

AGARDograph No. 295

THE AERODYNAMICS OF PARACHUTES

by

D.J.Cockrell

Department of Engincering
The University
Leicester LE1 7RH
United Kingdom
Edited by
A.D.Young

70 Gilbert Road
Cambridge CB4 3PD
United Kingdom

This AGARDograph has been produced at the request of the Fiuid Dynamics Panel of AGARD.

THE MISSION OF AGARD

The mision of AGARD is to bring together the leading personalities of the NATO nations in the fields of science and technology relating to acrospace for the following purposes:

- Exchanging of scientific and technical information;
- Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence posture;
- Improving the co-operation among member nations in aerospace research and development;
- Providing scientific and technical advice and assistance to the Military Committee in the field of aerospace research and development (with particular regard to its military application);
- Rendering scientific and technical assistance, as requested, to other NATO bodies and to member nations in connection with research and development problems in the acrospace field;
- Providing assistance to member nations for the purpose of increasing their scientific and technical potential;
- Recommending effective ways for the member nations to use their research and development capabilities for the common benefit of the NATO community.

The highest authority within AGARD is the National Delegates Board consisting of offically appointed senvor representatives from each member nation. The mission of AGARD is carried out through the Panels which are composed of experts appointed by the National Delegates, the Consultant and Exchange Programme and the Aerospace Applicatons Studies Progranume. The results of AGARD work are reported to the member nations and the NATO Authorities through the AGARD series of pullications of which this is one.

Partucipation in AGARD activitics is by invitation only ard is normally limited to citzens of the NATO nations.

The content of this publication has been reproduced directly from material supplied by AGARD or the author.

PREFACE

In the aftermath of the 1939-45 war, as a more scientific approach began to supplement cut-and-try as a basis for the design of parachutes, W. D.Brown first established a sound acrodynamic foundation for his subject in his book, 'Parachutes'. Rôles which were being fulfilled by the parachutes which he described in it were firstly inan-carrying for both life-saving and military applications; secondly weapon and store dropping; and thirdly deceleration of aircraft. Looking back over the 35 years that have elapsed since this publication, although their form has been greatly expanded, all of these are still essential tasks for parachutes to fulfil. However, additional ones also are now required. For example, crews of spacecraft as well as aircraft make encapsulated descents using parachutes as essential parts of their toial escape systems and in addition to drag production contemporary parachutes may also need to demonstrate sidzificant lift-producing abilities or the capability of rotation at chosen spin rates during their descent. Not ony have parachufes been used on a number of occasions to assist reentry into the earth's atmosphere, they have also been cmployed in landing essential instraments on to other planets as well as on to the planet earth.

They have also had to find their place within the much wider classification of aerodynamic decelerators, in which they share a primarily decelerative task with balloons and various metallic non-inflatable devices. In his glossary in 1951, Brown defined a parachute as an umbrella-shaped device to produce drag, commonly used to reduce the rate of descent of a falling body'. A more precise and limiting definition is now customary. Within this broader classification of aerodynamic decelerators parachutes are nou considered to be that class of drag-producing bodies whose essential characteristics include their flexibility, their inflated shape being dependent on the flow field which surrounds them.

A greater precision in definition epitomises changes taking place in many engineering fields, not only in that of parachute aerodynamics. With the availability in most design offices of powerful mainframe computers and in many situations of relatively inexpensive mini- and micro-computers, new possibilities exust for engineers to establish the relevant basic relationships and to develop their subsequent solutions. For these task to be performed adequately, basic principles must be appreciated and agreed sign conventions implemented.

It is to meet all these kinds of need that 'The Aerodynamics of Parachutes' has been written. In the subject of parachute aerodynamics this AGARDograph is envisaged as a direct descendant of Brown's 'Parachutes', for it has the same emphasis, that of selecting the principal aerodynamic characteristics of parachutes and the various known factors which affect these characteristics'. It takes into account not only many of the subsequent publications which have been summarised in the 1963 and 1978 United States Air Force Parachute Design Guides, but also the proceedings of the American Institute of Acronautics and Astronautics Acrodynamic Decelerator Conferences which have been heid every two and a half years, the Helmut G.Heinrich Decelerator Systems Engineering Short Courses which took place in 1983, 1985 and 1987 and 'The Parachute Recovery System Design Manual', which will shortly be used by the United States Naval Weapons Center.

It has been anticipated that its main readers will be recent engineering graduates entering research establishments, parachute companies or related industries. In its preparation some appreciation on the part of the reader of basic mechanics, elementary fluid mechanics and the principles of computing has been assumed.

Apart from Karl-Friedrich Doherr and my own research associates, too many other individuals have contributed their components, criticisms and suggestions for me to mention their names individually. I can only hope that they will recognise their invaluable contributions in the publication which has resulted from all of our efforts.

David Cockrell
Leicester - 1987

Au lendemain de la guerre de 1939-45, alors qu'un démarche plus scientifique commençait à compléter les méthodes empiriques du genre "on découpe et on essaie" comme base de la conception des parachutes, W.D.Brown fut le premier à élaborer une théorie aérodynamique saine pour ce qui faisait l'objet de son livre "Les parachutes". Les fonctions remplies par les matériels qu'il y décrivait étaient d'abord l'emport des hornmes dans ie double but de la sauvegarde de la vic humainc ct des applications militaires, en deuxième lieu le largage d'armes et d'approvisionnements, en troisieme et dernier lieu la décélérauion des avions à l'atterrissage. Si on étudie les 35 années qui se sont écoulées depuis cette publication, tous ces emplois sont encore essentiellement ceux que l'on attribue aux parachutes méme si leur aspeet extéricur s'est beaucoup diversifié. Néanmoins il en faut maintenant quelques modèles supplémentaires. Par exemple, les équipages dés véhicules de l'espace comme ceux des avions font des descentes enfermé dans des capsules ćquipées de parachutes qui constituent la partie essentielle de l'ensemble de leur système d'évacuation; et en plus de la production d'engins basés sur la trainće, il peui aussi èrre demandé aux parachutes modernes de posseder des qualités de portance ou d'aptitude à toumer sur eux-mèmes à une vitesse donnée au cours de leur descente. Des parachutes ont été utilisés non seulement en de nombreuses occasions pour faciliter la rentrée dans l'atmosphere terrestre, mais aussi comme instruments essentiels d'atterrisage, quill s'agisse de se poser sur notre globe ou sur d'autre planètes.

Il a également fallu leur trouver un créneau dans la classe beaucoup plus vaste de décélérateurs aérodynamiques où ils remplissent, concurrement avec les ballons et divers dispositifs métalliques non gontlables, une tâche qui consiste
essentiellement à assurer un freinage. Dans son glossaire de 1951, Brown a défini le parachute comme "un dispositif en forme de parapluie, fournissant une trainée, utilisé communément pour diminuer la vitesse de descente d'un corps qui toinbe". La définition courante actuelle est plus précise et plus limitative. Au sein de la catégorie très vaste des décélérateurs aérodynamiques, les parachutes sont génératcurs de trainće dont une des caractéristiques essentielles est la souplesse d'emploi, car une fois gonflés, leur forme dépend de l'écoulernent de lair autour d'cux.

Cette meilleure précision dans la définition résume bien l'évolution qui s'est faite dans beaucoup de secteurs de lindustrie, et pas seulement dans l'aérodynamique des parachutes. Grâce à la présence de puissants ordinateurs centraux dans la plupart des bureaux d'étude et, dans beaucoup de cas, à l'utilisation de mini- et de micro-ordinateurs relativement peu coúteux, les ingénicurs disposent de possibilités nouvelles pour établir les formules de base voulues et dévelcepper les solutions qui en découlent en vue de la conception. Pour que ces tąches puissent ètre exécutées efficacement, il faut bien cemer les principes de base et appliquer les conventions de symbolique convenues.

Cest pour satisfaire tous ces besoins que louvrage "Aérudynamique des parachutes" a été écrit. Dans le domaine dont il port le titre, cet "AGARDographe" est considére comme la suite directe du livre "Les parachutes" de Brown, car il insiste sur le méme thème: "les principales caractéristiques des parachutes et les divers facteurs connus qui les affectent". Il tient compte, non seulement du grand nombre de publications postérieures qui ont été répertoriées et résumées dans les "Guides de conception des parachutes" de l'armée de l'air américaine de 1963 à 1978, mais également des comptes rendus de débats des conférences de l'institut américain d'Aćronautique et d'Astronautique ("American Institute of Aeronautics and Astronautics") sur la décélération aérodynamique qui se sont tenues tous les deux ans et demi, des cours techniques abrégés de Helmut G.Heinrich sur la technique des systèmes de décélération qu'il a donnés en 1983, 1985 et 1987, et du "Manuel de conception d'un projet de récupération par parachute" qui sera prochainement publié par le Centre des armements navals américain ("U.S. Naval Weapons Center").

On a prévu que les principaux lecteurs de cet ouvrage seraient les ingénieurs fraichement diplömés qui sont sur les point d'entrer les établissements de recherche, les sociétés de fabrication de parachutes ou les industries qui leur sont associées. Pour préparer sa présentation, on a supposé que le lecteur possédait quelques connaissances de mécanique fondamentale, des notions élémentaires de mécanique des fluides et des principes de linformatique.

En dehors de Karl-Friedrich Doherr et de mes propres associés en matière de recherche, les autres personnes qui ont apporté la contribution de leurs connaissances, de leurs critiques et de leurs suggestions sont trops nombreuses pour que je puisse les citer toutes individuellement. Sespère seulement quielles pourront reconnaitre au passage les apports inestimable: qu'elles ont faits à cette publication quii est l'aooutissement de tous nos efforts conjugués.

CONTENTS

Page
PREFACE iii

1. INTRODUCTION
1.1 Function of a Parachute
1.2 Aerodynamics: One Among Many Design Criteria11.3 Brief Historical Survey1
Chapter 1 Referencen3
2. STEADY-STATE AERODYNAMICS4
2.1 Some Definitions, Relevant Dimemsionless Parameters
2.2 Some Stendy-State Aerodynamic Characteristics
2.2.1 Shape of The Parschute Cansopy2.2.1.1 Opening Charscteristics
2.2.1.2 Is 'Drive' Required
2.2.1.3 What Value of C_{T} is Required?
2.2.1.4 What C_{s} Characteristic is Require d
2.2.2 Variation of Aerodynamic Characteristics with Reynolds number79
2.23 Mrior 10
3 Steady-State Flight Mechanics 13
2.3.1 Equilibrium13
2.3.1.1 The Conventional Parachute 13
2.3.1.2 The Gliding Parachut 15
2.3.2 Static Stability
2.3.3 Steady Descen 202.3.4 The Froude Number, F
2.4 The Porosity of Parachute Canopies 21
2.5 Stokes-Flow Parachute Systems 23
Chapter 2 References 23
APPENDIX TO SECTION 2 - SOME COMMONLY-ADOPTED SHAPES FOR PARACHUTE CANOPIES 24
2A. 1 Solid Textile Conventional Canopies 24
2A. 2 Slotted Textile Conventional Canopies 25
2B Gliding Parachute Ceropies 26
3. TRAJECTORY DYNAMICS27
3.1 The Trajectory System, Axes Selection. Degrees of Freedom27
27
27
3.2 Two-Degree of Freedom Model
3.3 Three-Degree of Freedom Model
3.3.1 A Masstess Parachute Joised to the Payloned
Are Parachute and Payloas Modelied as a Single Rigid Body
3.3.3 The Parat2830
3.3 .4 The 33
33
Chapter 3 References 33
4. UNSTEADY AERODYNAMICS34
4.1 Introduction to the Unsteady Flow Problem34
35
4.2 The Added Mass Concept in Parachute Unstendy Motion4.2.1 General Considerations4.2.2 Determining the Added Mass Components
4.3 Signilicance of Added Mass Coelicients to Parachute Unsteady Motion Prediction
4.3.1 Their Historical Importance4.3.2 Their Contemporary Importance35
3638Chapter 4 References3843
5. PARACHUTE DEPLOYMENT AND INFLATION
5.1 Interaction Forces Between Canopy and Payload
5.1.1 Expression for the Internctive Forces, F ,
5.2 Critionl Opening and Closing Speeds. Squidding
5.3 Canopy Inflation Theories
53.1 Sems-emprical Indiation Models Based on the Filling Distance Concept 5.3.1.1 The Mass Ratio Method 5.3.1.2 The Canopy Lcallig Method 5.3.1.3 The Plianz Method
5.3.2 More Sophisticated Filling Time Methods
Page
5.3.3 Ludtke's Parachute Opening Force Analysis 47
5.3.4 A Dynamic Similitude Model for Canopy Infiation 48
5.3.5 Kinetic Models for Canopy Intiation 48
Chapter 5 References 49
6. EXPERIMENTS TO DETERMINE PARACHUTE AERODYNAMIC CHARACTERISTICS 51
6.1 Experiments Conducted on Full-Scale Parachutes in Air 51
6.2 Experiments in a Controlled Environment 51
6.3 Requirements for Model Tests Conducted in n Controlled Environment 51
6.4 Wind Tunnel Tests un Model Parachutes 52
6.4.1 Flow Visualisation Around Model Parachutes 52
6.4.2 Measurement of Steady Aerodynamic Forces and Moments 52
6.4.3 Unsteady Aerodynamic Measurements 52
6.4.3.1 Wind Tunnel Measurements of Interactive Forces During Infiation under Finite Mass Conditions 52
6.4.3.2 Experiments to Determine the Added Masses for Unsteadily-Moving Fully-Inflated Parachute Canopies 54
6.5 Aerodynamic Measurements Made on Parachutes in Other Facilities than Wind Tunnels 54 54
Blockage Caused by Model Parachute Canopies
6.6.1 Maskell's Bluff-body Blockage Constrrint Metho
6.6.2 Cowdrey's Alternative Expression for Bluff-body Blockape Constrain 55
6.6.3 The Quasi-Streamlined Frow Method for Bluff-body Blockage Constraint 55
6.6.4 Bluff-body Blocknge Constraint Determined from the Working Section Wall Pressure Distribution 55
6.6.5 Estimation of Blockage Constraint in Wind Tunmnel Tests on Parachute Canopies
56
56
Chapter 6 References
7. METHODS OF ANALYSIS FOR FLOW AROUND PARACHUTE CANOPIES 59
7.1 Relevance of Potential Fluid Flow Solution to Parachute Aerodynamics 59
7.2 The Irrotational Flow Field Approach 60
7.2.1 Ibrahim's Solution for the Added Mass of Fuily-Inliated Parachute Canopies 60
7.2.2 Klimas' Parachute Canopy Metiood 60
7.2.3 Roberts' Inflating Canopy Method 60
7.3 Vortex Sheet Methods of Representing the Wakes Shed by Parachute Canopies 60
9.3.1 Yortex Sheet Methods Applied to Bodies of Various Geometries by Meyer and Purvis 61
7.3.2 Flow Around Discs by de Bermardinas, Graham and Parker 61
7.4 Summary of Requirements for the Determination of Paractute Aerodynamic Characeteristics by Potential Flow Methods 61
Chapter 7 References 62
8. EXTRA-TERRESTRIAL APPLICATIONS OF PARACHUTES 63
8.1 Atmospheric Characteristics on Mars, Venus and Jupiter 63
8.2 Mission Requirements for Parmchutes 64
8.3 Heinrich's 1966 Analysis of Extra-Terrestrial Parachute Aerodynamics 64
66
8.4 Tests on Parachutes for Extrr-Terrestrial Applications Conducted in the Earth's Atmosphere 66
9. FURTHER AERODYNAMIC RESEARCH INTO PARACHUTES 68
9.1 Aerodynamic Problems in Full-Scale Flight Testing 68
9.2 Aerodynamic Problems in Wind Tunnel Testine 68
9.3 Aerodynamic Probiems in the Analytical Determination of a Parachute's Characteristics 69
9.4 Efiects of Growth in Computer Power 69
9.5 Rewarding Fiedds in Contemporary Experimental Research 69
9.5.1 The Aerodynamics of High Performance Gliding Parachutes 69
9.5.2 The Aerodynamics of Rotating Parachutes 69
9.5.3 Experiments to Further the Application of Vortex Sheet Theories to Parachutes 70
Chapler 9 References 70
10. POSTSCRIPT 71

Performance Data Bank ${ }^{12}$, established at the United States Air Force Flight Dynamics Laboratory in the period 1970 73, was a significant stef, in data dissemination and this AGARDograph has been written to further assist data formalisation, application and dissemination.

1.3 BRIEF HISTORICAL SURVEY (REFERENCES 1.3 TO 1.11)

Although evidence of parachute-like devices to lower both animals and hurians from high towers exists in Chinese archives from as early as the 12 th-century and in 1514 sketches of parachutes were made by Leonardo da Vinci, the first authenticated parachute descent was not made until October 22 1797, when Andre-Jacques Ganerin jumped from a balloon over Paris. Early users of parachutes were stunt men, descendings from towers or from tethered balloons for the entertainment of spectators. By the early nineveenth century, exhibition parachute descents from balloons were being made all oves the world and in this capacity, in 1808 a parachute first saved a human life.

At the outbreak of the 1914 world war, participants on both sides studied activities behind the enemy lines by stationing observers in baskets, slung beneath tethered hydrogen-filled lualloons. As these balloons exploded if they were hit by machine-gun fire, on the approach of enemy aircraft the obsirvers would bail out, using for this purpose cotton parachutes, some 9-11 metres in diameter which were tethered to their baskets. A large number of observers' lives were thus saved, there being 407 successful parachute descents in France by members of the British Ballocn Wings alone and a further 125 by members of the United States Forces. For French observers a parachute system was evolved in which the entire basket was retrieved, becoming the first recorded 'ensapsulated' retrieval by parachute. Similar observational practices were carried out by the German Army, with a corresponding high success rate in observer retrieval.

When aircraft entered the war the use of parachutes by aircrew was delayed. The probable reason for not using them initially was because of difficulties in egress from aircraft cockpits. Since it took valuable time to put the parachute hamess on and to extract the parachute from its container which was fixed to the aircraft, often there was insufficient altitude remaining for the parachute to fully open. But eventually, the prime importance of pilots lives was recognised, probably because of the considerable investment in training cost and time which they represented. The first recorded saving of life from an aircraft by a parachute was in 1916. At that time parachutes were opened by static lines attached to the aircraft, the opening being delayed until the parachutist was well clear of the machine.

By this stage in the war, individual aviators on the German side were equipping themselves with appropriately modified Heinecke parachutes which had originally been intended for balloon observers. As these parachutes opened they lifted the aviators clear of their cockpits. Following the development of 'packaged' or pack parachutes by Charles Broadwick and cthers in the tarly 1900's, all combatants rapidly made the necessary developments in materials and in parachute packing. On April 28 1919, Leslie L. Irvin made the first free parachute descent, from 1500 ft above the ground. By this time, parachutes were in regular use for the dropping of flares and in 1918 they were often the means by which spies were infiltrated behind enemy lines.

The first parachute designed for military personnel was standardised in 1924. After that time, first in the United States and later in Great Britain, the use of parachutes became compulsory for aircrew. By about 1930 the Soviet Army had begun to equip and train some of its units for airbome operations, using parachutes. Corresponding German units were deployed in Holland and Belgium during the early stages of the 1939-45 war.

By this stage in many countries a systematic testing and development programme had become essential. There was an over-riding need for reliability, thus for a better appreciation of paraciure materials characteristics, of structural strengths, opening factors, drag characteristics and stability behaviour. Research took place in many places but incre: ingly in the United Kingdom and in Germany. By the outbreak of the second world war in 1939 there was considerable experience in using parachutes for weapon stabilisation, required both for impact attitude and the need to obviate high g.loading in the direction normal to that of the weapon axis, in the dropping of supplies by parachute rad in paratrooping. During that war there was considerable development in all these applications as well as in the aircraft deceierator rote, made necessary through both the advent of dive bombing and the rapid deceleration on landing reruired by some fighter aircraft. During the 1930's the needs for high aircraft deceleration ted to the development of ribbon parachutes by Georg Madelung. At the high speeds which were necessary such parachutes wexe able to provide the required low opening shock loads and also exhibit stability in pitch.

These various applications were derranding differing parachute characteristics, for example a low degree of parachute stability tolerable to a member of aircrew making an emergancy escape from his aircraft would be quite unacceptable to a regular parachutist such as a paratrooper, or for an aircraft dscelerator system. For such ejector systems knowledge of the relevant parameters influencing parachute inflation became essential so that satisfactory predictions of the time taken for inflation and the corresponding forces which were developed could be achieved. Using parachutes, guided missiles, such as the V. 1 and V.2, as well as missile components were successfully recovered in 1944 and the carliest ejector seat deceleration was made by parachute about 1944-6, the idea for so doing originating in Sweden.

During the 1939-45 war, al the various research establistumente parachuae sections were established. For example, at the Royal Aircraft Establishment under W.D.Brown, the British Parachute Section was established in 1942 . After
this war was over, when T.F.Johns, a member of this Section, published the Report "Parachute Design", he stated that most usual requirements for parachutes were:
(i). that they will inveriably inflate;
(ii). that they will develop specified drag forces at particular descent speods;
(iii). that they will be sufficiently strong to withstand opening at speeds which are usually higher than their descent speeds, and
(iv). that they will give specified degrees of stability to the payloads to which they are aunched.

In this AGARDograph, the aerodynamic aspects of reguirement (ii) are discussed in chapter 2 , those of (i) in chapter 5 and (iv) in chapter 4. The acrodynamic aspects of requirement (iii) are considered in chapters 2,3 and 4 .

After the end of the second worid war, in the United States the military engagements in Viet-Nam and elsewhere stimulated more parachute rescearch into giding parachures such as the ram-air inflated texile wing originally proposed in 1961 by Jalbert, the emergency cscape of aircrew and the airborne delivery of personnel, stores and weapons as well as into aircraft retardation and vehicle recovery over a wide dynamic pressure range. Deceleration through the deployment of a series of parachute canopies in a number of separate stages became commonplace. By the 1960's the ribbon parachutes developed for this purpose were used for the deceleration of the United Slates astronauts returning froma the Moon in the Mercury, Gemini and Apollo spacecraft as well as those in the Soviet Union's Vostok and Soyuz space vehicles. Yuri Gagarin safely landed Vostok I by parachute in Aprii 1961 and in February 1962 John Glenn used a ringsail ribbon perachute to land a Mercury spacecraft. In July 1976, using parachutes, successful landings of the first of two Viking spacecraft was made on the planet Mars.

REFERENCES

Ibrahim,S.K. An Overview of Munition Decelerator Technology with Recent Applications at Honeywell. Proceedings of the AIAA 8th Aerodynamic Decelerator and Balloon Technology Conference. Hyanhis, 1984

DeWesse,J.H. and McCarty,R.E. Parachute Design and Performance Data Bank. Air Force Flight Dynamics Laboratory, Wright-Patterson A.F.B. AFFDL-TD-74-45, 1975

Knacke,T.W. Parachute Recovery System Design Manual. Naval Weapons Center,China Lake,Califomia NWC TP 6575. To be published in 1981. Pre-publication copy delivered in part as reference 5.4.

Brown,W.D. Parachutes. Pitman \& Sons, London, 1951
Dennis,D.R. Recent Advances in Parachute Technology. Aeronautical Journal. pp.333-342, Nov. 1983
Gold,D. Early Development of the Manually Operated Personnel Parachute, 1900-1919. Proceedings of the AJAA 2nd Aerodynamic Deceleration Systems Conference, 68-964, El Cer:ro,1968

Pepper,W.B. \& Maydew,R.C. Aerodynamic Decelerators-An Engineering Review. AIAA Journal of Aircrafl. 8,1, Jan. 1971

Heinrich_H.G. Some Research Efforts Related to Problems of Aerodynamic Deceleration. U.S. Wright Air Development Division WADD TN 60-276,Nov. 1961

Ewing,E.G., Bixby,H.W. and Knacke,T.W. Recovery System Design Guide. AFDL-TR-78-151, December 1978

Johns,T.F. Parachute Design.U.K.Aeronautical Research Council R.\& M. 2402, Dec. 1946
Knacke,T.W. Technical-Historical Development of Parachutes and Their Application since World War I. AIAA-86-2423. Proceedings of the ANAA 9th Aerodynamic Decelerator and Balloon Techrology Conference, Albuquerque, 1986.

Although it is more logical to begin by describing the deployment and the inflation of the parachute canopy, proceed with its deceleration and then to consider its behaviour in the steady state, basic aerodynamic concepts for parachutes are most readily introdused by first considering their fully-deployed steady descent.

2.1 SOME DEFINITIONS. RELEVANT DIMENSIONLESS PARAMETERS

In flight mechanics the characteristic forward direction of vehicles in motion is first determines. Then a common procedure is to establish orthogonal sets of axes which are fixed in these vehicles, passing through ars origin which itself is fixed in the vehicle. Such axes are referred to as body ares. Customarily the axis $\mathbf{O - x}$ is so positioned that it points in that characteristic forward direction. As Fig. 2.1 illustrates, the angle of attaci', α, is the angle measured between the component in the Oxz plane of the resultant airflow V_{z} in that forward direction and the body axis $\mathrm{O}-\mathrm{x}$. The body axes are right-handed in direction.

As Terms and Symbole for Flight Dynamics ${ }^{2 \prime}$ makes clear, in acconautical parlance the term angle of incidence is no longer an acceptable alvernative for angle of autack, α.

