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Preface 
Measurement data are used to make decisions that impact all areas of technology. Whether 
measurements support research, design, production, or maintenance, ensuring that the data 
supports the decision is crucial.  The quality of measurement data affects the consequences that 
follow measurement-based decisions.  Negative consequences from measurement results can 
range from wasted resources to loss of mission or life.  Historically, to ensure measurement data 
supported decisions, selection and calibration of MTE was the emphasis for measurement quality 
assurance.  With ever increasing technology requirements, the emphasis needs shift to 
understanding and controlling measurement decision risk in all areas of technology.   

AS9100C defines risk as, “An undesirable situation or circumstance that has both a likelihood of 
occurring and a potentially negative consequence.”  The focus of measurement quality assurance 
is to quantify, and/or manage the “likelihood” of incorrect measurement-based decisions.  When 
doing so, there must be a balance between the level of effort and the risks resulting from making 
an incorrect decision.  In balancing the effort versus the risks, the decision (direct risk) and the 
consequences (indirect risk) of the measurement must be considered.  

1. Direct Risk:  This risk is directly associated with the measurement data and impacts the 
decisions involving a measurement (e.g., accept, reject, rework, scrap). 

2. Indirect Risk:  This risk affects the quality or performance of end products which stem 
from measurements. In other words, this is the “consequence” of an incorrect decision.  
This type of risk may not be evident until after the product is in service. 

This Handbook provides tools for estimating and evaluating the measurement decision risk. 
Measurement decision risk analysis can be used to mitigate consequences associated with 
noncompliance to specifications and/or requirements which are validated through measurement.  
The principles and methods recommended in this Handbook may be used to design and support a 
quality measurement program.  From this foundation, good measurement data can support better 
decisions.  
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Purpose and Scope 
This document is Annex 4 of NASA-HDBK-8730.19 [40].  It provides guidelines for computing 
metrics by which conformance testing for test and calibration processes can be evaluated.  Chief 
among these metrics are measurement decision risks.  These include the risk of incorrectly 
accepting a nonconforming equipment attribute and the risk of incorrectly rejecting a conforming 
attribute.  The former is called False Accept Risk and the latter is termed False Reject Risk.  A 
principal objective of this Annex is to accumulate and focus the body of knowledge of 
measurement decision risk to provide uniform guidance in the application of this knowledge to 
estimate and manage such risk, particularly as it relates to NASA tests and calibrations. 
 
In addition to providing guidelines for estimating and managing measurement decision risks, this 
Annex addresses the evaluation of these risks in terms of their impact on both operating costs 
and on the cost of the undesirable consequences of incorrect test decisions.  Further, the 
guidelines provided herein can be applied to equipment and system design issues involving 
decisions regarding accuracy requirements and available support capability. 
 
The principles and methods presented in this Annex are applicable to any conformance test that 
relies on measured values to provide information on which to base acceptance or rejection 
decisions. 
 

Executive Summary 
This document is one of a series of Annexes to NASA-HDBK-8730.19 [40], applying the 
science of analytical metrology to the assurance of measurement quality.1  Measurement quality 
assurance (MQA) extends to many areas of technology management, including ensuring the 
accuracy of equipment attributes in the manufacturing process, the accuracy of the results of 
experiments, and the control of measurement uncertainty in calibration and testing.  MQA also 
addresses the need for making correct decisions based on measurement results and offers the 
means to limit the probability of incorrect decisions to acceptable levels.  This probability is 
termed “measurement decision risk.”   
 

The Test and Calibration Hierarchy 
MQA is exercised in the use and management of primary measurement standards, working 
standards, calibration systems, test systems and end items, as shown in Figure 1. 
 
Acceptable measurement decision risk at any level of the hierarchy is governed by the need to 
ensure that end items emerging from testing have an acceptable probability of performing as 
expected. 
 

Ensuring End Item Performance 
In the mid ‘80s, the problem of relating end item performance to calibration and testing 
capability was addressed in a rigorous way in which calibration, testing, and other equipment life  
  
                                                 
1 NCSLI RP-1 [39], NCSLI RP-5 [38], NCSLI RP-12 [26]. 
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cycle costs, as well as the costs of degraded end item utility, were minimized by applying an 
integrated model, referred to as the ETS model.2  The ETS model applies measurement science 
and cost modeling to establish functional links from level to level in the test and calibration 
hierarchy with the aim of ensuring acceptable end item performance in a cost-effective manner.  
The development of such links involves the application of measurement uncertainty analysis, 
measurement decision risk analysis, calibration interval analysis, life cycle cost analysis and end 
item utility modeling.  It also involves the acquisition, interpretation, use, and development of 
equipment attribute specifications. 
 

 
 

Figure 1.  The Test and Calibration Support Hierarchy. 

The support hierarchy links end item support to the capabilities at the hierarchy’s various levels of 
measurement.  The hierarchy also serves as a diagnostic to identify end item support requirements 
and to flag needed new support capabilities. 

Since ETS was first introduced, these areas of endeavor have been updated.  Updates are 
incorporated in a revised ETS model that provides the backbone for end-to-end MQA, as 
documented in Chapter 2 and Annex 1 of NASA-HDBK-8730.19 [40]. 
 
The use of such a model is critically important in the modern technological environment.  The 
pressures of the competitive international marketplace and of national aerospace, energy, 
environmental and defense performance objectives and reliability requirements have led to a 
situation in which end item performance tolerances rival and, in some cases, exceed the best 
accuracies attainable at the primary standards level.  In such cases, the interpretation of test and 
calibration data and the management of test and calibration systems require that the subtleties of 
the test/calibration process be accounted for and their impact on end item performance and 
support costs be quantified. 

                                                 
2 Equipment Tolerancing System [13, 36, 27]. 

Test Results Support RequirementsTest Results Support Requirements

Calibration Results Support RequirementsCalibration Results Support Requirements

Calibration Results Support RequirementsCalibration Results Support Requirements

Calibration Results Support RequirementsCalibration Results Support Requirements

END ITEMEND ITEMEND ITEMEND ITEM

TEST SYSTEMTEST SYSTEMTEST SYSTEMTEST SYSTEM

CALIBRATION SYSTEM CALIBRATION SYSTEM nnCALIBRATION SYSTEM CALIBRATION SYSTEM nn

CALIBRATION CALIBRATION STANDARDSTANDARDCALIBRATION CALIBRATION STANDARDSTANDARD
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The Role of Measurement Decision Risk 
The testing of a given end item attribute by a test system yields a reported in- or out-of-tolerance 
indication (referenced to the attribute's tolerance limits), an adjustment (referenced to the 
attribute's adjustment limits) and a "post-test" in-tolerance probability or “measurement 
reliability.”   Similarly, the results of calibration of the test system attribute are a reported in- or 
out-of-tolerance indication (referenced to the test system attribute's test limits), an attribute 
adjustment (referenced to the attribute's adjustment limits) and a beginning-of-period 
measurement reliability (referenced to the attribute's tolerance limits).  The same sort of data 
results from the calibration of the calibration system and accompanies calibrations up through 
the hierarchy until a point is reached where the item calibrated is itself a calibration standard and, 
finally, a primary standard with its value established by comparison to the SI. 
 
This hierarchical “compliance testing” is marked by measurement decision risk at each level.  
This risk takes two forms:  False Accept Risk, in which non-compliant attributes are accepted as 
compliant, and False Reject Risk, in which compliant attributes are rejected as non-compliant.  
The effects of the former are possible negative outcomes relating to the accuracies of calibration 
systems and test systems and to the performance of end items.  The effects of the latter are costs 
due to unnecessary adjustment, repair and re-test, as well as shortened calibration intervals and 
unnecessary out-of-tolerance reports or other administrative reaction. 
 
The use of an integrated model enables setting risk control criteria that optimize end item MQA 
support.  If an integrated model is not available, risk criteria may still be established based on the 
criticality of the test or calibration.  In the absence of criticality information, nominal criteria 
may be used [33]. 
 
However the criteria are established, an effective methodology for estimating and evaluating 
measurement decision risk is required.  The description of this methodology is presented in this 
document. 
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Chapter 1:  Introduction 
In recent years, ISO, NIST and ANSI/NCSL guidelines have been developed that provide a 
framework for analyzing and communicating measurement uncertainties.  These guidelines 
constitute a major step in building a common analytical language for both domestic and 
international trade.  This common language is important for ensuring that equipment tolerance 
limits and other measures of uncertainty have the same meaning for both buyer and seller. 
 
The motivation for developing such a common understanding derives primarily from the need to 
control false accept risk.  False accept risk is the probability that out-of-tolerance product or 
other attributes are perceived to be in-tolerance.  False accept risk constitutes a measure of the 
quality of a measurement process as viewed by individuals external to a calibration or testing 
organization.  The higher the false accept risk, the greater the chance of products not meeting 
performance or other quality expectations, resulting in returned goods, loss of reputation, 
litigation and other undesirable outcomes.  In a commercial context, individuals external to a 
calibration or testing organization are labeled "consumers."  For this reason, false accept risk has 
traditionally been called consumer's risk. 
 
In the late 1970s it was realized that false accept risk could be viewed from two perspectives.  
On the one hand, there is the view of the calibrating or testing agency.  In this view, false accept 
risk is considered to be the probability that out-of-tolerance attributes will be erroneously 
accepted by the testing or calibration process.  The false accept risk defined by this view is not 
conditional on an acceptance or rejection event.  Accordingly, it is referred to as “unconditional 
false accept risk” or UFAR. 
 
The second viewpoint is that of the user of the tested or calibrated equipment.  From this 
viewpoint, the important risk is the probability that accepted attributes will be out-of-tolerance.  
Since the false accept risk defined by this view is conditional on the acceptance of a tested or 
calibrated item, it is referred to as “conditional false accept risk” or CFAR. 
 
A counterpart to false accept risk is false reject risk.  False reject risk is the probability that in-
tolerance attributes are perceived to be out-of-tolerance.  False reject risk is a measure of the 
quality of a measuring process as viewed by individuals within the measuring organization; the 
higher the false reject risk, the greater the chances for unnecessary re-work and re-test.  In a 
commercial context, a measuring organization is labeled the "producer," and false reject risk is 
called producer's risk.  False reject risk has been given the acronym FRR. 
 
False accept risk and false reject risk, taken together, are referred to as measurement decision 
risk. 
 
1.1 Why Compute Risks? 

1.1.1 Measurement Quality Metrics 
The technical community has long been aware of the need to control measurement uncertainties 
to levels that are commensurate with the intended use of tested or calibrated equipment.  This 
awareness has been accelerated recently with the introduction of national and international 
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standards and guidelines.3  Much of this has been motivated by the need to enforce standards of 
conformance for manufactured goods and to ensure acceptable performance of advanced 
military, space and private sector technologies. 
 
The objectives of these concerns can be attained by linking the tolerances of tested or calibrated 
attributes to the uncertainty in the test or calibration measurement process.  This link is forged 
through the analysis of measurement decision risk. 
 
Given this, it can be asserted that false accept and false reject risks can be regarded as the 
principal metrics by which the quality of a test or calibration process can be evaluated.  The 
upshot of this is that the uncertainties in measurements made by testing or calibration 
laboratories be regarded as operational attributes rather than as isolated entities.  In other words, 
uncertainties need to be controlled to achieve desired levels of measurement decision risk. 
 

1.1.2 Economics 
In addition to providing quality metrics, risks constitute variables that relate to both the cost of 
testing and calibration and the cost of deploying or shipping nonconforming attributes.  As stated 
earlier, the higher the false accept risk, the greater the chance for unsatisfactory product 
performance and associated undesirable outcomes.   
 
As for false reject risk, there are two associated cost consequences.  The first is simply that 
money spent correcting false rejects is money that is largely wasted.  The second consequence is 
that, if the rejected item is an article of MTE, the out-of-tolerance condition is noted in the 
service history for the item, with the possible result that the item's calibration interval will be 
unnecessarily shortened.  This may constitute a major source of wasted funding in that intervals 
are more sensitive to out-of-tolerances than to in-tolerances and, secondly, the more often an 
item is calibrated, the greater its support cost. 
 
Linking decision risks to costs will be covered more extensively later. 
 
1.2 Factors Affecting Risks 
In testing or calibration, both false accept and false reject risks are affected by several factors.  
While the relationships between risks and these factors are complex, it can be easily appreciated, 
at least qualitatively, that the factors described in the following make up the list: 
 
Reference attribute Accuracy 

The reference attribute is the attribute of an item of MTE or a measurement system that makes 
the measurement associated with a given test or calibration step.  Measurement attribute 
accuracy is stated in terms of either the tolerance limits of the reference attribute or confidence 
limits associated with the calibration of this attribute by a higher-level standard. 
 

                                                 
3 See, for example, ISO/IEC 17025 [44] and ANSI/NCSL Z540.3 [33]. 
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Reference attribute In-Tolerance Probability 

This is the probability that the reference attribute is in-tolerance or within the confidence level 
for its stated confidence limits. 
 
Measurement Process Uncertainty 

This is the standard uncertainty in the total error of a testing or measurement process, including 
the reference attribute bias uncertainty. 
 
Measurement Process Error Distribution 

This is the specific mathematical form of the probability distribution of the total combined error 
of the testing or calibration process. 
 
UUT attribute Tolerance Limits 

The unit-under-test (UUT) attribute is the attribute under test or calibration.  Its tolerance limits 
are the limits that it is tested or calibrated to.  They may be thought of as the published tolerance 
limits for the attribute.  In the NASA Handbook, an attribute's tolerance limits are sometimes 
called performance limits. 
 
UUT attribute Test Limits 

These are limits of acceptance or rejection of the UUT attribute during testing or calibration. 
 
UUT attribute In-Tolerance Probability 

This is the probability that the UUT attribute is in-tolerance prior to testing or calibration.  As we 
will see later, this variable is a major driver of measurement decision risk. 
 
UUT attribute Error Distribution 

This is the specific mathematical form of the probability distribution of biases in the UUT 
attribute population. 
 
1.3 Reader’s Guide 
While this document is intended to provide the information necessary for technical personnel to 
apply measurement decision risk analysis to measurement procedures, management and other 
non-technical personnel may benefit from some of the document’s material.  The following 
summarizes the content of each chapter and appendix to assist readers of all technical levels and 
interests. 
 
Chapter 1.0 - Introduction 

Chapter 1 introduces the topic of measurement decision risk, discusses several motivations for 
computing risks, and identifies factors that affect measurement decision risk. 
 
Chapter 2.0 - Uncertainty Analysis 

Chapter 2 provides an overview of uncertainty analysis methods and concepts.  These methods 
and concepts are required to compute measurement uncertainties that affect measurement 
decision risk.  Chapter 2 should be read as a prerequisite to Chapters 3 and 4. 
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Chapter 3.0 - Probability Relations 

Chapter 3 covers the basics of applied probability and examines the mathematical relationships 
that comprise the foundation of measurement decision risk analysis. 
 
Chapter 4.0 - Computing Risk 

Chapter 4 presents methods for computing risks.  Three principal alternatives are described; the 
“classical method” found in much of the measurement decision risk literature, the “Bayesian 
method” applicable to controlling measurement decision risk in response to the real-time results 
of testing or calibration, and the “confidence level method” that serves as a pseudo risk control 
tool to be used in the absence of information needed to estimate the bias uncertainty of the unit 
under test. 
 
Chapter 4 utilizes the test and calibration measurement scenarios developed in Appendix A. 
 
Chapter 5.0 - Compensating Measures 

Chapter 5 covers methods that apply to compensating for risks in cases where risks are 
unacceptable for intended applications.  Chapter 5 also discusses how what we observe during 
testing or calibration is affected by measurement decision risk.  Based on this, approaches for 
managing periodic test and calibration are discussed.  These approaches are expanded on in 
Appendix E. 
 
Appendix A – Uncertainty Analysis 

Appendix A provides supporting material for Chapter 2.  It is intended as an abridged version of 
Annex 3, included in the present Annex for convenience.   As such, it offers relatively brief 
discussions on the fundamentals of uncertainty analysis, descriptions of error sources often 
encountered in testing and calibration, relevant probability density functions for attribute biases 
and other error sources, a mathematical definition of uncertainty and a general method for 
combining uncertainties in measurement.  Estimating uncertainty in multivariate measurements 
is also discussed as is the development of uncertainty estimates for four basic test and calibration 
scenarios. 
 
Readers interested in a full development of uncertainty analysis concepts, principles and methods 
are encouraged to consult Handbook Annex 3 and NCSLI’s RP-12 [26]. 
 
Appendix B – Test and Calibration Quality Metrics 

In Appendix B, a set of probability functions are developed for evaluating the quality of testing 
and calibration.  These metrics include the usual false accept and false reject risks, along with 
other metrics that may be of interest, such as the risk that non-conforming attributes will be 
accepted, the probability that conforming attributes will be accepted and the probability that non-
conforming attributes will be rejected. 
 

Downloaded from http://www.everyspec.com



 

- 5 - 
 

Appendix C – Introduction to Bayesian Measurement Decision Risk Analysis 

Appendix C provides an introduction to this important risk control methodology at the level of 
high school algebra.  The tools of single-variable calculus are encountered as brief excursions 
into the mathematics needed to develop a few necessary relations. 
 
Appendix D – Derivation of Key Bayesian Expressions 

Appendix D develops Bayesian methods of risk control and other applications for the more 
serious readers.  The mathematics are complete and unvarnished and the methodology may 
require a reformation of one’s conventional concepts of testing and calibration.  Given the 
benefits of the Bayesian methodology, it is worth the effort. 
 
Appendix E – True vs. Reported Probabilities 

In testing and calibration, what we see is not always what we’ve got.  Attributes that are 
perceived as being in-tolerance may be out-of-tolerance and those perceived as being out-of-
tolerance may actually be in-tolerance.  In compiling statistics on end of period (EOP) in-
tolerance percentages, we suffer from the fact that our “reported” in-tolerance probabilities are 
not the same as our “true” in-tolerance probabilities.  Appendix E deals with this problem and 
offers a means of correction for it.  This has implications for both evaluating measurement 
processes and for setting periodic calibration intervals. 
 
Appendix F – Useful Numerical Algorithms 

Computing measurement decision risks and other measurement quality metrics requires the use 
of iterative algorithms embedded in computer programs.  Two of the most useful of these are a 
bisection algorithm and a Gauss-quadrature integration algorithm.  Both are documented in 
Appendix F. 
 
Appendix G – Calibration Feedback Analysis 

The problem of what course of action to take when an attribute of a test system is found out-of-
tolerance during calibration is one that has plagued quality control organizations for decades.  No 
generally accepted methodology exists for developing an effective response to such events.  
Accordingly, responses range from doing nothing to providing reports to test equipment users for 
every recorded out-of-tolerance.  The former can be irresponsible, while the latter is probably 
overkill and often places responsibility on someone who may not be conversant with 
measurement quality control methodology. 
 
Appendix G provides a feedback analysis methodology that evaluates the probability that the 
out-of-tolerance test system attribute may have falsely accepted a subset of the end items that it 
tested.  The methodology applies the principles of uncertainty growth and the estimation of false 
accept risk to determine if some corrective action should be taken.  Certain data, needed for the 
analysis are described.  It turns out that these data are readily available and inexpensive to 
maintain. 
 
Appendix H – Risk-Based End of Period Reliability Targets 

EOP reliability targets need to be established to ensure that the in-tolerance probability of MTE 
attributes is held to an acceptable minimum during use.  What this in-tolerance probability 
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should be is a question that has historically not been satisfactorily answered.  Appendix H aims 
at correcting this deficiency by offering an answer in terms of measurement decision risk control.  
The answer includes a solved-for reliability target and a method for determining reliability target 
confidence limits. 
 
Appendix I – Set Theory Notation for Risk Analysis 

As a consequence of the fact that risk analysis requires the application of probability theory, 
some of the notation in this document involves the use of the symbols of mathematical logic and 
set theory.  While some readers find such notation to be merely elements of a convenient 
language of discourse, others may be perplexed by the seemingly arcane symbology.  Appendix 
I, while not constituting a comprehensive essay on the topic will, hopefully, provide a mapping 
of notation to meaning that will be useful in reading and understanding this document. 
 
Appendix J:  Post-Test Risk Analysis 

Appendix J explores the topic of post-test performance degradation of calibrated instruments.  In 
calibration and testing, the measurement results are given either in a report of the measured value 
with details regarding the measurement uncertainty, or in terms of the results of a conformance 
test.  Ordinarily, calibration results do not include uncertainties for the effects of transport and 
handling, effects of environmental conditions, or drift over time.  In some cases, uncertainties 
arising from these effects may be greater than the reported uncertainty or tolerance of the test or 
calibration. 
 
Appendix K:  Derivation of the Degrees of Freedom Equation 

Appendix K provides the derivation of the degrees of freedom equation.  The amount of 
information used to estimate the uncertainty in a given error is called the degrees of freedom.  
The degrees of freedom is required to employ an uncertainty estimate in computing confidence 
limits commensurate with some desired confidence level. 
 
 
1.4 Terms and Definitions 
The terms and definitions employed in this document are designed to be understood across a 
broad technology base.  Where possible, terms and definitions have been taken from 
internationally recognized standards and guidelines in the fields of testing and calibration, as 
well as the International vocabulary of Basic and General Terms in Metrology (VIM) [12]. 
 
Term Definition

 a posteriori value A value determined after taking measurements. 

a priori value A value assumed before measurements are taken. 

Accuracy Closeness of agreement between a declared or measured value of a 
quantity and its true value. 
 
In terms of instruments and other measuring devices, accuracy is 
defined as the conformity of an indicated value to the true value or, 
alternatively, the value of an accepted standard. 
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Accuracy Ratio See Test Accuracy Ratio. 

Analog Signal A quantity or signal that is continuous in both amplitude and time.

AOP The in-tolerance probability for an attribute averaged over its 
calibration or test interval. The AOP measurement reliability is 
often used to represent the in-tolerance probability of an attribute 
for a measuring item whose usage demand is random over its test 
or calibration interval. 

Arithmetic Mean The sum of a set of values divided by the number of values in the 
set.   

Artifact A physical object or substance with measurable attributes. 

Asymmetric Distribution A probability distribution in which deviations from the population 
mode value of one sign are more probable than deviations of the 
opposite sign.  Asymmetric distributions have a nonzero 
coefficient of skewness. 

Attribute A measurable characteristic, feature, or aspect of a device, object 
or substance. 

Attribute Bias A systematic deviation of an attribute’s nominal or indicated value 
from its true value. 

Average See Arithmetic Mean. 

Average-Over-Period (AOP) See AOP. 

Beginning-of-Period (BOP) The start of a calibration or test interval.  

Between Sample Sigma A standard deviation representing the variation of values obtained 
for different samples taken on a given quantity.  See also Within 
Sample Sigma. 

Bias A systematic discrepancy between an indicated, assumed or 
declared value 
of a quantity and the quantity’s true value.  See also Attribute Bias 
and Operator Bias. 

Bias Uncertainty The uncertainty in the bias of an attribute or error source quantified 
as the standard deviation of the bias probability distribution. 

BOP Reliability The in-tolerance probability for an MTE attribute at the start of its 
calibration or test interval.  

Calibration An operation in which the value of a measurand is compared with 
a corresponding value of a measurement reference, resulting in (1) 
a physical adjustment of the measurand’s value, (2) a documented 
correction of the measurand’s value, or (3) a determination that the 
measurand’s value is within its specified tolerance limits. 

Calibration Interval The scheduled interval of time between successive calibrations of 
an equipment parameter or attribute. 
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Characteristic A distinguishing trait, feature or quality. 

Coefficient Equation An equation that expresses the partial derivative of a parameter 
value equation with respect to a selected error source. This 
equation is used to compute a sensitivity coefficient for the 
selected error source. 

Combined Error An error comprised of a combination of two or more error sources.

Combined Uncertainty The uncertainty in a combined error. 

Component Error See Error Component. 

Component Uncertainty The product of the sensitivity coefficient for an error component 
and the standard uncertainty of the error component or a 
constituent error source. 

Computation Error The error in a quantity obtained by computation.  Normally due to 
machine round-off error, error in values obtained by iteration, or 
errors due to the use of regression models.  Sometimes applied to 
errors in tabulated physical constants. 

Computed Mean Value The average value of a sample of measurements. 

Conditional False Accept 
Risk (CFAR) 

The probability that an equipment attribute, accepted by 
conformance testing, is out-or-tolerance. 

Confidence Level The probability that a set of limits will contain a given error. 

Confidence Limits Limits that bound errors of a given error source with a specified 
confidence level. 

Conforming Applied to an attribute if its true value lies within or on the range 
of values bounded by its tolerance limits. 

Conformance Test The measurement of an attribute value or bias in order to decide 
conformance or nonconformance with specifications. 

Containment Limits Limits that are specified to contain either an attribute value, an 
attribute bias, or other measurement process error. 

Containment Probability The probability that an attribute value or the error in the 
measurement of this value lies within specified containment limits.

Correlation A probability relationship between two or more random variables. 

Correlation Analysis An analysis that determines the extent to which two random 
variables influence one another.  Typically the analysis is based on 
ordered pairs of values.  In the context of measurement uncertainty 
analysis, the random variables of interest are error sources or error 
components. 

Correlation Coefficient A measure of the extent to which two errors are linearly related.  A 
function of the covariance between the errors of two variables. 
Correlation coefficients range from minus one to plus one. 
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Covariance The expected value of the product of the deviations of two random 
variables from their respective means.  The covariance of two 
independent random variables is zero.  See Independent Error 
Sources. 

Coverage Factor A factor used to express an error limit or expanded uncertainty as a 
multiple of the standard uncertainty. 

Cross-correlation The correlation between two error sources of two different error 
components in a multivariate analysis. 

Cumulative Distribution 
Function 

A mathematical function whose values F(x) are the probabilities 
that a random variable assumes a value less than or equal to x.  
Synonymous with Distribution Function. 

Degrees of Freedom A statistical quantity that is related to the amount of information 
available about an uncertainty estimate.  The degrees of freedom 
signifies how "good" the estimate is and serves as a useful statistic 
in determining appropriate coverage factors and computing 
confidence limits and other decision variables. 

Deviation from Nominal The difference between an attribute's measured or true value and 
its nominal value. 

Direct Measurements Measurements in which a measuring attribute X directly measures 
the value of a subject attribute Y (i.e., X measures Y).  In direct 
measurements, the value of the quantity of interest is obtained 
directly by measurement and is not determined by computing its 
value from the measurement of other variables or quantities. 

Display Resolution The smallest distinguishable difference between indications of a 
displayed value. 

Distribution Function See Cumulative Distribution Function. 

Distribution Variance The mean square dispersion of a random variable about its mean 
value.  See also Variance. 

Drift A change in output over a period of time that is unrelated to input.  
Can be due aging, temperature effects, usage stress, etc. 

Effective Degrees of 
Freedom 

The degrees of freedom for a Type B estimate or a combined 
uncertainty estimate. 

End-of-Period (EOP) The end of the calibration or test interval. 

End Item A system, instrument or hardware component with operational 
performance specifications. 

EOP Reliability 
 

The in-tolerance probability for an attribute at the end of its 
calibration or test interval. 

Equipment Parameter A specified aspect, feature or performance characteristic of a 
measuring device or artifact.  Synonymous with attribute. 
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ETS Equipment Tolerancing System.  A methodology for adjusting test 
and calibration support parameters to minimize the total costs 
associated with the testing and deployment of end items. 

Error The arithmetic difference between a measured or indicated value 
and the true value. 

Error Component The total error in the measured or assumed value of a component 
variable of a multivariate measurement, e.g., the error in the 
measurement of distance or time in the determination of the 
velocity of a moving object. 

Error Distribution A probability distribution that describes the relative frequency of 
occurrence of values of a measurement error.  

Error Equation An expression that defines the total error in the value of a quantity 
in terms of all relevant process or component errors. 

Error Limits Bounding values that are expected to contain the error from a 
given source with some specified level of probability or 
confidence. 

Error Model See Error Equation. 

Error Source A parameter, variable or constant that can contribute error to the 
determination of the value of a quantity.   

Error Source Coefficient See Sensitivity Coefficient. 

Error Source Correlation See Correlation Analysis. 

Error Source Uncertainty The uncertainty in a given error source. 

Estimated True Value The value of a quantity obtained by Bayesian analysis. 

Expanded Uncertainty A multiple of the standard uncertainty reflecting either a specified 
confidence level or arbitrary coverage factor. 

False Accept Risk (1) The probability of an attribute being out-of-tolerance and 
falsely accepted by conformance testing as being in-tolerance. (2) 
The probability that attributes accepted by conformance testing are
out-of-tolerance.  The former is called unconditional false accept 
risk (UFAR) and the latter is called conditional false accept risk 
(CFAR). 

False Reject Risk The probability of an attribute being in-tolerance and falsely 
rejected by conformance testing as being out-of-tolerance. 

Heuristic Estimate An estimate resulting from accumulated experience and/or 
technical knowledge concerning the uncertainty of an error source.

Histogram See Sample Histogram. 

Hysteresis The lagging of an effect behind its cause, as when the change in 
magnetism of a body lags behind changes in an applied magnetic 
field.  
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Hysteresis Error The residual part of a signal in a sampling event left over from the 
previous sampling event.  In equipment specifications, the 
maximum separation due to hysteresis between upscale-going and 
downscale-going indications of a measured value taken after 
transients have decayed. 

Independent Error Sources Error sources that are statistically independent.  See Statistical 
Independence. 

Instrument A device for measuring or producing the value of an observable 
quantity. 

In-tolerance In conformance with tolerance limits. 

In-tolerance Probability The probability that an MTE attribute value or the error in the 
value is contained within its specified tolerance limits. 

Kurtosis A measure of the "peakedness” of a distribution.  For example, 
normal distributions have a peakedness value of three. 

Least Significant Bit (LSB) The smallest analog signal value that can be represented with an n-
bit code.  LSB is defined as A/2n, where A is the amplitude of the 
analog signal. 

Level of Confidence See Confidence Level. 

Mean Deviation The difference between a sample mean value and a nominal value.

Mean Square Error See Variance. 

Mean Value Sample Mean:  The average value of a measurement sample.  
Population Mean:  The expectation value for measurements 
sampled from a population. 

Mean Value Correction The correction or adjustment of the computed mean value for an 
offset due to attribute bias and/or environmental factors. 

Measurement Decision Risk The probability of erroneously accepting or rejecting an attribute 
based on the measurement result(s) of conformance testing. 

Measurand The particular quantity subject to measurement. (Taken from ISO 
GUM Annex B, Section B.2.9) 

Measurement Error The difference between the measured value of a quantity and its 
true value. 

Measurement Process  
Errors 

Errors resulting from the measurement process (e.g., reference 
attribute bias, random error, resolution error, operator bias, 
environmental factors, …).   

Measurement Process 
Uncertainty 

The uncertainty in a measurement process error.  The standard 
deviation of the probability distribution of a measurement process 
error. 
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Measurement Reliability (1) Attribute Measurement Reliability:  The probability that an 
attribute is in-tolerance.  (2) Item Measurement Reliability:  The 
probability that all attributes of an item are in-tolerance.  

Measurement Reference See Reference Standard. 

Measurement Uncertainty The lack of knowledge of the sign and magnitude of measurement 
error.   

Measurement Units The units, such as volts, millivolts, etc., in which a measurement or 
measurement error is expressed. 

Measuring Device See Measuring and Test Equipment. 

Measuring and Test 
Equipment (MTE) 

A system or device capable of being used to measure the value of a 
quantity or test for conformance to specifications. 

Measuring Attribute The attribute of a device that is used to obtain information that 
quantifies the value of a subject or unit under test attribute. 

Median Value (1) The value that divides an ordered sample of data in two equal 
portions.  (2) The value for which the distribution function of a 
random variable is equal to one-half.  (3) A point of discontinuity 
such that the distribution function immediately below the point is 
less than one-half and the distribution function immediately above 
the point is greater than one-half.     

Mode Value The value of an attribute most often encountered or measured.  
Sometimes synonymous with the nominal value or design value of 
an attribute. 

Module Error Sources Sources of error that accompany the conversion of module input to 
module output. 

Module Input Uncertainty The uncertainty in a module’s input error expressed as the 
uncertainty in the output of preceding module. 

Module Output Equation The equation that expresses the output from a module in terms of 
its input.  The equation is characterized by parameters that 
represent the physical processes that participate in the conversion 
of module input to module output. 

Module Output Uncertainty The total combined uncertainty in the output of a given module of 
a measurement system. 

Multivariate Measurements Measurements in which the value of a subject attribute is a 
computed quantity based on measurements of two or more 
variables. 

Nominal Accuracy Ratio For two-sided tolerance limits symmetric about a nominal value, 
the ratio of the span of UUT attribute tolerance limits to the span 
of the tolerance limits of a test or calibration reference attribute. 

Nominal Value The designated or published value of an attribute.  It may also 
sometimes refer to the mode value of an attribute’s distribution. 
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Operator Bias The systematic error due to the perception or influence of a human 
operator or other agency. 

Parameter A characteristic of a device, process or function.  See also 
Equipment Parameter. 

Parameter Value Equation The system equation for a multivariate measurement. 

Population The total set of possible values for a random variable. 

Population Mean The expectation value of a random variable described by a 
probability distribution. 

Precision The number of places to the right the decimal point in which the 
value of a quantity can be expressed.  Although higher precision 
does not necessarily mean higher accuracy, the lack of precision in 
a measurement is a source of measurement error. 

Probability The likelihood of the occurrence of a specific event or value from 
a population of events or values. 

Probability Density  
Function (pdf) 

A mathematical function that describes the relative frequency of 
occurrence of the values of a random variable. 

Quantization The sub-division of the range of a reading into a finite number of 
steps, not necessary equal, each of which is assigned a value. 
Particularly applicable to analog to digital and digital to analog 
conversion processes. 

Quantization Error Error due to the granularity of resolution in quantizing a sampled 
signal. Contained within +/- 1/2 LSB (least significant bit). 

Random Error See Repeatability. 

Range An interval of values for which specified tolerances apply.  In a 
calibration or test procedure, a setting or designation for the 
measurements of a set of specific points. 

Readout Device A device that converts a signal to a series of numbers on a digital 
display, the position of a pointer on a meter scale, tracing on 
recorder paper or graphic display on a screen. 

Reference Standard An artifact used as a measurement reference whose value and 
uncertainty have been determined by calibration and documented. 

Reliability Model A mathematical function relating the in-tolerance probability of an 
attribute or instrument and the time elapsed since testing or 
calibration.  Used to project uncertainty growth over time. 

Repeatability The error that manifests itself in the variation of the results of 
successive measurements of the value of a quantity carried out 
under the same measurement conditions and procedure during a 
measurement session.  Also referred to as Random Error. 
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Reproducibility The closeness of the agreement between the results of 
measurements of the value of an attribute carried out under 
different measurement conditions.  The differences may include: 
principle of measurement, method of measurement, observer, 
measuring instrument(s), reference standard, location, conditions 
of use, time. 

Resolution The smallest discernible value indicated by a reference or subject 
attribute. 

Resolution Error The error due to the finiteness of the precision of a measurement. 

Sample A collection of values drawn from a population from which 
inferences about the population are made. 

Sample Histogram A bar chart showing the relative frequency of occurrence of 
sampled values. 

Sample Mean The arithmetic average of sampled values. 

Sample Size The number of values that comprise a sample. 

Sensitivity The ratio between a change in the electrical output signal to a 
small change in the physical input of a sensor or transducer.  The 
derivative of the transfer function with respect to the physical 
input. 

Sensitivity Coefficient A coefficient that weights the contribution of a given error 
component to the total measurement error.  

Sensor Any of various devices designed to detect, measure or record 
physical phenomena. 

Skewness A measure of the asymmetry of a probability distribution.  A 
symmetric distribution has zero skewness. 

Specification A numerical value or range of values that bound the performance 
of an MTE attribute. 

Stability The ability of a measuring device to give constant output for a 
constant input over a period of time. 

Standard Deviation The square root of the variance of a sample or population of 
values. A quantity that represents the spread of values about a 
mean value. In statistics, the second moment of a distribution. 

Standard Uncertainty The standard deviation of an error distribution. 

Statistical Independence A property of two or more random variables such that their joint 
probability density function is the product of their individual 
probability density functions.  Two error sources are statistically 
independent if one does not exert an influence of the other or if 
both are not consistently influenced by a common agency.  See 
also Independent Error Sources. 
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Stress Response Error The error or bias in an attribute value induced by response to 
applied stress. 

Student’s t-statistic Typically expressed as t,.  Denotes the value for which the 
distribution function for a t-distribution with  degrees of freedom 
is equal to 1 – .  A multiplier used to express an error limit or 
expanded uncertainty as a multiple of a standard uncertainty. 

Subject Attribute An attribute whose value we seek to obtain from a measurement or 
set of measurements. 

Symmetric Distribution A probability distribution of random variables that are equally 
likely to be found above or below a mean value. 

System Equation A mathematical expression that defines the value of a quantity in 
terms of its constituent variables or components.  Also referred to 
as a parameter value equation. 

System Module An intermediate stage of a system that transforms an input quantity 
into an output quantity according to a module output equation. 

System Output Uncertainty The total uncertainty in the output of a measurement system. 

t Distribution A symmetric, continuous distribution characterized by the degrees 
of freedom parameter.  Used to compute confidence limits for 
normally distributed variables whose estimated standard deviation 
is based on finite degrees of freedom. Also referred to as the 
Student’s t distribution. 

Test Accuracy Ratio An alternative label for Test Uncertainty Ratio. 

Test Uncertainty Ratio The ratio of the span of the tolerance limits of a UUT attribute and 
two times the 95% expanded measurement uncertainty of a 
conformance testing measuring process. 

Tolerance Limits Typically, engineering tolerances that define the maximum and 
minimum values for a product to work correctly.  These tolerances 
bound a region that contains a certain proportion of the total 
population with a specified probability or confidence. 

Total Uncertainty The standard deviation of the probability distribution of the total 
combined error in the value of a quantity obtained by 
measurement. 

Total System Uncertainty See System Output Uncertainty. 

True Value The value that would be obtained by a perfect measurement.  True 
values are by nature indeterminate. 

Type A Estimates Uncertainty estimates obtained by statistical analysis of a sample 
of data. 

Type B Estimates Uncertainty estimates obtained by heuristic means in the absence 
of a sample of data. 
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Uncertainty See Standard Uncertainty. 

Uncertainty Component The uncertainty in an error component. 

Uncertainty in the Mean 
Value 

The standard deviation of the distribution of mean values obtained 
from multiple sample sets of measurements of values of a given 
quantity.  Estimated by the standard deviation of a single sample 
divided by the square root of the sample size.  The distribution of 
mean values is called the sampling distribution. 

Uncertainty Ratio The ratio of the UUT attribute bias standard uncertainty to the 
standard uncertainty of the test or calibration process at the time of 
testing or calibration. 

Unconditional False Accept 
Risk (UFAR) 

The probability that an equipment attribute will be out-of-tolerance 
and accepted as in-tolerance. 

Uncertainty Growth The increase in the uncertainty in the value or bias of an attribute 
over the time elapsed since measurement. 

Unit Under Test A device featuring the subject attribute. 

Variance (1) Population:  The expectation value for the square of the 
difference between the value of a variable and the population 
mean.  (2) Sample:  A measure of the spread of a sample equal to 
the sum of the squared observed deviations from the sample mean 
divided by the degrees of freedom for the sample.  Also referred to 
as the mean square error. 

Within Sample Sigma An indicator of the variation within samples. 

 
1.5 Acronyms 
A/D  Analog to Digital 
ANSI  American National Standards Institute  
AOP  Average-Over-Period 
AR  Accuracy Ratio 
ATE  Automated Test Equipment 
BIPM  International Bureau of Weights and Measures (Bureau International 

des Poids et Mesures) 
BOP  Beginning-Of-Period 
CFAR  Conditional False Accept Risk.  Sometimes called CPFA 
CGPM  General Conference on Weights and Measures (Conference General 

des Poids et Mesures)  
CIPM  International Conference of Weights and Measures (Conference 

Internationale des Poids et Mesures)  
CPFA  Conditional Probability for a False Accept.  See CFAR. 
DVM  Digital Voltmeter 
EOP  End-of-Period 
ESS  Pure Error Sum of Squares 
FAR  False Accept Risk 
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FRR  False Reject Risk 
FS  Full Scale 
GUM  Guide to the Expression of Uncertainty in Measurement 
IS0  International Organization for Standardization (Organisation 

Internationale de Normalisation) 
LCL  Lower Confidence Limit 
LSS  Lack of Fit Sum of Squares 
MAP  Measurement Assurance Program 
MDR  Measurement Decision Risk 
MLE  Maximum-Likelihood-Estimate 
MQA  Measurement Quality Assurance 
MTE  Measuring and Test Equipment 
NASA  National Aeronautics and Space Administration 
NBS  National Bureau of Standards (now NIST) 
NHB  NASA Handbook 
NIST  National Institute of Standards and Technology (was NBS) 
pdf  Probability Density Function 
PFA  Probability for a False Accept.  See UFAR. 
PFR  Probability for a False Reject.  See FRR. 
PRT  Platinum Resistance Thermometer 
QA  Quality Assurance 
RSS  Root-Sum-Square 
SI  International System of Units (Système International d'Unités) 
SMPC  Statistical Measurement Process Control 
SPC  Statistical Process Control 
TAR  Test Accuracy Ratio 
TUR  Test Uncertainty Ratio 
UCL  Upper Confidence Limit 
UFAR  Unconditional False Accept Risk.  Sometimes called PFA. 
UUT  Unit Under Test 
VIM  International Vocabulary of Basic and General Terms in Metrology 

(Vocabulaire International des Termes Fondamentaux et Généraux de 
Métrologie) 
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Chapter 2:  Uncertainty Analysis Overview 
Estimating measurement decision risk begins with the estimation of the uncertainty in the 
measurement of the quantity of interest and of the uncertainty in the bias of this quantity prior to 
measurement.  For this reason, a brief discussion of measurement uncertainty analysis principles 
and methods is provided in this chapter.  In addition to covering principles and methods, a 
description of four test or calibration scenarios is presented.  These scenarios provide 
prescriptions for combining uncertainties that ensure measurement decision risk analyses are 
compatible with specific measurement processes. 
 
The uncertainty analysis overview given in this chapter is augmented by a more detailed 
discussion presented in Appendix A.  For a full discussion and examination of the subject of 
uncertainty analysis, the reader is referred to more in-depth measurement uncertainty analysis 
references [26, 27 and Annex 3]. 
 
2.1 Uncertainty Analysis and Risk Management 
Uncertainty analysis is vital to the effective management of modern technology.  Cogent 
uncertainty estimates provide statistics that can be used in making technology management 
decisions.  Uncertainty estimates support activities that range from assessing the compatibility of 
parts to computing the risks involved in making decisions based on measurement results.  As is 
shown in Appendix B, uncertainty analysis is essential for developing important calibration 
quality metrics. 
 

2.1.1 Measurement Decision Risk 
Measurement uncertainty estimates are important variables in computing false accept and false 
reject risks in calibration and testing.  Knowing these risks can lead to the avoidance of placing 
nonconforming attributes in use and can reduce costs associated with reworking rejected 
attributes.  Using uncertainty estimates to control risks can also come into play when 
determining acceptance limits for testing or calibration. 
 

2.1.2 Parts Conformance 
Cannons and Cannonballs 
It may be surmised that a primary objective of recognized standards, such as ANSI/NCSL 
Z540.3-2006 [33] and ISO/IEC 17025 [A-3] is to assure that parts manufactured by one 
company will be compatible with parts manufactured by another company.  To illustrate, 
consider the hypothetical case of ensuring the utility of a particular type of cannon.  This utility 
can be expressed primarily in terms of reliability, portability and range.  With respect to range, 
the variables of interest are muzzle velocity, cannonball mass and cannonball aerodynamics.  
Obviously, muzzle velocity is dependent in large part on the difference between the inner 
diameter of the cannon and the diameter of the cannonballs. 
 
Clearly, if Company X manufactures the cannon and Company Y manufactures the cannonballs, 
their measurements must be in close enough agreement to ensure that diameter differences are 
not too large or too small.  This involves comparing relative specifications and taking into 
account uncertainties in measurement. 
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2.1.3 Statistical Tolerancing 
It is often desirable to manufacture items whose attributes conform to specifications with a 
certain level of confidence.  Such specifications can be developed from estimates of the 
uncertainties (variabilities) of attribute values of manufactured/tested attributes and associated 
degrees of freedom.  It should be stated that, if uncertainty estimates are overly conservative, 
computed confidence levels will likely not be useful, and tolerance limits will be specified wider 
than they should be.  This can have an undesirable impact on equipment selection and 
operational equipment support costs. 
 
2.2 Uncertainty Analysis Fundamentals 
We now present a short discussion of the elements of uncertainty estimation.  After some 
preliminary remarks, we will identify types of estimates and outline the estimation process for 
each. 
 

