
NASA HANDBOOK NASA-HDBK 8739.23
Baseline with Change 1

National Aeronautics and Space Administration
Washington, DC 20546

Baseline approved: 2011-02-16
Change 1 approved: 2011-03-29

NASA COMPLEX ELECTRONICS HANDBOOK FOR ASSURANCE
PROFESSIONALS

Measurement System Identification:

Metric

APPROVED FOR PUBLIC RELEASE – DISTRIBUTION IS UNLIMITED

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

2 of 143

Mars Exploration Rover (2003)

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

3 of 143

DOCUMENT HISTORY LOG

Status Document
Revision Approval Date Description

Baseline 2011-02-16 Initial Release
(JWL4)

 Change 1 2011-03-29 Editorial correction to page 2 figure caption
(JWL4)

This document is subject to reviews per Office of Management and Budget Circular A-119,
Federal Participation in the Development and Use of Voluntary Standards (02/10/1998) and
NPR 7120.4, NASA Engineering and Program/Project Management Policy.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

4 of 143

This page intentionally left blank.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

5 of 143

FOREWORD
This NASA Handbook (NASA-HDBK) is approved for use by NASA Headquarters and NASA
Centers, including Component Facilities. This NASA-HDBK may be applied on contracts per
contractual documentation as a reference or training publication.

Comments and questions concerning the contents of this publication should be referred to the
National Aeronautics and Space Administration, Director, Safety and Assurance Requirements
Division, Office of Safety and Mission Assurance, Washington, DC 20546.

Requests for information, corrections, or additions to this NASA-HDBK shall be submitted via
“Feedback” in the NASA Technical Standards System at http://standards.nasa.gov or to National
Aeronautics and Space Administration, Director, Safety and Assurance Requirements Division,
Office of Safety and Mission Assurance, Washington, DC 20546.

 s/ Bryan O’Connor February 16, 2011

Bryan O’Connor Approval Date
Chief, Safety and Mission Assurance

The Office of Safety and Mission Assurance would like to recognize Kalynnda Berens and
Richard Plastow for their work in authoring this publication.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

6 of 143

This page intentionally left blank.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

7 of 143

TABLE OF CONTENTS

CHAPTER 1. Overview ... 11
1.1 Purpose .. 11
1.2 Scope ... 11
1.3 Anticipated Audience .. 12
1.4 Handbook Layout .. 12

CHAPTER 2. Reference Documents and Links .. 13
2.1 Reference Documents .. 13
2.2 Links .. 14

CHAPTER 3. Definitions and Acronyms ... 15
3.1 Definitions ... 15
3.2 Acronyms .. 20

CHAPTER 4. Complex Electronics Overview .. 23
4.1 Blurring the Hardware/Software Line ... 23
4.2 Programmable versus Designable Devices ... 25
4.3 Simple Programmable Logic Devices ... 27
4.4 Complex Programmable Logic Devices (CPLD) .. 28
4.5 Field Programmable Gate Array (FPGA) .. 30
4.6 Application Specific Integrated Circuit (ASIC) .. 30
4.7 System-on-Chip (SoC) .. 30
4.8 Concerns and Issues .. 31
4.9 Summary ... 32

CHAPTER 5. Design Process .. 33
5.1 Overview of the Complex Electronics Design Process ... 33
5.2 Requirements and Specifications .. 36
5.3 Design Entry .. 37
5.4 Abstraction .. 40
5.5 Hardware Description Languages ... 42
5.6 Programming Example .. 48
5.7 Synthesis .. 48
5.8 Implementation .. 53
5.9 Verification .. 58

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

8 of 143

CHAPTER 6. Process Assurance .. 64
6.1 Process Assurance Overview .. 64
6.2 Identifying Complex Electronics ... 67
6.3 Process Assurance Activities ... 69

CHAPTER 7. Future Trends .. 79
7.1 Changes in Complex Electronics Design and Verification ... 79
7.2 Into the Not so Distant Future ... 81
7.3 NASA Assurance Changes .. 83

APPENDIX A Examples ... 85
A.1 CPLD ... 85
A.2 FPGA ... 89
A.3 ASIC .. 95
A.4 SoC .. 101
A.5 Reconfigurable Computing ... 107

APPENDIX B Coding Style Guidelines .. 112
B.1 Introduction ... 112
B.2 Top-Down Design ... 112
B.3 Signals and Variables .. 119
B.4 Packages .. 122
B.5 Technology-Specific Code (Xilinx) .. 126
B.6 Coding for Synthesis ... 135

LIST OF TABLES

Table 1: Complex Electronics Examples ... 26
Table 2: Simple PLD Comparisons ... 28
Table 3: CE vs. SW Development Phases ... 35
Table 4: VHDL vs. Verilog.. 46
Table 5: FPGA vs. ASIC Comparison ... 57
Table 6: Requirement Verification Activities .. 59
Table 7: Design Entry Verification Activities ... 60
Table 8: Design Synthesis Verification Activities ... 60
Table 9: Implementation Verification Activities ... 61
Table 10: Testing Verification Activities ... 62
Table 11: Simple Complexity Guidelines .. 68

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

9 of 143

LIST OF FIGURES

Figure 1: How Complex Electronics Compares .. 23
Figure 2: Example of PAL Structure ... 27
Figure 3: CPLD vs. FPGA Layout .. 29
Figure 4: SoC Example Configuration .. 31
Figure 5: CE vs. SW Life Cycles .. 33
Figure 6: Example CE Waterfall Development .. 34
Figure 7: Complex Electronics Design Views .. 39
Figure 8: Complex Electronics Domains .. 41
Figure 9: Warning Buzzer Example .. 41
Figure 10: General HDL Development ... 45
Figure 11: AOI VHDL to Verilog Comparison .. 51
Figure 12: External Programmer ... 56
Figure A-1 CPLD ... 85
Figure A-2 FGPA ... 89
Figure A-3 ASIC .. 95
Figure A-4 ASIC Die.. 96
Figure A-6 Reconfigurable SoC ... 103
Figure A-7 ChipSat OBC ... 106
Figure B-1 Behavioral Code .. 112
Figure B-2 Structural Code .. 113
Figure B-3 One Line Per Signal/Named Association .. 114
Figure B-4 Header Template .. 115
Figure B-5 Process, Function, and Procedure Header ... 115
Figure B-6 Inline Comments .. 115
Figure B-7 Proper Indentation.. 116
Figure B-8 Confusing _in and _out suffixes .. 118
Figure B-9 Internal Signals Representing Output Ports ... 118
Figure B-10 Correct Use of Variables... 121
Figure B-11 Incorrect Use of Variables .. 122
Figure B-12 A Constant Guiding the Generation of Logic ... 123
Figure B-13 Address Width Defined by a Constant .. 124
Figure B-14 Modular Function Use .. 125
Figure B-15 Use of Types and Aliases ... 126
Figure B-16 Three-state Implementation of 4:1 Multiplexer ... 129
Figure B-17 Xilinx LUT-RAM Inference .. 130
Figure B-18 LUT-ROM Inference ... 130
Figure B-19 Virtex Block RAM inference ... 131
Figure B-20 Clock Enable Inference .. 133
Figure B-21 Inference of Xilinx Shift Register LUT (SRL) .. 134
Figure B-22 Local Asynchronous Reset and TC & Well-Behaved Synchronous Reset & CE . 136
Figure B-23 Well Behaved Local Asynchronous Reset and TC & Well-Behaved Synchronous

Reset & CE .. 136
Figure B-24 Priority Encoded Logic .. 141
Figure B-25 For-Loop Cascaded Logic Implementation ... 142

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

10 of 143

Figure B-26 Latch Inference .. 143
Figure B-27 Elimination of Inadvertent Latch Inference ... 143

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

11 of 143

NASA COMPLEX ELECTRONICS HANDBOOK FOR
ASSURANCE PROFESSIONALS

CHAPTER 1. OVERVIEW

1.1 PURPOSE

Complex electronics (CE) encompasses programmable and designable complex integrated
circuits. “Programmable” logic devices (PLDs) can be programmed by the user and range from
simple chips to complex devices capable of being programmed on-the-fly. Some types of
programmable devices this handbook will address are:

 Field Programmable Gate Array (FPGA)

 Complex Programmable Logic Device (CPLD)

 Application-Specific Integrated Circuit (ASIC)

 System-on-chip (SoC)

“Designable” logic devices are integrated circuits that can be designed but not programmed by
the user. The design is submitted to a manufacturer for implementation in the device. ASICs are
an example of a designable device.

Development of assurance methodologies for complex electronics is lagging behind the pace of
the technology. Complex electronics are commonly used within NASA systems, sometimes in
safety-critical systems. Both software assurance and quality assurance engineers need to
understand what these devices are, where they are used, and how they are designed. However,
the development of assurance activities for complex electronics is lagging behind the pace of the
technology. This handbook provides some general suggestions that, if applied, may increase
confidence in the quality of complex electronic devices.

1.2 SCOPE

This Handbook will provide an overview of complex electronics, the design process, and
assurance activities. It discusses:

 Which devices are “complex electronics,” and which are not.

 What each device is and examples of use on NASA projects.

 How electronics engineers design and program the devices.

 What assurance and verification activities can be used for complex electronics.

 Future trends in the design and assurance of complex electronics.

Additional assurance activities for complex electronics devices may be required in the future.
While this handbook will not prepare you to perform those activities, it will provide you with a
general understanding of the devices and the design and assurance activities. You will be able to
“speak the language” when communicating with the hardware design engineers.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

12 of 143

1.3 ANTICIPATED AUDIENCE

1.3.1 This handbook is primarily intended for software assurance and quality assurance
engineers who do not have significant experience with complex electronics. You do not need a
hardware background to understand the material in this handbook. However, being familiar with
embedded systems or flight hardware may help you understand some of the concepts.

System safety personnel are encouraged to review this handbook. Modern technology,
especially electronics, is changing at a rapid pace. Projects and systems you support will be
using these devices in the near future, if they are not already doing so.

Software and electronic engineers are encouraged to review this handbook. An understanding of
the assurance activities and concepts discussed in the handbook may be helpful to you in
supporting projects and systems.

1.4 HANDBOOK LAYOUT

Chapter 1 provides the purpose, scope, and layout for the handbook.

Chapter 2 provides a list of reference documents and useful links.

Chapter 3 provides definitions and acronyms used in this handbook.

Chapter 4 gives an overview of complex electronics, describes why assurance engineers need to
be aware of complex electronics and details some concerns and issues with the current state of
assurance activities.

Chapter 5 describes the design process for complex electronics. A short explanation of hardware
description languages, along with a simple example, is included.

Chapter 6 provides an overview of current and suggested assurance practices for complex
electronics. This section also contains an overview of process assurance.

Chapter 7 discusses some future trends in design and assurance of complex electronics.

Appendix A describes each of the types of complex electronics in detail.

Appendix B contains the Hardware Description Language Coding Standard from Xilinx.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

13 of 143

CHAPTER 2. REFERENCE DOCUMENTS AND LINKS

2.1 REFERENCE DOCUMENTS

The documents listed in this chapter provide additional information supporting this NASA-
HDBK. The latest issuance of cited documents should be used unless otherwise stated in this
NASA-HDBK. The applicable documents are accessible via the NASA Online Directives
Information System at http://nodis3.gsfc.nasa.gov/ or directly from the Standards Developing
Organizations (SDO) or other document distributors.

2.1.1 GOVERNMENT DOCUMENTS:

NASA Documents:

NPR 7150.2 NASA Software Engineering Requirements

NASA-STD 2201-91 NASA Software Configuration Management Guidebook
(http://satc.gsfc.nasa.gov/GuideBooks/cmpub.html)

NASA-STD 8709.22 Safety and Mission Assurance Acronyms, Abbreviations, and
Definitions

NASA-STD 8719.13 Software Safety Standard

NASA-STD 8739.8 Software Assurance Standard

NASA-GB 8719.13 NASA Software Safety Guidebook
(http://www.hq.nasa.gov/office/codeq/doctree/871913.pdf)

NASA-GB A201 Software Assurance Guidebook
(http://satc.gsfc.nasa.gov/assure/agb.txt)

NASA-GB A301 Software Quality Assurance Audits Guidebook
(http://satc.gsfc.nasa.gov/audit/audgb.txt)

Other Government Documents:

DO-254 Design Assurance Guidance for Airborne Electronic Hardware (Federal
Aviation Administration (FAA))

MIL-STD 882D Standard Practice for System Safety (Department of Defense (DoD))

2.1.2 INTERNATIONAL CONSENSUS STANDARDS:

Institute of Electrical and Electronics Engineers (IEEE)

IEEE 830-1998 IEEE Recommended Practice for Software Requirements Specifications

IEEE 1194.1-1990 IEEE Standard Test Access Port and Boundary Scan Architecture

IEEE 1228-1994 IEEE Standard for Software Safety Plans

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

14 of 143

2.2 LINKS

NASA-related Links

URL Description
http://nepp.nasa.gov/index.cfm NASA Electronic Parts and Packaging Program

Other Links

URL Description FPGA Reconfig.
Comput. VHDL Verilog Other

http://klabs.org/richcontent/Tutorial/tutorial.
htm

Tutorials
Information

Links
x x x

http://www.icd.com.au/vhdl.html Tutorials x x x
http://www.epanorama.net/links/fpga.html Information x x
http://www.verilogtutorial.info/ Tutorial x
http://www.asic-
world.com/verilog/veritut.html Tutorial x

http://www.gmvhdl.com/VHDL.html Tutorial x
http://www.doulos.com/knowhow/ Tutorial

Information x x x

http://www.cs.ucr.edu/content/esd/labs/tuto
rial/ Information x

http://instruct1.cit.cornell.edu/courses/ee47
5/tutorial/VHDLTut.htm

Tutorial
Links x

http://www.systemc.org/ Information x
http://www.acc-
eda.com/vhdlref/refguide/vhdl_examples_g
allery/vhdl_examples_gallery.htm

Examples x

http://www.vhdl.org/ Information x x x
http://www.vhdl.org/vhdlsynth/vhdlexample
s/ Examples x

http://www.acc-
eda.com/vhdlref/refguide/toclist.htm Information x

http://www.mrc.uidaho.edu/fpga/index.php Information x
http://www.fpga4fun.com/ Information x
http://equipe.nce.ufrj.br/gabriel/vhdlfpga.ht
ml Links x x

http://www.fuse-
network.com/fuse/training/index.html

Training
Material x x

http://www.radio-
electronics.com/info/data/semicond/asic/as
ic.php

ASIC on-
line book x

http://www.netrino.com/Articles/RCPrimer/ Tutorial x
http://www.cotsjournalonline.com/ Journal x
http://www.fpgajournal.com/ Journal x

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

15 of 143

CHAPTER 3. DEFINITIONS AND ACRONYMS

3.1 DEFINITIONS

Note: Definitions for safety and mission assuranceterms are found in NASA-STD
8709.22, Safety and Mission Assurance Acronyms, Abbreviations, and Definitions.
Terms unique to this NASA-Handbook are listed below.

Adequate: When referring to fire protection or life safety, the safeguards necessary to provide
facilities and their occupants with protection against all known or recognized hazards.

Antifuse: An electrical device that performs the opposite function as a fuse. Antifuses are
widely used to permanently program integrated circuits (ICs) by creating an electrical
connection.

Application Specific Integrated Circuit (ASIC): Integrated circuit product customized for a
single application.

Architecture: The common logic structure of a family of programmable integrated circuits. The
same architecture may be realized in different manufacturing processes.

Asynchronous: A signal whose data is acknowledged or acted upon immediately, irrespective of
any clock signal.

Boundary scan: Boundary scan is a methodology allowing complete controllability and
observability of the boundary pins of a JTAG (Joint Test Action Group)-compatible device via
software control. This capability enables in-circuit testing without the need of in-circuit test
equipment.

Cell Library: The collective name for the set of logic functions defined by the manufacturer of
an ASIC. The designer decides which types of cells should be realized and connected together to
make the device perform its desired function.

Chip: Another name for an integrated circuit.

Codec: Short for compressor/decompressor or coder/decoder, a codec is any technology for
compressing and decompressing data. Codecs can be implemented in software, hardware, or a
combination of both. Some popular codecs for computer video include MPEG (Moving Picture
Experts Group), Indeo, and Cinepak.

Combinatorial: A digital function whose output value is directly related to the current
combination of values on its inputs. Also known as combinational.

Comparator (digital): A logic function that compares two binary values and outputs the results
in terms of binary signals representing less-than and/or equal-to and/or greater-than.

Complex Programmable Logic Device (CPLD): Programmable logic devices characterized by
an architecture offering high speed, predictable timing, and simple software.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

16 of 143

Configurable/Complex Logic Block (CLB): The array of multi-input and multi-output logic cells
to be programmed. CLB is a configurable logic block that consists mainly of Look-up Tables
(LUTs) and flip-flops.

Cores: In the semiconductor design industry, refers to predefined functions such as processors
or bus interfaces that are typically licensed from the software developer. Cores can be
implemented directly in silicon, either in fixed logic or programmable logic devices, and save
chip designers time during product development. Synonymous with Intellectual Property.

Die: An unpackaged integrated circuit. The plural of “die” is also “die”.

Digital Signal: A digital signal is a signal whose key characteristic (e.g., voltage or current)
falling into discrete ranges of values. Most digital systems utilize two voltage levels (low and
high values).

Digital Signal Processor (DSP): A specialized central processing unit (CPU) used for digital
signal processing of signals such as sound, video, and other analog signals which have been
converted to digital form. Some uses of DSP are to decode modulated signals from modems; to
process sound, video, and images in various ways; and to understand data from sonar, radar, and
seismological readings.

Electrically-Erasable Programmable Read-Only Memory (EEPROM): A memory device whose
contents can be electrically programmed by the designer. Additionally, the contents can be
electrically erased allowing the device to be reprogrammed.

Electro-Static Discharge (ESD): The term electro-static discharge refers to a charged person, or
object, discharging static electricity. Although the current associated with such a static charge is
low, the electric potential can be in the millions of volts and can severely damage electronic
components.

Erasable Programmable Read-Only Memory (EPROM): A memory device whose contents can
be electrically programmed by the designer. Additionally, the contents can be erased by
exposing the die to ultraviolet light through a quartz window mounted in the top of the
component's package.

Falling-Edge: A transition from a logic 1 to a logic 0. Also known as a negative edge.

Field Programmable Gate Array (FPGA): High density PLD containing small logic cells
interconnected through a distributed array of programmable switches. This type of architecture
produces statistically varying results in performance and functional capacity, but offers high
register counts. Programmability typically is via volatile SRAM (Static Random Access
Memory) or one-time-programmable antifuses.

Firmware: The combination of a hardware device and computer instructions and/or computer
data that reside as read-only software on the hardware device.

First-in first-out (FIFO): Data structure or hardware buffer where items come out in the same
order they came in.

Flash memory: Non-volatile storage device similar to EEPROM, but where erasing can only be
done in blocks or the entire chip.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

17 of 143

Flip-flop: A digital logic circuit that can be switched back and forth between two states.

Floorplanning: The process of identifying structures that should be placed close together on a
chip, and allocating space for them.

Fuse: An electrical device that performs the same function as a fuse. Fuses are widely used to
permanently program integrated circuits by opening an electrical connection.

Gate: In electronic circuitry, a pathway that may be open or closed, depending on the source of
the input, the strength of a signal, or the conductivity of chemicals used in semiconductors.
Logic gates are programmed to correspond to related "if-then" statements. The state of an open
or closed gate is analogous to the binary state of a 0 or a 1. The application of this analogy
allows computing machinery with millions of gates to respond conditionally and to perform
logical functions.

Gate Array: Integrated circuit that is customized by interconnecting an array of logic elements.
Customization is performed by the manufacturer and typically involves non-recurring
engineering costs and several design iterations.

Glue: Generic term for any interface logic or protocol that connects two component blocks.
Hardware designers call anything used to connect large VLSIs or circuit blocks "glue logic."

Hardware Description Language (HDL): A kind of language used for the conceptual design of
integrated circuits. Examples are VHDL and Verilog.

Integrated Circuit (IC): A device in which components such as resistors, capacitors, diodes, and
transistors are formed on the surface of a single piece of semiconductor.

In-Circuit Reconfigurable (ICR): An SRAM-based or similar component which can be
dynamically reprogrammed on-the-fly while remaining resident in the system.

In-System Programmable (ISP): An EEPROM-based, flash-based, or similar component which
can be reprogrammed while remaining resident on the circuit board.

JHDL: A structurally based hardware description language implemented with the Java
programming language. JHDL is a method of describing (programmatically, in Java) the
components and connections in a digital logic circuit. More specifically, JHDL provides object
classes used to build up circuit structure.

Joint Electronic Device Engineering Council (JEDEC): A council which creates, approves,
arbitrates, and oversees industry standards for electronic devices. In programmable logic, the
term JEDEC refers to a textual file containing information used to program a device. The file
format is a JEDEC approved standard and is commonly referred to as a JEDEC file.

Joint Test Action Group (JTAG): (or "IEEE Standard 1149.1"). A standard specifying how to
control and monitor the pins of compliant devices on a printed circuit board. JTAG is a standard
interface used for in-system testing and debugging.

Logic: One of the three major classes of integrated circuits in most digital electronic systems.
The other two major classes are microprocessors and memory. Logic is used for data
manipulation and control functions that require higher speed than a microprocessor can provide.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

18 of 143

Logic Function: A mathematical function that performs a digital operation on digital data and
returns a digital value.

Logic Gate: The physical implementation of a logic function.

Logic Synthesis: A process in which a program is used to optimize the logic used to implement a
design.

Look-Up Table (LUT): An array or matrix of values that contains data that is searched. An
alternative implementation of a CLB; the multiple inputs generate the complex outputs.

Macrocell: A macrocell on most modern CPLDs contains a sum-of-products combinatorial logic
function and an optional flip-flop. The combinatorial logic function typically supports four to
sixteen product terms with wide fan-in. Thus, a macrocell may have many inputs, but the logic
function complexity is limited. On the other hand, most FPGA logic blocks have unlimited
complexity, but the logic function only has four inputs.

Mapping: The process of taking the logic blocks and determining what logic gates and
interconnections on the device should be used to implement those blocks.

Netlist: A list of names of symbols or parts and their connection points, which are logically
connected in each net of a circuit. A file listing parameters extracted from a circuit schematic.

Noise: The miscellaneous rubbish that gets added to a signal on its journey through a circuit.
Noise can be caused by capacitive or inductive coupling, or from externally generated
interference.

Non-volatile: The ability of a memory element to keep its contents when power is removed from
the device.

Onboard: Contained on the device or on the board.

One Time Programmable: This device can be programmed only once; its contents cannot be
changed. While typically these devices are fuse or antifuse based, they can also be low-cost
EPROM devices. In this case, typically used for production devices, an inexpensive package is
used without a window.

Partial Reprogrammability: The ability to leave some internal logic in place and change another
part of the FPGA logic.

Pinout: A diagram that indicates how wires are terminated to pins in a connector; a list that
assigns device functions to specific pins.

Place and Route: Converts the results of the synthesis process to the format supported and takes
the logic blocks and determines what logic gates and interconnections on the device should be
used to implement those blocks.

Programmable Logic: A logic element whose function is not restricted to a particular function.
It may be programmed at different points of the life cycle. At the earliest, it is programmed by
the semiconductor vendor (standard cell, gate array), by the designer prior to assembly, or by the
user, in circuit.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

19 of 143

Programmable Logic Controller (PLC): A control device, usually used in industrial control
applications, that employs the hardware architecture of a computer and relay ladder diagram
language. Inputs to PLC’s can originate from many sources including sensors and the outputs of
other logic devices. Also called "programmable controller."

Reconfigurable Computing: A methodology of using programmable logic devices in a system
design such that the hardware-based logic can be changed to perform various tasks. Benefits
include the use of fewer components, less power, and flexibility. Also allows networked
equipment in the field to be upgraded or repaired remotely.

Reprogrammable: These devices can have their configuration loaded more than once. SRAM-
based devices may be reloaded without restriction. Many other forms of reprogrammable
elements have restrictions on the number of write cycles, although they are high enough not to be
of practical concern for most applications.

Rising-Edge: A transition from a logic 0 to a logic 1. Also known as a positive edge.

Register Transfer Level (RTL): A description of a digital electronic circuit in terms of data flow
between registers which store information between clock cycles in a digital circuit. RTL
description specifies what and where this information is stored and how it is passed through the
circuit during its operation. Also called Register Transfer Logic.

Sensor: A transducer that detects a physical quantity and converts it into a form suitable for
processing. For example, a microphone is a sensor which detects sound and converts it into a
corresponding voltage or current.

Standard Cell: This device differs from the gate array since each cell may be different and
optimized for each standard function. There are no standard layers to the device and each layer
of the chip is a unique design.

State Machine: The actual implementation (in hardware or software) of a function that can be
considered to consist of a set of states through which it sequences.

Static Random Access Memory (SRAM): A type of memory that is faster and more reliable than
the more common DRAM (dynamic RAM). The term static is derived from the fact that it
doesn't need to be refreshed like dynamic RAM, but it loses its memory if it is powered off.

Switch: A device for making or breaking an electric circuit or for selecting between multiple
circuits.

Synchronous:

(1) A signal whose data is not acknowledged or acted upon until the next active edge of a clock
signal.

(2) A system whose operation is synchronized by a clock signal.

System-on-chip (SoC): A complete product that contains all the necessary electronic circuits and
parts for a system on a single integrated circuit. Also called “system-on-a-chip” or SoaC

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

20 of 143

Trace: A line or wire of conductive material – such as copper, silver, or gold – on the surface of,
or sandwiched inside, printed circuit board (PCB). An individual trace is often called a run.
Traces carry an electronic signal or other forms of electron flow from one point to another.

Translation: Converting the results of the synthesis process to the format supported internally by
the chip vendor’s place-and-route tools.

Truth Table: A convenient way to represent the operation of a digital circuit as columns of input
values and their corresponding output responses.

Verilog: A Hardware Description Language for electronic design and gate-level simulation.

Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL): A
Hardware Description Language for electronic design and gate-level simulation.

Via: Feed-through. A plated through-hole in a printed circuit board used to route a trace
vertically in the board, that is, from one layer to another.

Volatile: A memory element that loses its contents when power is removed from the device.
SRAM-based devices are volatile and require another device to store their configuration
program.

3.2 ACRONYMS

A/D Analog to Digital

ABEL Advanced Boolean Equation Language

ADC Analog to Digital Converter

ASIC Application Specific Integrated Circuit

BIOS Basic Input/Output System

CE Complex Electronics

CEH Complex Electronic Hardware

CLB Configurable/Complex Logic Block

CM Configuration Management

CMM Capability Maturity Model

CPLD Complex Programmable Logic Device

CUPL Cornell University Programming Language

D/A Digital to Analog

DSP Digital Signal Processor

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

21 of 143

EELV Evolved Expendable Launch Vehicle

EEPLD Electrically Erasable Programmable Logic Device

EEPROM Electrically Erasable Programmable Read-Only Memory

EHW Evolvable Hardware

EPLD Erasable Programmable Logic Device

EPROM Erasable Programmable Read-Only Memory

FAA Federal Aviation Administration

FIFO First In First Out

FPGA Field Programmable Gate Array

GAL Generic Array Logic

GOES Geostationary Operational Environmental Satellite

GPS Global Positioning System

HDL Hardware Description Language

HESSI High Energy Solar Spectroscopic Imager

I/O Input/Output

IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

IP Intellectual Property

ISS International Space Station

IT Information Technology

JEDEC Joint Electronic Device Engineering Council

JHDL Java Hardware Description Language

JTAG Joint Test Action Group

LUT Look-Up Table

MAPLD Military-Aerospace Programmable Logic Devices (a yearly conference)

NRE Non-Recurring Engineering

PAL Programmable Array Logic

PCB Printed Circuit Board

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

22 of 143

PDA Personal Digital Assistant

PL Programmable Logic

PLA Programmable Logic Array

PLC Programmable Logic Controller

PLD Programmable Logic Device

PROM Programmable Read-Only Memory

QA Quality Assurance

RAM Random Access Memory

RC Reconfigurable Computing

RTL Register Transfer Level

SA Software Assurance

SBIRS-High (-Low) Space Based Infrared System

SEI Software Engineering Institute

SIRTF Space Infrared Telescope Facility, renamed Spitzer Space Telescope

SoaC System-on-a-Chip

SoC System-on-Chip

SOHO Solar and Heliospheric Observatory

SRAM Static Random Access Memory

TDRS Tracking and Data Relay Satellite

VHDL Very High Speed Integrated Circuit Hardware Description Language

VHSIC Very High Speed Integrated Circuit

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

23 of 143

CHAPTER 4. COMPLEX ELECTRONICS OVERVIEW
“Complex electronics” is a term applied to various forms of programmable or designable
hardware devices. The two elements of the term - complex and electronics - can be used to help
distinguish what devices are, or are not, of interest.

4.1 BLURRING THE HARDWARE/SOFTWARE LINE

Programmable Logic devices are now blurring the hardware/software boundary. These devices
can now be programmed to perform tasks that were previously handled in software, such as
communication protocols. With increased complexity, the possibility of “software-like” bugs
(incorrect logic) or unexpected interactions is more likely. It is vital to be able to assure that the
systems are designed and implemented correctly, tested fully, and are reliable.

Figure 1 below shows the relationship of software, firmware, Programmable Logic Controllers
(PLCs), electronics hardware, and complex electronics (the items in the red boxes). Boxes above
the boundary line are software and those below the line are hardware. Complex electronics
straddles the line.

Figure 1: How Complex Electronics Compares

The Federal Aviation Administration (FAA) has become concerned about the usage of complex
electronic hardware in aviation. A study in 1995 stated, “There are no techniques and methods
of design, documentation, testing, and verification identified or recognized by the Federal

H
ar

dw
ar

e

 Programmed
 Easily changed
 Can “do anything”
 Cannot be 100%

exhaustively tested

BIOS/bootstrap
Operating system
Applications

Software

Software residing in non-
volatile storage

Firmware

 Off-the-shelf
components

 Exhaustively tested by
Vendor

ICs
Microprocessor
A/D, D/A
Sensors

Electronic Hardware

 Special purpose computer (process
control)

 Uses LadderLogic, other languages
for programming

Programmable Logic

SoC
Reconfig.
Computing Designed with HDL

 Compiled/Programmed
 May be reprogrammable in the

field
 Cannot be 100% exhaustively

tested

FPGA
CPLD
PAL
ASIC

Programmable Logic Devices

So
ft

w
ar

e

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

24 of 143

Aviation Administration (FAA) for today’s complex hardware designs.” Since that time, the
FAA has worked with other organizations to develop DO-254, “Design Assurance Guidance for
Airborne Electronic Hardware,” which provides guidelines on the use of process assurance for
complex electronic hardware.

