REFERENCE GUIDE TO THE

INTERNATIONAL SPACE STATION

ASSEMBLY COMPLETE EDIT1ON
NOVEMBER 2010

ISS

2009 Robert J. Collier Trophy winner
The Collier Trophy is awarded annually "for the greatest achievement in aeronautics or astronautics in America, with respect to improving the performance, efficiency, and safety of air or space vehicles, the value of which has been thoroughly demonstrated by actual use during the preceding year."

Library of Congress Cataloging-in-Publication Data
Reference guide to the International Space Station. -- Assembly complete ed.
p. cm.

Rev. ed. of the NASA document: Reference guide to the International Space Station. August 2006.
"November 2010."
"NP-2010-09-682-HQ."
ISBN 0-16-086517-4

1. International Space Station. 2. Space stations--International cooperation. 3.

Manned space flight. I. United States. National Aeronautics and Space Administration.
TL797.R44 2010
629.44'2--dc22

INTERNATIONAL SPACE STATION

ASSEMBLY COMPLETE EDITION
NOVEMBER 2010

What It Does 7
Research Guide 21
How It's Put Together 45
How lt's Supported 63
How the Crew Lives 79
How It Works 85
How It's Built 97
MissionsAppendix111129

Assembly of the International Space Station (ISS) is a remarkable achievement. Since November 2, 2000, humankind has maintained a continuous presence in space. Over this timespan, the ISS International Partnership has flourished. We have learned much about construction and about how humans and spacecraft systems function on orbit. But there is much more to do and learn, and this voyage of research and discovery is just beginning. We now shift our focus from ISS assembly to full ISS utilization for scientific research, technology development, exploration, commerce, and education. We need to approach this next research phase with the same dedication, zeal, and innovation that we used to assemble the ISS. United States research concentrates on biology, human research, physical science and materials, Earth and space science, and technology for exploration beyond low-Earth orbit. As a national laboratory, the ISS is beginning to provide new opportunities for other agencies, academia, and commercial and other partners to pursue novel avenues of research and development, and to promote science, technology, engineering, and math education. We cannot now foresee all that may be uncovered on this voyage, but we look forward to the voyage and returning knowledge to extend the human presence beyond and improve life here on Earth.

The International Space Station (ISS) is the unique blend of unified and diversified goals among the world's space agencies that will lead to improvements in life on Earth for all people of all nations. While the various space agency partners may emphasize different aspects of research to achieve their goals in the use of the ISS, they are unified in several important overarching goals.

All of the agencies recognize the importance of leveraging the ISS as an education platform to encourage and motivate today's youth to pursue careers in math, science, engineering, and technology (STEM): educating the cbildren of today to be the leaders and space explorers of tomorrow.

Advancing our knowledge in the areas of human physiology, biology, and material and physical sciences and translating that knowledge to health, socioeconomic, and environmental benefits on Earth is another common goal of the agencies: returning the knowledge gained in space research for the benefit of society.

Finally, all the agencies are unified in their goals to apply knowledge gained through ISS research in human physiology, radiation, materials science, engineering, biology, fluid physics, and technology: enabling future space exploration missions.

Plans Becoming a Reality

Almost as soon as the ISS was habitable, it was used to study the impact of microgravity and other space effects on several aspects of our daily lives. ISS astronauts conduct science daily across a wide variety of fields including human life sciences, biological science, human physiology, physical and materials science, and Earth and space science. Over 500 experiments have been conducted on the ISS as part of early utilization, over 10 years of continuous research.

In 2009, the number of astronauts living on board the ISS increased from three to six, and in 2010, the assembly of the ISS will be complete. As a result, more time will be spent on orbit performing ISS research. ISS laboratories are expected to accommodate an unprecedented amount of space-based research. Early utilization accomplishments give us hints about the value of a fully utilized ISS after assembly is complete.

Number of Experiments Performed Through Expeditions 21/22 (March 2010)

Cumulative ISS Utilization Crewtime by All Partners

REFERENCE GUIDE TO THE ISS
WHAT IT DOES
PLANS BECOMING A REALITY

Astronaut works with the Smoke Point In Co-flow Experiment in the Microgravity Sciences Glovebox (MSG) during Expedition 18.

Cosmonaut performs inspection of the BIO-5 Rasteniya-2 (Plants-2) experiment in the Russian Lada greenhouse.

Microbial Vaccine Development—Scientific findings from ISS research have shown increased virulence in Salmonella bacteria flown in space and identified the controlling gene responsible. AstroGenetix, Inc., has funded their own follow-on studies on the ISS and are now pursuing approval of a vaccine of an Investigational New Drug (IND) with the Food and Drug Administration (FDA). The company is now applying a similar development approach to methycillin-resistant Staphylococcus aureus (MRSA).

Crew Earth Observations-International Polar Year (CEO-IPY) supported an international collaboration of scientists studying Earth's polar regions from 2007 to 2009. ISS crewmembers photographed polar phenomena including icebergs, auroras, and mesospheric clouds. Observations, through digital still photography and video, from the ISS are used in conjunction with data gathered from satellites and ground observations to understand the current status of the polar regions. The ISS, as a platform for these observations, will contribute data that have not been available in the past and will set the precedent for future international scientific collaborations for Earth observations. The International Polar Year, which started in 2007 and extended through February 2009, is a global campaign to study Earth's polar regions and their role in global climate change.

Lab-on-a-Chip Application

 Development-Portable Test System (LOCAD-PTS) is a handheld device for rapid detection of biological and chemical substances on surfaces aboard the ISS. Astronauts swab surfaces within the cabin, mix swabbed material in liquid form to the LOCAD-PTS, and obtain results within 15 minutes on a display screen, effectively providing an early warning system to enable the crew to take remedial measures if necessary to protect themselves on board the ISS. The handheld device is used with three different types of cartridges for the detection of endotoxin (a marker of gram-negative bacteria), glucan (fungi), and lipoteichoic acid (gram-positive bacteria). Lab-on-aChip technology has an ever-expanding range of applications in the biotech industry. Chips are available (or in development) that can also detect yeast, mold, and grampositive bacteria; identify environmental contaminants; and perform quick health diagnostics in medical clinics.

The Plasma Crystal experiment was one of the first scientific experiments performed on the ISS in 2001. Complex plasma is a low-temperature gaseous mixture composed of ionized gas, neutral gas, and micron-sized particles. Under specific conditions, the interactions of these microparticles lead to a self-organized structure of a "plasma crystal" state of matter. Gravity causes the microparticles to sediment due to their relatively high mass compared to that of the ions, and so they have to be electrostatically levitated for proper development. The microgravity environment of the ISS allowed the development of larger three-dimensional plasma crystal systems in much weaker electric fields than those necessary for the levitation on the ground, revealing unique structural details of the crystals. The European Space Agency (ESA) is now building the next generation of complex plasma experiments for the ISS in collaboration with a large international science team. Understanding the formation and structure of these plasma crystal systems can also lead to improvements in industrial process development on Earth.

Plasma Crystal 3 Plus [Roscosmos, DLR (German Aerospace Center), ESA], as well as previous experiments of this series, is one example of a complex set of plasma crystal experiments that allow scientists to study crystallization and melting of dusty plasma in microgravity by direct viewing of those phenomenon. The equipment includes a tensor unit, turbo pump, and two TEAC Aerospace Technologies video tape recorders are part of the telescience equipment. Video recordings of the plasma crystal formation process, along with parameters such as gas pressure, high-frequency radiated power and the size of dust particles are downlinked to Earth for analysis.

Electron density maps of HQL-79 crystals grown on Earth show a smaller three-dimensional structure (resolution of 1.7 Angströms, top left) as compared to the HQL-79 crystals grown in space (resolution of 1.28 Angströms, lower right).

New Treatment Options for Duchenne Muscular Dystrophy: Collaborative High Quality Protein

 Crystal Growth—This JAXA- and Roscosmossponsored investigation was a unique collaboration between several ISS International Partners. The HQL-79 (human hematopoietic prostaglandin D2 synthase inhibitor) protein is a candidate treatment in inhibiting the effects of Duchenne muscular dystrophy. Investigators used the microgravity environment of the ISS to grow larger crystals and more accurately determine the three-dimensional structures of HQL-79 protein crystals. The findings led to the development of a more potent form of the protein, which is important for the development of a novel treatment for Duchenne muscular dystrophy. Russian investigators have collaborated internationally to grow macromolecular crystals on ISS since 2001, including genetically engineered human insulin (deposited into protein data bank in 2008), tuberculosis, and cholera-derived pyrophosphatase. The next generation of RussianJapanese collaboration is the JAXA-High Quality Protein Crystal Growth experiment installed in Kibo in August 2009.

Advanced Diagnostic Ultrasound in Microgravity (ADUM)-

The ultrasound is the only medical imaging device currently available on the ISS. This experiment demonstrated the diagnostic accuracy of ultrasound in medical contingencies in space and determined the ability of minimally trained crewmembers to perform ultrasound examinations with remote guidance from the ground. The telemedicine strategies investigated by this experiment could have widespread application and have been applied on Earth in emergency and rural care situations. In fact, the benefits of this research are being used in professional and amateur sports from hockey, baseball, and football teams to the U.S. Olympic Committee. Sport physicians and trainers can now perform similar scans on injured players at each of their respective sport complexes by taking advantage of ultrasound experts available remotely at the Henry Ford Medical System in Detroit. This is an excellent example of how research aboard the ISS continues to be put to good use here on Earth while, at the same time, paving the way for our future explorers.

An ISS investigator recently patented the Microparticle Analysis System and Method, an invention for a device that detects and analyzes microparticles. This technology supports the chemical and pharmaceutical industries and is one of a sequence of inventions related to technology development for experiments on the ISS and Shuttle, including the Microencapsulation Electrostatic Processing System (MEPS) experiment that demonstrated microencapsulation processing of drugs, a new and powerful method for delivering drugs to targeted locations. MEPS technologies and methods have since been developed that will be used to deliver microcapsules of anti-tumor drugs directly to tumor sites as a form of cancer therapy.

NASA astronaut Nicole Stott, Expedition 21 flight engineer, installs hardware in the Fluids Integrated Rack (FIR) in the Destiny laboratory of the ISS.

The laboratories of the ISS are virtually complete; key research facilities-science laboratories in space-are up and running. In 2008, the ESA Columbus and JAXA Kibo laboratories joined the U.S. Destiny Laboratory and the Russian Zvezda Service Module. Zvezda was intended primarily to support crew habitation but became the first multipurpose research laboratory of the ISS. In addition, the U.S. has expanded its user base beyond NASA to other government agencies and the private sectors to make the ISS a U.S. National Laboratory.

As all ISS partner nations begin their research programs, international collaboration and interchange among scientists worldwide is growing rapidly. Over the final years of assembly in 2009-2010, the initial experiments have been completed in the newest racks, the crew size on board ISS has doubled to six astronauts/cosmonauts, and in 2010 we will transition from "early utilization" to "full utilization" of ISS. The ISS labs are GO!

Japanese Experiment Module External Facility (JEM EF) with the Remote Manipulator System arm and three payloads installed.

This high-flying international laboratory is packed with some of the most technologically sophisticated facilities that can support a wide range of scientific inquiry in biology, human physiology, physical and materials sciences, and Earth and space science. There is probably no single place on Earth where you can find such a laboratory-approximately the size of an American football field (including the end zones) and having the interior volume of 1.5 Boeing 747 jetliners-with facilities to conduct the breadth of research that can be done aboard the ISS. Keep turning the pages to learn more about this amazing laboratory orbiting approximately $350 \mathrm{~km}(220 \mathrm{mi})$ above us.

ISS Laboratory Research Rack Locations at Assembly Complete

U.S. Laboratory Destiny

European Laboratory Columbus

Japanese Laboratory
Kibo

EXPRESS
Rack 1

EXPRESS
Rack 2

EXPRESS
Rack 6

Sub-rack-sized experiments with standard utilities such as power, data, cooling, and gases.

Sub-rack-sized experiments with standard utilities such as power, data, cooling, and gases.

Sub-rack-sized experiments with standard utilities such as power, data, cooling, and gases.

Fluids Integrated Rack (FIR)

A complementary fluid physics research facility designed to accommodate a wide variety of micro gravity experiments.

Materials Science
Research Rack-1 (MSRR-1)

Accommodates studies of many different types of materials.

Window Observational Research Facility (WORF)

Provides a facility for Earth science research using the Destiny science window on the ISS.

EXPRESS
Rack 7

Sub-rack-sized experiments with standard utilities such as power, data, cooling, and gases.

Combustion Integrated Rack
(CIR)

Used to perform
sustained, systematic combustion experiments in microgravity.

Minus Eighty-Degree Laboratory Freezer for ISS (MELFI-1)

A refrigerator/freezer for biological and life science samples.

Minus Eighty-Degree Laboratory Freezer for ISS (MELFI-3)

A refrigerator/freezer for biological and life science samples.

Ryutai Experiment Rack

A multipurpose payload rack system that supports various fluid physics experiments.

EXPRESS
Rack 4

Sub-rack-sized experiments with standard utilities such as power, data, cooling, and gases.

Saibo Experiment Rack

A multipurpose payload rack system that sustains life science experiment units inside and supplies resources to them.

EXPRESS
Rack 3

Sub-rack-sized experiments with standard utilities such as power, data, cooling, and gases.

Microgravity Science Glovebox (MSG)

Provides a safe containment environment for research with liquids, combustion, and hazardous materials.

Muscle Atrophy Research and Exercise

System (MARES)

Used for research on musculoskeletal, biomechanical, and neuromuscular human physiology.

Human Research Facility (HRF-1)

Enable researchers to study and evaluate the physiological, behavioral, and chemical changes induced by long-duration space flight.

Human Research
Facility
(HRF-2)

Enable researchers to study and evaluate the physiological, behavioral and chemical changes induced by long-duration space flight.

Biological Experiment Laboratory
(BioLab)

Used to perform space biology experiments on microorganisms, cells, tissue cultures, small plants, and small invertebrates.

European Drawer Rack
(EDR)

Provides sub-rack-sized experiments with standard utilities such as power, data, and cooling.

European Physiology
Module
(EPM)

Investigates the effects of short- and long-duration space flight on the human body.

Fluid Science Laboratory
(FSL)

A multi-user facility for conducting fluid physics research in microgravity conditions.

EXTERNAL RESEARCH ACCOMMODATIONS	
Express Logistics Carrier (ELC) Resources	
Mass capacity	$4,445 \mathrm{~kg}(9,800 \mathrm{lb})$
Volume	$30 \mathrm{~m}^{3}$
Power	3 kW maximum, 113-126 VDC
Low-rate data	1 Mbps (MIL-STD-1553)
High-rate data	95 Mbps (shared)
Local area network	6 Mbps (802.3 Ethernet)

External Research Accommodations

External Earth and Space Science hardware platforms are located at various places along the outside of the ISS. Locations include the Columbus External Payload Facility (CEPF), Russian Service Module, Japanese Experiment Module Exposed Facility (JEM-EF), four EXPRESS Logistics Carriers (ELC), and the Alpha Magnetic Spectrometer (AMS). External facility investigations include those related to astronomy; Earth observation; and exposure to vacuum, radiation, extreme temperature, and orbital debris.

