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FOREWORD 
This NASA Handbook (NASA-HDBK) is approved for use by NASA Headquarters and NASA 
Centers, including Component Facilities.  This NASA-HDBK may be applied on contracts per 
contractual documentation as a reference or training publication. 

Comments and questions concerning the contents of this publication should be referred to the 
National Aeronautics and Space Administration, Director, Safety and Assurance Requirements 
Division, Office of Safety and Mission Assurance, Washington, DC 20546. 

Requests for information, corrections, or additions to this NASA-HDBK shall be submitted via 
“Feedback” in the NASA Technical Standards System at http://standards.nasa.gov or to National 
Aeronautics and Space Administration, Director, Safety and Assurance Requirements Division, 
Office of Safety and Mission Assurance, Washington, DC 20546. 

 

 s/ Bryan O’Connor     February 16, 2011 

Bryan O’Connor      Approval Date 
Chief, Safety and Mission Assurance 

 

 

 

The Office of Safety and Mission Assurance would like to recognize Kalynnda Berens and 
Richard Plastow for their work in authoring this publication. 
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NASA COMPLEX ELECTRONICS HANDBOOK FOR 
ASSURANCE PROFESSIONALS 

 

CHAPTER 1.   OVERVIEW 

1.1 PURPOSE 

Complex electronics (CE) encompasses programmable and designable complex integrated 
circuits.  “Programmable” logic devices (PLDs) can be programmed by the user and range from 
simple chips to complex devices capable of being programmed on-the-fly.  Some types of 
programmable devices this handbook will address are: 

 Field Programmable Gate Array (FPGA) 

 Complex Programmable Logic Device (CPLD) 

 Application-Specific Integrated Circuit (ASIC) 

 System-on-chip (SoC) 

“Designable” logic devices are integrated circuits that can be designed but not programmed by 
the user.  The design is submitted to a manufacturer for implementation in the device.  ASICs are 
an example of a designable device. 

Development of assurance methodologies for complex electronics is lagging behind the pace of 
the technology.  Complex electronics are commonly used within NASA systems, sometimes in 
safety-critical systems.  Both software assurance and quality assurance engineers need to 
understand what these devices are, where they are used, and how they are designed.  However, 
the development of assurance activities for complex electronics is lagging behind the pace of the 
technology.  This handbook provides some general suggestions that, if applied, may increase 
confidence in the quality of complex electronic devices. 

1.2 SCOPE 

This Handbook will provide an overview of complex electronics, the design process, and 
assurance activities.  It discusses: 

 Which devices are “complex electronics,” and which are not. 

 What each device is and examples of use on NASA projects. 

 How electronics engineers design and program the devices. 

 What assurance and verification activities can be used for complex electronics. 

 Future trends in the design and assurance of complex electronics. 

Additional assurance activities for complex electronics devices may be required in the future.  
While this handbook will not prepare you to perform those activities, it will provide you with a 
general understanding of the devices and the design and assurance activities.  You will be able to 
“speak the language” when communicating with the hardware design engineers. 
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1.3 ANTICIPATED AUDIENCE 

1.3.1 This handbook is primarily intended for software assurance and quality assurance 
engineers who do not have significant experience with complex electronics.  You do not need a 
hardware background to understand the material in this handbook.  However, being familiar with 
embedded systems or flight hardware may help you understand some of the concepts. 

System safety personnel are encouraged to review this handbook.  Modern technology, 
especially electronics, is changing at a rapid pace.  Projects and systems you support will be 
using these devices in the near future, if they are not already doing so. 

Software and electronic engineers are encouraged to review this handbook.  An understanding of 
the assurance activities and concepts discussed in the handbook may be helpful to you in 
supporting projects and systems. 

1.4 HANDBOOK LAYOUT 

Chapter 1 provides the purpose, scope, and layout for the handbook. 

Chapter 2 provides a list of reference documents and useful links. 

Chapter 3 provides definitions and acronyms used in this handbook. 

Chapter 4 gives an overview of complex electronics, describes why assurance engineers need to 
be aware of complex electronics and details some concerns and issues with the current state of 
assurance activities. 

Chapter 5 describes the design process for complex electronics.  A short explanation of hardware 
description languages, along with a simple example, is included. 

Chapter 6 provides an overview of current and suggested assurance practices for complex 
electronics.  This section also contains an overview of process assurance. 

Chapter 7 discusses some future trends in design and assurance of complex electronics. 

Appendix A describes each of the types of complex electronics in detail. 

Appendix B contains the Hardware Description Language Coding Standard from Xilinx. 
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CHAPTER 2.   REFERENCE DOCUMENTS AND LINKS 

2.1 REFERENCE DOCUMENTS 

The documents listed in this chapter provide additional information supporting this NASA-
HDBK.  The latest issuance of cited documents should be used unless otherwise stated in this 
NASA-HDBK.  The applicable documents are accessible via the NASA Online Directives 
Information System at http://nodis3.gsfc.nasa.gov/ or directly from the Standards Developing 
Organizations (SDO) or other document distributors. 

2.1.1 GOVERNMENT DOCUMENTS: 

NASA Documents: 

NPR 7150.2 NASA Software Engineering Requirements 

NASA-STD 2201-91 NASA Software Configuration Management Guidebook 
(http://satc.gsfc.nasa.gov/GuideBooks/cmpub.html) 

NASA-STD 8709.22 Safety and Mission Assurance Acronyms, Abbreviations, and 
Definitions 

NASA-STD 8719.13 Software Safety Standard 

NASA-STD 8739.8 Software Assurance Standard 

NASA-GB 8719.13 NASA Software Safety Guidebook 
(http://www.hq.nasa.gov/office/codeq/doctree/871913.pdf) 

NASA-GB A201 Software Assurance Guidebook 
(http://satc.gsfc.nasa.gov/assure/agb.txt) 

NASA-GB A301 Software Quality Assurance Audits Guidebook 
(http://satc.gsfc.nasa.gov/audit/audgb.txt) 

Other Government Documents: 

DO-254 Design Assurance Guidance for Airborne Electronic Hardware (Federal 
Aviation Administration (FAA)) 

MIL-STD 882D Standard Practice for System Safety (Department of Defense (DoD)) 

 

2.1.2 INTERNATIONAL CONSENSUS STANDARDS: 

Institute of Electrical and Electronics Engineers (IEEE) 

IEEE 830-1998 IEEE Recommended Practice for Software Requirements Specifications 

IEEE 1194.1-1990 IEEE Standard Test Access Port and Boundary Scan Architecture 

IEEE 1228-1994 IEEE Standard for Software Safety Plans 
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2.2 LINKS 

NASA-related Links 

URL Description 
http://nepp.nasa.gov/index.cfm NASA Electronic Parts and Packaging Program

Other Links 

URL Description FPGA Reconfig.  
Comput. VHDL Verilog Other 

http://klabs.org/richcontent/Tutorial/tutorial.
htm 

Tutorials 
Information 

Links 
x x   x 

http://www.icd.com.au/vhdl.html Tutorials x x x   
http://www.epanorama.net/links/fpga.html Information x  x   
http://www.verilogtutorial.info/ Tutorial    x  
http://www.asic-
world.com/verilog/veritut.html Tutorial    x  

http://www.gmvhdl.com/VHDL.html Tutorial   x   
http://www.doulos.com/knowhow/ Tutorial 

Information   x x x 

http://www.cs.ucr.edu/content/esd/labs/tuto
rial/ Information   x   

http://instruct1.cit.cornell.edu/courses/ee47
5/tutorial/VHDLTut.htm 

Tutorial 
Links   x   

http://www.systemc.org/ Information     x 
http://www.acc-
eda.com/vhdlref/refguide/vhdl_examples_g
allery/vhdl_examples_gallery.htm 

Examples   x   

http://www.vhdl.org/ Information   x x x 
http://www.vhdl.org/vhdlsynth/vhdlexample
s/ Examples   x   

http://www.acc-
eda.com/vhdlref/refguide/toclist.htm Information   x   

http://www.mrc.uidaho.edu/fpga/index.php Information x     
http://www.fpga4fun.com/ Information x     
http://equipe.nce.ufrj.br/gabriel/vhdlfpga.ht
ml Links x  x   

http://www.fuse-
network.com/fuse/training/index.html 

Training 
Material x    x 

http://www.radio-
electronics.com/info/data/semicond/asic/as
ic.php 

ASIC on-
line book     x 

http://www.netrino.com/Articles/RCPrimer/ Tutorial  x    
http://www.cotsjournalonline.com/ Journal     x 
http://www.fpgajournal.com/ Journal x     
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CHAPTER 3.   DEFINITIONS AND ACRONYMS 

3.1 DEFINITIONS 

Note:  Definitions for safety and mission assuranceterms are found in NASA-STD 
8709.22, Safety and Mission Assurance Acronyms, Abbreviations, and Definitions.  
Terms unique to this NASA-Handbook are listed below. 

 

Adequate:  When referring to fire protection or life safety, the safeguards necessary to provide 
facilities and their occupants with protection against all known or recognized hazards. 

Antifuse:  An electrical device that performs the opposite function as a fuse.  Antifuses are 
widely used to permanently program integrated circuits (ICs) by creating an electrical 
connection. 

Application Specific Integrated Circuit (ASIC):  Integrated circuit product customized for a 
single application. 

Architecture:  The common logic structure of a family of programmable integrated circuits.  The 
same architecture may be realized in different manufacturing processes. 

Asynchronous:  A signal whose data is acknowledged or acted upon immediately, irrespective of 
any clock signal. 

Boundary scan:  Boundary scan is a methodology allowing complete controllability and 
observability of the boundary pins of a JTAG (Joint Test Action Group)-compatible device via 
software control.  This capability enables in-circuit testing without the need of in-circuit test 
equipment. 

Cell Library:  The collective name for the set of logic functions defined by the manufacturer of 
an ASIC.  The designer decides which types of cells should be realized and connected together to 
make the device perform its desired function. 

Chip:  Another name for an integrated circuit. 

Codec:  Short for compressor/decompressor or coder/decoder, a codec is any technology for 
compressing and decompressing data.  Codecs can be implemented in software, hardware, or a 
combination of both.  Some popular codecs for computer video include MPEG (Moving Picture 
Experts Group), Indeo, and Cinepak. 

Combinatorial:  A digital function whose output value is directly related to the current 
combination of values on its inputs.  Also known as combinational. 

Comparator (digital):  A logic function that compares two binary values and outputs the results 
in terms of binary signals representing less-than and/or equal-to and/or greater-than. 

Complex Programmable Logic Device (CPLD):  Programmable logic devices characterized by 
an architecture offering high speed, predictable timing, and simple software. 
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Configurable/Complex Logic Block (CLB):  The array of multi-input and multi-output logic cells 
to be programmed.  CLB is a configurable logic block that consists mainly of Look-up Tables 
(LUTs) and flip-flops. 

Cores:  In the semiconductor design industry, refers to predefined functions such as processors 
or bus interfaces that are typically licensed from the software developer.  Cores can be 
implemented directly in silicon, either in fixed logic or programmable logic devices, and save 
chip designers time during product development.  Synonymous with Intellectual Property. 

Die:  An unpackaged integrated circuit.  The plural of “die” is also “die”. 

Digital Signal:  A digital signal is a signal whose key characteristic (e.g., voltage or current) 
falling into discrete ranges of values.  Most digital systems utilize two voltage levels (low and 
high values). 

Digital Signal Processor (DSP):  A specialized central processing unit (CPU) used for digital 
signal processing of signals such as sound, video, and other analog signals which have been 
converted to digital form.  Some uses of DSP are to decode modulated signals from modems; to 
process sound, video, and images in various ways; and to understand data from sonar, radar, and 
seismological readings. 

Electrically-Erasable Programmable Read-Only Memory (EEPROM):  A memory device whose 
contents can be electrically programmed by the designer.  Additionally, the contents can be 
electrically erased allowing the device to be reprogrammed. 

Electro-Static Discharge (ESD):  The term electro-static discharge refers to a charged person, or 
object, discharging static electricity.  Although the current associated with such a static charge is 
low, the electric potential can be in the millions of volts and can severely damage electronic 
components. 

Erasable Programmable Read-Only Memory (EPROM):  A memory device whose contents can 
be electrically programmed by the designer.  Additionally, the contents can be erased by 
exposing the die to ultraviolet light through a quartz window mounted in the top of the 
component's package. 

Falling-Edge:  A transition from a logic 1 to a logic 0.  Also known as a negative edge. 

Field Programmable Gate Array (FPGA):  High density PLD containing small logic cells 
interconnected through a distributed array of programmable switches.  This type of architecture 
produces statistically varying results in performance and functional capacity, but offers high 
register counts.  Programmability typically is via volatile SRAM (Static Random Access 
Memory) or one-time-programmable antifuses. 

Firmware:  The combination of a hardware device and computer instructions and/or computer 
data that reside as read-only software on the hardware device. 

First-in first-out (FIFO):  Data structure or hardware buffer where items come out in the same 
order they came in. 

Flash memory:  Non-volatile storage device similar to EEPROM, but where erasing can only be 
done in blocks or the entire chip. 
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Flip-flop:  A digital logic circuit that can be switched back and forth between two states. 

Floorplanning:  The process of identifying structures that should be placed close together on a 
chip, and allocating space for them.   

Fuse:   An electrical device that performs the same function as a fuse.  Fuses are widely used to 
permanently program integrated circuits by opening an electrical connection. 

Gate:  In electronic circuitry, a pathway that may be open or closed, depending on the source of 
the input, the strength of a signal, or the conductivity of chemicals used in semiconductors.  
Logic gates are programmed to correspond to related "if-then" statements.  The state of an open 
or closed gate is analogous to the binary state of a 0 or a 1.  The application of this analogy 
allows computing machinery with millions of gates to respond conditionally and to perform 
logical functions. 

Gate Array:  Integrated circuit that is customized by interconnecting an array of logic elements.  
Customization is performed by the manufacturer and typically involves non-recurring 
engineering costs and several design iterations. 

Glue:  Generic term for any interface logic or protocol that connects two component blocks.  
Hardware designers call anything used to connect large VLSIs or circuit blocks "glue logic." 

Hardware Description Language (HDL):  A kind of language used for the conceptual design of 
integrated circuits.  Examples are VHDL and Verilog. 

Integrated Circuit (IC):  A device in which components such as resistors, capacitors, diodes, and 
transistors are formed on the surface of a single piece of semiconductor. 

In-Circuit Reconfigurable (ICR):  An SRAM-based or similar component which can be 
dynamically reprogrammed on-the-fly while remaining resident in the system. 

In-System Programmable (ISP):  An EEPROM-based, flash-based, or similar component which 
can be reprogrammed while remaining resident on the circuit board. 

JHDL:  A structurally based hardware description language implemented with the Java 
programming language.  JHDL is a method of describing (programmatically, in Java) the 
components and connections in a digital logic circuit.  More specifically, JHDL provides object 
classes used to build up circuit structure.   

Joint Electronic Device Engineering Council (JEDEC):  A council which creates, approves, 
arbitrates, and oversees industry standards for electronic devices.  In programmable logic, the 
term JEDEC refers to a textual file containing information used to program a device.  The file 
format is a JEDEC approved standard and is commonly referred to as a JEDEC file. 

Joint Test Action Group (JTAG):  (or "IEEE Standard 1149.1").  A standard specifying how to 
control and monitor the pins of compliant devices on a printed circuit board.  JTAG is a standard 
interface used for in-system testing and debugging. 

Logic:  One of the three major classes of integrated circuits in most digital electronic systems.  
The other two major classes are microprocessors and memory.  Logic is used for data 
manipulation and control functions that require higher speed than a microprocessor can provide. 
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Logic Function:  A mathematical function that performs a digital operation on digital data and 
returns a digital value. 

Logic Gate:  The physical implementation of a logic function. 

Logic Synthesis:  A process in which a program is used to optimize the logic used to implement a 
design. 

Look-Up Table (LUT):  An array or matrix of values that contains data that is searched.  An 
alternative implementation of a CLB; the multiple inputs generate the complex outputs. 

Macrocell:  A macrocell on most modern CPLDs contains a sum-of-products combinatorial logic 
function and an optional flip-flop.  The combinatorial logic function typically supports four to 
sixteen product terms with wide fan-in.  Thus, a macrocell may have many inputs, but the logic 
function complexity is limited.  On the other hand, most FPGA logic blocks have unlimited 
complexity, but the logic function only has four inputs. 

Mapping:  The process of taking the logic blocks and determining what logic gates and 
interconnections on the device should be used to implement those blocks.   

Netlist:  A list of names of symbols or parts and their connection points, which are logically 
connected in each net of a circuit.  A file listing parameters extracted from a circuit schematic. 

Noise:  The miscellaneous rubbish that gets added to a signal on its journey through a circuit.  
Noise can be caused by capacitive or inductive coupling, or from externally generated 
interference. 

Non-volatile:  The ability of a memory element to keep its contents when power is removed from 
the device. 

Onboard:  Contained on the device or on the board. 

One Time Programmable:  This device can be programmed only once; its contents cannot be 
changed.  While typically these devices are fuse or antifuse based, they can also be low-cost 
EPROM devices.  In this case, typically used for production devices, an inexpensive package is 
used without a window. 

Partial Reprogrammability:  The ability to leave some internal logic in place and change another 
part of the FPGA logic. 

Pinout:  A diagram that indicates how wires are terminated to pins in a connector; a list that 
assigns device functions to specific pins. 

Place and Route:  Converts the results of the synthesis process to the format supported and takes 
the logic blocks and determines what logic gates and interconnections on the device should be 
used to implement those blocks. 

Programmable Logic:  A logic element whose function is not restricted to a particular function.  
It may be programmed at different points of the life cycle.  At the earliest, it is programmed by 
the semiconductor vendor (standard cell, gate array), by the designer prior to assembly, or by the 
user, in circuit. 
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Programmable Logic Controller (PLC):  A control device, usually used in industrial control 
applications, that employs the hardware architecture of a computer and relay ladder diagram 
language.  Inputs to PLC’s can originate from many sources including sensors and the outputs of 
other logic devices.  Also called "programmable controller." 

Reconfigurable Computing:  A methodology of using programmable logic devices in a system 
design such that the hardware-based logic can be changed to perform various tasks.  Benefits 
include the use of fewer components, less power, and flexibility.  Also allows networked 
equipment in the field to be upgraded or repaired remotely. 

Reprogrammable:  These devices can have their configuration loaded more than once.  SRAM-
based devices may be reloaded without restriction.  Many other forms of reprogrammable 
elements have restrictions on the number of write cycles, although they are high enough not to be 
of practical concern for most applications. 

Rising-Edge:  A transition from a logic 0 to a logic 1.  Also known as a positive edge. 

Register Transfer Level (RTL):  A description of a digital electronic circuit in terms of data flow 
between registers which store information between clock cycles in a digital circuit.  RTL 
description specifies what and where this information is stored and how it is passed through the 
circuit during its operation.  Also called Register Transfer Logic. 

Sensor:  A transducer that detects a physical quantity and converts it into a form suitable for 
processing.  For example, a microphone is a sensor which detects sound and converts it into a 
corresponding voltage or current. 

Standard Cell:  This device differs from the gate array since each cell may be different and 
optimized for each standard function.  There are no standard layers to the device and each layer 
of the chip is a unique design. 

State Machine:  The actual implementation (in hardware or software) of a function that can be 
considered to consist of a set of states through which it sequences. 

Static Random Access Memory (SRAM):  A type of memory that is faster and more reliable than 
the more common DRAM (dynamic RAM).  The term static is derived from the fact that it 
doesn't need to be refreshed like dynamic RAM, but it loses its memory if it is powered off. 

Switch:  A device for making or breaking an electric circuit or for selecting between multiple 
circuits. 

Synchronous: 

(1)  A signal whose data is not acknowledged or acted upon until the next active edge of a clock 
signal. 

(2) A system whose operation is synchronized by a clock signal. 

System-on-chip (SoC):  A complete product that contains all the necessary electronic circuits and 
parts for a system on a single integrated circuit.  Also called “system-on-a-chip” or SoaC 
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Trace:  A line or wire of conductive material – such as copper, silver, or gold – on the surface of, 
or sandwiched inside, printed circuit board (PCB).  An individual trace is often called a run.  
Traces carry an electronic signal or other forms of electron flow from one point to another. 

Translation:  Converting the results of the synthesis process to the format supported internally by 
the chip vendor’s place-and-route tools.   

Truth Table:  A convenient way to represent the operation of a digital circuit as columns of input 
values and their corresponding output responses. 

Verilog:  A Hardware Description Language for electronic design and gate-level simulation. 

Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL):  A 
Hardware Description Language for electronic design and gate-level simulation. 

Via:  Feed-through.  A plated through-hole in a printed circuit board used to route a trace 
vertically in the board, that is, from one layer to another. 

Volatile:  A memory element that loses its contents when power is removed from the device.  
SRAM-based devices are volatile and require another device to store their configuration 
program. 

 

3.2 ACRONYMS 

A/D Analog to Digital 

ABEL Advanced Boolean Equation Language 

ADC Analog to Digital Converter 

ASIC Application Specific Integrated Circuit 

BIOS Basic Input/Output System 

CE Complex Electronics 

CEH Complex Electronic Hardware 

CLB Configurable/Complex Logic Block 

CM Configuration Management 

CMM Capability Maturity Model 

CPLD Complex Programmable Logic Device 

CUPL Cornell University Programming Language 

D/A Digital to Analog 

DSP Digital Signal Processor 
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EELV        Evolved Expendable Launch Vehicle 

EEPLD Electrically Erasable Programmable Logic Device 

EEPROM Electrically Erasable Programmable Read-Only Memory 

EHW Evolvable Hardware 

EPLD Erasable Programmable Logic Device 

EPROM Erasable Programmable Read-Only Memory 

FAA Federal Aviation Administration 

FIFO First In First Out 

FPGA Field Programmable Gate Array 

GAL Generic Array Logic 

GOES        Geostationary Operational Environmental Satellite 

GPS Global Positioning System 

HDL Hardware Description Language 

HESSI       High Energy Solar Spectroscopic Imager 

I/O Input/Output 

IC Integrated Circuit 

IEEE Institute of Electrical and Electronics Engineers 

IP Intellectual Property 

ISS International Space Station 

IT Information Technology 

JEDEC Joint Electronic Device Engineering Council 

JHDL Java Hardware Description Language 

JTAG Joint Test Action Group 

LUT Look-Up Table 

MAPLD Military-Aerospace Programmable Logic Devices (a yearly conference) 

NRE Non-Recurring Engineering 

PAL Programmable Array Logic 

PCB Printed Circuit Board 
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PDA Personal Digital Assistant 

PL Programmable Logic 

PLA Programmable Logic Array 

PLC Programmable Logic Controller 

PLD Programmable Logic Device 

PROM Programmable Read-Only Memory 

QA Quality Assurance 

RAM Random Access Memory 

RC Reconfigurable Computing 

RTL Register Transfer Level 

SA Software Assurance 

SBIRS-High (-Low)  Space Based Infrared System 

SEI Software Engineering Institute 

SIRTF  Space Infrared Telescope Facility, renamed Spitzer Space Telescope 

SoaC System-on-a-Chip 

SoC System-on-Chip 

SOHO  Solar and Heliospheric Observatory 

SRAM Static Random Access Memory 

TDRS  Tracking and Data Relay Satellite 

VHDL Very High Speed Integrated Circuit Hardware Description Language 

VHSIC Very High Speed Integrated Circuit 
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CHAPTER 4.   COMPLEX ELECTRONICS OVERVIEW 
“Complex electronics” is a term applied to various forms of programmable or designable 
hardware devices.  The two elements of the term - complex and electronics - can be used to help 
distinguish what devices are, or are not, of interest. 

4.1 BLURRING THE HARDWARE/SOFTWARE LINE 

Programmable Logic devices are now blurring the hardware/software boundary.  These devices 
can now be programmed to perform tasks that were previously handled in software, such as 
communication protocols.  With increased complexity, the possibility of “software-like” bugs 
(incorrect logic) or unexpected interactions is more likely.  It is vital to be able to assure that the 
systems are designed and implemented correctly, tested fully, and are reliable. 

Figure 1 below shows the relationship of software, firmware, Programmable Logic Controllers 
(PLCs), electronics hardware, and complex electronics (the items in the red boxes).  Boxes above 
the boundary line are software and those below the line are hardware.  Complex electronics 
straddles the line. 

Figure 1:   How Complex Electronics Compares 

 

The Federal Aviation Administration (FAA) has become concerned about the usage of complex 
electronic hardware in aviation.  A study in 1995 stated, “There are no techniques and methods 
of design, documentation, testing, and verification identified or recognized by the Federal 
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Aviation Administration (FAA) for today’s complex hardware designs.”  Since that time, the 
FAA has worked with other organizations to develop DO-254, “Design Assurance Guidance for 
Airborne Electronic Hardware,” which provides guidelines on the use of process assurance for 
complex electronic hardware. 

The pace of technological change and the new uses that people find for current technology are 
strong motivators for NASA to begin to define acceptable assurance practices for complex 
electronics.  An example of an assurance challenge is adaptive or reconfigurable computing, in 
which computers, chips, or systems alter their functionality to adapt to changing applications and 
situations.  Adaptive computing is usually implemented with FPGAs and allows for parallel 
processing.  Adaptive computing is expected to be the next breakthrough in computing.  Many 
applications of the technique for the military are being proposed, and adaptive computing is 
likely to be used in space systems. 

4.1.1 How does Programmable Logic differ from Firmware? 

Firmware has various definitions, but the most common is found in IEEE 610.12-1990: “The 
combination of hardware device and computer instructions and data that reside as read-only 
software on that device.” 

Complex electronics, such as FPGAs and ASICs, are not firmware because what resides in them 
is not a software program.  Instead, software is used to define the logic structure for a hardware 
device, which is what these devices become once they are programmed.  These devices are better 
thought of as hybrid hardware/software devices, or “soft hardware.” 

Some types of complex electronics are even harder to define, such as System-on-Chip (SoC) 
and FPGAs: 

SoC is a complete product that contains all the necessary electronic circuits and parts for a 
system on a single integrated circuit.  SoCs may include embedded software (i.e., firmware) as 
part of the device.  SoC devices combine a microprocessor, input and output channels, and often 
an FPGA for programmability. 

FPGAs are “soft hardware,” except when they are used in reconfigurable or adaptable 
computing.  In that case, they are part of a complex system that is reprogrammed on the fly.  The 
FPGAs replace a microprocessor, and the act of reprogramming them (and the logic that 
determines the activities) is the software of the system.  FPGAs can have from 30,000 to over 
one million logic gates. 

4.1.2 Comparing Complex Electronics and Software 

Complex electronics devices do not work in the same way as software.  The main difference is 
that software is serial (one activity is performed after another) and hardware is parallel (multiple 
operations occur at the same time).  It is very important to always remember that the ultimate 
result of a programmable logic device is hardware.  Hardware programming languages, such as 
VHDL, can be thought of as a virtual or abstract piece of hardware. 

However, similarities exist between programming languages for complex electronics (e.g., 
Verilog or VHDL) and software languages.  VHDL, for example, is based on Ada syntax, has 
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data types common to most higher-level languages, uses objects (e.g., constants and variables), 
and has sequential statements. 

A software assurance engineer reviewing programmable logic “code” should not be lulled by the 
similarities to regular programming languages.  Complex electronics and programmable logic 
devices are ultimately hardware, and those differences must be acknowledged. 

4.2 PROGRAMMABLE VERSUS DESIGNABLE DEVICES 

Programmable Logic Devices (PLDs) are hardware integrated circuits that are programmable by 
the user.  They contain configurable logic and flip-flops, which are linked together with 
programmable interconnects.  Memory cells control and define the function that the logic 
performs and how the various logic functions are interconnected.  PLDs can be divided into 
various categories and range from simple devices to complex devices capable of being 
programmed on-the-fly.  Devices in this category include: 

 Programmable Array Logic (PAL) 

 Generic Array Logic (GAL) 

 Programmable Logic Array (PLA) 

 Complex Programmable Logic Device (CPLD) 

 Field Programmable Gate Array (FPGA) 

Some integrated circuits can be designed by the user and submitted to a manufacturer for 
creation of multiple copies.  This allows specialty circuits to be designed for a device, such as a 
cell phone.  Once created, the devices cannot be reprogrammed by the user.  ASICs and System-
on-Chip (SoC) are examples of designable devices. 

4.2.1 How to Identify Complex Electronics? 

The electronics part of this term is fairly easy to identify.  Electronics refers to the flow of charge 
(moving electrons) through nonmetal conductors (mainly semiconductors), as opposed to 
electrical, which refers to the flow of charge through metal conductors.  So all the devices listed 
above qualify.  So do off-the-shelf integrated circuits (ICs), microprocessors, logic gates, analog-
to-digital converters, buffers and other components.   

The “complex” adjective is used to distinguish between simple devices, such as off-the-shelf ICs 
and logic gates, and user-creatable devices.  More information on distinguishing between simple 
and complex is presented later in this handbook.  For now, a good rule of thumb is, if you can 
program or design the internal logic of the device and it has more than a few gates and 
connections, it is probably complex. 

Does firmware fall under this category?  Firmware has various definitions, but the most common 
is found in IEEE 610.12-1990: “The combination of hardware device and computer instructions 
and data that reside as read-only software on that device.”  In other words, it is software that is 
placed in a read-only device, such as an EPROM or Flash, from which the software may be read 
or copied.  The EPROM acts solely as a storage device, much like a disk.  The software may be 
complex and reside on electronic components, but it does not affect the internal logic or 
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configuration of the chips.  Firmware is not considered complex electronics.  Table 1 gives some 
examples: 

Table 1:  Complex Electronics Examples 

Item User Interactions Complex 
Electronics? Why or Why Not? 

Complex Programmable 
Logic Device 

Define and program the internal 
logic elements Yes Electronic and complex 

FIFO Use it No Electronic, but not complex 

Microprocessor 
Execute software instructions on 
it to perform arithmetic and other 
operations. 

No 

The software executes pre-
defined commands.  It does 
not change the internal logic 
arrangement of the 
microprocessor. 

Software Design, develop, execute No Definitely complex, but not 
electronic 

Application Specific 
Integrated Circuit (ASIC) Design, use resulting chip Yes (above a 

threshold) 

Most ASICs are complex.  It 
is possible to make a simple 
ASIC, though such devices 
are likely to be already 
available. 

EEPROM (Electrically 
Erasable Programmable 
Read-Only Memory) 

Program the device with data or 
software No 

The device itself is not 
complex.  The software or 
data does not change the 
internal logic of the device. 

 

4.2.2 A Bit of History 

The story starts with the development of discrete logic.  Each logic chip had a purpose (e.g., 
AND gate, OR gate, flip-flop) and could be wired together with other chips to make the desired 
circuit.  Pinouts on the chip were fixed.  Manufacturing such a system took a lot of time because 
each design change required that the wiring be redone.  This usually meant building a new 
printed circuit board. 

The chip makers solved the problem of time-consuming rewiring for design changes by placing 
an unconnected array of AND-OR gates in a single chip called a programmable logic device 
(PLD).  The PLD contained an array of fuses that could be blown open or left closed to connect 
various inputs to each AND or OR gate.  You could program a PLD to perform the logic 
functions you needed in your system.  Since the PLDs could be rewired internally, there was less 
of a need to change the printed circuit boards which held them. 
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4.3 SIMPLE PROGRAMMABLE LOGIC DEVICES 

There are a variety of simple PLDs.  They are called simple to distinguish them from the 
Complex PLDs (CPLDs, discussed below), and because they are actually pretty simple devices, 
as modern integrated circuits go. 

