

NASA DOEPOD NDE Capabilities Data Book

Edward R. Generazio
Langley Research Center, Hampton, Virginia

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NTRS Registered and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA Programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counter-part of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM.

Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.
- CONFERENCE PUBLICATION.

Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.

- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include organizing and publishing research results, distributing specialized research announcements and feeds, providing information desk and personal search support, and enabling data exchange services.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question to help@sti.nasa.gov
- Phone the NASA STI Information Desk at 757-864-9658
- Write to:

NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

NASA DOEPOD NDE Capabilities Data Book

Edward R. Generazio
Langley Research Center, Hampton, Virginia

National Aeronautics and
Space Administration
Langley Research Center
Hampton, Virginia 23681-2199

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and Space Administration.

Available from:

NASA STI Program / Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199
Fax: 757-864-6500

INDEX

NASA DOEPOD NDE CAPABILITIES DATA BOOK - OVERVIEW 2
NASA DOEPOD NDE CAPABILITIES DATA BOOK - EXAMPLE 7
NASA DOEPOD NDE CAPABILITIES DATA BOOK - DEFINITIONS 8
NASA DOEPOD NDE CAPABILITIES DATA BOOK - SUMMARY 12
NASA DOEPOD NDE CAPABILITIES DATA BOOK - ANALYSES 20
NTIAC DATA BOOK ERRATA 894

Overview

This data book contains the Directed Design of Experiments for Validating Probability of Detection (POD) Capability of NDE Systems (DOEPOD) analyses of the nondestructive inspection data presented in the NTIAC, Nondestructive Evaluation (NDE) Capabilities Data Book [1]. DOEPOD is designed as a decision support system to validate inspection system, personnel, and protocol demonstrating 0.90 POD with 95% confidence at critical flaw sizes, a90/95. Although 0.90 POD with 95% confidence at critical flaw sizes is often stated as an inspection requirement in inspection documents, including NASA Standards [2], NASA critical aerospace applications have historically only accepted 0.978 POD or better with a 95% one-sided lower confidence bound exceeding 0.90 at critical flaw sizes, a90/95. (see Figure 11 of [3]).

The test methodology used in DOEPOD is based on the field of statistical sequential analysis founded by Abraham Wald,
"Sequential analysis is a method of statistical inference whose characteristic feature is that the number of observations required by the procedure is not determined in advance of the experiment. The decision to terminate the experiment depends, at each stage, on the results of the observations previously made. A merit of the sequential method, as applied to testing statistical hypotheses, is that test procedures can be constructed which require, on average, a substantially smaller number of observations than equally reliable test procedures based on a predetermined number of observations." A. Wald [4]

Details of the analysis methods used in DOEPOD are fully described in the DOEPOD [5] manual, and "Directed Design of Experiments for Validating Probability of Detection Capability of a Testing System" US Patent Serial Number: US 8,108,178. Additional details are available on the operation [6] [7] and proof property validation [7] of DOEPOD.

The critical importance of validating methodologies used for establishing POD have been highlighted [3] and this data book provides the DOEPOD validation of POD capabilities for NDE systems, materials, structures, and flaw types presented in the NTIAC, Nondestructive Evaluation (NDE) Capabilities Data Book [1].

The maximum likelihood estimation (MLE) method used in DOEPOD to estimate the probability of detection using a two parameter logit model (MLE-Logit) are identical to that used in NTIAC [1]. This MLE method was chosen as a verification of data integrity so that the MLE POD plots in NTIAC [1] and this data book are identical except where this data book provides a correction to NTIAC [1] analysis. Corrections to NTIAC [1] are indicated in the Errata listed at the end of this document. Other MLE-Logit methods may be used, and a simple grid search for maximizing parameters has been demonstrated [3] to be effective. The POD analysis methods of NTIAC [1] and a military handbook [8] use a predetermined number of observations.