Like any other immersed body, when a parachute moves through a fluid a resultant aerodynamic force R is developed on it. Experiments can be devised by which to measure both the magnitude of this force and its moment about any specified location. Though these measurements are sufficient to define the line of action of this resultant force they do not determine the precise position of the centre of pressure, a specific point on that line of action at which the resultant acrodynamic force can be considered to act. Ir most acrodynamic applications the location of the centre of pressure is determined by convention. Thus, for a section of aircraft wing section or for a gliding parachute the centre of pressure position is defined as being at the intersection of the resultant aerodynamic force line of action with the chord line of the aerofoil section which constitules the wing or the gliding parachute. A gliding parachute, such as that with a ram-air canopy described in Appendix 2B, is one which is capable of imparting a horizontal component of velocity or drive to the parachute and its payload. Momentarily it is possible for a system comprising a gliding parachute and payload to develop a resultant lift force. In contrast is the conventional parachute, possessing solely a drag-generating role. A number of conventional parachuic canopies are illustrated in Appendix 2A. In some situations this distinction between these two types of parachute canopies becomes artificial, since conventional parachutes become gliding parachutes if appropriate pancls are removed from the canopy. When this occurs either definition of parachute could be adopted, whichever is the more convenient.

In the physical appreciation of parachute behaviour, such as when formulating and solving equations of motion, it is sometimes desirable (though not essential) to know the centre of pressure location. For conventional parachutes the centre of pressure position is defined to be at the the intersection of the line of action of the resultant aerodynamic force with the parachute axis of symmetry.

```
Fig. 2.1 Tangential \& Normal Components of Aerodynamic Force
```



```
O Origin of co-ordinate System
G Centroid of Parachute System
cp Centre of Pressure of Parachute System
\(\mathbf{V}_{\mathbf{R}}\) Parachute Resultant Velocity at Origin
\(\alpha\) Angle of Attack
R Resultant Aerodynamic Force
N Normal Component of Aerodynamic Force
T Tangential Component of Aerodynamic Force
```

Theols for Flight Dynamics, International Stharacteristic of parachutes is their drag D, defined in Terms and She direction of the resultant relative sirfown Standards 1151^{21} as the component of the resultant aerodynamic force in resultant velocity the other component of the resultand opposite to that of the parachute. In the plane of the consideration will be given to the tangential and the normal componyamic force is its lift. L. Initially however, to its drag and lift components. Since conventional parachutcenents of the resutant serodynamic force rather than present purposes a two-dimensional representation will bechutes are usually considered to be axially symmetric for desirable with gliding parachutes however, the two-dimensionat conve. Three-dimensional representation is certainly desirable with gliding parachutes however, the two-dimensional conventions of high aspect ratio aircraft serodynamics
usually prevail. Aspect rutio denotes the ratio of the wing span resultant velocity is considered to lie in the plane of symmetry of the parachuts. chord and for the gliding parachute the

The components of the resultant serodynamic force symetry of the parachute.
axes and in the reverse sense to these axes are termed the tare parallel and normal respectively to the $0-\mathrm{x}$ and $0-z$ axes and in the reverse sense to these axes are termed the tangential force, T and the normal force, N , For a
conventional parachute, as shown in Fig. 2.1, the tangential component symmetry. Expressed non-dimensionally they are:

$$
\begin{equation*}
C_{r}=T /\left(1 / 2 \rho V_{R}^{2} S_{0}\right) \tag{and}
\end{equation*}
$$

$C_{N}=N /\left(1 / \rho V_{k}^{2} S_{0}\right)$
(2.1 \& 2.2)
where ρ is the local air density, V_{R} is the parachute resultant velocity at the origin of a co-ordinate system which is fixed in the parachute and S_{0} is the nominal total surface area of the canopy that is, it represents the total canopy surface area, inclusive of any openings, slots and vent areas.

Since steady aerodynamic forces and moments developed on an
be functions of the body shape, inclusive of its attitude in the fluid the bed body such as a parachute are considered to through the fluid in which it is immersed, as well as the the fluid, the body size, logether with its relative velocity dimensional analysis:

$$
\begin{equation*}
C_{T} \text { and } C_{K} \quad=f(\alpha ; R e ; M a) \tag{2.3}
\end{equation*}
$$

where $\mathrm{Re}=\mathrm{V}_{\mathrm{R}} \mathrm{D}_{\mathrm{d}} / v$ is the Reynolds number and

$$
\begin{equation*}
\left.D_{*}=\left[4 S_{0} / \pi\right)\right]^{1 / 2} \tag{2,4}
\end{equation*}
$$

D_{e} being defined as the parachute nominal diameter and v as the fluid's kinematic viscosity.

Since the nominal total surface area of the canopy is not always clearly defined there can be confusion over the magnitude of the parachute's rominal diameter $D_{\text {a }}$. To avoid this confusion the term constructed diameter, D_{8} is sometimes used. The Recovery Systems Design Guide, reference 1.9, defines the constructed diameter of a parachute canopy as 'the distance measured along the radial seam between points where the maximum width of opposing gores intersects that radial seam'.

The Mach number Ma equals $\mathrm{V}_{\mathrm{n}} / \mathrm{a}$, where a is the locial speed of sound in the undisturbed fluid. The ways in which these and other aerodynamic force and moment coefficients vary with the angle of attack, Reynolds number and Mach number are described in Section 2.2.

For gliding parachutes the aerodynamic reaction R is usually expressed in terms of its two components, lift L and drag D respectively perpendicular to and parallel to the resultant airflow, as illustrated in fig.2.2 The positive direction of lift is in the opposite sense to the weight of the system and the positive direction of drag is in the opposite sense to the parachute's resultant velocity. Like cangential and normal force components, lift and drag forces are similarly expressed in terms of non-dimensional coefficients as C_{L} and C_{D} :

$$
\begin{equation*}
C_{L}=\frac{L}{1_{2} \rho V_{R}^{2} S_{0}} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{D}=\frac{D}{\frac{1}{2} \rho V_{R}^{2} S_{0}} \tag{2.6}
\end{equation*}
$$

The non-dimensional force coefficients C_{L} and C_{D} can be expressed as functions of the angle of attack, the Reynolds number and the Mach number in exactly the same way as were the force coefficients $\mathrm{C}_{\boldsymbol{T}}$ and C_{N} in equation 2.3.

To avoid any confusion in determining the sense of the lift component force it is preferable to confine the use of tangential and normal force components to conventional parachutes while reserving lift and drag components for gliding parachutes. When considering flight mechanics however, the component of aerodynamic force in the direction of the relative airflow, i.e. the drag component is often required, so transformation is necessary from one set of aerodynamic force components to the other. The relationships shown in Fig.2.3 are:

$C_{L}=C_{N} \cos \alpha-C_{T} \sin \alpha$
where the subscripts 0 and E respectively imply measurement at sea level and the equivalent air speed, the expressions for the aerodynamic force components in equations $2.1,2.2,2.5$ and 2.6 can be written in terms of the equivaient air speed $\mathrm{V}_{\mathbf{5}}$. The latter is the appropriately-corrected speed be recorded by an air speed indicator.

2.2 SOME STEADY-STATE AERODYNAMIC CHARACTERISTICS

To illustrate the functional relationships expressed in equation 2.3, some typical aerodynamic characteristics of various canopy shapes are now considered. A list of the most common parachutc canopy shapes, together with a brief account of their aerodynamic characteristics, is appended to Section 2.
2.2.1 Shape of Parachute Canopy

As explained in the Introduction, the process of parachute design is unevitably one of making compromise decisions. The shape of the parachute canopy is determined by considering all the roles which the parachute may be required to fulfil. Some of the factors which will influence the choice of design are oullined below.
2.2.1.1 Opening_Characteristics The speeds at which parachute canopies are required to deploy and to inflate strongly influence the maximum structural loads which they must be designed to withstand. On strength considerations, if inflation is required at high equivalent air speeds, ribbon parachute canopies, such as that shown in Fig.2.4, are almost exclusively chosen.

2.2.1.2 Is 'Drive' Required? Drive, defined in Section 2.1, may be a stragetic requirement, as it is for airbome forces parachutes, or it may be undesirable, as would be the case for dropping stores by perschune into a confined zone. As will be outlined in Section 2.3.2, a parachute canopy possessing drive is likely to be strongly stacically stable in pitch.

When drive is required, a gliding parachute cenopy must be adopted. But where drive would be an undesirable characteristic a conventional prachure cenopy is used instead.

Since many gliding parachutes are effectively inflatable low aspect ratio wings, their merodynamic characteristics vary with the angle of attack and wing aspect ntio in a manner iypical of these ruio wings. Glidiag parachoses are limited by control consideraions to a maximum aspect ratio of abowa $3: 1$, giving a gende stall and a correspondingly slow increase in drag coefficient. The ratio of lift to drag is low; at the present sate of the art abont $3: 1$ is characteristic but higher ratios are aminable with the more advanced design of swept-wing clowed-cell ram-nit gliding pasrachutes described in Section 9.5.1. The characteristic variation of lifil coefficiem with angle of atacet for ram-mir
gliding parachute cancpies having aspect ratios varying from $1: 1$ to $3: 1$ is shown in Fig. 2.5. These experimental results were quoted by Lingards from an carlier report by Nicolaideste.

Fig. 2.5 LIFT COEFFICIENT VARIATION WITH ANGLE OF ATTACK FOR RAM-AIR GLIDING PARACHUTES

Fig. 2.6 DRAG COEFFICIENT VARIATION WITH ANGLE OF ATTACK FOR RAM-AIR GLIDING PARACHUTES

In Fig. 2.6, the corresponding drag coefficient variation with angle of ausck and aspect ratio is shown for ram-air gliding parachutes.
2.2.1.3 What Value of $\mathrm{C}_{\mathcal{L}}$ is Reqpired2 It will be shown in Section 2.3 .3 that for a given canopy size and payload mass the rate of descent of a parachure decreases as the magnitude of the tangential force coefficient C_{T} increases. In generat, as high a value as is practicable is desirable for C_{r}. At zero angle of anterk, C_{i} is equal to the drag coefficient C_{D}. Some typical chascteristics for the variation of C_{D} and C_{T} with angle of musk are shown in Figs.2.6 and 2.7. They are scen io be dependent on the porosity of the parachute canopy, a property which will be discussed in Section 2.4. Whereas in Fig.2.6 characteristics for a typical gliding parachuse have been given, in Fig. 2.7 they are shown for fint circular perachuce canopies, 30 called because when these canopies we spread out flat on a plane surface they are circular in stape

2.2.1.4 What C_{N} Characteristic. is Required? It will be shown in Section 23.1 that the autitude of the canopy when in equilibrium is deternined by the angle of atteck at which C_{N} is equal to yero. Further, the condition for a

parachute to be statically stable in pitch is shown in Section 2.3 .2 to be that when in equilibriam, dC/dad must be positive. Almost any pirschute canopy will descend stably if only it is made sufficienuly porous for exemple, ribbon parachute cmopies, being highly poroes, characteristically dieplay stroag static stability in pitch.

Typical characteristics showing the varincion of C_{n} with angle of atack for flat circulat parachute carsupies are shown in Fig. 2.8. They, 100 , are atrongly porosity dependen. For these and other parachute canopy shapes, as porosity is incressed nor oaly does the ungeatial force coefficiext, CT markediy decresse, resulting for a given canopy shape and size in sa increased descent velocity, bat as very porcus cmopies infiane they may exibibit squidding, defined by Brown ${ }^{12}$ as a teadercy for the open canopy to collapre to a forms in which the open diameter lies between ontethird and one-quanter of the fulty-open dixacter, the atspe of tie collopsed purctruic exaspy then resembling that of a squid. The phenomenon of squidding is further discussed in Section 5.2.
2.2.2. Variation of Aerodynamic Coefficients with Reynolds Number

Published data on the variation of parachute serodynamic coefficients with Reynolds number are almost entirely concerned with drag coefficient varivion. Provided that the Reynolds sumber, based on parachute casopy nominal diameter, is greater than about 10, Figs. 2.9a and 2.9b indicate thas litcte variation in drag coeflicient with Reynolds number occurs. By inference, at these Reynolds numbers little variation of other aerodynamic force coefficients with Reynolds number is axticipated. In Fig.29, comparing corresponding data for ocher bluff bodies, i.e. a sphere and a circular dise normal to the flow, it is evident that at high Reynolds numbers the boundery layers detach and near the leading edge of these bodies fow sepmrnion cccurs.

Since for these bluff bodies there is litue or no boundary layer variaion with Reymolds number, the resulting variation in aerodynamic coefficients with Reynolds number is also small. In Figs. 2.9a and 2.9 b cross parachute canopies canopies are referred to. These are manufactured from two rectangular strips of material joined together io produce a cross or a cruciform shape, appearing as shown in Fig. 2.10.

As Fig. 2.96 indicoves, for Reynolds numbers above 10°, small variations with Reynolds number in the drag coefficient of parachures can occur, but these variaions are of titule practicsil significunce. However, from free flight

them are steady and uniess substantial changes in cmopy projocted area occur wimnic forics which sre measured on exceeds about 10^{3} there is little resulting variation in aerodynamic charecteristics in tholds number, once the hatter be considered to be effecficients of parachutes which exhibit dynuanic stability in pitch their free rescent through the which oscilite to be effectively independent of Reynolds number. However this is pich at zeso angie of attack can also which oscillate substantially during their descena. For these hater, the ayerase drat the case for unstable parachutes descent are functions of the piching angles through which they oscillate. A distinction most measuren suring to oscillate as they descend. This poinurachutes which are rigidly consuraired in wind tunnels and ones whe he made to oscillate as they descend. This point is further developed in Section 2.3.3.

12
2.2.3 Variation of Aerodynamic Coefficieats with Mach Number

With bluff bodies such us parachute cenopies substantial variations in drag coefficients with Mach number are to be anticipated. This variation is strongly dependent on both the canopy shape and the local Reynolds number. Fig. $2 . i 1$ ia is generally illustrative of the substantial drag coefficient dependence on Mach number, a dependence which develops in subsonic flows as Fig. 2.11b, describing the characteristics of a parachute cluster, illustrates. Hyperflo parachute canopies, whose characteristics are shown in Fig. 2.11a, were flexible ribbon concepis which were specifically designed for supersonic operation by the Cook Research Laborttories.

Fig. 2.11a EFFECT OF SUPERSONIC MACH NUMBERS ON PARACHUTE AERODYNAMIC CHARACTERISTICS

In order to establish high Mach number aerodynamic chanacteristics of parachute canopies, it is easeatial to use either veyy large high-speed wind tunnel facilities to obviate blockage effects or else to flight test full-scale cenopies. The blockage constreint of parachute models in wind tuanels is discussed in section 6.3.

2.3 STEADY-STATE FLIGHT MECHANICS

 2.3.1 Equilibrium2.3.1.1 The Conventional Parachute_By resolving and taking the moments of the external forces acting on the conventional parachute shown in Fig. 2.12 the conditions for its equilibrium can be established. As the figure shows, the angle θ is the inclination of the parachute axis of symmetry, defined in Section 2.1, with the vertical. Initially, the drag of the payload is considered as negligible compared with that of the canopy.

Resolving in the Ox direction:

$$
\begin{equation*}
m y \cos \theta-T=0 \tag{2.12}
\end{equation*}
$$

Resolving in the O_{z} direction:

$$
\begin{equation*}
m g \sin \theta \cdot N=0 \tag{2.13}
\end{equation*}
$$

Taking moments about the system centroid, \mathbf{G} :

$$
\begin{equation*}
M_{G}=-N\left(x_{g}-x_{c}\right)=0 \tag{2.14}
\end{equation*}
$$

Then since ($\mathrm{x}_{\mathrm{g}}-\mathrm{x}_{\mathrm{c}}$) is non-zero, for equilibrium the normal aerodynamic force component, N must be zero.
Equation 2.13 then shows that since mg is necessarily non-zero, at equilibrium the angle θ must be zero. Under this condition equation 2.12 shows that the tangential force component, T equals mg. Hence, when it is in equilibrium a conventional parachute descends with its axis of symmetry vertical, at such an argle of autack, a that no normal aerodynamic force component is developed on it.

When the drag of the paylond is not negligible when compared with that of the canopy, at equilibrium the normal force component is small and positive. Under these conditions, a sable canopy descends at a smali positive angle of attack, describing a coning motion with the semi-apex angle of the conc equal to this angle of atlack. In order to minimise this coning motion the drag of the payload must be small compared with that of the canopy.
2.3.1.2 The Gliding Parachute For exactly the same reason as for a conventional parachute, if the drag of the payload attached to a gliding parachute is neglected then when uus parachute is in equilibrium it descends so that its axis Oz_{2} is verical. This axis is drawn through both the canopy centre of pressure, cp , located on the aerofoil section chori line at about the quarter-chord position and the parachute-payload system centroid, G. From the origin O, selected on the axis $\mathrm{Oz}_{\text {, the }}$ axis Ox extends at right angles to Oz in the plane of symmetry and in the same serse as that of the parachute's resultant velocity V_{k}.

Fig. 2.13 has been drawn in the equilibrium position. In this figure the line $O P$ has been drawn through the crigin O and perpendicular to the acrofoil chord line. The adjustable rigging angle ϕ lies between OP and the axis Oz . In reference 2.1 the symbol γ is used for the angle of climb of an aircraft. Throughout The Aerodynamics of Parachutes the angle of descent, γ_{3} will be adopted instead, where

$$
\begin{equation*}
\gamma_{t}=-\gamma . \tag{2.15}
\end{equation*}
$$

Using the symbols shown in Fig.2.13 and applying equilibrium condtions corresponding to those adopted for conventional parachutes in equations 2.12 to 2.14 , including neglecting the drag of the payload, by resolving forces in the Ox direction:

$$
\begin{equation*}
L \sin \gamma_{4} . D \cos \gamma_{a}=0 \tag{2.16}
\end{equation*}
$$

by resolving forces in the Oz direction:

$$
\begin{equation*}
\text { nitg }-L \cos \gamma_{4}-D \sin \gamma_{4}=0 \tag{2.17}
\end{equation*}
$$

and by taking moments absut the centroid, G :

$$
\begin{equation*}
M_{c}=-\left(L \sin \gamma_{d}-D \cos \gamma_{d}\right)\left(z_{z}-z_{k}\right)=0 . \tag{2.18}
\end{equation*}
$$

From the inset diagram in Fig. 2.13:
and

$\tan \gamma_{2}$	$=D / L=L_{L / D}$.
	$=L / m g$.

From the conditions cstablished in Fig. 2.13, at equilibrium the angle of sesceat γ_{t} is related to the angie of attack α by:

$$
\gamma_{i}=\alpha+\phi
$$

If the drag of the payload is not neglected, then at equilibrium the Oz axis of the gliding parachute is inclined at an angle θ to the vertical, so that:

$$
\begin{equation*}
\alpha+\phi \quad=\quad \theta+\gamma_{0} . \tag{2.21}
\end{equation*}
$$

By adding the payload drat to the forces shown in Fig. 2.13 it can readily be seen that the condition for equilibrium is that the axis 0 z is inclined at a small negative angle θ to the vertical. As this angle is, in general, small equation 2.20 is approximately valid even when it is necessary to take the drag of the payload into consideration. Thus:

$$
\begin{equation*}
\gamma_{k}=\alpha+\phi . \tag{2.22}
\end{equation*}
$$

Now, through equation 2.19, γ_{1} is a function of the angle of attack, α. Equation 2.22 demonstrates that the purpose of allowing the rigging angle ϕ to vary is to adjust the angle of attack at which the gliding parachute flies, making possibie a range of equilibivum ratios of lift to drag at which the parachute descends.

2.3.2 Static Stability

Whether or zot a system is stable is determined by its response to suall displacements from its equilibrium position. Static stability is solely concerned with the directions of the moments which are developed on such a displaced system, a statically stable system being one which, as a corsequence of a small displacement from equilibrium, develops a moment in a direction which would restore the system to equilibrium. This concept has nothing to say about the equilibrium of forces which act on the system after displscement or about the frequency and attenuztion or amplification of any resulting oscillations, nevertheless, it is a very valuable concept in a number of fields inclading aircraft dynamics and in Section 4.3.2 it is shown to have particular merit when applied to parachute dynamic pitching motion. Since a system which exhibits static stability about one axis need not necessarily do so about any other, it is important io define the axis about which the stability of a system is being considered.

The concepts of static stability and instability are illustramed in Fig. 2.14 by referenze to a pendulum, hanging on the end of a light, straight rod. When this supporting rod hangs vertically the pendulum's suspended mass is in equilibrium Work must be done to displace it from this equilibrium position and to incline the supporting string through an angle $\Delta \theta$. Having made such a small displucement, the pendulum develops a moment ΔM about the suspension point 0 . This moment is in the direction to restore the system to the equilibrium state and is opposed to that of the displacement. The static stability of the system is characterised by the relationships that:
(i). in equilibriun, the monent about 0 :

$$
\begin{equation*}
M_{\bullet}(\theta) \quad=0 \tag{2.23}
\end{equation*}
$$

(ii). and afyer a small displacement:

However, if the pendulum were inverted, with the supporting rod vertical the system is also in equilizrium. But, in allowing the supporting rod to deflect, work is done by the system on the rod. Having deflected thruugh a smal angle $\Delta \theta$ the moment then develoned about the suspension point O is in the same direction as that of the displacement. Hence, for this invertea pundulum $\mathrm{dM} / \mathrm{d} \theta$ is greater than 0 .

In exactly the same way, the criteria required for the equilibrium and the static stability of a parachute in pitch are, from equations 2.12 to 2.14 and 2.16 to 2.18, that
$M_{0}(\alpha)=0$
$\partial M_{G} \partial \alpha<0$.

By specifying moments about the parachute centroid it is ensured that the moment consequent upon a small disturbance from the equilibrium state is wholly aerodynamic. Its magnitude and its sign can then be determined readily, solely from steady-state acrodynamic tests.

For a conventional parachute, the necessary conditions for equilibrium and static stability in pitch are given from equations 2.14 and 2.25 as:
together with
or, from equation 2.27:
$M_{G}(\alpha)=-N\left(x_{g}-x_{c}\right)=0$.
$\partial M_{G} \partial \alpha<0$
$\partial N / \partial \alpha>0$

Whereas, for a gliding parachute, from equations 2.18 and 2.25:

$$
\begin{align*}
M_{c}= & -[L \sin (\alpha+\phi)-D \cos (\alpha+\phi)] z_{G}=0 . \tag{2.30}\\
& \partial M_{G} / \partial \alpha<0 \tag{2.31}
\end{align*}
$$

together with
Some typical steady-state aerodynamic pitching moment characteristics for conventional parachutes have been taken from the Recovery Systems Design Guide ${ }^{19}$ and are shown in Fig. 215.

The aerodynamic pitching moment coefficient C_{m} is deftned in a similar way to the force coefficients in equations 2.1, 2.2, 2.5 and 2.6 by:

$$
\begin{equation*}
C_{m} \quad=\frac{M}{\frac{1 / 2 \rho V^{2} S_{8} D_{0}}{}} \tag{2.32}
\end{equation*}
$$

the nominal diameter, D_{0} being defined in equation 2,4.
Since pitching moments are the products of the normal force, N and an appropriate moment arm, when tabulaing experimental results it is important to specify precisely the location of the axis about which the pitching moment has been measured. As equation $\mathbf{2 . 2 5}$ indicates, the system centroid, \mathbf{G} is often an important location about which pitching moments are required but as this is dependent on the mass of the payload which is suspended from the canopy its location may not be known with precision at the time of performing aerodynamic experiments on the parachute canopy. In much of the established pitching moment coefficient data for parachute canopies the point about which this moment has been measured is unspecified. Often it is the suspension line confluence point which, for all practical purposes, can be considered to be the system centroid. This lack of precision can make these data unreliable. In his experimental data Doherr ${ }^{210}$ has overcome this probiem by specifying the canopy centre of pressure location relative to the canopy hem line at the skirt periphery.

The parachute canopies whose characteristics are shown in Fig. 2.15 are all in equilibrium at zero angle of attack. However, of the five canopies illustrated only those that are cross-shaped are statically stable at this angle, the other three canopies illustrated exhibiting simulaneous equilibrium and static stability at certain positive angles of attack. For example, the flat circular canopy is in equilibrium and is statically stable in pitch at an angle of antack of about 20 degrees. These pitching moment characteristics are skew-symmetric about zero angle of attack, thus the flat circular caropy described is also in equilibrium and is statically stable at - 20 degrees angle of attack.

Both of these solutions are within the Oxz plane. The flat circular canopy exhibits the required equilibrium and stability characteristics whenever it flies with its axis of symmery vertical and the resultant relative airflow lies on the surface of a cone whose axis is the canopy axis of symmetry and whose semi-apex angle is 20 degrees. Since no particular direction is preferred, during descent the parachute oscillates through approximately ± 20 degrees. In the literaure such a parachute is referned to as an unstable parachute.

On the other hand, the cross (or cruciform) parachute canopy of 3.8:1 arm ratio shown in Fig. 2.10, is referred to as a stable parachute. It is in equilibrium and is statically stable in pitch at zero angle of attack, thus any disturbance from this ciuilibrium state will be atlenuated. Since the angles through which stable parachutes oscillate depend on the amplitude of the forces which disturb them from equilibrium, during descent they cannot be stated with any exactitude. However, the oscillatory motion which ensues is often heavily damped, for reasons to be explained in Section 4.3.2. Thus the observed oscillatory motion can be quite minimal and in the literaure it is customary, though inaccurate, to specify these small pitching angles through which stable, as well as unstable, parachutes oscillate.

