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NASA COMPLEX ELECTRONICS HANDBOOK FOR 
ASSURANCE PROFESSIONALS 

 
1 OVERVIEW 

1.1 Purpose 

What devices are “complex electronics” and which are not? Complex electronics (CE) 
encompasses programmable and designable complex integrated circuits.  “Programmable” logic 
devices (PLDs) can be programmed by the user and range from simple chips to complex devices 
capable of being programmed on-the-fly.  Some types of programmable devices this handbook 
will address are: 

 Field Programmable Gate Array (FPGA), 

 Complex Programmable Logic Device (CPLD), 

 Application-Specific Integrated Circuit (ASIC), and 

 System-on-chip (SoC). 

“Designable” logic devices are integrated circuits that can be designed but not programmed by 
the user.  The design is submitted to a manufacturer for implementation in the device.  ASICs are 
an example of a designable device. 

Development of assurance methodologies for complex electronics is lagging behind the pace of 
the technology.  Complex electronics are commonly used within NASA systems, sometimes in 
safety-critical systems.  Both software assurance and quality assurance engineers need to 
understand what these devices are, where they are used, and how they are designed.  This 
handbook provides guidance that, if applied, may increase confidence in the quality of complex 
electronic devices. 

1.2 Scope 

This handbook provides an overview of complex electronics, the design process, and assurance 
activities.  It does not assume to be comprehensive to specific product types or manufactures. It 
discusses: 

 What each device is and examples of use on NASA projects. 

 How electronics engineers design and program the devices. 

 What assurance and verification activities can be used for complex electronics. 

 Trends in the design and assurance of complex electronics. 

Additional assurance activities for complex electronics devices may be required in the future.  
While this handbook will not prepare QA to perform those activities, it provides a general 
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understanding of the devices and the design and assurance activities.  It enables QA to “speak the 
language” when communicating with the hardware design engineers. 

1.3 Anticipated Audience 

This handbook is primarily intended for quality assurance engineers.   

System safety personnel are encouraged to review this handbook.  Modern technology, 
especially electronics, is changing at a rapid pace.  Projects and systems are using these devices 
or derivatives of them. 

Software and electronic engineers are encouraged to review this handbook.  An understanding of 
the concepts, device design and assurance activities discussed in the handbook may be helpful in 
supporting projects and systems. 

A hardware background is not needed to understand the material in this handbook. However, 
being familiar with embedded systems or flight hardware may be helpful in understanding some 
of the concepts. People designing/debugging the hardware will require that level of expertise. 
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As a quality assurance engineer, you may be wondering what your role may be.  Since quality 
assurance encompasses process assurance, quality assurance engineers are well versed in the 
ideas and concepts.  What is lacking is the knowledge to assess complex electronics.  In order to 
effectively carry out assurance duties for complex electronic hardware, a quality assurance 
engineer must understand 1) the hardware itself, 2) the process and language used to design the 
device and 3) how and when to apply software-style assurance techniques to the device. 

This handbook is one step in educating NASA quality assurance and system safety engineers on 
the design and verification of complex electronics.  By itself, this handbook will not make you an 
expert able to perform assurance of the devices.  The goal of this handbook is to provide a broad 
understanding of complex electronics and the benefits and drawbacks/issues that need to be 
discussed and understood by the whole project team.  In addition, this handbook was designed to 
provide the knowledge needed to better apply quality product and process assurance to these 
devices. The use of a SME (Subject Matter Expert) or Hardware Engineer to assist, or perform, 
various suggestions in this handbook is recommended.  

1.4 Handbook Layout 

Section 1 provides the purpose, scope, and layout for the handbook. 

Section 2 provides a list of reference documents and useful links. 

Section 3 provides definitions and acronyms used in this handbook. 

Section 4 gives an overview of complex electronics, describes why assurance engineers need to 
be aware of complex electronics and details some concerns and issues with the current state of 
assurance activities. 

Section 5 describes the quality assurance process for complex electronics.  A short explanation 
of various process assurance activities is discussed. 

Section 6 describes the design process for complex electronics.  A short explanation of hardware 
description languages, along with a simple example, is included. 

Section 7 provides information on activities that can occur for PLDs that are being supplied to 
NASA. 

Section 8 discusses metrics for assessing the qualityof complex electronics. 

Section 9 provides information on supporting processes. 

Section 10 discusses some future trends in design and assurance of complex electronics. 

Appendix A discusses the History of Complex Electronics. 

Appendix B discusses Hardware Description Languages (HDL). 
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Appendix C describes each of the types of complex electronics in detail. 

Appendix D contains the Hardware Description Language Coding Standard from Xilinx. 

 

2 REFERENCE DOCUMENTS AND LINKS 

2.1 Reference Documents 

The latest issuance of cited documents should be used unless otherwise stated in this handbook.  
The reference documents are accessible via the NASA Online Directives Information System at 
http://nodis3.gsfc.nasa.gov/ or directly from the Standards Developing Organizations (SDO) or 
other document distributors. 

2.1.1 Government Documents 

NASA Documents: 

NPR 7123.1 NASA Systems Engineering and Process Requirements 

NPR 8715.3 NASA General Safety Program Requirements 

NASA-STD 8709.22 Safety and Mission Assurance Acronyms, Abbreviations, and 
Definitions 

NASA-HDBK-4008 Programmable Logic Devices (PLD) Handbook 
https://standards.nasa.gov/documents/detail/3315901 

Goddard Space Flight Center (GSFC): 

300-PG-8730.0.1 GSFC Assurance Activities for Digital Electronics for 
Spacecraft, Instruments, and Launch Vehicles 
 
500-PG-8700.2.7 GSFC Design of Space Flight Field-Programmable Gate 
Arrays 
 
500-PG-8700.2.8 GSFC Field-Programmable Gate Array (FPGA) Development 
Methodology 

Other Government Documents: 

DO-254 Design Assurance Guidance for Airborne Electronic Hardware (Federal 
Aviation Administration (FAA)) 

MIL-STD-882D Standard Practice for System Safety (Department of Defense (DoD)) 
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2.1.2 International Standards 

Institute of Electrical and Electronics Engineers (IEEE) 

IEEE 1194.1-1990 IEEE Standard Test Access Port and Boundary Scan Architecture 
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3 DEFINITIONS AND ACRONYMS 

3.1 Definitions 

Note:  Definitions for safety and mission assuranceterms are found in NASA-STD 
8709.22, Safety and Mission Assurance Acronyms, Abbreviations, and Definitions.  
Terms unique to this NASA-Handbook are listed below. 

Adequate:  When referring to fire protection or life safety, the safeguards necessary to provide 
facilities and their occupants with protection against all known or recognized hazards. 

Antifuse:  An electrical device that performs the opposite function as a fuse.  Antifuses are 
widely used to permanently program integrated circuits (ICs) by creating an electrical 
connection. 

Application Specific Integrated Circuit (ASIC):  Integrated circuit product customized for a 
single application. 

Architecture:  The common logic structure of a family of programmable integrated circuits.  The 
same architecture may be realized in different manufacturing processes. 

Artifact:  One of many kinds of tangible byproducts produced during the development of the 
product. These could include items such as documentation, designs, HDL or review information.  

Asynchronous:  A signal whose data is acknowledged or acted upon immediately, irrespective of 
any clock signal. 

Boundary scan:  A methodology allowing complete controllability and observability of the 
boundary pins of a JTAG (Joint Test Action Group)-compatible device via software control.  
This capability enables in-circuit testing without the need of in-circuit test equipment. 

Cell Library: The collective name for the set of logic functions defined by the manufacturer of an 
ASIC.  The designer decides which types of cells should be realized and connected together to 
make the device perform its desired function. 

Chip:  Another name for an integrated circuit. 

Codec:  Short for compressor/decompressor or coder/decoder, a codec is any technology for 
compressing and decompressing data.  Codecs can be implemented in software, hardware, or a 
combination of both.   

Combinatorial:  A digital function whose output value is directly related to the current 
combination of values on its inputs.  It is also known as combinational. 

Comparator (digital):  A logic function that compares two binary values and outputs the results 
in terms of binary signals representing less-than and/or equal-to and/or greater-than. 
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Complex Programmable Logic Device (CPLD):  Programmable logic devices characterized by 
an architecture offering high speed, predictable timing, and simple software. 

Configurable/Complex Logic Block (CLB):  The array of multi-input and multi-output logic cells 
to be programmed.  CLB is a configurable logic block that consists mainly of Look-up Tables 
(LUTs) and flip-flops. 

Cores:  In the semiconductor design industry, refers to predefined functions such as processors 
or bus interfaces that are typically licensed from the software developer.  Cores can be 
implemented directly in silicon, either in fixed logic or programmable logic devices.This saves 
chip designer’s time during product development.  (Synonymous with Intellectual Property) 

Die:  An unpackaged integrated circuit.  The plural of “die”can be “die”, “dice” or “dies”. 

Digital Signal:  A signal whose key characteristic (e.g., voltage or current) fall into discrete 
ranges of values.  Most digital systems utilize two voltage levels (low and high values). 

Digital Signal Processor (DSP):  A specialized central processing unit (CPU) used for digital 
signal processing of signals such as sound, video, and other analog signals which have been 
converted to digital form.  Some uses of DSP are to decode modulated signals from modems; to 
process sound, video, and images in various ways; and to understand data from sonar, radar, and 
seismological readings. 

Electrically-Erasable Programmable Read-Only Memory (EEPROM):  A memory device whose 
contents can be electrically programmed by the designer.  Additionally, the contents can be 
electrically erased allowing the device to be reprogrammed. 

Electro-Static Discharge (ESD):  The term electro-static discharge refers to a charged person, or 
object, discharging static electricity.  Although the current associated with such a static charge is 
low, the electric potential can be in the millions of volts and can severely damage electronic 
components. 

Erasable Programmable Read-Only Memory (EPROM):  A memory device whose contents can 
be electrically programmed by the designer.  Additionally, the contents can be erased by 
exposing the die to ultraviolet light through a quartz window mounted in the top of the 
component's package. 

Falling-Edge:  A transition from logic 1 to logic 0.  Also known as a negative edge. 

Field Programmable Gate Array (FPGA):  High density PLD containing small logic cells 
interconnected through a distributed array of programmable switches.  This type of architecture 
produces statistically varying results in performance and functional capacity, but offers high 
register counts.  Programmability typically is via volatile SRAM (Static Random Access 
Memory) or one-time-programmable antifuses. 

Firmware:  The combination of a hardware device and computer instructions and/or computer 
data that reside as read-only software on the hardware device. 
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First-in first-out (FIFO):  Data structure or hardware buffer where items come out in the same 
order they came in. 

Flash memory:  Non-volatile storage device similar to EEPROM, but where erasing can only be 
done in blocks or the entire chip. 

Flip-flop:  A digital logic circuit that can be switched back and forth between two states. 

Floorplanning: The process of identifying structures that should be placed close together on a 
chip, and allocating space for them.   

Fuse:   An electrical connection/trace that breaks connection at a designed limit.  Fuses are 
widely used to permanently program integrated circuits by opening an electrical connection. 

Gate:  In electronic circuitry, a pathway that may be open or closed, depending on the source of 
the input, the strength of a signal, or the conductivity of chemicals used in semiconductors.  
Logic gates are programmed to correspond to related "if-then" statements.  The state of an open 
or closed gate is analogous to the binary state of a 0 or a 1.  The application of this analogy 
allows computing machinery with millions of gates to respond conditionally and to perform 
logical functions. 

Gate Array: Integrated circuit that is customized by interconnecting an array of logic elements.  
Customization is performed by the manufacturer and typically involves non-recurring 
engineering costs and several design iterations. 

Glue:  Generic term for any interface logic or protocol that connects two component blocks.  
Hardware designers call anything used to connect large VLSIs or circuit blocks "glue logic." 

Hardware Description Language (HDL):  A kind of language used for the conceptual design of 
integrated circuits.  Examples are VHDL and Verilog. 

Integrated Circuit (IC):  A device in which components such as resistors, capacitors, diodes, and 
transistors are formed on the surface of a single piece of semiconductor. 

In-Circuit Reconfigurable (ICR):  An SRAM-based or similar component which can be 
dynamically reprogrammed on-the-fly while remaining resident in the system. 

In-System Programmable (ISP):  An EEPROM-based, Flash-based, or similar component which 
can be reprogrammed while remaining resident on the circuit board. 

JHDL:  A structurally based hardware description language implemented with the Java 
programming language.  JHDL is a method of describing (programmatically, in Java) the 
components and connections in a digital logic circuit.  More specifically, JHDL provides object 
classes used to build up circuit structure. 

Joint Electronic Device Engineering Council (JEDEC):  A council which creates, approves, 
arbitrates, and oversees industry standards for electronic devices.  In programmable logic, the 
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term JEDEC refers to a textual file containing information used to program a device.  The file 
format is a JEDEC approved standard and is commonly referred to as a JEDEC file. 

Joint Test Action Group (JTAG):  (or "IEEE Standard 1149.1").  A standard specifying how to 
control and monitor the pins of compliant devices on a printed circuit board.  JTAG is a standard 
interface used for in-system testing and debugging. 

Logic:  One of the three major classes of integrated circuits in most digital electronic systems.  
The other two major classes are microprocessors and memory.  Logic is used for data 
manipulation and control functions that require higher speed than a microprocessor can provide. 

Logic Function:  A mathematical function that performs a digital operation on digital data and 
returns a digital value. 

Logic Gate:  The physical implementation of a logic function. 

Logic Synthesis:  A process in which a program is used to optimize the logic used to implement a 
design. 

Look-Up Table (LUT):  An array or matrix of values that contains data that is searched.  An 
alternative implementation of a CLB; the multiple inputs generate the complex outputs. 

Macrocell:  A macrocell on most modern CPLDs contains a sum-of-products combinatorial logic 
function and an optional flip-flop.  The combinatorial logic function typically supports four to 
sixteen product terms with wide fan-in.  Thus, a macrocell may have many inputs, but the logic 
function complexity is limited.  On the other hand, most FPGA logic blocks have unlimited 
complexity, but the logic function only has four inputs. 

Mapping:  The process oftaking the logic blocks and determining what logic gates and 
interconnections on the device should be used to implement those blocks.   

Netlist:  A list of names of symbols or parts and their connection points, which are logically 
connected in each net of a circuit.  A file listing parameters extracted from a circuit schematic. 

Noise:  The random fluctuations of electrical energy added to a signal on its journey through a 
circuit. Noise can be caused by capacitive or inductive coupling, or from externally generated 
interference. 

Non-volatile:  The ability of a memory element to keep its contents when power is removed from 
the device. 

Onboard:  Contained on the device or on the board. 

One Time Programmable:  A device which can be programmed only once; its contents cannot be 
changed.  While typically these devices are fuse or antifuse based, they can also be low-cost 
EPROM devices.  In this case, typically used for production devices, an inexpensive package is 
used without a window. 
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Partial Reprogrammability:  The ability to leave some internal logic in place and change another 
part of the FPGA logic. 

Pinout:  A diagram indicating how wires are terminated to pins in a connector; a list assigning 
device functions to specific pins. 

Place and Route:  A software program which converts the results of the synthesis process to the 
format supported and takes the logic blocks and determines what logic gates and 
interconnections on the device should be used to implement those blocks. 

Process Audit:  An objective examination of a work product or set of work products against 
specific criteria. 

Programmable Logic:  A logic element whose function is not restricted to a particular function.  
It may be programmed at different points of the life cycle.  At the earliest, it is programmed by 
the semiconductor vendor (standard cell, gate array), by the designer prior to assembly, or by the 
user in circuit. 

Programmable Logic Controller (PLC):  A control device usually used in industrial control 
applications that employ the hardware architecture of a computer and relay ladder diagram 
language.  Inputs to PLC’s can originate from many sources including sensors and the outputs of 
other logic devices.  The PLC is also called a "programmable controller." 

Reconfigurable Computing:  A methodology of using programmable logic devices in a system 
design such that the hardware-based logic can be changed to perform various tasks.  Benefits 
include the use of fewer components, less power, and flexibility.  Also allows networked 
equipment in the field to be upgraded or repaired remotely. 

Reprogrammable:  Devices which can have their configuration loaded more than once.  (e.g. 
SRAM-based devices may be reloaded without restriction).  Many other forms of 
reprogrammable elements have restrictions on the number of write cycles, although they are high 
enough not to be of practical concern for most applications. 

Rising-Edge:  A transition from a logic 0 to a logic 1, alsoknown as a positive edge. 

Register Transfer Level (RTL):  A description of a digitalelectronic circuit in terms of data flow 
between registers which store information between clock cycles in a digital circuit.  RTL 
description specifies what and where this information is stored and how it is passed through the 
circuit during its operation.  It is also called Register Transfer Logic. 

Sensor:  A transducer that detects a physical quantity and converts it into a form suitable for 
processing.  For example, a microphone is a sensor which detects sound and converts it into a 
corresponding voltage or current. 

Standard Cell:  This device differs from the gate array since each cell may be different and 
optimized for each standard function.  There are no standard layers to the device and each layer 
of the chip is a unique design. 
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State Machine:  The actual implementation (in hardware or software) of a function that can be 
considered to consist of a set of states through which it sequences. 

Static Random Access Memory (SRAM):  A type of memory that is faster and more reliable than 
the more common DRAM (dynamic RAM).  The term static is derived from the fact that it 
doesn't need to be refreshed like dynamic RAM, but it loses its memory if it is powered off. 

Switch:  A device for making or breaking an electric circuit or for selecting between multiple 
circuits. 

Synchronous: 

(1) A signal whose data is not acknowledged or acted upon until the next active edge of a 
clock signal. 

(2) A system whose operation is synchronized by a clock signal. 

System-on-chip (SoC):  A complete product containing all the necessary electronic circuits and 
parts for a system on a single integrated circuit.  Also called “system-on-a-chip” or SoaC 

Trace:  A line or wire of conductive material – such as copper, silver, or gold – on the surface of, 
or sandwiched inside, a printed circuit board (PCB).  An individual trace is often called a run.  
Traces carry an electronic signal or other forms of electron flow from one point to another. 

Translation:  Converting the results of the synthesis process to the format supported internally by 
the chip vendor’s place-and-route tools.   

Truth Table:  A convenient way to represent the operation of a digital circuit as columns of input 
values and their corresponding output responses. 

Verilog:  A Hardware Description Language for electronic design and gate-level simulation. 

Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL):  A 
Hardware Description Language for electronic design and gate-level simulation. 

Via:  Feed-through.  A plated through-hole in a printed circuit board used to route a trace 
vertically in the board, that is, from one layer to another. 

Volatile:  A memory element that loses its contents when power is removed from the device.  
SRAM-based devices are volatile and require another device to store their configuration 
program. 
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3.2 Acronyms 

A/D Analog to Digital 
ABEL Advanced Boolean Equation Language 
ADC Analog to Digital Converter 
AIA Analog Interface ASIC 
ASIC Application Specific Integrated Circuit 
BIOS Basic Input/Output System 
CIA Command Interface ASIC 
CDR Critical Design Review 
CE Complex Electronics 
CEH Complex Electronic Hardware 
CLB Configurable/Complex Logic Block 
CM Configuration Management 
CMM Capability Maturity Model 
COT Customer-Owned Tooling 
COTS Commerical Off The Shelf 
CPLD Complex Programmable Logic Device 
CSoC Configurable System on Chip 
CUPL Cornell University Programming Language 
D/A Digital to Analog 
DSP Digital Signal Processor 
EELV Evolved Expendable Launch Vehicle 
EEPLD Electrically Erasable Programmable Logic Device 
EEPROM Electrically Erasable Programmable Read-Only Memory 
EHW Evolvable Hardware 
EPLD Erasable Programmable Logic Device 
EPROM Erasable Programmable Read-Only Memory 
FAA Federal Aviation Administration 
FIFO First In First Out 
FPGA Field Programmable Gate Array 
GAL Generic Array Logic 
GOES Geostationary Operational Environmental Satellite 
GPS Global Positioning System 
GUI Graphical User Interface 
HDL Hardware Description Language 
HESSI High Energy Solar Spectroscopic Imager 
I/O Input/Output 
IC Integrated Circuit 
ICD Interface Control Document 
IEEE Institute of Electrical and Electronics Engineers 
IP Intellectual Property 
ISS International Space Station 
IT Information Technology 
JEDEC Joint Electronic Device Engineering Council 
JHDL Java Hardware Description Language 
JTAG Joint Test Action Group 
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LUT Look-Up Table 
MAPLD Military-Aerospace Programmable Logic Devices (a yearly conference) 
MEMS Micro-Electro-Mechanical Systems 
MOS FET Metal-Oxide Semiconductor Field-Effect Transistor 
NRE Non-Recurring Engineering 
PAL Programmable Array Logic 
PCB Printed Circuit Board 
PCI Peripheral Component Interconnect  
PDA Personal Digital Assistant 
PDR Preliminary Design Review 
PL Programmable Logic 
PLA Programmable Logic Array 
PLC Programmable Logic Controller 
PLD Programmable Logic Device 
PROM Programmable Read-Only Memory 
QA Quality Assurance 
RAM Random Access Memory 
RC Reconfigurable Computing 
RF Radio Frequency 
RISC Reduced Instruction Set Computing 
ROM Read Only Memory 
RTL Register Transfer Level 
SA Software Assurance 
SAR System Acceptance Review 
SBIRS-High (-Low) Space Based Infrared System 
SDR System Design Review 
SEI Software Engineering Institute 
SIRTF Space Infrared Telescope Facility, renamed Spitzer Space Telescope 
SME Subject Matter Expert 
SoaC System-on-a-Chip 
SoC System-on-Chip 
SOHO Solar and Heliospheric Observatory 
SRAM Static Random Access Memory 
SRR System Requirements Review 
TDRS Tracking and Data Relay Satellite 
TRIO Temperature Remote Input/Output 
TRR Test Readiness Review 
UML Unified Modeling Language 
VHDL Very High Speed Integrated Circuit Hardware Description Language 
VHSIC Very High Speed Integrated Circuit 
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that no one process was used within NASA for the development of PLDs. Each center used its 
own process, if one was even defined.  

The Federal Aviation Administration (FAA) worked with other organizations to develop 
DO-254, “Design Assurance Guidance for Airborne Electronic Hardware,” which provides 
guidelines on the use of process assurance for complex electronic hardware. NASA has 
developed a standard method for developing these devices across its various facilities. This 
handbook and the Engineering PLD Handbook (NASA-HDBK-4008) are part of that effort.  

The pace of technological change and the new uses people find for current technology are strong 
motivators for NASA to have standardized assurance practices for complex electronics.  An 
example of an assurance challenge is adaptive or reconfigurable computing, in which computers, 
chips, or systems alter their functionality to adapt to changing applications and situations.  
Adaptive computing is usually implemented with FPGAs and allows for parallel processing.  
Adaptive computing is expected to be the next breakthrough in computing.  Many applications of 
the technique for the military are being proposed, and adaptive computing is likely to be used in 
space systems. 

4.1.1 How does Programmable Logic differ from Firmware? 

Firmware has various definitions, but the most common is found in IEEE 610.12-1990: “The 
combination of hardware device and computer instructions and data that reside as read-only 
software on that device.” 

Complex electronics, such as FPGAs and ASICs, are not firmware because what resides in them 
is not a software program.  Instead, software is used to define the logic structure for a hardware 
device, which is what these devices become once they are configured.   

Some types of complex electronics are a combination of items, such as System-on-Chip 
(SoC) and FPGAs: 

SoC is a complete product containing all the necessary electronic circuits and parts for a system 
on a single integrated circuit.  SoCs may include embedded software (i.e., firmware) as part of 
the device.  SoC devices can combine a microprocessor, input and output channels, and often an 
FPGA for programmability. 

FPGAs, by their very nature, need to be programmed or configured.  In some cases, they are 
fixed in function and cannot be reconfigured.  In other cases where they are used in specific 
systems, they can be re-configured on the fly.  The act of re-configuring the device creates the 
same re-configuration issues that exist in deployed software systems. FPGAs can have from 
30,000 to over one million logic gates. 

4.1.2 Comparing Complex Electronics and Software 

Complex electronics includes various devices, see section 4.2. The main difference between 
PLDs and software is that software instructions are executed serially (one instruction is 
performed after another) and hardware logic is operating in parallel (multiple operations occur at 
the same time).  It is very important to always remember the ultimate result of a programmable 
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logic device is hardware.  Hardware programming languages, such as VHDL, can be thought of 
as a virtual or abstract piece of hardware. 

However, syntax similarities exist between programming languages for complex electronics 
(e.g., Verilog or VHDL) and software languages.  VHDL, for example, is based on Ada syntax, 
has data types common to most higher-level languages, uses objects (e.g., constants and 
variables), and has sequential statements. 

A product assurance engineer reviewing programmable logic “code” should not be lulled by the 
similarities to regular programming languages.  Complex electronics and programmable logic 
devices are ultimately hardware, and those differences must be acknowledged. 

4.2 Programmable versus Designable Devices 

Programmable Logic Devices (PLDs) are hardware integrated circuits programmable by the user.  
They contain configurable logic and flip-flops, which are linked together with programmable 
interconnects.  Memory cells control and define the logic function performed and how the 
various logic functions are interconnected.  PLDs can be divided into various categories and 
range from simple devices to complex devices capable of being programmed on-the-fly.  Devices 
in this category include: 

 Programmable Array Logic (PAL), 

 Generic Array Logic (GAL), 

 Programmable Logic Array (PLA), 

 Programmable Logic Device (PLD), 

 Complex Programmable Logic Device (CPLD), and 

 Field Programmable Gate Array (FPGA). 

Some integrated circuits can be designed by the user and submitted to a manufacturer for 
creation of multiple copies.  This allows specialty circuits to be designed for a device, such as a 
cell phone.  Once created, the devices cannot be reprogrammed by the user.  ASICs and System-
on-Chip (SoC) are examples of designable devices. 

4.3 Concerns and Issues 

4.3.1 Verification Issues with Complex Electronics 

Verification means that the system or subsystem meets the requirements that have been 
specified.  The design of complex electronics involves a complex set of variables including 
multiple tools, multiple chip types and IP (Intellectual Property). Complex systems, involving 
large hardware interfaces, complex logic and possible embedded software are hard to verify. 
Items to consider: 

 Has the tool been used before? Is the engineer familiar with the chip or family 
being used? 
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 Has the design been verified under off-nominal conditions. Is the chip being 
tested as it is expected to operate? 