2.2.1 Preliminaries 
In estimating uncertainty, we keep in mind a few basic concepts.  Chief among these are the 
following: 
 

• All measurements are accompanied by error. 

• Measurement errors and attribute biases are random variables.  This means that whenever 
we make measurements, the sign and magnitude of errors in measurement results are 
unknown and vary unpredictably. 

• Errors follow probability distributions.  The way that measurement errors vary can be 
described statistically.  In statistical descriptions, errors are said to be distributed in such 
a way that the sign and magnitude of a given error has associated with it a probability of 
occurrence.  The key words in this view of measurement errors are 

• Population - All the values that a random variable can attain. 

• Distribution - A functional relationship between the value of a random variable and its 
probability of occurrence. 

• The lack of knowledge of the value of a measurement error is called measurement 
uncertainty. 

• The uncertainty in the value of a measurement error is the standard deviation of the 
measurement error distribution. 

 
From the above, we see that uncertainty analysis attempts to quantify the probability 
distributions of measurement errors by estimating the standard deviations of their distributions. 
 

2.2.2 The Basic Error Model 
The basic error model applies to the measurement xmeas of a quantity xtrue 

meas true measx x   , 

where meas is the measurement error.  If xmeas is measured directly, 
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meas bias repeat resolution operator environment               

Each contributing error in a direct measurement is called an error source.  If xmeas is obtained by 
multivariate measurement of m components [A3], then 

1

m

meas i i
i

a 


  , 

where the constants ai are sensitivity coefficients.  Each error i is called an error component.  
Error components may be comprised of one or more error sources, each arising from a direct 
measurements 
 

2.2.3 Measurement Error Sources 
Various sources of error may contribute to the total combined measurement error.  Most 
commonly encountered are the following: 
 
Measurement Bias 

A systematic difference between the value of a UUT attribute measured with a measurement 
reference and the attribute’s true value. 
 
Random Error 

Error which manifests itself in differences between measurements within a measurement sample. 
 
Resolution Error 

The difference between a measured (sensed) value and the value indicated by a measuring 
device. 
 
Digital Sampling Error 

Error due to the granularity of digital representations of analog values. 
 
Computation Error 

Error due to computational round-off and other errors due to extrapolation, interpolation, curve 
fitting, etc. 
 
Operator Bias 

Error due to a persistent bias in operator perception and/or technique. 
 
Stress Response Error 

Error caused by response to stress following measurement. 
 
Environmental/Ancillary Error 

Error caused by environmental effects and/or biases or fluctuations in ancillary equipment. 
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2.2.4 Error and Uncertainty 

2.2.4.1 Axioms 
Three axioms important for understanding measurement uncertainty and performing uncertainty 
analysis are given below. 
 
Axiom 1: 

Measurement errors follow probability distributions.4 
 
Axiom 2: 

The uncertainty in a measurement of a variable is the square root of the variable's distribution 
variance or "mean square error." 

var( )x measu x  

Axiom 3: 

The uncertainty in a measurement is the uncertainty in the measurement error. 

var( )

var( )

var( )

.
x

x meas

true meas

meas

u x

x

u







 





 

2.2.4.2 Variance Addition Rule 
The fundamental tool for combining uncertainties due to error sources or components is the 
variance operator.  The recipe for combining uncertainties using this operator is the variance 
addition rule.  It can be expressed in two ways.  For example, if a function z = ax + by, then 
 
Covariance Version 

2

2 2

2 2

2 2 2 2

2

var( ) var( )

var( ) var( ) 2 cov( , )

var( ) var( ) 2 cov( , )

2 cov( , )
x y

z

z

x y x y

x y

u z ax by

a x b y ab x y

a b ab

a u b u ab

u

 



   

 

  

  

  

  



 

                                                 
4 See Section A.2.2.2. 
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Correlation Version 
2

2 2
,

2 2
,

2 2 2 2
,

2

var( ) var( )

var( ) var( ) 2 var( ) var( )

var( ) var( ) 2 var( ) var( )

2
x y x y

z

z

x y

x y x y x y

x y

u z ax by

a x b y ab x y

a b ab

a u b u ab u u

u

   





    



  

  

  

  



 

 

 
Figure 2-1.  The Variance Addition Rule for Measurement Errors 

Shown is the correlation version.  Note:  For direct measurements, correlations between process 
errors are usually zero. 

 

2.2.5 Procedures for Obtaining an Uncertainty Estimate for an Error Source 

2.2.5.1 Type A Estimates 
In making a Type A estimate and using it to construct confidence limits, we apply the following 
procedure taken from the GUM and elsewhere: 

1. Take a random sample of size n representative of the population of interest.  The larger the 
sample size, the better.  In many cases, a sample size less than six is not sufficient. 

2. Compute a sample mean 

1 2
1

1 1
( )

n

n i
i

x x x x x
n n 

       

3. Compute a sample standard deviation ux 

2

1

1
( )

1

n

x i
i

s x x
n 

 
  , 

where the xi, i = 1, 2, …, n comprise a sample of n measured values. 

4. Assume an underlying distribution, e.g., normal. 

x b ran res op env          
true xx x  

2

2

2 2 2 2 2

var( ) var( )

var( ) var( )

2 2

x

b ran res op env

b ran b ran b res b res

x true x

x b ran res op env

u x x

u

u u u u u

u u u u



    

       



     

 

  

       

     

  






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5. Develop a coverage factor equal to a t-statistic based on the degrees of freedom  = n – 1 
associated with the sample standard deviation and a desired level of confidence p.  Multiply 
the sample standard deviation by the coverage factor (t-statistic) to obtain confidence limits 
 L: 

6. If reporting the sample mean value or basing decision on this value, divide the standard 
deviation sx by the square root of the sample size n. 

 
Degrees of Freedom 

 = n - 1 
Significance Value  

 = 1 – p 

Single-Measurement Repeatability Confidence Limits 

/2. xL t s    

Mean Value Repeatability Confidence Limits: 

/2.
xs

L t
n

    

2.2.5.2 Type B Estimates 
In making a Type B estimate, we reverse the process.  The procedure is 

1. Develop a set of error containment limits ±L. 

2. Estimate a containment probability p. 

3. Estimate the Type B degrees of freedom5 

4. Assume an underlying distribution, e.g., normal. 

5. Compute a coverage factor, t, based on the containment probability and degrees of freedom. 

6. Compute the standard uncertainty for the quantity of interest (e.g., attribute bias) by 
dividing the containment limit by the coverage factor:  /u L t . 

 

2.2.6 Degrees of Freedom for Combined Estimates 
The degrees of freedom for a total combined uncertainty uT, made up of k uncertainties ui for s-
independent errors i, i = 1,2,...,k, is given by the Welch-Satterthwaite relation [26, 41, 42]6 

4

4

1

T
T k

i

i i

u
u








. 

If errors i and j are correlated with correlation coefficient ij, i,j = 1,2,...,k, then the above 
relation may be only approximately valid.  A version of the Welch-Satterthwaite relation that has 
been proposed for use with correlated errors is 

                                                 
5 See reference [26] or [27] for details regarding computing Type B degrees of freedom. 
6 If, in the equation for uT, an uncertainty component ui is multiplied by a sensitivity coefficient ci, the ui term in the 
Welch-Satterthwaite relation is replaced by the term ciui. 
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4

4 1
2 2 2

1 1 1

2 ( ) ( )

T
k k k

i
ij i j

i i j ii

u
u

u u


  




   


 

 

where 
1

2

1 1 1

2
n n n

T i ij i j
i i j i

u u u u


   

   . 

This version of the relation has been circulated to selected members of the measurement science 
community for review and comment.  Its derivation is given in Appendix K. 
 

2.2.7 Expanded Uncertainty 
The expanded uncertainty is a limit obtained by multiplying an uncertainty estimate by a 
specified coverage factor.  To develop expanded uncertainties that can be used to make cogent 
decisions for technology management, it is desirable to relate the coverage factor to a confidence 
level.  If this is done, then the expanded uncertainty serves as a confidence limit that can be said 
to bound errors with a stated degree of confidence. 
 
Suppose, for example, that a mean value x  and an uncertainty estimate u have been obtained for 
a variable x, along with a degrees of freedom estimate .  If it is desired to establish ± confidence 
limits around x  that bound errors in x with some probability p, then the expanded uncertainty is 
given by7 

/2,L t u  , 

where the coverage factor /2,t   is the familiar Student's t-statistic and  = 1 - p.  In using the 
expanded uncertainty to indicate the confidence in the estimate x , we would say that the value 
of x is estimated as x  ± L with p  100% confidence. 
 
Some institutional procedures employ a fixed, arbitrary number to use as a coverage factor.  The 
argument for this practice is based on the assertion that the degrees of freedom for Type B 
estimates cannot be rigorously established.  Accordingly, it makes little sense to attempt to 
determine a t-statistic based on a confidence level and degrees of freedom for a combined Type 
A/B uncertainty.  Until the late '90s, this assertion had been true.  Methods now exist that permit 
the determination of Type B degrees of freedom.8  Given this, we are no longer limited to the 
practice of using a fixed number for all expanded uncertainty estimates. 
 
2.3 Multivariate Uncertainty Analysis 
Frequently, the value of a quantity of interest is obtained by measuring the values of constituent 
quantities or "components."  An example is the measurement of velocity, obtained through 
measurements of time and distance.  In such cases, an error model is required as a starting point 
in developing an expression for the uncertainty in the quantity of interest. 

                                                 
7 The distribution for the population of errors in x is assumed to be normal in this example; hence the use of the t-
statistic for computing confidence limits. 
8 Castrup, H., "Estimating Category B Degrees of Freedom," Measurement Science Conference, Anaheim, January 
21, 2000. 

Downloaded from http://www.everyspec.com



 

- 25 - 
 

 

2.3.1 Error Modeling 
Error modeling consists of identifying the various components of error and establishing their 
relationship to one another.  The guiding expression for this process is the system equation. 
 

2.3.1.1 The System Equation 
The system equation is the expression for the variable being sought in terms of its measurable 
components.  Establishing the system equation is often the most difficult part of the process.  If 
the system equation can be determined, then uncertainty analysis becomes almost trivial. 
 
For purposes of illustration, we consider a two-component variable.  The expressions that ensue 
can easily be extended to cases with arbitrary numbers of components. 
 
Let the component variables of the system equation be labeled x and y.  Then, if the variable of 
interest, labeled z, is expressed as a function of x and y, we write 

( , )z z x y . 

2.3.1.2 Error Components 
The measurement error or bias in each variable in the system equation is an error component.  
The contribution of each error component x and y to the error z in the variable z is expressed in 
the error model 

(2) ,z x y

z z

x y
              

O  

where O(2) indicates terms to second order and higher in the error variables.  Higher order terms 
are usually negligible and are dropped from the expression to yield 

z x y

z z

x y
             

 . 

2.3.2 Computing System Uncertainty 
Using Axioms 2 and 3, together with the variance addition rule, gives 

2 2 2 2 2 ( , )z x x y y x y x y x yu c u c u c c u u     , 

where the coefficients cx and cy are 

,x y

z z
c c

x y

           
, 

and the uncertainties are 
var( ), var( )x x y yu u   . 

The coefficient (x, y) is the correlation coefficient for the component errors x and y. 
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2.3.3 Process Uncertainties 
Various sources of error contribute to each error component of a measurement.  Most commonly 
encountered are those described earlier in Section 2.2.3: 

• Measurement Bias 

• Random Error 

• Resolution Error 

• Digital Sampling Error 

• Computation Error 

• Operator Bias 

• Stress Response Error 

• Environmental/Ancillary Error 
 
Labeling each of the relevant error sources with a number designator, we can write the error in 
the measurement of the component x as 

1 2x x x xn      , 

and, since correlations between error sources within an error component are generally zero, the 
uncertainty in the measurement of x becomes a simple RSS combination 

2 2 2 2
1 2x x x xnu u u u    , 

Similarly, the uncertainty in the measurement of y is given by 
2 2 2 2

1 2y y y ynu u u u    . 

2.3.4 Cross-Correlations 
The final topic of this section deals with cross-correlations between error sources of different 
error components.  Cross-correlations occur when different components of a variable are 
measured using the same device, in the same environment, by the same operator or in some other 
way that would lead us to suspect that the measurement errors in the two components might be 
correlated. 
 
If the cross-correlation between the ith and the jth process errors of the measured variables x and 
y is denoted by ( , )xi yj   , then the correlation coefficient between x and y is given by 

1 1

1
( , ) ( , )

ji nn

x y xi yj xi yj
i jx y

u u
u u

     
 

  . 

2.4 Uncertainty Analysis Scenarios 
As stated at the beginning of this chapter, Appendix A describes four calibration scenarios for 
estimating and combining uncertainties.  The four scenarios are the following:  

1. The measurement reference (MTE) measures the value of an attribute of the unit under 
test (UUT) that provides an output or stimulus. 

2. The UUT measures the value of a reference attribute of the MTE that provides an output 
or stimulus. 
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3. The UUT and MTE each provide an output or stimulus” for comparison using a bias 
cancellation comparator. 

4. The UUT and MTE both measure the value of an attribute of a common device or artifact 
that provides an output or stimulus. 

 
The information obtained in each scenario includes an observed value, referred to as a 
“measurement result” or “calibration result,” and an estimated uncertainty in the calibration 
error.  For each scenario, a measurement equation is given that is applicable to the manner in 
which calibrations are performed and calibration results are recorded or interpreted. 
 
For each of the four scenarios, the calibration result is expressed as 

,UUT b cale   , 

where eUUT,b is the bias of the unit-under-test (UUT) at the time of calibration,  is the 
measurement (estimate) of eUUT,b and cal is the total calibration error in the estimate.  The 
calibration uncertainty is given by 

var( )cal calu  , 

where var(cal) is the variance in the probability distribution of cal. 
 
2.5 Interpreting and Applying Equipment Specifications 
Equipment specifications are an important element of testing, calibration and other measurement 
processes.  They are used for the selection of MTE or for establishing equipment substitutions 
for a given measurement application.  In addition, manufacturer specified tolerances are used to 
compute test uncertainty ratios and estimate bias uncertainties. 
 
The subject of interpreting and applying equipment specifications in uncertainty analysis and risk 
analysis deserves a full and unabridged discussion that is beyond the scope of this Handbook 
Annex.  This discussion is provided in reference [35]. 
 
2.6 Uncertainty Analysis Examples 
Examples of uncertainty analyses for illustrating the concepts and procedures outlined in this 
chapter, as well as examples for each scenario summarized above and discussed in Appendix A 
are provided in [26] and [27]. 
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Chapter 3:  Measurement Decision Risk Analysis 
Basics 
Measurement decision risk is defined in terms of probabilities of the occurrence of events 
relating to testing and calibration.  This chapter describes these events and develops the 
probability relations that are used to compute measurement decision risk.  Basic probability 
concepts are covered in Section 3.1. 
 
In computing measurement decision risk, we may resort to test limits or adjustment limits that 
differ from attribute tolerance limits.  These limits are referred to as “guardband limits.”  The 
probability expressions needed to incorporate guardband limits in the estimation of risk will be 
developed in Chapter 5. 
 
Finally, we will take a different view of false accept risk in considering the probability that a 
given specific attribute will be accepted as out-of-tolerance under the alternative renewal policies 
of (1) not adjusting to nominal and (2) adjusting to nominal.  To develop the necessary 
probability expressions, Bayesian analysis will be employed [28-30]. 
 
3.1 Preliminaries 
Before establishing the probability expressions for measurement decision risk, we will discuss 
probability functions in general terms.  First, we will define probability.  Next, the concepts of 
joint and conditional probability will be discussed.  Finally, we will examine a relation that is 
particularly useful in risk analysis.  This relation is referred to as Bayes’ theorem [34]. 
 

3.1.1 Definition of Probability 
There are two basic ways to define probability.  One stems from fundamental considerations and 
the other links the definition of probability to empirical evidence. 
 
In the first definition, we enumerate all the possible events or outcomes that are possible within a 
given context.  For example, the context may be flipping a coin.  In this case the possible 
outcomes are "heads" and "tails."  Another example is throwing a die.  There are six possible 
outcomes, all equally probable. 
 
In the second definition, we gather data for a particular quantity and converge to the probability 
of obtaining specific values.  For example, suppose the quantity is the net distance a rubber ball 
bounces from ground zero if dropped from a particular height.  If we drop the ball from the 
height N =100 times and obtain a value of NE = 6 for a net distance of 2.2 meters, we estimate the 
probability of obtaining 2.2 meters to be 

( ) / 0.06EP E N N  . 

This probability estimate becomes an actual probability of occurrence as the number N   : 

 ( ) lim /E
N

P E N N


 . (3-1) 
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This relation is called the law of large numbers.9 
 

3.1.2 Joint Probability 
In risk analysis, we are often interested in the probability of two events occurring 
simultaneously.  For example, we might want to know the probability that a UUT attribute is 
both in-tolerance and perceived as being in-tolerance.  If we represent the event of an in-
tolerance attribute as E1 and the event of observing the attribute to be in-tolerance as E2, then the 
joint probability for occurrence of E1 and E2 is written 

 1 2 1 2(  and ) ( , )P E E P E E . (3-2) 

3.1.2.1 Statistical Independence 
If the occurrence of event E1 and the occurrence of event E2 bear no relationship to one another, 
they are called statistically independent.  For example, E1 may represent the outcome that an 
individual selected at random from within a group is 30 years old and E2 may represent the event 
that his shoe size is 11.10 
 
It can be shown that, for such statistically independent events, 

 1 2 1 2( , ) ( ) ( )P E E P E P E . (3-3) 

Another important result derives from the probability that event E1 will occur or event E2 will 
occur.  The appropriate relation is 

 1 2 1 2 1 2(  or ) ( ) ( ) ( , )P E E P E P E P E E   . (3-4) 

Combining this expression with the preceding one gives the relation for cases where E1 and E2 are independent 

 1 2 1 2 1 2(  or ) ( ) ( ) ( ) ( )P E E P E P E P E P E   . (3-5) 

As an example, consider the probability that the bias in a reference attribute ebias is less than 2 
mV, and the random error (repeatability) in the measurement process eran is less than 1 mV.  
Since attribute bias is independent of random error, we can write 

 
( 2  or 1 ) ( 2 ) ( 1 )

( 2 ) ( 1 ) .
bias ran bias

bias ran

P e mV e mV P e mV P e mV

P e mV P e mV

     
  

 (3-6) 

3.1.2.2 Mutually Exclusive Events 
On occasion, events are mutually exclusive.  That is, they cannot occur together.  A popular 
example is the tossing of a coin.  Either heads will occur or tails will occur.  They obviously 
cannot occur simultaneously.  This means 1 2( , ) 0P E E  , and 

 1 2 1 2(  or ) ( ) ( )P E E P E P E  . (3-7) 

                                                 
9 Jacob Bernoulli first described the law of large numbers as, “so simple that even the stupidest of men instinctively 
know it is true.” 
10 Examples of independent events are found in Appendix A for errors that are uncorrelated. 
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3.1.3 Conditional Probability 

3.1.3.1 General 
If the occurrence of E2 is influenced by the occurrence of E1, we say that E1 and E2 are 
conditionally related and that the probability of E2 is conditional on the event E1.  Conditional 
probabilities are written 

 2 1 2 1(  given ) ( | )P E E P E E . (3-8) 

It can be shown that the joint probability for E1 and E2 can be expressed as 

 2 1 2 1 1( , ) ( | ) ( )P E E P E E P E . (3-9) 

Equivalently, we can also write 
 1 2 1 2 2( , ) ( | ) ( )P E E P E E P E . (3-10) 

Note that, since P(E1,E2) = P(E2,E1), we have 

 1 2 2 2 1 1( | ) ( ) ( | ) ( )P E E P E P E E P E . (3-11) 

We will return to this result later. 
 

3.1.3.2 Mutually Exclusive Events 
Let E represent an outcome with k mutually exclusive possible causes A1, A2, … , Ak.  The 
probability of observing E is given by 

1 1 2 2

1

( ) ( | ) ( ) ( | ) ( )

( | ) ( )

( , ) ( , 2) ( , ) .
k k

k

P E P E A P A P E A P A

P E A P A

P E A P E A P E A

 


   

 

Note that an event cannot both occur and not occur.  Accordingly, these two outcomes are 
mutually exclusive.  We write the non-occurrence of an event E by capping it with a bar, i.e., 

Probability that E will not occur = ( )P E , 

and, since E and E  are mutually exclusive, 

( ) ( ) 1P E P E  . 

We use this fact to develop a special case of the rule for mutually exclusive events that is useful 
for risk analysis.  Given that we have mutually exclusive events E1 and E2, we can write  

 1 1 2 1 2( ) ( , ) ( , )P E P E E P E E  . (3-12) 

Of course, the same applies for P(E2): 

 2 1 2 1 2( ) ( , ) ( , )P E P E E P E E  . (3-13) 

To illustrate, suppose that  

1E  = the event that an attribute is in-tolerance, and

2E  = the event that the attribute is observed to be in-tolerance. 
 

Downloaded from http://www.everyspec.com



 

- 31 - 
 

Then, the probability that the attribute is observed to be in-tolerance can be written 

 2 1 2 1 2( ) ( , ) ( , )P E P E E P E E  , (3-14) 

and the probability that the UUT attribute is in-tolerance can be written 

 1 1 2 1 2( ) ( , ) ( , )P E P E E P E E  . (3-15) 

Given these expressions, we can express the probability that the attribute will be out-of-tolerance 
and observed to be in-tolerance as 

 1 2 2 1 2( , ) ( ) ( , )P E E P E P E E  , (3-16) 

and the probability that the attribute will be in-tolerance and observed to be out-of-tolerance as 

 1 2 1 1 2( , ) ( ) ( , )P E E P E P E E  . (3-17) 

These results will be used later in defining measurement decision risk. 
 
3.2 False Accept Risk 
The "out-the-door" quality of a calibration or testing organization engaged in conformance 
testing can be evaluated in terms of the probability that attributes that are accepted as being in-
tolerance are actually out-of-tolerance.  This probability is called false accept risk.  There are 
two alternatives for false accept risk; Unconditional False Accept Risk (UFAR)11 and 
Conditional False Accept Risk (CFAR). 
 
UFAR is the probability that a UUT attribute will be both out-of-tolerance and perceived as 
being in-tolerance during testing or calibration.  CFAR, on the other hand, is the probability that 
an attribute accepted by conformance testing will be out-of-tolerance. 
 
These risks are defined in terms of probabilities in the following sections.  In these definitions, 
we use the notation 
 

EL - The event that the UUT attribute is in-tolerance. 

EA - The event that the UUT attribute is observed to be in-tolerance. 
 

3.2.1 Unconditional False Accept Risk 

The probability that the events LE  and EA will both occur is written 

 (  and ) ( , )L A L AUFAR P E E P E E  . (3-18) 

Since, by Eq. (3-16), ( , ) ( ) ( , )L A A L AP E E P E P E E  , we can also write 

 ( ) ( , )A L AUFAR P E P E E  . (3-19) 

                                                 
11 UFAR is often called consumer’s risk in the statistics literature [17] - [19].  It has also been called the probability 
of a false accept or PFA. 
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3.2.2 Conditional False Accept Risk 
CFAR is defined as the probability that an accepted attribute will be out-of-tolerance, i.e., that 
the event LE  will occur given that the event EA has occurred: 

 ( | )L ACFAR P E E . (3-20) 

Using Eq. (3-10), this can be expressed as 

 
( , )

( )
L A

A

P E E
CFAR

P E
 . (3-21) 

Then, using Eq. (3-16), we have 

 

( ) ( , )

( )

( , )
1 .

( )

A L A

A

L A

A

P E P E E
CFAR

P E

P E E

P E




 
 (3-22) 

3.2.3 UFAR and CFAR 
Since P(EA) < 1, CFAR is always larger than UFAR for a given test or calibration.  This can be 
seen by combining Eqs. (3-18) and (3-21) to get 

  
( )A

UFAR
CFAR

P E
  . (3-23) 

It is interesting to note that when false accept risk (or consumer's risk) is discussed in journal 
articles, conference papers and in some risk analysis software, it is UFAR that is being 
referenced.  This may seem odd in that UFAR is not, by definition, referenced to the consumer's 
perspective.  The main reason for the use of UFAR as the “default” false accept risk is that the 
development of the concept of CFAR did not occur until the late 1970s [4].  By then, 
professionals working in the field had become practiced in thinking in terms of UFAR 
exclusively and reluctant to accept an alternative. 
 
But, before we embrace the exclusive use of CFAR in defining false accept risk, it should be said 
that its use assumes that rejected UUT attributes are not adjusted or otherwise corrected.  If 
rejected attributes are restored in some way and subsequently returned to service, a more 
involved definition of CFAR is needed.  This definition is found in discussions in which CFAR 
can be equated with the probability that UUT attributes will be out-of-tolerance following testing 
or calibration.  This probability is computed using what is termed the “post-test distribution” [13, 
36, 37]. 
 
3.3 False Reject Risk 
Another measure of the quality of calibration or testing is the probability that in-tolerance 
attributes will be rejected.  This probability is called false reject risk (FRR) or producer's 
risk.12 

                                                 
12 FRR has also been called the probability of a false reject or PFR. 
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Given the definitions of EL and EA, FRR is given by 

 ( , )L AFRR P E E . (3-24) 

Using Eq. (3-17), this can be written 

 ( ) ( , )L L AFRR P E P E E  . (3-25) 

 
3.4 Risk Analysis Alternatives 

3.4.1 Process-Level Analysis 13 
With this alternative, risks are evaluated for each UUT attribute test point prior to testing or 
calibration by applying expected levels of UUT attribute in-tolerance probability and assumed 
calibration or test measurement process uncertainties.  With process-level risk control, test limits 
called "guardband limits," if needed, are developed in advance and may be incorporated in 
calibration or test procedures.  Measured values observed outside guardband limits may trigger 
some corrective action, such as adjustment or repair, or may be rejected and reduced in status or 
disposed. 
 

3.4.2 Bench-Level Analysis 
In addition to process-level risk control, bench-level methods are available to control risks in 
response to equipment attribute values obtained during test or calibration.  With bench-level 
methods, guardband limits are superfluous, since corrective actions are triggered by on-the-spot 
risk or other measurement quality metric computation. 
 
There are two bench-level alternatives:  Bayesian analysis and confidence level analysis. 
 

3.4.2.1 Bayesian Analysis 
The Bayesian risk analysis methodology was developed by Castrup [28] and Jackson [29] in the 
'80s and later published with the label SMPC (Statistical Measurement Process Control) [30].  
These methods enabled the analysis of false accept risk for UUT attributes, the estimation of 
both UUT attribute and MTE reference attribute biases, and the uncertainties in these biases. 
 
Bayes' Theorem 

The probability relations discussed previously lead us to an important expression referred to as 
Bayes' theorem.  This theorem is of considerable value in computing measurement decision risks 
in test and calibration.  Its derivation is simple and straightforward: 
 
Returning to Eq. (3-11), we can write 

 ( | ) ( ) ( | ) ( )A L L L A AP E E P E P E E P E , (3-26) 

which, after rearranging becomes 

                                                 
13 Also referred to as “program-level” analysis [22]. 
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( | ) ( )

( | )
( )

A L L
L A

A

P E E P E
P E E

P E
 . (3-27) 

Eq. (3-27) is Bayes’ theorem in its simplest form. 
 
In applying Bayes’ theorem, a risk analysis will be performed for accepting a specific attribute 
based on a priori (pre-test) knowledge and on the results of measuring the attribute during 
testing or calibration. 
 
The latter results comprise what is called "post-test" or a posteriori knowledge which, when 
combined with a priori knowledge, allow us to compute the quantities of interest, such as UUT 
and MTE attribute biases, bias uncertainties and pre-test in-tolerance probabilities.  Obtaining 
these estimates is covered in Chapter 4 and Appendix C.  The derivation of the expressions used 
in Bayesian analysis is given in Appendix D. 
 

3.4.2.2 Confidence Level Analysis 
Another bench-level approach, referred to as "confidence level analysis,” evaluates the 
confidence that a measured UUT attribute value is in-tolerance, based on the uncertainty in the 
measurement process.  Confidence level analysis is applied when an estimate of the a priori 
UUT attribute in-tolerance probability is not available.  As such, it is not a true "risk control" 
method, but rather an application of the results of measurement uncertainty analysis.  Confidence 
level analysis is discussed in detail in Sections 4.4 and 5.5. 
 
3.5 The 4:1 TUR Alternative 
Over the past few decades, the control of measurement decision risk has been embodied in 
requirements specifying the relative accuracy of the test or calibration process to the specified 
accuracy of the UUT attribute being tested or calibrated [31, 32].  These requirements provided 
some loose control of measurement decision risk but were not unambiguously defined or 
standardized.  At the date of publication of this document, an explicit and rigorous relative 
accuracy requirement has been defined in ANSI/NCSL Z540.3-2006 [33]. 
 
Where it is not practical to compute false accept risk, the standard requires that the 
measurement’s "test uncertainty ratio" or TUR, shall be greater than or equal to 4:1.  The 
efficacy of this fallback is a matter of some contention, as is discussed in Section 3.5.2. 
 

3.5.1 The Z540.3 Definition 
Z540.3 defines TUR as the ratio of the span of the UUT tolerance to twice the "95%" expanded 
uncertainty of the measurement process used for calibration.14  A caveat is provided in the form 
of a note stating that this requirement applies only to two-sided tolerances. 
 
Mathematically, the 4:1 Z540.3 TUR definition is stated for tolerance limits -L1 and L2 as 

 1 2

95

TUR
2

L L

U


 , (3-28) 

                                                 
14 See Appendix A for the definition of “expanded uncertainty.” 
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where U95 is equal to the standard uncertainty u of the measurement process multiplied by a 
coverage factor k95 that corresponds to 95% confidence 

 U95 = k95u. (3-29) 
In Z540.3, k95 = 2. 
 
In addition to restricting the applicability of Eq. (3-28) to the calibration of UUT attributes with 
two-sided tolerance limits, Z540.3 also advises that Eq. (3-28) is strictly valid only in cases 
where the tolerance limits are symmetric, i.e., where L1 = L2.  In such cases, the UUT attribute 
tolerance limits would be expressed in the form ±L, and we would have 

 
95

TUR
L

U
 . (3-30) 

3.5.2 A Critique of the 4:1 Requirement 
When nominal uncertainty ratio requirements were originally developed [3], the computing 
machinery available at the time did not enable expedient cost-effective computation of 
measurement decision risk.  Consequently, simple criteria were implemented that provided some 
measure of control. 
 
In the present day, sufficient computing power is readily available and risk estimation methods 
are so well documented that it is difficult to understand why such a risk control criterion is still 
being implemented when risks can now be so easily computed and evaluated. 
 
With this in mind, certain characteristics of the Z540.3 TUR requirement deserve mention. 

• The requirement is merely a ratio of UUT tolerance limits relative to the expanded 
uncertainty of the measurement process.  It is, at best, a crude risk control tool, i.e., one 
that does not control risks to any specified level.  Moreover, in some cases, it may be 
superfluous.  For instance, what if all UUT attributes of a given manufacturer/model are 
in-tolerance prior to test or calibration?  In this case, the false accept risk is zero 
regardless of the TUR. 

• The requirement is not applicable to all measurement scenarios.  It does not apply when 
tolerances are asymmetric or single-sided. 

• The requirement treats the expanded uncertainty 2u as a 95% confidence limit.  This 
practice is not necessarily valid.15  Appropriate methods of determining confidence limits 
are given in Appendix A and in References [26] and [27]. 

 
3.6 Recommendations 
In many if not most cases, the single variable with the greatest impact on measurement decision 
risk is the a priori in-tolerance probability of the UUT attribute.16  Consequently, definitions that 
fail to take this variable into account are ipso facto deficient.  With this in mind, neither 
confidence level analysis nor the use of the nominal 4:1 TUR criterion are recommended unless 

                                                 
15 If the degrees of freedom for u is 15, the expanded uncertainty is roughly 2.13u.  As the degrees of freedom 
increases, the expanded uncertainty 2u becomes a better approximation of a 95% confidence limit. 
16 See Section 5.1 of Annex 4. 
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absolutely nothing can be said about the UUT attribute’s in-tolerance probability.  If this is the 
case, confidence level analysis is recommended over the use of the 4:1 TUR criterion.  While 
both the 4:1 criterion and confidence level analysis are easy to apply, the latter at least quantifies 
the degree to which a UUT attribute is in conformance with tolerances.  The 4:1 criterion 
provides no such information.  It serves to control false accept risk to some amount, but this 
amount is unknown and, possibly, insufficient. 
 
If UUT attribute a priori in-tolerance information is available, either classical program-level 
analysis or Bayesian bench-level analysis is recommended.  Of these, Bayesian analysis is 
preferable on the grounds that it provides a more explicit measure of false accept risk and offers 
on-the-spot information for deciding whether to adjust or otherwise correct a tested or calibrated 
attribute.  In addition, if the probabilities on the right-hand side of Eq. (3-27) represent normally 
distributed quantities; and, if the statistics of the distributions can be estimated, the a posteriori 
in-tolerance probability of the UUT attribute can be computed with commercial spreadsheet 
applications without the need for any additional programming. 
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Chapter 4:  Computing Risk 
In this chapter, methods for computing measurement decision risk are presented within the 
framework of both process-level and bench-level analyses.  Process-level analysis employs what 
is referred to as “the classical method.”  Bench-level analyses include methods referred to as the 
“Bayesian method” and the “confidence level method.”  The classical method and the Bayesian 
method employ the probability relations developed in Chapter 3.  The confidence level method 
employs calibration uncertainties and conventional statistics. 
 
Each method computes risks using the results of UUT calibrations, which are performed within 
the context of four calibration scenarios.  Calibration results are employed to estimate 
unconditional false accept risk (UFAR), conditional false accept risk (CFAR) and the false reject 
risk (FRR), as defined in Chapter 3.  Examples are given in Appendix A to illustrate concepts 
and procedures. 
 
4.1 Calibration Scenarios 
The four calibration scenarios are:  

1. The measurement reference (MTE) measures the value of an attribute of the unit under 
test (UUT) that provides an output or stimulus. 

2. The UUT measures the value of a reference attribute of the MTE that provides an output 
or stimulus. 

3. The UUT and MTE each provide an output or stimulus for comparison using a bias 
cancellation comparator. 

4. The UUT and MTE both measure the value of an attribute of a common device or artifact 
that provides an output or stimulus. 

 
The results of calibration include an observed value, referred to as a “measurement result” or 
“calibration result,” and an estimated calibration uncertainty.  For each scenario, a measurement 
equation is given that is applicable to the manner in which calibrations are performed and 
calibration results are recorded or interpreted. 
 
The detailed development of each scenario, identification of measurement errors, and the 
computation of uncertainties are given in Appendix A, along with discussions of related concepts 
and definitions of terms. 
 

4.1.1 Risk Variables 
For each scenario, the basic set of variables that are important for measurement decision risk 
analysis are shown in Table 4-1. 
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Table 4-1.  Risk Variables Nomenclature. 

 
Variable Definition  

UUT the unit under test or calibration  
MTE the measurement reference standard used to calibrate the UUT  

x (1) the value of the UUT attribute at the time of calibration or (2) a 
measured value of the MTE reference attribute obtained by the UUT 
attribute 

 

xn the nominal value of the UUT attribute  
y (1) the value of the MTE reference attribute at the time of calibration or a 

(2) measured value of the UUT attribute obtained by the MTE reference 
attribute 

 

yn the nominal value of the MTE reference attribute  
eUUT,b the bias of the UUT attribute value at the time of calibration  
uUUT,b the uncertainty in eUUT,b, i.e., the standard deviation of the probability 

distribution of the population of eUUT,b values.17 

-L1 and L2 the tolerance limits for eUUT,b  
-A1 and A2 the “acceptance” limits (test limits) for eUUT,b  

L the range of values of eUUT,b from -L1 to L2 (the UUT tolerance limits)  
A the range of values of eUUT,b from -A1 to A2 (the UUT acceptance limits)  
 a measurement (estimate) of eUUT,b obtained through calibration  
cal the total error in   
ucal the uncertainty in cal, i.e., the uncertainty in the value of   

 
These variables will be employed in various probability relations in the next section.18 
 

4.1.2 Probability Relations 
The fundamental probability functions of measurement decision risk analysis are constructed in 
this section.  In constructing these functions, we make use of the notation of mathematical logic 
and set theory, in which the  operator reads “belongs to” or “is “included in.”  Likewise, the  
operator reads “does not belong to” or “is excluded from.”  The notation of logic and set theory 
notation is briefly discussed in Appendix I.  Using the nomenclature in Table 4-1, the probability 
functions are given in Table 4-2. 
 

                                                 
17 See Appendix A, reference [1] or reference [2]. 
18 Cases where the UUT attribute has a single-sided upper or lower tolerance limit are accommodated by setting one 
of the tolerance limits in Table 4-1 to an applicable limiting physical value.  For example, for a single-sided upper 
limit, with an essentially unbounded lower limit, L1 and A1 would be set to .  For a single-sided lower limit, with 
an essentially unbounded upper limit, L2 and A2 would be set to . 
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Table 4-2.  Risk Computation Nomenclature. 

Risk Analysis 
Function Definition 

,( )UUT bP e L  the a priori probability that –L1  eUUT,b  L2.  This is the probability 
that the UUT attribute to be calibrated is in-tolerance at the time of 
calibration. 

( )P  A  the probability that –A1    A2.  This is the probability that 
measured values of eUUT,b will be accepted as being in-tolerance. 

,( , )UUT bP e  L A  the probability that  –L1  eUUT,b  L2  and –A1    A2.  This is the 
joint probability that a UUT attribute will be in-tolerance and will be 
observed to be in-tolerance. 

,( | )UUT bP e  LA  the probability that, if  –L1  eUUT,b  L2, then –A1    A2.  This is 
the conditional probability that an in-tolerance attribute will be 
accepted as in-tolerance. 

,( , )UUT bP e  L A  the probability that eUUT,b lies outside L and –A1    A2.  This is the 
joint probability that a UUT attribute will be out-of-tolerance and 
will be observed to be in-tolerance. 

,( , )UUT bP e  L A  the probability that  –L1  eUUT,b  L2  and  lies outside A.  This is 
the joint probability that a UUT attribute will be in-tolerance and will 
be observed to be out-of-tolerance. 

,( | )UUT bP e  L A  the probability that eUUT,b lies outside L given that –A1    A2.  The 
conditional probability that an accepted UUT attribute will be out-of-
tolerance. 

 
Table 4-3 shows the equivalence of the probability functions in Table 4-2 with the probability 
functions of Chapter 3.  In Table 4-3, the variable EL represents the event that the UUT attribute 
is in-tolerance and EA represents the event that the attribute is observed to be in-tolerance. 
 
Table 4-3.  Correspondence between the Risk Analysis Nomenclature and the Probability 

Functions of Chapter 3. 

Risk Analysis Function 
Basic Probability 
Representation 

,( )UUT bP e L  ( )LP E  

( )P  A  ( )AP E  

,( , )UUT bP e  L A  ( , )L AP E E  

,( | )UUT bP e  LA  ( | )A LP E E  

,( , )UUT bP e  L A  ( , )L AP E E  

,( , )UUT bP e  L A  ( , )L AP E E  

,( | )UUT bP e  L A  ( | )L AP E E  

 

4.1.3 Calibration Scenario Results 

Using the nomenclature in Table 4-3, the measurement result  is defined for each scenario as 
shown in Table 4-4. 
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Table 4-4.  Measurement Result Definitions for the Calibration Scenarios. 

Scenario Description  Comment 

1 MTE measures UUT y – xn y  is the measured value of a UUT 
attribute; xn is the attribute’s 
nominal value 

2 UUT measures MTE x – yn x is the measured value of an MTE 
attribute; yn is the attribute’s 
reference or nominal value 

3 UUT and MTE attribute values are 
obtained using a comparator 

x – y x and y are UUT and MTE 
measurements 

4 UUT and MTE measure a common 
attribute 

x – y x and y are UUT and MTE 
measurements 

 
As stated earlier, the calibration error for each scenario is denoted cal and the uncertainty in this 
error is ucal.  The specific combinations of measurement process errors comprising cal are 
described in Appendix A.  The uncertainty  ucal is obtained by taking the statistical variance of 
cal: 

var( )cal calu  . 

4.2 The Classical Method 
The classical method provides process level decision risk control in that risk estimation can assist 
in making equipment adjustment or repair decisions using nominal criteria, such as guardbands.  
Estimates obtained using the classical method are also useful in making equipment procurement 
decisions, adjusting calibration intervals, and setting end-of-period measurement reliability 
targets.19 
 
The fundamentals of the classical method are given in the following sections.  Detailed 
discussion and derivations are given in Appendix B. 
 

4.2.1 Measurement Decision Risk Recap 
To reiterate from Chapter 3, the risk definitions employed in the classical method are 

 
( , )

( ) ( , ) ,
L A

A L A

UFAR P E E

P E P E E


 

 (4-1) 

 

( | )

( , )
1 ,

( )

L A

L A

A

CFAR P E E

P E E

P E



 
 (4-2) 

and 

 
( , )

( ) ( , ).
L A

L L A

FRR P E E

P E P E E


 

 (4-3) 

                                                 
19 Setting end-of-period reliability targets is discussed in Appendix H. 
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Expressions for computing the probability functions of these definitions are given in the next 
section. 
 

4.2.2 Estimating Risk 

4.2.2.1 Relevant Functions 
The probability functions in Table 4-3 can be constructed using the probability distributions 
described in Appendix A.  These distributions are mathematically represented by probability 
density functions (pdfs) that relate random variables of interest to their probability of occurrence.  
Table 4-5 defines the relevant pdfs. 
 

Table 4-5.  Risk Analysis Probability Density Functions20 

pdf Description 

f(eUUT,b) pdf for the UUT bias at the time of calibration 

f() pdf for the measurement result 

f(, eUUT,b) pdf for the joint distribution of  and eUUT,b 

f(| eUUT,b) pdf for the conditional distribution of  given a value of 
eUUT,b 

f(eUUT,b | ) pdf for the conditional distribution of eUUT,b given a value 
of  

 
Using the cross-references of Tables 4-2 through 4-4, the basic probability functions used in the 
classical method can be written 
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where use was made of Eq. (3-10). 
 

                                                 
20 To be more rigorous with respect to notation, each pdf would have its own letter designator or subscript to 
distinguish its functional form from other pdfs.  Such rigor is laudable but leads to a more tedious notation than we 
already have.  It is hoped that the distinct character of each pdf will be apparent from its context of usage. 
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4.2.2.2 Risk Estimation 

In classical risk analysis, it is ordinarily assumed that the measurement result  is normally 
distributed with a mean value of eUUT,b and a standard deviation of ucal.  Then we can write 
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where  is the normal distribution function available in most spreadsheet applications. 
 
The variable eUUT,b may follow any number of plausible probability distributions.  A sample is 
given in Appendix A.  In all cases, eUUT,b is assumed to have a zero mean value and a standard 
deviation of uUUT,b.  Like the variable , eUUT,b is often assumed to be normally distributed.  For 
such cases, we have 
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where 

 2 2
,A UUT b calu u u  . (4-12) 
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4.2.2.3 Obtaining the Required Parameters 

Obtaining the variable  and estimating the uncertainty ucal are described in Appendix A.  The 
standard deviation uUUT,b may comprise a Type A estimate but is usually obtained as a Type B 
estimate in which the containment limits are –L1 and L2 and the containment probability is taken 
to be the percent of UUT attributes observed to be in-tolerance at the time of the UUT test or 
calibration.  Containment limits and containment probability are defined in Appendix A.  For a 
more complete discussion of these quantities and of Type B analysis in general, see Annex 3 or 
References [26] or [27].   
 
To summarize, the information needed for computing the probability functions used in classical 
measurement decision risk analysis consists of the following: 
 

• The limits –L1 and L2 

• The containment probability for eUUT,b at the end of the UUT calibration interval 

• The distribution for eUUT,b (see Appendix A) 

• The limits –A1 and A2  

• The calibration result   

• The calibration uncertainty ucal  

 

4.2.2.4 UUT In-Tolerance Probability 
In the foregoing, the in-tolerance probability (containment probability) of the UUT attribute is 
used in estimating the quantity uUUT,b.  Ideally, the in-tolerance probability would be obtained at 
the test point (attribute) level, i.e.,  the point at which the UUT attribute is calibrated.  However, 
for many testing or calibrating organizations, in-tolerance probability information is available 
only as a percent in-tolerance at the UUT item (serial number) level or higher.  The relationship 
between item level or higher and test-point level is shown in Figure 4-1. 
 
