
JPL D-15378
Revision D

THE JPL SOFTWARE DEVELOPMENT
PROCESS DESCRIPTION

Prepared by: Milton L. Lavin and Jeanne S. Makihara

JPL
Jet Propulsion Laboratory
California Institute of Technology

Paper copies of this document may not be current and should not be relied
on for official purposes. The current version is in the DMIE Information
System at http://dmie

Downloaded from http://www.everyspec.com

ii

CHANGE HISTORY

Revision D
Effective date: November 15, 1999

• Addition of an abstract that contains bolded requirements and a brief explanation of how they are to be
used. There are no changes to the requirements documented in Version 3.

• Addition of a document map, accessible from each page.

Revision C
Effective Date: October 5, 1998

• Separation of guidance from requirements.

• Expanded references to other JPL processes.

• Description of applicability of SDPD to R&D tasks.

• Integration of requirements levied by NASA Policy Directive (NPD) 7120.4A and NASA Procedures
and Guidelines (NPG) 7120.5A, as well as guidelines from NASA Technical Standard (NTS) 8719.13A
and NASA Policy Directive (NPD) 2820.1 -- primarily in regard to risk assessment, safety, and metrics.

• Removal of Rules, Practices and Conventions section, with the guidance distributed elsewhere in the
document, such as in the Implementation section.

• Revision of Appendix C to trace ISO 9001 requirements to specific SDPD requirements.

• Numerous changes throughout the document, but primarily in requirements and guidance in Sections 5
and 6, to ensure responsiveness to ISO 9001, to clarify ambiguities, and to improve readability.

Revision B
Effective Date: December 19, 1997

Addition of a development plan template, a cost estimation section, a process overview section, and minor
changes throughout the document.

Revision A
Publication Date: April 29, 1997 (never issued as an official document)

First complete draft containing an elaboration of life cycle activities and support activities, and
emphasizing tailoring individual efforts via a software development plan.

SOURCE: Design, Build, Assemble, and Test (DBAT) Policy

Downloaded from http://www.everyspec.com

iii

TABLE OF CONTENTS

CHANGE HISTORY… ...ii

SOURCE… … … … … … ..… ii

ABSTRACT OF REQUIREMENTS… ...… … ..… ..v

1.SCOPE AND OBJECTIVES – APPLICABILITY… .… … … … … … … … … … … … ..… … … … … … … … 1
1.1 INTENDED USE AND COMPLIANCE..… … … … … … … … … … … … … … … ..… … … … … … … … ...2
1.2 APPLICABILITY TO R&D TASKS..… … … … … … … … … … … … … … … … ..… … … … … … … … … .3
1.3 SYNOPSIS OF SDPD REQUIREMENTS...… .… … … … … … … ..… … … … ..… … … … … … … … … … 3
1.4 OVERVIEW OF SOFTWARE DEVELOPMENT PROCESS ACTIVITIES..… … … … … … … … … … 4
1.5 RELATIONSHIP TO OTHER JPL PROCESSES AND DOMAINS..… .… … … … … … … … … … … … 6
1.6 SDPD REVISIONS.… 9
1.7 NOTATIONS..… .9
2. REFERENCES..… ...… … … … … 10
3. DEFINITIONS AND ACRONYMS.… ..… … … … 13
4. QUALITY SYSTEM –FRAMEWORK.....… .… … … … 15
4.1 SOFTWARE QUALITY POLICY..… ..15
4.2 ROLES AND RESPONSIBILITIES.… 16
4.3 INTERNAL AUDIT...… 16
5. QUALITY SYSTEM -- LIFE-CYCLE ACTIVITIES....… … … … … … … … … … … … … … … … … … … 17
5.1 SOFTWARE METHODOLOGY..… 17
5.2 CONTRACT REVIEW......… 19
5.3 CUSTOMER’S REQUIREMENTS SPECIFICATION...… … … … … … … … … … … … … … … … … … 20
5.4 DEVELOPMENT PLANNING.......… ..… 21
5.5 QUALITY PLANNING..........................… … … … … … . … … … … … … … … … … … … … … … … … … 26
5.6 DESIGN......… 26
5.7 IMPLEMENTATION....… 27
5.8 TESTING AND VALIDATION...… 28
5.9 DELIVERY, INSTALLATION, AND ACCEPTANCE..… … … … … … … … … … … … … … … … … … 30
5.10 MAINTENANCE.....… 31
6. QUALITY SYSTEM -- SUPPORTING ACTIVITIES.… … … … … … … … … … … … … … … … … … … 32
6.1 CONFIGURATION MANAGEMENT....… 32
6.2 DOCUMENTATION AND DOCUMENT CONTROL......… … … … … … … … … … … … … … … … … 34
6.3 QUALITY RECORDS......… 36
6.4 MEASUREMENT.....… 37
6.5 TOOLS AND TECHNIQUES..… 37
6.6 PURCHASING AND SUBCONTRACTS..… 38
6.7 CUSTOMER-SUPPLIED PRODUCT/ REUSED SOFTWARE...… … … … … … … … … … … … … … 39
6.8 TRAINING...........… 39
6.9 REVIEWS… 40
6.10 COST ESTIMATION… 42

Downloaded from http://www.everyspec.com

iv

Appendices

A. Development Plan Template
B. Recommended Product Documentation
C. Trace of ISO 9001 Requirements to the Software Development Process Description

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents
Abstract

v

ABSTRACT OF REQUIREMENTS

This description of JPL’s Software Development Process Description (SDPD) contains general
requirements, guidelines, and suggestions for defining and managing a software-intensive project1,
project element, or task consistent with ISO 9001, as interpreted by ISO 9000-3, “Quality
Management and Quality Assurance Standards — Part 3: Guidelines for the Application of 9001
to the Development, Maintenance, and Supply of Software.” The SDPD is consistent with NASA
Policy Directive (NPD) 2820.1, NASA Software Policies, which identifies compliance with
ISO 9001 (as described in 9000-3) as acceptable evidence that this policy directive has been
implemented.

A. Scope and Objectives - Applicability

The primary focus of the SDPD is the development of software supplied to both internal and
external customers in conjunction with the design and implementation of missions, spacecraft,
instruments, and ground systems for JPL’s NASA sponsor. However, the methodology can be
applied to work for reimbursable sponsors and to development of software used in JPL’s
institutional and business systems infrastructure.

The SDPD methodology also applies to firmware up to the point where testing in a simulated
hardware environment is complete. At that point, the development of firmware is defined by the
Electronic System Development sub-process of Design, Build, Assemble, and Test (DBAT).

The SDPD is intended to:

o Promote the use of comparable development practices across the Laboratory within
broad classes of software,

o Establish a baseline for continual improvement of JPL's software development
processes, and

o Identify requirements for compliance with JPL's implementation of ISO 9001.

B. Software Classes

Documentation, reviews, and critical development activities are identified for the first three
classes of software identified below; non-deliverable software (Class D) is not addressed:

Class A: Mission-Critical: Flight or ground software that is necessary either to assure mission
success, or if it does not function as specified, that could cause loss of spacecraft,
seriously degrade the attainment of primary mission objectives, or cause injury to
humans or flight hardware. Examples of serious degradation of mission objectives
include loss of a mission-critical event, loss of science return from multiple
instruments, or loss of a large fraction of the engineering telemetry data.

1 Future uses of the term “project” are intended to encompass project elements and tasks, even if not explicitly
stated.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents
Abstract

vi

Class B: Mission Support: Flight or ground software that is necessary for the science return
from a single (non-critical) instrument, or supports the timely generation of mission
sequences, or is used to process or analyze mission data, or other software for which a
defect could adversely impact attainment of some secondary mission objectives or
cause operational problems for which potential work-arounds exist. Examples of Class
B include software that supports pre-launch integration and test, mission data
processing and analysis, analysis software used in trend analysis and calibration of
flight engineering parameters, or software employed by the Network Operations and
Control Center (which is redundant with systems used at the tracking complexes).
Class B software must be developed carefully, but validation and verification effort is
generally less intensive than for Class A.

Class C: Development Support: Software developed to explore a design concept; or support
software development functions such as requirements management, design, test and
integration, configuration management, documentation, etc.; or perform engineering
data analysis. A defect in Class C software may cause rework but has no direct impact
on mission objectives or system safety. Class C software is often used by several
people in addition to the developer(s), and by its nature, can impact the quality of
delivered products. Documentation and review of Class C software should be tailored
to its intended use, with attention to long-term maintenance needs and to evolution of
a design prototype into operational flight or ground software. Note: Development
tools that can introduce critical defects in Class A or B software must be
regarded as belonging to the same class as the operational software.

Class D: Non-deliverable software developed to meet a research objective or support individual
engineering efforts. Generally, Class D software is intended for use only by the
individual who developed it.

Although Class D software is excepted from the requirements documented in the SDPD, some of
the SDPD requirements may be useful in defining and implementing this class of software. A
project/task can encompass software that falls in more than one category. In such a case, it is the
responsibility of the project/task manager to identify the software elements that fall in each class,
and to tailor the development plan accordingly.

C. Applicability to R&D Tasks
Requirements on R&D software tasks are less stringent than those defined in this SDPD. While
managers of R&D tasks can choose to employ all or part of the SDPD requirements to their
areas, they are actually subject to the requirements specified either under the Generate Scientific
Knowledge (GSK) domain, or the Develop Needed Technology (DNT) domain. At the time of
this writing, a Technology Development process has been identified within the DNT domain.
R&D task managers should refer to http://dmie/ for the policies and procedures associated with
this process.

In some cases, there are tasks identified as R&D that are not strictly so, but instead have the
characteristics of a definition phase and essentially function as a precursor to an actual
development project/task. Typically, prototypes or demonstration software is produced. In some
cases, the prototype is ultimately used operationally rather than being abandoned. Thus, where

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents
Abstract

vii

the software development effort is not strictly R&D, and there is strong potential that the
product will be used operationally, the requirements in this SDPD apply.

D. Intended Use and Compliance
The SDPD is intended to provide guidance in planning and managing a software development
effort up to the point where it is delivered to either an internal or external customer. Maintenance
is also addressed to cover those cases where the contract with the customer calls for fixing defects
and making enhancements post-delivery.

The SDPD is but one source of requirements on the management of a software development task,
with other requirements being levied by program office directives, and the policies and procedures
of the engineering organization responsible for the development. The resulting development plan
documents how a particular project or task elects to respond to all such requirements. Thus, a
development plan is effectively a tailored version of this process description. Note that since a
project/task may encompass all four classes of software, it is the project/task manager’s
responsibility to 1) identify the class appropriate to each software element, and 2) tailor the
development procedures, documentation, and reviews, accordingly. Although no explicit waiver
is required, any deviations from the requirements specified in this SDPD must be adequately
explained in the development plan, as required in Section 5.4.

Ultimately, the responsibility for implementing the requirements of the SDPD and related
documentation rests with the JPL project or task manager. It is the manager’s
responsibility to tailor the requirements of the SDPD, plus relevant domain, program office,
and line organization standards and policies, to the needs of the specific development job,
the result being documented in project/task plans. Evidence that this responsibility has been
met is contained in the suite of plans, product descriptions (e.g., requirements document,
operations concept), and quality records produced during development. It must be emphasized
that considerable flexibility is afforded in documentation, the essential idea being that all
documentation should be directly useful to developing a high quality end product within the
allocated budget.

E. Synopsis of SDPD Requirements
Detailed requirements on software classes A, B, and C are extracted from the main text and
organized into Life Cycle Activities and Supporting Activities. Requirements are denoted by
“shall” statements, and are distinguished by a different font (Arial) in bold italics. Numbering
of requirements has been preserved to facilitate reference to the full text. The essence of these
detailed requirements may be summarized concisely:

o Written requirements and interface specifications, under configuration management.

o A development plan, tailored to the complexity of the project/task. This plan must have
a description of the product, a task breakdown, a schedule, an estimate of development
effort, and a staffing plan.

o A test plan together with documented test cases and procedures.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents
Abstract

viii

o Reviews of critical intermediate products — both code and documentation — as
described in the development plan.

.
o A documented design; graphics are recommended.

o Configuration management of documents and code, as described in the development
plan (or a separate configuration management plan).

o Independent system-level test with documented anomaly reports and change requests.

o Documentation to support the end user, system operator, and the maintainer. Embedded
documentation is recommended.

5. Requirements — Life Cycle Activities

5.1 Software Methodology
A software development project/task shall be organized according to a life-cycle model
that is described in the development plan in terms of: [5.1]

o Phases, along with milestones and activities to be performed during each
phase; [5.1a]

o Phase outputs, including any documentation; [5.1b]

o Verification activities (e.g., reviews, demonstrations, tests) by phase. [5.1c]

5.2 Contract Review
The organization that has overall responsibility for a software development effort shall
establish and maintain documented procedures for a commitment review of the
development plan or proposal to ensure: [5.2.1]

o Scope of work for the current delivery is adequately defined and documented.
[5.2.1a]

o Differences between the scope of work defined in the development plan, and
that requested by the customer, are resolved. [5.2.1b]

o Responsibilities of the customer are identified. [5.2.1c]

o Mutually acceptable means have been defined for dealing with changes in
requirements during development, as well as correction of post-delivery
defects. [5.2.1d]

o The resources and schedule described in the development plan are adequate to
accomplish the contractual deliverables. [5.2.1e]

A record of commitment review findings shall be maintained as part of the project/task
quality record. [5.2.2]

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents
Abstract

ix

5.3 Customer’s Requirements Specification
The developer shall have a written set of software requirements that are sufficient to
satisfy customer and/or user needs. [5.3.1]

Interfaces between the software product and external software or hardware items shall
be specified, either directly or by reference. [5.3.2]

Software requirements, whether provided by the customer or formulated by the
developer, shall be reviewed to ensure that: [5.3.3]

o the product is adequately defined, [5.3.3a]

o ambiguities and conflicting requirements have been resolved, and [5.3.3b]

o the requirements are stated so as to allow validation during product
acceptance. [5.3.3c]

The software requirements specification shall be subject to change control procedures,
once it is baselined (e.g., completion of document review, customer approval obtained).
[5.3.4]

Approved changes in requirements shall be maintained as part of the project/task quality
record. [5.3.5]

5.4 Development Planning
A development plan shall address the following: [5.4.1]

o Overall definition of the product, as in user needs addressed, deliverables, and
critical functionality. [5.4.1a]

o Scope of development work to be performed, including management and
supporting activities. [5.4.1b]

o Project life cycle, including: [same as 5.1]

Phases, along with activities or milestones to be performed during each
phase.

Phase outputs, including any documentation

Verification activities (e.g., reviews, demonstrations, tests) by phase.

o Project organization and technical interfaces: team structure; nature of project
interfaces, both internal and external; roles and responsibilities, including
customer responsibilities; use of subcontractors; and other crucial
dependencies, such as critical equipment and facilities, and use of JPL support
services. [5.4.1c]

o Project schedule. [5.4.1d]

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents
Abstract

x

o Risk assessment. [5.4.1e]

o Cost estimate/budget that summarizes the cost of the personnel and other
resources required by the development. [same as 6.10.1]

o Staffing profile. [5.4.1f]

o Change control procedures for documenting, reviewing, approving, and
communicating requirements changes to all affected parties. [5.4.1g]

o Change control procedures for documenting, reviewing, approving, and
communicating design changes before their implementation. [5.4.1h]

o Review (or verification) policies and procedures that, at a minimum, address
detailed technical reviews, and identify what is to be reviewed (including critical
intermediate products) and when reviews are to be held. [same as 6.9.1]

o Procedures for verifying, storing, protecting, and maintaining items (e.g.,
software, data, hardware, specifications) supplied by the customer or
designated third party. [same as 6.7.1]

o Procedures for verifying purchased or subcontracted products. [same as 6.6.3]

o Documentation plan and procedures. [same as 6.2.1 and 6.2.2]

o Scope and content of the training to be provided to project personnel. [same as
6.8.1]

o System administration plan, including approach to back-up/archiving, security,
and virus protection. [5.4.1i]

o Definition of responsibility, and description of associated procedures, to
identify and correct recurring problems in the development process. [5.4.1j]

o Metrics tailored to project needs, and the associated procedures for collecting,
storing, and analyzing them. [same as 6.4.1]

o Planning of the following specific activities, including identification of any
separate plans: [5.4.1k]

Configuration management
Integration and test
Delivery and installation
Maintenance

o Reuse strategy, if any, or identification of reusable elements — both those that
can be adapted from previously implemented systems, and portions of the
current application that will be designed for reuse. [5.4.1l]

o Identification of quality records, associated procedures, and retention times.
[same as 6.3.1 and 6.3.3]

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents
Abstract

xi

o Provisions for updating the plan as development proceeds. [5.4.1m]

o Explanations for any deviations made from SDPD requirements. [5.4.1n]

5.5 QUALITY PLANNING -- No Requirements.

5.6 DESIGN
Requirements and design activities shall be guided by a plan with milestones and
detailed technical reviews tailored to the needs of each project/task. [5.6.1]

The design shall be documented and, prior to release, the resulting design
documentation shall be reviewed to ensure that (a) the design meets the requirements
and is responsive to acceptance criteria, (b) the design is verifiable, and (c) safety
issues have been addressed. [5.6.2]

5.7 Implementation
Implementation activities shall be guided by one or more plans with milestones and
detailed technical reviews tailored to the needs of each project/task. [5.7.1]

5.8 Testing and Validation
Software integration and testing shall be performed in accord with test planning and
specification documentation that addresses: [5.8.1]

o Test requirements, which may be an elaboration of software requirements.
[5.8.1a]

o Levels of testing required up to acceptance by the customer. [5.8.1b]

o Test cases, test procedures, test data and expected results. [5.8.1c]

o Method of documenting test status and results. [5.8.1d]

o Test environment, such as dedicated processors, test tools (purchased or
developed), and user documentation. [5.8.1e]

o Approach for evaluating test tools, with respect to their ability to verify the
product under test (e.g., through testing, published reviews). [5.8.1f]

o Procedures for correcting defects, including analyzing the cause of the defect,
determining corrective action, and ensuring that the corrective action is taken.
[5.8.1g]

Before delivery and acceptance by the customer, the developer shall validate the
product under conditions similar to the user’s application environment. [5.8.2]

Missing or deficient functionality (in light of customer/user expectations, based on a
requirements document or other form of “contractual” document) shall be documented
in a release description document or transfer agreement. [5.8.3]

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Top of Document
Abstract

xii

Test records to be maintained as part of the project quality record shall include, at a
minimum: [5.8.4]

o Anomaly reports (or problem/failure reports) [5.8.4a]

o Test tool checks, to evaluate whether the tools are capable of verifying the
acceptability of the software product under development. [5.8.4b]

o Test results, with clear indications whether the product has passed or failed.
[5.8.4c]

