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FOREWORD

NASA experience has indicated a need for uniform design criteria for space vehicles.
Accordingly, criteria have been developed in the following areas of technology:

Environment
Structures

Guidance and control
Chemical propulsion

Individual components are issued as separate monographs as soon as they are completed. A
list of monographs published in this series can be found on the last pages.

These monographs are to be regarded as guides to design and not as NASA requirements,
except as may be specified in formal project specifications. It is expected, however, that the
monographs will be used to develop requirements for specific projects and be cited as the
applicable documents in mission studies and in contracts for the design and development of
space vehicle systems.

This monograph was prepared under the cognizance of the Goddard Space Flight Center
(GSFC) with Scott A. Mills and John J. Sweeney of GSFC as program coordinators. The
principal authors were Alan Zendell, Richard D. Brown, and Samir Vincent of Computer
Sciences Corporation.

An Advisory Panel, first chaired by J. P. Murphy (then at GSFC and now at NASA
Headquarters) and subsequently chaired by T. L. Felsentreger of GSFC, provided guidance
to the authors on the content and scope of the monograph and reviewed it for technical
validity. Panel members were J. G. Marsh and C. A. Wagner of GSFC. R. K. Squires of GSFC
gave technical direction in the early stages of the effort.

Comments concerning the technical content of these monographs will be welcomed by the
National Aeronautics and Space Administration, Goddard Space Flight Center, Systems
Reliability Directorate, Greenbelt, Maryland 20771.

April 1975
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GRAVITY FIELDS OF THE
SOLAR SYSTEM

1. INTRODUCTION

Precise knowledge of the gravitational fields in the solar system is often an important
ingredient in space mission planning and spacecraft design. The gravitational fields affect the
trajectories and orbits of space vehicles and design problems involving propulsion and
guidance systems, attitude determination and control systems, and scientific experiments.
For example, Earth gravity models are used for calibration of launch vehicle guidance
systems, design of scientific experiments for geodesy and general relativity, and planning for
satellite tracking and telemetry operations.

This monograph briefly discusses the most frequently used formulations of the gravitational
field and defines a standard set of models for the gravity fields of the Earth, Moon, Sun, and
other massive bodies in the solar system. These models are intended primarily for use by
engineers and computer programmers who are not specialists in gravity field-modeling
theory. The formulas are presented in standard forms, when possible, with instructions for
conversion to other forms in common usage. In section 2, various formulations of the
gravitational field are developed. The subsections are arranged in order of the sophistication
required in their development. The first model considered is the “point source” or “‘inverse
square” model, which represents the external potential of a spherically symmetrical mass
distribution by a mathematical point mass without physical dimensions. The most obvious
departure from symmetry in a rotating body is the latitudinal variation commonly referred
to in terms of an equatorial bulge or a polar flattening. Accordingly, an oblate spheroid
model is presented next. This is accompanied by an introduction to zonal harmonics. The
spheroid model is then generalized to a representation of the field resulting from a massive
body in terms of a spherical harmonic expansion. The latter formulation is the basis for a
number of the spherical harmonic models which have been developed for the Earth and
Moon. These models and their application to NASA missions are discussed. In addition, the
triaxial ellipsoid model is presented because of its suitability for modeling lunar gravity and
use in lunar missions.

Section 3 provides guidance in selection of gravitational models for the Earth and Moon and
gives values of the basic parameters used to describe the gravity fields of the other bodies in
the solar system.

Appendix A defines the symbols used in this monograph.

2. STATE OF THE ART

The gravitational field in the vicinity of a celestial body may be described in several ways. In
gep}er}al, planets and other massive celestial bodies are not perfectly symmetrical in shape
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and their mass s not uniformly distributed. Consequently, in each case complete
representation of the gravitational field would require an infinite set of orthogonal functions
such as spherical harmonics. If the shape and mass distribution are reasonably regular,
however, the field may be approximated by much simpler representations. A common
simplifving technique is to assign the celestial body a regular geometrical shape that closely
approximates the true shape and to assume a uniform density for the material of the body.
This approach results in a gravitational ficld model whose equipotential surfaces are shaped
approximately like the body’s surface. The usual shapes assumed are a sphere, an ellipsoid of
revolution, or a triaxial ellipsoid. A spherical body has spherically-symmetrical equipotential
surfaces. The equipotential surfaces external to an ellipsoid of revolution possess axial
symmetry but display a latitudinal (zonal) variation in radius similar to that of the body’s
surface. The equipotential surfaces external to a triaxial ellipsoid vary in radius with
longitude and latitude in a manner similar to the meridional and equatorial ellipticitics of
the body’s shape. With the assumption of uniform density, a body of arbitrary shape results
in cquipotential surfaces which can be represented by an infinite sequence of spherical
harmonics.

The gravitational potentials that result from the foregoing models are presented in the
following subsections.

2.1 Point-Mass Representation

The simplest way to express the external gravitational field of a celestial body is to treat it
as a spherical, uniform body or one whose mass can be considered concentrated at a point.
With this assumption. the field is deseribed by a single parameter, the gravitational constant
g, which is the product of the universal gravitational constant G and the mass of the body
M. For all the major bodics in the solar system except Farth, Moon, and Mars, the only
parameters of the gravitational fields which may be considered well-known are the p values
and the ratios of the mass of the Sun to the masses of the bodics. The mathematical
premises for gand M are given in appendix B.

2.1.1 Application of Point-Mass Mode!

On the basis of Newton'’s universal law of gravitation, the point mass representation of a
celestial body results in a potential field that is spherically symmetric about the point mass.
The location of the point mass is the center of mass of the body, the only point in the body
through which the application of any external force will result only in translational motion.
The attractive force F that results from such a model is given by the inverse square law. The
force on a unit mass focated a distance R from the center of mass of the body is given by
- H :
F=— (1
R-
This Torce may also be expressed as the magnitude of the gradient of a scalar gravitational
potential U by

o
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If the potential of a celestial body is needed at a distance R that is large compared to the
body’s diameter or if precise knowledge of the effect of small perturbing forces is not
required, the potential may be adequately represented with the point-mass model by
specifying the values of u and R.

For a spacecraft traversing cislunar space, the gravitational potential fields of the Earth and
Moon may be adequately described with a sum of point-mass models for the Earth and
Moon by specifying the value of u for each body and the distances R, and R from the
Earth and Moon, respectively. In interplanetary space, far from any massive body, the
point-mass models for the major planets, the asteroids, and the Sun give a sufficient
description of the potential. In the case of a planet with natural satellites, a good
approximation of its gravitational field at large distances can be obtained by considering the
planet and satellites as a single mass point located at the center of their combined mass with
a mass equal to their combined mass. In such cases, the consideration of the natural
-satellites is particularly important in generating accurate planetary ephemerides. When
ephemerides are generated over long time periods, even such small corrections are
important.

For most of the planets and all the minor celestial bodies, the point-mass model is the only
one that can presently be used with confidence. In some cases, notably Pluto, even the ratio
of its mass to that of the Sun and the u value are still quite uncertain. Knowledge of the
detailed effects of the gravity fields of Mars and Venus on orbiting vehicles is becoming
important, however, with the advent of orbiting and soft-landing missions such as Viking.

2.1.2 Gravitational Constant and Mass

2.1.2.1 Sun

Table 1 gives recent determinations of the gravitational constant of the Sun, k. The values
given by references 1 and 2 are extremely close to each other, and both are generally
accepted in gravitational work. The Astronomical Ephemeris value is presented for historical
perspective. It was obtained without benefit of data from cislunar and interplanetary
spacecraft missions. Because the uncertainty in the Jet Propulsion Laboratory (JPL) value
(ref. 2) is small, this value is adopted herein.

The value for the Sun’s mass, M, that corresponds to the foregoing adopted value for u_ is
obtdined by -
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TABLE 1
GRAVITATIONAL CONSTANT FOR THE SUN
Source p, (km3/s)
Astronomical Ephemeris (ref. 3) 1.3246 x 10!
Anderson et al {ref. 1) 1.327125 x 10"
JPL Value (ref. 2) 1.32712499 x 10"" 2 15 x 10°

where G is the universal gravitational constant. equal to 6.668 2 .005 X 1023 km?/g 2.
The resulting value of 1.9903 X 10%? g is adopted for M..

2.1.2.2 Plancts

The usual method of presenting the mass of a planet is in terms of the reciprocal mass ratio,
(.\1'\ y! where ML is the observable quantity M /M (appendix B). Tables 2 through 9 give
the best estimates presently available for the reciprocal mass ratios for each of the plancts
except Farth. The form of the presentation has been adopted from reference 4. The US.
Naval Observatory (USNO) values are weighted means of all the recent determinations done
at the Observatory and elsewhere. The JPL values were adopted in 1968 and taken from
reference 2. The Massachusetts Institute of Technology (MIT) values are based on a larger
data set than any of the others and include optical and radar observations, Kovalevsky's
approach was similar to that of USNO although a smaller set of determinations was used.
Kovalevsky's values are presented in terms of a range of equally probable values. Anderson’s
results are from a recent analysis of Mariner § data.

The reciprocal mass ratios for the major plancts are given in tables 2 throuegh 9. The
uncertainty values therein that were taken from references 204, and 5 are computed from
formal statistics. They show the dispersion of data but not necessarily the probable error in
derivation of planetary masses,

On the other hand. the uncertainty values accompanying references 6 through 16 in tables 2
through 9 are estimates of the real error in the planetary mass determinations. Accordingly,
the real error estimates serve as the hasis for the weighted mean values given in the tables for
the planetary reciprocal mass ratios.
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TABLE 2
RECIPROCAL MASS RATIO OF MERCURY
roy-1
Source (M p) Uncertainty
Weighted Mean Value 6,021,900
USNO (ref. 4) 5,987,000 32,000
JPL {ref. 2) 5,983,000 25,000
MIT (ref. 6) 6,020,000 10,000
Kovalevsky (ref. 7) 5,900,000 to 6,100,000
Ash (ref. 8) 6,025,000 15,000
Howard (ref. 9) 6,023,600 600
TABLE 3
RECIPROCAL MASS RATIO OF VENUS
1oyl
Source (M p) Uncertainty
Weighted Mean Value 408,522.7
USNO (ref. 4) 408,519 11
JPL (ref. 2) 408,522 3
MIT (ref. 6) 408,522 3
Kovalevsky (ref. 7) 408,512 to 408,632
Mariners 2 and 4 (ref. 10) 408,521.8 1
Anderson (ref. 11) 408,5623.5 1
Howard (ref. 12) 408,523.9 1.2
TABLE 4
RECIPROCAL MASS RATIO OF MARS
ry-1
Source (M D) Uncertainty
Weighted Mean Value 3,098,710
USNO (ref. 4) 3,098,709 9
JPL (ref. 2) 3,098,700 100
MIT (ref. 6) 3,098,700 30
Kovalevsky (ref. 7) 3,098,650 to 3,098,750
Mariner 4 (ref. 13) 3,098,708 9
Mariner 9 (ref. 14) 3,098,720 70
TABLE 5

