software cost/schedule reporting and tracking for each WBS element. Software staffing varies during
the program from an initial build-up to a peak and then a gradual decline as the majority of the
software effort is completed. An estimated staff-loading chart must be included in this subparagraph
of the SDP and Figure 7.2.1.2 is one example of how it may be depicted.

It is the responsibility of the acquisition team, as well as the contractor, to analyze the software
planning to ensure its executability. The size of the software task, the schedules in place, and the
planned staff loading must form an executable software development effort across all the software
team members.

2-163

Downloaded from http://www.everyspec.com

22

20

18

S 16

I 14
o
i 12
a.
«•-
o
i_
a>
n
£
3

10

8

6

4

2

0

- 1 D 1 1
MgtSWE l&T Sup

- 1-1

2010 2011 2012 2013 2016 2017 2018 2019

Mgt = Software Management
l&T = Integration and Test

SWE = Software Engineering
Sup = Support (SQA, SCM. DM,etc.)

Figure 7.2.1.2. Estimated Software Staff-Loading—Example

7.2.1.3 Skill Levels

A breakdown of the planned skill levels, geographic locations of the skills needed, and the security
clearances of personnel performing the work are all required by TOR-3537B and J-16. The software
leads typically estimate and maintain the staffing profiles and work effort loading distributions. This
data is reported in the Cost Analysis Requirements Description (CARD) document. Table 7.2.1.3 is a
tabular example of how to show the skill level requirements, by company and by software function.
Security-related information should also be discussed.

Table 7.2.1.3. Estimated Skill Levels By Location and Function—Example

Able Corporation

Anytown, CA Skill Level
Eng1 Eng 2 Eng 3 Ted Tec 2 Tec 3 Total

Software Engineering 3 10 12 2.5 1.5 0 29
Software Quality Assurance 1 1 2 0 0 .2 4.2
Software Configuration Mgt 1 2 2 0 .5 0 5.5
Software Testing 1.5 1.4 1.1 .4 .2 .2 4.8
Software Management 2 2 .5 0 0 0 4.5

Total Staff: 8.5 16.4 17.6 2.9 2.2 .4 48
Skill Level Skill Level Definitions
Engineer 1 Senior Level with 13 or more years experience and...
Engineer 2 Mid-Level with 3-12 years experience and...
Engineer 3 Entry level with 0-2 years experience and...

Technician 1 An expert in their discipline with 13 or more years experience and...
Technician 2 Emerging authority with 8 or more years experience and...
Technician 3 Entry level to experienced with an advanced degree and...

2-164

Downloaded from http://www.everyspec.com

7.2.2 Development Facilities

An overview of developer facilities to be used, including geographic locations in which the work will
be performed, facilities to be used, secure areas, and special features of the facilities applicable to the
contract are all required by TOR-3537B. In addition, software development activities taking place at
each location should be identified. Table 7.2.2-1 is an example of a simple table showing the team
members, their locations, and their corresponding software responsibilities.

Table 7.2.2-1. Team Locations and Software Activities—Example

Company Location Software Development Activities

Able Corp. Anytown, CA Program Management; Mission Planning; Test and Integration
Baker Co. Somewhere NJ Payload Management; Ground Systems; Common Services
Charlie Co. Metropolis, MD Network Management; Operations Management
Delta Corp. Goodtown, PA Security Management; Resource Allocation
Epsilon Co. ' Smalltown, CO Spacecraft Control; Satellite Network
Gamma Co. Someplace, AZ Operations Management; Data Services

A companion table should be used to summarize the facilities allocated to the program at each team
location for software development. Table 7.2.2-2 is an example of a simple table that is a breakdown
of the square feet for office space and lab space allocated for software development. The Software
Engineering Environment (SEE) was covered in SDP subsection 5.2 and Table 5.2.1-2 covered the
major facilities, however, Table 7.2.2-2 should have more detail regarding facilities. There should be
a clear mapping between the SEE in SDP subsection 5.2 and the development facilities identified in
paragraphs 7.2.2, 7.2.3, and 7.2.4. In addition, the development environment hardware and tools
should be mapped to each facility location.

Table 7.2.2-2. Facilities Allocation—Example

Total Assigned Office Lab
Company Location Sq. Ft. Sq. Ft. Sq. Ft. Sq. Ft.

Able Corp Anytown, CA 500,000 150,000 120,000 30,000
Baker Co. Somewhere, NJ 450.000 50,000 40,000 10,000
Charlie Co. Metropolis, MD 65,000 15,000 10,000 5,000
Delta Corp. Goodtown, PA 80,000 20,000 15,000 5,000
Epsilon Co. Smalltown, CO 10,000 6,000 5,000 1,000
Gamma Co. Someplace, AZ 12,000 3,000 2,500 500

Total Square Feet 1,117,000 244,000 192,500 51,500

7.2.3 Government Furnished Equipment, Software and Services

This paragraph must contain an identification of Government Furnished Equipment (GFE), software
services, documentation, data and facilities required for the contract effort. In most cases, the details
are not contained in the SDP but coordinated and documented by contracts and listed in a separate
document. A GFE summarization table can be included in the SDP. Additions and deletions to the
GFE list should be reviewed and approved by program management and key technical personnel prior
to approval.

7.2.4 Other Required Resources

In addition to personnel resources, facilities and GFE, the timely definition and deployment of key
physical resources are required to successfully execute the program. The Master Facilities Plan

2-165

Downloaded from http://www.everyspec.com

should define facilities requirements for the program. Examples of key physical resources that may
need to be developed and provided by the contracting team(s) are:

Communication capabilities for the secure exchange of sensitive and classified information
among the contracting teams and the government

Contractor software development facilities including desktop computers, networks, and the
software engineering environment (SEE) including tools

Mission Simulation System facilities for the development of simulation software

A flight and pay load software vehicle simulator test bed for high-fidelity simulations of on-
orbit satellites

Spacecraft bus and payload Software Development Facility for end-to-end flight software
testing

Backup storage facilities for disaster recovery

7.2.5 Software Training Plans (Optional)

This paragraph is not required by TOR-3537B or J-16 but is highly recommended since training
resources, specifically the funds allocated to provide an adequate training program, is often under-
funded or even neglected. Program Training Plans must be developed to address software training
needs. The training plans should be developed, maintained, and monitored by training coordinators
and/or software process leads in coordination with IPT software leads.

The plans should address program specific technical and process training, identify training
requirements by job category, provide for a waiver procedure, and require training records to track
completion. Training plans should go all the way down to individuals, including the training they
have already had, what training they still need to take, and when they are scheduled to take it. The
SDP, or a separate training plan if one is produced, should make a clear distinction between:

• Basic training provided by the contracting organization that is funded by that organization

• Program-specific training provided under contract funding

Contractors are responsible for staffing the program with qualified people and for providing program
specific technical and process training. Each organization must develop coordinated plans to
implement training in accordance with its organizational practices. Program-specific training should
include:

• An introduction for new employees on the program

• Technical and management oversight

• A summary of the processes and methodologies used

• Where information may be obtained

• The instruction required for the efficient use of COTS products and development tools

The IPT leads and IPT Software Leads, assisted by their respective functional staffing manager,
should provide training guidance to their staff. This may include suggestions for either technical
enhancement or career development training. Periodic lists of upcoming training classes should be
provided by the training coordinators to program personnel. When necessary, the program should
request training from the training organization to achieve specific training requirements.

