Space Station Reference Coordinate Systems

International Space Station Program

Revision F 26 October 2001

agenzia spaziale italiana (Italian Space Agency)

Canadian Space Agency

 Agence spatiale canadienne

National Aeronautics and Space Administration International Space Station Program Johnson Space Center Houston, Texas

Russian Space Agency

National Space Development Agency of Japan

REVISION AND HISTORY PAGE

REV.	DESCRIPTION	PUB. DATE
	BASELINE ISSUE (REFERENCE SSCBD BB000180A EFF 11-20-86)	12-15-86
А	REVISION A IS IDENTICAL IN CONTENT TO THE BASELINE ISSUE. IT HAS BEEN REFORMATTED TO AGREE WITH THE DOCUMENTATION FORMAT REQUIREMENTS DESCRIBED IN JSC 30200, THIRD DRAFT. FEBRUARY 15, 1987	06–15–87
В	REVISION B (REFERENCE THE ELECTRONIC BASELINE REFORMATTED VERSION)	10-15-88
С	REVISION C (REFERENCE SSCBD BB003460 EFF. 3-8-93)	3–93
D	REVISION D (Reference SSCBD 00002, Eff. 2–1–94) CN001 Incorporated TDC–431 (SSCBD 000008R1,	05–13–94
Е	REVISION E (Reference SSCD 000580, Eff. 9–4–98) (FOR NASA AND NASA CONTRACTOR USE ONLY)	11–19–98
	CN002 INCORPORATES SSCD 000580, Eff. 9–4–88 (PREIMPLEMENT FOR NASA AND CONTRACTOR USE – SSCN 001334)	11–19–98
F	Revision F Incorporates SSCN 003299.	
	The following DCN has been cancelled. The content of the SSCNs authorizing release of the DCN has been incorporated into Revision F. DCN 003 (SSCN 000256) (Administrative Cancel)	

PREFACE

The purpose of this document is to establish a set of coordinate systems to be used when reporting data between the Space Station Program Participants (SSPP).

This document contains figures defining configuration dependent, configuration independent, articulating, viewing, unpressurized, translating, pressurized, and transverse boom frame references frames. In addition, appendixes are included with abbreviations and acronyms, a glossary, subscript designations, and reference documents.

The contents of this document are intended to be consistent with the tasks and products to be prepared by Space Station Program (SSP) participants as defined in SSP 41000, System Specification for Space Station. The Space Station Reference Coordinate Systems shall be implemented on all new SSP contractual and internal activities and shall be included in any existing contracts through contract changes. This document is under the control of the Space Station Control Board, and any changes or revisions will be approved by the Program Manager.

INTERNATIONAL SPACE STATION PROGRAM

SPACE STATION REFERENCE COORDINATE SYSTEMS

26 OCTOBER 2001

CONCURRENCE

PREPARED BY:	Felipe Sauceda	5–5332
	PRINT NAME	ORGN
	SIGNATURE	DATE
CHECKED BY:	Gregory B. Ray	5–5332
	PRINT NAME	ORGN
	SIGNATURE	DATE
SUPERVISED BY	Bob Korin	5–5310
(BOEING):	PRINT NAME	ORGN
	SIGNATURE	DATE
SUPERVISED BY	Nancy Wilks	OM
(NASA):	PRINT NAME	ORGN
	SIGNATURE	DATE
DQA:	Lucie Delheimer	2–6610
	PRINT NAME	ORGN
	SIGNATURE	DATE

NASA/ASI

INTERNATIONAL SPACE STATION ALPHA PROGRAM SPACE STATION REFERENCE COORDINATE SYSTEMS 26 OCTOBER 2001

/s/ Dale Thomas

For NASA

/s/ Andrea Lorenzoni

3/16/94

3/11/94

DATE

For ASI

DATE

NASA/CSA

INTERNATIONAL SPACE STATION ALPHA PROGRAM SPACE STATION REFERENCE COORDINATE SYSTEMS 26 OCTOBER 2001

/s/ Dale Thomas

For NASA

3/14/94

DATE

/s/ R. Bryan Erb

3/14/94

DATE

For CSA

Agreed to in principal subject to completion of detailed review by CSA and its contractor.

NASA/ESA

INTERNATIONAL SPACE STATION ALPHA PROGRAM SPACE STATION REFERENCE COORDINATE SYSTEMS 26 OCTOBER 2001

/s/ Dale Thomas

For NASA

3/11/94

DATE

/s/ Helmut Heusmann

3/23/94

For ESA

DATE

Pending definition of AR5XATV launched APM coordinate system origin, ref. ESA Letter MES/007/94/HH/em, dated 23 Feb, 1994. Note: Document not called up as applicable to ESA.

NASA/NASDA

INTERNATIONAL SPACE STATION ALPHA PROGRAM SPACE STATION REFERENCE COORDINATE SYSTEMS 26 OCTOBER 2001

Dale Thomas

For NASA

3/11/94

DATE

Kuniaki Shiraki

<u>3/17/94</u> DATE

For NASDA

Agreed to in principal subject to completion of detailed review by NASDA.

NASA/RSA

INTERNATIONAL SPACE STATION ALPHA PROGRAM SPACE STATION REFERENCE COORDINATE SYSTEMS 26 OCTOBER 2001

/s/ Dale Thomas

For NASA

3/11/94

DATE

For RSA

DATE

SPACE STATION PROGRAM OFFICE SPACE STATION REFERENCE COORDINATE SYSTEMS

LIST OF CHANGES 26 OCTOBER 2001

All changes to paragraphs, tables, and figures in this document are shown below:

SSCBD	ENTRY DATE	CHANGE	PARAGRAPH
3299	10/26/01	1.3	PRECEDENCE
		5.0	ARTICULATING AND TRANSVERSE BOOM REFERENCE FRAMES
		8.0	TRANSLATING REFERENCE FRAMES
		9.0	PRESSURIZED MODULE REFERENCE FRAMES
			TABLE(S)
	10/26/01		NONE.
			FIGURE(S)
3299	10/26/01		ALL FIGURES WERE CHANGED FOR UPDATE TO CORRECT FORMAT. ADDITIONAL CHANGES WERE MADE TO THE FOLLOWING:
		3.0–15	RUSSIA ORBITAL COORDINATES SYSTEM
		3.0–16	RSO: RUSSIAN SUN EQUILIBRIUM ATTITUDE COORDINATES SYSTEM
		4.0–2	SPACE STATION REFERENCE COORDINATE SYSTEM
		4.0–4	RSA ANALYSIS COORDINATE SYSTEM
		4.0–9	SOYUZ TM TRANSPORT MANNED VEHICLE COORDINATE SYSTEM
		4.0–10	PROGRESS–M TRANSPORT CARGO VEHICLE COORDINATE SYSTEM
		4.0–12	AUTOMATED TRANSFER VEHICLE COORDINATE SYSTEM
		4.0–13	H–II TRANSFER VEHICLE COORDINATE SYSTEM, MECHANICAL DESIGN REFERENCE

3299 – contd.	10/26/01	4.0–14	H–II TRANSFER VEHICLE COORDINATE SYSTEM, ATTITUDE REFERENCE
		5.0–1	STARBOARD SOLAR POWER MODULE COORDINATE SYSTEM
		5.0-2	INTEGRATED TRUSS SEGMENT S4 COORDINATE SYSTEM
		5.0–3	INTEGRATED TRUSS SEGMENT S5 COORDINATE SYSTEM
		5.0-4	INTEGRATED TRUSS SEGMENT S6 COORDINATE SYSTEM
		5.0–5	PORT SOLAR POWER MODULE COORDINATE SYSTEM
		5.0-6	INTEGRATED TRUSS SEGMENT P4 COORDINATE SYSTEM
		5.0–7	INTEGRATED TRUSS SEGMENT P5 COORDINATE SYSTEM
		5.0-8	INTEGRATED TRUSS SEGMENT P6 COORDINATE SYSTEM
		5.0–9	SOLAR ARRAY WING COORDINATE SYSTEM
		5.0–10	THERMAL CONTROL SYSTEM RADIATOR COORDINATE SYSTEM
		5.0–11	INTEGRATED TRUSS SEGMENT Z1 COORDINATE SYSTEM
		5.0–12	INTEGRATED TRUSS SEGMENT SO COORDINATE SYSTEM
		5.0–13	INTEGRATED TRUSS SEGMENT S1 COORDINATE SYSTEM
		5.0–14	INTEGRATED TRUSS SEGMENT S3 COORDINATE SYSTEM
		5.0–15	INTEGRATED TRUSS SEGMENT P1 COORDINATE SYSTEM
		5.0–16	INTEGRATED TRUSS SEGMENT P3 COORDINATE SYSTEM
		5.0–17	FGB ARRAYS COORDINATE SYSTEM

3299 – contd.

