Kl &l B N N & BN = BN e

Downloaded from http://www.everyspec.com

AEROSPACE REPORT NO.
ATR-2011(8404)-11

The Elements of an Effective Software Development Plan —
Software Development Process Guidebook

November 11, 2011

Marvin C. Gechman
Software Engineering Subdivision
Computers and Software Division

Contributing Author:

Suellen Eslinger

Software Engineering Subdivision
Computers and Software Division

Prepared for:

Space and Missile Systems Center
Air Force Space Command

483 N. Aviation Blvd.

El Segundo, CA 90245-2808

Authorized by: Engineering and Technology Group

Distribution Statement: Public release is authorized, distribution unlimited.

201204 20230

AEROSPACE

Assuring Space Mission Success

-—------f'—-—-_

Downloaded from http://www.everyspec.com

AEROSPACE REPORT NO.
ATR-2011(8404)-11

The Elements of an Effective Software Development Plan —

Software Development Process Guidebook

November 11, 2011

Marvin C. Gechman
Software Engineering Subdivision
Computers and Software Division

Contributing Author:

Suellen Eslinger

Software Engineering Subdivision
Computers and Software Division

Prepared for:

Space and Missile Systems Center

Air Force Space Command
483 N. Aviation Blvd.
El Segundo, CA 90245-2808

Authorized by: Engineering and Technology Group

Distribution Statement: Public release is authorized; distribution unlimited.

AEROSPACGE

Assurning Space Missfon Success

Downloaded from http://www.everyspec.com

AEROSPACE REPORT NO.

ATR-2011(8404)-11

The Elements of an Effective Software Development Plan —
Software Development Process Guidebook

Approved by:

%/@M

ya Campbe{ 1, Principal Director
Software Engineering Subdivision
Computers and Software Division
Engineering and Technology Group

All trademarks, service marks, and trade names are the property of their respective owners.

SP0036(1, 5840, 219, MLM)
ii

Downloaded from http://www.everyspec.com

Abstract

Every software development program must have a Software Development Plan (SDP). The SDP is
required by the software development standards, it is prepared by the contractor, and it is usually
submitted with their proposal. The SDP is the vehicle by which the contractor, responsible for
software development, documents how the software will be designed, developed, integrated, tested
and managed.

The principal objectives of this SDP Guidebook are to: (1) Assist the acquisition agency in evaluating
SDPs during source selection and during subsequent update deliveries; (2) Provide guidance to
contractors in developing and updating their SDP; and (3) provide a convenient source of reference,
during conduct of a software development program, documenting the systematic steps of the process
during the full software development life cycle. The Guidebook contains examples and recommended
contents of a program-level SDP for large software development efforts.

iii

Downloaded from http://www.everyspec.com

iv

Downloaded from http://www.everyspec.com

Foreword

A poorly planned software development effort is likely to fail—that makes the SDP a critically
important software management tool for both large and small software development efforts.

An incomplete or inadequate SDP is a clear red flag. Contractors with a deficient SDP, who are
awarded a contract, have historically a high probability of cost and schedule overruns. This
Guidebook is intended to significantly increase the probability of a successful software-intensive
contract. The principal objectives of this SDP Guidebook are:

e To assist the acquisition agency in evaluating SDPs during source selection and during
subsequent updated deliveries of the SDP

e To provide guidance to contractors in preparing and updating their SDPs

e To provide a convenient source of reference, during conduct of a software development
program, describing the systematic steps of the software development process during the full
software development lifecycle.

The contractor-developed SDP must address at least the following software development concerns:

¢ What specific process will be followed for software requirements analysis, design, coding,
testing, integration, and qualification?

e Who is responsible for each software development task and what is their reporting chain?
¢ How will software development be managed and with what controls?
e What is the software development schedule and what are the reportable milestones?

¢ How will management know if the current software project is consistent with planned
schedules?

e What documentation will be produced, in what format, and when?

e What standards, practices, and guidelines will be followed and how will they be enforced?

e What reviews will take place, who are the attendees, and when will they take place?

e How will compliance with the SDP be assured?

e What methods will be employed to identify and mitigate software risks?

¢ How are software development responsibilities managed and flowed down to subcontractors?
¢ What development and testing support software, environment, and tools are required?

e What is the process for ensuring systematic testing of the developed software?

¢ What software management measurements (metrics) are planned and what is the process for
collection, reporting, analysis and corrective action?

¢ What process and methods will be used to ensure the quality of the software product?

¢ How will errors be detected, documented and corrected?

¢ What software products will be subject to formal configuration management and when?
e What software is deliverable to the acquisition agency and what are the transition plans?

e How will classified data and products be controlled?

Downloaded from http://www.everyspec.com

Although software planning is performed throughout the software lifecycle, strategic planning up-
front usually makes the difference between success and failure of a software development program.
The quality and attention to detail in the SDP are major source selection evaluation criteria. A good
SDP, at the start of a program, builds the foundation for the teamwork and disciplined trust vital to
software lifecycle cooperation and success. The existence of a comprehensive SDP does not
guarantee project success. However, a poor SDP at the start of a program is essentially a guarantee of
serious problems ahead.

vi

Downloaded from http://www.everyspec.com

SDP Guidebook Reading Recommendations

Because of the comprehensive nature of this Guidebook, it is expected that individual sections will be
used as a reference, when needed, as opposed to assuming the reader will always read the entire
Guidebook. However, it is highly recommended that all users of this Guidebook read. at a minimum.
the six-page Introduction of Part 1 and paragraph 1.2.3 of Part 2 describing the software classes and
categories referred to throughout Sections 4 and 5 of Part 2.

If the user is planning to read any of the sections dealing with software integration and testing
(subsections 5.7 through 5.11), it is highly recommended that they begin by reviewing subsection 3.7
as it provides an overview of the software integration, testing, and verification process described in
more detail in subsections 5.7 through 5.11.

To facilitate the lookup of specific topics of interest in this Guidebook, a Subject Index is included in
Part 3 as Additional Guidebook Information AGI-5 of this Guidebook. It refers to the subsection,
paragraph or subparagraph where the subject is addressed.

vii

Downloaded from http://www.everyspec.com

viii

Downloaded from http://www.everyspec.com

Contents

AADSITACT 1vee ettt ettt ettt et ee ettt e st ee ettt e st e s et e e e ae e e ah bt e e atae e e ehn st eanbae s astbe e e nsraeesreeeennsnaeanes iii
FOREWORM 2t i s S T e e A e S T e S e e e e S T e o il il v
SDP Guidebook Reading Recommendationsccocccevueeiiiiiiiiiciieee e v vii
Part 1. SDPGUidebookINIEOAIICION cossessseesssssssssssssansssssnssssssinssssssasssss sossaisssssassssssasssssssssgassssssss 1-1
Ite SeoperandiPenspeotiVe: s s rrt st b s e s e st nasi 1-1
2. Organization of this SDP GUidebookccccoovvueerviiiiniieiiiiieieie et 1-1
5) ElectroniCData IMaNaEEIMENE : c. sussssess i G5ui5sus s s s Hespasss s s g s e« 05 e s SEA S e a5 1-2
4 Example Text and Highlightsc.covirieiiriiie ettt s 1-2
S fliermsiandyA CRonymS Seds s oo o e e B S e e T o 1-2
6. Forimat 0fithe ProCess; DESCHIPIIOMS :xmssmarrsattas o ssm o fies s wuss s s i 53 5es 347 5o s msormn s sabisoats i s 1-3
7 Integrated Product Teams (IPTS).....cccccvvviiiiiiiiiiiiiiiniiiiii et 1-4
8 Analysis and Design MethodOIOZIesccoveeviiiiiiiiiiiner e erernresseesne s sreesneesseesees 1-4
9 RO At O Pt O SO N S D) P o 5 555 s s st S S o Emr e et 2ot el s il Ao A e o 1-4
10. Tailoring 0f the SDPooi it eeee e e e ee e e e eeaeaas 1-5
11. Large Versus Small Software DevelOpments...........cccuveveviiiiiiieerciiienieeeeeeeesirieeieessenneesenns 1-5
2. Recommended SDPINUMbDERINE FORMAL:. v cxuiesssesemusasnsssessissnissss shasrnsssvnsesss aurehs ssswabis b 455570 1-6

Part 2. Recommended Contents of a Program-Level SDP for Large Software Development
L L S rromor e P O e R O E R X X P oo D PO T D OO OO O O s 1-1
1 D D e T e T s e s le o e e s 2-1
1.1 TAeNtifICALION .. e e e e 2-1
12 SYSIEM OV ETVIIEW, cveirrees ssmasis suess 55 el SE TR+ Ea 53 FH o oo He B 55 S55HIT4 sB 3T ¥ A s MEA T3 43 e S TR AIS TR 2-2
1.2.1 System Architecture OVErVIEWcccccvviceereivennrireccennnnnrsesceecrnereccsnnesssnnnenns 2-2
1.2.2 Software Architecture OVerview.......cccccoevieiveiiiei i 2-3
1.2.3 Software Classes and Categories.....co..eecvueniiineiniincisiee i e e 2-4
1.3 D QU T N IVl VAo e e o bl s oo oo s e e e e e SRS A S s e R 2-7
1.3.1 SDP COMPONENE PATTS «.vvevvreirieirirriesronsmenmenmnnreeeseeteeeeseisosnmseesonnneeeeeeesssnsanaans 2-7
1.3.2 SDP OrganiZation........ccccieiiiiiiieiieesiieiriesesinieee s seeeessinasae s s s snseaesssssnnnnnns 2-8
1:353] 'S PAUBAALES crnmmmesmzsse ssmuse s sovai mesmm- deerEses < Ea s v Tl TE e s SRS R e 2-8
1.4 Relationship to Other PIANSc.cccceveeiiiiiiiiieeeeinieecreeessnieessseeesnnneessseesesisesssssenesnns 2-9
2.1 GoVERNMEN D OCUTNENTS! s, imts i oot i t e e T s e o R TS s oo LB e e 2-11
2.1.1 Government Referenced Documents—Examplecccccoceerveeeennincenenene 2-11
2.1.2 Government Applicable Documents—Example......ccccccccvvvvvveriiiiinnneeeennne. 2-11
2.2 Non=Government; D OCUMEIS «ucs svvese s amsssesvessassee sas s ss el sssssis sy e ssers s sasoss 2-11
2.2.1 Non-Government Referenced Documents—Example...........ccccceeveveiennenne 2-11
2.2.2 Non-Government Applicable Documents—Examplecccoccoveennennnen. 2-11
3 OVenRVIEWAO R QUIREH I WIORKS 1255 5575555 s e et e iomi S S8 oAl Sl e e S e sl el 2-13
3l Sy stemiACqUISITIONIIEIECCYCICH . i i st s asiesne sulte s lasilie st s ol smiisSmale 48 2-13
3.2 Software Requirements and CONStraiNtS........cocvveeerrireeerierenerneeenieesnioreeesireesssseesssenes 2-13
353, SoftwaneillemIC) Ve IEIW . s e 5 s e e s o seR T s A TR s T S TRE TR BT 2-14

ix

Downloaded from http://www.everyspec.com

3.4 Required Software Lifecycle ACtiVItIEs....c.cocvvciiniiniiniinncnniniiiinnie e 2-15
355, ISOftWare RrOCESS IOVERVIEW, . cucu:ia e i e s sius s 408 438 TR SR AT TR TR SR TR TS 2-15
3.6 Software Documentation Requirements and Constraints........cooeeeerrvireeverioseeisieennns 2-16
3.7 Requirements and Constraints on Development Strategy............coccovniiiiiinniieiniennne, 2-19
3.7.1 Development Strategy FActorsc.ccevveriieiiieeiie e e 2-19
3.7.2 Software Integration, Testing, and Verification Approachcccccevveeeceeres 2-19
3.7.3 Software Integration, Testing, and Verification Objectives..........cccoevrurenenne 2-20
3.7.4 Software Integration, Testing, and Verification Processc.ccceveververnnne 2-20
3.8 Requirements and Constraints on Schedule and Resources........c.c.ccocevveenieeccnennen. 2-20
3.9 Other Requirements and CONSLIAINTScceererininivsnessiriirssnnessmriennee e sseees 2-20
General RE QUITEI IS s et e s s bl s s e T s ot e oM e e i s 2-23
4.1 Sottware Development PrOCESS ;sscwsssuinsems soviveshtuoss sussssne seosisssse sess s e s s esis s isns i 2-23
4.1.1 Mission Critical Software Development Processcc.ccecceeeercenrirareinennneine 2-23
4.1.2 Support Software Development Process.........cccceeeeeneiniercccnniiincccnininnnns 2-26
4.1.3 EratiVePFOCESS imumssu rossnn vasmssssmesssssmess oy uwa 6 e S (R e MGG S e 2-26
4.2 General Requirements for Software Development............ccoocvvvevnierciniininininieninnn, 2-27
4.2.1 Software Development Methodsccovereveieeinerrveriieennunncnneeese e 2-27
4,22 Standards for Software Productsc..ccceeoueeineneinciiinieciece e 2-28
4.2.3 Traceability ...ccciiviivieiieiceenriinieee e ettt et ne e see e 2-29
424 Reusable SOt WAre PROAUCES.: s smvsusssmmesnsasuassssusssssesn i ssssssess s e ameis s isses 2-30
4.2.5 Assurance of Critical Requirementsc.ccceeiviiiiiniiinciniinin e 2-33
4.2.6 Computer Hardware Resource Utilizationccccecevviirieneiininiciinecininnenns 2-37
4.2.7 Recording Rationale for Key Technical DeciSions........cccueevviiinsiciiieninnnnne 2-37
4.2.8 Access for ACQUITEr REVIEW ...cccceevecuerennirsicuencisnosssensionieissensessiessssesses 2-37
4.29 Software Data Management (Recommended Optional Addition)................ 2-38
4.2.10 Software Plans and Work Products (Recommended Optional Addition).....2-39
Detailed REQUITEIMENLSccvueereeereeneeiieeneesetassneesaneeseessneesetseseessetssseeseseeesneesnssnseesesssssanas 2-43
5.1 Project Planning and OVersightccciviiviieieiriiinnreeienienneierinneececeeensnescsscaesesnsessssens 2-43
5.1.1 Software Development Planning.......cccceevieenminimnnennnnnnnciee e ceeene 2-44
5:.1:2. Softwareilten) Tiest Planmifi.....o.occosvseessrmsssssssessanssossasssossssinsns sossrasasassessss 2-49
5.8 iSystem! TSt PIanMingi ceovremsiame s mosisamme st drssssssirasssssssisetoss dosasamass 2-50
5.1.4 Planning for Software Transition to Operations.........c.ocevevscrnvuccnsieinunnns 2-50
5.1.5 Planning for Software Transition to Maintenance..........ccovveerveeeveerreerneenene 2-51
5.1.6 Following and Updating Planscccoceeeeviivinnienecennunoneioonnieninoneneeesn 2-51
5.2 Establishing a Software Development Environmentcccccociieeciicninininnneiinne. 2-51
5.2.1 Software Engineering Environmentccccceevveeireiteeccncniieeeninnnneeninnns 2-51
5.2.2 Software Integration and Test Environmentccccoeviiniiiiiiinnniinnenn. 2-52
5.2.3 Software Development Libraries.........coeiviniinniinriiiiininiien e, 2-53
5.2.4 Software Development Filesccccovviiinvverriiininineccneniiniiieoniinnmiienneeinn, 2-55
5.2.5 Non-Deliverable SOftWarecccocovrininiiiiiiinii i e 2-56
53 System/Segment Requirements AnalysiS......cccoeeeceeeciieinvreeeiiieenneeesineeesecseeecineeescnees 2-56
S8:l - ANalYSisOf USer NPl s et st semsss s fasiamimssasam s 2-57
5.3.2 OperationaliCOMCEPL.. ..« e seurss i shasnns snnsssiennnsensshesssiodrspnass Seaseaaesimaest vosiana 2-57
5.3.3 System/Segment REQUIrEmMENtScoevureeervvereueeerosurensasunrinsiesssseesinniesssneens 2-58
5.4 System/Segment DEeSIZNccccvccirieiieiieinieniinieete s s 2-58
5.4.1 System-wide/Segment-wide Design Decisions........cc.ceevereieniersereneeccenneenne 2-60
5.4.2 System/Segment Architectural DeSignccoocceerervieemrieinininrinnieininienineennn 2-61
5.5 Software Requirements ANALYSiS........ceivceeerrereereeririicteertereeeeeieeseeseeessnessereessreenens 2-62
£ I < o) % 22 (= D =3 7 e e P o 2-68
X

I en B N B S T BN G R .

54

5.8

S

5.10

5:12

5.13

Downloaded from http://www.everyspec.com

5.6.1 Software Item-wide Design DeCiSIONSc..cccvvvrriiieiicieniiieeeciereniieeeiieens 2-70
5.6.2 Software Item Architectural DeSiZN. uwsisvmmssenuessvencosmuedosnsaesssasass sisessas 2-71
5.6.3 Software Item Detailed Desi@nccccovvveeeiiiiinnieeeniveiennieeesierennnneeenienenns 2-73
Software Implementation and Unit TeStINZccceeeeieiiiiireeeciieniee e ceee v 2-77
5.7.1 Software Implementation.........c.ccoeveeiereeeneinienee et e e 2-79
5.7.2 Preparing for Unit TeStiNgccoeeiieiiieiiiiieeeie e e 2-81
5.7.3 Performing Unit TeStINGc.cccevveeeriurrinnneeesireensineeesieeensreesssseesnsseessssnnenns 2-81
5.7.4 Unit Testing Revision and Retesting.........cc.ccccovvvvverniiirinnreeeeniieennseeeecnnnnns 2-82
5.7.5 Analyzing and Recording Unit Test Results..........cccoervrnnnrveeriierinneeeeninnnnns 2-82
Unit:Integration and) TESTNE]. . cu.ussysurssssrsiessasssnsastsnssesnaase issmssssessssssasssatasesssusasess 2-82
H8al IPrepaning fontlUI&HT « o mite it o e e S A e e e s 2-86
5.8.2 Performing UL&Tccoviiiiiiieiiniiiieeee e siis e sreaesieeesetreenieeessesessnneseenes 2-87
588 'UI&T Revisioniand ReteSting s ewrome. ssorsseussssuesesdissinaminsmas v ssman saussuisases 2-87
5.8.4 Analyzing and Recording UI&T Results......c.cooeeriinciunniciiiieniencncciinecnes 2-88
Software Item Qualification TeStNEcccviiiiiiiiiie e 2-88
5.9.1 Independence in Software Item Qualification Testingcc.cccoeevvcernneenn. 2-92
5.9.2 Testing on the Target Computer SYStemccceevvvrieeeerniereeeennieeeeeneineens 2-92
5.9.3 Preparing for Software Item Qualification Testingcccccovceeriiinenneenne. 2-93
5.9.4 Dry Run of Software Item Qualification Testing.........c..ccceeevvvivrinciiecccnnnns 2-94
5.9.5 Performing Software Item Qualification Testing.........cccocveeereerinirreerccernnns 2-95
5.9.6 SIQT Revision and Retesting........c.cveeeeccmrrerrueecveneesssreerseceesssnnenccessnsnaene 2-96
5.9.7 Analyzing and Recording SIQT Results..........cooveeeermiennnieeeniieeenneeeeiieenne 2-97
Software/Hardware Item Integration and Testingccoccevveinvenneeniriineeseevireeees 2-98
5.10.1 Preparing For SI/HI Integration and Testingc...ccccoviiviiiiiiiinninnen. 2-100
5.10.2 Performing SI/HI Integration and TeStingccooceevvriveiiveerireirineeceesneens 2-102
5.10.3 Analyzing and Recording SI/HI Integration and Test Results.................... 2-103
5.10.4 SI/HII&T Revision and Retestingcocceceeveeriirieieneniennenieeneeeeenaes 2-103
System Qualification TestiNg s wrra s immmmems st grsrrmermmmi i, 2-104
5.11.1 Independence in System Qualification Testing.........ccccevvueivevrivinceennenns 2-106
5.11.2 Testing On the Target Computer SyStemcccceverrciinienciiiieecneeninee. 2-106
5.11.3 Preparing For System Qualification Testing.......c.ccocceveeceererneencnieencenne. 2-106
5.11.4 Dry Run of System Qualification Testingcccveveeeriiveeeiinnniveneeernnneen. 2-107
5.11.5 Performing System Qualification TeStingcceovvvrerirreirvererineenseeeeninees 2-107
5.11.6 Analyzing and Recording System Qualification Test Results 2-107
5.11.7 System Qualification Testing Revision and Retestingcccocveevvveeernnenn 2-108
Preparing for Software Transition to Operationsccoveevirveinneriniiiennienineenns 2-108
5.12.1 Preparing the Executable SORWarecccccvviiviiieininnincnneine e 2-109
5.12.2 Preparing Version Descriptions for User Sitescoceeeveeernnicenncecnnne. 2-109
55112581 IRrepaningsllser M anlal She s arne s s e e s e 2-109
Sa12:4) Installationt atilSEr SilEskm s syt e e o b bt o sl s s T e e 2-111
Preparing For Software Transition to Maintenanceccccoovevveeveeerivreenieeeennnneennn 2-111
551841 Pieparing the EXecutable SOWATe ¢ vursiearomem. s alnssim s siwsses sommmasse e wes 2-112
5418:28 RreparingsSOURCEHRITES ouaie dih i st s s s i el e mete sl ool 2-113
5.13.3 Preparing Version Descriptions for the Maintenance Site........c..cccceoccene 2-113
5.13.4 Preparing the “As Built” Software Item Design and Related Information.2-113
5.13.5 Updating the System/Subsystem Design Descriptioncccoeeeevvveennnen, 2-113
5.13.6 Updating the Software Requirements..........cccceevvcuereennnicereeennieeeecnnenneee. 2-114
5.13.7 Updating the System ReqUirementsccoeeverrereeeerireinseeecenvnessveesnenneens 2-114
5.13.8 Preparing Maintenance Manuals.............ccocoeciiiiiiiinninncc i 2-114
5.13.9 Transition to the Designated Maintenance Site..........c.ccooccenviiiiinieenncns 2-115
Xi

Downloaded from http://www.everyspec.com

5.14 Software Configuration Management........c.ooveeecvevmreerieeencreeneeseesseeseeeseeeesneesneenes 2-115
5.14.1 Configuration 1dentification..........cccceerieiiiercrisiiiccnn it 2-117
51452 ConfigurationtCONtIOl: mmmmmummassm s miminmmss s mssimss ssasuasresasmrinsmss 2-118
5.14.3 Configuration Status ACCOUNLINGcccceviiveiiimeeriiiieiniseeeriner et esssees e 2-120
5144 (Configuration AVAilSic s s omonamsiasmnsmims st sssarmsmess: 2-120
5.14.5 Packaging, Storage, Handling, and Deliveryc.ccceoveernvnnninicnniienineennee 2-121
5.15 Software Peer Reviews and Product Evaluationsccccvuiniiinniiiininiiinnciniiinnns 2-122
5155, ‘SoftWare;Peer REVIEWS wusuisvvssossas msassmismusins s quammeasssssesaamsessaris soss s wsse s s 2-123
5.15.2 Software Product Evaluationscccccvveeieiiemnieniiie e 2-126
5.16 Software QUality ASSUIANCE.cccvcvervrreieireeeesrsecesssnesssesisiseesssssessssseessseseesssssenssnne 2-127
5.16.1 Software Quality Assurance Evaluations.............cccovviinninnninniiinniiiniinne, 2-128
5.16.2 Software Quality Assurance Records, Including ltems to Be Recorded.....2-129
5.16.3 Independence in Software Quality ASSUFANCE.......ccccveerveeriinneeniereesieeninns 2-129
5.16.4 Software Quality Assurance Non-Compliance ISSUEScccovvuvreerverenene. 2-130
SEITY G ORTCC Y A CION euttaacs ety et s s o S S S Tt S e e s 2-130
5171 Problem/Change RepOrtSia s st s maminm s s ma s it e 2-130
5.17.2 Corrective ACtiON SYSIEM ...cccccveiuriecieiiieneieie et et e 2-131
5.18 Joint Technical and Management ReVIEWS......c.ccoviiieiiiiiiiniininni e 2-132
S8l Joint: TechniCAlREVIEWS! . .t i ies cons s onssiassamnsioss s55vissssiss s lsinsa e smis Faemases 2-133
5.18.2 Joint Management REVIEWScocviiivinnsisiniiismnesiniennssseesnniessseeesessessesees 2-134
5:19: Software:RiskiMaNagemBL ... oo seassiessssssaarevsssitssm voismue fossssssssanissssisissaasisssins 2-136
5.20 Software Management IndiCators......ccceeveeiecoieerereeernruneecenncnnnneieiiieessseeesseessesenes 2-138
5.20.1 Principal Objectives of Measurement.........ccooveeeeeeeneeernerscrecereesseeeneesences 2-138
5.20.2 Continuous JMPrOVEINENL:. .« uusaussasusssssssssassssassssiessasssssssssssasesesssasssaassanss 2-139
5.20.3 Approach to Management Measurements.......cccccocevveeeriiiienscenienineeninees 2-139
5.20.4 Key Software Management QUEeStionsS..........cooceereremnueniniinsinnnienniennin, 2-141
5:20:51 ‘Software Measurement SOt . rramansiiianmsstisini s isnisesinssssnisssesies 2-141
5.20.6 Software Measurement CONSLIUCEcoovviiiiiiiiiiiiiiininniinae e 2-141
5.20.7 Analysis and Reporting of Software Management Indicators.................... 2-145
5.20.8 Software Indicator Thresholds and Red Flags.......cccccceeeeievcinnciececcineneneee. 2-146
5.21 Security and Privacy Protectionccccceceeeviircinrenccinin s 2-146
5.22 Subcontractor Management so e sonis i mmisnismass haitimsamissmassisesissmses 2-147
5.23 Interfacing with Software IV&V AZeNtscccooceiciiicciciniiininninisinie e 2-148
5.24 Coordination With ASSOCIate DEVEIOPETS ..uvvverreriirisieicirrniinaniiinieissersessniesssnnnesnne 2-149
525 |mprovement:of Project PrOCESSeS . rrirumsmammuscassirmss st sssimenssaisssasiasssssasssesswsses 2-149
5.25.1 Software Engineering Process Groupc.cceeeereveeiiernveccnscncienecensnenne 2-150
SE257) PROCES S A S e o r et e s euiab s e Sl T et P T e 53 5555 s sl s oo 2-151
5:25:831 Change lmplementationt s e retivrmtt seitssimm ot sissassessistasssuesunsespsmissassnruesi 2-152
5:2574 SEPGINIRastiuCHIne s o inmimiinae nom ot s f s o vt e s s 2-152
5:25E5) PROCESS TITALMITIE s oo i wssssinenisale imeise oy slsisasle s oo il e ssse Sio 605 5 2-152
5256 Software Process Engineer/LLead o comrosmavussmessmsmassasssaonsossssansssoisussass 2-153
5.26 Software Sustainment (Optional)cocueeiviirecceeniiiecitreerteee e 2-153
5.26.1 Software Sustainment ObJectiVES........ccorviriimrciniiiiini 2-153
5.26.2 Planning for Software Sustainmentcocccveeeeminercecrrininieenineninneeenn 2-154
5.26.3 Software Maintenance Plan...........cccccoecverivinciincincncinnnne e 2-155
5.26.4 The Software Sustainment Organizationcceeevevniinninninsneninnenne. 2-156
5.26.5 Key Software Sustainment 1SSUES.......cccvvivrieieeiniiseniniinseneisnir e, 2-156
Schedules and: Activity INEEWORK: .«.vuaii st teiiem s sio i e s S s T as=resessumsushns s emsss 08 2-159
Project Organization and RESOUICEScccvvereeieiierierineniieeeesessiieceeessnnreressnssseeeeeesssenmeneens 2-161
Xii

Downloaded from http://www.everyspec.com

7.1 Project Organization.......co.eoveerieerieesee ettt s st enree s 2-161

7.2 PrOJECt RESOUMCES «.euiiiieieiiiereeietiteeeiieteeseeeteessessseeesessateeesssssanes e seasnnaesasarannnes 2-162

7251 PersONNEl RESOURCES <. st sapan smessvslse e 5555 S5asis 5l Art i els S8 s 5605 Toe S8 355 78 2-162

252 DevelopmenRIBacilifies). o i e e e 2-165

7.2.3 Government Furnished Equipment, Software and Servicesc.cccccceeu..... 2-165

7.2.4 Other Required RESOUICEScccevvuriireirirrreeriiieeenieesireensreesenineessssessennees 2-165

7.2.5 Software Training Plans (Optional).........ccccvviviriveereniiiininieeeenieennneeeesnnes 2-166

8. N O S e e L C Tm T DLk S s e T L s s S e et 2-167
Part 3. Additional SDP Guidebook Information...........iiiiniicinniiiniiinniniccnnnsssniancosssssnnee 2-1
AGI-1. Software Roles and Responsibilitiesccc.oeiriiiiiiniieeccrece e e e 3-3
AGIEZ, Bibli O ST ap s e s sisss e ss bt o se v oo S 0emis o e ssu SIS S0 6 Do oo o Sl el AT 55 o st 3-15
AGI-3. Software-Related Definitions......c.covvieieeirceeeeniiniieer ittt et eeeeee e e e esceee e 3-17
AGI-4. SOftWATE ACTOMYIMS wceviiuiiiieiiecterereteeettertesetessteeteeteseetsbte st sns stesaee et seneesesenseeatesaeseneeenenee 3-19
AGI-5. Subject Index to the SDP GuidebooKcccociiiviiiiiiiiiiiiicriceci e 3-21

Xiii

Downloaded from http://www.everyspec.com

Part 1. SDP Guidebook Introduction

Figure 1-1.
Figure 1-2.

Figures
Organization of This SDP Guidebook........ccoccvviiiiiniiiiiniiinniniin, 1-2
Components of a Typical SDP Package—Example........ccccovveeeriirinneeeeninnesnnnenens 1-5

Part 2. Recommended Contents of a Program-Level SDP for Large Software Development

Efforts

Figure 1.1.
Figure 1.2.1.
Figure 1.2.2.
Figure 1.3.3.
Figure 1.4.
Figure 3.1.
Figure 3.2.
Figure 3.4.
Figure 3.5-1.
Figure 3.5-2.
Figure 3.7.4.
Figure 4.1.1.
Figure 4.1.2.
Figure 4.2.2,
Figure 4.2.4.1.
Figure 5.1.1.
Figure 5.1.1.4.
Figure 5.2.3.
Figure 5.4.
Figure 5.5-1.
Figure 5.6.2.
Figure 5.6.3.
Figure 5.7.
Figure 5.8.
Figure 5.9.
Figure 5.10.
Figure 5.14.
Figure 5.14.2.2,
Figure 5.15.
Figure 5.16.1.
Figure 5.16.3.
Figure 5.17.2.
Figure 5.19.
Figure 5.20.2.
Figure 5.20.3.
Figure 5.20.4.
Figure 5.20.6.
Figure 5.25.
Figure 5.25.4.
Figure 7.1.
Figure 7.2.1.2.

Software Organization and Software ltem Structure Overview—Example 2-2
XMPL System Overview—EXampleo.cccviiviniiniiiinmiinnni e, 2-3
XMPL Software System Architecture Overview—Example.......c.ccccoovercennnnenennee. 2-4
XMPL SDP Update Plan—Example..........ccccecoviiiiiniiniiniiiinninnenn 2-8
Relationship Between the XMPL SDP and Other Key Plans—Example................. 2-9
XMPL System Acquisition Lifecycle Phases—Example...........ccoccoevernienieennnen. 2-13
Software Process Levels Used In This Guidebookcoeconivininininiinnninnnn, 2-14
Software Lifecycle Development Domains—Example........c.cccoveeeecnnneeeniceninnnene 2-15
XMPL Software Development Process Overview—EXample.........cccoeeevviernvveernnns 2-16
Principal Software Development Process Activities—Example............ccccccenneene. 2-17
Software Testing and Integration Process—Examplecc.cccvvviiiiiiiniinniinnnnn 2-22
Mission Critical Software Development Process—Example............ccccoviinninnninnn, 2-25
Support Software Development Process—Example........oocieoveveecencinnnceenicnneeene 2-27
Hierarchical Software Product Levels—Example.......c..ccceeevvveriiccennnnieecinennnneeen. 2-29
COTS/Reuse Management Process—EXamplecccevvniiivniniinnininiiniennn. 2-31
SDP Waiver Approval Process—EXample.......c.cocovvveeeeeiniiiniinniiinininnn, 2-45
Software Management from a Measurement Perspective—Example.................... 2-49
Electronic SDL Logical Partitioning—Example.......cccccovvveeeeineenienninineecieennen. 2-54
System/Segment Design Process Flow—Exampleccccoovvininininininninincns 2-59
The Origin of Software Requirements........c.cccoceveeveieieniniense et scceee e 2-63
Software Item Architectural Design Process Flow—Example............cccooveenennee 2-72
Software Item Detailed Design Process Flow—Examplecccccoevieviinicennen. 2-74
Software Coding and Unit Testing Process Flow—Examplecccccoceinicniniinnee 2-80
Software UI&T Process Flow—Example.........ccccccceiviiiniiniiniiniinnnnenn, 2-85
SIQT: Process Flow—EXamPpleoiiumumseviiumsmmmrinsmintonn o iamnsiondoesssont dearasiion s 2-92
Hardware/Software Item Integration and Test Process—Example............cc..... 2-100
Relationship of the SDLs to the MSDL—Exampleccoccovvvviiniiniininienncnnns 2-117
Relationship of the Configuration Control Boards--Example............c.coooviiinnins 2-119
Software Peer Review Process Overview—Exampleccccoceeeiiniieiciinniiiinn, 2-123
SQA Staffing Projection—Example.........ccccovniniiiniiiiinininnninneenn, 2-129
SQA Independent Reporting Structure—EXample.......ccccoovvvanerrnreiiecrecccssneeennens 2-129
Corrective Action Process Overview—Examplecccccooeiiiiiieniiinnnnninninnne, 2-131
Risk Management Process Overview—Example..........cccocniinininiininninninin, 2-136
Closed Loop Software Control Process—Example...........cocovviiiiinniiniiniininnne, 2-139
Software Measurement Framework—Example........ccoccveeevvniieneccnsccinnneiinneeen, 2-140
Categories and Indicators Support the Key Management Questions—Example..2-141
Elements of the Software Measurement Construct—Example..........ccccecceenneen. 2-143
Software Process Improvement Process Overview—Example...........ccccocovieneen 2-150
SEPG lnfrastricturé—Exampleé - zammaminaniinnamuisnissmsnsiiammarimits. 2-152
Overall Program Organization—Example............ccccooiniinnininiinnnn, 2-161
Estimated Software Staff-Loading—ExXxample..........ccoovrvcvireriniiicccinniiniccneninnne 2-164
Xiv

i

Downloaded from http://www.everyspec.com

Tables

Part 1. SDP Guidebook Introduction

Table 1-1.

Common Acronyms Used in this GUideboOKeecvceeinviieiiveeiiniiie e, 1-3

Part 2. Recommended Contents of a Program-Level SDP for Large Software Development

Efforts

Table 1.2.3.1.
Table 1.2.3.2.

Table 1.2.3.
Table 3.3.
Table 3.6.
Table 3.7.2.
Table 3.7.3.
Table 4.1.
Table 4.2.3.

Table 4.2.10.1.

Table 5.
Table 5.1.
Table 5.1.1.
Table 5.1.1.
Table 5.1.2.
Table 5.2.1

-1.
Table 5.2.1-2.

Table 5.2.4.
Table 5.3.

Table 5.4-1.
Table 5.4-2.
Table 5.5-1.
Table 5.5-2.
Table 5.6-2.
Table 5.6-3.

Table 5.6.2.
Table 5.6.3.

Table 5.7-1.
Table 5.7-2.
Table 5.7-3.
Table 5.7-4.
Table 5.8-1.
Table 5.8-2.
Table 5.8-3.
Table 5.8-4.
Table 5.9-1.
Table 5.9-2.
Table 5.9-3.
Table 5.9.3.

Table 5.9.4.
Table 5.9.5.
Table 5.9.7.

3

It
3.

Mission Critical Software Class and Sl Categories—Example.........cccoeevvevivenenann. 2-5
Support Software Class and S1 Categories—EXample........ccecenveriienieniniennenes 2-5
COTS/Reuse Software Class and SI Categories—Example...........cccoovvvrecvivvinnnnnns 2-6
XMPL Software ltems and Team Responsibilities—Example............cccccoevnrnen. 2-14
XMPL Software Documentation Production Matrix—Example.............cccoouueee. 2-18
Software Integration, Testing, and Verification Stages—Exampleccoocvvvunennn 2-19
Software Integration, Testing and Verification Objectives—Example.................. 2-20
Overview of Software Development Process Models—Examplec.cc..c..... 2-24
Traceability Requirements by SI Category—Examplec.cccovevevviiceiennnnnn 2-29
Candidate Software Management and Quality Control Plans—Example.............. 2-39
Contents 0f SDP SECHONS ..coovuiiiiiiiiiiiiir et 2-43
Readiness Criteria: Project Planning and Oversight—Example..........c.cccceevveen.nn. 2-44
Software Planning Tasks—Example.......coccoovviiiiiiiiiiiii i 2-46
S1 Build Delivery Plan-Examiple.........cocccoiviiiiiiniiniiiinniinciensie e sinesssessnne e 2-47
Readiness Criteria: Software Test Plan—Example.......ccccovvvveviiiinniiieeeniienniineens 2-50
Program-wide SEE CASE Tools—Example.........cccoviiiniiiiiciiiiienecieeneee 2-52
SEE Development Sites—EXamMPIeccccieeerveriiniieeeinierinisreeenieerinneesssnennnneeee e 2-52
Electronic SDF Organization—EXampleccccooiieieiiiiiiiiiieiciie e evveee s 2-55
Readiness Criteria: System/Segment Requirements Analysis—Example.............. 2-57
Readiness Criteria: System/Segment Design—Examplecccocvvveeievniiinvinnnenn, 2-58
System/Segment Design Tasks—EXample.......ooovvvveriiiineeenineeeie e, 2-60
Readiness Criteria: Software Requirements Analysis—Examplecccocvveeenee 2-64
Software Requirements Analysis Work Products—Example........ccccoecveviinnnneeen. 2-64
Required Software Design Activity Work Products—Example.........ccccevvennnns 2-70
Roles and Responsibilities During Software Design—Example............ccc.ccoeenee. 2-70
Software Item Architectural Design Tasks—Examplecccccevviereivvereiniininiciernnns 2-73
Software 1tem Detailed Design Tasksccceeieiiiiiiiiniiiie e 2-75
Readiness Criteria: Software Coding and Unit Testing—Example 2-78
Required Software Coding and Unit Testing Work Products—Example 2-78
Roles and Responsibilities During Software Coding and Unit Testing—Example 2-79
Software Coding and Unit Testing Tasks—Examplecccooceervinniiiniiinnnnen. 2-80
Readiness Criteria: Software Unit Integration and Testing—Example.................. 2-84
Software UI&T Work Products—EXample......cceevvveeeviriiiniveeeinieeensiecennneesnovenenns 2-84
Software UI&T Responsibilities—EXamplecccceeeriiiiiiierinniieeneeeneee e, 2-85
Software UI&T Tasks—EXaMPIeccooiiiiiiiiiiiiiiiiiiie e 2-86
Readiness Criteria: Software Item Qualification Testing—Example 2-89
Software Item Qualification Testing Work Products Per Build—Example........... 2-90
SIQT Roles and Responsibilities—EXamplecccceeeriiiiiinnniieiieennceee s, 2-91
SIQT Preparation Tasks—EXaMPIeccciveeerveriiniveeiiiereinseeesieresnseeessineesssenenenns 2-94
SIQT Dry Run Tasks—EXaMPIecccovvviriiveeeiiiiiiiiieeeiniieceeeenieessieeessnnesssnneenns 2-95
Perform Formal SIQT Tasks—EXamplec.ccccvveiereiiiininiieiinee e e 2-96
Analyzing and Recording SIQT Results—Example..........ccoccvviniiiniiniie e 2-97
XV

Table 5.10.