It is clear from Fig.2.15 that the steady-state aerodynamic characteristics of cross parachutes are functions of arm ratio, definted in Fig. 2.10 as the constructed length to width ratio of one of the two canopy arms. Normal force coefficient variations with angle of attack for a variety of arm ratios are shown in Fig.2.16. Equations 2.2 and 2.29 indicate that a necessary condition for a conventional parachute to be stable in picch is that $\mathrm{dC}_{\sqrt{ }} \sqrt{\partial}$ a must be positive at $\alpha=0$. For the cross parachute canopics shown in Figs. 2.16, this condition is satisfied by appropriate combinations of arm ratios and fabric porosities, for example the curves drawn in Fig. 2.16a are for imporous canopies, showing that a condition for static stability in pitch is that the arm ratio of imporous cross-shaped canopies should exceed 3.0:1.

Fig 2.16a EFFECT OF ARM RATIO VARIATION Normal Force Coefficient, ON CROSS CANOPY AERODYNAMIC

Reference to Fig. 2.16b shows that cross canopies with an arm ratio of $3.0: 1$ can exhibit static stability in pitch provided that they are not manufactured from imporous fabric. Figs. 2.4 and 2.5 have already made clear that the porosity of the canopy has a very marked effect on parnchute aerodynamic characteristics.

Of course, cross parachutes are not the oaly canopies which exhibit static stability in pitch. As Figs. 2.3 and 2.15 have already indicated, a tendency to parachute stability is a consequence of canopies increasing in porosity. However, as Fig. 2.5 indicates, this is accompenied by a comesponding reduction in drag coefficient and as explained in Section 2.3.3, leads to deteriorating descent characteristics. A considerable experimental rest programme on canopy stability was undertaken in 1962 by Heinrich and Heak ${ }^{22}$. A number of its results are given in Chepter 4 of the 1963 Parachute Design Guide ${ }^{27}$.

Figure 2.17 is when from later experimental work performed by Dohen ${ }^{210}$ in which he demonstraved the stelic stability in picch \mathfrak{x} certain solid textic canopies and that of a number of sloted panctute cenopies. In the reference
quoted he indicated that there was some Reynolds number dependency in his results. He also showed that substantial interference to the canopy's aerodynamic charncteristics is often caused by the presence of the payload forebody.

Aerodynumic characteristics of unstable conventional parachute canopies can be considerably changed by removal of a panel or a portion of a panel. The consequent loss in axiai symmetry results in the parachute acquiring a horizontal component of velority or 'drive' during descent and thus becoming a gliding parachute. Jorgensen and Cockrell ${ }^{212}$ have demonstrated that the resultant relative airflow is then at a high and statically-stabic angle of attack, thus the parachute acquires a satisfaciory descent perfermance.
2.3.3 Steady Descent

In a steady equilibrium descent it has been shown in Section 2.3.1 that, provided the payload drag is negligible compared with that of the parachute canopy, the attitude of the axis of symmetry $O x$ for a conventional parachute and of the axis Oz for a gliding parachute is vertical. Under these conditions, for conventional parachutes equation 2.12 reduces to:
$\mathrm{mg}=\mathrm{T}$
If the parachute is stable then during descent its angle of attack is zcro and from equation $2.7 \mathrm{C}_{\boldsymbol{T}}=\mathrm{C}_{\mathrm{D}}$. Hence, from equation 2.6 , for a stable cenventional parachute:

$$
\begin{equation*}
m g=1 / \rho \rho V_{D}^{2} S_{q} C_{D} \tag{2.34}
\end{equation*}
$$

From this equation it is evident that the descent velocity V_{D} is inversely proportional to the square roct of the drag coefficient C_{D}. It is also proportional to the square root of the parachute and payload weight and as the former is generally negligible compared with the latter the descent velocity can be considered to be a function of the weight of the payload. It decreases as the ground is approached and the air density, ρ increases and it is inversely proportional to the square root of the canopy surface area, $\mathrm{S}_{\boldsymbol{\alpha}}$. By measuring the descent velocity V_{D} and knowing the other parameters the drag area of the parachute, $C_{D} S_{\text {a }}$, can thus be calculated.

It is normal practice to apply equation 2.34 to unstable as well as to stable conventional parachutes. This is then an average determination made for a body whose angle of autack during descent will vary. It may therefore differ in magnitude from wind tunne! derivations made at fixed angles of attack. Although with stable parachutes this difference is not marked with unstable canopies it could be significant.

Fig. 2.18 STEADY DESCENT OF A GLIDING PARACHUTE

Velocity down

For gliding parachutes, from equation 2.16:

$$
\begin{equation*}
m g=L \cos \gamma_{A}+D \sin \gamma_{4} \tag{2.35}
\end{equation*}
$$

Thus, from the definitions of C_{2} and C_{D} in equations 2.5 and 2.6 and the expression for $\cos \gamma_{d}$ in equation 2.19b:

$$
\begin{equation*}
\operatorname{mog}=1 / 2 \rho V_{\Omega}^{2} S_{d}\left[C_{\imath} / \cos \gamma_{d}\right] \tag{2.36}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\mathbf{V}_{\mathbf{2}}=\left[\frac{2 m \mathrm{~g}_{\mathrm{c}} \mathrm{SOF}_{5} \mathrm{Y}_{\mathrm{t}}}{\rho \mathrm{~S}_{\mathrm{L}} \mathrm{C}_{\mathrm{L}}}\right]^{1 / 2} \tag{2.37}
\end{equation*}
$$

As Fig. 2.18 shows, the horizontal and vertical components of the parachute's resultant velocity, V_{R} are given respectively by u and w, where
and

$$
\begin{equation*}
0 \quad=\quad V_{R} \cos \gamma_{0} \tag{2.389}
\end{equation*}
$$

From equation 2.37, the velocity down the glide path, V_{n} increases with increasing altitude and increasing wing loading, mg/S. But for a given height loss, the horizontal distance travelled is a function of the angle of descent γ, which, equation 2.21 shows, is solely a fuction of the gliding parachute's aerodynamic characteristic, $C_{\|} / \mathcal{C}_{p}$.
2.3.4 Froude Number, F

The Froude number F for a parachute is defined as:

$$
\begin{equation*}
\mathbf{F}=V_{D}^{2} / D_{\Delta} E \tag{2.39}
\end{equation*}
$$

Since it relates the descent speed in a given gravitational field to the required size of the parachute canopy, this similarity parameter is a very useful performance number. It is not wholly an aerodynamic characteristic of the parachute, since it is a combination of the system's drag coefficient with its mass ratio, $\mathrm{R}_{\text {m: }}$:

$$
F \quad \propto \quad 1 /\left(R_{m} C_{D}\right)
$$

(2.40)
where the mass ratio R_{m} is a measure of the ratio of air mass enciosed in the fully-inflated parachute canopy to the payload mass $m_{\text {, }}$, thus:

$$
\begin{equation*}
\mathbf{R}_{\mathrm{m}}=\rho \forall / \mathrm{m}_{\mathrm{m}} \tag{2.41}
\end{equation*}
$$

In equation 2.41 the symbol \forall denotes the representative displaced volume of an immersed body. For a parachure canopy the representative displaced volume is considered to be that of a hemisphere which has a diameter equal to the canopy nominal diameter $D_{\text {r }}$. The concept of the representative displaced volume is further discussed in Section 4.2.1.

This relationship berween the Froude number and the mass ratio for parachutes is illustrated in Fig. 2.19, devised by Doherr as a means of illustrating the descent characteristics for four different parachute classes. It illusirates equation 2.40 which shows that for a given drag coefficient the Froude number F is inversely proportional to the mass
ratio R_{m}. In the tigure, lines of constant drag cocfficient would be rectangular hyperbolee, the drag coefficient Conyentional prigin is approuched.
Conventlomal parachutes are esteatially high drag dovices which cause farge payioed mesees to taccend to Since the mase rasio R_{m} is a measure of the mess of sir cotroined in the cas large paylond masees to doucend alowly the Froude number F is that of deacent speed to phyload stre, a conventican popy to that of the payloud carried, while boih Frondin mosiber sind mas ratio. Both high stability parachuet
panchutes deacend rapidly and operate at high Froudechutes have smaller drag coefficients. Whereas high ztability ower Froude aumbers.
One important application for rotating parachertes is to dow
spin for a given rate of descent to them. They therefore require high mabe manitions and then to impan a high rate of refatively small and they therefore posvess relacively large Froude mass ratios. However, their drag coefficients are anbmunition deceleration are further discuseed in Section 9.5.2.

2.4 THE POROSTTY OF PARACHUTE CANOPIES

are strongly influenced by the porosity of the parochute conac charucteristics and consequently the stability of pernehutes parachute deployment and inflation. As Brownia hate canopy fabric. Canopy porosity also has a significant effoct on silk it has been necessiary to specify how permestible is the prom the days when canopies were manufactured from togethat with the need and the meuns for its measuremem parachute fabric, hence an appreciation of cenopy porosity acrodynamic characteristics clemely depend on the ratio of the extended over at lease the hast half century. Although material aret, that is on the canopy geometric porosity, the thow threa of openings in the canopy material to the total size but also of the pressure difference scross it, as well as the though the canopy is a function not only of this grid canopy is immersed, Heinrich ${ }^{231}$ defined the permeability, of the nominal porosity of the of the fluid in which the volumetric air flow per unit area of material (e.g cubic fysq, fisece is compority of the canopy material as the function of the pressure difference across the cancapy. British experimentenonly used) and he showed this to be a deformation two different materials posseasing the same nominal experiments have indicated the becanse of material representative of steady descent conditions display very diffenal porosity whea the pressure difference scross them is more representative of canopy inflation. It is standerd British praminal porosities when this pressure difference is canopy materials, thereby delemmining their nominal porasity when the to measure volumetric air flow through the water gange, i.e. equal to a 10 inch vertical column of water. This is epresure difference scrows them is 10 inches deploynsent phase. In the United States and Europe this volvenctric is appropriste to the pressure differeace during the
Anly 0.5 incher of water, a prescure difference which is ruluer motric nir flow is measured when the pressure differeace is
The effeccive porosity of a parachate cmopy was defined by beinrich as the of rtendy deucent conditions. the porcus surface to the canopy free stream velocity V. He proposed:

$$
\begin{equation*}
U / V=\pi\left(\Delta p /\left(1 / 2 \rho V^{2}\right) ; R_{e} ; M_{a}\right] \tag{2.42}
\end{equation*}
$$

where Δp represents
Mach number respectively.
For incompressible flow without material deformation Payne ${ }^{2 d 4}$
suggessed the largely empirical relationsthip:

$$
\Delta \mathbf{p}=\mathbf{k}_{1} \mathbf{U}^{\mathbf{2}}+\mathbf{k}_{\boldsymbol{q}} \mathbf{U}
$$

(2.43)
where the velocity U is here more rigorously defined as the average of the flaid velocities approaching mad lenving respectively.

By writing equation 2.43 in the form
Ψ
$=k_{1} U+i_{3} \quad(2,44)$
average velocity through the fabric U is meseured in G rents k_{1} and k_{2} can be determined experimentilly. Since the gradients, if both etts of measurements me menilsble for areat Britain and in the United Stules at different preseure be used to estimate the vohumetic Jow rute through the cagopy cenopy fabric, Paype's expremion in equation 2.44 cm In a privase communication, Lingard has proposed thepy the any requirad preaspre difterence.
could be estimated as follows:

from the porous canopy stould exceed a certith percientage, syy l0x of the inflow thropgh the canopy mouth, when
2.8 Knacke,T.W, and Hegcle,A.M. Model Parachutes: Comparison Test of Various Types. U.S. Air Force/Aeronautical Systems Div, Report MCREXE-672-12D, January 1949
2.9 Bemdt_R.J. and Babish.C.A. Supersonic Parachute Research. Proceedings of Retardation and Recovery Symposium, edited by G.A.Solt, pp.112-157, U.S. Aeronnutical Systems Div., Ohio, ASD-TR-63. 329, 1963
2.10 Doherr,K.F. Theoretisch-experimentelle Untersuchung des dynamischen Verhaltens von Fallschirm-LastSystemen bei Windkanalversuchen. Ph.D.Thesis, Technische Universitat München, 1981. Published as DFVLR-FB 81-29
2.11 Shen,C.Q and Cockrell.D.J. Aerodynamic Characteristics and Flow Round Cross Parachutes in Steady Motion. AIAA 86-2A58-CP. Proceedings of the 9th Aerodynamic Decelerator and Balloon Technology Conference, Albuquerque, 1986.
2.12 Jorgensen,D.S. and Cockrell,D.J. Effect of Drive Slots on Parachute Performance. A/AA Journal of Aircrafi, 18, 6, pp. 501-503, June 1981
2.13 Heinrich,H.G. The Effective Porosity of Parachute Cloth. Zeiuschrift fir Flugwissenschaften. 11, Heft 10,Verlag Friedr. Vieweg \& Sohn, Braunschweig, 1963
2.14 Payne,P.R. The Theory of Fabric Porosity as Applied to Parachutes in Incompressible Flow. Aeronauticai Quarterly, 22 August 1978.
2.15 Mihora, DJ. Engineering Data on Stokes-Flow Drag Devices. Astro Research Corperation,Santa Barpara, U.S.A. March 1973.
2.16 Niederer.P.G. Development of a High Altitude Stokes Flow Decelerator. N68-15425. Astro Research Corporation, Santa Barbara, U.S.A. November 1956.

APPENDIX TO SECTIO:N 2
SOME COMMONLY-ADOPTED SHAPES FOR CONVENTIONAL PARACHUTE CANOPIES A Summary of Aerodynamic Chamacteristics, dawn from references 1.7, 1.9 and 2.7. 2A. 1 SOLID TEXTILE CANOPIES

Description
FLAT CIRCUIAR CANOPY
©Wsthuction schewaite

Exhibits instability in pitch, possessing a conic osciliation of some $20-30^{\circ}$ semi-apex angle. Clusters of flat circular caropics do not exhibit this characteristic, since. caih canopy in the cluster is no longer at $\boldsymbol{0}^{\circ}$ angle of allack.

Usage

Aerodynamic

 CharacteristicsThis canopy has a higher drug than a flat circular
Suilable for the airdrop of material and for the recovery of drones. cariopy. It also has a longer opering time, but it develops currespondingly lower opening forces.

> Description CROSS CANOPY

2A.2 SLOTTED TEXTILE CANOPIES

Usage
Frequently used as a pilot parachuse, for extraction purposes. Has been used with both very low and very high dynamic pressures. the Mach number ranging from 0 to 3.0

Has a high geometric porosity (15% to 30\%), which gives it good stability in pitch. It is also very reliable in inflation.

CONSTALCYTON SCNEMATIC

An easily-constructed low cost parachute which is frequently used for the deceleration of ground vehicies and sircraft. Its applications also include werpen decieleration and stabilisation.

Aerodyaamic Characteristics

Good drag characteristics and provided that its arm ratio zisd porosity are properiy selected it has an excelient stability in pitch. However, it displays a tendency to rotire abous its axis of symmetry.

2.3 GLIDING PARACHUTE CANOPIES

The Ram-Air Canopy, drawn from references 1.9, 2.3 and 9.1.

Uatge

Used when 'drive' is required.

 dencribed in ref. 1.9 the noet common are cmopies which are ram-eir inflimed. They have a variety of commercial nemes. whone aspect ratios are as large as possible on aerodynamic groenads. However, in order that good control is maintained they are limited to a maximun of about 3:1.Of the high-glide parachutes

They are characterised by aerofoil croso-sectionali shapes and planforms

Aerodynamic Characteristics

The ungle of descent γ_{1} is inversely proportional to the ratio L/D (equation 2.19a). Typically, (L/D) max is about 3:1. but sec Section 9.5.1

3.TRAJECTORY DYNAMICS

The object of Trajectory Dynamics is to predict the flight path for the system which comprises the combination of a parachute and paylond. In principle, provided the parachule's significant arrodynamic charscteristics, in perticuiar the canopy drag area $C_{D} S_{0}$ defined in Section 2.3.3, are known as a function of time, then the appropriate equations of motion for the parachute-payloat system can be writuen and approximate numerical solutions obtained. In the criurse of the time over which these equations are valid the parachule might be undeployed, undergoing deployment, inflating or be fully inflated.

For all but the simplest models of this system, the equations of motion are not straightiorward. Consequently, their solutions, too, are complex.

3.1 THE TRAJECTORY SYSTEM. AXES SYSTEMS. DEGREES OF FREEDOM

The nature of the trajectory system which it is necessary to consider, the axis system to be adopred and the number of degrees of freedom which are required in the consequent analysis depead on both the input data which are available and the complexity of the solution which is required. The number of equations required to describe the motion of the system depend on the number of degrees of freedom: which the system possesses. A single body which can move freely in a plane possesses three degrees of freedom. It requires three independent variables to define its position relative to fixed axes, two co-crdinates to locate a chosen point in the body and a further co-ordinate to orientate the body. The total number of co-ordinates required to specify the configuration of n unconnected bodies is $3 n$, but if these bodies are connected together by various mechanisms then degrees of freedom are lost.

In order to establish the equations of motion it is important to choose carefully the frames of reference which are to be adopred. In Newton's laws, on which rigid-body dynamics is based, all motion is ultimately considered relative to a stationary reference frame. These laws state that the external forces and moments which act on a system, togelher with the system's inertia forces and monents, are in a state of equilibrium. Inertia forces and moments are the revarsed rate of change of the system's linear and angular momenta.

For most parachute applications, the earth can be considered to provide an absolute frame of reference and axes which are fixed relative to the earth are termed earth-fixed axes. When the frame of reference is fixed relative to a moving body, as could occur in a system consisting of a parachute canopy rigidly connected to its payload, they are termed tody axes. In general, on both parachute and payload the aerodynamic and the inertial forces and moments which act on the system can be determined relative to these body axes, since they are functions of the body resultant velocity and its attitude. However, not only are the gravitational forces and moments determined relative to earth-fixed axes but the trajectory of the descending system is ultimately required relative to these axes. Thus, in obtrining solutions to trajectory dynamics problems, it is usually necessery to adopt both earth-fixed axes and body axes, together with the geometric transformation relationshijs between these two axes sets. Since the paylond can move relative to the parachute it may be necessary to adopt more than one set of body axes, establishing some idealised relationship to describe the mơo of coupling betwcen the parachute and its payload.

There is no universally-agroed method of modelling the parachute-payload system. It is important to model the system's mechanics in no more complex a manner than is appropriate to develop the required solution within the constraints imposed by the available data. The approsch adopled here owes much to Purvis ${ }^{13}$. Two-degree of freedom equations of motion are first describod for the motion in two dimensions of a point mass representative of both the parachute and the payload, subjected to both aerodynamic and gravitational forces. Next, a three-degree of freedom set of equations is developed for two-dimensional motion of a payload which is simply-connected to a parachute of negligible mass. Using these equations, the consequences are considered of including the parachute canopy mass in this majectory dynamics model. The third case described is a itree-degree of freedom model for a parachute canopy assumed to be rigidly-connected to its payload. Finally, reference is made to publications which describe trajectory models with six or more degrees of freedom and to the use of finite-element analysis in order to model parachute canopies during their deployment and inflation phases as if they were a series of elastically-connectiod mass nodes.

3.2 TWO-DEGREE OF FREEDOM MODEL

Consider the motion of a point mass in the $x-z$ plane, shown in Fig.3.1. As this mass is considered to act ai a point, the system which it represents cannot possess any moments of inertia; hence no moments are exerind on it. In the plane Oxz , therefore, the system possesses only two degrees of freedom, translational motion in the direction $\mathbf{O - x}$ and translational motion in the direction $\mathrm{O}-2$.

On symmetry grounds, the point mass cannot sustain any component of aerodynamic force normal to the line of flight. Thus, the resultant component forces which act on it in the $O-x$ and $O-z$ directions, F_{n} and F_{n} are respectively given by:

$$
\begin{equation*}
F_{z}=\quad-\left(D_{p}+D_{p}\right) \cos \gamma_{a} \tag{3.1}
\end{equation*}
$$

$$
F_{z}=m g \cdot\left(D_{p}+D_{g}\right) \sin \gamma_{f}
$$

where m denoles the mass of the system inclusive of any added mass, D_{p} is the dray developed by the parachute, D_{s} is the drag developed by the payload and γ_{d} is the angle of descent. Added mass is discussed in Section 4 .

Fig. 3.1 TWO-DEGREE OF FREEDOM TRAJECTORY SYSTEM MODEL

Measuring the displacements x and z relative to the earth-fixed axes $0 \cdot x$ and $O-z$, since
and

$$
\begin{align*}
\dot{x} & =V \cos \gamma_{d} \tag{3.3}\\
\dot{z} & =v \sin \gamma_{d} \tag{3.4}
\end{align*}
$$

then the trajectory equations are:

$$
\begin{align*}
m \ddot{x} & =-(t / 2) \rho V \dot{x}\left(C_{D} S_{0}+C_{A} S_{g}\right) \tag{3.5}\\
m \ddot{z} & =m g(1 / 2) \rho V \dot{z}\left(C_{D} S_{0}+C_{A} S_{3}\right) \tag{3.0}
\end{align*}
$$

nad
where $C_{0} S_{0}$ is the parachute canopy drag area, S_{A} denotes the payload reference area and C_{A} the payload axial force coefficient.

From known initial conditions of the parachute and paylond, equations 3.3 and 3.4 give initial values of \dot{x} and \dot{z}. Then, for known values of the payload reference area and axial force coefficient, the system weight mg, the canopy drag area as a function of time, together wish the parachute system's initial altitude and velocity, equations 3.5 and 3.6 are soluble. They yield as functions of time the system's horizontal and vertical co-ordinates, its velocity and its flight path.

Initial values of \ddot{x} and \ddot{z} can then be determined from the equations 3.5 and 3.6. These relationships are first-order differential equations in \dot{x} and \dot{z}. Over short, finite time increments, Δt their solutions for \ddot{x} and \ddot{z} can be used to update \dot{x} and \dot{i}. To achieve this end, a number of appropriate numerical integration schemes exist, of which the following is illustrative:

$$
\begin{align*}
& (\dot{x})_{2}=(\dot{x})_{1}+(\dot{x})_{1} \Delta t \tag{3.7}\\
& (\dot{z})_{2}=(\dot{z})_{1}+(\dot{z})_{1} \Delta t . \tag{3.8}
\end{align*}
$$

3.3 THREE-DEGREE OF EREEDOM MODEL

When angular as well as linear mocion in the Oxz plane is required for the parachute and its payload, then a throedegree of freedom model is adopted. Purvis noves thas at mis stage the mechod adopted to represent the parachute and the payioad must be considered carefully and lists for different appronches:
(i). a massless parachute ie joined by a massless rigid link to its payload, the link being pin-joined at its attachment points;
(ii). the parachute and its payload constitute a single rigid body;
(iii). the parachute and its payload each possess mass and each constitute a single rigid system, the systems being joined by a massless rigid link, and
(iv). the parachute is represented as an elastic system, the payload as a single rigid body.
3.3.1 The Massless Parachute Joined to the Payload

For the point mass system described in Section 3.2 the resultant aerodynamic force must, on symmetry grounds, act along the flight path. But if the parachute is now represented as a solid body, it need not possess axial symmetry and then, in general, aerodynamic force components along and at right angles to the flight path will act on it. However, if m is made equal to zero. Fig 3.2 shows that the parachute is modelled as possessing no mass, then the resultant force T, which it develops on the payload, must be equal and opposite to the parachute drag D_{r} acting along the flight path.

To develop the trenslational equations of motion, carth-bound axes are used as in Section 3.2, but for the rotation.i equation, body axes will be adopted.

Fig.3.3 ROTATIONAL MOTION, USING BODY AXES
In Fig. 3.3 a body rotater with angular velocity q about an origin O^{\prime}. Relative to the earth-fixed axes Ox and Oz , the velocity components at the origin of the body are u and w respectively. Then, reiative to those axes, the yelocity components an a general point P within the body are:

$$
\begin{align*}
& \dot{x}_{p}=u+q x_{p} \tag{3.9}\\
& \dot{x}_{p}=w-q x_{p} . \tag{3.10}
\end{align*}
$$

Relative to these carth-fixed axes, the component rates of change of linear momentum for the body are therefore:
ant

$$
\begin{align*}
\sum m_{p} \dot{x}_{p} & =\Sigma m_{p} u+q \sum m_{p} z_{p}=\Sigma m_{p} u \tag{3.11}\\
\sum m_{r} \dot{z}_{p} & =\Sigma m_{p} w-q \sum m_{p} x_{p}=\sum m_{p} w . \tag{3.12}
\end{align*}
$$

Whereas, relative to the body axes origin O^{\prime}, the rate of change of angular momentum in two dimensions can be shown (e.g. Duncan ${ }^{3}$) to equal $\mathrm{I}_{22} \dot{q}$, where I_{22} is the system moment of inertia about the body axis $\mathrm{O}^{\prime} \mathrm{y}^{\prime}$.

Fig.3.4 EQUATIONS OF MOTION FOR A PAYLOAD JOINED TO A MASSLESS CANOPY

From Fig.3.4, the equations of motion for the payload in three degrees of freedom are therefore:

$$
\begin{align*}
& m \ddot{x}=-F_{N} \sin \theta \cdot F_{A} \cos \theta \cdot 1 / 2 \rho V \dot{x} C_{D} S_{\varphi} \tag{3.13}\\
& m \ddot{z}=-F_{M} \cos \theta \cdot F_{A} \sin \theta \cdot 1 / 9 p V \dot{z} C_{D} S_{Q}+m g \tag{3.14}\\
& I_{2 z} \dot{q}=M_{C} \cdot 1 / 2 \rho V^{2} C_{A} S_{B}\left(L-L_{G}\right) \sin \alpha . \tag{3.15}
\end{align*}
$$

In these equations the drag of the parachute D_{p}, has been expressed as $1_{2} \rho V^{2} C_{D} S_{0}$, while m and I_{n} respectively denote the total mass, inclusive of the added mass and the total moment of inertia, inclusive of the added moment of inertia, for the system under acceleratior. Added masses and moments of inertia are explained later, in Chapter 4. 3.3.2 The Parachute and its Payload Modelled as a Singie Rigid Body

The classical approach to the derivation of the equations of motion for the trajectory of a rigid body is to use body axes for all the required equations. It is clearly desirable to use body axes for the rotational equations of motion: if they are also used for translational motion the resulting equations can readily be linearised to determine the system response to small disturbances Thus Duncan ${ }^{22}$ and Eikin ${ }^{23}$ both use body axes in order to develop the equations of motion for a rigid body such as an airenft, moving through space.