RECIPROCAL MASS RATIO OF JUPITER

roy-1

Source (M p) Uncertainty
Weighted Mean Value 1,047,373.6
USNO (ref. 4) 1,047.366 0.007
JPL (ref. 2) 1,047.3908 0.0074
MIT (ref. 6) 1,047.4 0.1
Kovalevsky (ref. 7) 1,047.34 to 1,047.39
Jupiter Monograph (ref. 15} | 1,047.39 0.04
Pioneer 10 (ref. 16) 1,047.342 0.02




Downloaded from http://www.everyspec.com

TABLE B
RECIPROCAL MASS RATIO OF SATURN
W
Source M D) Uncertainty
Weighted Mean Value 3,4985
USNO (ref. 4) 3,498.1 0.4
JPL {ref. 2) 3,499.2 04
MIT (ref. 6) 3,4985 05
Kovalevsky (ref. 7) 3,497 tlo 3,500
TABLE 7
RECIPROCAL MASS RATIO OF URANUS
"y
Source (M o) Uncertainty
Weighted Mean Value 22,920
USNO (ref. 4) 22,800 107
JPL (ref. 2) 22,930 6
MIT (ref. 6) 22,900 200
Kovalevsky {ref. 7) 22,600 tlo 23,000
TABLE 8
RECIPROCAL MASS RATIO OF NEPTUNE
" 4.
Source (M p) Uncertainty
Weighted Mean Value 19,323
USNO (ref. 4) 19,325 26
JPL (ref. 2) 19,260 100
MIT (ref. 6) 19,400 100
Kovalevsky (ref. 7) 19,200 tlo 19,400
TABLE 9
RECIPROCAL MASS RATIO OF PLUTO
] -1
Source (M o) Uncertainty
Weighted Mean Value 1,934,000
USNO {ref. 5) 3.000,000 500,000
JPL (ref. 2) 1,812,000 40,000
MIT (ref. 6) 3,500,000 2,000,000

Kovalevsky {ref. 7)

1,600,000 to 2,500,000




Downloaded from http://www.everyspec.com

The gravitational constant of a planet, M, may be computed from
=GMM, = u /M) - 3)

where (M Y1 is found in tables 2 through 9. The advantage of computing My, in this way is
that it avo1ds the uncertainty in our knowledge of G.

2.1.2.3 Earth and Moon

The usual means of expressing the mass of the Earth is in terms of the inverse ratio of the
combined mass of the Earth and Moon to the mass of the Sun:

Me + Mm !
M, ) = [——-——] )
M

S

Table 10 contains the best available estimates of (M;_ m )‘1 . The comment in section 2.1.2.2
concerning the uncertainty ranges of reciprocal mass ratios of planets for different
investigators applies also to values from these investigators in table 10.

Table 11 contains values of u, = GM_ that are computed by three different methods. With a
spheroid model for the Earth (sec 2. 2) K, can be estimated in terms of the Earth’s rotation
rate and the dynamic flattening. A second method uses radar values for the mean distance of
the Moon in a modified form of Kepler’s equations. The third determination is from the
tracking of lunar probes by JPL. Also included in table 11 are a value recently determined
by Esposito and Wong from Mariner 9 data (ref. 17) and the values adopted by JPL in 1968
(ref. 2).

The masses of the Earth and Moon can then be separated using the ratio M, M m > given in
table 12.

Prior to the launching of spacecraft into cislunar and interplanetary space, the ratio of the
mass of the Moon to that of the FEarth was known to three significant figures,
M /M = 81.3 (ref. 21). This value may still be used when only three significant figures are
requ1red The Earth-Moon system parameters that can be estimated directly are the
gravitational constant u = GM,, and the mass ratio M /M . As in the case of the mass of
the Sun (sec. 2.1.2.1), the absolute value of M is known only as accurately as G, and G is
known only to about three significant figures (sec. 3.1).

Recent determinations of [T and M, /Mm are listed in table 12. The values for Rangers 6, 7,
8, and 9 and Mariners 2 and 4 were computed from reference 21; Blackshear’s value
represents a best fit to his latest gravity model derived from Lunar Orbiter data; and the
values derived from Mariners 5, 6, and 7 and Pioneers 8 and 9 were communicated by Null
of JPL and represent JPL’s adopted values as of 1969.
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TABLE 10
RECIPROCAL MASS RATIOS FOR EARTH PLUS MOON
' 1
Source (M t“m) Uncertainty
Weighted Mean Value 328,900.21
USNO (ref. 4) 328,900.12 0.20
JPL {ref. 2) 328,900.1 0.3
MIT (ref. 6) 328,800 1.0
Kovalevsky (ref. 7) 328,900 to 328,930
TABLE 11
THE EARTH'S GRAVITATIONAL CONSTANT
Source M, (km3/s?)
Dynamic Flattening {ref. 18) 398,603.2
Mean Distance of the Moon (ref. 19) 398,600.1
Lunar Probes (ref. 20) 398,600.9
Mariner 9 (ref. 17) 398,600.8
JPL Adopted Value (ref. 2) 398,601.2°

*Adopted for this monograph.

TABLE 12
GRAVITATIONAL CONSTANT AND MASS RATIO OF THE MOON
Source p, (km3/s?) M./M_.
Weighted Mean Value 4902.78 81.30090

Rangers 6, 7, 8, and 9 (ref. 21)
Mariners 2 and 4 {ref. 21)
Blackshear?

Mariners 5, 6, and 7 __
Pioneers 8 and 9 (ref. 22)
JPL Adopted Value (ref. 2)

4902.65 %0.16
4902.735 + 0.21
4902.867

4902.801 ¢ .022
4902.78 +0.06

81.30245 £ .00246
81.30175 £ .00315
81.2994

81.30071 £ .00036
81.3010 +.001

' Personal Communication, August 28, 1970.
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2.2 Spheroid Model

2.2.1 Flattening and Zonal Harmonics, J, and J,

A rotating celestial body may be approximated with good accuracy by an ellipsoid
(spheroid) of revolution. The gravitational field of such a body has axjal symmetry but
varies with latitude because of its ellipsoidal shape. In most formulations, this variation is
expressed in terms of the second and fourth even-zonal harmonics of the spherical harmonic
expansion having constant coefficients, J, and J4- As shown in appendix C, these
coefficients may in turn be expressed in terms of the rotatlon and the dynamical flattening f
which is given by

(@D

where a_ = the equatorial radius
b = the polar radius

The departures from the spherically symmetric field that result from the I, and J, terms
may be represented geometrically by relative highs and lows in the equipotential surfaces as
compared to a sphere (fig. 1).

The geometrical flattening of the major planets has been estimated from optical
observations of their shapes. From these estimates and the expressions relating the rotation,
J,,and J, to f, J, and J, may be estimated. For planets with natural satellites (particularly
Mars, Juplter and Saturn), optical tracking of the satellites can be used to estimate the
magnitude of the secular perturbations from which J, and J, may be computed.

The gravitational field that results from a spheroidal body is treated in references 23, 24, 25,
and 26; references 23 and 27 give a brief mathematical description of the gravitational field
of a spheroid body with a discussion of Legendre functions.

2.2.2 Application

The spheroid model is an important tool in formulating the gravitational field of a planet.
The parameters that describe it can be derived directly from observations of orbiting
satellites which show large secular changes in the right ascension of the ascending node Q
and in the argument of periapsis w. Because of the large secular motions of close-Earth
satellites, the spheroid model is the simplest model that can be recommended for orbit
determination; however, more detailed and accurate models are usually used. The ellipsoidal
equipotential surface of the spheroid model also serves as the common reference surface for
many geodetic applications.
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2.2.3 Major Planets

Data from tracking of natural satellites and spacecraft in the vicinity of the nearer planets
have yielded estimates of only 1, and J, for some of them. In some cases. the dynamical
oblateness can be estimated only from the optically-observed geometrical flattening (see.
2.2.1). Such estimates. however, require assumptions about the plasticity, viscosity, and
modulus of clasticity of the planctary interiors that are often little more than educated
£UCSSeS.

Top Views

Side Views

+ High regions

- Low regions

Figure 1.—Highs and Lows of a Spheroidal Equipotential Surface
Relative to a Spherica! Surface

10
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2.2.3.1 Mercury and Venus

Mercury and Venus have no significant flattening (ref. 3). As Venus has no natural satellites,
the only available source of data on Venus’ dynamic oblateness is the Mariner 5 flyby from
which Anderson (ref. 11) has estimated

J, (Venus) = 2.7 £0.9 X 107

No estimates have been made for J,. No dynamical estimates of J ) and J, have been made
for Mercury.

2.2.3.2 Mars

U for Mars has been estimated from the motion of its two natural satellites by Wilkins (ref.
28) and from Doppler tracking of Mariner 4 by Null (ref. 13). Because the actual quantity
derived in both cases was not J, but the product J, an where R is an assumed value for
the equatorial radius of Mars, the computed value of J, is affected by the determination of
R . The values for J, in table 13 (refs. 13 and 28) assume a value for R of 3394 km in
contrast to the radius of 3402 *+ 8 km for this monograph (sec. 3.2.2). Wilkins’ result has
been adjusted to reflect a value of 3394 km for R instead of his original value of 3409 km.

TABLE 13
J, FOR MARS
Source J2
Natural Satellites (ref. 28) .001968 + .000006
Mariner 4 (ref. 13) .00187 +.00007
Lore!ll & Shapiro (ref. 14) .00196 +.00001
Jordan & Lorell (ref. 29) .001964 + .000006

It was not feasible to estimate J, from the motion of Mariners 6 and 7 because of
nongravitational perturbations such as gas venting that acted on the spacecraft. J, has not
been estimated for Mars. The flattening for Mars has been estimated geometrically to be
(192)! (ref. 3); this compares with Wilkins’ estimate of (190.4 % 1.9)1 and estimate of
(190.8 = .7)"! by Lorell and Shapiro for the dynamical flattening (ref. 28).

2.2.3.3 Jupiter

A value for the geometrical and dynamical flattening of Jupiter are computed in reference
13 as (16.35)1. Anderson et al. (ref. 16) calculate dynamical flattening as (15.456 = 0.24).
from Pioneer 10 results and give best available determinations of J, and U

J, (Jupiter) = (147.2 + 0.4) X 10

J, (Jupiter) = - (6.5 +3.8) X 10™*

11
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2.2.3.4 Saturn

In reference 20, the geometrical and dynamical flattenings of Saturn are computed to be
(9.5 + 0.7)" and (10.3 £ 0.5y", respectively. The values of J, and J, computed in
reference 26 are

J, (Saturn) = (166.5 £ 2.0) X 10°*
J, (Saturn) = (9.6 £ 1.0) X 10*

Reference 31 notes that these values contain a contribution of undetermined magnitude
from Saturn’s rings.