4.3.1 Programmable Array Logic 

Programmable Array Logic (PAL) chips are a family of fuse-programmable integrated circuits 
originally developed by MMI (Monolithic Memories, Inc.).  The word “Logic” in the name 
signifies that the chips allow the user to program a set of AND and OR gates (or NAND/NOR) to 
create the desired logic sequence.  PALs consist of a programmable AND array followed by a 
non-programmable OR array.  Inputs are fed into the AND array, which performs the desired 
AND functions and generates product terms, which are then fed into the OR array.  In the OR 
array, the outputs of the various product terms are combined to produce the desired outputs. 

Using a fixed number of OR gates, rather than a completely programmable set, allows the device 
to be fast.  The high speed available in PALs makes them still popular today, despite the 
abundance of newer chips.  Figure 2 shows the structure of the PAL. 

 

Structure of a PAL 

Figure 2:   Example of PAL Structure 

Fuse-programmable has to do with how PALs are programmed.  Connections between the gates 
in a PAL are made using fuses that are either connected or disconnected (blown).  Overvoltage 
(above the operational limits of the chip) is used to blow the fuses for the connections that are 
not desired.  This operation is permanent, so once programmed, a PAL cannot be reprogrammed. 

Fuse maps, which determine what fuses are, or are not, blown for a particular PAL can be 
generated in several ways.  Languages such as PALASM or CUPL can be used, with the 
resulting logic design compiled into JEDEC (Joint Electronic Device Engineering Council) 
ASCII/hexadecimal files.  Modern support software for PALs allows a direct translation from a 
schematic, truth table, or state table to the fuse map.  Some software even accepts timing 
diagrams as input.  Hardware description languages (HDL) can also be used to synthesize the 
fuse map.  However the map is created, it must be provided as input to a special electronic 
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programming device, available from either the manufacturer or a third-party, for physical 
programming of the chip. 

4.3.2 Generic Array Logic 

Generic Array Logic (GAL) was introduced by Lattice Semiconductor.  A GAL consists of a 
reprogrammable AND array, a fixed OR array, and reprogrammable output logic.  Electrically 
Erasable Programmable Read-Only Memory (EEPROM) is used, rather than fuses, to provide 
the connections.  This allows the GAL to be erased and reprogrammed. 

The GAL is very useful in the prototyping stage of a design, when any bugs in the logic can be 
corrected by reprogramming.  GALs are programmed and reprogrammed using a PAL 
programmer, and the same types of languages or processes used for PAL chips.  If speed is 
important (and it usually is), a PAL can be used, once the design is finalized. 

4.3.3 Programmable Logic Array 

Programmable Logic Array (PLA) devices differ from PALs in the OR-gates area.  PALs could 
only be programmed in the AND-plane.  With PLA chips, a set of programmable AND planes 
are linked to a set of programmable OR planes, which can then be conditionally complemented 
to produce an output.  PLA devices allow far more design options than PALs, but the downside 
is reduced performance. 

Like PALs, PLA devices are fuse-based and can be programmed only once.  Tools and 
languages are readily available to translate a logic design into the fuse map required for PLA 
programming.  Table 2 gives a comparison of the simple programmable devices 

Table 2:  Simple PLD Comparisons 

 PROM PAL GAL PLA 
Input lines hard-wired programmable programmable programmable

Output lines programmable hard-wired programmable programmable

Versatility low moderate moderate high 

Difficulty in 
manufacturing, 

programming, and testing 
low moderate low high 

Reprogrammable? No No Yes No 

 

4.4 COMPLEX PROGRAMMABLE LOGIC DEVICES (CPLD) 

Simple PLDs can only handle up to 10 to 20 logic equations, which is not a very large logic 
design.  Designers need to figure out how to break a larger design apart and fit the pieces into a 
set of PLDs.  This is a time-consuming process, and means you have to interconnect the PLDs 
with wires.  When there were only discrete logic chips, the use of wires meant that any design 
change will likely require a new circuit board, not just reprogramming the PLDs.  To counteract 
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this constraint, the chip makers began by building much larger programmable chips, including 
CPLDs and FPGAs. 

A CPLD contains a set of PLD blocks whose inputs and outputs are connected together by a 
global interconnection matrix.  So a CPLD has two levels of programmability: each PLD block 
can be programmed, and then the interconnections between the PLDs can be programmed.  A 
key feature of the CPLD architecture is the arrangement of logic cells on the periphery of a 
central shared routing resource.  CPLDs use EEPROM, SRAM, or Flash memory to hold the 
interconnect information. 

CPLDs contain the equivalent of many PALs linked by programmable interconnections, all in 
one integrated circuit.  CPLDs are equivalent to about 50 typical PLD devices and can replace 
thousands, or even hundreds of thousands, of logic gates. 

Programming CPLDs depends on the chip and the application.  Some CPLDs can be 
programmed in a PAL programmer, but that gets difficult if the chip has hundreds of pins, or is 
surface-mounted.  Many CPLDs can be programmed over a serial line from a computer.  The 
CPLD contains a circuit that decodes the data stream and configures the CPLD to perform its 
specified logic function. 

A new interface for programming and testing CPLDs is Joint Test Action Group (JTAG).  This 
interface is defined by the IEEE Standard 1149.1-1990, Test Access Port and Boundary Scan 
Architecture.  Boundary scan is a technique for accessing and stimulating a chip or subsystem 
via external pins to perform internal test functions on the device.  A JTAG interface is primarily 
used for testing integrated circuits, but it can also be used as a mechanism for debugging 
embedded systems.  A JTAG interface is a special four-pin (data in, data out, clock, test mode 
select) interface added to a chip.  Multiple chips on a board can have their JTAG lines daisy-
chained together, so the test probe only needs to connect to a single JTAG port to have access to 
all chips on a circuit board.  Figure 3 shows the difference between the internal layout of a CPLD 
vs. FPGA device. 

CPLD Diagram FPGA Diagram 

Figure 3:   CPLD vs. FPGA Layout 
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4.5 FIELD PROGRAMMABLE GATE ARRAY (FPGA) 

While PALs were busy developing into GALs and CPLDs, a separate stream of development 
was occurring, based on gate-array technology.  The resulting device is the FPGA which was 
first introduced in the late 1970s.  “Field programmable” simply means that the device can be 
programmed by the user.  Many field programmable devices can be programmed with the chip 
soldered to the circuit board, allowing true in-the-field upgrades to be possible. 

FPGAs use a grid of logic gates, similar to that of an ordinary gate array.  An FPGA has a 
collection of simple, configurable logic blocks arranged in an array with interspersed switches 
that can rearrange the interconnections between the logic blocks.  Each logic block is 
individually programmed to perform a logic function (such as AND, OR, XOR, etc.) and then 
the switches are programmed to connect the blocks so that the complete logic functions are 
implemented.  FPGAs vary in size from tens of thousands of logic gates to over one million. 

The interconnections for the logic blocks are programmable switches.  FPGAs may use 
EEPROM, SRAM, antifuse, or Flash technology to store the programming.  In most larger 
FPGAs the configuration is volatile, and must be re-loaded into the device whenever power is 
applied or different functionality is required. 

FPGAs are typically programmed in hardware description languages (HDLs) like Verilog or 
VHDL.  These high-level languages are used because manual lower level design (such as 
schematic capture) becomes impractical as designs become large.  HDLs also allow the FPGA 
design to be simulated and tested prior to implementation in the hardware. 

4.6 APPLICATION SPECIFIC INTEGRATED CIRCUIT (ASIC) 

ASICs are integrated circuits (ICs) designed for specific applications.  Unlike standard ICs which 
are produced by the chip manufacturers, ASICs are designed by the end user and then produced 
in volume.  ASICs allow a user to combine many parts and functions into a single chip, reducing 
cost and improving reliability. 

ASICs can be large or small.  They are usually produced in large quantities, and it can be very 
expensive to produce only a few.  If you are manufacturing cell phones, it makes sense to 
develop an ASIC for your specific needs.  If you are flying a space experiment and will need at 
most a few chips, it would be much more economical to use programmable logic, such as FPGA 
or CPLD devices. 

An interesting twist is the production of ASICs that include programmable logic (FPGA, CPLD 
or PAL) devices as part of the chip.  Another new technology that combines ASICs with 
programmable parts is the System-on-Chip, described below. 

4.7 SYSTEM-ON-CHIP (SOC) 

System-on-Chip combines all the electronics for a complete product into a single chip.  SoCs 
include not only the brains (e.g., microprocessor) but also all required ancillary electronics, such 
as switches, comparators, resistors, capacitors, timing elements, and digital logic.  Figure 4 gives 
a sample configuration for a SoC. 
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SoCs could include: 
 Digital/analog functions 

 Sensors 

 I/O 

 Communications 

 Readymade sub-circuits (IP) 

 Programmable devices 

 Digital Signal Processor  

Figure 4:   SoC Example Configuration 

SoCs are usually ASICs, though they can be designed to include programmable logic 
components.  SoCs can also be implemented on FPGAs.  System-on-chip versions have a variety 
of features: 

 Soft Instruction processor architectures allow a designer to customize the CPU 
architecture.  The specific instructions supported, the peripherals available to it, and the 
number of registers are just some ways these devices can be tailored for your application.  
Some vendors provide mechanisms to add, delete, and create highly tailored instructions.  
Design packages for these architectures sometimes include performance tools with instant 
feedback on the performance, die size, and power requirements of a particular design.  
With the final architecture residing in silicon, these types of architectures are well suited 
for high volume, low cost applications which formerly would have used ASICs. 

 Configurable processors are FPGA based.  In these architectures, standard and customer-
derived logic engines can be easily added, modified, and extended as needed.  By moving 
discrete logic functionality to internal FPGA, the designer gets a highly flexible logic 
solver based around a standard processor core.  With FPGA logic instead of foundry 
logic, the logic can be easily revised at any point in the design cycle. 

4.8 CONCERNS AND ISSUES 

4.8.1 Verification Issues with Complex Electronics 

Verification means that you have demonstrated that the system or subsystem meets the 
requirements you have specified.  Complex systems, especially those including software, are 
hard to adequately verify.  Complex electronics adds additional verification concerns to the mix: 

 Tool-induced design errors occur and can be difficult to detect.  Tools are a vital part of 
complex electronics design, and the designer often does not know what errors a tool 
could potentially produce. 

 Complex functionality cannot be completely simulated, nor the resulting chip completely 
tested. 
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 It can be difficult to detect faulty operation of complex electronics due to design or tool-
induced errors, unexpected interactions, or even defects in the silicon. 

 Due to extremely small ASIC geometries, certain analog and transmission line 
phenomena occur internal to the ASIC, generating failures that are data-sensitive.  
Designers and tools may not account for these effects, which can easily escape notice 
during test. 

4.8.2 Assurance Issues with Complex Electronics 

In addition to challenges with testing and verifying the designs and implementations of complex 
electronics, quality assurance professionals are struggling with how to adequately deal with the 
“software-like” aspects of these devices.  Some problems and concerns are: 

 ASICs and FPGAs have been used to avoid the rigors of the software approval process.  
This results in fundamental verification matters being bypassed. 

 Complex electronic devices are designed and programmed by engineers, often without 
quality assurance oversight or configuration management control of the designs.  In 
addition, the development process may not be well defined or followed. 

 ASICs, FPGAs, and System-on-Chip (SoC) can contain embedded microprocessor cores 
with user-supplied software.  They combine electronics and firmware into one chip.  The 
presence of this firmware (i.e., software) is not always obvious to assurance personnel. 

 High-level languages (e.g., C, C++) are now being used to define complex electronic 
designs (in whole or in part). 

 Hardware quality assurance professionals may not be fully cognizant of the functions, 
potential problems, and issues with these devices. 

 Software assurance personnel are currently not trained to understand complex electronics, 
and may not be able to provide effective oversight and assurance. 

 Meaningful verification efforts require the person performing the verification to be 
knowledgeable about the complex electronic device and the tool suite used to create and 
implement the design. 

4.9 SUMMARY 

Programmable and designable electronics have grown over the years, both in number of devices 
and in the complexity of the devices.  The devices can be roughly grouped by function and 
complexity. 

 Simple, non-programmable logic - ICs 

 Simple, programmable logic - PAL, GAL, PLA 

 Complex, programmable logic - CPLD, FPGA, reconfigurable computing 

 Complex, designable logic - ASIC 

 Complex, designable, and/or programmable logic - SoC 

To explore the complex devices in more depth, refer to the descriptions in Appendix A. 

Downloaded from http://www.everyspec.com



NASA-HDBK 8739.23 with change 1 

33 of 143 

CHAPTER 5.   DESIGN PROCESS 

5.1 OVERVIEW OF THE COMPLEX ELECTRONICS DESIGN PROCESS 

Creating complex electronics begins where all systems and subsystems begin - with defining the 
requirements for the device.  Without good requirements, the most elegant design or 
implementation could fail to meet the original need.  Designing and implementing complex 
electronics occurs within the context of the larger system, as shown in Figure 5 below. 

Requirements for the complex electronics are driven by the system they are a part of and the 
environment where they will be used.  A simple home appliance will place fewer demands 
(requirements) on a device than a sophisticated satellite application will.  Because these devices 
are hardware, the process of complex electronics design involves looking at both the chip 
capabilities and constraints (e.g., how many gates does it have, how much power does it need) 
and how the design works with and against those constraints and capabilities. 

5.1.1 Design Life Cycle 

In typical software design, the software requirements are flowed down from the system 
requirements.  Software development may follow a waterfall, iterative, evolutionary, spiral, or 
other development methodology.  Regardless of the development (design) life cycle, the 
processes of determining the requirements, creating the design, implementing the design, and 
verifying the implementation are all included.  Since it is easy to show graphically, this 
handbook will use the waterfall life cycle as a generic life cycle.  Figure 5 below compares the 
complex electronics lifecycle to software. 
 

 
Figure 5:   CE vs. SW Life Cycles 
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Like software, the design and development life cycle for complex electronics can follow any life 
cycle methodology.  Some of the steps vary from those familiar to software developers.  Figure 6 
depicts the design process for complex electronics. 

 

 
Figure 6:   Example CE Waterfall Development 

The basic design flow starts out very similar to software, with the decomposition of system or 
subsystem requirements to the particular complex electronic device.  After that is completed, the 
engineers take the requirements and generate a design, often in a hardware description language 
(design entry).  The design has to be “compiled” for the device (design synthesis).  Synthesis is 
more complicated than just running a compiler.  During synthesis, the design is mapped to the 
logic gates of the device.  Simulations are used to verify that the design is correct and can meet 
the requirements and performance goals. 

The implementation of complex electronics involves one more level in the mapping of the logic 
(design) to the chip.  The placement of the logic blocks within the chip, and the routing between 
blocks, are some of the processes that occur during implementation.  This process is loosely 
comparable to the linking step in software, where the compiled program is fixed up for the 
software environment in which it will operate.  At the end of the implementation phase, the final 
step is to “burn” or program the device. 
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While the simulation that occurs before the design is committed to hardware can find most 
defects, the actual hardware device needs to be tested in the circuit.  Real signals are applied, and 
the real output is tested.  You usually cannot get the degree of testing with in-circuit verification 
that you can with simulation, because inputting out-of-range signals might be difficult, access to 
the hardware pins might not be possible, and, in real projects, someone always wants to use the 
hardware as soon as it is completed.  However, functional testing in a variety of conditions is an 
important verification step.  Errors in the silicon chip are possible.  Errors induced by the tools 
are more likely.  Sometimes the real world acts differently than expected and can influence how 
the device works. 

During this process, the tasks of the assurance engineers (quality/hardware) can vary between 
projects with some only taking a look at the system at a high level, and then verifying that the 
final device matches the design and that it was programmed according to a defined process.  
NASA is looking at how to adequately verify the complex electronics device.  More information 
is provided in Section 6.2.  Table 3 gives a comparison of the development process for software 
and complex electronics. 

Table 3:  CE vs. SW Development Phases 

Software Complex Electronics 

Requirements 
Software requirements 
flow down from system 
and subsystem 
requirements. 

Requirements 
Requirements for complex electronics 
flow down from system and subsystem 
requirements. 

Design 
Architectural and detailed 
designs are created, using 
UML, flow diagrams, and 
other tools. 

Design Entry 
The design is created primarily in a 
hardware description language, such as 
Verilog or VHDL. 

Synthesis 

Synthesis is the process that takes the 
higher level designs and optimally 
translates them to a gate-level design 
which can be mapped to the logic 
blocks in a complex electronic device. 

Code 

The design is translated 
(manually or automatically) 
into a programming 
language (code), and then 
compiled into an 
executable module. 

Implementation

Implementation is where the design 
meets the silicon - the mapping created 
by synthesis is converted into a chip 
layout.  The final step in implementation 
is to put the design into the chip - either 
through programming (burning) or 
manufacturing (for ASICs). 

Test 

The software is tested in 
individual units and as part 
of the system.  Testing 
may involve additional 
software that simulates 
inputs to the software 
under test. 

Test 

Testing occurs during the design entry, 
synthesis, and implementation phases, 
in the form of simulations.  Both 
expected (valid) and unexpected inputs 
are tested.  Once the device is created, 
it is tested as part of its subsystem 
(in-circuit testing). 
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5.2 REQUIREMENTS AND SPECIFICATIONS 

The first step in the design process is to understand (and document) the functions the complex 
electronics device must perform and the constraints under which it operates.  The act of 
documenting the requirements has some useful effects that actually can save you time in the long 
run.  Benefits include: 

 The design team thinks through the issues and reaches agreement.  Some issues are well 
understood at a high level, but raise additional questions when working at the hardware 
level. 

 Interfaces to other areas (software, other hardware) are defined and available for review 
by all affected parties. 

 Non-engineers can understand what the chip or device is supposed to do. 

 If the trade-offs and rationales are documented, as well as the requirements, future design 
changes will require less impact assessment. 

 The requirements can be reviewed to assure that they provide measurable, testable 
criteria. 

 Requirements traceability into the design and implementation can be performed - which 
is vital in mission- or safety-critical applications. 

A good specification for complex electronics will contain: 
 A description of how the device fits into the larger system.  A block diagram is very 

helpful. 

 A description and list of all the major functions the device will perform.  A block and/or 
flow diagram can be used to show this information. 

 A description of the device and interfaces, such as: 

 Chip physical information (size, type, number of pins, etc.) 

 I/O pin mapping and description (output drive capability, input threshold level) 

 Timing estimates for: 

 Setup and hold times for input pins 

 Propagation times for output pins 

 Clock cycle time 

 High-level estimates and goals 

 Gate count estimate 

 Power consumption target 

 Constraints on the device 

 Other requirements or criteria the device must implement 

 Design-related choices (may be in a management plan) 
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 Tools that will be used at all stages of development 

 Hardware Description Language chosen 

5.2.1 Assurance Roles 

What role does software or hardware quality assurance play in verifying the requirements 
specification for complex electronics?  The reality is that many assurance engineers, regardless 
of their specialty, have little understanding of the complexities of these devices.  Any review or 
evaluation will be to the level of knowledge of the assurance engineer. 

 Hardware quality assurance engineers are the primary assurance people to deal with 
complex electronics.  Hardware quality assurance engineers with a background in 
electronics will evaluate the requirements for the complex electronic device for accuracy, 
completeness, and compatibility with the rest of the system.  When the hardware quality 
assurance engineer has little exposure to, or understanding of, complex electronics, the 
evaluation will often be very high-level. 

 System safety engineers will be involved in the review when the devices are part of 
safety-critical systems or are used as controls or mitigations for hazards.  As with 
hardware quality assurance, system safety engineers usually do not have an in-depth 
understanding of complex electronics. 

 Software assurance engineers at NASA are currently only rarely involved with complex 
electronics.  Significant education or training is required to be able to adequately review 
the requirements and specification for complex electronics at a detailed level.  However, 
this handbook explains how to review specifications for complex electronics at a high-
level and look for: 

 Problems with interfaces to other system elements or to the software running on the 
system 

 Problems, issues, or concerns regarding the functions that are implemented in the 
hardware 

 Additional constraints that may not be included in the specification, or incorrect 
constraints 

 Areas where software functions could be implemented in the complex electronics 

5.3 DESIGN ENTRY 

The first step in creating a design for complex electronics is to choose how you will enter 
(capture) your design.  Early chip designs were primarily performed with schematic capture.  
Schematic capture (also called schematic entry) creates the electronic diagram, or schematic, of 
the electronic circuit.  This is usually done interactively with the help of a schematic capture tool 
also known as schematic editor. 

While schematic capture works fine for simple designs, complex electronics almost always 
require the use of a hardware description language (HDL).  HDLs are any languages that are 
used for formal description of electronic circuits.  These languages can describe the operation, 
design, and simulation tests of the circuit.  HDLs can show several aspects of the design, 
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including the temporal behavior and spatial structure.  One major difference between HDLs and 
software languages is the aspect of timing and concurrency. 

One very nice aspect of HDLs is that they can be used as “executable specification” to simulate 
the circuit.  Simulation software can be part of the tool suite provided by the vendor or a third-
party program.  Simulators read the HDL “code” and model the structure and flow of the circuit 
through time. 

The two primary description languages are VHDL and Verilog.  A later section in this Handbook 
will discuss these two languages in greater detail.  Older HDLs, such as ABEL and CUPL, are 
still in use, especially for simple designs.  Another trend in hardware description languages is to 
add hardware-specific elements to software programming languages.  JHDL is implemented on 
top of the Java language.  SystemC adds hardware constructs as a C++ class library.  Still, 
VHDL and Verilog are by far the most common hardware description languages in use. 

Regardless of the method chosen to input the design (a hardware description language or 
schematic capture), a software tool (or tool suite) is required.  Unlike most software development 
efforts, where tools other than editors, compilers, development environments, and version 
management software are rarely used, electronics designers require, and use, fairly sophisticated 
tools.  All major complex electronics vendors offer design tools optimized for their devices at a 
relatively low cost.  Third-party tools are common and can provide additional capability.  These 
tools are also often quite expensive.  However, because the boundaries between design entry, 
simulation, synthesis, and place-and-route are well defined, designers can use a variety of tools 
from different vendors. 

A tool suite may include the following types of tools: 
 HDL capture and design environment 

 Configuration management 

 HDL simulator 

 Logic analyzer 

 Logic synthesis (this is a critically important tool) 

 Layout (physical synthesis) 

 Design management 

5.3.1 Design Views 

Complex electronic devices are designed at several levels, and with several “views,” or ways of 
looking at the device.  Software shares some of these views (e.g., the behavioral/functional view 
and the structural view), though software is not concerned with physical layouts.  Each of the 
various views of the device is refined at each of the levels of representation.  The Y diagram 
below, Figure 7, shows how all these views and levels are related. 
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Figure 7:   Complex Electronics Design Views 

Modern design approaches for complex electronics focus on the behavioral/functional aspects of 
the devices and use sophisticated tools to create the appropriate structural and physical aspects of 
the design.  Earlier design approaches required much more manipulation at lower levels of the 
device circuit.  With increasing complexity of the devices, the design aspects have been 
advanced into a more abstract domain, and the work of converting the design into a usable circuit 
is left to the tools.  This abstraction allows the designer and others to understand how the device 
functions within the context of the system. 

A specification in a hardware description language consists of one or more modules.  The top-
level module specifies a closed system containing both test data and hardware models.  
Component modules normally have input and output ports.  Events on the input ports cause 
changes on the outputs.  Events can be either changes in the values of wire variables (i.e., 
combinational variables) or in the values register variables, or can be explicitly generated 
abstract events.  Modules can represent pieces of hardware ranging from simple gates to 
complete systems (e.g., microprocessors), and they can be specified either behaviorally or 
structurally, or by a combination of the two. 

A behavioral specification defines the behavior of a digital system (module) using traditional 
programming language constructs (e.g., IFs, assignment statements).  This description of a 
complex electronic device divides the device (chip) into several functional blocks that are 
interconnected.  A hardware description language is used to describe the behavior of each block.  
Functional blocks can be a finite state machine, a set of registers and transfer functions, or even a 
set of other interconnected functional blocks. 
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A structural specification expresses the behavior of a digital system (module) as a hierarchical 
interconnection of subordinate modules.  The components at the bottom of the hierarchy are 
either primitives or are specified behaviorally.  It is in the structural specification that individual 
inputs and outputs are defined. 

5.3.2 Assurance Roles 

At the design entry stage, 
 Hardware quality assurance engineers with a background in electronics will, ideally, 

evaluate the design for the complex electronic device against the requirements.  For many 
projects, especially when hardware quality assurance engineers have little exposure to, or 
understanding of, complex electronics, no evaluation will be performed. 

 System safety engineers will review the design of the devices when they are part of 
safety-critical systems.  Since few system safety engineers are experts in complex 
electronics, they will work with the designer or hardware quality assurance engineers to 
evaluate the design from a safety perspective. 

 Software assurance engineers are not often involved.  This handbook provides an 
understanding that software users and engineers can use to provide a cursory review of 
the design, especially the VHDL or Verilog code. 

5.4 ABSTRACTION 

Hardware description languages can be used to describe complex electronics at many different 
levels of abstraction.  An abstraction is a simplified representation of something that is 
potentially quite complex.  It is often not necessary to know the exact details of how something 
works, is represented or is implemented, because it can be used in its simplified form. 

The levels of abstraction for a complex electronic device are: 
 System or Behavioral 

 Algorithm 

 Register-Transfer Level (RTL) 

 Gate 

The highest level of abstraction is the system level, where the device is mostly a black box that 
interacts with its environment.  Very little is known about the internals of the device, but you do 
know how it functions (its behavior). 

A pure algorithm consists of a set of instructions that are executed in sequence to perform some 
task.  A pure algorithm has neither a clock nor detailed delays.  Some aspects of timing can be 
inferred from the partial ordering of operations within the algorithm.  The algorithmic level of 
abstraction is similar to software programming (e.g.; while ready, do task A and task B, then do 
task C).  Because of the lack of timing information, this level is not synthesizable (able to be 
mapped to hardware). 

The Register-Transfer Level (RTL) description has an explicit clock.  All operations are 
scheduled to occur in specific clock cycles, but there are no detailed delays below the cycle level.  
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A single global clock is not required but may be preferred.  In addition, re-timing is a feature that 
allows operations to be rescheduled across clock cycles.  The RTL level is the input to the 
synthesis tool. 

The gate level of abstraction is the output from the synthesis tool.  A gate level description 
consists of a network of gates and registers, along with technology-specific delay information for 
each gate.  A complex electronics device can be described in one of three domains: behavioral, 
structural, and physical.  Figure 8 shows the various domains in which complex electronics can 
be described.   
 

 
Figure 8:   Complex Electronics Domains 

Hardware description languages deal with the first two (behavioral and structural).  The mapping 
from the behavioral and structural domains to the physical implementation is performed by the 
synthesis and place-and-route tools. 

Figure 9 shows a simple circuit that warns car passengers when the door is open or the seatbelt is 
not used whenever the car key is inserted in the ignition lock.  At the behavioral level this could 
be expressed as, 

Warning = Ignition_on AND (Door_open OR Seatbelt_off) 

 

Figure 9:   Warning Buzzer Example 
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The structural level, on the other hand, describes a system as a collection of gates and 
components that are interconnected to perform a desired function.  A structural description could 
be compared to a schematic of interconnected logic gates.  It is a representation that is usually 
closer to the physical realization of a system. 

5.5 HARDWARE DESCRIPTION LANGUAGES 

5.5.1 Overview of Hardware Description Languages (HDLs) 

While schematic capture works well for small circuits and devices, complex designs require the 
ability to abstract at a higher level.  Thus, hardware description languages were born.  One 
difference between HDLs and software languages is that HDLs are essentially models of the 
hardware.  The languages were initially created to allow simulation of the design and contain all 
the necessary capabilities to create test benches and simulation models.  Simulation of the 
complex electronics is very common in the design community. 

There are two major HDLs that are currently in use: Verilog and VHDL.  This handbook will 
provide a cursory overview of these two languages.  However, each of the languages is a course 
(or two) in its own right.  Several good tutorials on the languages are provided in Section 2.2, 
Links. 

The Verilog hardware description language was invented by Philip Moorby in 1983.  The first 
Verilog synthesis tool was introduced in 1987.  Verilog was placed in the public domain and is 
now specified by an IEEE standard (IEEE 1364).  This language enables specification of a digital 
system at a range of levels of abstraction, such as switches, gates, Register-Transfer Level 
(RTL), and higher.  In 2005, SystemVerilog was adopted as IEEE Standard 1800-2005.  This 
update includes items such as structures, pointers, or recursive subroutines that were not present 
in earlier versions. 

VHDL stands for VHSIC Hardware Description Language.  VHSIC is an acronym for Very 
High Speed Integrated Circuit.  VHDL is also specified by an IEEE standard (IEEE 1076).  
VHDL was developed over time, culminating in its initial release in 1987.  In June 2006, the 
VHDL Technical Committee of Accellera approved Draft 3.0 of VHDL-2006.  While 
maintaining full compatibility with older versions, this proposed standard provides numerous 
extensions that make writing and managing VHDL code easier.  Key changes include 
incorporation of child standards (1164, 1076.2, 1076.3) into the main 1076 standard, an extended 
set of operators, more flexible syntax of 'case' and 'generate' statements, incorporation of VHPI 
(interface to C/C++ languages), and a subset of PSL (Property Specification Language). 

5.5.2 General Hardware Description Language Concepts 

As you learn about HDLs, there are a few major differences from software languages that one 
needs to keep in mind.  First, software is inherently sequential - one instruction is executed after 
another.  Even in multi-threaded or multi-tasking systems, no two tasks operate at the exact same 
moment.  Hardware, however, is parallel in nature - multiple events can be happening 
simultaneously.  Hardware description languages have ways to describe concurrency (parallel 
execution) and to specify timing.  Second, HDLs describe hardware.  While at the highest 
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abstraction an HDL can define an algorithm similarly to a software language, at the lower levels 
of abstraction that algorithm is translated into gates and I/O. 

Hardware description languages model two aspects of the hardware: structure and behavior.  
These two aspects are independent - the structure of the hardware is not dependent on the 
behavior, and vice versa.  The interfaces (input/output signals) from the device to the outside 
world are part of both the structure (what the device is made of) and the behavior (what it does 
with the signals).  In addition, because HDLs were originally designed as simulation languages, 
they can create test benches to exercise and test the device with simulated “real world” devices. 

The first step when designing and modeling complex electronics in a hardware description 
language is to partition the design into natural abstract blocks, known as components.  Each 
component is the instantiation of a design entity, which is normally modeled in a separate system 
file for easy management and individual compilation by simulation or synthesis tools.  The total 
system is then modeled using a hierarchy of components, known as a design hierarchy, which 
consists of individual subcomponents (subdesign entities) brought together in one higher-level 
component (design entity).  In other words, start with very simple entities (e.g., AND gate) and 
put them together into components (logical subdivisions within the device), which together 
become the model of the device. 

The two main elements of the HDL description of the complex electronic device are the 
architecture body (the structure) and the behavioral architecture.  The architecture body describes 
the implementation of a module’s inputs and/or outputs.  The electrical values of the outputs are 
some function of the values of the inputs.  Of course, each module can be made up of sub-
modules, down to the basic entities.  The connections between the sub-modules (inputs/outputs) 
are made using signals. 

The architecture body contains: 
 Signal declarations, for internal interconnections 

 Entity ports (also treated as signals) 

 Component instances (instances of previously declared entity/architecture pairs) 

 Port maps in component instances (connect signals to component ports) 

 Wait statements 

The behavioral architecture describes the algorithm performed by the module.  While the 
architecture body described the inputs and outputs, the behavioral architecture describes what 
goes on to convert those inputs to outputs.  More complex behaviors cannot be described purely 
as a function of inputs.  In systems with feedback, the outputs are also a function of time.  
Fortunately, hardware description languages provide features to handle time as part of the 
behavior. 

