	OPR EI32

	Title: Flight Software Branch Coding Standard
	Document No.: EI32-CODESTD
	Revision: B

	
	Effective Date: November 9, 2004
	Page 54 of 54

	[image: image1.png]

	EI32-CODESTD

Revision B
November 9, 2004

George C. Marshall Space Flight Center

Marshall Space Flight Center, Alabama 35812
Flight Software Branch

(EI32)

Coding Standard
NASA MARSHALL SPACE FLIGHT CENTER

INSTRUMENT & PAYLOAD SYSTEMS DEPARTMENT

FLIGHT SOFTWARE BRANCH

Flight Software Branch (EI32) Coding Standard

[image: image2.png]PREPARED BY:

C 1/ /0, 208
eoffrey ¢. Hintz DATE

Flight Software Branch/EI32

CQ?J CURRENCE:
Iy

:‘/';

J [/r2/7)
Stric ATE /}/
oftware Assurance/QD40
- APPROVED BY:
E ¢ PPt 1) /o) ¢
E. C. Richardson DATE

Deputy Chief, Flight Software Branch (EI32)

DOCUMENT HISTORY LOG

	Status

(Baseline/

Revision/

Canceled)
	Document

Revision
	Effective

Date
	Description

	Baseline
	Initial
	5-05-00
	Baseline

	Revision
	A
	10-01-03
	Updated C Section

Updated Header Block

Combined Section 3.1.2.3 with Section 3.1.2.2.2

Updated Comments Section

Updated Control Flow

Removed Visual Basic Section

	Revision

	B
	11-9-04
	Editorial update to clarify requirements language in response to Headquarters Rules Review Action. Correction of Software Assurance org code. Editorial update to document headers, footers and History Log format (SPI SCR 21). Changes, including document number change, resulting from 10/04 center re-organization (SPI SCR 88).

	
	
	
	

TABLE OF CONTENTS

81.0
SCOPE

2.0
REFERENCED DOCUMENTS
9
2.1
Referenced Material
9
2.2
Informational Material
9
3.0
Code Standards
10
3.1
Higher Level Languages
10
3.1.1
Language Independent Standards
10
3.1.1.1
Width of the Source
10
3.1.1.2
Header Blocks
10
3.1.1.3
Comments
11
3.1.2
C
11
3.1.2.1
Introduction
11
3.1.2.2
File Layout
12
3.1.2.2.1
Filenames
12
3.1.2.2.2
Include Files
12
3.1.2.2.3
Function Layout
15
3.1.2.2.4
Indentation
15
3.1.2.2.5
Brace Placement
17
3.1.2.2.6
Use of White Spaces
18
3.1.2.2.7
Naming Convention
19
3.1.2.2.8
Scope
21
3.1.2.2.9
Macros
21
3.1.2.2.10
Global Variables
22
3.1.2.2.11
Function Declaration
22
3.1.2.3
Pointers
23
3.1.2.4
Control Flow
23
3.1.2.4.1
Modularity
26
3.1.2.4.2
Miscellaneous
26
3.1.3
C++
28
3.1.3.1
Introduction
28
3.1.3.2
File Layout
28
3.1.3.2.1
C++ Filenames
28
3.1.3.2.2
Include/Header Files
28
3.1.3.2.3
–Function/Method Layout
30
3.1.3.2.4
Naming Convention
33
3.1.3.3
Pointers
34
3.1.3.4
Control Flow
34
3.1.3.4.1
Modularity
34
3.1.3.4.2
Miscellaneous
35
3.1.3.5
Comments
35
3.1.3.6
Class Declarations
35
3.1.3.7
Variables
36
3.1.3.8
Constants
37
3.1.3.9
Functions
37
3.1.3.10
User Defined Types
38
3.1.3.10.1
Enumerated
38
3.1.3.10.2
Structures
38
3.1.3.11
Constructs
41
3.1.3.11.1
do - while
42
3.1.3.11.2
switch - case - default
42
3.1.3.11.3
for
43
3.1.3.12
Indentation
43
3.1.4
Ada
44
3.1.4.1
Ada Language Standards
44
3.1.4.1.1
Common Ada Standards
44
3.1.4.1.2
Declarations and Types
44
3.1.4.1.3
Names and Expressions
44
3.1.4.1.4
Statements
46
3.1.4.1.5
Subprograms
47
3.1.4.1.6
Visibility Rules
47
3.1.4.1.7
Program Structure and Compilation Units
48
3.1.4.1.8
Implementation Dependent Features
48
3.1.4.1.9
Erroneous Programs
48
3.1.4.1.10
Exceptions
48
3.1.4.2
Commenting
49
3.1.4.2.1
CSC Source File Prologue
49
3.1.4.2.2
In-Line Comments
49
3.2
Program Design Language
50
4.0
Tailoring Guide
54
5.0
Notes
55
5.1
Abbreviations and Acronyms
55
To Be Determined
55
5.2
Glossary
55

TABLE OF FIGURES

13Figure 1 Example of preventing multiple inclusions of include files

Figure 2 C Private Header
14
Figure 3 C Public Headers
15
Figure 4 C++ Header Block
29
Figure 5 C++ Function/Method Definition
30
Figure 6 C++ Class Declaration
36
Figure 7 C++ Variable Declaration
36
Figure 8 C++ Function Definition
37
Figure 9 C++ Structure Definition
38
Figure 10 C++ use of typedefs for Structures
39
Figure 11 C++ Class Definition
41
Figure 12 Header for a PDL
53
Figure 13 Body for a PDL
53

TABLE OF TABLES

20Table I Naming Convention for C Variables

Table II Naming Conventions for C++ Variables
33

THIS PAGE INTENTIONALLY LEFT BLANK

1.0
SCOPE

This document presents guidelines for coding standards to be used for Flight and Ground Software developed within the Flight Software Branch of the Marshall Space Flight Center (MSFC).

The section on C programming is the coding standard defined for the SPAce Readiness Coherent Lidar (SPARCLE) project. This standard was derived from the Automated Rendezvous and Capture (AR&C) C Coding Standard and the Marshall Integrated Software System (MISS) C Coding Standard.

The section on C++ programming was derived from the Shooting Star Experiment (SSE) C++ Style Guide. An attempt was made to make the C++ style consistent with the C style.

The section on Ada was derived from the coding standards defined for the Advanced X-ray Astrophysics Facility-Imaging (AXAF-I) program and the Modular Rocket Engine Control Software (MRECS).

The section on Program Design Language (PDL) was developed by the SPARCLE team to be used in the SPARCLE Software Design Document (SDD).

REFERENCED DOCUMENTS

The following documents are for reference and information. If a conflict is found between a referenced document and the contents of this specification, the requirements of this specification take precedence.

