NASA/TM-2015-218770

NASA DOEPOD NDE Capabilities Data Book

Edward R. Generazio Langley Research Center, Hampton, Virginia

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NTRS Registered and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA Programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counter-part of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM.
 Scientific and technical findings that are preliminary or of specialized interest,
 e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include organizing and publishing research results, distributing specialized research announcements and feeds, providing information desk and personal search support, and enabling data exchange services.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at <u>http://www.sti.nasa.gov</u>
- E-mail your question to <u>help@sti.nasa.gov</u>
- Phone the NASA STI Information Desk at 757-864-9658
- Write to: NASA STI Information Desk Mail Stop 148 NASA Langley Research Center Hampton, VA 23681-2199

NASA/TM-2015-218770

NASA DOEPOD NDE Capabilities Data Book

Edward R. Generazio Langley Research Center, Hampton, Virginia

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23681-2199

July 2015

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and Space Administration.

Available from:

NASA STI Program / Mail Stop 148 NASA Langley Research Center Hampton, VA 23681-2199 Fax: 757-864-6500

INDEX

NASA DOEPOD NDE CAPABILITIES DATA BOOK – OVERVIEW	2
NASA DOEPOD NDE CAPABILITIES DATA BOOK – EXAMPLE	7
NASA DOEPOD NDE CAPABILITIES DATA BOOK - DEFINITIONS	8
NASA DOEPOD NDE CAPABILITIES DATA BOOK – SUMMARY	12
NASA DOEPOD NDE CAPABILITIES DATA BOOK – ANALYSES	20
NTIAC DATA BOOK ERRATA	894

Overview

This data book contains the Directed Design of Experiments for Validating Probability of Detection (POD) Capability of NDE Systems (DOEPOD) analyses of the nondestructive inspection data presented in the NTIAC, Nondestructive Evaluation (NDE) Capabilities Data Book [1]. DOEPOD is designed as a decision support system to validate inspection system, personnel, and protocol demonstrating 0.90 POD with 95% confidence at critical flaw sizes, a90/95. Although 0.90 POD with 95% confidence at critical flaw sizes is often stated as an inspection requirement in inspection documents, including NASA Standards [2], NASA critical aerospace applications have historically only accepted 0.978 POD or better with a 95% one-sided lower confidence bound exceeding 0.90 at critical flaw sizes, a90/95. (see Figure 11 of [3]).

The test methodology used in DOEPOD is based on the field of statistical sequential analysis founded by Abraham Wald,

"Sequential analysis is a method of statistical inference whose characteristic feature is that the number of observations required by the procedure is not determined in advance of the experiment. The decision to terminate the experiment depends, at each stage, on the results of the observations previously made. A merit of the sequential method, as applied to testing statistical hypotheses, is that test procedures can be constructed which require, on average, a substantially smaller number of observations than equally reliable test procedures based on a predetermined number of observations." A. Wald [4]

Details of the analysis methods used in DOEPOD are fully described in the DOEPOD [5] manual, and "Directed Design of Experiments for Validating Probability of Detection Capability of a Testing System" US Patent Serial Number: US 8,108,178. Additional details are available on the operation [6] [7] and proof property validation [7] of DOEPOD.

The critical importance of validating methodologies used for establishing POD have been highlighted [3] and this data book provides the DOEPOD validation of POD capabilities for NDE systems, materials, structures, and flaw types presented in the NTIAC, Nondestructive Evaluation (NDE) Capabilities Data Book [1].

The maximum likelihood estimation (MLE) method used in DOEPOD to estimate the probability of detection using a two parameter logit model (MLE-Logit) are identical to that used in NTIAC [1]. This MLE method was chosen as a verification of data integrity so that the MLE POD plots in NTIAC [1] and this data book are identical except where this data book provides a correction to NTIAC [1] analysis. Corrections to NTIAC [1] are indicated in the Errata listed at the end of this document. Other MLE-Logit methods may be used, and a simple grid search for maximizing parameters has been demonstrated [3] to be effective. The POD analysis methods of NTIAC [1] and a military handbook [8] use a predetermined number of observations.

It is noted here that the MLE-Logit POD curve fit plots shown in this data book and NTIAC [1] are not validated for implementation [3]. Internal and external validation of MLE-Logit POD estimates is required prior to implementation and initial guidance on validation procedures is provide elsewhere [3]. In contrast, if CASE 1, CASE 1+, CASE 1# identifications are identified by DOEPOD analyses of test data, then the system, personnel, and inspection protocol maybe considered for acceptance by engineering authority for implementation application on relevant systems

437 NTIAC data sets are analyzed by DOEPOD to yield a CASE identification for each data set. Possible CASE identifications are listed in Table 1. The reader is referred to the DOEPOD manual [5] for definitions of the parameters in Table 1, and for design of experiment instructions on how to proceed to validate systems and personnel inspection capability. The DOEPOD analysis highlights 72 NTIAC data sets has CASE 1, CASE 1+, or CASE 1# data sets all exhibit 0.978 POD or better with a 95% one-sided lower confidence bound exceeding 0.90 at critical flaw sizes and meet the historical NASA acceptance criteria when actions in Table 1 are addressed.

DOEPOD acronyms are defined at the end of this overview.

Table 1

	Is 90/95 POD at X_{pod} reached? (i.e., lower confidence bound, X_{Best_LCL} , is equal to or greater than 0.9)	DOEPOD Analysis Summary and Recommendations
CASE 1	0	90/95 POD at X_{pod} has been reached. Actions: Address any false call warnings.
CASE 1+	0	90/95 POD at X _{pod} has been reached. Actions: Misses above Xpod need to be explained and resolved. Address any false call warnings.
CASE 1#	0	90/95 POD at X _{pod} has been reached. Actions: Further validation at flaw sizes greater than Xpod is required. Add large flaws. Address any false call warnings.
CASE 1*	0	90/95 POD at X _{pod} has been reached. Actions: Further validation at flaw sizes greater than Xpod is required. Add large flaws. Misses above Xpod need to be explained and resolved. Address any false call warnings.
CASE 2	0	90/95 POD at X_{pod} has been reached, however, there are an excessive number Misses above X_{pod} . Actions: Additional validation at identified flaw sizes is required. Add flaws per instructions.
CASE 4	0	90/95 POD at $X_{\mbox{pod}}$ has not been reached. Actions: Increase number of flaws at $X_{\mbox{POH}=1}$ or $X_{\mbox{Best}_\mbox{LCL}}$
CASE 5	0	90/95 POD at X_{pod} has not been reached and there are Misses above X_{Best_LCL} . Actions: Increase the number of flaws at $X_{POH=1}$.
CASE 6	0	90/95 POD at X_{pod} has not been reached. The POH is fluctuating above X_{Best_LCL} and X_{poh} is greater than $X_L/3$. The inspection system is unstable for the flaw size range analyzed. Actions: Increase the flaw size range by a factor of two.
CASE 7	0	90/95 POD at X_{pod} has not been reached. The inspection system is unstable for the entire flaw size range analyzed. Actions: The inspection system may not be appropriate or increase the flaw size range by a factor of two.
SURVEY CASES	0	The optimized class width exceeds 1/3 XL and X_{pod} has not been reached. The class width optimization has determined that there is a class width for which the smallest X_{POH} =1 class length is identified. Actions: Add flaws at Survey/Optimum X_{POH}

= NO

) = YES

Logit-ML Estimated POD at a90/95

Figure 1. Logit-ML Estimated POD at critical flaw size, a90/95, from NTIAC (1997). Open diamonds refer to data sets each having 325 samples. The horizontal dashed line is the NASA minimum binomial estimated POD (0.978) accepted in practice at a flaw size, Xpod, for failure critical applications. DOEPOD analyses identified 72 (red disk) data NTIAC data sets that are classified as CASE 1+, or CASE 1# having estimated POD exceeding 0.978 at a flaw size, Xpod. Note that Xpod and a90/95 are flaw size inspection capability labelling designations for DOEPOD and NTIAC Data Books, respectively. Xpod and a90/95 do not necessarily refer to the same flaw size for the same data sets.

A top level summary of the DOEPOD analyses of the nondestructive inspection data presented in the NTIAC Data Book [1] is provide in Table 2. CASE 1+, CASE 1#, CASE 1*, and CASE 2 all exhibit at least one singular point where the one-sided lower 95% confidence bound on POD exceeds 0.90 at a critical flaw size and additional actions are needed per Table 2 instructions to complete the validation over a range of larger flaw sizes. CASE 4 data sets represent data sets that are similar to CASE 2 data sets, however additional data at selected flaws sizes is needed to move a CASE 4 data set to a CASE 2 data set. The CASE 5 data sets have excessive false negatives in the flaw size range tested, therefore data for larger flaw sizes is needed. CASE 6 data sets exhibit local instability over a portion of the flaw sizes tested, therefore data for larger flaw sizes is needed or the inspection system is inappropriate for the inspection required. CASE 7 data sets exhibit instability over the entire the flaw size range tested, therefore, therefor

inspection required.

CASE ID	Number of Data Sets	Action Needed
CASE 1+	2	Explain of observed false negatives
CASE 1#	71	Further validation at larger flaws. Add test specimens with larger flaws.
CASE 1*	80	Further validation at larger flaw. Add test specimens with larger flaws. Explain observed false negatives.
CASE 2	46	Add test specimens at identified flaw sizes to demonstrate POD to be monotonically increasing with flaw size
CASE 4	37	Increase amount of relevant data by adding test specimens at identified flaw sizes to establish acceptable POD
CASE 5	12	Add test specimens with increased flaw sizes to address excessive false negatives at smaller flaw sizes.
CASE 6	91	Add test specimens with flaw sizes at least twice as large to address local inspection system oscillation instability or utilize a different inspection system or method.
CASE 7	98	Add test specimens with flaw sizes at least twice as large to address global inspection system instability or utilize a different inspection system or method.

Table 2

A summary of the output of parameter values from the DOEPOD analysis of nondestructive inspection data and methods presented in the NTIAC Data Book [1] is listed in Table 3. The descriptions of the parameters in Table 3 are detailed in reference [5]. The data file name is in column 3 of Table 3 and is used to identify the companion DOEPOD analysis output file. The printouts of the DOEPOD analysis output files follow in alphabetic in order to facilitate location. The electronic DOEPOD analysis output files and a searchable summary of parameter values from the DOEPOD analysis (Table 3) are available in the companion CD-ROM entitled "NASA DOEPOD Nondestructive Evaluation (NDE) Capabilities Data Book" which may be obtained upon request from the publisher.

DOEPOD software is available from NASA by contacting Kathy A. Dezern, phone: 757.864.5704, email: <u>kathy.a.dezern@nasa.gov</u>

Example

As an illustrative example we examine the first data set A1001AL. The multi-parameter maximum likelihood analysis in the NTIAC NDE Capabilities Data Book indicates the inspection system to have a 0.94 POD with lower single-sided 95% confidence bound that exceeds 0.9 at 0.27" flaw size (column labeled "NTIAC 90/95 occurs at POD (inch)". In contrast, the NASA DOEPOD point estimate based method (no curve fitting) indicates that the acceptable capability of this inspection system is at or above the 0.61" flaws size (column labeled Xpod CLASSLENGTH) where 1.0 POD is estimated (column labeled POH or POD @Xpod) with a single-sided lower 95% confidence bound that exceeds 0.9 at 0.61" flaw size.

Examining the data analyses for A1001AL (page 20). There are five Misses (Xs) for the 72 flaws larger than the 0.27" flaw size yielding a 0.93 point estimate of POD for these grouped larger flaws with a single-sided lower 95% confidence bound of 0.83. The multi-parameter POD curve fit does not highlight these Misses as important. DOEPOD indicates that the POD capability for this system and for fracture critical inspections is at or above the 0.61" flaw size. Even then, DOEPOD analysis indicates [RED notes in chart] that additional large flaw data is needed to complete the validation before accepting the 0.61" flaw size capability of this inspection system, and that false call analysis is also required.

Accepting the 0.27" flaw size identified by multi-parameter maximum likelihood method as the detection capability of this inspection system for fracture critical inspections adds known risk as highlighted by the 0.93 point estimate of POD with a single-sided lower bound of 0.83 for the largest flaws. DOEPOD analysis indicates that the POD capability for this system and for fracture critical inspections is at or above the 0.61" flaw size.

DOEPOD DEFINITIONS

C _L	Class length, e.g., inspection parameter (length, depth, area, etc.)
C_W	Class width (width of the moving class; all flaws within the range $C_{\rm L}$ to $C_{\rm L}~$ - $C_{W,}$ inclusively, are group together)
Hit	Flaw is detected
Miss	Flaw is not detected
MLE	Maximum Likelihood Estimate of POD using a two parameter statistical model. The MLE is included in DOEPOD as a user request for comparison. <i>The included method is that of the</i> NDE Capabilities Data Book, 3rd ed., Nov. 1997, NTIAC DB-97-02, DoD. <i>The use of MLE estimated POD is not recommend unless a full validation of the estimated POD is performed (see Generazio, E. R., Interrelationships Between Receiver/Relative Operating Characteristics Display, Binomial, Logit, and Bayes' Rule Probability of Detection Methodologies, NASA-TM-2014-21818, April 2014.</i>
Need	Add new samples to the existing specimen set in order to reach the number of samples required at the class length. Note that a single specimen may contain more than one flaw, so that "add samples" refers to "add flaws".
LCL	Lower confidence bound (value) of POH @ 95% confidence
Opt. X _{POH}	Optimum X_{POH} is identified for non-survey data sets. Optimum X_{POH} is the smallest class length and largest class width at which the minimum $X_{POH} = 1$ occurs. Optimum X_{POH} may be more aggressive than optional, X_{PODopt} , or X_{Best} _{LCL} , when the class width is constrained to the companion Optimum X_{POH} class width listed. DOEPOD does not force use of Optimum X_{POH} over X_{PODopt} or $X_{Best LCL}$ Stability has not been demonstrated at Optimum X_{POH} , therefore there is an additional risk that Optimum X_{POH} can not be satisfied to reach X_{POD}
РОН	Estimate of Probability of Hit (Number of Hits in Class Length/Total Number of Trials in Class Length)
POD	Probability of Detection (the true POD obtained if an infinite number of samples are used)
Signal Amplitude	Scalar amplitude output of NDE inspection system

Survey Data Sets	Survey Data Sets are data sets that have a sparce or disperse collection of samples. The moving class width optimization has identified this data set as having limited applications where the classwidth has exceeded $X_L/3$ and X_{POD} has not been reached. An alternate optimization of X_{POH} is used to provide guidance. The Survey Set is the recommended initial set for DOEPOD.
Survey X _{POH}	Survey X_{POH} is only identified for data sets determined to be Survey Data Sets. Survey X_{POH} is the smallest class length and largest class width at which the minimum $X_{POH} = 1$ class length occurs. Survey X_{POH} is the minimum class length at which X_{POD} may be achieved when the class width is constrained to the companion survey class width listed. Survey X_{POH} is utilized in all cases in which a Survey Set is identified by DOEPOD.
$X_{\text{Best LCL}}$	Class length exhibiting the maximum or "best" LCL. The best class length is determined by increasing the moving class width until a maximum LCL is obtained
X _i	Class length X at point "i"
X _L	Largest class length in entire data set
X _m	Class length near the mid-point between the largest and the smallest class lengths having no Misses
X _P	90/95 POD or greater is achieve, by grouping numbers of specimens, for the range X_P to X_L . X_P is only provided when X_{POD} has been identified.
	For inspector qualification, X_P cannot be less than the largest flaw Missed. The class width of flaw set used for inspector qualification is listed as Inspector Classwidth @ Xp in the charts. The flaw sizes used for inspector qualification range from Xp to (Xp - Classwidth @ Xp).
X _{POD}	Class length at which the lower confidence bound (value) is 0.90 (90/95 POD) @ 95% confidence.
X _{POH=1} , X _{POH}	Class length where there are no Misses above this class length, and $POH = 1$ above this class length.
X _{PODopt}	Optional existing smaller class length where X_{POD} may also be achieved if additional samples are added and Hits are identified.
X _S	Smallest class length in the data set
UCL	Upper confidence bound (value) of the false call rate @ 95% confidence

**Validated 90/95 POD has been reached at a classlength, X_{POD}. In order to achieve 90/95 POD for the class length range between X_{POD} and the largest class length in the data set, X_{L_2} inclusively, validation at a classlength near the mid-point and largest classlength is required^{ς}. If, in addition, there exists a class length, X_P, where 90/95 POD or greater exits for all class lengths in the range X_P to X_L , and $X_P = X_{POD}$, and there is a sufficient number and adequate range and distribution of classlengths greater than X_{POD} , then the validation extends from X_{POD} to X_{L} . When this occurs, validation at a classlength near the mid-point and largest classlength is satisfied. ^EWARNING: There are inspection systems that exhibit an oscillating or non-uniform POD. For example when the flaws are greater than the eddy current footprint, when large flaws are loaded to closure, or when the physics of the inspection processes changes modes over the flaw size range of interest. If flaws in these ranges or conditions are to be detected with a 90/95 POD, then samples in these ranges need to be included. When multiple base parameters are combined, e.g., (length)x(width) = area, and the combine parameter (e.g., area) is used as the class length, then 90/95 POD is only valid if the inspection technology has been validated to quantitatively measure each of the base parameters, or if the inspection technology is validated to guantitatively measure the new combine parameter. When all CASE 1 or CASE 1+ requirements are met, and the above warnings have been evaluated and the upper confidence bound of the false call rate is not excessive, then the inspection system is validated between X_{POD} and the largest class length X_L for the flaw types, materials, and structure of the test specimen set. Validated is defined here to be: "This confidence bound procedure has a probability of at least 0.95 to give a lower bound for the 90% POD point that exceeds true (unknown) 90% POD point. This is referred to as 90/95 POD, and for larger flaws in the evaluation range 90/95 POD is met or exceeded. DOEPOD SOFTWARE AND ANY ACCOMPANYING DOCUMENTATION IS RELEASED "AS IS". THE U.S. GOVERNMENT MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL THE U.S. GOVERNMENT BE LIABLE FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE, OR INABILITY TO USE THIS SOFTWARE OR ANY ACCOMPANYING DOCUMENTATION, EVEN IF INFORMED IN ADVANCE OF THE POSSIBILITY OF SUCH DAMAGES. THIS SOFTWARE MAY NOT BE MODIFIED, DISTRIBUTED, OR REPRODUCED.

