Software Fault Analysis Handbook

 May 2, 2005

JPL D-28444, Rev. # 0
[image: image19.emf]
Software Fault Analysis Handbook (Software Fault Tree Analysis (SFTA) & Software Failure Modes, Effects and Criticality Analysis (SFMECA))

Revision Number: 1
Prepared by:
Mori Khorrami

Document Custodian:
Pam Francel
, Manager, SQI PPD Team

Approved by:
Chi Lin, Manager, SQI Project
[image: image20.wmf]
May 2, 2005

Jet Propulsion Laboratory

Pasadena, California

Document Change Log

	Date
	Version
	Change Description
	Author

	09/10/2004
	0
	Initial version
	M. Khorrami

	02/25/2005
	1
	Incorporation of comments from R. Lutz
	M. Khorrami

	05/02/2005
	2
	Conversion to SQI PPD document format
	M. Khorrami

Acknowledgments
The following provided thoughtful and constructive feedback during the review process:

Martin Feather, John Hackney, David Hermsen, Gerard Holzmann, Michael Humfreville, Robyn Lutz and Jeane Stipanuk
Table of Contents
61.0
Introduction

61.1
Purpose

61.2
Scope

71.3
Method

71.4
Notation

71.5
Controlling Documents

71.6
Applicable Documents

81.7
Document Maintenance

92.0
Overview and Preparation

92.1
Software Fault Analysis Overview

102.1.1.
Software Fault Tree Analysis (SFTA)

102.1.2.
Software Failure Modes, Effects and Criticality Analysis

(SFMECA)

132.2
Preparing for Software Fault Analysis

163.0
Software Fault Tree Analysis Process

173.1
Step 1 – Identify the Undesired Event (“Top” Event)

173.2
Step 2 – Construct the Software Fault Tree

183.3
Step 3 – Determine the Impact of Faults/Risks

193.4
Step 4 – Review and Reconcile Analysis

203.5
Step 5 – Recommend Corrective Actions

213.6 Step 6 – Report, Communicate, and Maintain

224.
Software Failure Modes, Effects and Criticality Analysis Process

244.1 Step 1 – Define and List the Possible Functional Failures

244.2
Step 2 – List Potential Effects of Each of the Software Failures

244.3
Step 3 – Assign a Criticality Rating for each Effect

264.4
Step 4 – Assign a Probability or likelihood to each Failure Mode

264.5
Step 5 – Identify any Concerns or Possibly Vulnerable Areas

274.6
Step 6 – Determine the Impact of Failure

284.7 Step 7 – Prioritize the Failure Modes and Document the Analysis

284.8 Step 8 – Review and Reconcile the SFMECA

294.9
Step 9 – Identify Corrective Actions to Eliminate or Reduce the High Probability Failure Modes

304.10
Step 10 – Report, Communicate and Maintain

31Appendix A. Acronyms

32Appendix B. GLOSSARY

34Appendix C. Software Fault Tree Analysis – an Example

35C.1
Step 1 – Identify the Undesired Event (“Top” Event)

35C.2
Step 2 – Construct the Software Fault Tree

37C.3
Step 3 – Determine the Impact of Faults/Risks

37C.4
Step 4 – Review and Reconcile Analysis

37C.5
Step 5 – Recommend Corrective Actions

38C.6
Step 6 – Report, Communicate, and Maintain

39Appendix D. Software Failure Modes, Effects and Criticality Analysis – an Example

40D.1 Step 1 – Define and List the Possible Functional Failures

40D.2 Step 2 – List Potential Effects of each of the Software Failures

41D.3
 Step 3 – Assign a Criticality Rating for each Effect

42D.4
 Step 4 – Assign a Probability to each Failure Mode

42D.5
 Step 5 – Identify any Concerns or Possibly Vulnerable Areas

43D.6 Step 6 – Determine the Impact of Failure

43D.7
 Step 7 – Prioritize the Failure Modes and Document the Analysis

44D.8
 Step 8 – Review and Reconcile the SFMECA Analysis

45D.9
 Step 9 – Identify Corrective Actions to Eliminate or Reduce the High Probability Failure Modes

46D.10
 Step 10 – Report, Communicate and Maintain

47Appendix E. SYMBOLS AND BUILDING BLOCKS FOR A SOFTWARE FAULT TREE

53Appendix F. BIBLIOGRAPHY AND REFERENCES

54Appendix G. OTHER Software Fault analysis, TECHNIQUES AND SOFTWARE TOOLS

54G.1 Inductive Method

54G.2 Deductive Method

55G.3 Software Analysis Approaches

55G.3.1
 Software Cause and Effect Diagram (Fishbone Diagram)

57G.3.2
 Software Preliminary Hazard Analysis (SPHA)

58G.3.3
 Software Petri-Nets

60G.3.4
 Formal Methods

61G.3.5
 Software Dynamic Flowgraph Analysis

65G.4 Software Analysis Tools

68Appendix H. COMMON SOFTWARE FailureS

Table of Figures and Tables

Figures

Figure 2-1 Overview of Analysis Elements
9
Figure 2-2 Example of Excerpt from a Fault Tree Analysis
12
36Figure C-1 Example Fault Tree Analysis

56Figure G-1 Example Cause and Effect Diagram (Fishbone Diagram)

57Figure G-2 Example Cause and Effect Diagram (Network being down)

Figure G-3 Example Preliminary Hazard Analysis
58
60Figure G-4 Example Petri-Net Graph

62Figure G-5 Example DFM Application to a System

62Figure G-6 Example DFM System Model

64Figure G-7 Example of DFM Analysis

Tables
13Table 2-1. Excerpt from SFMECA Table

16Table 3-1. Overview of Software Fault Tree Analysis Steps

Table 3-2. Impact of Faults
19
23Table 4-1. Overview of Software Failure Modes, Effects and Criticality Analysis Steps

26Table 4-2. Probability Rating

35Table C-1 Fault Tree Analysis Steps

38Table C-2 Faults Summary and recommendations

40Table D-1 SFMECA Steps

41Table D-2 Effects of Software Failures

41Table D-3 Criticality Assignment for each effect

42Table D-4 Probability Assignment for each failure

43Table D-5 Impact of each failure

44Table D-6 Priority

46Table D-7 Corrective Actions

68Table H-1 Common Software Failure Modes

1.0 Introductiontc " INTRODUCTION" \l 1
1.1 Purposetc " IDENTIFICATION" \l 1
The purpose of this document is to describe a standard process for use in performing Software Fault Tree Analysis (SFTA) and Software Failure Modes, Effects and Criticality Analysis (SFMECA) at JPL. The use of this document is not required and is meant only to aid in the creation and implementation of a standard project software analysis process. This document is intended to provide guidance for doing analyses for development of both flight and ground software. These mission and safety critical software analyses are techniques for validation of the software and hardware requirements and design through a systematic evaluation of potential failures and their impacts. The benefit of using these techniques is more reliable performance of the software through improved requirements, less re-design, mitigation for potential problems, and plans for corrective actions prior to failures.

tc \l 1 "1.2 Overview"
1.2 Scope

This document describes the recommended software fault analysis steps to be used for JPL software projects, ranging from a completely new software development to reuse and modification of existing software. The analysis should consider both new development and inherited software, since the techniques focus on how the system (new or old) will function in the context and environment of the current mission. The steps and methods described in this document should be used by anyone who has to design, implement and deliver software for JPL-developed projects. At JPL, this is typically a software cognizant engineer, software system engineer, or software lead engineer. Other people (such as system and subsystem engineers, software quality assurance engineer) may also perform these analyses but it is more effective if an engineer who supports the project and is already familiar with the technical aspects of the project to does the analyses rather than someone who needs education on the details of the project. Projects decide what analyses best fit their particular situations.

Software analysis can be used to reduce risks, the number of failure modes, minimize the effect of the remaining failure modes, and search for unanticipated failure modes. Software fault analysis can be a precursor to software risk management.

This document covers all the involved activities and any support required to produce a Software Fault Tree Analysis and a Software Failure Modes, Effects and Criticality Analysis from the requirements analysis phase through completion of the system test phase of the software life-cycle. For typical flight software, this consists of activities up to launch, and for ground software, this usually consists of activities up to deployment. The analysis is most cost-effective when performed early in a project life cycle and updated as the project develops.

1.3 Method

This document describes two different approaches associated with the analysis of software – a deductive approach and an inductive approach. These techniques may be used during the software development life-cycle from early phase through completion of system testing.

The deductive approach is based on reasoning from the general to the specific. For example, we can postulate that a system has failed in a certain way, and we attempt to find out what modes of operation or what sort of behavior contributed to that failure. This approach is used to create the Software Fault Tree Analysis (SFTA).

The inductive approach is based on reasoning from individual cases to a general conclusion. For example, we can postulate a particular fault or triggering condition and try to understand the effect of that fault or condition on a system as a whole. This is the approach employed by the Software Failure Mode Effects and Criticality Analysis (SFMECA).

1.4 Notation

References to applicable documents are in brackets, e.g., [Leveson et al, 1990]. The complete reference may be found in the Bibliography, Appendix E.

1.5 Controlling Documents tc " DOCUMENT SCOPE" \l 1
	Document Number
	Document Title, Author, Revision Number, Date

	JPL Rules! DocID 57653
	Software Development Requirements

	JPL Rules! DocID 43913
	Design, Verification/Validation and Operations Principles for Flight Systems (FPS);

	JPL Rules! DocID 58032
	Flight Project Practices (FPP)

1.6 xe "GSFC"Applicable Documents

	Document Number
	Document Title, Author, Revision Number, Date

	JPL Rules! DocID 35507
	Risk Management Handbook for JPL Projects

	JPL Rules! DocID 62332
	http://rules.jpl.nasa.gov/cgi/doc-gw.pl?DocID=62332, Software Cost Estimation Handbook

	JPL Rules! DocID 34904
	standards.jpl.nasa.gov/contractor/d5703-2.html, Reliability Analyses for Flight Hardware in Design

	JPL D-26277
	Software Process Tailoring Guide, http://software/

	JPL D-28186
	Risk Management Handbook http://software/

	JPL Rules! DocID 68613
	Software Requirements Development and Management Guide, http://software/

	NASA-GB-8719.13
	NASA Software Safety Guidebook

1.7 Document Maintenance

Future versions of this document will incorporate new methods, ideas, and more examples from actual software projects as they become available at JPL. This document will also be revised as appropriate if techniques change. Contact your organization, as well as the SQI Project (http://software), for available Project data on the subject. Proposed modifications to this document should be submitted to SQI’s PPD Team for inclusion herein.
2.0 Overview and Preparation

For this handbook a system will be viewed as a collection of components operating in an environment. The system generally containing three elements: hardware, software, and one or more human operators (e.g., ground controllers, test conductors, etc.) with some interactions. The hardware/software interfaces and interactions are not considered to be a separate component but part of these components, and they play a role in system/subsystem analysis.

Software fault analyses are a subset of the system fault analyses. A system fault analysis is a prerequisite to performing analysis on software. Software is a SUBSET of the complete system (or sub-system) and as such must usually be considered in a systems context.
Therefore, throughout this handbook, software is considered to be a subsystem or a subset within a larger system. A complete system-level fault analysis of the requirements flow-down, system design, implementation, and subsystem and component analyses should be completed before software can be analyzed. Figure 2.1 depicts an overview of analysis elements and shows the relationship of system level to subsystem level analysis.