2-166

Downloaded from http://www.everyspec.com

8. Notes

Section 8 of the SDP must include general information that aids in the understanding of the SDP or
long tables that may interfere with efficient reading of the SDP. To be compliant with TOR-3537B,
Section 8 must include all acronyms used in the SDP, including abbreviations and what they mean,
plus a list of definitions or terms used. The tables below show examples of:

• Software Acronyms used in the SDP (Table 8.1)

• Software-Related Definitions to clarify meanings of the terms used in the SDP (Table 8.2)

• A list of work instructions and procedures, external to the SDP, that defines "how" to do it as
opposed to the SDP that is focused on "what" is done and who does it (Table 8.3)

Table 8.1. Acronyms—Example

Acronym Definition

API Application Programming Interface
APO Acquisition Program Office
BAR Build Architecture Review
BOE Basis of Estimate
BTR Build Turnover Review (or PTR or TER)
CAP Corrective Action Plan
CAIV Cost As An Independent Variable
CARD Cost Analysis Requirements Document
CASE Computer Aided Software Engineering
CBA-IPI CMMbM-Based Assessment- Internal Process Improvement
CCB Configuration Control Board
CCR Critical Computer Resource
CDD Capabilities Development Document
CDR Critical Design Review
CDRL Contract Data Requirements List
CIP Contract Implementation Plan
CM Configuration Management
CMMIb• Capability Maturity Model - Integrated
CMP Configuration Management Plan
COM Computer Operation Manual

Etc.

Table 8.2. Software-Related Definitions—Example

Glossary Definition

Algorithm Software Operational Algorithm Code - Algorithm code that has been verified to meet all functional and
performance requirements for data quality, timeliness, and execution within the architecture

Algorithm Team Interdisciplinary team of scientific and engineering personnel assigned to the verification,
development, and testing of a specific set of algorithms. Responsibilities include technical
resolution of data quality or timeliness requirements issues.

Baselines Software baselines describe a particular version of software (e.g., increment, build, or release)
and consists of a set of internally consistent requirements, design, code, build files, and user
documentation. A requirements baseline includes an SRS under CCB control.

Delivery The process of providing a software product that is ready for acceptance by a higher-tier
organization for the purpose of fulfilling a contractual requirement.
Etc.

2-167

Downloaded from http://www.everyspec.com

Table 8.3 is an example list of Work Instructions and Operational Procedures that may be used by
developers while implementing the processes defined in the SDP. These are "how to" instructions.
This list should be provided in the SDP as a reference, however, the SDP generally requires
government access to all the Work Instructions and Operational Procedures to be used by the software
contractors and their subcontractors.

Table 8.3. Work Instructions and Procedures—Example

Work Instruction Number Work Instruction Name 1
IIIIIIII IM MM* Action Item Processing

Build Architecture, Planning and Review It It H It tlltll It It H
Change Control Process
Code and Unit Test Planning and Reporting
Configuration Management—Audits and Reports
COTS Baseline Management
COTS Product Evaluations
Critical Design Reviews
Delivery of SDRL Items
Delphi Estimation Technique
Deviations and Waivers
Disaster/Backup Storage
Electronic Data Management
External Communication

EXAMPLE Formal Reviews
Integration Readiness Review

LIST OF Recording Meeting Minutes
Requirements Review and Specification Generation

WORK INSTRUCTIONS Schedule Development, Approval, and Maintenance
Software Build Release Review

AND Software Configuration Control Board
Software Design

OPERATIONAL Software Development Folder (SDF)
Software Disaster Recovery

PROCEDURES Software Document Review and Approval
Software Engineering Notebook (SWEN)
Software Integration and Checkout
Software Integration and Test
Software Measurements
Software Peer Reviews
Software Planning
Software Process Documentation
Software Status and Progress Reporting
Software Requirements
Software Size Effort Estimation
Software Test Cases
Software Test Procedures
Software Test Reports
Software Unit /Component Test
SQA Process Evaluation and Quality Records
SQA Product Evaluation
SQA Training
Test Tool Validation
Etc.

2-168

Downloaded from http://www.everyspec.com

Part 3. Additional SDP Guidebook Information

The following Additional Guidebook Information (AGI) to this SDP Guidebook is not intended to be
an integral part of an SDP. The recommended contents of a program-level SDP are described in
Part 2 of this Guidebook. The purpose of the following additional information is to make the SDP
Guidebook more useable and to support the principal objectives of the Guidebook including assisting
acquisition agencies in evaluating SDPs, providing guidance to contractors in preparing and updating
their SDPs, and describing the systematic steps of the software development process lifecycle.

• AGI-1: Software Roles and Responsibilities

• AGI-2: Bibliography

• AGI-3: Software Related Definitions

• AGI-4: Software Acronyms

• AGI-5: Subject Index to the SDP Guidebook

3-1

Downloaded from http://www.everyspec.com

3-2

Downloaded from http://www.everyspec.com

AGI-1. Software Roles and Responsibilities

Tables AGI-l through AGI-11, summarize the roles and responsibilities for the following
software engineering skill groups:

Chief Software Engineer (Table AGI-1)

Segment Chief Software Engineer (Table AGI-2)

Software Process Lead (Table AGI-3)

IPT Software Lead (Table AGI-4)

IPT Software Integration and Test Lead (Table AGI-5)

Software Item Lead (Table AGI-6)

Software Engineer (Table AGI-7)

Software Test Engineer (Table AGI-8)

Software Configuration Management (Table AGI-9)

Software Quality Assurance Management (Table AGI-10)

Software Subcontract Management (Table AGI-11)

The information in these tables is presented as an example of software roles and responsibilities—
they are not intended to limit an individual's responsibilities. The intent is to define a minimum set of
responsibilities and how various individuals interact to facilitate consistency across a program. Tables
like these could be included in, or referenced by, the various SDP sections, subsections, paragraphs,
and subparagraphs where the listed software engineering roles and responsibilities are performed.
SDP subsections 5.5 through 5.9, the core of the software development process, also contains
summary lists of roles and responsibilities.

3-3

Downloaded from http://www.everyspec.com

Table AGI-1. Roles and Responsibilities of the Chief Software Engineer—Example

Roles Responsibility

Chief Software Engineer Provide software oversight and insight across the program
Lead and coordinate system software activities
Report overall software status to program management
Empowered to work software problems at any level
Run and prepare (if applicable) Software Management Reviews
Recommend award fee score for software subcontractors

SEPG SEPG Chair
SDP Key contributor, reviewer, and approver
Software Appraisal Prepare for and support appraisal
Work Instructions and
Procedures

Review all work instructions, procedures, and local processes

Planning System level software planning
Review all software schedules for consistency across program

Cost/Schedule Reporting Review software IPT information
Requirements Review and assess software requirements across the program
Architecture Design Review/assess software architecture design across the program

Contributor, reviewer, and approver of system architecture
documents

Risk Management Represents software at the Risk Management Board
Software Test Review and assess software test plans, procedures, and reports

across the program
Software Metrics Consolidate metrics from IPTs into program level metrics

Analyze metrics for trends across program
Facilitate program and IPT level action in response to metrics
Coordinate definitions of metrics and measurements

Problem Reports Address problems that span IPTs and system interfaces
Address problems that affect functional performance

Review Boards Engineering Review Board (ERB)
Segment IPT Software Configuration Control Board as needed
Program Configuration Control Board (CCB)

Also see SDP subparagraph 7.2.1.1 for a description of responsibilities for the Chief Software
Engineer's team.

