
                                                  FIPS PUB 186-2
(+Change Notice)

                                              FEDERAL INFORMATION
                                 PROCESSING STANDARDS PUBLICATION

                                    2000 January 27

U.S. DEPARTMENT OF COMMERCE/National Institute of Standards and Technology

DIGITAL SIGNATURE STANDARD (DSS)

CATEGORY:  COMPUTER SECURITY

Downloaded from http://www.everyspec.com



U.S. DEPARTMENT OF COMMERCE, William M. Daley, Secretary
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY,

Raymond G. Kammer, Director

                         
Foreword

The Federal Information Processing Standards Publication Series of the National Institute of
Standards and Technology (NIST) is the official series of publications relating to standards and
guidelines adopted and promulgated under the provisions of Section 5131 of the Information
Technology Management Reform Act of 1996 (Public Law 104-106), and the Computer Security
Act of 1987 (Public Law 100-235).  These mandates have given the Secretary of Commerce and
NIST important responsibilities for improving the utilization and management of computer and
related telecommunications systems in the Federal Government.  The NIST, through its Information
Technology Laboratory, provides leadership, technical guidance, and coordination of Government
efforts in the development of standards and guidelines in these areas.

Comments concerning Federal Information Processing Standards Publications are welcomed and
should be addressed to the Director, Information Technology Laboratory, National Institute of
Standards and Technology, 100 Bureau Dr. Stop 8900, Gaithersburg, MD 20899-8900.

William Mehuron, Director
Information Technology Laboratory

Abstract

This standard specifies a suite of algorithms which can be used to generate a digital signature. 
Digital signatures are used to detect unauthorized modifications to data and to authenticate the
identity of the signatory.  In addition, the recipient of signed data can use a digital signature in
proving to a third party that the signature was in fact generated by the signatory.  This is known as
nonrepudiation since the signatory cannot, at a later time, repudiate the signature.

Key words: ADP security, computer security, digital signatures, public-key cryptography, Federal
Information Processing Standards.
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Federal Information
Processing Standards Publication 186-2

2000 January 27

Announcing the

DIGITAL SIGNATURE STANDARD (DSS)

Federal Information Processing Standards Publications (FIPS PUBS) are issued by the National
Institute of Standards and Technology (NIST) after approval by the Secretary of Commerce pursuant
to Section 5131 of the Information Technology Management Reform Act of 1996 (Public Law 104-
106), and the Computer Security Act of 1987 (Public Law 100-235).

Name of Standard: Digital Signature Standard (DSS).

Category of Standard: Computer Security, Cryptography.

Explanation: This Standard specifies algorithms appropriate for applications requiring a digital,
rather than written, signature.  A digital signature is represented in a computer as a string of binary
digits.  A digital signature is computed using a set of rules and a set of parameters such that the
identity of the signatory and integrity of the data can be verified.  An algorithm provides the
capability to generate and verify signatures.  Signature generation makes use of a private key to
generate a digital signature.  Signature verification makes use of a public key which corresponds to,
but is not the same as, the private key.  Each user possesses a private and public key pair.  Public
keys are assumed to be known to the public in general.  Private keys are never shared.  Anyone can
verify the signature of a user by employing that user's public key.  Signature generation can be
performed only by the possessor of the user's private key.

A hash function is used in the signature generation process to obtain a condensed version of data,
called a message digest (see Figure 1).  The message digest is then input to the digital signature (ds)
algorithm to generate the digital signature.  The digital signature is sent to the intended verifier along
with the signed data (often called the message).  The verifier of the message and signature verifies
the signature by using the sender's public key.  The same hash function must also be used in the
verification process.  The hash function is specified in a separate standard, the Secure Hash Standard
(SHS), FIPS 180-1.  FIPS approved ds algorithms must be implemented with the SHS.  Similar
procedures may be used to generate and verify signatures for stored as well as transmitted data.
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Approving Authority: Secretary of Commerce.

Maintenance Agency: U.S. Department of Commerce, National Institute of Standards and
Technology (NIST), Information Technology Laboratory (ITL).

Applicability: This standard is applicable to all Federal departments and agencies for the protection
of sensitive unclassified information that is not subject to section 2315 of Title 10, United States
Code, or section 3502(2) of Title 44, United States Code.  This standard shall be used in designing
and implementing public-key based signature systems that Federal departments and agencies operate
or which are operated for them under contract.  Adoption and use of this standard is available to
private and commercial organizations.

Applications: A digital signature (ds) algorithm authenticates the integrity of the signed data and
the identity of the signatory.  A ds algorithm may also be used in proving to a third party that data
was actually signed by the generator of the signature.  A ds algorithm is intended for use in electronic
mail, electronic funds transfer, electronic data interchange, software distribution, data storage, and
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other applications that require data integrity assurance and data origin authentication.  The
techniques specified in ANSI X9.31 and ANSI X9.62 may be used in addition to the Digital
Signature Algorithm (DSA) specified herein.  (NIST editorial note: either DSA, RSA [ANSI X9.31],
or ECDSA [ANSI X9.62] may be used; all three do not have to be implemented.)

Implementations: A ds algorithm may be implemented in software firmware, hardware or any
combination thereof.  NIST has developed a validation program to test implementations for
conformance to DSA.  Currently, conformance tests for ANSI X9.31 and ANSI X9.62 have not been
developed.  These tests will be developed and made available in the future. Information about the
planned validation program can be obtained from the National Institute of Standards and
Technology, Information Technology Laboratory, Attn: DSS Validation, 100 Bureau Drive Stop
8930, Gaithersburg, MD 20899-8930.

Agencies are advised that separate keys should be used for signature and confidentiality purposes
when using the X9.31 standard.  This is because the RSA algorithm can be used for both data
encryption and digital signature purposes.

Export Control: Certain cryptographic devices and technical data regarding them are subject to
Federal export controls.  Applicable Federal government export controls are specified in Title 15,
Code of Federal Regulations (CFR) Part 740.17; Title 15, CFR Part 742; and Title 15, CFR Part 774,
Category 5, Part 2.

Patents: The algorithms in this standard may be covered by U.S. or foreign patents.

Implementation Schedule: This standard becomes effective July 27, 2000.  A transition period from
July 27, 2000 until July 27, 2001 is provided to enable all agencies to develop plans for the
acquisition of equipment which implements the digital signature techniques adopted by FIPS 186-2.
 During the transition period, agencies may continue to use their existing digital signature systems
and to acquire additional equipment that may be needed to interoperate with these legacy digital
signature systems.  Agencies without legacy digital signature systems should plan for the acquisition
and use of equipment implementing the digital signature techniques that are adopted by FIPS 186-2.
 After the transition period, only equipment that implements FIPS 186-2 endorsed techniques should
be acquired.

Specifications: Federal Information Processing Standard (FIPS) 186-2 Digital Signature Standard
(affixed). Also see an important change notice at the end of this document.

Cross Index:

a.  FIPS PUB 46-3, Data Encryption Standard.

b.  FIPS PUB 73, Guidelines for Security of Computer Applications.
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c. FIPS PUB 140-1, Security Requirements for Cryptographic Modules.
  
d. FIPS PUB 171, Key Management Using ANSI X9.17.

e. FIPS PUB 180-1, Secure Hash Standard.

f.  ANSI X9.31-1998, Digital Signatures Using Reversible Public Key Cryptography for the
Financial Services Industry (rDSA).

g.  ANSI X9.62-1998, Public Key Cryptography for the Financial Services Industry: The Elliptic
Curve Digital Signature Algorithm (ECDSA).

Qualifications: The security of a digital signature system is dependent on maintaining the secrecy
of users' private keys.  Users must therefore guard against the unauthorized acquisition of their
private keys.  While it is the intent of this standard to specify general security requirements for
generating digital signatures, conformance to this standard does not assure that a particular
implementation is secure.  The responsible authority in each agency or department shall assure that
an overall implementation provides an acceptable level of security.  This standard will be reviewed
every five years in order to assess its adequacy.

Waiver Procedure: Under certain exceptional circumstances, the heads of Federal agencies, or their
delegates, may approve waivers to Federal Information Processing Standards (FIPS).  The head of
such agency may redelegate such authority only to a senior official designated pursuant to section
3506(b) of Title 44, United States Code.  Waiver shall be granted only when:

a. Compliance with a standard would adversely affect the accomplishment of the mission of an
operator of a Federal computer system; or

b. Cause a major adverse financial impact on the operator which is not offset by Government wide
savings.

Agency heads may act upon a written waiver request containing the information detailed above. 
Agency heads may also act without a written waiver request when they determine that conditions for
meeting the standard cannot be met.  Agency heads may approve waivers only by a written decision
which explains the basis on which the agency head made the required finding(s).  A copy of each
such decision, with procurement sensitive or classified portions clearly identified, shall be sent to:
National Institute of Standards and Technology; ATTN: FIPS Waiver Decisions, 100 Bureau Drive
Stop 8970, Gaithersburg, MD 20899-8970.

In addition, notice of each waiver granted and each delegation of authority to approve waivers shall
be sent promptly to the Committee on Government Operations of the House of Representatives and
the Committee on Governmental Affairs of the Senate and shall be published promptly in the Federal
Register.
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When the determination on a waiver applies to the procurement of equipment and/or services, a
notice of the waiver determination must be published in the Commerce Business Daily as a part of
the notice of solicitation for offers of an acquisition or, if the waiver determination is made after that
notice is published, by amendment to such notice.

A copy of the waiver, any supporting documents, the document approving the waiver and any
supporting and accompanying documents, with such deletions as the agency is authorized and
decides to make under 5 U.S.C. Sec. 552(b), shall be part of the procurement documentation and
retained by the agency.

Where to Obtain Copies of the Standard: Copies of this publication are for sale by the National
Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.  When
ordering, refer to Federal Information Processing Standards Publication 186-2 (FIPSPUB186-2), and
identify the title.  When microfiche is desired, this should be specified.  Prices are published by NTIS
in current catalogs and other issuances.  Payment may be made by check, money order, deposit
account or charged to a credit card accepted by NTIS.
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Federal Information
Processing Standards Publication 186-2

2000 January 27

Specifications for the

DIGITAL SIGNATURE STANDARD (DSS)

1. INTRODUCTION

This publication prescribes three algorithms suitable for digital signature (ds) generation and
verification.  The first algorithm, the Digital Signature Algorithm (DSA), is described in sections
4 - 6 and appendices 1 - 5.  The second algorithm, the RSA ds algorithm, is discussed in section 7
and the third algorithm, the ECDSA algorithm, is discussed in section 8 and recommended elliptic
curves in appendix 6. An important change notice has been appended to this document.

2. GENERAL

When a message is received, the recipient may desire to verify that the message has not been altered
in transit.  Furthermore, the recipient may wish to be certain of the originator's identity.  Both of
these services can be provided by a ds algorithm.  A digital signature is an electronic analogue of a
written signature in that the digital signature can be used in proving to the recipient or a third party
that the message was, in fact, signed by the originator.  Digital signatures may also be generated for
stored data and programs so that the integrity of the data and programs may be verified at any later
time.