1.1 Referenced Material

	Number
	Title
	Date

	ED14-SPARCLE-CODESTD
	SPAce Readiness Coherent Lidar Experiment (SPARCLE) C Coding Standard
	May 24, 1999

	Prentice Hall
	The C Programming Language, Second Edition, Brian Kernighan and Dennis Ritchie
	1988

	Addison Wesley
	The C++ Programming Language, Third Edition, Bjarne Stroustrup
	1997

	QR-96-TR-40823-118 Rev 1
	SHOOTING STAR EXPERIMENT (SSE) C++ Style Guide
	October 11, 1996

	John Wiley & Sons
	An Introduction to Ada, J. A. Young
	1984

1.2 Informational Material

	Number
	Title
	Date

	EI32-OI-001
	Organizational Work Instruction Flight Software Branch (EI32) Software Development Process Description Document
	Check Master List for latest revision

Code Standards

1.3 Higher Level Languages

1.3.1 Language Independent Standards

1.3.1.1 Width of the Source

A line of source code shall be no longer than 80 characters.

1.3.1.2 Header Blocks

The beginning of each file shall contain the appropriate header comment block.

A private header file (*_Private.h) header comment block, Figure 2, shall contain:
1. Filename

2. Description

3. History

A public header file (*_Public.h) header comment block, Figure 3, shall contain:

1. Filename

2. Description

3. History
A function file (*.c) header comment block, Figure 4, shall contain:

1. Filename

2. Function Name

3. Calling Sequence

4. Description

5. History

The Filename section shall contain the name of the file with the appropriate extension (i.e. First_Public.h, First_Private.h, First_Function.c).

The Function Name section shall contain the name of the function.

The Calling Sequence section shall contains information detailing how to use (or call) this function and describing the return values.

The Description section shall contain an English text representation describing the content and functionality, where applicable, of the file.

The History section shall automatically include the history of changes with the Configuration Management (CM) tool in use.

1.3.1.3 Comments

Comments are added for the purpose of explaining and clarifying the design and code to subsequent designers, coders, reviewer and testers. Comments are interspersed throughout the code to enhance readability and to aide in maintenance and sustainment activities.
Comments shall not mimic the code.

Comments shall be an English text representation describing the functionality/purpose of the code.
Comments, which are not to the right of the code, shall be indented to the same level as the code, except for header comments.

Comments to the right of the code or declarations shall be placed in a consistent manner to enhance readability.
Block comments shall be used for functional blocks of code.

Block comments shall be located above the actual code being described.

Block comments shall use complete English sentences.

Guidance: Comments
Start all comments that belong to a logical grouping of statements in the same column.
1.3.2 C

1.3.2.1 Introduction

This section specifies the style in which C code for Flight Software Branch programs is written. The benefits of using this specification are 3-fold. First, code developed with a consistent style is easier to maintain. People responsible for modifying the code do not have to interpret different coding styles. Second, the comment style specified by this standard insures that the code is adequately documented in a particular form, which makes it possible to perform automatic document preparation. Third, developing a C coding style takes years of trial-and-error experience. A coding standard relieves the new C developer of this burden and allows them to concentrate their efforts on designing and implementing the product. It also helps the developer to avoid many of the C programming pitfalls that can be encountered. This coding standard is included as a part of the checklist for code inspections. This makes the enforcement of the coding standard more of a team effort rather than relying completely on the commitment and understanding of each developer.
Any exception to this standard shall require a specific written justification as specified in Section 4.0 on page 54.
Guidance: Deviations

Deviations from this standard are commented within the code.
1.3.2.2 File Layout

A file shall not exceed 1000 lines (20 pages) of code and comments.

1.3.2.2.1 Filenames

Filenames shall be descriptive of what is contained in the file.
For a compilation unit, the filename shall be the function name or a variation of the filename concatenated with “.c”, e.g. vTMGR_Init.c. or Init.c
1.3.2.2.2 Include Files

A file containing definitions and declarations is known as an include file, also referred to as a header file. Header files are stand alone items that do not require the caller to include additional header files or perform prior setups for use.
Include files shall contain things that are information to the compiler.

Include files shall be delimited with conditional compilation directives to avoid errors caused by redundant/multiple inclusion.

For example:

#ifndef TMGR_Public

#define TMGR_Public

Body of include file – TMGR_Public.h
#endif /* TMGR_Public */

Figure 1 Example of preventing multiple inclusions of include files
The absolute path shall not be specified in an #include statement.
The caller shall use the -I compiler option to specify the path of include files.

Include files shall be classified as either public or private header files.
The naming convention for the header files shall be the owner CSC identifier followed by “_Public.h” or “_Private.h”.
For example, the Time Manager CSC owns the include files named:

TMGR_Public.h

TMGR_Private.h

Both, public and private, header file types contain defines, macros, typedefs, enumeration templates, structure templates, external global references, and function prototypes. Public headers contain the elements that require visibility by compilation units outside the owner CSC for which the header is defined.
Public header files shall be included by any compilation unit that references a function that is a member of the defined CSC.
Private header files contain only those elements required by the owner CSC members.

Private header files shall have the following form:

/***

/#FILENAME

/ EXEC_Private.h

/

/#DESCRIPTION

/ This header file

/

/

/#HISTORY

/

/ Your Name - Initial Design /$Log: $

***/

#ifndef __EXEC_PRIVATE_H

#define __EXEC_PRIVATE_H

/* -- Defines --*/

/* -- Macro Definitions --*/

/* -- Enumeration Templates ------------------------------------*/

/* -- Typedefs ---*/

/* -- Structure Templates --------------------------------------*/

/* -- External Global Definitions ------------------------------*/

/* -- Function Prototypes --------------------------------------*/

#endif /* __EXEC_PRIVATE_H */

Figure 2 C Private Header

Public header files shall have the following form:

/***

/#FILENAME

/ EXEC_Public.h

/

/#DESCRIPTION

/ This header file

/

/

/#HISTORY

/ Your Name - Initial Design

/$Log: $

***/

#ifndef __EXEC_PUBLIC_H

#define __EXEC_PUBLIC_H

/* -- Defines --*/

/* -- Macro Definitions --*/

/* -- Enumerations ---*/

/* -- Typedefs ---*/

/* -- Structure Templates --------------------------------------*/

/* -- External Global References ------------------------------*/

/* -- Function Prototypes --------------------------------------*/

#endif

 /* __EXEC_PUBLIC_H */

Figure 3 C Public Headers

1.3.2.2.3 Function Layout

Function layouts shall have the following form:

	 Function Header Comment Block

	 Return_Type Function Name (Argument Declarations - ANSI C style)

 {

 Local Variables and Describing Comments

 Block Comments (as required)

 Statements

 Block Comments (as required)

 Statements

 .

 .
 }

Function Prototypes

A function prototype that exceeds 80 characters in length per line shall use multiple lines for prototyping the function.

A function prototype shall possess one of the following formats:

a.
 type FunctionName (type Arg_1,

 type Arg_2,

 type Arg_n);
b.
type FunctionName (type Arg_1, type Arg_2, type Arg_3);

c.
type

FunctionName(type Arg_1, type Arg_2, type Arg_3);
1.3.2.2.4 Indentation
The minimum number of spaces used for 1 indentation level shall be 2.
The number of spaces used for indentation shall be consistent.
The code within a block shall be indented with respect to the braces so that the braces are clearly visible to the left.