It is noted here that the MLE-Logit POD curve fit plots shown in this data book and NTIAC [1] are not validated for implementation [3]. Internal and external validation of MLE-Logit POD estimates is required prior to implementation and initial guidance on validation procedures is provide elsewhere [3]. In contrast, if CASE 1, CASE 1+, CASE 1\# identifications are identified by DOEPOD analyses of test data, then the system, personnel, and inspection protocol maybe considered for acceptance by engineering authority for implementation application on relevant systems

437 NTIAC data sets are analyzed by DOEPOD to yield a CASE identification for each data set. Possible CASE identifications are listed in Table 1. The reader is referred to the DOEPOD manual [5] for definitions of the parameters in Table 1, and for design of experiment instructions on how to proceed to validate systems and personnel inspection capability. The DOEPOD analysis highlights 72 NTIAC data sets has CASE 1, CASE 1+, or CASE 1\# data sets all exhibit 0.978 POD or better with a 95% one-sided lower confidence bound exceeding 0.90 at critical flaw sizes and meet the historical NASA acceptance criteria when actions in Table 1 are addressed.

DOEPOD acronyms are defined at the end of this overview.

Table 1

	Is 90/95 POD at $\mathrm{X}_{\text {cod }}$ reached? (i.e., lower confidence bound, $X_{\text {Best_LCL, }}$ is equal to or greater than 0.9)	DOEPOD Analysis Summary and Recommendations
CASE 1		90/95 POD at $X_{\infty \infty d}$ has been reached. Actions: Address any false call warnings.
CASE 1+		90/95 POD at $X_{\text {sod }}$ has been reached. Actions: Misses above Xpod need to be explained and resolved. Address any false call warnings.
CASE 1\#		90/95 POD at $\mathrm{X}_{\text {sod }}$ has been reached. Actions: Further validation at flaw sizes greater than Xpod is required. Add large flaws. Address any false call warnings.
CASE 1*		90/95 POD at $X_{\text {esd }}$ has been reached. Actions: Further validation at flaw sizes greater than Xpod is required. Add large flaws. Misses above Xpod need to be explained and resolved. Address any false call warnings.
CASE 2	\square	90/95 POD at $X_{\text {eod }}$ has been reached, however, there are an excessive number Misses above $\mathrm{X}_{\text {osd }}$. Actions: Additional validation at identified flaw sizes is required. Add flaws per instructions.
CASE 4	\square	90/95 POD at $\mathrm{X}_{\text {osd }}$ has not been reached. Actions: Increase number of flaws at $X_{\text {POH=1 }}$ or $X_{\text {Best_LcL. }}$
CASE 5	\square	90/95 POD at $X_{\text {pod }}$ has not been reached and there are Misses above $\mathrm{X}_{\text {Pest_LcL. }}$ Actions: Increase the number of flaws at $\mathrm{XPOH}_{\mathrm{PO}}$.
CASE 6	\square	$90 / 95$ POD at $X_{\text {sod }}$ has not been reached. The POH is fluctuating above $X_{\text {esest_LcL }}$ and $X_{\text {son }}$ is greater than $X_{_} / 3$. The inspection system is unstable for the flaw size range analyzed. Actions: Increase the flaw size range by a factor of two.
CASE 7		$90 / 95$ POD at $X_{\text {od }}$ has not been reached. The inspection system is unstable for the entire flaw size range analyzed. Actions: The inspection system may not be appropriate or increase the flaw size range by a factor of two.
SURVEY CASES		The optimized class width exceeds $1 / 3 \times L$ and $\mathrm{X}_{\text {pod }}$ has not been reached. The class width optimization has determined that there is a class width for which the smallest $X_{\text {POH }}=1$ class length is identified. Actions: Add flaws at Survey/Optimum $\mathrm{X}_{\mathrm{POH}}$
$==Y E S$		

Logit-ML Estimated POD at a90/95

Figure 1. Logit-ML Estimated POD at critical flaw size, a90/95, from NTIAC (1997). Open diamonds refer to data sets each having 325 samples. The horizontal dashed line is the NASA minimum binomial estimated POD (0.978) accepted in practice at a flaw size, Xpod, for failure critical applications. DOEPOD analyses identified 72 (red disk) data NTIAC data sets that are classified as CASE 1+, or CASE 1\# having estimated POD exceeding 0.978 at a flaw size, Xpod. Note that Xpod and a90/95 are flaw size inspection capability labelling designations for DOEPOD and NTIAC Data Books, respectively. Xpod and a90/95 do not necessarily refer to the same flaw size for the same data sets.