10/26/01	5.0–18	SERVICE MODULE ARRAYS COORDINATE SYSTEM
	5.0–19	SCIENCE POWER PLATFORM COORDINATE SYSTEM
	5.0-20	SCIENCE POWER PLATFORM RADIATOR COORDINATE SYSTEM
	5.0–21	SCIENCE POWER PLATFORM ARRAYS COORDINATE SYSTEM
	6.0–1	TRACKING AND DATA RELAY SATELLITE SYSTEM (KU–BAND) COORDINATE SYSTEM
	6.0–6	EARLY AMMONIA SERVICER COORDINATE STSTEM
	6.0–7	RACK COORDINATE SYSTEM
	6.0–8	O2/N2 HIGH PRESSURE GAS TANK COORDINATE SYSTEM
	6.0–9	SOLAR ARAY ORU COORDINATE SYSTEM
	6.0–10	PUMP MODULE ASSEMBLY ORU COORDINATE SYSTEM
	6.0–11	S1 GRAPPLE BAR ORU COORDINATE SYSTEM
	6.0–12	RADIATOR ORU COORDINATE SYSTEM
	6.0–13	THERMAL RADIATOR ROTARY JOINT ORU COORDINATE SYSTEM
	6.0–14	MAST CANISTER ORU COORDINATE SYSTEM
	7.0–1	SPACELAB PALLET COORDINATE SYSTEM
	7.0–3	EXTERNAL STOWAGE PLATFORM – 2
	8.0–1	CREW AND EQUIPMENT TRANSLATIONAL AID COORDINATE SYSTEM
	8.0–3	MOBILE TRANSPORTER COORDINATE SYSTEM

3299 – contd.	10/26/01	8.0–4	MOBILE SERVICING CENTRE BASE SYSTEM COORDINATE SYSTEM
		8.0–6	DELETED
		8.0-8	JEM – REMOTE MANIPULATOR SYSTEM COORDINATE SYSTEM
		9.0–1	UNITED STATES LABORATORY MODULE COORDINATE SYSTEM
		9.0–2	UNITED STATES HABITATION MODULE COORDINATE SYSTEM
		9.0–3	MINI PRESSURIZED LOGISTICS MODULE COORDINATE SYSTEM
		9.0–4	JOINT AIRLOCK COORDINATE SYSTEM
		9.0–5	CUPOLA COORDINATE SYSTEM
		9.0–6	RESOURCE NODE 1 COORDINATE SYSTEM
		9.0–7	RESOURCE NODE 2 COORDINATE SYSTEM
		9.0–8	RESOURCE NODE 3 COORDINATE SYSTEM
		9.0–9	CENTRIFUGE ACCOMMODATION MODULE COORDINATE SYSTEM
		9.0–10	JAPANESE EXPERIMENT MODULE (JEM) — PRESSURIZED MODULE (PM) COORDINATE SYSTEM
		9.0–11	JAPANESE EXPERIMENT MODULE EXPERIMENTAL LOGISTICS MODULE PRESSURIZED SECTION COORDINATE SYSTEM
		9.0–12	JAPANESE EXPERIMENT MODULE — EXPERIMENTAL LOGISTICS MODULE EXPOSED SECTION COORDINATE SYSTEM
		9.0–13	JAPANESE EXPERIMENT MODULE EXPOSED FACILITY COORDINATE SYSTEM
		9.0–15	PRESSURIZED MATING ADAPTER–1 COORDINATE SYSTEM

3299 – contd.	10/26/01	9.0–16	PRESSURIZED MATING ADAPTER–2 COORDINATE SYSTEM
		9.0–17	PRESSURIZED MATING ADAPTER–3 COORDINATE SYSTEM
		9.0–18	FGB CARGO BLOC COORDINATE SYSTEM
		9.0–19	SERVICE MODULE (SM) COORDINATE SYSTEM
		9.0–20	DOCKING COMPARTMENT – 1 COORDINATE SYSTEM
		9.0–21	DOCKING COMPARTMENT – 2 COORDINATE SYSTEM
		9.0–22	DELETED
		9.0–23	DELETED
		9.0–24	UNIVERSAL DOCKING MODULE COORDINATE SYSTEM
		9.0–27	RESEARCH MODULE –1 COORDINATE SYSTEM
		9.0–28	RESEARCH MODULE –2 COORDINATE SYSTEM
			APPENDIX
3299	10/26/01		APPENDIX C – SUBSCRIPT DESIGNATIONS
			APPENDIX E – ISS RUSSIAN SEGMENT

PAGE

PAGE

TABLE OF CONTENTS

PARAGRAPH	

1.0	INTRODUCTION	1 – 1
1.1	PURPOSE	1 - 1
1.2	SCOPE	1 – 1
1.3	PRECEDENCE	1 – 1
1.4	DELEGATION OF AUTHORITY	1 – 1
2.0	APPLICABLE DOCUMENTS	2 - 1
3.0	CONFIGURATION INDEPENDENT REFERENCE FRAMES	3 – 1
4.0	CONFIGURATION DEPENDENT REFERENCE FRAMES	4 - 1
5.0	ARTICULATING AND TRANSVERSE BOOM REFERENCE	
	FRAMES	5 – 1
6.0	VIEWING REFERENCE FRAMES	6 – 1
7.0	UNPRESSURIZED LOGISTICS REFERENCE FRAMES	7 - 1
8.0	TRANSLATING REFERENCE FRAMES	8 - 1
9.0	PRESSURIZED MODULE REFERENCE FRAMES	9 – 1

APPENDIXES

APPENDIX

AABBREVIATIONS AND ACRONYMSA-1BGLOSSARYB-1CSUBSCRIPT DESIGNATIONSC-1DREFERENCE AND SOURCE DOCUMENTSD-1EISS RUSSIAN SEGMENTE-1

FIGURES

FIGURE		PAGE
3.0–1	J200, MEAN OF 2000, CARTESIAN	3-2
3.0-2	MEAN OF 2000, POLAR	3 – 3
3.0–3	MEAN OF 1950, CARTESIAN	3-4
3.0–4	MEAN OF 1950, POLAR	3 – 5
3.0–5	TRUE OF DATE, CARTESIAN	3 - 6
3.0–6	TRUE OF DATE, POLAR	3 – 7
3.0–7	GREENWICH TRUE OF DATE, CARTESIAN	3 – 8
3.0-8	GREENWICH TRUE OF DATE, POLAR	3 – 9
3.0–9	GEODETIC	3 – 10
3.0–10	ORBITAL ELEMENTS	3 – 11
3.0–11	LOCAL ORBITAL: LOCAL VERTICAL LOCAL	
	HORIZONTAL	3 – 12

3.0-12	CONVENTIONAL TERRESTRIAL REFERENCE SYSTEM	3 – 13
3.0–13	GROUND SITE AZIMUTH–ELEVATION MOUNT	3 – 14
3.0–14	XPOP QUASI–INERTIAL REFERENCE FRAME	3 – 15
3.0–15	RUSSIA ORBITAL COORDINATES SYSTEM	3 – 16
3.0–16	RSO: RUSSIAN SUN EQUILIBRIUM ATTITUDE	
	COORDINATES SYSTEM	3 – 17
4.0–1	SPACE STATION ANALYSIS COORDINATE SYSTEM	4 - 2
4.0-2	SPACE STATION REFERENCE COORDINATE SYSTEM	4 - 3
4.0–3	SPACE STATION BODY COORDINATE SYSTEM	4 - 4
4.0–4	RSA ANALYSIS COORDINATE SYSTEM	4 - 5
4.0–5	SPACE STATION GPS ANTENNA COORDINATE SYSTEM	4 - 6
4.0–6	SPACE SHUTTLE ORBITER STRUCTURAL COORDINATE	
	SYSTEM	4 - 7
4.0–7	ORBITER BODY AXES	4 - 8
4.0-8	ALPHA, BETA, AND GAMMA ANGLE DEFINITIONS	4 - 9
4.0-8	ALPHA, BETA, AND GAMMA ANGLE DEFINITIONS – CONTINUED	4 - 10
4.0–9	SOYUZ TM TRANSPORT MANNED VEHICLE COORDINATE	4 – 11
4.0–10	PROGRESS-M TRANSPORT CARGO VEHICLE COORDINATE	4 10
40 11		4 - 12
4.0-11	AUTOMATED TRANSFER VEHICLE COORDINATE	4 – 13
4.0–12	AUTOMATED TRANSFER VEHICLE COORDINATE SYSTEM	4 – 14
4.0–13	H–II TRANSFER VEHICLE COORDINATE SYSTEM, MECHANICAL DESIGN REFERENCE	4 – 15
4.0–14	H–II TRANSFER VEHICLE COORDINATE SYSTEM, ATTITUDE	1 16
501		4 - 10
5.0-1	SYSTEM	5 - 2
5.0-2	INTEGRATED TRUSS SEGMENT S4 COORDINATE	5 2
5.0 2	SYSTEM	5 – 3
5.0–3	INTEGRATED TRUSS SEGMENT S5 COORDINATE	
	SYSTEM	5 - 4
5.0–4	INTEGRATED TRUSS SEGMENT S6 COORDINATE	
	SYSTEM	5 – 5
5.0–5	PORT SOLAR POWER MODULE COORDINATE SYSTEM	5 - 6
5.0-6	INTEGRATED TRUSS SEGMENT P4 COORDINATE	
	SYSTEM	5 - 7
5.0–7	INTEGRATED TRUSS SEGMENT P5 COORDINATE	
	SYSTEM	5 - 8