[image: image1.wmf]Causes

FTA

SFTA

Failure Modes

Fault Coverage Matrix

FMEA

Effects

Mitigation/

Handling

SFMEA

Figure 2.1 Overview of Analysis Elements

2.1 xe "GSFC" Software Fault Analysis Overview

During the past ten to fifteen years, the importance of software in achieving JPL mission goals has dramatically increased, and this trend is expected to accelerate in the coming years. As software’s importance in JPL missions has grown, the focus on software’s overall performance both technically and programmatically has also increased.

The design of a flight mission involves many steps which ultimately result in reliable performance. These steps require a selective processes program, an intense system engineering activity, defensive design practices or designing in protection against faults by the software developers. Additionally, non-advocacy design reviews by technical peers, thorough testing at all levels of hardware and software, and design validation by analysis are required. The software requirements and design validation by analysis is the subject of this document. Ideally, to be effective, this process is performed as early as possible during the requirements phase and before design and implementation. However, most projects start this process in design phase. The basic design philosophy is to develop systems that not only have hardware redundancy, but also have partial survival capabilities under failure conditions of the primary hardware or its operating software.

The software fault analyses techniques described in this handbook may be used to reduce the total risk to the project by identifying potential problem areas and providing solutions and workarounds to prevent failures.

2.1.1.
Software Fault Tree Analysis

Fault Tree Analysis (FTA) was originally developed in the 1960's for safety analysis of the Minuteman missile system. It has become one of the most widely used safety and hazard analysis techniques. For a complete system-wide analysis, any Software Fault Tree Analysis (SFTA) must be preceded by a fault/safety analysis of the entire system. However, for cost-constrained projects it is still beneficial to perform SFTA on subsystems of concern where no system-level fault/safety analysis exists. The information in the system analysis identifies those undesired events in the system that can cause serious consequences. It should be noted that in complex systems not all potential failures could be predetermined. In this respect the technique does not claim to produce consistent results irrespective of the analyst. It is dependent on the judgment of the individual as to when to stop the process and which faults to analyze.

An SFTA is a deductive, top-down method of analyzing system design and performance. It involves specifying a top event to analyze (such as an impact), followed by identifying all of the associated elements in the system that could cause that top event to occur. Software Fault Tree Analysis is logical, structured processes that can help identify potential causes of system failure before the failures actually occur. For detailed SFTA steps please refer to Section 3 of this handbook. Figure 2.2 provides an example of Excerpt from a high-level Fault Tree Analysis [Leveson and Harvey, 1983].

2.1.2.
Software Failure Modes, Effects and Criticality Analysis (SFMECA)

The concept of a SFMECA technique is based upon similar techniques used on hardware designs. There are a couple of differences between the hardware and software FMECA. One in particular is that unlike hardware, there are no piece part failure rates for software. The other major difference is that software failures tend to not have any predictability. Software FMECA determines the software failure modes that are likely to cause failure conditions. Software FMECA is useful when designing or testing the error handling part of the software. Software design reviews are more effective when the types of failure modes that are most likely to occur are known in advance. All software failure modes are due to requirements, design, coding, maintenance, system interactions or external root causes. The proposed SFMECA technique is used to examine mission critical software or safety critical software in flight and ground projects.

[image: image2.wmf]Spacecraft Spins

Too Fast

Engine on and at

Max. Speed

Spinning

at Max.

Rate

Booms Deploy

<1/2 Full Length

Motor

Failure

Software

Commands

Motor Off

Propulsion On

Valve

Stuck

Open

Software

Commands

Valve Open

AND

AND

OR

OR

Figure 2.2. Example of Excerpt from a Fault Tree Analysis
SFMECA is an inductive method for enhancing software reliability through independent design analysis and validation. An SFMECA is typically performed as part of the design validation process to analyze the ways in which software might fail to meet its functional requirements and the consequences of each failure mode. The analysis is sometimes characterized as consisting of two sub-analyses, the first being the software failure modes, and effects analysis (SFMEA), and the second, the Criticality Analysis (CA). The SFMEA addresses all postulated failure modes in software and the resultant effect on its operation. The CA ranks each postulated failure mode according to the criticality of the effect on software/system operation and the probability of its occurrence. For detailed SFMECA steps please refer to Section 4 of this handbook. Table 2.1 provides an example of a simple SFMECA.

Table 2.1. Excerpt from SFMECA Table
	Data Item
	Failure Mode
	Failure Description
	System/Software Effect
	Criticality

	Heater ON
	Timing wrong
	Heater ON too early
	Batteries can't support
	Low

	Heater ON
	Timing wrong
	Heater ON too late
	Experiment delayed
	Low

	Heater OFF
	Timing wrong
	Heater OFF too early
	Science data lost
	Low

	Heater OFF
	Timing wrong
	Heater OFF too late
	Energy allocation exceeded
	Low

2.2 Preparing for Software Fault Analysis

The following activities will help to establish a software fault analysis strategy and to set up a process for performing the analysis.

1.
Get familiar with the Basic Building Blocks of Software Analysis

One needs to be familiar with the symbols and building blocks that are used to construct a Software Fault Tree (SFT). These are provided in Appendix E. Also, familiarity with the format of the table for Software Failure Modes, and Effects Analysis is required prior to performing the analysis task. Appendix E provides details of a SFMECA table.

2.
Understand the Intended Mission of the Software and Its Operations

The purpose of this activity is to understand the intended use of the software and its operational requirements for the mission. It helps to identify the characteristics of the project in terms of complexity, software criticality and project risks. In the process of learning and reviewing the software’s intended mission and its operations, it is very useful to identify some normal operational scenarios. This helps one to start thinking about possible undesired states or events for the project.

3.
Gather and Analyze Software Functional and Operational Requirements

The purpose of this activity is to get information on the functional and operational software requirements of the system for which the fault analysis is performed and to analyze that information. One must be able to describe the normal operation of the (sub)system or functions to be performed by the software modules (program set). This description is based on the requirements and design documentation, the analyst's understanding of the system, and additional documents provided by the project personnel, as needed. Once the software requirements are gathered, the analyst must analyze and decompose the software functional requirements and identify technical and programmatic constraints and requirements that were included in the software requirements and design. Analyze and decompose the requirements as follows:

a. Analyze and decompose the software functional requirements to the lowest level of detail possible. If all of the requirements are not known, then the refinement will be based on the requirements that are known. If an incremental development strategy is used, then the refinement will be based on the requirements that have been defined for each increment. If needed, the Software Requirements Document (SRD) should be updated with the feedback from this process (identified issues and/or Engineering Change Requests (ECRs) created to change the existing requirements). For more information on software requirements please refer to Software Requirements Development and Management Guide (http://software).

b. Analyze and understand the software physical architecture hierarchy based on the functional requirements and architectural design. Understand the architecture in terms of software components to be developed. Decompose each component to the lowest level function possible.

c. Analyze project and software plans to identify programmatic constraints and requirements including imposed requirements, design constraints, margins, and make/buy decisions.

4.
Brainstorm for the Potential Faults and Failure Modes

The purpose of this activity is to perform a brainstorming session to get ideas on potential faults and failure modes. Brainstorming is the name given to a technique when a group of people meets to generate new ideas around a specific area of interest. Using rules, which remove inhibitions, people are able to think more freely and move into new areas of thought and so create numerous new potential faults and failure modes. The participants suggest ideas as they occur to them and then build on the ideas raised by others. All the ideas are recorded and are not criticized no matter how remote or invalid a suggestion may sound. All of the ideas with regards to faults and/or failure modes are evaluated only after the brainstorming is completed. Brainstorming makes the generation of new ideas for the potential failure modes easy and is a tried-and-tested process. The rules that must be followed are listed below:

· No criticism of ideas;

· Go for large quantities of ideas (quantity counts);

· Build on each others’ ideas;

· Encourage wild and exaggerated ideas;

· Every person and every idea has equal worth.
A SFMECA is usually performed using a set of generic guidewords or generic failure modes to structure the discussion and investigation of failure modes. For example, a generic failure mode for data input is “Timing Wrong: data arrives too early or too late.” Lists of guidewords and generic failure modes are provided in [Leveson, 1995] and [Lutz and Woodhouse, 1997].
Once this process is finished, go through the results and begin evaluating the recorded information. Some initial qualities to look for when examining the responses include looking for any faults or failure modes that are repeated or are similar. Then, group faults and/or failure mode categories and concepts together and eliminate cases that definitely do not fit.

Now that a manageable and narrowed list is available, one can use it if it is a small set or discuss the remaining cases as a group to develop a smaller set.

For detailed information on brainstorming technique please refer to “Brainstorming: how to create successful ideas,” by Charles Clark.
3.0 Software Fault Tree Analysis Process
The purpose of the Software Fault Tree Analysis (SFTA) is to identify potential software requirements deficiencies or design failures. This section provides a step-by-step detail of activities needed to perform the Software Fault Tree Analysis (SFTA). The SFTA process includes a number of steps summarized in Table 3.1 below. Although the steps may be performed in a different order, these steps will be discussed in the order that the steps are numbered. The SFTA process discussed in the following subsections describes the steps for developing an analysis in an early software design phase and subsequently tracking and refining those analyses throughout the life of the project. The construction of an SFTA requires only one “top event.” However, if there is more than one top event identified for the project (assuming that they are all valid scenarios) then for each top event a separate software fault tree must be constructed.

Table 3.1 gives a brief description of the SFTA steps. Projects define which personnel are responsible for the activities in the steps. The participants should have experience with similar software and development environments.

 Table 3.1. Overview of Software Fault Tree Analysis Steps
	 Action
	 Description
	 Responsibility
	 Output Summary

	Step 1: Identify the Undesired Event (“Top” Event)
	Identify and establish undesired state or event and describe the possible functional failures of the (sub) system
	Software system engineer, Software Cognizant engineer, Analyst
	· Identification of undesired event (“top” event)

	Step 2: Construct the Software Fault Tree
	Follow the basic rules to construct a software fault tree
	Software Cognizant engineer, Analyst
	· Software Fault Tree

	Step 3: Determine the Impact of Faults/Risks
	Identify the potential impacts
	Software System engineer, Analyst
	· Impact of faults

	Step 4: Review and Reconcile Analysis
	Review and validate the model
	Software System engineer, Software cognizant engineer, or an Independent Analyst
	· Review package

	Step 5: Recommend Corrective Actions
	Propose corrective actions for the concerns or possibly vulnerable areas
	Software System engineer, analyst
	· Recommended corrective actions

	Step 6: Report, Communicate, and Maintain
	Report the findings to the project and communicate with the development team
	Software cognizant engineer, Analyst
	· Analysis Review report

· Prepared report and maintained model

3.1
Step 1 – Identify the Undesired Event (“Top” Event)

The purpose of this step is to establish possible undesired states or events and describe the possible functional failures of the (sub)system or a function. The information needed for this step is available in the requirements or design documentation and/or may be obtained from conversations with Project personnel as required during the preparation phase. Using the list provided by brainstorming, rigorous fault conditions and undesired events definitions must be established for the system, subsystem, and all lower levels. This technique is useless if one starts with the overly generalized event such as "system fails". A more specific failure has to be the starting point for the analysis. Once these undesired events are identified the analyst should pick the most likely scenario as the “top” event for the SFTA.

The output of this step is:

· Identification of undesired event (“top” event)

3.2
Step 2 – Construct the Software Fault Tree

The purpose of this step is to follow the basic activities to build a successful fault tree. A successful fault tree analysis relies on a set of rules and on the clear understanding of the system by the analyst. The SFT is a model and any model’s fidelity and performance depends on the experience of the analyst and his/her understanding of the overall system.

The (sub)system fault tree is expanded from the specified (sub)system level failure to the software interface level where we have identified the software outputs or lack of outputs that can adversely affect (sub)system operation. At this stage the analysis begins to take into account the behavior specific to the software. The top event or hazard is the root of the software fault tree and its leaves are the necessary preconditions for the event to occur.