The behavioral architecture contains: 
 process statements 

 sequential statements 

 signal assignment statements 
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 wait statements 

You can describe the behavior of a module without describing its structure.  You might want to 
do this if you have an off-the-shelf component as part of your design.  You do not really care 
about the internal structure of the component; you just want to describe what it does.  Figure 10 
shows the general HDL development process. 

This handbook does not provide significant detail on the two main hardware description 
languages (VHDL and Verilog).  See the links below for some tutorials on VDHL or Verilog. 

5.5.3 VHDL Tutorials 
 http://www.seas.upenn.edu/~ese201/vhdl/vhdl_primer.html 

 http://www.gmvhdl.com/VHDL.html 

5.5.4 Verilog Tutorials 
 http://www.asic-world.com/verilog 

 http://ca.olin.edu/cawiki/Fall_2006/Materials?action=AttachFile&do=get&target=Verilo
gTutorial.pdf 

 http://www.doulos.com/knowhow/verilog_designers_guide/ 

5.5.5 Comparison of VHDL and Verilog 

You can design complex electronics in either of the main hardware description languages 
(VHDL and Verilog).  Both provide all the capabilities you require.  While the choice of 
language is mostly a personal preference, there are some differences between the two that may 
be important for specific applications.  Table 4 shows how the two compare. 

5.5.6 Coding Standards 

Just as in writing software for embedded applications, a coding standard is important when more 
than one person will ever have to maintain the source code.  The big danger is that when the 
person who wrote the original code leaves or moves on to another project, no one will 
understand how it works if the code ever has to change.  Even the original designer is likely to 
forget it in several months. 

One can easily write individual lines of understandable HDL code that collectively become 
extremely difficult to follow.  A good coding standard will help alleviate this by providing 
guidelines for hierarchical structures and component instantiations.  For instance, many books 
use various types of flip-flops as examples to model component instantiations (mostly because 
these are already understood by the readers).  However, in practice, it is generally poor coding 
style to instantiate logic by mapping each register to various kinds of flip-flops.  This can lead to 
longer, more obfuscating logic that does not take advantage of the ability to write in VHDL and 
Verilog at a higher level. 
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Figure 10:   General HDL Development 
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Table 4:  VHDL vs. Verilog 

 VHDL Verilog 
Similarity to 

software 
programming 

language 

Pascal and Ada C 

Level of 
abstraction 

VHDL models well from the system level 
down to the RTL level, with some 
modeling at the gate level. 

Verilog has less system modeling 
capabilities than VHDL, but more 
capabilities at the gate level. 

Compilation 
Allows separate compilation of multiple 
design-units (entity/architecture pairs) 
that reside in the same system file. 

With Verilog, care must be taken with 
both the compilation order of code 
written in a single file and the 
compilation order of multiple files.  
Simulation results can change by simply 
changing the order of compilation. 

Data types 

VHDL has a multitude of language or 
user defined data types that can be used.  
As a result, dedicated conversion 
functions are needed to convert objects 
from one type to another. 

Verilog data types are very simple, easy 
to use, and very much geared towards 
modeling hardware structure as 
opposed to abstract hardware 
modeling.  All data types used in a 
Verilog model are defined by the Verilog 
language and not by the user. 

Design reusability 
Procedures and functions may be placed 
in a package so that they are available to 
any design-unit that wishes to use them. 

There is no concept of packages in 
Verilog.  Functions and procedures 
used within a model must be defined in 
the module. 

Ease of learning 

VHDL may seem less intuitive at first for 
two primary reasons.  First, it is very 
strongly typed; a feature that makes it 
robust and powerful for the advanced 
user after a longer learning phase.  
Second, there are many ways to model 
the same circuit, especially those with 
large hierarchical structures. 

Probably easiest to learn with no prior 
exposure or knowledge. 

High level 
constructs 

VHDL contains more constructs and 
features for high-level modeling than 
Verilog.  Abstract data types can be used 
along with the following statements: 
package statements for model reuse 
configuration statements for configuring 
design structure 
generate statements for replicating 
structure 
generic statements for generic models 
that can be individually characterized 

Verilog has no high-level modeling 
statements similar to VHDLs.  Verilog 
allows you to parameterize models by 
overloading parameter constants. 

Language 
extensions 

VHDL allows architectures and 
subprograms to be modeled in another 
language by using the “foreign” attribute. 

The Programming Language Interface 
(PLI) is an interface mechanism 
between Verilog models and Verilog 
software tools. 
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 VHDL Verilog 

Libraries 
VHDL uses a library to store compiled 
entities, architectures, packages and 
configurations.  Useful for managing 
multiple design projects 

There is no concept of a library in 
Verilog.  This is due to its origins as an 
interpretive language. 

Low level 
constructs 

Simple two input logical operators are 
built into the language, they are: NOT, 
AND, OR, NAND, NOR, XOR and XNOR. 
Any timing must be separately specified. 

The Verilog language was originally 
developed with gate level modeling in 
mind and has very good constructs for 
modeling at this level and for modeling 
the cell primitives of ASIC and FPGA 
libraries. 

Managing large 
designs 

Configuration, generate, generic, and 
package statements all help manage 
large design structures. 

There are no statements in Verilog that 
help manage large designs. 

Operators Similar operators to Verilog with the 
addition of a mod operator. 

Similar operators to VHDL with the 
addition of a unary reduction operator. 

Parameterizable 
models 

A specific bit width model can be 
instantiated from a generic n-bit model 
using the generic statement. 

A specific bit model can be instantiated 
from a generic n-bit model using 
overloaded parameter values. 

Procedures and 
tasks Allows concurrent procedure calls. Does not allow concurrent task calls. 

Readability 
(This is more a 

matter of coding 
style and 

experience than 
language feature) 

VHDL is a concise and verbose 
language; its roots are based on Ada. 

Verilog is more like C because its 
constructs are based approximately 
50% on C and 50% on Ada. 

Structural 
replication 

The generate statement replicates a 
number of instances of the same design-
unit or some subpart of a design and 
connects it appropriately. 

There is no equivalent to the generate 
statement in Verilog. 

Test harnesses 
VHDL has generic and configuration 
statements that are useful in test 
harnesses. 

Verilog does not have similar 
statements. 

Verboseness 

Because VHDL is a very strongly typed 
language, models must be coded 
precisely with defined and matching data 
types.  Models are often more verbose, 
and the code often longer, than its Verilog 
equivalent. 

Verilog allows signals representing 
objects of different bit-widths to be 
assigned to each other.  The signal 
representing the smaller number of bits 
is automatically padded out to that of 
the larger number of bits.  This has the 
advantage of not needing to model 
quite as explicitly as in VHDL, but does 
mean unintended modeling errors will 
not be identified by an analyzer. 
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The important elements of a HDL coding standard are: 
 Consistent and defined style 

 Guidelines on writing understandable code 

 Commenting guidelines 

 Information to capture in comments at each level 

 Naming convention (for consistency) 

Coding standards can be specific to a programming language or a chip family, corporate 
requirements, or can be more general in nature.  An example coding standard, courtesy of Xilinx 
Corporation, can be found in Appendix B. 

5.6 PROGRAMMING EXAMPLE 

The below examples demonstrate, in a simple form, the programming constructs for complex 
electronics. 

VHDL uses the concept of a “design entity,” which consists of two design units.  The entity 
declaration defines the external interface.  The architecture body details the internal structure, 
and can define the entity’s behavior, structure, or both. 

Verilog uses the concept of a “module” rather than “entity.”  Like VHDL, the port declarations 
(external interface) are separate from the module body, which defines the internal behavior 
and/or structure.  Figure 11, which includes Examples 1 and 2, shows the difference between a 
VHDL and Verilog design for the same circuit. 

5.7 SYNTHESIS 

Design synthesis is the process that takes the higher-level designs and optimally translates them 
to a gate-level design which can be mapped to the logic blocks in a complex electronic device.  It 
is during synthesis that timing and area constraints can be specified by the user.  Unlike software, 
which executes sequentially, the elements of a complex electronic chip will execute in parallel, 
with specific timing requirements.  However, in general, synthesis is a form of compiling -  
translating the readable language into instructions that are implemented in the integrated circuit. 

The synthesis step transforms the behavioral and structural specifications into an optimized 
netlist of gates.  The netlist is a description of the various logic gates in the design and how they 
are interconnected.  During synthesis, the designer can optimize parameters and constraints in 
the final chip.  For example, a certain amount of delay may be necessary when accessing an 
outside element like a sensor.  This delay can be included as a constraint during the synthesis 
process.  Other constraints may be power consumption and signal timing. 
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Example 1: And-or-invert (AOI) gate 

Description: This gate takes two sets of signals, each of which is ANDed together, ORs the 
resulting signals, and finally inverts the results. 

Truth table (not complete): 
A B A&B C D C&D OR Result (F) 
1 1 1 1 1 1 1 0 
0 1 0 1 1 1 1 0 
1 0 0 1 1 1 1 0 
1 1 1 0 1 0 1 0 
1 1 1 1 0 0 1 0 
1 1 1 0 0 0 1 0 
1 0 0 1 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 1 1 1 1 0 

 

VDHL Code for AOI gate Verilog Code for AOI gate 
-- VHDL code for AND-OR-INVERT gate 
library IEEE; 
use IEEE.STD_LOGIC_1164.all; 
entity AOI is port ( A, B, C, D: in STD_LOGIC; F :      
out STD_LOGIC ); 
end AOI; 
architecture V1 of AOI is 
begin 
  F <= not ((A and B) or (C and D)); 
end V1; -- end of VHDL code 
 

// Verilog code for AND-OR-INVERT gate 
module AOI (A, B, C, D, F); 
input A, B, C, D; 
output F; 
assign F = ~((A & B) | (C & D)); 
endmodule // end of Verilog code  
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Explanation of VHDL code Explanation of Verilog code 
Comments begin with “--“ 
library/use: provides the entity with access to all the 
names declared in the package STD_LOGIC_1164. 
“entity AOI is” - starts the entity description and 
assigns it the name AOI. 
“port {..}” specifies the input and output signals and 
the data type of each 
“end AOI;” terminates the entity declaration 
“architecture V1;” gives a label (V1) to the 
architecture body and connects it to the AOI entity 
declaration 
“begin” starts the architecture statement (the 
details). 
“ F <= not ((A and B) or (C and D));”specifies the 
behavior of the signals 
“end V1’” terminates the architecture body. 
 

Comments begin with “//“ 
“module AOI (A, B, C, D, F);” - starts the module 
description and assigns the module a name (AOI). 
“input A, B, C, D; output F;” - declares which of the 
signals are inputs and which are outputs. 
“assign F = ~((A & B) | (C & D));” - logic statement 
defining the behavior of the signals.  The concurrent 
assignment executes whenever one of the four 
ports A, B, C, or D change value.  The ~, & and | 
symbols represent the bit-wise not, and/or 
operators, respectively. 
“endmodule” - terminates the module definition. 

 
 

Example 2: AOI Gate with internal signals and timing 
 

Description: This gate is the same as the first example, except that the internal signals (between the 
AND, OR, and NOT gates) are explicitly identified.  Additionally, timing delays are included in this 
example. 
 

 
 

VHDL code Verilog code 
library IEEE; 
use IEEE.STD_LOGIC_1164.all; 
entity AOI is port (A, B, C, D: in STD_LOGIC; 
          F : out STD_LOGIC); 
end AOI; 
architecture V2 of AOI is signal AB, CD, O: 
STD_LOGIC; 
begin 
AB <= A and B after 2 NS; 
CD <= C and D after 2 NS; 
O <= AB or CD after 2 NS; 
F <= not O after 1 NS; 
end V2; 

// Verilog code for AND-OR-INVERT gate 
module AOI (A, B, C, D, F); 
input A, B, C, D; 
output F; 
wire F; // the default 
wire AB, CD, O; // necessary assign 
AB = A & B; 
assign CD = C & D; 
assign O = AB | CD; 
assign F = ~O; 
endmodule // end of Verilog code 
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Explanation of VHDL code Explanation of Verilog code 
The majority of the statements are exactly the same 
as in the previous example.  In the architecture 
body, the internal signal behavior is defined. 
Whenever a signal on the right side of the 
assignment (e.g., “A and B”) is evaluated either A or 
B changes value.  The signal on the left side of the 
assignment (e.g., “AB”) is updated with the new 
result after a delay of 2 nanoseconds. 
In this example, if port A changed value, the result 
would propagate through the entity, to the final 
output, with a total delay of 5 nanoseconds. 

In Verilog, a wire represents an electrical 
connection.  A wire declaration looks like a port 
declaration, with a type (wire), an optional vector 
width, and a name or list of names.  “wire AB, CD, 
O;” declares three wires (the internal signals). 
The assign statements (e.g., “assign AB = A & B;” 
are the same format as in the previous example.  
They break out the logic from one statement into 
several, using the internal signals (wires).  These 
statements are independent and executed 
concurrently, and are not necessarily executed in 
the order in which they are written. 

Figure 11:   AOI VHDL to Verilog Comparison 

 

Synthesis is performed almost exclusively by a software tool.  Modern synthesis tools do an 
excellent job of optimizing complex designs, so designers do not need to manually perform that 
task.  However, user input to the tools does have an effect on the output.  For example, synthesis 
tools behave very differently given a common set of constraints.  These timing-driven tools 
perform complex trade-offs to achieve the timing constraint specified, including adding extra 
parallel logic to paths where there is negative timing slack, or optimizing a critical path at the 
expense of a non-critical one.  When you overconstrain a design, the tool sees many, many paths 
that do not meet timing and can generate lots of extra logic in a futile attempt to make all of them 
hit the timing goals.  This can result in a much larger design with reduced overall timing 
performance.  In a timing-driven tool the idea is to give the tool the real timing specifications, 
and let it work to meet that goal.  Once that performance goal has been met, the tool will start 
optimizing for less area which translates to cost savings in your device.  This can produce an 
even faster design because routing delays can be reduced by having less logic in non-timing-
critical areas. 

5.7.1 Simulation 

Simulation is used in the design of complex electronics at several levels.  One very nice aspect of 
hardware description languages is that they are “executable,” and simulators that can run the 
code are very common.  Simulators are usually part of the tool suite provided by the vendor of 
the complex electronic device (e.g., FPGA). 

After design entry, the design is simulated at the register-transfer level (i.e., the HDL code).  
Simulation at this level is very fast, allowing the designer to implement many simulations to 
fully understand how the device will operate.  Simulation can be used to help optimize the design 
and refine the logic, though designers need to be careful not to use it in an undisciplined code-
and-fix mode.  Simulation of the HDL code will look at signals and variables to check their 
value, trace functions and procedures, and will use breakpoints to check the status of the device 
at specific events.  This process is very similar to using a software debugger.  One caveat with 
simulation at this level of design is that some properties are not yet defined, such as timing and 
resource usage. 
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After design synthesis, but before physical implementation, functional simulation is used to help 
verify the design.  The goal of functional simulation is to ensure that the logic of the design does 
what you want it to do, per the specification, and that it produces the correct results.  This type of 
simulation is very important to get as many bugs out of the device as possible.  If any errors are 
discovered, then the design entry step is revisited and necessary required changes are made, 
leading to a successful simulation. 

After the design has been implemented, but before the device is actually programmed, a final 
simulation with full timing information is performed.  The placement and routing process will 
determine any delays and other timing information, which are back-annotated to the gate-level 
netlist.  This simulation is a much longer process, because of the timing aspects.  A static timing 
analysis might be substituted for the timing simulation.  Static timing analysis calculates the 
timing of combinational paths between registers and compares it against the designer’s timing 
constraints. 

5.7.2 Test Benches 

Test benches for complex electronics are not made of wood or metal, but of Verilog or VHDL 
code.  They are special programs designed to test your complex electronics design.  While 
simulators can verify simple designs, more complex designs require a test bench to adequately 
verify the design. 

A test bench is a HDL design you create which can load your circuit, apply stimulus to its inputs 
(including defining multiple clocks), and check the outputs for correctness.  Because the test 
bench is a program you write, you have control over how your circuit is built and simulated.  In 
addition to the above capabilities, a test bench can provide behavioral or structural models for 
everything on the PC board.  In this way, it enables you to simulate the entire system including 
your complex electronics design(s) as well as external bus interfaces, external memories, etc.  An 
engineer can design the test benches to automatically check important data conditions and to 
report any errors to a command window. 

Comprehensive, upfront verification is critical to the success of a design project, and test benches 
should be created as you start to design your device.  A HDL test bench/simulator can become 
your primary design development tool.  When simulation is used right at the start of the project, 
you will have a much easier time with synthesis, and you will spend far less time re-running 
time-intensive processes, such as place-and-route tools and other synthesis-related software. 

Test benches can be simple, applying a sequence of inputs to the circuit over time.  They can also 
be quite complex, perhaps even reading test data from a disk file and writing test results to the 
screen and to a report file.  A comprehensive test bench can, in fact, be more complex and 
lengthy (and take longer to develop) than the circuit being tested. 

Depending on your needs (and whether timing information related to your target device 
technology is available), you may develop one or more test benches to: 

 Verify the design functionally (with no delays). 

 Check your assumptions about timing relationships (using estimates or unit delays). 

 Simulate with annotated post-route timing information so you can verify that your circuit 
will operate in-system at speed. 
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A typical VHDL or Verilog test bench is composed of three main elements: 
 Stimulus Generator - drives the unit under test with certain signal conditions (correct 

and incorrect values, minimum and maximum delays, fault conditions, etc.) 

 Unit Under Test - represents the device undergoing test or verification 

 Verifier - automatically checks and reports any errors encountered during the simulation 
run.  Compares model responses with the expected results. 

Test benches are created by human beings, often by the designer, and are subject to faults and 
failings like any human endeavor.  If the logic of the test bench is incorrect, or if a particular 
stimulus is not defined, then the end result of the tests may not show an actual error.  This 
scenario is something to keep in mind if you are called on to review verifications for a piece of 
complex electronics.  You cannot assume that the test bench accurately and completely tested the 
device - especially if the device will be used in a safety-critical application. 

5.7.3 Assurance Roles 

At the design synthesis stage, assurance and safety engineers are usually not involved.  A 
hardware assurance engineer might participate in or witness simulations of the device, or assess 
the test bench created for the simulation.  The system safety engineer may review the simulation 
results. 

Ideally, an assurance engineer should review the constraints used in the synthesis process and 
assess the simulations that are performed.  The test bench should also be assessed to verify that it 
is correctly testing the device being created.  All of these activities require a knowledgeable 
engineer who has experience with complex electronics. 

A software engineer using this handbook should be able to follow along with any simulations 
that are performed, and be able to assess if the results match the interface specifications (e.g., if 
the output on a particular pin is within the valid range). 

5.8 IMPLEMENTATION 

Once a design has been created, simulated, and synthesized, the next step is implementation of 
the design in the particular complex electronic device.  In software, implementation is usually 
translating the design into source code and compiling it.  In complex electronics design, 
implementation is where the design meets the silicon - the higher-level design is converted into a 
chip layout. 

The implementation process uses the tools supplied by the device (e.g., FPGA) vendor.  The 
functions that were defined in the design have to be matched to the available blocks, gates, and 
other logic elements on the chip.  Some basic steps in implementing a design are: 

 Floorplan 

 Translate 

 Map 

 Place and Route 
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The exact order of a step (or even the name a step/process is given) varies across different 
groups, companies, and documents.  Thus, do not take the information in this handbook as the 
only correct way to do things.  However, the concepts presented here are common across the 
industry and will be implemented to some extent in all programs - perhaps as part of an 
automated tool or under a different name.  Being familiar with the concepts will help you “speak 
the language” when talking with a design engineer working with complex electronics. 

Floorplanning is the process of identifying structures that should be placed close together, and 
allocating space for them.  In designing complex electronics, there are multiple goals that must 
be met, and the goals often conflict.  Finding the best balance between the various goals and 
requirements is something of an art.  Some goals are: 

 Minimize space on the chip (allows choice of less costly chips) 

 Meet or exceed required performance 

 Place everything close to everything else to minimize transmission time in the signal 
paths 

Floorplanning does not have to be performed by the designer for many designs/chips.  Most tool 
suites will perform this step as part of the automated sequence that takes the design and 
implements it in the chip.  However, if you are creating an ASIC, need the absolute best timing 
possible, or are trying to cram a large design into a not-so-large chip, you will probably need to 
actively floorplan. 

Done correctly, there are no negatives to floorplanning.  However, if the floorplanning is done 
with insufficient regard for the architecture of the chip, then it is possible to actually do a worse 
job than the automated tool.  It is also possible that there are constraints that are not well 
understood until placement is complete and routing commences. 

As a general rule, data-path sections benefit most from floorplanning, and random logic, state 
machines and other non-structured logic can be safely left to the placer section of the place and 
route software.  Data paths are typically the areas of your design where multiple bits are 
processed in parallel with each bit being modified the same way with some possible influence 
from adjacent bits.  Example structures that make up data paths are adders, subtractors, counters, 
registers, and muxes. 

Translation involves converting the results of the synthesis process to the format supported 
internally by the vendor’s place-and-route tools.  The incoming netlist is checked for adherence 
to design rules and is then optimized for the chip. 

Translation may also be referred to as compilation or compiling.  This process is automatic, but it 
takes some wading through the reports produced by the tool to verify that the translation/compile 
was correct.  An intelligent post-processor, rather than the designer (or the quality assurance 
engineer), should find syntax and binding errors - otherwise you will have to do this for each 
design modification. 

Mapping takes the logic blocks and determines what logic gates and interconnections on the 
device should be used to implement those blocks.  During the mapping step, the functions within 
the device (such as counters, registers, or adders) are aligned with the logic resources of the chip.  
The exact process is device dependent.  For example, FPGAs have look-up tables that perform 
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logic operations.  The mapping tool (part of the vendor’s tool suite) collects the gates defined by 
the netlist into groups that will fit within the look-up tables. 

Place and Route is the process of placing the logic blocks in the best spots on the chip to achieve 
efficient routing.  Items that the place and route tool will look at include routing length (how far 
does a signal have to travel), track congestion (how many signals are coming into or out of an 
area), and path delays.  While vendor-supplied tools usually perform the process automatically, 
the designer can specify some parameters and constraints that the final layout has to meet, 
including: 

 the initial placement of the cells 

 a position for each physical connector 

 a form factor 

5.8.1 Programming the Device 

Once the design is successfully verified and found to meet timing and performance requirements, 
the final step is to actually program the device.  At the completion of placement and routing, a 
binary programming file is created and used to configure the device.  The process of 
programming is usually dependent on the type of memory used to store the device configuration 
and on the device type (e.g., FPGA or ASIC).  Some of the factors in device programming are 
described below. 

5.8.2 How Complex Electronic Devices Remember their Configuration 

User-programmable complex electronic devices are a combination of a logic device and a 
memory device.  The memory is used to store the pattern that was given to the chip during 
programming.  The primary ways this information is stored are: 

 Fuses 

 Antifuses 

 SRAM (static RAM) 

  (E)EPROM cells (Electrically Erasable Programmable Read-Only Memory) 

 Flash memory 

A fuse is a special part of the programmable chip that is normally closed (connected) until an 
electrical current breaks that connection.  Antifuses, unlike traditional fuses, are open until a 
voltage is applied to close (complete) the circuit path.  Once closed, the connection cannot be 
opened.  Programmable logic that uses fuses or antifuses are “program once” chips.  For 
operations on Earth, fuses and antifuses lag behind the more reprogrammable versions in 
versatility and market share.  In applications where ionizing radiation is a concern (such as outer 
space or high altitude), antifuses are usually a better choice. 

SRAM, or static RAM, is a volatile type of memory.  The contents of the memory are lost 
whenever the power is switched off.  Static RAM differs from the dynamic RAM used in PCs in 
that memory refresh of the RAM is not required.  SRAM-based programmable logic devices 
have to be programmed every time the chip is switched on.  This is usually done automatically 
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by another part of the system.  SRAM FPGAs are susceptible to ionizing radiation, including the 
neutron radiation experienced at high altitudes. 

An EPROM cell is a transistor that can be switched on by trapping an electric charge 
permanently on its gate electrode.  This is done by an external programming device.  The charge 
remains for many years and can only be removed by exposing the chip to strong ultraviolet light.  
EEPROM is electrically erasable PROM, which uses an electrical current rather than ultraviolet 
light to erase the programmed value.  EPROMs have to be removed from their circuit boards to 
be erased and reprogrammed.  EEPROMs can be erased and reprogrammed using special 
circuitry on the board. 

Flash memory is non-volatile, which means that it retains its contents even when the power is 
switched off.  It can be erased and reprogrammed as required.  This makes it useful for 
programmable logic device memory.  Flash-based devices combine the best of both worlds - 
maintaining configuration when not powered, but also allowing reprogramming when desired.  
Flash-based programmable devices are essentially immune to neutron radiation (generated when 
cosmic rays interact with the atmosphere) and are resistant to other high-energy particles. 

5.8.2.1 Externally Programmed Devices 

Complex electronics that use fuse, antifuse, or EPROM technology to configure the device have 
to be programmed in an external device, and cannot be programmed when placed on a circuit 
board.  EEPROM-based devices may also require external programming, or may be able to be 
programmed in-system, depending on the specifics of the device and the circuit. 

 

To use an external programmer, Figure 12, the 
chip (CPLD or FPGA, or simple programmable 
logic device) is placed in the appropriate socket 
and attached to the programming device.  The 
programmer is attached to a computer (or may 
have an internal microprocessor, for stand-alone 
devices), which will download the binary file into 
the device and then apply the necessary voltages 
to “burn” or program the chip. 

Figure 12:   External Programmer 

5.8.2.2 In-system Programming 

Complex electronics that use SRAM, flash, or (sometimes) EEPROM can be, and usually are, 
programmed in-situ on the circuit board.  Many boards provide a JTAG interface that can be 
hooked up to a personal computer for download of the device configuration. 

5.8.2.3 ASICs 

Application Specific Integrated Circuits are user-designable, not user-programmable complex 
electronics.  While the basic steps in designing ASICs are the same as for other complex 
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electronics, there are some differences, driven by the fact that ASICs are manufactured (usually 
in large runs), and a problem with the resulting chip is very costly. 

Table 5 lists some of the main differences between creating an ASIC and a programmable 
complex electronic device (e.g., FPGA). 

Table 5:  FPGA vs. ASIC Comparison 

Development Area Differences 
Vendor Selection With FPGAs, you select which chip you will use.  This is an off-the-shelf 

purchase, and the only question is whether the chip meets your needs and how 
good are the vendor-supplied tools.  Since ASICs are manufactured, the vendor 
relationship is much more important.  ASIC vendors will usually perform some of 
the implementation steps (such as place and route), as well as post-
manufacture testing. 

Careful Selection of 
Functionality 

Because of the cost of failure with ASIC design, the selection of what 
functionality will be included in the ASIC is very important.  While FPGA design, 
like software, can be changed later in the program, ASICs have a long lead 
time.  So it is important to get everything right early in the process. 

Simulation With FPGA designs, the primary simulations are early in the design process, to 
verify the functionality of the design.  With ASICs, simulations are mostly 
performed late in the design (at the gate level) to verify that all the last minute 
transformations and modifications do not cause an error.  This difference affects 
what you want in a simulation environment.  For ASICs, high performance (fast) 
simulation is essential.  For FPGAs, the quality of the user environment and the 
speed in locating and fixing errors is more important. 

Design Size The size (in gates and/or I/O capacity) of ASICs is a somewhat continuous 
scale from small to very large.  FPGAs are “chunky” - the size varies in vendor-
defined increments within a device family.  ASICs have more flexibility in size, 
so that a small increase will not affect the final cost too much, whereas with an 
FPGA you might have to go to the next higher size (and more expensive) chip.  
In general, FPGA designers are more concerned with getting the design to the 
minimum size (or to fit within the target chip) than ASIC designers. 

Timing ASICs have a relatively smooth, continuous distribution of delays as routing 
distances vary.  With FPGAs, delays move in large, discontinuous, and 
relatively unpredictable steps.  This means the estimated timing performance 
can vary by 20-30% on a net-by-net and path-by-path basis between the 
various design tools. 
With ASICs, many timing problems can often be conquered by resizing buffers, 
small placement and routing changes, and cell swaps.  These options are not 
available with FPGAs.  Logic synthesis in FPGA can basically only replicate 
logic, rebalance trees, and restructure paths to resolve timing issues. 

Verification In the ASIC world, verification is a long and time consuming process.  It will take 
up to 70% of the total development time and resources.  The reason for this is 
risk avoidance - you do not want a design error to slip through and cause you to 
waste all the time and money spent on the ASIC.  This makes verification, 
confirmation, and re-verification every design engineer’s first priority.  
Verification of ASICs is a lot more rigorous than FPGA verification. 
Besides multiple simulations at various design phases, and design reviews with 
your best engineers, two additional verification activities may be performed: 
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Development Area Differences 
Prototyping in FPGA.  Creating your ASIC design in an FPGA prototype results 
in discovery of bugs that may not have been identified during previous 
simulation.  It also provides multiple platforms for software development in 
parallel to debugging.  The FPGA prototype is available for the post-
manufacture verification as an exerciser to validate the design. 
Formal Methods.  Formal methods in the engineering world are those methods 
that use mathematical (formal) languages for writing specifications to prove that 
highest-level specifications are consistent with top-level objectives.  They have 
an advantage over verbal prose and conventional simulators because they can 
be used to represent specifications that are provably consistent with objectives 
and higher level specifications. 

Manufacturing Programmable complex electronics use off-the-shelf chips, whereas an ASIC 
design is submitted to a vendor for manufacturing.  The manufacturing stage 
incurs significant expense.  The vendor assumes responsibility for fabricating, 
probing, and sorting wafers then assembles and packages the chip per 
requirements.  Once the chips are created (and pass the vendor tests), the 
designer has to complete verification of the final product - and hope that the 
design was correct.  Any problems found will require the ASICs to be 
remanufactured, at a significant cost. 

 

5.8.2.4 SRAM-based FPGAs 

Complex electronics that use SRAM will lose their memory once power is removed.  Static 
RAM is volatile memory, thus SRAM chips need additional resources in order to function.  
Since the configuration is lost whenever the power is removed, the FPGA configuration has to be 
placed in non-volatile memory, such as an EPROM, EEPROM, or flash memory.  When the 
FPGA is powered on, it reads the configuration from the non-volatile memory and is ready to go. 

5.8.3 Assurance Roles 

At the implementation stage, assurance and safety engineers are usually not involved.  A 
hardware assurance engineer might witness the programming (“burning”) of the device.  Much 
of the implementation process is performed by automated tools, so if the tools were previously 
assessed, the results can be accepted without additional review.  One area that the assurance 
disciplines can support at this time is verification that the design and implementation is 
appropriate for the environment where the device will operate.  NASA experts in radiation or 
other space-related effects can be consulted if there are any questions about the device design. 

A software engineer using this handbook should be able to witness the programming (“burning”) 
of a complex electronic device and to understand the process. 

5.9 VERIFICATION 

As with software, verification activities do not wait until the complex electronic device is 
programmed and ready for test.  Verification is a parallel set of activities to design and 
development.  Various tasks are performed at each phase of the development. 

This section of the handbook will answer the questions: 
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 What are the verification steps for complex electronics? 

 How is verification for complex electronics similar to, and different from, software  
verification? 

 Who performs the verifications? 

5.9.1 Requirements 

At the requirements phase, the system or subsystem level requirements are flowed down to the 
complex electronics.  This flowdown is primarily the responsibility of the systems engineer, 
though the design engineer for the complex electronics should be involved to prevent 
requirements being imposed on the hardware that it cannot meet.  Table 6 shows the verification 
activities done during the requirements phase. 