A top level summary of the DOEPOD analyses of the nondestructive inspection data presented in the NTIAC Data Book [1] is provide in Table 2. CASE 1+, CASE 1\#, CASE 1*, and CASE 2 all exhibit at least one singular point where the one-sided lower 95% confidence bound on POD exceeds 0.90 at a critical flaw size and additional actions are needed per Table 2 instructions to complete the validation over a range of larger flaw sizes. CASE 4 data sets represent data sets that are similar to CASE 2 data sets, however additional data at selected flaws sizes is needed to move a CASE 4 data set to a CASE 2 data set. The CASE 5 data sets have excessive false negatives in the flaw size range tested, therefore data for larger flaw sizes is needed. CASE 6 data sets exhibit local instability over a portion of the flaw sizes tested, therefore, therefore data for larger flaw sizes is needed or the inspection system is inappropriate for the inspection required. CASE 7 data sets exhibit instability over the entire the flaw size range tested, therefore, therefore data for larger flaw sizes is needed or the inspection system is inappropriate for the
inspection required.
Table 2

CASE ID	Number of Data Sets	Action Needed
CASE 1+	2	Explain of observed false negatives
CASE 1\#	71	Further validation at larger flaws. Add test specimens with larger flaws.
CASE 1*	80	Further validation at larger flaw. Add test specimens with larger flaws. Explain observed false negatives.
CASE 2	46	Add test specimens at identified flaw sizes to demonstrate POD to be monotonically increasing with flaw size
CASE 4	12	Increase amount of relevant data by adding test specimens at identified flaw sizes to establish acceptable POD
CASE 5	91	Add test specimens with increased flaw sizes to address excessive false negatives at smaller flaw sizes.
CASE 6	Add test specimens with flaw sizes at least twice as large to address local inspection system oscillation instability or utilize a different inspection system or method.	
CASE 7	98	Add test specimens with flaw sizes at least twice as large to address global inspection system instability or utilize a different inspection system or method.

A summary of the output of parameter values from the DOEPOD analysis of nondestructive inspection data and methods presented in the NTIAC Data Book [1] is listed in Table 3. The descriptions of the parameters in Table 3 are detailed in reference [5]. The data file name is in column 3 of Table 3 and is used to identify the companion DOEPOD analysis output file. The printouts of the DOEPOD analysis output files follow in alphabetic in order to facilitate location. The electronic DOEPOD analysis output files and a searchable summary of parameter values from the DOEPOD analysis (Table 3) are available in the companion CD-ROM entitled "NASA DOEPOD Nondestructive Evaluation (NDE) Capabilities Data Book" which may be obtained upon request from the publisher.

DOEPOD software is available from NASA by contacting Kathy A. Dezern, phone: 757.864.5704, email: kathy.a.dezern@nasa.gov

Example

As an illustrative example we examine the first data set A1001AL. The multi-parameter maximum likelihood analysis in the NTIAC NDE Capabilities Data Book indicates the inspection system to have a 0.94 POD with lower single-sided 95% confidence bound that exceeds 0.9 at 0.27 " flaw size (column labeled "NTIAC 90/95 occurs at POD (inch)". In contrast, the NASA DOEPOD point estimate based method (no curve fitting) indicates that the acceptable capability of this inspection system is at or above the 0.61 " flaws size (column labeled Xpod CLASSLENGTH) where 1.0 POD is estimated (column labeled POH or POD @Xpod) with a single-sided lower 95% confidence bound that exceeds 0.9 at 0.61 " flaw size.

Examining the data analyses for A1001AL (page 20). There are five Misses (Xs) for the 72 flaws larger than the $0.27^{\prime \prime}$ flaw size yielding a 0.93 point estimate of POD for these grouped larger flaws with a single-sided lower 95% confidence bound of 0.83 . The multi-parameter POD curve fit does not highlight these Misses as important. DOEPOD indicates that the POD capability for this system and for fracture critical inspections is at or above the 0.61 " flaw size. Even then, DOEPOD analysis indicates [RED notes in chart] that additional large flaw data is needed to complete the validation before accepting the 0.61 " flaw size capability of this inspection system, and that false call analysis is also required.