External Research Locations

| External Unpressurized Attachment Sites | Stationwide | U.S. Shared |
| :--- | :--- | :--- | :--- |
| U.S. Truss | 8 | 8 |
| Japanese Exposed Facility | 10 | |
| European Columbus Research Laboratory | 4 | |
| Total | 22 | 15 |

External Payload Accommodations

External payloads may be accommodated at several locations on the U.S. S3 and P3 Truss segments. External payloads are accommodated on an Expedite the Processing of Experiments to the Space Station racks (EXPRESS) Logistics Carrier (ELC). Mounting spaces are provided, and interfaces for power and data are standardized to provide quick and straightforward payload integration. Payloads can be mounted using the Special Purpose Dexterous Manipulator (SPDM), Dextre, on the ISS's robotic arm.

ELC Single Adapter Site

Internal Research Accommodations

Several research facilities are in place aboard the ISS to support microgravity science investigations, including those in biology, biotechnology, human physiology, material science, physical sciences, and technology development.

Standard Payload Racks

Research payloads within the U.S., European, and Japanese laboratories typically are housed in a standard rack, such as the International Standard Payload Rack (ISPR). Smaller payloads may fit in a Shuttle middeck locker equivalent and be carried in a rack framework.

Active Rack Isolation System (ARIS)

The ARIS is designed to isolate payload racks from vibration. The ARIS is an active electromechanical damping system attached to a standard rack that senses the vibratory environment with accelerometers and then damps it by introducing a compensating force.

INTERNAL RESEARCH ACCOMMODATIONS

The ISS is an unprecedented technological and political achievement in global human endeavors to conceive, plan, build, operate, and utilize a research platform in space. It is the latest step in humankind's quest to explore and live in space.

As on-orbit assembly of the ISS is completed-including all international partner laboratories and elements-it has developed into a unique research facility capable of unraveling the mysteries of life on Earth. We can use the ISS as a human-tended laboratory in low-Earth orbit to conduct multidiscipline research in biology and biotechnology, materials and physical science, technology advancement and development, and research on the effects of long-duration space flight on the human body. The results of the research completed on the ISS may be applied to various areas of science, enabling us to improve life on this planet and giving us the experience and increased understanding to journey to other worlds.

Multipurpose Facilities

Expedite the Processing of

 Experiments to Space Station (EXPRESS) Racks [NASA] are modular multipurpose payload racks that store and support experiments aboard the ISS. The rack provides structural interfaces, power, data, cooling, water, and other items needed to operate the science experiments on the ISS. Experiments are exchanged in and out of the EXPRESS Rack as needed; some subrack multi-user facilities (like the European Modular Cultivation System [EMCS]) will remain in EXPRESS for the life of the ISS, while others are used for only a short period of time.

European Drawer Rack (EDR) [ESA] is a multidiscipline facility to support up to seven modular experiment modules. Each payload will have its own cooling, power, data communications, vacuum, venting, and nitrogen supply. EDR facilitates autonomous operations of subrack experiments in a wide variety of scientific disciplines.

Protein Crystallization Diagnostics Facility (PCDF) is the first ESA experiment performed with the EDR rack. Its main science objectives are to study the protein crystal growth conditions by way of nonintrusive optical techniques like Dynamic Light Scattering (DLS), Mach-Zehnder Interferometry (MZI), and classical microscopy. Understanding how crystals grow in purely diffusive conditions helps define the best settings to get organic crystals as perfect as possible. Later on these crystals will be preserved and analyzed via X-rays on Earth to deduce the three-dimensional shape of proteins.

Portable Glove Box (PGB) [ESA] is a small glovebox that can be transported around the ISS and used to provide two levels of containment for experiments in any laboratory module. Three levels of containment can be achieved by placing the PGB inside the larger volume of the MSG.

Gloveboxes provide containment of experiments, ensuring that hazardous materials do not float about the cabin. The Microgravity Science Glovebox (MSG) has been the most heavily used facility during ISS construction. In one short period in 2008, it was used for a combustion experiment, for a study of complex fluids, and to harvest plants. A wide variety of experiments will be using the versatile MSG accommodation and functional capabilities.

Microgravity Experiment Research Locker/ Incubator (MERLIN) [NASA] can be used as either a freezer, refrigerator, or incubator (between $-20.0^{\circ} \mathrm{C}$ to $48.5^{\circ} \mathrm{C}$) and has a volume of 4.17 L .

General Laboratory Active Cryogenic ISS Equipment Refrigerator (GLACIER) [NASA] serves as an on-orbit ultra-cold freezer (as low as $-165^{\circ} \mathrm{C}$) and has a volume of 11.35 L .

Microgravity Science Glovebox (MSG) [ESA, NASA] provides a safe environment for research with liquids, combustion, and hazardous materials on board the ISS. Crewmembers access the work area through ports equipped with rugged, sealed gloves. A video system and data downlinks allow for control of the enclosed experiments from the ground. Built by ESA and operated by NASA, MSG is the largest glovebox flown in space.

Minus Eighty-Degree Laboratory Freezer for ISS (MELFI) [ESA, NASA] is a refrigerator/freezer for biological and life science samples collected on the ISS. These ESA-built and NASA-operated freezers store samples at temperatures of $+4^{\circ} \mathrm{C}$ to as low as $-80^{\circ} \mathrm{C}$, and each has a volume of 175 L of samples.

EXPRESS Rack Designs

Over 50 percent of the capabilities of EXPRESS Racks are available for new research equipment. EXPRESS Racks are the most flexible modular research facility available on ISS and are used for NASA and international cooperative research.

	Available for future utilization	Facilities currently in use
\square	Systems hardware	Water- coled payloads

Biological Research

Biological Laboratory (BioLab) [ESA] is used to perform space biology experiments on microorganisms, cells, tissue cultures, small plants, and small invertebrates, and it will allow a better understanding of the effects of microgravity and space radiation on biological organisms. BioLab includes an incubator with a microscope, spectrophotometer, and two centrifuges to provide artificial gravity. It also has a glovebox and two cooler/freezer units.

Mice Drawer System (MDS) [NASA, ASI] is hardware provided by the Italian Space Agency (ASI) that uses a validated mouse model to investigate the genetic mechanisms underlying bone mass loss in microgravity. MDS is a multifunctional and multiuser system that allows experiments in various areas of biomedicine, from research on organ function to the study of the embryonic development of small mammals under microgravity conditions. Research conducted with the MDS is an analog to the human research program, which has the objective to extend the human presence safely beyond low-Earth orbit.

REFERENCE GUIDE TO THE ISS
RESEARCH GUIDE
BIOLOGICAL RESEARCH

Advanced Biological Research System (ABRS)
[NASA] is a single locker system with two growth chambers. Each growth chamber is a closed system capable of independently controlling temperature, illumination, and atmospheric composition to grow a variety of biological organisms including plants, microorganisms, and small arthropods (insects and spiders).

The first plant experiments in ABRS will include the first trees flown in space (willows for a Canadian study of cambium formation), and an American study will use green fluorescent proteins as environmental stress indicators.

Exposure Experiment (Expose) [ESA] is a multi-user facility accommodating experiments in the following disciplines: photo processing, photo-biology, and exobiology. Expose allows short- and long-term exposure of experiments to space conditions and solar UV radiation on the ISS. The Expose facilities are installed on the external surfaces of Zvezda service module and Columbus module.

REFERENCE GUIDE TO THE ISS RESEARCH GUIDE

Kriogem-3M [Roscosmos] is a refrigeratorincubator used for stowage of biological samples and for the culture and incubation of bioreactors such as Recomb-K. Bioreactors are specialized hardware for growing cells, tissues, and microorganisms.

eOSTEO Bone Culture System [CSA] provides the right conditions to grow bone cells in microgravity. This culture system has been used successfully on U.S. Space Shuttle and Russian Foton recoverable orbital flights, and is also available for use in bone cell culture on ISS.

Understanding the cellular changes in bone cells in orbit could be key for understanding the bone loss that occurs in astronauts while they are in space.

28

Saibo Experiment Rack (Saibo) [JAXA] is a multipurpose payload rack system that sustains life science experiment units inside and supplies resources to them. Saibo consists of a Clean Bench, a glovebox with a microscope, and a Cell Biology Experiment Facility (CBEF), which has incubators, a centrifuge, and sensors to monitor the atmospheric gases.

Saibo means "living cell." The first use of Saibo was for studies of the effects of radiation on immature immune cells.

Aquatic Habitat (AQH) [JAXA] enables breeding experiments with medaka or zebrafish in space, and those small freshwater fish have many advantages as one of the model animals for study. The AQH is composed of two aquariums, which have automatic feeding systems, LED lights to generate day/night cycle, and charge-coupled device (CCD) cameras for observation.

LADA Greenhouse [Roscosmos] - Since its launch in 2002, the LADA greenhouse has been in almost continous use for growing plants in the Russian segment. It has supported a series of experiments on fundamental plant biology and space farming, growing multiple generations of sweet peas, wheat, tomatoes, and lettuce.

NASA and Roscosmos have used the LADA greenhouse in cooperative tests to determine the best ways to keep roots moist in space. Bioregenerative life support from photosynthesis may be an important component of future spacecraft systems.

REFERENCE GUIDE TO THE ISS
RESEARCH GUIDE
BIOLOGICAL RESEARCH

European Modular Cultivation System (EMCS) [ESA, NASA] allows for cultivation, stimulation, and crew-assisted operation of biological experiments under well-controlled conditions (e.g., temperature, atmospheric composition, water supply, and illumination). It is being used for multi-generation experiments and studies of gravitational effects on early development and growth in plants and other small organisms.

The EMCS has two centrifuges, spinning at up to twice Earth's gravity. Different experiment containers can hold a variety of organisms, such as worms and fruit flies, as well as seeds and plants. The EMCS has already supported a number of plant growth experiments operated by ESA, NASA, and JAXA.

Human Physiology Research

SLAMMD and PFS are used by flight surgeons during periodic medical exams on the ISS. Understanding the gradual deconditioning of astronauts and cosmonauts during their stay on the ISS is critical for developing better exercise capabilities for exploration beyond Earth orbit.

Human Research Facility (HRF-1 and HRF-2) [NASA] enables human life science researchers to study and evaluate the physiological, behavioral, and chemical changes induced by long-duration space flight. HRF-1 houses medical equipment including a Clinical Ultrasound, the Space Linear Acceleration Mass Measurement Device (SLAMMD) for measuring on-orbit crewmember mass, devices for measuring blood pressure and heart function, and a Refrigerated Centrifuge for processing blood samples. The equipment is being used to study the effects of long-duration space flight on the human body. Researchers will use the ISS to understand the physiology and to test countermeasures that will prevent negative effects of space travel, and enable humans to travel beyond Earth orbit.

Techniques developed for using ultrasound technology on the ISS are now being used in trauma facilities to more rapidly assess serious patient injuries.

European Physiology Module (EPM)
[ESA] is designed for investigating the effects of microgravity on short-term and long-duration space flights on the human body and includes equipment for studies in neuroscience, and in cardiovascular, bone, and muscle physiology, as well as investigations of metabolic processes. The cardiolab instrument was provided by the French Space Agency (CNES) and German Aerospace Center (DLR).

REFERENCE GUIDE TO THE ISS
RESEARCH GUIDE
HUMAN PHYSIOLOGY RESEARCH

Anomalous Long Term Effects in Astronaut's

 Central Nervous System (ALTEA) [ASI, NASA, ESA] ALTEA is a helmet-shaped device holding six silicon particle detectors that has been used to measure the effect of the exposure of crewmembers to cosmic radiation on brain activity and visual perception, including astronauts' perceptions of light flashes behind their eyelids as a result of high-energy radiation. Because of its ability to be operated without a crewmember, it is also being used as a portable dosimeter to provide quantitative data on high-energy radiation particles passing into the ISS.ALTEA-Dosi capabilities are also used to give additional information on the exposure of crewmembers to radiation during their stays on ISS for use in health monitoring. ALTEA-Shield will provide data about radiation shielding effects by a variety of special materials.

Pulmonary Function System (PFS) [ESA,
NASA] is hardware developed collaboratively by ESA and NASA. It includes four components that are needed to make sophisticated studies of lung function by measuring respired gases in astronaut subjects. It includes two complimentary analyzers to measure the gas composition of breath, the capability to make numerous different measurements of lung capacity and breath volume, and a system to deliver special gas mixtures that allow astronauts to perform special tests of lung performance. ESA will also be operating a small portable version of the system (portable PFS) that can be used in the various laboratory modules.

The Combined Operational Load Bearing External Resistive Exercise Treadmill (COLBERT) [NASA] can collect data such as body loading, duration of session, and speed for each crewmember.

The Advanced Resistive Exercise Device (ARED) [NASA] is systems hardware that provides exercise capabilities to crewmembers on the ISS. The ARED also collects data regarding the parameters (loads, repetitions, stroke, etc.) associated with crew exercise and transmits it to the ground.

The Cycle Ergometer with Vibration Isolation System (CEVIS) [NASA] provides the ability for recumbent cycling to provide aerobic exercise as a countermeasure to cardiovascular deconditioning on orbit.

The second generation of exercise equipment used for daily exercise on board the ISS collects information on protocols and forces that are used as supplemental data for studies of muscle and bone loss and cardiovascular health during long-duration space flight.

Percutaneous Electrical Muscle Stimulator
(PEMS) [ESA] is a self-contained, locker-stowed item. Its purpose is to deliver electrical pulse stimulation to nonthoracic muscle groups of the human test subject, thereby creating contractile responses from the muscles. The PEMS supports neuromuscular research. It provides single pulses or pulse trains according to a preadjusted program.

Muscle Atrophy Research Exercise System (MARES) [ESA] will be used for research on musculoskeletal, biomechanical, and neuromuscular human physiology to better understand the effects of microgravity on the muscles. This instrument is capable of assessing the strength of isolated muscle groups around joints by controlling and measuring relationships between position/velocity and torque/ force as a function of time.

Human Research Hardware [CSA] is used cooperatively with other international hardware for better understanding of the physiological responses to space flight. The hardware includes radiation dosimeters (Extravehicular Activity Radiation Monitoring [EVARM]) and hardware and software for studying hand-eye coordination and visual perception (Perceptual Motor Deficits in Space [PMDIS], Bodies In the Space Environment [BISE]) and neurophysiology (Effects of Altered Gravity on Spinal Cord Excitability [H-Reflex]).

Measuring Radiation Hazards in Space (Matryoshka) [ESA, Roscosmos, NASA,
JAXA] is a series of investigations to measure radiation doses experienced by astronauts in space outside (MTR-1) and at various locations inside (MTR-2) the ISS. Matryoshka uses a mannequin of a human torso made of plastic, foam, and a real human skeleton. The torso is equipped with dozens of radiation sensors that are placed in strategic locations throughout its surface and interior to measure how susceptible different organs and tissue may be to radiation damage experienced by astronauts in space. Research institutes from around the world have collaborated and shared data from the project. The results will give the radiation dose distribution inside a human phantom torso for a better correlation between skin and organ dose and for better risk assessment in future long-duration space flight.