Ordinarily, a UUT item is declared in-tolerance only if all test points are found to be in-
tolerance.  Since the probability of the joint occurrence of two or more events is lower than the 
occurrence of any individual constituent event, see Section 3.1, it can be seen that the in-
tolerance probability at each test point must be inherently greater than the reported in-tolerance 
probability for the item.  Then computing uUUT,b using the reported percent in-tolerance at time of 
calibration will yield a value that is larger than what is appropriate at the test point level.  This 
“inflated” value results in measurement decision risk estimates that are likewise inflated.  
Consequently, if such estimated risks are acceptable, it follows that whatever risks are present at 
the test point level are also acceptable. 
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Figure 4-1.  UUT/MTE Hierarchy   

Shown is a case of a manufacturer/model with n functions.  Function 1 has k ranges and range 1 is 
calibrated at m test points.  The term “parameter” is sometimes used in place of “function.” 

 
In some cases, it may be feasible to estimate the test point in-tolerance probabilities in terms of 
the item level in-tolerance probability.  Specifically, if an item is calibrated at q independent test 
points, each with an inherently equal in-tolerance probability r, then the item level in-tolerance 
probability R can be expressed as 

qR r , 
from which 

1/qr R . 

As an example, consider a gage block set of 10 gage blocks.  The results of calibration for such 
an item are typically recorded for the set as a whole.  Accordingly, the set is declared in-
tolerance only if all 10 gage blocks are in-tolerance.  Imagine that the reported percent in-
tolerance for the set yields an estimated in-tolerance probability of R = 0.92.  If it can be 
assumed, by virtue of similar fabrication and materials that each gage block is characterized by 
the same in-tolerance probability r, then the in-tolerance probability at the test point level is 
computed to be 

1/10

1/10(0.92) 0.991,

r R

 
 

Nomenclature
(DMM, micrometer, etc.)

Manufacturer

Model Number

Serial Number

Function 1 Function 2 Function n. . .

Range 1 Range 2 Range k. . .

Test Point 1 Test Point 2 Test Point m. . .
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considerably higher than 0.92.  The “approximately equals” sign indicates that other factors, such 
as usage rate, inhomogeneity with respect to tolerance limits, etc. may be in play. 
 
The difference between item level and test-point level in-tolerance probability increases with 
increasing values of q.  For instance, if the gage block set describe above is comprised of 30 
individual gage blocks, then 

1/30

1/30(0.92) 0.997.

r R

 
 

4.2.2.5 True vs. Reported Percent In-Tolerance 
There is an additional wrinkle in estimating UUT attribute in-tolerance probability.  Because of 
false accept and false reject risks, the observed (reported) percent in-tolerance will be 
consistently lower than the true percent in-tolerance.  For cases where eUUT,b is not normally 
distributed, calculating the true percent in-tolerance from the reported value is somewhat 
difficult.  Both normal and non-normal cases are discussed in detail in Appendix E. 
 
Calculating the true percent in-tolerance is simple for a normally distributed eUUT,b with 
symmetric tolerance limits ±L.  We do this by taking advantage of the fact that the reported 
percent in-tolerance R is equated with the probability P(EA).  From Eq. (4-11), this probability is 
given by 
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where the adjustment limits A1 and A2 have been set equal to the tolerance limits, and 

 2 2
,A UUT b calu u u  . (4-14) 

The variable uA can be solved for from Eq. (4-13) 
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and -1 is the inverse normal distribution function.  Setting Eq. (4-14) equal to (4-15) gives the 
estimated true value of the UUT population standard deviation 

 
2 2

,

2 2( / ) .

UUT b A cal

cal

u u u

L u

 

 
 (4-17) 

Downloaded from http://www.everyspec.com



 

- 46 - 
 

4.3 The Bayesian Method 
As stated earlier, with the Bayesian method, false accept and false reject risks are estimated 
using the measured value or sample mean obtained from a given test or calibration.  Using this 
method, the testing or calibration result can be entered in a spreadsheet or software program and 
the relevant decision risks are calculated on the spot.  For this reason, the Bayesian method is 
classified as a bench-level method. 
 
The fundamentals of the Bayesian method are presented in the following sections.  An 
introduction to Bayesian concepts is provided in Appendix C.  Derivations of the expressions 
used in this Handbook Annex are given in Appendix D. 
 

Note:  The Bayesian method described herein is applicable 
when attribute biases are normally distributed. 

 

4.3.1 Risk Analysis for a Measured Variable 
The procedure for applying Bayesian methods to perform risk analysis for a measured attribute is 
as follows: 

1. Assemble all relevant a priori knowledge, such as the tolerance limits for the UUT 
attribute, the tolerance limits for the reference attribute, the in-tolerance probabilities for 
each attribute and the uncertainty of the measuring process. 

2. Perform a measurement or set of measurements.  This may take place with any of the 
four calibration scenarios of Appendix A. 

3. Estimate the UUT attribute and reference attribute biases using Bayesian methods. 

4. Compute uncertainties in the bias estimates. 

5. Act on the results.  Report the biases and bias uncertainties, along with in-tolerance 
probabilities for the attributes, and adjust each attribute to correct the estimated biases, as 
appropriate. 

 

4.3.2 A priori Knowledge 
The a priori knowledge for a Bayesian analysis may include several kinds of information.  For 
example, if the UUT attribute is the pressure of an automobile tire, such knowledge may include 
a rigorous projection of the degradation of the tire's pressure as a function of time since the tire 
was last inflated or a crude estimate based on the appearance of the tire's lateral bulge.  However 
a priori knowledge is obtained, it should lead to the following quantities: 

• Estimates of the uncertainties in the biases of both the UUT attribute and the reference 
attribute.  These estimates may be obtained by Type B analysis using containment limits 
and containment probabilities or by other means, if applicable. 

• An estimate of the uncertainty due to measurement process error other than the bias in the 
reference attribute, accounting for all error sources. 
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4.3.3 Post-Test Knowledge 
The post-test knowledge in a Bayesian analysis consists of the results of measurement.  As stated 
earlier, these results may be in the form of a measurement or a set of measurements.  The 
measurements may be measurements of the UUT attribute value in the form of readings provided 
by the reference attribute, readings provided by the UUT attribute from measurements of the 
reference attribute, or readings provided by both the UUT attribute and reference attribute, taken 
on a common device or artifact. 
 

4.3.4 Bias Estimates 
UUT attribute and reference attribute biases are estimated using the method described in 
Appendix D.  The method encompasses cases where a measurement sample is taken by the UUT 
attribute, the reference attribute or both.21  The variables are given in Table 4-6. 
 

Table 4-6.  Bayesian Estimation Variables. 

Variable  Description 

eUUT,b  UUT attribute bias at the time of calibration 

uUUT,b  UUT attribute bias standard uncertainty 

  UUT attribute calibration result, as defined in Appendix A 

eMTE,b  MTE reference attribute bias at the time of calibration 

uMTE,b  MTE attribute bias standard uncertainty 

ucal  uncertainty in the UUT attribute calibration process, as defined in 
Appendix A 

-L1 and L2  lower and upper UUT attribute tolerance limits 

-l1 and l2  lower and upper MTE reference attribute tolerance limits 
 

4.3.4.1 UUT Bias 
Employing the pdfs of Table 4-5 in Bayes’ theorem, given in Eq. (3-27), gives Bayes’ relation 
for the pdf of interest 
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For normally distributed  and eUUT,b, Eq. (4-19) becomes 

                                                 
21 Actually, the methodology described in Appendix D can also be applied to measurements of a quantity made by 
any number of devices. 
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where, as before, 
2 2

,A UUT b calu u u  . 

Substituting this pdf into Eq. (4-18), together with 
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where 
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Given these results, along with the properties of the normal distribution, we see that  is the 
estimated value for eUUT,b and u is the estimated bias uncertainty: 

 
2

,
2

UUT Attribute Bias UUT b

A

u

u
   , (4-26) 

and 
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cal

A

u
u u

u  . (4-27) 

4.3.4.2 MTE Bias 
With the Bayesian method, calibration results can be used to obtain an estimate of the bias of the 
calibration reference attribute and the uncertainty in this estimate.  This is accomplished by 
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imagining that the UUT is calibrating the MTE.  We begin by replacing uUUT,b with uMTE,b and  
with – in Eq. (4-26) and by defining a variable  
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    . (4-28) 

  The first step in estimating the uncertainty in this bias is to define a new uncertainty term 

 2 2
,process cal MTE bu u u  . (4-29) 

Next, a calibration uncertainty is defined that would apply if the UUT were calibrating the MTE: 

 2 2
,cal UUT b processu u u   . (4-30) 

Using this quantity in Eq. (4-27) yields the bias uncertainty u of the reference attribute 
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4.3.5 UUT Attribute In-Tolerance Probability 
An estimate of the UUT attribute in-tolerance probability PUUT,in is obtained by integrating

,( | )UUT bf e  from –L1 to L2 
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where  is given in Eq. (4-26). 
 

4.3.6 MTE Attribute In-Tolerance Probability 
Since we have the necessary expressions at hand, we can also estimate the in-tolerance 
probability PMTE,in of the MTE is obtained by integrating the pdf ,( | )MTE bf e   for the MTE bias 
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where  is given in Eq. (4-28). 
 

4.3.7 Bayesian False Accept Risk 

4.3.7.1 Uncorrected UUT attribute 
If the UUT attribute is accepted without adjustment, the false accept risk is just 
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 ,1 UUT inCFAR P  . (4-33) 

The Bayesian false accept risk is labeled CFAR because the pdf used to compute Pin is a 
conditional pdf ,( | )UUT bf e  . 

 

4.3.7.2 Corrected UUT attribute 
If the UUT attribute bias is corrected by adjustment or other means, the false accept risk will be 
reduced.  Essentially, the situation is equivalent to a case where  = 0.  Then PUUT,in becomes 

 1 2
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where u,adj is u modified to include uncertainties due to errors arising from adjustment or other 
corrective action. 
 
4.4 The Confidence Level Method 
As with the Bayesian method, using the confidence level method involves entering the results of 
testing or calibration in a spreadsheet or other program and obtaining analysis results.  Since the 
data are entered and results obtained by testing or calibration personnel, the confidence level 
method is also a bench-level method. 
 
With the confidence level method of analysis, the confidence that a UUT attribute value lies 
within its tolerance limits is computed.  The confidence level method is distinguished from the 
classical and Bayesian methods in that the result of the analysis is an in-tolerance confidence 
level, rather than an in-tolerance probability.  The method is applied when an estimate of the 
UUT attribute in-tolerance probability is not feasible.  As such, it lacks information needed to 
compute measurement decision risk and, therefore, is not a true "risk control" method, but rather 
a “pseudo risk control” method. 
 

4.4.1 Confidence Level Estimation 
Confidence level estimation employs the variables shown in Table 4-7. 
 

Table 4-7.  Confidence Level Estimation Variables. 

Variable  Description 

  the UUT attribute calibration result, as defined in Appendix A 

  a random variable representing values of the population from 
which  was obtained 

ucal  the uncertainty in the UUT attribute calibration process, as defined 
in Appendix A 

-L1 and L2  the lower and upper UUT attribute tolerance limits 
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With the confidence level method, we assume that the random variable  is normally distributed 
with mean  and standard deviation ucal.  Then, given a calibration result , the in-tolerance 
confidence level is obtained from22 
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
 (4-35) 

4.4.2 Applying Confidence Level Estimates 
As with the Bayesian method, corrective action may be called for if a computed confidence level 
Pin is less than a predetermined specified limit.  Let the maximum allowable risk be denoted rmax.  
Then corrective action is called for if , 1UUT in maxP r  .  If the Z540.3 requirement is adhered to, 

rmax = 0.02. 
 

4.4.3 UUT Attribute Adjustment 

Adjustment of the UUT attribute sets the value of the variable  to zero.  Hence Eq. (4-35) would 
be replaced by 

 1 2
,

, ,

1UUT in
cal adj cal adj

L L
P

u u

   
         

   
, (4-36) 

where ucal,adj is ucal modified to include uncertainties due to errors arising from adjustment or 
other corrective action. 

                                                 
22 As with the Bayesian method, cases where the UUT attribute has a single-sided upper or a single-sided lower 
tolerance limit are accommodated by setting L1 =  or L2 = , respectively. 
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Chapter 5:  Compensating Measures 
When risks exceed allowable amounts, several steps may be taken to either alleviate them or 
compensate for them.  The principal measures that are customarily turned to for such 
compensation are 

• Increasing the in-tolerance probabilities of the UUT attribute 

• Reducing the uncertainty of the measuring process 

• Applying sequential acceptance testing 

• Applying test guardbands 
 
5.1 Increasing UUT In-Tolerance Probability 
As Figure 5-1 shows, both false accept and false reject risks are sensitive to the in-tolerance 
probability of the UUT attribute.23 

 
Figure 5-1.  Risk vs. UUT Attribute In-Tolerance Probability.   

Shown is a case where the measurement process standard uncertainty u = 12.7553, and the TUR = 
4:1.  As the figure illustrates, both false accept risk (FA) and false reject risk (FR) are functions of 
UUT attribute in-tolerance probability. Note that false accept risk decreases with increasing in-
tolerance probability, while false reject risk exhibits the same behavior for higher in-tolerance 
probabilities but opposite behavior for lower in-tolerance probabilities.  This is due to the fact that, 
for the latter, there are fewer in-tolerance attributes to falsely reject.  In the plot, FA corresponds to 
UFAR.24 

 

                                                 
23 The plots in Figure 5-1 and 5-2 were developed using AccuracyRatio 1.6 [43]. 
24 Plots of UFAR show that it is not monotonic with respect to UUT attribute in-tolerance probability.  It actually 
decreases below a pivotal probability whose value is dependent on the details of the test or calibration.  This is 
because, below the pivotal value, UUT attribute biases that lie well outside the tolerance limits become more easily 
rejected by the test or calibration process. 
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5.2 Reducing Measurement Uncertainty 
Figure 5-2 provides an example showing the relationship between measurement process 
uncertainty and both false accept and false reject risks. 

 
Figure 5-2.  Risk vs. Measurement Process Standard Uncertainty.  

Shown is a case where the UUT attribute in-tolerance probability is 90%.  As the figure indicates, 
both false accept risk (FA) and false reject risk (FR) are functions of measurement process 
uncertainty.  Note that both false accept risk and false reject risk decrease with decreasing 
measurement process uncertainty.  In the plot, FA corresponds to UFAR. 

 
It is of some interest, as Figures 5-1 and 5-2 demonstrate, that risks appear to be more sensitive 
to UUT attribute in-tolerance probability than to measurement process uncertainty.  This is 
typical of calibration and testing. 
 
The rationale for this can be easily appreciated.  For instance, suppose that the UUT attribute in-
tolerance probability were 99.999%.  In this case, false accept risk would be minimal and fairly 
insensitive to other variables, simply because there are very few out-of-tolerance attributes to 
falsely accept in the first place. 
 
These observations are at odds with attempts to control risks with guardbands computed from 
simple algorithms that take into account measurement process uncertainty relative to UUT 
attribute specifications.  If risks are sensitive to UUT attribute in-tolerance probability, then any 
control efforts that ignore this variable will produce misleading false accept risk estimates. 
 

5.2.1 Pareto Analysis 
Since measurement process uncertainty is a contributing factor to measurement decision risk, 
this risk may be reduced if the total process uncertainty can be reduced.  To maximize the 
effectiveness of reducing uncertainty, it is beneficial to identify each measurement error and 
weigh its uncertainty relative to that of other measurement errors. 
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The tool for performing this evaluation is the Pareto chart, shown in the Figure 5-3.  The figure 
displays the uncertainty breakdown for a typical calibration.  In this example, the chart shows 
that the major contributor is the random error (repeatability) accompanying a sample of 
measurements made with the UUT attribute. 25 

 
Figure 5-3.  Pareto Chart.   

 
Shown are the relative contributions of the uncertainties of individual errors to the uncertainty of 
the total combined error in a calibration.  Clearly, the uncertainty due to repeatability is dominant 
for the example depicted.  This may represent fluctuations due to some ancillary influence.  If so, 
then improving control over the influence in question would seem to be the most effective way of 
reducing calibration uncertainty. 

 
The repeatability contribution to the total measurement uncertainty may be due to inherent 
instability in the UUT attribute, fluctuations in the measuring environment, instability in the 
reference attribute, careless handling of equipment, etc.  To reduce repeatability uncertainty, a 
more stable environment, measuring instrument or more careful equipment handling might be 
implemented.  In general, the specific corrective actions to be taken depend on their effectiveness 
in controlling the root causes of the dominant errors. 
 

5.2.2 Multiple Independent Measurements 

Let 1, 2, ... , n represent measurements of a given UUT attribute value using n independent 
measurement references.  Let 1, 2, ..., n be the measurement biases of the reference attributes, 
and let u1, u2, un be the uncertainties in these biases.  Then, if the true value of the attribute being 
measured is xtrue, the average of measurements made with these attributes is given by 
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25 This would be the case with Calibration Scenario 2, described in Section A.7.2. 
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If biases are statistically independent, then, using the variance addition rule, we can write the 
variance in  as 
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If u1 = u2 = ... un =  u, then we have the interesting result that 

 21
y

u
u nu

n n
  . (5-1) 

So, by taking measurements of a quantity  with n independent measuring devices, each with 
equal uncertainty, we may reduce the overall bias uncertainty by a factor of n .  If the bias 
uncertainties are not equal, the overall uncertainty is 

 2

1

1 n

y i
i

u u
n 

  . (5-2) 

 

5.2.3 Sequential Testing 
Sequential testing involves passing a UUT attribute through some number of independent tests or 
calibrations.26  In each test, a determination is made as to whether the UUT attribute is in-
tolerance.  If it is found out-of-tolerance at any stage in the sequence, it is rejected.  As can be 
easily appreciated, the procedure reduces false accept risk by increasing the opportunities for 
rejecting the attribute.  As can also be appreciated, however, is that the procedure increases the 
probability for a false reject.  The basic sequential testing process is shown in Figure 5-4.  In 
Figure 5-4, the variable x can represent either the UUT attribute value or bias.  The function f0(x) 
is the pdf for this variable prior to testing.  The pdf f1(x) is the post-test pdf for UUT attribute 
values or biases emerging from Test 1.  Similar designations apply to successive pdfs.  The result 
of the testing process is the pdf fn(x). 
 
Analysis of false accept and false reject risks in sequential testing is a complicated process 
involving considerable computer CPU time.  It begins with the determination of f1(x) using the 
methods described in Handbook Chapter 2 and Annex 1.  This pdf is then used to create a table 
of values that describe the pre-test UUT attribute distribution for Test 2.  Of course to be 
accurate, the table needs to quasi-continuous.  Tables with up to 10,000 entries are not 
uncommon.  This table building effort is made at each step of the process.  In most cases, by the 
time the second or third test in the sequence is reached, the false accept risk becomes negligible. 

                                                 
26 Tests are independent if the value obtained by one measurement does not influence the value obtained by a 
subsequent measurement.  Ensuring complete independence is often impractical, since each test would require the 
use of a random sample of measurement references of a given type, each calibrated by different independent 
agencies and handled by a random sample of operators.  However, false accept risk can be usually be reduced if 
different measurement references can be employed for each test, even if they are calibrated by the same organization 
and used by the same operator. 
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Figure 5-4.  Sequential Testing involving n Test Steps.   

The input to the process is the untested pdf of a UUT attribute.  The pdf that emerges from Test 1 
may apply to only attributes that pass the test or may apply to a combination of attributes passing 
the test and attributes that failed the test and have been subsequently adjusted or otherwise 
corrected.  The process continues, culminating with the “post-test” pdf. 

 
Once the final pdf is established, the false accept risk becomes 

 
2

1

1 ( )
L

n

L

CFAR f x dx


   . (5-3) 

The CFAR designation is used because the result applies to the accepted lot of attributes. 
 
5.3 Using Guardbands 
As has been shown in Section 5.1 and 5.2, false accept risk can be reduced by increasing the 
UUT attribute and measurement reference attribute in-tolerance probabilities, reducing 
uncertainties due to major contributors to measurement error, performing multiple independent 
measurements and sequential testing. 
 
In some cases, none of the above measures will be practical or even possible.  If so, then it may 
be prudent to fall back on the use of test guardbands. 
 

5.3.1 Guardband Multipliers 
It is often useful to relate the range of values A, corresponding to acceptance without correction, 
to the range of in-tolerance values L using guardband multipliers.  Let g1 and g2 be lower and 
upper guardband multipliers, respectively.  If -L1 and L2 are the lower and upper UUT attribute 
tolerance limits, and -A1 and A2 the corresponding acceptance limits, then 

 1 1 1

2 2 2 .

A g L

A g L




 (5-4) 

Suppose that g1 and g2 are both < 1.  Then A is smaller than L.  If guardband multipliers were 
not employed, then A and L are the same and CFAR, for instance, could be written 
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( , ) ( , )P x y P x y    L L LA , 
and 

( ) ( )P y P y  LA . 

It is easy to see that, because ( ) / ( )P y P y LA  is less than ( , ) / ( , )P x y P x y   L L LA , 
we have 
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so that 

A LCFAR CFAR . 

It can also be shown that,  if A is smaller than L, then 

A LUFAR UFAR < . 

Likewise, it can be shown that 

A LFRR FRR . 

So, the use of guardbands that set test limits inside tolerance limits reduces false accept risk and 
increases false reject risk.  Conversely, using guardbands that set test limits outside tolerance 
limits increases false accept risk and reduces false reject risk.  The former are called test 
guardband limits and the latter are sometimes referred to as reporting guardband limits.  
Reporting guardband limits are discussed in Section 5.3.3. 
 

5.3.2 Test Guardband Limits 
As we have already seen, guardbands are usually specified in terms of a guardband multiplier.  
For example, if the guardband multiplier is 0.9, the test guardband limits are set at 90% of the 
UUT tolerance limits.  Test guardband limits are shown in Figure 5-5. 
 

5.3.2.1 Setting Guardband Multipliers 
Test guardband limits are established by setting the guardband multipliers g1 and g2 to be less 
than one.  Guardband multipliers are usually symmetric for two-sided tolerance tests or 
calibrations, but need not be so.  Asymmetric multipliers are used when the consequences of 
accepting an attribute that is out-of-tolerance in one direction are more serious than accepting an 
attribute that is out-of-tolerance in the other direction.  An example is the cannonball discussed 
earlier:  The consequences of a cannonball being bigger than its upper tolerance limit are 
certainly different from those for a cannonball being smaller that its lower limit. 
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Figure 5-5.  Test Guardband Limits.   

Limits that trigger an adjustment or other corrective action.  Limits are set inside the UUT 
attribute tolerance limits to reduce false accept risk.  Use of these limits also increases false reject 
risk.  

 
The procedure for setting g1 and g2 to achieve an acceptable level of false accept risk is given in 
Appendix B. 
 

5.3.2.2 Keying Guardbands to Measurement Uncertainty 
A proposed method of controlling false accept risk sets test limits inside tolerance limits by some 
multiple of the calibration uncertainty.  This does not explicitly satisfy any false accept risk 
requirements of a given test or measurement and is not cognizant of the economics surrounding 
the test or measurement process.  In addition, as we have seen, a major contributor to 
measurement decision risk is the in-tolerance probability or bias uncertainty of the UUT 
attribute.  Since this uncertainty is not included in the calibration uncertainty, any practice that 
omits it does not qualify as a viable risk control method. 
 
If it is desired to set guardband limits using multiples of the calibration uncertainty, it is possible 
to link the uncertainty multiple to an allowable false accept risk.  This is demonstrated in Table 
5-1.  Table 5-1 shows the guardband multipliers that would be used to ensure a maximum false 
accept risk of 1% for various measurement process uncertainties.  In the table, “uncertainty 
ratio”27 is the ratio of the UUT bias standard uncertainty to the measurement process standard 
uncertainty. 
 

Table 5-1.  Uncertainty k-Factors for a 1% False Accept Risk. 

UUT Tolerance Limits: ±100 um 
UUT % In-Tol: 95 
UUT Bias Distribution: Normal 
Measurement Process Error Distribution: Normal 
UUT Bias Uncertainty 51.0214 um 
Maximum Allowable False Accept Risk: 1.0% 

                                                 
27 Not to be confused with “test uncertainty ratio” or TUR, defined in Z540.3 [B-5].  See also Section 1.4 “Terms 
and Definitions.” 
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Risk Option: UFAR 

 
Process Uncertainty 

(um) 
Uncertainty 

Ratio Guardband Multiplier 
False Reject 

Risk (%) k-Factor 

0.5102 100:1 1.0479019 < 0.0001 -9.38858826 
1.0204 50:1 1.0480591 < 0.0001 -4.70970336 
5.1021 10:1 1.0464835 0.1262 -0.91105969 

10.2043 5:1 1.0285771 0.8061 -0.28005016 
25.5107 2:1 0.9339747 6.1568 0.25881409 
51.0214 1:1 0.7391005 26.5683 0.51135339 

 
The k-factor is the multiple of the measurement process uncertainty that is subtracted from the 
100 um tolerance limit to produce the guardband limits.  Notice that, for low uncertainties, the k-
factors are negative.  This corresponds to setting the test guardband limits outside the tolerance 
limits, i.e., to using guardband multipliers greater than 1.  Note also the impact on false reject 
risk. 
 
Table 5-2 shows the same measurement scenarios as Table 5-1 with the k-factor arbitrarily set at 
2 for all cases.  Notice the low false accept risks for lower uncertainties.  Notice also the 
accompanying high false reject risks.  Obviously, if the situations shown represent cases where a 
1% false accept risk is tolerable, for instance, then fixing the k-factor at 2 leads to unnecessary 
rework expense, especially for uncertainty ratios of around 5 or less.  Moreover, if a 1% false 
accept risk is acceptable, then the cost of this rework is incurred with no appreciable return on 
investment. 
 

Table 5-2.  Risks Associated with a k-Factor of 2. 

     
UUT Tolerance Limits: ±100 um 
UUT % In-Tol: 95 
UUT Bias Distribution: Normal 
Measurement Process Error Distribution: Normal 
UUT Bias Uncertainty 51.0214 um 
k Factor: 2.0 
Risk Option: UFAR 

 
Process 

Uncertainty (um) 
Uncertainty 

Ratio 
Guardband 
Multiplier 

False Accept 
Risk (%) 

False Reject 
Risk (%) 

0.5102 100:1 0.989796 0.00106 0.2406 

1.0204 50:1 0.979591 0.00209 0.4931 

5.1021 10:1 0.897957 0.00101 3.0000 

10.2043 5:1 0.795914 0.00110 7.6273 

25.5107 2:1 0.489786 0.00598 34.0917 

51.0214 1:1 N/A N/A N/A 

 
Of course other scenarios are possible.  It is beyond the scope of this Handbook Annex to cover 
even a representative selection.  It is interesting to note, however, that at uncertainty ratios of 5:1 
or less, the false reject risks obtained with a guardband multiplier of 2 may exceed 7.6%. 
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5.3.3 Reporting Guardband Limits 

5.3.3.1 Compensating for Errors in Observed In-tolerance Probabilities 
Typically, testing and calibration are performed with safeguards that cause false accept risks to 
be lower than false reject risks.  This is characteristic, for example, of calibration or test 
equipment inventories with pre-test in-tolerance probabilities higher than 50%.  The upshot of 
this is that, due to the imbalance between false accept and false reject risks, the perceived or 
observed percent in-tolerance will be lower than the actual or true percent in-tolerance.  This was 
first reported by Ferling in 1984 as the "True vs. Reported" problem [7].  The issue is discussed 
at length in Appendix E. 
 
As will be argued in the next section, this discrepancy can have serious repercussions in setting 
test or calibration intervals.  Since these intervals are major cost drivers, the True vs. Reported 
problem should not be taken lightly. 
 
Through the judicious use of guardbands, the observed percent in-tolerance can be brought in 
line with the true in-tolerance percentage.  With pre-test in-tolerance probabilities higher than 
50%, this usually means setting test guardband limits outside the tolerance limits.   
 

5.3.3.2 Implications for Interval Analysis 
Ordinarily, intervals are set to achieve end-of-period (EOP) in-tolerance levels of around 80% to 
95%.  These levels are referred to as reliability targets.28  If intervals are analyzed using test or 
calibration history, and high reliability targets are employed, the intervals ensuing from the 
analysis process can be seriously impacted by reported out-of-tolerances.  In other words, with 
high reliability targets, only a few reported out-of-tolerances can result in drastically shortened 
intervals. 
 
Since this is the case, and, since the length of test or calibration intervals is a major cost driver, it 
is prudent to ensure that perceived out-of-tolerances not be the result of false reject risk.  This is 
one of the central reasons why striving for reductions in false accept risk must be made with 
caution, since reductions in false accept risk cause increases in false reject risk.  At the very least, 
attempts to control false accept risk should be made with cognizance of the return on investment 
and an understanding of the trade-off in increased false reject risk and shortened calibration 
intervals. 
 
Reporting guardband limits are used to ameliorate the cost of periodic calibration while 
maintaining the desired reliability target.  This is done by achieving a reported EOP percent in-
tolerance that is equal to the true EOP percent in-tolerance.  Hence, a UUT attribute would be 
reported as out-of-tolerance only if its value fell outside its reporting guardband limits.  The 
methodology for establishing such limits is presented in Appendix E. 
 

                                                 
28 Setting risk-based reliability targets is discussed in Appendix H. 
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Figure 5-6.  Reporting Guardband Limits.   

Limits used to report out-of-tolerances.  Limits are set outside the UUT attribute tolerance limits 
to equalize false accept risk and false reject risk.  This has the effect of adjusting the reported 
percent out-of-tolerance to match the true percent out-of-tolerance. 

 

5.3.3.3 Summary 
To accommodate both the need for low false accept risks and accurate in-tolerance reporting, it is 
required that two sets of guardbands be employed.  One, ordinarily set inside the tolerances, 
would apply to withholding items from use or to triggering attribute adjustment actions.  The 
other, ordinarily set outside the tolerances, would apply to in- or out-of-tolerance reporting for 
purposes of calibration interval analysis and calibration feedback reporting. 
 
Test Guardband limits 

The first set of guardband limits is called test guardband limits.  Test guardband limits are those 
that are normally thought of when guardbands are discussed.  Test guardbands are used to 
control false accept risks. 

Test guardband limits trigger adjustments or other corrective actions. 

 
Reporting Guardband limits 

Reporting guardband limits are used to compensate for the True vs. Reported problem.  An 
attribute would be reported as out-of-tolerance only if its value fell outside its reporting 
guardband limits. 

Reporting guardband limits comprise pass-fail criteria for reporting out-of-
tolerances. 

 
5.4 Bayesian Guardbands 
Although Bayesian analysis is ideal for a bench-level application, it can also be used to develop 
process-level guardband limits.  Thus, if we are constrained by a maximum acceptable false 
accept risk, i.e., a minimum acceptable Pin, we can solve for a maximum acceptable estimated 
UUT attribute bias c.  This maximum acceptable estimate comprises the guardband limit. 
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From Eq. (4-32), the UUT attribute in-tolerance probability, given a calibration result , is given 
by 

1 2 1in

L L
P

u u 

     
         

   
 

where  and u are given in Eqs. (4-24) and (4-25), respectively. 
 
The solution process attempts to find a value of c such that Pin is equal to some minimum 
allowable value Pc.  The bisection method described in Appendix F has been found to be useful 
for this.  The root to be solved for is 

 1 2 1c c
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     
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   
. (5-5) 

Once the value of c has been found for which F = 0, the guardband limit c is computed from 
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2
,
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UUT b

u

u
  , (5-6) 

where uA and uUUT,b are defined in Section 4.3.4.  For cases where the UUT attribute tolerance 
limits are single-sided upper or single-sided lower, L1 or L2 is set to a physical limiting value.  In 
some cases this value is essentially infinite.  For instance, if the tolerance limit is single-sided 
upper with a lower limit of -, Eq. (5-5) becomes  
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and, if the tolerance limit is single-sided lower with an upper limit of +, 
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F P
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 
. 

 
Table 5-3 Shows Bayesian guardband limits for a UUT attribute calibration with an uncertainty 
ratio of 4:1, and different minimum EOP percent in-tolerance criteria.  In the table, the tolerance 
limits are two-sided symmetric and the UUT attribute bias is assumed to be normally distributed. 
 

Table 5-3.  Bayesian Guardband Limits. 

UUT Attribute Tolerance Limits ±10 mV 
UUT Attribute EOP Percent In-Tolerance 95.00 
UUT Attribute a priori Bias Uncertainty uUUT,b 5.1021 mV 
Calibration Uncertainty ucal 1.2755 mV 
Calibration 95% Expanded Uncertainty U95 2.5 mV 
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Max Allowable 
Risk (%) 

± Guardband 
Limits (mV) 

0.10 6.5621 
0.50 7.2384 
1.00 7.5664 
2.00 7.9248 
3.00 8.1522 
4.00 8.3233 
5.00 8.4624 

 
5.5 Confidence Level Guardbands 
Like Bayesian analysis, confidence level analysis is typically applied as a bench-level method.  
However, the method can also be implemented with process-level guardband limits.  Just as with 
Bayesian guardbands, if we are constrained by a minimum acceptable Pin, we can solve for a 
maximum acceptable estimated UUT attribute bias c.  This maximum acceptable estimate 
comprises the guardband limit. 
 
From Eq. (4-35), the UUT attribute in-tolerance probability, given a calibration result , is given 
by 

 1 2 1in
cal cal

L L
P

u u

     
      

   
. (5-7) 

where ucal is defined in Table 4-7. 
 
The solution process attempts to find a value of c such that Pin is a minimum allowable 
value Pc.  The bisection method described in Appendix F can be used for this.  The root to be 
solved for is 

 1 2 1c c
c

cal cal

L L
F P

u u

     
       

   
. (5-8) 

Once the value of c has been found for which F = 0, we have the appropriate guardband limit.  
For cases where the UUT attributed tolerance limits are single-sided upper or single-sided lower, 
L1 or L2 are set to , i.e.,  

2 c
c

cal

L
F P

u

 
   

 
, 

if the tolerance limit is single-sided upper, and 

1 c
c

cal

L
F P

u

 
   

 
. 

if the tolerance limit is single-sided lower. 
 
Table 5-4 Shows confidence level guardband limits for a UUT attribute calibration with a 
nominal 4:1 TUR, as defined in Section 3.5.1, and different minimum EOP percent in-tolerance 
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criteria.  In the table, the tolerance limits are two-sided symmetric and the UUT attribute bias is 
assumed to be normally distributed. 
 

Table 5-4.  Confidence Level Guardband Limits. 

UUT Attribute Tolerance Limits ±10 mV 
UUT Attribute EOP Percent In-Tolerance 95.00 
UUT Attribute a priori Bias Uncertainty uUUT,b 5.1021 
Calibration Uncertainty ucal 1.2755 mV 
Calibration 95% Expanded Uncertainty U95 2.5 mV 

 
Max Allowable 

Risk (%) 
± Guardband 
Limits (mV) 

0.10 6.0584 
0.50 6.7145 
1.00 7.0327 
2.00 7.3804 
3.00 7.6010 
4.00 7.7670 
5.00 7.9020 

 
Notice that a comparison of Table 5-4 with 5-3 shows that guardband limits with the confidence 
level method are consistently tighter than with the Bayesian method. 
 
5.6 Minimizing Costs 
Guardbands may be used to establish a compromise between false accept risks and false reject 
risks.  If the cost of a false reject is prohibitive, for example, it may be desired to set test 
guardband limits that reduce false reject risk at the expense of increasing false accept risk.  If, on 
the other hand, the cost of false accepts is prohibitive, it may be desired to reduce false accept 
risk at the expense of increasing false reject risk. 
 
A simplified cost modeling approach is described below that balances false accept risk and false 
reject risk to optimize total cost. 
 
A more comprehensive end-to-end approach that takes into account equipment life cycle costs, 
calibration and testing support costs, and the cost of undesired outcomes is described Handbook 
Annex 1 and in References [13] and [36]. 
 

5.6.1 A Simplified Model 
If it is not feasible to perform a detailed cost analysis, as described in Handbook Chapter 2 and 
Annex 1, it may be possible to implement a simplified approach which focuses primarily on the 
cost of false rejects and false accepts expressed in terms of averages.  
 

5.6.1.1 False Reject Cost 
With regard to the cost of a false reject, a good start would be to develop an average labor and 
parts estimate for recalibration, rework or other corrective action for items with a specific 
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attribute of interest that is functioning within its tolerance limits.  Letting ,renew GC  represent this 

average, the annual cost of false rejects for a particular type of item would then be given by 

,UUT renew G
FR

N C FRR
C

I
 , 

where NUUT is the number of items in inventory with the specific attribute under consideration, 
FRR is the false reject risk associated with testing or calibration, and I is the test or calibration 
interval and the G ("good") subscript indicates that the cost corresponds to renewing in-tolerance 
attributes.  For an end item, the quotient NUUT/I may represent the number of items tested per 
year. 
 
Note that the above cost does not include the cost of increased frequency of calibration due to 
shortening of intervals in response to false rejects, nor does it include the cost of generating 
unnecessary out-of-tolerance reports or other clerical actions. 
 

5.6.1.2 False Accept Cost 
The cost of a false accept is more difficult to nail down without resorting to a fairly complicated 
cost/utility model.  As mentioned earlier, the cost of a false accept is felt in terms of negative 
outcomes resulting from the use of an out-of-tolerance attribute.  Table 5-5 describes the 
variables used in the simplified model. 
 

Table 5-5.  Variables Used in the Simplified Cost Model. 

Variable  Description 
eUUT,b - the bias of the tested or calibrated attribute 

nE - the number of possible situations in which the use of the attribute 
of a tested or calibrated item may result in a negative outcome 

Ci(eUUT,b) - the cost of a negative outcome of the ith possible usage event, i = 
1, 2, … , nE 

f(eUUT,b) - the EOP probability distribution function for eUUT,b 
Pi - the probability that the ith event will occur 

 

With these variables, we can estimate an average performance cost of a nonconforming attribute according to 

, , , ,
1

1 ( ) ( )
En

perf B i UUT b i UUT b UUT b
i

C P f e C e de


 
  

 
 

L

, 

where L is the performance region for eUUT,b, as defined before, and the B ("bad") subscript indicates that the cost 
corresponds to out-of-tolerance attributes. 

 

With the above expression, the annual cost of falsely accepting the attribute of interest may be written 

,UUT perf B
FA

N C FAR
C

I
 . 

where FAR may be UFAR or CFAR, as appropriate. 
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5.6.1.3 Total Cost 
The total annual cost due to measurement decision risk is just the sum of CFR and CFA: 

risk FR FAC C C  . 

This cost needs to be added to the annual support cost for testing or calibration of the UUT 
attribute.  This cost may be given by 

MTE serv
ts

MTE

N C
C

I
 , 

where 
 
NMTE - the number of items in inventory that are used to calibrate or test the UUT attribute 

servC  - the average cost of test or calibration service for the MTE 

IMTE - the interval for the MTE. 

 
The total cost that comprises the management variable to be minimized is 

Ctotal = Cts + Crisk . 

 

5.6.1.4 Optimizing Risk Management 
In optimizing risk, FRR and FAR are adjusted in such a way that Ctotal is minimized.  This may 
be done by experimentation with guardbands, in-tolerance percentages, substituted equipment, 
multiple independent measurement or sequential testing schemes.29 
 
Experimentation with Guardbands 

In experimenting with guardbands, the variable Cts is held fixed, as are all variables in CFA and 
CFR, with the exception of FAR and FRR.  In other words, the only variables that need to be 
varied are FAR and FRR.  This is done by moving guardband multipliers in and out in a "hunt 
and peck" process. 
 

Experimentation with In-Tolerance Percentages 

Changing the in-tolerance probabilities of the UUT and reference attributes will result in changes 
to FAR and FRR that may produce the desired minimization of Ctotal.  However, if the in-
tolerance probability for the tested or calibrated attribute is changed, the variable I must also be 
updated in the above expressions.  If the in-tolerance probability for the reference attribute is 
changed, the variable IMTE must also be modified. 
 

Substituting Equipment 

Modifying the basic accuracy of the reference attribute may impact Ctotal in the desired way.  
However, if this is done, the variables IMTE and servC  may also need to be updated. 

                                                 
29 A more comprehensive cost analysis is described in Handbook Chapter 2 and Annex 1 in which Ctotal includes 
total life cycle costs and the cost of employing a tested end item.  The latter includes such considerations as 
criticality of use and the effect of end item utility on expenses incurred or avoided in its use. 
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Multiple Independent Measurements / Sequential Testing 

As discussed in Section 5.2.3, false accept risk may be reduced through performing multiple 
independent measurements during calibration or testing or by implementing a sequential testing 
procedure.  This reduction comes at a price in that (1) such schemes are more costly than single 
measurement schemes and (2) the reduction in false accept risk is accompanied by an increase in 
false reject risk. 
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Appendix A - Measurement Uncertainty Analysis 
This appendix describes principles and methods of measurement uncertainty analysis.  A 
systematic process for computing and combining uncertainty estimates is presented.  The process 
yields total combined uncertainties that facilitate effective analyses of measurement decision 
risk.  The appendix concludes with a discussion of four calibration scenarios for which relevant 
error sources are identified and specific recipes for combining calibration uncertainties are 
provided. 
 

Note:  The uncertainty analysis methodology documented in this appendix is 
condensed from uncertainty analysis methods and principles presented in 
NCSLI’s Recommended Practice RP-12 [A-1].  For a complete treatment of the 
subject, including analysis procedures and examples, the reader is referred to this 
document. 

 
A.1 Appendix A Nomenclature 
Nomenclature used in this Appendix for the principal quantities is summarized in Table A-1.  
The notation for other quantities can be determined by applying the notation of Table A-2. 
 

Table A-1.  Appendix A Nomenclature. 

Quantity Description 

UUT Unit Under Test.  The device or artifact undergoing calibration. 
Attribute A measurable property of a device, substance or other quantity. 

MTE Measuring or Test Equipment.  A reference standard or item of test equipment 
used as a measurement reference. 

u Standard uncertainty. 
x A measured value taken by the UUT attribute. 
y A measured value taken by the reference attribute. 

x The mean value of a population of values represented by the variable x.  
Sometimes taken to represent the true value of x. 

x The error in the measurement of x. 

x The standard deviation of the population of values represented by the variable x.  
Equated with ux the uncertainty in x. 

var The variance operator. 
cov The covariance operator. 

1 2
( , )x xe e  The correlation coefficient for correlations between errors 

1 2
and x xe e . 

 Degrees of freedom. 

t The t-statistic for a confidence level of 1 -  and degrees of freedom . 

m The total error in the measurement of the value of an attribute. 

eUUT,b (1) The bias of a UUT attribute as received for calibration.  (2) The quantity 
estimated by UUT calibration. 

uUUT,b The uncertainty in the bias of a UUT attribute as received for calibration.  Equal 
to the standard deviation of the eUUT,b distribution. 

eMTE,b The bias of the MTE attribute used to calibrate the UUT attribute. 

UUT,m The error in measurements made with the UUT attribute or the error in measuring 
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Quantity Description 

the UUT attribute’s value with a comparator. 

MTE,m The error in measurements made with the MTE attribute or the error in 
measuring the MTE attribute’s value with a comparator. 

 The result of a UUT calibration, i.e., an estimate of eUUT,b obtained by calibration. 

cal The error in . 
ucal The uncertainty in cal. 
xn The nominal value of a UUT attribute. 

xtrue The true value of a UUT attribute. 
yn The nominal value of an MTE attribute. 

ytrue The true value of an MTE attribute. 
xc The value of the UUT attribute indicated by a measurement taken with a 

comparator. 
ec,b The bias in a comparator indication. 

() The cumulative normal distribution function for a random variable with value . 

 
A.2 Uncertainty Analysis Fundamentals 
This section provides an overview look at the elements of the uncertainty estimation that 
comprise the foundation on which measurement decision risk analysis is built.  After some 
preliminary remarks, the relationship between measurement error and equipment attribute biases 
will be described, followed by a mathematical definition of measurement uncertainty.  Error 
sources will be identified and a systematic method for combining uncertainties due to 
combinations of error sources will be presented.  Methods of computing measurement 
uncertainty will be outlined and a powerful method for estimating uncertainty for multivariate 
measurements will be described. 
 
While the subject of uncertainty analysis has been carefully treated in this document, the reader 
is advised that, as the above note indicates, a full and rigorous discussion can be found in 
reference [A-1]. 
 

A.2.1 Preliminaries 
In making uncertainty estimates, we keep in mind a few basic concepts.  Chief among these are 
the following: 
 

• All measurements are accompanied by error. 

• Measurement errors are random variables.  This means that whenever we make 
measurements, the errors in these measurements vary with respect to sign and magnitude. 

• Errors (and attribute deviations from nominal or "biases") follow probability 
distributions.  The way that errors vary can be described statistically.  In statistical 
descriptions, errors are said to be distributed in such a way that the sign and magnitude of 
a given error has associated with it a probability of occurrence. 

