
APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

NASA TECHNICAL STANDARD

NASA-STD-4009

National Aeronautics and Space Administration Approved: 06-05-2014

Washington, DC 20546-0001 Superseding NASA/TM—2010-216809

SPACE TELECOMMUNICATIONS RADIO SYSTEM (STRS)

ARCHITECTURE STANDARD

MEASUREMENT SYSTEM IDENTIFICATION:

None.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

2 of 154

DOCUMENT HISTORY LOG

Status Document

Revision

Approval Date Description

Baseline 06-05-2014 NASA-STD-4009 is based on

NASA/TM—2010-216809.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

3 of 154

FOREWORD

This Standard is published by the National Aeronautics and Space Administration (NASA) to

provide uniform engineering and technical requirements for processes, procedures, practices, and

methods that have been endorsed as standard for NASA programs and projects, including

requirements for selection, application, and design criteria of an item.

This Standard is approved for use by NASA Headquarters and NASA Centers, including

Component Facilities and Technical and Service Support Centers.

This Standard establishes a description of an architecture standard for NASA space

communication radio transceivers. This architecture is a required standard for communication

transceiver developments among NASA space missions. Although the architecture was defined

to support space-based platforms, the architecture may also be applied to ground station radios.

This Standard strives to provide commonality among NASA radio developments to take full

advantage of emerging software-defined radio technologies from mission to mission. This

architecture serves as an overall framework for the design, development, operation, and upgrade

of these software-based radios.

Requests for information, corrections, or additions to this Standard should be submitted via

“Feedback” in the NASA Standards and Technical Assistance Resource Tool at

http://standards.nasa.gov.

Original Signed By: 06-05-2014

Ralph R. Roe, Jr. Approval Date

NASA Chief Engineer

Downloaded from http://www.everyspec.com

http://standards.nasa.gov/

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

4 of 154

SECTION

TABLE OF CONTENTS

PAGE

DOCUMENT HISTORY LOG ... 2

FOREWORD ... 3

TABLE OF CONTENTS ... 4

LIST OF FIGURES ... 7

LIST OF TABLES ... 8

1. SCOPE .. 10

1.1 Purpose ... 10

1.2 Executive Summary .. 11

1.2.1 Key Architecture Requirements .. 11

1.2.2 STRS Overview .. 12

1.2.3 Roles and Responsibilities .. 13

1.2.4 Background ... 15

1.3 Applicability ... 16

1.4 Tailoring ... 16

2. APPLICABLE DOCUMENTS ... 16

2.1 General ... 16

2.2 Government Documents .. 17

2.3 Non-Government Documents .. 17

2.4 Order of Precedence ... 17

3. ACRONYMS AND DEFINITIONS ... 17

3.1 Acronyms and Abbreviations .. 17

3.2 Definitions ... 20

4. HARDWARE ARCHITECTURE .. 28

4.1 Generalized Hardware Architecture and Specification 29

4.1.1 Components ... 32

4.1.2 Functions .. 32

4.1.3 Interfaces .. 33

4.1.3.1 External Interfaces ... 33

4.1.3.2 Networking .. 34

4.1.3.3 Internal Interfaces .. 35

4.2 Module Type Specification .. 36

4.2.1 General-Purpose Processing Module ... 36

4.2.1.1 GPM Components .. 36

4.2.1.2 GPM Functions .. 38

4.2.1.3 GPM Interfaces .. 38

4.2.1.4 GPM Requirements .. 38

4.2.2 Signal-Processing Module ... 39

4.2.2.1 SPM Components .. 40

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

5 of 154

SECTION

TABLE OF CONTENTS (Continued)

PAGE

4.2.2.2 SPM Functions ... 41

4.2.2.3 SPM Interfaces ... 42

4.2.3 Radio Frequency Module ... 43

4.2.3.1 RFM Functions .. 44

4.2.3.2 RFM Components .. 45

4.2.3.3 RFM Interface .. 45

4.2.3.4 RFM Requirements .. 45

4.2.4 Security Module .. 45

4.2.5 Networking Module ... 46

4.2.6 Optical Module .. 46

4.3 Hardware Interface Description ... 46

4.3.1 Control and Data Interface ... 48

4.3.2 DC Power Interface ... 48

4.3.3 Thermal Interface and Power Consumption .. 49

5. APPLICATIONS ... 49

5.1 Application Implementation ... 49

5.2 Application Selection ... 50

5.3 Navigation Services ... 50

5.4 Application Repository Submissions ... 51

6. CONFIGURABLE HARDWARE DESIGN ARCHITECTURE.................. 52

6.1 Specialized Hardware Interfaces ... 53

7. SOFTWARE ARCHITECTURE .. 55

7.1 Software Layer Interfaces ... 55

7.2 Infrastructure ... 63

7.3 STRS APIs .. 64

7.3.1 STRS Application-Provided Application Control API ... 64

7.3.2 STRS Infrastructure-Provided Application Control API 81

7.3.3 STRS Infrastructure Application Setup API ... 89

7.3.4 STRS Infrastructure Data Sink ... 94

7.3.5 STRS Infrastructure Data Source ... 95

7.3.6 STRS Infrastructure Device Control API ... 96

7.3.7 STRS Infrastructure File Control API .. 102

7.3.8 STRS Infrastructure Messaging API .. 107

7.3.9 STRS Infrastructure Time Control API .. 110

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

6 of 154

SECTION

TABLE OF CONTENTS (Continued)

PAGE

7.3.10 STRS Predefined Data .. 115

7.3.11 Error Handling .. 118

7.4 Portable Operating System Interface .. 118

7.4.1 STRS Application Environment Profile ... 119

7.5 Network Stack ... 122

7.6 Operating System .. 122

7.7 Hardware Abstraction Layer ... 123

8. EXTERNAL COMMAND AND TELEMETRY INTERFACES 126

9. CONFIGURATION FILE (S) ... 129

9.1 General Configuration File Format Definition and Use 129

9.2 Platform Configuration Files .. 132

9.3 Application Configuration Files ... 133

APPENDICES

A Example Configuration Files .. 136

A.1 STRS Platform Configuration File Hardware Example 136

A.2 STRS Platform Configuration File Software Example ... 138

A.3 STRS Application Configuration File Example ... 141

B POSIX API Profile .. 145

C Reference Documents ... 151

D Acknowledgments .. 154

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

7 of 154

FIGURE

LIST OF FIGURES

PAGE

1 Roles and Responsibilities ... 14

2 Hardware Architecture Diagram Key .. 30

3 Notional STRS Hardware Architecture Implementation 31

4 GPM Architecture Details ... 37

5 SPM Architecture Details .. 40

6 RFM Architecture Details .. 44

7 Waveform Component Instantiation .. 50

8 Notional High-Level Software and Configurable Hardware Design Waveform

Application Interfaces ..

 54

9 STRS Software Execution Model .. 57

10 STRS Layered Structure in UML .. 58

11 STRS Operating Environment ... 60

12 POSIX-Compliant Versus POSIX-Conformant OS .. 62

13 STRS Infrastructure ... 63

14 STRS Application and Device Structure ... 65

15 STRS Application State Diagram .. 69

16 Profile Building Blocks ... 120

17 Command and Telemetry Interfaces .. 126

18 XML Transformation and Validation .. 131

19 Configuration File Development Process .. 132

20 Example of Hardware Portion of STRS Platform Configuration File 136

21 Example of Software Portion of STRS Platform Configuration File 138

22 Example of STRS Waveform Configuration File .. 142

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

8 of 154

TABLE

LIST OF TABLES

PAGE

1 STRS Module Interface Characterization .. 47

2 Example—DC Power Interface (Platform Supplied) ... 49

3 STRS Architecture Subsystem Key ... 59

4 STRS Software Component Descriptions.. 61

5 APP_Configure() ... 70

6 APP_GroundTest() .. 71

7 APP_Initialize() ... 72

8 APP_Instance() .. 73

9 APP_Query() ... 74

10 APP_Read() ... 75

11 APP_ReleaseObject() .. 76

12 APP_RunTest() .. 77

13 APP_Start() .. 78

14 APP_Stop() .. 79

15 APP_Write() .. 80

16 STRS_Configure() ... 82

17 STRS_GroundTest() .. 83

18 STRS_Initialize() 84

19 STRS_Query() ... 85

20 STRS_ReleaseObject() .. 86

21 STRS_RunTest() .. 87

22 STRS_Start() .. 88

23 STRS_Stop() .. 88

24 STRS_AbortApp() ... 90

25 STRS_GetErrorQueue() ... 90

26 STRS_HandleRequest() ... 91

27 STRS_InstantiateApp() .. 92

28 STRS_IsOK() ... 93

29 STRS_Log()(... 93

30 STRS_Write() .. 95

31 STRS_Read() ... 96

32 STRS_DeviceClose() ... 97

33 STRS_DeviceFlush() ... 97

34 STRS_DeviceLoad() .. 98

35 STRS_DeviceOpen() ... 98

36 STRS_DeviceReset() ... 99

37 STRS_DeviceStart() .. 99

38 STRS_DeviceStop() ... 100

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

9 of 154

TABLE

LIST OF TABLES (Continued)

PAGE

39 STRS_DeviceUnload() .. 100

40 STRS_SetISR() .. 101

41 STRS_FileClose() .. 102

42 STRS_FileGetFreeSpace() ... 103

43 STRS_FileGetSize() .. 103

44 STRS_FileGetStreamPointer() .. 104

45 STRS_FileOpen() .. 105

46 STRS_FileRemove() .. 106

47 STRS_FileRename() .. 106

48 STRS_QueueCreate() .. 108

49 STRS_QueueDelete() .. 109

50 STRS_Register() .. 109

51 STRS_Unregister() .. 110

52 STRS_GetNanoseconds() .. 111

53 STRS_GetSeconds() .. 111

54 STRS_GetTime() ... 112

55 STRS_GetTimeWrap() .. 113

56 STRS_SetTime() .. 113

57 STRS_Synch() ... 114

58 STRS Predefined Data ... 115

59 Replacements for Unsafe Functions .. 122

60 Sample HAL Documentation ... 125

61 Suggested Services Implemented by the STRS Command and Telemetry

Interfaces ..

 128

62 POSIX Subset Profiles PSE51, PSE52, and PSE53 .. 145

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

10 of 154

SPACE TELECOMMUNICATIONS RADIO SYSTEM (STRS)

ARCHITECTURE STANDARD

1. SCOPE

This Standard describes the Space Telecommunications Radio System (STRS) architecture for

software-defined radios (SDRs), an open architecture for NASA space and ground radios. STRS

provides a common, consistent framework to abstract the application software from the radio

platform hardware to reduce the cost and risk of using complex reconfigurable and

reprogrammable radio systems across NASA missions. It achieves this objective by defining an

architecture to enable the reuse of applications (waveforms and services implemented on the

SDR) across heterogeneous SDR platforms and reduce dependence on a single vendor. The

Standard provides a detailed description and set of requirements to implement the architecture.

The Standard focuses on the key architecture components and subsystems by describing their

functionality and interfaces for both the hardware and the software, including the applications.

The intended audience for this Standard is composed of software, configurable hardware design,

and hardware developers who require architecture specification details to develop an SDR

platform or application.

A corresponding NASA technical handbook, NASA-HDBK-4009, Space Telecommunications

Radio System (STRS) Architecture Standard Rationale, provides the rationale for the decisions made

to develop the architecture, provides additional information to clarify the requirements, gives further

examples, and answers questions from users.

This Standard is only one of a set of documents to be provided by the mission and used by the

STRS platform providers or STRS application developers in the development of an STRS-

compliant radio and/or applications. Typical radio acquisition specifications, which include size,

weight, power, radiation requirements, connector details, performance and behavior

requirements, documentation, and data rights agreements are to accompany this Standard in a

radio procurement.

1.1 Purpose

The purpose of this Standard is to establish an open architecture specification for NASA space

and ground SDRs. Currently most missions either use hardware radios, which cannot be

modified once deployed, or software defined radios with an architecture that requires

dependence on the radio provider and significant effort to add new applications. The

development of the Standard is part of the larger STRS program currently underway to define

NASA’s application of software-defined, reconfigurable technology to meet future space

communications and navigation system needs. Software-based SDRs enable advanced operations

that potentially reduce mission life-cycle costs for space or ground platforms.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

11 of 154

SDR technology allows radios to be reconfigured to perform different functions without the

necessity of using multiple radios to accomplish each communication function, enabling radio

count reduction to reduce mass and power resources.

The STRS project provides the infrastructure and guidance for a repository of applications

developed for SDRs using the Standard. Adherence to the Standard for the development of SDR

platforms and applications and submittal of the applications to the repository will enable the

missions to leverage earlier efforts by reusing various software components compliant with the

architecture developed in other NASA programs. This will reduce the cost and risk of deploying

SDRs for future NASA missions.

The hardware, configurable hardware design, and software architecture and the supporting

documentation defined by the STRS Standard provides the ability to port applications among

heterogeneous platforms with minimal effort, reduces the reliance on the initial STRS platform

providers, and enables the implementation of the services that are envisioned for NASA radios.

1.2 Executive Summary

1.2.1 Key Architecture Requirements

The key requirements in the development of the STRS architecture are to decrease the

development time, cost, and risk of using SDRs while still accommodating advances in

technology. The advent of software-based applications allows minimal rework to reuse

applications and to adapt to evolving requirements. The architecture does not include mission-

specific functional and performance requirements, such as contents or format of the external

interfaces to the SDR; waveform-specific requirements such as data rate, coding scheme, and

modulation and demodulation techniques; specific hardware; or security, fault tolerance,

redundancy, and fault mitigation approaches. Instead the architecture is careful to enable all

solutions that the mission might require as they relate to the mission-specific functional and

performance specifications.

The requirements for the architecture are derived from the following STRS goals and objectives:

• Usable across most NASA mission types (scalability and flexibility).

• Decrease development time and cost.

• Increase reliability of SDRs.

• Accommodate advances in technology with minimal rework (extensibility).

• Adaptable to evolving requirements (adaptability).

• Leverage existing or developing standards, resources, and experience (state-of-the-art

and state-of-practices).

• Maintain vendor independence.

• Enable waveform application portability.

To meet these goals and objectives, the STRS architecture has an open architecture design that

accommodates the range of radio form factors that are envisioned by NASA for all mission

classes.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

12 of 154

The architecture can also not preclude the implementation of mission-developed services on the

SDR such as:

• Multiple waveforms operating simultaneously across any RF band defined in the

SDR specification.

• Commanded built-in-test (BIT) and status reporting

• Real-time operational diagnostics

• Automated system recovery and initialization

• Networking and navigation within the SDR

• Secure transmission

• Sharing of processor among on-board elements

1.2.2 STRS Overview

The STRS Standard consists of hardware, configurable hardware design, and software

architectures with accompanying description, guidance, and requirements. The hardware

architecture is defined in section 4. Section 5 outlines the process and requirements associated

with application development. The configurable hardware design architecture is defined in

section 6. The software architecture is defined in section 7. An overview of each is provided

below.

The terms “software” and “configurable hardware design” are used in this standard to distinguish

the architecture items that apply to code (source code, object code, executables, etc.)

implemented on a processor; and designs (hardware description language (HDL) source,

loadable files, data tables, etc.) implemented in a configurable hardware device such as a field

programmable gate array (FPGA). Both items can change the functionality of the radio in-situ

using program control. The term “software” is also used in a generic sense in the Standard to

discuss all configurable items of the radio, including configurable hardware design. The

terminology used is not meant to imply design and implementation process.

The STRS hardware architecture is specified in a modular fashion at a functional level. The

hardware architecture standard requires that the hardware provider define the functional

breakdown (modules) of the system and publish the functions and interfaces for each module and

for the entire radio platform in a hardware interface description (HID) document. Using this

information enables NASA and others developing applications or additional modules, or

interfacing to the platform, to have the knowledge to integrate and test the hardware interfaces

and understand the features and limitations of the platform.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

13 of 154

This Standard encourages the development of applications that are modular, portable,

reconfigurable, and reusable. STRS applications use the STRS infrastructure-provided

application program interfaces (APIs) and services to load, verify, execute, change parameters,

terminate, or unload an application. The STRS applications are submitted to the NASA STRS

application repository to allow applications to be reused in the future according to any accepted

release agreements. The appropriate application artifacts are submitted to the STRS application

repository to provide future missions the information to use the application with limited effort.

The configurable hardware design architecture provides guidance to the development of

applications that are partially or fully implemented in a hardware device, such as an FPGA.

Early consideration to enable reuse during the development of configurable hardware design is

critical. Suggestions are provided to decrease the reuse and porting effort and requirements are

included for the development of configurable hardware design to use the platform specified

abstraction.

The STRS software architecture is the focus of the current version of the STRS Standard. The

software architectural model describes the relationship between the software elements, defined in

layers, in an STRS-compliant radio. The model illustrates the different software elements used in

the software execution and defines the API layers between an STRS application and the

operating environment (OE), and between the OE and the hardware platform.

The STRS software layers are separated to enable developers to implement the software layers

differently according to their requirements while still complying with the STRS architecture. A

key aspect is the abstraction of the STRS application, which is either a waveform or service,

from the underlying OE software to promote portability of the STRS application. The STRS

software architecture uses three primary interfaces, as follows: (1) The STRS API; (2) The STRS

hardware abstraction layer (HAL) specification; and (3) The Portable Operating System Interface

(POSIX). The STRS API provides the interfaces that allow applications to be instantiated and

use platform services. These APIs also enable communication between STRS applications and

the STRS infrastructure. The HAL provides a software view of the specialized hardware by

abstracting the physical hardware of interfaces. It is to be published so that software and

configurable hardware design running on the platform’s specialized hardware can integrate with

the STRS infrastructure.

1.2.3 Roles and Responsibilities

The final configuration of an SDR and its applications is generally a product of multiple

organizations performing various roles. As figure 1, Roles and Responsibilities, illustrates, the

effort begins with a mission need for a radio, which could support communications, navigation,

and in some instances even networking functions. The mission system engineer defines

requirements. For each mission, the STRS integrators, STRS platform providers, and STRS

application developers are selected. Eventually the platform and applications are integrated into

the STRS compliant radio product. Both the hardware and software are tailored to meet mission-

specific needs.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

14 of 154

The STRS platform provider is the organization responsible for the design and development of

the SDR hardware platform, including the STRS OE (e.g. infrastructure, OS), configuration files,

XML schema, etc. and associated documentation. The OE and hardware platform are a unique

set and become the SDR platform.

Figure 1—Roles and Responsibilities

The STRS platform provider is responsible for all the documentation associated with the

platform including the user’s guide, development guides, documentation, the HAL, and HID.

The STRS platform provider is responsible for the FPGA platform-specific wrapper and software

header files specifying the required interface, constants, typedefs, and structs. The STRS

platform provider is also responsible for the STRS configuration file formats, XML schema, and

transformation tool. If the STRS platform provider delegates responsibility for part of the OE to

a separate infrastructure provider, the responsibility for the appropriate files and documentation

may be delegated to that provider as well. If the STRS platform provider delegates responsibility

for part of the hardware to a separate hardware provider, the responsibility for the pertinent HID

documentation may be delegated to that hardware provider as well. The STRS platform provider

is ultimately responsible to integrate and deliver all aspects of the platform and OE

documentation.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

15 of 154

The mission and the STRS application developer have the responsibility to evaluate the contents

of the STRS repository against the mission-developed application requirements and determine if

a new application should be developed or if an appropriate application exists in the repository

that is a candidate for a port to the defined platform. Depending on the results of this decision,

the STRS application developer either creates a new application or ports an existing STRS

application, usually retrieved from the STRS repository. The STRS application developer

performs unit tests, and documents the functionality.

The STRS integrator brings the hardware platform and software application together on the SDR

platform. The STRS integrator could be the STRS platform provider, the STRS application

developer(s), a mission engineer, or even a third party. The STRS integrator’s role is to have the

application properly running on the SDR platform to meet the communication, navigation, or

other functions of the mission. Once the STRS radio integration is complete, it is delivered to a

system integrator who incorporates it into the mission spacecraft system. Software updates are

possible during the STRS radio and system integration. Following system integration, the STRS

application developer delivers the version of the software used for the deployed system, and the

associated documentation, to the STRS repository.

It is likely that multiple applications will be developed for a single STRS platform, prior to

deployment and during its operational lifetime. During operations, after the radio has been

deployed, additional application providers, who may be independent of the original platform or

application provider, could develop additional applications for the original STRS radio. The new

providers develop applications for the SDR platform much like the original application provider

and deliver the application to the same or possibly a different STRS integrator. Following

successful integration, the application software is delivered to the STRS application repository.

Mission operations performs the role of system integrator when uploading the application to the

STRS radio.

For the next mission (mission 2), either a derivative of the initial platform or a new

STRS-compliant platform is envisioned. The mission 2 application provider may withdraw

applications from the repository to use for the new STRS radio project. The mission 2

application follows a similar path of delivery to the mission 2 STRS integrator who incorporates

the new hardware platform material and delivers the mission 2 STRS radio based on the original

application and new hardware platform. As more and more missions deploy SDRs, new

platforms and applications may be developed but also platforms and software are reused,

marking the significant difference with the new technology compared to legacy radios.

1.2.4 Background

The deployment of SDRs for NASA missions was a new concept in 2002 due to the development

of reconfigurable components useable for space radios. The need to reduce the cost and risk of

using SDRs was identified and the development of the STRS architecture was initiated. In 2007,

the architecture was determined to be ready for flight implementation in a technology

development project. This project was originally called the Communication, Navigation, and

Networking reConfigurable Testbed (CoNNeCT). CoNNeCT was later renamed the SCaN

Testbed. Three SDRs, compliant with the STRS architecture, were procured in 2008 and 2009

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

16 of 154

for the SCaN Testbed, using the architecture defined in a technical memorandum and referred to

in the procurement specifications as Version 1.02.1. The SCaN Testbed was launched in July

2012 and operates on an external truss on the International Space Station (ISS).

The SCaN Testbed is an experimental communications system that provides the capability for

S-Band, Ka-Band, and L-Band communication with space and ground assets. Investigation of

SDR technology and the STRS architecture are the primary focus of the SCaN Testbed. As a

completely reconfigurable testbed, the SCaN Testbed provides experimenters an opportunity to

develop and demonstrate experimental waveforms and applications for communication,

networking, and navigation concepts and to advance the understanding of operating SDRs in

space. Lessons learned from the STRS platform provider, STRS application developers, and

STRS integrators of the SCaN Testbed provided critical insight for the development of the

current Standard contained in this document. The updates from the Version 1.02.1 Technical

Memorandum to the NASA-STD-4009 can be requested from the STRS project.

1.3 Applicability

This Standard is applicable to space and ground SDRs developed by or for NASA missions.

This Standard is approved for use by NASA Headquarters and NASA Centers, including

Component Facilities and Technical and Service Support Centers, and may be cited in contract,

program, and other Agency documents as a technical requirement. This Standard may also apply to

the Jet Propulsion Laboratory or to other contractors, grant recipients, or parties to agreements only to

the extent specified or referenced in their contracts, grants, or agreements.

Requirements are numbered in the form (STRS-###) and indicated by the word “shall.” Explanatory

or guidance text is indicated in italics beginning in section 4.

1.4 Tailoring

Tailoring of this Standard for application to a specific program or project shall be formally

documented as part of program or project requirements and approved by the Technical Authority.

2. APPLICABLE DOCUMENTS

2.1 General

The documents listed in this section contain provisions that constitute requirements of this Standard

as cited in the text.

2.1.1 The latest issuances of cited documents shall apply unless specific versions are designated.

2.1.2 Non-use of specific versions as designated shall be approved by the responsible Technical

Authority.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

17 of 154

The applicable documents are accessible via the NASA Standards and Technical Assistance

Resource Tool at https://standards.nasa.gov or may be obtained directly from the Standards

Developing Organizations or other document distributors.

2.2 Government Documents

None.

2.3 Non-Government Documents

 Institute of Electrical and Electronics Engineers (IEEE)

Note: The following document is the current version of the POSIX™ standard as of 2003

applicable to the requirement STRS-90.

Document Number Document Title

IEEE 1003.13™-2003

IEEE Standard for Information Technology—Standardized

Application Environment Profile (AEP)—POSIX®

Realtime and Embedded Application Support

2.4 Order of Precedence

This Standard establishes requirements for an architecture standard for NASA space

communication radio transceivers but does not supersede nor waive established Agency

requirements found in other documentation.

2.4.1 Conflicts between this Standard and other requirements documents shall be resolved by

the responsible Technical Authority.

3. ACRONYMS AND DEFINITIONS

3.1 Acronyms and Abbreviations

ADC analog-to-digital converter

AEP application environment profile

AGC automatic gain control

ANSI American National Standards Institute

API application program interface

APP application

ASCII American Standard Code for Information Interchange

ASIC application-specific integrated circuit

BIT built-in test

BSP board support package

Downloaded from http://www.everyspec.com

http://standards.nasa.gov/

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

18 of 154

C++ computer programming language

C&DH command and data handling

CCSDS Consultative Committee for Space Data Systems

CoNNeCT Communication, Navigation, and Networking reConfigurable

Testbed (This name has been replaced with ScaN.)

COTS commercial off the shelf

DAC digital-to-analog converter

DC direct current

DEC VMS Digital Equipment Corporation Virtual Memory System

DLL dynamic link library

DSP digital signal processor

EDIF electronic design interchange format

EEPROM electrically erasable, programmable read-only memory

FIFO first in, first out

FIPS PUB Federal Information Processing Standard Publication

FPGA field programmable gate array

GPIO general-purpose input output

GPM general-purpose processing module

GPP general purpose processor

GPS global positioning system

HAL hardware abstraction layer

HDL hardware description language

HID hardware interface description

HW hardware

I/O input/output

ID identification, identifier

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronic Engineers

IF intermediate frequency

INCITS InterNational Committee for Information Technology Standards

IP internet protocol

ISO International Standards Organization

ISS International Space Station

JTC Joint Technical Committee

JTRS Joint Tactical Radio System

LLC logical link control

LNA low-noise amplifier

LRU logical replaceable unit

MAC medium access control, a sublayer of the open system

interconnection data link layer

MDA model-driven architecture

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

19 of 154

mVpp millivolt peak-to-peak voltage

MMU memory management unit

NASA National Aeronautics Space Administration

NM network module

NPR NASA Procedural Requirement

OAL OEM adaptation layer

OE operating environment

OEM original equipment manufacturer

OM optical module

OMG Object Management Group

OTAP over-the-air programming

ORMSC Operational Research MSc Programmes

OS operating system

OSS open source software

PIM platform-independent model

POSIX Portable Operating System Interface

PROM programmable read-only memory

PSE51 minimal realtime system profile, defined in IEEE Std 1003.13

PSE52 realtime controller system profile, defined in IEEE Std 1003.13

PSE53 dedicated realtime controller system profile, defined in IEEE Std

1003.13

PSE54 multi-purpose realtime system profile, defined in IEEE Std

1003.13

PSM platform-specific model

PUB publication

RAM random access memory

RF radio frequency

RFM radio frequency module

ROM read-only memory

RPN reverse Polish notation

RT reconfigurable transceiver

RTOS real-time operating system

SCA Software Communications Architecture

ScaN Space Communications and Navigation (new name for

CoNNeCT)

SDR software-defined radio

SEC security module

SEU single-event upset

SPM signal-processing module

SRAM static random access memory

STRS Space Telecommunications Radio System

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

20 of 154

SWRADIO software radio

TT&C telemetry, tracking, and command

TCP transmission control protocol

TM technical memorandum

TMR triple-mode redundancy

TP technical publication

UML Unified Modeling Language

UNIX computer operating system developed by AT&T Bell

Laboratories.

VHDL VHSIC hardware description language

VHSIC very-high-speed integrated circuit

VMS Virtual Memory System

Windows NT Windows operating system—NT, new technology

XML Extensible Markup Language

XPath XML Path Language

XSD XML 1.0 Schema Definition

XSL Extensible Stylesheet Language

XSLT Extensible Stylesheet Language Transformation

3.2 Definitions

To improve the understanding of material presented in the STRS documents, new terms and

definitions that are rapidly emerging in the field of SDRs are provided below, as follows:

 Adaptability: Ease with which a system satisfies differing system constraints and user

needs.

 Application: Executable software program that exhibits predetermined functionality and

may contain one or more software modules.

Note: A primary example of an STRS application is the waveform application. An

STRS application is to comply with the architecture.

 Application Program Interface (API): Formalized set of software calls and routines that

can be referenced by the application program in order to access supporting system or network

services.

 Architecture: Organizational structure of a system, the relationships between its

components, and the principles and guidelines governing their design and evolution over time.

 Autonomous Operation: Implementation decision-making algorithm that can be

implemented on a system level (fully autonomous) or at the subsystem level (semi-autonomous)

according to mission requirements.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

21 of 154

 Availability: Degree to which a system or component is operational and accessible when

required for use.

 Board Support Package (BSP): Hardware abstraction of the general purpose processing

module (GPM) for the POSIX-compliant operating system (OS), which contains the boot,

generic and processor-specific drivers required for the specific hardware.

Note: The BSP leverages commercial-off-the-shelf (COTS) device drivers and

other software necessary for applications to access the specific hardware.

 Built-In Test: Internal test to determine whether or not the STRS radio and each

subsystem are working properly.