Continuation lines shall be indented.

If a line has a left parenthesis which is not closed on that line , then continuation lines shall be lined up to start at the character position just after the left parenthesis.

A case label shall be placed on a line by itself.
The case labels within a switch statement shall be indented with respect to the enclosing braces.

The code within a switch statement shall be indented with respect to the case labels.

The else keyword shall be placed on a line by itself.

An else statement shall be indented to the same level as its corresponding if statement.

Example of indentation:

switch (expression)

{

 case value1:

 if (expression)

 program statement 1

 else

 program statement 2

 break;
 case value2:

 /* This is a comment */

 program statement

 break;
 case valuen:

 printf (“This is a continuation line that has a left parenthesis

 which is not closed on that line.\n);

 break;
 default:

 program statement

 break;

}

1.3.2.2.5 Brace Placement

An opening brace shall be placed on a line by itself.

Matching braces shall be lined up in the column at the left edge of the declaration or statement to which it belongs.

The closing brace of a struct declaration along with the name of any variable being declared shall be placed on a line by themselves.

Example:
struct idate

{

 int imonth;

 int iday;

 int iyear;

} itodays_date;

The closing brace of a typedef struct declaration along with the typedef name shall be placed on a line by themselves.

Example:
typedef struct

{

 int imonth;

 int iday;

 int iyear;

} iDATE;

The closing brace of a do while statement along with the while clause shall be placed on a line by themselves.

Example:
do

{
 program statement;

} while (expression);

Guidance: Braces

For readability, it is desirable but not mandatory that any single line execution conditional statements use left and right braces.

Example:

if (result == TRUE)

{

 return(OK);

}
1.3.2.2.6 Use of White Spaces

In general, white spaces (blanks, new lines and blank lines) are used to place emphasis on sections of related code and to improve the visual representation and readability of the code.

At least 1 blank line shall be inserted after a procedure body.

At least 1 blank line shall be inserted before comments that are not to the right of code.
At least 1 blank line shall be inserted after the declarations in a block of code.

At least 1 blank line shall be inserted before a compound statement.

No more than 1 declaration shall be placed on a single line.

At least 1 blank line shall be inserted before and after every conditional compilation block. That is, before every #ifdef and after every #endif.
White spaces shall be used to distinguish between C control flow keywords and function calls.

A single space shall be inserted between a C control flow keyword and its associated parenthesis.

No spaces shall be used between a function name and the first parenthesis of its argument list.
Blanks spaces shall be used to remove ambiguity and make delimiters and operators more visible.
At least 1 blank space shall be inserted after a comma.

At least 1 blank space shall be inserted after a semicolon (;) in a for
statement.

At least 1 new line shall be inserted after a semicolon (;) at the end of a C statement.

At least 1 blank space shall be inserted before and after a binary operator.

At least 1 blank space shall be inserted before a prefix unary operator and after a postfix unary operator, unless a left parenthesis or square bracket occurs immediately before a prefix operator or a right parenthesis or square bracket occurs immediately after a postfix operator.
1.3.2.2.7 Naming Convention

Variable names are descriptive of the variable’s type.

Variable names shall start with the type identifier prefixes as a function of type as shown in Table I.

Table I Naming Convention for C Variables

	Type identifier
	Function of type

	k
	16 bit integer

	i
	32 bit integer

	f
	32 bit single precision floating point number

	d
	64 bit double precision floating point number

	c
	8 bit character

	b
	Boolean

	a
	array (succeeds above identifiers if applicable)

	v
	void

	s
	structure name

	u
	unsigned (precedes above identifiers if applicable)

	bsem
	binary semaphore

	msem
	mutex semaphore

	csem
	counting semaphore

	wd
	watchdog identifier

	mq
	message queue

	fd
	file descriptor

	g
	global variable (precedes above identifiers if applicable)

	p
	pointer (precedes above identifiers if applicable)

	t
	typedef

The CSC identifier shall immediately follow the type identifier prefix with no underscore allowed.

Examples of variable names are:

kTMGR_TimeValue

(16 bit integer value)

fMMU_CurrentDrive
(single precision float)

pdARCV_Rate

(pointer to a double precision float)

gpsTMGR_GMT_Time
(global pointer to a structure)

All letters in a macro (#define) shall be capitalized, unless it is used in the place of a function in a package of related functions.

The first letter of variable names shall be in lower case, which is the type identifier prefix.

Function names
 shall start with the prefixes defined above for variables. This describes the type of the return value. Examples are:

vTMGR_Init

function that returns a void

iMMU_CurrentDrive
function that returns an integer

Names made up of multiple words without underscores between them, shall have the first letter of each word capitalized (e.g., cTMGR_SourceName, iCMD_GetCommand().

1.3.2.2.8 Scope

In general, it is common practice to limit a variable to the smallest scope possible.

Global variables shall not be used where static variables outside the scope of a function would suffice.

Static variables outside the scope of a function shall not be used where local variables would suffice.

Static local variables shall only be used when it is necessary to maintain a value from one invocation of a function to the next.

The static keyword shall be used to hide functions that are not generically reusable.

Temporary variables shall be used for only a brief number of lines and not for multiple purposes.

1.3.2.2.9 Macros

The NULL macro shall not be used in place of a ‘\0’.
NOTE: The NULL macro may not be defined as‘\0’ on all computer architectures.

System defined symbols such as NULL, EOF, \f, etc. shall be used to promote portability.

If octal or hexadecimal values are used to represent a character, macros shall be defined in the appropriate header file.

Each argument of a macro shall be parenthesized in the expansion.

The whole expansion of a macro shall be parenthesized.

Each argument of a macro shall only appear once as code in the expansion.

An unsafe macro function is one which evaluates a parameter more than once in the code expansion. A safe macro function evaluates each parameter only once in the code expansion.

#define statements shall not be used to redefine the C syntax or reserved words.

#define statements shall not be used to define new types; use typedef instead.

Guidance: Macros

Semicolons (;) should not be included in macros unless delimited by braces.

Multi-statement #define macros should be avoided.

1.3.2.2.10 Global Variables
Global variables are owned by the supplier (i.e. CSC identifier) of the contents of the global variable and are instantiated in files that contain the initialization functions.
 Files containing the global variable instantiations shall follow the naming convention of g[CSC identifier]_Init.c.

The templates for global structures are found in [CSC identifier]_Public.h.

1.3.2.2.11 Function Declaration

Parameter types shall be declared within function parentheses.

Functions shall be prototyped. The function definition itself is acceptable as long as the procedure calling the function can see its declaration.

If a function does not return a value it shall be declared as void.

If a function does not have any arguments the keyword void shall be placed within function parenthesis.

A function shall not be declared within another function (use prototypes in an include file).