Participants from 10 countries provided dosimeters and other components of Matryoshka, making it one of the largest multinational collaborative investigations on the ISS. The Matryoshka program started in 2004 and will incrementally continue for some years.

REFERENCE GUIDE TO THE ISS RESEARCH GUIDE HUMAN PHYSIOLOGY RESEARCH

34

Human Life Research [Roscosmos]
includes a variety of devices and systems designed to study human life in space. Components of the system of equipment include the Cardiovascular System Research Rack, Weightlessness Adaptation Study Kit, Immune System Study Kit, and Locomotor System Study Facility.

Human Research Hardware [JAXA] includes a portable Digital Holter ECG recorder for 24-hour electrocardiogram monitoring of cardiovascular and autonomic function of the astronauts.

The recorded data are downlinked through the Multi-Protocol Converter (MPC) and crew Passive Dosimeter for Lifescience Experiment in Space (PADLES), which is a passive dosimeter that records the personal dose of the astronauts. The dose records are used to assess a radiation exposure limit of each astronaut.

Human physiology research is coordinated by an internal working group to coordinate experiments and share data. An astronaut or cosmonaut can participate in as many as 20 physiology experiments during his or her stay on the ISS.

Hand Posture Analyser (HPA) [NASA, ASI] is composed of the Handgrip Dynamometer/Pinch Force Dynamometer, the Posture Acquisition Glove and the Inertial Tracking System (ITS) for the measurement of finger position and upper limb kinematics. The HPA examines the way hand and arm muscles are used differently during grasping and reaching tasks in weightlessness.

Physical Science and Materials Research

Fluid Science Laboratory (FSL) [ESA] is a multi-user facility for conducting fluid physics research in microgravity conditions. The FSL provides a central location to perform fluid physics experiments on board the ISS that will give insight into the physics of fluids in space, including aqueous foams, emulsions, convection, and fluid motions. Understanding how fluids behave in microgravity will lead to development of new fluid delivery systems in future spacecraft design and development.

GEOFLOW was the first experiment
container processing FSL. The first experiment in the FSL studied a model of liquid core planets.

The Multi-User Droplet Combustion Apparatus—Flame Extinguishment Experiment (MDCAFLEX) [NASA] creates droplets of fuel that ignite while suspended in a containment chamber.

Combustion Integrated Rack (CIR) [NASA] is used to perform sustained, systematic combustion experiments in microgravity. It consists of an optics bench, a combustion chamber, a fuel and oxidizer management system, environmental management systems, and interfaces for science diagnostics and experiment-specific equipment, as well as five different cameras to observe the patterns of combustion in microgravity for a wide variety of gases and materials.

Kobairo Rack with Gradient Heating Furnace (GHF) [JAXA] is an electrical furnace to be used for generating high-quality crystals from melting materials. It consists of a vacuum chamber and three independently movable heaters, which can realize high temperature gradient up to $150^{\circ} \mathrm{C} / \mathrm{cm}$.

Fluids Integrated Rack (FIR) [NASA] is a complementary fluid physics research facility designed to accommodate a wide variety of microgravity fluid experiments and the ability to image these experiments. The FIR features a large user-configurable volume for experiments. The FIR provides data acquisition and control, sensor interfaces, laser and white light sources, advanced imaging capabilities, power, cooling, and other resources. The FIR will host fluid physics investigations into areas such as complex fluids (colloids, gels), instabilities (bubbles), interfacial phenomena (wetting and capillary action), and phase changes (boiling and cooling). Fluids under microgravity conditions perform differently than those on Earth. Understanding how fluids react in these conditions will lead to improved designs on fuel tanks, water systems, and other fluid-based systems.

The FIR includes the Light Microscopy Module (LMM). The LMM is a remotely controllable (commanded from the ground), automated microscope that allows flexible imaging (bright field, dark field, phase contrast, etc.) for physical and biological experiments.

REFERENCE GUIDE TO THE ISS
RESEARCH GUIDE
PHYSICAL SCIENCE AND MATERIALS RESEARCH

Materials Science Research Rack (MSRR-1)
[ESA, NASA] provides a powerful, multi-user
Materials Science Laboratory (MSL) in the
microgravity environment of the ISS and can accommodate studies of many different types of materials. Experiment modules that contain metals, alloys, polymers, semiconductors, ceramics, crystals, and glasses can be studied to discover new applications for existing materials and new or improved materials (crystal growth, longer polymer chains, and purer alloys). MSRR will enable this research by providing hardware to control the thermal, environmental, and vacuum conditions of experiments; monitoring experiments with video; and supplying power and data handling for specific experiment instrumentation.

Experiments in the MSRR are coordinated by international teams that share different parts of the samples. There are 25 investigators on 3 research teams participating in the first of these investigations. MSL-Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive (MSL-CETSOL) and Magnetically Controlled Convective Conditions (MICAST) are two investigations that support research into metallurgical solidification, semiconductor crystal growth (Bridgman and zone melting), and measurement of thermo-physical properties of materials.

Device for the study of Critical Liquids and Crystallization (DECLIC) [CNES, NASA] is a multi-user facility developed by the ESA-member agency Centre National d'Études Spatiales (French Space Agency, [CNES]) and flown in collaboration with NASA. It was designed to conduct experiments in the fields of fluid physics and materials science. A special insert allows the study of both ambient-temperature critical point fluids and high-temperature super-critical fluids. Another class of insert will study the dynamics and morphology of the fronts that form as a liquid material solidifies.

Materials International Space Station Experiment (MISSE) [NASA] is a series of external exchangeable test beds for studying the durability of materials such as optics, sensors, electronics, communications devices, coatings, and structural materials. To date, a total of seven different MISSE experiments have been attached to the outside of the ISS and evaluated for the effects of atomic oxygen, vacuum, solar radiation, micrometeorites, direct sunlight, and extremes of heat and cold. This experiment allows the development and testing of new materials to better withstand the rigors of space environments. Results will provide a better understanding of the durability of various materials when they are exposed to such an extreme environment. Many of the materials may have applications in the design of future spacecraft.

Results from MISSE tests have led to changes in materials used in dozens of spacecraft built over the last 5 years.

Super-High temperature Synthesis

 in space (SHS) [Roscosmos] This experiment is designed to develop a very interesting field of material science in space for fabrication and repair (welding, joining, cutting, coating, near-net-shape production, etc.) in microgravity and even on the Moon and other planets. Russian scientists have a very good collaboration in this field of investigation on the ISS with other partners (Europe, Japan, Canada). This process is a combination of several gravity-affected physical and chemical processes, operating at temperatures of synthesis up to $3,000 \mathrm{~K}$.

Replaceable Cassette-Container (SKK or CKK) [Roscosmos] is mounted on the outside of the ISS to test materials that are directly exposed to the harsh environment of space. CKKs are detachable cassette containers that measure the level and composition of contamination and monitor the change in operating characteristics for samples of materials from the outside surfaces of the ISS Russian segment. The CKK is a two-flap structure and consists of a casing and spool holders containing samples of materials of the outside surfaces of the ISS Russian segment modules, which are exposed within the cassettes.

Bar and Expert Experiments [Roscosmos] use a unique set of instruments for temperature cartography, ultrasonic probing, and pyroendoscopic analysis of potentially dangerous places on board the ISS. Zones of possible formation of condensation have been revealed, and potential corrosion damage has been evaluated.

[^0]
Earth and Space Science

The presence of the ISS in low-Earth orbit provides a unique vantage point for collecting Earth and space science data. From an average altitude of about 400 km , details in such features as glaciers, agricultural fields, cities, and coral reefs taken from the ISS can be layered with other sources of data, such as orbiting satellites, to compile the most comprehensive information available.

Diatomia [Roscosmos] is an investigation aimed at the detection and study of ocean bioproductivity. Experiment "Seiner" is targeted on monitoring of ocean fish-rich areas and on communication with fishing boats.

External Earth and space science hardware platforms are located at various places along the outside of the ISS. Locations include the Columbus External Payload Facility (CEPF), Russian Service Module, Japanese Experiment Module Exposed Facility (JEM-EF), four EXPRESS Logistic Carriers (ELC) and the Alpha Magnetic Spectrometer (AMS).

REFERENCE GUIDE TO THE ISS
RESEARCH GUIDE
EARTH AND SPACE SCIENCE

Columbus-External Payload Facility

(Columbus-EPF) [ESA] provides four powered external attachment site locations for scientific payloads or facilities and is being used by ESA and NASA. The first two European payloads on Columbus-EPF are major multi-user facilities in themselves. EuTEF (European Technology Exposure Facility) is a set of nine different instruments and samples to support multidisciplinary studies of the ISS external environment, from radiation and space environment characterization to organic and technology materials exposure. Solar (Sun Monitoring on the External Payload Facility) is a triple spectrometer observatory that is currently measuring solar spectral irradiance. Knowledge of the solar energy irradiance into Earth's atmosphere and its variations is of great importance for atmospheric modeling, atmospheric chemistry, and climatology.

Two external facilities, EuTEF and Solar, provide sites for a variety of external material science and solar research experiments. In the future, the ACES payload with two high-precision atomic clocks and the Atmosphere Space Interaction Monitor (ASIM) will be deployed on CEPF.

Expedite the Processing of Experiments to the Space Station (EXPRESS) Logistics

 Carrier (ELC) [NASA] is designed to support external payloads mounted to the the ISS trusses, as well as store external spares (called Orbital Replacement Units) needed over the life of the ISS. Two ELCs are currently on board the ISS, and two additional ELCs will be delivered as part of the final assembly missions. Two ELCs are attached to the starboard truss 3 (S3), and two ELCs are attached to the port truss 3 (P3). Attaching at the $\mathrm{S} 3 / \mathrm{P} 3$ sites enables a variety of views such as zenith (deep space) or nadir (Earthward) direction with a combination of ram (forward) or wake (aft) pointing that allows for many possible viewing opportunities.

Earth Resources Sensing and

 Geophysics Instruments [Roscosmos] are used in studies of geophysics, natural resources, and ecology. Fialka is an ultraviolet imager and spectrometer used to study radiation emitted by reactions of propulsion system exhaust products from ISS, Progress, and Soyuz vehicles with atomic oxygen. It is also used to study the spatial distribution and emission spectra of atmospheric phenomena such as airglow. Rusalka is a microspectrometer for collecting detailed information on observed spectral radiance in the near IR waveband for measurement of greenhouse gas concentrations in the Earth atmosphere.The Alpha Magnetic Spectrometer (AMS-02) [NASA] is a state-of-the-art particle physics detector constructed, tested, and operated by an international team composed of 60 institutes from 16 countries and organized under United States Department of Energy (DOE) sponsorship. The AMS-02 will use the unique environment of space to advance knowledge of the universe and lead to the understanding of the universe's origin by searching for antimatter and dark matter and measuring cosmic rays. As the first longduration magnetic spectrometer in space, AMS-02 will collect information from cosmic sources emanating from stars and galaxies millions of light-years beyond the Milky Way.

Cosmic Ray Detectors and Ionosphere Probes [Roscosmos] are important for studies of cosmic rays and the low-Earth orbit environment. Platan is an external detector for cosmic rays, BTN is an external detector measuring neutron flux, and Vsplesk is an external detector for gamma rays and high-energy charged particles. Two packages, Impulse and Obstanovka, include ionosphere probes and pulsed plasma source (IPI-100) for making measurements of the ionosphere parameters and plasma-wave characteristics and are planned for launch and mounting outside the ISS in the future.

The Global Transmission Services (GTS) Experiment is continuously operating within an ESA/Russian cooperation on the Russian segment of the ISS and is testing the receiving conditions of a time and data signal for dedicated receivers on the ground. The time signal has special coding to allow the receiver to determine the local time anywhere on Earth. The main objectives of the experiment are to verify the performance and accuracy of a time signal transmitted to Earth's surface; the signal quality and data rates achieved on the ground; and measurement of disturbing effects such as Doppler shifts, multipath reflections, shadowing, and elevation impacts.

Window Observational Research Facility (WORF) [NASA] provides a facility for Earth science research using the Destiny optical-quality science window on the ISS. WORF provides structural hardware, avionics, thermal conditioning, and an optical-quality window to support a wide variety of remote sensing instruments operating in the shirtsleeve environment of the pressurized ISS laboratory.

Destiny features an Earth observation window with the highest quality optics ever flown on a human-occupied spacecraft. The sensing instrument to be used in WORF,

ISSAC (International Space Station

Agricultural Camera) is an infrared camera that will take frequent images of growing crops to help farmers manage their lands.

Expedition 20 represented a milestone on board the ISS. It was the first time each international partner had a representative on board the station at the same time.

Frank De Winne
 Belgium ESA

Koichi Wakata
Japan
JAXA

U.S. Laboratory Module Destiny
 NASA/Boeing

The U.S. Laboratory Module, called Destiny, is the primary research laboratory for U.S. payloads, supporting a wide range of experiments and studies contributing to health, safety, and quality of life for people all over the world.

Science conducted on the ISS offers researchers an unparalleled opportunity to test physical processes in the absence of gravity. The results of these experiments will allow scientists to better understand our world and ourselves and prepare us for future missions. Destiny provides internal interfaces to accommodate 24 equipment racks for accommodation and control of ISS systems and scientific research.

Doug Wheelock as he retrieves 2D Nano Template sample bags from the Minus Eighty Laboratory Freezer for ISS (MELFI) in U.S. Laboratory Destiny.

Astronaut Nicole Stott uses a communication system while installing the Light Microscopy Module (LMM) Spindle Bracket Assembly in the Fluids Integrated Rack (FIR) in the Destiny laboratory of the ISS.

Hatch and Berthing Mechanism Endcone

Alexander Skvortsov in U.S. Laboratory Destiny.

Airflow and Plumbing
Crossover Crossover

Japanese Experiment Module Kibo (Hope)

Japan Aerospace Exploration Agency (JAXA)/Mitsubishi

 Heavy Industries, Ltd.The Japanese Experiment Module (JEM), known as "Kibo" (pronounced key-bow), which means "hope" in Japanese, is Japan's first human-rated space facility and the Japan Aerospace Exploration Agency's (JAXA's) first contribution to the ISS program.

Kibo was designed and developed with a view to conducting scientific research activities on orbit. In Kibo, a maximum of four astronauts can perform experimental activities.

Currently, educational, cultural, and commercial uses of Kibo are also planned. Thus, as a part of the ISS, Kibo will provide extensive opportunities for utilization of the space environment.

Resources necessary for Kibo's on-orbit operation, such as air, power, data, and cooling fluid, are provided from the U.S. segment of the ISS.