The following activities are necessary to construct an SFTA:

· Describe exactly what the fault is and when it occurs for each event box.
This can be viewed as the “what and when” rule for the event box. It may take more than just a simple statement to describe the situation but it has to be precise so that it is understood.

· Identify whether the fault is in a component or it is a system fault.
It is important to be able to answer questions such as: Is this fault due to a component failure? Or are there other subsystems that are responsible for this fault? Depending on the responses, one can make a distinction between component failure or (sub)system faults.

· Assess the role of each component on the fault and its effects.
If a component propagates the fault without affecting it then that particular component functions normally and as expected. This is a good assumption to make if the said component plays no role in causing that fault. Otherwise, an AND situation exists in the system and the model must take that into consideration.

· Define all inputs to the logical gates prior to any analysis of any of them.
This is a simple rule that is obvious in that any gate must be complete for a methodical analysis.

· Identify all logical gate inputs as events that cause a faulty condition or contribute to a function that may cause a faulty event.

· Do not connect gates directly to other gates.

The output of this step is:

· Software Fault Tree

3.3
Step 3 – Determine the Impact of Faults/Risks

The purpose of this step is to identify the impacts of the faults. A critical issue is to be able to distinguish risks from problems. There is an important distinction that should be made and used to structure the impacts. Risks represent the potential for future problems and have resulted in no impacts. Impacts would only result if the risk transitions to a problem that is not successfully mitigated. Problems are risks which have occurred or which have not been successfully mitigated and the impacts are real. For software risk management please refer to the SQI Software Risk Management Handbook available at http://software. Use Table 3-2, extracted from “Reliability Analyses for Flight Hardware in Design (JPL D-5703)” to identify the impact of faults/risks:
	Consequence->

Impact
	Very Low

(1)
	Low

(2)
	Medium

(3)
	High

(4)
	Very High

(5)

Table 3.2. Impact of Faults
	Technical
	Minimum or no impact to mission success criteria or margins
	Minor impact to mission success criteria but can be handled within the established margins
	Moderate impact to mission success criteria but can be handled within the established margins
	Major impact to mission success criteria, threatens margin
	Loss of life, mission, spacecraft, or can’t meet the minimum mission criteria

	Schedule
	Minimal; little impact to schedule reserve; no impact to critical path
	Minor; can be handled within schedule reserve; no impact to critical path
	Moderate; Impact to critical path, but can be handled within schedule reserve; no impact to milestones
	High; significant impact to critical path and can’t meet established lower level milestone
	Very high; major impact to critical path and can’t meet major milestone

	Cost (SW budget)
	< 2%
	2-5%
	5-7%
	7-10%
	>10%

The output of this step is as follows:

· Impact of faults

3.4
Step 4 – Review and Reconcile Analysis

The purpose of this step is to review and validate the SFTA model. This review is an independent evaluation of the SFTA and its work products by a group of knowledgeable individuals (or an individual depending on the size of the task) familiar with the (sub)system. The review may be a peer-review or a formal review depending on the criticality of the mission and/or size of the (sub)system under analysis. The idea is to review the SFTA for consistency and also validation of the model to represent the actual (sub)system. Analysis review guidelines are provided in the analysis sections and in the Software Reviews Handbook (see http://software) to assist the analysis reviewer(s) and the originator. The checklist for the reviewer gives the minimum set of questions that need to be addressed in the review. The experienced originator usually has the knowledge of what the reviewer will be looking for in the analysis. Therefore, the information can be provided in the initial documentation of the analysis rather than as a back-up material during the review process. As an example, the originator must be prepared for the following questions:

a) Does the configuration of the system analyzed correspond to the flight/deployed configuration? If not, the originator should provide justification of the applicability of the analysis to the flight/deployed configuration within the analysis documentation package.

b) Is the basic analysis package, including the following elements, complete and adequately cited in the analyses?

· Functional and logical block diagrams of the system (SFTA from step 3);

· Results summary and conclusions;

· Impacts of faults/risks.

c) What functions were not analyzed and what was the justification for ignoring them?

d) Was the top event consistent with specified functional requirements and broad enough to include all top-level functional requirements if there is more than one?

e) Have all possible failure modes been included in the fault tree branches?

The output of this step is:

· Review package

3.5
Step 5 – Recommend Corrective Actions

The purpose of this step is to identify any corrective actions for the concerns or possibly vulnerable areas. Recommended actions must be documented in sufficient detail. The recommendations for correcting the vulnerable areas must determine whether the requirements, design, or operational procedures need to be changed. For example, the recommendation may include providing an interlock for commanding the critical mechanisms of the subsystem. This creates additional software requirements, modifies the software design and changes the operational procedures.
The output of this step is:

· Recommended corrective actions

3.6
Step 6 – Report, Communicate, and Maintain

The purpose of this step is to report the findings to the stakeholders (including project) and communicate with the development team. This provides information to the team and encourages feedback internal and external to the project on the corrective action activities, current status, and emerging risks. Communication happens throughout all activities of software analysis and management must support an open communication environment. All safety-critical functions must be brought to management’s attention as soon as a potentially vulnerable area is detected. If there is a need to update the analysis or the report, it should be done so that the report and the model are current. The SFTA will be archived by the project. Also, any lessons learned from the analysis should be documented.

The outputs of this step are as follows:

· Analysis review report;

· Prepared report and maintained model.

4. Software Failure Modes, Effects and Criticality Analysis Process
The purpose of the SFMECA is to identify potential software design deficiencies and failures. This process is a systematic and documented analysis of the credible ways in which a (sub)system can fail, the causes for each failure mode, and the effects of each failure. The objective of the SFMECA is to identify functional failures and their effects on performance in order to validate redundancy or workaround capability. Furthermore, it verifies that lower level failures do not propagate within the entire system. The SFMECA is a prime analytic method to guide software design and system trade-off study.

Table 4.1 provides a brief description of the SFMECA steps. Projects define which personnel are responsible for the activities in these steps. The participants should have experience with similar software and development environments.

Table 4-1. Overview of Software Failure Modes, Effects and Criticality Analysis Steps
	 Action
	 Description
	 Responsibility
	 Output Summary

	Step 1: Define and List the Possible Functional Failures
	Identify the possible functional failures
	Software system engineer, Cognizant engineer, Analyst
	· List of identified possible software functional failure

	Step 2: List Potential Effects of each of the Software Failures
	Identify the effects of each of the software failure modes
	Software cognizant engineer, Analyst
	· (Sub)system/Software Effect(s)

	Step 3: Assign a Criticality Rating for each Effect
	Assess and rate each effect according to the criticality and consequences of its impact
	Software system engineer, Analyst
	· Criticality assignment for each effect

· SFMECA Table

	Step 4: Assign a Probability or likelihood to each Failure Mode
	Estimate and assign a probability or likelihood to each failure mode
	Software system engineer, Cognizant engineer, Independent analyst
	· Probability or likelihood assignment for each failure

	Step 5: Identify any Concerns or Possibly Vulnerable Areas
	Identify and document any concerns or possible vulnerable areas of the analysis
	Software system engineer, Analyst
	· Documented assumptions, concerns and vulnerable areas of the analysis model

	Step 6: Determine the Impact of Failure
	Determine the impact of failures on the cost, schedule, and/or technical performance independently or simultaneously
	Analyst
	· List of impact of failures

	Step 7: Prioritize the Failure Modes and Document the Analysis
	Prioritize the failure modes by ranking them from the highest priority to the lowest based on the probability of occurrences and their impacts
	Software manager/PEM, Software system engineer, Analyst
	· A prioritized list of failure modes

· Updated and prioritized table

	Step 8: Review and Reconcile the SFMECA analysis
	Conduct a review of the SFMECA and obtain project and line management approval
	Software system engineer, Cognizant engineer
	· Problems found with the assumptions, analysis, or any other related issues;

· Reviewed, revised, and approved SFMECA and assumptions.

	Step 9: Identify Corrective Actions to Eliminate or Reduce the High Probability Failure Modes
	Identify any corrective actions that project should take to eliminate or minimize the high-priority failure modes
	Software manager/PEM
	· List of actions to eliminate failure modes; or documented workarounds

· Measures to reduce probability of failure or their impacts;

· Software/hardware modification to include fault protection.

	Step 10: Report, Communicate, and Maintain
	Update the SFMECA model and maintain it as required by the project.
	Software system engineer, Cognizant engineer
	· Analysis Review report

· Prepared report and maintained model

4.1
Step 1 – Define and List the Possible Functional Failures

The purpose of this step is to identify the possible functional failures. Using the list provided by brainstorming (this is part of the preparation activities described in section 2.2), rigorous failure mode definitions must be established for the system, subsystem, and all lower levels. The software system engineer, cognizant engineer, and analyst will review the list provided from the brainstorming session(s) and discuss most likely scenarios and possible functional failures. This activity generates a list of possible functional failures for further analysis. Some common software failure modes are documented in Appendix H. The identified list is used for performing the analysis.

The outputs of this step are:

· List of identified possible software functional failures

· Data Item

· Failure Mode

· Failure Description

4.2
Step 2 – List Potential Effects of Each of the Software Failures

The purpose of this step is to identify the effects of each of the software failure modes on the system. The Software cognizant engineer and analyst perform a failure effect analysis on each of the areas that may fail. This takes into account each different failure mode of the items identified and indicates the effect of that item’s failure upon the performance of the next higher level in the system. If it was determined that it was highly unlikely that the failure and effect would occur, then that particular item would get a low rating (see step 3 below). A table will capture each potential effect next to the failure as a row. The effects might be, for example, loss of a mechanism, or software failure that could damage a piece of hardware.

Note: A SFMECA often has two columns, one for “Local Effect” (i.e., software or subsystem effect) and one for “System” or “Global” Effect. This is beneficial because it helps understand whether the failure, if it occurred, would be isolated locally, or whether it would propagate to the system, or even affect the environment (e.g., radiation release).

The output of this step includes the following:

· (Sub)system/Software Effect(s)

4.3 Step 3 – Assign a Criticality Rating for each Effect

The purpose of this step is to rate each effect according to the criticality and consequences of its impact. A failure may have several different effects and each effect can have a different level of severity associated with it, so each effect is assigned its own criticality rating. The software system engineer and analyst review all cases and their effects and assign a rating for each. The numbers in parentheses that follow the ratings are a measuring scale from 1 to 6. The following may be used for assignment of criticality rating:

· Minor or Negligible (1): Can work around the problem should it occur or the effect is not significant. Not noticeable or no degradation, and does not lead to system loss, or loss of significant amount of data, or significant reduction in quality of data, or significant peril to mission.

· Significant degradation (2): Occurrence can have a significant effect on mission performance, but will not lead to loss of the mission. There is potential for major or significant degradation of the system or system performance. No immediate impact on spacecraft or mission, but potential exists for future loss at higher levels, due to induced failure, or resulting from the conjunction of this anomaly with a future event, or potential for cumulative major loss of function over a long period of time; major or significant degradation of mission at higher levels would have occurred if adequate alternatives or measures had not been implemented.

· Subsystem loss (3): Occurrence can lead to loss of part of the mission. For example, loss or degradation of a redundant subsystem, or loss or degradation of a subsystem or science instrument producing higher levels of criticality, if remaining functionality or redundancy is lost.

· Significant loss or degradation of mission (4): Significant loss of spacecraft or instrument function leading to a significant loss of data, or a significant reduction in life of the mission.