A function shall not have an excessive number of calling parameters. If a function has too many calling parameters, it may indicate that the function is too complex or performing too many actions. An alternative is to group the parameters into a struct; this also saves stack space at each function call if the struct is passed by reference.
Each function shall be terminated by a comment including the function name that indicates the end of the function.
Guidance: Nesting levels

For readability and maintainability, the number of logical nesting levels within a function should not exceed four. If a function has more than four logical nesting levels, the programmer should consider decomposing the function into multiple functions.

1.3.2.3 Pointers

Structures or unions shall be passed by reference, where applicable.
The pointer variable void* shall only be used as a temporary holding place.
No pointer arithmetic shall be performed with a void* pointer.

Pointer types shall be used to store pointers.

The value zero (0) shall not be used as the value for a null pointer.
NOTE: The NULL macro may not be defined as zero on all computer architectures .

When declaring a pointer, its value shall be initialized to NULL.

1.3.2.4 Control Flow

The program shall be terminated by a return in the main program or by a call to EXIT with an appropriate code returned to the environment. Use of the macros EXIT_FAILURE and EXIT_SUCCESS are permitted.

The use of goto statements shall be avoided.

The use of continue and break statements shall be used cautiously, and only where it would improve the appearance and size of the code.

The ternary (?:) construct shall be used cautiously.

Statements

An “if” statement shall have the following format:

 if (ix == REQUEST)

 {

 statement;

 }

 else

 {

 statement;

 }

A “switch” statement shall have the following format:

 switch (expression)

 {
 case constant_expression_1 :

 statements;

 break;

 case constant_expression_2 : /* falls thru */
 case constant_expression_3 :

 statements;

 break;

 default:

 statements;

 break;

 } /* End of switch (expression) */

The default case shall be present. A waiver may be granted for a situation where it is immediately obvious that the default case is never taken, but the danger to maintenance is considered when granting this waiver.

Guidance: Case Statements
If one case falls through to the next case, make sure that it is fully commented.

Structures

One item to consider is whether to use a structure of arrays or an array of structures. Quite often an array of structures leads to cleaner, more concise code. This is due to the fact that a structure provides cohesion among related data entities. An array of structures is a container of homogeneous data objects that can be operated upon in the same manner.

Typedef sstruct /* This is a structure of arrays */

{

 double dVariable1[2];

 float fVariable2[2];

 short kVariable3[2];

} StructArray;

Typedef sstruct /* This is a structure */

{

 double dVariable1;

 float fVariable2;

 short kVariable3;

} ArrayStruct;

ArrayStruct anArrayOfStruct[N]; /* This is an array of structures */

1.3.2.4.1 Modularity

Each source file shall contain at most one function.
Widespread redundant code shall be packaged into a function.
Any environment-specific and machine-specific code shall be isolated and localized.
 Any environment-specific and machine-specific code shall be delimited with appropriate compiler directives.

Guidance: Modularity
A functions complexity level should be kept to the lowest level possible.
McCabe Software Metrics Example:

EC = Essential Complexity; CC = Cyclomatic Complexity

EC <= 4 and CC <= 10
(Low Complexity Module.

EC <= 4 and CC > 10

(Medium Complexity Module
EC > 4 and CC = any value
(High Complexity Module
1.3.2.4.2 Miscellaneous

The const qualifier shall be used for variables that do not change.

Declaring typed constants with the const qualifier is preferable to defining macros with #define.

All variables and functions shall be declared.
The default declaration of “int” for a variable or the return value of a function shall not be used.
Type conversion shall be done using the cast operator, versus letting the default conversion take place. The general form of a cast is
 (type) expression

where type is a valid C data type.

The sizeof keyword shall be used to determine the amount of memory that a data item uses.

Variables shall be initialized.

Bit manipulation shall be performed on unsigned integers.

Side Effects Within Expressions

Expressions whose primary purpose is to assign a value to a variable can
also modify one or more other variables. Similarly, expressions whose primary purpose is to compute a Boolean value (in an if or while statement) can also modify variables. These secondary operations are called side effects.

Side effects within expressions shall not be used.
C++

1.3.2.5 Introduction

In a nutshell, C++ is an object-oriented programming language that is based on the practices of inheritance and polymorphic behavior. With that in mind, this section specifies the style in which C++ code for Flight Software Branch programs is written. The benefits of using this specification are 3-fold. First, code developed with a consistent style is easier to maintain. People responsible for modifying the code do not have to interpret different coding styles. Second, the comment style specified by this standard insures that the code is adequately documented in a particular form, which makes it possible to perform automatic document preparation. Third, developing a C++ coding style takes years of trial-and-error experience. A coding standard relieves the new C++ developer of this burden and allows them to concentrate their efforts on designing and implementing the product. It also helps the developer to avoid many of the C++ programming pitfalls that can be encountered. This coding standard is included as a part of the checklist for code inspections and makes the enforcement of the coding standard more of a team effort rather than relying completely on the commitment and understanding of each developer.
Any exception to this standard shall require a specific written justification as specified in Section 4.0 on page 54.
Guidance: Deviations
Deviations from this standard are commented within the code.
1.3.2.6 File Layout

1.3.2.6.1 C++ Filenames

All Compilation unit filenames shall be equivalent to the name of the object it contains with the extension “.cc” or “.c” or “.cpp”.

For Example:

Object name = Point

Compilation unit filename = Point.cc or Point.c or Point.cpp
1.3.2.6.2 Include/Header Files

Every include file shall prevent multiple inclusions of the file.

All include file names shall be equivalent to the name of the class it contains with the extension “.hh” or “.h”.

For Example:

class name = Point

include filename = Point.hh or Point.h

Include files shall contains information related to the class it defines.
Include files shall be delimited with conditional compilation directives to avoid errors caused by redundant inclusion.

The absolute path shall not be specified in #include statements.
The caller shall use the -I compiler option to specify the path of include files.
Inline functions within include files shall be acceptable.
All include files shall begin with a header block as described below in Figure 6 C++ Header Block.
//
//#FILENAME

// Point.hh (or Point.h)
//

//#DESCRIPTION

// This file contains the information contained in and

// related to the Point object.
//

//#HISTORY

// Author Date Description

// ------ ---- -----------

// D. Bowman 5/22/94 Creation

//
Figure 4 C++ Header Block

As a minimum, all C++ include files shall contain the following (See Figure 12):

1. Default constructor

2. Destructor

3. Copy constructor

4. operator= function

5. Public section

6. Private section
Nested include files are shall not permitted.
The #include directive shall only be permitted within .cpp files.
NOTE: This practice prevents time wasted from tracking down where a type comes from and improves code compilation time.

1.3.2.6.3 –Function/Method Layout

1.3.2.6.3.1 Function/Method Definition Separators

Function/Method definitions shall be separated using a comment line that signifies the method type. Function/Method types include non-member, public member, protected member, and private member functions/methods. A comment describing the function/method name shall be placed at the end of each definition block. Groups of class member function/methods shall be separated using a comment block.

Below is an example of an appropriate function/method definition.