These preliminary observations are summarized in an important uncertainty analysis axiom, 
stated here as Axiom 1: 
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Axiom 1 – Attribute biases and measurement errors are random 
variables that follow probability distributions. 

 
In applying this axiom, we keep two important definitions in mind: 
 
Population - All the values that a random variable can attain. 

Distribution - A functional relationship between the value of a random variable and the 
probability of its occurrence. 
 

A.2.2 Error Distributions 
How errors combine and their relationships to measurement uncertainties can be better 
understood by considering the ways in which they are distributed. 
 
Suppose that the attribute being measured, referred to as the UUT attribute, has a specified 
nominal value around which members of its population are distributed.  Such distributions may 
be symmetric about the population mean or expectation value, as in the case of normally 
distributed attribute values, or may be asymmetrical about the nominal value, as with attributes 
that follow a lognormal distribution.   
 
For purposes of discussion, imagine that the population of a given UUT attribute consists of a 
particular inventory of items.  For example, the inventory may consist of some number of gage 
blocks of a particular nominal dimension from a particular manufacturer.  If a gage block is 
selected at random from its inventory, it will have a specific true value. 
 
If the gage block is measured by a reference device, also selected randomly from its population, 
two considerations arise.  First, the inventory of reference devices may have a mean systematic 
offset.  Second, the particular device selected may have an additional systematic offset relative to 
its population mean.  The combination of these offsets or biases is called measurement bias.  
Measurement bias can be thought of as the difference between the mean of a sample of measured 
values, obtained with a given reference attribute, and the true value of the UUT attribute or 
measurand. 
 
Measurement processes are rarely completely stable.  There is nearly always some fluctuation 
due to the measuring system, the UUT attribute, the measuring technician, or a combination of 
these variables.  These fluctuations appear as random error.  Finally, there are errors of 
perception due to operator bias or to the finiteness of the resolution of the measuring system.  
These errors combine with the random errors to produce a distribution about the measured mean 
value. 
 
The combination of measurement bias and other errors constitutes the difference between a 
measured value and the UUT attribute's true value, i.e., it constitutes the measurement error. 
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A.2.2.1 Error Sources 
Error sources are variables that contribute to measurement error.  Error sources are also referred 
to as process errors.  The most commonly encountered are 

• Measurement Bias - A systematic difference between the value measured by a reference 
attribute and the true value of the UUT attribute or measurand. 

• Random Error (Repeatability) - Errors that are manifested in differences in value from 
one measurement to the next. 

• Resolution Error - The difference between a “sensed” value and the value indicated by a 
measuring device. 

• Digital Sampling Error - Error due to the granularity of digital representations of analog 
values. 

• Computation Error - Error due to computational round-off, regression fit, interpolation or 
extrapolation. 

• Operator Bias (Reproducibility) - Error due to quasi-persistent bias in operator perception 
and/or technique. 

• Stress Response Error - Error caused by response of a calibrated UUT attribute to stress 
following calibration. 

• Environmental/Ancillary Factors Error - Error caused by environmental effects and/or 
fluctuations in ancillary equipment. 

 

A.2.2.2 Applicable Distributions 
Distributions for Type A and Type B analysis are shown below.  The Type B estimation 
procedure has been refined so that standard deviations can be estimated for both normal and non-
normal populations and in cases where the confidence limits are asymmetric or even single-
sided.  For constrained non-normal distributions, the distribution limits are designated  a and 
the tolerance limits are denoted ±L.  The following notation is used in expressions for parameters 
or statistics of the distributions: 
 

p - in-tolerance or “containment” probability 
u - distribution standard deviation (standard uncertainty) 
 - the distribution function for the normal distribution 
-1 - the inverse distribution function for the normal distribution 

 
The relevant error probability density functions f() and distribution standard deviations are as 
follows. 
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Normal Distribution 

Probability Density Function 

 
Figure A-1.  The Normal Error Distribution.   

The “workhorse” distribution used to represent most attribute biases and measurement errors. 
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Figure A-2.  The Lognormal Distribution.   

A useful distribution for attributes with asymmetric tolerance limits.  Shown is a “right-handed” 
lognormal distribution, i.e., one where the lower distribution limit is < 0.  Left-handed lognormal 
distributions, where this limit > 0, are also possible. 
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Distribution Parameters 

-q - limiting value 

m - distribution median

 - shape parameter 
Distribution Standard Deviation 

2 2/2| | 1u m q e e     
Uniform Distribution 

Probability Density Function 

 
Figure A-3.  The Uniform Error Distribution.   

A useful distribution for digital resolution error and signal quantization error. 
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Figure A-4.  The Triangular Error Distribution.   

The distribution for the sum of two uniformly distributed errors with equal limits and mean values. 
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Figure A-5.  The Quadratic Error Distribution.   

A good distribution for measurement errors or attribute values with a central tendency but a wide 
spread between distribution limits. 
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Cosine Distribution 

Probability Density Function 

 
Figure A-6.  The Cosine Error Distribution   

Describes measurement errors and attribute biases with normal distribution tendencies but with 
physical bounding limits. 
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Figure A-7.  The U Distribution 

The distribution for measurement errors or attribute biases that vary in a periodic sinusoidal 
manner.  Applies to quantities regulated by automated control systems. 
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A.2.2.3 Recommendations for Selecting an Error Distribution 
The following are offered as guidelines for selecting an appropriate error distribution: 

1. Unless information to the contrary is available, the normal distribution should be applied as 
the default distribution.   

2. If it is suspected that the distribution of the value of interest is skewed, apply the lognormal 
distribution.  In using the normal or lognormal distribution, some effort must be made to 
estimate a containment probability.  If a set of containment limits is available, but 100% 
containment has been observed, then the following is recommended: 

• If the value of interest has been subjected to random usage or handling stress and the 
resulting error is assumed to possess a central tendency, apply the cosine distribution.  If 
it is suspected that the resulting errors are more evenly distributed, apply either the 
quadratic or half-cosine distribution, as appropriate.  The triangular distribution may be 
applicable to estimating uncertainty due to interpolation errors, and, under certain 
circumstances, when dealing with attribute biases following testing or calibration. 

• If the value of interest varies sinusoidally, with random phase, apply the U-distribution. 

• To estimate the uncertainty due to the resolution error of a digital readout, apply the 
uniform distribution.  This distribution is also applicable to estimating the uncertainty due 
to quantization error and the uncertainty in RF phase angle. 

 

A.2.3 Error and Uncertainty 
In the preliminary remarks it was stated that the distributions of measurement errors are used to 
estimate uncertainty.  We now examine this remark in detail and establish the mathematical 
relationship between error and uncertainty.  
 

A.2.3.1 Statistical Variance 

In the previous section, we discussed measurement errors qualitatively.  We now proceed to 
quantify measurement errors in terms of their probability distributions.   
 
A distribution has been successfully specified when we can obtain values for its various 
statistics.  Principal among these is the variance of the distribution.  The variance of a 
probability distribution for a variable x is the mean square error of the distribution, given by 
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2Mean Square Error ( ) ( )xx f x dx




  , 

where x is the mean value of the population of values for x and f(x) is the probability density 
function for x.30 

 
2Mean Square Error ( ) ( ) ( )

var( ).

xx x f x dx

x






 



  (A-1) 

A.2.3.2 Standard Deviation 
The variance or mean square error of a distribution provides one measurement of the degree to 
which the distribution is spread out.  That is, the lack of "certainty" in the distribution's values.  
While the variance is useful in quantifying the spread of a distribution, it is not suited to 
quantifying the uncertainty in distribution values.  The reason for this is that it is a measure of 
the square of this value. 
 
The quantity that serves the purpose is the square root of the variance.  This quantity is called the 
standard deviation.  The standard deviation provides a measure of the spread of a distribution in 
units that are the same as the variable described by the distribution.  Moreover, the standard 
deviation can be used to characterize the distribution in terms of its mathematical form.  
Quantities that characterize probability distributions are called statistics.  As we will see 
presently, the standard deviation is an important statistic for uncertainty analysis. 
 

A.2.3.3 Definition of Uncertainty 
We have stated that the standard deviation of a distribution provides a measure of the "spread" of 
the distribution.  Since a distribution is a relationship between the value of a variable and its 
probability of occurrence, we see that the more spread out the distribution is, the less likely we 
are of localizing the variable near its mean or nominal value.  In other words, the uncertainty in 
the value of a variable is synonymous with the spread of its probability distribution.  This leads 
to a statistical definition of measurement uncertainty:  

 var( )x xu x  . (A-2) 

Suppose we express a measured value for a variable x in terms of its true value x and its 
measurement error x 

x xx    . 

The variance in x, given a true value x, is therefore given by 

var( ) var( )x xx    . 

But there is no variance in the true value.  For a given measurement, it is not a random variable, 
but is, instead, a fixed property of the measurand.31  Consequently, we can write 

                                                 
30 The quantity f(x) is the mathematical function that describes the form or shape of a probability distribution.  It will 
be discussed at length later. 
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var( ) var( )

var( ).
x x

x

x  


 


 (A-3) 

This expression comprises an important axiom in uncertainty analysis. 
 

Axiom 2:  The variance in a measured variable is equal to the 
variance in the measurement error. 

 
Given that the square root of the variance of a variable x is the standard deviation in x, and that 
the standard deviation in x is the uncertainty in x, we can use Axiom 2 to write 

 var( )

var( ) ,

x x

x

u

x











 (A-4) 

which yields Axiom 3: 
 

Axiom 3:  The uncertainty in a measurement is the standard 
deviation in the measurement error. 

 
xxu  . (A-5) 

Axiom 3 provides us with a statistical variable that can be used in decision analysis.  Defined in 
this way, an uncertainty estimate is not just a number that we are required by governing 
standards to come up with but is, instead, a mathematical quantity that has a variety of uses, as 
we have alluded to and will discuss in more detail presently.   
 
Note that the term "uncertainty" is sometimes used in reference to something called the 
"expanded uncertainty."  This is an unfortunate use of the term in that the uncertainty and the 
expanded uncertainty differ in both magnitude and character.  Considerable confusion and 
expense has come about due to the semantic similarity of the two terms.  Expanded uncertainty 
will be discussed in detail later. 
 

A.2.4 Combining Uncertainties 
An important benefit of the above statistical definition of uncertainty is that it leads to a simple 
prescription for combining uncertainties that takes into account correlations between errors.  This 
prescription emerges from a property of the variance called the variance addition rule. 
 

                                                                                                                                                             
31 Note that, in a sample of measurements, the true value may vary randomly from measurement to measurement.  
The standard deviation due to the random error in the true value and the random error in the measurement system 
are included in the standard deviation of the sample, which comprises an estimate of the measurement process 
repeatability. 

Downloaded from http://www.everyspec.com



 

- 81 - 
 

A.2.4.1 Variance Addition Rule 
Suppose that a variable x is a linear function of two measured variables x1 and x2 

1 1 2 2x a x a x  . 

The variance in x is given by 

 
1 1 2 2

2 2
1 1 2 2 1 2 1 2

var( ) var( )

var( ) var( ) 2 cov( , ) ,

x a x a x

a x a x a a x x

 

  
 (A-6) 

where the cov(x1,x2) term is the called the "covariance" between x1 and x2. 
 
In reference to the combination of measurement errors, we express each of x1 and x2 as a true 
value plus error 

 
1 1 2 2

1 1 1 2 2 2

1 1 2 2

( ) ( )

.
x x x x

x x x

x a x a x

a a

a a

   
  

 
   
  

. (A-7) 

The variance in x is then written 

 

1 2

2
1 1 2 2

2 2
1 1 2 2 1 2 1 2

2 2 2 2
1 2 1 2 1 2

var( )

var( ) var( ) 2 cov( , )

2 cov( , ) ,
x

x x x

x x x x

x x

a a

a a a a

a u a u a a 

  

   

 

 

  

  

 (A-8) 

where the quantity 1 2cov( , )x x   is the covariance between the errors x1 and x2. 

 

A.2.4.2 The Correlation Coefficient 
The covariance between two variables can be expressed in terms of a correlation coefficient 
defined according to 

 1 2
1 2

1 2

cov( , )
( , ) x x

x x
x xu u

     , (A-9) 

which yields the expression 

 2 2 2 2 2
1 1 2 2 1 2 1 2 1 22 ( , )x x x x x x xa u a u a a u u      . (A-10) 

 

A.2.4.3 The Combined Uncertainty 
Since the uncertainty in measurement is the standard deviation of the measurement error and the 
standard deviation is the square root of the variance, the combined uncertainty in the 
measurement of x1 and x2 is given by 

 

1 2 1 2

1 1 2 2

2 2 2 2
1 2 1 2 1 2

=Uncertainty( )

Uncertainty( )

2 ( , ) .
x x x x

x

x

x x

u x

a x a x

a u a u a a u u   



  

 


  

 (A-11) 
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An important characteristic of this result is that it is not simply the RSS value of the uncertainties 
in x1 and x2.  The correlation term, that is absent from simple RSS combinations, may be 
significant in certain situations.  In fact, if x1 and x2 are positive linear functions of one another, 
the correlation coefficient is equal to +1, and the combined uncertainty is 

 

1 2 1 2

1 2

1 2

2 2 2 2
1 2 1 2

2
1 2

1 2

= 2

( )

.

x x x x

x x

x x

xu a u a u a a u u

a u a u

a u a u

   

 

 

 

 

 

 (A-12) 

Conversely, if x1 and x2 are not related in any way, then 1 2( , ) 0x x    , and the uncertainty in x 

is given by 

 
1 2

2 2 2 2
1 2= ,

x xxu a u a u   (A-13) 

which is just the RSS combination of uncertainties for x1 and x2.  Variables for which 

1 2( , ) 0x x     are said to be statistically independent.  Many measurement errors fall into this 

category. 
 

A.2.4.4 Degrees of Freedom 
The degrees of freedom for a combined uncertainty u, given by 

 2

1

k

i i
i

u a u


  , (A-14) 

can be computed using the Welch-Satterthwaite relation 

 
4
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1

k
i i

i i

u
a u








. (A-15) 

The degrees of freedom for an uncertainty estimate is a measure of the amount of information 
that was employed in making the estimate. 
 
A.3 Estimating Uncertainty 
Up to this point, we have seen how errors are composed of error components, each of which is 
the sum of errors arising from sources of error encountered in the measurement process.  We 
now turn our attention to the steps involved in computing estimates for the uncertainty in the 
source errors. 
 

A.3.1 The Nature of Uncertainty Estimates 
By their nature, uncertainty analyses are approximate.  Uncertainty analysis requires us to make 
inferences about populations of statistical variables based on sampled data or on recollected 
experience.  We rarely have all the information we need to develop precise statements of 
uncertainty. 
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Despite this, approximate uncertainty estimates can still be extremely useful quantities for 
decision making in that errors in uncertainty estimates tend to be small relative to the magnitudes 
of measured quantities.  This is embodied in the statement that "errors in estimating uncertainty 
are 2nd order."  To put this in perspective, we say that measured values are "zeroth" order, errors 
in these values are "first order," and errors in estimating the uncertainty of the measurement 
errors are second order.  If measurement errors are small, then the uncertainty in the errors tends 
to be smaller still. 
 
This does not mean we can be sloppy in estimating uncertainty.  The better the estimate, the 
more valid our decisions based on measurements.  The general recommendation is to attempt to 
make the best estimates possible.  Note that this does not mean making the most conservative 
estimates possible.  For technology management, seeking a conservative uncertainty estimate 
makes about as much sense as going to the hardware store and asking for a "conservative" tape 
measure.  If conservatism is desired, the way to do enforce it is not with fudged uncertainty 
estimates but, rather, by specifying high levels of confidence in computing confidence limits or 
"expanded uncertainties."   This subject will be discussed later. 
 

A.3.2 Computing Methods 

A.3.2.1 Data Sampling 
One way to estimate the uncertainty in an error source is to analyze a sample of measurements.  
The analysis consists primarily of computing a sample mean and standard deviation. 
 
Taking Samples 

In taking samples of measurements, we collect the results of some number of measurements.  In 
collecting these results, we ensure that each measurement is both independent and 
representative.  Measurements are independent if, in measuring one value, we do not affect or 
influence the selection of the measurement of another.  Measurements are representative if their 
values are typical of the variable of interest. 
 
Computing Statistics 

Once a sample of measurements is taken, we estimate the characteristics of the population the 
sample was drawn from.  In this, we make inferences about the population from certain statistics 
of the sampled data, i.e., from the sample mean and standard deviation. 
 

A.3.2.2 Heuristic Methods 
Another way to estimate the uncertainty in an error source is to employ heuristic methods.  A 
heuristic estimate is an estimate made in the absence of recorded sampled data.  Such an estimate 
is based on engineering judgment or on recollected experience.  In making a heuristic estimate, 
we follow a simple procedure: 

• Define error limits 
• Estimate containment probabilities 
• Estimate degrees of freedom. 
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A.3.3 Categories of Estimates 
The manner in which we attempt to quantify the probability distributions of measurement errors 
falls into two broad categories labeled Type A (statistical) and Type B (heuristic).32 
 

A.3.3.1 Type A Estimation 
In Type A estimation, we attempt to infer various statistics of the population from data sampled 
from the population.  For uncertainty analysis, the relevant statistics are the mean and standard 
deviation of the population.  We approximate these statistics with the sample mean and sample 
standard deviation, respectively.  For these approximations, we need to take into account the 
degrees of freedom of the sample from which they are computed. 
 
The Sample Mean 

A sample mean x  is computed in a straightforward manner from a sample of measurements x1, 
x2, ... , xn, where n is the sample size. 

 
1

1 n

i
i

x x
n 

  . (A-16) 

The sample mean is used as an estimate of the value that we expect to get when we make a 
measurement.  This "expectation value" is called the population mean.  A sample mean is called 
a robust estimate, if it approaches the population mean as the sample size increases. 
 
The Sample Standard Deviation 

In addition to inferring the expectation or mean value of a population, a measurement sample can 
also be used to estimate how much the population is spread about this value.  As discussed 
earlier, the variable that quantifies this spread is called the sample standard deviation.  The 
sample standard deviation is considered a robust estimate if it approaches the population 
standard deviation as the sample size increases.  
 
For a given error source, we approximate the uncertainty due to error from the source by setting 
it equal to the sample standard deviation.  Thus, for the measured variable x, the Type A 
uncertainty due to random error (repeatability), for example, is expressed as 

 

, ,

2

1

1
( ) ,

1

x

x ran x ran

n

j
jx

u s

x x
n 



 
 

 (A-17) 

where, the index j ranges over all sampled values of x.  The sample mean x  is defined as before.  
The number nx is the sample size for the error source x.  The above expression computes the 
random uncertainty in the measurement of x.  As discussed earlier, this uncertainty arises from 
errors in measurement that are random with respect to magnitude and direction over the course 
of taking the measurement sample. 

                                                 
32 Note that this categorization applies to the manner in which estimates are made, not to the types of errors 
encountered.  In the past, error types were usually classified as either random or systematic.  These classifications 
are not related to Type A or B analysis designations. 
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This uncertainty represents the random uncertainty in making a single measurement.  Of equal 
importance is the uncertainty in the mean value obtained with a given measurement process.  
This uncertainty is obtained from something called the sampling distribution and is written 

 ,
,

x ran
x ran

x

s
u

n
 . (A-18) 

The Sample Degrees of Freedom 

As Eq. (A-17) shows, the sample standard deviation is obtained by dividing the sum of the 
square of sampled deviations from the mean by the sample size minus one.  As it turns out, 
dividing by n -1 instead of n is done to ensure that the standard deviation estimate is robust.  The 
number n - 1 is called the degrees of freedom for the estimate. 
 
The degrees of freedom for an estimate is the number of independent pieces of information that 
go into computing the estimate.  The greater the degrees of freedom, the closer a sample estimate 
will be to its population counterpart.  Because of this, the degrees of freedom is a useful quantity 
for establishing confidence limits and other decision variables.  We will discuss degrees of 
freedom in more general terms later when we examine combinations of uncertainties. 
 
Confidence Limits 

The statistics obtained from a measurement sample can be used to compute limits that bound the 
mean value of the measurand with a specified level of confidence.  The procedure utilizes the 
sample mean, standard deviation and degrees of freedom.  If the variable of interest is normally 
distributed, confidence limits of 

 /2, xx t s   (A-19) 

are said to contain the population mean value with (1 - )  100% confidence.  In the above 
expression, the variable t, is the t-statistic for a two-sided confidence level of 1 -  and  
degrees of freedom. 
 
Note that the expression for computing confidence limits differs from the above if the measured 
variable is not normally distributed.  For example, if the uniform distribution applies, the 
confidence limits would be computed according to 

3 xx P s , 

where P = % confidence / 100. 
 

A.3.3.2 Type B Estimation 
A Type B estimate is obtained by drawing on recollected experience concerning the values of 
measured quantities or on knowledge of the errors in these quantities is.  Type B estimates are 
made in the absence of recorded samples of measurement data.  This does not mean that a Type 
B estimate is, by nature, obtained haphazardly.  The process by which such estimates are arrived 
at can be cast in a structured format. 
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Heuristic Estimation Process 

In making Type B estimates, we are free to draw on experience in any way that leads to 
consistent and reliable uncertainty estimates.  A structured approach that has proved to be fruitful 
involves the following steps: 

• Estimate error containment limits 
• Estimate a containment probability 
• Estimate the degrees of freedom 
• Assume an underlying probability distribution and calculate the standard deviation 

 
Estimate Containment Limits 

Containment limits are limits that are said to "contain" or "bound" values of a variable of 
interest.  These limits can contain either measured values or measurement errors.  In developing 
containment limits, it is recommended that the best available experience with respect to 
containment limits be sought.  
 
Containment limits are usually attribute tolerances, SPC control limits or other limits estimated 
from experience.  An example of such limits would read something like "about 90% of the 50 or 
so cases observed, have fallen within ±10 psi."  In this statement, the containment limits are ±10 
psi, and the 90% figure represents a containment probability. 
 
Estimate a Containment Probability 

In statistics, we often use a sampled mean and standard deviation to estimate limits that can be 
said to bound deviations from the mean of a population.  We call these limits confidence limits.  
The probability that the confidence limits will bound deviations from the mean is called the 
confidence level. 
 
When making heuristic estimates of uncertainty, we instead use the terms containment limits 
and containment probability. 
 
The containment probability is the probability that a set of containment limits will bound 
measured values or errors.  It is recommended that the best available information be used in 
estimating containment probabilities.  For example, if calibration history is available for a 
toleranced attribute, the number of observed in-tolerances divided by the number of calibrations 
would be a good estimate of the containment probability.  The containment limits would, of 
course, be the tolerance limits. 
 
Determine Degrees of Freedom 

A value for the degrees of freedom can be found for a Type B estimate of uncertainty just as for 
an uncertainty or standard deviation estimate obtained from a random sample. 
 
If a Type B estimate is obtained solely from containment limits and a containment probability, 
then the degrees of freedom is usually taken to be infinity.  If an uncertainty estimate was an end 
in itself, this practice would not cause any difficulties.  However, uncertainty estimates have no 
intrinsic value.  They are merely statistics that are used to make inferences, establish error 
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containment limits (e.g., attribute tolerance limits), compute risks. etc.  More will be said on this 
later under the topic Type B Formats. 
 
Compute the Standard Deviation 

The steps in the process of obtaining Type B estimates of uncertainty are as follows: 
 
1. Estimate the Expected Value for the Population.   

The expected value is usually a design value or "mode" value for the variable of interest.  For 
example, the expected value for a 12 VDC source is 12 volts.  The expected value for the 
resolution error is zero. 

 
2. Estimate the Population Spread and the Degrees of Freedom.  The population spread is the 

standard deviation of the underlying distribution for errors in the variable of interest.  For 
normally distributed variables, the standard deviation is estimated according to 

 
,

Standard Deviation
L

t 

 , (A-20) 

where L is a containment limit, and  is the degrees of freedom.  The variable  is related to 
the containment probability p according to 


(1 ) / 2, for two sided containment limits

1 , for a one sided containment limit .

p

p



 
 

 (A-21)

 
Example 

To illustrate the Type B estimation process, we consider the uncertainty due to the bias of a 
reference attribute.  In this illustration, imagine that we use a tape measure to measure the 
distance traveled by a car and a stopwatch to measure the elapsed time.  The purpose of these 
measurements is to obtain the speed of the car. 
 
Suppose that in an interval of time t we measure the distance traveled by the car to be X meters.  
We can make repeated measurements for the same time interval and use the data to estimate the 
random uncertainty in the measurement process, as discussed above.  But we suspect that there 
are other uncertainties to account for.  For one thing, we suppose that there is likely to be some 
systematic error present in each measurement due to a possible bias in the tape measure (we will 
ignore errors in the time measurement to simplify the discussion).  This bias arises primarily 
from errors in the tape measure's manufacturing process and to stresses experienced during use. 
 
We estimate the tape measure's bias uncertainty as follows.  Apart from thermal expansion or 
contraction, response to stress or secondary effects, we know that the bias of the tape measure we 
use is a fixed quantity that persists from measurement to measurement.  However, we don't know 
what the bias is.  All we know is that the tape measure was drawn at random from its population 
and that each member of the population has its own bias.  If we were to somehow employ a 
perfect measuring device and measure the bias of each member of the population, we would see 
that these measurements would follow some kind of probability distribution.  The spread or 
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standard deviation in this distribution is the uncertainty in the bias of a tape measure drawn from 
the population. 
 
To estimate the tape measure bias uncertainty, we use the manufacturer's specifications, together 
with an estimated confidence level that the tape measure is within specification.  Suppose that 
the tolerance limits for the tape measure are ± 0.5mm and that the confidence that the tape 
measure is in-tolerance is 95%.  We compute the standard deviation for the tape measure bias 
according to 

0.025,

0.5 mm
bias t 

  , 

where the variable t0.025, is a coverage factor representing an in-tolerance confidence of 95% and 
 degrees of freedom.  By comparing this expression with what we discussed earlier, we see that 
the tolerance limits serve as the error containment limits, and that the confidence level suffices 
as the containment probability. 
 
We now estimate  and t0.025,.  To do this, we need to make certain assumptions about the 
probability distribution for tape measure biases.  Given what we know about the tape measure's 
distribution, which is very little, we use the most appropriate distribution we can think of for the 
problem in front of us.  This distribution is the normal distribution.  As for the degrees of 
freedom, we would need some information about the confidence level used or about the 
reliability of the ± 0.5mm tolerance limits.  We don't have this information, so we will assume 
infinite degrees of freedom, i.e., we will set  = .  From statistical tables, we obtain a value 
t0.025, = 1.960, which yields 

0.5 mm
0.255 mm

1.96bias   . 

This is our estimate for the uncertainty in the bias of the tape measure.  Accordingly, we write 

0.255 mmbiasu  . 

Heuristic uncertainty estimates for other error sources are conducted in a similar manner.  As a 
final note, we mention that a different result would have been obtained if we had knowledge 
about the degrees of freedom associated with the error containment limits (tolerance limits) and 
the containment probability (confidence level).  If the degrees of freedom were known, we would 
have used the Student's t distribution rather than the normal distribution.  Developing heuristic 
estimates with nonzero degrees of freedom and with other error distributions is discussed in the 
next section. 
 
Type B Formats 

 For Type B estimates to be combined with Type A estimates in a meaningful way, the degrees 
of freedom associated with both must be determined.  This ensures that the degrees of freedom 
for the combined uncertainty will be statistically valid  a necessity for computing confidence 
limits and for other possible applications of the combined uncertainty, such as the analysis of 
decision risks. 
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The process of assembling the recollected experience and other technical data needed for 
developing Type B degrees of freedom estimates can be facilitated through the use of 
standardized formats.  These formats also provide a means of computing Type B estimates and 
placing them on a statistical footing. 
 
A.4 Multivariate Uncertainty Analysis 
Frequently, the value of a quantity of interest is obtained by measuring the values of constituent 
quantities.  An example is the measurement of velocity, obtained through measurements of time 
and distance.  In such cases, we are required to build an error model to work from in developing 
an expression for the uncertainty in the quantity of interest.   
 

A.4.1 Error Modeling 
Error modeling consists of identifying the various components of error and establishing their 
relationship to one another.  The guiding expression for this process is the system equation. 
 

A.4.1.1 The System Equation 
The system equation is the expression for the variable being sought in terms of its measurable 
components.  Establishing the system equation is often the most difficult part of the process.  If 
the system equation can be determined, then uncertainty analysis becomes almost automatic. 
 
For purposes of illustration, we consider a two-component system variable.  The expressions that 
ensue can easily be extended to system equations with arbitrary numbers of components.   
 
Let the component variables of the system equation be labeled x and y.  Then, if the variable of 
interest, labeled z, is expressed as a function of x and y, we have 

 ( , )z z x y . (A-22) 

A.4.1.2 Error Components 
Each measurable variable in the system equation is an error component.  The contribution of 
each error component to the error in the variable z is obtained in a Taylor series expansion of Eq. 
(A-22) 

 (2) ,z x y

z z

x y
              

O  (A-23) 

where O(2) indicates terms to second and higher order in the error variables.  These terms are 
usually negligible and are dropped from the expression to yield 

 z x y

z z

x y
             

. (A-24) 

A.4.2 Computing System Uncertainty 
Using Axiom 2 and the variance addition rule with this equation gives 

 2 2 2 2 2 ( , )z x x y y x y x y x yu a u a u a a u u     , (A-25) 
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where the coefficients ax and ay are 

 ,x y

z z
a a

x y

           
, (A-26) 

and the uncertainties are 

 var( ), var( )x x y yu u   . (A-27) 

 

A.4.2.1 Process Uncertainties 
Various sources of error contribute to each error component of a measurement.  Most commonly 
encountered are the measurement process errors described earlier 

• Measurement Bias 

• Random Error 

• Resolution Error 

• Digital Sampling Error 

• Computation Error 

• Operator Bias 

• Stress Response Error 

• Environmental/Ancillary Factors Error 
 
Labeling each of the relevant error sources with a number designator, we can write the error in a 
component x as 

 1 2x x x xn      , (A-28) 

and the uncertainty in the measurement of x becomes 

 
2 2 2 2

1 2 1 2 1 2

1 3 1 3 1 1

2 ( , )

2 ( , ) 2 ( , ) .
x x x xn x x x x

x x x x xn xn xn xn

u u u u u u

u u u u

  
      

    
  




 (A-29) 

A.4.2.2 Cross-Correlations 
The final topic of this section is the cross-correlations between error sources of different error 
components.  Cross-correlations occur when different components of a variable are measured 
using the same device, in the same environment, by the same operator or in some other way that 
would lead us to suspect that the measurement errors in the two components might be correlated. 
 
If the cross-correlation between the ith and the jth process errors of the measured variables x and 
y is denoted by ( , )xi yj   , then the correlation coefficient between x and y is given by 

 
1 1

1
( , )

yx nn

xy xi yj xi yj
i jx y

u u
u u

   
 

  , (A-30) 

where nx and ny are the number of process errors for the x and y error components, respectively, 
and the component uncertainties are 
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1

2 2

1 1 1

2 ( , )
x x xn n n

x xi xi xj xi xj
i i j i

u u u u  


   

    , (A-31) 

and  

 
1

2 2

1 1 1

2 ( , )
y y yn n n

y yi yi yj yi yj
i i j i

u u u u  


   

    . (A-32) 

 
A.5 Expanded Uncertainty 
The expanded uncertainty is a limit obtained by multiplying an uncertainty estimate by a 
specified coverage factor.  For technology management purposes, it is desirable to relate the 
coverage factor to a desired confidence level.  If this is done, then the expanded uncertainty 
serves as a confidence limit that can be said to bound errors with a stated degree of confidence. 
 
Suppose, for example, that a mean value x  and an uncertainty estimate u have been obtained for 
a variable x, along with a degrees of freedom estimate .  Confidence limits ± Up, that bound 
errors in x with some probability p can be computed as33 

 , ,pU t u   , (A-33) 

where the coverage factor ,t   is the familiar Student's t-statistic with  = ( 1 - p) / 2 for two-
sided limits and  = ( 1 - p) for single-sided limits.  In using the expanded uncertainty to indicate 
our confidence in the estimate x , we would say that the value of x is estimated as x  ± Up, with 
p  100% confidence. 
 
Some individuals and agencies employ a fixed, arbitrary number to use as a coverage factor.  The 
argument for this practice is primarily based on the assertion that the degrees of freedom for 
Type B estimates cannot be rigorously established.  Accordingly, it makes little sense to attempt 
to determine a t-statistic based on a confidence level and degrees of freedom for a combined 
Type A/B uncertainty.  Until recently, this assertion had been true.  Methods now exist, however, 
that permit the determination of Type B degrees of freedom (See Appendix K).  Given this, the 
practice of using a fixed number for all expanded uncertainty estimates is not recommended.  
Such estimates are, at best, only loosely related to confidence limits. 
 
A.6 Test and Calibration Scenarios 
This section discusses information obtained from measurements made during calibration with a 
focus on developing uncertainty estimates that are applicable to measurement decision risk 
analysis.  Four calibration scenarios are discussed:  

1. The measurement reference (MTE) measures the value of an attribute of the unit under 
test (UUT) that provides an output or stimulus. 

2. The UUT measures the value of a reference attribute of the MTE that provides an output 
or stimulus. 

3. The UUT and MTE each provide an output or stimulus for comparison using a bias 
cancellation comparator. 

                                                 
33 The distribution for the population of errors in x is assumed to be normal in this example; hence the use of the t-
statistic for computing confidence limits. 

Downloaded from http://www.everyspec.com



 

- 92 - 
 

4. The UUT and MTE both measure the value of an attribute of a common device or artifact 
that provides an output or stimulus. 

 
The information obtained includes an observed value, referred to as a “measurement result” or 
“calibration result,” and an estimated uncertainty in the measurement error.  For each scenario, a 
measurement equation is given that is applicable to the manner in which calibrations are 
performed and calibration results are recorded or interpreted. 
 
The measurement scenarios turn out to be simple and intuitive.  In each, the measurement result 
and the measurement error are separable, allowing the estimation of measurement uncertainty.  
For the purposes of this Handbook Annex, it is assumed in each scenario that the measurement 
result is an estimate of the value of the bias of the UUT attribute. 
 

A.6.1 Basic Notation 
The subscripts and variables designators in this Appendix are summarized in Table A-2.  With 
this notation, measurement error is represented by m, the error in a calibration result by cal and 
the bias in the UUT attribute by eUUT,b. 
 

Table A-2.  Basic Notation. 

Notation Description 

e an individual measurement process error, such as 
repeatability, resolution error, etc. 

 combined errors comprised of individual 
measurement process errors 

m measurement 

b bias 

cal calibration 

true true value 

n nominal value 
 
As stated in the introduction, specific measurement equations will be given for each calibration 
scenario.  In each equation, quantities relating to the UUT are indicated with the notation x and 
quantities relating to the MTE with the notation y.  For example, in Scenario 1, where the MTE 
directly measures the value of the UUT attribute, the relevant measurement equation is 

 true my x   , (A-34) 

where y represents a measurement taken with the MTE, given a UUT attribute true value xtrue, 
and m is the measurement error.  Variations of Eq. (A-34) will be encountered throughout this 
Appendix.34 
 
                                                 
34 In taking a sample of values of y in a test or calibration, the quantity xtrue may vary from measurement to 
measurement.  Since contributions to erep due to these variations are not distinguishable from a random error 
contribution to m, the quantity erep is referred to as a “measurement process error,” i.e., one emerging from the 
measurement process. 
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A.6.2 Measurement Uncertainties 
Measurement errors and attribute biases are random variables that follow probability 
distributions.  Each distribution is a relationship between the value of an error and its probability 
of occurrence.  Distributions for errors that are tightly constrained correspond to low uncertainty, 
while distributions for errors that are widely spread correspond to high uncertainties.  
Mathematically, the uncertainty due to a particular error is equated to the spread in its 
distribution.  This spread is just the distribution standard deviation which is defined as the square 
root of the distribution variance [A-1, A-2].  Letting u represent uncertainty and “var()” the 
statistical variance of the distribution of an error , we write 

 var( )u  . (A-35)  

This expression will be used in this Appendix as a template for estimating measurement process 
uncertainties encountered in the various calibration scenarios. 
 

A.6.3 Measurement Error Sources 
Typically, calibration scenarios feature the following set of measurement process errors or “error 
sources.” 

eMTE,b = bias in the measurement reference 

erep = repeatability or “random” error 

eres = resolution error 

eop = operator bias 

eother = other measurement error, such as that due to environmental corrections, ancillary 
equipment variations, response to adjustments, etc. 

 

A.6.3.1 Measurement Reference Bias 
The error in a measurement reference attribute, at any instant in time, is composed of a 
systematic component and a random component.  The systematic component is called “attribute 
bias.”  Attribute bias is an error component that persists from measurement to measurement 
during a “measurement session.”  Attribute bias excludes resolution error, random error, operator 
bias and other sources of error that are not properties of the attribute.35 
 

A.6.3.2 Repeatability 
Repeatability is a random error that manifests itself as differences in measured value from 
measurement to measurement during a measurement session.  It should be said that random 
variations in UUT attribute value and random variations due to other causes are not separable 
from random variations in the value of the MTE reference attribute or any other error source.  
Consequently, whether erep manifests itself in a sample of measurements made by the MTE or by 
the UUT, it must be taken to represent a “measurement process error” rather than an error 
attributable to any specific influence. 

                                                 
35 For purposes of discussion, a measurement session is considered to be an activity in which a measurement or 
sample of measurements is taken under fixed conditions, usually for a period of time measured in seconds, minutes 
or, at most, hours. 
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A.6.3.3 Resolution Error 
Reference attributes and/or UUT attributes may provide indications of sensed or stimulated 
values with some finite precision.   
 
For example, a voltmeter may indicate values to four, five, six, etc., significant digits.  A tape 
measure may provide length indications in meters, centimeters and millimeters.  A scale may 
indicate weight in terms of kg, g, mg, etc.  The smallest discernible value indicated in a 
measurement comprises the resolution of the measurement. 
 
The basic error model for resolution error is 

xindicated = xsensed + eres, 

where xsensed is a “measured” value detected by a sensor or provided by a stimulus, xindicated is the 
indicated representation of xsensed and eres is the resolution error. 
 

A.6.3.4 Operator Bias 
Because of the potential for operators to acquire measurement information from an individual 
perspective or to produce a systematic bias in a measurement result, it sometimes happens that 
two operators observing the same measurement result will systematically perceive or produce 
different measured values.  The systematic error in measurement due to the operator’s 
perspective or other tendency is referred to as Operator Bias. 
 
Operator bias is a "quasi-systematic" error, the error source being the perception of a human 
operator.  While variations in human behavior and response lend this error source a somewhat 
random character, there may be tendencies and predilections inherent in a given operator that 
persist from measurement to measurement. 
 
The random contribution is included in the random error source discussed earlier.  The 
systematic contribution is the operator bias. 
 

A.6.3.5 Repeatability and Resolution Error 
It is sometimes argued that repeatability is a manifestation of resolution error.  To address this 
point, imagine three cases.  In the first case, values obtained in a random sample of 
measurements take on just two values and the difference between them is equal to the smallest 
increment of resolution.  If this is the case, we can conclude that “background noise” random 
variations are occurring that are beyond the resolution of the measurement.  If so, we cannot 
include repeatability as an error source but must acknowledge that the apparent random 
variations are due to resolution error.  Accordingly, the uncertainty due to resolution error should 
be included in the total measurement uncertainty but the uncertainty due to repeatability should 
not. 
 
In the second case, values obtained in a random sample are seen to vary in magnitude 
substantially greater than the smallest increment of resolution.  In this case, repeatability cannot 
be ignored as an error source.  In addition, since each sampled value is subject to resolution 
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error, resolution error should also be separately accounted for.  Accordingly, the total 
measurement uncertainty must include contributions from both repeatability uncertainty and 
resolution uncertainty. 
 
The third case is not so easily dealt with.  In this case, values obtained in a random sample of 
measurements are seen to vary in magnitude somewhat greater than the smallest increment of 
resolution but not substantially greater.  We perceive an error due to repeatability that is 
separable from resolution error but is partly due to it.  It then becomes a matter of opinion as to 
whether to include repeatability and resolution error in the total measurement error.  Until a clear 
solution to the problem is found, it is the opinion of the authors that both should be included in 
this case. 
 

A.6.3.6 Other Error 
Other measurement error is a catch-all label applied to errors such as those due to environmental 
corrections, ancillary equipment variations, response to adjustments, etc.   For example, suppose 
that “other” error is due to an environmental factor, such as temperature, vibration, humidity or 
stray emf.  In many cases, as in accommodating thermal expansion, the effect of an 
environmental factor can be corrected for.  Such corrections usually rely on a measurement of 
the driving environmental factor. 
 
When this happens, the attribute that measures the environmental factor is referred to as an 
ancillary attribute.  An example would be a thermometer reading used to correct for thermal 
expansion in the measurement reference and the UUT attributes.  Since an ancillary attribute is 
subject to error, as is any other attribute, this error can lead to an error in the environmental 
correction.  The uncertainty in the error of the correction is a function of the uncertainty in the 
error due to the environmental factor. 
 
For a more complete discussion on uncertainties due to environmental and other ancillary 
factors, see Ref [A-1]. 
 

A.6.4 Calibration Error and Measurement Error 
For the scenarios discussed in this Appendix, the result of a calibration is taken to be the 
estimation of the bias eUUT,b of the UUT attribute.  The error in the calibration result is 
represented by the quantity cal.  In all scenarios, the uncertainty in the estimation of eUUT,b is 
computed as the uncertainty in cal.  For some scenarios, cal is synonymous with the 
measurement error m or its negative -m.  In other scenarios, as in Scenario 2 where the UUT 
measures the MTE attribute, m includes eUUT,b.  Since eUUT,b cannot be included in cal, the latter 
of which is the error in the estimation of eUUT,b, we have a situation where cal and m may not be 
of the same sign or magnitude. 
 

A.6.5 UUT Attribute Bias 
For calibrations, it is tacitly assumed that the UUT attribute of interest is assigned some design 
or “nominal” value xn.  The difference between the UUT attribute’s true value, xtrue, and the 
nominal value xn is the UUT attribute’s bias eUUT,b.  Accordingly, we can write 

Downloaded from http://www.everyspec.com



 

- 96 - 
 

 ,true n UUT bx x e  .36 (A-36) 

In some cases, the UUT attribute is a passive attribute, such as a gage block or weight, whose 
attribute of interest is a simple characteristic like length or mass.  In other cases the UUT is an 
active device, such as a voltmeter or tape measure, whose attribute consists of a reading or other 
output, like voltage or measured length.  In the former case, the concepts of true value and 
nominal value are straightforward.  In the latter case, some comment is needed. 
 
As stated earlier, we consider the result of a calibration to be an estimate of the quantity eUUT,b.  
From Eq. (A-36), we can readily appreciate that, if we can assign the UUT a nominal value xn, 
estimating xtrue is equivalent to estimating eUUT,b.  Additionally, we acknowledge that eUUT,b is an 
“inherent” property of the UUT, independent of its resolution, repeatability or other 
characteristic dependent on its application or usage environment.  Accordingly, if the UUT’s 
nominal value consists of a measured reading or other actively displayed output, the UUT bias 
must be taken to be the difference between the true value of the quantity being measured and the 
value internally sensed by the UUT, with appropriate environmental or other adjustments applied 
to correct this value to reference (calibration) conditions. 
 
For example, imagine that the UUT is a steel yardstick whose length is a random variable 
following a probability distribution with a standard deviation arising from variations in the 
manufacturing process.  Imagine now that the UUT is used under specified nominal 
environmental conditions.  While under these conditions, repeatability, resolution error, operator 
bias and other error sources may come into play, the bias of the yardstick is systematically 
present, regardless of whatever chance relationship may exist between the length of the measured 
object, the closest observed “tick mark,” the temperature of the measuring environment, the 
perspective of the operator, and so on. 
 

A.6.6 MTE Bias 
The value of the reference attribute of the MTE, against which the value of the UUT attribute is 
compared, has an inherent deviation eMTE,b from its nominal value or a value stated in a 
calibration certification or other reference document.  Letting ytrue represent the true value of the 
MTE attribute and letting yn represent the MTE attribute nominal or assumed value, we have 

 ,true n MTE by y e  .37 (A-37) 

In some cases, the MTE attribute is a passive attribute, such as a gage block or weight, whose 
attribute is a simple characteristic like length or mass.  In other cases the MTE is an active 
device, such as a voltmeter or tape measure, whose attribute consists of a reading or other output, 
like voltage or measured length.  In either case, it is important to bear in mind that eMTE,b is an 
inherent property of the MTE, exclusive of other errors such as MTE resolution or the 
repeatability of the measurement process.  It may vary with environmental deviations, but can 

                                                 
36 Note that Eq. (A-36) is not a measurement model as defined in the basic measurement equation given in Section 
2.2.2.  Rather, it is a statement of the relationship between the UUT attribute’s true value, its nominal value and its 
inherent bias.  Given this, if we view the attribute’s nominal value as a “measurement” of its true value, then the 
relationship between the “measurement” error and the attribute bias is m = -eUUT,b. 
37 See Footnote 37. 
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usually be adjusted or corrected to some reference set of conditions.  An illustration of such an 
adjustment is given below in Scenario 1. 
 