The pace of technological change and the new uses that people find for current technology are
strong motivators for NASA to begin to define acceptable assurance practices for complex
electronics. An example of an assurance challenge is adaptive or reconfigurable computing, in
which computers, chips, or systems alter their functionality to adapt to changing applications and
situations. Adaptive computing is usually implemented with FPGAs and allows for parallel
processing. Adaptive computing is expected to be the next breakthrough in computing. Many
applications of the technique for the military are being proposed, and adaptive computing is
likely to be used in space systems.

4.1.1 How does Programmable Logic differ from Firmware?

Firmware has various definitions, but the most common is found in IEEE 610.12-1990: “The
combination of hardware device and computer instructions and data that reside as read-only
software on that device.”

Complex electronics, such as FPGAs and ASICs, are not firmware because what resides in them
is not a software program. Instead, software is used to define the logic structure for a hardware
device, which is what these devices become once they are programmed. These devices are better
thought of as hybrid hardware/software devices, or “soft hardware.”

Some types of complex electronics are even harder to define, such as System-on-Chip (SoC)
and FPGAs:

SoC is a complete product that contains all the necessary electronic circuits and parts for a
system on a single integrated circuit. SoCs may include embedded software (i.e., firmware) as
part of the device. SoC devices combine a microprocessor, input and output channels, and often
an FPGA for programmability.

FPGAs are “soft hardware,” except when they are used in reconfigurable or adaptable
computing. In that case, they are part of a complex system that is reprogrammed on the fly. The
FPGAs replace a microprocessor, and the act of reprogramming them (and the logic that
determines the activities) is the software of the system. FPGAs can have from 30,000 to over
one million logic gates.

4.1.2 Comparing Complex Electronics and Software

Complex electronics devices do not work in the same way as software. The main difference is
that software is serial (one activity is performed after another) and hardware is parallel (multiple
operations occur at the same time). It is very important to always remember that the ultimate
result of a programmable logic device is hardware. Hardware programming languages, such as
VHDL, can be thought of as a virtual or abstract piece of hardware.

However, similarities exist between programming languages for complex electronics (e.g.,
Verilog or VHDL) and software languages. VHDL, for example, is based on Ada syntax, has

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

25 of 143

data types common to most higher-level languages, uses objects (e.g., constants and variables),
and has sequential statements.

A software assurance engineer reviewing programmable logic “code” should not be lulled by the
similarities to regular programming languages. Complex electronics and programmable logic
devices are ultimately hardware, and those differences must be acknowledged.

4.2 PROGRAMMABLE VERSUS DESIGNABLE DEVICES

Programmable Logic Devices (PLDs) are hardware integrated circuits that are programmable by
the user. They contain configurable logic and flip-flops, which are linked together with
programmable interconnects. Memory cells control and define the function that the logic
performs and how the various logic functions are interconnected. PLDs can be divided into
various categories and range from simple devices to complex devices capable of being
programmed on-the-fly. Devices in this category include:

 Programmable Array Logic (PAL)

 Generic Array Logic (GAL)

 Programmable Logic Array (PLA)

 Complex Programmable Logic Device (CPLD)

 Field Programmable Gate Array (FPGA)

Some integrated circuits can be designed by the user and submitted to a manufacturer for
creation of multiple copies. This allows specialty circuits to be designed for a device, such as a
cell phone. Once created, the devices cannot be reprogrammed by the user. ASICs and System-
on-Chip (SoC) are examples of designable devices.

4.2.1 How to Identify Complex Electronics?

The electronics part of this term is fairly easy to identify. Electronics refers to the flow of charge
(moving electrons) through nonmetal conductors (mainly semiconductors), as opposed to
electrical, which refers to the flow of charge through metal conductors. So all the devices listed
above qualify. So do off-the-shelf integrated circuits (ICs), microprocessors, logic gates, analog-
to-digital converters, buffers and other components.

The “complex” adjective is used to distinguish between simple devices, such as off-the-shelf ICs
and logic gates, and user-creatable devices. More information on distinguishing between simple
and complex is presented later in this handbook. For now, a good rule of thumb is, if you can
program or design the internal logic of the device and it has more than a few gates and
connections, it is probably complex.

Does firmware fall under this category? Firmware has various definitions, but the most common
is found in IEEE 610.12-1990: “The combination of hardware device and computer instructions
and data that reside as read-only software on that device.” In other words, it is software that is
placed in a read-only device, such as an EPROM or Flash, from which the software may be read
or copied. The EPROM acts solely as a storage device, much like a disk. The software may be
complex and reside on electronic components, but it does not affect the internal logic or

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

26 of 143

configuration of the chips. Firmware is not considered complex electronics. Table 1 gives some
examples:

Table 1: Complex Electronics Examples

Item User Interactions Complex
Electronics? Why or Why Not?

Complex Programmable
Logic Device

Define and program the internal
logic elements Yes Electronic and complex

FIFO Use it No Electronic, but not complex

Microprocessor
Execute software instructions on
it to perform arithmetic and other
operations.

No

The software executes pre-
defined commands. It does
not change the internal logic
arrangement of the
microprocessor.

Software Design, develop, execute No Definitely complex, but not
electronic

Application Specific
Integrated Circuit (ASIC) Design, use resulting chip Yes (above a

threshold)

Most ASICs are complex. It
is possible to make a simple
ASIC, though such devices
are likely to be already
available.

EEPROM (Electrically
Erasable Programmable
Read-Only Memory)

Program the device with data or
software No

The device itself is not
complex. The software or
data does not change the
internal logic of the device.

4.2.2 A Bit of History

The story starts with the development of discrete logic. Each logic chip had a purpose (e.g.,
AND gate, OR gate, flip-flop) and could be wired together with other chips to make the desired
circuit. Pinouts on the chip were fixed. Manufacturing such a system took a lot of time because
each design change required that the wiring be redone. This usually meant building a new
printed circuit board.

The chip makers solved the problem of time-consuming rewiring for design changes by placing
an unconnected array of AND-OR gates in a single chip called a programmable logic device
(PLD). The PLD contained an array of fuses that could be blown open or left closed to connect
various inputs to each AND or OR gate. You could program a PLD to perform the logic
functions you needed in your system. Since the PLDs could be rewired internally, there was less
of a need to change the printed circuit boards which held them.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

27 of 143

4.3 SIMPLE PROGRAMMABLE LOGIC DEVICES

There are a variety of simple PLDs. They are called simple to distinguish them from the
Complex PLDs (CPLDs, discussed below), and because they are actually pretty simple devices,
as modern integrated circuits go.

4.3.1 Programmable Array Logic

Programmable Array Logic (PAL) chips are a family of fuse-programmable integrated circuits
originally developed by MMI (Monolithic Memories, Inc.). The word “Logic” in the name
signifies that the chips allow the user to program a set of AND and OR gates (or NAND/NOR) to
create the desired logic sequence. PALs consist of a programmable AND array followed by a
non-programmable OR array. Inputs are fed into the AND array, which performs the desired
AND functions and generates product terms, which are then fed into the OR array. In the OR
array, the outputs of the various product terms are combined to produce the desired outputs.

Using a fixed number of OR gates, rather than a completely programmable set, allows the device
to be fast. The high speed available in PALs makes them still popular today, despite the
abundance of newer chips. Figure 2 shows the structure of the PAL.

Structure of a PAL

Figure 2: Example of PAL Structure

Fuse-programmable has to do with how PALs are programmed. Connections between the gates
in a PAL are made using fuses that are either connected or disconnected (blown). Overvoltage
(above the operational limits of the chip) is used to blow the fuses for the connections that are
not desired. This operation is permanent, so once programmed, a PAL cannot be reprogrammed.

Fuse maps, which determine what fuses are, or are not, blown for a particular PAL can be
generated in several ways. Languages such as PALASM or CUPL can be used, with the
resulting logic design compiled into JEDEC (Joint Electronic Device Engineering Council)
ASCII/hexadecimal files. Modern support software for PALs allows a direct translation from a
schematic, truth table, or state table to the fuse map. Some software even accepts timing
diagrams as input. Hardware description languages (HDL) can also be used to synthesize the
fuse map. However the map is created, it must be provided as input to a special electronic

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

28 of 143

programming device, available from either the manufacturer or a third-party, for physical
programming of the chip.

4.3.2 Generic Array Logic

Generic Array Logic (GAL) was introduced by Lattice Semiconductor. A GAL consists of a
reprogrammable AND array, a fixed OR array, and reprogrammable output logic. Electrically
Erasable Programmable Read-Only Memory (EEPROM) is used, rather than fuses, to provide
the connections. This allows the GAL to be erased and reprogrammed.

The GAL is very useful in the prototyping stage of a design, when any bugs in the logic can be
corrected by reprogramming. GALs are programmed and reprogrammed using a PAL
programmer, and the same types of languages or processes used for PAL chips. If speed is
important (and it usually is), a PAL can be used, once the design is finalized.

4.3.3 Programmable Logic Array

Programmable Logic Array (PLA) devices differ from PALs in the OR-gates area. PALs could
only be programmed in the AND-plane. With PLA chips, a set of programmable AND planes
are linked to a set of programmable OR planes, which can then be conditionally complemented
to produce an output. PLA devices allow far more design options than PALs, but the downside
is reduced performance.

Like PALs, PLA devices are fuse-based and can be programmed only once. Tools and
languages are readily available to translate a logic design into the fuse map required for PLA
programming. Table 2 gives a comparison of the simple programmable devices

Table 2: Simple PLD Comparisons

 PROM PAL GAL PLA
Input lines hard-wired programmable programmable programmable

Output lines programmable hard-wired programmable programmable

Versatility low moderate moderate high

Difficulty in
manufacturing,

programming, and testing
low moderate low high

Reprogrammable? No No Yes No

4.4 COMPLEX PROGRAMMABLE LOGIC DEVICES (CPLD)

Simple PLDs can only handle up to 10 to 20 logic equations, which is not a very large logic
design. Designers need to figure out how to break a larger design apart and fit the pieces into a
set of PLDs. This is a time-consuming process, and means you have to interconnect the PLDs
with wires. When there were only discrete logic chips, the use of wires meant that any design
change will likely require a new circuit board, not just reprogramming the PLDs. To counteract

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

29 of 143

this constraint, the chip makers began by building much larger programmable chips, including
CPLDs and FPGAs.

A CPLD contains a set of PLD blocks whose inputs and outputs are connected together by a
global interconnection matrix. So a CPLD has two levels of programmability: each PLD block
can be programmed, and then the interconnections between the PLDs can be programmed. A
key feature of the CPLD architecture is the arrangement of logic cells on the periphery of a
central shared routing resource. CPLDs use EEPROM, SRAM, or Flash memory to hold the
interconnect information.

CPLDs contain the equivalent of many PALs linked by programmable interconnections, all in
one integrated circuit. CPLDs are equivalent to about 50 typical PLD devices and can replace
thousands, or even hundreds of thousands, of logic gates.

Programming CPLDs depends on the chip and the application. Some CPLDs can be
programmed in a PAL programmer, but that gets difficult if the chip has hundreds of pins, or is
surface-mounted. Many CPLDs can be programmed over a serial line from a computer. The
CPLD contains a circuit that decodes the data stream and configures the CPLD to perform its
specified logic function.

A new interface for programming and testing CPLDs is Joint Test Action Group (JTAG). This
interface is defined by the IEEE Standard 1149.1-1990, Test Access Port and Boundary Scan
Architecture. Boundary scan is a technique for accessing and stimulating a chip or subsystem
via external pins to perform internal test functions on the device. A JTAG interface is primarily
used for testing integrated circuits, but it can also be used as a mechanism for debugging
embedded systems. A JTAG interface is a special four-pin (data in, data out, clock, test mode
select) interface added to a chip. Multiple chips on a board can have their JTAG lines daisy-
chained together, so the test probe only needs to connect to a single JTAG port to have access to
all chips on a circuit board. Figure 3 shows the difference between the internal layout of a CPLD
vs. FPGA device.

CPLD Diagram FPGA Diagram

Figure 3: CPLD vs. FPGA Layout

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

30 of 143

4.5 FIELD PROGRAMMABLE GATE ARRAY (FPGA)

While PALs were busy developing into GALs and CPLDs, a separate stream of development
was occurring, based on gate-array technology. The resulting device is the FPGA which was
first introduced in the late 1970s. “Field programmable” simply means that the device can be
programmed by the user. Many field programmable devices can be programmed with the chip
soldered to the circuit board, allowing true in-the-field upgrades to be possible.

FPGAs use a grid of logic gates, similar to that of an ordinary gate array. An FPGA has a
collection of simple, configurable logic blocks arranged in an array with interspersed switches
that can rearrange the interconnections between the logic blocks. Each logic block is
individually programmed to perform a logic function (such as AND, OR, XOR, etc.) and then
the switches are programmed to connect the blocks so that the complete logic functions are
implemented. FPGAs vary in size from tens of thousands of logic gates to over one million.

The interconnections for the logic blocks are programmable switches. FPGAs may use
EEPROM, SRAM, antifuse, or Flash technology to store the programming. In most larger
FPGAs the configuration is volatile, and must be re-loaded into the device whenever power is
applied or different functionality is required.

FPGAs are typically programmed in hardware description languages (HDLs) like Verilog or
VHDL. These high-level languages are used because manual lower level design (such as
schematic capture) becomes impractical as designs become large. HDLs also allow the FPGA
design to be simulated and tested prior to implementation in the hardware.

4.6 APPLICATION SPECIFIC INTEGRATED CIRCUIT (ASIC)

ASICs are integrated circuits (ICs) designed for specific applications. Unlike standard ICs which
are produced by the chip manufacturers, ASICs are designed by the end user and then produced
in volume. ASICs allow a user to combine many parts and functions into a single chip, reducing
cost and improving reliability.

ASICs can be large or small. They are usually produced in large quantities, and it can be very
expensive to produce only a few. If you are manufacturing cell phones, it makes sense to
develop an ASIC for your specific needs. If you are flying a space experiment and will need at
most a few chips, it would be much more economical to use programmable logic, such as FPGA
or CPLD devices.

An interesting twist is the production of ASICs that include programmable logic (FPGA, CPLD
or PAL) devices as part of the chip. Another new technology that combines ASICs with
programmable parts is the System-on-Chip, described below.

4.7 SYSTEM-ON-CHIP (SOC)

System-on-Chip combines all the electronics for a complete product into a single chip. SoCs
include not only the brains (e.g., microprocessor) but also all required ancillary electronics, such
as switches, comparators, resistors, capacitors, timing elements, and digital logic. Figure 4 gives
a sample configuration for a SoC.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

31 of 143

SoCs could include:
 Digital/analog functions

 Sensors

 I/O

 Communications

 Readymade sub-circuits (IP)

 Programmable devices

 Digital Signal Processor

Figure 4: SoC Example Configuration

SoCs are usually ASICs, though they can be designed to include programmable logic
components. SoCs can also be implemented on FPGAs. System-on-chip versions have a variety
of features:

 Soft Instruction processor architectures allow a designer to customize the CPU
architecture. The specific instructions supported, the peripherals available to it, and the
number of registers are just some ways these devices can be tailored for your application.
Some vendors provide mechanisms to add, delete, and create highly tailored instructions.
Design packages for these architectures sometimes include performance tools with instant
feedback on the performance, die size, and power requirements of a particular design.
With the final architecture residing in silicon, these types of architectures are well suited
for high volume, low cost applications which formerly would have used ASICs.

 Configurable processors are FPGA based. In these architectures, standard and customer-
derived logic engines can be easily added, modified, and extended as needed. By moving
discrete logic functionality to internal FPGA, the designer gets a highly flexible logic
solver based around a standard processor core. With FPGA logic instead of foundry
logic, the logic can be easily revised at any point in the design cycle.

4.8 CONCERNS AND ISSUES

4.8.1 Verification Issues with Complex Electronics

Verification means that you have demonstrated that the system or subsystem meets the
requirements you have specified. Complex systems, especially those including software, are
hard to adequately verify. Complex electronics adds additional verification concerns to the mix:

 Tool-induced design errors occur and can be difficult to detect. Tools are a vital part of
complex electronics design, and the designer often does not know what errors a tool
could potentially produce.

 Complex functionality cannot be completely simulated, nor the resulting chip completely
tested.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

32 of 143

 It can be difficult to detect faulty operation of complex electronics due to design or tool-
induced errors, unexpected interactions, or even defects in the silicon.

 Due to extremely small ASIC geometries, certain analog and transmission line
phenomena occur internal to the ASIC, generating failures that are data-sensitive.
Designers and tools may not account for these effects, which can easily escape notice
during test.

4.8.2 Assurance Issues with Complex Electronics

In addition to challenges with testing and verifying the designs and implementations of complex
electronics, quality assurance professionals are struggling with how to adequately deal with the
“software-like” aspects of these devices. Some problems and concerns are:

 ASICs and FPGAs have been used to avoid the rigors of the software approval process.
This results in fundamental verification matters being bypassed.

 Complex electronic devices are designed and programmed by engineers, often without
quality assurance oversight or configuration management control of the designs. In
addition, the development process may not be well defined or followed.

 ASICs, FPGAs, and System-on-Chip (SoC) can contain embedded microprocessor cores
with user-supplied software. They combine electronics and firmware into one chip. The
presence of this firmware (i.e., software) is not always obvious to assurance personnel.

 High-level languages (e.g., C, C++) are now being used to define complex electronic
designs (in whole or in part).

 Hardware quality assurance professionals may not be fully cognizant of the functions,
potential problems, and issues with these devices.

 Software assurance personnel are currently not trained to understand complex electronics,
and may not be able to provide effective oversight and assurance.

 Meaningful verification efforts require the person performing the verification to be
knowledgeable about the complex electronic device and the tool suite used to create and
implement the design.

4.9 SUMMARY

Programmable and designable electronics have grown over the years, both in number of devices
and in the complexity of the devices. The devices can be roughly grouped by function and
complexity.

 Simple, non-programmable logic - ICs

 Simple, programmable logic - PAL, GAL, PLA

 Complex, programmable logic - CPLD, FPGA, reconfigurable computing

 Complex, designable logic - ASIC

 Complex, designable, and/or programmable logic - SoC

To explore the complex devices in more depth, refer to the descriptions in Appendix A.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

33 of 143

CHAPTER 5. DESIGN PROCESS

5.1 OVERVIEW OF THE COMPLEX ELECTRONICS DESIGN PROCESS

Creating complex electronics begins where all systems and subsystems begin - with defining the
requirements for the device. Without good requirements, the most elegant design or
implementation could fail to meet the original need. Designing and implementing complex
electronics occurs within the context of the larger system, as shown in Figure 5 below.

Requirements for the complex electronics are driven by the system they are a part of and the
environment where they will be used. A simple home appliance will place fewer demands
(requirements) on a device than a sophisticated satellite application will. Because these devices
are hardware, the process of complex electronics design involves looking at both the chip
capabilities and constraints (e.g., how many gates does it have, how much power does it need)
and how the design works with and against those constraints and capabilities.

5.1.1 Design Life Cycle

In typical software design, the software requirements are flowed down from the system
requirements. Software development may follow a waterfall, iterative, evolutionary, spiral, or
other development methodology. Regardless of the development (design) life cycle, the
processes of determining the requirements, creating the design, implementing the design, and
verifying the implementation are all included. Since it is easy to show graphically, this
handbook will use the waterfall life cycle as a generic life cycle. Figure 5 below compares the
complex electronics lifecycle to software.

Figure 5: CE vs. SW Life Cycles

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

34 of 143

Like software, the design and development life cycle for complex electronics can follow any life
cycle methodology. Some of the steps vary from those familiar to software developers. Figure 6
depicts the design process for complex electronics.

Figure 6: Example CE Waterfall Development

The basic design flow starts out very similar to software, with the decomposition of system or
subsystem requirements to the particular complex electronic device. After that is completed, the
engineers take the requirements and generate a design, often in a hardware description language
(design entry). The design has to be “compiled” for the device (design synthesis). Synthesis is
more complicated than just running a compiler. During synthesis, the design is mapped to the
logic gates of the device. Simulations are used to verify that the design is correct and can meet
the requirements and performance goals.

The implementation of complex electronics involves one more level in the mapping of the logic
(design) to the chip. The placement of the logic blocks within the chip, and the routing between
blocks, are some of the processes that occur during implementation. This process is loosely
comparable to the linking step in software, where the compiled program is fixed up for the
software environment in which it will operate. At the end of the implementation phase, the final
step is to “burn” or program the device.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

35 of 143

While the simulation that occurs before the design is committed to hardware can find most
defects, the actual hardware device needs to be tested in the circuit. Real signals are applied, and
the real output is tested. You usually cannot get the degree of testing with in-circuit verification
that you can with simulation, because inputting out-of-range signals might be difficult, access to
the hardware pins might not be possible, and, in real projects, someone always wants to use the
hardware as soon as it is completed. However, functional testing in a variety of conditions is an
important verification step. Errors in the silicon chip are possible. Errors induced by the tools
are more likely. Sometimes the real world acts differently than expected and can influence how
the device works.

During this process, the tasks of the assurance engineers (quality/hardware) can vary between
projects with some only taking a look at the system at a high level, and then verifying that the
final device matches the design and that it was programmed according to a defined process.
NASA is looking at how to adequately verify the complex electronics device. More information
is provided in Section 6.2. Table 3 gives a comparison of the development process for software
and complex electronics.

Table 3: CE vs. SW Development Phases

Software Complex Electronics

Requirements
Software requirements
flow down from system
and subsystem
requirements.

Requirements
Requirements for complex electronics
flow down from system and subsystem
requirements.

Design
Architectural and detailed
designs are created, using
UML, flow diagrams, and
other tools.

Design Entry
The design is created primarily in a
hardware description language, such as
Verilog or VHDL.

Synthesis

Synthesis is the process that takes the
higher level designs and optimally
translates them to a gate-level design
which can be mapped to the logic
blocks in a complex electronic device.

Code

The design is translated
(manually or automatically)
into a programming
language (code), and then
compiled into an
executable module.

Implementation

Implementation is where the design
meets the silicon - the mapping created
by synthesis is converted into a chip
layout. The final step in implementation
is to put the design into the chip - either
through programming (burning) or
manufacturing (for ASICs).

Test

The software is tested in
individual units and as part
of the system. Testing
may involve additional
software that simulates
inputs to the software
under test.

Test

Testing occurs during the design entry,
synthesis, and implementation phases,
in the form of simulations. Both
expected (valid) and unexpected inputs
are tested. Once the device is created,
it is tested as part of its subsystem
(in-circuit testing).

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

36 of 143

5.2 REQUIREMENTS AND SPECIFICATIONS

The first step in the design process is to understand (and document) the functions the complex
electronics device must perform and the constraints under which it operates. The act of
documenting the requirements has some useful effects that actually can save you time in the long
run. Benefits include:

 The design team thinks through the issues and reaches agreement. Some issues are well
understood at a high level, but raise additional questions when working at the hardware
level.

 Interfaces to other areas (software, other hardware) are defined and available for review
by all affected parties.

 Non-engineers can understand what the chip or device is supposed to do.

 If the trade-offs and rationales are documented, as well as the requirements, future design
changes will require less impact assessment.

 The requirements can be reviewed to assure that they provide measurable, testable
criteria.

 Requirements traceability into the design and implementation can be performed - which
is vital in mission- or safety-critical applications.

A good specification for complex electronics will contain:
 A description of how the device fits into the larger system. A block diagram is very

helpful.

 A description and list of all the major functions the device will perform. A block and/or
flow diagram can be used to show this information.

 A description of the device and interfaces, such as:

 Chip physical information (size, type, number of pins, etc.)

 I/O pin mapping and description (output drive capability, input threshold level)

 Timing estimates for:

 Setup and hold times for input pins

 Propagation times for output pins

 Clock cycle time

 High-level estimates and goals

 Gate count estimate

 Power consumption target

 Constraints on the device

 Other requirements or criteria the device must implement

 Design-related choices (may be in a management plan)

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

37 of 143

 Tools that will be used at all stages of development

 Hardware Description Language chosen

5.2.1 Assurance Roles

What role does software or hardware quality assurance play in verifying the requirements
specification for complex electronics? The reality is that many assurance engineers, regardless
of their specialty, have little understanding of the complexities of these devices. Any review or
evaluation will be to the level of knowledge of the assurance engineer.

 Hardware quality assurance engineers are the primary assurance people to deal with
complex electronics. Hardware quality assurance engineers with a background in
electronics will evaluate the requirements for the complex electronic device for accuracy,
completeness, and compatibility with the rest of the system. When the hardware quality
assurance engineer has little exposure to, or understanding of, complex electronics, the
evaluation will often be very high-level.

 System safety engineers will be involved in the review when the devices are part of
safety-critical systems or are used as controls or mitigations for hazards. As with
hardware quality assurance, system safety engineers usually do not have an in-depth
understanding of complex electronics.

 Software assurance engineers at NASA are currently only rarely involved with complex
electronics. Significant education or training is required to be able to adequately review
the requirements and specification for complex electronics at a detailed level. However,
this handbook explains how to review specifications for complex electronics at a high-
level and look for:

 Problems with interfaces to other system elements or to the software running on the
system

 Problems, issues, or concerns regarding the functions that are implemented in the
hardware

 Additional constraints that may not be included in the specification, or incorrect
constraints

 Areas where software functions could be implemented in the complex electronics

5.3 DESIGN ENTRY

The first step in creating a design for complex electronics is to choose how you will enter
(capture) your design. Early chip designs were primarily performed with schematic capture.
Schematic capture (also called schematic entry) creates the electronic diagram, or schematic, of
the electronic circuit. This is usually done interactively with the help of a schematic capture tool
also known as schematic editor.

While schematic capture works fine for simple designs, complex electronics almost always
require the use of a hardware description language (HDL). HDLs are any languages that are
used for formal description of electronic circuits. These languages can describe the operation,
design, and simulation tests of the circuit. HDLs can show several aspects of the design,

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

38 of 143

including the temporal behavior and spatial structure. One major difference between HDLs and
software languages is the aspect of timing and concurrency.

One very nice aspect of HDLs is that they can be used as “executable specification” to simulate
the circuit. Simulation software can be part of the tool suite provided by the vendor or a third-
party program. Simulators read the HDL “code” and model the structure and flow of the circuit
through time.

The two primary description languages are VHDL and Verilog. A later section in this Handbook
will discuss these two languages in greater detail. Older HDLs, such as ABEL and CUPL, are
still in use, especially for simple designs. Another trend in hardware description languages is to
add hardware-specific elements to software programming languages. JHDL is implemented on
top of the Java language. SystemC adds hardware constructs as a C++ class library. Still,
VHDL and Verilog are by far the most common hardware description languages in use.

Regardless of the method chosen to input the design (a hardware description language or
schematic capture), a software tool (or tool suite) is required. Unlike most software development
efforts, where tools other than editors, compilers, development environments, and version
management software are rarely used, electronics designers require, and use, fairly sophisticated
tools. All major complex electronics vendors offer design tools optimized for their devices at a
relatively low cost. Third-party tools are common and can provide additional capability. These
tools are also often quite expensive. However, because the boundaries between design entry,
simulation, synthesis, and place-and-route are well defined, designers can use a variety of tools
from different vendors.

A tool suite may include the following types of tools:
 HDL capture and design environment

 Configuration management

 HDL simulator

 Logic analyzer

 Logic synthesis (this is a critically important tool)

 Layout (physical synthesis)

 Design management

5.3.1 Design Views

Complex electronic devices are designed at several levels, and with several “views,” or ways of
looking at the device. Software shares some of these views (e.g., the behavioral/functional view
and the structural view), though software is not concerned with physical layouts. Each of the
various views of the device is refined at each of the levels of representation. The Y diagram
below, Figure 7, shows how all these views and levels are related.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

39 of 143

Figure 7: Complex Electronics Design Views

Modern design approaches for complex electronics focus on the behavioral/functional aspects of
the devices and use sophisticated tools to create the appropriate structural and physical aspects of
the design. Earlier design approaches required much more manipulation at lower levels of the
device circuit. With increasing complexity of the devices, the design aspects have been
advanced into a more abstract domain, and the work of converting the design into a usable circuit
is left to the tools. This abstraction allows the designer and others to understand how the device
functions within the context of the system.

A specification in a hardware description language consists of one or more modules. The top-
level module specifies a closed system containing both test data and hardware models.
Component modules normally have input and output ports. Events on the input ports cause
changes on the outputs. Events can be either changes in the values of wire variables (i.e.,
combinational variables) or in the values register variables, or can be explicitly generated
abstract events. Modules can represent pieces of hardware ranging from simple gates to
complete systems (e.g., microprocessors), and they can be specified either behaviorally or
structurally, or by a combination of the two.

A behavioral specification defines the behavior of a digital system (module) using traditional
programming language constructs (e.g., IFs, assignment statements). This description of a
complex electronic device divides the device (chip) into several functional blocks that are
interconnected. A hardware description language is used to describe the behavior of each block.
Functional blocks can be a finite state machine, a set of registers and transfer functions, or even a
set of other interconnected functional blocks.

Behavioral/
Functional

Physical/Geometrical

Structural

Algorithmic/System level

Circuit level

Logic level

Register-Transfer level

System spec/algorithm

Register Transfer spec/
Finite State Machine

Module Description

Boolean Equation

Processor, Memory

Register, ALU

Gate, Flip-flop, switch

Transistor

Chip floorplan

Module Placement

Mask

Cell Layout

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

40 of 143

A structural specification expresses the behavior of a digital system (module) as a hierarchical
interconnection of subordinate modules. The components at the bottom of the hierarchy are
either primitives or are specified behaviorally. It is in the structural specification that individual
inputs and outputs are defined.

5.3.2 Assurance Roles

At the design entry stage,
 Hardware quality assurance engineers with a background in electronics will, ideally,

evaluate the design for the complex electronic device against the requirements. For many
projects, especially when hardware quality assurance engineers have little exposure to, or
understanding of, complex electronics, no evaluation will be performed.

 System safety engineers will review the design of the devices when they are part of
safety-critical systems. Since few system safety engineers are experts in complex
electronics, they will work with the designer or hardware quality assurance engineers to
evaluate the design from a safety perspective.

 Software assurance engineers are not often involved. This handbook provides an
understanding that software users and engineers can use to provide a cursory review of
the design, especially the VHDL or Verilog code.

5.4 ABSTRACTION

Hardware description languages can be used to describe complex electronics at many different
levels of abstraction. An abstraction is a simplified representation of something that is
potentially quite complex. It is often not necessary to know the exact details of how something
works, is represented or is implemented, because it can be used in its simplified form.

The levels of abstraction for a complex electronic device are:
 System or Behavioral

 Algorithm

 Register-Transfer Level (RTL)

 Gate

The highest level of abstraction is the system level, where the device is mostly a black box that
interacts with its environment. Very little is known about the internals of the device, but you do
know how it functions (its behavior).

A pure algorithm consists of a set of instructions that are executed in sequence to perform some
task. A pure algorithm has neither a clock nor detailed delays. Some aspects of timing can be
inferred from the partial ordering of operations within the algorithm. The algorithmic level of
abstraction is similar to software programming (e.g.; while ready, do task A and task B, then do
task C). Because of the lack of timing information, this level is not synthesizable (able to be
mapped to hardware).