///
// This is the vLower function

//
void vLower(char *pcString)

{

 for (int iIndex = 0; pcString[iIndex]; iIndex++) pcString[iIndex] =

 tolower(pcString[iIndex]);

} // end vLower()
///
// This is the fnUpper function.

///
void fnUpper(char *pcString)

{

 for (int iIndex = 0; pcString[iIndex]; iIndex++) pcString[iIndex] =

 toupper(pcString[iIndex]);

} // end fnUpper()
Figure 5 C++ Function/Method Definition

1.3.2.6.3.2 Member Function/Method Definitions
A class shall provide a constructor if said class performs any operation that creates something.

A few examples:

1. Opens a file descriptor that needs closed when the object is destroyed.

2. Creates memory that needs freed.

3. Creates another object with the “new” function.
If a class is derived from another class, the destructor shall be virtual.

If a class can be copied, a copy constructor shall be furnished.

If a class can be assigned, an assignment operator shall be furnished.
Member function/method separators and an example are provided below.

· private member function/method separator—

// ##

-- protected member function/method separator--

// **

-- public member function/method separator--

// ===

template

CList::CList() // CList constructor
{

 m_pData = 0;

 m_pHead = 0;

 m_pNode = 0;

 m_pTail = 0;

 m_bFailed = 0;
} // end CList::CList()

// ===

template

CList::~CList() // CList destructor
{

 m_vFirst();

 while (m_vRemove());
} // end CList::~CList()

A brief description is required for each group of class member method definitions. If only one class of member method is being defined, the file header comment is adequate.

1.3.2.6.4 Naming Convention

Variable names shall be descriptive of the variable’s type.

The use of terse symbol names in declarations shall be avoided.
One or two character names shall not be used.
Example of variable naming convention:
int

 iDay_Of_Week, // discouraged

 iDayOfWeek; // encouraged
Name declarations shall use the following prefixes. Pointer names shall be written with the letter 'p' followed by the type prefix.

Table II Naming Conventions for C++ Variables

	Type Identifier
	Function of Type

	C
	Char

	Uc
	unsigned char

	Sz
	char buffer

	K
	short int

	I
	Int

	L
	Long

	Li
	long int

	Usi
	unsigned short int

	Ui
	unsigned int

	Ul
	unsigned long

	Uli
	unsigned long int

	F
	Float

	D
	Double

	Ld
	long double

	Uf
	unsigned float

	Ud
	unsigned double

	Uld
	unsigned long double

	B
	Boolean

	C
	Classes

	C
	class templates

	m_
	class members

	P
	Pointers

	V
	Void

1.3.2.7 Pointers

Structures or unions shall not be passed as arguments; pass arguments by reference whenever possible.
The pointer variable void* shall only be used as a temporary holding place.
No pointer arithmetic shall be performed with a void* pointer.

Pointer types shall be used to store pointers.

The value zero shall not be used as the value for a null pointer.
NOTE: The NULL macro may not be defined as zero on all computer architectures.

When declaring a pointer, its value shall be set to NULL.
1.3.2.8 Control Flow

The program shall be terminated by a return in the main program or by a call to EXIT with an appropriate code returned to the environment. Use of the macros EXIT_FAILURE and EXIT_SUCCESS are permitted.

The use of goto statements shall be avoided.

The use of continue and break statements shall be used cautiously, and only where it would improve the appearance and size of the code.

The ternary (?:) construct shall be used cautiously. The if …else is more readable.

1.3.2.8.1 Modularity

Temporary variables shall be used for only a brief number of lines and not for multiple purposes.

Each source file shall contain at most one object.
Widespread redundant code shall be packaged into a separate object when possible.
Any environment-specific and machine-specific code shall be isolated and localized and shall be delimited with appropriate compiler directives.

Guidance: Modularity
A functions complexity level should be kept to the lowest level possible.

McCabe Software Metrics Example:

EC = Essential Complexity; CC = Cyclomatic Complexity

EC <= 4 and CC <= 10
(Low Complexity Module.

EC <= 4 and CC > 10

(Medium Complexity Module

EC > 4 and CC = any value
(High Complexity Module
Each source file should contain the code for each member associated with that object.
1.3.2.8.2 Miscellaneous

The const qualifier shall be used for variables that do not change.

Declaring typed constants with the const qualifier is preferable to defining macros with #define.

All variables and methods shall be declared. Avoid using the default declaration of int.

Type conversion shall be done using the cast operator, versus letting the default conversion take place.

The sizeof keyword shall be used to determine the amount of memory that a data item uses.

Bit manipulation shall be performed on unsigned integers.
1.3.2.9 Comments

In general, comments are provided at the developer's discretion.
Guidance: Comments

Verbose symbol names should be used and comments placed in the code where the structure is not obvious or the code is complex.

1.3.2.10 Class Declarations

A brief description is required for each class declaration in a header file. If only one class is being declared, the file header comment is adequate.

//
// a simple class declaration

///
class CSimple
{

 int

 m_iNumber;

}; // end class Simple

//
// another simple class declaration

//
class CSimple2
{

 int

 m_iNumber;

}; // end class Simple
 Figure 6 C++ Class Declaration

1.3.2.11 Variables

Variable declarations shall be placed one line after the type specifier and indented by one tab.
Multiple variable declarations of the same type shall follow, thereafter, one per line.

int

 iNumber = 0,

 *piNumber = 0;

long int
 liNumber = 0,

 *pliNumber = 0;

float

 fNumber = 0.0,

 *pfNumber = 0;

char

 chLetter,

 *pcBuffer1 = new char[256],

 szBuffer2[256];

Figure 7 C++ Variable Declaration

Guidance: Variables

For private data members, it is acceptable to use an underscore ‘_’ to signify this variable as being private.

Example:

int _newVar;
1.3.2.12 Constants

When practical, constant name declarations shall be used in place of preprocessor directive #define statements.
Constant names shall appear in upper case. Variable style name prefixing is optional on constant names.

const int

 NUMBER = 500,

 BUFFER_WIDTH = 256;

1.3.2.13 Functions
Functions shall be prefixed with letter designating the function type (see Table II).
Function declarations (prototypes) shall be placed in header files.
When instantiating an object using the “new” function, the “delete” function shall be used to free that object.

If a function is designed for exclusive use within file scope, a static prototype shall be provided prior to the function definitions.

...

static void

 vLower(char *pcString);

...

void

vLower(char *pcString)

{

 for (int iIndex = 0; pcString[iIndex]; iIndex++)
 pcString[iIndex] = tolower(pcString[iIndex]);
} // end vLower()

...

Figure 8 C++ Function Definition
Guidance: Functions
Use of the C++ “friend” function should be avoided except in extreme circumstances. In a nutshell, the “friend” function allows you to get around the private data rules for a particular object, which is not a smart practice to get into and can be detrimental if not used properly.

Do not pass an entire object as an argument when you can pass the object by reference.For private function/methods, it is acceptable to use an underscore ‘_’ to signify this function/method as being private.

Example:

int _newFunction(arg1, arg2….);
1.3.2.14 User Defined Types

The typedef naming mechanism is required for enum and struct based types. Type names created using typedef shall appear in upper case.