5.9 Delivery, Installation, and Acceptance
The activities comprising delivery, installation, and acceptance shall be defined in a plan
or related documentation, that addresses: [5.9.1]

o Preparation of the acceptance test cases and acceptance criteria, with
developer's responsibilities (if any) noted. [5.9.1a]

o Procedures to be used in documenting and resolving problems found following
installation, whether during acceptance testing or delivery. [5.9.1b]

o Details of delivery and installation logistics, e.g., arranging for use of
customer/user facilities and personnel in installation and test. [5.9.1c]

o Definition of developer's role (if any) in supporting transition to full operational
use of the product. [5.9.1d]

o Identification of documentation to be delivered at installation, including
installation and configuration procedures. [5.9.1e]

o Identification of training for the user and/or system administrator/operator.
[5.9.1f]

o A schedule for key events pertaining to delivery, installation, and acceptance.
[5.9.1g]

o Storage of archived software media to prevent deterioration and facilitate
disaster recovery. [5.9.1h]

o Virus protection of software designated for delivery, during storage and
electronic transmission. [5.9.1i]

After delivery, a baselined copy of the software and delivered documentation shall be
archived. [5.9.2]

5.10 Maintenance
If the developer is tasked to perform maintenance, a maintenance plan shall be
prepared, defining the scope of the activity and the developer’s approach. [5.10.1]

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents
Abstract

xiii

If the developer is required to turn maintenance over to another organization, the
development plan shall address the mechanism for transferring knowledge of the
software to the maintainer. [5.10.2]

6. Requirements — Supporting Activities

6.1 Configuration Management
Configuration management procedures shall be documented and applied to
deliverables: code, associated data files, and documentation. [6.1.1]

6.2 Documentation and Document Control
For each development effort, the development plan shall define: [6.2.1]

o Documents to be produced, e.g., document titles, form (web, file server, hard
copy), content standards or guidelines to be followed. [6.2.1a]

o Procedures (including responsibilities) for producing, reviewing, approving, and
controlling documents. [6.2.1b]

Documentation procedures shall address: [6.2.2]

o Which documents are subject to configuration management and at what point in
the development cycle they are baselined. [6.2.2a]

o Preparation of a master document list, or equivalent control mechanism, to
identify document status, and preclude the use of invalid or obsolete
documents. [6.2.2b]

o Responsibility for approving and releasing documents, and promptly
withdrawing obsolete documents from use. [6.2.2c]

o Identification of changes in released documents (to be done where practicable).
[6.2.2d]

o Approach for ensuring that the master document list (or equivalent control
mechanism), as well as pertinent versions of documents, are readily available.
[6.2.2e]

o Directory/file permissions and back-up policies, where document control is
achieved through electronic means. [6.2.2f]

6.3 QUALITY RECORDS
The development plan shall identify the pertinent quality records and describe
procedures for collection, indexing, filing, storage, access, maintenance, and disposition
of these records. [6.3.1]

Required quality records include the following: [6.3.2]

o Approved changes in requirements [same as 5.3.7]

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents
Abstract

xiv

o Review (or verification) results [same as 5.2.2]

o Anomaly reports [same as 5.8.4a]

o Checks of test tools, to evaluate whether the tools are capable of verifying the
acceptability of the software product under development. [same as 5.8.4b]

o Test results, with clear indications whether the product has passed or failed.
[same as 5.8.4c]

o Change requests/orders generated during development and — if provided for in
the contract — after delivery. [6.3.2a]

The retention times for project/task quality records shall be established in the
development plan in accord with program office directives, with particular attention to
needs of post-delivery maintenance. [6.3.3]

Quality records shall be stored in an environment conducive to the prevention of
deterioration and loss, and in a manner so as to be readily retrievable. [6.3.4]

Pertinent subcontractor quality records shall be identified in the subcontract. [same as
6.6.2b]

6.4 Measurement
Metrics, and the associated procedures for collecting, storing, and analyzing them, shall
be identified in a development plan, and shall be tailored to project needs. [6.4.1]

6.5 Tools and Techniques -- No requirements.

6.6 Purchasing and Subcontracts
Purchase orders shall clearly describe the product or service ordered, and shall be
reviewed for adequacy by the developer prior to release. [6.6.1]

A development subcontract shall address: [6.6.2]

o In-process verification of subcontracted development, via reviews of
intermediate products and/or other oversight activities as appropriate. [6.6.2a]

o Identification of subcontractor quality records to be maintained. [6.6.2b]

o Criteria and/or procedures for accepting subcontracted software. [6.6.2c]

Upon receipt, the developer shall ensure that a product or service that is
purchased/subcontracted, or provided by a separate development organization,
conforms to specified requirements, in accordance with procedures defined in the
development plan. [6.6.3]

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents
Abstract

xv

6.7 CUSTOMER-SUPPLIED PRODUCT/REUSED SOFTWARE
The developer shall establish and document procedures for verification, storage,
protection, and maintenance of items (e.g., software, data, hardware, specifications)
supplied by the customer or designated third party. [6.7.1]

6.8 TRAINING
The scope and content of the training to be provided to project personnel (e.g.,
development team, user, maintainer) shall be addressed in the development plan. [6.8.1]

6.9 REVIEWS
The development plan shall define review (or verification) policies and procedures that,
at a minimum, address detailed technical reviews, and identify what is to be reviewed
(including critical intermediate products) and when reviews are to be held. [6.9.1]

Review (or verification) results shall be maintained as quality records, and shall include
a summary of requests for action and the responses thereto. [6.9.2]

6.10 COST ESTIMATION
For each new development, or incremental development of an existing system, the
developer shall prepare a documented cost estimate/budget that summarizes the cost of
the personnel and other resources required by the development. [6.10.1]

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

1

The JPL Software Development Process Description

1. SCOPE AND OBJECTIVES - APPLICABILITY
This description of JPL’s Software Development Process Description (SDPD) contains general
requirements, guidelines, and suggestions for defining and managing a software-intensive project2,
project element, or task consistent with ISO 9001, as interpreted by ISO 9000-3, “Quality
Management and Quality Assurance Standards — Part 3: Guidelines for the Application of 9001
to the Development, Maintenance, and Supply of Software.” The SDPD is consistent with NASA
Policy Directive (NPD) 2820.1, NASA Software Policies, which identifies compliance with
ISO 9001 (as described in 9000-3) as acceptable evidence that this policy directive has been
implemented.

The primary focus of the SDPD is the development of software supplied to both internal and
external customers in conjunction with the design and implementation of missions, spacecraft,
instruments, and ground systems for JPL’s NASA sponsor. However, the methodology can be
applied to work for reimbursable sponsors and to development of software used in JPL’s
institutional and business systems infrastructure.

The SDPD methodology also applies to firmware up to the point where testing in a simulated
hardware environment is complete. At that point, the development of firmware is defined by the
Electronic System Development sub-process of Design, Build, Assemble, and Test (DBAT).

The SDPD is intended to:

o Promote the use of comparable development practices across the Laboratory within
broad classes of software,

o Establish a baseline for continual improvement of JPL’s software development
processes, and

o Identify requirements for compliance with JPL’s implementation of ISO 9001.

Documentation, reviews, and critical development activities are identified for the first three
classes of software identified below; non-deliverable software (Class D) is not addressed:

Class A: Mission-Critical: Flight or ground software that is necessary either to assure mission
success, or if it does not function as specified, that could cause loss of spacecraft,
seriously degrade the attainment of primary mission objectives, or cause injury to
humans or flight hardware. Examples of serious degradation of mission objectives
include loss of a mission-critical event, loss of science return from multiple
instruments, or loss of a large fraction of the engineering telemetry data.

2 Future uses of the term “project” are intended to encompass project elements and tasks, even if not explicitly
stated.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

2

Class B: Mission Support: Flight or ground software that is necessary for the science return
from a single (non-critical) instrument, or supports the timely generation of mission
sequences, or is used to process or analyze mission data, or other software for which a
defect could adversely impact attainment of some secondary mission objectives or
cause operational problems for which potential work-arounds exist. Examples of Class
B include software that supports pre-launch integration and test, mission data
processing and analysis, analysis software used in trend analysis and calibration of
flight engineering parameters, or software employed by the Network Operations and
Control Center (which is redundant with systems used at the tracking complexes).
Class B software must be developed carefully, but validation and verification effort is
generally less intensive than for Class A.

Class C: Development Support: Software developed to explore a design concept; or support
software development functions such as requirements management, design, test and
integration, configuration management, documentation, etc.; or perform engineering
data analysis. A defect in Class C software may cause rework but has no direct impact
on mission objectives or system safety. Class C software is often used by several
people in addition to the developer(s), and by its nature, can impact the quality of
delivered products. Documentation and review of Class C software should be tailored
to its intended use, with attention to long-term maintenance needs and to evolution of
a design prototype into operational flight or ground software. Note: Development
tools that can introduce critical defects in Class A or B software must be
regarded as belonging to the same class as the operational software.

Class D: Non-deliverable software developed to meet a research objective or support individual
engineering efforts. Generally, Class D software is intended for use only by the
individual who developed it.

Although Class D software is excepted from the requirements documented in the SDPD, some of
the SDPD requirements may be useful in defining and implementing this class of software. A
project/task can encompass software that falls in more than one category. In such a case, it is the
responsibility of the project/task manager to identify the software elements that fall in each class,
and to tailor the development plan accordingly.

Sections 1–4 of the SDPD discuss how this document is to be used, describe the role of software
development within the context of JPL’s process-based organization, cite reference documents,
define essential terms, state a quality policy for software development, and identify acceptable
software development standards. The remainder of the document contains requirements and
guidelines pertinent to the life-cycle activities and supporting activities identified in ISO 9000-3. A
trace to the requirements of ISO 9001 may be found in Appendix C.

1.1 INTENDED USE AND COMPLIANCE
The SDPD is intended to provide guidance in planning and managing a software development
effort up to the point where it is delivered to either an internal or external customer. Maintenance
is also addressed to cover those cases where the contract with the customer calls for fixing defects
and making enhancements post-delivery.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

3

The SDPD establishes requirements that are needed to comply with JPL’s implementation of
ISO 9001 in the software development arena. Requirements are denoted by “shall” statements,
and are distinguished by a different font (Arial) in bold italics. All other statements are
provided strictly as guidance and are typically set apart under a “Guidance” heading. One should
not infer that such guidance is unimportant; rather in most cases, it is highly recommended, and
should be given serious consideration.

The SDPD is but one source of requirements on the management of a software development task,
with other requirements being levied by program office directives, and the policies and procedures
of the engineering organization responsible for the development. The resulting development plan
documents how a particular project or task elects to respond to all such requirements. Thus, a
development plan is effectively a tailored version of this process description. Note that since a
project/task may encompass all four classes of software, it is the project/task manager’s
responsibility to 1) identify the class appropriate to each software element, and 2) tailor the
development procedures, documentation, and reviews, accordingly. Although no explicit waiver
is required, any deviations from the requirements specified in this SDPD must be adequately
explained in the development plan, as required in Section 5.4.

Evidence of compliance with each “shall statement” is, in most cases, documentation.
“Documentation” means a retrievable written record. It is the prerogative of the project/task to
select the media and the format that best suits project/task needs. For example, recording
requirements in an electronic memorandum and the use of a CASE tool to document design are
both acceptable. Detailed software standards identified in Section 2 contain topic outlines that are
intended to help organize more formal documents. Again, these outlines should be tailored to the
needs of individual projects/tasks. Appendix A provides a template for a development plan, which
addresses ISO requirements. Recommended documentation for software classes A, B, and C is
summarized in Appendix B.

1.2 APPLICABILITY TO R&D TASKS
Requirements on R&D software tasks are less stringent than those defined in this SDPD. While
managers of R&D tasks can choose to employ all or part of the SDPD requirements to their
areas, they are actually subject to the requirements specified either under the Generate Scientific
Knowledge (GSK) domain, or the Develop Needed Technology (DNT) domain. At the time of
this writing, a Technology Development process has been identified within the DNT domain.
R&D task managers should refer to http://dmie/ for the policies and procedures associated with
this process.

In some cases, there are tasks identified as R&D that are not strictly so, but instead have the
characteristics of a definition phase and essentially function as a precursor to an actual
development project/task. Typically, prototypes or demonstration software is produced. In some
cases, the prototype is ultimately used operationally rather than being abandoned. Thus, where
the software development effort is not strictly R&D, and there is strong potential that the
product will be used operationally, the requirements in this SDPD apply.

1.3 SYNOPSIS OF SDPD REQUIREMENTS
Detailed requirements on software classes A, B, and C may be found in Sections 5 and 6. The
essence of these detailed requirements may be summarized concisely:

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

4

o Written requirements and interface specifications, under configuration management

o A development plan, tailored to the complexity of the project/task. This plan must have
a description of the product, a task breakdown, a schedule, an estimate of development
effort, and a staffing plan

o A test plan together with documented test cases and procedures.

o Reviews of critical intermediate products — both code and documentation — as
described in the development plan.

.
o A documented design; graphics are recommended

o Configuration management of documents and code, as described in the development
plan (or a separate configuration management plan)

o Independent system-level test with documented anomaly reports and change requests

o Documentation to support the end user, system operator, and the maintainer. Embedded
documentation is recommended.

1.4 OVERVIEW OF SOFTWARE DEVELOPMENT PROCESS ACTIVITIES
The software development process exists to meet the needs of the customer, user, maintainer, JPL
management, vendors, subcontractors, and other third parties, as depicted in Exhibit 1.1. The
software development process, consists of the activities identified in Exhibit 1.2. Each of these
activities is detailed in Sections 5 and 6. The development activities portrayed in the exhibit are
related using the metaphor of a state chart. Transactions between activities are denoted by labeled
arrows. To reduce complexity, only key transactions are identified explicitly.

For expository convenience, Exhibit 1.2 groups two sets of elemental activities into meta-
activities of Project Definition and Development Planning. Project Definition consists of Cost
Estimation (6.10), Customer Requirements Specification (5.3), Software Methodology (5.1), and
Contract Review (5.2). Development Planning encompasses preparation of the development plan
(5.4) and related plans, such as Integration & Test (5.8), and Configuration Management (6.1).
Quality Planning (5.5) is regarded as an integral part of development planning. Other plans (not
separately identified in Exhibit 1.2) may include a plan for Installation and Acceptance (5.9), and a
plan for Maintenance (5.10) if JPL has that responsibility.

A development effort begins with a discussion of customer requirements that are subsequently
formalized in a proposal. The identified project definition activities are essential to preparation of
both the proposal and the development plan (5.4) that details how the requirements will be
satisfied. Once requirements (5.3) have been documented (6.2) to the satisfaction of all parties,
they are baselined, and put under configuration management (6.1). After review by the customer
and approval by JPL management, the development plan and any related plans are also baselined.

Once planning is complete, development commences. Development usually proceeds iteratively,
and is organized into life-cycle (primary) activities:

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

5

o Design (5.6),

o Implementation (5.7),

o Testing and validation (5.8),

o Delivery/installation/acceptance (5.9), and

o Maintenance (5.10). Maintenance is fenced with a dashed line to indicate that JPL’s
responsibility may vary from project to project.

Supporting activities, which function throughout the development process, include:

o Identification of tools and techniques (6.5),

o Purchasing and subcontracts (6.6),

o Customer-supplied products /reused software (6.7),

o Training (6.8),

o Reviews (6.9), and

o Measurement (6.4) — the collection and use of metrics.

The development plan (5.4) details each of these activities. Once development is complete, the
user is provided with the first release, together with the required training and documentation.
Subsequent releases are produced by maintenance (5.10), a function possibly provided by a third
party.

Design requirements and design details are subject to documentation and document control (6.2)
as development proceeds. Code, development and test tools, and quality records (6.3) are subject
to configuration management (6.1).

An important new requirement imposed by the ISO 9001 standard is the maintenance of a quality
records archive that contains evidence that the development process is functioning as intended.
The quality records archive is used in both internal and third-party assessments, and is an essential
requirement of ISO 9001 certification. Additionally, this archive provides data useful in
redesigning the development process to make it more efficient and responsive to project needs. In
practice, the archive is usually distributed. The archive typically includes:

o Development plan, which tailors the process description for a particular project/task;

o Related plans for integration and test, configuration management, installation and
acceptance, maintenance, etc.;

o Cost estimates;

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

6

o Records of reviews, including requests for action and the associated responses;

o Changes in requirements and design, including the rationale for these changes;

o Test records, including software anomaly reports or problem/failure reports, suggested
design changes, summaries of test findings and status, and test tool verification records;

o Configuration management records and reports;

o Training records; and

o Metrics, as defined in the development plan.

1.5 RELATIONSHIP TO OTHER JPL PROCESSES AND DOMAINS
The Software Development Process is an element of the Design, Build, Assemble, and Test
(DBAT) Process, and is used concurrently with other DBAT processes. It may also be used by
other major processes within the Develop New Products (DNP) Domain, such as Project
Leadership Processes (PLP), Mission System Design (MSD), Verify, Integrate, Validate, and
Operate (VIVO), as well as processes within other domains, such as Provide Enabling Services
(PES) Domain. The Software Development policy, which can be found at http://dmie/, describes
the relationship between the Software Development Process and other JPL processes. It is
incumbent upon the project/task manager to use DMIE (http://dmie) to become familiar with the
JPL processes that are currently applicable to the project/task. A sample of the processes that
interface with, or are used in conjunction with, the Software Development Process are provided
below:

o Quality Assurance Engineering

o Engineering Standards

o Reliability Engineering

o System Safety

o Product Data Management, e.g., for cataloging and archiving quality records and
product documentation, such as requirements, design, code, and user documentation.

o Project Planning

o Project Technical Management

o Risk Management

o Project Cost Estimation

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

7

Customer

EXHIBIT 1.1: Relationship of Software Development Process to External Entities

JPL
Management

User

Vendors And
3rd Parties

Maintainer

Subcontractors

Policies,
Standards,
Constraints

Status
Info Quality

Records

SOFTWARE
DEVELOPMENT

PROCESS Code,
Documents,

Data, Training

Quality
Records
Archive

HW, SW,
ServicePOs &

MOUs
Code, Reqts &

Design Documents,
Test Tools,
Data Files

New
Releases

Anomaly Reports
(Problem/Failure Reports),

Change Requests

Anomaly Reports
(Problem/Failure

Reports),
Change Requests

Proposal,
Status Info

Contract,
Reqts, Constraints,

Test Facilities,
Budget, Changes

Status Info,
Code,

Documents

Requirements,
Standards

Audit
Support

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

8

Exhibit 1.2: Inter-Relationships Among Development Activities,
Emphasizing Quality System Transactions

Requirements

Customer

6.5 TOOLS & TECHNIQUES

5.6 DESIGN

6.6 PURCHASING &
 SUBCONTRACTS

 6.7 CUSTOMER-SUPPLIED
 PRODUCT/ REUSED SW

6.8 TRAINING

6.9 REVIEWS

6.4 MEASUREMENT

 PROJECT DEFINITION
5.3 Customer Reqts Spec
5.1 SW Methodology
6.10 Cost Estimation
5.2 Contract Review

5.4 DEVELOPMENT PLANNING
 SW Development Plan
6.1 Config. Mgt. Plan
5.8 Integration & Test Plan
5.5 Quality Plan

5.7 IMPLEMENTATION
 Coding
 Unit Testing
 Rework

5.8 TESTING AND VALIDATION

5.9 DELIVERY, INSTALLATION,
 AND ACCEPTANCE

5.10 MAINTENANCE

6.3 QUALITY RECORDS

User

Tools

Review Records,
Training Records,
Metrics

Plans

Code

Test Tool Verification,
Test Results,
Anomaly Reports

Release 1

Release 2+

Proposal Requirements

Design Specs

6.1 CONFIGURATION MANAGEMENT

Reqts Changes,
Design Changes

6.2 DOCUMENTATION AND
 DOCUMENT CONTROL

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

9

In some cases, an instantiating process will use all elements of the SDPD described below in
Sections 5 and 6. In other cases, the process will be primarily concerned with executing selected
activities or sub-processes, such as:

o Defining a software product and subsequently, managing the subcontracted
implementation;

o Performing supporting activities such as evaluation of third party software, configuration
management, independent verification and validation, quality assurance, documentation;

o Maintaining the software after installation at the user’s site(s).