This publication prescribes two algorithms suitable for digital signature generation and verification.

3. USE OF A DIGITAL SIGNATURE (ds) ALGORITHM

A ds algorithm is used by a signatory to generate a digital signature on data and by a verifier to
verify the authenticity of the signature.  Each signatory has a public and private key.  The private key
is used in the signature generation process and the public key is used in the signature verification
process.  For both signature generation and verification, the data which is referred to as a message,
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M, is reduced by means of the Secure Hash Algorithm (SHA-1) specified in FIPS 180-1. An
adversary, who does not know the private key of the signatory, cannot generate the correct signature
of the signatory.  In other words, signatures cannot be forged.  However, by using the signatory's
public key, anyone can verify a correctly signed message.  A means of associating public and private
key pairs to the corresponding users is required.  That is, there must be a binding of a user's identity
and the user's public key. This binding may be certified by a mutually trusted party.  For example,
a certifying authority could sign credentials containing a user's public key and identity to form a
certificate.  Systems for certifying credentials and distributing certificates are beyond the scope of
this standard. NIST intends to publish separate document(s) on certifying credentials and distributing
certificates.

4. DSA PARAMETERS

The DSA makes use of the following parameters:

   1. p = a prime modulus, where 2L-1 < p < 2L for 512 ≤ L ≤ 1024 and L a multiple of 64

   2. q = a prime divisor of p - 1, where 2159 < q < 2160

   3. g = h(p-1)/q mod p, where h is any integer with 1 < h < p - 1 such that h(p-1)/q mod p > 1
       (g has order q mod p)

   4. x = a randomly or pseudorandomly generated integer with 0 < x < q

   5. y = gx mod p

   6. k = a randomly or pseudorandomly generated integer with 0 < k < q

The integers p, q, and g can be public and can be common to a group of users.  A user's private and
public keys are x and y, respectively.  They are normally fixed for a period of time.  Parameters x
and k are used for signature generation only, and must be kept secret.  Parameter k must be
regenerated for each signature.

Parameters p and q shall be generated as specified in Appendix 2, or using other FIPS approved
security methods.  Parameters x and k shall be generated as specified in Appendix 3, or using other
FIPS approved security methods.

5. DSA SIGNATURE GENERATION

The signature of a message M is the pair of numbers r and s computed according to the equations
below:
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   r = (gk mod p) mod q    and
   s = (k-1(SHA-1(M) + xr)) mod q.

In the above, k-1 is the multiplicative inverse of k, mod q; i.e., (k-1 k) mod q = 1 and 0 < k-1 < q.  The
value of SHA-1(M) is a 160-bit string output by the Secure Hash Algorithm specified in FIPS 180-1.
 For use in computing s, this string must be converted to an integer.  The conversion rule is given
in Appendix 2.2.

As an option, one may wish to check if r = 0 or s = 0.  If either r = 0 or s = 0, a new value of k should
be generated and the signature should be recalculated (it is extremely unlikely that r = 0 or s = 0 if
signatures are generated properly).

The signature is transmitted along with the message to the verifier.

6. DSA SIGNATURE VERIFICATION

Prior to verifying the signature in a signed message, p, q and g plus the sender's public key and
identity are made available to the verifier in an authenticated manner.

Let M′, r′, and s′ be the received versions of M, r, and s, respectively, and let y be the public key of
the signatory.  To verify the signature, the verifier first checks to see that 0 < r′ < q and 0 < s′ < q;
if either condition is violated the signature shall be rejected.  If these two conditions are satisfied,
the verifier computes

   w  = (s′)-1 mod q

   u1 = ((SHA-1(M′))w) mod q

   u2 = ((r′)w) mod q
 
   v  = (((g)u1 (y)u2) mod p) mod q.

If v = r′, then the signature is verified and the verifier can have high confidence that the received
message was sent by the party holding the secret key x corresponding to y. For a proof that v = r′
when M′ = M, r′ = r, and s′ = s, see Appendix 1.

If v does not equal r′, then the message may have been modified, the message may have been
incorrectly signed by the signatory, or the message may have been signed by an impostor.  The
message should be considered invalid.

7.  RSA DIGITAL SIGNATURE ALGORITHM
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The RSA ds algorithm is a FIPS approved cryptographic algorithm for digital signature generation
and verification.  This is described in ANSI X9.31.

8.  ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM (ECDSA)

The ECDSA ds algorithm is a FIPS approved cryptographic algorithm for digital signature
generation and verification.  ECDSA is the elliptic curve analogue of the DSA.  ECDSA is
described in ANSI X9.62.  The recommended elliptic curves for Federal Government use are
included in Appendix 6.
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APPENDIX 1. A PROOF THAT v = r′′ IN THE DSA

This appendix is for informational purposes only and is not required to meet the standard.

The purpose of this appendix is to show that in the DSA, if M′ = M, r′ = r and s′ = s in the signature
verification then v = r′. We need the following easy result.

LEMMA.  Let p and q be primes so that q divides p - 1, h a positive integer less than p, and g = h(p-

1)/q mod p. Then gq mod p = 1, and if m mod q = n mod q, then gm mod p = gn mod p.

Proof:  We have

  gq mod p = (h(p-1)/q mod p)q mod p

            = h(p-1) mod p

            = 1

by Fermat's Little Theorem.  Now let m mod q = n mod q, i.e., m = n + kq for some integer k. Then

   gm mod p    = gn+kq mod p

               = (gn gkq) mod p
                 
               = ((gn mod p) (gq mod p)k) mod p
                 
               = gn mod p

since gq mod p = 1. n

We are now ready to prove the main result.

THEOREM.  If M′ = M, r′ = r, and s′ = s in the signature verification, then v = r′.

Proof:  We have

   w = (s′)-1 mod q = s-1 mod q

   u1 = ((SHA-1(M′))w) mod q = ((SHA-1(M))w) mod q

   u2 = ((r′)w) mod q = (rw) mod q.
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Now y = gx mod p, so that by the lemma,

   v = ((gu1 yu2) mod p) mod q

     = ((gSHA-1(M)w yrw) mod p) mod q

     = ((gSHA-1(M)w gxrw) mod p) mod q
    
     = ((g(SHA-1(M)+xr)w) mod p) mod q.

Also

   s = (k-1(SHA-1(M) + xr)) mod q.

Hence

   w = (k(SHA-1(M) + xr)-1) mod q

   (SHA-1(M) + xr)w mod q = k mod q.

Thus by the lemma,

   v = (gk mod p) mod q

     = r

     = r′. n
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APPENDIX 2. GENERATION OF PRIMES FOR THE DSA

This appendix includes algorithms for generating the primes p and q used in the DSA.  These
algorithms require a random number generator (see Appendix 3), and an efficient modular
exponentiation algorithm.  Generation of p and q shall be performed as specified in this appendix,
or using other FIPS approved security methods.

2.1. A PROBABILISTIC PRIMALITY TEST

In order to generate the primes p and q, a primality test is required. 

There are several fast probabilistic algorithms available.  The following algorithm is a simplified
version of a procedure due to M.O. Rabin, based in part on ideas of Gary L. Miller.  [See Knuth, The
Art of Computer Programming, Vol. 2, Addison-Wesley, 1981, Algorithm P, page 379.]  If this
algorithm is iterated n times, it will produce a false prime with probability no greater than 1/4n. 
Therefore, n ≥ 50 will give an acceptable probability of error.  To test whether an integer is prime:

   Step 1. Set i = 1 and n ≥ 50.

   Step 2. Set w = the integer to be tested, w = 1 + 2am, where m is odd and 2a is the largest          
     power of 2 dividing w - 1.

   Step 3. Generate a random integer b in the range 1 < b < w.

   Step 4. Set j = 0 and z = bm mod w.

   Step 5. If j = 0 and z = 1, or if z = w - 1, go to step 9.

   Step 6. If j > 0 and z = 1, go to step 8.

   Step 7. j = j + 1. If j < a, set z = z2 mod w and go to step 5.

   Step 8. w is not prime.  Stop.

   Step 9. If i < n, set i = i + 1 and go to step 3.  Otherwise, w is probably prime.

2.2. GENERATION OF PRIMES

The DSA requires two primes, p and q, satisfying the following three conditions:

   a. 2159 < q < 2160

   b. 2L-1 < p < 2L for a specified L, where L = 512 + 64j for some 0 ≤ j ≤ 8
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   c. q divides p - 1.

This prime generation scheme starts by using the SHA-1 and a user supplied SEED to construct a
prime, q, in the range 2159 < q < 2160.  Once this is accomplished, the same SEED value is used to
construct an X in the range 2L-1 < X < 2L.  The prime, p, is then formed by rounding X to a number
congruent to 1 mod 2q as described below.

An integer x in the range 0 ≤ x < 2g may be converted to a g-long sequence of bits by using its binary
expansion as shown below:

   x = x1*2g-1 + x2*2g-2 + ... + xg-1*2 + xg -> { x1,...,xg }.

Conversely, a g-long sequence of bits { x1,...,xg } is converted to an integer by the rule

   { x1,...,xg } -> x1*2g-1 + x2*2g-2 + ... + xg-1*2 + xg.

Note that the first bit of a sequence corresponds to the most significant bit of the corresponding
integer and the last bit to the least significant bit.

Let L - 1 = n*160 + b, where both b and n are integers and 0 ≤ b < 160.

   Step 1.  Choose an arbitrary sequence of at least 160 bits and call it SEED. Let g be the length  
             of SEED in bits.

   Step 2.  Compute

                  U = SHA-1[SEED] XOR SHA-1[(SEED+1) mod 2g ].

   Step 3.  Form q from U by setting the most significant bit (the 2159 bit) and the least significant
              bit to 1. In terms of boolean operations, q = U OR 2159 OR 1. Note that 2159 < q < 2160.

   Step 4.  Use a robust primality testing algorithm to test whether q is prime1.

   Step 5.  If q is not prime, go to step 1.

   Step 6.  Let counter = 0 and offset = 2.

   Step 7.  For k = 0,...,n let

                  Vk = SHA-1[(SEED + offset + k) mod 2g ].

1A robust primality test is one where the probability of a non-prime number passing the test is at
most 2-80.
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   Step 8.  Let W be the integer

                  W = V0 + V1*2160 + ... + Vn-1*2(n-1)*160 + (Vn mod 2b) * 2n*160

              and let X = W + 2L-1. Note that 0 ≤ W < 2L-1 and hence 2L-1 ≤ X < 2L.

   Step 9.  Let c = X mod 2q and set p = X - (c - 1). Note that p is congruent to 1 mod 2q.

   Step 10. If p < 2L-1, then go to step 13.