 What is being verified in hardware vs. what was verified by simulation? Have the 
safety-critical functions been verified using the end-use (e.g. flight worthy) 
hardware? Were the safety-critical requirements verifications witnessed? 

 Do the tests include all the test cases needed to verify the design requirements? 

 Is there embedded software running on the system? If so, has it been verified per 
NPR 7150.2? 

 Are general purpose engineering practices being followed (e.g. NPR 7123.1, NPR 
7120.5, etc.)? 

 Is the person doing the verifications trained on the appropriate processes? 

4.4 Summary 

Programmable and designable electronics have grown over the years, both in number of devices 
and in the complexity of the devices.  The devices can be roughly grouped by function and 
complexity. 

 Simple, non-programmable logic – ICs; 

 Simple, programmable logic - PAL, GAL, PLA; 

 Complex, programmable logic - CPLD, FPGA, reconfigurable computing; 

 Complex, designable logic - ASIC; and 

 Complex, designable, and/or programmable logic - SoC. 

To explore the complex devices in more depth, refer to the examples in AppendixC. 
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5 QUALITY ASSURANCE ON A PLD 

5.1 Process Assurance Overview 

According to IEEE, quality assurance is defined as "a planned and systematic pattern of all 
actions necessary to provide adequate confidence that an item or product conforms to established 
technical requirements."  Quality assurance (QA) can be broken down into two main areas:  
product assurance and process assurance. 

Product assurance involves making sure the final product meets its specifications.  This is 
usually done through testing, inspections, and audits.  Ideally, it also includes verifying the 
requirements are correct, the design meets the requirements, and the implementation reflects the 
design. 

Process assurance looks at the process used to create that final product.  Was the development 
effort planned?  Were the plans followed, or just put on the shelf and ignored?  Does the 
development process meet any required standards?  Are best practices used to develop the 
product?  In process assurance, QA provides management with objective feedback regarding 
conformance to approved plans, procedures, standards, and analyses. 

Process assurance activities are performed throughout the life cycle, including product 
conception, design, implementation, test, operation, and maintenance.  Process assurance should 
detect, record, evaluate, approve, track, and resolve deviations from approved plans and 
procedures.  For each life cycle phase, process assurance assures planning is performed, the plan 
is followed, and the products of each phase are correct and complete.  Note verifying the quality 
of the requirements, design, and verifications are usually considered product assurance.  This 
handbook includes them in process assurance because they are often overlooked when evaluating 
complex electronics. Some items such as radiation, packaging and derating are usually handled 
at the system level in conjunction with the complete development team.  

For an assembled circuit board, product assurance would include verifying the bare board passed 
coupon obligations, correct parts are on the board, workmanship is acceptable per NASA 
standards, and testing the board functionality.  Process assurance activities would include 
verifying that the drawing used during the board assembly was configuration controlled and was 
the correct revision, the proper Electrostatic Discharge (ESD) requirements were followed, and 
an approved assembly process was defined and followed. 

5.2 Why Do Process Assurance? 

While some aspects of process assurance are performed in many engineering disciplines, process 
assurance is the cornerstone of software assurance.  In some industries, the main purpose of 
quality assurance is to test the product prior to release.  Within NASA, quality assurance starts 
much earlier in the life cycle (with the requirements) and verifies the quality of all the products 
at each stage. 

Why should the PLD get this special treatment?  PLDs differ from most hardware (mechanical or 
electrical) in several important ways: 
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 PLDs are complex and cannot always be 100% tested.  It is not feasible or 
sometimes even possible to test every possible path through the chip, nor every 
combination of inputs.  For anything more than a trivial design, attempting such 
testing would take an inordinate amount of time. 

 PLD requirements are often fluid.  Because PLDs are easy to change, many 
defects or problems with hardware systems are overcome by changing the design. 

 PLD functionality can be easily changed.  Sufficient thought is not always given 
as to the impact of that change on the entire system. 

Using good practices to develop the PLD increases the confidence in the quality of the device.  
Because the designer cannot always fully test every combination of inputs and paths within a 
PLD, QA needs a way to look at the whole development process and the test results and 
determine if the product is of sufficient quality.  Process assurance is used to make sure those 
good practices are being followed (or being implemented). 

Process assurance in coordination with manufacturing practices and economics direct chip 
development throughout the life cycle and evaluates the associated life cycle products.  Quality 
assurance engineers contribute to good requirements, design, with meaningful controls on HDL 
volatility and alert project management if too many changes are occurring.  Because changes 
have an impact on other software or systems, assurance engineers help identify and assess those 
impacts prior to the change being implemented.  Process assurance is proactive, anticipating, 
identifying and helping to eliminate potential problems. 

While some people may see process assurance as an unwanted but required activity, one of the 
main reasons to perform it is to embed quality throughout the life cycle.  QA does not want to 
wait until the product is finalized before having any idea if it is a quality product or not.  Process 
assurance provides insight into the development processes (and thus some insight into the quality 
of the product) long before the product is completed.  This focus on problem prevention through 
early detection allows corrections and changes to be made to the product or process when the 
cost of those changes is much less than it will be later in the project. 

Adding process assurance to the verification of complex electronics increases confidence the 
final device was designed to the correct requirements, the design completely implements all 
requirements, and the final product meets all functional and quality specifications.  

Process assurance activities ensure the recording of process anomalies and procedural deviations. 
When it comes to facilitating investigation and troubleshooting of anomalies throughout the 
product development lifecycle, this can be of great worth.  

The Federal Aviation Administration (FAA) has taken a similar approach to complex electronics.  
The document DO-254, “Design Assurance Guidance for Airborne Electronic Hardware,” is 
basically process assurance for complex electronics.  This document requires: 

 Planning for all life cycle phases, including selection of design methodology, 
integration of hardware design processes with supporting processes, and 
description of process assurance policies and procedures. 
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 Activities performed by engineers at each life cycle phase, including requirements 
capture, design creation, implementation, and acceptance testing. 

 Verification and validation throughout the life cycle. 

 Configuration management of designs and supporting information for complex 
electronics. 

 Process assurance activities at each life cycle phase. 

5.3 Tools of the Process Assurance Trade 

Process assurance is implemented primarily through the following activities: 

 Documentation review; 

 Formal inspections, reviews, and walkthroughs; 

 Audits; and 

 Analysis. 

The following paragraphs provide a quick overview of these processes.  Section 6 of this 
handbook will go into more detail on which processes are appropriate for each phase of the life 
cycle, and what aspects of the complex electronics development they should be used for. 

5.3.1 Documentation Review 

Individual review of a document, design, or hardware description code is performed by the 
quality assurance engineer.  This type of review may or may not use a checklist (if one is 
available).  The quality of the artifact is evaluated against best practices, and the results are fed 
back to the author. 

5.3.2 Formal Inspections, Reviews, and Walkthroughs 

Formal inspection is an examination of the completed product at a particular stage in the 
development process (such as a design), typically employing checklists, expert inspectors, and a 
trained inspection moderator.  The objective is to identify defects in the product.  There are many 
techniques of doing inspections, but many follow the methods developed by Michael Fagan over 
20 years ago. 

Reviews are an alternative to formal inspections as a process assurance method.  Informal design 
review methods are difficult to quantify since they are generally performed at the discretion of 
the product author, do not follow a detailed process, and are not reported at the project level.  
Informal review is a valuable alternative if the more effective formal inspection is not used. 

Walkthroughs are meetings in which the author of the product acts as presenter to proceed 
through the material in a stepwise manner.  The objective is often raising and/or resolving design 
or implementation issues.  Walkthroughs tend to be informal and lacking in close procedural 
control. 
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 Are the device(s) safety-related?  Do they acquire or process any signals used in 
safety decisions (e.g., temperatures, voltages)? 

 Is the function of the device(s) mission-critical?  Will failure seriously affect the 
ability of the system to carry out the mission? 

If one or more of the devices are safety-related, share that information with the project system 
safety engineer.  Safety-related complex electronics should be looked at by the system safety 
engineer in more depth. 

QA can research alternatives and make suggestions to the project manager or engineers on how 
to improve their process and fix deficiencies.   

Configuration management is very important and often overlooked. Project size and complexity 
can dictate the amount of configuration management used. A small or one developer effort might 
just use version control while a multi-developer or multiple center effort should use a formal 
configuration system from the beginning of the development process.  

Be proactive.  Get to know the device designers.  Educate yourself on the devices, the tools used, 
and the design process.  Do some web surfing for common errors with the devices, and make 
sure the designers have avoided them.  Review the requirements for the device - are they clear 
and unambiguous?  See if QA can observe a simulation or two.  Ask intelligent questions - ones 
that show that QA is interested enough to have done some background work. 
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6 DESIGN PROCESS 

6.1 Overview of the Complex Electronics Design Process 

Complex electronics are a part of a larger system. They can provide one function or be part of 
many separate systems. Device design is driven by the system within which it resides. Many 
different life cycles can be used to develop complex electronics.  

6.2 Design Life Cycle 

Like any other engineering discipline, the design and development life cycle for complex 
electronics can follow any lifecycle methodology. In a typical design (or activity), the 
requirements are flowed down from the system requirements.  Development may follow a 
waterfall, iterative, evolutionary, spiral, or other development methodology.  Regardless of the 
development (design) life cycle, the processes of determining the requirements, creating the 
design, implementing the design, and verifying the implementation are all included.  Since it is 
easy to show graphically, this handbook will use a modified waterfall life cycle as a generic life 
cycle to match what is used in the Programmable Logic Devices Handbook.   

Like any other engineering discipline, the design and development life cycle for complex 
electronics can follow any lifecycle methodology.  Some of the steps vary from those familiar to 
software developers.  Figure 2 depicts the development process for complex electronics. Based 
on the size of the project, the Preliminary and Detailed design phases can be combined.  
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Figure 2:   Generic CE Waterfall Development 

 

The basic design flow starts out with the decomposition of system or subsystem requirements to 
the particular complex electronic device.  After that is completed, the engineers take the 
requirements and generate block diagrams and flow charts. Then a hardware description 
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language is used to create the design (implementation).  The design has to be “compiled” for the 
device (design synthesis).  Synthesis is more complicated than just running a compiler.  During 
synthesis, the design is mapped to the logic gates of the device.  Simulations are used to verify 
the design is correct and can meet the requirements and performance goals. 

The implementation of complex electronics involves one more level in the mapping of the logic 
(design) to the chip.  The placement of the logic blocks within the chip, and the routing between 
blocks, are some of the processes that occur during implementation.  This process is loosely 
comparable to the linking step in software, where the compiled program is configured for the 
software environment in which it will operate.  At the end of the implementation phase, the final 
step is to “burn” or program the device. 

Even though the simulation occurring before the design is committed to hardware can find most 
defects, the actual hardware device needs to be tested in the circuit.  Simulation includes 
simulated environment, both with realistic physical and software challenges emulating the in-use 
environment worst cases. Real signals are applied, and the real output is tested.  Design 
Engineers usually cannot get the degree of testing with in-circuit verification which can be done 
with simulation, because inputting out-of-range signals might be difficult, access to the hardware 
pins might not be possible, and, in real projects, demand for the hardware may constrain 
functional testing.  However, functional testing in a variety of conditions is an important 
verification step.  Errors in the silicon chip are possible.    Sometimes the actual environment 
acts differently than expected and can influence how the device works. 

During the implementation phase, the tasks of the assurance engineers 
(quality/hardware/software) can vary between projects with some only taking a look at the 
system at a high level, and then verifying that the final device matches the design and that it was 
programmed according to a defined process.  NASA is looking at how to adequately verify the 
complex electronics device.  More information is provided in Section 6.4.  Table 2 gives a 
comparison of the development process for software and complex electronics. 
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Table 2:  CE vs. SW Development Phases 

Software Complex Electronics 

Requirements 

Software requirements 
flow down from system 
and subsystem 
requirements. 

Planning 
&Requirements

Requirements for complex 
electronics flow down from system 
and subsystem requirements. 

Design 

Architectural and 
detailed designs are 
created, using UML, 
flow diagrams, and 
other tools. 

Preliminary 
Design  

Block and data flow diagrams are 
created that serve as the design 
architecture. 

 Detailed Design

A more detailed design is generated 
based on the requirements and 
architecture. This phase iterates with 
the design implementation phase to 
further modify and/or expand the 
design until it meets all 
requirements. 

Code 

The design is translated 
(manually or 
automatically) into a 
programming language 
(code), and then 
compiled into an 
executable module. 

Design 
Implementation

Coding in HDL is completed. 
Design simulation, synthesis, place 
and route (PnR), and timing 
analyses are performed. The design 
is tested on a development board 
and/or hardware resembling the final 
system. This phase can iterate with 
Detailed Design as needed. 

Test 

The software is tested in 
individual units and as 
part of the system.  
Testing may involve 
additional software that 
simulates inputs to the 
software under test. 

Verification 

Testing occurs during the 
preliminary, detailed and 
implementation phases, in the form 
of simulations.  Both expected 
(valid) and unexpected inputs are 
tested.  Once the device is created, it 
is tested as part of its subsystem 
(in-circuit testing). Verification 
confirms all requirements for the 
PLD have been implemented. 

 

Assurance effort should be based on the classification effort assigned to the PLD being 
developed. It can range from no in-process support to complete support for Safety Critical 
designs. Figure 3 below shows the potential reviews that may be performed. Reviews will be 

Downloaded from http://www.everyspec.com



Downloaded from http://www.everyspec.com



Downloaded from http://www.everyspec.com



Downloaded from http://www.everyspec.com



NASA-HDBK 8739.23A—2016-02-02 

43 of 161 

find an expert (either in the assurance arena or in engineering) to help QA or to independently 
perform an analysis or evaluation.  The most important aspect of assurance is evaluation by 
someone other than the designer, but not all evaluations have to be performed by the quality 
assurance engineer. 

As QA performs assurance activities on complex electronics, keep in mind some quality criteria.  
These criteria will help judge the status of the product or process. 

 Correctness.  The extent to which a device fulfills its specifications. 

 Efficiency.  Use of resources; performance characteristics. 

 Flexibility.  Ease of making changes if required. 

 Interoperability.  Effort required coupling the system to another system. 

 Maintainability.  Effort required locating and fixing a fault in the program within 
its operating environment. 

 Reliability.  Ability not to fail, including in off-nominal environments. 

 Testability.  Ease of testing the device to ensure it is error-free and meets its 
requirements. 

6.5 Planning and Requirements Phase 

6.5.1 Planning 

The planning phase is where the project does the initial assessment of the work required to 
develop the device. A PLD rating assessed is performed using the Engineering PLD Handbook. 
This rating, along with the planned artifacts, is documented in the PLD Development and 
Management Plan. 

6.5.1.1 PLD Development and Management Plan 

A good development plan will include the following items: 

 The assessment rating of the PLD(s), 

 The development tools being used, 

 Definition of metrics to be collected, 

 System safety considerations, 

 Configuration management, 

 When and how bugs will be tracked, 

 Reviews to be held, 

 Risk management, 

 Required team training, and 
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 The deliverables being developed. 

PLDs, especially small ones, may not have a separate PLD Development and Management Plan. 
It may be part of the avionics development document. 

6.5.1.2 Tool Selection 

The first step in creating a design for complex electronics is to choose how the designer will 
enter (capture) the design.  Early chip designs were primarily performed with schematic capture.  
Schematic capture (also called schematic entry) creates the electronic diagram, or schematic, of 
the electronic circuit.  This is usually done interactively with the help of a schematic capture tool 
also known as a schematic editor. 

While schematic capture works fine for simple designs, complex electronics almost always 
require the use of a hardware description language (HDL).  HDLs are languages used for formal 
description of electronic circuits.  These languages describe the operation, design, and simulation 
tests of the circuit.  HDLs show several aspects of the design, including the temporal behavior 
and spatial structure.  One major difference between HDLs and software languages is the aspect 
of timing and concurrency. Software runs in a sequential manner while a PLD has multiple 
events happening at the same time.  

One very nice aspect of HDLs is that they can be used as an “executable specification” to 
simulate the circuit.  Simulation software can be part of the tool suite provided by the vendor or a 
third-party program.  Simulators read the HDL “code” and model the structure and flow of the 
circuit through time. 

The two primary description languages are VHDL and Verilog.  A later section in this handbook 
will discuss these two languages in greater detail.  Older HDLs, such as ABEL and CUPL, are 
still in use, especially for simple designs.  Another trend in hardware description languages is to 
add hardware-specific elements to software programming languages.  JHDL is implemented on 
top of the Java language.  SystemC adds hardware constructs as a C++ class library.  Still, 
VHDL and Verilog are by far the most common hardware description languages in use. 

Regardless of the method chosen to input the design (a hardware description language or 
schematic capture), a software tool (or tool suite) is required.  Unlike most software development 
efforts, where tools other than editors, compilers, development environments, and version 
management software are rarely used, electronics designers require, and use, fairly sophisticated 
tools.  All major complex electronics vendors offer design tools optimized for their devices at a 
relatively low cost.  Third-party tools are common and can provide additional capability.  These 
tools are also often quite expensive.  However, because the boundaries between design entry, 
simulation, synthesis, and place-and-route are well defined, designers can use a variety of tools 
from different vendors. 

A tool suite may include the following types of tools: 

 HDL capture and design environment, 

 HDL simulator, 
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Component modules normally have input and output ports.  Events on the input ports cause 
changes on the outputs.  Events can be either changes in the values of wire variables (i.e., 
combinational variables) or in the values of register variables, or can be explicitly generated 
abstract events.  Modules can represent pieces of hardware ranging from simple gates to 
complete systems (e.g., microprocessors), and they can be specified either behaviorally or 
structurally, or by a combination of the two. 

A behavioral specification defines the behavior of a digital system (module) using traditional 
programming language constructs (e.g., IFs, assignment statements).  This description of a 
complex electronic device divides the device (chip) into several functional blocks that are 
interconnected.  A hardware description language is used to describe the behavior of each block.  
Functional blocks can be a finite state machine, a set of registers and transfer functions, or even a 
set of other interconnected functional blocks. 

A structural specification expresses the behavior of a digital system (module) as a hierarchical 
interconnection of subordinate modules.  The components at the bottom of the hierarchy are 
either primitives or are specified behaviorally.  It is in the structural specification that individual 
inputs and outputs are defined. 

6.5.1.4 Assurance Activities 

The initial stage of a project or system is the time when many decisions are made that will affect 
the project months or years down the road.  While the technical decisions are driven by the 
results of systems engineering trade-off studies, the assurance decisions are driven by a 
combination of: 

 Requirements and standards, 

 What are the NASA, Center, and other quality assurance standards that the 
project must follow? 

 Project management support, 

 The level of assurance is directly proportional to the amount of support that 
project management supplies.  When quality assurance is perceived as a useful 
tool to help develop a functional system within the project constraints, quality 
assurance engineers are given adequate funds and personnel to do a thorough 
job.  If the project manager deems quality assurance an annoyance, then the 
ability of the quality assurance engineer to implement an effective program is 
hampered. 

 Effectiveness of the assurance organization, and 

 An assurance organization that has a track record of working with projects to 
develop tailored and effective assurance plans and processes will be more 
likely to gain project support in implementing new assurance activities.  
Conversely, an organization that does not have a good working relationship 
with projects will make it much more difficult for the assigned quality 
assurance engineer to persuade the project to consider any additional 
assurance activities for complex electronics. 
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 Knowledge and experience of the assurance professional. 

 The assurance professional has to be proactive in implementing quality 
assurance activities, especially for new areas such as complex electronics.  If 
the quality assurance engineer lacks knowledge and experience, the necessary 
assurance infrastructure may not be put in place. 

Quality assurance is involved in project planning activities through: 

 Classification of the PLD per section 6.3 in this handbook; 

 Using Table 6 in NASA-HDBK-4008 to determine the list of recommended items 
per the project’s PLD classification; 

 Creation of a Quality Assurance Plan outlining the work to be performed by the 
quality assurance engineer throughout the project life cycle; 

 Assessment of the project plans, including the management and development 
plans for electronics, for completeness, correctness, and other quality attributes; 
and 

 Assuring the project produces the required plans. 

The plans a project will produce depend on the NASA and Center requirements and the project 
complexity and safety-criticality.  The content of the plans often varies between projects, with 
one project combining several documents and others producing separate plans.  Do not get hung 
up about which plan is which, but review the project plans for how they will address complex 
electronics.  If they do not address the issues at all, encourage the project manager or the design 
engineer to informally document the information. 

Here are some areas the project plans should address regarding complex electronics: 

 How will the complex electronics life cycle interface with the project life cycle?  
In describing the life cycle, does the document discuss transition criteria between 
phases, and how to return to previous phases if problems are found? 

 Are they following the guidelines found in the Engineering PLD Handbook? 

 What is the hardware design process? 

 What activities will be performed as part of the process? 

 What design environment (e.g., tools) will be used?   

 If deviation from established plans becomes necessary, what is the process for 
doing this?  For example, how will changes be approved by all interested parties? 

 How will the design for complex electronics and any associated data be included 
in the configuration management system? 

 Does the project have a defined process to review and approve revisions to the 
design? 
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 Are the plans written at least in draft form before the life cycle phase in which 
they will be used? 

The Development or Test Plan should include activities for reviewing the requirements and 
design, witnessing or performing testing, and performing other product verification steps.   

Risk management is an important tool that projects can use in reducing the probability or impact 
of risks.  Complex electronics has some fluidity of the requirements. Additionally, CE have 
integration issues (often as a result of interface problems), and the need to create a complex 
program within a defined period of time.  These types of issues are ideal for risk management 
mitigation. Programmatic questions to ask include: 

 Is the design team experienced or has the project been customized to take into 
account the experience of the team? 

 Is there a design guideline document defining design rules?  Is the team using 
guidelines from the Engineering PLD handbook? 

 Has the team created a naming convention or style guide? 

 How are detected error conditions handled? 

 Is the design maintained in a version control or configuration management 
system? 

 Has anyone looked at what standards may be applicable (Center, NASA, other)? 

 Are all needed parts of the same revision and of sufficient quantity for intended 
use? 

6.5.2 Requirements 

Creating complex electronics begins where all systems and subsystems begin - with defining the 
requirements for the device.  Without good requirements, the most elegant design or 
implementation could fail to meet the original need.  Designing and implementing complex 
electronics occurs within the context of the larger system. 

Requirements for the complex electronics are driven by the system they are a part of and the 
environment in which they will be used.  A simple home appliance places fewer demands 
(requirements) on a device than a sophisticated satellite application will.  Because these devices 
are hardware, the process of complex electronics design involves looking at both the chip 
capabilities and constraints (e.g., How many gates does it have? How much power does it need?) 
and how the design works with and against those constraints and capabilities. 

The first step in the design process is to understand (and document) the functions the complex 
electronics device must perform and the constraints under which it operates.  The act of 
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documenting the requirements has some useful effects that actually can save time in the long run.  
Benefits include: 

 The design team thinks through the issues and reaches agreement.  Some issues 
are well understood at a high level, but raise additional questions when working at 
the hardware level. 

 Interfaces to other areas (software, other hardware) are defined and available for 
review by all affected parties. 

 Non-engineers can understand what the chip or device is supposed to do. 

 If the trade-offs and rationales are documented, as well as the requirements, future 
design changes will require less impact assessment. 

 The requirements can be reviewed to assure they provide measurable, testable 
criteria. 

 Requirements traceability into the design and implementation can be performed – 
which is vital in mission or safety-critical applications. 

 Allows simultaneously preparing the verification/validation method for each 
requirement. 

A good requirements specification for complex electronics will contain: 

 A description of how the device fits into the larger system.  A block diagram is 
very helpful. 

 A description and list of all the major functions the device will perform.  A block 
and/or flow diagram can be used to show this information. 

 Reference to Interface Control Document (ICD) for board device, or equivelant, 
which contains a description of the device and interfaces, such as: 

 Chip physical information (size, type, number of pins, etc.), and 

 I/O pin mapping and description (output drive capability, input threshold 
level). 

 Reference to Design Specification containing: 

 Clock cycle time, 

 High-level estimates and goals, 

 Power consumption target, 

 Constraints on the device,  

 Other requirements or criteria the device must implement, and 

 Design-related choices (may be in a development management plan): 

 Tools to be used at all stages of development. 
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 Hardware Description Language chosen. 

PLDs, especially small ones, may not have a separate requirements documents. The requirements 
document may be part of the avionics requirements document with a distinguishing mark. 

6.5.3 Assurance Roles 

What role does quality assurance play in verifying the requirementsspecification for complex 
electronics? During the requirements development process, system requirements are allocated to 
various subsystems and parts, including complex electronics.  These requirements need to be 
documented (in a separate specification for complex electronics or as part of another 
requirements specification document).  

Many assurance engineers, regardless of their specialty, have little understanding of the 
complexities of these devices.  Any review or evaluation will be to the level of knowledge of the 
assurance engineer. Hence, the importance of using SMEs (Subject Matter Experts).  Conversely, 
the assurance engineer brings a broader view, disciplines and structure important to success. 

 Hardware Quality Assurance Engineers are the primary assurance people to 
deal with complex electronics.  Hardware quality assurance engineers with a 
background in electronics will evaluate the requirements for the complex 
electronic device for accuracy, completeness, and compatibility with the rest of 
the system.   

 System Safety Engineers will be involved in the review when the devices are 
part of safety-critical systems or are used as controls or mitigations for hazards.  
As with hardware quality assurance, system safety engineers usually do not have 
an in-depth understanding of complex electronics. 

 Software Quality Assurance Engineers at NASA are involved with complex 
electronics when software will be running on the device.  They will ensure any 
software running on an embedded processor follows NPR 7150.2, NASA 
Software Engineering, requirements. Significant education or training is required 
to be able to adequately review the requirements and specification for complex 
electronics at a detailed level.  However, this handbook explains how to review 
specifications for complex electronics at a high-level and to look for the 
following: 

 Problems with interfaces to the software running on the system, and 

 Additional constraints that may not be included in the specification, based on 
software requirements. 

Overall, the quality assurance activity reviews the requirements for the complex electronic 
devices and verify that they: 

 Include all requirements appropriate for the complex electronics (i.e., verify the 
allocation was complete); 
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 Identify any requirements that are safety-related or mission critical by working 
with system safety and engineering; 

 Identify design constraints for the complex electronics; 

 Are clear, concise, and verifiable; 

 Are traceable to a higher level document or are noted as derived requirements; 
and 

 Can be met by the PLD to be used. 