Table 5.10.1.
Table 5.10.2.
Table 5.10.3.
Table 5.10.4.
Table 5.11.

Table 5.14-1.
Table 5.14-2.

Table 5.15.1.2.

Table 5.18.1.
Table 5.18.2.
Table 5.20.5.

Table 5.20.6-1.
Table 5.20.6-2.
Table 5.20.6-3.
Table 5.20.6-4.
Table 5.20.8-1.
Table 5.20.8-2.

Table 5.22.
Table 5.23.
Table 5.25.1.
Table 5.25.2.
Table 5.25.6.
Table 5.26.3.
Table 5.26.5.
Table 7.2.1.
Table 7.2.1.3.
Table 7.2.2-1.
Table 7.2.2-2.
Table 8.1.
Table 8.2.
Table 8.3.

Downloaded from http://www.everyspec.com

Readiness Criteria: Software/Hardware 1tem Integration and Testing—Example..2-99

SI/HI Integration and Testing Preparation Tasks—Example.........ccccccoviiniinnn 2-101
Performing SI/HI Integration and Testing Tasks—Example........c..ccoccnviniinininns 2-102
Analyzing and Recording S1/HI Integration and Test Tasks—Example.............. 2-103
Revision and Retesting SI/HI Integration and Test Tasks —Example................. 2-104
Readiness Criteria: System/Segment Qualification Testing—Example............... 2-105
Division of SCM Responsibilitiess—Examplec..ccocniiniiiinniiniinninnin, 2-116
Software Library Levels and Controls—Examplecccccccovveieencrccnnniennnin. 2-117
Software Development Peer Reviews—Example........c.ccoccevnvenninninicinininn, 2-125
Software Product Reviews By Activity and Category—Example........c..coeeneene. 2-134
Software Documentation Maturity Mapped to Reviews—Examplec....c...... 2-135
Software Measurement Set—Example.......coocccvviiiviviiiiiniinnnn, 2-142
Format of the Measurement Information Specification—Example 2-143
Example of a Measurement Information Specification for Staff Profile.............. 2-144
Base and Derived Measure Specifications—Exampleccoccoevniiiiniiininnninns 2-144
Format for the Measurement Indicator Specification—Example.............cc......... 2-145
Software Indicator Thresholds—Example........cocvvvvveiiviiiecvinierinrceneeneee e 2-146
Software Indicator Program Red Flags—Examplecccccoviiniiininniinninnn, 2-146
Subcontractor Management Team Members and Responsibilitiess—Example.....2-148
Software IV&V Evaluations—EXample..........cccccoeoviniiniiinieie et 2-149
SEPG Membership and Responsibilities—Example.........cccocoveevieiiennienineeneen, 2-150
Focus of the Process Improvement Initiative—Examplecc.ccooceniiiiiininninnn 2-151
Typical SPE Functions—Example........ccccooeiiiniiiiiiicicie e 2-153
Example Outline of the Software Maintenance Plan.........cccccconveeniiiiniiininnnnn, 2-156
Key Software Sustainment ISSUESeeeuecereerrneerraernneerserreneensneesaeesreesssusenseeennans 2-157
Chief Software Engineer Team Responsibilities—Examplecc..coccevieirineeene 2-163
Estimated Skill Levels By Location and Function—Example.........c.cccevvvvinnnne 2-164
Team Locations and Software Activities—Examplec.cccoovviviininiinninnne, 2-165
Facilities Allocation—Examplecccccciviiiiiiiniiiiiiiiiicciern e 2-165
Acronyms—EXamPIlecccoviiiiiiciiiiiiinniiii e s 2-167
Software-Related Definitions—EXamplecccevvevrirerceenineeennnreiccnieenecsseeneens 2-167
Work Instructions and Procedures—Example..........cccoccvviiniieiieiiiccnceenecnnen. 2-168

Part 3. Additional SDP Guidebook Information

Table AGI-1.
Table AGI-3.
Table AG1-4.
Table AGI-5.

Table AGI-6.
Table AGI-7.
Table AGI-8.
Table AGI-9.
Table AGI-10.

Table AGI-11.

Roles and Responsibilities of the Chief Software Engineer—Example.................... 3-4
Roles and Responsibilities of the Software Process Lead—Example...................... 3-6
Roles and Responsibilities of the IPT Software Lead—Example..............c.co..c...... 3-7
Roles and Responsibilities of the IPT Software Integration and Test Lead—

E X A o o B e S e e T R e A B S s At Tt e S e 3-8
Roles and Responsibilities of the Software ltem Lead—Example..........ccccoouerrnneee. 3-9
Roles and Responsibilities of the Software Engineer—Examplecccvcvcivennne 3-10
Roles and Responsibilities of the Software Test Engineer—Example................... 3-11
Roles and Responsibilities of the Software Configuration Management—

R ATI () C: Trtee e oot e o 23 e 3 e = AT o s e e il e St TS e elele lom e 3-12
Roles and Responsibilities of the Software Quality Assurance Management—
Examiple.: . cmimrs e s A R ST S S 3-13

Roles and Responsibilities of the Software Subcontract Management—Example.3-14

xvi

Downloaded from http://www.everyspec.com

Part 1. SDP Guidebook Introduction
1. Scope and Perspective

The contents and organization of the Software Development Plan (SDP) recommended in this
Guidebook is based on guidelines as defined in:

e Section E.2.1 of the “EIA/IEEE Interim Standard J-STD-016-1995 " (hereafter referred to as
J-16),

¢ Department of Defense (DoD) Data Item Description (DID) DI-IPSC-81427A., Software
Development Plan, and

¢ The Aerospace Corporation software development standard Technical Operating Report,
TOR-2004(3909)-3537B, “Software Development Standard for Space Systems” (hereafter
referred to as TOR-3537B). Appendix H of TOR-3537B contains the SDP content template.

This Guidebook is compliant with those standards, however, TOR-3537B is the cited standard as it
is newer (published 11 March 2005) and is currently being used as the compliance standard on United
States Air Force (USAF) Space and Missile Systems Center (SMC) programs. TOR-3537B has also
been published as SMC Standard SMC-S-012, “Software Development for Space Systems” dated
13 June 2008. If the guidance being applied appears only in J-16, then J-16 is the cited standard.
There is no intent to duplicate the information contained in those standards. The intent of this
Guidebook is to supplement the standards with detailed guidance, recommend contents, and
examples, to assist in the preparation and review of SDPs. Therefore, this Guidebook should be used
in conjunction with the standards.

The contents of a SDP, as defined collectively by the above standards, consists of the following eight
sections plus Addendums and Annexes as needed:

1.Scope
2.Referenced Documents
3.Overview of Required Work
4.General Requirements
5. Detailed Requirements
6.Schedules and Activity Network
7.Project Organization and Resources
8.Notes

e Addendums

e Annexes

2. Organization of this SDP Guidebook

This Guidebook is organized into three parts as shown in Figure 1-1. Part 1, the introduction, covers
the basic approach and general information of special importance to the reader. Part 2 of this SDP
Guidebook constitutes the bulk of the document as it contains the recommended contents of a
program-level SDP in terms of what is expected and recommended to be included within each
subsection or paragraph and examples of expected contents, figures, and tables. The Notes section
(Section 8) contains acronyms, definition of terms, and an example list of work instructions that
document how to carry out tasks described in the SDP. Part 3, Additional Guidebook Information,
contains a suggested list of software roles and responsibilities, references, definitions, acronyns, and a
Subject Index to this Guidebook.

I-1

Downloaded from http://www.everyspec.com

¢ PART 1: SDP GuidebookIntroduction

¢ PART 2: Recommended Contents ofa
Program-Level SDP for Large
Software Development Efforts

« PART 3: Additional Guidebook Information

Figure 1-1. Organization of This SDP Guidebook
3. Electronic Data Management

This Guidebook is written with the assumption that the contractor’s parent organization has in place
an effective and comprehensive Electronic Data Interchange Network (EDIN) for the storage,
retrieval and distribution of program related software documentation and work products (see
subparagraph 5.2.3.1).

4. Example Text and Highlights

Tailoring. Throughout this Guidebook the name of a fictitious example program will be called
“XMPL.” All of the figures and tables used in this SDP Guidebook are examples and they are
expected to be tailored for each program’s SDP and be compliant with the developer’s Standard
Software Process (SSP).

Example Text. In some sections of this Guidebook, example text is included as a guide for
preparation of that section. Example text is identified as follows:

Example Text:
The example text provided in this Guidebook is outlined with a solid outside border and
includes the words “Example Text” in the upper left corner.

Highlights. Paragraphs or sentences containing essential or key information are highlighted with a
light yellow background. When the term “<corporate>" is used in example text, the intention is to
replace it with the name of the parent organization of the program producing the SDP.

5. Terms and Acronyms Used
Terms used in this Guidebook are consistent with the definitions in Section 3 of TOR-3537B.

This Guidebook is not a standard! Therefore, there are no mandatory “shalls.” Instead, the following
terms—and what they mean—are used throughout this Guidebook:

e Must: Highly recommended for compliance with TOR-3537B and J-16. The word “must”
is in bold letters to highlight that it is, or is implicitly, a “shall” in the standards.

e Should: Recommended for completeness
e Can: Discretionary but should be seriously considered for inclusion
e May: Discretionary or used to show examples

Using the term “may” implies that other good options exist—choosing between them is left up to the
program.

1-2

Downloaded from http://www.everyspec.com

Acronyms. Acronyms are used extensively in this Guidebook. Acronyms and definition of terms
used are included in Part 3 of this Guidebook. Table 1-1 is a list of the most common acronyms used
throughout the Guidebook. It is expected that individual sections of this Guidebook will likely be
used as a reference when needed (as opposed to assuming the reader will always read the entire
Guidebook). Consequently, acronyms are typically redefined when first encountered in each section.

Table 1-1. Common Acronyms Used in this Guidebook

Software Development File (or Folder)
Software Development Library

Chief Software Engineer
Configuration Control Board
Contract Data Requirements List
Commercial Off-The-Shelf
COTS/Reuse (a software class)
Code and Unit Test

Integrated Product Team
Integrated Master Plan
Integrated Master Schedule

Software Development Plan
Software Discrepancy Report
System Engineering, Integration, and Test

Software Engineering Process Group

Software Item

Software Peer Review
Software Quality Assurance

Mission Critical (a software class) SS Support Software (a software class)
Master SDL SuU Software Unit

Software Configuration Management Y[l Software Configuration Control Board
Software Change Request/Report TIM Technical Interchange Meeting

The “Program Office™ or the “Acquisition Program Office™ and the “customer,™ as referenced in this
Guidebook, refers to the government organization responsible for the program’s contract and
implicitly includes their representatives—such as personnel from The Aerospace Corporation, other
Federally Funded Research and Development Centers (FFRDCs), and System Engineering and
Technical Assistance (SETA) contractors.

6. Format of the Process Descriptions

A graphical and tabular emphasis is heavily displayed in this SDP Guidebook and is the
recommended format to more clearly describe the software development processes. Details of the
software development process are contained in subsections of SDP Section 5, especially
subsections 5.3 through 5.11, covering the principal activities of the software development process.

The following four inter-related items (three tables and a flowchart) are recommended for inclusion in
SDP subsections, 5.3 through 5.11, to provide a comprehensive definition of the software tasks
involved in each activity:

¢ Readiness Criteria Table: Should contain: Entry Criteria; Exit Criteria; Verification Criteria;
and Measurements for each software development activity

e Software Work Products Table: Should contain: A list of work products required, or
typically produced, for each software development activity organized by software category

e Input/Process/Output (IPO) Flowchart: Should show: the input documents and work
products, process tasks, and outputs for each software development activity

e Task Table: Must be linked to the process activities in the IPO flowchart but containing more
details of the tasks and sub-tasks for each software development activity. The IPO flowchart
can be considered optional, but the Task Tables should be included in subsections 5.3 through
S8

1-3

Downloaded from http://www.everyspec.com

Examples of these tables, and the flowchart, are included in subsections 5.3 through 5.11 of this
Guidebook. Example figures throughout this Guidebook are intentionally made simple to convey the
general content expected in the figure. In most cases, it is expected that the figures produced by the
contractor for their SDP will have more content and detail than the examples shown.

7. Integrated Product Teams (IPTs)

The establishment of effective software IPTs is one of the most important ingredients to a successful
software development program. The software IPTs, referenced extensively throughout this
Guidebook, must be composed of relevant stakeholders who make and implement decisions for the
work being developed. The software IPTs are collectively responsible for delivering the product(s)
and its members should:

Share a common understanding of the IPTs tasks, objectives, and responsibilities
Collectively provide the skills and expertise needed to accomplish the tasks and objectives
Collaborate internally and externally with other IPTs and relevant stakeholders

Provide the advocacy and representation to address all phases of the lifecycle

8. Analysis and Design Methodologies

The recommendations in this Guidebook are applicable to all software analysis and design
methodologies; however, the examples presented in this Guidebook assume the software is being
developed using an Object-Oriented approach since Object-Oriented Analysis (OOA) and Object-
Oriented Design (OOD) have, to a large extent, replaced the Structured Analysis (SA) and Structured
Design (SD) approach commonly used for the past 30 years. The scope of this SDP Guidebook does
not permit a discussion and evaluation of the advantages and disadvantages of various methodologies.
Newer methodologies, such as Agile and Extreme Programming, may be appropriate for some types
of software development.

9. Format Options for the SDP

A comprehensive SDP is composed of multiple parts. Typically, there are two basic approaches to
SDP formats: programs with a single SDP and programs with a program-level SDP plus site-specific
SDPs.

The Single SDP Approach. A program may elect to have a single SDP and mandate that it be
followed by all software team members. That approach works very well when all developers,
including subcontractors, are co-located and using the prime’s infrastructure.

The Site-Specific SDP Approach. On large programs, typically involving numerous corporations
that are geographically dispersed, site-specific SDPs are often needed because of significant corporate
differences in software organization, management policies, development environments, and unique
operational processes and procedures. Site-specific SDPs are written and maintained by the
development sites and provide additional standards and procedures specific to each site. They expand
upon, but must not conflict with, the processes and procedures defined in the program-level SDP
unless a waiver has been approved. Figure 1-2 is a typical organization of the complete “SDP
package” containing three parts including site-specific annexes. Programs with a single SDP would
not have Part 3.

1-4

Downloaded from http://www.everyspec.com

SDP Plans. All of the plans listed as SDP Addendums in Figure 1-2 are recommended as long as they
are applicable. Some programs will require the plans listed as SDP addendums embedded in the SDP
itself; other programs may require them to be separate documents. Software management and quality
control plans are briefly described in subparagraph 4.2.10.1 of this Guidebook.

Program-Level Software Development Plan

PART 1

Appendices

Annex A: Site 1 Specific SDP
Annex B: Site 2 Speclfic SDP
Annex C: Slte 3 Specific SDP

PART 3
Site-Specific SDPs

Figure 1-2. Components of a Typical SDP Package—Example
10.Tailoring of the SDP

The SDP must be tailored to the specific requirements of a particular program, program phase, or
contractual structure to which it applies. Although tailoring is generally a responsibility of the
acquirer, prospective and selected software developers may provide suggested tailoring. Generic
tailoring guidance is provided in J-16 Annexes A, B, and C. Tasks that add unnecessary costs, and
data that does not add value to the product, must be eliminated. Tailoring can include deletion,
alteration, or addition of activities as long as the result satisfies program requirements. Acquirer-
generated tailoring is normally specified in the Statement of Work (SOW), Compliance Documents or
in the Contract Data Requirement List (CDRL) section of the contract.

11.Large Versus Small Software Developments

SDP tailoring guidelines apply to both large and small development efforts. If a specified task or
activity does not make sense because of the size of the development effort, it should be deleted. There
is no intention to shoot a mouse with an elephant gun. However, a sound software process
management philosophy dictates that all software developments (large and small) go through the
same procedural steps—the difference is a matter of scale.

1-5

Downloaded from http://www.everyspec.com

12.Recommended SDP Numbering Format

To enhance readability, it is recommended that the SDP numbering format does not go beyond four
levels plus two additional unnumbered levels as follows:

Level 1: Section (Example 5)

Level 2: Subsection (Example 5.1)

Level 3: Paragraph (Example 5.1.1)

Level 4: Subparagraph (Example 5.1.1.1)

Level 5: Bold key word(s) to lead off the paragraph

Level 6: Bullets indented under Level 5 (Note: Bullets can also be used at
Levels 2 through 4)

1-6

Downloaded from http://www.everyspec.com

Part 2. Recommended Contents of a Program-Level SDP
for Large Software Development Efforts

1. Scope

The SDP starts with the Scope and is defined by TOR-3537B' as containing four subsections:
Identification (1.1), System Overview (1.2), Document Overview (1.3), and Relationship to Other
Plans (1.4).

1.1 Identification

The purpose of this subsection is to fully identify the system, the software to be produced, and the
activities to which the SDP applies. It includes applicable identification numbers, version numbers,
and release numbers. Subsection 1.1 can be as short as one paragraph or a half page or longer to
introduce the SDP and organization of the Software Item (SI)°. For example, an introduction to the
SDP may be similar to the following:

Example Text:

This Software Development Plan (SDP) establishes the management and technical plans to be used
during Phase-C, Complete Design, by the XMPL Integrated Product Teams (IPTs), in the
development of software items for all segments and their development sites.

This SDP describes the organization, processes, controls, and tools applied to the management,
design, development, and test of the XMPL software products. This plan applies to all software
integrated into XMPL during its lifecycle, including newly developed software, reused software and
modifications to it, and commercial off-the-shelf (COTS) products.

The SDP provides software management with the controls necessary to oversee the XMPL software
development activities. 1t provides software engineers with the standards and practices required for
all XMPL software development. This SDP implements the <corporate> Standard Software Process
(SSP), as tailored for the XMPL program.

Subsection 1.1 should contain a software organization overview as shown in the example Figure 1.1.
This figure should show the program segments containing software, the Software Items (Sls), and a
top-level view of the software organization. A description of the software organization must also be
addressed in subsection 7.1 of the SDP. Unfortunately, subsection 7.1 of TOR-3537B and J-16 is
titled “Project Organization” and many SDP authors take that literally to mean “project” and do not
show details of the software organization. In the context of an SDP, subsection 7.1 must be
interpreted to mean a view of the software organization from a project perspective.

Some programs may not have all the software titles shown in Figure 1.1. In that event, responsibilities
identified for the Chief Software Engineer (CSWE), Chief Software Architect, and Chief Process
Engineer should be performed by the person(s) having those responsibilities regardless of their job
title. This Guidebook assumes the program has a CSWE and contains descriptions of the
responsibilities typically performed by the CSWE (see AGl-1 Tables AGl-1and AGI-2 and
subparagraph 7.2.1.1).

' TOR-3537B is cited throughout this Guidebook, however, J-16 can also be used as the referenced standard since this
Guidebook is compliant with both standards.
% The SI was called a Computer Software Configuration ltem (CSCI) in MILSTD-2167A and MILSTD-498.

2-1

Downloaded from http://www.everyspec.com

XMPL Chief Systems Engineer

XMPL Chief Software Engineer

Software Configuration A Chief Software Architect
Management
| Chief Software Process Engineer
Software Quality Assurance EEEEEERE

Space Ground Field Command, Control, and
Software Software Software Communications Software
- Spacecraft « MMC * JKL - ABC
. Pay|oads » Test Beds *MNO * DEF

Figure 1.1. Software Organization and Software Item Structure Overview—Example
1.2 System Overview

The intent of this subsection is to describe the general nature of the system and the software. To
provide a clear overview of the “system” versus the “software,” it is recommended that subsection 1.2
be broken into two paragraphs: System Architecture Overview (1.2.1) and Software Architecture
Overview (paragraph 1.2.2). Paragraph 1.2.1 should be further broken down into a general system
description followed by short descriptions of the segments comprising the overall system.

1.2.1 System Architecture Overview

The purpose of the system must be briefly stated in paragraph 1.2.1. As applicable, it must
summarize any historical aspects of the system to be developed and identify the project sponsor,
acquirer, user(s), developers, as well as planned maintenance organizations and operating sites. The
segments that comprise the system must be listed and an overall graphical diagram of the system
should be included similar to the example shown in Figure 1.2-1.

The remainder of SDP paragraph 1.2.1 should contain as many single paragraphs as necessary to
describe the segments that involve software responsibilities for the system. In the XMPL example
there would be descriptions of the following four segments:

o Space Segment: Top-level functions of the spacecraft and payload software

e Command, Control, and Communications (C3) Segment: Top-level functions of C3
software

e Ground Segment: Top-level functions of the ground-based software

o Field Segment: Top-level functions of the field software

Downloaded from http://www.everyspec.com

Command, Control,
and
Communications
Segment

Ground Segment & *Element A
" s> 1@

Field Segment

Figure 1.2.1. XMPL System Overview—Example
1.2.2 Software Architecture Overview

This paragraph provides an overview of the software system (or functional) architecture, a definition
of the software categories, and an overview of the Software Items (SI) and responsibilities.

The overall software system architecture should be depicted in a diagram; Figure 1.2.2 is an example
of such a diagram. An additional, or optional approach, would be to include a “functional matrix”
table showing the software “functionality” for each segment or Sl. A physical overview of the system
may also be necessary.

2-3

Downloaded from http://www.everyspec.com

Command, Control, and

)
! 1
! 1
]

Space Segment (SS) ! Communications Segment :
Spacecraft (FSW) : ‘
- Spacecraft Control ! | MMC Backup E

'gotce;m(sgp_)t i 0 Mission Management Center '
» Data Server Uni i = : .

« Satellite o perations (SO !

+ Payload Support Processor i -% ; OfbitOPerF;tions(OC())) :
-]

(PSP) < ! 5 + Mission management (MM) '
Payloads ! g + Ground operations (GO) |

* One | 2 ||+ stored telemetry analysis (STA) .
S R’\VO 1| O - Enterprise management (EM) L/
- Three ‘ z '
- Four E + I E 3 i
Ir: 4 ;

3 ' || DataRouting and Retrieval I

Field Segment t || - Datamonitorand recovery (DMR) !
« Infrastructure (INF) L . e R I

* Ingest(ING)

* Processing (PRO)
+ Data Delivery System (DDS) Ground Segment
» Data Management System (DMS) + Infrastructure (INF)
*Ingest(ING)
* Processing (PRO)
* Data delivery (DDS)
ltems preceded by a bullet are + Data management (DMS)
Deliverable Software ltems » Calibration/validation (CVS)

Figure 1.2.2. XMPL Software System Architecture Overview—Example
1.2.3 Software Classes and Categories

There are typically three generic classes of software in a software-intensive system: mission critical
software, support software, and COTS/Reuse software as described in example Tables 1.2.3.1
through 1.2.3.3. Each software class can be further sub-divided into categories as needed for the
program, resulting in the identification of 4-8 categories of software for a typical program.

The number of software classes, the number of categories within those classes, and the names of each
are not critical. What is important is that there must be a definition of the category assigned to each
software entity because not every software entity needs to have the full set of documentation, the full
set of reviews, the full set of metrics, and the same level of testing.

Assigning categories to software entities can result in cost savings by eliminating unnecessary
documents, reviews, metrics, and testing. However, the simplicity of this approach is deceiving since

obtaining agreements from all stakeholders on the appropriate category to assign is not always simple.

1.2.31 Mission Critical Software

Mission Critical (MC) software is physically part of, dedicated to, and/or essential to the mission
performance of the system. It includes both space and ground software. MC software may be
expanded to two software categories as defined by the example in Table 1.2.3.1.

Downloaded from http://www.everyspec.com

Table 1.2.3.1. Mission Critical Software Class and Sl Categories—Example

Class Definition Category Category Definition
Deliverable applications software that
MC MC-1 plays a direct role in system operation
and system development.
MISSION CRITICAL SOFTWARE Same as MC-1 but the software is

MC-2 embedded in deliverable hardware.
Firmware is software and is treated in the
same way as software that executes in

Applications software used to perform
real time operations and non-real time
functions implicitly required for a mission.

general purpose computers.

1.2.3.2 Support Software

Support Software (SS) aids in system hardware and software development, test, integration,
qualification, and maintenance. The SS class may be composed of three Sl categories, SS-1, SS-2,
and SS-3 as defined in Table 1.2.3.2. MC-1, MC-2, and SS-1 software categories (but not SS-2 or SS-
3) are usually deliverable and contractually obligated, must pass through all of the developmental
phases, including all of the relevant software documentation, reviews, metrics, and testing. and are
subject to external Software Discrepancy Reports (SDRs).

SS-2 software is used in non-operational environments, may be deliverable, but normally not
contractually obligated. Both SS-2 and SS-3 software categories do not go through the full software
lifecycle or receive external SDRs and are normally not deliverable. However, in some cases,
important support software may be contractually deliverable. For example, deliverable support
software may include training software, database-related software, software used in automatic test
equipment, and simulation software used for diagnostic purposes during the maintenance activity.
The contractor must decide the appropriate category for all software entities in compliance with
contractual requirements,

Table 1.2.3.2. Support Software Class and SI Categories—Example

Class Definition Category Definition
Software items that play a direct role in program and
SS SS-1 system development including software and system
requirements qualification and acceptance testing for
_ final “sell-off.”)
SUPPORT SOFTWARE Support software that is typically prototype software,
S$8-2 simulation software, or performance analysis and

Software that aids i tem
Oha:'jwarea aild Z(I)?tvsv);ee modeling tools (although some of this type of

development, test software may be selected to be in category SS-1).

integration, qualification and Non-deliverable and non-critical tools or test drivers
maintenance. S$S-3 that indirectly aid in the development of the other
categories of software.

1.2.3.3 Commercial Off-The-Shelf and Reuse Software

COTS/Reuse software is non-developmental software items including commercial and government
oft-the-shelf (COTS or GOTS) software as well as reused software obtained from internal libraries,
previously developed under an internal research and development effort, or developed by other
programs, set up specifically for reuse. The C/R class may be composed of two categories as
described by the example in Table 1.2.3.3.

2-5

Downloaded from http://www.everyspec.com

Table 1.2.3.3 COTS/Reuse Software Class and SI Categories—Example

Class Definition Category Category Definition

Non-developmental software that is
C/R C/R-1 | unmodified COTS or Reused software.
COTS/REUSE SOFTWARE Non-developmental software that is
Non-developmental software items C/R-2 | modified COTS or Reused software.*
including commercial and government (A distinction between vendor-provided
off-the-shelf and internally reused software may be
(COTS or GOTS) software. All C/R made for C/R-1 and C/R-2 if meaningful to
products must be treated and controlled the program)
as defined for the category targeted for
its end use.

*Modifying vendor-provided COTS is generally a high-risk approach and is not recommended.

Calculating ESLOC. When software design and/or code is reused, the costing of it is usually based
on an approach called the “Equivalent Source Lines of Code” (ESLOC) count. The premise is that
some portion of the design, code and/or testing does not have to be redone and can be reused. The
method to be used for calculating ESLOC must be described in the SDP.

One common approach to calculating ESLOC is to set the proportionate weighting factors for
designing, coding and testing the reused software product to 40%, 30%, and 30% respectively.
Programs may deviate from these standard proportions (40%, 20%, and 40% is also often used). The
ESLOC count is calculated by estimating the percentage of new design, coding and testing needed for
the deliverable product, and multiplying the sum of these weightings by the lines of code in the
reused product.

For example, assume an existing documented software product with 1000 source lines of code was
selected for reuse by another program having a need for similar functionality. Upon examination of
the reused product, an estimate is made that only 10% of the design needs to be changed, 30% of the
code must be redone, and 60% of the software needs to be retested. In this example, the ESLOC is
310 and is calculated as follows: 1000 [(.1 * .4) + (.3 *.3) + (.6 * .3)] = 1000 [.04 + .09 + .18] = 1000
[.311=310.

1.23.4 Software Category Features

A single Software Item (SI) may consist of different classes and/or categories. In that event, each part
of the SI must be compliant with the documentation, review, and testing requirements of the category
assigned to it. All software releases must be configuration controlled by a Software Development
Library (SDL) at the segment level or by the Master Software Development Library (MSDL) at the
program level as described in SDP paragraph 5.2.3.

Software cannot be moved up or “promoted” to a higher category level without additional
development and testing. To achieve a higher category level, the software must be “re-engineered”
and conform to the documentation, review, and testing requirements imposed on the higher category
level. All COTS and reused products must be treated and controlled as defined for the category
targeted for its end use.

Downloaded from http://www.everyspec.com

1.3 Document Overview

This overview of the SDP document must include its constituent parts and organization, and should
include a plan for updating. If applicable, it must also describe any security, distribution, or privacy
protection considerations associated with its use.

1.3.1 SDP Component Parts

The SDP is more than just a program-level document since it usually contains addendums and
annexes that may be bound separately from the main volume. These SDP components can be shown
in graphical form on the page following the title. The following is an example of text that may be
used for paragraph 1.3.1:

Example Text:
The complete XMPL SDP is organized into three parts as follows:

Part 1: This is the program-level SDP (also called the SDP “main volume™)
Part 2: Addenda to the SDP containing XMPL plans or processes documents:
Addendum A: Software Metrics Plan

Addendum B: Software Roles and Responsibilities

Addendum C: Software Subcontractor Management Plan

Addendum D: Software Quality Assurance Plan

Addendum E: Software Configuration Management Plan

Addendum F: Software Reviews Plan

Addendum G: Software Resource Estimation Plan

Addendum H: Software COTS/Reuse Plan

Addendum 1: Software Integration and Test Plan

Addendum J: Software Risk Mitigation Plan

Addendum K: Software Maintenance Plan

Addendum L: Software Training Plan

Part 3: Annexes to the SDP—Site-Specific SDPs as required for software team members

2-7

Downloaded from http://www.everyspec.com

1.3.2 SDP Organization

This paragraph of the SDP is essentially “boiler-plate” as it describes the format required in the
standard used to produce it—in this case, TOR-3537B. The following example text may be used for
this paragraph:

x[1l]e Text:

This SDP was produced using the compliance standard entitled “Technical Operating Report,

TOR-2004(3909)-3537B, “Software Development Standard for Space Systems.” The XMPL SDP

is organized into the following eight sections:

e Section 1: Provides overviews of the XMPL system, the software system, SDP updates,
software classes and categories, and the relationship of the XMPL SDP to other XMPL
documents

e Section 2; Identifies all documents referenced by this SDP

e Section 3: Discusses an overview of the work to be performed. It describes the requirements
and constraints on the software, documentation, schedules, and resources

e Section 4: Describes the general software development activities to be performed. This
includes an overview of the software development process, standards that apply to the
development activities, the approach to developing and incorporating reusable software,
information on computer resource utilization, and the handling of critical requirements

e Section 5: Provides details on each of the individual software development phases and
activities that are to be performed, or may be performed. It covers project planning, methods,
and the tools that support these methods

e Section 6: ldentifies the schedules and activities to be performed

e Section 7: Provides details on the XMPL project organization and the resources to be applied

e Section 8: Provides the definition of acronyms and selected terms used in this document plus
identification of lower level standards and procedures

1.3.3 SDP Updates

The SDP is considered a “living” document that must be updated periodically throughout the
software development lifecycle. Updates are usually planned to occur at the Program Milestones, and
a figure similar to the example Figure 1.3.3 can be included in the SDP—or the same information
provided in table format.

';3’1“2" | Preliminary Delivery With Proposal I

g December i
12 ATP + 90 dayv Delivery I
g November i
. "13 | PDR Update Delivery .
: "
g; °°‘°b¢“' | CDR Update Dellveryl

Lessons

Figure 1.3.3. XMPL SDP Update Plan—Example

2-8

Downloaded from http://www.everyspec.com

1.4 Relationship to Other Plans

The relationship of the SDP to other key project management plans is important to establish
document subordination in the event of conflicts between plans. Figure 1.4 is an example overview of
the relationship of the SDP to other key plans; software documents are highlighted. Example text for
this subsection may be:

Example Text:

The XMPL SDP is compliant with the <corporate> Standard Software Process and serves as the
compliance document for all XMPL software development. Contractor specific plans, development
policies, and practices are incorporated as annexes to this program-level SDP.

Team members shall comply with this SDP based on tailoring guidance provided in subsection 4.1
and captured in their annexes to this document. The XMPL SDP is subordinate to the Integrated
Master Plan (IMP) and, in the event of a conflict, the IMP takes precedence. The SDP is not
subordinate to, but must be consistent with, the other plans at the same peer level as shown in
Figure 1.4 (e.g., SEMP, CM, etc.).

IMP IMS
Integrated Management Plan }______._____. Integrated Master Schedule
System Software (l:):nt:?nuar:;jgo:maer:: l;rogram Qu:llity - S)Ilster:il
ssurance Plan ngineering
Test Plan DevelopmentPlan ey MG eait Rl
Software Test and Software Software Risk Management
Verification Plans Metrics Configuration Plan
Plan Management Plan
Other Software Contractor-Specific Software Quality Software Risk
Plans and Manuals SDP Annexes Program Plan Management Plan

Figure 1.4. Relationship Between the XMPL SDP and Other Key Plans—Example

Downloaded from http://www.everyspec.com

2-10

Downloaded from http://www.everyspec.com

2. Referenced Documents

All referenced and applicable documents in the SDP must be listed in Section 2 and must contain the
document number, document title, and date of the revision used. A tabular format is an easy way to
display this information and should be organized by government and non-government documents and
then broken down into referenced and applicable documents as shown in the examples below.
Referenced documents are guidelines, but Applicable documents must be adhered to. Non-
Government Applicable documents are usually mandated by the developer’s organization or by the

program.
2.1 Government Documents

2.1.1 Government Referenced Documents—Example

DO - he DO e - < » Date
Document Number Document Title Document Date
Document Number Document Title Document Date

2.1.2 Government Applicable Documents—Example

Document Number Document Titie Revision Date
Document Number Technical Requirements Document (TRD) Document Date
Document Number Interface Control Document (ICD) Document Date

2.2 Non-Government Documents

2.21 Non-Government Referenced Documents—Example

Document Number Document Title Revision Date
Document Number Software Estimating Guide Document Date
1SO 9001 Quality Program Document Date
I1ISO/IEC 15939 Software Engineering—Software Measurement Process 2002
Document Number Software Peer Review Guide Document Date
|IEEE-1471 Software Architecture Descriptions Document Date
AlAA R-023A Recommended Practice—Human Computer Interface for Space 1995

System Operations

2.2.2 Non-Government Applicable Documents—Example

Document Number Document Title Revision Date
Aerospace Report No. TOR- | Software Development Standard for Space Systems 11 March 2005
2004(3909)-3537B
J-STD-016-1995 Standard for Information Technology September 1995
ANSIISO/NEC 9899 Cc 1990
ISO/IEC 14882 C++ July 1998
Document Number <Corporate> Standard Software Process Document Date
Document Number Software Subcontract Management Guidebook Document Date
Document Number Configuration and Data Management Plan Document Date
Document Number Risk Management Plan Document Date
Document Number Integrated Management Plan (IMP) Document Date
Document Number Integrated Management Schedule (IMS) Document Date
Document Number Security Implementation Plan Document Date
Document Number Integration and Test Plan Document Date

2-11

Downloaded from http://www.everyspec.com

2-12

Downloaded from http://www.everyspec.com

3. Overview of Required Work

There are no specific numbered subsections required for Section 3 in TOR-3537B. However.
TOR-3537B describes Section 3 as containing an overview of requirements and constraints on the:
system, software, documentation, development strategy, schedule, resources, and other areas. such as
contractual and non-contractual constraints, plus a requirement to show the position in the system
lifecycle where the SDP applies. The following organization is recommended.

3.1 System Acquisition Lifecycle

A figure similar to example Figure 3.1, or a table, should be included in SDP subsection 3.1 to
provide a top-level overview of the system acquisition lifecycle phases combined with a clear
indication as to where in the system lifecycle the SDP being written applies. Also, the program’s
Integrated Master Plan (IMP) must be referenced in the SDP since the IMP includes important
information on program tasks, events, and milestones for software activities.

Acquisition Phases

Phase A: SR AR l I | l ‘ | | |
Technology e—— This version of the SDP applies to the
Development EMD phase of the XMPL Contract

Phase B:

Engineering and

Manufacturing H
Development
Phase C:

Production and
Deployment | | I

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Figure 3.1. XMPL System Acquisition Lifecycle Phases—Example
3.2 Software Requirements and Constraints

Figure 3.2 is a depiction of the basic levels of abstraction for describing the software process used in
this Guidebook. The top level is focused on programmatic phases. The middle level incorporates the
principal software development activities required by subsections 5.3 through 5.11 of the SDP. The
lowest process level involves the specific tasks required to carry out the software development
activities.

There are many types of system requirements and constraints that may become drivers for the
software. Such drivers may include: specific standards that must be followed; precise performance
mandates; requirements to execute on a government platform; preliminary deliveries of software
such as an interim version needed to support military exercises; mandated severe schedule constraints
to meet launch or delivery dates; etc. (see subsections 3.8 and 3.9).

A fundamental aspect of the software development process is the system lifecycle model to be
followed. A detailed discussion of process models is beyond the scope of this document. However,
six of the most common software development process models (Prototype, Waterfall, Incremental,
Evolutionary, Spiral, and Compound—such as the Rational Unified Process™) are briefly defined in
subsection 4.1. The process models are also discussed in the Air Force Space and Missile Systems
Center Instruction 63-104, dated 21 November 2005, and in many other sources.

2-13

PHASES

ACTIVITIES

TASKS

Figure 3.2. Software Process Levels Used In This Guidebook

Downloaded from http://www.everyspec.com

Technology DevelopmentPhase
Engineering and Manufacturing Development Phase
Production and Deployment Phase

etc.

SDP Sections 5.3 through 5.11

§.3 System Requirements Analysls
5.4 System Design
5.5 Software Requirements Analysis
5.6 Software Design
5.7 Software Implementation and Unit Testing

5.8 Unit Integration and Testing

5.8 Unit Integration and Testing

Task 1: Prepare for UI&T

Task 2: Perform UI&T

Task 3: Perform Revision and UI&T Testing
Task 4: Analyze and Record UI&T Resuits

3.3 Software Iltem Overview

Although not specifically required by TOR-3537B, an overview of the planned Software Items (SI)
should be provided in this SDP subsection. An overview of the Sls that are to be developed can be

best displayed in a table that defines the SIs in terms of the responsible Integrated Product Teams

(IPTs), where in the system the Sl is used, the developing organization, the programming languages

used, and the software category for each SI. An example is shown in Table 3.3.