· Major loss or degradation of mission (5): Major loss or degradation of capability to complete some mission objectives (or all at a degraded level) with immediate loss of a critical science instrument or loss of a major amount of critical science data, or major reduction in life of mission, or loss of spacecraft function resulting in loss of opportunity for obtaining critical science data.

· Complete loss of mission (6): Complete loss of primary mission capability.

The outputs of this step are:

· Criticality assignment for each effect

· SFMECA table

4.4 Step 4 – Assign a Probability or Likelihood to each Failure Mode

The purpose of this step is to estimate the probability or likelihood of each failure. This is not straightforward, as it requires experience and failure logs or historical data from previous similar projects if available. Although the assignment of probabilities to software failure modes may be controversial and problematic, we include this step for projects that wish to consider it. The software cognizant engineer, software system engineer, and independent analyst have to estimate how likely a failure mode is to occur, how critical the failure mode is, and at what frequency by identifying the potential cause of failure (from steps 2 and 3). A table such as Table 4-2 may be used for probability or likelihood of failures.

Table 4-2. Probability Rating
	Likelihood of Failure

Occurrence
	Probability
	Probability Ranking

	Remote
	 0-10%
	 1

	Unlikely
	 10-30%
	 2

	Likely
	 30-50%
	 3

	Highly Likely
	 50-70%
	 4

	Near Certainty
	 70-90%
	 5

The probability is used to identify and list the table in order of priority and does not go in the table.

The output of this step is:

· Probability or likelihood assignment for each failure

4.5 Step 5 – Identify any Concerns or Possibly Vulnerable Areas

The purpose of this step is to document any concerns or possible vulnerable areas of the analysis. Sometimes, due to unforeseen circumstances or constraints imposed by the nature of the project, it is not possible to complete the SFMECA. Document all concerns or shortcomings of the analysis so that all assumptions and circumstances are outlined. For example, analysis may identify that software response to unplanned combinations of hardware limits, and idiosyncrasies are not implemented or the implementation is not adequate. This should be flagged and documented as a possible vulnerable area. This is not part of the table and should accompany the table as part of the software analysis report.

The output of this step includes the following:

· Documented assumptions, concerns and vulnerable areas of the analysis model

4.6 Step 6 – Determine the Impact of Failure

The purpose of this step is to determine the impact of failure. The impact of a failure is assessed by the cost, schedule, and/or technical performance independently or simultaneously. For simplicity, a pre-defined scale for each of the three impact dimensions (cost, schedule, and performance) should be used. For any failure, the impact scale with the most severe rating is used to determine the result. For software risk management please refer to the SQI Software Risk Management Handbook available at http://software. Risk exposure is defined as impact of risk multiplied by its probability. For example, if a latch that locks a mechanism fails to open this could have a major impact to mission success criteria. Therefore, the technical impact would be high. However, the analysis reveals that flight software may be modified with the fault protection procedures with a minor schedule and budget (cost to minimize the failure is about 5% of the total software budget) impact that can be handled within schedule and budget reserves. In this case, the schedule and cost impact are low.

The assessment of impact uses the following measurement parameters on a scale from 1 to 5:
 Qualitative Measure
Scale
Quantitative Measure

Very High

(5)
Catastrophic, no alternatives exist
High
(4)

Significant impact, workarounds exist,

De-scope or redesign

Moderate

(3)
Moderate impact, workarounds exist,

may need de-scope or redesign

Low

(2)

Minor impact, same approach retained;

minor modifications to plans or technical

approach probably required

Very Low

(1)

Minimum impact, same approach

retained; can tolerate the impact and no

modification required

The impact of failures should be part of the software analysis report. Please refer to Table 3.2 in section 3.3 for more information on impact of faults/failures.

The output of this step is:

· List of impact of failures

4.7 Step 7 – Prioritize the Failure Modes and Document the Analysis

The purpose of this step is to prioritize the failure modes by ranking them from the highest priority to the lowest based on the probability, their occurrence and impact. One technique that may be employed to do this is to calculate the Risk Priority Number (RPN) by simply multiplying the criticality rating times the occurrence rating (probability) times the impact for all of the failures identified. The impact brings in the effect of a failure for priority. Compile a list of prioritized failure modes and document all the analysis done to calculate and complete it. For example, for the case discussed in Step 6 the following formula may be used to determine the priorities:

Priority = Criticality rating x Probability (or Probability Ranking) x Impact

In order to take all 3 elements of impact the simplest way is to multiply all 3 (Impact = technical x schedule x cost) to get a final impact number.

For the example used previously in the step 6, the impact becomes 4 x 2 x 2 = 16. Assuming the criticality of failure was “significant degradation (2)” and the probability of the occurrence was 50% then the Priority may be calculated as follows.

Priority = 2 x 0.5 x 16 = 16

This calculation must be carried out for all failures in the table in order to come up with a list of prioritized failure modes.

The outputs of this step include the following:

· A prioritized list of failure modes

· Updated and prioritized table

4.8
Step 8 – Review and Reconcile the SFMECA

The purpose of this step is to review the Software Failure Modes, Effects and Criticality Analysis and obtain project and line management approval.

1. Conduct a peer review or a formal review (project’s decision) with the following objectives:

a) Confirm the software requirements and architecture and any assumptions made.

b) Verify the methods used for identifying the failure modes, impact of risks, criticality, and probability of occurrences.

c) Ensure that the analysis is reasonable and accurate, given the input data.

d) Confirm and record the approved software analysis and underlying assumptions for the project.

2. The software manager, software analyst, Software Quality Assurance (SQA) engineer, line management and project management approve the software analysis after the review is complete and problems have been resolved.

The outputs of this step are:

· Problems found with the assumptions, analysis, or any other related issues;

· Reviewed, revised, and approved SFMECA and assumptions.

4.9
Step 9 – Identify Corrective Actions to Eliminate or Reduce the High Probability Failure Modes

The purpose of this step is to identify corrective actions to eliminate or minimize the high-priority failure modes. This is typically done by making recommendations to change or add more requirements and perform a redesign. While the elimination of failure modes altogether is ideal, it may not be feasible in all cases. For mission critical and/or safety critical software one must try to achieve the elimination of critical failure modes or define appropriate workarounds. Sometimes reducing the criticality is adequate, especially in situations where taking such a measure can prevent loss of critical resources. However, the best opportunity for improvement of the situation lies in reducing the likelihood of occurrence of a failure by providing an alternative approach. Depending on the nature of the problem it may be that an operational workaround exists to eliminate that particular failure mode. This step provides an opportunity to design and implement a fault protection scheme into the architecture and software modules.

The outputs of this step are:

· List of actions to eliminate failure modes or documented workarounds;

· Measures to reduce probability of failure or their impacts;
· Software/hardware modification to include fault protection.

4.10
Step 10 – Report, Communicate and Maintain

The purpose of this step is to report the findings to the stakeholders (including project) and communicate with the development team as well as to update the SFMECA model and maintain it as required by the project. This provides information to the team and encourages feedback internal and external to the project on the corrective action activities, current status, and emerging risks. All safety critical functions must be brought to management’s attention as soon as a potentially vulnerable area is detected. Once action has been taken to eliminate or reduce the failure modes and/or risks of occurrences, the project may want to update the analysis model to document the existing modified system. The software cognizant engineer and software system engineer are responsible for updating the SFMECA. Also, any lessons learned from the analysis should be documented.

The outputs of this step are as follows:

· Analysis Review report

· Prepared report and maintained model

Appendix A.
Acronyms
ATLO

Assembly, Test, & Launch Operations

CAFTA

Computer Aided Fault Tree Analysis
CogE

Cognizant Engineer

ECR

Engineering Change Request

FMECA

Failure Mode Effects and Criticality Analysis

FOV

Field Of View

FPP

Flight Project Practices

FSW

Flight Software

FTA

Fault Tree Analysis

HW

Hardware

JPL

Jet Propulsion Laboratory

NASA

National Aeronautics & Space Administration

PEM

Project Element Manager

PFS
Principles for Flight Systems (Design, Verification/Validation and

Operations Principles for Flight Systems)

QA

Quality Assurance

RPN

Risk Priority Number

SFMEA

Software Failure Modes, Effects Analysis

SFMECA

Software Failure Modes, Effects and Criticality Analysis

SFTA

Software Fault Tree Analysis

SPHA

Software Preliminary Hazard Analysis

SQI

Software Quality Improvement Project

SQA

Software Quality Assurance

SRD

Software Requirements Document

SRU

Stellar Reference Unit

SW

Software

S/W

Software

TBD

To Be Determined

Appendix B. GLOSSARY

Brainstorming
Brainstorming is a lateral thinking process. It is an excellent way of developing many creative solutions to a problem. It works by focusing on a problem, and then coming up with very many radical solutions to it. Ideas should deliberately be as broad and odd as possible, and should be developed as fast as possible.

Software Component
One of the parts that make up a system. A component may be subdivided into other components. Note: The terms “module,” “component,” and “unit” are often used interchangeably or defined to be sub-elements of one another in different ways depending upon the context. The relationship of these terms is not yet standardized (IEEE).

Failure
The inability of a system or a component to perform its required functions within specified performance requirements. Note: The fault tolerance discipline distinguishes between a human action (a mistake), its manifestation (a hardware or software fault), the result of the fault (a failure), and the amount by which the result is incorrect (the error).

Failure Mode
The physical or functional manifestation of a failure. For example, a system in failure mode may be characterized by slow operation, incorrect outputs, or complete termination of execution.

Fault
A defect in a hardware device or component; for example, a short circuit or broken connection. An incorrect step, process, or data definition in a computer program. Note: This definition is used primarily by the fault tolerance discipline. In common usage, the terms “error” and “bug” are used to express this meaning. (IEEE).

Fault Detection
A process that discovers or is designed to discover faults; the process of determining that a fault has occurred.

Fault Recovery
A process of handling of a fault without permanent reconfiguration.

Fault Tolerance
The ability of a system or component to continue normal operation despite the presence of hardware or software faults. Also, the number of faults a system or a component can withstand before normal operation is impaired.

Formal Methods
The use of formal logic, discrete mathematics, and machine‑readable languages to specify and verify software; the use of mathematical techniques in design and analysis;

Functional

A type of modular decomposition in which a system is
broken down into components that correspond to system functions and subfunctions (IEEE).

Logical Gate
A logic gate is an elementary building block of a digital circuit. Most logic gates have two inputs and one output. At any given moment, every terminal is in one of the two binary conditions low (0) or high (1). The logic state of a terminal can, and generally does, change often, as the circuit processes data.

Maintenance
The process of modifying a software system or component after delivery to correct faults, improve performance or other attributes, or adapt to a changed environment. Also, the process of retaining a system or component in, or restoring it to a state in which it can perform its required functions.

Preliminary Hazard
Analysis performed at the system level to identify
Analysis (PHA)

Safety‑Critical areas, to provide an initial assessment

of hazards, and to identify requisite hazard controls
and follow‑on actions.

System
A collection of components organized to accomplish a specific function or a set of functions (IEEE).

Appendix C. Software Fault Tree Analysis – an Example
This example describes the use of the JPL Software Fault Tree Analysis process on a fictitious project. It is meant to illustrate the basic steps of the process and is not intended to be a comprehensive example. For simplicity a small component of a subsystem was chosen. This example is for a mission critical (Class A) Flight Software component (part of the spacecraft attitude and articulation control system) and specific steps are outlined in the table below (Table C-1). The project is referred to as Project ABC.