Note: STRS health management uses BIT to automatically monitor the health of

the system and to pass any identified problem to the fault management. STRS fault

management uses BIT to automatically monitor, diagnose, and isolate system

problems.

 Common Platform: Generic set of hardware and software radio modules that meets the

requirements for multiple mission types.

 Component: Hardware or software that make up a system, which may be subdivided into

other parts or units.

Note: The terms “module,” “component,” and “unit” are often used

interchangeably or defined to be subelements of one another in different ways

depending upon the context. The relationship of these terms is not yet

standardized.

 Configurable Hardware Design: The electronic files used to configure the portion of the

SDR hardware that can be updated after deployment.

Note: Configurable hardware design is often informally – and often

incorrectly - referred to as firmware. The term firmware is defined by the

IEEE Standard Glossary of Software Engineering Terminology, Std 610.12-

1990, as follows: “The combination of a hardware device and computer

instructions and data that reside as read-only software on that device. Notes:

(1) This term is sometimes used to refer only to the hardware device or only to

the computer instructions or data, but these meanings are deprecated. (2) The

confusion surrounding this term has led some to suggest that it be avoided

altogether.”

For this Standard, to avoid confusion the term “firmware” is not being used.

The term “configurable hardware design” was selected instead. For a

configurable hardware device, such as an FPGA, it includes the FPGA source

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

22 of 154

code written in HDL, the image stored in random access memory (RAM) and

used by the FPGA, and supporting configuration files, if applicable.

 Data Publisher: Software component that transmits data to one or more subscribers.

Note: In the STRS architecture, it may be implemented by waveforms and parts of

the STRS infrastructure.

 Data Subscriber: Software component that receives data from the data publisher.

Note: In the STRS architecture, it may be implemented by waveforms and parts of

the STRS infrastructure.

 Deployment: All the processes involved in getting new software or hardware up and

running properly in its environment, including installation, configuration, running, testing, and

making necessary changes.

 Evolvability: Ease with which a system or component can be modified to take advantage

of new software or hardware technologies.

 External Interface: Functional and physical connections at the boundaries of a system

that are designed to interoperate with other systems or components.

Note: Examples include interfaces to or from the flight computer, power, data

sources, data sinks, antennas, mounting locations, and optical links.

 Fault Management: Set of functions that detect, isolate, and correct malfunctions within

the system or provide notifications.

 Flexibility: Ease with which a system or component can be modified for use in

applications or environments other than those for which it was specifically designed.

 Flight Computer: Separate computer that is used to monitor and control the STRS radio.

Note: The flight computer may be connected to the STRS radio electrically,

electromagnetically, optically, etc. The flight computer may contain the watchdog

timer for the STRS radio.

 General-Purpose Processing Module: Hardware module that contains and executes the

STRS OE and STRS applications and services software.

Note: The GPM consists of the general purpose processor (GPP), appropriate

memory (both volatile and nonvolatile), system bus, the spacecraft (or host) TT&C

interface, ground support telemetry and test interface, and the components to

support the radio configuration.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

23 of 154

 Guidelines: Nonbinding statements intended to direct the broader and longer-term

aspects of the STRS architecture.

 Hardware Abstraction Layer: Library of functions that provides a software view of the

specialized hardware by abstracting the physical hardware interfaces.

 Hardware Device: Physical entity that is capable of performing a function.

 Hardware Interface Description: Documentation containing information about each

module’s physical and electrical connections, performance, capability, size, weight and power, as

applicable, to enable integration between components of the system.

 Health Management: Monitoring the health and performance of a system, subsystem,

device, or process.

Note: Health management invokes fault management, when corrective action is needed.

 Hierarchical Structure: Structure that characterizes a system in which components are

contained by other components and/or provide services to the next higher-level components.

Note: Hierarchical structure is a key attribute of an open architecture that enables

system description, design, development, installation, operation, upgrades, and

maintenance to be performed at a given layer or layers. This type of structure allows

each layer to be modified without affecting the other layers.

 Interoperability: (1) Ability of a system to work with or use the parts or equipment of

another system; (2) capability of different radio systems or radio networks to communicate and

exchange information with each other.

Note: Dissimilar systems or networks may achieve interoperability by changing their

operating parameters to a common compatible format or by operating through a bridge

that translates between incompatible formats. An alternate definition is to determine and

adapt all radio parameters required for broadest communication compatibility across all

target networks.

 Legacy Radio: Nonprogrammable radio designed for one fixed configuration that

produces a single waveform at a specified frequency.

Note: The radio may have limited options for tuning, data rate, and so forth or

may even carry multiple types of data, but it is incapable of adapting to new

waveforms.

 Maintainability: Ease with which a software system or component can be modified to

correct faults, improve performance, or other attributes, or adapt to a changed environment.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

24 of 154

 Method: Implementation of an operation, which specifies the algorithm or procedure

associated with an operation.

 Module: Self-contained hardware or software component that interacts with a larger

system.

Note: A software module (program module) performs specific tasks within a software

system. A hardware module is a physical grouping of devices capable of implementing

specific functions.

 Open Architecture: Architecture whose functions, interfaces, components, and/or design

rules are defined and published.

 Open Source or Open-Source Software (OSS): Any computer software distributed under

a license that allows users to change and share the software freely.

Note: OSS is required to have its source code freely available, and end-users have the

right to modify and redistribute the software to others.

 Open System: System that has specified, publicly maintained, and readily available

standards.

 Over-the-Air Programming (OTAP): Method of providing software updates by means of

a communication channel realized by the STRS radio itself.

 Portability: Ease with which a system application or service can be transferred from one

hardware or software environment to another.

 Portable Operating System Interface: Family of IEEE standards 1003.n that describes the

fundamental operating system (OS) services and functions necessary to provide a UNIX-like

kernel interface to applications.

Note: POSIX is not an OS but ensures that programming interfaces are available to the

application programmer.

 Queue: List in which items are appended to the last position in the list and retrieved from

the first position in the list; that is, the next item to be retrieved is the item that has been in the

list for the longest time.

 Radio Frequency Module (RFM): Module that converts to and from carrier frequencies

and provides the signal-processing module with baseband or intermediate frequency (IF) signals

and provides the transmission and reception equipment with radio frequncy (RF) signals.

Note: RFM-associated components may include filters, RF switches, diplexers, low

noise amplifiers (LNAs) , power amplifiers, analog-to-digital (ADC) converters,

and digital-to- analog (DAC) converters. This module handles the interfaces that

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

25 of 154

control the final stage of the transmission or first stage of the reception of the

wireless signals, including antennas.

 Real-Time Operating System (RTOS): OS that guarantees a certain capability within a

specified time constraint.

 Reconfigurability: Ability to modify functionality of a radio by changing the operational

parameters without requiring a software update.

 Reconfigurable Radio: Radio whose functionality can be changed either through manual

reconfiguration of radio modules or under software control.

Note: Software reconfiguration control of such radios may involve any element of the

radio-communication network. SDRs are a subset of reconfigurable radios.

 Reconfigurable Transceiver (RT): Radio with limited processing and selectable remote

reconfiguration (e.g., filter parameters and modulations).

 Reconfiguration: Act of modifying the functionality of a radio by changing the

operational parameters without updating the software.

 Reentrant Function: Function that can be entered before completion of a prior execution

of that same function and execute correctly.

Note: A function that is reentrant is automatically thread-safe, but not necessarily the

reverse.

 Reliability: Ability of a system or component to perform a required function under stated

conditions for a specified period of time.

 Reprogrammability: Ability to modify functionality of a radio by changing the

operational software or configurable hardware design either wholly or partially.

 Reusability: Degree to which a software module or other work product can be used in

more than one computing program or software system.

 Scalability: Degree to which components or functions in an implementation can be sized

in systematic proportions for varying capacities.

 Selectable: Ability to choose from a range of choices.

Note: For example, a selectable parameter may be modified to change system

characteristics at runtime.

 Services: Software programs that provide functionality available for use by other

applications.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

26 of 154

 Signal-Processing Module (SPM): Module that contains the implementations of the

signal processing used to handle the transformation of received digitally formatted signals into

data packets and/or the conversion of data packets into digitally formatted signals to be

transmitted.

Note: The SPM may include the spacecraft data interface, application specific integrated

circuits (ASICs), FPGAs, digital signal processors (DSPs), memory, and connection

fabric or bus.

 Software: Computer programs, procedures, and possibly associated documentation and

data pertaining to the operation of a computer system.

Note: In certain contexts in this Standard, the term “software” also encompasses

configurable hardware design. For example, in the term “software defined radio,”

the word “software” includes configurable hardware design. In other contexts, the

word “software” is meant to imply code running on a processor, especially in the

Software Architecture section. In this case, even if the processor is embedded

within configurable hardware, the software that executes on the processor is not

“configurable hardware design.”

 Software-Defined Radio: Radio in which some or all of the physical layer functions are

implemented in software and/or configurable hardware design.

 Software-Defined Radio Architecture: Comprehensive, consistent set of functions,

components, and design rules according to which radio communications systems may be

organized, designed, constructed, deployed, operated, and evolved over time.

Note: A useful architecture partitions functions and components such that (1) functions

are assigned to components clearly, and (2) physical interfaces among components

correspond to logical interfaces among functions.

 Software Device: A software abstraction of a hardware device or group (aggregate) of

hardware devices.

Note: An STRS device is a software device that is part of the STRS infrastructure, having

a well-defined and portable API that may use the HAL to read, write, and control

hardware devices.

 Software Radio: Extension of an SDR with more functionality implemented in GPPs as

opposed to ASICs and FPGAs. A software radio implements communications functions

primarily through software in conjunction with minimal hardware.

Note: Software radios are the ideal SDR in which digitization occurs at the

antenna.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

27 of 154

 Space Telecommunications Radio System: Project that defines and maintains the SDR

architecture for NASA.

 Specialized Hardware: Separate hardware that can be initialized or controlled using

software.

 Standards: Technical specifications that are widely used, consensus-based, published,

and maintained by recognized industry standards organizations.

 STRS Command: Source that abstracts the command functionality usually found in the

interface to the flight computer.

 STRS Infrastructure: Part of the STRS OE that configures and controls STRS

applications and services as well as specialized hardware via the HAL.

Note: Additional functionality may be required for radio robustness and mission-

dependent requirements.

 STRS Operating Environment: Portion of the STRS radio that contains the STRS

Infrastructure, the POSIX-conformant RTOS, the HAL, and optional middleware software.

 Note: The STRS OE executes STRS services and waveform applications.

 STRS Platform: Combination of hardware and software components, including the

STRS OE, capable of executing software applications.

 STRS Radio: SDR that is compliant with this Standard and that runs one or more

waveforms.

 System: Collection of components organized to accomplish a specific function or a set of

functions.

 System Architecture: Abstract description of the entities of a system, and the relationship

between the entities.

 Thread-Safe: Function that works correctly during simultaneous execution by multiple

threads, without unwanted interaction between the threads. A thread is a part of a program that

can execute independently of other parts. A thread is the smallest sequence of programmed

instructions that can be managed independently by an OS scheduler.

Note: A function that is reentrant is automatically thread-safe, but the reverse is not

necessarily true.

 Upgradeability: Ability to make changes to a portion of the system easier by limiting the

changes, as much as possible, to the updated part.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

28 of 154

 Note: It is clear that greater upgradeability is greater ability.

 Usability: Ease with which a user can learn to operate, prepare input for, and interpret

the output of a system or component.

 Use Cases: Situations that capture the requirements of a system by describing how the

system should interact with the users or other systems (the actors) to achieve specific goals.

 Watchdog Timer: Software and/or hardware that monitor the health of a system and, if a

problem is detected, take the appropriate action to restore the system back to health.

 Waveform: Set of transformations applied to information (e.g., voice or data) that is

transmitted over the air and the corresponding set of transformations to convert received signals

back to their information contents.

Note: Traditionally, a waveform was simply an electromagnetic signal whose amplitude

varies with time.

 Waveform Application: Code that implements all the functions and algorithms necessary

to realize a waveform.

Note: The waveform application can be distributed among various processing elements,

including specialized hardware (e.g., FPGAs and DSPs). In STRS, if the waveform

application requires run-time support for functions that it cannot provide directly, it is to

use the STRS APIs in the infrastructure to access the desired functions whether or not

they are provided by the infrastructure directly or by other waveforms or services.

4. HARDWARE ARCHITECTURE

In addition to providing benefits by defining a standard software infrastructure for NASA’s

radios, this Standard also defines standards for the hardware portion of the radio. Hardware

technologies usually change more rapidly than software, and each radio implementation

generally has very specific spacecraft dependencies and requirements. Therefore, the STRS

hardware architecture is specified at a functional level, rather than at the physical

implementation level. Also, a functional-level architecture will remain applicable over a longer

time frame. It should be noted that programs have the latitude to standardize hardware

requirements at the implementation level for multiple radio procurements.

The STRS hardware architecture was developed with consideration of several key constraints

and conditions for operating space SDRs. One major issue driving the hardware architecture

formulation was the need for flexibility, so that a single architecture is capable of addressing the

range of different mission classes. The mission classes have radio requirements that range from

requiring small radios that are highly optimized to meet severe size, weight, and power

constraints, to missions requiring complex radios with multiple operating frequencies and higher

data rates. This requires that the hardware architecture accommodate a range of reconfigurable

processing technologies including GPPs, DSP, FPGAs, and ASICs with selectable parameters.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

29 of 154

Currently, reconfigurable signal processing is primarily performed in specialized signal-

processing hardware for the frequencies and data rates used in NASA space missions, and this is

expected to continue for some time. In addition to providing capability, specialized signal

processing is generally more power efficient than general purpose processing. Likewise, the use

of FPGA-based specialized signal processors is generally more power efficient than DSP-based

signal processing. The needs for specialized processing are supplemented by the software

infrastructure, which is more suited for execution in a GPP. The architecture also enables

technology infusion over time, accommodating the rapidly evolving capabilities of processor

speeds and signal processing. In addition, the conversion point, where the signal is digitized, is

moving closer to the antenna. Considering these points, the architecture provides a flexible

framework, emphasizing common terminology for hardware functions and interfaces, common

documentation, and common formats and requirements for waveform and service STRS

application developers to utilize a platform’s capabilities. The architecture does not prescribe a

specific hardware implementation approach.

An STRS platform is to be delivered with a complete HID, which is described in section 5.4. The

HID specifies the electrical interfaces, connector requirements, and physical requirements for

the delivered radio. Each module’s HID abstracts and defines the module functionality and

performance.

(STRS-1) An STRS platform shall have a known state after completion of the power-up process.

4.1 Generalized Hardware Architecture and Specification

Figure 2, Hardware Architecture Diagram Key, illustrates the symbols and terminology used

within the hardware architecture diagrams. The hardware diagram illustrates the radio

functions and the interconnects for each module. The modules are a logical and functional

division of common radio functions that comprise an STRS platform. Modules are not intended

to represent physical entities of the platform. As developers choose how to distribute and

implement the radio functions among hardware elements, the specification provides the guidance

on the interfaces and abstractions that are to be provided to comply with the architecture. The

module and function connections provided in the diagrams are data path, control, signal clock,

and external interfaces.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

30 of 154

Data

Clock

Control

Modules

General

Purpose

Processing

Module (GPM)

Specialized

Processing

Module (SPM)

Radio

Frequency

Module (RFM)

Ground Test

External Connections

Data

Control

Internal Connections

Clock

Radio

Function

System Bus

External Interface

Figure 2—Hardware Architecture Diagram Key

Figure 3, Notional STRS Hardware Architecture Implementation, shows the high-level STRS

hardware architecture. The figure illustrates the functional attributes and interfaces for each

module. A module is a combination of logical and functional representations of platform and

applications implemented in a radio. The modules are divided into their typical functions to

provide a common description and terminology reference. Each STRS platform provider has the

flexibility to combine these modules and their functionality as necessary during the radio design

process to meet the specific mission requirements. Additional modules can be added for

increased capability.

The hardware architecture does not specify a physical implementation internally on each

module, nor does it mandate the standards or ratings of the hardware used to construct the

radios. Thus the radio supplier can encapsulate company proprietary circuit or software

designs, provided the modules meet the specific architecture rules and expose the interfaces

defined for each module. There is flexibility to physically combine these modules as necessary

during the radio design process to meet the specific mission requirements. For example, all RF

and signal-processing components or functions may be integrated onto a single printed circuit

board, easing footprint, interface, and integration issues, or an approach with multiple boards

and enclosures could be used.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

31 of 154

Each mission, or class of missions, may choose to standardize certain interfaces and physical

packaging. This approach provides NASA with the flexibility to adopt different implementation

standards for various mission classes. Thus, if a series of radios are required with common

operating requirements, physical construction details, such as bus chassis or card slice, can be

part of the acquisition strategy, for cost-effective modularity at a lower level to match the life

cycle of the hardware. Another example of the flexibility is where a large mission class program

may choose to standardize the details of the RF-to-signal-processing interface. This might be

done to facilitate the use of different RF modules, but the same signal process module, for radios

used for several similar missions.

Figure 3 depicts radio functions, or elements, expected for each module in a notional sense. It

should be noted that not all the elements shown in each module are necessarily required for

implementation. This architecture specifies the functionality of each module, but it does not

necessarily specify how they are implemented. Mission requirements will dictate the

implementation approach to each module, and the modules required in each radio.

Data
Formatting

Clock
Distribution

Transmit RF

General-purpose Processing Module (GPM)

 General Purpose Processor

Host / TT&C
Interface

Ground Test
Interface

Low Speed
Signal

Processing

Persistent
Memory

RF Module (RFM)

Radio

Configuration
& System
Control Work Area

Memory

High Speed
Digital Signal

Processing

Signal Processing Module (SPM)

Antenna

Interface
Receive RF

Antenna
Control

Interface

Operating

Environment

Waveform /
Application

HAL

System

Control Test &

Status

Data
Buffer/

Storage
 Waveform

Test &

Status

Digital to
Analog

Analog to
Digital

Spacecraft
Data

Interface

Clock
Interface

Variable
Gain /

Frequency

Figure 3—Notional STRS Hardware Architecture Implementation

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

32 of 154

4.1.1 Components

The approach taken in the STRS is to describe the radio hardware architecture in a modular

fashion. The generic hardware architecture diagram identifies three main functional components

or modules of the STRS radio. Although not shown in figure 3, additional modules (e.g., optical,

networking, and security) can be added for increased capability and will be included in the

specification as it matures. The hardware architecture currently consists of the following

modules:

General-Purpose Processing Module: Consists of the GPP, appropriate memory (both volatile

and nonvolatile), system bus, the spacecraft (or host) TT&C interface, ground test interface, and

the components to support the radio configuration.

Signal-Processing Module: This module contains the implementations of the signal processing

used to handle the transformation of received digitally formatted signals into data packets

and/or the conversion of data packets into digitally formatted signals to be transmitted. Also

included is the spacecraft data interface. Components include ASICs, FPGAs, DSPs, memory,

and connection fabric or bus.

Radio Frequency Module: This module handles the RF functionality to provide the SPM with

the filtered, amplified, and digitally formatted signal. For transmission it formats, filters, and

amplifies the output signal. Its associated components include filters, RF switches, diplexer,

LNAs, power amplifiers, ADCs, and DACs. This module handles the interfaces that control the

final stage of transmission or the first stage of reception of the wireless signals, including

antennas.

Security Module (SEC): Though not directly identified in the generic hardware diagram, an

SEC is also being proposed to allow STRS radios to support future security requirements. The

details of this module will be defined in later revisions of the architecture.

Network Module (NM): The architecture supports Consultative Committee for Space Data

Systems (CCSDS) and Internet Protocols (IPs) and networking functions. However, the Network

Module (NM) may be realized as a combination of both the GPM and SPM.

Optical Module (OM): This module supports the integration of optical equipment when used.

The detail of this module will be defined in later revisions of the architecture. (It has many

similarities to RFM, but these are for optical carriers.)

4.1.2 Functions

Test and status, fault monitoring and recovery, and radio and TT&C data-handling functions are

to be implemented on all modules to some level. The details are mission specific and are stated

as part of the radio acquisition. The related control and interface requirements for the shared

module functions are stated in the corresponding module section.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

33 of 154

Test and Status: Each module (or combination of modules) should provide a means to query the

current health of the module and run diagnostics.

Fault Monitoring and Recovery: Each module (or combination of modules) should incorporate

detection of operational errors, upsets, and major component failures. These may be caused by

the radiation environment (e.g., single-event upsets (SEUs)), temperature fluctuations, or power

supply anomalies. In addition to detection, mitigation, and fail-safe techniques should be

employed. Each module should have a default power-up mode to provide the minimal

functionality required by the mission. This fail-safe mode should have minimal software and/or

configurable hardware design dependency.

Radio Data Path: SDRs can be implemented with or without the GPM in the data path. The

STRS architecture supports the separation of the RFM and SPM data paths from the GPM.

Giving the GPM access to the data path as an optional capability rather than a required

capability allows for a more efficient implementation for medium and small mission classes and

improves the overall performance for near-term implementations. If space-qualified GPM

components mature with the performance capabilities required for signal processing, the GPM

can exist within the data path and take on more signal-processing functionality, increasing

flexibility.

STRS Radio Startup Process: The startup of the STRS infrastructure is expected to be initiated

by the STRS platform boot process, so that it can receive and send external commands and

instantiate applications. In order to control an STRS platform at power-up and to recover from

error conditions, an STRS platform is to have a known power-up condition that sets the state of

all modules. To support upgrades to the OE, an STRS platform requires the ability to alter the

state (boot parameters) and/or select a boot image. The exact mechanisms and procedures used

will be platform and mission specific but need to be sufficient to support upgrades to OE

components, such as the OS, BSP, and STRS infrastructure.

4.1.3 Interfaces

4.1.3.1 External Interfaces

There are several key external interfaces in this architecture:

 Host TT&C.

 Ground Test.

 Data.

 Clock.

 Antenna.

 Direct current (DC) power.

 Thermal.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

34 of 154

The host TT&C interface represents the typically low-latency, low-rate interface for the

spacecraft (or other host) to communicate with the radio. The host telemetry typically carries all

information sourced within the radio. This type of information traditionally is called the

telemetry data and includes health, status, and performance parameters of the radio as well as

the link in use. In addition, this telemetry often includes radiometric tracking and navigation

data. The command portion of this interface contains the information that has the radio itself as

the destination of the information. Configuration parameters, configuration data files, new

software data files, and operational commands are the typical types of information found on this

interface.

The Ground Test Interface provides a “development-level” view of the radio and is exclusively

used for ground-based integration and testing functions. It typically provides low-level access to

internal parameters not typically available to the Spacecraft TT&C Interface. It can also provide

access when the GPM is not functioning (i.e., during boot).

The Data Interface is the primary interface for data that are sourced from the other end of the

link and for data that are sunk to the other end of the link. This interface is separate from the

TT&C interface because it typically has a different set of transfer parameters (protocol, speeds,

volumes, etc.) than the TT&C information. A common interface point in the spacecraft for this

type of interface is the spacecraft solid-state recorder rather than the spacecraft command and

data-handling (C&DH) subsystem. This interface is also characterized by medium to high

latency and high data rates.

The Clock Interface is used to input to the radio the frequency reference sufficient for supporting

navigation and tracking. This type of input frequency reference is essential to the operation of

the radio and provides references to the SPM and RFM.

The Antenna Interface is used to connect the electromagnetic signal (input or output) to the

radiating element or elements of the spacecraft. It also includes the necessary capability for

switching among the elements as required. Steering the elements, if a function of the overall

telecommunications system, is possible through this interface, but it is not typically employed

because of overall operational constraints.

The Power Interface, which is not included on the diagram, is described as part of this

specification at the highest levels. The Power Interface defines the types and conditions of the

input energy to power the radio.

4.1.3.2 Networking

A networking interface does not necessarily map directly to the SPM, GPM, or RFM. The

networking interface might handle only spacecraft TT&C data or both spacecraft TT&C data

and radio data. This architecture allows for those capabilities.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

35 of 154

4.1.3.3 Internal Interfaces

To support the overall goals of the architecture, the internal interfaces (GPM system bus, GPM

RFM control, SPM-to-GPM test, frequency reference, and data path) should be well documented

and available without restriction.

The GPM System Bus (orange lines in figure 3) provides the primary interconnect between

elements of the GPM. The GPM System Bus may provide an interface between the

microprocessor, the memory elements, and the external interfaces (TT&C and Test) of the GPM.

The GPM System Bus is the primary interface between the GPM and the SPM, as shown in the

interconnection with the major SPM processing elements. Finally, the GPM System Bus provides

the interface by which the reprogrammable and reconfigurable elements of the SDR are

modified. It supports both the read and write access to the SPM elements, as well as the

reloading of configuration files to the FPGAs.

The interface between the GPM and the RFM is primarily a control/status interface. Various

RFM elements are controlled by the set of GPM RFM control lines (blue lines in figure 3).

Coming from the System Control block in the GPM, this control bus can be either fixed by the

System Control function or programmed by the GPM software and validated and routed by the

System Control function. It is important to have a hardware-based confirmation and limit-check

on the software controlling any RFM elements. The System Control module of the GPM provides

this functionality, thus keeping the GPM RFM Control bus within operational limits.

The Ground Test Interface (green line in figure 3) provides specific control and status signals

from different modules or functions to the Ground Test Interface block. This interface is used

during development and testing to validate the operation of the various radio functions. This

interface is very specific to the implementation and realization of the different modules.

The Frequency Reference Interface provides an important interface between the RFM and the

SPM functions. It ties the two modules together in a way that allows for the SDR to implement

tracking and navigation functions. The characteristics of this interface are defined by the various

amounts of tracking accuracy that are required for the SPM to accomplish. This interface can be

as simple as a single, common frequency reference that is conditioned from an outside source

and distributed in the least degrading fashion possible to the SPM.

Finally, the data paths are the various streams of bits, symbols, and RF waves connecting the

major blocks of the primary data path. For any particular implementation, the data path or

bitstreams are defined by the particular application implemented in the functional blocks. The

interface between the RFM and SPM should be well defined and have characteristics suitable for

that level of conversion between the analog and digital domains.

The hardware architecture can be further specified in a manner that is important for

implementers to consider and follow, if the implementation dictates the necessity of particular

components. Details of the GPM, SPM, and RFM are provided in subsequent sections.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

36 of 154

4.2 Module Type Specification

4.2.1 General-Purpose Processing Module

Figure 4, GPM Architecture Details, provides a closeup of the GPM detail. The GPM consists of

one or more general purpose or digital signal-processing elements and support hardware

components, embedded OS, software applications and interfaces to support the configuration,

control, and status of the radio. The number of processing elements and the extent of support

hardware will vary depending on the mission-class processing and data-handling requirements

from a single system on a chip implementation for smaller mission classes to multiple logical

replaceable units (LRUs) for the largest mission classes. In addition, the fault tolerance

requirements can also increase the number of hardware processing elements, support hardware

components, and interface points required to meet the range of mission classes. The majority of

processing functions of the GPM will be under software control and supported by an OS. There

are cases, depending on the data-handling speeds, that require the use of separate specialized

support hardware (FPGA or ASIC chips) to alleviate the burden on the processing elements.

Such specialized support hardware could include encryption, packet routing, and network

processing-type functions.

4.2.1.1 GPM Components

The GPM contains, as necessary, a GPP and various memory elements as shown in figure 4.

Depending on the particular mission class, not all memory elements are required. The GPP will

typically be implemented as a microprocessor, but it could take many forms, depending on the

mission class. Because the GPM is the primary control component of the radio, it is a required

module for an STRS radio. A description of each element follows.

The GPP functions include the OE, the HAL, and potentially application functions. The OE

contains the STRS infrastructure, which provides the functionality for the interfaces defined by

the STRS API specification. The OE also contains the OS and the POSIX abstraction layer.

The Persistent Memory Storage element holds both the permanent (e.g., programmable read-

only memory (PROM)) and reprogrammable code for the GPP element. In today’s technology,

this code is implemented using a reprogrammable technology, such as electrically erasable,

programmable read-only memory (EEPROM). It is also possible, but not typically qualifiable, to

implement this code storage in Flash memory.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

37 of 154

General-purpose Processing Module (GPM)

 General Purpose Processor

Host / TT&C
Interface

Ground Test
Interface

Low Speed

Signal
Processing

Persistent
Memory

Radio
Configuration

& System
Control Work Area

Memory

Operating
Environment

Waveform /

Application

HAL

Figure 4—GPM Architecture Details

The Persistent Memory also provides the reprogrammable storage for the SPM FPGA elements

(i.e., configurable hardware design). The GPM is responsible for programming and scrubbing

the SPM FPGAs and therefore contains the appropriate “code” for the FPGAs. This memory

block is typically implemented using a nonvolatile memory technology, such as EEPROM, but

could, in particular implementations, be implemented with PROM technology.

The Work Area Memory element is provided as operational, scratch memory for the GPP

element. This memory element is implemented in concert with the GPP element and may contain

both data and code, as appropriate for the execution of the radio application running in the

GPM.