Although its applicability is intended to be broad, the SDPD was written to support the
development of mission critical (Class A) and mission support (Class B) software by the
engineering design and development processes within DNP, especially:

o Mission and spacecraft modeling and trade-off studies done in Mission and System
Design (MSD);

o On-board processors, controllers, and diagnostic software developed by elements of
Design, Build, Assemble, and Test (DBAT), such as the Electronic System Development
sub-process; and

o Navigation, sequencing, command, telemetry, and testbed software developed by
elements of Verify, Integrate, Validate, and Operate (VIVO).

1.6 SDPD REVISIONS
Recommendations for changes can be submitted to the authors of this SDPD. This document is
subject to the change control procedure of the Provide Engineering Standards process, i.e.,
“Change Control for JPL Level III Category A Engineering Standards.” (Refer to http://dmie/.)

1.7 NOTATIONS
As mentioned previously, requirements are denoted by “shall” statements, and are distinguished by
a different font (Arial) in bold italics . Requirements are also numbered sequentially within each
requirements section and bracketed. In addition, where requirements trace to clauses in the ISO
9001 standard, the ISO clause is also identified and bracketed. Where requirements trace to ISO
9000-3, which is the software interpretation of 9001, the bracketed ISO reference includes the
word “guidance.”

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

10

2. REFERENCES
CMU/SEI-93-TR-006, Taxonomy-Based Risk Identification, located at
http://www.sei.cmu.edu/topics/publications/documents/93.reports/93.tr.006.html. (Software
Engineering Institute)

EIA/IEEE J-STD-016-1995 (formerly P1498), Trial Use Standard for Information Technology —
Software Life Cycle Processes — Software Development — Acquirer-Supplier Agreement,
September 30, 1995.

IEEE 610.12: 1990, IEEE Standard Glossary of Software Engineering Terminology.

ISO 2382-1:1984, Data Processing — Vocabulary — Part 01 Fundamental Terms.

ISO 8402:1986, Quality — Vocabulary.

ISO 9001:1994, Quality Systems — Model for Quality Assurance in Design, Development,
Production, Installation, and Servicing.

ISO 9000-3:1997(E), Guidelines for the Application of ISO 9001:1994 to the Development,
Supply, Installation and Maintenance of Computer Software.

ISO 12207:1995, Information Technology — Software Life Cycle Processes.

NASA Policy Directive 2820.1:1998, NASA Software Policies.

NASA Policy Directive (NPD) 7120.4A: 1996, Program/Project Management, (available at
http://nodis.hq.nasa.gov/Library/Directives/NASA-WIDE/Policies/Program_Formulation/
N_PD_7120_4A.html).

NASA Procedures and Guidelines (NPG) 7120.5A: 1998, NASA Program and Project
Management Processes and Requirements (available at http://nodis.hq.nasa.gov/Library/
Directives/NASA-WIDE/Procedures/Program_Formulation/N_PG_7120_5A.html).

NASA Technical Standard (NTS) . 8719.13A, Software Safety, (available at
http://www.hq.nasa.gov/office/codeq/ns871913.htm).

In addition to the above standards, Table 1-1 provides a list of IEEE standards pertaining to
software issues, which the reader may choose to refer to in planning the software life cycle and
activities. Note that these standards may not be referred to explicitly in this SDPD, but are
provided for informational purposes to facilitate the tailoring of one’s software life cycle,
activities, and documentation.

JPL Standards and Related Documents:

JPL D-560: 1993, JPL Standard for Systems Safety.

JPL D-4000:1988, JPL Software Management Standards Package.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

11

JPL D-10401:1995, JPL Standard for Reviews.

JPL D-7090:1990, A Guide to Developing Requirements.

JPL D-8431:1991, D-4000 Standards Application Guide: Project Measures.

JPL D-8433:1991, D-4000 Standards Application Guide: D-4000 Activities and Products.

JPL D-9085:1991, D-4000 Applications Guide: Findings and Recommendations from Case
Studies of Technical Reviews.

JPL D-10459:1993, D-4000 Standards Applications Guide: Using Quality Factors and Measures
to Focus on Customer Satisfaction.

JPL D-12018:1994, D-4000 Standards Applications Guide: Life Cycles.

JPL D-12019:1994, D-4000 Standards Applications Guide: Prototyping.

JPL D-12020:1994, D-4000 Standards Applications Guide: Documentation.

JPL D-12021:1994, D-4000 Standards Applications Guide: Testing.

JPL D-12022:1995, D-4000 Standards Application Guide: Software Reuse.

JPL D-12023:1995, D-4000 Standards Applications Guide: Software Milestone Reviews.

JPL D-13922:1996, A Guide to Selecting and Applying Software Development Standards.

JPL D-15951:1998, Risk Management Handbook for JPL Projects

JPL D-16110: 1998, Engineering Economic Analysis Group, Systems Analysis Section. DSN
Guidelines for Presenting Software Costs and Schedules at Major Milestone Reviews.

JPL Policy, JPL Cost Estimation, located at http://dmie.

JPL Policy, Risk Management, located at http://dmie.

JPL Policy, Software Development, located at http://dmie.

JPL Policy, System Safety, located at http://dmie.

JPL Policy, Work Breakdown Structure, located at http://dmie.

JPL System Procedure, “Change Control for JPL Level III Category A Engineering Standards,”
(Provide Engineering Standards Process), located at http://dmie.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

12

Table 1-1. IEEE Software Development Standards

Document Number Title
IEEE 610.12 Standard Glossary of Software Engineering Terminology
IEEE 730 Standard for Software Quality Assurance Plans
IEEE 730.1 Guide for Software Quality Assurance Planning
IEEE 828 Standard for Software Configuration Management Plans.
IEEE 829 Standard for Software Test Documentation
IEEE 830 Recommended Practice for Software Requirements Specifications
IEEE 982.1 Standard Dictionary of Measures to Produce Reliable Software
IEEE 982.2 Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable

Software
IEEE 1002 Standard Taxonomy for Software Engineering Standards
IEEE 1008 Standard for Software Unit Testing
IEEE 1012 Standard for Software Verification and Validation Plans
IEEE 1016 Recommended Practice for Software Design Descriptions
IEEE 1016.1 Guide to Software Design Descriptions
IEEE 1028 Standard for Software Reviews and Audits
IEEE 1042 Guide to Software Configuration Management
IEEE 1044 Standard Classification for Software Anomalies
IEEE 1044.1 Guide to Classification for Software Anomalies
IEEE 1045 Standard for Software Productivity Metrics
IEEE 1058.1 Standard for Software Project Management Plans
IEEE 1059 Guide for Software Verification and Validation Plans
IEEE 1061 Standard for a Software Quality Metrics Methodology
IEEE 1062 Recommended Practice for Software Acquisition
IEEE 1063 Standard for Software User Documentation
IEEE 1074 Standard for Developing Software Life Cycle Processes
IEEE 1074.1 Guide for Developing Software Life Cycle Processes
IEEE 1219 Standard for Software Maintenance
IEEE 1228 Standard for Software Safety Plans
IEEE 1298 Software Quality Management System, Part 1: Requirements
IEEE 1348 Recommended Practice for the Adoption of Computer-Aided Software Engineering

(CASE) Tools
IEEE 1420.1 Standard for Information Technology— Software Reuse— Data Model for Reuse

Library Interoperability: Basic Interoperability Data Model
IEEE 1420.1A Supplement to IEEE Standard for Information Technology— Software Reuse— Data

Model for Reuse Library Interoperability: Asset Certification Framework
IEEE 1430 Guide for Information Technology— Software Reuse— Concept of Operations for

Interoperating Reuse Libraries
IEEE-J-STD-016 Standard for Information Technology — Software Life Cycle Processes
IEEE-12207 Standard for Information Technology — Software Life Cycle Processes

Full-text versions of these standards are available through http://standards.jpl.nasa.gov.

Downloaded from http://www.everyspec.com

http://standards.jpl.nasa.gov

JPL D-15378, Rev. D Table of Contents

13

3. DEFINITIONS AND ACRONYMS
Terms in this document are defined in ISO 2382-1, ISO 8402, IEEE 610.12 and D-4000.
Supplemental definitions and acronyms follow:

Baselined: A document or software item that has been put under configuration management to
control changes.

CASE: Computer-aided software engineering.

COTS: Commercial off-the-shelf, as applied to software and/or hardware purchased from a
vendor.

Customer: The entity that has provided the funding for development and/or maintenance of a
software product. Customers may be either external to JPL (e.g., NASA or another government
agency) or internal (e.g., a JPL project, task or organization). “Purchaser” is the equivalent term
in ISO 9000-3. It is common for the customer and the user to be separate and distinct entities.
JPL program offices often serve as surrogates for external customers, representing the interests of
a NASA Headquarters Code.

Developer: The entity that is responsible for designing and implementing a software-intensive
product. Often the developer collaborates with the customer in defining requirements. Within JPL,
the developer is typically a project spanning multiple technical divisions, or a task that is wholly
contained within one division. “Supplier” is the equivalent term in ISO 9000-3.

Development: All activities carried out to create a software product.

Development Plan : The term refers to an independent document, a part of another document or
several documents, all of which pertain to project policies, plans, procedures, schedules, etc. that
govern a project. (Refer to Section 5.4.)

Implementation : The particular activities of detailed design, coding, and unit testing; a subset of
development.

Life Cycle: The set of interrelated activities that stretch from the initial determination of need
through management, definition, design, implementation, test, delivery, training, and post-delivery
modification/ maintenance, terminating when the application is retired from use. A life cycle is
divided into phases — defined segments of work — that are relevant to a specific software
product, with each phase typically being terminated by an end-gate or milestone. This SDPD is
intended to be broad enough to encompass a wide spectrum of life-cycle models, such as
waterfall, incremental, evolutionary, and spiral/iterative development.

Maintainer : The entity that is responsible for making changes to the software after acceptance and
installation at the user’s site(s).

Project: Refers to the development effort (e.g., project, project element, task) addressed by the
development plan.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

14

Quality Record: Documented evidence that development is proceeding in accord with the plans,
and that the JPL quality system (also referred to as the JPL Product Delivery System) is
functioning as intended. Quality records include agreements about changes in requirements,
reasons for key design decisions and modifications in the development plan, minutes of design
reviews and response to Requests for Action, software anomaly reports (or problem/failure
reports), test records, verification of test tools, software metrics, etc. Additionally, quality records
are useful in identifying targets for process improvement.

Software: Intellectual creation comprising the programs, procedures, algorithms, rules, data, and
any associated documentation pertaining to the operation of a data processing system. Software
programs that are burned into a chip are termed firmware. This SDPD treats firmware up to the
point of simulated operation in a hardware environment. The Electronic System Development
sub-process of the Design, Build, Assemble, and Test Process addresses production of the chip
and subsequent integration and test of the assembly and subsystem of which the firmware is a
part.

Software Item: Any identifiable part of a software product at an intermediate step or at the final
step of development; in Department of Defense nomenclature, a Computer Software
Configuration Item (CSCI) would be a high-level software item.

Test Case: A set of test inputs, execution conditions, and expected results developed for a
particular objective, such as to exercise a particular program path or to verify compliance with a
specific requirement. (IEEE 610.12, D-4000)

Test Data: The input needed to establish initial conditions for a test case, force execution of a
particular path in the software, or to simulate an external interface. (IEEE 610.12)

Test Driver: A software module used to invoke a module under test and, often, provide test
inputs, control and monitor execution, and report test results. (IEEE 610.12)

Test Procedure: Detailed instructions for the set-up, execution, and evaluation of results for a
given test case. (IEEE 610.12, D-4000)

User: The entity that employs the capabilities of the software product to perform a larger
function, such as — control the systems on board a spacecraft, deliver raw data to a principal
investigator, support mission design, prepare financial status reports, support software integration
and test, etc. In some cases, the user is an inanimate object such as a spacecraft; in other cases,
the user may be a human. Some software systems are complex enough to require a human
operator who assigns user privileges, installs software, performs back-up and recovery,
troubleshoots problems, and generally supports the end user. In this SDPD, operators are treated
as a user subclass.

Validation : The process of evaluating the software product to ensure compliance with the
customer/user’s requirements.

Verification : The process of evaluating the products of a life-cycle phase to ensure correctness
and consistency with respect to the products and standards provided as inputs to that phase.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. DTable Table of Contents

15

4. QUALITY SYSTEM — FRAMEWORK
Section 4 addresses topics that pertain to the framework of a quality system:

o The software quality policy that states JPL’s overall goal in producing software, along
with the objectives for achieving it;

o General roles and resp onsibilities (e.g., of the Software Development Methodology
Process owner, JPL program offices, and project/task managers) to achieve software
quality; and

o Internal audits, which serve as a mechanism for ensuring compliance, as well as
identifying opportunities for improving the software development process.

4.1 SOFTWARE QUALITY POLICY
It is the goal of all JPL software development projects/tasks, and the organizations of which they
are a part, to define, develop, and deliver software products in a manner that results in total
customer satisfaction. This goal will be achieved via:

o Explicit definition of the end product in a manner that permits the user to envision how
it will be employed;

o Choice of a software architecture that facilitates growth in func tionality and elaboration
into a design that accommodates changes easily and promotes reuse;

o Development plans that give the customer, project/task management, and the individual
implementer frequent milestones with which to measure progress;

o Identification of software elements with high potential for reuse and utilization of design
practices that facilitate reuse;

o A cost-effective documentation strategy that communicates crucial design information to
the developers, and facilitates use and maintenance of the product;

o Explicit provisions for training those who will have frequent contact with the product
after delivery — the end user, the operator/system administrator, and the maintainer;

o Participation of the customer and user in relevant devel opment activities — especially
change management, design of the user interface, and in-process validation of the
design;

o Continual improvements to the software development process tailored to the needs of
each development organization.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

16

4.2 ROLES AND RESPONSIBILITIES
The SDPD is written and maintained by the owner of the Software Development Process, in
response to a requirement to articulate Lab-wide policy on software development and to set
minimum requirements. The intent is to document best JPL practice in response to ISO 9001
requirements, as interpreted by ISO 9000-3, while providing for tailoring of these requirements to
meet the needs of individual projects, tasks and organizations. A closely related responsibility of
the process owner is to support periodic internal audits of JPL’s software development activities.
The SDPD will be modified annually in response to these audits and other user feedback, with the
intent of promoting continual process improvement.

Although the requirements and guidelines contained in the SDPD were developed for use by the
Develop New Products (DNP) Domain, they are meant to be general enough to be relevant to
software development under the cognizance of other domains and all JPL program offices. Each
domain and program office has a suite of documents that define required business practices within
its own area. Program office documents should be construed as a tailoring and elaboration of the
requirements stated in the SDPD, with a few notable exceptions, such as corrective and
preventive action, control of quality records, and statistical techniques (metrics) — all of which
are ISO 9001 requirements that are new to the Laboratory. Accordingly, it is the responsibility of
each program office to determine how to comply with the ISO 9001 requirements in each of these
new areas, which the SDPD has interpreted in general terms for software development.

Ultimately, the responsibility for implementing the requirements of the SDPD and related
documentation rests with the JPL project or task manager. It is the manager’s
responsibility to tailor the requirements of the SDPD, plus relevant domain, program office,
and line organization standards and policies, to the needs of the specific development job,
the result being documented in project/task plans. Evidence that this responsibility has been
met is contained in the suite of plans, product descriptions (e.g., requirements document,
operations concept), and quality records produced during development. It must be emphasized
that considerable flexibility is afforded in documentation, the essential idea being that all
documentation should be directly useful to developing a high quality end product within the
allocated budget.

4.3 INTERNAL AUDIT
Software development organizations will participate in periodic internal audits (led by the
Enterprise Process and Standards Program Office) to assure continued compliance with ISO 9001
and to identify additional opportunities for improving JPL’s software development methodology.
For software-intensive efforts, these audits are scheduled on the basis of the importance and status
of the activity and examine, at the minimum:

o Tailoring of the project/task plans,

o Documentation of software requirements,

o Status of interface definitions,

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

17

o Adequacy of configuration management procedures,

o Closure of critical action items from reviews, as defined by the project/task.

Results of these audits, including recommendations for improved practices, will be provided to
both the manager whose area is audited, and the JPL Product Delivery System Management
Representative. Approved recommendations will be implemented via changes in Laboratory
procedures — including this process description and related program office directives. The
documentation of project/task plans, designs, and reviews of development progress (i.e., quality
records — see Section 6.3) will be important inputs to an audit.

5. QUALITY SYSTEM — LIFE-CYCLE ACTIVITIES
This section, in conjunction with Section 6 that follows, outlines a general methodology for
software development at JPL, and describes the activities employed to implement the
methodology. This section is devoted to those activities that define the software life cycle.

Requirements are denoted by “shall” statements, and are distinguished by a different font (Arial)
in bold italics. Requirements are also numbered sequentially within each requirements section
and bracketed. In addition, where requirements trace to clauses in the ISO 9001 standard, the ISO
clause is also identified and bracketed. Where requirements trace to ISO 9000-3, which is the
software interpretation of 9001, the bracketed ISO reference includes the word “guidance.”

5.1 SOFTWARE METHODOLOGY
A software development project/task shall be organized according to a life-cycle model
that is described in the development plan in terms of: [5.1] [ISO 4.4.1 guidance]

o Phases, along with milestones and activities to be performed during each
phase; [5.1a] [ISO 4.4.2 guidance]

o Phase outputs, including any documentation; [5.1b] [ISO 4.4.2 guidance]

o Verification activities (e.g., reviews, demonstrations, tests) by phase. [5.1c]
[ISO 4.4.2 guidance]

Guidance:

This SDPD should not be interpreted to dictate the use of any particular life-cycle model. Rather,
flexibility is permitted in defining the life cycle, each project/task being encouraged to adapt the
general methodology described here in a way that best suits its needs. Given that many projects
are incorporating COTS products in their delivered products, the reader should be aware of life-
cycle issues unique to such an environment. The COTS discussion on the Software Engineering
Institute’s (SEI) web site at http://www.sei.cmu.edu/cbs/ may provide a good starting point.