5.0-8	INTEGRATED TRUSS SEGMENT P6 COORDINATE SYSTEM	5 – 9
5.0–9	SOLAR ARRAY WING COORDINATE SYSTEM	5 – 10
5.0–10	THERMAL CONTROL SYSTEM RADIATOR COORDINATE SYSTEM	5 – 11
5.0–11	INTEGRATED TRUSS SEGMENT Z1 COORDINATE SYSTEM	5 – 12
5.0–12	INTEGRATED TRUSS SEGMENT S0 COORDINATE SYSTEM	5 – 13
5.0–13	INTEGRATED TRUSS SEGMENT S1 COORDINATE SYSTEM	5 – 14
5.0–14	INTEGRATED TRUSS SEGMENT S3 COORDINATE SYSTEM	5 – 15
5.0–15	INTEGRATED TRUSS SEGMENT P1 COORDINATE SYSTEM	5 – 16
5.0–16	INTEGRATED TRUSS SEGMENT P3 COORDINATE SYSTEM	5 – 17
5.0-17	FGB ARRAYS COORDINATE SYSTEM	5 - 18
5.0–18	SERVICE MODULE ARRAYS COORDINATE SYSTEM	5 – 19
5.0–19	SCIENCE POWER PLATFORM COORDINATE SYSTEM	5 - 20
5.0–20	SCIENCE POWER PLATFORM RADIATOR COORDINATE SYSTEM	5 – 21
5.0–21	SCIENCE POWER PLATFORM ARRAYS COORDINATE SYSTEM	5 - 22
6.0–1	TRACKING AND DATA RELAY SATELLITE SYSTEM (KU–BAND) COORDINATE SYSTEM	6-2
6.0–2	ATTACHED PAYLOAD RAM COORDINATE SYSTEM	6 – 3
6.0–3	ATTACHED PAYLOAD WAKE COORDINATE SYSTEM	6-4
6.0–4	ATTACHED PAYLOAD ZENITH COORDINATE SYSTEM	6-5
6.0–5	ATTACHED PAYLOAD NADIR COORDINATE SYSTEM	6 – 6
6.0–6	EARLY AMMONIA SERVICER COORDINATE STSTEM	6 – 7
6.0–7	RACK COORDINATE SYSTEM	6-8
6.0–8	O2/N2 HIGH PRESSURE GAS TANK COORDINATE SYSTEM	6 – 9
6.0–9	SOLAR ARRAY ORU COORDINATE SYSTEM	6 – 10
6.0–10	PUMP MODULE ASSEMBLY ORU COORDINATE SYSTEM	6 – 11
6.0–11	S1 GRAPPLE BAR ORU COORDINATE SYSTEM	6 – 12
6.0–12	RADIATOR ORU COORDINATE SYSTEM	6 – 13
6.0–13	THERMAL RADIATOR ROTARY JOINT ORU COORDINATE SYSTEM	6 – 14

6.0–14	MAST CANISTER ORU COORDINATE SYSTEM	6 – 15
7.0–1	SPACELAB PALLET COORDINATE SYSTEM	7 - 2
7.0–2	EDO COORDINATE SYSTEM	7 – 3
7.0–3	EXTERNAL STOWAGE PLATFORM – 2	7 - 4
8.0-1	CREW AND EQUIPMENT TRANSLATIONAL AID	
	COORDINATE SYSTEM	8 - 2
8.0-2	MOBILE SERVICING CENTRE COORDINATE SYSTEM	8-3
8.0–3	MOBILE TRANSPORTER COORDINATE SYSTEM	8 - 4
8.0–4	MOBILE SERVICING CENTRE BASE SYSTEM COORDINATE SYSTEM	8-5
8.0–5	OTCM OPERATING COORDINATE SYSTEM	8-6
8.0–6	DELETED	8 - 7
8.0–7	END EFFECTOR (EE) OPERATING COORDINATE SYSTEM	8 - 8
8.0-8	JEM – REMOTE MANIPULATOR SYSTEM COORDINATE	
	SYSTEM	8-9
9.0–1	UNITED STATES LABORATORY MODULE COORDINATE	
	SYSTEM	9 - 2
9.0–2	UNITED STATES HABITATION MODULE COORDINATE	
	SYSTEM	9 – 3
9.0–3	MINI PRESSURIZED LOGISTICS MODULE COORDINATE	
	SYSTEM	9-4
9.0–4	JOINT AIRLOCK COORDINATE SYSTEM	9 – 5
9.0–5	CUPOLA COORDINATE SYSTEM	9 – 6
9.0–6	RESOURCE NODE 1 COORDINATE SYSTEM	9 – 7
9.0–7	RESOURCE NODE 2 COORDINATE SYSTEM	9 – 8
9.0–8	RESOURCE NODE 3 COORDINATE SYSTEM	9 – 9
9.0–9	CENTRIFUGE ACCOMMODATION MODULE COORDINATE	
	SYSTEM	9 – 10
9.0–10	JAPANESE EXPERIMENT MODULE (JEM) — PRESSURIZED	0 11
0.0.11	MODULE (PM) COORDINATE SYSTEM	9–11
9.0–11	JAPANESE EXPERIMENT MODULE EXPERIMENTAL	
	SYSTEM	9 – 12
90-12	IAPANESE EXPERIMENT MODULE — EXPERIMENTAL	12
9.0 12	LOGISTICS MODULE EXPOSED SECTION COORDINATE	
	SYSTEM	9 – 13
9.0–13	JAPANESE EXPERIMENT MODULE EXPOSED FACILITY	
	COORDINATE SYSTEM	9 - 14
9.0–14	ESA ATTACHED PRESSURIZED MODULE COORDINATE	
	SYSTEM	9 – 15

9.0–15	PRESSURIZED MATING ADAPTER-1 COORDINATE	
	SYSTEM	9 – 16
9.0–16	PRESSURIZED MATING ADAPTER-2 COORDINATE	
	SYSTEM	9 – 17
9.0–17	PRESSURIZED MATING ADAPTER-3 COORDINATE	
	SYSTEM	9 – 18
9.0–18	FGB CARGO BLOC COORDINATE SYSTEM	9 – 19
9.0–19	SERVICE MODULE (SM) COORDINATE SYSTEM	9 - 20
9.0–20	DOCKING COMPARTMENT – 1 COORDINATE SYSTEM	9 – 21
9.0–21	DOCKING COMPARTMENT – 2 COORDINATE SYSTEM	9 – 22
9.0–22	DELETED	9 – 23
9.0–23	DELETED	9 - 24
9.0–24	UNIVERSAL DOCKING MODULE COORDINATE SYSTEM	9 – 25
9.0–25	DELETED	9 – 26
9.0–26	DELETED	9 – 27
9.0–27	RESEARCH MODULE –1 COORDINATE SYSTEM	9-28
9.0–28	RESEARCH MODULE –2 COORDINATE SYSTEM	9 – 29

1.0 INTRODUCTION

This document contains the definitions of the various coordinate systems used throughout the Space Station Program.

1.1 PURPOSE

The purpose of this document is to establish a set of coordinate systems to be used when reporting data between the Space Station Program Participants (SSPP).

1.2 SCOPE

The scope of this document does not extend beyond the realm of communication of data between the SSPPs. Analyses software, preferred conventions, on–orbit operations, on–orbit location coding and internal reports can contain data in whatever coordinate system deemed appropriate.

1.3 PRECEDENCE

In the event of a conflict between this document and any previous versions of SSP 30219, Space Station Reference Coordinate Systems, this document takes precedence. In the case of a conflict between this document and SSP 41000, System Specification for the Space Station; SSP 41000 takes precedence. In the event of a conflict between this document and any released Space Station engineering drawing or ICD, the released engineering drawing or ICD takes precedence.

1.4 DELEGATION OF AUTHORITY

The responsibility of assuring the definition, control, and implementation of the coordinate systems defined in this document is vested with the NASA Space Station Program Office, ASI, CSA, ESA, NASDA, and RSA.

2.0 APPLICABLE DOCUMENTS

The following documents of the date and issue shown are applicable to the extent specified herein. Inclusion of applicable documents herein does not in any way supersede the order of precedence specified in paragraph 1.3. The references show where each applicable document is cited in this document.

DOCUMENT NO.

TITLE

None

3.0 CONFIGURATION INDEPENDENT REFERENCE FRAMES

The coordinate systems outlined in this chapter are independent of the Space Station configuration. These coordinates systems are mostly global (with the origin at the center of the earth) in nature and can be used for any spacecraft orbiting the earth.