   Step 11. Perform a robust primality test on p.

   Step 12. If p passes the test performed in step 11, go to step 15.

   Step 13. Let counter = counter + 1 and offset = offset + n + 1.

   Step 14. If counter ≥ 212 = 4096 go to step 1, otherwise (i.e. if counter < 4096) go to step 7.

   Step 15. Save the value of SEED and the value of counter for use in certifying the proper          
        generation of p and q.
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APPENDIX 3. RANDOM NUMBER GENERATION FOR THE DSA

Any implementation of the DSA requires the ability to generate random or pseudorandom integers.
 Such numbers are used to derive a user's private key, x, and a user's per message secret number, k.
 These randomly or pseudorandomly generated integers are selected to be between 0 and the 160-bit
prime q (as specified in the standard).  They shall be generated by the techniques given in this
appendix, or using other FIPS approved security methods.
  
One FIPS approved pseudorandom integer generator is supplied in Appendix C of ANSI X9.17,
"Financial Institution Key Management (Wholesale)."

Other pseudorandom integer generators are given in this appendix.  These permit generation of
pseudorandom values of x and k for use in the DSA.  The algorithm in section 3.1 may be used to
generate values for x.  An algorithm for k and r is given in section 3.2.  The latter algorithm allows
most of the signature computation to be precomputed without knowledge of the message to be
signed.

The algorithms employ a one-way function G(t,c), where t is 160 bits, c is b bits (160 ≤ b ≤ 512) and
G(t,c) is 160 bits.  One way to construct G is via the Secure Hash Algorithm (SHA-1), as defined
in the Secure Hash Standard (SHS).  The 160-bit message digest output of the SHA-1 algorithm
when message M is input is denoted by SHA-1(M).  A second method for constructing G is to use
the Data Encryption Standard (DES).  The construction of G by these techniques is discussed in
sections 3.3 and 3.4 of this appendix.

In the algorithms in sections 3.1 and 3.2, a secret b-bit seed-key is used.  The algorithm in section
3.1 optionally allows the use of a user provided input.  If G is constructed via the SHA-1 as defined
in section 3.3, then b is between 160 and 512.  If DES is used to construct G as defined in section
3.4, then b is equal to 160.

3.1. ALGORITHM FOR COMPUTING m VALUES OF x

Let x be the signer's private key.  The following may be used to generate m values of x:

   Step 1. Choose a new, secret value for the seed-key, XKEY.

   Step 2. In hexadecimal notation let

                  t = 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0.

            This is the initial value for H0 || H1 || H2 || H3 || H4 in the SHS.

   Step 3. For j = 0 to m - 1 do
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              a. XSEEDj = optional user input.
              b. XVAL = (XKEY + XSEEDj) mod 2b.

              c. xj = G(t,XVAL) mod q.

              d. XKEY = (1 + XKEY + xj) mod 2b.

3.2. ALGORITHM FOR PRECOMPUTING ONE OR MORE k AND r VALUES

This algorithm can be used to precompute k, k-1, and r for m messages at a time.  Note that
implementation of the DSA with precomputation may be covered by U.S. and foreign patents.

Algorithm:

   Step 1. Choose a secret initial value for the seed-key, KKEY.

   Step 2. In hexadecimal notation let

                  t = EFCDAB89 98BADCFE 10325476 C3D2E1F0 67452301.

             This is a cyclic shift of the initial value for H0 || H1 || H2 || H3 || H4 in the SHS.

   Step 3. For j = 0 to m - 1 do

               a. k = G(t,KKEY) mod q.
                
               b. Compute kj

-1 = k-1 mod q.
 
               c. Compute rj = (gk mod p) mod q.

               d. KKEY = (1 + KKEY + k) mod 2b.

   Step 4. Suppose M0 , ... , Mm-1 are the next m messages. For j = 0 to m - 1 do

               a. Let h = SHA-1(Mj).

               b. Let sj = (kj
-1(h + xrj)) mod q.

               c. The signature for Mj is (rj,sj).
        
   Step 5. Let t = h.
    
   Step 6. Go to step 3.
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Step 3 permits precomputation of the quantities needed to sign the next m messages.  Step 4 can
begin whenever the first of these m messages is ready.  The execution of step 4 can be suspended
whenever the next of the m messages is not ready.  As soon as steps 4 and 5 have completed, step
3 can be executed, and the results saved until the first member of the next group of m messages is
ready.

In addition to space for KKEY, two arrays of length m are needed to store r0 , ... rm-1 and k0
-1, ... , km-

1
-1 when they are computed in step 3.  Storage for s0 , ... , sm-1 is only needed if the signatures for a

group of messages are stored; otherwise sj in step 4 can be replaced by s and a single space allocated.

3.3. CONSTRUCTING THE FUNCTION G FROM THE SHA-1

G(t,c) may be constructed using steps (a) - (e) in section 7 of the Specifications for the Secure Hash
Standard.  Before executing these steps, {Hj} and M1 must be initialized as follows:

   i. Initialize the {Hj} by dividing the 160 bit value t into five 32-bit segments as follows:

         t = t0  ||  t1  ||  t2  ||  t3  ||  t4

       Then Hj = tj for j = 0 through 4.

   ii. There will be only one message block, M1, which is initialized as follows:

         M1 = c || 0512-b

        (The first b bits of M1 contain c, and the remaining (512-b) bits are set to zero).

Then steps (a) through (e) of section 7 are executed, and G(t,c) is the 160 bit string represented by
the five words:

    H0  ||  H1  ||  H2  ||  H3  ||  H4

     
at the end of step (e).

3.4. CONSTRUCTING THE FUNCTION G FROM THE DES

Let a XOR b denote the bitwise exclusive-or of bit strings a and b.  Suppose a1, a2, b1, b2 are 32-bit
strings. Let b1' be the 24 least significant bits of b1.  Let K = b1' || b2 and A = a1 || a2.  Define

   DESb1,b2(a1,a2) = DESK(A)

In the above, DESK(A) represents ordinary DES encryption of the 64-bit block A using the 56-bit
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key K.  Now suppose t and c are each 160 bits.  To compute G(t,c):

   Step 1. Write

                 t = t1 || t2 || t3 || t4 || t5

                 c = c1 || c2 || c3 || c4 || c5

             In the above, each ti and ci is 32 bits.

   Step 2. For i = 1 to 5 do

                 xi = ti XOR ci

   Step 3. For i = 1 to 5 do

                 b1 = c((i+3) mod 5) + 1

                 b2 = c((i+2) mod 5) + 1

                 a1 = xi

                 a2 = x(i mod 5) + 1   XOR  x((i+3) mod 5) + 1

                 yi,1 || yi,2 = DESb1,b2(a1,a2)    (yi,1, yi,2 = 32 bits)
     
   Step 4. For i = 1 to 5 do

                 zi = yi,1 XOR y((i+1) mod 5)+1,2 XOR y((i+2) mod 5)+1,1

   Step 5. Let

                 G(t,c) = z1 || z2 || z3 || z4 || z5
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APPENDIX 4. GENERATION OF OTHER QUANTITIES FOR THE DSA

This appendix is for informational purposes only and is not required to meet the standard.

The algorithms given in this appendix may be used to generate the quantities g, k-1, and s-1 used in
the DSA.

To generate g:

   Step 1. Generate p and q as specified in Appendix 2.

   Step 2. Let e = (p - 1)/q.

   Step 3. Set h = any integer, where 1 < h < p - 1 and h differs from any value previously tried.

   Step 4. Set g = he mod p.

   Step 5. If g = 1, go to step 3.

To compute the multiplicative inverse n-1 mod q for n with 0 < n < q, where 0 < n-1 < q:

   Step 1. Set i = q, h = n, v = 0, and d = 1.

   Step 2. Let t = i DIV h, where DIV is defined as integer division.

   Step 3. Set x = h.

   Step 4. Set h = i - tx.

   Step 5. Set i = x.

   Step 6. Set x = d.

   Step 7. Set d = v - tx.

   Step 8. Set v = x.

   Step 9. If h > 0, go to step 2.

   Step 10. Let n-1 = v mod q.

Note that in step 10, v may be negative. The v mod q operation should yield a value between 1 and
q - 1 inclusive.
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APPENDIX 5. EXAMPLE OF THE DSA

This appendix is for informational purposes only and is not required to meet the standard.
Let L = 512 (size of p).  The values in this example are expressed in hexadecimal notation.  The p
and q given here were generated by the prime generation standard described in appendix 2 using the
160-bit SEED:

d5014e4b 60ef2ba8 b6211b40 62ba3224 e0427dd3

With this SEED, the algorithm found p and q when the counter was at 105. x was generated by the
algorithm described in appendix 3, section 3.1, using the SHA-1 to construct G (as in appendix 3,
section 3.3) and a 160-bit XKEY:

XKEY =

bd029bbe 7f51960b cf9edb2b 61f06f0f eb5a38b6
t =

67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0

x = G(t,XKEY) mod q

k was generated by the algorithm described in appendix 3, section 3.2, using the SHA-1 to construct
G (as in appendix 3, section 3.3) and a 160-bit KKEY:

KKEY =

687a66d9 0648f993 867e121f 4ddf9ddb 01205584

t =

EFCDAB89 98BADCFE 10325476 C3D2E1F0 67452301

k = G(t,KKEY) mod q

Finally:

h = 2

p =

8df2a494 492276aa 3d25759b b06869cb eac0d83a fb8d0cf7
cbb8324f 0d7882e5 d0762fc5 b7210eaf c2e9adac 32ab7aac
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49693dfb f83724c2 ec0736ee 31c80291

q =

c773218c 737ec8ee 993b4f2d ed30f48e dace915f

g =

626d0278 39ea0a13 413163a5 5b4cb500 299d5522 956cefcb
3bff10f3 99ce2c2e 71cb9de5 fa24babf 58e5b795 21925c9c
c42e9f6f 464b088c c572af53 e6d78802

x =

2070b322 3dba372f de1c0ffc 7b2e3b49 8b260614

k =

358dad57 1462710f 50e254cf 1a376b2b deaadfbf

k-1 =

0d516729 8202e49b 4116ac10 4fc3f415 ae52f917

M = ASCII form of "abc" (See FIPS PUB 180-1, Appendix A)

(SHA-1)(M) =

a9993e36 4706816a ba3e2571 7850c26c 9cd0d89d

y =

19131871 d75b1612 a819f29d 78d1b0d7 346f7aa7 7bb62a85
9bfd6c56 75da9d21 2d3a36ef 1672ef66 0b8c7c25 5cc0ec74
858fba33 f44c0669 9630a76b 030ee333

r =

8bac1ab6 6410435c b7181f95 b16ab97c 92b341c0

s =

41e2345f 1f56df24 58f426d1 55b4ba2d b6dcd8c8

w =

9df4ece5 826be95f ed406d41 b43edc0b 1c18841b
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u1 =

bf655bd0 46f0b35e c791b004 804afcbb 8ef7d69d

u2 =

821a9263 12e97ade abcc8d08 2b527897 8a2df4b0

gu1 mod p =

51b1bf86 7888e5f3 af6fb476 9dd016bc fe667a65 aafc2753
9063bd3d 2b138b4c e02cc0c0 2ec62bb6 7306c63e 4db95bbf
6f96662a 1987a21b e4ec1071 010b6069

yu2 mod p =

8b510071 2957e950 50d6b8fd 376a668e 4b0d633c 1e46e665
5c611a72 e2b28483 be52c74d 4b30de61 a668966e dc307a67
c19441f4 22bf3c34 08aeba1f 0a4dbec7

v =

8bac1ab6 6410435c b7181f95 b16ab97c 92b341c0
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APPENDIX 6. RECOMMENDED ELLIPTIC CURVES FOR FEDERAL
GOVERNMENT USE

July 1999

This collection of elliptic curves is recommended for Federal government use and

contains choices of private key length and underlying fields.