2.2.3.5 Uranus, Neptune, and Pluto

Reference 32 containg estimates for the geometrical flattening of Uranus and Neptune of
(33 £ 33y and (50 t 500!, respectively. This notation indicates that the correct values
may lic anvwhere in the range of expected uncertaintics with virtually equal probability.
Reference 33 gives estimates of the geometrical flattening of (18)! for Uranus and (60!
for Neptune, and a value of J, for Neptune of approximately 0.005.

No estimates of Pluto’s spheroid parameters have been made.

2.2.4 Sun

Determination of the Sun’s zonal harmonics presents a different problem from that
cncountered with the planets. Because of the large mass of the Sun, the effects of general
relativity must be accounted for in determining J, and J; from such observed quantities as
the advance of the perihelion of Mercury. The observed rate of advance agrees well with the
prediction of general relativity but leaves the contribution from the Sun's oblateness quite
uncertain. Anderson (ref. 1) has estimated that J, for the Sun has an upper limit of 10°*
with an uncertainty of 70 percent. Dicke (ref. 34) has postulated a certain amount of
geometrical flattening of the Sun in an attempt to support his own relativistic theory that
would require that the Sun’s oblateness contribute about 10 percent of the motion of
Mercury's perihelion. His value for £ was 5.0 £ 0.7 X 10, A recent determination by
Ocsterwinter (ref, 33) did not estimate J, precisely for the Sun but gave it an upper limit of
1.4 X 10°%, ’

2.3 Spherical Harmonic Model

The representiation of a planet’s surface topography in spherical coordinates is appropriate
p ) I
because most planets are nearly spherical. The formulation of the planet’s gravitational
potential in terms of spherical harmonic expansion follows paturally  because the
gravitational ficld is strongly related to the planet’s shape. In recent years spherical
harmonic models have been constructed for the gravity fields of the Farth and Moon: and as
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data becomes available, attempts will be made to construct models for other planets.
Appendix D gives the theoretical formulation of the gravitational potential in terms of
spherical harmonics and discusses the physical significance of their mutual orthogonality.

2.3.1 Orthogonal Functions

All irregularities in shape and mass distribution contribute to the total gravitational
potential of a body. To model such irregularities precisely, a formulation is required which
uses an infinite sequence of orthogonal functions. The sequence of orthogonal spherical
harmonics is appropriate for representation of a function over a spherical surface which is
analogous to the use of Fourier series for functions in a rectilinear space.

2.3.2 Representation of the Gravitational Potential

2.3.2.1 Zonal, Sectorial, and Tesseral Harmonics

Spherical harmonics may be visualized as small, periodic adjustments to a perfectly spherical
shape that result in a surface which oscillates above and below the spherical surface at
regular intervals; positive values represent local “highs” relative to the reference sphere and
negative values, “lows.” The categorization of the harmonics is based on the geometrical
pattern of the highs and lows. Zonal harmonics possess longitudinal symmetry and oscillate
in sign only with latitude. Sectorial harmonics possess latitudinal symmetry and oscillate in
sign only with longitude. Tesseral harmonics comprise all the other harmonics of varying
degree and order and change in sign over a latitude/longitude grid of “‘tesserae.” An
analytical description of the foregoing concepts is given in appendix E.

2.3.2.2 Resonant Orbits

Certain Earth satellite orbits, described as “resonant,” experience large perturbing effects
from particular harmonic coefficients (ref. 26). A resonant orbit has a mean motion
commensurate with Earth’s rotation, i.e., the ratio 24/P is a rational number where P is
approximately the satellite period in hours. The most pronounced resonances occur when
24/P is an integer. During each commensurate period, the geographic trace of the satellite
repeats, so any anomaly in the geopotential, however small, has an opportunity to build up
small perturbations into large displacements as long as the commensurability is maintained.
Such orbits have been recognized since 1960 (ref. 36) as the reasonable ones to observe for
the determination of certain of the longitude-dependent terms of the geopotential.
Appendix E gives a more detailed discussion and a list of harmonic coefficients so
determined.

2.3.2.3 Normalization and Conversion

The coefficients C _ and S =~ which appear in the expression for the geopotential in
spherical harmonics, often are normalized or combined with other coefficients to yield

13
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coefficients that have clear physical interpretations. Appendix F gives the generally adopted
normalization procedure and relates the various forms of geopotential expression to the
form adopted herein (equation F-2),

2.3.3 Current Models

2.3.3.1 Earth

Many spherical harmonic models have been developed for Farth gravity since the first
artificial Farth satellite flew in 1959, Fach successive satellite launch and each advance in
tracking system accuracy have led to more complete and accurate models representing a
wider varicty of orbits. Notable models that have led to present state of the art models are

® The 4 by 4 and 6 by 6 models of Izsak derived from optical data (refs. 37 and 38)

The 4 by 4 and 6 by 6 Doppler data models of Guier (ref. 39) and Anderle (ref. 40)

® The 8 by 8 model of Kaula (ref. 41) based on both optical and surface gravity data

The 8 by 8 Doppler data model of Guicr and Newton (ref. 42)

The SAO-M1 model based on optical and surface gravity data described by Gaposchkin
(ref. 43) and Lundquist (ref. 44)

The SAO-69 model based on optical and surface gravity data (ref, 45)

The GEM-6 gravity model (ref. 46)

The Goddard Farth Model-6 (GEM-6) (ref. 46) reflects a denser distribution of tracking
stations, more different types of tracking data, and a wider range of orbit inclinations than
any other such mode! and includes observations of 26 satellites and considerable amounts of
surface gravity data. The GEM-6 model consists of a complete set of tesseral and sectorial
harmonics through degree and order 16, zonal harmonics through degree 22, and other
selected resonant terms (sec. 2.3.2.2) of orders 9, 11, 12, 13, and 14. In deriving the
coefficients of the GEM-6 model, both optical and laser tracking data were used. GEM-6 is
recommended for the general applications deseribed in section 3.3.2.1.

2.3.3.2 Moon

The spherical harmonic expansions of the gravitational potential of the Moon are
incomplete and less reliable than those for Farth because of a lack of tracking data from a
broad distribution of orbit inclinations and lack of information from behind the Moon,
However, interesting results have come from studics of Apollo flights and Fxplorer 49 (refs.
47 through S0). One spherical harmonic expansion, the L1 mode!l of NASA Langley
Research Center, was used for the Apollo 11 through 17 missions (ref. §1). Although it is
difficult to measure quantitatively the accuracy of global models derived from the Lunar

14
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Orbiter data, it may be concluded that they model the data from which they were derived
very well. Therefore, the models could be considered in analysis of satelite orbits similar to
those flown by the Lunar Orbiters. Data from the Apollo flights have generally not been
used for spherical harmonic models because Apollo tracking data are corrupted by effects
such as gas venting.

No spherical harmonic expansion models are currently recommended for all Moon missions.
The triaxial ellipsoid model (sec. 2.4) is better suited for a wide variety of lunar applications
except for low altitude lunar orbiters.

2.3.4 Model Truncation

This section provides guidance for the application of a spherical harmonic model to
particular requirements. The spherical harmonic models that have been developed for the
Earth’s gravitational potential contain a finite number of terms. Such models are usually
most effective for orbit prediction when applied to orbits similar to those used in deriving
the models.

Because of computational limitations, users of gravity models often require models
containing only a small number of terms. Two options may be possible; a model of the
desired size may already be available, but more often the user will have to reduce a larger
model. In the latter case, the problem of which terms to retain still must be met.

If a user requires a smaller model than the GEM-6 model, the following guidelines may assist
in selecting which terms to retain:

® All terms which are at or near resonance for the application orbits

® Only low-degree terms at higher altitudes because of the 1/r® dependence in the
potential where n equals the degree of the term '

More detailed quantitative rules for determining which terms are to be retained or how
much accuracy is lost in truncation are given in appendix G.

2.3.5 Model Accuracy and Gravimetry

Model accuracy in the context of space applications refers to the ability of a model to
predict the position of a satellite in a known orbit. A prediction accuracy of £ 30 meters is
widely quoted as being generally attainable.

Such accuracy designations, however, are misleading and often lead to misconceptions. The
accuracy with which the motion of a satellite can be predicted depends on the length of
time over which the prediction is made, parameters of the initial orbit, the method of
computation, the way in which the results are expressed, and the manner in which the
model is applied. It is, therefore, impossible to assign a single number to represent the
accuracy of a model.

15
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For the GEM-6 gravity model, reference 45 provides a satisfactory discussion of model
accuracy.

Surface gravimetry has recently been investigated as a possible standard for evaluating the
accuracy of satellite models. It has been found that over small arcas, gravimetric data can
yicld far more accurate gravity values than can be deduced from satellite data. Thus a
well-measured portion of the geoid can serve as a reference standard for satellite models.
The severe limitation on surface gravimetry is that neither the technological nor the
cconomic means have been available to obtain data over much of the ocean surface.

The use of satellite data involves the reverse situation. Although satellite data represent the
integrated effects of gravity from every point on the Earth's surfuce, these measurements
lack fine resolution. A model complete to degree 30 has a resolution element of 180730 or 6
degrees of arc relative to the Earth's center. When applied to surface gravity, such a model
can yield average values of gravity over grid elements no smaller than 360 nautical miles (6
degrees of arc) on a side. Where surface gravity data are available, however, it is common to
attain accurate average gravity over surface regions extending 1 degree of are (60 nautical
miles) or smaller.

Thus, one of the major problems encountered in using surface gravity is the selection of an
appropriate grid size over which comparisons with satellite gravity can be made. A surface
gravity grid containg too many details to be approximated by satellite gravity. Morcover.,
because of the limited coverage of gravimetry data. it cannot be extrapolated realistically
over the entire satellite resolution element. Kaula (ref. 523 selected a 300-nautical mile (5
degrees) grid size over which to compare surface measurements with data from some carly
satellite models.

2.4 The Triaxial Ellipsoid Model (Moon)

2.4.1 Principal Moments of Inertia

The triaxial ellipsoid is a refinement of the spheroid of revolution model (sec. 2.2). The
spheroid of revolution yielded a gravitational field which possessed longitudinal symmetry
but reflected a latitudinal ellipticity. In physical terms, the principal moments of inertia of
the spheroid of revolution, A, B, and C, defined with C measured about the rotation axis,
satisfy A = B # C. “The spheroid model potential, as formulated in the general case from
MacCullagh’s formula (ref. 20), is

+B+C- 31
U=t o AtBYS +0(~'—)

r 2 ',3 r4

where 1= the distance from the center of mass to an external point P
I = the moment of inertia about the line joining the center of mass and P

16
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If the spheroid potential (sec. 2.2) is compared to this expression for U, J, can be written in
terms of the principal moments of inertia by

Jy =
where a_ = the equatorial radius.
For the triaxial ellipsoid where A # B, the corresponding expression for J, is given by

_C-1(@A+B)
Ma?

J

2

Where a_= the mean equatorial radius.