3-4

Downloaded from http://www.everyspec.com

Table AGI-2. Roles and Responsibilities of the Segment Chief Software Engineer—Example

Roles Responsibility

Segments Chief Software
Engineer

Provide oversight and insight into the ground segments or space
segment (as applicable) software activities
Lead and coordinate the segment's software activities
Report the segment's software status to chief software engineer
and program management
Empowered to work software problems at any level within the team
Prepare for and support Software Management Reviews

SEPG Member
SDP Key contributor and reviewer
Software Appraisal Prepare for and support appraisal
Work Instructions and
Procedures

Review work instructions, procedures, and local processes

Planning Perform segment level software planning
Review software schedules for consistency across program

Cost/Schedule Reporting Review the segment's IPT information
Requirements Review and assess software requirements across the segment
Architecture Design Contribute, review, and assess software architecture/design across

the segment
Risk Management Represents segment software at the Risk Management Board as

required
Identify, assess, mitigate, monitor, and close software risks

Software Test Review and assess software test plans, procedures, and reports
across the segment

Software Metrics Consolidate metrics from the segment's IPTs into program level
metrics
Analyze metrics for trends across the segment's software items
Facilitate program and IPT level action in response to metrics
Coordinate metric definition

Problem Reports Address problems that span the segment's IPTs
Address problems that span system interfaces
Address problems that affect functional performance

Review Boards Lead the segment's IPT SCCBs
Member of the program SCCB

3-5

Downloaded from http://www.everyspec.com

Table AGI-3. Roles and Responsibilities of the Software Process Lead—Example

Roles Responsibility
Software Process Lead
or
Software Process
Engineer

Software process owner; responsible for defining and maintaining the
program's software process captured in the SDP
Represent the program with corporate SEPG
Plan and coordinate software training

SEPG SEPG Administrative Chair
Chair forum for review and concurrence of software work
instructions/ procedures
Chair horizontal coordination of software work instructions/procedures
across IPTs

SDP SDP owner
Software Appraisal Lead software appraisal preparation effort and customer interface

(customer may perform the assessments)
Work Instructions and
Procedures

Plan and coordinate procedure development

Planning Owner of program-common software procedures
Review and concur with work instructions/procedures that implement
the processes called out in the SDP

Cost/Schedule
Reporting

Content and format
Review software process cost schedule tracking

Requirements Reviewer
Architecture Design Reviewer
Risk Management Maintains the program software risk mitigation plan
Software Test Reviewer
Software Metrics Content and format

Reviewer
Problem Reports Reviewer

Elevate problem trends to corporate SEPG
Training Ensure development and maintenance of Program Training Plan

3-6

Downloaded from http://www.everyspec.com

Table AGI-4. Roles and Responsibilities of the IPT Software Lead—Example

Roles Responsibility

IPT Software Lead

Lead and coordinate segment software activities
Report IPT software status to IPT leader
Advise, coach, and resolve conflicts within the IPT software team
Prepare for and support Software Management Reviews

SEPG Member
SDP Key contributor, reviewer, and stakeholder
Software Appraisal Prepare for and support appraisal
Work Instructions and
Procedures

Ensure work instructions/procedures are followed

Planning IPT level software planning
Responsible for segment software bidding information

Cost/Schedule Reporting

Manage IPT software baselined schedule
Manage IPT software budget (if not allocated to the SI level)
Capture earned value (if budget held at this level)
Consolidate SI earned value into IPT software earned value
Note: budget must be portioned to Sis and earned value collected
at the SI level

Requirements Support allocation of requirements to Sis
Architecture Design Provide technical guidance on trade studies, systems engineering,

design, and vendor selection
Risk Management Identify, assess, mitigate, monitor, and close software risks
Software Test Provide technical guidance on integration and testing

Software Metrics

Consolidate metrics from Sis into IPT level metrics
Collect IPT level metrics
Analyze metrics for trends across IPT
Facilitate IPT level action in response to metrics

Problem Reports Track software problems and ensure problems are resolved by
due date

Review Boards Segment IPT SCCB chair

3-7

Downloaded from http://www.everyspec.com

Table AGI-5. Roles and Responsibilities of the IPT Software Integration and Test Lead—Example

Roles Responsibility

IPT Software Integration
and Test Lead

Ensure software meets the requirements defined in the SRSs
Ensure IPT Sis collectively meet the segment specification (as
appropriate)
Perform SI integration

SEPG Member

SDP Reviewer

Software Appraisal Prepare for and support appraisal

Work Instructions and
Procedures

Prepare test specific work instructions/procedures

Planning IPT level software integration and test planning

Cost/Schedule Reporting SI earned value review; IPT software earned value, cost, schedule
Risk Management Identify, assess, mitigate, monitor, and close software risks

Software Test

Coordinate integration and testing between software teams
Owner of segment software integration sequence, integration test
plans, threads, cases, and procedures
Integration test lead
Review and approve integration test results

Software Metrics
Collect and report software integration and test metrics
Analyze metrics and take appropriate action

Problem Reports Record and track problems

Review Boards Segment IPT SCCB member

3-8

Downloaded from http://www.everyspec.com

Table AGI-6. Roles and Responsibilities of the Software Item Lead—Example

Roles Responsibility

Software Item Lead Lead and coordinate the SI software activities
SEPG Member
SDP Reviewer
Software Appraisal Prepare for and support appraisal
Work Instructions and
Procedures

Implement work instructions/procedures

Planning Perform SI level software planning

Cost/Schedule Reporting

Manage SI software team based on baselined schedule
Manage SI budget (if not held by the IPT software lead)
Capture earned value (if budget held at this level)
Report schedule status to IPT software lead

Requirements
Allocate requirements to lower level and higher level SUs
Assign SUs to software engineers

Architecture Design
Oversee Sl-level architecture design
Coordinate inter-SI interface design
Verify SU design meets SI requirements

Risk Management Identify, assess, mitigate, monitor, and close software risks

Software Test
Review SU testing for SI integration
Develop SI test plans/procedures for SI integration

Software Metrics
Collect and report SI metrics
Analyze metrics and takes appropriate action

Problem Reports Assign problems to software engineers

3-9

Downloaded from http://www.everyspec.com

Table AGI-7. Roles and Responsibilities of the Software Engineer—Example

Roles Responsibility

Software Engineer Development and test of individual SUs

SEPG Participate as needed

SDP Understand and follow

Software Appraisal Prepare for and support appraisal as needed

Work Instructions and
Procedures

Implement work instructions/procedures

Planning SU level software planning

Cost/Schedule Reporting Schedule/report SU activities

Requirements Define/derive SI requirements and interfaces for assigned tasks

Architecture Design Design and develop assigned SU architecture

Risk Management Identify, assess, mitigate, monitor, and help close software risks