1. Parameter Choices

1.1 Choice of Key Lengths

The principal parameters for elliptic curve cryptography are the elliptic curve

E and a designated point G on E called the base point.  The base point has order r, a

large prime. The number of points on the curve is n = fr for some integer f (the

cofactor) not divisible by r.  For efficiency  reasons, it is desirable to take the

cofactor to be as small as possible.

All of the curves given below have cofactors 1, 2, or 4. As a result, the

private and public keys are approximately the same length. Each length is chosen to

correspond to the cryptovariable length of a common symmetric cryptologic. In

each case, the private key length is, at least, approximately twice the symmetric

cryptovariable length.

1.2 Choice of Underlying Fields

For each cryptovariable length, there are given two kinds of fields.

• A prime field is the field GF(p) which contains a prime number p of

elements.  The elements of this field are the integers modulo p, and the
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field arithmetic is implemented in terms of the arithmetic of integers

modulo p.

• A binary field is the field GF(2m) which contains 2m elements for some m

(called the degree of the field). The elements of this field are the bit

strings of length m, and the field arithmetic is implemented in terms of

operations on the bits.

The following table gives the sizes of the various underlying fields. By ||p|| is

meant the length of the binary expansion of the integer p.

Symmetric Example

CV Length Algorithm Prime Field Binary Field

80 SKIPJACK ||p|| = 192 m = 163

112 Triple-DES ||p|| = 224 m = 233

128 AES Small ||p|| = 256 m = 283

192 AES Medium ||p|| = 384 m = 409

256 AES Large ||p|| = 521 m = 571

1.3 Choice of Basis

To describe the arithmetic of a binary field, it is first necessary to specify

how a bit string is to be interpreted. This is referred to as choosing a basis for the

field. There are two common types of bases: a polynomial basis and a normal basis.
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• A polynomial basis is specified by an irreducible polynomial modulo 2,

called the field polynomial . The bit string (am-1 … a 2  a1  a0) is taken to

represent the polynomial

am-1 t 
m-1 +…+ a2 t

2 + a1 t + a0

over GF(2).  The field arithmetic is implemented as polynomial arithmetic

modulo p(t), where p(t) is the field polynomial.

• A normal basis is specified by an element θ of a particular kind. The bit

string (a0  a1  a2  … a m-1) is taken to represent the element

a0θ + a1θ 2 + a2θ 2 2 + am-1θ 2 m-1
 .

Normal basis field arithmetic is not easy to describe or efficient to

implement in general, but is for a special class called Type T low-

complexity  normal bases.  For a given field degree m, the choice of T

specifies the basis and the field arithmetic (see Appendix 6.2).

There are many polynomial bases and normal bases from which to choose.  The

following procedures are commonly used to select a basis representation. 

• Polynomial Basis: If an irreducible trinomial tm +  tk +  1 exists over GF

(2), then the field polynomial p(t) is chosen to be the irreducible trinomial

with the lowest-degree middle term tk . If no irreducible trinomial exists,

then one selects instead a pentanomial t m +  t a +  t b + t c +  1. The

particular pentanomial chosen has the following properties: the second

term ta has the lowest degree m; the third term tb has the lowest degree

among all irreducible pentanomials of degree m and second term ta; and

the fourth term tc has the lowest degree among all irreducible

pentanomials of degree m, second term ta, and third term tb.
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• Normal Basis: Choose the Type T low-complexity normal basis with the

smallest T.

For each binary field, the parameters are given for the above basis representations.

1.4 Choice of Curves

Two kinds of curves are given:

• Pseudo-random curves are those whose coefficients are generated from

the output of a seeded cryptographic hash. If the seed value is given 

along with the coefficients, it can be verified easily that the coefficients 

were indeed generated by that method.

• Special curves whose coefficients and underlying field have been selected

to optimize the efficiency of the elliptic curve operations.

For each size, the following curves are given:

→ A pseudo-random curve over GF(p).

→ A pseudo-random curve over GF(2m).

→ A special curve over GF(2m) called a Koblitz curve  or anomalous binary

curve.

The pseudo-random curves are generated via the SHA-1 based method given in the

ANSI X9.62 and IEEE P1363 standards.  (The generation and verification

processes are given in Appendices 6-4 through 6-7.)

1.5 Choice of Base Points
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Any point of order r can serve as the base point.  Each curve is supplied with

a sample base point G = (Gx , Gy ).  Users may want to generate their own base

points to ensure cryptographic separation of networks.

2. Curves over Prime Fields

For each prime p, a pseudo-random curve

E :  y2 ≡  x3 - 3x +b (mod p)

of prime order r is listed1.  (Thus, for these curves, the cofactor is always f  = 1.) 

The following parameters are given:

• The prime modulus p

• The order r

• the 160-bit input seed s to SHA-1 based algorithm

• The output c of the SHA-1 based algorithm

• The coefficient b (satisfying b2 c ≡ -27 (mod p))

• The base point x coordinate Gx

• The base point y coordinate Gy

The integers p and r are given in decimal form; bit strings and field elements are

given in hex.

                                                
1 The selection a ≡ -3 for the coefficient of x was made for reasons of efficiency; see IEEE P1363.
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Curve P-192

p = 62771017353866807638357894232076664160839087\

00390324961279

r = 62771017353866807638357894231760590137671947\

73182842284081

s = 3045ae6f c8422f64 ed579528 d38120ea e12196d5

c =     3099d2bb

bfcb2538 542dcd5f b078b6ef 5f3d6fe2 c745de65

b = 64210519

e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1

G x = 188da80e

b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012

G y = 07192b95

ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811
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Curve P-224

p = 26959946667150639794667015087019630673557916\

260026308143510066298881

r = 26959946667150639794667015087019625940457807\

714424391721682722368061

s = bd713447 99d5c7fc dc45b59f a3b9ab8f 6a948bc5

c = 5b056c7e 11dd68f4

0469ee7f 3c7a7d74 f7d12111 6506d031 218291fb

b = b4050a85 0c04b3ab

f5413256 5044b0b7 d7bfd8ba 270b3943 2355ffb4

G x = b70e0cbd 6bb4bf7f

321390b9 4a03c1d3 56c21122 343280d6 115c1d21

G y = bd376388 b5f723fb

4c22dfe6 cd4375a0 5a074764 44d58199 85007e34
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Curve P-256

p = 11579208921035624876269744694940757353008614\

3415290314195533631308867097853951

r = 11579208921035624876269744694940757352999695\

 5224135760342422259061068512044369

s = c49d3608 86e70493 6a6678e1 139d26b7 819f7e90

c =         7efba166 2985be94 03cb055c

75d4f7e0 ce8d84a9 c5114abc af317768 0104fa0d

b =          5ac635d8 aa3a93e7 b3ebbd55

769886bc 651d06b0 cc53b0f6 3bce3c3e 27d2604b

G x = 6b17d1f2 e12c4247 f8bce6e5

63a440f2 77037d81 2deb33a0 f4a13945 d898c296

G y = 4fe342e2 fe1a7f9b 8ee7eb4a

7c0f9e16 2bce3357 6b315ece cbb64068 37bf51f5
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Curve P-384

p = 39402006196394479212279040100143613805079739\

27046544666794829340424572177149687032904726\

6088258938001861606973112319

r = 39402006196394479212279040100143613805079739\

27046544666794690527962765939911326356939895\

6308152294913554433653942643

s = a335926a a319a27a 1d00896a 6773a482 7acdac73

c =   79d1e655 f868f02f

ff48dcde e14151dd b80643c1 406d0ca1 0dfe6fc5

2009540a 495e8042 ea5f744f 6e184667 cc722483

b =   b3312fa7 e23ee7e4

988e056b e3f82d19 181d9c6e fe814112 0314088f

5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef

G x =   aa87ca22 be8b0537

8eb1c71e f320ad74 6e1d3b62 8ba79b98 59f741e0

82542a38 5502f25d bf55296c 3a545e38 72760ab7

G y = 3617de4a 96262c6f

5d9e98bf 9292dc29 f8f41dbd 289a147c e9da3113

b5f0b8c0 0a60b1ce 1d7e819d 7a431d7c 90ea0e5f
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Curve P-521

p = 68647976601306097149819007990813932172694353\

00143305409394463459185543183397656052122559\

64066145455497729631139148085803712198799971\

6643812574028291115057151

r = 68647976601306097149819007990813932172694353\

00143305409394463459185543183397655394245057\

74633321719753296399637136332111386476861244\

0380340372808892707005449

s = d09e8800 291cb853 96cc6717 393284aa a0da64ba

c = 0b4 8bfa5f42

0a349495 39d2bdfc 264eeeeb 077688e4 4fbf0ad8

f6d0edb3 7bd6b533 28100051 8e19f1b9 ffbe0fe9

ed8a3c22 00b8f875 e523868c 70c1e5bf 55bad637

b = 051 953eb961

8e1c9a1f 929a21a0 b68540ee a2da725b 99b315f3

b8b48991 8ef109e1 56193951 ec7e937b 1652c0bd

3bb1bf07 3573df88 3d2c34f1 ef451fd4 6b503f00

G x =  c6 858e06b7

0404e9cd 9e3ecb66 2395b442 9c648139 053fb521

f828af60 6b4d3dba a14b5e77 efe75928 fe1dc127

a2ffa8de 3348b3c1 856a429b f97e7e31 c2e5bd66

G y = 118 39296a78

9a3bc004 5c8a5fb4 2c7d1bd9 98f54449 579b4468

17afbd17 273e662c 97ee7299 5ef42640 c550b901
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3fad0761 353c7086 a272c240 88be9476 9fd16650

3. Curves over Binary Fields

For each field degree m, a pseudo-random curve is given, along with a

Koblitz curve. The pseudo-random curve has the form

E: y 2 +  x y = x 3 +  x 2 +  b,

and the Koblitz curve has the form

Ea: y2 + x y = x 3 + ax 2 +  1

where a = 0 or 1.