In developing the dynamical equations of motion for descending paraciutes, there are two problems which do not occur widi, uircraft. The first is the large angics though which parachutes can oscillate during their descent. These might well limit the usefulness of any lizearisation techniques which are developed as a part of the solution procedure.

The second problem is the necessity for the introduction of adied mass terms in the parachute's equations of motion. The fluid through which the parachute and store descend is real rather than ideal and it will be shown in Section 4 that it is necessary to add experimentally-obtuined values of certain added mass components into the equations of motion. These will add to their complexity.

When adopting the more classical approwch of using body axes for both the translational and rotational equations of motion the fundamentai probiem is that, relative to fixed earth-bound axes, the body axes rotate. However, in both establishing the equations of motion and in the presentation of their soluticn, the motion of the system must be referred to an earth-fixed excs system.

For perachute trajoctory analysis Purvis ${ }^{44}$ has recommencied the use of body axes for the associated rotational equations but earth-fixed axes for the translational equations, together with the necessary axis conversion marix set. The uransiational motion equations expressed relative to carth-fixed axes, as in equations 3.13 and 3.14 , do not include terms which include the product of linear and angular velocities. Equation 3.16 which follows, expresses the parachute's equation of motion relative to the body axis Ox and in so doiag it includes the terms ($\mathrm{nr}+\alpha_{3}$) ($\mathrm{rv}-\mathrm{qw}$). The presence of terms of this form adds to the equation's complexity and also. when the parachute's angular velocity components p, q and r are large, to the length of the process for numerical solution of the equation. Using earth-fixed axes rather than body axes for the system's transiational motion can therefore simplify both the presentation and solution of these equations, though it will complicate the task of expressing the relationships for the system's altitude angles.

In the presentation of the equations of motion inclusive of added mass terms, in accordance with Section 4.3.2, only the two added mass coefficients k_{11} and $k_{3 j}$ have been retained and these have been assumed to be known constants, determined experimentally for the parachute system under consideration.

For a conventional parachuto subjected to external aerodynamic and gravitational force componerts X, Y and Z and external serodynamic and gravitational moment components L, M and N_{c} as shown in Fig.3.S, relative in the body axes Ox, Oy and Oz the appropriate equations of motion have been shown by Cockrell and Doherr ${ }^{3 /}$ to be:

$$
\begin{align*}
& X \quad=\quad\left(m+\alpha_{18}\right) \dot{u} \gamma\left(m+\alpha_{33}\right)(r v-q w) \cdot m x_{9}\left(q^{2}+r^{*}\right) \tag{3.56}\\
& \mathbf{Y}=\left(m+\alpha_{3 j}\right)(\dot{v}-p w)+\left(m+\alpha_{12}\right) r u+3 x_{2}(\dot{r}+p q) \tag{3.17}\\
& z=\left(m+\alpha_{33}\right)(\dot{w}+p v) \cdot\left(m+\alpha_{n i}\right) q u \cdot m x_{8}(\dot{q} \cdot p r) \tag{3.18}\\
& \text { L }=\mathbf{I}_{11} \dot{\boldsymbol{P}} \tag{3.19}
\end{align*}
$$

$$
\begin{equation*}
N=I_{35} i+m x_{2}(i v+r u \cdot p w) \cdot\left(I_{11}-I_{33}\right) p q . \tag{3.21}
\end{equation*}
$$

In this family of equations the origin O has been located at the canopy centroid and the store, at a distance x_{s} from O, has been assumed to be rigidiy connected to the canopy. The symbois I_{12} and I_{33} have been used to denote moments of inertia of the entire system about the axes Ox and Oy (or Oz) respoctively and α_{11} and $\alpha_{n 3}$ to denote the added mass components of the canopy in the directions of the axes Ox and Oy (or Oz) respectively.

In accordance with equation 4.3, the added mass components α_{11} and α_{33} are given by:
and

$$
\begin{align*}
& \alpha_{11}=p_{i} \forall k_{21} \tag{3.22}\\
& \alpha_{33}=p_{8} \forall k_{31} . \tag{3.23}
\end{align*}
$$

The symbols p_{1} and \forall respectively denote the density of the fluid in which the parachure is immersed and the representative displaced volume of the parachute canopy. In comparison with other terms, the added masses and added moments of inertia of the store have been neglected. The symbols u, v and w, also the symbols p, q and r refer $t o$ linear and angular velocity components respectively, along and about the axec $0 x, 0 y$ and $0 z$, as shown in Fig.3.5.

In this presentation, the reasoning of Sedows and others has been followed and the steady translational inertial moments, such as $\left(\alpha_{11}-\alpha_{31}\right)$ uw, have been neglected.

Fig.3.6 AERODYNAMIC AND GRAVITATIONAL FORCES AND MOMENTS

Negiecting any aerodynamic forces developed on the payload, for a parachute which is oscillating in the Oxz plane, Fig.3.6 gives for the external forces and moment about \mathbf{O} acting on it:
$X=m g \cos \theta \cdot T$
$Z=m g \sin \theta \cdot N$
$M=N x_{e}+(m g \sin \theta) x_{z}$
and expressions like these, or the corresponding ones in three dimensions which are given by both Duncann ${ }^{32}$ and Eukin'3, should be inserted inio equations 3.16 to 3.21 , the equations of motion.

When solutions are required in all three planes, Euler angle transformations appropriate both to the gravitational forces and moments acting on the system and also to the trajeciory solution which is being sought, are used to relate the body axes to the earth-fixed set of axis.

The equalions of motion given in equations 3.16 to 3.21 were developed from a model, originally published by Tory and Ayress", of a parachute which was rigidly-connected to iss payload. A somewhat similar five-degree of
frecdom model for this system, but with nather different assumptions about the magnitudes of the unstcady aerodynamic forces and moments, has been devcloped and published by White and Wolp.'. 3.3.3 The Parachute and its Payload Modelled as Two Rigid and Linked Systems

If the mass of the parachute canopy cannot be considered to be negligible, so that the parachute and its payload comprise two separate but linked rigid systems, then appropriate modifications to equations 3.13 to 3.15 for the payload can be written and solved in conjunction with the equations given in Fig. 3.2 for the parachute.

For a six-degree of freedom coupled paylnad and pa chute model, Cutchins, Purvis and Bunton ${ }^{3.10}$ have developed the concept discussed in Section 3.3 .1 of using cartu-fixed axes for the translational equations of motion and body axes for the rotational equations of motion.

Traditionally however, this probiem has been tackled by the method developed in Section 3.3.2, using body axes for both the rotational and translational motions. For example, using two different sets of body axes, Schatzle and Curry ${ }^{30}$ have developed a nine-degree of freedom model consisting of a system of equations for a forebody (or payload) coupled to a parachute. They considered the aerodynamic forces and moments developed on each body, together with the weight of the forebody. Similarly, allowing for the weight of the parachute as well as that of the forebody, Doherr ${ }^{210}$ jeveloped a body axis model and among others, Wolf ${ }^{19}$ has published a model for a coupled payload and paraciute. All these models start from the same premises but differ slightly in the way that they treat the unsteady aerodynamic forces, in the presentation of their equations of motion and in the subsequent linearisation techniques which they propose.
3.3.4 The Parachute as an Elastic System, Linked to a Rigid Body Payload

Sundberg ${ }^{31}$ has explained the application to trajectory dynamics of finite-element methods, which enable both the canopy and its suspension lines to be modelled as flexible, distributed mass structures, coupled to a rigid payload. This is a particularly appropriate model for the deployment and inflation phases of the parachute. An extension of this earlier work has been made by Purvis ${ }^{312}$.

REFERENCES

3.1 Purvis,J.W. Trajectory and Loads. Proceedings, University of Minnesota Decelerator Systems Engineering Short Course, Albuquerque, New Mexico, July 1985.
3.2 Duncan,W.J. The Principles of the Control and Stability of Aircraft. Cambridge University Press, 1959.
3.3 Elkin,B. Dynamics of Flight. J.Wiley \& Sons,New York, 1959.
3.4 Cocikrell,D.J. and Doherr,K.-F. Preliminary Consideration of Parameter Identification Analysis from Parachute Aerodynamic Flight Test Data. AIAA-81-1940. Froceedings of the 7th Aerodynamic Decelerator and Balloon Technology Canference, San Diego, 1981.
3.5 Sedov,L.T. Two-Dimensional Problems in Hydrodynamics and Aerodynamics. J.Wiley \& Sons,New York, 1965.
3.6 Tory,A.C. and Ayres,R.M. Computer model of a fully-deployed parachute. AIAA Joumal of Aircraft, 14 , 675-679, July 1977.
3.7 White,F.M. and Wolf.D.F. A Theory of Three-Dimensional Parachute Stability. AIAA Journal of Aircraft, 5. 1, 86-92, Jan. Feb. 1968.
3.8 Schatzie,P.R. and Curry,W.H. Flight Simulation with a Two-Stage Parachuce System. AIAA-79-0448. Proceedings of the 6 th Aerodynamic Decelerator and Balloon Technology Conference, Houston, 1979.
3.9 Wolf,D. Dynamic Seability of a Nonrigid Parachute and Payload System. AIAA Journal of Aircrafl. 8. 8. 603-609, Aug. 1971.
3.10 Cutchins,M.A., Purvis,J.W. and Bunton,R.W. Aeroseryo-elasticity in the Time Do.nain. AlAA Journal of Aircraf, 20, 9, SepL 1983.
3.11 Sundberg.W.D. Finite-Element Modeling of Farewinct Lxykyineal axxi Inflation. AlAA-75-1380. Proceedings of the 5th Aerodymamic Decelersition Systit ne Conference, Albuquerque, 1975.
3.12 PurvisJ.W. Numerical Simulation of Decelcrator Dep afmen:, "receedings, University of Minnesote Decelerator Systems Engineering Short Cour::". Albs inverqua, New Mexico, July 1985.

4. UNSTEADY AERODYNAMICS

During the deployment and inflation stages and even during dessent, much of a parachute's motion is unsteady. Whether the axis system which is adopted is carth-bound or is fixed within the canopy-store system, linemani angular components of acceleration, along and about these axes, will occur. In this chaprer the aerodynamic consequences of this unsteady motion are discussed.
4.1 INYRODUCTION TO THE UNSTEADY FLOW PROBLEM

In describing the unsteady motion of a body immersed in a fluid care must be taken in defining the constituent parts of the system under consideration.

First, consider it to coassist of a sphere of mass m immersed in a fluid. Suppose this sphere to be driven through the fluid by a thrust T so that at lime t the sphere is moving with an instantaneous linear velocity $V(t)$ and an instantancous linear acceleration $\dot{V}(t)$. On the sphere an acrodynamic force $D^{\prime}(t)$ is developed. This force is larger than the drag force D, which would be developed if it werc to move steadily through the fluid at velocity V. The difference, $D^{\prime}-D$, certainly depends the instantancous acceleration, $\dot{V}(l)$. As is discussed in Section 4.2.2, it may also depend on the nature of the sccelerated motion, though this may not be an important dependency.

The reason for this increased drag is that the fluid which surrounds the moving sphere will also acquire momentum. Thus, as the sphere accelerates, not only is there a rate of change in the momentum of the syhere, mV, but in that of the surrounding fluid. If this tluid were ideul, thut is if it were incompressible and inotations, then the rate of change of fluid momentum, M_{4}, is determinable by methods to be explained in Section 7 . It can be expressed by:

$$
\begin{equation*}
\dot{\mathbf{M}}_{\mathbf{H}}=D^{\prime} \cdot D=\alpha \dot{\mathbf{V}} \tag{4.1}
\end{equation*}
$$

where α is described as an added mass component for the system. For a sphere whose volume is denoted by \forall, linearly accelerating through an ideal fluid of density p_{s} the added mass component α_{1} can be shown to be equal to $0.5 p, \forall$.

If the sphere were to acceierate through a reai fluid as distinct from one which is ideal, a similar added mass component, α_{r}, but of a different numerical value from α_{4}, would be develcped. A real fluid is one whose viscosity is the cause for it to possess vorticity, hence to be rotational. Writing the rate of change of momentum for the body immersed in the real fluid as M_{4} and assuming $\alpha_{\text {, }}$ to be independent of time gives:

$$
\dot{\mathbf{M}}_{\mathbf{b}} \quad=\mathbf{T} \cdot \mathbf{D}^{\prime}
$$

where fror: zquation 4.1 , since $D^{\prime}-D_{j}=\alpha \dot{V}$;

then	$=\mathbf{\mathbf { N } _ { \mathbf { b } }}=\mathbf{D} \cdot \alpha \dot{\mathbf{V}}$
and thus	$\left(\mathbf{m}+\alpha_{7}\right) \dot{\mathbf{V}}=\mathbf{T} \cdot \mathbf{D}$.

where D is the drag force which the sphere develops it steady motion. Unike equation 4.1, equation 4.2 treats the immersed body of mass m wogether with the fluid in which it is immersed as two constituent parts of a single dynamical system. The approach has a 120 -year long history, extending from both Thomson and Tait ${ }^{\text {a }}$ and Kircthoff ${ }^{42}$. Lamb ${ }^{43}$ remarked that, "it avoids the troublesome calculation of the effect of fluid pressures on the suriaces of solids", which would be a neressary procedure if the acresymmic force D' were $n \mathrm{o}$ be devermined directly for the unsteady motion of a sphere through an ideal fluid. Both the imporance and the method of dexermining added mass compcnents nelevent to the motion of a parachute canopy through idenl fluids remains to be dixcussed in Section 7.1. No analytical methods exist by which aerodynamic forces can be determized foc unsteadily-moving bodies imrnersed in real fluids: the ideal fluid concept gives an approximate model which, for a bluff body like a conventional parachute, is of yncersiain value.

In exactly the same way as that outlined in equation 4.1, when ary inmersed body moves unsteanly in any direction through a fluid the eerodynamic forces snd moments me developed on it aiffer in magniande froial their steady state values. In a given problem, whether or not this difference is of any engingaring significance devends on the relative magnitudes of the rate of chenge of momentum for the immersed body, M_{3}, wn wet of the fluid in which it is immersed, M_{4} This ratio is a function of:
(i). the immersed body density comperod with that of the fluid which it displaces;
(ii). the immersed body shape inclusive of its porosity, if any; and
(iii). the direction in which these nies of change of moments occur.

Some appropriate analytical values of added mass coefficients are given is Table 4.1. In this Table the added moment of inertia coefficient $k_{s s}$, measured about an axis at right a:gles to the plane cortaining k_{11} and $k_{s y}$, is defined in terms of the added moment of ineria component $\alpha_{3 s}$ as

$$
\begin{equation*}
k_{s s}=\alpha_{s f} / I_{t} \tag{4.S}
\end{equation*}
$$

where L_{l} is the moment of inertis of the fluid in the representacive volume. For a parachute canopy:

$$
\begin{equation*}
\mathbf{u}_{4}=\left(\rho_{0} D_{a}^{2} \forall\right) / 16 \tag{4.0}
\end{equation*}
$$

the density of the fluid in which the caropy is immersed being denoted by $p_{\text {f }}$
A number of experimerts inve been performed to determine the added mass components for bluff baties moving unsteadily through fivids since at icast as long ago as 1826 , when Bessel ${ }^{\text {a }}$ tested the periodic motion of a spherical pendulum, both in air and under water. As shown in Table 4.2, many of these recults have proved to be inconclusive. Often the added mass componens which tave been evaluated differed only marginally from those obtained analytically for unsteady motion through an ideal fluid. Howerar, other tests have shown some marked differences.

SHAPE	INVESTIGATOR	$\begin{gathered} k_{11} \\ (A \times i a 1) \end{gathered}$	REYNOLOS NUMBER	NATURE CF EXPERMENT
Sphere	Bessel - 1826 Lunson - 1928 McEwan-1911 Jones-1918 Cock - 1920 Frazer \& 1919 Simmons-	Air 0.9 Water 0.6 Air 80.5 Water 2.0 Water 0.5 Water 0.8 Waier 0.5 Vater 1.0 to 2.0	$10^{4} \text { so } 10^{5}$ - $\begin{aligned} & 10^{5} \\ & 10^{4} \end{aligned}$	Oscillating Spherical Pendulum Unkirectional Oscillating Tor sional Pendulum Oscillating Torsional Pendukm Free Fall Unidirectional
Fhat Plate	Gracey- 1947	$\begin{array}{r} \hline \text { Air- } 0.94 \\ 80.96 \\ \hline \end{array}$		Oseillating Pendulum
Disc	$\begin{aligned} & \text { Yee-tak Yu } \\ & -1942 \\ & \text { Mrahim- } 1965 \end{aligned}$	$\begin{gathered} \hline \text { Various } \\ -0.81 \\ \text { Water } 0.8 \\ \hline \end{gathered}$	10^{3}	Oscillating Tor-sionai Pendulum Oscillating Torsio. al Pendukum

References
 Bessel 4.9; Lunnen 4.10 ; McEwan 4.11 ; Relf \& Jones 4.12 ; Cook 4.13 ; Frazer \& Simmens 4.14 ; Oracely 4.15 ; Yee-Tak YU4.16; Mrehim 4.17

Table 4.2 ADDED MASS COEFFICIENTS DETERMINED EXPERIMENTALLY FOR BLUFF BODIES IN REAL FLUIDS

4.2.2 Determining the Added Mass Components

In their determination of the added mass components from suitably-designed experiments most workers adopred methods similor so those which Iversen and Baleai ${ }^{\text {H1 }}$ described in 1951. From equation 4.2;

$$
\left(m+\alpha_{r}\right) \dot{V}=T \cdot D
$$

and writing the steady-state drag D as equai to $1 / 2 V_{R}^{2} S_{S} C_{D}$, they considered the appropriate componerts of aerodynamic force, $F(t)$ to consist of two parts: one which could be expressed in terms of the instantuneous velocity. $V(t)$ and the other which could be expressed in serms of the instonemeous acceleration, $\dot{V}(t)$. Thus in unsteady flow the toul aerodynamic force $F(t)$ at time t was wriven in terms of coefficients a and b as:

$$
\begin{equation*}
F(t) \quad=\quad a V^{2}(t)+b \dot{V}(t) \tag{4.7}
\end{equation*}
$$

serodynanic force $\Gamma(t)$ be weil expressed solely in terms of the instantoneous veiocity, $V(t)$ and tha incuritaneous moceleration, $\dot{V}(l)$, in the manace proposed in equation 4.7. Fhamithon and IViatell sumed thim "the practice of exprescing
 enginacring probleass in which coavartive socelierations, flow sepmantion and wrikes ere infportant (bonlinear) cases. The force is deteruined experimenally and its resmionsthip to velocity, accelermion and other prameters is expressed in a variety of rays. The equations may, or may noce, beblude san adled mass fcris and, if they do, it may be a constent or a fugrtion of various permeters. The choice depends on the kind of morion and, to some extent, on the view of the wuthor'. Insead they proposed that a enore peneral foum of erraxion 4.7 stonld be written:

$$
\begin{equation*}
F(t)=a V^{2}(t)+b \dot{V}(t)+\text { flow hatory term } \tag{4.11a}
\end{equation*}
$$

the form of the tater term depending on the cymner is which the nameady motion is imperted io the immersed body.

43 SIGNIFICANCE OF ADDED MASS COEFRICIENTS TO PARACHUTE UNSTEADY MOTION PREDICTION
 4.3.1 Their Historical Importance

For fluid dynamical problems concerning parachuse canopies, whose drag-producing capabilities are arsong their most significant acrodynamic chanacteristics, to basc analysis on the assumption that the fluid through which the canopy descends is ideal would appear to be unrealistic, for in such a fluid no separated wrike could be devehuped and steady motion descent would necessarily be drag free. It is thus ciear that resulks obrained from such a mathemarical model must be validaved through appeal so approprinte experimental programmes.

Considering the cancpy deployment and inflaion application and besed on floy visualization stadies for inflating parachute canopies, Lingerdess and others have suggestod that since carcpy deployment is a very rapid process it may well be realistic to consider the surrounding flow field as though it were imotational and thus, if it were also effectively incompressible, as ideal. O'Harn ${ }^{\text {an }}$. for example, assamed thm the added mass coefficient for an inflating parachume canopy was equal to that for a flat disc immersed in an ideal Invid, with a diameter equal to that of the canopy and thus during inflation its added mass would increase as the cube of its diatreter.

In his 1944 paper on parachate descent behaviour, Hena ${ }^{\text {as }}$ discussed the significance of addud mass components on parachute dymmic stability. He called these components 'co-accelermed air masses' and stated that they were of the order of size of the combined mass of the canopy and its load. For their determination in two degrees of freedom he introduced an ellipsoid having the same major dizneter, volume and location as the parachate canopy, using the analytical values for this ellipsoid of the axial, transverse and rotational added mass coefficients which Lamb ${ }^{43}$ had previously determined and which have been given in Table 4.1. He concluded that sadied masses have a significant effect on the determination of parachute dynamic stability. Later, Lesuerna reformulated Hena's equations. Both Henn and he had shown that added mass coefficients wese of inpurtance in determining parachute dynamic strubility characteristics. Lester commented on the unsatisfactory procedure of using analytical values, derived from the behaviour of ideal fluids around bluff perachute canopics, for these coefficiens.

White and Wolr's ${ }^{17} 1968$ paper on parachute dynamic stability and Wolfrs ${ }^{39}$ later 1971 contribution, while recognising that the added mass coeficients were tensors, nevertheless over-simplified the problean of representing parachute unsteady motion. More recently Eavonap has reformulimed the analytical problem, discussing the relative significance of the analytical values for the added mass coefficients which various muthoss have obsained. However, he presented iss solution without recourse to experimentally-determined added mess coeficiens.

In 1965 Drehima ${ }^{17}$ pablishod a paper describing an experimental method of determining added mements of inertin for parachuse canopies. Apert from this carlier work, systemstic experiments to determine added mass coefficients for parachuce canopies were not reported until Yavuecis firs published his work in 1982.
4.3.2 Their Contemperary Importance

During cmapy inflation were is no donbt that the effects of added mass are of significmce. If they were neglected and instead a series of seeady flow solutions were obtained for canopies with increasing degrees of inflation in potential flow, it is highly unlikely that good approximations would be obtained for pressure distributions wishin the inflaing campies. Ia the continuity relationsthip given as equation 5.10 in Section 5.3 .2 Heinrich inuroduced the added mass of the inflating casopy. However, as the serodyamaics of canopy inflation is still very moch in its inflacy, evea very approximate excimates for the pressure distribution round the inflating canopy would be of real value. Insufficion anmerial has been published to warraxt sny furcher ciscussion here of canopy added mases during the infletion process, in consequence only the dynmic stability pitching charscteristics of fully-inflmed canopies will becomidered.

For a body which moves unsendily through a fluid the added mass coefficients form a second-order mensor with swenty-one independent oumponents, comprising six in which both the force and the accelerwion components ire inmslaory, six ia which boch moments and anguler accelermicon composents ase rowny and nine which describe mixed
tudnslatory and rotery behaviour. Following the form of the equations derived in Section 3.4 for a parachute system with six degrees of freaiom and after making a number of simplifying assumptions, Cockrell and Dohers argued tha: for a convertional parachute canopy considered to be rigidly conracted to its paylond and for which, as shown in Fig.2.1, $O x$ is the axis of symmetry with planes of symmetry $O x y$ and $O x z$, only four inder, ndent and significant added mass coefficients need be considered. In the fecsor nomenclature which they adopred the first subsiript denoted the direction in which the unsteady force was measurst and the secord that of the seceleration causing the added mass componest under considernios. The numbers 1,2 and 3 implied linear motion in the divections of the axes Ox, Oy and O_{4} respectively whilc 4,5 and 6 described anguiar motion respectively about the axes Ox, Oy and Oz . Taus k_{11} is the, addet mass coefficient (refirred to as the axial addeal mass coefficient) which is determined when an x-directed force is measured on a canopy undergoing an x-directed linemr acceleration, ie along the axis of symmetry.