Software Test Code and unit tests assigned SUs
Perform SI integration and test

Software Metrics Collect SU level information and provides to SI lead

Problem Reports Work assigned problems

3-10

Downloaded from http://www.everyspec.com

Table AGI-8. Roles and Responsibilities of the Software Test Engineer—Example

Roles Responsibility

Software Test Engineer Perform verification of software requirements

SEPG Participate as needed

SDP Understand and follow

Software Appraisal Support appraisal as needed

Work Instructions and
Procedures

Implement work instructions/procedures

Planning SI qualification test planning

Cost/Schedule Reporting Schedule/report SI qualification test activities

Requirements Test software to meet requirements

Risk Management Identify, assess, mitigate, monitor, and help close software risks

Software Test Develop, dry run and execute test procedures test cases, test
data, databases, test drivers, scripts, etc., and report results

Software Metrics Collect SI qualification test information and provide to SI test lead

Problem Reports Work assigned problems

3-11

Downloaded from http://www.everyspec.com

Table AGI-9. Roles and Responsibilities of the Software Configuration Management—Example

Roles Responsibility

Software Configuration
Management

Establish software baselines; identify items to be placed under
software CM control; manage changes to items under software CM
control
Perform baseline status accounting
Perform subcontractor software baseline library audits
Manage COTS software and changes to COTS software in the
development environment and in operational software

SEPG Member

SDP Contributor, reviewer, and approver

Software Appraisal Prepare for and support appraisal

Work Instructions and
Procedures

Author SCM specific work instructions/procedures

Requirements Establish requirements baseline

Architecture Design Establish architecture design baselines

Software Test Build test software from source code and provide configured
software for testing

Software Metrics Collect and report problem report metrics

Problem Reports Track problems

Review Boards Administer local Segment IPT SCCB

3-12

Downloaded from http://www.everyspec.com

Table AGI-10. Roles and Responsibilities of the Software Quality Assurance Management—Example

Roles Responsibility

Software Quality
Assurance Management

Monitor compliance with program and corporate processes and
standards
Report to the program Product Assurance manager
Report status and findings to SI lead, IPT software lead, chief
software engineer, software process lead, IPT leads, and program
manager
Perform subcontractor software quality assurance system audits

SEPG Member

SDP Contributor and reviewer; SQA Lead is an approver

Software Appraisal Prepare for and support appraisal

Work Instructions and
Procedures

Author SQA specific work instructions/procedures

Requirements Audits requirement baseline

Architecture Design Audit design baseline
Risk Management Identify, assess, mitigate, monitor, and help close software risks

Software Test
Audit configured software
Witness testing where requirements are verified

Software Metrics Collect and report audit metrics and SQA non-compliance metrics

Problem Reports Close the SQA non-compliance reports

Review Boards Segment IPT SCCB member

3-13

Downloaded from http://www.everyspec.com

Table AGI-11. Roles and Responsibilities of the Software Subcontract Management—Example

Roles Responsibility

Software Subcontract
Management

Technical subcontract aspects of a software subcontract
Function similar to an IPT software lead over the subcontract
scope
Participate in peer reviews
Perform software subcontractor oversight
Approve all SDRLs as called out in the contract

SEPG Member

SDP Contributor, reviewer, and stakeholder

Software Appraisal Prepare for and support appraisal

Work Instructions and
Procedures

Review and concur with software Work Instructions or Procedures
from subcontractor

Planning Review and concur with subcontractor's SDP Annex and other
software-related plans

Cost/Schedule Reporting Review software subcontractor cost and schedule performance
against baseline

Requirements
Responsible for requirement flowdown to software subcontractor
Review and concur with software subcontractor SRS(s) and
IRS(s),

Architecture Design Review and concur software subcontractor's Software Architecture
Description, SDD(s), IDD(s), and DBDD(s)

Software Test Review and concur software subcontractor test approach, plans,
and results

Software Metrics Review all software metrics and ensure subcontractor takes
corrective action when indicated by the metrics

Problem Reports Address problems that affect functional performance

Review Boards Participate in software subcontractor SCCB(s)

3-14

Downloaded from http://www.everyspec.com

AGI-2. Bibliography

Mandatory Implementation of Software Acquisition Process Improvement (SWAPI), Department of
the Air Force, Memorandum for SMC-ALL, 22 March 2005.

Practical Software Measurement; Objective Information for Decision Makers. McGarry, J., Card, D.,
Jones. C, Layman, B., Clark, E., Dean, J., and Hall, F.. Addison Wesley. October 2001.

Revitalizing the Software Aspects of Systems Engineering. Under Secretary of the Air Force.
SAF/AQ Policy Memo 04A-003. 20 September 2004.

Software Acquisition Process Improvement Instruction. Space and Missile Systems Center
Instruction 63-103. 1 December 2006.

Software Acquisition Instruction, Space and Missile Systems Center, Instruction 63-104, 28 June
2006.

Software Acquisition Management Plan (SWAMP) Preparation Guide, Eslinger, S., Gechman, M.,
Harralson, D., Holloway, L., and Sisti, F., The Aerospace Corporation Report TOR-2006(1455)-
5743, 29 December 2006.

Software Development Standard for Space Systems, Adams, R., Eslinger, S., Hantos, P.. Owens, K.,
Stephenson, L., Tagami, J., and Weiskopf, R., The Aerospace Corporation Report TOR-2004(3909)-
3537, Rev. B, 11 March 2005. This standard was also republished as SMC Standard SMC-S-012. 13
June 2008.

Software Engineering—Software Measurement Process. International Organization for
Standardization/International Electrotechnical Commission, ISO/IEC 15939, August 2007.

Software Measurement Standard for Space Systems. Abelson. L.. Eslinger. S.. Gechman. M.. Korzec,
K., LeDoux, C, Lieu, M., The Aerospace Corporation Report TOR-2009(8506)-6, 5 May 2011.

Standard for Information Technology; Software Life Cycle Processes; Software Development
Acquirer—Supplier Agreement, EIA/IEEE Interim Standard, J-STD-016-1995, September 1995.

Technical Reviews and Audits for Systems, Equipments, and Computer Software, Space and Missile
Systems Center Standard, SMC-S-21. 15 September 2009.

The Collaboration of Software and System Engineering, Gechman, M., The Aerospace Corporation
Report TOR-2010(1475)-5, 27 June 2011.

3-15

Downloaded from http://www.everyspec.com

3-16

Downloaded from http://www.everyspec.com

AGI-3. Software-Related Definitions

Note: Definition of terms contained in TOR-3537B are not repeated in this table.

Glossary Definition
Algorithm
Configuration
Control Board

The ACCB is an interdisciplinary team of scientific and engineering personnel responsible
for the approval and disposition of algorithm acceptance, verification, development and
testing transitions.

Algorithm
Software

Operational Algorithm Code - Algorithm code that has been verified to meet all functional
and performance requirements for data quality, timeliness, and execution within the
architecture.

Algorithm Team Interdisciplinary team of scientific and engineering personnel assigned to the verification,
development, and testing of a specific set of algorithms Responsibilities include technical
resolution of data quality or timeliness requirements issues.

Baselines Software baselines describe a particular version of software (e.g., increment, build, or
release) and consists of a set of internally consistent requirements, design, code, build
files, and user documentation. A requirements baseline includes an SRS under CCB
control.