The Register-Transfer Level (RTL) description has an explicit clock. All operations are
scheduled to occur in specific clock cycles, but there are no detailed delays below the cycle level.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

41 of 143

A single global clock is not required but may be preferred. In addition, re-timing is a feature that
allows operations to be rescheduled across clock cycles. The RTL level is the input to the
synthesis tool.

The gate level of abstraction is the output from the synthesis tool. A gate level description
consists of a network of gates and registers, along with technology-specific delay information for
each gate. A complex electronics device can be described in one of three domains: behavioral,
structural, and physical. Figure 8 shows the various domains in which complex electronics can
be described.

Figure 8: Complex Electronics Domains

Hardware description languages deal with the first two (behavioral and structural). The mapping
from the behavioral and structural domains to the physical implementation is performed by the
synthesis and place-and-route tools.

Figure 9 shows a simple circuit that warns car passengers when the door is open or the seatbelt is
not used whenever the car key is inserted in the ignition lock. At the behavioral level this could
be expressed as,

Warning = Ignition_on AND (Door_open OR Seatbelt_off)

Figure 9: Warning Buzzer Example

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

42 of 143

The structural level, on the other hand, describes a system as a collection of gates and
components that are interconnected to perform a desired function. A structural description could
be compared to a schematic of interconnected logic gates. It is a representation that is usually
closer to the physical realization of a system.

5.5 HARDWARE DESCRIPTION LANGUAGES

5.5.1 Overview of Hardware Description Languages (HDLs)

While schematic capture works well for small circuits and devices, complex designs require the
ability to abstract at a higher level. Thus, hardware description languages were born. One
difference between HDLs and software languages is that HDLs are essentially models of the
hardware. The languages were initially created to allow simulation of the design and contain all
the necessary capabilities to create test benches and simulation models. Simulation of the
complex electronics is very common in the design community.

There are two major HDLs that are currently in use: Verilog and VHDL. This handbook will
provide a cursory overview of these two languages. However, each of the languages is a course
(or two) in its own right. Several good tutorials on the languages are provided in Section 2.2,
Links.

The Verilog hardware description language was invented by Philip Moorby in 1983. The first
Verilog synthesis tool was introduced in 1987. Verilog was placed in the public domain and is
now specified by an IEEE standard (IEEE 1364). This language enables specification of a digital
system at a range of levels of abstraction, such as switches, gates, Register-Transfer Level
(RTL), and higher. In 2005, SystemVerilog was adopted as IEEE Standard 1800-2005. This
update includes items such as structures, pointers, or recursive subroutines that were not present
in earlier versions.

VHDL stands for VHSIC Hardware Description Language. VHSIC is an acronym for Very
High Speed Integrated Circuit. VHDL is also specified by an IEEE standard (IEEE 1076).
VHDL was developed over time, culminating in its initial release in 1987. In June 2006, the
VHDL Technical Committee of Accellera approved Draft 3.0 of VHDL-2006. While
maintaining full compatibility with older versions, this proposed standard provides numerous
extensions that make writing and managing VHDL code easier. Key changes include
incorporation of child standards (1164, 1076.2, 1076.3) into the main 1076 standard, an extended
set of operators, more flexible syntax of 'case' and 'generate' statements, incorporation of VHPI
(interface to C/C++ languages), and a subset of PSL (Property Specification Language).

5.5.2 General Hardware Description Language Concepts

As you learn about HDLs, there are a few major differences from software languages that one
needs to keep in mind. First, software is inherently sequential - one instruction is executed after
another. Even in multi-threaded or multi-tasking systems, no two tasks operate at the exact same
moment. Hardware, however, is parallel in nature - multiple events can be happening
simultaneously. Hardware description languages have ways to describe concurrency (parallel
execution) and to specify timing. Second, HDLs describe hardware. While at the highest

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

43 of 143

abstraction an HDL can define an algorithm similarly to a software language, at the lower levels
of abstraction that algorithm is translated into gates and I/O.

Hardware description languages model two aspects of the hardware: structure and behavior.
These two aspects are independent - the structure of the hardware is not dependent on the
behavior, and vice versa. The interfaces (input/output signals) from the device to the outside
world are part of both the structure (what the device is made of) and the behavior (what it does
with the signals). In addition, because HDLs were originally designed as simulation languages,
they can create test benches to exercise and test the device with simulated “real world” devices.

The first step when designing and modeling complex electronics in a hardware description
language is to partition the design into natural abstract blocks, known as components. Each
component is the instantiation of a design entity, which is normally modeled in a separate system
file for easy management and individual compilation by simulation or synthesis tools. The total
system is then modeled using a hierarchy of components, known as a design hierarchy, which
consists of individual subcomponents (subdesign entities) brought together in one higher-level
component (design entity). In other words, start with very simple entities (e.g., AND gate) and
put them together into components (logical subdivisions within the device), which together
become the model of the device.

The two main elements of the HDL description of the complex electronic device are the
architecture body (the structure) and the behavioral architecture. The architecture body describes
the implementation of a module’s inputs and/or outputs. The electrical values of the outputs are
some function of the values of the inputs. Of course, each module can be made up of sub-
modules, down to the basic entities. The connections between the sub-modules (inputs/outputs)
are made using signals.

The architecture body contains:
 Signal declarations, for internal interconnections

 Entity ports (also treated as signals)

 Component instances (instances of previously declared entity/architecture pairs)

 Port maps in component instances (connect signals to component ports)

 Wait statements

The behavioral architecture describes the algorithm performed by the module. While the
architecture body described the inputs and outputs, the behavioral architecture describes what
goes on to convert those inputs to outputs. More complex behaviors cannot be described purely
as a function of inputs. In systems with feedback, the outputs are also a function of time.
Fortunately, hardware description languages provide features to handle time as part of the
behavior.

The behavioral architecture contains:
 process statements

 sequential statements

 signal assignment statements

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

44 of 143

 wait statements

You can describe the behavior of a module without describing its structure. You might want to
do this if you have an off-the-shelf component as part of your design. You do not really care
about the internal structure of the component; you just want to describe what it does. Figure 10
shows the general HDL development process.

This handbook does not provide significant detail on the two main hardware description
languages (VHDL and Verilog). See the links below for some tutorials on VDHL or Verilog.

5.5.3 VHDL Tutorials
 http://www.seas.upenn.edu/~ese201/vhdl/vhdl_primer.html

 http://www.gmvhdl.com/VHDL.html

5.5.4 Verilog Tutorials
 http://www.asic-world.com/verilog

 http://ca.olin.edu/cawiki/Fall_2006/Materials?action=AttachFile&do=get&target=Verilo
gTutorial.pdf

 http://www.doulos.com/knowhow/verilog_designers_guide/

5.5.5 Comparison of VHDL and Verilog

You can design complex electronics in either of the main hardware description languages
(VHDL and Verilog). Both provide all the capabilities you require. While the choice of
language is mostly a personal preference, there are some differences between the two that may
be important for specific applications. Table 4 shows how the two compare.

5.5.6 Coding Standards

Just as in writing software for embedded applications, a coding standard is important when more
than one person will ever have to maintain the source code. The big danger is that when the
person who wrote the original code leaves or moves on to another project, no one will
understand how it works if the code ever has to change. Even the original designer is likely to
forget it in several months.

One can easily write individual lines of understandable HDL code that collectively become
extremely difficult to follow. A good coding standard will help alleviate this by providing
guidelines for hierarchical structures and component instantiations. For instance, many books
use various types of flip-flops as examples to model component instantiations (mostly because
these are already understood by the readers). However, in practice, it is generally poor coding
style to instantiate logic by mapping each register to various kinds of flip-flops. This can lead to
longer, more obfuscating logic that does not take advantage of the ability to write in VHDL and
Verilog at a higher level.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

45 of 143

Figure 10: General HDL Development

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

46 of 143

Table 4: VHDL vs. Verilog

 VHDL Verilog
Similarity to

software
programming

language

Pascal and Ada C

Level of
abstraction

VHDL models well from the system level
down to the RTL level, with some
modeling at the gate level.

Verilog has less system modeling
capabilities than VHDL, but more
capabilities at the gate level.

Compilation
Allows separate compilation of multiple
design-units (entity/architecture pairs)
that reside in the same system file.

With Verilog, care must be taken with
both the compilation order of code
written in a single file and the
compilation order of multiple files.
Simulation results can change by simply
changing the order of compilation.

Data types

VHDL has a multitude of language or
user defined data types that can be used.
As a result, dedicated conversion
functions are needed to convert objects
from one type to another.

Verilog data types are very simple, easy
to use, and very much geared towards
modeling hardware structure as
opposed to abstract hardware
modeling. All data types used in a
Verilog model are defined by the Verilog
language and not by the user.

Design reusability
Procedures and functions may be placed
in a package so that they are available to
any design-unit that wishes to use them.

There is no concept of packages in
Verilog. Functions and procedures
used within a model must be defined in
the module.

Ease of learning

VHDL may seem less intuitive at first for
two primary reasons. First, it is very
strongly typed; a feature that makes it
robust and powerful for the advanced
user after a longer learning phase.
Second, there are many ways to model
the same circuit, especially those with
large hierarchical structures.

Probably easiest to learn with no prior
exposure or knowledge.

High level
constructs

VHDL contains more constructs and
features for high-level modeling than
Verilog. Abstract data types can be used
along with the following statements:
package statements for model reuse
configuration statements for configuring
design structure
generate statements for replicating
structure
generic statements for generic models
that can be individually characterized

Verilog has no high-level modeling
statements similar to VHDLs. Verilog
allows you to parameterize models by
overloading parameter constants.

Language
extensions

VHDL allows architectures and
subprograms to be modeled in another
language by using the “foreign” attribute.

The Programming Language Interface
(PLI) is an interface mechanism
between Verilog models and Verilog
software tools.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

47 of 143

 VHDL Verilog

Libraries
VHDL uses a library to store compiled
entities, architectures, packages and
configurations. Useful for managing
multiple design projects

There is no concept of a library in
Verilog. This is due to its origins as an
interpretive language.

Low level
constructs

Simple two input logical operators are
built into the language, they are: NOT,
AND, OR, NAND, NOR, XOR and XNOR.
Any timing must be separately specified.

The Verilog language was originally
developed with gate level modeling in
mind and has very good constructs for
modeling at this level and for modeling
the cell primitives of ASIC and FPGA
libraries.

Managing large
designs

Configuration, generate, generic, and
package statements all help manage
large design structures.

There are no statements in Verilog that
help manage large designs.

Operators Similar operators to Verilog with the
addition of a mod operator.

Similar operators to VHDL with the
addition of a unary reduction operator.

Parameterizable
models

A specific bit width model can be
instantiated from a generic n-bit model
using the generic statement.

A specific bit model can be instantiated
from a generic n-bit model using
overloaded parameter values.

Procedures and
tasks Allows concurrent procedure calls. Does not allow concurrent task calls.

Readability
(This is more a

matter of coding
style and

experience than
language feature)

VHDL is a concise and verbose
language; its roots are based on Ada.

Verilog is more like C because its
constructs are based approximately
50% on C and 50% on Ada.

Structural
replication

The generate statement replicates a
number of instances of the same design-
unit or some subpart of a design and
connects it appropriately.

There is no equivalent to the generate
statement in Verilog.

Test harnesses
VHDL has generic and configuration
statements that are useful in test
harnesses.

Verilog does not have similar
statements.

Verboseness

Because VHDL is a very strongly typed
language, models must be coded
precisely with defined and matching data
types. Models are often more verbose,
and the code often longer, than its Verilog
equivalent.

Verilog allows signals representing
objects of different bit-widths to be
assigned to each other. The signal
representing the smaller number of bits
is automatically padded out to that of
the larger number of bits. This has the
advantage of not needing to model
quite as explicitly as in VHDL, but does
mean unintended modeling errors will
not be identified by an analyzer.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

48 of 143

The important elements of a HDL coding standard are:
 Consistent and defined style

 Guidelines on writing understandable code

 Commenting guidelines

 Information to capture in comments at each level

 Naming convention (for consistency)

Coding standards can be specific to a programming language or a chip family, corporate
requirements, or can be more general in nature. An example coding standard, courtesy of Xilinx
Corporation, can be found in Appendix B.

5.6 PROGRAMMING EXAMPLE

The below examples demonstrate, in a simple form, the programming constructs for complex
electronics.

VHDL uses the concept of a “design entity,” which consists of two design units. The entity
declaration defines the external interface. The architecture body details the internal structure,
and can define the entity’s behavior, structure, or both.

Verilog uses the concept of a “module” rather than “entity.” Like VHDL, the port declarations
(external interface) are separate from the module body, which defines the internal behavior
and/or structure. Figure 11, which includes Examples 1 and 2, shows the difference between a
VHDL and Verilog design for the same circuit.

5.7 SYNTHESIS

Design synthesis is the process that takes the higher-level designs and optimally translates them
to a gate-level design which can be mapped to the logic blocks in a complex electronic device. It
is during synthesis that timing and area constraints can be specified by the user. Unlike software,
which executes sequentially, the elements of a complex electronic chip will execute in parallel,
with specific timing requirements. However, in general, synthesis is a form of compiling -
translating the readable language into instructions that are implemented in the integrated circuit.

The synthesis step transforms the behavioral and structural specifications into an optimized
netlist of gates. The netlist is a description of the various logic gates in the design and how they
are interconnected. During synthesis, the designer can optimize parameters and constraints in
the final chip. For example, a certain amount of delay may be necessary when accessing an
outside element like a sensor. This delay can be included as a constraint during the synthesis
process. Other constraints may be power consumption and signal timing.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

49 of 143

Example 1: And-or-invert (AOI) gate

Description: This gate takes two sets of signals, each of which is ANDed together, ORs the
resulting signals, and finally inverts the results.

Truth table (not complete):
A B A&B C D C&D OR Result (F)
1 1 1 1 1 1 1 0
0 1 0 1 1 1 1 0
1 0 0 1 1 1 1 0
1 1 1 0 1 0 1 0
1 1 1 1 0 0 1 0
1 1 1 0 0 0 1 0
1 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 1 1 1 1 0

VDHL Code for AOI gate Verilog Code for AOI gate
-- VHDL code for AND-OR-INVERT gate
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity AOI is port (A, B, C, D: in STD_LOGIC; F :
out STD_LOGIC);
end AOI;
architecture V1 of AOI is
begin
 F <= not ((A and B) or (C and D));
end V1; -- end of VHDL code

// Verilog code for AND-OR-INVERT gate
module AOI (A, B, C, D, F);
input A, B, C, D;
output F;
assign F = ~((A & B) | (C & D));
endmodule // end of Verilog code

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

50 of 143

Explanation of VHDL code Explanation of Verilog code
Comments begin with “--“
library/use: provides the entity with access to all the
names declared in the package STD_LOGIC_1164.
“entity AOI is” - starts the entity description and
assigns it the name AOI.
“port {..}” specifies the input and output signals and
the data type of each
“end AOI;” terminates the entity declaration
“architecture V1;” gives a label (V1) to the
architecture body and connects it to the AOI entity
declaration
“begin” starts the architecture statement (the
details).
“ F <= not ((A and B) or (C and D));”specifies the
behavior of the signals
“end V1’” terminates the architecture body.

Comments begin with “//“
“module AOI (A, B, C, D, F);” - starts the module
description and assigns the module a name (AOI).
“input A, B, C, D; output F;” - declares which of the
signals are inputs and which are outputs.
“assign F = ~((A & B) | (C & D));” - logic statement
defining the behavior of the signals. The concurrent
assignment executes whenever one of the four
ports A, B, C, or D change value. The ~, & and |
symbols represent the bit-wise not, and/or
operators, respectively.
“endmodule” - terminates the module definition.

Example 2: AOI Gate with internal signals and timing

Description: This gate is the same as the first example, except that the internal signals (between the
AND, OR, and NOT gates) are explicitly identified. Additionally, timing delays are included in this
example.

VHDL code Verilog code
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity AOI is port (A, B, C, D: in STD_LOGIC;
 F : out STD_LOGIC);
end AOI;
architecture V2 of AOI is signal AB, CD, O:
STD_LOGIC;
begin
AB <= A and B after 2 NS;
CD <= C and D after 2 NS;
O <= AB or CD after 2 NS;
F <= not O after 1 NS;
end V2;

// Verilog code for AND-OR-INVERT gate
module AOI (A, B, C, D, F);
input A, B, C, D;
output F;
wire F; // the default
wire AB, CD, O; // necessary assign
AB = A & B;
assign CD = C & D;
assign O = AB | CD;
assign F = ~O;
endmodule // end of Verilog code

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

51 of 143

Explanation of VHDL code Explanation of Verilog code
The majority of the statements are exactly the same
as in the previous example. In the architecture
body, the internal signal behavior is defined.
Whenever a signal on the right side of the
assignment (e.g., “A and B”) is evaluated either A or
B changes value. The signal on the left side of the
assignment (e.g., “AB”) is updated with the new
result after a delay of 2 nanoseconds.
In this example, if port A changed value, the result
would propagate through the entity, to the final
output, with a total delay of 5 nanoseconds.

In Verilog, a wire represents an electrical
connection. A wire declaration looks like a port
declaration, with a type (wire), an optional vector
width, and a name or list of names. “wire AB, CD,
O;” declares three wires (the internal signals).
The assign statements (e.g., “assign AB = A & B;”
are the same format as in the previous example.
They break out the logic from one statement into
several, using the internal signals (wires). These
statements are independent and executed
concurrently, and are not necessarily executed in
the order in which they are written.

Figure 11: AOI VHDL to Verilog Comparison

Synthesis is performed almost exclusively by a software tool. Modern synthesis tools do an
excellent job of optimizing complex designs, so designers do not need to manually perform that
task. However, user input to the tools does have an effect on the output. For example, synthesis
tools behave very differently given a common set of constraints. These timing-driven tools
perform complex trade-offs to achieve the timing constraint specified, including adding extra
parallel logic to paths where there is negative timing slack, or optimizing a critical path at the
expense of a non-critical one. When you overconstrain a design, the tool sees many, many paths
that do not meet timing and can generate lots of extra logic in a futile attempt to make all of them
hit the timing goals. This can result in a much larger design with reduced overall timing
performance. In a timing-driven tool the idea is to give the tool the real timing specifications,
and let it work to meet that goal. Once that performance goal has been met, the tool will start
optimizing for less area which translates to cost savings in your device. This can produce an
even faster design because routing delays can be reduced by having less logic in non-timing-
critical areas.

5.7.1 Simulation

Simulation is used in the design of complex electronics at several levels. One very nice aspect of
hardware description languages is that they are “executable,” and simulators that can run the
code are very common. Simulators are usually part of the tool suite provided by the vendor of
the complex electronic device (e.g., FPGA).

After design entry, the design is simulated at the register-transfer level (i.e., the HDL code).
Simulation at this level is very fast, allowing the designer to implement many simulations to
fully understand how the device will operate. Simulation can be used to help optimize the design
and refine the logic, though designers need to be careful not to use it in an undisciplined code-
and-fix mode. Simulation of the HDL code will look at signals and variables to check their
value, trace functions and procedures, and will use breakpoints to check the status of the device
at specific events. This process is very similar to using a software debugger. One caveat with
simulation at this level of design is that some properties are not yet defined, such as timing and
resource usage.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

52 of 143

After design synthesis, but before physical implementation, functional simulation is used to help
verify the design. The goal of functional simulation is to ensure that the logic of the design does
what you want it to do, per the specification, and that it produces the correct results. This type of
simulation is very important to get as many bugs out of the device as possible. If any errors are
discovered, then the design entry step is revisited and necessary required changes are made,
leading to a successful simulation.

After the design has been implemented, but before the device is actually programmed, a final
simulation with full timing information is performed. The placement and routing process will
determine any delays and other timing information, which are back-annotated to the gate-level
netlist. This simulation is a much longer process, because of the timing aspects. A static timing
analysis might be substituted for the timing simulation. Static timing analysis calculates the
timing of combinational paths between registers and compares it against the designer’s timing
constraints.

5.7.2 Test Benches

Test benches for complex electronics are not made of wood or metal, but of Verilog or VHDL
code. They are special programs designed to test your complex electronics design. While
simulators can verify simple designs, more complex designs require a test bench to adequately
verify the design.

A test bench is a HDL design you create which can load your circuit, apply stimulus to its inputs
(including defining multiple clocks), and check the outputs for correctness. Because the test
bench is a program you write, you have control over how your circuit is built and simulated. In
addition to the above capabilities, a test bench can provide behavioral or structural models for
everything on the PC board. In this way, it enables you to simulate the entire system including
your complex electronics design(s) as well as external bus interfaces, external memories, etc. An
engineer can design the test benches to automatically check important data conditions and to
report any errors to a command window.

Comprehensive, upfront verification is critical to the success of a design project, and test benches
should be created as you start to design your device. A HDL test bench/simulator can become
your primary design development tool. When simulation is used right at the start of the project,
you will have a much easier time with synthesis, and you will spend far less time re-running
time-intensive processes, such as place-and-route tools and other synthesis-related software.

Test benches can be simple, applying a sequence of inputs to the circuit over time. They can also
be quite complex, perhaps even reading test data from a disk file and writing test results to the
screen and to a report file. A comprehensive test bench can, in fact, be more complex and
lengthy (and take longer to develop) than the circuit being tested.

Depending on your needs (and whether timing information related to your target device
technology is available), you may develop one or more test benches to:

 Verify the design functionally (with no delays).

 Check your assumptions about timing relationships (using estimates or unit delays).

 Simulate with annotated post-route timing information so you can verify that your circuit
will operate in-system at speed.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

53 of 143

A typical VHDL or Verilog test bench is composed of three main elements:
 Stimulus Generator - drives the unit under test with certain signal conditions (correct

and incorrect values, minimum and maximum delays, fault conditions, etc.)

 Unit Under Test - represents the device undergoing test or verification

 Verifier - automatically checks and reports any errors encountered during the simulation
run. Compares model responses with the expected results.

Test benches are created by human beings, often by the designer, and are subject to faults and
failings like any human endeavor. If the logic of the test bench is incorrect, or if a particular
stimulus is not defined, then the end result of the tests may not show an actual error. This
scenario is something to keep in mind if you are called on to review verifications for a piece of
complex electronics. You cannot assume that the test bench accurately and completely tested the
device - especially if the device will be used in a safety-critical application.

5.7.3 Assurance Roles

At the design synthesis stage, assurance and safety engineers are usually not involved. A
hardware assurance engineer might participate in or witness simulations of the device, or assess
the test bench created for the simulation. The system safety engineer may review the simulation
results.

Ideally, an assurance engineer should review the constraints used in the synthesis process and
assess the simulations that are performed. The test bench should also be assessed to verify that it
is correctly testing the device being created. All of these activities require a knowledgeable
engineer who has experience with complex electronics.

A software engineer using this handbook should be able to follow along with any simulations
that are performed, and be able to assess if the results match the interface specifications (e.g., if
the output on a particular pin is within the valid range).

5.8 IMPLEMENTATION

Once a design has been created, simulated, and synthesized, the next step is implementation of
the design in the particular complex electronic device. In software, implementation is usually
translating the design into source code and compiling it. In complex electronics design,
implementation is where the design meets the silicon - the higher-level design is converted into a
chip layout.

The implementation process uses the tools supplied by the device (e.g., FPGA) vendor. The
functions that were defined in the design have to be matched to the available blocks, gates, and
other logic elements on the chip. Some basic steps in implementing a design are:

 Floorplan

 Translate

 Map

 Place and Route

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

54 of 143

The exact order of a step (or even the name a step/process is given) varies across different
groups, companies, and documents. Thus, do not take the information in this handbook as the
only correct way to do things. However, the concepts presented here are common across the
industry and will be implemented to some extent in all programs - perhaps as part of an
automated tool or under a different name. Being familiar with the concepts will help you “speak
the language” when talking with a design engineer working with complex electronics.

Floorplanning is the process of identifying structures that should be placed close together, and
allocating space for them. In designing complex electronics, there are multiple goals that must
be met, and the goals often conflict. Finding the best balance between the various goals and
requirements is something of an art. Some goals are:

 Minimize space on the chip (allows choice of less costly chips)

 Meet or exceed required performance

 Place everything close to everything else to minimize transmission time in the signal
paths

Floorplanning does not have to be performed by the designer for many designs/chips. Most tool
suites will perform this step as part of the automated sequence that takes the design and
implements it in the chip. However, if you are creating an ASIC, need the absolute best timing
possible, or are trying to cram a large design into a not-so-large chip, you will probably need to
actively floorplan.

Done correctly, there are no negatives to floorplanning. However, if the floorplanning is done
with insufficient regard for the architecture of the chip, then it is possible to actually do a worse
job than the automated tool. It is also possible that there are constraints that are not well
understood until placement is complete and routing commences.

As a general rule, data-path sections benefit most from floorplanning, and random logic, state
machines and other non-structured logic can be safely left to the placer section of the place and
route software. Data paths are typically the areas of your design where multiple bits are
processed in parallel with each bit being modified the same way with some possible influence
from adjacent bits. Example structures that make up data paths are adders, subtractors, counters,
registers, and muxes.

Translation involves converting the results of the synthesis process to the format supported
internally by the vendor’s place-and-route tools. The incoming netlist is checked for adherence
to design rules and is then optimized for the chip.

Translation may also be referred to as compilation or compiling. This process is automatic, but it
takes some wading through the reports produced by the tool to verify that the translation/compile
was correct. An intelligent post-processor, rather than the designer (or the quality assurance
engineer), should find syntax and binding errors - otherwise you will have to do this for each
design modification.

Mapping takes the logic blocks and determines what logic gates and interconnections on the
device should be used to implement those blocks. During the mapping step, the functions within
the device (such as counters, registers, or adders) are aligned with the logic resources of the chip.
The exact process is device dependent. For example, FPGAs have look-up tables that perform

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

55 of 143

logic operations. The mapping tool (part of the vendor’s tool suite) collects the gates defined by
the netlist into groups that will fit within the look-up tables.

Place and Route is the process of placing the logic blocks in the best spots on the chip to achieve
efficient routing. Items that the place and route tool will look at include routing length (how far
does a signal have to travel), track congestion (how many signals are coming into or out of an
area), and path delays. While vendor-supplied tools usually perform the process automatically,
the designer can specify some parameters and constraints that the final layout has to meet,
including:

 the initial placement of the cells

 a position for each physical connector

 a form factor

5.8.1 Programming the Device

Once the design is successfully verified and found to meet timing and performance requirements,
the final step is to actually program the device. At the completion of placement and routing, a
binary programming file is created and used to configure the device. The process of
programming is usually dependent on the type of memory used to store the device configuration
and on the device type (e.g., FPGA or ASIC). Some of the factors in device programming are
described below.

5.8.2 How Complex Electronic Devices Remember their Configuration

User-programmable complex electronic devices are a combination of a logic device and a
memory device. The memory is used to store the pattern that was given to the chip during
programming. The primary ways this information is stored are:

 Fuses

 Antifuses

 SRAM (static RAM)

 (E)EPROM cells (Electrically Erasable Programmable Read-Only Memory)

 Flash memory

A fuse is a special part of the programmable chip that is normally closed (connected) until an
electrical current breaks that connection. Antifuses, unlike traditional fuses, are open until a
voltage is applied to close (complete) the circuit path. Once closed, the connection cannot be
opened. Programmable logic that uses fuses or antifuses are “program once” chips. For
operations on Earth, fuses and antifuses lag behind the more reprogrammable versions in
versatility and market share. In applications where ionizing radiation is a concern (such as outer
space or high altitude), antifuses are usually a better choice.

SRAM, or static RAM, is a volatile type of memory. The contents of the memory are lost
whenever the power is switched off. Static RAM differs from the dynamic RAM used in PCs in
that memory refresh of the RAM is not required. SRAM-based programmable logic devices
have to be programmed every time the chip is switched on. This is usually done automatically

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

56 of 143

by another part of the system. SRAM FPGAs are susceptible to ionizing radiation, including the
neutron radiation experienced at high altitudes.

An EPROM cell is a transistor that can be switched on by trapping an electric charge
permanently on its gate electrode. This is done by an external programming device. The charge
remains for many years and can only be removed by exposing the chip to strong ultraviolet light.
EEPROM is electrically erasable PROM, which uses an electrical current rather than ultraviolet
light to erase the programmed value. EPROMs have to be removed from their circuit boards to
be erased and reprogrammed. EEPROMs can be erased and reprogrammed using special
circuitry on the board.

Flash memory is non-volatile, which means that it retains its contents even when the power is
switched off. It can be erased and reprogrammed as required. This makes it useful for
programmable logic device memory. Flash-based devices combine the best of both worlds -
maintaining configuration when not powered, but also allowing reprogramming when desired.
Flash-based programmable devices are essentially immune to neutron radiation (generated when
cosmic rays interact with the atmosphere) and are resistant to other high-energy particles.

5.8.2.1 Externally Programmed Devices

Complex electronics that use fuse, antifuse, or EPROM technology to configure the device have
to be programmed in an external device, and cannot be programmed when placed on a circuit
board. EEPROM-based devices may also require external programming, or may be able to be
programmed in-system, depending on the specifics of the device and the circuit.

To use an external programmer, Figure 12, the
chip (CPLD or FPGA, or simple programmable
logic device) is placed in the appropriate socket
and attached to the programming device. The
programmer is attached to a computer (or may
have an internal microprocessor, for stand-alone
devices), which will download the binary file into
the device and then apply the necessary voltages
to “burn” or program the chip.

Figure 12: External Programmer

5.8.2.2 In-system Programming

Complex electronics that use SRAM, flash, or (sometimes) EEPROM can be, and usually are,
programmed in-situ on the circuit board. Many boards provide a JTAG interface that can be
hooked up to a personal computer for download of the device configuration.

5.8.2.3 ASICs

Application Specific Integrated Circuits are user-designable, not user-programmable complex
electronics. While the basic steps in designing ASICs are the same as for other complex

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

57 of 143

electronics, there are some differences, driven by the fact that ASICs are manufactured (usually
in large runs), and a problem with the resulting chip is very costly.

Table 5 lists some of the main differences between creating an ASIC and a programmable
complex electronic device (e.g., FPGA).

Table 5: FPGA vs. ASIC Comparison

Development Area Differences
Vendor Selection With FPGAs, you select which chip you will use. This is an off-the-shelf

purchase, and the only question is whether the chip meets your needs and how
good are the vendor-supplied tools. Since ASICs are manufactured, the vendor
relationship is much more important. ASIC vendors will usually perform some of
the implementation steps (such as place and route), as well as post-
manufacture testing.

Careful Selection of
Functionality

Because of the cost of failure with ASIC design, the selection of what
functionality will be included in the ASIC is very important. While FPGA design,
like software, can be changed later in the program, ASICs have a long lead
time. So it is important to get everything right early in the process.

Simulation With FPGA designs, the primary simulations are early in the design process, to
verify the functionality of the design. With ASICs, simulations are mostly
performed late in the design (at the gate level) to verify that all the last minute
transformations and modifications do not cause an error. This difference affects
what you want in a simulation environment. For ASICs, high performance (fast)
simulation is essential. For FPGAs, the quality of the user environment and the
speed in locating and fixing errors is more important.