1.3.2.14.1 Enumerated

Enumerated list members (which are constant by nature) shall appear in upper case with underscore ‘_’ word separator.

typedef enum
{

 STATIONARY,

 FREE_FLIGHT,

 DIE,

 COLLISION

} EVENT;

1.3.2.14.2 Structures

An example of proper use of structures is provided below:

typedef struct
{

 float

 fx,

 fy,

 fz;

} VERTEX;

Figure 9 C++ Structure Definition
Formally naming a structure is only necessary during a linked list declaration. The typedef provided name shall be used thereafter.

typedef struct node
{

 int iCount;

 char pcBuffer[80];
 struct node

 *pPrev,

 *pNext;

} NODE;

NODE *pHead = 0,

 *pTail = 0;
Figure 10 C++ use of typedefs for Structures
Class names shall begin with a capital 'C' and may contain mixed case thereafter.
Members of the class shall be prefixed with 'm_.' The member prefix is optional on user defined type declarations within the class.
Public, private and protected keywords shall be indented at a minimum of 2 spaces relative to the class declaration.

Member data and function declarations shall be tabbed or at a minimum intended 2 spaces relative to the public, private or protected heading.
Providing a not operator (operator!()) member function is required for any class that may encounter failure during instantiation.

template

class CList
{

public:

 // public data

 DATA

 *m_pData;

 // public methods

 CList();

 ~CList();

 int

 m_vAppend(DATA *pData),

 m_vFirst(),

 m_vLast(),

 m_vPrevious(),

 m_vNext(),

 m_vRemove();

 // public operators

 int operator!() counts {return m_bFailed;};
private:

 // private types

 typedef struct node
 {

 DATA

 Data;

 struct node

 *pPrev,

 *pNext;

 } NODE;

 // private data

 int m_bFailed;

 NODE *m_pHead,

 *m_pNode,

 *m_pTail;

protected:

 // protected data, if applicable
}; // end CList
Figure 11 C++ Class Definition

1.3.2.15 Constructs

Excessive use of opening and closing brackets is discouraged. . If bracketing is used, a comment following the closing bracket is encouraged.
Constructs that execute one line of code, shall be written on one line.
Constructs that execute two or more lines of code shall appear within opening and closing brackets.

if (bState) return iSetting; // encouraged

...

if (bState)

 return iSetting; // discouraged

...

if (bState)
{

 cout << "\nNew Settings";

 return iSetting;

} // end if

else return 0;

...

1.3.2.15.1 do - while

The closing bracket comment shall state 'end while.’

...

while (m_vRemove());

...

while (m_vRemove()) cout << "\nremoving node";

...

while (m_vRemove())
{

 cout <<"\nremoving node";

 iNode_Count++;
} // end while
...

do
{

 cout << "\nremoving node";

 iNode_Count++;
} while (m_vRemove()); // end while
...

1.3.2.15.2 switch - case - default

The closing bracket comment shall state 'end switch.'

...

switch (m_cVariable[iIndex])
{

 case '\n' :

 case ' ' :

 case '.' :

 case '\\' :

 bContinue = 0;

 chTerminator = m_cVariable[iIndex];

 m_cVariable[iIndex] = '\0';

 break;

 default:

 cout << "\nno match";

} // end switch

...

1.3.2.15.3 for

The closing bracket comment shall state 'end for.'

...

for (int iIndex = 0; iIndex < VARIABLE_ID_RANGE; iIndex++)
{

 if (vIs_Equal(m_cVariable, m_cVariable_ID_Text[iIndex]))
 {

bSuccess++;

 m_pout->write(m_cVariable_ID_Value[iIndex],

 iLength_Of(m_cVariable_ID_Value[iIndex]));

 break;

 } // end if
} // end for
...

1.3.2.16 Indentation

At a minimum, the number of spaces used for 1 indentation level shall be 2.

The code within a block shall be indented with respect to the braces so that the braces are clearly visible to the left.

Continuation lines shall be indented.

If a line has a left parenthesis which is not closed on that line , then continuation lines shall be lined up to start at the character position just after the left parenthesis.

The case labels within a switch statement shall be indented with respect to the enclosing braces.

The code within a switch statement shall be indented with respect to the case labels.

Comments, which are not to the right of the code, shall be indented to the same level as the code, except for header comments.

An else statement shall be indented to the same level as its corresponding if statement.

Ada

1.3.2.17 Ada Language Standards

The standards presented in this section apply to code developed in the Ada language defined by MIL-STD-1815A. This section consists of standards applicable to Ada code in general as well as standards applicable to particular implementations of Ada.

1.3.2.17.1 Common Ada Standards

Ada code shall conform to the restrictions or limitations set forth in the applicable compiler's reference manual or user's guide.

1.3.2.17.2 Declarations and Types

a)
Each declaration shall start on a separate line.

b)
Any variable, type, or entity that is not used shall not be declared.
1.3.2.17.3 Names and Expressions

a)
Only one Ada identifier shall be used for a data object, subprogram, or task (i.e., do not use synonyms or other names for the same entity).

b)
The following mix of upper case and lower case letters shall be used for identifiers:

1. Reserved words: All lower case (e.g., type package)

2. Predefined type, object, enumeration literal, program unit, exception, and attribute identifiers: All upper case (e.g., INTEGER'FIRST)

c)
All variables shall be assigned an initial value by elaboration, assignment, or indirect updating prior to their use. No assumption shall be made about the value of an uninitialized variable.

d)
Objects of the same base type whose value sets are used with different ranges or constraints shall be declared as different subtypes.

e)
Commonly used numeric types and operations defined upon those types shall be declared in a single package. These types and operations can be defined either in terms of implementation-dependent predefined types or by use of the range, digits, and delta clauses.

f)
Numeric variables shall be declared from the user-defined types described in e). Anonymous and predefined numeric types (e.g., integer, float, fixed) shall be avoided. Exceptions may be made for local variables that are used for simple counters and indexes."

g)
An object whose value will not change after each elaboration shall be declared a constant.

h)
A numeric object whose value will not change after compilation shall be declared a named number (e.g., PI rather than 3.14159).

i)
Constants and named numbers derived from named objects shall be declared using the object names rather than literals (e.g., PI/2.0 rather than 1.5708).

1. User-defined type, object, enumeration literal, constant, and exception identifiers: Logical mixture of upper case and lower case with the first letter upper case to distinguish them from reserved words (e.g., Test_and_Set, Data_Line)

2. User-defined program units: All upper case.

The use of all Ada name forms and qualification features is allowed.

j) The naming convention for Ada entities shall adhere to the following conventions:

1.
Use names that describe and distinguish entities.

2.
Use names whose English syntax reflects the nature or role of the entities.

a.
Noun phrases for packages (e.g., Math_Functions, Earth_Constants)

b.
Verb phrases for procedures (e.g., Sort_List, Abort_Everything)

c.
Noun phrases for functions (e.g., Target_Range, Sine)

d.
Noun phrases denoting action for tasks (e.g., Timer, List_Searcher)

e.
Common noun phrases for types (e.g., Linked_List, Index)

f.
Proper nouns for objects (e.g., My_Linked_List, Current_Index)

g.
Conditions for Boolean objects (e.g., File_is_open, Times_up)

3.
Use abbreviations, acronyms, and mnemonics only where justified by context or common usage.

4.
Use the underscore to enhance readability.

k)
Named association, rather than positional association, shall be used for aggregates.

l)
All operators shall be immediately preceded and succeeded by at least one blank space.

m)
Mixed mode operations that are not explicitly declared as an overloaded operator or specifically supported by typed operations shall be accompanied with comments.