Delivery The process of providing a software product that is ready for acceptance by a higher-tier
organization for the purpose of fulfilling a contractual requirement.

Element A configuration item within a segment, consisting of integrated hardware and software. For
the IDPS and C3S, an example of an element is a relocatable terminal; for the Space
Segment, an example is a sensor payload.

Element (or
Factory)
Qualification
Test

A set of formal criteria, such as a procedure, whose execution satisfies a set of
requirements agreed to by an authorizing agency EAT or FAT is performed at the
contractor's software development facility.

Heritage A previous baseline or baselines that current software may be based on.
Increment A defined pass through the program lifecycle, including a sequential set of software

lifecycle activities; may include multiple planned software builds
Incremental
Model

The incremental lifecycle model is a multi-build model. Software requirements analysis and
architectural design, plus initial detailed design, code, integration, and test are completed
in the first build. Additional capabilities are added in subsequent builds through detail
design, code, integration, and test activities. This model supports delivery of an interim
capability prior to the final software delivery.

Integration and
Test (l&T)

Combines tested entities into the next higher entity (e.g., lower level SUs into higher level
SUs), then tests the interactions between entities to verify the entities work correctly with
each other, in accordance with test plans. Also verifies processes (e.g., tasks) synchronize
correctly with processes in other components.

Legacy The extent to which software may impact future programs or other software by nature of
functionality or problems that may be introduced.

Modified Code Code that has been previously constructed, and is being reused with modifications See
Reuse software.

Module A text file containing source lines of code (SLOC). In C++ this is generally a single class
Qualification Testing that is performed in an environment functionally equivalent to the target

environment and is intended to verify and validate all software requirements. Software Item
Qualification Testing (SIQT) is done prior to acceptance testing. SIQT is a precursor to
system/spacecraft-level test.

Release The distribution of a new product or new function and fixes for an existing product There
are three tvDes: 1) Document Release - after approval of a document bv the CCB. the
Data Center releases the document and posts it as a replacement of previous versions; 2)
COTS or Re-use Release - an update to a product from the vendor. If, after review of the
update, the updated product is accepted for further development, it is released to
development; 3) Software Release - distribution of new versions of software to integration
that include approved and tested changes

Reuse Reuse is any product which has been previously constructed and is utilized partially or
completely, in the current development.

Reuse Software Software is designated as "reuse software" if it has been previously constructed and is
utilized, partially or completely, in the current development with less than 30 percent
design breakage. If there is 30 percent or more design breakage, the software is
considered "new."

Satellite The spacecraft bus plus payload; synonymous with space segment.

3-17

Downloaded from http://www.everyspec.com

Glossary Definition
Segment The collection of all Software Items and associated Hardware Items for each segment.
Software
Engineering
Notebook
(SWEN)

A repository of program-unique information that provides an organized method of
communicating technical information and providing a repository for historical data.

Sub-build Development of a subset of the requirements allocated to a build A sub-build goes
through integration and test. Sub-builds follow the build process through integration and
test, but not SIQT or beyond.

Tailoring A process by which company software standards are mapped to the program's common
software development process to ensure that the company requirements are being met by
the program's common process or to waive specific company process requirements in
favor of those needed for the program's common process.

Thread An end-to-end functional capability traced through the system and verified by creating an
input and observing the intended output.

Turnover The process of providing a software product from one team member to another in
accordance with pre-established quality criteria.

Work
Instructions or
Procedures

Documentation containing detailed directions for the day-to-day implementation of the
software process. It is also referred to as a procedure, (see Table 8.3 for an example list.)

Work Package The smallest element of work with allocated budget and schedule against which progress
is reported and tracked.

3-18

Downloaded from http://www.everyspec.com

AGI-4. Software Acronyms

Acronym Definition
AGI Additional Guidebook Information
API Application Programming Interface
APO Acquisition Program Office
BAR Build Architecture Review
BOE Basis of Estimate
BTR Build Turnover Review

(or PTR or TER)
CAP Corrective Action Plan
CAIV Cost As An Independent Variable
CARD Cost Analysis Requirements

Document
CASE Computer Aided Software

Enqineerinq
CBA-IPI CMM°'"-Based Assessment -

Internal Process Improvement
CCB Confiquration Control Board
CCR Critical Computer Resource
CDD Capabilities Development

Document
CDR Critical Desiqn Review
CDRL Contract Data Requirements List
ClP Contract Implementation Plan
CM Configuration Management
CMMIJ,VI Capability Maturity Model -

Integrated
CMP Confiquration Management Plan
COM Computer Operation Manual
CONOPS Concept of Operations (see OCD)
COTS Commercial Off-The-Shelf
CPI Cost Performance Index
CPM Computer Programming Manual
CPU Central Processor Unit
C/R COTS/Reuse (software)
CRF Change Request Form
CSCl Computer Software Configuration

Item (see SI)
CSWE Chief Software Enqineer
CUT Coding and Unit Testing
CWBS Contract Work Breakdown

Structure
DBDD Data Base Desiqn Description
DID Data Item Description
DM Data Management
DMS Data Manaqement System
DOORS Dynamic Object-Oriented

Requirements System (tool)
DR/CR Discrepancy Report/Change

Request
EAT Element Acceptance Test

(same as FAT)
ECR Engineering Change Request
EDIN Electronic Data Interchange

Network
EMD Engineering and Manufacturing

Development
ERB Engineering Review Board
ESLOC Equivalent Source Line of Code
EVMS Earned Value Management

System
FAT Factory Acceptance Test

(see EAT)
FCA Functional Configuration Audit
FMECA Failure Modes, Effects, and

Criticality Analysis
FOC Full Operation Capability
FQT Formal Qualification Test

Acronym Definition
FSM Firmware Support Manual
FSW Flight Software
GFE Government Furnished Equipment
GFS Government Furnished Software
GOTS Government Off-The-Shelf
GPS Global Positioning

Satellite/System
GSE Ground Support Equipment
GUI Graphical User Interface
HI Hardware Item
HIQT Hardware Item Qualification Test
HWCI Hardware Configuration Item
l&T Integration and Test
ICD Initial Capabilities Document

(see IFCD)
IDD Interface Design Description
IDR Interim Design Review
IEEE Institute of Electrical and

Electronics Engineers
IFCD Interface Control Document
ILS Inteqrated Logistics Support
IMF Integrated Management

Framework
IMP Integrated Master Plan
IMS Integrated Master Schedule
IA Information Assurance
IORD Integrated Operational

Requirements Document
IPO Input/Process/Output (flowchart)
IPPD Integrated Process and Product

Development
IPT Inteqrated Product Team
IRD Interface Requirements Document
IRR Integration Readiness Review
IRS Interface Requirements

Specification
ISO International Standards

Organization
ITAR International Traffic in Arms

Regulation
JTR Joint Technical Review
KDP Key Decision Point
KSLOC Thousand SLOC
LCC Lifecycle Cost
MTP Master Test Plan (formerly STEP)
MC Mission Critical (software)
MMC Mission Management Center
MOSA Modular Open System

Architecture
MSDL Master Software Development

Library
NDI Non-Developmental Item
NSA National Security Aqency
OCD Operational Concept Description
OOA/OOD Object-Oriented Analysis/Design
PA Product Assurance
PCA Physical Configuration Audit
PDR Preliminary Design Review
PDRR Program Definition and Risk