Design Size The size (in gates and/or I/O capacity) of ASICs is a somewhat continuous
scale from small to very large. FPGAs are “chunky” - the size varies in vendor-
defined increments within a device family. ASICs have more flexibility in size,
so that a small increase will not affect the final cost too much, whereas with an
FPGA you might have to go to the next higher size (and more expensive) chip.
In general, FPGA designers are more concerned with getting the design to the
minimum size (or to fit within the target chip) than ASIC designers.

Timing ASICs have a relatively smooth, continuous distribution of delays as routing
distances vary. With FPGAs, delays move in large, discontinuous, and
relatively unpredictable steps. This means the estimated timing performance
can vary by 20-30% on a net-by-net and path-by-path basis between the
various design tools.
With ASICs, many timing problems can often be conquered by resizing buffers,
small placement and routing changes, and cell swaps. These options are not
available with FPGAs. Logic synthesis in FPGA can basically only replicate
logic, rebalance trees, and restructure paths to resolve timing issues.

Verification In the ASIC world, verification is a long and time consuming process. It will take
up to 70% of the total development time and resources. The reason for this is
risk avoidance - you do not want a design error to slip through and cause you to
waste all the time and money spent on the ASIC. This makes verification,
confirmation, and re-verification every design engineer’s first priority.
Verification of ASICs is a lot more rigorous than FPGA verification.
Besides multiple simulations at various design phases, and design reviews with
your best engineers, two additional verification activities may be performed:

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

58 of 143

Development Area Differences
Prototyping in FPGA. Creating your ASIC design in an FPGA prototype results
in discovery of bugs that may not have been identified during previous
simulation. It also provides multiple platforms for software development in
parallel to debugging. The FPGA prototype is available for the post-
manufacture verification as an exerciser to validate the design.
Formal Methods. Formal methods in the engineering world are those methods
that use mathematical (formal) languages for writing specifications to prove that
highest-level specifications are consistent with top-level objectives. They have
an advantage over verbal prose and conventional simulators because they can
be used to represent specifications that are provably consistent with objectives
and higher level specifications.

Manufacturing Programmable complex electronics use off-the-shelf chips, whereas an ASIC
design is submitted to a vendor for manufacturing. The manufacturing stage
incurs significant expense. The vendor assumes responsibility for fabricating,
probing, and sorting wafers then assembles and packages the chip per
requirements. Once the chips are created (and pass the vendor tests), the
designer has to complete verification of the final product - and hope that the
design was correct. Any problems found will require the ASICs to be
remanufactured, at a significant cost.

5.8.2.4 SRAM-based FPGAs

Complex electronics that use SRAM will lose their memory once power is removed. Static
RAM is volatile memory, thus SRAM chips need additional resources in order to function.
Since the configuration is lost whenever the power is removed, the FPGA configuration has to be
placed in non-volatile memory, such as an EPROM, EEPROM, or flash memory. When the
FPGA is powered on, it reads the configuration from the non-volatile memory and is ready to go.

5.8.3 Assurance Roles

At the implementation stage, assurance and safety engineers are usually not involved. A
hardware assurance engineer might witness the programming (“burning”) of the device. Much
of the implementation process is performed by automated tools, so if the tools were previously
assessed, the results can be accepted without additional review. One area that the assurance
disciplines can support at this time is verification that the design and implementation is
appropriate for the environment where the device will operate. NASA experts in radiation or
other space-related effects can be consulted if there are any questions about the device design.

A software engineer using this handbook should be able to witness the programming (“burning”)
of a complex electronic device and to understand the process.

5.9 VERIFICATION

As with software, verification activities do not wait until the complex electronic device is
programmed and ready for test. Verification is a parallel set of activities to design and
development. Various tasks are performed at each phase of the development.

This section of the handbook will answer the questions:

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

59 of 143

 What are the verification steps for complex electronics?

 How is verification for complex electronics similar to, and different from, software
verification?

 Who performs the verifications?

5.9.1 Requirements

At the requirements phase, the system or subsystem level requirements are flowed down to the
complex electronics. This flowdown is primarily the responsibility of the systems engineer,
though the design engineer for the complex electronics should be involved to prevent
requirements being imposed on the hardware that it cannot meet. Table 6 shows the verification
activities done during the requirements phase.

Table 6: Requirement Verification Activities

Verification activity Performed by
Evaluate requirements for the complex electronics Quality assurance engineer,

systems engineer

Safety assessment System safety engineer

Requirements review (e.g., PDR) All

Identification of applicable standards Quality assurance engineer, safety engineer,
design engineer

Formal methods Knowledgeable practitioner

Quality assurance engineers should review the requirements for correctness, completeness, and
consistency. Incomplete requirements are difficult to verify, are often interpreted differently by
various people, and may not implement the functions that are desired. Finding out during testing
that the device is missing important functionality, or is too slow, is something you really want to
avoid.

For safety-critical or mission-critical devices, formal methods might be used as a verification
tool. The requirements can be defined using a special language that allows mathematical proofs
to be generated showing that the device will not violate certain properties. Formal methods can
be applied at only the requirements level (to make sure you get those correct), or can be used to
verify the design when it is generated. Most projects will not use formal methods.

5.9.2 Design Entry

During the design entry phase, the complex electronics functionality is defined in a hardware
description language. The HDL code can be simulated in a test bench and its behavior can be
observed. This is an important verification activity that is usually performed solely by the design
engineer. Quality assurance engineers may review the simulation plans (if they are produced) or
results, and for critical devices they may witness some of the simulation runs. Table 7 below
shows the verification activities done during Design Entry.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

60 of 143

Table 7: Design Entry Verification Activities

Verification activity Performed by
Evaluate design (HDL) against requirements Quality assurance engineer

Functional Simulation Design engineer

Safety assessment System safety engineer

Design review (e.g., CDR, peer review) All

Static analysis of HDL code Assurance engineer (including IV&V
practitioners)

Functional simulation involves emulating the functionality of a device to determine that it is
working per the specification and that it will produce correct results. This type of simulation is
good at finding errors or bugs in the design. Functional simulation is also used after the design
synthesis step where the gate-level design is simulated.

One or more engineers who can assess the design should review the HDL code. A good
reviewer has to understand the system within which the device will operate, know the HDL
language being used, and be able to compare what the device is designed to do against its
requirements. This means that not just anyone can adequately review the design. Lack of
knowledge or experience will hamper the review and often cause the designer to think the review
is a waste of time.

For very complex or safety-critical devices, assurance engineers or Independent Verification and
Validation (IV&V) practioners may be called in to review the design. One tool they can use is
static analysis software for the HDL code, which can look for problems or possible errors in the
code. This tool is very similar to some static analysis tools for software that look for potential
logic or coding errors.

5.9.3 Design Synthesis

During design synthesis, the higher-level designs are optimally translated to a gate-level design,
which can then be mapped to the logic blocks in a complex electronic device. It is during
synthesis that timing and area constraints can be specified by the user. Table 8 shows the
verification activities done during design synthesis.

Table 8: Design Synthesis Verification Activities

Verification activity Performed by
Functional Simulation of gate-level circuit Design engineer

Design review (peer review) All

Design evaluation Quality assurance engineer

Fault injection testing Design engineer or quality assurance
engineer

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

61 of 143

Simulation is one of the primary ways that the design synthesis process is verified. In almost all
projects, the design engineer is the one who generates the test bench, defines the simulation runs,
and performs the simulations. Quality assurance engineers are rarely involved, other than to
perhaps verify that the simulations were performed. However, it is important to look at the
design of the test bench and the simulation tests to make sure they are complete enough. This is
the time to find errors or mistaken assumptions - not when you are integrating your complex
electronics with other areas of the system.

Understanding how the complex electronics will operate when given invalid input is very
important in verifying the devices. The real world is messy, and noisy signals or broken
interfaced hardware are unfortunately common. Simulation is a great place to perform fault
injection testing by inputting signals that are out of range, whose timing is not correct, that have
ringing or other signal problems, or that are noisy. Encouraging this type of testing, and helping
to identify the likely types of faults, is one way that quality assurance personnel can actively
participate in the verification of complex electronics.

5.9.4 Implementation

Implementation is where the higher-level design is converted into a chip layout. The
implementation process uses the tools supplied by the device (e.g., FPGA) vendor to match the
functions that were defined in the design to the available blocks, gates, and other logic elements
on the chip. Table 9 shows the verification activities done during Implementation.

Table 9: Implementation Verification Activities

Verification activity Performed by
Timing simulation Design engineer

Static timing analysis Design engineer

Device programming Witnessed by Quality Assurance engineer

Timing simulations are simply functional simulations with timing information. The timing
information allows the designer to confirm that signals change in the correct timing relationship
to each other. The timing information is entered in the hardware description language model file
and then simulated. However, since there is a possibility of not being able to simulate all
combination of inputs, a timing analysis tool can be used to evaluate a fully synchronous design.

Static timing analysis is a process that examines a synchronous design and determines its highest
operating frequency. The analysis considers the path from every flip-flop in the design to every
other flip-flop to which it is connected through the combinatorial logic. The analysis is usually
performed by a software tool, which calculates the best case and the worst-case delays through
these paths (critical-paths). Any paths that violate the set-up or hold-timing requirements of the
flip-flop are flagged for later adjustment to meet the design requirements.

5.9.5 Testing

While simulation is used extensively in complex electronic design, testing the actual chip can
sometimes be an eye-opening experience. Simulation involves assumptions and compromises
that may not match with the real world. Testing the programmed chip - either independently or

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

62 of 143

integrated onto a circuit board - is a necessary step in verifying your design. Table 10 shows the
verification activities done during testing.

Table 10: Testing Verification Activities

Verification activity Performed by

In-circuit functional and timing tests Design engineer, may be witnessed by
Quality Assurance engineers

Sub-system and system tests All

Safety verification All, but reviewed or witnessed by
System Safety Engineer

In-circuit verification tests the functionality and timing of the design on the actual chip. Ideally,
special test software running on a host computer will interface with the device under test through
available test ports, such as the JTAG port. This process is similar to in-circuit emulators that
run embedded software on the target processor and provide breakpoints and tracing into the
actual software instructions.

The more common form of in-circuit tests is to manually run the complex electronics as part of a
higher-level assembly to show that it meets all the specified requirements. This subsystem or
system level test will show functionality at a black-box level, but will not provide a window into
the internal functioning of the device.

If the complex electronic device is safety-critical, there will be separate safety verifications,
usually at the system level.

5.9.6 What Should an Assurance Person Look for when Evaluating Complex Electronics?

So what can you do which will help improve the design process? At a minimum, you can ask
questions of those producing or reviewing the design to help ensure that all of the important
areas are considered. As a software assurance engineer, you may not be able to comment on the
inner workings of the complex electronics, but you can certainly provide your process assurance
viewpoint to the design and help make sure that defined processes are in place for configuration
management, coding standards, and other areas. The following paragraphs provide some general
guidance and questions to consider.

5.9.6.1 Programmatic Questions
 Is the design team experienced, or does it have at least one experienced member?

 Is there a design guideline document that defines design rules? How will the guideline
help prevent a code-and-debug methodology as the design process?

 Has the team created a naming convention that provides information about objects and
their timing information?

 Is there an exception handling mechanism (possibly a hardware-software cooperative
arrangement) for error conditions that may be detected?

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

63 of 143

 Is the design maintained in a version control or configuration management system? Is
there a formal process for changes once the design is baselined?

 Has anyone looked at what standards may be applicable (Center, NASA, other)?

5.9.6.2 Design Reviews
 Does the design meet the specification?

 Does the design pass a worst-case analysis (timing)?

 Is the design partitioned into logical components?

 Does the designer provide enough background information to understand what the device
is supposed to do?

 Is there anything in the design that conflicts with other subsystem or system components?

 Do the design interfaces (input and output signals) match the interfaces as specified by
the other components?

 Were the special pins on each device (e.g., mode pin on FPGA, JTAG pins, no-connect
pins) verified that each is used properly?

5.9.6.3 Analyses
 Was a timing analysis performed with the following signals?

 Pulse width of each clock, asynchronous set, clear, and load input

 Setup and hold time for all clocked inputs

 Recovery time for set and clear

 Did the timing analysis also consider the following?

 Parallel clocking

 Clock skew

 Timing of analog circuitry

 Minimum propagation delays

 Were the gate output drive capacities analyzed to determine that none were exceeded?

 Were the interfaces to other parts analyzed for input logic level thresholds and maximum
input transition times?

 If there is a state machine, was it analyzed for:

 Unused states and lock-up?

 Simultaneous assertion of flip-flop sets and clears?

 Reset conditions?

 Are resets of the correct assertion and release voltages, and is the pulse width correct?

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

64 of 143

CHAPTER 6. PROCESS ASSURANCE

6.1 PROCESS ASSURANCE OVERVIEW

According to IEEE, quality assurance is defined as "a planned and systematic pattern of all
actions necessary to provide adequate confidence that an item or product conforms to established
technical requirements." Quality assurance (QA) can be broken down into two main areas:
product assurance and process assurance.

Product assurance involves making sure that the final product meets its specifications. This is
usually done thorough testing. Ideally, it also includes verifying that the requirements are
correct, the design meets the requirements, and the implementation reflects the design.

Process assurance looks at the process used to create that final product. Was the development
effort planned? Were the plans followed, or just put on the shelf and ignored? Does the
development process meet any required standards? Are best practices used to develop the
product? In process assurance, QA provides management with objective feedback regarding
compliance to approved plans, procedures, standards, and analyses.

Process assurance activities are performed throughout the life cycle, including product
conception, design, implementation, operation, and maintenance. Process assurance will detect,
record, evaluate, approve, track, and resolve deviations from approved plans and procedures.
For each life cycle phase, process assurance makes sure that planning is performed, that the plan
is followed, and that the products of each phase are correct and complete. Note that verifying the
quality of the requirements, design, and verifications are usually considered product assurance.
This handbook includes them in process assurance because they are often overlooked when
evaluating complex electronics.

For a circuit board that is assembled, product assurance would include verifying that the correct
parts are on the board, assessing the quality of the soldering, and testing the board functionality.
Process assurance activities would include verifying that the drawing used during the board
assembly was configuration controlled and the correct revision, that proper Electrostatic
Discharge (ESD) requirements were followed, and that an assembly process was defined and
followed.

6.1.1 Why do Process Assurance?

While some aspects of process assurance are performed in many engineering disciplines, process
assurance is the cornerstone of software assurance. In some industries, the main purpose of
software quality assurance is to test the software prior to release. Within NASA, software
assurance starts much earlier in the life cycle (with the requirements) and verifies the quality of
all the products at each stage.

Why does software get this special treatment? Software differs from most hardware (mechanical
or electrical) in several important ways:

 Software is complex and cannot be 100% tested. It is not feasible or sometimes even
possible to test every possible path through the program, nor every combination of inputs.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

65 of 143

For more than a trivial program, attempting such testing would take an astronomical
amount of time.

 Software requirements are often fluid. Because software is easier to change than
hardware, many defects or problems with hardware systems are overcome by changing
the software.

 Software itself is fluid. It is easy to add additional functionality without sufficient
thought as to the impact of that change on the entire system.

Using good practices to develop software increases the confidence in the quality of the software.
Because you cannot fully test every combination of inputs and paths with software, you need a
way to look at the whole development process and the test results and determine if the product is
of sufficient quality. Process assurance is used to make sure those good practices are in place
and that the project is following those practices.

Process assurance also looks at software throughout the life cycle and judges the quality of the
process and the associated life cycle products. Software assurance engineers have a handle on
the software requirements, design, and code volatility and can alert project management if too
many changes are occurring. Because changes have an impact on other software or systems,
software assurance engineers help identify and assess those impacts prior to the change being
implemented. Process assurance is proactive in identifying and helping to correct potential
problems before they become actual problems.

While some people may see process assurance as an unwanted but required activity, one of the
main reasons to perform it is to embed quality throughout the life cycle. You do not want to wait
until the product is finalized before you have any idea if it is a quality product or not. Process
assurance provides insight into the development processes (and thus some insight into the quality
of the product) long before the product is completed. This focus on problem prevention through
early detection allows corrections and changes to be made to the product or process when the
cost of those changes is less than it would be later in the project.

6.1.2 Process Assurance for Complex Electronics

When software cannot be fully tested, process assurance (how the product is built) is used to
increase confidence in the resulting program. The same philosophy can be applied to complex
programmable logic. In “Building a case for assurance from Process,”1 the author shows how
process assurance can be used in the IT security world to make a case for claims about the
software quality. This is the idea behind the Software-CMM and other process improvement
initiatives. If you cannot verify by testing every possible combination of inputs, decisions, etc.,
then knowing that you built the software according to well-defined standards gives additional
confidence.

Complex electronics straddle the line between hardware and software. The design of these
devices is complex enough that all combinations of inputs and timing cannot be fully tested.
Complexity also increases the chance of design errors, unexpected interaction between elements

1 “Building a case for assurance from Process,” K. Ferraiolo, L. Gallagher, V. Thompson; 21st
National Information Systems Security Conference

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

66 of 143

of the design, and other “software-like” errors. Because of these concerns, complex electronics
cannot be completely verified using traditional approaches.

Adding process assurance to the verification of complex electronics will increase the confidence
that the final device was designed to the correct requirements, the design completely implements
all requirements, and the final product meets all functional and quality specifications.

The Federal Aviation Administration (FAA) is taking a similar approach to complex electronics.
The document DO-254, “Design Assurance Guidance for Airborne Electronic Hardware,” is
basically process assurance for complex electronics. This document requires:

 Planning for all life cycle phases, including selection of design methodology, integration
of hardware design processes with supporting processes, and description of process
assurance policies and procedures.

 Activities performed by engineers at each life cycle phase, including requirements
capture, design creation, implementation, and acceptance testing.

 Verification and validation throughout the life cycle.

 Configuration management of designs and supporting information for complex
electronics.

 Process assurance activities at each life cycle phase.

6.1.3 Tools of the Process Assurance Trade

Process assurance is implemented primarily through the following activities:
 Documentation review

 Formal inspections, reviews, and walkthroughs

 Audits

 Analyses

The following paragraphs provide a quick overview of these processes. The next section of this
handbook will go into more detail on which processes are appropriate for each phase of the life
cycle, and what aspects of the complex electronics development they should be used for.

Documentation Review

Individual review of a document, design, or hardware description code is performed by the
process assurance engineer. This type of review may or may not use a checklist (if one is
available). The quality of the artifact is evaluated against best practices, and the results are fed
back to the author of the artifact.

Reviews, Walkthroughs, and Formal Inspections

Formal inspection is an examination of the completed product of a particular stage of the
development process (such as a design), typically employing checklists, expert inspectors, and a
trained inspection moderator. The objective is to identify defects in the product. There are many
techniques of doing inspections, but many follow the methods developed by Michael Fagan over
20 years ago.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

67 of 143

Reviews are an alternative to formal inspections as a process assurance method. Informal design
review methods are difficult to quantify since they are generally done at the discretion of the
product author, do not follow a detailed process, and are not reported at the project level.
Informal review is a valuable alternative if the more effective formal inspection is not used.

Walkthroughs are meetings in which the author of the product acts as presenter to proceed
through the material in a stepwise manner. The objective is often raising and/or resolving design
or implementation issues. Walkthroughs tend to be informal and lacking in close procedural
control.

Audits

A process assurance audit is performed to determine the level of adherence to the project plans
and procedures. Evaluation of the sufficiency or effectiveness of the procedures and plans is
occasionally part of an audit, though normally the evaluation is performed when the procedures
and plans are first produced. This type of audit examines a sampling of records to determine if
procedures are being followed correctly.

Records can include formal products (e.g., official design document), informal development
information, log files, tool output files, and even emails. Configuration management and change
control records are also often examined during a process assurance audit.

Analyses

Analyses are performed when required to evaluate an aspect of the system, a project artifact, or
the impact of changes. For complex electronics, the specific analyses will depend on the device,
the level of criticality, safety implications, life cycle phase, and other factors. An analysis can be
as simple as a documented “expert review” or as complex as a computer simulation. The method
used in performing the analysis needs to be documented, as well as the results.

6.2 IDENTIFYING COMPLEX ELECTRONICS

This section explains how to recognize if a project is using complex electronics and how to
determine if the programmable devices are simple versus complex.

6.2.1 Simple versus Complex

Simple electronics includes off-the-shelf integrated circuits from simple logic devices up to
microprocessors. While the software that runs on microprocessors is complex, the device itself
can be considered simple because it is a) well tested by the manufacturer and b) not programmed
at the hardware level by the end user.

The dividing line between simple and complex electronics is not well defined, and has not been
officially determined by NASA. Table 11 gives some guidelines to help make the determination.

Programmable devices used as part of a safety system or hazard control should be assumed to be
complex. To be considered simple, a very strong case should be made with sufficient analysis
and documentation to justify the position.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

68 of 143

Table 11: Simple Complexity Guidelines

Simple Off-the-shelf ICs
Microprocessors
PAL, GAL, PLA
EPROM, EEPROM

These devices are either tested by the
manufacturer or so simple that all inputs and
outputs can be verified.

Gray area CPLD Depending on usage and size (gate count), CPLDs
can be simple or complex.

Complex FPGA
System-on-Chip
ASIC

These devices are too complex to be 100% tested.

Special
Concerns

Distributed systems Systems with one or more complex devices (or a
complex electronic device and software) that jointly
control a system or coordinate among themselves
require assurance beyond the devices themselves.
The interfaces and timing of communication are
important to consider.

Complex electronics as
part of an off-the-shelf
circuit board

Sometimes an FPGA or CPLD will be part of an off-
the-shelf board. Since the design of the device is
probably not available, you cannot perform any
analysis or indepth verification of the device. If the
device is not used for safety purposes, it can
probably be considered simple.

6.2.2 How to Determine if Complex Electronics are being used in a Project

Here are some pointers to use when determining if the project includes complex electronics:
 Review project documentation. Look at the system concept, any overviews or

descriptions, and system and subsystem requirements and design documents.

 Talk with the project system engineer and/or system safety engineer. The system
engineer should be aware of any complex electronics. System safety engineers should be
aware of any complex electronics that are part of a hazard control or otherwise safety-
related.

 Talk with the project electrical engineer(s). These are the people who will develop the
devices.

6.2.3 What Next?

If the project is using one or more complex electronic devices, the next step is to gather more
information. Find out:

 What process is used for design of the devices?

 What tools are being used to design/develop/program the devices?

 Is configuration management (CM) used? What about change management?

 How will the devices be verified?

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

69 of 143

 How will quality assurance engineers be involved in verifying and assuring these
devices?

 What is the error handling philosophy in the design? Are there ways that external signal
problems (invalid voltages, missing signals, etc.) can cause problems with the device?

 Are the devices safety-related? Do they acquire or process any signals used in safety
decisions (e.g., temperatures, voltages)?

 Is the function of the device mission-critical? Will failure seriously affect the ability of
the system to carry out the mission?

If one or more of the devices are safety-related, share that information with the project system
safety engineer. Safety-related complex electronics should be looked at by the system safety
engineer in more depth.

If you see deficiencies in one or more areas (e.g., configuration management), you can research
alternatives and make suggestions to the project manager or engineers on how to implement or
improve the process. Configuration and change management are very important and often
overlooked. You also want to guide the project away from a “program/debug/reprogram”
paradigm, similar to undisciplined software development.

Be proactive. Get to know the device designers. Educate yourself on the devices, the tools used,
and the design process. Do some web surfing for common errors with the devices, and make
sure the designers have avoided them. Review the requirements for the device - are they clear
and unambiguous? See if you can observe a simulation or two. Ask intelligent questions - ones
that show that you are interested enough to have done some background work.

6.3 PROCESS ASSURANCE ACTIVITIES

Process assurance activities occur during all phases of a project life cycle. This section describes
activities that are appropriate for complex electronics for each phase of the life cycle. Remember
that there is currently no requirement for many of these activities, so implementing them on your
project could require some negotiation. However, this information will help you apply your
quality assurance expertise more thoroughly to complex electronics.

Quality assurance engineers need to possess sufficient domain knowledge to evaluate the
completeness and correctness of complex electronics requirements and design. They must have
the ability to determine whether the design has incorporated all requirements accurately. If you
are not an electrical engineer, or do not have significant experience with complex electronics,
you probably do not have that domain knowledge. For some process activities, you may wish to
find an expert (either in the assurance arena or in engineering) to help you or to independently
perform an analysis or evaluation. The most important aspect of assurance is evaluation by
someone other than the designer, but not all evaluations have to be performed by the quality
assurance engineer.

As you perform assurance activities on complex electronics, keep in mind some quality criteria.
These criteria will help you judge the status of the product or process.

 Correctness. The extent to which a device fulfills its specifications.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

70 of 143

 Efficiency. Use of resources; performance characteristics.

 Flexibility. Ease of making changes if required.

 Security. Protection of the device from unauthorized access.

 Interoperability. Effort required coupling the system to another system.

 Maintainability. Effort required locating and fixing a fault in the program within its
operating environment.

 Portability. Effort required transferring a device or design (program) from one
environment to another.

 Reliability. Ability not to fail, including in off-nominal environments.

 Testability. Ease of testing the device to ensure that it is error-free and meets its
specification.

6.3.1 Project Conception

The initial stage of a project or system is the time when many decisions are made that will affect
the project months or years down the road. While the technical decisions are driven by the
results of systems engineering trade-off studies, the assurance decisions are driven by a
combination of:

 Requirements and standards

 What are the NASA, Center, and other quality assurance standards that the project
must follow?

 Project management support.

 The level of assurance is directly proportional to the amount of support that project
management supplies. When quality assurance is perceived as a useful tool to help
develop a functional system within the project constraints, quality assurance
engineers are given adequate funds and personnel to do a thorough job. If the project
manager deems quality assurance an annoyance, then the ability of the quality
assurance engineer to implement an effective program is hampered.

 Effectiveness of the assurance organization

 An assurance organization that has a track record of working with projects to develop
tailored and effective assurance plans and processes will be more likely to gain
project support in implementing new assurance activities. Conversely, an
organization that does not have a good working relationship with projects will make it
much more difficult for the assigned quality assurance engineer to persuade the
project to consider any additional assurance activities for complex electronics.

 Knowledge and experience of the assurance professional

 The assurance professional has to be proactive in implementing quality assurance
activities, especially for new areas such as complex electronics. If the quality
assurance engineer lacks knowledge and experience, the necessary assurance
infrastructure may not be put in place.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

71 of 143

Quality assurance is involved in project planning activities through:
 Creation of a Quality Assurance Plan that outlines the work that will be performed by the

quality assurance engineer throughout the project life cycle.

 Assessment of the project plans, including the management and development plans for
electronics, for completeness, correctness, and other quality attributes.

 Assurance that the project produces the required plans.

The plans a project will produce depend on the NASA and Center requirements and the project
complexity and safety-criticality. The content of the plans often varies between projects, with
one project combining several documents and others producing separate plans. Do not get hung
up about which plan is which, but review the project plans for how they will address complex
electronics. If they do not address the issues at all, try to encourage the project manager or the
design engineer to at least informally document the information.

Here are some areas the project plans should address regarding complex electronics:
 What life cycle will be used to develop the complex electronics? How will the complex

electronics life cycle interface with the project life cycle? In describing the life cycle,
does the document discuss transition criteria between phases, and how to return to
previous phases if problems are found?

 Are there standards that apply to the complex electronics? NASA currently has no
defined standard.

 What is the hardware design process?

 What activities will be performed as part of the process?

 How will the hardware design process work with supporting processes, such as
verification and assurance?

 Is the design method for complex electronics defined and described?

 What design environment (e.g., tools) will be used? What is the rationale for the
selection?

 If deviation from established plans becomes necessary, what is the process for doing this?
For example, how will changes be approved by all interested parties?

 How will the design for complex electronics and any associated data be included in the
configuration management system?

 What process is in place to review and approve any revisions to the design?

 Are the plans completed before the life cycle phase in which they will be used? Plans for
configuration management should be finalized before development starts, for example.

The Quality Assurance Plan should include activities for reviewing the requirements and design,
witnessing or performing testing, and other product verification steps. The plan should also
include formal or informal audits to verify that the project is following the plans they defined. If
a project plan is just gathering dust, it is important to look for the reason. Maybe the document
is too high level. Maybe things have changed enough that the document is out of phase with

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

72 of 143

project reality. Whatever the reason, try to work with the project to fix the document problems
so that the plans are useful and relevant.

Risk management is an important tool that projects can use in reducing the probability or impact
of risks. Complex electronics has some similarities to software, including the fluidity of the
requirements, interface problems with other elements of the system, integration issues (often a
result of the interface problems), and the need to create a complex program within a defined
period of time. These types of issues are ideal for risk management mitigation.

6.3.2 Requirements

During the requirements development process, system requirements are allocated to various
subsystems and parts, including complex electronics. These requirements need to be
documented (in a separate specification for complex electronics or as part of another
requirements specification document).

The process assurance activity is to review the requirements for the complex electronic devices
and verify that they:

 Include all requirements that are appropriate for the complex electronics (i.e., that the
allocation was complete)

 Identify any requirements that are safety-related

 Identify design constraints for the complex electronics

 Are clear, concise, and verifiable

 Are traceable to a higher level document or are noted as derived requirements

It is important that the requirements are as clear as possible, because many problems found later
in system design can be traced back to ambiguous or incorrect requirements. Requirements for
complex electronics should be more than just a cut-and-paste from the system requirements
specification. They should be decomposed to the appropriate level of detail, and provide enough
information that a designer can go off and create the device.

Activities for the verification of requirements for complex electronics must be specified in the
verification plan. If a verification method cannot be determined, that indicates that the
requirement is flawed and needs to be fixed.

6.3.3 Design Entry

During the design entry phase, the complex electronics functionality and structure are defined in
a hardware description language (HDL). The HDL “program” is actually a model of the
complex device, and can be run (simulated) and tested. This phase is when any problems with
the requirements should be identified and the high-level functionality should be verified.

Prior to the start of the design, several process assurance activities should be performed:
 Tools. Review selected tools for applicability to the design process. Check the tool

vendor web site and other sources for known tool defects or operational workarounds.

 Design Process. Make sure a disciplined design process is in place, and the design
engineer is willing to follow it. Negotiate as necessary.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

73 of 143

 Configuration Management. Make sure the HDL code and other design information is
configuration managed. The level of formality depends on status of design (e.g.,
informal version control prior to baseline, formal change control after baselining).

 Design and Coding Standards. Ensure that the design team is using a design and
coding standard. This standard will define the basic design philosophy and specify
aspects of the HDL program structure. Even if only one engineer is designing the device,
a standard 1) helps ensure that the HDL program is understandable by others (and the
design engineer, six months down the road) and 2) provides a way to capture and
incorporate best practices in the design process.

A design and coding standard should include:
 Specific HDL coding features and methods that either should be used or should not be

used.

 Design “best practices”, either as guidelines or as requirements.

 Naming conventions for modules, inputs, outputs, etc.