It is important that the requirements are as clear as possible, because many problems found later 
in system design can be traced back to ambiguous or incorrect requirements.  Requirements for 
complex electronics should be more than just a cut-and-paste from the system requirements 
specification.  They should be decomposed to the appropriate level of detail, and provide enough 
information such that a designer can create the device. Each requirement should levy just one 
obligation on the hardware design.  

Activities for the requirements verification for complex electronics must be specified in the 
verification plan.  If a verification method cannot be determined, that indicates that the 
requirement is flawed and needs to be fixed. 

For safety-critical or mission-critical devices, formal methods might be used as a verification 
tool.  The requirements can be defined using a special language that allows mathematical proofs 
to be generated showing the device will not violate certain properties.  Formal methods can be 
applied at only the requirements level (to make sure they are correct), or can be used to verify the 
design when it is generated.  Most projects will not use formal methods.Table 5 shows potential 
verification activities performed during the requirements phase. 

 

Table 5:  Requirement Verification Activities 

Verification activity Performed by 
Evaluate requirements for the complex electronics Quality assurance engineer,  

Systems safety engineer 

Safety assessment System safety engineer 

Requirements review  All 

Identification of applicable standards Quality assurance engineer, safety engineer, 
design engineer 

Formal methods Knowledgeable practitioner 
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6.6 Preliminary Design Phase 

6.6.1 Roles of the Engineering Design Team 

During the preliminary design phase the architecture for the PLD is created. The top-level design 
is generated using the architecture from the requirements in the form of block diagrams. 
Preliminary data flow diagrams are created and the interfaces to the PCB (Printed Circuit Board) 
defined. A description of all hardware and software interfaces is created. An architecture review 
is normally held at the end of this phase to ensure all the requirements have been addressed. 
Smaller designs can combine the preliminary and detailed design phase activities.  

6.6.2 Assurance Roles 

At the preliminary design phase, Quality Assurance and System Safety can participate in 
architecture and high level design reviews. 

 Hardware Quality Assurance Engineers will evaluate the design for the 
complex electronic device against the requirements.  For many projects, 
especially when hardware quality assurance engineers have little exposure to, or 
understanding of, complex electronics, no evaluation will be performed. 

 System Safety Engineers will review the design of the devices when they are 
part of safety-critical systems.  Since few system safety engineers are experts in 
complex electronics, they will work with the designer or hardware quality 
assurance engineers to evaluate the design from a safety perspective. 

 Software Quality Assurance Engineers will participate in the reviews when 
software will be running in a processor on the chip or interfacing with the device. 

Potential verifications that will occur during the preliminary and detailed design phases are listed 
in Table 6 below. 

 

Table 6:  Design Verification Activities 

Verification activity Performed by 
Evaluate block diagrams & flow charts Quality assurance engineers & design 

engineer(s) 

Architecture Review Independent design engineer 

Safety assessment System safety engineer & design 
engineer(s) 

Design reviews All (If safety critical (QA recommended))

IDD (Interface Design Document) for PCB and 
Software 

All 
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6.7 Detailed Design Phase 

During the detailed design phase the block diagrams from the Preliminary Design Phase are used 
to generate a detailed design based on the requirements and architecture. This phase iterates with 
the Implementation Phase until all requirements are met. 

6.7.1 Roles of the Engineering Design Team 

During the detailed design phase the engineer uses the block diagrams and flow charts developed 
in the preliminary design phase to generate the design specification. Detailed design information, 
such as detailed block diagrams and timing diagrams are developed. The information developed 
in this phase is used for capturing the design in HDL during the design implementation phase. 

6.7.2 Assurance Roles 

At the Detailed Design phase, assurance and safety engineers are not always involved except in 
the case of safety or mission critical devices.  A hardware assurance engineer might participate in 
the various design reviews. Assurance activities will seek to answer these questions: 

 Does the design meet the specification? 

 Is the design partitioned into logical components? 

 Does the designer provide enough background information to understand what the 
device is supposed to do? 

 Is there anything in the design that conflicts with other subsystem or system 
components? 

 Do the design interfaces (input and output signals) match the interfaces as 
specified by the other components? 

 Were the special pins on each device (e.g., mode pin on FPGA, JTAG pins, no-
connect pins) verified that each is used properly? 

The Engineering PLD Handbook Appendix B.3 has the checklist that can be used by engineering 
and assurance. This provides additional items to consider. 

6.8 Design Implementation Phase 

During the design implementation phase the block diagrams and flow charts from the detailed 
design phase are used to generate HDL based on the requirements and architecture selected. The 
HDL code can be simulated in a test bench and its behavior can be observed.  This is an 
important verification activity that is usually performed solely by the design engineer.  Quality 
assurance engineers may review the simulation plans (if they are produced) or results, and for 
critical devices they may witness some of the simulation runs.  Table 7 below shows the 
verification activities performed during design implementation. 
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Table 7:  Design Implementation Verification Activities 

Verification activity Performed by 
Evaluate design (HDL) against requirements Quality assurance engineer or SME 

Functional Simulation Design engineer 

Safety assessment System safety engineer & Design 
engineer(s) 

Design review (e.g.,  CDR, peer review) All 

 

Functional simulation involves emulating the functionality of a device to determine it is working 
per the specification and it will produce correct results.  This type of simulation is good at 
finding errors or bugs in the design.  Functional simulation is also used after the design synthesis 
step where the gate-level design is simulated. 

One or more engineers who can assess the design should review the HDL code.  A good 
reviewer has to understand the system within which the device will operate, know the HDL 
language being used, and be able to compare what the device is designed to do against its 
requirements.   

For very complex or safety-critical devices, assurance engineers or Independent Verification and 
Validation (IV&V) practitioners may be called in to review the design.  This phase iterates until 
all requirements are met. The various activities that occur and the items used during this phase 
are discussed below.  

6.8.1 Synthesis 

Design synthesis is the process that takes the higher-level designs and optimally translates them 
to a gate-level design which can be mapped to the logic blocks in a complex electronic device.  
Unlike software, which executes sequentially, the elements of a complex electronic chip will 
execute in parallel, with specific timing requirements.  However, in general, synthesis is a form 
of compiling- translating the readable language into instructions that are implemented in the 
integrated circuit. The synthesis step transforms the behavioral and structural specifications into 
an optimized netlist of gates.  The netlist is a description of the various logic gates in the design 
and how they are interconnected.  During synthesis, the designer can optimize parameters and 
constraints in the final chip. 

Synthesis is performed almost exclusively by a software tool.  Modern synthesis tools do an 
excellent job of optimizing complex designs, so designers do not need to manually perform that 
task.   

6.8.2 Simulation 

Simulation is one of the primary ways the design synthesis process is verified.  In almost all 
projects, the design engineer is the one who generates the test bench, defines the simulation runs, 
and performs the simulations.  Quality assurance engineers are rarely involved, other than to 
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perhaps verify the simulations were performed.  However, it is important to look at the design of 
the test bench and the simulation tests to make sure they are complete enough.  This is the time 
to find errors or mistaken assumptions - not when the designer is integrating the complex 
electronics with other areas of the system. 

Understanding how the complex electronics will operate when given invalid input is very 
important in verifying the devices.  The real world is messy, and noisy signals or broken 
interfaced hardware are unfortunately common.  Simulation is a great way to perform fault 
injection testing by inputting signals that are out of range, whose timing is not correct, that have 
ringing or other signal problems, or that are noisy.  Encouraging this type of testing, and helping 
to identify the likely types of faults, is one way quality assurance personnel can actively 
participate in the verification of complex electronics. 

Simulation is used in the design of complex electronics at several levels.  One very nice aspect of 
hardware description languages is they are “executable,” and simulators that can run the code are 
very common.  Simulators are usually part of the tool suite provided by the vendor of the 
complex electronic device (e.g., FPGA). 

After design entry, the design is simulated at the register-transfer level (i.e., the HDL code).  
Simulation at this level is very fast, allowing the designer to implement many simulations to 
fully understand how the device will operate.  Simulation can be used to help optimize the design 
and refine the logic, though designers need to be careful not to use it in an undisciplined code-
and-fix mode.  Simulation of the HDL code will look at signals and variables to check their 
value, trace functions and procedures, and will use breakpoints to check the status of the device 
at specific events.  This process is very similar to using a software debugger.  One caveat with 
simulation at this level of design is that some properties are not yet defined, such as timing and 
resource usage. 

After design synthesis, but before physical implementation, functional simulation can be used to 
help verify the design.  The goal of functional simulation is to ensure the logic of the design does 
what is required, per the specification, and that it produces the correct results.  This type of 
simulation can help get as many bugs out of the device as possible.  If any errors are discovered, 
then the implementation step is revisited and necessary required changes are made, leading to a 
successful simulation. This simulation is rarely performed due to expense and resource 
requirements.  

After the design has been implemented, but before the device is actually programmed, a final 
simulation with full timing information can be performed.  The placement and routing process 
will determine any delays and other timing information, which are back-annotated to the gate-
level netlist.  This simulation is a much longer process, because of the timing aspects, and is 
rarely done.  A static timing analysis might be substituted for the timing simulation.  Static 
timing analysis calculates the timing of combinational paths between registers and compares it 
against the designer’s timing constraints. 
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6.8.3 Test Benches 

Test benches for complex electronics are not made of wood or metal, but of Verilog or VHDL 
code.  They are special programs designed to test complex electronics designs.  While simulators 
can verify simple designs, more complex designs require a test bench to adequately verify the 
design. 

A test bench is a HDL design created which can load the circuit, apply stimulus to its inputs 
(including defining multiple clocks), and check the outputs for correctness.  Because the test 
bench is a program the designer writes, he has control over how the circuit is built and simulated.  
In addition to the above capabilities, a test bench can provide behavioral or structural models for 
everything on the PC board.  In this way, it enables the designer to simulate the entire system 
including the complex electronics design(s) as well as external bus interfaces, external memories, 
etc.  An engineer can design the test benches to automatically check important data conditions 
and to report any errors to a command window. 

Comprehensive, upfront verification is critical to the success of a design project, and test benches 
should be created as the design engineer starts to design the device.  A HDL test bench/simulator 
can become the primary design development tool.  When simulation is used right at the start of 
the project, the designer will have a much easier time with synthesis, and will spend far less time 
re-running time-intensive processes, such as place-and-route tools and other synthesis-related 
software. 

Test benches can be simple, applying a sequence of inputs to the circuit over time.  They can also 
be quite complex, perhaps even reading test data from a disk file and writing test results to the 
screen and to a report file.  A comprehensive test bench can, in fact, be more complex and 
lengthy (and take longer to develop) than the circuit being tested. 

Depending on needs (and whether timing information related to the target device technology is 
available), the designer may develop one or more test benches to: 

 Verify the design functionally (with no delays), 

 Check your assumptions about timing relationships (using estimates or unit 
delays), and 

 Simulate with annotated post-route timing information to verify that the circuit 
will operate in-system at speed. 

A typical VHDL or Verilog test bench is composed of three main elements: 

 Stimulus Generator - drives the unit under test with certain signal conditions 
(correct and incorrect values, minimum and maximum delays, fault conditions, 
etc.); 

 Unit Under Test - represents the device undergoing test or verification; and 

 Checker- automatically checks and reports any errors encountered during the 
simulation run.  Compares model responses with the expected results. 
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Test benches are created by human beings, often by the designer, and are subject to faults and 
failings like any human endeavor.  If the logic of the test bench is incorrect, or if a particular 
stimulus is not defined, then the end result of the tests may not show an actual error.  This 
scenario is something to keep in mind if QA is called on to review verifications for a piece of 
complex electronics.  QA cannot assume that the test bench accurately and completely tested the 
device.  Therfore it is prudent to have another qualified engineer other than the design engineer 
develop the test bench and perform testing of code, especially if the device will be used in a 
safety-critical application. 

6.8.4 Implement the Design 

Once a design has been created, simulated, and synthesized, the next step is implementation of 
the design in the particular complex electronics device.  In software, implementation is usually 
translating the design into source code and compiling it.  In complex electronics design, 
implementation is where the design meets the silicon - the higher-level design is converted into a 
chip layout. 

The implementation process uses the tools supplied by the device (e.g., FPGA) vendor.  The 
functions previously defined in the design have to be matched to the available blocks, gates, and 
other logic elements on the chip. The following steps are rarely done manually. Some basic steps 
in implementing a design are: 

 Floorplanning, 

 Translation, 

 Mapping, and 

 Place and Route. 

The exact order of a step (or even the name a step/process is given) varies across different 
groups, companies, and documents.  Thus, do not take the information in this handbook as the 
only correct way to do things.  However, the concepts presented here are common across the 
industry and will be implemented to some extent in all programs - perhaps as part of an 
automated tool or under a different name.  Being familiar with the concepts will help QA “speak 
the language” when talking with a design engineer working with complex electronics. 

6.8.4.1 Floorplanning 

Floorplanning is the process of identifying structures that should be placed close together, and 
allocating space for them.  In designing complex electronics, there are multiple goals that must 
be met, and the goals often conflict.  Finding the best balance between the various goals and 
requirements is something of an art.  Some goals are: 

 Minimizing space on the chip (allows choice of less costly chips), 

 Meeting or exceeding required performance, and 

 Placing everything close to everything else to minimize transmission time in the 
signal paths. 
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Floorplanning does not have to be performed by the designer for many designs/chips.  Most tool 
suites will perform this step as part of the automated sequence that takes the design and 
implements it in the chip.  However, if the designer is creating an ASIC, needs the absolute best 
timing possible, or is trying to cram a large design into a not-so-large chip, active floorplaning 
may be need. 

As a general rule, data-path sections benefit most from floorplanning, and random logic, state 
machines and other non-structured logic can be safely left to the placer section of the place and 
route software.  Data paths are typically the areas of your design where multiple bits are 
processed in parallel with each bit being modified the same way with some possible influence 
from adjacent bits.  Example structures that make up data paths are adders, subtractors, counters, 
registers, and muxes. 

6.8.4.2 Translation 

Translation involves converting the results of the synthesis process to the format supported 
internally by the vendor’s place-and-route tools.  The incoming netlist is checked for adherence 
to design rules and is then optimized for the chip.For example, a certain amount of delay may be 
necessary when accessing an outside element like a sensor.  This delay can be included as a 
constraint during the translation process.  Other constraints may be power consumption and 
signal timing. 

Translation may also be referred to as compilation or compiling.  This process is automatic, but it 
takes some wading through the reports produced by the tool to verify the translation/compile was 
correct.  An intelligent post-processor, rather than the designer (or the quality assurance 
engineer), should find syntax and binding errors - otherwise the designer/QA will have to do this 
for each design modification. However, user input to the tools does have an effect on the output.  
For example, translation tools behave very differently given a common set of constraints.  These 
timing-driven tools perform complex trade-offs to achieve the timing constraint specified, 
including adding extra parallel logic to paths where there is negative timing slack, or optimizing 
a critical path at the expense of a non-critical one.  When the designer over constrains a design, 
the tool sees many, many paths that does not meet timing and can generate lots of extra logic in a 
futile attempt to make all of them hit the timing goals.  This can result in a much larger design 
with reduced overall timing performance.  In a timing-driven tool, the idea is to give the tool the 
real timing specifications, and let it work to meet that goal.  Once the performance goal has been 
met, the tool will start optimizing for less area which translates to cost savings in your device.  
This can produce an even faster design because routing delays can be reduced by having less 
logic in non-timing-critical areas. 

6.8.4.3 Mapping 

Mapping takes the logic blocks and determines what logic gates and interconnections on the 
device should be used to implement those blocks.  During the mapping step, the functions within 
the device (such as counters, registers, or adders) are aligned with the logic resources of the chip.  
The exact process is device dependent.  For example, FPGAs have look-up tables that perform 
logic operations.  The mapping tool (part of the vendor’s tool suite) collects the gates defined by 
the netlist into groups that will fit within the look-up tables. 

Downloaded from http://www.everyspec.com



NASA-HDBK 8739.23A—2016-02-02 

59 of 161 

6.8.4.4 Place and Route 

Place and Route is the process of placing the logic blocks in the best spots on the chip to achieve 
efficient routing.  Items that the place and route tool will look at include routing length (how far 
does a signal have to travel), track congestion (how many signals are coming into or out of an 
area), and path delays.  While vendor-supplied tools usually perform the process automatically, 
the designer can specify some parameters and constraints that the final layout has to meet, 
including the initial placement of the cells, a position for each physical connector, and a form 
factor. 

6.8.5 Programming the Device 

Once the design is successfully verified and found to meet timing and performance requirements, 
the final step is to actually program the device.  At the completion of placement and routing, a 
binary programming file is created and used to configure the device.  The process of 
programming is usually dependent on the type of memory used to store the device configuration 
and on the device type (e.g., FPGA or ASIC).  Some factors in device implementation to 
consider are described below. 

6.8.6 Assurance Roles During Implementation 

During the implementation phase, the complex electronics functionality and structure are defined 
in a hardware description language (HDL).  The HDL “program” is actually a model of the 
complex device, and can be run (simulated) and tested.   

Prior to the start of the implementation phase, several process assurance activities should have 
been performed: 

 Tools.  Review selected tools for applicability to the design process.  Check the 
tool vendor web site and other sources for known tool defects or operational 
workarounds. 

 Design Process.  Make sure a disciplined design process is in place, and the 
design engineer is willing to follow it.  Negotiate as necessary. 

 Configuration Management.  Make sure the HDL code and other design 
information is configuration managed.  The level of formality depends on status 
of design (e.g., informal version control prior to baseline, formal change control 
after baselining). 

 Design and Coding Standards.  Ensure the design team is using a design and 
coding standard.  This standard will define the basic design philosophy and 
specify aspects of the HDL program structure.  Even if only one engineer is 
designing the device, a standard 1) helps ensure the HDL program is 
understandable by others (and the design engineer, six months down the road) and 
2) provides a way to capture and incorporate best practices in the design process. 
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A design and coding standard should include: 

 Specific HDL coding features and methods that either should be used or should 
not be used; 

 Naming conventions for modules, inputs, outputs, etc.; and 

 Commenting rules defining what types of information to include in comments.  
One example would be to define a module header that includes comments on the 
module’s purpose and structure. 

At this stage, assurance and safety engineers are involved in multiple ways. The test bench and 
hardware test cases should be assessed to verify they are correctly testing the device being 
created.  The assurance engineers may be required to witness the programming (“burning”) of 
the device.  Much of the implementation process is performed by automated tools, so if the tools 
were previously assessed, the results can be accepted without additional review.   

Quality Assurance engineers should verify all PLD requirements have been implemented and 
tested.  The hardware engineer and system safety engineer can witness the simulations of the 
device, and/or assess the test bench created for the simulations. The software assurance engineer 
might witness the testing of the software running on the embedded processor. The system safety 
engineer may review the simulation results of any safety controls, monitoring or mitigations. 

Assessment of the HDL design should be performed in parallel with the design effort, with 
intermediate design elements being reviewed, if the project criticality warrants it.  Otherwise, the 
review is normally performed after at least a fairly stable design (if not baselined) is created. 

Process assurance activities post-HDL-design includes: 

 Ensuring the design is reviewed by someone who has enough knowledge to make 
an expert assessment.  This can be another engineer, a quality assurance engineer, 
or even an outside expert.  Another set of eyes will help spot problem areas of the 
design.  This review could be part of a formal inspection or other peer review. 

 Reviewing the design (behavioral and structural specification in HDL) against the 
requirements.  Are all requirements correctly and completely implemented? 

 Tracing the requirements into the design elements.  The rigor of this tracing 
should be determined by the safety-criticality and mission-criticality of the 
device. 

 Identifying any derived requirements that emerge from the design process.  Make 
sure the rationale for these requirements is captured. 

 Reviewing the design against the design and coding standard. This is NOT a style 
check. 

 Assessing the use of special pins on each device (e.g., mode pin on FPGA, JTAG 
pins, no-connect pins) and verifying each is used properly. 
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 Identifying constraints (design, installation, operation) that could affect safety if 
not followed. 

 Assessing the simulations performed.  Did they cover all the required 
functionality?  Were all modules exercised (not always possible when using IPs)? 

 Verifying the processes defined in the project plans were followed. 

 Assuring any design trade-offs done for speed, size, etc., are documented. 

 Assuring the PLD burn/configuration is witnessed for safety-critical or flight 
devices. 

 Assuring a programming procedure that contains the proper information is used if 
required. 

 Assuring design “best practices” were used either as guidelines or as 
requirements. 

 Assuring the gate output drive capacities were analyzed to determine that none 
were exceeded. 

 Assuring the interfaces to other parts were analyzed for input logic level 
thresholds and maximum input transition times. 

 Verifying the following questions were answered: 

 Was a timing analysis performed with the following signals? 

 Pulse width of each clock, asynchronous set, clear, and load input; 

 Setup and hold time for all clocked inputs; and 

 Recovery time for set and clear. 

 Did the timing analysis also consider the following? 

 Parallel clocking, 

 Clock skew, 

 Timing of analog circuitry, 

 Minimum propagation delays, and 

 Worst case timing. 

  

 If there is a state machine, assuring it was analyzed for: 

 Unused states and lock-up, 

 Simultaneous assertion of flip-flop sets and clears, and 

 Proper reset conditions. 

 Are resets of the correct assertion and release voltages, and is the pulse width 
correct? 
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The Engineering PLD Handbook Appendix B.4 has the checklist which can be used by 
engineering and assurance. This provides additional items to consider. 

6.9 Verification 

As with any discipline, verification activities do not wait until the complex electronic device is 
programmed and ready for test.  Verification is a parallel set of activities to design and 
development.  Various verification tasks are performed at each phase of the development cycle. 

This section of the handbook will answer the questions: 

 What are the verification steps for complex electronics? 

 How is verification for complex electronics similar to, and different from, 
software verification? 

 Who performs the verifications? 

While simulation is used extensively in complex electronic design, testing the actual chip can 
sometimes be an eye-opening experience.  Simulation involves assumptions and compromises 
that may not match with the real world.  Testing the programmed chip - either independently or 
integrated onto a circuit board - is a necessary step in verifying the design.  Final (acceptance) 
verifications should occur in the real hardware system.  This in-circuit verification tests the 
functionality and timing of the design on the actual chip. Table 8 shows the activities performed 
during verification. 

 

Table 8:  Verification Activities 

Verification activity Performed by 

In-circuit functional and timing tests 
Design engineer, may be witnessed by 
Quality assurance engineers 

Sub-system and system tests All 

Safety verification 
All, but reviewed or witnessed by 
System safety engineer 

Secure evidence of compliance, document 
anomalies and failures 

Design engineer, Quality assurance        
engineers 

 

Ideally, special test software running on a host computer will interface with the device under test 
through available test ports, such as the JTAG port.  This process is similar to in-circuit 
emulators that run embedded software on the target processor and provide breakpoints and 
tracing into the actual software instructions.  In-circuit verification requires a special build of the 
device which can change the devices’ operation (i.e. logic, timing). 

The more common form of in-circuit testing is to manually run the complex electronics as part of 
a higher-level assembly to show that it meets all the specified requirements.  This subsystem or 
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system level test will show functionality at a black-box level, but will not provide a window into 
the internal functioning of the device. 

6.9.1 What Should an Assurance Person Look for? 

Process assurance activities for this phase include: 

 Verifying the defined processes are in place and are being followed correctly. 

 Verifying the testing strategy has been documented in a plan and/or procedure, 
and testing occurs according to the plan. 

 Verifying the planned tests will completely verify the requirements in all 
reasonably expected situations.  This includes verifying the functionality and 
performance in nominal situations and when other parts of the system have errors.  
How does the device handle errors it may encounter?   

 Verifying the planned tests exercise the device as close as possible to the 
functionality in the sequence and operations that the system will perform on 
mission with nominal and off-nominal conditions (i.e., test as planned to operate). 

 Reviewing the verification test plans and procedures to identify any areas where 
testing is weak.  Look for modules only minimally tested, requirements only 
verified under some circumstances, and other areas where additional testing may 
be helpful. 

 Witnessing verification tests (as agreed to in the project plans). 

 Verifying test results become part of the official project records. 

 Verifying any anomalies and problems are officially documented. 

Review the verification test results to verify no unnoticed anomalies occurred.  Sometimes 
during testing, many events are occurring and an anomaly unrelated to the aspect of the 
particular test may be missed. 

If the complex electronic device is safety-critical, there will be separate safety verifications, 
usually at the system level. 
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7 PLDS DEVELOPED BY A SUPPLIER 

Quality assurance of a PLD developed outside of NASA can vary per vendor and by contract. 
Items to consider when assessing the quality of a vendor PLD should include: 

 Will the proper design reviews be held? 

 Will code reviews be held? 

 What verification activities are planned? 

 What sort of insight into the development process is authorized? 

For a more complete list of items to consider see chapter 13 in the Programmable Logic Device 
(PLD) Handbook (NASA-HDBK-4007). 
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8 METRICS 

During the development process it is important to know if the designer is developing a quality 
product.  One way QA can do that is by collecting metrics during the various phases of the 
development cycle.  A metric is defined as “a system of parameters or ways of quantitative and 
periodic assessment of a process that is to be measured and is usually specialized by the subject 
area.”  Metrics can be used to identify and track trends, problems, productivity, and much more.  
With complex electronics, metrics must cover both the hardware and software portions of the 
development cycle. 

The two types of metrics used for measurement are called primitive and derived.  Primitives are 
items such as time, number of problems, or lines of code, the base item used to make a decision.  
A derived metric takes multiple primitives to determine a unit.  An example from the software 
world is errors per lines of code (errors per KLoc).  The two primitives used in this measure are 
the number of software errors and the number of executable lines of code. 

Let’s look at some of the primitives available for measurement in the complex electronics 
development cycle, starting with the number of defects found.  This measure can be broken 
down into when and what type of defect is found.  When would specify the development phase 
or review.  Defects could be categorized by type of defect.  Examples of these are interface, 
requirement, and logic or data type. Other categories could include classifying defects as major 
or minor. Implementation metrics could be collected for total number of functions vs number of 
functions implemented or tests planned vs. number of tests completed.  The important thing to 
remember when collecting metrics is that they should provide value to the project.  

Two measures that can be useful are changes required after first baseline event and variances 
(deviations anticipated and waivers discovered).  Rudimentary forensic work may help determine 
a metric as happened in many companies in the 1980's when they tracked failure locations and 
subsequently discovered degradation and failures were traceable to ESD - particularly in 
development labs where engineers felt ESD practices did not apply to them.   