In describing one’s life-cycle model or development process, it is not sufficient to merely assert
that a particular standard (e.g., D-4000) or methodology (e.g., spiral development, rapid
development) will be followed, since projects rarely conform strictly to a textbook description,
due to different sponsor relationships, team size and composition, budget, schedule, etc. Thus, in
virtually every instance, tailoring of any given standard or methodology will be required. In

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

18

addition, it is legitimate to find that during the initial planning activities, early phases may be
better defined than later phases. In all cases, it is expected that the plan will be updated as the
project progresses.

Ideally, it is useful to identify inputs to, and/or criteria for entering, each phase. Similarly,
identifying criteria for exiting a phase should be considered.

In practice, phases overlap, and the activities needed to complete a phase often extend beyond the
milestone that marks a critical review of phase activities. Nonetheless, it is accepted practice to
schedule a milestone review at a point in time when the activities of a phase are substantially
complete. When such a milestone is reached, the phase products identified in the development
plan are reviewed, and review results recorded as part of the project/task quality record. (See
Section 5.4–Development Planning, Section 6.9–Reviews, and Section 6.3–Quality Records.)

Below is a set of activities and milestones that are useful for planning the development of Class A
and B software:

o Identification of user needs, development objectives, and constraints;

o Definition of a system architecture responsive to the development objectives;

o Preparation of a development plan;

o Elaboration of the user needs and development objectives into software requirements;

o Completion of the design, and verification that it satisfies the requirements. In a complex
system there may be multiple levels of design with checkpoints at each level.

o Completion of integration and test. The complexity of the system will dictate the levels
of test and integration needed. At the minimum, test is needed at the level of an atomic
software element and the system level.

o Validation that the product satisfies the user’s requirements, and is acceptable to the
customer;

o Delivery to the customer and installation in the user’s environment.

It is strongly encouraged that the nomenclature used in JPL D-4000, JPL Software Management
Standards Package, be used to tailor a life cycle to project/task needs and define documentation
and reviews tailored to those needs. This use of D-4000 does not compel the developer to satisfy
any of the “shall’s” in D-4000. Tailoring guidance may be found in the D-4000 Application Guides
(see Section 2.0–Applicable Documents), which help adapt the D-4000 methodology to fast-
moving, concurrent development. Thus, this process description reaffirms the D-4000
nomenclature for documentation as the standard nomenclature to be used at JPL. Additional
guidance on the content of software documentation may be found in EIA/IEEE J-STD-016,
Standard for Information Technology — Software Life Cycle Processes: Software Development.
JPL D-13922, A Guide to Selecting and Applying Software Development Standards, provides a
high-level mapping between D-4000 documents and the product documentation identified in

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

19

EIA/IEEE J-STD-016. A related standard, ISO 12207, Information Technology — Software Life
Cycle Processes, provides guidance in defining software life cycle processes, activities, and tasks.
It has been used by some ISO auditors to evaluate a software organization’s compliance with
ISO 9001.

5.2 CONTRACT REVIEW
The contract between the customer and the developer can take a variety of forms. If the customer
is NASA Code S, this contract may be expressed in terms of an Approval Letter, Task Order,
Program Operating Plan, a Work Authorization Document, or an RTOP. If the customer is
another government agency, this contract is normally documented in a Task Plan. If the customer
is internal — a project or a program office — the contract takes the form of an implementation or
development plan, or a work package agreement. The interests of all stakeholders should be noted
during the contract review process, including the user and the organization that will maintain the
software after delivery.

The organization that has overall responsibility for a software development effort shall
establish and maintain documented procedures for a commitment review of the
development plan or proposal to ensure: [5.2.1] [ISO 4.3.1]

o Scope of work for the current delivery is adequately defined and documented.
[5.2.1a] [ISO 4.3.2a]

o Differences between the scope of work defined in the development plan, and
that requested by the customer, are resolved. [5.2.1b] [ISO 4.3.2b]

o Responsibilities of the customer are identif ied. [5.2.1c] [ISO 4.3.2 guidance]

o Mutually acceptable means have been defined for dealing with changes in
requirements during development, as well as correction of post-delivery
defects. [5.2.1d] [ISO 4.3.2 guidance, 4.3.3]

o The resources and schedule described in the development plan are adequate to
accomplish the contractual deliverables. [5.2.1e] [ISO 4.3.2c]

A record of commitment review findings shall be maintained as part of the project/task
quality record. [5.2.2] [ISO 4.3.4]

Guidance:

Issues to consider when defining customer responsibilities include:

o Facilities, tools, and software to be provided by the customer or third parties

o Requirements definition if additional work is needed

o Design validation.

It is strongly encouraged that the commitment review address contingencies and risks, including
crucial interdependencies, as well as schedule margin and budget reserve.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

20

5.3 CUSTOMER’S REQUIREMENTS SPECIFICATION
The developer shall have a written set of software requirements that are sufficient to
satisfy customer and/or user needs. [5.3.1] [ISO 4.4.4 and guidance]

Interfaces between the software product and external software or hardware items shall
be specified, either directly or by reference. [5.3.2] [ISO 4.4.4 guidance]

Software requirements, whether provided by the customer or formulated by the
developer, shall be reviewed to ensure that: [5.3.3]

o the product is adequately defined, [5.3.3a] [ISO 4.4.4]

o ambiguities and conflicting requirements have been resolved, and [5.3.3b]
[ISO 4.4.4]

o the requirements are stated so as to allow validation during product
acceptance. [5.3.3c] [ISO 4.4.4 guidance, ISO 4.4.8]

The software requirements specification shall be subject to change control procedures,
once it is baselined (e.g., completion of document review, customer approval obtained) .
[5.3.4] [ISO 4.3.3, 4.4.4 guidance]

Approved changes in requirements shall be maintained as part of the project/task quality
record. [5.3.5]

Guidance:

Occasionally, it is possible to identify only high-level requirements at the beginning of
development. In such a case, the initial development effort is often devoted to a definition phase
that produces a high-level design sufficient to create firm cost and schedule estimates.

To facilitate the developer’s understanding of requirements and their subsequent elaboration into a
design, the development organization should seek to obtain a designated user representative who
can elaborate written requirements, clarify ambiguities, help fill gaps, etc.

A review of software requirements typically determines whether:

o The customer and/or user feels that their needs have been satisfied

o The developer has adequate information to proceed with design

o All external interfaces have been defined

o Operational safety has been satisfactorily addressed

o Requirements are stated in a manner that facilitates validation.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

21

Changes to the baselined requirements specification should reference pertinent correspondence
with the customer. The mechanism for handling and communicating requirements changes is to be
addressed in the development plan, as described in Sections 5.2 and 5.4.

5.4 DEVELOPMENT PLANNING
Preparation of a development plan compels the developer to identify and think through the
multitude of issues involved in designing and implementing the product. It is preferable that this
plan be written as one coherent document. However, it may be expedient for the developer to
document the plan in a set of related documents that separately address issues such as product
definition, scope of work, task organization, schedule, build plan, integration and test plan, etc.
Thus, the term “development plan” is used in this document in a generic manner to refer to
various forms of planning documentation. In instances where the plan is fragmented, it is strongly
encouraged that there be some documentation that unifies the segments of the plan by providing
pointers to all portions of the plan.

A development plan shall address the following: [5.4.1] [ISO 4.4.2]

o Overall definition of the product, as in user needs addressed, deliverables, and
critical functionality. [5.4.1a] [ISO 4.4.2 guidance]

o Scope of development work to be performed, including management and
supporting activities . [5.4.1b] [ISO 4.4.2 guidance] Scope of work is usually
documented in a work breakdown structure, with an accompanying narrative.

o Project life cycle, including: [same requirement as 5.1] [ISO 4.4.1 guidance]

Phases, along with activities or milestones to be performed during each
phase. [same requirement as 5.1a] [ISO 4.4.2 guidance]

Phase outputs, including any documentation [same requirement as 5.1b]
[ISO 4.4.2 guidance]

Verification activities (e.g., reviews, demonstrations, tests) by phase [same
requirement as 5.1c]

o Project organization and technical interfaces: team structure; nature of project
interfaces, both internal and external; roles and responsibilities, including
customer responsibilities; use of subcontractors; and other crucial
dependencies, such as critical equipment and facilities, and use of JPL support
services. [5.4.1c] [ISO 4.4.3, ISO 4.4.2 guidance]

o Project schedule. [5.4.1d] [ISO 4.4.2 guidance]

o Risk assessment. [5.4.1e] [ISO 4.4.2 guidance]

o Cost estimate/budget that summarizes the cost of the pers onnel and other
resources required by the development. [same requirement as 6.10.1] [ISO 4.4.2
guidance]

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

22

o Staffing profile. [5.4.1f] [ISO 4.4.2 guidance]

o Change control procedures for documenting, reviewing, approving, and
communicating requirements changes to all affected parties. [5.4.1g] [ISO 4.3.3,
4.4.9, and 4.5]

o Change control procedures for documenting, reviewing, approving, and
communicating design changes before their implementation. [5.4.1h] [ISO 4.4.9,
4.5]

o Review (or verification) policies and procedures that, at a minimum, address
detailed technical reviews, and identify what is to be reviewed (including critical
intermediate products) and when reviews are to be held. [same requirement as
6.9.1] [ISO 4.4.5, 4.4.6, 4.4.7]

o Procedures for verifying, storing, protecting, and maintaining items (e.g.,
software, data, hardware, specifications) supplied by the customer or
designated third party. [same requirement as 6.7.1] [ISO 4.7]

o Procedures for verifying purchased or subcontracted products. [same
requirement as 6.6.3] [ISO 4.6.4, 4.10.2]

o Documentation plan and procedures. [same requirement as 6.2.1and 6.2.2; refer to
actual requirements for elaboration] [ISO 4.5]

o Scope and content of the training to be provided to project personn el. [same
requirement as 6.8.1] [ISO 4.18, 4.1.2.2]

o System administration plan, including approach to back-up/archiving, security,
and virus protection. [5.4.1i] [guidance in ISO 4.4.2, 4.9, 4.15.2, 4.15.3, 4.15.5]
(See related requirements specific to deliveries, Section 5.9.)

o Definition of responsibility, and description of associated procedures, to
identify and correct recurring problems in the development process. [5.4.1j]
[ISO 4.14.1 and 4.14.3]

o Metrics tailored to project needs, and the asso ciated procedures for collecting,
storing, and analyzing them. [same requirement as 6.4.1]

o Planning of the following specific activities, including identification of any
separate plans: [5.4.1k]

Configuration management [same requirement as 6.1.1; refer to actual
requirement for elaboration] [guidance in ISO 4.8 and 4.5]

Integration and test [same requirement as 5.8.1; refer to actual requirement for
elaboration] [ISO 4.10.1]

Delivery and installation [same requirement as 5.9.1; refer to actual requirement
for elaboration] [ISO 4.9, 4.15.1]

Maintenance [same requirements as 5.10.1 and 5.10.2; refer to actual
requirements for elaboration] [ISO 4.19, 4.4.2 guidance, 4.4]

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

23

o Reuse strategy, if any, or identification of reusable elements — both those th at
can be adapted from previously implemented systems, and portions of the
current application that will be designed for reuse. [5.4.1l]

o Identification of quality records, associated procedures, and retention times.
[same requirements as 6.3.1 and 6.3.3; refer to actual requirements for elaboration]
(See Section 6.3–Quality Records.) [ISO 4.16]

o Provisions for updating the plan as development proceeds. [5.4.1m] [ISO 4.4.2]

o Explanations for any deviations made from SDPD requirements. [5.4.1n]

Guidance:

The review of the development plan is to be done before development begins, with the customer
and all organizations involved in its implementation participating in that review. When the plan is
revised, e.g., in spiral or iterative developments, or when replanning activities are needed to
address scope changes, the revisions need to be reviewed as well.

Revisions to the development plan will not necessarily cover all of the topics described in the
requirements of this section. For example, there are projects/tasks that are engaged in ongoing,
evolutionary developments, where incremental versions of the application are released on a
regular basis, e.g., every six months. In such established and stable environments, a revised plan
might only cover those topics which have undergone change since the previous plan was issued.

In defining project organization, the D-4000 standards for each of the development phases and
related activities provide useful descriptions of roles and responsibilities.

The reader should become familiar with the policies and associated documentation pertaining to
the JPL policy identified as “Work Breakdown Structure” (refer to http://dmie/). This policy
arises from the JPL process called “Project Technical Management.”

In planning the schedule, its granularity must be small enough to ensure effective control. In
addition, the incremental build plan should be addressed.

In planning for defect correction and change control for large projects, a change control board
with customer representation may be appropriate.

In developing a plan for addressing security concerns, the developer should refer to Lab-wide,
program office, or line organization standards. Applicable policies, procedures and standards
associated with the Provide Computer Security Services process are available at http://dmie/. One
might also refer to the following JPL site: http://security/.

The need to identify and correct recurring problems in the development process falls within the
realm of continuous software process improvement. Illustrative recurring problems are incomplete
or ambiguous requirements, inaccurate interface definition, inadequate design and coding
standards, ineffective walkthroughs and design reviews, inadequate unit testing, incomplete test
planning, ineffective re-testing of corrected code, etc.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

24

Risk assessment is the process of identifying, analyzing, mitigating, and monitoring risk through
the life of the project. The reader should refer to:

(a) NASA Policy Directive (NPD) 7120.4A3, Program/Project Management, which is part of
the NASA Prime Contract, states that risk assessment should address technical, cost and
schedule issues.

(b) NASA Procedures and Guidelines (NPG) 7120.5A2, NASA Program and Project
Management Processes and Requirements, elaborates on the requirements in NPD 7120.4A.
It also identifies examples of risks and constraints which are useful for project managers to
use in examining their own projects. The reader should also refer to the Project Plan
template in NPG 7120.5A which includes a description of the risk management topics to be
addressed in a project plan.

(c) JPL policy on Risk Management, located at http://dmie. This policy references NPG
7120.5A, as well as JPL D-15951, Risk Management Handbook for JPL Projects.

NPG 7120.5A requires that for each primary risk (i.e., those having both high probability and high
impact/severity), the following be provided:

o description of risk, including primary causes and contributors, actions embedded in the
project to date to reduce or control it, and information collected for tracking purposes.

o estimate of the probability (qualitative or quantitative) of occurrence together with the
uncertainty of the estimate.

o significant cost impacts, given its occurrence.

o signi ficant schedule impacts, given its occurrence.

o potential mitigation measures

o characterization of the risk as “acceptable” or “unacceptable” with supporting rationale.

The reader may also want to refer to CMU/SEI-93-TR-006, Taxonomy-Based Risk Identification,
located at http://www.sei.cmu.edu/topics/publications/documents/93.reports/93.tr.006.html. This
Software Engineering Institute (SEI) technical report includes a self-evaluation questionnaire
which managers can use as a tool to spot potential risk areas. Risk areas are organized into three
broad categories that address (a) the product, (b) processes (development, management),
development environment, work environment, and (c) program constraints with respect to
resources, contract, and program interfaces.

3 According to the NASA Prime Contract, effective FY99, JPL is to comply with NASA Policy Directive (NPD)
7120.4A and NASA Procedures and Guideslines (NPG) 7120.5A. NPD 7120.4A is available at
http://nodis.hq.nasa.gov/Library/Directives/NASA-WIDE/Policies/Program_Formulation/N_PD_7120_4A.html.
NPG 7120.5A is available at http://nodis.hq.nasa.gov/Library/Directives/NASA-WIDE/Procedures/
Program_Formulation/N_PG_7120_5A.html.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

25

Safety issues are addressed in the ISO 9001 standard, and also constitute an element of risk
management, according to NPG 7120.5A, section 4.5–Safety and Mission Success, and
Environmental Management. The reader should refer to http://dmie/ for the policy and any
procedures and standards arising from the System Safety process at JPL, including JPL D-560,
JPL Standard for Systems Safety.

JPL D-560 levies safety requirements on flight systems, ground-based systems, and research and
development programs — including systems developed in-house, contracted, or purchased. It
requires that project/task managers develop a safety plan (which is to include software safety) —
an example of which is provided in the appendix of D-560. Section 2.11 (Computer Systems) of
D-560 includes requirements pertaining to fault tolerance, hardware/software inhibits, software
design (e.g., modularization of safety-critical functions), and software hazard analysis. Section 3.8
(Software) of the same standard includes requirements on operator displays.

In addition, the reader may find it useful to refer to NASA Technical Standard (NTS) 8719.13A,
Software Safety4. NTS 8719.13A applies to software and firmware, including government
furnished equipment, purchased software (including COTS software), and other reused software
in the system. The standard addresses safety issues by life-cycle phase, and describes the software
safety analyses to be performed.

Other issues to consider when formulating a development plan include:

o User’s role in defining, designing, and testing the system.

o Rules, practices, and conventions to be used in design and development. (See Section
5.7–Implementation.)

o Tools and techniques to be used, e.g., for project planning and scheduling, requirements
management, etc. (See Section 6.5–Tools and Techniques.)

o Identification of procurements — development platforms, development tools,
commercial software packages to be integrated into the end product, etc. (See Sections
6.5–Tools and Techniques, and 6.6–Purchasing and Subcontracts.)

o Design and implementation of the development environment.

o Disaster recovery.

o Conversion of a design prototype to a delivered product, to the extent that this can be
anticipated at the time the development plan is written.

A development plan template is provided in Appendix A. In tailoring planning documentation,
the developer should refer to Lab-wide, program office, or line organization standards. The JPL
policy on Project Planning refers to the project plan requirements in NPG 7120.5A. Other
standards, such as D-4000, ISO, and IEEE are available as guidance. See Section 2 (References)
and Table 1-1.

4 NTS 8719.13A is available at http://www.hq.nasa.gov/office/codeq/ns871913.htm.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

26

5.5 QUALITY PLANNING
Guidance:

The philosophy of the SDPD and ISO 9001 is to build quality into the product as development
progresses. Thus, quality planning is viewed as being inherent to development planning, and as
such, is addressed throughout a development plan. However, it is discussed here to emphasize its
importance, and to draw attention to development activities that can have large impacts on
quality. Quality planning activities include such things as:

o Verification and validation activities (e.g., design reviews, code walkthroughs, and tests)
of:

– developed products

– externally-received products, such as purchased COTS, customer-supplied products,
or products supplied by other development organizations within JPL.

o Design and code analysis, including comparison of design alternatives, trade-offs between
coupling and cohesion, verification of completeness vis-a-vis software requirements,
evaluation against design patterns, comparison of code with style guide, etc.

o Configuration management and change control of software, data, and documentation.

o Reporting and monitoring of defect correction.

o Identification and correction of the root causes of design and coding defects.