Table 3.3. XMPL Software Items and Team Responsibilities—Example

Software Item IPT System Element Developer Languages SW Category
Spacecraft Controller | Space Spacecraft Able Corp. (o] MC1, MC2
Processor
Payload Support Space Spacecraft Able Corp. C MC1
Processor
Vehicle Dynamic Space Spacecraft Able Corp. C S81
Simulator
Data Management Ground | Data Processor Baker Corp. | C++, Java MC1
Data Delivery Ground | Data Processor Baker Corp. | C++, Java MC1
Infrastructure Ground | Data Processor Baker Corp. | C++, Java, IDL MC1, $S1, C/R1
Calibration and Ground | Data Processor Baker Corp. | C, C++, Java, S§81, S82, SS3
Validation Visual Basic
Satellite Operations C3s Mission Management Charlie C,C++, Java MC1, SS1, 882,

Center Corp. FORTRAN S83,
C/R1
Mission C3s Mission Management Charlie Java, C++ MC1, SS1, SS3
Management Center Corp.
Ground Operations C3s Mission Management Charlie C,C++ MC1, SS1, S82,
Center Corp. SS3

Table 3.3 can become a very long table; in that case it should be included in an SDP Appendix and
referenced in subsection 3.3. This table can be expanded with additional columns, such as percent

new versus reuse code, and developer contact information.

2-14

Downloaded from http://www.everyspec.com

3.4 Required Software Lifecycle Activities

Figure 3.4 is an example illustration of the required software activities during the software lifecycle
development organized into four domains. Figure 3.4 also identifies the subsections within the SDP
where each activity of the software development process is described.

5.3 - System

Requirements Analysis

5.4 - System Design

5.1 - Project Planning and Oversight

5.19 - Risk Management

5.20 - Software Management Indicators

5.21 - Security and Privacy

5.22 - Subcontractor Management

5.23 - Interfacing With Software IV&V Agents
5.24 - Coordination With Associate Developers

5.10 - Software / Hardware

Item Integration and
Testing
5.11 - System

Qualification Testing

5.12 - Preparing for

Software Transition to

Operations
5.13 = Preparing for

Software Transition to

Maintenance

E SDP Sub-sections
! 5.3-5.13 are

. applicable to

i specific activities
1 of the software

' development life
3 cycle

Management
Domain
System
Domain
Support
Domain

Software
Domain

5.2 - Establishing a Software Development

Environment

5.14 - Software Configuration Management
5.15 - Software Peer Reviews and Product

Evaluation
5.16 — Software Quality Assurance
5.17 -- Corrective Action

5.18 - Joint Technical & Management Reviews

Figure 3.4. Software Lifecycle Development Domains—Example

3.5 Software Process Overview

5.5 - Software

Requirements Analysis

5.6 = Software Item

Design

5.7 - Software

Im plementation & Unit
Test

5.8 - Software Unit

Integration and Test

5.9 — Software Item

Qualification Test

5.25 - Software Process

Improvement

5.26 - Software

Sustainment (Optional)

SDP Sub-sections 5. 1,;
5.2 and 5.14-5.26 are |

the entire software |
development life !
cycle I

.....................

In addition to overviews of the Sls and development activities in the previous subsections, it is
recommended and extremely useful to include in subsection 3.5 an overview of the software
development process that the program expects to follow and cover in more detail in SDP Section 4.

Figure 3.5-1 is one example of how to illustrate an overview of the software development process. It
shows the principal software areas of responsibility as well as where software supports System
Engineering for system-related activities. Figure 3.5-2 is a depiction of the specific software
development activities and the sections of the SDP (subsections 5.3 through 5.13) where the activity
is described. Although Figure 3.5-2 implies a sequential process, the actual process is dictated by the
software development process model used (see SDP Appendix B) as well as an overlap of the
activities consistent with the build plan.

2-15

Downloaded from http://www.everyspec.com

1<

vk System Requirements and Design
1}

System Requirements and Design

. 4

wee-sl SOFTWARE REQUIREMENTS AND DESIGN

§ § . 7 i e \\
= Software Requirements and Design I/ TRD = Technical Requirements \
8 : ! | Document :
- . : I CDD = Capabilities Development |
O :¢ ">l SOFTWARE IMPLEMENTATION I : Document -, !
= e | |CD = Initial Capabilities Document :
&’ Readin Revi | SPS = System Performance |
& HIGSS Reviaws | Specification |
> | CONOPS = Concept of Operations |
.ﬁ > \\ ________________ //
g-é-bl INTEGRATION AND TEST
O-. P e, TR
0. / \
. Qualification Reviews : Software |
: ’ | Responsibilities :
. |
: I
*-k System Qualification Testing ‘] I
I Software Support to I
| System Engineering }

Operations Turnover Nt et e "

Figure 3.5-1. XMPL Software Development Process Overview—Example
3.6 Software Documentation Requirements and Constraints

During the software development process, various documents are required at different phases of the
lifecycle. It is recommended and extremely useful to include an overview of the plans for production
of software documentation in subsection 3.6. An example of a Software Documentation Production
matrix is shown in Table 3.6.

The example document production matrix in Table 3.6 is an important guide as it summarizes the
preparation of required work products (i.e., documentation) during the software development and test
lifecycle covering SDP subsections 5.5 through 5.13. It identifies the normal preparation of draft (D),
preliminary (P), and baselined (B) documents as well as when baselined documents are updated (U).
Some documents that are prepared may not be required to be delivered. They may be prepared to be
compliant with TOR-3537B but not contractually deliverable (such as unit test plans, descriptions,
and reports). The contract must identify the required work products to be delivered.

2-16

Downloaded from http://www.everyspec.com

sbP 5.3 %, | System Requirements Analysis I [l = System Engineering Activity
* with Software IPT Support

.
SDP 5.4 %4 | System Design _ " -
A [= Software Engineering Activity

with System Engineering

L J
SDP 5.5 “ ISoﬁware Requirements Analysis |

Support
., pp
SDP 5.6 ” Software Design
"
SDP 5.7 "e | Software Implementation and Unit Testing
»
SDP 5.8’.‘ I Unit Integration and Testing |

.
.
SDP 5.9 #_ | Software tem Qualification Testing |
1>’
SDP 5.10 0’ Software/Hardware Item Integration and Testing]
.

A -
SDP 5.11 ¢ . System Qualification Testing I

*
L J

SDP 5.12 ” Preparing for Software Transition To Operations
.

*
SDP 5.13 " Preparing for Software Transition To Maintenance

Figure 3.5-2. Principal Software Development Process Activities—Example

Documents, and other software products required at each activity of the lifecycle, are discussed in
subsections 5.5 through 5.13, and the matrix must be consistent with the required work products
tables appearing in each of those subsections. See Table 5.18.1-2 for a breakdown of software
documentation mapped to formal reviews.

Non-document software work products, as defined in subparagraph 4.2.10.3, are not included in the
documentation production matrix in Table 3.6.

In addition, Table 3.6 does not include software management and quality control plans such as the:
Software Development Plan; Risk Management Plan; Data Management Plan: Subcontractor
Management Plan; Software Safety Plan; Software Configuration Management Plan; Software
Quality Assurance Plan; Software Process Improvement Plan; Software Peer Review Plan; Software
COTS/Reuse Plan; Software Metrics Plan; Software Reviews Plan, etc. (see subparagraph 4.2.10.1).

It is also recommended to include in the SDP a master index of all software documentation. That
index can be included as an SDP Appendix. For more information on software deliverable
documentation see TOR-2006(8506)-5738, Recommended Software-Related Contract Deliverables

Sfor National Security Space System Programs, dated 14 February 2008.

Data Item Descriptions (D1Ds) must be listed (as applicable) on the Contract Data Requirements List
(CDRL) to ensure the software work products are delivered under the contract. TOR-3537B provides
a list of the software DIDs. Each DID provides a full description of the contents of each deliverable
software document. Annexes E through J in J-16 also provide a similar description of software
document contents. Note that the Master Test Plan is not a software document.

(8]

-17

Downloaded from http://www.everyspec.com

Table 3.6. XMPL Software Documentation Production Matrix—Example

Software Documentation

Softwan SDD IDD SVD SUM

Development
Activities (5) SRS IFCD SMBP SAD DBDD STP STD STR SPS STiP

Software
Requirements P B D
Analysis ™
Sl Architectural
Design B V) B P DI/P B
Software Item
Detailed Design (2) | Y B B B B R
Software
Implementation U U v D !
and Unit Testing (2)
Unit Integration
and Testing (2) u bip D
Sl Qualification
Testing (3) u|pej| B ® | P | P
Sl/HI Integration U B
and Testing (3)
System | U
Qualification
Testing
Preparing for SW ‘ U B
Transition to
Operations (4)
Preparing for SW U B
Transition to
Maintenance
MATURITY LEGEND: DBDD = Data Base Design Document
D = Draft In Process STP = Software Test Plan
P = Preliminary Baseline Completed STD = Software Test Description
B = Baselined STR = Software Test Report
U = Updated Baseline (as needed) SVD = Software Version Description
SPS = Software Product Specification
SOFTWARE DOCUMENTATION: SUM = Software Users Manual
SRS = Software Requirements Specification FSM = Firmware Support Manual
IFCD = Interface Control Document CPM = Computer Programming Manual
SMBP = Software Master Build Plan STrP = Software Transition Plan
SAD = Software Architecture Description S| = Software Item

SDD = Software Design Description
IDD = Interface Design Description

(1) In this example, the SRS contains the Interface Requirements Specification (IRS), Software Requirements
Traceability Matrix (SRTM) and Requirements Test Verification Matrix (RTVM).

(2) lIterative for each build.

(3) This activity may be iterative, in reverse order, or concurrent.

(4) Other optional user manuals include: Computer Operation Manual (COM); Software Center Operations
Manual (SCOM); Software Input/Output Manual (SIOM).

(5) The ‘Development Activity' name is equivalent to the principal activity being performed at that time.

2-18

Downloaded from http://www.everyspec.com

3.7 Requirements and Constraints on Development Strategy
3.7.1 Development Strategy Factors

There can be many factors, and constraints, that impact the development strategy. For example, if the
program involves a large number of geographically dispersed subcontractors from different
companies, the overall approach to management and communication will have a significant impact on
the development strategy and those issues need to be addressed. Another example involves programs
that plan to utilize a significant amount of COTS/Reuse software. SDP paragraph 4.1.3 is devoted
entirely to the management and implementation of COTS/Reuse software. However, its impact on the
development strategy should be briefly addressed in this paragraph.

3.7.2 Software Integration, Testing, and Verification Approach

Subsections 5.7 through 5.11 of the SDP describe the software Integration, Testing, and Verification
(IT&V) activities. It is recommended, and would be extremely useful, to include in this paragraph of
the SDP an overview of the software IT&V approach and process before describing the details in
subsections 5.7 through 5.11. It must be stated that the software IT&V approach is consistent and
compliant with the system-level integration and verification test plan (sometimes called the System
Master Test Plan).

The rationale for software testing, described as an example in this Guidebook, is based on an
incremental buildup of tested requirements with a simultaneous incremental verification buildup. The
software IT&V process involves four generic testing stages as shown in Table 3.7.2.

Table 3.7.2. Software Integration, Testing, and Verification Stages—Example

Stage Description
Stage 1 testing covers Software Unit (SU) testing and integration by the software

Stage 1: developers, unit integration testing, and individual Software Item (SI) qualification
Development Testing testing. These stages of software I&T are covered in SDP subsections 5.7, 5.8,
and 5.9.

Stage 2 testing includes: integration of multiple Software Items; integration of the
Hardware Items (H1) with Sls; and the Element Acceptance Test (EAT) that may
also be referred to as the “Factory Acceptance Test” (FAT). It normally takes place
at the Segment Level depending on where the software entities are developed.
The SI/HI integration is covered in subsection 5.10 of the SDP.

Stage 2:
Element Testing

Stage 3 of testing takes place in a location where elements are integrated and
SI/HI elements are tested with other SI/HI elements. Generally, this stage can be

Stage 3: viewed as the location where all of the elements of a segment come together. It
Segment Testing includes the functions of Installation, Checkout and Test plus Interface Testing.
This stage of software testing is normally concluded with a Segment Acceptance
Test (SAT and is described in subsection 5.11 of the SDP.)

Stage 4 of testing is focused on the process of integrating all of the segments (and
sites) into the full system or portions of the full system being tested. This stage of
testing is normally concluded with a System Qualification Test (SQT) and is also
described in subsection 5.11 of the SDP. Software has a support role in segment
and system testing as those activities are typically the responsibility of (SEIT).

Stage 4:
System Testing

Downloaded from http://www.everyspec.com

3.7.3 Software Integration, Testing, and Verification Objectives

The objectives of each of the above four stages of the software IT&V process are summarized in
example Table 3.7.3. That table identifies the subsection of the SDP containing details of the testing
process at each stage and highlights key functions at each step of the IT&V buildup.

Table 3.7.3. Software Integration, Testing and Verification Objectives—Example

SDP Subsection and Title Integration, Test, and Verification Objectives
. « Convert Software Unit (SU) design into computer source code, compile, and
Stage 1a: debug
5.7 Software Implementation and « TestInspect to ensure source code is compliant with expected results
Unit Test Verify that the source code meets the design

« |ntegrate SUs that have successfully passed Code and Unit Test (CUT) and
Stage-b: build them up to higher level SUs and to a Sl

. « Assure SUs are successfully integrated for the current build
5.8 Unit Integration and Testing o Perform design inspection through functional testing for current build
¢ Perform initial Sl to Sl interface testing, with stubs, drivers, or current Sls
Stage 1c: « Demonstrate that the SI(s) satisfies the software and interface requirements
5.9 Software Item Qualificatlon
Testing
¢ Sl to Sl Integration and Testing integrates individual Slis of an element or
segment to produce a complete software segment build
Stage 2: « Slto Hl Integration and Testing integrates software with hardware
5.10 Software/Hardware item « Element Acceptance Test (EAT),verifies that: (a) software and hardware
Integration and Testing functional requirements defined in the element specifications, have been
satisfied; and (b) functional and physical interface requirements have been
satisfied for the current build
Stage 3: « Segment Acceptance Test (SAT) venfies that the segment hardware and
5.11 Segment Qualification Testing software functional and interface requirements have been satisfied
Stage 4: « System Qualification Test verifies that the system performance specifications

Il i i functional, physical, I) h beel
5.11 System Qualification Testing and all interface requirements (functional, physical, and external) have n

satisfied for the entire system or that portion of the full system being tested

3.7.4 Software Integration, Testing, and Verification Process

It is recommended, and it would be extremely useful, to include in paragraph 3.7.4 an overview of the
software IT&V process. An example of the software integration and testing process is graphically
depicted in Figure 3.7.4. The figure is, and must be, consistent with paragraph 3.7.2 and Table 3.7.3.

3.8 Requirements and Constraints on Schedule and Resources

SDP Section 6 covers the program schedule and activity network, and SDP subsection 7.2 is focused
on project resources. However, TOR-3537B mandates a brief discussion of key requirements and
constraints, for both schedule and resources, in SDP Section 3. References must be made to the
program’s Integrated Master Schedule (IMS) and all software schedules must be consistent with the
IMS.

Reference should also be made to the Contract Data Requirements List (CDRL) Form 1423 that
identifies documentation and product content, format, and delivery schedule. This subsection should
also be used to identify who is responsible for software compliance with the IMS delivery schedule.
3.9 Other Requirements and Constraints

Subsection 3.9 can be anything it needs to be to define other actual or potential requirements and

constraints. Frequently, this subsection is organized in two paragraphs: Contractual Constraints and
Non-Contractual Constraints. The following example text may be used as a guide:

2-20

Downloaded from http://www.everyspec.com

Example Text:

3.9.1 Contractual Constraints

During System Acquisition phases, the software activities are constrained by the XMPL IMP, IMS
and System Specification. Technical Operating Report, TOR-2004(3909)-3537B, “Software
Development Standard for Space Systems” will be used as a compliance document for software
processes, and organization of this SDP.

3.9.2 Non-Contractual Constraints

3.9.2.1 Company Policies and Practices

Additional constraints on the XMPL software development process are levied by virtue of
compliance of this SDP with the <corporate> standard software process and the related
<corporate> Standard Software Process Manual. The corporate software policies are based on
commercial standards such as ISO 9001 as well as the SEI's CMMI*.

3.9.2.2 XMPL Program Policies and Practices

Software development activities are also constrained by key program plans and approved program
procedures. The key XMPL program plans include the:

Software Development Plan (SDP)

Contract Implementation Plan (CIP)
Configuration Management Plan (CMP)

Risk Management Plan (RMP)

System Engineering Management Plan (SEMP)

Downloaded from http://www.everyspec.com

LEVEL -1 LEVEL -2 LEVEL -3 LEVEL -4 LEVEL -5
Software Software SI/HI Segment System

.Unit_ : .Item . Integration Verification Verification
Verification Verification Verification

Integration Element System
Testing Testing Testing

- 5.7

System
Software Unit - 1

Unit Testing

Qualifi-
5.7 \ 5.8 \ 4 cation
Software Unit-2 | CUT [H#{UIRT Element [Test
Qualification
2 5.9 Test (™)

Segment
Qualification
Test

)

e s[or| 2L .

5.7
Software Unrt-4| cuT L 5.8 } \ i?.l&fs_.lr 510

5.7 | UI&T

|Software Unit - 5

"""""""" L NEET SR T R el UI&T = Unit Integration and Test
| P —T [s |” e / SIQT_= Sl Qualification Test

B(" HURTI— siaT || [gqr SI/HI = Software/Hardware item
.. HIQT = HI Qualification Test

5.7 5.8 59 1 I&T = Integration and Test
Software ltem = i
cuT UI&T|__. EQT = Element Qualification Test
E l I--.l il SQT = Segment Qualification Test
AT e T SUsi |s.10 PCA & FCA = Physical and
Software Item a8 . 1&T Functional Configuration Audit
pr) J[cuT HfUIRTI siaT 1

(*) Breakdown of Software Units for Software Items B, C & D are not shown
(**) Some contractors call this Element Acceptance Test (EAT) or Factory Acceptance Test (FAT)
(***) Some contractors call this Segment Acceptance Test (SAT)

Figure 3.7.4. Software Testing and Integration Process—Example

2-22

Downloaded from http://www.everyspec.com

4. General Requirements

To be compliant with TOR-3537B, Section 4 of the SDP must include two subsections:

e Subsection 4.1 must contain an overview of the software development process to be used
including the process for each software class, the lifecycle software model(s) to be used, and the
plans for software builds including the software development activities to be performed for each
build. Although there is no specific organization for subsection 4.1, paragraphs 4.1.1 through
4.1.3 as described below are recommended as the minimum content for this subsection.

e Subsection 4.2 must cover general plans for software development in eight paragraphs as
required by TOR-3537B. Two additional optional additions to subsection 4.2 are recommended:

= 4.2.1 Software Development Methods

= 4.2.2 Standards for Software Products

= 4.2.3 Traceability

® 4.2.4 Reusable Software Products

= 4.2.5 Assurance of Critical Requirements

s 4.2.6 Computer Hardware Resource Utilization

= 4.2.7 Recording Rationale

» 4.2.8 Access For Acquirer Review

» 4.2.9 Software Data Management (Recommended Optional Addition)
s 4.2.10 Software Work Products (Recommended Optional Addition)

4.1 Software Development Process

Software development lifecycle models should be used to describe, organize, and monitor the
software development activities. A detailed discussion of the various models (e.g., Waterfall,
Incremental, Evolutionary, Spiral, and Unified) is beyond the scope of this Guidebook; however,
Table 4.1 is an overview of the most commonly used software development process models. Each
program must select the strategy appropriate to the software being developed and that process must
be defined in the SDP. More than one software development lifecycle model may be needed for
different types of software.

The example software development process described in this Guidebook is an incremental (or multi-
build) development approach using the development processes defined in TOR-3537B as a guideline.
A graphical overview is recommended as the ideal approach to depict the software development
process. Separate process charts should be created for Mission Critical and Support Software classes
and, if necessary, separate figures for the categories within the classes (as described in

paragraph 1.2.3).

4.1.1 Mission Critical Software Development Process

Figure 4.1.1 is an example graphical overview of a software development process for Mission Critical
(MC) software as described in subparagraph 1.2.3.1. The MC software process is the most
comprehensive process since it provides critical application software functionality. It must support
development of as many Sls and builds as needed to meet program milestones.

2-23

Downloaded from http://www.everyspec.com

Table 4.1. Overview of Software Development Process Models—Example

Process Model

Rapid Prototyping

Description

This development approach involves building an early experimental system, or portions of the
system, to better understand the requirements and interfaces, to test throughput speeds, develop
environment testing, etc. Since the product produced is built fast, without sufficient documentation,
and not designed to be maintainable, it cannot be used as the final product.

Waterfali

This is a sequential software development model that requires each activity to be completed before
the next activity begins, although some overlap is allowed. The requirements and design activities
are defined up front. The entire functional software product is not available until the iast testing
activities are completed. ’

Incremental

This model requires that all of the requirements must be defined up front; the software product is
then developed in a series of builds, or blocks, with increasing functionality. A portion of the software
product is built and tested—one small increment at a time. This is a “build-a-little, test-a-little”
approach that can provide an early operational capability for a portion of the entire system.

Evoiutionary

With this model the software product is developed in a series of builds, or blocks, with Increasing
functionality. However, the requirements are defined for each evolutionary build as that build is
developed. This is also a “build-a-little, test-a-little” development process model that can provide an
early operational capability for a portion of the entire system, and it is highly amenable to evolving
requirements.

Splral

This is a risk-driven software development process model that has two main features: (1) A cyclic
approach that grows a system’s functionality and implementation incrementally while focusing on
decreasing its degree of risk; and (2) A set of anchor point milestones for insuring stakeholder
commitment to acceptable system solutions. Implementations using this model are often done in
conjunction with either the incremental or the evolutionary model.

Unified Process

A vanatJon of the Spiral Model Is the Unified Process exemplified by the IBM Rationai Unified
Process® (RUP®). RUP is an iterative software development framework. However, it Is not a single
prescriptive process but an adaptable process framework intended to be tailored by selecting
elements of the process applicable to each user. It has an underiying object-oriented model using
the Unified Modeling Language (UML). i

2-24

Downloaded from http://www.everyspec.com

Responsibiiities

Mission Critical Activities

Formai Reviews

System Requlrements)

g System ' Anaiysis SRR
/ 4 . ! System
. Engineerin ‘ [
E [Wit?l Softwagre : = l Requirements Review]
i Support] System Design J
R s SFR [System Functionai
+ e araratara e T B 5.5 -l Review] (1)
i System ‘ "~/ software Requirements
Pl I Anaivsis SAR [Software
i An are |
________________ { T Requirements and
—————————— R em Architecture Review] (2)
Architecturai Design
PDR [Preiiminary
Design Review] (3
PRaT : 5.6.3 ¢ 16
& 2 Software , Software ltem
= » " 1 Detaiied Desi
- = | Engineering . = sign CDR [Critical Design
¢ 32 [With System l Review] (4)
S = ¢ Engineering 5.7
i S i Support] ,: oftware impiementation
:O_], ey and Unit Testing IRR [integration
i Readiness Review]
5.8
Software Unit integration
\ and Testing S| TRR [Software item
"""""" % = Quaiification Test
PN . 5.9 Readiness Review]
! H Software item
+ Software Test
¥_ _) [With Software i _{ __ Quaiification Testing (6) PTR [Post Test Review]
! Deveiopment ! g e -or=BTR [Buiid
: H . Tumover Review
... Support] & Software / Hardware !
S (integration and Testing
i System Test ': System TRR [System
1 [With Software | 5.11 Qualification Test
i Support] ’: System Quaiification J Readiness Review]

Testina

: = Systems Engineering Tasks with Software Engineering support O = SDP Section

(1) Also called the System Design Review (SDR).

{2) SAR and PDR may be combined for object-oriented development because requirements definition and architectural design
are usually iterative. The SAR was formerly called the Software Specification Review (SSR).

(3) An optional SBRAR (Software Build Requirements & Architecture Review) may also be held in addition to the PDR.

(4) An optionai SBDR (Software Build Design Review) may also be held in addition to the CDR.

(5) This range is for the Incremental Development Model; the Evolutionary Model would extend to activity 5.5.

(6) Software Qualification Testing may be done within each build.

Figure 4.1.1. Mission Critical Software Development Process—Example

The following example text may be used for paragraph 4.1.1:

Example Text:

As shown in Figure 4.1.1, the MC software development process begins with requirements definition
for each XMPL SI using system-level documents such as the Technical Requirements Document
(TRD) and segment-to-segment Interface Specifications. Requirements from these specifications are
allocated to software and hardware, and the allocated software requirements are decomposed,
elaborated, and documented in the Software Requirements Specification (SRS) and Interface
Requirements Specification (IRS). For this iterative lifecycle model, detailed design, code,
integration, and test activities are performed for each SI within a build. Once the Sls are integrated
and tested for a build, the build is delivered, with the Software Version Description (SVD), to the
cognizant software development library for Configuration Management control.

2-25

Downloaded from http://www.everyspec.com

4.1.2 Support Software Development Process

Figure 4.1.2 is an example graphical overview of a software development process for Support
Software (SS) as described in subparagraph 1.2.3.2. Although SS operates only in non-operational
environments, the SS-1 category normally requires the same level of documentation as MC software.
However, reviews for Support Software may not be as formal or as frequent. The principal
differences between the examples for MC (Figure 4.1.1) and SS-1 (Figure 4.1.2) processes are:

There is no formal SSR, PDR, CDR, IRR, PTR, and BTR as shown for MC software in
Figure 4.1.2.

The formal reviews are replaced by Technical Interchange Meetings (TIMs)
Architecture and detailed design phases are merged and followed by a TIM

The SS-2 development process, as described in subparagraph 1.2.3.2, should be expected to be similar
to the SS-1 process, but less stringent, usually having principal differences such as the following:

413

SS-2 requirements information is normally maintained in a requirements database and
referenced in SDFs, just as it is for SS-1. However, a formal SRS document may not be
required.

Design material is maintained in the SDFs, just as it is for SS-1. However, a formal SDD and
IDD is not usually required.

Informal Sl and software build test descriptions and test results are maintained in SDFs.
However, formal STP, STD, and STR documents are not usually required.

TIMs performed for SS-1 may be replaced by Peer Reviews for the inspections and
verifications of work products developed for SS-2.

Applicable software metrics data should be collected for SS-2 software. However, the metrics
data set and the reporting frequencies may be reduced.

Iterative Process

The vertical arrows between the phase boxes in Figures 4.1.1 and 4.1.2 are misleading as they imply a

straight through process. In reality, it is an iterative process with corrective action control loops as

depicted graphically in the process overview Figure 3.5-1. The selected software lifecycle model(s)
for the planned software task should be described in subsection 4.1 with a description of the
consistency between the software development model(s) and the system lifecycle model(s).

If there are software builds, there is a requirement in TOR-3537B, as part of the description of the
process to be used, for subsection 4.1 to identify the planned software builds, their objectives and the
software development activities to be performed in each build. Those issues are covered later in
subparagraph 5.1.1.3 Software Build Planning.

2-26

Downloaded from http://www.everyspec.com

SDP Section -- Support Software Activities
Reviews and Technical

Respansibilities 5.3 Interchange Meetings
*~ J System Requirements (TiMs)
E s¥°t°".' Analysis
ngineering
[with Software l SRR [System]
5.4 Requirements Review]

System Deslign

; SFR [System
@ Functional Review (1)

Engineering Software Requirements
And Software Analysis
e e Support Software
f (Requirements TIM
5.6
Q Software Item Design | (2)
°
2 g e 1 Support Software
o . Design TIM
it § Software oftware Implementation y
5 4 and Unit Testing
. o
w
5.8
Software Unit Integration
\ and Testing SI TRR [Software Item
""""" ;' = Qualification Test
59 Readiness Review]
— Software Item
N [with Software i Qualification Testing
Development l
Support] 510
pp _ 7/ Software / Hardware
(" Integration and Testing (1) System TRR [System
l Qualification Test
System Test 5.11) Readiness Review]
[with Software System Qualification
Support] Testing (3)

(1) Optional (2) Can be a Peer Review for SS-2 software (3) Not required for $S-2

Figure 4.1.2. Support Software Development Process—Example
4.2 General Requirements for Software Development

The following paragraphs and subparagraphs describe general requirements for software
development. Details of the software development process activities must be provided in SDP
Section 5, and in related tables and addenda. Software test and integration details can also be
provided in an addendum.

4.2.1 Software Development Methods

The software development method(s) to be employed must be described, or referenced, in SDP
subparagraph 4.2.1. As noted in TOR-3537B, “automated tools and procedures to be used in support
of these methods™ need to be described. However, references should be made to SDP subsection 5.2
where automated tools are discussed in depth as part of the Software Development Environment
(SDE). The following example text may be used as a guide:

2-27

Downloaded from http://www.everyspec.com

Example Text:

XMPL software development will follow an object-oriented (OO) methodology. The OO
methodology includes Object Oriented Analysis (OOA) and Object Oriented Design (OOD)
utilizing the Unified Modeling Language (UML) notation. Segments must declare in their SDP
Annex which methodology will be used if not using OO. The UML notation standards and
programming standards for C-++ and Java are defined in the Appendices to the program-level SDP.
Structured analysis and design will be used for applications such as coding scientific/mathematical
algorithms or emulation models and applications involving extremely data-intensive or high
performance computing,

4.2.2 Standards for Software Products

The following bullets are references to software standards and practices that must be addressed in the
SDP:

o COTS/Reuse software must adhere to requirements definition and testing processes, standards,
and practices as specified in SDP paragraph 4.2.4 or in the program’s Software COTS/Reuse
Plan.

e The programming language standards to be used must be defined in an Appendix or Addendum
to the SDP or preferably in a Software Standards and Practices Manual as discussed in
subparagraph 4.2.2.1. That manual can also contain standards for architecture/design, software
requirements, and software test documentation.

¢ Operational details of the program’s defined software process should be elaborated through
detailed Work Instructions and/or Procedures (see subparagraph 4.2.10.2). Relevant Work
Instructions and Procedures should be listed in an Appendix or Addendum to the SDP if the list
is long.

e Software development for the program must be guided by the applicable standards listed in
Section 2 of the SDP.

Hierarchical Software Product Levels. The hierarchy of software related specifications must be
produced in accordance with the program’s Specification Tree. Typical hierarchical software product
levels and terminology are depicted in Figure 4.2.2. References to a “Software Unit (SU)” in this SDP
Guidebook can be interpreted as a single SU or as a group of integrated SUs as applicable.

4.2.21 Software Standards and Practices Manuals

Standards for software requirements, architecture, design, code, and test must be documented. The
recommended location for these standards is in Software Standards and Practices Manuals that can be
addenda to the SDP. These standards ensure that developers produce consistent software development
products. Coding standards, for example, can include standards for formatting, comments, naming
conventions, and restrictions on programming language constructs and features. Standards also help
ensure the similarity of the structure of all code/design units so that lines of code counts and software
measurements can be applied consistently.

2-28

Downloaded from http://www.everyspec.com

SYSTEM
I :
SEGMENT - Alpha SEGMENT - Beta SEGMENT -n
I : .
Element- A Element-B Element—n Optional
I E
Software ltem—L Software Item - M Software ltem—n
- :
[Software Unit-1 Software Unit - 2 Software Unit - n

Figure 4.2.2. Hierarchical Software Product Levels—Example

The SDP should also document the process for waivers or deviations to these standards. Changes
must be justified, documented, and submitted by the cognizant Software Item Lead, approved by the
IPT Lead and SQA, submitted to the Software Engineering Process Group (SEPG) for concurrence,
and made part of the appropriate Software Development Files (SDF) or Software Engineering
Notebook (SEN). The SEPG should review software standards and tools usage and provide the means
for sharing knowledge and lessons learned across the program and with the SEPGs at the segment or
system level.

4.2.3 Traceability

An automated traceability and requirements management database must be used by every large
software intensive program. Examples of such tools are: Dynamic Object-Oriented Requirements
System (DOORS), System Level Automation Tool for Engineers (SLATE), Requirements and
Traceability Management (RTM) and Requisite Pro. In this Guidebook, the requirements
management and traceability tool will be called the “Requirements Database.” Table 4.2.3 is an
example of traceability products that should be produced for each software category.

TOR-3537B requires the SDP to describe the approach to be followed for establishing and
maintaining bi-directional traceability between:

e Levels of requirements

e Requirements and design

e Design and the software that implements it

e Requirements and qualification test information

e Required and measured computer hardware resource utilization
Table 4.2.3. Traceability Requirements by SI Category-—Example

Parent Requirements Required in tool | Required Required Required
Software Builds Required Required Required Required
| Use Cases Required Required | Not Required | Not Required
Software Units Required Required Required Not Required
Software Test Cases Required Required Required Required
Software Test Procedures Required Required Not Required | Required
2-29

Downloaded from http://www.everyspec.com

4.2.4 Reusable Software Products

The term “reusable software product” is normally defined as any existing software product (i.e.,
specifications, designs, test documentation, executable code, and source code) that can be effectively
used to develop the software system. COTS/Reuse software has become much more important and
widely used over the past decade. Programs that plan to use a significant amount of COTS/Reuse
software must address COTS/Reuse in considerable detail in their SDP.

Reusable software products may include software that is not modified, migrated software that
requires changes, and newly developed software usable in other application areas of the program.
Software development teams should consider the use of reusable software products wherever
possible. Reusable software products can include Commercial Off-The-Shelf (COTS) and
Government Off-The-Shelf (GOTS) software products as well as reuse libraries.

Two options are suggested for addressing the COTS/Reuse issues in the SDP: (1) cover all of the
topics in SDP paragraph 4.2.4; or (2) include an informative overview in SDP paragraph 4.2.4 and
refer to a Software COTS/Reuse Plan for the details. This Guidebook favors the second option.

Two subparagraphs, 4.2.4.1 and 4.2.4.2, are required by TOR-3537B. They should provide an
overview and point to the Software COTS/Reuse Plan for the details. That plan should be an
addendum to the SDP and should include a discussion of the following reuse topics:

o Establishing and managing the Software COTS/Reuse Plan

e Heritage reuse base programs

¢ Controlling, testing, and upgrading COTS/Reuse baselines

¢ Developing and integrating reusable software products

e Approach to managing COTS/Reuse software implementation

o COTS/Reuse software selection criteria and responsibilities
4241 Incorporating Reusable Software Products

The approach to be followed for identifying, evaluating, and incorporating reusable software products
must be described in this subparagraph. It must include the scope of the search for such products, the
criteria to be used for their evaluation, and address all of the related contractual clauses. If reusable
software products have been selected, or identified at the time the SDP is prepared or updated, they
must be identified and described including their known benefits, risks, constraints, and restrictions.
The SDP should cover the entire COTS/Reuse lifecycle, including identification, investigation,
evaluation, selection, implementation and maintenance as depicted in example Figure 4.2.4.1.

2-30

IDENTIFICATION
|

Downloaded from http://www.everyspec.com

INVESTIGATION

EVALUATION
AND SELECTION
Monitor current

dentify generic Refine product
software functions selection cniteria Recommend final products for
and code for candidates to ERB obsolescence or
otential COTS or
‘l)?euse ‘ Identify vendor ‘ Perform license SRich s
candidates review Track new
Identify specific ! i
softwa):-e ‘f)jﬁctions Collect product Obtain evaluation fechnologas
and code for information and copy of software; Monitor changing
potential COTS or evaluate against perform evaluation requirements
Reuse criteria
Make final Recommend
Prepare product Eliminate vendors selection and upgrades or
selection criteria not meeting the submit to change evaluation of new
criteria board for approval alternatives

Obtain selected product(s) and related training. Design configuration interfaces and data models.
Submit implementation design to ERB for approval. Build scripts, adapters, data models, etc., to
integrate the product(s). Send request to Software CCB to schedule the product integration(s).
Integrate the product into the software system. Perform required testing. Validate product(s)
through normal software subsystem qualification testing.

Figure 4.2.4.1. COTS/Reuse Management Process—Example

Reusable Software Criteria. Reusable software products must meet the specified technical and
contractual requirements and be cost-effective over the life of the system. The following factors
should be considered in an evaluation of candidate reusable software products:

e Technical capabilities or applicable functionality

e Safety, security, and privacy requirements

e Demonstrated reliability and product maturity

e Testability and availability of test cases and data

¢ Short- and long-term cost impacts of using the software product

e Technical, cost, and schedule risks and tradeoffs in using the sofiware product
e Data rights transferable to the software product

o Interoperability with target software environment

e Availability and quality of documentation and source files

e The need for required changes and the feasibility of making those changes
¢ Supplier maintainability and warranty

e Restrictions on copying/distributing the software or documentation

Note that a bad evaluation report on any single factor can be a sufficient condition to reject a reuse
candidate. Appendix B of TOR-3537B contains criteria for evaluating reusable software products.

Approach to Using COTS Software. Using COTS software allows developers to be selective in
what functions and capabilities can be acquired without having to pay the price for custom
development. The use of COTS software can also have a major impact on the reduction of schedule
risk and cost risk. However, the process of including COTS components is often difficult and care
must be taken to avoid a number of potential risks.

2-31

Downloaded from http://www.everyspec.com

If a COTS product requires modification of the code, it is no longer considered a COTS product. It
becomes the responsibility of the contractor unless the vendor is hired to make the modifications and
that can be an expensive and risky approach. Generally, if any COTS or reused product requires more
than 30 percent recoding, it is usually more cost-effective to build it from scratch. Industry estimates
for this threshold ranges from 15 to 35 percent.

The principal risk is the loss of control over the formalized development process when COTS
products are acquired. Software vendors have their own agendas that are different from those who
adopt their tools. Therefore, a tradeoff must be made to enjoy the benefits from using COTS
software. To be successful in using COTS software the following major factors must be considered.

COTS Software Functionality. A selected COTS product may not have the exact functionality
required to be responsive to specific allocated requirements. The COTS product may have more
capability than is needed, or may not provide all the required functionality, thus necessitating
integration with other components or making potentially sophisticated modifications. Key COTS-
related questions include:

How mature is the COTS product and how easy is the COTS product to use?
Are the COTS product capabilities and operation fully understood?

How are allocated requirements not satisfied by the COTS product handled?
How are unneeded capabilities of the COTS product handled?

How have known problems in the COTS product been rectified?

COTS Software Integration. Tradeoffs may be necessary because the constraints and requirements
imposed by the selected COTS products typically results in less flexibility available to the software
architect. The method of integrating selected COTS components may impose additional constraints
on the architecture, and planners must account for the additional effort required to understand the
behavior of the COTS products. Key COTS-related questions may include:

e Was the software architecture designed first and the COTS products selected to fit it?

e Is the development team trained and qualified to integrate the COTS product?

e Does the COTS product have an Application Programming Interface (API), and does the
development team understand the API’s capabilities and complexities?

e Have the impacts of the COTS product on system resources been analyzed?

e Has the size of the integration effort for the COTS product been estimated, and what is the level
of confidence for the estimate?