Finally, the GPM contains a System Control element to control and moderate the GPM System

Bus. This element provides the necessary control for the System Bus including the various

memory and SPM elements interfaced by the System Bus. In addition, the System Control

element provides a validated interface to the RFM hardware via the GPM RFM Control

Interface. As the software running on the GPP element commands the RFM elements into certain

states, those commands are interpreted by the System Control element and validated in a manner

that will prevent damaging configurations of the RFM; for example, tying the transmit amplifier

directly to the receive amplifier, bypassing the diplexer element. This level of validation in the

GPM-to-RFM interfaces would prevent damage to the radio from a software bug. The System

Control element is typically implemented by a non-reprogrammable (in-flight) FPGA allowing

for flexibility between instantiations of a particular implementation.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

38 of 154

4.2.1.2 GPM Functions

The GPM will provide the overall configuration and control of the STRS architecture and may

include any or all of the following functions:

a. Management and Control.

(1) Module discovery.

(2) Configuration control.

(3) Command, control, and status.

(4) Fault recovery.

(5) Encryption.

b. STRS infrastructure, radio configuration and control.

(1) Radio control.

(2) System management.

(3) Application upload management.

(4) Device control.

(5) Message center.

c. External network interface processing.

d. Internal data routing.

e. Waveform data link layer.

(1) Medium Access Control (MAC) and Logical Link Control (LLC) layer.

(2) Physical layer processing.

f. Onboard data switch.

4.2.1.3 GPM Interfaces

a. TT&C Interface.

b. Ground Test Interface.

c. Provides programmable general-purpose input output (GPIO) to support.

(1) Interrupt source/sink.

(2) Application data transfer.

d. Provides control/configuration interfaces.

(1) RFM, antenna, power amplifier, and SPM.

e. System Bus interface.

4.2.1.4 GPM Requirements

(STRS-2) The STRS OE shall access each module’s diagnostic information via the STRS APIs.

(STRS-3) Self-diagnostic and fault-detection data shall be created for each module so that it is

accessible to the STRS OE.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

39 of 154

(STRS-109) An STRS platform shall have a GPM that contains and executes the STRS OE and

the control portions of the STRS applications and services software.

4.2.2 Signal-Processing Module

An SPM is optional for an STRS platform. The SPM may implement the signal processing used to

transform received digital signals into data packets and/or the conversion of data packets into

digital signals to transmit. The complexity of this module is based on the applications and data

rates selected for a mission. The SPM modules contain components and capabilities to

manipulate and manage digital signals that require higher processing capabilities than that

supplied by the GPM. The configurable hardware design architecture describes a common

interface for the application on the SPM, as described in section 6. Figure 5, SPM Architecture

Details, illustrates the SPM module details.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

40 of 154

Data
Formatting

Clock
Distribution

High Speed
Digital Signal

Processing

Signal Processing Module (SPM)

System
Control Test &

Status

Data
Buffer/

Storage
 Waveform

Spacecraft
Data

Interface

Figure 5—SPM Architecture Details

4.2.2.1 SPM Components

The SPM will initially be implemented primarily with FPGAs, DSPs, reconfigurable processors,

ASICs, and other integrated circuits. However, technologies will change over time, so the

specific implementation is left to the STRS platform provider.

It is also anticipated that STRS platforms may use dedicated SPM slices for specific applications

and technologies. For example, a dedicated global positioning system (GPS) receiver slice can

complement the existence of reconfigurable SPM slices in the same radio. The dedicated slice

offloads demands on the less specific SPM. If an STRS platform contains an SPM slice, the slice

should meet the module interface specifications for control and configuration and have an

interface with the GPM via the GPM System Bus and the SPM-to-GPM test interface. These two

interfaces work in concert to provide a control and reprogramming path to the SPM from the

GPM and the application running on the GPM.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

41 of 154

4.2.2.2 SPM Functions

The SPM performs the digital signal-processing functions, which are used to convert symbols to

bits (and vice versa). These functions are typically implemented on FPGAs, DSPs, or ASICs. It is

recommended that these devices be reconfigurable and reprogrammable because this allows for

new applications to be implemented on the SDR in the future without a hardware redesign.

However, mission-specific requirements may dictate that the application be implemented on a

non-reprogrammable hardware device.

In addition to the digital signal-processing functions, a data-formatting function is typically

provided to convert blocks of data stored in the data storage element into bitstreams appropriate

for encoding into symbols (and vice versa). In many cases, it is possible to implement the data-

formatting function in the same device as the digital signal-processing function, but that is an

implementation detail dependent on the mission class.

A data storage element is used to provide a queuing buffer between the data interface and the

bitstream coders and decoders. This data storage function can be implemented in either volatile

or nonvolatile memory, depending on the requirements of the mission implementation.

An SPM may implement any or all of the following digital communication functions depending

upon the mission waveforms:

 Digital up conversion—interpolation, filtering, and “local oscillator” multiplication

of baseband samples to obtain an IF or RF output sample stream, appropriate for

digital-to-analog conversion. This is typically the last transmit function implemented

in the SPM, and the output samples are sent to the RFM.

 Digital down conversion—multiplication with “local oscillator,” downsampling, and

filtering IF or RF samples to obtain a baseband output sample stream. This is

typically the first receive function implemented in the SPM, with input samples

coming from the analog-to-digital conversion in the RFM.

 Digital filtering—averaging, low-pass, high-pass, band-pass, polyphase, and other

filters used for pulse shaping, matched filter, etc. This may overlap with some of the

functionality in the Up and Down Conversion.

 Carrier recovery and tracking—retrieval of the waveform carrier within the receive

sample stream. Typical SPM functions for carrier recovery include shifting the

recovered carrier frequency to compensate for local oscillator variations and

Doppler shifts in the link.

 Synchronization (data, symbol, etc.)—alignment of received samples with symbol and

data boundaries. There may be some integration with the Digital Down Conversion

and Carrier Recovery and Tracking functions.

 Forward error correction coding—encoding transmit data so that receive data errors

may be corrected to some level, enhancing the waveform performance.

 Digital automatic gain control (AGC)—scaling of the receive samples to optimize

downstream operations.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

42 of 154

 Symbol mapping (modulation)—translating transmit data bits to modulation symbol

samples.

 Data detection (demodulation)—translating receive symbol samples to data bits.

 Spreading and despreading—a form of encoding data to obtain certain energy

dispersion in the frequency domain.

 Scrambling and descrambling—a form of encoding data to ensure a certain level of

randomness in the digital data stream, usually for synchronization of the receiver.

 Encryption and decryption—a form of encoding data for security purposes.

 Data Input/Output (I/O) (high-speed direct from or to source or sink)—interface for

transmit and/or receive data to come in or out of the module. This may require

buffering and some protocol handling.

4.2.2.3 SPM Interfaces

The SPM’s functions and external interfaces are shown in figure 5. Interfaces shown include

those common to all module types as well as those specific for the SPM. These SPM-specific

interfaces may not all be required for some missions. Note that the implementation of these

interfaces may combine two or more on one physical transport. For example, the Data Interface

and Control and Configuration Interfaces may both use the same physical Serial Rapid IO

connection.

 Data I/O to or from RFM—This is the digital sample stream going to the RFM’s

DACs for transmission, and the digital samples from the RFM’s ADCs. However, if

the DACs and ADCs are preferred to be a part of the SPM, then this interface is

replaced with analog baseband or IF signals.

 Waveform control and feedback to RFM—This interface will be waveform dependent.

It may be used, for example, to send feedback to an AGC or control frequency

hopping.

 Data interface external to the radio—High-data-rate waveforms may need a direct

interface to the SPM if the GPM is not designed to handle the data.

 System bus—Data to or from GPM—This interface exchanges the packetized data for

transmission and reception.

 Control and configuration from GPM—Waveform loads and reconfigurable

parameters are managed through this interface.

 Test and status to GPM—Tests are initiated through this interface by the GPM, and

results are returned. This is a more basic interface (electrically and protocol-wise)

than the Control and Configuration interface.

 Radiometric tracking.

The HID is to contain the characteristics of each reconfigurable device. Reconfigurable capacity

is usually measured by the number of FPGA gates, logic elements, or bytes. This information can

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

43 of 154

be used by future STRS application developers to determine the waveforms that can be

implemented on a given platform.

4.2.3 Radio Frequency Module

The RFM handles the conversion to and from the carrier frequency, providing the SPM and/or

the GPM with digital baseband or IF signals, and the transmission and reception equipment with

RF to support the SPM and GPM functions. Its components typically include DACs, ADCs, RF

switches, up converters, down converters, diplexer, filters, LNAs, power amplifiers, etc. Current

and near-term RF technologies cannot be expected to allow multiband operation using a single

channel RFM, and thus multiband radios will require the use of multiple RFM slices. The RFM

provides a band of frequency tunability on each slice. This tunability can be software controlled

through the provided interfaces.

The RF module handles the interfaces that control the final stage of transmission or first stage of

reception of the wireless signals, including antennas, optical telescopes, steerable antennas,

external power amplifiers, diplexers, triplexers, RF switches, etc. These external radio

equipment components would otherwise be integrated with the RFM except for the physical size

and location constraints for transmission and reception. The interfaces are primarily the

associated control interfaces for these components. The RFM HID encompasses the control and

interface mechanism to the external components. The focus of the RF HID is to provide a

standardized interface to the control of each of these devices, to synchronize the operation of the

radio with any of these devices.

The other primary capability of the RFM is the conditioning and distribution of the frequency

reference as defined by the Frequency Reference Interface. This provides a common reference

for the RFM and SPM modules to enable the tracking and navigation functionality typically

provided by SDRs. Figure 6, RFM Architecture Details, illustrates the RFM module details.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

44 of 154

Transmit RF

RF Module (RFM)

Antenna

Interface

Clock
Interface

Antenna
Control

Interface
Variable
Gain /

Frequency Test &

Status

Digital to
Analog

Analog to
Digital Receive RF

Figure 6—RFM Architecture Details

4.2.3.1 RFM Functions

The RFM transforms the antenna signal to or from a signal usable to the radio. The RFM

functions are likely to include the following:

a. Frequency conversion and gain control.

b. Analog filtering.

c. Analog-to-digital and digital-to-analog conversion.

d. Radiometric tracking.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

45 of 154

4.2.3.2 RFM Components

The RFM can be implemented with a variety of integrated circuits. The control of these circuits

can be implemented with a variety of different component technologies including ASICs, discrete

electronics, programmable logic devices including FPGAs and DSPs, or even microprocessors.

The choice of technologies is left up to the developer of the particular implementation. It is

expected that the control of the devices will become more sophisticated over time and that the

level of control will increase, resulting in more complex control circuitry and logic devices being

used.

4.2.3.3 RFM Interface

a. External RF interface(s) to the radio.

b. Provides read and write access to interface registers to monitor and perform control,

status, and failure and fault-recovery functions (e.g., via RS-422 or Space Wire).

(1) Control (power level tunability, frequency tunability, antenna parameter

tunability, etc.).

(2) Status (report status of components and system operation).

(3) Failure and fault-recovery functions (detect component or system failure and

determine appropriate action).

c. Provides diagnostic test registers.

d. Provides I/O for exchanging digitized waveform signal data.

4.2.3.4 RFM Requirements

(STRS-6) The STRS platform provider shall describe, in the HID document, the behavior and

performance of the RF modular component(s).

The behavior and performance of the RF modular components should be sufficiently described

such that future waveform developments may take advantage of the RF capability and/or account

for its performance. Information in the HID may include such items as center frequency, IF and

RF frequency(s), bandwidth(s), IF and RF input/output level(s), dynamic range, sensitivity,

overall noise figure, AGC, frequency accuracy and stability, and frequency-tuning resolution.

4.2.4 Security Module

The STRS architecture has been designed to address security concerns as part of the

architecture. Although this section is currently not complete, the goal is to address the security

services required from an SDR. This approach supports the evolutionary nature of the STRS

architecture. It is expected that this section will be expanded as new technologies and

operational modes are developed or extended.

The architecture will support selectable data-protection services for those users needing them,

including both confidentiality and authentication. Missions may select security options provided

by the infrastructure or may develop their own.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

46 of 154

The authentication of commands sent to SDRs is supported, including changing the

configuration or uploading new programs for either the infrastructure or new applications. The

security section of the architecture will include support for key management, encryption

standards, and mitigating threats other than the information and communication security threats

currently identified.

4.2.5 Networking Module

The STRS architecture has been structured such that networks can be implemented in an SDR;

that is, an SDR can be a node in a network. The SDR may be connected to another node using

the appropriate logical and physical interfaces that may be wired and/or wireless. The STRS

architecture can accommodate network protocols as services that can be made available to

applications and devices. STRS supports the ability to upload new software and dynamic

hardware images. Therefore, advancements and replacement of existing protocols can be

accomplished without affecting a spacecraft’s mission resources.

4.2.6 Optical Module

The STRS architecture supports the use of optical communications in SDRs. The use of optical

communications techniques pose challenges in many areas but optical communications also has

the potential for great benefit. STRS interfacing to optical communication equipment follows the

same techniques shown in integration with high-data-rate hardware. The OM would be

controlled through the STRS HAL interface that allows configuration and control of the digital

components in the module, which abstracts the optical functionality.

4.3 Hardware Interface Description

The STRS platform provider is to provide an HID, which describes the physical interfaces,

functionality, and performance of the entire platform and each platform module. The HID

specifies the electrical interfaces, connector requirements, and all physical requirements for the

delivered radio. Each module’s HID abstracts and describes the module functionality and

performance. In this manner, STRS application developers can know the features and limitations

of the platform for their applications. The information in the HID provides the knowledge for

NASA and others to integrate and test the hardware interfaces. The information in the HID may

allow future module replacement or additions without the design of a completely new platform.

For example, a Security Module could be added that was not originally planned, or a follow-on

mission could use a different frequency band and only require an RFM change.

In addition to the GPM, SPM, and RFM HID descriptions and requirements stated within each

module section, the following interface descriptions and requirements are also specified for an

STRS platform.

(STRS-4) The STRS platform provider shall describe, in the HID document, the behavior and

capability of each major functional device or resource available for use by waveform, services,

or other applications (e.g., FPGA, GPP, DSP, or memory), noting any operational limitations.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

47 of 154

(STRS-5) The STRS platform provider shall describe, in the HID document, the

reconfigurability behavior and capability of each reconfigurable component.

The description of the behavior and capability of functional devices available to STRS

application developers or reconfigurable components may include device type, processing

capability, clock speeds, memory size(s), types(s), and speed(s), noting any constraints, as well

as any limitation on the number of configurable hardware design reloads, partial reload ability,

built-in functionality, and any corresponding restriction on the number of gates.

(STRS-7) The STRS platform provider shall describe, in the HID document, the interfaces that

are provided to and from each modular component of the radio platform.

The specific modular components or hardware slices of an STRS radio will vary among different

implementations. The STRS platform provider or STRS integrator is expected to describe each

modular component and their respective physical and logical interfaces as described in this

section. Table 1, STRS Module Interface Characterization, provides typical interface

characteristics that should be included when identifying external interfaces or internal interfaces

between modules for STRS.

Table 1—STRS Module Interface Characterization

STRS Module Interface Characterization Table

Parameter Description and Comments

Name
Interface name (data, control, DC power, RF, security,

etc.).

Interface type
Point to point, point-multipoint, multipoint, serial, bus,

other.

Implementation level Component, module, board, chassis, remote node.

Reference documents and

standards

Applicable documents for interface standards or

description of custom interfaces.

Notes and constraints
Variances from standards, physical and logical functional

limitations.

Transfer speed Clock speed, throughput speed.

Signal definition Description of functionality and intended use.

Physical Implementation

Technology For example, GPP, DSP, FPGA, ASIC, and description.

Connectors Model number, pin out (incl. unused pins).

Data plane Width, speed, timing, data encoding, protocols.

Control plane
Control signals, control messages or commanding,

interrupts, message protocol.

Functional Implementation

Models Data plane model, control plane model, test bench model.

Power
Voltages, currents, noise, conducted immunity,

susceptibility.

APIs Custom or standard, particular to OS environment.

Software Device drivers, development environment, and tool chain.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

48 of 154

STRS Module Interface Characterization Table

Parameter Description and Comments

Logical Implementation

Addressing Method, schemes.

Channels Open, close.

Connection type Forward, terminate, test.

4.3.1 Control and Data Interface

The control and data communications buses and links between modules within the radio are to

be described by the STRS platform provider to the level of detail necessary to facilitate

integration of another vendor’s module. If modules communicate using the IEEE–1394 interface,

for example, this will be specified in the HID with appropriate connector and pinout information.

Any nonstandard protocols used should also be specified. In some cases, this may be handled by

the software HAL. Module interfaces will be completely described, including any unused pins.

(STRS-8) The STRS platform provider shall describe, in the HID document, the control,

telemetry, and data mechanisms of each modular component (i.e., how to program or control

each modular component of the platform, and how to use or access each device or software

component, noting any proprietary and nonstandard aspects).

Besides the interface descriptions already provided for each modular component, developers

should provide specific information necessary for future STRS application developers to know

how to interact with the command and control aspects of the platform. The description of the

control, telemetry, and data mechanism of each modular component should facilitate the porting

of the application software to the platform.

4.3.2 DC Power Interface

The DC power interface description for the radio has two parts: (1) the platform as a supplier to

the various modules; and (2) the power consumption of the different modules, if multiple

modules are provided.

Table 2, Example—DC Power Interface (Platform Supplied), shows an example listing of a

platform DC power interface. There are four distinct sets of power requirements for the platform

shown. For each module delivered with the radio, as well as those built by other vendors, the

HID is to specify the needed voltages, currents, and connections. Voltages are to be specified

with a maximum and minimum tolerance, and associated currents are to be specified with

nominal and maximum values. Connectors for DC power are to be specified, including pinouts.

If power is routed through a multipurpose connector, such as a backplane connector, then the

pins actually used are to be documented. Power is a limited commodity for most missions, and

understanding the radio platform power needs is critical.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

49 of 154

Table 2—Example—DC Power Interface (Platform Supplied)

Parameter Values

Voltage available –15 V +2.5 V +5 V +15 V

Maximum current/chassis

(platform)

2 A 1.7 A 3 A 2 A

Maximum current/slot (module) 1 A 1 A 1 A 1 A

Backplane supply pins 17, 19 59, 61 44, 46, 48 21, 23

Backplane return pins 18, 20 60, 62 43, 45, 47 22, 24

Connector type --------- --------- --------- ---------

Voltage ripple 100 mVpp 1 mVpp 5 mVpp 100 mVpp

Notes Slot 1 and 2 only --------- --------- Slot 1 and 2 only

(STRS-9) The STRS platform provider shall describe, in the HID document, the behavior and

performance of any power supply or power converter modular component(s).

4.3.3 Thermal Interface and Power Consumption

The power consumption and resulting heat generation of a reprogrammable FPGA will vary

according to the amount of logic used and the clock frequency(s). The power consumption may

not be constant for each possible waveform that can be loaded on the platform. The STRS

platform provider should document the maximum allowable power available and thermal

dissipation of the FPGA(s) on the basis of the maximum allowable thermal constraints of

FPGA(s) of the platform. For human spaceflight environments, touch temperature requirements

may limit dissipation further; therefore, these reductions are to be factored into the given

dissipation limits.

(STRS-108) The STRS platform provider shall describe, in the HID document, the thermal and

power limits of the hardware at the smallest modular level to which power is controlled.

5. APPLICATIONS

5.1 Application Implementation

As shown in figure 7, Waveform Component Instantiation, an example STRS platform consists of

one or more GPMs with GPPs, and optionally one or more SPMs containing DSPs, FPGAs, and

ASICs. Application (waveform and service) components loaded and executed on these modules

provide the signal-processing algorithms necessary to generate or receive RF signals. To aid

portability, the applications are to use the appropriate infrastructure APIs to access platform

services. Using “direct to hardware” access instead would increase the effort to port the

application to a platform with different hardware. The STRS infrastructure provides the APIs

and services necessary to load, verify, execute, change parameters, terminate, or unload an

application. The STRS infrastructure utilizes the HAL to abstract communications with the

specialized hardware, whereas the HID physically identifies how modules are integrated on a

platform.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

50 of 154

H

I

D

Operating Environment with

POSIX Compliant RTOS

General-purpose Processing Module

Signal

Data

Signal Processing Module

Signal

H I D

H I D

HAL

Board

Support

Package

STRS APIs
Waveform

Control and

Services

STRS

Infrastructure

STRS APIs

Waveform

Component

A

Signal Processing Module

Signal

DataWaveform

Component

C

Waveform

Component

D

Waveform

Component

B

Drivers

Figure 7—Waveform Component Instantiation

(STRS-10) An STRS application shall use the infrastructure STRS API and POSIX API for

access to platform resources.

(STRS-11) The STRS infrastructure shall use the STRS platform HAL APIs to communicate

with application components on the platform specialized hardware via the physical interface

defined by the STRS platform provider.

5.2 Application Selection

STRS platform providers have the option of providing telemetry values to indicate what types of

applications are installed. The method for selecting the application will be a combination of the

platform’s capabilities as well as the specification defined by the STRS Command and Telemetry

interfaces in section 8.

STRS specifies two types of configuration files: a platform-specific component, and an

application-specific component. An application-specific configuration file specifies information

used to initialize an STRS application. Section 9 contains further discussion of platform and

application configuration files.

5.3 Navigation Services

The STRS architecture allows STRS radios to provide radiometric tracking and navigation

services that are integrated with communication services. Radiometric tracking is the process of

measuring the characteristics of radio signals that have been transmitted (potentially over

several legs) in order to extract information relating to the signal’s change in frequency and/or

time of transit. A radio has the fundamental component needed for tracking—a radio signal. The

SDR simplifies the navigation architecture because it minimizes mass, power, and volume

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

51 of 154

requirements while maximizing flexibility. An SDR provides the flexibility to respond to different

mission phase requirements and to dynamic application requirements where signal structures

may change. This is the fundamental reason for considering the implementation of an SDR with

tracking and navigation functionality.

5.4 Application Repository Submissions

The STRS architecture facilitates the use of reusable and highly reliable applications. Highly

reliable and reusable applications require good coding practices, good documentation, and

thorough testing. The documentation and application artifacts are to be submitted to the NASA

STRS application repository. The use of the artifacts in the NASA STRS application repository

will be subject to the appropriate license agreements. Therefore, the agreements defining the

release, distribution, and ownership of the artifacts are to be submitted to the repository

including license agreements, type of release, and any restrictions. Types of releases are

discussed in NPR 2210.1, Release of NASA Software. NASA will provide the STRS application

developer information on the requests and distribution of items and lessons learned using the

application. If the STRS application developer receives independent requests for the application,

this request should be forwarded to the NASA STRS application repository manager to assure

process consistency.

The goal of the NASA STRS application repository is to reduce future application development

time and porting time since STRS application developers will have access to validated code. The

STRS application repository is an archive of the developed configurable hardware design and

software for the various applications. The repository allows STRS application developers access

to existing STRS application artifacts that have been populated by NASA and STRS application

developers. The documentation of STRS application behavior should include the STRS

application developer’s implementation of the STRS Application-provided Application Control

API methods as described in section 7.3.1.

(STRS-12) The following application development artifacts shall be submitted to the NASA

STRS application repository.

(1) High-level system or component software model.

(2) Documentation of application configurable hardware design external interfaces

(e.g., signal names, descriptions, polarity, format, data type, and timing

constraints).

(3) Documentation of STRS application behavior.

(4) Application function sources (e.g., C, C++, header files, very high speed

integrated circuit HDL (VHDL), and Verilog).

(5) Application libraries, if applicable (e.g., electronic design interchange format

(EDIF), dynamic link library (DLL)).

(6) Documentation of application development environment and tool suite.

A. Include application name, purpose, developer, version, and configuration

specifics.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

52 of 154

B. Include the hardware on which the application is executed, its OS, OS

developer, OS version, and OS configuration specifics.

C. Include the infrastructure description, developer, version, and unique

implementation items used for application development.

(7) Test plans, procedures, and results documentation.

(8) Identification of software development standards used.

(9) Version of this Standard used.

(10) Information, along with supporting documentation, required to make the

appropriate decisions regarding ownership, distribution rights, and release

(technology transfer) of the application and associated artifacts.

(11) Version Description Document or equivalent with version numbers defined

down to the lowest level components.

(12) Documentation of the platform component hardware used by the application, its

function and the interconnections. If the component executes an operating system,

document the OS, OS developer, OS version, and OS configuration.

6. CONFIGURABLE HARDWARE DESIGN ARCHITECTURE

Configurable hardware design is embedded in a hardware device, such as an FPGA.

Configurable hardware design is distinguished from software residing in a GPP, which is

generally easier to change. This section addresses the use of configurable hardware design from

design and development through testing and verification and operations. It addresses aspects of

model-based design techniques and design for space environment applications.

Proper testing of configurable hardware design is critical in the development of reliable and

reusable code. Development tools that enable early development and testing should be used so

that problems can be identified and resolved early in the SDR life cycle. Many real-world signal

degradations and SEUs can be simulated to identify potential issues with the waveform and

waveform functions early in development, even before hardware is available. Applications

implemented in configurable hardware should be modular with clear interfaces to enable

individual application component simulations and incremental testing.

The configurable hardware design architecture supports the modeling of STRS applications

implemented in configurable hardware at the system, subsystem, and function levels. Model-

based design techniques aid in the development of modular application functions. Application

development models done in a platform (or target) independent manner aid in application

testing, reuse, and portability. A platform-independent model (PIM) design can be used to target

different platforms. PIM design flows might include high level models combined with manual

code writing. On resource-constrained platforms, optimized code would be written. On non-

resource-constrained platforms, PIMs may be used to auto generate code. These design flows

can be employed to significantly reduce the porting effort.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

53 of 154

Application portability should be considered in all facets of the design process from concept to

implementation to testing. The coding technique of the application is also essential to reduce the

application porting effort. Having defined syntax standards for HDLs (e.g., Verilog or VHDL)

makes them appear to be easily portable across devices and software synthesizers, but this is an

incorrect assumption. There are many things that can make hardware description languages

hard to port. For example, the use of device-specific fixed hardware logic on the FPGA will

decrease the portability. The use of specialized hardware may be required to meet the timing

constraints of the application; however, the STRS application developer should document any

application function that uses the specialized hardware so that the effort to port the application

function(s) can be determined. Non-boolean-type logic such as clock generation can also reduce

portability. One method to decrease the porting effort would be to create a module that does the

clock generation from which the rest of the application functions receive the necessary clock(s).

Development of configurable hardware design for STRS radios should include provisions for

mitigating space environmental effects such as SEUs. Near-term application of static random

access memory (SRAM)-based FPGAs may require triple-mode redundancy (TMR),

configuration memory scrubbing, and other mitigation techniques, depending on the intended

mission environment and desired reliability. Commercial design tools are becoming available to

aid in this process and some newer FPGAs have versions available with embedded TMR.

A key feature of SDRs is that they can be reconfigured after deployment. The ability to load new

applications and services will benefit missions in several ways, including using one SDR (instead

of several separate radios) to handle different applications for various phases of a mission, some

planned and some unplanned. An STRS platform should receive STRS application software and

configurable hardware design updates after deployment.

6.1 Specialized Hardware Interfaces

Standardizing and documenting the interface from the waveform applications on the GPP to the

portion of the waveform in the specialized processing hardware, such as FPGAs, is intended to

provide commonality among different STRS platforms and to aid portability of application

functional components implemented in configurable hardware design. Figure 8, High-Level

Software and Configurable Hardware Design Waveform Application Interfaces, depicts the

high-level interface relationship between GPM, SPM, and RFM modules in an STRS radio.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

54 of 154

Figure 8—Notional High-Level Software and Configurable Hardware Design

Waveform Application Interfaces

The STRS architecture provides a common mechanism for the software to instantiate, configure,

and execute the software and configurable hardware design applications on various platforms

using different hardware devices. Reconfiguration may include changing the parameters of

installed applications and uploading new applications after deployment.

The application accepts configuration and control commands from the GPM and uses STRS

APIs or POSIX APIs that interface to the device drivers associated with the SPM and RFM

modules. The device drivers communicate via the HAL on the GPM that abstracts the physical

interface specification described in the HID in transferring command and data information

between the modules.

For FPGAs, the interface to the application is through a platform-specific wrapper. The

platform-specific wrapper accepts command and data information from the GPM and provides

them to the application. The platform-specific wrapper also abstracts details of the platform

from the STRS application developer, such as pinout information. The platform-specific wrapper

should also provide clock generation, signal registering, and synchronization functions, and any

other non-waveform-specific functions that the platform requires.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

55 of 154

Documentation of the platform-specific wrapper is necessary so that STRS application

developers can interface applications to the platform. This documentation should include

detailed timing constraints, such as signal hold times, minimum pulse widths, and duty cycles.

The signal timing constraints refer to the protocol of a particular interface describing events

happening on a particular clock cycle. For clock generation, one should document what clock

domains are in the design, how each clock is generated, and the resources that are required.

Signal synchronization describes any additional logic needed when clock domains are changed

across the interface. The signal registering methods refer to any configurable hardware design

interfaces between modules and if the input and output were registered, latched, or neither.

(STRS-13) If the STRS application has a component resident outside the GPM (e.g., in

configurable hardware design), then the component shall be controllable from the STRS OE.

(STRS-14) The STRS SPM developer shall provide a platform-specific wrapper for each user-

programmable FPGA, which performs the following functions:

(1) Provides an interface for command and data from the GPM to the waveform

application

(2) Provides the platform-specific pinout for the STRS application developer. This

may be a complete abstraction of the actual FPGA pinouts with only waveform

application signal names provided.

(STRS-15) The STRS SPM developer shall provide documentation on the configurable hardware

design interfaces of the platform-specific wrapper for each user-programmable FPGA, which

describes the following:

(1) Signal names and descriptions.