Downloaded from http://www.everyspec.com

FIGURE 3.0–1 J200, MEAN OF 2000, CARTESIAN

Downloaded from http://www.everyspec.com

SSP 30219 Revision F

26 October 2001

FIGURE 3.0–3 MEAN OF 1950, CARTESIAN

FIGURE 3.0–4 MEAN OF 1950, POLAR

 Z_{TR}

I

-

CENTER OF EARTH

EARTH'S TRUE-OF-DATE ROTATIONAL AXIS

SSP 30219 Revision F

 $X_{_{TR}}$

X ₇₇ TRUE EQUINOX DATE	OF
NAME:	True of Date. Cartesian Coordinate System
ORIGIN:	The center of the Earth.
ORIENTATION:	The epoch is the current time of interest.
	The X_{TR} _ Y_{TR} plane is the Earth's true equator of epoch. The X_{TR} axis is directed toward the true vernal equinox of epoch. The Z_{TR} axis is directed along the Earth's true rotational axis of epoch and is positive north. The Y_{TR} axis completes a right–handed system.
CHARACTERISTICS:	Quasi–inertial right–handed Cartesian.
	FIGURE 3.0–5 TRUE OF DATE, CARTESIAN

26 October 2001

 $Y_{_{TR}}$

FIGURE 3.0–6 TRUE OF DATE, POLAR

positive north. The + X_{GW} axis is directed toward the prime meridian. The Y_{GW} axis completes a right-handed system. are relative to a rotating reference frame fixed to the Earth.

FIGURE 3.0–7 GREENWICH TRUE OF DATE, CARTESIAN

Downloaded from http://www.everyspec.com

SSP 30219 Revision F

FIGURE 3.0–8 GREENWICH TRUE OF DATE, POLAR

FIGURE 3.0–9 GEODETIC

FIGURE 3.0–10 ORBITAL ELEMENTS

Downloaded from http://www.everyspec.com

FIGURE 3.0–11 LOCAL ORBITAL: LOCAL VERTICAL LOCAL HORIZONTAL

Downloaded from http://www.everyspec.com

X _{c1} CTRS RI MER	CIO POLE CIO POLE CINER OF EARTH CIRS CIRS REFERENCE EQUATORIAL PLANE
NAME:	Conventional Terrestrial Reference System Coordinate System
TYPE:	Rotating Right–Handed Cartesian
DESCRIPTION:	The Conventional Terrestrial Reference System (CTRS) is an updated Earth-fixed system that incorporates polar motion. The CTRS assumes a spherical Earth and does not take any flattening factors into account, therefore, any definitions of altitude should be derived from the Geodetic Coordinate System (Figure 3.0–9). The CTRS is related to the GTOD (Figure 3.0–8) by the transformation: $\begin{pmatrix} x \\ y \\ z \end{pmatrix}_{CTRS} = \begin{bmatrix} 1 & 0 & xp \\ 0 & 1 & yp \\ -xp & yp & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{GTOD}$ where xp and yp are the angular coordinates (very small angles measured in tenths of an arc-second) of the Celestial Ephemeris Pole (CEP) with respect to the Conventional International Origin (CIO)expressed in CTRS. This data is published weekly by the U.S. Naval Observatory in the International Earth Rotation Service Bulletin–A. The Global Positioning Satellite (GPS) ephemerides are maintained in the CTRS.
ORIGIN:	The origin is located at the Earth's Center.
ORIENTATION:	The pole of this system is known as the CIO.
	 Z_{CTRS} The Z-axis is coincident with the Earth's principal rotational axis. The positive Z-axis is directed toward the CIO. X_{CTRS} The positive X-axis passes through the intersection of the CTRS reference equatorial plane and the CTRS reference meridian. Y_{CTRS} The positive Y-axis completes the rotating right-handed Cartesian system.
SUBSCRIPT:	CTRS

FIGURE 3.0–12 CONVENTIONAL TERRESTRIAL REFERENCE SYSTEM

FIGURE 3.0–14 XPOP QUASI–INERTIAL REFERENCE FRAME

FIGURE 3.0–15 RUSSIA ORBITAL COORDINATES SYSTEM

SSP 30219 Revision F

4.0 CONFIGURATION DEPENDENT REFERENCE FRAMES

The coordinate systems outlined in this chapter are dependent on the Space Station configuration as well as the Orbiter and visiting vehicle configurations. These coordinate systems differ in origin location, and orientation and the user is free to use whichever system suits the analysis being performed. All dimensions are in inches unless otherwise specified. Downloaded from http://www.everyspec.com

FIGURE 4.0–2 SPACE STATION REFERENCE COORDINATE SYSTEM

4 - 4

+ PITCH M q q y _{SB}		
NAME:	Space Station Body Coordinate System	
TYPE:	Right–handed Cartesian system, Body–Fixed	
DESCRIPTION:	When defining the relationship between this coordinate system and another, the Euler angle sequence to be used is a yaw, pitch, roll sequence around the Z_{SB} , Y_{SB} , and X_{SB} axes, respectively.	
ORIGIN:	The origin is located at the Space Station center of mass.	
ORIENTATION:	The X_{SB} axis is parallel to the X_A axis. Positive X_{SB} is in the forward flight direction.	
	The Y_{SB} axis is parallel to the Y_A . Positive Y_{SB} is toward starboard. The Z_{SB} axis is parallel with the Z_A . Positive Z_{SB} is approximately toward nadir and completes the right-handed system X_{SB} , Y_{SB} , Z_{SB} . L, M, N: Moments about X_{SB} , Y_{SB} , and Z_{SB} axes, respectively. p, q, r: Body rates about X_{SB} , Y_{SB} , and Z_{SB} axes, respectively. p, q, r:Angular body acceleration about X_{SB} , Y_{SB} , and Z_{SB} axes, respectively.	
SUBSCRIPT:	SB	

FIGURE 4.0–3 SPACE STATION BODY COORDINATE SYSTEM

FIGURE 4.0–4 RSA ANALYSIS COORDINATE SYSTEM

FIGURE 4.0-5 SPACE STATION GPS ANTENNA COORDINATE SYSTEM

FIGURE 4.0–6 SPACE SHUTTLE ORBITER STRUCTURAL COORDINATE SYSTEM

FIGURE 4.0–7 ORBITER BODY AXES

Downloaded from http://www.everyspec.com

FIGURE 4.0–8 ALPHA, BETA, AND GAMMA ANGLE DEFINITIONS

FIGURE 4.0–8 ALPHA, BETA, AND GAMMA ANGLE DEFINITIONS – Continued

FIGURE 4.0–9 SOYUZ TM TRANSPORT MANNED VEHICLE COORDINATE SYSTEM

FIGURE 4.0–10 PROGRESS–M TRANSPORT CARGO VEHICLE COORDINATE SYSTEM

X _{CRV}	ZCRV YCRV		
Y <u>crv</u>	Z _{CRV} X _{CRV} 390.67 in 9923 mm		
ΝΔΜΕ·	Crew Return Vehicle Coordinate System		
	Dight Handed Cartesian Rody Eived		
ORIGIN:	The origin is located 6" in front of the vehicle nose and flush with the exterior floor.		
ORIENTATION:	X _{CRV} The X–axis is parallel to the longitudinal axis of the vehicle. The positive X–axis is in the rearward direction.		
	$ \begin{array}{ll} Z_{CRV} & \mbox{The Z-axis is the direction of the CBM.} \\ Y_{CRV} & \mbox{The positive Y-axis completes the right handed coordinate frame.} \\ & \mbox{The Euler sequence that is associated with this system is a yaw, pitch, roll, sequence, where $\psi = yaw, $\theta = pitch, and $\phi = roll or blank. This attitude sequence is yaw, pitch, and roll around the Z_{CRV}, Y_{CRV}, and X_{CRV} axes, respectively. \\ & \mbox{L, M, N: Moments about X_{CRV}, Y_{CRV}, and Z_{CRV} axes, respectively. \\ & \mbox{p, q, r: Body rates about X_{CRV}, Y_{CRV}, and Z_{CRV} axes, respectively. \\ & \mbox{p, q, r: Angular body acceleration about X_{CRV}, Y_{CRV}, and Z_{CRV} axes, respectively. \\ & \mbox{p, q, r: Angular body acceleration about X_{CRV}, Y_{CRV}, and Z_{CRV} axes, respectively. \\ & \mbox{p, q, r: Angular body acceleration about X_{CRV}, Y_{CRV}, and Z_{CRV} axes, respectively. \\ & \mbox{p, q, r: Angular body acceleration about X_{CRV}, Y_{CRV}, and Z_{CRV} axes, respectively. \\ & \mbox{p, q, r: Angular body acceleration about X_{CRV}, Y_{CRV}, and Z_{CRV} axes, respectively. \\ & \mbox{p, q, r: Angular body acceleration about X_{CRV}, Y_{CRV}, and Z_{CRV} axes, respectively. \\ & \mbox{p, q, r: Angular body acceleration about X_{CRV}, Y_{CRV}, and Z_{CRV} axes, respectively. \\ & \mbox{p, q, r: Angular body acceleration about X_{CRV}, Y_{CRV}, and Z_{CRV} axes, respectively. \\ & \mbox{p, q, r: Angular body acceleration about X_{CRV}, Y_{CRV}, and Z_{CRV}, axes, respectively. \\ & \mbox{p, q, r: Angular body acceleration about X_{CRV}, Y_{CRV}, and Z_{CRV}, X_{CRV}, axes, respectively. \\ & \mbox{p, q, r: Angular body acceleration about X_{CRV}, Y_{CRV}, and Z_{CRV}, X_{CRV}, X_{CRV}, X_{CRV}, axes, respectively. \\ & \mbox{p, q, r: Angular body acceleration about X_{CRV}, Y_{CRV}, and Z_{CRV}, X_{CRV}, X_{CRV		
SUBSCRIPT:	CRV		