Reduction
PIP Process Improvement Program
PM Program Manager
PTR Post Test Review (or BTR or TER)
PUI Program Unique Identifier
QMP Quantitative Management Plan

3-19

Downloaded from http://www.everyspec.com

Acronym Definition
QTRR Qualification Test Readiness

Review
RE Responsible Engineer
RFP Request For Proposal
RHP Risk Handling Plan
RMP Risk Manaqement Plan
RTVM Requirements Test Verification

Matrix
S/W(SW) Software
SAD Software Architecture Description
SAR SW Requirements and

Architecture Review
SA/SD System Analysis/System Design
SAT Segment Acceptance Test
SC Spacecraft
SCCB Software Configuration Control

Board
SCM Software Configuration

Manaqement
SCMP Software Configuration

Manaqement Plan
SCÖM Software Center Operations

Manual
SCR Software Change Request

(or Report)
$DCE Software Development Capability

Evaluation
$DD Software Design Description
SDE Software Development

Environment
SDF Software Development Folder

(or File)
SDL Software Development Library
SDP Software Development Plan
SDR System Design Review or

Software Discrepancy Report
SDRL Subcontractor Data Requirements

List
SE&I Systems Engineering and

Integration
SEE Software Engineering

Environment
SEI Software Engineering Institute
SEIT System Engineering Integration

and Test
SEMP System Engineering Management

Plan
SEN Software Enqineerinq Notebook
SEPG Software Engineering Process

Group
SETA Systems Engineering and

Technical Assistance
SFR System Functional Review

(see SDR)
SI Software Item (see CSCI)
SlOM Software Input/Output Manual
SIP Software Installation Plan
SIQT Software Item Qualification Test
SLATE System-Level Automation Tool for

Engineers
SLOC Source Lines of Code
SMBP Software Master Build Plan
SMP Subcontract Management Plan or

Software Maintenance Plan
SCMT Subcontractor Management Team

Acronym Definition
soo Statement Of Objectives
SOW Statement Of Work
SPAR Software Process Assets

Repository
SPCR Software Problem Change Report
SPE Software Process Engineer
SPI Schedule Performance Index
SPR Software Peer Review
SPS Software Product Specification
SQA Software Quality Assurance
SQAP Software Quality Assurance Plan
SQPP Software Quality Program Plan
SQT System Qualification Test
SRR System Requirements Review
SRS Software Requirements

Specification
SRTM Software Requirements

Traceability Matrix
SS Space Segment or Support

Software
SSDD System/Subsystem Design

Description
SSP Standard Software Process
SSPM Software Standards and Practices

Manual
$SR SW Specification Review

(see SAR)
SSS System/Subsystem Specification
STD Software Test Description
STE Software Test Environment
ST&E System Test and Evaluation
STEP System Test and Evaluation Plan

(see MTP)
STP Software Test Plan
STR Software Test Report (or Results)
STrP Software Transition Plan
SU Software Unit
SUM Software Users Manual
SVD Software Version Description

(see VDD)
SWCCB Software Chanqe Control Board
SWED Software Entity Database
TBX To Be Reviewed, Determined,

Supplied
TER Test Exit Review (or BTR or PTR)
TIM Technical Interchange Meeting
TPM Technical Performance

Measurement
TRD Technical Requirements

Document
TRM Test Requirements Matrix
TRR Test Readiness Review
TT&C Telemetry, Tracking, and Control

(or Command)
UI&T aim Unit Integration and Testing
UML Unified Modeling Language
VCRM Verification Cross Reference

Matrix
VDD Version Description Document

(or SVD)
WBS Work Breakdown Structure
Wl Work Instruction
XMPL Example fictitious program (see

Part 2, subsection 1.4)

3-20

Downloaded from http://www.everyspec.com

AGI-5. Subject index to the SDP Guidebook

SDP Section, Subsection,
Subject Paragraph, Subparagraph

Access For Acquirer Review 4.2.8
Activities—Software Lifecycle 3.2.1
Activity Network 6.2
Analysis and Reporting 5.20.7
Analysis of User Input 5.3.1
Architectural Design—Software Item 5.6.2
Architectural Design—System/Segment 5.4.2
Architecture Overview 1.2.1, 1.2.2
As Built SI Design and Related Information—Preparation 5.13.4
Associate Developers—Coordination 5.24
Availability 4.2.5.4
Base Measures 5.20.6
Build Architecture Review 4.1.1
Build Functionality Matrix 5.1.1.3, 5.6
Build Planning/Requirements/Updating/Delivery 5.1.1.3, 5.5
Build Turnover Review 4.1.1
Categories 1.2.3
Change Control Board 5.17.1
Change Implementation 5.25.3
Change Request (or Report) 5.17.1
Chief Software Engineer 7.2.1.1, AGI-1 andAGI-2
Classes 1.2.3
Code and Unit Test 5.7
Code—Source 4.2.10,5.7
Commercial Off-The-Shelf and Reuse Software 1.2.3.3,4.2.4
Computer Aided Software Engineering (CASE) Tools 5.2.1
Computer Hardware Resource Utilization 4.2.6
Computer Operation Manual 5.12.3.2
Computer Programming Manual 5.13.8.1
Concept of Operations (see Operational Concepts Document) 5.3.2
Configuration Audits and Delivery 5.14.4, 5.14.5
Configuration Control Board 5.14
Configuration Identification/Control/Status Accounting 5.14.1, 5.14.2, 5.14.3
Configuration Management—Software 5.14, AGI-9
Configuration Management Plan (SCMP) 5.1, 5.14
Constraints—System 3.1
Constraints—Contractual and Non-Contractual 3.7, 3.8, 3.9
Contract Data Requirements List (CDRL) 3.6
Control Boards 5.17.2
Corrective Action System 5.17.2
Corrective Action/Corrective Action Plan 5.17
COTS/Reuse (Software) 1.2.3.3,4.2.4
Critical Computer Resources 5.20.4
Critical Design Review 4.1.1, 5.6.3
Critical Requirements 4.2.5,4.2.5.5
Data Management 4.2.9
Database—Standards 5.1.1
Deficiency Reporting 5.17
Definitions Table 8.2
Dependability 4.2.5.4