These four significant addod mase corfficients me:

(i).	\mathbf{k}_{11}	$=$	$\alpha / \rho \forall ;$
(ii).	$\mathbf{k}_{\mathbf{2 1}}$	$=$	$\mathbf{k}_{\mathbf{3 3}}$;

These latuer are, respectively, the sdided mass coefficients determined when a y-directed force is measured on a canopy unjergoing a y -dirested linear acceleration and when a z-directed force is measured on a canopy undergoing a z directed linear scieleration. They are nom-dimeasionalised from their appropriate added mass components α_{22} and α_{33} in exactly the same way as was k_{11} in equation 4.3;
(iii).
$\mathbf{k}_{38} \quad=\quad \mathbf{k}_{\mathbf{8 6}}$
These are the added monsent of inertia coefficients detemined when a moment about the y-axis is measured on a cancpy undergoing an angular acceleration about the y-axis and when a moment about the z-axis is measured on a canony undergoing an angular acceleraticu about the z -axis, respectively. As has been shown in equations 4.4, 4.5 and 4.6, they are nen-dimensionalised from their respective added monent of inertia components, $\alpha_{5 s}$ and α_{66} thus:
and

$$
\begin{align*}
& k_{s s} \quad=\quad \alpha_{m} /\left(\pi \rho_{r} D_{s}^{5} / 192\right) \tag{4.15}\\
& k_{G 6} \quad=\quad \alpha_{66} /\left(\pi \rho_{\mathrm{D}} D_{6}^{5} / 192\right) \text {. } \tag{4.16}
\end{align*}
$$

(iv). The remaining significant added mass coefficient is:

$$
\begin{equation*}
\mathbf{k}_{\boldsymbol{x}} \quad=\quad \mathbf{k}_{25}, \tag{4.17}
\end{equation*}
$$

non-dimensionalised from $\alpha_{35}=\alpha_{3 s}$. This is the sdded mass coefficient which is determined when a y dirested force is measured on a canopy undergoing an angular acceleration about the $\mathrm{O}-\mathrm{z}$ axis, or when a z -directed force is measured on a cznopy undergoing mangular scceleration about the O -y axis. Yavuzax has shown that if the origir of the co-ordinate system is located close to the cmopy centre of pressure then this latter coefficient is of negligible magnitude.

Hence the problem of delermining added mass coefficients has become one of determining experimentally only three added mass coefficients, $k_{11}, k_{22}=k_{33}$ and $k_{35}=k_{w 6}$. These three can be further reduced to two coefficients. If the origin of the co-ordinate sysiem is locmea close to the canopy centre of pressure then the apparent moment of inertias of the canopy, $\alpha_{s s}$ ubout the axis $0-y$ and $\alpha_{6 s}$ about the axis $0-z$ will be totally dominated by the moments of inertia of the payiond and hence they can be neglected.

The two remaining added mass coefficients are k_{11} and $k_{22}=k_{33}$. In the determination of parachute dynamic stability characteristics these cun be shown to be significant.

In tests performed on parachuse canopies which moved steadily under water while they were forced to oscillate in either their axial or trarsverse direction, Cockrell, Shen, Harwood and Baxter ${ }^{213}$ obtained the average values for the added mass coeficients k_{13} and k_{3} which are given in columass 5 and 6 oî Table 4.3. From these experiments it is evident that the real fluid flow values sbtained for these added muss coefficients substratially exceed the potential flow evaluations which Lamb, Ibrahim and others eadier decermined.

Using Table 4.1 and idealising a perachute canopy into an ellipsoid having a length/diamerer ratio of 0.5 , andytical values for the added mase cocficients $k_{11}=0.70$ and $k_{13}=0.21 \mathrm{can}$ be obstined. These are based or the ellipsoid's displaced volume, which is equal in magnitude to that of a bemisphere whose dismeter is equal to length of the ellipsoid's major axis. Hence, for this model for the perachute crioopy, analytical values bused on the casopy projected dismeter me aloo 0.70 mdd 0.21 respectively. Assuming the projocted diameter to egrat 0.7 of the nominal
projected diameter are also 0.70 and 0.21 respectively. Assuming the projected diameter to equal 0.7 of the nominal diameter the analytical values, in terms of the representative displaced volume based on nominal canopy diameter $\mathrm{D}_{\text {. }}$. would equal:

$$
\begin{equation*}
k_{12}(\text { analytical })=0.24 ; \quad k_{33}(\text { analytical })=0.07 \tag{4.18}
\end{equation*}
$$

Corresponding values which Doberr and Saliaris ${ }^{430}$ ased, written in terms of the nominal canopy diameter D_{0} and the present axis convention were:

cubic fi/sq.ft/sec. measured am 10 inches of water pressure
Table 4.3 EXPERIMENTAL CHARACTERISTICS FOR PARACHUTE
CANOPIES IN STEADY AND IN UNSTEADY MOTION
(after Cockrell, Shen, Harwood and Baxter ${ }^{4.39}$ and later revised by Harwood ${ }^{4121}$)
Ibrahim ${ }^{46}$, modelling the canopy as if it were a spherical cup, obtrined a value of k_{11} (based on projected vianneter) of about 2.6. In terms of nominal diameter D_{i} this becomes a value of about three times that in equation 4.19; of the order of the experimental values stown in Table 4.3. They vary with the volume of air enciosed by the canopies and they decrease appropriazely with increasing canopy porosity. The uncertainties in the measurements of the transverse adied mass coefficients $k_{n y}$ are high but they are seen to be of the order of one fifth to one tenth the corresponding values of \mathbf{k}_{11}.

The velocity-dependene ungential force coefficients mesured in these lests and presented in column 2 of Table 4.3 are epproxisnsely equal the corresponding rapential force coefficiene in steady motion given in column 1. Values of [$\mathrm{dC}_{n} / \mathrm{d} \alpha$] lam determined in unseady moti "and presented in column 4 of the table do not differ apprecisbly from
their steady-stace equivalent values, $\left[d C_{x} / \mathcal{L} \alpha\right.$]
fully-inflated perachute canopies occillate relstively slowned in column 3. These similarities imply that because canopies can be considered to be quasi-steady. In the opproy mass coefticients appear io be of censidgate By approprintely linearising the equaios of ance and sannot be ignored.
stability in pich, Doherr and Salisris equations have shown than shown in Seccion 3.3 .2 and thereby analysing dynamic parachute canopy should possess in order for it shown that the single most important aerodynamic characteristic a attack the rate of change of nermal force coefficient with angle of stability in pitch is that at an equilibrium angle of 25 stown in Section 2.3 .2 , is the same condition as frat forge of attack, $\mathrm{d} \mathrm{C}_{\mathrm{N}} / \mathrm{d} \alpha$, must be large and positive. This,

Where k_{11} is greaser than k_{n} which Cockell Sthat for stapic stability in picch.
conventional parachute canopies, the effect of the added mass cood and Buxtertso have indicated to be the case for increase the frequency of pitching oscillations over whats coefficients in the parachute equations of motion is to effect on the ozeillation damping rate. A typical reots-locus digrould be in their absence, with litule corresponding

In the curve a stown in this figure both the axial and the transverse added masce 4.29 is shown in Fig.4.2.
by censidering the added mass coefficients k_{1} and $k_{n, 1}$ to heve tranverse added mass coefficients have been neglected. characierivic there is a greaper frequency of oscillation for a equal values the curve b has been obtained. With this curve L venesents the concüiion that $\mathrm{k}_{11}=2 \pi \mathrm{k}_{\mathrm{s} \text {. }}$. Here the frequency of pitching oscillation the shown in curve a. The and ihere is also a mildty; dssabilising lendency. $\left[d C_{N} / d \alpha\right]^{\sim}$, is t mall. but if this is she case, in unseady o dymamic stability in pitch are only of real consequence if eridency. Sinne added masses are volume dependent whereas secrodymamic foces ass coefficies: k_{11} has a destabilising tar. dejey will iucrease as the size of the paracnute canopy increases.

RETERENCES

4.1 The : sson,W. and Tail,P.G. Treatise on Natural Philosophy. Oxford University Press, 1867.
4.2 Kircthoff, G.R. Ober die Bewegung eines rotations Korpers in einer Flussigkeit (On the motion of a body of revolution in a fluid). Jourmal für Reine und Angew. Mach.71,237-62, 1870.
4.3 Larmb,H. Hytrodymianimer. Cambridge University Press, 1932
4.4 Scheubel,F.N. Nores on the Opening Shock of a Parachuce. Progress Report RE-65, Foreign Exploitation
Section,Intelligence (T-2), April 1946.
4.5 Miine-Thomson,L.M. Theoretical Hydrodymamics. MacMillan, 4th edition, 1962.
4.6 Ibrahim.S.K. Apparent added mass and moment nf inerria of cup-shaped badies in unsteady incompressible
flow. Ph.D. thesis, University of Minnesola, Minneapolis,May 1965.
4.7 Klimas,P.C. Fuid Mass Associated with a Parachute Canopy. AIAA Journal of Aircraft, 14. 6, 577.580
June 1977.
4.8 Roberson_3.M. Hydrodymamics in Theory and Applications. Prentice-Hall, 1965.
4.9 Bessel,F.W. On the Incorrectmess of the Reduction to a Vacuum Formerly Used in Pendulum Experiments.
Berlin Academy, 1826 .
4.10 Lunnon,R.G. Fluid Resistance so Moving Spheres. Proc.Royal Society A, $118,1928,680-601$
4.11 McEwan,G.F. The Measurement of the Frictional Force Exered on a Sphere by a Viscous Fluid, when the Centre of the Sphere Performs Si:ull Periodic Oscillations along a Straight Line. Phys.Rev. 33 .
1911, 429-511.
4.12 Reffe.F.and Jones.R. Measurement of the Effect of Accelerations on the Longitudinal and Lateral Motions
of an Airship Model. U.K.Aeronauvical Research Council R.\& M.613, 1918.

1920, 350-352.
4.14 Frazer,R.A. and Simmons,L.F.G. The Dependence of the Resistance of Bodizs upon Acceleration, as Detemined by Chronograph Analysis. U.K. Aeronautical Reeerch Council R.\&M. 590, 1919.
4.15 Gracey,W. Additional Mass Effects of Plates as Determined by Experiments. NACA Report 707,1947.
4.16 Yee-Tak Yu. Virtual Masss and Moments of Inertia of Discs and Cylinders in Various Liquids. Journal of Applied Physics, 13, 1942, 66-69.
4.17 Ibrahim,S.K. Experimental Determination of the Apperent Moment of Inertian of Parachutes. U.S. WrightPatterson AFB, FDL-TDR-64-153, 1965.
4.18 Iversen, H.W. and Baleat,R. A Correlating Modutus for Fluid Resistance in Accelerated Motion. Joumal of Applied Physics, 22, 3, March 1951, 324-328.
4.19 Sarpkaya,T. and Isascson,M. Mechanics of Wave Forses on Offshore Siructures. Van Nostrand Reinhold Co., 1981.
4.20 Eearman,P.W.,Chaplin,J.R., Graham J.M.R., Kostense,J.K., Hall,P.F. and Klopman,G. The Loading of a Cylinder in Post-Critical Flow Benealh Periodic and RandomWaves. Behaviour of Offshore Structures, Elsevier Science B.V., Amsterdam, 1985.
4.21 Harwood, RJ. Private communication.
4.22 Hamilton, W.S. and Lindell, E. Fluid Force Analysis and Accelerating Sphere Tests. Proc. A.S.C.E. HY 6, Jure 1971, 805-817.
4.23 LingardJ.S. A Semi-Empirical Theory to Predict the Load-Time History of an Iuflating Parachute. U.K. Royal Aircraft Establistment TR 79141, November 1979.
4.24 O'Hara,F. Notes on the Opening Behaviour and the Opening Forces of Parachutes. Journal R.Ae.S. 53. Nov.1949,1053-1062.
4.25 Henn,H. Die Absinkeigenschaften von Fallschimen (Descent Characteristics of Parachuces) . Deutsche Lufffahrtorschung, ZWB-U\&M 6202, 1944. U.K. Royal Aircraft Establishment Translation 233,1948.
4.26 Lester,W.G.S. A Note on the Theory of Perachute Stability. U.K. Aeronautical Research Council R. \& M. 3352, 1964.
4.27 EatonJ.A. Added Fluid Mass and the Equations of Motion of a Parachure. Aeronantical Quarteriy, 34, 226242, August 1983.
4.28 Yavuc, T. Aerodynamics of Parachutes and Like Bodies in Unsteady Motion. Ph.D. Thesis, University of Leicester, 1982.
4.29 Cockrell,D.J.Shen,C.Q.Harwood.R.J. and Bexter,A.C. Aerodynamic Forces Acting on Perachutes in Unsteady Motion and the Consequential Dynamic Stability Characteristics.AlAA-86-2470CP. Proceedings of the Mh Aerodynamic Decelerator and Balloon Technology Conference, Abuquerque. 1986.
4.30 Doherr,K.F.F. and Saliaris,C. On the Influence of Srochastic and Acceleration Dependent Aerodynamic Forces on the Dynamic Stability of Parachutes. ALAA-81-1941. Proceedings of the 7th Aerodynamic Decelerator and Balloon Technology Conference. Sin Diego. 1981.

5.PARACHUTE DEPLOYMENT AND INFLATION

Since parachutes must be designed to be sufficiently strong to withstand the opening loads which occur as part of the inflation preeess, when considering parachate aerodynamies ari appreciation of the parameters which influence these loads and the manner in which they relate to these independent perameters is of fundamental concern. Because inflation is an unsteady aerodynamic phenomenon in which there are nocessary changes in the canopy shape during the process, it is no simple matter to develop an adequate inflation model. Aerodynamic models which are available range from scadily-usable empirical methods to models which by comparison are so complex as to be almost useless to the parachure designer.

5.1 INTERACTION PORCE BETWEEN CANOPY AND PAYLOAD

During the canopy deployment phase, the time-varying interactive force developed between the canopy and its payload significantly exceeds its stendy-state value and it is therefore of importance. This interactive force can be measured and interpreted either when the parachute-payload system is in free flight or when it is in a wind unnel. However, it is very difficult to establish a mathematical model which contains all the relationships necessary for it to be sdequate for design purposes. From such a model the maximum loading during deployment and inflation is cerrainly required. Some information is desirable so tham the trajectory of the parachute and payload during the inflation process can also be predicted. From more sophisticated models it might be possible to predict with confidence the stress distribution over the canopy. It certainly would be desirable if, during the inflation process, the model were capable of predicting the canopy shape and size.

Mechods of analysis have been developed in three different directions:
(i). the determination of physically-based relationship: the closure of which depends on the development of appropriate empirical expressions;
(ii). the reproduction of dynamic similitude in either full-ccale or model test situations through the establishment of appropriave functional relacionships for the required unknown paramelers; and
(iii). the construction of complex mathematical mode's which depend on knowledge of the pressure distribution around the inflating canopy in ordiai westablish the force required to drive the inflation process.
5.1.1 Expression for the Interactive Forces, \mathbf{F}_{1}

In order to develop expressions for the time-varying force which is developed between the canopy and its payload, consider in the direction of the flight path the separate equations of motion for the parachute canopy and the payload, as

PIG.5.1 EQUATIONS FOR THE MTTERACTIVE FORGE, PI
are shown in Fis 5.1.
For the perachute canopy, nefiecting its component of weighe down the fight panh in comparison with the caropy drag D_{p} and the interactive force F_{1} :

$$
\begin{equation*}
F_{1}=D_{p}+m_{p} v+\dot{m}_{p} v \tag{5.1}
\end{equation*}
$$

As Lingandex has indicaved, the sotal intersctive force F_{1} depends on both the aerodynsmic force $D_{\text {, and the }}$, incrial forse $\left(m_{p} \vec{V}+\dot{m}_{p} V\right)$. When establisting the inertial force duriag the deployment sad inflation phases,
developing an expression for the canopy mass, inclusive of its added mass (the latter defined in Section 4.1) as a function of time presents reat difficulties. The acrodynamic force could be measured directly in an appropriale wind tunnel test, as could the inertial force, e.g. Lingard ${ }^{5.1}$, but if the canopy is rigidily mounted in the wind tunnel the measured interactive force would not include the inertial term in equation 5.1.

In figure 5.2 a conditions in such a wind tunnel test are shown. Under these circumstances, not only is the inertia force excluded but as the canopy inflates the veiocity of air relative to it does not decrease but will remain of constant magnitude. The measurement of the interactive force is described as having been made under an infinite mass condition, since if the canopy mass were infinite then under the action of a finite force there could be no deceleration of

Fig 5.2 Forces Developed Between the Canopy and the Payload During Inflation (after Knacke ${ }^{\text {i.3 }}$)
the relative airflow.
By contrast, in figure 5.2b canopy inflation is shown as taking place under free flight conditions. Under such circumsiances deceleration of the relative airflow occurs and there is a consequential reduction in the interactive forces. Appropriate measurements are now described as having been made under finite mass conditions, when the peak opening force F_{x} occurs considerably earlier than at the inswnt when the canopy becomes fully infiated.

The processes of canopy deployment and inflation can be divided into a number of distinct stages. The first of these is before deployment, when no aerodynamic force is developred on the canopy. The trajectory of the canopy and the payload system is then solely deterrained by the system's initial conditions and by the payload's aerodynamics and weight. Next follows the initial deployment stage, which ends when the canopy rigging lines are fully stretched. As this occurs the interactive force peaks to a local maximum, called the lines-taut snatch force. Then follows the inflation stage: shis is from the instant at which the parachute canopy begins to open until it first reaches its normal fully-inflated projected area. Al the commercement of this third stage the canopy skirt forms a mouth which begins to open and inhale the air. Within the canopy this inhaled air forms a ball which moves down the length of the partlyinflated canopy to the vent. with which it impacts. Once this impact has occurred the canopy begins $t 0$ inflate radially and during this process the interactive force achieves a peak opening load As figure 5.2 indicales. this peak opening load is the maximum internctive force which the sysicm experiences.

In this figure the intersctive forces are shown as functions of time, the inflation time $\ell_{\text {, }}$ being that between the penk of the lines-taut snatch forise and the peak value of the inflation force or, mote strictly, berween the peak valucs of their respective coefricients. Though the inflation time is shorter than the filling time f_{p}, defined as the time taken
production of the snatch force to the instant at which the canopy first reaches its steady-state diameter and is thus considered to be fully inflated, in an experimental situation the inflation time is more clearly defined than is the filling time.

5.2 CRITTCAL OPENING AND CLOSING SPEEDS. SQUIDDING

Consider an uniuthated caropy in a wind tunnel. If the relative velocity of the airflow is increased a speed will be reached at which the canopy will just inflate. The practical applications of parachutes ensure their uzage at much higher relative air speeds than this minimum inflation speed so this later is not considered to be cne of the canopy's critical speeds.

If in the wind tunnel the canopy were now fully inflated at a relative airflow which is above this minimum inflation speed and if this relative velocity were now gradually increased, conditions would eventually occur at which the cancpy collapses to a form in which its maximum diameter was only between one-quarter and one-third of its fullyinflated diameter. Sinze the shape of the canopy then resembles that of a sqid, this phenomenon of canopy partial closure, occurring at a critical closing speed, is termed squidding. The occurrence of this squid configuration is a consequence of premature equitibrium between the radial prossure load and structural tension, thus the critical closing speed varies from one canopy shape to another and is a function of the canopy porosity. Still further increases in the relative air speed do not cause the squidding parachute shape to alter greatly. When the relative air speed is reduced below this critical closing speed the crown of the squidding parachute begins to inflate ard at some considerably lower relative air speed, called the criticai opening speed, the canopy suddenly opens fully.

Since it is the maximum speed at which the canopy fully inflates the critical opening speed is of importance and the velocity at which a canopy is required to deploy must be less than the critical opening speed. Once the canopy has fully inflated, the air speed relative to it seldom increases any more and thus the critical closing speed is of much less practical significance.

5.3 CANOPY INFLATION THEORIES

In his 1927 examination of canopy inflation physics, Mullers2 applied the principle of conservation of mass to the control volume defined by the physical boundary of the parachute canopy. In so doing, he stated that the rate of increase of the canopy volume was equal to the product of the canopy mouth areas and the canopy speed. In filling time models which developed from this work empirical expressions were established for the variation of the canopy mouth area with ume during inflation. Through his proposal that "the distance necessary for the complete inflation of a given canopy is a constant and is proportional to the linear dimensions of the parachute". Scheubel ${ }^{\wedge}$ Adealised the inflation process into one in which the assumed shape of the canopy remains effectively constant as its size increases. His filling distance inllation theory which resulted was extended by $\mathrm{OH}^{20}{ }^{23}$, who adopted a rather more sophisticated shape for the inflating canopy than Scheubel had proposed. It was then further developed by others who established relatively simple and effective inflation theories. Since Scheubel's hypothesis is generally valid and since the empirical relationships upon which these inflation theories depend must fit the circumstances for which they have been formulated, these empirical inflation theories are reliable and have been very widely adopted. However, Roberts and Reddy ${ }^{35}$ have commented that their essential wcakness rests in their acceptance as a necessary input of the shape which the inflating canopy adopts, rather than this time-dependent canopy shape being determined instant-by-instant as a significant output from the inflation calculation.
5.3.1 Semi-empirical Inflation Models Based on the Filling Distance Concept

In a wind tumel test at a constant relative wind speed V, i.e. under infinite mass conditions, consider the instantaneous peak opening force F_{x} to be measured on the inflaing canopy compared with the corresponding steadystate force F_{c}, measured on the fully-inflated canopy. The ratio of the peak to steady force is called the opening force coefficient C_{x}, thus

$$
\begin{align*}
F_{x} & =1 / \rho V^{2}\left(C_{D} S\right)_{p} \tag{5.2}\\
& =F_{\varepsilon} \cdot C_{x}=1 / 2 \rho V^{2}\left(C_{D} S\right)_{0} C_{x} \tag{5.3}
\end{align*}
$$

where ($\left.C_{D} S\right)_{p}$, is the canopy's instantaneous drag area and ($\left.C_{D} S\right)_{0}$ is the drag area of the fully inflated canopy.

$$
\begin{equation*}
C_{z}=\left(C_{D} S\right)_{p} /\left(C_{p} S\right)_{p} \tag{5.4}
\end{equation*}
$$

Figure 5.2 shows that during canopy inflation in free flighti.c. under finite mass conditions the peak opening force is considerably reduced from its infinite mass value. The ratio of its magnitudes, under infinite mass conditions to finite mass conditions, is calkd the opening force reduction factor and this is denoted by the symbol X_{1}.

Thus in free flight the peak opening force is written as

$$
\begin{equation*}
F_{x}=F_{r} C_{z}=i_{2} p V_{i}^{3}\left(C_{D} S\right)_{0} C_{z} X_{1} \tag{5.5}
\end{equation*}
$$

where V_{s} is the snatch welocity, ie. the velocity of the perachute system at the instant when the snatch force is developed. Very spproxinamely, this is the velocity st which the caropy deploys.

To use equation 5.5 it is firs necessary to determine both C_{x} and X_{1}. Knacke ${ }^{25 ;}$ 1s; 31 argues that for a given canopy shape the opening force reduction frctor X_{i} is a function of the canopy loading $W /\left(C_{D} S_{0}\right.$), where W denotes the paylond weight. Since the canopy loeding has dimensions, its units must be specified.

Typical values qusted by Knacke for X_{1} are 1.0 for an sircraft decelerator partichute with 2 canopy loading of 14 kPa; 0.33 for a parchoute retarder of crimence supplies with a cenopy loading of some 200 Pa and as littie as 0.03 for a personnel parachule with a canopy loeding of only 25 Pa .

53,1.1 The Miss Ratic. Method In the mase ratio metrod, the coefficients C_{x} and X_{1} are combined to form an instartaneous shock factor, x_{1} thas:

$$
\begin{equation*}
x_{1}=C_{2} X_{2}=\left\{V^{2}\left(C_{D} S\right)_{g}\right\} /\left\{V_{i}^{2}\left(C_{D} S\right)_{J}\right\} \tag{5.6}
\end{equation*}
$$

The factor x_{1} is the ratio of the peak interactive furce developed during inflation to the interactive force when the canopy is fully inflated. In Section 5.3.3 the load factor X will be further described. Unlike x_{i}, the load factor is defined as the instantaneous value of the ruio of the aerodymanic force developed on the inflating canopy to the force in the steady state. The load factor is thus a function of time and at its maximum value it is equal in magnitude to the opening force factor x_{1}.

Following Schilling ${ }^{s 5}$ the opening fonce factor is considered to be an empirical function of the mass ratio $\mathbf{R}_{\text {. }}$. The mass ratio is a measure of the air mass included in the fully-inflated parachute canopy to the store mass m, where $m=$ W/g.

Hence	$\mathbf{R}_{\mathbf{m}}=\left[\rho\left(\mathbf{C}_{p} S_{0}\right)^{1 . s}\right] / \mathrm{m}$.
and	$\mathbf{C}_{\mathbf{z}}=\quad$ function $\left(\mathbf{R}_{\mathrm{m}}\right)$.

53.1.2 The Canopy Ionding Method In the canopy londing method, the values for X_{1} are given as functions of canopy loeding in the manner explained in Section 5.3.1. Then, following Knacke, the opening fonce coefficient C_{n} can be considered to be a function of the canopy shape only, hence for different canopy shapes C_{2} can be tabulated. For example, for fim circular canopies Knacke quotes C , 8 equal to 0.7 .

5,3,13 The Pilma Method Following Pilanzes, in the manner outlined above the opening force coefficient C_{n} is considered to be a function of canopy shape. Then, once the increasing drag area of the inflating canopy has been modelled as a function of time by one of a number of simple, definsble relationships, for a specific canopy shape the opening force reduction factor X_{1} is given as an ea apirical function of a relationship whose magnitude can be deternined.

In any of these semi-empirical inflation methods, ance the peak opening force has been determined the filling time can be estimated. Using Scherbel's concept that the filling distance s_{q} is expressed in terms of the canopy's nominal diameter D_{c} by:

$$
\begin{equation*}
s_{f}=m D_{0} \tag{5.9}
\end{equation*}
$$

where the fill constant n can be determined experimentally for a given type of parachute, the filling time f_{4} is then expressed in terms of the velocity at deployment V, as:

$$
\begin{align*}
& t_{f}=s_{s} / V_{z}=\left(n D_{2}\right) / V_{1} . \tag{5.10}\\
& \text { 5.3.2 More Sophisticated Filling Time Models } \\
& \text { (DD/V. }
\end{align*}
$$

By using the two equations quoted in figure 5.1, a first order linear differential equation can be writuen for the motion along the flight path of the parachute and paylood system.