Management of COTS Implementation. The implementation of COTS products introduces new
issues that do not exist when an entire system is developed in-house. For example, licensing will have
to be considered as well as other vendor relationships. Also, the cost of adopting and adapting the
components must be considered as well. When all factors are considered, it may be more cost
effective to build than to buy. Key COTS-related questions include:

Was the COTS product selected using a defined selection and evaluation process?

Have all the integration and related costs been properly estimated?

How long has the vendor been in business and what is its financial stability?

What relationship does the <corporate> team have with the vendor?

Have the vendor’s technical support capabilities been fully evaluated?

Is the vendor willing to modify the product to meet the requirements? [Note: Requesting the
vendor to modify their COTS product to meet the needs of the program is generally considered
a high risk and is not recommended].

2-32

Downloaded from http://www.everyspec.com

e Have mutual non-disclosure agreements and data rights been negotiated?

e Have cost-effective licensing agreements been worked out with the vendor?

e Has configuration management of the COTS product been properly planned for?
e Has integration testing of the COTS product been thoroughly planned?

e Have the risks related to using the COTS product been identified and managed?

Reusable Software Responsibilities. The Software IPT should be responsible for identification and
evaluation of reusable software products for the Sls and SUs of the system. Beginning in the software
requirements definition activity, and continuing through the testing activity, the Software 1PT should
identify appropriate candidate reuse products for each software activity.

Depending on the specific functionality being considered for reuse, the Software I1PT may need to
perform trade studies or perform some modeling or analysis with the candidate products to determine
sufficient information to make an evaluation. If any technical or non-technical issue is not fully
resolved prior to the point that the product is selected for use, the Software IPT must define the issue
as a risk and resolve it before a final selection is made.

4242 Developing Reusable Software Products

In addition to reusing existing software products, there may be opportunities for new software
products developed that can be used elsewhere. The Software IPT should carefully review the Sls
under development for opportunities where software products can be used elsewhere to improve
efficiency of the software development effort.

The use of object-oriented design naturally produces cohesive objects that encapsulate functionality
and data, have well defined interfaces, and are therefore suitable for reuse in many instances. In
addition, class hierarchies and design patterns capture commonality and provide for abstractions that
can lead to reuse. Specific activities in software analysis and design processes identify opportunities
for not only design and code reuse, but also use case and scenario reuse for requirements traceability
and testing. These opportunities for reuse should be recorded in the design documentation.

The task of identifying, evaluating, and reporting opportunities for developing reusable software
products is often tailored out in the typical environment addressed by this Guidebook.

4.2.5 Assurance of Critical Requirements

Critical strategies must be identified in the SDP to ensure that software groups provide additional
oversight and focus on incorporating critical requirements into the Sls. There are always some key
software requirements that are critical cornerstones for safety, security, privacy protection, reliability,
maintainability, availability, performance, etc. Strategies must be developed and employed to ensure
that these critical requirements are satisfied

The strategies must be documented in the SDP, including both test and analyses. to ensure that the
requirements, design, implementation and operating procedures, for the identified computer hardware
and/or software, minimize or eliminate the potential for violating the established mitigation strategies.
The SDP should also indicate how evidence is to be collected to prove that the assurance strategies
have been successful.

The following five subparagraphs may be used as a starting point for developing specific details on
the approach to be used by the program for handling these critical requirements.

ro
'

)

W

Downloaded from http://www.everyspec.com

4.2.51 Software Safety

Safety requirements involve Sls or SUs whose failure may result in a system condition that can cause
death, injury, occupational illness, damage to or loss of equipment or property, or damage to the
environment. Each software-related safety-critical requirement identified must be documented in the
Safety Requirements section of the SRS and identified by a unique product identifier. If aviation
safety standards are specified in the contract as compliance documents, this subparagraph must
describe the approach for complying with those standards.

The activities required for ensuring that safety-critical software requirements are met for the program
must be shared between the System Safety group, at the program level, and the segment software
team. Each IPT should assign responsibilities for safety issues and for coordination with System
Safety. The software team is responsible for developing system software that is safe to operate and
compliant with all appropriate safety standards and requirements.

The general approach to managing software safety-critical development activities for the program
should be to integrate safety management into the software lifecycle activities. System Safety should
play an integrated role in the software development process and the CCBs. This provides System
Safety with visibility into the software development activities that are critical to program safety
issues, and provides the IPTs with the input required to ensure that safety issues are addressed
effectively. Details regarding software safety should be included in the System Safety Program Plan,

The SDP should require software safety engineers to define classifications for safety critical SIs and
SUs. All Sis and SUs should be categorized according to these safety critical classifications. To
prepare these classification levels, consideration should be given to: the severity and probability of
hazards the SIs or SUs may contribute to (as determined by the Hazards Analysis); the potential for
the Sls or SUs to provide safety-critical monitoring or mitigation actions; and how the Sls or SUs
handle and protect safety critical data. System and software safety engineers should:

e Participate in system and software requirements analysis to generate additional functional or
performance requirements to assure safe operations and safety contingency actions

e Monitor these additional software requirements to assure they are properly specified and traced
to documented safety critical hazards

e Assure that unsafe operations are not specified by existing requirements

¢ Participate in design reviews to prevent unsafe approaches from being applied

e Track internal and external safety-related interfaces to assure they are fully documented and
unambiguous

e Participate in the review of test procedures to assure safety critical requirements are properly
interpreted and tested
Participate in the evaluation of safety-critical code changes and review regression tests

¢ Document safety critical criteria used in selecting COTS, GOTS, and reuse code

4.25.2 Software Information Assurance

Security requirements involve Sls and SUs whose failure may lead to a breach of system security or a
compromise of classified data. Each software-related security-critical requirement identified should
be documented in the Security and Privacy Protection Requirements section of the SRS and identified
by a unique product identifier. Information Assurance (I1A) requirements should be derived from the
System Specification; IA concerns can have a significant impact on software architecture,

Security services provided by the program must be documented in the IA Plan and should provide
“layers” of structured defense from commercial packages (such as anti-virus software and firewalls)

2-34

Downloaded from http://www.everyspec.com

to elaborate National Security Agency (NSA) approved Type-1 encryption algorithms. The SDP must
state that software subject to 1A product certification and accreditation must be developed in
accordance with the |A Plan. Software 1A requirements should be flowed down through the normal
requirements analysis process. The software design activity must conform to the 1A architecturc as
described in the 1A Plan. Also, when developing the software schedules, and the build plan, the A
product certification and accreditation need dates must be accounted for.

4253 Privacy Protection

Privacy-critical requirements are those requirements on Sis and SUs whose failure may lead to a
compromise of private personal data such as training scores or personnel evaluations. Each software-
related privacy-critical requirement identified should be documented in the Security and Privacy
Protection Requirements section of the SRS and identified by a unique product identifier.

4.2.5.4 Dependability, Reliability, Maintainability and Availability

Software plays a critical role in the overall dependability, reliability, maintainability, and availability
of each segment. Mission Critical software (discussed in subparagraph 1.2.3.1) can be further defined
as a software function that if not performed, performed out-of-sequence, or performed incorrectly,
may directly or indirectly cause the mission to fail. The SDP should require a Failure Modes, Effects,
and Critically Analysis (FMECA) for software to be performed for all new or modified mission
critical software and require a list of Sis that are mission critical to be identified and maintained.

Dependability, reliability, maintainability, and availability all have quantitative as well as qualitative
definitions. The qualitative and quantitative definitions are allocated to hardware and software from
the higher level specifications. This section of the SDP should address the approaches to be used by
software to ensure that both the qualitative and quantitative requirements are met.

Dependability. Dependability is the sum result of effective strategies for reliability, maintainability.
and availability and the SDP should describe the overall approach proposed to develop these
strategies. Software reliability and maintainability practices must be incorporated throughout all
software development activities; they provide the building blocks for dependability and availability.
Effective strategies for reliability and maintainability also help to ensure the software meets
requirements with minimum risks, maintains the integrity of the software design, and minimizes
lifecycle costs.

Reliability. Software reliability models should be used to assist in making predictions about the
software system expected failure rates. The SDP must show that reliability tasks are integrated with
quality assurance, product evaluations, maintainability, and other engineering activities to avoid
duplication and provide a cost effective program. Software reliability should involve detection,
reporting, quantification, and correction of software deficiencies throughout the software design,
development and testing activities.

Maintainability. There are two aspects of software maintainability: software restoral and software
repair:

¢ Software restoral is defined as the process of restoring the software to an operational state
after a hardware or software failure has occurred. Software restoral can be a large contributor
to downtime and thus can significantly affect system availability. The need for rapid software
restoral is a major driver of the software architecture and design task.

2-35

Downloaded from http://www.everyspec.com

e Development of maintainable software, from a software repair perspective, involves planning
and establishing the software development methodology, environment, standards, and
processes with an objective of making software maintenance changes efficiently and
effectively.

Some methodologies, such as object-oriented design, development and programming, may produce
software-related products that are more maintainable than other approaches. The design must be
captured and retained in the software engineering tools and subject to configuration management
(CM) processes. Similarly, the software CM tools provide support to software maintenance needs.
Other tactics that can be described in the SDP to improve maintainability may include:

e The Software Engineering Environment (SEE), covered in SDP subsection 5.2, must be sized
to include sufficient capacity to support post-deployment software support requirements, thus
promoting long-term maintainability.

e Software standards must be established for each programming language to ensure that
consistent programming styles are applied by all developers and that the software and
supporting documentation are complete and understandable.

e The software product evaluations should assess compliance with the standards to ensure that
they are consistently applied.

e Software change rates for units and functions may also be tracked as an indicator of more
subtle maintainability factors.

Availability. A high availability rate for access to the system is the by-product of effective reliability
and maintainability practices as well as accurate estimation of user needs. By performing modeling
and trend analysis, based on historical trend data and collected metrics, software reliability and
availability can be predicted and the necessary corrective actions can be taken to achieve the
reliability and availability requirements.

4.255 Assurance of Other Mission Critical Requirements

Critical software requirements should be tracked and monitored throughout the software development
activities similar to other software requirements. However, in addition to the standard testing and
quality assurance procedures for other software requirements, the Software IPT should follow an
assurance strategy designed to ensure that hazardous or compromised conditions are eliminated or
minimized for each development activity. This strategy should be to:

Identify and document critical requirements in the appropriate SRS sections

e Document the specific SUs that contribute to the critical requirements through the traceability
approach described in SDP paragraph 4.2.3

o Define specific SI testing procedures that execute all affected SUs to determine compliance

e Execute the security and privacy testing procedures at each S1 build when affected security-
critical and privacy-critical SUs have changed

e Execute the safety related test cases at each SI build for Sls with safety-critical SUs, even if
the units have not changed

e Update safety analysis, models, and modeling results at any time

The CSWE and SQA should review the procedures followed by the Software IPT and the products
produced for critical requirements compliance as part of the normal reviews of each development
activity. The CSWE should focus on identifying evidence that the general strategy stated above is
being implemented. SQA should evaluate the process of performing the critical requirements testing,
the successful completion of the testing, and the proper documentation of the results.

2-36

Downloaded from http://www.everyspec.com

4.2.6 Computer Hardware Resource Utilization

Target computer hardware resource utilization must be recorded and monitored throughout the
software development process by each segment for their respective computers. Resource utilization
monitoring should be performed for all computers involved in the operational system. The Software
Measurement (Metrics) Plan should define how computer hardware utilization is to be reported. and
how the utilization data will be managed as Technical Performance Measures (TPMs).

The Integrated Product Teams (IPTs) should initially determine estimates of projected resource
utilization measures. The measures may include memory utilization, processor throughput,
input/output bandwidth, critical timing paths, and disk space or mass media storage. These
measurements should be re-evaluated periodically during a build as actual utilization data becomes
available. Since the software may only be partially completed at a build, the Software IPT analysts
should extrapolate resource utilization.

4.2.7 Recording Rationale for Key Technical Decisions

During the software development process, key technical decisions are made that may include
specifying, designing, implementing, and testing Sls or SUs and issues related to interfaces,
performance, functionality, etc. These decisions are usually captured in the resulting software, but not
necessarily the rationale behind the decisions. Recording these decisions is important and frequently
neglected.

The SDP should require the segments to identify key technical decisions as a natural and continual
part of the development process. They should define those key decisions in the requirements
definition, design, implementation, and testing activities that are determined to significantly impact
the SI. The development teams should use their best engineering judgment. They can use the
following subjective guidelines where an affirmative response indicates a key decision that needs to
be recorded:

e Was a trade study, technical analysis, or software survey required to make the decision?

e Are there requirement, cost, or schedule factors that override the technical rationale for the
particular decision made?

¢ Does critical rationale information exist that may be needed for future software maintainers?

When a key technical decision is identified, the rationale behind the decision should be documented
in an Engineering Memo or meeting minutes and included, or referenced, in the SDF. The process is
managed by Data Management, but the Software IPT must ensure all critical information is retained.
The Software Item Leads should be responsible for ensuring compliance with this recording rationale.

4.2.8 Access for Acquirer Review

The primary repositories for software products and related information are the Software Development
Folders (SDFs) and Computer Assisted Software Engineering (CASE) tools. The work products
produced during the development of the software must be kept under configuration control, both for
configuration management and for customer review. The SDP must stress full government access to
the program’s electronic website. The following is an example of the contents for this paragraph:

Downloaded from http://www.everyspec.com

Example Text:

In addition to unrestricted on-line access to documentation, the Program Office and their
representatives participate in all joint technical and management reviews (as described in
subsection 5.18). These reviews are held throughout the software development life cycle and consist
of both formal contractual reviews and informal Technical Interchange Meetings. The Program
Office, and their representatives, can also participate in the frequent telephone conferences and are
also members of XMPL IPTs and the Software Engineering Process Group (SEPG).

4.2.9 Software Data Management (Recommended Optional Addition)

This is an optional, but highly recommended, additional paragraph of the SDP since software Data
Management (DM) provides the interchange and access of controlled data to program personnel and
the customer, supports timely delivery of contract deliverables, and addresses key issues such as
disaster recovery and data rights. Software DM and the related concerns covering disaster recovery,
proprietary rights, and international issues are not addressed in TOR-3537B or J-16.

The DM organization should be responsible for the repository and central access point for program
and software documentation, the data accession list, storage media control, and informal documents.
A DM Plan should detail the guidelines for preparation, identification, filing, retrieval, training, and
standards for all program documentation. The DM Plan should be updated in accordance with
evolving requirements of the contractual phases. The DM Plan is generally not a part of the SDP but
there is no restriction preventing it from being an SDP addendum.

The Data Center is typically the hub of the DM task and the source for all configuration controlled
documents including publication and distribution. Software documentation should be made available
to the program team and the Government on the program’s electronic website. Software development
documentation must be retained in the Software Development Library (SDL) typically located at
each development site.

4.2.9.1 Disaster Recovery

Plans for disaster recovery should be included in the SDP or in an external plan referenced by the
SDP. Disaster recovery provides an alternate repository and backup system of software, databases,
documentation, and equipment (if necessary). Disaster recovery plans provide an alternate
development/operational capability in case of a catastrophic situation after initial delivery.

The disaster recovery plans ensure protection against loss of, or damage to, organizational assets and
data. They ensure a smooth transition from normal to backup operations and ensure an expeditious
restoration of the site capabilities.

4.29.2 Proprietary Nature and Government Rights

Rights restrictions apply as identified in the contractual Technical Data Restrictions. Vendor
trademarked or copyrighted items must be used in accordance with applicable licenses; the
Government must have the right to use these items in accordance with those applicable licenses.
Restrictions on these tools (if any), other than those dictated by commercial practices, must be clearly
described in the SDP and/or in the IMP. Proprietary concerns can be major issues in source selection.
Data rights apply to all software products—not just code or COTS. This SDP paragraph needs to
specify what standard level of data rights applies to each category of software and Software Item on
the program.

2-38

Downloaded from http://www.everyspec.com

4.29.3 International Traffic in Arms Regulations (ITAR)

If development leverages technology and products from foreign countries, ITAR is likely to apply and
this issue must be addressed. The local ITAR Compliance office must be consulted for specifics if
this is a program issue.

4.2.10 Software Plans and Work Products (Recommended Optional Addition)

This is an optional, but highly recommended, additional paragraph of the SDP. Software work
products may include documentation, test results, non-document work products, and the source code
itself. Minimum work products vary according to software category and, of course, the program'’s
Contract Data Requirement List (CDRL). Section 5 of the SDP describes the detailed software
development activities and its subsections contain a list of software work products produced during
each activity.

4.210.1 Software Management and Quality Control Plans

Addenda to the SDP, covering management plans and quality control plans, may be an integral part of
the SDP or bound separately. In either case, these management and quality control plans represent
important adjuncts to the SDP that document specific implementation details not covered in the main
body of the SDP. Table 4.2.10.1 contains a list, and a brief description of the purpose, of the typical
management and quality control plans that can be included as addenda to the SDP if they provide
value added to the program.

Table 4.2.10.1. Candidate Software Management and Quality Control Plans—Example

Name of Plan Purpose of Plan

Describes the approach, guidelines, and “how to” instructions for establishing a
standard software metrics program across the software development effort. It
contains specific user instructions as to what measurements to make, when to make
them, calculations needed to translate the measurements into useful management
data, analysis techniques, and report format examples.
This plan may be included in the program’s Subcontract Management Plan. It
Software describes what software is subcontracted, and to whom, responsibilities of the
Subcontract Subcontract Management Team, identification of its members, responsibilities of the
Management Plan | software subcontract technical manager, subcontract tracking and oversight of
software activities, and references to contractual commitments.
The plan for determining and mitigating software related risks. It describes the
approach to identification and management of risks inherent in the development effort
including reliability, design, cost, and schedule risks. It should assign a risk severity
level to each identified risk, define risk handling plans where needed, the process for
assuring implementation, and provide plans for maintaining and improving maturity
levels of team members. It may be included in the program’s Risk Management Plan
Provides details on the scheduling, formatting, delivery, storage, and control for
program deliverable and non-deliverable software documentation and media. It
describes how the program provides: current program information; expedient
Software Data interchange and access of controlled data to program personnel; timely delivery of
Management Plan | contract deliverables; the repository and central access point for software
documentation; the data accession list; document storage media control; and the
focal point for software-related information. It must also include the mechanism for
electronic access to the data by the customer.
Provides software management with the controls necessary to oversee software
development review activities and provides software engineers with the standards
Software Reviews | and practices required to conduct software development reviews. It describes the
Plan objectives, frequency, and products reviewed, and establishes the entry and exit
criteria for each review.

Software Metrics
Plan or Guidebook

Software Risk
Management
(or Mitigation) Plan

Name of Plan

Software
COTS/Reuse
Plan

Downloaded from http://www.everyspec.com

Purpose of Plan

Covers COTS/Reuse software evaluation, selection, procurement, development
environment requirements, special COTS/Reuse Configuration Management
procedures, acceptance procedures, integration, and implementation, mamtenance
evolution, and vendor monitoring and management.

Software Resource
Estimation Plan

Describes the derivation of software resources needed and should include: software
size; development effort; schedules and milestones; costs; and critical computer
resources. It should describe the processes for: making estimates and periodic
refinements with actual measurements; documenting results; and using parametric
estimating models.

Software Roles and
Responsibilities

Summarizes the roles and responsibilities for each software engineering skill group
(usually in tabular form) including: IPT Lead, Chief Software Engineer, Segment
Chief Software Engineer, Software Process Lead, IPT Software Lead, IPT Software
Integration and Test Lead, Software Item Lead, software englneers software test
engineers, software configuration management.

Software Safety Plan

Describes the safety-critical safeguards that must be built into the software when
human safety is involved. It may be incorporated into other documents such as the
“System Safety Program Plan” or the “Risk Management Plan.”

Assurance Plan (or
(Software Quality
Program Plan)

Software Establishes the plan for creating and maintaining a uniform system of configuration
Configuration identification, control, status accounting, and audit for software and software work
Management products throughout the software development process including the Corrective
Plan Action Process.
Establishes a planned and systematlc software quality process to ensure that the
Software Quality software products and software processes comply with program contractual

requirements as well as program process and product standards. It identifies the
activities performed by the SQA organization in the development of all Sls and
describes the SQA policies, procedures, and activities to be used by all software
development team members.

Software
Quantitative
Management Plan

A high-level plan for establishing quantitative management on a program including
quality goals, customer goals, other goals to supplement the IMP, priorities, and
metric limits. it may be incorporated into the Software Metrics Plan or Guidebook.

Describes how process improvement is integrated into the management culture, and
the plans for implementing a managed, iterative, and disciplined process for

icr)mrse improving software quality, increasing productivity, reducing cost and schedule, and
Improvement gliminati_ng activities of little value. It should describe the controls, coordination and
Plan information feedback needed from: the software development process; the defect
detection, removal and prevention process; the quality improvement process; and the
software metrics program.
Software Peer Defines the procedures, data collection, responsibilities, and reporting needs for
'Review Plan inspections and evaluations of software products.

4.210.2 Detailed Software Work Instructions and Procedures

The defined software process, as captured in the SDP at a relatively high level, should be elaborated
through detailed Work Instructions and/or Procedures. These instructions or procedures should
contain detailed directions for the day-to-day implementation of the software process. A list of the
Work Instructions and Procedures can be included in an SDP Appendix but the Work Instructions and
Procedures themselves should be bound separately as they are typically voluminous. Table 8.3 in this
Guidebook contains an example list of Work Instructions and Procedures.

Detailed procedures are often based on heritage or organizational sources for similar activities,
customized for the program’s use. For activities shared across each program, common procedures
may be developed. The Software Engineering Process Group (SEPG) should maintain an inventory of
approved software procedures for the program.

2-40

Downloaded from http://www.everyspec.com

4.2.10.3 Non-Document Software Work Products

It is important to note that not all of the software work products are documents. The following are
examples of software work products that may be produced during software development:

e Software requirements database

e Software Architecture diagrams/Data Flow Diagrams/Interface Design Diagrams
¢ Engineering Memos/Software use cases and scenarios/N-squared charts

e Simulation models and design captured in Object-Oriented (OO) models

e State Transition, Software Hierarchy, and Functional Block diagrams

e Management status reports and briefings

e Software productivity reports

e Designreview packages

2-41

Downloaded from http://www.everyspec.com

2-42

Downloaded from http://www.everyspec.com

5. Detailed Requirements

This SDP section describes the activities, tasks, requirements, and responsibilities for developing the
software. The development process described in this section is consistent with the software process
defined in TOR-3537B. On a typical program, Section 5 should also be a tailored version of the
developer’s corporate Standard Software Process (SSP).

Table 5 contains a list of the sections comprising Section 5. The left half of Table 5 is a list of
activities for the software development process and includes SDP subsections 5.3 through 5.13 and
5.26. The right half of Table 5 is a list of the activities that are “activity independent™ as they support
the entire software development lifecycle and includes SDP subsections 5.1, 5.2 and 5.14 through
5.25. Subsection 5.26 is optional but recommended if applicable.

Table 5. Contents of SDP Section 5

Subsection Process Activities Subsection Independent Activities

5.3 System Requirements Analysis 5.1 Project Planning and Oversight
54 System Design 5.2 Establishing a Software
Development Environment
5.5 Software Requirements 5.14 Software Configuration
Analysis Management
5.6 Software Design 5.15 Software Peer Reviews and
Product Evaluation
5.7 Software Implementation and 5.16 Software Quality Assurance
Unit Testing
5.8 Software Unit Integration and 5.17 Corrective Action
Testing
5.9 Software Item Qualification 5.18 Joint Technical and
Testing Management Reviews
5.10 Software/Hardware Item 5.19 Risk Management
Integration and Testing ;
5.11 System Qualification Testing 5.20 Software Management
Indicators
512 Preparing for Software 5.21 Security and Privacy
Transition to Operations
5.13 Preparing for Software 5.22 Subcontractor Management
Transition to Maintenance
5.26 Software Sustainment 5.23 Interface With Software V&V
(Optional) Agents
5.24 Coordination With Associate
Developers
5.25 Improvement of Project
Processes

5.1 Project Planning and Oversight

The major objective of this first software activity is to complete and document initial planning for the
software development task. The planning activity is an on-going task because it is initially performed
as part of the draft SDP submission, with the proposal, and may be repeated several times with
changing requirements of the program. This task is critical at the start of the development lifecycle as
it is the foundation for producing the software plans required to implement and perform the software
development process and for the identification and formation of the software teams required to
execute those plans.

2-43

Downloaded from http://www.everyspec.com

Software management has cognizance over the Software Development Plan (SDP) including the
software management and quality control plans shown in Figure 1-2. The preparation of the Software
Configuration Management Plan (SCMP), and the Software Quality Program Plan (SQPP) should be
assigned to the Software Configuration Management (SCM) and the Software Quality Assurance
(SQA) activities, respectively. The SDP contents must be consistent with Appendix-H of TOR-
3537B and should be submitted to the contractor’s Configuration Control Board (CCB) for approval
before it is released for implementation. In accordance with TOR-3537B, the software Project
Planning and Oversight activity must be described in six paragraphs in the SDP:

Software Development Planning (paragraph 5.1.1)

Software ltem Test Planning (paragraph 5.1.2)

System Test Planning (paragraph 5.1.3)

Planning for Software Transition to Operations (paragraph 5.1.4)
Planning for Software Transition to Maintenance (paragraph 5.1.5)
Following and Updating Plans (paragraph 5.1.6)

A summary example of the readiness criteria for the Project Planning and Oversight activity, is shown
in Table 5.1; it includes the entry and exit criteria, verification criteria to ensure completion of
required tasks, and the measurements usually collected.

Table 5.1. Readiness Criteria: Project Planning and Oversight—Example

Exit Criteria

o Software plans are placed in the
electronic database.

+ Software size estimates are established;
budgets and schedules are baselined.

* SDP is reviewed and approved by all
software team members and the
customer.

Entry Criteria

+ A management decision to initiate planning has been issued.
o Customer system requirements are available.

¢ [MP and IMS are available.

+ Software WBS has been defined down to the Sl level.

* Program Risk Management Plan has been established.

* Software, Systems, and Project Teams are sufficiently formed to support
the software planning activity.

Verification Criteria

« Program software plans are reviewed and approved.
e Program and senior management are provided status of ongoing product engineering activities (including requirements
definition and management) on a periodic and event driven basis.

e SQA performs process and product audits for the software planning activities per SDP Subsection 5.16.
Measurements

* Program schedule showing planning activities—estimated and actual.

« Staffing levels planned versus actual

« Effort hours bid, budgeted and actual

+ Milestone due dates—contractual, estimated, and actual (see subsection 5.20)

5.1.1 Software Development Planning

The SDP provides an important mechanism for documenting and tracking the software development
effort and activities required by the software-related provisions of the contract. The program-level
SDP must define software activities common to all development sites. Segment or Subsystem SDP
Annexes (also called Site-Specific SDPs) can be produced containing specific and/or unique policies
and procedures applicable to the segment/subsystem that expand on, but do not conflict with (except
for approved waivers), the policies and procedures defined in the program-level SDP.

Software development planning information should be prepared by the Segment IPTs by augmenting
the activities in the Integrated Master Plan (IMP) and the Integrated Master Schedule (IMS) with
more detailed development schedules. Although these schedules may be in the SDP, it is generally
better to reference their location since schedules typically change more often than the SDP is updated.

2-44

Downloaded from http://www.everyspec.com

Once these schedules are complete, development oversight begins by monitoring products and
processes and taking corrective action when necessary.

Unplanned updates to the SDP must be handled through the corrective action process described in
SDP subsection 5.17. All changes to the SDP should require approval by the Chief Software Engineer
(CSWE) and the program Software Engineering Process Group (SEPG). This SDP Guidebook
assumes the program has a CSWE (see last paragraph of subsection 1.1). Changes to the SDP also
should require CCB approval.

Software Item Database. A database, that may be called the Software Entity Database (SWED),
should be produced and periodically updated, to provide a mechanism for identifying and profiling all
Sls on the program. It provides a tracking mechanism for all software on the program. Each segment
should be responsible for their data input to the SWED but the CSWE should be responsible for
compiling this information into a single centralized and controlled database for the program. This
database may include for each Sl in the program: a functional description, class, category, size,
percent of new versus reused code, responsible developer(s) and contact information, and language(s)
used.

Waiver Processing. When a software development site has a justifiable reason for not complying
with a required procedure in the SDP, they must submit a request for a waiver in accordance with the
waiver process described in the SDP. All waivers should require the pre-approval of the CSWE and
the SEPG prior to being sent to the CCB for approval. Figure 5.1.1 is an example of a waiver
processing process.

Review Waiver and _Waiver Justification Waiver
Prepare Waiver Request

Reject or Duplicate | Initiator
»- Software Lead [*] g S o

\OIH [*} or designee

Analyze Waiver Request Notify Software Lead
Segment IPT f

No
| Yes Need More
Information Concurs?
To the :
cCB No YesL Approval
Request

CSWE & SEPG
Concur?

Forward Waiver Request
CSWE

Yes

Figure 5.1.1. SDP Waiver Approval Process—Example

When a waiver is initiated, the justification for it should be presented to the Software Lead. If the
development team Software Lead (or designee) agrees with the need for a waiver, a Waiver Request
should be prepared requesting authority to deviate from the requirements in the SDP. The Software
Lead should forward the Waiver Request to the Segment 1PT for approval. The Segment IPT should
review the waiver request, request more information or clarification if necessary, and either approve
or deny the waiver request.

2-45

Downloaded from http://www.everyspec.com

If the Waiver Request is approved, the IPT should forward it to the CSWE. If not approved or found
to be a duplicate, it should be returned to the Software Lead with reason(s) for disapproval. If the
CSWE and SEPG concur with the Waiver Request it should then be forwarded to the CCB for formal
approval.

5111 Software Development Planning Tasks

Software planning is iterative and should not start until the assignment of planning roles has been
made. Software planning responsibilities normally resides with the IPT software leads for
development implementation planning and the program-level SEPG for process planning. The first
step in planning is to review software requirements (see subsections 5.3 and 5.5) since the scope of
the software task is established by identifying system requirements to be satisfied by software
products. Table 5.1.1.1 is an example list of typical planning activities as elaborated in the identified
sections of the SDP.

Table 5.1.1.1. Software Planning Tasks—Example

Software Planning Tasks Covered In SDP Section/Subsection

Methods for developing and maintaining the SDP

1.3.3 SDP Updates

Software Data Management (DM)

4.2.9 Software DM

Software size and resource estimation

5.1.1.2 and the Software Estimation Plan

Software build planning

5.1.2 and the Software Build Plan

Software integration and test (1&T) planning

5.1.2 through 5.1.5 and the Software IT&V Plan

Software Development Environment and support tools

5.2 Establishing a SDE

Software acceptance, delivery, installation, transition, operations,
maintenance, and retirement planning

5.12, 5.13, and the Software Maintenance and
Transition Plans

Software Configuration Management (SCM)

5.14 and the SCM Plan

Software evaluations with formal and informal reviews

5.15, 5.18, and the Software Reviews Plan

Software Quality Assurance (SQA)

5.16 SQA

Problem resolution methods and preventive action

5.17 Corrective Action

Software nsk management

5.19 and the Software Risk Management Plan

Software metrics covering products and processes

5.20 and the Software Metrics Plan

Security and Privacy issues

5.21 Security and Privacy

Oversight of software subcontracts

5.22 and Software Subcontract Plan

Software schedules with cntical interdependencies

6 Schedules and Activity Network

Software organization, roles, and responsibilities

7.1 Project Organization

Required resources, skills and staffing plan

7.2 Project Resources

Training plans and training requirements

7.3 Training Plans

Software Operations and Maintenance

5.26 Software Sustainment

51.1.2 Software Resource Estimating

Software resources, including physical, personnel, cost and computer resources, must be estimated

before software development can begin. These estimates are used to establish software development
schedules, risk mitigation plans, and commitments and should be documented in a Software Resource
Estimation Plan.

Software personnel should participate with other affected groups (systems engineering, SQA, SCM,
test, etc.) in the overall program planning throughout the program as members of Integrated Product
Teams (IPTs). Commitments, or changes to commitments, made to individuals and external groups
must be reviewed with management regularly.

Staffing Estimation. To determine the level of staffing required, the planning function should
consider program constraints including milestones, reviews, documentation deliveries, product

2-46

Downloaded from http://www.everyspec.com

deliveries, internal milestones, incremental builds, technical constraints, and any changes in scope.
Estimates of source lines of code and software development productivity play an important role in
staffing estimates.

Re-planning: The software groups should participate, when required, in re-planning activities to
address contract changes, process improvements, or when measured performance varies from planned
performance. The related data that is generated must be maintained and placed in the applicable
Software Development Folders (SDF) or Software Engineering Notebooks. Software personnel also
should participate in contract/subcontract modification activities (such as engineering change
proposals).

5113 Software Build Planning

A software “build™ is a portion of a system that satisfies, in part or completely, an identifiable subset
of the total end-item or system requirements and functions. There may be multiple internal builds
leading to a deliverable build for an increment in the lifecycle. Requirements met in one incremental
build are also met in all successive increments. The final build is the complete software system. A
“release™ is a build version that is delivered for acceptance testing and subsequently may be released
or delivered for operational use. Incremental builds can be planned for each S1, or group of Sls.

Build Requirements. The Software systems engineering function should define the level of
requirements satisfaction needed by each lifecycle increment to implement a specified level of end-to-
end system functionality. Within a segment, additional influences dictate when capabilities are
delivered. This may include such factors as developing required software infrastructure or addressing
areas of high-complexity. Naming conventions for each build must be established up front by
assigning unique alphanumeric designations.

Software Build Plan. A table, similar to the example in Table 5.1.1.3, must be added either to
subparagraph 5.1.1.3 or, if too long, included in the SDP Appendix or a separate document referenced
by the SDP, to show the intended software delivery plan. The table must include a unique number,
often called the Program Unique Identifier (PUI), for each Software Item and its name, the
responsible developing organization, and Equivalent Source Lines of Code (ESLOC) planned for
each build. Part 2 subparagraph 1.2.3.3 provides an explanation of how ESLOC is derived. As shown
in Table 5.1.1.3, the version (preliminary, initial, update, fixes) can be identified for each delivery.

Table 5.1.1.3. SI Build Delivery Plan-Example

Total for 18 Sls: | 102,000 65,000 130,000 297,000

1 Decision Support Manager 45,000 28,000 48,000 121,000
141 Decision Analysis Able Corp | UDRW V)
1.2 Analytical Algorithms Able Corp = | U
1.3 Scenario Analysis Able Corp - | U
1.4 Testbed Controls Baker Co, P 1 U
1.5 Traffic Control Baker Co, i UDRW U
1.6 Simulation Analysis Baker Co, P | U :
2 Services Support Manager . 30,000 18,000 12,000 60,000
2.1 Routing Analysis Charlie Co. P | U
22 User Support Charlie Co. = | UDRW
23 XYZ Services Charlie Co. | UDRW UDRW
Etc. Etc.
P = Preliminary Version | = Initial Delivery
U = Updated Delivery —= No Delivery
UDRW = Updates for Discrepancy Report Work-Offs ## #t# = ESLOC per Build

PUI = Program Unigue Identifier

2-47

Downloaded from http://www.everyspec.com

Software Master Build Plan (SMBP). A comprehensive SMBP must be provided to map the
incremental functionality, capabilities, and requirements allocated to each build. The CSWE, or Build
Manager, usually maintains the SMBP with the approval of the software CCB. Once approved, the
SMBP should be controlled by SCM and the CSWE, or Software Build Manager, should routinely
report the status and changes to program management. The SMBP may also be called the “Master
Software Integration and Verification Plan” or may be referred to as a “Build Functionality Matrix.”

Build Planning Updates. Software build planning should occur for each program increment and each
deliverable build and be updated continuously throughout the program. Build plans are typically
updated only when the plan contents change significantly as determined by the IPT Lead. Schedule,
ESLOC, and functional content estimates must be taken into consideration when planning builds. As
the program matures, additional design, requirements, technical content, and testing approaches
should be added. The build activities should be documented in detailed schedules and then
incorporated into the IMS along with staffing and budget-plan information.

5.1.1.4 Software Development Tracking and Oversight

The software tracking and oversight effort begins once software planning is complete. Segment 1PTs,
Leads, the CSWE, and SQA monitor software development status by:

¢ Collecting and evaluating software metrics data (SDP subsection 5.20)
Evaluating software products (SDP subsection 5.15)

Performing product quality and process audits (SDP subsection 5.16)
Supporting software reviews (SDP subsection 5.18)

Performing risk management activities (SDP subsection 5.19)

Software Measurement Oversight. Throughout the development process, software measurement
data must be used to compare actual software size, cost, schedule, and progress against the
established plan (see subsection 5.20). If the metrics indicate out-of-tolerance conditions, the segment
IPT software members perform an analysis to determine the corrective action and potential risks
including cost and schedule impacts. The Software Measurement (or Metrics) Plan is an important
addendum to the SDP.

Software measurement data reported to project management must also be reported to the customer
and corporate senior management. The status of software should be reviewed weekly at segment level
meetings and at monthly program status meetings. In addition, software status should be provided to
the customer monthly and also at quarterly reviews. Software management and control must be
integrated into the overall program management scheme. Figure 5.1.1.4 is a depiction of software
management from a measurement perspective.

Cost Account Oversight, Software work packages are typically cost accounts within the Earned
Value Management System (EVMS) used by all contractors. The cost account must be at a level of
detail sufficient to maintain control of the associated software development activities. Metrics on the
cost accounts/work packages should be reported to program management and available to the
customer.

Schedule Oversight. Schedule review meetings should be conducted weekly. Schedule metrics
(using weekly milestone accomplishments, including subcontractor data) should be reported along
with status of corrective action/recovery plans. IMS and detailed schedules should also be reviewed at
lower levels within the IPTs.

2-48

Downloaded from http://www.everyspec.com

Product Quality

! Measurements
Resources and ' Growth and
Cost Stability
Measurements Measurements

Schedule and
Progress Software Development
Measurements Management Performance
Measurements

Risk Financial
Management Manage-m?nt
Measurements Measurements

Measurements Other Related

ot Measurements

Measurements

{ Programmatic

Figure 5.1.1.4. Software Management from a Measurement Perspective—Example

Headcount Oversight. IPTs should monitor headcount on a weekly basis and strive to identify
potential problems early. Updates of accomplishments, actual headcount, budget and forecast should
be conducted on a monthly basis. Forecasts should be updated and reported in internal cost
performance reports that include significant cost/schedule variances and changes in the latest revised
estimate. Costs and schedules should be controlled by monitoring headcount and expenditures, and by
assessing progress.

Product and Process Oversight. Product evaluations, software reviews, process audits, and
assessments are used by segment IPTs, CSWE, and SQA as a means to determine compliance with
the standards established by the SDP. Non-compliance of baselined products is handled via the
corrective action process (CAP) (see subsection 5.17). Process audits must be performed by SQA,
with support from the CSWE, to determine compliance with the processes specified in the SDP (see
subsection 5.16). SQA must be responsible for documenting and verifying closure of a non-
compliance issue. Subsection 5.15 describes the software product evaluation process. Software
management must implement and maintain the mechanisms for interfacing to and communicating
with the customer.