3-21

Downloaded from http://www.everyspec.com

SDP Section, Subsection,
Subject Paragraph, Subparagraph

Derived Metrics 5.20.6
Design Decisions—Software Item-Wide 4.2.7, 5.6.1
Design Decisions—System/Segment 5.4.1
Design Description (SDD) 4.2.10, 5.6
Design—Detailed Software Items 5.6.3
Design Process—System/Segment 5.4
Detailed Design—Software Items 5.6.3
Development Environment—Establishing 5.2
Development Facilities 7.2.2
Development Files (or Folders) (SDF) 5.2.4
Development Libraries 5.2.3
Development Methods 4.2.1
Development Planning 5.1.1
Development Process 4.1
Development Strategy—Requirements and Constraints 3.4, 3.4.1
Disaster Recovery 4.2.9.1
Document Peer Reviews 5.15,5.15.2.1
Documentation Production and Constraints 3.3
Documents—Government and Non-Government 2.1,2.2
DOORS—Dynamic Object-Oriented Requirements System 4.2.3
Earned Value Management System 5.1.1.4
Electronic Data Interchange Network Parti (Section 3), 5.2.3.1, 5.5
Element (or Factory) Acceptance Test 3.7.2, 3.7.3, 3.7.4
Engineering Environment 5.2.1
Engineering Review Board 5.17.2
Equivalent Source Lines of Code (ESLOC) 1.2.3.3
Estimating Resources 5.1.1.2
Evaluations—Quality Assurance 5.16.1
Executable Software—Preparation 5.13.1
Facilities 5.2.1,7.2.2
Firmware Support Manual 5.13.8.2
Functional Configuration Audit 3.7.4,5.11
Government Furnished Equipment 7.2.3
Government Rights 4.2.9.2
Hardware Resource Utilization 4.2.6
Headcount Oversight 5.1.14
Implementation and Unit Testing 5.7
Improvement of Project Processes 5.25
Independence in Segment/System Qualification Testing 5.11.1
Independence in Software Item Qualification Testing 5.9.1
Indicators—Management Metrics/Measurement 5.20
Inspections—Formal 5.15.1.1
Installation at User Sites 5.12.4
Installation Planning/Installation Plan 5.1.4
Integrated Master Plan (IMP) 5.1.1
Integrated Master Schedule (IMS) 5.1.1; 5.1.14
Integrated Product Team (IPT) Part 1 (Section 7), 5.7 through

5.11, 7.1, AGI-4 and AGI-5
Integration and Test Readiness Review 4.1.1
Integration and Testing—Preparation/Performing SI/HI 5.10.1, 5.10.2
Integration and Testing—Software/Hardware Items 5.10
Integration and Testing—Analysis and Recording SI/HI 5.10.4
Integration and Testing—Revision and Retesting SI/HI 5.10.3

3-22

Downloaded from http://www.everyspec.com

SDP Section, Subsection,
Subject Paragraph, Subparagraph

Integration—IT&V Approach/Objectives/Process 3.4.2, 3.4.3, 3.4.4
Interface Control Document (ICD) 5.3, 5.5
Interface Design Description (IDD) 5.6
Interface Requirements Specification (IRS) 5.5
Interface Specifications 53
Inter-group Coordination 5.27
International Traffic in Arms Regulation (ITAR) 4.2.9.3
Iterative Processes 4.1.3
IV&V Agents Interfacing 5.23
Joint Technical and Management Reviews 5.18, 5.18.1, 5.18.2
Key Technical Decisions 4.2.7
Level of Software Products 4.2.2
Libraries—Software Development (SDL) 5.2.3
Lifecycle Activities 3.2.1
Maintainability 4.2.5.4
Maintenance Manuals—Preparation 5.13.8, 5.26.2
Maintenance Plan/Manuals 5.13.8, 5.26.3
Maintenance Sites—Version Description and Preparation 5.13.3
Maintenance—Transition to 5.13
Management Indicators/Metrics/Measurement 5.20
Management Indicators—Analysis/Reporting/Thresholds 5.20.7
Management Indicators—Candidate Set of Metrics 5.20.5
Management Indicators—Continuous Improvement 5.20.3
Management Indicators—Management Approach 5.20.2
Management Indicators—Principal Objectives 5.20.1
Management Issues and Indicators 5.20.4
Management Plans 4.2.10.3
Management Reviews 5.18.2
Master Software Development Library (MSDL) 5.2.3
Measurement and Oversight 5.1.1.4, 5.20.4
Methods—Software Development 4.2.1
Metrics (see Management Indicators) 5.20
Mission Assurance 4.2.5.5
Mission Critical Software 1.2.3.1
Mission Critical Software Development Process 4.1.1
Models for the Development Process 4.1
Modular Open System Architecture 5.6.2
Non-Deliverable Software 5.2.5
Non-Document Work Products 4.2.10.2
Object-Oriented Analysis and Design 4.2.1
Operational Concept Description (OCD) 5.3.1, 5.3.2
Operations—Transition to 5.12
Operations and Maintenance 5.26
Organization of the Project 1.1; 7.1
Oversight 5.1.1.4
Packaging, Storage, Handling and Delivery 5.14.5
Peer Reviews/Prepare/Conduct/Analyze 5.15.1.1, 5.15.1.2, 5.15.1.3
Peer Reviews and Product Evaluations/Peer Review Plan 5.15
Personnel Resources 7.2.1
Physical Configuration Audit 3.7.4, 5.11
Planning Activities 5.1.1, 5.1.1.1
Planning—Installation/Transition 5.1.4, 5.1.5
Plans—Relationship Between 1.4

3-23

Downloaded from http://www.everyspec.com

SDP Section, Subsection,
Subject Paragraph, Subparagraph

Plans—Following and Updating 5.1.6
Post Test Review 4.1.1
Preliminary Design Review 5.6.2
Privacy Protection 4.2.5.3, 5.21
Problem (or Software) Change Report (or Request) 5.17.1
Process Audits 5.25.2
Process—Development 4.1
Process Engineer/Lead 5.25.6, AGI-3
Process Improvement Process 5.25
Process Overview/Oversight 3.3,5.1.1.4
Process—Mission Critical Software Development 4.1.1
Process—Support Software Development 4.1.2
Product Evaluations 5.15.2
Product Quality Assurance 5.16
Product Levels 4.2.2
Program Unique Identifier 5.1.1.3,5.1.4.1,5.9
Project Organization 7.1
Project Oversight/Overview 3.3,5.1.1.4
Project Planning and Oversight 5.1
Project Resources 7.2
Proprietary Rights 4.2.9.2
Qualification Test—Analysis and Recording of Results 5.9.7
Qualification Testing—Software 5.9
Qualification Testing on the Target Computer System 5.9.2
Qualification Testing—Readiness Testing/Readiness Review 5.9.4
Qualification Testing—Performing 5.9.5
Qualification Testing—Preparation 5.9.3
Qualification Testing—Revision and Retesting 5.9.6
Quality Assurance—Software 5.16, AGI-10
Quality Assurance Evaluations and Records 5.16.1, 5.16.2
Quality Assurance—Independence 5.16.3
Quality Assurance—Non-Compliance Issues 5.16.4
Quality Control Plans 4.2.10.3
Quality Program Plan (SQPP) 5.16, 5.22
Quantitative Management Plan 5.20.7
Recording Rationale for Key Technical Decisions 4.2.7
Red Flags—Management Indicators 5.20.8
Reliability 4.2.5.4
Re-Planning 5.1.1.2
Request for Proposal (RFP) 5.3
Requirements Analysis—System/Segment 5.3
Requirements Analysis—Software 5.5
Requirements and Constraints 3.2
Requirements and Traceability Management (RTM tool) 4.2.3
Requirements Specification (SRS) 4.2.10, 5.5
Requirements—System/Segment 5.3.1, 5.3.3
Requirements Traceability Verification Matrix 5.5
Requisite Pro (tool) 4.2.3
Resource Estimating 5.1.1.2
Resource Utilization—Hardware 4.2.6
Resources—Acquirer-Furnished/Other Required 7.2.3, 7.2.4
Resources—Developer Facilities Overview 7.2.2
Resources—Personnel 7.2.1