Table 6:  Requirement Verification Activities 

Verification activity Performed by 
Evaluate requirements for the complex electronics Quality assurance engineer,  

systems engineer 

Safety assessment System safety engineer 

Requirements review (e.g.,  PDR) All 

Identification of applicable standards Quality assurance engineer, safety engineer, 
design engineer 

Formal methods Knowledgeable practitioner 

 

Quality assurance engineers should review the requirements for correctness, completeness, and 
consistency.  Incomplete requirements are difficult to verify, are often interpreted differently by 
various people, and may not implement the functions that are desired.  Finding out during testing 
that the device is missing important functionality, or is too slow, is something you really want to 
avoid. 

For safety-critical or mission-critical devices, formal methods might be used as a verification 
tool.  The requirements can be defined using a special language that allows mathematical proofs 
to be generated showing that the device will not violate certain properties.  Formal methods can 
be applied at only the requirements level (to make sure you get those correct), or can be used to 
verify the design when it is generated.  Most projects will not use formal methods. 

5.9.2 Design Entry 

During the design entry phase, the complex electronics functionality is defined in a hardware 
description language.  The HDL code can be simulated in a test bench and its behavior can be 
observed.  This is an important verification activity that is usually performed solely by the design 
engineer.  Quality assurance engineers may review the simulation plans (if they are produced) or 
results, and for critical devices they may witness some of the simulation runs.  Table 7 below 
shows the verification activities done during Design Entry. 
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Table 7:  Design Entry Verification Activities 

Verification activity Performed by 
Evaluate design (HDL) against requirements Quality assurance engineer 

Functional Simulation Design engineer 

Safety assessment System safety engineer 

Design review (e.g.,  CDR, peer review) All 

Static analysis of HDL code Assurance engineer (including IV&V 
practitioners) 

 

Functional simulation involves emulating the functionality of a device to determine that it is 
working per the specification and that it will produce correct results.  This type of simulation is 
good at finding errors or bugs in the design.  Functional simulation is also used after the design 
synthesis step where the gate-level design is simulated. 

One or more engineers who can assess the design should review the HDL code.  A good 
reviewer has to understand the system within which the device will operate, know the HDL 
language being used, and be able to compare what the device is designed to do against its 
requirements.  This means that not just anyone can adequately review the design.  Lack of 
knowledge or experience will hamper the review and often cause the designer to think the review 
is a waste of time. 

For very complex or safety-critical devices, assurance engineers or Independent Verification and 
Validation (IV&V) practioners may be called in to review the design.  One tool they can use is 
static analysis software for the HDL code, which can look for problems or possible errors in the 
code.  This tool is very similar to some static analysis tools for software that look for potential 
logic or coding errors. 

5.9.3 Design Synthesis 

During design synthesis, the higher-level designs are optimally translated to a gate-level design, 
which can then be mapped to the logic blocks in a complex electronic device.  It is during 
synthesis that timing and area constraints can be specified by the user.  Table 8 shows the 
verification activities done during design synthesis. 

Table 8:  Design Synthesis Verification Activities 

Verification activity Performed by 
Functional Simulation of gate-level circuit Design engineer 

Design review (peer review) All 

Design evaluation Quality assurance engineer 

Fault injection testing Design engineer or quality assurance 
engineer 

Downloaded from http://www.everyspec.com



NASA-HDBK 8739.23 with change 1 

61 of 143 

Simulation is one of the primary ways that the design synthesis process is verified.  In almost all 
projects, the design engineer is the one who generates the test bench, defines the simulation runs, 
and performs the simulations.  Quality assurance engineers are rarely involved, other than to 
perhaps verify that the simulations were performed.  However, it is important to look at the 
design of the test bench and the simulation tests to make sure they are complete enough.  This is 
the time to find errors or mistaken assumptions - not when you are integrating your complex 
electronics with other areas of the system. 

Understanding how the complex electronics will operate when given invalid input is very 
important in verifying the devices.  The real world is messy, and noisy signals or broken 
interfaced hardware are unfortunately common.  Simulation is a great place to perform fault 
injection testing by inputting signals that are out of range, whose timing is not correct, that have 
ringing or other signal problems, or that are noisy.  Encouraging this type of testing, and helping 
to identify the likely types of faults, is one way that quality assurance personnel can actively 
participate in the verification of complex electronics. 

5.9.4 Implementation 

Implementation is where the higher-level design is converted into a chip layout.  The 
implementation process uses the tools supplied by the device (e.g., FPGA) vendor to match the 
functions that were defined in the design to the available blocks, gates, and other logic elements 
on the chip.  Table 9 shows the verification activities done during Implementation. 

Table 9:  Implementation Verification Activities 

Verification activity Performed by 
Timing simulation Design engineer 

Static timing analysis Design engineer 

Device programming Witnessed by Quality Assurance engineer 

Timing simulations are simply functional simulations with timing information.  The timing 
information allows the designer to confirm that signals change in the correct timing relationship 
to each other.  The timing information is entered in the hardware description language model file 
and then simulated.  However, since there is a possibility of not being able to simulate all 
combination of inputs, a timing analysis tool can be used to evaluate a fully synchronous design. 

Static timing analysis is a process that examines a synchronous design and determines its highest 
operating frequency.  The analysis considers the path from every flip-flop in the design to every 
other flip-flop to which it is connected through the combinatorial logic.  The analysis is usually 
performed by a software tool, which calculates the best case and the worst-case delays through 
these paths (critical-paths).  Any paths that violate the set-up or hold-timing requirements of the 
flip-flop are flagged for later adjustment to meet the design requirements. 

5.9.5 Testing 

While simulation is used extensively in complex electronic design, testing the actual chip can 
sometimes be an eye-opening experience.  Simulation involves assumptions and compromises 
that may not match with the real world.  Testing the programmed chip - either independently or 
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integrated onto a circuit board - is a necessary step in verifying your design.  Table 10 shows the 
verification activities done during testing. 

Table 10:  Testing Verification Activities 

Verification activity Performed by 

In-circuit functional and timing tests Design engineer, may be witnessed by 
Quality Assurance engineers 

Sub-system and system tests All 

Safety verification All, but reviewed or witnessed by 
System Safety Engineer 

In-circuit verification tests the functionality and timing of the design on the actual chip.  Ideally, 
special test software running on a host computer will interface with the device under test through 
available test ports, such as the JTAG port.  This process is similar to in-circuit emulators that 
run embedded software on the target processor and provide breakpoints and tracing into the 
actual software instructions. 

The more common form of in-circuit tests is to manually run the complex electronics as part of a 
higher-level assembly to show that it meets all the specified requirements.  This subsystem or 
system level test will show functionality at a black-box level, but will not provide a window into 
the internal functioning of the device. 

If the complex electronic device is safety-critical, there will be separate safety verifications, 
usually at the system level. 

5.9.6 What Should an Assurance Person Look for when Evaluating Complex Electronics? 

So what can you do which will help improve the design process?  At a minimum, you can ask 
questions of those producing or reviewing the design to help ensure that all of the important 
areas are considered.  As a software assurance engineer, you may not be able to comment on the 
inner workings of the complex electronics, but you can certainly provide your process assurance 
viewpoint to the design and help make sure that defined processes are in place for configuration 
management, coding standards, and other areas.  The following paragraphs provide some general 
guidance and questions to consider. 

5.9.6.1 Programmatic Questions 
 Is the design team experienced, or does it have at least one experienced member? 

 Is there a design guideline document that defines design rules?  How will the guideline 
help prevent a code-and-debug methodology as the design process? 

 Has the team created a naming convention that provides information about objects and 
their timing information? 

 Is there an exception handling mechanism (possibly a hardware-software cooperative 
arrangement) for error conditions that may be detected? 
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 Is the design maintained in a version control or configuration management system?  Is 
there a formal process for changes once the design is baselined? 

 Has anyone looked at what standards may be applicable (Center, NASA, other)? 

5.9.6.2 Design Reviews 
 Does the design meet the specification? 

 Does the design pass a worst-case analysis (timing)? 

 Is the design partitioned into logical components? 

 Does the designer provide enough background information to understand what the device 
is supposed to do? 

 Is there anything in the design that conflicts with other subsystem or system components? 

 Do the design interfaces (input and output signals) match the interfaces as specified by 
the other components? 

 Were the special pins on each device (e.g., mode pin on FPGA, JTAG pins, no-connect 
pins) verified that each is used properly? 

5.9.6.3 Analyses 
 Was a timing analysis performed with the following signals? 

 Pulse width of each clock, asynchronous set, clear, and load input 

 Setup and hold time for all clocked inputs 

 Recovery time for set and clear 

 Did the timing analysis also consider the following? 

 Parallel clocking 

 Clock skew 

 Timing of analog circuitry 

 Minimum propagation delays 

 Were the gate output drive capacities analyzed to determine that none were exceeded? 

 Were the interfaces to other parts analyzed for input logic level thresholds and maximum 
input transition times? 

 If there is a state machine, was it analyzed for: 

 Unused states and lock-up? 

 Simultaneous assertion of flip-flop sets and clears? 

 Reset conditions? 

 Are resets of the correct assertion and release voltages, and is the pulse width correct? 
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CHAPTER 6.   PROCESS ASSURANCE 

6.1 PROCESS ASSURANCE OVERVIEW 

According to IEEE, quality assurance is defined as "a planned and systematic pattern of all 
actions necessary to provide adequate confidence that an item or product conforms to established 
technical requirements."  Quality assurance (QA) can be broken down into two main areas:  
product assurance and process assurance. 

Product assurance involves making sure that the final product meets its specifications.  This is 
usually done thorough testing.  Ideally, it also includes verifying that the requirements are 
correct, the design meets the requirements, and the implementation reflects the design. 

Process assurance looks at the process used to create that final product.  Was the development 
effort planned?  Were the plans followed, or just put on the shelf and ignored?  Does the 
development process meet any required standards?  Are best practices used to develop the 
product?  In process assurance, QA provides management with objective feedback regarding 
compliance to approved plans, procedures, standards, and analyses. 

Process assurance activities are performed throughout the life cycle, including product 
conception, design, implementation, operation, and maintenance.  Process assurance will detect, 
record, evaluate, approve, track, and resolve deviations from approved plans and procedures.  
For each life cycle phase, process assurance makes sure that planning is performed, that the plan 
is followed, and that the products of each phase are correct and complete.  Note that verifying the 
quality of the requirements, design, and verifications are usually considered product assurance.  
This handbook includes them in process assurance because they are often overlooked when 
evaluating complex electronics. 

For a circuit board that is assembled, product assurance would include verifying that the correct 
parts are on the board, assessing the quality of the soldering, and testing the board functionality.  
Process assurance activities would include verifying that the drawing used during the board 
assembly was configuration controlled and the correct revision, that proper Electrostatic 
Discharge (ESD) requirements were followed, and that an assembly process was defined and 
followed. 

6.1.1 Why do Process Assurance? 

While some aspects of process assurance are performed in many engineering disciplines, process 
assurance is the cornerstone of software assurance.  In some industries, the main purpose of 
software quality assurance is to test the software prior to release.  Within NASA, software 
assurance starts much earlier in the life cycle (with the requirements) and verifies the quality of 
all the products at each stage. 

Why does software get this special treatment?  Software differs from most hardware (mechanical 
or electrical) in several important ways: 

 Software is complex and cannot be 100% tested.  It is not feasible or sometimes even 
possible to test every possible path through the program, nor every combination of inputs.  
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For more than a trivial program, attempting such testing would take an astronomical 
amount of time. 

 Software requirements are often fluid.  Because software is easier to change than 
hardware, many defects or problems with hardware systems are overcome by changing 
the software. 

 Software itself is fluid.  It is easy to add additional functionality without sufficient 
thought as to the impact of that change on the entire system. 

Using good practices to develop software increases the confidence in the quality of the software.  
Because you cannot fully test every combination of inputs and paths with software, you need a 
way to look at the whole development process and the test results and determine if the product is 
of sufficient quality.  Process assurance is used to make sure those good practices are in place 
and that the project is following those practices. 

Process assurance also looks at software throughout the life cycle and judges the quality of the 
process and the associated life cycle products.  Software assurance engineers have a handle on 
the software requirements, design, and code volatility and can alert project management if too 
many changes are occurring.  Because changes have an impact on other software or systems, 
software assurance engineers help identify and assess those impacts prior to the change being 
implemented.  Process assurance is proactive in identifying and helping to correct potential 
problems before they become actual problems. 

While some people may see process assurance as an unwanted but required activity, one of the 
main reasons to perform it is to embed quality throughout the life cycle.  You do not want to wait 
until the product is finalized before you have any idea if it is a quality product or not.  Process 
assurance provides insight into the development processes (and thus some insight into the quality 
of the product) long before the product is completed.  This focus on problem prevention through 
early detection allows corrections and changes to be made to the product or process when the 
cost of those changes is less than it would be later in the project. 

6.1.2 Process Assurance for Complex Electronics 

When software cannot be fully tested, process assurance (how the product is built) is used to 
increase confidence in the resulting program.  The same philosophy can be applied to complex 
programmable logic.  In “Building a case for assurance from Process,”1 the author shows how 
process assurance can be used in the IT security world to make a case for claims about the 
software quality.  This is the idea behind the Software-CMM and other process improvement 
initiatives.  If you cannot verify by testing every possible combination of inputs, decisions, etc., 
then knowing that you built the software according to well-defined standards gives additional 
confidence. 

Complex electronics straddle the line between hardware and software.  The design of these 
devices is complex enough that all combinations of inputs and timing cannot be fully tested.  
Complexity also increases the chance of design errors, unexpected interaction between elements 

                                                 
1 “Building a case for assurance from Process,” K.  Ferraiolo, L.  Gallagher, V.  Thompson; 21st 
National Information Systems Security Conference 
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of the design, and other “software-like” errors.  Because of these concerns, complex electronics 
cannot be completely verified using traditional approaches. 

Adding process assurance to the verification of complex electronics will increase the confidence 
that the final device was designed to the correct requirements, the design completely implements 
all requirements, and the final product meets all functional and quality specifications. 

The Federal Aviation Administration (FAA) is taking a similar approach to complex electronics.  
The document DO-254, “Design Assurance Guidance for Airborne Electronic Hardware,” is 
basically process assurance for complex electronics.  This document requires: 

 Planning for all life cycle phases, including selection of design methodology, integration 
of hardware design processes with supporting processes, and description of process 
assurance policies and procedures. 

 Activities performed by engineers at each life cycle phase, including requirements 
capture, design creation, implementation, and acceptance testing. 

 Verification and validation throughout the life cycle. 

 Configuration management of designs and supporting information for complex 
electronics. 

 Process assurance activities at each life cycle phase. 

6.1.3 Tools of the Process Assurance Trade 

Process assurance is implemented primarily through the following activities: 
 Documentation review 

 Formal inspections, reviews, and walkthroughs 

 Audits 

 Analyses 

The following paragraphs provide a quick overview of these processes.  The next section of this 
handbook will go into more detail on which processes are appropriate for each phase of the life 
cycle, and what aspects of the complex electronics development they should be used for. 

Documentation Review 

Individual review of a document, design, or hardware description code is performed by the 
process assurance engineer.  This type of review may or may not use a checklist (if one is 
available).  The quality of the artifact is evaluated against best practices, and the results are fed 
back to the author of the artifact. 

Reviews, Walkthroughs, and Formal Inspections 

Formal inspection is an examination of the completed product of a particular stage of the 
development process (such as a design), typically employing checklists, expert inspectors, and a 
trained inspection moderator.  The objective is to identify defects in the product.  There are many 
techniques of doing inspections, but many follow the methods developed by Michael Fagan over 
20 years ago. 
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Reviews are an alternative to formal inspections as a process assurance method.  Informal design 
review methods are difficult to quantify since they are generally done at the discretion of the 
product author, do not follow a detailed process, and are not reported at the project level.  
Informal review is a valuable alternative if the more effective formal inspection is not used. 

Walkthroughs are meetings in which the author of the product acts as presenter to proceed 
through the material in a stepwise manner.  The objective is often raising and/or resolving design 
or implementation issues.  Walkthroughs tend to be informal and lacking in close procedural 
control. 

Audits 

A process assurance audit is performed to determine the level of adherence to the project plans 
and procedures.  Evaluation of the sufficiency or effectiveness of the procedures and plans is 
occasionally part of an audit, though normally the evaluation is performed when the procedures 
and plans are first produced.  This type of audit examines a sampling of records to determine if 
procedures are being followed correctly. 

Records can include formal products (e.g., official design document), informal development 
information, log files, tool output files, and even emails.  Configuration management and change 
control records are also often examined during a process assurance audit. 

Analyses 

Analyses are performed when required to evaluate an aspect of the system, a project artifact, or 
the impact of changes.  For complex electronics, the specific analyses will depend on the device, 
the level of criticality, safety implications, life cycle phase, and other factors.  An analysis can be 
as simple as a documented “expert review” or as complex as a computer simulation.  The method 
used in performing the analysis needs to be documented, as well as the results. 

6.2 IDENTIFYING COMPLEX ELECTRONICS 

This section explains how to recognize if a project is using complex electronics and how to 
determine if the programmable devices are simple versus complex. 

6.2.1 Simple versus Complex 

Simple electronics includes off-the-shelf integrated circuits from simple logic devices up to 
microprocessors.  While the software that runs on microprocessors is complex, the device itself 
can be considered simple because it is a) well tested by the manufacturer and b) not programmed 
at the hardware level by the end user. 

The dividing line between simple and complex electronics is not well defined, and has not been 
officially determined by NASA.  Table 11 gives some guidelines to help make the determination. 

Programmable devices used as part of a safety system or hazard control should be assumed to be 
complex.  To be considered simple, a very strong case should be made with sufficient analysis 
and documentation to justify the position. 
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Table 11:  Simple Complexity Guidelines 

Simple Off-the-shelf ICs 
Microprocessors 
PAL, GAL, PLA 
EPROM, EEPROM 

These devices are either tested by the 
manufacturer or so simple that all inputs and 
outputs can be verified. 

Gray area CPLD Depending on usage and size (gate count), CPLDs 
can be simple or complex.   

Complex FPGA 
System-on-Chip 
ASIC 

These devices are too complex to be 100% tested. 

Special 
Concerns 

Distributed systems Systems with one or more complex devices (or a 
complex electronic device and software) that jointly 
control a system or coordinate among themselves 
require assurance beyond the devices themselves.  
The interfaces and timing of communication are 
important to consider. 

Complex electronics as 
part of an off-the-shelf 
circuit board 

Sometimes an FPGA or CPLD will be part of an off-
the-shelf board.  Since the design of the device is 
probably not available, you cannot perform any 
analysis or indepth verification of the device.  If the 
device is not used for safety purposes, it can 
probably be considered simple. 

 

6.2.2 How to Determine if Complex Electronics are being used in a Project 

Here are some pointers to use when determining if the project includes complex electronics: 
 Review project documentation.  Look at the system concept, any overviews or 

descriptions, and system and subsystem requirements and design documents. 

 Talk with the project system engineer and/or system safety engineer.  The system 
engineer should be aware of any complex electronics.  System safety engineers should be 
aware of any complex electronics that are part of a hazard control or otherwise safety-
related. 

 Talk with the project electrical engineer(s).  These are the people who will develop the 
devices. 

6.2.3 What Next? 

If the project is using one or more complex electronic devices, the next step is to gather more 
information.  Find out: 

 What process is used for design of the devices? 

 What tools are being used to design/develop/program the devices? 

 Is configuration management (CM) used?  What about change management? 

 How will the devices be verified? 
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 How will quality assurance engineers be involved in verifying and assuring these 
devices? 

 What is the error handling philosophy in the design?  Are there ways that external signal 
problems (invalid voltages, missing signals, etc.) can cause problems with the device? 

 Are the devices safety-related?  Do they acquire or process any signals used in safety 
decisions (e.g., temperatures, voltages)? 

 Is the function of the device mission-critical?  Will failure seriously affect the ability of 
the system to carry out the mission? 

If one or more of the devices are safety-related, share that information with the project system 
safety engineer.  Safety-related complex electronics should be looked at by the system safety 
engineer in more depth. 

If you see deficiencies in one or more areas (e.g., configuration management), you can research 
alternatives and make suggestions to the project manager or engineers on how to implement or 
improve the process.  Configuration and change management are very important and often 
overlooked.  You also want to guide the project away from a “program/debug/reprogram” 
paradigm, similar to undisciplined software development. 

Be proactive.  Get to know the device designers.  Educate yourself on the devices, the tools used, 
and the design process.  Do some web surfing for common errors with the devices, and make 
sure the designers have avoided them.  Review the requirements for the device - are they clear 
and unambiguous?  See if you can observe a simulation or two.  Ask intelligent questions - ones 
that show that you are interested enough to have done some background work. 

6.3 PROCESS ASSURANCE ACTIVITIES 

Process assurance activities occur during all phases of a project life cycle.  This section describes 
activities that are appropriate for complex electronics for each phase of the life cycle.  Remember 
that there is currently no requirement for many of these activities, so implementing them on your 
project could require some negotiation.  However, this information will help you apply your 
quality assurance expertise more thoroughly to complex electronics. 

Quality assurance engineers need to possess sufficient domain knowledge to evaluate the 
completeness and correctness of complex electronics requirements and design.  They must have 
the ability to determine whether the design has incorporated all requirements accurately.  If you 
are not an electrical engineer, or do not have significant experience with complex electronics, 
you probably do not have that domain knowledge.  For some process activities, you may wish to 
find an expert (either in the assurance arena or in engineering) to help you or to independently 
perform an analysis or evaluation.  The most important aspect of assurance is evaluation by 
someone other than the designer, but not all evaluations have to be performed by the quality 
assurance engineer. 

As you perform assurance activities on complex electronics, keep in mind some quality criteria.  
These criteria will help you judge the status of the product or process. 

 Correctness.  The extent to which a device fulfills its specifications. 
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 Efficiency.  Use of resources; performance characteristics. 

 Flexibility.  Ease of making changes if required. 

 Security.  Protection of the device from unauthorized access. 

 Interoperability.  Effort required coupling the system to another system. 

 Maintainability.  Effort required locating and fixing a fault in the program within its 
operating environment. 

 Portability.  Effort required transferring a device or design (program) from one 
environment to another. 

 Reliability.  Ability not to fail, including in off-nominal environments. 

 Testability.  Ease of testing the device to ensure that it is error-free and meets its 
specification. 

6.3.1 Project Conception 

The initial stage of a project or system is the time when many decisions are made that will affect 
the project months or years down the road.  While the technical decisions are driven by the 
results of systems engineering trade-off studies, the assurance decisions are driven by a 
combination of: 

 Requirements and standards 

 What are the NASA, Center, and other quality assurance standards that the project 
must follow? 

 Project management support. 

 The level of assurance is directly proportional to the amount of support that project 
management supplies.  When quality assurance is perceived as a useful tool to help 
develop a functional system within the project constraints, quality assurance 
engineers are given adequate funds and personnel to do a thorough job.  If the project 
manager deems quality assurance an annoyance, then the ability of the quality 
assurance engineer to implement an effective program is hampered. 

 Effectiveness of the assurance organization 

 An assurance organization that has a track record of working with projects to develop 
tailored and effective assurance plans and processes will be more likely to gain 
project support in implementing new assurance activities.  Conversely, an 
organization that does not have a good working relationship with projects will make it 
much more difficult for the assigned quality assurance engineer to persuade the 
project to consider any additional assurance activities for complex electronics. 

 Knowledge and experience of the assurance professional 

 The assurance professional has to be proactive in implementing quality assurance 
activities, especially for new areas such as complex electronics.  If the quality 
assurance engineer lacks knowledge and experience, the necessary assurance 
infrastructure may not be put in place. 
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Quality assurance is involved in project planning activities through: 
 Creation of a Quality Assurance Plan that outlines the work that will be performed by the 

quality assurance engineer throughout the project life cycle. 

 Assessment of the project plans, including the management and development plans for 
electronics, for completeness, correctness, and other quality attributes. 

 Assurance that the project produces the required plans. 

The plans a project will produce depend on the NASA and Center requirements and the project 
complexity and safety-criticality.  The content of the plans often varies between projects, with 
one project combining several documents and others producing separate plans.  Do not get hung 
up about which plan is which, but review the project plans for how they will address complex 
electronics.  If they do not address the issues at all, try to encourage the project manager or the 
design engineer to at least informally document the information. 

Here are some areas the project plans should address regarding complex electronics: 
 What life cycle will be used to develop the complex electronics?  How will the complex 

electronics life cycle interface with the project life cycle?  In describing the life cycle, 
does the document discuss transition criteria between phases, and how to return to 
previous phases if problems are found? 

 Are there standards that apply to the complex electronics?  NASA currently has no 
defined standard. 

 What is the hardware design process? 

 What activities will be performed as part of the process? 

 How will the hardware design process work with supporting processes, such as 
verification and assurance? 

 Is the design method for complex electronics defined and described? 

 What design environment (e.g., tools) will be used?  What is the rationale for the 
selection? 

 If deviation from established plans becomes necessary, what is the process for doing this?  
For example, how will changes be approved by all interested parties? 

 How will the design for complex electronics and any associated data be included in the 
configuration management system? 

 What process is in place to review and approve any revisions to the design? 

 Are the plans completed before the life cycle phase in which they will be used?  Plans for 
configuration management should be finalized before development starts, for example. 

The Quality Assurance Plan should include activities for reviewing the requirements and design, 
witnessing or performing testing, and other product verification steps.  The plan should also 
include formal or informal audits to verify that the project is following the plans they defined.  If 
a project plan is just gathering dust, it is important to look for the reason.  Maybe the document 
is too high level.  Maybe things have changed enough that the document is out of phase with 
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project reality.  Whatever the reason, try to work with the project to fix the document problems 
so that the plans are useful and relevant. 

Risk management is an important tool that projects can use in reducing the probability or impact 
of risks.  Complex electronics has some similarities to software, including the fluidity of the 
requirements, interface problems with other elements of the system, integration issues (often a 
result of the interface problems), and the need to create a complex program within a defined 
period of time.  These types of issues are ideal for risk management mitigation. 

6.3.2 Requirements 

During the requirements development process, system requirements are allocated to various 
subsystems and parts, including complex electronics.  These requirements need to be 
documented (in a separate specification for complex electronics or as part of another 
requirements specification document). 

The process assurance activity is to review the requirements for the complex electronic devices 
and verify that they: 

 Include all requirements that are appropriate for the complex electronics (i.e., that the 
allocation was complete) 

 Identify any requirements that are safety-related 

 Identify design constraints for the complex electronics 

 Are clear, concise, and verifiable 

 Are traceable to a higher level document or are noted as derived requirements 

It is important that the requirements are as clear as possible, because many problems found later 
in system design can be traced back to ambiguous or incorrect requirements.  Requirements for 
complex electronics should be more than just a cut-and-paste from the system requirements 
specification.  They should be decomposed to the appropriate level of detail, and provide enough 
information that a designer can go off and create the device. 

Activities for the verification of requirements for complex electronics must be specified in the 
verification plan.  If a verification method cannot be determined, that indicates that the 
requirement is flawed and needs to be fixed. 

6.3.3 Design Entry 

During the design entry phase, the complex electronics functionality and structure are defined in 
a hardware description language (HDL).  The HDL “program” is actually a model of the 
complex device, and can be run (simulated) and tested.  This phase is when any problems with 
the requirements should be identified and the high-level functionality should be verified. 

Prior to the start of the design, several process assurance activities should be performed: 
 Tools.  Review selected tools for applicability to the design process.  Check the tool 

vendor web site and other sources for known tool defects or operational workarounds. 

 Design Process.  Make sure a disciplined design process is in place, and the design 
engineer is willing to follow it.  Negotiate as necessary. 
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 Configuration Management.  Make sure the HDL code and other design information is 
configuration managed.  The level of formality depends on status of design (e.g., 
informal version control prior to baseline, formal change control after baselining). 

 Design and Coding Standards.  Ensure that the design team is using a design and 
coding standard.  This standard will define the basic design philosophy and specify 
aspects of the HDL program structure.  Even if only one engineer is designing the device, 
a standard 1) helps ensure that the HDL program is understandable by others (and the 
design engineer, six months down the road) and 2) provides a way to capture and 
incorporate best practices in the design process. 

A design and coding standard should include: 
 Specific HDL coding features and methods that either should be used or should not be 

used. 

 Design “best practices”, either as guidelines or as requirements. 

 Naming conventions for modules, inputs, outputs, etc. 

 Commenting rules that define what types of information to include in comments.  One 
example would be to define a module header that includes comments on the module’s 
purpose and structure. 

 Readability rules may be covered under naming and commenting conventions.  But the 
standard should help guide the designer into creating HDL code that is readable by 
others. 

 Modularization guidelines that provide information on how to decompose the high level 
design into individual modules. 

Assessment of the HDL design can be performed in parallel with the design effort, with 
intermediate design elements being reviewed, if the project criticality warrants it.  Otherwise, the 
review is normally performed after at least a fairly stable design (if not baselined) is created. 

Process assurance activities post-HDL-design include: 
 Ensure that the design is reviewed by someone who has enough knowledge to make an 

expert assessment.  This can be another engineer, a quality assurance engineer, or even an 
outside expert.  Another set of eyes will help spot problem areas of the design.  This 
review could be part of a Formal Inspection or other peer review. 

 Review the design (behavioral and structural specification in HDL) against the 
requirements.  Are all requirements correctly and completely implemented? 

 Trace the requirements into the design elements.  The rigor of this tracing should be 
determined by the safety-criticality and mission-criticality of the device. 

 Identify any derived requirements that emerge from the design process.  Make sure the 
rationale for these requirements is captured. 

 Review the design against the design and coding standard. 

 Assess the design for unused functions. 
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 Assess the use of special pins on each device (e.g., mode pin on FPGA, JTAG pins, no-
connect pins) and verify that each is used properly. 

 Identify constraints (design, installation, operation) that could affect safety if not 
followed. 

 Assess the simulations that were performed.  Did they cover all the required 
functionality?  Were all modules exercised? 

 Verify that the processes defined in the project plans were followed. 

 Assure that any design trade-offs done for speed, size, etc., are documented. 

6.3.4 Design Synthesis 

During design synthesis, the higher-level designs are translated to a gate-level design, which can 
then be mapped to the logic blocks in a complex electronic device.  This step also optimizes the 
design to make the most efficient use of the target device.  It is during synthesis that timing and 
area constraints can be specified by the user. 

Process assurance activities at this phase are: 
 Verify that the design process, as defined in the project plans, was followed. 

 Verify that the tools specified in the previous phase are the ones that are being used. 

 Verify that the configuration management system is being used as defined in the project 
plans. 

Additional assurance activities require someone with expertise in complex electronics.  They can 
be performed by the quality assurance engineer or by an engineer independent of the project.  
Additional assurance activities are: 

 Evaluate the test bench that was created by the design engineer for adequate testing 
capability of the device design. 

 Review the constraints specified by the design engineer (as input to the synthesis process) 
for reasonableness. 

 Assess the simulations performed after design synthesis is completed.  Did the addition of 
timing information affect the outcomes of the simulations?  Did the simulations look at 
worst-case timing, including on incoming signals? 

6.3.5 Implementation 

During the implementation phase, the higher-level design is converted into a chip layout.  The 
implementation process uses the tools supplied by the device vendor to match the functions that 
were defined in the design to the available blocks, gates, and other logic elements on the chip. 

Automated tools perform much of the implementation process, so the assurance and safety 
engineers are usually not involved in any depth.  Some process assurance activities at this phase 
are: 

 Verify that the implementation process, as defined in the project plans, was followed. 
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 Verify that the tools specified in the project plans are the ones that are being used.  Note 
any discrepancies and the rationale for using a different tool. 

 Verify that the configuration management system is being used as defined in the project 
plans. 

 Ensure that timing simulations or static timing analyses were performed. 

 Verify that the simulations performed included out-of-range inputs, inputs that arrived in 
an incorrect order, and other “real world” problems that can be anticipated. 