5.1.2 Software Item Test Planning

This paragraph of the SDP must contain the approach for performing the Software Item Test
Planning. The testing of segment Sls must be performed by the respective segment software test
engineers. They are responsible for documenting the Software Test Plan (STP), Software Test
Description (STD), and Software Test Report (STR) to verify that the SIs meet the allocated
requirements.

A preliminary version of the STP is usually produced during the software design activity (see SDP
subsection 5.6). However, the STP is the result of the SI test planning activity. Data Item Description
DI-IPSC-81438A, or Annex E.2.2, in J-16, should be used as a guide for preparing the STP.
Production of the STD and STR is performed during Software Item Qualification Testing (SIQT) and
is discussed in SDP subsection 5.9. Test activities for MC and SS software classes must also be
documented in the SDFs.

2-49

Downloaded from http://www.everyspec.com

The STP describes plans for qualification testing of Sls and is an important software document. It
describes the test environment to be used, identifies the tests to be performed, provides schedules for
the testing tasks, defines the resources needed, and addresses all of the planning tasks required to
conduct the SIQT. Table 5.1.2 summarizes the readiness criteria in terms of entry, exit and
verification criteria to ensure completeness of the STP.

Table 5.1.2. Readiness Criteria: Software Test Plan—Example

Entry Criteria Exit Criteria

* The appropriate STP DID and other The following tasks have been defined and documented in the STP:
reference materials are obtained. » Test environment (sites, hardware, software, test toois, test facilities,
o Software requirements are established in test data, etc.) needed to conduct the lifecycle tests.
the SRS and iRS and are traceable to a » Test scenarios to be performed including the schedule for executing the
parent requirement. test activities.
¢ The top-level software architecture is « Traceability between Sl requirements and the related tests and test
estabiished. phases where the requirements are verified.
» The Verification Cross Reference Matrix » Personnei, organizations, responsibilities, and management activities
(VCRM) specifies the test verification needed to deveiop and implement the planned testing.
method and level for each requirement in + The objectives for each test including test level, type, conditions, data to
the SRS and IRS. be recorded, qualification method(s), data analysis, assumptions and
constraints, safety, secunty, and privacy considerations.
« Approach to related issues such as data rights, training, regression
testing, delayed functionality, and deliverable documentation.
» Cniteria for evaluating the test results.

Verification Criteria

The tests identified fully test and verify the requirements being tested.

* The occurrence and timing of the test phases in the iifecycle, pius the entrance and exit cnteria for each test phase, has
been identified and documented.

The terminoiogy and format is consistent between the SRS, RTVM, IRS, and STP.

o The STP has successfully passed its peer review.

Measurements

e Statistics from the STP peer review.

5.1.3 System Test Planning

This paragraph of the SDP must contain the approach for providing support to system test planning.
The System Verification and Test Plan (it may also be referred to as an Integration, Test, and
Evaluation Plan) should be prepared by the SEIT and is the key planning document for system
testing. System integration and test activities are described in SDP subsection 5.11.

The System Test Team should be responsible for performing the actual system testing. Software
developers and/or software test engineers have a support role in system test planning that may include
reviewing test preparation materials, and providing software test support items, such as reusable
software test documentation, simulators, drivers, and analysis tools. Software engineers also support
anomaly analysis to determine if the problem is because of software only, hardware only, or a
combination. If regression testing on the software builds is needed, SCM must provide the software
builds against which the tests are conducted.

5.1.4 Planning for Software Transition to Operations

This paragraph of the SDP must contain the approach for performing the software installation
planning. This activity involves the preparation for, and the installation and checkout of, the
executable software at a user site. As described in SDP subsection 5.12, planning and preparation
should start relatively early in the lifecycle to ensure a smooth transition to the user. It should include
the preparation of documentation and software products required by the user to perform operational
tasks. This includes the code for each S1 and supporting documentation including the preparation of
user manuals and user training materials as the pertinent information becomes available. Annex E.2.3,

2-50

My S N G N IS an By an B = Gir A BN B T B

Downloaded from http://www.everyspec.com

in J-16, should be used as a guide for preparing the Software Installation Plan (S1P). SDP
subsection 5.26 discusses Software Sustainment issues.

5.1.5 Planning for Software Transition to Maintenance

This paragraph of the SDP must contain the approach for performing the software transition
planning. As described in SDP subsection 5.13, transition planning involves advance planning and
preparation that should start early in the lifecycle to ensure a smooth transition to the maintenance
organization. It must include the installation and checkout of the software at the maintenance site.
Either DID DI-IPSC-81429A or Annex E.2.4, in J-16, can be used as a guide for preparing the
Software Transition Plan (STrP). SDP subsection 5.26 discusses Software Sustainment issues.

5.1.6 Following and Updating Plans

The plans noted in paragraphs 5.1.1 through 5.1.5 must be made available via an electronic data
access system accessible to all stakeholders and the customer. Once baselined, unplanned
modifications to these plans should be made via the corrective action process. Modifications that are
planned, such as scheduled updates to baselined documents at major milestones must also be
electronically available. Unplanned modifications, may also be captured as lessons learned. This
section should also cover the contractor’s approach to enforcement of planned updates to the plans.

The SEPG should review the software development process at monthly SEPG meetings to determine
the effectiveness of the process through analysis of software metrics, requests from Segment 1PTs,
recommendations from SEPG members, the customer and their representatives, and process audit
information from SQA, and program directives.

If other software or program level plans are affected by the approved change to the SDP, the CSWE
must ensure that responsible parties are notified of the SDP update and ensure that all inter-group
commitment changes are coordinated. The SEPG, described in paragraph 5.25.1, should coordinate
this activity. Unplanned changes to this SDP must be initiated and tracked using the corrective action
process described in subsection 5.17.

5.2 Establishing a Software Development Environment

A Software Development Environment (SDE) must be established to meet project software
development and test requirements. In accordance with TOR-3537B, the SDE activity must be
described in five paragraphs in the SDP:

¢ Software Engineering Environment (paragraph 5.2.1)

e Software Integration and Test Environment (paragraph 5.2.2)
e Software Development Library (paragraph 5.2.3)

e Software Development Files (paragraph 5.2.4)

e Non-Deliverable Software (paragraph 5.2.5)

5.2.1 Software Engineering Environment

The Software Engineering Environment (SEE) must consist of the hardware, software, procedures,
and documentation necessary to support the software development effort. Core Computcr Assisted
Software Engineering (CASE) tools used across the program must be identified in a table similar to
Table 5.2.1-1. The mechanism for making changes to the program-wide SEE CASE tool set should be
by approval of the Software CCB. Additional SEE requirements must be defined—typically in
segment/subsystem SDP Annexes, in a similar table.

2-51

Downloaded from http://www.everyspec.com

Table 5.2.1-1. Program-wide SEE CASE Tools—Example

Purpose of Case Tool Name of Tool Vendor
Object-Oriented Analysis and Design Rose 2000 Rational
Code Development and Testing SparcWorks Sun Microsyslems
Large Relational Database Oracle Oracle
Small Relational Database Access Micros oft
Problem Tracking Reports ClearQuest* Rational
Planning and Scheduling Projecl Micros oft
Configuration Management ClearCase" Rational
Requirements Management DOORS* Telelogic
Software Estimation SEER - SIM Galorath
Software Metrics DataDrill* Distributive Software

*Core software management tools used across the program.
Note: Use of trade names in lhis material is not intended in any way to infringe on the right of lhe
trademark holder.

The example Table 5.2.1-1 can be expanded to include all tools and the segments/subsystems using
each tool. This table can become lengthy (e.g., 100 tools) in large programs so it may be put in the
SDP appendix. If it is lengthy, it is recommended that the tools be grouped in categories such as:
Operating Systems, Compilers, Configuration/Change Management, CASE Tools, Requirements
Traceability, Documentation, Metrics Collection and Analysis, Performance Analysis, and Test.

When CASE tools are selected for the program, it is important to remember that new tools are not
likely to make an ineffective process more effective; new tools are not a panacea for fixing
problems—but they can make an effective process more efficient.

The CSWE must coordinate implementation of the common tool suite among all
segments/subsystems to ensure effective information transmittal and maximum commonality. The
CSWE, or designee, should be responsible for monitoring the implementation of the SEE to ensure
that all requirements are implemented, for periodically assessing the continuing adequacy of the
environment, and for identifying additional needed tools. Details of the SEE configuration for each
segment should be maintained in a current inventory list and available from the System Administrator
at each site or segment.

An overview of the data network must be included as a figure in the SDP or referenced to its
location. In addition to a data network diagram, the major operational software development sites
should be listed in an overview table similar to Table 5.2.1-2. This table could incorporate an Sl
column, however, Sls are often developed at multiple sites.

Table 5.2.1-2. SEE Development Sites—Example

Cily, Slate | FSS Flight Software Subsystem
_City, State TT&C Telemetry, Tracking, and Command
City, State MPS Mission Processing and Services
FSE Field Station Element
Cily, State | MMC Mission Management Cenler

5.2.2 Software Integration and Test Environment

Each software development segment/subsystem (site or factory) must have a controlled test
environment that supports integration and test of its Sls as part of its integrated SDE. These test

2-52

- o mE N UE By OGN B BN OGN BN ey Er B Iy B e EE En

Downloaded from http://www.everyspec.com

environments should be defined by segment/subsystem test personnel and described in their Software
Test Plan (STP) and their SDP Annexes.

Care must be taken at all levels, including system integration, to procure the needed integration and
test tools far enough in advance to assure they are available when needed and that there is enough
time for user training. Some Sls may be developed at multiple sites. All software developed at
geographically dispersed sites must be fully tested at each development site, preferably on target
hardware, prior to final installation and qualification testing at the integration location.

All planned Integration and Test Environments should support testing using “Test-Like-You-Fly™
principles. This includes high fidelity simulators and target test beds and test facilities that are
representative of the operational environments.

5.2.3 Software Development Libraries
Two levels of software libraries are normally used to implement software CM as follows:

o The Master Software Development Library (MSDL) is a single master program-level repository
of software information.

¢ Each software development segment/subsystem (or site) should maintain a subordinate Software
Development Library (SDL) at its site for local control of software products.

These libraries must provide repositories for products resulting from software requirements
definition, design, implementation, and test in accordance with the requirements of the SDP. The
MSDL and SDLs must be controlled collections of software, documentation, and associated tools and
procedures used in the development of software. The SDL for each development site must be defined
in its respective SDP Annex. The MSDL and SDLs must be maintained throughout the contract
duration. Also, electronic items must be maintained in a restricted environment and access controlled
by login procedures.

The SDL contains code, test cases, and the electronic version of the software documentation.

Figure 5.2.3 is an example of a typical logical partitioning of the SDL in electronic form. In

Figure 5.2.3 the SDL is shown as three primary logical partitions: the software development area; the
controlled library area; and the verification area as shown in the figure.

Downloaded from http://www.everyspec.com

ELECTRONIC SDL

/ <§Mam Development Area D\ "

SDL = Software Development !

Library

Software Development Files Controlled by site !

MSDL = Master Software .
* Unit Test .. Software Developers |

Development Library

r
|
|
|
|
|
|
|
|
(=

+ Review Areas A %
ELECTRON'C MSDL Controlled Library Area l : .

L i duanatioc Y 7

Input Receiving ,-"COntr-c;ll-z;c; -l;y- ;;g?-r;;e-r;tm"“f
Output Staging .. Configuration Management
Baselining .

Tools and Utilities
Incremental Releases

Controlled Library Area

System Verification
Area

Figure 5.2.3. Electronic SDL Logical Partitioning—Example

The following paragraphs may be used as sample text describing the three electronic library areas
including ownership and control of the partitions. It is intended to be general guidance as the specific
organization of segment SDLs should be defined and described in the segment annexes.

Example Text:

The Software Development Work Area is maintained and controlled by the software engineers as a working
area to develop the software. This working area is used to create new code and/or documents, modify
previously released code and/or documents, maintain databases, perform unit testing by the software
developers, and for other users to review the products electronically. At the end of each build, the finished
products, and the SDFs, are transferred from the Work Area to the SDL Controlled Library Area.

SDL Controlled Library Area. After code and unit test is complete, the software goes under segment
Configuration Management (CM) control (i.e., it is baselined). The CM group copies finished products
received from the software developers into this area. CM will always rebuild the executables from the source
files before transferring them. CM has ownership, full accountability, and full access privileges; all other users
have read-only privileges in this area. Software products are held here for CM to verify that the necessary files
have been received by doing a preliminary validation of the product. When all files are received, the
executable software products will be built from the source code and transferred to the SDL Verification Area.

The SDL Verification Area is owned, maintained, and controlled by the integration and testing group. They
have write privileges and no other users may modify the data in this area. Before products are transferred to the
Verification Area from the Controlled Area, CM verifies that the product is complete, and is ready for
integration with other parts of the system; when that is done, the code and executables are copied into this area.
All software products promoted into the SDL Verification Area are under the strict control of the chosen
configuration management tool. Following software CCB approval, files are transferred to the Verification
Area in the MSDL.

5.2.3.1 Electronic Data Interchange Network

The SDP must describe the program’s ability to provide continuously available, secure, encrypted
remote access such that any authorized individual can view all data (documents, analysis, databases,
or other information) using a standard web browser. The data must be safeguarded at multiple levels
(i.e., Unclassified, Contractor Proprietary and Secret levels) in accordance with Government

2-54

G ER Ak N B B O a0 B A

SR G Wn A N - aE =w

Downloaded from http://www.everyspec.com

requirements and negotiated restrictions to rights in technical data and software. Access must include
data generated by contractors and all subcontractors.

5.2.3.2 Software Process Assets Repository

In addition to the MSDL and SDLs, software documentation should be provided, via electronic
access, from a program-level library that may be called the Software Process Assets Repository
(SPAR). The SEPG should be responsible for defining and maintaining the SPAR; this repository
usually consists of both electronic and non-electronic materials.

5.2.4 Software Development Files

Software Development Files (SDF) are required for all software categories at the segment, SI, and SU
levels. SDFs must be prepared and kept current throughout the program duration. 1f a SI or SU is
deleted, its data must be retained in an inactive file. Since SDFs are involved throughout the software
development process, subsections 5.3 through 5.11 of the SDP do not always call out the use of
SDFs. The ubiquitous nature of the SDF should be understood when reading these sections.

SDF Audits. SDFs should be inspected and audited throughout the program, to determine compliance
with the SDP, with at least one inspection performed during each build and prior to each major
review. Deficiencies identified during these inspections normally result in corrective action through
the corrective action system. The frequency of SDF audits should be defined in the Software Quality
Program Plan (SQPP). After an SDF inspection by SQA, the CSWE. or the customer, the SDF must
be updated to note that it has been audited.

SDF Format. SDFs can be maintained either in electronic format or non-electronic format for hard
copies. Electronic information should be the preferred format. Information can either be placed
directly into the SDF or provided by pointers to an external location. SDFs should be initiated during
software requirements definition and remain under control of the segment/subsystem development
teams from the time they are created until completion of the contract. Table 5.2.4 is an example
tabular version of the overall SDF organization.

Table 5.2.4. Electronic SDF Organization—Example

» olde Da DRIO

Sl Name Root folder for each Software ltem
Referenced locations File(s) with pointers or links to SDF related materials in another location (to avoid duplication)
Sl Level Peer Peer Review materials (checklists, forms, notification; matenials; log)
Reviews
SU Level Peer Peer Review materials (checklists, forms, notification; materals; log) for products for a specific SU
Reviews
SQA Reports SQA Audit support materials and reports
Assessment Reports Assessment support materials, reports and management information
Lessons Learned Lessons learned support materials and reports/meeting minutes/action items
Meeting minutes Minutes not already stored in another location
Design materials In-work design specifications; design definition; agreements/decisions; database from CASE tools
Plans, tracking, and Administrative, risks, low level schedules; trade studies and evaluations; BOE; prototype plans
support
Test artifacts In-work plans, procedures; low-level (unit test; unit integration) plans, procedures, results, reports
Reviews and Formal briefing and presentation materials and minutes
Presentations
Training materals Training and orientation materials and records not already recorded in another location.
Process Improvement | Plans, minutes, and reports
Metrics Data, analysis and reports not already stored in another location
Tools Common scripts and tools used that are not stored in another location

2-55

Downloaded from http://www.everyspec.com

5.2.5 Non-Deliverable Software

Non-deliverable software consists of software developed, purchased, or used for software
development but not required by the contract to be delivered to the acquirer or other designated
recipient. It is identified as Category SS-3 in subparagraph 1.2.3.2. Non-deliverable software can be
used during software development only if the operation and maintenance of the deliverable software
does not depend on use of the non-deliverable software or the acquirer either has the software or can
readily obtain it. In any case, the developer must ensure that all non-deliverable software performs its
intended functions.

6.3 System/Segment Requirements Analysis

The major objective of this activity is the analysis and specification of system requirements. The
activities in this activity are also equally applicable to Segment Requirement Analysis or any other
level of requirements above software. The principal tasks performed in this activity should be led by
the Systems Engineering Integration and Test (SEIT) organization with support from the segment
Software IPT members.

In accordance with TOR-3537B, the System/Segment Requirements Analysis activity must be
described in three paragraphs in the SDP:

e Analysis of User Input (paragraph 5.3.1)
e Operational Concept (paragraph 5.3.2)
¢ System/Segment Requirements (paragraph 5.3.3)

This activity is based on inputs from the customer and user-provided requirements such as: the Initial
Capabilities Document (ICD), Capabilities Development Document (CDD), the Technical
Requirements Document (TRD), the Statement of Objectives (SOO), and the Request for Proposal
(RFP). The major output documents resulting from this activity are preliminary versions of the
System/Subsystem Specifications (SSS), the Operational Concepts Description (OCD), and the
Interface Specification (IS). The system verification and system test plans may also be revisited and
updated if necessary.

In addition, interface definitions must be provided to enable the further definition and management of
the computer software and computer equipment resources. This must be documented in the Interface
Control Documents (IFCD). The acronym ‘IFCD’ is used in this Guidebook to avoid confusion with
the ICD defined in the above paragraph. Depending on contract provisions, interface definitions may
also be included in the System/Subsystem Specification (SSS) or the Interface Requirements
Specification (IRS). The IRS may be contained within the SRS.

Inputs can also be derived from systems engineering studies. An early draft version of the SSS may
also be provided to the contractors by the acquisition program office. Table 5.3 summarizes the
readiness criteria for this activity with the entry and exit criteria, verification criteria to ensure
completion of the required tasks, and the measurements usually collected.

2-56

Downloaded from http://www.everyspec.com

Table 5.3. Readiness Criteria: System/Segment Requirements Analysis—Example

Entry Criteria Exit Criteria
o External system interfaces have been identified « System level requirements analysis and segment requirements
and the related documentation has been reviewed. analysis is complete.
o Preliminary concept of operations and system « Performance allocation, interface requirements, and user
capability definition have been completed. interface analysis are documented.
« Systems engineering notifies software team of the « System requirements joint technical and management reviews
need for their support. are successfully completed.

« Software representatives have reviewed system requirements
and the concept of operations.

* System/segment requirements are allocated to software.

« Bi-directional traceability is completed from customer
requirements to/from system specification and from system
specification to/from segment specification.

Verification Criteria

« Software IPT personnel participate in the review and approval of the system and segment requirements and interface
requirements documentation.

« Program and senior management are provided status of ongoing product engineering tasks (including Segment
requirements analysis and management) on a periodic and event driven basis.

« System Requirements Review (SRR) is successfully completed.

Measurements

¢ Requirements analysis task schedule.
« Number of system/segment requirements allocated to software.
« Planned versus actual level of effort.

* Requirements traced versus untraced. (see subsection 5.20)

5.3.1 Analysis of User Input

System Requirements. The SEIT has primary responsibility for the system-level tasks performed
during this acttvity. The CSWE and/or the Chief Software Architect are often (and should be) part of
the SEIT team. They directly support these tasks so that: (a) decisions involving software can be
made with the appropriate expertise and (b) interface requirements are consistent across the system.

Segment Software IPT personnel support the system requirements analysis to ensure that
requirements involving software are adequately addressed. The segment Software IPT assists and
supports the SEIT in the identification and capture of the software needs by participating in system-
level working groups.

The developers must also participate in analyzing user input to ensure that all interested parties
maintain ongoing communications regarding user needs throughout development of the system. In
addition to the developers, interested parties may include the users, acquirer, test, and maintenance
organizations. Work products of this task may include need statements, surveys, SCRs/SDRs, the
results of prototypes, and documented interviews.

Segment Requirements: Segment requirements analysis must be accomplished by analyzing
allocated segment requirements from the system specification and interface requirements. Segment
system engineering has primary responsibility for the segment tasks performed during this activity.
The segment Software IPT should asstst and support segment system engineering in the dertvation of
segment-specific requirements from the system-level requirements by participating in their working
groups.

5.3.2 Operational Concept

The segment Software IPT should support the SEIT in defining the system Operational Concept
Description (OCD) by identifying and evaluating alternative concepts for technical feasibility, user
input, cost effectiveness, schedule impact, risk reduction, and critical technology limitations. The

2-57

Downloaded from http://www.everyspec.com

segment Software IPT should also: (a) analyze the operational concepts and other inputs to derive any
software requirements that are not specifically stated and (b) support the refinement of the operational
concept based on current analyses and update it with user interface analysis material as appropriate.

56.3.3 System/Segment Requirements

System-level requirements must be documented in the SSS. This document specifies system
capabilities and allocates requirements to the segments. Segment-to-segment, and system-to-external
system interface requirements must be defined and documented during this activity.

All system, segment-segment, and segment-external requirements and interfaces should be
maintained in a Requirements Database (see paragraph 4.2.3 for example requirements management
databases). Segment Software IPT personnel should participate in working group discussions and
joint IPTs to review and comment on the parent specification requirements related to software.

The segment Software IPT must support segment requirements analysis through the identification
and derivation of software-related aspects for functional performance, interfaces, constraints, and
quality requirements. These requirements must be analyzed for completeness, consistency,
verifiability, and feasibility. Segment Software IPT participants also must identify and recommend
requirements that could be feasibly allocated to and implemented in software and identify possible
software verification methods and traceability for the segment requirements.

5.4 System/Segment Design

Segment Software IPT personnel must support the SEIT in developing the system/segment design
and the specific configuration of hardware, software, and firmware to meet performance and
reliability requirements. In accordance with TOR-3537B, the System/Segment Design activity must
be described in two paragraphs in the SDP:

¢ System-wide/Segment-wide Design Decisions (paragraph 5.4.1)
e System/Segment Architectural Design (paragraph 5.4.2)

Table 5.4-1 summarizes the readiness criteria for this activity in terms of the entry and exit criteria,
verification criteria to ensure completion, and the measurements usually collected.

Table 5.4-1. Readiness Criteria: System/Segment Design—Example

Exit Criteria

+ System architecture, Software Item definitions, software
system architecture decisions, and non-developmental
software analysis are documented.

» System architecture baseline has been established.

Entry Criteria

Preliminary versions of:
+ System and Segment requirements

s System OCD and Requirements database

+ System test approach and the Verification Cross-
Reference Matrix

Verification Criteria
* Software personnel participates in the review and approval of the system architecture, Sl definitions, and S interfaces.

* Program and senior management are provided status of ongoing product engineenng tasks (including system design)
on a periodic and event driven basis.

+ SQA performs process and product audits for ongoing product engineering tasks per SDP subsection 5.16.
* System Functional Review (SFR) at the SEIT level successfully completed.

¢ Product Engineering schedule

s S| SLOC and Sl requirements estimates (see subsection 5.20)

2-58

Downloaded from http://www.everyspec.com

During the System Design activity, major system characteristics should be refined through trade
studies, analyses, simulation, and prototyping. The primary focus of this activity should be the
definition of segment Hardware Items (HI) and Software Items (SI). System requirements and
interfaces should be refined, allocated, and flowed down to the HI/SI level. In addition, make, buy,
and reuse trade studies can be performed during the System Design activity.

The results of these tasks should be used to determine the system characteristics (performance, cost,
and schedule) and to provide confidence that risks are being resolved or sufficiently reduced in
impact and severity. The System Design activity can also evaluate the maturity of technology and
make decisions about the use of technology. This activity is normally led by the SEIT group. The
System Test Group must review the system/segment design to determine if the requirements
allocated are verifiable.

Six principal tasks are recommended for the system design activity as depicted by the example
flowchart in Figure 5.4. Details of the six tasks in this activity are described in its related Task
Table 5.4-2 that shows the inputs and outputs to each sub-task. In accordance with TOR-3537B, the
System/Segment Design activity must be described in two paragraphs:

o System-wide/Segment-wide Design Decisions (paragraph 5.4.1)
e System/Segment Architectural Design (paragraph 5.4.2)

Inputs System/SegmentDesign Tasks Outputs

System Spec ; 5 Functional Decomposition,
and OCD 1 Support System Architecture Design I—b System Architecture, and
l System Design Decisions
System 2 Support Development * Segmentand Sl Concepts
Architecture, of Segment Concepts * IFCD
Functional ¢ SegmentDesign Decisions
Decomposition, ‘
and Segment . .
Specifigations 3 Support Refinem entof Sl Definitions b * ObjectOriented Models
¢ Allocated Software

l Requirements

4 Support and Update Segment ° Model Documentation
Performance Prediction Models * Timing/Sizing Analysis

l ¢ Trade Studies and EMs
¢ ConceptBriefings
5 Support System Design Approaches H e SSDD

‘ ¢ Timing/Sizing
6 Support System Functional Review —T * SLOC Estimates

* Interface Allocations

QOCD = Operational Concept Description Sl = Software Items IFCD = Interface Control Document
SSDD = System/Subsystem Design Description SLOC = Source Lines of Code

Figure 5.4. System/Segment Design Process Flow—Example

Downloaded from http://www.everyspec.com

Table 5.4-2. System/Segment Design Tasks—Example

Tasks Inputs Subtasks Outputs
1. Support e System OCD * Assist SEIT to identify system level architecture System Architecture
ir:rt\ir:cture e System « Assist SEIT to develop functional decomposition System Functional
Design Specification o Coordinate Segment Sl definitions with SEIT Decomposition
2. Support e System ¢ Describe Segment capabilities in context of Segment concepts
Development Architecture system specs, Hls, and Sls Sl concepts
gnd Updtate L System » Describe Segment interfaces to other Sls and External interfaces
aomen Functional elements A
Concepts ” captured in the SRS or
P Decomposition
P « Describe individual S| capabilities, including plans IRS
* Segment for reuse of non-developmental software IFCD
Specifications
3. Support o Segment and Sl | « Develop appropriate object-oriented diagrams 00-Based Models
Reﬁnem.c-.:nt of Concepts reﬂecting aI.I software objects needed to achieve Allocated software
Sl Definitions scope with interfaces to other Sis

o Allocate Segment System requirements to Sl
classes; verify traceability of system requirements
to Sls

requirements

4. Develop and

Segment and Sl

Develop and update Segment models to support:

EMs documenting timing

gpdate , Concepts o Updated timing and sizing analysis and sizing analysis
egmen) -
Performance « Algorithm development Eg;g:g’:::e prediction
Prediction ¢ Interface analysis documentation
Models
5. Develop s Segment Specs | « Create Segment-level behavior diagrams for key Trade Study EMs
/lzeSIgn h and S| Concepts design approaches Concept briefings
pRroaches ¢ Performance » Verify approach satisfies associated system SSDD
Prediction requirements
Models « Support documentation of technical approaches
+ Segment OO and the System/Segment Design Description
Models (SSDD)
6. Perform s Concept Conduct analysis to: Timing and sizing
gﬁt;:gnal Briefings « Allocate timing and sizing budgets to Sis budgets
Review (SFR) | * a%%’:l‘:m 00 o Establish and update SLOC estimates Updated SLOC estimates

¢ Allocate system and external interfaces

* Flow up changes to system requirements as
needed

Interface allocations

5.4.1 System-wide/Segment-wide Design Decisions

System Decisions. System-wide software design decisions and their rationale should be documented
by the SEIT in Engineering Memorandums (EMs) and the System/Subsystem Design Description
(SSDD). EMs are typically maintained in the electronic data management system (see

paragraph 5.2.3). System requirements are generated from the EMs and the SSDD and are flowed
down to the segment product specifications.

Segment Decisions. Segment-wide software design decisions and their rationale should be
documented in EMs residing in the electronic data management system. Segment EMs must be
evaluated by the segment IPT to determine if they impact the software requirements. However, the
principal product is the SSDD. The segment Software IPT should record, in the segment SDF or
equivalent, the rationale for the COTS/reuse/other NDIs approach selected—including rejected
approaches and the studies and analyses that led to the selected approach.

Software system/segment architecture decisions made during system/segment design must be

recorded for later use in developing software requirements and design. Decisions are usually recorded

using EMs. The Segment IPT Lead should participate in establishing the rationale for software

2-60

Downloaded from http://www.everyspec.com

architecture, definitions, interfaces, COTS/reuse/other NDlIs approach, and should be responsible for
ensuring that the following data are recorded:

o The overall software architecture that was selected, including the studies and analyses that
lead to the selected architecture

e The Software ltem definitions and interfaces, including the studies and analyses that lead to
the selected Sl definitions

o The software COTS/reuse/other NDIs approach, including studies and analyses that led to the
selected approach

5.4.2 System/Segment Architectural Design

This task involves organizing a system into segments/subsystems and then decomposing segments or
subsystems into Hardware Items (Hls). Software Items (Sls), plus manual and other operations.

54.21 System Architectural Design

During the System Architectural Design task, required segments must be identified along with
segment-to-segment, and segment-to-external systems interfaces, plus a concept of system execution.
The interfaces must be documented by the SEIT in the IFCDs. The segment software IPT personnel
should support the SEIT by:

¢ Participating in the system architectural design and the specific configuration of hardware,
software, and firmware to meet performance and reliability requirements

o Assessing the software impact of implementing the operational concept and system
requirements in terms of technical suitability, cost, and risk

e Participating in trade studies to select processing, communications, and storage resources
e Reviewing the system test approach and test philosophy to ensure testing compatibility

o Identifying how each requirement will be tested, what test support software will be needed
for system test, identifying the system test environment, and developing a system test plan

e Reviewing and analyzing the system design to determine testability of the requirements
allocated to software

e Recommending requirements changes to the SEIT as necessary

5.4.2.2 Segment Architectural Design

Segment architectural design should be documented as part of the segment architecture baseline
process. The basic responsibilities, typically assigned to segment software IPT personnel, during
Segment Architectural Design, are to:

e Support System Engineering in defining the segment architectural design and the specific
configuration of hardware, software, and firmware to meet performance and reliability
requirements

e Assess the software impact of implementing the operational concept and segment
requirements for technical suitability, cost, and risk

¢ Support System Engineering in performing trade studies to select best processing,
communications, and storage resources

e Ensure the segment test approach is compatible with the test philosophy

e Support segment system engineering in reviewing the segment-level requirements and
identifying how each requirement is tested

2-61

Downloaded from http://www.everyspec.com

e Support the identification of test support software and test environment needed for segment-
level test and development of a segment test plan

e Review and analyze segment design to determine testability of requirements allocated to
software

e Recommend requirements changes to segment system engineering

e Support segment system engineering in creating definitions of Software ltems, in allocating
segment requirements to the Sls, and in review and refinement of the interfaces among the
defined software products

¢ Identify potential candidates for reuse and COTS software products at the Sl level

e Review and refine the definition of Software Items

When using the object-oriented (OO) methodology, the segment software high level architecture
design must be captured in SI OO models and placed in the SDF. These architecture models should
be documented with the applicable OO methodology products. These products should then be utilized
to refine and update the development of timing and sizing budgets, SLOC estimates, and to prototype
algorithmic approaches.

5.6 Software Requirements Analysis

Introduction. This subsection of the SDP addresses the objectives, approach, work products, and
responsibilities of the Software Requirements Analysis activity. There are no specific TOR-3537B
SDP sectional breakdowns required for this activity.

Objectives. Software requirements analysis must be accomplished by analyzing the system and
segment requirements to identify allocated and derived software requirements. These resulting
requirements should define what the software system must be able to do, while avoiding
implementation bias (i.e., not describe how to implement a requirement).

As depicted in Figure 5.5-1, software requirements can originate from several sources. The types of
requirements that may be determined include, but are not limited to, capabilities, behavior,
processing, control, interfaces, performance, sizing, timing, packaging, security, safety, reliability,
maintainability, availability, human factors, and software qualification. Requirements should be
analyzed for: completeness, traceability, consistency, testability, criticality, feasibility, correctness,
and accuracy.

In addition, requirements must be specifically evaluated for safety, security, privacy protection,
dependability, reliability, maintainability, and availability. These critical requirements need additional
tracking and monitoring per paragraph 4.2.5. In addition, requirements identified that have significant
risk associated with them must be evaluated by the software IPT for risk assessment and mitigation in
accordance with SDP subsection 5.19.

Approach. The general approach for preparing requirements specifications is to make each
requirement:

Clear and concise in a single statement with a single “shall”
Testable or verifiable and traceable via a unique product identifier
Consistent with all system requirements

Understandable and independent of other software requirements

A statement of what the software will do and not how it should do it

2-62

Downloaded from http://www.everyspec.com

SYSTEM REQUIREMENTS |

Functional Decomposition

v b

System Requirements System Requirements
Allocated to Hardware Allocated to Software
System |y SOFTWARE REQUIREMENTS Derived Software
Design ‘ f Requirements
l Software Design
Firmware l
Software Implementation and Test

Figure 5.5-1. The Origin of Software Requirements

All software requirements may not meet all of these guidelines, however, these guidelines should be
considered in defining each requirement. In addition to being clear and concise in documenting the
requirements, analysts should: use data dictionary terms and approved acronyms; use consistent
terminology; avoid the use of lists; limit the use of the words “and™ and “or;™ use positive
requirements; and not use the term “and/or.”

A single requirements database should be used to capture all requirements. System Engineering and
Software Engineering should use the same requirements database for documenting and maintaining
requirements to assure full compatibility between these tasks at the system, segment and software
levels. Portions of this database can be partitioned out and updated by the various 1PTs; however, a
single master copy should be maintained to ensure a consistent communication of requirements
among the teammates.

Table 5.5-1 summarizes the readiness criteria for this activity in terms of the entry and exit criteria,
verification criteria to ensure completion, and the measurements usually collected.

Software Work Products. One Software Requirements Specification (SRS) should be developed for
each segment S1. The segment Software 1PT personnel must ensure that there is consistency between
software item SRSs for common interface requirements. SS-2 software items do not require an SRS
document; however, all software and interface requirements and traceability data for SS-2 software
must be captured in the SDF.

The software segments should document allocated and derived software requirements in a
Requirements Database, as discussed in SDP paragraph 4.2.3, for all software categories. Each
specific requirement must be assigned a unique program identifier for individual requirement
traceability. Traceability requirements for MC-1 and SS-1 software should include SRS requirements
traced to system requirements and software builds.

2-63

Downloaded from http://www.everyspec.com

Table 5.5-1. Readiness Criteria: Software Requirements Analysis—Example

Entry Criteria Exit Criteria

+ System requirements aflocated to software + Software system architecture and software system interfaces are
are available. documented in the SDF, SRS, and IRS.

¢ Software system architecture is available. « Software requirements, Requirements Test Verification Matrix

o System OCD is available. (RTVM), and the Software Requirements Traceability Matrix

« Appropriate Software Engineering (SRTM) are documented in, or their iocation referenced by the SRS,
Environment (SEE) elements are available for or in a traceability or requirements management tool.
use. ¢ Lessons learned are recorded.

Verification Criteria

« Software management reviews and approves: software system architecture, software system interfaces, software
requirements, RTVM and SRTM as documented in the SRS, or their location referenced by the SRS, or in a traceability
or requirements management tool.

« Program and senior management are provided status of ongoing product engineering tasks (including software
requirements) on a periodic and event driven basis.

¢ All software products (see Table 5.5-2) are peer reviewed and the requirements database is inspected.

« A Software Specification Review (SSR) or Technical Interchange Meeting (TIM) has been completed.
Measurements

s Software requirements added, modified, and deleted during reporting period

¢ Product Engineering schedule
« Requirements traceable versus untraceable. (see subsection 5.20)

The traceability data must be documented and the recommended format is a Software Requirements
Traceability Matrix (SRTM). In addition, a Requirements Test Verification Matrix (RTVM) should
also be prepared. The RTVM may also be called the Verification Cross Reference Matrix (VCRM).
The SRTM and the RTVM (or VCRM) may part of the SRS or reside in a traceability or requirements
management tool. It is extremely important to include government overview in this process to assure
simulators are developed with adequate requirements from the stakeholders and users to incorporate
the needed fidelity.

Diagrams for algorithm models and simulations should be captured in SDFs as well as the appropriate
software tools. For COTS/Reuse (C/R) software, the only documentation available may be from the
software supplier. However, MC and SS-1 categories of COTS/Reuse software (defined in

paragraph 1.2.3) once integrated must be fully documented in order to pass the software
documentation reviews.

All of these software products must be made available via an Electronic Data Interchange Network
(EDIN) as described in SDP subparagraph 5.2.3.1. In addition, the draft of the Software Master Build
Plan (SMBP) may be prepared during this activity and the Interface Control Document (IFCD) may
be baselined if it had not reached that level of maturity in the previous activity. The typical software
products for the Software Requirements analysis activity are summarized in example Table 5.5-2.

Table 5.5-2. Software Requirements Analysis Work Products—Example

Requirements Database Required Required Required Required Required
Software Requirements Specification (SRS) (May Required Required Required® Required* Required*
include iRS, SRTM & RTVM)

Interface Requirements Specification (IRS) Required Required Required* Required* Required*
Software Requirements Traceability Matrix (SRTM) Required Required Required* Required* Required*
Requirements Test Verification Matrix (RTVM) Required Required Required* Required* Required*
Software Master Build Plan (SMBP) Required Required Required* Required* Required*
Software Work Products (see subparagraph 4.2.10.3) | Required Required Required* Optional Optional

*Document not required, but applicable information is developed and retained in the SDF.

2-64

G G BN N By R B an

Downloaded from http://www.everyspec.com

Staff Responsibilities. The segment Software IPT personnel should be responsible for the SI
requirements analyses, the generation of the work products, and the documentation of the
requirements in SRSs or SDFs, as appropriate. Table 5.5-3 is an example of the roles and
responsibilities of the Software IPT personnel and other groups during the requirements analysis
activity. The segment Software IPT personnel should also be responsible for conducting the required
reviews of the analysis process and output documentation as well as the tasks defined in the example
flowchart (Figure 5.5-2) and in its related Task Table (Table 5.5-4).

Table 5.5-3. Roles and Responsibilities During Software Requirements Analysis—Example

Roles Responsibilities
Performs software requirements analysis, definition, and documentation

Generates initial traceability products for SRS requirements to parent specification requirements
in Requirements Database

Software IPT Identifies software item risk areas

Initiates an SDF for each SI

Collects and reports requirements metrics

Submits problem reports after the requirements documentation is baselined

Software Test Identifies the verification levels and methods in the Requirements Database; prepares RTVM
Chief Software Supports the IPT in the identification and specification of critical requirements, reviews the
Engineer SDFs, reviews the activity products, and attends all formal activity reviews
Software Quality Evaluates the segments for adherence to: (a) documented policies and procedures; (b) product
Assurance (SQA) quality criteria; and (c) the Requirements Database. Findings are reported to management.
Software Manages software requirements baseline and processes all Software Discrepancy
Configuration Reports/Software Change Notices (SDRs/SCRs) for documented software requirements
Management (SCM) changes to the SRS or SDF as they are generated by the software segments or elements.
IPT CCB Addresses all segment internal change notices and SDRs/SCRs as they are generated
2-65

Downloaded from http://www.everyspec.com

Process Tasks. The software requirements analysis activity involves 10 tasks as depicted in
Figure 5.5-2. Details of these 10 tasks are described in Table 5.5-4 in terms of the inputs and outputs
to each task.