FIGURE 4.0–11 CREW RETURN VEHICLE COORDINATE SYSTEM

FIGURE 4.0–12 AUTOMATED TRANSFER VEHICLE COORDINATE SYSTEM

FIGURE 4.0–13 H–II TRANSFER VEHICLE COORDINATE SYSTEM, MECHANICAL DESIGN REFERENCE

NAME:	H–II Transfer Vehicle Coordinate System, Attitude Reference	
TYPE:	Right–Handed Cartesian, Body–Fixed	
ORIGIN:	The HTV Center of Mass with respect to the HTV Mechanical Design Reference Coordinate System	
ORIENTATION:	X _{HTVB} The X–axis is parallel to the longitudinal axis of the module cluster The positive X–axis is toward the CBM interface.	
	Z _{HTVB} The Z–axis is perpendicular to X _{HTVB} and parallel to the centerline of field of view of Rendezvous Sensor. The negative Z–axis is in the direction of the Rendezvous Sensor head side as shown.	
	Y _{HTVB} The Y–axis completes the right–handed orthogonal system.	

The Euler sequence that is associated with this system is a yaw, pitch, roll, sequence, where $\psi = yaw$, $\theta = pitch$, and $\phi = roll$ or bank. This attitude sequence is yaw, pitch, and roll around the Z_{HTVB} , Y_{HTVB} , and X_{HTVB} axes, respectively.

SUBSCRIPT: HTVB

FIGURE 4.0–14 H–II TRANSFER VEHICLE COORDINATE SYSTEM, ATTITUDE REFERENCE

5.0 ARTICULATING AND TRANSVERSE BOOM REFERENCE FRAMES

The coordinate systems outlined in this chapter represent all the articular subelements and transverse boom elements. In addition, the Starboard and Port Solar Power Module elements are defined using the individual subelement definitions as its basis. All dimensions are in inches unless otherwise noted. All drawings include an isometric view, top view, front view and side view moving left to right, top to bottom.

FIGURE 5.0–1 STARBOARD SOLAR POWER MODULE COORDINATE SYSTEM

FIGURE 5.0–2 INTEGRATED TRUSS SEGMENT S4 COORDINATE SYSTEM

FIGURE 5.0–3 INTEGRATED TRUSS SEGMENT S5 COORDINATE SYSTEM

FIGURE 5.0–4 INTEGRATED TRUSS SEGMENT S6 COORDINATE SYSTEM

Y _{P4}		234.70 in 5961 mm 100.00 in 2540 mm Y _{P4} X _{P4}
Z _{P4}		Z _{P4}
NAME:	Integrated Truss Segment P4 Coordinate Syste	em
TYPE:	Right–Handed Cartesian, Body–Fixed	
ORIGIN:	The origin is located along the Y_{P4} -axis at a point 100 inches inboard of the P4/P3 interface plane. The P4/P3 interface plane is defined as the outboard face of the outboard Alpha Joint Bulkhead. NOTE: For P3/P4 coordinate frame use the P3 frame.	
ORIENTATION:	Y _{P4} The Y–axis is coincident with the nomin which is defined as perpendicular to the P4/P3 at the center of the Alpha Joint Bulkhead. The starboard (inboard) direction.	nal alpha joint axis of rotation, interface plane and located positive Y–axis is in the
	Z_{P4} The Z-axis is perpendicular to Y_{P4} and longitudinal centerline of the integrated equipm deployed. The positive Z-axis is in the nadir did to zero degrees.	l parallel to the nominal ent assembly radiators, when irection when alpha is equal
SUBSCRIPT:	 X_{P4} The positive X–axis is in the ram direct zero degrees and completes the right–handed P4 	ion when alpha is equal to Cartesian system.

FIGURE 5.0–6 INTEGRATED TRUSS SEGMENT P4 COORDINATE SYSTEM

FIGURE 5.0–7 INTEGRATED TRUSS SEGMENT P5 COORDINATE SYSTEM

FIGURE 5.0–8 INTEGRATED TRUSS SEGMENT P6 COORDINATE SYSTEM

FIGURE 5.0–9 SOLAR ARRAY WING COORDINATE SYSTEM

FIGURE 5.0–10 THERMAL CONTROL SYSTEM RADIATOR COORDINATE SYSTEM

Y _{z1}	Z ₁	
X _{Z1}	Z_{21}	
NAME:	Integrated Truss Segment Z1 Coordinate System	
TYPE:	Right–Handed Cartesian, Body–Fixed	
ORIGIN:	The origin is located along the geometric center of the Z1 CBM 79.0 inches from the CBM flange. The XZ plane is parellel to the plane formed by the centerline of the bases of the four trunnions.	
ORIENTATION:	X _{Z1} The X–axis is parallel to the trunnion pin plane .	
	Y _{Z1} The Y–axis completes the right–handed Cartesian system.	
	Z_{Z1} The Z-axis is collinear with the centerline of the CBM. The positive Z-axis is toward the support structure and	
SUBSCRIPT:	Z1	

FIGURE 5.0–11 INTEGRATED TRUSS SEGMENT Z1 COORDINATE SYSTEM

TI V So		× so 161.27 in 4096 mm 98.53 in 2503 mm you have been been been been been been been be	
Y _{S0}		X _{s0}	
NAME:	Integrated Truss Segment S0 Coordinate S	System	
TYPE:	Right–Handed Cartesian, Body–Fixed		
DESCRIPTION:	This coordinate system defines the origin, orientation, and sense of the Space Station Analysis Coordinate System.		
ORIGIN:	The YZ plane nominally contains the centerline of all four trunnion pins. The origin is defined as the intersection of two diagonal lines connecting the centers of the bases of opposite trunnion pins, running T1 to T3 and from T2 to T4.		
ORIENTATION:	X _{S0} The X–axis is parallel to the vector cross–product of the Y–axis with the line from the center of the base trunnion pin T2 to the center of the base trunnion pin T3, and is positive forward.		
	Y _{S0} The Y–axis is parallel with the line trunnion pin T2 to the center of the base of Y–axis is toward starboard.	from the center of the base of f trunnion pin T1. The positive	
SUBSCRIPT:	Z _{S0} The Z–axis completes the right–ha S0	anded Cartesian system.	

FIGURE 5.0–12 INTEGRATED TRUSS SEGMENT S0 COORDINATE SYSTEM

FIGURE 5.0–13 INTEGRATED TRUSS SEGMENT S1 COORDINATE SYSTEM

FIGURE 5.0–14 INTEGRATED TRUSS SEGMENT S3 COORDINATE SYSTEM

100.00 in 100.53 in Y_{P1} 2540 mm 2553 mm Y_{P1} \mathbf{I}_{P1} NAME: Integrated Truss Segment P1 Coordinate System TYPE: Rotating Right-Handed Cartesian, Body-Fixed ORIGIN: The origin is located at a point 100 inches from the outer face of the P1 ITS bulkhead that interfaces with the S0 ITS. The YZ plane nominally contains the centerline of all four trunnion pins. The origin is defined as the point 200.53 inches toward port along the Y-axis measured from the line connecting the centers of the base of trunnion pins T2 and T3. **ORIENTATION:** The X-axis is parallel to the vector cross-product of the Y-axis with X_{P1} the line from the center of the base of trunnion pin T2 to the center of the base of trunnion pin T3, and is positive forward. The Y-axis is parallel with the line from the center of the base of Y_{P1} trunnion pin T2 to the center of the base of trunnion pin T1, and passes through the midpoint of the line connection the centers of the bases of trunnion pins T2 and T3. The positive Y-axis is toward starboard. Z_{P1} The Z-axis completes the right-handed Cartesian system.