It is also useful to establish quality objectives for the project/task, e.g., fraction of development
effort expended on rework, the percent of the code that was comprehensively exercised in system
testing, the proportion of reused software in the final product, etc.

5.6 DESIGN
Requirements and design activities shall be guided by a plan with milestones and
detailed technical reviews tailored to the needs of each project/task . [5.6.1] [ISO 4.4.2,
4.4.6, 4.4.7]

The design shall be documented and, prior to release, the resulting design
documentation shall be reviewed to ensure that (a) the design meets the requirements
and is responsive to acceptance criteria, (b) the design is verifiable, and (c) safety
issues have been addressed. [5.6.2][ISO 4.4.5]

Guidance:

The design and implementation activities transform the sponsor's requirements specification into a
software product. Design activities encompass the translation of the user's requirements into
functional requirements, a functional design, software requirements, a software architecture, and
more detailed specifications for individual software elements. Because software is complex, it is
imperative that these activities be carried out in a manner that builds quality into the product,

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

27

rather than depending on test and validation to assure quality. To that end, milestones and detailed
technical reviews must be defined in a development plan, with the level of detail commensurate
with the complexity of the project/task.

A critical element of the design process is the definition of external and internal interfaces, which
may be documented separately from performance requirements. These design products should be
documented in a manner appropriate to each project/task. Failing to document them risks serious
communications problems which can result in costly rework and/or a dissatisfied customer.
Section 6.2 and Appendix B recommend documentation appropriate for Class A, B, and C
software.

The design process should be structured to:

o Facilitate debugging, testing, and subsequent maintenance;

o Monitor closely the design of both internal and external interfaces;

o Hold working-level detailed technical reviews of designs as they are deve loped; these
reviews should employ working documentation.

Evidence that design documentation meets requirements is often provided in the form of a
traceability matrix. Traceability can be performed between requirements, design specifications,
source files, software procedures or functions, and test cases, or some subset of those. Exactly
which products will be traced to which other products, and whether the traceability is performed
in a forwards manner, or a backwards manner, will differ from project to project.

5.7 IMPLEMENTATION
Implementation activities shall be guided by one or more plans with milestones and
detailed technical reviews tailored to the needs of each project/task. [5.7.1] [ISO 4.4.2,
4.4.6, 4.4.7, 4.10.3]

Guidance:

Implementation involves taking detailed specifications and translating them into working code.
Often a design is prototyped in code prior to documenting the design of the finished software
element, thus making it difficult to separate the process of implementation from design. If the
ultimate target of a prototyping effort is Class A or B software, the code must eventually satisfy
the pertinent documentation and review requirements. In general, implementation should be
structured to:

o Create a running version of the product as ea rly as practicable;

o Adhere to documented coding standards, including naming conventions, code format,
and in-code documentation requirements; a history of code changes can facilitate failure
analysis.

o Encourage conformance to design rules, including restrictions on the use of language
constructs and the complexity of code aggregates.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

28

o Employ peer review of the detailed design and the code itself.

o Emphasize thorough unit testing by each implementer; this facilitates both subsystem
and system integration, thereby speeding the implementation process.

o Produce design documentation and acceptance criteria traceable to functional
requirements.

5.8 TESTING AND VALIDATION
Software integration and testing shall be performed in accord with test planning and
specification documentation that addresses: [5.8.1] [ISO 4.4.2 guidance, 4.10.1]

o Test requirements, which may be an elaboration of software requirements.
[5.8.1a] [ISO 4.10.1 guidance]

o Levels of testing required up to acceptance by the customer. [5.8.1b] [ISO 4.10.1
guidance]

o Test cases, test procedures, test data and expected results. [5.8.1c] [ISO 4.10.1
guidance]

o Method of documenting test status and results. [5.8.1d] [ISO 4.10.1 guidance,
4.12]

o Test environment, such as dedicated proces sors, test tools (purchased or
developed), and user documentation. [5.8.1e] [ISO 4.10.1 guidance] The actual
test environment should be defined precisely enough to ensure repeatability.

o Approach for evaluating test tools, with respect to their ability t o verify the
product under test (e.g., through testing, published reviews). [5.8.1f]
[ISO 4.11.1]

o Procedures for correcting defects, including analyzing the cause of the defect,
determining corrective action, and ensuring that the corrective action is taken.
[5.8.1g] [ISO 4.13, 4.14.1, 4.14.2]

Before delivery and acceptance by the customer, the developer shall validate the
product under conditions similar to the user’s application environment. [5.8.2]
[ISO 4.4.8, 4.10.4]

Missing or deficient functionality (in light of customer/user expectations, based on a
requirements document or other form of “contractual” document) shall be documented
in a release description document or transfer agreement . [5.8.3] [ISO 4.13.2]

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

29

Test records to be maintained as part of the project quality record shall include, at a
minimum: [5.8.4]

o Anomaly reports (or problem/failure reports) [5.8.4a][ISO 4.13.2]

o Test tool checks, to evaluate whether the tools are capable of verifying the
acceptability of the software product under development. [5.8.4b] [ISO 4.11.1]

o Test results, with clear indications whether the product has passed or failed.
[5.8.4c] [ISO 4.10.5, 4.4.7]

Guidance:

Testing may be required at several levels, from the individual software item to the complete
software product. Testing of a software unit (typically by the programmer who implemented the
unit) is called unit testing, an activity subsumed under implementation. The subsequent testing
addressed by Section 5.8 focuses on the integration and test of collections of software elements
(program sets), plus subsystem/system-level integration and test.

Note that the test plan may be incorporated into the development plan, although typically, it will
be a separate document. Additional issues that should be considered in developing the test plan
include:

o Types of testing required, e.g., functional tests, boundary tests, performance tests,
usability tests, regression tests, etc. Regression testing is especially valuable in
incremental or iterative development and in verifying the correction of critical anomalies.

o Procedure to be followed in categorizing and prioritizing anomalies. Anomaly reports
should be categorized to show impact of the defect on product usability and capability to
meet the customer’s requirements .

o Customer/user involvement in the testing process — including additional personnel,
hardware, and travel expense if travel to the user site is required. User participation is
encouraged in defining tests that closely simulate the operational environment.

o Training required for test personnel, if not addressed in the development plan.

o Schedule and staffing plan, if not addressed in the development plan.

Test procedures should be developed with attention to demonstrating the repeatability of tests,
particularly for real-time systems. Once the test procedures have been developed, it is strongly
recommended that automated execution of the subsequent tests be employed.

In tailoring test documentation, the developer should refer to Lab-wide, program office, or line
organization standards. Other standards, such as D-4000, ISO, and IEEE are also available as
guidance. See Section 2 (References) and Table 1-1.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

30

5.9 DELIVERY, INSTALLATION, AND ACCEPTANCE
The activities comprising delivery, installation, and acceptance shall be defined in a plan
or related documentation, that addresses: [5.9.1] [ISO 4.4.2 guidance, 4.9, 4.15.1]

o Preparation of the acceptance test cases and acceptance criteria, with
developer's responsibilities (if any) noted. [5.9.1a] [ISO 4.10.4 guidance; based on
ISO 4.4.8 and 4.10.5]

o Procedures to be used in documenting and resolving problems found following
installation, whether during acceptance testing or delivery. [5.9.1b] [ISO 4.14.1,
4.14.2]

o Details of delivery and installation logistics, e.g., arranging for use of
customer/user facilities and personnel in installation and test. [5.9.1c] [ISO 4.9
guidance]

o Definition of developer's role (if any) in supporting transition to full operational
use of the product. [5.9.1d] [ISO 4.9 guidance]

o Identification of documentation to be delivered at installation, including
installation and configuration procedures. [5.9.1e] [ISO 4.9 guidance] Section 6.2
and Appendix B identify the documentation recommended for each class of software.

o Identification of training for the user and/or system administrator/operator.
[5.9.1f] [ISO 4.9 guidance]

o A schedule for key events pertaining to delivery, installation, and acceptance.
[5.9.1g] [ISO 4.9 guidance]

o Storage of archived software media to prevent deterioration and facilitate
disaster recovery. [5.9.1h] [guidance in ISO 4.15.3 and 4.15.5]

o Virus protection of software designated for delivery, during storage and
electronic transmission. [5.9.1i] [guidance in ISO 4.15.2, 4.15.3, 4.15.6]

After delivery, a baselined copy of the software and delivered documentation shall be
archived. [5.9.2]

Guidance:

Because a JPL developer usually has a very close working relationship with the customer, the
customer’s decision to accept the product often comes after a lengthy test process. Typically,
there is acceptance testing both before and after delivery, with particular attention to resolution of
post-delivery problems. Delivery to an internal customer is typically formalized by a transfer
agreement.

Acceptance testing and planning for integration of the product into operational use are the
responsibility of the customer. In practice, the customer often shares these responsibilities with the
developer. Accordingly, the development plan should identify what role the customer expects the

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

31

developer to play in acceptance and delivery. For example, pre-acceptance tests performed at JPL
prior to delivery are commonly repeated after installation at the user site, with developer
assistance.

As part of determining readiness for delivery, acceptance criteria are typically based on the
satisfactory completion of testing, and the number and nature of the defects remaining in each
category.

Section 5.10 identifies additional topics that should be addressed in the delivery and installation
plan if an external organization is responsible for maintenance.

5.10 MAINTENANCE
If the developer is tasked to perform maintenance, a maintenance plan shall be
prepared, defining the scope of the activity and the developer’s approach . [5.10.1]
[ISO 4.4.2 guidance, 4.4, 4.19]

If the developer is required to turn maintenance over to another organization, the
development plan shall address the mechanism for transferring knowledge of the
software to the maintainer. [5.10.2]

Guidance:

Maintenance of the software product is required to deal with both defects and modifications
arising from use. Maintenance activities for software products are typically classified as:

o Problem resolution

o Functional expansion or perfo rmance improvement

o Interface modification

o Adaptation to new operational environment

Maintenance may be done by the user, by a separate organization under contract to the user, or by
the developer. Occasionally, the developer arranges with the customer to integrate the designated
maintenance contractor into the development team, thereby transferring a level of product
knowledge that is impractical to impart via documentation.

Fixing defects and enhancing delivered functionality should both be addressed in a maintenance
plan, which takes the form of a tailored development plan since maintenance is subject to the same
discipline that is applied to development. Thus, typical topics in a maintenance plan are change
control and the handling of change orders, configuration management of code and documents,
testing, correction of defects introduced by maintenance activities, updating user and design
documentation, installing new releases, and informing all users of recently discovered problems. In
addition, the plan should address the support of third-party software included in the end product.
Note that in cases where major enhancements are to be delivered, a revised development plan is
needed.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

32

In the case where maintenance is turned over to another organization, the developer should
consider the following issues in the development plan:

o Detailed definition of the status of the software at the time maintainer assumes
responsibility, including prioritization of pending changes desired by the customer/user.

o Transfer of the software tools and associated databases used in design, coding, test and
integration, configuration management, installation, and the tracking of changes; training
in the use of these tools should be provided by the developer.

o Identification of reports, studies, and data, previously prepared by the developer and
relevant to improving product performance.

o Mechanism for familiarizing the maintainer with the architecture of the software,
rationale for key design decisions, and all of the product documentation, including in-
code documentation; design documentation should include design rules and coding
standards.

o Identification of other developer responsibilities to support transition to maintenance.

6. REQUIREMENTS — SUPPORTING ACTIVITIES
This section, in conjunction with Section 5 that precedes it, describes the activities employed to
implement the general methodology (see Section 5.1) for developing software at JPL. This section
is devoted to the supporting activities that are performed throughout a life cycle.

6.1 CONFIGURATION MANAGEMENT
Configuration management procedures shall be documented and applied to
deliverables: code, associated data files, and documentation. [6.1.1] [guidance in ISO 4.8,
4.5, and 4.13.1]

Guidance:

Configuration management provides a mechanism for identifying, controlling, and tracking the
versions of each software item and associated documentation. It encompasses the process for
handling change requests and change orders. Configuration management applies at all levels of a
development effort and includes work in progress by individual developers as well as code that
has been formally submitted to the project/task configuration management function.Versions
delivered earlier and still in use must also be maintained and controlled.

Besides pertaining to deliverable code, it is highly recommended that configuration management
procedures also be applied to:

o Operating systems, design and implementation tools, and development environments
(especially compilers).

o Test hardware and software, including test tools (whether developed at JPL or
purchased), test drivers, automated test scripts; as well as test cases, test procedures,
and test data.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

33

o Reusable software libraries, including behavioral models and mo deling tools (whether
purchased or developed at JPL).

Configuration management procedures may be documented in a development plan, or a separate
plan. The configuration management plan should document 1) the required activities,
2) responsibilities for c arrying out these activities, 3) tools and techniques to be used, and 4) the
stage at which items will be brought under configuration control. Configuration management
responsibilities typically include the following:

o Identify uniquely the versions of e ach software item, both software under development
and commercial software used as development tools or integrated into the product;
identify the versions of each software item which together constitute a specific build or a
delivered product.

o Provide coordination for updating multiple products in one or more locations;
differences in site-unique versions should be identified and tracked.

o Identify differences between controlled versions — both source code differences and
differences in functionality between versions.

o Document the software and hardware used in the development environment, including
version and known problems; trace software items to the operating system and
development tools, so that the development environment may be accurately recreated.

o Build production software items into a linked set of modules ready for integration and
test; rebuild previous development or delivered versions on request.

o Control simultaneous updating of a given software item by more than one person.

o Identify and track all actions resulting from anomaly reports and change requests, from
initiation through release.

o Collect and summarize metrics to help assess the state of product development.

o Monitor and report on the status of software items, anomaly reports and change
requests, and the implementation of approved changes.

o Archive the software for each delivered product, together with its associated
documentation and quality records.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

34

o Identify test status of software items under configuration mana gement. Examples of test
status include untested (under development), unit test, integration test, acceptance test,
defect fixing, released.

o Handle change requests and change orders.

6.2 DOCUMENTATION AND DOCUMENT CONTROL
For each development effort, the development plan shall define: [6.2.1]

o Documents to be produced, e.g., document titles, form (web, file server, hard
copy), content standards or guidelines to be followed. [6.2.1a]

o Procedures (including responsibilities) for producing, reviewing, ap proving, and
controlling documents. [6.2.1b] [ISO 4.5.1]

Documentation procedures shall address: [6.2.2]

o Which documents are subject to configuration management and at what point in
the development cycle they are baselined. [6.2.2a] [ISO 4.5.1 guidance]

o Preparation of a master document list, or equivalent control mechanism, to
identify document status, and preclude the use of invalid or obsolete
documents. [6.2.2b] [ISO 4.5.2]

o Responsibility for approving and releasing documents, and promptly
withdrawing obsolete documents from use. [6.2.2c] [ISO 4.5.3, 4.5.2]

o Identification of changes in released documents (to be done where practicable).
[6.2.2d] [ISO 4.5.3]

o Approach for ensuring that the master document list (or equivalent control
mechanism), as well as pertinent versions of documents, are readily available.
[6.2.2e] [ISO 4.5.2]

o Directory/file permissions and back-up policies, where document control is
achieved through electronic means. [6.2.2f] [ISO 4.5.2 guidance]

Guidance:

It is most important that the product's capabilities, its design, and the plans governing its
development be communicated to all interested parties — the customer, the user, the development
team, and the maintainer. The scope of the documentation activity is described in a documentation
plan, which may be either a section of the development plan or a separate document.

In developing the documentation plan, it is rarely sufficient to merely assert that a particular
standard will be followed, since projects typically do not conform strictly to any given standard. In
virtually every instance, tailoring of documentation— whether with respect to the document set,
responsibilities, content, timing for producing the documents— will be required. Tailoring should
be approved by the responsible program manager. Evidence of this approval might take the form

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

35

of the program manager ’s signature on the plan, or a statement of approval in the form of an e-
mail message or hard copy memorandum, or transfer of a document from a “Draft Documents”
directory to an “Approved Documents” directory.

This Software Development Process Descriptio n groups software product documentation into the
following five general categories:

1. Development plans, including possibly detailed sub-plans for specific activities, such as build
planning, test and integration, configuration management, quality assurance, reviews, etc.

2. Requirements, which are usually derived from a statement of user needs or a concept of
operations, with attention to external interfaces and system performance. Changes in
requirements must be documented. Written requirements define the technical content of the
agreement between developer and customer and are used as the basis for acceptance criteria.

3. Design documentation, including functional or architectural design, subsystem specification
and detailed design, in-code comments, and implementation guidelines, such as design rules,
naming conventions, and coding standards.

4. Test documentation, including test plans, test requirements, design of the test environment,
test cases, test data descriptions, test procedures, anomaly reports, and test summary status
reports.

5. User documentation, including a user ’s guide, an installation and operations manual, and a
release description document, or transfer agreement, that documents as-delivered capabilities,
unresolved problems, and recommended work-arounds.

Recommended documentation for each class of software is summarized in Appendix B.
(Particular attention is paid to documentation useful for design prototyping.) In tailoring
documentation, the developer should refer to Lab-wide, program office, or line organization
standards. Other standards, such as D-400 0, EIA/IEE E J-STD-016 —Software Life Cycle
Processe s are also available as guidance, and contain illustrative outlines of software
documentation. [See Section 2 (References) and Table 1-1.] .

Process documentation, which includes records of both technical and management reviews,
quality assurance evaluations of products and process, records of independent verification and
validation, etc., and other quality records are described in Section 6.3. JPL D-12020, D-4000
Standards Applications Guide: Documentation , gives guidance on tailoring a documentation
strategy to specific project/task needs.

Following each software delivery, the project/task manager should ensure that any design
documentation necessary for documenting the evolution of the design, or for satisfying
contractual commitments, is archived.

A protected on-line documentation system is highly recommended to ensure that developers have
the latest version of requirements and design documentation and to facilitate preparation of both
review materials and deliverable documents. In practice, document control is often a responsibility
of project/task configuration management.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

36

6.3 QUALITY RECORDS
Quality records are generated to ensure that the development process is producing a reliable,
robust, safe system that meets the customer’s requirements. Additionally, quality records are
maintained to support project/task management and demonstrate the effective operation of the
quality system, as determined by periodic internal audits an d ISO-900 1 re-certification.

The development plan shall identify the pertinent quality records and describe
procedures for collection, indexing, filing, storage, access, maintenance, and disposition
of these records. [6.3.1] [ISO 4.16]

Required quality records include the following: [6.3.2]

o Approved changes in requirements [same requirement as 5.3.7]

o Review (or verification) results [same requirements as 5.2.2 –Commitment Review
findings, and 6.9.2]

o Anomaly reports [same requirement as 5.8.4a]

o Checks of test tools, to evaluate whether the tools are capable of verifying the
acceptability of the software product under development. [same requirement as
5.8.4b]

o Test results, with clear indications whether the product has passed or failed.
[same requirement as 5.8.4c]

o Change requests/orders generated during development and — if provided for in
the contract — after delivery. [6.3.2a] [based on IS O 4.4.9]

The retention times for project/task quality records shall be established in the
development plan in accord with program office directives, with particular attention to
needs of post-delivery maintenance. [6.3.3] [ISO 4.16]

Quality records shall be stored in an environment conducive to the prevention of
deterioration and loss, and in a manner so as to be readily retrievable. [6.3.4] [IS O 4.16]

Pertinent subcontractor quality records shall be identified in the subcontract. [same
requirement as 6.6.2b] [ISO 4.16]

Guidance:

It is highly recommended that critical design decisions, replanning rationales, and other watershed
events also be captured as quality records.