In this model there is an equatorial as well as a polar flattening. As the polar flattening is
given principally by the spherical harmonic coefficient C,, (equals -J,), the equatorial
flattening is represented by the coefficient C,,, which is related to the moments of inertia

(refs. 26 and 53) by
C.. = 1 [B-A
24\ M2

Derivations pertaining to the preceding discussion of the potential from a triaxial ellipsoid
may be found in references 24 and 54. The gravity potential of a triaxial ellipsoid may also
be expressed in terms of the spherical harmonic expansion by using only three terms, the
central force term (u), C, 5 and Cy, .

2.4.2 Application

The triaxial model has been applied to the Earth, but it has not yielded significant
improvements over the spheroid model. The main difference between these two models is
the C,, term. Many investigators, including Wagner (ref. 55), have studied the ellipticity of .
the Earth’s equator and found that C,, is nearly three orders of magnitude smaller than
Cyo and is therefore negligible for applications requiring less detail than the spherical
harmonic expansion models presented in section 2.3.3.1. For the Earth, this result can be
qualitatively expressed in terms of principal moments of inertia by

|C-Al = |C-B| > |A-B]

The triaxial ellipsoid is more useful for the Moon. From the moments of inertia ratios, given
in reference 56, it can be inferred that C>B > A for the Moon and further that

17
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C-A
=279+ 04
B-A
and
B 700 04
B-A

Both of the foregoing ratios are about 500 for the Farth. i, the equatorial flattening is
negligible compared to the polar flattening. Because of the more significant equatorial
flattening on the Moon, the triaxial ellipsoid is an appropriate model and often has been
used to deseribe the Junar gravitational ficld. Recent determinations of C,, . and C,, for the

2o
Moon are given in table 14
TABLE 14
TRIAXIAL COEFFICIENTS FOR THE MOON
Source 020 C”
Melbourne et al. (ref. 2) | —2.0711 x 10% | 0.20716 x 10*
Jsc! -2.07108 x 10% | 0.20716 x 10?
Bender et al. (ref. 56) -2.04 x10% | 0223 x10°

'W. Wollenhaupt, JSC, Personal Communications, Augqust 1970.

3. CRITERIA

The descriptive parameters given in this section should be used to establish reference gravity
ficlds for space mission planning and the desion of space vehicles, experiments. and
instrumentation.

3.1 Sun and Astronomical Unit

The value of the Sun’s gravitational constant g recommended for use is

po=LA27125 ¥ 10N kil

s

The corresponding value of the Sun’s mass M s
Py L3

M =1.9903 %10 ¢

. .
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which results from

_Hs
MS_G

where G is the universal gravitational constant, taken as 6.668 + .005 X 1023 km?3 /g s2.

The parameter u, is the only well-known gravitational parameter for the Sun. Of all the
other parameters, only J, has been estimated, and then only an upper limit of 10° is
recommended. The same limit may be applied to the geometrical flattening f.

The value recommended for the Astronomical Unit (AU) is 149,597,893 km. The
International Astronomical Union (IAU) value of 149,500,000 km is important for
interpretation of historical astronomical observations.

3.2 Planets

3.2.1 Masses and Gravitational Constants

'y1, and the

The recommended ratios of the mass of the Sun to those of the planets, (Mp

gravitational constants of the major planets M, are given in table 15.

3.2.2 Planetary Radii and Mean Distances From Sun

Table 16 gives the radii of the major planets and the mean distances from the Sun to each
planet.

3.2.3 Harmonic Coefficients

At present, the only harmonic coefficients that have been reliably estimated for the major
planets are the spheroidal harmonics J, and J, which are used in the model presented in
section 2.2.2. In some cases, all that is available is an estimate of the observed geometrical
flattening, Table 17 gives the recommended values for the parameters that have been
estimated.

19
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TABLE 15
RECIPROCAL MASS RATIOS AND GRAVITATIONAL
CONSTANTS FOR THE PLANETS

Planet K, (km3/5?) (M)
Mercury 22,032" 6,021,900
Venus 324,860 408,522.7
Mars 42,828 3,098,707
Jupiter 126,709,801 1,047.3736
Saturn 37,934,115 3,498.5
Uranus 5,780,249 22,920
Neptune 6,868,111 19,323
Pluto 68,621 1,934,000
*Reference 9.

TABLE 16

RADIt AND MEAN DISTANCES
FROM THE SUN OF THE MAJOR PLANETS

Equatorial Mean Distance From Sun!
Radius
Planct (km} {AU) (km)
Mercury (ref. 9) 2,439 11 .3870989 57,909,195
Venus (ref. 57) 6.05216 .723332 108,208,943
Earth (refs. 2 and 58) 6,378.16 + .005 1.0 149,597,893
Mars (ref. 57) 3,402 :+8 1.5623691 227,940,963
Jupiter (ref. 27) 71,422 1+ 200 5.202803 778,328,366
Saturn (ref. 30) 59,800 * 350 9.538843 1,426,990,814
Uranus (ref. 32) 27,000 & 1,000 19.181951 2,869,579,453
Neptune (ref. 32) 25,200 ¢ 200 30.057779 4,496,580,407
Piuto {ref. 57) 2,250 1,150 39.43871 5,899,947,919

" Reference 3.

TABLE 17
SPHEROID MODEL COEFFICIENTS FOR THE PLANETS
Geometrical
Planet Flattening, f J, J,
Mercury 0.0
Venus 0.0 ~84x10°
Mars (192)! 1.9x 103
Jupiter {15.456)" 147.2x 10° -65x 101
Saturn (9.5)" 0.017 9.6x 10
Uranus {25)"
Neptune {50) ~ 0.005
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3.3 EARTH

3.3.1 Mass and Gravitational Constant

In planning for deep space trajectories (far from the Earth and Moon), the Earth and Moon
should be treated as a single body whose mass M, __ is given by

M=MS

e-m 328,900
where M, is the mass of the Sun. The gravitational constant of the Earth-Moon u,  1is
403,504 km3 /.

In or near cislunar space the Earth and Moon should be treated as separate bodies. The mass
and gravitational constant of the Earth are given by

M

- .5
M. = 3320454

p, =398,601.2 km?/s?

3.3.2 Spherical Harmonic Models

The gravitational field of a rotating celestial body is generally that of a sphere modified by
effects of rotation and irregularities in mass density and topography. Such a field can be
described effectively by a spherical harmonic expansion model.

3.3.2.1 General Application

The GEM-6 model of the Earth’s gravitational potential should be used when there is a
requirement involving many different satellite orbits or an undefined or unspecified satellite
orbit.

Table 18 gives the values of the coefficients of the GEM-6 model. Because of its size, the
GEM-6 model may be unwieldy or inefficient for certain applications. In such cases, its size
may be reduced in accordance with the guidelines presented in section 2.3.4.

3.3.2.2 Orbits at Resonant Altitudes

When a satellite is to be flown at or near one of the resonant altitudes (sec. E.4, appendix
E), the mission planner should select the associated resonant coefficients from an
appropriate model and use them in the GEM-6 model. For example, if the period of an orbit
indicates resonance of order m and there is an accurate independent determination of these
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TABLE 18

NORMALIZED COEFFICIENTS FOR THE GEM-6 MODEL (x 10°)
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resonant coefficients, the GEM-6 model can be used after replacement of the model
coefficients by the independent coefficients.

3.3.2.3 12 to 24 Hour Orbital Periods; Low-Order Resonance

When orbital periods are in the 12- to 24-hour range, the GEM-6 model can be reduced
considerably in size to accommodate the orbit. The exact size of the model to be used
depends on the orbital eccentricity and accuracy requirements. For nearly circular
synchronous (24 hour) orbits, coefficients through (3,3) are usually acceptable.

Table 19 gives coefficients which may be used to replace corresponding terms in the GEM-6

model when low-order resonance effects are important. The satellite orbits given in table 20
were used in computing the values in table 19.

3.3.2.4 Polar Orbit Model

For polar orbits (inclination near 90 degrees), the GEM-6 model can be used.

3.3.2.5 Small Models

A requirement for a small model with general applicability can be met by truncating the
GEM-6 model.

TABLE 19

LOW-ORDER RESONANT COEFFICIENTS (x 10°)
n m Cnm Snm
2 2 2.432 —1.407
3 1 1.878 0.247
3 3 0.703 1.470
4 2 0.335 0.671
4 4 —0.137 0.374

1 References 45 and 37.
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TABLE 20
24 HOUR SATELLITE OBSERVATIONS USED IN SOLUTION
OF RESONANT COEFFICIENTS IN TABLE 19

Longitude Span, Longitude Span,
A AN
(Degrees East Inclination, i (Degrees East Inclination, i
of Greenwich) (degrees) of Greenwich) (degrees)
302-305 33.0 210-211 1.2
296-301 328 288312 0.6
196-243 325 287-288 0.3
72-189 323 313-315 03
65-68 31.8 349352 1.0
65-86 28320 346-349 1.0
178-180 0.0 179-194 1.0
174-181 0.0 324-332 05
165-172 05 321-331 0.8
160-161 1.3 253-256 26
146160 2-3.0

3.4 Moon

3.4.1 Mass and Gravitational Constant

The mass of the Moon is given accurately only in terms of the mass of the Farth:

M,
Mo T E1302

When treating the Moon as a point mass, the recommended value of gravitational constant
of the Moon should be assigned the value:

p,, =4902.78 km?/s?

In the more detailed lunar gravity models, however, the value of u,, isassizned in cach case
as part of the solution.

3.4.2 Triaxial Model

To define the values of the harmonic coefficients of a triaxial Moon, C,, and C,, are taken
as

C,p =-2.07108 X 10

¢,, =0.20716 X 10"
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3.4.3 Applications

The triaxial ellipsoid model is recommended for general application except for low altitude
lunar satellites. For low altitude orbiters, the considerations of section 2.3.3.2 are pertinent.

3.5 Asteroids and Natural Satellites

3.5.1 Asteroids

Although there is little quantitative information about the physical properties of the
asteroids, orbits and ephemerides for about 1800 of them are known in some detail.
Ephemerides through the year 2000 have been computed by Duncombe (ref. 59) for the
four most widely-observed asteroids, Ceres, Pallas, Juno, and Vesta. Reference 3 lists several
references that can be consulted for detailed ephemerides of the asteroids.

The masses of the asteroids can be estimated reliably only by observing the perturbed
motions of other bodies in their vicinity. The mass of Ceres, the largest asteroid, has
recently been determined from the motion of Pallas to be 6.7 + 0.4 X 10°10 of the solar
mass by Schubart (ref. 60). The mass of Vesta was found by Hertz (ref. 61) to be 1.20 = .08
X 10710 of the solar mass from the motion of the asteroid Arete.

Diameters of the four most widely observed asteroids have recently been published by
Dolifus (ref. 57) and Gehrels (ref. 62). These values are derived from astronomical
observations made by Barnard in 1902. They are presented in table 21.