A.7 Calibration Scenarios 
The four calibration scenarios identified in this Appendix’s introduction are described in detail in 
the following discussions.  The descriptions are not offered to serve as recipes to be followed as 
dogma but are, instead, intended to provide guidelines for developing uncertainty estimates 
relevant to each scenario.  Hopefully, the structure and content of each description will assist in 
developing whatever mathematical customization is needed for specific measurement 
situations.38 
 
In each scenario, we have a measurement of eUUT,b, denoted , and a calibration error cal.  The 
general expression is 

,UUT b cale   . 

 

 
Figure A-8.  Scenario 1 

The MTE measures the value of a UUT Attribute.  The output is the battery voltage. 

 
Since eUUT,b is the quantity being estimated by calibration, as discussed earlier, the uncertainty of 
interest is understood to be the uncertainty in  given the UUT bias eUUT,b.  Then, by Eq. (A-35), 
we have 

 ,

var( )

var( )

var( ) .

cal

UUT b cal

cal

u

e













 (A-38) 

 

A.7.1 Scenario 1:  The MTE Measures the UUT Attribute Value 
In this scenario, the UUT is a passive device whose calibrated attribute provides no reading or 
other metered output.  Its output may consist of a generated value, as in the case of a voltage 

                                                 
38 Examples demonstrating the procedures and concepts of this section are given in Chapter 6 of the Handbook. 
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reference, or a fixed value, as in the case of a gage block.39  The measurement equation is 
repeated from Eq. (A-34) as 

 true my x   , (A-39) 

where y is the measurement result obtained with the MTE, xtrue is the true value of the UUT 
attribute and m is the measurement error. 
 
The “measured” value provided by the UUT is its nominal value xn, given in Eq. (A-36), so that 

 xtrue = xn  eUUT,b. (A-40) 

Substituting Eq. (A-40) in Eq. (A-39), we write the measurement equation as 

,n UUT b my x e    . 

The difference y – xn is a measurement of the UUT bias eUUT,b.  We denote this quantity by the 
variable  and write 

 ,

, .

n

UUT b m

UUT b cal

y x

e

e





 
 

 

 (A-41) 

For this scenario, the calibration error cal is equal to the measurement error m and is comprised 
of MTE bias, measurement process repeatability, MTE resolution error, operator bias, etc.  The 
appropriate expression is 

 ,cal MTE b rep res op othere e e e e      . (A-42) 

Since the UUT is a passive device in this scenario, resolution error, and operator bias arise 
exclusively from the use of the MTE, i.e., eUUT,res and eUUT,op are zero.  In addition, the 
uncertainty due to repeatability is estimated from a random sample of measurements taken with 
the MTE.  Still, variations in UUT attribute value may contribute to this estimate.  However, 
random variations in UUT attribute value and random variations due to other causes are not 
separable from random variations due to the MTE.  Consequently, as stated earlier, erep must be 
taken to represent a “measurement process error” rather than an error attributable to any specific 
influence.  Given these considerations, the error sources erep, eres and eop in Eq. (A-42) are 

 

,

,

, ,

rep MTE rep

res MTE res

op MTE op

e e

e e

e e







 (A-43) 

where eMTE,rep represents the repeatability of the measurement process.  The “MTE” part of the 
subscript indicates that the uncertainty in the error will be estimated from a sample of 
measurements taken by the MTE. 
 

                                                 
39 Cases where the MTE and UUT attributes each exhibit a displayed value are covered later as special instances of 
Scenario 4. 
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In some cases, the error source eother may need some additional thought.  For example, suppose 
that eother arises from corrections ensuing from environmental factors, such as thermal expansion.  
If measurements are made of the length of a UUT gage block using an MTE reference “super 
mike,” it may be desired to correct measured values to those that would be attained at some 
reference temperature, such as 20 C. 
 
Let UUT,env and MTE,env represent thermal expansion corrections to the gage block and super 
mike dimensions, respectively.  Then the mean value of the measurement sample would be 
corrected by an amount equal to40 

 , ,env MTE env UUT env    , (A-44) 

and the error in the corrections would be written 

 
, , .

other env

MTE env UUT env

e e

e e


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 (A-45) 

From Eqs. (A-41) and (A-38), we can write the uncertainty in the calibration result  as 

 var( )cal calu  , (A-46) 

where, by Eq. (A-42), 

 
,

2 2 2 2 2
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 (A-47) 

and 
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
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 (A-48) 

For this scenario, no correlations are present between the error sources shown in Eq. (A-47).  
Hence the simple RSS uncertainty combination.  This may not be true for correlations within 
some of the terms, as may be the case when eother = eenv.  In this case, we would have 

 2 2
, , , ,2other MTE env UUT env env MTE env UUT envu u u u u   . (A-49) 

If the same temperature measurement device (e.g., thermometer) is used to make both the UUT 
and MTE corrections, we would have env = 1, and 

 
2 2

, , , ,

, ,

2

.

other MTE env UUT env MTE env UUT env

MTE env UUT env

u u u u u

u u

  

 
 (A-50) 

 

                                                 
40 The form of this expression arises from the fact that thermal expansion of the gage block results in an inflated 
gage block length, while thermal expansion of the supermike results in applying additional thimble adjustments to 
narrow the gap between the anvil and the spindle, resulting in a deflated measurement reading. 

Downloaded from http://www.everyspec.com



 

- 100 - 
 

 
Figure A-9.  Scenario 2 

The UUT measures the value of an MTE attribute.  The output is the gage block dimension. 

 

A.7.2 Scenario 2:  The UUT Measures the MTE Attribute Value 
In this scenario, the MTE is a passive device whose reference attribute provides no reading or 
other metered output.  Its output may consist of a generated value, as in the case of a voltage 
reference, or a fixed value, as in the case of a gage block.41  The measurement equation is a 
variation of Eq. (A-34) 

 x = ytrue + m , (A-51) 

where x is the value measured by the UUT, ytrue is the true value of the MTE attribute being 
measured and m is the measurement error.  Denoting the nominal or indicated value of the MTE 
as yn, we can write 
 ytrue = yn + eMTE,b , (A-52) 

where eMTE,b is defined in Eq. (A-37).  Substituting Eq. (A-52) in Eq. (A-51) gives 

 x = yn + eMTE,b + m , (A-53) 

and 

 ,MTE b me    (A-54) 

where  is the measurement of the UUT bias, given by 

 nx y   . (A-55) 

For this scenario, the measurement error is given by 

 ,m UUT b rep res op othere e e e e      , (A-56) 

where eUUT,b is the UUT bias defined in Eq. (A-36), erep is the repeatability of the measurement 
process as evidenced in the sample of measurements taken with the UUT, eres is the resolution 
error of the UUT and eop is operator bias associated with the use of the UUT 

                                                 
41 Cases where the MTE and UUT attributes each exhibit a displayed value are covered later as special instances of 
Scenario 4. 
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,

,

, .

rep UUT rep

res UUT res

op UUT op

e e

e e

e e







 (A-57) 

The error source eother may need to include mixed contributions as described in Scenario 1. 
 
Substituting Eq. (A-56) in Eq. (A-54) and rearranging gives 

 , ,UUT b MTE b rep res op othere e e e e e        (A-58) 

where erep, eres, and eop are defined in Eq. (A-57). 
 
As before, we obtain an expression that is separable into a measurement  of the UUT bias, 
eUUT,b and an error cal given by 
 ,cal MTE b rep res op othere e e e e      . (A-59) 

By Eq. (A-38), the uncertainty in the eUUT,b estimate in Eq. (A-58) is 

 var( )cal calu  , (A-60) 

where 
 2 2 2 2 2

,var( ) .cal MTE b rep res op otheru u u u u       (A-61) 

 

A.7.3 Scenario 3:  MTE and UUT Output Comparison (Comparator Scenario) 
In this scenario, a device is used to compare UUT and MTE values where both the UUT and the 
MTE provide an output value or stimulus.  For this scenario, the device is called a “comparator.”  
It is worthwhile to consider the following procedure: 

1.  The MTE is placed in the comparator. 

2.  The comparator indication or reading y is noted.  This indication or reading is taken to 
correspond to the MTE nominal or reading value yn. 

3.  The MTE is removed and the UUT is placed in the comparator. 

4.  The comparator indication or reading x is noted. 

5.  The difference  is calculated, where 
  = x – y (A-62) 

comprises a measurement of the UUT bias eUUT,b.  The UUT corrected value, denoted xc, is then 
given by 

 c nx y   . (A-63) 

With this procedure, any bias introduced by the comparator is cancelled in Eq. (A-62).42

                                                 
42 In many comparator calibrations, the comparator device is made up of two measurement arms and a meter or other 
indicator.  The UUT and the MTE are placed in different arms of the comparator and the difference between the 
values is displayed by the indicating device.  In such cases, if the UUT and MTE swap locations, and the average of 
the differences is recorded, then bias cancellation is achieved as in the procedure described above.  Of course, Eqs. 
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Figure A-10.  Scenario 3 

Measured values of the UUT and MTE attributes are compared using a comparator.  The outputs 
are the weights of the masses. 

 
In keeping with the basic notation, the indicated value y can be expressed as 

 ,true MTE my y    (A-64) 

and the indicated value x can be written 

 ,true UUT mx x    (A-65) 

where MTE,m is the measurement error involved in the use of the comparator to measure the MTE 
attribute value and UUT,m is the measurement error involved in the use of the comparator to 
measure the UUT attribute value. 
 
By Eq. (A-37), we can write 
 ,true n MTE by y e   (A-66) 

and 
 ,true n UUT bx x e   (A-67) 

Substituting Eq. (A-66) in Eq. (A-64) gives 

 , ,n MTE b MTE my y e     (A-68) 

and substituting Eq. (A-67) in Eq. (A-65) yields 

 , ,n UUT b UUT mx x e    . (A-69) 

Using Eqs. (A-68) and (A-69) in Eq. (A-62), we can write 

                                                                                                                                                             
(A-74) and (A-75) would need to be modified to accommodate any additional measurement process errors, such as 
additional contributions due to comparator resolution error. 

If this swapping procedure is not followed, the comparator bias is not cancelled and the applicable scenario becomes 
a variation of Scenario 1 or 2 in which the comparator, taken in aggregate, is treated as the MTE, with the reference 
item, indicating device, comparator arms, etc. acting as components.  The estimation of the bias uncertainty of the 
aggregate MTE is the subject of multivariate uncertainty analysis, described in Annex 3. 
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, , , ,( ) ,n n UUT b MTE b UUT m MTE m

x y

x y e e


 

 
     

 

so that 

 , , , ,( ) ( )UUT b n n MTE b UUT m MTE me x y e        . (A-70) 

In most calibrations involving comparators xn = yn and Eq. (A-70) becomes 43 

 , , , ,( )UUT b MTE b UUT m MTE me e      . (A-71) 

Then, as with other scenarios, we have by Eq. (A-71), a measured deviation  and a calibration 
process error cal: 

 
, , , ,

,

( )

,
UUT b MTE b UUT m MTE m

UUT b cal

e e

e

  


   

 
 (A-72) 

where 
 , , ,( )cal UUT m MTE m MTE be     . (A-73) 

Letting ec,b represent the bias of the comparator, MTE,m is given by 

 , , , , , ,MTE m c b MTE rep MTE res MTE op MTE othere e e e e      . (A-74) 

and UUT,m is 
 , , , , , ,UUT m c b UUT rep UUT res UUT op UUT othere e e e e      . (A-75) 

By Eqs. (A-72) and (A-38), the measurement uncertainty in  is obtained from 

var( )cal calu  , 

where 
 2 2 2 2 2

,var( )cal MTE b rep res op otheru u u u u      . (A-76) 

In this scenario, 

 

2
, ,

2 2 2
, , , ,

2 2 2
, , , ,

2 2 2
, , , , , ,

var( )

var( )

var( )

var( ) 2

MTE b MTE b

rep UUT rep MTE rep MTE rep UUT rep

res UUT res MTE res MTE res UUT res

op UUT op MTE op MTE op UUT op op MTE op UUT op

u e

u e e u u

u e e u u

u e e u u u u

 

   

   

    

 (A-77) 

and 
                                                 
43 To accommodate cases where yn  xn,  is redefined as 

 = (x – xn) – (y – yn) . 

As an example where xn  yn, consider a case where the MTE is a 2 cm gage block and the UUT is a 1 cm gage 
block.  Suppose that the comparator readings for the MTE and UUT are 2.10 cm and 0.99 cm, respectively.  Then 

 = (0.99  1.0 ) – (2.10  2.0) =  0.110 cm , 

and, using Eq. (A-63), we have 

xc = 2.0 cm + (0.99 - 2.10 ) cm = (2.0 – 1.11) cm = 0.89 cm. 
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 2 2 2
, , , , , ,var( ) 2other UUT other MTE other MTE other UUT other other MTE other UUT otheru e e u u u u     , (A-78) 

where other represents the correlation, if any, between eMTE,other and eUUT,other. 
 

A.7.4 Scenario 4:  MTE and UUT Measure a Common Attribute 
In this scenario, both the MTE and UUT measure the value of an attribute of a common device 
or artifact, where the attribute provides an output or stimulus.  The measurements are made and 
recorded separately.  An example of this scenario is the calibration of a thermometer (UUT) 
using a temperature reference (MTE), where both the thermometer and the temperature reference 
are placed in an oven and the temperatures measured by each are recorded. 
 

 
Figure A-11.  Scenario 4 

The UUT and the MTE Measure an Attribute of a Common Device or Artifact.  The output is the 
temperature of an oven. 

 
We let T denote the true value of the attribute and write the measurement equation as 

 ,UUT mx T   , (A-79) 

and 
 ,MTE my T   , (A-80) 

where UUT,m is the measurement process error for the UUT temperature measurement and MTE,m 
is the measurement process error for the MTE temperature measurement.  These errors are given 
by 
 , , , , , ,UUT m UUT b UUT rep UUT res UUT op UUT othere e e e e       (A-81) 

and 

 , , , , , ,MTE m MTE b MTE rep MTE res MTE op MTE othere e e e e      . (A-82) 

Substituting these expressions in Eqs. (A-79) and (A-80) gives 

 , , , , ,UUT b UUT rep UUT res UUT op UUT otherx T e e e e e       (A-83) 

and 
 , , , , ,MTE b MTE rep MTE res MTE op MTE othery T e e e e e      . (A-84) 

Defining 

UUTUUTUUT

Attribute:
Temperature

Reading





MTEMTEMTE
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Temperature

Reading

OUTPUT OUTPUT
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 x y   , (A-85) 
these expressions yield 
 ,UUT b cale   . (A-86) 

where 

 
, , , ,

, , , , ,

( ) ( )

( ) ( ) .

cal UUT rep MTE rep UUT res MTE res

UUT op MTE op UUT other MTE other MTE b

e e e e

e e e e e

    

    
 (A-87) 

By Eq. (A-38), the measurement uncertainty is again given by 

 var( )cal calu  , (A-88) 

where 
 2 2 2 2 2

,var( ) ,cal MTE b rep res op otheru u u u u       (A-89) 

and 

 

2
, ,

2 2 2
, , , ,

2 2 2
, , , ,

2 2 2
, , , , , ,

var( )

var( )

var( )

var( ) 2 ,

MTE b MTE b

rep UUT rep MTE rep UUT rep MTE rep

res UUT res MTE res UUT res MTE res

op UUT op MTE op UUT op MTE op op UUT op MTE op

u e

u e e u u

u e e u u

u e e u u u u

 

   

   

    

 (A-90) 

and 
 2 2 2

, , , , , ,var( ) 2other UUT other MTE other UUT other MTE other other UUT other MTE otheru e e u u u u     , (A-91) 

where, again, other represents a correlation between eMTE,other and eUUT,other. 

 

A.7.4.1 Scenario 4 Special Cases 
There are two special cases of Scenario 4 that may be thought of as variations of Scenarios 1 and 
2.  Both cases are accommodated by the Scenario 4 definitions and expressions developed above.  
 
Case 1:  The MTE measures the UUT and both the MTE and UUT provide a metered or 
other displayed output. 

In this case, the common attribute is a “stimulus” embedded in the UUT.  An example would be 
a UUT voltage source whose output is indicated by a digital display and is measured using an 
MTE voltmeter. 
 
Case 2:  The UUT measures the MTE and both the MTE and UUT provide a metered or 
other displayed output. 

In this case, the common attribute is a “stimulus” embedded in the MTE.  An example would be 
an MTE voltage source whose output is indicated by a digital display and is measured using a 
UUT voltmeter. 
 
A.8 Uncertainty Analysis Summary 
Four scenarios have been discussed that yield expressions for calibration uncertainty that are 
useful for risk analysis.  In all scenarios and cases, the calibration result is expressed as 
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,UUT b cale   , 

 and the calibration uncertainty is given by 

var( )cal calu  . 

Scenario 1:  MTE Measures the UUT Attribute Value 

In this scenario, the measurement result is  = y – xn, and cal is given in Eq. (A-42).  The 
quantity var(cal) is expressed in Eq. (A-47). 
 

Scenario 2:  UUT Measures the MTE Attribute Value 

In this scenario, the measurement result is  = x – yn and cal is given in Eq. (A-59).  The quantity 
var(cal) is expressed in Eq. (A-61). 
 

Scenario 3:  MTE and UUT Each Provide an Output 
In this scenario, the measured UUT attribute value receives a correction given by 

( )c nx y x y   , 

the measurement result is  = x – y, and cal is given in Eq. (A-73).  The quantity var(cal) is 
expressed in Eq. (A-76). 
 

Scenario 4:  MTE and UUT Measure a Common Attribute 

For this scenario, the measurement result is  = x – y and cal is given in Eq. (A-87).  The 
quantity var(cal) is expressed in Eq. (A-89). 
 

Uncertainty Analysis Examples 
Examples of uncertainty analyses for the four scenarios described in this appendix are given in 
[A-1] and [A-2].  In all scenarios and cases, the calibration result is expressed as 

,UUT b cale   , 

 and the calibration uncertainty is given by 

var( )cal calu  . 
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Appendix B - Test and Calibration Quality Metrics 
B.1 Introduction 
False accept and false reject risk are metrics by which to measure the quality of a test or 
calibration process relative to the attributes tested or calibrated.  As will be discussed in this 
appendix, there are several other metrics that can be employed.  The choices that should be 
adopted as “standard” are those that are both relevant to the measurement community and 
consistent with ISO/IEC 17025 [B-1].  Consistence with ISO/IEC 17025 will be ensured if the 
metrics used are informative to the user of tested or calibrated attributes.  Accordingly, selection 
of the risk metric should address, among other things, the organization’s quality policy, any 
contractual requirements and any national, international or industry standards being used. 
 
For discussion purposes, a tested or calibrated attribute of an item or system is assumed to have a 
specification consisting of a nominal or declared value and a tolerance limit, if the specification 
is single-sided, or an upper and lower tolerance limit if the specification is two-sided. 
 
B.2 Appendix B Nomenclature 
Let eUUT,b represent the deviation from nominal or bias of an attribute of interest and let  
represent a measurement of eUUT,b.  We define a performance or specification region L as all 
values of eUUT,b that lie within the attribute’s tolerance limits.  Similarly, we define an acceptance 
region A as all values of  that lie within the attribute’s acceptance limits. 
 
We also define the following terms that will be useful in establishing measurement quality 
metrics:44 

Table B-1.  Measurement Quality Metrics Variables. 

Variable  Description 
eUUT,b - variable representing the bias of the UUT attribute being tested or 

calibrated 
uUUT,b - standard uncertainty in eUUT,b 
 - variable representing measurements of eUUT,b 

ucal - standard uncertainty in  
n - number of attributes tested or calibrated 
ng - number of in-tolerance (“good”) attributes tested or calibrated 
nb - number of out-of-tolerance (“bad”) attributes tested or calibrated 
na - number of attributes accepted by testing or calibration 
nr - number of attributes rejected by testing or calibration 
nga - number of in-tolerance attributes accepted by testing or calibration 
ngr - number of in-tolerance attributes rejected by testing or calibration 
nba - number of out-of-tolerance attributes accepted by testing or calibration 
nbr - number of out-of-tolerance attributes rejected by testing or calibration 

UFAR - unconditional false accept risk 
CFAR - conditional false accept risk 
FRR - false reject risk 

CFAR’ - fraction of out-of-tolerance attributes that will be accepted 
CFRR’ - fraction of in-tolerance attributes that will be rejected 

GA - fraction of in-tolerance attributes that will be accepted 

                                                 
44 In this appendix, the variables x and y are substituted for the variables eUUT,b and  of Appendix A for simplicity of 
notation. 
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Variable  Description 
BR - fraction of out-of-tolerance attributes that will be rejected 

CGA - probability of accepting in-tolerance attributes 
CBR  probability of rejecting out-of-tolerance attributes 
-L1 - lower tolerance limit for x 
L2 - upper tolerance limit for x 
L - the region [–L1,L2] 

P(x L) - probability that a tested or calibrated attribute will be in-tolerance  
-A1 - lower acceptance limit for y 
A2 - upper acceptance limit for y 
A - the region [–A1,A2] 

P(y A) - probability that a tested or calibrated attribute will be accepted as being 
in-tolerance 

P(x L, y A) - probability that a tested or calibrated attribute will both be in-tolerance 
and accepted by testing or calibration 

P(x L| y A) - probability that an attribute accepted by testing or calibration will be out-
of-tolerance 

P(x L, y A) - probability that an attribute will both be out-of-tolerance and rejected by 
testing or calibration. 

P(x L, y A) - probability that an attribute will both be out-of-tolerance and accepted by 
testing or calibration. 

 
B.3 Discussion 

B.3.1 Unconditional False Accept Risk 
As pointed out in Chapters 3 and 4, the definition of false accept risk commonly encountered in 
measurement decision risk analysis articles and papers is the unconditional false accept risk 
UFAR, given by 
 ,( , )UUT bUFAR P e   L A . (B-1) 

To get some perspective on this definition of false accept risk, we first construct relationships 
that make use of the experimental definition of probability.  That is, we claim that, as n becomes 
large, 

 ( )an P n A , (B-2) 

and 
 ,( , )ba UUT bn P e n  L A . (B-3) 

From Eqs. (B-1) and (B-3), we see that UFAR can be written 

 ban
UFAR

n
 . (B-4) 

This is the number of accepted out-of-tolerance attributes divided by the number of attributes 
tested or calibrated.  This definition of false accept risk provides a metric that is relevant to the 
service provider.  Its relevance to the equipment user is discussed in the next section. 
 

B.3.2 Conditional False Accept Risk 
The user is not typically interested in the number of out-of-tolerance attributes accepted relative 
to the lot of attributes tested or calibrated.  From the user’s perspective a more relevant variable 
is the number of attributes that are out-of-tolerance in the lot of attributes that were accepted.  
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Given this, if rejected attributes are not adjusted or otherwise corrected, and are not included in 
the accepted lot, a more relevant definition of false accept risk is45 

 ba

a

n
CFAR

n
 . (B-5) 

Using Eqs. (B-2) and (B-3), we have 

 ,( , )

( )
UUT bP e

CFAR
P



 



L A
A

, (B-6) 

which, by the rules of probability, can be written as the conditional probability 

 ,( | )UUT bCFAR P e   L A . (B-7) 

Using the probability relations developed in Chapter 3, we have 

, ,( ) ( , ) ( , )UUT b UUT bP P e P e        L LA A A  

so that 

, ,( , ) ( ) ( , )UUT b UUT bP e P P e        L LA A A . 

Then Eq. (B-6) can be written 
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
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 (B-8) 

Note that we also can write 

,

,

( , )

( ) ( , ) ,
UUT b

UUT b

UFAR P e

P P e


 

  

    

L

L

A

A A
 

                                                 
45 If rejected attributes are corrected in some way and subsequently returned to service, a more involved definition of 
CFAR is needed.    This definition equates CFAR to the probability that UUT attributes will be out-of-tolerance 
following testing or calibration, regardless of whatever renewal action is taken.  This probability is best computed 
using the “post-test distribution” discussed in Chapter 2 of the Handbook and in Annex 1. 

It should be noted that, if the measurement uncertainty of the test or calibration process is much smaller than the 
tolerance limits of the UUT attribute, UFAR becomes a good approximation of the post-test CFAR computed in this 
way. 
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which shows that 

( )

UFAR
CFAR

P 


A
. 

From this relation, we see that CFAR is a larger number than UFAR.  Hence, computing false 
accept risk from perspective of the testing or calibration function may yield numbers that present 
a rosier picture than computations based on false accept risk from the user’s perspective. 
 
As an example, consider a situation in which 25% of the attributes in a lot of 1000 attributes are 
out-of-tolerance as received for testing.  Imagine that the measuring system is such that there is a 
6% probability that an attribute will be both out-of-tolerance and accepted as being in-tolerance: 

,( , ) 0.06UUT bP e   L A . 

In cases where the tested attributes have two-sided tolerances and have values that are normally 
distributed, these numbers correspond to an acceptance probability P(  A) of about 68.7%, 
assuming that the acceptance region is synonymous with the performance region, i.e., A = L.  
Hence, we expect in this case that about 687 attributes will be accepted, and the equipment user 
will receive a number of tested attributes in which 60 / 687  8.7% are out-of-tolerance. 
 
If we employ the UFAR definition of false accept risk the reported risk will be only 6% — which 
an unwitting user might find acceptable.  If, however, we the CFAR definition is applicable, the 
reported risk will be nearly 9%. 
 

B.3.3 False Reject Risk 
False reject risk is a quantity that is directly relevant to the test or calibration service provider 
and indirectly relevant to the user, to the extent that its value affects the cost of testing or 
calibration.  From both the service provider’s and user’s viewpoint, false reject risk can be 
defined as the probability that an attribute will both be in-tolerance and rejected.  Thus 

 
,

, ,

( , )

( ) ( , ) .
UUT b

UUT b UUT b

FRR P e

P e P e




  

    

L

L L

A

A
 (B-9) 

Continuing with the above example, P(eUUT,b  L) = 0.75 and  

, ,( , ) ( ) ( , )

0.687 0.06

0.627 ,

UUT b UUT bP e A P A P e A        

 


L L

 

so that FRR = 0.75 – 0.627 = 0.123.  With a false reject risk of over 12%, we would expect some 
corrective measures would be sought.  When we recall that this example is an instance where the 
commonly defined false accept risk is only 6%, these measures might not be forthcoming if the 
service provider is not cognizant of false reject risk. 
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B.3.4 Other Metrics 
From the foregoing, it is clear that three metrics of relevance to both user and service provider 
are UFAR, CFAR and FRR, as defined in Eqs. (B-1), (B-7) and (B-9).  In addition to these, there 
are others that could be of interest to quality managers and metrologists.  For example, we might 
be interested in the fraction of out-of-tolerance attributes that will be accepted and the fraction of 
in-tolerance attributes that will be rejected.  These metrics are respectively given by 

 ,
,

,

,

,

( , )
( | )

( )

( ) ( , )
,
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 (B-10) 

and 
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 (B-11) 

Continuing with the foregoing example, we have  

0.06 / 0.25 0.24FAR   , 
and 

1 0.627 / 0.75 0.164FRR    . 

These metrics show that 24% of out-of-tolerance attributes will be accepted and over 16% of in-
tolerance attributes will be rejected by the testing or calibration process.  While such numbers 
would be of interest primarily to the testing or calibration organization, it is easy to see that they 
could be useful in identifying measurement quality problems. 
 
Additional metrics are possible.  For instance, we might be interested in the probability of 
accepting in-tolerance attributes and the probability of rejecting out-of-tolerance attributes. 
 
The probability of accepting in-tolerance attributes is given by 

 
,

,
,

( , )
( | ).
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 (B-12) 
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With our example, we have 
0.627 / 0.75 0.836CGA   . 

The probability of rejecting out-of-tolerance attributes is expressed as 

 
,

,
,

( , )
( | ).

1 ( )

br

b

UUT b
UUT b

UUT b

n
CBR

n

P e
P e

P e






 
   

 
L

L
L

A
A

 (B-13) 

To compute the numerator using numbers at our disposal, we first need to decompose 
P(eUUT,bL,A).  Using the probability relations developed in Chapter 3, we can write 

, ,( , ) 1 ( or )UUT b UUT bP e P e      L LA A . 

But ,( or )UUT bP e  L A can be expressed as 

, , ,( or ) ( ) ( ) ( , )UUT b UUT b UUT bP e P e P P e          L L LA A A . 

Then 

, , ,( , ) 1 ( , ) ( ) ( )UUT b UUT b UUT bP e P e P e P           L L LA A A , 

which yields 
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 (B-14) 

With our example, we have 
1 0.06 / 0.25 0.76CBR    . 

These metrics indicate that about 84% of in-tolerance attributes will be accepted, while 76% of 
out-of-tolerance attributes will be rejected.  Again, these figures are relevant primarily to the 
service provider, but may prove useful as quality control variables. 
 
B.4 Controlling Risks with Guardbands 
False accept and false reject risks can be controlled at the process-level by the imposition of 
guardband limits [2], [3].  The development of such limits involves additional probability 
relations. 
 

B.4.1 Guardband Risk Relations 
It is often useful to relate the range of acceptable values A to the range L by variables called 
guardband multipliers.  Let g1 and g2 be lower and upper guardband multipliers, respectively.  
If -L1 and L2 are the lower and upper attribute tolerance limits, and -A1 and A2 the corresponding 
acceptance limits, then 

1 1 1

2 2 2 .

A g L

A g L



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Suppose that g1 and g2 are both < 1.  Then the acceptance region A is smaller than the 
performance region L.  If A is a subset of L then  

, ,( , ) ( , )UUT b UUT bP e P e     L L LA . 

From the definition of UFAR in Eq. (B-1), we see that, if A < L, then the estimated value of 
UFAR is less than if A = L.  Likewised, from the definition of CFAR in Eq. (B-7), it can be 
shown that, if A < L then, then the estimated value of CFAR is also less than if A = L. 
 
So, setting the guardband limits inside tolerance limits reduces false accept risk and increases 
false reject risk.  Conversely, setting guardband limits outside tolerance limits increases false 
accept risk and reduces false reject risk. 
 

B.4.2 Establishing Risk-Based Guardbands 
Guardbands can often be set to achieve a desired level of false accept or false reject risk, R.  
Cases where it is not possible to establish guardbands are those where the desired level of risk is 
not attainable even with guardband limits set to zero.  Moreover, solutions for guardbands are 
usually restricted to finding symmetric guardband multipliers, i.e., those for which g1 = g2 = g. 
 

B.4.2.1 False Accept Risk-Based Guardbands 
False accept risk-based guardbands are established numerically by iteration.46  The iteration 
adjusts the value of a symmetric guardband multiplier g, until the false accept risk (FAR) is 
approximately equal to a maximum allowable risk R.  The following algorithm illustrates the 
process: 
 
Step 1:  Set g = 1. 
Step 2:  Set A1 = gL1 and A2 = gL2 
Step 3:  Compute P(  A) and P(eUUT,b  L,   A) 
Step 4:  Compute false accept risk FAR (either UFAR or CFAR, as appropriate). 
Step 5:  If FAR < R, go to Case 1.  If FAR > R, go to Case 2 | Double.  If FAR  R, the process is 
complete. 
 
Case 1: FAR < R 

 Set g =  g / 2  
 Repeat Steps 2 through 4 
 If FAR < R, go to Case 1. If FAR > R, go to Case 2 | Bisect.  If FAR  R, the process is 

complete. 
 
Case 2: FAR > R 

 Double: Set g =  2g  
 Repeat Steps 2 through 4 
 If FAR < R, go to Case 1. If FAR > R, go to Case 2 | Double.  If FAR  R, the process is 

complete. 

                                                 
46 The bisection method of Appendix F is recommended. 

Downloaded from http://www.everyspec.com



 

- 115 - 
 

 Bisect: Set g =  g + g / 2  
 Repeat Steps 2 through 4 
 If FAR < R, go to Case 1. If FAR > R, go to Case 2 | Bisect.  If FAR  R, the process is 

complete. 
 

B.4.2.2 False Reject Risk-Based Guardbands 
False reject risk-based guardbands are established in the same way as false accept risk-based 
guardbands.  The following algorithm illustrates the process: 
Step 1:  Set g = 1 
Step 2:  Set A1 = gL1 and A2 = gL2 
Step 3:  Compute P(eUUT,b  L) and P(eUUT,b  L,   A) 
Step 4:  Compute false reject risk FRR 
Step 5:  If FRR < R, go to Case 1 | Double.  If FRR > R, go to Case 2.  If FRR  R, the process is 
complete. 
 
Case 1: FR < R 

 Double: Set g =  2g  
 Repeat Steps 2 through 4 
 If FRR < R, go to Case 1 | Double. If FRR > R, go to Case 2.  If FRR  R, the process is 

complete. 

 Bisect: Set g =  g + g / 2  
 Repeat Steps 2 through 4 
 If FRR < R, go to Case 1 | Bisect. If FRR > R, go to Case 2.  If FRR  R, the process is 

complete. 
 
Case 2: FR > R 

 Set g =  g / 2 
 Repeat Steps 2 through 4 
 If FRR < R, go to Case 1 | Bisect. If FRR > R, go to Case 2.  If FRR  R, the process is 

complete. 
 
B.5 Computing Probabilities 
In computing measurement decision risks, we use uncertainty estimates, along with a priori 
information, to compute the probabilities needed to estimate false accept and false reject risks.47 
 

B.5.1 The Basic Set of Integrals 

The in-tolerance probability P(eUUT,bL) is written 

, , ,( ) ( )UUT b UUT b UUT bP e f e de  
L

L . 

Let the joint pdf of eUUT,b and  be denoted f(eUUT,b,).  Then the probability that the UUT 
attribute is both in-tolerance and observed to be in-tolerance is given by 
                                                 
47 The subject of computing probabilities is also covered in Section 4.2.2 using the notation of the calibration 
scenarios described in Appendix A. 
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where the function f(|eUUT,b) is the conditional pdf of obtaining a value (measurement) , given 
that the bias of the value being measured is eUUT,b. 
 

B.5.1.1 Equipment Attribute Distributions 

Reference Attribute 

The normal distribution is usually assumed for the variable , conditional on the value of the 
variable eUUT,b.  Accordingly, the reference attribute pdf is given by 

2 2
,( ) /2

,

1
( | )

2
UUT b cale u

UUT b

cal

f e e
u




  , 

where ucal is the standard uncertainty in the measurement, given by 

2 2
,cal MTE b otheru u u  . 

In this expression, uMTE,b is the uncertainty in the reference attribute bias and uother is the 
combined standard uncertainty for any remaining measurement process errors.  The 
determination of ucal is covered in detail in Appendix A 
 
UUT Attribute 

A few useful UUT attribute distributions are described in Section A.2.2.2, in Appendix E and in 
the literature [B-4].  For purposes of illustration, the following employs the normal distribution.  
With this distribution, the pdf for eUUT,b is given by 

2 2
, ,/2

,

,

1
( )

2
UUT b UUT be u

UUT b

UUT b

f e e
u

 , 

where uUUT,b is the a priori standard deviation of the UUT attribute bias population. 48  For this 
pdf, the function P(eUUT,bL) becomes 

2 2
, /2

, ,

1
( )

2
UUT b xe u

UUT b UUT b

x

P e e de
u
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L

L . 

Since measurements  of eUUT,b follow a normal distribution with standard deviation uy and mean 
equal to eUUT,b, the function P(eUUT,bL, A) is written as 

2 2 2 2
, , ,/2 ( ) /2

, ,
,

1
( , )

2
UUT b UUT b UUT b cale u e u

UUT b UUT b
UUT b cal

P e e de e d
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 


      
L

L
A

A . 

The function P(yA) is obtained by integrating f(eUUT,b,y) over all values of eUUT,b 

                                                 
48 See Appendix B of Annex 1 or Appendix B of Annex 3 for expressions used to obtain estimates of the a priori or 
“pre-test” value of uUUT,b. 
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where 
2 2

,A UUT b calu u u  . 

Consider the case of symmetric tolerance limits and guardband limits.  Then the tolerance region 
can be expressed as ± L and the acceptance region as ± A, then the above expressions become 
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The value of the joint probability P(eUUT,b  L,   A) is obtained by numerical integration. 
 
B.6 Measurement Quality Metrics Estimation Procedure 
The procedure for calculating the measurement quality metrics defined in this appendix follows 
the basic "recipe" shown below. 

1. Establish the relevant quantities 

 The a priori UUT attribute distribution. 

 The UUT attribute in-tolerance probability prior to test or calibration. 

 An estimate of the UUT attribute bias at the time of test or calibration. 

 The reference attribute distribution. 

 The reference attribute tolerances. 

 The in-tolerance probability for the reference attribute at the time of test or calibration. 

 An estimate of the reference attribute bias at the time of test or calibration. 

2. Estimate the measurement process uncertainty. 
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3. Compute the metric UFAR, CFAR, FRR, CFAR’, CFRR’, GA or BR. 

4. Evaluate the metric to determine if corrective action is needed. 
 
B.7 Conclusion 
Which metric or metrics to use to evaluate measurement quality is a matter of choice within the 
context of the objectives of the test or calibration function.  The most common are UFAR or 
CFAR and FRR.  CFAR is applicable in cases where rejected attributes are not corrected and 
subsequently accepted.  UFAR is applicable in cases where the UUT in-tolerance probability is 
high, the TUR is large and rejected attributes are corrected and subsequently accepted.49   
 
For cases in between, either the Bayesian analysis method or the methods described in Handbook 
Chapter 2 and in Annex 2 are recommended. 
 
Use of the metrics FRR, CFAR’ and CFRR’ GA and BR should be governed by relevance to the 
service provider or equipment user. 
 
Note: 

Each metric described in this appendix has its value depending on the test and calibration 
scenario and the needs of the observer.  Each is representative of an unperturbed test and 
calibration process where no actions are taken with rejected items.  When adjustments or rework 
to the attributes of these items occurs, additional computation is required to evaluate the resulting 
effects as adjusted attributes have their own error distributions and risk parameters.  If these are 
“mixed” with accepted attributes, for example, the risk factors change and should be taken into 
consideration for evaluation of the relative merit of the risk parameters. 
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49  No nominal guidelines can be given as to what constitutes “high” and “large.”  These measures depend on the 
specifics of the test or measurement and on the risk control objectives. 

Note that Z540.3 [B-5] requires that UFAR be two percent or less. 
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Appendix C: Introduction to Bayesian Measurement 
Decision Risk Analysis 
In the 18th century, Reverend Thomas Bayes50 expressed the probability of any event – given 
that a related event has occurred – as a function of the probabilities of the two events occurring 
independently and the probability of both events occurring together.  The expression derived by 
Bayes is referred to as “Bayes’ theorem.”51 
 
As we will see, Bayes’ theorem has profound implications for the way we make decisions based 
on tests or measurements.  To illustrate, take the example in which a patient sees a doctor for a 
checkup.  The doctor knows a test he performs to diagnose a specific illness is 99 percent reliable 
– that is, 99 percent of sick people test positive, and 99 percent of healthy people test negative.  
The doctor also knows that only 1 percent of the general population is sick.52 
 
Imagine that the patient tests positive.  The doctor knows the chance of testing positive if the 
patient is sick, but what the patient wants to know is the chance that he is sick if he tests positive.  
The intuitive answer is 99 percent, but the correct answer is 50 percent.  To arrive at this answer, 
we need to use Bayes’ theorem. 
 
Bayes’ theorem emerges from the mathematics of probability.  In keeping with the customary 
notation of this discipline, we denote probability with the letter p and the probability of some 
event E taking place as p(E).  In the present example, we will denote the event that the patient is 
sick by the letter s and the probability of obtaining a positive test result by the + symbol.  Hence, 
the probability of being sick is written p(s) and the probability of obtaining a positive result is 
written p(+). 
 
There are two more probability relations that need to be described; one is the joint probability of 
two events occurring together and the other is the conditional probability that one event will 
occur, given that another event has occurred.  With joint probabilities, the two events are 
separated by a comma.  With this convention, the probability of being sick and getting a positive 
test result is written p(s,+).  For conditional probability, the first event and the subsequent event 
are separated by the | symbol.  With this convention, the probability of getting a positive test 
result, given that the patient is sick is written p(+ | s). 
 
What we are interested in solving for is the probability of being sick, given a positive test result 
p(s | +).  We solve for probability through the use of Bayes’ theorem. 
 
To get to Bayes’ theorem, we start by stating a powerful and simple relationship between joint 
probabilities and conditional probabilities.  For example, the relationship between ( , )p s and 

( | )p s is 

                                                 
50 Bayes was born in 1702, was Presbyterian Minister at Tunbridge Wells from before 1731 until 1752, and died in 
1761.  For more information, see Biometrica 45, 1958, 293-315. 
51 Phil. Trans. 53, 1763, 376-98.  Evidently, the paper was published posthumously. 
52 This example is adapted from C. Wiggins, “How can Bayes’ theorem assign a probability to the existence of 
God?,” Scientific American, April 2007. 
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 ( , ) ( | ) ( )p s p s p s   . (C-1) 
Likewise, we have 
 ( , ) ( | ) ( )p s p s p    . (C-2) 

Of course, the joint probability of getting both a positive result and being sick is the same as the 
joint probability of being sick and getting a positive result, i.e., p(s , +) = p(+ , s).  So, by Eqs. (C-
1) and (C-2), we can write 

 ( | ) ( ) ( | ) ( )p s p p s p s    . (C-3) 

Dividing both sides by p(+) yields Bayes’ theorem 

 
( | ) ( )

( | )
( )

p s p s
p s

p


 


. (C-4) 

From the information we have been given in the example, we note that p(s) = 0.01 and p(+ | s) = 
0.99.  If we indicate the event in which the patient is not sick by ,s  we also know that ( | )p s = 
0.01.  What we need now is the probability p(+). 
 
We first observe that there are only two ways to obtain a positive test result – either we obtain a 
positive result with a sick patient or with a healthy patient.  In the language of probability theory, 
this is written as 

 ( ) ( , ) ( , )p p s p s     . (C-5) 

We already have p(+ , s) in Eq. (C-1).  Similarly, we can write the joint probability ( , )p s  of 
having a healthy patient and a positive test result as 

 
( , ) ( | ) ( )

( | )[1 ( )].

p s p s p s

p s p s

  
  

 (C-6) 

Combining Eqs. (C-1) and (C-6) in Eq. (C-5), yields 

 ( ) ( | ) ( ) ( | )[1 ( )]p p s p s p s p s      , (C-7) 

and plugging in the numbers gives 

( ) (0.99)(0.01) (0.01)(0.99)

2(0.99)(0.01).

p   


 

This result, together with the values we have for ( | )p s and p(s), when substituted in Eq. (C-4), 
gives 

(0.99)(0.01)
( | ) 0.5

2(0.99)(0.01)
p s    . 

It is apparent that Bayes’ theorem can have practical implications – in this case, a decision 
whether to recommend a specific treatment or to pursue some alternative course. 
 
It is interesting to examine the impact that p(s) can have on decisions made on the outcome of 
the test.  For example, suppose all the numbers are the same as above, except that there is a 0.5 
percent chance of being sick.  Then p(s | +) turns out to be 0.332 or a little over 33 percent.  As 
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another example, suppose that the probability of being sick is 2 percent.  Then p(s | +) turns out 
to be 0.669 or almost 67 percent.  Evidently, the effect of p(s) on p(s | +) is quite dramatic.  This 
is shown in Table C-1. 
 