(2) Signal polarity, format, and data type.

(3) Signal direction.

(4) Signal-timing constraints.

(5) Clock generation and synchronization methods.

(6) Signal-registering methods.

(7) Identification of development tool set used.

(8) Any included noninterface functionality.

7. SOFTWARE ARCHITECTURE

7.1 Software Layer Interfaces

The STRS architecture is predicated on the need to provide a consistent and extensible

development environment on which to construct NASA space applications. The breadth of this

goal requires that the specification be based on the following: (1) Core interfaces that allow

flexibility in the development of application software; and (2) HIDs that enable technology

infusion.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

56 of 154

The software architecture model shows the relationship between the software layers expected in

an STRS-compliant radio. The model illustrates the different software elements used in the

software execution and defines the software interface layers between applications and the OE

and the interface between the OE and the hardware platform.

Figure 9, STRS Software Execution Model, represents the software architecture execution model.

The software model achieves the following objectives:

a. Abstracts the application from the underlying OE software to promote portability of

the application.

b. Within the abstraction layer, minimizes custom routines by using commercial

software standard interfaces such as POSIX.

c. Depicts the STRS software components as layers to specify their relationship to each

other and their separation from each other which enables developers to implement the layers

differently according to their needs while still complying with the architecture.

d. Introduces a lower-level abstraction layer between the OE and the platform

hardware.

Note that although software abstraction for general processors is typically accomplished with

board support packages and device drivers, the abstraction of hardware languages or

configurable hardware design is less defined. The model represents the software and

configurable hardware design abstraction in this layer.

e. Indicates the relationship between the OE software and the different hardware

processing elements (e.g., processor and specialized hardware).

The OE adheres to the interface descriptions provided in figure 9. This Standard, provides two

primary interface definitions, as follows: (1) The STRS API; and (2) The STRS HAL

specification, each with a control and data plane specification for interchanging configuration

and run-time data. The STRS APIs provide the interfaces that allow applications to be

instantiated and use platform services. These APIs also enable communication between

application components. The HAL specification describes the physical and logical interfaces for

intermodule and intramodule integration.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

57 of 154

Figure 9—STRS Software Execution Model

The STRS software architecture presents a consistent set of APIs to allow waveform

applications, services, and communication equipment to interoperate in meeting an application

specification. Figure 10, STRS Layered Structure in UML, represents a view of the platform OE

that depicts the boundaries between the STRS infrastructure provided by the STRS platform

provider and the components that can be developed by third-party vendors (e.g., waveform

applications and services).

A key enabler of application portability is the removal of application dependencies on the

infrastructure that take advantage of explicit knowledge of the infrastructure implementation.

When waveforms and services conform to the API specification, they are easier to port to other

STRS platform implementations.

Figure 10 extends the view of the software architecture from the diagram introduced in figure 9

to include additional detail of the infrastructure, POSIX-conformant OS, and hardware platform.

The STRS Software Execution Model (figure 9) was transformed using the Unified Modeling

Language (UML). The UML supports the description of the software systems using an object-

oriented style. This approach clarifies the interfaces between components, adding additional

detail. Table 3, STRS Architecture Subsystem Key, provides a key that describes the interaction

between elements of the architecture.

Figure 11, STRS Operating Environment, describes the elements of the detailed OE depicted in

figure 9. In the case that the OS does not support the POSIX subset, the missing functionality is

to be implemented in the STRS infrastructure. Figure 11 also illustrates the inclusion of a POSIX

abstraction layer in the infrastructure. As a note, this abstraction is not only for a non-POSIX

OS, but the POSIX abstraction layer would implement any POSIX functions required but not

implemented by the OS.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

58 of 154

Figure 10—STRS Layered Structure in UML

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

59 of 154

Table 3—STRS Architecture Subsystem Key

Diagram Element Name Explanation

Composition A contains X items of type B. B is a part of the

aggregate A. B does not exist independently from A.

X may be a number or a range from m to n depicted

by “m...n” where n may be an asterisk to indicate no

upper limit.

Generalization

or

Inheritance

B is derived from A. B is a kind of A. B inherits all

the properties of A. A is a more general case of B.

Since B is more specialized, it frequently contains

some additional attributes and/or more functionality

than A.

Interface C is an interface provided by B; that is, C contains the

means to invoke behavior that resides in B. A uses

interface C to access B.

Association A is associated with B. The optional description

“uses” indicates that A is associated with B such that

A “uses” B.

Association D acts upon A, and A responds to D, or possibly vice

versa. D is normally an actor outside the system.

In figure 11 the arrows identify interface dependencies and isolations. The waveform

applications will not directly call the driver API but use the provided STRS API, thus providing

the “abstraction layer” that helps isolate the application from the platform.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

60 of 154

Waveform Application

Could call STRS OS Abstraction Layer

functions as well as POSIX Calls
Communicates with STRS API

STRS Infrastructure

STRS API

 HAL

Radio Services (Radio Control, RF)

OS

HW Drivers/BSP

Communication

Equipment
GPM Platform Hardware

Application Level

Kernel Level

Direct Driver Service Support

Driver APIRegistered OS Services

HW IO Interface

Physical Level

POSIX

POSIX Abstraction

Layer

BSP

Figure 11—STRS Operating Environment

In table 4, STRS Software Component Descriptions, the different layers of the STRS software

model are described.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

61 of 154

Table 4—STRS Software Component Descriptions

Layer Description

Waveform application

and services

Waveform application and services provide the radio GPP

functionality using the STRS infrastructure.

STRS infrastructure The STRS infrastructure implements the behavior and functionality

identified by the STRS API as well as other required radio

functionality.

STRS API The STRS API provides consistent interfaces for the STRS

infrastructure to control applications and services, and for the

applications and services to access STRS infrastructure services.

APP API The APP API is the interface implemented by waveforms and

services whose functions are used by the STRS infrastructure.

POSIX Abstraction

Layer

This optional interface (see figure 12, POSIX-Compliant Versus

POSIX-Conformant OS) provides POSIX OS services to the

waveform application and services on platforms with an OS that does

not provide POSIX interfaces.

Radio control services These services are responsible for handling the radio commands and

telemetry for the STRS. Applications use the STRS interface to

communicate telemetry and receive commands from flight computer.

HAL The HAL provides the device control interfaces that are responsible

for all access to the hardware devices in the STRS radio. The HAL

API is the interface to the software drivers and BSP that

communicates with the hardware.

POSIX API The STRS defines a minimum POSIX AEP for the allowed OS

services. The POSIX AEP can be implemented by either a POSIX-

conformant OS or by a POSIX Abstraction Layer in conjunction with

a nonconformant OS.

OS This is the operating system that supports the POSIX API and other

OS services. The POSIX Abstraction Layer will provide applications

with a consistent AEP interface that is mapped into the chosen OS

functions.

POSIX OS This is the STRS POSIX AEP-conformant portion of the OS.

Direct service support This layer identifies the ability for the STRS infrastructure to have a

direct interface to the hardware drivers on the platform.

HW drivers/BSP The hardware drivers provide the platform independence to the

software and infrastructure by abstracting the physical hardware

interfaces into a consistent device control API.

Registered OS

services

These are services that are integrated with the chosen OS to provide

services such as MAC-layer interface to physical Ethernet hardware.

Driver API OS-supplied APIs are abstracted from applications via the device

control API.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

62 of 154

Layer Description

BSP The BSP is the software that implements the device drivers and parts

of the kernel for a specific piece of hardware. It provides the

hardware abstraction of the GPM module for the POSIX-compliant

OS. A BSP contains source files, binary files, or both. A BSP

contains an original equipment manufacturer (OEM) adaptation layer

(OAL), which includes a boot loader for initializing the hardware and

loading the OS image. Essentially, the OAL is all of the software that

is hardware specific. The OAL is actually compiled and linked into

the embedded OS.

HW I/O interfaces Device drivers have been created for these physical interfaces.

GPM This is the general-purpose processing module on which the STRS

infrastructure executes.

Specialized hardware This is the physical layer of the hardware modules existing on the

STRS platform.

Figure 12 illustrates the difference between a POSIX-conformant OS and a nonconformant OS.

On the left side, the POSIX AEP is provided entirely by the OS. The POSIX APIs are included in

those for the OS. On the right side, the OS is not POSIX AEP conformant but is partially

compliant. The POSIX AEP is shown in two parts. One part shows the POSIX APIs that are

included in the OS. The other part shows the part of the POSIX AEP that is not provided by the

OS but is to be provided as the POSIX abstraction layer. The STRS OE includes a POSIX

PSE51-conformant OS or POSIX abstraction layer for missing APIs.

Figure 12—POSIX-Compliant Versus POSIX-Conformant OS

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

63 of 154

7.2 Infrastructure

The STRS infrastructure is part of the OE and provides the functionality for the interfaces

defined by the STRS API specification. The infrastructure exposes a standard set of method

names to the applications to facilitate portability. Although the STRS infrastructure may use any

combination of POSIX, OS, BSP functions, or other infrastructure methods to implement a radio

function, which may vary on different platforms, the STRS API will be the same to allow

portability. The STRS API is the well-defined set of interfaces used by STRS applications to

access specific radio functions or used by the infrastructure to control the applications.

The infrastructure is composed of multiple subsystems that interoperate to provide the

functionality to operate the radio. The components shown in figure 13, STRS Infrastructure,

represent the high-level subsystems and services needed to control STRS applications within the

radio platform. These services are provided by the platform infrastructure and support

applications as they execute within the radio platform. The infrastructure functions will include

fault management techniques, which are necessary to increase radio robustness and support

mission-dependent requirements. In order to support one of the primary objectives of the STRS

(upgradeability), an STRS radio should be able to receive updated versions of the OE to support

applications developed for newer versions of this Standard, after deployment.

Figure 13—STRS Infrastructure

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

64 of 154

7.3 STRS APIs

The STRS APIs provide an open software specification so that the application engineers can

develop STRS applications. The goal is to have a standard API available to cover all application

program requirements so that the application programs can be reused on other hardware

systems with minimal porting effort and cost for the application implemented in software and/or

configurable hardware design with increased reliability. Size, weight, and power constraints

may limit the functionality of the radio by imposing a tradeoff among the following: (1) The size

of the API implementation; (2) The size of other internal operations; and (3) The size of the

waveforms and services. The size of the selected GPP should be sufficient to contain the OS, the

STRS infrastructure, and the appropriate portion of the waveforms and services to implement the

required mission functionality, along with sufficient margin to support software upgrades. The

STRS APIs are defined to support internal radio commands. The external interface commands,

described in section 9, often use the internal commands defined by the STRS APIs to accomplish

normal radio operations.

The API layer specification decouples the intellectual property rights of platform, application,

and module developers. The API layer allows development and interoperability of different radio

aspects while protecting the investment of the developers. The definitions of the APIs are based

on a set of sequence diagrams derived from the use cases identified in Appendix B of the

NASA/TP-2008-214813, STRS Software Architecture Concepts and Analysis, document.

The APIs are defined in the following sections. The APIs are grouped by type to simplify the

description of the APIs while providing the detail for each requirement in tabular form. The

table contains the name, description, calling sequence, return type, any preconditions, any post

conditions, and examples. The examples shown in the table for each requirement are written

from the point of view of the STRS application developer. The calling sequences for the

infrastructure-provided APIs are callable from C language implementations of the STRS

applications. If coding is done in C++, the infrastructure-provided API methods do not belong

to any class and should be defined using extern “C.”

A “handle ID” is an identifier used to control access to applications, devices, files, messaging

queues, and other similar resources. The same handle name refers to the same application,

device, file, queue, timer, or service across all applications. For information about errors, see

section 7.3.11.

(STRS-105) The STRS infrastructure APIs shall have an ISO/IEC C language compatible

interface.

7.3.1 STRS Application-Provided Application Control API

A key aspect of a software-architecture is the definition of the APIs that are used to facilitate

software configuration and control of the target platform. The philosophy on which the STRS

architecture is based avoids the conflict between open architecture and proprietary

implementations by specifying a minimum set of APIs that are used to execute waveform

applications and to deliver data and control messages to installed hardware components.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

65 of 154

The following APIs exhibit similar functionality to a resource interface in the Object

Management Group (OMG)/software radio (SWRADIO) or Software Communications

Architecture (SCA). The APIs could be implemented using the same Platform-Independent Model

(PIM) as the OMG/SWRADIO or SCA and a different platform-specific model (PSM) from the

OMG/SWRADIO or SCA. The APIs are further grouped similar to the OMG/SWRADIO as

shown in figure 14, STRS Application and Device Structure.

Figure 14—STRS Application and Device Structure

As shown in figure 14, an STRS application implementation (e.g., waveform) is derived from the

STRS_ApplicationControl API, the STRS_Source API when implementing APP_Read, and the

STRS_Sink API when implementing APP_Write. The interfaces are implemented in groups so

that STRS_ApplicationControl is derived from the STRS_LifeCycle, STRS_PropertySet,

STRS_TestableObject, STRS_ControllableComponent, and STRS_ComponentIdentifier

interfaces.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

66 of 154

STRS requires a C and C++ standard based on ISO/IEC 9899 and ISO/IEC 14882, respectively.

In the USA, this is INCITS/ISO/IEC 9899:year and INCITS/ISO/IEC 14882:year, respectively,

where the year will change periodically. The year is not included in the requirement so that

obsolete compilers are not mandated. In the USA, the InterNational Committee for Information

Technology Standards (INCITS) coordinates technical standards activity between ANSI in the

USA and joint ISO/IEC committees worldwide. INCITS is not included in the requirement, so

that the country of implementation may use its compilers.

(STRS-16) The STRS Application-provided Application Control API shall be implemented

using ISO/IEC C or C++.

(STRS-17) The STRS infrastructure shall use the STRS Application-provided Application

Control API to control STRS applications.

An OE may support applications written in either C , C++, or both. An application written for

an OE that supports only C++ will require extra effort to port it to an OE that supports only C

and vice versa.

(STRS-18) The STRS OE shall support ISO/IEC C or C++, or both, language interfaces for the

STRS Application-provided Application Control API at compile-time.

(STRS-19) The STRS OE shall support ISO/IEC C or C++, or both, language interfaces for the

STRS Application-provided Application Control API at run-time.

The same include files are used for either C or C++ to access the appropriate prototypes.

(STRS-20) Each STRS application shall contain

 #include "STRS_ApplicationControl.h"

(STRS-21) The STRS platform provider shall provide an “STRS_ApplicationControl.h” that

contains the method prototypes for each STRS application and, for C++, the class definition for

the base class STRS_ApplicationControl.

(STRS-22) If the STRS Application-provided Application Control API is implemented in C++,

the STRS application class shall be derived from the STRS_ApplicationControl base class.

For example, the MyWaveform.h file should contain a class definition of the form class

MyWaveform: public STRS_ApplicationControl {…};

A sink is used for a push model of passing data, that is, to write data to the waveform, device,

file, or queue.

(STRS-23) If the STRS application provides the APP_Write method, the STRS application shall

contain

 #include "STRS_Sink.h"

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

67 of 154

(STRS-24) The STRS platform provider shall provide an “STRS_Sink.h” that contains the

method prototypes for APP_Write and, for C++, the class definition for the base class

STRS_Sink.

(STRS-25) If the STRS Application-provided Application Control API is implemented in C++

and the STRS application provides the APP_Write method, the STRS application class shall be

derived from the STRS_Sink base class.

For example, the MyWaveform.h file should contain a class definition of the form

 class MyWaveform: public STRS_ApplicationControl,

 public STRS_Sink

 {…};

A source is used for a pull model of passing data: to read data from the waveform, device, file,

or queue.

(STRS-26) If the STRS application provides the APP_Read method, the STRS application shall

contain

 #include "STRS_Source.h"

(STRS-27) The STRS platform provider shall provide an “STRS_Source.h” that contains the

method prototypes for APP_Read and, for C++, the class definition for the base class

STRS_Source.

(STRS-28) If the STRS Application-provided Application Control API is implemented in C++

and the STRS application provides the APP_Read method, the STRS application class shall be

derived from the STRS_Source base class.

For example, the MyWaveform.h file should contain a class definition of the form

 class MyWaveform: public STRS_ApplicationControl,

 public STRS_Source

 {…};

If both APP_Read and APP_Write are provided in the same waveform, the C++ class will be

derived from all three base classes named in requirements (STRS-22, STRS-25, and STRS-28).

For example, the MyWaveform.h file should contain a class definition of the form

 class MyWaveform: public STRS_ApplicationControl,

 public STRS_Sink,

 public STRS_Source

 {…};

The following state diagram, figure 15, STRS Application State Diagram, shows that an STRS

application can have various states during execution. The files for the STRS application are to be

accessible before execution can begin.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

68 of 154

 STRS_InstantiateApp causes the deployed configuration file to be parsed and

APP_Instance or the constructor to be called such that the STRS application starts in

the STRS_APP_INSTANTIATED state, but it may be transitioned to another state if

specified in the STRS application configuration file.

 STRS_Initialize calls APP_Initialize on the appropriate STRS application.

 APP_Initialize transitions the STRS application to the STRS_APP_STOPPED state

upon successful completion.

 STRS_Start calls APP_Start on the appropriate STRS application.

 APP_Start transitions the STRS application from the STRS_APP_STOPPED state to

the STRS_APP_RUNNING state upon successful completion.

 STRS_Stop calls APP_Stop on the appropriate STRS application.

 APP_Stop transitions the STRS application from the STRS_APP_RUNNING state to

the STRS_APP_STOPPED state upon successful completion.

 STRS_ReleaseObject calls APP_ReleaseObject on the appropriate STRS application.

 The FAULT state may be set by the STRS application or detected by the fault

monitoring and recovery functions, but any recovery is managed by the STRS

infrastructure or by an external system.

The STRS application states shown in figure 15 are the only ones returned when requested by a

call to APP_RunTest with a test ID of STRS_TEST_STATUS. The STRS application developer

may define and use any additional internal substates that the STRS application developer sees

fit; however, these substates are not recognized by the infrastructure. The infrastructure may use

any additional states that are deemed necessary.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

69 of 154

Figure 15—STRS Application State Diagram

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

70 of 154

The following are the STRS Application-provided Application Control APIs:

Table 5—APP_Configure()

APP_Configure()

Description Set values for one or more properties in the application. It is the responsibility of

the application (or device) to determine which properties can be changed in

which states. The caller manages the propList, preallocating and filling the

names and values before calling APP_Configure. The API is defined in

STRS_PropertySet. The method is similar to configure() in PropertySet interface

in SCA or OMG/SWRADIO.

Parameters propList - (in STRS_Properties *) list of name and value pairs

Return status (STRS_Result)

Precondition Storage for the propList with space for sufficient name and value pairs;

sufficient space for each name and value is allocated before calling

APP_Configure.

Postcondition The appropriately named values are configured. The state is unchanged unless

specifically required by the mission.

See Also STRS_Configure

Example STRS_Result APP_Configure(STRS_Properties * propList)

{

STRS_Result rtn = STRS_OK;

int ip;

for (ip=0; ip<propList->nProps, ip++) {

if (strcmp("A", propList->vProps[ip].name)==0){

strncpy(a, propList->vProps[ip].value,

maxLa);

} else

if (strcmp("B", propList->vProps[ip].name)==0){

if (myState == STRS_APP_RUNNING) {

rtn = STRS_WARNING;

} else {

strncpy(b, propList->vProps[ip].value,

maxLb);

}

} else {

rtn = STRS_WARNING;

}

}

return rtn;

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

71 of 154

Table 6—APP_GroundTest()

APP_GroundTest()

Description Perform unit and system testing, which is usually done before deployment. The

testing may include calibration. The tests aid in isolating faults within the

application. This method provides more exhaustive testing that is required before

entrusting life and property to an SDR. Application may be in any state, but

certain tests may be restricted to specific states. Property values may be specified

or retrieved. The propList may be NULL if it is not used. The caller manages the

propList, preallocating the structure. The caller fills in the appropriate list of

names and any input values and sets nProps to the number of names in the list

(nProps > 0). The application fills in any output values for those Properties

whose names are specified in the propList. The API is defined in

STRS_TestableObject. The method is similar to APP_RunTest except that it

contains more extensive testing that will be eliminated for actual flight. This

method may be invalid upon deployment.

Parameters testID - (in STRS_TestID) number of the test to be performed

 propList - (inout STRS_Properties*) list of the name and value pairs used to

configure the test, and/or return results.

Return status or state (STRS_Result)

Precondition The propList is to have space allotted for the maximum number of properties

whose values are to be used or returned.

Postcondition The test is performed. The state is unchanged unless specifically required by

mission.

See Also STRS_GroundTest

Example STRS_Result APP_GroundTest(STRS_TestID testID,

 STRS_Properties *propList) {

 if (testID == 0) {

 …

 return STRS_OK;

 } else {

 STRS_Buffer_Size nb = strlen(

 "Invalid APP_GroundTest argument.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "Invalid APP_GroundTest argument.", nb);

 return STRS_ERROR;

 }

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

72 of 154

Table 7—APP_Initialize()

APP_Initialize()

Description Initialize the application. The API is defined in STRS_LifeCycle. The method is

similar to initialize() in LifeCycle interface in SCA or OMG/SWRADIO. The

purpose is to set or reset the application to a known initial state. If no fault is

detected, this method changes the state to STRS_APP_STOPPED state.

Parameters None

Return status (STRS_Result)

Precondition Application is in STRS_APP_INSTANTIATED or STRS_APP_STOPPED state.

Postcondition Application is in the STRS_APP_STOPPED state.

See Also STRS_Initialize

Example STRS_Result APP_Initialize() {

 if (myState == STRS_APP_RUNNING) {

 STRS_Buffer_Size nb = strlen(

 "Can't Init when STRS_APP_RUNNING.");

 STRS_Log(fromWF,STRS_WARNING_QUEUE,

 "Can't Init when STRS_APP_RUNNING.", nb);

 return STRS_WARNING;

} else {

…

myState = STRS_APP_STOPPED;

}

return STRS_OK;

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

73 of 154

Table 8—APP_Instance()

APP_Instance()

Description Store the two parameters passed in the calling sequence, handle ID identifier in

myQ, and handle name in handleName, respectively, so that they are available to

the other methods in the application. In C++, APP_Instance is a static method

used to call the class constructor for C++. If no fault is detected, this method

returns an instance pointer and changes the state to

STRS_APP_INSTANTIATED state.

Parameters id - (in STRS_HandleID) handle ID of this STRS application.

 name – (in char*) handle name of this STRS application.

Return Pointer to instance of class, in C++. Non-null, in C.

Precondition Any.

Postcondition The application is in the STRS_APP_INSTANTIATED state.

See Also N/A.

Example for C++ ThisSTRSApplication

 *ThisSTRSApplication::APP_Instance(

 STRS_HandleID handleID, char *name) {

 return new ThisSTRSApplication(handleID,name);

}

Example for C char handleName[nMax];

ThisSTRSApplication *APP_Instance(

 STRS_HandleID handleID, char *name) {

 myQ = handleID;

 strncpy(handleName, name, nMax);

 myState = STRS_APP_INSTANTIATED;

 return name;

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

74 of 154

Table 9—APP_Query()

APP_Query()

Description Obtain values for one or more properties in the application. The caller manages

the propList, preallocating the structure. The propList may not be NULL. If the

caller fills in the appropriate list of names and sets nProps to the number of names

in the list (nProps > 0), only those values will be returned whose names are

specified in the propList. If the caller specifies no names in propList (nProps = 0),

both names and values are filled in up to the maximum number allotted (mProps).

The API is defined in STRS_PropertySet. The method is similar to query() in the

PropertySet interface in SCA or OMG/SWRADIO.

Parameters propList - (inout STRS_Properties *) - list of name and value pairs

Return status (STRS_Result)

Precondition The propList is to have space allotted for the maximum number of properties

whose values are to be returned.

Postcondition propList is populated with values if names are already in the list (if nProps > 0),

or else populated with all available names and values up to the maximum

(mProps).

See Also STRS_Query

Example STRS_Result APP_Query(Properties *propList) {

 int ip;

 if (propList == NULL) {

 STRS_Buffer_Size nb = strlen(

 "Can’t return attributes.");

 STRS_Log(fromWF,STRS_ERROR_QUEUE,

 "Can't return attributes.", nb);

 return STRS_ERROR;

 }

 for (ip=0; ip<propList->nProps, ip++) {

 if (strcmp("A",propList->vProps[ip].name)==0)

 {

 /* Variable “a” is declared as a

 * character string, and typically

 * contains a value set by APP_Configure. */

 if (a == NULL || strlen(a) == 0) {

 propList->vProps[ip].value = NULL;

 } else {

 propList->vProps[ip].value = a;

 }

 }

 }

 return STRS_OK;

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

75 of 154

Table 10—APP_Read()

APP_Read()

Description Method used to obtain data from the application. This is optional. The API is

defined in STRS_Source. The caller manages the buffer area, preallocating the

buffer before calling APP_Read and processing the returned data without any

effects on the data source application.

Parameters buffer - (out STRS_Message) a pointer to an area in which the application

stores the requested data

 nb - (in STRS_Buffer_Size) number of bytes requested

Return Error status (negative) or actual number of bytes (non-negative) obtained

(STRS_Result)

Precondition The application is in the STRS_APP_RUNNING state. Storage for the buffer

with space for nb bytes is allocated before calling APP_Read. If used for a

C-style character string, the size should include space for a final '\0'.

Postcondition The data from the application is stored in the buffer area.

See Also STRS_Read

Example STRS_Result APP_Read(STRS_Message buffer,
 STRS_Buffer_Size nb) {

 if (nb <= 4) return STRS_ERROR;
 strcpy (buffer,"ABCD");
 return strlen(buffer);

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

76 of 154

Table 11—APP_ReleaseObject()

APP_ReleaseObject()

Description Free any resources that the application has acquired. An example would be to

close any open files or devices. Nothing is done if the application state is

STRS_APP_RUNNING. The API is defined in STRS_LifeCycle. The method is

similar to releaseObject() in LifeCycle interface in SCA or OMG/SWRADIO.

The purpose of APP_ReleaseObject is to prepare the application for removal.

Parameters None.

Return status (STRS_Result)

Precondition Application is in the STRS_APP_INSTANTIATED or STRS_APP_STOPPED

state.

Postcondition All resources acquired by the application are released.

See Also STRS_ReleaseObject

Example STRS_Result APP_ReleaseObject() {

 if (myState == STRS_APP_RUNNING) {

 STRS_Buffer_Size nb = strlen(

 "Can't free resources when RUNNING.");

 STRS_Log(fromWF,STRS_WARNING_QUEUE,

 "Can't free resources when RUNNING.", nb);

 return STRS_WARNING;

 } else {

 …

 }

 return STRS_OK;

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

77 of 154

Table 12—APP_RunTest()

APP_RunTest()

Description Test specific functionality within the application. The tests provide aid in isolating

faults within the application. Application may be in any state, but certain tests

may be restricted to specific states. Property values may be specified or retrieved.

The propList may be NULL if it is not used. The caller manages the propList,

preallocating the structure. The caller fills in the appropriate list of names and any

input values and sets nProps to the number of names in the list (nProps > 0). The

application fills in any output values for those Properties whose names are

specified in the propList. The API is defined in STRS_TestableObject. The

method is similar to runTest() in TestableObject interface in SCA and

OMG/SWRADIO.

Parameters testID - (in STRS_TestID) number of the test to be performed. A value of

STRS_TEST_STATUS is always to be implemented to return to the current

application state as shown in figure 15. Other values of testID are mission

dependent.

 propList - (inout STRS_Properties*) list of the name and value pairs used to

configure the test and/or return results.

Return status or state (STRS_Result)

Precondition The propList is to have space allotted for the maximum number of properties

whose values are to be used or returned.

Postcondition The test is performed. The state is unchanged unless specifically required by

mission.

See Also STRS_RunTest

Example STRS_Result APP_RunTest(STRS testID,

 STRS_Properties *propList) {

 if (testID == STRS_TEST_STATUS)

 return myState;

 if (testID == STRS_TEST_USER_BASE) {

 …

 } else {

 STRS_Buffer_Size nb = strlen(

 "Invalid APP_RunTest argument test ID.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "Invalid APP_RunTest argument testID.",nb);

 }

 return STRS_ERROR;

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

78 of 154

Table 13—APP_Start()

APP_Start()

Description Begin normal application processing. Nothing is done if the application is not in

STRS_APP_STOPPED state. The API is defined in

STRS_ControllableComponent. The method is similar to start() in the Resource

interface in the SCA or ControllableComponent interface in the

OMG/SWRADIO. If no fault is detected, this method changes the state to the

STRS_APP_RUNNING state.

Parameters None.

Return status (STRS_Result)

Precondition Application is in the STRS_APP_STOPPED state.

Postcondition Application is in the STRS_APP_RUNNING state.

See Also STRS_Start

Example STRS_Result APP_Start() {

if (myState == STRS_APP_STOPPED) {

…

myState = STRS_APP_RUNNING;

…

} else {

return STRS_ERROR;

}

return STRS_OK;

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

79 of 154

Table 14—APP_Stop()

APP_Stop()

Description End normal application processing. Nothing is done unless the application is in

STRS_APP_RUNNING state. The API is defined in

STRS_ControllableComponent. The method is similar to stop() in the Resource

interface in the SCA or ControllableComponent interface in the

OMG/SWRADIO. If no fault is detected, this method changes the state to the

STRS_APP_STOPPED state.