INPUTS SOFTWARE REQUIREMENTS TASKS OUTPUTS
1- Review/analyze allocated ¢ Requirements Analyzed
System b Software Requirements F—. » Derived Requirements
Performance
Specifications, ., BT :
allocated o - e Preliminary SW architecture
sy g 2- Define Preliminary Software Architecture H e Use Cases List
requirements, '
work products - o Sl Interfaces & Requirements
[see 4.2.10.3], 3- Define Sl Interfaces and Requirements I—— o Models/Mork Products
ICDs, system o T A o Requirements Database
architecture, i o Draft SRS, IRS and SMBP
system and 4- Conduct Work Product Inspections
segment S s _—l Inspection Results & Revisions
OCDs, and SI S '
SDF 5- Establish SW Requirements Traceability \‘ Updated S| Requirements,
P 4 Traceability, Database and
o l o | Interface Requirements
6- Define/Verify SW Qualification Requirements
b ‘ " - RTVM and SRTM
7- Perform Resource Use AnalySiS jpmmmppee-| © Timing / Sizing estimates
On'Going ‘ e SLOC Estimates
Tasks:
: 8- Inspect Requirements Database jssmig| Inspection Results and
¢ Training ' Revisions
o Software
5 gritgl?m 9- Inspect and Publish SRS |——l Updated RTVM and SRTM
REbOrn ‘ o Inspection Results
s « Preliminary SRS & IRS
10- Conduct Segment SSR ¢ Draft SMBP
NOTE: Updated SDFs are outputs for each activity
OCD = Operational Concepts Description SDF = Software Development Folders SLOC = Software Lines of Code
ICD = Interface Control Document IRS = Interface Requirements Specificaton SMBP = Software Master Build Plan
RTVM = Requirements Test Verification SRTM = Software Requirements Traceability
Matrix Matrix
SRS = Software Requirements
Specification

Figure 5.5-2. Software Requirements Analysis Process Flow—Example

2-66

E i AN am G O By SN B G AN A S By N By SR e e

E I EE T G G PR N) aE A U N EN Wz

Downloaded from http://www.everyspec.com

Table 5.5-4. Software Requirements Analysis Tasks-—Example
Task Inputs Subtasks Outputs
1. Review and ¢ Seeinputsin Review and analyze allocated SW requirements « Allocated requirements
Analyze Figure 5.5-2 analyzed
Allocated o Derived requirements
Software developed
Requirements
2. Define o Allocated Define software architecture components e Preliminary SW
Preliminary Software Develop/update Sl-to-Sl interfaces architecture at Sl level
Software Requirements Identify segment Use Cases * Segment Use Cases List
Architecture
3. Define SI e ICDs Refine Sl level SW architecture model ¢ High level analysis and
Interfaces ¢ Software Model software architecture in OO class models
and . Requirements Develop SW requirements and interface + Sl and interface
Requirements | ¢ Software requirements, including data items requirements
Architecture at Develop SW work products (see » Work products
Sl Level subparagraph 4.2.10.3 and Work Product ¢ Draft SRS, IRS, and
Table 5.5-2) SMBP
Identify software risks » Populated Requirements
Enter SW and interface requirements, into Database
database
Review database for completeness
4. Conduct o Work Products Schedule inspection; distribute review package * Peer Review results
Work Product | ¢« Requirements Conduct peer reviews; verify feasibility, * Work products updated
Inspections Database completeness of SW requirements, and o Deficiencies recorded
consistency between SW requirements, and
update work products
Document results and post to SDF
Fix inspection deficiencies
5. Establish ¢ Requirements Update software requirements tables to add o Updated SI requirements
Software Database traceability between system and software o Updated traceability
Requirements requirements ¢ Updated Requirements
Traceability Verify both downwards and upwards traceability Database

between system and software requirements
Add software requirements or flow up
recommended changes to system requirements
as necessary to complete traceability

Conduct peer review of Requirements Database

¢ Updated interface
requirements

6. Define/Verify
Software
Qualification
Requirements

Draft Software
Requirements

Update software requirements tables to add a
qualification method (Inspection; analysis; test;
demonstration; other) for each software
requirement

Verify qualification method satisfies verification
plan

Create and peer review the RTVM and SRTM

¢ RTVM and SRTM

e Updated Sl requirements.
traceability, interfaces, and
database

7. Perform o Software Work Conduct timing and sizing analysis ¢ Timing and sizing
Resource Products, Develop/update SLOC estimates estimates
Use Analysis Requirements, Post information to SDF » SLOC estimates
and Preliminary Verify that timing and sizing meets requirements
Architecture
8. Inspect ¢ Requirements Announce inspections, disseminate schedule, ¢ Requirements Inspection
Requirements Database and review products in advance results
Database Conduct inspection to verify correctness, * Baselined Requirements

completeness, and consistency of data
Document results and post to SDF
Fix inspection deficiencies

Database

9. Inspect and

Requirements

Update the preliminary SRS and IRS

* Preliminary SRSs and

Publish SRSs Database Conduct peer reviews utilizing SRS inspection IRSs
criteria ¢ Updated SI SDF
Update the draft SMBP « Updated RTVM and SRTM
Obtain board approval « Draft SMBP

10. Conduct * SRSs/IRSs Conduct SSR * SSR minutes
Segment ¢ Agenda Publish minutes and action items list o Action item results
S8R Presentation Resolve action items e SRSs and IRSs
slides Deliver documentation per contract * Requirements Database

2-67

Downloaded from http://www.everyspec.com

Exit Criteria. There is no requirement for the software requirements analysis activity to be entirely
completed prior to the start of the software design activity. When following iterative lifecycle models,
the software requirements analysis activity may be repeated for each build so the software
requirements would be developed iteratively. In this case, the Software Specification Review (SSR),
or the support software requirements Technical Interchange Meeting (T1M), would be held on a
build-by-build basis.

When following the Object-Oriented Analysis (OOA) methodology, the software requirements
analysis and software architecture definition can be concurrent resulting in combining the SSR, or
TIM, with the Preliminary Design Review (PDR).

The software requirements analysis activity formally ends upon completion of the Software
Specification Review (SSR) and baselining of all work products. Lessons learned should be captured
in EMs and SDFs.

Verification. Verifying completion of the 10 tasks described in this activity is accomplished by a
combination of approvals by software leads, peer reviews, SQA audits, periodic audits by the CSWE
and Joint Technical Reviews (JTR) or TIMs as determined to be necessary for each task.

5.6 Software Design

Introduction. This subsection of the SDP addresses the objectives, approach, documentation, and
staff responsibilities of the Software Design activity. In accordance with TOR-3537B, the Software
Design activity must be described by three paragraphs in the SDP:

e Software Item-wide Design Decisions: The software designers define the Software Item (SI)-
wide design decisions that affect the selection and design of the Software Units (SU)
comprising the SI. (paragraph 5.6.1)

s Software Item Architectural Design: Software designers develop an architectural design that
partitions the SI into SUs or SUs that may be subdivided into smaller SUs. (paragraph 5.6.2)

e Software Item Detailed Design: Software designers perform a detailed design on the
individual SUs and produce a description of the SI down to the level of algorithms and
procedures. (paragraph 5.6.3)

The process specified in the three tasks pertain to MC-1 and SS-1 software only. For the SS-2
software category, the three tasks are often combined into a single activity.

Objectives. Software Architectural Design is the first focused design activity at the SI level.
Architectural decisions applicable to all SIs should have been made during the System Design activity
(see subsection 5.4). Architecture at the SI level must determine the design for interfacing to other
SIs and to hardware units (if appropriate). Human interfaces may be designed (e.g., using prototypes
to validate the designs with end users). The tasking or operating system process structure for the SI
should be determined in this activity. Additional site-specific products and design reviews may be
specified in the segment’s site-specific SDP Annexes.

2-68

LB

. EE O ar A U IR I B BN o e Ua

Downloaded from http://www.everyspec.com

Approach. The three major tasks of the design activity, as defined by TOR-3537B. are intended to be
performed as consecutive steps of increasing levels of design specificity. However, there s no
TOR-3537B requirement for each activity to be completed for the entire Sl before the next design
activity is started. These three tasks usually overlap each other, and when using the iterative lifecycle
model, the three tasks are usually performed iteratively for each build. Table 5.6-1 summarizes the
readiness criteria in terms of entry and exit criteria, verification criterta to ensure completion of the
required tasks, and the measurements usually collected during the design activity.

Table 5.6-1 Readiness Criteria: Software Design—Example

Entry Criteria Exit Criteria

Software requirements are allocated to the S| and approved. Software architecture and design are captured in
design models.

» Software system architecture has been approved.
* Performance and sizing analyses are documented
in engineering memos.

e SISLOC estimates are updated.

» Software use cases and scenarios, S definitions, interface » For MC-1 and SS-1 software, a baselined STP,
design, updated Requirements Database, and preliminary SAD, SDD, SM8P, DBDD, and IDD are ready.
database architecture are documented in the SDF. s Designis baselined and placed under SCM

control.

» System architecture and the OCD are available.

* System verificalion malrix is available in the Requirements
Database.

Verification Criteria
* Program management is provided status of ongoing product engineering tasks on a periodic and event driven basis.
* SQA performs process/product audits for ongoing product engineering tasks per SDP subsection 5.16.
» All software architecture and design work products are peer reviewed and measurements documented.

* A preliminary technical review of the architecture and design has been compleled and the software PDR and CDR (or
TIMS) are completed.

Measurements
» Product Engineering schedule (including software architecture and design tasks)
o Results from peer reviews
e SLOC estimates (see subsection 5.20)

Software Work Products. The documentation produced during the Software Design activity for each
Sl includes the: software architecture and design and interface design descriptions; test plan, models
and diagrams; traceability products in the Requirements Database; and the Software Master Build
Plan (SMBP) that maps each build to the capabilities provided by the build and specific requirements
allocated to the build.

Software interface design descriptions must be documented in the Software Design Description
(SDD), Software Architecture Description (SAD), and the Interface Design Document (IDD). The
SDD documents the S| design decisions and the SAD documents the S1 architectural design, and
design of each SU. (Note that section 4 of the SDD describes the architectural design; the SAD
replaces that section by including much more information, such as multiple architectural views). All
software and interface design work products must be recorded in the SDF. Design documentation for
C/R software is limited to data provided by the vendor.

Diagrams for algorithm models and simulations, initiated during the software requirements definition
activity, should be expanded and refined during the Software Design activity. The revised work
models and diagrams must be maintained in the appropriate software tools and captured in the SDF.
The SRS, baselined in the prevtous activity, may be updated. Also. during the detailed design portion
of this activity, draft versions of the Software Users Manual (SUM as described in

subparagraph 5.12.3.1) and the Software Transition Plan (STrP as described in paragraph 5.13.9) may
also be prepared.

Downloaded from http://www.everyspec.com

MC-1 and SS-1 software require the traceability of the software architecture and design elements
from the SAD, SDD, and DBDD to the software requirement unique project identifiers in the SRSs.
Also, IDD elements are required to be traced to SRS or IRS requirements. This traceability
information must be documented in a Requirements Database as discussed in SDP paragraph 4.2.3.

An example of required work products for the Software Design activity is summarized in Table 5.6-2.
These software products must be made accessible through an Electronic Data Interchange Network
(EDIN) as described in SDP subparagraph 5.2.3.1.

Table 5.6-2. Required Software Design Activity Work Products—Example

Software Design Products MC-1 S$541 S$S8-2
SAD and SDD (per Software Item per build) Required Required Required*
IDD and SMBP (per build) Required Required Required*
STP (per Software Item) Required Required Required*
DBDD (if required) Required Required Required*
SDF capturing revised models and diagrams | Required Required Required
Software design elements traced to SRS Required Required Optional
requirements in the Requirements Database

‘Document not required, but applicable information is developed and retained in the SDF.

Roles and Responsibilities. The segment IPT software personnel must be responsible for the
Software 1tem architectural and detailed designs, the revision of design work products, and the
documentation of the design in SADs, SDDs, IDDs, DBDDs, and SDFs, as appropriate. Table 5.6-3 is
an example of the roles and responsibilities for Software IPT personnel and other groups during the
software design activity.

Table 5.6-3. Roles and Responsibilities During Software Design—Example

Roles Responsibilities

Conducts required reviews of the software architecture and design process and develops outputs
Updates and maintains the SDF

Addresses critical software requirements in the software architecture and design

Generates traceability products for design elements to SRS requirements unique project identifiers
in the Requirements Database

Identifies software architecture and design risk areas and provides identified risks to management
Collects and reports software architecture and design activity metrics

Generates computer hardware resource utilization estimates, comparing to the required threshold
values, and addresses estimates that exceed the requirements

Submits SCRs or SDRs, as necessary, after design documentation is baselined
Software Test Initiates the STP :
Supports the segment IPT software personnel in the handling of security and critical requirements

CSWE in the software design, audits SDFs, reviews activity products, attends all formal activity reviews,
and monitors and analyzes software metrics

Evaluates the segment IPT software personnel for adherence to documented policies and

SQA procedures, evaluates segment IPT software architecture and design work products for product
quality, and documents and report findings to upper-level management

Processes all SCRs and SDRs for software architecture and design changes to the baselined SAD,
SDD, 1DD, DBDD, SMBP, and STP documented design as they are generated

Software IPT

SCm

5.6.1 Software Item-wide Design Decisions

Objectives. The objective of this first task in the Software Design activity is to define and record the
Software Item-wide design decisions. These decisions constrain how the designers partition the Sls
into SUs and overall design of the SUs. These are global decisions about the structure of the design
that impact the Sls.

2-70

Downloaded from http://www.everyspec.com

Approach. The Software Design activity normally begins by performing an examination of the
requirements relative to the Sl plans, environment and interfaces to determine if there are any Sl-wide
design issues. Where such issues are identified, segment |PT software personnel should analyze the
issues and determine an appropriate design constraint or decision for each. These design decisions
must then be documented and communicated to the software designers as a set of design constraints
in conjunction with the requirements of what they are to design.

Design decisions are program specific, however, key factors that may be considered in determining Sl
design issues include:

e Safety, security, and privacy-critical requirements

¢ Computer hardware platform and resource utilization requirements
¢ External SI constraints and interfaces

e Algorithms and Application Program Interfaces (API) to be used

¢ Uniform exception handling and recovery methods

e Major architectural trade-offs

e Applicable standards and Graphical User Interfaces (GUI)

¢ Proposed software product reuse

¢ Uniform data storage and access methods

¢ Performance characteristics including response times, software maintainability. reliability, and
availability not allocated to individual architecture components

¢ Human factors, training requirements, and S1 operational constraints

Key design decisions identified, and the rationale for making those decisions, must be documented in
the SAD, SDD, DBDD, and IDD for MC-1 and SS-1 software and in the SDFs for SS-2. Key design
decisions are those that could impact or constrain the SI Architectural Design, Sl to external
interfaces, software requirements, cost or schedule. Design decisions for SS-2 software should be
reviewed during design inspections. For multiple build Sls, design decisions should be addressed
prior to completion of the Detailed Design for the first build. Design Decision tasks are integrated
into the flowcharts and task tables as described in SDP paragraphs 5.6.2 and 5.6.3.

5.6.2 Software Item Architectural Design

Objectives. The objective of SI Architectural Design is to describe the high-level organization of the
Sls in terms of SUs and their relationships. The IPT developing the SI must prepare an architecture
that meets the system requirements. The main objectives of SI Architectural Design are to:

e Decompose the Sls design into SUs

e Allocate requirements from SRSs to SUs

e Complete allocation of requirements from the SRS to Use Cases (for OOD)

¢ Describe the architectural design and requirements allocation in a preliminary SAD and SDD
¢ Update the S1 SDF for the SI and update the baselined SRS if necessary

e Prepare the applicable preliminary STP, SAD. SDD, IDD, SMBP, DBDD and update the SRS
and IFCD as needed

Approach. Software Item Architectural Design must be performed by segment IPT software
personnel. Using the documented software requirements, and the initial work products (models and
diagrams) from the requirements definition activity, the software architecture models are refined and

2-71

Downloaded from http://www.everyspec.com

the architectural components, including Software Units (SUs), are identified. SUs are logical
constructs for classes and associations in OOA/OOD or specific capabilities in a structured

development. Use of graphical architecture modeling techniques, e.g., Unified Modeling Language

(UML), is required.

The principal tasks, recommended for the SI Architectural Design Process, are depicted in
Figure 5.6.2 in flowchart form and in its related Task Table 5.6.2 in terms of the inputs and the
outputs of each task.

INPUTS SIARCHITECTURAL DESIGN TASKS OUTPUTS
L] OCD 4 .
. SRS b 1- Develop & Docume nt Software Architecture '—>| DraftSDD and SAD
+ Draft SMBP l
» Require-
ments 2- Develop & Document IDD and DBDD '—b DraftIDD and DBDD
Database
» EMs
» System
baalon 3- Develop &DocumentSoftware TestPlan =il Preliminary STP
» Software
System ‘ I :
Architecture 4- ConductDesigr”nspecﬁon b, lnSpeChon Minutes
‘ ® Preliminary Test
On-Going 5- Prepare Preliminary Test Schedule Schedule
Tasks: ‘
Training 6- Conductinternal Review & Update D ts s e g
. - Conduct!Internal Review pdate Documen : £ 3
» Prototyping SDD: IDD; STP; STD
for Detail ‘
~ Design | Preliminary: SAD, SDD,
o iitasos 7- ConductFormal Software PDR or TIM H STP, SMBP, 1DD; and
Metrics DBDD -

OCD = Operational Concepts Description
SRS = Software Requirements Specification
SMBP = Software Master Build Plan

EMs = Engineering Memos

SDD = Software Design Description

SAD = Software Architecture Description

IDD = Interface Design Document
STP = Software Test Plan

DBDD = Data Base Design Description
PDR = Preliminary Design Review
TIM = Technical Interface Meeting

Figure 5.6.2. Software Item Architectural Design Process Flow—Example

2-72

Downloaded from http://www.everyspec.com

Table 5.6.2. Software Item Architectural Design Tasks—Example

Task Inputs Subtasks Outputs
1. Develop and SRS « Determine S| modes of operation and architectural e Draft SDD and
Document Requirements approach SAD
Software Database « Perform analysis of reusable software and allocate to Sis e OO Models
Architecture OCD « Define software functions, behavior, error conditions, * SA/SD Models
EMs services, and controls
System Design | ¢ Identify architectural components including SUs
Draft SMBP * Prepare applicable OO or SA/SD models
Software « Perform resource use analysis of timing and sizing budgets
System « Allocate requirements from SRS to SUs and Use Cases
Architecture o Allocate SUs to processors and determine protocols
« Update RTVM with links to design components
¢ Prepare draft SDD and SAD
* Conduct internal review of software architecture
2. Develop and Preliminary « Allocate requirements to SUs and Use Cases o Draft IDD
Document SDD « Define software internal interfaces e OO Models
Interface « Update software external interfaces and RTVM » SA/SD Models
Design ¢ Prepare draft IDD « Draft DBDD
« Define database logical design and the draft DBDD
« Conduct internal review of software interface design
3. Develop and Draft SDD, Prepare preliminary Software Test Plan (STP) based on ¢ Preliminary
Document SAD, and IDD | System/Segment Test Plan STP
STP
4. Conduct SAD, SDD, As defined in SDP subsection 5.15: e Inspection
Design STP, and IDD o Inspect links to the design in the Requirements Database Minutes
Inspection Requirements ¢ Inspect design work products
Database ¢ Perform document reviews of the SDD and the IDD
Design Models
5. Prepare Preliminary « Identify threads and prepare the preliminary schedule for e Preliminary
Test STP SAD, integrating threads on target hardware Test Schedule
Schedule SDD, and IDD
6. Conduct Preliminary e For MC-1 software, segment S| IPT conducts an internal e Updated SDD,
Internal SAD, SDD, segment software PDR with management IDD, STP, and
Review and IDD, and STP | « For SS-1 & SS-2 software, segment SI IPT conducts an SMBP
Update Draft DBDD internal segment software TIM with management e Incorporate
Documents « Update the SAD, SDD, IDD, DBDD, and STP as required ggFZ data into
7. Conduct Updated SDD, | « Schedule the PDR/TIM, identify attendees, and finalize * Preliminary
Software IDD, STP, and agenda SAD, SDD,
PDR (MC-1) SMBP « Conduct the PDR/TIM and generate minutes and action IDD, STP,
or TIM items SMBP, and
(SS-1) « Ensure closure of action items and generate final outputs DBDD

The Software Test Plan (STP) is usually produced concurrently with the Software Item Architectural
Activity (SDP paragraph 5.6.2) and is shown as Task 3 in both Figure 5.6.2 and Table 5.6.2.

Production of the STP is actually a product of the Software Item Test Planning activity (see paragraph
5.1.2) and it is prepared by the software test engineers.

5.6.3 Software Iltem Detailed Design

Objectives. The objective of Sl Detailed Design is to determine the implementation details for each
SU. Designers define the specifics of the algorithms or processes an SU is to perform and determine
details of the data structures used by the SU internally—and for interactions with other SUs. The

resulting SU detail design descriptions are normally sufficient for code developers to implement the
design into code. The main objectives are to:

e Complete identification of design components including Software Units

e Complete a descriptton of the design for each SU

2-73

Downloaded from http://www.everyspec.com

Record all results in the SDF
Baseline the SAD, SDD, STP, IDD, SMBP, and DBDD (if applicable)

The Detailed Design activity involves decomposing the SUs from the SI Architectural Design (see
paragraph 5.6.2) into the lowest level SUs. The design must be developed in sufficient detail to map
the design to the features of the selected programming language, the target hardware, operating
system, and network architecture.

The principal tasks recommended for the Detailed Design Process are described by the example
flowchart in Figure 5.6.3 and in the related Task Table 5.6.3 in terms of the inputs and outputs of each
task. At the conclusion of this activity, the Detailed Design products must be baselined and placed
under software configuration control as described in SDP subsection 5.14.

INPUTS SOFTWARE DETAILED DESIGN TASKS OUTPUTS
Preliminary: | * Design Models and
¢ SAD 1- Develop Detailed Design h—» Diagrams
s SDD ‘ * Updated SAD, SDD, & IDD
e STP
* IDD 2- Update STP and Integration Updated STP and Test
* DBDD Testing Approach Schedules
¢ SMBP
piivy l Models and Simul
SDF * Models and Simulations
Requirements 3- Ensure Design Meets Requirements L—» * Performance, Timelines
Database l and Reliability Verification
EMs
4- ConductDesign Inspection p—met-| |nspection Minutes
On-Going l
Tasks: £ i
] | ¢ Updated Design Models
N 5- ConductPeer Review I—-> and Diagrams
F- T « Updated SAD, SDD, IDD, -
® Software ‘ pdate 0 g :
Metrics !
¢ Problem 6- Conduct Software CDRor TIM H Baselined: SAD, SDD, IDD,
Reporting DBDD, STP, and SMBP

SDD = Software Design Description

STP = Software Test Plan
IDD = Interface Design Description
STD = Software Test Description

SMBP = Software Master Build Plan

DBDD = Data Base Design Description

SRS = Software Requirements Specification
SDF = Software Development File

EM = Engineering Memo

TIM = Technical Interface Meeting

SAD = Software Architecture Description

Figure 5.6.3. Software Item Detailed Design Process Flow—Example

Major tasks performed during SI Detailed Design should include:

¢ Refining the Design Model: Adding additional details to the design model to accommodate
detailed decisions and constructs necessary for implementation

¢ Defining Implementation Details: Refining internal design to add data structures, attribute
types, visibility, interfaces and usage mechanisms. Factors to consider include: execution time,
memory usage, development time, complexity, maintainability, reusable software and hardware
resource utilization. Analysis and modeling may be necessary to determine the best design

approach.

2-74

Downloaded from http://www.everyspec.com

¢ Generating Class Stubs: Generate code header files and class stubs based on the object model
definitions. Design complex class algorithms or logic

¢ Prototyping and Simulations: Performing prototyping and simulation to validate critical
processing areas, mitigate implementation risk, or to identify optimizations

e Generating and Reviewing Products: Holding peer reviews on Detailed Design products, and
adding the Detailed Design information to the SDD. IDD, and DBDD

Table 5.6.3. Software Item Detailed Design Tasks

Subtasks

Outputs

1. Develop ¢ Preliminary Define Detailed Design including: ¢ Design Class
Detailed SAD, SDD, » Analyze models to identify additional requirements Diagrams
Design IDD, STP, « Define, describe, and decompose SU Detailed Design « Updated SAD

SMBP, and ¢ Design and develop algorithms, prototypes, control and SDD
DBDD mechanisms, and support services Updated IDD
* Baselined SRS | o Determine applicability of COTS/Reuse software PR
* Requirements e Prepare Design Class Diagrams » SA/SD Work
Database « Prepare dynamic behavior diagrams showing sequencing of Products such
e EMs component iterations, states and modes, and transitions a,s data flow
« Prepare SDD containing detailed design data diagrams and
« Update IDD with detailed design data (si}r:ggjlirga%r;:)rts
« Ensure conformance with architecture
« Refine database physical design and the DBDD « Data Dictionary
« Perform resource use analysis of timing and sizing budgets « DBDD
* Review requirements and update the Requirements Database
Define Interface Design including:
« Allocate and decompose architecture and user interface
requirements to a detailed design level
« Define interface design external to the Sl and between SUs
« Define information flow between SUs
o Develop design of user screens
« Apply human factor standards to user interface design
o Coordinate and review interface design updates

2. Update STP e Outputs of * Generate test software requirements « Updated STP
and Task 1 ¢ Document traceability between software test cases and « Test Schedules
Integration software test requirements in the STP
Testing « Update schedules for conducting each test case
Approach o Identify needed integration information (input data, scenarios,

data analysis, etc.)

3. Ensure Design | ¢ Outputs of * Design software performance and reliability models and ¢ Models and
Meets Task 1 develop simulations Simulations
Requirements ¢ Conduct analysis to determine if design meets requirements « Verification of

Performance,
Timelines and
Reliability

4. Conduct « Design As defined in subsection 5.15 of this SDP Guidebook: + Inspection
Design Documents o Inspect for links of requirements to Detailed Design Minutes
inspection « Requirements components

Database ¢ Inspect object-oriented products
o Design Work ¢ Perform document reviews
Products
5. Conduct Peer o Preliminary o For MC-1 software, segment SI IPT conducts an internal * Updated SAD,
Review SAD, SDD, design review for the segment software SDD, IDD,
IDD, STP, e For SS-1 and SS-2 software, segment Sl IPT conducts an STP, DBDD &
DBDD, and internal segment software TIM SMBP
SMBP « Update design documentation as required « Detailed Design
¢ OO Products Diagrams
e SA/SD Products * Peer Review
Minutes

6. Conduct « Updated Design | « Schedule the CDR/TIM, determine attendees, and update the ¢ Baselined SAD,
Software CDR Documents evaluation criteria SDD, IDD,
(MC-1) or TIM | « Detailed Design | e Conduct the CDR/TIM and generate minutes and action items S7P, SMBP,
(SSSS-21) and Diagrams « Ensure closure of action items and generate final outputs and DBDD

2-75

Downloaded from http://www.everyspec.com

Other tasks that may be performed (if applicable) in this activity include:

e Define detailed software user interfaces to the architectural design level and validate it with
software prototypes, working models, simulations, and/or display layouts

¢ Identify concurrency in threads or capabilities
o Identify global resources and determine mechanisms for access control

e Choose the implementation method of control in software (e.g., procedure driven, event driven,
or independent tasks)

¢ Determine methods for handling boundary conditions (i.e., initialization, termination, and
failure) and establishing trade-off priorities

e Prepare computer system hardware diagrams including purpose of each component, its
interfaces and physical processing characteristics

e Describe how and where the architecture supports Modular Open Software Architecture
(MOSA) principles

e Analyze and document the availability of Non-Developmental Items (NDI), incorporate NDI
into the design, and allocate requirements to it

e Consider reusable architecture designs for all or portions of a SI; trade-off studies and analyses
may be necessary to determine the best design approach

e Draft versions of the Software Users Manual (SUM) and the Software Transition Plan (STrP)

Approach. During SI Detailed Design, the designers complete the refinement of the work products
(e.g., models and diagrams of the SI). General operations identified in earlier versions of the products
must be defined to the SU level of functions and procedures, and then defined as to how specific
algorithms and support services are implemented in software. This process should occur repeatedly
with each build.

Details of the data structures must be defined, including temporary data items. The physical database
design, if any, must also be defined, including data entities, attributes, relationships, and constraints.
Interfaces determined in architectural design, including user interfaces, are refined and elaborated.
The software Detailed Design tasks must refine the software system architecture until the lowest
level classes and interfaces have been identified and described.

Detailed Design must be performed for each software increment in the current build. There may be
multiple builds and design components concurrently in various overlapping stages of completion. For
an iterative software lifecycle process, components may have been partially designed during prior
software development builds, and only the additional design details for the current build must be
added.

For MC-1 software only, the Detailed Design activity ends with a formal Critical Design Review
(CDR) in which the baselined design documents are evaluated. For software that is developed in
multiple builds, only a subset of the SUs may undergo Detailed Design. The SUs that undergo
Detailed Design should be only those units necessary to meet the SI requirements for that build, as
specified in the Requirements Database.

For SS-1 software, the CDRs are normally replaced with Technical Interface Meetings (TIMs). For
SS-2 software, the CDRs are typically peer reviews held for each build. At the conclusion of the
Detailed Design activity, all work products must be placed under configuration control as described
in SDP subsection 5.14.

2-76

Downloaded from http://www.everyspec.com

5.7 Software Implementation and Unit Testing

Introduction. The Software Implementation and Unit Testing activity of the development lifecycle is
often referred to as software Coding and Unit Testing (CUT). The latter acronym will be used in
subsection 5.7 to avoid confusing the acronym used for this activity (1&UT) with the Unit Integration
and Testing (UI&T) activity described in SDP subsection 5.8. In accordance with TOR-3537B, the
Software Implementation and Unit Testing activity must be described in five paragraphs in the SDP:

e Software Implementation (paragraph 5.7.1)

¢ Preparing for Unit Testing (paragraph 5.7.2)

e Performing Unit Testing (paragraph 5.7.3)

e Revision and Retesting (paragraph 5.7.4)

e Analyzing and Recording Unit Test Results (paragraph 5.7.5)

The requirements specified in these sections are for MC-1, SS-1, and SS-2 software only (SS-3
compliance should be optional). There are no C/R requirements in this development activity.
Additional products and reviews may be specified in a development’s site specific SDP.

Objectives: The objective of the Software CUT activity is to convert the SU detailed design into
computer code and databases that have been inspected, unit tested, and confirmed. The term Coding
is used throughout this process to mean the generation of computer-readable instructions and data
definitions in a form that can be acted upon by a computer.

Process Approach. Major tasks of the Software CUT process include the following:

e The detailed SU design must be converted into computer code in accordance with the coding
standards for the selected programming language. This may include partial units, or
modifications to those created in prior builds

e Specific test descriptions must be generated to unit test the SU that define the test cases, test
procedures, test input, support data, and expected test results

¢ The completed source code, test description data on all developed units, and documentation,
should be reviewed through a Peer Review inspection, which may include the participation of
SQA., prior to execution of the test

e The test cases should be executed against the executable code to determine the success of the
coding effort. White Box (structural) and Black Box (functional) tests should be performed on
the individual units. Successful completion of unit level testing is a prerequisite for promotion
of units to software integration

e The results of the test cases must be reviewed and the code reworked and retested until all unit
tests have been successfully completed

¢ The test results must be independently reviewed by someone other than the developer to
confirm successful completion of the test and that the test data and results have been recorded
in the SDF

These steps are highly iterative, in that the code and test tasks are performed for each SU (class)
designated to participate in the threads allocated to the current software build. Groups of SUs may be
coded, reviewed, and tested as a set, according to the development plan and schedule for the
increment. SUs may also be incomplete, in that only the functionality required to support the current
increment is implemented.

2-77

Downloaded from http://www.everyspec.com

The Software CUT activity for a single SU formally ends upon completing confirmation of the test
results and recording of the test data and results in the SDF. After these actions have been completed,
the SU must be brought under configuration control. All changes to the SU thereafter must be
handled using SCRs or SDRs.

Table 5.7-1 summarizes the readiness criteria in terms of entry and exit criteria, confirmation criteria
to ensure completion of the required tasks, and the measurements usually collected during the
software CUT activity.

Table 5.7-1. Readiness Criteria: Software Coding and Unit Testing—Example

Entry Criteria Exit Criteria

e SU detailed design has been completed. « Software Unit Test Cases have been completed and accepted
s Software coding standards have been established. by the Software Lead.
o The Software Engineering Environment (SEE) has | * SU test procedure data has been recorded in the SDF.

been established. ¢ SU Source Code has been developed, compiled, debugged,
« The Requirements Test and Verification Matrix and accepted by the Software Lead.

(RTVM) and Software Requirements Traceability » SU test results have been recorded in the SDF.

Matrix (SRTM) is available. o Software is put under software integration CM control.
e The SDL has been established.

Verification Criteria
» Peer Reviews of SU Test Cases, SU test data, Source Code and SU test results are completed and recorded.
o Software Development Librarian accepts the source code.
* SQA performs process/product audits for ongoing product engineering tasks per SDP subsection 5.16.
Measurements
e Actual KSLOC coded versus KSLOC planned
o Unit testing planned versus actual test progress
* Number of defects found in Peer Reviews
e SCRs and SDRs opened versus closed (see subsection 5.20)

Software Work Products. The principal product produced during this activity is SU source code as
shown in example Table 5.7-2. The format for the source code is established by the coding standards
for the particular language used. During the software CUT activity, SU Test Cases, test procedure
data, sizing and timing are prepared and updated. The SRS, STP, IDD, and DBDD may also be
updated as required. In addition, during the CUT activity, draft versions (if applicable) of the
Computer Programming Manual (CPM as described in subparagraph 5.13.8.1) and the Firmware
Support Manual (FSM as described in subparagraph 5.13.8.2) may be prepared.

Table 5.7-2. Required Software Coding and Unit Testing Work Products—Example

Software CUT Products MC-1 S$81 §82 S§83
Source code or reference to source code in SDFs Required Required Required Optional
SU Test Cases, procedures, data and test results Required Required Required Optional

Roles and Responsibilities. Table 5.7-3 is an example of the roles and responsibilities of the
Software IPT personnel, software developers, and other groups during the software CUT activity.

Downloaded from http://www.everyspec.com

Table 5.7-3. Roles and Responsibilities During Software Coding and Unit Testing—Example

Roles Responsibilities

Codes SUs to the appropriate coding standards
Develops the unit test description and executes the unit test
Conducts the required inspection of the source code and test documentation
Reworks and retests the SU when problems are identified
Software IPT and Arranges for confirmation of the test results per the Software Reviews Standards (The
SU author participates in the inspection, but someone other than the author performs
the inspection and confirmation of the test results)
Updates and maintains the SDF with source code, unit test descriptions, test code, and
unit test results
Ensures critical software requirements are traced to SUs
Collects and reports software CUT task metrics
Software Test Personnel Continues development of STP
CSWE Reviews the SDFs, reviews task products, and attends activity reviews
Evaluates the Segment IPT software products for adherence to documented policies
SQA and procedures, evaluates Segment IPT products for product quality, and reports
findings to upper-level management
CCB Addresses segment SCR/SDRs as they are generated
SWCCB Aqdresges SU SCR/SDRs involving external interface changes or SU changes from
prior build releases as they are generated by the Segment IPT software personnel
SCM Processes all SCR/SDRs for SU changes to the source code and test documentation

Developers

Process Tasks. An example of the Software CUT process is shown in Figure 5.7. Since this is an
iterative process, there are no vertical arrows in the process flow chart. The seven process tasks are
expanded with more detail in its related Task Table 5.7-4 containing the inputs and outputs to each
task.

5.7.1 Software Implementation

Objectives. The objective of software implementation is to implement requirements by converting
the software unit detailed design into source code and from the source code generate executable
computer code. The major tasks that must be accomplished are:

e Develop the code for each SU based upon the design requirements and detailed design
e Code the software using the required coding standards

e Create executable code and debug using applicable tools

e Update source code estimates with actual measurements of the SU

e Document decision to reuse code and identify reuse code modules

Approach. The software developers must generate the source code using the appropriate
programming language for each SU, based on the detailed design, interface requirements, and
supporting design information. Changes made to the executable code must be accomplished through
modification of the source code and subsequent recompilation or reassembly. Once successfully
compiled and executed, a Peer Review inspection of the source code should be performed.