Metrics ought to be constructed to measure without adversely influencing or changing what is 
being measured.  A metric that costs too much time and money can exceed its value. 
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9 SUPPORTING PROCESSES 

9.1 Configuration Management (CM) 

Configuration Management is, unfortunately, often not used for complex electronics design 
artifacts.  The final design is usually saved, but the intermediate development artifacts are under 
the control of the designer.  While formal configuration management might not be used, some 
form of informal control (e.g., use of a version management system) is recommended.  Being 
able to revert to a previous version of the design is useful when problems are discovered during 
development.  Being able to recreate versions of the design might also be useful to help narrow 
down when a problem was introduced. 

Configuration management should be used as the design is developed.  There should be a process 
in place for changes to be approved prior to the changes being implemented.  This control 
assures: 

 The configuration of the device is always known, and 

 Everyone who may be affected by the change has a chance to evaluate the change 
for impacts to their area of concern. 

Some configuration controls are obviously required.  One of these is where development is split 
between two or more engineers.  Another is when there is a common file between parties, such 
as when development is shared with or between Contractors which can result in contract 
ramifications.  When a formal test for acceptance or V&V process has been conducted, the 
results should be secured and the design "baselined" with a configuration management process. 

9.2 Reliability 

Most reliability studies look at the hardware failure rates for the devices in a system.  While 
failure of the actual device (e.g., FPGA) can be known, the failures related to design errors or 
unexpected interactions within the FPGA, once it is programmed, are not easy to determine.  
Most reliability evaluations ignore software for this very reason. 

While there is currently no good way to predictively assess the reliability of a complex electronic 
design, the fact that there may be design errors should be considered by the reliability engineer.  
At a minimum, the confidence in the resulting numbers (mean-time-to-failure, system reliability) 
is lowered. 

9.3 Maintenance and Maintainability 

If the device will potentially need to be maintained (including reprogramming updates), this 
issue needs to be considered early in the design of the complex electronics and its supporting 
circuitry.  Some areas to consider are: 

 Will the device architecture allow for the types of enhancements that can be 
foreseen? 
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 Does the design specification provide the information an engineer would need to 
understand how the product works? 

 Is the HDL code readable? 

 Are comments liberal and informative? 

 Is the necessary physical infrastructure in place to allow reprogramming? 

 Is access to the reprogramming port, if one is used, available when the system is 
installed? 

 Has project secured sufficient quantity of the hardware, including spares, to 
assure consistency between development items and final use assemblies? 

 Is this device potentially going to be reprogrammed/updated in-flight? 

 Does the device have sufficient space available for updates? 

 Is in-flight programming supported by the device? 

 Can the device be recovered if the reprogramming fails? 
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10 FUTURE TRENDS 

10.1 Changes in Complex Electronics Design and Verification 

Technology never stands still.  Within the realm of complex electronics, devices such as System-
on-Chip, FPGAs with embedded microprocessors, and reconfigurable computing all strain the 
traditional hardware-oriented design and verification approaches.  Increasing complexity in 
designs makes it harder for the designer to conceptualize the design.  Several new methods in 
design and verification of complex electronics hopefully will help improve verification of these 
devices. 

10.1.1 Hardware/software Codesign and Coverification 

Since complex electronics is increasingly being combined with software, co-design (and 
subsequently, co-verification) of the hardware and software is a good idea.  Hardware/software 
co-design is the cooperative design of hardware and software, within a single chip or within a 
system.  One of the goals of co-design is to shorten the time-to-completion while reducing the 
design effort and costs of the designed products. 

In hardware-software co-design, designers consider the trade-off in the way hardware and 
software components of a system work together to exhibit a specified behavior, given a set of 
performance goals and technology.  This trade-off between hardware and software illustrates the 
optimization aspect of the co-design problem.  Co-design is an interdisciplinary activity, bringing 
together concepts and ideas from different disciplines (e.g., system-level modeling, hardware 
design and software design). 

Current development methods for designing embedded systems and complex electronics require 
specification and design of the hardware and software as separate entities.  A specification, often 
incomplete, is authored by the hardware and software designers with inputs from the subsystem 
engineers. Requirements are developed from this specification and sent to the hardware and 
software engineers. The design process should direct designers to the right path when dealing 
with incomplete requirements. 
  The hardware-software partition is decided early on in the project life cycle and is adhered to as 
much as is possible, because any changes in this partition may necessitate extensive redesign.  
Designers often strive to make everything fit in software, and off-load only some parts of the 
design to hardware to meet timing constraints. 

The co-design process starts with specifying the system behavior at the system level.  After this, 
the system specification is divided into a set of smaller pieces, so-called granules (e.g., basic 
blocks).  Trade-off studies are performed to determine the most effective way to partition the 
functionality into hardware and software.  The granules are mapped to hardware and software, 
resulting in sets of granules implemented on hardware (hardware parts) or software (software 
parts).  Once the mapping is complete, the implementation-independent system specification is 
decomposed into hardware and software specifications. 

Hardware is synthesized from the given specification; the software specification is compiled for 
the chosen processor.  The result of this co-synthesis phase is a set of complex electronics and a 
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set of assembler programs for the processors.  In a final co-simulation step, the complex 
electronics are simulated together with the processors executing their generated assembler 
programs.  The results are iterated until a sufficient system implementation has been found. 

The co-verification problem in system-level design includes different methods to detect errors at 
different abstraction levels.  Co-verification methods include formal verification, simulation or 
emulation.  Formal verification for official acceptance proves through evidence of confirmation 
with independent witness either the equivalence of different design representations or specific 
properties (e.g., the absence of dead-lock conditions of the system specification) 

Simulation validates the functional correctness for a set of input stimuli.  In many cases, only a 
small set of all combinations of input stimuli can be simulated.  For this reason, simulation only 
ensures the correct behavior with a certain probability.  Simulation can be applied during 
different design steps including the co-simulation step after co-synthesis. 

To speed up the simulation time for simulating a partitioned hardware/software system, 
emulation is used.  Emulation systems couple the complex electronics (either the programmable 
devices or, for ASICs, a programmable equivalent) with processors on a board.  Therefore, 
emulators are the closest representation of real prototypes that are possible. 

10.1.2 System Modeling 

Hardware description languages (HDLs) allows the designer to model the system at various 
levels of abstraction.  However, HDLs are still fairly “low level” abstractions, representing the 
hardware aspects of the design.  Several new modeling languages, and extensions to existing 
languages, allow higher-level modeling of the system. 

The purpose behind higher-level modeling is to: 

 Keep the design at a level of abstraction the human mind can grasp.  Complex 
designs make it difficult for a human to understand both the device and how it 
interacts with its environment. 

 Verify the design at a high level, and then allow tools to generate the low-level 
design. 

 Model the complex electronics as part of a larger system which includes software 
and possibly biological constructs. 

Researchers and industry are developing system modeling languages or language extensions for 
use in complex systems.  There are two parts to a system design language: the ability to express 
ideas in a natural language and a component which translates the functions into working 
architectural components.  Here are two areas of language development actively being pursued: 

 Using C or C++ to model the system.  One product, SystemC, provides hardware-
oriented constructs within the context of C++ as a class library implemented in 
standard C++.  It can be used from initial concept to implementation in hardware 
and software.  SystemC provides an interoperable modeling platform, which 
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enables the development and exchange of very fast system-level C++ models.  It 
also provides a stable platform for development of system-level tools. 

 SystemVerilog is a new standard, enhancing Verilog to provide built-in support 
for a wide range of modern design and verification methodologies.  
SystemVerilog is an extension to the Verilog language, which enables the 
modeling and verification of systems at a high level of abstraction.  It adds a 
significant set of language enhancements on top of the Verilog 2001 standard, 
including features for high-level, abstract system modeling, testbench automation, 
and the integration of Verilog with the C programming language. 

 MATLAB and Simulink can be used to model systems and generate HDL.  
MATLAB is a high-level technical computing language and interactive 
environment for algorithm development, data visualization, data analysis, and 
numerical computation.  Simulink is a platform for multi-domain simulation and 
model-based design of dynamic systems.  Simulink provides an interactive 
graphical environment and a customizable set of block libraries that allows the 
designer to accurately design, simulate, implement, and test time-varying systems, 
including control systems, signal processing, and communications. 

10.2 Into the Not-So-Distant Future 

What kinds of new devices and concepts are being considered?  Below are a few of the new 
technologies being explored. 

10.2.1 In-field or Reconfigurable SoC 

Most SoC designs use what is called a platform-based solution, where standard components like 
a microprocessor core make up a significant portion of the SoC.  Custom devices provide further 
functionality.  Some of those devices may be user-configurable (e.g., if a small FPGA or CPLD 
is part of the System-on-chip device), others may be designer-chosen only.  These types of SoCs 
are usually implemented as ASICs. 

A reconfigurable SoC provides the same kind of custom support except the devices and 
peripherals are implemented using a reconfigurable matrix.  The software must set up the 
hardware before it can be used.  But from that point on, the platform-based SoC software and 
reconfigurable SoC software will be very similar, assuming the microprocessor core is the same 
or similar and the functionality of the peripherals has the same characteristics. 

With reconfigurable SoC designs, the hardware functionality can be changed simply by altering 
the code that performs system initialization.  So, SoC could contain an analog-to-digital 
converter for one application, and then be reconfigured for a digital-to-analog converter, or even 
a totally different peripheral such as a network device, for another application.  Some elements 
of the reconfiguration can be performed at a later time (after the basic hardware is initialized), 
allowing software applications to reconfigure devices.  Applications that deal with multiple 
hardware codecs(e.g., streaming multimedia) or encryption methods, for example, could 
configure devices to the specific codec or encryption method being used at the time, then 
reconfigure for another codec or method when required for a different data stream. 
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10.2.2 FPGA Microprocessors/Systems 

Some SoC devices are implemented entirely on programmable logic, in particular on FPGAs.  
Most reconfigurable SoCs fall into this category.  However, reconfigurable SoCs use a fixed 
microprocessor with reconfigurable peripheral devices.  What if it is possible to change the 
microprocessor by just reprogramming the FPGA?  What if it was possible to customize the 
microprocessor for your application, then change it when that application changes?  That is what 
the FPGA microprocessor systems offer. 

FPGAs have proven themselves capable of handling a wide variety of tasks, from relatively 
simple control functions to more complex, algorithmic operations.  While the time and cost 
advantages over designing custom ASIC hardware for such functions is well accepted, the 
advantages of using FPGAs over traditional processors and DSPs for software-oriented 
applications have been less clear-cut.  This is due in large part to a long-standing disconnect 
between hardware and software development tools and disciplines. 

Recent advances in software-oriented design tools for FPGAs, however, have combined with the 
ongoing increase in device densities to create a new environment for software developers, one in 
which the FPGA can be viewed as one possible target (along with traditional and non-traditional 
processor architectures) for a software compiler.  Tools now available can help software 
engineers make use of FPGA platforms, as well as help these developers take advantage of the 
high level of algorithmic parallelism that is available when traditional processors (or processor 
cores) and FPGAs are combined in a single target platform. 

FPGA-based computing platforms, particularly those with embedded “soft” microprocessors, 
have the potential to implement extreme high-performance applications without the upfront risk 
of creating custom fixed function hardware.  Further, by using the latest generation of 
hardware/software co-design tools it is now possible to use multiple graphical, software-oriented 
design methods as part of the FPGA design process. 

10.2.3 Reconfigurable Computing 

Someday, perhaps in the not-too-distant future, the computer at your desk may contain a typical 
microprocessor along with an array of reconfigurable, reprogrammable devices (FPGAs or their 
successors).  Or, the microprocessor may be totally replaced by the FPGAs.  As a user, the only 
thing noticed is the software runs faster, allowing the user to get work done more quickly. 

Typical computer systems use a single microprocessor that executes instructions sequentially.  
They are adaptable and configurable – microprocessors can use any kind of operating system or 
run any sort of application.  However, these systems trade speed for that adaptability. 

If there is a fixed set of applications and more processing speed is needed, an ASIC design can 
meet the need.  While this can provide a significant improvement in speed, the ability to change 
the data processing the ASIC can do is significantly narrowed to a  limited range of applications.  
The ability to alter those processes is lost.  The ASIC speed increase over general-purpose 
microprocessors comes from a combination of optimization for the specific purpose and the 
ability to perform processes in parallel. 
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What if speed and adaptability are needed?  To gain speed, move from the serial processing 
paradigm to parallel processing.  One way to do this is to use multiple processors, each 
performing operations in parallel.  Another way is through reconfigurable computing.  Both of 
these methods keep the adaptability component, allowing the user, through software, to run a 
wide variety of applications. 

To have reconfigurable computing (RC), hardware is needed that can be reconfigured to 
implement specific functionality.  RC systems contain programmable hardware and may be 
combined with traditional microprocessors in order to take advantage of the strengths of each 
device.  RC has been used in applications ranging from embedded systems to high performance 
computing. 

Reconfigurable computing uses in-situ reconfigurable FPGAs as computing devices to accelerate 
operations which otherwise would be performed by software.  The FPGA can be programmed 
with a digital circuit that implements the function to be performed, such as a fast square root 
operation.  The processor can then access this function, as if it were in its own instruction set.  
When the processor needs another function, such as multiplying two numbers, the FPGA can be 
reprogrammed for that function. 

To make this all work, the FPGA must be capable of being reconfigured quickly and allow only 
parts of the device to be reprogrammed.  Reconfiguration has to be fast, or it can quickly eat up 
the speed advantage gained from moving the functions from the microprocessor to dedicated 
hardware.  Also too much time can be lost if the FPGA has to be entirely reprogrammed when 
just want to change part of it needs changed.  Fortunately, modern FPGAs are up to the 
challenge. 

Reconfigurable computers are already commercially available.  Early reconfigurable computers 
were expensive complicated monolithic FPGA arrays, but most modern commercial and research 
systems have evolved into relatively less expensive workstation accelerators.  Research efforts in 
academic institutions are considering the establishment and management of parallel 
reconfigurable computing clusters and high-throughput networks of reconfigurable computers 
(NORCs).  All these individual efforts are creating a new direction - reconfigurable 
supercomputing. 

10.3 NASA Assurance Changes 

Currently, within NASA, complex electronics are treated as hardware devices and follow that 
process.  The design of complex electronics may be reviewed by quality assurance engineers. 
The assembly into a board or system is witnessed and/or verified by quality assurance and the 
final resulting electronic device is tested.  However, the complex nature of these devices requires 
additional assurance effort beyond that given to an off-the-shelf component.  Hardware quality 
assurance personnel may not be fully cognizant of the functions, potential problems, and issues 
with these devices. Specifically, an integrated team approach including the designer, QA, Parts 
Engineering, & Reliability Engineering is needed.  

At NASA Headquarters, this assurance problem is being discussed and debated.  What types of 
assurance activities should be applied to complex electronics?  Who should be involved in the 
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assurance of these devices?  What competencies are necessary to provide adequate assurance of 
complex electronic devices? 

NASA is reviewing various processes for implementing process assurance.  PLDs are a very 
complex entity that are a challenge to fully test.  In the software world, process assurance 
(evaluating how the product is built) is used to increase confidence in the resulting program.  The 
same philosophy can be applied to complex electronics.  If the designer cannot verify by testing 
every possible combination of inputs, decisions, etc., then knowing the device was built 
according to well-defined standards gives additional confidence in its quality. 

Process assurance will look at all life cycle stages of complex electronics development, from 
requirements to operations.  Process assurance for complex electronics is very similar to the 
process part of software assurance, where we verify that the software development process was 
planned and the plan was followed, where requirements are reviewed and evaluated, the software 
design is evaluated against the requirements, code may be inspected or reviewed, and finally the 
resulting software is verified against the requirements.  For hardware, the same types of activities 
are performed. 

 

 

  

Downloaded from http://www.everyspec.com



NASA-HDBK 8739.23A—2016-02-02 

74 of 161 

APPENDIX A   THE HISTORY OF COMPLEX ELECTRONICS 

A.1   A Bit of History 

The story starts with the development of discrete logic.  Each logic chip had a purpose (e.g., 
AND gate, OR gate, flip-flop) and could be wired together with other chips to make the desired 
circuit.  Pinouts on the chip were fixed.  Manufacturing such a system took a lot of time because 
each design change required the wiring to be redone.  This usually meant building a new printed 
circuit board. 

The chip makers solved the problem of time-consuming rewiring for design changes by placing 
an unconnected array of AND-OR gates in a single chip called a programmable logic device 
(PLD).  The PLD contained an array of fuses that could be blown open or left closed to connect 
various inputs to each AND or OR gate.  The design engineer could program a PLD to perform 
the logic functions needed in the system.  Since the PLDs could be rewired internally, there was 
less of a need to change the printed circuit boards which held them. 

A.2   Simple Programmable Logic Devices 

There are a variety of simple PLDs.  They are called simple to distinguish them from the 
Complex PLDs (CPLDs, discussed below), and because they are actually pretty simple devices, 
as modern integrated circuits go. 

A.2.1  Programmable Array Logic 

Programmable Array Logic (PAL) chips are a family of fuse-programmable integrated circuits 
originally developed by MMI (Monolithic Memories, Inc.).  The word “Logic” in the name 
signifies that the chips allow the user to program a set of AND and OR gates (or NAND/NOR) to 
create the desired logic sequence.  PALs consist of a programmable AND array followed by a 
non-programmable OR array.  Inputs are fed into the AND array, which performs the desired 
AND functions and generates product terms, which are then fed into the OR array.  In the OR 
array, the outputs of the various product terms are combined to produce the desired outputs. 

Using a fixed number of OR gates, rather than a completely programmable set, allows the device 
to be fast.  The high speed available in PALs makes them still popular today, despite the 
abundance of newer chips.  Figure A-1 shows the structure of the PAL. 

 

Structure of a PAL 
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Figure A-1: Example of PAL Structure 

 

Fuse-programmable has to do with how PALs are programmed.  Connections between the gates 
in a PAL are made using fuses that are either connected or disconnected (blown).  Overvoltage 
(above the operational limits of the chip) is used to blow the fuses for the connections that are 
not desired.  This operation is permanent, so once programmed, a PAL cannot be reprogrammed. 

Fuse maps, which determine what fuses are, or are not, blown for a particular PAL can be 
generated in several ways.  Languages such as PALASM or CUPL can be used, with the 
resulting logic design compiled into JEDEC (Joint Electronic Device Engineering Council) 
ASCII/hexadecimal files.  Modern support software for PALs allows a direct translation from a 
schematic, truth table, or state table to the fuse map.  Some software even accepts timing 
diagrams as input.  Hardware description languages (HDL) can also be used to synthesize the 
fuse map.  However the map is created, it must be provided as input to a special electronic 
programming device, available from either the manufacturer or a third-party, for physical 
programming of the chip. 

A.2.2  Generic Array Logic 

Generic Array Logic (GAL) was introduced by Lattice Semiconductor.  A GAL consists of a 
reprogrammable AND array, a fixed OR array, and reprogrammable output logic.  Electrically 
Erasable Programmable Read-Only Memory (EEPROM) is used, rather than fuses, to provide 
the connections.  This allows the GAL to be erased and reprogrammed. 

The GAL is very useful in the prototyping stage of a design, when any bugs in the logic can be 
corrected by reprogramming.  GALs are programmed and reprogrammed using a PAL 
programmer, and the same types of languages or processes used for PAL chips.  If speed is 
important (and it usually is), a PAL can be used, once the design is finalized. 

A.2.3  Programmable Logic Array 

Programmable Logic Array (PLA) devices differ from PALs in the OR-gates area.  PALs could 
only be programmed in the AND-plane.  With PLA chips, a set of programmable AND planes 
are linked to a set of programmable OR planes, which can then be conditionally complemented 
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An interface for programming and testing CPLDs is Joint Test Action Group (JTAG).  This 
interface is defined by the IEEE Standard 1149.1-1990, Test Access Port and Boundary Scan 
Architecture.  Boundary scan is a technique for accessing and stimulating a chip or subsystem 
via external pins to perform internal test functions on the device.  A JTAG interface is primarily 
used for testing integrated circuits, but it can also be used as a mechanism for debugging 
embedded systems.  A JTAG interface is a special four-pin (data in, data out, clock, test mode 
select) interface added to a chip.  Multiple chips on a board can have their JTAG lines daisy-
chained together, so the test probe only needs to connect to a single JTAG port to have access to 
all chips on a circuit board.  Figure A-2 shows the difference between the internal layouts of a 
CPLD vs. FPGA device. 
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CPLD Diagram FPGA Diagram 

Figure A-2: CPLD vs. FPGA Layout 

 

A.4   Field Programmable Gate Array (FPGA) 

While PALs were busy developing into GALs and CPLDs, a separate stream of development 
was occurring, based on gate-array technology.  The resulting device is the FPGA which was 
first introduced in the late 1970s.  “Field programmable” simply means the device can be 
programmed by the user.  Many field programmable devices can be programmed with the chip 
soldered to the circuit board, allowing true in-the-field upgrades to be possible. 

FPGAs use a grid of logic gates, similar to that of an ordinary gate array.  An FPGA has a 
collection of simple, configurable logic blocks arranged in an array with interspersed switches 
that can rearrange the interconnections between the logic blocks.  Each logic block is 
individually programmed to perform a logic function (such as AND, OR, XOR, etc.) and then 
the switches are programmed to connect the blocks so the complete logic functions are 
implemented.  FPGAs vary in size from tens of thousands of logic gates to over one million. 

The interconnections for the logic blocks are programmable switches.  FPGAs may use 
EEPROM, SRAM, antifuse, or Flash technology to store the programming.  In manylarger 
FPGAs the configuration is volatile, and must be re-loaded into the device whenever power is 
applied or different functionality is required. 

FPGAs are typically programmed in hardware description languages (HDLs) like Verilog or 
VHDL.  These high-level languages are used because manual lower level design (such as 
schematic capture) becomes impractical as designs become large.  HDLs also allow the FPGA 
design to be simulated and tested prior to implementation in the hardware. 
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A.5   Application Specific Integrated Circuit (ASIC) 

ASICs are integrated circuits (ICs) designed for specific applications.  Unlike standard ICs which 
are produced by the chip manufacturers, ASICs are designed by the end user and then produced 
in volume.  ASICs allow a user to combine many parts and functions into a single chip, reducing 
cost and improving reliability. 

ASICs can be large or small.  They are usually produced in large quantities, and it can be very 
expensive to produce only a few.  If manufacturing cell phones, it makes sense to develop an 
ASIC for the device.  If flying a space experiment and need at most a few chips, it would be 
much more economical to use programmable logic, such as FPGA or CPLD devices. 

An interesting twist is the production of ASICs that include programmable logic (FPGA, CPLD 
or PAL) devices as part of the chip.  Another new technology that combines ASICs with 
programmable parts is the System-on-Chip, described below. 

A.6   System-on-Chip (SoC) 

System-on-Chip combines all the electronics for a complete product into a single chip.  SoCs 
include not only the brains (e.g., microprocessor) but also all required ancillary electronics, such 
as switches, comparators, resistors, capacitors, timing elements, and digital logic.  Figure A-3 
gives a sample configuration for a SoC. 

 

SoCs could include: 

 Digital/analog 
functions 

 Sensors 

 I/O 

 Communications 

 Readymade sub-
circuits (IP) 

 Programmable devices 

 Digital Signal 
Processor 

 

Figure A-3: SoC Example Configuration 
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SoCs are usually ASICs, though they can be designed to include programmable logic 
components.  SoCs can also be implemented on FPGAs.  System-on-chip versions have a variety 
of features: 

 Soft Instruction processor architectures allow a designer to customize the CPU 
architecture.  The specific instructions supported, the peripherals available to it, 
and the number of registers are some ways these devices can be tailored for your 
application.  Some vendors provide mechanisms to add, delete, and create highly 
tailored instructions.  Design packages for these architectures sometimes include 
performance tools with instant feedback on the performance, die size, and power 
requirements of a particular design.  With the final architecture residing in silicon, 
these types of architectures are well suited for high volume, low cost applications 
which formerly would have used ASICs. 

 Configurable processors are FPGA based.  In these architectures, standard and 
customer-derived logic engines can be easily added, modified, and extended as 
needed.  By moving discrete logic functionality to an internal FPGA, the designer 
gets a highly flexible logic solver based around a standard processor core.  With 
FPGA logic instead of foundry logic, the logic can be easily revised at any point 
in the design cycle. 

A.7   How Complex Electronis Devices Remember Their Configuration 

User-programmable complex electronic devices are a combination of a logic device and a 
memory device.  The memory is used to store the pattern that was given to the chip during 
programming.  The primary ways this information is stored are: 

 Fuses, 

 Antifuses, 

 SRAM (static RAM), 

 (E)EPROM cells ((Electrically) Erasable Programmable Read-Only Memory), 
and 

 Flash memory. 

A fuse is a special part of the programmable chip that is normally closed (connected) until an 
electrical current breaks that connection.  Antifuses, unlike traditional fuses, are open until a 
voltage is applied to close (complete) the circuit path.  Once closed, the connection cannot be 
opened.  Programmable logic that uses fuses or antifuses is “program once” chips.  For 
operations on Earth, fuses and antifuses lag behind the more reprogrammable versions in 
versatility and market share.  In applications where ionizing radiation is a concern (such as outer 
space or high altitude), antifuses are usually a better choice. 

SRAM, or static RAM, is a volatile type of memory.  The contents of the memory are lost 
whenever the power is switched off.  Static RAM differs from the dynamic RAM used in PCs in 
that memory refresh of the RAM is not required.  SRAM-based programmable logic devices 
have to be programmed every time the chip is switched on.  This is usually done automatically 
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by another part of the system.  SRAM FPGAs are susceptible to ionizing radiation, including the 
neutron radiation experienced at high altitudes. 

An EPROM cell is a transistor that can be switched on by trapping an electric charge 
permanently on its gate electrode.  This is done by an external programming device.  The charge 
remains for many years and can only be removed by exposing the chip to strong ultraviolet light.  
EEPROM is electrically erasable PROM, which uses an electrical current rather than ultraviolet 
light to erase the programmed value.  EPROMs have to be removed from their circuit boards to 
be erased and reprogrammed.  EEPROMs can be erased and reprogrammed using special 
circuitry on the board. 

Flash memory is non-volatile, which means it retains its contents even when the power is 
switched off.  It can be erased and reprogrammed as required.  This makes it useful for 
programmable logic device memory.  Flash-based devices combine the best of both worlds - 
maintaining configuration when not powered, but also allowing reprogramming when desired.  
Flash-based programmable devices are essentially immune to neutron radiation (generated when 
cosmic rays interact with the atmosphere) and are resistant to other high-energy particles. 