 Verify that the device is programmed according to a defined process and that the 
programming is witnessed by appropriate personnel (usually quality assurance). 

 Verify that the interfaces to other parts were analyzed for input logic level thresholds and 
maximum input transition times. 

 If there is a state machine, verify that it was analyzed for: 

 Unused states and lock-up 

 Simultaneous assertion of flip-flop sets and clears 

 Reset conditions 

6.3.6 Testing 

Once the device is programmed, it should be tested with other components.  Initial testing may 
occur in a breadboard system, with final (acceptance) testing occurring in the real hardware 
system.  This in-circuit verification tests the functionality and timing of the design on the actual 
chip. 

The more common form of in-circuit tests is to manually run the complex electronics as part of a 
higher-level assembly to show that it meets all the specified requirements.  This subsystem or 
system level tests will show functionality at a black-box level, but will not provide a window 
into the internal functioning of the device. 

Process assurance activities for this phase include: 
 Verify the defined processes are in place and are being followed correctly. 

 Verify that the testing strategy has been documented in a plan and/or procedure, and that 
testing occurs according to the plan. 

 Verify that the planned tests will completely verify the requirements in all reasonably 
expected situations.  This includes verifying the functionality and performance in 
nominal situations and when other parts of the system have errors.  How gracefully does 
the device handle errors it may encounter?  How gracefully can it handle any internal 
faults? 

 Verify that the planned tests will exercise all modules or other divisions in the device.  
Not every level of testing has to exercise all modules, but each module should be tested at 
some level (device, circuit board, subsystem, or system). 
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 Verify the planned tests exercise the device as close as possible to the functionality in the 
sequence and operations that the system will perform on mission with nominal and off-
nominal conditions (i.e., test as you plan to operate). 

 Review the test plans and procedures to identify any areas where testing is weak.  You 
are looking for modules that are only minimally tested, requirements that are only 
verified under some circumstances, and other areas where additional testing may be 
helpful. 

 Witness tests (as agreed to in the project plans) and document any anomalies and 
problems. 

 Review the test results to verify that no unnoticed anomalies occurred.  Sometimes during 
testing many events are occurring and an anomaly unrelated to the aspect of the particular 
test may be missed. 

6.3.7 Operations and Maintenance 

Once the system is operational, the role of process assurance is not over.  While the original 
project assurance engineer may have moved on to another project, there should still be an 
assurance engineer maintaining a minimal role with the system. 

Process assurance activities during operations and maintenance include: 
 Review operational and maintenance procedures for inclusion of any workarounds or 

other information that was discovered during development and testing. 

 Support any failure review boards and help assess any problems that are identified during 
operations. 

 If the complex electronic device is to be reprogrammed, assess the impact of the changes 
on the device, the system, and operational procedures. 

6.3.8 Metrics 

During the development process it is important to know if you are developing a quality product.  
One way you do that is by collecting metrics during the various phases of the development cycle.  
A metric is defined as “a system of parameters or ways of quantitative and periodic assessment 
of a process that is to be measured and is usually specialized by the subject area.”  Metrics can be 
used to track trends, problems, productivity, and much more.  With complex electronics, metrics 
must cover both the hardware and software portions of the development cycle. 

There are two types of metrics used for measurement.  They are called primitive and derived.  
Primitives are items such as time, number of problems, or lines of code, the base item we use to 
make a decision.  A derived metric takes multiple primitives to determine a unit.  A good 
example from the software world is errors per lines of code (errors per KLoc).  The two 
primitives used in this measure are the number of software errors and the number of executable 
lines of code. 

Let’s look at some of the primitives available for measurement in the complex electronics 
development cycle, starting with the number of defects found.  This measure can be broken 
down into when and what type of defect is found.  When would specify the development phase 
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or review.  Defects could be categorized by type of defect.  Examples of these are interface, 
requirement, and logic or data type. 

6.3.9 Supporting Processes 

Configuration Management (CM) 

Configuration Management is, unfortunately, often not used for complex electronics design 
artifacts.  The final design is usually saved, but the intermediate development artifacts are under 
the control of the designer.  While formal configuration management might not be necessary 
until the design is finalized (baselined), some form of informal control (e.g., use of a version 
management system) is recommended.  Being able to revert to a previous version of the design is 
useful when problems are discovered during development.  Being able to recreate versions of the 
design might also be useful to help narrow down when a problem was introduced. 

Once the design is baselined, formal configuration management should be applied to the design.  
CM includes change control.  This means that a process is in place for any changes to be 
approved prior to the changes being implemented.  Often a Configuration Control Board or an 
engineering board is used to review and approve (or disallow) the changes.  Change control 
assures that: 

 Changes to one part of the system do not adversely affect other parts of the system. 

 The configuration of the device is always known (i.e., there are not unauthorized 
changes). 

 Everyone who may be affected by the change has a chance to evaluate the change for 
impacts to their area of concern. 

Reliability 

Most reliability studies look at the hardware failure rates for the devices in a system.  While 
failure of the actual device (e.g., FPGA) can be known, the failures related to design errors or 
unexpected interactions within the FPGA, once it is programmed, are not easy to determine.  
Most reliability evaluations ignore software for this very reason. 

While there is currently no good way to predictively assess the reliability of a complex electronic 
design, the fact that there may be design errors should be considered by the reliability engineer.  
At a minimum, the confidence in the resulting numbers (mean-time-to-failure, system reliability) 
is lowered. 

Maintenance and Maintainability 

If the device will potentially need to be maintained (including reprogramming updates), this 
issue needs to be considered early in the design of the complex electronics and its supporting 
circuitry.  Some areas to consider are: 

 Will the device architecture allow for the types of enhancements that can be foreseen? 

 Does the design specification provide the information that an engineer would need to 
understand how the product works? 

 Is the HDL code readable? 
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 Are comments liberal and informative? 

 Is the necessary physical infrastructure in place to allow reprogramming? 

 Is access to the reprogramming port, if one is used, available when the system is 
installed? 
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CHAPTER 7.   FUTURE TRENDS 

7.1 CHANGES IN COMPLEX ELECTRONICS DESIGN AND VERIFICATION 

Technology never stands still.  Within the realm of complex electronics, devices such as System-
on-Chip, FPGAs with embedded microprocessors, and reconfigurable computing all strain the 
traditional hardware-oriented design and verification approaches.  Increasing complexity in 
designs also make it harder for the designer to conceptualize the design.  Several new methods in 
design and verification of complex electronics will hopefully help improve verification of these 
devices. 

7.1.1 Hardware/software Codesign and Coverification 

Since complex electronics is increasingly being combined with software, codesign (and 
subsequently, coverification) of the hardware and software is a good idea.  Hardware/software 
codesign is the cooperative design of hardware and software, within a single chip or within a 
system.  One of the goals of codesign is to shorten the time-to-completion while reducing the 
design effort and costs of the designed products. 

In hardware-software codesign, designers consider trade-off in the way hardware and software 
components of a system work together to exhibit a specified behavior, given a set of performance 
goals and technology.  This trade-off between hardware and software illustrates the optimization 
aspect of the codesign problem.  Codesign is an interdisciplinary activity, bringing concepts and 
ideas from different disciplines together (e.g., system-level modeling, hardware design and 
software design). 

Current development methods for designing embedded systems and complex electronics require 
specification and design of the hardware and software as separate entities.  A specification, often 
incomplete, is developed and sent to the hardware and software engineers.  The hardware-
software partition is decided early on in the project life cycle and is adhered to as much as is 
possible, because any changes in this partition may necessitate extensive redesign.  Designers 
often strive to make everything fit in software, and off-load only some parts of the design to 
hardware to meet timing constraints. 

The codesign process starts with specifying the system behavior at the system level.  After this, 
the system specification is divided into a set of smaller pieces, so-called granules (e.g., basic 
blocks).  Trade-off studies are performed to determine the most effective way to partition the 
functionality into hardware and software.  The granules are mapped to hardware and software, 
resulting in sets of granules implemented on hardware (hardware parts) or software (software 
parts).  Once the mapping is done, the implementation-independent system specification is 
decomposed into hardware and software specifications. 

Hardware is synthesized from the given specification; the software specification is compiled for 
the chosen processor.  The result of this co-synthesis phase is a set of complex electronics and a 
set of assembler programs for the processors.  In a final co-simulation step, the complex 
electronics are simulated together with the processors executing their generated assembler 
programs.  The results are iterated until a sufficient system implementation has been found. 
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The coverification problem in system-level design includes different methods to detect errors at 
different abstraction levels.  Coverification methods include formal verification, simulation or 
emulation.  Formal verification formally proves either the equivalence of different design 
representations or specific properties (e.g., the absence of dead-lock conditions of the system 
specification). 

Simulation validates the functional correctness for a set of input stimuli.  In most cases, only a 
small set of all combinations of input stimuli can be simulated.  For this reason, simulation only 
ensures the correct behavior with a certain probability.  Simulation can be applied during 
different design steps including the co-simulation step after co-synthesis. 

To speed up the simulation time for simulating a partitioned hardware/software system, 
emulation is used.  Emulation systems couple the complex electronics (either the programmable 
devices or, for ASICs, a programmable equivalent) with processors on a board.  Therefore, 
emulators are the closest representation of real prototypes that is possible. 

7.1.2 System Modeling 

Hardware description languages (HDLs) allow you to model the system at various levels of 
abstraction.  However, they are still fairly “low level” abstractions, representing the hardware 
aspects of the design.  Several new modeling languages, and extensions to existing languages, 
allow higher-level modeling of the system. 

The purpose behind higher-level modeling is to: 
 Keep the design at a level of abstraction that human minds can grasp.  Complex designs 

make it difficult for a human to understand both the device and how it interacts with its 
environment. 

 Verify the design at a high level, and then allow tools to generate the low-level design. 

 Model the complex electronics as part of a larger system that includes software and 
possibly biological constructs. 

Researchers and industry are developing system modeling languages or language extensions for 
use in complex systems.  There are two parts to a system design language: the ability to express 
ideas in a natural language and a component that can translate the functions into working 
architectural components.  Here are two areas of language development that are being actively 
pursued: 

 Using C or C++ to model the system.  One product, SystemC, provides hardware-
oriented constructs within the context of C++ as a class library implemented in standard 
C++.  It can be used from initial concept to implementation in hardware and software.  
SystemC provides an interoperable modeling platform, which enables the development 
and exchange of very fast system-level C++ models.  It also provides a stable platform 
for development of system-level tools. 

 SystemVerilog is a new standard, enhancing Verilog so that it provides built-in support 
for a wide range of modern design and verification methodologies.  SystemVerilog is an 
extension to the Verilog language, which enables the modeling and verification of 
systems at a high level of abstraction.  It adds a significant set of language enhancements 
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on top of the Verilog 2001 standard, including features for high-level, abstract system 
modeling, test bench automation, and the integration of Verilog with the C programming 
language. 

 MATLAB and Simulink can be used to model systems.  MATLAB is a high-level 
technical computing language and interactive environment for algorithm development, 
data visualization, data analysis, and numerical computation.  Simulink is a platform for 
multi-domain simulation and model-based design of dynamic systems.  Simulink 
provides an interactive graphical environment and a customizable set of block libraries 
that let you accurately design, simulate, implement, and test time-varying systems, 
including control systems, signal processing, and communications. 

7.2 INTO THE NOT SO DISTANT FUTURE 

What kinds of new devices and concepts are being considered?  Below are a few of the new 
technologies being explored. 

7.2.1 In-field or reconfigurable SoC 

Most SoC designs use what is called a platform-based solution, where standard components like 
a microprocessor core make up a significant portion of the SoC.  Custom devices provide further 
functionality.  Some of those devices may be user-configurable (e.g., if a small FPGA or CPLD 
is part of the System-on-chip device), others may be designer-chosen only.  These types of SoCs 
are usually implemented as ASICs. 

A reconfigurable SoC provides the same kind of custom support except that the devices and 
peripherals are implemented using a reconfigurable matrix.  The software must set up the 
hardware before it can be used.  But from that point on, the platform-based SoC software and 
reconfigurable SoC software will be very similar, assuming that the microprocessor core is the 
same or similar and the functionality of the peripherals has the same characteristics. 

With reconfigurable SoC designs, the hardware functionality can be changed simply by altering 
the code that performs system initialization.  So, SoC could contain an analog-to-digital 
converter for one application, and then be reconfigured for a digital-to-analog converter, or even 
a totally different peripheral such as a network device, for another application.  Some elements 
of the reconfiguration can be performed at a later time (after the basic hardware is initialized), 
allowing software applications to reconfigure devices.  Applications that deal with multiple 
hardware codecs (e.g., streaming multimedia) or encryption methods, for example, could 
configure devices to the specific codec or encryption method being used at the time, then 
reconfigure for another codec or method when required for a different data stream. 

7.2.2 FPGA microprocessors/systems 

Some SoC devices are implemented entirely on programmable logic, in particular on FPGAs.  
Most reconfigurable SoCs fall into this category.  However, reconfigurable SoCs use a fixed 
microprocessor with reconfigurable peripheral devices.  What if you could change your 
microprocessor by just reprogramming the FPGA?  What if you could customize the 
microprocessor for your application, then change it when that application changes?  That is what 
the FPGA microprocessor systems offer. 
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FPGAs have proven themselves capable of handling a wide variety of tasks, from relatively 
simple control functions to more complex, algorithmic operations.  While the time and cost 
advantages over designing custom ASIC hardware for such functions is well accepted, the 
advantages of using FPGAs over traditional processors and DSPs for software-oriented 
applications have been less clear-cut.  This is due in large part to a long-standing disconnect 
between hardware and software development tools and disciplines. 

Recent advances in software-oriented design tools for FPGAs, however, have combined with the 
ongoing increase in device densities to create a new environment for software developers, one in 
which the FPGA can be viewed as one possible target (along with traditional and non-traditional 
processor architectures) for a software compiler.  Tools now available can help software 
engineers make use of FPGA platforms, as well as help these developers take advantage of the 
high level of algorithmic parallelism that is available when traditional processors (or processor 
cores) and FPGAs are combined in a single target platform. 

FPGA-based computing platforms, particularly those with embedded “soft” microprocessors, 
have the potential to implement extreme high-performance applications without the upfront risk 
of creating custom fixed function hardware.  Further, by using the latest generation of 
hardware/software co-design tools it is now possible to use multiple graphical, software-oriented 
design methods as part of the FPGA design process. 

7.2.3 Reconfigurable computing 

Someday, perhaps in the not-too-distant future, the computer at your desk may contain a typical 
microprocessor along with an array of reconfigurable, reprogrammable devices (FPGAs or their 
successors).  Or, the microprocessor may be totally replaced by the FPGAs.  As a user, the only 
thing you’ll note is that your software runs faster, allowing you to get your work done more 
quickly. 

Typical computer systems use a single microprocessor that executes instructions sequentially.  
They are adaptable and configurable - you can write any kind of operating system or run any sort 
of application on a microprocessor.  However, these systems trade speed for that adaptability. 

If you have a fixed set of applications and really need more processing speed, you want an ASIC 
designed to meet your needs.  While you can gain significant improvement in speed, you lose the 
ability to change the processor/ASIC uses outside of a narrow range of applications.  The ASIC 
speed increase over general-purpose microprocessors comes from a combination of optimization 
for the specific purpose and the ability to perform processes in parallel. 

What if you want speed and adaptability?  To gain speed, you need to move from the serial 
processing paradigm to parallel processing.  One way to do this is to use multiple processors, 
each performing operations in parallel.  Another way is through reconfigurable computing.  Both 
of these methods keep the adaptability component, allowing the user, through software, to run a 
wide variety of applications. 

To have reconfigurable computing (RC), you need to have hardware that can be reconfigured to 
implement specific functionality.  RC systems contain programmable hardware and may be 
combined with traditional microprocessors in order to take advantage of the strengths of each 
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device.  RC has been used in applications ranging from embedded systems to high performance 
computing. 

Reconfigurable computing uses in-situ reconfigurable FPGAs as computing devices to accelerate 
operations which otherwise would be performed by software.  The FPGA can be programmed 
with a digital circuit that implements the function to be performed, such as a fast square root 
operation.  The processor can then access this function, as if it were in its own instruction set.  
When the processor needs another function, such as multiplying two numbers, the FPGA can be 
reprogrammed for that function. 

To make this all work, the FPGA must be capable of being reconfigured quickly and allow only 
parts of the device to be reprogrammed.  Reconfiguration has to be fast, or you quickly eat up the 
speed advantage you gain from moving the functions from the microprocessor to dedicated 
hardware.  You would also lose too much time if the FPGA had to be entirely reprogrammed 
when you just want to change part of it.  Fortunately, modern FPGAs are up to the challenge. 

Reconfigurable computers already exist commercially.  Early reconfigurable computers were 
expensive complicated monolithic FPGA arrays, but most modern commercial and research 
systems have evolved into relatively less expensive workstation accelerators.  Research efforts in 
academic institutions are considering the establishment and management of parallel 
reconfigurable computing clusters and high-throughput networks of reconfigurable computers 
(NORCs).  All these individual efforts are creating a new direction - reconfigurable 
supercomputing. 

7.3 NASA ASSURANCE CHANGES 

Currently, within NASA, complex electronics are treated as hardware devices.  The design of 
complex electronics may be reviewed by quality assurance engineers, the assembly into a board 
or system is witnessed and/or verified by quality assurance, and the final resulting electronic 
device is tested.  However, the complex nature of these devices requires additional assurance 
effort beyond that given to an off-the-shelf component.  Hardware quality assurance personnel 
may not be fully cognizant of the functions, potential problems, and issues with these devices. 

At NASA Headquarters, this assurance problem is being discussed and debated.  What types of 
assurance activities should be applied to complex electronics?  Who should be involved in the 
assurance of these devices?  What competencies are necessary to provide adequate assurance of 
complex electronic devices? 

The Federal Aviation Administration (FAA) faced similar concerns several years ago.  They 
discovered that software functions were being implemented in FPGAs to avoid having to follow 
the FAA software assurance standard (DO-178B).  The FAA struggled with the problem and 
finally came up with a standard for Complex Electronic Hardware (CEH) that is similar to the 
FAA software assurance standard.  CEH includes the complex electronic devices discussed in 
this handbook and some additional devices.  The resulting standard, DO-254, “Design Assurance 
Guidance for Airborne Electronic Hardware”, provides guidelines on the use of process 
assurance for complex electronic hardware. 

NASA is reviewing the FAA approach of implementing process assurance.  Software is a very 
complex entity that cannot be fully tested.  In the software world, process assurance (evaluating 
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how the product is built) is used to increase confidence in the resulting program.  The same 
philosophy can be applied to complex electronics.  If you cannot verify by testing every possible 
combination of inputs, decisions, etc., then knowing that you built the device according to well-
defined standards gives additional confidence in its quality. 

Process assurance will look at all life cycle stages of complex electronics development, from 
requirements to operations.  Process assurance for complex electronics is very similar to the 
process part of software assurance, where we verify that the software development process was 
planned and the plan was followed, where requirements are reviewed and evaluated, the software 
design is evaluated against the requirements, code may be inspected or reviewed, and finally the 
resulting software is verified against the requirements.  For hardware, the same types of activities 
are performed. 

As a quality assurance engineer, you may be wondering what your role may be in the future.  
Since quality assurance encompasses process assurance, quality assurance engineers are well 
versed in the ideas and concepts.  What is lacking is the knowledge to assess complex 
electronics.  In order to effectively carry out assurance duties for complex electronic hardware, a 
quality assurance engineer must understand 1) the hardware itself, 2) the process and language 
used to design the device and 3) how and when to apply software-style assurance techniques to 
the device. 

This handbook is one step in educating NASA software and quality assurance and system safety 
engineers on the design and verification of complex electronics.  By itself, this handbook will not 
make you an expert able to perform assurance of the devices.  The goal of this handbook is to 
present you with a broad understanding of complex electronics and the benefits and 
drawbacks/issues that need to be discussed and understood by the whole project team.  In 
addition, this handbook was designed to provide you with the knowledge you need to better 
apply quality product and process assurance to these devices. 
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APPENDIX A   EXAMPLES 
A.1   CPLD 

Device name: Complex Programmable Logic Device (CPLD) 

 

Figure A-1 CPLD 

Description: 

A CPLD contains a set of simpler Programmable Logic Device (PLD) blocks whose inputs and 
outputs are connected together by a global interconnection matrix.  So a CPLD has two levels of 
programmability: each PLD block can be programmed, and then the interconnections between 
the PLDs can be programmed.  A key feature of the CPLD architecture is the arrangement of 
logic cells on the periphery of a central shared routing resource.  CPLDs are equivalent to about 
50 typical PLD devices, and can replace thousands, or even hundreds of thousands, of logic 
gates. 

Programming and Reprogramming 

CPLDs vary in how they can be programmed or reprogrammed, depending on their underlying 
structure.  The three basic types of CPLDs are: 

 Fuse or anti-fuse.  These CPLDs are programmed by passing a large current through the 
connections (fuses).  The current “blows” the fuse to break a connection.  The CPLDs are 
one-time programmable because you cannot rewire them internally once the fuses are 
blown.  Programming occurs in a special device external to the circuit board the CPLD 
will be placed on. 

 EPROM or EEPROM.  In these CPLDs, the interconnections are made with transistors 
that are opened or closed by storing a charge on their gate electrodes using a high-voltage 
pulse.  For EPROM-like CPLDs, you erase the CPLD and then place it in a special 
programmer socket and reprogram it.  Reprogramming is not possible once the chip is 
soldered to its circuit board.  EEPROM-like CPLDs may be reprogrammable on the 
circuit board, if special circuitry is included. 

 SRAM or Flash.  Static RAM (SRAM) or Flash can be used to control the transistors for 
each interconnection.  Each memory bit controls the interconnect switches through its 
value.  When a bit is set to ‘1,’ the switch is closed, and the logic elements are connected.  
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A ‘0’ opens the switch.  CPLDs built using RAM/Flash switches can be reprogrammed 
without removing them from the circuit board and are in-circuit reconfigurable or in-
circuit programmable. 

To figure out what switches to open or close to implement your logic design, there are tools 
available that take a logic design and output a binary file which configures the switches in a 
CPLD. 

Applications: 

CPLDs are used in a wide variety of applications from cell phones to spacecraft.  They are often 
used as “glue logic” to connect various parts of a design, massage and process data, or to 
translate data from one protocol to another.  CPLDs are great for: 

 high speed operations 

 interface controllers (bus, memory, Flash) 

 interface bridging 

 I/O expansion 

 device configuration 

 power-up sequencing 

 microprocessor support logic 

 glue logic 

 implementing small “soft” microcontrollers (e.g., 8-bit) 

They are used as support chips in most modern electronics, including: 
 Cell phones 

 PDAs 

 Digital cameras 

 Communications hardware 

 GPS 

CPLDs come in a variety of density, speed, and package options.  Handheld applications tend to 
use lower density devices, because they have less need for complex logic, require low power, 
and try to minimize cost per unit.  When capability is more important than power usage, higher 
density CPLDs are a better choice. 

Often a logic design could be implemented in either a CPLD or an FPGA.  CPLDs are chosen 
when predictable timing performance is required.  CPLDs have fewer routing matrices than 
FPGAs.  Since each routing matrix adds a little delay to the signal, fewer routings translates to 
faster signal transit.  While CPLD density is less than most FPGAs, high end CPLDs will have 
same density as low end FPGAs.  Performance of CPLDs is usually better than FPGAs, though it 
depends on the vendor, size (number of cells), speed, and other factors. 
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Real-world Examples: 

Here are some examples of CPLDs used in a variety of products. 

 

MicroDosimeter Instrument (MIDN) 

MIDN was a space payload flight tested a compact, low powered, and portable solid-state micro 
dosimeter.  MIDN collected quantitative information on the dose and dose distribution of energy 
deposited in silicon cells that are tissue-sized.  By inference, this data could show what the dosage would 
be in living tissue. 

CPLDs were used in MIDN for command and data handling.  This payload was part of the MidSTAR-1 
(Midshipman Space Technology Applications Research) satellite which was in operation from 2007-
2009. 
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Fluids and Combustion Facility (FCF)  

 

The Fluids and Combustion Facility (FCF), a permanent modular, multi-user facility to 
accommodate microgravity science experiments onboard the International Space Station (ISS) 
U.S.  Laboratory Module, was first activated in 2009.  FCF uses the Fluids Integration Rack 
(FIR) and the Combustion Integration Rack (CIR) to support research in fluid physics and 
combustion science. The FIR will permit a wide range of fluid investigations from microscopic 
imaging to particle tracking. CIR experiments look at how solid, liquid, and gaseous fuels burn 
in microgravity, fire prevention and suppression, pollutant and particulate formation, and 
combustion efficiency. 

CPLDs are used within FCF to translate data from a digital camera to a high-speed fiber 
interface.  When the data is received, two other CPLDs reformat the incoming data to what is 
required by a Digital Signal Processor (DSP). 
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A.2   FPGA 
Device name: Field Programmable Gate Array (FPGA) 

 

Figure A-2 FGPA 

Description: 

A FPGA is a collection of simple, configurable logic blocks arranged in an array with 
interspersed switches that can rearrange the interconnections between the logic blocks.  Each 
logic block is individually programmed to perform a logic function (such as AND, OR, XOR, 
etc.) and then the switches are programmed to connect the blocks so that the complete logic 
functions are implemented. 

The interconnections for the logic blocks are programmable switches.  FPGAs may use 
EEPROM, SRAM, antifuse, or Flash technology to store the programming.  In most larger 
FPGAs, the configuration is volatile and must be re-loaded into the device whenever power is 
applied or different functionality is required. 

Initially, FPGAs had only local and global routing resources (i.e., a logic block could only 
connect to adjacent logic blocks or to global networks).  Newer FPGAs have multilevel routing 
hierarchies, so logic blocks can connect to different levels.  Fortunately, the design software 
takes care of these complex issues. 

Newer FPGAs are being developed that contain fixed functionality, as well as traditional 
programmable logic.  FPGAs may contain a FIFO, arithmetic functions, memory, chip-to-chip 
transceivers, digital signal processor (DSP), or even an entire bus interface or microprocessor 
core.  FPGAs with fixed functionality are cousins to the SoC devices that included 
programmable logic as part of their design. 
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SRAM FPGAs 

SRAM, or static RAM, is a volatile type of memory.  The contents of the memory are lost 
whenever the power is switched off.  Static RAM differs from the dynamic RAM used in PCs in 
that memory refresh of the RAM is not required.  SRAM-based programmable logic devices, 
such as FPGAs, have to be programmed every time the chip is switched on.  This is usually done 
automatically by another part of the system. 

Most SRAM-based FPGAs use a master mode, where they read the configuration information 
from non-volatile memory, such as a serial or parallel EPROM or flash memory.  The FPGAs 
can also be configured via an external source in slave mode.  The FPGA accepts a serial or 
parallel data stream that represents the configuration data.  The source of the data can be a 
processor, computer, or an FPGA that is acting as a master.  Using this technique, it is possible 
for several FPGAs to be programmed from a single memory.  A master FPGA is wired to a daisy 
chain of slave FPGAs.  When the master FPGA has been programmed, it will keep reading the 
data from the memory and pass it on to the slave devices until all of the FPGAs are configured. 

Antifuse FPGAs 

A fuse is a special part of the programmable chip that is normally closed (connected) until an 
electrical current breaks that connection.  Antifuses, unlike traditional fuses, are open until a 
voltage is applied to close (complete) the circuit path.  Once programmed closed, the connection 
cannot be reprogrammed to open.  Programmable logic that uses fuses or antifuses are “program 
once” chips. 

Antifuse FPGAs are best used when you do not want to have to reconfigure your chip every time 
power is applied (e.g., if you need a quick power-on time).  They are also useful in environments 
where SRAM would have problems (e.g., high altitude or outer space). 

Flash FPGAs 

Flash memory is non-volatile, which means that it retains its contents even when the power is 
switched off.  It can be erased and reprogrammed as required.  This makes it useful for 
programmable logic device memory.  Flash-based devices combine the best of both worlds - 
maintaining configuration when not powered, but also allowing reprogramming when desired.  
Flash-based programmable devices are essentially immune to neutron radiation (generated when 
cosmic rays interact with the atmosphere) and are resistant to other high-energy particles. 

Software Engineers and FPGAs 

What if a software engineer could create a regular software application that could run on an 
FPGA?  Design tools for FPGAs are moving quickly in this direction.  In this new environment 
for software developers, the FPGA can be viewed as one possible target (along with traditional 
and non-traditional processor architectures) for a software compiler.  With currently available 
tools, the software engineer can make use of FPGA platforms, as well as take advantage of the 
high level of algorithmic parallelism that is available when traditional processors (or processor 
cores) and FPGAs are combined in a single target platform. 

FPGA-based computing platforms, particularly those with embedded “soft” microprocessors, 
have the potential to implement extreme high-performance applications.  With the latest 
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generation of hardware/software codesign tools it is now possible to use multiple graphical, 
software-oriented design methods as part of the FPGA design process. 

Radiation and FPGAs 

NASA projects typically deal with environments more extreme than an office or laboratory.  
Spacecraft and high-altitude aircraft are bombarded with radiation.  Shock and vibration, 
electromagnetic interference, and thermal issues are common problems when designing NASA 
systems. 

Unfortunately, FPGAs are mostly just big RAM devices, and most of that RAM is in the 
configuration circuitry.  An upset event in the routing can quietly alter the logical 
interconnections, and a problem in a lookup table (LUT) can alter the functional behavior of a 
design. 

SRAM FPGAs are susceptible to ionizing radiation, including the neutron radiation experienced 
at high altitudes.  SRAM FPGA designed for high-radiation environments typically use periodic 
read-back and verification of the configuration or frequent reconfiguration of the chip to a known 
good state.  Because SRAM devices are vulnerable, they are used more in payload applications, 
where some level of failure can be tolerated and overcome, than in the more critical systems that 
control spacecraft flight operations. 

While antifuse FPGAs lag behind the more programmable versions in size (gate density), 
versatility and market share, they are very useful in space applications.  Radiation tolerant 
FPGAs use the antifuse technology, which provides immunity to radiation effects as well as low 
power, single-chip solutions that do not require configuration circuitry. 

Flash-based FPGAs provide radiation tolerance along with reprogrammability.  Like antifuse 
FPGAs, they are immune to upsets caused by most radiation.  Like SRAM FPGAs, they can be 
reprogrammed in-circuit.  Radiation studies of flash-based FPGAs are still ongoing. 

While high-profile projects like the Mars rovers showcase the use of programmable logic in 
space, the majority of space-bound FPGAs are included in commercial and military satellites.  
FPGAs are frequently used in satellite functions such as guidance, station-keeping, and 
telemetry. 

Applications 

FPGAs had an initial niche as prototypes for ASIC.  Because ASICs require a long lead time 
from design to implementation, and it can be very expensive to correct ASIC design errors, 
FPGAs were used to try out the designs.  Errors detected in the design could be corrected, the 
FPGA reprogrammed, and testing of the design could continue.  The process is not without 
problems, though.  ASIC designs had to be created using ASIC synthesis tools, then a separate 
FPGA tool is used to implement the ASIC prototype in an FPGA.  Switching from one synthesis 
tool to another requires changing code and scripts, which is time-consuming, and increases the 
potential for introducing errors into the prototype that do not accurately reflect the functionality 
of the ASIC design.  FPGAs are often slower than ASICs, which prevents timing problems from 
being accurately diagnosed.  Despite the problems, however, FPGAs are still used to prototype 
ASICs - because the cost of a failed ASIC can be quite expensive. 
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FPGAs have gained rapid acceptance and growth over the past decade because they can be 
applied to a very wide range of applications.  Some typical applications are: 

 random logic 

 integrating multiple CPLDs 

 device controllers 

 bus controllers 

 communication encoding and filtering 

 small to medium sized systems with SRAM blocks 

More intensive applications include: 
 Digital signal processing 

 Complex custom applications 

 Consumer electronics 

 Software radio 

 Cryptographic and security devices 

Reconfigurable or adaptive computing is a cutting-edge application for FPGAs.  Instead of a 
traditional microprocessor that executes software, FPGAs are reprogrammed to perform the 
necessary calculations or operations. 