FIGURE 5.0–15 INTEGRATED TRUSS SEGMENT P1 COORDINATE SYSTEM

X_{P1}

100.53 in 2553 mm

100.00 in

2540 mm

Y_{P1}

SUBSCRIPT:

P1

 Z_{P1}

FIGURE 5.0–16 INTEGRATED TRUSS SEGMENT P3 COORDINATE SYSTEM

FIGURE 5.0–17 FGB ARRAYS COORDINATE SYSTEM
NAME:	SM Solar Arrays
TYPE:	Right–Handed Cartesian, Body–Fixed
DESCRIPTION:	This coordinate system is aligned as shown with the Space Station Analysis Coordinate System at solar noon when the Space Station is in the LVLH flight orientation.
ORIGIN:	The origin is located along the Z _{SMA} –axis at a point 59.055 inches inboard of the interface plane of the starboard SM Solar Panel.
ORIENTATION:	Z _{SMA} The Z–axis is coincident with the SM array axis of rotation, which is along the longitudanal centerline of the array. The positive Z–axis is in the port (outboard) direction.
	X _{SMA} The X–axis completes the right–handed cartesian system.
	Y _{SMA} The Y–axis is perpendicular to the Z–axis and normal to the nominal plane of the array. The Y–axis is positive toward the anti–sun facing (back) side of the array.
SUBSCRIPT:	SMA

FIGURE 5.0–18 SERVICE MODULE ARRAYS COORDINATE SYSTEM

FIGURE 5.0–19 SCIENCE POWER PLATFORM COORDINATE SYSTEM

FIGURE 5.0–20 SCIENCE POWER PLATFORM RADIATOR COORDINATE SYSTEM

FIGURE 5.0–21 SCIENCE POWER PLATFORM ARRAYS COORDINATE SYSTEM

6.0 VIEWING REFERENCE FRAMES

The coordinate systems outlined in this chapter represent all the viewing subelements.

FIGURE 6.0–1 TRACKING AND DATA RELAY SATELLITE SYSTEM (KU–BAND) COORDINATE SYSTEM

	TBD
NAME	Attached Payload Ram Coordinate System
TYPE:	Right-Handed Cartesian, Body-Fixed
DESCRIPTION:	The Attached Payload will be attached to the Space Station so that the coordinate axes are nominally parallel to and the same sense as the Space Station Analysis Coordinate Frame axes X_A , Y_A , and Z_A .
ORIGIN:	The origin is located along the plane of symmetry at a point 100 inches inward (toward the ITS) from the interface plane with the Space Station. This interface plane is defined as the outermost face of the attach structure used to attach the payload to the ITA.
ORIENTATION:	X_{APR} The X-axis is parallel to the Space Station X_A -axis and positive in the direction of flight when attached to the Space Station.
	Y_{APR} The Y-axis is parallel to the Space Station Y_A -axis and positive toward starboard when attached to the Space Station.
	Z_{APR} The Z-axis is parallel to the Space Station Z_A -axis and positive toward nadir when attached to the Space Station.
SUBSCRIPT:	APR

FIGURE 6.0-2 ATTACHED PAYLOAD RAM COORDINATE SYSTEM

TBD

NAME:	Attached Payload Wake Coordinate System
TYPE:	Right–Handed Cartesian, Body–Fixed
DESCRIPTION:	The Attached Payload will be attached to the Space Station so that the coordinate axes are nominally parallel to and the same sense as the Space Station Analysis Coordinate Frame axes X_A , Y_A , and Z_A .
ORIGIN:	The origin is located along the plane of symmetry at a point 100 inches inward (toward the ITS) from the interface plane with the Space Station. This interface plane is defined as the outermost face of the attach structure used to attach the payload to the ITA.
ORIENTATION:	X_{APW} The X-axis is parallel to the Space Station X_A -axis and positive in the direction of flight when attached to the Space Station.
	Y_{APW} The Y-axis is parallel to the Space Station Y_A -axis and positive toward starboard when attached to the Space Station.
	Z_{APW} The Z-axis is parallel to the Space Station Z_A -axis and positive toward nadir when attached to the Space Station.
SUBSCRIPT:	APW

FIGURE 6.0-3 ATTACHED PAYLOAD WAKE COORDINATE SYSTEM

	TBD
NAME:	Attached Payload Zenith Coordinate System
TYPE:	Rotating Right–Handed Cartesian, Body–Fixed
DESCRIPTION:	The Attached Payload will be attached to the Space Station so that the coordinate axes are nominally parallel to and the same sense as the Space Station Analysis Coordinate Frame axes X_A , Y_A , and Z_A .
ORIGIN:	The origin is located along the plane of symmetry at a point 100 inches inward (toward the ITS) from the interface plane with the Space Station. This interface plane is defined as the outermost face of the attach structure used to attach the payload to the ITA.
ORIENTATION:	X_{APZ} The X-axis is parallel to the Space Station X_A -axis and positive in the direction of flight when attached to the Space Station.
	Y _{APZ} The Y–axis is parallel to the Space Station Y _A –axis and positive toward starboard when attached to the Space Station.
	Z_{APZ} The Z-axis is parallel to the Space Station Z_A -axis and positive toward nadir when attached to the Space Station.
SUBSCRIPT:	APZ

FIGURE 6.0-4 ATTACHED PAYLOAD ZENITH COORDINATE SYSTEM

	TBD
NAME:	Attached Payload Nadir Coordinate System
TYPE:	Rotating Right–Handed Cartesian, Body–Fixed
DESCRIPTION:	The Attached Payload will be attached to the Space Station so that the coordinate axes are nominally parallel to and the same sense as the Space Station Analysis Coordinate Frame axes X_A , Y_A , and Z_A .
ORIGIN:	The origin is located along the plane of symmetry at a point 100 inches inward (toward the ITS) from the interface plane with the Space Station. This interface plane is defined as the outermost face of the attach structure used to attach the payload to the ITA.
ORIENTATION:	X_{APN} The X-axis is parallel to the Space Station X_A -axis and positive in the direction of flight when attached to the Space Station.
	Y_{APN} The Y-axis is parallel to the Space Station Y_A -axis and positive toward starboard when attached to the Space Station.
	Z_{APN} The Z-axis is parallel to the Space Station Z_A -axis and positive toward nadir when attached to the Space Station.
SUBSCRIPT:	APN

FIGURE 6.0-5 ATTACHED PAYLOAD NADIR COORDINATE SYSTEM

FIGURE 6.0–6 EARLY AMMONIA SERVICER COORDINATE STSTEM

FIGURE 6.0-7 RACK COORDINATE SYSTEM

FIGURE 6.0–8 O2/N2 HIGH PRESSURE GAS TANK COORDINATE SYSTEM

		TBD
NAME:	Solar A	rray ORU Coordinate System
TYPE:	Rotating	g Right–Handed Cartesian, Body–Fixed
ORIGIN:	TBD	
ORIENTATION:	X _{SAO}	TBD
	Y _{SAO}	TBD
	Z _{SAO}	TBD
SUBSCRIP I:	SAU	

FIGURE 6.0-9 SOLAR ARRAY ORU COORDINATE SYSTEM

	TBD
NAME:	Pump Module Assembly ORU Coordinate System
TYPE:	Rotating Right–Handed Cartesian, Body–Fixed
ORIGIN:	TBD
ORIENTATION:	X _{PMAO} TBD Y _{PMAO} TBD Z _{PMAO} TBD
SUBSCRIPT:	PMAO

FIGURE 6.0–10 PUMP MODULE ASSEMBLY ORU COORDINATE SYSTEM

		Т	BD	
NAME:	S1 Grapple Bar	r ORU C	Coordinate System	
TYPE:	Rotating Right-	-Handeo	d Cartesian, Body-Fixed	
ORIGIN:	TBD			
ORIENTATION:	X _{S1-GBO}		TBD	
	Y _{S1-GBO}	TBD		
SUBSCRIPT:	∽s1–gbo S1–GBO	עסו		

FIGURE 6.0–11 S1 GRAPPLE BAR ORU COORDINATE SYSTEM

	TBD
NAME:	Radiator ORU Coordinate System
TYPE:	Rotating Right–Handed Cartesian, Body–Fixed
ORIGIN:	TBD
ORIENTATION:	X _{RORU} TBD
	Y _{RORU} TBD
SUBSCRIPT	Z _{RORU} IBD RORU

FIGURE 6.0–12 RADIATOR ORU COORDINATE SYSTEM

	TBD
NAME: TYPE:	Thermal Radiator Rotary Joint (TRRJ) ORU Coordinate System Rotating Right–Handed Cartesian, Body–Fixed
ORIGIN:	TBD
ORIENTATION:	X _{TRRJO} TBD Y _{TRRJO} TBD Z _{TRRJO} TBD
SUBSCRIPT:	TRRJO

FIGURE 6.0–13 THERMAL RADIATOR ROTARY JOINT ORU COORDINATE SYSTEM

	TBD
NAME: TYPE: ORIGIN: ORIENTATION: SUBSCRIPT:	Mast Canister ORU Coordinate System Rotating Right–Handed Cartesian, Body–Fixed TBD X _{MCO} TBD Y _{MCO} TBD Z _{MCO} TBD MCO

FIGURE 6.0–14 MAST CANISTER ORU COORDINATE SYSTEM

7.0 UNPRESSURIZED LOGISTICS REFERENCE FRAMES

The coordinate systems outlined in this chapter represent all the unpressurized logistics subelements.