For each pseudorandom curve, the cofactor is f = 2. The cofactor of each

Koblitz curve is f = 2 if a = 1 and f = 4 if a = 0.

The coefficients of the pseudo-random curves, and the coordinates of the

base points of both kinds of curves, are given in terms of both the polynomial and

normal basis representations discussed in 1.3.

For each m, the following parameters are given:

Field Representation:

• The normal basis type T

• The field polynomial (a trinomial or pentanomial)

Koblitz Curve:

• The coefficient a

• The base point order r

• The base point x coordinate G x

• The base point y coordinate G y

Pseudo-random curve:

• The base point order r
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Pseudo-random curve (Polynomial Basis representation):

• The coefficient b

• The base point x coordinate G x

• The base point y coordinate G y

Pseudo-random curve (Normal Basis representation):

• The 160-bit input seed s to the SHA-1 based algorithm

• The coefficient b (i.e., the output of the SHA-1 based algorithm)

• The base point x coordinate G x

• The base point y coordinate G y

Integers (such as T, m, and r) are given in decimal form; bit strings and

field elements are given in hex.
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Degree 163 Binary Field

    T = 4

p(t) = t 163 +  t 7 +  t 6 +  t 3 +  1 

Curve K-163

   a = 1

    r = 5846006549323611672814741753598448348329118574063

Polynomial Basis:

G x = 2 fe13c053 7bbc11ac aa07d793 de4e6d5e 5c94eee8

G y = 2 89070fb0 5d38ff58 321f2e80 0536d538 ccdaa3d9

Normal Basis:

G x = 0 5679b353 caa46825 fea2d371 3ba450da 0c2a4541

G y = 2 35b7c671 00506899 06bac3d9 dec76a83 5591edb2

Curve B-163

    r = 5846006549323611672814742442876390689256843201587

Polynomial Basis:

   b = 2 0a601907 b8c953ca 1481eb10 512f7874 4a3205fd

G x = 3 f0eba162 86a2d57e a0991168 d4994637 e8343e36

G y = 0 d51fbc6c 71a0094f a2cdd545 b11c5c0c 797324f1

Normal Basis:

    s = 85e25bfe 5c86226c db12016f 7553f9d0 e693a268

   b = 6 645f3cac f1638e13 9c6cd13e f61734fb c9e3d9fb

G x = 0 311103c1 7167564a ce77ccb0 9c681f88 6ba54ee8
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G y = 3 33ac13c6 447f2e67 613bf700 9daf98c8 7bb50c7f
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Degree 233 Binary Field

    T = 2

p(t) =  t 233 +  t 74 +  1

Curve K-233

a = 0

r  =34508731733952818937173779311385127605709409888622521\

         26328087024741343

Polynomial Basis:

G x = 172 32ba853a 7e731af1

29f22ff4 149563a4 19c26bf5 0a4c9d6e efad6126

G y = 1db 537dece8 19b7f70f

555a67c4 27a8cd9b f18aeb9b 56e0c110 56fae6a3

Normal Basis:

G x = 0fd e76d9dcd 26e643ac

26f1aa90 1aa12978 4b71fc07 22b2d056 14d650b3

G y = 064 3e317633 155c9e04

47ba8020 a3c43177 450ee036 d6335014 34cac978
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Curve B-233

    r = 69017463467905637874347558622770255558398127373450135\

          55379383634485463

Polynomial Basis:

b =        066 647ede6c 332c7f8c

0923bb58 213b333b 20e9ce42 81fe115f 7d8f90ad

G x =         0fa c9dfcbac 8313bb21

   39f1bb75 5fef65bc 391f8b36 f8f8eb73 71fd558b

G y =       100 6a08a419 03350678

   e58528be bf8a0bef f867a7ca 36716f7e 01f81052

Normal Basis:

    s = 74d59ff0 7f6b413d 0ea14b34 4b20a2db 049b50c3

    b = 1a0 03e0962d 4f9a8e40

7c904a95 38163adb 82521260 0c7752ad 52233279

G x =        18b 863524b3 cdfefb94

f2784e0b 116faac5 4404bc91 62a363ba b84a14c5

G y =        049 25df77bd 8b8ff1a5

ff519417 822bfedf 2bbd7526 44292c98 c7af6e02 
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Degree 283 Binary Field

    T = 6

p(t) = t 283 +  t 12 +  t 7 + t 5 +  1

Curve K-283

a = 0

   r = 38853377844514581418389238136470378132848117337930613\

24295874997529815829704422603873

Polynomial Basis:

G x = 503213f 78ca4488 3f1a3b81 62f188e5

53cd265f 23c1567a 16876913 b0c2ac24 58492836

G y = 1ccda38 0f1c9e31 8d90f95d 07e5426f

e87e45c0 e8184698 e4596236 4e341161 77dd2259

Normal Basis:

G x = 3ab9593 f8db09fc 188f1d7c 4ac9fcc3

    e57fcd3b db15024b 212c7022 9de5fcd9 2eb0ea60

G y = 2118c47 55e7345c d8f603ef 93b98b10

     6fe8854f feb9a3b3 04634cc8 3a0e759f 0c2686b1
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Curve B-283

r = 77706755689029162836778476272940756265696259243769048\

89109196526770044277787378692871

Polynomial Basis:

b =       27b680a c8b8596d a5a4af8a 19a0303f

ca97fd76 45309fa2 a581485a f6263e31 3b79a2f5

G x =       5f93925 8db7dd90 e1934f8c 70b0dfec

2eed25b8 557eac9c 80e2e198 f8cdbecd 86b12053

G y =      3676854 fe24141c b98fe6d4 b20d02b4

516ff702 350eddb0 826779c8 13f0df45 be8112f4

Normal Basis:

s = 77e2b073 70eb0f83 2a6dd5b6 2dfc88cd 06bb84be

b = 157261b 894739fb 5a13503f 55f0b3f1

0c560116 66331022 01138cc1 80c0206b dafbc951

G x = 749468e 464ee468 634b21f7 f61cb700

701817e6 bc36a236 4cb8906e 940948ea a463c35d

G y =       62968bd 3b489ac5 c9b859da 68475c31 5bafcdc4

ccd0dc90 5b70f624 46f49c05 2f49c08c
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Degree 409 Binary Field
   T = 4

p(t) =  t 409 +  t 87 +  1

Curve K-409
a = 0

r = 33052798439512429947595765401638551991420234148214060\

96423243950228807112892491910506732584577774580140963\

66590617731358671

Polynomial Basis:

G x = 060f05f 658f49c1 ad3ab189

0f718421 0efd0987 e307c84c 27accfb8 f9f67cc2

c460189e b5aaaa62 ee222eb1 b35540cf e9023746

G y = 1e36905 0b7c4e42 acba1dac

bf04299c 3460782f 918ea427 e6325165 e9ea10e3

da5f6c42 e9c55215 aa9ca27a 5863ec48 d8e0286b

Normal Basis:

G x = 1b559c7 cba2422e 3affe133

43e808b5 5e012d72 6ca0b7e6 a63aeafb c1e3a98e

10ca0fcf 98350c3b 7f89a975 4a8e1dc0 713cec4a

G y = 16d8c42 052f07e7 713e7490

eff318ba 1abd6fef 8a5433c8 94b24f5c 817aeb79

852496fb ee803a47 bc8a2038 78ebf1c4 99afd7d6
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Curve B-409

r = 66105596879024859895191530803277103982840468296428121\

92846487983041577748273748052081437237621791109659798\

67288366567526771

Polynomial Basis:

b = 021a5c2 c8ee9feb 5c4b9a75

3b7b476b 7fd6422e f1f3dd67 4761fa99 d6ac27c8

a9a197b2 72822f6c d57a55aa 4f50ae31 7b13545f

G x = 15d4860 d088ddb3 496b0c60

64756260 441cde4a f1771d4d b01ffe5b 34e59703

dc255a86 8a118051 5603aeab 60794e54 bb7996a7

G y = 061b1cf ab6be5f3 2bbfa783

24ed106a 7636b9c5 a7bd198d 0158aa4f 5488d08f

38514f1f df4b4f40 d2181b36 81c364ba 0273c706

Normal Basis:

s = 4099b5a4 57f9d69f 79213d09 4c4bcd4d 4262210b

b =            124d065 1c3d3772 f7f5a1fe

6e715559 e2129bdf a04d52f7 b6ac7c53 2cf0ed06

 f610072d 88ad2fdc c50c6fde 72843670 f8b3742a

G x = 0ceacbc 9f475767 d8e69f3b

5dfab398 13685262 bcacf22b 84c7b6dd 981899e7

318c96f0 761f77c6 02c016ce d7c548de 830d708f

G y = 199d64b a8f089c6 db0e0b61

e80bb959 34afd0ca f2e8be76 d1c5e9af fc7476df
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49142691 ad303902 88aa09bc c59c1573 aa3c009a
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Degree 571 Binary Field

   T = 10

p(t) = t 571 + t 10 + t 5 + t 2 + 1

Curve K-571
a = 0

r = 19322687615086291723476759454659936721494636648532174\

99328617625725759571144780212268133978522706711834706\

71280082535146127367497406661731192968242161709250355\

5733685276673

Polynomial Basis:

G x =  26eb7a8 59923fbc 82189631

f8103fe4 ac9ca297 0012d5d4 60248048 01841ca4

         43709584 93b205e6 47da304d b4ceb08c bbd1ba39

494776fb 988b4717 4dca88c7 e2945283 a01c8972

G y = 349dc80 7f4fbf37 4f4aeade

3bca9531 4dd58cec 9f307a54 ffc61efc 006d8a2c

9d4979c0 ac44aea7 4fbebbb9 f772aedc b620b01a

7ba7af1b 320430c8 591984f6 01cd4c14 3ef1c7a3

Normal Basis:

G x =          04bb2db a418d0db 107adae0

03427e5d 7cc139ac b465e593 4f0bea2a b2f3622b

c29b3d5b 9aa7a1fd fd5d8be6 6057c100 8e71e484

bcd98f22 bf847642 37673674 29ef2ec5 bc3ebcf7
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G y =          44cbb57 de20788d 2c952d7b