TABLE 21
DIAMETERS OF PROMINENT ASTEROIDS
Asteroid Diameter (km)
Ceres 769 = 20
Pallas 490 + 25
Juno . 196+ 25
Vesta 400 + 35

3.5.2 Natural Satellites

The masses and diameters of the natural satellites are presented in table 22. They are based
on the estimates of Koslavskaya (ref. 63), Dollfus (ref. 57), De Sitter (ref. 64), and Jeffreys
(refs. 65 and 66). The masses are presented in units of the mass of the planet about which
each satellite revolves to avoid introducing the uncertainties of the planetary masses. In
some cases, a mean value is given with a standard error. In other cases, a range of values is
given that should be interpreted as the interval over which any value is equally probable.
When no range is given, the mass or diameter value is so uncertain that it was not possible to
estimate a range of uniform probability.
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TABLE 22

MASSES AND DIAMETERS OF THE NATURAL SATELLITES

Planet Satellite (Fractic’)\rnwacspsf Planct) Diameter (km)
Earth Moon 0.0123 3476 2
Mars Phobos (1) 2.7x10¢8 22461 2

Deimos (I1) 49x%x10° 13.4+2.7
Jupiter fo (1) (4.696 *+ .06) x 10°° 3500 * 150
Europa (1) (2.565 + .06) x 105 3110 ¢ 150
Gamymede (1) (7.845 + .08) x 10°° 5550 ¢ 130
Callisto {1V) (5603 *.17) x 105 500 ¢ 150
\Y 22x10° 88 to 160
Vi 85x 100 64 10 184
Vil 35x10"! 24 10 64
vill 7x101'3 6.4 1018
I1X 1.5x 10'? 71020
X 1.0x 1012 71020
X1 20x 1012 24
X1t 7.0x 1013 6to 18
Saturn Mimas (1) {6.64+0.10) x 108 450 * 665
Enceladus (I1) (1.4 2 047) x 107 550 ¢ 300
Tethis (111) {1.118 2 0.015) x 10°S 1200 + 200
Dione {I1V) (1.80 £ 0.07) x 10°® 820 : 400
Rhea (V) (3.8 3.8) x 106 1300 : 300
Titan (V1) (2.425 + 0.020) x 104 4850 ¢ 300
Hyperion (V1) 8x 108 980 10 500
lapetus (VIIT) (3.20 + 0.74) x 10 1150 ¢ 100
Phoebe (I1X) 5x 108 190 to 540
Uranus Arie! (1) 28 x 106 760 to 2170
Umbrie! (11) 8x10¢ 500 to 1410
Titania (111) 49 x 10 910 to 2600
Oberon (1V) 38 x 10° 830 to 2380
Miranda (V) 15x 10° 280 to 820
Neptune | Triton (1) (1.34 £ 0.23) x 10°3 3770 £ 1500
Nereid (11) 3.33x 107 280 to 800
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APPENDIX A
DEFINITION OF SYMBOLS"

Semimajor axis

Mean equatorial radius of a massive body

Equatorial radius of a massive body

Smallest of a body’s principal moments of inertia

Polar radius of an ellipsoid of revolution (2.2)

Intermediate of a body’s principal moments of inertia
Largest of a body’s principal moments of inertia
Dimensionless spherical harmonic coefficient

Eccentricity

Flattening of an ellipsoid of revolution

Gravitational force

Gravitational acceleration

Gravitational acceleration at the equator of a massive body
Universal gravitational constant (2.1)

Orbit inclination relative to equator of attracting body
Moment of inertia relative to any specified axis

Zonal harmonic of degree n (2.3)

Factor in computation of K (=1 for m=0, =2 for m#0) (appendix F)
Normalization factor (appendix F)

Index connoting the order of a harmonic

Index connoting the degree of a harmonic

A unit vector normal to some surface (2.5)

Some arbitrary poiﬁt in space

Legendre polynomial of degree n and order m

Radial distance from center of mass in spherical coordinates
Equatorial radius of an equipotential surface near an ellipsoidal body (2.2)

Dimensionless spherical harmonic coefficient

*Numbers in parens give section where symbol used.
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Time
Gravitational potential due to zonal terms
Spherical harmonic potential function (Appendix D)

A surface harmonic of degree n (Appendix D)

Farth

Equator

Moon

Order (when preceded by n)

Degree

Mcasured at some epoch or reference
Plinet

Sun

Cocefficients of degree noused in deseribing a spheroidal surface (appendix C)
Colatitude (=7/2 - ¢)

Longitude

Gravitational constant (= GM)

3.14159265

Radius dependent part of the spherical harmonic potential (appendix D)
Latitude

Components of the spherical harmonic potential (Appendix D)

Rotation rate of a massive body
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APPENDIX B
ASTRODYNAMIC CONSTANTS AND UNITS

The basis of the definitions of the standard astrodynamic constants is Kepler’s laws of
planetary motion (ref. 67). Analytically stated, Kepler’s Third Law (refs. 67 and 68) says

that for any planet, the square of its period P is proportional to the cube of its mean
distance from the Sun, or symbolically,

2 2 2
P _ il - i (B-1)
a 3 Mp 9 Mp
M\t e ) EM\Mw
s s
where a is the semimajor axis of the planet’s orbit about the Sun

M, is the Sun’s mass
M is the planet’s mass, including planet, atmosphere, and satellites

k =4/G is the Gaussian gravitational constant

Historically, equation (B-1) is the basis for the definitions of presently adopted
astrodynamic units and constants; it contains units of time, mass, and length, and a
“universal constant” k whose value can be theoretically derived from perfect determinations
of the observable quantities. Therefore, a convenient set of units was adopted:

® The unit of mass was taken to be the Sun’s mass, i.e., M, was set equal to unity

® The unit of time was taken to be a mean solar day, i.e., P was set equal to
365.2563835%

® The unit of length was taken to be the mean distance between the Earth and Sun and
was called the astronomical unit (AU)

With these units, a value of k could be inferred from the ratio Me M ; where Me is the mass
of the Earth-Moon system. Reference 67 notes that at the time k was computed, M, /MS was
thought to be (354,710)'1, and k was computed to be 0.01720209895. If the units of
measurement were to be held fixed, then any refinement in Me/MS would necessitate
changing k as well. For practical astronomy, however, a consistent value of k is virtually a
necessity so that k is fixed at the foregoing value by convention. As a result of this
_convention, the unit of length AU equals the mean radius of the Earth’s orbit only if the
value of M, /MS that was used in deriving k were correct. On the basis of current values of
M, /Ms, the mean radius of the Earth’s orbit a_ is 1.00000003 AU (ref. 3).

*P actually also includes the time correction 1.1 x 10'7 T where T is measured in centuries since 1900,
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APPENDIX C
GRAVITATIONAL FIELD OF A SPHEROIDAL BODY

C.1 Mathematical Description

The derivations, formulas, and notation used here are essentially those of Kaula (ref. 26).
The expressions for the potential and the radius of an equipotential surface are given in
terms of the Legendre polynomials P20 and P4 0 (sec. C.2) by

1
P =-?isin2 ¢ -7

20 2 2
35 . 4 15 . 2 3
=— si -— + =
P4O 3 Sin o) n sin ¢ 3

where ¢ is the planetocentric latitude. The potential at a point located on the body’s surface
at latitude ¢ and distance r from the planet’s center is

U ("“e)2 (%)4 1 22 2
U= 1-905) Ppo=I,\ o) Pyt e |+50 " cos”s (c-1)

where a_ is the equatorial radius of the planet

w is its rotation rate (for an orbiting spacecraft, the rotational
term is not present in the potential)

The shape of an equipotential surface for the spheroidal body is symmetric about the axis of
rotation and is defined by

r=ro (l+<)z2 P20+0L4 P40+...)

where T is the radial distance from the body’s center to a point
on the equipotential surface with latitude ¢

I, is the equatorial radius of that surface
a, and e, are coefficients to be determined
39
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By rewriting rin terms of ¢, and using the binomial expansion for ", one can write U in
terms of powers of sin2¢. The cocfficients a, and e, may be expressed in terms of fand w.
whenee after combining coefficients of powers of sin2¢ in the expression for U, the three
parameters p.J,. and J , may be obtained to order f2:

2 1 1 3 2
J2 —-gf(l —-2-1')—-5-111(1 -gm —-—,‘TI)

.4 mrs
J4-— 35[(rf 5m)

where to first order in f, according to Heiskanen and Moritz (p. 74, ref. 69),

and where g_is the gravitational acceleration at the equator.

C.2. Legendre Polynomials

Legendre polynomials arise as particular solutions to Legendre’s equation:

2
sing g" (8) + cos 6z' (B) + [n(ml) sin 6 -;—?&-—é-] g@) =0

where g(0) is some function of the independent variable 0, n and m are dimensionless
constants. and ' and "' denote first and sccond derivatives with respect to 0. Making the
substitutions, t = cos 8 and G(1) = g(0), a solution for G(1) is found to be
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n-+m
P - a-32 L _ 2 1%, m#0)

nm n n+m
2 n' dt
n

1 d 2 n
P ®)=P O-—— ¢ -1, @m=0

2°n' dt

where tis cos 6 and 0 is the colatitude.

The functions P_(t) are polynomials in t. These polynonﬁals may also be obtained from the
recursion formula

1-n 2n -1
= —— 4 —
Pn(t) = Pn—2 (t) o tPn_l(t)
Po(t) =1
by making use of the trigonometric identities:

2 1 1
= - + e
cos 8 5 cos 26 5

cos3 e =-1- cos 36 +%cos 6, etc.

4

The Legendre polynomials with m = 0 are summarized in table C-1.
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TABLE C-1.
LEGENDRE POLYNOMIALS OF ZERO ORDER

Pn (cos 8)

1
cos B
1 3 cos2g-1)
1 (5 cos3 g -3 cos @)
(35 cos? § - 30 cos? @ + 3) /8
(63 cos® @ - 70 cos3 @ + 15 cos 6) /8
(231 cos® 6 - 315 cos? @ + 105 cos2 ¢ - 5) /16
(429 cos? 6 - 693 cos® 8 + 315 cos3 § - 35 cos 6) /16
(6435 cos® § - 12012 cos6 § + 6930 cos? § - 1260 cos2 § + 35)/128
(12155 cos? § - 25740 cos” @ + 18018 cos5 § - 4620 cos3 g + 315 cos 6)/128
(46189 cos10 g - 109395 cosB § + 90090 cosb § - 30030 cos? @ + 3465 cos2 @ - 63)/256

Associated Legendre functions can be derived from Legendre polynomials by means of the
cquation

m
d P (t)
P )= (1 _ t2}1'11/?.’ n

nm m
dt

Associated Legendre functions through n = 10 are given in Table C-2.