FIGURE 7.0–1 SPACELAB PALLET COORDINATE SYSTEM

FIGURE 7.0-2 EDO COORDINATE SYSTEM

FIGURE 7.0–3 EXTERNAL STOWAGE PLATFORM – 2

8.0 TRANSLATING REFERENCE FRAMES

The coordinate systems outlined in this chapter represent all the translating subelements. This includes the Mobile Transporter as well as the individual subelements from which the Mobile Servicing Center (MSC) is comprised. All dimensions are in inches unless otherwise noted. All drawings include an isometric view, top view, front view and side view moving left to right, top to bottom.

FIGURE 8.0–1 CREW AND EQUIPMENT TRANSLATIONAL AID COORDINATE SYSTEM

TBD

NAME:	Mobile Servicing Centre Coordinate System
TYPE:	Right–Handed Cartesian, Body–Fixed
DESCRIPTION:	The Mobile Servicing Centre (MSC) is part of the MSS and consists of the MT, the MRS Base System (MBS), and the Space Station Remote Manipulator System (SSRMS).
ORIGIN:	The origin is located on a line running through the geometric center of the MT, perpendicular to the interface plane between the MT and the MBS, at a point 100 inches from the interface plane. The interface plane is defined as the outer face of the MT structure to which the MBS attaches.
ORIENTATION:	X_{MSC} The X-axis is perpendicular to the interface plane between the MT and the MBS. The positive X-axis is toward the MSC.
	Y _{MSC} The Y–axis is parallel to and positive in the same direction as the Space Station Y–axis when the MSC is in the nominal orientation.
SUBSCRIPT:	Z _{MSC} The Z–axis completes the right–handed Cartesian system. MSC

FIGURE 8.0–2 MOBILE SERVICING CENTRE COORDINATE SYSTEM

Y _{MT}	Z _{MT} 95.795 in 2433 mm V _{MT} X _{MT}		
1 1	71.85 in Y_{MT} 825 mm Z_{MT}		
NAME:	Mobile Transporter Coordinate System		
TYPE:	Right–Handed Cartesian, Body–Fixed		
DESCRIPTION:	The MT is part of the MSC.		
ORIGIN:	The origin is located on a line running through the geometric center of the MT, perpendicular to the interface plane between the MT and the MBS, at a point 95.79 inches from the interface plane. The geometric center of the MT is located along a line equidistant from the four MT to MBS cup and cone centerlines as shown in SSP 42003, Part 2, Rev. A, Figure A3.2–3 "MBS to MT Mechanical Interface." The interface plane is defined as the common datum plane for the cups and cones, respectively, by which the MT and the MBS structures are joined. This interface plane is shown in SSP 42003, Part 2, Rev A, Figure A3.2–6 "MBS to MT Mechanical Interface," as being 29.41 inches from the datum A (the top rail surface of the Integrated Truss Segments) when the MT is in the latched condition. Thus, for the launch condition, the origin is also located on the axis of the integrated truss S0.		
ORIENTATION:	X_{MT} The X-axis is perpendicular to the interface plane between the MT and the MBS. The positive X-axis is toward the MT.		
SUBSCRIPT:	$\begin{array}{ll} Y_{MT} & \mbox{The Y-axis is parallel to and positive in the same direction as the Space Station Y-axis when the MT is located on the Space Station. \\ Z_{MT} & \mbox{The Z-axis completes the right-handed Cartesian system.} \\ MT & \end{tabular}$		

FIGURE 8.0–3 MOBILE TRANSPORTER COORDINATE SYSTEM

Y _{MBS}	Z _{MBS}	34.77 in 883 mm X _{MBS}	
YMES	112.50 2858 1 ZMBS	D in XMBS ZMBS	
NAME:	MSC Base System Coordinate System		
TYPE:	Rotating Right–Handed Cartesian, Body–Fixed		
DESCRIPTION:	The MBS is part of the MSC.		
ORIGIN:	The origin is located at the intersection of the MBS base plane and a line perpendicular to the base plane, running through the midpoint between the centers of the bases of the two trunnions. The MBS base plane is defined as the interface between the 4 MT to MBS microconical fittings and the MBS structure. This plane is 34.77 inches from the trunnion centerline.		
ORIENTATION:	X_{MBS} The X-axis is perpendicular to the interface plane between the MT and the MBS. The positive X-axis is from the MBS base plane toward the trunnions.		
	Y _{MBS} The Y–axis is parallel to the projection of the line between the two trunnion base centers onto the interface plane, positive as shown.		
SUBSCRIPT:	Z _{MBS} The Z–axis completes the right–handed MBS	d Cartesian system.	

FIGURE 8.0–4 MOBILE SERVICING CENTRE BASE SYSTEM COORDINATE SYSTEM

SSP 30219 Revision F

Downloaded from http://www.everyspec.com

FIGURE 8.0–5 OTCM OPERATING COORDINATE SYSTEM

DELETED

FIGURE 8.0–6 DELETED

FIGURE 8.0–7 END EFFECTOR (EE) OPERATING COORDINATE SYSTEM

JEMRMS

9.0 PRESSURIZED MODULE REFERENCE FRAMES

The coordinate systems outlined in this chapter represent all the pressurized module subelements. All dimensions are in inches unless otherwise specified. All drawings include an isometric view, top view, front view and side view moving left to right, top to bottom. The descriptive terms nadir, zenith, aft, forward, port, and starboard, when used, are the directions or faces of the module as nominally mated to the ISS.

FIGURE 9.0–1 UNITED STATES LABORATORY MODULE COORDINATE SYSTEM

FIGURE 9.0–2 UNITED STATES HABITATION MODULE COORDINATE SYSTEM

FIGURE 9.0–3 MINI PRESSURIZED LOGISTICS MODULE COORDINATE SYSTEM

FIGURE 9.0–4 JOINT AIRLOCK COORDINATE SYSTEM

NAME:	Cupola Coordinate System
TYPE:	Right–Handed Cartesian, Body–Fixed to the Pressurized Module
ORIGIN:	The origin is located on the interface plane between the Active Common Berthing Mechanism (ACBM) and the Passive Common Berthing Mechanism (PCBM) which is part of the cupola and at the geometric center of the array of CBM mating bolts.
ORIENTATION:	Z _{CUP} The Z–axis is perpendicular to the interface plane between ACBM and PCBM. The positive Z–axis passes through the center of the overhead window (Top Window).
	X_{CUP} The X-axis is on the interface plane, perpendicualr to the Z-axis and passes through the center of the window plenum and through the point midway between the centers of the Water inlet/outlet. The positive X-axis is in the opposite direction with respect to the water inlet/outlet.
SUBSCRIPT:	Y _{CUP} The Y–axis completes the right–handed Cartesian system. CUP

FIGURE 9.0–5	CUPOLA	COORDINATE	SYSTEM
---------------------	--------	------------	--------

FIGURE 9.0–6 RESOURCE NODE 1 COORDINATE SYSTEM

FIGURE 9.0–7 RESOURCE NODE 2 COORDINATE SYSTEM

FIGURE 9.0–8 RESOURCE NODE 3 COORDINATE SYSTEM

FIGURE 9.0–9 CENTRIFUGE ACCOMMODATION MODULE COORDINATE SYSTEM

FIGURE 9.0–10 JAPANESE EXPERIMENT MODULE (JEM) — PRESSURIZED MODULE (PM) COORDINATE SYSTEM

FIGURE 9.0–11 JAPANESE EXPERIMENT MODULE EXPERIMENTAL LOGISTICS MODULE PRESSURIZED SECTION COORDINATE SYSTEM

FIGURE 9.0–12 JAPANESE EXPERIMENT MODULE — EXPERIMENTAL LOGISTICS MODULE EXPOSED SECTION COORDINATE SYSTEM

FIGURE 9.0–13 JAPANESE EXPERIMENT MODULE EXPOSED FACILITY COORDINATE SYSTEM

FIGURE 9.0–14 ESA ATTACHED PRESSURIZED MODULE COORDINATE SYSTEM

FIGURE 9.0–15 PRESSURIZED MATING ADAPTER–1 COORDINATE SYSTEM

FIGURE 9.0–16 PRESSURIZED MATING ADAPTER-2 COORDINATE SYSTEM

FIGURE 9.0–17 PRESSURIZED MATING ADAPTER–3 COORDINATE SYSTEM

FIGURE 9.0–18 FGB CARGO BLOC COORDINATE SYSTEM

FIGURE 9.0–19 SERVICE MODULE (SM) COORDINATE SYSTEM

FIGURE 9.0–20 DOCKING COMPARTMENT – 1 COORDINATE SYSTEM

FIGURE 9.0–21 DOCKING COMPARTMENT – 2 COORDINATE SYSTEM

FIGURE 9.0–22 DELETED

FIGURE 9.0–23 DELETED

FIGURE 9.0–24 UNIVERSAL DOCKING MODULE COORDINATE SYSTEM

FIGURE 9.0–25 DELETED

FIGURE 9.0–26 DELETED

FIGURE 9.0–27 RESEARCH MODULE –1 COORDINATE SYSTEM

FIGURE 9.0–28 RESEARCH MODULE –2 COORDINATE SYSTEM

APPENDIX A ABBREVIATIONS AND ACRONYMS

CBM	Common Berthing Mechanism
CETA	Crew and Equipment Translational Aid
CIO	Conventional International Origin
CSA	Canadian Space Agency
CTRS	Conventional Terrestrial Reference System
EF	Exposed Facility
ELM	Experimental Logistics Module
ESA	European Space Agency
GTOD	Greenwich True of Date
ITA	Integrated Truss Assembly
ITS	Integrated Truss Segment
JEM	Japanese Experiment Module
JPDRD	Joint Program Definition and Requirements Document
LVLH	Local Vertical Local Horizontal
MBS	MRS Base System
MMD	Mobile Servicing System Maintenance Depot
MSC	Mobile Servicing Centre
MSS	Mobile Servicing System
MT	Mobile Transporter
NASA	National Aeronautics and Space Administration
NASDA	National Space Development Agency of Japan
PBM	Pressurized Berthing Module
PDGF	Power Data Grapple Fixture
PWP	Personnel Work Platform
SPDM	Special Purpose Dexterous Manipulator