56cf39bd 3e89b189 84bd124e 751ceff4 369dd8da

c6a59e6e 745df44d 8220ce22 aa2c852c fcbbef49

ebaa98bd 2483e331 80e04286 feaa2530 50caff60
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Curve B-571

r = 38645375230172583446953518909319873442989273297064349\

98657235251451519142289560424536143999389415773083133\

88112192694448624687246281681307023452828830333241139\

3191105285703

Polynomial Basis:

b = 2f40e7e 2221f295 de297117

    b7f3d62f 5c6a97ff cb8ceff1 cd6ba8ce 4a9a18ad

  84ffabbd 8efa5933 2be7ad67 56a66e29 4afd185a

    78ff12aa 520e4de7 39baca0c 7ffeff7f 2955727a

G x =          303001d 34b85629 6c16c0d4

0d3cd775 0a93d1d2 955fa80a a5f40fc8 db7b2abd

bde53950 f4c0d293 cdd711a3 5b67fb14 99ae6003

8614f139 4abfa3b4 c850d927 e1e7769c 8eec2d19

G y = 37bf273 42da639b 6dccfffe

b73d69d7 8c6c27a6 009cbbca 1980f853 3921e8a6

84423e43 bab08a57 6291af8f 461bb2a8 b3531d2f

0485c19b 16e2f151 6e23dd3c 1a4827af 1b8ac15b

Normal Basis:

s = 2aa058f7 3a0e33ab 486b0f61 0410c53a 7f132310

b =          3762d0d 47116006 179da356

88eeaccf 591a5cde a7500011 8d9608c5 9132d434

26101a1d fb377411 5f586623 f75f0000 1ce61198

3c1275fa 31f5bc9f 4be1a0f4 67f01ca8 85c74777

G x = 0735e03 5def5925 cc33173e
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b2a8ce77 67522b46 6d278b65 0a291612 7dfea9d2

d361089f 0a7a0247 a184e1c7 0d417866 e0fe0feb

0ff8f2f3 f9176418 f97d117e 624e2015 df1662a8

G y = 04a3642 0572616c df7e606f

ccadaecf c3b76dab 0eb1248d d03fbdfc 9cd3242c

4726be57 9855e812 de7ec5c5 00b4576a 24628048

b6a72d88 0062eed0 dd34b109 6d3acbb6 b01a4a97

Downloaded from http://www.everyspec.com



49

APPENDIX 6.1: IMPLEMENTATION OF MODULAR ARITHMETIC

The prime moduli in the above examples are of a special type (called 

generalized Mersenne numbers) for which modular multiplication can be  carried

out more efficiently than in general. This appendix provides the  rules for

implementing this faster arithmetic, for each of the prime moduli  appearing in the

examples.

The usual way to multiply two integers (mod m) is to take the integer 

product and reduce it (mod m). One therefore has the following problem:  given an

integer A less than m 2 , compute

B := A mod m.

In general, one must obtain B as the remainder of an integer division.  If m is

a generalized Mersenne number, however, then B can be expressed as a sum or

difference (mod m) of a small number of terms. To compute this expression, one

can evaluate the integer sum or difference and reduce  the result modulo m. The

latter reduction can be accomplished by adding  or subtracting a few copies of m.

The prime moduli p for each of the five example curves is a generalized

Mersenne number.
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Curve P-192:

The modulus for this curve is p = 2 192 - 2 64 - 1.  Every integer A less than p2

can be written

A = A5 ⋅ 2
320 + Α4 ⋅  2

256 + Α3 ⋅ 2
192 + Α2 ⋅ 2

128 + Α1 ⋅ 2
64 + Α0,

where each Ai is a 64-bit integer.  The expression for B is

B := T + S1 +  S2 +  S3 mod p;

where the 192-bit terms are given by

T = A2 ⋅ 2
128 + A1 ⋅ 2

64 + A0

S1 =   A3 ⋅ 2
64 + A3

S2 = A4 ⋅ 2
128 + A4 ⋅ 2

64

S3 = A5 ⋅ 2
128 + A5  ⋅ 2

64+ A5.
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Curve P-224:

The modulus for this curve is p = 2 224 − 2 96 + 1.  Every integer A less than

p2  can be written

A = A13 ⋅ 2
416 +  A12 ⋅ 2

384 +  A11 ⋅ 2
352 +  A10 ⋅ 2

320 +  A9 ⋅ 2
288 +  A8 ⋅ 2

256 +  A7 ⋅ 2
224 + 

A6 ⋅ 2
192 +  A5 ⋅ 2

160 +  A4 ⋅ 2
128 +  A3 ⋅ 2

96 +  A2 ⋅ 2
64 +  A1 ⋅ 2

32 +  A0, 

where each Ai is a 32-bit integer. As a concatenation of 32-bit words, this can be

denoted by

A = (A13 || A12 || ⋅ ⋅ ⋅ || A0 ).

The expression for B is

B := T + S 1 +  S 2 - D1 - D2 mod p,

where the 224-bit terms are given by

T  =  (  A6 || A5 ||  A4 ||  A3
 ||  A2

 ||  A1 ||  A0 )

S1 = (  A10 || A9 ||  A8 || A7
 ||  0   ||  0   ||  0   )

S2 = (  0    || A13 || A12 || A11
 ||  0  ||  0   ||  0   )

D1 = (A13  || A12 ||  A11 || A10
 ||  A9

 ||  A8  ||  A7 )

D2 = (   0  ||  0   ||  0    ||  0   || A13  || A12 ||  A11).
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Curve P-256:

The modulus for this curve is p = 2256 - 2224 + 2192 + 296  - 1.  Every integer A

less than p2 can be written

A = A15 ⋅ 2
480 +  A14 ⋅ 2

448 +  A13 ⋅ 2
416 +  A12 ⋅ 2

384 +  A11 ⋅ 2
352 + 

A10 ⋅ 2
320 +  A9 ⋅ 2

288 +  A8 ⋅ 2
256 +  A7 ⋅ 2

224 +  A6 ⋅ 2
192 +  A5 ⋅ 2

160 + 

A4 ⋅ 2
128 +  A3 ⋅ 2

96 +  A2 ⋅ 2
64 +  A1 ⋅ 2

32 +  A0, 

where each A i is a 32-bit integer.  As a concatenation of 32-bit words, this can be

denoted by

A = (A15 || A14 || ⋅ ⋅ ⋅ || A0 ).

The expression for B is

B := T + 2S1 + 2S2 + S3 + S4 - D1 - D2 - D3 - D4 mod p,

where the 256-bit terms are given by

T  =  (  A7  || A6   ||  A5  ||  A4  ||  A3 
 ||  A2 

 ||  A1  ||  A0  )

S1 = (  A15 || A14 ||  A13 || A12
 ||  A11 ||  0   ||  0    ||  0   )

S2 = (    0   || A15 || A14 ||  A13 || A12
 ||  0   ||  0    ||  0   )

S3 = (  A15 || A14 ||  0    ||   0   ||   0   || A10 ||  A9  ||  A8  )

S4 = (  A8   || A13 ||  A15 || A14 ||  A13 ||  A11|| A10  ||  A9 )

D1 = ( A10  ||  A8  ||   0   ||   0   ||   0   ||  A13
 || A12

 ||  A11 )

D2 = ( A11 ||  A9   ||   0   ||  0    || A15 ||  A14 || A13 || A12  )

D3 = ( A12 ||   0  ||  A10 ||  A9   ||  A8  || A15 || A14 ||  A13 )

D4 = ( A13 ||   0  || A11  ||  A10
 ||  A9  ||   0   || A15 ||  A14 ).
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Curve P-384:

The modulus for this curve is p = 2 384 - 2 128 - 2 96 + 2 32  - 1.  Every integer A

less than p2 can be written

A = A23 ⋅ 2
736 +  A22 ⋅ 2

704 +  A21 ⋅ 2
672 +  A20 ⋅ 2

640 +  A19 ⋅ 2
608 +

A18 ⋅ 2
576 +  A17 ⋅ 2

544 +  A16 ⋅ 2
512 +  A15 ⋅ 2

480 +  A14 ⋅ 2
448 +  A13 ⋅ 2

416 +  A12

⋅ 2384 +  A11 ⋅ 2
352 +  A10 ⋅ 2

320 +  A9 ⋅ 2
288 +  A8 ⋅ 2

256 +  A7 ⋅ 2
224 +

A6 ⋅ 2
192 +  A5 ⋅ 2

160 +  A4 ⋅ 2
128 +  A3 ⋅ 2

96 +  A2 ⋅ 2
64 +  A1 ⋅ 2

32 +  A0,  

where each A i is a 32-bit integer.  As a concatenation of 32-bit words, this can be

denoted by

A = (A23 || A22 || ⋅ ⋅ ⋅ || A0 ).

The expression for B is

B := T + 2S1 + S2 + S3 + S4 + S5 + S6 - D1 - D2 - D3 mod p,

where the 384-bit terms are given by

T  =  (A11 || A10  || A9 ||  A8   ||  A7  ||  A6  ||  A5  || A4  || A3 
 || A2  ||  A1  ||  A0 )

S1 = (  0  ||   0   ||  0  ||  0    ||   0   ||  A23 ||  A22|| A21 || 0  ||  0   ||  0   ||  0 )

S2 = (A23 || A22  || A21 || A20 || A19  || A18  || A17|| A16 || A15|| A14
 || A13  ||  A12)

S3 = (A20 || A19  || A18 || A17 || A16 || A15 ||  A14 || A13 || A12 || A23|| A22|| A21)

S4 = ( A19 || A18 || A17 || A16 || A15 || A14 || A13  ||   A12 || A20 ||  0 ||  A23 || 0  )

S5 = (  0  ||  0   ||  0   ||   0   || A23 || A22  ||  A21 ||  A20  ||  0 ||   0 ||    0  || 0 )

S6 = (  0  ||  0   ||  0   ||    0  ||   0  ||  0   ||  A23  || A22  || A21 ||  0  ||  0 ||  A20)

D1 = (A22 || A21 || A20 || A19 || A18 || A17 || A16  || A15 || A14
 || A13 || A12|| A23)

D2 = ( 0   ||  0   ||  0   ||  0   ||   0  ||  0   ||  0    ||  A23 || A22 || A2 ||  A20  ||  0)

D3 = (  0 ||   0   ||  0   ||   0  ||   0  ||  0   ||  0    || A23   || A23 ||  0 ||   0   ||  0 ).
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Curve P-521:

The modulus for this curve is p = 2 521 - 1.  Every integer A less than p2 can

be written

A = A1 ⋅ 2
521 +  A0,

The expression for B is

B := A0 + A1 mod p
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APPENDIX 6.2: NORMAL BASES

The elements of GF(2m) are expressed in terms of the type T normal

basis 2 B for GF(2m), for some T.  Each element has a unique representation

as a bit string

( a0 a1 . . .  am-1 )

The arithmetic operations are performed as follows.

Addition : addition of two elements is implemented by bitwise addition modulo 2. 

Thus, for example,

(1100111) + (1010010) = (0110101).

Squaring: if 

α = ( a0 a1 . . .  am-1 )

then

α2 = (am-1 a0 a1 . . .  am-2 )

Multiplication: to perform multiplication, one first constructs a function F(u,v) on

inputs

u = ( u0 u1 . . .  um-1 ) and v = ( v0 v1 . . .  vm-1 )

as follows.