In practice, quality records for JPL will be archived in a distributed manne r. To facilitate retrieval,
each project/task should establish and maintain a master list of records, identifying the location
and custodian of each set of records . An on-line records catalog is recommended.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

37

6.4 MEASUREMENT
Metrics, and the associated procedures for collecting, storing, and analyzing them, shall
be identified in a development plan, and shall be tailored to project needs. [6.4.1]
[ISO 4.16]

Guidance:

It is the project manager ’s responsibility to identify the metrics to be collected, and to comply
with any policies levied by JPL or the project sponsor(s). Metrics are chosen to track product
quality, provide visibility into the development process for tracking development progress, assess
readiness to deliver, and to identify problems in the development process with the objective of
improving that process . NPD 7120.4 A, Program/Project Managemen t which is part of the Prime
Contract, states that metrics should reflect technical, schedule and cost status . NPG 7120.5A,
NASA Program and Project Management Processes and Requirements , provides requirements on
project management metrics . NPD 2820.1, NASA Software Policies5, suggests collecting metrics
pertaining to software cost and schedule baseline deviations, safety, quality, and reliability.

Recommended metrics are:

o Deviations from the staffing plan, development milestones, and budget (planned vs.
actual); deviations from projected earned value should be considered.

o Comparison of planned and actual output, typically done in terms of thousands of lines
of source code (KSLOC), function points, or module count; projection of output
required to complete the product. An automated tool should be used for KSLOC
counts.

o Analysis of anomalies or def ects during development; plots of anomalies identified and
corrected are customarily used during development to assess build stability, and
readiness for acceptance testing and delivery. Analysis of defect data may also be used to
find and correct problems in the development process.

o Number of changes in required product capabilities after the requirements were
baselined.

o Elapsed time between the identification and resolution of a problem, by development
phase.

In addition to taking remedial action to correct development problems, metric data should be used
to establish improvement goals for both product and process. Process improvement is the
responsibility of the larger organization in which a project/task resides.

6.5 TOOLS AND TECHNIQUES
Guidance:

5 At the time of this writing, NPD 2820.1, NASA Software Policie s, is not part of the NASA Prime Contract,
effective FY99 , and hence, is not actually binding on JPL. Reference is made to it in this document for guidance
purposes only.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

38

The developer employs tools, facilities, and techniques as needed to support both product
development and maintenance of the quality system. Whether purchased or created by the
development team, these tools should be identified in the development plan. Each program office
may wish to designate recommended sets of tools for use throughout a program area.
Consideration should be given to the following tools and techniques:

o Tools to support project planning and resource (e.g., budget, schedule) tracking

o Requirements management tools

o Tools supporting the selected design and implementation methodology, including CASE
tools, tools to identify syntax errors, tools to monitor the use of coding standards,
automated documentation tools, and design analysis tools

o Reusable software libraries

o Configuration management packages

o Automated testing tools

o Groupware, which supports electronic collaboration.

6.6 PURCHASING AND SUBCONTRACTS
Purchase orders shall clearly describe the product or service ordered, and shall be
reviewed for adequacy by the developer prior to release. [6.6.1][ISO 4.6.3]

A development subcontract shall address: [6.6.2]

o In-process verification of subcontracted development, via reviews of
intermediate products and/or other oversight activities as appropriate. [6.6.2a]
[ISO 4.6.2b]

o Identification of subcontractor quality records to be maintained . [6.6.2b]
[ISO 4.16]

o Criteria and/or procedures for accepting subcontracted software.
[6.6.2c][IS O 4.10.2 guidance]

Upon receipt, the developer shall ensure that a product or service that is
purchased/subcontracted, or provided by a separate development organization,
conforms to specified requirements, in accordance with procedures defined in the
development plan . [6.6.3] [IS O 4.6.1. 4.6.4, 4.10.2]

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

39

Guidance:

A purchased product may be a development tool, a software or hardware item intended for
inclusion in the end product (e.g., COTS), a subcontracted portion of the end product, or a
service (e.g., independent validation and verification). The reader may want to refer to
http://www.sei.cmu.edu/cbs / for issues that must be addressed when using a COTS product.

Note that if the developer or customer wants to verify a subcontracted product at the
subcontractor’s premises, such arrangements should be specified in the contract (per ISO 900 1,
clauses 4.6.4.1 and 4.6.4.2).

Subcontractor selection should be done on the basis of the organization ’s ability to meet
subcontract requirements, including quality requirements. JPL Procurement is responsible for
selection of subcontractors/vendors and for establishing and maintaining records of subcontractor
performance.

6.7 CUSTOMER-SUPPLIED PRODUCT/ REUSED SOFTWARE
The developer shall establish and document procedures for verification, storage,
protection, and maintenance of items (e.g., software, data, hardware, specifications)
supplied by the customer or designated third party . [6.7.1] [IS O 4.7]

Guidance:

In many areas, previously developed applications are routinely adapted for use in new missions.
Mission and spacecraft design, on-board command and data processing, navigation, sequencing,
telemetry, and operational science analysis are all examples of applications where common
customer requirements may be distinguished from predictably unique needs in order to permit
reuse within a relatively stable software architecture. Moreover, it is now common practice to
integrate commercial-off-the-shelf (COTS) software into the end product. Cost-effective
development requires that a developer continually evaluate the applicability of existing software
— both for inclusion in the end product and for use as development tools. Software developers in
areas exhibiting high reuse potential should consider periodic reassessments pointed at expanding
the scope of common modules and identifying tools to expedite requirements definition and
implementation.

Occasionally, the developer is required to use items provided by the customer or by a designated
third party. Such items may include COTS software or software developed by a third party,
development tools, test and operational data, interface and other specifications, and hardware.
The development plan should address the support of included third-party software in planning for
maintenance of the end product.

6.8 TRAINING
The scope and content of the training to be provided to project personnel (e.g.,
development team, user, maintainer) shall be addressed in the development plan . [6.8.1]
[ISO 4.18 and 4.1.2.2]

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

40

Guidance:

Training may be required for three distinct groups: the development team, the user, and the
maintainer (if that organization is separate from the other two). Developer training encompasses
use of design methodologies, development tools, languages, etc., as well as acquiring knowledge
of the problem domain in which the software product will be employed. The line organization in
which the development team resides is responsible for identifying future training needs and
maintaining individual records of training and experience in order to support assignment of
qualified personnel to development tasks.

Training the user and product maintainer should be a consideration in creating the statement of
work that documents the agreement between the customer and developer. Provision should be
made for the creation of the necessary product documentation and any supplementary training
materials, as well as making the development team available for both stand-up instruction and
hands-on training, as required.

6.9 REVIEWS
The development plan shall define review (or verification) policies and procedures that,
at a minimum, address detailed technical reviews, and identify what is to be reviewed
(including critical intermediate products) and when reviews are to be held. [6.9.1]
[ISO 4.4.5, 4.4.6, 4.4.7]

Review (or verification) results shall be maintained as quality records, and shall include
a summary of requests for action and the responses thereto. [6.9.2] [ISO 4.4.6]

Guidance:

In tailoring the review process, the developer should refer to Lab-wide, program office, or line
organization standards. The Lab-wide standard for reviews is defined in JPL D-1040 1, JPL
Standard for Review s, and describes major milestone reviews (referred to as “design reviews” in
D-1040 1), detailed technical reviews (i.e., working-level peer reviews), management reviews
addressing status of work and resources, and other reviews. In addition, extensions and
exceptions to the standard are defined and organized by program office. Other standards, such as
D-400 0, ISO, and IEEE are also available as guidance. See Section 2 (References) and Table 1-1.

Reviews constitute an important, overarching activity that occurs at key points in the development
life cycle. Major milestone reviews are held in conjunction with completing a development phase
or sub-phase, prototyping a solution to a crucial subset of requirements, demonstrating that the
product is ready for delivery, etc. Detailed technical reviews are held to determine whether a work
product (e.g., requirements, subsystem and module design, code, test cases, plans, etc.) meets its
completion criteria. Typically, detailed technical reviews are accomplished via walkthroughs or
inspections, with the degree of rigor being tailored to the criticality of the software under
development. In addition to their obvious quality control function, reviews are excellent
opportunities to obtain customer input validating the planned functionality of the system.
However, reviews consume scarce resources. Thus, like the philosophy applied to documentation,
the effort expended in preparing for and conducting a review must be balanced against the
probable rework avoided by catching errors and omissions early in the development process.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

41

While reviews are required for Class A, B, and C software, the review policy for a project/task
must be tailored to the class of software under development and to particular needs of the
customer, user, the program office, and the management of the organization in which the
developer resides. A development plan details how reviews will be carried out. To make the most
effective use of the resources devoted to reviews, major milestone reviews should summarize, not
reexamine, the topics addressed in detailed technical reviews. Major milestone reviews and
detailed technical reviews should be conducted in accord wit h JPL D-1040 1 and relevant program
office directives. In the event of a serious deficiency, development should not proceed until the
consequences are satisfactorily resolved, or the risk of proceeding has been assessed. Additional
guidance on the conduct of detailed technical software reviews may be found i n D-1202 3, D-4000
Standards Applications Guide: Software Milestone Review s, and D-9085, D-4000 Applications
Guide: Findings and Recommendations from Case Studies of Technical Reviews.

The reader should refer t o JPL D-1040 1 which describes many types of major milestone reviews.
In general, reviews of a software task should address the following types of activities and
milestones:

o Proposal or commitment review.

o Completion of user requirements.

o Completion of development plan.

o Completion of system/subsystem requirements and design (as appropriate).

o Completion of software requirements and design.

o Test readiness.

o Functional validation or pre-acceptance test.

o Pre-ship or delivery.

o Post-delivery evaluation of product and process.

Note that in accordance with JPL D-560, JPL Standard for Safet y, it is required that safety be
“included on the agenda of all formal and informal reviews associated with a project at all levels
(design, delivery, test readiness, pre-ship, etc.) ”, with the material to “be tailored to the nature of
the review and the maturity of the project. In the case where there are no safety implications
involved, a statement to that effect shall be included … ” NTS 8719.13A, NASA Technical Standard
for Software Safety , also provides guidance for presenting results of safety analyses at various
milestone reviews.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

42

6.10 COST ESTIMATION
For each new development, or incremental development of an existing system, the
developer shall prepare a documented cost estimate/budget that summarizes the cost of
the personnel and other resources required by the development. [6.10.1] [IS O 4.4.2
guidance]

Guidance:

Careful cost estimation and subsequent monitoring of expenditures are crucial to the success of
any development effort. Preparation of a cost estimate has several purposes including:

o Verification in detail that the design concept and development approach are consistent
with the customer’s budget.

o Quantification of risk factors and their probable impact on development cost and
schedule.

o Recording assumptions, analyses, and data that may be useful in future estimates — both
cost updates and new work.

The sensitivity of the estimate should be evaluated against assumptions and risk factors.
Illustrative assumptions include:

o Personnel skill and availability.

o Cost of required training in new development tools and techniques.

o Purchase of development hardware and tools, including lead times and adaptation t imes;
note that tool selection can make or break a development.

o Reusability of legacy code, considering the effort required to understand and document
the code, correction of defects, wrappers, redesign, etc.

o Availability of user personnel and faci lities for validation/acceptance.

o Identification of major risks facing the project/task and assessment of the potential
impact of each risk on cost, schedule, and performance.

o Allocation of reserves (both budget and schedule) to absorb these risks, should they
occur.

Analysis of data collected in the DSN Software Cost Analysis Database 6 shows that on DSN tasks
employing phased deliveries, first deliveries experienced effort (i.e., cost of personnel) overruns
up to 40%. In virtually every case, these overruns were accompanied by significant functionality

6 Appendix C, Lessons Learned in Software Cost Estimation, JPL D-16110, DSN Guidelines for Presenting
Software Costs and Schedules at Major Milestone Reviews

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

43

slips to later deliveries. The most common cause for inaccurate estimates (based on effort, rather
than product size— see below) is omissions. JPL D-16110, DSN Guidelines for Presenting
Software Costs and Schedules at Major Milestone Reviews , provides a software development
checklist that can be used in developing estimates. Activities that have been consistently reported
by JPL software managers as having been underestimated include preparing for reviews, preparing
documentation, completing testing, correcting anomalies, and specifying interfaces clearly.
Replanning and rework should also be considered.

The better articulated the design, the better the estimate is likely to be. Thus, it is worthwhile to
expend effort to define the application up front, in spite of pressure from the customer to get on
with development. Cost estimates based on requirements alone can be off by 50–100% or more.
A more satisfactory approach incorporates a formal definition phase in which a small, experienced
team spends a limited time, say 4-6 months, developing core functional requirements, an
architecture, an implementation plan, and a detailed cost estimate. The definition phase may also
include prototyping of key elements, or in some cases a running prototype of the system kernel. In
sum, the more detailed the design foundation, the more accurate will be the cost estimate and
associated development schedule.

There are various methods for performing cost estimates, but two common approaches are basing
the estimate on size, or basing it on effort estimates:

o Size: based on the size of the application (in source lines of code, function/feature
points, object identification, screen counts, etc.), estimated productivity, and fully
burdened salary cost. Sizing estimates often utilize rules of thumb and engineering
judgment informed by analogy with prior development. Formal costing models, such as
COCOMO, may be used to adjust for team skill, complexity, development tools, process
maturity, learning curve, etc.

o Effort: based on a product-oriented work breakdown structure (WBS) and effort
estimates for each product (e.g., documents, program sets, code units) and activities
(e.g., configuration management, testing, product assurance, task management).

If time and resources permit, it is advisable to perform independent estimates — whether by two
individuals, or using two different methods, such as one based on size, the other on effort. For
additional information on preparing cost estimates, see JPL D-1611 0. The reader should also
become familiar with the policies and standards associated with the JPL process identified as
Project Cost Estimation.

Any cost estimation method can typically be employed at various points in the life cycle; although
again, the better articulated the design, the more information one has to produce a more accurate
cost estimate. Whatever costing method is chosen, as development proceeds, periodic estimates
of the cost-to-complete should be prepared in conjunction with normal progress tracking
procedures. These estimates should be archived as supplements to the initial cost estimat e.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

44

APPENDIX A

DEVELOPMENT PLAN TEMPLATE

1. Introduction
This development plan template is intended to serve as a checklist in identifying the issues that are
useful to consider by a project, project element, or task, when developing a quality software
product. As such, it is expected that this template will be used by such entities to tailor their
particular development plans, in a manner that is appropriate to the characteristics of each project.
(Throughout this template, the term “project” is intended to include project elements and
tasks.) In instances where a planning topic is addressed separate from the development plan, the
plan should contain a pointer to where the information can be found, such that the plan serves as a
road map.
This template has been created based on D-400 0, EIA/IEE E J-STD-01 6, and the JPL Software
Development Process Descriptio n (the latter capturing ISO 900 1 requirements). The reader
should also refer to NPG 7120.5 A, NASA Program and Project Management Processes and
Requirement s, which contains an appendix describing the document contents of a project plan, as
well as any other planning requirements that may be levied by the program office or line
organization.
Note that development plan topics required by the SDPD are followed by a bracketed SDPD
requirement number.

1.1 Identification
Full identification of the system and the software to which this document applies, including, as
applicable, project name, [sub]system name, program set name, identification number(s),
abbreviation(s), version number(s), and release number(s).

1.2 Project Definition Overview
a) Overview of this project, such as goals and objectives, user needs addressed, the general

nature and critical functionality of the software, the system context and operational
environment for the software, and deliverables. In some instances, it might be useful to specify
what functionality is outside the scope of the software. [5.4.1a]

b) Identification of the project customer(s), e.g., sponsor(s), user(s).

c) Identification of software classification of all software being developed by the project/task,
e.g., Class A, B, C, D as defined in the SDPD.

1.3 Document Overview
Scope of this document, and relationship to other plans and documents [5.4.1k], including
controlling documents, such as Lab-level policies and standards, or those levied by the program
office or line management.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

45

1.4 Referenced Docum ents
References for documents mentioned in the plan, including such information as source of
document, title, document number, revision, date.

1.5 Notation
Meaning of notation(s) used (if any), e.g., font differences, brackets.

2. Project Organization
a) If part of a larger project, provide brief description of organizational context for the project.
b) Description of how personnel are organized on the project, including : [5.4.1c]

1) team structure,
2) roles and responsibilities (e.g., of sub-teams and their leads), including customer

responsibilities,
3) technical interfaces between team members or between sub-teams. If detailed

procedures are provided elsewhere within project documentation, then one could
provide a high-level description here, such as for how requirements and design are
communicated. Should address who has final authority for technical decisions,
particularly when such decisions affect more than one sub-team.

4) technical interfaces with outside organizations, e.g., system/software engineering
personnel, test personnel, configuration management personnel,

5) use of subcontractors,
6) any crucial interdependencies, e.g., critical equipment, facilities, services.

3. Work Breakdown Structure, Project Resources and Schedule
The objective of this section is to demonstrate that there are adequate resources to accomplish the
project objectives. (Often, this information is provided in appendices.) Typical topics include the
following:

1) work breakdown structure (WBS) describing scope of work. [5.4.1b] The WBS
should be product-oriented (e.g., program sets, home-grown software tools,
documents), but also include activities not associated with a product, such as
configuration management, product assurance, management and scheduling, testing,
procurement support. The WBS should provide the basis for the cost estimates, and
map to the schedule.