Project Description:

In this example, project ABC is a flight project and all the Flight Software (FSW) for ABC project has been classified as Mission Critical (Class A) software. The project had a mission to orbit Jupiter with a life of at least five years. The FSW development plan called to build Command & Data subsystem (CDS) and Attitude, Articulation Control subsystem (AACS) on a four-year software development schedule with Fault Protection algorithms developed and included after baseline delivery. The launch date was established and it was critical to keep it within a window of two of weeks. The AACS had a star sensor for calculating the initial three-axis attitude estimate. The motion model used for attitude calculation was a system of rate integration gyroscopes to provide a mechanical spacecraft dynamics model. A sequential method was used for star sensor measurements to update spacecraft attitude. The dynamics model within the sequential updating system was used to extrapolate the attitude to the time of each star sensor observation in succession. When the extrapolation process reached the time of a particular observation, an attempt at star identification was made. If the identification was successful, it was used to update the attitude at the time of the measurement, and to update other spacecraft parameters. The updated model was used to extrapolate the time of the next observation, and so on. The frequency with which the attitude reference was updated was dependent on the accuracy of the star sensor measurements, the accuracy of the motion model, and the desired accuracy of output attitudes.

AACS was one of the critical components of the flight system and it had to operate correctly. One of the elements that were chosen for this example is the identification of the expected star that is a key element in attitude adjustments.

Approach

Prepare a Fault Tree Analysis for the AACS subsystem according to the following steps (from this handbook):

Table C-1. Fault Tree Analysis Steps
	 Step
	 Activity

	1
	Identify the Undesired Event (“Top” Event)

	2
	Construct the Software Fault Tree

	3
	Determine the Impact of Faults/Risks

	4
	Review and Reconcile Analysis

	5
	Recommend Corrective Actions

	6
	Report, Communicate, and Maintain

C.1
Step 1 – Identify the Undesired Event (“Top” Event)

The system fault tree was expanded from the specified system level failure to the software interface level where the software outputs or lack of them that can adversely affect system operation were identified. The software cognizant engineer, software system engineer, and project’s system analyst for the subsystem going through the preparation steps analyzed the system for different components. Using the list provided by brainstorming, the top event for the example component that is used here was identified as “Star ID error.”

C.2
Step 2 – Construct the Software Fault Tree

The software cognizant engineer and software system engineer reviewed the overall software behavior and prepared to construct the SFTA. At this stage the analysis began to take into account the behavior specific to the software that could possibly cause the top event. The immediate necessary preconditions to cause the top event (the Star ID error) to occur were considered. The tree construction started from the top (the root) and it was worked downward on its leaves as different potential events that could cause the higher-level conditions were discovered. They identified what exactly the faults were and when it occurred for each box. They considered whether the fault was in a component or a (sub) system and the role of each fault and its effect. At the root the idea was to find those conditions that may have caused the top event to happen (see Figure C-1). In this case, two possible scenarios were identified that had to take place in parallel in order for the top event to occur. First having star ID in an idle mode and the other a failure of identification of expected star in the current Stellar Reference Unit (SRU) Field of View (FOV). Since these two events had to coincide for the error to take place, it constituted a logical AND condition. Next, possible conditions that caused a failure of the star identification had to be looked at and this approach continued until the final leaves of the tree was reached or to a point that the leaf was the output of another SFTA.

[image: image3.wmf]Current SRU FOV not Equal to

expected SRU FOV

Body Control

Failure (Attitude

Control Errors)

Inaccurate S/C

Attitude

Estimate

Failure to identify expected stars

in current SRU FOV

Star ID Mode =

Idle

Star ID Errors

SRU Sensitivity Problem

Wrong SRU

Threshold (Ground

Error)

SRU Faults

Stellar Reference Unit (

SRU

)

Field of View (

FOV

)

AND

OR

OR

OR

Figure C-1. Example Fault Tree Analysis

C.3
Step 3 – Determine the Impact of Faults/Risks

The software team headed by the software system engineer convened a workshop to search and identify the impact of failures to the Project. They had gathered information on the project, checked software fault lists from comparable projects, looked at lessons learned, and interviewed AACS experts. Since they were in the early design phase, which was still fairly early in the mission, the team paid particular attention to gathering analogous, historical information. Using the information they had gathered and the consultation with the experts, the software team speculated on what the impact of faults could be. The potential impacts of this top event were identified. Technically, the impact was considered a major issue and it was decided that it had a very high consequence of not meeting the minimum mission criteria. The AACS would not function accurately without the star tracker. The schedule impact was not high and in fact it was considered as a low schedule impact item. A more detailed analysis revealed that the problem might be fixed within the schedule reserve. A cost analysis was done and the work force estimate for making sure that all checks are included to prevent these faulty conditions was about 4 work months. Therefore, the cost was less than 5% of the total software budget.

Impact

Consequence

Technical

Very High (can’t meet the minimum mission

criteria)

Schedule

Low (Minor; can be handled within schedule
reserve; no impact to critical path)

Cost

Low (< 5% of total software budget)

C.4
Step 4 – Review and Reconcile Analysis

The project element manager scheduled a peer review of the SFTA model. With the information gathered in the previous steps and the SFTA as the basis, the independent analyst held a meeting to review the SFTA, to determine if the assumptions and findings were appropriate with respect to the handling of the faulty conditions, and to review the SFTA model for accuracy. The SFTA was reviewed for consistency and also validation of the model to represent the actual system. Based on the review, the independent software analyst with consultation of AACS experts wrote a review summary report for management that highlighted the review process and summarized any findings with the recommended actions.

C.5
Step 5 – Recommend Corrective Actions

Based on the information gathered in the steps 2, 3, and 4, the software cognizant engineer and analyst held a meeting to discuss the corrective actions towards resolving the issues addressed, and to determine the corrective actions appropriate with respect to the identified technical impact. Once, the recommended actions were identified they were documented in detail so that they can be reviewed by others and communicated to the team and management. The recommended actions identified what requirements, design areas, or operational procedures need to be changed so that the problem was resolved.

The following recommendation list was formulated to accompany the analysis:

Table C-2. Faults Summary and Recommendations
	 AACS Star ID Fault Summary
	Recommended Corrective Action(s)

	Failure to identify expected stars in Current SRU FOV
	Make sure there is no Stellar Reference Unit sensitivity problem by identifying any SRU faults and/or reporting any threshold problems to ground. Also, if the current SRU field of view is not as expected then check for attitude control failures or inaccurate estimation of the attitude.

	Idle Star ID mode
	AACS should not be in an “Idle Star ID” mode while identifying stars

C.6
Step 6 – Report, Communicate, and Maintain

The software cognizant engineer and software analyst used the software fault tree model, analysis review report, and the software lessons learned to communicate the fault conditions with and get feedback from the software team, stakeholders, and project management. This encouraged both internal and external feedback on the process and activities and helped prevent the future fault conditions. The analysis and report was updated with the team’s inputs and the up-to-date report and model was placed in Project’s library.
Appendix D. Software Failure Modes, Effects and Criticality Analysis – an Example
This example describes the use of the approach at JPL for Software Failure Modes, Effects and Criticality Analysis process on a fictitious project. It is meant to illustrate the basic steps of the process and is not intended to be a comprehensive example. For simplicity a small component of a subsystem was chosen. This example is for a mission critical (Class A) Flight Software component (part of the spacecraft antenna system) and specific steps are outlined in Table D-1. The project is referred to as Project XYZ. The antenna subsystem and its control software were deemed to be mission critical and project management decided to have a SFMECA in addition to the system-level FMECA performed by Mission Assurance organization.

Project Description:

In this example, the project XYZ is a flight project and all the flight software for the project has been classified as Mission Critical (Class A) software. The project had a mission to orbit Venus with a life of at least three years. The example chosen here is a demonstration of the technique; it has been simplified for presentation here and does not represent the actual subsystem.

Approach:
Prepare a Software Failure Modes, Effects and Criticality Analysis (SFMECA) for the XYZ Antenna subsystem according to the following steps (from this handbook):

Table D-1. SFMECA Steps
	 Step
	 Activity

	1
	Define and List the Possible Functional Failures

	2
	List Potential Effects of each of the Software Failures

	3
	Assign a Criticality Rating for each Effect

	4
	Assign a Probability to each Failure Mode

	5
	Identify any Concerns or Possibly Vulnerable Areas

	6
	Determine the Impact of Failure

	7
	Prioritize the Failure Modes and Document the Analysis

	8
	Review and Reconcile the SFMECA Analysis

	9
	Identify Corrective Actions to Eliminate or Reduce the High Probability Failure Modes

	10
	Report, Communicate, and Maintain

D.1
Step 1 – Define and List the Possible Functional Failures

The system-level FMECA was performed and the antenna and its control software were identified as a subsystem that can adversely affect system operation. The software cognizant engineer, software system engineer, and system analyst for the subsystem analyzed the system for possible components functional failures. It was decided that software failures may stem from issuing incorrect commands, corrupted commands, software module not responding to commands, loss of communication on the bus due to a software failure, or some operational errors such as incorrect command sequence, and inappropriate mode. The team assembled the defined software failure modes as follows.

· Erroneous commands

· Corrupted commands

· Software module not responding

· Lack of /Loss of communication

· Incorrect command sequence

· Commanded while in an inappropriate mode

D.2
Step 2 – List Potential Effects of each of the Software Failures

The software cognizant engineer and analyst performed a failure effect analysis on each of the areas that was discovered to be a software failure mode. They walked through each scenario and constructed what would happen if they experienced that particular failure mode and what would happen to the subsystem and overall system performance. Their assessment is documented in Table D-2.

Table D-2. Effects of Software Failures
	Failure
	Function
	Failure Mode
	Effect
	Criticality
	Prob.
	Impact
	Action
	Mitigation

	Erroneous command
	Command
	Antenna does not move when commanded
	Mission degraded

severely
	
	
	
	
	

	Corrupted command
	Command
	Antenna not behaving correctly
	Mission

degraded
	
	
	
	
	

	S/W module not responding
	Command/

Telemetry
	Antenna position unknown
	S/W may damage the hardware
	
	
	
	
	

	Loss of Communication
	Command/

Telemetry
	Unknown
	Mission degraded

severely
	
	
	
	
	

	Incorrect Cmd Seq.
	Command
	Antenna does not move
	Minor
	
	
	
	
	

	Commanded while in an inappropriate mode
	Command
	Antenna does not behave correctly
	Minor
	
	
	
	
	

D.3
Step 3 – Assign a Criticality Rating for each Effect

The software system engineer and analyst reviewed all software failure modes and their effects and assign a criticality rating for each one according to defined set of criteria as described in section 4.3, and the role of the antenna in accomplishment of the mission objectives. The criticality column of the Table D-3 was completed during this step’s activity.

Table D-3. Criticality Assignment for Each Effect
	Failure
	Function
	Failure Mode
	Effect
	Criticality
	Prob.
	Impact
	Action
	Mitigation

	Erroneous command
	Command
	Antenna does not move when commanded
	Mission degraded

severely
	Complete loss of mission (6)
	
	
	
	

	Corrupted command
	Command
	Antenna not behaving correctly
	Mission

degraded
	Significant loss (4)
	
	
	
	

	S/W module not responding
	Command/

Telemetry
	Antenna position unknown
	S/W may damage the hardware
	Subsystem loss (3)
	
	
	
	

	Loss of Communica-tion
	Command/

Telemetry
	Unknown
	Mission degraded

severely
	Significant degradation (2)
	
	
	
	

	Incorrect Cmd Seq.
	Command
	Antenna does not move
	Minor problem
	Minor (1)
	
	
	
	

	Commanded while in an inappropriate mode
	Command
	Antenna does not behave correctly
	Minor problem
	Minor (1)
	
	
	
	

D.4
Step 4 – Assign a Probability to each Failure Mode

The software cognizant engineer, software system engineer, and independent analyst consulting with other experts in the area and discussing the failures with the antenna experts estimated the likelihood of occurrence of each failure mode identified. They took into consideration the frequency of the failure as well as the potential impact (see Table D-4).