Since the intersction force F_{1} is there expressed through:
and

$$
\begin{aligned}
F_{1} \cdot D_{p} & =m_{p} \dot{\mathbf{V}}+\dot{m}_{p} \mathbf{V} \\
\cdot F_{2} \cdot D_{1} & =\min _{1} \gamma_{1}+m_{s} \dot{V}
\end{aligned}
$$

by neglecting both the payload drag compared with that of the ctanopy and the component along the flight path of the store weight, then:

$$
\begin{equation*}
\text { - } D_{p}=\left(m_{p}+m_{p}\right) \dot{V}+\dot{m_{p}} V \tag{5.11}
\end{equation*}
$$

During the inflation process, the drag of the canopy D_{p} could be estimated as a function of time by adopting steidy values of drag coefficient corresponding to simulated canopy shapes. In this equation the mass of the canopy is inclusive of its time-varying added mass. In order to obtain its time rate of change, some extimation must be made for the rate of change of canopy volume during the inflation process. Heinrich ${ }^{57}$ and others have suggested that this be done through the application of the continuity principle:

$$
\begin{equation*}
\dot{\forall}=v_{m} \pi R_{m}^{3}-v_{\Delta v 1}^{1 / 2} \pi D_{p}^{2} \tag{5.12}
\end{equation*}
$$

where \forall represents the rate of change of fluid within the canopy control volume; $v_{b} \pi R_{m}^{2}$ represents the inflow to the canopy, with velocity v_{m} through the canopy mouth, radius R_{m};
and $v_{o w n}{ }^{1 / 2} \pi D_{p}^{2}$ represents the outflow from the canopy, with velocity $v_{m a}$ through a porous hemispherical canopy of projected diameter D_{p}.

There remains the problem of estimating the inlet flow velocity $\mathbf{v}_{\mathbf{n}}$. Hieinrich, utilising the filling time concept, assumed this to be an empirical function of the filling time h_{4}, determining this function from the results of appropriate wind unnel tests.

Wolfs has argued that by using such a continuity expression, requiring empirical inputs, the prediction of canopy inflation has become unnecessarily restricted. What such filling time models have neglected is the prospect of a dynamic relationship in which the shape of the inflating canopy would be determined instant-by-instant through knowledge of the radial component of fluid momentum driving force, which depends on the pressure difference across the inflating canopy, In 1951 Weinig ${ }^{59}$ had introduced such ideas and these were later developed both by Tonis ${ }^{\text {alo }}$ and by Roberts ${ }^{\text {sin }}$.
5.3.3 Ludtke's Parachute Opening Force Analysis

In reference 5.12 , by introducing the dimensionless ballistic mass ratio M , Ludtke throws some fresh light on the interrelationship between velocities and aerodynamic forces during the inflation process. Neglecting the mass of the parachute compared with that of the payload, in equation 5.1:

$$
\begin{equation*}
F_{1}=D_{V} \tag{5.13}
\end{equation*}
$$

Then, from equations 5.2 and 5.13 , together with the equation of motion for the payload in Fig. 5.1, assuming that both the payload drag and the angle of descent γ_{4} are negligible:

$$
\begin{equation*}
\text { - } D_{p}=-1 / 2 \rho V^{2}\left(S C_{D}\right)_{p}=m, \dot{V} . \tag{5.14}
\end{equation*}
$$

Integrating equation 5.14 with respect to time from $t=0$, at the peak value of the lines-taut snatch force and the velocity is the snatch velocity V_{4}, to $\mathrm{t}=\mathrm{L}$, when the canopy is fully-inflated and its velocity is V :

$$
\begin{equation*}
\int t\left(S C_{p}\right)_{p} d t=\left(2 m_{z} / p\right) j t\left(-\dot{V} / V^{2}\right) d t \tag{5.15}
\end{equation*}
$$

and since $\mathbf{V} \mathbf{d}=\mathrm{dV}$:

$$
\begin{equation*}
=\quad(2 m, / p) \int V_{i}\left(-d V / V^{2}\right) . \tag{5.16}
\end{equation*}
$$

Dividing equation 5.16 through by $\left(C_{D} S\right)_{0} t_{0} V_{4}$, where t_{0} is the inflation time, and by writing:

$$
\begin{equation*}
M \quad=\left\{2 \mathrm{~m}, / \rho\left(C_{D} S\right)_{0} t_{0} V_{N}\right\} \tag{5.17}
\end{equation*}
$$

where M is called the dimensionless ballistic mass ratio. Equation 5.16 can then be solved in terms of M to give:

$$
\begin{equation*}
\text { V/Vs } \quad=\frac{1}{\left\{1+\left(1 / M t_{0}\right) / \&\left\{\left(S C_{p}\right)_{V} /\left(S C_{p}\right)_{0}\right] d t\right\}} \tag{5.18}
\end{equation*}
$$

During inflation the expression $\left.\int_{6}^{f}\left[\left(S C_{D}\right)_{j} /\left(S C_{D}\right)\right] d x\right]$ is a known constant for a given type of canopy so, once a value has been ascribed to the ballistic mass ratio, the raio $\mathrm{V} / \mathrm{V}_{\mathbf{1}}$ casa be determined. Then, having calcuiated V/V. other characteristics of the inflation phase, such as the instantancous shock factor x_{1}, can be evaluated. Luduke argued that the dimensionless balliscic mass ratio is the most appropeiate scaling perameter with which 10 consider the serodynamic chanacteristics of parachutes during the inflation process.
5.3.4 A Dyanaic Similitude Model for Parachute Canopy Inflation

Using dimensional analysis, for a given parachute system Lingard ${ }^{4255.13}$ developed a semi-cmpirical method of predicting over the entire operational envelope, from a limited number of ficid trials, the relationship between the total interactive force F_{1}, or the inflation load, and the tine which elapses.

Assuming that the drag D_{p} of the parachute canopy at an instant in time is a function of:
canopy shape and size;
its instantaneous velocity V and acceleration $\dot{\mathrm{V}}$;
the density ρ and viscosity μ of the fluid in which it is inflating;
then, by further assuming that the acceleration \dot{V} is a function of:
the snatch velocity $V_{\text {, }}$;
the time t, ineasured from the instant when the snatch force is developed;
the cancopy drag D_{p};
the gravitational acceleration g;
the masses of the payload m_{8} and the canopy m_{r} :
the canopy rate of change of mass $\dot{m} ;$ and
the inste taneous angle of the parachute rajectory relative to the vertical, or the deployment angle θ :
then:

$$
D_{p}=\text { function \{shape; } D_{\bullet} ; V_{t} ;\left\{; \rho ; \mu ; g ; m_{\mathbf{t}} ; m_{7} ; \theta\right\} . \text { (5.19) }
$$

For a canopy of a given shape, by neqlecting the effects of $\mu_{,} \mathrm{m}_{\mathrm{p}}$ and $\dot{\mathrm{m}}$, Lingard showed that for geometrically similar parachute systems with similar porosity constants:
and

$$
\begin{align*}
& C_{F}^{*}=D_{V} / \rho D_{*}^{2} V^{2}=\text { function }\left\{M_{r} ; F ; \tau ; \theta\right\} \tag{5.20}\\
& X=D_{8} / m_{s} g=\operatorname{function}\left\{M_{r} ; F ; \tau ; \theta\right\} \tag{5.21}
\end{align*}
$$

whese C_{p}^{*} is the dimensionless acrodynamic forse developed on the canopy;
X is the load factor, defined as the ratio of the instantaneous to the steady aerodynamic force developed on the parachute canopy;
M_{\sim} is the mass ratio, here defined as the ratio of payioad mass $m_{\text {, }}$ to a mass representaive of that included within the canopy, ρD_{0}^{3};
F is the Froude number $V / g D_{0}$ defired in Section 2.3.4;
τ is the dimensionless time, $V, H D_{0}$;
θ is the deployment angle, i.e. the instantaneous angle of the parachute trajectory, relaune to the vertical.
Since he was primarily concerned with personnel parachutes, in his analysis Lingard did not cunsider the Mach number to be a significant independent parameter.

Unsteady inflation force data obtained from experiments conducted on a variety of canopies tested over a range of mass ratios and descent parameters cocrelated well when ploted in the form:
$C_{\text {; }}^{*}=(f a n c t i o n(\tau)$
Lingard ${ }^{1.13}$ therefore concluded that each canopy shape has a unique dimensionless inflation force/time signature, which can be exracted from a limited number of trials of a given system. By employing this informption, together with the applicution of Newton's laws of motion, as shown in Chapter 3, to the system it is possible to predict the performance of the parachute and the payload system over its entire operational envelope.
5.3.5 Sinetic Models for Parachute Canopy Infation

The inflation method, introduced in 1971 by Roberts, represented the parachute caropy by a continuous elastic system. The pressure distribution required to determine fhe force which causes the necescary rate of change of fluid momentum was calculated by assuming potential flow about an expanding and decelerating parabolic shell, representative of the canopy. Bscause of its geometrical and mothematical sophistication such an advanced model is difficult to apply and thus receives only partial acceptance within the parachute indusiry.

Provided that sonic overall data for canopies duriag their inflation phese have bren obtained by conducting appropriate experiments, e.f. the pesk opening force cocfficient and the dimensinniess filling time, together with their payload and canopy mass ratios, Wolf' ${ }^{51} 1973$ single degree of freedom canopy model sulves the necessary momentum equations and satisfactorily predicts some observed phenomena, such as the effects of altitude on parachute inflation time. The mass racios are defined here as the respective payload or cancpy mass, divided by the mass of air displaced by a fully inflated representulive spherical caropy.

Different methods were adopted by Roberts ${ }^{5.12}$, by Klimas ${ }^{3.50 ; 3.25}$ and by others in order to identify the pressure distribution in the flow fieli associated with the inflating canopy. These are discussed in greater detail in Section 7.1. In 1981 Purvis ${ }^{5.16}$ developed an analyticai model based on a simplifcation of the changing canopy shape diring the intlation process. This model needs no experimental inputs at all. It could be used to predic! the unjectory of an inflating canspy.

In his model the caropy is modelled as a right circular cylinder whose radius is free w increase with time. For the inflation of this cyliider immersed in an inviscid and incompressible fluid an expression for the time rate of change of axial momentum over the surface of the expanding cylinder is first established and then solved. First-order effects oniy are considered. In reference 5.16 Purvis made comparisons for both imporous and porous canopies between the results obtained with this model and experimentally-obtained data, inflating under both iufinite mass and finite mass conditions.

The real significance of antlytical inflation models, such as th's one developed by Purvis, is that they reveal which are the gross parameters governing the inflation process, indicating what may be the consequences of their independent variation.

REFERENCES

5.1 LingardJ.S. The Aerodynamics of Parachutes During the Inflation Process. Ph.L. Thesis, University of Bristol, 1978.

5.2 Muller,W. Parachutes fer Aírcraft. NACA TM 450, October 1927.

5.3 Robers,B.W. and Reddy,K.R. A Discussion of Parachute Inflation Theories. AIAA 75-1351. Proceedings of Sth Áerodynamic Deceleration Systems Conference, Albuquerque, 1975.
5.4 Knacke,T.W. Decelerator Systems Engineering. Proceedings, University of Minnesota Decelerator Systems Engineering Short Course. Albuquerque, New Mexico, July 1985.
5.5 Schilling,D.L. A Method for Determining Farachute Opening Shock Forces. Lockheed Aircraft Corporation Report 12543, August 1957.
5.6 Pflanz,E. Determination of the Decelerating Forces During the Opening of Cargo Parachutes. ATI 26111. July 1942. USAF translation of German Report FGZ 231.
5.7 Heinrich,H.G. Opening Time of Parachutes under infinite-Mass Conditions. AIAA Journal of Aircraft , 6. 3. 268-272, May-June 1972
5.8 Wolf,D. A Simplified Model of Parachute Inflation. AIAA-73-450. Proceedings of 41 h Aerodynamic Deceleration Systems Conference, Palm Springs, 1973.
5.9 WeinigF.S. On the Dynamics of the Opening Shock of a Parachute. TR-6, USAF Office of Aeronatical Rescarch, Wright Air Development Center, Ohio, Feb.1951.
5.10 Toni,k.A. Theory on the Dynamics of a Parachute Systern Undergoing is Inflation Process. AIAA-70.1170. Proceedings of Aerodynamic Deceleration Systems Conference, Dayton, 1970
5.11 Roberts,B.W. Aerodynamic Inthation of Shall Type Parachute Structures. AIAA Journal of Aircraft, 11 390. July 1974.
5.12 Ludtke,W.P. Notes on a Generic Parachate Opering Force Analysis. AIAA-86-2440. Proceedings of the 9th Azrodynamic Decelerator and Balloon Technology Conference, Albuquerque, 1986.
5.13 LingandJ.S. A Semi-Empizical Theory to Protict the Load-Time History of an Inflacing Parachute. AIAA-84-0813. Pmoreedings of the 8it Aerodynomic Decelerator and Balloon Technology Corference, Hyarnis, 1584.
5.14 Klimes,P.C. Intemal Parachute Flows. AIAA Journal of Aircrofs, 2, 313-314, April 1972.
5.15 Klimas,P.C. Inflating Parachute Canopy Differential Pressures, AIAA Journal of Aircraft, 16. 861, Dec. 1979.

Purvis,.W. Theoretical Analysis of Parachate Inflation Including Flsid Rinetics, ALAA Jowrnal of Aircraf. 12. 4,290-296, April 1982.

6. EXPERIMENTS TO DETERMINE PARACHUTE AERODYNAMIC CHARACTERISTICS

At first sight, the proper manner in which to conduct experiments in order to establish the aerodynamic characteristics of parachutes would appear to be through the use of full-scale protoypes depleying, inflating and descending through their natural environment. Indeed, some experiments are conducted in this way. Many others are performed in wind cunncls or similar environments, both because these can readily be controlled and because under these circumstances it is often much easier to obtain the required data by instrumenting the support required for the model parachute than it is to determine them from flight tests. Wind tunnels are most often used for both static and dynamic tests on model parachutes, as a means of enabling the flow around the parachutes to be visualised and for measuring as a fuction of canopy attitude the aerodynamic forces which are developed. Other facilities which have been used for special-purpose lests include water tunnels, in which air is replaced with water as the test medium in which the parachute is immersed.
6.1 EXPERIMENTS CONDUCTED ON FULL-SCALE PARACHUTES IN AIR

As described in Section 2.3.3, the drag area $C_{D} S_{5}$ of a descending parachute can be determined from a knowledge of the weight of the parachute system, the density of the air through which it descends and the descent velocity V_{D}. The latter can be crudely estimated by observation. James'in, for example, hung a $61-\mathrm{m}$ long axial cord below the payload and observed the time which elapsed between the two ends of this cord striking the ground. However, Drake ${ }^{\text {d2 }}$, by analysing kinétheodolite data over a 500ft descent, used a more sophisticated technique with which to estimate the descent velocity.
The drag area so oblained over the time of descent would be an average value. Since the canopy nominal surface area S_{0} is known, the average drag coefficient for the system is determined. For stable parachutes this measurement accords well with wind tunnel evaluations, but as the angle of attack of an unstable parachute varies continuousiy during its descent, for such a parachute there may well be a substantial discrepancy between the average value of C_{0} obtained during its free descent through the air and the corresponding wind tunnel evaluation of C_{D} at zero angle of attack.

Depending on their application, parachutes being tested may be allowed to inflate freely, having been dropped from :ethered balloons, they may be ejected from aircraft, using specially-designed lest vehicles such as those which have buen described by Key and Barkerss or they could be launched from ground-based test vehicles such as the British compressed-air launcher, recenty being used at the Royal Aircraft Establishment. Such faciities can be instrumented to telemeter appropriate data from the parachute system to the ground. A test vehicle described ty Earker and Nosworthy ${ }^{64}$ was designed to be dropped from tethered balloons which fly at altitudes up to 1000 m . This test vehicle fell freely and as it did so, after pre-set time intervals the test parachutes were deployed from it. Lingard used this test vehicle to obtain required the canopy inflation dimensioniess time signature described in Section 5.3.4.

6.2 EXPERIMENTS IN A CONTROLLED ENVIRONMENT

Altbough when the weights of both canopy and payload are known the drag coeficients for stable parachute caropies can be determined by measuring their rate of descent through the atmosphere, to acquire more sophisticated aerodynamic data the instantaneous angle of attack of the cauopy will also be required. To deduce this angle both the magnitude and the direction of the relative airflow must be obtained. The most satisfactory way of determining these data is to fly the canopy in a controlied environment in which the relative velocity of the fluid will be known. Thus the main reason for conducting measurements on scale models of parachutes in wind tunnels is in order to provide such a controlled environment. It is highly desirable to use wind tunnels rather than flight tests when obtaining drag data for unstable parachute canopies and when determining canopy static stability characteristics. For such measurements static tests can be performed on rigidly-mounted canopies. Similaty, some form of controlled environment is preferable when canopy inflation behaviour or dynamic stability characteristics are sought, but for these purposes dynomic resting is necessary, on models which can move through the convolled environmeri with a limited amount of freedom.

6.3 REQUIREMENTS FOR MODEL TESTS CONDUCTED IN A CONTROLLED ENVIRONR.SENT

To model the sirflow round a descending parschute faithfully when it is flying in a controlled environment such as that in a wind tunnel two importmot requirements must be sutisfied:
(i). the shape of the model, including the means of fixing it to any force-measuring apparatus and to the walls of the controlled environmert, logether with the canopy porosity and its flexibility, must be truly representative of the prototype full-scale parachute. The scaling of canopy flexibility, as Lees has indicatel, is particularly difficult to achieve and this can lead to problems in data inverpretation, particularly for inflation loads. This shape requirement also includes ensuring that any blockage constraint which is cemsed by the presence of the controlled environment walls is minimal;
(ii). the Reynoids number of the test programme and also its Mach number, where it is applicable, must also be representative of the full-scale parachute. As discussed in Sections 2.2.2 and 2.2.3 these parameters need not necesserily be equal to those in full-scale flight but in the model tests any differences in their magnitedes must be considered carefully.
Inevitably, when conducting model tests the shape requirement will, to some extent, be compromised. Early experiments were often performed on rigid rather than flexible models of canopies and in some cases the tests conducted on these canopies were not performed at sufficiently high Reynolds numbers to avoid laminar boundary layer separation. Often in static tests inodels are mounted on axial stings which can both limit the movement of the model canopies and may develop drag forces on their own account. Because parachute canopies are bluff rather than streamlined bodies any effects on aersdynamic characteristics causxd by blockage constraint can be of considerable significance.

6.4 WIND TUNNEL TESTS ON MODEL PARACHUTES

The scale effect and blockage problems referred to above were mentioned as long ago as 1946, in Block's ${ }^{66}$ brief report. Eariy German wind umnel tests which Munson ${ }^{\text {4. }}$ described are principally concemed with the establishment of the proper dimersionless parameters influencing the aerodynamic forces developed on parachute canopies, also with determining both static stability requirements and the opening-shock forces. Heinrich's wind tunnel tests, originally conducted in Germany and later in the United States, have been described in a variety of reports, such as references 1.8 , 2.2, 6.8 and 6.9.

Later German research has been considered by both Doherr, in references 6.10 and 2.10, and by Saliaris ${ }^{611}$. In this experimental work the techniques which were adopted for static tests can be considered as a development of those which Heinrich had earlier implemented in the United States. Experintental methods to determine parachuie dynamic stability characteristics were also developed in Germany.
Although much of the more recent British parachute testing has been performed in the free sir, in reference 1.5 Dennis refers to some wind tunnel testing in the United Kingdom. Other recent British experimental work has been described by Shen and Cockrell in reference 2.11.
6.4.1 Flow Visualisation Around Model Parachutes

Wool tufis fixed to detect the onset of flow separation from model parachute canopies and smoxe employed as a flow tracer are the most commonly-used wind tunnel techniques for flow visualisation around parachute canopies, though because of the rapid dissipation of the smoke the laucr is not a very appropriate techniyue at Reynolds numbers which approach full scale.
Techniques for using neutrally-buoyant helium-filled soap bubbles as flow tracers around model parachute canopies have been described by Pounder ${ }^{.12}$. Klimas \& Rogers ${ }^{6.13}$, Lingard ${ }^{12}$ and by Shen \& Cockrell ${ }^{211}$.

One of the major advanmages of testing parachutes under water saither than in air is that this makes possible the use as flow tracers of either small, near neutrally-buoyant, polystyrene beads and this technique has been described by Lingards', or of hydrogen bubbles gencrated by local electrolysis at fine wire cathodes immersed in the water. This huter sechnique has been outlined by Cociorell, Huntley and Ayresuld.

When lesting model parachute canopies under water scaling problems can arise. In particular, as Cockrell, Harwood and Shends have discussed, the nominal porosity λ of a parachute tested under water can differ appreciably from its value when devermined in air.
6.4.2 Measurement of Steady Aerodynamic Forces and Moments

In order to measure steady aerodynamic forces and moments developed on model parachutes. generally the inodels are rigidly fixed in their test media. By using strain gauges or other appropriate transducers the required aerodynamic reactions on the eupporing structure can be determined. Such a measuring tecinique has been well described both by Heinrich \& Hank ${ }^{22}$ and by Doherr ${ }^{210}$.

6.4.3 Uasteady Aerodynamic Measurements

Unsteady aerodynamic measurements have been made on model parachute canopies in order to determine both the opening loads during inflation and the added masses which are developed on unsteadily-moving fully-inflated canopies.
64.3.1 Wind Tunnel Meacurements of Internctive Forcos During Inileticn uniter Finite. Mase Conditionas If model parachute canopies which are rigidly fixed in wind tunnels are inflated, this process will cccur at a constant wind velocity relative to the model. In Section 5.1 .1 it is explained that infinite-mass measurements made under these conditions of the interactive force F_{1} developed between the prachame canopy and the payloed are unrepresentative of full-siale canopy inflation. However, both Heinsich a Noreea ${ }^{\text {He }}$ and Lingard ${ }^{\text {sh }}$ have shown that by ravunting the canopy in the wind tumel so that as it inflates it is free to move, then during its inflation the surrounding sir flow will decelerme relaive wo the canopy and the finite-mises isulaion process cen be modelled.

The equations of motion for each of these sub-systems are then as follows:

$F_{1} \cdot T_{2}$	$=h_{1} w \vec{V}$	equation (i);
$\left(T_{3}-T_{2}\right) r_{3}$	lavir	equation (ii);
$\mathrm{T}_{3}+\mathrm{l}_{2} \mathrm{wg} \cdot \mathrm{T}_{4}$	$\mathbf{h}_{\mathbf{W}} \boldsymbol{v}$	equation (iii);
$\left(T_{4}-T_{3}\right) r_{6}$	$\mathbf{I}_{0} \mathbf{v} / \mathrm{r}_{6}$	equation (iv):
$\mathrm{T}_{5} \cdot \mathrm{~T}_{6}$	$b w v$	equation (v);
($\mathrm{T}_{6}-\mathrm{T}_{7}$) r_{6}	$\mathbf{I}_{\mathbf{c}} \mathbf{V} / \mathbf{r} \mathbf{r}_{\text {c }}$	equation (vi);
$\mathrm{T}_{7}-\mathrm{I}_{4} \mathrm{Wg}-\mathrm{T}_{3}$	$4 \mathrm{w} \mathbf{V}$	equation (vii);
$\mathrm{T}_{\mathbf{8}}-\mathrm{m}_{5} \mathrm{E}$	miv	equation (vii).

The solution to this set of equations is:

$$
\begin{equation*}
\dot{\dot{V}}\left[w\left(l_{1}+l_{2}+l_{3}+l_{4}\right)+I_{8} / r_{2}^{2}+I_{1} / r_{b}^{2}+I / r_{e}^{2}+m_{0}\right]=F_{1} \cdot g\left[\left(l_{4}-l_{2}\right)+m_{4}\right. \tag{6.1}
\end{equation*}
$$

This equation is of the same form as that for the vertically-descending payload shown in Fig. 6.1 b where in both equations F_{1} represents the required interactive fonce between the payload and the parachute.

Thus, with an appropriate choice of the constants for the wind tunnel system equation 6.1 can be made to represent:

$$
\begin{equation*}
\dot{\mathbf{V}}_{\mathrm{m}} \quad=\mathrm{F}_{1}+\mathrm{D}_{\mathrm{t}}-\mathrm{m}_{1} \mathrm{~g} \tag{6.2}
\end{equation*}
$$

and so the interactive force can be determined.
64.3.2 Experiments to Determine the Added Masses for Unsteadily-Moving Fully-Inflated Parachule Canopies In order to determine these added mass coefficients experimentally, Cockrell, Shen, Harwood and Baxtern measured the aerodynamic forces which were developed on fully-inflated model parachute canopies when the lauter were subjected to a known periodic motion. The aerodynamic forces were calculated from output signals transmitted from strain gauges which were attached to the models' support sting.

6.5 AERODYNAMIC MEASUREMENTS MADE ON PARACHUTES IN OTHER FACILITIES

 THAN IN WIND TUNNELSFrom time to time aerodynamic measurements on parachute canopies have been made in other facilities than wind unnels. For example, at some time prior 101967 measurements which Colboume ${ }^{\kappa 17}$ has described were made of the drag developed by a 4.6 m . (15 ft) flat circular parachute when it was caused to descend freely inside the 107 m . (350 ft) high cooling tower of an electricity power station. This tower had a base diameter of 100 m . (325 ft .), a diameter at the apex of 66 m . (218 ft .) and a throat diameter of 62 m . (205 ft). Its varying diameter was a source of some difficulty in that it caused a corresponding variation in descent velocity. This facility was only available over a very limited period for experimental purposes snd, probably in consequence, Colbourne's report on the measurements which he made is somewhat inconclusive.