Downloaded from http://www.everyspec.com

TABLE C-2.
ASSOCIATED LEGENDRE FUNCTIONS (1 of 5)
n m an(COS 8)
1 1 sin 6
2 1 3 sin @ cos 6
. 15 2 g)
3 1 sin O ( 2 cos 6 2
2 2 3 sin2 6
.2
3 2 15 sin~ 8 cos 6
3 3 15 sin3 0]
. 35 3 15
4 1 sme(—z— cos 6 ——i-cos 6)
2 (105 2, _15
4 2 sin 6 ( 5 cos 6 5 )
.3
4 3 105 sin” 6 cos 6
4 4 105 sin4 0
. 315 4 105 2 15
5 1 sm/e(8 cos §- =, COS 0+ 8)
5 2 sin2 6 (21—5 cos3 e - -12§ cos 6)
2 2
5 3 sin3 6 (9'&'5‘ cos2 6 - 1‘-0-§>
2 2
L4
5 4 945 sin” 6 cos B
. 5
5 5 945 sin 8
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TABLE C-2.
ASSOCIATED LEGENDRE FUNCTIONS (2 of 5)

n m an (cos g)
24 =
6 1 sin @ £33 0556_:3_1200539 4--1—Q3cose)
8 4 8
é 5 Iy 5
6 0 sin? g(3465 __ 4 o5 2 64 100)
8 4 8
405 r
6 3 sinse(Mlcos e-gbcos 6)
2 2
395 45
6 4 sin4 6 (10; - cos 8 - -9?10-)
5
6 5 10395 sin®” @ cos B
R
6 6 10395 sin” @
. , 003 6, 3465 95 2 Q)
7 1 sme( 16 cos @ 16 co'; 6+ 16 cos @ 16
5 [
7 2 sinze(w cos e-%cos39+9—4~°cos 8)
8 4 8
-
. 3 ein® g (4 2015 oot g . 10395 2 ‘9_12)
8 4 8
n e 24
N oin’ 642018 oo, g 20305 |
5135 5
; . sin® g (130130 cos? g . 10390)
2 2
N
7 6 135135 sin 6 cos 8
- ~ U
7 7 135135 sin 6
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TABLE C-2.
ASSOCIATED LEGENDRE FUNCTIONS (3 of 5)

an(cos )
6435 7 9009 5 3465 3 315 )
sme(-—-16 cos ©6 16 cos B + 16 cos 6 —16 cos 6
9 (45045 6 . 45045 4 10395 2 315)
sin 6< 16 cos 6 —_—16 cos 6 +—-16 cos 6 16
1
sin® 0 (135135 wosd o 48045 3. 10305 6)
8 4 8 |
sint 0 (675675 costp 135185 2. 10395)
8 4 8
sin% 6 (675675 vosd g - 135135 e)
2 2
6 (2027025 2 135135
sin G\———— cos 6 -
2 2
T
2027025 sin O cos 8
.8
2027025 sin 8
109395 8 _ 45045 6 . 45045 4
6( 198 cos 6 - 39 cos O + od cos B
3465 2 315
-3 cos B +-1—2-§)
sin? 6(109395 osTp . 135135 5 L5045 3. 3465 6)
16 °C 16 16 ° 16 0%
sin3 6 (765765 cosS g 878675 4o, 135185 2 . _ 3465)
16 16 16 16

0

. 4 2297295 5 675675 3 135135
sin 9———8-——-008 —-—4-—cos 9+——8—-cose
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TABLE C-2.
ASSOCIATED LEGENDRE FUNCTIONS (4 of 5)

n m P (cos8)
nm
5 486475 27025 5135
9 5 Sid)e(lli G175 oo g - 2027025 2 +13013))
8 4 8
486475 27025
9 6 smﬁe(LUJﬁiiam3e-ggigicnse)
2 2
7 1459125 027025
o . shxle(3!1) 125 2, 20270 J)
2 2
rarne . 8
9 8 314459125 sin 6 cos B
carnr 19
9 9 34459125 sin 8
2309045 9 109395 7 135135 5
! - "0 € + e
10 ! 9( 125 0% 07 Ty 05 B4 T cos 6
15015 3, . 3465 )
- 32 cos @+ 125 cos B
2 (2078505 8 765765 6 675675 4
10 2 sin 6 125 cos 6 - 32 cos @ + 64 cos” @
45015 2 v3465)
T e T
.3 [2078505 7 2297295 5 675675 3
10 3 sin 6( 16 cos 6 - 16 cos B + 16 cos 6
45045 )
- 16 cos @
4 (14549535 6 11486475 4 2027025
10 4 sin” 8 16 cos 8 - G cos @ + 1o cos 6
_45045)
16
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TABLE C-2.
ASSOCIATED LEGENDRE FUNCTIONS (5 of 5)

n m P (cos B)
m

10 5 in3 6 (43648605 $o- 1148;5475 cos® 6 + 202;025 cos e)
10 6 | sin 6(218243025 cost 6 - 3445;9425 cos2 6 + 202;025)
10 - . " (218243025 053 g - 344529425 cos e)
10 8 8 9(654729075 cos2 b - 34459425)

2 2

.9
10 9 | 654729075 sin” § cos 6

. 10
10 10 | 654729075 sin”™ 6
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APPENDIX D
SPHERICAL HARMONICS AND ORTHOGONALITY

The general solution for the gravitational potential exterior to a massive body satisfies
Laplace’s equation (ref. 67).

The expression for V in terms of spherical harmonics may be derived from the expression
for Laplace’s equation in spherical coordinates:

2

2 2 a(zav) 1 a( ) 1 3 V._

r Vv = ——cose =0 (D-1)
dr dr ) sin 6 236 o0 cosze a>\2

where r = radial distance from center of mass
6 = colatitude (/2 - latitude)
A = longitude (eastward)

To solve Laplace’s equation, the variables r, 8, A are separated by the form:
V(r, 8, \) =p(r) YO, X) (D-2)

whence, applying the boundary condition % lim ~(y) =0, the solutions

-(n+1

pn(r) =A r (a+1)
and (D-3)

n
— ' 1 :
Y ;) Z (cnm cos m) +8! sin m) P (cos )
m=0 /

are found where A_, C’ , and S are coefficients whose values are to be determined;
(cos 0) are the Legendre functlons (appendix C); and the functions Y (8, A) are

known as surface harmonics. The general solution for V is given as a summatlon of the
above solutions for P_ and Y :

n

Vi, 8, \) = Z nﬁl Z ( C! cns m)\ + S;lm sin m)\)an (cos 8) (D-4)
m=

n=0r
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where V(r. 0, X) is the gravitational potential in spherical coordinates (sec. 2.3.2 and
appendix F). Note that in this formulation the product A C_ is equivalent to g as defined
in section 2.1,

The individual components of the surface spherical harmonics are represented by

o]

~ =C cosm) P cos @)
nm nm A nm( 6)

. s . ‘
and & =S sinm\ P (cos @)
nm = nm nm

An important property of the functions ¢ ¢ , @ is that they are orthogonal, that is,
I I ) Hm nm 8 :

the integrated product of two different functions, ¢, and ‘I’;m , over the surface of the
sphere, 0. is zero,

r e . )
jfod’nm € N 6 N do=0
f’[0¢§”‘ ©, X qir . Mdo=0 Vif s#n or r#¥m (D-5)

([ ©. 08 6 0w-o
-Jg nm 81

and the integral of the product of two identical functions (s = nand r=m)is
¢ 2 _ s 2 ., _4n

.[./c; [d)no ©, MJ do = f./; [q)no © M] o g

¢ 12 s 2 27 (n+m)

f-/; [q)nm ® MJ @ o[q)nm © M] do 2n+1 (a -m)!

Orthogonality makes the spherical harmonics the natural means of representing a function
over a spherical surface (analogous to the use of Fourier series for functions in a rectilinear
space). The orthogonality property means that the effect of cach term of the harmonic
series is unique. Thus terms or groups can be studied as independent subsets of the complete
series. Further, the spherical harmonic expansion model is not limited to the Farth: it has
been applied to the Moon and some of the planets.

(D-6)

In the case of the Farth, the spherical harmonic model is discussed in section 3.3,
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APPENDIX E

SPHERICAL HARMONIC REPRESENTATION OF
THE GRAVITATIONAL POTENTIAL

E.1. Zonal Harmonics

The expression below:

(C,, cos mA+S__ sinmd) P, (cos 0)

is a surface spherical harmonic of degree n and order m. If m = 0, the harmonic is a constant
multiple of the Legendre function P | (cos 6). The function, P (cos ), has n distinct
zeros between 6 =0 and 6 = 7 (between -w/2 and /2 latitude) arranged symmetrically about
\
|

0 = 1 = (fig. E-1).

——= t=COS ¢

Figure E-1a.—- P__ {cos 0) for n Even
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Figure E-1b.- P__ (cos 0) for n Odd

In a coordinate system having its origin at the center of a sphere, the function P, (cos0)
vanishes on n circles of constant latitude (fig. F-2). Similarly, the locus of pomts on the
sphere at which the function has a constant value consists of a number of parallel cireles.
Because of this division of the sphere into latitude zones in which P, (cos0)alternates in
sign, the functions. P (cos 0), are called zonal harmonics.

Many authors have analyzed the zonal harmonics of the Farth's gravitational potential, e.g
Kozai (ref. 70) and King-Hele (ref. 71) have represented the potential at a point. (r, 0), b\

o a n
7 :..‘i - (._9.) ag
v=bl1-% 355 P eos6) (E-1)

n=0

In what follows. the standard convention of omitting the o subscript from P no Will be
adopted, so that. in general ] = -C

no’

In pre-1938 literature (refs. 24 and 23), only even order zonal harmonics were believed to
be significant in the shape and potential of the Farth. This assumption would be true if the
Earth were an equilibrium figure of rotation. Fven though it was admitted that this
assummption was not perfect, the Earth was believed to be sufficiently near cquilibrium to
make all odd J negligible. Henriksen (ref. 72) and Cook (ref. 36) were among the early
rescarches in the interpretation of satellite results to accept the possibility: that the
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N

EQUATOR

Figure E-2. — Alternate Positive and Negative Regions of P, (cos 6)=0
(Shaded Areas are Positive)

flattening of the Earth is not necessarily that of a body in perfect pressure equilibrium; this
led to the adjustment of the value of the second harmonic. O’Keefe, Eckels, and Squires
(ref. 73). were the first to report the existence of odd zonal harmonics. They attributed the
80-day periodic variation of the eccentricity in the orbit of Vanguard 1 to the presence of
the third zonal harmonic in the Earth’s field. The announcement of this result gave rise to
the term “pear-shaped” in describing the Earth’s shape.

Zonal harmonics of even degree give rise to secular perturbations of the orbital elements £2
and w, and both even and odd zonals give rise to long period perturbations of e, i, 2 and w.
Therefore, their influence can be detected in changes of orbital parameters that are
integrated over many revolutions of satellites. The discussion in section 2.2 of the
relationship between the zonals J, and J, and the secular changes in £ and w may be
generalized to include numbered zonals of higher degree (ref. 27).