REFERENCE GUIDE TO THE ISS
HOW IT'S PUT TOGETHER
JAPANESE EXPERIMENT MODULE

JEM Pressurized Module

	PM	ELM-PS
Diameter	$4.4 \mathrm{~m}(14.4 \mathrm{ft})$	$4.4 \mathrm{~m}(14.4 \mathrm{ft})$
Length	$11.2 \mathrm{~m}(36.7 \mathrm{ft})$	$3.9 \mathrm{~m}(12 \mathrm{ft})$
Mass	$15,900 \mathrm{~kg}$ $(35,050 \mathrm{lb})$	$4,200 \mathrm{~kg}$ $(9,260 \mathrm{lb})$
Launch date	May 31,2008 STS-124 1 J	March 11,2008 STS-123 $1 \mathrm{~J} / \mathrm{A}$
EF	$5.6 \times 5 \times 4 \mathrm{~m}(18.4 \times 16.4 \times 13.1 \mathrm{ft})$ Dimensions Mass Launch dateJuly $15,2000 \mathrm{~kg}(8,820 \mathrm{lb})$ STS-127 $2 \mathrm{~J} / \mathrm{A}$	

JEM Remote Manipulator System
Main Arm length
$9.9 \mathrm{~m}(32.5 \mathrm{ft})$

Small Fine Arm length
1.9 m (6.2 ft)

Nodes

Nodes are U.S. modules that connect the elements of the ISS. Node 1, called Unity, was the first U.S.-built element that was launched, and it connects the U.S. and Russian segments.

Node 2 and Node 3 are European-built elements and are each one rack bay longer than Node 1. Node 2 connects the U.S., European, and Japanese laboratories, as well as PMA-2. It offers two additional berthing ports. Node 3 is attached to the port side of Node 1 and provides accommodation for life-support equipment.

Mechanical assemblies-including berthing mechanisms and hatches, cable harnesses for electrical and data systems routing, and fluid lines for thermal control-add to the complexity of the node modules.

Node 1 Unity
 NASA/Boeing

Node 1's six ports provide berthing connections to the Z1 Truss, U.S. Laboratory Module, Airlock, Node 3, and PMAs. The Multi-Purpose Logistics Module (MPLM) logistics carriers are berthed at Node 1 during some Shuttle visits.

Astronaut Jeffrey N. Williams (left), Expedition 13 NASA ISS science officer and flight engineer; European Space Agency (ESA) astronaut Thomas Reiter, flight engineer; and cosmonaut Pavel V. Vinogradov, commander representing Russia's Federal Space Agency, pose for a photo near the Unity node's growing collection of insignias representing crews who have lived and worked on the ISS.

REFERENCE GUIDE TO THE ISS HOW IT'S PUT TOGETHER

Expedition 23 crewmembers in Node 1.

Interior of Node 1 looking in to Node 3.

Astronaut Frank L. Culbertson, Jr., Expedition 3 mission commander, takes a break from his duties, as he plays with a miniature basketball and net in the Unity node on the ISS.

Permanent crew quarters were added to Node 2, permitting expansion of the total ISS crew size to 6. Crew quarters are rack-sized containers built as small state-rooms for the off-duty crewmember. Each crew quarter contains lighting, Station Support Computer (SSC) laptop connectivity, power, fans, ventilation, and caution and warning.

Node 2 Harmony

 ESAThales Alenia Space Italy (TAS-I)Node 2 has been built in Europe by Thales Alenia Space Italy (TAS-I) under contract of the European Space Agency. It incorporates six docking ports: two in the longitudinal axis and four on two radial perpendicular axes. Node 2 is attached to the forward end of the U.S. laboratory and connects Columbus, the European laboratory, on the starboard side; Kibo, the Japanese laboratory, on the port side; the Pressurized Mating Adaptor 2 (PMA-2) on the forward side, which provides the primary docking location for the Space Shuttle; and the H-II Transfer Vehicle (HTV), a Japanese automatic carrier vehicle that will bring cargo to the ISS, on the nadir (Earth-facing) side. Note that the nadir port also serves as the MPLM docking port during Shuttle missions while the zenith port is a backup port. In addition, Node 2 provides the vital functional resources for the operation of the connected elements, namely the conversion and distribution of the electrical power, heating, cooling resources from the ISS Integrated Truss, and support of the data and video exchange with the ground and the rest of the ISS.

Initially Node 2 was berthed on the starboard port of Node 1. The ISS's remote manipulator moved Node 2 to the forward port of the U.S. Lab. PMA2 is berthed to the front port of Node 2.

Clay Anderson, Naoko Yamazaki, Rick Mastracchio, Node 2 after its installation during STS-120. and Dorothy Metcalf-Lindenburger in Node 2 Harmony during STS-131/Expedition 23 Joint Docked OPS.

Node 3
 Tranquility
 ESA/Thales Alenia Space Italy (TAS-I)

Node 3 was built in Europe by Thales Alenia Space Italy (TAS-I) under contract of the European Space Agency. Node 3 is attached to the port side of Node 1, and the Cupola is berthed on its nadir (Earth facing) port. The PMA-3 is attached to the Node 3 port. The zenith port has been inhibited and modified to become the parking location of the ISS: Special Purpose Dexterous Manipulator (SPDM). The forward and aft ports are available for further ISS additions.

Node 3 accommodates ISS air revitalization, oxygen generation, and water recovery systems. It also accommodates the bathroom for the crew hygiene and exercising equipment such as a treadmill and type of weight-lifting device.

STS-130 commander George Zamka is photographed in Node 3 during Expedition 22/STS-130 joint operations.

Crewmembers work to outfit Node 3 during Expedition 22/STS-130 joint operations.

In the grasp of the Canadarm2, the Pressurized Mating Adapter 3 (PMA-3) is relocated from the Harmony node to the open port on the end of the newly installed Tranquility node.

Expedition 22 commander Jeffrey Williams and STS-130 mission specialist Kathryn Hire are photographed in Node 3 during Expedition 22/STS-130 joint operations.

NODE 3 TRANQUILITY

Length	$6.7 \mathrm{~m}(22 \mathrm{ft})$
Width (diameter)	$4.3 \mathrm{~m}(14 \mathrm{ft})$
Mass	$17,992 \mathrm{~kg}(39,665 \mathrm{lb})$
Exterior	Aluminum cylindrical sections, 2 endcones
Number of racks	8
Launch dates	February 8, 2010 STS-130 20A

54

Joint Airlock Quest NASA/Boeing

The Quest airlock provides the capability for extravehicular activity (EVA) using the U.S. Extravehicular Mobility Unit (EMU). The airlock consists of two compartments: the Equipment Lock, which provides the systems and volume for suit maintenance and refurbishment, and the Crew Lock, which provides the actual exit for performing EVAs. The Crew Lock design is based on the Space Shuttle's airlock design.

Cupola
 ESA/Thales Alenia Italy (TAS-I)

The Cupola (named after the raised observation deck on a railroad caboose) is a small module designed for the observation of operations outside the ISS such as robotic activities, the approach of vehicles, and extravehicular activity (EVA). It was built in Europe by Thales Alenia Space Italy (TAS-I) under contract of the European Space Agency. It provides spectacular views of Earth and celestial objects. The Cupola has six side windows and a top window, all of which are equipped with shutters to protect them from contamination and collisions with orbital debris or micrometeorites. The Cupola is designed to house the robotic workstation that controls the ISS's remote manipulator arm. It can accommodate two crewmembers simultaneously and is berthed to the Earth facing side of Node-3 using a Common Berthing Mechanism (CBM).
cos

The station's robotic Canadarm2 grapples the The station's robotic Canadarm2 grappies the
Leonardo Multi-Purpose Logistics Module (MPLM) from the payload bay of the docked Space Shuttle Discovery (STS-131) for relocation to a port on the Harmony node of the ISS. Earth's horizon and the blackness of space provide the backdrop for the scene. Canadian-built Dextre, also known as the scene. Canadian-built Dextre, also known as the
Special Purpose Dexterous Manipulator (SPDM), is Special Purpose Dexterous Manipulator (SPDM), is visible at bottom center.

MPLM Raffaello berthed on Node 1.

Length	$6.67 \mathrm{~m}(21.7 \mathrm{ft})$
Diameter Exterior Interior	$4.5 \mathrm{~m}(14.76 \mathrm{ft})$ $4.21 \mathrm{~m}(13.81 \mathrm{ft})$
Mass	$4,428 \mathrm{~kg}(9,784 \mathrm{lb})$
Pressurized volume	$76.7 \mathrm{~m}^{3}\left(2708.6 \mathrm{ft}^{3}\right)$
Cargo capability	$9,000 \mathrm{~kg}^{(20,000 \mathrm{lb})}$
Pressurized habitable volume	$31 \mathrm{~m}^{3}\left(1,095 \mathrm{ft}^{3}\right)$

Permanent Multipurpose Module (PMM)
 NASAASI (Italian Space Agency) बजi

Derived from the Leonardo Multi-Purpose Logistics Module (MPLM), the Italian-built Permanent Multi-Purpose Module (PMM) is berthed to the nadir port of Node 1. It can host up to 16 racks containing equipment, experiments, and supplies, and it has an additional storage space for bags in the aft endcone.
Mounted in the Shuttle's cargo bay for launch, the module will be transferred to the ISS using the ISS's robotic arm after the Shuttle has docked.

It will be then activated and integrated to the ISS, providing an additional stowage place and a location to perform science and other activities.

Functional Cargo Block (FGB) Zarya (Sunrise)
 NASA/Boeing/Khrunichev State Research and Production Space Center

The FGB was the first launched element of the ISS, built in Russia under a U.S. contract. During the early stages of ISS assembly, the FGB was self-contained, providing power, communications, and attitude control functions. Now, the FGB module is used primarily for storage and propulsion. The FGB was based on the modules of Mir.

REFERENCE GUIDE TO THE ISS
HOW IT'S PUT TOGETHER DOCKING COMPARTMENT (DC)

Docking Compartment (DC) Pirs (Pier)

Russian Federal Space Agency (Roscosmos)/S.P. Korolev Rocket and Space Corporation Energia (RSC Energia)

Pirs serves as a docking port for the Russian Segment. Pirs also provides the capability for extravehicular activity (EVA) using Russian Orlan spacesuits. Additionally, Pirs provides systems for servicing and refurbishing the Orlan spacesuits. The nadir Docking System on Pirs provides a port for the docking of Soyuz and Progress vehicles. When the final Russian science module arrives, Pirs will be deorbited.

System and Hatch
Port for Soyuz or
Progress

DC in preparation for launch.

Pirs Module location at Service Module nadir.

Mini-Research Module 2 (MRM2) Poisk (Explore)

Russian Federal Space Agency (Roscosmos)/S.P. Korolev Rocket and Space Corporation Energia (RSC Energia)

Poisk, also known as the MRM2, is almost identical to the Pirs Docking Compartment. Poisk provides the capability for extravehicular activity (EVA) using Russian Orlan spacesuits. Additionally, Poisk provides systems for servicing and refurbishing the Orlan spacesuits. The zenith docking system on Poisk provides a port for the docking of Soyuz and Progress vehicles. Poisk will also provide extra space for scientific experiments, including power supply outlets and data transmission interfaces for five external workstations. The module is also equipped with three temporary internal workstations near the module's side windows to

REFERENCE GUIDE TO THE ISS HOW IT'S PUT TOGETHER MINI-RESEARCH MODULE 1 (MRM1)

View of Rassvet Mini-Research Module 1 (MRM1) taken during Expedition 23 / STS-132 Joint Operations.

MRM1 Flight Article being assembled.

Length	$6.0 \mathrm{~m}(19.7 \mathrm{ft})$
Maximum diameter	$2.35 \mathrm{~m}(7.7 \mathrm{ft})$
Mass	$5,075 \mathrm{~kg}(11,188 \mathrm{lb})$
Volume	$17.4 \mathrm{~m}^{3}(614 \mathrm{ft} 3)$ May 2010 UTS4
Launch date	32 engines
Attitude control	2 engines
Orbital maneuvering	

Mini-Research Module 1 (MRM1) Rassvet (Dawn)

Russian Federal Space Agency (Roscosmos)/S.P. Korolev Rocket and Space Corporation Energia (RSC Energia)

Rassvet, also known as the MRM1, is used for docking and cargo storage. It is also equipped with eight internal workstations so it can serve as a mini research laboratory. The nadir docking system on Rassvet provides the fourth docking port on the Russian segment for the docking of Soyuz and Progress vehicles. It was built from the pressurized hull of the Science Power Platform (SPP) dynamic test article. Moreover, the exterior of Rassvet carries a spare elbow joint for the European Robotic Arm (ERA) and outfitting equipment for the Russian Multi-Purpose Laboratory Module (MLM), including a radiator, an airlock for payloads, and a Portable Work Platform (PWP) that provide an external worksite for ERA activation, checkout, and nominal operations.

Portable Work
Platform (PWP) Platform (PWP)
provides EVA provides EVA
worksite on MLM for ERA activation, checkout, and

Spare Elbow unit for European Robotic Arm (ERA) will stay stored on MRM1 until it is needed, if ever; ERA flight unit will launch on MLM.

REFERENCE GUIDE TO THE ISS
HOW IT'S PUT TOGETHER
SERVICE MODULE (SM)

Service Module (SM) Zvezda (Star)

Russian Federal Space Agency (Roscosmos)/S.P. Korolev Rocket and Space Corporation Energia (RSC Energia)

The Service Module was the first fully Russian contribution, providing early living quarters, life-support system, electrical power distribution, data processing system, flight control system, and propulsion system. Its communications system still enables remote command capabilities from ground flight controllers. Although some of these systems were subsequently supplemented by U.S. systems, the Service Module remains the structural and functional center of the Russian segment of the ISS. The Service Module was intended primarily to support crew habitation but became the first multipurpose

REFERENCE GUIDE TO THE ISS HOW IT'S PUT TOGETHER

Pressurized Mating Adapters (PMAs) NASA/Boeing

Three conical docking adapters, called Pressurized Mating Adapters, attach to the Nodes' berthing mechanisms. The other sides of the adapters allow for docking with Russian modules and the Space Shuttle. PMA-1 links the U.S. and Russian segments, while PMA2 and PMA- 3 serve as the primary and backup docking ports for the Space Shuttle.

The PMA-1, 2, and 3 structures are identical and provide a pressurized interface between the U.S. and Russian ISS modules and between the U.S. modules and the Space Shuttle orbiter. The PMA structure is a truncated conical shell with a 28 -inch axial offset in the diameters between the end rings.

The ISS program's greatest accomplishment is as much a human achievement as a technological one. The global partnership of space agencies exemplifies meshing of cultural differences and political intricacies to plan, coordinate, provide, and operate the complex elements of the ISS. The program also brings together international flight crews and globally distributed launch, operations, training, engineering, communications networks, and scientific research communities.

Maintaining the ISS is a arduous task, requiring an international fleet of vehicles and launch locations to rotate crewmembers; replenish propellant; provide science experiments, necessary supplies, and maintenance hardware; and remove and dispose of waste. All of these important deliveries sustain a constant supply line crucial to the operations of the ISS.

Ames Research Center Telescience Support Center Moffett Field, California, U.S.

NASA Headquarters Washington, DC, U.S.

Marshall Space Flight Center Payload Operations and Integration Center (POIC) Huntsville, Alabama, U.S.

Johnson Space Center ISS Program Management ISS Mission Control Center (MCC) ISS Training Houston, Texas, U.S.

Kennedy Space Center
Shuttlé Launch Control
Cape Canaveral, Florida, U.S. Cleveland, Ohio, U.S.

Canada

Canadian Space Agency (GSA)
Mobile Servicing System (MSS) Operations Complex (MOC)
Located in Saint Hubert, Quebec, the MSS Operations Complex is composed of the following facilities:

- Space Operations Support Centre (SOSC)
- MSS Operations and Training System (MOTS)
- Virtual Operations Training Environment (VOTE)
- Canadian MSS Training Facility (CMTF)

These facilities provide the resources, equipment and expertise for the engineering and monitoring of the MSS and provide crew training on Canadian systems.