Accepting the 0.27 " flaw size identified by multi-parameter maximum likelihood method as the detection capability of this inspection system for fracture critical inspections adds known risk as highlighted by the 0.93 point estimate of POD with a single-sided lower bound of 0.83 for the largest flaws. DOEPOD analysis indicates that the POD capability for this system and for fracture critical inspections is at or above the 0.61 " flaw size.

DOEPOD DEFINITIONS

C_{L}	Class length, e.g., inspection parameter (length, depth, area, etc.)
C_{W}	Class width (width of the moving class; all flaws within the range C_{L} to $\mathrm{C}_{\mathrm{L}}-\mathrm{C}_{\mathrm{W}}$, inclusively, are group together)
Hit	Flaw is detected
Miss	Flaw is not detected
MLE	Maximum Likelihood Estimate of POD using a two parameter statistical model. The MLE is included in DOEPOD as a user request for comparison. The included DB-97-02, DoD. The use of MLE estimated POD is not recommend unless a full validation of the estimated POD is performed (see Generazio, E. R., Interrelationships Between Receiver/Relative Operating Characteristics Display, Binomial, Logit, and Bayes' Rule Probability of Detection Methodologies, NASA- TM-2014-21818, April 2014.

Need Add new samples to the existing specimen set in order to reach the number of samples required at the class length. Note that a single specimen may contain more than one flaw, so that "add samples" refers to "add flaws".

LCL Lower confidence bound (value) of POH @ 95\% confidence
Opt. $\mathrm{X}_{\mathrm{POH}} \quad$ Optimum $\mathrm{X}_{\mathrm{POH}}$ is identified for non-survey data sets. Optimum $\mathrm{X}_{\mathrm{POH}}$ is the smallest class length and largest class width at which the minimum $X_{\mathrm{POH}}=1$ occurs. Optimum $X_{\text {POH }}$ may be more aggressive than optional, $X_{\text {PODopt }}$ or $X_{\text {Best }}$ LcL, when the class width is constrained to the companion Optimum $X^{\text {POH }}$ class width listed. DOEPOD does not force use of Optimum $\mathrm{X}_{\text {POH }}$ over $\mathrm{X}_{\text {PODopt. }}$ or $\mathrm{X}_{\text {Best LCL }}$ Stability has not been demonstrated at Optimum $\mathrm{X}_{\text {POH }}$, therefore there is an additional risk that Optimum $\mathrm{X}_{\mathrm{POH}}$ can not be satisfied to reach $\mathrm{X}_{\text {POD }}$

POH Estimate of Probability of Hit (Number of Hits in Class Length/Total Number of Trials in Class Length)

POD Probability of Detection (the true POD obtained if an infinite number of samples are used)

Signal Scalar amplitude output of NDE inspection system

Survey Data Survey Data Sets are data sets that have a sparce or disperse Sets collection of samples. The moving class width optimization has identified this data set as having limited applications where the classwidth has exceeded $\mathrm{X}_{\mathrm{L}} / 3$ and $X_{\text {POD }}$ has not been reached. An alternate optimization of $X_{\text {POH }}$ is used to provide guidance. The Survey Set is the recommended initial set for DOEPOD.

Survey $\mathrm{X}_{\mathrm{POH}} \quad$ Survey $\mathrm{X}_{\mathrm{POH}}$ is only identified for data sets determined to be Survey Data Sets. Survey $\mathrm{X}_{\mathrm{POH}}$ is the smallest class length and largest class width at which the minimum $X^{\mathrm{POH}}=1$ class length occurs. Survey $\mathrm{X}_{\mathrm{POH}}$ is the minimum class length at which $X_{\text {POD }}$ may be achieved when the class width is constrained to the companion survey class width listed. Survey $\mathrm{X}_{\mathrm{POH}}$ is utilized in all cases in which a Survey Set is identified by DOEPOD.
$X_{\text {Best LCL }} \quad$ Class length exhibiting the maximum or "best" LCL. The best class length is determined by increasing the moving class width until a maximum LCL is obtained
$X_{i} \quad$ Class length X at point " i "
$\mathrm{X}_{\mathrm{L}} \quad$ Largest class length in entire data set
$\mathrm{X}_{\mathrm{m}} \quad$ Class length near the mid-point between the largest and the smallest class lengths having no Misses
$X_{P} \quad 90 / 95$ POD or greater is achieve, by grouping numbers of specimens, for the range X_{P} to $X_{L} . X_{P}$ is only provided when $X_{P O D}$ has been identified.