2) cost estimate/budget that summarizes the cost of the personnel and other resources,
such as hardware/software acquisitions, training, etc . [6.10.1]

3) staffing profile , [5.4.1f]
4) schedule, which should include incremental builds, deliverables, and milestones for

monitoring progress and reviewing intermediate products. (Functionality provided in
each build should be documented in accompanying text.) If only a high-level schedule

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

46

is provided in the plan, pointers should be provided to working-level schedules that
contain frequent milestones (e.g., two-week increments). [5.4.1d, 5.1c]

4. Project Inputs from External Sources
a) Items required from external sources, e.g., requirements from customer or from other

development efforts.
b) Procedures for validating, storing, protecting, and maintaining items (e.g., software, data,

hardware, specifications) provided by the customer or designated third party . [6.7.1]

5. Assumptions, Constraints and Risks
a) Assumptions, e.g., user representatives to provide in-house support, any subsystem interface

changes will be funded by other projects, development to proceed based on requirements as of
(date).

b) Constraints, such as those levied by customer, project, institution (JPL), or one ’s own line
organization, e.g., schedule, workforce, funding, use of COTS, use of inherited software,
security.

c) Risk assessment, including safety issues. Some risks may be tied to assumptions and
constraints, and might include availability of funding, ability to hire in a timely fashion,
availability of critical facilities or equipment, availability of customer-supplied input, unfamiliar
development tools, poorly defined scope. Refer to references provided under the Guidance
portion of Section 5.4 for other potential risk areas, as well as approaches for identifying and
characterizing risks. [5.4.1e]

6. Software Development Process Overview
Description of software development process from requirements to delivery, including:

1) software development approach (e.g., waterfall, spiral/iterative, rapid application
development),

2) identification of life-cycle phases, along with milestones and activities to be performed
during each phase , [5.1a]

3) phase outputs, including any documentation, [5.1b]
4) verification activities (e.g., reviews, demonstrations, tests) , [5.1c]
5) system engineering activities, including roles and responsibilities,
6) user/customer involvement in the development process,
7) reuse strategy, if any, or identification of reusable elements – both those that can be

adapted from previously implemented systems, and portions of the current application
that will be designed for reuse . [5.4l]

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

47

7. Phase-specific Activities
a) Plans and procedures for how the various activities in each life-cycle phase will be

accomplished, e.g., requirements analysis, design (such as evaluation of design alternatives,
tradeoff analyses, evaluation against design patterns), implementation/unit testing, integration
and test [to the extent they are not described fully in the Software Development Process
Overview].

b) Description of verification activities (e.g., reviews, demonstrations, tests) [to the extent they
are not described fully in the Software Development Process Overview or Reviews sections].
[5.1c]

8. Documentation
a) In general, the documentation approach should address such issues as:

1) how requirements, design (including key design decisions and tradeoff analyses), code,
and test will be communicated, such as through formal documentation, sponsor
memoranda, electronic design notes, CASE tools, i n -code documentation,

2) how as-built design will be documented,
3) how often documentation will be updated,
4) what documentation will be archived.

 Note that on-line documentation is strongly encouraged.
b) Identification of what documents are to be produced, e.g., titles, form (web, file server, hard

copy), content standards or guidelines to be followed. [6.2.1a] How documentation
standards will be tailored should be described. (Identification of documents might alternatively
be described under Software Development Process Overview or Phase-Specific Activities.)

c) Procedures and responsibilities for producing/updating, reviewing, approving, and controlling
documentation [6.2.1b], including:

1) which documents are subject to configuration management, and at what point in the
development cycle they are baselined , [6.2.2a]

2) preparation of a master document list, or equivalent control mechanism, to identify
document status, and preclude the use of invalid or obsolete documents . [6.2.2b]

3) responsibility for approving and releasing documents, and promptly withdrawing
obsolete documents from use, [6.2.2c]

4) identification of changes in released documents (to be done where practicable),
[6.2.2d]

5) approach for ensuring that the master document list (or equivalent control
mechanism), as well as pertinent versions of documents, are readily available . [6.2.2e]

6) directory/file permissions and back-up policies, where document control is achieved
through electronic means . [6.2.2f]

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

48

9. Reviews
a) Types of reviews (or other verification methods) to be employed (i.e., major milestone

reviews, detailed technical reviews, commitment review) [6.9.1, 5.2.1]
b) What is to be reviewed, including critical intermediate products — such as design, code, and

documentation, [6.9.1]
c) When reviews (or other verification methods) are to be employed [6.9.1]
d) Policies and procedures associated with each type of review (or verification method) [6.9.1,

5.2.1], e.g.,
1) Objectives (or refer to any applicable standards, such as JPL D-1040 1 and program

office directives). Also refer to required review criteria identified in SDPD requirement
5.6.2.

2) Approach (e.g., responsibilities, timing, agenda) [or refer to any applicable standards,
such as JPL D-1040 1 and program office directives],

3) How review results will be documented, and what quality records will be maintained
from the reviews. Note that it is required that a summary of requests for action, and
the responses to those requests be maintained . [6.9.2]

10. Development Testing
If the project has separate test planning and specification documents, then this section can contain
pointers to those documents. Topics that must be addressed include : [5.8.1]

1) Test requirements, which may be an elaboration of software requirements . [5.8.1a]

2) Levels of testing required up to acceptance by the customer . [5.8.1b]

3) Test cases, test procedures, test data and expected results . [5.8.1c]

4) Method of documenting test status and results. [5.8.1d]

5) Test environment, such as dedicated processors, test tools (purchased or developed),

and user documentation . [5.8.1e] The actual test environment should be defined
precisely enough to ensure repeatability.

6) Approach for evaluating test tools, with respect to their ability to verify the product

under test (e.g., through testing, published reviews). [5.8.1f]

7) Procedures for correcting defects, including analyzing the cause of the defect,

determining corrective action, and ensuring that the corrective action is taken . [5.8.1g]

 Other topics that should be addressed include:

8) Types of testing required, e.g., functional tests, boundary tests, performance tests,
usability tests, regression tests, etc. Regression testing is especially valuable in

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

49

incremental or iterative development and in verifying the correction of critical
anomalies.

9) Procedure to be followed in categorizing and prioritizing anomalies.

10) Customer/user involvement in the testing process — including additional personnel,

hardware, and travel expense if travel to the user site is required . User participation is
encouraged in defining tests that closely simulate the operational environment.

11) Training required for test personnel, if not fully addressed in the development plan.

12) Schedule and staffing plan, if not fully addressed in the development plan.

11. Acceptance Testing
If not addressed as part of a delivery and installation plan or separate test plan, then the following
topics must be addressed:
a) preparation of the acceptance test cases and acceptance criteria, with developer ’s

responsibilities (if any) noted , [5.9.1a]
b) description of procedures to be used in documenting and resolving problems found during

acceptance testing . [5.9.1b]

12. Quality Planning
a) Responsibilities and procedures for identifying and correcting recurring problems in the

development process (e.g., ambiguous requirements, inaccurate interface definition, ineffective
walkthroughs). [5.4.1j]

b) Use of quality assurance personnel and their responsibilities.
c) Identification of the project/task ’s quality records, associated procedures, and retention times,

with quality records to include, at a minimum : [6.3.1, 6.3.3, 6.3.4]
1) approved changes in requirement s [5.3.5],
2) review (or verification) results, including a summary of requests for action and the

responses thereto [6.9.2, 5.2.2],
3) anomaly reports (problem/failure reports) [5.8.4a],
4) checks of test tools, to evaluate whether the tools are capable of verifying the

acceptability of the software product under developmen t [5.8.4b],
5) test results, with clear indications whether the product has passed or faile d [5.8.4c],
6) change requests/orders generated during development and — if provided for in the

contract— after delivery . [6.3.2a]
 In addition, it is highly recommended that critical design decisions, replanning rationales, and

other watershed events be captured as quality records.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

50

13. Configuration Management
If the project has a separate configuration management plan, then this section can contain a
pointer to that document. Topics to be addressed are:
a) Detailed configuration management procedures applicable to deliverables: code, associated

data files, and documentation . [6.1.1]
In addition, it is recommended that configuration management procedures also be applied to:

1) operating systems, design and implementation tools, development environments
(especially compilers),

2) test hardware and software, including test tools (whether developed at JPL or
purchased), test drivers, automated test scripts, as well as test cases, test procedures,
and test data

3) reusable software libraries, including behavioral models and modeling tools (whether
purchased or developed at JPL),

Configuration management responsibilities typically include the following:
1) Identify uniquely the versions of each software item, both software under

development and commercial software used as development tools or integrated into
the product; identify the versions of each software item which together constitute a
specific build or a delivered product.

2) Provide coordination for updating multiple products in one or more locations;

differences in site-unique versions should be identified and tracked.

3) Identify differences between controlled versions — both source code differences and

differences in functionality between versions.

4) Document the software and hardware used in the development environment,

including version and known problems; trace software items to the operating system
and development tools, so that the development environment may be accurately
recreated.

5) Build production software items into a linked set of modules ready for integration

and test; rebuild previous development or delivered versions on request.

6) Control simultaneous updating of a given software item by more than one person.

7) Identify and track all actions resulting from anomaly reports and change requests,

from initiation through release.

8) Collect and summarize metrics to help assess the state of product development.

9) Monitor and report on the status of software items, anomaly reports and change

requests, and the implementation of approved changes.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

51

10) Archive the software for each delivered product, together with its associated
documentation and quality records.

11) Identify test status of software items under configuration management. Examples of

test status could include development, unit test, integration test, acceptance test,
defect fixing, released.

12) Handle change requests and change orders.

b) Responsibilities for carrying out the configuration management activities.
c) Tools and techniques to be used.
d) The stage at which items will be brought under configuration control.
e) Change control procedures for documenting, reviewing, approving, and communicating

requirements changes to all affected parties . [5.4.1g]
f) Change control procedures for documenting, reviewing, approving, and communicating

design changes before their implementation . [5.4.1h]

14. Development Standards
a) Identification of any standards that apply to the project, whether defined by the project,

program office, customer, or JPL.
b) Rules, practices and conventions to be used in development, including coding standards and

design rules.
c) Standards and procedures pertaining to traceability, requirements management, and other

configuration management activities. Such standards and procedures could be addressed in the
Configuration Management section of the development plan or in a separate configuration
management plan. Similarly, documentation, review, and test standards and procedures could
be addressed in the same manner.

15. Metrics
Identification of metrics, and the associated procedures (and responsibilities) for collecting,
storing, and analyzing them . [6.4.1]
Metrics are chosen to track product quality, improve software development processes, and to
manage project resources. See Section 6.4 of the SDPD for examples of different types of
metrics.

16. Tools, Methods, and Environments
a) Identification of any tools and methods used by the project/task, such as for:

1) project planning and resource (e.g., budget, schedule) tracking,
2) requirements management,

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

52

3) design and implementation, including CASE tools, tools to identify syntax errors, tools
to monitor the use of coding standards, automated documentation tools, and design
analysis tools,

4) configuration management,
5) automated testing,
6) groupware, which supports electronic collaboration,
7) reusable software libraries,
8) maintenance of the quality system (e.g., managing and tracking quality records).

 Note that although testing and configuration management tools are included in this list, they
would likely be addressed in their respective sections of the development plan. In such a case,
this Tools, Methods, and Environments section should contain a pointer to those sections.

b) Description of development, test, and target environments, and if pertinent, any issues that
need to be addressed arising from differences between the environments. Include a discussion
of how the development and test environments will be established, and administered. Also
describe the environment in which other engineering activities are conducted, e.g.,
project/task planning and scheduling, requirements analysis, design.

c) System administration plan, including approach to back-up/archiving, security, and virus
protection. [5.4.1i]

17. Procurements
a) Identification of procurements, e.g., subcontracted development, development platforms,

development tools, COTS to be integrated into the end product.
b) Policy/procedures governing products or services that are subcontracted, purchaed, or

provided by a separate development organization, including procedures for ensuring the
product/service conforms to requirements . [6.6.3]

18. Training
Training needs unique to this task, including scope and content of training (e.g., problem domain,
development methods, development tools) to be provided to project personnel, such as
development team, users, and maintainers . [6.8.1]

19. Delivery and Installation
a) If the project has a separate delivery and installation plan, then this section can contain a

pointer to that document. Topics to address include:
1) description of procedures to be used in documenting and resolving problems found

after delivery , [5.9.1b]
2) details of delivery and installation logistics, e.g., arranging for use of customer/user

facilities and personnel in installation and test , [5.9.1c]
3) definition of developer’s role (if any) in supporting transition to full operational use of

the product, [5.9.1d]

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

53

4) identification of documentation to be delivered at installation, including installation and
configuration procedures , [5.9.1e]

5) identification of training for the user and/or system administrator/ operator , [5.9.1f]
6) a schedule for key events pertaining to delivery and installation , [5.9.1g]
7) storage of archived software media to prevent deterioration and facilitate disaster

recovery [5.9.1h]
8) virus protection of software designated for delivery, during storage and electronic

transmission . [5.9.1i]
b) If not addressed elsewhere in this development plan or a separate test plan, then the following

topics should be addressed in the delivery and installation plan:
1) preparation of the acceptance test cases and acceptance criteria, with developer ’s

responsibilities (if any) noted , [5.9.1a]
2) description of procedures to be used in documenting and resolving problems found

during acceptance testing . [5.9.1b]
c) If the developer is required to turn maintenance over to another organization, the following

topics should be considered:
1) detailed definition of the status of the software at the time the maintainer assumes

responsibility, including prioritization of pending changes desired by the
customer/user,

2) transfer of the following to the maintainer: software tools and associated databases
used in design, coding, test and integration, configuration management, installation,
and the tracking of changes; training in the use of these tools,

3) identification of reports, studies, and data previously prepared by the developer, and
relevant to improving product performance,

4) mechanisms for familiarizing the maintainer with the architecture of the software,
rationale for key design decisions, and all of the product documentation, including in-
code documentation, design rules and coding standards,

5) identification of other developer responsibilities to support transition to maintenance.

20. Maintenance
Definition of the scope of the maintenance activity, and the developer ’s approach to maintenance.
[5.10.1] If the project/task has a separate maintenance plan, then this section can contain a
pointer to that document. Topics to consider include:

1) change control and the handling of change orders for enhancing delivered functionality
and fixing defects,

2) configuration management of code and documentation,
3) testing,
4) correction of defects introduced by maintenance activities,
5) updating user and design documentation,

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

54

6) installation of new releases,
7) mechanism for informing users of recently discovered problems.

Note that if maintenance is to be handled by an external organization, then the maintenance topics
identified in the delivery and installation section should be addressed.

21. Plan Updates
Provisions for updating the development plan and any associated plans, as development proceeds.
[5.4.1m]

22. Variances
Explanations for any deviations made from SDPD requirements . [5.4.1n]

Appendices

A. Acronyms (used in the development plan)

B. Glossary of Terms (used in the development plan)

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

55

APPENDIX B

RECOMMENDED PRODUCT DOCUMENTATION

This SDPD groups software product documentation into five general categories:

1. Development plans, including possibly detailed sub-plans for specific activities, such as build
planning, test and integration, configuration management, quality assurance, reviews, etc. A
plan permits concurrent efforts by breaking the job into pieces and defining interfaces; it also
helps management monitor progress. Inadequate planning risks the ineffective use of scarce
development resources.

2. Requirements, which are usually derived from a statement of user needs or a concept of
operations, with attention to external interfaces and system performance. Changes in
requirements must be documented. Written requirements define the technical content of the
agreement between developer and customer and are used as the basis for acceptance criteria.
If requirements are poorly done, the developer risks building the wrong thing, or permits
differing interpretations of requirements by the development team. A clear statement of
prioritized user needs that will be addressed is especially helpful if the customer ’s technical
representative changes while development is in progress.

3. Design documentation, including functional or architectural design, subsystem specification
and detailed design, in-code comments, and implementation guidelines, such as design rules,
naming conventions, and coding standards. Functional design allocates functions to hardware,
software, and human operators with a view to long-term evolution of the system. If functional
design is done poorly, future enhancements may be difficult to accommodate without
expensive redesign/re-implementation. Additionally, an accurate top-level view of the system
can help both new developers and maintainers understand the design quickly, thus reducing
train-up time.

Design documentation breaks the implementation into cohesive pieces that can be coded and
tested concurrently. Interface definition is especially important, for experience shows that it is
here where many integration problems arise. Good design documentation, including the design
rationale and in-code comments, is vital to both the maintainer and to a development team
member who must complete or modify a module designed by someone else. Poor design
documentation makes maintenance expensive and can lead to re-implementation of a poorly
understood piece of code.

If the maintainer is different from the developer, additional effort may be devoted to design
documentation. In addition to documentation of the as-built design, maintenance
documentation should include design rules, naming conventions, coding standards, test cases,
use of test tools, etc. Inadequate maintenance documentation can make this activity quite
costly.

4. Test documentation, including test plans, test requirements, design of the test environment,
test cases, test data descriptions, test procedures, anomaly reports, and test summary status
reports. Development testing is based on documented design requirements. A test plan
identifies test preparation work that can proceed in parallel with development. It also identifies

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

56

the required testing environment, permitting timely acquisition of hardware and software, and
stimulates a reexamination of requirements to ensure they are verifiable. Inadequate test
planning risks delayed initiation of system test, leading to schedule compression, late delivery,
or delivery of a product that does not meet customer expectations.

Software test reports are necessary to ensure that discovered anomalies/defects can be
reproduced independently by the assigned developer. Analysis of test reports can also baseline
performance and help spot defects in the design and implementation process. Documentation
of individual anomalies is essential if someone else has to fix them; summary reports of test
status help management gauge build stability and thus, readiness to deliver or to proceed to
the next development phase.

5. User documentation, including a user ’s guide, an installation and operations manual, and a
release description document, or transfer agreement that documents as-delivered capabilities,
unresolved problems, and recommended work-arounds. A user’s guide and operator ’s manual
are essential if someone other than the developer will use the system. Inadequate user
documentation constrains the productive employment of the system, leading to costly train-up
effort and ultimately to ineffective use of delivered capabilities. An inadequate release
description hampers the user in understanding what the delivered system can and cannot do,
and how to cope with known problems.

Exhibit B-1 identifies recommended documentation for classes A, B, and C of the four software
classes defined in Section 1.0 and repeated below. Class D software is excepted from the
requirements documented in the SDPD. However, some of the Class C requirements may be
useful in defining and implementing this fourth class of software. Note that a system or subsystem
can encompass software that falls in more than one category. In such a case, it is the responsibility
of the project/task manager to identify the software elements that fall in each class and to tailor
the development plan accordingly.

Class A: Mission-Critica l: Flight or ground software that is necessary either to assure mission
success, or if it does not function as specified, that could cause loss of spacecraft,
seriously degrade the attainment of primary mission objectives, or cause injury to
humans or flight hardware. Examples of serious degradation of mission objectives
include loss of a mission-critical event, loss of science return from multiple
instruments, or loss of a large fraction of the engineering telemetry data.

Class B: Mission Support: Flight or ground software that is necessary for the science return
from a single (non-critical) instrument, or supports the timely generation of mission
sequences, or is used to process or analyze mission data, or other software for which a
defect could adversely impact attainment of some secondary mission objectives or
cause operational problems for which potential work-arounds exist. Examples of Class
B include software that supports pre-launch integration and test, mission data
processing and analysis, analysis software used in trend analysis and calibration of
flight engineering parameters, or software employed by the Network Operations and
Control Center (which is redundant with systems used at the tracking complexes).
Class B software must be developed carefully, but validation and verification effort is
generally less intensive than for Class A.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

57

Class C: Development Support: Software developed to explore a design concept; or support
software development functions, such as requirements management, design, test and
integration, configuration management, documentation, etc.; or perform engineering
data analysis. A defect in Class C software may cause rework but has no direct impact
on mission objectives or system safety. Class C software is often used by several
people in addition to the developer(s), and by its nature, can impact the quality of
delivered products. Documentation and review of Class C software should be tailored
to its intended use, with attention to long-term maintenance needs and to evolution of
a design prototype into operational flight or ground software. Note: Development
tools that can introduce critical defects in Class A or B software must be
regarded as belonging to the same class as the operational software.