Bibliography

- [1] W. D. Rummel and G. Matzkanin, Nondestructive Evaluation (NDE) Capabilities Data Book, 3rd ed., Vols. NTIAC DB-97-02, Austin, Texas, 1997.
- [2] NASA, "NASA-STD-5009, Nondestructive Evaluation Requirements for Fracture Critical Metallic Components," 4 April 2008.
- [3] E. R. Generazio, "NASA/TM-2014-218183, Interrelationships Between Receiver/Relative Operating Characteristics Display, Binomial, Logit, and Bayes' Rule Probability of Detection Methodologies," *NASA/TM-2014-218183*, April 2014.
- [4] A. Wald, Sequential Analaysis, New York, New York: John Wiley & Sons, Inc., 1947, p. 1.
- [5] E. R. Generazio, "NASA/TM-2015-218696, Directed Design of Experiments for Validating Probability of Detection Capability of NDE Systems (DOEPOD)," March 2015.
- [6] E. R. Generazio, "Design of Experiments for Validating Probability of Detection Capability of NDT Systems and for Qualification of Inspectors," *Materials Evaluation*, vol. 67, no. No. 6, pp. 730-738, June 2009.
- [7] E. R. Generazio, "Validating Design of Experiments for Determining Probability of Detection Capability for Fracture CRitical Applications," *Materials Evaluation*, vol. 69, no. No.2, pp. 1399-1407, December 2011.
- [8] Department of Defense, "MIL-HDBK-1823A, Nondestructive Evaluation System Reliability Assessment," 7 April 2009.

MATERIAL	STRUCTURE	FILE NAME	Analysis Date/Time CASE I	Xpod Xpod CLASS- CLAS	d SS-	Best_LC	Best_LCL I CLASS- WIDTH	Best_LCL CLASS-		Xm Xm i		s # Xici		a I # Xnoh	Xpoh #		() # Xss		# Xnodon	t Xpodont #	False Call	False Call	False Call	False Call	Length or Area per Inspection (in or in^2) =	False Call			NTIAC 90% POD occurs at (inch)	NTIAC 90/95 occurs at	PO PO	OH or OD @ N	METHO
			6/4/15 5:14 PM CASE 1			-	WIDTH				XS X	s # Xici	I XIC	t# Xpoh	Xpoh #	2XL 2X	L# Xss	Xss	0.589		UCL	Rate	Length (in)	Area (in^2)	(in or in^2) =	Opportunities	False Calls False Call Flag Warning: No false call	MLE flag	at (inch)				-
	plate	A1001AL.xls			.2000 0.9050				0.9790	0.7100	+								0.589	0 29							analysis. Warning: No false call		0.2	0.27			ET
2219 AI T-87 g	plate	A1001BL.XLS	6/4/15 5:16 PM CASE 2		.2000 0.9040				0.9790 2	4 0.6460 2	9																analysis. Warning: No false call		0.185	0.25			ET
2219 AI T-87 p	plate	A1001CL.XLS	6/4/15 5:19 PM CASE 1		.0570 0.900				0.9790	0.5430																	analysis. Warning: No false call		0.3	0.41	0.496		ET
2219 AI T-87 p	plate	A1002AL.XLS	6/4/15 5:21 PM CASE 2		.0510 0.900				0.9790 2	1 1	4																analysis. Warning: No false call		0.2	0.285		1.000	
2219 AI T-87 p	plate	A1002BL.XLS	6/4/15 5:22 PM CASE 1		.0310 0.900				0.9790	0.3360																	analysis. Warning: No false call		0.075				
2219 AI T-87	plate	A1002CL.XLS	6/4/15 5:25 PM CASE 1	# 0.1530 0.0	.0360 0.900				0.9790	0.5230									0.152	0 29							analysis.	MLE Divergence Warning: Initial results	0.275	0.41	0.153	1.000	ET
2219 AI T-87	plate	A1003AL.XLS	6/4/15 5:27 PM CASE 1	• 0.0760 0.0	.0090 0.907				0.6100	0.2620																	Warning: No false call analysis.	listed.	0.055	0.065	0.096	1.000	ET
		A1003BL XLS																									Warning: No false call	MLE Divergence Warning: Initial results					ET
2219 AI T-87	plate		6/4/15 5:30 PM CASE 1		0.900				0.6100	0.2620																	analysis. Warning: No false call	listed.	0.04	0.05	0.086		ET
2219 AI T-87 p	plate	A1003CL.XLS	6/4/15 5:34 PM CASE 1		.0080 0.900				0.6100	0.2620																	analysis. Warning: No false call		0.09	0.115	0.108	1.000	
2219 AI T-87	plate	A2002AL.XLS	6/4/15 5:36 PM CASE 7				0.2000	0.5100								1.1000	29										analysis. Warning: No false call		0.29			+	ET ET
2219 AI T-87 p	plate	A2002BL.XLS	6/4/15 5:38 PM CASE 7		.2000 0.900		0.2000		0.5500	0.4960						1.1000	29										analysis. Warning: No false call		0.095	0.17	0.474		
2219 AI T-87 p	plate	A2002CL.XLS	6/4/15 5:39 PM CASE 1 6/4/15 5:40 PM CASE 1		.0400 0.900				0.5500	0.4960																	analysis. Warning: No false call		0.095	0.17	0.474		ET ET
Ti 6Al4V	plate	A3001AL.XLS	6/4/15 5:40 PM CASE 1 6/4/15 5:41 PM CASE 2		.0800 0.900					0.2750									0.222	5 29							analysis. Warning: No false call						ET
	plate	A3001BL.XLS	6/4/15 5:41 PM CASE 2 6/4/15 5:43 PM CASE 1		.0800 0.900				0.4070 5	0.3150	9			-					0.235								analysis. Warning: No false call		0.265	0.365	0.242		ET
Ti 6Al4V g	plate	A3001CL.XLS A3003AL.XLS	6/4/15 5:43 PM CASE 1		.0420 0.900	0.8719	0.0270	0.2120	0.4070	0.3550						0.8140			0.235	0 1							Warning: No false call		0.18	0.21	0.242		ET
Ti 6Al4V Fi 6Al4V	plate	A3003AL.XLS A3003BL.XLS	6/4/15 5:45 PM CASE 7			0.8719		0.2120						-		0.8140	29										Warning: No false call		0.275	0.36		\vdash	ET
Ti 6Al4V	plate	A3003BL.XLS	6/4/15 5:46 PM CASE 7				0.0220	0.2470								0.8140	29										Warning: No false call		0.49				ET
SS AMS 355	plate	A400011.XLS	6/4/15 5:48 PM CASE 6				0.0310		0.2575 2					0.257	24	0.5150	29										analysis. Warning: No faise call		0.565	0.185			ET
SS AMS 355	hate	A400013.XLS	6/4/15 5:49 PM CASE 1		.0540 0.900	0.0190	0.0750		0.2575	*				0.207	24	0.0100	2.5		0.400								Warning: No false call		0.04		0.10314		ET
SS AMS 355	hole	A400013.XLS	6/4/15 5:50 PM CASE 6		.0540 0.900	0.6518	0.0070	0.0559		0.1929				0.155	20	0.5150	20		0.100	4 2							Warning: No false call analysis.		0.04	0.065	5.10314	1.000	ET
SS AMS 355	hele	A400015.XLS	6/4/15 5:51 PM CASE 5				0.0030	0.0579		•				0.066		0.0100	2.5										Warning: No false call		0.035	0.205			ET
SS AMS 355	hole	A400016 XLS	6/4/15 5:52 PM CASE 1		0540 0.900		0.0030		0.2575	0 1929				0.000.	21				0 100	4 2							analysis. Warning: No false call		0.025		0 10314		ET
SS AMS 355	hole	A500011.XLS	6/4/15 5:53 PM CASE 4		.0540 0.500	0.8855	0.0230	0.0902		4		0	0.0002	4 0.090		0.1803	20		0.100	4 2							Warning: No false call analysis.		0.025	0.045	5.10314		ET
SS AMS 355	hele	A500013.XLS	6/4/15 5:55 PM CASE 6			0.7360		0.0204		•				0.033		0.0921	20										Warning: No false call		0.073	0.06			ET
SS AMS 355	hole	A500013.XLS	6/4/15 5:56 PM CASE 1		.0180 0.900		0.0050		0.0902	0.0776				0.033	21	0.0521	20		0.057	0 2							Warning: No false call analysis.		0.03		0.05905	1.000	ET
SS AMS 355	hole	A500015.XLS	6/4/15 5:57 PM CASE 5		0.000		0.0030	0.0579		8				0.066	2 27				0.001	, <u> </u>							Warning: No false call		0.035		0.00000		ET
SS AMS 355	hole	A500016.XLS	6/4/15 5:58 PM CASE 1		.0250 0.900	0.0400	0.0000		0.0815	0.0681				0.000.					0.058	7 3							Warning: No false call analysis		0.03		0.06102		ET
	lap splice	A6001A.XLS	6/4/15 5:59 PM CASE 1		.0180 0.900				0.8120	0.2910																	Warning: No false call analysis		0.09	0.1			ET
	lap splice	A6001AR.XLS	6/4/15 6:00 PM CASE 1		.0180 0.900				0.8120	0.2910									0.106	0 3							Warning: No false call analysis.		0.09	0.095	0.114		
																											Warning: No false call	MLE Divergence Warning: Initial results listed.					
2024 AI T-37	lap splice	A6001B.XLS	6/4/15 6:01 PM CASE 1	# 0.0940 0.0	.0140 0.900				0.8120	0.2760									0.093	0 1							analysis.	listed.	0.065	0.075	0.094	1.000	ET
2024 AI T-37	lap splice	A6001C.XLS	6/4/15 6:03 PM CASE 1	# 0.1140 0.0	.0180 0.900				0.8120	0.2910									0.106	0 3							Warning: No false call analysis.	MLE Divergence Warning: Initial results listed.	0.085	0.09	0.114	1.000	ET
	lap splice	A6001D.XLS	6/4/15 6:04 PM CASE 1						0.8120	0.3720									0.127	0 1							Warning: No false call analysis.		0.105		0.128		ET
	lap splice	A6001E.XLS	6/4/15 6:05 PM CASE 1		.0240 0.9050				0.8120	0.3720									0.127	0 1							Warning: No false call analysis.		0.095	0.1	0.128	1.000	ET
																											Warning: No false call	MLE Divergence Warning: Initial results					
2024 AI T-37	lap splice	A6001F.XLS	6/4/15 6:06 PM CASE 1		.0230 0.905				0.8120	0.3720																	analysis. Warning: No false call	listed.	0.075	0.09	0.12	1.000	ET
	lap splice	A6001G.XLS	6/4/15 6:07 PM CASE 4			0.8666		0.2760		7		0	0.2760	8 0.276													analysis. Warning: No false call analysis.		0.16	0.185			ET
2024 AI T-37	lap splice	A6001GR.XLS	6/4/15 6:09 PM CASE 6			0.8707	0.0540	0.1920	0.8120 2	7				0.322	24	1.6240	29											MLE Divergence	0.16	0.185			ET
2024 AI T-37	lap splice	A6001H.XLS	6/4/15 6:11 PM CASE 1	0.1310 0.0	.0250 0.900				0.8120	0.3720																	Warning: No false call analysis.	MLE Divergence Warning: Initial results listed.	0.105	0.12	0.227	1.000	ET
2024 AI T-37		A6001J.XLS	6/4/15 6:12 PM CASE 1		.0250 0.900				0.8120	0.3720									0.130								Warning: No false call	MLE Divergence Warning: Initial results	0.105	0.115	0.131	1.000	ET
	lap splice													-						5 29							analysis. Warning: No false call	listed.					ET
2024 AI T-37	lap splice	A6001JR.XLS	6/4/15 6:13 PM CASE 1	# 0.1280 0.0	.0240 0.905				0.8120	0.3720									0.123	2							analysis. Warning: No false call	MLE Divergence Warning: Initial results listed.	0.095	0.11	0.128	1.000	E1
2024 AI T-37	lap splice	A6002A.XLS	6/4/15 6:14 PM CASE 1		.0140 0.900				0.8120	0.2760				_					0.093	0 1								www.ning: Initial results listed.	0.075	0.085	0.094	1.000	ET
2024 AI T-37	lap splice	A6002B.XLS	6/4/15 6:15 PM CASE 2	0.1050 0.0	.0180 0.900				0.8120 2	6 0.2910 2	6									-							Warning: No faise call analysis.	M.C.Dury	0.1	0.12		1.000	ET
2024 AI T-37	lap splice	A6002C.XLS	6/4/15 6:17 PM CASE 1	• 0.1050 0.0	.0180 0.900				0.8120	0.2910																	Warning: No false call analysis.	MLE Divergence Warning: Initial results listed.	0.07	0.08	0.105	1.000	ET
	lap splice	A6002D.XLS	6/4/15 6:18 PM CASE 1		.0240 0.905				0.8120	0.3720																	Warning: No false call		0.105	0.115		1.000	ET
	lap splice	A6002DR.XLS	6/4/15 6:19 PM CASE 1						0.8120	0.3220									0.153	0 29							Warning: No false call analysis.		0.095	0.11	0.154	1.000	ET
																				15							Warning: No false call	MLE Divergence Warning: Initial results	2.000				
2024 AI T-37	lap splice	A6002E.XLS	6/4/15 6:20 PM CASE 1		.0250 0.900				0.8120	0.3720										-							analysis.	listed.	0.11	0.13	0.227	1.000	ET
	lap splice	A6002ER.XLS	6/4/15 6:21 PM CASE 1		.0450 0.900				0.8120	0.3720									0.184	0 29							Warning: No false call analysis. Warning: No false call		0.11	0.125	0.186	1.000	ET
2024 AI T-37	lap splice	A6002F.XLS	6/4/15 6:22 PM CASE 7			0.8190	0.0710	0.2910								1.6240	29			-							analysis.	MLE Divergence	0.2	0.265	_	-	ET
2024 AI T-37	lap splice	A6002G.XLS	6/4/15 6:24 PM CASE 1	# 0.1200 0.0	.0230 0.9050				0.8120	0.3720									0.119	0 29							Warning: No false call analysis.	MLE Divergence Warning: Initial results listed.	0.095	0.105	0.12	1.000	ET
																											Warning: No false call	MLE Divergence Warning: Initial results listed.					
2024 AI T-37	lap splice	A6002H.XLS	6/4/15 6:25 PM CASE 1		.0910 0.900				0.8120	0.3720																	analysis. Warning: No false call	listed.	0.12	0.135	0.222	0.978	ET
	lap splice	A6002HR.XLS	6/4/15 6:27 PM CASE 1		.0250 0.905				0.8120	0.3720																	analysis. Warning: No false call		0.105	0.12	0.13		ET
	lap splice	A6002J.XLS	6/4/15 6:28 PM CASE 6			0.8609	0.0200	0.1270		·				0.276	24	1.6240	29										analysis. Warning: No false call		0.145	0.175			ET
2024 AI T-37	lap splice	A6003A.XLS	6/4/15 6:30 PM CASE 1	0.1054 0.0	.0190 0.900				0.8117	0.2910																	analysis.	MLE Divergence	0.085	0.095	0.1054	1.000	ET
2024 AI T-37	lap splice	A6003B.XLS	6/4/15 6:31 PM CASE 1	0.1141 0.0	.0190 0.9050				0.8117	0.2910																	Warning: No false call analysis.	MLE Divergence Warning: Initial results listed.	0.085	0.095	0.1141	1.000	ET
																											Warning: No false call	MLE Divergence Warning: Initial results listed.					
2024 AI T-37	lap splice	A6003C.XLS	6/4/15 6:32 PM CASE 1		.0150 0.900				0.8117	0.2762										-							analysis. Warning: No false call	listed.	0.065				ET ET
2024 AI T-37	lap splice	A6003D.XLS	6/4/15 6:34 PM CASE 1	# 0.1054 0.0	.0190 0.900				0.8117	0.2910									0.103	0 1							analysis.		0.09	0.1	0.1054	1.000	ET