Payload Telescience Operations Centre (PTOC)

The PTOC in Saint Hubert supports real time operations for Canadian Payloads onboard the ISS.

Space Station Remote Manipulator System (SSRMS) Design and Development
The SSRMS was designed and built for the CSA by MDA of Brampton, Ontario.
http://www.asc-csa.gc.ca

Europe
 European Space Agenoy (ESA)
 CSa

European Space Research and Technology Centre (ESTEC)

The European Space Research and Technology Centre in Noordwijk, the Netherlands, is the largest ESA establishment, a test center and hub for European space activities. It has responsibility for the technical preparation and management of ESA space projects and provides technical support to ESA's ongoing satellite, space exploration, and human space activities.

Columbus Control Centre (COL-CC) and Automated Transfer Vehicle CONTROL Centre (ATV-CC)

Two ground control centers are responsible for controlling and operating the European contribution to the ISS program. These are the Columbus Control Centre and the Automated Transfer Vehicle Control Centre. The COL-CC, located at the German Aerospace Center (DLR), in Oberpfaffenhofen, near Munich, Germany, controls and operates the Columbus laboratory and coordinates the operation of European experiments. The ATV-CC, located in Toulouse, France, on the premises of the French Space Agency, CNES, operates the European ATV during the active and docked mission phases of the ATV.

Guiana Space Centre (GSC)

Europe's Spaceport is situated in the northeast of South America in French Guiana. Initially created by CNES, it is jointly funded and used by both the French space. agency and ESA as the launch site for the Ariane 5 vehicle.

European Astronaut Centre (EAC)

The European Astronaut Centre of the European Space Agency is situated in Cologne, Germany. It was established in 1990 and is the home base of the 13 European astronauts who are members of the European Astronaut Corps.

User Centers

User Support and Operation Centers (USOCs) are based in national centers distributed throughout Europe. These centers are responsible for the use and implementation of European payloads aboard the ISS.

http://www.esa.int

Japan
 Japan Aerospace Exploration Agency (JAXA)

In addition to the JAXA headquarters in Tokyo and other field centers throughout the country, Tsukuba Space Center and Tanegashima Launch Facility are JAXA's primary ISS facilities.

Tsukuba Space Center (TKSC)

JAXA’s Tsukuba Space Center (TKSC), located in Tsukuba Science City, opened its doors in 1972. The TKSC is a consolidated operations facility with world-class equipment, testing facilities, and crew training capabilities. The Japanese Experiment Module (JEM) "Kibo" was developed and tested at TKSC for the ISS. The Kibo Control Center plays an important role in control and tracking of the JEM.

Tanegashima Space Center (TNSC)

The Tanegashima Space Center is the largest rocket-launch complex in Japan and is located in the south of Kagoshima Prefecture, along the southeast coast of Tanegashima. The Yoshinobu launch complex is on site for H-IIA and H-IIB launch vehicles. There are also related developmental facilities for test firings of liquid- and solid-fuel rocket engines.
http://www.jaxa.jp/index_e.html

Russia

Roscosmos, Russian Federal Space Agency
Roscosmos oversees all Russian human space flight activities.

Moscow Mission Control Center (TsUP)

Moscow Mission Control Center is the primary Russian facility for the control of Russian human spaceflight activities and operates the ISS Russian segment. It is located in Korolev, outside of Moscow, at the Central Institute of Machine building (TsNIIMASH) of Roscosmos.

Gagarin Research and Test Cosmonaut Training Center (GCTC)

The Gagarin cosmonaut training center, at Zvezdny Gorodok (Star City), near Moscow, provides full-size trainers and simulators of all Russian ISS modules, a water pool used for spacewalk training, centrifuges to simulate g-forces during liftoff, and a planetarium used for celestial navigation.

Baikonur Cosmodrome

The Baikonur Cosmodrome, in Kazakhstan, is the chief launch center for both piloted and unpiloted space vehicles. It supports the Soyuz and Proton launch vehicles and plays an essential role in the deployment and operation of the ISS.

http://www.roscosmos.ru

Kennedy Space Center (KSC)

Kennedy Space Center in Cape Canaveral, FL, prepares the ISS modules and Space Shuttle orbiters for each mission, coordinates each countdown, and manages Space Shuttle launch and post-landing operations.

Marshall Space Flight Center (MSFC)

Marshall Space Flight Center's Payload Operations and Integration Center (POIC) controls the operation of U.S. experiments and coordinates partner experiments aboard the ISS. MSFC oversaw development of most U.S.
modules and the ISS ECLSS system.

Telescience Support Centers (TSCs)

Telescience Support Centers around the country are equipped to conduct science operations on board the ISS. These TSCs are located at Marshall Space Flight Center in Huntsville, AL; Ames Research Center (ARC) in Moffett Field, CA; Glenn Research Center (GRC) in Cleveland, OH; and Johnson Space Center in Houston, TX.
http://www.nasa.gov

Soyuz Proton $\frac{H-\| B}{\substack{\text { JAXA } \\ \text { Japan }}}$

Ariane
ESA
Europe

Shuttle
NASA
United States

	Russia		Japan	Europe	U.S.
	Soyuz SL-4	Proton SL-12	H-IIB	Ariane 5	Space Shuttle
First launch to ISS	2000	1998	2009	2008	1998
Launch site(s)	Baikonur Cosmodrome	Baikonur Cosmodrome	Tanegashima Space Center	Guiana Space Center	Kennedy Space Center
Launch performance payload capacity	$\begin{gathered} 7,150 \mathrm{~kg} \\ (15,750 \mathrm{lb}) \end{gathered}$	$\begin{aligned} & 20,000 \mathrm{~kg} \\ & (44,000 \mathrm{lb}) \end{aligned}$	$\begin{aligned} & 16,500 \mathrm{~kg} \\ & (36,400 \mathrm{lb}) \end{aligned}$	$\begin{gathered} 18,000 \mathrm{~kg} \\ (39,700 \mathrm{lb}) \end{gathered}$	$\begin{gathered} 18,600 \mathrm{~kg} \\ (41,000 \mathrm{lb}) \\ 105,000 \mathrm{~kg}(230,000 \mathrm{lb}), \\ \text { orbiter only } \end{gathered}$
Return performance payload capacity	N/A	N/A	N/A	N/A	$\begin{gathered} 18,600 \mathrm{~kg} \\ (41,000 \mathrm{lb}) \\ 105,000 \mathrm{~kg}(230,000 \mathrm{lb}), \\ \text { orbiter only } \end{gathered}$
Number of stages	$2+4$ strap-ons	4 + 6 strap-ons	$2+4$ strap-ons	$2+2$ strap-ons	$1.5+2$ strap-ons
Length	$\begin{aligned} & 49.5 \mathrm{~m} \\ & (162 \mathrm{ft}) \end{aligned}$	$\begin{gathered} 57 \mathrm{~m} \\ (187 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 57 \mathrm{~m} \\ (187 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 51 \mathrm{~m} \\ (167 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 56.14 \mathrm{~m} \\ (18.2 \mathrm{ft}) \\ 37.24 \mathrm{~m}(122.17 \mathrm{ft}), \\ \text { orbiter only } \end{gathered}$
Mass	$\begin{aligned} & 310,000 \mathrm{~kg} \\ & (683,400 \mathrm{lb}) \end{aligned}$	$\begin{gathered} 690,000 \mathrm{~kg} \\ (1,521,200 \mathrm{lb}) \end{gathered}$	$\begin{gathered} 531,000 \mathrm{~kg} \\ (1,170,700 \mathrm{lb}) \end{gathered}$	$\begin{gathered} 746,000 \mathrm{~kg} \\ (1,644,600 \mathrm{lb}) \end{gathered}$	$\begin{aligned} & 2,040,000 \mathrm{~kg} \\ & (4,497,400 \mathrm{lb}) \end{aligned}$
Launch thrust	$\begin{gathered} 6,000 \mathrm{kN} \\ (1,348,800 \mathrm{lbf}) \end{gathered}$	$\begin{gathered} 9,000 \mathrm{kN} \\ (2,023,200 \mathrm{lbf}) \end{gathered}$	$\begin{gathered} 5,600 \mathrm{kN} \\ (1,258,900 \mathrm{lbf}) \end{gathered}$	$\begin{gathered} 11,400 \mathrm{kN} \\ (2,562,820 \mathrm{lbf}) \end{gathered}$	$\begin{gathered} 34,677 \mathrm{kN} \\ (7,795,700 \mathrm{lbf}) \end{gathered}$
Payload examples	Soyuz Progress Pirs	Service Module Functional Cargo Block (FGB) Multipurpose Lab Module (MLM)	H-II Transfer Vehicle (HTV)	Ariane Automated Transfer Vehicle (ATV)	Shuttle Orbiter, Nodes 1-3, U.S. Lab, JEM, Truss elements, Airlock, SSRMS

Taurus II

Height	$40.1 \mathrm{~m}(131.56 \mathrm{ft})$
Diameter	$3.9 \mathrm{~m}(12.80 \mathrm{ft})$
Mass at launch	$275,000 \mathrm{~kg}(606,271 \mathrm{lb})$
First stage thrust	$3.45 \mathrm{MN}(775,000 \mathrm{lb})$
Second stage thrust	$320 \mathrm{kN}(72,000 \mathrm{lb})$

Cygnus	
Height	5.1 m (16.73 ft)
Diameter	3.05 m (10 ft)
Maximum Pressurized Cargo Up mass/volume Down mass/volume	$\begin{aligned} & 2,000 \mathrm{~kg}_{(4,409 \mathrm{lb})}^{18.75 \mathrm{~m}^{3}\left(662 \mathrm{ft}^{3}\right)} \\ & 2,000 \mathrm{~kg}^{(4,409 \mathrm{lb})} \\ & 18.75 \mathrm{~m}^{3} \text { Disposed }\left(662 \mathrm{ft}^{3}\right) \end{aligned}$
Maximum Unpressurized Cargo Up mass/volume Down mass/volume	0 0
Payload volume Pressurized	$7.6 \mathrm{~m}^{3}\left(25 \mathrm{ft}^{3}\right)$

Taurus II and Cygnus

Orbital Sciences Corporation

The Cygnus spacecraft is an automated logistical resupply vehicle design to rendezvous with the ISS and then be grappled and berthed using the Space Station Remote Manipulator System (SSRMS). The Cygnus offers the capability to carry ISS pressurized cargo (logistics and utilization) within the Pressurized Cargo Module (PCM). The Cygnus is launched aboard a new launch vehicle known as the Taurus II from the NASA Wallops Flight Facility in Wallops Island, VA. The Cygnus can bring dry cargo, gas, water, and payloads. After the cargo is transferred to the ISS, the Cygnus can be loaded with trash and waste products. After departing the ISS, the Cygnus will be destroyed (incinerated) upon reentry into Earth's atmosphere.

Taurus II Castor 30 2nd Stage Motor.

Falcon 9 and Dragon SpaceX Exploration Technologies

The SpaceX missions are launched on a new launch vehicle called the Falcon 9 from Kennedy Space Center in Cape Canaveral, FL. The first stage is powered by nine SpaceX Merlin engines, and the second stage is also a single SpaceX Merlin engine. The spacecraft that will visit the ISS is called the Dragon.

The Dragon spacecraft is an automated logistical resupply vehicle designed to rendezvous with the ISS and then be grappled and berthed to Node 2 using the Space Station Remote Manipulator System (SSRMS).

The Dragon has a capsule for delivering pressurized cargo and is the element that will berth to Node 2. The Dragon also has what is called the "trunk," which is attached to the capsule and provides for the delivery of unpressurized cargo to the ISS. Once the mission is complete, the Dragon will unberth from the ISS and the trunk will be jettisoned and destroyed during reentry into the atmosphere. The capsule will contain pressurized return cargo, survive reentry, and land in the ocean with the use of parachutes.

FALCON 9 AND DRAGON

Falcon 9

Height	$48.1 \mathrm{~m}(157.80 \mathrm{ft})$
Diameter	$3.66 \mathrm{~m}(12 \mathrm{ft})$
Mass at launch	$313,000 \mathrm{~kg}(690,047 \mathrm{lb})$
First stage thrust	$3.80 \mathrm{MN}(854,000 \mathrm{lb})$
Second stage thrust	$414 \mathrm{kN}(93,000 \mathrm{lb})$

Dragon

Height	5.1 m (16.73 ft)
Diameter	3.66 m (12 ft)
Maximum Pressurized Cargo Up mass/volume Down mass/volume	$\begin{aligned} & 3,310 \mathrm{~kg}(7,297 \mathrm{lb}) \\ & 6.8 \mathrm{~m}^{3}\left(240 \mathrm{ft}^{3}\right) \\ & 2,500 \mathrm{~kg}(5,512 \mathrm{lb}) \\ & 6.8 \mathrm{~m}^{3}\left(240 \mathrm{ft}^{3}\right) \end{aligned}$
Maximum Unpressurized Cargo Up mass/volume Down mass/volume	$\begin{aligned} & 3,310 \mathrm{~kg}(7,297 \mathrm{lb}) \\ & 14 \mathrm{~m}^{3}\left(494 \mathrm{ft}^{3}\right) \\ & 2,600 \mathrm{~kg}(5,732 \mathrm{lb}) \\ & 14 \mathrm{~m}^{3} \text { Disposed }\left(494 \mathrm{ft}^{3}\right) \end{aligned}$
Payload volume Pressurized Unpressurized	$\begin{aligned} & 10 \mathrm{~m}^{3}\left(245 \mathrm{ft}^{3}\right) \\ & 14 \mathrm{~m}^{3}\left(490 \mathrm{ft}^{3}\right) \end{aligned}$

SPACE SHUTTLE ORBITER

Space Shuttle Orbiter/ Columbia, Discovery, Atlantis, Endeavour NASABoeing

The U.S. Space Shuttle provides Earth-to-orbit and return capabilities and in-orbit support. The diversity of its missions and customers is testimony to the adaptability of its design. The Space Shuttle was used to deliver most of the ISS modules and major components. It also provided crew rotation capability and science and maintenance cargo delivery, and it is the only vehicle that provided the capability to return significant payloads.

Soyuz

Russian Federal Space Agency (Roscosmos)/S.P. Korolev Rocket and Space Corporation Energia (RSC Energia)

Soyuz spacecraft have been in use since the mid-1960s and have been upgraded periodically. Soyuz can support independently three suited crewmembers for up to 5.2 days and be docked to the ISS up to 200 days. The vehicle has an automatic docking system and may be piloted automatically or by a crewmember. The Soyuz TMA used for the ISS includes changes to accommodate larger and smaller crewmembers, an improved landing system, and digital electronic controls and displays.