2-79

Downloaded from http://www.everyspec.com

INPUTS CODE AND UNIT TEST TASKS OUTPUTS
* SOD b Software Implementation SU Code
* SAD 1- Develop SU Source Code
¢ SRS
» IDD T
T D
¢« RTWM Prepare For Unit Testing T reat Dosneiion D
¢ SRTM 2- Develop SU Test Description Data
« STP 3- Inspect SU Code and Test Cases M1 Approved SU Code and
 DBDD Test Descriotions
e SMBP
* Requirements o Tested SU Code
o Database Perform Unit Testing o Updated SU Test
¢ Design Models 4A- Perform SU Testing Cases and
o Procedures
Revislon and Retesting Updated: SU Code; Test
O GG 4B- Perform Revision & SU Retesting I- Cases: and SDF
Tasks:
» Training ' Updated: Sizing, Timing
« Software Analyze & Record Unit Test Resuits and Metrics
Metrics 5- Update SU Resource Estimates
« Problem 6- Confirm Unit Test Results 3
Reporing 7- Update SOF with Test Results 5:?;‘:::’&‘:; :""
Updated SDF

NOTE: There are no vertical flow arrows since this is an iterative process
SU = Software Unit

SDD = Software Design Description
IDD = Interface Design Description

SRTM = Software Requirements
Traceability Matrix

SAD = Software Architecture
Description

DBDD = Data Base Design Description

RTVM = Requirements Test Verification
Matrix
STP = Software Test Plan

Files/Folders
SRS = Software Requirements
Specification
SMBP = Software Master Build Plan

Figure 5.7. Software Coding and Unit Testing Process Flow—Example

Table 5.7-4. Software Coding and Unit Testing Tasks—Example

Subtasks

Check SUs against input documents, SCRs, and reused
code to confirm definitions and requirements of SUs
Code SUs

SDF = Software Development

Outputs
SU Code

Task Inputs
1. Develop SU e See
Source Code Figure 5.7
2. Develop SU e SU Code
Test
Description
Data

Address SU requirements in Test Cases

Develop test inputs and outputs

Develop SU Test Cases and test exceptions

Ensure adequate Test coverage and number of iterations

SU Test Cases

3. Inspect SU * SU Source

Schedule SU for Peer Review after successful compilation

Approved SU

Code and Test Code ¢ Hold Peer Review inspection of SU source code and Test Code and Test
Cases o SU Test Cases Description
Cases « Close Peer Review findings Data
4. Perform SU * SU Code ¢ Follow procedures in SU Test Cases Updates to:
Testing, e SU Test ¢ Record test results in the SUs SDF o Tested Code
Revision and Cases « Fix source code problems ¢ SU Test Cases
Retesting « Modify and approve unit test procedures and resuits and Procedures
o Retest; repeat until unit testing is successful s Segment SDF
5. Update SU o Tested + Measure sizing, timing and complexity of SU as required e Sizing and
Resource Source + Record SU SLOC count and productivity metrics in the SDF Timing in SDF
Estimates Code « Update metrics with measurements from SU testing . ll\Jllpdtraited
etrics

2-80

Downloaded from http://www.everyspec.com

Task inputs Subtasks Outputs
6. Confirm Unit ¢ SU Test « Verify correctness of test results « Baseline
Test Results Resuits ¢ Capture test procedures, inspection results, and unit test Source Code
results « Updated SRS
* Place tested code under configuration control as required

« Update SRS as required
* Release SU for Unit Integration

7. Update SDF s Update « Update SDF and document Lessons Learned e Updated SDF
with Test information | « Record test results in the SDF « Release Notice
Results from 1-6 « Prepare Release Notice to inform availability of SUs

above

5.7.2 Preparing for Unit Testing
Objectives. Objectives of the Preparing For Unit Testing is to:

¢ Develop overall test objectives and assumptions including constraints

e Define, develop, and document the Unit Test Cases and Unit Test Procedures

e Develop input test data including data files, databases, algorithm, and simulation data

¢ Identify support resources, including required drivers and stubs

e Test preparation (including hardware and software)

¢ Describe the inputs, expected results, success criteria, and evaluation criteria for each test case
¢ Allocate software requirements to each test case and ensure that all SU requirements are tested
¢ Define data files, databases, simulation programs, and additional resources required

e Layout a preliminary schedule of when the unit test cases are to be performed

¢ Execute all statements and branches of the software unit at least once

e Identify and define interfaces and dependencies between the test cases

¢ Identify start-up, termination, restart, error and exception handling procedures

¢ Verify that the software unit performs its intended operations using nominal and boundary
upper and lower limit input values

e Record the above information in the SDF

Approach. The software developers must identify test cases and procedures to be performed on a
software unit. For cases where tests cannot be developed to adequately verify that functionality has
been demonstrated, verification by analysis may be permitted. This situation can arise where: (a) an
event to be tested is difficult to cause or, (b) involves prohibitively extensive testing or cost. Modified
reused SUs require complete re-testing of the software unit. 1f the reused SU is deemed critical it
must be unit tested even if it has not been modified. The completed test description, including both
test case definitions and test procedures, must be retained in the SDF. The inspection package for
modifted reused code should also include a code difference listing.

5.7.3 Performing Unit Testing
Objectives. The objectives of performing unit testing are to:

e Perform unit testing of the developed source code in accordance with the unit test cases and test
procedures

e Verify the unit level functional, interface, and SU performance requirements
¢ Verify the SUs exception handling capability

2-81

Downloaded from http://www.everyspec.com

¢ Maintain unit test logs to verify and track SU test execution and completion
¢ Update the unit source code to correct errors detected during the unit testing
e Record the unit test results and performance measures in the SDF

Approach. Software testers normally begin by ensuring that all necessary data, tools, test
environment, and unit test configuration are available. When all required pieces for the test are
assembled, the test can proceed per the test procedures. The testers must verify the unit level
functional, interface, and performance requirements. The testers must collect and record the test
outputs, logs, notes, results, and discrepancies found. Although software developers must ensure each
SU satisfies its requirements, unit testing may be considered principally “white box™ testing, i.e.,
testing against the design.

5.7.4 Unit Testing Revision and Retesting

Objectives. The objectives of revision and retesting are to: (a) modify/rework the source code and
test description to eliminate any problems identified during unit testing; and (b) retest the unit to
verify that the changes have been successful and have not produced side effects. If a unit test fails, the
problem must be fixed and the test(s) repeated. The standard design inspection process must be
invoked again and the SDFs updated. Regression testing of affect ted SU test cases must be
performed after any modification to previously tested software. Changes must be made in accordance
with the Corrective Action Process (see SDP subsection 5.17).

Approach. Test results, and the documented problems, must be evaluated by software developers to
identify needed changes to the SU and test description. This task should be repeated until all the SU
test cases have been successfully completed.

5.7.5 Analyzing and Recording Unit Test Results

Objectives. The objective of analyzing and recording unit test results is to finalize the unit testing for
a SU by ensuring that:

¢ The unit satisfies the expected results of the test cases

e The test data, test results, unit test dependencies, and supporting analysis material have been
recorded in the SDF

e Root cause analysis of problems has been performed

e The SU is ready to be released for Unit Integration and Testing (see SDP subsection 5.8)

Approach. After completing unit testing, the Software Lead must perform an independent
confirmation of the test results and ensure the results have been recorded in the SDF. If discrepancies
or problems are found, then appropriate corrective actions must be performed.

Once the independent review signifies that the SU has successfully passed the verification process,
the SU can be baselined and brought under configuration control. The SU source code is then
submitted for incorporation into software integration builds. In addition, developers should
incorporate supporting analysis material and unit test dependencies information in the appropriate
SDF. The related metrics measurements obtained during SU testing should also be updated.

5.8 Unit Integration and Testing

Introduction. Subsection 5.8 of the SDP addresses the objectives, approach, readiness criteria,
software work products, roles and responsibilities, and tasks specific to the software Unit Integration

2-82

Downloaded from http://www.everyspec.com

and Testing (UI&T) activity of the development process. In accordance with TOR-3537B, the
software Unit Integration and Testing activity must be described in four paragraphs in the SDP:

¢ Prepare for Ul& T—including updating the STP and test procedure data (paragraph 5.8.1)

e Perform Ul&T—including performing the integration and test of a build in accordance with
integration test procedures (paragraph 5.8.2)

e Revision and Retesting—including reworking the source code; perform regression testing for
changes occurring during UI&T and documenting the discrepancies (paragraph 5.8.3)

e Analyze and Record UI&T Results—including analyzing test results, documenting the software
UI&T results in the SDF, and identifying who decides an Integration Build is ready for release
to S1 Qualification Testing (paragraph 5.8.4)

UI&T Objectives. The objective of the UI&T activity is to perform a systematic and iterative series
of integration builds on Software Units (SU) that have successfully completed Code and Unit Test,
and build them up to a higher level SU (formerly called a Software Component), or Software Item
(SI), for the current build. The Software Test Plan (STP) and software test procedure data should be
reviewed for consistency with the Software Master Build Plan (SMBP), and revised if necessary. In
addition, preparation of a draft Software Version Description (SVD) and a draft of the Software Test
Description (STD) for qualification testing (see SDP subsection 5.9) should begin during this activity.

Segment software integration teams must develop the integration plans, integration test cases, and
integration test procedures and test data in preparation for the actual integration and test. The SUs
should be checked out of the controlled area of the Software Development Library (SDL) by the
integrators. As the builds are successfully integrated, the SUs are typically returned to the SDL to be
elevated to a higher level of control. Discrepancies must be recorded on SDRs.

UI&T Approach. The UI&T activity consists of the following major activities:

e The software integration plans, test cases, and test procedures must be developed and peer
reviewed

e Test data, tools, drivers, simulators, etc. must be in place before start of testing
e The integration test procedures must be executed against the executable code

e Needed corrections to the software, and the integration test procedures, must be made and the
affected integration iteration retested; this activity should be repeated until all SUs have been
successfully integrated and have met the test acceptance criteria

e Test results for integrated SIs must be independently analyzed, or with a Peer Review, to verify
successful integration and recording of results in the Software Development File (SDF)

e The SI STP should have been baselined prior to start of actual testing
e Regression testing must be performed as needed to incorporate SUs from prior builds

The UI&T activity formally ends with the verification of the test results and the recording of the test
data and test results in the SDF. The build must then be baselined and moved to the verification area
of the SDL. All changes to a Sl thereafter must be handled through the process described in the SCM
Plan.

UI&T Readiness Criteria. Table 5.8-1 summarizes the readiness criteria in terms of entry and exit

criteria, verification criteria to ensure completion of the required activities, and the required
measurements normally collected during the Software UI&T activity.

2-83

Downloaded from http://www.everyspec.com

Table 5.8-1. Readiness Criteria: Software Unit Integration and Testing—Example

Entry Criteria Exit Criteria

Software Test Plan (STP) is available.
Coding and testing of the SUs have been completed.
Software test procedures data is available.
Integration builds are available from the SDL.

The RTVM, SRTM, and SMBP are available.

¢ Sl build is successfully integrated, accepted by the Software
team lead, and turned over to the SDL.

e The draft Software Version Description (SVD) is approved
by the Software Team Lead.

e The STP is updated and ready to support SIQT.

Verification Criteria

Software Peer Reviews have been successfully completed.

Unit integration plans, test cases, and UI&T procedures developed and successfully peer reviewed.
Software Units successfully integrated in accordance with the integration plans.

The Software Team Lead reviews and approves the integration test reports and integration release notice.
All SUs in the build per the SMBP are successfully integrated and tested and the results stored in SDFs.
SQA performs process/product audits for ongoing product engineering activities per SDP subsection 5.16.

Measurements

Defects found from Peer Reviews

SDRs opened versus closed

Units integrated—planned versus actual

SLOC count—planned versus actual (see subsection 5.20)

UI&T Software Work Products. Examples of software work products for the UI&T activity are
summarized in Table 5.8-2.

Table 5.8-2. Software UI&T Work Products—Example

Software UI&T Work Products per Build

Updated STP Required Required Required* Required*
Draft Software Version Description (SVD) Required Required Required* Required*
Draft Software Test Description (STD) Required Required Required* Required*
Sl test cases traced to SRS requirements in the Required Required Required* Optional
requirements database

UI&T Products: Required* Required* Required* Required*

o Unit integration plans
o UI&T test cases and procedures
o UI&T scripts, drivers and test data
o UI&T test results
*Document not required, but applicable information is developed and retained in the SDF.

Roles and Responsibilities. Software developers must be responsible for development of the
integration test plans, procedures, data, actual integration of the SUs, and the execution of the tests.
When problems are identified, the software developers must be responsible for reworking SUs and
retesting the integration of those units. Table 5.8-3 summarizes typical responsibilities and roles for
the UI&T activity.

2-84

Downloaded from http://www.everyspec.com

Table 5.8-3. Software UI&T Responsibilities—Example

Group Roles Responsibilities
Conducts the required peer reviews of the UI&T documentation
Software Updates and maintaining the SDF with test procedures and test results
Development Address safety, security, privacy and other critical software requirements in the integration test
Personnel cases
Collects and reports SU integration and testing activity metrics
Submits SDRs as necessary
Update the STP (as needed) and prepare drafts of the
Software Test STD and SVD
Reviews the SDFs, reviews the activity products,
Chief Software Engineer (CSWE) | attends activity reviews, and monitors and analyzes
software metrics
Evaluates the software IPT for adherence to the
documented policies and procedures, evaluates
SQA software IPT products for product quality, witnesses
Other Groups testing and dgcuments, ar?d repoﬂg ﬁnd)ilngs to upper-
level management
Segment CCB Addresses internal SCR/SDRs as they are generated
Addresses SU SDRs involving external interface
Software/CCB changes and prior build release SU changes as they are
generated by the software IPTs
SCM Processes SDRs for.SU changes to the source code
and test documentation

UI&T Process Activities. The Software UI&T process is shown in Figure 5.8. The four process tasks
are also shown expanded with more details in its related Task Table 5.8-4 containing the inputs and

outputs to each UI&T task.

INPUTS SOFTWARE UI&T TASKS OUTPUTS
e STP e STP Updated with current plan
¢ SMBP s 1- Prepare for UI&T H for build integration
* SU Code « Unit integration plans
* SRS &IRS o Test Cases & Test Procedures
. g;_l/_m S e Test scripts, drivers and data
% ¥
e SW Architecture
and Design o Integrated SUs or partial SUs
i ¢ Integration test results
3- Perform Revision .
rovsas and Retesting * SCRs/SDRs
Tasks: l
o Training o Integrated Build in the SDL
o Software Metrics 4- Analyze and Record ¢ Draft SVD and STD
¢ Problem UI&T Results o UI&T results
Reporting ¢ Updated SDFs

STP = Software Test Plan

RTVM = Requirements Test Verification Matrix
SMBP = Software Master Build Plan

SRS = Software Requirements Specification
SCR/SDR = Software Change Request/Software Discrepancy Report

Figure 5.8. Software UI&T Process Flow—Example

2-85

SVD = Software Version Descnption

SDF = Software Development Files

SDL = Software Development Laboratory
IRS = Interface Requirements Specification

Downloaded from http://www.everyspec.com

Table 5.8-4. Software UI&T Tasks—Example

Tasks Inputs Subtasks Outputs
1. Prepare for e Seeinput « Update STP with current plan for build integration Updated STP
UI&T documents ¢ Link requirements to integration and test cases UI&T Products
in « Create and populate the traceability database
Figure 5.8 | « Prepare Unit integration plans, UI&T test cases, procedures,
scripts, drivers, and test data
2.Perform SU ¢ SUcode ¢ Integrate the SUs per the integration plans Integrated SUs
Integration e TestCases | e Conductintegration testing of the current build based on the or Partial SU
and Testing | « TestData test cases Build
s TestScripts | » Record and document anomalies and errors detected during SDRs
and Drivers testing in the Software Discrepancy Report (SDR) Test Results
o Test
Procedures
3.Perform ¢ Integrated « Perform regression testing to accommodate new functions or SDRs
Revision and SUs changes to the previously integrated code Test Results
Retesting e Updated » Perform retesting after fixes to test procedures and/or code
SUs to fix * Record and document anomalies and errors detected during
SDRs testing in the SDR
e Test
Results
4.Analyzeand |« SDRs ¢ Analyze results and document findings of the integration tests in Integrated
Record UI&T | ¢ Test the SDF Build in SDL
Results Results « Inform software development and the SDL that the current build SVD and STD
has successfully completed integration testing Draft
¢ Prepare Draft SVD and STD Updated SDF
s Conduct Independent review of test results Review
Completed

5.8.1 Preparing for UI&T

Objectives. The principal objective of preparing for the UI&T task is to establish test cases, test
procedures, and test data for conducting unit integration and testing to define a systematic and
iterative approach for integrating a subset of SUs until the entire set of SUs are integrated into the
complete SI (for that build).

As a minimum, the test cases must cover a description of:

o Execution of all interfaces between software units—including limit and boundary conditions

¢ Integrated error and exception handling across the SUs under test

¢ End-to-end functional capabilities through the SUs under test

¢ All software requirements allocated to the SUs under test

¢ Performance testing—including operational input and output data rates and timing and
accuracy requirements

o Stress testing—including worst-case scenarios

e Start-up, termination, and restart

o Fault detection, isolation, and recovery handling

e Resource utilization measurement

Whenever possible, SU integration should be performed on the target hardware in a configuration as
close as possible to the operational configuration. All COTS/Reuse software, whether modified or
unmodified, must undergo software UI&T. Software developers must define integration test cases
that are mapped to use cases, and then mapped to requirements and corresponding test procedures, in
an integration test description to verify success of each partial integration before proceeding to the
next iteration. The specified integration sequences are to: (a) Verify that the SUs operate together

2-86

Downloaded from http://www.everyspec.com

using nominal and exception conditions; and (b) Exercise all interfaces for the SUs that have been
integrated.

5.8.2 Performing UI&T
Objectives. The principal objectives of performing UI&T are to:

¢ Integrate and combine SUs

o Execute the integration plan and corresponding test procedures as documented in the
integration test description to produce the integrated SI

o Execute the integration runs and verify the complete integration
¢ Verify that SUs within the S1 provide the functionality required for that build
e Record test results for this level of testing

During this task, coded and tested SUs should be integrated into Sls by a software integration team in
a series of integration builds. The SUs should be obtained from the development controlled area of
the SDL. The software personnel performing the integration usually begin by ensuring that all the
SUs to be integrated and all necessary data and tools are available. The integration build to be tested
should be generated by the developers using baselined SUs obtained from the SDL.

When all required pieces for the integration are assembled, the integration should proceed per the
procedures specified in the test description. During integration and testing, the software developers
collect or record the outputs, logs, test notes, and test results. All problems, errors, and discrepancies
must be recorded as SDRs.

5.8.3 UI&T Revision and Retesting
Objectives. The primary objectives of UI&T revision and retesting are to:

¢ Revise the source code and regression test in response to problems identified in SDRs, first at
the SU level and then at a combined SU level to ensure that existing functionality has not been
impaired

¢ Perform regression tests, as required, to accommodate new functions or changes in the current
build

¢ Document and track integration problems and test errors

The integration team must perform the integration tests, and any nccessary regression testing and
record discrepancies on SDRs which are placed into the Corrective Action process for disposition and
rework. The documented problems must be evaluated by the software developers to determine the
necessary changes to SUs or test descriptions. In cascs where SUs require changes, SDRs (and
Software Change Requests if used) must be generated and the changes handled by the corrective
action process.

In cases where test descriptions require modification, the appropriate changes must be made and a
version history included in the test description. Retesting must also be performed when test
procedures are changed. Retesting must be repeated as needed until all SUs have been successfully
integrated and tested.

Software personnel determine the necessary modifications to source code, SDFs, and/or
documentation. Source code and documentation are modified based on approved changes by the

2-87

Downloaded from http://www.everyspec.com

SWCCB (typically at the SU Level) and at the segment’s CCB or equivalent (typically at the Sl
level). Changes must be handled with SDRs in accordance with subsection 5.17.

5.8.4 Analyzing and Recording UI&T Results
Objectives. The primary objectives of analyzing and recording UI&T results are to:

o Verify that the tests have been successfully completed and that the test data and results have
been recorded in the SDF

¢ Handle changes to SIs after being brought under SCM control using SDRs

e Complete SI level integration by the successful execution of all of the defined integration test
procedure runs

e Meet integration completion criteria and perform root cause analysis for deficiencies
e Document SI level integration, and modify SDFs, source code, and documentation

e Prepare, analyze, and document results of the integration tests, and place in the appropriate
SDF location

Upon successful completion of a round of integration, the Software Lead should authorize the release
of the build by providing the Software Development Librarian with a release notice. The integration
team must document the results of each round of integration and place it in the appropriate location in
the SDF.

After all SUs have been successfully integrated and tested, the software IPT Lead should perform the
independent review of the test results and ascertain that the integration test data and results have been
recorded in the SDF. Peer Reviews may also be used.

The S1 can then be submitted to the SCM Librarian and baselined in the SDL Verification Area in
preparation SI Qualification Testing. Specific procedures for recording, analyzing, verifying, and
storing UI&T results should be included in the SDP.

5.9 Software Item Qualification Testing

Introduction. This subsection of the SDP addresses the objectives, approach, documentation, staff
responsibilities, and tasks for the Software Item Qualification Testing (SIQT) activity. In accordance
with TOR-3537B, the SIQT activity must be described in seven paragraphs in the SDP; the last five
of these tasks are the sequential processing steps of the SIQT activity:

¢ Independence in Software Item Qualification Testing (paragraph 5.9.1)
e Testing on the Target Computer System (paragraph 5.9.2)

o Preparing for SIQT by preparing the SIQT Software Test Description(s) (STD) and updating
the Software Test Plan (STP) (paragraph 5.9.3)

o Performing a dry run of the SI qualification test procedures on the target computer hardware to
ensure that the tests and test descriptions are complete and accurate and ready for the formal
SI1QT witnessed testing (paragraph 5.9.4)

e Performing Software Item Qualification Testing by executing the formal SIQT using the STD
and recording the test results, (paragraph 5.9.5)

2-88

Downloaded from http://www.everyspec.com

e Revision and Retesting including implementing all necessary corrections to the software
products and the software test procedures in the STD, then retesting the tests that failed and any
others involving modified SUs and their interfaces. This activity is repeated until all S1 tests
have been completed (paragraph 5.9.6)

e Analyzing and Recording S1QT Results and anomalies in a Software Test Report (STR)
(paragraph 5.9.7)

Objectives. The objective of SIQT is to demonstrate that the S1 meets the software and interface
requirements allocated to the Sl. SIQT must be a controlled and documented activity assigned to
software test engineers who are independent of the software development team. SIQT must
demonstrate that: the software performs correctly; contains the features prescribed by its requirements
at the Sl level; and properly interacts and performs its specified functions within the total system as
documented in the SRS for each build.

Approach. For software developed in multiple builds, the SIQT for each build must address the
software and interface requirements allocated to the current build being tested and the S1QT for the SI
being tested will not be completed until the final build for that S1. Regression tests must be
performed as needed throughout the iterative process. The software test results must be documented
after each test.

A Software Test Report (STR) must be published to document the final test results. Any
discrepancies noted must be recorded in Software Discrepancy Reports (SDRs), analyzed, and
dispositioned in accordance with the Corrective Action Process. If the corrections are deferred for a
future release, then the STR, and all related release documentation (e.g., the Version Description
Document), must reflect Sl constraints or work-arounds needed.

The activity ends when documentation of the software test results is completed and open SCRs/SDRs
that can be resolved are resolved for the current release. All test materials and results must be
“impounded” to establish the “as conducted™ archive. A post-test debrief should be conducted to
evaluate preliminary results, to analyze anomalies that occurred and to collect lessons learned.

Table 5.9-1 summarizes the readiness criteria in terms of entry and exit criteria, verification criteria to
ensure completion of the required activities, and the measurements normally collected during the
SIQT activity.

Table 5.9-1. Readiness Criteria: Software Item Qualification Testing—Example

Entry Criteria Exit Criteria

s SRS, IFCD, SMBP, SDD, SAD, IDD, DBDD, and
STP have been baselined.

« The Requirements Traceability Verification Matrix
(RTVM) is available.

« Formal Software Item qualification tests are successfully
completed including an action plan generated to close remaining
SDRs.

e STDs and STRs are completed.
e STPis updated as required.

Verification Criteria

+ Software Peer Reviews have been successfully completed for all required documentation.
» SQA and customer witness test execution

+ SQA performs process/product audits for ongoing product engineering activities per SDP subsection 5.16

* Number of Peer Review defects
+ Number of SCRs and SDRs opened and closed, aging data, origin, and root cause of problems
* Number of test cases completed and number of requirements verified (see subsection 5.20)

If SCR or SDR fixes are incorporated into the software, then portions of the SIQT test procedures
must be re-run to verify that applicable SCR/SDR fixes are implemented and working correctly. In

2-89

Downloaded from http://www.everyspec.com

addition, it must be determined that selected pre-existing functionality is still performing per software
and interface requirements after the fixes have been implemented. SDP paragraph 5.9.6 covers details
on performing revision and re-testing activities.

Work Products. Documentation products normally produced during the SIQT activity for each SI
include: Software Test Description (STD), Software Test Report(s) (STR), an updated Software Test
Plan (STP), and traceability products from the Requirements Database. For MC-1 and SS-1 software
these software products must be documented in the STP, STD, and STR for each S1 and the
traceability products contained in the Requirements Database. For SS-2 software, the Sl test
description and test results may be documented in the SDF. Annex-H of J-16 describes the
recommended format and contents of the STD and STR and they can be summarized as follows:

e The STD describes the Sl-specific test cases and corresponding software and interface
requirements, test environment, test procedures, input data, simulations or emulations, expected
results, and success criteria

e The STR specifies or references the test outputs, logs, notes, and test results

If the SI is reused “as is” and the existing documentation meets the minimum requirements, the
existing documentation can be used “as is” also. Work products for this activity are summarized in
Table 5.9-2. The documentation must be made available via an electronic data repository system.
Test Logs, describing the results of the tests, are not listed, but are required.

Table 5.9-2. Software Item Qualification Testing Work Products Per Build—Example

SIQT Documentation MC-1 SS-1 S§S-2 S-3 C/IR
STP and STD (separate document per Sl) Required Required Required* Optional Optional
Sl test description and test results in SDF Required Required Required Required Required
STR Required Required Required* Optional Optional
Sl test cases traced to SRS requirements in Required Required Required* Optional Optional
the requirements databases

*Document not required but applicable information is developed and retained in the SDF.

In addition, preliminary versions of the following software documents (if applicable) may be prepared
concurrently with the S1IQT activity:

e Software Product Specification (SPS as described in paragraph 5.12.1)

e Software Version Description (SVD as described in paragraph 5.12.2)

e Software Users Manual (SUM as described in subparagraph 5.12.3.1)

e Computer Programming Manual (CPM as described in subparagraph 5.13.8.1)
e Firmware Support Manual (FSM as described in subparagraph 5.13.8.2)

e Software Transition Plan (STrP as described in paragraph 5.13.9)

Roles and Responsibilities. The software test lead, supported by software test personnel, should be
responsible for the development of the SI test plan and test description. Execution of the Sl test
should be performed by the software test engineers. For support software, the software test lead may
have software developers develop and run the tests, provided they are not the same individuals who
performed SI integration. Where problems are identified during SI testing, software developers
should work with test engineers to analyze problems to determine if it is a software issue or a test
procedure issue. Table 5.9-3 is a summary of responsibilities for software developers and roles of
other groups in the SIQT activity.

2-90

Downloaded from http://www.everyspec.com

Table 5.9-3. SIQT Roles and Responsibilities—Example

Roles

Software
Development

Responsibilities
Implements software changes as a result of SCRs/SDRs

Addresses critical software requirements in the software test cases

Generates traceability products for Sl test cases to SRS requirements Program Unique Identifier
(PUI)

Collects and reports software metrics; Updates and maintains the SDF

CSWE

Monitors Sl tests, reviews SDFs, reviews software products, attends reviews (or designee), and
monitors and analyzes software metrics. The CSWE must concur that the Sl is ready for
qualification testing

Software Test

Executes the Sl test and submits SCRs/SDRs as necessary for detected problems

System Safety Supports verification, testing, and tracking of safety-critical requirements
Witnesses program and/or Element SQA and audits the tests, attends reviews and inspections,
SQA evaluates adherence to documented policies and procedures, monitors the quality of output
products, and documents and reports findings to management
Addresses all current build factory/segment internal SCR/SDRs, as they are generated by the
Element CCB IPT software personnel or software test engineers
Addresses all software item SCR/SDRs involving external interface changes and prior build
Element SWCCB release SU changes as they are generated by the IPT software personnel and approves all
requests to postpone qualification test cases to later builds
Manages test database, the source code, SCR/SDRs for software item baseline changes to
Element SCM source code, and test documentation as generated by the software IPTs and software test

engineers

SIQT Process Activities. Figure 5.9 is an example of a flow chart representation of the SIQT
process. As shown in the figure, the SIQT process involves 16 recommended tasks that are organized
into four groups covering the preparation, dry run, performance, and the analysis and recording of

SI1QT results.

2-91

Downloaded from http://www.everyspec.com

INPUTS SIQT TASKS OUTPUTS
i, e STD and STP
Ba.sgl;r;gd : Prf_p;gizsvrSSTlgT- ¢ Test Scenarios and
« RTWM mp 2- Update Baselined STP for SIQT s ggﬁ;’;;i
e STP 3- Approve STP '
« IFCD 4- Develop Baselined STD ¥
e IDD 5- Review SIQT STD » C— " :
« SAD 6- Update and Approve SIQT STD i [scm || saa | !
« SDD i '
 DBDD l '
: ggm%%g:ld Perform Dry Run: * Updated STD
. 1S 7- Dry Run STD and test procedures TestLogs
+ Requirements 8- Document Dry Run Results » SCR/SDRs -
thtolinch [Revisions — Ilterate 7 and 8 as needed]
‘ ¢ Redlined STD
Perform Formal SIQT: : ;Eséll.sog;é oswios
- Conduct SIQT TRR ! ¢ Revisions to code or
10- Execute SIQT Test Procedures test procedures
On-Going = 11- Document SIQT Test Results
Tasks: el 12- Perform Regression Testing l
e Software ‘ E | SCM I | SQA I E
Metrics Analyze and Record SIQT Results: R e ¢
* Problem - 13- Develop SIQT STR f
. Reporting 14- Analyze Test Results x
15- Review SIQT STR > o Final SIQT STR
16- Update and Approve SIQT STR
SRS = Software Requirements Specification STR = Software Test Report
RTVM = Requirements Test Verification Matrix SAD = Software Architecture Description
STP = Software Test Plan SCR = Software Change Request
IFCD = Interface Control Document SDR = Software Discrepancy Report
IDD = Interface Design Description IS = Interface Specification
STD = Software Test Description SCM = Software Configuration Management
SDD = Software Design Description SQA = Software Quality Assurance

TRR = Test Readiness Review
Figure 5.9. SIQT Process Flow—Example

5.9.1 Independence in Software Item Qualification Testing

SIQT must be performed to demonstrate that the SI meets the software and interface requirements
allocated to that build. To ensure objectivity, the tests must be performed by independent software
test engineers. They may be either personnel not involved in any of the development activities up to
this point or other software developers who have not been involved with the coding and integration
activities for the SI being tested.

5.9.2 Testing on the Target Computer System

To the maximum extent possible, SIQT should be performed on the target computer system, or as
close as possible to the operational target hardware configuration, to demonstrate that there are no
hardware or operating system incompatibilities. Operation on the target computer can also provide
useful measurements of the computer resource utilization. If the SIQT is to be performed on a

compatible system, an analysis must be conducted to determine that the computer resource utilization

2-92

Downloaded from http://www.everyspec.com

requirements can be met. All target hardware/computer system(s) used for testing must follow
Configuration Management Policies and Procedures.

5.9.3 Preparing for Software Item Qualification Testing

Objective. The objective of preparing for SIQT is to finalize, through reviews or inspections, the
STD and the STP. The software developers must define and record the test preparations, test cases,
and test procedures to be used for SIQT as well as the traceability between the test cases, test
procedure steps, and the SI and software interface requirements. In addition to writing the STD, the
test engineers must run all or portions of the STD, update test scenario procedures and databases, and
perform other necessary test activities to prepare for the SIQT Dry Run. The STP and STD must be
baselined and placed under CM control prior to the run for record.

Approach. All requirements in preparation for SIQT, as described in paragraph 5.9.3 of TOR-3537B,
must be addressed including verification of all software:

e Requirements under conditions as close as possible to those that the software will encounter in
the operational environment

e Interface requirements using the actual interfaces wherever possible or high-fidelity simulations

¢ Specialty engineering requirements such as supportability, testability, reliability.
maintainability, availability, safety, security, and human systems integration, as applicable

¢ Reliability requirements including fault detection, isolation, and recovery

e Stress testing performed including worst-case scenarios

Reference to “testing” during SIQT should not be confused with the “verification method™ of test.
Software qualification testing may require the use of all verification methods including Inspection,
Analysis, Demonstration, and Test. The STD, supported by the STP, must provide test case
descriptions with test procedures for each test case, special test environments, and test sequencing
requirements for all SRS and IRS requirements allocated to the SI build.

Commercial Off-The-Shelf (COTS) software, reuse code, or newly developed software can be used to
satisfy and verify software requirements during qualification testing. During SIQT, applicable
resource measurements must be collected typically including CPU, memory, storage, and bandwidth
data.

For some SRS or IRS requirements, it may not be possible, or practical, to fully test the requirement
at the Sl level for the current S1 build. As a result, it may be necessary to satisfy the requirement
using unit integration or SU tests rather than a S] test. This situation can result when data associated
with a Sl requirement is not accessible at the S1 level or the test requires an inordinate amount of time
or costs to perform. If system hardware or special test environments are not ready for the current
build test, the tests can be deferred to segment or system testing.

The STP and STD should be evaluated at a document peer review. Once the review changes are
incorporated into the documents, they must be baselined and further modifications handled via
change control. Supporting test software (simulations/emulations) and data should also be prepared.
The updated STP and STD must also contain test cases and descriptions for safety-critical
requirements from previous builds. For the final build, the documents must provide test cases and
descriptions for the final build plus regression test cases and descriptions of software requirements
from all previous builds. Table 5.9.3 is an example description of the tasks applicable to the SIQT
preparation tasks.

2-93

Downloaded from http://www.everyspec.com

Table 5.9.3. SIQT Preparation Tasks—Example

Tasks Inputs Subtasks Outputs
1. Review STP * Announce the peer review and disseminate schedules and Comments
STP STP in advance against the
« Conduct the peer review and document peer review STP
results Action Items
o Schedule next revision and review dates
2. Update See Figure 5.9 « Define test environment and test schedule STP
Baselined Inputs » Develop test categories
STP for System and « Identify processes for conducting the SIQT
siQT Element/Segment « Identify assumptions and constraints
Use Cases « Document items in the STP
3. Approve Comments against | « Update STP based on review comments Approved
STP the STP e Provide STP for re-review STP
STP o If re-review is required, conduct, document and schedule
Action Items from next revision and review
previous review « Obtain the proper approvals
gggates to the « Provide to SCM and to Document Control for distribution
4, Develop See Figure 5.9 * Map SRS ad IRS requirements to test cases STD
Baselined Inputs o Populate RTVM with requirement to test-case mapping Test
S§TD Integration Test data Scenarios
Cases « |dentify requirements to be verified at the SU or Sl level and
SCRs/SDRs ¢ Develop automated test scenarios and databases Databases
o Develop test procedures including post test analysis steps Upda'ted
¢ Update scenarios and test databases as required Requiremen
¢ Document anomalies in an SCR ts Database
SCRs/SDRs
5. Review STDs « Announce review and disseminate schedules and SIQT Comments
STD STP STDs against the
SCRs/SDRs ¢ Conduct review and document review results STD
« Schedule next revision and review dates Action Items
6. Update Comments against o Update STD based on review comments Approved
and the STD « Provide STD for re-review STD
Approve SCRs/SDRs o If re-review required, conduct and document review
STD Completed Action ¢ Schedule next revision and review if needed
Items from =

previous review

If no more review time is required, obtain proper approvals
Provide STD to SCM and Document Control for
distribution

5.9.4 Dry Run of Software Item Qualification Testing

Objectives. The objectives of the SIQT dry run are to exercise the test cases and test procedures to
ensure that they are complete and accurate, and that the Sl is ready for witnessed testing. SIQT
readiness testing also verifies that all necessary test data and the test environment are under proper
SCM control and are adequate for verifying the software requirements. Table 5.9.4 contains an
example of the tasks applicable to SIQT dry run.

2-94

Downloaded from http://www.everyspec.com

Table 5.9.4. SIQT Dry Run Tasks—Example

Tasks Inputs Subtasks Outputs
7. Dry-Run e Approved STD « Ensure all test software and hardware are available ¢ Approved
STD and * SCM controlled scenarios and are the correct version STD with
Test and databases ¢ Ensure that all approved test software and the SQA
Procedures |« SCM controlled software software to be tested are under SCM control Approved
build » Execute test and post-test analysis as documented in Red-lines
¢ CM controlled HW test the STD
bed ¢ Redline procedures and obtain SQA approval
and test environment » Update scenarios and databases as needed
8. Document | STP o Document Dry Run results in the test log ¢ SCRs/SDRs
Dry-Run e Approved STD with « Document all anomalies in an SDRs o Testlogs
Test approved redlines
Results

Approach. Testers must obtain the appropriate software S1 build from the SDL. When all required
elements are assembled, the tests, including required regression tests, should proceed per the
procedures specified in the STD. The testers must collect, analyze and record the outputs, logs, test
notes, and results (problems, errors, and discrepancies noted by the tester). No modification to the Sl,
test data, or environment should be made until after the dry run is complete and the results
documented in the SDF. SQA may audit the dry run and all test results.

After the test procedure is executed, and SQA captures the redlines, data from the test execution must
be analyzed to determine if the software under test produced the correct results and whether the SRS
and IRS requirements allocated to the test procedure were actually verified. Results of the post-test
analysis may be software changes (documented in SDRs), procedure changes, test data/scenario
changes, or test environment changes.

In cases where requirements are not satisfied, SCRs/SDRs must be generated and the changes
handled by the appropriate corrective action process. In cases where test descriptions require
modification, the procedures must be redlined and approved by SQA. Retesting must be required for
all modified SUs, test cases, and test descriptions, and any additional SUs and test cases that directly
interact with the modified S1s and test cases.

5.9.5 Performing Software Item Qualification Testing

Objective. The objective of performing SIQT is to formally execute the test procedures as
documented in the STD, using products under SCM control, and in a witnessed test environment. The
approach in this task should begin with the Test Readiness Review (TRR) that should be described in
an SDP appendix covering software reviews. The material presented at the TRR should include: SU
testing, SU test results and S dry-run results; formal test environment description (hardware, test
tools, and associated software); formal test approach; Sl requirements verification at a lower level;
test schedules; and SIQT tasks as described in the SI STP and the SI STD.

Approach. The TRR ensures that all necessary test documentation, materials, and personnel are
ready, and that coordinated test schedules are in place. The actual execution of the SIQT should be
essentially the same as the dry run. The testers usually begin by ensuring that all necessary software
test data and tools are available. Testers obtain the appropriate S test build from the SDL. When all
required elements are assembled, the tests, including required regression tests, must proceed per the
procedures specified in the STD.

The test team must collect and record the outputs, logs, test notes, and results. They must execute all
tests specified for the current build, and they must perform regresston testing on all safety-critical
requirements from previous builds. The primary difference from the dry run testing is that the

2-95

Downloaded from http://www.everyspec.com

performance of the SIQT is normally witnessed by SQA and the CSWE (or designee) and optionally
by the customer and the Independent Verification and Validation (IV& V) agent. Reasonable notice of

the tests must be provided to the customer and the I[IV&V agent to permit them the opportunity to
attend. Table 5.9.5 is an example of the tasks applicable to performing the formal SIQT.

Table 5.9.5. Perform Formal SIQT Tasks—Example

Tasks Inputs Subtasks Outputs
9. Conduct ¢ TRR entrance and + Review SU test and integration test status Pass/fail status
SIQT TRR exit criteria * Review SIQT dry-run slalus and open SCR/SDR of TRR Exit
o Test environment status Crileria
e Approved STD * Review test environment status and STD status Test Logs
¢ SDFs * Review test limitations and test schedule
¢ SRS and IRS * Prepare TRR Test Log
e SCM controlled o Ensure all test software and hardware are available
software build, test and are the correct version
software & hardware | « Ensure that all test hardware and software are
¢ Open SCRs/SDRs under SCM conirol
o Test Logs * Assess SIQT test readiness based on the above
10. Execule e Approved SIQT o Perform test steps as documented in the STD Compleled SIQT
SIQT Test STDs o Perform analysis steps as documenled in lhe STD Testing
Procedures o Test environment ¢ Perform retesting as required

TRR results (test
logs)
SCM controlled

Test Logs

build
+ Open SCRs/SDRs
11. Document ¢ Completed SIQT * Prepare the test log SCRs and SDRs
SIQT Test testing ¢ Document anomalies in SDRs and rework source Test Logs
Results code or STDs to eliminate problems Revisions to
« Document verification status for SRS requirements Code or Test
and obtain SEIT approval Procedures
 SCM updates to baseline documents SQA Audits and
Reports
12. Perform o Sl builds « Perform regression testing to accommodate new SCRs and SDRs
Regression e Tesl Resulls functions, problems, or changes in the current build Test Results
Tesling o SCRs and SDRs

5.9.6 SIQT Revision and Retesting

Objective. The objective of the revision activity during SIQT is to rework source code or test
descriptions to eliminate any problems identified during qualification testing. Appropriate portions of
the SI must be retested to verify that the changes have been successful and that other problems have
not been produced as side effects. The objective of re-testing is to verify that applicable SCR and
SDR fixes are properly implemented and that selected existing functionality is still performing per

software and interface requirements after the SCR and SDR fixes have been implemented (Regression
Testing).