Table D-4. Probability Assignment for each failure
	Failure
	Function
	Failure Mode
	Effect
	Criticality
	Prob.
	Impact
	Action
	Mitigation

	Erroneous command
	Command
	Antenna does not move when commanded
	Mission degraded

severely
	Complete loss of mission (6)
	 50%
	
	
	

	Corrupted command
	Command
	Antenna not behaving correctly
	Mission

degraded
	Significant loss (4)
	 30%
	
	
	

	S/W module not responding
	Command/

Telemetry
	Antenna position unknown
	S/W may damage the hardware
	Subsystem loss (3)
	 10%
	
	
	

	Loss of Communica-tion
	Command/

Telemetry
	Unknown
	Mission degraded

severely
	Significant degradation (2)
	 10%
	
	
	

	Incorrect Cmd Seq.
	Command
	Antenna does not move
	Minor problem
	Minor (1)
	 50%

	
	
	

	Commanded while in an inappropriate mode
	Command
	Antenna does not behave correctly
	Minor problem
	Minor (1)
	 70%
	
	
	

D.5
Step 5 – Identify any Concerns or Possibly Vulnerable Areas

The software system engineer and analyst documented all their assumptions and pointed out that based on their analyses erroneous commands, incorrect command sequence, and commanding the antenna while antenna was in an inappropriate state could damage the hardware or cause a major degradation to the mission. This was identified as the possible vulnerable area that Project XYZ had to pay special attention to. Additionally, they have identified operational constraints such as checking for the appropriate modes prior to issuing the next command. A list of constraints and concerns was provided as outlined below.

Concerns/Vulnerability
Areas of concern
Erroneous command
Noise, Operational error

Incorrect command sequence
Operational error

Commanded while in inappropriate mode
Operational error

Electronic noise or Single Event Upset (SEU) may cause command corruptions. This is an area that the software should provide check for. The software design and implementation need provide appropriate sanity checks on operational code, command parameters, and validity of the command prior to accepting and executing it.

D.6
Step 6 – Determine the Impact of Failure

The software analyst reviewed all failure modes, their effects, probabilities, and their criticalities. The analyst assessed the impact of failures in terms of the cost, schedule, and technical performance. For simplicity, Project used a pre-defined scale (1 to 5) for each of the three impact dimensions (cost, schedule, and performance.) See Table D-5. The scale and the measurement used were as follows:

Scale

Measure

Description

1

Minimal

Minimum impact, negligible if low probability

2

Small

Minor impact, may require a minor modification

3

Moderate

Moderate impact, workarounds exist

4

Significant

Major impact, redesign and/or modification
needed

5

Catastrophic

Unacceptable, mission objectives not met
For any failure, it was the impact scale with the most critical rating that is used to determine the appropriate impact.

Table D-5. Impact of each failure
	Failure
	Function
	Failure Mode
	Effect
	Criticality
	Prob.
	Impact
	Action
	Mitigation

	Erroneous command
	Command
	Antenna does not move when commanded
	Mission degraded

severely
	Complete loss of mission (6)
	 50%
	 5
	
	

	Corrupted command
	Command
	Antenna not behaving correctly
	Mission

degraded
	Significant loss (4)
	 30%
	 4
	
	

	S/W module not responding
	Command/

Telemetry
	Antenna position unknown
	S/W may damage the hardware
	Subsystem loss (3)
	 10%
	 4

	
	

	Loss of Communica-tion
	Command/

Telemetry
	Unknown
	Mission degraded

severely
	Significant degradation (2)
	 10%
	 3
	
	

	Incorrect Cmd Seq.
	Command
	Antenna does not move
	Minor problem
	Minor (1)
	 50%

	 1
	
	

	Commanded while in an inappropriate mode
	Command
	Antenna does not behave correctly
	Minor problem
	Minor (1)
	 70%
	 2
	
	

D.7
Step 7 – Prioritize the Failure Modes and Document the Analysis

The Project Element Manager (PEM) scheduled a meeting to discuss and prioritize the software failure modes. The team decided to use a scaling scheme to calculate a final value that they could use for prioritization. It was decided to use the product of probability of failure, the criticality rating, and the impact.

For each failure mode the priority was calculated based on the following formula:

Priority = Criticality x Probability x Impact

Example: Priority of erroneous command = 6 x 0.5 x 5 = 15

The team prioritized the documented failure and they provided in Table D-6.
Table D-6. Priority
	 Failure Mode
	 Priority

	Erroneous command
	 15

	Corrupted command
	 4.8

	Commanded while in an inappropriate mode
	 1.4

	S/W module not responding
	 1.2

	Loss of Communication
	 0.6

	Incorrect Cmd Sequence
	 0.5

D.8
Step 8 – Review and Reconcile the SFMECA Analysis

The Project Element Manager proposed conducting a peer-review followed by an independent review of the SFMECA. The PEM selected a team of peers to review the analysis. The objectives of the review were determined to be the following:

a)
Assure that the assumptions made were consistent with the software architecture for the antenna subsystem;

b) Verify that a solid plan was used to identify the failure modes, their effects and impacts, and confirm the probability of their occurrences;

c) Verify that the analysis done accurately and used the appropriate inputs and scenarios;

d) Uncover any shortcomings and document the review findings.

The peer-review was conducted and the review report was published in a memorandum. Recommendations were made to take some corrective actions to eliminate and/or reduce the probability of these failure modes. The specific recommendations were:

· Have software check every incoming command for valid ID, valid Operational Code, and valid parameters;

· Provide a checksum or Cyclic Redundancy Code on all command packets to identify and fix single bit error and reject non-fixable corrupted commands;

· Provide checks for the appropriate mode for the next command sequence prior to execution of commands;

· Provide sufficient sanity check on the ground station to verify commands and their parameters prior to uplink.

For more information on how to conduct a peer-review please refer to the Software Review Handbook (JPL D-25798) on SQI web site (http://software).

To satisfy the Project Manager’s request for an independent analysis, an analyst from the Mission Assurance group performed another review of the SFMECA. For this specific example the reviews did not find any issues and the analysis, its assumptions and documentation were satisfactory. The Project manager and line organization approved the analysis and asked the team members to come up with plans to eliminate or reduce the impacts of these failures.
D.9
Step 9 – Identify Corrective Actions to Eliminate or Reduce the High Probability Failure Modes

Project Element Manager tasked the software system engineer and software cognizant engineer to make modifications to the software to include protection against these failures. Those failures that could not be fixed within the software (e.g., Incorrect Command Sequence) were to be handled by operational workarounds. The team came up with corrective actions for all the failure modes and they were captured in Table D-7.

Table D-7. Corrective Actions
	Failure
	Function
	Failure Mode
	Effect
	Criticality
	Prob.
	Impact
	Action
	Mitigation

	Erroneous command
	Command
	Antenna does not move when commanded
	Mission degraded

severely
	Complete loss of mission (6)
	 50%
	 5
	Software Checks all incoming commands
	Modify the software module to validate commands

	Corrupted command
	Command
	Antenna not behaving correctly
	Mission

degraded
	Significant loss (4)
	 30%
	 4
	Run checksum and reject corrupted commands
	Add a checksum routine and check incoming commands for corruptions

	Commanded while in an inappropriate mode
	Command
	Antenna does not behave correctly
	Minor problem
	Minor (1)
	 70%
	 2
	Check the operating mode and if invalid ignore the command
	Only execute the commands in valid operating modes

	S/W module not responding
	Command/

Telemetry
	Antenna position unknown
	S/W may damage the hardware
	Subsystem loss (3)
	 10%
	 4

	Awaken or restart the module
	Provide a soft reset capability or a watchdog timer

	Loss of Communica-tion
	Command/

Telemetry
	Unknown
	Mission degraded

severely
	Significant degradation (2)
	 10%
	 3
	Unless a hard failure restart the bus
	Provide a reset capability

	Incorrect Cmd Seq.
	Command
	Antenna does not move
	Minor problem
	Minor (1)
	 50%

	 1
	Train operators and check the commands
	Establish flight rules and command constraints

D.10
Step 10 – Report, Communicate and Maintain

Software system engineer and/or software cognizant engineer updated the SFMECA and captured all the changes that were implemented. The current version of the model took into account the changes and workarounds and reflected the new design and implementation. The history of software analysis, its assumptions, documentation and published review reports were communicated with the development team and other stakeholders. This encouraged both internal and external feedback on the process and activities and helped prevent the future failure conditions. The analysis and report was updated with the team’s inputs and the up-to-date report and model was placed in Project’s library. Lessons learned from this process were documented and was included in the project’s library and was posted on project’s DocuShare library.

Appendix E. SYMBOLS AND BUILDING BLOCKS FOR A SOFTWARE FAULT TREE

[image: image4.wmf]Basic Event

Conditioning Event

Undeveloped Event

External Event

Transfer in

Transfer out

AND Gate

NAND Gate

OR Gate

NOR Gate

Exclusive OR

Gate

Priority AND

Gate

Inhibit

Intermediate

Event

Logical Gates:

A logic gate is an elementary building block of a digital circuit. Most logic gates have two inputs and one output. At any given moment, every terminal is in one of the two binary conditions low (0) or high (1), represented by different voltage levels. The logic state of a terminal can, and generally does, change often, as the circuit processes data. In most logic gates, the low state is approximately zero volts (0 V corresponds to logical state of 0), while the high state is approximately five volts positive (+5 V corresponds to logical state of 1).
There are seven basic logic gates: AND, OR, XOR, NOT, NAND, NOR, and XNOR.
The AND gate is so named because, if 0 is called "false" and 1 is called "true," the gate acts in the same way as the logical "and" operator. The following illustration and table show the circuit symbol and logic combinations for an AND gate. (In the symbol, the input terminals are at left and the output terminal is at right.) The output is "true" when both inputs are "true." Otherwise, the output is "false."

[image: image5.png]

AND gate
	Input 1
	Input 2
	Output

	0
	0
	0

	0
	1
	0

	1
	0
	0

	1
	1
	1

The OR gate gets its name from the fact that it behaves after the fashion of the logical inclusive "or." The output is "true" if either or both of the inputs are "true." If both inputs are "false," then the output is "false."

[image: image6.png]

OR gate
	Input 1
	Input 2
	Output

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	1

The XOR (exclusive-OR) gate acts in the same way as the logical "either/or." The output is "true" if either, but not both, of the inputs are "true." The output is "false" if both inputs are "false" or if both inputs are "true." Another way of looking at this circuit is to observe that the output is 1 if the inputs are different, but 0 if the inputs are the same.

[image: image7.png]

XOR gate

	Input 1
	Input 2
	Output

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	0

A logical inverter, sometimes called a NOT gate to differentiate it from other types of electronic inverter devices, has only one input. It reverses the logic state.

[image: image8.png]

Inverter or NOT gate
	Input
	Output

	1
	0

	0
	1

The NAND gate operates as an AND gate followed by a NOT gate. It acts in the manner of the logical operation "and" followed by negation. The output is "false" if both inputs are "true." Otherwise, the output is "true."

[image: image9.png]

NAND gate

	Input 1
	Input 2
	Output

	0
	0
	1

	0
	1
	1

	1
	0
	1

	1
	1
	0

The NOR gate is a combination OR gate followed by an inverter. Its output is "true" if both inputs are "false." Otherwise, the output is "false."