A.7.1  Externally Programmed Devices 

Complex electronics using fuse, antifuse, or EPROM technology to configure the device have to 
be programmed in an external device, and cannot be programmed when placed on a circuit 
board.  EEPROM-based devices may also require external programming, or may be able to be 
programmed in-system, depending on the specifics of the device and the circuit. 

 

To use an external programmer the chip (CPLD or 
FPGA, or simple programmable logic device) is 
placed in the appropriate socket and attached to 
the programming device (see Figure A-4).  The 
programmer is attached to a computer (or may 
have an internal microprocessor, for stand-alone 
devices), which will download the binary file into 
the device and then apply the necessary voltages 
to “burn” or program the chip. 

Figure A-4: External Programmer 

 

A.7.2  In-system Programming 

Complex electronics using SRAM, Flash, or (sometimes) EEPROM can be, and usually are, 
programmed in-situ on the circuit board.  Many boards provide a JTAG interface that can be 
hooked up to a personal computer for download of the device configuration. 
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APPENDIX B   HARDWARE DESCRIPTION LANGUAGES 

B.1   Overview of Hardware Description Languages (HDLs) 

While schematic capture works well for small circuits and devices, complex designs require the 
ability to abstract at a higher level.  Thus, hardware description languages were born.  One 
difference between HDLs and software languages is HDLs are essentially models of the 
hardware.  The languages were initially created to allow simulation of the design and contain all 
the necessary capabilities to create test benches and simulation models.  Simulation of complex 
electronics is very common in the design community. 

There are two major HDLs currently in use: Verilog and VHDL.  This handbook provides a 
cursory overview of these two languages; however, each of the languages is a course (or two) in 
its own right.  Several good tutorials on the languages are provided in Section 2.2, Links. 

The Verilog hardware description language was invented by Philip Moorby in 1983.The first 
Verilog synthesis tool was introduced in 1987.  Verilog was placed in the public domain and is 
now specified by an IEEE standard (IEEE 1364).  This language enables specification of a digital 
system at a range of levels of abstraction, such as switches, gates, Register-Transfer Level 
(RTL), and higher.  In 2005, SystemVerilog was adopted as IEEE Standard 1800-2005.  This 
update includes items such as structures, pointers, or recursive subroutines not present in earlier 
versions. 

VHDL stands for VHSIC Hardware Description Language.  VHSIC is an acronym for Very 
High Speed Integrated Circuit.  VHDL is also specified by an IEEE standard (IEEE 1076).  
VHDL was developed over time, culminating in its initial release in 1987.  In June 2006, the 
VHDL Technical Committee of Accellera approved Draft 3.0 of VHDL-2006.  While 
maintaining full compatibility with older versions, this proposed standard provides numerous 
extensions that make writing and managing VHDL code easier.  Key changes include 
incorporation of child standards (1164, 1076.2, 1076.3) into the main 1076 standard, an extended 
set of operators, more flexible syntax of 'case' and 'generate' statements, incorporation of VHPI 
(interface to C/C++ languages), and a subset of PSL (Property Specification Language). 

B.2   General Hardware Description Language Concepts 

There are a few major differences between HDLs and software languages that one needs to keep 
in mind.  First, software is inherently sequential - one instruction is executed after another.  Even 
in multi-threaded or multi-tasking systems, no two tasks operate at the exact same moment.  
Hardware, however, is parallel in nature - multiple events can be happening simultaneously.  
Hardware description languages have ways to describe concurrency (parallel execution) and to 
specify timing.  Second, HDLs describe hardware.  While at the highest abstraction an HDL can 
define an algorithm similarly to a software language, at the lower levels of abstraction that 
algorithm is translated into gates and I/O. 

Hardware description languages model two aspects of the hardware: structure and behavior.  
These two aspects are independent - the structure of the hardware is not dependent on the 
behavior, and vice versa.  The interfaces (input/output signals) from the device to the outside 
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world are part of both the structure (what the device is made of) and the behavior (what it does 
with the signals).  In addition, because HDLs were originally designed as simulation languages, 
they can create test benches to exercise and test the device with simulated “real world” devices. 

The first step when designing and modeling complex electronics in a hardware description 
language is to partition the design into natural abstract blocks, known as components.  Each 
component is the instantiation of a design entity, which is normally modeled in a separate system 
file for easy management and individual compilation by simulation or synthesis tools.  The total 
system is then modeled using a hierarchy of components, known as a design hierarchy, which 
consists of individual subcomponents (subdesign entities) brought together in one higher-level 
component (design entity).  In other words, start with very simple entities (e.g., AND gates) and 
put them together into components (logical subdivisions within the device), which together 
become the model of the device. 

The two main elements of the HDL description of the complex electronic device are the 
architecture body (the structure) and the behavioral architecture.  The architecture body describes 
the implementation of a module’s inputs and/or outputs.  The electrical values of the outputs are 
some function of the values of the inputs.  Of course, each module can be made up of sub-
modules, down to the basic entities.  The connections between the sub-modules (inputs/outputs) 
are made using signals. 

The architecture body contains: 

 Signal declarations, for internal interconnections, 

 Entity ports (also treated as signals), 

 Component instances (instances of previously declared entity/architecture pairs), 

 Port maps in component instances (connect signals to component ports), and 

 Wait statements. 

The behavioral architecture describes the algorithm performed by the module.  While the 
architecture body described the inputs and outputs, the behavioral architecture describes what 
goes on to convert those inputs to outputs.  More complex behaviors cannot be described purely 
as a function of inputs.  In systems with feedback, the outputs are also a function of time.  
Fortunately, hardware description languages provide features to handle time as part of the 
behavior. 

The behavioral architecture contains: 

 Process statements, 

 Sequential statements, 

 Signal assignment statements, and 

 Wait statements. 
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The design engineer can describe the behavior of a module without describing its structure.  This 
might want to be doneif using an off-the-shelf component as part of the design.  The design 
engineer does not really care about the internal structure of the component; they just want to 
describe what it does.  Figure B-1 shows the general HDL development process. 
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 Consistent and defined style, 

 Guidelines on writing understandable code, 

 Commenting guidelines, 

 Information to capture in comments at each level, and 

 Naming convention (for consistency). 

Coding standards can be specific to a programming language or a chip family, or corporate 
requirements, or more general in nature.  An example coding standard, courtesy of Xilinx 
Corporation, can be found in Appendix D. 

B.3   Programming ExampleS 

The following examples demonstrate, in a simple form, the programming constructs for complex 
electronics. 

VHDL uses the concept of a “design entity,” which consists of two design units.  The entity 
declaration defines the external interface.  The architecture body details the internal structure, 
and can define the entity’s behavior, structure, or both. 

Verilog uses the concept of a “module” rather than “entity.”  Like VHDL, the port declarations 
(external interface) are separate from the module body, which defines the internal behavior 
and/or structure.  Figure B-2 below, which includes Examples 1 and 2, shows the difference 
between a VHDL and Verilog design for the same circuit. 
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B.4   Abstraction 

Hardware description languages can be used to describe complex electronics at many different 
levels of abstraction.  An abstraction is a simplified representation of something that is 
potentially quite complex.  It is often not necessary to know the exact details of how something 
works, is represented or is implemented, because it can be used in its simplified form. 

The levels of abstraction for a complex electronic device are: 

 System or Behavioral, 

 Algorithm, 

 Register-Transfer Level (RTL), and 

 Gate. 

The highest level of abstraction is the system level, where the device is mostly a black box 
interacting with its environment.  Very little is known about the internals of the device, but it 
functions (its behavior) are defined. 

A pure algorithm consists of a set of instructions executed in sequence to perform some task.  A 
pure algorithm has neither a clock nor detailed delays.  Some aspects of timing can be inferred 
from the partial ordering of operations within the algorithm.  The algorithmic level of abstraction 
is similar to software programming (e.g.; while ready, do task A and task B, then do task C).  
Because of the lack of timing information, this level is not synthesizable (able to be mapped to 
hardware). 

The Register-Transfer Level (RTL) description has an explicit clock.  All operations are 
scheduled to occur in specific clock cycles, but there are no detailed delays below the cycle level.  
A single global clock is not required but may be preferred.  In addition, re-timing is a feature 
allowing operations to be rescheduled across clock cycles.  The RTL level is the input to the 
synthesis tool. 

The gate level of abstraction is the output from the synthesis tool.  A gate level description 
consists of a network of gates and registers, along with technology-specific delay information for 
each gate.  A complex electronics device can be described in one of three domains: behavioral, 
structural, and physical. Figure B-3 shows the various domains in which complex electronics can 
be described. 
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Figure B-3: Complex Electronics Domains 

 

Hardware description languages deal with the first two domains (behavioral and structural).  The 
mapping from the behavioral and structural domains to the physical implementation is performed 
by the synthesis and place-and-route tools. 

Figure B-4 shows a simple circuit that warns car passengers when the door is open or the seatbelt 
is not used whenever the car key is inserted in the ignition lock.  At the behavioral level this 
could be expressed as: 

 

Warning = Ignition_on AND (Door_open OR Seatbelt_off) 

 

Figure B-4: Warning Buzzer Example 

 

The structural level, on the other hand, describes a system as a collection of gates and 
components interconnected to perform a desired function.  A structural description could be 
compared to a schematic of interconnected logic gates.  It is a representation usually closer to the 
physical realization of a system. 
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CPLDs may be reprogrammable on the circuit board, if special circuitry is 
included. 

 SRAM or Flash.  Static RAM (SRAM) or Flash memory can be used to control 
the transistors for each interconnection.  Each memory bit controls the 
interconnect switches through its value.  When a bit is set to ‘1,’ the switch is 
closed, and the logic elements are connected.  A ‘0’ opens the switch.  CPLDs 
built using RAM/Flash switches can be reprogrammed without removing them 
from the circuit board and are in-circuit reconfigurable or in-circuit 
programmable. 

There are tools which determine what switches to open or close to implement the logic design. 
These tools take the logic design and output a binary file which configures the switches in a 
CPLD. 

Applications: 

CPLDs are used in a wide variety of applications from cell phones to spacecraft.  They are often 
used as “glue logic” to connect various parts of a design, process data, or to translate data from 
one protocol to another. CPLDs are great for: 

 High speed operations, 

 Interface controllers (bus, memory, Flash), 

 Interface bridging, 

 I/O expansion, 

 Device configuration, 

 Power-up sequencing, 

 Microprocessor support logic, 

 Glue logic, and 

 Implementing small “soft” microcontrollers (e.g., 8-bit). 

They are used as support chips in most modern electronics, including: 

 Cell phones, 

 PDAs, 

 Digital cameras, 

 Communications hardware, and 

 GPS. 

CPLDs come in a variety of density, speed, and package options.  Handheld applications tend to 
use lower density devices, because they have less need for complex logic, require low power, 
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and try to minimize cost per unit.  When capability is more important than power usage, higher 
density CPLDs are a better choice. 

Often a logic design could be implemented in either a CPLD or an FPGA.  CPLDs are chosen 
when predictable timing performance is required.  CPLDs have fewer routing matrices than 
FPGAs.  Since each routing matrix adds a little delay to the signal, fewer routings translates to 
faster signal transit.  While CPLD density is less than most FPGAs, high end CPLDs will have 
the same density as low end FPGAs.  Performance of CPLDs is usually better than FPGAs, 
though it depends on the vendor, size (number of cells), speed, and other factors. 

Real-world Examples: 

Here are some examples of CPLDs used in a variety of products. 
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MicroDosimeter Instrument (MIDN) 

 

Figure C-2: MIDN 

 

MIDN, Figure C-2, was a spaceflight payload that tested a compact, low powered, and portable 
solid-state micro dosimeter.  MIDN collected quantitative information on the dose and dose 
distribution of energy deposited in tissue-sized silicon cells.  By inference, this data could show 
what the dosage would be in living tissue. 

CPLDs were used in MIDN for command and data handling.  This payload was part of the 
MidSTAR-1 (Midshipman Space Technology Applications Research) satellite which operated 
from 2007-2009. 
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Fluids and Combustion Facility (FCF)  

 

Figure C-3: FCF 

 

The Fluids and Combustion Facility (FCF), Figure C-3, a permanent modular, multi-user facility 
to accommodate microgravity science experiments onboard the International Space Station (ISS) 
U.S.  Laboratory Module was first activated in 2009.  FCF uses the Fluids Integration Rack (FIR) 
and the Combustion Integration Rack (CIR) to support research in fluid physics and combustion 
science. The FIR will permit a wide range of fluid investigations from microscopic imaging to 
particle tracking. CIR experiments look at how solid, liquid, and gaseous fuels burn in 
microgravity to assess fire prevention and suppression, pollutant and particulate formation, and 
combustion efficiency. 

CPLDs are used within FCF to translate data from a digital camera to a high-speed fiber 
interface.  When the data is received, two other CPLDs reformat the incoming data to what is 
required by a Digital Signal Processor (DSP). 
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SRAM FPGAs 

SRAM, or static RAM, is a volatile type of memory.  The contents of the memory are lost 
whenever the power is switched off.  Static RAM differs from the dynamic RAM used in PCs in 
that memory refresh of the RAM is not required.  SRAM-based programmable logic devices, 
such as FPGAs, have to be programmed every time the chip is switched on.  This is usually done 
automatically by another part of the system. 

Most SRAM-based FPGAs use a master mode, which reads the configuration information from 
non-volatile memory, such as a serial or parallel EPROM or flash memory.  The FPGAs can also 
be configured via an external source in slave mode.  The FPGA accepts a serial or parallel data 
stream representing the configuration data.  The data source can be a processor, computer, or an 
FPGA acting as a master.  Using this technique, it is possible for several FPGAs to be 
programmed from a single memory.  A master FPGA is wired to a daisy chain of slave FPGAs.  
When the master FPGA has been programmed, it will keep reading the data from the memory 
and pass it on to the slave devices until all of the FPGAs are configured. 

Antifuse FPGAs 

A fuse is a special part of the programmable chip that is normally closed (connected) until an 
electrical current breaks the connection.  Antifuses, unlike traditional fuses, are open until a 
voltage is applied to close (complete) the circuit path.  Once programmed closed, the connection 
cannot be reprogrammed to open.  Programmable logic using fuses or antifuses are “program 
once” chips. 

Antifuse FPGAs are best used when you do not want to have to reconfigure your chip every time 
power is applied (e.g., quick power-on time is needed).  They are also useful in environments 
where SRAM would have problems (e.g., high altitude or outer space). 

Flash FPGAs 

Flash memory is non-volatile, which means it retains its contents even when the power is 
switched off.  It can be erased and reprogrammed as required.  This makes it useful for 
programmable logic device memory.  Flash-based devices combine the best of both worlds - 
maintaining configuration when not powered, but also allowing reprogramming when desired.  
Flash-based programmable devices are essentially immune to neutron radiation (generated when 
cosmic rays interact with the atmosphere) and are resistant to other high-energy particles. 

Software Engineers and FPGAs 

What if a software engineer could create a regular software application that could run on an 
FPGA?  Design tools for FPGAs are moving quickly in this direction.  In this new environment 
for software developers, the FPGA can be viewed as one possible target (along with traditional 
and non-traditional processor architectures) for a software compiler.  With currently available 
tools, the software engineer can make use of FPGA platforms, as well as take advantage of the 
high level of algorithmic parallelism available when traditional processors (or processor cores) 
and FPGAs are combined in a single target platform. 

Downloaded from http://www.everyspec.com



NASA-HDBK 8739.23A—2016-02-02 

103 of 161 

FPGA-based computing platforms, particularly those with embedded “soft” microprocessors, 
have the potential to implement extreme high-performance applications.  With the latest 
generation of hardware/software co-design tools it is now possible to use multiple graphical, 
software-oriented design methods as part of the FPGA design process. 

Radiation and FPGAs 

NASA projects typically deal with environments more extreme than an office or laboratory.  
Spacecraft and high-altitude aircraft are bombarded with radiation.  Shock and vibration, 
electromagnetic interference, and thermal issues are common problems when designing NASA 
systems. 

Unfortunately, FPGAs are mostly just big RAM devices, and most of that RAM is in the 
configuration circuitry.  An upset event in the routing can quietly alter the logical 
interconnections, and a problem in a lookup table (LUT) can alter the functional behavior of a 
design. 

SRAM FPGAs are susceptible to ionizing radiation, including the neutron radiation experienced 
at high altitudes.  SRAM FPGAs designed for high-radiation environments typically use periodic 
read-back and verification of the configuration or frequent reconfiguration of the chip to a known 
good state.  Because SRAM devices are vulnerable, they are used more in payload applications, 
where some level of failure can be tolerated and overcome, rather than in the more critical 
systems that control spacecraft flight operations. 

While antifuse FPGAs lag behind the more programmable versions in size (gate density), 
versatility and market share, they are very useful in space applications.  Radiation tolerant 
FPGAs use the antifuse technology, which provides immunity to radiation effects as well as low 
power, single-chip solutions that do not require configuration circuitry. 

Flash-based FPGAs provide radiation tolerance along with reprogrammability.  Like antifuse 
FPGAs, they are immune to upsets caused by most radiation.  Like SRAM FPGAs, they can be 
reprogrammed in-circuit.  Radiation studies of Flash-based FPGAs are still ongoing. 

While high-profile projects like the Mars rovers showcase the use of programmable logic in 
space, the majority of space-bound FPGAs are included in commercial and military satellites.  
FPGAs are frequently used in satellite functions such as guidance, station-keeping, and 
telemetry. 

Applications 

FPGAs had an initial niche as prototypes for ASIC.  Because ASICs require a long lead time 
from design to implementation, and it can be very expensive to correct ASIC design errors, 
FPGAs were used to try out the designs.  Errors detected in the design could be corrected, the 
FPGA reprogrammed, and testing of the design could continue.  The process is not without 
problems, though.  ASIC designs had to be created using ASIC synthesis tools, and then a 
separate FPGA tool is used to implement the ASIC prototype in an FPGA.  Switching from one 
synthesis tool to another requires changing code and scripts, which is time-consuming, and 
increases the potential for introducing errors into the prototype that do not accurately reflect the 
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functionality of the ASIC design.  FPGAs are often slower than ASICs, which prevents timing 
problems from being accurately diagnosed.  Despite the problems, however, FPGAs are still used 
to prototype ASICs - because the cost of a failed ASIC can be quite expensive. 

FPGAs have gained rapid acceptance and growth over the past decade because they can be 
applied to a very wide range of applications.  Some typical applications are: 

 Random logic, 

 Integrating multiple CPLDs, 

 Device controllers, 

 Bus controllers, 

 Communication encoding and filtering, and 

 Small to medium sized systems with SRAM blocks. 

More intensive applications include: 

 Digital signal processing, 

 Complex custom applications, 

 Consumer electronics, 

 Software radio, and 

 Cryptographic and security devices. 

Reconfigurable or adaptive computing is a cutting-edge application for FPGAs.  Instead of a 
traditional microprocessor executing software, FPGAs are reprogrammed to perform the 
necessary calculations or operations. 

NASA (and other) Examples: 

The Mars Exploration Rovers (MERs), Spirit and Opportunity, garnered the world’s attention as 
they rolled out onto the surface of Mars.  Hidden inside the rovers and landers are FPGAs, doing 
their job in a harsh environment.  FPGAs are used in pyrotechnics devices for landing, as well as 
in the arm, cameras, steering, antenna gimbals, and wheel control systems on the Mars rover 
missions.  

Figure C-5 shows some other space and science projects that use FPGAs:  

 A prototype multi-directional muon detector, operating in Sao Martinho, Brazil, 
was upgraded and extended, using FPGAs.  The FPGAs allow a more 
complicated and advanced logic circuit to be designed at a reduced cost.  The 
upgraded detector will be able to determine the incident direction of every single 
muon detected and record the count rates in the total 121 incident directions.  The 
detector is part of a network used to forecast geomagnetic storms. 
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 NASA’s Jet Propulsion Laboratory has developed a lossless image-compression 
algorithm that can be implemented entirely in an FPGA plus a small random-
access memory chip. 

 

Cassini  

 

There are FPGAs orbiting Saturn on the 
Cassini spacecraft, launched in 1997.  
Cassini has completed its primary mission 
and its first extended mission and is now on 
its second extended mission, through 2017.  
FPGAs are used in many instruments on 
Cassini, including the Visual and Infrared 
Mapping Spectrometer (VIMS). 

Extreme Ultraviolet Imager (EUV)  

FPGAs controlled parts of the EUV 
instrument on the IMAGE (Imager for 
Magnetopause-to-Aurora Global 
Exploration) satellite, part of NASA’s 
MIDEX program.  IMAGE was launched in 
2000 on a two-year mission, but continued to 
provide data into 2005.  FPGAs controlled 
the sensors and read out, formatted, and 
stored the data. 

Optus C1  

Radiation tolerant FPGAs have been 
deployed on board Optus C1, the largest 
hybrid commercial and defense 
communications satellite ever launched.  The 
communications satellite was launched in 
2003 and is still operational. 

SAMPEX 
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Launched in July 2003, Solar, Anomalous, 
and Magnetospheric Particle Explorer was 
NASA’s first Small Explorer mission. 
SAMPEX was designed to study the four 
classes of charged particles that originate 
beyond the earth. It was NASA’s first use of 
FPGAs in a science mission.  

Figure C-5: Other CPLD Missions 

 

Other missions that include FPGAs: 

Civilian/Scientific exploration 

 Deep Space 1 

 Mars Pathfinder, Surveyor, Express, Climate Orbiter 

 Lunar Prospector 

 SIRTF (Space Infrared Telescope Facility, renamed the Spitzer Space Telescope) 

 TDRS (Tracking and Data Relay Satellite) 

 Hubble Space Telescope 

 GOES (Geostationary Operational Environmental Satellite) 

International Missions 

 International Space Station 

 Chandra 

 Rosetta 

 SOHO (Solar and Heliospheric Observatory) 

Commercial Satellites 

 Telstar 

 PanAm Sat 

 Intelstat IX 

 Globalstar 

 Orbview 

 Military Satellites 

 Clementine 
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blocks in new ways.  Since the building blocks already exist in a library, it is much easier to 
produce a new ASIC than to design a new chip from scratch. 

ASICs are custom-designed integrated circuits, but they are not programmable by the user.  They 
are manufactured (usually in large quantities) by vendors according to the design provided by the 
customer.  If you find a problem with an ASIC after it is produced, the only option is to 
remanufacture (re-spin) the chip with a corrected device.  To avoid costly mistakes, FPGAs are 
often used to check out and debug the ASIC design prior to submittal to the manufacturer. 

While most integrated circuits (ICs) could be considered “application-specific,” because they 
have a defined purpose, off-the-shelf parts are not really ASICs.  They are not designed by the 
user/customer to incorporate just the required functionality.  Examples of ICs that are not ASICs 
include standard parts such as memory chips (ROMs, DRAM, and SRAM), microprocessors, and 
all the miscellaneous chips used in modern electronics (FIFOs, logic chips, drivers, clock chips, 
switches, etc.).  Now, if a chip has been designed specifically for a talking toy, a cell phone, or a 
satellite, it is an ASIC.  As a general rule, if found in a data book, then it is probably not an 
ASIC. 

Integrated circuits are made on a thin (a few hundred microns thick), circular silicon wafer, with 
each wafer holding hundreds of die.  The transistors and wiring are made from many layers built 
on top of one another.  Each successive layer has a defined pattern using a mask similar to a 
glass photographic slide.  The first layers define the transistors, and the last layers define the 
metal wires between the transistors (the interconnections). 

ASICs come in two basic varieties, full-custom and semi-custom, which consist of two sub-
types: cell-based and gate-array.  Each variety or type of ASIC has strengths and weaknesses.  A 
microprocessor is an example of a full-custom ASIC, where each micron on the silicon is 
customized to give exactly what is needed.  Semi-custom ASICs have pre-designed elements and 
customizable portions. 

A full-custom ASIC allows customization of some (and possibly all) logic cells and all mask 
layers.  Customizing all of the ASIC features in this way allows designers to include analog 
circuits, optimized memory cells, or mechanical structures on an IC, for example.  Full-custom 
ASICs are the most expensive to design and manufacture.  The manufacturing lead time (how 
long it takes to make an ASIC once the design is completed) is typically eight weeks. 

Semi-custom ASICs have all of the logic cells pre-designed and some (possibly all) of the mask 
layers are customized.  Designers use pre-designed cells from a cell library, provided by the 
vendor or a third party.  These pre-designed units are usually referred to as IP (Intellectual 
Property).  Semi-custom ASICs are either standard cell-based ASICs or gate-array-based ASICs. 

A cell-based ASIC uses pre-designed logic cells (e.g., AND gates, OR gates, multiplexers, and 
flip-flops) known as standard cells.  The standard-cell areas (also called flexible blocks) are built 
of rows of standard cells like a wall built of bricks.  The standard-cell areas may be used in 
combination with larger pre-designed cells, such as microcontrollers, known as megacells.  
Megacells are also called megafunctions, full-custom blocks, system-level macros (SLMs), fixed 
blocks, cores, or Functional Standard Blocks (FSBs). 
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The ASIC designer defines only the placement of the standard cells and interconnect in a cell-
based ASIC.  However, the standard cells can be placed anywhere on the silicon; this means all 
the mask layers are customized and are unique to a particular customer.  The advantages of cell-
based ASIC are designers save time, money, and reduce risk by using a pre-designed, pre-tested, 
and pre-characterized standard-cell library.  In addition each standard cell can be optimized 
individually. 

If you were to look through a low-powered microscope 
at a cell-based ASIC die something similar to 
Figure C-7 would be seen.  This ASIC has a single 
standard-cell area (a flexible block) together with four 
fixed blocks.  The small squares around the edge of the 
die are bonding pads that are connected to the pins of 
the ASIC package. 

Figure C-7: ASIC Die 

 

In gate-array-based ASICs, the transistors are predefined on the silicon wafer.  This predefined 
pattern of transistors on a gate array is called the base array, and the smallest element replicated 
to make the base array is called the base cell.  Only the top few layers of metal, which define the 
interconnect between transistors, are defined by the designer using custom masks. 

The designer chooses from a gate-array library of pre-designed and pre-characterized logic cells 
or macros.  The reason is the base-cell layout is the same for each logic cell, and only the 
interconnect (inside cells and between cells) is customized.  Gate-array ASICs can be 
prefabricated up to a point and stored.  At a later time, the final customization steps can be 
performed to complete the ASIC.  This reduces the manufacturing time to only a few days or at 
most a couple of weeks. 