Approach. The test results, and documented problems, must be evaluated by software developers to
determine if changes need to be made to the SUs or the STD. Regression testing of affected SIQT test
cases must be performed after any modification to previously tested software. In addition to
modifications made to SUs to fix defects, regression testing can also include regression tests of SIQT
test procedures from the last build to show that the current build has not broken any software
requirements that were previously verified.

All modifications to the source code must be handled as SCRs/SDRs by the appropriate change

control board. Unit-level retesting must be required for all modified procedures and functions.
Modified Sls require retesting of safety-critical requirements and previously failed test cases.

2-96

Downloaded from http://www.everyspec.com

Products from previous activities must be reviewed for possible changes resulting from the
implemented software changes, and then updated as appropriate.

This activity must be repeated as needed until all test cases have met the test case success criterta. In
some cases, uncompleted or failed tests can be postponed until a later butld if approved by the
SWCCB. Re-testing objectives must be reviewed by the appropriate SEIT IPT prior to the testing and
preparation for testing. An updated set of the STP or STD should not be mandatory for each iteration
of re-testing. STRs must be provided at the end of SIQT testing.

5.9.7 Analyzing and Recording SIQT Results
Objective. The objective of analyzing and recording SIQT results is to finalize the SIQT activity by:

e Documenting test results in the Software Test Report (STR) (for MC-1 and SS-1 software) or in
the SDF (for SS-2 software)

e Performing a review of the STR, or verifying the capture of the test results in the SDF

e Conducting an optional Test Exit Review (TER), that may also be called a Post Test Review
(PTR) or Build Turnover Review (BTR)

Approach. The results of the SIQT must be analyzed for completeness and documented in a STR or
captured in the SDF. This documentation should be prepared by software test engineers who

performed the SI tests. The completed documentation is subject to a document review.

Software Test Reports must be baselined once all review modifications have been incorporated. Any

SI documentation, notes, or data that are not incorporated into the STR should be captured in the
SDF. For MC-I and SS-1 software developed in multiple builds, an STR must be prepared and
reviewed after each build. The STR, when approved, must be maintained under CM control. The
intent of recording SIQT test results in the SIQT STRs is to document and finalize the test activity
and effectively capture test results. Table 5.9.7 is an example of the tasks applicable to analyzing and
recording S1QT results.

Table 5.9.7. Analyzing and Recording SIQT Results—Example

Task Inputs Subtasks Outputs
13. Develop | » SIQT Test Logs + Review SIQT Test Logs, As-Run STD and STR
STR + SCRs/SDRs SCR/SDRs SCRs/SDRs
s “As Run” STD « Review verification status of SRS requirements
« Document all of the above in STR
14. Analyze « STR » Perform root cause analysis of test anomalies as Root Cause
Test « SCRs/SDRs documented in the SCRs/SDRs Analysis
Results « Obtain CCB approval of SCR/SDR resolution plan Resolution Plan
15. Review « SIQT STR s Announce review and disseminate schedules and Comments
STR + SCRs/SDRs STR against the SIQT
« SIQT Test Logs s Conduct a TER (PTR or BTR) and document the STRs
e “As Run” STD review results Action Items
16. Update « Comments against the « Update STR based on review comments Approved SIQT
and preliminary SIQT STRs | o If re-review required, conduct and document review STR
Approve and STR; Action ltems | 4 Schedule next revision and review if needed SQA Audits and
STR from previous reviews; « If no more review time is required, obtain proper Reports
STR Updates approvals
« Provide STDs to SCM and Document Control for
distribution

2-97

Downloaded from http://www.everyspec.com

5.10 Software/Hardware Item Integration and Testing

Introduction. This subsection of the SDP addresses the objectives, approach, documentation,
responsibilities and activities of the Software/Hardware Item (SI/HI) Integration and Testing (1&T)
activity. In accordance with TOR-3537B, the SI/HI I&T activity must be described in four
paragraphs:

e Preparing for SI/HI integration and testing (paragraph 5.10.1)
e Performing SI/HI integration and testing (paragraph 5.10.2)
e Revision and retesting (paragraph 5.10.3 in the TOR but paragraph 5.10.4 in this Guidebook)

e Analyzing and recording SI/HI integration and test results (paragraph 5.10.4 but
paragraph 5.10.3 in this Guidebook)

The SI/HI 1&T process involves integrating SIs with interfacing SIs and Hls, testing the resulting
groupings to determine if they work together as intended, and continuing this process until all Sls and
HIs in the system are integrated and tested. Generally, SI/HI I&T is the first integration of the full
software system with the target hardware. SI/HI I&T may test an entire element or segment or a
portion thereof. For activities involving hardware integration, the software team is usually in a
support role to SEIT.

Objectives. The principal objectives of SI/HI Integration and Testing are to:

e Perform the individual SI-to-SI integrations and SI-to-HI integrations to produce the complete
software build for each successive level of test and verify its integration success

o Integrate software into the target hardware system and verify integration success
e Verify SI to SI and SI to HI interface requirements compliance

o Support and successfully complete integration and qualification testing at each level of
integration

Approach. The Software Master Build Plan (SMBP) should be updated to define the SI functionality
that is planned to be operational for each build. The integration sequencing should be documented in
the SMBP and the overall approach to I&T documented in the Master Test Plan (MTP)—sometimes
called the System Test and Evaluation Plan (STEP). Although integration of software with the
hardware is a critical objective of this activity, some aspects of the hardware integration may not be
able to be performed until the full system integration.

The following is an example scenario of SI/HI 1&T:

1.SIQT for the spacecraft bus software is performed in the flight test bed
2.S1QT for the payload software is performed in the payload test bed

3.The two test beds are connected and the software-to-software interfaces between the
spacecraft bus and the payload is tested

4.The spacecraft bus software and the payload software are integrated into the actual vehicle
5.The flight and payload software and hardware are integrated.

In addition, there may be early integration points using the two test beds so that all the spacecraft

software and payload software interfaces do not have to wait until the software is completely finished
to be integrated and tested.

2-98

Downloaded from http://www.everyspec.com

Table 5.10 is a summary example of the readiness criteria for this activity in terms of entry and exit
criteria, verification criteria to ensure completion of the required tasks, and the measurements
typically collected during this activity.

Table 5.10. Readiness Criteria: Software/Hardware Item Integration and Testing—Example

Entry Criteria Exit Criteria

o HW/SW integration approach is defined and approved in the Master o HWI/SW Integration and Testing is

Test Plan (MTP). successfully completed including an action
* IPT software personnel are requested by SEIT to support the HW/SW plan to close remaining SDRs.

integration activities. * SW test and SW management reviews and
¢ The executable software product has completed the SIQT process and approves the SDR/SCR closure plan.

is capable of supporting HW/SW integration. * Regression testing is completed and
« The software release to be integrated and the integration database are accepted by the SW test lead.

under control of the Software Development Library.
« The integration database is defined and integration tools are available.

Verification Criteria

« SI-Sl and SI-HI integration is verified and accepted by the SW test lead.
* SQA performs process/product audits for ongoing product engineering activities per SDP subsection 5.16.

o SW test lead reviews regression test logs and accepts completion of the regression testing.
Measurements

« Test Coverage: Number of requirements tested and passed

« Number of test cases—planned versus actual

« Percent of interfaces tested

» SDRs and SCRs opened and closed. Aging data, origin and root cause analysis. (see subsection 5.20)

The flowchart in Figure 5.10 shows the inputs, outputs, and relationships between the four SI/HI 1&T
tasks: prepare, perform, analyze/record results, and revision/retest.

Roles and Responsibilities. Generally, the SEIT Test and Evaluation team is responsible for
performing SI/HI 1&T and the software role in this activity consists primarily of support tasks.
However, the software test team has a vital role—especially for the S1-to-SI integration tasks. The SI-
to-HI integration tasks should involve both hardware and software system engineers/testers. A
comprehensive description of the tasks involved in the full SI/HI integration and testing activity is not
directly addressed in this subsection—focus is on the support provided by the Software IPT
personnel. All testing must be run using documented test descriptions developed collaboratively by
the software and SEIT test engineers.

Work Products. The documentation produced during this activity is focused on testing the
integration of software and hardware at various levels of the cumulative integration. During this
activity the SI/HI I&T test cases, test procedures, test drivers, test scenarios, test stubs, databases, and
other needed test data are produced. The activity concludes with the SI/HI I&T test results and
preparation of Software Discrepancy Reports (SDRs) for all problems encountered.

Developed concurrently with the SI/HI 1&T activity is an updated Software Test Description (STD as
baselined during software qualification testing and discussed in subsection 5.9), a baselined Software
Product Specification (SPS as described in paragraph 5.12.1), and the baselined Software Version
Descriptions (SVD as described in paragraph 5.12.2) supporting the current software release.

Approach. The software developers, and software system engineers, assigned to perform integration
of the SIs, must develop an integration strategy that defines a systematic approach for integrating the
Sls into the complete software release. Issues such as SI-SI interfaces, inter-SI timing and sequencing,
and simulations or emulations (for external interfaces) are examples of the issues that go into
determining the order of integration of the Sls.

Downloaded from http://www.everyspec.com

INPUTS SI/HI INTEGRATION AND TEST TASKS OUTPUTS
e SRS Prepare For SI/HI Integration & Test: « Updated MTP, SMBP
¢ ICD 1-Review & Revise Integration Test Approach e=p and STD
¢ IDD 2-Prepare Sl-to-Si Test Case Artifacts « Test Cases, Drivers,
e STD 3-Support development of Si-to-HI I&T Artifacts Scenarios, Databases,
¢ STR Procedures, Stubs,
e SDD l test data, etc.
e SVD
e OCD Perform and Support SVHI Integration & Test:
« MTP 4- Support Test Dry Run ¢ Test Data
« SMBP 5- Conduct Si-to-S! integration testing il ° Integrated Test
« Quality 6- Support Si-to-Hl integration testing Artifacts
tested 7- Conduct Integrated Sl Thread Testing o Test Results
code for 8- Support Integration of HW and SW o Thread test results
each Sl ‘ * SDRs
Analyze and Record SI/HI 1&T Results: 3
9- Analyze Integration and Test Results * Baselined SVD
On-Going 10- Record Integration and Test Results o Baselined SPS
¢ Updated STD
tanle I « Updated SDF
o Software ‘
Metrics SI/HI I&T Revislon and Retesting: -V
e Problem 11- Perform or Support Revision and Retesting ! SCM !
Reports 12- Perform or Support Regression Testng || — +------¢

SRS = Software Requirements Specification
ICD = Interface Control Document

IDD = Interface Design Description

STD = Software Test Description

SDD = Software Design Description

SVD = Software Version Description

STR = Software Test Report

OCD = Operational Concepts Description
SDR = Software Discrepancy Report
MTP = Master Test Plan
SMBP = Software Master Build Plan

SCM = Software Configuration Management

SPS = Software Product Specification

Figure 5.10. Hardware/Software Item Integration and Test Process—Example

5.10.1 Preparing For SI/HI Integration and Testing

Objectives. The objectives of preparing for SI-SI integration and S1-HI integration testing are to

finalize the MTP, SMBP and STD and develop integration test artifacts (test cases, test procedures,
test drivers, test scenarios, test stubs, databases and test data) necessary to verify the success of the
integration effort. Table 5.10.1 contains examples of the tasks applicable to preparation for the SI/HI
I&T activity.

2-100

Downloaded from http://www.everyspec.com

Table 5.10.1. SI/HI Integration and Testing Preparation Tasks—Example
Tasks Inputs Subtasks Outputs
1. Review s See Inputs * Review SI/HI I&T approach in the MTP, the test Updated MTP, SMBP, and
and to Figure sequence in the SMBP, test requirements in the STD
Revise 5.10 STD, and update if necessary Updated SI/HI integration
Integration Define functional capability threads plans
Test Develop integrated schedule and Updated integration schedule
Approach activity/dependency network Action items
Identify assumptions/constraints
Document planning results
Obtain proper approvals
2. Prepare s Outputs Prepare Sl-to-Sl Test Cases, Test Procedures, Test Test Cases, Test Procedures,
Sl-to-Sl and Action Drivers, Test Scenarios, Test Stubs, Databases, and Test Drivers, Test Scenanos,
Test Case Items from other test data as needed Test Stubs, Databases, etc.
Artifacts Task 1 Update MTP, SMBP, and STD Functional Capability Thread
Define integration test, threads, and test cases Descriptions
3. Support e Outputs Support development of Si-to-HI Test Cases, Test Sl-to-HI Test Cases, Test
Developm from Procedures, Test Drivers, Test Scenarios, Test Procedures, Test Drivers,
ent of Si- Tasks 1 Stubs, Databases, and needed test data Test Scenarios, Test Stubs,
to-H! 1&T and 2 Update MTP and SMBP, if necessary Databases, and test data as
Artifacts applicable.

Hardware and software system engineers must collaborate in the preparation of appropriate test
description information for the hardware/software integration that needs to be accomplished during
this activity. They review in-progress SI/HI |&T Software Test Descriptions, provide
recommendations to test engineers (including software test equipment needed), and ensure that test
cases and corresponding test procedures are sufficiently defined in the updated STD to verify the
success of each partial integration. An updated STD for SI/HI 1&T should contain at a minimum:;

e The overall test description and test environment for SI-to-SI and Sl-to-HI integration and
testing.

e Specific test cases and corresponding test procedures to verify correct execution of SI-to-SlI
and Sl-to-HlI interfaces including:

End-to-end functional capabilities

Sequencing and timing of events and data flows

All requirements allocated to software

Stress testing including worst-case scenarios

Start-up, termination, and restart procedures

Fault detection, isolation, and recovery handling

Performance testing including input/output data rates, timing, and accuracy requirements

Operation of multiple SIs on a single computer platform, where applicable

Integrated error and exception handling capabilities

Limit and boundary conditions

Resource utilization measurements (e.g., CPU, memory, storage, and bandwidth)

e Input data definitions (e.g., data files, databases, etc.)

e Required simulations and emulations needed for external or hardware interfaces

e Specific output data to be collected and recorded in the appropriate SDF

e The expected results and success criteria

The SI/HI 1&T must be performed using the target hardware in a configuration that is as close as
possible to the operational configuration. All reuse software, including legacy reuse and COTS

2-101

Downloaded from http://www.everyspec.com

software, must also undergo the SI/HI I&T process. The software IPTs provide software system
engineers and test engineers along with applicable software test support items, expertise, and training
as required in using the software.

5.10.2 Performing SI/HI Integration and Testing

Objective. The objective of performing SI/HI I&T is to integrate and test software in accordance with
integration and test strategies in the approved MTP and SMBP. The five principal tasks are: Support
the Dry Run; Conduct SI-to-SI Integration Testing; Support SI-to-HI Integration Testing; Conduct
Integrated SI Thread Testing; and Support Integration of HW/SW. Integration testing may also be
called Element Qualification Test or Factory Acceptance Test. Table 5.10.2 contains examples of the
tasks applicable to performing the SI/HI I&T activity.

Table 5.10.2. Performing SI/HI Integration and Testing Tasks—Example

Tasks Inputs Subtasks Outputs
4. Support o Approved test Integration o Ensure all test SW and HW are available, | Approved
Test Dry procedures, plans and the correct version and under CM control integration
Run schedules * Perform test cases and procedures procedures
» SRS for the build o Document HW-SW dry run integration test | » Integrated test
o Integrated SW-HW build results in test log stubs, drivers, and
* Integrated Sl thread test cases | ¢ Generate SDRs/SCRs as applicable scenarios
o Integration test data and tools | « Redline procedures and obtain SQA o Testresults in log
o Hardware test equipment approval * Integrated build
5. Conduct ¢ Approved STP « Integrate Sls in accordance with ¢ Integrated builds
Sl-to-SI o SW plans and schedules integration test procedures in the MTP o Integrated Sl thread
Integration ¢ SRS for the build and SMBP test cases
Testing ¢ SlIs from SCM » Develop Sl thread test cases in » SCRs/SDRs
« Integration test data and tools accordance with the SRS and MTP
6. Support o Same inputs as Activity 5 plus: | « Same tasks as Activity 5 plus: ¢ Integrated HW/SW
Sl-to-HI o Integrated HW-SW test » Record test logs builds
Integration drivers, scenarios, and + Document status for interface e EAT completion
Testing stubs requirements e SCRs/SDRs
* SQA audit and review test status o Code and test
procedure revisions
¢ SQA audit report
7. Conduct o Approved test integration ¢ Develop Sl thread test procedures, stubs, | e Integrated build
Integrated procedures drivers and scenarios in accordance with thread test
S| Thread o SW plans and schedules integration plan and Sl test cases procedures, drivers,
Testing o SRS for Build o Develop HW/SW integration test cases stubs, and
» Integrated Sis and procedures scenanos
o Integrated Sl thread testcases | ® Perform Sl thread test procedures e Thread testresults
o Integration test data and test o Document Sl thread test results ¢ Integrated and
tools ¢ Generate SCRs/SDRs, if applicable tested builds
e Testcases
8. Support o Approved test Integration ¢ Obtain Integrated and tested builds from o HWI/SW Integrated
Integration procedures, plans and SCM build
of HW and schedules « Integrate software build with the target o HW/SW integration
SW ¢ Integrated and tested Sls hardware. test cases
o Target hardware * Rework source code if required in + SDRs/SCRs
o HW/SW Integration test cases response to approved SDRs and SCRs.
* SRS for Build & SDRs/SCRs
» Integration test data and tools

Approach. Software integrators normally begin the integration of SIs by ensuring that all Sls to be
integrated and all necessary data and tools are available and ready. Software test engineers support
CCB and SWCBB corrective actions on any soft-related errors, request re-execution of build
procedures as required, and accept SI builds upon satisfactory verification. When all required
elements are assembled, integration proceeds.

2-102

Downloaded from http://www.everyspec.com

The software test engineers must run test cases using the test procedures, as specified in the STD.
They collect or record the outputs, logs, test notes, and results. All problems, errors, and discrepancies
must be noted. Similarly, segment test engineers run the hardware/software integration tests as
defined in the test descriptions, collect and record test results and problems.

5.10.3 Analyzing and Recording SI/HI Integration and Test Results

Objectives. The objectives of analyzing and recording SI/HI integration and test results are to: (a)
analyze integration tests results to ensure the tests have been successfully completed; and (b) to
document the respective test data and results as required. Table 5.10.3 contains examples of the tasks
applicable to analyzing and recording of the SI/HI I&T activity.

Approach. After all SlIs and Hls have been successfully integrated and tested, the integration and test
team must review the test results for consistency and completeness and to verify that the integration
test data and results have been documented. If discrepancies or problems are found, then the portion
of the integration in question must be retested. It is also a good idea for an independent reviewer, not
involved with the segment hardware/software integration testing or a SEIT team member, to perform
an independent review, however, independent reviews are not required by the TOR-3537B standard.

Table 5.10.3. Analyzing and Recording SI/HI Integration and Test Tasks—Example

Tasks Inputs Subtasks Outputs
9. Analyze e DRs o Collect test results * Analysis results
Integration * Approved Test * Analyze test data to ensure proper
and Test Integration processing of input data by each
Results Procedures procedure and correct output data
* Integration Test
Results
10. Record ¢ Integration and o Collect test and analysis results « Build Integration Release Notice
Integration Test Results « Ensure that results are correctly « Released build for site and system
and Test e Analysis Results and completely recorded testing
Results * Document test and analysis results

Once the independent reviewer signifies that the integration and testing is complete, and the
integration testing was successfully completed, the release is baselined. At the last stage of integration
and testing, the test results are normally documented by SCM in a Build Integration Release Notice
and the build is then ready for system testing.

5.10.4 SI/HI I1&T Revision and Retesting

Objectives. The objectives of retesting are to verify that changes and applicable SDR/SCR
modifications have been implemented correctly and that the functionality is performing in accordance
with requirements after the fixes have been completed. Changes can also involve test procedures, test
data, etc. as well as code changes. Re-integration and retesting must then be performed to verify that
the changes have been successful and have not caused side effects. The documented problems must
be evaluated by software developers to determine the necessary changes to Sls, SUs, or to the test
descriptions. Table 5.10.4 contains examples of the tasks applicable to revision and testing for the
SI/HI 1&T activity.

2-103

Downloaded from http://www.everyspec.com

Table 5.10.4.Revision and Retesting SI/HI Integration and Test Tasks —Example

Tasks Inputs Subtasks Outputs

11. Perform or Support e Sameinputs as | e Same tasks as Activity 5 or 6 plus: e Sameinputs as
Revisions and Retesting Activity 5 or 6 ¢ Perform DR fixes Activity 5 or 6

12. Perform or Support e Sameinputs as | e Same tasks as Activity 5 or 6 plus: e Same inputs as
Regression Testing Activity 5 or 6 ¢ Perform DR fixes Activity 5 or 6

Approach. Retesting is performed to show that a problem is fixed and the test case executes properly.
Regression testing is performed to show that the fix did not break anything that was previously tested
and working properly before the fix. In cases where software requires changes, SDRs or SCRs are
generated and the changes are handled by the Corrective Action Process (CAP). In cases where test
descriptions require modification, the changes, identified in the SDRs or SCRs, must be made by
software test engineers and a version history included in the test description to record the changes
made.

Modified software requires retesting for the integration tests that previously failed and for any tests
that are dependent on the failed tests. Similarly, test description changes require retesting of the
changed tests plus tests that are dependent on the results of the changes.

This process must be repeated until all the SIs and Hls have been successfully integrated and all tests
have been completed. If the element IPT lead determines it is impractical to complete certain changes
until a later build, then SCRs/SDRs must be used to document and control the modifications and
integration testing that still needs to be performed. The CCB at the element level must approve all
such delays.

5.11 System Qualification Testing

Introduction. This subsection of the SDP is focused on the objectives, approach, work products,
roles, and responsibilities of System Qualification Testing (SQT). The SQT activity involves
verifying that the system requirements have been met—including the system interface requirements.

Subsection 5.11 is also applicable to the verification of requirements at all levels above verification of
the software requirements. Those levels typically include subsystems, elements, segments, and the
system. The major qualification tasks at each level are similar but details of the required tests,
procedures and documentation may be different. If a system is developed in multiple builds,
qualification testing of the full system will not occur until the final build.

There are seven paragraphs prescribed by TOR-3537B for SQT/SAT. The last five of these tasks
(paragraphs 5.11.3 through 5.11.7) are the sequential processing steps of the SQT activity. The
System Qualification Testing activity must be described in the following paragraphs in the SDP:

¢ Independence in System Qualification Testing (paragraph 5.11.1)

o Testing on the target computer system (paragraph 5.11.2)

e Preparing for System Qualification Testing (paragraph 5.11.3)

¢ Dry run of System Qualification Testing (paragraph 5.11.4)

e Performing System Qualification Testing (paragraph 5.11.5)

e Revision and retesting (paragraph 5.11.6 in the TOR but paragraph 5.11.7 in this Guidebook)

e Analyzing and recording System Qualification Test Results (paragraph 5.11.7 but
paragraph 5.11.6 in this Guidebook)

2-104

Downloaded from http://www.everyspec.com

SQT Objectives. System Qualification Testing is the formal test demonstrating that the system
software functional and interface requirements have been met for that release of the system. At the
system level, SQT is focused on testing the integrated hardware/software system against the system
requirements. The Technical Requirements Document (TRD) and Interface Specifications (IS) define
the system requirements, and the Software Master Build Plan (SMBP) defines what SI functionality is
to be operational for each release and what segment releases are used for each system release. This
activity must fully test the integrated software with the system hardware it interfaces with. This
activity also tests those portions of the hardware/software integration that have been previously
completed.

SQT Approach. The SQT activity consists of the following similar tasks:

e Prepare the SQT software test data

o Perform SQT test readiness on the target computer hardware to ensure that the tests in the
STDs are complete and accurate

- Perform formal SAT/SQT: Conduct a SQT Test Readiness Review (TRR)

- Execute the tests using the SQT test procedures and record the test results, problems, and
anomalies

e Analyze test results and document the test data and results
e Record test results in the SDF

Table 5.11 is an example summary of the readiness criteria in terms of entry and exit criteria,
verification criteria to ensure completion of the required tasks, and the required measurements to be
collected during the SQT activity.

Table 5.11. Readiness Criteria: System/Segment Qualification Testing—Example
Entry Criteria Exit Criteria
« System/Segment test plan and approach is e The System Test Readiness Review (TRR) is successfully
defined and approved. completed.
e The software IPT is requested by SEIT to o Verification of test cases and procedures (e.g., Peer Reviews)
support SQT activities. have been completed.
e The executable software product is capable of e The release being tested is ready and accepted.
supporting SQT. ¢ Required test databases are created, populated, and accepted
« The software release to be integrated and the by the test conductor.
integration database are under control of the ¢ System/Segment testing is successfully completed with an
Master Software Development Library (MSDL). action plan generated to close remaining DRs/CRs.
* The System test database requirements have * Regression testing is completed and accepted.
been defined. « Software and system management reviews and approves the
DR closure pian.

Verification Criteria
e Releases provided by the SDL to the MSDL are verified and accepted by the test conductor.

¢ SQA performs process/product audits for ongoing product engineering tasks per SDP subsection 5.16.
o Test conductor reviews the test database for completeness.

o Test conductor and software Test Lead reviews regression test logs and accepts completion of the regression testing.
Measurements

* Test Coverage: Number of requirements tested and passed
¢ Percent of paths tested
¢ SDRs, DRs, SCRs, and CRs opened and closed (see subsection 5.20)

Discrepancy Reports and Change Requests (DR/CRY) usually replace SDR/CDRs at the system level

of testing and software problems are allocated to the Software IPT. If DR/CRs fixes are incorporated
into the software under test, constituting a new sub-release, then portions of the SQT test procedures
are re-run to verify that applicable fixes are implemented and working correctly. In addition, it must

2-105

Downloaded from http://www.everyspec.com

be determined that selected pre-existing functionality is still performing per software and interface
requirements after the fixes have been implemented. See paragraph 5.11.6 for details on performing
revision and re-testing.

Roles and Responsibilities. Depending on where in the Specification Tree hierarchy the testing is
performed, SQT is the responsibility of the system, segment, subsystem or element integration and
test team. Software developers and software test engineers have no formal role in System
Qualification Testing but typically provide support as needed. Test description preparation, test
execution, and test results documentation are performed by the system, segment, subsystem or
element test engineers.

For SQT, software developers implement software changes resulting from DR/CRs generated during
this activity and support the system test engineers in these activities. Also, software engineers may
support the System Functional Configuration Audit (System FCA) and the System Physical
Configuration Audit (System PCA), if required, as outlined in the Master Test Plan (MTP), and
discussed in paragraph 5.14.4. The MTP is sometimes called the System or Integrated Test and
Evaluation Plan (STEP or ITEP).

Work Products. SQT must be performed using documented test descriptions developed by the test
engineers. The Software Version Description (SVD) and Software Product Specification (SPS) are
updated concurrently if required. Additional products may be specified in a development site’s SDP
Annex.

5.11.1 Independence in System Qualification Testing

System qualification testing demonstrates that the system, segment, subsystem or element meets the
performance and interface requirements allocated to it for each release. System qualification testing is
normally the responsibility of the program-level SEIT, however, at the lower levels, SQT can be
performed by the segment, subsystem or element test engineers. To ensure objectivity, the tests must
be performed by independent test engineers. System test engineers have no role in the software
development process and so are inherently independent testers of the software. In any case, software
engineers support the SQT process.

5.11.2 Testing On the Target Computer System

System Qualification Testing must be performed on the target hardware system, in the operational
configuration, to the maximum extent possible to demonstrate that there are no hardware/software
incompatibilities. Testing on the target hardware verifies a successful hardware/software integration
and interoperability. Operation on the target computer or target comparable systems also enables the
collection and analysis of measurements of the computer resource utilization.

5.11.3 Preparing For System Qualification Testing

Objectives. The objective of preparing for System qualification testing is to prepare and finalize,
through reviews or inspections, the segment test description and data. Once the review changes are
incorporated into the documents, they should be baselined and submitted to documentation control. In
addition, all supporting test software (simulations/emulations) and data must be prepared. System test
plans, procedures, and test data should be prepared at the appropriate level of testing and is often
prepared by the SEIT at the level of the test.

Approach. Separate test descriptions should be generated for each release. They should contain test
cases and procedures for the requirements of the current release, plus those safety-critical
requirements from previous releases. For the final release, the documents provide test cases and

2-106

Downloaded from http://www.everyspec.com

descriptions for the final release software requirements plus regression test cascs and descriptions for
the software requirements from previous releases.

Software IPTs should review in-progress test plans and test descriptions, and provide
recommendations to system, segment, subsystem or element test engineers. The software IPT
personnel also assist in determining needed software test data, equipment, and test support items as
well as providing expertise and training in using the software. The test data and the software must be
placed under CM control prior to testing. The IPT software personnel can also support applicable
readiness reviews.

5.11.4 Dry Run of System Qualification Testing

Objectives. The objective of the System qualification testing dry run is to exercise the test cases and
test procedures to ensure that they are complete and accurate, and that the segment is ready for
witnessed testing. The test engineers normally begin by ensuring that all necessary data and tools are
available. They must support SWCCB corrective actions on any release errors, request re-execution
of release procedures as required, and accept software releases upon satisfactory verification.

Approach. When required elements are assembled, testers execute the procedures and collect or
record the outputs, logs, test notes, and results. They execute all tests specified for each release, and
perform regression testing on all safety-critical requirements from previous releases. All problems,
errors, and discrepancies must be noted by the tester. No modification to the Sls, hardware,
configuration, test data, or environment should be made until after the dry run is complete and the
results are documented.

There is no formal software developer role for system dry-run testing, except to assist test engineers
in analyzing test discrepancies and generating DRs/CRs. If software code requires changes,
SDRs/SCRs must be generated. In cases where test procedures require modification, the procedures
must be redlined and approved by SQA. Retesting is required for all modified software, test cases,
test descriptions, and test cases that directly interact with the modified software and test cases.

5.11.5 Performing System Qualification Testing

Objectives. The objective of performing System qualification testing is to execute the test proccdurcs
in a formal and witnessed test environment using products under CM control. This task normally
begins with the Test Readiness Review (TRR). This review ensures that all necessary test
documentation, equipment, materials, and personnel are ready, and that coordinated test schedules are
in place.

Approach. The actual execution of the SQT is the same as the dry run, except that the performance
of the testing must be witnessed by SQA and optionally by the Program Office and/or its
representatives. Reasonable notice of the tests must be provided to permit the Program Office an
opportunity to attend.

There are no formal software developer requirements for this system test, except for analyzing
software discrepancies, generating CRs/DRs as needed, and implementing needed software code
changes resulting from the CRs/DRs.

5.11.6 Analyzing and Recording System Qualification Test Results

Objectives. The objectives of analyzing and recording SQT test results are to: (a) analyze SQT tests
results to ensure the tests have been successfully completed; and (b) document test results in the SDF
and in the Software Version Description (SVD) if required.

2-107

Downloaded from http://www.everyspec.com

Approach. There are no formal software developer roles in system qualification testing other than
supporting the SIQT at the level being tested. However, results of the qualification tests must be
analyzed for completeness and then recorded in the SDF by the test engineers who performed the
tests. For software developed in multiple releases, test results must be prepared, reviewed, and
recorded after each release unless a program decision has been made to defer the higher level
(system) test until all the software releases are complete. Segment SVDs should be updated after each
release.

5.11.7 System Qualification Testing Revision and Retesting

Objectives. The objective of the revision and retesting activity is to rework the source code or test
descriptions to eliminate problems identified during the qualification testing, and then to retest the
appropriate portions of the system to verify that the changes have been successful and have not
produced side effects. The test results and documented problems should be evaluated by software
developers to determine the necessary changes to the software and test descriptions.

Approach. Unit-level retesting is required for all modified procedures and functions. Modified
software releases require retesting of all safety-critical requirements and previously failed test cases.
There are no formal software developer roles for this task, except for implementing software code
changes resulting from the change control process. All modifications to the source code must be
handled as DRs/CRs.

Revision and retesting must be repeated as needed until all test cases have met the test case success
criteria. In some cases, resolving incomplete or failed tests can be postponed until a later release if:

a. no segment external interface is involved

b. specific functionality is not required by another Sl for the release
c. the delay is approved by the Change Control Board (CCB)

5.12 Preparing for Software Transition to Operations

This activity is concerned with the preparation, installation, and checkout of the executable software,
on the target system, at a customer or user site. Upon successful completion of the System
Qualification Test (SQT) for the final build, and closure of all DRs/CRs allocated to software, SDRs
and SCRs that can be closed, the software development cycle is completed and the software is ready
for transfer to the customer for government system testing. It may also be necessary to provide
interim releases to development sites if needed to facilitate their development and testing process.

Prior to actually releasing the software for use, there remains software and documentation preparation
work that must be completed. This subsection of the SDP addresses the tasks necessary to prepare the
software and software-related products necessary for a user to run the software. In accordance with
TOR-3537B, the Preparing for Software Transition to Operations activity must be described by four
paragraphs in the SDP:

¢ Preparing the executable software (paragraph 5.12.1)
¢ Preparing version descriptions for user sites (paragraph 5.12.2)

¢ Preparing User Manuals (paragraph 5.12.3)

Installation at user sites (paragraph 5.12.4)

Objectives. Preparing software for use ensures that there is a smooth transition of software into the
actual operational system. These tasks must begin well before completion of the SQT. This activity

2-108

- IR Ny AN B BN R T &S By

Downloaded from http://www.everyspec.com

cannot be fully completed until SQT of the final build has been completed and all DRs/CRs allocated
to software plus SCRs/SDRs that can be resolved have been dispositioned.

Approach. Although the focus of these tasks, to ensure a smooth transition, is at the end of the
development lifecycle, consideration of these tasks should occur concurrently with design,
development, and testing throughout the lifecycle. During each design period, new or updated user
and operations manuals can be prepared for review by the customer and users. Draft versions of the
Software Transition Plan (STrP) should be started during the software design activity.

For final deliveries, the tasks and products of this activity must be in compliance with the Master
Test Plan (MTP). This planning must be coordinated with the hardware installation schedules.
Schedules are established and resources and personnel required for installation and support are
identified. This activity also involves the planning, preparation, and presentation of required user
trammg.

Software installation and checkout tasks are performed by software test personnel at the user site.
When SQT has been completed, SCM prepares the software product(s) for use in accordance with the
CM Plan. For software in the Ground Segment, the products are stored on media formatted as
required for installation at the operational site. For on-board software, the preparation of the
executable software includes downloading it into the actual flight hardware. Similarly, software for
user equipment is usually downloaded into target processors.

5.12.1 Preparing the Executable Software

This activity includes preparation of the specific executable code and source files for each SI, batch
files, COTS, command, data, or other software files needed to install and operate the software on the
target computer(s). This data is packaged in the Software Product Specification (SPS) as described in
paragraph 5.13.4. The list of data to be prepared should be specified in the SPS executable software
paragraph.

5.12.2 Preparing Version Descriptions for User Sites

Each software release requires a Software Version Description (SVD) document. Format and contents
of the SVD are described in the Data Item Description (DID) listed in Appendix D and the completed
SVD requires a document review prior to release. The SVD is primarily composed of lists that should
include, as applicable:

e Complete identification of all material released including numbers, dates, abbreviations,
version and release numbers, physical media, and documentation

e Inventory of all computer files that make up the software being released
¢ History of all changes incorporated since the previous version

¢ Site-unique data contained in the new version

¢ Related documentation not included in current release

¢ Installation instructions

e Possible problems and known errors
5.12.3 Preparing User Manuals

Software customer user manuals are required to be prepared for ground segment software. and
software in user equipment with a human interface. However, not all of the user manuals need to be
produced by all programs because the full set of user manuals normally has some duplication. On-

2-109

Downloaded from http://www.everyspec.com

board software does not require user manuals nor does equipment with embedded software. The
customer and the developer must determine which user manuals are appropriate for each system.
User manuals or user guides should be produced for SS-1 and SS-2 software. Existing vendor
documentation can be used for COTS/Reuse software.

There are various types of user manuals as described below. For each of the required user manual
types, a separate document should be written for each segment. Segments can optionally write
multiple user manuals covering one or more Sls, rather than a single user manual for the entire
segment. This approach is recommended in cases where different users run selected Sls within the
segment. All of the documents below should follow the DID product descriptions, listed in
Appendix D, and they require a document review prior to release.

5.12.3.1 Software User Manuals

A Software User Manual (SUM) must be written to provide information needed at the customer site
if required by the program. Its detailed format and contents are described in the SUM DID listed in
Appendix D. The SUM describes, in depth, how to use the software and includes, as applicable:

¢ Aninventory of software required to be installed for the software to operate

o Resources needed for a user to install and run the software

o Software overview including logical components, performance characteristics, etc.
e Procedures to access the software for first time or occasional users

o Detailed procedures for using the software including organization, capabilities, conventions
used, backup, recovery and messages (Note: The detailed procedures may be organized by
“operator position” rather than following the software structure)

5.12.3.2 Computer Operation Manuals

Computer Operation Manuals (COM) are written to provide information needed by the customer site
to operate the target computers. A COM is typically needed only if the hardware is unique or new. Its
detailed contents are described in the COM DID listed in Appendix D. The COM describes the
computer system operations data including, as applicable:

¢ Computer system preparation, power on/off, initiation, and shutdown
e Operating procedures including input/output, monitoring, and off-line procedures

o Diagnostic features, procedures, and tools
5.12.3.3 Other User/Operator Software Product Descriptions (Optional)

There are two optional user/operator manuals: the Software Input/Output Manual (SIOM); and the
Software Center Operations Manual (SCOM). The SIOM and SCOM are used for software systems
installed in a computer center or other centralized or networked software installation. There is some
overlap in these documents, as well as with other user manuals, so the appropriate set must be
determined for each system.

SIOM. Detailed contents of the SIOM are described in the SIOM DID listed in Appendix D. The
SIOM describes how to prepare input to, and interpret output from, the software including, as
applicable:

2-110

A IR SN O B M B B e

Downloaded from http://www.everyspec.com

¢ Aninventory of software files and databases needed to access the software

e Resources needed to access the software

¢ Organization and operation of the software from a users point of view

e Contingencies, security. and problem reporting procedures

¢ Input conditions, formats, rules, vocabulary, and examples of each type of input
e QOutput descriptions, formats, vocabulary use, examples, and error diagnostics

e Query procedures including file formats, capabilities, and instructions

e Terminal processing procedures covering capabilities, displays, updates, retrieval, error
correction, and termination

SCOM. Detailed contents of the SCOM are described in the SCOM DID listed in Appe<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>