1.3.2.17.4 Statements

a)
At most one executable language statement shall be coded per line. A line shall not exceed 80 characters.

b)
Goto statements shall not be used except where required to meet specified execution time or space constraints. Every goto statement used shall be accompanied by comments near the goto statement to document the applicable constraints and comments near the statement receiving control.

c)
Case statements shall contain a default case.

1.3.2.17.5 Subprograms

a)
The specification portion of each subprogram shall be coded with one argument per line.

b)
The standard order of parameters of a subprogram shall be:

Input parameters

Input-output parameters

Output parameters.

c)
The name of a procedure or function shall be included in the "end" statement.

d)
The mode of a procedure's formal parameters shall be explicitly stated even if the default (in) mode is desired.

e)
The mode of a function's parameters shall not be explicitly stated, but shall be allowed to default (always in).

f)
Procedures shall not contain a return statement.

1.3.2.17.6 Visibility Rules

a)
Only that information (e.g., types, objects, program units) needed outside of the package shall appear in the package specification. All other information shall be declared internally in the package body.

b)
All local variables shall be declared at the lowest level possible.

c)
If the "with" and "use" clauses are both used, they shall be placed on the same line.

d)
’use’ clauses shall not be used except in cases where the explicit identification of the parent unit becomes excessively cumbersome or confusing.

1.3.2.17.7 Program Structure and Compilation Units

The executable region of any Ada program unit shall not exceed 200 lines of executable code. The preferred size is between 50 and 100 lines of code. However, each Ada unit shall perform a specific function and artificial constraints shall not be placed on the unit solely to meet a numeric goal.

All subprograms declared within a package specification shall be commented as described in Section 3.1.4.2. For subprograms declared in a package body only (i.e., not exported), the relevant information is found in the preface block for the body of the subprogram. Note that the comments specified for subprograms exported by a package are for the benefit of the package user, not the package implementor.

1.3.2.17.8 Implementation Dependent Features

If used, machine-dependent or compiler-dependent code and language extensions shall be clearly documented stating both justification of use and all known effects. Units which use features of Chapter 13 (Implementation-Dependent Features) of the Ada Reference Manual shall be noted as such in the preface block and the SDF and by embedded comments in the code.

1.3.2.17.9 Erroneous Programs

The use of any execution sequence, which MIL-STD-1815A states to be erroneous (e.g., dependence on subprogram parameter passing mechanism), shall be prohibited.

1.3.2.17.10 Exceptions

a)
Execution errors shall not cause the program to terminate abnormally (i.e., error handling shall be built into the unit).

b)
Ada exceptions shall be used to handle abnormal conditions only.

c)
Exception states that cannot be handled locally shall be recorded as required and propagated to the calling unit. The preface block shall identify every Ada exception that can potentially be propagated.

1.3.2.18 Commenting

Comments are added for the purpose of explaining the design and code to subsequent designers, coders, or testers. The way comments are interspersed in the code enhances its readability. Comments shall not mimic the code, but shall provide English text explanations of what the associated code is trying to accomplish.

1.3.2.18.1 CSC Source File Prologue

A preface block shall begin each CSC source file. This commentary block shall precede and/or immediately follow the CSC's identification keyword in order to describe its function, use, and operating requirements. This preface block provides information necessary for the maintenance of the program.

The following standards apply to the information to be included in the preface block:

a) The preface block shall be set off by easily identifiable comment lines, both at the beginning and end of the preface, such as a comment line of all asterisks.

b) Filename: The file in which the CSC is contained.

c) Name: The CSC name shall be the first line in the preface block following the identifier comment line(s). The length and format of the name shall be as defined in the individual language programming standards.
d) Calling sequence: A definition of all calling parameters including array dimensions, whether the item is input or output and, if applicable, units and range of values for the item.

e) Description: A description of the functionality of the CSC.
f) Revision history: The revision history shall be a tabularized summary of the changes made to the CSC including the revision number, the date of the revision, the software problem report number (if any), the name of the person responsible for the modification, and a brief description of the modification.

1.3.2.18.2 In-Line Comments

In-line commentary shall supplement the code to identify the purpose of every control structure. For ease of reading, comments shall be grouped at the beginning of a set of logically contiguous statements. Comments may also be placed to the right of executable code, subject to applicable language syntax rules.
Program Design Language

Program Design Language (PDL) is an approach to the design of software. PDL is also known as Structured English, pseudocode, Program Specification Language (PSL), and probably a dozen more names. The designer of software uses the simplicity of the English Language in a structured manner to convey what can sometimes be the complexities of a programming language.

PDL is used for design, code implementation, and code maintenance. PDL can be written to the level that supports formal design reviews. The level of detail presented in the PDL is open-ended. After the design review, the PDL is used as a guide to the writing of the code. After the code is written, the PDL is used as an easy to read representation of the code that follows. The user comments the code to the level such that backward references to the PDL are easy to follow.

The rules that regulate the structure of PDL are documented at the start of the project. These structure rules can often be expressed in just two or three pages. This simplicity allows the users of PDL to learn the structure rules quickly.

The structure is selected to reflect the language being implemented. By keeping the structure of PDL related to a specific language being implemented, the writing of code from the PDL is quicker and easier than having a generic PDL that is used for all languages.

The following are the constructs that make up the PDL targeted for the C language. The constructs have key words that are highlighted in bold type. The sentence(s) are one or more English expressions, or sentences that represent the software statements being implemented.

If (condition)

 sentence(s)

Endif

If (condition)

 sentence(s)

Else

 sentence(s)

Endif

If (condition)

 sentence(s)

Else If (condition)

 sentence(s)

Else (condition)

 sentence(s)

Endif

Forever

 sentence(s)

End Forever

Switch (control variable)

 Case (constant 1)

sentence(s)

 Break

 Case (constant 2)

sentence(s)

 Break

 (

 (

 Case (constant N)

 sentence(s)

 Break

 Default

 sentence(s)

 End Case
 End Switch
Do

 sentence(s)
While (condition)

While (condition)

 sentence(s)

End While
Begin

 sentences
End

For (expressions)

 sentence(s)
End For

Return(returned value)
Following is an example for a header and PDL.