			Analysis Date/Time		Xpod CLASS- LENGTH	Xpod CLASS-	в	Best_LC C	Best_LCL B CLASS- C VIDTH L	Best_LCL CLASS-													False Call	False Call	Faise Call	False Call	Length or Area per Inspection (in or in^2) =	False Call			NTIAC 90% N POD occurs o at (inch) P	ITIAC 90/95 occurs at	POP	H or D @ METH od D
MATERIAL	STRUCTURE	FILE NAME	Date/Time	CASE ID	LENGTH	WIDTH	LCL L	- w	VIDTH L	ENGTH X	L XL	# Xm	Xm # Xs	Xs#	(ici)	Xici # >	(poh)	(poh # 2XL	2XL#Xs	s Xss	# Xpod	dopt Xpodopt I	UCL	Rate	Length (in)	Area (in^2)	(in or in^2) =	Opportunities	i i	MLE flag MLE Divergence	at (inch) P	OD (inch)	XP Xpo	ad D
2024 AI T-37	lap splice	A6003E XLS	6/4/15 6:35 PM	CASE 1*	0.1283	0.0360	0.9001				0.8117	0.321	9																	Warning: Initial results listed.	0.105	0.115	0 14525	0.978 ET
2024 AI T-37	lap splice	A6003F.XLS	6/4/15 6:37 PM			0.0190					0.8117	0.291	~																Warning: No false call analysis.		0.08	0.09		1.000 ET
2024 AI T-37		A6003G XLS	6/4/15 6:38 PN			0.0580					0.8117	26 0.510																	Warning: No false call		0.08	0.05		1.000 ET
	lap splice																				+-	-							analysis. Warning: No false call					
2024 AI T-37	lap splice	A6003H.XLS	6/4/15 6:39 PN	CASE 2	0.1308	0.0250	0.9001				0.8117	26 0.371	9 28								+								analysis.	MLE Divergence	0.14	0.165		1.000 ET
2024 AI T-37	lap splice	A6003J.XLS	6/4/15 6:40 PN	CASE 1#	0.0982	0.0160	0.9050				0.8117	0.291	D								0.	.0980 2							Warning: No false call analysis.	MLE Divergence Warning: Initial results listed.	0.08	0.09	0.0982	1.000 ET
																													Warning: No false call	MLE Divergence Warning: Initial results				
	lap splice	A6004A.XLS	6/4/15 6:42 PN			0.0140					0.8120	0.276	0								4								analysis. Warning: No false call	listed.	0.08	0.095		1.000 ET
2024 AI T-37	lap splice	A6004B.XLS	6/4/15 6:43 PN	CASE 1#	0.1140	0.0180	0.9001				0.8120	0.291	D								0.1	0.1070	3						analysis.		0.095	0.105	0.114	1.000 ET
2024 AI T-37		A6004BR.XLS	6/4/15 6:44 PN			0.0180					0.8120																		Warning: No false call	MLE Divergence Warning: Initial results listed.		0.085	0.105	1.000 ET
	lap splice				0.1050	0.0180	0.9001					0.291									+-	-							analysis. Warning: No faise call	listed.	0.07			
2024 AI T-37	lap splice	A6004C.XLS	6/4/15 6:46 PN	CASE 5				0.6070	0.0010	0.1140	0.8120	27					0.1760	27			+								anarysis.	MLE Divergence	0.14	0.165		ET
2024 AI T-37	lap splice	A6004CR.XLS	6/4/15 6:48 PN	CASE 5				0.6070	0.0010	0.0960	0.8120	27					0.1760	27											Warning: No false call analysis.	Warning: Initial results listed.	0.13	0.145		ET
2024 AI T-37	lap splice	A6004D.XLS	6/4/15 6:49 PN	CASE 1#	0 1050	0.0180	0.9001				0.8120	0.291	n								0	0.1040							analysis. Warning: No false call analysis		0.09	0.1	0.105	1.000 ET
2024 AI T-37	lap splice	A6004E.XLS									0.8120	0.372									-	1305 29							Warning: No false call		0.11			1.000 ET
LOLY AT 1 ST	nup upnee	700042.720			0.1010	0.0200	0.0001				0.0120	0.072									0.	1000 2.							Warning: No false call	MLE Divergence Warning: Initial results	0.11	0.120	0.101	
2024 AI T-37	lap splice	A6004F.XLS	6/4/15 6:52 PN	CASE 1*	0.1050	0.0180	0.9001				0.8120	0.291	D																warning: No faise call analysis.	Warning: Initial results listed.	0.065	0.075	0.105	1.000 ET
																													Warning: No false call	listed. MLE Divergence Warning: Initial results listed.				
2024 AI T-37	lap splice	A6004FR.XLS									0.8120	0.291									0.1	0.1020 2	-						analysis. Warning: No false call	listed.	0.07	0.08		1.000 ET
	lap splice	A6004G.XLS									0.8120	0.372									4-	_							analysis. Warning: No false call		0.15			0.979 ET
2024 AI T-37	lap splice	A6004H.XLS	6/4/15 6:56 PN			0.0640					0.8120	0.372									4								analysis. Warning: No false call		0.135			0.979 ET
2024 AI T-37	lap splice	A6004J.XLS	6/4/15 6:57 PN		0.1760	0.0390	0.9001				0.8120	0.372	0								0.1	0.1710	3						analysis.		0.105	0.12	0.176	1.000 ET
STEEL 4340	plate	A7001AL.XLS	6/4/15 6:58 PN	CASE 7				0.5493	0.0040	0.0933								4.8060	29										Warning: No false call analysis. Warning: No false call					ET
STEEL 4340	plate	A7001BL.XLS	6/4/15 7:00 PN	CASE 7				0.6070	0.0050	0.0933								4.8060	29										analysis					ET
STEEL 4340	plate	A7001CL.XLS	6/4/15 7:03 PN	CASE 7				0.5493	0.0040	0.0933								4.8060	29										Warning: No false call analysis.					ET
STEEL 4340	plate	A7003AL.XLS	6/4/15 7:05 PN	CASE 7				0.6356	0.0630	0.3500								4.8060	29										Warning: No false call analysis.					ET
STEEL 4340	plate	A7003BL.XLS	6/4/15 7:07 PN					0.5493	0.0010	0.1960	2 4030	28					1.6030	28 4.8060											Warning: No false call analysis.					ET
STEEL 4340	niste	A7003CL.XLS	6/4/15 7:09 PN									28					1.6030	28 4.8060											Warning: No false call analysis					ET
SS AMS 355	holo	A8001L.XLS	6/4/15 7:11 PN		0.0218	0.0050	0.9001	0.0070	0.0020		0.3425	0.161					1.0000	20 4.000	2.5										Warning: No false call		0.025	0.02	0.04404	1.000 ET
SS AMS 355	hala	A8002L.XLS	6/4/15 7:12 PM			0.0040					0.3425	0.161										0.0145 25							anarysis. Warning: No false call analysis.		0.023			1.000 ET
SS AMS 355	hole	A8002L.XLS	6/4/15 7:12 PN	CASE 1#	0.014/	0.0040	0.9129				0.3425	0.161									0.0	.0145 25	1							MLE Divergence	0.01	0.015	0.01468	1.000 EI
SS AMS 355	hole	A8003L.XLS	6/4/15 7:16 PN	CASE 1*	0.0147	0.0040	0.9129				0.3425	0.161	1																analysis.	Warning: Initial results listed.	0.01	0.015	0.01468	1.000 ET
SS AMS 355	hole	A8004L.XLS	6/4/15 7:22 PN	CASE 1#	0.0587	0.0190	0.9050				0.3425	0.169	4								0/	0.0581 25	9						Warning: No false call analysis.		0.03	0.04	0.05873	1.000 ET
SS AMS 355	hole	A8005L.XLS	6/4/15 7:23 PN								0.3425	0.169	4									0.0567 29							Warning: No false call analysis.		0.03			1.000 ET
																													Warning: No false call	MLE Divergence Warning: Initial results				
SS AMS 355	hole	A8006L.XLS	6/4/15 7:24 PN	CASE 1#	0.0587	0.0190	0.9050				0.3425	0.169	4								0.0	0.0581 29	9						analysis.	listed.	0.04	0.045	0.05873	1.000 ET
2219 AI T-87	stringer panel	A9001(3)D.xls	6/4/15 7:26 PN	CASE 6				0.7169	0.0020	0.0650	0.0950	26					0.0800	26 0.1900	29										Warning: No false call analysis.		0.12			ET
2219 AI T-87	stringer panel	A9001(3)L.xls	6/4/15 7:27 PN	CASE 6				0.8444	0.0090	0.5690	0.6840	26					0.6840	26 1.3680	29										Warning: No false call analysis.					ET
2219 AI T-87	stringer panel	A9002(3)D.xls	6/4/15 7:29 PN	CASE 6				0.8444	0.0040	0.0650	0.0950	26					0.0950	26 0.1900	29										Warning: No false call analysis.		0.055	0.065		ET
2219 AI T-87	stringer panel		6/4/15 7:31 PN	CASE 7				0.8827	0.0190	0.5790								1.3680											Warning: No false call analysis.		0.375	0.51		ET
2219 AI T-87	stringer panel		6/4/15 7:32 PN	CASE 6				0.7933	0.0020	0.0570	0.0950	26					0.0760	26 0.1900	29										Warning: No false call analysis.		0.105	0.14		ET
2219 AI T-87	stringer panel		6/4/15 7:34 PN							0.1950		26					0.6840	26 1.368											Warning: No false call analysis					ET
2219 AI T-87/w2319		AA001(3)L.xls	6/4/15 7:35 PN					0.6070	0.0040	0.6860		20					1.2710	26 2.5420											Warning: No false call					ET
2219 AI T-87/w2319	weld LP	AA002(3)L.xis	6/4/15 7:35 PM					0.7169			1.2710	20					1.2710	2.5420											Warning: No false call analysis					ET
								0.7169	0.0080		1.2710 1							2.042	29		H								Warning: No false call					
2219 AI T-87/w2319		AA003(3)L.xls	6/4/15 7:40 PN		0.9450	0.0560	0.9050				1.2/10 1	55 1.156	8								+								analysis. Warning: No false call					1.000 ET
2219 AI T-87/w2319		AB001(3)L.xls	6/4/15 7:43 PN							0.2870								2.3760			+-								analysis. Warning: No false call		+			ET
2219 AI T-87/w2319		AB002(3)L.xls								0.2870	1.1880	26					1.1880	26 2.3760			4								analysis. Warning: No false call					ET
2219 AI T-87/w2319		AB003(3)L.xis	6/4/15 7:46 PN					0.7206	0.0060	0.1000								2.3760			4								analysis. Warning: No false call analysis.					ET
2219 AI T-87/w2319	weld TFC	AC001(3)L.xls	6/4/15 7:48 PN					0.8477	0.5000	0.9850								2.8700			4								analysis. Warning: No false call		0.445	0.67		ET
2219 Al T-87/w2319	weld TFC	AC002(3)L.xis	6/4/15 7:49 PN	CASE 6				0.7169	0.0040	0.4820		26					0.4980	23 2.8700	29		4								analysis. Warning: No false call		0.465	0.74		ET
2219 AI T-87/w2319	weld TFC	AC003(3)L.xls	6/4/15 7:50 PN	CASE 6				0.8666	0.2000	1.0760	1.4350	26					1.4350	26 2.8700	29										analysis.		0.75			ET
			6/4/15 7:52 PN									1 1 10																	Warning: No false call	MLE Divergence Warning: Initial results				1.000 ET
2219 AI T-87/w2319					0.3480		0.9050				1.5620	1.115									+-								analysis. Warning: No false call	listed.	0.105	0.13		
2219 AI T-87/w2319	weld flush LFI	CAD002(3)L.xls	6/4/15 7:58 PN	CASE 1*	0.3480	0.0290	0.9050				1.5620	1.119	0								+								analysis.	MLE Divergence Warning: Initial results	0.185	0.24	0.348	1.000 ET
2219 AI T-87/w2319	weld flush LFI	C AD003(3)L.xls	6/4/15 8:06 PN	CASE 1#	0.3480	0.0290	0.9050				1.5620	1.119	D								0.	0.1900 23	3						Warning: No false call analysis.	Warning: Initial results listed.	0.11	0.135	0.348	1.000 ET
2219 AI T-87/w2319											0.4950	0.308	0									0.2240 8	3						anarysis. Warning: No false call analysis.		0.185	0.23		1.000 ET
																													Warning: No false call	MLE Divergence Warning: Initial results				
2219 AI T-87/w2319	weld flush TF	CAE002(3)L.xls	6/4/15 8:11 PN	CASE 1#	0.2670	0.0850	0.9050				0.4950	0.381	29								0.1	.2530 29	9								0.2	0.23	0.267	1.000 ET
0040 417			0/4/								0.405											1000							Warning: No false call	listed. MLE Divergence Warning: Initial results listed.	0.005			1.000 ET
2219 AI T-87/w2319	weld flush TF	CAE003(3)L.xls	6/4/15 8:11 PN		0.2350	0.0570	0.9050				0.4950	0.308	U								0.1	0.1380 26	5						analysis. Warning: No false call	isted.	0.005		0.235	
STEEL 4340	plate	B1001AD.XLS										28					0.2100	28 0.4200			+-	_							analysis. Warning: No false call		$ \rightarrow $			MT
STEEL 4340	plate	B1001AL.XLS	6/4/15 8:14 PN							0.2340		28				-	1.6030	28 4.8060											analysis. Warning: No false call		0.695	_		MT
STEEL 4340	plate	B1001BD.XLS	6/4/15 8:15 PN						0.0380		0.2100	28					0.2100	28 0.4200				_							analysis. Warning: No false call		+			MT
STEEL 4340	plate	B1001BL.XLS	6/4/15 8:17 PN					0.8719	0.0520	0.2340		28					1.2270	28 4.8060	29		4								Warning: No faise call analysis. Warning: No faise call		0.4			MT
			1	Jacob a								23 0.117		1																				0.978 MT
STEEL 4340	plate	B1001CD.XLS	6/4/15 8:19 PN	CASE 2	0.0600	0.0330	0.9001				0.2100	23 0.117	3 14																analysis. Warning: No false call					1.000 MT