Table C-1.  Bayes’ Theorem Results for Different Values of p(s).53 

% of People 
Who are Sick p(s) 

% Chance of Being Sick 
if Tested Positive p(s | +) 

0.2 16.6 
0.5 
1.0 
2.0 
5.0 

33.2 
50.0 
66.9 
83.9 

 
C.1 Application to Measurement Decision Risk Analysis 

C.1.1 Conditional False Accept Risk 
In estimating the probability of making false decisions in calibration and testing, we want to 
calculate the probability that a unit-under-test (UUT) attribute, accepted as in-tolerance by the 
calibration or test process, is truly in-tolerance.  To do this, we use Bayes’ theorem to relate (1) 
the probability of an accepted UUT attribute being in-tolerance p(in|accept) to (2) the probability 
of observing an in-tolerance, given that the UUT attribute is in-tolerance, p(accept|in), (3) the 
general probability of the attribute being in-tolerance, p(in), and (4) the probability of observing 
an in-tolerance p(accept).  With this notation, Bayes’ theorem for the probability that accepted 
UUT attributes will be in-tolerance is written as 

 
( | ) ( )

( | )
( )

p accept in p in
p in accept

p accept
 . (C-8) 

From the relationship between joint and conditional probabilities discussed earlier, we can 
express the joint probability p(accept, in) as 

 ( , ) ( | ) ( )p accept in p accept in p in . (C-9) 

We can also write the joint probability p(accept, out) as 

 
( , ) ( | ) ( )

( | )[1 ( )].

p accept out p accept out p out

p accept out p in


 

 (C-10) 

We know that the UUT attribute is either in- or out-of-tolerance.  So, there are only two 
circumstances under which we accept the attribute.  As in the medical example, we use the 
language of probability theory and write 

 ( ) ( , ) ( , )p accept p accept in p accept out  . (C-11) 

Combining Eqs. (C-9) and (C-10) in Eq. (C-11) yields 

 ( ) ( | ) ( ) ( | )[1 ( )]p accept p accept in p in p accept out p in   . (C-12) 

                                                 
53 Values are computed using Eq. (4) for examples in which ( | )p s =0.99 and ( | )p s =0.01. 
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For the sake of discussion, assume that 85 percent of the time the UUT attribute of interest is 
received for calibration in-tolerance.  Also, suppose there is a 2 percent chance of accepting an 
out-of-tolerance attribute and a 98 percent chance of accepting an in-tolerance one.  Then 

( | ) 0.98p accept in  , ( ) 0.85p in  , ( | ) 0.02,p accept out   and Eq. (C-12) gives 

( ) (0.98)(0.85) (0.02)[1 (0.85)]

0.836.

p accept   


 

Substituting the values for the constituent probabilities in Eq. (C-8) yields 

(0.98)(0.85)
( | )

0.836
0.9964.

p in accept 


 

Thus, if no adjustments or other corrections are made to attributes that are observed to be in-
tolerance, 99.64 percent of accepted attributes will be in-tolerance and only 0.36 percent will be 
out-of-tolerance.  In other words, we will make an incorrect decision 0.36 percent of the time. 
 
Note that we could have written Bayes’ theorem as 

 
( | ) ( )

( | )
( )

p accept out p out
p out accept

p accept
 , (C-13) 

and would have gotten 

(0.02)(0.15)
( | ) 0.0036

0.836
p out accept   . 

The function p(out | accept) is called conditional false accept risk (CFAR). 
 

C.1.2 Unconditional False Accept Risk 
Another function that has been found to be useful is unconditional false accept risk (UFAR), 
defined as the joint probability of the attribute being out-of-tolerance and accepted as in-
tolerance.  UFAR is given by 

( , ) ( | ) ( )p out accept p accept out p out  
In the present example, 

( , ) (0.02)(0.15)

0.0030.

p out accept 


 

Notice that UFAR < CFAR.  This is true in general. 
 

C.1.3 False Reject Risk 
From the foregoing, it is easy to develop a function giving the probability ( , )p in reject  that an 
attribute will be both in-tolerance and rejected as being out-of-tolerance.  This function is called 
false reject risk (FRR).  To arrive at an expression for FRR, we first note that there are two 
outcomes for an in-tolerance attribute.  Either it is accepted or rejected.  Accordingly, 

 ( ) ( , ) ( , )p in p in accept p in reject  , (C-14) 
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so that 

( , ) ( ) ( , )p in reject p in p in accept  . 

Since p(accept, in) = p(in, accept), we can also write p(in, reject) as 

 ( , ) ( ) ( , )p in reject p in p accept in  . (C-15) 

Expressing the joint probability p(accept, in) in terms of the conditional probability p(accept|in), 
Eq. (C-15) can be expressed as 

 
( , ) ( ) ( | ) ( )

( )[1 ( | )].

p in reject p in p accept in p in

p in p accept in

 
 

 (C-16) 

For the example, p(in) = 0.85, p(accept | in) = 0.98, and Eq. (C-16) gives 

( , ) (0.85)(0.02)

0.0170.

p in reject 


 

 

C.1.4 Conditional False Reject Risk 
Another useful function is conditional false reject risks (CFRR).  This is the probability p(reject | 
in) of rejecting an in-tolerance attribute.  From the relationship between joint and conditional 
probabilities, we have 

 ( , ) ( | ) ( )p in reject p reject in p in , 
so that 

 
( , )

( | )
( )

p in reject
p reject in

p in
 . (C-17) 

This probability can also be written 

 ( | ) 1 ( | )p reject in p accept in  . (C-18) 

For the present example, since p(accept | in) = 0.98, 

( | ) 1 0.98 0.02p reject in    . 

This is the same answer as is obtained using Eq. (C-17). 
 
C.2 Application of Bayes’ Theorem with Measured Values 
The utility of Bayes’ theorem in estimating probabilities for false accepts and false rejects is not 
restricted to cases that make use of the probabilities p(accept|in) and p(accept|out).  The real 
power of Bayes’ theorem allows estimating false accept probabilities in cases where the result of 
calibration is a specific measured value – not just an in-tolerance or out-of-tolerance observation.  
For such cases, we avail ourselves of the foregoing probability definitions, but, instead of 
starting with probabilities, we work with probability density functions (pdfs).  A pdf  f(x) is 
related to a probability p(X) according to 

 ( ) ( )
X

p X f x dx


  . (C-19) 
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This definition can be used to show that pdfs follow the same rules as probabilities.  So, for two 
variables x and y, we have 

 ( , ) ( | ) ( ) ( | ) ( )f x y f x y f y f y x f x  , (C-20) 

and we can write Bayes’ theorem as 

 
( | ) ( )

( | )
( )

f y x f x
f x y

f y
 . (C-21) 

In general, calibration of a UUT attribute against a measurement reference attribute yields a 
calibration result , which is an estimate of the bias of the UUT attribute, denoted eUUT,b.  
Various calibration scenarios have been identified [C-1], with expressions for  and eUUT,b given 
for each.54  Other relevant quantities are the uncertainty in the calibration process, denoted ucal, 
and the bias uncertainty of the UUT as received for calibration, denoted uUUT,b. 
 
Using Eq. (C-21), Bayes’ theorem for each scenario is given by 

 , ,
,

( | ) ( )
( | )

( )
UUT b UUT b

UUT b

f e f e
f e

f





 . (C-22) 

Ordinarily, the pdf ,( | )UUT bf e is considered to be normal and is written 

 
2

,( )/2
,

1
( | )

2
UUT b cale u

UUT b

cal

f e e
u




  . (C-23) 

The pdf ,( )UUT bf e  may or may not be normal.  Cases where a lognormal, uniform or other 
distribution is applicable have been noted [C-2] but are not common, and the normal distribution 
is usually assumed.  Under this assumption, 

 
2 2

, ,/2
,

,

1
( )

2
UUT b UUT be u

UUT b

UUT b

f e e
u

 . (C-24) 

To obtain a Bayes’ relation, we first need to develop the pdf f().  It can be shown that this is 
obtained by integrating the joint pdf ,( , )UUT bf e  over all possible values of eUUT,b.  By Eq. (C-

20), we have 

, , ,( , ) ( | ) ( )UUT b UUT b UUT bf e f e f e  , 

and 

                                                 
54 See Section 4.3 and Appendix A. 
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2 2 2
, , ,

, ,

, , ,

( )/2 /2
,

,

( ) ( , )

( | ) ( )

1
.

2
UUT b cal UUT b UUT b

UUT b UUT b

UUT b UUT b UUT b

e u e u
UUT b

cal UUT b

f f e de

f e f e de

e e de
u u



 














  















 

After some rearranging, followed by completion of the integration, this reduces to 

 
2 2/21

( )
2

Au

A

f e
u




 , (C-25) 

where 

 2 2
,A cal UUT bu u u  . (C-26) 

Substituting Eqs. (C-23), (C-24) and (C-25) in Eq. (C-21) yields, after a little algebra, 

 
2 2

,( ) /2

,

1
( | )

2
UUT be u

UUT bf e e
u








  , (C-27) 

where 

 
2

,
2

UUT b

A

u

u
  , (C-28) 

and 

 ,UUT b cal

A

u u
u

u  . (C-29) 

C.2.1 CFAR Revisited 
The UUT attribute is in-tolerance if eUUT,b lies within its tolerance limits and is accepted without 
correction as in-tolerance if  falls within acceptable limits, sometimes referred to as “guardband 
limits.”55  Following the notation of [2], we denote the tolerance limits for eUUT,b as –L1 and L2 
and the acceptance limits for  as –A1 and A2.  Then the UUT attribute is in-tolerance if –L1 < 
eUUT,b < L2 and is observed in-tolerance if –A1 < < A2. 
 
While the use of acceptance limits that differ from tolerance limits are relevant to expressions for 
computing UFAR, CFAR, FRR and CFRR, given earlier, they are not relevant to computing these 
metrics using Bayesian analysis.  What we want to determine using Bayes’ theorem is simply the 
probability that the UUT attribute is out-of-tolerance, given a calibration result .  This can be 
expressed as 

 ( | ) 1 ( | )p out p in   , (C-30) 

where 

                                                 
55 The term “guardband” was used in the original and in early publications on the subject [C-4, C-5].  However, the 
alternative spelling “guard band” has found recent usage. 
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2

1

, ,( | ) ( | )
L

UUT b UUT b

L

p in f e de 


  . (C-31) 

If this result is not satisfactory, an adjustment or other correction of the UUT attribute value can 
be made, i.e., there is no need for special adjustment limits. 
 
If eUUT,b and  are normally distributed, as in Eqs. (C-23) and (C-24) then we can use Eq. (C-27) 
to get 

 

2
2 2

,

1

2
2

1

( ) /2

,

( )/

/2

( )/

2 1

1
( | )

2

1

2

1,

UUT b

L
e u

UUT b

L

L u

L u

p in e de
u

e d

L L

u u
















 







 

 






 





    
         

   



  (C-32) 

where  is the normal probability distribution function. 
 
As an example, consider a case where L1 = L2 = 10 mV, p(in) = 0.85 and ucal = 1.2755 mV.  With 
±10 mV tolerance limits and 0.85 in-tolerance probability, we have [2]56 

2
,

1

1

1 ( )
2

10 mV
6.9467 mV ,

1 0.85
2

UUT b

L
u

p in




   

 

 
   

 

 

and Eqs. (C-26) and (C-28) – (C-29) yield 

2 2(6.9467) (1.2755) mV

7.0628 mV,
Au  


, 

2

2

(6.9467)

(7.0628)

0.9674 ,

 






 

and 
(6.9467)(1.2755)

mV
7.0628

1.2545 mV.

u 


. 

                                                 
56 The function -1 is the inverse normal distribution function found in most spreadsheet applications. 
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Suppose we obtain a calibration result of  = 8 mV, giving a value  = (0.9674)(8 mV) = 7.7395 
mV.  With this value inserted in Eq. (C-32), along with the above value for u, we have 

   
 

10 7.7395 10 7.7395
( | ) 1,

1.2545 1.2545

1.8019 14.1407 1

1.8019 0.9642.

p in            
   

   

  

 

which corresponds to p(out | ) = 1 – p(in | ) = 0.0358.57  Note that a calibration result of  = 8 
mV is within the tolerance limits of ±10 mV.  The usual practice in calibration would be to 
pronounce the UUT attribute in-tolerance, based on this result and an adjustment or other 
correction would be made. 
 
If the attribute is passed with no adjustment or other correction, we have about a 3.6 percent 
chance of having falsely accepted an out-of-tolerance attribute.  Whether this is acceptable, 
depends on requirements for compliance with predetermined criteria sometimes based on cost, 
risk or other factors. 
 
Suppose we had obtained a calibration result of  = 5.0 mV.  Then performing the calculations 
gives p(out | )  0.0019 or a CFAR of about 0.2 percent.  If we had  = 9.0 mV, we get p(out | ) 
 0.1513 or a CFAR of more than 15 percent.58 
 

C.2.2 CFAR After Adjustment 

If an adjustment or other correction is made to reduce  to zero, the relevant pdf is 

2 1( | 0) 1
L L

p in
u u 

   
         

   
. 

In this expression, note that, although  has been reduced to zero, the uncertainty ucal is still 
present, and must remain included in u.

59 
 
In the present example (assuming no change in u), we get 

                                                 
57 The values of the normal distribution functions were obtained using the Microsoft Excel workbook function 
NORMSDIST.  The computations of p(out | ) were made using MS Excel and verified with ISG’s RiskGuard 
freeware [C-3]. 
58 An ill-advised practice has emerged in recent years to set acceptance limits by reducing the tolerance limits by 2 
times the calibration process uncertainty.  In the examples presented here, we would have A1 = A2 = L2 – 2ucal = 10 – 
(2)(1.2755 mV) = 7.449 mV.  Using these limits would trigger adjustments in all cases shown except the case where 
 = 5 mV.  Modifications of this theme can be found in [C-6]. 
59 In some cases, making a physical adjustment introduces error in addition to the pre-adjustment calibration error.  
Since ucal is the uncertainty in the total calibration error cal, it may need to be modified to include the uncertainty in 
the error due to adjustment. 
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2( | 0) 2 1

10
2 1

1.2545

1.0000,

L
p in

u

 
    

 
    
 



 

and a false accept risk p(out | 0)  0.  For this example, even if adjustment change cal in some 
unknown way that causes u to be doubled, we would still get 

5
( | 0) 2 1 0.99993

1.2545

1.0000.

p in      
 


 

 

C.2.3 Bench-Level Implementation of the Method 

If normal distributions can be assumed for f( | eUUT,b) and  f(eUUT,b), then Bayes’ theorem can be 
applied to compute the probability of accepting an out-of-tolerance UUT attribute p(out |).  
This is evident from the fact that the required quantities, shown in Eq. (C-26), Eqs. (C-28) – (C-
29) and Eq. (C-32), can all be computed using a spreadsheet application or other program that 
can be made available to calibrating personnel.  No numerical integrations or other iterative 
routines are required.  In short, a decision to take corrective action can be made at the calibration 
bench in response to simple data entry involving a few keystrokes.  For this reason, the method 
has been called a “bench-level” method [C-2]. 
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Appendix D:  Derivation of Key Bayesian Expressions 
D.1 Introduction 
Bayesian risk analysis estimates in-tolerance probabilities and attribute biases for both a unit 
under test (UUT) and a set of independent measuring and test instruments (MTE).  The 
estimation of these quantities is based on measurements of a UUT attribute value made by the 
MTE set and on certain information regarding UUT and MTE attribute uncertainties.  The 
method accommodates arbitrary test uncertainty ratios between MTE and UUT attributes and 
applies to MTE sets comprised of any number of instruments [D-1]. 
 
To minimize abstraction of the discussion, the treatment in this appendix focuses on restricted 
cases in which both MTE and UUT attribute values are normally distributed and are maintained 
within two-sided symmetric tolerance limits.  This should serve to make the mathematics more 
condensed.  Despite these mathematical restrictions, the methodological framework is entirely 
general.  Extension to cases involving one-sided tolerances and asymmetric attribute 
distributions merely calls for more mathematical brute force. 
 
A Comment on Nomenclature 

The nomenclature used in this appendix is that used in the references from which it has been 
previously reported [27, 30].  That this notation differs from the notation in other parts of this 
Annex is acknowledged.  The reason for this departure is that the notation used elsewhere yields 
expressions that are typographically awkward.  Since this appendix is essentially self-contained, 
it is hoped that the change of notation will not hamper the ability of readers to be able to follow 
the treatment. 
 
D.2 Computation of In-Tolerance Probabilities 

D.2.1 UUT In-Tolerance Probability 
Whether a UUT provides a stimulus, indicates a value, or exhibits an inherent property, the de-
clared value of its output, indicated value, or inherent property, is said to reflect some underlying 
“true” value.  A frequency reference is an example of a stimulus, a frequency meter reading is an 
example of an indicated value, and a gage block dimension is an example of an inherent 
property.  Suppose for example that the UUT is a voltmeter measuring a (true) voltage of 10.01 
mV.  The UUT meter reading (10.00 mV or 9.99 mV, or some such) is the UUT’s “declared” 
value. As another example, consider a 5 cm gage block. The declared value is 5 cm.  The 
unknown true value (gage-block dimension) may be 5.002 cm, or 4.989 cm, or some other value. 
 
The UUT declared value is assumed to deviate from the true value by an unknown amount.  Let 
Y0 represent the UUT attribute’s declared value and define a random variable 0 as the deviation 
of Y0 from the true value.  The variable 0 is assumed a priori to be normally distributed with 
zero mean and standard deviation 0.  The tolerance limits for 0 are labeled ±L0, i.e., the UUT is 
considered in-tolerance if -L0  0  L0. 
 
A set of n independent measurements are also taken of the true value using n MTE. Let Yi be the 
declared value representing the i th MTE’s measurement.  The observed differences between 
UUT and MTE declared values are labeled according to 
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 0 , 1,2, ,i iX Y Y i n     (D-1) 

The quantities Xi are assumed to be normally distributed random variables with mean 0 standard 
deviation i. 
 
Designating the tolerance limits of the i th MTE attribute by ±Li, the i th MTE is considered in-
tolerance if 0 - Li   Xi   0 + Li.  Populations of MTE measurements are not expected to be 
systematically biased.  This is the usual assumption made when MTE are chosen either randomly 
from populations of like instruments or when no foreknowledge of MTE bias is available.  
Individual unknown MTE biases are assumed to exist.  Accounting for this bias is done by 
treating individual instrument bias as a random variable and estimating its variance.  Estimating 
this variance is the subject of Section D3. Estimating biases is covered in Section D6. 
 
In applying Bayesian methodology, we work with a set of variables ri, called dynamic accuracy 
ratios (or dynamic inverse uncertainty ratios) defined according to 

 0 , 1,2, ,i
i

r i n



    (D-2) 

The adjective “dynamic” distinguishes these accuracy ratios from their usual static or “nominal” 
counterparts, defined by L0 / Li, i = 1, 2,  , n.  The use of the word “dynamic” underscores the 
fact that each ri defined by Eq. (D-2) is a quantity that changes as a function of time passed since 
the last calibrations of the UUT and of the i th MTE.  This dynamic character exists because 
generally both UUT and MTE population standard deviations (bias uncertainties) grow with time 
since calibration. 
 
Let P0 be the probability that the UUT is in-tolerance at some given time since calibration.  
Using these definitions, we can write 
 0 ( ) ( ) 1P a a     , (D-3) 

where  is the normal distribution function defined by 

 
2 /21

( )
2

a
a e d 


 

 
   , (D-4) 

and where 

 

2
2

0 2

0

1
1

i i
i

i

X r
r L

r
a



       . (D-5) 

In these expressions and in others to follow, all summations are taken over i = 1,2,  , n.  The 
derivation of Eqs. (D-3) and (D-5) is presented in Section D.5.  Note that the time dependence of 
P0 is in the time dependence of a+ and a-.  The time dependence of a+ and a- is, in turn, in the 
time dependence of ri. 
 

D.2.2 MTE In-Tolerance Probability 

Just as the random variables X1, X2, … , Xn are MTE-measured deviations from the UUT de-
clared value, they are also UUT-measured deviations from MTE declared values.  Therefore, it is 
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easy to see that by reversing its role, the UUT can act as a MTE.  In other words, any of the n 
MTE can be regarded as the UUT, with the original UUT performing the service of a MTE.  For 
example, focus on the i th (arbitrarily labeled) MTE and swap its role with that of the UUT.  This 
results in the following transformations: 

1 1

2 2

,

i

i

i i

n n i

X X X

X X X

X X

X X X

  
  

  

  





 

where the primes indicate a redefined set of measurement results.  Using the primed quantities, 
the in-tolerance probability for the i th MTE can be determined just as the in-tolerance 
probability for the UUT was determined earlier.  The process begins with calculating a new set 
of dynamic accuracy ratios.  First, we set 

0 1 1 2 2 0, , , , , , .i i n n                       

Given these label reassignments, the needed set of accuracy ratios can be obtained using Eq. (D-
2), i.e., 

0 / , 1,2, ,i ir i n      . 

Finally, the tolerance limits are relabeled for the UUT and the ith MTE according to 0 iL L   and 

0iL L  . 

 
If we designate the in-tolerance probability for the i th MTE by Pi and we substitute the primed 
quantities obtained above, Eqs. (D-3) and (D-5) become 

( ) ( ) 1iP a a      , 

and  
2

2
0 2

0

1
1

i i
i

i

X r
r L

r
a



         


. 

Applying similar transformations yields in-tolerance probabilities for the remaining MTE. 
 
D.3 Computation of Variances 

D.3.1 Variance in Instrument Bias 
Computing the uncertainties in UUT and MTE attribute biases involves establishing the rela-
tionship between attribute uncertainty growth and time since calibration.  Several models have 
been used to describe this relationship [D-2]. 
 
To illustrate the computation of bias uncertainties, the simple negative exponential model will be 
used here.  With the exponential model, if t represents the time elapsed since calibration, then the 
corresponding UUT in-tolerance probability R(t) is given by 
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 0
0 0( ) (0) tR t R e  , (D-6) 

where the attribute 0 is the out-of-tolerance rate for the UUT in question, and R0(0) is the in-
tolerance probability immediately following calibration.  Note that setting R0(0) <1 
acknowledges that a finite measurement uncertainty exists immediately following calibration.  
The attributes  and R0(0) are usually obtained from analysis of a homogeneous population of 
instruments of a given model number or type [D-2]. 
 
With the exponential model, for a given end-of-period in-tolerance target, R0

*, the attributes  
and R0(0) determine the calibration interval T0 for a population of UUT attributes according to 

 
*
0

0
0 0

1
ln

(0)

R
T

R
 

   
 

. (D-7) 

For a UUT attribute whose acceptable values are bounded within tolerance limits ±L0 , the in-
tolerance probability can also be written, assuming a normal distribution, as 

 
2 20

0

/2
0 2

1
( )

2 ( )
b

L

L
b

R t e d
t

  





  , (D-8) 

where b(t) is the expected standard deviation of the attribute bias at time t.  Substituting Eq. (D-
8) in  Eq. (D-6) gives 

 
0

0

1 0

( )
1 (0)

2

b t

L
t

R e 





 

  
 

, (D-9) 

where -1 is the inverse of the normal distribution function.  Substituting from Eq. (D-7) yields 
the UUT attribute bias standard deviation at the time of test or calibration 

 0
0 *

1 0

( )
1

2

b

L
T

R





 

  
 

, (D-10) 

Let ti be the time elapsed since calibration of the ith MTE at the time of the UUT calibration.  
Then, if the exponential model is applicable for MTE in-tolerance probabilities, using Li, ti, and 
Ri 

(0) in Eq.(D-9) in place of L0, t, and R0(0) yields the appropriate MTE bias standard 
deviations. 
 

D.3.2 Treatment of Multiple Measurements 

In previous discussions, the quantities Xi are treated as single measurements of the difference 
between the UUT attribute and the i th MTE’s measurement.  Yet, in most applications, testing or 
calibration of workload attributes is not limited to single measurements.  Instead, multiple 
measurements are usually taken.  Instead of n individual measurements, we will ordinarily be 
dealing with n sets or samples of measurements.  In these samples, let ni be the number of 
measurements taken using the i th MTE’s attribute, and let  

Xij = Y0 - Yij 

Downloaded from http://www.everyspec.com



 

- 133 - 
 

be the jth of these measurements.  The sample mean and standard deviation are given in the usual 
way: 

 
1

1 in

i ij
ji

X X
n 

   (D-11) 

and 

  22

1

1

1

in

i ij i
ji

s X X
n 

 
  . (D-12) 

The variance associated with the mean of measurements made using the i th MTE’s attribute is 
given by 

 2 2 2 2
,/

ii b i i i others n     , (D-13) 

where the variables bi is the bias uncertainty of the ith MTE and i,other is the uncertainty due to 
other test or calibration error sources.  The square root of this variance will determine the 
quantities ri defined in Eq. (D-2). 
 
 
Note that including sample variances is restricted to the estimation of MTE attribute variances.  
UUT attribute variance estimates contain only the terms bi  and i .  This underscores what is 
sought in constructing the pdf 0( | )f  X .  What we seek are estimates of the in-tolerance 
probability and bias of the UUT attribute. In this, we are interested in the attribute as an entity 
distinct from process uncertainties involved in its measurement. 
 
D.4. Example 
To illustrate the Bayesian method, consider the following question that arose during a 
proficiency audit conducted on board the USS Frank Cable [D-3]: 
 

“We have three instruments with identical tolerances of ±10 psi.  One instrument 
measures an unknown quantity as 0 psi, the second measures +6 psi, and the third 
measures +15 psi. According to the first instrument, the third one is out-of-
tolerance.  According to the third instrument, the first one is out-of-tolerance. 
Which is out-of-tolerance?” 

 
Of course, it is never possible to say with certainty whether a given instrument is in- or out-of-
tolerance. Instead, the best we can do is to try to evaluate out-of-tolerance or in-tolerance 
probabilities.  The application of the method to the proficiency audit example follows. 
 
The measurement configuration is shown in Figure D-1 and tabulated in column 1 of Table D-1. 
For discussion purposes, let instrument 1 act the role of a UUT and label it’s indicated or 
“declared” value as Y0.  Likewise, let instruments 2 and 3 function as MTE, label their declared 
values as Y1 and Y2, respectively, (the “1” and “2” subscripts label MTE1 and MTE2) and define the 
variables. 
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Figure D-1.  Proficiency Audit Example 

Three instruments measure an unknown value. This value may be external to all three instruments 
or generated by one or more of them. Instrument 1 is arbitrarily labeled the UUT. Instruments 2 
and 3 are employed as MTE.  The tolerance limits for each of the instruments are ±10 psi. 

 
Table D-1.  Proficiency Audit Results Arranged for Bayesian Analysis.   

The “0” subscript labels the UUT. 

UUT = MTE1 UUT = MTE2 UUT = MTE3 

L0 = 10 L0 = 10 L0 = 10 

L1 = 10 L1 = 10 L1 = 10 

L2 = 10 L2 = 10 L2 = 10 

Y0 = 0 Y0 = 6 Y0 = 15 

Y1 = 6 Y1 = 0 Y1 = 6 

Y2 = 15 Y2 = 6 Y2 = 0 

X1 = -6 X1 = 6 X1 = 9 

X2 = -15 X2 = -9 X2 = 15 
 
With these designations, we have Y0 = 0, Y1 = 6, and Y2 = 15. Thus, 

1 0 1

2 0 2

6

15.

X Y Y

X Y Y

   
   

 

Since it was not stated otherwise, we assume that the in-tolerance probabilities for all three 
instruments are equal.  The three instruments are managed to the same R* target, have the same 
tolerances, and are calibrated in the same way using the same equipment and procedures.  
Therefore, their standard deviations when the measurements were made should be about equal.  
According to Eq. (D-2), the dynamic accuracy ratios are then 

r1 = r2 = 1. 

r1 = r2 = 1. 

Y0

Y1

Y2

MTE1
(Instrument 2)

MTE2
(Instrument 3)

UUT
(Instrument 1)

Unknown 
True 

Value 

Unknown 
True 

Value 
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Then, by using Eq. (D-5), we get 

0

0

6 15
1 (1 1) 10

1 (1 1)

3(10 7)
.

a






  
     




 

Calculation of the standard deviation 0 calls for some supplemental information.  The quantity 
0 is an a priori estimate of the bias standard deviation for the UUT attribute value of interest.  
In making such estimates, it is usually assumed that the UUT is drawn at random from a 
population.  If knowledge of the population’s uncertainty is available, then an estimate for 0  
can be obtained. 
 
For the instruments used in the proficiency audit, it was determined that the population 
uncertainty is managed to achieve an in-tolerance probability of R * = 0.72 at the end of the 
calibration interval and that R(0)  1 for each instrument.  As a fair approximation, we assume 
that we can use average-over-period in-tolerance probabilities for each R(t) in this example.  
With the exponential model, if R(0) = 1, the average in-tolerance probability is equal to the 
square root of the reliability target R*.  Using this observation in Eq. (D-10) yields 

0

1

10 psi
( )

1 0.72
2

6.97 psi.

t



 

  
 



 

Substituting in the expression for a± above gives 

3(10 7)

6.97
2.49 1.74.

a 

 


 

Thus, the in-tolerance probability for the UUT (instrument 1) is 

0 (0.75) (4.23) 1

0.77 1.00 1

0.77.

P    
  


 

To compute the in-tolerance probability for MTE1 (instrument 2), the UUT and MTE1 swap 
roles.  By using the transformations of Table D-1, we have 

1 1

2 2 1

6

9

X X

X X X

  


  
 
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in place of X1 and X2 in Eq. (D-5).  Recalling that 0 0    in this example gives 

 
0

6 9
1 (1 1) 10

1 (1 1)

3 10 1

6.97
2.49 0.25 .

a


 
      






 

 

Thus, by Eq. (D-3), the in-tolerance probability for MTE 1 (instrument 2) is 

1 (2.24) (2.73) 1

0.99 1.00 1

0.99.

P    
  


 

In computing the in-tolerance probability for MTE2, the UUT and MTE2 swap roles. Thus 

1 1 2

2 2

15

9.

X X X

X X

  


  


 

Using these quantities in Eq. (D-5) and setting 0 0    gives 

2.49 1.99a   . 

Thus, by Eq. (D-3), the in-tolerance probability for MTE 2 (instrument 3) is 

2 (4.47) (0.50) 1

1.00 0.69 1

0.69.

P    
  


 

Summarizing these results, we estimate a roughly 77% in-tolerance probability for instrument 1, 
a 99% in-tolerance probability for instrument 2, and a 69% in-tolerance probability for 
instrument 3.  As shown earlier, the instruments in the proficiency audit example are managed to 
an end-of-period in-tolerance probability of 0.72.  They are candidates for calibration if their 
intolerance probabilities fall below 72%. Therefore, instrument 3 should be calibrated. 
 
D.5 Derivation of Eq. (D-3) 

Let the vector X represent the random variables X1, X2, ... , Xn obtained from n independent MTE 
measurements of 0.  We seek the conditional pdf for 0, given X, that will, when integrated over 
[-L0, L0], yield the conditional probability P0 that the UUT is in-tolerance.  This pdf will be 
represented by the function f (0 | X).  From basic probability theory, we have60 

                                                 
60 See Section 4.3.4. 
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      
 
0 0

0

|
|

f f
f

f

 
 

X
X

X
, (D-14) 

where 

   2 2
0 0/2

0

0

1

2
f e  


 . (D-15) 

In Eq. (D-14), the pdf f ( X | 0 ) is the probability density for observing the set of measurements 

X1, X2, …, Xn, given that the bias of the UUT is 0.  The pdf f (0 ) is the probability density for 
UUT biases. 
 
Since the components of X are s-independent, we can write 

        0 1 0 2 0 0| | | |nf f X f X f X     X , (D-16) 

where 

    2 2
0 /2

0

1
| , 1,2, ,

2
i iX

i

i

f X e i n 


     . (D-17) 

Note that Eq. (D-17) states, for the present discussion, we assume the measurements of 0 to be 
normally distributed with a population mean value 0 (the UUT "true" value) and a standard 
deviation i.  At this point, we do not provide for an unknown bias in the ith MTE.61  As we will 
see, the Bayesian methodology will be used to estimate this bias, based on the results of 
measurement and on estimated measurement uncertainties. 
 
Combining Eqs. (D-14) through (D-17) gives 
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    

         
                 





X

X

 (D-18) 

where C is a normalization constant.  The function G(X) contains no 0 dependence and its 
explicit form is not of interest in this discussion. 
 
The pdf f (X) is obtained by integrating Eq. (D-18) over all values of 0.  To simplify the 
notation, we define 

                                                 
61 It can be readily shown that, if the bias of a MTE is unknown, the best estimate for the population of its 
measurements is the true value being measured, i.e., zero bias.  This is an important a priori assumption in applying 
the SMPC methodology. 
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 21 ir     (D-19) 

and 

 
2

21
i i

i

X r

r
 


 
. (D-20) 

Using Eqs. (D-19) and (D-20) in Eq. (D-18) and integrating over 0 gives 
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   
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
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  













X

X

X X

 (D-21) 

Dividing Eq. (D-21) into Eq. (D-18) and substituting from Eq. (D-14) yields the pdf 

  
 

   2 2
0 0/2 /

0

0

1
|

2 /
f e    

  
 X . (D-22) 

As we can see, 0 conditional on X is normally distributed with mean  and standard deviation 
0 / .  The in-tolerance probability for the UUT is obtained by integrating Eq. (D-22) over [-L0, 
L0].  With the aid of Eq. (D-5), this results in 
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  
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  


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




 

 

 





  

   



  

which is Eq. (D-3) with   and  as defined in Eqs. (D-19) and D.21). 

 

D.6 Estimation of Biases 

Obtaining the conditional pdf f (0 | X) allows us to compute moments of the UUT attribute 
distribution.  Of particular interest is the first moment or distribution mean.  The UUT 
distribution mean is the conditional expectation value for the bias 0.  Thus, the UUT attribute 
bias is estimated by 

 

 

 
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0 0 0
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| .

E

f d

 

  
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 

X

X
 (D-23) 

Substituting from Eq. (D-22) and using Eq. (D-20) gives 
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 (D-24) 

Similarly, bias estimates can be obtained for the MTE set by making the transformations 
described in Section D.2.2; for example, the bias of MTE 1 is given by 

  
2

1 1 2
|

1
i i

i

X r
E

r
 

  
 

X . (D-25) 

To exemplify bias estimation, we again turn to the proficiency audit question.  By using Eqs. (D-
24) and (D-25), and by recalling that 0 = 1 = 2, we get 

Instrument 1 (UUT) bias:  
 0

6 15
7

1 1 1
  

  
 

 

Instrument 2 (MTE 1) bias:  
 1

6 9
1

1 1 1
 

  
 

 

Instrument 3 (MTE 2) bias:  
 2

15 9
8

1 1 1
 

 
 

 

If desired, these bias estimates could serve as correction factors for the three instruments.  If used 
in this way, the quantity 7 would be added to all measurements made with instrument 1.  The 
quantity 1 would be added to all measurements made with instrument 2. And, the quantity 8 
would be subtracted from all measurements made with instrument 3.62 
 
Note that all biases are within the stated tolerance limits (±10) of the instruments, which might 
encourage users to continue to operate their instruments with confidence.  However, recall that 
the in-tolerance probabilities computed in Section D.4 showed only a 77% chance that 
instrument 1 was in-tolerance and an even lower 69% chance that instrument 3 was in-tolerance.  
Such results tend to provide valuable information from which to make cogent judgments 
regarding instrument calibration. 
 
D.7 Bias Confidence Limits  

Another variable that can be useful in making decisions based on measurement results is the 
range of the confidence limits for the estimated biases.  Estimating confidence limits for the 
computed biases 0 and i, i = 1, 2, …, n, means first determining the statistical probability 
density functions for these biases.  From Eq. (D-24) we can write 

                                                 
62 Since all three instruments are considered a priori to be of equal accuracy, the best estimate of the true value of 

the measured quantity would be the average of the three measured deviations:   0 0 6 15 / 3 7.       Thus, a 

zero reading would be indicative of a bias of –7, a +6 reading would be indicative of a bias of –1, and a +15 reading 
would be indicative of a bias of +8.  These are the same estimates we obtained with SMPC.  Obviously, this is a 
trivial example.   Things become more interesting when each measurement has a different uncertainty, i.e., when  0 
  1   2. 
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 0
1

n

i i
i

c X


  , (D-26) 

where 

 
2

21
i

i
i

r
c

r


 
. (D-27) 

With this convention, the probability density function of 0 can be written: 

 
   

 
0

,

i i

i

f f c X

f





 

 
 (D-28) 

where 
 i i ic X  . (D-29) 

Although the coefficients ci, i = 1, 2, ... , n, are in the strictest sense random variables, to a first 
approximation, they can be considered fixed coefficients of the variables Xi.  Since the variables 
Xi are normally distributed (see Eq. (D-17)), the variables i are also normally distributed.  The 
appropriate expression is 

    2 2/21

2
i i i

i

if e   






  , (D-30) 

where 
 

i i ic   (D-32) 

and 
 0i ic  . (D-32) 

Since the variables i are normally distributed, their linear sum is also normally distributed: 

 
   

 

2 2

2 2
0

/2

/2

1

2
1

,
2

i

if e

e

  

  






  

 

 


 (D-33) 

where 

 2

i   , (D-34) 

and 
 i   . (D-35) 

Equation (D-33) can be used to find the upper and lower confidence limits for0.  Denoting 
these limits by 0

  and 0
 , if the desired level of confidence is p   100%, then 

 
0

0

0 0p f d




 




  , 

or 
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     
0

0

0 0 0 01 / 2f d p f d




   




    . 

Integrating Eq. (D-33) from 0
  to  and using Eqs. (D-34) and (D-35) yields 

 01 1 / 2p
 


 
   

 
 

and 

 0 1 / 2p
 


 
   
 

. 

Solving for 0
  gives 

 1
0

1

2

p         
 

. (D-36) 

Solving for the lower confidence for 0
  in the same manner, we begin with 

   
0

0 0 1 / 2f d p


 




  . 

This yields, with the aid of Eq. (D-23), 

  0 1 / 2p
 


 
   
 

. (D-37) 

Using the following property of the normal distribution 

   1x x    , 

we can rewrite Eq. (D-37) as 

 0 1 1 / 2

(1 ) / 2 ,

p

p

 


 
     
 

 

 

from whence 

 1
0

1

2

p         
 

 . (D-38) 

From Eq. (D-33), the attribute  is seen to be the expectation value for 0.  Our best available 
estimate for this quantity is the computed UUT bias, namely 0 itself.  We thus write the 
computed upper and lower confidence limits for 0 as 

 1
0 0

1

2

p         
 

. (D-39) 

In like fashion, we can write down the solutions for the MTE biases i, i = 1, 2, ... , n: 
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 1 1

2i i

p         
 

, (D-40) 

where 

 2 2
i ic     , (D-41) 

and 

 
2

21
i

i
j

r
c

r


 

 
. (D-42) 

The variables ir  in this expression are defined as before. 

 
To illustrate the determination of bias confidence limits, we again turn to the proficiency audit 
example of Section D.4.  In this example, 

0 1 2 6.97     , 

and 

1 2 3 1r r r   . 

By Eqs. (D-27) and (D-33), 
1

3i ic c  , 

and 
2 2
1 2

0

9 9

2

3
3.29 .

 





 



 

 

Substituting in Eqs. (D-39) and (D-40) yields 

1
0 0

1
3.29

2

p        
 

, 

1
1 1

1
3.29

2

p        
 

, 

and 

1
2 2

1
3.29

2

p        
 

. 

Suppose that the desired confidence level is 95%.  Then p = 0.95, and 

 1 11
0.975

2

1.96 ,

p    
 


 

and 
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1 1
3.29 6.4

2

p    
 

. 

Since 0 = -7, 1 = -1, and 2 = +8, this result, when substituted in the above expressions, gives 
95% confidence limits for the estimated biases: 

0

1

2

13.4 0.6

7.4 5.4

1.6 14.4 .





   
  

 
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Appendix E:  True vs. Reported Probabilities 
As discussed in Chapter 5, the fact that false accept risk and false reject risk are typically not 
equal leads to the phenomenon that the observed percent in-tolerance as a result of testing or 
calibration is typically different from the true percent in-tolerance.  It turns out that since, end-of-
period reliability targets are nearly always higher than 50%, the perceived or reported percent in-
tolerance will nearly always be lower than the actual or true percent in-tolerance.  This was first 
reported by Ferling in 1984 [E-1] as the "True vs. Reported" problem. 
 
E.1 Appendix E Nomenclature 
The variables used in this appendix are described in Table E-1. 
 

Table E-1.  Variables Used to Estimate True vs. Reported Percent In-Tolerance. 

Variable Description 
eUUT,b the bias of the UUT attribute value at the time of calibration

 a measurement result for the UUT attribute bias 

uUUT,b the uncertainty in eUUT,b, i.e., the standard deviation of the probability distribution 
of the population of eUUT,b values.63 

ucal the standard uncertainty in uUUT,b 
-L1 and L2 the tolerance limits for eUUT,b

-A1 and A2 the “acceptance” limits (test limits) for eUUT,b

L the range of values of eUUT,b from -L1 to L2 (the UUT tolerance limits) 

,( )UUT bP e L  Probability that the UUT attribute is in-tolerance 

( )P  L  Probability that a measurement of the UUT attribute is observed to be in-tolerance 

,( , )UUT bP e  L L  Joint probability that a UUT attribute is in-tolerance and observed to be in-tolerance 

 
E.2 Probability Relations 

E.2.1 False Accept Risk 
From the relations developed in Chapters 3 and 4, we have64 

 ,( ) ( , )UUT bUFAR P P e     L L L  (E-1) 

and 

 ,( , )
1

( )
UUT bP e

CFAR
P



 

 

L L

L
. (E-2) 

E.2.2 False Reject Risk 

 , ,( ) ( , )UUT b UUT bFRR P e P e     L L L . (E-3) 

                                                 
63 See Appendix A, reference [1] or reference [2]. 
64 To compute true in-tolerance probability from a reported in-tolerance probability, the acceptance limits A1 and A2 
must be set equal to the tolerance limits L1 and L2. 
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E.3 True vs. Reported 
Let Robs denote the observed ("reported") UUT in-tolerance probability.  Then Robs is just 

( )P  L : 

 ( )obsR P  L . (E-4) 

Likewise, the true UUT attribute in-tolerance probability Rtrue is just 

 ( )trueR P  L . (E-5) 

Then the risk relations can be written 

 ,( , )obs UUT bUFAR R P e    L L , (E-6) 

 ,( , )
1 UUT b

obs

P e
CFAR

R

 
 

L L
, (E-7) 

and 

 ,( , )true UUT bFRR R P e    L L . (E-8) 

From the last expression, we have 

 ,( , )UUT b trueP e R FRR   L L , (E-9) 

which yields 

 true obsR R UFAR FRR   , (E-10) 

and 

 (1 )true obsR R CFAR FRR   . (E-11) 

E.4 Computing Robs and Rtrue 
The following computations involve setting tolerance limits around the UUT attribute’s “true” 
value.  Measured values  are assumed to be normally distributed with mean eUUT,b and standard 
deviation ucal.  The conditional pdf for measured value  given a UUT bias eUUT,b is written 

 
2 2

,( ) /2
,

1
( | )

2
UUT b cale u

UUT b

cal

f e e
u




   (E-12) 

for each distribution discussed below.  The pdf for observed in-tolerance values is denoted f() in 
all cases.  The pdf f() is obtained using the expression 

 
, ,

, , ,

( ) ( , )

( | ) ( ) ,

UUT b UUT b

UUT b UUT b UUT b

f f e de

f e f e de

 


















 (E-13) 

where f(eUUT,b) represents the pdf for the UUT attribute bias. 
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The UUT attribute pdfs discussed include those for the normal, uniform, triangular, quadratic, 
cosine, U and lognormal distributions. 
 
Selecting the UUT Attribute Distribution 

The uniform and triangular distributions are included in this appendix only because they are 
mentioned in the GUM [E-2].  From a physical perspective, they are not applicable to attribute 
biases.  It is strongly urged that other distributions be applied.  Some general guidelines for 
selecting distributions are given in Table E-2. 
 

Table E-2.  Selection Rules for UUT Attribute Bias Distributions. 

Distribution Condition 

Normal Unless information to the contrary is available, the normal distribution should 
be applied as the default distribution. 

Cosine A good distribution to use if a set of containment limits is available, and values 
of the UUT bias exhibits a central tendency. 

Lognormal If it is suspected that the distribution of the value of interest is skewed, apply 
the lognormal distribution. 

U (U-Shaped) An appropriate distribution for attribute biases that vary sinusoidally with time 
between physical limits that are symmetric around the distribution mean or 
mode value. 

Quadratic A good distribution to use if a set of containment limits is available, and values 
of the UUT bias are widely spread around central value. 

Triangular The triangular distribution may be applicable to estimating uncertainty due to 
interpolation errors and, under certain circumstances, when dealing with 
attribute biases following testing or calibration. 

Uniform 
(Rectangular) 

An applicable distribution for the resolution error of a digital readout and for 
estimating the uncertainty due to quantization error or the uncertainty in RF 
phase angle. 

 

E.4.1 Normally Distributed UUT Attribute Biases 
Let the UUT attribute bias x be normally distributed with mean zero and standard deviation 
uUUT,b, and let -L1 and L2 be the lower and upper tolerance limits for x, respectively.  Then the pdf 
for observed UUT attribute values is 

 
2 2/21

( )
2

obsu

obs

f e
u




 , (E-14) 

where 

 2 2
,obs UUT b calu u u  , (E-15) 

and where, ucal is estimated in accordance with the guidelines given in Chapter 3. 
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Figure E-1.  The Normal Distribution.   

Shown is a case where the bias  is normally distributed and L1  L2. 