 Commenting rules that define what types of information to include in comments. One
example would be to define a module header that includes comments on the module’s
purpose and structure.

 Readability rules may be covered under naming and commenting conventions. But the
standard should help guide the designer into creating HDL code that is readable by
others.

 Modularization guidelines that provide information on how to decompose the high level
design into individual modules.

Assessment of the HDL design can be performed in parallel with the design effort, with
intermediate design elements being reviewed, if the project criticality warrants it. Otherwise, the
review is normally performed after at least a fairly stable design (if not baselined) is created.

Process assurance activities post-HDL-design include:
 Ensure that the design is reviewed by someone who has enough knowledge to make an

expert assessment. This can be another engineer, a quality assurance engineer, or even an
outside expert. Another set of eyes will help spot problem areas of the design. This
review could be part of a Formal Inspection or other peer review.

 Review the design (behavioral and structural specification in HDL) against the
requirements. Are all requirements correctly and completely implemented?

 Trace the requirements into the design elements. The rigor of this tracing should be
determined by the safety-criticality and mission-criticality of the device.

 Identify any derived requirements that emerge from the design process. Make sure the
rationale for these requirements is captured.

 Review the design against the design and coding standard.

 Assess the design for unused functions.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

74 of 143

 Assess the use of special pins on each device (e.g., mode pin on FPGA, JTAG pins, no-
connect pins) and verify that each is used properly.

 Identify constraints (design, installation, operation) that could affect safety if not
followed.

 Assess the simulations that were performed. Did they cover all the required
functionality? Were all modules exercised?

 Verify that the processes defined in the project plans were followed.

 Assure that any design trade-offs done for speed, size, etc., are documented.

6.3.4 Design Synthesis

During design synthesis, the higher-level designs are translated to a gate-level design, which can
then be mapped to the logic blocks in a complex electronic device. This step also optimizes the
design to make the most efficient use of the target device. It is during synthesis that timing and
area constraints can be specified by the user.

Process assurance activities at this phase are:
 Verify that the design process, as defined in the project plans, was followed.

 Verify that the tools specified in the previous phase are the ones that are being used.

 Verify that the configuration management system is being used as defined in the project
plans.

Additional assurance activities require someone with expertise in complex electronics. They can
be performed by the quality assurance engineer or by an engineer independent of the project.
Additional assurance activities are:

 Evaluate the test bench that was created by the design engineer for adequate testing
capability of the device design.

 Review the constraints specified by the design engineer (as input to the synthesis process)
for reasonableness.

 Assess the simulations performed after design synthesis is completed. Did the addition of
timing information affect the outcomes of the simulations? Did the simulations look at
worst-case timing, including on incoming signals?

6.3.5 Implementation

During the implementation phase, the higher-level design is converted into a chip layout. The
implementation process uses the tools supplied by the device vendor to match the functions that
were defined in the design to the available blocks, gates, and other logic elements on the chip.

Automated tools perform much of the implementation process, so the assurance and safety
engineers are usually not involved in any depth. Some process assurance activities at this phase
are:

 Verify that the implementation process, as defined in the project plans, was followed.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

75 of 143

 Verify that the tools specified in the project plans are the ones that are being used. Note
any discrepancies and the rationale for using a different tool.

 Verify that the configuration management system is being used as defined in the project
plans.

 Ensure that timing simulations or static timing analyses were performed.

 Verify that the simulations performed included out-of-range inputs, inputs that arrived in
an incorrect order, and other “real world” problems that can be anticipated.

 Verify that the device is programmed according to a defined process and that the
programming is witnessed by appropriate personnel (usually quality assurance).

 Verify that the interfaces to other parts were analyzed for input logic level thresholds and
maximum input transition times.

 If there is a state machine, verify that it was analyzed for:

 Unused states and lock-up

 Simultaneous assertion of flip-flop sets and clears

 Reset conditions

6.3.6 Testing

Once the device is programmed, it should be tested with other components. Initial testing may
occur in a breadboard system, with final (acceptance) testing occurring in the real hardware
system. This in-circuit verification tests the functionality and timing of the design on the actual
chip.

The more common form of in-circuit tests is to manually run the complex electronics as part of a
higher-level assembly to show that it meets all the specified requirements. This subsystem or
system level tests will show functionality at a black-box level, but will not provide a window
into the internal functioning of the device.

Process assurance activities for this phase include:
 Verify the defined processes are in place and are being followed correctly.

 Verify that the testing strategy has been documented in a plan and/or procedure, and that
testing occurs according to the plan.

 Verify that the planned tests will completely verify the requirements in all reasonably
expected situations. This includes verifying the functionality and performance in
nominal situations and when other parts of the system have errors. How gracefully does
the device handle errors it may encounter? How gracefully can it handle any internal
faults?

 Verify that the planned tests will exercise all modules or other divisions in the device.
Not every level of testing has to exercise all modules, but each module should be tested at
some level (device, circuit board, subsystem, or system).

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

76 of 143

 Verify the planned tests exercise the device as close as possible to the functionality in the
sequence and operations that the system will perform on mission with nominal and off-
nominal conditions (i.e., test as you plan to operate).

 Review the test plans and procedures to identify any areas where testing is weak. You
are looking for modules that are only minimally tested, requirements that are only
verified under some circumstances, and other areas where additional testing may be
helpful.

 Witness tests (as agreed to in the project plans) and document any anomalies and
problems.

 Review the test results to verify that no unnoticed anomalies occurred. Sometimes during
testing many events are occurring and an anomaly unrelated to the aspect of the particular
test may be missed.

6.3.7 Operations and Maintenance

Once the system is operational, the role of process assurance is not over. While the original
project assurance engineer may have moved on to another project, there should still be an
assurance engineer maintaining a minimal role with the system.

Process assurance activities during operations and maintenance include:
 Review operational and maintenance procedures for inclusion of any workarounds or

other information that was discovered during development and testing.

 Support any failure review boards and help assess any problems that are identified during
operations.

 If the complex electronic device is to be reprogrammed, assess the impact of the changes
on the device, the system, and operational procedures.

6.3.8 Metrics

During the development process it is important to know if you are developing a quality product.
One way you do that is by collecting metrics during the various phases of the development cycle.
A metric is defined as “a system of parameters or ways of quantitative and periodic assessment
of a process that is to be measured and is usually specialized by the subject area.” Metrics can be
used to track trends, problems, productivity, and much more. With complex electronics, metrics
must cover both the hardware and software portions of the development cycle.

There are two types of metrics used for measurement. They are called primitive and derived.
Primitives are items such as time, number of problems, or lines of code, the base item we use to
make a decision. A derived metric takes multiple primitives to determine a unit. A good
example from the software world is errors per lines of code (errors per KLoc). The two
primitives used in this measure are the number of software errors and the number of executable
lines of code.

Let’s look at some of the primitives available for measurement in the complex electronics
development cycle, starting with the number of defects found. This measure can be broken
down into when and what type of defect is found. When would specify the development phase

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

77 of 143

or review. Defects could be categorized by type of defect. Examples of these are interface,
requirement, and logic or data type.

6.3.9 Supporting Processes

Configuration Management (CM)

Configuration Management is, unfortunately, often not used for complex electronics design
artifacts. The final design is usually saved, but the intermediate development artifacts are under
the control of the designer. While formal configuration management might not be necessary
until the design is finalized (baselined), some form of informal control (e.g., use of a version
management system) is recommended. Being able to revert to a previous version of the design is
useful when problems are discovered during development. Being able to recreate versions of the
design might also be useful to help narrow down when a problem was introduced.

Once the design is baselined, formal configuration management should be applied to the design.
CM includes change control. This means that a process is in place for any changes to be
approved prior to the changes being implemented. Often a Configuration Control Board or an
engineering board is used to review and approve (or disallow) the changes. Change control
assures that:

 Changes to one part of the system do not adversely affect other parts of the system.

 The configuration of the device is always known (i.e., there are not unauthorized
changes).

 Everyone who may be affected by the change has a chance to evaluate the change for
impacts to their area of concern.

Reliability

Most reliability studies look at the hardware failure rates for the devices in a system. While
failure of the actual device (e.g., FPGA) can be known, the failures related to design errors or
unexpected interactions within the FPGA, once it is programmed, are not easy to determine.
Most reliability evaluations ignore software for this very reason.

While there is currently no good way to predictively assess the reliability of a complex electronic
design, the fact that there may be design errors should be considered by the reliability engineer.
At a minimum, the confidence in the resulting numbers (mean-time-to-failure, system reliability)
is lowered.

Maintenance and Maintainability

If the device will potentially need to be maintained (including reprogramming updates), this
issue needs to be considered early in the design of the complex electronics and its supporting
circuitry. Some areas to consider are:

 Will the device architecture allow for the types of enhancements that can be foreseen?

 Does the design specification provide the information that an engineer would need to
understand how the product works?

 Is the HDL code readable?

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

78 of 143

 Are comments liberal and informative?

 Is the necessary physical infrastructure in place to allow reprogramming?

 Is access to the reprogramming port, if one is used, available when the system is
installed?

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

79 of 143

CHAPTER 7. FUTURE TRENDS

7.1 CHANGES IN COMPLEX ELECTRONICS DESIGN AND VERIFICATION

Technology never stands still. Within the realm of complex electronics, devices such as System-
on-Chip, FPGAs with embedded microprocessors, and reconfigurable computing all strain the
traditional hardware-oriented design and verification approaches. Increasing complexity in
designs also make it harder for the designer to conceptualize the design. Several new methods in
design and verification of complex electronics will hopefully help improve verification of these
devices.

7.1.1 Hardware/software Codesign and Coverification

Since complex electronics is increasingly being combined with software, codesign (and
subsequently, coverification) of the hardware and software is a good idea. Hardware/software
codesign is the cooperative design of hardware and software, within a single chip or within a
system. One of the goals of codesign is to shorten the time-to-completion while reducing the
design effort and costs of the designed products.

In hardware-software codesign, designers consider trade-off in the way hardware and software
components of a system work together to exhibit a specified behavior, given a set of performance
goals and technology. This trade-off between hardware and software illustrates the optimization
aspect of the codesign problem. Codesign is an interdisciplinary activity, bringing concepts and
ideas from different disciplines together (e.g., system-level modeling, hardware design and
software design).

Current development methods for designing embedded systems and complex electronics require
specification and design of the hardware and software as separate entities. A specification, often
incomplete, is developed and sent to the hardware and software engineers. The hardware-
software partition is decided early on in the project life cycle and is adhered to as much as is
possible, because any changes in this partition may necessitate extensive redesign. Designers
often strive to make everything fit in software, and off-load only some parts of the design to
hardware to meet timing constraints.

The codesign process starts with specifying the system behavior at the system level. After this,
the system specification is divided into a set of smaller pieces, so-called granules (e.g., basic
blocks). Trade-off studies are performed to determine the most effective way to partition the
functionality into hardware and software. The granules are mapped to hardware and software,
resulting in sets of granules implemented on hardware (hardware parts) or software (software
parts). Once the mapping is done, the implementation-independent system specification is
decomposed into hardware and software specifications.

Hardware is synthesized from the given specification; the software specification is compiled for
the chosen processor. The result of this co-synthesis phase is a set of complex electronics and a
set of assembler programs for the processors. In a final co-simulation step, the complex
electronics are simulated together with the processors executing their generated assembler
programs. The results are iterated until a sufficient system implementation has been found.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

80 of 143

The coverification problem in system-level design includes different methods to detect errors at
different abstraction levels. Coverification methods include formal verification, simulation or
emulation. Formal verification formally proves either the equivalence of different design
representations or specific properties (e.g., the absence of dead-lock conditions of the system
specification).

Simulation validates the functional correctness for a set of input stimuli. In most cases, only a
small set of all combinations of input stimuli can be simulated. For this reason, simulation only
ensures the correct behavior with a certain probability. Simulation can be applied during
different design steps including the co-simulation step after co-synthesis.

To speed up the simulation time for simulating a partitioned hardware/software system,
emulation is used. Emulation systems couple the complex electronics (either the programmable
devices or, for ASICs, a programmable equivalent) with processors on a board. Therefore,
emulators are the closest representation of real prototypes that is possible.

7.1.2 System Modeling

Hardware description languages (HDLs) allow you to model the system at various levels of
abstraction. However, they are still fairly “low level” abstractions, representing the hardware
aspects of the design. Several new modeling languages, and extensions to existing languages,
allow higher-level modeling of the system.

The purpose behind higher-level modeling is to:
 Keep the design at a level of abstraction that human minds can grasp. Complex designs

make it difficult for a human to understand both the device and how it interacts with its
environment.

 Verify the design at a high level, and then allow tools to generate the low-level design.

 Model the complex electronics as part of a larger system that includes software and
possibly biological constructs.

Researchers and industry are developing system modeling languages or language extensions for
use in complex systems. There are two parts to a system design language: the ability to express
ideas in a natural language and a component that can translate the functions into working
architectural components. Here are two areas of language development that are being actively
pursued:

 Using C or C++ to model the system. One product, SystemC, provides hardware-
oriented constructs within the context of C++ as a class library implemented in standard
C++. It can be used from initial concept to implementation in hardware and software.
SystemC provides an interoperable modeling platform, which enables the development
and exchange of very fast system-level C++ models. It also provides a stable platform
for development of system-level tools.

 SystemVerilog is a new standard, enhancing Verilog so that it provides built-in support
for a wide range of modern design and verification methodologies. SystemVerilog is an
extension to the Verilog language, which enables the modeling and verification of
systems at a high level of abstraction. It adds a significant set of language enhancements

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

81 of 143

on top of the Verilog 2001 standard, including features for high-level, abstract system
modeling, test bench automation, and the integration of Verilog with the C programming
language.

 MATLAB and Simulink can be used to model systems. MATLAB is a high-level
technical computing language and interactive environment for algorithm development,
data visualization, data analysis, and numerical computation. Simulink is a platform for
multi-domain simulation and model-based design of dynamic systems. Simulink
provides an interactive graphical environment and a customizable set of block libraries
that let you accurately design, simulate, implement, and test time-varying systems,
including control systems, signal processing, and communications.

7.2 INTO THE NOT SO DISTANT FUTURE

What kinds of new devices and concepts are being considered? Below are a few of the new
technologies being explored.

7.2.1 In-field or reconfigurable SoC

Most SoC designs use what is called a platform-based solution, where standard components like
a microprocessor core make up a significant portion of the SoC. Custom devices provide further
functionality. Some of those devices may be user-configurable (e.g., if a small FPGA or CPLD
is part of the System-on-chip device), others may be designer-chosen only. These types of SoCs
are usually implemented as ASICs.

A reconfigurable SoC provides the same kind of custom support except that the devices and
peripherals are implemented using a reconfigurable matrix. The software must set up the
hardware before it can be used. But from that point on, the platform-based SoC software and
reconfigurable SoC software will be very similar, assuming that the microprocessor core is the
same or similar and the functionality of the peripherals has the same characteristics.

With reconfigurable SoC designs, the hardware functionality can be changed simply by altering
the code that performs system initialization. So, SoC could contain an analog-to-digital
converter for one application, and then be reconfigured for a digital-to-analog converter, or even
a totally different peripheral such as a network device, for another application. Some elements
of the reconfiguration can be performed at a later time (after the basic hardware is initialized),
allowing software applications to reconfigure devices. Applications that deal with multiple
hardware codecs (e.g., streaming multimedia) or encryption methods, for example, could
configure devices to the specific codec or encryption method being used at the time, then
reconfigure for another codec or method when required for a different data stream.

7.2.2 FPGA microprocessors/systems

Some SoC devices are implemented entirely on programmable logic, in particular on FPGAs.
Most reconfigurable SoCs fall into this category. However, reconfigurable SoCs use a fixed
microprocessor with reconfigurable peripheral devices. What if you could change your
microprocessor by just reprogramming the FPGA? What if you could customize the
microprocessor for your application, then change it when that application changes? That is what
the FPGA microprocessor systems offer.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

82 of 143

FPGAs have proven themselves capable of handling a wide variety of tasks, from relatively
simple control functions to more complex, algorithmic operations. While the time and cost
advantages over designing custom ASIC hardware for such functions is well accepted, the
advantages of using FPGAs over traditional processors and DSPs for software-oriented
applications have been less clear-cut. This is due in large part to a long-standing disconnect
between hardware and software development tools and disciplines.

Recent advances in software-oriented design tools for FPGAs, however, have combined with the
ongoing increase in device densities to create a new environment for software developers, one in
which the FPGA can be viewed as one possible target (along with traditional and non-traditional
processor architectures) for a software compiler. Tools now available can help software
engineers make use of FPGA platforms, as well as help these developers take advantage of the
high level of algorithmic parallelism that is available when traditional processors (or processor
cores) and FPGAs are combined in a single target platform.

FPGA-based computing platforms, particularly those with embedded “soft” microprocessors,
have the potential to implement extreme high-performance applications without the upfront risk
of creating custom fixed function hardware. Further, by using the latest generation of
hardware/software co-design tools it is now possible to use multiple graphical, software-oriented
design methods as part of the FPGA design process.

7.2.3 Reconfigurable computing

Someday, perhaps in the not-too-distant future, the computer at your desk may contain a typical
microprocessor along with an array of reconfigurable, reprogrammable devices (FPGAs or their
successors). Or, the microprocessor may be totally replaced by the FPGAs. As a user, the only
thing you’ll note is that your software runs faster, allowing you to get your work done more
quickly.

Typical computer systems use a single microprocessor that executes instructions sequentially.
They are adaptable and configurable - you can write any kind of operating system or run any sort
of application on a microprocessor. However, these systems trade speed for that adaptability.

If you have a fixed set of applications and really need more processing speed, you want an ASIC
designed to meet your needs. While you can gain significant improvement in speed, you lose the
ability to change the processor/ASIC uses outside of a narrow range of applications. The ASIC
speed increase over general-purpose microprocessors comes from a combination of optimization
for the specific purpose and the ability to perform processes in parallel.

What if you want speed and adaptability? To gain speed, you need to move from the serial
processing paradigm to parallel processing. One way to do this is to use multiple processors,
each performing operations in parallel. Another way is through reconfigurable computing. Both
of these methods keep the adaptability component, allowing the user, through software, to run a
wide variety of applications.

To have reconfigurable computing (RC), you need to have hardware that can be reconfigured to
implement specific functionality. RC systems contain programmable hardware and may be
combined with traditional microprocessors in order to take advantage of the strengths of each

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

83 of 143

device. RC has been used in applications ranging from embedded systems to high performance
computing.

Reconfigurable computing uses in-situ reconfigurable FPGAs as computing devices to accelerate
operations which otherwise would be performed by software. The FPGA can be programmed
with a digital circuit that implements the function to be performed, such as a fast square root
operation. The processor can then access this function, as if it were in its own instruction set.
When the processor needs another function, such as multiplying two numbers, the FPGA can be
reprogrammed for that function.

To make this all work, the FPGA must be capable of being reconfigured quickly and allow only
parts of the device to be reprogrammed. Reconfiguration has to be fast, or you quickly eat up the
speed advantage you gain from moving the functions from the microprocessor to dedicated
hardware. You would also lose too much time if the FPGA had to be entirely reprogrammed
when you just want to change part of it. Fortunately, modern FPGAs are up to the challenge.

Reconfigurable computers already exist commercially. Early reconfigurable computers were
expensive complicated monolithic FPGA arrays, but most modern commercial and research
systems have evolved into relatively less expensive workstation accelerators. Research efforts in
academic institutions are considering the establishment and management of parallel
reconfigurable computing clusters and high-throughput networks of reconfigurable computers
(NORCs). All these individual efforts are creating a new direction - reconfigurable
supercomputing.

7.3 NASA ASSURANCE CHANGES

Currently, within NASA, complex electronics are treated as hardware devices. The design of
complex electronics may be reviewed by quality assurance engineers, the assembly into a board
or system is witnessed and/or verified by quality assurance, and the final resulting electronic
device is tested. However, the complex nature of these devices requires additional assurance
effort beyond that given to an off-the-shelf component. Hardware quality assurance personnel
may not be fully cognizant of the functions, potential problems, and issues with these devices.

At NASA Headquarters, this assurance problem is being discussed and debated. What types of
assurance activities should be applied to complex electronics? Who should be involved in the
assurance of these devices? What competencies are necessary to provide adequate assurance of
complex electronic devices?

The Federal Aviation Administration (FAA) faced similar concerns several years ago. They
discovered that software functions were being implemented in FPGAs to avoid having to follow
the FAA software assurance standard (DO-178B). The FAA struggled with the problem and
finally came up with a standard for Complex Electronic Hardware (CEH) that is similar to the
FAA software assurance standard. CEH includes the complex electronic devices discussed in
this handbook and some additional devices. The resulting standard, DO-254, “Design Assurance
Guidance for Airborne Electronic Hardware”, provides guidelines on the use of process
assurance for complex electronic hardware.

NASA is reviewing the FAA approach of implementing process assurance. Software is a very
complex entity that cannot be fully tested. In the software world, process assurance (evaluating

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

84 of 143

how the product is built) is used to increase confidence in the resulting program. The same
philosophy can be applied to complex electronics. If you cannot verify by testing every possible
combination of inputs, decisions, etc., then knowing that you built the device according to well-
defined standards gives additional confidence in its quality.

Process assurance will look at all life cycle stages of complex electronics development, from
requirements to operations. Process assurance for complex electronics is very similar to the
process part of software assurance, where we verify that the software development process was
planned and the plan was followed, where requirements are reviewed and evaluated, the software
design is evaluated against the requirements, code may be inspected or reviewed, and finally the
resulting software is verified against the requirements. For hardware, the same types of activities
are performed.

As a quality assurance engineer, you may be wondering what your role may be in the future.
Since quality assurance encompasses process assurance, quality assurance engineers are well
versed in the ideas and concepts. What is lacking is the knowledge to assess complex
electronics. In order to effectively carry out assurance duties for complex electronic hardware, a
quality assurance engineer must understand 1) the hardware itself, 2) the process and language
used to design the device and 3) how and when to apply software-style assurance techniques to
the device.

This handbook is one step in educating NASA software and quality assurance and system safety
engineers on the design and verification of complex electronics. By itself, this handbook will not
make you an expert able to perform assurance of the devices. The goal of this handbook is to
present you with a broad understanding of complex electronics and the benefits and
drawbacks/issues that need to be discussed and understood by the whole project team. In
addition, this handbook was designed to provide you with the knowledge you need to better
apply quality product and process assurance to these devices.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

85 of 143

APPENDIX A EXAMPLES
A.1 CPLD

Device name: Complex Programmable Logic Device (CPLD)

Figure A-1 CPLD

Description:

A CPLD contains a set of simpler Programmable Logic Device (PLD) blocks whose inputs and
outputs are connected together by a global interconnection matrix. So a CPLD has two levels of
programmability: each PLD block can be programmed, and then the interconnections between
the PLDs can be programmed. A key feature of the CPLD architecture is the arrangement of
logic cells on the periphery of a central shared routing resource. CPLDs are equivalent to about
50 typical PLD devices, and can replace thousands, or even hundreds of thousands, of logic
gates.

Programming and Reprogramming

CPLDs vary in how they can be programmed or reprogrammed, depending on their underlying
structure. The three basic types of CPLDs are:

 Fuse or anti-fuse. These CPLDs are programmed by passing a large current through the
connections (fuses). The current “blows” the fuse to break a connection. The CPLDs are
one-time programmable because you cannot rewire them internally once the fuses are
blown. Programming occurs in a special device external to the circuit board the CPLD
will be placed on.

 EPROM or EEPROM. In these CPLDs, the interconnections are made with transistors
that are opened or closed by storing a charge on their gate electrodes using a high-voltage
pulse. For EPROM-like CPLDs, you erase the CPLD and then place it in a special
programmer socket and reprogram it. Reprogramming is not possible once the chip is
soldered to its circuit board. EEPROM-like CPLDs may be reprogrammable on the
circuit board, if special circuitry is included.

 SRAM or Flash. Static RAM (SRAM) or Flash can be used to control the transistors for
each interconnection. Each memory bit controls the interconnect switches through its
value. When a bit is set to ‘1,’ the switch is closed, and the logic elements are connected.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

86 of 143

A ‘0’ opens the switch. CPLDs built using RAM/Flash switches can be reprogrammed
without removing them from the circuit board and are in-circuit reconfigurable or in-
circuit programmable.

To figure out what switches to open or close to implement your logic design, there are tools
available that take a logic design and output a binary file which configures the switches in a
CPLD.

Applications:

CPLDs are used in a wide variety of applications from cell phones to spacecraft. They are often
used as “glue logic” to connect various parts of a design, massage and process data, or to
translate data from one protocol to another. CPLDs are great for:

 high speed operations

 interface controllers (bus, memory, Flash)

 interface bridging

 I/O expansion

 device configuration

 power-up sequencing

 microprocessor support logic

 glue logic

 implementing small “soft” microcontrollers (e.g., 8-bit)

They are used as support chips in most modern electronics, including:
 Cell phones

 PDAs

 Digital cameras

 Communications hardware

 GPS

CPLDs come in a variety of density, speed, and package options. Handheld applications tend to
use lower density devices, because they have less need for complex logic, require low power,
and try to minimize cost per unit. When capability is more important than power usage, higher
density CPLDs are a better choice.

Often a logic design could be implemented in either a CPLD or an FPGA. CPLDs are chosen
when predictable timing performance is required. CPLDs have fewer routing matrices than
FPGAs. Since each routing matrix adds a little delay to the signal, fewer routings translates to
faster signal transit. While CPLD density is less than most FPGAs, high end CPLDs will have
same density as low end FPGAs. Performance of CPLDs is usually better than FPGAs, though it
depends on the vendor, size (number of cells), speed, and other factors.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

87 of 143

Real-world Examples:

Here are some examples of CPLDs used in a variety of products.

MicroDosimeter Instrument (MIDN)

MIDN was a space payload flight tested a compact, low powered, and portable solid-state micro
dosimeter. MIDN collected quantitative information on the dose and dose distribution of energy
deposited in silicon cells that are tissue-sized. By inference, this data could show what the dosage would
be in living tissue.

CPLDs were used in MIDN for command and data handling. This payload was part of the MidSTAR-1
(Midshipman Space Technology Applications Research) satellite which was in operation from 2007-
2009.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

88 of 143

Fluids and Combustion Facility (FCF)

The Fluids and Combustion Facility (FCF), a permanent modular, multi-user facility to
accommodate microgravity science experiments onboard the International Space Station (ISS)
U.S. Laboratory Module, was first activated in 2009. FCF uses the Fluids Integration Rack
(FIR) and the Combustion Integration Rack (CIR) to support research in fluid physics and
combustion science. The FIR will permit a wide range of fluid investigations from microscopic
imaging to particle tracking. CIR experiments look at how solid, liquid, and gaseous fuels burn
in microgravity, fire prevention and suppression, pollutant and particulate formation, and
combustion efficiency.

CPLDs are used within FCF to translate data from a digital camera to a high-speed fiber
interface. When the data is received, two other CPLDs reformat the incoming data to what is
required by a Digital Signal Processor (DSP).

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

89 of 143

A.2 FPGA
Device name: Field Programmable Gate Array (FPGA)

Figure A-2 FGPA

Description:

A FPGA is a collection of simple, configurable logic blocks arranged in an array with
interspersed switches that can rearrange the interconnections between the logic blocks. Each
logic block is individually programmed to perform a logic function (such as AND, OR, XOR,
etc.) and then the switches are programmed to connect the blocks so that the complete logic
functions are implemented.

The interconnections for the logic blocks are programmable switches. FPGAs may use
EEPROM, SRAM, antifuse, or Flash technology to store the programming. In most larger
FPGAs, the configuration is volatile and must be re-loaded into the device whenever power is
applied or different functionality is required.

Initially, FPGAs had only local and global routing resources (i.e., a logic block could only
connect to adjacent logic blocks or to global networks). Newer FPGAs have multilevel routing
hierarchies, so logic blocks can connect to different levels. Fortunately, the design software
takes care of these complex issues.

Newer FPGAs are being developed that contain fixed functionality, as well as traditional
programmable logic. FPGAs may contain a FIFO, arithmetic functions, memory, chip-to-chip
transceivers, digital signal processor (DSP), or even an entire bus interface or microprocessor
core. FPGAs with fixed functionality are cousins to the SoC devices that included
programmable logic as part of their design.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

90 of 143

SRAM FPGAs

SRAM, or static RAM, is a volatile type of memory. The contents of the memory are lost
whenever the power is switched off. Static RAM differs from the dynamic RAM used in PCs in
that memory refresh of the RAM is not required. SRAM-based programmable logic devices,
such as FPGAs, have to be programmed every time the chip is switched on. This is usually done
automatically by another part of the system.

Most SRAM-based FPGAs use a master mode, where they read the configuration information
from non-volatile memory, such as a serial or parallel EPROM or flash memory. The FPGAs
can also be configured via an external source in slave mode. The FPGA accepts a serial or
parallel data stream that represents the configuration data. The source of the data can be a
processor, computer, or an FPGA that is acting as a master. Using this technique, it is possible
for several FPGAs to be programmed from a single memory. A master FPGA is wired to a daisy
chain of slave FPGAs. When the master FPGA has been programmed, it will keep reading the
data from the memory and pass it on to the slave devices until all of the FPGAs are configured.

Antifuse FPGAs

A fuse is a special part of the programmable chip that is normally closed (connected) until an
electrical current breaks that connection. Antifuses, unlike traditional fuses, are open until a
voltage is applied to close (complete) the circuit path. Once programmed closed, the connection
cannot be reprogrammed to open. Programmable logic that uses fuses or antifuses are “program
once” chips.

Antifuse FPGAs are best used when you do not want to have to reconfigure your chip every time
power is applied (e.g., if you need a quick power-on time). They are also useful in environments
where SRAM would have problems (e.g., high altitude or outer space).

Flash FPGAs

Flash memory is non-volatile, which means that it retains its contents even when the power is
switched off. It can be erased and reprogrammed as required. This makes it useful for
programmable logic device memory. Flash-based devices combine the best of both worlds -
maintaining configuration when not powered, but also allowing reprogramming when desired.
Flash-based programmable devices are essentially immune to neutron radiation (generated when
cosmic rays interact with the atmosphere) and are resistant to other high-energy particles.

Software Engineers and FPGAs

What if a software engineer could create a regular software application that could run on an
FPGA? Design tools for FPGAs are moving quickly in this direction. In this new environment
for software developers, the FPGA can be viewed as one possible target (along with traditional
and non-traditional processor architectures) for a software compiler. With currently available
tools, the software engineer can make use of FPGA platforms, as well as take advantage of the
high level of algorithmic parallelism that is available when traditional processors (or processor
cores) and FPGAs are combined in a single target platform.

FPGA-based computing platforms, particularly those with embedded “soft” microprocessors,
have the potential to implement extreme high-performance applications. With the latest

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

91 of 143

generation of hardware/software codesign tools it is now possible to use multiple graphical,
software-oriented design methods as part of the FPGA design process.