			Analysis		Xpod CLASS-	Xpod CLASS-	Best_LC	Best_LCL CLASS-	Best_LCL CLASS-											Fals	e Call F	alse Call	False Call	False Call	Length or Area per Inspection (in or in^2) =	False Call				NTIAC 90% N POD occurs of at (inch) F	TIAC 90/95 occurs at	POH	H or D @ METH
MATERIAL	STRUCTURE		Date/Time	1	LENGTH	WIDTH LCL			LENGTH			#Xs Xs	# Xici	Xici#X	-		2XL# Xss	Xss # X	(podopt)	podopt # UCL	. R	Rate	Length (in)	Area (in^2)	(in or in^2) =	Opportunities	s False Calls	False Call Flag	MLE flag	at (inch) F	OD (inch)	XP Xpo	1
STEEL 4340	plate	B1003AD.XLS	6/4/15 8:20 PN				0.8514	0.0060	0.0603		28			_	0.1563	26 0.4200	29							_				Warning: No false call analysis.					MT
STEEL 4340	plate	B1003AL.XLS	6/4/15 8:22 PN	CASE 2	0.2340	0.0590 0.900	01			2.4030	24 1.6030	28																analysis. Warning: No false call analysis.		0.26	0.465		1.000 MT
STEEL 4340	plate	B1003BD.XLS	6/4/15 8:23 PM	CASE 6			0.8813	0.0120	0.0663	0.2100	28				0.2100	28 0.4200	29											Warning: No false call analysis.					MT
		B1003BL.XLS																										Warning: No false call	MLE Divergence Warning: Initial results				1.000 MT
STEEL 4340	plate		6/4/15 8:25 PM		0.2340	0.0590 0.900					27 1.6030	28																analysis. Warning: No false call analysis.	listed.	0.11	0.135		
STEEL 4340	plate	B1003CD.XLS					0.8813	0.0120	0.0663		28	-		-	0.1563	23 0.4200	29											analysis. Warning: No false call analysis.		0.045			MT
STEEL 4340	plate	B1003CL.XLS	6/4/15 8:27 PM		0.2340	0.0590 0.900				2.4030	1.6030			_										_				analysis. Warning: No false call		0.12	0.235	0.234	1.000 MT
SS AMS 355	hole	B2001.XLS	6/4/15 8:29 PN	CASE 6			0.8190	0.0750	0.1752	0.2575	24				0.2575	24 0.5150	29													0.115	0.175		MT
SS AMS 355	hole	B2002.XLS	6/4/15 8:30 PN	CASE 1#	0.1031	0.0540 0.900	01			0.2575	0.1929								0.1004	2								analysis. Warning: No false call analysis.		0.04	0.065	0.10314	1.000 MT
							0.3684								0.0634													Warning: No false call	MLE Divergence Warning: Initial results	0.045	0.07		MT
SS AMS 355	hole	B2003.XLS	6/4/15 8:31 PN	CASE 5			0.3684	0.0010	0.0512	0.2575	28				0.0634	27												analysis.	listed. MLE Divergence	0.045	0.07		MT
SS AMS 355	hole	B30011.XLS	6/4/15 8:32 PM	CASE 7			0.8813	0.0190	0.0866							0.1803	29											Warning: No false call analysis.	Warning: Initial results listed.	0.24			MT
SS AMS 355	hole	B30012.XLS	6/4/15 8:34 PN	CASE 4			0.8855		0.0902	0.0902	4		0.09	n2 4	0.0902	0.1803	29											Warning: No false call analysis.		0.075	0.095		MT
SS AMS 355	hele	B4001L.XLS	6/4/15 8:36 PM				0.4729		0.0623		20		0.00	-	0.0821	26	2.5											Warning: No fake call		0.175	0.26		MT
2219 AI T-87	noie						0.8609		0.2610	0.3425	28				0.0021	20												analysis. Warning: No false call			0.63		PT
	plate	C1001AL.XLS														1.9580	29											analysis. Warning: No false call		0.395			
2219 AI T-87	plate	C1001BL.XLS	6/4/15 8:40 PN				0.8368	0.0850		0.9790	28			+ +	0.6100	22 1.9580	29											analysis. Warning: No false call analysis.		0.44	0.695		PT
2219 AI T-87	plate	C1001CL.XLS				0.2000 0.917				0.9790	0.7100								0.5370	29								analysis. Warning: No false call		0.315	0.61		1.000 PT
2219 AI T-87	plate	C1002AL.XLS	6/4/15 8:45 PN							0.9790	0.5430																	analysis. Warning: No false call		0.09	0.115		1.000 PT
2219 AI T-87	plate	C1002BL.XLS	6/4/15 8:47 PN	CASE 1*	0.1080	0.0310 0.900	01			0.9790	0.3420																	waming: No taise call analysis.		0.08	0.105	0.261	0.967 PT
0040 417						0.0546																						Warning: No false call	MLE Divergence Warning: Initial results listed.				1.000
2219 AI T-87	plate	C1002CL.XLS	6/4/15 8:49 PN	CASE 1*	0.2980	0.0510 0.900	1			0.9790	0.5430																_	analysis.	listed. MLE Divergence	0.11	0.145	0.508	1.000 PT
2219 AI T-87	plate	C1003AL.XLS	6/4/15 8:51 PM	CASE 1*	0.0830	0.0080 0.900	01			0.6100	0.2620																	Warning: No false call analysis.	MLE Divergence Warning: Initial results listed.	0.02	0.035	0.086	1.000 PT
2219 AI T-87	plate	C1003BL.XLS								0.6100	0.2620	10																Warning: No false call analysis		0.02	0.095		1.000 PT
2219 AI T-87	plate	C1003CL.XLS				0.0130 0.900				0.6100	0.2620																	Warning: No false call		0.06	0.03		0.978 PT
2219 ALT-87	plate	C2002AL.XLS			0.0800	0.0130 0.900	0.7066	0.0520		0.6100	0.2620					1.1000												analysis. Warning: No false call analysis.		0.06	0.07	0.066	0.978 PT
	plate							0.0520	0.5300							1.1000	29											Warning: No false call					
2219 AI T-87	plate	C2002BL.XLS				0.0600 0.900				0.5500	0.5380							_	0.2880	28								analysis. Warning: No false call analysis.		0.095	0.17		1.000 PT
2219 AI T-87	plate	C2002CL.XLS	6/4/15 9:03 PM		0.4740	0.2000 0.900				0.5500	0 0.4960																			0.22	0.385		1.000 PT
Ti 6Al4V	plate	C3001AL.XLS					0.7942	0.0180	0.1940	0.4070	28				0.3000	27 0.8140	29											Warning: No false call analysis.		0.705			PT
Ti 6Al4V	plate	C3001BL.XLS	6/4/15 9:06 PN	CASE 2	0.1950	0.0540 0.900	01			0.4070	0.3000	17																Warning: No false call analysis.		0.12	0.175	0.32	1.000 PT
Ti 6Al4V	plate	C3001CL.XLS	6/4/15 9:07 PM	CASE 4			0.8768	0.0850	0.3250	0.4070	23		0.32	50 6	0.3240	7												Warning: No false call analysis.		0.14	0.325		PT
Ti 6Al4V	plate	C3002AL.XLS	6/4/15 9:08 PN	CASE 6			0.8868	0.0960	0.2120	0.4070	18				0.3450	10 0.8140	29											analysis. Warning: No false call analysis.		0.13	0.32		PT
Ti 6Al4V	niate	C3002BL.XLS			0 1900	0.0530 0.900				0.4070	0.3000	17																Warning: No false call analysis.		0.12	0.165	0.315	1.000 PT
																													MLE Divergence Warning: Initial results				
Ti 6Al4V	plate	C3002CL.XLS	6/4/15 9:11 PN	CASE 1#	0.2160	0.0340 0.900	01			0.4070	0.2650								0.1300	15								analysis.	Warning: Initial results listed.	0.08	0.1	0.216	1.000 PT
Ti 6Al4V	plate	C3003AL.XLS	6/4/15 9:12 PM	CASE 7			0.8965	0.1000	0.3250							0.8140	29											Warning: No false call analysis.		0.185	0.465		PT
Ti 6Al4V	plate	C3003BL.XLS	6/4/15 9:13 PN	CASE 2	0.2620	0.0520 0.905	50			0.4070	58 0.3000	18																Warning: No false call analysis.		0.155	0.295		1.000 PT
Ti 6Al4V	plate	C3003CL.XLS	6/4/15 9:14 PM	CASE 2	0.2620	0.0520 0.905	50			0.4070	58 0.3000	18																Warning: No false call analysis.		0.155	0.305		1.000 PT
SS AMS 355	hole	C400011.XLS						0.0730	0.1752	0.2575	24				0.2575	24 0.5150	29											Warning: No false call analysis.		0.13	0.195		PT
SS AMS 355	hala	C400012.XLS					0.5493		0.0776		~				0.0858	0.0100	2.5											Warning: No false call analysis.		0.085	0.12		PT
	noie	C400012.XLS	6/4/15 9:16 PM				0.5493		0.0669		20				0.0858	21												anarysis. Warning: No false call analysis.		0.085	0.12		PT
SS AMS 355	hole										28					27												analysis. Warning: No false call		0.1			
SS AMS 355	hole	C400014.XLS					0.8368		0.1929		19		0.19		0.1929			_										analysis. Warning: No false call		0.135	0.225		PT
SS AMS 355	hole	C500011.XLS	6/4/15 9:20 PN				0.8855		0.0902		4	_	0.09	_	0.0902	0.1803	29	_										analysis. Warning: No false call analysis.		0.085	0.11		PT
SS AMS 355	hole	C500012.XLS					0.8855	0.0230	0.0902	0.0902	4		0.09	02 4	0.0902	0.1803	29											analysis.		0.085	0.105		PT
SS AMS 355	hole	C500014.XLS	6/4/15 9:24 PN	CASE 4			0.8855	0.0230	0.0902	0.0902	4		0.09	02 4	0.0902	0.1803	29							_				Warning: No false call analysis.		0.095	0.12		PT
SS AMS 355	hole	C500016.XLS	6/4/15 9:26 PM	CASE 7			0.2713	0.0150	0.0606							0.1315	29											Warning: No false call analysis.		0.095			PT
STEEL 4340	plate	C6001AL.XLS	6/4/15 9:27 PM	CASE 6			0.7942	0.0100	0.1153	2.4030	28				1.6030	28 4.8060	29											Warning: No false call analysis.					PT
STEEL 4340	plate	C6001BL.XLS	6/4/15 9:30 PM	CASE 6			0.7942	0.0100	0.1153	2.4030	28				1.6030	28 4.8060	29	T	Τ		Τ							Warning: No false call analysis.					PT
STEEL 4340	plate	C6001CL.XLS						0.0100			28				1.6030	28 4.8060	29											Warning: No false call analysis.					PT
STEEL 4340	plate	C6002AL.XLS			0.2500	0.0700 0.900					26 1.6030	28																Warning: No false call analysis.		0.1			1.000 PT
01EEL 4340	ale	COUUZAL.ALS	0re/10 9:33 PN	onot 2	0.2000	0.0700 0.900				2.4030	1.0030																		MLE Divergence Warning: Initial results	0.1			7.000 PI
STEEL 4340	plate	C6002BL.XLS	6/4/15 9:35 PM	CASE 1*	0.0960	0.0400 0.900	01			2.4030	1.6030																	Warning: No false call analysis.	listed.	0.06	0.08	0.18	1.000 PT
																												Warning: No false call	MLE Divergence Warning: Initial results				
STEEL 4340	plate	C6002CL.XLS				0.0620 0.905				2.4030	1.6030								0.1940	11						-		analysis. Warning: No false call	listed.	0.085	0.105		1.000 PT
STEEL 4340	plate	C6003AL.XLS	6/4/15 9:37 PN		0.2480	0.0680 0.900					27 1.6030	28																analysis		0.265	0.6		1.000 PT
STEEL 4340	plate	C6003BL.XLS	6/4/15 9:38 PN	CASE 2	0.2480	0.0680 0.900	01			2.4030	24 1.6030	28												_				Warning: No false call analysis. Warning: No false call analysis.		0.155	0.255		1.000 PT
STEEL 4340	plate	C6003CL.XLS	6/4/15 9:40 PM	CASE 1*	0.2340	0.0590 0.900	01			2.4030	1.6030																	warning: No false call analysis.		0.11	0.175	0.234	1.000 PT
																												Warning: No false call	MLE Divergence Warning: Initial results listed.				
STEEL 4340	hole	C7001L.XLS	6/4/15 9:41 PN	CASE 5			0.5493	0.0040	0.0738	0.3425	28				0.0881	28							_	_						0.215	0.36		PT
STEEL 4340	bole	C7002L.XLS	6/4/15 9:43 PM	CASE 4			0.8444	0.0970	0.2131	0.3425	27		0.21	31 11	0.1992	13												Warning: No false call analysis	MLE Divergence Warning: Initial results listed	0.35	0.58		PT
			014 TO 0.43 FR				0.0444	0.0070	0.2131				0.21			10													MLE Divergence Warning: Initial results	0.00	0.00		
STEEL 4340	hole	C7003L.XLS	6/4/15 9:45 PM	CASE 4			0.7791	0.0930	0.2512	0.3425	27		0.25	12 17	0.2512													Warning: No false call analysis.	warning: Initial results listed.	0.3	0.505		PT
2219 AI T-87	stringer panel	C8001(3)D.xls	6/4/15 9:47 PM	CASE 2	0.0530	0.0020 0.905	50			0.0950	17 0.0800	26			T			T	Т		Τ							Warning: No false call analysis.		0.075	0.12		1.000 PT
2219 AI T-87	stringer panel	C8001(3)L.xls	6/4/15 9:49 PM			0.0050 0.905				0.6840	23 0.5790	17																Warning: No false call analysis.		0.445			1.000 PT
2219 AI T-87		C8002(3)D.xls			0.2100	0.500	0.8739	0.0030								0.1900	29											Warning: No false call analysis		0.08			PT
					0.000	0.0680 0.905		0.0030		0.0040	26 0.4760					0.1900	20											warning: No false call		0.395			1.000 PT
2219 AI T-87	stringer panel	C8002(3)L.xls	6/4/15 9:51 PN	CASE 2	0.2620	0.0680 0.905	50			0.6840	26 0.4760	23														1		analysis.		0.395			1.000 PT