NASA (and other) Examples: 

The Mars Exploration Rovers (MERs), Spirit and Opportunity, garnered the world’s attention as 
they rolled out onto the surface of Mars.  Hidden inside the rovers and landers are FPGAs, doing 
their job in a harsh environment.  FPGAs are used in pyrotechnics devices for landing, as well as 
in the arm, cameras, steering, antenna gimbals, and wheel control systems on the Mars rover 
missions. 

Here are some other space and science projects that use FPGAs: 

 

Cassini  

 

There are FPGAs orbiting Saturn on the 
Cassini spacecraft, launched in 1997.  
Cassini has completed its primary mission 
and its first extended mission and is now on 
its second extended mission, through 2017.  
FPGAs are used in many instruments on 
Cassini, including the Visual and Infrared 
Mapping Spectrometer (VIMS). 
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Extreme Ultraviolet Imager (EUV)  

FPGAs controlled parts of the EUV 
instrument on the IMAGE (Imager for 
Magnetopause-to-Aurora Global 
Exploration) satellite, part of NASA’s 
MIDEX program.  IMAGE was launched in 
2000 on a two-year mission, but continued to 
provide data into 2005.  FPGAs controlled 
the sensors and read out, formatted, and 
stored the data. 

Optus C1  

Radiation tolerant FPGAs have been 
deployed on board Optus C1, the largest 
hybrid commercial and defense 
communications satellite ever launched.  The 
communications satellite was launched in 
2003 and is still operational. 

 
 A prototype multi-directional muon detector, operating in Sao Martinho, Brazil, was 

upgraded and extended, using FPGAs.  The FPGAs allow a more complicated and 
advanced logical circuit to be designed at a reduced cost.  The upgraded detector will be 
able to determine the incident direction of every single muon detected and record the 
count rates in the total 121 incident directions.  The detector is part of a network used to 
forecast geomagnetic storms. 

 NASA’s Jet Propulsion Laboratory has developed a lossless image-compression 
algorithm that can be implemented entirely in an FPGA plus a small random-access 
memory chip. 

Other missions that include FPGAs: 
 Civilian/Scientific exploration: 

 Deep Space 1 

 Mars Pathfinder, Surveyor, Express, Climate Orbiter 
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 Lunar Prospector 

 SIRTF (Space Infrared Telescope Facility, renamed the Spitzer Space Telescope) 

 TDRS (Tracking and Data Relay Satellite) 

 Hubble Space Telescope 

 GOES (Geostationary Operational Environmental Satellite) 

 International Missions 

 International Space Station 

 Chandra 

 Rosetta 

 SOHO (Solar and Heliospheric Observatory) 

 Commercial Satellites 

 Telstar 

 PanAm Sat 

 Intelstat IX 

 Globalstar 

 Orbview 

 Military Satellites 

 Clementine 

 HESSI (High Energy Solar Spectroscopic Imager) 

 Mighty Sat 

 SBIRS-High (-Low) (Space Based Infrared System) 

 Launch Vehicles 

 Ariane 

 Atlas 

 Delta 

 EELV (evolved expendable launch vehicle) 

 SeaLaunch 
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A.3   ASIC 

Device name: Application Specific Integrated Circuit 
(ASIC) 

 

Figure A-3 ASIC 

Description: 

An ASIC is an integrated circuit designed to perform a particular function by defining the 
interconnection of a set of basic circuit building blocks drawn from a library provided by the 
circuit manufacturer.  They are built by connecting existing circuit building blocks in new ways.  
Since the building blocks already exist in a library, it is much easier to produce a new ASIC than 
to design a new chip from scratch. 

ASICs are custom-designed integrated circuits, but they are not programmable by the user.  They 
are manufactured (usually in large quantities) by vendors according to the design provided by the 
customer.  If you find a problem with an ASIC after it is produced, the only option is to 
remanufacture (re-spin) the chip with a corrected device.  To avoid costly mistakes, FPGAs are 
often used to check out and debug the ASIC design prior to submittal to the manufacturer. 

While most integrated circuits (ICs) could be considered “application-specific,” because they 
have a defined purpose, off-the-shelf parts are not really ASICs.  They are not designed by the 
user/customer to incorporate just the required functionality.  Examples of ICs that are not ASICs 
include standard parts such as memory chips (ROMs, DRAM, and SRAM), microprocessors, and 
all the miscellaneous chips that are used in modern electronics (FIFOs, logic chips, drivers, clock 
chips, switches, etc.).  Now, if a chip has been designed specifically for a talking toy, a cell 
phone, or a satellite, it is an ASIC.  As a general rule, if you can find it in a data book, then it is 
probably not an ASIC. 
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Integrated circuits are made on a thin (a few hundred microns thick), circular silicon wafer, with 
each wafer holding hundreds of die.  The transistors and wiring are made from many layers built 
on top of one another.  Each successive layer has a pattern that is defined using a mask similar to 
a glass photographic slide.  The first layers define the transistors, and the last layers define the 
metal wires between the transistors (the interconnections). 

ASICs come in two basic varieties, full-custom and semi-custom, which consist of two sub-
types: cell-based and gate-array.  Each variety or type of ASIC has strengths and weaknesses.  A 
microprocessor is an example of a full-custom ASIC, where each micron on the silicon is 
customized to give exactly what is needed.  Semi-custom ASICs have pre-designed elements and 
customizable portions. 

A full-custom ASIC allows customization of some (and possibly all) logic cells and all mask 
layers.  Customizing all of the ASIC features in this way allows designers to include analog 
circuits, optimized memory cells, or mechanical structures on an IC, for example.  Full-custom 
ASICs are the most expensive to design and manufacture.  The manufacturing lead time (how 
long it takes to make an ASIC once the design is completed) is typically eight weeks. 

Semi-custom ASICs have all of the logic cells pre-designed and some (possibly all) of the mask 
layers are customized.  Designers use pre-designed cells from a cell library, provided by the 
vendor or a third party.  These pre-designed units are usually referred to as IP (Intellectual 
Property).  Semi-custom ASICs are either standard cell-based ASICs or gate-array-based ASICs. 

A cell-based ASIC uses pre-designed logic cells (e.g., AND gates, OR gates, multiplexers, and 
flip-flops) known as standard cells.  The standard-cell areas (also called flexible blocks) are built 
of rows of standard cells like a wall built of bricks.  The standard-cell areas may be used in 
combination with larger pre-designed cells, such as microcontrollers, known as megacells.  
Megacells are also called megafunctions, full-custom blocks, system-level macros (SLMs), fixed 
blocks, cores, or Functional Standard Blocks (FSBs). 

The ASIC designer defines only the placement of the standard cells and interconnect in a cell-
based ASIC.  However, the standard cells can be placed anywhere on the silicon; this means that 
all the mask layers are customized and are unique to a particular customer.  The advantage of 
cell-based ASIC is that designers save time, money, and reduce risk by using a pre-designed, 
pre-tested, and pre-characterized standard-cell library.  In addition each standard cell can be 
optimized individually. 

If you were to look through a low-powered microscope 
at a cell-based ASIC die, you would see something 
similar to this figure.  This ASIC has a single standard-
cell area (a flexible block) together with four fixed 
blocks.  The small squares around the edge of the die 
are bonding pads that are connected to the pins of the 
ASIC package. 

Figure A-4 ASIC Die 
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In gate-array-based ASICs, the transistors are predefined on the silicon wafer.  This predefined 
pattern of transistors on a gate array is called the base array, and the smallest element that is 
replicated to make the base array is called the base cell.  Only the top few layers of metal, which 
define the interconnect between transistors, are defined by the designer using custom masks. 

The designer chooses from a gate-array library of pre-designed and pre-characterized logic cells 
or macros.  The reason for this is that the base-cell layout is the same for each logic cell, and 
only the interconnect (inside cells and between cells) is customized.  Gate-array ASICs can be 
prefabricated up to a point and stored.  At a later time, the final customization steps can be 
performed to complete the ASIC.  This reduces the manufacturing time to only a few days or at 
most a couple of weeks. 

ASIC Cell Libraries 

The cell library is the key part of ASIC design.  Cell libraries can be provided by the ASIC 
vendor, procured from a third-party library vendor, or custom-built.  The first choice, using an 
ASIC-vendor library, requires you to use a set of design tools approved by the ASIC vendor to 
enter and simulate your design.  An ASIC vendor library is normally a phantom library - the cells 
are empty boxes, or phantoms, but contain enough information for layout.  After you complete 
layout you hand off a netlist to the ASIC vendor, who fills in the empty boxes (phantom 
instantiation) before manufacturing your chip. 

The second and third choices require you to make a buy-or-build decision.  If you complete an 
ASIC design using a cell library that you bought, you also own the masks (the tooling) that are 
used to manufacture your ASIC.  This is called customer-owned tooling (COT, pronounced “see-
oh-tee”).  A library vendor normally develops a cell library using information about a process 
supplied by an ASIC foundry.  An ASIC foundry (in contrast to an ASIC vendor) only provides 
manufacturing, with no design help.  If the cell library meets the foundry specifications, it is 
considered to be a qualified cell library.  These cell libraries are normally expensive (possibly 
several hundred thousand dollars), but if a library is qualified at several foundries this allows you 
to shop around for the most attractive terms.  This means that buying an expensive library can be 
cheaper in the long run than the other solutions for high-volume production. 

The third choice is to develop a cell library in-house.  Many large computer and electronics 
companies make this choice.  Most of the cell libraries designed today are still developed in-
house despite the fact that the process of library development is complex and very expensive. 

However created, each cell in an ASIC cell library must contain the following: 
 A physical layout 

 A behavioral model 

 A Verilog/VHDL model 

 A detailed timing model 

 A test strategy 

 A circuit schematic 

 A cell icon 
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 A wire-load model 

 A routing model 

Applications: 

ASICs are used widely in many types of electronics devices.  Any time there are a large number 
of devices manufactured that require specialized operation, you will probably find an ASIC 
inside. 

ASICs Application Examples: 
 Battery management for household appliances 

 Low noise audio circuit 

 Analog Integrated Circuit for industrial environment 

 Sensitive photo transistors and opto-sensors 

 DC-DC converters from 0.9V supply voltage 

 Control circuit for cycle rear light 

 120V Linear Regulator 

 Interface circuit for a bar code reader 

 Control and evaluation circuit for motion detectors 

 Timer electronics 

 Interface and signal processing electronics for sensors (light, vibration and magnetic 
field) 

 Control circuit for mobile phones 

 Automotive control functions 

 PDAs. 

NASA Examples: 

ASICs can provide several features that are especially important in spacecraft and instruments, 
such as: 

 Customized electronics 

 Smaller footprint 

 Less weight 

 Hard-coded (radiation resistant) 

The smaller footprint on the circuit board and reduced weight are the result of including multiple 
functions in a single chip, rather than having to use many individual integrated circuit chips. 
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Cassini 

 
See section A.2 also.  The Cassini spacecraft is a complicated system, with 22,000 wire 
connections and nearly nine miles of cabling.  The main on-board computer uses very high-
speed ICs and advanced, radiation-hardened ASICs.  Each ASIC replaces one hundred or 
more traditional chips, allowing the development of a data system for Cassini that is ten 
times more efficient than earlier spacecraft designs (e.g., Galileo and Magellan), but at less 
than one-third the mass and volume.  Mars Pathfinder and Near Earth Asteroid Rendezvous 
(NEAR) both used these chips directly off the Cassini production line. 

The Cassini program also created an advanced solid-state power switch that eliminates the 
rapid fluctuations (called transients) usually found in circuits utilizing conventional power 
switches.  This power switch combined the switching attributes of the Metal-Oxide 
Semiconductor Field-Effect Transistor (MOS FET) with an ASIC design.  This ASIC results 
in significantly improved component lifetime and efficiency and is widely applicable to both 
industrial and consumer electric and electronic products. 

 

Swift 

 
Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-
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ray burst (GRB) science and launched in 2004.  Its three instruments work together to 
observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet, and optical wavebands.  
The main mission objectives for Swift are to: 

 Determine the origin of gamma-ray bursts 

 Classify gamma-ray bursts and search for new types 

 Determine how the blastwave evolves and interacts with the surroundings 

 Use gamma-ray bursts to study the early universe 

 Perform the first sensitive hard X-ray survey of the sky 

One instrument on Swift is the Burst Alert Telescope (BAT), a large coded aperture 
instrument with a wide field-of-view (FOV) that provides the gamma-ray burst triggers.  
BAT can observe and locate hundreds of bursts per year to better than 4 arc minutes 
accuracy.  BAT contains thousands of detector elements that are assembled into 8 x 16 
arrays, each connected to 128-channel readout ASICs. 

Gamma-ray Large 
Area Space Telescope 

(GLAST)  
[Renamed the Fermi 
Gamma Ray Space 

telescope]  

The Fermi Gamma-ray Space Telescope, launched in 2008, is an international and multi-
agency space mission to study the cosmos in the energy range 10 keV - 300 GeV.  Fermi has
an imaging gamma-ray telescope vastly more capable than instruments flown previously, as 
well as a secondary instrument to augment the study of gamma-ray bursts.  The main 
instrument, the Large Area Telescope (LAT), has superior area, angular resolution, and field 
of view over previous instruments.  The LAT tracker subsystem was focused on 
compactness, minimum wiring, and redundancy.  The subsystem was implemented using 
two ASICs. 

SonoSite’s TITAN™ system took part in a 10-day underwater experiment with NASA Extreme 
Environment Mission Operations (NEEMO) 7 Mission.  Aquanauts used the laptop-sized 
ultrasound system to scan each other in simulated emergency situations and transmit live images 
to a hospital for review by radiologists.  The TITAN system utilizes SonoSite's proprietary ASIC 
microchip technology to integrate millions of transistors onto one circuit. 

NASA's Jet Propulsion Laboratory has developed a command interface ASIC and an analog 
interface ASIC.  This chip set for remote actuation and monitoring of a collection of switches 
can be used to control generic loads, pyrotechnic devices, and valves in a high-radiation 
environment.  The command interface ASIC (CIA) can be used alone or in combination with the 
analog interface ASIC (AIA).  Designed primarily for incorporation into spacecraft control 
systems, they are also suitable for use in high-radiation terrestrial environments (e.g., in nuclear 
power plants and facilities that process radioactive materials). 
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A.4   SOC 

Device name:  System-on-Chip (SoC) 
Also known as System-on-a-chip (SoaC) 

Figure A-5 SOC 

Description: 

SoC, also called “system-on-a-chip” or SoaC, is a complete product that contains all the 
necessary electronic circuits and parts for a "system" on a single integrated circuit.  Think of it as 
a single-board-computer on a chip.  SoCs include the hardware components and all required 
ancillary electronics. 

 SoCs combine aspects of ASICs and field-programmable logic.  SoCs can be: 

 Totally ASIC, with the individual blocks specified by the designer 

 ASIC for the computing unit and logic functions, with some programmable parts (e.g., 
CPLD) 

 Implemented on programmable logic (e.g., FPGA) 

SoCs can use IP designs created by others and integrated into the chip.  IP blocks are pre-
designed behavioral or physical descriptions of a standard component.  These reusable 
components are usually Commercial-off-the-Shelf (COTS) products. 

The benefits of SoC design include: 
 Conservation of space (reduction in chip count) 

 Improved performance (higher reliability) 

 Lower memory requirements 

 Greater design freedom (simpler logistics) 

These benefits also come with some challenges including: 
 Larger design space 
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 More expense (global on-chip communication is expensive in terms of 
power/propagation delay) 

 Increased prototype cost 

 Correctness of complete system with multiple components 

 A high level of debugging methodology 

Testing of the products is also a challenge due to the fact that typical testing methods have been 
developed for specific specialty areas, whereas the SoC requirement includes all specialties, 
potentially on one platform. 

A SoC could include: 
 Microprocessor 

 Memory (e.g., SRAM, DRAM, Flash) 

 Communications cores 

 Digital Input/Output functions 

 Analog Input/Output functions 

 Bus controllers (e.g., PCI) 

 DSP (Digital Signal Processor) 

 Sensors 

 Programmable logic (e.g., FPGA, CPLD) 

 Embedded software 

For example, a system-on-chip for a sound-detecting device might include an audio receiver, an 
analog-to-digital converter (ADC), a microprocessor, necessary memory, and the input/output 
logic control for a user - all on a single microchip. 

Configurable System-on-Chip (CSoC) 

Configurable SoCs are a new form of system-on-chip that has a configurable fabric that 
designers can manipulate, after chip fabrication, to achieve specific functionality.  
Configurability lets you change on-chip functions for a variety of reasons.  These reasons 
include: 

 change in core functionality 

 compatibility with a change in a communications or other standard to which the CSoC 
must conform 

 correcting a design error incurred during original chip development. 

Post-process configurability lets you create products that can adapt to changing requirements. 

Some configurable SoCs are FPGAs that combine both hard (fixed) and soft (programmable) 
cores.  These chips are sometimes referred to as platform FPGAs.  In the diagram below, the 
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microprocessor is a hard component (fixed in the silicon), while the Digital Signal Processor 
(DSP) is a soft component created in the FPGA programmable infrastructure. 

The reconfigurable approach offers significant advantages.  It reduces design costs because 
changes can be made immediately to the chip during development.  Chip simulation becomes 
less of an issue because the real hardware is available immediately.  In the field, bug fixes and 
upgrades can be more extensive as significant portions of the hardware can be altered, not just 
the application code. 

 
Figure A-6 Reconfigurable SoC 

Cost is the main downside to using a standard reconfigurable SoC rather than creating a custom 
SoC.  Custom designs typically have large up-front development costs, but low individual chip 
costs.  Reconfigurable SoCs have a comparatively small up-front cost, but are usually more 
expensive per chip.  Reconfigurable SoCs can also be used for prototyping because the core CPU 
and fixed peripherals are well defined.  Building a custom ASIC or SoC based on a 
reconfigurable prototype is relatively easy. 

Applications for SoC: 

System-on-chip devices can be used in any application that requires a processor and peripheral 
components.  Since the advantages of SoC are small size, integrated components, and reduced 
power, they are especially useful in: 

 Cell/camera phones 

 Medical equipment (especially portable devices) 

 Portable multimedia devices 

 Network-enabled devices 

 PDAs 

 Point-of-sale devices 

 Gaming systems 
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In the medical world, portable equipment and implantable devices are becoming more common.  
Such equipment includes blood glucose monitoring systems, insulin pumps, body temperature 
sensors, defibrillators, neurological stimulators, pacemakers, and hearing aids.  These products 
not only simplify the testing, monitoring, and treatment processes, but can also help to improve 
the quality of life for the patient by minimizing time spent in hospitals and often providing 
automatic, continuous treatment of chronic conditions. 

To address requirements for performance, power consumption, and size, medical equipment 
manufacturers are incorporating as much functionality as possible into a single, complex SoC.  
These devices need to integrate both analog and digital capabilities and, in many cases, deliver 
short-range, low-data-rate wireless communications functionality.  Furthermore, some 
applications may also require that high-voltage output stages be integrated into the same device.  
A variety of semiconductor technologies, IP blocks, and support tools can help to significantly 
simplify the implementation of SoCs for implantable and portable medical devices. 

An example of a network device is the Sony Video Network Station.  This device, which 
contains an embedded Linux operating system running on an Axis ETRAX system-on-chip 
processor, transmits images generated by analog video cameras to remote locations where they 
can be viewed using ordinary GUI-based web browsers.  The device is useful in a diverse range 
of applications requiring remote video monitoring and control, including security monitoring, 
quality inspection, image distribution, access control, and market research. 

NASA projects: 

Like ASICs and FPGAs, SoC devices have significant benefits for NASA projects, including: 
 Customizable electronics 

 Smaller circuit board footprint 

 Less weight 

 Integrated functionality 

Temperature Remote I/O (TRIO) System-on-Chip for Aerospace 

The TRIO smart sensor data acquisition chip was developed by Johns Hopkins 
University/Applied Physics Laboratory for NASA spacecraft applications.  TRIO includes a 10 
bit self-corrected analog-to-digital converter, analog inputs, a front end multiplexer with 
selectable acquisition time, a current source, memory, serial and parallel bus, and control logic.  
These functions are very useful for spacecraft and subsystems health and status monitoring and 
control actions.  The key contributions of the TRIO are feasibility of modular architectures, 
elimination of several miles of wire harnessing, and power savings by orders of magnitude.  So 
far TRIO is used in many missions including Contour, Messenger, Stereo, Europa Orbiter, Mars 
Surveyor Program, Solar Probe, Pluto Express, and in the generic JPL X2000 spacecraft bus. 

Radio Frequency (RF) components 

Micro-Electro-Mechanical Systems (MEMS) integrate mechanical elements, sensors, actuators, 
and electronics on a common silicon substrate through microfabrication technology.  
Microelectronic integrated circuits can be thought of as the "brains" of a system and MEMS 
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augments this decision-making capability with "eyes" and "arms” to allow microsystems to sense 
and control the environment. 

NASA Glenn Research Center is developing microwave MEMS devices that integrate with 
miniature microwave (RF) transmission lines and components to build low loss RF distribution 
networks for System on a Chip (SOAC) and phase array antennas.  These novel, low loss, 
miniature RF components will be fabricated using multilayer processing, and they will be 
combined with SOAC technology being developed by the University of Michigan and the JPL 
Center for Integrated Space Microsystems (CISM) for nano-sized science craft. 

Advanced time-of-flight system-on-chip for remote sensing instruments 

Accurate and/or fast time interval measurement is important in many remote sensing 
instruments, especially those that require detection of photon/particle events, position decoding 
and time-of-hit measurement.  An advance time-of-flight (TOF) system-on-chip has been 
developed that includes the complete signal processing electronics for microchannel plate (MCP) 
readout.  The TOF chip is capable of a time resolution of <50picoseconds.  The TOF chip was 
used on the NASA/IMAGE spacecraft launched in 2000 and is part of many other science 
instruments on MESSENGER. 

ChipSat 

ChipSat is a long-term research program which aims to build a satellite-on-a-chip.  As part of the 
program, an existing on-board computer (OBC) was scaled down to a SoC.  The OBC chosen 
was developed by the Surrey Satellite Technology Limited (SSTL), a company owned by the 
University of Surrey in Guildford, UK.  The SoC is prototyped on a single high-density 
programmable logic array chip using soft IP cores. 

The image below shows the parts of the OBC that were mapped into the system-on-chip.  An 
entire board was shrunk down to a single chip.  The experiment showed that it is possible to 
implement the functionality of a small satellite OBC on a single programmable logic chip. 

SCOC – A Spacecraft Controller On a Chip 

The European Space Agency (ESA) is pursuing development of a system-on-chip that 
incorporates all the required functions for spacecraft control.  This SoC is currently prototyped in 
an FPGA.  The demonstration board is named BLADE (Development of the Board for LEON 
and Avionics DEmonstration).  Eventually, the design will be produced in a radiation-tolerant 
ASIC or PROM-based FPGA. 

SCOC looks to integrate multiple functions into a single chip.  By integrating the functions, the 
external connections become on-chip interconnects.  Other benefits include reduced power 
consumption, reduced component count (and thus lower mass), and increased performance and 
reliability.  However, putting all the functions on a single chip reduces the accessibility to the 
internal functions and makes testing the complex chip more difficult. 
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Figure A-7 ChipSat OBC 

 

The SCOC will include the following components 
 Standard processor, known to the space community (the LEON SPARC-V8) 

 Flexible peripherals, which can be powered down 

 Telecommand and Telemetry (TM/TC) functionality (using the CCSDS protocol) 

 Housekeeping and CCSDS Time Management 

 Multiple standard interfaces 

 PCI parallel backbone 

 Spacewire (IEEE 1355.1) 

 MIL 1553 standard Bus Controller/Monitor (BC/BM) and Remote Terminal (RT) 

 Dedicated data processing 

 Monitoring camera interface and image compression 

 GNSS navigation receiver 

 Star tracker pre-processor 

 Mathematical co-processor 

The current BLADE development integrates the processor with standard interfaces.  Additional 
functionality will be added in the future. 
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A.5   RECONFIGURABLE COMPUTING 

Device name:  Reconfigurable Computing 
AKA Adaptable Computing, Evolvable computing 

Description: 

Can you have a computer without a microprocessor?  How do you deal with situations where 
autonomous instruments have to adapt to changing situations?  What if your device has to 
support multiple protocols, depending on its location or mission?  How do you process signals 
that may come in multiple formats without advance planning? 

The answer to the above questions is “reconfigurable computing.”  Reconfigurable Computing 
represents a new idea in computing philosophy, in which some general-purpose hardware agent 
is configured to carry out a specific task, but can be reconfigured on-demand to carry out other 
specific tasks. 

Traditionally, there have been two ways to implement a computation or algorithm: custom 
hardware or software.  In some systems, this decision can be made on an individual subtask 
basis, placing some subtasks in custom hardware and some in software on more general-purpose 
processing engines. 

Hardware designs offer high performance because they are: 
 Customized to the problem—no extra overhead for interpretation or extra circuitry 

capable of solving a more general problem. 

 Relatively fast, due to their highly parallel and spatial execution. 

Software implementations exploit a “general-purpose” execution engine (i.e., microprocessor), 
which interprets a designated data stream as instructions telling the engine what operations to 
perform.  As a result, software is: 

 Flexible—task can be changed simply by changing the instruction stream 
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 Relatively slow—due to mostly temporal, serial execution 

 Relatively inefficient–since operators can be poorly matched to computational task. 

Reconfigurable computing combines the best of both implementations, allowing general-purpose 
software to be implemented in hardware.  This class of architectures permits the computational 
capacity of the system to be highly customized to the instantaneous needs of an application, 
while also allowing the computational capacity to be reused in time at a variety of time scales. 

The usual hardware agent for reconfigurable computing is a set of FPGAs.  Reconfigurable 
computing manipulates the logic within the FPGA at run-time.  The design of the hardware may 
change in response to the demands placed upon the system while it is running.  Here, the FPGA 
acts as an execution engine for a variety of different hardware functions, some executing in 
parallel, others in serial, much as a microprocessor executes a variety of software threads. 

Reconfigurable computing offers several advantages over custom hardware and general-purpose 
software implementations, including: 

 Flexibility - the system can be changed as necessary, on the fly. 

 Simpler hardware design - you do not need a fancy high-powered microprocessor, just 
one or more FPGAs. 

 Speed - implementing algorithms in hardware results in faster execution, due to the 
parallel nature of hardware. 

The reconfigurable computing systems built during the last years have often achieved 
performance several orders of magnitude higher than the traditional processor based solutions.  
Reconfigurable computing is now breaking into the commercial market in the areas of 
application-specific systems and information appliances, which include emerging areas like 
mobile communication, multimedia-based networks, encryption, and image processing. 

What hardware is reconfigurable? 

Not all FPGAs can be used in reconfigurable computing.  User-configurable FPGAs can be 
programmed and reprogrammed by the user in a lab, or even in the field.  But they cannot be 
dynamically reprogrammed as the system is running.  Many older FPGAs read their 
configuration out of a serial EEPROM, and only when a chip reset signal is asserted.  This means 
that the FPGA must be reprogrammed in its entirety and that its previous internal state cannot be 
captured beforehand. 

In order to benefit from run-time reconfiguration, the FPGAs involved need some or all of the 
following features, which increase design flexibility: 

 On-the-fly reprogrammability.  Resetting the FPGA takes a lot of time and should be 
avoided whenever possible. 

 Partial reprogrammability.  The ability to leave most of the internal logic in place and 
change just one part is an important factor in reconfigurable systems.  It will always be 
much faster to change a small piece of the logic than the entire FPGA contents. 

 Externally-visible internal state.  If you can see the internal state of the FPGA at any 
time, then it is also possible to capture that state and save it for later use.  This allows the 
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internal state of the FPGA to be read and written just like memory or processor registers 
and makes it possible to swap hardware designs in much the same way that pages of 
virtual memory are swapped into and out of physical memory. 

Run-time environments 

How does the reconfigurable system know what to do at any given time?  That job is usually 
handled by software.  The software manages the processes of: 

 Deciding which hardware objects to execute and when. 

 Swapping hardware objects into and out of the reconfigurable logic. 

 Performing routing between hardware objects or between hardware objects and the 
hardware object framework. 

Having software manage the reconfigurable hardware usually means having an embedded 
processor or microcontroller on-board.  The embedded software that runs there is called the run-
time environment and is analogous to the operating system that manages the execution of 
multiple software threads.  Like threads, hardware objects may have priorities, deadlines, and 
contexts.  It is the job of the run-time environment to organize this information and make 
decisions based upon it. 

Using software allows us to write our applications at a very high level of abstraction.  For 
example, if the software needed to decompress an image, the attached FPGA could be 
reconfigured with the decompression algorithm and fed the data.  To the main software 
application, this action is no different than asking an analog-to-digital converter to read a voltage 
and return the answer.  The run-time environment software, however, is responsible for 
reprogramming the FPGA and executing the task. 

Programming reconfigurable systems 

Reconfigurable computing combines traditional software-related topics as languages, compilers, 
operating systems, and libraries with hardware-related topics of digital design. 

Reconfigurable systems present a formidable challenge in terms of algorithm design tools.  
Design tools for FPGA devices, the building blocks of reconfigurable hardware, are oriented 
towards ASIC development environments, in which digital design engineers create large (multi-
million gate), complex designs that, once created and validated, do not change.  In contrast, 
reconfigurable supercomputers require a more software-centric development environment, in 
which algorithms are constantly revised and tested. 

In response to the need for software-oriented tools, vendors and researchers have developed 
compilers for software programming languages that synthesize hardware.  Compilers for several 
C variants, Java, and Matlab have become available in the past few years.  The compiler must 
generate a structural hardware representation (such as VHDL-RTL) that represents the 
connections between units contained in a library, with direct correspondence to the operators of 
high-level programming languages. 

Applications: 
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While commercial reconfigurable computing platforms are starting to become available, the 
majority of work has been done in a research context.  There are some areas and problems that 
reconfigurable computing is ideal for, including: 

 Real-time image analysis 

 Pattern recognition 

 Automatic target recognition 

 Cryptography 

 Computational biology 

 Signal processing 

One theoretical application is a smart cellular phone that supports multiple communication and 
data protocols, though just one a time.  When the phone passes from a geographic region that is 
served by one protocol into a region that is served by another, the hardware is automatically 
reconfigured.  This is reconfigurable computing at its best.  Using this approach, it is possible to 
design systems that do more, cost less, and have shorter design and implementation cycles. 

Heading into the future, evolvable hardware (EHW) is designed to adapt to changes in task 
requirements or changes in the environment through its ability to reconfigure its own hardware 
structure dynamically and autonomously.  This capacity for adaptation is achieved by employing 
efficient search algorithms known as genetic algorithms.  Evolvable hardware has great potential 
for the development of innovative applications, including autonomous spacecraft and exploration 
systems. 

Here are some reasons why reconfigurable computing has valuable applications for space 
missions: 

After launch, unmanned spacecraft electronics are generally unavailable for physical upgrade or 
repair.  RC technology allows new hardware circuits to be uploaded via a radio link. 

New circuit configurations can overcome design faults, allow improved processing algorithms to 
be uploaded, or change system functionality in response to changing mission requirements.  
Combined with artificial intelligence applications, the unmanned spacecraft may be able to select 
circuits on its own to correct the problems. 

The same circuitry can be used with different configurations at different stages of a mission, 
reducing weight and power requirements. 

If part of an FPGA fails, then circuitry can be reprogrammed to make use of remaining 
functional portions of the chips. 