ASIC Cell Libraries 

The cell library is the key part of ASIC design.  Cell libraries can be provided by the ASIC 
vendor, procured from a third-party library vendor, or custom-built.  The first choice, using an 
ASIC-vendor library, requires the use of a set of design tools approved by the ASIC vendor to 
enter and simulate your design.  An ASIC vendor library is normally a phantom library - the cells 
are empty boxes, or phantoms, but contain enough information for layout.  After layout is 
completed a netlist is sent to the ASIC vendor, who fills in the empty boxes (phantom 
instantiation) before manufacturing your chip. 

The second and third choices requires a buy-or-build decision.  If an ASIC design is done using a 
purchased cell library, you also own the masks (the tooling) used to manufacture the ASIC.  This 
is called customer-owned tooling (COT, pronounced “see-oh-tee”).  A library vendor normally 
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develops a cell library using information about a process supplied by an ASIC foundry.  An 
ASIC foundry (in contrast to an ASIC vendor) only provides manufacturing, with no design help.  
If the cell library meets the foundry specifications, it is considered to be a qualified cell library.  
These cell libraries are normally expensive (possibly several hundred thousand dollars), but if a 
library is qualified at several foundries this allows the developer to shop around for the most 
attractive terms.  This means buying an expensive library can be cheaper in the long run than the 
other solutions for high-volume production. 

The third choice is to develop a cell library in-house.  Many large computer and electronics 
companies make this choice.  Most of the cell libraries designed today are still developed in-
house despite the fact the process of library development is complex and very expensive. 

However created, each cell in an ASIC cell library must contain the following: 

 A physical layout, 

 A behavioral model, 

 A Verilog/VHDL model, 

 A detailed timing model, 

 A test strategy, 

 A circuit schematic, 

 A cell icon, 

 A wire-load model, and 

 A routing model. 

Applications: 

ASICs are used widely in many types of electronics devices.  Anytime there are a large number 
of devices manufactured that require specialized operation, an ASIC is probably inside. 

ASICs application examples include: 

 Battery management for household appliances, 

 Low noise audio circuit, 

 Analog Integrated Circuit for industrial environment, 

 Sensitive photo transistors and opto-sensors, 

 DC-DC converters from 0.9V supply voltage, 

 Control circuit for cycle rear light, 

 120V Linear Regulator, 

 Interface circuit for a bar code reader, 
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 Control and evaluation circuit for motion detectors, 

 Timer electronics, 

 Interface and signal processing electronics for sensors (light, vibration and 
magnetic field), 

 Control circuit for mobile phones, 

 Automotive control functions, and 

 PDAs. 

NASA Examples: 

ASICs can provide several features that are especially important in spacecraft and instruments, 
such as: 

 Customized electronics, 

 Smaller footprint, 

 Less weight, and 

 Hard-coded (radiation resistant). 

The smaller footprint on the circuit board and reduced weight are the result of including multiple 
functions in a single chip, rather than having to use many individual integrated circuit chips. 

 

Figure C-8: Cassini 

 
See section C.2 also.  The Cassini spacecraft, see Figure C-8, is a complicated system, with 
22,000 wire connections and nearly nine miles of cabling.  The main on-board computer 
uses very high-speed ICs and advanced, radiation-hardened ASICs.  Each ASIC replaces one 
hundred or more traditional chips, allowing the development of a data system for Cassini 
that is ten times more efficient than earlier spacecraft designs (e.g., Galileo and Magellan), 
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but at less than one-third the mass and volume.  Mars Pathfinder and Near Earth Asteroid 
Rendezvous (NEAR) both used these chips directly off the Cassini production line. 

The Cassini program also created an advanced solid-state power switch that eliminates the 
rapid fluctuations (called transients) usually found in circuits utilizing conventional power 
switches.  This power switch combined the switching attributes of the Metal-Oxide 
Semiconductor Field-Effect Transistor (MOS FET) with an ASIC design.  This ASIC results 
in significantly improved component lifetime and efficiency and is widely applicable to both 
industrial and consumer electric and electronic products. 

 

Figure C-9: Swift 

 
Swift, see Figure C-9,  is a first-of-its-kind multi-wavelength observatory dedicated to the 
study of gamma-ray burst (GRB) science and launched in 2004.  Its three instruments 
work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet, and 
optical wavebands.  The main mission objectives for Swift are to: 

 Determine the origin of gamma-ray bursts, 

 Classify gamma-ray bursts and search for new types, 

 Determine how the blast wave evolves and interacts with the surroundings, 

 Use gamma-ray bursts to study the early universe, and 

 Perform the first sensitive hard X-ray survey of the sky. 

One instrument on Swift is the Burst Alert Telescope (BAT), a large coded aperture 
instrument with a wide field-of-view (FOV) that provides the gamma-ray burst triggers.  
BAT can observe and locate hundreds of bursts per year to better than 4 arc minutes 
accuracy.  BAT contains thousands of detector elements that are assembled into 8 x 16 
arrays, each connected to 128-channel readout ASICs. 

Figure C-10: Gamma-
ray Large Area Space 
Telescope (GLAST)  
[Renamed the Fermi 
Gamma Ray Space 

telescope]  

The Fermi Gamma-ray Space Telescope, launched in 2008, see Figure C-10, is an 
international and multi-agency space mission to study the cosmos in the energy range 10 
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Description: 

The SoC depicted in figure C-11, also called “system-on-a-chip” or SoaC, is a complete product 
containing all the necessary electronic circuits and parts for a "system" on a single integrated 
circuit.  Think of it as a single-board-computer on a chip.  SoCs include the hardware 
components and all required ancillary electronics. SoCs combine aspects of ASICs and field-
programmable logic.  SoCs can be: 

 Totally ASIC, with the individual blocks specified by the designer; 

 ASIC for the computing unit and logic functions, with some programmable parts 
(e.g., CPLD); and 

 Implemented on programmable logic (e.g., FPGA). 

SoCs can use IP designs created by others and integrated into the chip.  IP blocks are pre-
designed behavioral or physical descriptions of a standard component.  These reusable 
components are usually Commercial-off-the-Shelf (COTS) products. 

The benefits of SoC design include: 

 Conservation of space (reduction in chip count), 

 Improved performance (higher reliability), 

 Lower memory requirements, and 

 Greater design freedom (simpler logistics). 

These benefits also come with some challenges including: 

 Larger design space, 

 More expense (global on-chip communication is expensive in terms of 
power/propagation delay), 

 Increased prototype cost, 

 Correctness of complete system with multiple components, and 

 A high level of debugging methodology. 

Testing of the products is also a challenge due to the fact that typical testing methods have been 
developed for specific specialty areas, whereas the SoC requirement includes all specialties, 
potentially on one platform. 

A SoC could include: 

 Microprocessor, 

 Memory (e.g., SRAM, DRAM, Flash), 

 Communications cores, 

Downloaded from http://www.everyspec.com



NASA-HDBK 8739.23A—2016-02-02 

115 of 161 

 Digital Input/Output functions, 

 Analog Input/Output functions, 

 Bus controllers (e.g., PCI (Peripheral Component Interconnect)), 

 DSP (Digital Signal Processor), 

 Sensors, 

 Programmable logic (e.g., FPGA, CPLD), and 

 Embedded software. 

For example, a system-on-chip for a sound-detecting device might include an audio receiver, an 
analog-to-digital converter (ADC), a microprocessor, necessary memory, and the input/output 
logic control for a user - all on a single microchip. 

Configurable System-on-Chip (CSoC) 

Configurable SoCs are a new form of system-on-chip that has a configurable fabric designers’ 
can manipulate, after chip fabrication, to achieve specific functionality.  Configurability lets the 
on-chip functions be changed for a variety of reasons.  These reasons include: 

 Change in core functionality, 

 Compatibility with a change in a communications or other standard to which the 
CSoC must conform, and 

 Correcting a design error incurred during original chip development. 

Post-process configurability lets the designer create products that can adapt to changing 
requirements. 

Some configurable SoCs are FPGAs that combine both hard (fixed) and soft (programmable) 
cores.  These chips are sometimes referred to as platform FPGAs.  In figure C-12 below, the 
microprocessor is a hard component (fixed in the silicon), while the Digital Signal Processor 
(DSP) is a soft component created in the FPGA programmable infrastructure. 

The reconfigurable approach offers significant advantages.  It reduces design costs because 
changes can be made immediately to the chip during development.  Chip simulation becomes 
less of an issue because the real hardware is available immediately.  In the field, bug fixes and 
upgrades can be more extensive as significant portions of the hardware can be altered, not just 
the application code. 
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Figure C-12: Reconfigurable SoC 

Cost is the main downside to using a standard reconfigurable SoC rather than creating a custom 
SoC.  Custom designs typically have large up-front development costs, but low individual chip 
costs.  Reconfigurable SoCs have a comparatively small up-front cost, but are usually more 
expensive per chip.  Reconfigurable SoCs can also be used for prototyping because the core CPU 
and fixed peripherals are well defined.  Building a custom ASIC or SoC based on a 
reconfigurable prototype is relatively easy. 

Applications for SoC: 

System-on-chip devices can be used in any application requiring a processor and peripheral 
components.  Since the advantages of SoC are small size, integrated components, and reduced 
power, they are especially useful in: 

 Cell/camera phones, 

 Medical equipment (especially portable devices), 

 Portable multimedia devices, 

 Network-enabled devices, 

 PDAs, 

 Point-of-sale devices, and 

 Gaming systems. 

In the medical world, portable equipment and implantable devices are becoming more common.  
Such equipment includes blood glucose monitoring systems, insulin pumps, body temperature 
sensors, defibrillators, neurological stimulators, pacemakers, and hearing aids.  These products 
not only simplify the testing, monitoring, and treatment processes, but can also help to improve 
the quality of life for the patient by minimizing time spent in hospitals and often providing 
automatic, continuous treatment of chronic conditions. 

Downloaded from http://www.everyspec.com



NASA-HDBK 8739.23A—2016-02-02 

117 of 161 

To address requirements for performance, power consumption, and size, medical equipment 
manufacturers are incorporating as much functionality as possible into a single, complex SoC.  
These devices need to integrate both analog and digital capabilities and, in many cases, deliver 
short-range, low-data-rate wireless communication functionality.  Furthermore, some 
applications may also require high-voltage output stages be integrated into the same device.  A 
variety of semiconductor technologies, IP blocks, and support tools can significantly simplify 
implementation of SoCs for implantable and portable medical devices. 

An example of a network device is the Sony Video Network Station.  This device, which 
contains an embedded Linux operating system running on an Axis ETRAX system-on-chip 
processor, transmits images generated by analog video cameras to remote locations where they 
can be viewed using ordinary GUI-based (Graphical User Interface) web browsers.  The device 
is useful in a diverse range of applications requiring remote video monitoring and control, 
including security monitoring, quality inspection, image distribution, access control, and market 
research. 

NASA projects: 

Like ASICs and FPGAs, SoC devices have significant benefits for NASA projects, including: 

 Customizable electronics, 

 Smaller circuit board footprint, 

 Less weight, and 

 Integrated functionality. 

Temperature Remote I/O (TRIO) System-on-Chip for Aerospace 

The TRIO smart sensor data acquisition chip was developed by Johns Hopkins 
University/Applied Physics Laboratory for NASA spacecraft applications.  TRIO includes a 10 
bit self-corrected analog-to-digital converter, analog inputs, a front end multiplexer with 
selectable acquisition time, a current source, memory, serial and parallel bus, and control logic.  
These functions are very useful for spacecraft and subsystems health and status monitoring and 
control actions.  The key contributions of the TRIO are feasibility of modular architectures, 
elimination of several miles of wire harnessing, and power savings by orders of magnitude.  So 
far TRIO is used in many missions including Contour, Messenger, Stereo, Europa Orbiter, Mars 
Surveyor Program, Solar Probe, Pluto Express, and in the generic JPL X2000 spacecraft bus. 

Radio Frequency (RF) components 

Micro-Electro-Mechanical Systems (MEMS) integrate mechanical elements, sensors, actuators, 
and electronics on a common silicon substrate through microfabrication technology.  
Microelectronic integrated circuits can be thought of as the "brains" of a system and MEMS 
augments this decision-making capability with "eyes" and "arms” to allow microsystems to sense 
and control the environment. 
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NASA Glenn Research Center is developing microwave MEMS devices that integrate with 
miniature microwave (RF) transmission lines and components to build low loss RF distribution 
networks for System on a Chip (SOAC) and phase array antennas.  These novel, low loss, 
miniature RF components will be fabricated using multilayer processing, and they will be 
combined with SOAC technology being developed by the University of Michigan and the JPL 
Center for Integrated Space Microsystems (CISM) for nano-sized science craft. 

Advanced time-of-flight system-on-chip for remote sensing instruments 

Accurate and/or fast time interval measurement is important in many remote sensing 
instruments, especially those requiring detection of photon/particle events, position decoding and 
time-of-hit measurement.  An advanced time-of-flight (TOF) system-on-chip has been developed 
that includes the complete signal processing electronics for microchannel plate (MCP) readout.  
The TOF chip is capable of a time resolution of <50 picoseconds.  The TOF chip was used on the 
NASA/IMAGE spacecraft launched in 2000 and is part of many other science instruments on 
MESSENGER. 

ChipSat 

ChipSat is a long-term research program which aims to build a satellite-on-a-chip.  As part of the 
program, an existing on-board computer (OBC) was scaled down to a SoC.  The OBC chosen 
was developed by the Surrey Satellite Technology Limited (SSTL), a company owned by the 
University of Surrey in Guildford, UK.  The SoC is prototyped on a single high-density 
programmable logic array chip using soft IP cores. 

Figure C-13 shows the parts of the OBC that were mapped into the system-on-chip.  An entire 
board was shrunk down to a single chip.  The experiment showed that it is possible to implement 
the functionality of a small satellite OBC on a single programmable logic chip. 

SCOC – A Spacecraft Controller On a Chip 

The European Space Agency (ESA) is pursuing development of a system-on-chip incorporating 
all the required functions for spacecraft control.  This SoC is currently prototyped in an FPGA.  
The demonstration board is named BLADE (Development of the Board for LEON and Avionics 
DEmonstration).  Eventually, the design will be produced in a radiation-tolerant ASIC or 
PROM-based FPGA. 

SCOC looks to integrate multiple functions into a single chip.  By integrating the functions, the 
external connections become on-chip interconnects.  Other benefits include reduced power 
consumption, reduced component count (and thus lower mass), and increased performance and 
reliability.  However, putting all the functions on a single chip reduces the accessibility to the 
internal functions and makes testing the complex chip more difficult. 
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Figure C-13: ChipSat OBC 

 

The SCOC will include the following components: 

 Standard processor, known to the space community (the LEON SPARC-V8), 

 Flexible peripherals, which can be powered down, 

 Telecommand and Telemetry (TM/TC) functionality (using the CCSDS protocol), 

 Housekeeping and CCSDS Time Management, 

 Multiple standard interfaces, 

 PCI parallel backbone, 

 Spacewire (IEEE 1355.1), 

 MIL 1553 standard Bus Controller/Monitor (BC/BM) and Remote Terminal (RT), 

 Dedicated data processing, 

 Monitoring camera interface and image compression, 

 GNSS navigation receiver, 

 Star tracker pre-processor, and 

 Mathematical co-processor. 

The current BLADE development integrates the processor with standard interfaces.  Additional 
functionality will be added in the future. 
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Software implementations exploit a “general-purpose” execution engine (i.e., microprocessor), 
which interprets a designated data stream as instructions telling the engine what operations to 
perform.  As a result, software is: 

 Flexible - Task can be changed simply by changing the instruction stream, 

 Relatively slow - Due to mostly temporal, serial execution, and 

 Relatively inefficient - Since operators can be poorly matched to computational 
task. 

Reconfigurable computing combines the best of both implementations, allowing general-purpose 
software to be implemented in hardware.  This class of architectures permits the computational 
capacity of the system to be highly customized to the instantaneous needs of an application, 
while also allowing the computational capacity to be reused in time at a variety of time scales. 

The usual hardware agent for reconfigurable computing is a set of FPGAs.  Reconfigurable 
computing manipulates the logic within the FPGA at run-time.  The design of the hardware may 
change in response to the demands placed upon the system while it is running.  Here, the FPGA 
acts as an execution engine for a variety of different hardware functions, some executing in 
parallel, others in serial, much as a microprocessor executes a variety of software threads. 

Reconfigurable computing offers several advantages over custom hardware and general-purpose 
software implementations, including: 

 Flexibility - The system can be changed as necessary, on the fly, 

 Simpler hardware design - Does not need a fancy high-powered microprocessor, 
just one or more FPGAs, and 

 Speed - Implementing algorithms in hardware results in faster execution, due to 
the parallel nature of hardware. 

The reconfigurable computing systems built during the last years have often achieved 
performance several orders of magnitude higher than the traditional processor based solutions.  
Reconfigurable computing is now breaking into the commercial market in the areas of 
application-specific systems and information appliances, which include emerging areas like 
mobile communication, multimedia-based networks, encryption, and image processing. 

What hardware is reconfigurable? 

Not all FPGAs can be used in reconfigurable computing.  User-configurable FPGAs can be 
programmed and reprogrammed by the user in a lab, or even in the field, but they cannot be 
dynamically reprogrammed as the system is running.  Many older FPGAs read their 
configuration out of a serial EEPROM, and only when a chip reset signal is asserted.  This means 
the FPGA must be reprogrammed in its entirety and its previous internal state cannot be captured 
beforehand. 

In order to benefit from run-time reconfiguration, the FPGAs involved need some or all of the 
following features, which increase design flexibility: 
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 On-the-fly reprogrammability - Resetting the FPGA takes a lot of time and 
should be avoided whenever possible. 

 Partial reprogrammability - The ability to leave most of the internal logic in 
place and change just one part is an important factor in reconfigurable systems.  It 
will always be much faster to change a small piece of the logic than the entire 
FPGA contents. 

 Externally-visible internal state - If you can see the internal state of the FPGA 
at any time, then it is also possible to capture that state and save it for later use.  
This allows the internal state of the FPGA to be read and written just like memory 
or processor registers and makes it possible to swap hardware designs in much the 
same way that pages of virtual memory are swapped into and out of physical 
memory. 

Run-time environments 

How does the reconfigurable system know what to do at any given time?  That job is usually 
handled by software.  The software manages the processes of: 

 Deciding which hardware objects to execute and when, 

 Swapping hardware objects into and out of the reconfigurable logic, and 

 Performing routing between hardware objects or between hardware objects and 
the hardware object framework. 

When software manages the reconfigurable hardware it usually means having an embedded 
processor or microcontroller on-board.  The embedded software that runs there is called the run-
time environment and is analogous to the operating system that manages the execution of 
multiple software threads.  Like threads, hardware objects may have priorities, deadlines, and 
contexts.  It is the job of the run-time environment to organize this information and make 
decisions based upon it. 

Using software allows developers to write applications at a very high level of abstraction.  For 
example, if the software needed to decompress an image, the attached FPGA could be 
reconfigured with the decompression algorithm and fed the data.  To the main software 
application, this action is no different than asking an analog-to-digital converter to read a voltage 
and return the answer.  The run-time environment software, however, is responsible for 
reprogramming the FPGA and executing the task. 

Programming reconfigurable systems 

Reconfigurable computing combines traditional software-related topics as languages, compilers, 
operating systems, and libraries with hardware-related topics of digital design. 

Reconfigurable systems present a formidable challenge in terms of algorithm design tools.  
Design tools for FPGA devices, the building blocks of reconfigurable hardware, are oriented 
towards ASIC development environments, in which digital design engineers create large (multi-
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million gate), complex designs that, once created and validated, do not change.  In contrast, 
reconfigurable supercomputers require a more software-centric development environment, in 
which algorithms are constantly revised and tested. 

In response to the need for software-oriented tools, vendors and researchers have developed 
compilers for software programming languages that synthesize hardware.  Compilers for several 
C variants, Java, and Matlab have become available in the past few years.  The compiler must 
generate a structural hardware representation (such as VHDL-RTL) that represents the 
connections between units contained in a library, with direct correspondence to the operators of 
high-level programming languages. 

Applications: 

While commercial reconfigurable computing platforms are starting to become available, the 
majority of work has been done in a research context.  There are some areas and problems that 
reconfigurable computing is ideal for, including: 

 Real-time image analysis, 

 Pattern recognition, 

 Automatic target recognition, 

 Cryptography, 

 Computational biology, and 

 Signal processing. 

One theoretical application is a smart cellular phone that supports multiple communication and 
data protocols, though just one a time.  When the phone passes from a geographic region served 
by one protocol into a region served by another, the hardware is automatically reconfigured.  
This is reconfigurable computing at its best.  Using this approach, it is possible to design systems 
that do more, cost less, and have shorter design and implementation cycles. 

Heading into the future, evolvable hardware (EHW) is designed to adapt to changes in task 
requirements or changes in the environment through its ability to reconfigure its own hardware 
structure dynamically and autonomously.  This capacity for adaptation is achieved by employing 
efficient search algorithms known as genetic algorithms.  Evolvable hardware has great potential 
for the development of innovative applications, including autonomous spacecraft and exploration 
systems. 

Here are some reasons why reconfigurable computing has valuable applications for space 
missions: 

 After launch, unmanned spacecraft electronics are generally unavailable for 
physical upgrade or repair.  RC technology allows new hardware circuits to be 
uploaded via a radio link. 
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 New circuit configurations can overcome design faults, allow improved 
processing algorithms to be uploaded, or change system functionality in response 
to changing mission requirements.  Combined with artificial intelligence 
applications, the unmanned spacecraft may be able to select circuits on its own to 
correct the problems. 

 The same circuitry can be used with different configurations at different stages of 
a mission, reducing weight and power requirements. 

 If part of an FPGA fails, then circuitry can be reprogrammed to make use of 
remaining functional portions of the chips. 

 Use of FPGAs allows generic circuit boards to be designed, which are customized 
for individual applications.  This helps overcome the very high NRE (non-
recurring engineering) costs associated with small volume spacecraft design.  
Physical and environmental qualification costs can also be shared across many 
missions. 

 In-flight reconfiguration provides additional safety margins for missions with 
very short lead-times, or for those where mission requirements are not fully 
defined at launch. 

NASA Examples: 

NASA Langley Research Center is one NASA installation exploring reconfigurable computing 
applications.  They have developed a reconfigurable FPGA-based research hypercomputer 
capable of performing comprehensive engineering and scientific calculations.  Two approaches 
have been adopted to exploit Langley’s Star Bridge Systems HC-38 (and 2 HAL15s) for analysis 
calculations: 

1. Rewrite legacy code for the hypercomputer to fully exploit parallelism. 

2. Use the hypercomputer to accelerate time-consuming (bottleneck) calculations. 

Software was entirely rewritten from C++ or FORTRAN to take advantage of the parallelism 
inherent in the hypercomputer (approach 1).  When only a small portion of a software application 
was computationally intensive, that portion was rewritten to the hypercomputer native language, 
and the rest of the code was left alone (approach 2). 

FedSat, an Australian science and engineering research satellite, was launched in 2002.  One 
payload on FedSat is the Adaptive Instrument Module (AIM), which is a reconfigurable 
computer optimized for spacecraft instrument use.  AIM has demonstrated autonomous 
instrument processing that is reconfigurable and adaptive.  The use of the AIM enables 
reconfiguration of the FPGA circuitry while the spacecraft is in flight.  This flexibility reduces 
mission risk, especially for missions with a very tight development schedule.  The AIM is 
designed to either directly interface with sensors or instruments or to receive data through the 
spacecraft data handling system.  AIM conducted a series of designed experiments, including a 
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demonstration of implementing data compression, data filtering, and communication message 
processing and inter-experiment data computation. 

The design of the AIM specifically addresses the concerns of using SRAM-based FPGAs in the 
space environment.  The AIM demonstrates techniques to detect and remediate radiation-induced 
upsets in these FPGAs and will automatically restart in the event of an upset.  The design has 
been proven in flight.  When the module suffered a memory error due to the bombardment of 
cosmic radiation, AIM automatically detected and then reset itself.  This prevented the memory 
error from causing an error in the data it was processing. 

The AIM development team at the Applied Physics Laboratory/John Hopkins University is 
working with NASA’s Langley Research Center to take the next step in reconfigurable, self-
repairing space borne computer design.  The project is called ADAPT – Adaptive Data Analysis 
and Processing Technology.  Because it is fully reconfigurable, an ADAPT computer can serve 
as the front-end package for virtually any type of instrument – for example, a spacecraft might 
carry six scientific instruments, each served by a physically identical, but differently 
programmed, ADAPT computer.  As the design evolves, an ADAPT computer may carry up to 
20 preprogrammed operating modes for controlling its instrument. 
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APPENDIX D   CODING STYLE GUIDELINES 

 

Note: Material presented in Appendix D is based on or adapted from figures and 
text copyrighted by Xilinx, Inc., and used with permission. 

 

D.1   Introduction 

This document was created to provide Xilinx users with a guideline for producing fast, reliable, 
and reusable HDL code. 

D.2   Top-Down Design 

HDL coding should start with a top-down design approach.  Use a top-level block diagram to 
communicate to designers the naming required for signals and hierarchical levels.  Signal naming 
is especially important during the debug stage.  Consistent naming of signals, from top to bottom, 
will ensure that project manager A can easily recognize the signals written by designer B. 

D.2.1  Behavioral and Structural Code 

When creating synthesizable code (RTL), you should write two types of code: behavioral RTL 
(leaf-level logic inference, sub-blocks) and structural code (blocks) -- each exclusively in its own 
architecture.  A simple example of behavioral RTL versus structural code is shown in Figure 
D-1and Figure D-2, respectively. 

 

 

Figure D-1: Behavioral Code 

 

entity mux2to1 is
    port (
        a     : in  std_logic_vector(1 downto 0);
        sel   : in  std_logic;
        muxed : out std_logic);
end mux2to1;

architecture rtl of mux2to1 is
begin

    muxed <= a(1) when sel = '1' else a(0);

end rtl;
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Figure D-2: Structural Code 

 

Rules 

Keep leaf-level (behavioral sub-blocks) coding separate from structural coding (blocks). 

Declarations, Instantiations, and Mappings.  It is important to use a consistent, universal style for 
such things as entity declarations, component declarations, port mappings, functions, and 
procedures. 