 
Using this pdf yields the observed in-tolerance probability 

 1 2 1obs
obs obs

L L
R

u u

   
      

   
. (E-16) 

For a normally distributed x, if Rtrue is known, the quantity uUUT,b is obtained from 

 1 2

, ,

1true
UUT b UUT b

L L
R

u u

   
      

   
. (E-17) 

E.4.1.1 Estimating Robs from Rtrue 

E.4.1.1.1 Case 1:  L1  L2 

The first step is to solve for uUUT,b in Eq. (E-17) numerically using an iterative algorithm such as 
the bisection algorithm given in Appendix F.  Next, compute uobs using Eq. (E-15).  Finally, 
compute Robs using Eq. (E-16). 
 
E.4.1.1.2 Case 2:  L1 = L2 

If L1 = L2  L, then uUUT,b is computed from  

 ,
1 1

2

UUT b
true

L
u

R


   
 

, (E-18) 

uobs is computed using Eq. (E-15), and Robs is computed using Eq. (E-16). 
 

E.4.1.2 Estimating Rtrue from Robs  

E.4.1.2.1 Case 1:  L1  L2 

The first step is to solve for uobs in Eq. (E-16) numerically using an iterative algorithm such as 
the bisection algorithm given in Appendix F.  Next, compute uUUT,b using Eq. (E-15).  Finally, 
compute Rtrue using Eq. (E-17). 
 

0

f()


-L1 L2
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E.4.1.2.2 Case 2:  L1 = L2 

If L1 = L2  L, then uobs is computed from  

 
1 1

2

obs
obs

L
u

R


   
 

, 

uUUT,b is then computed using Eq. (E-15), and Rtrue is computed using Eq. (E-17). 
 

E.4.2 Uniformly Distributed Attribute Biases 

E.4.2.1 Estimating Robs from Rtrue 
In cases where UUT attribute biases are uniformly distributed, the pdf for eUUT,b is written 

 ,

1
,

( ) 2
0, otherwise,

UUT b

a x a
f e a

    


 (E-19) 

where ±a are the bounding limits for the distribution as shown in Figure E-2. 

 
Figure E-2.  The Uniform Distribution 

The tolerance limits ±L and the quantities Rtrue or Robs are used to solve for the limiting values ±a. 

 
Applying Eqs. (E-12) and (E-13) with Eq. (19) yields the pdf f() 
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
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 


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 




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





     
      

    






 (E-20) 

The quantity Robs is obtained by integrating Eq. (E-20) from –L1 to L2 



f()


a a

f()


a a-L1 L2
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2

1

1

2

L

obs
cal calL

a a
R d

a u u

  


     
      

    
 . (E-21) 

Applications of the uniform distribution typically involve attributes with symmetric tolerance 
limits, where L1 = L2 = L.  Then, for uniformly distributed UUT attribute biases, we have 

 true

L
R

a
 . (E-22) 

Substituting a = L / Rtrue in Eq. (E-21) then gives 

 
1 / /

2

L
true true

obs
cal calL

L R L R
R d

a u u

  


     
      

    
 . (E-23) 

This expression is computed using a numerical integration routine.  See, for example, the routine 
provided in Appendix F. 
 

E.4.2.2 Estimating Rtrue from Robs  
Estimating Rtrue from Robs makes use of Eq. (E-23).  This expression is used to solve for Rtrue, 
given Robs, using the bisection method of Appendix F with the integration computed numerically 
at each step.  Note that, since Rtrue > Robs, the bracketing values are Robs and 1.0.  The initial value 
could be something like (1 + Robs) / 2. 
 

E.4.3 Triangularly Distributed Attribute Biases 

E.4.3.1 Estimating Robs from Rtrue 

In cases where UUT attribute biases follow the triangular distribution, the pdf for eUUT|b is given 
by 

 

2
, ,

2
, , ,

( ) / , 0

( ) ( ) / , 0

0, otherwise.

UUT b UUT b

UUT b UUT b UUT b

a e a a e

f e a e a e a

    
   



 (E-24) 

where ±a are the bounding limits for the distribution as shown in Figure E.3. 

 
Figure E-3.  The Triangular Distribution 

The quantities L and Rtrue or Robs are used to solve for the limiting values ±a. 

0-a a

f()


-L1

L2
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Like the uniform distribution, applications of the triangular distribution typically involve 
attributes with symmetric tolerance limits, where L1 = L2 = L.  Then, applying Eqs. (E-12) and 
(E-13) with (E-24) yields the pdf f() 

 
2 2 2 2
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   





 
    

 



 
 (E-25) 

where  is a dummy integration variable for eUUT,b.  The quantity Robs is obtained by integrating 
Eq. (E-25) from –L to L. 
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 (E-26) 

For triangularly distributed UUT attribute biases, we have 

  1 1 true
true

L
a R

R
   . (E-27) 

Substituting this relation for a in Eq. (E-26) then gives Robs.  The expression for Robs is computed 
numerically using an integration routine, such as is described in Appendix F. 
 

E.4.3.2 Estimating Rtrue from Robs  
Estimating Rtrue from Robs makes use of Eqs. (E-26) and (E-27).  The resulting expression is used 
to solve for Rtrue using the bisection method of Appendix F with the integration computed 
numerically at each step.  Note that, since Rtrue > Robs, the bracketing values are Robs and 1.0.  The 
initial value could be something like (1 + Robs) / 2. 
 

E.4.4 Quadratically Distributed Attribute Biases 

E.4.4.1 Estimating Robs from Rtrue 

In cases where UUT attribute biases follow the quadratic distribution, the pdf for eUUT,b is given 
by 

 
2

,

3
1 ( / ) ,

( ) 4
0, otherwise,

UUT be a a x a
f x a

        


 (E-28) 

where ±a are the bounding limits for the distribution as shown in Figure E.4. 
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Figure E-4.  The Quadratic Distribution 

The quantities L and Rtrue or Robs are used to solve for the limiting values ±a. 

 
Applications of the quadratic distribution typically involve attributes with symmetric tolerance 
limits, where L1 = L2 = L.  Then, applying Eqs. (E-12) and (E-13) with (E-28) yields the pdf f() 
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The quantity Robs is obtained by integrating Eq. (E-29) from –L to L. 
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For quadratically distributed UUT attribute biases with symmetric tolerance limits, we have 

 21
1 2cos arccos(1 2 )

2 3 true
true

L
a R

R
        

. (E-31) 

Substituting this relation for a in Eq. (E-30) then gives Robs.  The expression for Robs is computed 
numerically using an integration routine, such as is described in Appendix F. 
 

E.4.4.2 Estimating Rtrue from Robs  
Estimating Rtrue from Robs makes use of Eqs. (E-26) and (E-27).  The resulting expression is used 
to solve for Rtrue using the bisection method of Appendix F with the integration computed 
numerically at each step.  Note that, since Rtrue > Robs, the bracketing values are Robs and 1.0.  The 
initial value could be something like (1 + Robs) / 2. 
 

0 a-a

f()


0 a-a

f()


-L1 L2
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E.4.5 Cosine Distributed Attribute Biases 

E.4.5.1 Estimating Robs from Rtrue 

In cases where UUT attribute biases follow the cosine distribution, the pdf for eUUT,b is given by 

 , ,
,

1
1 cos( / ) ,

( ) 2
0, otherwise,

UUT b UUT b
UUT b

e a a e a
f e a

        


 (E-32) 

where ±a are the bounding limits for the distribution as shown in Figure E.5. 

 
Figure E-5.  The Cosine Distribution 

The quantities L and Rtrue or Robs are used to solve for the limiting values ±a. 

 
Applications of the cosine distribution typically involve attributes with symmetric tolerance 
limits, where L1 = L2 = L.  Then, applying Eqs. (E-12) and (E-13) with (E-32) yields the pdf f() 
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The observed in-tolerance probability Robs is obtained by integrating Eq. (E-33) from –L to L. 
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For quadratically distributed UUT attribute biases with symmetric tolerance limits, Rtrue is given 
by 
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The distribution limit a is solved for by numerical iteration.  Substituting the solution for a in Eq. 
(E-34) then gives Robs.  The expression for Robs is computed by numerical integration.  Both the 
iteration and integration routines in Appendix F have been found to be effective in obtaining 
solutions. 
 

E.4.5.2 Estimating Rtrue from Robs  
Estimating Rtrue from Robs makes use of Eqs. (E-34) and (E-35).  The resulting expression is used 
to solve for Rtrue using the bisection method of Appendix F with the integration computed 
numerically at each step.  Note that, since Rtrue > Robs, the bracketing values are Robs and 1.0.  The 
initial value could be something like (1 + Robs) / 2. 
 

E.4.6 U-Distributed Attribute Biases 

E.4.6.1 Estimating Robs from Rtrue 

In cases where UUT attribute biases follow the U distribution, the pdf for eUUT|b is given by 
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 (E-36) 

where ±a are the bounding limits for the distribution as shown in Figure E.6. 

 
Figure E-6.  The U Distribution 

The quantities L and Rtrue or Robs are used to solve for the limiting values ±a. 

 
Applications of the U distribution typically involve attributes with symmetric tolerance limits, 
where L1 = L2 = L.  Then, applying Eqs. (E-12) and (E-13) with (E-36) yields the pdf f(y) 
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The observed in-tolerance probability Robs is obtained by integrating Eq. (E-37) from –L to L. 
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For U-distributed UUT attribute biases with symmetric tolerance limits, a is given by 

 
 sin / 2true

L
a

R
 . (E-39) 

The distribution limit a is solved for by numerical iteration.  Substituting the solution for a in Eq. 
(E-38) then gives Robs.  The expression for Robs is computed by numerical integration.  The 
integration routine in Appendix F has been found to be effective in obtaining solutions. 
 

E.4.6.2 Estimating Rtrue from Robs  
Estimating Rtrue from Robs makes use of Eqs. (E-38) and (E-39).  The resulting expression is used 
to solve for Rtrue using the bisection method of Appendix F with the integration computed 
numerically at each step.  Note that, since Rtrue > Robs, the bracketing values are Robs and 1.0.  The 
initial value could be something like (1 + Robs) / 2. 
 

E.4.7 Lognormally Distributed Attribute Biases 

E.4.7.1 The Distribution 
Achieving solutions for Robs and Rtrue for lognormally distributed attribute biases is made easier 
if we work with distributions of attribute values rather than biases in these values.  Hence we 
work with the distributions shown in Figure E-7 and E-8. 

 
Figure E-7.  The Right-Handed Lognormal Distribution 

The variable eUUT,b represents UUT attribute biases.  The parameters -L1 and L2 are attribute 
tolerance limits.  The mode value for eUUT,b is 0 and the limiting value for the distribution is -q.  L1, 
L2 and q characterize the distribution.   The attribute q is ordinarily computed using Rtrue.  
Solutions for the parameters of the lognormal distribution are given in [E-3] and [E-4]. 

0


f()

-L1 L2-q
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Figure E-8.  The Left-Handed Lognormal Distribution 

With the left-handed lognormal distribution, the distribution limit > 0. 

 
The following treatment focuses on UUT attribute values that follow a right-handed lognormal 
distribution.  Using the results to accommodate left-handed distributions involves merely 
applying transformations that are discussed later. 
 
The right-handed lognormal pdf for eUUT,b is given by 
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 (E-40) 

where m is the median value of the distribution and  is a “shape” attribute.  The pdf for the left-
handed lognormal is the mirror image of the pdf for the right-handed distribution. 
 
Applying Eqs. (E-12) and (E-13) with (E40) yields the pdf f() 

 
2 2

,

2 2 2

, , ,

2

( ) /2 , 2 ,

,

( ) /2 /2

( ) ( | ) ( )

1
exp ln / 2

2 ( )

1
,

2

UUT b cal

cal

UUT b UUT b UUT b

e u UUT b UUT b

cal UUT bq

u

cal

f f e f e de

e q de
e

u m q e q

e e d
u



  

 












 


  





             









 (E-41) 

where 
 ( )m q e q    . (E-42) 

E.4.7.2 Observed In-Tolerance Probability 
The observed in-tolerance probability Robs is obtained by integrating f(y) from -L1 to L2. 
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 (E-43) 

where  is given in Eq. (E-42). 
 

E.4.7.3 True In-Tolerance Probability 
The integral for Robs is obtained by numerical iteration.  The integration routine in Appendix F 
has been found to be effective in obtaining solutions.  Solutions for q, m and  are computed 
from Rtrue, computed by integrating f(eUUT,b) in Eq. (E-40) from -L1 to L2 
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E.4.7.4 Obtaining Distribution Parameters 

In solving for q, m and , it is assumed that L1 and L2 are known, along with the true in-tolerance 
probability Rtrue.  The details are given in [E-3] and [E-4].  The relationships between the 
parameters of the distribution are shown in Table E-3. 
 

Table E-3.  Parameters of the Lognormal Distribution. 

Parameter Characteristics 

Mode 0 

Mean ( ,UUT be ) 2 /2( )m q e q   

Median (m) 
2

( )q e q    

Variance ( 2
calu ) 

2 22( ) ( 1)m q e e    

Standard Deviation (ucal) 
2 2/2| | 1m q e e    
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From the foregoing, we see that, if q is known,  can be solved for numerically using the 
bisection algorithm of Appendix F along with the relation for the median shown in Table E-3.  
Likewise, if  is known, q can be solved for in the same way. 
 
In many cases, none of the parameters q,  or m is known.  In these cases, an attempt can be 
made to solve for them, provided we know L1, L2 and Rtrue.  The details are given in [E-3] and 
[E-4]. 
 

E.4.7.5 Estimating Rtrue from Robs  
If any of two parameters of Eq. (E-42) are known, Eq. (E-43) can be used to iteratively solve for 
the third attribute.  For instance, if q and m are known,  can be obtained using the bisection 
algorithm of Appendix F.  Once all three parameters are known, Rtrue can be readily computed 
from Eq. (E-44). 
 
E.5 Examples 
Tables E-4 and E-5 provide comparisons of true vs. reported in-tolerance probabilities.  The table 
entries were generated using the algorithms of Appendix F. 
 

Table E-4.  True vs. Reported % In-Tolerance for a Reported 95% In-Tolerance. 

Distribution 
Lower Tol. 

Limit 
Upper Tol. 

Limit 
Cal 

Uncertainty 
True % In-
Tolerance 

Normal -10 10 1.2755 95.7054 
Uniform -10 10 1.2755 No Solution 

Triangular -10 10 1.2755 96.0366 
Quadratic -10 10 1.2755 96.4087 

Cosine -10 10 1.2755 95.9962 
U -10 10 1.2755 No Solution 

Lognormal -10 20 1.2755 95.4813 
 

Table E-5.  Reported vs. True % In-Tolerance for a True 95% In-Tolerance. 

Distribution 
Lower Tol. 

Limit 
Upper Tol. 

Limit 
Cal 

Uncertainty 
Reported % 
In-Tolerance 

Normal -10 10 1.2755 94.2757 
Uniform -10 10 1.2755 92.2601 

Triangular -10 10 1.2755 94.0219 
Quadratic -10 10 1.2755 93.7123 

Cosine -10 10 1.2755 94.0183 
U -10 10 1.2755 88.8954 

Lognormal -10 20 1.2755 94.5074 
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Appendix F:  Useful Numerical Algorithms 
This appendix provides routines that have been found useful in building measurement decision 
risk analysis programs and other programs relating to analytical measurement science.  They are 
presented in the Visual Basic 6 programming language. 
 
F.1 Bisection Routine 

F.1.1 Function Root 
This routine solves for the root of a function computed for a function called from a routine 
referred to as “Fun.”  The variables x1 and x2 are bracketing quantities established with a 
subroutine named “Bracket.”  The vector p() contains the parameters of the called function. 
 
    Dim iMax As Integer, i As Integer 
    Dim dx As Double, f As Double, fMid As Double, xMid As 
Double 
    Dim eps As Double, x1 As Double, x2 As Double, rt As Double 
     
'   Set the precision of the estimate 
    eps = 0.0000000001 
     
'   Get bracketing values x1 and x2 
'   Initial values 
    If x < 0 Then 
        x1 = 2 * x 
        x2 = x / 2 
    Else 
        x1 = x / 2 
        x2 = 2 * x 
    End If 
    Do While True 
        Bracket x1, x2, p(), Fail 
        If Fail Then 
            If x1 < 0 Then 
                x1 = 2 + x1 
                x2 = x2 / 2 
            Else 
                x1 = x1 / 2 
                x2 = 2 * x2 
            End If 
        Else 
            Exit Do 
        End If 
    Loop 
     
    If Not Fail Then 
        iMax = 100 
        fMid = Fun(x2, p()) 
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        f = Fun(x1, p()) 
        If f < 0 Then 
            rt = x1 
            dx = x2 - x1 
        Else 
            rt = x2 
            dx = x1 - x2 
        End If 
        For i = 1 To iMax 
            dx = dx / 2 
            xMid = rt + dx 
            fMid = Fun(xMid, p()) 
            If fMid <= 0 Then rt = xMid 
            If (Abs(dx) < eps Or fMid = 0) Then Exit For 
        Next 
        Root = rt 
    End If 
 

F.1.2 Function Bracket 
This routine finds bracketing values for a function computed in Function “Fun.”  The brackets 
are used in the function “Root.”  The routine is adapted from [F-1].  The variables x1, x2 and the 
parameter vector for the function of interest are passed into this function. 
 
    Dim nTry As Integer, i As Integer 
    Dim factor As Double, f1 As Double, f2 As Double 
     
'   Set the initial parameters 
    factor = 1.6 
    nTry = 50 
    f1 = Fun(x1, p()) 
    f2 = Fun(x2, p()) 
     
    Fail = True 
    For i = 1 To nTry 
        If f1 * f2 < 0 Then 'have bracketing values 
            Fail = False 
            Exit For 
        End If 
        If Abs(f1) < Abs(f2) Then 
            x1 = x1 + factor * (x1 - x2) 
            f1 = Fun(x1, p()) 
        Else 
            x2 = x2 + factor * (x2 - x1) 
            f2 = Fun(x2, p()) 
        End If 
    Next 
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F.2 Gauss Quadrature Integration
65

 
The following routine has been useful when integrating statistical and other mathematical 
functions.  The routine is written in VB6 language for simplicity.  The routine integrates a 
function (fun) between the limits L1 and L2 using Gauss quadrature.  The computations are 
performed at n points using abscissa and weight values obtained from the GaussLegendre routine 
described in Section F.2.2.  
 

F.2.1 Subroutine GaussQuadrature 
Sub GaussQuadrature(L1 As Double, L2 As Double, p()as Double, 
fInt As Double) 
 
' Returns fInt as the integral obtained by n-point Gauss-
Legendre 
' integration of the function fun between the integration 
limits 
' L1 and L2.  The function fun is evaluated n times 
' at interior points in the range of integration. 
 
    'p() - Parameters of the function 
    'fInt - The integral of the function. 
 
    Dim i As Integer, n As Integer 
 
    n = 40 'the number of weights and abscissas used in the 
integration 
 
'   Calculate the abscissas and weights each time a function 
' is integrated. 
'   Abscissas and weights are a function of the variables n, L2 
and L1. 
 
 ReDim Abscissa(n) 
 ReDim Weights(n) 
 GaussLegendre L1, L2, Abscissa(), Weights(), (n)    'Get the 
abscissa 
 and weight arrays. 
 
'   Perform the "integration: 
    fInt = 0 
    For i = 1 To n 
        fInt = fInt + Weights(i) * fun(p()) * Abscissa(i) 
    Next 
 
    Exit Sub 

                                                 
65 Adapted from [F-1]. 
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F.2.2 Subroutine GaussLegendre 
Sub GaussLegendre(L1 As Double, L2 As Double, Abscissa() As 
Double, Weights() As Double, n As Integer) 
 
' Routine returns abscissa and weight arrays for an n-point 
Gauss-Legendre  
 integration of a 
' function used in subroutine GaussianQuadrature.  This routine 
needs 
 high precision. 
 
    Dim i As Integer, j As Integer 
    Dim eps As Double, xM As Double, xL As Double, z As Double, 
z1 As Double 
    Dim p1 As Double, p2 As Double, p3 As Double, pp As Double 
 
    eps = 0.00000000000003 'The precision of the estimates 
    xM = (L1 + L2) / 2 
    xL = (L2 - L1) / 2 
     
    ReDim Abscissa(n) 
    ReDim Weights(n) 
 
    For i = 1 To n 
        z = Cos(pi * (i - 0.25) / (n + 0.5)) 
 '   Starting with the above approximation to the ith root,  
 ' we solve for the Legendre polynomial p1 using the  
 ' Newton-Raphson method. 
        Do While True 
            p1 = 1 
            p2 = 0 
 ' Loop the recurrence relation to get the Legendre 
polynomial  ' evaluated at z.             
  For j = 1 To n 
                p3 = p2 
                p2 = p1 
                p1 = ((2 * j - 1) * z * p2 - (j - 1) * p3) / j 
            Next 
 '   p1 is now the desired Legendre polynomial.  Next 
compute pp, 
 ' its derivative, by 
 '   a standard relation involving p2, the polynomial of 
 ' one order lower than p1. 
            pp = n * (z * p1 - p2) / (z * z - 1) 
            z1 = z 
            z = z1 - p1 / pp 
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            If Abs(z - z1) <= eps Then Exit Do 
        Loop 
 ' Scale the root to the desired interval. 
        Abscissa(i) = xM - xL * z 
 ' Compute the ith weight. 
        Weights(i) = 2 * xL / ((1 - z * z) * pp * pp) 
    Next 
 
End Sub 
 
Appendix F References 
[F-1] Press, W., Vettering, W., Teukolsky, S. and Flannery, B., Numerical Recipes, 2nd Ed., 

Cambridge University Press, Cambridge, 1992. 
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Appendix G:  Calibration Feedback Analysis 
An important problem in calibration is evaluation of the significance of an out-of-tolerance MTE 
attribute on workload item attributes which were previously tested with it.  Common approaches 
to this evaluation do not quantitatively link the out-of-tolerance condition to the validity of the 
workload item test.  The question of significance cannot be adequately answered without doing 
so. 
 
This appendix presents a method for assessing the significance of an observed out-of-tolerance in 
a test instrument on the testing of an end item in terms of end item false accept risk.  In this 
scenario, an attribute of a UUT end item is tested using a reference attribute of an item of MTE.  
The UUT attribute is found in-tolerance and is accepted.  The false accept risk for the UUT 
attribute at the time of test is estimated from information obtained during calibration of the test 
MTE. 
 

 
Figure G-1.  The Calibration Feedback Loop.   

An MTE attribute used in the test of an end item is calibrated after a time T has elapsed since the 
test.  The results of calibration are an estimated MTE attribute bias b and an uncertainty in this 
estimate ub(0).  An estimate of the uncertainty in b at the time of the end item test ub(T) is obtained 
by computing uncertainty growth over a time interval t = T.  The quantities b, ub(T), the test result 
X, and the test process uncertainty ux(T) are used to compute CFAR for the tested end item 
attribute.  A decision is then made whether to recall the end item, advise the user or take no action. 

 
G.1 Appendix G Nomenclature 
The nomenclature used in this appendix is defined in Table G-1. 
 

Table G-1.  Variables Used in Calibration Feedback Analysis. 

Variable  Description 

UUT - a unit under test end item 

MTE - the measuring and test equipment used in performing the end item test 

x - random variable representing deviations from nominal of the end item UUT 

b
ub(T)

b
ub(T)

MTE Tests MTE Tests 
End ItemEnd Item
MTE Tests MTE Tests 
End ItemEnd Item

b
ub(0)

b
ub(0)

MTE CalibratedMTE Calibrated
Clock ResetClock Reset
to Time t = 0to Time t = 0

MTE CalibratedMTE Calibrated
Clock ResetClock Reset
to Time t = 0to Time t = 0

Reverse 
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Time t = T

Reverse 
Uncertainty 
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Time t = T
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Elapses 

Since End 
Item Test
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Since End 
Item Test
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at Time of Test
Estimate CFAR
at Time of Test
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•User Advisory
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attribute of interest 

X - the value of the end item UUT attribute at the time of test 

y - random variable representing values of x measured during testing by the 

MTE 

Y - the value of X measured during testing 

z - random variable representing the bias in the MTE at the time of its 

calibration 

w - random variable representing the value of z measured during MTE 

calibration 

Z - the value of z measured during calibration 

ux - estimated standard uncertainty in x at time of test 

uy - estimated standard uncertainty in y at time of test 

uz - estimated standard uncertainty in z at the time of the calibration of the MTE 

uw - estimated standard uncertainty in w at the time of the calibration of the MTE 

b - MTE attribute bias estimated from calibration data 

ub - estimated uncertainty in b 

T - time elapsed between UUT test and MTE calibration 

ub(T) - estimated uncertainty in b at the time of the UUT test 

±L - tolerance limits for the UUT attribute 

fz(z) - pdf for z 

fw(w|z) - pdf for measurements of the UUT attribute made using the MTE 

Pxy - joint probability that a UUT attribute will both be in-tolerance and observed 

to be in-tolerance 

Py - probability that UUT attribute values will be observed to be in-tolerance. 

CFAR - false accept risk (see Chapter 3). 
 
Note that, because both an MTE calibration and an end item test are involved, the notation in this 
appendix departs somewhat from that employed in the bulk of this annex.  Also, the calibration 
feedback problem involves an elapsed time T between end item test and a subsequent MTE 
calibration.  This means that uncertainty growth is a factor.  Accordingly, some of the notation of 
Appendix J is employed in the discussion. 
 
G.2 Estimating Risk from a Measured UUT Value 
A UUT attribute is tested at time t = 0.  The value X of the UUT is measured by the testing MTE 
to be Y.  The MTE is later calibrated at time t = T and is found to have a bias b with uncertainty 
ub(0).  The value b and the bias uncertainty estimate ub(0) are obtained using Bayesian analysis 
[G-1 – G-6].  The test and calibration loop is shown in Figure G-1.  The estimation process is 
described in Chapter 4, Appendix C and Appendix D. 
 
We want to estimate the false accept risk associated with testing the UUT attribute with the MTE 
of interest at time t = 0.  The first step in the process is to estimate the uncertainty ub(0) in b at 
this time.  This is done by computing the uncertainty growth backward for a time interval t = T. 
 
We now use Bayesian analysis to determine the false accept risk of the UUT test.  We first 
determine the UUT bias uncertainty ux from the UUT tolerance limits -L and L and an a priori 
estimate of its in-tolerance probability at the time of test.  The estimate for the quantity ux is 
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described in Section G.6.  We next estimate the total test process uncertainty uy, employing b as 
the MTE bias uncertainty. 
 
We then define a variable 

x

y

u
r

u
 , 

and compute the false accept risk as 

CFAR = 1 - Pin, 
where 

( ) ( ) 1inP a a      

and 

  2
2

21
1

x

Y b r
r L

r
a

u

 
    . 

G.3 Example 
Imagine that an estimate of the bias in the 10 VDC scale of a hypothetical digital multimeter is 
obtained during the calibration.  Suppose this attribute was used to test an attribute of a DVD 
player.  During the test, the DVD player attribute was measured to be 4.81 mV above nominal. 
 
The information used to develop uncertainty growth characteristics for the MTE attribute is 
shown in Figure G-2.   The uncertainties of both the MTE calibration and the DVD test are 
shown in Table G-2. 

 
Figure G-2.  Measurement Reliability vs. Time 

Reliability vs. time information used to develop the uncertainty growth characteristics of the MTE 
attribute.  The BOP and EOP in-tolerance probabilities are set at 99% and 85%, respectively.  The 
reliability model shown is a modified gamma model with the reliability function 

2 3( ) [1 ( ) / 2 ( ) / 6]tR t e t t t        [G-7]. 
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Table G-2.  Example UUT test and MTE calibration results. 

End Item (UUT) Attribute Test Data   
Tolerance Type: Two-Sided  
Upper Tol Limit: 8 mV 
Lower Tol Limit: -10 mV 
UUT % In-Tolerance at Time of Test: 95.00  
Estimated UUT Bias Uncertainty: 4.4826 mV 
Deviation Recorded at Test: 4.81 mV 
Test Process Uncertainty: 
(Excludes MTE Bias Uncertainty) 

2.33 mV 

Date of Test: 4/15/2007  
Time Elapsed Since Test: 370 Days 
MTE Bias Uncertainty at Time of Test: 0.9239 mV 

   
Test MTE Cal Data   
Tolerance Type: Two-Sided  
Upper Tol Limit: 2.5 mV 
Lower Tol Limit: -2.5 mV 
MTE % In-Tolerance at Time of Test: 95  
MTE Deviation at Time of Cal: -2.81 mV 
Total Cal Process Uncertainty: 0.789 mV 
Date of MTE Calibration: 4/19/2008  
Estimated MTE Bias from Cal Results: -2.0324 mV 
MTE Bias Uncertainty at Time of Cal: 0.6710 mV 

   
UUT CFAR at Time of Test: 10.1308 % 

 
As Table G-2 shows, the MTE attribute is measured at 2.81 mV below nominal.  The UUT end 
item false accept risk is computed to be 10.1308%.  If this risk is considered unacceptable, some 
quality control action, such as the recall of the end item, may be necessary. 
 
G.4 Cases with Unknown X 

In these cases, we need to compute CFAR for a N(0, ux) population tested using an MTE from a 
N(X| uy) population.  For this analysis, we compute CFAR as the probability that the UUT was 
out-of-tolerance, given that it was observed to be in-tolerance during testing.  From Section 4.2 
of this Annex, this is just 

1 /xy yCFAR P P  , 

where 
2

2

1

/
/21 2

/

1
1

2

x

x

L u

x x
xy

y yL u

L u b L u b
P e d

u u
  






       
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1 2 1y

L b L b
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          
   

, 

and 
2 2
x yu u u  . 
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G.5 Estimating MTE Bias and Bias Uncertainty at t = 0 
The bias in the MTE is estimated from calibration results using the Bayesian methodology 
alluded to earlier.  With this methodology, we start with a priori information prior to 
measurement and use the measurement result to update and refine our knowledge.  The a priori 
information consists of an estimate of the bias uncertainty of the MTE attribute prior to 
calibration and an estimate of the uncertainty in the calibration process.66 
 
For purposes of computation we denote the bias in the MTE attribute by the variable z and the 
measured value obtained by calibration by the variable w.  We assume a priori that z is normally 
distributed with zero mean and w is normally distributed with mean z: 

2 2/21
( )

2
zz u

z

z

f z e
u

 , 

and 
2 2( ) /21

( | )
2

ww z u
w

w

f w z e
u

  , 

where uz and uw are, respectively, the a priori estimates for the MTE bias uncertainty and the 
total calibration process uncertainty. 
 
We now employ Bayesian methods to seek the conditional distribution for z, given a calibration 
result Z.  This distribution is developed from the relation 

( | ) ( )
( | )

( )
w z

w

f w z f z
h z Z

f Z
 , 

where 

( ) ( | ) ( )w w zf Z f w Z f Z dw




  . 

Substituting the above pdfs for z and w in these expressions yields 

 
22

( ) 2
2 2

1
( | ) ( ) exp 1

2 1
G Z c

w z c
z c

Zr
f w z f z Ce r z

u r


  
        

, 

where C is a constant, G(Z) is a function of Z only, and rc is the ratio 

z
c

w

u
r

u
 . 

The pdf fw(Z) is obtained by integrating fw(w|z)fz(z): 

( )
2

2
( )

1
G Z

w z
c

f Z Ce u
r




. 

Dividing this expression into the expression for fw(w|z)fz(z) gives 

                                                 
66 See Appendix C. 
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


. 

Based on the measurement result Z, we now modify our knowledge regarding the distribution of 
the variable z from the pdf h(z|Z).  We conclude that z is normally distributed with mean b and 
standard deviation (standard uncertainty) uz / .  The quantity b is the MTE bias we use in the 
expression for a±.  The uncertainty in this bias at the time of MTE calibration is 

(0) /b zu u  . 

 
G.6 Estimating MTE Bias Uncertainty at t = T 
The uncertainty computed in Topic A is an estimate of the uncertainty in the MTE attribute value 
at the time of calibration.  This uncertainty begins to increase from the time of measurement as a 
result of stresses encountered during shipping, handling, storage and general usage. 
 
One way of looking at this is to say that, immediately following measurement, we estimate the 
uncertainty in the measurement to be ub(0).  At some time t later, the uncertainty is ub(t).  The 
difference between ub(0) and ub(t) is called uncertainty growth. 
 

G.6.1 Fundamental Postulate 
The error or bias in a subject attribute may grow with time or may remain constant.  In some 
cases, it may even shrink.  The uncertainty in this error, however, always grows with time since 
measurement.  This is the fundamental postulate of uncertainty growth. 
 

G.6.2 Estimating Uncertainty Growth 
One way to estimate uncertainty growth is to extrapolate from in-tolerance probability vs. time 
data for the population to which the variable of interest belongs.  Such data are referred to as 
calibration history data or test history data.  Test or calibration history data may be fit to a 
reliability model from which an in-tolerance probability may be computed as a function of time. 
 
If this is possible, then the uncertainty in the MTE attribute bias ub(t) may be computed from its 
ub(0) value.  Specifically, if the in-tolerance probabilities at time 0 and time t are R(0) and R(t), 
respectively, and the attribute bias is normally distributed, then we can state that 

1

1

[ (0)]
( ) (0)

[ ( )]b b
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u t u

q t






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
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where 
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[1 ( )] / 2, two sided MTE specs
( )

( ), single sided MTE specs,

R t
q t

R t


 


 

and -1 is the inverse normal distribution function. 
 
If reliability model coefficients are known, they can be used to compute R(t).  Uncertainty 
growth is may be estimated using the methods described in this appendix and in Appendix J.  
The uncertainty in b at the time of test is obtained by setting t = T. 
 
G.7 Estimating Test Process Uncertainty 
In this section, we determine a priori estimates of the UUT bias uncertainty and the uncertainty 
in the test process.  To illustrate the method, we will assume that all biases and other errors are 
normally distributed with zero mean. 
 

G.7.1 UUT Bias Uncertainty 
The uncertainty in the UUT bias is obtained from the expression 

2
2 2
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
 

where pin is the in-tolerance probability of the UUT as received for testing, and (.) is the 
normal distribution function. 
 
If 1 2L L , then ux is solved numerically.   If 1 2L L L  , then 

1( )x

L
u

p


, 

where 

 1 / 2, two sided UUT specs

, single sided UUT specs.
in
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p


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

 

 

G.7.2 Test Process Uncertainty 

G.7.2.1 Case 1 – Direct Measurement of X 
Imagine that the test of the UUT attribute of interest is one involving a direct measurement of the 
attribute value by the MTE.  Suppose also that the following errors are known to be present67 
 
b - MTE bias 
r - random error 

                                                 
67 The choice of applicable errors is for illustration purposes only.  It does not imply that these errors are present in 
every measurement, nor does it imply that these errors are the only error found in practice.   
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op - operator bias 
res - MTE resolution error 
env - error due to environmental factors 
other - other process errors 
 
In this model, as in other parts of this Annex, we state the value of the measurement result as 

r op res env otherY X b            . 

The uncertainty in Y is computed by applying the variance operator to this expression 
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where ij is the correlation coefficient for the ith and jth test process errors.  In most cases, of 
direct measurement, the process errors are statistically independent.  This means that the 
correlation coefficients are zero and the above yields 

 
2 2 2 2 2 2

var

.

y r op res env other

b r op res env other

u X b
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G.7.2.2 Case 2 – Multivariate Measurement of X 

If the test of the UUT attribute involves measuring n components x1, x2, ..., xn that comprise the 
variables of an equation for Y 

1 2( , , , )nY Y x x x  . 

The error model is then written68 

1
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Y i
i i
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x
 
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   
 , 

where i denotes total measurement process error for the measurement of the variable xi, i = 1, 2, 
... , n.  With this model, the test process uncertainty is written 
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68 See Handbook Annex 3. 

Downloaded from http://www.everyspec.com



 

- 172 - 
 

where ui is the total process uncertainty associated with the measurement of xi and ij is the 
correlation coefficient for i and j.  In applying this model, the bias uncertainty of each variable 
would need to be estimated as described in Section G.5. 
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Appendix H:  Risk-Based End of Period Reliability 
Targets 
H.1 Background 

H.1.1 General Methodology 
The approach involves establishing false accept risk confidence limits based on a computed 
variance in this risk.  The variance in the risk follows from the variances in the projected 
reliabilities of an MTE attribute and a UUT attribute; each referenced to times elapsed since 
calibration.  The variance in the projected reliability is computed from the variance-covariance 
matrices for the parameters of the models used to project the reliabilities. 
 
Obviously, this is a difficult problem to solve.  Accordingly, we will employ a very simple 
model along with a number of simplifying assumptions and conditions. 
 

H.1.2 Application 
The reliability targets developed in this appendix are applicable to equipment or system 
attributes.  The implementation of such targets presupposes the capability to estimate 
corresponding calibration intervals and, in the case of multifunction devices, to establish item 
recall cycles based on these intervals. 
 
H.2 Appendix H Notation 
The notation used in this appendix is described in Table H-1. 

Table H-1.  Variables Used in Estimating Risk-Based Reliability Targets. 

Variable  Description 

UUT - a unit under test drawn randomly from an equipment population. 

UUT attribute - a specific attribute of the UUT under consideration. 

MTE - an instrument drawn randomly from a measuring or test equipment 
population used to calibrate the UUT. 

MTE attribute - the attribute used as a reference in calibrating the UUT attribute. 

eUUT,b - the UUT attribute bias. 

 - MTE estimate (measurement) of the UUT attribute bias. 

± L - the tolerance limits for the UUT attribute. 

L - the range [-L, L], i.e., the tolerance limits, for eUUT,b. 

± l - the tolerance limits for the MTE attribute. 

Rx - the measurement reliability of the UUT attribute at the time of calibration. 

Ry - the measurement reliability of the MTE attribute at the time of calibration. 

uUUT,b - the pre-test standard deviation for eUUT,b at the time of calibration. 

ucal - the standard deviation for  at the time of calibration.69 
a - the nominal accuracy ratio between the UUT attribute and the MTE 

attribute. 
f(eUUT,b) - the probability density function (pdf) for eUUT,b. 

f(|eUUT,b) - the conditional pdf for  given a specific value of eUUT,b. 

                                                 
69 The time of test or calibration refers to the date that the UUT attribute is tested or calibrated. 
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Variable  Description 

Py - P(  L).  The probability that a UUT attribute bias will be found within L. 
Pxy - P(eUUT,b  L,   L).  The joint probability that a UUT attribute bias will 

lie within L and be observed to lie within L. 
UFAR - unconditional false accept risk.70 

UFARmax - the maximum allowable false accept risk. 

Ix - the UUT calibration interval. 

Iy - the MTE calibration interval. 
R* - the UUT end-of-period reliability target. 

MLE - maximum likelihood estimation.  A method of estimating the parameters of 
a mathematical function that maximizes the likelihood of obtaining the 
data that has been observed \ for the function.  

 
H.3 Assumptions 
Several simplifying assumptions are made to facilitate the development of the topic.  The 
penalization to more case-specific assumptions is straightforward, although somewhat more 
tedious. 
 

H.3.1 Normal Distributions with Zero Population Bias 

In this appendix, both eUUT,b and  are assumed to be normally distributed with pdfs given by 

 
2 2
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UUT b xe
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 , (H-1) 

and 
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u




  . (H-2) 

H.3.2 No Guardbands71 

The acceptance region for eUUT,b is taken to be L, i.e., the tolerance limits ± L. 
 

H.3.3 False Accept Risk Definition 
The definition of false accept risk employed in this appendix is the joint probability 

 ,( , )UUT bUFAR P e   L L , (H-3) 

that is, the probability that the value x will be both out-of-tolerance and observed to be in-
tolerance. 
 

H.3.4 Single-Parameter Reliability Functions 
It will be assumed that both the UUT attribute reliability model and MTE attribute reliability 
model are both non-intercept exponential models.  Extension to more complex models can 
readily be made. 
 
                                                 
70 See Chapter 3. 
71 See Chapter 5. 
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H.3.5 Zero Measurement Process Uncertainty 
It will be assumed that the only measurement uncertainty in the UUT calibration is the bias 
uncertainty of the MTE attribute.  Other uncertainties, such as those due to repeatability error, 
reproducibility error, resolution error, etc. can be included by a simple modification to the 
expression for uy. 
 

H.3.6 Use of “True” Reliabilities 
In developing expressions for false accept risk and related quantities, true values for UUT and 
MTE attribute reliabilities will be used rather than observed values.72  This does not detract from 
the method, however, since the UUT attribute reliability will be replaced later with a reliability 
target and the calibrating MTE in-tolerance probability will be set at its AOP value. 
 
H.4 False Accept Risk Computation 
Expanding the expression for UFAR, we have 
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,
UUY b

y xy

FA P P e

P P
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 

L L L
 (H-4) 

where the notation for the probability terms has been simplified for ease of development.  The 
first term on the right-hand side is computed from 
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 (H-5) 

where (.) is the cumulative normal distribution function, and 

 2 2
A x yu u u  . (H-6) 

The second term on the right-hand side of Eq. (H-4) is computed from 
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 (H-7) 

H.5 Reliability Dependence 
Using Eq. (H-1), we get  

                                                 
72 See Appendix E. 
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 2 1x
x

L
R

u

 
   

 
. (H-8) 

for the reliability of eUUT,b at the time of calibration.  This yields a ratio x that will be useful 
throughout the present development 

 1 1

2
x

x

R      
 

. (H-9) 

Likewise, from Eq. (H-2) at the referenced time, we have 

 2 1y
y

l
R

u

 
    

 
, (H-10) 

from whence we get another useful ratio y 

 1 1

2
y

y

R
   

   
 

. (H-11) 

Defining the nominal accuracy ratio between the UUT attribute and the MTE attribute as 

 /a L l , (H-12) 

we can write Eq. (H-7) as 

,y
y y y

l l L L

u L u au
     

and 

 y
y

L
a

u
 . (H-13) 

Employing Eqs. (H-9) and (H-13) in Eqs. (H-5) and (H-6), yields 
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. (H-14) 

Since the ratio L / uA can be expressed in terms of functions of the reliabilities Rx and Ry, then, as 
Eq. (H-5) shows, so can Py: 
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. (H-15) 

We now turn to Eq. (H-7) and rewrite the integration limits in terms of the functions x and y.  
These limits are combinations of the terms L / uy and (ux / uy) .   
 
We already have L / uy  = ay in Eq. (H-13), and, from Eqs. (H-9) and (H-11), we get 

 /x
y x

y

u
a

u
  . (H-16) 
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Hence, Eq. (H-7) becomes 
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Carrying out the integration over  allows us to express Pxy as a single integral: 
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Combining Eqs. (H-15) and (H-18) in Eq. (H-4) then yields 

 

  2

2

/2

2
1 ( / )

1
(1 / ) (1 / ) .

2

x

x

y

y x

y x y x

a
UFAR

a

a a e d







 

      






 
  
  

          
 (H-19) 

 
H.6 Variance in the False Accept Risk 
We obtain the variance in UFAR in Eq. (H-19) using small error theory:73 
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. (H-20) 

Note that there is no covariance term in this expression.  This is because we will later be 
expressing x and y as functions of two different reliability functions whose MLE parameters 
are arrived at independently.  
 
We now obtain the variance terms in Eq. (H-20) also through the use of small error theory: 
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, (H-21) 

and 
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As for the derivatives in Eqs. (H-21) and (H-22), it is easy to show that 
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73 Small error theory expresses the error in a multivariate quantity as a Taylor series expansion to first order in the 
error terms.  The square root of the variance in this error is the measurement uncertainty in the value of the quantity 
[H-3].  See also Handbook Annex 3. 
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So, Eqs. (H-21) and (H-22) become 
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Before moving on to developing expressions for var(Rx) and var(Ry), we pause to obtain the 
derivatives in Eq. (H-20).  We first define functions w± as 

 (1 / )y xw a     . (H-25) 

We then have, after a little algebra and the application of Leibnitz’s rule, 
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and 
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H.7 Variance in the Reliability Functions 
The variances in Rx and Ry are approximated using the variance-covariance matrices obtained by 
MLE fits of reliability functions to Rx and Ry [H-1].  To illustrate, we will assume that, at the 
time of calibration of the UUT, we can write these functions as non-intercept exponential 
models:74 

 ˆ xt
xR e  , (H-28) 

and75 

 ˆ y

yR e   , (H-29) 

where t is the time elapsed since the UUT attribute was last calibrated and  is the time elapsed 
since the MTE attribute was last calibrated.  With these simple models, we have 
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and 
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74 Other useful reliability models are available.  See Reference [H-1], Appendix A and Appendix E. 
75 In applying the method, we use these functions to compute approximate values for x and y. 
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H.8 False Accept Risk Confidence Limit 
Combining Eqs. (H-30) and (H-31) with (H-21) - (H-24) and substituting in Eq. (H-20) gives 
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where the derivatives are given in Eqs. (H-26) and (H-27).  Note that this expression is of the 
form 

var( ) var( ) var( )x x y yUFAR c c   , 

which we encounter frequently in dealing with multivariate measurement uncertainty analysis 
problems.76  Thus, since we have independence between x and y, we can use the Welch-
Satterthwaite relation to obtain the degrees of freedom for the variance in UFAR in terms of the 
degrees of freedom for the variances in x and y.  Let these be x and y, respectively.  Then, we 
have 
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This result, together with the variance in UFAR, can be used to obtain an upper confidence limit 
for UFAR.  If the confidence level for this upper limit is 1 – , then we have  

 0 , var( )upperUFAR UFAR t UFAR   ,77 (H-34) 

where t, is a single-sided t-statistic and UFAR0 is a “nominal” level of risk, computed from Eq. 
(H-19). 
 