SSP 30219 Revision F

SSPP	Space Station Program Participants
SSRMS	Space Station Remote Manipulator System
TCS	Thermal Control System
TDRSS	Tracking and Data Relay Satellite System
TOD	True of Date
TRRJ	Thermal Radiator Rotary Joint
UBA	Unpressurized Berthing Adapter
UCL	Unpressurized Logistics Carrier

APPENDIX B GLOSSARY

CARTESIAN SYSTEM

A system whose reference frame consists of a triad of mutually perpendicular directed lines originating from a common point in which a vector is expressed by components that are scalar magnitude projections along each axis.

DATUM POINT

The common reference location for all configuration dependent coordinate systems.

GEODETIC LOCAL VERTICAL

A reference ellipsoid of revolution that approximates the figure of the Earth is presumed. Then, the local vertical at any point is along the unique line that is normal to the ellipsoid surface and that contains the point of interest.

INERTIAL COORDINATE SYSTEM

A system whose coordinate axes are fixed, relative to the stars, at infinite distances. That is, the rotation rates about all axes, relative to the stars, are zero.

MEAN VERSUS TRUE SYSTEMS

The line of intersection of the ecliptic plane (the instantaneous plane of motion of the Earth and sun) and the celestial equatorial plane (mean Earth equator) precesses among the fixed stars with a rate of one revolution in 26,000 years. Additionally, the Earth wobbles slightly on its axis, relative to its mean position, with periods of oscillations of only a few years. The former phenomenon is called precession; the latter is called nutation. A mean–of–date system is based on the intersection of the mean equator and the plane of the ecliptic; whereas, a true–of–date system is based on the intersection of the true Earth equator and the plane of the ecliptic.

NONROTATING SYSTEMS

An inertial or quasi-inertial system. That is, any system whose rates of rotation about all axes, relative to any inertial system, are zero.

OSCULATING CONIC

A two-body approximation to non-two-body motion that is derived from conditions existing at some instant of time but that is exact only for that instant. An osculating-conic trajectory is one that is tangent to the true trajectory at the defining instant.

PERIGEE AND APOGEE

The unique points in an elliptic orbit about the Earth wherein the object achieves minimum and maximum distance, respectively, from the center of the Earth.

QUASI-INTERNAL SYSTEM

A system in which the coordinates rotate for position reference but are taken to be instantaneously fixed with respect to an inertial system for velocity reference.

ROTATING SYSTEMS

A reference frame that varies with time from an inertial system and whose rates of rotation about axes are included in transformations of velocity vectors to derive relative velocity.

SLANT RANGE

The minimum or straight-line distance between two points expressed in the same coordinate system.

SLANT RANGE-RATE

The rate of change of slant range.

APPENDIX C SUBSCRIPT DESIGNATIONS

J2000	Mean of 2000, Cartesian or Polar
M1950	Mean of 1950, Cartesian or Polar
TR	True of Date, Cartesian or Polar
GW	Greenwich True of Date, Cartesian or Polar
G	Geodetic Coordinate System
LO	Local Orbital
CTRS	Conventional Terrestrial Reference System
XPOP	XPOP Quasi–Inertial Coordinate System
OSC	Russian Orbital Coordinates System
RSO	Russian Orbital Sun Equilibrium Coordinates System
А	Analysis
R	Reference
SB	Space Station Body
RSA	RSA Analysis Coordinate System
GPS	GPS Antenna Coordinate System
0	Orbiter Coordinate System
BY	Orbiter Body Axis Coordinate System
TMV	Soyuz TM Transport Manned Vehicle Coordinate System
TCV	Progress–M Transport Cargo Vehicle Coordinate System
CRV	Crew Return Vehicle Coordinate System
SOY	Soyuz Body Axis Coordinate System
Μ	Progress M Body Axis Coordinate System
CTV	Crew Transfer Vehicle Coordinate System
ATV	Automated Transfer Vehicle Coordinate System
HTVS	H-II Transfer Vehicle Coordinate System, Mechanical

HTVB	H-II Transfer Vehicle Coordinate System, Attitude
SA	Starboard Solar Power/Solar Array
S4	Integrated Truss Segment S4
S5	Integrated Truss Segment S5
S6	Integrated Truss Segment S6
PA	Port Solar Power
P4	Integrated Truss Segment P4
P5	Integrated Truss Segment P5
P6	Integrated Truss Segment P6
SAW	Solar Array Wing Coordinate System
TCS	Thermal Control System
Z1	Integrated Truss Segment Z1
S0	Integrated Truss Segment S0
S1	Integrated Truss Segment S1
S3	Integrated Truss Segment S3
P1	Integrated Truss Segment P1
Р3	Integrated Truss Segment P3
FGBA	FGB Array Coordinate System
SMA	SM Array Coordinate System
SPP	Science Power Platform Coordinate System
SPPR	Science Power Platform Radiator Coordinate System
SPPA	Science Power Platform Array Coordinate System
KU	Ku–Band
EAS	Early Ammonia Servicer
RACK	Rack Coordinate System
HPG	High Pressure Gas Tank ORU Coordinate System

SSP 30219 Revision F

SAO	Solar Array ORU Coordinate System
РМАО	Pump Module Assembly ORU Coordinate System
S1–GBO	S1 Grapple Bar ORU Coordinate System
RORU	Radiator ORU Coordinate System
TRRJO	Thermal Radiator Rotary Joint ORU Coordinate System
МСО	Mast Canister ORU Coordinate System
SLP	Spacelab Pallet Coordinate System
ESP-2	External Stowage Platform – 2
CETA	Crew and Equipment Translational Aid
MSC	Mobile Servicing Centre
MT	Mobile Transporter
MBS	Mobile Servicing Centre Base System
ОТСМ	OTCM Coordinate System
EE	End Effector Operating Coordinate System
JEMRMS	JEM Remote Manipulator System Coordinate System
LAB	U.S. Laboratory Module
HAB	U.S. Habitation Module
MPLM	Mini Pressurized Logistics Module
AL	Airlock
CUP	Cupola
N1	Resource Node 1
N2	Resource Node 2
N3	Resource Node 3
CAM	Centrifuge Accommodation Module Coordinate System
JEM	Japanese Experiment Module
ELM-PS	Experimental Logistics Module, Pressurized Section

SSP 30219 Revision F

26 October 2001

ELM-ES	Experimental Logistics Module, Exposed Section
EF	Exposed Facility
APM	ESA Attached Pressurized Module
PMA1	Pressurized Mating Adapter 1 Coordinate System
PMA2	Pressurized Mating Adapter 2 Coordinate System
PMA3	Pressurized Mating Adapter 3 Coordinate System
FGB	FGB Cargo Bloc Coordinate System
SM	Service Module Coordinate System
DC1	Docking Compartment 1 Coordinate System
DC2	Docking Compartment 2 Coordinate System
UDM	Universal Docking Module Coordinate System
RM1	Research Module 1 Coordinate System
RM2	Research Module 2 Coordinate System

APPENDIX D REFERENCE AND SOURCE DOCUMENTS

U.S. Naval Observatory	The International Astronomical Union Resolutions on
Circular No. 163,	Astronomical Constants, Time Scales, and the
December 10, 1981	Fundamental Reference Frame
Reference	Figure 3.0–1
U.S. Naval Observatory Reference	International Earth Rotation Service Bulletin–A Figure 3.0–12
NSTS 07700, Vol. IV Attachment 1, ICD–2–19001	Shuttle Orbiter/Cargo Standard Interfaces
Reference	Figure 4.0–5

APPENDIX E ISS RUSSIAN SEGMENT

Scheme of the relative position of the station's and modules coordinate systems on the ISS Russian segment (the configuration before DM1 arrival)

Е-2