Radiation and FPGAs

NASA projects typically deal with environments more extreme than an office or laboratory.
Spacecraft and high-altitude aircraft are bombarded with radiation. Shock and vibration,
electromagnetic interference, and thermal issues are common problems when designing NASA
systems.

Unfortunately, FPGAs are mostly just big RAM devices, and most of that RAM is in the
configuration circuitry. An upset event in the routing can quietly alter the logical
interconnections, and a problem in a lookup table (LUT) can alter the functional behavior of a
design.

SRAM FPGAs are susceptible to ionizing radiation, including the neutron radiation experienced
at high altitudes. SRAM FPGA designed for high-radiation environments typically use periodic
read-back and verification of the configuration or frequent reconfiguration of the chip to a known
good state. Because SRAM devices are vulnerable, they are used more in payload applications,
where some level of failure can be tolerated and overcome, than in the more critical systems that
control spacecraft flight operations.

While antifuse FPGAs lag behind the more programmable versions in size (gate density),
versatility and market share, they are very useful in space applications. Radiation tolerant
FPGAs use the antifuse technology, which provides immunity to radiation effects as well as low
power, single-chip solutions that do not require configuration circuitry.

Flash-based FPGAs provide radiation tolerance along with reprogrammability. Like antifuse
FPGAs, they are immune to upsets caused by most radiation. Like SRAM FPGAs, they can be
reprogrammed in-circuit. Radiation studies of flash-based FPGAs are still ongoing.

While high-profile projects like the Mars rovers showcase the use of programmable logic in
space, the majority of space-bound FPGAs are included in commercial and military satellites.
FPGAs are frequently used in satellite functions such as guidance, station-keeping, and
telemetry.

Applications

FPGAs had an initial niche as prototypes for ASIC. Because ASICs require a long lead time
from design to implementation, and it can be very expensive to correct ASIC design errors,
FPGAs were used to try out the designs. Errors detected in the design could be corrected, the
FPGA reprogrammed, and testing of the design could continue. The process is not without
problems, though. ASIC designs had to be created using ASIC synthesis tools, then a separate
FPGA tool is used to implement the ASIC prototype in an FPGA. Switching from one synthesis
tool to another requires changing code and scripts, which is time-consuming, and increases the
potential for introducing errors into the prototype that do not accurately reflect the functionality
of the ASIC design. FPGAs are often slower than ASICs, which prevents timing problems from
being accurately diagnosed. Despite the problems, however, FPGAs are still used to prototype
ASICs - because the cost of a failed ASIC can be quite expensive.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

92 of 143

FPGAs have gained rapid acceptance and growth over the past decade because they can be
applied to a very wide range of applications. Some typical applications are:

 random logic

 integrating multiple CPLDs

 device controllers

 bus controllers

 communication encoding and filtering

 small to medium sized systems with SRAM blocks

More intensive applications include:
 Digital signal processing

 Complex custom applications

 Consumer electronics

 Software radio

 Cryptographic and security devices

Reconfigurable or adaptive computing is a cutting-edge application for FPGAs. Instead of a
traditional microprocessor that executes software, FPGAs are reprogrammed to perform the
necessary calculations or operations.

NASA (and other) Examples:

The Mars Exploration Rovers (MERs), Spirit and Opportunity, garnered the world’s attention as
they rolled out onto the surface of Mars. Hidden inside the rovers and landers are FPGAs, doing
their job in a harsh environment. FPGAs are used in pyrotechnics devices for landing, as well as
in the arm, cameras, steering, antenna gimbals, and wheel control systems on the Mars rover
missions.

Here are some other space and science projects that use FPGAs:

Cassini

There are FPGAs orbiting Saturn on the
Cassini spacecraft, launched in 1997.
Cassini has completed its primary mission
and its first extended mission and is now on
its second extended mission, through 2017.
FPGAs are used in many instruments on
Cassini, including the Visual and Infrared
Mapping Spectrometer (VIMS).

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

93 of 143

Extreme Ultraviolet Imager (EUV)

FPGAs controlled parts of the EUV
instrument on the IMAGE (Imager for
Magnetopause-to-Aurora Global
Exploration) satellite, part of NASA’s
MIDEX program. IMAGE was launched in
2000 on a two-year mission, but continued to
provide data into 2005. FPGAs controlled
the sensors and read out, formatted, and
stored the data.

Optus C1

Radiation tolerant FPGAs have been
deployed on board Optus C1, the largest
hybrid commercial and defense
communications satellite ever launched. The
communications satellite was launched in
2003 and is still operational.

 A prototype multi-directional muon detector, operating in Sao Martinho, Brazil, was

upgraded and extended, using FPGAs. The FPGAs allow a more complicated and
advanced logical circuit to be designed at a reduced cost. The upgraded detector will be
able to determine the incident direction of every single muon detected and record the
count rates in the total 121 incident directions. The detector is part of a network used to
forecast geomagnetic storms.

 NASA’s Jet Propulsion Laboratory has developed a lossless image-compression
algorithm that can be implemented entirely in an FPGA plus a small random-access
memory chip.

Other missions that include FPGAs:
 Civilian/Scientific exploration:

 Deep Space 1

 Mars Pathfinder, Surveyor, Express, Climate Orbiter

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

94 of 143

 Lunar Prospector

 SIRTF (Space Infrared Telescope Facility, renamed the Spitzer Space Telescope)

 TDRS (Tracking and Data Relay Satellite)

 Hubble Space Telescope

 GOES (Geostationary Operational Environmental Satellite)

 International Missions

 International Space Station

 Chandra

 Rosetta

 SOHO (Solar and Heliospheric Observatory)

 Commercial Satellites

 Telstar

 PanAm Sat

 Intelstat IX

 Globalstar

 Orbview

 Military Satellites

 Clementine

 HESSI (High Energy Solar Spectroscopic Imager)

 Mighty Sat

 SBIRS-High (-Low) (Space Based Infrared System)

 Launch Vehicles

 Ariane

 Atlas

 Delta

 EELV (evolved expendable launch vehicle)

 SeaLaunch

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

95 of 143

A.3 ASIC

Device name: Application Specific Integrated Circuit
(ASIC)

Figure A-3 ASIC

Description:

An ASIC is an integrated circuit designed to perform a particular function by defining the
interconnection of a set of basic circuit building blocks drawn from a library provided by the
circuit manufacturer. They are built by connecting existing circuit building blocks in new ways.
Since the building blocks already exist in a library, it is much easier to produce a new ASIC than
to design a new chip from scratch.

ASICs are custom-designed integrated circuits, but they are not programmable by the user. They
are manufactured (usually in large quantities) by vendors according to the design provided by the
customer. If you find a problem with an ASIC after it is produced, the only option is to
remanufacture (re-spin) the chip with a corrected device. To avoid costly mistakes, FPGAs are
often used to check out and debug the ASIC design prior to submittal to the manufacturer.

While most integrated circuits (ICs) could be considered “application-specific,” because they
have a defined purpose, off-the-shelf parts are not really ASICs. They are not designed by the
user/customer to incorporate just the required functionality. Examples of ICs that are not ASICs
include standard parts such as memory chips (ROMs, DRAM, and SRAM), microprocessors, and
all the miscellaneous chips that are used in modern electronics (FIFOs, logic chips, drivers, clock
chips, switches, etc.). Now, if a chip has been designed specifically for a talking toy, a cell
phone, or a satellite, it is an ASIC. As a general rule, if you can find it in a data book, then it is
probably not an ASIC.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

96 of 143

Integrated circuits are made on a thin (a few hundred microns thick), circular silicon wafer, with
each wafer holding hundreds of die. The transistors and wiring are made from many layers built
on top of one another. Each successive layer has a pattern that is defined using a mask similar to
a glass photographic slide. The first layers define the transistors, and the last layers define the
metal wires between the transistors (the interconnections).

ASICs come in two basic varieties, full-custom and semi-custom, which consist of two sub-
types: cell-based and gate-array. Each variety or type of ASIC has strengths and weaknesses. A
microprocessor is an example of a full-custom ASIC, where each micron on the silicon is
customized to give exactly what is needed. Semi-custom ASICs have pre-designed elements and
customizable portions.

A full-custom ASIC allows customization of some (and possibly all) logic cells and all mask
layers. Customizing all of the ASIC features in this way allows designers to include analog
circuits, optimized memory cells, or mechanical structures on an IC, for example. Full-custom
ASICs are the most expensive to design and manufacture. The manufacturing lead time (how
long it takes to make an ASIC once the design is completed) is typically eight weeks.

Semi-custom ASICs have all of the logic cells pre-designed and some (possibly all) of the mask
layers are customized. Designers use pre-designed cells from a cell library, provided by the
vendor or a third party. These pre-designed units are usually referred to as IP (Intellectual
Property). Semi-custom ASICs are either standard cell-based ASICs or gate-array-based ASICs.

A cell-based ASIC uses pre-designed logic cells (e.g., AND gates, OR gates, multiplexers, and
flip-flops) known as standard cells. The standard-cell areas (also called flexible blocks) are built
of rows of standard cells like a wall built of bricks. The standard-cell areas may be used in
combination with larger pre-designed cells, such as microcontrollers, known as megacells.
Megacells are also called megafunctions, full-custom blocks, system-level macros (SLMs), fixed
blocks, cores, or Functional Standard Blocks (FSBs).

The ASIC designer defines only the placement of the standard cells and interconnect in a cell-
based ASIC. However, the standard cells can be placed anywhere on the silicon; this means that
all the mask layers are customized and are unique to a particular customer. The advantage of
cell-based ASIC is that designers save time, money, and reduce risk by using a pre-designed,
pre-tested, and pre-characterized standard-cell library. In addition each standard cell can be
optimized individually.

If you were to look through a low-powered microscope
at a cell-based ASIC die, you would see something
similar to this figure. This ASIC has a single standard-
cell area (a flexible block) together with four fixed
blocks. The small squares around the edge of the die
are bonding pads that are connected to the pins of the
ASIC package.

Figure A-4 ASIC Die

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

97 of 143

In gate-array-based ASICs, the transistors are predefined on the silicon wafer. This predefined
pattern of transistors on a gate array is called the base array, and the smallest element that is
replicated to make the base array is called the base cell. Only the top few layers of metal, which
define the interconnect between transistors, are defined by the designer using custom masks.

The designer chooses from a gate-array library of pre-designed and pre-characterized logic cells
or macros. The reason for this is that the base-cell layout is the same for each logic cell, and
only the interconnect (inside cells and between cells) is customized. Gate-array ASICs can be
prefabricated up to a point and stored. At a later time, the final customization steps can be
performed to complete the ASIC. This reduces the manufacturing time to only a few days or at
most a couple of weeks.

ASIC Cell Libraries

The cell library is the key part of ASIC design. Cell libraries can be provided by the ASIC
vendor, procured from a third-party library vendor, or custom-built. The first choice, using an
ASIC-vendor library, requires you to use a set of design tools approved by the ASIC vendor to
enter and simulate your design. An ASIC vendor library is normally a phantom library - the cells
are empty boxes, or phantoms, but contain enough information for layout. After you complete
layout you hand off a netlist to the ASIC vendor, who fills in the empty boxes (phantom
instantiation) before manufacturing your chip.

The second and third choices require you to make a buy-or-build decision. If you complete an
ASIC design using a cell library that you bought, you also own the masks (the tooling) that are
used to manufacture your ASIC. This is called customer-owned tooling (COT, pronounced “see-
oh-tee”). A library vendor normally develops a cell library using information about a process
supplied by an ASIC foundry. An ASIC foundry (in contrast to an ASIC vendor) only provides
manufacturing, with no design help. If the cell library meets the foundry specifications, it is
considered to be a qualified cell library. These cell libraries are normally expensive (possibly
several hundred thousand dollars), but if a library is qualified at several foundries this allows you
to shop around for the most attractive terms. This means that buying an expensive library can be
cheaper in the long run than the other solutions for high-volume production.

The third choice is to develop a cell library in-house. Many large computer and electronics
companies make this choice. Most of the cell libraries designed today are still developed in-
house despite the fact that the process of library development is complex and very expensive.

However created, each cell in an ASIC cell library must contain the following:
 A physical layout

 A behavioral model

 A Verilog/VHDL model

 A detailed timing model

 A test strategy

 A circuit schematic

 A cell icon

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

98 of 143

 A wire-load model

 A routing model

Applications:

ASICs are used widely in many types of electronics devices. Any time there are a large number
of devices manufactured that require specialized operation, you will probably find an ASIC
inside.

ASICs Application Examples:
 Battery management for household appliances

 Low noise audio circuit

 Analog Integrated Circuit for industrial environment

 Sensitive photo transistors and opto-sensors

 DC-DC converters from 0.9V supply voltage

 Control circuit for cycle rear light

 120V Linear Regulator

 Interface circuit for a bar code reader

 Control and evaluation circuit for motion detectors

 Timer electronics

 Interface and signal processing electronics for sensors (light, vibration and magnetic
field)

 Control circuit for mobile phones

 Automotive control functions

 PDAs.

NASA Examples:

ASICs can provide several features that are especially important in spacecraft and instruments,
such as:

 Customized electronics

 Smaller footprint

 Less weight

 Hard-coded (radiation resistant)

The smaller footprint on the circuit board and reduced weight are the result of including multiple
functions in a single chip, rather than having to use many individual integrated circuit chips.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

99 of 143

Cassini

See section A.2 also. The Cassini spacecraft is a complicated system, with 22,000 wire
connections and nearly nine miles of cabling. The main on-board computer uses very high-
speed ICs and advanced, radiation-hardened ASICs. Each ASIC replaces one hundred or
more traditional chips, allowing the development of a data system for Cassini that is ten
times more efficient than earlier spacecraft designs (e.g., Galileo and Magellan), but at less
than one-third the mass and volume. Mars Pathfinder and Near Earth Asteroid Rendezvous
(NEAR) both used these chips directly off the Cassini production line.

The Cassini program also created an advanced solid-state power switch that eliminates the
rapid fluctuations (called transients) usually found in circuits utilizing conventional power
switches. This power switch combined the switching attributes of the Metal-Oxide
Semiconductor Field-Effect Transistor (MOS FET) with an ASIC design. This ASIC results
in significantly improved component lifetime and efficiency and is widely applicable to both
industrial and consumer electric and electronic products.

Swift

Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

100 of 143

ray burst (GRB) science and launched in 2004. Its three instruments work together to
observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet, and optical wavebands.
The main mission objectives for Swift are to:

 Determine the origin of gamma-ray bursts

 Classify gamma-ray bursts and search for new types

 Determine how the blastwave evolves and interacts with the surroundings

 Use gamma-ray bursts to study the early universe

 Perform the first sensitive hard X-ray survey of the sky

One instrument on Swift is the Burst Alert Telescope (BAT), a large coded aperture
instrument with a wide field-of-view (FOV) that provides the gamma-ray burst triggers.
BAT can observe and locate hundreds of bursts per year to better than 4 arc minutes
accuracy. BAT contains thousands of detector elements that are assembled into 8 x 16
arrays, each connected to 128-channel readout ASICs.

Gamma-ray Large
Area Space Telescope

(GLAST)
[Renamed the Fermi
Gamma Ray Space

telescope]

The Fermi Gamma-ray Space Telescope, launched in 2008, is an international and multi-
agency space mission to study the cosmos in the energy range 10 keV - 300 GeV. Fermi has
an imaging gamma-ray telescope vastly more capable than instruments flown previously, as
well as a secondary instrument to augment the study of gamma-ray bursts. The main
instrument, the Large Area Telescope (LAT), has superior area, angular resolution, and field
of view over previous instruments. The LAT tracker subsystem was focused on
compactness, minimum wiring, and redundancy. The subsystem was implemented using
two ASICs.

SonoSite’s TITAN™ system took part in a 10-day underwater experiment with NASA Extreme
Environment Mission Operations (NEEMO) 7 Mission. Aquanauts used the laptop-sized
ultrasound system to scan each other in simulated emergency situations and transmit live images
to a hospital for review by radiologists. The TITAN system utilizes SonoSite's proprietary ASIC
microchip technology to integrate millions of transistors onto one circuit.

NASA's Jet Propulsion Laboratory has developed a command interface ASIC and an analog
interface ASIC. This chip set for remote actuation and monitoring of a collection of switches
can be used to control generic loads, pyrotechnic devices, and valves in a high-radiation
environment. The command interface ASIC (CIA) can be used alone or in combination with the
analog interface ASIC (AIA). Designed primarily for incorporation into spacecraft control
systems, they are also suitable for use in high-radiation terrestrial environments (e.g., in nuclear
power plants and facilities that process radioactive materials).

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

101 of 143

A.4 SOC

Device name: System-on-Chip (SoC)
Also known as System-on-a-chip (SoaC)

Figure A-5 SOC

Description:

SoC, also called “system-on-a-chip” or SoaC, is a complete product that contains all the
necessary electronic circuits and parts for a "system" on a single integrated circuit. Think of it as
a single-board-computer on a chip. SoCs include the hardware components and all required
ancillary electronics.

 SoCs combine aspects of ASICs and field-programmable logic. SoCs can be:

 Totally ASIC, with the individual blocks specified by the designer

 ASIC for the computing unit and logic functions, with some programmable parts (e.g.,
CPLD)

 Implemented on programmable logic (e.g., FPGA)

SoCs can use IP designs created by others and integrated into the chip. IP blocks are pre-
designed behavioral or physical descriptions of a standard component. These reusable
components are usually Commercial-off-the-Shelf (COTS) products.

The benefits of SoC design include:
 Conservation of space (reduction in chip count)

 Improved performance (higher reliability)

 Lower memory requirements

 Greater design freedom (simpler logistics)

These benefits also come with some challenges including:
 Larger design space

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

102 of 143

 More expense (global on-chip communication is expensive in terms of
power/propagation delay)

 Increased prototype cost

 Correctness of complete system with multiple components

 A high level of debugging methodology

Testing of the products is also a challenge due to the fact that typical testing methods have been
developed for specific specialty areas, whereas the SoC requirement includes all specialties,
potentially on one platform.

A SoC could include:
 Microprocessor

 Memory (e.g., SRAM, DRAM, Flash)

 Communications cores

 Digital Input/Output functions

 Analog Input/Output functions

 Bus controllers (e.g., PCI)

 DSP (Digital Signal Processor)

 Sensors

 Programmable logic (e.g., FPGA, CPLD)

 Embedded software

For example, a system-on-chip for a sound-detecting device might include an audio receiver, an
analog-to-digital converter (ADC), a microprocessor, necessary memory, and the input/output
logic control for a user - all on a single microchip.

Configurable System-on-Chip (CSoC)

Configurable SoCs are a new form of system-on-chip that has a configurable fabric that
designers can manipulate, after chip fabrication, to achieve specific functionality.
Configurability lets you change on-chip functions for a variety of reasons. These reasons
include:

 change in core functionality

 compatibility with a change in a communications or other standard to which the CSoC
must conform

 correcting a design error incurred during original chip development.

Post-process configurability lets you create products that can adapt to changing requirements.

Some configurable SoCs are FPGAs that combine both hard (fixed) and soft (programmable)
cores. These chips are sometimes referred to as platform FPGAs. In the diagram below, the

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

103 of 143

microprocessor is a hard component (fixed in the silicon), while the Digital Signal Processor
(DSP) is a soft component created in the FPGA programmable infrastructure.

The reconfigurable approach offers significant advantages. It reduces design costs because
changes can be made immediately to the chip during development. Chip simulation becomes
less of an issue because the real hardware is available immediately. In the field, bug fixes and
upgrades can be more extensive as significant portions of the hardware can be altered, not just
the application code.

Figure A-6 Reconfigurable SoC

Cost is the main downside to using a standard reconfigurable SoC rather than creating a custom
SoC. Custom designs typically have large up-front development costs, but low individual chip
costs. Reconfigurable SoCs have a comparatively small up-front cost, but are usually more
expensive per chip. Reconfigurable SoCs can also be used for prototyping because the core CPU
and fixed peripherals are well defined. Building a custom ASIC or SoC based on a
reconfigurable prototype is relatively easy.

Applications for SoC:

System-on-chip devices can be used in any application that requires a processor and peripheral
components. Since the advantages of SoC are small size, integrated components, and reduced
power, they are especially useful in:

 Cell/camera phones

 Medical equipment (especially portable devices)

 Portable multimedia devices

 Network-enabled devices

 PDAs

 Point-of-sale devices

 Gaming systems

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

104 of 143

In the medical world, portable equipment and implantable devices are becoming more common.
Such equipment includes blood glucose monitoring systems, insulin pumps, body temperature
sensors, defibrillators, neurological stimulators, pacemakers, and hearing aids. These products
not only simplify the testing, monitoring, and treatment processes, but can also help to improve
the quality of life for the patient by minimizing time spent in hospitals and often providing
automatic, continuous treatment of chronic conditions.

To address requirements for performance, power consumption, and size, medical equipment
manufacturers are incorporating as much functionality as possible into a single, complex SoC.
These devices need to integrate both analog and digital capabilities and, in many cases, deliver
short-range, low-data-rate wireless communications functionality. Furthermore, some
applications may also require that high-voltage output stages be integrated into the same device.
A variety of semiconductor technologies, IP blocks, and support tools can help to significantly
simplify the implementation of SoCs for implantable and portable medical devices.

An example of a network device is the Sony Video Network Station. This device, which
contains an embedded Linux operating system running on an Axis ETRAX system-on-chip
processor, transmits images generated by analog video cameras to remote locations where they
can be viewed using ordinary GUI-based web browsers. The device is useful in a diverse range
of applications requiring remote video monitoring and control, including security monitoring,
quality inspection, image distribution, access control, and market research.

NASA projects:

Like ASICs and FPGAs, SoC devices have significant benefits for NASA projects, including:
 Customizable electronics

 Smaller circuit board footprint

 Less weight

 Integrated functionality

Temperature Remote I/O (TRIO) System-on-Chip for Aerospace

The TRIO smart sensor data acquisition chip was developed by Johns Hopkins
University/Applied Physics Laboratory for NASA spacecraft applications. TRIO includes a 10
bit self-corrected analog-to-digital converter, analog inputs, a front end multiplexer with
selectable acquisition time, a current source, memory, serial and parallel bus, and control logic.
These functions are very useful for spacecraft and subsystems health and status monitoring and
control actions. The key contributions of the TRIO are feasibility of modular architectures,
elimination of several miles of wire harnessing, and power savings by orders of magnitude. So
far TRIO is used in many missions including Contour, Messenger, Stereo, Europa Orbiter, Mars
Surveyor Program, Solar Probe, Pluto Express, and in the generic JPL X2000 spacecraft bus.

Radio Frequency (RF) components

Micro-Electro-Mechanical Systems (MEMS) integrate mechanical elements, sensors, actuators,
and electronics on a common silicon substrate through microfabrication technology.
Microelectronic integrated circuits can be thought of as the "brains" of a system and MEMS

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

105 of 143

augments this decision-making capability with "eyes" and "arms” to allow microsystems to sense
and control the environment.

NASA Glenn Research Center is developing microwave MEMS devices that integrate with
miniature microwave (RF) transmission lines and components to build low loss RF distribution
networks for System on a Chip (SOAC) and phase array antennas. These novel, low loss,
miniature RF components will be fabricated using multilayer processing, and they will be
combined with SOAC technology being developed by the University of Michigan and the JPL
Center for Integrated Space Microsystems (CISM) for nano-sized science craft.

Advanced time-of-flight system-on-chip for remote sensing instruments

Accurate and/or fast time interval measurement is important in many remote sensing
instruments, especially those that require detection of photon/particle events, position decoding
and time-of-hit measurement. An advance time-of-flight (TOF) system-on-chip has been
developed that includes the complete signal processing electronics for microchannel plate (MCP)
readout. The TOF chip is capable of a time resolution of <50picoseconds. The TOF chip was
used on the NASA/IMAGE spacecraft launched in 2000 and is part of many other science
instruments on MESSENGER.

ChipSat

ChipSat is a long-term research program which aims to build a satellite-on-a-chip. As part of the
program, an existing on-board computer (OBC) was scaled down to a SoC. The OBC chosen
was developed by the Surrey Satellite Technology Limited (SSTL), a company owned by the
University of Surrey in Guildford, UK. The SoC is prototyped on a single high-density
programmable logic array chip using soft IP cores.

The image below shows the parts of the OBC that were mapped into the system-on-chip. An
entire board was shrunk down to a single chip. The experiment showed that it is possible to
implement the functionality of a small satellite OBC on a single programmable logic chip.

SCOC – A Spacecraft Controller On a Chip

The European Space Agency (ESA) is pursuing development of a system-on-chip that
incorporates all the required functions for spacecraft control. This SoC is currently prototyped in
an FPGA. The demonstration board is named BLADE (Development of the Board for LEON
and Avionics DEmonstration). Eventually, the design will be produced in a radiation-tolerant
ASIC or PROM-based FPGA.

SCOC looks to integrate multiple functions into a single chip. By integrating the functions, the
external connections become on-chip interconnects. Other benefits include reduced power
consumption, reduced component count (and thus lower mass), and increased performance and
reliability. However, putting all the functions on a single chip reduces the accessibility to the
internal functions and makes testing the complex chip more difficult.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

106 of 143

Figure A-7 ChipSat OBC

The SCOC will include the following components
 Standard processor, known to the space community (the LEON SPARC-V8)

 Flexible peripherals, which can be powered down

 Telecommand and Telemetry (TM/TC) functionality (using the CCSDS protocol)

 Housekeeping and CCSDS Time Management

 Multiple standard interfaces

 PCI parallel backbone

 Spacewire (IEEE 1355.1)

 MIL 1553 standard Bus Controller/Monitor (BC/BM) and Remote Terminal (RT)

 Dedicated data processing

 Monitoring camera interface and image compression

 GNSS navigation receiver

 Star tracker pre-processor

 Mathematical co-processor

The current BLADE development integrates the processor with standard interfaces. Additional
functionality will be added in the future.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

107 of 143

A.5 RECONFIGURABLE COMPUTING

Device name: Reconfigurable Computing
AKA Adaptable Computing, Evolvable computing

Description:

Can you have a computer without a microprocessor? How do you deal with situations where
autonomous instruments have to adapt to changing situations? What if your device has to
support multiple protocols, depending on its location or mission? How do you process signals
that may come in multiple formats without advance planning?

The answer to the above questions is “reconfigurable computing.” Reconfigurable Computing
represents a new idea in computing philosophy, in which some general-purpose hardware agent
is configured to carry out a specific task, but can be reconfigured on-demand to carry out other
specific tasks.

Traditionally, there have been two ways to implement a computation or algorithm: custom
hardware or software. In some systems, this decision can be made on an individual subtask
basis, placing some subtasks in custom hardware and some in software on more general-purpose
processing engines.

Hardware designs offer high performance because they are:
 Customized to the problem—no extra overhead for interpretation or extra circuitry

capable of solving a more general problem.

 Relatively fast, due to their highly parallel and spatial execution.

Software implementations exploit a “general-purpose” execution engine (i.e., microprocessor),
which interprets a designated data stream as instructions telling the engine what operations to
perform. As a result, software is:

 Flexible—task can be changed simply by changing the instruction stream

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

108 of 143

 Relatively slow—due to mostly temporal, serial execution

 Relatively inefficient–since operators can be poorly matched to computational task.

Reconfigurable computing combines the best of both implementations, allowing general-purpose
software to be implemented in hardware. This class of architectures permits the computational
capacity of the system to be highly customized to the instantaneous needs of an application,
while also allowing the computational capacity to be reused in time at a variety of time scales.

The usual hardware agent for reconfigurable computing is a set of FPGAs. Reconfigurable
computing manipulates the logic within the FPGA at run-time. The design of the hardware may
change in response to the demands placed upon the system while it is running. Here, the FPGA
acts as an execution engine for a variety of different hardware functions, some executing in
parallel, others in serial, much as a microprocessor executes a variety of software threads.

Reconfigurable computing offers several advantages over custom hardware and general-purpose
software implementations, including:

 Flexibility - the system can be changed as necessary, on the fly.

 Simpler hardware design - you do not need a fancy high-powered microprocessor, just
one or more FPGAs.

 Speed - implementing algorithms in hardware results in faster execution, due to the
parallel nature of hardware.

The reconfigurable computing systems built during the last years have often achieved
performance several orders of magnitude higher than the traditional processor based solutions.
Reconfigurable computing is now breaking into the commercial market in the areas of
application-specific systems and information appliances, which include emerging areas like
mobile communication, multimedia-based networks, encryption, and image processing.

What hardware is reconfigurable?

Not all FPGAs can be used in reconfigurable computing. User-configurable FPGAs can be
programmed and reprogrammed by the user in a lab, or even in the field. But they cannot be
dynamically reprogrammed as the system is running. Many older FPGAs read their
configuration out of a serial EEPROM, and only when a chip reset signal is asserted. This means
that the FPGA must be reprogrammed in its entirety and that its previous internal state cannot be
captured beforehand.

In order to benefit from run-time reconfiguration, the FPGAs involved need some or all of the
following features, which increase design flexibility:

 On-the-fly reprogrammability. Resetting the FPGA takes a lot of time and should be
avoided whenever possible.

 Partial reprogrammability. The ability to leave most of the internal logic in place and
change just one part is an important factor in reconfigurable systems. It will always be
much faster to change a small piece of the logic than the entire FPGA contents.

 Externally-visible internal state. If you can see the internal state of the FPGA at any
time, then it is also possible to capture that state and save it for later use. This allows the

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

109 of 143

internal state of the FPGA to be read and written just like memory or processor registers
and makes it possible to swap hardware designs in much the same way that pages of
virtual memory are swapped into and out of physical memory.

Run-time environments

How does the reconfigurable system know what to do at any given time? That job is usually
handled by software. The software manages the processes of:

 Deciding which hardware objects to execute and when.

 Swapping hardware objects into and out of the reconfigurable logic.

 Performing routing between hardware objects or between hardware objects and the
hardware object framework.

Having software manage the reconfigurable hardware usually means having an embedded
processor or microcontroller on-board. The embedded software that runs there is called the run-
time environment and is analogous to the operating system that manages the execution of
multiple software threads. Like threads, hardware objects may have priorities, deadlines, and
contexts. It is the job of the run-time environment to organize this information and make
decisions based upon it.

Using software allows us to write our applications at a very high level of abstraction. For
example, if the software needed to decompress an image, the attached FPGA could be
reconfigured with the decompression algorithm and fed the data. To the main software
application, this action is no different than asking an analog-to-digital converter to read a voltage
and return the answer. The run-time environment software, however, is responsible for
reprogramming the FPGA and executing the task.

Programming reconfigurable systems

Reconfigurable computing combines traditional software-related topics as languages, compilers,
operating systems, and libraries with hardware-related topics of digital design.

Reconfigurable systems present a formidable challenge in terms of algorithm design tools.
Design tools for FPGA devices, the building blocks of reconfigurable hardware, are oriented
towards ASIC development environments, in which digital design engineers create large (multi-
million gate), complex designs that, once created and validated, do not change. In contrast,
reconfigurable supercomputers require a more software-centric development environment, in
which algorithms are constantly revised and tested.