E.2 Tesseral Harmonics

If 0 < m < n, then the associated Legendre functions, P . (cos 6), change their sign n-m
times in the colatitude interval 0 < 8 < and the surface harmonic representation takes the
form

(C cosmx +S  sin mx) P (cos 8)
nm nm nm

The functions cos mA and sin m\ have 2m zeros in the longitude interval 0 <A < 2w. The
geometrical representation of such a harmonic is shown in figure E-3 where the sphere is
divided into compartments (tesserae) which are alternately positive and negative; the
harmonics are called tesseral harmonics.
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% ]
7. |

Figure E-3. — Alternate Positive and Negative Regions of
Piog (cos0) {Cm'5 cos 6N+ S, ¢ sin 6\
(Shaded Areas are Positive)

~——— EQUATOR

The perturbations caused by tesseral harmonics usually have short periods (sub-multiples of
the planct’s period of rotation).

E.3 Sectorial Harmonics

If m =n, then the surface harmonic takes the form
. . .. n
(C. cosn\+S sinn\)sin 6
nn nn :

which is represented on a sphere in figure -4 In this form the harmonic oscillates in sign
within longitude bands separated by n great circles passing through ¢ = 0and 0 = 7, i.c., the
poles. Because the sphere is thus divided into 2n sectors, the desienation, sectorial
harmonics. is used for this tvpe of harmonics. Except for resonance effects, perturbations
on satellite motion that result from the sectorial hiarmonics have short periods (submultiples
of a dav). The determination of the sectorial harmonics is similar to that of tesseral
harmonics.
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~——— EQUATOR

Figure E-4. — Alternate Positive and Negative Sectors for
(C, 5 cos BA + S5 sin 5A) sin bo
(Shaded Areas are Positive)

E.4 Resonant Harmonics

The orbits most nearly commensurate with the Earth’s rotation have 12- and 24-hour
periods. The constraints placed on the low-order harmonics of the geopotential by analysis
of these orbits were presented by Wagner in reference 74. The high altitude resonant data
provide verification of the low-order gravity terms which reflect average dynamic effects
over large areas. In the same way, surface gravity data over limited regions give strength to
the terms of high order and degree (ref. 26).

The actual number of orbits significantly perturbed by resonance phehomena is much
greater than formerly supposed; this is an important consideration for mission planners
concerned with tracking of Earth satellites. The altitudes and periods of Earth resonant
orbits are listed in table E-1. Likewise, resonance may be important for planning orbits of
other planets.

The discovery of the resonance of satellite orbits with the gravitational potentials has

provided a means of obtaining values for harmonic coefficients whose contributions,

otherwise, might have been too small to detect. The main investigators in the field have been

Wagner, working mainly with low-order resonant harmonics; Gaposchkin (ref. 43), working

with 9th, 12th, 13th, and 14th order; Anderle (ref. 40), with 13th order; Yionoulis (ref.

75), 13th order; Douglas and Marsh (ref. 76), with 13th order; and King-Hele, et al. (ref. 77)
with 15th order resonant coefficients.
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E.5 The Gravitational Potential
Using Spherical Harmonics

The general expression for the gravitational potential at a point (r, 8, X), external to a planet,
including zonal. tesseral, and sectorial harmonics is

v fa\n n
v=El1+ = Z (C cosm) +S_ _ sin m)«) P (cos8)] (E-2)
r o Y2V e nm nm :

where a_ is the equatorial radius of the planet.

Fquations D-4 and E-2 are different because in equation D4 the integration constants have
been written in terms of a_ and p (the central force coefficient) and in equation E-2 the
harmonic coefficients C - and S are dimensionless. In equation E-2, terms of degree |
arce omitted because they represent terms that result in an offset of the center of mass of the
body relative to the center of the coordinate system to which the expression for U is
referenced. In practice, such offsets are usually negligible or zero. In addition. the terms €,
and S, are set to zero because of the coincidence of the Earth's rotation axis and its axis of
maximum moment of inertia.

TABLE E-1
ALTITUDES AND PERIODS OF RESONANT SATELLITE ORBITS
Resonant Satellite Altitude
Order
m Period {(min) Naut. Miles km
1 1436.0 19,320 35,781
2 718.0 10,895 20,178
5 287.2 3,340 6,186
8 179.5 2,248 4,163
9 159.56 1,816 3,363
10 143.6 1,461 2,706
11 130.05 1,146 2,122
12 119.67 899 1,665
13 1105 671 1,243
14 102.57 475 880
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APPENDIX F
NORMALIZATION AND CONVERSION

F.1 Normalization

The conventional harmonics C_  and S ., are sometimes replaced by normalized
harmonics, C_  and Som- Normalization has the effect of giving the coefficients C,, and
S a clear physical interpretation. For any two harmonic perturbations that are observed
to have the same magnitude, the following expression has the same value

This relationship is seen more clearly in the formulation of the potential in terms of the
coefficients JT' and AT where the magnitude of the perturbation is completely contained in

JT and the phase angle is AT, . Thus,

and perturbations of equal magnitude would be represented by equal values of J7 .

The relation between normalized and unnormalized coefficients in the Cnm and S am
formulation is given in reference 27 by

= _ nm
nm
nm
S
= _nm
nm K
nm

57




Downloaded from http://www.everyspec.com

where

. . (n-m)1/2
= on + e
l\nm K@n+ 1) n +m)

and where

>
i

il

1 when m=0

2 when m#0

-
n

The selection of this particular expression for K may be seen to arise from the results of
the integrals in equation D-6. A table coefficients for normalization of harmonic cocfficients
is given in table F-1.

F.2 Conversion

Committee 7 of the International Astronomical Union (ref. 78) recommended the following
form and notation for the general expression for the Earth’s gravitational potential:

([, R (%) o |
\Y :.‘1‘: l 1 +Z Z (_i—) Pn (sin ¢) [Cnm cos m) + Snm sin m)\] i (F-1)

where g = GM = product of universal gravitational constant times the mass of
attracting body

a = mean cquatorial radius of Farth
r = distance from geocenter to point of observation
¢ = geocentric latitude

A = cast longitude

nm = indices indicating degree and order
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NORMALIZATIONS FACTORS (1 OF 2)

Knm
1. 000060 X 10
1732049 X 10
2+ 236€65 X 1€
24645748 X 1€
2. 999997 X 1@
3. 314620 X 18
3+ 685545 X 108
3.87297¢ X 10
4.123096 X 10
4. 358893 X 10
4. 582563 X 10
4795825 X 10
4. 999991 X 10
S« 196136 X 10
S« 3E8515¢ X 10
S. 567744 X 10
Se 744547 X 1@
S5.916855 X 1@
6. 082737 X 10
6244961 X 10
6. 423098 X 10
60 £57482 X 10
€.T08173 X 1€
6+.855634 X 11
6999969 X 1€
Te 141410 X 10
T« 2ECRE2 X 1@
Te 216167 X 1€
T« 549768 X 10
T« 681094 X 1@
7.810185 X 19
1. 732049 X 10
1. 29099¢ X 10
1. 282125 X 1¢
Q. 948683 X 10
@.856350 X 10
P.786795 X 10
0.731923 X 10
B. €ET186 X 1€
P. £497CE X 10
Qe £17909 X 10
Q@+ 590321 X 1¢
2.566140 X 10
€. 544706 X 16
€. 525537 X 10
8. SO0B265 X 10
9. 492590 X 10
2. 478287 X 1@
Q. 465165 X 1@
B. 453061 X 10
Q. £41854 X 10
@e 2431444 X 19
Be 221741 X 10
B. 412661 X 10
Q. 404142 X 10
0396137 X 10
2. 288584 X 10
8. 381447 X 10
Q. 374691 X 10
Q. 368285 X 10
@. 262191 X 10
@. 645498 X 10
B. 341566 X 10
0.223608 X 10
B 161835 X 1@
B. 1244023 X 10
€.996025 X 10
2.821343 X 10
Qe 692671 X 10
2. 594585 X 1@
2.517748 X 19
€. 456205 X 190
B. 206002 X 10
Q. 364396 X 10
9. 329458 X 1@
Q. 299782 X 10
2. 274318 X 10
0.252270 X 10
©.233¢30 X 10
0.216118 X 10
@.261164 X 10
0. 187856 X 10
9. 175958 X 10
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Table F-1
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X
3
3

8. 165268
0. 155616
8. 146871
8. 138915
8.131654
2. 125004
2. 118696
0. 139444
2. 597615
8. 330344
8. 20734€
8. 140859
2.101100
2. 755765
0. 583042
2. 461248
2.372490
2. 306032
2. 255128
8. 215375
8. 183609
2-158377
0. 137624
8. 120456
8. 106218
8. 942628
0.840116
0. 753033
0. 678096
8. 61321
2556707
0. 50725¢
2. 463733
0. 425271
0. 35113¢
8.211289
8. 776630
8. 378549
8.212352
2. 130519
8. 8557 40
0. 588959
0. 421060
2.310409
8. 234716
2.181311
0. 142637
2.113994
2.923673
2757591
8. 628135
8. 525850
0. 444078
0.377990
2. 3240853
0. 279642
8. 242773
2.211939
8. 185965
2. 163955
2. 125185
0. 129€96
0. 246225
2.827062
2. 353921
2. 180998
0. 102280
0. 620818
9. 357863
0.266173
2. 184411
8.131538
2.961646
0.718294
8. 546177
0. 422192
8. 331852
0.262926
g.211228
B. 171461
9. 140496
0.116115
0.967237
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10
10
1¢
10

10
10
10
19
10
10
19
1¢
12
10
16
10
10
1¢
1¢
10
t1e
1¢
1e
1¢
1e
10
1e
1e
10
10
10
10
10
10
10
10
10
10
16
10
1e
10
19
1¢
10
1o
10
1
19
10
190
1e
10
10
1
10
18
10
10
18
12
1@
10
10
10
19
10
10
1e
1@
10
1p
10
1
.0
10
10
12
10
10
1@
1e

-1
-1
-1
-1
-1
-1
-1

-1

-1

-1

-1

-1

-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-3
-3
-3
-3
-3
-3
-3
-3
-3
-3
<1
-2
-2
-2
-2
-3
-3
-3
-3
-3
-3
-3
-3
-4
-4
-4

-4
-4

-4
-4

-4
-4
=4
-a
-2
-3
-3
-3
-3
-a
-4
-a
-4
-4
-5
-5
-5
-5
=5
-5
-5
-5
-5
-5
-6
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x
]
3

2.811546
Q. 685483
0. 58257€
e 457987
De 827945
0. 232979
@ 692097
D. 279287
2+ 132044
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S dimensionless numerical coefficients

nm?’ “nm

P" (sing)

C

associated Legendre function

Variations in form normally occur in the dimensionless numerical coefficients C,,, and
S : occasionally they are found in the form of V. For example, P (cos 8) is often used in
place of P’r? (sin ¢) where 0 represents colatitude. It may also be noted that the notations

P, P . sand Pn, n areall equivalent.