As described in reference 6.15 , in order to minimise the ratio of the inertia forces developed on the canopy supports to the added masses developed on parachute canopies when they move unsteadily, measurements of the aerodynamic characteristics for fully-inflated parachute canopies have been made under water rather than in the air. Water is a suitable medium because the aerodynamic forces are proportional to the fluid density and that of water is some 800 times the density of air, whereas the inertia forces, being proportionsal to the density of the canopy supports, are of the same order of magnitude whichever medium is adopted. In the experiments described the canopy models were towed through a 61.0 m . long stip tank, having been suspended from the ship-towing carriage.
6.6 Blockage caused by model parachute Canopies

The flow past any body irnmersed in a stream of fluid is subjected to blockage constraint. caused by restraint of the fluid's free lateral displacement. This stream of fluid might be constrained either by the test envirorment's solid walls, as it is when the body is held in the closed working section of a wind tunnel or in a less confined situation such as would occur if the model were immersed in an open jet of fluid. In the former state the boundary condition imposed on the flow is that at the solid boundary there can be no transverse velocity component: in the latuer state the corresponding boundary condition is that the pressure along the boundery muse be approximately constant and equal to the ambient pressure. In these two staves, the corrections which are to be applied to measured pressures, aerodynamic forces and moments are of opposite sign. Mastell ${ }^{\text {ar8 }}$ shows that the dominant effect of hlockage constraint is a simple increase in the fluid's free-strem velocity, in part reliued to the volume distribution of the body itself, lermed solid blockage, and in part related to the displacemens effect of the wake, termed wake blockage.

Conventional parachute canopies are bluff bodies, that is bodies for which the surrounding flow is dominated by large regions of flow separation. Unless the blockoge area ratio. defined ts the ratio of the cross-sectional area of the
6.6.5 Estimation of Blockage Constraint in Wind Tunnel Tests on Parachute Canopies In order to minimise blockage effects, aerodynamic tests on model parachutes must be performed in large wind tunnels. For much of the published experimental data, not only is it not known if any blockage corrections were made by the originators, but as wind tunnel blockage area ratios may not now be readily available, making contemporary corrections is often not possible. Values of drag coefficient obtained from different wind tunnel tests can vary substantially from one another and although in published data the sign of $\mathrm{dC}_{\mathrm{N}} / \mathrm{d} \alpha$ may be reliable, its numerical value is much less certain.
In determining the aerodynamic characteristics of parachute clusters Braun and Walcoul ${ }^{623}$, using the 3.7 m . (12 ft.) diameter vertical wind tunnel at the Wright-Patterson Air Force Base, Ohio found that their blockage factors approached 19\%. Earlier Auterson ${ }^{5.34}$, using the 7.3 m . (24 t) diameter low-speed wind unnel at the Royal Aircraft Establishment, Famborough, UK., performed tests on clusters of from one to five parachute canopies with only a 4% maximum blockage area ratio. Heinrich and Noreen ${ }^{616}$ tested clusters of from one to four solid flat circular and ring slot parachute canopies in the $1.5 \mathrm{~m} . \times 1.5 \mathrm{~m}$. ($5 \mathrm{ft} \times 5 \mathrm{ft}$.) open woricing section wind wnnel at the University of Minnesota at Minneapolis, experiencing blockage factors of up to 22%. Using the $2.1 \mathrm{~m} . \times 3.0 \mathrm{~m}$. (7 $\mathrm{ft} \times 10 \mathrm{ft}$) working section of the Vought Corporation wind tunnel, clusters of between one and eight 0.4 m . (16 in .) nominal diameter flat circular canopies were tested by Baca ${ }^{63}$. In these later tests the blockage factor varied from 1.8% to 14%. In his determination of the canopy drag coefficient for the free stream dynamic pressure Baca estimated the effect of this blockage factor by determining the dynamic pressure variation along the wind tunnel ceiling outside of the parachutes' boundary layer and using the value which was obtained in the plane closest to that containg the canopy skirt hem. His method is an approximation to that oullined in Section 6.6 .4 ahove.

Shen and Cockrell ${ }^{211}$ measured the dray of cross-shaped parachute canopies both in a wind nunnel with a working section of $1.14 \mathrm{~m} \times 0.84 \mathrm{~m}$ and in a water tank which had a cross-sectional area of $3.66 \mathrm{~m} \times 1.83 \mathrm{~m}$. The blockage area ratios, based on the projected areas of the canopies, were between 7% and 8% in the wind wannel and of the order of a negligible 1% in the ship tank. Corresponding drag coefficient characteristics have been drawn in Fig. 6.2. The upper curve shows the values of drag coefficient which were obtained in the wind tunnel. The corrected wind tunnel results which are shown by the open symbols in Fig. 6.2 were obtained by using equation 6.4 for the correction to drag, $\Delta \mathrm{C}_{\mathrm{D}}$. These compare very well with the drag cocfficient measurements independently obtained in the ship tank with the much larger cross-sectional area using the same model parachute canopies.

Fig. 6.2 BLOCKAGE CORRECTIONS APPLIED TO CROSS-SHAPED PARACHUTE CANOPIES - amer Sten and Cockrell, ref, 2.11

REFERENCES

6.1 James, K. The Effects of Axial Cords on the Charecteristics of Parachulcs. U.K. R.A.E. Techrical Report 72198. January 1973.
6.2 Drake, V.N. A Method of Presenting a Record of Parschute Swing. U.K. A\& AEE Memo.No. 3021970 (approx.)
6.22 Gamer,H.C., Rogers,E.W.E.,Acum,V.E.A. and Maskell.E.C. Subsonic 'Wind Tunnel Wall Corrections. AGAKDograph 109, Advisory Group for Aerospace Kesearch \& Development, NATO, Paris, October 1966.
6.23 Braun,J.F. and Walcot,W.B. Wind Tunnel Sudy of Parachute Clustering. Technical Report ASD-TDR-63159, Aeronautical Systems Division, Wright-Patlerson Air Force Base,Ohio,1963.
6.24 Auterson,E.I. Wind Tunnel Tests on Clusters of Parachures. ARC R \& M 2322, Aeronautical Research Council, U.K. March 1945.
6.25 Baca,K. An Experimental Study of the Performance of Clustered Parachutes in a Low-Speed Wind Tunnel. Sandia Report SAND 85-0813, National Technical Information Service, Springfield VA, Dec. 1985.

7. METHODS OF ANALYSIS FOR FLOW AROLND PARACHUTE CANOPIES

For a varicty of reasons analytic solutions are required to a number of parachute aerodynamic problems. Because of the interactive relationship between the canopy shape and the aerodynamic forces developed on it, even when it is possible to make experimental measurements they may well be insufficient for predictive purposes. Often the unstcady nature of the flow around bluff parachute canopies causes difficulties in both the planning and the execution of experimental programmes and even where inany merodynarnic characteristics have been described in Section 2 as steady, they are in fact the average values of time-varying quantities which fluctuate with the unsteady wake pattern downstream. For these and other reasons reliable experimental solutions for parachuie aerodynamic characteristics can be difficult to obtain and analytical solutions are sought, not only for predictive purposes but also in order to obtain a better understanding of the fluid flow processes involved.

A thorough analysis of the whole flow field around the parachute is possible only by solution of the NavierStokes equations. Though cerrain low Reynolds number flow problems do respond to the computer solution of these cquations the flow round a parachute canopy and payload is at a high Reynolds number, implying that convection in the flow field is of more significance than diffusion and that viscosity is a relatively unimportant fluid property. In the immediate future parachute aerodynamic characteristics are most unlikely to be obrained from full solutions to the Navier-Stokes equations and other methods must be sought instead. However, because the three-dimensional flow field around a bluff body such as a paachute canopy contains large-scale structures which arise from free-shear layers brought about by flow separation, its solution is far from staightforward.
Currently there are two possible lines of attack, in both of which a largely irrotational flow field is assumed. In the first of these approaches, in spite of some evident disadvantages in this assumption, the entire flow field outside of any near-surface singularities is considered to be irrotational. This is the meshod that Ibrahim, Klimas and Roberts all adopted, described below in Section 7.2. In the second, described in Section 7.3, an identifiable region of vorticity is used to model the characteristics of the wake which is shed by the parachute.

Imotational flow is an essential ingredient of any analytical model which is developed in order to determine the characteristics of the flow around an arbitrarily-shaped body, for it is only if the flow is inctational that it possesses a velocity potential and hence can be termed potential flow. Potential flows can be steady or unsteady. In steady potential flows streamlines can be drawn orthogonal to the equipotential lines. Vorticiry is a measure of fluid element rotation thus, in a region in which a fluid is considered to be irrotational, there can be no vorticity. Since vorticity is necessarily present in fluid regions in which there are shear strusses, within boundary layers and wakes the flow is not potential. Thus, it is an idealisation to conceive of the whole flow field in which a given body is immersed as being potential. To contrast this idealisation with the actual flow field, in which vorticity is present in certain high shear regions, the potential flow field is also referred to as ideal fluid flow, or sometimes as perfect fluid flow. It is customary, though not essential, to consider that a characteristic property of an ideal fluid is its incompressibility.

Certhin features of unsteady flows around bluff bodies such as parachute canopies can be predicted with remarkable accuracy by using steady flow mode!e but with such methods a cautious approach is necessary. In reference 7.1 it is stated that "they may amount to litue more than the creation of a highly idealised flows, some of whose features coincide with the corresponding features of the real flow. The extent of the approximations inherent in such models might conly be revealed by the comparison with experiment of other features of the flow, such as the pressure distribution over the downstream surface of the bluff body. It is at this point that we are handicapped by the fact that experimental techniques are, at this moment, lagging behind the advance of theory".

7.1 RELEVANCE OF POTENTIAL FLUID FLOW SOLUTIONS TO PARACHUTE AERODYNAMICS

In steady potential fluid flow all or a part of the immersed body's impervious boundary is considered to be one of a family of streamlines which represent the flow. Since these streamlines and their associated eguipotential lines form an orthogonal net, in a fluia which is wholly irrotational the flow pattern which is developed around a symmerricallyshaped body is itself symmetrical. This leads to a symmetrical pressure distribution and in consequence in steady flows, to zero mrmal pressure drag, or form drag, developing on the immersed body. By considering the momentum of the entire flow field surrounding the immersed body it can readily be shown that, provided that the body's dimension: are firite and it is considered to be immersed in a steady, frictionless incompressible fluid which is entirely free of vorticity, then regardiess of its shape no net aeroiynamic force can be developed on that immersed body. This is a statemest of the D'Alembert Paradox.

In view of this paradex and considering the serodynamic characteristics which are required from an analytical model of a parachute, the apparint lack of relevance of potential flow solutions to parachute aerodynamic problems must ccrtainly be considered. in spite of what D'Alembert cleclared to be a paradox, lift is certainly developed on some bodies which are immersed in potential flows and similarly, trailing-vortex drag component forces can be generated on models which have a finite span. However, the major part of the drag developed on parachute canopies is form drag
and if they are immersed in steady potential fluid flows which are wholly irrotational, it is not possible 10 determine this form drag from solutions to potential flow problems. This is the evident disadvantage of the first approach.

Through free-streamline theory, opiginating with Helmholtz ${ }^{7,2}$ and Kirchhoff ${ }^{73}$, which postulated that the pressure is constant on streamlines which extend to infinity from the bluff body and which bound the wake region, a non-zero drag force on such an immersed bluff body can be established. Foilowing Fage and Johansen's ${ }^{7,4}$ assumption that the fluid pressure varies along these boundary streamlines, a plausible value for the bluff body drag can be obtained. Although in free-streamline theory the assumption is made that flows are steady, this approach serves as a useful introduction to the vortex-sheet methods of analysing unsteady flows around bluff bodies, described below in Section 7.3.

7.2 THF IRROTATIONAL FLOW FIELD APPROACH

7.2.1 Ibrahim's Solution for the Added Mass of Fully-Infated Parachute Canopies

By idealising their shapes into thin-walled, rigid cup shapes and applying conformal transformation techniques Ibrahim ${ }^{44}$, in his 1965 doctoral thesis, developed a potential solution for flow around fully-inflated parachute canopies. His reason for making this analysis was in order to determine the added mass coefficients associated with the unsteady oscillatory motion of the parachute during its descent. Lester.25, whose work was broadly contemporary with that of Ibrahim, noted that "the theoretical concept of added mass with regard to motion of bodies in an ideal fluid is not necessarily representative of the physical phenomena which occur in a real fluid". Later experimental measurements tend to justify this earlier opinion.

7.2.2 Klimas' Parachute Canopy Method

Only certain representative shapes of immersed bodies respond well to the methods of conformal transformation and a more flexible lechnique is required with which to represent axi-symmetrical canopies with arbitrary crosssectional shapes. Milne-Thomson ${ }^{45}$ modelled two-dimensional thin aerofoil sections, representing them by a line vortex sheet and in 1972 Klimas $^{.13}$ followed his example, modelling an axi-symmetric parachute by a system of vortex rings which covered the canopy. The modelling of axi-symmetric shapes by vortex rings is discussed in reference 7.1. This representation enabled Kimas to include the effects of canopy porosity in his model.

Klimas' initial objective was that of determining the pressure field round an inflating canopy. In seeking to meet this aim he needed good experimental data with which to validate his model and this was not easy to find. In 1977, like Ibrahim, Klimas ${ }^{4.7}$ used a development of his earlier model as the basis for determining the added mass coefficients in unsteady motion, remarking that "no obstacle exists to extension of the approach to include the nonsteady canopy geometries (ot the inflation process)". In a third paper published in $1979 \mathrm{Klimas}^{314}$ adopted his earlier vortex sheet canopy model as the means by which he determined the pressure field round an inflating parachute canopy. The shapes adopted by the inflating canopy were assumed and the process of inflation was permitted to continue until the axial aerodynamic force, evaluated by invegration of the pressure distribution, was equal to a value which had been indepently delermined or had been assumed.

An objection, ascribed to Roberts and Reddy ${ }^{33}$ in Section 5.3, to this technique which Klimas adopted is the necessity for the inflating canopy shape to be an input to the determination of the pressure field, rather than the canopy shape developing as a significant output to the analytical procedure which is adopted.

7.2.3 Roberts' Inflating Canopy Method

In order to delermine inflation times and inflation loads for parachutes, Roberts ${ }^{\text {sit }}$ determined the unsteady pressure distribution over an axisymmetric, impervious, inflating shell. In order that its potential flow pressure distribution could be developed by conformal transformation tectiniques from that in a right-angled comer a paraboloid was chosen as the general shape of this shell. At any instant in time the dynamics of the canopy inflation process could be determined from the payload mass and knowledge of the drag force developed on the canopy, the latter being given immediately from the known pressure distribution which developed over it.

Its aerodynamic analysis is developed by considering the existence of a starting vortex ring which forms and grows in a location adjacent to the skint of the shell. It is through the existence of this vortex ring that the Kutta-Joukowski condition is satisfied at the shell skirt. From observations of parachute characteristics it is evident that, as the shell becomes nearly fully inflated, the vortex ring at the shell skirt become unstable, dififing downstream from the shell and forming the axisymmetric wake in the canopy. In his model Roberts showed how the position of this vortex ring could be decermined.

In Roberts' method, unlike the one which Klimas adopled, the particular shape of the inflating canopy followed fmm the determination of the pressure field which developed around in. Essentially, it is a vortex sheet method of calculation applied to a canopy shape which varies with sime.

7.3 VORTEX SHEET METHODS OF REPRESENTING THE WAKES SHED BY PARACHUTES

The representation within an otherwise irrotational fluid flow of an identifiable region of vorticity has a long history. This is the method which Prandtlt adopted to model the boundary layer. Lanchester ${ }^{7.5}$ similarly
(ii). in unsterdy flows, for fully-inflated purachute canopics.

The problem here is te determine the added mass coefficients analytically. Ibrahim ${ }^{46}$ and others have achieved this for wholly irrotational flows, although Lester. $\Delta 5$ has questioned the engineering significance of the resuls which they obtained. As McCoy and Werri: " " have indicated such determinations can be made by vortex-sheet methods but as yet it is still too early for much published data to be available.
(iii). in unsteady flows, for inflating parachute canopies.

Here, reliable methods are still required with which to couple the aerodynamic forces obtained by vortex-sheet methods to a strectural analysis technique. Roberts ${ }^{511}$ has indicated that such a coupling is possible: Meyer and Purvis ${ }^{7.14}$ are attempting its solution, but, as yet, there are no indications that a solution has been obtained to this problem.

REFERENCES

7.1 Thwaites, B. (Editor). Incompressible Aerodynamics. Clarendon Press, Oxford. 1960
7.2 Heimholta, H.von. Übur Discontinuierliche Flussigkeitsbewegungen. 'Mber' K. Akad. Wiss., Earlin, 23. 215, 1868.
7.3 Kirchhoff, G. Zur Theorie Freier Flussigkeitsstrahlen. J. Reine Angew. Math. 70, 289, 1869.
7.4 Fage, A. and Johansen, F.C. On the Flow of Air Behind an Inclined Flat Plate of Infinite Span. U.K. Acronautical Research Council R. \& M. 2127, 1927
7.5 Prandu, L. Uther Flüssigksitsoewegung bei sehr kleiner Reibung, Verh. 3. int. Math.-Kongr., Heidelburg 484, 1904.
7.6 Lanchester,F.W. Aerodonetics. Constable, London. 1908.
7.7 Kámés, T.von Flussigkeits- und Luftwiderstand. Phys.Z. 13, 49, 1911.
7.8 Rosenhead, L. Formation of vortices from a surface of discontinuity. Proceedings of the Royal Sociery, A, 134. pp.170-192, 1931.
7.9 Clements, R.R. and Maull, D.J. The Representation of Sheets of Vorticity by Discrete Vortices. Progress of Aerospace Science, 16, 2, pp.129-146, Pergamon Press, 1975.
7.10 Shirayama, S. and Kuwahara.K. Computation of Flow Past a Parachute by a Three-Dimensional Vorex Method.
AIAA-CP-86-0350. I'roceedings of the AIAA 24th Aerospace Sciences Meeling, Reno, January 1986.
7.11 Shirayama, S. and Kuwahara,K. Superconductors and Fluid Dynamics. Proceedings of the First Nobeyama Workshop,1985, Edited by Kuwahara, Mendez and Orszag. Springer.Verlag, 1985.
7.12 Strickland, J.H. On the Utilization of Vorex Mehhods for Parachinte Aerodynamic Predictions. AIAA-CP-862455. Proceedings of the AJAA 9th Aerodynamic Decelerator and Balloon Technology Conference. Albuquerque, October 1986.
7.13 Rehbach,C. Numerical Calculation of Three-Dimensional Unsteady Flows with Vontex Sheets. AiAA.CP-78-111. Proceedings of the J6th Ae-ospace Sciences Meeting, Huntsville, January 1978.
7.14 Meycr, J. and Purvis, J.W. Vortex Latice Theory Applied to Parachutc Canopy Configurations. AlAA-840795. Proceedings of the AVAA 8th Aerodynamic Decelerator and Bai'oon Technology Conference, Hyannis,April 1984.
7.15 deBernardinis.B., Graham.J.M.R, and Parker,K.H. Oscillatory Flow Around Disks and Through Orifices. Journal of Fluid Mechanics, 102, pp.279-299, 1981.
7.16 McCoy,H.H. and Werme,T.D. Axisymmetric Vortex Lallice Method Applird to Parachute Shapes. AIAA. CP-86-2456. Proceedings of the A1AA 9th Aerodynamic Decelerator and Balloon Technology Conference. Albuquerque, Oct berr 1986.

8. EXTRA-TERRESTRIAL APPLICATIONS OF PARACHUTES

During the ten years which began in 1976 incensive activities in both the United States of America and the Sovict Union have beendirected towardsexploring the characteristics of three other planets in the solar system, Mars, Venus and Jupiter. In separate missions during July and August 1976 two Viking instrument packages launched from the United States were soft-landed on to the surface of the planet Mars. Parachutes were used on both of these operations as a significant part of their deceleration phase. The entry capsules entered the Martian atmosphere at a Mach number of about 2.0, at which stage ihe parachutes were deployed in order to decelerate the system. They were then jettisoned as rettopropulsion was responsible for the payloads' terminal descent. As the atmospheric characteristies on the planet Mars might well support life as we understand it, it was important to sterilise the entire descent systems, including the parachute canopies. This was done for 200 hours at a temperature of about 140 deg.C. (280 deg.F).

A mission whose purpose is to bring back to earth a selected 5 kg . set of sample materials from the surface of Mars had been planned by the United States. This was to have taken prace in the late 1980's, but budgecary and other considerations have delayed this intended mission until the 1990's.

In September 1977 two United States Pioneer probes began their journey to the planet Venus, having been sctecduled to arrive there in December 1978. For partial trajectory control over altitudes from $67-44 \mathrm{~km}$ in the Venus atmosphere the largest of these two probes was designed to employ a parachute. Though this mission was sufficiently succissful for some data to be acquired, it is not known by the writer to what extent this larger probe and its parachute decelerator materially contributed to this success.

Reference 8.1 indicaies that in March 1982 two Soviet probes which had been launched in 1981 safely landed on Venus. These probes, which were called Veneras 13 and 14, had parachutes which were jettisoned about 45 km (28 miles) above that planet's surface. Since the Venus atmosphere is hostile, having an atmospheric pressure some 90 times that on earth and an atmospheric temperature which is around 450 deg C . ($8 \leq 0 \mathrm{deg}$. F.) the surface survival time would be small. However, it was long enough for chemical analyses to be made of the soil and for landing sites to be photographed, the relevant data being radioed back to the earth. By late 1982 a total of seven successful Soviet landings on Venus had been reported but it is not known for how many of these missions parachures were employed to decelerate the probes.

A Galiteo spacecraft designed to enter the atmosphese around the planet Jupiter in August 1988 was also planned. Although scheduled for an American launch in May 1986 this research programme has also suffered considerable delays.

Over this ten year period there has been a very considerable increase in knowledge conceming the physical characteristics of the planets which were being explored. Many writers report that at the time the Venus probes were launched the atmosphere around that planet was much better understood than was the almosphere around Mars in the late 1970's.

For all of these planets the adopted parachute designs closely resemble those which have already been used for spacecraft recovery in the earu's atmosphere.

8.1 ATMOSPHERIC CHARACTERISTICS ON MARS, VENUS AND JUPITER

According to reference 1.9 , litue is known with any certitude about the characteristics of the atmosphere around Mars. At the surface it is certainily very cold and it has only about 0.01 times the density of the earth's atmosphere. The pressure there has been obtained from the Mariner space research programme. Darnell, Henning and Lundstrom ${ }^{22}$ report data frem Mariner IV which gives pressure at the surface of Mars as probably between 5 and 10 millibars. Moog. Bendura, Timmons and Lau ${ }^{83}$ add that even with the data from the Mariner 9 mission large uncertainties still remain about the Martian atmospheric densities and scale heights. For landings on Mars high entry velocities are necessary, ufference 8.2 quoting 3.7 to $4.9 \mathrm{~m} / \mathrm{sec}$. (presumably what was intended was 3.7 to 4.9 $\mathrm{km} / \mathrm{sec}$.) (12000 to $16050 \mathrm{f} / \mathrm{sec}$.) ? t allitudes of 4.6 to $6.1 \mathrm{~km}(15000$ to 20000 ft .). The corresponding entry Mach inumber was believed to be a litue aoove 1.0. Reference 8.3 states that the parachure must be capable of operating over a kach namber range from as high as 2.0 to a low subsonic Mach number and peform without damage in a range of dyndmic pressures from $24-479 \mathrm{~N}^{2} \mathrm{~m}^{2}$ (0.5 to 10 lbffit). In this reference an entry dynamic pressure of $239-311 \mathrm{~N} / \mathrm{m}^{2}\left(5.0\right.$ to $\left.6.5 \mathrm{bt} / \mathrm{ft}^{2}\right)$ is claimed. In a much earlier paper Heinrich ${ }^{3 n}$, quoting NASA ${ }^{33}$ and General Electric Company ${ }^{16}$ data, estimated the first stage of entry into the Martian atmospliere to be at a velocity of $0.93 \mathrm{~km} / \mathrm{sec}$. ($3 \mathrm{C} 56 \mathrm{ft} / \mathrm{sec}$.) at an altitude of 7.35 km . (24000 ft) and a Much number of 40 . Even allowing for the undoubted mpid refinement of data on the atmosphere around Mars it is clear that there are ver;' wide uncertrinty bands preseni.

On the planet Venus reference 1.9 indicaces that the atmospheric conditions are reasonably well established. The atmospheric density is about 100 times that of the earth's atmosphere and the surface temperature is close to 480 deg.C (900 deg. F.) Because of this hostile environment, life was not considered to be possible and thus a biologically clean explorawi'j sycters. was not considered essential.

A source of reievant _nd up-to-date information about the properties cf the atmosphere around these three planets is the Journal of Geophysical Research. For example, data on the Martian atmospliere pre contained in references 8.7 and 8.8. Reference 8.9 is also to a model of the atmosphere around Mars, while reference 8.10 is to the atmosphere around Jupiter.

8.2 MISSION REQUIREMENTS FOR PARACHUTES

On the Viking Mars mission reference 1.9 explains that the capsules were designed to enter the Martian atmosphere at atout 245 km (800000 ft). At about 6.5 km (211500 ft). above the surface and at a velocity of about $365 \mathrm{~m} / \mathrm{sec}$. ($1200 \mathrm{ft} / \mathrm{sec}$.) a disc-gap-band parachute opened. This parachute was disconnected at an altitude of about 1.2 km (4000 fL) when the payload velocity was about $60 \mathrm{~m} / \mathrm{sec}$. ($200 \mathrm{ft} / \mathrm{sec}$.).