[image: image10.png]

NOR gate

	Input 1
	Input 2
	Output

	0
	0
	1

	0
	1
	0

	1
	0
	0

	1
	1
	0

The XNOR (exclusive-NOR) gate is a combination XOR gate followed by an inverter. Its output is "true" if the inputs are the same, and "false" if the inputs are different.

[image: image11.png]

XNOR gate

	Input 1
	Input 2
	Output

	0
	0
	1

	0
	1
	0

	1
	0
	0

	1
	1
	1

Software Failure Modes, Effects and Criticality Analysis Tables:

1)
A Simplified Table:

	Data Item
	Failure Mode
	Failure Description
	(Sub)System/Software Effect
	Criticality

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Data Item:

Name of Hardware/Software element and its function

Failure Mode:

The associated failure mode that caused the event to

happen

Failure Description:

A brief description of the failure

System/Software Effect:
Production of a condition on the unit, the next level and the
top level. These effects should be defined in terms of
processing, outputs, etc. that result in an undesired state.

Criticality:
Severity of the damage from Negligible (1) to Catastrophic (6)
2)
A More Detailed Table:

	Failure
	Function
	Failure Mode
	Effect
	Criticality
	Prob.
	Impact
	Action
	Mitigation

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

Failure:
Nature of the malfunction; the reason a system or component does not perform its required functions within specified performance requirements

Function:
The area within the software that is responsible for certain functionality

Failure Mode:
The associated failure mode that caused the event to happen; a brief description of the failure

Effect:
What would happen if the particular failure modes occur and/or what would happen to the overall system performance
Criticality:
Severity of the damage from Negligible (1) to Catastrophic (6)
Probability:

The likelihood of occurrence of failure mode

Impact:
The consequence of failures in terms of the cost, schedule, and technical performance

Action:
The recommended steps to be taken to correct or come up with a workaround for the failure mode

Mitigation:
Plan of action prepared to counter a potential problem (this could be in advance to prevent the future potential problems/failures)

Appendix F. BIBLIOGRAPHY AND REFERENCES

Books:

Clark, Charles, Brainstorming: How to Create Successful Ideas, May 1989

System Safety Analysis Handbook, System Safety Society, July 1993

N. Leveson, Software, System Safety and Computers, Addison-Wesley, Reading, MA, 1995.

Rich, Jason, Brain Storm: Tap into your Creativity to Generate Awesome Ideas and Remarkable Results, April 2003

General Papers/Articles:

Abbott, Russell J. “Resourceful Systems for Fault Tolerance, Reliability and Safety.” ACM Computing Survey. March 1990: 35-68.

Garrett, C., M. Yau, S. Guarro, G. Apostolakais, “Assessing the Dependability of Embedded Software Systems Using the Dynamic Flowgraph Methodology.” Fourth International Working Conference on Dependable Computing for Critical Applications, San Diego Jan 4-6, 1994

Leveson, N., Harvey, P., "Analyzing Software Safety", IEEE Transaction on Software Engineering, Vol. 9, SE-9, No. 5, 9/83.

Leveson, Nancy, "Software Safety in Embedded Computer Systems, Communications of the ACM, Feb, 1991, Vol. 34, No. 2, pp. 35-46.

Leveson, Nancy G., Stephen S. Cha, John C. Knight and Timothy J. Shimeall, “Use of Self-Checks and Voting in Software Error Detection: An Empirical Study.” IEEE Transaction on Software Engineering, SE16 (1990); 432-443.

Shimeall, Timotyh J. and Nancy G. Leveson. “An Empirical Comparison of Software Fault Tolerance and Fault Elimination.” IEEE Transactions on Software Engineering, 17(1991); 173-182.
T. Maier, “FMEA and FTA to Support Safe Design of Embedded Software in Safety-Critical Systems,” CSR 12th Annual Workshop on Safety and Reliability of Software Based Systems, Bruges, Belgium, 1995

JPL-Specific Papers/Articles:

Lutz R., R. Woodhouse, “Requirements Analysis Using Forward and Backward Search,'' Annals of Software Engineering, Vol. 3, Sept, 1997, pp. 459-475.
Appendix G. OTHER Software Fault analysis, TECHNIQUES AND SOFTWARE TOOLS
G.1
xe "GSFC"Inductive Method

Induction approaches are reasoning aimed at going from particular to the general and it allows for generalization and augmentation of existing knowledge. It is making generalizations (general statements of causes) from observations of particular cases and building upward from specific data to general conclusions. When we postulate a particular fault or erroneous condition on a system operation, and try to investigate the effect of that condition on the system, we are demonstrating an inductive system analysis. This is a typical logical process in Software Failure Mode and Effects Analysis (SFMEA) and in Software Failure Mode Effects and Criticality Analysis (SFMECA). Other examples of this method are Preliminary Hazard Analysis, and Fault Hazard Analysis.
G.2
xe "GSFC"Deductive Method

Deductive techniques are always leading from the general to the specific and never the other way around. This is a theoretical generalization to come up with hypotheses that can be tested using data collected for that purpose. The method builds downward from general theories to create situations that will generate data that may support or disprove hypotheses. When we postulate that the system has failed in a certain way and we try to investigate what modes of operation, the environment that the system was operating in, or what behavior of the system contributed to that failure, we are doing system analysis by deduction. A good example of this method is investigation of a crashed airplane. This is a typical logical process in Software Fault Tree Analysis (SFTA).
G.3
Software Analysis Approachestc " IDENTIFICATION" \l 1
The design of space-application software involves many steps to ultimately result in reliable performance of the system. Some of these steps include a selection of software tools, tailoring of standard software processes for the project, an intense system engineering activity, conservative design practices by the technical divisions, non-advocacy design review by technical peers, thorough testing at all levels of software (including the subsystem integration and ATLO), and design validation by analysis. For the software analysis to be effective, it should start as early as possible and continue throughout the design development.
The basic design philosophy is to develop software and systems that not only have hardware redundancy, but also have partial survival capabilities under failure conditions of the primary hardware. Various analysis techniques are used to validate functionality of the hardware/software under various conditions. Some of these techniques are discussed in following sections.

G.3.1

Software Cause and Effect Diagram (Fishbone Diagram)

The Cause and Effect Diagram is another technique for identifying the root causes of a problem. The design of the diagram looks much like the skeleton of a fish. Therefore, it is often referred to as the fishbone diagram. The value of the fishbone diagram is in assisting software teams in categorizing the many potential causes of problems or issues in an orderly way and in identifying their root causes. Dr. Ishikawa, a Japanese quality control statistician, invented the fishbone diagram. Therefore, it may be referred to as an Ishikawa diagram. The fishbone diagram is an analysis tool that provides a systematic way of looking at effects and the causes that create or contribute to those effects. Cause and effect diagrams do not have a statistical basis, but are excellent aids for problem solving.

To construct a diagram one must clearly identify and define the software problem, symptom, or effect for which the causes must be identified. The software problem or symptom being explored should be placed in the head of the fish. Draw the central spine as a thick line and brainstorm to identify the "major categories" of possible causes and place them in a box or on the diagram and connect it to the central spine by a line at an angle from the horizontal line.

This diagram is typically used to:

· Focus attention on one specific software issue or problem;

· Organize and display graphically the various theories about what the Root Causes of a software problem may be;

· Show the relationship of various factors influencing a software problem;

· Reveal important relationships among various variables and possible causes;

· Provide additional insight into software process behaviors;

· Focus the team on the causes, not the symptoms.

A non-software example is provided for demonstration of the concept of this technique (see Figure G-1).

[image: image12.png]Reason Phone Not Answered

Machinerp Materials

LAN Disectory
Not Updated

Directory

Audix Exists,

Audix

Weon Extension
Line Bus;
7 Phone Mot

Answered

Call comes
Attynch before/after

Zera out not established

Away from

Desk Re.divest

Atmeeding i upport staff
s Audix

People ‘C’:‘s“m‘ Method

Figure G-1. Example Cause and Effect Diagram (Fishbone Diagram)

Another example that includes software as a possible cause of the problem is depicted in Figure G-2 below.

[image: image13.wmf]Hardware

Problem

Server

Crashed

Broken

Hub

Outside

Problem

Power

Outage

Hacker

Employee

Problem

Software

Problem

Network

is down

Virus

Missing

driver

Inexperienced

staff

Bad

workmanship

Figure G-2. Example Cause and Effect Diagram (Network being down)

G.3.2

Software Preliminary Hazard Analysis (SPHA)

This analysis is a method for assessing the potential hazards posed to human life, system under construction, facility and mission. Usually the initial hazard analysis begins during the conceptual or requirements definition phase and is completed prior to the preliminary design review. The goal of the SPHA is to identify and characterize possible software caused hazards early in the design phase. It identifies known hazards such as explosion, radioactive sources (power and propulsion), pressure vessels or lines (Dewars and coolers), mechanisms operations, and power relays. It specifies how software can cause this to occur, where each will occur, their significance in the system, and the method to be used to eliminate the hazard or control the associated risk. The completed analysis should include both general and specific recommendations for hazard mitigation for the personnel, equipment, system, or facility. These recommendations should encompass the following areas as appropriate: additional analyses, inspection or testing, increased training, possible redesign options, additional design considerations, or additional hazard controls. Additional analyses, such as a software fault-tree analyses, and software Failure Mode, and Criticality Analysis, may also be performed, depending on programmatic requirements and/or desired results.

Figure G-3 provides an example of preliminary hazard analysis (PHA) for a software controlled chemical process. It is that of a simple chemical process involving the mixture of two substances:

	Accident
	System
	Hazard
	Contributing Factors

	Chemical Explosion
	Mixing/Storage Vessel
	Material Y exceeds X due to cessation of flow of material X
	1. Pump failure

2. Pipeline fracture/leaks

3. Isolation valve closed

[image: image14.wmf]Material

 X

Pump

Pump

Material

Y

Overflow

Material

Z

Figure G-3. Example Preliminary Hazard Analysis

G.3.3

Software Petri-Nets

Petri-nets are a graphical technique that is used to model and analyze mission critical systems for such properties as recoverability, deadlock, and fault tolerance. Petri-nets allow the identification of the relationships between system components such as hardware and software, and human interaction or effects on both hardware and software. Real-time Petri-net techniques can also allow analysts to build dynamic models (such as state machines) that incorporate timing information. In so doing, the sequencing and scheduling of system actions can be monitored and checked for states that could lead to faulty or unsafe conditions.

The Petri-net modeling technique clearly demonstrates the dynamic progression of state transitions and because of that it is different from most other analysis methods. Petri-nets can also be translated into mathematical logic expressions that can be analyzed by automated tools. Information can be extracted and reformatted into analysis assisting graphs and tables that are relatively easy to understand (e.g., reachability graphs, inverse Petri-net graphs, critical state graphs). Petri-nets provide a modeling language which can be used for both formal analysis and simulation.

In a Petri‑net modeling of a system, the components for example, places represent conditions and transitions represent events. Figure G-4 is a representation of a model for a single railroad crossing. Three parts of the system; the train (on the left); the computer or controlling device (in the middle); and the crossing gate (on the right), are modeled. P1, P2, P3, and P4 represent the different conditions that can hold for the train (i.e., approaching, just before, within, and past the crossing respectively). Similarly, transitions 1, 2, and 3 denote the events of signaling the train's approach, entering the crossing, and signaling the train's departure. The large box represents the controlling device or computer (this may be hardware or software based.) The states of the gate are represented by two places P11, (the gate is up) and P12 (the gate is down.) Transitions 6 and 7 represent the events of raising and lowering the gate respectively.