In response to the need for software-oriented tools, vendors and researchers have developed
compilers for software programming languages that synthesize hardware. Compilers for several
C variants, Java, and Matlab have become available in the past few years. The compiler must
generate a structural hardware representation (such as VHDL-RTL) that represents the
connections between units contained in a library, with direct correspondence to the operators of
high-level programming languages.

Applications:

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

110 of 143

While commercial reconfigurable computing platforms are starting to become available, the
majority of work has been done in a research context. There are some areas and problems that
reconfigurable computing is ideal for, including:

 Real-time image analysis

 Pattern recognition

 Automatic target recognition

 Cryptography

 Computational biology

 Signal processing

One theoretical application is a smart cellular phone that supports multiple communication and
data protocols, though just one a time. When the phone passes from a geographic region that is
served by one protocol into a region that is served by another, the hardware is automatically
reconfigured. This is reconfigurable computing at its best. Using this approach, it is possible to
design systems that do more, cost less, and have shorter design and implementation cycles.

Heading into the future, evolvable hardware (EHW) is designed to adapt to changes in task
requirements or changes in the environment through its ability to reconfigure its own hardware
structure dynamically and autonomously. This capacity for adaptation is achieved by employing
efficient search algorithms known as genetic algorithms. Evolvable hardware has great potential
for the development of innovative applications, including autonomous spacecraft and exploration
systems.

Here are some reasons why reconfigurable computing has valuable applications for space
missions:

After launch, unmanned spacecraft electronics are generally unavailable for physical upgrade or
repair. RC technology allows new hardware circuits to be uploaded via a radio link.

New circuit configurations can overcome design faults, allow improved processing algorithms to
be uploaded, or change system functionality in response to changing mission requirements.
Combined with artificial intelligence applications, the unmanned spacecraft may be able to select
circuits on its own to correct the problems.

The same circuitry can be used with different configurations at different stages of a mission,
reducing weight and power requirements.

If part of an FPGA fails, then circuitry can be reprogrammed to make use of remaining
functional portions of the chips.

Use of FPGAs allows generic circuit boards to be designed, which are customized for individual
applications. This helps overcome the very high NRE (non-recurring engineering) costs
associated with small volume spacecraft design. Physical and environmental qualification costs
can also be shared across many missions.

In-flight reconfiguration provides additional safety margins for missions with very short lead-
times, or for those where mission requirements are not fully defined at launch.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

111 of 143

NASA Examples:

NASA Langley Research Center is one NASA installation exploring reconfigurable computing
applications. They have developed a reconfigurable FPGA-based research hypercomputer that is
capable of performing comprehensive engineering and scientific calculations. Two approaches
have been adopted to exploit Langley’s Star Bridge Systems HC-38 (and 2 HAL15s) for analysis
calculations:

1. Rewrite legacy code for the hypercomputer to fully exploit parallelism.

2. Use the hypercomputer to accelerate time-consuming (bottleneck) calculations.

Software was entirely rewritten from C++ or Fortran to take advantage of the parallelism
inherent in the hypercomputer (approach 1). When only a small portion of a software application
was computationally intensive, that portion was rewritten to the hypercomputer native language,
and the rest of the code was left alone (approach 2).

FedSat, an Australian science and engineering research satellite, was launched in 2002. One
payload on FedSat is the Adaptive Instrument Module (AIM), which is a reconfigurable
computer optimized for spacecraft instrument use. AIM has demonstrated autonomous
instrument processing that is reconfigurable and adaptive. The use of the AIM enables
reconfiguration of the FPGA circuitry while the spacecraft is in flight. This flexibility reduces
mission risk, especially for missions with a very tight development schedule. The AIM is
designed to either directly interface with sensors or instruments or to receive data through the
spacecraft data handling system. AIM conducted a series of designed experiments, including a
demonstration of implementing data compression, data filtering, and communication message
processing and inter-experiment data computation.

The design of the AIM specifically addresses the concerns of using SRAM-based FPGAs in the
space environment. The AIM demonstrates techniques to detect and remediate radiation-induced
upsets in these FPGAs and will automatically restart in the event of an upset. The design has
been proven in flight. When the module suffered a memory error due to the bombardment of
cosmic radiation, AIM automatically detected and then reset itself. This prevented the memory
error from causing an error in the data it was processing.

The team that developed AIM at the Applied Physics Laboratory/John Hopkins University is
worked with NASA’s Langley Research Center to take the next step in reconfigurable, self-
repairing space borne computer design. The project is called ADAPT – Adaptive Data Analysis
and Processing Technology. Because it is fully reconfigurable, an ADAPT computer can serve
as the front-end package for virtually any type of instrument – for example, a spacecraft might
carry six scientific instruments, each served by a physically identical, but differently
programmed, ADAPT computer. As the design evolves, an ADAPT computer may carry up to
20 preprogrammed operating modes for controlling its instrument.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

112 of 143

APPENDIX B CODING STYLE GUIDELINES

Note: Material presented in Appendix B is based on or adapted from figures
and text copyrighted by Xilinx, Inc., and used with permission.

B.1 INTRODUCTION

This document was created to provide Xilinx users with a guideline for producing fast, reliable,
and reusable HDL code.

B.2 TOP-DOWN DESIGN

HDL coding should start with a top-down design approach. Use a top-level block diagram to
communicate to designers the naming required for signals and hierarchical levels. Signal naming
is especially important during the debug stage. Consistent naming of signals, from top to bottom,
will ensure that project manager A can easily recognize the signals written by designer B.

B.2.1 Behavioral and Structural Code

When creating synthesizable code (RTL), you should write two types of code: behavioral RTL
(leaf-level logic inference, sub-blocks) and structural code (blocks) -- each exclusively in its own
architecture. A simple example of behavioral RTL versus structural code is shown in Figure
B-1and Figure B-2, respectively.

entity mux2to1 is
 port (
 a : in std_logic_vector(1 downto 0);
 sel : in std_logic;
 muxed : out std_logic);
end mux2to1;

architecture rtl of mux2to1 is
begin

 muxed <= a(1) when sel = '1' else a(0);

end rtl;

Figure B-1 Behavioral Code

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

113 of 143

entity mux4to1 is
 port (
 input : in std_logic_vector(3 downto 0);
 sel : in std_logic_vector(1 downto 0);
 muxed : out std_logic);
end mux4to1;

architecture structural of mux4to1 is
 signal muxed_mid : std_logic_vector(1 downto 0);
 component mux2to1
 port (
 a : in std_logic_vector(1 downto 0);
 sel : in std_logic;
 muxed : out std_logic);
 end component;
begin

 mux2to1_1_0: mux2to1
 port map (
 a => input(1 downto 0),
 sel => sel(0),
 muxed => muxed_mid(0));
 mux2to1_3_2: mux2to1
 port map (
 a => input(3 downto 2),
 sel => sel(0),
 muxed => muxed_mid(1));
 mux2to1_final: mux2to1
 port map (
 a => muxed_mid,
 sel => sel(1),
 muxed => muxed);
end structure;

Figure B-2 Structural Code

Rules

Keep leaf-level (behavioral sub-blocks) coding separate from structural coding (blocks).

Declarations, Instantiations, and Mappings. It is important to use a consistent, universal style for
such things as entity declarations, component declarations, port mappings, functions, and
procedures.

B.2.2 Declarations, Instantiations, and Mappings

It is important to use a consistent, universal style for such things as entity declarations,
component declarations, port mappings, functions, and procedures.

Rules

For declarations, instantiations, and mappings use one line for each signal. The exception is for
relatively small components, functions, and procedures.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

114 of 143

Always use named association.

The combination of these two rules will help eliminate common coding mistakes. Therefore, this
combination will greatly enhance the ease of debugging a design at every stage of verification.
A simple example is shown Figure B-3. Obeying these rules will also increase the readability,
and therefore the reusability.

Figure B-3 One Line Per Signal/Named Association

B.2.3 Comments

Liberal comments are mandatory to maintain reusable code. Although VHDL is sometimes
considered to be self-documenting code, it requires liberal comments to clarify intent, as any
VHDL user can verify.

Rules

Three primary levels of commenting:

Comments should include a header template for each entity-architecture pair and for each
package- and package-body pair. See the example in Figure B-4. The purpose should include a
brief description of the functionality of each lower block instantiated within it.

Use comment headers for processes, functions, and procedures, as shown Figure B-5. This
should be a description of the purpose of that block of code.

Use comments internal to processes, functions, and procedures to describe what a particular
statement is accomplishing. While the other two levels of commenting should always be
included, this level is left to the designer to decipher what is required to convey intent. Inline
comments are shown in Figure B-6.

architecture structural of
mux4to1 is
 . . .
begin

mux2to1_1_0: mux2to1
 port map (
 a => input(1 downto
0)

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

115 of 143

-- Author: John Q. Smith Copyright Xilinx, 2001
-- Xilinx FPGA - VirtexII
-- Begin Date: 1/10/01
-- Revision History Date Author Comments
-- 1/10/01 John Smith Created
-- 1/14/01 John Smith changed entity port address & data to addr & dat

-- Purpose:
-- This entity/architecture pair is a block level with 4 sub-blocks. This is the processor control interface for the
-- block level <block_level_A>. So on, and so forth

Figure B-4 Header Template

--
-- demux_proc: this process dumultiplexes the inputs and registers the
-- demultiplexed signals
--
demux_proc : process(clk, reset)
begin

Figure B-5 Process, Function, and Procedure Header

--
-- demux_proc: this process dumultiplexes the inputs and registers the
-- demultiplexed signals
--
demux_proc : process(clk, reset)
begin
if reset = ‘1’ then
 demux <= (others => ‘0’);
elsif rising_edge(clk) then
 -- demultiplex input onto the signal demux
 case (sel) is
 when ‘0’ =>
 demux(0) <= input;
 when ‘1’ =>
 demux(1) <= input;
 when others =>
 demux <= (others => ‘0’);
 end case;
end if;
end process;

Figure B-6 Inline Comments

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

116 of 143

B.2.4 Indentation

Proper indentation ensures readability and reuse. Therefore, a consistent style is warranted.
Many text editors are VHDL-aware, automatically indenting for “blocks” of code, providing
consistent indentation. Emacs and CodeWright are two of the most common editors that have
this capability. Figure B-7 shows an example of proper indentation. Proper indentation greatly
simplifies reading the code. If it is easier to read, it is less likely that there will be coding
mistakes by the designer.

Rules

Use a VHDL-aware text editor that provides a consistent indentation style.

-- purpose: to show proper indentation

sample_proc : process (clk, reset)

 variable muxed_data_v : std_logic_vector (1 downto 0); -- _v denotes a variable

begin -- process sample_proc

 if reset = '0' then

for i in data'range loop

 data(i) <= (others => '0'); -- data is a 4x2 array

end loop; -- i

muxed_data <= '0'

 elsif clk'event and clk = '1' then

muxed_data_v := data(conv_integer(addr));

case sel is

 when '0' =>

muxed_data <= mux_data_v(0);

 when '1' =>

muxed_data <= mux_data_v(1);

end case; -- case sel is

 end if; -- if reset = ‘0’

end process sample_proc;

Figure B-7 Proper Indentation

B.2.5 Naming Conventions

Naming conventions maintain a consistent style, which facilitates design reuse. If all designers
use the same conventions, designer A can easily understand and use designer B’s VHDL code.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

117 of 143

B.2.6 Entities, Architectures, Procedures, and Functions

Rules

Use all lowercase names with underscores, for readability and name delimiting.

Each entity should have a unique name that describes that block.

Architectures do not need unique names because they are individually bound to a specific entity
that has a unique name. Names for architectures should be rtl, to indicate a leaf-level sub-block,
and structural, to indicate a block with no leaf-level logic – with only sub-blocks.

For entities with more than one architecture, use “rtl_xilinx” (or “structural_xilinx”) for a Xilinx-
specific architecture and “rtl_asic” (or “structural_asic”) for an ASIC-specific architecture.

B.2.7 Signal Naming Conventions

For a design implemented in VHDL, an up-front specification of signal naming conventions
should help you reduce the amount of non-conformity. The primary motivating factor is
enhanced readability during the verification of the design. General signal naming conventions
are listed below.

General Signal Naming Guidelines

Use addr for addresses. This might include sys_addr, up_addr, etc.

Use clk for clock. This might include clk_div2 (clock divided by 2), clk_x2 (clk multiplied by
2), etc.

Use reset or rst for synchronous reset.

Use areset or arst for asynchronous reset.

Use areset_l for active-low asynchronous reset.

Use rw_l for read/write (write is active low).

Rules

The following rules specify the suggested nomenclature for other widely used signals

Use <signal_name>_io for bi-directional signals.

Use a _l suffix for active low signals <signal_name>_l.

Do not use _in and _out suffixes for port signal names.

Use of in and out is very confusing in text, especially at hierarchical boundaries. Therefore, the
use of _in and _out should be strictly monitored. If they must be used, be sure that _in indicates
input, and, likewise, that _out is an output to the correct level of hierarchy. Figure B-8 shows an
example entity and the instantiation of that entity in a higher block. Here, data_in is connected
to data_out, making the code confusing.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

118 of 143

Figure B-8 Confusing _in and _out suffixes

Use _i to denote local signal names that are internal representations of an output port. This
nomenclature is used to easily identify the internal signal that will eventually be used as an
output port.

The counter in Figure B-9 provides a simple example of an output port that cannot be read. The
output port count cannot be incremented because it would require count to be read. The problem
is solved in the example by incrementing the local internal signal count_i. Some designers try to
overcome this problem by using the port as an inout; however, not all synthesis compilers will
allow this unless it is three-stated. Declaring the signal to be of type buffer is another common
trap. This complicates the code because all signals to which it connects also must be of type
buffer. Not all synthesis vendors support the data-type buffer. In addition, data-type buffer does
not have all of the required defined functions to perform common arithmetic operations.

count <= count_i;
process (clk, reset)
begin
 if reset = ‘1’ then
 count_i <= (others => ‘0’);
 elsif rising_edge(clk) then
 count_i <= count_i + 1;
 end if;
end process;

Figure B-9 Internal Signals Representing Output Ports

Use _v to indicate a variable. Variables can be very useful if used correctly. The _v will serve
as a reminder to the designer as to the intent and use of that signal.

Use <signal_name>_p0, <signal_name>_p1, and so forth, to represent a pipelined version of the
signal <signal_name> when <signal_name> comes after the pipelining. Use <signal_name>_q0,
<signal_name>_q1, and so forth, to represent a pipelined version of the <signal_name> when
<signal_name> comes before the pipeline. See Figure B-19 in section 4 for an example of how
to use this pipelined signal naming convention.

entity in_out is
port (data_in : in std_logic_vector (31 downto 0);

data_out : out std_logic_vector(31 downto 0));
end entity in_out;

in_out_inst: in_out
port map (data_in => ram_data_out,

 data_out => ram_data_in);

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

119 of 143

Append a suffix to signals that use a clock enable and will be part of a clock-enabled path (i.e.,
multi-cycle path). For example, if the clock enable is enabled only one-quarter of clock cycles,
the clock enable should be named to represent that -- ce4. Signals that use this enable might be
named <signal_name>_ce4. This will greatly aid you in your ability to specify multi-cycle
constraints.

B.3 SIGNALS AND VARIABLES

Following some basic rules on the use of signals and variables can greatly reduce common
coding problems.

B.3.1 Signals

The rules for using signals are not complex. The most common problem is that signals can be
various data types. The problem in VHDL is "casting" from one data type to another.
Unfortunately, no single function can automatically cast one signal type to another. Therefore,
the use of a standard set of casting functions is important to maintain consistency between
designers.

B.3.2 Casting

Rules for Casting

Use std_logic_arith, std_logic_unsigned/std_logic_signed packages.

This provides the essential conversion functions:
 conv_integer(<signal_name>): converts std_logic_vector, unsigned, and signed data

types into an integer data type.

 conv_unsigned(<signal_name>, <size>): converts a std_logic_vector, integer, unsigned
(change size), or signed data types into an unsigned data type.

 conv_signed(<signal_name>, <size>): converts a std_logic_vector, integer, signed
(change size), or unsigned data types into a signed data type.

 conv_std_logic_vector(<signal_name>, <size>): converts an integer, signed, or unsigned
data type into a std_logic_vector data type.

 ext(<signal_name>, <size>): zero extends a std_logic_vector to size <size>.

 sxt(<signal_name>, <size>): sign extends a std_logic_vector to size <size>.

All conversion functions can take for the <signal_name> data-type a std_logic_vector, unsigned,
signed, std_ulogic_vector, or integer. <size> is specified as an integer value.

B.3.3 Inverted Signals

To reduce complication and to make the code easier to debug and test, it is generally
recommended that you use active-high signals in hardware description languages. Generally,
active-low signals make the code more complicated than necessary. If active-low signals are
required at the boundaries of an FPGA, invert incoming signals at the FPGA top structural level.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

120 of 143

Also, for outbound signals, invert them at the FPGA top structural level. Consider this a rule of
thumb.

However, for FPGAs in general and Xilinx FPGAs specifically, inverters are free throughout the
device. There are inverters in the IOB, and a LUT can draw in an inverter as part of its
functionality, without a loss in performance.

Often, ASIC designers will use active-low signals in their code to use less power in the part. The
synthesis tool will map the logic based on a vendor’s libraries. Therefore, the synthesis tool will
infer active-low signals internally when it sees fit. For that matter, writing code that uses active-
low signals does not necessarily infer active-low signals in the ASIC. Again, the synthesis tool
makes these decisions based on the vendor's libraries. Let the synthesis tool do its job.

Rule of thumb

Use only active-high signals in HDL. One exception is a signal with a dual purpose, such as a
read or a write signal. In this case, a naming convention should be used to reduce complication –
rw_l is an easily recognizable signal name that clearly defines that signal’s role.

Where active-low signals are required, use of a _l as a suffix generally makes the intent clear.
E.g., <signal_name>_l. Use of _n is generally confusing.

B.3.4 Rule for Signals

There are a few basic rules to follow when you use signals. Remember that ports are just signals
with special rules that apply to them.

B.3.5 Entity Port Rules within the Bound Architecture

You can read from inputs, but you cannot assign to inputs.

You can assign to outputs, but you cannot read from outputs.

See section 1, Signal Naming Conventions, rule number four, for help in skirting this limitation.

You can both assign to and read from inouts.

B.3.6 Internal Signal Rules

Never assign to a signal in more than one process, with the exception of a three-state signal.

For a combinatorial process (no registers inferred), never assign to a signal and read from the
same signal in the same process. This will eliminate infinite loops when performing behavioral
simulation.

This is not true for a "clocked" process; i.e., a process that is used to register signals. A clocked
process would only need to have an asynchronous set or reset signal and a clock in its sensitivity
list. Therefore, this process would not execute again until there was a change on one of those
signals.

In a clocked process, never assign to a signal outside of the control of the if rising_edge(clk)
statement (or reset statement if an asynchronous reset exists). This is a common coding mistake.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

121 of 143

In synthesis, it will infer a combinatorial signal. In a behavioral simulation, it will have the
behavior of a signal clocked on the falling edge.

B.3.7 Filling out a Process Sensitivity List

Within a combinatorial process, all signals that are read (which can change) must be in the
sensitivity list.

This will insure the correct behavioral simulation. This includes any signals that are compared in
if-then-else statements and case statements. It also includes any signal on the right-hand side of
an assignment operator. Remember that this is only for signals that can change. A constant
cannot change; thus, it does not need to be in the sensitivity list.

Within a clocked process, only an asynchronous set or reset and the clock should be in the
sensitivity list.

If others are added, the functionality of a behavioral simulation will still be correct. However,
the simulation will be slower because that process will need to be evaluated or simulated
whenever a signal in its sensitivity list changes.

B.3.8 Rules for Variables and Variable Use

Variables are commonly not understood and are therefore not used. Variables are also
commonly used and not understood. Variables can be very powerful when used correctly. This
warrants an explanation of how to properly use variables.

Variables are used to carry combinatorial signals within a process. Variables are updated
differently than signals in simulation and synthesis.

In simulation, variables are updated immediately, as soon as an assignment is made. This differs
from signals. Signals are not updated until all processes that are scheduled to run in the current
delta cycle have executed (generally referred to as suspending). Thus, a variable can be used to
carry a combinatorial signal within both a clocked process and a combinatorial process. This is
how synthesis tools treat variables – as intended combinatorial signals.

Figure B-10 shows how to use a variable correctly. In this case, the variable correct_v maintains
its combinatorial intent of a simple two-input and-gate that drives an input to an or-gate for both
the a and b registers.

process (clk, reset)
 variable correct_v : std_logic;
begin
 if reset = ‘1’ then
 a <= ‘0’;
 b <= ‘0’;
 elsif rising_edge(clk) then
 correct_v := c and d;
 a <= e or correct_v;
 b <= f or correct_v;
 end if;
end process;

DFF

DFF

B

A

F

E

C
D

correct_v

clk

Figure B-10 Correct Use of Variables

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

122 of 143

In Figure B-11, you read from the variable incorrect_v before you assign to it. Thus, incorrect_v
uses its previous value, therefore inferring a register. Had this been a combinatorial process, a
latch would have been inferred.

process (clk, reset)
 variable incorrect_v : std_logic;
begin
 if reset = ‘1’ then
 a <= ‘0’;
 b <= ‘0’;
 elsif rising_edge(clk) then
 a <= e or incorrect_v;
 b <= f or incorrect_v;
 incorrect_v := c and d;
 end if;
end process;

B

A

F

E

 DFF

 DFF

incorrect_v

DFF

C
D

clk

Figure B-11 Incorrect Use of Variables

B.3.9 Rule for Variables

Always make an assignment to a variable before it is read. Otherwise, variables will infer either
latches (in combinatorial processes) or registers (in clocked processes) to maintain their previous
value. The primary intent of a variable is for a combinatorial signal.

B.4 PACKAGES

Packages are useful for creating modular and reusable code. There should be one or more
packages used by a design team. These packages should include commonly used functions,
procedures, types, subtypes, aliases, and constants. All team designers should familiarize
themselves with the contents of these packages. If each designer were to create his or her own
functions, procedures, types, subtypes, aliases, and constants, it could result in code that is
difficult for other team members to use and read. Thus, when your team uses packages, it results
in code that is more modular and more readable.

Package use can generally be broken down into the three types:
 The global package. This package is used on a company-wide basis, on each design.

This package should include functions and procedures, such as reduction functions, for
instance functions, and procedures that -- and, or, and xor (etc.) -- reduce individual
buses. It should also include commonly used types and subtypes. This package should
be created in a group setting by VHDL experts (or the most experienced in VHDL) who
decide the best elements to have present in the package. This package should be used
extensively and should have periodic reviews to determine what should be added to or
taken away from the package. Because most divisions within a company work on the
same type of projects, primarily, this package should contain the most widely and
extensively used material that is common to all design teams.

 The project package. This package is used and created for a specific design project. The
functions, procedures, types, subtypes, constants, and aliases are all specifically defined
and created for the design at hand.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

123 of 143

 The designer’s packages. These packages are specific to a designer. Packages of this
type should not be used extensively. If there is a need for something to be extensively
used within the designer’s package, it should be moved into the project package and
possibly even the global package. Code readability and modularity is limited by the use
of designer packages, as the type of function calls and types, etc. will not be readily
understandable to all other designers in the group.

B.4.1 Package Contents

Constants

Used correctly, constants can ease the coding of complex and modular designs. Constants can be
used in a variety of ways. They can be used to create ROMs, for modular coding, and to define
what or how something should be used. For example, constants can be used in conjunction with
generate statements to specify which portion of code to use (synthesize). Consider, for example,
one portion of code written for an ASIC implementation and another portion written for a Xilinx
implementation. The ASIC implementation should use gates to implement a multiplexer, while
the Xilinx version should use three-state buffers to implement a multiplexer. Because some
synthesis tools do not currently support configuration statements, a generate statement is the best
solution.

Figure B-12 shows an example of how constants can be used to define the logic created.
Although this is a simple example, it illustrates the possibilities. By one change to the constant
ASIC, an entirely different set of circuitry is synthesized throughout the design.

--within a package
constant asic : boolean := True;

-- within an architecture
generate_asic :
if asic = true then
mux_proc : process (addr, sel, data)

generate_fpga :
if asic = false then
tri_state_proc : process (addr, sel, data)

Figure B-12 A Constant Guiding the Generation of Logic

Constants can aid modular coding. For example, you could define a constant that specifies the
width of the address bus. One change to that constant in the package would make a modular
change to everything in the design. See Figure B-13. Using constants to define address and
data-bus widths may be better than using generics. Generics are passed from the top-down,
eliminating the possibility of synthesizing bottom-up. A bottom-up synthesis is generally

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

124 of 143

preferable for decreased synthesis run-times because only the modules that change need to be
resynthesized.

Figure B-13 Address Width Defined by a Constant

B.4.2 Rules for Defining Constants within a Package

Define constants within a package when it can be used to improve the modularity of the code by
guiding generate statements.

Define constants in a package to define sizes and widths of buses. Constants used in this manner
are generally more powerful than using generics because it allows the design to be synthesized in
any manner, whereas generics allow only top-down synthesis.

Functions and Procedures

By definition, functions and procedures add modularity and reuse to code. Extensive use of
functions and procedures from the global and project packages is encouraged. Rather than
extensively using functions and procedures from a designer’s package, the designer is
encouraged to add the functions and procedures at a local level (within an architecture), to
maintain readability for other designers and future reuse.

When defining functions and procedures, it is beneficial to use unsized vectors to pass signals.
Using unsized vectors allows a modular use of the subprogram. In addition to using unsized
vectors, use signal – range attributes to define the logic.

In the function example shown below in Figure B-14, the input, named vec, is defined as a
std_logic_vector. By not defining a sized vector, the actual size of the signal that is passed in
will determine the implementation. The range attribute ‘range specifies the size of the intended
logic. This function is modular; that is, it is not limited to being used for one specific vector size.
A vector of any size can be passed into this function and correctly infer any amount of logic.

--within the package pack_ase_fpga
constant addrw : integer := 18;

use work.pack_ase_fpga.all;

entity profound is
port (addr : in std_logic_vector (addrw-1 downto 0);

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

125 of 143

function parity (vec : input std_logic_vector) return std_logic is
 variable temp_parity : std_logic := ‘0’;
begin
 for i in vec’range loop
 temp_parity := temp_parity xor vec(i);
 end loop;
 return temp_parity;
end function;

Figure B-14 Modular Function Use

B.4.3 Rules for Functions and Procedures

Extensive use of functions and procedures is encouraged. Predominately, the functions and
procedures should be defined within either the global or the project packages.

Create modular functions and procedures by not specifying the width of inputs and outputs.
Then use range attributes to extract the needed information about the size of an object.

Types, Subtypes, and Aliases

Types and subtypes are encouraged for readability. Types defined at the global and project level
are generally required, and they help to create reusable code.

Aliases can be used to clarify the intent, or meaning, of a signal. In most cases, the intent of a
signal can be clearly identified by its name. Thus, aliases should not be used extensively. While
aliases can help to clarify the purpose of a signal, they also add redirection, which may reduce
the readability of the code. Although aliases are not used in conjunction only with types and
subtypes, it is useful for examples to be included here. In Figure B-15 there are two types
defined: a record and an array. For this example, aliases can be used to clarify the use of the
signal rx_packet.data (rx_data) and the intent of the signal data_addr(0) (data_when_addr0). In
this example, the alias data_when_addr0 is used in place of data_array(0), this provides more
meaning to the "slice" of data than data_array(0) provides. Whenever the alias data_when_addr0
is seen in the code, the intent is obvious. The use of the alias rx_data simply provides a
shortened version of the signal rx_packet.data while its use and intent are maintained.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

126 of 143

package alias_use is
type opcode is record

parity : std_logic;
address: std_logic_vector(7 downto 0);
data : std_logic_vector(7 downto 0);
stop_bits : std_logic_vector(2 downto 0);

end record;
type data_array_type is array (0 to 3) of std_logic_vector (31 downto 0);
end package;

architecture rtl of alias_use is
 signal addr : std_logic_vector (11 downto 0);
 signal data_array : data_array_type;
 alias data_when_addr0 : std_logic_vector(31 downto 0) is data_array(0);
signal rx_packet : opcode;
alias rx_parity is rx_packet.parity;
alias rx_addr is rx_packet.address;
alias rx_data is rx_packet.data;
alias rx_stop is rx_packet.stop_bits;

begin
 data_when_addr0 <= data when addr = x”000” else (others => ‘0’);
 rx_data <= data_when_addr0;

…
Figure B-15 Use of Types and Aliases

Rules for Types, Subtypes, and Alias use

Types and subtypes are encouraged on a global or project basis to facilitate reusable code.

Alias use is encouraged when it clearly promotes readability without adding complex redirection.

B.5 TECHNOLOGY-SPECIFIC CODE (XILINX)

It is desirable to maintain portable, reusable code. However, this is not always possible. There
are cases for each technology vendor where instantiation of blocks is required. Furthermore,
writing what is intended to be generic code will not always provide the best solution for a
specific technology. The tradeoffs between instantiation versus technology-specific code are
discussed below.

B.5.1 Instantiation

Although instantiation of Xilinx primitives is largely unneeded and unwanted, there are some
specific cases where it must be done -- and other occasions when it should be done. While some
of the components that need to be instantiated for a Xilinx implementation vary, those covered
here are specific for Synplify, Synopsys, Exemplar, and XST. This section will describe
situations where deviation from reusable code is required.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

127 of 143

Required Instantiation

Specific top-level (FPGA) components require instantiation, including the boundary scan
component, digital delay-locked loop components (DLL) or digital clock manager (DCM),
startup block, and I/O pullups and pulldowns.

Inputs and outputs, other than LVTTL, can be specified in the synthesis tool. However, it is
more advantageous to specify the I/O threshold level in the Xilinx Constraints Editor. This will
write a constraint into the Xilinx UCF (User Constraint File), which is fed into the Xilinx
implementation tools.

To instantiate Xilinx primitives, you will need to have a correct component declaration. This
information can be inferred directly from the Xilinx Libraries Guide, found in the online
documentation.

B.5.2 Rules for Required Instantiations for Xilinx

Boundary Scan (BSCAN)
 Digital Clock Manager (DCM) or Delay-Locked Loop (DLL). Instantiating the

DCM/DLL provides access to other elements of the DCM, as well as elimination of clock
distribution delay. This includes phase shifting, 50-50 duty-cycle correction,
multiplication of the clock, and division of the clock.

 IBUFG and BUFG. IBUFG is a dedicated clock buffer that drives the input of the
DCM/DLL. BUFG is an internal global clock buffer that drives the internal FPGA clock
and provides the feedback clock to the DCM/DLL.

 DDR registers. DDR registers are dedicated Double-Data Rate (DDR) I/O registers
located in the input or output block of the FPGA.

 Startup. The startup block provides access to a Global Set or Reset line (GSR) and a
Global Three-State line (GTS). The startup block is not inferred because routing a global
set or reset line on the dedicated GSR resources is slower than using the abundant general
routing resources.