VHF Radio
 Antenna

Shannon Walker and Fyodor Yurchikhin, wearing Russian Sokol launch and entry suits in Soyuz TMA-19.
Mission Sequence
(2) Launch and Aborts

Attitude Control Engines

Environmental Control Electronics

Instrumentation/ propulsion module	2,

$2,600 \mathrm{~kg}(5,732 \mathrm{lb})$

Delivered payload with two crewmembers with three crewmembers	1
Returned payload	50
Length	7
Maximum diameter	2.7
Diameter of habitable	
modules	

Solar array span	$10.6 \mathrm{~m}(34.8 \mathrm{ft})$
Volume of orbital module	$6.5 \mathrm{~m}^{3}\left(229.5 \mathrm{ft}^{3}\right)$
Volume of descent module	$4 \mathrm{~m}^{3}\left(141.3 \mathrm{ft}^{3}\right)$
Descent g-loads	$4-5 \mathrm{~g}$
Final landing speed	$2 \mathrm{~m} / \mathrm{s}(6.6 \mathrm{ft} / \mathrm{s})$

 System.

Progress

Russian Federal Space Agency (Roscosmos)/S.P. Korolev Rocket and Space Corporation Energia (RSC Energia)

Progress is a resupply vehicle used for dry cargo, propellant, water, and gas deliveries to the ISS. Once docked to the ISS, Progress engines can boost the ISS to higher altitudes and control the orientation of the ISS in space. Typically, four to six Progress vehicles bring supplies to the ISS each year. Progress is based upon the Soyuz design, and it can either work autonomously or can be flown remotely by crewmembers aboard the ISS. After a Progress vehicle is filled with trash from the ISS, and after undocking and deorbit, it is incinerated in Earth's atmosphere at the end of its mission. During its autonomous flight (up to 30 days), Progress can serve as a remote free-flying research laboratory for conducting space experiments.

Stepped Scan
 Array Antenna

Progress cargo module interior.

Progress prelaunch processing.

JAXA H-III Transfer Vehicle (HTV) Japan Aerospace Exploration Agency (JAXA)/ Mitsubishi Heavy Industries, Ltd.

The H-II Transfer Vehicle is an autonomous logistical resupply vehicle designed to berth to the ISS using the Space Station Remote Manipulation System (SSRMS). HTV offers the capability to carry logistics materials in both its internal pressurized carrier and in an unpressurized carrier for exterior placement. It is launched on the H-II unmanned launch vehicle and can carry dry cargo, gas and water, and propellant. After fresh cargo is unloaded at the ISS, the HTV is loaded with trash and waste products; after unberthing and deorbit, it is incinerated during reentry.

JAXA H-II TRANSFER VEHICLE (HTV)

The HTV awaits grappling by the SSRMS.

Automated Transfer Vehicle (ATV)

European Space Agency (ESA)/European Aeronautic Defence and Space Co. (EADS)

The European Space Agency Automated Transfer Vehicle is an autonomous logistical resupply vehicle designed to dock to the ISS and provide the crew with dry cargo, atmospheric gas, water, and propellant. After the cargo is unloaded, the ATV is reloaded with trash and waste products, undocks, and is incinerated during reentry.

Cargo Load

Dry cargo such as bags	$5,500 \mathrm{~kg}(12,125 \mathrm{lb})$
Water	$840 \mathrm{~kg}(1,852 \mathrm{lb})$
Air $\left(\mathrm{O}_{2}, \mathrm{~N}_{2}\right)$	$100 \mathrm{~kg}(220 \mathrm{lb})$
Refueling propellant	$860 \mathrm{~kg}(1,896 \mathrm{lb})$
Reboost propellant	$4,700 \mathrm{~kg}(10,360 \mathrm{lb})$
Waste capacity	$6,500 \mathrm{~kg}(14,330 \mathrm{lb})$

ATV late cargo access in Kourou, French Guiana, before launch.
Titanium Tanks for carrying water, propellant, and oxygen.

Image of ATV-1 as it approached the ISS in April 2008.	
	Titanium Tanks for carrying water, propellant, and oxygen.
Length	10.3 m (33.8 ft)
Maximum diameter	4.5 m (14.8 ft)
Span across solar arrays	22.3 m (73.2 ft)
Launch mass	20,750 kg (45,746 lb)
Cargo upload capacity	$7,667 \mathrm{~kg}(16,903 \mathrm{lb})$
Engine thrust	1,960 N (441 lbf)
Orbital life	6 mo

Habitation

The habitable elements of the ISS are mainly a series of cylindrical modules. Accommodationsncluding the waste management compartment and toilet, the galley, individual crew sleep compartments, and some of the exercise facilities-are located in the Service Module (SM), Node 2, Node 3, and the U.S. Laboratory.

SM forward

Shaving in SM.

Astronaut Shannon Walker uses a avacuum cleaner during
housekeeping operations in the Kibo laboratory.

 Canadian astronaut Bob
Thirsk shaving.
 management

Stowage container in FGB .

-GB Corridor and Stowage

Environmental Control and Life Support System (ECLSS)

Earth's natural life-support system provides the air we breathe, the water we drink, and other conditions that support life. For people to live in space, however, these functions must be performed by artificial means. The ECLSS includes compact and powerful systems that provide the crew with a comfortable environment in which to ive and work.

The on-orbit ECLSS is supplemented by an assortment fresupply vehicles provided by he international partnership. The U.S. Space Shuttle delivers water (scavenged from the water produced by the Shuttl fuel cells and transferred across to ISS in Contingency Water Container (CWC) bags), high-pressure O_{2} and N_{2}, and atmospheric gas. The Russian Progress and Europea Automated Transfer Vehicle (ATV) deliver water and atmospheric gas. The Japanese H-II Transfer Vehicle (HTV) delivers water in CWC bags. The ISS program is currently reviewing a highpressure gas delivery system for post-Shuttle retirement. The Nitrogen/Oxygen Resupply System (NORS) would provid capability to deliver highpressure O_{2} and N_{2} on any vehicle with pressurized delivery capability, including U.S. Commercial Resupply System CRS) vehicles.

Regenerative environmental Regenerative envirionment
contro fite supportint the
U.S. segment of the ISS.

Crew System

$\begin{array}{c}\text { Potable Water } \\ \text { System }\end{array}$
$\begin{array}{c}\text { Hand Wash/ } \\ \text { Shaving }\end{array}$

HOW THE CREW LIVES
RENCE GUIDE TO THE IS

Crew Health Care System (CHeCS)/Integrated Medical System

The Crew Health Care System (CHeCS)/Integrated Medical System is a suite of hardware on the ISS that provides the medical and environmental capabilities necessary to ensure the health and safety of crewmembers during long-duration missions. CHeCS is divided into three subsystems:

Countermeasures System

 (CMS)-The CMS provides or the performance of daily and alternative regimens (e.g., exercise) to mitigate the deconditioning effects of living in a microgravity environment. The CMS also monitors crewmembers during exercise regimens, reduces vibrations during the performance of these regimens, and makes periodic fitness evaluations possible.Environmental Health System (EHS)-The EHS monitors the atmosphere for gaseous contaminants (i.e., from nonmetallic materials off-gassing, combustion products, and propellants), microbial contaminants (i.e., from crewmembers and station activities), water quality, acoustics, and radiation levels.

Health Maintenance

 System (HMS)-The HMS provides in-flight life support and resuscitation, medical care, and health monitoring capabilities.

So, Extravehicular Charged Particle
Directional Spectrometer (EVCPDS).

 allows strapping down a patient on the board with a harness for medical
attention by the CMO who is also provided with restraints around the device.

node 3 node 1.
 jem

 airlock, columbus

Defibrillator.

Downloaded from hitl

Astronaut Leland Melvin exercises
onthe dodvanced Resistive Exercise
Device (ARED).

REFERENGE GUIDE TO THE IS
HOW THE CREW LIVE

A Microbial Air Sampler (MAS) floats in front of Japanese astronaut Koichi Wakata as he performs a.
Surface Sample Kit (SSK) collection and incubation.

.. fgb

Crew Health Care
System (CHeCS) Rack

Computers and Data Management

The system for storing and transferring information essential to operating the ISS has been functioning since the first module was placed on orbit. From a single module to a large complex of elements from many international partners, the system provides control of the ISS from the U.S., Russian, Canadian, European, and Japanese segments.

orogress service module

Extravehicular Mobility Unit (EMU) NASA/Hamilton Sundstrand/LC Dover

The EMU provides a crewmember with life support and an enclosure that enables EVA. The unit consists of two major subsystems: the Primary Life Support Subsystem (PLSS) and the Space Suit Assembly (SSA). The EMU provides atmospheric containment, thermal insulation, cooling, solar radiation protection, and micrometeoroid/orbital debris (MMOD) protection.

REFERENCE GUIDE TO THE ISS HOW IT WORKS
EXTRAVEHICULAR MOBILITY UNIT (EMU)

1 Thermal Micrometeoroid Garment (TMG). Cover: Ortho/KEVLAR® reinforced with GORE-TEX®. 2 TMG Insulation. Five to seven layers of aluminized Mylar® (more layers on arms and legs).
3 TMG liner. Neoprene-coated nylon ripstop.
4 Pressure garment cover. Restraint: Dacron(®.
5 Pressure garment bladder. Urethane-coated nylon oxford fabric.
6 Liquid cooling garment. Neoprene tubing.

Suit's nominal pressure	$0.3 \mathrm{~atm}(4.3 \mathrm{psi})$
Atmosphere	100% oxygen
Primary oxygen tank pressure	900 psi
Secondary oxygen tank pressure	$6,000 \mathrm{psi}(30-m i n ~ b a c k u p ~$ supply
Maximum EVA duration	8 h
Mass of entire EMU	$178 \mathrm{~kg}(393 \mathrm{lb})$
Suit life	30 yr

Orlan Spacesuit

Russian Federal Space Agency (Roscosmos)/Science Production Enterprise Zvezda

The Orlan-MK spacesuit is designed to protect an EVA crewmember from the vacuum of space, ionizing radiation, solar energy, and micrometeoroids. The main body and helmet of the suit are integrated and are constructed of aluminum alloy. Arms and legs are made of a flexible fabric material. Crewmembers enter from the rear via the backpack door, which allows rapid entry and exit without assistance. The Orlan-MK spacesuit is a "one-size-fits-most" suit.

Suit life	15 EVAs or 4 years without return to Earth

Mobile Servicing System (MSS)

Space Station Remote Manipulator System (SSRMS) Special Purpose Dexterous Manipulator (SPDM/Dextre) Mobile Base System (MBS)

Canadian Space Agency (CSA)

The Mobile Servicing System (MSS) is a sophisticated robotics suite that plays a critical role in the assembly, maintenance, and resupply of the ISS. The MSS Operations Complex in Saint Hubert, Quebec, is the ground base for the MSS, which is composed of three robots that can work together or independently.

The MSS has three parts:

The Space Station Remote Manipulator System (SSRMS), known as Canadarm2, is a 56 -footlong robotic arm that assembled the ISS module by module in space. It is also used to move supplies, equipment, and even astronauts, and captures free-flying spacecraft to berth them to the ISS.

The Mobile Base System (MBS) provides a movable work platform and storage facility for astronauts during spacewalks. With four grapple fixtures, it can serve as a base for both the Canadarm2 and the Special Purpose Dexterous Manipulator (SPDM) simultaneously. Since it is mounted on the U.S.-provided Mobile Transporter (MT), the MBS can move key elements to their required worksites by moving along a track system mounted on the ISS truss.

The Special Purpose Dexterous Manipulator (SPDM), also known as Dextre, performs routine maintenance on the ISS. Equipped with lights, video equipment, a tool platform, and four tool holders, Dextre's dualarm design and precise handling capabilities can reduce the need for spacewalks.

REFERENCE GUIDE TO THE ISS
HOW IT WORKS
MOBILE SERVICING SYSTEM (MSS)

SSRMS during testing.

MBS Capture Latch
Power Data Grapple Fixture (PDGF)

Camera and Light
Assembly

Payload and Orbital
Replacement Unit (ORU)
Accommodation

Electrical Power System (EPS)

The EPS generates, stores, and distributes power and converts and distributes secondary power to users.

Each Solar Array Wing (SAW) has 2 blankets of 32,800 solar cells, converting sunlight to DC power and producing a maximum of 31
kW at the beginning of its life and degrading to 26 kW after 15 years.
Each cell is approximately 14% efficient, which was state-of-the-art at the time of design.

Sequential
Shunt
Unit (SSU) Direct Current (DC) Switching $\begin{array}{ll}\text { Unit (SSU } \\ \text { maintains } & \text { the solar array to the MBSUs in }\end{array}$ constant voltage at 160 V .

Photovoltaic Radiator circulates cooling fluid to maintain EPS/ battery temperature. the SO Truss that control power to different ISS locations.

Nickel-Hydrogen Batteries Nickel-Hydrogen Batteries during the night. They will be replaced over time with
Lithium Ion batteries. \quad Solar (Array) Alpha
The Battery Charge The Battery Charge Rotation Joint (SARJ) Discharge Unit
(BCDU) controls (BCDU) controls

Integrated Equipment Assembly (IEA) Truss houses EPS hardware.
charge.

Remote Power Controllers (RPCs) control the flow of electric power to users.

DC-to-DC Converter Units (DDCUS) convert primary 160 V power to secondary 124 V power. Some are located on the truss and some are located in modules.

Crewmember Mike Fincke holds an RPCM in the Quest Airlock. It was later used to replace an RPCM on the S0 Truss.

Astronaut Scott Parazynski, anchored to the Articulating Portable Foot Restraint (APFR) on the Orbiter Boom Sensor System (OBSS), assesses repair work on the P6 4B Solar Array Wing (SAW) as the array is deployed during an extravehicular activity (EVA).

Guidance, Navigation, and Control (GN\&C)

The ISS is a large, free-flying vehicle. The attitude or orientation of the ISS with respect to Earth and the Sun must be controlled; this is important for maintaining thermal, power, and microgravity levels, as well as for communications.

The GN\&C system tracks the Sun, communications and navigation satellites, and ground stations. Solar arrays, thermal radiators, and communications antennas aboard the ISS are pointed using the tracking information.

The preferred method of attitude control is the use of Control Moment Gyroscopes (CMGs), sometimes called gyrodynes in other programs, mounted on the Z1 Truss segment. CMGs are 98-kilogram (220-pound) steel wheels that spin at 6,600 revolutions per minute (rpm). The high-rotation velocity and large mass allow a considerable amount of angular momentum to be stored. Each CMG has gimbals and can be repositioned to any attitude. As the CMG is repositioned, the resulting force causes the ISS to move. Using multiple CMGs permits the ISS to be moved to new positions or permits the attitude to be held constant. The advantages of this system are that it relies on electrical power generated by the solar arrays and that it provides smooth, continuously variable attitude control. CMGs are, however, limited in the amount of angular momentum they can provide and the rate at which they can move the station. When CMGs can no longer provide the requisite energy, rocket engines are used.

Output Pulses

The Rate Gyroscope Assemblies (RGAs) are the U.S. attitude rate sensors used to measure the changing orientation of the ISS. RGAs are installed on the back of the Truss, under the GPS antennas, and they are impossible to see on the ISS unless shielding is removed.

Fringe Pattern

GUIDANCE, NAVIGATION, AND CONTROL (GN\&C)
GPS antenna on So Truss.

Control Moment Gyroscopes on the Z1 Truss.

Control Moment Gyroscope gimbals used for orienting the ISS.