Parameters None.

Return status (STRS_Result)

Precondition Application is in the STRS_APP_RUNNING state.

Postcondition Application is in the STRS_APP_STOPPED state.

See Also STRS_Stop

Example STRS_Result APP_Stop() {

 if (myState == STRS_APP_RUNNING) {

 ...

 myState = STRS_APP_STOPPED;

 ...

 } else {

 return STRS_ERROR;

 }

 return STRS_OK;

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

80 of 154

Table 15—APP_Write()

APP_Write()

Description Method used to send data to the application. This is optional. The API is defined

in STRS_Sink. The caller manages the buffer area, preallocating and filling the

buffer before calling APP_Write.

Parameters buffer - (in STRS_Message) pointer to the data for the application to process

 nb - (in STRS_Buffer_Size) number of bytes in buffer

Return Error status (negative) or number of bytes (non-negative) written (STRS_Result)

Precondition Application is in the STRS_APP_RUNNING state. Storage for the buffer with

space for nb bytes is allocated before calling APP_Write. If used for a C-style

character string, the size should include space for a final '\0'.

Postcondition The data has been captured by the application for its processing.

See Also STRS_Write

Example STRS_Result APP_Write(STRS_Message buffer,
 STRS_Buffer_Size nb) {
 /* Data in buffer is character data. */

 if (strlen(buffer) != nb -1)

 return STRS_ERROR;

 int nco = fprintf(stdout,”%s\n”,buffer);
 return (STRS_Result) nco;

}

(STRS-29) Each STRS application shall contain a callable APP_Configure method as described

in table 5, APP_Configure().

(STRS-30) Each STRS application shall contain a callable APP_GroundTest method as

described in table 6, APP_GroundTest().

(STRS-31) Each STRS application shall contain a callable APP_Initialize method as described in

table 7, APP_Initialize().

(STRS-32) Each STRS application shall contain a callable APP_Instance method as described in

table 8, APP_Instance().

(STRS-33) Each STRS application shall contain a callable APP_Query method as described in

table 9, APP_Query().

(STRS-34) If the STRS application provides data to the infrastructure, then the STRS application

shall contain a callable APP_Read method as described in table 10, APP_Read().

(STRS-35) Each STRS application shall contain a callable APP_ReleaseObject method as

described in table 11, APP_ReleaseObject().

(STRS-36) Each STRS application shall contain a callable APP_RunTest method as described in

table 12, APP_RunTest().

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

81 of 154

(STRS-37) Each STRS application shall contain a callable APP_Start method as described in

table 13, APP_Start().

(STRS-38) Each STRS application shall contain a callable APP_Stop method as described in

table 14, APP_Stop().

(STRS-39) If the STRS application receives data from the infrastructure, then the STRS

application shall contain a callable APP_Write method as described in table 15, APP_Write().

7.3.2 STRS Infrastructure-Provided Application Control API

The STRS infrastructure provides the STRS Infrastructure-provided Application Control API to

support application operation using the STRS Application-provided Application Control API in

section 7.3.1. These STRS Infrastructure-provided Application Control API methods (section

7.3.2 beginning with “STRS_” correspond to the STRS Application-provided Application

Control API (section 7.3.1) beginning with “APP_”, and are used to access those STRS

Application-provided Application Control API methods. The STRS infrastructure implements

these STRS Infrastructure-provided Application Control API methods for use by any STRS

application, or any part of the infrastructure that is desired to be implemented in a portable way.

A property structure contains a list of the name and value pairs used to set or get execution

parameters (section 7.3.10).

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

82 of 154

Table 16—STRS_Configure()

STRS_Configure()

Description Set values for one or more properties in the target component (application,

device). It is the responsibility of the target component to determine which

properties can be changed in which states. The caller manages the propList,

preallocating and filling in the names and values before calling

STRS_Configure.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making the

request.

 toWF - (in STRS_HandleID) handle ID of target component that should

respond to the request.

 propList - (in STRS_Properties *) list of name and value pairs.

Return status (STRS_Result)

Precondition Storage for the propList with space for sufficient name and value pairs;

sufficient space for each name and value is allocated before calling

STRS_Configure.

Postcondition The appropriate named values are configured. The state is unchanged unless

specifically required by the mission.

See Also APP_Configure

Example /* Set A=5, B=27. */

struct {

 STRS_NumberOfProperties nProps;

 STRS_NumberOfProperties mProps;

 STRS_Property vProps[MAX_PROPS];

} propList;

propList.nProps = 2;

propList.mProps = MAX_PROPS;

propList.vProps[0].name = "A";

propList.vProps[0].value = "5";

propList.vProps[1].name = "B";

propList.vProps[1].value = "27";

STRS_Result rtn =

 STRS_Configure(fromWF,toWF,

 (STRS_Properties *) &propList);

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 "STRS_Configure fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "STRS_Configure fails.", nb);

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

83 of 154

 Table 17—STRS_GroundTest()

STRS_GroundTest()

Description Perform unit and system testing—usually done before deployment. The testing

may include calibration. The tests aid in isolating faults within the target

component. This method provides the exhaustive testing that is required before

entrusting life and property to a software-defined radio. A responding

application may be in any state, but certain tests may be restricted to specific

states. Property values may be specified or retrieved. The propList may be

NULL if it is not used. The caller manages the propList, preallocating the

structure. The caller fills in the appropriate list of names and any input values

and sets nProps to the number of names in the list (nProps > 0). The target

component fills in any output values for those Properties whose names are

specified in the propList. This method may be invalid upon deployment.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making the

request.

 toWF - (in STRS_HandleID) handle ID of target component that should

respond to the request.

 testID - (in STRS_TestID) number of the test to be performed. Values are

mission dependent.

 propList - (inout STRS_Properties *) list of the name and value pairs used to

configure the test and/or return results.

Return status or state (STRS_Result)

Precondition The propList is to have space allotted for the maximum number of properties

whose values are to be used or returned.

Postcondition The test is performed. The state is unchanged unless specifically required by

mission.

See Also APP_GroundTest

Example STRS_Result rtn =

 STRS_GroundTest(fromWF,toWF,testID,NULL);

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 "GroundTest fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "GroundTest fails.", nb);

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

84 of 154

Table 18—STRS_Initialize()

STRS_Initialize()

Description Initialize the target component (application, device). The purpose is to set or

reset the component to a known initial state.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making the

request.

 toWF - (in STRS_HandleID) handle ID of target component that should

respond to the request.

Return status (STRS_Result)

Precondition Application is in STRS_APP_INSTANTIATED or STRS_APP_STOPPED

state.

Postcondition Application is in STRS_APP_STOPPED state.

See Also APP_Initialize

Example STRS_Result rtn = STRS_Initialize(fromWF,toWF);

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 "STRS_Initialize fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "STRS_Initialize fails.", nb);

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

85 of 154

Table 19—STRS_Query()

STRS_Query()

Description Obtain values for one or more properties in the target component (application,

device). The caller manages the propList, preallocating the structure. The

propList may not be NULL. If the caller fills in the appropriate list of names and

sets nProps to the number of names in the list (nProps > 0), only those values

will be returned whose names are specified in the propList. If the caller specifies

no names in propList (nProps = 0), both names and values are filled in up to the

maximum number allotted (mProps).

Parameters fromWF - (in STRS_HandleID) handle ID of current component making the

request.

 toWF - (in STRS_HandleID) handle ID of target component that should

respond to the request.

 propList - (inout STRS_Properties *) - list of name and value pairs

Return status (STRS_Result)

Precondition The propList is to have space allotted for the maximum number of properties

encountered.

Postcondition propList is populated with values if names are already in the list; otherwise, it is

populated with all available names and values.

See Also APP_Query

Example struct {

 STRS_NumberOfProperties nProps;

 STRS_NumberOfProperties mProps;

 STRS_Property vProps[MAX_PROPS];

} propList;

propList.nProps = 2;

propList.mProps = MAX_PROPS;

propList.vProps[0].name = "A";

propList.vProps[0].value = NULL;

propList.vProps[1].name = "B";

propList.vProps[1].value = NULL;

STRS_Result rtn =

 STRS_Query(fromWF,toWF,

 (STRS_Properties *) &propList);

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 "STRS_Query fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "STRS_Query fails.", nb);

}

for (ip=0; ip<propList.nProps; ip++) {

 cout << propList.vprops[ip].name << "="

 << propList.vProps[ip].value

 << std::endl;

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

86 of 154

Table 20—STRS_ReleaseObject()

STRS_ReleaseObject()

Description Free any resources that the target component (application, device) has acquired.

An example would be to allow the target component to close any open files or

devices. Nothing is done if the application is started. The purpose of

STRS_ReleaseObject is to prepare the target component for removal.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making the

request.

 toWF - (in STRS_HandleID) handle ID of target component that should

respond to the request.

Return status (STRS_Result)

Precondition Application is in STRS_APP_INSTANTIATED or STRS_APP_STOPPED state

Postcondition All resources acquired by the application are released.

See Also APP_ReleaseObject

Example STRS_Result rtn =

 STRS_ReleaseObject(fromWF,toWF);

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 "STRS_ReleaseObject fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "STRS_ReleaseObject fails.", nb);

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

87 of 154

Table 21—STRS_RunTest()

STRS_RunTest()

Description Test specific functionality within the target component (application, device). The

tests provide aid in isolating faults within the target component. A responding

application may be in any state, but certain tests may be restricted to specific

states. Property values may be specified or retrieved. The propList may be

NULL if it is not used. The caller manages the propList, preallocating the

structure. The caller fills in the appropriate list of names and any input values

and sets nProps to the number of names in the list (nProps > 0). The target

component fills in any output values for those Properties whose names are

specified in the propList.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making the

request.

 toWF - (in STRS_HandleID) handle ID of target component that should

respond to the request.

 testID - (in STRS_TestID) number of the test to be performed. A value of

STRS_TEST_STATUS is always to be implemented to return the current

target component state as shown in figure 15. Other values of testID are

mission-dependent.

 propList - (inout STRS_Properties*) list of the name and value pairs used to

configure the test and/or return results.

Return status or state (STRS_Result)

Precondition The propList is to have space allotted for the maximum number of properties

whose values are to be used or returned.

Postcondition The test is performed. The state is unchanged unless specifically required by

mission.

See Also APP_RunTest

Example STRS_Result state =

 STRS_RunTest(fromWF,toWF,

 STRS_TEST_STATUS,NULL);

if (! STRS_IsOK(state)) {

 STRS_Buffer_Size nb = strlen(

 "STRS_RunTest fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "STRS_RunTest fails.”, nb);

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

88 of 154

Table 22—STRS_Start()

STRS_Start()

Description Begin target component (application, device) processing. Nothing is done if the

application (or device) is already started.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making

the request.

 toWF - (in STRS_HandleID) handle ID of target component that should

respond to the request.

Return status (STRS_Result)

Precondition Application is in the STRS_APP_STOPPED state.

Postcondition Application is in the STRS_APP_RUNNING state.

See Also APP_Start

Example STRS_Result rtn = STRS_Start(fromWF,toWF);

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 "STRS_Start fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "STRS_Start fails.", nb);

}

Table 23—STRS_Stop()

STRS_Stop()

Description End target component (application, device) processing. Nothing is done unless

the application (or device) is started.

Parameters fromWF - in STRS_HandleID) handle ID of current component making

the request.

 toWF - in STRS_HandleID) handle ID of target component that should

respond to the request.

Return status (STRS_Result)

Precondition Application is in the STRS_APP_RUNNING state.

Postcondition Application is in the STRS_APP_STOPPED state.

See Also APP_Stop

Example STRS_Result rtn = STRS_Stop(fromWF,toWF);

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 "STRS_Stop fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "STRS_Stop fails.", nb);

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

89 of 154

(STRS-40) The STRS infrastructure shall contain a callable STRS_Configure method as

described in table 16, STRS_Configure().

(STRS-41) The STRS infrastructure shall contain a callable STRS_GroundTest method as

described in table 17, STRS_GroundTest().

(STRS-42) The STRS infrastructure shall contain a callable STRS_Initialize method as described

in table 18, STRS_Initialize().

(STRS-43) The STRS infrastructure shall contain a callable STRS_Query method as described in

table 19, STRS_Query().

(STRS-44) The STRS infrastructure shall contain a callable STRS_ReleaseObject method as

described in table 20, STRS_ReleaseObject().

(STRS-45) The STRS infrastructure shall contain a callable STRS_RunTest method as described

in table 21, STRS_RunTest().

(STRS-46) The STRS infrastructure shall contain a callable STRS_Start method as described in

table 22, STRS_Start().

(STRS-47) The STRS infrastructure shall contain a callable STRS_Stop method as described in

table 23, STRS_Stop().

7.3.3 STRS Infrastructure Application Setup API

The STRS infrastructure Application Setup methods are general methods or are used to control

one application from another.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

90 of 154

Table 24—STRS_AbortApp()

STRS_AbortApp()

Description Abort an application or service.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making

the request.

 toWF - (in STRS_HandleID) handle ID of target component that should

respond to the request

Return Status (STRS_Result)

Precondition Application is in the STRS_APP_INSTANTIATED, STRS_APP_STOPPED,

or STRS_APP_RUNNING state.

Postcondition The target component is aborted, and application is stopped, resources released,

and unloaded, if allowed by OE.

See Also N/A.

Example STRS_Result rtn = STRS_AbortApp(fromWF,toWF);

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 "AbortApp fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "AbortApp fails.", nb);

}

Table 25—STRS_GetErrorQueue()

STRS_GetErrorQueue()

Description Transform an error status into an error queue.

Parameters result - (in STRS_Result) return value of previous call.

Return Handle ID (STRS_HandleID) corresponding to invalid STRS_Result; that is,

return STRS_ERROR_QUEUE for STRS_ERROR, STRS_WARNING_QUEUE

for STRS_WARNING, and STRS_FATAL_QUEUE for STRS_FATAL.

Precondition Any.

Postcondition The corresponding error queue handle ID is returned.

See Also STRS_IsOK

Example char toWF[MAX_PATH_LENGTH];

strcpy(toWF,"/path/STRS_WFxxx.cfg");

STRS_HandleID wfID =

 STRS_InstantiateApp(fromWF,toWF);

if (wfID < 0) {

 STRS_Buffer_Size nb = strlen(

 "InstantiateApp fails.");

 STRS_Log(fromWF,

 STRS_GetErrorQueue((STRS_Result)wfID),

 "InstantiateApp fails.", nb);

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

91 of 154

Table 26—STRS_HandleRequest()

STRS_HandleRequest()

Description The table of object names is searched for the given name, and the index is

returned as the handle ID. A handle ID is an identifier that is used to control

access to applications and resources such as other applications, devices, files, or

message queues. The handle ID of the current component (fromWF) is used for

any error message unless the handle ID of the current component is what is being

determined.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making the

request unless it is a request for the handle ID of the current component.

 toWF - (in char *) name of desired resource (application, device, file, queue).

Return Handle ID of the entity or error status. (STRS_HandleID)

Precondition Any.

Postcondition No change.

See Also N/A.

Example STRS_HandleID toWF = STRS_HandleRequest(fromWF,

 otherWF);

if (toWF < 0) {

 STRS_Buffer_Size nb = strlen(

 "Did not find handle.");

 STRS_Log(fromWF,STRS_ERROR_QUEUE,

 "Did not find handle.", nb);

}else {

cout << "Found handle for " << otherWF << ": "

 << toWF << std::endl;

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

92 of 154

Table 27—STRS_InstantiateApp()

STRS_InstantiateApp()

Description Instantiate an application, service, or device and perform any operations imposed

by the configuration file. The configuration file specifies such items as

initialization values and state. The infrastructure is responsible for calling the

appropriate methods (e.g., STRS_Configure and/or APP_Configure) to configure

the initial or default values. Other STRS methods may be called to perform

additional functions, such as loading images or performing change of state as

described in the application state diagram, figure 15.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making the

request.

 toWF - (in char *) storage area name or fully qualified file name of the

deployed configuration file of the application (or device) that should be

instantiated. The handleName corresponding to the application, service, or

device specified in the configuration file is to be unique. The convention is to

prefix the application name with a unique source and add a number at the end,

if required, to make the handleName unique. See section 9 for more

information about configuration file(s).

Return Handle ID (STRS_HandleID) of the application instantiated or the error status

Precondition The files for the STRS application is to be accessible.

Postcondition Application, service, or device is in the STRS_APP_INSTANTIATED state

unless otherwise specified by the configuration file.

See Also N/A.

Example char toWF[MAX_PATH_LENGTH];

strcpy(toWF,"/path/STRS_WFxxx.cfg");

STRS_HandleID wfID =

 STRS_InstantiateApp(fromWF,toWF);

if (wfID < 0) {

 STRS_Buffer_Size nb = strlen(

 "InstantiateApp fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "InstantiateApp fails.", nb);

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

93 of 154

Table 28—STRS_IsOK()

STRS_IsOK()

Description Return true, if return value of previous call is not an error status.

Parameters result - (in STRS_Result) return value of previous call.

Return true, if STRS_Result is not STRS_WARNING, STRS_ERROR, or

STRS_FATAL: that is, non-negative (bool)

Precondition Previous call returns a status result.

Postcondition No change.

See Also STRS_GetErrorQueue

Example char toWF[MAX_PATH_LENGTH];

strcpy(toWF,"/path/STRS_WFxxx.cfg");

STRS_HandleID wfID =

 STRS_InstantiateApp(fromWF,toWF);

if (! STRS_IsOK((STRS_Result)wfID)) {

 STRS_Buffer_Size nb = strlen(

 "InstantiateApp fails.");

 STRS_Log(fromWF, STRS_GetErrorQueue(wfID),

 "InstantiateApp fails.", nb);

}

Table 29—STRS_Log()

STRS_Log()

Description Send log message for distribution as appropriate. The time stamp and an

indication of the from and target handles are added automatically. STRS_Log may

be used to inform the infrastructure that the STRS component is in the FAULT

state when a target handle ID of STRS_ERROR_QUEUE,

STRS_WARNING_QUEUE, or STRS_FATAL_QUEUE is used.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making the

request.

 logTarget - (in STRS_HandleID) handle ID of target (e.g.,

STRS_TELEMETRY_QUEUE, STRS_ERROR_QUEUE,

STRS_WARNING_QUEUE, or STRS_FATAL_QUEUE). The last three

special-purpose handle IDs may be used to log errors.

 msg - (in STRS_Message) a pointer to the data to process

 nb - (in STRS_Buffer_Size) number of bytes in buffer

Return status (STRS_Result)

Precondition The target queue component is in the STRS_APP_RUNNING state.

Postcondition Log message is distributed.

See Also See STRS_RunTest or APP_RunTest for further examples.

Example STRS_Buffer_Size nb = strlen("file does not exist.");

STRS_Log(fromWF,STRS_ERROR_QUEUE,

 "file does not exist.", nb);

// This could produce a line something like:

// 19700101000000;WF1,ERROR,file does not exist.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

94 of 154

(STRS-48) The STRS infrastructure shall contain a callable STRS_AbortApp method as

described in table 24, STRS_AbortApp().

(STRS-49) The STRS infrastructure shall contain a callable STRS_GetErrorQueue method as

described in table 25, STRS_GetErrorQueue().

(STRS-50) The STRS infrastructure shall contain a callable STRS_HandleRequest method as

described in table 26, STRS_HandleRequest().

(STRS-51) The STRS infrastructure shall contain a callable STRS_InstantiateApp method as

described in table 27, STRS_InstantiateApp().

(STRS-52) The STRS infrastructure shall contain a callable STRS_IsOK method as described in

table 28, STRS_IsOK().

(STRS-53) The STRS infrastructure shall contain a callable STRS_Log method as described in

table 29, STRS_Log().

(STRS-54) When an STRS application has a nonfatal error, the STRS application shall use the

callable STRS_Log method as described in table 29, STRS_Log(), with a target handle ID of

constant STRS_ERROR_QUEUE.

(STRS-55) When an STRS application has a fatal error, the STRS application shall use the

callable STRS_Log method as described in table 29, STRS_Log(), with a target handle ID of

constant STRS_FATAL_QUEUE.

(STRS-56) When an STRS application has a warning condition, the STRS application shall use

callable the STRS_Log method as described in table 29, STRS_Log(), with a target handle ID of

constant STRS_WARNING_QUEUE.

(STRS-57) When an STRS application needs to send telemetry, the STRS application shall use

the callable STRS_Log method as described in table 29, STRS_Log(), with a target handle ID of

constant STRS_TELEMETRY_QUEUE.

7.3.4 STRS Infrastructure Data Sink

The STRS Infrastructure Data Sink method, STRS_Write, is used to push data to any

implemented data sink. A data sink may be an STRS application or STRS Device implementing

APP_Write, a queue, or a file opened for writing.

(STRS-58) The STRS infrastructure shall contain a callable STRS_Write method as described in

table 30, STRS_Write().

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

95 of 154

Table 30—STRS_Write()

STRS_Write()

Description Method used to send data to a target component (application, device, file, or

queue) acting as a sink. The caller manages the buffer area, preallocating and

filling the buffer before calling STRS_Write.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making

the request.

 toID - (in STRS_HandleID) handle ID of target component that should

respond to the request and that implemented STRS_Sink.

 buffer - (in STRS_Message) a pointer to the data to process

 nb - (in STRS_Buffer_Size) number of bytes in buffer

Return Error status (negative) or number of bytes (non-negative) written

(STRS_Result)

Precondition The target component is in the STRS_APP_RUNNING state. Storage for the

buffer is allocated before calling STRS_Write having space for at least nb

bytes. If used for a C-style character string, the size should include space for a

final '\0'.

Postcondition The data has been captured by the target component for its processing.

See Also APP_Write

Example char buffer[32];

strcpy(buffer,"ABCDE");

STRS_Buffer_Size nb = strlen(buffer);

STRS_Result rtn =

 STRS_Write(fromWF,toID,buffer,nb);

7.3.5 STRS Infrastructure Data Source

The STRS Infrastructure Data Source method, STRS_Read, is used to pull data from any

implemented data source or supplier. A data source may be an STRS application or STRS Device

implementing APP_Read, a SIMPLE queue, or a file opened for reading.

(STRS-59) The STRS infrastructure shall contain a callable STRS_Read method as described in

table 31, STRS_Read().

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

96 of 154

Table 31—STRS_Read()

STRS_Read()

Description Method used to obtain data from a target component (application, device, file,

or SIMPLE queue) acting as a source or supplier. The caller manages the

buffer area, preallocating the buffer before calling STRS_Read and processing

the returned data without any effects on the data source application.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making

the request.

 pullID - (in STRS_HandleID) handle ID of target component that should

respond to the request and that implemented STRS_Source.

 buffer - (out STRS_Message) a pointer to an area in which to store the

data requested

 nb - (in STRS_Buffer_Size) number of bytes requested

Return Error status (negative) or actual number of bytes (non-negative) obtained

(STRS_Result)

Precondition The target component is in the STRS_APP_RUNNING state. Storage for the

buffer is allocated before calling STRS_Read, having space for at least nb

bytes. If used for a C-style character string, the size should include space for a

final '\0'.

Postcondition The data from the target component is stored in the buffer area.

See Also APP_Read

Example char buffer[32];

STRS_Buffer_Size nb = 32;

STRS_Result rtn =

 STRS_Read(fromWF,pullID,buffer,nb);

7.3.6 STRS Infrastructure Device Control API

An STRS Device is a proxy for the data and/or control path to the actual hardware. An STRS

Device is a “bridge” used to “decouple an abstraction from its implementation so that the two

can vary independently.” An STRS Device is called using the methods in the STRS infrastructure

Device Control API (as described in the tables below), STRS Infrastructure-provided Application

Control API, Infrastructure Data Source API (if appropriate), and Infrastructure Data Sink API

(if appropriate) to control the STRS Devices. The STRS Device may be implemented using any

available platform-specific HAL to communicate with and control the specialized hardware. An

STRS Device may also be used to hide the details of networking from the application. The

purpose of abstracting the hardware interfaces in a standard manner is to make the applications

more portable. An STRS Device is an STRS application that responds to the STRS Infrastructure-

provided Application Control API (section 7.3.2) calls, the STRS Infrastructure Data Source API

(section 7.3.5) calls (if appropriate), and STRS Infrastructure Data Sink API (section 7.3.4) calls

(if appropriate), as well as the following additional calls. The STRS Device implementation is

suggested in figure 14.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

97 of 154

Table 32—STRS_DeviceClose()

STRS_DeviceClose()

Description Close the device.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making

the request.

 toDev - (in STRS_HandleID) handle ID of device that should respond to

the request.

Return status (STRS_Result)

Precondition The device is open.

Postcondition The device is closed.

See Also N/A.

Example STRS_Result rtn =

 STRS_DeviceClose(fromWF,toDev);

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 "DeviceClose fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "DeviceClose fails.", nb);

}

Table 33—STRS_DeviceFlush()

STRS_DeviceFlush()

Description Send any buffered data immediately to the underlying hardware and clear the

buffers.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making the

request.

 toDev - (in STRS_HandleID) handle ID of device that should respond to the

request.

Return status (STRS_Result)

Precondition The device is open.

Postcondition The device’s buffered data is flushed.

See Also N/A.

Example STRS_Result rtn =

 STRS_DeviceFlush(fromWF,toDev);

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 "DeviceFlush fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "DeviceFlush fails.", nb);

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

98 of 154

Table 34—STRS_DeviceLoad()

STRS_DeviceLoad()

Description Load a binary image to the device.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making

the request.

 toDev - (in STRS_HandleID) handle ID of device that should respond to

the request.

 fileName - (in char *) storage area name or fully qualified file name of the

binary image to load onto the hardware device.

Return status (STRS_Result)

Precondition The target device is open.

Postcondition The binary image is stored in the target device.

See Also N/A.

Example STRS_Result rtn =

 STRS_DeviceLoad(fromWF,toDev,

 "/path/WF1.FPGA.bit");

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 "DeviceLoad fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "DeviceLoad fails.", nb);

}

Table 35—STRS_DeviceOpen()

STRS_DeviceOpen()

Description Open the device.

Parameters fromWF - (in STRS_HandleID) handle ID of current component

making the request.

 toDev - (in STRS_HandleID) handle ID of device that should respond to

the request.

Return status (STRS_Result)

Precondition The device is not already open.

Postcondition The device is opened.

See Also N/A.

Example STRS_Result rtn =

 STRS_DeviceOpen(fromWF,toDev);

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 "DeviceOpen fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "DeviceOpen fails.", nb);

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

99 of 154

Table 36—STRS_DeviceReset()

STRS_DeviceReset()

Description Reinitialize the device. Reset is normally used after the corresponding device

has been started and stopped, and before the device is started again.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making

the request.

 toDev - (in STRS_HandleID) handle ID of device that should respond to

the request.

Return status (STRS_Result)

Precondition The device is open.

Postcondition The device is reset to an initial state.

See Also N/A,

Example STRS_Result rtn =

 STRS_DeviceReset(fromWF,toDev);

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 "DeviceReset fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "DeviceReset fails.", nb);

}

Table 37—STRS_DeviceStart()

STRS_DeviceStart()

Description Start the device. This is normally not used since most devices start when they

are loaded.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making

the request.

 toDev - (in STRS_HandleID) handle ID of device that should respond to

the request.

Return status (STRS_Result)

Precondition The device is in the STRS_APP_STOPPED state.

Postcondition The device is in the STRS_APP_RUNNING state.

See Also N/A.

Example STRS_Result rtn =

 STRS_DeviceStart(fromWF,toDev);

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 "DeviceStart fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "DeviceStart fails.", nb);

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

100 of 154

Table 38—STRS_DeviceStop()

STRS_DeviceStop()

Description Stop the device. This is normally not used since most devices stop when they

are unloaded or when there are no data to process.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making

the request.

 toDev - (in STRS_HandleID) handle ID of device that should respond to

the request.

Return status (STRS_Result)

Precondition The device is in the STRS_APP_RUNNING state.

Postcondition The device is in the STRS_APP_STOPPED state.

See Also N/A.

Example STRS_Result rtn =

 STRS_DeviceStop(fromWF,toDev);

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 "DeviceStop fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "DeviceStop fails.", nb);

}

Table 39—STRS_DeviceUnload()

STRS_DeviceUnload()

Description Unload the device.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making

the request.

 toDev - (in STRS_HandleID) handle ID of device that should respond to

the request.

Return status (STRS_Result)

Precondition The device is loaded.

Postcondition The device is unloaded.

See Also N/A.

Example STRS_Result rtn =

 STRS_DeviceUnload(fromWF,toDev);

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 "DeviceUnload fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "DeviceUnload fails.", nb);

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

101 of 154

Table 40—STRS_SetISR()

STRS_SetISR()

Description Set the Interrupt Service Routine for the device.

Parameters fromWF - (in STRS_HandleID) handle ID of the current component making

the request.

 toDev - (in STRS_HandleID) handle ID of the device that should respond to

the request.

 pfun – (in STRS_ISR_Function) function pointer to a static function with no

arguments to be called to service the interrupt

Return status (STRS_Result)

Precondition Any.

Postcondition ISR function is activated.

See Also N/A.