1. Set p ← Tm + 1

2. Let u be an integer having order T modulo p

                                                
2 It is assumed in this section that m is odd and T is even, since this is the only case considered in this standard.
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3. Compute the sequence F (1); F (2),…,F (p-1) as follows:

3.1 Set w← 1

3.2 For j from 0 to T-1 do

Set n ← w

For i from 0 to m-1 do

Set F(n) ← i

Set  n ← 2n mod p

Set w ← uw mod  p

4. Output the formula

  p-2

F(u, v) := Σ uF(k+1) vF(p-k).

  k=1

This computation need only be performed once per basis.

Given the function F for B, one computes the product

( c0 c1 . . .  cm-1 ) = ( a0 a1 . . .  am-1 ) × ( b0 b1 . . .  bm-1 )

as follows.

1. Set ( u0 u1 . . .  um-1 ) ← ( a0 a1 . . .  am-1 )

2. Set ( v0 v1 . . .  vm-1 ) ← ( b0 b1 . . .  bm-1 )

3. For k from 0 to m - 1 do

3.1 Compute

ck := F(u, v)

3.2 Set u ← LeftShift (u) and v ← LeftShift (v), where LeftShift

denotes the circular left shift operation.

4. Output c := ( c0 c1 . . .  cm-1 )
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EXAMPLE.  For the type 4 normal basis for GF(27), one has p = 29 and

u = 12 or 17. Thus the values of F are given by

F (1) = 0 F (8) = 3 F (15) = 6 F (22) = 5

F (2) = 1 F (9) = 3 F (16) = 4 F (23) = 6

F (3) = 5 F (10) = 2 F (17) = 0 F (24) = 1

F (4) = 2 F (11) = 4 F (18) = 4 F (25) = 2

F (5) = 1 F (12) = 0 F (19) = 2 F (26) = 5

F (6) = 6 F (13) = 4 F (20) = 3 F (27) = 1

F (7) = 5 F (14) = 6 F (21) = 3 F (28) = 0

Therefore

F (u; v) =  u0 v1 +  u1 (v0 +  v2 +  v5 +  v6 ) +  u2 (v1 + v3 +  v4 +  v5 )

   +  u3 (v2 +  v5 ) +  u4 (v2 + v6 ) +  u5 (v1 +  v2 +  v3 +  v6 )

   + u6 (v1 +  v4 +  v5 + v6 ).

Thus, if

a = (1 0 1 0 1 1 1) and b = (1 1 0 0 0 0 1),

then

c0 = F ( (1 0 1 0 1 1 1), (1 1 0 0 0 0 1) ) = 1,

c1 = F ( (0 1 0 1 1 1 1), (1 0 0 0 0 1 1) ) = 0,

M

c6 = F ( (1 1 0 1 0 1 1); (1 1 1 0 0 0 0) ) = 1,

so that c = ab = (1 0 1 1 0 0 1).
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APPENDIX 6.3: SCALAR MULTIPLICATION ON KOBLITZ CURVES

This appendix describes a particularly efficient method of computing the

scalar multiple nP on the Koblitz curve Ea over GF(2m).

The operation τ is defined by

τ (x, y) = (x2, y2)

When the normal basis representation is used, then the operation τ is

implemented by performing right circular shifts on the bit strings representing x and

y.

Given m and a, define the following parameters:

• C is some integer greater than 5.

• µ  := (-1)1-a

• For i = 0 and i = 1, define the sequence si(m) by

si(0) =  0, si(1) =  1 - i,

si(m) =  µ •  si(m - 1) - 2 si(m - 2) +  (-1)i

• Define the sequence V(m)

V(0) =  2, V(1) =  µ

V(m) =  µ • v(m -1) - 2V(m - 2).
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For the example curves, the quantities si(m)  and V(m) are as follows.

Curve K-163:

s0(163) = 2579386439110731650419537

s1(163) = -755360064476226375461594

V(163) = -4845466632539410776804317

Curve K-233:

s0(233) = -27859711741434429761757834964435883

s1(233) = -44192136247082304936052160908934886

V(233) = -137381546011108235394987299651366779

Curve K-283:

s0(283) = -665981532109049041108795536001591469280025

s1(283) = 1155860054909136775192281072591609913945968

V(283) = 7777244870872830999287791970962823977569917

Curve K-409:

s0(409) = -1830751045600238213781031719875646137859054248755686\

9338419259

s1(409) = -8893048526138304097196653241844212679626566100996606\

444816790

V(409)=1045728873731562592744768538704832073763879695768757\

5791173829

Curve K-571:
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s0(571) = -373731944687646369242938589247611556714729396459613\

1024123406420235241916729983261305

s1(571) = -3191857706446416099583814595948959674131968912148564\

65861056511758982848515832612248752

V(571)=-148380926981691413899619140297051490364542574180493\

936232912339534208516828973111459843

The following algorithm computes the scalar multiple nP on the Koblitz

curve Ea over GF(2m).  The average number of elliptic additions and subtractions is

at most ∼ 1 + (m/3), and is at most ∼ m/3 with probability at least 1 - 25-C.

For i = 0 to 1 do

n′ ←   n / 2a-C + (m-9) / 2

g′ ← si(m) · n′

h′ ←   g′ / 2m 

j′ ← V(m) · h′

l′ ← Round((g′ + j′) / 2(m+5) / 2)

λi ← l′ / 2C

fi ← Round(λi)

ηi ← λi - fi

hi ← 0

η ← 2 η0 +  µ η1

If η ≥ 1

then
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if ηo - 3 µη1 < -1

then set h1 ← µ

else set h0 ← 1

else

if η0 +  4 µ η1 ≥ 2

then set h1 ← µ

If η < -1

then

if η0 - 3 µ η1 ≥  1

then set h1 ← - µ

else set h0 ← -1

else

if η0 +  4 µ η1 <  -2

then set h1 ← - µ

q0  ← f0  + h0

q1  ← f1  + h1

r0 ← n - (s0  + µ s1) q0 - 2s1 q1

r1 ← s1 q0 - s0 q1

Set Q ← O

P0 ← P

While r0 ≠ 0 or r1 ≠ 0

If r0  odd then

set u ← 2 - (r0  - 2 r1 mod 4)

set r0 ← r0  - u
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if u = 1 then set Q ← Q + P0

if u = -1 then set Q ← Q - P0

Set P0 ← τP0

Set (r0 , r1) ← (r1 +  µr0 /2, - r0 /2)

Endwhile

Output Q
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APPENDIX 6.4: GENERATION OF
PSEUDO-RANDOM CURVES (PRIME CASE)

Let l be the bit length of p, and define

v  =  ( l - 1) /160

w  = l - 160v - 1

1.  Choose an arbitrary 160-bit string s.

2.  Compute h:= SHA-1(s).

3.  Let h0 be the bit string obtained by taking the w rightmost bits of h.

4.  Let z be the integer whose binary expansion is given by the 160-bit string s.

5.  For i from 1 to v do:

5.1  Define the 160-bit string si to be binary expansion of the integer

       (z + i) mod (2 160 ).

5.2  Compute hi :=SHA-1(si).

6.  Let h be the bit string obtained by the concatenation of h0 , h1, . . . , hv as follows:

h = h0  || h1 || . . . || hv

7. Let c be the integer whose binary expansion is given by the bit string h.

8. If c = 0 or 4c + 27 ≡ 0 (mod p), then go to Step 1.

9. Choose integers a, b ∈GF(p) such that

c b2 ≡ a3 (mod p).

(The simplest choice is a = c and b = c. However, one may want to choose

differently for performance reasons.)

10. Check that the elliptic curve E over GF(p) given by y 2 = x3 + ax + b has

suitable order. If not, go to Step 1.

Downloaded from http://www.everyspec.com



64

APPENDIX 6.5: VERIFICATION OF CURVE
PSEUDO-RANDOMNESS (PRIME CASE)

Given the 160-bit seed value s, one can verify that the coefficient b was

obtained from s via the cryptographic hash function SHA-1 as follows.

Let l be the bit length of p, and define

v  =  ( l - 1) /160

w  = l - 160v - 1

1.  Compute h := SHA-1(s).

2.  Let h0 be the bit string obtained by taking the w rightmost bits of h.

3.  Let z be the integer whose binary expansion is given by the 160-bit string s.

4.  For i from 1 to v do

4.1  Define the 160-bit string si to be binary expansion of the integer

       (z + i) mod (2160 ).

4.2  Compute hi :=SHA-1(si).

5.  Let h be the bit string obtained by the concatenation of h0 , h1, . . . , hv as follows:

h = h0  || h1 || . . . || hv.

6. Let c be the integer whose binary expansion is given by the bit string h.

7. Verify that b2 c ≡ -27 (mod p).
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APPENDIX 6.6: GENERATION OF
PSEUDO-RANDOM CURVES (BINARY CASE)

Let:

v =  (m - 1) /B

w = m - Bv

1.  Choose an arbitrary 160-bit string s.

2,  Compute h := SHA-1(s)

3.  Let h0 be the bit string obtained by taking the w rightmost bits of h.

4.  Let z be the integer whose binary expansion is given by the 160-bit string s.

5. For i from 1 to v do:

5.1  Define the 160-bit string si to be binary expansion of the integer

       (z + i) mod (2160 ).

5.2  Compute hi  :=SHA-1(si).

6.  Let h be the bit string obtained by the concatenation of h0 , h1, . . . , hv as follows:

h = h0  || h1 || . . . || hv.

7. Let b be the element of GF(2m) which binary expansion is given by the bit string

h.

8. Choose an element a of GF(2m).

9. Check that the elliptic curve E over GF(2m) given by y2 + xy = 

x3 + ax2 + b has suitable order. If not, go to Step 1.
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APPENDIX 6.7: VERIFICATION OF CURVE
PSEUDO-RANDOMNESS (BINARY CASE)

Given the 160-bit seed value s, one can verify that the coefficient b was

obtained from s via the cryptographic hash function SHA-1 as follows.

Define

v =  (m - 1) /160

w= m - 160v

1. Compute h := SHA-1(s)

2.  Let h0 be the bit string obtained by taking the w rightmost bits of h.

3.  Let z be the integer whose binary expansion is given by the 160-bit string

s.

4.  For i from 1 to v do

4.1  Define the 160-bit string si to be binary expansion of the integer (z

+ i) mod (2160 )

4.2  Compute hi :=SHA-1(si ).

5.  Let h be the bit string obtained by the concatenation of h0 , h1, . . . , hv as

follows:

h = h0  || h1 || . . . || hv.

6. Let c be the element of GF(2m ) which is represented by the bit string h.

7. Verify that c = b.
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APPENDIX 6.8: POLYNOMIAL BASIS TO NORMAL BASIS CONVERSION

Suppose that α an element of the field GF(2m). Denote by p the bit string

representing α with respect to a given polynomial basis. It is desired to compute n,

the bit string representing α with respect to a given normal basis. This is done via

the matrix computation

p Γ = n

Where Γ is an m-by-m matrix with entries in GF(2).  The matrix Γ, which depends

only on the bases, can be computed easily given its second-to-last row.  The

second-to-last row for each conversion is given in the table below.