[image: image15.png]ty
Before @
Crossing

t2
Within @

t3
Past 0

P-{p1.pz.pgop4-p5cp6'p7'P8'pQ'P10'F1’1'p1

2}

T-{(1 't2"‘3't4't5't3)
Ho =(1,0,0,0,0,1,0,0,0,0,1,0)

(ty) ={Py)
i(t2) = (P2 }
i(t3) = {P3)

l(tg) = {Ps, Pg }
l{ts) = (P7, Pg }
(tg) = (P1g. P12}
l(t7) = (Pg, Pqy }

Ofty)=(Ps, Ps }
Ofta) ={P3)
Oft3) = {Pq. Pg)
Ot) = {Py.Pg }
O(ts) = (ps- p10}
Oftg) = {Py1}
O(ty) = {Py3)

(b)

Figure G-4. Example Petri-Net Graph

G.3.4

Formal Methods

Formal methods for the specification and verification of hardware and software systems are becoming more and more important as systems increase in size and complexity. Formal Methods (FM) involves the specification of a system using languages based on mathematical logic. FM provides a means for rigorous specification of desired properties as well as implementation details. Some FM techniques use mathematical proof to establish that an implementation possesses some set of desired abstract properties. The most rigorous techniques use semi-automatic theorem provers to ensure the correctness of the proofs. In principle, FM can accomplish the equivalent of exhaustive testing, if applied at every step from requirements to implementation. However, this requires a complete verification in practice, which is rarely ever done, and a complete definition of correctness, which is difficult to state with precision.

FM can be roughly divided into specification and verification activities. Formal specification is the use of notation derived from formal logic to a) describe the assumptions about the environment in which a system will operate, b) the requirements that the system is to achieve, and c) a design that meets those requirements. Formal verification is the use of formal logic to a) analyze specifications for certain forms of consistency and completeness, b) prove that the design will satisfy the requirements, given the assumptions, and c) prove that a more detailed design implements a more abstract one. The mathematics of FM include predicate calculus (1st order logic), and higher-order logic, recursive function theory, lambda calculus, programming language semantics and discrete mathematics (number theory, abstract algebra, etc.).
G.3.5

Software Dynamic Flowgraph Analysis

The Dynamic Flowgraph Methodology (DFM) is an integrated, methodical approach to modeling and analyzing the behavior of software-driven embedded systems for the purpose of dependability assessment and verification. Models such as this can be analyzed to determine how a certain state (desirable or undesirable) can be reached. The resulting information concerning the hardware and software states that can lead to certain events of interest can then be used to increase confidence in the system, eliminate unsafe execution paths, and identify testing criteria for mission critical software functions. This is done by developing timed fault trees which take the form of logical combinations of static trees relating the system parameters at different points in time.

The methodology has two fundamental goals: 1) to identify how events can occur in a system; and 2) identify an appropriate testing strategy based on an analysis of system functional behavior. To achieve these goals, the methodology employs a modeling framework in which models expressing the logic of the system being analyzed are developed in terms of causal relationships between physical variables and temporal characteristics of the execution of software modules.

For further description of this method please refer to the paper by Garrett, Yau, Guarro and Apostolakais [Garrett, C., et al, 1994].

As an example, Figure G-5 illustrates a simple embedded system, and Figure G-6 is a DFM system model of that system. Models such as these are analyzed to determine how a certain state (desirable or undesirable) can be reached. This is generally done by developing timed fault trees which take the form of logical combinations of static trees relating the system parameters at different points in time.

[image: image16.wmf]Storage Tank

H

Feedback

Control Software

Reference Point

Constant

Flow Rate

Sensor

Control Valve

Pipe

Figure G-5. Example DFM Application to a System

[image: image17.wmf]H

PV

A

C

SS

C

E

MF

DF

D

SIVP

SIFR

DF

SIVC

B

CVP

SV

Time Delay = 50 ms

Computer

Figure G-6. Example DFM System Model

Legend for Figure G-6:

H
Height of Water in the Storage Tank

CVP
Commanded Valve Position

DF
Downstream Flowrate

MF
Measured Flowrate

PV
Position of the Valve

SIFR
S/W Image of the Flowrate

SIVC
S/W Image of the Valve Position Command
SIVP
S/W Image of the Valve Position

SS
State of the Flowrate Sensor

SV
State of the Valve

Figure G-7, Example of DFM Analysis, shows a set of timed fault trees for the example DFM model. The resulting information concerning the hardware and software states that may lead to certain events of interest can then be used to increase confidence in the system, eliminate unsafe execution paths, and identify testing criteria for safety critical software functions.

[image: image18.wmf]DF

 = 4

PV

=3

H=3

PV

=4

H=2

PV

=4

H=3

SV

=0

SV

=1

SV

=1

CVP

=3

CVP

=4

CVP

=4

SV

=0

SV

=0

A/B

Normal

A/B

Faults

CVP

=3

SIVP

=3

To be expanded

SIVP

=2

SIVP

=2

SIVP

=3

SIVP

=4

SIVP

=4

SIFR

=0

SIFR

=1

SIFR

=2

SIFR

=3

SIFR

=4

To be expanded

Time

Table

Figure G-7. Example of DFM Analysis

G.4
Software Analysis Toolstc " IDENTIFICATION" \l 1
The following tools selection is available for performing software analysis. This obviously id not a comprehensive list but a selection of few more popular ones.

· Computer Aided Fault Tree Analysis (CAFTA)
Computer Aided Fault Tree Analysis (CAFTA) is a tool for quantifying fault trees and event trees. CAFTA is the industry leading fault tree analysis system for large, complex, or multi-user projects. Using CAFTA you can build, quantify, and analyze fault tree models of any size or complexity. With CAFTA, one analyst can accomplish the work of many. In the past, hours were spent developing fault tree logic and entering data. In contrast, the integrated reliability databases, plotting features and cutset review tools of CAFTA let you focus on improving system efficiency. For further information please visit SAIC at:

http://www.saic.com/products/software/cafta/
· Xfmea by ReliaSoft
ReliaSoft's Xfmea software facilitates the FMEA/FMECA analysis process and provides flexible data management and reporting capabilities. Xfmea supports the major industry standards for all types of FMEA/FMECA analysis.

In addition to providing pre-defined profiles for the major industry standard reporting formats, the software provides extensive capabilities to customize the interface and the reports. This includes the ability to rename fields, hide/display fields, customize the RPN rating criteria and other options to allow you to determine the configuration for analysis and reporting.

Xfmea provides two complementary views to facilitate data entry. The worksheet view displays the analysis in the traditional tabular format for FMEA reports. The intuitive hierarchical view displays the item configurations at-a-glance along with the related functions, failures, effects, causes, controls and actions defined in your analysis.
For further information please visit ReliaSoft at:

http://www.reliasoft.com/xfmea/
· FMEA-Pro by Reliass
FMEA-Pro is one of the most powerful Failure Modes and Effects Analysis software tools. This FMEA tool is designed and built for the automotive, consumer electronic, aerospace, defense, and general manufacturing industries.

With the release of Version 6, FMEA-Pro will help one complete the studies up to 50%+ faster. Plus, it will help identify more risks than ever before - ultimately creating safer products. Companies struggling with old FMEAs in Word, Excel or even FMEAplus? are able to migrate valuable engineering data into FMEA-Pro and create a consistent structure while reducing inconsistencies.

For further information please visit Reliass at:

http://www.reliability-safety-software.com/products/product_fmea6.htm
· ITEM QA By Item Software
ITEM-QA uses Failure Mode and Effect Analysis to recognize and identify potential failures in a design or process. FMEA analyses systems and components according to uniform, comprehensive standards for internal and external quality assurance.

Data are stored in libraries and registers, which mean common data, can be reused again and again, speeding up data entry while reducing the potential for errors. The FMEA module also offers comprehensive charts and reports relevant to FMEAs including Pareto and Distribution reports and RPN charts.

For further information please visit Item Software at:

http://www.itemsoft.com/itoolkit.html
· Relex Fault Tree/Event Tree By Relex Software
The Relex user-friendly interface takes the guesswork out of building Fault Tree diagrams. One can define gates, events, or branches and assign their properties using just a few mouse clicks. The standard cut, copy, and paste techniques may be used to add or remove elements throughout fault tree diagrams. The titles, fonts, images, colors, and other parameters can be customized so that diagrams meet any specifications. One can even span complex diagrams across multiple pages for ease of viewing on screen and in print.

The unique Relex Fault Tree interface provides a simultaneous display of the fault tree in a standard graphical view as well as a compact tabular view. The expandable/collapsible table simplifies the viewing and editing of the properties of the various gates and events, especially in large trees. The graphical fault tree view can be exported as a bitmap or JPEG file to incorporate into reports, presentations, or web pages.

For further information please visit Relex Software at:

http://www.relexsoftware.com/products/ftaeta.asp
· SAPHIRE

The tool name stands for, “Systems Analysis Programs for Hands-on Integrated Reliability Evaluations”, and it was sponsored by and developed for the Division of Systems Technology, Office of Nuclear Regulatory Research at the U.S. Nuclear Regulatory Commission (NRC).
Appendix H. COMMON SOFTWARE FailureS

Some common failure modes are listed in Table H-1.

Table H-1. Common Software Failure Modes

	
	
	

	
	 PRODUCT FAILURE

	 1.
	Feature not implemented (Lack of requirements or misunderstanding of requirements)

	 2.
	Logical design problem

	 3.
	Not meeting performance requirements (e.g., lack of an efficient algorithm)

	 4.
	Not reporting required status for different parameters

	 5.
	Not identifying the complete transitions to and out of software modes

	 6.
	Variables not initialized at start-up time (i.e., lack of a complete initialization routine)

	 7.
	Wrong values (data) stored in tables

	 8.
	Conversion of data types not correct

	 9.
	Lack of checks on limits and ranges within the code

	10.
	Using the wrong relational operators (e.g., ‘<’ instead of ‘<=’)

	11.
	Using the wrong logical operators (e.g., ‘==’ instead of ‘!=’_

	12.
	Not having the right version of the source code (lack of version control)

	13.
	Fixing a bug injects a new defect that is not caught in testing

	14.
	Adding a new feature injects a new defect

	15.
	Inheritance software without appropriate reviews and testing (Ariane 5 failure)

	16.
	An overflow condition due to conversion of numbers (e.g., floating point to integer if proper checks are not included in the software)

	17.
	Buffer overflow (if not checked and remedied)

	18.
	Divide by Zero (if not checked properly and in advance)

	19.
	Lack of a prioritized bus schedule to avoid conflicts

	20.
	Race conditions

	21.
	Timing errors

	22.
	Unhandled exception

	
	 PROCESS FAILURE

	
	Human errors

	23.
	Failure in development (e.g., poor development methodologies)

	24.
	Sending the wrong command

	25.
	Not reporting the problems with the software

	26.
	Software errors result with no ill effect, so errors are ignored

	27.
	Resetting the computer to continue operation when an error shows up

	28.
	Corruption in transmission of data

	29.
	Commanding the system while in an inappropriate mode

	30.
	Incorrect command sequence

This is NOT a requirements document

The materials in this document are NOT requirements but are meant to be guidance only. Please see section 1.1. “Purpose” for further clarification.

For additional help with software risk management, please contact the SQI Project (� HYPERLINK "http://software" ��http://software�).

Printed copies of this document may not be current and should not be relied on for official purposes. The current version is in the JPL Rules Information System at JPL Rules.

犟䵩

6
2

_1150776881.bin

_1151234118.bin

_1170825117.bin

_1151231798.bin

_1151229652.bin

_1144154493.bin

_1150721083.bin

_1143446931.bin

_1132402983.bin