/**

/#FILENAME

/ iCLIB_Log.c

/

/#NAME

/ iCLIB_Log

/

/#CALLING SEQUENCE

/ iStatus = iCLIB_Log(iSeverity, __FILE__, __LINE__, / p_sMessage);

/

/
where:

/

iStatus
- Returned status values:

/

CLIB_LOG_SUCCESS

- (0)

/

CLIB_LOG_ARCV_Q_ERROR
- (1)

/

CLIB_LOG_KBD_Q_ERROR

- (2)

/

CLIB_LOG_ARCV&KBD_Q_ERROR
- (3)

/

CLIB_LOG_INVALID_SEVERITY
- (4)

/

/

iSeverity
- Values from the public header file of :

/

CLIB_LOG_ERROR
- Message type of error

/

CLIB_LOG_WARNING
- Message type of warning

/

CLIB_LOG_STATUS
- Message type of status

/

/

__FILE__
- Built-in ANSI defined symbolic constant

/

 that is replaced by the C preprocessor

/

 with the name of the file being

/ compiled,expressed as a string constant.

/

/

__LINE__
- Built-in ANSI defined symbolic constant that

/

 is replaced by the C preprocessor with the

/

 line number within the file being compiled,

/ expressed as a decimal integer constant.

/

/

p_sMessage
- pointer to a null terminated string

/

 containing the log message text.

/

/#DESCRIPTION

/ iCLIB_Log is called by other CSC units to format a system log message

/ data record for archiving to disk and downlink to the ground. This

/ function will interface with the MSU Data Archive Manager (ARCV)

/ and the K-Band Medium Rate Downlink Telemetry Manager (KBD) via

/ the message queues gmqARCV_Record and gmqKBD_RealTime.

/

/ This function will build an ASCII System Log Message string for inclusion

/ into the System Log Message Data Record. This string will include the

/ task name, module name, line number, and error message text.

/

/ The System Log Message Data Record is built and placed on the MSU Data

/ Archive Manager queue and the K-Band Medium Rate Downlink Telemetry

/ Manager queue. It should be noted that global flags will exist for each

/ of the message types (B5D3, B5D4, and B5D5) to indicate if archiving and

/ downlink is enabled. If both archiving and downlinking is disabled for a

/ specific message, this function will return immediately without processing

/ the message.

/

/#HISTORY

/ John Q. Software - Initial Design

**/

Figure 12 Header for a PDL
Begin

 If (both archiving and downlink disabled)

 Return (CLIB_LOG_SUCCESS)

 Else

 Retrieve GMT from the Time Manager (TMGR)

 Store GMT into Log Message Data Record

 If (Severity not CLIB_LOG_[ERROR, WARNING, STATUS])

 Return (CLIB_LOG_INVALID_SEVERITY)

 Endif

 Store Data Record ID (function of severity) into data record

 Set Reserve word to zero in data record

 Build the ASCII System Log Message, composed of task name,

 module name, line number, and log message text

 If(System Log Message greater than 104 bytes)

 Truncate text to 104 bytes in length

 Endif

 Move System Log Message into data record

 Calculate Byte Count and store into data record

 Increment local static frame count and store into data record

 Set iReturnStatus to CLIB_LOG_SUCCESS

 If(archiving enabled)

 Queue data record on the archive message queue

 If(queuing error)

 “or” CLIB_LOG_ARCV_Q_ERROR with iReturnStatus

 Endif

 Endif *archiving enabled

 If(downlink enabled)

 Queue data record on the downlink message queue

 If(queuing error)

 “or” CLIB_LOG_KBD_Q_ERROR with iReturnStatus

 Endif

 Endif *downlink enabled

 Return (IReturnStatus)

 Endif
End

Figure 13 Body for a PDL

Break

Tailoring Guide

The standards listed in the previous section can be tailored to meet the needs of the project. The Software Lead documents any deviations to the standard in the Software Development Plan (SDP). It is acceptable to write a document specifying the code standard deviations and reference this document from the SDP. Deviations from the coding standard require approval of the Software Review Board (SRB).
2.0 Notes

2.1 Abbreviations and Acronyms

	Acronym
	Name

	
	

	AR&C
	Automated Rendezvous and Capture

	AXAF-I
	Advanced X-ray Astrophysics Facility-Imaging

	CCB
	Change Control Board

	CSC
	Computer Software Component

	CSCI
	Computer Software Configuration Item

	CSU
	Computer Software Unit

	g-LIMIT
	GLovebox Integrated Microgravity Isolation Technology

	MISS
	Marshall Integrated Software System

	MRECS
	Modular Rocket Engine Control Software

	MSFC
	Marshall Space Flight Center

	NASA
	National Aeronautics & Space Administration

	OWI
	Operational Work Instruction

	PDL
	Program Design Language

	PSL
	Program Specification Language

	SDD
	Software Design Document

	SDP
	Software Development Plan

	SPARCLE
	SPAce Readiness Coherent Lidar Experiment

	SRB
	Software Review Board

	SSE
	Shooting Star Experiment

	TBD
	To Be Determined

2.2 Glossary

Computer Software Configuration Item (CSCI)--A CSCI encompasses all code and data for a given software subsystem and is synonymous with a deliverable software end item.

Computer Software Component (CSC)--A CSC is a grouping of software that performs a major function. CSCs may be further decomposed into other CSCs or into Computer Software Units (CSUs).

Computer Software Unit (CSU)--A CSU is an element specified in the design of a CSC that is separately testable. It is the lowest logical entity specified in design that completely describes a function and is separately compilable. A CSU is equivalent to an Ada procedure/function or to a module in other languages.
Cyclomatic Complexity – “A measure of the complexity of a module’s decision structure.” – Using McCabe QA, version 8.0; July 2003
Enumeration
 (enum)—An enumeration is a type that can hold a set of values specified by the user. By defualt, enumeration values are integers starting at 0 and increasing in value. For example, a C or C++ enumeration would be as follows:

enum iMonths {JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,

 SEP,OCT,NOV,DEC};

In Ada, the enumeration would be with a type or subtype enumeration as shown below:

type DAY is (MON,TUE,WED,THU,FRI,SAT,SUN);

subtype WORK_DAY is DAY range MON..FRI;
Essential Complexity – “A measure of the degree to which a module contains unstructured constructs.” – Using McCabe QA, version 8.0; July 2003
Typedef—A facility in C and C++ for creating new data type names.

Class—In C++, a class is a user-defined type.

Package
—In Ada, a package encapsulates a set of logically related entities and provides facilities to explicitly control access to these entities from outside the package.
Approved for Public Release; Distribution is Unlimited

.

� Note: The filename is the function name concatenated with “.c”, e.g. vTMGR_Init.c and iMMU_CurrentDrive.c

� Stroustrup, C++ Programming Language Third Edition, Addison Wesley, 1997

� Young,An Introduction to Ada,John Wiley & Sons, 1984

CHECK THE MASTER LIST—

VERIFY THAT THIS IS THE CORRECT VERSION BEFORE USE

MSFC - Form 454 (Rev. October 1992)

CHECK THE MASTER LIST VERIFY THAT THIS IS THE CORRECT VERSION BEFORE USE