On the Pioneer Venus mission, reference 1.9 states that the planet's atonosphere was entered at about 67 km (220 000 ft), the 300 kg (670 lb) probe decelerating to a Mach number of about 0.8 . At this altitude the dynamic pressure was $3300 \mathrm{~N} / \mathrm{m}^{2}$ ($69 \mathrm{lbf} / \mathrm{t}^{2}$). Using a guide surface pilot parachute the main conical ribbon parachute was then deployed. The prime function of this $5 \mathrm{~m}(16.2 \mathrm{ft})$ nominal diameter canopy, which had a drag coefficient of 0.52 . was to stabilise the probe through the Venus cloud cover so that scientific examination of the atmosphere could be carried out. By 47 km (155000 ft) the velocity of the parachute and its payload was so low that the parachute was jetusoned, the impact of the probe on the surface of Venus occurring 37 minutes later. The requirement for this parachute was thus much more limited than was that for the Viking mission to Mars. However, as the density of the atmosphere on Verus is large ard the aumospheric temperature close to the planet very high, at a lower altitude than 47 km a parachute is neither needed nor would it have been a practicable proposition.

Corridan, Givens and Kepley ${ }^{8.11}$ indicate that the purpuse of the Galileo mission is 20 explore the planet Jupiter and its satellites by indirect measurements, made from an orbiting vehicle, as well as more direct by atmospheric measurements, made from an entry probe. This probe is designed to enter the atmosphere of Jupiter at $47 \mathrm{~km} / \mathrm{sec}$. (29 miles $/ \mathrm{sec}$.) , then to be slowed by its blunt forebody to a transonic velocity. At a Mach number of between 0.91 and 1.01 and a corresponding dynamic pressure of between 4850 and $7650 \mathrm{~N} / \mathrm{n}^{2}$ (102 and $160 \mathrm{lbf} / \mathrm{ft}^{2}$) a 20 deg . conical ribbon pilot parachute of $1.1 \mathrm{~m}(3.74 \mathrm{ft})$ noeninal diameter is to deploy. When the entry Mach number decreases to between 0.87 to 0.97 the conical ribbon main parachute of 3.8 m (12.48 ft) nominal diameter is to be deployed. The purposes of this latter are to separate the instrumented descent module fom its heat shield and to provide drag for a controlled desceat through thr atmosphere. Further details of the Galileo mission to the planet Jupiter are given in references 8.12 and 8.13.

8.3 HEINRICH'S 1966 ANALYSIS OF EXTRA-TERRESTRIAL PARACHUTE AERODYNAMICS

In 1966, when considering the behaviour of parachutes descending in a Martian environment, Heinrich ${ }^{84}$ stated that the most significant performance characteristics of a parachute system were:
(i). its rate of descent;
(ii). its dynamic stabitity characteristics in pitch;
(iii). its opening time und
(iv). its opening shock load.

These characteristics depend on the weight of the payload and on the parachutes's aerodynamic characteristics. These latter are functions of the canopy shape and attitude, its Reynolds number and iss Mach number. Heinrich argued that the most significant way in which the parachute canopy shape would be altered when it descended through the atmospheric environment of a planet other than the Earth is through the changes which would occur in the effective perosity of the canopy.

Working from earlier research ${ }^{213}$ which he had undertaken on the porosity of parachute canopies, Heinrich argued that at a given dimensionless pressure ratio arross the canopy the variation in the effective porosity of the canopy from that at sea ievel in the earth's atmosphere could be expressed as a function of two variables, the ratio of the density of the fluid in which the canopy is immersed to that of air at sea level and the Reynolds number at which the parachute descends. Heimich defincod the dimensionless pressure ratio across the canopy fabric as the ratio of the actual pressure difference across the canopy to that which would establish sonic flow in the fabric interstices. Because the fluid density in the Martian ervironment is much lower thann it is above the earth's surface, he established that the effective porosity of a parachute canopy descending on the planet Mars would be only between $\mathbf{1 5 \%}$ and 30% of its value when descenting above the enreth's surface.

For the type of parachute canopy envisaged for higa Mach number inflation in the Martizan environment he argued that the variation of its aerodynumic characteristics with Reynolds number ryould be weak and that the Mach aumber was the dominating dimensionless parameter. He therefore fecommended that in model ests the Mach number should be made equal to that of the procorype, defining the modelling conditions as follows:-

Abstract

8.4 TESTS ON PARACHUTES FOR EXTRA-TERRESTRIAL APPLICATIONS CONDUCTED IN THE EARTH'S ATMOSPHERE Reference 1.S describes the three experimental programmes which were devised to establish the characteristics of the parachutes for Viking Mars landings. Initially, the Planetary Entry Purachute Programme was established to select the most eppropriate canopy shape. Disk-gap-band, ringstil and cross parachutes ware deployed at altitudes in excess of 30 km (100000 ft .) and at Mach numbers from 1.0 to 2.8 in these rocket and balloon-launched tests. As a consequence the disk-gap-bend perachute was seliected.

In the subsequent Low Altitude Drop Test Programme parachute opening loads and stresses at up to 1.5 times the predicted design loads were investigated as the canopies were depioyed from a B- 57 aircraft flying at 15 km (50000 ft) altitude. Finally, in orier to test the transonic interference effects produced by the large and blunt forebody and to check the stability characteristics, Moog, Bendura, Timmons and Laun ${ }^{13}$ report that balloon-launched tests wire conducted in which a simulated full-scale Viking vehicle attached to a 16 metre (53 ft .) nominal diameter parachute was tested over a Mach number range from 0.47 to 2.18 .

From reference 1.9 it is senn that tests in the earth's amosphere of the Pioneer-Venus probe vehicle and parachute occurred in two stages. In the first of these a bounb-shaped test vehisle was dropped from an F-4 aircraft flying at 12 $\mathrm{km}(40000 \mathrm{ft})$ altitude. In the second stage a simulated probe test vehicle with a mass of $304 \mathrm{~kg}(670 \mathrm{lb})$ together with its entire parachute system was released from a balloon at $27.5 \mathrm{~km}(90000 \mathrm{ft})$ and the parachute was deployed satisfactorily.

Tests in the earth's atmosphere devised to simulate the Galieco-Jupiter mission are reponted by Corridan, Givens and Kepley ${ }^{2 / 1}$. Parachute deployment was required at 16.5 km (54391 ft), a dynamic pressure of $6000 \mathrm{~N} / \mathrm{m}^{2}$ ($125 \mathrm{lb} / \mathrm{ft}^{2}$) and a Mach number of 0.92 . At transonic speeds problems were eacountered because of poor parachute performance in the wake of the blunt forebody and some wind munel deployment tests were initiated in the NASA Langley transonic dynamics wind tunnel. In ihese experiments froon 12 used as the test medium and one-quarter and one-half scale models of the pilot parachute were rested. Since the wind tunncl working section had a cross-sectional area of $23 \mathrm{~m}^{2}\left(248 \mathrm{ff}^{2}\right)$ the blockage area ratios, described in Section 6.6 , for these tests were a negligible 0.4% for the one-quarter scale model and berween 1% and 3% for the one-half scale model.

REFERENCES

8.1 Shefter, J. Survival on Venus. How the Russians did it. Aviation Weck. November 1982.
8.2 Damell,W.L., Henning,A.B. and Lundstmm,R.R. Flight Test of a 15 -Foot-Diameter (4.6-Meter) 120° Conical Spacecraft Simulating Farachute Deployment in a Mars Atmosphere. NASA TN D-42E6, December 1967.
8.3 Moog.R.D., Bendura,R.I., Timmons J.D. and Lau, R.A. Qualification Flight Tests of the Viking Decelerator System.Proceedings of the AIAA Fourth Acrodynamic Deceleration Systems Conference, Palm Springs,1973.
8.4 Heinrich,H.G. Modei Laws Governing Parachute Perfornance in Martian Environment. (Modellgesetse for Fallschirmversuche im Hinblick auf die Aimosphere des Planeten Mars). WGLR-DriRR-Tagung, Bad Godesierg, Federal Republic of Germany, October 1966.
8.5 Levin,G.M.Evans,D.E. and Stevens,V. Engineering Models of the Mars Aunosphere for Entry Vehicle Design. NASA Technical Note TN D-2525, 1964.
8.6 Heinrich,H.G. Basic Aerodynamic Problems of Parachute Landingr on the Planet Mars. Report io SD 238, Re-Entry System Deppetment, General Electric Company, Philadelphia, USA, 1466.
8.7 Owen,T., Biemann,K., Rushnek,D.R., Biller,J.E.Howarth,D.W. and Lafleur,A.1. The Compustion of the Amosphere at the Surfice of Mars. Journal oj Geophysical Research. 82, 28, pp.4635-9. Sequember 1977.
8.8 Scift,A. and Kirt,D.B. Struciure of the Aumosphere of Mars in Summer an Mid Latituces. Iournal of Geophysical Research. 82, 28, pp.4364-4378, Seprember 1977.
8.9 Model of Mars' Aumosphere (1974). NASA SP-8P:0, Lecember 1974.
8.10 Williams,G.P. Pionesary Circulations:1. Barouropic Represeatation of Jovian and Terrestrial Turbuience. Journet of Geophysical Research, 35, pp.1399-1426, 1978.
8.11 Conidan,R.E., Givens, J.G. and Kepley, B.M. Transonic Wind-Tunnel Investigation of the Galileo Probe Parachute Configuratio.. AIAA-84-0823. Proceedings of the AIAA 8th Aerodynamic Decelerator and Balloon Technology Conference, Hyannis, 1984.
8.12 O'Neil,W.J. and Mitchell,R.T. Galieo Mission Overview. AIAA-83-0096. Proceedings of an AIAA Confereace, Reno, 1983.
8.13 Vojvodich,N.S., Drean,R.J., Schaupp.R.W. and Farless,D.L. Galieo Atmospheric Entry Probe Mission Description. AIAA-83-0100. Proceedings of an AIAA Conference, Reno, 1983.

9.FURTHER AERODYNAMIC RESEARCH INTO PARACHUTES

Knacke ${ }^{1.11}$ has suggested three important milestones that have occurred in parathute development:
(i). Irvis's free-fall parachute jump in April 1919 as a member of Hoffman's U.S. Army tcam. After freefalling for a short distance Irvin pulled a ripcord and opened his parachute pack which had no static line connection between the pack and the aircraft;
(ii). the work by Madelung's team at the Flugtechnisches Institut, Stutgart leading to the development of ribbon parachutes in about 1934. These were necessary in order to increase the stability and reduce the inflation louds on parachutes required for the in-light and landing deceleration of aircraft;
(iii). manveuverable gliding parachutes. These have a complex history of development, achieving designs capable of contemporary commercial development through Jalbert's 1961 ram-air design.
Parachute aerodynamics has correspondingly developed from its initial role, that of providing a service to aid the understanding and extension of full-scale flight trials, conducted on descending parachutes in the atmosphere. Instead, it has become the means whereby appropriate wind tunnel tests, together with the analytical prediction of parachute performance and stability characteristics, can supplement without supplanting these flight trials.

9.1 AERODYNAMIC PROBLEMS IN FULL-SCALE FLIGHT TESTINT

As has been indicated in Section 6.1, the testing of parachutes during free flight in \boldsymbol{c} atmosphere appears to be the most obvious experimental procedure. However, because the atmospheric enviromment is uncontrolied it can be a difficult medium in which to make aerodynamic measurements which, having been made, can be as difficult to interpret. Determination of the parachute drag is still a fundamental problem but this is given by equation 2.34 once the parachute's rate of descent is known. Near the ground a mean rate of descent can be determined, either crudely by a timing process or by more sophisticated kinetheodolite methods, but both of these techniques are limited to relatively low alitudes.

Measurenend of the manner in which the canopy's aerodynamic coefficients vary with the angle of attack is limited by the difficulty in determining this angle in flight. It can only be estimated when the instantaneous direction of the relative airflow is known with certainty. Since the parachute camopy is bluff the flow around it is strongly influenced both by its own shape and that of its payload. The only known method of estimating the relative airflow is from frame-by-frame study of cine-film records and as these are unlikely to include any means of flow tracing, at best such a technique can only be a very approximate process.

Much of the parachute's siight performance and stability analysis must be determined by visual inspection, supported by photographic records. Because of this limitation it is necessary to judge the stability or the instability in pitch of a descending parachuse solely in terms of the angle through which the descending parachute oscillates. During its descern the variation of such an angle can be measured through the use of gyroscopically-controlled instruments. Although this angle's amplitude is of significance if the parachute is unstable in pitch, for a stable parachute, as has tien indicated in Seation 2.3.2, its amplitude may be as much a function of the local atmospheric instabilitics as it is of the degree of the parachute's stability in pitch. The widespread practice of quoting average angles of oscillation, particularly for stable parachutes, can therefore be misleading.

Whesever possible, canopy inflation tests are best carriod out in the atmospheric environment using full-scale parachutes. Depending on che parschute application, different designs oi launchers are used to carry these parachules up to their deployment altitude. As the parachutes deploy the required aerodynamic data is relayed back to the ground control station.

9.2 AERODYNAMIC PROBLEMS IN WIND TLNNEL TESTING

Although the ultimate criterion of a parechute's performance is its betaviour in the atmospheric environment, for a beter appreciation of its aerodymamic characteristics it is clearly necessary to supplement performanke data gathered there with information from approprise wind unnel tests. In order to perform these tests the difficuities in achieving geometric similarity between the wind tunnel model and the full-scale protorype parachute canopy, which have been described in Section 6.3, must be overcome. These include blockage constraints around the bluff parachute canopy imposed by the wind tunnel walls and which, Section 6.6 indicates, necessitate testing in a facility whose working section cross-sectional area is some twenty times the parachute canopy's projected area. Perachutes required for reentry vehicies and for extra-terrestrial applications must be rested in wind turnels operating at full-scale Mach namber and, as has been pullined in Section 8.4, this is particularly importans for pargchutes operating in the transonic Mach number range.

Although procedures by which canopy inflation loads under firite mass conditions can be determined in wind tunnels have been oullined in Section 6.4.3.1, they are only approprinte for large scale wind unnel models, because the dimensioniess inflation forcehtime signature relationship described in Section 5.3.4 is dependent on the model shape and the smaller the wind tunncl modei the more difficuls it is to model ite shape faithfully. Lees has conifrmed that when detemining inflation loads the shape of the canopy includes its flexibility and that canopy
descent. Pepper22 shows how these canopies are designed to generate the necessary rotation, 2 component of the wolal acrodynamic force providing the torque which results in the canopy autoroation. He alsy describes other benefils which can follow from canopy rotation, these are increased canopy drag and improved stability characterisics in picth. For the rolating parachute application which he describes, that of recovery of high performance re-entry vehicles, high rates of rotation are desirable and with these the drag coefficient developed on the autcrotating parachute described was some four or five times the value that it would have had if this parachute did not roate.

Doherr, Münscher and Saliaris ${ }^{35}$ defined a rotors quality number R_{Q} in terms of the casopy drag coefficient C_{D} and the rotor coefficient C_{t}

$$
\begin{equation*}
R_{Q}=C_{t} \sqrt{C_{D}} \tag{9.1}
\end{equation*}
$$

$$
\begin{equation*}
\text { where } \quad \mathbf{C}_{\mathrm{g}}=\mathbf{T} \mathbf{D}_{\boldsymbol{A}} / \mathbf{V}_{\mathrm{D}} \tag{9.2}
\end{equation*}
$$

and f is the autorotation frequency in revolutions per second, D_{0} is the canopy nowinal diameter and V_{D} its rate of descent, so that $\mathrm{C}_{t}=1 / \mathrm{J}, I$ being the advance ratio, as normally defined for propellors. The significance of this rotor quality number has been discussed by Doherr and Synofzik' ${ }^{\text {A }}$, who describe a series ot wind unnel experiments devised to measure R_{Q} for a rotating guide surface parachute. The methods of performance evaluation which they describe are recommended for more general application in wind tunnel tests on rotating parachutes. 9.5.3 Experiments to Further the Application of Vortex Sheet Theories to Parachutes

Writing of the development of vortex sheet theories, a quotation included in the introduction to Section 7 stated: "It is at this point that we are handicapped by the fact that experimental techniques are, at this moment, lagging behind the advance of theory". Given the desire and the faciliies to perform these necessary experiments, what facts need to be discermed from then?

Much of the experimental work performed on parachutes in wind tunnels has been with a view to determining the mean values of the aerodynamic coefficients which are developed. Any observation that these coefficicnts might fluctuate in magnitude has been considered to arise from extraneous factors, such as poor wind tunnel design or the blockage constraint imposed by the model.

A deeper understanding is now required of the nature of the flow around bluff bodies in general and around parachute canopies in particular. A fundamental question is: when the canopy is set symmetrically in the flow, what is the frequency at which it sheds vortices and what determines this frequency? Can it be disassociated from the stiffness of the sting support? is it a function of the properties of the canopy fabric? Is the oscillation in resonance with a much lower amplitude driving oscillation? Is it eynolds number dependent?

If this flow in the wake is periodic, then are the aerodynamic forces developed on the canopy correspondingly periodic and if they are, with what amplitude do they vary?

Since the purpose for which this information is required is the construction of a vortex sheet model, what is the simplest form in which these new physical insights can be expressed?

REFERENCES

9.1 Lingard,J.S. The Aerodynamics of Glirling Parachutes. AIAA-86-2427. Proceedings of the AIAA 9 th, Aerodynamic Decelerator and Balloon Teshnology Conference, Albuquerque, October 1986.
9.2 Pepper,W.B.Jr. New, High-Performance Rotating Parachute. AIAA-84-0808. Proceedings of the AIAA 8 th Aerodynamic Decelerator and Balloon Technology Conference, Hyannis, April 1984.
9.3 Doherr,K.-F., Münscher,D. and Saliaris,C. Steur- und Stabilisierungsmecharismen von Submunitionen. Internal Report In 111-869. DFVLR Institut far Flugmechanik, Braunschweig. Federal Republic of Germany, 1986.
9.4 Doherr,K.-F. and Synofzik,R. Investigations of Rotating Parachutes for Submunitions. AIAA-86-2438. Proceedings of the AIAA 9th Aerodynamic Deceleraior and Ealloon Technology Conference, Albuquerque, October 1986.

10. POSTSCRIPT

There concinue to be a number of fundamental and challenging problems in parachute aerodynamics, the reasone for which are very similar to what they were when W.D.Brown published 'Parachutes' ${ }^{1.4}$ in 1951, declaring as his aim that of selecting 'the principal acrodynamic characteristics of parachutes and the various known factors which affect these characteristics'. The bluff body of the conventional parachute canopy still possessess a non-rigid structure and has a mass which is of the order of mass of the air which it displaces. However, Brown could not have appreciated how the passage of 35 years would bring sacia a diversity of parachute application or, accompanying this diversity, the necessity for a deeper fundamental understanding of physical principles. One of the many beneffic of trying to bring threads together in this AGARDograph has been a much deeper appreciation of the developments which have occurred in such a short period of time.

Twenty years later, in a review on aerodynamic decelerators written from the Sandia Laboratories at Albuquerque, Pepper and Maydew ${ }^{1.7}$ remarked that Brown had writen the only book on parachute technology that was known to them. At that time extensive ribbon parachute development work was taking place at the Sandia Laboratories. Although this AGARDograph might not have done justice to that particular activity, it does contuin more than a dozen references to significant aerodynamic research performed subsequently by individuals working at the Sandia Laboratories.

What led to these developments has been both the circumstances and the individuals whose contributions to the subject have been demanded by these circumstances. Knacke'111 states that 'it was World War II, its forebearings and its aftermath, that started the widespread application of parachutes for the air drop of troops and supplies, for the retardation of ordnance, the in-fight and landing deceleration of aircraft and the recovery of missiles, drones and spacecraf!' and although Brown wrote with direct experiense of that war he could not have foretold all of this aftermath.

Brown mentions Heinrich and Knacke, the first of whom he describes as a German technician, who designed during World War 'I the 'mushroom' or 'beret' parachute, primarily for dropping heavy bombs and sea mines. He referred to Knacke as a German scientist who appears to have invented the "Taschengur". In this AGARDograph there are nine separate refererces to Heinrich's work and the contribution made to parachute research and develcpmint by the Minneapolis postgraduate school which he establishod, has been outstanding. Similarly, trough his research and teaching. Knacke has made a series of memorable contributions to this subject. Both have been honoured by the AIAA for the oustanding parss they have played in the development of parachutes.

Over these years the most significant contribution to the dissemination of information on parachute technology has been the AIAA Aerodynamic Decelerator Conferences, held in the United States every two and a half years. Most active purticipants in parachute aerodynamics throughout the world have been present and have contributed to these Conferences. Pepper and Maydew refer to the first and second ones, held in 1966 and 1969. Since that time these conferences have grown in significance. In October 1986 the 9th AIAA Aerodynamic Decelerator and Balioon Technology Conference took place in Albuquerque, New Mexico.

REPORT DOCUMENTATION PAGE			
1. Recipient's Reference	2. Originator's Reference AGARD-AG-295	3. Further Reference ISBN 92-835-0422-4	4. Security Classificatien of Document UNCLASSIFIED
5. Originator Advisory Group for Acrospace Research and Development North Atlantic Treaty Organization 7 rue Anceile, 92200 Neuilly sur Scine, France			
6. Title THE	THE AERODYNAMICS OF PARACHUTES		
7. Presented at			
D.J.Cockrell - Editor A.D.Young			9. Date July 1987
10. Author's/Editor's Addr See fly			$\begin{array}{\|c} \hline \text { 11. Pages } \\ 78 \end{array}$
12. Distribution Statement This document is distributed in accordance with AGARD policies and regulations, which are outlined on the Outside Back Covers of all AGARD publications.			
13. Keywords/Descriptors Acrodynamic characteristics Deployment Parachutes Exira-terrestrial bases Inflating			
14. Abstract This AGARDograph discusses the principal aerodynamic characteristics of parachutes and the factors which affect those characteristics. It takes into account many of the publications that were summarised in the 1963 and 1978'United States Air Force Parachute Design Guides, the proceedings of biennial American Institute of Aeronauties and Astronautics Acrodynamic Decelerntor Conferences, the Helmut G.Heinrich Decelerator Systems Engineering Short Courses held in 1983 and 1985 and ' The Parachute Recovery System Design Manual', snortly to be published by the United States Naval Weapon Center. It is anticipatoo that its main readers will be recent engineenng graduates entering reseurch establishments, parachute companies or related industrics so some appreciation of tasic mechanics, the principles of computing and elementary fluid mechanics on the part of the reader has been assumed. ${ }^{-1}$ Its content includes Steady-State and Unstcady Acrodynamics, Parachute Deployment and Inflation, Experimental Investigations, Methods of Analysis, Extra-Terrestrial Parachute Applications and Some Suggestions for Future Research. This AGARDograph has been produced at the request of the Fluid Dynamics Panel of AGARD.			

Short Courses held in 1983 and 1985 and The Parachute Recovery System Design Manual', shortly to be published by the United States Naval Weapons Center.	Short Courses held in 1983 and 1985 and The Parachute Recovery System Desien
It is anticipated that its main readers will be recent engineering graduates entering research establishments, parachute companies or related industries su some appreciation of basic reader has been assumed. mechanics, the principles of computing and elementary fluid mechanics on the part of the	Manual', shortly to be published by the United States Naval Weapons Center. It is anticipated that its main readers will be recent engineering graduates entering research establishments, parachute companies or related industries so some appreciation of basic reader has been assumed. mechanics, the principles of computing and elementary fluid mechanics on the part of the
Its content includes Steady-State and Unsteady Aerodynamics, Parachute Deployment and Inflation, Experimental Investigations, Methods of Analysis, Extra-Terrestrial Parachute Applications and Some Suggestions for Future Research. This AGARDograph has been produced at the	Its content includes Steady-State and Unsteady Aerodynamics, Parachute Deployment Parachute Applications and Some Suggestions for Future Research. and Inflation, Experimental Investigations, Methods of Analysis, Extra-Terrestrial
AGARD.	AGARD. This AGARDograph has been produced at the request of the Fluid Dynamics Panel of
1SBN 92-835-0422-4	ISBN 92-835-0422-4
Short Courses held in 1983 and 1985 and The Parachute Recovery System Design Manual', shorlly to be published by the United States Naval Weapons Center.	Manual', shortly to be published ty the United States Naval W Short Courses held in 1983 and 1985 and The Parachute Recovery System Design
It is anticipated that is main readers will be recent engineering graduares entering research establishments, parachute companies or related industries so some appreciation of basic reader has been assumed. mechanics, the principles of computing and elementary fluid mechanics on the part of the	It is anticipated that its main readers will be recent engineering graduates entering research establishments, parachute companies or related industries so some appreciation of basic mechanics, the principles of computing and elementary fluid mechanics on the part of the reader has been assumed.
Its content includes Steady-State and Unsteady Aerodynamics, Parachute Depioyment Parachute Applications and Some Suggestions for Future Research. and Inflation, Experimental Investigations, Methods of Analysis, Extra-Terrestrial	and Inflation, Experimental Investigations, Methods of Analysis, Extra-Terrestrial Its content includes Steady-State and Unsteady Aerodynamics, Parachute Deployment Parachute Applications and Some Suggestions for Future Research.
AGARD.	AGARD. This AGARDograph has been produced at the request of the Fluid Dynamics Panel of
ISBN 92-835-0422-4	ISBN 92-835-0422-4