3-24

Downloaded from http://www.everyspec.com

SDP Section, Subsection,
Subject Paragraph, Subparagraph

Resources—Requirements and Constraints 3.5
Reusable Software Products 4.2.4
Reviews—Formal 4.1.1
Reviews—Joint Technical and Management 5.18.1, 5.18.2
Risk Handling Plan/Risk Mitigation Plan 4.2.4
Risk Management/Plan/Board 5.19
Roles and Responsibilities 3.3, 4.1.1, 4.1.2, Appendix A, 5.5

through 5.11, 7.2.2
Safety—Software 4..2.5.1
Schedule of Activities 6.1
Schedule—Requirements and Constraints 35
SDP Component Parts/Organization/Tailoring Parti, 1.3.1, 1.3.2
SDP Organization 1.3.2
SDP Overview 1.3
SDP Relationship to Other Plans 1.4
SDP Updates 1.3.3
Security and Privacy 4.2.5.2, 5.21
Segment Acceptance Testing 3.7.2, 3.7.3, 3.7.4,5.11
Segment and System Qualification Testing 5.11
Segment/System Qualification Test—Analysis and Recording 5.11.7
Segment/System Qualification Testing—Dry Run 5.11.4
Segment/System Qualification Testing on the Target Computer 5.11.2
Segment/System Qualification Testing—Performing 5.11.5
Segment/System Qualification Testing—Preparation 5.11.3
Segment/System Qualification Testing—Revision and
Retesting

5.11.6

Simulation and Modeling 5.4, 5.5, 5.6, 5.6.3, 5.7.2, 5.9,
5.9.3, 5.10.1, 5.11.3

Skill Levels 7.2.1.3
Small Software Developments Part 1 (Section 11)
Software Architecture Description (SAD) 5.6
Software Center Operations Manual (SCOM) 5.12.3.3
Software Change Request (SCR) 5.17.1
Software Classes and Categories 1.23
Software Design/Software Design Description (SDD) 5.6
Software Development Files (or Folder) 5.2.4
Software Development Library 5.2.3
Software Development Plan (SDP) Parti, 1.3, 1.4
Software Discrepancy Report (SDR) 5.17.1
Software Engineering Environment (SEE) 5.2.1
Software Engineering Process Group (SEPG) 5.25.1, 7.1
Software Engineering Process Group—Infrastructure/Training 5.25.4, 5.25.5
Software Engineer—Responsibilities AGI-7
Software Entity Database 5.1.1
Software Input/Output Manual (SIOM) 5.12.3.3
Software Item Lead—Responsibilities AGI-6
Software Item Qualification Test (SIQT)/Test Planning 5.1.1, 5.1.2
Software Items Overview 1.1,3.2.2
Software Process Assets Repository (SPAR) 5.2.3
Software Product Specification (SPS) 3.3, 5.12.1, 5.13.4
Software Requirements and Constraints 3.2
Software Requirements Specification (SRS)—Updating 4.2.10, 5.13.6, 5.5
Software Safety 4.2.5.1, 526

3-25

Downloaded from http://www.everyspec.com

SDP Section, Subsection,
Subject Paragraph, Subparagraph

Software Standards and Practices Manuals 4.2.2.1
Software Test Description (STD) 4.2.10, 5.7 through 5.11
Software Test Environment 5.2.2
Software Test Plan (STP) 4.2.10, 5.7 through 5.11
Software Test Report (STR) 4.2.10, 5.7 through 5.11
Software Transition Plan (STrP) 3.3,5.12,5.13.9
Software Version Description—(see VDD) 4.2.10,5.12.2
Source Code 4.2.10
Source Files—Preparation 5.13.2
Staffing/Staff Loading 5.1.1.2, 7.2.1.2
Standards and Practices for Software Products/Manuals 4.2.2,4.2.2.1
Statement of Objectives (SOO) 5.3
Subcontract Management/Management Team 5.22, AGI-11
Subcontractor—Compliance With the SDP 5.22
Support Software—Development Process 1.2.3.2,4.1.2
Sustainment—Sustainment Organization 5.26, 5.26.4
Sustainment Planning 5.26.2
System Architecture Overview 1.2.1
System Engineering Integration and Test (SEIT) 5.3, 5.4
System Functional Review 4.1.2,5.4
System Overview 1.2
System Qualification Testing 5.11
System Requirements and Constraints 5.3
System Requirements Review 4.1.2, 5.3
System Requirements—Updating 5.13.7
System Test and Evaluation Plan 5.10
System Test Planning 5.1.3
System/Segment Design 5.4, 5.4.2
System/Segment Requirements Analysis 5.3, 5.3.3
System/Subsystem Design Description—Updating 5.13.5
System-Level Automation Tool for Engineers (SLATE) 4.2.3
Tailoring of the SDP Part 1 (Section 10)
Team Responsibilities 3.2.2
Technical Interchange Meetings (TIMs) 4.1.2,5.18,5.6.2
Technical Performance Measurements (TPM) 4.2.6
Technical Requirements Document (TRD) 3.5, 5.3
Technical Reviews 5.18.1
Test Documentation 4.2.10
Test Engineer Responsibilities AGI-8
Test-Like-You-Fly 5.2.2
Test Planning—Software Items and Environment 5.1.2,5.2.2
Test Planning—System Level 5.1.3
Test Readiness Review (TRR) 4.1,5.9.4,5.9.5,5.10.2,5.11.5
Testing—IT&V Objectives/Approach/Approach 3.7.2, 3.7.3, 3.7.4
Thresholds—Management Indicators/Metrics 5.20.8
Tools 5.2.1
Traceability 4.2.3
Tracking and Oversight 5.1.1.4
Training Plans 7.2.5
Training Process 5.2.5.5
Transition Planning 5.1.5
Transition to Maintenance 5.13
Transition to Operations 5.12

3-26

Downloaded from http://www.everyspec.com

SDP Section, Subsection,
Subject Paragraph, Subparagraph

Transition to Operations—Preparing Executable Software 5.12.1
Transition to the Designated Maintenance Site 5.13.9
Unified Modeling Language 4.2.1
Unit Integration and Testing 5.8
Unit Integration and Testing—Preparation and Performing 5.8.1, 5.8.2
Unit Integration and Testing—Analysis and Recording Results 5.8.4
Unit Integration and Testing—Revision and Retesting 5.8.3
Unit Test Results—Analysis and Recording 5.7.5
Unit Testing—Preparation/Performing/Revision/Retesting 5.7.2, 5.7.3, 5.7.4
Updating Software Requirements 5.13.6
User Input Analysis 5.3.1
User Manuals and Guides 4.2.10,5.12.3
User Sites Installation 5.12.4
Verification Reviews 5.15.1
Verification—IT&V Approach/Objectives/Process 3.7.2, 3.7.3, 3.7.4
Version Description Document (same as SVD) 4.2.10
Version Descriptions for maintenance sites—Preparation 5.13.3
Version Descriptions for User Sites 5.12.2
Waiver Processing 5.1.1
Work Breakdown Structure 5.1,6,7.1,7.2
Work Instructions 4.2.10.2, Table 8.3
Work Products 4.2.10, 5.5 through 5.9

3-27

Downloaded from http://www.everyspec.com

3-28

Downloaded from http://www.everyspec.com