Example qnew=myQ;

fp = (STRS_ISR_Function) Test_ISR_Method;

fprintf(stdout,"Pointer to function Test_ISR_ Method:

%p\n",fp);

rtn = STRS_SetISR(myQ,qnew,(STRS_ISR_Function) fp);

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 “STRS_SetISR fails for Test_ISR_ Method.”);

 STRS_Log(myQ, STRS_ERROR_QUEUE,

 “STRS_SetISR fails for Test_ISR_

Method.”,nb);

}

(STRS-60) The STRS applications shall use the methods in the STRS infrastructure Device

Control API, STRS Infrastructure-provided Application Control API, Infrastructure Data Source

API (if appropriate), and Infrastructure Data Sink API (if appropriate) to control the STRS

Devices.

(STRS-61) The STRS infrastructure shall contain a callable STRS_DeviceClose method as

described in table 32, STRS_DeviceClose().

(STRS-62) The STRS infrastructure shall contain a callable STRS_DeviceFlush method as

described in table 33, STRS_DeviceFlush().

(STRS-63) The STRS infrastructure shall contain a callable STRS_DeviceLoad method as

described in table 34, STRS_DeviceLoad().

(STRS-64) The STRS infrastructure shall contain a callable STRS_DeviceOpen method as

described in table 35, STRS_DeviceOpen().

(STRS-65) The STRS infrastructure shall contain a callable STRS_DeviceReset method as

described in table 36, STRS_DeviceReset().

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

102 of 154

(STRS-66) The STRS infrastructure shall contain a callable STRS_ DeviceStart method as

described in table 37, STRS_DeviceStart().

(STRS-67) The STRS infrastructure shall contain a callable STRS_ DeviceStop method as

described in table 38, STRS_DeviceStop().

(STRS-68) The STRS infrastructure shall contain a callable STRS_DeviceUnload method as

described in table 39, STRS_DeviceUnload().

(STRS-69) The STRS infrastructure shall contain a callable STRS_SetISR method as described

in table 40, STRS_SetISR().

7.3.7 STRS Infrastructure File Control API

The STRS Infrastructure File Control methods, along with STRS_Read and/or STRS_Write,

provide a portable means for the applications to use storage, the duration of which is mission-

dependent. The word “file” is used to mean a named storage area regardless of the existence of

a file system. The file control methods in POSIX PSE51 are not sufficient for the needs of STRS

because an application strictly conforming to PSE51 can use the open(), fopen(), or freopen()

functions only to open existing files, not to create new files. In addition, the PSE51 profile lacks

functions to remove files or to provide information regarding available storage. For more

information about POSIX, see section 7.4. The STRS Infrastructure File Control methods use a

handle ID to access storage.

Table 41—STRS_FileClose()

STRS_FileClose()

Description Close the file. STRS_FileClose is used to close a file that has been opened by

STRS_FileOpen.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making

the request.

 toFile - (in STRS_HandleID) handle ID of file to be closed.

Return status (STRS_Result)

Precondition The file is open.

Postcondition The file is closed and the handle ID is released.

See Also STRS_FileOpen

Example STRS_Result rtn = STRS_FileClose(fromWF,toFile);

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 "FileClose fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "FileClose fails.", nb);

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

103 of 154

Table 42—STRS_FileGetFreeSpace()

STRS_FileGetFreeSpace()

Description Get total size of free space available for file storage.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making the

request.

 fileSystem - (in char *) used when more than one file system exists.

Return Total size in bytes (STRS_File_Size).

Precondition Any.

Postcondition No change.

See Also N/A.

Example STRS_File_Size size =

 STRS_FileGetFreeSpace(fromWF,NULL);

if (size < 0) {

 STRS_Buffer_Size nb = strlen(

 "FileGetFreeSpace fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "FileGetFreeSpace fails.", nb);

}

Table 43—STRS_FileGetSize()

STRS_FileGetSize()

Description Get the size of the specified file.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making

the request.

 fileName - (in char *) storage area name or fully qualified file name of the

file for which the size is obtained.

Return File size in bytes (STRS_File_Size).

Precondition Any.

Postcondition No change.

See Also N/A.

Example STRS_File_Size size =

 STRS_FileGetSize(fromWF,"/path/WF1.FPGA.bit");

if (size < 0) {

 STRS_Buffer_Size nb = strlen(

 "FileGetSize fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "FileGetSize fails.", nb);

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

104 of 154

Table 44—STRS_FileGetStreamPointer()

STRS_FileGetStreamPointer()

Description Get the file stream pointer for the file associated with the STRS handle ID. This

is normally not used because either the common functions are built into the

STRS architecture or the entire file manipulation is local to one application or

device. This method may be required for certain file operations not built into

the STRS architecture and distributed over more than one application or device

or the STRS infrastructure. For example, the file stream pointer may be

required when multiple applications write to the same file using a queue or

need features not found in STRS_Write. Having a file system is optional; if no

file system is present, NULL will be returned. A NULL will also be returned if

another error condition is detected.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making

the request.

 toFile - (in STRS_HandleID) file handle ID.

Return File stream pointer (FILE *) or NULL for error condition.

Precondition File is open.

Postcondition No change.

See Also STRS_FileOpen

Example FILE *fsp =

 STRS_FileGetStreamPointer(fromWF,toFile);

if (fsp == NULL) {

 STRS_Buffer_Size nb = strlen(

 "FileGetStreamPointer fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "FileGetStreamPointer fails.", nb);

} else {

 rewind(fsp);

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

105 of 154

Table 45—STRS_FileOpen()

STRS_FileOpen()

Description Open the file. This method is used to obtain an STRS handle ID when the file

manipulation is either built into the STRS architecture or distributed over

more than one application or device or the STRS infrastructure

Parameters fromWF - (in STRS_HandleID) handle ID of current component making

the request.

 filename - (in char *) file name of the file to be opened.

 file access - (in STRS_Access) indicates if file is to be opened for

reading, writing, both, or appending.

 file type - (in STRS_Type) indicator whether file is text or binary.

Return a handle ID used to read or write data from or to the file (STRS_HandleID)

Precondition The file is not open.

Postcondition The file is open unless an error occurs.

See Also N/A.

Example STRS_HandleID frd =

 STRS_FileOpen(fromWF,filename,

 STRS_ACCESS_READ,

 STRS_TYPE_TEXT);

if (frd < 0) {

 STRS_Buffer_Size nb = strlen(

 "FileOpen fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "FileOpen fails.", nb);

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

106 of 154

Table 46—STRS_FileRemove()

STRS_FileRemove()

Description Remove the file.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making

the request.

 oldName - (in char *) name of file to be removed.

Return status (STRS_Result)

Precondition The existing file is not open.

Postcondition The file is no longer available, and the space where it was stored becomes

available.

See Also N/A.

Example STRS_Result rtn =

 STRS_FileRemove(fromWF,oldName);

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 "FileRemove fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "FileRemove fails.", nb);

}

Table 47—STRS_FileRename()

STRS_FileRename()

Description Rename the file.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making

the request.

 oldName - (in char *) current name of file.

 newName - (in char *) new name of file after rename.

Return status (STRS_Result)

Precondition The existing file is not open. The new file should not exist.

Postcondition The contents of the old file are now associated with the new file name.

See Also N/A.

Example STRS_Result rtn =

 STRS_FileRename(fromWF,oldName,newName);

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 "FileRename fails.");

 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "FileRename fails.", nb);

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

107 of 154

(STRS-70) The STRS infrastructure shall contain a callable STRS_FileClose method as

described in table 41, STRS_FileClose().

(STRS-71) The STRS infrastructure shall contain a callable STRS_FileGetFreeSpace method as

described in table 42, STRS_STRS_FileGetFreeSpace().

(STRS-72) The STRS infrastructure shall contain a callable STRS_FileGetSize method as

described in table 43, STRS_FileGetSize().

(STRS-73) The STRS infrastructure shall contain a callable STRS_FileGetStreamPointer method

as described in table 44, STRS_FileGetStreamPointer().

(STRS-74) The STRS infrastructure shall contain a callable STRS_FileOpen method as

described in table 45, STRS_FileOpen().

(STRS-75) The STRS infrastructure shall contain a callable STRS_FileRemove method as

described in table 46, STRS_FileRemove().

(STRS-76) The STRS infrastructure shall contain a callable STRS_FileRename method as

described in table 47, STRS_FileRename().

7.3.8 STRS Infrastructure Messaging API

The STRS applications use the STRS Infrastructure Messaging methods to establish queues to

send messages between components using a single queue handle ID. The ability for applications,

services, devices, or files to communicate with other STRS applications, services, devices, or files

is crucial for the separation of radio functionality among independent asynchronous

components. For example, the receive and transmit telecommunication functionality can be

separated between two applications. Another example is when commands or log messages come

from several independent sources and have to be merged appropriately. Some examples of

independent components that probably need to interact with others could be for navigation,

GPS, file upload, file download, and computations (even nonradio). The STRS radio is

essentially a computer, and it has capabilities that make the whole spacecraft system more

robust. The final destination of a message is not necessarily known to the producer of the

message.

There are two models for passing messages: STRS_QUEUE_SIMPLE and

STRS_QUEUE_PUBSUB. In an STRS_QUEUE_SIMPLE queue, messages are written to a

queue by one application and read from the queue by another application. In an

STRS_QUEUE_PUBSUB queue, messages written to the queue by one application are

subsequently written to all subscribers of that queue. Therefore, the STRS_QUEUE_PUBSUB

messaging API should be implemented using a form of the Observer or Publish-Subscribe design

pattern. To read from a SIMPLE queue, STRS_Read is used. To write to a queue, STRS_Write is

used. STRS_Read and STRS_Write, provide a portable means for the applications to use queues.

Specific predefined queues for the handle IDs denoted by STRS_ERROR_QUEUE,

STRS_FATAL_QUEUE, and STRS_WARNING_QUEUE are required. The STRS_Log method

uses these special-purpose handle IDs to log errors.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

108 of 154

The queue names are global so that the queues with the same name refer to the same queue

across all applications. The same handle name refers to the same application, device, file, queue,

timer, or service across all applications. For information about errors see section 7.3.11.

Table 48—STRS_QueueCreate()

STRS_QueueCreate()

Description Create a queue (first in, first out—FIFO). The use of the queue priority

parameter is implementation dependent.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making

the request.

 queueName - (in char *) unique name of the queue

 queueType - (in STRS_Queue_Type) type of queue created:

STRS_QUEUE_SIMPLE or STRS_QUEUE_PUBSUB.

 queuePriority - (in STRS_Priority) priority of queue:

STRS_PRIORITY_LOW, STRS_PRIORITY_MEDIUM, or

STRS_PRIORITY_HIGH.

Return handle ID of queue or error status (STRS_HandleID)

Precondition Queue does not already exist having the given queue name.

Postcondition Queue is created.

See Also N/A.

Example STRS_HandleID qX = STRS_QueueCreate(myQ, "QX",

 STRS_QUEUE_SIMPLE, STRS_PRIORITY_MEDIUM);

if (qX < 0) {

 STRS_Buffer_Size nb = strlen(

 "Can’t create queue.");

 STRS_Log(fromWF,STRS_ERROR_QUEUE,

 "Can't create queue.", nb).

 return STRS_ERROR;

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

109 of 154

Table 49—STRS_QueueDelete()

STRS_QueueDelete()

Description Delete a queue. Any association between a publisher and subscriber that

references the queue to be deleted is removed.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making

the request.

 toQueue - (inout STRS_HandleID) handle ID of queue to delete; either

publisher or subscriber

Return status (STRS_Result)

Precondition Queue already exists having the specified queue handle ID.

Postcondition Queue is deleted.

See Also N/A.

Example STRS_Result rtn = STRS_QueueDelete(myQ,qX);

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 "Can't delete queue.");

 STRS_Log(fromWF,STRS_ERROR_QUEUE,

 "Can’t delete queue.", nb);

}

Table 50—STRS_Register()

STRS_Register()

Description Register an association between a publisher and subscriber. Disallow adding

an association such that the subscriber has another association back to the

publisher because this would cause an infinite loop.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making

the request.

 useQID - (in STRS_HandleID) handle ID of queue of type

STRS_QUEUE_PUBSUB that will be used in sink; the publisher.

 actQID - (in STRS_HandleID) handle ID of queue, file, device, or target

component that should respond to the request; the subscriber.

Return status (STRS_Result)

Precondition The publisher queue of type STRS_QUEUE_PUBSUB exists.

Postcondition Association between publisher and subscriber is registered, if allowed.

See Also N/A.

Example STRS_Result rtn = STRS_Register(myQ,qX,qFC);

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 "Can't register subscriber.");

 STRS_Log(fromWF,STRS_ERROR_QUEUE,

 "Can’t register subscriber.", nb);

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

110 of 154

Table 51—STRS_Unregister()

STRS_Unregister()

Description Remove an association between a publisher and subscriber.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making

the request.

 useQID - (in STRS_HandleID) handle ID of queue of type

STRS_QUEUE_PUBSUB that was used in sink; the publisher.

 actQID - (in STRS_HandleID) handle ID of queue, file, device, or target

component that should respond to the request; usually the subscriber.

Return status (STRS_Result)

Precondition The publisher queue of type STRS_QUEUE_PUBSUB exists.

Postcondition Association between publisher and subscriber is removed.

See Also N/A.

Example STRS_Result rtn = STRS_Unregister(myQ,qX,qFC);

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 "Can't unregister subscriber.");

 STRS_Log(fromWF,STRS_ERROR_QUEUE,

 "Can’t unregister subscriber.", nb);

}

(STRS-77) The STRS applications shall use the STRS Infrastructure Messaging, STRS

Infrastructure Data Source, and STRS Infrastructure Data Sink methods to establish queues to

send messages between components.

(STRS-78) The STRS infrastructure shall contain a callable STRS_QueueCreate method as

described in table 48, STRS_QueueCreate().

(STRS-79) The STRS infrastructure shall contain a callable STRS_QueueDelete method as

described in table 49, STRS_QueueDelete().

(STRS-80) The STRS infrastructure shall contain a callable STRS_Register method as described

in table 50, STRS_Register().

(STRS-81) The STRS infrastructure shall contain a callable STRS_Unregister method as

described in table 51, STRS_Unregister().

7.3.9 STRS Infrastructure Time Control API

The STRS Infrastructure Time Control methods are used to access the hardware and software

timers. If timers require synchronization with external clocks, a dedicated service should handle

the communication required between the STRS radio and the external clock source, adjusting the

time or offset for distance and velocity, before using these methods to adjust a corresponding

internal timer. These methods also include conversion of time between seconds and

nanoseconds, taken individually, and some implementation-specific object containing both.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

111 of 154

Although nanoseconds are the units obtained by STRS_GetNanoseconds, that does not imply that

the resolution is nanoseconds or that the underlying STRS_TimeWarp object contains its data in

nanoseconds. For example, the underlying STRS_TimeWarp object could count ticks from some

epoch and then STRS_GetSeconds and STRS_GetNanoseconds compute the seconds and

nanoseconds from the same or a different epoch. These timers are expected to be used for

relatively low accuracy timing such as time stamps, timed events, and time constraints. The

timers are expected to be used for signal processing in the GPP if the GPP becomes fast enough.

Table 52—STRS_GetNanoseconds()

STRS_GetNanoseconds()

Description Get the number of nanoseconds from the STRS_TimeWarp object.

Parameters twObj - (in STRS_TimeWarp) the STRS_TimeWarp object from

which the nanoseconds portion of the time increment is extracted.

Return Integer number of nanoseconds in the STRS_TimeWarp object

representing a time interval. (STRS_int32)

Precondition Any.

Postcondition No change.

See Also STRS_SetTimeWarp, STRS_GetSeconds

Example STRS_TimeWarp base, timx;

STRS_int32 nsec;

STRS_Result rtn;

STRS_Clock_Kind kx = 1;

rtn =

 STRS_GetTime(fromWF,toDev,*base,kx,*timx);

nsec = STRS_GetNanoseconds(base);

Table 53—STRS_GetSeconds()

STRS_GetSeconds()

Description Get the number of seconds from the STRS_TimeWarp object.

Parameters twObj - (in STRS_TimeWarp) the STRS_TimeWarp object from which

the nanoseconds portion of the time increment is extracted.

Return integer number of seconds in the STRS_TimeWarp object representing a time

interval. (STRS_int32)

Precondition Any.

Postcondition No change.

See Also STRS_SetTimeWarp, STRS_GetNanoseconds

Example STRS_TimeWarp base,timx;

STRS_int32 isec;

STRS_Result rtn;

STRS_Clock_Kind kx = 1;

rtn = STRS_GetTime(fromWF,toDev,*base,kx,*timx);

isec = STRS_GetSeconds(base);

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

112 of 154

Table 54—STRS_GetTime()

STRS_GetTime()

Description Get the current base time and the corresponding time of a specified type (kind).

The base clock/timer is usually a hardware timer. The variable kind is used to

obtain a nonbase time at a specified offset from the base time. An offset is

usually specified to ensure that the clock is monotonically increasing after a

power reset or synchronized with another clock/timer. To compute the time

interval between two nonbase times of different kinds, the function is called

twice and the interval is modified by the difference between the two base times.

An example of the difference between two nonbase times is shown in the

example below.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making

the request.

 toDev - (in STRS_HandleID) handle ID of device that should respond to

the request.

 baseTime - (inout STRS_TimeWarp) current time of the base timer.

 kind - (in STRS_Clock_Kind) type of clock/timer.

 kindTime - (inout STRS_TimeWarp) current time of the specified timer.

Return status (STRS_Result)

Precondition Any.

Postcondition No change.

See Also STRS_SetTime

Example STRS_TimeWarp b1,b2,t1,t2,diff;

STRS_int32 isec,nsec;

STRS_Result rtn;

STRS_Clock_Kind k1 = 1;

STRS_Clock_Kind k2 = 2;

rtn = STRS_GetTime(fromWF,toDev,*b1,k1,*t1);

rtn = STRS_GetTime(fromWF,toDev,*b2,k2,*t2);

/* The time difference between timer k1 and

 * timer k2 is computed by obtaining the two

 * times, t1 and t2, and adjusting for the

 * time difference between the two base times,

 * b2 and b1:

 */

isec = STRS_GetSeconds(t2) -

 (STRS_GetSeconds(t1) +

 (STRS_GetSeconds(b2) -

 STRS_GetSeconds(b1)));

nsec = STRS_GetNanoseconds(t2) -

 (STRS_GetNanoseconds(t1) +

 (STRS_GetNanoseconds(b2) -

 STRS_GetNanoseconds(b1)));

diff = STRS_GetTimeWarp(isec,nsec);

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

113 of 154

Table 55—STRS_GetTimeWarp()

STRS_GetTimeWarp()

Description Get the STRS_TimeWarp object containing the number of seconds and

nanoseconds in the time interval.

Parameters isec - (in STRS_int32) number of seconds in the time interval

 nsec - (in STRS_int32) number of nanoseconds in the fractional

portion of the time interval

Return STRS_TimeWarp object representing the time interval.

Precondition Any.

Postcondition No change.

See Also STRS_GetNanoseconds, STRS_GetSeconds, STRS_SetTime

Example STRS_TimeWarp delta;

STRS_int32 isec = 1; /* Leap second. */

STRS_int32 nsec = 0;

delta = STRS_GetTimeWarp(isec,nsec);

Table 56—STRS_SetTime()

STRS_SetTime()

Description Set the current time in the specified clock/timer by adjusting the time offset.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making

the request.

 toDev - (in STRS_HandleID) handle ID of device that should respond to

the request.

 kind - (in STRS_Clock_Kind) type of clock/timer.

 delta - (in STRS_TimeWarp) increment to add to specified clock/timer.

Return status (STRS_Result)

Precondition Any.

Postcondition Time is adjusted.

See Also STRS_GetTime

Example STRS_TimeWarp delta;

STRS_int32 isec = 1; /* Leap second */

STRS_int32 nsec = 0;

STRS_Result rtn;

STRS_Clock_Kind k1 = 1;

delta = STRS_GetTimeWarp(isec,nsec);

rtn = STRS_SetTime(fromWF,toDev,k1,delta);

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

114 of 154

Table 57—STRS_Synch()

STRS_Synch()

Description Synchronize clocks. The action depends on whether the clocks to be

synchronized are internal or external.

Parameters fromWF - (in STRS_HandleID) handle ID of current component making

the request.

 refDev - (in STRS_HandleID) handle ID of reference device containing the

reference clock/timer.

 ref - (in STRS_Clock_Kind) type of reference clock/timer.

 targetDev - (in STRS_HandleID) handle ID of target device to synchronize.

 target - (in STRS_Clock_Kind) type of clock/timer to synchronize with

reference clock/timer.

Return status (STRS_Result)

Precondition Any.

Postcondition Clocks are synchronized.

See Also N/A.

Example qref = STRS_HandleRequest(myQ,”ReferenceClock”);

iref = 0;

qtgt = STRS_HandleRequest(myQ,”TargetClock”);

itgt = 0;

rtn = STRS_Synch(myQ,qref,iref,qtgt,itgt);

if (! STRS_IsOK(rtn)) {

 STRS_Buffer_Size nb = strlen(

 “STRS_ Synch fails.”);

 STRS_Log(myQ, STRS_ERROR_QUEUE,

 “STRS_ Synch fails.”, nb);

}

(STRS-82) Any portion of the STRS Applications on the GPP needing time control shall use the

STRS Infrastructure Time Control methods to access the hardware and software timers.

(STRS-83) The STRS infrastructure shall contain a callable STRS_GetNanoseconds method as

described in table 52, STRS_GetNanoseconds().

(STRS-84) The STRS infrastructure shall contain a callable STRS_GetSeconds method as

described in table 53, STRS_GetSeconds().

(STRS-85) The STRS infrastructure shall contain a callable STRS_GetTime method as described

in table 54, STRS_GetTime().

(STRS-86) The STRS infrastructure shall contain a callable STRS_GetTimeWarp method as

described in table 55, STRS_GetTimeWarp().

(STRS-87) The STRS infrastructure shall contain a callable STRS_SetTime method as described

in table 56, STRS_SetTime().

(STRS-88) The STRS infrastructure shall contain a callable STRS_Synch method as described in

table 57, STRS_Synch().

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

115 of 154

7.3.10 STRS Predefined Data

For portability, standard names are defined for various constants and data types, but the

implementation of these definitions is mission dependent. The common symbols and data types

defined to support the STRS infrastructure APIs are shown in table 58, STRS Predefined Data.

(STRS-89) The STRS platform provider shall provide an STRS.h file containing the STRS

predefined data shown in table 58, STRS Predefined Data.

(STRS-106) An STRS application shall use the appropriate constant, typedef, or struct defined in

table 58, STRS Predefined Data, when the data are used to interact with the STRS APIs.

Table 58—STRS Predefined Data

Typedefs STRS_Access - a type of number used to indicate how reading and/or writing of a

file or queue is done. See also constants STRS_ACCESS_APPEND,

STRS_ACCESS_BOTH, STRS_ACCESS_READ, and STRS_ACCESS_WRITE.

 STRS_Buffer_Size – a type of number used to represent a buffer size in bytes. The

type of the number is to be long enough to contain the maximum number of bytes to

reserve or to transfer with a read or write.

 STRS_Clock_Kind - a type of number used to represent a kind of clock or timer.

The type of the number is to be long enough to contain the maximum number of

kinds of clocks and timers.

 STRS_File_Size - a type of number used to represent a size in bytes. The type of

the number is to be long enough to contain the number of bytes in GPP storage. A

negative value returned indicates an error.

 STRS_HandleID - a type of number used to represent an STRS application, device,

file, or queue. A negative value returned indicates an error.

 STRS_int8 - an 8-bit signed integer

 STRS_int16 - a 16-bit signed integer

 STRS_int32 - a 32-bit signed integer

 STRS_int64 - a 64-bit signed integer

 STRS_ISR_Function - used to define static C-style function pointers passed to the

STRS_SetISR() method. The function passed to the STRS_SetISR() method is

defined with no arguments.

 STRS_Message - a char array pointer used for messages.

 STRS_NumberOfProperties - a type of number used to represent the number of

properties in a Properties structure.

 STRS_Queue_Type – a type of number used to represent the queue type. See also

constants STRS_QUEUE_SIMPLE and STRS_QUEUE_PUBSUB.

 STRS_Priority - a type of number used to represent the priority of a queue. See also

constants STRS_PRIORITY_HIGH, STRS_PRIORITY_MEDIUM,

STRS_PRIORITY_LOW.

 STRS_Properties – shorthand for “struct Properties”

 STRS_Property – shorthand for “struct Property”

 STRS_Result - a type of number used to represent a return value, where negative

indicates an error.

 STRS_TestID – a type of number used to represent the built-in test or ground test to

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

116 of 154

be performed by APP_RunTest or APP_GroundTest, respectively. See also

STRS_TEST_STATUS and STRS_TEST_USER_BASE.

 STRS_TimeWarp - a representation of a time delay. The values in the

representation are to be able to hold the number of seconds and nanoseconds in the

time delay so that the corresponding macros can extract them. The time delay is

meant to be used for recurrent processes such as in health management. The

implementation is mission and/or platform specific and is most likely a struct. The

maximum number of seconds in a time delay cannot be greater than 2
31

 seconds (68

years). See also STRS_GetSeconds(), STRS_GetNanoseconds(), and

STRS_GetTimeWarp().

 STRS_Type - a type of number used to indicate whether a file is text or binary. See

also constants STRS_TYPE_BINARY and STRS_TYPE_TEXT.

 STRS_uint8 - an 8-bit unsigned integer

 STRS_uint16 - a 16-bit unsigned integer

 STRS_uint32 - a 32-bit unsigned integer

 STRS_uint64 - a 64-bit unsigned integer

Constants STRS_ACCESS_APPEND - writing is allowed such that previous data written are

preserved and new data are written following any previous data. Corresponds to

ISO C fopen mode “a”.

 STRS_ACCESS_BOTH - both reading and writing are allowed. Corresponds to

ISO C fopen mode “r+” used for update.

 STRS_ACCESS_READ - reading is allowed. Corresponds to ISO C fopen mode

“r”.

 STRS_ACCESS_WRITE - writing is allowed. Corresponds to ISO C fopen mode

“w”.

 STRS_OK - the STRS_Result is valid. See also STRS_IsOK().

 STRS_ERROR - the STRS_Result is invalid. This indicates an error such that the

application or other component is still usable. Indicated by a negative value. See

also STRS_IsOK() and STRS_GetErrorQueue().

 STRS_ERROR_QUEUE - the STRS_HandleID indicates that the log queue is for

error messages. See also STRS_GetErrorQueue().

 STRS_FATAL - the STRS_Result is invalid. This indicates a serious error such that

the application or other component is not usable. Indicated by a negative value. See

also STRS_IsOK() and STRS_GetErrorQueue().

 STRS_FATAL_QUEUE - the STRS_HandleID indicates that the log queue is for

fatal messages. The fatal queue is used for messages that the fault monitoring and

recovery functions are to deal with immediately. The messages are sent to the Flight

Computer for further handling. See also STRS_GetErrorQueue().

 STRS_PRIORITY_HIGH – a number representing a high-priority queue.

 STRS_PRIORITY_MEDIUM – a number representing a medium-priority queue.

 STRS_PRIORITY_LOW – a number representing a low-priority queue.

 STRS_QUEUE_PUBSUB – a number representing a Publish/Subscribe queue type.

 STRS_QUEUE_SIMPLE – a number representing a simple queue type.

 STRS_TELEMETRY_QUEUE - the STRS_HandleID indicates that the log queue

is for telemetry data.

 STRS_TEST_STATUS – The numerical value of type STRS_TestID used as the

argument to APP_RunTest and STRS_RunTest so that the state of the STRS

application is returned.

 STRS_TEST_USER_BASE – The numerical value of type STRS_TestID for the

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

117 of 154

lowest numbered user-defined test. Any STRS_TestID values lower than

STRS_TEST_USER_BASE are reserved arguments to APP_RunTest. An example

of a test type lower than STRS_TEST_USER_BASE is STRS_TEST_STATUS.

 STRS_TYPE_BINARY - the value indicating that a file is a binary file.

 STRS_TYPE_TEXT - the value indicating that a file is a text file.

 STRS_WARNING - the STRS_Result is invalid. This indicates an error such that

there may be little or no effect on the operation of the application or other

component. Indicated by a negative value. See also STRS_IsOK() and

STRS_GetErrorQueue().

 STRS_WARNING_QUEUE - the STRS_HandleID indicates that the log queue is

for warning messages. See also STRS_GetErrorQueue().

 STRS_APP_FATAL - waveform, service, or device state indicating that a

nonrecoverable error has occurred. See also STRS_GetErrorQueue().

 STRS_APP_ERROR - waveform, service, or device state indicating that a

recoverable error has occurred. See also STRS_GetErrorQueue().

 STRS_APP_INSTANTIATED - waveform, service, or device state indicating that

the object is instantiated and ready to accept messages.

 STRS_APP_RUNNING - waveform, service, or device state indicating that

STRS_Start() has been called.

 STRS_APP_STOPPED - waveform, service, or device state indicating that

STRS_Initialize() or STRS_Stop() has been called.

Structs Property - a struct with two-character pointer variables: name and value. Using a

structure allows treating a name and value pair as a single item.