Class D: Non-deliverable software developed to meet a research objective or support individual
engineering efforts. Generally, Class D software is intended for use only by the
individual who developed it.

Recommendations for Class A documentation refer to document outlines published in section 4.0
of the Level II standards from the JPL Software Management Standards Packag e (D-400 0).
Equally good outlines may be found in EIA/IEE E J-STD-01 6, Software Life Cycle Processe s.
Identification of separate documents has no implications for packaging; this is up to the
project/task, as well as decisions on format and media. On-line documentation is encouraged,
taking maximum advantage of intermediate engineering products.

Documentation must be tailored to the needs of each development, keeping in mind that the
ultimate objective is communication of a body of information to a particular audience. Typically,
the readers of a document are not those who wrote it. Thus, the amount of detail provided, and
the effort spent on organizing the information to make it easily assimilated, are judgments to be
carefully made. Those responsible for designing project/task documentation must balance the
effort expended against the risk of incomplete communication and the probable cost impacts. JPL
D-1202 0, a D-400 0 planning guide for documentation, describes how selected JPL projects have
designed software documentation to strike this balance.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

58

EXHIBIT B-1: Recommended Product Documentation, by Software Class

Note: Documents from D-400 0 are cited to provide a common nomenclature and identify content. EIA/IEE E J-STD-016,
Software Life Cycle Processes , has excellent examples of document content also. Identification of separate documents has no
implications for packaging; this is up to the project/task, as well as decisions on format and media. On-line documentation is
encouraged, taking maximum advantage of intermediate engineering products.

Document Type Class A — Mission Critical Class B — Mission Support Class C — Development Support
Development Plan All D-400 0 topics; emphasizes

build planning, test & integration,
configuration mgt., reviews,
independent QA

Similar to Class A, tailored to task
complexity and needs for reviews
and quality assurance

Product definition (objectives.),
task breakdown, schedule with
review milestones

Requirements Testable Software Requirements
(SRD) traceable to user needs;
Interface Specification (SIS-1);
change orders documented

Testable requirements based on
user needs; interface spec.; design
concept or operational concept
may replace user need

Written requirements detailed
enough to document agreement
with customer and guide
developers; changes documented

Design Functional Design (FDD)
Detailed Design (SSD-1,2)
Interface Design (SIS-2)
In-code documentation, adhering
to design/coding standards

Similar to Class A, tailored to
needs of development and post-
delivery support; build natural
work products into delivered
documentation

Functional design/architecture
plus design details required by a
new developer; commented code
remains essential

Test Test Plan and Requirements
(STP-1), Procedures (STP-2), and
Reports (STP-3); procedures
must define configuration to
ensure repeatability

Similar to Class A, tailored to
software complexity and task
needs; consider testing needs of
maintainer

Integration & test plan may be a
part of build plan for complex
applications; retrievable test
procedure; optional anomaly
reports

User User’s Guide/Software Operator’s
Manual (UG/SOM)
Transfer Agreement/Release
Description Document (RDD)

User documentation (may be
embedded); installation and
operations guide; RDD includes
liens and work-arounds

User and maintenance
documentation as required

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

59

APPENDIX C

TRACE OF ISO 900 1 REQUIREMENTS TO THE
SOFTWARE DEVELOPMENT PROCESS DESCRIPTION

ISO 900 1 Requirement Response of Software Development Process
Descriptio n (SDPD)

4.1.1 Quality policy Software interpretation of JPL Quality Policy
(4.1)

4.1.2.1 Responsibility and authority of those
who manage, perform, and verify
work affecting quality to be
documented (4.1.2.1)

Project organization and technical interfaces to
be documented (5.4.1c)

4.1.2.2 Resource requirements Cost estimate/budget required (6.10.1)

4.1.2.3 Management representative Not applicable at this level

4.1.3 Management review Software development organizations to
participate in Lab-wide internal audits (4.3)

4.2.1, Documentation and impl ementation
4.2.2 of quality procedures

The SDPD documents quality procedures for
software, sets requirements for development
planning, and describes good development
practice. Tailoring of the SDPD requirements
to individual projects or tasks is the
responsibility of project/task managers and
those providing oversight of development.

4.2.3 Quality Planning Incorporated throughout SDPD requirements,
but with focus on development plan (5.4).
Section 5.5 emphasizes need for quality
planning.

4.3.1 Procedures for contract review

4.3.2 Review of contract for adequacy and
clarity of requirements; adequacy of
development resources

Commitment review to ensure that scope of
work is adequately defined, and adequate
resources are provided (5.2.1a-e)

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

60

4.3.3 Contract amendment . Mechanism to
alter scope of work, and changes to be
transferred to those concerned

Development plan to address requirements
changes and correction of post-delivery defects
(5.2.1b). Software requirements specification
subject to change control (5.3.4).
Requirements changes to be communicated to
affected parties (5.4.1g)

4.3.4 Records of contract reviews Commitment review findings to be
documented (5.2.2)

4.4.1 Documented procedures to control and
verify design

Design and development procedures are
documented throughout SDPD requirements.

4.4.2 Design and development plans that:
- describe activities
- assign responsibilities
- identify adequate personnel/resources
- provide for updating

Required development plan:
- identifies project life cycle (5.1a-c)
- defines scope of work and activities

(5.4.1b)
- includes a budget (6.10.1) and staffing plan

(5.4.1f)
- provides for updating as development

progresses (5.4.1l)

Requires plan for requirements, design, and
implementation activities (5.6.1, 5.7.1)

Requires plan for integration and test activities
(5.8.1)

Requires plan for delivery, installation, and
acceptance activities (5.9.1)

Requires plan for maintenance activities, if
within project scope (5.10.1)

4.4.3 Organizational and technical interfaces
to be defined

Project organization and technical interfaces to
be documented in development plan (5.4.1c)

4.4.4 All applicable design input
requirements:
- identified and documented
- reviewed to resolve incomplete,

conflicting, ambiguous statements
- revised to reflect contract review

results

Customer’s requirements to:
- be written (5.3.1)
- be reviewed to ensure adequate definition,

resolution of ambiguous or conflicting
requirements, , testability (5.3.3a-c)

- address commitment review concerns
(5.3.4)

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

61

4.4.5 Design output to:
- be documented to permit verification

and validation against input
requirements

- reference acceptance criteria
- identify characteristics crucial to safe

and proper function of product

Design documents to be reviewed
before release

Design to be documented and reviewed with
respect to requirements, acceptance criteria,
verifiability, and safety issues (5.6.2)

Requirements to be stated so as to permit
validation during acceptance tests (5.3.3c)

Design and implementation activities to be
associated with reviews tailored to project/task
needs (5.6.1, 5.7.1)

Development plan to document policy for
milestone and detailed technical reviews
(6.9.1)

Design to be reviewed prior to release (5.6.2)

4.4.6 Design review to be done at
appropriate points

Participants to include pertinent
designers and outside specialists, as
required

Review records to be maintained

Design and implementation activities to be
associated with reviews tailored to project/task
needs (5.6.1, 5.7.1)

Review policies and procedures to be
documented (6.9.1)

Review results and response to Requests for
Action to be maintained as quality records
(6.9.2)

4.4.7 Design verification to be performed at
appropriate points and results recorded

Reviews (or verification) policies and
procedures to be described in development
plan (6.9.1)

Test results to be maintained as quality records
(5.8.4c)

4.4.8 Design validation to ensure product
conforms to defined user needs and/or
requirements

Developer to validate product under
conditions similar to user’s application
environment (5.8.2)

Requirements to be stated so as to allow
validation during product acceptance (5.3.3c)

Acceptance test cases and criteria to be
prepared (5.9.1a)

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

62

4.4.9 Design changes to be documented,
reviewed and approved before
implementation

Documented change control procedures
required to document, review and approve
requirements and design changes (5.4.1g,h)

Quality records required for change
requests/orders (6.3.2a)

4.5.1 Documented procedures for document
and data control

Procedures for producing, reviewing,
approving and controlling documents (6.2.1b)

Procedures to identify documents to be subject
to configuration management (6.2.2a)

Documented change control procedures
required to document, review and approve
requirements and design changes (5.4.1g,h)

Documented configuration management
procedures required for deliverable data files
and documentation (6.1.1)

4.5.2 Documents reviewed and approved

Master list (or equivalent) used to
preclude use of invalid and/or obsolete
documents; must identify current
revision status, and be readily available

Controls to ensure:
- pertinent documentation available

where needed
- obsolete documents removed

promptly and archived as required

4.5.3 Document changes reviewed and
approved by those who did it initially

Nature of the change identified in the
document or attachment

Preparation of master document list (or
equivalent) to identify documentation status,
and preclude use of invalid or obsolete
documents (6.2.2b)

Responsibility for approving and releasing
documents, and promptly withdrawing
obsolete documents from use, to be identified
(6.2.2c)

Defined approach for ensuring master
document list (or equivalent) and documents
are readily available (6.2.2e)

Procedures to address directory/file
permissions and back-up policies where
document control is achieved through
electronic means (6.2.2f)

4.6.1 Documented procedures to ensure that
purchased product meets requirements

Developer to ensure purchased/subcontracted
product or service conforms to specified
requirements (6.6.3)

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

63

4.6.2 Evaluation of subcontractors.
Developer (or agent) to:
- select subcontractors on basis of

capability to meet requirements
- define controls on subcontracted

work
- maintain records of acceptable

subcontractors

JPL Procurement to make subcontractor
selection and maintain subcontractor records

Subcontract to address in-process verification
of subcontracted development

4.6.3 Purchasing documents to describe
clearly work to be done or article(s) to
be purchased

Developer to review and approve
purchasing documents before release

Purchase orders to clearly describe product or
service ordered; developer to review them for
adequacy prior to release (6.6.1)

4.6.4 Purchased product verification at
subcontractor’s site to be documented
in purchase order

Developer’s customer also entitled to
on-site subcontractor verification,
without relieving developer of
contractual responsibilities

Not required in SDPD, as location of product
verification is contingent on subcontract.
Guidance on Purchasing and Subcontracts
(6.6) directs developers to include such
language in a subcontract when applicable.

4.7 Documented procedures for control,
verification, maintenance, and storage of
customer-supplied product

Customer to be informed of unsuitable
items

Documented procedures required for
verification, storage, protection, and
maintenance of items (e.g., software,
hardware, data, specifications) supplied by
customer or designated third party (6.7.1)

4.8 Product identification and traceability .
Documented procedures for identifying
product during all stages of design,
production, delivery, and installation

Traceability of individual product or
batches required where appropriate;
documentation becomes part of quality
record.

Documented configuration management
procedures required for deliverables (code,
data files, documents) (6.1.1)

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

64

4.9 Process control. Production, installation,
and servicing processes to be planned to
ensure execution under controlled
conditions, to include:

- documented procedures
- use of suitable equipment and tools
- compliance with standa rds
- monitoring of process parameters and

product characteristics
- approval of processes and equipment
- criteria for workmanship
- equipment maintenance

When it is not feasible to test process
output, qualified operators are required

Personnel qualifications documented, and
records maintained for special processes

ISO 900 1, paragraph 4.9 largely refers to
replication of software products, but according
to ISO 9000- 3, also encompasses product
release issues (as follows)

Approach to back-up/archiving, security, and
virus protection to be documented (5.4.1i)

Plan for delivery and installation to address:
- delivery and installation logistics
- definition of developer’s role in supporting

transition to full operational use
- documentation to be delivered at installation

4.10.1 Documented inspection and test
procedures to verify requirements are
met.

Inspection and test records identified
in quality plans or procedures

Integration and test activities to be performed
in accord with test planning and specification
documentation (5.8.1)

Test records required by SDPD (5.8.4); quality
records to be identified in development plan
(6.3.1)

4.10.2 Receiving inspection and test .
Incoming product to be verified prior
to use, taking into account control
exercised by vendor. Traceability
required if released for production use
prior to verification

Criteria and/or procedures for accepting
subcontracted software to be addressed in
development subcontract (6.6.2c)

Documented procedures required to ensure
that product or service that is
purchased/subcontracted, or provided by a
separate development organization, conforms
to specified requirements (6.6.3)

4.10.3 In-process inspection and test to be
performed in accord with documented
procedures and completed prior to
product release; all inspections and
tests must be completed even if
product is prematurely released under
positive recall

Implementation activities to be guided by
plans and reviews (5.7.1)

Integration and test activities to be performed
in accordance with test planning and
specification documentation (5.8.1)

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

65

4.10.4 Final inspection and test to conform to
documented procedures and be
completed before product release to
verify that product meets requirements

Before delivery and acceptance, developer to
validate product (5.8.2)

Acceptance test cases and criteria to be
prepared (5.9.1a)

4.10.5 Inspection and test records required as
evidence; records to clearly show
whether product has passed or failed,
according to acceptance criteria;
inspection authority for product
release to be identified

Non-conforming product to be
handled in accord with 4.13.

Test results to be maintained as quality
records; test results to clearly indicate that
product has passed or failed. (5.8.4c)

Acceptance test cases and criteria to be
prepared (5.9.1a)

4.11.1 Documented procedures to control,
calibrate, and maintain inspection and
test equipment, including software.

Test hardware and software checked
to ensure they can verify product
acceptability

Technical data on test equipment to be
made available to customer, if required

4.11.2 Required control procedures
(primarily applicable to calibrating test
hardware)

All test tools verified prior to use (5.8.1f)

ISO 9000- 3 states that calibration is not
directly applicable to the developed software.

4.12 Product to be labeled to identify
clearly the inspection and test status
throughout production in order to
ensure that delivered product has been
adequately tested

Method of documenting test status and results
to be defined in plan (5.8.1d)

4.13.1 Documented procedures to ensure that
non-conforming product is prevented
from unintended use

Documented procedures required for
correcting defects (5.8.1g)

Documented configuration management
procedures required (6.1.1)

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

66

4.13.2 Responsibility for disposition of non-
conforming product defined

Non-conforming product to be
reworked, scrapped, or accepted by
concession with no repair; actual
condition to be noted at delivery

Repaired/reworked product to be re-
inspected

Documented procedures required for
correcting defects (5.8.1g)

Missing functionality in delivered software to
be documented (5.8.3)

Anomaly reports (or problem/failure reports)
to be maintained as quality record (5.8.4a)

4.14.1 Documented procedures for taking
corrective and preventive action,
including consequent changes in
procedures.

See SDPD responses to 4.14.2 and 4.14.3.

4.14.2 Scope of corrective action procedures
(for individual product or project):
- handling customer complaints
- investigation of defect root causes
- determination of corrective action,
including controls to ensure
effectiveness

Documented procedures required for
correcting defects (5.8.1g)

Documented procedures required for
documenting and resolving problems found
following installation — whether during
acceptance testing or delivery (5.9.1b)

4.14.3 Scope of preventive action procedures
(for development process)
- analysis of quality records across
functions and products
- determination of preventive actions,
including controls to ensure
effectiveness
- inform management representative

Development plan to define responsibilities
and associated procedures for correcting
recurring problems in the development process
for a project/task (5.4.1j)

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Table of Contents

67

4.15 Documented procedures for handling,
storage, packaging, preservation, and
delivery

Plan required for delivery and installation
(5.9.1)

Approach for handling virus protection of
software designated for delivery, during
storage and electronic transmission (5.9.1i)

System administration plan to include approach
to back-up/archiving, security, and virus
protection (5.4.1i)

Plan to address storage of archived software
media to prevent deterioration and facilitate
disaster recovery (5.9.1h)

4.16 Documented procedures required to
identify, collect, index, and store quality
records that demonstrate the
effectiveness of the quality system

Pertinent subcontractor records to be
included

Records to be legible and stored in a
fashion to be readily retrievable,
protected against loss, and provided to
a customer, as agreed

Record retention times to be specified

Development plan to identify project/task
quality records and describe procedures for
collection, indexing, filing, storage,
maintenance, and disposition (6.3.1)

Pertinent subcontractor records to be included
(6.6.2b)

Quality records to be stored in environment
conducive to prevention of deterioration and
loss, and in a manner so as to be readily
retrievable (6.3.4)

Retention times for quality records to be
established in accord with program office
directives, considering needs for post-delivery
maintenance. (6.3.3)

Minimum set of quality records identified
(6.3.2)

4.17 Documented procedures required for
plann ing and implementing internal
quality audits to assess effectiveness of
the quality system

500 organization’s responsibility to establish
procedures. Software Development Process
Owner to participate.

Downloaded from http://www.everyspec.com

JPL D-15378, Rev. D Top of Document

68

4.18 Documented procedures required for
identifying and satisfying training needs

Task assignments to be based on education,
training, and experience

Training records to be maintained

Scope and content of training to be provided to
project personnel (e.g., development team, user,
maintainer) to be addressed in plan (6.8.1)

JPL line organization responsible for task assignments,
for maintaining training records, and identifying future
training needs

4.19 Documented procedures required for
servicing when this is a requirement

Maintenance plan required if JPL is tasked to
perform this function. (5.10.1)

4.20.1 Identification of the need for statistical
techniques for controlling and verifying both
process capability and product characteristics

4.20.2 Documented procedures required to implement
and control application of statistical techniques

Metrics, and associated procedures, to be
identified in the development plan, and tailored to
project/task needs (6.4.1)

Paper copies of this document may not be current and should not be relied on for official
purposes. The current version is in the DMIE Information System at http://dmie.

Downloaded from http://www.everyspec.com

	Cover Page
	Change History
	Source
	Table of Contents
	Abstract of Requirements
	1. Scope and Objectives - Applicability
	1.1 Intended Use and Compliance
	1.2 Applicability to R&D Tasks
	1.3 Synopsis of SDPD Requirements
	1.4 Overview of Software Development Process Activities
	1.5 Relationship to Other JPL Processes and Domains
	1.6 SDPD Revisions
	1.7 Notations

	2. References
	3. Definitions and Acronyms
	4. Quality System -- Framework
	4.1 Software Quality Policy
	4.2 Roles and Responsibilities
	4.3 Internal Audit

	5. Quality System --Life-Cycle Activities
	5.1 Software Methodology
	5.2 Contract Review
	5.3 Customer's Requirements Specification
	5.4 Development Planning
	5.5 Quality Planning
	5.6 Design
	5.7 Implementation
	5.8 Testing and Validation
	5.9 Delivery, Installation, and Acceptance
	5.10 Maintenance
	6. Requirements — Supporting Activities
	6.1 Configuration Management
	6.2 Documentation and Document Control
	6.3 Quality Records
	6.4 Measurement
	6.5 Tools and Techniques
	6.6 Purchasing and Subcontracts
	6.7 Customer-Supplied Product / Reused Software
	6.8 Training
	6.9 Reviews
	6.10 Cost Estimation
	Appendix A --Development Plan Template
	Appendix B --Reccommended Product Documentation
	Appendix C --Trace of ISO 9001 Requirements to the Software Development Process Description