D.2.2  Declarations, Instantiations, and Mappings 

It is important to use a consistent, universal style for such things as entity declarations, 
component declarations, port mappings, functions, and procedures. 

Rules 

entity mux4to1 is
    port (
        input : in  std_logic_vector(3 downto 0);
        sel   : in  std_logic_vector(1 downto 0);
        muxed : out std_logic);
end mux4to1;

architecture structural of mux4to1 is
    signal muxed_mid : std_logic_vector(1 downto 0);
    component mux2to1
        port (
            a     : in  std_logic_vector(1 downto 0);
            sel   : in  std_logic;
            muxed : out std_logic);
    end component;
begin

    mux2to1_1_0: mux2to1
        port map (
            a     => input(1 downto 0),
            sel   => sel(0),
            muxed => muxed_mid(0));
    mux2to1_3_2: mux2to1
        port map (
            a     => input(3 downto 2),
            sel   => sel(0),
            muxed => muxed_mid(1));
    mux2to1_final: mux2to1
        port map (
            a     => muxed_mid,
            sel   => sel(1),
            muxed => muxed);
end structure;
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For declarations, instantiations, and mappings use one line for each signal.  The exception is for 
relatively small components, functions, and procedures. 

Always use named association. 

The combination of these two rules will help eliminate common coding mistakes.  Therefore, this 
combination will greatly enhance the ease of debugging a design at every stage of verification.  
A simple example is shown Figure D-3.  Obeying these rules will also increase the readability, 
and therefore the reusability. 

 

 

Figure D-3: One Line Per Signal/Named Association 

 

D.2.3  Comments 

Liberal comments are mandatory to maintain reusable code.  Although VHDL is sometimes 
considered to be self-documenting code, it requires liberal comments to clarify intent, as any 
VHDL user can verify. 

Rules 

Three primary levels of commenting: 

Comments should include a header template for each entity-architecture pair and for each 
package- and package-body pair.  See the example in Figure D-4.  The purpose should include a 
brief description of the functionality of each lower block instantiated within it. 

Use comment headers for processes, functions, and procedures, as shown Figure D-5.  This 
should be a description of the purpose of that block of code. 

Use comments internal to processes, functions, and procedures to describe what a particular 
statement is accomplishing.  While the other two levels of commenting should always be 
included, this level is left to the designer to decipher what is required to convey intent.  Inline 
comments are shown in Figure D-6. 

architecture structural of 
mux4to1 is 
   . . . 
begin 
 

mux2to1_1_0: mux2to1 
port map ( 
a     => input(1 downto 0), 
sel =>sel(0)
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Figure D-4: Header Template 

 

 

Figure D-5: Process, Function, and Procedure Header 

 

 

-------------------------------------------------------------------------------------------------------------------------------------------------------
-- Author: John Q. Smith Copyright Xilinx, 2001
-- Xilinx FPGA - VirtexII
-- Begin Date: 1/10/01
-- Revision History  Date Author Comments
-- 1/10/01 John Smith Created
-- 1/14/01 John Smith changed entity port address & data to addr & dat
-------------------------------------------------------------------------------------------------------------------------------------------------------
--  Purpose:
-- This entity/architecture pair is a block level with 4 sub-blocks.  This is the processor control interface for the
-- block level <block_level_A>.  So on, and so forth…
-------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------
--  demux_proc:  this process dumultiplexes the inputs and registers the
-- demultiplexed signals
------------------------------------------------------------------------------------------------
demux_proc : process(clk, reset)
begin …

------------------------------------------------------------------------------------------------
--  demux_proc:  this process dumultiplexes the inputs and registers the
-- demultiplexed signals
------------------------------------------------------------------------------------------------
demux_proc : process(clk, reset)
begin …
if reset = ‘1’ then
    demux <= (others => ‘0’);
elsif rising_edge(clk) then
  -- demultiplex input onto the signal demux
    case (sel) is
    when ‘0’ =>
        demux(0) <= input;
    when ‘1’ =>
        demux(1) <= input;
    when others =>
        demux <= (others => ‘0’);
    end case;
end if;
end process;
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D.2.5  Naming Conventions 

Naming conventions maintain a consistent style, which facilitates design reuse.  If all designers 
use the same conventions, designer A can easily understand and use designer B’s VHDL code. 

D.2.6  Entities, Architectures, Procedures, and Functions 

Rules 

Use all lowercase names with underscores, for readability and name delimiting. 

Each entity should have a unique name that describes that block. 

Architectures do not need unique names because they are individually bound to a specific entity 
that has a unique name.  Names for architectures should be rtl, to indicate a leaf-level sub-block, 
and structural, to indicate a block with no leaf-level logic – with only sub-blocks. 

For entities with more than one architecture, use “rtl_xilinx” (or “structural_xilinx”) for a Xilinx-
specific architecture and “rtl_asic” (or “structural_asic”) for an ASIC-specific architecture. 

D.2.7  Signal Naming Conventions 

For a design implemented in VHDL, an up-front specification of signal naming conventions 
should help you reduce the amount of non-conformity.  The primary motivating factor is 
enhanced readability during the verification of the design.  General signal naming conventions 
are listed below. 

General Signal Naming Guidelines 

Use addr for addresses.  This might include sys_addr, up_addr, etc. 

Use clk for clock.  This might include clk_div2 (clock divided by 2), clk_x2 (clk multiplied by 
2), etc. 

Use reset or rst for synchronous reset. 

Use areset or arst for asynchronous reset. 

Use areset_l for active-low asynchronous reset. 

Use rw_l for read/write (write is active low). 

Rules 

The following rules specify the suggested nomenclature for other widely used signals 

Use <signal_name>_io for bi-directional signals. 

Use a _l suffix for active low signals <signal_name>_l. 
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Do not use _in and _out suffixes for port signal names. 

Use of in and out is very confusing in text, especially at hierarchical boundaries.  Therefore, the 
use of _in and _out should be strictly monitored.  If they must be used, be sure that _in indicates 
input, and, likewise, that _out is an output to the correct level of hierarchy.  Figure D-8 shows an 
example entity and the instantiation of that entity in a higher block.  Here, data_in is connected 
to data_out, making the code confusing. 

 

 

Figure D-8: Confusing_in and_out suffixes 

 

Use _i to denote local signal names that are internal representations of an output port.  This 
nomenclature is used to easily identify the internal signal that will eventually be used as an 
output port. 

The counter in Figure D-9 provides a simple example of an output port that cannot be read.  The 
output port count cannot be incremented because it would require count to be read.  The problem 
is solved in the example by incrementing the local internal signal count_i.  Some designers try to 
overcome this problem by using the port as an inout; however, not all synthesis compilers will 
allow this unless it is three-stated.  Declaring the signal to be of type buffer is another common 
trap.  This complicates the code because all signals to which it connects also must be of type 
buffer.  Not all synthesis vendors support the data-type buffer.  In addition, data-type buffer does 
not have all of the required defined functions to perform common arithmetic operations. 

 

 

entity in_out is
port ( data_in : in std_logic_vector (31 downto 0);

data_out : out std_logic_vector(31 downto 0));
end entity in_out;
…

in_out_inst: in_out
port map ( data_in => ram_data_out,

    data_out => ram_data_in);

count <= count_i;
process (clk, reset)
begin
   if reset = ‘1’ then
       count_i <= (others => ‘0’);
   elsif rising_edge(clk) then
       count_i <= count_i + 1;
   end if;
end process;
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Figure D-9: Internal Signals Representing Output Ports 

 

Use _v to indicate a variable.  Variables can be very useful if used correctly.  The _v will serve 
as a reminder to the designer as to the intent and use of that signal. 

Use <signal_name>_p0, <signal_name>_p1, and so forth, to represent a pipelined version of the 
signal <signal_name> when <signal_name> comes after the pipelining.  Use <signal_name>_q0, 
<signal_name>_q1, and so forth, to represent a pipelined version of the <signal_name> when 
<signal_name> comes before the pipeline.  See Figure D-19 in section 4 for an example of how 
to use this pipelined signal naming convention. 

Append a suffix to signals that use a clock enable and will be part of a clock-enabled path (i.e., 
multi-cycle path).  For example, if the clock enable is enabled only one-quarter of clock cycles, 
the clock enable should be named to represent that -- ce4.  Signals that use this enable might be 
named <signal_name>_ce4.  This will greatly aid you in your ability to specify multi-cycle 
constraints. 

D.3   Signals and Variables 

Following some basic rules on the use of signals and variables can greatly reduce common 
coding problems. 

D.3.1  Signals 

The rules for using signals are not complex.  The most common problem is that signals can be 
various data types.  The problem in VHDL is "casting" from one data type to another.  
Unfortunately, no single function can automatically cast one signal type to another.  Therefore, 
the use of a standard set of casting functions is important to maintain consistency between 
designers. 

D.3.2  Casting 

Rules for Casting 

Use std_logic_arith, std_logic_unsigned/std_logic_signed packages. 

This provides the essential conversion functions: 

 conv_integer(<signal_name>): converts std_logic_vector, unsigned, and signed 
data types into an integer data type. 

 conv_unsigned(<signal_name>, <size>): converts a std_logic_vector, integer, 
unsigned (change size), or signed data types into an unsigned data type. 

 conv_signed(<signal_name>, <size>): converts a std_logic_vector, integer, signed 
(change size), or unsigned data types into a signed data type. 
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 conv_std_logic_vector(<signal_name>, <size>): converts an integer, signed, or 
unsigned data type into a std_logic_vector data type. 

 ext(<signal_name>, <size>): zero extends a std_logic_vector to size <size>. 

 sxt(<signal_name>, <size>): sign extends a std_logic_vector to size <size>. 

All conversion functions can take for the <signal_name> data-type a std_logic_vector, unsigned, 
signed, std_ulogic_vector, or integer.  <size> is specified as an integer value. 

D.3.3  Inverted Signals 

To reduce complication and to make the code easier to debug and test, it is generally 
recommended that you use active-high signals in hardware description languages.  Generally, 
active-low signals make the code more complicated than necessary.  If active-low signals are 
required at the boundaries of an FPGA, invert incoming signals at the FPGA top structural level.  
Also, for outbound signals, invert them at the FPGA top structural level.  Consider this a rule of 
thumb. 

However, for FPGAs in general and Xilinx FPGAs specifically, inverters are free throughout the 
device.  There are inverters in the IOB, and a LUT can draw in an inverter as part of its 
functionality, without a loss in performance. 

Often, ASIC designers will use active-low signals in their code to use less power in the part.  The 
synthesis tool will map the logic based on a vendor’s libraries.  Therefore, the synthesis tool will 
infer active-low signals internally when it sees fit.  For that matter, writing code that uses active-
low signals does not necessarily infer active-low signals in the ASIC.  Again, the synthesis tool 
makes these decisions based on the vendor's libraries.   Let the synthesis tool do its job. 

Rule of thumb 

Use only active-high signals in HDL.  One exception is a signal with a dual purpose, such as a 
read or a write signal.  In this case, a naming convention should be used to reduce complication – 
rw_l is an easily recognizable signal name that clearly defines that signal’s role. 

Where active-low signals are required, use of a _l as a suffix generally makes the intent clear.  
E.g., <signal_name>_l.  Use of _n is generally confusing. 

D.3.4  Rule for Signals 

There are a few basic rules to follow when you use signals.  Remember that ports are just signals 
with special rules that apply to them. 

D.3.5  Entity Port Rules within the Bound Architecture 

You can read from inputs, but you cannot assign to inputs. 

You can assign to outputs, but you cannot read from outputs. 

See section 1, Signal Naming Conventions, rule number four, for help in skirting this limitation. 
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You can both assign to and read from inouts. 

D.3.6  Internal Signal Rules 

Never assign to a signal in more than one process, with the exception of a three-state signal. 

For a combinatorial process (no registers inferred), never assign to a signal and read from the 
same signal in the same process.   This will eliminate infinite loops when performing behavioral 
simulation. 

This is not true for a "clocked" process; i.e., a process that is used to register signals.  A clocked 
process would only need to have an asynchronous set or reset signal and a clock in its sensitivity 
list.  Therefore, this process would not execute again until there was a change on one of those 
signals. 

In a clocked process, never assign to a signal outside of the control of the if rising_edge(clk) 
statement (or reset statement if an asynchronous reset exists).  This is a common coding mistake.  
In synthesis, it will infer a combinatorial signal.  In a behavioral simulation, it will have the 
behavior of a signal clocked on the falling edge. 

D.3.7  Filling out a Process Sensitivity List 

Within a combinatorial process, all signals that are read (which can change) must be in the 
sensitivity list. 

This will insure the correct behavioral simulation.  This includes any signals that are compared in 
if-then-else statements and case statements.  It also includes any signal on the right-hand side of 
an assignment operator.  Remember that this is only for signals that can change.  A constant 
cannot change; thus, it does not need to be in the sensitivity list. 

Within a clocked process, only an asynchronous set or reset and the clock should be in the 
sensitivity list. 

If others are added, the functionality of a behavioral simulation will still be correct.  However, 
the simulation will be slower because that process will need to be evaluated or simulated 
whenever a signal in its sensitivity list changes. 

D.3.8  Rules for Variables and Variable Use 

Variables are commonly not understood and are therefore not used.  Variables are also 
commonly used and not understood.  Variables can be very powerful when used correctly.  This 
warrants an explanation of how to properly use variables. 

Variables are used to carry combinatorial signals within a process.  Variables are updated 
differently than signals in simulation and synthesis. 

In simulation, variables are updated immediately, as soon as an assignment is made.  This differs 
from signals.  Signals are not updated until all processes that are scheduled to run in the current 
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D.3.9  Rule for Variables 

Always make an assignment to a variable before it is read.  Otherwise, variables will infer either 
latches (in combinatorial processes) or registers (in clocked processes) to maintain their previous 
value.  The primary intent of a variable is for a combinatorial signal. 

D.4   Packages 

Packages are useful for creating modular and reusable code.  There should be one or more 
packages used by a design team.  These packages should include commonly used functions, 
procedures, types, subtypes, aliases, and constants.  All team designers should familiarize 
themselves with the contents of these packages.  If each designer were to create his or her own 
functions, procedures, types, subtypes, aliases, and constants, it could result in code that is 
difficult for other team members to use and read.  Thus, when your team uses packages, it results 
in code that is more modular and more readable. 

Package use can generally be broken down into the three types: 

 The global package.  This package is used on a company-wide basis, on each 
design.  This package should include functions and procedures, such as reduction 
functions, for instance functions, and procedures that -- and, or, and xor (etc.) -- 
reduce individual buses.  It should also include commonly used types and 
subtypes.  This package should be created in a group setting by VHDL experts (or 
the most experienced in VHDL) who decide the best elements to have present in 
the package.  This package should be used extensively and should have periodic 
reviews to determine what should be added to or taken away from the package.  
Because most divisions within a company work on the same type of projects, 
primarily, this package should contain the most widely and extensively used 
material that is common to all design teams. 

 The project package.  This package is used and created for a specific design 
project.  The functions, procedures, types, subtypes, constants, and aliases are all 
specifically defined and created for the design at hand. 

 The designer’s packages.  These packages are specific to a designer.  Packages of 
this type should not be used extensively.  If there is a need for something to be 
extensively used within the designer’s package, it should be moved into the 
project package and possibly even the global package.  Code readability and 
modularity is limited by the use of designer packages, as the type of function calls 
and types, etc.  will not be readily understandable to all other designers in the 
group. 

D.4.1  Package Contents 

Constants 

Used correctly, constants can ease the coding of complex and modular designs.  Constants can be 
used in a variety of ways.  They can be used to create ROMs, for modular coding, and to define 
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what or how something should be used.  For example, constants can be used in conjunction with 
generate statements to specify which portion of code to use (synthesize).  Consider, for example, 
one portion of code written for an ASIC implementation and another portion written for a Xilinx 
implementation.  The ASIC implementation should use gates to implement a multiplexer, while 
the Xilinx version should use three-state buffers to implement a multiplexer.  Because some 
synthesis tools do not currently support configuration statements, a generate statement is the best 
solution. 

Figure D-12 shows an example of how constants can be used to define the logic created.  
Although this is a simple example, it illustrates the possibilities.  By one change to the constant 
ASIC, an entirely different set of circuitry is synthesized throughout the design. 

 

 

Figure D-12: A Constant Guiding the Generation of Logic 

 

Constants can aid modular coding.  For example, you could define a constant that specifies the 
width of the address bus.  One change to that constant in the package would make a modular 
change to everything in the design.  See Figure D-13.  Using constants to define address and 
data-bus widths may be better than using generics.  Generics are passed from the top-down, 
eliminating the possibility of synthesizing bottom-up.  A bottom-up synthesis is generally 
preferable for decreased synthesis run-times because only the modules that change need to be 
resynthesized. 

 

--within a package
constant asic : boolean := True;

…
-- within an architecture
generate_asic :
if asic = true then
mux_proc : process (addr, sel, data)

…
generate_fpga :
if asic = false then
tri_state_proc : process (addr, sel, data)

…
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Figure D-13: Address Width Defined by a Constant 

 

D.4.2  Rules for Defining Constants within a Package 

Define constants within a package when it can be used to improve the modularity of the code by 
guiding generate statements. 

Define constants in a package to define sizes and widths of buses.  Constants used in this manner 
are generally more powerful than using generics because it allows the design to be synthesized in 
any manner, whereas generics allow only top-down synthesis. 

Functions and Procedures 

By definition, functions and procedures add modularity and reuse to code.  Extensive use of 
functions and procedures from the global and project packages is encouraged.  Rather than 
extensively using functions and procedures from a designer’s package, the designer is 
encouraged to add the functions and procedures at a local level (within an architecture), to 
maintain readability for other designers and future reuse. 

When defining functions and procedures, it is beneficial to use unsized vectors to pass signals.  
Using unsized vectors allows a modular use of the subprogram.  In addition to using unsized 
vectors, use signal – range attributes to define the logic. 

In the function example shown below in Figure D-14, the input, named vec, is defined as a 
std_logic_vector.  By not defining a sized vector, the actual size of the signal that is passed in 
will determine the implementation.  The range attribute ‘range specifies the size of the intended 
logic.  This function is modular; that is, it is not limited to being used for one specific vector size.  
A vector of any size can be passed into this function and correctly infer any amount of logic. 

 

--within the package pack_ase_fpga
constant addrw : integer := 18;

use work.pack_ase_fpga.all;

entity profound is
port ( addr : in std_logic_vector (addrw-1 downto 0);

…
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Figure D-14: Modular Function Use 

 

D.4.3  Rules for Functions and Procedures 

Extensive use of functions and procedures is encouraged.  Predominately, the functions and 
procedures should be defined within either the global or the project packages. 

Create modular functions and procedures by not specifying the width of inputs and outputs.  
Then use range attributes to extract the needed information about the size of an object. 

Types, Subtypes, and Aliases 

Types and subtypes are encouraged for readability.  Types defined at the global and project level 
are generally required, and they help to create reusable code. 

Aliases can be used to clarify the intent, or meaning, of a signal.  In most cases, the intent of a 
signal can be clearly identified by its name.  Thus, aliases should not be used extensively.  While 
aliases can help to clarify the purpose of a signal, they also add redirection, which may reduce 
the readability of the code.  Although aliases are not used in conjunction only with types and 
subtypes, it is useful for examples to be included here.  In Figure D-15 there are two types 
defined: a record and an array.  For this example, aliases can be used to clarify the use of the 
signal rx_packet.data (rx_data) and the intent of the signal data_addr(0) (data_when_addr0).  In 
this example, the alias data_when_addr0 is used in place of data_array(0), this provides more 
meaning to the "slice" of data than data_array(0) provides.  Whenever the alias data_when_addr0 
is seen in the code, the intent is obvious.  The use of the alias rx_data simply provides a 
shortened version of the signal rx_packet.data while its use and intent are maintained. 
 

function parity (vec : input std_logic_vector) return std_logic is
    variable temp_parity : std_logic := ‘0’;
begin
    for i in vec’range loop
        temp_parity := temp_parity xor vec(i);
    end loop;
    return temp_parity;
end function;
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Figure D-15: Use of Types and Aliases 

 

Rules for Types, Subtypes, and Alias use 

Types and subtypes are encouraged on a global or project basis to facilitate reusable code. 

Alias use is encouraged when it clearly promotes readability without adding complex redirection. 

D.5   Technology-Specific Code (Xilinx) 

It is desirable to maintain portable, reusable code.  However, this is not always possible.  There 
are cases for each technology vendor where instantiation of blocks is required.  Furthermore, 
writing what is intended to be generic code will not always provide the best solution for a 
specific technology.  The tradeoffs between instantiation versus technology-specific code are 
discussed below. 

D.5.1  Instantiation 

Although instantiation of Xilinx primitives is largely unneeded and unwanted, there are some 
specific cases where it must be done -- and other occasions when it should be done.  While some 
of the components that need to be instantiated for a Xilinx implementation vary, those covered 
here are specific for Synplify, Synopsys, Exemplar, and XST.  This section will describe 
situations where deviation from reusable code is required. 

package alias_use is
type opcode is record

parity : std_logic;
address: std_logic_vector(7 downto 0);
data : std_logic_vector(7 downto 0);
stop_bits : std_logic_vector(2 downto 0);

end record;
type data_array_type is array (0 to 3) of std_logic_vector (31 downto 0);
end package;

architecture rtl of alias_use is
   signal addr : std_logic_vector (11 downto 0);
   signal data_array : data_array_type;
   alias data_when_addr0 : std_logic_vector(31 downto 0) is data_array(0);
signal rx_packet : opcode;
alias rx_parity is rx_packet.parity;
alias rx_addr is rx_packet.address;
alias rx_data is rx_packet.data;
alias rx_stop is rx_packet.stop_bits;

begin
   data_when_addr0 <= data when addr = x”000” else (others => ‘0’);
   rx_data <= data_when_addr0;

…
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Required Instantiation 

Specific top-level (FPGA) components require instantiation, including the boundary scan 
component, digital delay-locked loop components (DLL) or digital clock manager (DCM), 
startup block, and I/O pullups and pulldowns. 

Inputs and outputs, other than LVTTL, can be specified in the synthesis tool.  However, it is 
more advantageous to specify the I/O threshold level in the Xilinx Constraints Editor.  This will 
write a constraint into the Xilinx UCF (User Constraint File), which is fed into the Xilinx 
implementation tools. 

To instantiate Xilinx primitives, you will need to have a correct component declaration.  This 
information can be inferred directly from the Xilinx Libraries Guide, found in the online 
documentation. 

D.5.2  Rules for Required Instantiations for Xilinx 

Boundary Scan (BSCAN) 

 Digital Clock Manager (DCM) or Delay-Locked Loop (DLL).  Instantiating the 
DCM/DLL provides access to other elements of the DCM, as well as elimination 
of clock distribution delay.  This includes phase shifting, 50-50 duty-cycle 
correction, multiplication of the clock, and division of the clock. 

 IBUFG and BUFG.  IBUFG is a dedicated clock buffer that drives the input of the 
DCM/DLL.  BUFG is an internal global clock buffer that drives the internal 
FPGA clock and provides the feedback clock to the DCM/DLL. 

 DDR registers.  DDR registers are dedicated Double-Data Rate (DDR) I/O 
registers located in the input or output block of the FPGA. 

 Startup.  The startup block provides access to a Global Set or Reset line (GSR) 
and a Global Three-State line (GTS).  The startup block is not inferred because 
routing a global set or reset line on the dedicated GSR resources is slower than 
using the abundant general routing resources. 

 I/O pullups and pulldowns (pullup, pulldown). 

D.5.3  Simulation of Instantiated Xilinx Primitives 

Correct behavioral simulation will require certain simulation files.  These can be found in the 
Xilinx directory structure: $Xilinx/vhdl/src/unisims.  Note that unisims are similar to simprims, 
except that: unisims do not have component timing information enabled.  Whereas, simprims 
have the timing information enabled but require an SDF file (from Xilinx place and route) to 
supply the timing information (post place and route timing simulation). 

Within the unisim directory, several VHDL files need to be compiled to a unisim library.  They 
can then be accessed by specifying the library unisim and using the use statement.  For example: 

 library unisim; 
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 use unisim.vcomponents.all; 

The VHDL files must be compiled in a specific order because there are dependencies between 
the files.  The compilation order is: 

1) unisim_VCOMP.vhd 

2) unisim_VPKG.vhd 

3) unisim_VITAL.vhd 

For post-place-and-route timing simulation, the simprim files need to be compiled into a simprim 
library.  The VHDL files for simprims are in: $Xilinx/vhdl/src/simprims.  The correct package 
compilation order is: 

1) simprim_Vcomponents.vhd 

2) simprim_Vpackage.vhd 

3) simprim_VITAL.vhd 

Simulation files rules 

Unisims are used for behavioral and post-synthesis simulation. 

Simprims are used for post place-and-route timing simulation. 

D.5.4  Non-Generic Xilinx-Specific Code 

This section is used to describe situations where Xilinx-specific coding may be required to get a 
better implementation than can be inferred from either generic code or ASIC-specific coding. 

Three-State Multiplexers 

Generic coding of multiplexers is likely to result in an and-or gate implementation.  However, 
for Xilinx parts, gate implementation of multiplexers is generally not advantageous.  Xilinx parts 
have a very fast implementation for multiplexers of 64:1 or less.  For multiplexers greater than 
64:1, the tradeoffs need to be considered.  Multiplexers implemented with internal three-state 
buffers have a near consistent implementation speed for any size multiplexer. 

Three-state multiplexers are implemented by assigning a value of "Z" to a signal.  Synthesis 
further requires concurrent assignment statements.  An example is shown in Figure D-16.  For 
this example, there is a default assignment made to the signal data_tri to ‘Z’.  The case statement 
infers the required multiplexing, and the concurrent assignment statements to the signal data 
infer internal three-state buffers.  With those concurrent assignment statements, synthesis can 
only resolve the signal values by using three-states.  Without the concurrent assignment 
statements, synthesis would implement this in gates, despite the default assignment to "Z." 
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Figure D-16: Three-state Implementation of 4:1 Multiplexer 

 

D.5.5  Rules for Synthesis Three-State Implementation 

Use a default assignment of "Z" to the three-state signal. 

Make concurrent assignments to the actual three-stated signal. 