Forces are induced as CMGs are repositioned.

REFERENCE GUIDE TO THE ISS HOW IT WORKS
THERMAL CONTROL SYSTEM (TCS)

Thermal Control System (TCS)

The TCS maintains ISS temperatures within defined limits. The four components used in the Passive Thermal Control System (PTCS) are insulation, surface coatings, heaters, and heat pipes.

The Active Thermal Control System (ATCS) is required when the environment or the heat loads exceed the capabilities of the PTCS. The ATCS uses mechanically pumped fluids in closed-loop circuits to perform three functions: heat collection, heat transportation, and heat rejection.

Inside the habitable modules, the internal ATCS uses circulating water to transport heat and cool equipment. Cabin air is used to cool the crewmembers and much of the electrical equipment. The air passes heat to the water-based cooling system in the air conditioner, which also collects water from the humidity in the air for use by the life support system. Outside the habitable modules, the external ATCS uses circulating anhydrous ammonia to transport heat and cool equipment.

Integrated Truss Assembly

The truss assemblies provide attachment points for the solar arrays, thermal control radiators, and external payloads. Truss assemblies also contain electrical and cooling utility lines, as well as the mobile transporter rails. The Integrated Truss Structure (ITS) is made up of 11 segments plus a separate component called Z_{I}. These segments, which are shown in the figure, will be installed on the station so that they extend symmetrically from the center of the ISS.

At full assembly, the truss reaches 108.5 meters (356 feet) in length across the extended olar arrays. ITS segments are labeled in accordance with their location. P stands for "port," stands for "starboard," and Z stands for "Zenith.

Initially, through Stage 8A, the first truss segment, Zenith $1\left(\mathrm{Z}_{\mathrm{I}}\right)$, was attached to the Unity Node zenith berthing mechanism. Then truss segment P6 was mounted on top of ZI and its solar arrays and radiator panels deployed to support the early ISS. Subsequently,

Propulsion

14

Communications

The radio and satellite communications network allows ISS crews to talk to the ground control centers and visiting vehicles. It also enables ground control to monitor and maintain ISS systems and operate payloads, and it permits flight controllers to send commands to those systems. The network routes payload data to the different control centers around the world.

The communications system provides the following:

- Two-way audio and video communication among crewmembers aboard the ISS, including crewmembers who participate in an extravehicular activity (EVA).
- Two-way audio, video, and file transfer communication between the ISS and flight control teams located in the Mission Control Center-Houston (MCC-H), other ground control centers, and payload scientists on the ground.
- Transmission of system and payload telemetry from the ISS to the MCC-H and the Payload Operations Center (POC).
- Distribution of ISS experiment data through the POC to payload scientists.
- Control of the ISS by flight controllers through commands sent via the MCC-H.

Ku band radio in U.S. Lab.

UHF antenna on the P1 Truss.

Ku band radio on exterior of ISS.

Yuri Onufrienko during communications pass.

Expedition 22 crewmembers performing a public affairs event in Kibo.

MICROMETEOROID AND ORBITAL DEBRIS PROTECTION

[^1]

Risk computations based on exposure and shielding.

Micrometeoroid and Orbital Debris (MMOD) Protection

Spacecraft in low-Earth orbit are continually impacted by meteoroids and orbital debris. Most of the meteoroids and debris are small and cause little damage. A small fraction of the meteoroid and debris populations, however, are larger and can cause severe damage in a collision with a spacecraft.

The International Space Station (ISS) is the largest spacecraft ever built. With the completion of assembly, more than $11,000 \mathrm{~m}^{2}\left(118,400 \mathrm{ft}^{2}\right)$ of surface area is exposed to the space environment. Due to its large surface area, its long planned lifetime, and the potential for a catastrophic outcome of a collision, protecting the ISS from meteoroids and debris poses a unique challenge.

Many ISS elements are shielded from impacts. There are three primary shielding configurations:

- Whipple shield is a two layer shield consisting of an outer bumper, usually aluminum, spaced some distance from the module pressure shell wall; the bumper plate is intended to break up, melt, or vaporize a particle on impact.
- Stuffed Whipple shield consists of an outer bumper, an underlying blanket of Nextel ceramic cloth, and Kevlar fabric to further disrupt and disperse the impactor, spaced a distance from the module pressure shell.
- Multi-layer shields consist of multiple layers of either fabric and/or metallic panels protecting the critical item.
Other critical areas, such as electrical, data, and fluid lines on the truss and radiator panels, are toughened with additional protective layers to prevent loss from MMOD impacts.

ISS Assembly Complete

Heat fiepotion Subsyctern (HRS) Rasp aloes Mini -Research θ

Mesirquasiste Alphas Magneece
Starboard
Photovoltaic
Arrays

8

SST
seq

S. Truss
segre

Principal Stages in Construction

The ISS, at assembly complete in 2010, is to be the largest humanmade object ever to orbit Earth. The ISS is to have a pressurized volume of $860 \mathrm{~m}^{3}$
$\left(30,385 \mathrm{ft}^{3}\right)$ and a mass of $399,380 \mathrm{~kg}(880,483 \mathrm{lb})$ including Soyuz vehicles. Its solar arrays will cover an area of $2,247 \mathrm{~m}^{2}\left(24,187 \mathrm{ft}^{2}\right)$ and can generate $735,840 \mathrm{~kW}$-hours of electrical power per year. The ISS will have a structure that measures $109 \mathrm{~m}(358 \mathrm{ft})$ (across arrays) by $51 \mathrm{~m}(168 \mathrm{ft})$ (module length from the forward end of PMA2 to the aft end of the SM), an orbital altitude of $370-460 \mathrm{~km}(200-250 \mathrm{nmi})$, an orbital inclination of 51.6°, and a crew of six.

Building the ISS requires 36 Space Shuttle assembly flights and 5 Russian launches. Currently, logistics and resupply are provided through a number of vehicles including the Space Shuttle, Russian Progress and Soyuz, Japanese H-II Transfer Vehicle (HTV), and European Automated Transfer Vehicle (ATV).

Future logistics/resupply missions will also be provided by the U.S. Crew Exploration Vehicle (CEV) and commercial systems.

Stage/ Date	Element Added	Launch Vehicle	ISS Picture
13A. 1 August 2007	S5 Truss and ESP-3	Space Shuttle STS-118	
10A October 2007		Space Shuttle STS-120	
$1 E$ February 2008		Space Shuttle STS-122	

Stage/ Element Added
Date
Russian Multipurpose Laboratory Module Launch Vehicle ISS Picture
and Europea Robotic Arm (ERA)
Alpha Magnetic Spectrometer (AMS) and ELC-3

ISS Expeditions and Crews

Expedition Start/End/Duration
Stars

| Expedition | Launch, Return, Duration |
| :--- | :--- | :--- |
| Start April 28, 2003 | |
| End October 27, 2003 | |

STS Missions and Crews

Space Shuttle Missions to the ISS

Flight Numbers	Mission Patch	Crew Photo	Launch Package Patch	Crew	Launch, Return, Duration
Space Shuttle Endeavour ISS flight 2A				Robert Cabana, U.S. Nancy Currie, U.S. Sergei Krikalev, Russia (Roscosmos) James Newman, U.S. Jerry Ross, U.S. Frederick Sturckow, U.S.	Launched December 4, 1998 Returned December 15, 1998 12 days
Space Shuttle Discovery ISS flight 2, 1.1				Kent Rominger, U.S. Daniel Barry, U.S. Rick Husband, U.S. Tamara Jernigan, U.S. Ellen Ochoa, U.S. Julie Payette, Canada (CSA) Valery Tokarev, Russia (Roscosmos)	Launched May 27, 1999 Returned June 6, 1999 10 days
Space Shuttle Atlantis ISS flight 2A.2a				James Halsell, U.S. Susan Helms, U.S. Scott Horowitz, U.S. Yury Usachev, Russia (Roscosmos) James Voss, U.S. Mary Weber, U.S. Jeffrey Williams, U.S.	Launched May 19, 2000 Returned May 29, 2000 10 days
Space Shuttle Atlantis ISS flight 24.26				Terrence Wilcutt, U.S. Scott Altman, U.S. Daniel Burbank, U.S. Edward Lu, U.S. Yuri Malenchenko, Russia (Roscosmos) Richard Mastracchio, U.S. Boris Morukov, Russia (Roscosmos)	Launched September 8, 2000 Returned September 19, 2000 12 days
Space Shuttle Discovery ISS flight 3A				Leroy Chiao, U.S. Brian Duffy, U.S. Michael Lopez-Alegria, U.S. William McArthur, U.S. Pamela Melroy, U.S. Koichi Wakata, Japan (NASDA) Peter Wisoff, U.S.	Launched October $11,2000$ Returned October $24,2000$ 13 days
Space Shuttle Endeavour ISS flight 4A				Michael Bloomfield, U.S. Marc Garneau, Canada (CSA) Brent Jett, U.S. Carlos Noriega, U.S. Joseph Tanner, U.S.	Launched November $30,2000$ Landed December $11,2000$ 11 days

Flight Numbers	Mission Patch	Crew Photo	Launch Package Patch	Crew	Launch, Return, Duration
Space Shuttle Atlantis ISS flight 54				Kenneth Cockrell, U.S. Robert Curbeam, U.S. Marsha Ivins, U.S. Thomas Jones, U.S. Mark Polansky, U.S.	Launched February 7, 2001 Returned February 20, 2001 13 days
Space Shuttle Discovery ISS flight 54.1				James Wetherbee, U.S. James Kelly, U.S. Paul Richards, U.S. Andrew Thomas, U.S. Yuri Usachev, Russia (Roscosmos), up James Voss, U.S., up Susan Helms, U.S., up William Shepherd, U.S., down Yuri Gidzenko, Russia (Roscosmos), down Sergei Krikalev, Russia (Roscosmos), down	Launched March $\text { 8, } 2001$ Returned March 21, 2001 13 days
Space Shuttle Atlantis ISS flight 64				Jeffrey Ashby, U.S. Umberto Guidoni, Italy (ESA) Chris Hadfield, Canada (CSA) Scott Parazynski, U.S. John Phillips, U.S. Kent Rominger, U.S. Yuri Lonchakov, Russia (Roscosmos)	Launched April 19, 2001 Returned May 1, 2001 12 days
Space Shuttle Atlantis ISS flight $7 A$				Michael Gernhardt, U.S. Charles Hobaugh, U.S. Janet Kavandi, U.S. Steven Lindsey, U.S. James Reilly, U.S.	Launched July 12, 2001 Returned July 24, 2001 13 days
Space Shuttle Discovery ISS flight 7A. 1				Daniel Barry, U.S. Patrick Forrester, U.S. Scott Horowitz, U.S. Frederick Sturckow, U.S. Frank Culbertson, U.S., up* Vladimir Dezhurov, Russia (Roscosmos), up* Mikhail Turin, Russia (Roscosmos), up* Yuri Usachev, Russia (Roscosmos), down ${ }^{*}$ James Voss, U.S., down* Susan Helms, U.S., down*	Launched August 10, 2001 Returned August 22, 2001 12 days
Space Shuttle Endeavour ISS flight UF-1				Daniel Tani, U.S. Linda Godwin, U.S. Dominic Gorie, U.S. Mark Kelly, U.S. Daniel Bursch, U.S., up* Yuri Onufrienko, Russia (Roscosmos), up Carl Walz, U.S., up Frank Culbertson, U.S., down Vladimir Dezhurov, Russia (Roscosmos), down Mikhail Turin, Russia (Roscosmos), down	Launched December 5, 2001 Returned December 17, 2001 12 days

Flight Numbers	Mission Patch	Crew Photo	Launch Package Patch	Crew	Launch, Return, Duration
Space Shuttle Atlantis ISS flight $8 \mathbf{A}$				Michael Bloomfield, U.S. Stephen Frick, U.S. Lee Morin, U.S. Ellen Ochoa, U.S. Jerry Ross, U.S. Steven Smith, U.S. Rex Walheim, U.S.	Launched April 8, 2002 Returned April 19, 2002 11 days
Space Shuttle Endeavour ISS flight 5A.1				Franklin Chang-Diaz, U.S. Kenneth Cockrell, U.S. Paul Lockhart, U.S. Philippe Perrin, France (CNES) Valery Korzun, Russia (Roscosmos), up Sergei Treschev, Russia (Roscosmos), up Peggy Whitson, U.S., up Daniel Bursch, U.S., down Yuri Onufrienko, Russia (Roscosmos), down Carl Walz, U.S., down	Launched June 5, 2002 Returned June 19, 2002 14 days
Space Shuttle Atlantis ISS flight 9A				Jeffrey Ashby, U.S. Umberto Guidoni, Italy (ESA) Chris Hadfield, Canada (CSA) Scott Parazynski, U.S. John Phillips, U.S. Kent Rominger, U.S. Yuri Lonchakov, Russia (Roscosmos)	Launched October 7, 2002 Returned October 18, 2002 11 days
Space Shuttle Endeavour ISS flight 11A				John Herrington, U.S. Paul Lockhart, U.S. Michael Lopez-Alegria, U.S. James Wetherbee, U.S. Kenneth Bowersox, U.S., up Nikolai Budarin, Russia (Roscosmos), up Donald Pettit, U.S., up Valery Korzun, Russia (Roscosmos), down Sergei Treschev, Russia (Roscosmos), down Peggy Whitson, U.S., down	Launched November 23, 2002 Returned December 7, 2002 14 days
Space Shuttle Discovery ISS flight 				Eileen Collins, U.S. James Kelly, U.S. Soichi Noguchi, Japan (JAXA) Stephen Robinson, U.S. Andrew Thomas, U.S. Wendy Lawrence, U.S. Charles Camarda, U.S.	Launched July 26, 2005 Returned August 9 , 2005 14 days
Space Shuttle Discovery ISS flight ULF..1				Daniel Tani, U.S. Linda Godwin, U.S. Dominic Gorie, U.S. Mark Kelly, U.S. Daniel Bursch, U.S., up Yuri Onufrienko, Russia (Roscosmos), up Carl Walz, U.S., up Frank Culbertson, U.S., down Vladimir Dezhurov, Russia (Roscosmos), down Mikhail Turin, Russia (Roscosmos), down	Launched July 4, 2006 Returned July 17, 2006 13 days