	0% NTIAC 90/95 occurs at POD (inch) XP	NTIAC 90% POD occurs			False Call	Length or Area per Inspection	False Call	False Call	False Call	False Call													SL.	LCL Best_LCI S- CLASS-	Best_LC CLASS-	Best_LC	Best	Xpod Xpod CLASS- CLASS-	Analysis		
	1 1	1 1	MLE flag	False Calls False Call Flag Warning: No false call	Opportunities	(in or in^2) =	Area (in^2)	Length (in)	Rate	UCL	Xpodopt #		Xss	(L#Xss	2XL 2X	Xpoh #	(Icl # Xpoh	Xici X	Xs #	Xs				I LENGTH	WIDTH	L	L				
				analysis. Warning: No false call							29												-								
	0.405 0.665	0.405		analysis.							20	0.2910		_							0.6120	6840									
				artarysis.										29								_									
	_	ļ]		analysis.										29								_									
														29																	
	.005	0.005												29	2.5420	0 23	1.210							0260 0.708	0.02	0.8931					
				analysis. Warning: No faire call																3	0.4930 23						60			CA001(3)L.xls	87/w2319 weld LFC
				analysis.										29	2.3760	0 26	1.188							0060 0.100	0.00	0.7206					
																														CA003(3)L.xls	
	0.055 0.09	0.055		analysis.																	0.5190	4350	1.				60	1* 0.1040 0.0430 0.905	6/4/15 10:07 PMCASE 1*	CB001(3)L.xls	87/w2319 weld TFC
	0.15 0.195	0.15	MLE Divergence Warning: Initial results licetud	Warning: No false call								0.205									0.0020	4250					= 0	1# 0.2060 0.0220 0.005	8/4/15 10:09 DMC ASE 14	CR002(2)1 via	7/w0210 wold TEC
			Land.									0.250															-				
	2.21 0.345	0.21	MLE Divergence	anarysis.																	0.5520	4330					00	0.3000 0.0330 0.900	0/4/13 10:05 PM CASE 1	CB003(3)L.XIS	Briw2315 Weld IFC
	.005 0.075	0.005																		0	0.6160 20	5620 26	1.3				60	2 0.0830 0.0230 0.905	6/4/15 10:10 PM CASE 2	CC001(3)L.xis	87/w2319 weld flush L
			MLE Divergence Warning: Initial results	Warning: No false call																											
	3.05 0.07	0.05																			1.1190	5620	1.0				50	1 0.0830 0.0230 0.905	6/4/15 10:19 PM CASE 1*	CC002(3)L.xis	87/w2319 weld flush L
	0.04 0.065	0.04	isnd.	analysis.																	1.1190	5620	1.3				60	1* 0.0830 0.0230 0.905	6/4/15 10:24 PM CASE 1*	CC003(3)L.xls	87/w2319 weld flush L
	0.005		MLE Divergence Warning: Initial results	Warning: No false call																	0.0000	1050						44 0.0000	00000	000001	
Desc Desc Desc Desc De			Isted.	analysis. Warning: No false call							26	0.138								-	0.3080										
Number Number Number Number Number Number <td></td> <td></td> <td></td> <td>analysis.</td> <td></td>				analysis.																											
Norma Norma <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>8 0.308</td><td>0.3080</td><td></td><td></td><td></td><td></td><td></td><td>0830 0.308</td><td>3 0.08</td><td>0.8666</td><td></td><td></td><td></td><td></td><td></td></th<>																0	8 0.308	0.3080						0830 0.308	3 0.08	0.8666					
Desc Desc Desc Desc Desc Des	0.03 0.04	0.03	MLE Divergence	analysis.																4	0.0490 14	0690 43	0.0				01	2 0.0240 0.0060 0.900	6/4/15 10:31 PM CASE 2	CE011(6)D.xls	188 AMS 5 plate
Norm Norm Norm Norm No	.115 0.155	0.115																		в	0.2280 16	3500 44	0.:				01	2 0.1300 0.0190 0.900	6/4/15 10:32 PM CASE 2	CE011(6)L.xls	188 AMS 5 plate
Subset of the state o			MLE Divergence Warning: Initial results	Warning: No false call																											
			listed.	analysis.																											
DMD M M <td>0.03 0.04</td> <td>0.03</td> <td></td> <td>analysis. Warning: No false call</td> <td></td> <td>0.1370</td> <td>3500</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.03 0.04	0.03		analysis. Warning: No false call																	0.1370	3500									
Norma Mark Mark Mark Mark														29								_									
Division jum Control wire Control wire Contro wire Contro wire <td></td> <td></td> <td></td> <td>analysis</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>29</td> <td>0.7000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td>0010 0.121</td> <td>4 0.00</td> <td>0.3684</td> <td>-</td> <td></td> <td></td> <td></td> <td></td>				analysis										29	0.7000							_	_	0010 0.121	4 0.00	0.3684	-				
b b< b b< b< <td></td> <td></td> <td></td> <td>analysis.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>				analysis.										_																	
NAME Mark Mark	0.065 0.075	0.065		analysis. Warning: No false call										_							0.2500	3500									
Distribution Distribution<				analysis										29								_									
MMC 10AM MMC 10AM MMC 10AM MMC 10AM MMC 10AM MMC 10AM MMC 10A				anarysis.										29	0.7000								700	0180 0.170	0.01	0.6070					
NUME 16 MARG CORRULA				analysis.																9		0690	0.0							CE032(6)D.xls	88 AMS 5 plate
MANE 14 Mark Operation Operation <	0.12 0.15	0.12		analysis.							29	0.258									0.2850	3500									
NUME 1000 2000 OUTO 1000 000 OUTO 1000 0000 OUTO 1000 000 OUTO 100				analysis.										29	0.1380								10	0.041	0.00	0.4729	0			CE041(6)D.xls	88 AMS 5 plate
NMME Add Add <td></td> <td></td> <td></td> <td>analysis.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>29</td> <td>0.7000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>350</td> <td>0200 0.185</td> <td>3 0.02</td> <td>0.5293</td> <td></td> <td></td> <td></td> <td></td> <td></td>				analysis.										29	0.7000								350	0200 0.185	3 0.02	0.5293					
MANES 104405 Color Color Color Color				analysis.																											
NUMERS landes Columination NUMERS landes Columination NUMERS landes Columination Columination <																					0.3010	3500								CE042(6)L.xls	
NAMES Description Outron Outron Outron Outron Outr				analysis.										29													_			CE051(6)D.xls	
NAMES 188.06 Column Colum Co	.315 0.575	0.315		analysis.										29	0.7000	0 22	0.268					3500 27	10 0.:	0.141	0.00	0.8768	0	6	6/4/15 11:07 PM CASE 6	CE051(6)L.xls	188 AMS 5 plate
NYNES 188 MS Gencomic al 64/1511278 Gencomic al				analysis.																										CE052(6)D.xls	
NAMES 188 AMS Gebel Prilos 6447 112 PM CASE 1 0.000 0.001 0.000 2 0 0 0 0 </td <td></td> <td></td> <td></td> <td>analysis.</td> <td></td> <td>CE052(6)L.xls</td> <td>188 AMS 5 plate</td>				analysis.																										CE052(6)L.xls	188 AMS 5 plate
NAMES Flam CORONICIA OUTONICIA				analysis.																-	0.0660 29	0690 33									
NAMES 188 AMS Colda (Lobe) Outrol (Lobe) Outro (Lobe) Outrol (Lobe) Outrol (Lo				analysis.										29	0.7000									0.246	0.09	0.8829					
AVARDES 10.4.8.4 COPUND 6 COPUND 5 COPUND 5 COPUND 5 COPUND 5		0.015																													188 AMS 5 plate
NAMES Flage OUTONICS OUTONICS <	0.00																				0.2560	3500	0.3				01			CE062(6)L.xls	188 AMS 5 plate
MAXNES 188 AMS Subs Cold Projector	0.07 0.105	0.07		analysis.										29	0.1380								610	0.061	0.00	0.8368	0			CE071(6)D.xls	188 AMS 5 plate
HANNES 188 MAS Georgian MA 64/15 11:2 PM (ASE 1) 0.000 0.005				analysis.										29	0.7000	0 28	0.347							0.248	0.00	0.7791	0			CE071(6)L.xls	188 AMS 5 plate
NAMES 188 ANS Distribution Outring				opolygia																										CE072(6)D.xls	188 AMS 5 plate
HANNES 188 AMS glade CEGN (10,0) CHI 112 (10,0) CH	0.075 0.09	0.075		analysis.																	0.2500	3500	0.3				60	1* 0.1410 0.0110 0.905	6/4/15 11:29 PM CASE 1*	CE072(6)L.xls	88 AMS 5 plate
AVANCE Description Option Description				analysis.										29	0.1380								580	0.058	0.00	0.2713	0.	7	6/4/15 11:32 PM CASE 7	CE081(6)D.xls	88 AMS 5 plate
219 A 1747 plate 0100 00.X.S 64/15 1138 PM CASE 1 ¹ 0.008 0.006 0.078 0.178				analysis.										29	0.7000								150	0.245	0.00	0.2486	0.	7	6/4/15 11:33 PM CASE 7	CE081(6)L.xls	188 AMS 5 plate
2219 AT-77 plate 01010LX.S 64/15 11:40 PM CASE 1* 0.050 0.078 0.0780 0.0780 0.0780 0.0780 0.0780 0.0780 0.0780 0.0780 0.0780 0.078 0.0780	0.025 0.035	0.025		analysis																	0.1110	1780	0.1				60	1* 0.0380 0.0040 0.905	6/4/15 11:36 PM CASE 1*	D1001AD.XLS	87 plate
2124 A.T.7 jake 01060.X.5 64/151140 PMCASE 1 0.000 0.895 0.178 0.179 0 0 0 0 0 0.000 <t< td=""><td>0.09 0.105</td><td>0.09</td><td></td><td>analysis.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.5230</td><td>9790</td><td>0.9</td><td></td><td></td><td></td><td>01</td><td>1* 0.1530 0.0360 0.900</td><td>6/4/15 11:38 PM CASE 1*</td><td>D1001AL.XLS</td><td>87 plate</td></t<>	0.09 0.105	0.09		analysis.																	0.5230	9790	0.9				01	1* 0.1530 0.0360 0.900	6/4/15 11:38 PM CASE 1*	D1001AL.XLS	87 plate
219 AIT-57 plate 01018LX3 640151142 PM CASE IV 0.038 0.000 0.076 0.478 0.478 0.078 <	0.03 0.035	0.03		analysis.																	0.1190	1780	0.1				60	1* 0.0460 0.0090 0.905	6/4/15 11:40 PM CASE 1*	D1001BD.XLS	87 plate
219 AT 77 blw D107CD.23 64/151144/PACASE 1/2 0.008 0.006 0.955 0 0 0.178 0 0.178 0 0.178 0 0.178 0 0.178 0 0.178 0 0.178 0 0.007 29 0 0 0 0.007 29 0 0 0 0 0 0 0.007 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.095 0.115	0.095		analysis.																	0.3450	9790	0.1				01	1* 0.1310 0.0330 0.900	6/4/15 11:42 PM CASE 1*	D1001BL.XLS	
	0.025 0.03	0.025									29	0.0375										1780	0.1								
2219 AI T-87 plate D1001CLXLS 6/4/15 11:45 PM CASE 1# 0.1530 0.0360 0.9001 0.5230 0.5230 0.090 0.105				Warning: No false call analysis.							29										0.5230	9790	0.1								
2129 AT 57 plan 01020A XLS 64/151148 PM CASE 6 U 6 0.8673 0.08 0.44 0.78 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.06		Warning: No false call analysis.										29	0.3560	0 28	0.149							0.044	3 0.00	0.8673					
				Warning: No false call analysis.																	0.4890		_								
Carter and an analysis Control and analysis Control analysis				Warning: No false call analysis																1											
Altra 1-9 pass DiscolarList 6 Quark 1-10				Warning: No false call analysis																											
2219 A1-67 paine D1000ELLS 6x191152_FM264E 0 4050 00400 0000 - 0.0376 27 0466 24	0.250	0.125		Warning: No false call																	0.1170	1780	0.1								

			Analysis		Xpod CLASS-	Xpod CLASS-	Best	LLC CLASS- WIDTH	Best_LCL CLASS-							False Call	False Call	Faise Call	False Call	Length or Area per Inspection (in or in^2) =	False Call				NTIAC 90% POD occurs	NTIAC 90/95 occurs at POD (inch) XP	PC	DH or DD @ METHO
MATERIAL	STRUCTURE		Date/Time		LENGTH			WIDTH		Xm#Xs Xs#Xici	Xici #	Xpoh Xpol	h#2XL 2XL	.# Xss	Xss # Xpodopt	Xpodopt # UCL	Rate	Length (in)	Area (in^2)	(in or in^2) =	Opportunities	False Calls	False Call Flag	MLE flag	at (inch)	POD (inch) XP	~	od D
2219 AI T-87	plate	D1002CL.XLS	6/4/15 11:55 PN		0.3290				0.9790 0.5430														Warning: No false call analysis. Warning: No false call		0.09	1		0.978 UT
2219 AI T-87	plate	D1003AD.XLS	6/4/15 11:57 PN	CASE 1#	0.0380	0.0040	0.9050		0.1780 0.1110						0.0375	29							analysis.	_	0.015	0.02	0.038	1.000 UT
2219 AI T-87	plate	D1003AL.XLS	6/4/15 11:59 PM						0.6100 0.2620						0.1015	29							Warning: No false call analysis. Warning: No false call	_	0.055		0.102	1.000 UT
2219 AI T-87	plate	D1003BD.XLS	6/5/15 12:02 AM	CASE 1*	0.0350	0.0030	0.9077		0.1780 0.1100														analysis.	_	0.02	0.025	0.035	1.000 UT
2219 AI T-87		D1003BL.XLS	6/5/15 12:05 AM		0.0830	0.0080	0.0004		0.6100 0.2620														Warning: No false call	MLE Divergence Warning: Initial results	0.005	0.045	0.083	1.000 UT
2219 AI T-87 2219 AI T-87	plate	D1003BL.XLS							0.1780 27 0.1100														warning: No false call analysis.	IONU.	0.035	0.045	0.083	0.967 UT
2219 AI 1-87	plate	D1003CD.XLS	6/5/15 12:10 AM	CASE 2	0.0460	0.0130	0.9001		0.1780 27 0.1100	13														MLE Divergence Warning: Initial results	0.035	0.05		0.967 01
2219 AI T-87	plate	D1003CL.XLS	6/5/15 12:12 AM	CASE 2	0.2900	0.0490	0.9001		0.6100 18 0.3800	17													Warning: No false call analysis.	Warning: Initial results listed.	0.095	0.14		1.000 UT
2219 AI T-87	plate	D2002AD.XLS	6/5/15 12:13 AM	CASE 1*	0.0360	0.0150	0.9077		0.1440 0.1150														Warning: No false call analysis.		0.025	0.04	0.094	1.000 UT
2219 AI T-87	plate	D2002AL.XLS	6/5/15 12:14 AM	CASE 1#	0.5340	0.0600	0.9001		0.5500 0.5380						0.2880	28							Warning: No false call analysis.		0.105	0.18	0.534	1.000 UT
2219 AI T-87	plate	D2002BD.XLS	6/5/15 12:15 AM		0.0360				0.1440 0.1150														anarysis. Warning: No false call analysis.		0.03		0.094	1.000 UT
2219 AI T-87	plate	D2002BL.XLS			0.5340	0.0600	0.9001		0.5500 0.5380						0.2880	28							Warning: No false call analysis.		0.11		0.534	1.000 UT
2219 AI T-87	plate	D2002CD.XLS							0.1440 0.1150														Warning: No false call		0.02		0.046	1.000 UT
2219 AI T-87	niste	D2002CL.XLS	6/5/15 12:17 AM						0.5500 0.5380						0.4260	23							Warning: No false call		0.085			1.000 UT
Ti 6Al4V	niste	D3001AL.XLS	6/5/15 12:18 AM						0.4070 0.2650						0.4200								Warning: No false call		0.185		0.255	1.000 UT
Ti 6Al4V	plate	D3001RL.XLS							0.4070 0.3450						0.2875	20							Warning: No false call		0.235		0.255	1.000 UT
Ti 6Al4V	plate	D3001BL.XLS	6/5/15 12:20 AM						0.4070 0.3550						0.2485	20							analysis. Warning: No false call		0.14		0.25	1.000 UT
	plate				0.2300	0.0450							0.8140	20	0.2465	20							analysis. Warning: No false call		0.14		0.20	1.000 UT
Ti 6Al4V	pidte	D3003AL.XLS	6/5/15 12:21 AM	worst /			0.	.8444 0.025	0.2350				0.6140	29									anarysis.	MLE Divergence Warning: Initial results	0.265	0.555		01
Ti 6Al4V	plate	D3003BL.XLS	6/5/15 12:22 AM	CASE 1#	0.2160	0.0340	0.9001		0.4070 0.2650						0.1760	15							Warning: No false call analysis.	Warning: Initial results listed.	0.115	0.14	0.216	1.000 UT
Ti 6Al4V	plate	D3003CL.XLS	6/5/15 12:23 AM	CASE 1*	0.2160	0.0340	0.9001		0.4070 0.2650														Warning: No false call analysis.		0.135	0.185	0.216	1.000 UT
SS AMS 355	hole	D4004.XLS	6/5/15 12:24 AM	CASE 5			0.	.4729 0.002	0.0512 0.2575 28			0.0764	28										Warning: No false call analysis.		0.075	0.095		UT
SS AMS 355	hole	D5004.XLS	6/5/15 12:25 AM	CASE 4			0.	.8855 0.023	0.0902 0.0902 4	0.0902	2 4	0.0902	0.1803	29									Warning: No false call analysis.		0.245	0.51		UT
STEEL 4340	plate	D6001AL.XLS	6/5/15 12:28 AM					.8931 0.080				1.6030	28 4.8060	29									Warning: No false call		0.4			UT
STEEL 4340	plate	D6001BL.XLS			0.2500	0.0700			2.4030 27 1.6030	28													anarysis. Warning: No false call analysis.		0.315			1.000 UT
STEEL 4340	plate	D6001CL.XLS	6/5/15 12:31 AM					.8931 0.080				1.6030	28 4.8060	29									Warning: No false call analysis.		0.33			UT
STEEL 4340	niste	D6003AL.XLS	6/5/15 12:33 AM					.8368 0.013				1.6030	28 4.8060	29									Warning: No false call		0.575			UT
STEEL 4340	niste	D6003BL XLS	6/5/15 12:35 AM					.8813 0.068				1.6030	28 4.8060	29									Warning: No false call		0.43			UT
STEEL 4340	niste	D6003CL.XLS	6/5/15 12:37 AM					.8813 0.068				1.6030	28 4.8060	29									Warning: No false call		0.45			UT
SS AMS 355	holo	D7001L.XLS	6/5/15 12:39 AM		0.0922	0.0220			0.3425 0.1694			1.0000	20 4.0000	2.5	0.0738								Warning: No false call		0.115	1	00222	1.000 UT
SS AMS 355	hala	D7002L.XLS	6/5/15 12:40 AM						0.3425 0.1694						0.0659								Warning: No false call analysis.		0.105		.06626	1.000 UT
SS AMS 355	hole	D7002L.XLS	6/5/15 12:40 AM						0.3425 0.1694						0.0659								Warning: No false call analysis.		0.105		08333	1.000 UT
	nole	D8001(3)D.xls			0.0833	0.0220		.8666 0.002				0.0730	26 0.1900		0.0782	4							Warning: No false call		0.065		.06333	1.000 UT
2219 AI T-87		-				0.0040		.8666 0.002	0.0290 0.0950 26			0.0730	26 0.1900	29									analysis. Warning: No false call	-	0.055			
2219 AI T-87	stringer panel	D8001(3)L.xls	6/5/15 12:44 AM																				analysis. Warning: No faise call analysis.					1.000 UT
2219 AI T-87	stringer panel	D8002(3)D.xls	6/5/15 12:46 AM						0.0950 0.0570														analysis. Warning: No false call analysis.	-	0.045		0.057	1.000 UT
2219 AI T-87	stringer panel	D8002(3)L.xls	6/5/15 12:48 AM		0.2000				0.6840 0.5630					-									analysis. Warning: No false call	-	0.22	0.200	0.542	1.000 UT
2219 AI T-87	stringer panel	D8003(3)D.xls	6/5/15 12:50 AM		0.0420				0.0950 2 0.0650														analysis. Warning: No faice call	-	0.06	1		1.000 UT
2219 AI T-87	stringer panel	D8003(3)L.xls	6/5/15 12:51 AM		0.2760	0.0050			0.6840 13 0.5690	20													analysis. Warning: No false call analysis.	-	0.37	0.46		1.000 UT
2219 AI T-87/w2319	weld LOP	D9001(3)D.xls	6/5/15 12:52 AM					.6070 0.001					0.3200	29									analysis. Warning: No false call	_				UT
2219 AI T-87/w2319	weld LOP	D9001(3)L.xls	6/5/15 12:54 AM					.6070 0.001					2.5420	29									analysis. Warning: No false call	_				UT
2219 AI T-87/w2319		D9002(3)D.xls	6/5/15 12:57 AM					.6070 0.001					0.3200	29									analysis.	_				UT
2219 AI T-87/w2319	weld LOP	D9002(3)L.xls	6/5/15 12:59 AM	CASE 7			0.	.7169 0.004	0.3410				2.5420	29					_				Warning: No false call analysis.	MI E Diversion	0.005	i		UT
2219 AI T-87/w2319	weld LOP	D9003(3)D.xls	6/5/15 1:02 AM	CASE 1*	0.0630	0.0020	0.9050		0.1600 0.1050														Warning: No false call analysis.	MLE Divergence Warning: Initial results listed.	0.005	0.015	0.104	1.000 UT
									0.1000														Warning: No false call	MLE Divergence Warning: Initial results	0.005	0.010		
2219 AI T-87/w2319	weld LOP	D9003(3)L.xls	6/5/15 1:19 AM		0.6880	0.0170	0.9050		1.2710 0.8460														analysis. Warning: No false call	listed.	0.11	0.16	1.158	1.000 UT
2219 Al T-87/w2319	weld LOP	D9004(3)D.xls	6/5/15 1:32 AM	CASE 7			0.	.8444 0.001	0.0440				0.3200	29									analurin					UT
2219 Al T-87/w2319	weld LOP	D9004(3)L.xls	6/5/15 1:33 AM					.7791 0.001					1.5000	29					_				Warning: No false call analysis.					UT
2219 AI T-87/w2319	weld LOP	D9005(3)D.xls	6/5/15 1:36 AM	CASE 7				.8153 0.003					0.3200	29									Warning: No false call analysis.					UT
2219 AI T-87/w2319	weld LOP	D9005(3)L.xls	6/5/15 1:38 AM	CASE 6			0.	.7169 0.004	0.3410 1.2710 26			1.2450	26 2.5420	29									Warning: No false call analysis.					UT
2219 AI T-87/w2319		D9006(3)D.xls	6/5/15 1:40 AM	CASE (0.0970	0.0010	0.0050		0.1600 0.1280						0.0940	20							Warning: No false call	MLE Divergence Warning: Initial results	0.015	0.00	0.097	1.000 UT
2219 At 1-87/w2319	weld LOP	Deuto(3)D.xls	6/5/15 1:40 AM	ICASE 1#	0.0970	0.0010	0.9050		0.1600 0.1280						0.0940	20							analySiS.	listed. MLE Divergence Warning: Initial results	0.015	0.02	0.097	1.000 01
2219 AI T-87/w2319	weld LOP	D9006(3)L.xls	6/5/15 1:58 AM	CASE 1*	0.5180	0.0140	0.9050		0.8890 0.7420														Warning: No false call analysis.	Warning: Initial results listed.	0.03	0.1	0.659	1.000 UT
2219 AI T-87/w2319	weld LFC	DA001(3)D.xls	6/5/15 2:17 AM	CASE 7			0.	.8931 0.019	0.0930				0.4300	29									Warning: No false call analysis.					UT
2219 AI T-87/w2319	weld LFC	DA001(3)L.xls	6/5/15 2:19 AM	CASE 6			0.	.8931 0.036	0.1650 1.6960 23			1.6920	26 3.3920	29									Warning: No false call analysis.					UT
2219 AI T-87/w2319	weld LFC	DA002(3)D.xls	6/5/15 2:20 AM	CASE 6			0.	.6467 0.011	0.0450 0.2150 26			0.2150	26 0.4300	29									Warning: No false call analysis.					UT
2219 AI T-87/w2319		DA002(3)L.xls	6/5/15 2:21 AM				0.	.7791 0.092				1.1880	26 2.3760	29									Warning: No false call analysis.					UT
2219 AI T-87/w2319		DA003(3)D.xls			0.0870	0.0220			0.2150 20 0.1510	29													Warning: No false call analysis.		0.145			1.000 UT
																							Warning: No faise call	MLE Divergence Warning: Initial results				
	weld LFC	DA003(3)L.xls	6/5/15 2:24 AM		0.1810	0.0520			1.6960 17 0.5600	11													analysis. Warning: No false call analysis.	listed.	0.35			1.000 UT
2219 AI T-87/w2319	weld TFC	DB001(3)D.xls	6/5/15 2:25 AM					.7791 0.001	0.0400				0.4700	29					_				analysis. Warning: No false call		0.18			UT
2219 AI T-87/w2319		DB001(3)L.xls	6/5/15 2:27 AM					.8190 0.100					2.8700	29									warning: No false call Warning: No false call					UT
2219 AI T-87/w2319		DB002(3)D.xls	6/5/15 2:28 AM		0.0480				0.2350 14 0.1160														analysis. Warning: No false call					1.000 UT
2219 Al T-87/w2319	weld TFC	DB002(3)L.xls	6/5/15 2:29 AM	CASE 2	0.3060	0.0330	0.9050		1.4350 17 1.0850	23									_				analysis.					1.000 UT
2219 AI T-87/w2319	weld TFC	DB003(3)D.xls	6/5/15 2:30 AM	CASE 6			0.	.7791 0.001	0.0400 0.2350 26			0.2350	26 0.4700	29									Warning: No false call analysis.					UT