The following list gives the potential forms used by various investigators and the required
scaling and variation for reducing them to the international form (foregoing equation F-1).

1. Form Used by Moritz, Cambridge Research Laboratory, and Others

°0 a \n n
P 3 A ERERD L
(F-2)
. m .
+ Knm sin m\) Pn (sin ¢)—J

The important difference between this equation and equation F-1 is the sign
ahead of the summation:

C ==4d S =-K
n,m n,m n, m n, m
C ==J S =0

n,o n n,o

2. Form Used by Jeffreys, O’Keefe, and Others

00 n n+l
U= Z Z (%) (A cosm\ +B__ sin m\) P (sin ¢)
e e nm nm n
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_ n
Cn, m An, m/(uac)

_ n
Sn, m Bn, m/(u ac)

3. Form Used by Kozai and Newton and Others

. n
Y e m._om . _ym
U = 142 Z (——1) Jn ln (sin ¢) cos m()\ An)

The conversion equations are

m m
, =J cos m
n, m n n

m m
=J  sin mX\
n, m n n

4. Form Used by Mucller and Others

a

o n n.g‘l
L= —£ _ . m
U ~§_:O Z ( r) (anm cos m) + bnm sin m)\)ln (sin ¢)

m=0

The conversion is

e

e
C =|—]a
nm \pg/ nm

aC
. Le),
n,m g n,m
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5. Special Form for Zonals Only

This form is used only when zonal terms are considered adequate to describe the
potential. The form recommended for this case by committee 7 of the International
Astronomical Union (Hagihara, ref. 78) is

This is the same as the equation F-1 without the tesseral and sectorial terms.

C ==-d S =0
n,o n and n,o

6. Early Form Used by JPL and Others

2 (%)2 . Z(ae)g .
1--§J =3 P2 (smgb)—-g—l-_- P3 (sin ¢)

8 ae)4
+ 35 D(T P4 (sin ¢)

The conversion relations are

U=

Rixe

2

Cz,o‘"s"] Sz,o”0

Cs.0” "5 H 83,0° 0
35

C4,0'8 D S4,0~0

The coefficients in front of J, H, and D are actually combined with the Legendre
polynomial, which is not explicitly given in the expression for U.
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7. Form Used by Sterne, Baker, Herrick, and Others

2 ac 2 2 ae)3
T — s .‘. fﬂ .——— — \. ;"/
1 3 J( . ) P2 (sin ¢) 3 H( . P3 (sin ¢)

4 ae 4
P K{— > (sin ¢
4 1 }\(r) 14 (sm,,)}

C0° 737 Sy 0790
2

C3,0 " 1 S:;,o"0
4

40" 130 S4,0'"°

Here again the cocfficients in front of J, Il and K are combined with the Legendre
polynomial.

8. Form Used by RCA at Air Force Fastern Test Range

2

& =£[1 -Z p (sin¢) + B P (sin ;!)J
r 2 4 4
3r 5r

The conversion relations are

_ .2) _
cz’ 0" OL/(SJC sz, 0" 0
4
X = /(:": ) =
04’0 B a s4,0 0
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9. Form Used by JHU Applied Physics Laboratory

2 4
K 2: m [ . ]
U=s 1+£;2 & PL (sin @) sz cos m>\+SLm sin m\

APL’s unnormalized coefficients are identical to those used in equation F-1 where the
degree index n has been replaced by ¢. The normalization factors used by APL, however,

differ from those presented in this appendix.

= = _ [ (4 +m)t
Cm? Som! = 1/———-“} e (sz” S

65




Downloaded from http://www.everyspec.com

APPENDIX G

PROCEDURE FOR ESTIMATING
PERTURBATION MAGNITUDES AND TRUNCATING

The selection of the size of an Earth gravity model is influenced by the magnitudes of the
perturbations caused by each term. For gravity harmonics of degree n, these will vary with

r(n+1) where r is the geocentric radius. The relative magnitudes of the perturbations caused
by terms of degree n are shown graphically in figure G-1, which is an expansion of a similar
figure in reference 79. For purposes of comparison, the gravitational effects of the Sun and
Moon and the effects of atmospheric drag also are shown. In using the figure, it should be
assumed that all geocentric radius vectors point in the direction of the Sun and that the
Moon lies between the Earth and the Sun. The curves of drag perturbations assume circular
orbital velocity at each altitude.

As long as the perturbations caused by the individual terms of the spherical harmonic series
remain small, i.e., conditions of perfect or “deep” resonance are avoided, it is possible to
obtain expressions_for the perturbations of the orbital elements caused by each V

Assuming that ¢, M and 2 are all independent of time, Kaula (ref. 26) obtained: nmed

Aa = 2F 2
nmpq nmp “npg @ 7P F 9D nmpq

D
= e - nmpq
A-enmpw anp anq \/ l-e [\/1 e m=-2p+q)-(n- ZP)]——E—"- G-1)

D
(n-2p)cos (i) -m nmpd

avl-e?sini

Ai =F G [
hmpq nmp 1npq

where p is the inclination function subscript
(p=0,1,2..... n).
q is the eccentricity function subscript

(q=n-2p).

Equation G-1 can be used to evaluate the along track, cross track, and normal orbit element
perturbations caused by each term of the harmonic gravity potential. A computer program
called HAP is available from the Geodynamics Branch, NASA Goddard Space Flight Center.
On the basis of equation G-1, HAP provides rapid perturbation estimates for any desired
orbit of low or moderate eccentricity.
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NASA SPACE VEHICLE

DESIGN CRITERIA MONOGRAPHS

ENVIRONMENT

SP-8005
SP-8010
SP-8011

SP-8013

SP-8017
SP-8020
SP-8021
SP-8023

SP-8037
SP-8038

SP-8049
SP-8067
SP-8069

SP-8084

SP-8085
SP-8091

SP-8092

SP-8103

Solar Electromagnetic Radiation, revised May 1971
Models of Mars’ Atmosphere (1974) revised December 1974
Models of Venus Atmosphere (1972), revised September 1972

Meteoroid Environment Model—1969 (Near Earth to Lunar Surface),
March 1969

Magnetic Fields—Earth and Extraterrestrial, March 1969

Mars Surface Models (1968), May 1969

Models of Earth’s Atmosphere (90 to 2500 km), revised March 1973
Lunar Surface Models, May 1969

Assessment and Control of Spacecraft Magnetic Fields, September
1970

Meteoroid Environment Model—1970 (Interplanetary and Planetary),
October 1970

The Earth’s lonosphere, March 1971
Earth Albedo and Emitted Radiation, July 1971
The Planet Jupiter (1970), December 1971

Surface Atmospheric Extremes (Launch and Transportation Areas),
revised June 1974

The Planet Mercury (1971), March 1972
The Planet Saturn (1970), June 1972

Assessment and Control of Spacecraft Electromagnetic Interference,
June 1972

The Planets Uranus, Neptune, and Pluto (1971), November 1972
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SP-8105 Spacecraft Thermal Control, May 1973

SP-8111 Assessment and Control of Electrostatic Charges, May 1974

SP-&116 The Earth’s Trapped Radiation Belts, March 1975

SP-8117 Gravity Ficlds of the Solar System, April 1973

SP-X118 Interplanctary Charged Particle Models (1974), March 1975

STRUCTURES

SP-9011 Buffeting During Atmospheric Ascent, revised November 1970

SP-8002 Flight-Loads Measurements During Launch and Exit, revised June
1972

SP-8003 Flutter, Buzz, and Divergence, July 1964

SP-8004 Panel Flutter, revised June 1972

SP-R0O06G Local Steady Acrodynamic Loads During Launch and Exit, May
1965

SP-8007 Buckling of Thin-Walled Circular Cylinders, revised August 1968

SP-8008 Prelaunch Ground Wind Loads, November 1965

SP-8009 Propellant Slosh Loads, August 1968

SP-8012 Natural Vibration Modal Analysis, September 1968

SP-8014 Entry Thermal Protection, August 1968

SP-8019 Buckling of Thin-Walled Truncated Cones, September 1968

SP-8022 Staping Loads, February 1969

SP-8029 Acrodynamic and Rocket-Exhaust Heating During Launch and

Ascent, May 1969

SP-8031 Slosh Suppression, May 1969

SP-8032 Buckling of Thin-Walled Doubly Curved Shells, August 1969
SP-8035 Wind Loads During Ascent, June 1970

SP-8040 Fracture Controt of Mctallic Pressure Vessels, May 1970
SP-8042 Mcteoroid Damage Assessment, May 1970

SP8043 Desipn -Development testing, May 1970
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SP-8044
SP-8045

SP-8046

SP-8050
SP-8053
SP-8054

SP-8055

SP-8056

SP-8057

SP-8060
SP-8061
SP-8062
SP-8063
SP-8066
SP-8068
SP-8072
SP-8077
SP-8079
SP-8082
sP-8083

SP-8095

SP-8099
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Qualification testing, May 1970
Acceptance testing, April 1970

Landing Impact Attenuation for Non-Surface-Planning Landers,
April 1970

Structural Vibration Prediction, June 1970
Nuclear and Space Radiation Effects on Materials, June 1970
Space Radiation Protection, June 1970

Prevention of Coupled Structure-Propulsion Instability (Pogo),
October 1970

Flight Separation Mechanisms, October 1970

Structural Design Criteria Applicable to a Space Shuttle, revised
March 1972

Compartment Venting, November 1970

Interaction with Umblicals and Launch Stand, August 1970
Entry Gasdynamic Heating, January 1971

Lubrication, Friction, and Wear, June 1971

Deployable Aerodynamic Deceleration Systems, June 1971

Buckling Strength of Structural Plates, June 1971

Acoustic Loads Generated by the Propulsion System, June 1971
Transportation and Handling Loads, September 1971

Structural Interaction with Control Systems, November 1971
Stress-Corrosion Cracking in Metals, August 1971

Discontinuity in Metallic Pressure Vessels, November 1971

Preliminary Criteria for the Fracture Control of Space Shuttle Struc-
tures, June 1971

Combining Ascent Loads, May 1972

73
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GUIDANCE AND CONTROL

SP-8015

SP-8016

SP-8018
SP-8024
SP-8026
SP -8027
SP-8028
SP-8033
SP-8034

SP-8036

SP-8047
SP-8058

SP-8059

SP-8065
SP-8070
SP-8071
SP-8074
SP-8078
SP-8086
SP-8096

SP-8098

Guidance and Navigation for Entry Vcehicles, November 1968

Effects of Structural Flexibility on Spacecraft Control Systems,
April 1969

Spacecraft Magnetic Torques, March 1969
Spacecraft Gravitational Torques, May 1969
Spacceraft Star Trackers, July 1970

Spacecraft Radiation Torques, October 1969

Entry Vchicle Control, November 1969

Spacecraft Earth Horizon §cnsors, December 1969
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