Flight Numbers	Mission Patch	Crew Photo	Launch Package Patch	Crew	Launch, Return, Duration
Space Shuttle Discovery ISS flight UL-3				Charles O. Hobaugh, U.S. Barry E. Wilmore, U.S. Michael J. Foreman, U.S. Randolph J. Bresnik, U.S. Leland D. Melvin, U.S. Robert L. Satcher, U.S.	Launched November 16, 2009 Returned November 27, 2009 16 days
Space Shuttle Discovery ISS flight 204				George D. Zamka, U.S. Terry W. Virts, U.S. Kathryn P. Hire, U.S. Stephen K. Robinson, U.S. Nicholas J. Patrick, U.S. Robert L. Behnken, U.S.	Launched February $8,2010$ Returned February $21,2010$ 13 days
Space Shuttle Atlantis ISS flight 19A				Alan G. Poindexter, U.S. James P. Dutton, U.S. Richard A. Mastracchio, U.S. Clayton C. Anderson, U.S. Dorothy M. Metcalf-Lindenburger, U.S. Stephanie D. Wilson, U.S. Naoko Yamazaki, Japan (JAXA)	Launched April 5, 2010 Returned April 20, 2010 15 days
Space Shuttle Atlantis ISS flight ULF4				Kenneth T. Ham, U.S. Dominic A. Antonelli, U.S. Stephen G. Bowen, U.S. Michael T. Good, U.S. Piers J. Sellers, U.S. Garrett E. Reisman, U.S.	Launched May 14, 2010 Returned May 26, 2010 11 days
Space Shuttle Discovery ISS flight ULE5				Steven W. Lindsey, U.S. Eric A. Boe, U.S. Benjamin A. Drew, U.S. Michael R. Barratt, U.S. Timothy L. Kopra, U.S. Nicole P. Stott, U.S.	
Space Shuttle Endeavour ISS flight ULF6				Mark E. Kelly, U.S. Gregory H. Johnson, U.S. Michael Fincke, U.S. Gregory E. Chamitoff, U.S. Andrew J. Feustel, U.S. Roberto Vittori, Italy (ESA)	

Soyuz ISS Missions

Flight

Flight		
Numbers	Mission patch	Crew photo

Unmanned ISS Missions

Flight Number	ISS Flight Number	Launch Date	Deorbit	Type
ATV Jules Verne	ISS-ATV1	March 9, 2008	September 29, 2008	Demonstration of European Automated Transfer Vehicle Jules Verne (ATV), Supplies
Progress M-64	ISS 29P	May 14, 2008	September 1, 2008	Supplies
Progress M-65	ISS 30P	September 10, 2008	November 14, 2008	Supplies
Progress M-01M	ISS 31P	November 26, 2008	February 6, 2009	Supplies
Progress M-66	ISS 32P	February 10, 2009	May 6, 2009	Supplies
Progress M-02M	ISS 33P	May 7, 2009	July 13, 2009	Supplies
Progress M-67	ISS 34P	July 24, 2009	September 27, 2009	Supplies
HTV-1	ISS-HTV1	September 10, 2009	November 1, 2009	Demonstration of Japanese H-II Transfer Vehicle (HTV), Supplies
Progress M-08M	ISS 35P	October 15, 2009	April 27, 2010	Supplies
Progress M-04M	ISS 36P	February 3, 2010	July 1, 2010	Supplies
Progress M-05M	ISS 37P	April 28, 2010		Supplies
Progress M-06M	ISS 38P	June 30, 2010		Supplies

NASA wishes to acknowledge the use of images provided by these organizations:

Canadian Space Agency
European Space Agency
Japan Aerospace Exploration Agency
Roscosmos, the Russian Federal Space Agency
Orbital Sciences Corporation
SpaceX Exploration Technologies Corporation
Thales Alenia Space

To Learn More

Space Station Sciencehttp://www.nasa.gov/mission_pages/station/science/
Facilities
http://www.nasa.gov/mission_pages/station/sciencelexperiments/Discipline.html
ISS Interactive Reference Guide
http://www.nasa.gov/externalflash/ISSRG
Canadian Space Agency (CSA)
http://www.asc-csa.gc.caleng/iss/
European Space Agency (ESA)http://www.esa.intlesaHS/iss.html
Japan Aerospace Exploration Agency (JAXA)
http:///iss.jaxa.jplen/
Russian Federal Space Agency (Roscosmos)
http://knts.rsa.rulhttp://www.energia.rulenglish/index.html

Acronym List

A	
AbrS	Advanced Biological Research System
ACES	Atomic Clock Ensemble in Space
ACU	Arm Control Unit
ADUM	Advanced Diagnostic Ultrasound in Microgravity
Altea	Anomalous Long Term Effects in Astronauts' Central Nervous System
AMS	Alpha Magnetic Spectrometer
APFR	Articulating Portable Foot Restraint
AQH	Aquatic Habitat
ARC	Ames Research Center
ARED	Advanced Resistive Exercise Device
ARIS	Active Rack Isolation System
ASI	Italian Space Agency
ASIM	Atmosphere Space Interaction Monitor
ATCS	Active Thermal Control System
ATF	Astronaut Training Facility
ATV	Automated Transfer Vehicle
ATV-CC	ATV Control Center
B	
BCA	Battery Charging Assembly
BCDU	Battery Charge Discharge Unit
BIOLAB	Biological Laboratory
BISE	Bodies In the Space Environment
BSA	Battery Stowage Assembly
BSTC	Biotechnology Specimen Temperature Controller
C	
C	Celsius
CADMOS	Centre d'Aide au
	Développement des activités en Micropesanteur et des Opérations Spatiales
Св	Clean Bench
CbeF	Cell Biology Experiment Facility
CBM	Common Berthing Mechanism

CCAA	Common Cabin Air Assembly
CCD	Charge-Coupled Device
CDRA	Carbon Dioxide Removal Assembly
CEO-IPY	Crew Earth ObservationsInternational Polar Year
CEPF	Columbus External Payload Facility
Cevis	Cycle Ergometer with Vibration Isolation System
CGBA	Commercial Generic Bioprocessing Apparatus
CHECS	Crew Health Care System
CIR	Combustion Integrated Rack
CKK	Replaceable Cassette-Container
CM	centimeter
CMG	Control Moment Gyroscope
CMRS	Crew Medical Restraint System
CMS	Countermeasures System
CNES	Centre National d'Études Spatiales (French Space Agency)
CO_{2}	carbon dioxide
COLbert	Combined Operational Load Bearing External Resistive Exercise Treadmill
COL-CC	Columbus Control Center
CRPCM	Canadian Remote Power Controller Module
CRS	Commercial Resupply System
CSA	Canadian Space Agency
CWC	Contingency Water Container
D	
DC	Docking Compartment
DC	Direct Current
DCSU	Direct Current Switching Unit
DDCU	DC-to-DC Converter Unit
DECLIC	Device for the study of Critical Liquids and Crystallization
DLR	Deutsches Zentrum für Luftund Raumfahrt e.V. (German Aerospace Center)
DLS	Dynamic Light Scattering
DOE	Department of Energy
DRTS	Data Relay Test Satellite

EAC	European Astronaut Centre
EADS	European Aeronautic Defence and Space Company
ECG	electrocardiogram
ECLSS	Environmental Control and Life Support System
ECU	Electronics Control Unit
EDR	European Drawer Rack
EF	Exposed Facility
EHS	Environmental Health System
ELC	EXPRESS Logistics Carriers
ELITE-S2	ELaboratore Immagini Televisive-Space 2
ELM-PS	Experiment Logistics ModulePressurized Section
EMCS	European Modular Cultivation System
EMU	Extravehicular Mobility Unit
EPM	European Physiology Module
EPS	Electrical Power System
ERA	European Robotic Arm
ESA	European Space Agency
ESTEC	European Space Research and Technology Centre
EUTEF	European Technology Exposure Facility
EVA	extravehicular activity
EVARM	EVA Radiation Monitor
EXPCA	EXPRESS Carrier Avionics
EXPOSE	Exposure Experiment
EXPRESS	Expedite the Processing of Experiments to the Space Station

F

F

F	
F	Farenheit
FDA	Food and Drug Administration
FGB	Functional Cargo Block
FIR	Fluids Integrated Rack
FOOT	Foot Reaction Forces During Spaceflight
FPEF	Fluid Physics Experiment Facility
FRAM	Flight Releasable Attachment
	Mechanism
FRGF	Flight Releasable Grapple
	Fixture
FSA	Farm Service Agency
FSA	Russian Federal Space Agency
FSL	Fluid Science Laboratory
FT	foot

G

GASMAP	Gas Analyzer System for
	Metabolic Analysis Physiology
GCM	Gas Calibration Module
GCTC	Gagarin Cosmonaut Training Center
GHF	Gradient Heating Furnace
GLACIER	General Laboratory Active
	Cryogenic ISS Equipment Refrigerator
GLONASS	Global Navigation Satellite System
GN\&C	Guidance, Navigation, and Control
GPS	Global Positioning System
GRC	Glenn Research Center
GSC	Guiana Space Centre
GTS	Global Transmission Services

$\mathrm{H}_{2} \quad$ hydrogen
$\mathrm{H}_{2} \mathrm{O}$ water
hepa High Efficiency Particulate Air
HMS Health Maintenance System
HPA Hand Posture Analyzer
HQ
HQL-79

HR

h-reflex Hoffman Reflex
HRF Human Research Facility
htv H-II Transfer Vehicle
htvcc HTV Control Center

MICAST	Microstructure Formation in	P		SEDA-AP	Space Environment Data
	Casting of Technical Alloys	PBG	Portable Glove Box		Acquisition equipment-Attached
	under Diffusive and Magnetically	PCAS	Passive Common Attach System		Payload
	Controlled Convective Conditions	PCDF	Protein Crystallization	SFOG	Solid Fuel Oxygen Generator
MIL-STD	Military Standard		Diagnostics Facility	SGANT	Space to Ground Antenna
misse	Materials International Space	PCRF	Protein Crystallization Research	SHS	Super-High temperature
	Station Experiment		Facility		Synthesis
MLM	Multi-Purpose Laboratory	PDGF	Power Data Grapple Fixture	SLAMMD	Space Linear Acceleration Mass
	Module	PEMS	Percutaneous Electrical Muscle		Measurement Device
MMOD	Micrometeoroid and Orbital		Stimulator	SM	Service Module
	Debris	PFS	Pulmonary Function System	SMILES	Superconducting Submillimeterwave Limb-emission Sounder
MMU	Multiplexer/Demultiplexer Mass	PLANTS-2	BIO-5 Rasteniya-2		
	Memory Unit	PLSS	Primary Life Support Subsystem	SPDM	Special Purpose Dexterous
moc	MSS Operations Complex	PMA	Pressurized Mating Adaptor		Manipulator
MPLM	Multi-Purpose Logistics Module	PMDIS	Perceptual Motor Deficits in	SPP	Science Power Platform
MRM	Mini-Research Module		Space	SRV-K	Russian Condensate Water
MRSA	methycillin-resistant	PMM	Permanent Multipurpose		Processor
	Staphylococcus aureus		Module	SSA	Space Suit Assembly
MSFC	Marshall Space Flight Center	POIC	Payload Operations and	SS	Space Station Computer
MSG	Microgravity Sciences Glovebox		Integration Center	SSRMS	Space Station Remote
MSL	Materials Science Laboratory	PSA	Power Supply Assembly		Manipulator System
MSL-CETSOL	Materials Science Laboratory-	PTCS	Passive Thermal Control System	SSU	Sequential Shunt Unit
	Columnar-to-Equiaxed	PTOC	Payload Telescience Science		
	Transition in Solidification		Operations Center	T	
MSPR	Multipurpose Small Payload	PVGF	Power Video Grapple Fixture	TAS	Thales Alenia Space Italy
	Rack	PWP	Portable Work Post	TCS	Thermal Control System
MSRR	Materials Science Research Rack			TDRS	Tracking and Data Relay
MSS	Mobile Servicing System	R			Satellites
MT	Mobile Transporter	RGA	Rate Gyroscope Assembly	TEPC	Tissue Equivalent Proportional
MUSC	Microgravity User Support	RMS	Remote Manipulator System		Counter
	Centre	ROEU-PDA	Remotely Operated Electrical	TMA	Transportation Modified
MZI	Mach-Zehnder Interferometry		Umbilical-Power Distribution		Anthropometric
			Assembly	TMG	Thermal Micrometeoroid
N		RPC	Remote Power Controller		Garment
N_{2}	nitrogen	RPCM	Remote Power Controller	TNSC	Tanegashima Space Center
$\mathrm{N}_{2} \mathrm{O}_{4}$	nitrogen tetroxide		Module	TORU	American Usage of Russian
NASA	National Aeronautics and Space	RPM	revolutions per minute		Term (TOPY)
	Administration	RSC ENERGIA	S.P. Korolev Rocket and Space	TSC	Telescience Support Centers
NAVSTAR	Navigation Signal Timing and		Corporation Energia	TSKC	Tsukuba Space Center
	Ranging			TSNIIMASH	Central Scientific Research
NORS	Nitrogen/Oxygen Resupply	S			Institute for Machine Building
	System	SAFER	Simplified Aid For EVA Rescue	TSUP	Moscow Mission Control
NTSC	National Television Standards	SARJ	Solar (Array) Alpha Rotation		Center
	Committee		Joint	TVIS	Treadmill Vibration Isolation System
		SASA	S-Band Antenna Structural		
0			Assembly		
O_{2}	oxygen	SAW	Solar Array Wing	U	
OBSS	Orbiter Boom Sensor System	SCOF	Solution Crystallization Observation Facility	u.s. UDMH	United States unsymmetrical dimethyl hydrazine
ogs	Oxygen Generation System				
ORU	Orbital Replacement Unit				

UHF	Ultra High Frequency
UMA	Umbilical Mating Assembly
USOC	User Support and Operation
	Centers
USOS	U.S. On-orbit Segment
V	
VDC	voltage, direct current
VDU	Video Distribution Unit
VHF	very high frequency
VOA	Volatile Organics Analyzer
W	
WAICO	Waving and Coiling of Arabidopsis Roots at Different g-levels
WHC	Waste Hygiene Compartment WORF
	Window Observational Research Facility
WPA	Water Processing Assembly
WRS	Water Recovery System

Definitions

ASSEMBLY COMPLETE

Final integrated arrangement of the International Space Station elements
ASSEMBLY STAGE
Integrated arrangement of International Space Station elements

BERTHING

Mating or linking operations of two spacecraft, modules, or elements where an inactive module/vehicle is placed into the mating interface using a Remote Manipulator System

DOCKING

Mating or linking operations of two spacecraft, modules, or elements where an active vehicle flies into the mating interface under its own power ELEMENT

A structural component such as a module or truss segment EXPEDITION

A long-duration crew during a stay on the space station INCREMENT

Period of time from launch of a vehicle rotating International Space Station crewmembers to the undocking of the return vehicle for that crew

MISSION

Flight of a "visiting" Space Shuttle, Soyuz, or other vehicle not permanently attached to the International Space Station
MODULE
An internally pressurized element intended for habitation MULTIPLEXER

A computer that interleaves multiple data management functions
NADIR
Direction directly below (opposite zenith)

PORT
Direction to the left side (opposite starboard)
RENDEZVOUS
Movement of two spacecraft toward one another
SPACE FLIGHT PARTICIPANT Nonprofessional astronaut STARBOARD

Direction to the right side (opposite port)
ZENITH
Directly above, opposite nadir

[^0]: Space Dynamically Responding Ultrasonic Matrix System (SpaceDRUMS) [NASA] will provide a suite of hardware capable of facilitating containerless advanced materials science, including combustion synthesis and fluid physics. SpaceDRUMS uses ultrasound to completely suspend a baseball-sized solid or liquid sample during combustion without the materials ever contacting the container walls. Such advanced ceramics production may have applications in new spacecraft or extraterrestrial outposts, such as bases on the Moon.

[^1]: A Pressure shell penetrations unlikely
 B Possible penetrations that can be mitigated with shields
 C Larger debris is tracked and ISS is maneuvered out of impact path