 Properties - a struct with two variables (nProps and mProps) of type

STRS_NumberOfProperties, and an array of Property structures (vProps). The

variable nProps contains the number of items in the vProps array. The variable

mProps contains the maximum number of items in the vProps array. Using an array

of structures allows treating each name and value pair as a single item in the vProps

array.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

118 of 154

7.3.11 Error Handling

Special-purpose handle IDs for errors include the following: STRS_ERROR_QUEUE,

STRS_WARNING_QUEUE, and STRS_FATAL_QUEUE. The STRS_Log method uses these

special-purpose handle IDs to log errors. A nonfatal error is a correctable condition such that

the application is usable when the error is corrected. This nonfatal error is denoted by the STRS

return value of STRS_ERROR and is logged using the STRS handle ID of

STRS_ERROR_QUEUE. A warning is an indication of an impending error that is correctable if

action is taken. This warning is denoted by the STRS return value of STRS_WARNING and is

logged using the STRS handle ID of STRS_WARNING_QUEUE. A fatal error is a condition

where the application is subsequently not usable and a reboot or reload is often necessary. This

fatal error is denoted by the STRS return value of STRS_FATAL and is logged using the STRS

handle ID of STRS_FATAL_QUEUE.

7.4 Portable Operating System Interface

POSIX refers to a family of IEEE standards 1003.n that describe the fundamental services and

functions necessary to provide a UNIX-like kernel interface to applications. POSIX itself is not

an OS but is instead the guaranteed programming interfaces available to the application

programmer.

POSIX specifies a set of OS interfaces and services. POSIX is not specifically bound to a specific

OS, and has in fact been implemented on top of OS such as Digital Equipment Corporation’s

(DEC’s) OpenVMS (Virtual Memory System) and Microsoft Windows NT. However, the creation

of POSIX is closely coupled to the UNIX OS and its evolution. The goal was to create a standard

set of interfaces that all of the UNIX flavors would support in order to facilitate software

portability. Even though POSIX technically refers to the family of specifications, it is more

commonly used to refer specifically to IEEE 1003.1, which is the core POSIX specification.

Characteristics of POSIX include the following:

a. Application-oriented.

b. Interface, not implementation.

c. Source, not object, portability.

d. The C-language/system interfaces written in terms of the ISO C standard.

e. No superuser, no system administration.

f. Minimal interface, minimally defined—core facilities of this Standard have been kept

as minimal as possible.

g. Broadly implementable.

h. Minimal changes to historical implementations.

i. Minimal changes to existing application code.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

119 of 154

The original POSIX specification was based on a general-purpose computing platform, but a

series of amendments addressed the unique requirements of real-time computing. These

amendments follow:

a. IEEE Std 1003.1b-1993 Realtime Extension.

b. IEEE Std 1003.1c-1995 Threads Extension.

c. IEEE Std 1003.1d-1999 Additional Realtime Extensions.

d. IEEE Std 1003.1j-2000 Advanced Realtime Extensions.

e. IEEE Std 1003.1q-2000 Tracing.

These amendments were rolled into the base specification in version IEEE 1003.1-1996.

IEEE 1003.13 provides a standards-based option for an STRS AEP.

7.4.1 STRS Application Environment Profile

The subset of the POSIX API described below is used by STRS applications to access platform

services when no STRS Infrastructure-provided API is available. POSIX was the chosen as part

of this Standard because it defines an open-standard OS interface and environment to support

application portability. However, because of the limited resources on a space-based platform, it

was not practical to support the entire IEEE 1003.1 specification.

The POSIX 1003.1 standard provides a means to implement a subset of the interfaces by using

“Subprofiling Option Groups.” These option groups specify “Units of Functionality” that can be

removed from the base POSIX specification.

IEEE 1003.13 created four AEPs that specified subsets of 1003.1 more suitable to embedded

applications. These profiles follow:

 PSE51—Minimal Realtime Systems Profile.

 PSE52—Realtime Controller System Profile.

 PSE53—Dedicated Realtime System Profile.

 PSE54—Multi-Purpose Realtime System Profile.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

120 of 154

PSE51

PSE52

PSE53

PSE54

Figure 16—Profile Building Blocks

The profiles are each upwardly compatible and consist of the basic building blocks shown in

figure 16,
1
 Profile Building Blocks.

Each of these profiles has increasing capabilities, which increase requirements on resources.

Profiles 51 and 52 run on a single processor with no Memory Management Unit (MMU), and

thus imply a single process containing one or more threads. Profile 52 adds a file system

interface and asynchronous I/O. Profile 53 adds support for multiple processes, thus requiring

an MMU. The last and largest profile 54 adds support for interactive users, and is almost a full-

blown POSIX 1003.1 environment. The higher numbered profiles are supersets of the lower

numbered profiles, such that PSE52 includes all the features of a PSE51.

Upward portability between profiles is supported by requiring certain APIs, such as memory

locking, for profiles PSE51 and PSE52. Even though there is no MMU support on the PSE51 and

PSE52 profiles, code written as if there is an MMU present will be portable among all four

profiles by requiring such APIs to be defined in all four profiles. The signature of these APIs will

be identical on all profiles, but the functionality will differ according to the capabilities. For

example, calling a memory-locking API on a PSE51 platform with no MMU will always return

success. When this example application is ported to a PSE53 platform, the memory locking will

work as intended without modification to the source code.

Currently this Standard supports platforms based on profiles PSE51 through PSE54, although

PSE54 will only be used for development platforms and ground stations. Allowing multiple

profiles allows the architecture to scale with mission class. Applications developed for a specific

1
 IEEE Std 1003.13-2003

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

121 of 154

profile are compatible with higher profiles; that is, a profile 52 application could be ported to

profile PSE53 and PSE54 platform, but not vice versa. This upward scalability anticipates that

smaller platforms will desire smaller profiles and will not have the resources to run larger

applications that comply with the larger profiles. Appendix B provides a table comparing the

POSIX profile functionality for subset PSE51 through PSE53.

(STRS-90) The STRS OE shall provide the interfaces described in POSIX IEEE Standard

1003.13-2003 profile PSE51.

For constrained-resource platforms with limited software evolutionary capability, where the

waveform signal processing is implemented in specialized hardware, the supplier may request a

waiver to only implement a subset of POSIX PSE51 as required by the portion of the waveforms

residing on the GPP. The applications created for this platform are to be upward-compatible to

a larger platform containing POSIX PSE51. The POSIX API is grouped into units of

functionality. If none of the applications for a constrained-resource platform use any of the

interfaces in a unit of functionality, then the supplier may request a waiver to eliminate that

entire unit of functionality.

Regardless of the POSIX profile implemented, applications are not to use any restricted

functions or their equivalent, such as abort(), atexit(), exit(), calloc(), free(), malloc(), or

realloc(). For portability of application code to multithreaded radio platforms, STRS

applications are to use the thread-safe versions of the POSIX methods listed in table 59,

Replacements for Unsafe Functions.

(STRS-91) STRS applications shall use POSIX methods except for the unsafe functions listed in

table 59, Replacements for Unsafe Functions.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

122 of 154

Table 59—Replacements for Unsafe Functions

Unsafe Function

Do Not Use!

Reentrant Counterpart

OK to Use

abort STRS_AbortApp

asctime asctime_r

atexit -

calloc -

ctermid ctermid_r

ctime ctime_r

exit STRS_AbortApp

free -

getlogin getlogin_r

gmtime gmtime_r

localtime localtime_r

malloc -

rand rand_r

readdir readdir_r

realloc -

strtok strtok_r

tmpnam tmpnam_r

7.5 Network Stack

A network stack is the part of the OS used for networking, usually Transmission Control

Protocol/Internet Protocol (TCP/IP). Communications over a network use a layered network

model. TCP/IP is the protocol that is used to transport information over the internet, and the

TCP/IP network model consists of five layers: the application layer, the transport layer, the

network layer, the data link layer, and the physical network.

7.6 Operating System

The OS is an integral part of the OE for the STRS software architecture. Modern communication

systems perform simultaneous application processing in dedicated hardware at the very fast

speeds to which users have become accustomed. Any change in this environment is to equal or

exceed previous performance for it to be considered for usage. As such, the proposal to perform

application processing via software modules executing on a GPP requires careful consideration

of both the necessary OS characteristics and the application processing requirements. In a

simplistic sense, a computer OS manages the usage and sharing of resources between competing

users (i.e., tasks) to perform work. In this case, each task is performing a specific instance of

application processing. When the OS decides to stop the execution of one task and start another,

the current context of the machine (register values, instruction pointers, etc.) is to be saved and

then switched to accommodate the requirements of the new task. On a desktop computer system,

context switching between competing tasks is performed on an ad-hoc basis with no guarantee of

task execution. For most missions, this is unacceptable because context switching between

execution threads and deterministic thread execution are the driving characteristics for an OS.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

123 of 154

To support these requirements, most radio platforms will use an RTOS instead of a general-

purpose OS. An RTOS provides the capabilities of fast, low overhead for context switching, and

a deterministic scheduling mechanism so that processing constraints can be achieved when

required.

Fundamental to STRS application development is the existence of an OS kernel that can be

configured and scaled down to fit into the executable image of the STRS system. A modern RTOS

is primarily designed for either performance (monolithic kernel) or extensibility (microkernel).

Monolithic kernels have tightly integrated services and less run-time overhead but are not easily

extensible. Microkernels have somewhat high run-time overheads but are highly extensible. Most

modern RTOSs are microkernels, and although modern microkernels have more overhead than

monolithic kernels, they have less overhead than traditional microkernels. The run-time

overhead of modern RTOSs is decreased by reducing the unnecessary context switch. Important

timings such as context switch time, interrupt latency, and semaphore get and release latency is

to be kept to a minimum.

7.7 Hardware Abstraction Layer

The HAL is the library of software functions in the STRS OE that provides a platform-vendor-

specific view of the specialized hardware by abstracting the underlying physical hardware

interfaces. The HAL allows specialized hardware to be integrated with the GPM so that the

STRS OE can access functions implemented on the specialized hardware of the STRS platform.

Two examples of specialized hardware currently in use on SDRs are FPGAs and DSPs.

Examples of functionality that a HAL might need to support include boot code for initializing the

hardware and loading the OS image, context switch code, configuration and access to hardware

resources. The HAL is commonly referred to by platform vendors as drivers or BSPs. Most

companies already provide such libraries to allow use of specialized hardware. This layer

enables the STRS infrastructure to have a direct interface to the hardware drivers on the

platform.

There are two requirements concerning the HAL in the STRS architecture:

a. STRS-11 requires a HAL software API, which defines the physical and logical

interfaces for intermodule and intramodule integration. The HAL is required for communicating

data and control information between the GPP and the specialized hardware. The HAL API is

not currently defined in this Standard but is left for the STRS platform provider to specify.

b. STRS-92 requires HAL documentation that includes a description of each method, its

calling sequence, the return values, an explanation of the functionality, preconditions for using

the method, postconditions after using the method, and examples where helpful. Note that the

delivery of the HAL source code is not required.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

124 of 154

The electrical interfaces, connector requirements, and physical requirements are specified by the

STRS platform provider in the HID. Information on a module’s use of data in the HID will be

made available to STRS application developers, either directly from the manufacturer (for

specific types of components) or from the STRS platform provider (for memory maps based on

electrical connections). The infrastructure or HAL may use this information to appropriately

initialize hardware drivers such that control and data messages are delivered to the module.

Even though there is not a requirement for the STRS OE to be portable, the HAL is expected to

foster portability and reusability of the STRS infrastructure and specialized hardware in different

combinations from that originally designed. It can reduce the design efforts otherwise necessary

to adapt the software to a new hardware platform. The goal with the HAL is to make it easier to

change or add new hardware and to minimize the impact to the software. It does this by

localizing the differences in software so that most of the STRS OE code does not need to be

changed to run on a new platform or a platform with a new module.

Table 60, Sample HAL Documentation, shows an example of the HAL API for the function

OPEN.

(STRS-92) The STRS platform provider shall provide the STRS platform HAL documentation

that includes the following:

(1) For each method or function, its calling sequence, return values, an explanation of

its functionality, any preconditions for using the method or function, and the

postconditions after using the method or function.

(2) Information required to address the underlying hardware, including the interrupt

input and output, the memory mapping, and the configuration data necessary to

operate in the STRS platform environment.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

125 of 154

Table 60—Sample HAL Documentation

HAL API RESULT OPEN(HANDLE* resourceHandle, RESOURCE_NAME

resourceName)

Description Open a resource by name. If no errors are encountered, use the

resourceHandle to access the resource.

Parameters resourceHandle - [out] A pointer to place the opened handle into

 resourceName - [in] The name of the resource to open

Return A 32-bit signed integer used to determine whether an error has occurred.

Use TEST_ERROR to obtain a printable message.

 Zero - No errors or warnings.

 Positive – Warning.

 Negative – Error.

Precondition Resource is not open before executing this command.

Postcondition Resource will be open and ready for further access if no error

was encountered.

See Also READ, WRITE, CLOSE, TEST_ERROR

Example #include <HALResources.h>

 …

RESULT result;

HANDLE resourceHandle;

RESOURCE_NAME resourceName = "FPGA";

result = OPEN(&resourceHandle, resourceName)

if (result < 0) {

 cout << "Error: " << TEST_ERROR(result) << endl;

} else if (result > 0) {

 cout << "Warning: " << TEST_ERROR(result) << endl;

}

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

126 of 154

8. EXTERNAL COMMAND AND TELEMETRY INTERFACES

An STRS radio cannot perform the necessary application and platform functions without an

external system providing commands, accepting responses, and monitoring the radio’s health

and status. The STRS radio implements an external interface to receive and act on the commands

from the external system, translates the commands into the format expected by the application,

and provides the information for monitoring the health and status of the radio. If the STRS radio

has the capability for new or modified OE, application software, or configurable hardware

design, the external command and telemetry interfaces should be able to accept and store new

files. The interface in the STRS radio and in the external system, which is to provide the control,

via a command sequence, to the STRS radio and receive responses from an STRS radio, is

referred to as the STRS command and telemetry interfaces. The external STRS command and

telemetry functionality illustrated in figure 17, Command and Telemetry Interfaces, typically

resides on the spacecraft’s flight computer, and/or it may reside on a ground station or another

spacecraft.

Figure 17—Command and Telemetry Interfaces

This shared capability implies that the STRS radio is capable of performing the interface

functions. Within the STRS radio, if there are data stored on the radio that are to be transferred

to an external system, the capability is to exist to send data using a mission-specific protocol to

the receiver (flight computer, ground station, or other spacecraft) and capability in the receiver

to process those data or write those data to a file or download service or to a storage area that is

accessible from both. The reverse capability for STRS radio control is also necessary: The

external system is capable of sending commands using a mission-specific protocol and the STRS

radio is capable of validating, deciphering, and processing those commands. For example, data

coming over the Flight Computer Interface are interpreted by the Command and Control

Manager as shown in figure 13 and are processed by the STRS infrastructure.

Within the STRS radio, components of the command and telemetry interfaces are necessary to

provide the interfaces between the STRS OE and the STRS command and telemetry functionality

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

127 of 154

on the external system. The command and telemetry interfaces may include a standard type of

mechanical, electrical, and functional spacecraft bus interface, such as

MIL–STD–1553; command and telemetry interpretation; and translation of the command set to

the STRS standard necessary for application control. The protocol, command set, and telemetry

set for the STRS command and telemetry interfaces are NOT part of the STRS standard but can

be unique to each mission. A number of interface and behavior requirements are part of the

standard to support the mission-specific protocols.

The requirements related to the external command and telemetry interfaces follow:

(STRS-94) An STRS platform shall accept, validate, and respond to external commands.

(STRS-95) An STRS platform shall execute external application control commands using the

standardized STRS APIs.

(STRS-107) An STRS platform provider shall document the external commands describing their

format, function, and any STRS methods invoked.

If an STRS application needs to interface with an external system request or provide telemetry,

the following requirements apply:

(STRS-96) The STRS infrastructure shall use the STRS_Query method to service external

system requests for information from an STRS application.

The STRS telemetry set will be mission-specific but will likely contain some or all of the

following parameters:

a. Power values.

(1) Voltage, current, and power readings.

b. Environment values.

(1) Temperature.

(2) Pressure.

c. Power on reset test result status.

(1) RAM test.

(2) Read-only memory (ROM) test.

(3) File management test.

(4) PROM software revision.

(5) Maximum memory configuration.

(6) Individual module self-test status (GO/NO GO).

d. Module configuration.

(1) Module type.

(2) Module location.

(3) Hardware revision.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

128 of 154

e. Application-specific parameters.

f. Language support (C and/or C++).

g. STRS Architecture Standard version.

h. STRS OE release version.

i. Available memory and free space for data and files.

A suggested set of services that may be implemented by the STRS command and telemetry

interfaces on the external system (flight computer, ground station, or other spacecraft) is shown

in table 61, Suggested Services Implemented by the STRS command and telemetry interfaces.

These services are NOT required for the STRS Architecture Standard at this time, but are likely

needed for commanding and controlling an SDR and are expected to be part of the external

system set of required functions.

Table 61—Suggested Services Implemented by the

STRS Command and Telemetry Interfaces

Function Description

Application Control

Application Selection

This command requests that the STRS radio instantiate the application

and facilitate the installation of devices and resources requested by the

application. This service should not impact existing applications. The

command arguments will include the application ASCII name of a

deployed configuration file that identifies all other files and initial

parameters specified for an application.

Application Configuration
This command requests a customization of the application by specifying

parameters the application will use.

Application Query
This command requests the current parameters and operational values of

the application.

Application Start

This command requests that an initialized application begin processing

application data. If the application has not been selected or completed

initialization, the command will be rejected.

Application Stop
This command requests that a running application halt processing of

application data. The application resources are not deallocated.

Application Unload
This command requests that the STRS infrastructure unload the identified

application and release all resources associated with the application.

File Control Interface

Upload File Request

This request will initiate an upload of a file to the STRS radio and place

it in a specified location. If the command gets an error, the reason will be

made available.

Delete File Request
This is a request for the deletion of a specified file from an STRS

platform.

Download File Request

This request is complementary to the Upload File Request. This

command will initiate a download of a specified file from the STRS

platform.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

129 of 154

Radio Control Interface

Built-in-test
This request will perform a commanded built-in-test used to monitor the

health of the radio and diagnose any problems.

Telemetry Control Interface

Telemetry Control

Several different telemetry structure definitions may exist for different

classes of STRS radios. Many systems will employ a polling technique

where the data are provided only upon request. Other systems may desire

a grouping of telemetry that can be identified to be sent at some periodic

rate.

9. CONFIGURATION FILE(S)

Configuration files are used by the STRS infrastructure to specify attributes of files, devices,

queues, waveforms, and services contained on an STRS radio. Two types of configuration files

are discussed, as follows: (1) Platform configuration files (which are optional); and (2)

Application configuration files (which are required). Platform configuration files provide the

STRS infrastructure with information on the devices and modules currently installed in the

system. Application configuration files contain application-specific information for configuration

and customization of installed applications, as well as information for the STRS infrastructure to

use to instantiate applications on the radio GPP. Application configuration files provide STRS

application developers with flexibility in choosing parameters and values deemed pertinent to

the implementation unrestricted by the STRS platform providers.

9.1 General Configuration File Format Definition and Use

The use of XML version 1.0 to define the STRS platform and application configuration data

allows STRS platform providers and STRS application developers to take advantage of the

features of XML; that is, to have the ability to identify configuration information in a standard,

human-legible, precise, flexible, and adaptable method. XML is a markup language for

documents containing structured information that contains both content and some indication of

what role that content plays. XML defines tags containing or delimiting content and showing the

relationships between them (see http://www.w3.org/XML/). XML is used to hold data and

metadata and is currently being used throughout the Joint Tactical Radio System (JTRS)–SCA

development environment process. The XML-formatted version of the STRS platform and

application configuration files is not intended to be sent directly to the radio because of the extra

overhead required to transmit and process XML-formatted data. Instead, it is anticipated that

the XML configuration file will be preparsed, and additional error checking on the file will be

performed prior to transmission. This process will reformat the configuration file into an

appropriately optimized configuration file, which will subsequently be loaded into the radio.

Requirements and discussion related to the configuration files refer to both the predeployed (i.e.,

nonoptimized XML file) configuration files and deployed (i.e., optimized) configuration files. The

platform developers have the option of specifying the predeployed files as the deployed

configuration files. For consistency and simplicity, XML 1.0 is required. The use of XML 1.0 for

the application configuration files is required; it is strongly encouraged for the development of

the platform configuration files.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

130 of 154

There are at least two options for preprocessing the XML domain profile for the STRS

architecture:

(1) Generate actual code by the preprocessor to deploy the application onto the specific

hardware.

(2) Convert the XML domain profile into a static binary format that would be input to an

application deployment routine that loads the application.

The first option has the benefit of deploying the application as fast as possible, since the

deployment code is specific to the application on the specific platform. The disadvantage of this

approach would be that the deployment code would have to be regenerated for all applications

that move to a different platform. The second option provides a more flexible approach, such

that the XML files are translated into a standard binary format used by all applications and

platforms. If the platform changes for a group of applications, only a new deployment routine

has to be created for the new platform and nothing has to be generated for each specific

application.

The XML format can accommodate a number of required configuration parameter features, such

as the following:

a. Range limits of configuration parameters.

b. Discrete allowable values of data items.

c. Output formatting for each parameter that is specific to a mission.

d. Configuration parameter dependency logic.

e. Error-checking logic.

An XML interface tool could be used to create and modify platform and application configuration

files. Commercially available XML interface tools provide an interface for basic editing of the

configuration data files. In addition, these tools enforce error checking and interdependency checks

to ensure that the entered data are correct and within the hardware and software limits. An XML

Schema Definition (XSD) file contains an XML schema describing the structure and constraining the

content of XML documents (See http://www.w3.org/XML/Schema). An XML schema is to be used to

describe the XML file format of the application configuration files. Many tools use an XML schema

to standardize the XML data entry and provide basic error checking.

Figure 18, XML Transformation and Validation, illustrates the relationships between an XML

file and its corresponding schema, as well as representing the preprocessing of the XML file in a

simplified form using Extensible Stylesheet Language (XSL) Transformations (XSLTs). XSL is a

family of recommendations for defining XML document transformation and presentation. XSLT

is a language for transforming XML into text using any other vocabulary imaginable. The XSLT

uses an expression language, XML Path Language (XPath), to access or refer to parts of an

XML document. For transmuting instances of configuration files in XML, to create the desired

output, an XSL (XSLT and XPath) could be used (see http://www.w3.org/Style/XSL/).

Downloaded from http://www.everyspec.com

http://www.w3.org/XML/Schema
http://www.w3.org/Style/XSL/

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

131 of 154

Schema

XML XSL

XSLT

S-Expressions

Schema is used to validate

XML. XML follows Schema.

XSL is used to

transform XML.

Figure 18—XML Transformation and Validation

The XML should be preprocessed to a platform-specific format to optimize space on the STRS

radio while keeping the equivalent content.

The application configuration files are developed by the STRS integrators using information

obtained from both the STRS platform provider and the STRS application developers. The STRS

integrators use the application configuration files to install the applications on the platform.

There may be multiple STRS integrators. The STRS integrator for each application may be the

STRS platform provider or STRS application developer or a designated entity. The STRS

integrator is always the STRS infrastructure developer for any applications delivered with the

infrastructure. The application configuration file requirements are written assuming that the

STRS application developers and STRS platform providers are separate entities and that not all

the applications and documentation are available at the same time as the platform, schema, and

transformation tools. Figure 19, Configuration File Development Process, details the process,

provider, and related requirement numbers for the development and delivery of platform and

application configuration files.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

132 of 154

Figure 19—Configuration File Development Process

9.2 Platform Configuration Files

The development and delivery of the platform configuration files is a goal of the STRS

architecture but is optional. The STRS platform provider has the option to choose the method to

describe and use the hardware and software environment for the STRS infrastructure.

Developing platform configuration file(s) is the likely method to be used by an STRS platform

provider to identify the existence of the different hardware modules and their associated

configuration files to allow the OE to instantiate drivers and test applications. An STRS platform

configuration file may be used when starting the STRS infrastructure to configure various

properties of the STRS platform. Configuring these properties at run-time allows greater

flexibility than configuring them at compile-time. To increase the runtime flexibility of the STRS

platform, the STRS infrastructure is likely to use deployed platform configuration files to

determine the existence and attributes of the files, devices, queues, waveforms, and services

contained on the STRS radio. Attributes of files, devices, and queues could include access

(read/write, both, or append), type (text or binary), and other properties. The name of the

starting configuration file(s) may be provided to the STRS infrastructure upon initialization. The

predeployed platform configuration files should contain platform configuration information such

as the following:

a. Hardware module names and types.

b. Memory types, sizes, and access.

c. Memory mapping.

d. Unique names and attributes of files, devices, queues, services, and applications

known to the OE at boot-up.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

133 of 154

An XML 1.0 schema should be provided with the predeployed platform configuration files to

validate the format and data in the XML configuration file. The XML schema is usually a

separate file so that multiple configuration files can reference the same schema. The XML

schema for the platform should contain information to validate the order of the tags, the number

of occurrences of each tag, and the values or attributes. The XML schema for the platform

configuration files should ensure the following:

a. Numeric values are valid numbers and fall within an allowable range.

b. Alphabetic values are strings of characters and, if appropriate, are chosen from a

given set.

c. Hexadecimal values conform to rules for hexadecimal numbers using “digits” from

the set {0123456789abcdef} and fall within an allowable range.

To support the need to upgrade or modify the platform, the STRS platform provider should

provide the following platform configuration file artifacts with the platform:

a. Predeployed platform configuration file.

b. XML schema to validate the format and data in the corresponding predeployed STRS

platform configuration files, including the order of the tags, the number of occurrences of each

tag, and the values or attributes.

c. Tools and documentation for the transformation of a predeployed platform

configuration file in XML into a deployed platform configuration file.

d. Deployed STRS platform configuration file.

9.3 Application Configuration Files

A predeployed STRS application configuration file is created by the STRS integrator using

platform information, the XML schema supplied by the STRS platform provider, and application

information provided by the STRS application developer. The deployed application configuration

file is used by the infrastructure (see the STRS_InstantiateApp method) when starting the STRS

application to configure various properties of the STRS application. Configuring these

properties at run time allows greater flexibility than configuring them at compile time. For

example, one might configure the STRS handle names of files, devices, queues, waveforms and

services needed by the STRS application so that these can be easily changed. Since a service is

actually an application that has been incorporated into the STRS infrastructure, the format of the

application configuration file should be a subset of the format of the platform configuration file

as specified by the schema. If any STRS application resources need to be loaded separately into

memory or into a device, such as an FPGA, before the STRS application can function properly,

these should be specified in the configuration file for that STRS application.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

134 of 154

A predeployed STRS application configuration file is to be written in XML 1.0 to describe and

save application configuration information. An XML schema is to be provided with the

predeployed STRS application configuration files to validate their format and data. The XML

schema is usually a separate file so that multiple STRS application configuration files can

reference the same schema. The XML schema for the STRS application should contain

information to validate the order of the tags, the number of occurrences of each tag, and the

values or attributes. The XML schema for the STRS application configuration files should also

ensure the following:

a. Numeric values are valid numbers and fall within an allowable range.

b. Alphabetic values are strings of characters and, if appropriate, are chosen from a

given set.

c. Hexadecimal values conform to rules for hexadecimal numbers using “digits” from

the set {0123456789abcdef} and fall within an allowable range.

The operational parameters specified are used during the operation of the radio to initialize or

reinitialize the STRS application into a known state using the STRS_Configure and

APP_Configure methods. The STRS application should be automatically restarted into this

known state after any problem that requires cycling power.

(STRS-98) The STRS platform provider shall document the necessary platform information

(including a sample file) to develop a predeployed application configuration file in XML 1.0.

(STRS-99) The STRS application developer shall document the necessary application

information to develop a predeployed application configuration file in XML 1.0.

(STRS-100) The STRS integrator shall provide a predeployed application configuration file in

XML 1.0.

(STRS-101) The predeployed STRS application configuration file shall identify the following

application attributes and default values:

(1) Identification.

A. Unique STRS handle name for the application.

B. Class name (if applicable).

(2) State after processing the configuration file.

(3) Any resources to be loaded separately.

A. Filename of loadable image.

B. Target on which to put loadable image file.

C. Target memory in bytes, number of gates, or logic elements.

(4) Initial or default values for all distinct operationally configurable parameters.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

135 of 154

(STRS-102) The STRS platform provider shall provide an XSD file to validate the format and

data for predeployed STRS application configuration files, including the order of the tags, the

number of occurrences of each tag, and the values or attributes.

(STRS-103) The STRS platform provider shall document the transformation (if any) from a

predeployed application configuration file in XML into a deployed application configuration file

and provide the tools to perform such transformation.

(STRS-104) The STRS integrator shall provide the deployed STRS application configuration file

for the STRS infrastructure to place the STRS application in the specified state.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

136 of 154

APPENDIX A

EXAMPLE CONFIGURATION FILES

A.1 STRS Platform Configuration File Hardware Example

Appendix A introduces examples of platform and application configuration files, necessary for

application execution and platform initialization. Appendix A also describes example

configuration file formats. STRS configuration files contain platform- and application-specific

information for the customization of installed applications. These examples are not required

formats. They are intended to illustrate some considerations that STRS platform providers and

STRS application developers should take into account when designing their configuration file

formats.

An example of the format of the portion of an STRS platform configuration file that deals with

hardware is implemented in an XML schema. This format is shown in figure 20, Example of

Hardware Portion of STRS Platform Configuration File.