Memory 

While memory can be inferred for Xilinx, it most likely cannot be inferred for the ASIC by using 
the same code.  It is very likely that two separate implementations will be required.  This section 
will describe the methodology used to infer Xilinx-specific memory resources.  It is generally 
advantageous to instantiate the use of memory resources to make it easier to change for other 
technology implementations.  While it is not always required, Xilinx’s CORE Generator 
system program can generate RAM for instantiation.  The CORE Generator system created 
memory must be used for dual-ported block RAMs, but it can also be used for creating other 
types of memory resources.  The CORE Generator system does provide simulation files, but it 
is seen as a black box in synthesis; therefore, it will not provide timing information through that 
block. 

RAM and ROM 

process (r1w0, addr_integer, data_regs1)
begin  -- process 
    for i in 0 to 3 loop  -- three-state the signal 
 data_tri(i) <= (others => 'Z'); 
    end loop;  -- i 
    if r1w0 = '1' then 
 case addr_integer is 
     when 0 to 3 => 
  data_tri(0) <= data_regs1(0); 
     when 4 to 7 => 
  data_tri(1) <= data_regs1(1); 
     when 8 to 11 => 
  data_tri(2) <= data_regs1(2); 
     when 12 to 15 => 
  data_tri(3) <= data_regs1(3); 
 end case; 
    end if; 
end process; 
-- concurrent assignments to data 
data <= data_tri(0); 
data <= data_tri(1); 
data <= data_tri(2); 
data <= data_tri(3); 
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The Xilinx LUT-RAM is implemented in the look-up tables (LUTs).  Each slice has 32-bits of 
memory.  A slice can have three basic single-port memory configurations: 16x1(2), 16x2, or 
32x1.  The Xilinx slices and CLBs can be cascaded for larger configurations. 

LUT-RAM memory is characterized by synchronous write and asynchronous read operation.  It 
also is not able to be reset; however, it can be loaded with initial values through a Xilinx user 
constraint file (UCF).  Inference of Xilinx LUT-RAM resources is based on the same behavior 
described in the code shown in Figure D-17.  Dual-port LUT-RAM can also be inferred by 
adding a second read address.  Dual-port RAM has similar functionality with a synchronous 
write port and two asynchronous read ports. 

 

Figure D-17: Xilinx LUT-RAM Inference 

 

ROM inference is driven by constants.  Example code for inferring LUT-ROM is shown in 
Figure D-18. 

 

type ram_array is array (0 to 15) of std_logic_vector (5 downto 0);
signal ram_data : ram_array;

…
begin
process(clk)  --synchronous write
begin
if clk’event and clk = ‘1’ then
    if we = ‘1’ then
        ram_data(conv_integer(addr_sp)) <= data_to_ram;
    end if;
end if;
end process;

----------------------------------------------------------
-- for single port, use the same address as
-- is used for the write
----------------------------------------------------------
-- asynchronous read – dual port
ram_data_dp <=ram_data(conv_integer(addr_dp));

type rom is arrary (0 to15) of std_logic_vector (3 downto 0);

-- 16x4 ROM in Xilinx LUT’s
constant rom_data : rom := (x”F”, x”A”, x”7”, x”0”, x”1”, x”5”,
x”C”, x”D”, x”9”, x”4”, x”8”, x”2”, x”6, x”3”, x”B”, x”E”);

…
begin
-- ROM read
data_from_rom <= rom_data(conv_integer(addr));

…
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Figure D-18: LUT-ROM Inference 

 

Single-port block RAM inference is driven by a registered read address and a synchronous write.  
The example shown Figure D-19 has this characterization.  In the past, block RAM has been 
easily inferred, simply by having the registered address and synchronous write.  Synthesis tools 
can only infer simple block RAMs.  For example, you cannot infer a dual-port RAM with a 
configurable aspect ratio for the data ports.  For these reasons, most dual-port block RAMs 
should be block-RAM primitive instantiations or created with the CORE Generator system. 

Figure D-19: Virtex Block RAM inference 

 

D.5.6  Rules for Memory Inference 

For single- or dual-port RAM implemented in LUTs, describe the behavior of a synchronous 
write and an asynchronous read operation. 

For ROM inference in LUTs, create an array of constants. 

Single-port block RAM is inferred by having a synchronous write and a registered read address 
(as shown in the example above, Figure B-19). 

For other configurations of the Xilinx block RAM, use the CORE Generator system. 

D.5.7  CORE Generator System 

The CORE Generator system may be used for creating many different types of ready-made 
functions.  One limiting factor of the CORE Generator system is that synthesis tools cannot 
extract any timing information; it is seen as a black box. 

type ram_array is array (0 to 127) of std_logic_vector (7 downto 0); 
signal ram_data : ram_array; 

… 
begin 
process(clk)  --synchronous write 
begin 
if clk’event and clk = ‘1’ then 
    addr_q0 <= addr;  -- registered address/pipelined address 
    if we = ‘1’ then 
        ram_data(conv_integer(addr)) <= data_to_ram; 
    end if; 
end process; 
 
data_from_ram <= ram_data(conv_integer(addr_q0)); 

… 
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The CORE Generator system provides three files for a module: 

Implementation file, <module_name>.ngc. 

Instantiation template, <module_name>.vho 

Simulation wrapper, <module_name>.vhd 

For behavioral and post-synthesis simulation, the simulation wrapper file will have to be used.  
To simulate a CORE Generator module, the necessary simulation packages must be compiled.  
More information on using this flow and generating the necessary files can be found in the 
CORE Generator tool under Help Online Documentation. 

The CORE Generator system provides simulation models in the 
$Xilinx/vhdl/src/XilinxCoreLib directory.  There is a strict order of analysis that must be 
followed, which can be found in the analyze_order file located in the specified directory.  In 
addition, Xilinx provides a Perl script for a fast and easy analysis of different simulators.  To 
compile the XilinxCoreLib models with ModelSim or VSS, use the following syntax at a 
command prompt: 

xilinxperl.exe $Xilinx/vhdl/bin/nt/compile_mti_vhdl.pl coregen 

xilinxperl.exe $Xilinx/vhdl/bin/nt/compile_vss_vhdl.pl coregen 

Compare logic is frequently implemented poorly in FPGAs.  Compare logic is inferred by the 
use of <, <=, >, and >= VHDL operators.  For a Xilinx implementation, this logic is best 
implemented when described with and-or implementations.  When possible, look for patterns in 
the data or address signals that can be used to implement a comparison with gates, rather than 
compare logic.  If a critical path includes comparison logic, an implementation that would use 
and-or logic should be considered. 

D.5.8  Rule for Comparator Implementation 

If a critical path has comparator logic in it, then try to implement the comparison by using and-or 
gates. 

D.5.9  Xilinx Clock Enables 

Clock enables are easily inferred, either explicitly or implicitly.  Clock enables are very useful 
for maintaining a synchronous design.  They are highly preferable over the unwanted gated 
clock.  However, not all technologies support clock enables directly.  For those architectures that 
do not support clock enables as a direct input to the register, it will be implemented via a 
feedback path.  This type of implementation is not a highly regarded implementation style.  Not 
only does it add a feedback path to the register, it also uses more logic because FPGA 
architecture requires two extra inputs into the LUT driving the register. 
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The Xilinx architecture supports clock enables as a direct input to a register.  This is highly 
advantageous for a Xilinx implementation.  However, the designer must be certain that the logic 
required to create the clock enable does not infer large amounts of logic, making it a critical path. 

In the example shown below (Figure D-20), there is an explicit inference of a clock enable and 
an implicit inference of clock enables.  In the first section, a clock enable is via explicitly testing 
for a terminal count.  In the second section of code, the clock enables are implied for the signals 
cs and state.  The clock enable for cs is inferred by not making an assignment to cs in the state 
init.  The clock enable for the signal state is inferred by not defining all possible branches for the 
if-then-else statement, highlighted in red.  When the if-then-else condition is false, state must 
hold its current value.  Clock  enables are inferred for these conditions when they are in a 
clocked process.  For a combinatorial process, it would infer latches. 
 

 

Figure D-20: Clock Enable Inference 

 

D.5.10  Rules for Clock Enable Inference 

Clock enables can only be inferred in a clocked process. 

process (clk)  -- Explicit inference of a clock enable
  begin  -- process
      if rising_edge(clk) then
          if tc  = '1' then
               cnt <= cnt + ‘1’;
          end if;
      end if;
  end process;

process (clk, reset)  -- Implicit inference of a clock enable
  begin  -- process
    if reset = '1' then
        state <= (others => '0');
        cs <= "00";
    elsif rising_edge(clk) then
        case (state) is
            when init => -- inference of a clock enable for signal cs
                 state <= load;
            when fetch =>
                  if (a = '1' and b = '1') then  -- inference of a clock enable for signal state
                      state <= init;
                  end if;
                  cs <= "11";
             when others => null;
        end case;
    end if;
  end process;
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Clock enables can be inferred explicitly by testing an enable signal.  If the enable is true, the 
signal is updated.  If enable is false, that signal will hold its current value. 

Clock enables can be implicitly inferred two ways: 

Not assigning to a signal in every branch of an if-then-else statement or case statement.  
Remember that latches will be inferred for this condition in a combinatorial process (see section 
5, Inadvertent latch Inference). 

Not defining all possible states or branches of an if-then-else or case statement. 

Pipelining with SRL 

In Xilinx FPGAs, there is an abundance of registers; there are two registers per slice.  This is 
sufficient for most registered signals.  However, there are times when multiple pipeline delays 
are required at the end of a path.  When this is true, it is best to use the Xilinx SRL (Shift 
Register LUT).  The SRL uses the LUT as a shiftable RAM to create the effect of a shift register.  
In Figure D-21an example of how to infer the SRL is shown.  This will infer a shift register with 
16 shifts (width = 4).  Although this will infer registers for an ASIC, it will infer the SRL when 
you are targeting a Xilinx part.  The behavior that is required to infer the SRL is highlighted in 
blue.  The size could be made parameterizable by using constants to define the signal widths.  It 
could also be made into a procedure with parameterized widths and sizes. 

 

 

Figure D-21: Inference of Xilinx Shift Register LUT (SRL) 

library ieee ;
use ieee.std_logic_1164.all ;

entity srltest is
  port(clk, en : in  std_logic ;
       din : in std_logic_vector(3 downto 0);
       dout : out std_logic_vector(3 downto 0)) ;
end srltest ;

architecture rtl of srltest is
    type srl_16x4_array is array (15 downto 0) of std_logic_vector(3 downto 0);
    signal sreg  : srl_16x4_array ;
begin
  dout   <= sreg(15) ;  -- read from constant location
  srl_proc : process (clk, en)
  begin
      if rising_edge(clk) then

  if (en = '1') then
      sreg <= sreg(14 downto 0) & din ; -- shift the data

--  Current Value sreg (15:1)  sreg(0)
--  Next Value     sreg  (14:0)   din

  end if;
      end if;
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D.5.11  Rules for SRL Inference 

No reset functionality may be used directly to the registers. 

If a reset is required, the reset data must be supplied to the SRL until the pipeline is filled with 
reset data. 

You may read from a constant location or from a dynamic address location.  In Xilinx Virtex-II 
parts, you may read from two different locations: a fixed location and a dynamically addressable 
location. 

D.5.12  Technology-Specific Logic Generation – Generate Statements 

This section has outlined ways that Xilinx-specific coding will differ from other solutions.  
Because many styles may exist for a similar block of code (for example a multiplexer), to get the 
optimal implementation, use VHDL generate statements.  This is the best solution for a couple of 
reasons.  Although configuration statements are commonly used to guide the synthesis of 
multiple implementation styles, some synthesis tools currently do not fully support them.  Also, 
with generate statements, a change to a single constant will change the type of logic generated 
(ASIC or FPGA). 

An example of using generate statements was covered in Figure D-12. 

D.6   Coding for Synthesis 

The main synthesis issues involve coding for minimum logic level implementation (i.e., coding 
for speed, max frequency); inadvertent logic inference; and fast, reliable, and reusable code. 

D.6.1  Synchronous Design 

The number one reason that a design does not work in a Xilinx FPGA is that the design uses 
asynchronous techniques.   To clarify, the primary concern is asynchronous techniques used to 
insert delays to align data, not crossing clock domains.  Crossing clock domains is often 
unavoidable, and there are good techniques for accomplishing that task via FIFOs.  There are no 
good techniques to implement an asynchronous design.  First, and most important, the actual 
delay can vary based on the junction temperature.  Second, for timing simulations, Xilinx 
provides only maximum delays.  If a design works based on the maximum delays, this does not 
mean that it will work with actual delays.  Third, Xilinx will stamp surplus –6 (faster) parts with 
a –5 or –4 (slower speed) speed-grade.  However, if the design is done synchronously there will 
be no adverse effects. 

D.6.2  Clocking 

In a synchronous design, only one clock and one edge of the clock should be used.  There are 
exceptions to this rule.  For example, by utilizing the 50/50 duty-cycle correction of the 
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DCM/DLL, in a Xilinx FPGA you may safely use both edges of the clock because the duty-cycle 
will not drift. 

Do not generate internal clocks.  Primarily, do not generate gated clocks because these clocks 
will glitch, propagating erroneous data.  The other primary problems with internally generated 
clocks are clock-skew related problems.  Internal clocks that are not placed on a global clock 
buffer will incur clock skew, making it unreliable.  Replace these internally generated clocks 
with either a clock enable signal or generate divided, multiplied, phase shifted, etc.  clocks with a 
clock generated via the DCM/DLL. 

D.6.3  Rules for Clock Signals 

Use one clock signal and one edge. 

Do not generate internal clock signals because of glitching and clock-skew related problems. 

D.6.4  Local Synchronous Sets and Resets 

Local synchronous sets and resets eliminate the glitching associated with local asynchronous sets 
and resets.  An example of such a problem is associated with the use of a binary counter that 
does not use the maximal binary count.  For example, a four-bit binary counter has 16 possible 
binary counts.  However, if the design calls only for 14 counts, the counter needs to be reset 
before it has reached its limit.  An example of using local asynchronous resets is highlighted in 
red in Figure D-22.  A well-behaved circuit is highlighted in blue, in the Figure D-23.  For the 
binary counter that is using a local asynchronous reset, there will be glitching associated with the 
binary transitions, which will cause the local asynchronous reset to be generated.  When this 
happens, the circuit will propagate erroneous data. 

 

Downloaded from http://www.everyspec.com



NASA-HDBK 8739.23A—2016-02-02 

Material presented in Appendix Dis based on or adapted from figures and text 
copyrighted by Xilinx, Inc., and used with permission. 

152 of 161 

 

Figure D-22: Local Asynchronous Reset and TC & Well-Behaved Synchronous 
Reset & CE 

 

Figure D-23: Well Behaved Local Asynchronous Reset and TC & Well-Behaved 
Synchronous Reset & CE 

 

-- Asynchronous local reset and internally generated clock
process (clk, reset, cnt_reset)
begin  -- process
-- global and local async. reset
    if (reset = '1' or cnt_reset = '1') then

tc <= '0';
cnt <= "0000";

    elsif rising_edge(clk) then
if cnt = "1110" then
    cnt_reset <= '1';
    tc <= '1';
else
    cnt <= cnt + 1;
    tc <= '0';
    cnt_reset <= '0';
end if;

    end if;
end process;
-- internally generated clock - tc
process (tc, reset)  
begin  -- process
    if reset = '1' then

data_en <= (others => '0');
    elsif rising_edge(tc) then

data_en <= data;
    end if;

-- Synchronous Local reset and clock enable use
process (clk, reset)
    variable tc : std_logic := '0';
begin  -- process
    if reset = '1' then  -- global asynchronous reset

cnt <= "0000";
data_en <= (others => '0');

    elsif rising_edge(clk) then
       if cnt = "1110" then

   cnt <= "0000";   -- local synchronous reset
  data_en <= data;  -- terminal count clock enable

       else
   cnt <= cnt + '1';
   tc := '0';

       end if;
    end if;
end process;
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D.6.5  Rule for Local Set or Reset Signals 

A local reset or set signal should use a synchronous implementation. 

Pipelining 

Pipelining is the act of inserting registers into one path to align that data with the data in another 
path, such that both paths have an equal amount of latency.  Pipelining may also decrease the 
amount of combinatorial delay between registers, thus increasing the maximum clock frequency.   
Pipelines are often inserted at the end of a path by using a shift register implementation.  Shift 
registers in Xilinx’s Virtex parts are best implemented in the LUT as an SRL, as described in 
section D.4.  Signal naming for pipelined signals is covered in section D.1. 

Registering Leaf-Level Outputs and Top-Level Inputs 

A very robust technique, used in synchronous design, is registering outputs of leaf-levels (sub-
blocks).  This has several advantages: 

 No optimization is needed across hierarchical boundaries. 

 Enables the ability to preserve the hierarchy. 

 Bottom-up compilation. 

 Recompile only those levels that have changed. 

 Enables hierarchical floorplanning. 

 Increases the capability of a guided implementation. 

 Forces the designer to keep like-logic together. 

Similarly, registering the top-level inputs decreases the input to clock (ti2c) delays; therefore, it 
increases the chip-to-chip frequency. 

D.6.6  Rules for the Hierarchical Registering of Signals 

 Register outputs of leaf-level blocks. 

 Register the inputs to the chip’s top-level. 

D.6.7  Clock Enables 

The use of clock enables increases the routability of a Xilinx implementation and maintains 
synchronous design.  The use of clock enables is the correct alternative to gated clocks. 

Clock enables increase the routability of the design because the registers with clock enables will 
run at a reduced clock frequency.  If the clock enable is one-half the clock rate, the clock enabled 
datapaths are placed-and-routed once the full clock frequency paths have been placed-and-
routed.  The clock enable should have a timing constraint placed on it so that the Xilinx 
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implementation tools will recognize the difference between the normal clock frequency and the 
clock-enabled frequency.  This will place a lower priority on routing the clock-enabled paths. 

Gated clocks will introduce glitching in a design, causing incorrect data to be propagated in the 
data stream.  Therefore, gated clocks should be avoided. 

Using signals generated by sequential logic as clocks is a common error.  For example, you use a 
counter to count through a specific number of clock cycles, producing a registered terminal 
count.  The terminal count is then used as a clock to register data.  This internal clock is routed 
on the general interconnect.  The skew on internally generated clocks can be so detrimental that 
it causes errors.  This may also cause race conditions if the data is resynchronized with the 
system clock.  This error is illustrated in Figure D-23.  The text highlighted in red is the 
implementation using the terminal count as a clock. 

Instead, generate the terminal count one count previous, and use the terminal count as a clock 
enable for the data register.  The text highlighted in blue is the well-behaved implementation 
using the terminal count as a clock enable.  An explanation of the reset signals is covered section 
D.6.5. 

It may be useful to generate clock enables by using a state machine.  The state machine can be 
encoded at run time by the synthesis tool.  Thus a one-hot, gray, or Johnson encoding style could 
be used.  It is also possible to produce precisely placed clock enables by using a linear feedback 
shift register (LFSR), also known as a pseudo-random bitstream generator (PRBS generator).  
Xilinx provides application notes on the use of LFSRs. 

Clock enables for Xilinx implementations are further discussed in section 4. 

D.6.8  Rules for Clock Enable 

Use clock enables in place of gated clocks. 

Use clock enables in place of internally generated clocks. 

Finite State Machines 

Coding for Finite State Machines (FSM) includes analyzing several tradeoffs. 

D.6.9  Encoding Style 

Enumerated types in VHDL allow the FSM to be encoded by the synthesis tool.  However, the 
encoding style used will not be clearly defined in the code but rather in the synthesis tool.  
Therefore, good documentation should be provided -- stating specifically which encoding style 
was used.  By default, most synthesis tools will use binary encoding for state machines with less 
than five states: one-hot for 5 to 24 states and gray for more than 24 states (or similar).  
Otherwise, synthesis will use one-hot encoding.  One-hot encoding is the suggested 
implementation for Xilinx FPGAs because Xilinx FPGAs have abundant registers.  Other 
encoding styles may also be used -- specifically gray encoding.  For a gray-encoding style, only 
one-bit transitions on any given state transition (in most cases); therefore, less registers are used 
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than for a one-hot implementation, and glitching is minimized.  The tradeoffs for these encoding 
styles can easily be analyzed by changing a synthesis FSM attribute and running it through 
synthesis to get an estimate of the timing.  The timing shown in synthesis will most likely not 
match the actual implemented timing; however, the timing shown between the different encoding 
styles will be relative, therefore providing the designer a good estimate of which encoding style 
to use. 

Another possibility is to specifically encode the state machine.  This is easily done via the use of 
constants.  The code will clearly document the encoding style used.  In general, one-hot is the 
suggested method of encoding for FPGAs -- specifically for Xilinx.  A one-hot encoding style 
uses more registers, but the decoding for each state (and the outputs) is minimized, increasing 
performance.  Other possibilities include gray, Johnson (ring-counter), user-encoded, and binary.  
Again, the tradeoffs can easily be analyzed by changing the encoding style and synthesizing the 
code. 

Regardless of the encoding style used, the designer should analyze illegal states.  Specifically, 
are all the possible states used?  Often, state machines do not use all the possible states.  
Therefore, the designer should consider what occurs when an illegal state is encountered.  
Certainly, a one-hot implementation does not cover all possible states.  For a one-hot 
implementation, many illegal states exist.  Thus, if the synthesis tool must decode these states, it 
may become much slower.   The code can also specifically report what will happen when an 
illegal state is encountered by using a “when others” VHDL case statement.  Under the “when 
others” statement, the state and all outputs should be assigned to a specific value.  Generally, the 
best solution is to return to the reset state.  The designer could also choose to ignore illegal states 
by encoding “don’t care” values (‘X’) and allow the synthesis tool to optimize the logic for 
illegal states.  This will result in a fast state machine, but illegal states will not be covered. 

D.6.10  Rules for Encoding FSMs 

For enumerated-types, encode the state machine with synthesis-specific attributes.  Decide if the 
logic should check for illegal states. 

For user-encoded state machines, the designer should analyze whether the logic should check for 
illegal states or not, and the designer should accordingly write the “when others” statement.  If 
the designer is concerned with illegal states, the state machine should revert to the reset state.  If 
the designer is not concerned with illegal states, the outputs and state should be assigned "X" in 
the “when others” statement. 

Xilinx suggests using one-hot encoding for most state machines.  If the state machine is large, 
the designer should consider using a gray or Johnson encoding style and accordingly analyze the 
tradeoffs. 

D.6.11  FSM VHDL Processes 

Most synthesis tools suggest coding state machines with three process statements: one for the 
next state decoding, one for the output decoding, and one for registering of outputs and state bits.  
This is not as concise as using one process statement to implement the entire state machine; 
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however, it allows the synthesis tools the ability to better optimize the logic for both the outputs 
and the next-state decoding.  Another style is to use two processes to implement the state 
machine: one for next state and output decoding and the other process for registering of outputs 
and state bits. 

The decision to use one, two, or three process statements is entirely left up to the discretion of 
the designer.  Moore state machines (output is dependent only on the current state) generally 
have limited decoding for the outputs, and the state machine can, therefore, be safely coded with 
either one or two process statements.  Mealy state machine (outputs depend on the inputs and the 
current state) output decoding is generally more complex, and, therefore, the designer should use 
three processes.  Mealy state machines are also the preferred style for FSMs because it is 
advantageous to register the outputs of a sub-block (as described above in section 5).  Mealy 
state machines will have the least amount of latency with registered outputs.  Mealy state 
machines can be used with a look-ahead scheme.  Based on the current state and the inputs, the 
outputs can be decoded for the next state.  For simple state machines where the output is not 
dependent on the inputs, a Moore implementation is equivalent to a look-ahead scheme.  That is, 
the outputs can be decoded for the next state and appropriately registered to reflect the next state 
(rather than reflecting the current state).  The purpose of this scheme is to introduce the least 
amount of latency when registering the outputs. 

D.6.12  Rules for FSM Style 

Generally, use three process statements for a state machine: one process for next-state decoding, 
one for output decoding, and one for the registering of state bits and outputs. 

Use a Mealy look-ahead state machine with registered outputs whenever possible, or use a 
Moore state machine with next-state output decoding and registered outputs to incur the 
minimum amount of latency. 

D.6.13  Logic Level Reduction 

To minimize the number of cascaded logic levels, we need to follow a few simple rules of 
coding. 

D.6.14  If-Then-Else and Case Statements 

If-then-else and case statements can cause unwanted effects in a design.   Specifically, nested If-
then-else and case statements may cause extra levels of logic inference.  This occurs because if-
then-else statements generally infer priority-encoded logic.  However, one level of an if-then-else 
will not necessarily create priority-encoded logic.  For that matter, synthesis tools generally 
handle if-then-else or case statements very well and create parallel logic rather than priority 
encoded logic. 

Often, a nested if statement can be combined in the original if statement and result in a reduced 
amount of inferred logic.  A simple example is shown in Figure D-24, which shows how priority 
encoded logic creates cascaded logic.  Nested case statements can have the same effect, as can 
the combination of nested case and if-then-else statements. 
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Figure D-26: Latch Inference 

 

Figure D-27: Elimination of Inadvertent Latch Inference 

 

D.6.18  Rules for Avoidance of Latch Inference 

Cover all possible branches. 

-- (1) Did not specify each possible state
process (state)
begin
if state = “001” then
    cs <= “01”;
elsif state = “010” then
    cs <= “10”;
elsif state = “100” then
   cs <= “11”;
end if;
end process;

-- (2) Did not specify all possible
-- outputs for each state
process (state)
  begin
    case (state) is
      when "001" =>
        cs(0) <= '1';
      when "010" =>
        cs(1) <= '1';
      when "100" =>
        cs(1 downto 0) <= "11";
      when others =>
        cs(1 downto 0) <= "00";
    end case;
  end process;
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-- (1) Fixed Case implementation      (2) Fixed if-then-else implementation
process (state)                                    process (state)
  begin                                                 begin
    cs <= "00";                                           if state = "001" then
    case (state) is                                         cs <= "01";
      when "001" =>                                       elsif state = "010" then
        cs(0) <= '1';                                       cs <= "10";
      when "010" =>                                       elsif state = "100" then
        cs(1) <= '1';                                       cs <= "11";
      when "100" =>                                       else                     
        cs <= "11";                                         cs <= "00";
      when others =>                                      end if;
        cs <= "00";                                     end process;
    end case;
  end process;
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Assign to all signals at all branches. 

 

APPENDIX E   PLD ASSESSMENT FORM  

The following form will be completed during the initial evaluation of the PLDs function and at 
each major milestone as need dictates. This completed for will become a perment part of the 
Configuration Management records of the project with a copy being stored by Quality 
Assurance.  
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