Use of FPGAs allows generic circuit boards to be designed, which are customized for individual 
applications.  This helps overcome the very high NRE (non-recurring engineering) costs 
associated with small volume spacecraft design.  Physical and environmental qualification costs 
can also be shared across many missions. 

In-flight reconfiguration provides additional safety margins for missions with very short lead-
times, or for those where mission requirements are not fully defined at launch. 
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NASA Examples: 

NASA Langley Research Center is one NASA installation exploring reconfigurable computing 
applications.  They have developed a reconfigurable FPGA-based research hypercomputer that is 
capable of performing comprehensive engineering and scientific calculations.  Two approaches 
have been adopted to exploit Langley’s Star Bridge Systems HC-38 (and 2 HAL15s) for analysis 
calculations: 

1. Rewrite legacy code for the hypercomputer to fully exploit parallelism. 

2. Use the hypercomputer to accelerate time-consuming (bottleneck) calculations. 

Software was entirely rewritten from C++ or Fortran to take advantage of the parallelism 
inherent in the hypercomputer (approach 1).  When only a small portion of a software application 
was computationally intensive, that portion was rewritten to the hypercomputer native language, 
and the rest of the code was left alone (approach 2). 

FedSat, an Australian science and engineering research satellite, was launched in 2002.  One 
payload on FedSat is the Adaptive Instrument Module (AIM), which is a reconfigurable 
computer optimized for spacecraft instrument use.  AIM has demonstrated autonomous 
instrument processing that is reconfigurable and adaptive.  The use of the AIM enables 
reconfiguration of the FPGA circuitry while the spacecraft is in flight.  This flexibility reduces 
mission risk, especially for missions with a very tight development schedule.  The AIM is 
designed to either directly interface with sensors or instruments or to receive data through the 
spacecraft data handling system.  AIM conducted a series of designed experiments, including a 
demonstration of implementing data compression, data filtering, and communication message 
processing and inter-experiment data computation. 

The design of the AIM specifically addresses the concerns of using SRAM-based FPGAs in the 
space environment.  The AIM demonstrates techniques to detect and remediate radiation-induced 
upsets in these FPGAs and will automatically restart in the event of an upset.  The design has 
been proven in flight.  When the module suffered a memory error due to the bombardment of 
cosmic radiation, AIM automatically detected and then reset itself.  This prevented the memory 
error from causing an error in the data it was processing. 

The team that developed AIM at the Applied Physics Laboratory/John Hopkins University is 
worked with NASA’s Langley Research Center to take the next step in reconfigurable, self-
repairing space borne computer design.  The project is called ADAPT – Adaptive Data Analysis 
and Processing Technology.  Because it is fully reconfigurable, an ADAPT computer can serve 
as the front-end package for virtually any type of instrument – for example, a spacecraft might 
carry six scientific instruments, each served by a physically identical, but differently 
programmed, ADAPT computer.  As the design evolves, an ADAPT computer may carry up to 
20 preprogrammed operating modes for controlling its instrument. 
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APPENDIX B   CODING STYLE GUIDELINES 
 

Note: Material presented in Appendix B is based on or adapted from figures 
and text copyrighted by Xilinx, Inc., and used with permission. 

 

B.1   INTRODUCTION 

This document was created to provide Xilinx users with a guideline for producing fast, reliable, 
and reusable HDL code. 

B.2   TOP-DOWN DESIGN 

HDL coding should start with a top-down design approach.  Use a top-level block diagram to 
communicate to designers the naming required for signals and hierarchical levels.  Signal naming 
is especially important during the debug stage.  Consistent naming of signals, from top to bottom, 
will ensure that project manager A can easily recognize the signals written by designer B. 

B.2.1  Behavioral and Structural Code 

When creating synthesizable code (RTL), you should write two types of code: behavioral RTL 
(leaf-level logic inference, sub-blocks) and structural code (blocks) -- each exclusively in its own 
architecture.  A simple example of behavioral RTL versus structural code is shown in Figure 
B-1and Figure B-2, respectively. 

 

entity mux2to1 is
    port (
        a     : in  std_logic_vector(1 downto 0);
        sel   : in  std_logic;
        muxed : out std_logic);
end mux2to1;

architecture rtl of mux2to1 is
begin

    muxed <= a(1) when sel = '1' else a(0);

end rtl;
 

Figure B-1 Behavioral Code 
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entity mux4to1 is
    port (
        input : in  std_logic_vector(3 downto 0);
        sel   : in  std_logic_vector(1 downto 0);
        muxed : out std_logic);
end mux4to1;

architecture structural of mux4to1 is
    signal muxed_mid : std_logic_vector(1 downto 0);
    component mux2to1
        port (
            a     : in  std_logic_vector(1 downto 0);
            sel   : in  std_logic;
            muxed : out std_logic);
    end component;
begin

    mux2to1_1_0: mux2to1
        port map (
            a     => input(1 downto 0),
            sel   => sel(0),
            muxed => muxed_mid(0));
    mux2to1_3_2: mux2to1
        port map (
            a     => input(3 downto 2),
            sel   => sel(0),
            muxed => muxed_mid(1));
    mux2to1_final: mux2to1
        port map (
            a     => muxed_mid,
            sel   => sel(1),
            muxed => muxed);
end structure;

 
Figure B-2  Structural Code 

 

Rules 

Keep leaf-level (behavioral sub-blocks) coding separate from structural coding (blocks). 

Declarations, Instantiations, and Mappings.  It is important to use a consistent, universal style for 
such things as entity declarations, component declarations, port mappings, functions, and 
procedures. 

B.2.2  Declarations, Instantiations, and Mappings 

It is important to use a consistent, universal style for such things as entity declarations, 
component declarations, port mappings, functions, and procedures. 

Rules 

For declarations, instantiations, and mappings use one line for each signal.  The exception is for 
relatively small components, functions, and procedures. 
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Always use named association. 

The combination of these two rules will help eliminate common coding mistakes.  Therefore, this 
combination will greatly enhance the ease of debugging a design at every stage of verification.  
A simple example is shown Figure B-3.  Obeying these rules will also increase the readability, 
and therefore the reusability. 

 

Figure B-3  One Line Per Signal/Named Association 

B.2.3  Comments 

Liberal comments are mandatory to maintain reusable code.  Although VHDL is sometimes 
considered to be self-documenting code, it requires liberal comments to clarify intent, as any 
VHDL user can verify. 

Rules 

Three primary levels of commenting: 

Comments should include a header template for each entity-architecture pair and for each 
package- and package-body pair.  See the example in Figure B-4.  The purpose should include a 
brief description of the functionality of each lower block instantiated within it. 

Use comment headers for processes, functions, and procedures, as shown Figure B-5.  This 
should be a description of the purpose of that block of code. 

Use comments internal to processes, functions, and procedures to describe what a particular 
statement is accomplishing.  While the other two levels of commenting should always be 
included, this level is left to the designer to decipher what is required to convey intent.  Inline 
comments are shown in Figure B-6. 

 

architecture structural of 
mux4to1 is 
   . . . 
begin 
 

mux2to1_1_0: mux2to1 
        port map ( 
            a     => input(1 downto 
0)
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-------------------------------------------------------------------------------------------------------------------------------------------------------
-- Author: John Q. Smith Copyright Xilinx, 2001
-- Xilinx FPGA - VirtexII
-- Begin Date: 1/10/01
-- Revision History  Date Author Comments
-- 1/10/01 John Smith Created
-- 1/14/01 John Smith changed entity port address & data to addr & dat
-------------------------------------------------------------------------------------------------------------------------------------------------------
--  Purpose:
-- This entity/architecture pair is a block level with 4 sub-blocks.  This is the processor control interface for the
-- block level <block_level_A>.  So on, and so forth 
-------------------------------------------------------------------------------------------------------------------------------------------------------  

Figure B-4  Header Template 

 

------------------------------------------------------------------------------------------------
--  demux_proc:  this process dumultiplexes the inputs and registers the
-- demultiplexed signals
------------------------------------------------------------------------------------------------
demux_proc : process(clk, reset)
begin  

 
Figure B-5 Process, Function, and Procedure Header 

 

------------------------------------------------------------------------------------------------
--  demux_proc:  this process dumultiplexes the inputs and registers the
-- demultiplexed signals
------------------------------------------------------------------------------------------------
demux_proc : process(clk, reset)
begin  
if reset = ‘1’ then
    demux <= (others => ‘0’);
elsif rising_edge(clk) then
  -- demultiplex input onto the signal demux
    case (sel) is
    when ‘0’ =>
        demux(0) <= input;
    when ‘1’ =>
        demux(1) <= input;
    when others =>
        demux <= (others => ‘0’);
    end case;
end if;
end process;

 
Figure B-6 Inline Comments 
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B.2.4  Indentation 

Proper indentation ensures readability and reuse.  Therefore, a consistent style is warranted.  
Many text editors are VHDL-aware, automatically indenting for “blocks” of code, providing 
consistent indentation.  Emacs and CodeWright are two of the most common editors that have 
this capability.  Figure B-7 shows an example of proper indentation.  Proper indentation greatly 
simplifies reading the code.  If it is easier to read, it is less likely that there will be coding 
mistakes by the designer. 

Rules 

Use a VHDL-aware text editor that provides a consistent indentation style. 

-- purpose: to show proper indentation

sample_proc : process (clk, reset)

    variable muxed_data_v : std_logic_vector (1 downto 0);  -- _v denotes a variable

begin  -- process sample_proc

    if reset = '0' then

for i in data'range loop

    data(i) <= (others => '0');  -- data is a 4x2 array

end loop;  -- i

muxed_data <= '0'

    elsif clk'event and clk = '1' then

muxed_data_v := data(conv_integer(addr));

case sel is

    when '0' =>

muxed_data <= mux_data_v(0);

    when '1' =>

muxed_data <= mux_data_v(1);

end case;  -- case sel is

    end if;  -- if reset = ‘0’ 

end process sample_proc;
 

Figure B-7  Proper Indentation 

 

B.2.5  Naming Conventions 

Naming conventions maintain a consistent style, which facilitates design reuse.  If all designers 
use the same conventions, designer A can easily understand and use designer B’s VHDL code. 
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B.2.6  Entities, Architectures, Procedures, and Functions 

Rules 

Use all lowercase names with underscores, for readability and name delimiting. 

Each entity should have a unique name that describes that block. 

Architectures do not need unique names because they are individually bound to a specific entity 
that has a unique name.  Names for architectures should be rtl, to indicate a leaf-level sub-block, 
and structural, to indicate a block with no leaf-level logic – with only sub-blocks. 

For entities with more than one architecture, use “rtl_xilinx” (or “structural_xilinx”) for a Xilinx-
specific architecture and “rtl_asic” (or “structural_asic”) for an ASIC-specific architecture. 

B.2.7  Signal Naming Conventions 

For a design implemented in VHDL, an up-front specification of signal naming conventions 
should help you reduce the amount of non-conformity.  The primary motivating factor is 
enhanced readability during the verification of the design.  General signal naming conventions 
are listed below. 

General Signal Naming Guidelines 

Use addr for addresses.  This might include sys_addr, up_addr, etc. 

Use clk for clock.  This might include clk_div2 (clock divided by 2), clk_x2 (clk multiplied by 
2), etc. 

Use reset or rst for synchronous reset. 

Use areset or arst for asynchronous reset. 

Use areset_l for active-low asynchronous reset. 

Use rw_l for read/write (write is active low). 

Rules 

The following rules specify the suggested nomenclature for other widely used signals 

Use <signal_name>_io for bi-directional signals. 

Use a _l suffix for active low signals <signal_name>_l. 

Do not use _in and _out suffixes for port signal names. 

Use of in and out is very confusing in text, especially at hierarchical boundaries.  Therefore, the 
use of _in and _out should be strictly monitored.  If they must be used, be sure that _in indicates 
input, and, likewise, that _out is an output to the correct level of hierarchy.  Figure B-8 shows an 
example entity and the instantiation of that entity in a higher block.  Here, data_in is connected 
to data_out, making the code confusing.  
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Figure B-8 Confusing _in and _out suffixes 

 

Use _i to denote local signal names that are internal representations of an output port.  This 
nomenclature is used to easily identify the internal signal that will eventually be used as an 
output port. 

The counter in Figure B-9 provides a simple example of an output port that cannot be read.  The 
output port count cannot be incremented because it would require count to be read.  The problem 
is solved in the example by incrementing the local internal signal count_i.  Some designers try to 
overcome this problem by using the port as an inout; however, not all synthesis compilers will 
allow this unless it is three-stated.  Declaring the signal to be of type buffer is another common 
trap.  This complicates the code because all signals to which it connects also must be of type 
buffer.  Not all synthesis vendors support the data-type buffer.  In addition, data-type buffer does 
not have all of the required defined functions to perform common arithmetic operations. 

count <= count_i;
process (clk, reset)
begin
   if reset = ‘1’ then
       count_i <= (others => ‘0’);
   elsif rising_edge(clk) then
       count_i <= count_i + 1;
   end if;
end process;

 
Figure B-9 Internal Signals Representing Output Ports 

 

Use _v to indicate a variable.  Variables can be very useful if used correctly.  The _v will serve 
as a reminder to the designer as to the intent and use of that signal. 

Use <signal_name>_p0, <signal_name>_p1, and so forth, to represent a pipelined version of the 
signal <signal_name> when <signal_name> comes after the pipelining.  Use <signal_name>_q0, 
<signal_name>_q1, and so forth, to represent a pipelined version of the <signal_name> when 
<signal_name> comes before the pipeline.  See Figure B-19 in section 4 for an example of how 
to use this pipelined signal naming convention. 

entity in_out is
port ( data_in : in std_logic_vector (31 downto 0);

data_out : out std_logic_vector(31 downto 0));
end entity in_out;
 

in_out_inst: in_out
port map ( data_in => ram_data_out,

    data_out => ram_data_in);
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Append a suffix to signals that use a clock enable and will be part of a clock-enabled path (i.e., 
multi-cycle path).  For example, if the clock enable is enabled only one-quarter of clock cycles, 
the clock enable should be named to represent that -- ce4.  Signals that use this enable might be 
named <signal_name>_ce4.  This will greatly aid you in your ability to specify multi-cycle 
constraints. 

B.3   SIGNALS AND VARIABLES 

Following some basic rules on the use of signals and variables can greatly reduce common 
coding problems. 

B.3.1  Signals 

The rules for using signals are not complex.  The most common problem is that signals can be 
various data types.  The problem in VHDL is "casting" from one data type to another.  
Unfortunately, no single function can automatically cast one signal type to another.  Therefore, 
the use of a standard set of casting functions is important to maintain consistency between 
designers. 

B.3.2  Casting 

Rules for Casting 

Use std_logic_arith, std_logic_unsigned/std_logic_signed packages. 

This provides the essential conversion functions: 
 conv_integer(<signal_name>): converts std_logic_vector, unsigned, and signed data 

types into an integer data type. 

 conv_unsigned(<signal_name>, <size>): converts a std_logic_vector, integer, unsigned 
(change size), or signed data types into an unsigned data type. 

 conv_signed(<signal_name>, <size>): converts a std_logic_vector, integer, signed 
(change size), or unsigned data types into a signed data type. 

 conv_std_logic_vector(<signal_name>, <size>): converts an integer, signed, or unsigned 
data type into a std_logic_vector data type. 

 ext(<signal_name>, <size>): zero extends a std_logic_vector to size <size>. 

 sxt(<signal_name>, <size>): sign extends a std_logic_vector to size <size>. 

All conversion functions can take for the <signal_name> data-type a std_logic_vector, unsigned, 
signed, std_ulogic_vector, or integer.  <size> is specified as an integer value. 

B.3.3  Inverted Signals 

To reduce complication and to make the code easier to debug and test, it is generally 
recommended that you use active-high signals in hardware description languages.  Generally, 
active-low signals make the code more complicated than necessary.  If active-low signals are 
required at the boundaries of an FPGA, invert incoming signals at the FPGA top structural level.  
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Also, for outbound signals, invert them at the FPGA top structural level.  Consider this a rule of 
thumb. 

However, for FPGAs in general and Xilinx FPGAs specifically, inverters are free throughout the 
device.  There are inverters in the IOB, and a LUT can draw in an inverter as part of its 
functionality, without a loss in performance. 

Often, ASIC designers will use active-low signals in their code to use less power in the part.  The 
synthesis tool will map the logic based on a vendor’s libraries.  Therefore, the synthesis tool will 
infer active-low signals internally when it sees fit.  For that matter, writing code that uses active-
low signals does not necessarily infer active-low signals in the ASIC.  Again, the synthesis tool 
makes these decisions based on the vendor's libraries.   Let the synthesis tool do its job. 

Rule of thumb 

Use only active-high signals in HDL.  One exception is a signal with a dual purpose, such as a 
read or a write signal.  In this case, a naming convention should be used to reduce complication – 
rw_l is an easily recognizable signal name that clearly defines that signal’s role. 

Where active-low signals are required, use of a _l as a suffix generally makes the intent clear.  
E.g., <signal_name>_l.  Use of _n is generally confusing. 

B.3.4  Rule for Signals 

There are a few basic rules to follow when you use signals.  Remember that ports are just signals 
with special rules that apply to them. 

B.3.5  Entity Port Rules within the Bound Architecture 

You can read from inputs, but you cannot assign to inputs. 

You can assign to outputs, but you cannot read from outputs. 

See section 1, Signal Naming Conventions, rule number four, for help in skirting this limitation. 

You can both assign to and read from inouts. 

B.3.6  Internal Signal Rules 

Never assign to a signal in more than one process, with the exception of a three-state signal. 

For a combinatorial process (no registers inferred), never assign to a signal and read from the 
same signal in the same process.   This will eliminate infinite loops when performing behavioral 
simulation. 

This is not true for a "clocked" process; i.e., a process that is used to register signals.  A clocked 
process would only need to have an asynchronous set or reset signal and a clock in its sensitivity 
list.  Therefore, this process would not execute again until there was a change on one of those 
signals. 

In a clocked process, never assign to a signal outside of the control of the if rising_edge(clk) 
statement (or reset statement if an asynchronous reset exists).  This is a common coding mistake.  
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In synthesis, it will infer a combinatorial signal.  In a behavioral simulation, it will have the 
behavior of a signal clocked on the falling edge. 

B.3.7  Filling out a Process Sensitivity List 

Within a combinatorial process, all signals that are read (which can change) must be in the 
sensitivity list. 

This will insure the correct behavioral simulation.  This includes any signals that are compared in 
if-then-else statements and case statements.  It also includes any signal on the right-hand side of 
an assignment operator.  Remember that this is only for signals that can change.  A constant 
cannot change; thus, it does not need to be in the sensitivity list. 

Within a clocked process, only an asynchronous set or reset and the clock should be in the 
sensitivity list. 

If others are added, the functionality of a behavioral simulation will still be correct.  However, 
the simulation will be slower because that process will need to be evaluated or simulated 
whenever a signal in its sensitivity list changes. 

B.3.8  Rules for Variables and Variable Use 

Variables are commonly not understood and are therefore not used.  Variables are also 
commonly used and not understood.  Variables can be very powerful when used correctly.  This 
warrants an explanation of how to properly use variables. 

Variables are used to carry combinatorial signals within a process.  Variables are updated 
differently than signals in simulation and synthesis. 

In simulation, variables are updated immediately, as soon as an assignment is made.  This differs 
from signals.  Signals are not updated until all processes that are scheduled to run in the current 
delta cycle have executed (generally referred to as suspending).  Thus, a variable can be used to 
carry a combinatorial signal within both a clocked process and a combinatorial process.  This is 
how synthesis tools treat variables – as intended combinatorial signals. 

Figure B-10 shows how to use a variable correctly.  In this case, the variable correct_v maintains 
its combinatorial intent of a simple two-input and-gate that drives an input to an or-gate for both 
the a and b registers. 

process (clk, reset)
   variable correct_v : std_logic;
begin
   if reset = ‘1’ then
      a <= ‘0’;
      b <= ‘0’;
   elsif rising_edge(clk) then
      correct_v := c and d;
      a <= e or correct_v;
      b <= f or correct_v;
   end if;
end process;

DFF

DFF

B

A

F

E

C
D

correct_v

clk

 
Figure B-10  Correct Use of Variables 
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In Figure B-11, you read from the variable incorrect_v before you assign to it.  Thus, incorrect_v 
uses its previous value, therefore inferring a register.  Had this been a combinatorial process, a 
latch would have been inferred. 

process (clk, reset)
   variable incorrect_v : std_logic;
begin
   if reset = ‘1’ then
      a <= ‘0’;
      b <= ‘0’;
   elsif rising_edge(clk) then
      a <= e or incorrect_v;
      b <= f or incorrect_v;
      incorrect_v := c and d;
   end if;
end process;

B

A

F

E

 DFF

 DFF

incorrect_v

DFF

C
D

clk

 
Figure B-11  Incorrect Use of Variables 

B.3.9  Rule for Variables 

Always make an assignment to a variable before it is read.  Otherwise, variables will infer either 
latches (in combinatorial processes) or registers (in clocked processes) to maintain their previous 
value.  The primary intent of a variable is for a combinatorial signal. 

B.4   PACKAGES 

Packages are useful for creating modular and reusable code.  There should be one or more 
packages used by a design team.  These packages should include commonly used functions, 
procedures, types, subtypes, aliases, and constants.  All team designers should familiarize 
themselves with the contents of these packages.  If each designer were to create his or her own 
functions, procedures, types, subtypes, aliases, and constants, it could result in code that is 
difficult for other team members to use and read.  Thus, when your team uses packages, it results 
in code that is more modular and more readable. 

Package use can generally be broken down into the three types: 
 The global package.  This package is used on a company-wide basis, on each design.  

This package should include functions and procedures, such as reduction functions, for 
instance functions, and procedures that -- and, or, and xor (etc.) -- reduce individual 
buses.  It should also include commonly used types and subtypes.  This package should 
be created in a group setting by VHDL experts (or the most experienced in VHDL) who 
decide the best elements to have present in the package.  This package should be used 
extensively and should have periodic reviews to determine what should be added to or 
taken away from the package.  Because most divisions within a company work on the 
same type of projects, primarily, this package should contain the most widely and 
extensively used material that is common to all design teams. 

 The project package.  This package is used and created for a specific design project.  The 
functions, procedures, types, subtypes, constants, and aliases are all specifically defined 
and created for the design at hand. 
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 The designer’s packages.  These packages are specific to a designer.  Packages of this 
type should not be used extensively.  If there is a need for something to be extensively 
used within the designer’s package, it should be moved into the project package and 
possibly even the global package.  Code readability and modularity is limited by the use 
of designer packages, as the type of function calls and types, etc.  will not be readily 
understandable to all other designers in the group. 

B.4.1  Package Contents 

Constants 

Used correctly, constants can ease the coding of complex and modular designs.  Constants can be 
used in a variety of ways.  They can be used to create ROMs, for modular coding, and to define 
what or how something should be used.  For example, constants can be used in conjunction with 
generate statements to specify which portion of code to use (synthesize).  Consider, for example, 
one portion of code written for an ASIC implementation and another portion written for a Xilinx 
implementation.  The ASIC implementation should use gates to implement a multiplexer, while 
the Xilinx version should use three-state buffers to implement a multiplexer.  Because some 
synthesis tools do not currently support configuration statements, a generate statement is the best 
solution. 

Figure B-12 shows an example of how constants can be used to define the logic created.  
Although this is a simple example, it illustrates the possibilities.  By one change to the constant 
ASIC, an entirely different set of circuitry is synthesized throughout the design. 

 
--within a package
constant asic : boolean := True;

 
-- within an architecture
generate_asic :
if asic = true then
mux_proc : process (addr, sel, data)

 
generate_fpga :
if asic = false then
tri_state_proc : process (addr, sel, data)

 
 

Figure B-12  A Constant Guiding the Generation of Logic 

 

Constants can aid modular coding.  For example, you could define a constant that specifies the 
width of the address bus.  One change to that constant in the package would make a modular 
change to everything in the design.  See Figure B-13.  Using constants to define address and 
data-bus widths may be better than using generics.  Generics are passed from the top-down, 
eliminating the possibility of synthesizing bottom-up.  A bottom-up synthesis is generally 
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preferable for decreased synthesis run-times because only the modules that change need to be 
resynthesized. 

 

 
Figure B-13  Address Width Defined by a Constant 

 

B.4.2  Rules for Defining Constants within a Package 

Define constants within a package when it can be used to improve the modularity of the code by 
guiding generate statements. 

Define constants in a package to define sizes and widths of buses.  Constants used in this manner 
are generally more powerful than using generics because it allows the design to be synthesized in 
any manner, whereas generics allow only top-down synthesis. 

Functions and Procedures 

By definition, functions and procedures add modularity and reuse to code.  Extensive use of 
functions and procedures from the global and project packages is encouraged.  Rather than 
extensively using functions and procedures from a designer’s package, the designer is 
encouraged to add the functions and procedures at a local level (within an architecture), to 
maintain readability for other designers and future reuse. 

When defining functions and procedures, it is beneficial to use unsized vectors to pass signals.  
Using unsized vectors allows a modular use of the subprogram.  In addition to using unsized 
vectors, use signal – range attributes to define the logic. 

In the function example shown below in Figure B-14, the input, named vec, is defined as a 
std_logic_vector.  By not defining a sized vector, the actual size of the signal that is passed in 
will determine the implementation.  The range attribute ‘range specifies the size of the intended 
logic.  This function is modular; that is, it is not limited to being used for one specific vector size.  
A vector of any size can be passed into this function and correctly infer any amount of logic. 

--within the package pack_ase_fpga
constant addrw : integer := 18;

use work.pack_ase_fpga.all;

entity profound is
port ( addr : in std_logic_vector (addrw-1 downto 0);
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function parity (vec : input std_logic_vector) return std_logic is
    variable temp_parity : std_logic := ‘0’;
begin
    for i in vec’range loop
        temp_parity := temp_parity xor vec(i);
    end loop;
    return temp_parity;
end function;

 
Figure B-14 Modular Function Use 

B.4.3  Rules for Functions and Procedures 

Extensive use of functions and procedures is encouraged.  Predominately, the functions and 
procedures should be defined within either the global or the project packages. 

Create modular functions and procedures by not specifying the width of inputs and outputs.  
Then use range attributes to extract the needed information about the size of an object. 

Types, Subtypes, and Aliases 

Types and subtypes are encouraged for readability.  Types defined at the global and project level 
are generally required, and they help to create reusable code. 

Aliases can be used to clarify the intent, or meaning, of a signal.  In most cases, the intent of a 
signal can be clearly identified by its name.  Thus, aliases should not be used extensively.  While 
aliases can help to clarify the purpose of a signal, they also add redirection, which may reduce 
the readability of the code.  Although aliases are not used in conjunction only with types and 
subtypes, it is useful for examples to be included here.  In Figure B-15 there are two types 
defined: a record and an array.  For this example, aliases can be used to clarify the use of the 
signal rx_packet.data (rx_data) and the intent of the signal data_addr(0) (data_when_addr0).  In 
this example, the alias data_when_addr0 is used in place of data_array(0), this provides more 
meaning to the "slice" of data than data_array(0) provides.  Whenever the alias data_when_addr0 
is seen in the code, the intent is obvious.  The use of the alias rx_data simply provides a 
shortened version of the signal rx_packet.data while its use and intent are maintained. 
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package alias_use is
type opcode is record

parity : std_logic;
address: std_logic_vector(7 downto 0);
data : std_logic_vector(7 downto 0);
stop_bits : std_logic_vector(2 downto 0);

end record;
type data_array_type is array (0 to 3) of std_logic_vector (31 downto 0);
end package;

architecture rtl of alias_use is
   signal addr : std_logic_vector (11 downto 0);
   signal data_array : data_array_type;
   alias data_when_addr0 : std_logic_vector(31 downto 0) is data_array(0);
signal rx_packet : opcode;
alias rx_parity is rx_packet.parity;
alias rx_addr is rx_packet.address;
alias rx_data is rx_packet.data;
alias rx_stop is rx_packet.stop_bits;

begin
   data_when_addr0 <= data when addr = x”000” else (others => ‘0’);
   rx_data <= data_when_addr0;

…  
Figure B-15  Use of Types and Aliases 

Rules for Types, Subtypes, and Alias use 

Types and subtypes are encouraged on a global or project basis to facilitate reusable code. 

Alias use is encouraged when it clearly promotes readability without adding complex redirection. 

B.5   TECHNOLOGY-SPECIFIC CODE (XILINX) 

It is desirable to maintain portable, reusable code.  However, this is not always possible.  There 
are cases for each technology vendor where instantiation of blocks is required.  Furthermore, 
writing what is intended to be generic code will not always provide the best solution for a 
specific technology.  The tradeoffs between instantiation versus technology-specific code are 
discussed below. 

B.5.1  Instantiation 

Although instantiation of Xilinx primitives is largely unneeded and unwanted, there are some 
specific cases where it must be done -- and other occasions when it should be done.  While some 
of the components that need to be instantiated for a Xilinx implementation vary, those covered 
here are specific for Synplify, Synopsys, Exemplar, and XST.  This section will describe 
situations where deviation from reusable code is required. 
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Required Instantiation 

Specific top-level (FPGA) components require instantiation, including the boundary scan 
component, digital delay-locked loop components (DLL) or digital clock manager (DCM), 
startup block, and I/O pullups and pulldowns. 

Inputs and outputs, other than LVTTL, can be specified in the synthesis tool.  However, it is 
more advantageous to specify the I/O threshold level in the Xilinx Constraints Editor.  This will 
write a constraint into the Xilinx UCF (User Constraint File), which is fed into the Xilinx 
implementation tools. 

To instantiate Xilinx primitives, you will need to have a correct component declaration.  This 
information can be inferred directly from the Xilinx Libraries Guide, found in the online 
documentation. 

B.5.2  Rules for Required Instantiations for Xilinx 

Boundary Scan (BSCAN) 
 Digital Clock Manager (DCM) or Delay-Locked Loop (DLL).  Instantiating the 

DCM/DLL provides access to other elements of the DCM, as well as elimination of clock 
distribution delay.  This includes phase shifting, 50-50 duty-cycle correction, 
multiplication of the clock, and division of the clock. 

 IBUFG and BUFG.  IBUFG is a dedicated clock buffer that drives the input of the 
DCM/DLL.  BUFG is an internal global clock buffer that drives the internal FPGA clock 
and provides the feedback clock to the DCM/DLL. 

 DDR registers.  DDR registers are dedicated Double-Data Rate (DDR) I/O registers 
located in the input or output block of the FPGA. 

 Startup.  The startup block provides access to a Global Set or Reset line (GSR) and a 
Global Three-State line (GTS).  The startup block is not inferred because routing a global 
set or reset line on the dedicated GSR resources is slower than using the abundant general 
routing resources. 

 I/O pullups and pulldowns (pullup, pulldown). 

B.5.3  Simulation of Instantiated Xilinx Primitives 

Correct behavioral simulation will require certain simulation files.  These can be found in the 
Xilinx directory structure: $Xilinx/vhdl/src/unisims.  Note that unisims are similar to simprims, 
except that: unisims do not have component timing information enabled.  Whereas, simprims 
have the timing information enabled but require an SDF file (from Xilinx place and route) to 
supply the timing information (post place and route timing simulation). 

Within the unisim directory, several VHDL files need to be compiled to a unisim library.  They 
can then be accessed by specifying the library unisim and using the use statement.  For example: 

 library unisim; 

 use unisim.vcomponents.all; 
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The VHDL files must be compiled in a specific order because there are dependencies between 
the files.  The compilation order is: 

1) unisim_VCOMP.vhd 

2) unisim_VPKG.vhd 

3) unisim_VITAL.vhd 

For post-place-and-route timing simulation, the simprim files need to be compiled into a simprim 
library.  The VHDL files for simprims are in: $Xilinx/vhdl/src/simprims.  The correct package 
compilation order is: 

1) simprim_Vcomponents.vhd 

2) simprim_Vpackage.vhd 

3) simprim_VITAL.vhd 

Simulation files rules 

Unisims are used for behavioral and post-synthesis simulation. 