				Analysis Date/Time		Xpod CLASS-	Xpod CLASS-		Best_LCL Best_LC CLASS-	Best_LCL CLASS-							False Call	False Call	False Call	alse Call	Length or Area per Inspection	False Call			NTIAC 90% POD occurs	NTIAC 90/95 occurs at	P	POH or POD @ N	METHO
			1		1 1	LENGTH	WIDTH	LCL	L WIDTH	LENGTH XL XL# Xm	Xm # Xs Xs # Xici	Xici #			# Xss	Xss # Xpodopt	Xpodopt # UCL	Rate	Length (in)	krea (in^2)	(in or in^2) =	Opportunities	False Calls False Call Flag Warning: No false call	MLE flag	at (inch)	POD (inch)	KP X		D
	2219 AI T-87/w2319 we	Id TFC	DB003(3)L.xls	6/5/15 2:31 A	WCASE 6				0.8666 0.0850	0.2330 1.4350 26			1.0760 2	0 2.8700	29			_	_				analysis.	MLE Divergence					UT
NAMENA	2219 AI T-87/w2319 we	d flush LFC	DC001(3)D.xls	6/5/15 2:32 Al	CASE 1*	0.0590	0.0060	0.9050		0.2760 0.2150													analysis.	Warning: Initial results listed.	0.03	0.04	0.059	1.000	UT
	2219 AI T-87/w2319 we	d flush LFC	DC001(3)L.xls	6/5/15 2:37 A	CASE 1*	0.3480	0.0290	0.9050		1.5620 1.1190													analysis		0.18	0.215	0.348	1.000	UT
	2219 AI T-87/w2319 we	d flush LFC	DC002(3)D.xls	6/5/15 2:43 A	CASE 2	0.0590	0.0060	0.9050		0.2760 26 0.2150	0 17												analysis.		0.06	0.105		1.000	UT
	2219 AI T-87/w2319 we	d flush LFC	DC002(3)L.xls	6/5/15 2:47 AI	CASE 1*	0.3480	0.0290	0.9050		1.5620 1.0610													analysis.		0.235	0.36	0.895	1.000	UT
	2219 AI T-87/w2319 we	d flush LFC	DC003(3)D.xls	6/5/15 2:50 A	WCASE 1*			0.9050															analysis.			0.06			
						0.3480	0.0290	0.9050																_	0.185	0.235	0.348		
D D D D D D D D D D D D <	2219 AI T-87/w2319 we	eld flush TFC	DD001(3)D.xls										0.2150 2		29														
															29			_	_				analysis.						
															29				_				analysis.	-					
Control Contro Contro Contro Contro <													0.4950 2		29				_				analysis.	-	0.37				
															29				_				analysis. Warning: No false call						
		Id flush TFC													29										0.005				
		ste												1 1	29								analysis.					-	
No. 0 No. 0 <th< td=""><td>IN 718 and HAYNES pla</td><td>ite</td><td>E1002AL.XLS</td><td>6/5/15 3:10 AI</td><td>WCASE 6</td><td></td><td></td><td></td><td>0.7169 0.0290</td><td>0.3010 0.4220 28</td><td></td><td></td><td>0.4220 21</td><td>8 0.8440</td><td>29</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>analysis.</td><td>MLE Divergence</td><td>0.595</td><td></td><td></td><td></td><td>VT</td></th<>	IN 718 and HAYNES pla	ite	E1002AL.XLS	6/5/15 3:10 AI	WCASE 6				0.7169 0.0290	0.3010 0.4220 28			0.4220 21	8 0.8440	29								analysis.	MLE Divergence	0.595				VT
	SS AMS 355 ho	le	E2006.XLS	6/5/15 3:11 A	WCASE 7				0.7206 0.0180	0.0669				0.5150	29								Warning: No failse call analysis.	listed.	0.28	0.715			VT
	2210 ALT 07		E1000100.00	elE/rc order	CASEA				0.6519	0.5379 0.9034 0.0			0.8001	. 1.6100	20								Warning: No false call	MLE Divergence Warning: Initial results					PT
	22.13 AL 1-07 DIS	ne	F 10001AWLXLS	D/D/1D 3:13 A/	N CASE 6				0.0518 0.0100	0.02/3 0.0091 20			0.6091 21	0 1.0182	20								anatysis.	MLE Divergence				-	ixi
	2219 AI T-87 pla	ite											0.8091 2		29					_			analysis.	isted.					
m m	2219 AI T-87 pla	ate							0.5493 0.0050					1.6182	29								analysis						
	2219 AI T-87 pla	ate						0.0001		0.0001 0.0000		_				0.5780	29	-					analysis.		0.605		0.58333		
<	2219 AI T-87 pla	ate										_			-					_			analysis		0.40	0.585	0.67727		
M M	2219 AI T-87 pla	ste				0.5833	0.0660	0.9001			20	_			-					_					0.595				
M M	2219 AI T-87 pla	ste							0.8949 0.3000					1.6182	29								analysis	-	0.4				
m m m m m <		ste													_								analysis.	-			0.53333		
		ate				0.6000	0.0820	0.9001			3					0.5917	29						analysis.			0.635	0.6		
	2219 AI T-87 pla	ate	F10601AD.XLS	6/5/15 3:28 AI	MCASE 7				0.0398 0.0040	0.0370				0.0860	29									MLE Divergence	0.128				RT
100 <td>2219 AI T-87 pla</td> <td>ste</td> <td>F10601AL.XLS</td> <td>6/5/15 3:30 Al</td> <td>WCASE 7</td> <td></td> <td></td> <td></td> <td>0.0628 0.0020</td> <td>0.2580</td> <td></td> <td></td> <td></td> <td>0.6840</td> <td>29</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Warning: No false call analysis.</td> <td>listed.</td> <td></td> <td></td> <td></td> <td></td> <td>RT</td>	2219 AI T-87 pla	ste	F10601AL.XLS	6/5/15 3:30 Al	WCASE 7				0.0628 0.0020	0.2580				0.6840	29								Warning: No false call analysis.	listed.					RT
100 <td></td> <td>Warning: No false call</td> <td>MLE Divergence Warning: Initial results</td> <td></td> <td></td> <td></td> <td></td> <td></td>																							Warning: No false call	MLE Divergence Warning: Initial results					
M M M M M M	2219 AI T-87 pla	ste	F10601BD.XLS	6/5/15 3:32 Al	WCASE 7				0.0064 0.0010	0.0270				0.0860	29								analysis.						RT
	2219 AI T-87 pla	ste	F10601BL.XLS	6/5/15 3:33 AI	CASE 7				0.0127 0.0010	0.0600				0.6840	29								Warning: No false call analysis.	listed.					RT
																							Warning: No false call	Warning: Initial results					
M M M M M M M M M M M M M M M M M M M M M M M M M	2219 AI 1-87 pla	ste	F10601CD.XLS	6/5/15 3:35 A	WCASE 7				0.0127 0.0010	0.0190				0.0860	29								analysis.	MLE Divergence					KI
Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter <td>2219 Al T-87 pla</td> <td>ate</td> <td>F10601CL.XLS</td> <td>6/5/15 3:35 A</td> <td>CASE 7</td> <td></td> <td></td> <td></td> <td>0.0127 0.0010</td> <td>0.2590</td> <td></td> <td></td> <td></td> <td>0.6840</td> <td>29</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>analysis</td> <td>Warning: Initial results listed.</td> <td></td> <td></td> <td></td> <td></td> <td></td>	2219 Al T-87 pla	ate	F10601CL.XLS	6/5/15 3:35 A	CASE 7				0.0127 0.0010	0.2590				0.6840	29								analysis	Warning: Initial results listed.					
	2219 AI T-87 pla	ste	F10602AD.XLS	6/5/15 3:37 A	WCASE 1#	0.0430	0.0110	0.9001								0.0420	29						analysis.						
Name Name Name Name Name	2219 AI T-87 pla	ate	F10602AL.XLS	6/5/15 3:37 A	CASE 4						0.3420	2	0.3420	0.6840	29								analysis.	_	0.135				
Part Part Part Part Part Part Part Part	2219 AI T-87 pla	ate							0.8827 0.0140					0.0860	29														
c c c c c <th<< td=""><td>2219 AI T-87 pla</td><td>ate</td><td>F10602BL.XLS</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>29</td><td></td><td></td><td></td><td></td><td></td><td>analysis.</td><td></td><td>0.345</td><td></td><td>0.539</td><td></td><td></td></th<<>	2219 AI T-87 pla	ate	F10602BL.XLS														29						analysis.		0.345		0.539		
Parter Parter Parter Parter Parter Parter Parter <td>2219 AI T-87 pla</td> <td>ate</td> <td></td> <td></td> <td></td> <td>0.0430</td> <td>0.0110</td> <td>0.9001</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>-</td> <td>0.0420</td> <td>29</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>analysis.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2219 AI T-87 pla	ate				0.0430	0.0110	0.9001				_			-	0.0420	29						analysis.						
2 3 5 5 5 5 5	2219 Al T-87 pla	ate									0.3420	2	0.3420		29														
Part Part Part Part Part Part Part Part		ste										_		1	29					_			analysis.						
2 3 5		ite										2	0.3420	0.6840	29								analysis.						
212 3.0 <td></td> <td>ate</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>-</td> <td></td> <td>29</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>analysis. Warning: No false call</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>		ate										_			-		29			_			analysis. Warning: No false call	-					
Link in place Disclose		ate												0.6840	1		29						analysis. Warning: No false call				0.287		
a.a. b.a. b.a. <th< td=""><td></td><td>ite</td><td></td><td></td><td></td><td>0.0430</td><td>0.0110</td><td>0.9001</td><td>0.0004</td><td></td><td></td><td></td><td>0.0400</td><td>0.0040</td><td>~</td><td>0.0420</td><td>29</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		ite				0.0430	0.0110	0.9001	0.0004				0.0400	0.0040	~	0.0420	29												
2121 A1 a 349 F1201 AL B. 6451 3 34 MCASE 0 0 0 0<	2219 AI 1-87 pla	ste	F10603CL.XLS	6/5/15 3:47 A	WCASE 4				0.8931 0.2000	0.3420 0.3420 2	0.3420	2	0.3420	0.6840	23			-		_			analysis.	MLE Divergence	0.14	0.205			
virtual virtual <t< td=""><td>2219 AI T-87 pla</td><td>ate</td><td>F12201AD.XLS</td><td>6/5/15 3:48 A</td><td>WCASE 7</td><td></td><td></td><td></td><td>0.7206 0.0660</td><td>0.1780</td><td></td><td></td><td></td><td>0.3560</td><td>29</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Warning: No false call analysis.</td><td></td><td></td><td></td><td></td><td></td><td>RT</td></t<>	2219 AI T-87 pla	ate	F12201AD.XLS	6/5/15 3:48 A	WCASE 7				0.7206 0.0660	0.1780				0.3560	29								Warning: No false call analysis.						RT
219 3 9	2210 ALT 97	ate.	E12201AL VI C	R/E/15 2/50 1	CASES				0.7411 0.005	0.5000 0.0700 28			0.6100	0 1 0590	20								Warning: No false call	MLE Divergence Warning: Initial results					DT
2101 11 2101 11.0	2219 Al T-87 pla	ne de									0.4700	24			20								Warning: No false call analysis	naviU.	0.14	0.47			
2101 CM 9400 MAGAGE		te									0.1780	21			29														
2141 cm 344 5455 AACASE 54 5456 AACASE 54 5466 AACASE 5466 AACASE 54 56 56 56 56	2219 Al T-87 pla	ate											0.0100 2	1	29														
21200 A.B 6495 5.8 M CASE 6495 5		ite											0.6100 2		29								analysis.		0.105				
2124 A.T. 461 5 5 5 M.CASE 471 5 5 M.CASE 471 5 M.CASE		ate									0 1780	5			29								Warning: No false call analysis		0.13	0.185			
2124 AT 48 5220 AT 6354 54 AM CASE 5 5 6 <th< td=""><td>2219 AI T-87 pla</td><td>ate</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Warning: No false call analysis.</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	2219 AI T-87 pla	ate										9											Warning: No false call analysis.						
219 A 10 6454 2 M CASE 6454 2 M CASE 645 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2219 AI T-87 pla	ite												0.3560	29								Warning: No false call analysis.						
2120 AT 4T assist and and cases assist and cases a	2219 AI T-87 pla	ate				0.5390	0.2000	0.9152								0.5370	29						Warning: No false call				0.539		
219 Al T-67 Jale F12202LXLS 6/515 407 MACASE 6 0.4728 0.020 0.1780 28 0 0.4990 28 1980 29 0	2219 AI T-87 pla	ite	F12202CD.XLS						0.8739 0.0750	0.1490				0.3560	29								Warning: No false call analysis.		0.125	0.185			RT
2219 AT-A7 glade F1220 MD X2 6515 4 07 AM CASE 6 1 0 0.878 0.977 0.108 0.778 28 0 0 0 0.778 28 0.566 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2219 AI T-87 pla	ate	F12202CL.XLS	6/5/15 4:05 A	MCASE 6				0.4729 0.0020	0.1530 0.9790 28			0.4990 21	8 1.9580	29								waming: No taise call analysis.		0.605				RT
2219 AT-87 piste F122034_ULS 64515 408 AMCASE7 0.8888 0.300 0.6100 1 1.200 29 Numeric Association (Control of Control of	2219 AI T-87 pla	ate	F12203AD.XLS							0.1060 0.1780 28				8 0.3560	29								analysis.		0.08	0.1			RT
	2219 AI T-87 pla	ate	F12203AL.XLS	6/5/15 4:08 A	MCASE 7				0.8868 0.3000	0.6100				1.2200	29								Warning: No false call analysis.		0.285	0.375			RT