Degree 163:

3 e173bfaf 3a86434d 883a2918 a489ddbd 69fe84e1

Degree 233:

0be 19b89595 28bbc490

038f4bc4 da8bdfc1 ca36bb05 853fd0ed 0ae200ce

Degree 283:

3347f17 521fdabc 62ec1551 acf156fb

0bceb855 f174d4c1 7807511c 9f745382 add53bc3

Degree 409: 

0eb00f2 ea95fd6c 64024e7f

0b68b81f 5ff8a467 acc2b4c3 b9372843 6265c7ff
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a06d896c ae3a7e31 e295ec30 3eb9f769 de78bef5

Degree 571:

7940ffa ef996513 4d59dcbf

e5bf239b e4fe4b41 05959c5d 4d942ffd 46ea35f3

 e3cdb0e1 04a2aa01 cef30a3a 49478011 196bfb43

c55091b6 1174d7c0 8d0cdd61 3bf6748a bad972a4

Given the second-to-last row r of Γ, the rest of the matrix is computed as

follows.  Let β be the element of GF(2m) whose representation with respect to the

normal basis is r. Then the rows of Γ, from top to bottom, are the bit strings

representing the elements

β m-1, β m-2, . . ., β 2, β, 1

with respect to the normal basis.  (Note that the element 1 is represented by the all-1

bit string.)

Alternatively, the matrix is the inverse of the matrix described in Appendix

6.9.

More details of these computations can be found in Annex A.7 of the IEEE

P1363 standard.
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APPENDIX 6.9: NORMAL BASIS TO POLYNOMIAL BASIS CONVERSION

Suppose that α an element of the field GF(2m). Denote by n the bit string

representing α with respect to a given normal basis.  It is desired to compute p, the

bit string representing α with respect to a given polynomial basis. This is done via

the matrix computation

n Γ = p

where Γ is an m-by-m matrix with entries in GF(2).  The matrix Γ, which depends

only on the bases, can be computed easily given its top row.  The top row for each

conversion is given in the table below.

Degree 163:

         7 15169c10 9c612e39 0d347c74 8342bcd3 b02a0bef

Degree 233:

      149 9e398ac5 d79e3685

59b35ca4 9bb7305d a6c0390b cf9e2300 253203c9

Degree 283: 

     31e0ed7 91c3282d c5624a72 0818049d

053e8c7a b8663792 bc1d792e ba9867fc 7b317a99

Degree 409: 

 0dfa06b e206aa97 b7a41fff

b9b0c55f 8f048062 fbe8381b 4248adf9 2912ccc8

e3f91a24 e1cfb395 0532b988 971c2304 2e85708d
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Degree 571:

452186b bf5840a0 bcf8c9f0

2a54efa0 4e813b43 c3d41496 06c4d27b 487bf107

393c8907 f79d9778 beb35ee8 7467d328 8274caeb

 da6ce05a eb4ca5cf 3c3044bd 4372232f 2c1a27c4

Given the top row r of Γ, the rest of the matrix is computed as follows.  Let β

be the element of GF(2 m) whose representation with respect to the polynomial

basis is r. Then the rows of Γ, from top to bottom, are the bit strings representing

the elements

β, β 2, β 2
2
, …, β 2

m-1

with respect to the polynomial basis.

Alternatively, the matrix is the inverse of the matrix described in Appendix

6.8.

More details of these computations can be found in Annex A.7 of the IEEE

P1363 standard.

Downloaded from http://www.everyspec.com



71

FIPS 186-2, DIGITAL SIGNATURE STANDARD
CHANGE NOTICE 1

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
Gaithersburg, MD 20899

DATE OF CHANGE: 2001 October 5

Federal Information Processing Standard (FIPS) 186-2, Digital Signature Standard, specifies the
Digital Signature Algorithm (DSA) that may be used in the generation and verification of digital
signatures for sensitive, unclassified applications. FIPS 186-2 also allows the use of the digital
signature techniques specified in American National Standards Institute (ANSI) X9.31 (Digital
Signatures Using Reversible Public Key Cryptography for the Financial Services Industry
(rDSA)) and ANSI X9.62 (Public Key Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA)). The standard also specifies a transition
period for the use of existing (legacy) digital signature systems. Reversible public key
algorithms, such as the RSA or Rabin-Williams algorithms, are often used in these legacy
systems.

FIPS 186-2 is used in conjunction with the hash function specified in FIPS 180-1, Secure Hash
Standard (SHS), and includes specifications for the size of the prime modulus p, and algorithms
for the generation of a user’s private key, x, and a user’s per message secret number, k.

This change notice provides changes for the continued use of DSA as specified in FIPS 186-2
about the size of the prime modulus p, modifications for the random number generation
techniques specified in Appendix 3 of FIPS 186-2, and provides instructions for the use of these
techniques when used in contexts other than the generation of DSA keys. This change notice also
provides guidance for the use of the reversible public key algorithms within legacy systems.

Questions regarding this change notice may be directed to FIPS186@nist.gov or to Elaine Barker
(ebarker@nist.gov, 301-975-2911).

The Size of the Prime Modulus

Section 4 of FIPS 186-2 specifies that the prime modulus p of DSA is defined for the range of
prime integers 2L-1 < p < 2L , where 512 ≤ L ≤ 1024 and L is a multiple of 64. This change notice
specifies that L should assume only the value 1024 for DSA as specified in FIPS 186-2, i.e., the
prime modulus p should be defined in the range 21023  < p < 21024.

The RSA and Rabin-Williams algorithms used within legacy systems are defined with a modulus
n and prime factors p and q of n. This change notice specifies that n should be at least 1024 bits
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in length, and p and q should be approximately half the size of n in bits.

Random Number Generation

FIPS 186-2 includes algorithms for the generation of a user’s private key, x, and a user’s per
message secret number, k. These values must be generated randomly or pseudorandomly and
must have values between 0 and the 160-bit prime q (as specified in the standard). Techniques
for generating x and k are provided in Appendix 3 of the standard.

Recently, an unpublished attack on DSA3 was found that relies on the non-uniformity of the
pseudorandom number generators (PRNGs) specified in Appendix 3 of the standard. The attack
has a workfactor of 264 and requires 222 known signatures. This attack can be defended against by
either limiting the number of signatures created using a specific key pair to no more than 2
million signatures while using the PRNGs specified in FIPS 186-2, or by modifying the PRNGs.

If the PRNGs currently defined in FIPS 186-2 are used, the user should be provided with clear
guidance about the limitation to the number of signatures that should be created.

Alternatively, the following modifications of the PRNGs may be used in lieu of those PRNGs
specified in FIPS 186-2.  These modifications reduce the non-uniformity of the PRNGs and do
not affect interoperability.

The two algorithms described below use a one-way function G(t,c), where t is 160 bits, c is b bits
and G(t,c) is 160 bits. Two methods for constructing G are defined in FIPS 186-2: using SHA-1
as defined in FIPS 180-1, and using the Data Encryption Standard (DES) as defined in FIPS 46-
3. If G is constructed using SHA-1, b is between 160 and 512 bits (160 ≤ b ≤ 512); if G is
constructed using DES, b is equal to 160 bits.

1. Revised Algorithm for Computing m values of x (Appendix 3.1 of FIPS 186-2)

Let x be the signer's private key.  The following may be used to generate m values of x:

Step 1. Choose a new, secret value for the seed-key, XKEY .

Step 2. In hexadecimal notation let

t = 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0.

This is the initial value for H0 || H1 || H2 || H3 || H4 in the SHS [FIPS 180-1].

                                                
3 The attack was discovered by Dr. Daniel Bliechenbacher of Lucent Technologies, Bell Labs, Murray Hill, NJ. See
a February 25, 2001 press article at http://www.lucent.com/press/0201/010205.bla.html.
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Step 3. For j = 0 to m - 1 do
3.1  XSEED j = optional user input

3.2 For i = 0 to 1 do

a. XVAL  = (XKEY  + XSEED j) mod 2b

b. wi = G(t, XVAL ).

c. XKEY  = (1 + XKEY  + wi) mod 2b.

3.3 xj = (w0 || w1) mod q

2. Revised Algorithm for Precomputing one or More k and r Values (Appendix 3.2
of FIPS 186-2)

This algorithm can be used to precompute k, k-1, and r for m messages at a time.  Note that
implementation of the DSA with precomputation may be covered by U.S. and foreign patents.

Step 1. Choose a secret initial value for the seed-key, KKEY .

Step 2. In hexadecimal notation let

t = EFCDAB89 98BADCFE 10325476 C3D2E1F0 67452301.

This is a cyclic shift of the initial value for H0 || H1 || H2 || H3 || H4 in the SHS.

Step 3. For j = 0 to m - 1 do

3.1 For i = 0 to 1 do

a. wi = G(t, KKEY )

b. KKEY  = (1 + KKEY  + wi) mod 2b

3.2 k = (w0 || w1) mod q
                

3.3 Compute kj
-1 = k-1 mod q

 
3.4 Compute rj = (gk mod p) mod q
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Step 4. Suppose M0 , ... , Mm-1 are the next m messages. For j = 0 to m - 1 do

a. Let h = SHA-1(Mj).

b. Let sj = (kj
-1(h + xr j)) mod q

c. The signature for Mj is (rj, sj).
        

Step 5. Let t = h
    

Step 6. Go to step 3.

Step 3 permits pre-computation of the quantities needed to sign the next m messages.  Step 4 can
begin whenever the first of these m messages is ready.  The execution of step 4 can be suspended
whenever the next of the m messages is not ready.  As soon as steps 4 and 5 have completed, step
3 can be executed, and the results saved until the first member of the next group of m messages is
ready.

In addition to space for KKEY , two arrays of length m are needed to store r0 , ... rm-1 and k0
-1, ... , km-1

-

1 when they are computed in step 3.  Storage for s0 , ... , sm-1 is only needed if the signatures for a
group of messages are stored; otherwise sj in step 4 can be replaced by s, and a single space
allocated.

General Purpose Random Number Generation

Several of the FIPS require the use of an Approved (i.e., FIPS-approved or NIST recommended)
random number generator (RNG). The RNG specified as algorithm 1 above or the algorithm
specified in Appendix 3.1 of FIPS 186-2 may be used in addition to any other Approved RNG.
However, when the RNG is used for the generation of random numbers other than for DSA keys,
the “mod q” term should be omitted. This will result in the following changes to the
specification:

FIPS 186-2, Appendix 3.1, Step 3 c:
Change “xj = G(t, XVAL ) mod q” to “xj = G(t, XVAL )”.

Algorithm 1 of this change notice, Step 3, substep 3.2:
Change “xj = (w0 || w1) mod q” to “xj = (w0 || w1)”.
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