Simprims are used for post place-and-route timing simulation. 

B.5.4  Non-Generic Xilinx-Specific Code 

This section is used to describe situations where Xilinx-specific coding may be required to get a 
better implementation than can be inferred from either generic code or ASIC-specific coding. 

Three-State Multiplexers 

Generic coding of multiplexers is likely to result in an and-or gate implementation.  However, 
for Xilinx parts, gate implementation of multiplexers is generally not advantageous.  Xilinx parts 
have a very fast implementation for multiplexers of 64:1 or less.  For multiplexers greater than 
64:1, the tradeoffs need to be considered.  Multiplexers implemented with internal three-state 
buffers have a near consistent implementation speed for any size multiplexer. 

Three-state multiplexers are implemented by assigning a value of "Z" to a signal.  Synthesis 
further requires concurrent assignment statements.  An example is shown in Figure B-16.  For 
this example, there is a default assignment made to the signal data_tri to ‘Z’.  The case statement 
infers the required multiplexing, and the concurrent assignment statements to the signal data 
infer internal three-state buffers.  With those concurrent assignment statements, synthesis can 
only resolve the signal values by using three-states.  Without the concurrent assignment 
statements, synthesis would implement this in gates, despite the default assignment to "Z." 
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process (r1w0, addr_integer, data_regs1)
begin  -- process 
    for i in 0 to 3 loop  -- three-state the signal 
 data_tri(i) <= (others => 'Z'); 
    end loop;  -- i 
    if r1w0 = '1' then 
 case addr_integer is 
     when 0 to 3 => 
  data_tri(0) <= data_regs1(0); 
     when 4 to 7 => 
  data_tri(1) <= data_regs1(1); 
     when 8 to 11 => 
  data_tri(2) <= data_regs1(2); 
     when 12 to 15 => 
  data_tri(3) <= data_regs1(3); 
 end case; 
    end if; 
end process; 
-- concurrent assignments to data 
data <= data_tri(0); 
data <= data_tri(1); 
data <= data_tri(2); 
data <= data_tri(3);  

Figure B-16  Three-state Implementation of 4:1 Multiplexer 

 

B.5.5  Rules for Synthesis Three-State Implementation 

Use a default assignment of "Z" to the three-state signal. 

Make concurrent assignments to the actual three-stated signal. 

Memory 

While memory can be inferred for Xilinx, it most likely cannot be inferred for the ASIC by using 
the same code.  It is very likely that two separate implementations will be required.  This section 
will describe the methodology used to infer Xilinx-specific memory resources.  It is generally 
advantageous to instantiate the use of memory resources to make it easier to change for other 
technology implementations.  While it is not always required, Xilinx’s CORE Generator  
system program can generate RAM for instantiation.  The CORE Generator  system created 
memory must be used for dual-ported block RAMs, but it can also be used for creating other 
types of memory resources.  The CORE Generator  system does provide simulation files, but it 
is seen as a black box in synthesis; therefore, it will not provide timing information through that 
block. 

RAM and ROM 

The Xilinx LUT-RAM is implemented in the look-up tables (LUTs).  Each slice has 32-bits of 
memory.  A slice can have three basic single-port memory configurations: 16x1(2), 16x2, or 
32x1.  The Xilinx slices and CLBs can be cascaded for larger configurations. 
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LUT-RAM memory is characterized by synchronous write and asynchronous read operation.  It 
also is not able to be reset; however, it can be loaded with initial values through a Xilinx user 
constraint file (UCF).  Inference of Xilinx LUT-RAM resources is based on the same behavior 
described in the code shown in Figure B-17.  Dual-port LUT-RAM can also be inferred by 
adding a second read address.  Dual-port RAM has similar functionality with a synchronous 
write port and two asynchronous read ports. 

type ram_array is array (0 to 15) of std_logic_vector (5 downto 0);
signal ram_data : ram_array;
 
begin
process(clk)  --synchronous write
begin
if clk’event and clk = ‘1’ then
    if we = ‘1’ then
        ram_data(conv_integer(addr_sp)) <= data_to_ram;
    end if;
end if;
end process;

----------------------------------------------------------
-- for single port, use the same address as
-- is used for the write
----------------------------------------------------------
-- asynchronous read – dual port
ram_data_dp <=ram_data(conv_integer(addr_dp));  

Figure B-17  Xilinx LUT-RAM Inference 

ROM inference is driven by constants.  Example code for inferring LUT-ROM is shown in 
Figure B-18. 

type rom is arrary (0 to15) of std_logic_vector (3 downto 0);

-- 16x4 ROM in Xilinx LUT’s
constant rom_data : rom := (x”F”, x”A”, x”7”, x”0”, x”1”, x”5”,
x”C”, x”D”, x”9”, x”4”, x”8”, x”2”, x”6, x”3”, x”B”, x”E”);
 
begin
-- ROM read
data_from_rom <= rom_data(conv_integer(addr));
 

 
Figure B-18  LUT-ROM Inference 

Single-port block RAM inference is driven by a registered read address and a synchronous write.  
The example shown Figure B-19 has this characterization.  In the past, block RAM has been 
easily inferred, simply by having the registered address and synchronous write.  Synthesis tools 
can only infer simple block RAMs.  For example, you cannot infer a dual-port RAM with a 
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configurable aspect ratio for the data ports.  For these reasons, most dual-port block RAMs 
should be block-RAM primitive instantiations or created with the CORE Generator  system. 

Figure B-19  Virtex Block RAM inference 

B.5.6  Rules for Memory Inference 

For single- or dual-port RAM implemented in LUTs, describe the behavior of a synchronous 
write and an asynchronous read operation. 

For ROM inference in LUTs, create an array of constants. 

Single-port block RAM is inferred by having a synchronous write and a registered read address 
(as shown in the example above, Figure B-19). 

For other configurations of the Xilinx block RAM, use the CORE Generator  system. 

B.5.7  CORE Generator System 

The CORE Generator  system may be used for creating many different types of ready-made 
functions.  One limiting factor of the CORE Generator  system is that synthesis tools cannot 
extract any timing information; it is seen as a black box. 

The CORE Generator  system provides three files for a module: 

Implementation file, <module_name>.ngc. 

Instantiation template, <module_name>.vho 

Simulation wrapper, <module_name>.vhd 

For behavioral and post-synthesis simulation, the simulation wrapper file will have to be used.  
To simulate a CORE Generator  module, the necessary simulation packages must be compiled.  
More information on using this flow and generating the necessary files can be found in the 
CORE Generator tool under Help Online Documentation. 

type ram_array is array (0 to 127) of std_logic_vector (7 downto 0); 
signal ram_data : ram_array; 
  
begin 
process(clk)  --synchronous write 
begin 
if clk’event and clk = ‘1’ then 
    addr_q0 <= addr;  -- registered address/pipelined address 
    if we = ‘1’ then 
        ram_data(conv_integer(addr)) <= data_to_ram; 
    end if; 
end process; 
 
data_from_ram <= ram_data(conv_integer(addr_q0)); 
  

Downloaded from http://www.everyspec.com



NASA-HDBK 8739.23 with change 1 

Material presented in Appendix B is based on or adapted from figures and text 
copyrighted by Xilinx, Inc., and used with permission. 

132 of 143 

The CORE Generator  system provides simulation models in the 
$Xilinx/vhdl/src/XilinxCoreLib directory.  There is a strict order of analysis that must be 
followed, which can be found in the analyze_order file located in the specified directory.  In 
addition, Xilinx provides a Perl script for a fast and easy analysis of different simulators.  To 
compile the XilinxCoreLib models with ModelSim or VSS, use the following syntax at a 
command prompt: 

xilinxperl.exe $Xilinx/vhdl/bin/nt/compile_mti_vhdl.pl coregen 

xilinxperl.exe $Xilinx/vhdl/bin/nt/compile_vss_vhdl.pl coregen 

Compare logic is frequently implemented poorly in FPGAs.  Compare logic is inferred by the 
use of <, <=, >, and >= VHDL operators.  For a Xilinx implementation, this logic is best 
implemented when described with and-or implementations.  When possible, look for patterns in 
the data or address signals that can be used to implement a comparison with gates, rather than 
compare logic.  If a critical path includes comparison logic, an implementation that would use 
and-or logic should be considered. 

B.5.8  Rule for Comparator Implementation 

If a critical path has comparator logic in it, then try to implement the comparison by using and-or 
gates. 

B.5.9  Xilinx Clock Enables 

Clock enables are easily inferred, either explicitly or implicitly.  Clock enables are very useful 
for maintaining a synchronous design.  They are highly preferable over the unwanted gated 
clock.  However, not all technologies support clock enables directly.  For those architectures that 
do not support clock enables as a direct input to the register, it will be implemented via a 
feedback path.  This type of implementation is not a highly regarded implementation style.  Not 
only does it add a feedback path to the register, it also uses more logic because FPGA 
architecture requires two extra inputs into the LUT driving the register. 

The Xilinx architecture supports clock enables as a direct input to a register.  This is highly 
advantageous for a Xilinx implementation.  However, the designer must be certain that the logic 
required to create the clock enable does not infer large amounts of logic, making it a critical path. 

In the example shown below (Figure B-20), there is an explicit inference of a clock enable and 
an implicit inference of clock enables.  In the first section, a clock enable is via explicitly testing 
for a terminal count.  In the second section of code, the clock enables are implied for the signals 
cs and state.  The clock enable for cs is inferred by not making an assignment to cs in the state 
init.  The clock enable for the signal state is inferred by not defining all possible branches for the 
if-then-else statement, highlighted in red.  When the if-then-else condition is false, state must 
hold its current value.  Clock  enables are inferred for these conditions when they are in a 
clocked process.  For a combinatorial process, it would infer latches. 
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Figure B-20  Clock Enable Inference 

B.5.10  Rules for Clock Enable Inference 

Clock enables can only be inferred in a clocked process. 

Clock enables can be inferred explicitly by testing an enable signal.  If the enable is true, the 
signal is updated.  If enable is false, that signal will hold its current value. 

Clock enables can be implicitly inferred two ways: 

Not assigning to a signal in every branch of an if-then-else statement or case statement.  
Remember that latches will be inferred for this condition in a combinatorial process (see section 
5, Inadvertent latch Inference). 

Not defining all possible states or branches of an if-then-else or case statement. 

Pipelining with SRL 

In Xilinx FPGAs, there is an abundance of registers; there are two registers per slice.  This is 
sufficient for most registered signals.  However, there are times when multiple pipeline delays 
are required at the end of a path.  When this is true, it is best to use the Xilinx SRL (Shift 
Register LUT).  The SRL uses the LUT as a shiftable RAM to create the effect of a shift register.  
In Figure B-21an example of how to infer the SRL is shown.  This will infer a shift register with 
16 shifts (width = 4).  Although this will infer registers for an ASIC, it will infer the SRL when 

process (clk)  -- Explicit inference of a clock enable
  begin  -- process
      if rising_edge(clk) then
          if tc  = '1' then
               cnt <= cnt + ‘1’;
          end if;
      end if;
  end process;

process (clk, reset)  -- Implicit inference of a clock enable
  begin  -- process
    if reset = '1' then
        state <= (others => '0');
        cs <= "00";
    elsif rising_edge(clk) then
        case (state) is
            when init => -- inference of a clock enable for signal cs
                 state <= load;
            when fetch =>
                  if (a = '1' and b = '1') then  -- inference of a clock enable for signal state
                      state <= init;
                  end if;
                  cs <= "11";
             when others => null;
        end case;
    end if;
  end process;
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you are targeting a Xilinx part.  The behavior that is required to infer the SRL is highlighted in 
blue.  The size could be made parameterizable by using constants to define the signal widths.  It 
could also be made into a procedure with parameterized widths and sizes. 

library ieee ;
use ieee.std_logic_1164.all ;

entity srltest is
  port(clk, en : in  std_logic ;
       din : in std_logic_vector(3 downto 0);
       dout : out std_logic_vector(3 downto 0)) ;
end srltest ;

architecture rtl of srltest is
    type srl_16x4_array is array (15 downto 0) of std_logic_vector(3 downto 0);
    signal sreg  : srl_16x4_array ;
begin
  dout   <= sreg(15) ;  -- read from constant location
  srl_proc : process (clk, en)
  begin
      if rising_edge(clk) then

  if (en = '1') then
      sreg <= sreg(14 downto 0) & din ; -- shift the data

--  Current Value sreg (15:1)  sreg(0)
--  Next Value     sreg  (14:0)   din

  end if;
      end if;

 
Figure B-21  Inference of Xilinx Shift Register LUT (SRL) 

B.5.11  Rules for SRL Inference 

No reset functionality may be used directly to the registers. 

If a reset is required, the reset data must be supplied to the SRL until the pipeline is filled with 
reset data. 

You may read from a constant location or from a dynamic address location.  In Xilinx Virtex -II 
parts, you may read from two different locations: a fixed location and a dynamically addressable 
location. 

B.5.12  Technology-Specific Logic Generation – Generate Statements 

This section has outlined ways that Xilinx-specific coding will differ from other solutions.  
Because many styles may exist for a similar block of code (for example a multiplexer), to get the 
optimal implementation, use VHDL generate statements.  This is the best solution for a couple of 
reasons.  Although configuration statements are commonly used to guide the synthesis of 
multiple implementation styles, some synthesis tools currently do not fully support them.  Also, 
with generate statements, a change to a single constant will change the type of logic generated 
(ASIC or FPGA). 

An example of using generate statements was covered in section 3, in the Figure B-12. 
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B.6   CODING FOR SYNTHESIS 

The main synthesis issues involve coding for minimum logic level implementation (i.e., coding 
for speed, max frequency); inadvertent logic inference; and fast, reliable, and reusable code. 

B.6.1  Synchronous Design 

The number one reason that a design does not work in a Xilinx FPGA is that the design uses 
asynchronous techniques.   To clarify, the primary concern is asynchronous techniques used to 
insert delays to align data, not crossing clock domains.  Crossing clock domains is often 
unavoidable, and there are good techniques for accomplishing that task via FIFOs.  There are no 
good techniques to implement an asynchronous design.  First, and most important, the actual 
delay can vary based on the junction temperature.  Second, for timing simulations, Xilinx 
provides only maximum delays.  If a design works based on the maximum delays, this does not 
mean that it will work with actual delays.  Third, Xilinx will stamp surplus –6 (faster) parts with 
a –5 or –4 (slower speed) speed-grade.  However, if the design is done synchronously there will 
be no adverse effects. 

B.6.2  Clocking 

In a synchronous design, only one clock and one edge of the clock should be used.  There are 
exceptions to this rule.  For example, by utilizing the 50/50 duty-cycle correction of the 
DCM/DLL, in a Xilinx FPGA you may safely use both edges of the clock because the duty-cycle 
will not drift. 

Do not generate internal clocks.  Primarily, do not generate gated clocks because these clocks 
will glitch, propagating erroneous data.  The other primary problems with internally generated 
clocks are clock-skew related problems.  Internal clocks that are not placed on a global clock 
buffer will incur clock skew, making it unreliable.  Replace these internally generated clocks 
with either a clock enable signal or generate divided, multiplied, phase shifted, etc.  clocks with a 
clock generated via the DCM/DLL. 

B.6.3  Rules for Clock Signals 

Use one clock signal and one edge. 

Do not generate internal clock signals because of glitching and clock-skew related problems. 

B.6.4  Local Synchronous Sets and Resets 

Local synchronous sets and resets eliminate the glitching associated with local asynchronous sets 
and resets.  An example of such a problem is associated with the use of a binary counter that 
does not use the maximal binary count.  For example, a four-bit binary counter has 16 possible 
binary counts.  However, if the design calls only for 14 counts, the counter needs to be reset 
before it has reached its limit.  An example of using local asynchronous resets is highlighted in 
red in Figure B-22.  A well-behaved circuit is highlighted in blue, in the Figure B-23.  For the 
binary counter that is using a local asynchronous reset, there will be glitching associated with the 
binary transitions, which will cause the local asynchronous reset to be generated.  When this 
happens, the circuit will propagate erroneous data. 
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Figure B-22  Local Asynchronous Reset and TC & Well-Behaved Synchronous 

Reset & CE 

 
Figure B-23  Well Behaved Local Asynchronous Reset and TC & Well-Behaved 

Synchronous Reset & CE 

-- Asynchronous local reset and internally generated clock
process (clk, reset, cnt_reset)
begin  -- process
-- global and local async. reset
    if (reset = '1' or cnt_reset = '1') then

tc <= '0';
cnt <= "0000";

    elsif rising_edge(clk) then
if cnt = "1110" then
    cnt_reset <= '1';
    tc <= '1';
else
    cnt <= cnt + 1;
    tc <= '0';
    cnt_reset <= '0';
end if;

    end if;
end process;
-- internally generated clock - tc
process (tc, reset)  
begin  -- process
    if reset = '1' then

data_en <= (others => '0');
    elsif rising_edge(tc) then

data_en <= data;
    end if;

-- Synchronous Local reset and clock enable use
process (clk, reset)
    variable tc : std_logic := '0';
begin  -- process
    if reset = '1' then  -- global asynchronous reset

cnt <= "0000";
data_en <= (others => '0');

    elsif rising_edge(clk) then
       if cnt = "1110" then

   cnt <= "0000";   -- local synchronous reset
  data_en <= data;  -- terminal count clock enable

       else
   cnt <= cnt + '1';
   tc := '0';

       end if;
    end if;
end process;
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B.6.5  Rule for Local Set or Reset Signals 

A local reset or set signal should use a synchronous implementation. 

Pipelining 

Pipelining is the act of inserting registers into one path to align that data with the data in another 
path, such that both paths have an equal amount of latency.  Pipelining may also decrease the 
amount of combinatorial delay between registers, thus increasing the maximum clock frequency.   
Pipelines are often inserted at the end of a path by using a shift register implementation.  Shift 
registers in Xilinx’s Virtex  parts are best implemented in the LUT as an SRL, as described in 
section B.4.  Signal naming for pipelined signals is covered in section B.1. 

Registering Leaf-Level Outputs and Top-Level Inputs 

A very robust technique, used in synchronous design, is registering outputs of leaf-levels (sub-
blocks).  This has several advantages: 

 No optimization is needed across hierarchical boundaries. 

 Enables the ability to preserve the hierarchy. 

 Bottom-up compilation. 

 Recompile only those levels that have changed. 

 Enables hierarchical floorplanning. 

 Increases the capability of a guided implementation. 

 Forces the designer to keep like-logic together. 

Similarly, registering the top-level inputs decreases the input to clock (ti2c) delays; therefore, it 
increases the chip-to-chip frequency. 

B.6.6  Rules for the Hierarchical Registering of Signals 
 Register outputs of leaf-level blocks. 

 Register the inputs to the chip’s top-level. 

B.6.7  Clock Enables 

The use of clock enables increases the routability of a Xilinx implementation and maintains 
synchronous design.  The use of clock enables is the correct alternative to gated clocks. 

Clock enables increase the routability of the design because the registers with clock enables will 
run at a reduced clock frequency.  If the clock enable is one-half the clock rate, the clock enabled 
datapaths are placed-and-routed once the full clock frequency paths have been placed-and-
routed.  The clock enable should have a timing constraint placed on it so that the Xilinx 
implementation tools will recognize the difference between the normal clock frequency and the 
clock-enabled frequency.  This will place a lower priority on routing the clock-enabled paths. 

Gated clocks will introduce glitching in a design, causing incorrect data to be propagated in the 
data stream.  Therefore, gated clocks should be avoided. 
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Using signals generated by sequential logic as clocks is a common error.  For example, you use a 
counter to count through a specific number of clock cycles, producing a registered terminal 
count.  The terminal count is then used as a clock to register data.  This internal clock is routed 
on the general interconnect.  The skew on internally generated clocks can be so detrimental that 
it causes errors.  This may also cause race conditions if the data is resynchronized with the 
system clock.  This error is illustrated in Figure B-23.  The text highlighted in red is the 
implementation using the terminal count as a clock. 

Instead, generate the terminal count one count previous, and use the terminal count as a clock 
enable for the data register.  The text highlighted in blue is the well-behaved implementation 
using the terminal count as a clock enable.  An explanation of the reset signals is covered in the 
next section B.5. 

It may be useful to generate clock enables by using a state machine.  The state machine can be 
encoded at run time by the synthesis tool.  Thus a one-hot, gray, or Johnson encoding style could 
be used.  It is also possible to produce precisely placed clock enables by using a linear feedback 
shift register (LFSR), also known as a pseudo-random bitstream generator (PRBS generator).  
Xilinx provides application notes on the use of LFSRs. 

Clock enables for Xilinx implementations are further discussed in section 4. 

B.6.8  Rules for Clock Enable 

Use clock enables in place of gated clocks. 

Use clock enables in place of internally generated clocks. 

Finite State Machines 

Coding for Finite State Machines (FSM) includes analyzing several tradeoffs. 

B.6.9  Encoding Style 

Enumerated types in VHDL allow the FSM to be encoded by the synthesis tool.  However, the 
encoding style used will not be clearly defined in the code but rather in the synthesis tool.  
Therefore,  good documentation should be provided -- stating specifically which encoding style 
was used.  By default, most synthesis tools will use binary encoding for state machines with less 
than five states: one-hot for 5 to 24 states and gray for more than 24 states (or similar).  
Otherwise, synthesis will use one-hot encoding.  One-hot encoding is the suggested 
implementation for Xilinx FPGAs because Xilinx FPGAs have abundant registers.  Other 
encoding styles may also be used -- specifically gray encoding.  For a gray-encoding style, only 
one-bit transitions on any given state transition (in most cases); therefore, less registers are used 
than for a one-hot implementation, and glitching is minimized.  The tradeoffs for these encoding 
styles can easily be analyzed by changing a synthesis FSM attribute and running it through 
synthesis to get an estimate of the timing.  The timing shown in synthesis will most likely not 
match the actual implemented timing; however, the timing shown between the different encoding 
styles will be relative, therefore providing the designer a good estimate of which encoding style 
to use. 
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Another possibility is to specifically encode the state machine.  This is easily done via the use of 
constants.  The code will clearly document the encoding style used.  In general, one-hot is the 
suggested method of encoding for FPGAs -- specifically for Xilinx.  A one-hot encoding style 
uses more registers, but the decoding for each state (and the outputs) is minimized, increasing 
performance.  Other possibilities include gray, Johnson (ring-counter), user-encoded, and binary.  
Again, the tradeoffs can easily be analyzed by changing the encoding style and synthesizing the 
code. 

Regardless of the encoding style used, the designer should analyze illegal states.  Specifically, 
are all the possible states used?  Often, state machines do not use all the possible states.  
Therefore, the designer should consider what occurs when an illegal state is encountered.  
Certainly, a one-hot implementation does not cover all possible states.  For a one-hot 
implementation, many illegal states exist.  Thus, if the synthesis tool must decode these states, it 
may become much slower.   The code can also specifically report what will happen when an 
illegal state is encountered by using a “when others” VHDL case statement.  Under the “when 
others” statement, the state and all outputs should be assigned to a specific value.  Generally, the 
best solution is to return to the reset state.  The designer could also choose to ignore illegal states 
by encoding “don’t care” values (‘X’) and allow the synthesis tool to optimize the logic for 
illegal states.  This will result in a fast state machine, but illegal states will not be covered. 

B.6.10  Rules for Encoding FSMs 

For enumerated-types, encode the state machine with synthesis-specific attributes.  Decide if the 
logic should check for illegal states. 

For user-encoded state machines, the designer should analyze whether the logic should check for 
illegal states or not, and the designer should accordingly write the “when others” statement.  If 
the designer is concerned with illegal states, the state machine should revert to the reset state.  If 
the designer is not concerned with illegal states, the outputs and state should be assigned "X" in 
the “when others” statement. 

Xilinx suggests using one-hot encoding for most state machines.  If the state machine is large, 
the designer should consider using a gray or Johnson encoding style and accordingly analyze the 
tradeoffs. 

B.6.11  FSM VHDL Processes 

Most synthesis tools suggest coding state machines with three process statements: one for the 
next state decoding, one for the output decoding, and one for registering of outputs and state bits.  
This is not as concise as using one process statement to implement the entire state machine; 
however, it allows the synthesis tools the ability to better optimize the logic for both the outputs 
and the next-state decoding.  Another style is to use two processes to implement the state 
machine: one for next state and output decoding and the other process for registering of outputs 
and state bits. 

The decision to use one, two, or three process statements is entirely left up to the discretion of 
the designer.  Moore state machines (output is dependent only on the current state) generally 
have limited decoding for the outputs, and the state machine can, therefore, be safely coded with 
either one or two process statements.  Mealy state machine (outputs depend on the inputs and the 
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current state) output decoding is generally more complex, and, therefore, the designer should use 
three processes.  Mealy state machines are also the preferred style for FSMs because it is 
advantageous to register the outputs of a sub-block (as described above in section 5).  Mealy 
state machines will have the least amount of latency with registered outputs.  Mealy state 
machines can be used with a look-ahead scheme.  Based on the current state and the inputs, the 
outputs can be decoded for the next state.  For simple state machines where the output is not 
dependent on the inputs, a Moore implementation is equivalent to a look-ahead scheme.  That is, 
the outputs can be decoded for the next state and appropriately registered to reflect the next state 
(rather than reflecting the current state).  The purpose of this scheme is to introduce the least 
amount of latency when registering the outputs. 

B.6.12  Rules for FSM Style 

Generally, use three process statements for a state machine: one process for next-state decoding, 
one for output decoding, and one for the registering of state bits and outputs. 

Use a Mealy look-ahead state machine with registered outputs whenever possible, or use a 
Moore state machine with next-state output decoding and registered outputs to incur the 
minimum amount of latency. 

B.6.13  Logic Level Reduction 

To minimize the number of cascaded logic levels, we need to follow a few simple rules of 
coding. 

B.6.14  If-Then-Else and Case Statements 

If-then-else and case statements can cause unwanted effects in a design.   Specifically, nested If-
then-else and case statements may cause extra levels of logic inference.  This occurs because if-
then-else statements generally infer priority-encoded logic.  However, one level of an if-then-else 
will not necessarily create priority-encoded logic.  For that matter, synthesis tools generally 
handle if-then-else or case statements very well and create parallel logic rather than priority 
encoded logic. 

Often, a nested if statement can be combined in the original if statement and result in a reduced 
amount of inferred logic.  A simple example is shown in Figure B-24, which shows how priority 
encoded logic creates cascaded logic.  Nested case statements can have the same effect, as can 
the combination of nested case and if-then-else statements.  

Priority-encoded logic can be generated for other reasons.  The use of overlapping conditions in 
if-then-else branches causes the generation of priority-encoded logic.  This condition should be 
avoided.  There are times that priority-encoded logic must be used and may be intended.  If the 
selector expressions in the if-then-else statement branches are not related, then priority-encoded 
logic will be created.  Although this may be the intent, its use should be cautioned. 
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Figure B-24  Priority Encoded Logic 

B.6.15  Rules for If-Then-Else and Case Statements 

Limit the use of nested if-then-else and case statements. 

Avoid overlapping conditions in if-then-else statements – this condition will infer priority-
encoded logic. 

Avoid using mutually exclusive branch expressions if possible.  This condition will always infer 
priority-encoded logic. 

Instead, use mutually exclusive if-then statements for each expression (if possible). 

B.6.16  For Loops 

Similar to the use of if-then-else and case statements, "for loops" can create priority-encoded 
logic.  While for loops can be a very powerful tool for creating logic, the designer should 
evaluate their effects. 

A simple example of the adverse effect of for loops is shown in Figure B-25.  Fortunately, this is 
a situation that most tools handle well, but in our goal of creating reusable (portable) code, this 
situation should be avoided. 
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Figure B-25 For-Loop Cascaded Logic Implementation 

B.6.17  Rule for Loops 

Be cautious of using for loops for creating logic.  Evaluate the logic created by the synthesis tool.  
There will likely be another way to write the code to implement the same functionality with the 
logic implemented in parallel. 

Inadvertent Latch Inference 

Inadvertent latch inference is a common problem that is easily avoided.  Latches are inferred for 
two primary reasons: one, not covering all possible branches in if-then-else statements and two, 
not assigning to each signal in each branch.  This is only a problem in a combinatorial process.  
For a clocked process, registers with clock enables are synthesized (as covered in the Xilinx 
Specific Coding section, section B.4). 

A latch inference example for each of these cases is shown in Figure B-26.  For section one, each 
possible state was not covered.  This is a very common mistake for one-hot encoded state 
machines.  Section one is an example of Moore FSM output decoding.  The latch inference 
would be eliminated by the use of a final "else" statement with an assignment in that branch to 
the signal "cs."  

For the second section of code, the latches are inferred because each signal is not assign in each 
state. 

In Figure B-27, the inference of latches is eliminated by covering all possible branches and 
assigning to each signal in each branch.  The fixes are highlighted in blue.  For the case 
implementation, the default assignment to cs before the case statement specifies a default 
assignment for each state.  This way, each bit is changed depending on the state.  This is 
equivalent to making a signal assignment in each branch.  For the if-then-else statement, adding 
the else clause solves the problem. 

 

process (data_vec)
   variable parity_v : std_logic;
begin
parity_v := ‘0’;
for i in data_vec’range loop
    parity_v := parity_v xor data_vec(i);
end loop;
parity <= parity_v;
end process;

parity

[0]

loop1_parity_v_4

[1]

loop2_parity_v_3

[2]
[3]

parity
data_vec[3:0] [3:0]

Downloaded from http://www.everyspec.com



NASA-HDBK 8739.23 with change 1 

Material presented in Appendix B is based on or adapted from figures and text 
copyrighted by Xilinx, Inc., and used with permission. 

143 of 143 

 
Figure B-26  Latch Inference 

 
Figure B-27  Elimination of Inadvertent Latch Inference 

B.6.18  Rules for Avoidance of Latch Inference 

Cover all possible branches. 

Assign to all signals at all branches. 

-- (1) Did not specify each possible state
process (state)
begin
if state = “001” then
    cs <= “01”;
elsif state = “010” then
    cs <= “10”;
elsif state = “100” then
   cs <= “11”;
end if;
end process;

-- (2) Did not specify all possible
-- outputs for each state
process (state)
  begin
    case (state) is
      when "001" =>
        cs(0) <= '1';
      when "010" =>
        cs(1) <= '1';
      when "100" =>
        cs(1 downto 0) <= "11";
      when others =>
        cs(1 downto 0) <= "00";
    end case;
  end process;

latrs

cs_1[1]

0 D
0 C [1]QR

S

latrs

cs_1[0]

0 D
0 C [0]QR

S

un1_un2_state_2

0

1

[2]

un1_un2_state_1

0

1

[2]

un3_state

[0]
[1]
[2]

un1_un2_state

[1]
[0]

un2_state_2

[0]
[1]

un2_state_1

[1]
[0]

un1_state

[0]
[1]
[2]

cs[1:0][1:0]

state[2:0] [2:0]

-- (1) Fixed Case implementation      (2) Fixed if-then-else implementation
process (state)                                    process (state)
  begin                                                 begin
    cs <= "00";                                           if state = "001" then
    case (state) is                                         cs <= "01";
      when "001" =>                                       elsif state = "010" then
        cs(0) <= '1';                                       cs <= "10";
      when "010" =>                                       elsif state = "100" then
        cs(1) <= '1';                                       cs <= "11";
      when "100" =>                                       else                     
        cs <= "11";                                         cs <= "00";
      when others =>                                      end if;
        cs <= "00";                                     end process;
    end case;
  end process;
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