			Analysis		Xpod CLASS-	Xpod CLASS-		Best_LC L Best_LC Best_LC CLASS- WIDTH	Best_LCL CLASS-						False Call F	alse Call	False Call	False Call Area (in^2) (in or in^2) =	a 1 False Call			NTIAC 90% NT POD occurs oc	TAC 90/95 curs at DD (inch) X	POH	H or D @ METHO
MATERIAL	STRUCTURE		Analysis Date/Time	CASE ID	LENGTH	WIDTH	LCL	1 1	1 1 1 1		Xpoh Xpoh #	2XL 2X	L#Xss X	Iss # Xpodopt Xpodopt	# UCL R	late	Length (in)	Area (in^2) (in or in^2) =	Opportunities Fa	se Calls False Call Flag		at (inch) PC	1	Р Хро	d D
2219 AI T-87	plate	F12203BD.XLS	6/5/15 4:10 A				0.9001	1	0.1780 0.1485					0.1180 2	19					analysis. Warning: No false ca		0.08			1.000 RT
2219 AI T-87	plate	F12203BL.XLS	6/5/15 4:11 A	WCASE 1#	0.5350	0.2000	0.9129	9	0.6100 0.5680					0.5290 2	19					analysis.		0.305	0.41	0.535	1.000 RT
2219 AI T-87	plate	F12203CD.XLS	6/5/15 4:12 A	CASE 6				0.8668 0.067	0.1260 0.1780 17		0.1780 17	7 0.3560	29							Warning: No false ca analysis.		0.055	0.065		RT
2219 AI T-87	plate	F12203CL.XLS	6/5/15 4:14 A	CASE 1#	0.5190	0 0.2000	0.9253	3	0.6100 0.5430					0.5185 2	19					Warning: No false ca analysis.		0.3	0.415	0.519	1.000 RT
2219 AI T-87	plate	F20002AA.XLS	6/5/15 4:16 A	CASE 4				0.6518 0.09	0.6545 0.6545 22	0.6545 22	0.6182 23	3 1.3091	29							Warning: No false ca analysis.					RT
2219 AI T-87	plate	F20002BA.XLS	6/5/15 4:17 A	CASE 4				0.6518 0.09	0.6545 0.6545 22	0.6545 22	0.6182 23	3 1.3091	29							Warning: No false ca analysis.	1				RT
																				Warning: No false ca	MLE Divergence				
2219 AI T-87	plate	F20002CA.XLS	6/5/15 4:18 A				-	0.7616 0.03			0.5636 28	8 1.3091	29							analysis. Warning: No false ca	listed.				RT
2219 AI T-87	plate	F20852AD.XLS	6/5/15 4:20 A					0.3684 0.00			0.0540 28	8 0.1080	29							analysis. Warning: No false ca					RT
2219 AI T-87	plate	F20852AL.XLS	6/5/15 4:20 A			-		0.5493 0.038				0.7680	29							analysis. Warning: No false ca					RT
2219 AI T-87	plate	F20852BD.XLS	6/5/15 4:22 A			_		0.4931 0.010				0.1080	29									0.13			RT
2219 AI T-87	plate	F20852BL.XLS	6/5/15 4:22 A	WCASE 4				0.5493 0.014	0.3840 0.3840 24	0.3840 24	0.3840	0.7680	29							Warning: No false ca analysis.					RT
2219 AI T-87	plate	F20852CD.XLS	6/5/15 4:23 A	CASE 7				0.5619 0.012	0.0540			0.1080	29							anarysis. Warning: No false ca analysis.		0.095			RT
2219 AI T-87	plate	F20852CL.XLS	6/5/15 4:24 A	CASE 7				0.6383 0.20	0.3840			0.7680	29							Warning: No false ca analysis.	1	0.505			RT
2219 AI T-87	plate	F22202AD.XLS	6/5/15 4:25 A	CASE 4				0.6518 0.020	0 0.1440 0.1440 22	0.1440 22	0.1360 23	3 0.2880	29							Warning: No false ca analysis.	1	0.14	0.2		RT
2219 AI T-87	plate	F22202AL.XLS	6/5/15 4:27 A	ACASE 7				0.7791 0.023	0.4920			1.1000	29							Warning: No false ca analysis.					RT
2219 AI T-87	plate	F22202BD.XLS	6/5/15 4:28 A					0.6522 0.03				0.2880	29							Warning: No false ca analysis.		0.14	0.195		RT
2219 AI T-87	plate	F22202BL.XLS	6/5/15 4:29 A					0.6058 0.020				1,1000	29							Warning: No false ca analysis.					RT
2219 AI T-87	plate	F22202CD.XLS						0.7699 0.03				0.2880	29							Warning: No false ca analysis		0.15			RT
2219 AI T-87	niste	F22202CD.XLS	6/5/15 4:30 A		1			0.7411 0.020			0.5500 22	2 1.1000	29							Warning: No false ca	1	0.10			RT
	phile	F30651AD.XLS	6/5/15 4:31 A					0.7411 0.02			0.0000 24									analysis. Warning: No false ca analysis.		0.05	0.11		RT
Ti 6Al4V	prate				1	-		0.7411 0.014				0.2000	29							analysis. Warning: No false ca		0.00	0.11		RT
Ti 6Al4V	plate	F30651AL.XLS	6/5/15 4:34 A					1				0.8140	29							analysis. Warning: No false ca		0.255		_	
Ti 6Al4V	plate	F30651BD.XLS	6/5/15 4:35 A		-			0.7411 0.014				0.2000	29			_				analysis. Warning: No false ca analysis.		0.05	0.095		RT
Ti 6Al4V	plate	F30651BL.XLS	6/5/15 4:36 A			-		0.7206 0.200				0.8140	29							analysis. Warning: No false ca	1	0.29	0.48		RT
Ti 6Al4V	plate	F30651CD.XLS	6/5/15 4:37 A	CASE 7		_		0.7740 0.02				0.2000	29							analysis. Warning: No false ca		0.04	0.06		RT
Ti 6Al4V	plate	F30651CL.XLS	6/5/15 4:39 A	CASE 7				0.7411 0.093	0.2500			0.8140	29		_					analysis		0.225	0.325		RT
Ti 6Al4V	plate	F30653AD.XLS	6/5/15 4:40 A	CASE 6				0.7791 0.000	0.0180 0.1000 28		0.1000 28	8 0.2000	29							Warning: No false ca analysis.					RT
Ti 6Al4V	plate	F30653AL.XLS	6/5/15 4:41 A	CASE 7				0.8074 0.024	0.0910			0.8140	29							Warning: No false ca analysis.	1				RT
Ti 6Al4V	plate	F30653BD.XLS	6/5/15 4:42 A	CASE 6				0.6877 0.004	0.0160 0.1000 28		0.1000 28	8 0.2000	29							Warning: No false ca analysis.	1				RT
Ti 6Al4V	plate	F30653BL.XLS	6/5/15 4:43 A	ACASE 7				0.7411 0.01	0.0840			0.8140	29							Warning: No false ca analysis.					RT
Ti 6AJ4V	plate	F30653CD.XLS	6/5/15 4:45 A	CASE 6				0.6360 0.013	0.0290 0.1000 28		0.1000 28	8 0.2000	29							Warning: No false ca analysis.					RT
Ti 6Al4V	plate	F30653CL.XLS	6/5/15 4:46 A					0.7411 0.075				0.8140	29							Warning: No false ca analysis.	1	0.73			RT
Ti 6Al4V	plate	F32251AD.XLS	6/5/15 4:47 A					0.5493 0.003			0.3200 28	8 0.7040	29							Warning: No false ca analysis	1				RT
Ti 6Al4V	niste	F32251AL.XLS	6/5/15 4:49 A					0.5493 0.00			0.3200 28	8 0.7040	20							Warning: No false ca					RT
Ti 6Al4V	plate	F32251BD.XLS	6/5/15 4:52 A					0.4182 0.02			0.3200 20	0.1940	23							Warning: No false ca	1	0.115			RT
	plate					-		0.2486 0.08					29							Warning: No false ca	1	0.115			RT
Ti 6Al4V	plate	F32251BL.XLS	6/5/15 4:53 A			-						0.7040	29							Warning: No false ca analysis	1				RT
Ti 6Al4V	plate	F32251CD.XLS	6/5/15 4:54 A					0.2486 0.087					29							analysis. Warning: No false ca	1			_	
Ti 6Al4V	plate	F32251CL.XLS	6/5/15 4:55 A					0.2486 0.087				0.7040	29							analysis. Warning: No false ca	1			_	RT
Ti 6Al4V	plate	F32253AD.XLS	6/5/15 4:56 A					0.6837 0.015			0.3520 28	8 0.7400	29							analysis. Warning: No false ca					RT
Ti 6Al4V	plate	F32253AL.XLS	6/5/15 4:58 A				-	0.6837 0.015			0.3520 28	8 0.7400	29							analysis. Warning: No false ca		0.605			RT
Ti 6Al4V	plate	F32253BD.XLS	6/5/15 4:59 A			-		0.6770 0.03			0.3700 27	7 0.7400	29							analysis.					RT
Ti 6Al4V	plate	F32253BL.XLS	6/5/15 5:00 A	CASE 6				0.6770 0.03			0.3700 27	7 0.7400	29		_					Warning: No false ca analysis. Warning: No false ca		0.365	0.695		RT
Ti 6Al4V	plate	F32253CD.XLS	6/5/15 5:01 A	CASE 6				0.7411 0.005	0.0580 0.1030 28		0.1030 28	8 0.2060	29							analysis.		0.18			RT
Ti 6Al4V	plate	F32253CL.XLS	6/5/15 5:03 A	CASE 6				0.6070 0.000	0.2120 0.3700 28		0.3700 28	8 0.7400	29							Warning: No false ca analysis.					RT
STEEL 4340	plate	F40601A.XLS	6/5/15 5:04 A	CASE 7				0.5493 0.004	0.0913			0.4960	29							Warning: No false ca analysis.					RT
STEEL 4340	plate	F40601B.XLS	6/5/15 5:05 A	CASE 7				0.5293 0.007	0.0943			0.4960	29							Warning: No false ca analysis.					RT
STEEL 4340	plate	F40601C.XLS	6/5/15 5:06 A					0.4504 0.007	0.1163			0.4960	29							Warning: No false ca analysis.					RT
STEEL 4340	plate	F40603A.XLS	6/5/15 5:08 A	CASE 6				0.6877 0.007	0 0.0943 0.2480 28		0.1750 28	8 0.4960	29							Warning: No false ca analysis.		0.265			RT
STEEL 4340	plate	F40603B.XLS	6/5/15 5:09 A					0.6877 0.007			0.2480 28	8 0.4960	29							Warning: No false ca analysis.		0.49			RT
STEEL 4340	plate	F40603C.XLS	6/5/15 5:10 A					0.7169 0.008			0.1750 28	8 0.4960	29							Warning: No false ca analysis.		0.265			RT
STEEL 4340	plate	F42501A.XLS	6/5/15 5:12 A					0.2486 0.008			1.6030 28	8 4.8060	29							Warning: No false ca analysis.					RT
STEEL 4340	plate	F42501B.XLS	6/5/15 5:13 A					0.1343 0.300			1.6030 28	8 4.8060	29							Warning: No false ca analysis.					RT
STEEL 4340	plate	F42501B.XLS	6/5/15 5:16 A					0.2236 0.00			1.6030 26	8 4.8060	29							Warning: No false ca analysis	1				RT
STEEL 4340 STEEL 4340	niste	F42503A.XLS	6/5/15 5:16 A					0.7942 0.06			1.6030 28	8 4.8060	29							Warning: No false ca					RT
STEEL 4340 STEEL 4340	plate	F42503A.ALS	6/5/15 5:17 A					0.7616 0.06			0.5320 28	• •.0000	~							Warning: No false ca		0.66			RT
	plate	F42503B.XLS						0.7616 0.06	0.0000 2.4000 20		0.5320 28									analysis. Warning: No false ca analysis.		0.66			RT
STEEL 4340	plate		6/5/15 5:20 A		-						0.00000	8								analysis. Warning: No false ca					RT
2219 AI T-87	weld LOP	F5001(3)D.xls	6/5/15 5:22 A		-	-		0.8666 0.00			0.1600 26	6 0.3200	29		+ +					analysis. Warning: No false ca		0.15			
2219 AI T-87	weld LOP	F5001(3)L.xis	6/5/15 5:24 A		1.1580	0.0580	0.9050	1 1	1.2100 1.1750							_				analysis. Warning: No false ca analysis.				1.158	1.000 RT
2219 AI T-87	weld LOP	F5002(3)D.xls	6/5/15 5:26 A		-	-		0.8666 0.00			0.1600 26	6 0.3200	29							analysis. Waning: No false ca					RT
2219 AI T-87	weld LOP	F5002(3)L.xls	6/5/15 5:28 A	WCASE 2	0.3370	0 0.0490	0.9050		1.2100 0.8250	8										analysis.				1.156	1.000 RT
2219 AI T-87	weld LOP	F5003(3)D.xls	6/5/15 5:30 A	CASE 2	0.0720	0.0020	0.9050		0.1600 20 0.1050	8										Warning: No false ca analysis.	MLE Divergence Warning: Initial results listed.	0.005	0.005		1.000 RT
																				Warning: No false ca	MLE Divergence Warning: Initial results listed.				
2219 AI T-87	weld LOP	F5003(3)L.xls	6/5/15 5:41 A	CASE 2	0.6880	0.0170	0.9050	>	1.2100 16 1.0790	14										analysis.	listed.	0.005	0.005		1.000 RT