H.8.1 Developing the Confidence Limit 
The confidence limit for UFAR is obtained by setting UFARupper equal to the maximum 
allowable false accept risk in Eq. (H-34) and solving the equation 

 , var( ) 0maxUFAR t UFAR UFAR    , (H-35) 

where UFAR is given in Eq. (H-19) and var(UFAR) in Eq. (H-32).  The variables involved in the 
solution are Rx, Ry, t, , a, var(x) and var(y).  Note that knowledge of x and y is not required.  
This is because we will employ a solution strategy the takes these parameters out of the picture. 
 
In this strategy, we assume that the UUT is calibrated at the end of its interval.  Thus we set Rx 
equal to the reliability target R* and set t equal to the UUT calibration interval Ix 
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R R

t I
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 (H-36) 

                                                 
76 See Appendix A. 
77 The validity of this expression will be discussed later. 
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We can’t make the same assumptions for Ry and  since  could lie anywhere within the MTE 
calibration interval.  Instead, we use the average of Ry over time and set  equal to the time 
within the interval that Ry is equal to its average value.  Since we’re assuming that Ry follows a 
non-intercept exponential model, its average is equal to the square root of its end-of-period value 
and the corresponding time  is half the MTE interval. 78  Assuming that the MTE has the same 
reliability target as the UUT, we put these considerations together and write 
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/ 2.
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R R

I




 (H-37) 

Substituting Rx and Ry for the projections of Rx and Ry in Eq. (H-32) and using Eqs. (H-36) and 
(H-37) we get 
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. (H-38) 

This is the expression to use in Eq. (H-35).  In arriving at the solution, we redefine x and y 
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1 1
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, 

and express ˆ
xI  and ˆ

yI  in terms of R* 

*1ˆ lnx
x

I R


  , and *1ˆ lny
y

I R


  . 

H.8.2 Implementing the Solution 
The solution of Eq. (H-35) for a reliability target R* is arrived at iteratively.  The process stops 
when the absolute value of the left-hand side of the equation is less than or equal to some preset 
small value .  Suppose this occurs at the nth iteration, i.e., we obtain some value R*

n. 
 
Once we have this value, we use it to set calibration intervals for the UUT and MTE attributes.  
For the example in this appendix, we have 

*1
lnx n

x

I R


  , and *1
lny n

y

I R


  . 

H.9 A Note of Caution 
The weak link in the risk-based approach described in this appendix is Eq. (H-35).  This equation 
assumes that UFAR is normally distributed.  From Eq. (H-19), we see that this is not the case.  
                                                 
78 These adjustments are valid only for reliabilities governed by the non-intercept exponential model. 
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Moreover, in a generalization of the risk-based approach, obtaining a distribution for UFAR in 
closed form is not feasible. 
 
However, given x and y and a distribution for , a distribution for UFAR could be assembled 
using Monte Carlo methods.  Once this distribution is constructed, it could be used without 
recourse to a t-statistic to obtain an upper limit for UFAR.  Such a construction would slow the 
iterative process considerably, but with current and anticipated PC processing speeds, this does 
not present a serious obstacle. 
 
H.10 An Alternative Method 
An approach has been suggested in which the interval Ix is solved for using an expression 
something like 

 *
,

ˆ ˆvar( )x xR R t R   , (H-39) 

and 

 
1ˆ ˆlnx x

x

I R


  . (H-40) 

where  is the same as before, and  is the degrees of freedom for ˆvar( )xR .   
 
From Eq. (H-30), we know that 

2 2ˆ ˆvar( ) var( )x x xR t R  , 

which we replace with 

 2 2ˆ ˆ ˆvar( ) var( )x x x xR I R  . (H-41) 

Substituting in Eq. (H-39) gives 
 *

,
ˆ ˆ ˆ var( )x x x xR R t I R    . (H-42) 

We iteratively search for a value for ˆ
xR  that satisfies Eq. (H-42).  Once this solution is found, we 

compute the calibration interval Ix using 
1

lnx n
x

I R


  , 

where Rn is the solution for the nth iteration for ˆ
xR . 

 
While this approach is simpler than the risk-based approach proposed in this appendix, it is not 
satisfying from the standpoint of managing to a known level of risk, although the attained level 
of risk could be computed after the fact using Eq. (H-19). 
 
Consequently, the risk-based approach is recommended.  It should be mentioned, however, that 
the extension of the approach to accommodate more complicated reliability models, non-normal 
distributions and non-zero measurement process uncertainties, while conceptually 
straightforward, is not trivial in terms of labor.   
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Presumably, the task would be made somewhat easier through the application of matrices and the 
numerical computation of derivatives.  The advantage of this is that, once the algorithms are 
written, the job is over.  From then on it’s just a matter of feeding and crunching. 
 

H.10.1 Developing a Binomial Confidence Limit for Rx 

As an alternative to Eq. (H-39), we develop an upper binomial confidence limit Ru for R* 
computed from z “pseudo successes” out of m “pseudo trials.”  Then Ru is obtained by solving79 

 
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  

We obtain m and z by taking advantage of the properties of the binomial distribution.  If z is 
binomially distributed, the variance in an “observed” probability /p z m  is given by 

(1 )
var( )

p p
p

m


 , 

where p is the underlying probability for successful outcomes.  Using the form of this 
expression, we establish the number of pseudo trials as 

* *(1 )
ˆvar( )x

R R
m

R


 , 

and the number of pseudo successes as 
*z mR . 

Using Eq. (H-41) we have 
*

2 *

1
ˆ var( )x x

R
m

I R 


 , 

where ˆ
xI is given by Eq. (H-40).  Once m, z and Ru are computed, we obtain the calibration 

interval Ix from 
1

lnx u
x

I R


  . 

Note that, in using Ru to set Ix, we say we are setting an interval that corresponds to producing 
observed reliabilities of R* or higher with approximately 1 –  confidence. 
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Appendix I:  Set Theory Notation for Risk Analysis 
I.1 Basic Notation 
For risk analysis, the “sets” we refer to are just ranges of attribute values or biases and their 
complements.  So, if an attribute bias eUUT,b is given the tolerance limits -L1 and L2, we say that it 
is in tolerance if 

1 , 2UUT bL e L   . 

With set theory notation or, similarly, the notation of mathematical logic, we would define a set, 
in this case all attribute values between -L1 and L2, inclusive, with a designator like L.  This can 
be defined as L = { eUUT,b | -L1  eUUT,b  L2 }.  In this expression, the {} brackets signify “the set 
of” and the | symbol means “such that.”  So, this reads “L is the set of all values of eUUT,b such 
that eUUT,b is contained within the limits -L1 and L2.”

80 
 
Actually, you don’t really need to become familiar with this notation.  It’s just a convenient way 
to define things.  Once you get a good idea what L is, if you like, you can use the statement 

eUUT,b  L 

in place of the statement. 

1 , 2UUT bL e L   . 

All that is new in this notation is the  symbol, which means “is a part of” or “belongs to” or “is 
contained within.”  As for the complement of L, there are two simple ways to say that eUUT,b is 
not contained in L.  The first is 

eUUT,b  L, 

and the second is 

,UUT be L . 

The symbol  means “not contained in” and the bar over the set L indicates all values other than 
those contained in L.  Other conventions can be used to signify complements, as is discussed 
later. 
 
I.2 Additional Notation 
There are other symbols that may be used in risk analysis discussions.  For example,  

A  B. 

reads “A is a subset of B.”  This expression would apply, for example, if81 

B = { eUUT,b | L1  eUUT,b  L2 } 
and 

                                                 
80 You could also define the set L using the “for all” symbol .  For example, L could be defined by the expression 

L1  eUUT,b  L2  eUUT,b  L. 
81 See the discussion in the first note, alluded to above. 
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A = { eUUT,b | 0  eUUT,b  L2 }. 

Incidentally, the expression A  B means the same thing as A  B. 
 
Other symbols of possible use are the “union” symbol  and the “intersection” symbol .  The 
union of two sets A and B, written A  B, is the set of all numbers that belong to either A or B or 
both.  The intersection of two sets A and B, written A  B, is the set of all numbers that belong to 
both A and B.  In the probability functions we use in risk analysis, we could write the probability 
of A or B occurring as P(A  B) and we could write the probability both A and B occur as P(A  
B).  Incidentally, a relation that is sometimes useful is 

P(A  B) = P(A) + P(B) - P(A  B). 

Normally, we don’t really use these set theory symbols in our discussions.  Instead, we use a 
more expeditious notation wherein P(A  B) is written P(A,B), and the above becomes 

P(A  B) = P(A) + P(B) - P(A,B). 

Of course, if A and B are mutually exclusive, they can’t both happen together and P(A,B) = 0. 
 
The complement of a set can be written  

, , cA A A  

or any number of other ways an author is comfortable with.  So, if we use the middle notation, 
we would write the probability of A occurring and B not occurring as ( , )P A B .  For example, if A 
is the event where a UUT attribute is in-tolerance and B represents the event that it is also 
observed to be in-tolerance then we have false accept risk given as 

( , )FRR P A B . 

We can use the basic notation of the previous section to describe A and B in the argument of P.  
Let eUUT,b denote the value of the UUT attribute bias and let  denote a measurement of this 
value.  Then we can write 

,( , )UUT bFRR P e   L L , 

where L = { eUUT,b | L1  eUUT,b  L2 }, as before.  Alternatively, we could write 

,( , )UUT bFRR P e   L L . 

Extension of the notation to unconditional false accept risk (UFAR) is left as an exercise for the 
reader. 
 
We also need to be able to accommodate the probability of an event occurring given that another 
event has occurred.  For this we use the | symbol.  With this symbol, the probability of A 
occurring, given that B has occurred is written P(A|B).  So, letting A represent the set of 
observed UUT attributes that were accepted during calibration or testing, we could write the 
probability of finding an out-of-tolerance UUT attribute in the accepted lot as 

,( )UUT bCFAR P e   L A| . 
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This, of course, is the definition of conditional false accept risk. 
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Appendix J:  Post-Test Risk Analysis 
In calibration and testing, the measurement results are given either in a report of the measured 
value with details regarding the measurement uncertainty, in the case of standards calibration, or 
in terms of the results of a conformance test, as in the calibration of test equipment or the testing 
of end items. 
 
Ordinarily, these results do not include uncertainties for the effects of transport to and from the 
calibrating or testing facility, effects of environmental conditions (i.e., temperature, humidity, 
barometric pressure, etc.) or drifts with time.  In some cases, uncertainties arising from these 
effects may be greater than the reported uncertainty of the test or calibration.  It is important to 
bear in mind that a test or calibration is guaranteed valid only at the time and place it was carried 
out  it may not be relevant to using the calibrated or tested attribute in the user’s environment. 
 
The following are factors to consider in overcoming this deficiency: 

· Account for the response of the tested or calibrated attribute to shipping and handling stress 
during transport. 

· Account for the effect of environment on the attribute and evaluate any effects if the local 
environment differs significantly from the one in which the attribute was calibrated or 
tested. 

· Equipment attributes are not absolutely stable with time and, therefore, must be 
recalibrated periodically as discussed in Chapter 7 of the Handbook.  This instability can be 
accommodated in uncertainty and risk calculations by accounting for the effect of 
uncertainty growth over time. 

These factors are discussed in the following sections. 
 
J.1 Stress Response 
Accounting for the impact on a tested or calibrated attribute of a shipping, handling or 
environmental stress can be accomplished by an analysis of the attribute’s response to stress. 
 
The impact of a given stress on the value of an attribute is determined by using an appropriate 
response coefficient.  For instance, the response coefficient for the effect of mechanical shock on 
a voltage source might be expressed as "0.015 V per g" and the effect of temperature on a 2.5 
psi pressure transducer might be stated as “±0.5% of 1.0% of output (0 to 50 ºC).” 
 

J.1.1 Shipping and Handling 
Instruments and standards are often transported to and from calibration or testing facilities by 
hand, by special transport or by common carrier.  For some attributes, the uncertainty in errors 
due to shipping and handling may be significant relative to the attribute’s accuracy requirements. 
 
The impact of the shipping and handling stresses on the measurement uncertainty obtained by 
calibration or testing can be assessed by identifying each relevant stress and quantifying the 
associated stress response.   
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In the assessment of the impact of stress on attribute value, a stress standard uncertainty is 
computed for each relevant stress.  This standard uncertainty can be computed from entered 
stress limits, confidence level and a degrees of freedom estimate quantifying the amount of 
information available in determining each stress limit.  Individual standard uncertainties are 
combined in the same manner as uncertainties for testing and calibration errors.82  An example of 
such an analysis is shown below. 
 
Calibration of HP 34420A at 10V DC.  Response to Shipping and Handling Stress 

UUT Attribute: 
Attribute Name:  10 Volt DC Reading 
Qualifier 1:   
Qualifier 2:  
 
Analysis Results: 

 Event 
Description 

Stress 
Limits 

(g) 
% 

Confidence 

Stress 
Uncertainty 

(g) 
Deg. 

Freedom 

Response 
Coefficient 

(V/g) 

Response 
Uncertainty 

(V) Distribution 

Cal Lab to 
Shipping 
Dock 

0.75 95.0 0.38  0.015 0.006 Normal 

Shipping 
Dock to 
Delivery Van 

1.5 90.0 0.9  0.015 0.014 Normal 

Delivery to 
Receiving 
Dock 

2.2 90.0 1.3  0.015 0.020 Normal 

Receiving 
Dock to User 

0.75 95.00 0.38  0.015 0.006 Normal 

 

Analysis Summary: 
Stress Response Uncertainty:  0.026 uV  
Distribution:  Normal  
Degrees of Freedom:  
Analysis Category:  Type B  
 

J.1.2 Usage Environment 
Even if equipment are under ideal or “nominal” conditions, the environmental stress can impact 
the values of tested or calibrated attributes.  The impact of nominal environmental stresses can be 
accounted for through the analysis of uncertainty growth with time.  The impact of additional or 
unusual levels of environmental stress can be accounted for in the same manner as stresses due to 
shipping and handling.  The following adds the responses to such environmental stresses to the 
report shown above. 
 

                                                 
82 See Annex 3 and Appendix A of Annex 4. 
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Calibration of HP 34420A at 10V DC.  Response to Shipping and Handling Stress 

UUT Attribute: 
Attribute Name:  10 Volt DC Reading 
Qualifier 1:   
Qualifier 2:  
 
Analysis Results: 

Event 
Description 

Stress 
Limits 

(g) 
% 

Confidence 

Stress 
Uncertainty 

(g) 
Deg. 

Freedom 

Response 
Coefficient 

(V/g) 

Response 
Uncertainty 

(V) Distribution 

Cal Lab to 
Shipping 
Dock 

0.75 95.0 0.38  0.015 0.006 Normal 

Shipping 
Dock to 
Delivery Van 

1.5 90.0 0.9  0.015 0.014 Normal 

Delivery to 
Receiving 
Dock 

2.2 90.0 1.3  0.015 0.020 Normal 

Receiving 
Dock to User 

0.75 95.00 0.38  0.015 0.006 Normal 

Ambient 
Temperature 

25.0 95.0 11.8 16 0.005 0.059 Student’s t 

 

Analysis Summary: 
Stress Response Uncertainty:  0.064 uV  
Distribution:  Student’s t  
Degrees of Freedom:  
Analysis Category:  Type A, B  
 
J.2 Uncertainty Growth 
An established tenet of analytical metrology is the principal of uncertainty growth which states 
that the uncertainty ucal in the observed bias  of a tested or calibrated UUT attribute grows with 
time following testing or calibration.83  We indicate this time-dependence by writing the bias as 
eb(t) and the bias uncertainty as ub(t), where t indicates time elapsed since test or calibration (t = 
0).  Then, drawing from Appendix A, we see that eb(0) =  and ub(0) = ucal.

84 
 
There are two alternatives for computing ub(t); one that employs attributes data and one that 
employs variables data. 
 

                                                 
83 In-depth discussions on uncertainty growth can be found in Annex 3 and Annex 5. 
84 The value of  relevant to the discussion of uncertainty growth is the value following test or calibration.  This may 
be a corrected value or an uncorrected value.  If corrected, the appropriate value for eb(t) would be an adjusted  and 
ub(0) would represent a value of ucal, including any contributions to ucal arising from the act of correction.  Whether 
corrected or uncorrected, the values at time t = 0 will be represented by  and ucal in the following sections. 
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J.2.1 Attributes Data Analysis 
Attributes data consist of in- or out-of-tolerance conditions for a population of UUT attribute 
values recorded during testing or calibration.85  The following assumes that reliability modeling 
is used to analyze such data.  The results of analysis include the selection of an appropriate 
measurement reliability (in-tolerance probability) model and solutions for the model’s 
parameters, as described in Chapter 7 of the Handbook and in Annex 5. 
 
The uncertainty ub(t) is computed using the value of the initial measurement uncertainty, ub(0), 
and the reliability model for the UUT attribute population.  The measurement reliability of the 
UUT attribute at time t is related to the attribute's uncertainty according to 

 
2

1

( ) [ ( )]
L

U b b

L

R t f e t de


  , (J-1) 

where fU[b (t)] is the probability density function for the attribute’s bias at time t, and -L1 and L2 
are the attribute’s tolerance limits.  For discussion purposes, we assume for the moment that b(t) 
is normally distributed with the pdf given by 

 
2 2[ ( )]/2 ( )1

[ ( )]
2 ( )

b b be t u t
U b

b

f e t e
u t




  . (J-2) 

where the variable b(t) represents the attributes expected bias at time t.  The relationship 
between L1, L2 and  is shown in Figure J-5.  Also shown is the distribution of the population of 
biases for the UUT attribute of interest. 

 
Figure J-1.  Probability Density Function for UUT Attribute Bias 

The shaded area represents the in-tolerance probability at time t. 

We state that at a given time t, the UUT attribute’s expected deviation from nominal is given by 
the relation 
 0( ) ( )b t b t   . (J-3) 

                                                 
85 For many testing or calibration organizations, only data recorded at the UUT item level are available.  When this 
is the case, a UUT is considered in-tolerance only if all its tested or calibrated attributes are observed to be in-
tolerance, i.e., the item is called out-of-tolerance if any single attribute is observed to be out-of-tolerance. 

b(t)

f [eb(t)]

eb(t)
L2-L1 b(t)

f [eb(t)]

eb(t)
L2-L1
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At the time of measurement, t = 0, we have 0 =  and b(0) = 0.  The remainder of this 
discussion provides a method for calculating ub(t), given ub(0). 
 
Uncertainty Growth Modeling 

If we had at our disposal the reliability model for the individual measured attribute, given its 
initial uncertainty, we could obtain the uncertainty ub(t) by iteration or by other means.  
However, we usually only have information that relates to the characteristics of the reliability 
model for the population to which the UUT attribute belongs.  This reliability model predicts the 
in-tolerance probability for the UUT attribute population as a function of time elapsed since 
measurement.  It can be thought of as a function that quantifies the stability of the population 
with respect to the ability of the population members to remain in-tolerance.  In this view, we 
begin with a population in-tolerance probability at time t = 0 (immediately following 
measurement) and extrapolate to the in-tolerance probability at time t > 0. 
 

 
Figure J-2.  Measurement Reliability vs. Time 

Reliability vs. time information used to develop the uncertainty growth characteristics of the MTE 
attribute.  The BOP and EOP in-tolerance probabilities are set at 99% and 85%, respectively.  The 
reliability model shown is a modified gamma model with the reliability function 

2 3( ) [1 ( ) / 2 ( ) / 6]tR t e t t t       (see Chapter 7 and Annex 5). 

 
If we have recourse to an application that performs measurement reliability modeling using a 
comprehensive set of models,86 we can identify the appropriate reliability model and compute its 
parameters.  If we do not have recourse to the parameters of the reliability model, we instead 
utilize an elapsed time, a beginning-of-period (BOP) reliability and an end-of-period (EOP) 
reliability.  For certain models, we must also estimate an AOP reliability.  These values apply to 
the UUT attribute's population and are based on service history records or engineering 
knowledge. 
 

                                                 
86 See Method S2 of Annex 5. 

In-Tolerance Probability vs. Time
for the Gamma Model
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We next apply the reliability model obtained from these values to the individual attribute under 
consideration.  In doing this, we operate under a set of assumptions. 
 

1. The result of an attribute measurement is an estimate of an attribute’s value or bias.  This 
result is accompanied by an estimate of the uncertainty in the attribute’s bias. 

2. The uncertainty of the attribute’s bias or value at time t = 0 (immediately following 
measurement) is the uncertainty of the measurement process.87 

3. The bias or value of the measured attribute is normally distributed around the 
measurement result. 

4. The stability of the attribute is inferred from the stability of its population.  This stability 
is represented by the attribute population reliability model. 

5. The uncertainty in the attribute’s value or bias grows from its value at t = 0 in accordance 
with the reliability model of the attribute’s population.88   

 
Uncertainty Growth Estimation 

As indicated above, uncertainty growth is estimated using the reliability model for the UUT 
attribute.  The expressions used to compute uncertainty growth vary depending on whether the 
attribute tolerances are two-sided, single-sided upper or single-sided lower. 
 
Two-Sided Cases 
Using Eqs. (J-1) and (J-2) for normally distributed attribute biases with two-sided tolerance 
limits, the reliability function at t = 0 is given by 

 

2

1

1 0 2 0

0 0

(0) [ (0)]

1 ,

L

U b b

L

R f d

L L

u u

 

 





    
      

   


 (J-4) 

where 
 0 (0)bu u . (J-5) 

The parameter 0 is an estimate of the attribute's bias at time t = 0, set equal to either a sample 
mean or a Bayesian estimate for .  If 0 is set equal to a sample mean value, u0 is set equal to 
the combined uncertainty estimate for the mean value.  If 0 is set equal to a Bayesian estimate, 
u0 is set equal to the uncertainty of the Bayesian estimate. 
 
The reliability at time t > 0 is given by 

 1 2( ) ( )
( ) 1

( ) ( )
b b

b b

L t L t
R t

u t u t

     
      

   
. (J-6) 

                                                 
87 This may include an additional uncertainty due to error introduced by attribute adjustment or correction. 
88  See Eq. (J-1). 
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We use relations of the form of Eqs. (J-4) and (J-6) to estimate uncertainty growth.  Since this 
growth consists of an increase in the initial uncertainty estimate, based on knowledge of the 
stability of the attribute population, it should not be influenced by the quantity b(t).  
Accordingly, we construct two population reliability functions R0 and Rt, defined by 

 1 2
0

0 0

1
L L

R
u u

   
      

   
, (J-7) 

and 

 1 2 1t
t t

L L
R

u u

   
      

   
. (J-8) 

Next, we solve for u0 and ut iteratively using the algorithms in Appendix F of Annex 4.  Having 
obtained the solutions, we write 

 
0

( ) (0) t
b b

u
u t u

u
 . (J-9) 

Once we obtain ub(t), we are on the way to solving for the in-tolerance probability at time t by 
using Eq. (J-6). 
 
At this point, we need a “best” estimate for b(t).  If the function b(t) is not known, we use the 
last known value of b, namely 0, the value obtained by measurement during testing or 
calibration.  Substituting 0 for  in Eq. (J-6) we have 

 1 0 2 0( ) 1
( ) ( )b b

L L
R t

u t u t

     
      

   
.  (J-10) 

Single-Sided Cases 
In cases where tolerances are single-sided, ub(t) can be determined without iteration.  In these 
cases, either L1 or L2 is infinite, and Eqs. (J-7) and (J-9) become 

0
0

L
R

u

 
   

 
 

and 

t
t

L
R

u

 
  

 
, 

where L is equal to L1 for single-sided lower cases and is equal to L2 for single-sided upper cases.  
Solving for ub(t) yields 

 
 
 

1
0

1
( ) (0)b b

t

R
u t u

R









. (J-11) 

J.2.2 Variables Data Analysis 
In variables data analysis, changes in attribute values are modeled with time-dependent functions 
and uncertainty growth is estimated explicitly.  The analysis employs as-left and as-found 
attribute values obtained during successive calibrations. 
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A methodology has been developed that employs regression analysis to model the time 
dependence of b(t), as expressed in Eq. (J-3), and of estimating ub(t).

89  In this methodology, 
attribute biases are assumed to be normally distributed with variance 

2 and mean b(t), where t 
is the time elapsed since calibration.  Regression analysis with polynomial models of arbitrary 
degree is applied to estimate b(t).  Based on the results of regression analysis, calibration 
intervals are determined that satisfy either EOP in-tolerance criteria or maximum allowable 
uncertainty criteria. 
 

J.2.2.1 The Variables Data Model 

The basic model for b(t) is a generalization of Eq. (J-3) 

 0( ) ( )b t t    , (J-12) 

where t is the time elapsed since calibration, 0 = y(0), and (t) is the deviation in attribute value 
from 0 as a function of t.  We model the function (t) with a polynomial function ˆ ( )t , yielding 
a predicted value 

 0
ˆˆ ( ) ( )b t t    , (J-13) 

where ˆ ( )t  is s-independent of 0, i.e., the deviation over time is not influenced by the attribute 
value starting point 0. 
 

J.2.2.2 Uncertainty in the Projected Value 

The uncertainty in a projected value of b(t) is estimated as the square root of the variance of 
ˆ ( )b t  

 ˆ( ) var[ ( )]b bu t t . (J-14) 

Given the s-independence of (t) and 0 in Eq. (J-12), we write 

 2 2
0 |ˆvar[ ( )]b tt u s   , (J-15) 

where the quantity u0 is defined as before.  The quantity s|t is called the standard error of the 
forecast.  This quantity is determined using the results of regression analysis, as will be shown 
later. 
 

J.2.2.3 Regression Analysis 

In modeling ˆ ( )b t , we employ unweighted regression analysis with observed values of .  The 
minimum data elements needed for unweighted fits are (1) the calibration service date, (2) the as-
found value at the service date, (3) the previous service date and (4) the as-left value at the 
previous service date.  Table J-1 provides an example of the kind of data that we would need to 
assemble from variables data service history. 
 

                                                 
89 The methodology is given in Annex 3 and Annex 5. 

Downloaded from http://www.everyspec.com



 

- 195 - 
 

Shown in Table J-1 are the minimum fields required for modeling attribute changes over time 
and uncertainty growth.  

Table J-1.  Example Service History Data 

 

Service Date 

As-
Found 
Value 

As-Left 
Value 

March 29, 2003 5.173 5.073 
July 11, 2003 5.324 5.048 
October 5, 2003 5.158 4.993 
February 17, 2004 5.292 5.126 
April 27, 2004 5.226 5.024 
October 17, 2004 5.639 5.208 
April 2, 2005 5.611 5.451 

 

 
The sampled values of (t) are the differences between the as-found values and previous as-left 
values.  The intervals between successive calibrations are called resubmission times.  Table J-2 
shows the Table J-1 data formatted for regression analysis and sorted by resubmission time. 
 

Table J-2.  Conditioned Variables Data Sample.  

 
Resubmission Time t (t) 

70 0.1 
86 0.11 

104 0.251 
135 0.299 
167 0.403 
173 0.615 

 

NOTE:  Data are compiled from Table J-1 and sorted by resubmission time.  Imagine that we 
observe n pairs of as-found and as-left values with corresponding resubmission times.  Let Yi 
represent the as-found UUT attribute bias estimate at time Xi whose prior as-left value is yi 

recorded at time xi .  We form the variables 

 i = Yi - yi (J-16) 
and 
 ti = Xi - xi , (J-17) 

and write the bias drift model as 

 2
1 2

ˆ m
i i i m ib t b t b t     , (J-18) 

taking into account the reasonable assertion that (0) = 0. 
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Figure J-3.  First Degree Regression Fit to the Data of Table J-2 

 
We use regression analysis on the sample of observed values of  and resubmission times t to 
solve for the coefficients bj,  j = 1, 2, ... , m.  The degree of the polynomial m is a variable to be 
determined.  Figures J-3 and J-4 show first degree (m = 1) and second degree (m = 2) polynomial 
regression fits to the data of Table J-2. 
 
 
 

J.2.2.4 Projecting Attribute Values and Uncertainties 

The value (t) is estimated using Eq. (J-18).  The uncertainty in this value is given by 

 |
ˆ1 var[ ( )]ts s t    , (J-19) 

where 

RSS
s

k m



, 

and RSS is the residual sum of squares, defined for a sample of k observed values by 

  2

1

ˆRSS
k

i i
i

    . (J-20) 
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Figure J-4.  Second Degree Regression Fit to the Data of Table J-2 

In this expression, i is the ith observed deviation and ˆ
i  is computed using Eq. (J-18).  The 

quantity s|t in Eq. (J-15) is the standard error of the forecast in Eq. (J-15).  It represents the 
uncertainty in a projected individual value of , given a value of t. 

 
The value b(t) is estimated using Eq. (J-13) 

 0
ˆˆ ( ) ( )b t t    , (J-21) 

with the uncertainty computed using Eq. (J-15) 

 
2 2
0 |

ˆ( ) var[ ( )]

.

b b

t

u t t

u s







 
 (J-22) 

As a matter of potential future interest, the degrees of freedom  for the estimate ub(t) is 
computed using the Welch-Satterthwaite relation 

4

44
|0

( )

t

cal

u t
su

n m











. 

 
J.3 Implementation 
After accounting for the uncertainty in measurement of the UUT attribute, the uncertainty due to 
stress response, the change in calibrated attribute value over time and the effect of uncertainty 
growth, it remains to estimate the risks associated with using the attribute in performing tests or 
calibrations on a workload item’s attribute at time t > 0.  Note that estimating the impact of stress 
and uncertainty growth on these risks involves the use of (t) and u(t), defined in Eqs. (J-13) and 
(J-22). 
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The UUT in use now becomes the MTE in the risk expressions of Chapters 3 and 4.  Since the 
UUT attribute is now functioning as the reference attribute, it will be referred to in the following 
substitutions as the “MTE attribute.” 
 
The UUT bias eUUT,b and uUUT,b 

These are now the bias and a priori bias uncertainty for an attribute to be tested or calibrated by 
the MTE attribute.  The bias and the bias uncertainty for this attribute are given in Eqs. (J-21) 
and (J-22), respectively. 
 
The Calibration Uncertainty ucal 

The calibration uncertainty ucal is obtained for all scenarios by replacing uMTE,b with ub(t) of Eq. 
(J-14) in all expressions for ucal. 
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Appendix K:  Derivation of the Degrees of Freedom 
Equation 
An uncertainty estimate computed as the standard deviation of a random sample of 
measurements or determined by analysis of variance is called a Type A estimate.  An uncertainty 
estimate determined heuristically, in the absence of sampled data, is called a Type B estimate.  
 
The current mindset is that a Type A estimate is a “statistical” quantity, whereas a Type B 
estimate is not.  The main reason for this is that we can qualify a Type A estimate by the amount 
of information that went into calculating it, whereas it is commonly believed that we can’t do the 
same for a Type B estimate. 
 
The amount of information used to estimate the uncertainty in a given error is called the degrees 
of freedom.  The degrees of freedom is required, among other things, to employ an uncertainty 
estimate in computing confidence limits commensurate with some desired confidence level. 
 
K.1 Type A Degrees of Freedom 

K.1.1 Random Error 
From the discussion on direct measurements, recall that the uncertainty due to random error is 
given by 

 2

1

1
,

1

random x

n

i
i

u s

x x
n 

 
 

�

 

where xi is the ith measured value in the sample, n is the sample size, x  is the sample mean and 
sx is the sample standard deviation.  The “approximately equal” sign in this expression indicates 
that the measurement sample is finite.  The amount of information that went into estimating the 
uncertainty due to random error is the degrees of freedom random.  For the above estimate, it is 
equal to n – 1: 

1random n   . 

K.2 Type B Degrees of Freedom 
For a Type A estimate, the degrees of freedom is obtained as a property of a measurement 
sample.  Since a Type B estimate is, by definition, obtained without recourse to a sample of data, 
we obviously don’t have a sample size or other property to work with.  However, we can 
develop something analogous to a sample size by applying the method described in this 
section.90 
 
This method involves extracting what is known about a given measurement error and then 
converting this information into an effective degrees of freedom.91 

                                                 
90 Taken from "Note on the Degrees of Freedom Equation."  See www.isgmax.com. 
91 The method assumes, as in the development of most statistical tools, that measurement errors are approximately 
normally distributed. 
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Note that, to be consistent with articles written of the subject of Type B degrees of freedom, we 
use the notation 2() in this section to represent the variance in a quantity , i.e., 

2 2( ) var( )     . 

K.2.1 Methodology 
The key to estimating the degrees of freedom for a Type B uncertainty estimate lies in 
considering the distribution for a sample standard deviation for a sample with sample size n.  We 
know that the degrees of freedom for the standard deviation estimate is  = n – 1.  
 

Let s represent the standard deviation, taken on a sample of size n =  + 1 of a N(0, u2
 ) variable 

x.  Given this, the quantity 2 2/s u  is 2-distributed with  degrees of freedom. 
 
The 2-distribution has the pdf 

( 1)/2 /2

/2

( )
2

2

xx e
f x



 

 


  
 

 . 

Accordingly, we set x = 2 2/s u , or  2 2 /s u x  , and compute the variance in 2s . 

      
4

2 2 2
2

var var
u

s s x 


  . (K-5) 

For a 2-distributed variable x, we have 

 var 2x  , 

so that 

  
4

2 2 2u
s


 , (K-6) 

and 

  
4

2 2
2

u

s



 . (K-7) 

We now replace the sample variance 2s  with the population variance u2 and write 

  
4

2 2
2

u

u



� . (K-8) 

To obtain the variance 2(u2), we work with the expression for the uncertainty in a normally 
distributed error 

 
( )

L
u

p
 , (K-9) 

where ±L are error containment limits, p is the containment probability and 

 1 1
( )

2

p
p      

 
. (K-10) 
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From Eq. (K-9), we have 

 
2

2
2 ( )

L
u

p
  (K-11) 

and the error in u2 is 

 
2 2

2( ) ( ) ( )
u u

u L p
L p

  
    

        
. (K-12) 

Note that the variance in u2 is synonymous with the variance in (u2).  Hence 

 

2 2 2 2

2 22 2
2 2

2 22 2
2 2

( ) var( ) var[ ( )]

( ) ( )

,L p

u u u

u u
L p

L p

u u
u u

L p

 

 

 

    
        

    
        

 (K-13) 

where(L) and (p) are assumed to be s-independent, and where uL is the uncertainty in the 
containment limit L and up is the uncertainty in the containment probability p. In this expression, 
the equalities 

2 2 2 ( )
LLu u L    

and 
2 2 2 ( )

ppu u p    

were used. 
 
It now remains to determine the partial derivates.  From Eq. (K-9) we get 

 
2

2

2

( )

u L

L p
 

  
 (K-14) 

and 

 
2 2

3

2

( )

u L d

p p dp




 
   

. (K-15) 

The derivative d /dp is obtained easily.  We first establish that  

 

2
( )

/2

1
( )

2

1
.

2

p

p
p

e












 

 
 

Taking the derivative of both sides of this expression yields 

2 ( )/21 1

2 2
p d

e
dp

 


 , 

from which we get 
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2 ( )/2

2
pd

e
dp

 
 . (K-16) 

Substituting in Eq. (K-15) gives  

 
2

2 2
( )/2

3

2

( ) 2
pu L

e
p p




 
   

. (K-17) 

Combining Eqs. (K-17) and (K-14) in Eq. (K-13), yields 

 
2

4 2
2 2 ( ) 2

4 2 2

4 1
( )

( ) ( ) 2
pL

p

L u
u e u

p L p


 
 

  
 

. (K-18) 

Substituting Eq. (K-18) in Eq. (K-8) and using Eq. (K-9) yields 

 
2

12
( ) 2

2 2

1 1
.

2 ( ) 2
pL

p

u
e u

L p





 

 
 

�  (K-19) 

 

K.2.2 Comparison with Eq. G3 of the GUM 
Appendix G of the ISO Guide to the Expression of Uncertainty in Measurement (the GUM) [K-
1] provides an expression for the degrees of freedom for a Type B estimate 

 
 
2

2

1

2

u

u



� . (K-20) 

From Eq. (K-9), we have 

 

2

( ) ( ) ( )

1
( ) ( ).

( ) ( )

u u
u L p

L p

L d
L p

p p dp

  

 
 

           

 

�

 (K-21) 

Substituting from Eq. (K-16) gives 

2 ( )/2
2

1
( ) ( ) ( )

( ) ( ) 2
pL

u L e p
p p

  
 

� . 

Applying the variance operator, we have 
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2

2

2 2

22
2 2

22
2 2

2
2 ( ) 2

2 4

2
2 ( ) 2

2 2

( ) var( ) var[ ( )] ( )

( ) ( )

1

( ) ( ) 2

1
.

( ) ( ) 2

L p

p
L p

p
L p

u u u u

u u
L p

L p

u u
u u

L p

L
u e u

p p

L
u e u

p p





  

 


 


 

  

           

           

 

 
  

 

 (K-22) 

Substituting from Eqs. (K-9) and (K-22) in Eq. (K-20) gives 

 
2

12
( ) 2

2 2

1 1

2 ( ) 2
pL

p

u
e u

L p





 

 
 

� . (K-23) 

Comparison of Eq. (K-23) with Eq. (K-19) shows that using either Eq. (K-8) derived in this note 
or Eq. G3 of the GUM yields the same result. 
 

K.2.3 Estimating uL and up 
Three formats are in use for estimating Type B degrees of freedom.92   
 
Format 1 
In Format 1, the containment probability is  

p = C / 100. 

The uncertainty is computed from the containment limits ± L and an inverse function computed 
from the containment probability according to  

( )

L
u

p
  , 

where, as before, 

 1( ) (1 ) / 2p p     . 

If error limits L and p can be surmised for L and p, respectively, then the degrees of freedom 
are computed from93 

2

2 2

2 2 2 2

3

2 ( ) ( )

L

L L e p


 


  

 . 

                                                 
92 These formats are embodied in the software applications UncertaintyAnalyzer [9], Uncertainty Sidekick [10] and 
the Type B Degrees of Freedom Calculator [11]. 
93 This result and others in this section are derived in [K-2]. 

Downloaded from http://www.everyspec.com



 

- 204 - 
 

Note that if L and p are set to zero, the Type B degrees of freedom become infinite. 
 
Format 2 

In Format 2, the containment probability is p = n / N, where N is the number of observations of a 
value and n is the number of values observed to fall within ±L (± L).  For this format, we use 
the relation 

2

2 2

2 2 2

3

2 ( ) 3 (1 ) /

L

L L e p p n


 


  

 , 

where the quantity p(1 - p) / N is the maximum likelihood estimate of the standard deviation in n, 
given N observations or "trials." 

 
Format 3 

Format 3 is a variation of Format 2 in which the variable C is stated in terms of a percentage of 
the number of observations N.  In this format, p = C / 100.  The degrees of freedom are given as 
with Format 2: 

2

2 2

2 2 2

3

2 ( ) 3 (1 ) /

L

L L e p p n


 


  

 . 

 

K.2.4 Degrees of Freedom for Combined Estimates 

K.2.4.1 Statistically Independent Errors 
For discussion purposes, we reiterate Eq. (K-8) 

 
4

2 2
2

u

u



� . 

While this expression is ordinarily applied to estimating the degrees of freedom for an estimate 
of the uncertainty in the value of a given quantity obtained by direct measurement, it can also be 
used to estimate the degrees of freedom for a combined estimate, as will be seen below. 
 
Combined Uncertainty 

Imagine that the total error in measurement is the sum of two s-independent errors whose 
uncertainties are u1 and u2.  Then the variance in the total error is given by 

 2 2 2
1 2u u u  . (K-24) 

Applying the variance operator to Eq. (K-24) gives 

 2 2 2 2 2 2
1 2( ) ( ) ( )u u u    . (K-25) 

Let 1 and 2 represent the degrees of freedom for the estimates u1 and u2, respectively.  Then, by 
Eq. (K-8), 

    
4 4

2 2 2 21 2
1 2

1 2

2 , and 2
u u

u u 
 

� � . (K-26) 
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Using these results in Eq. (K-25) yields 

  
4 4

2 2 1 2

1 2

2
u u

u
 
 

  
 

. (K-27) 

Substituting Eq. (K-27) in Eq. (K-8) gives 

 
4

4 4
1 2

1 2

u
u u



 




, (K-28) 

Welch-Satterthwaite 

Extending Eq. (K-28) to the combined uncertainty in an error comprised of a linear sum of n s-
independent errors yields 

 
4

4

1

n
i

i i

u
u








, (K-29) 

which is the widely used Welch-Satterthwaite relation. 
 

K.2.4.2 Correlated Errors 
Consider now a case where the measurement error is the sum of two correlated errors whose 
correlation coefficient is 12.  The variance in the total error is given by 

 2 2 2
1 2 12 1 22u u u u u   . (K-30) 

From Eq. (K-30) and the variance addition rule, we have 

 
2 2 2 2 2 2 2 2

1 2 12 1 2

2 2 2 2
1 2 12 1 1 2 12 2 1 2

( ) ( ) ( ) 4 ( )

2cov( , ) 4 cov( , ) 4 cov( , ) .

u u u u u

u u u u u u u u

    

 

  

  
 (K-31) 

Eq. (K-31) shows that we need to examine a possible correlation between the uncertainty 
estimates u1 and u2.  These uncertainties are each presumably obtained using some method or 
prescription and, possibly, a sample of data.  In some cases, the uncertainty estimates u1 and u2 
are s-independent.  In others, s-independence may not apply.  In what follows, we set E(u1) = 
E(u2) =0.94 
 
S-Independent Uncertainty Estimates 

We now develop a Welch-Satterthwaite relation for cases where, although the errors may be 
correlated, the uncertainty estimates are not.  To do this, we first need to express the covariance 
terms and the cross-product 2(u1u2) term in Eq. (K-31) as quantities that can be computed using 
the relations developed in this appendix.  
 
For s-independent u1 and u2, the cross-product term is given by 

                                                 
94 Since the uncertainties follow a 2 distribution, this is not strictly justified.  We apply this artificial rule because 
what we are after are variances that represent variances in the "errors" in the uncertainty estimates. 
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2 2 2
1 2 1 2 1 2

2 2 2 2
1 2 1 2

2 2
1 2

2 2
1 2

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ).

u u E u u E u u

E u E u E u E u

E u E u

u u



 

 

 





 

The first covariance term in Eq. (K-31) is 

 2 2 2 2 2 2
1 2 1 1 2 2cov( , ) ( ) ( )u u E u E u u E u         . 

If u1 and u2 are s-independent then 

 2 2 2 2 2 2 2 2
1 1 2 2 1 1 2 2( ) ( ) ( ) ( )E u E u u E u E u E u E u E u                   , 

and 
2 2
1 2cov( , ) 0u u   

The second covariance terms is 

  2 2 2
1 1 2 1 1 1 2 1 2

3 2 2 2
1 2 1 1 2 1 1 2 1 1 2

3 2
1 2 1 1 2

3 2
1 2 1 1 2

cov( , ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0.

u u u E u E u u u E u u

E u u u E u u E u u u E u E u u

E u u E u E u u

E u E u E u E u E u

    

    
 

 


 

For the third covariance, 
2 3 2
2 1 2 1 2 2 1 2cov( , ) ( ) ( ) ( ) ( ) ( )

0.

u u u E u E u E u E u E u 


 

With these results, Eq. (K-31) becomes 

 2 2 2 2 2 2 2 2 2
1 2 12 1 2( ) ( ) ( ) 4 ( ) ( )u u u u u        . (K-32) 

By Eqs. (K-8) and (K-26), this becomes 

4 4
2 2 2 2 21 2

12 1 2
1 2

( ) 2 2 4 ( ) ( )
u u

u u u   
 

   . 

Using this expression we can write the Welch-Satterthwaite relation for the degrees of freedom 
of a total uncertainty estimate for a combined error with correlated component errors or error 
sources 

 
4

4 1
2 2 2

1 1 1

2 ( ) ( )
n n n

i
ij i j

i i j ii

u
u

u u


  




   


 

, (K-33) 

where u4 is determined from u2, given in Eq. (K-30), and 2(u) is given in Eq. (K-22). 
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