Figure 20—Example of Hardware Portion of STRS Platform Configuration File

For any GPP, the memory size and memory location should be specified in bytes. Rationale for

International Standard—Programming Languages—C states the following:

(1) “All objects in C must be representable as a contiguous sequence of bytes, each of

which is at least 8 bits wide.”

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

137 of 154

(2) “Any object can be treated as an array of characters, the size of which is given by

the sizeof operator with that object’s type as its operand.”

(3) “It is fundamental to the correct usage of functions, such as malloc and fread that

sizeof(char) be exactly one.”

Therefore, for consistency across C and C++ implementations, bytes are used.

MODULE list A list of hardware modules having memory able to contain data and executable software.

 MODULENAME The unique name for each hardware module accessible from the current GPP. The

current GPP is denoted by SELF.

 MODULETYPE The name of the hardware type. The hardware module types may be GPP, RF,

FPGA, DSP, ASIC, and so forth.

 MEMORY list A list of memory areas of various types. See below for further information.

o MEMORYTYPE Memory type may be RAM, EEPROM, etc.

o MEMORYSIZE The number of memory units.

o MEMORYUNITS Memory units may be BYTES or, GATES. For any GPP, the size is to

be in BYTES.

o MEMORYACCESS Memory access for the memory. Access may be READ, WRITE, or

BOTH.

 MEMORYMAP list This list provides the base addresses and memory size of regions of the current GPP

RAM (SELF) that are memory mapped to the module: that is, memory mapped to an

external device. There may be more than one item in the list when different parts of

memory are either not contiguous or are used for different purposes. See section A.2,

under DEVICE list, in ATTRIBUTE list, for memory offsets specific to the device

associated with a name.

o MEMORYBASENAME A unique identifier for the portion of memory mapped to the module.

o MEMORYBASEADDRESS The starting byte address reserved for memory mapping.

o MEMORYSIZE Number of bytes starting at the base address reserved for memory

mapping.

o MEMORYACCESS Memory access for the portion of memory mapped to the module.

Access may be READ, WRITE, or BOTH. The access defined here may

be different from the memory access defined in the previous section

when part of the memory is used for one purpose and another part is

used for a different purpose.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

138 of 154

A.2 STRS Platform Configuration File Software Example

An example of the format of the portion of an STRS platform configuration file that deals with

software is implemented in an XML schema. This format is shown in figure 21, Example of

Software Portion of STRS Platform Configuration File.

Figure 21—Example of Software Portion of STRS Platform Configuration File

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

139 of 154

FILE list A list of files to read, write, both, or append from multiple locations using a handle ID.

 FILEHANDLENAME This is usually a unique shortened form of the file name used in

messages and for obtaining the handle ID.

 FILENAME Storage area name or fully qualified file name.

 FILETYPE The file type may be TEXT or BINARY.

 FILEACCESS The file access may be READ, WRITE, BOTH, or APPEND.

BOTH implies update: that is, READ and WRITE.

DEVICE list A list of devices to read or write from multiple locations using a

handle ID. A device in the list is software that acts as a proxy for

some hardware connection to an external device or a software

manager for access to multiple or variable devices.

 DEVICEHANDLENAME This is usually a unique shortened form of the module name used in

messages and for obtaining the handle ID.

 DEVICENAME This is usually a shortened form of the module name for the device.

If coded in C++, this is the class name.

 DEVICEACCESS The access to the device may be specified as READ, WRITE,

BOTH, or NONE. READ indicates that the device implements

APP_Read(). WRITE indicates that the device implements

APP_Write().

 LOADFILE list A list of files to be loaded for execution if not already loaded.

Usually, the software for the device on the current GPP (SELF)

should be loaded before the configurable hardware design so that

the software can load and configure the device as necessary.

o LOADFILENAME Storage area name or fully qualified file name.

o LOADTARGET The module name for the device on which the file is instantiated or

loaded. The load process is determined by the corresponding

MODULE information (see section A.1).

o LOADMEMORY

 MEMORYSIZE The number of memory units.

 MEMORYUNITS Memory units may be BYTES or GATES. For any GPP, the size is

to be in BYTES.

o LOADTHREADTYPE

o LOADTHREADTAG

o LOADTHREADPRIORITY

 ATTRIBUTE list A list of properties set as default during initialization.

o NAME Name of the attribute.

o VALUE Value of the attribute.

o MAPVALUE list Location in memory of the attribute when memory mapped. A

location is to be unique to the associated device.

 MAPVALUEBASENAME A unique identifier for the portion of memory mapped to the

module. This is to match a MEMORYBASENAME value defined

in section A.1, under MODULE list in the MEMORYMAP list.

 MAPVALUEOFFSET Offset from the address of baseName as defined in the module list's

memory map list.

 MAPVALUEBITOFFSET Bit offset from the high order position to begin.

 MAPVALUESIZE Number of bits in which to store the value.

 MAPVALUEACCESS Memory access may be READ, WRITE, or BOTH.

QUEUE list The information necessary to create queues.

 QUEUEHANDLENAME The name of the queue that the publisher uses to send data to the

subscribers. Used in messages and for obtaining the handle ID.

 QUEUETYPE READ for pull, WRITE for push. In all cases, STRS_Write is used

to write to the queue. READ indicates that STRS_Read is used to

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

140 of 154

obtain data from the queue. WRITE indicates that the queue calls

STRS_Write to send the data to any subscribers.

 QUEUEPRIORITY Priority of queue.

REGISTER list The correspondences between queues and subscribers. This decouples publishers from

subscribers.

 PUBLISHER The name of the queue that the publisher uses to send data to the subscribers.

Used in messages and for obtaining the handle ID.

 SUBSCRIBER A handle name for a subscriber. Used in messages and for obtaining the handle

ID.

MONITOREDITEM list A list of monitored items that are tested to indicate the health of the system.

 ATTRIBUTENAME The name of the property whose value is to be tested in a monitored

component.

 HANDLENAME The handle name defines the monitored component from which to obtain the

value corresponding to the attributeName.

 DELAY A positive value represents the nominal time delay between successive

automated tests of the monitored component. A nonpositive value indicates

that the test is to be requested.

 TESTTYPE The type of test to apply to the property to ascertain whether the value indicates

the monitored component is healthy. Examples include testing for exact values,

within ranges, or by use of operations in Reverse Polish Notation (RPN).

o EXACT Monitored value is to be one of the values in the value list.

o EXCLUDE Monitored value is not to be in the value list.

o BETWEENII Monitored value is to be between the pairs of values in the value list including

both end points.

o BETWEENIX Monitored value is to be between the pairs of values in the value list including

the low end point and excluding the high end point.

o BETWEENXI Monitored value is to be between the pairs of values in the value list excluding

the low end point and including the high end point.

o BETWEENXX Monitored value is to be between the pairs of values in the value list excluding

both end points.

o RPN The attributeName, values to be tested, and operators is to appear in the value

list using RPN. RPN uses sequences of one or two arguments followed by an

operator. The result of applying the operator replaces the original sequence

used, and the process is repeated until there are no more operators. The

attributeName for the monitored value is replaced, in the RPN formula, by the

corresponding property value. For example, the sequence of data and operators

in the VALUE list for testing the property named D in RPN—

0;D;LT;D;500;LE;AND—is equivalent to (0<D && D<500)

 The current set of operators includes the following:

AND, OR, XOR, NOT, EQ, NE, GT, GE, LT, LE, PLUS, MINUS,

MULTIPLY, DIVIDE, MOD, MIN, MAX,

If floating point is required or allowed, the set of operators could be augmented

with the following: SIN, COS, TAN, ASIN, ACOS, ATAN1, ATAN2, SINH,

COSH, TANH, ABS, EXP, LOG10, LN, SQRT, FLOOR, CEIL, ROUND,

POW.

 VALUE list A list of values and possibly operations used corresponding to the value of

TESTTYPE.

o For example, if TESTTYPE is EXACT, the VALUE list will contain

{512,1024,2048,4096} if those are the allowed values.

o If TESTTYPE is EXCLUDE and odd numbers between 1 and 10 are not

allowed, the VALUE list will contain {1,3,5,7,9}.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

141 of 154

o If TESTTYPE is BETWEENII and the attribute D is allowed between 0

and 500, inclusive (0 < D < 500), the VALUE list will contain {0,500}.

Because the TESTTYPE is BETWEENII, the lower limit, 0, is included

and the upper limit, 500, is included.

o If TESTTYPE is BETWEENIX and the attribute D is allowed between 0

and 500 (0 < D < 500), the VALUE list will contain {0,500}. Because

the TESTTYPE is BETWEENIX, the lower limit, 0, is included and the

upper limit, 500, is excluded.

o If TESTTYPE is BETWEENXI and the attribute D is allowed between 0

and 500 (0 < D < 500), the VALUE list will contain {0,500}. Because

the TESTTYPE is BETWEENXI, the lower limit, 0, is excluded and the

upper limit, 500, is included.

o If TESTTYPE is BETWEENXX and the attribute D is allowed between

0 and 500, exclusive (0 < D < 500), the VALUE list will contain

{0,500}. Because the TESTTYPE is BETWEENXX, the lower limit, 0,

is excluded and the upper limit, 500, is excluded.

o If TESTTYPE is RPN and the attribute D is allowed between 0 and 500

(0 < D < 500), the VALUE list will contain {0,D,LT,D,500,LE,AND}.

A.3 STRS Application Configuration File Example

An example of the format of an STRS application configuration file in XML is shown in

Figure 22, Example of STRS Waveform Configuration File.

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

142 of 154

Figure 22—Example of STRS Waveform Configuration File

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

143 of 154

APPLICATION list

 WFHANDLENAME This is a unique shortened form of the application name used in messages and for

obtaining the handle ID.

 WFNAME If coded in C++, this is the application class name.

 WFACCESS The access to the application may be specified as READ, WRITE, BOTH, or NONE.

READ indicates that the application implements APP_Read(). WRITE indicates that

the application implements APP_Write().

 WFSTATE The state at which the application is left after processing the configuration file. The

state may be STRS_APP_INSTANTIATED, STRS_APP_STOPPED, or

STRS_APP_RUNNING.

 LOADFILE list A list of files to be loaded for execution if not already loaded. Usually, the software

for the application on the current GPP (SELF) should be loaded before the

configurable hardware design so that the software can load and configure the

software or configurable hardware design as necessary.

o LOADFILENAME Storage area name or fully qualified file name

o LOADTARGET Module name for the device on which the file is instantiated. The load

process is determined by the corresponding MODULE information (see

A.1).

o LOADMEMORY

 MEMORYSIZE The number of memory units.

 MEMORYUNITS Memory units may be BYTES or, GATES. For any GPP, the size is to be

in BYTES.

o LOADTHREADTYPE

o LOADTHREADTAG

o LOADTHREADPRIORITY

 ATTRIBUTE list A list of properties set as default during initialization.

o NAME Name of the attribute

o VALUE Value of the attribute

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

144 of 154

APPLICATION list

 WFHANDLENAME This is a unique shortened form of the application name used in messages and for

obtaining the handle ID.

 WFNAME If coded in C++, this is the application class name.

 WFACCESS The access to the application may be specified as READ, WRITE, BOTH, or NONE.

READ indicates that the application implements APP_Read(). WRITE indicates that

the application implements APP_Write().

 WFSTATE The state at which the application is left after processing the configuration file. The

state may be STRS_APP_INSTANTIATED, STRS_APP_STOPPED, or

STRS_APP_RUNNING.

 LOADFILE list A list of files to be loaded for execution if not already loaded. Usually, the software

for the application on the current GPP (SELF) should be loaded before the

configurable hardware design so that the software can load and configure the

software or configurable hardware design as necessary.

o LOADFILENAME Storage area name or fully qualified file name

o LOADTARGET Module name for the device on which the file is instantiated. The load

process is determined by the corresponding MODULE information (see

A.1).

o LOADMEMORY

 MEMORYSIZE The number of memory units.

 MEMORYUNITS Memory units may be BYTES or, GATES. For any GPP, the size is to be

in BYTES.

o LOADTHREADTYPE

o LOADTHREADTAG

o LOADTHREADPRIORITY

 ATTRIBUTE list A list of properties set as default during initialization.

o NAME Name of the attribute

o VALUE Value of the attribute

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

145 of 154

APPENDIX B

POSIX API PROFILE

Appendix B provides a list of the POSIX profile recommended as part of the application

abstraction.

Table 62, POSIX Subset Profiles PSE51, PSE52, and PSE53 provides the POSIX subset in

profiles PSE51, PSE52, and PSE53.

Table 62—POSIX Subset Profiles PSE51, PSE52, and PSE53

Unit of Functionality Interfaces PSE51 PSE52 PSE53

POSIX_C_LANG_JUMP longjmp(), setjmp() X X X

POSIX_C_LANG_MATH

acos(), acosf(), acosh(), acoshf(),

acoshl(), acosl(),asin(), asinf(),

asinh(), asinhf(), asinhl(), asinl(),

catan(), atan2(), atan2f(), atan2l(),

atanf(), atanh(),atanhf(), atanhl(),

atanl(), cabs(), cabsf(), cabsl(),

cacos(), cacosf(), cacosh(),

cacoshf(), cacoshl(),cacosl(), carg(),

cargf(), cargl(), casin(), casinf(),

casinh(), casinhf(), casinhl(),

casinl(), catan(), catanf(), catanh(),

catanhf(), catanhl(), catanl(),cbrt(),

cbrtf(), cbrtl(), ccos(), ccosf(),

ccosh(), ccoshf(),ccoshl(),

 X X

POSIX_C_LANG_MATH

ccosl(), ceil(), ceilf(), ceill(),cexp(),

cexpf(),cexpl(), cimag(), cimagf(),

cimagl(), clog(), clogf(),clogl(),

conj(), conjf(), conjl(), copysign(),

copysignf(),copysignl(), cos(),

cosf(), cosh(), coshf(), coshl(),

cosl(),cpow(), cpowf(), cpowl(),

cproj(), cprojf(), cprojl(),creal(),

crealf(), creall(), csin(), csinf(),

csinh(),csinhf(), csinhl(), csinl(),

csqrt(), csqrtf(), csqrtl(),ctan(),

ctanf(), ctanh(), ctanhf(), ctanhl(),

ctanl(),erf(), erfc(), erfcf(), erfcl(),

erff(), erfl(), exp(), exp2(),exp2f(),

exp2l(), expf(), expl(), expm1(),

expm1f(), expm1l(), fabs(), fabsf(),

fabsl(), fdim(), fdimf(),fdiml(),

floor(), floorf(), floorl(), fma(),

fmaf(), fmal(),

 X X

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

146 of 154

Unit of Functionality Interfaces PSE51 PSE52 PSE53

POSIX_C_LANG_MATH

fmax(), fmaxf(), fmaxl(), fmin(),

fminf(), fminl(),fmod(), fmodf(),

fmodl(), fpclassify(), frexp(),

frexpf(),frexpl(), hypot(), hypotf(),

hypotl(), ilogb(), ilogbf(),ilogbl(),

isfinite(), isgreater(),

isgreaterequal(), isinf(),isless(),

islessequal(), islessgreater(),

isnan(),isnormal(), isunordered(),

ldexp(), ldexpf(), ldexpl(),

lgamma(), lgammaf(), lgammal(),

llrint(), llrintf(),llrintl(), llround(),

llroundf(), llroundl(), log(),log10(),

log10f(), log10l(), log1p(), log1pf(),

log1pl(),log2(), log2f(), log2l(),

logb(), logbf(), logbl(), logf(),logl(),

lrint(), lrintf(), lrintl(), lround(),

lroundf(),lroundl(), modf(), modff(),

modfl(), nan(), nanf(),nanl(),

nearbyint(), nearbyintf(),

nearbyintl(),

nextafter(), nextafterf(), nextafterl(),

nexttoward(),

nexttowardf(), nexttowardl(), pow(),

powf(), powl(),remainder(),

remainderf(), remainderl(),

remquo(),remquof(), remquol(),

rint(), rintf(), rintl(), round(),

roundf(), roundl(), scalbln(),

scalblnf(), scalblnl(),scalbn(),

scalbnf(), scalbnl(), signbit(), sin(),

sinf(),sinh(), sinhf(), sinhl(), sinl(),

sqrt(), sqrtf(), sqrtl(),tan(), tanf(),

tanh(), tanhf(), tanhl(),tanl(),

tgamma(),tgammaf(),tgammal(),

trunc(), truncf(), truncl()

 X X

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

147 of 154

Unit of Functionality Interfaces PSE51 PSE52 PSE53

POSIX_C_LANG_SUPPORT

abs(), asctime(), asctime_r(), atof(),

atoi(), atol(),atoll(), bsearch(),

calloc(), ctime(),

ctime_r(),difftime(), div(),

feclearexcept(), fegetenv(),

fegetexceptflag(), fegetround(),

feholdexcept(),feraiseexcept(),

fesetenv(), fesetexceptflag(),

fesetround(), fetestexcept(),

feupdateenv(), free(),gmtime(),

gmtime_r(), imaxabs(), imaxdiv(),

isalnum(), isalpha(), isblank(),

iscntrl(), isdigit(),isgraph(),

islower(), isprint(), ispunct(),

isspace(),isupper(), isxdigit(), labs(),

ldiv(), llabs(), lldiv(),

localeconv(), localtime(),

localtime_r(), malloc(),memchr(),

memcmp(), memcpy(),

memmove(),memset(), mktime(),

qsort(), rand(), rand_r(),

realloc(), setlocale(), snprintf(),

sprintf(), srand(),sscanf(), strcat(),

strchr(), strcmp(), strcoll(),

strcpy(),strcspn(), strerror(),

strerror_r(), strftime(), strlen(),

strncat(), strncmp(), strncpy(),

strpbrk(), strrchr(),

strspn(), strstr(), strtod(), strtof(),

strtoimax(),strtok(), strtok_r(),

strtol(), strtold(), strtoll(),

strtoul(), strtoull(), strtoumax(),

strxfrm(), time(),tolower(),

toupper(), tzname, tzset(),

va_arg(),va_copy(), va_end(),

va_start(), vsnprintf(), vsprintf(),

vsscanf()

X X X

POSIX_DEVICE_IO

clearerr(), close(), fclose(), fdopen(),

feof(), ferror(),fflush(), fgetc(),

fgets(), fileno(), fopen(),

fprintf(),fputc(), fputs(), fread(),

freopen(), fscanf(), fwrite(),getc(),

getchar(), gets(), open(), perror(),

printf(),putc(), putchar(), puts(),

read(), scanf(), setbuf(),setvbuf(),

stderr, stdin, stdout, ungetc(),

vfprintf(),vfscanf(), vprintf(),

vscanf(), write()

X X X

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

148 of 154

Unit of Functionality Interfaces PSE51 PSE52 PSE53

POSIX_EVENT_MGMT

FD_CLR(), FD_ISSET(),

FD_SET(), FD_ZERO(),

pselect(), select()

 X

POSIX_FD_MGMT

dup(), dup2(), fcntl(), fgetpos(),

fseek(), fseeko(),

fsetpos(), ftell(), ftello(), ftruncate(),

lseek(), rewind()

 X X

POSIX_FILE_LOCKING

flockfile(), ftrylockfile(),

funlockfile(), getc_unlocked(),

getchar_unlocked(),

putc_unlocked(),

putchar_unlocked()

X X X

POSIX_FILE_SYSTEM

access(), chdir(), closedir(), creat(),

fpathconf(), fstat(),

getcwd(), link(), mkdir(), opendir(),

pathconf(),readdir(), readdir_r(),

remove(), rename(),rewinddir(),

rmdir(), stat(), tmpfile(), tmpnam(),

unlink(), utime()

 X X

POSIX_MULTI_PROCESS

_Exit(), _exit(), assert(), atexit(),

clock(), execl(),execle(), execlp(),

execv(), execve(), execvp(),

exit(),fork(), getpgrp(), getpid(),

getppid(), setsid(), sleep(),

times(), wait(), waitpid()

 X

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

149 of 154

Unit of Functionality Interfaces PSE51 PSE52 PSE53

POSIX_NETWORKING

accept(), bind(), connect(),

endhostent(), endnetent(),

endprotoent(), endservent(),

freeaddrinfo(),

gai_strerror(), getaddrinfo(),

gethostbyaddr(),

gethostbyname(), gethostent(),

gethostname(),

getnameinfo(), getnetbyaddr(),

getnetbyname(),

getnetent(), getpeername(),

getprotobyname(),

getprotobynumber(), getprotoent(),

getservbyname(),

getservbyport(), getservent(),

getsockname(),

getsockopt(), h_errno, htonl(),

htons(),

if_freenameindex(),

if_indextoname(),

if_nameindex(), if_nametoindex(),

inet_addr(),inet_ntoa(), inet_ntop(),

inet_pton(), listen(), ntohl(),ntohs(),

recv(), recvfrom(), recvmsg(),

send(),sendmsg(), sendto(),

sethostent(),

setnetent(),setprotoent(),

setservent(), setsockopt(),

shutdown(),socket(), sockatmark(),

socketpair()

 X

POSIX_PIPE pipe() X

POSIX_SIGNALS

abort(), alarm(), kill(), pause(),

raise(), sigaction(),

sigaddset(), sigdelset(),

sigemptyset(), sigfillset(),

sigismember(), signal(),

sigpending(), sigprocmask(),

sigsuspend(), sigwait()

X X X

POSIX_SIGNAL_JUMP siglongjmp(), sigsetjmp() X

POSIX_SINGLE_PROCESS

confstr(), environ, errno, getenv(),

setenv(), sysconf(),

uname(), unsetenv()

X X X

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

150 of 154

Unit of Functionality Interfaces PSE51 PSE52 PSE53

POSIX_THREADS_BASE

pthread_atfork(),

pthread_attr_destroy(),

pthread_attr_getdetachstate(),

pthread_attr_getschedparam(),

pthread_attr_init(),

pthread_attr_setdetachstate(),

pthread_attr_setschedparam(),

pthread_cancel(),

pthread_cleanup_pop(),

pthread_cleanup_push(),

pthread_cond_broadcast(),

pthread_cond_destroy(),

pthread_cond_init(),

pthread_cond_signal(),

pthread_cond_timedwait(),

pthread_cond_wait(),

pthread_condattr_destroy(),

pthread_condattr_init(),

pthread_create(), pthread_detach(),

pthread_equal(),pthread_exit(),

pthread_getspecific(),

pthread_join(),

pthread_key_create(),

pthread_key_delete(),

pthread_kill(),

pthread_mutex_destroy(),

pthread_mutex_init(),

pthread_mutex_lock(),

pthread_mutex_trylock(),

pthread_mutex_unlock(),

pthread_mutexattr_destroy(),

pthread_mutexattr_init(),

pthread_once(),pthread_self(),

pthread_setcalcelstate(),

pthread_setcanceltype(),

pthread_setspecific(),

pthread_sigmask(),

pthread_testcancel()

X X X

POSIX_THREAD_

MUTEX_EXT

pthread_mutexattr_gettype(),

pthread_mutexattr_settype()
X X X

XSI_THREADS_EXT

pthread_attr_getguardsize(),

pthread_attr_getstack(),

pthread_attr_setguardsize(),

pthread_attr_setstack(),

pthread_getconcurrency(),

pthread_setconcurrency()

X X X

Downloaded from http://www.everyspec.com

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

151 of 154

APPENDIX C

REFERENCE DOCUMENTS

The following reference documents are recommended for further guidance.

Department of Defense

Document Number Document Title

SCA_version_2_2_2.pdf Software Communications Architecture Specification

National Aeronautics and Space Administration

Document Number Document Title

NASA/TM—2007-215042 Space Telecommunications Radio System (STRS)

Architecture Goals/Objectives and Level 1 Requirements

NASA/TP—2008-214813

Space Telecommunications Radio System Software

Architecture Concepts and Analysis

NASA/TM—2008-215445

Space Telecommunications Radio System (STRS)

Definitions and Acronyms

NASA/TM—2010-216809

Space Telecommunications Radio System (STRS)

Architecture Standard. Release 1.02.1

NPR-2210.1 Release of NASA Software

STRS Website Space Telecommunications Radio Systems (STRS) Website

(Password restricted but available soon.)

Downloaded from http://www.everyspec.com

http://www.jtnc.mil/sca/pages/sca1.aspx
http://www.ntrs.nasa.gov/search.jsp?R=20080008862&hterms=Space+Telecommunications+Radio+System+STRS+Architecture+Goals%252fObjectives+Level+Requirements+Document&qs=Ntx%253Dmode%2520matchallpartial%2520%2526Ntk%253DAll%2526N%253D0%2526Ntt%253DSpace%2520Telecommunications%25
http://www.ntrs.nasa.gov/search.jsp?R=20080024190&hterms=NASA%252fTP+2008-214813&qs=N%253D0%2526Ntk%253DAll%2526Ntt%253DNASA%252FTP%25E2%2580%25942008-214813%2526Ntx%253Dmode%20matchallpartial
http://ntrs.nasa.gov/search.jsp?R=20090005977&hterms=215445+strs&qs=Ntx%253Dmode%252Bmatchallpartial%257Cmode%20matchall%2526Ntk%253DAll%257CAll%2526N%253D0%2526Ntt%253Dstrs%257C215445
http://www.ntrs.nasa.gov/search.jsp?R=20110002806&hterms=2010-216809&qs=N%253D0%2526Ntk%253DAll%2526Ntt%253D2010-216809%2526Ntx%253Dmode%20matchallpartial
http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=2210&s=1C
https://strs.grc.nasa.gov/

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

152 of 154

National Institute of Standards and Technology

Document Number Document Title

FIPS PUB 140–2 Security Requirements for Cryptographic Modules

Non-Government Documents

Institute of Electrical and Electronics Engineers (IEEE)

Document Number Document Title

IEEE 1003.1™-1990

IEEE Standard for Information Technology—Portable

Operating System Interface (POSIX®)

IEEE Std 1003.1b™-1993

IEEE Standard for Information Technology - Portable

Operating System Interfaces (POSIX®)- Part 1: System

Application Program Interface (API) - Amendment 1:

Realtime Extension (C Language)

IEEE Std 1003.1c™-1995

IEEE Standard for Information Technology--Portable

Operating System Interface (POSIX®) - System

Application Program Interface (API) Amendment 2:

Threads Extension (C Language)

IEEE Std 1003.1d™-1999

IEEE Standard for Information Technology - Portable

Operating System Interfaces (POSIX®)- Part 1: System

Application Program Interface (API) - Amendment 4:

Additional Realtime Extensions (C Language)

IEEE Std 1003.1j™-2000

IEEE Standard for Information Technology - Portable

Operating System Interfaces (POSIX®)- Part 1: System

Application Program Interface (API) - Amendment 5:

Advanced Realtime Extensions (C Language)

IEEE Std 1003.1q™-2000

IEEE Standard for Information Technology - Portable

Operating System Interfaces (POSIX®)- Part 1: System

Application Program Interface (API) - Amendment 7:

Tracing (C Language)

Downloaded from http://www.everyspec.com

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

153 of 154

Object Management Group (OMG)

Document Number Document Title

ORMSC/01-07-01 Model-Driven Architecture (MDA), Object Management

Group (OMG) Architecture Board ORMSC1

American National Standards Institute (ANSI), International Standards Organization

(ISO), and International Electrotechnical Commission (IEC) Joint Technical Committee

(JTC) 1 Working Group

Document Number Document Title

C99RationaleV5.10 Rationale for International Standard—Programming

Languages—C

ISO/IEC 9899

(In USA this is:

INCITS/ISO/IEC 9899:year)

Information technology—Programming languages—C

ISO/IEC 9945-1:2003 (IEEE

Std 1003.1)

Information technology—Portable Operating System

Interface (POSIX®)

ISO/IEC 14882

(In USA this is:

INCITS/ISO/IEC 14882:year)

Information technology—Programming languages—C++

Downloaded from http://www.everyspec.com

http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf

NASA-STD-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

154 of 154

APPENDIX D

ACKNOWLEDGEMENTS

Principal Authors

Richard C. Reinhart, Thomas J. Kacpura,

Louis M. Handler, Sandra K. Johnson, Janette

C. Briones, Jennifer M. Nappier, and Joseph

A. Downey

Glenn Research Center, Cleveland, OH

C. Steve Hall

Analex Corporation, Cleveland, OH

James P. Lux

Jet Propulsion Laboratory, Pasadena, CA

Dale J. Mortensen

ASRC Aerospace Corporation, Cleveland, OH

Key Industry Participants

Carl Smith, John Liebetreu

General Dynamics Corporation, C4-I

Vince Kovarik

Harris Corporation, Melbourne, FL

Mark Scoville

L-3 Communications

Salt Lake City, UT

Jerry Bickle

Prism Tech

Woburn, MA

Key Reviewers and Contributors

David J. Israel

Goddard Space Flight Center,

Greenbelt, MD

Andrew L. Benjamin

Johnson Space Center, Houston, TX

Allen Farrington, Yong Chong, Kenneth J. Peters

Jet Propulsion Laboratory, Pasadena, CA

Eric A. Eberly, Terry M. Luttrell

Marshall Space Flight Center, Huntsville, AL

SDR Forum Contributing Member Companies

General Dynamics Harris Corporation

Prism Tech L-3 Communications

Boeing Corporation Lockheed Martin

Cincinnati Electronics

Downloaded from http://www.everyspec.com