			Analysis CLASS- CLASS-	Best_LC	Best_LCL B CLASS- C	est_LCL LASS-													Fa	alse Call	False Call	False Call	False Call	Length or Area per Inspection	Faise Call				NTIAC 90% POD occurs	NTIAC 90/95 occurs at	F	POH or POD @ N	METHO
MATERIAL	STRUCTUR	E FILE NAME		L	WIDTH L	ENGTH	XL XL#	≠Xm 3	lm # Xs	Xs #	Xici	Xici # Xpo	n Xpoh	# 2XL	2XL# X	ss)	(ss # Xp	odopt Xpo								False Calls		MLE flag		POD (inch)			D
2219 AI T-87		F6001(3)D.xls	6/5/15 5:49 AM CASE 7	0.6070	0.0050	0.1780								0.4300	29												Warning: No false call analysis.						RT
2219 AI T-87	weld LFC	F6001(3)L.xls	6/5/15 5:50 AM CASE 7	0.6070	0.0070	0.0790								2.3760	29												Warning: No faise call analysis.						RT
2219 AI T-87	weld LFC	F6002(3)D.xis	6/5/15 5:52 AM CASE 7	0.5709	0.0420	0.2150								0.4300	29												Warning: No false call analysis.						BT
2219 AI T-87	weld LFC	F6002(3)L.xls	6/5/15 5:53 AM CASE 6	0.6070	0.0050	0.5030	1,1880 2	16				1	1880	2.3760	29												Warning: No false call analysis.				1	1	RT
2219 AI T-87	weld LFC	F6003(3)D.xls		0.8666			0.2150	8			0.2150		2150	0.4300													Warning: No false call analysis.						RT
2219 ALT-87	weld LFC	F6003(3)L.xls	6/5/15 5:56 AM CASE 4	0.8190		1.1880	1.1880 1	0			1,1880		9810	2.3760		-											Warning: No false call analysis				-		RT
2219 ALT-87	weld LFC	F7001(3)D.xls		0.6070		0.2350		4			0.2350		2350	0.4700													analysis. Warning: No false call						RT
								-3			0.2350																analysis. Warning: No false call						
2219 AI T-87	weld TFC	F7001(3)L.xls	6/5/15 5:59 AM CASE 6	0.6070	0.0.00	0.2730		26					4350	2.8700					-								analysis. Warning: No false call						RT
2219 AI T-87	weld TFC	F7002(3)D.xis		0.6070		0.2350		13			0.2350		2350	0.4700													analysis. Warning: No false call						RT
2219 AI T-87	weld TFC	F7002(3)L.xls	6/5/15 6:03 AM CASE 6	0.6070	0.0130	0.2730	1.4350 2	26		_		1	4350 :	2.8700	29												analysis. Warning: No false call						RT
2219 AI T-87	weld TFC	F7003(3)D.xis	6/5/15 6:05 AM CASE 6	0.8190	0.0050	0.0480	0.2350 2	26		_		0	2350	0.4700	29												analysis. Warning: No false call						RT
2219 AI T-87	weld TFC	F7003(3)L.xls	6/5/15 6:06 AM CASE 6	0.7933	0.0240	0.3060	1.4350 2	26				1	4350 :	2.8700	29												analysis.						RT
2219 AI T-87	weld flush LF	C F8001(3)D.xls	6/5/15 6:08 AM CASE 4	0.8444	0.0610	0.2760	0.2760 1	1			0.2760	11 0	2760	0.5520	29												Warning: No false call analysis.						RT
																											Warning: No false call	MLE Divergence Warning: Initial results					
2219 AI T-87	weld flush LF	C F8001(3)L.xls	6/5/15 6:09 AM CASE 7	0.8739	0.6000	1.5620			-	_				3.1240	29												analysis.	listed. MLE Divergence					RT
2219 AI T-87	weld flush LF	C F8002(3)D.xis	6/5/15 6:11 AM CASE 4	0.8931	0.0690	0.2760	0.2760	2			0.2760	2 0	2760	0.5520	29												Warning: No false call analysis.	Warning: Initial results listed.					BT
2219 AI T-87	weld flush I F	C F8002(3)L.xls	6/5/15 6:12 AM CASE 4	0.8813	0.5000	1.5620	1.5620	5			1.5620	5 1	5620	3.1240	29												Warning: No false call analysis						RT
2219 AI T-87		C F8003(3)D.xls	6/5/15 6:15 AM CASE 4	0.8931	0.0690	0.2760	0.2760	2			0.2760		2760	0.5520													Warning: No false call analysis						RT
2219 ALT-87		C F8003(3)L.xls	6/5/15 6:17 AM CASE 1* 0.3530 0.0300 0.9050		0.0050	0.2700	1.5620	1 1190			0.2700	2 0	2700	0.0020	25												Warning: No false call				1.061		RT
							1.5620	1.1190																			analysis. Warning: No false call				1.061		RT
2219 AI T-87	weld flush TF	FC F9000CD.XLS	6/5/15 6:18 AM CASE 7	0.5619	0.0120	0.0540				-				0.1080	29		-		-								analysis.	MLE Divergence	0.095				RT
2219 AI T-87	weld flush TF	C F9001(3)D.xls	CASE 7											0.4300	29													Warning: Initial results listed.					RT
																												MLE Divergence Warning: Initial results			1	1	
2219 AI T-87	weld flush TF	C F9001(3)L.xls	CASE 7							_				0.9900	29													listed. MLE Divergence				<u> </u>	RT
2219 AI T-87	wold fluck TE	C F9002(3)D.xls	6/5/15 6:19 AM CASE 4	0.3684	0.0010	0.2150	0.2150				0.2150	26 0	2150	0.4300	20												Warning: No false call	Warning: Initial results					RT
2215 ALT-07	weld liusti TP	C F 5002(3)D.XIS	GGT3 0.15 AN CASE 4	0.3084	0.0010	0.2100	0.2130 2	.0			0.2100	20 0	2100	0.4300	25	-											anarysis.	MLE Divergence					NI
2219 AI T-87	weld flush TF	C F9002(3)L.xls	6/5/15 6:20 AM CASE 4	0.3684	0.0010	0.4950	0.4950 2	26			0.4950	26 0	4950	0.9900	29												Warning: No false call analysis.	Warning: Initial results listed.	0.56				RT
																											Warning: No false call	MLE Divergence Warning: Initial results					
2219 AI T-87	weld flush TF	FC F9003(3)D.xls	6/5/15 6:21 AM CASE 4	0.3684	0.0010	0.2150	0.2150 2	26	-	_	0.2150	26 0	2150	0.4300	29												analysis.	listed. MLE Divergence					RT
2219 AI T-87	weld flush TF	C F9003(3)L.xls	6/5/15 6:22 AM CASE 4	0.3684	0.0010	0.4950	0.4950 2	26			0.4950	26 0	4950	0.9900	29												Warning: No false call analysis.	Warning: Initial results listed.	0.56				RT
2219 AI T-87	plate	G10003AA.XL		0.8514		0.6333								1.6333													Warning: No false call analysis.		0.64				нт
2219 ALT-87	niste	G10003AD.XL		0.8190	0.0000	0.1260	0.1780	18			0.1260	14 0	1260														Warning: No false call		0.095				нт
2219 ALT-87	alata	G10003AL.XL		0.8150	0.0450	0.1200	0.6100	0.5350			0.1200	.4 0	1200														Warning: No false call		0.035	0.4	0.475		нт
	plaid			0.6532	0.2000		0.0100	0.5350						1.6182													analysis. Warning: No false call		0.245	0.4	0.475	1.000	нт
2219 AI T-87	plate	G10003BA.XL			0.2000	0.6833								1.0102	29												analysis. Warning: No false call						
2219 AI T-87	plate	G10003BD.XL		0.8074	0.0000	0.1260					-			0.3560													analysis. Warning: No false call			0.17			HT
2219 AI T-87	plate	G10003BL.XL		0.7794	0.0530	0.2950	0.6100 2	27				0	5680 :	1.2200	29												analysis. Warning: No false call		0.46	0.63		<u> </u>	HT
SS AMS 355	hole	G2001L.XLS	6/5/15 6:31 AM CASE 1# 0.0845 0.0260 0.9001				0.2425	0.1694										0.0774	2								analysis.		0.075	0.1	0.08452	1.000	HT

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

130

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked. The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked. The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked. The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

370

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked. The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked. The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked. The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown. The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

590

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

620

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

642

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked. The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Follow sample selection priority in the DOEPOD Manual.

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first. **Satisfying the Alternate Xm requirement removes the need to meet the adjacent Xm requirement.

Errata

NTIAC NDE Capabilities Book, 3rd Edition (November 1997) [NTIAC: DB-97-02]

DATA sets that do not appear to exist on the NTIAC CD:

B20011 (appears to be B2001) B20012 (appears to be B2002) B20013 (appears to be B2003)

G6001G (appears to be A6001G) G6001GR (appears to be A6001GR) G6002G (appears to be A6002G) G6003G (appears to be A6003G) G6004G (appears to be A6004G)

F40601AL (appears to be F40601A) F40601BL (appears to be F40601B) F40601CL (appears to be F40601C)

F40603AL (appears to be F40603A) F40603BL (appears to be F40603B) F40603CL (appears to be F40603C)

F42501AL (appears to be F42501A) F42501BL (appears to be F42501B) F42501CL (appears to be F42501C)

F42503AL (appears to be F42503A) F42503BL (appears to be F42503B) F42503CL (appears to be F42503C)

A4000(7) is listed in Mag Particle data index – should be B4000(7) with B4001L as the companion data set

DATA sets on the CD that are not listed in the index:

B1001AD (POD data not shown in book) B1001BD (POD data not shown in book) B1001CD (POD data not shown in book)

B1003AD (POD data not shown in book) B1003BD (POD data not shown in book) B1003CD (POD data not shown in book) B4001L (see above)

B2001 (appears to be the missing B20011 above) B2002 (appears to be the missing B20012 above) B2003 (appears to be the missing B20013 above)

There are an additional 18 data sets (grouped) and not listed in the index:

DB001(3)D (POD data not shown in book) DB001(3)L (POD data not shown in book) DB002(3)D (POD data not shown in book) DB002(3)L (POD data not shown in book) DB003(3)D (POD data not shown in book) DB003(3)L (POD data not shown in book)

DC001(3)D (POD data not shown in book) DC001(3)L (POD data not shown in book) DC002(3)D (POD data not shown in book) DC002(3)L (POD data not shown in book) DC003(3)D (POD data not shown in book) DC003(3)L (POD data not shown in book)

DD001(3)D (POD data not shown in book) DD001(3)L (POD data not shown in book) DD002(3)D (POD data not shown in book) DD002(3)L (POD data not shown in book) DD003(3)D (POD data not shown in book) DD003(3)L (POD data not shown in book)

DATA set duplicated:

F9000CD appears to be a duplicate identical to data file F20852CD

DATA Analysis integrity:

During validation of DOEPOD results on the entire NTIAC NDE Capabilities Book "DOEPOD(NTIAC)", some exceptions were noted in the results. There are 437 data sets and exceptions were identified in the 32 data sets listed below. The analysis results shown in the NTIAC NDE Capabilities Book, 3rd Edition (1997) [NTIAC: DB-97-02] for the data sets listed below are incorrect due to a data listing error. These data sets need to be re-run with data sorted.

A1001CL.XLS A1002CL.XLS A9003(3)L.xls AA003(3)L.xls AC001(3)L.xls CB003(3)L.xls CE032(6)D.xls F10601AD.XLS F10601BD.XLS F10601CD.XLS F10602AD.XLS F10602BD.XLS F10602CD.XLS F10603AD.XLS F10603BD.XLS F10603CD.XLS F12201AD.XLS F12201BD.XLS F12201CD.XLS F12202AD.XLS F12202BD.XLS F12202CD.XLS F12203AD.XLS F12203BD.XLS F12203CD.XLS F32251AD.XLS F32251CD.XLS F32253AD.XLS F32253BD.XLS F8002(3)L.xls G10003BD.XLS G10003BL.XLS

OTHER:

C8003(3)L.xls - sample #136 shows 3 trials with -1 in the HIT/MISS column C8003(3)D.xls - sample #136 shows 3 trials with -1 in the HIT/MISS column

C3002: Sample #16 shows 0.10" in depth. NASA CR 151098 pg 27. shows 0.010". Since the sample thickness is 0.063" this NTIAC entry is incorrect.

The primary and secondary scales on abscissa axes in Chart 1may be incorrect. Compare actual flaw sizes and inspection data on data sheets available in electronic distributions.

REPORT DOCUMENTATION PAGE						Form Approved OMB No. 0704-0188	
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.							
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE					3. DATES COVERED (From - To)		
	01-07-2015 Technical Memorandum						
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER		
NASA DOEPOD NDE Capabilities Data Book					5b. GRANT NUMBER		
					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)					5d. PROJECT NUMBER		
Generazio, Edward R.					5e. TASK NUMBER		
					5f. WORK UNIT NUMBER		
					724297.40.44.07		
7. PERFORMING ORGANIZATION NAME(S) AND ADDF NASA Langley Research Center Hampton, VA 23681-2199			AND ADDRESS(ES)	1		8. PERFORMING ORGANIZATION REPORT NUMBER	
						L-20576	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)					10. SPONSOR/MONITOR'S ACRONYM(S)		
National Aeronautics and Space Administration						NASA	
Washington, DC 20546-0001					ŀ	11. SPONSOR/MONITOR'S REPORT	
						NUMBER(S) NASA-TM-2015-218770	
12. DISTRIBUTION/AVAILABILITY STATEMENT							
Unclassified - Unlimited							
Subject Category 38 Availability: NASA STI Program (757) 864-9658							
13. SUPPLEMENTARY NOTES							
14. ABSTRACT							
This data book contains the Directed Design of Experiments for Validating Probability of Detection (POD) Capability of NDE Systems (DOEPOD) analyses of the nondestructive inspection data presented in the NTIAC, Nondestructive Evaluation (NDE) Capabilities Data Book, 3rd ed., NTIAC DB-97-02. DOEPOD is designed as a decision support system to validate inspection system, personnel, and protocol demonstrating 0.90 POD with 95% confidence at critical flaw sizes, a90/95. The test methodology used in DOEPOD is based on the field of statistical sequential analysis founded by Abraham Wald, "Sequential analysis is a method of statistical inference whose characteristic feature is that the number of observations required by the procedure is not determined in advance of the experiment. The decision to terminate the experiment depends, at each stage, on the results of the observations previously made. A merit of the sequential method, as applied to testing statistical hypotheses, is that test procedures can be constructed which require, on average, a substantially smaller number of observations than equally reliable test procedures based on a predetermined number of observations." A. Wald, 1947.							
15. SUBJECT TERMS							
Defects; Flaws; Maximum destructive likelihood; Nondestructive evaluation; Probability of detection							
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON							
a. REPORT	b. ABSTRACT	c. THIS PAGE	ABSTRACT	OF PAGES		TI Help Desk (email: help@sti.nasa.gov) ELEPHONE NUMBER (Include area code)	
U	U	U	UU	901		(757) 864-9658	