 I/O pullups and pulldowns (pullup, pulldown).

B.5.3 Simulation of Instantiated Xilinx Primitives

Correct behavioral simulation will require certain simulation files. These can be found in the
Xilinx directory structure: $Xilinx/vhdl/src/unisims. Note that unisims are similar to simprims,
except that: unisims do not have component timing information enabled. Whereas, simprims
have the timing information enabled but require an SDF file (from Xilinx place and route) to
supply the timing information (post place and route timing simulation).

Within the unisim directory, several VHDL files need to be compiled to a unisim library. They
can then be accessed by specifying the library unisim and using the use statement. For example:

 library unisim;

 use unisim.vcomponents.all;

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

128 of 143

The VHDL files must be compiled in a specific order because there are dependencies between
the files. The compilation order is:

1) unisim_VCOMP.vhd

2) unisim_VPKG.vhd

3) unisim_VITAL.vhd

For post-place-and-route timing simulation, the simprim files need to be compiled into a simprim
library. The VHDL files for simprims are in: $Xilinx/vhdl/src/simprims. The correct package
compilation order is:

1) simprim_Vcomponents.vhd

2) simprim_Vpackage.vhd

3) simprim_VITAL.vhd

Simulation files rules

Unisims are used for behavioral and post-synthesis simulation.

Simprims are used for post place-and-route timing simulation.

B.5.4 Non-Generic Xilinx-Specific Code

This section is used to describe situations where Xilinx-specific coding may be required to get a
better implementation than can be inferred from either generic code or ASIC-specific coding.

Three-State Multiplexers

Generic coding of multiplexers is likely to result in an and-or gate implementation. However,
for Xilinx parts, gate implementation of multiplexers is generally not advantageous. Xilinx parts
have a very fast implementation for multiplexers of 64:1 or less. For multiplexers greater than
64:1, the tradeoffs need to be considered. Multiplexers implemented with internal three-state
buffers have a near consistent implementation speed for any size multiplexer.

Three-state multiplexers are implemented by assigning a value of "Z" to a signal. Synthesis
further requires concurrent assignment statements. An example is shown in Figure B-16. For
this example, there is a default assignment made to the signal data_tri to ‘Z’. The case statement
infers the required multiplexing, and the concurrent assignment statements to the signal data
infer internal three-state buffers. With those concurrent assignment statements, synthesis can
only resolve the signal values by using three-states. Without the concurrent assignment
statements, synthesis would implement this in gates, despite the default assignment to "Z."

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

129 of 143

process (r1w0, addr_integer, data_regs1)
begin -- process
 for i in 0 to 3 loop -- three-state the signal
 data_tri(i) <= (others => 'Z');
 end loop; -- i
 if r1w0 = '1' then
 case addr_integer is
 when 0 to 3 =>
 data_tri(0) <= data_regs1(0);
 when 4 to 7 =>
 data_tri(1) <= data_regs1(1);
 when 8 to 11 =>
 data_tri(2) <= data_regs1(2);
 when 12 to 15 =>
 data_tri(3) <= data_regs1(3);
 end case;
 end if;
end process;
-- concurrent assignments to data
data <= data_tri(0);
data <= data_tri(1);
data <= data_tri(2);
data <= data_tri(3);

Figure B-16 Three-state Implementation of 4:1 Multiplexer

B.5.5 Rules for Synthesis Three-State Implementation

Use a default assignment of "Z" to the three-state signal.

Make concurrent assignments to the actual three-stated signal.

Memory

While memory can be inferred for Xilinx, it most likely cannot be inferred for the ASIC by using
the same code. It is very likely that two separate implementations will be required. This section
will describe the methodology used to infer Xilinx-specific memory resources. It is generally
advantageous to instantiate the use of memory resources to make it easier to change for other
technology implementations. While it is not always required, Xilinx’s CORE Generator
system program can generate RAM for instantiation. The CORE Generator system created
memory must be used for dual-ported block RAMs, but it can also be used for creating other
types of memory resources. The CORE Generator system does provide simulation files, but it
is seen as a black box in synthesis; therefore, it will not provide timing information through that
block.

RAM and ROM

The Xilinx LUT-RAM is implemented in the look-up tables (LUTs). Each slice has 32-bits of
memory. A slice can have three basic single-port memory configurations: 16x1(2), 16x2, or
32x1. The Xilinx slices and CLBs can be cascaded for larger configurations.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

130 of 143

LUT-RAM memory is characterized by synchronous write and asynchronous read operation. It
also is not able to be reset; however, it can be loaded with initial values through a Xilinx user
constraint file (UCF). Inference of Xilinx LUT-RAM resources is based on the same behavior
described in the code shown in Figure B-17. Dual-port LUT-RAM can also be inferred by
adding a second read address. Dual-port RAM has similar functionality with a synchronous
write port and two asynchronous read ports.

type ram_array is array (0 to 15) of std_logic_vector (5 downto 0);
signal ram_data : ram_array;

begin
process(clk) --synchronous write
begin
if clk’event and clk = ‘1’ then
 if we = ‘1’ then
 ram_data(conv_integer(addr_sp)) <= data_to_ram;
 end if;
end if;
end process;

--
-- for single port, use the same address as
-- is used for the write
--
-- asynchronous read – dual port
ram_data_dp <=ram_data(conv_integer(addr_dp));

Figure B-17 Xilinx LUT-RAM Inference

ROM inference is driven by constants. Example code for inferring LUT-ROM is shown in
Figure B-18.

type rom is arrary (0 to15) of std_logic_vector (3 downto 0);

-- 16x4 ROM in Xilinx LUT’s
constant rom_data : rom := (x”F”, x”A”, x”7”, x”0”, x”1”, x”5”,
x”C”, x”D”, x”9”, x”4”, x”8”, x”2”, x”6, x”3”, x”B”, x”E”);

begin
-- ROM read
data_from_rom <= rom_data(conv_integer(addr));

Figure B-18 LUT-ROM Inference

Single-port block RAM inference is driven by a registered read address and a synchronous write.
The example shown Figure B-19 has this characterization. In the past, block RAM has been
easily inferred, simply by having the registered address and synchronous write. Synthesis tools
can only infer simple block RAMs. For example, you cannot infer a dual-port RAM with a

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

131 of 143

configurable aspect ratio for the data ports. For these reasons, most dual-port block RAMs
should be block-RAM primitive instantiations or created with the CORE Generator system.

Figure B-19 Virtex Block RAM inference

B.5.6 Rules for Memory Inference

For single- or dual-port RAM implemented in LUTs, describe the behavior of a synchronous
write and an asynchronous read operation.

For ROM inference in LUTs, create an array of constants.

Single-port block RAM is inferred by having a synchronous write and a registered read address
(as shown in the example above, Figure B-19).

For other configurations of the Xilinx block RAM, use the CORE Generator system.

B.5.7 CORE Generator System

The CORE Generator system may be used for creating many different types of ready-made
functions. One limiting factor of the CORE Generator system is that synthesis tools cannot
extract any timing information; it is seen as a black box.

The CORE Generator system provides three files for a module:

Implementation file, <module_name>.ngc.

Instantiation template, <module_name>.vho

Simulation wrapper, <module_name>.vhd

For behavioral and post-synthesis simulation, the simulation wrapper file will have to be used.
To simulate a CORE Generator module, the necessary simulation packages must be compiled.
More information on using this flow and generating the necessary files can be found in the
CORE Generator tool under Help Online Documentation.

type ram_array is array (0 to 127) of std_logic_vector (7 downto 0);
signal ram_data : ram_array;

begin
process(clk) --synchronous write
begin
if clk’event and clk = ‘1’ then
 addr_q0 <= addr; -- registered address/pipelined address
 if we = ‘1’ then
 ram_data(conv_integer(addr)) <= data_to_ram;
 end if;
end process;

data_from_ram <= ram_data(conv_integer(addr_q0));

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

132 of 143

The CORE Generator system provides simulation models in the
$Xilinx/vhdl/src/XilinxCoreLib directory. There is a strict order of analysis that must be
followed, which can be found in the analyze_order file located in the specified directory. In
addition, Xilinx provides a Perl script for a fast and easy analysis of different simulators. To
compile the XilinxCoreLib models with ModelSim or VSS, use the following syntax at a
command prompt:

xilinxperl.exe $Xilinx/vhdl/bin/nt/compile_mti_vhdl.pl coregen

xilinxperl.exe $Xilinx/vhdl/bin/nt/compile_vss_vhdl.pl coregen

Compare logic is frequently implemented poorly in FPGAs. Compare logic is inferred by the
use of <, <=, >, and >= VHDL operators. For a Xilinx implementation, this logic is best
implemented when described with and-or implementations. When possible, look for patterns in
the data or address signals that can be used to implement a comparison with gates, rather than
compare logic. If a critical path includes comparison logic, an implementation that would use
and-or logic should be considered.

B.5.8 Rule for Comparator Implementation

If a critical path has comparator logic in it, then try to implement the comparison by using and-or
gates.

B.5.9 Xilinx Clock Enables

Clock enables are easily inferred, either explicitly or implicitly. Clock enables are very useful
for maintaining a synchronous design. They are highly preferable over the unwanted gated
clock. However, not all technologies support clock enables directly. For those architectures that
do not support clock enables as a direct input to the register, it will be implemented via a
feedback path. This type of implementation is not a highly regarded implementation style. Not
only does it add a feedback path to the register, it also uses more logic because FPGA
architecture requires two extra inputs into the LUT driving the register.

The Xilinx architecture supports clock enables as a direct input to a register. This is highly
advantageous for a Xilinx implementation. However, the designer must be certain that the logic
required to create the clock enable does not infer large amounts of logic, making it a critical path.

In the example shown below (Figure B-20), there is an explicit inference of a clock enable and
an implicit inference of clock enables. In the first section, a clock enable is via explicitly testing
for a terminal count. In the second section of code, the clock enables are implied for the signals
cs and state. The clock enable for cs is inferred by not making an assignment to cs in the state
init. The clock enable for the signal state is inferred by not defining all possible branches for the
if-then-else statement, highlighted in red. When the if-then-else condition is false, state must
hold its current value. Clock enables are inferred for these conditions when they are in a
clocked process. For a combinatorial process, it would infer latches.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

133 of 143

Figure B-20 Clock Enable Inference

B.5.10 Rules for Clock Enable Inference

Clock enables can only be inferred in a clocked process.

Clock enables can be inferred explicitly by testing an enable signal. If the enable is true, the
signal is updated. If enable is false, that signal will hold its current value.

Clock enables can be implicitly inferred two ways:

Not assigning to a signal in every branch of an if-then-else statement or case statement.
Remember that latches will be inferred for this condition in a combinatorial process (see section
5, Inadvertent latch Inference).

Not defining all possible states or branches of an if-then-else or case statement.

Pipelining with SRL

In Xilinx FPGAs, there is an abundance of registers; there are two registers per slice. This is
sufficient for most registered signals. However, there are times when multiple pipeline delays
are required at the end of a path. When this is true, it is best to use the Xilinx SRL (Shift
Register LUT). The SRL uses the LUT as a shiftable RAM to create the effect of a shift register.
In Figure B-21an example of how to infer the SRL is shown. This will infer a shift register with
16 shifts (width = 4). Although this will infer registers for an ASIC, it will infer the SRL when

process (clk) -- Explicit inference of a clock enable
 begin -- process
 if rising_edge(clk) then
 if tc = '1' then
 cnt <= cnt + ‘1’;
 end if;
 end if;
 end process;

process (clk, reset) -- Implicit inference of a clock enable
 begin -- process
 if reset = '1' then
 state <= (others => '0');
 cs <= "00";
 elsif rising_edge(clk) then
 case (state) is
 when init => -- inference of a clock enable for signal cs
 state <= load;
 when fetch =>
 if (a = '1' and b = '1') then -- inference of a clock enable for signal state
 state <= init;
 end if;
 cs <= "11";
 when others => null;
 end case;
 end if;
 end process;

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

134 of 143

you are targeting a Xilinx part. The behavior that is required to infer the SRL is highlighted in
blue. The size could be made parameterizable by using constants to define the signal widths. It
could also be made into a procedure with parameterized widths and sizes.

library ieee ;
use ieee.std_logic_1164.all ;

entity srltest is
 port(clk, en : in std_logic ;
 din : in std_logic_vector(3 downto 0);
 dout : out std_logic_vector(3 downto 0)) ;
end srltest ;

architecture rtl of srltest is
 type srl_16x4_array is array (15 downto 0) of std_logic_vector(3 downto 0);
 signal sreg : srl_16x4_array ;
begin
 dout <= sreg(15) ; -- read from constant location
 srl_proc : process (clk, en)
 begin
 if rising_edge(clk) then

 if (en = '1') then
 sreg <= sreg(14 downto 0) & din ; -- shift the data

-- Current Value sreg (15:1) sreg(0)
-- Next Value sreg (14:0) din

 end if;
 end if;

Figure B-21 Inference of Xilinx Shift Register LUT (SRL)

B.5.11 Rules for SRL Inference

No reset functionality may be used directly to the registers.

If a reset is required, the reset data must be supplied to the SRL until the pipeline is filled with
reset data.

You may read from a constant location or from a dynamic address location. In Xilinx Virtex -II
parts, you may read from two different locations: a fixed location and a dynamically addressable
location.

B.5.12 Technology-Specific Logic Generation – Generate Statements

This section has outlined ways that Xilinx-specific coding will differ from other solutions.
Because many styles may exist for a similar block of code (for example a multiplexer), to get the
optimal implementation, use VHDL generate statements. This is the best solution for a couple of
reasons. Although configuration statements are commonly used to guide the synthesis of
multiple implementation styles, some synthesis tools currently do not fully support them. Also,
with generate statements, a change to a single constant will change the type of logic generated
(ASIC or FPGA).

An example of using generate statements was covered in section 3, in the Figure B-12.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

135 of 143

B.6 CODING FOR SYNTHESIS

The main synthesis issues involve coding for minimum logic level implementation (i.e., coding
for speed, max frequency); inadvertent logic inference; and fast, reliable, and reusable code.

B.6.1 Synchronous Design

The number one reason that a design does not work in a Xilinx FPGA is that the design uses
asynchronous techniques. To clarify, the primary concern is asynchronous techniques used to
insert delays to align data, not crossing clock domains. Crossing clock domains is often
unavoidable, and there are good techniques for accomplishing that task via FIFOs. There are no
good techniques to implement an asynchronous design. First, and most important, the actual
delay can vary based on the junction temperature. Second, for timing simulations, Xilinx
provides only maximum delays. If a design works based on the maximum delays, this does not
mean that it will work with actual delays. Third, Xilinx will stamp surplus –6 (faster) parts with
a –5 or –4 (slower speed) speed-grade. However, if the design is done synchronously there will
be no adverse effects.

B.6.2 Clocking

In a synchronous design, only one clock and one edge of the clock should be used. There are
exceptions to this rule. For example, by utilizing the 50/50 duty-cycle correction of the
DCM/DLL, in a Xilinx FPGA you may safely use both edges of the clock because the duty-cycle
will not drift.

Do not generate internal clocks. Primarily, do not generate gated clocks because these clocks
will glitch, propagating erroneous data. The other primary problems with internally generated
clocks are clock-skew related problems. Internal clocks that are not placed on a global clock
buffer will incur clock skew, making it unreliable. Replace these internally generated clocks
with either a clock enable signal or generate divided, multiplied, phase shifted, etc. clocks with a
clock generated via the DCM/DLL.

B.6.3 Rules for Clock Signals

Use one clock signal and one edge.

Do not generate internal clock signals because of glitching and clock-skew related problems.

B.6.4 Local Synchronous Sets and Resets

Local synchronous sets and resets eliminate the glitching associated with local asynchronous sets
and resets. An example of such a problem is associated with the use of a binary counter that
does not use the maximal binary count. For example, a four-bit binary counter has 16 possible
binary counts. However, if the design calls only for 14 counts, the counter needs to be reset
before it has reached its limit. An example of using local asynchronous resets is highlighted in
red in Figure B-22. A well-behaved circuit is highlighted in blue, in the Figure B-23. For the
binary counter that is using a local asynchronous reset, there will be glitching associated with the
binary transitions, which will cause the local asynchronous reset to be generated. When this
happens, the circuit will propagate erroneous data.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

136 of 143

Figure B-22 Local Asynchronous Reset and TC & Well-Behaved Synchronous

Reset & CE

Figure B-23 Well Behaved Local Asynchronous Reset and TC & Well-Behaved

Synchronous Reset & CE

-- Asynchronous local reset and internally generated clock
process (clk, reset, cnt_reset)
begin -- process
-- global and local async. reset
 if (reset = '1' or cnt_reset = '1') then

tc <= '0';
cnt <= "0000";

 elsif rising_edge(clk) then
if cnt = "1110" then
 cnt_reset <= '1';
 tc <= '1';
else
 cnt <= cnt + 1;
 tc <= '0';
 cnt_reset <= '0';
end if;

 end if;
end process;
-- internally generated clock - tc
process (tc, reset)
begin -- process
 if reset = '1' then

data_en <= (others => '0');
 elsif rising_edge(tc) then

data_en <= data;
 end if;

-- Synchronous Local reset and clock enable use
process (clk, reset)
 variable tc : std_logic := '0';
begin -- process
 if reset = '1' then -- global asynchronous reset

cnt <= "0000";
data_en <= (others => '0');

 elsif rising_edge(clk) then
 if cnt = "1110" then

 cnt <= "0000"; -- local synchronous reset
 data_en <= data; -- terminal count clock enable

 else
 cnt <= cnt + '1';
 tc := '0';

 end if;
 end if;
end process;

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

137 of 143

B.6.5 Rule for Local Set or Reset Signals

A local reset or set signal should use a synchronous implementation.

Pipelining

Pipelining is the act of inserting registers into one path to align that data with the data in another
path, such that both paths have an equal amount of latency. Pipelining may also decrease the
amount of combinatorial delay between registers, thus increasing the maximum clock frequency.
Pipelines are often inserted at the end of a path by using a shift register implementation. Shift
registers in Xilinx’s Virtex parts are best implemented in the LUT as an SRL, as described in
section B.4. Signal naming for pipelined signals is covered in section B.1.

Registering Leaf-Level Outputs and Top-Level Inputs

A very robust technique, used in synchronous design, is registering outputs of leaf-levels (sub-
blocks). This has several advantages:

 No optimization is needed across hierarchical boundaries.

 Enables the ability to preserve the hierarchy.

 Bottom-up compilation.

 Recompile only those levels that have changed.

 Enables hierarchical floorplanning.

 Increases the capability of a guided implementation.

 Forces the designer to keep like-logic together.

Similarly, registering the top-level inputs decreases the input to clock (ti2c) delays; therefore, it
increases the chip-to-chip frequency.

B.6.6 Rules for the Hierarchical Registering of Signals
 Register outputs of leaf-level blocks.

 Register the inputs to the chip’s top-level.

B.6.7 Clock Enables

The use of clock enables increases the routability of a Xilinx implementation and maintains
synchronous design. The use of clock enables is the correct alternative to gated clocks.

Clock enables increase the routability of the design because the registers with clock enables will
run at a reduced clock frequency. If the clock enable is one-half the clock rate, the clock enabled
datapaths are placed-and-routed once the full clock frequency paths have been placed-and-
routed. The clock enable should have a timing constraint placed on it so that the Xilinx
implementation tools will recognize the difference between the normal clock frequency and the
clock-enabled frequency. This will place a lower priority on routing the clock-enabled paths.

Gated clocks will introduce glitching in a design, causing incorrect data to be propagated in the
data stream. Therefore, gated clocks should be avoided.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

138 of 143

Using signals generated by sequential logic as clocks is a common error. For example, you use a
counter to count through a specific number of clock cycles, producing a registered terminal
count. The terminal count is then used as a clock to register data. This internal clock is routed
on the general interconnect. The skew on internally generated clocks can be so detrimental that
it causes errors. This may also cause race conditions if the data is resynchronized with the
system clock. This error is illustrated in Figure B-23. The text highlighted in red is the
implementation using the terminal count as a clock.

Instead, generate the terminal count one count previous, and use the terminal count as a clock
enable for the data register. The text highlighted in blue is the well-behaved implementation
using the terminal count as a clock enable. An explanation of the reset signals is covered in the
next section B.5.

It may be useful to generate clock enables by using a state machine. The state machine can be
encoded at run time by the synthesis tool. Thus a one-hot, gray, or Johnson encoding style could
be used. It is also possible to produce precisely placed clock enables by using a linear feedback
shift register (LFSR), also known as a pseudo-random bitstream generator (PRBS generator).
Xilinx provides application notes on the use of LFSRs.

Clock enables for Xilinx implementations are further discussed in section 4.

B.6.8 Rules for Clock Enable

Use clock enables in place of gated clocks.

Use clock enables in place of internally generated clocks.

Finite State Machines

Coding for Finite State Machines (FSM) includes analyzing several tradeoffs.

B.6.9 Encoding Style

Enumerated types in VHDL allow the FSM to be encoded by the synthesis tool. However, the
encoding style used will not be clearly defined in the code but rather in the synthesis tool.
Therefore, good documentation should be provided -- stating specifically which encoding style
was used. By default, most synthesis tools will use binary encoding for state machines with less
than five states: one-hot for 5 to 24 states and gray for more than 24 states (or similar).
Otherwise, synthesis will use one-hot encoding. One-hot encoding is the suggested
implementation for Xilinx FPGAs because Xilinx FPGAs have abundant registers. Other
encoding styles may also be used -- specifically gray encoding. For a gray-encoding style, only
one-bit transitions on any given state transition (in most cases); therefore, less registers are used
than for a one-hot implementation, and glitching is minimized. The tradeoffs for these encoding
styles can easily be analyzed by changing a synthesis FSM attribute and running it through
synthesis to get an estimate of the timing. The timing shown in synthesis will most likely not
match the actual implemented timing; however, the timing shown between the different encoding
styles will be relative, therefore providing the designer a good estimate of which encoding style
to use.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

139 of 143

Another possibility is to specifically encode the state machine. This is easily done via the use of
constants. The code will clearly document the encoding style used. In general, one-hot is the
suggested method of encoding for FPGAs -- specifically for Xilinx. A one-hot encoding style
uses more registers, but the decoding for each state (and the outputs) is minimized, increasing
performance. Other possibilities include gray, Johnson (ring-counter), user-encoded, and binary.
Again, the tradeoffs can easily be analyzed by changing the encoding style and synthesizing the
code.

Regardless of the encoding style used, the designer should analyze illegal states. Specifically,
are all the possible states used? Often, state machines do not use all the possible states.
Therefore, the designer should consider what occurs when an illegal state is encountered.
Certainly, a one-hot implementation does not cover all possible states. For a one-hot
implementation, many illegal states exist. Thus, if the synthesis tool must decode these states, it
may become much slower. The code can also specifically report what will happen when an
illegal state is encountered by using a “when others” VHDL case statement. Under the “when
others” statement, the state and all outputs should be assigned to a specific value. Generally, the
best solution is to return to the reset state. The designer could also choose to ignore illegal states
by encoding “don’t care” values (‘X’) and allow the synthesis tool to optimize the logic for
illegal states. This will result in a fast state machine, but illegal states will not be covered.

B.6.10 Rules for Encoding FSMs

For enumerated-types, encode the state machine with synthesis-specific attributes. Decide if the
logic should check for illegal states.

For user-encoded state machines, the designer should analyze whether the logic should check for
illegal states or not, and the designer should accordingly write the “when others” statement. If
the designer is concerned with illegal states, the state machine should revert to the reset state. If
the designer is not concerned with illegal states, the outputs and state should be assigned "X" in
the “when others” statement.

Xilinx suggests using one-hot encoding for most state machines. If the state machine is large,
the designer should consider using a gray or Johnson encoding style and accordingly analyze the
tradeoffs.

B.6.11 FSM VHDL Processes

Most synthesis tools suggest coding state machines with three process statements: one for the
next state decoding, one for the output decoding, and one for registering of outputs and state bits.
This is not as concise as using one process statement to implement the entire state machine;
however, it allows the synthesis tools the ability to better optimize the logic for both the outputs
and the next-state decoding. Another style is to use two processes to implement the state
machine: one for next state and output decoding and the other process for registering of outputs
and state bits.

The decision to use one, two, or three process statements is entirely left up to the discretion of
the designer. Moore state machines (output is dependent only on the current state) generally
have limited decoding for the outputs, and the state machine can, therefore, be safely coded with
either one or two process statements. Mealy state machine (outputs depend on the inputs and the

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

140 of 143

current state) output decoding is generally more complex, and, therefore, the designer should use
three processes. Mealy state machines are also the preferred style for FSMs because it is
advantageous to register the outputs of a sub-block (as described above in section 5). Mealy
state machines will have the least amount of latency with registered outputs. Mealy state
machines can be used with a look-ahead scheme. Based on the current state and the inputs, the
outputs can be decoded for the next state. For simple state machines where the output is not
dependent on the inputs, a Moore implementation is equivalent to a look-ahead scheme. That is,
the outputs can be decoded for the next state and appropriately registered to reflect the next state
(rather than reflecting the current state). The purpose of this scheme is to introduce the least
amount of latency when registering the outputs.

B.6.12 Rules for FSM Style

Generally, use three process statements for a state machine: one process for next-state decoding,
one for output decoding, and one for the registering of state bits and outputs.

Use a Mealy look-ahead state machine with registered outputs whenever possible, or use a
Moore state machine with next-state output decoding and registered outputs to incur the
minimum amount of latency.

B.6.13 Logic Level Reduction

To minimize the number of cascaded logic levels, we need to follow a few simple rules of
coding.

B.6.14 If-Then-Else and Case Statements

If-then-else and case statements can cause unwanted effects in a design. Specifically, nested If-
then-else and case statements may cause extra levels of logic inference. This occurs because if-
then-else statements generally infer priority-encoded logic. However, one level of an if-then-else
will not necessarily create priority-encoded logic. For that matter, synthesis tools generally
handle if-then-else or case statements very well and create parallel logic rather than priority
encoded logic.

Often, a nested if statement can be combined in the original if statement and result in a reduced
amount of inferred logic. A simple example is shown in Figure B-24, which shows how priority
encoded logic creates cascaded logic. Nested case statements can have the same effect, as can
the combination of nested case and if-then-else statements.

Priority-encoded logic can be generated for other reasons. The use of overlapping conditions in
if-then-else branches causes the generation of priority-encoded logic. This condition should be
avoided. There are times that priority-encoded logic must be used and may be intended. If the
selector expressions in the if-then-else statement branches are not related, then priority-encoded
logic will be created. Although this may be the intent, its use should be cautioned.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

141 of 143

Figure B-24 Priority Encoded Logic

B.6.15 Rules for If-Then-Else and Case Statements

Limit the use of nested if-then-else and case statements.

Avoid overlapping conditions in if-then-else statements – this condition will infer priority-
encoded logic.

Avoid using mutually exclusive branch expressions if possible. This condition will always infer
priority-encoded logic.

Instead, use mutually exclusive if-then statements for each expression (if possible).

B.6.16 For Loops

Similar to the use of if-then-else and case statements, "for loops" can create priority-encoded
logic. While for loops can be a very powerful tool for creating logic, the designer should
evaluate their effects.

A simple example of the adverse effect of for loops is shown in Figure B-25. Fortunately, this is
a situation that most tools handle well, but in our goal of creating reusable (portable) code, this
situation should be avoided.

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

142 of 143

Figure B-25 For-Loop Cascaded Logic Implementation

B.6.17 Rule for Loops

Be cautious of using for loops for creating logic. Evaluate the logic created by the synthesis tool.
There will likely be another way to write the code to implement the same functionality with the
logic implemented in parallel.

Inadvertent Latch Inference

Inadvertent latch inference is a common problem that is easily avoided. Latches are inferred for
two primary reasons: one, not covering all possible branches in if-then-else statements and two,
not assigning to each signal in each branch. This is only a problem in a combinatorial process.
For a clocked process, registers with clock enables are synthesized (as covered in the Xilinx
Specific Coding section, section B.4).

A latch inference example for each of these cases is shown in Figure B-26. For section one, each
possible state was not covered. This is a very common mistake for one-hot encoded state
machines. Section one is an example of Moore FSM output decoding. The latch inference
would be eliminated by the use of a final "else" statement with an assignment in that branch to
the signal "cs."

For the second section of code, the latches are inferred because each signal is not assign in each
state.

In Figure B-27, the inference of latches is eliminated by covering all possible branches and
assigning to each signal in each branch. The fixes are highlighted in blue. For the case
implementation, the default assignment to cs before the case statement specifies a default
assignment for each state. This way, each bit is changed depending on the state. This is
equivalent to making a signal assignment in each branch. For the if-then-else statement, adding
the else clause solves the problem.

process (data_vec)
 variable parity_v : std_logic;
begin
parity_v := ‘0’;
for i in data_vec’range loop
 parity_v := parity_v xor data_vec(i);
end loop;
parity <= parity_v;
end process;

parity

[0]

loop1_parity_v_4

[1]

loop2_parity_v_3

[2]
[3]

parity
data_vec[3:0] [3:0]

Downloaded from http://www.everyspec.com

NASA-HDBK 8739.23 with change 1

Material presented in Appendix B is based on or adapted from figures and text
copyrighted by Xilinx, Inc., and used with permission.

143 of 143

Figure B-26 Latch Inference

Figure B-27 Elimination of Inadvertent Latch Inference

B.6.18 Rules for Avoidance of Latch Inference

Cover all possible branches.

Assign to all signals at all branches.

-- (1) Did not specify each possible state
process (state)
begin
if state = “001” then
 cs <= “01”;
elsif state = “010” then
 cs <= “10”;
elsif state = “100” then
 cs <= “11”;
end if;
end process;

-- (2) Did not specify all possible
-- outputs for each state
process (state)
 begin
 case (state) is
 when "001" =>
 cs(0) <= '1';
 when "010" =>
 cs(1) <= '1';
 when "100" =>
 cs(1 downto 0) <= "11";
 when others =>
 cs(1 downto 0) <= "00";
 end case;
 end process;

latrs

cs_1[1]

0 D
0 C [1]QR

S

latrs

cs_1[0]

0 D
0 C [0]QR

S

un1_un2_state_2

0

1

[2]

un1_un2_state_1

0

1

[2]

un3_state

[0]
[1]
[2]

un1_un2_state

[1]
[0]

un2_state_2

[0]
[1]

un2_state_1

[1]
[0]

un1_state

[0]
[1]
[2]

cs[1:0][1:0]

state[2:0] [2:0]

-- (1) Fixed Case implementation (2) Fixed if-then-else implementation
process (state) process (state)
 begin begin
 cs <= "00"; if state = "001" then
 case (state) is cs <= "01";
 when "001" => elsif state = "010" then
 cs(0) <= '1'; cs <= "10";
 when "010" => elsif state = "100" then
 cs(1) <= '1'; cs <= "11";
 when "100" => else
 cs <= "11"; cs <= "00";
 when others => end if;
 cs <= "00"; end process;
 end case;
 end process;

Downloaded from http://www.everyspec.com