For inspector qualification, X_{P} cannot be less than the largest flaw Missed. The class width of flaw set used for inspector qualification is listed as Inspector Classwidth @ Xp in the charts. The flaw sizes used for inspector qualification range from Xp to (Xp - Classwidth @ Xp).

XPOD Class length at which the lower confidence bound (value) is 0.90 (90/95 POD) @ 95% confidence.
$\mathrm{X}_{\mathrm{POH}=1}, \mathrm{X}_{\mathrm{POH}}$ Class length where there are no Misses above this class length, and $\mathrm{POH}=1$ above this class length.

X $_{\text {PODopt }} \quad$ Optional existing smaller class length where $X_{\text {POD }}$ may also be achieved if additional samples are added and Hits are identified.
$\mathrm{X}_{\mathrm{S}} \quad$ Smallest class length in the data set
UCL Upper confidence bound (value) of the false call rate @ 95% confidence
**Validated $90 / 95$ POD has been reached at a classlength, $X_{\text {POD }}$. In order to achieve 90/95 POD for the class length range between $\mathrm{X}_{\text {POD }}$ and the largest class length in the data set, X_{L}, inclusively, validation at a classlength near the mid-point and largest classlength is required ${ }^{\xi}$. If, in addition, there exists a class length, X_{P}, where 90/95 POD or greater exits for all class lengths in the range X_{P} to X_{L}, and $X_{P}=X_{P O D}$, and there is a sufficient number and adequate range and distribution of classlengths greater than $X_{\text {POD }}$, then the validation extends from $X_{P O D}$ to X_{L}. When this occurs, validation at a classlength near the mid-point and largest classlength is satisfied. ${ }^{\xi}$ WARNING: There are inspection systems that exhibit an oscillating or non-uniform POD. For example when the flaws are greater than the eddy current footprint, when large flaws are loaded to closure, or when the physics of the inspection processes changes modes over the flaw size range of interest. If flaws in these ranges or conditions are to be detected with a 90/95 POD, then samples in these ranges need to be included. When multiple base parameters are combined, e.g., (length) x (width) = area, and the combine parameter (e.g., area) is used as the class length, then 90/95 POD is only valid if the inspection technology has been validated to quantitatively measure each of the base parameters, or if the inspection technology is validated to quantitatively measure the new combine parameter. When all CASE 1 or CASE 1+ requirements are met, and the above warnings have been evaluated and the upper confidence bound of the false call rate is not excessive, then the inspection system is validated between $X_{\text {POD }}$ and the largest class length X_{L} for the flaw types, materials, and structure of the test specimen set. Validated is defined here to be: "This confidence bound procedure has a probability of at least 0.95 to give a lower bound for the 90% POD point that exceeds true (unknown) 90% POD point. This is referred to as $90 / 95$ POD, and for larger flaws in the evaluation range $90 / 95$ POD is met or exceeded. DOEPOD SOFTWARE AND ANY ACCOMPANYING DOCUMENTATION IS RELEASED "AS IS". THE U.S. GOVERNMENT MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL THE U.S. GOVERNMENT BE LIABLE FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE, OR INABILITY TO USE THIS SOFTWARE OR ANY ACCOMPANYING DOCUMENTATION, EVEN IF INFORMED IN ADVANCE OF THE POSSIBILITY OF SUCH DAMAGES. THIS SOFTWARE MAY NOT BE MODIFIED, DISTRIBUTED, OR REPRODUCED.

Bibliography
[1] W. D. Rummel and G. Matzkanin, Nondestructive Evaluation (NDE) Capabilities Data Book, 3rd ed., Vols. NTIAC DB-97-02, Austin, Texas, 1997.
[2] NASA, "NASA-STD-5009, Nondestructive Evaluation Requirements for Fracture Critical Metallic Components," 4 April 2008.
[3] E. R. Generazio, "NASA/TM-2014-218183, Interrelationships Between Receiver/Relative Operating Characteristics Display, Binomial, Logit, and Bayes' Rule Probability of Detection Methodologies," NASA/TM-2014-218183, April 2014.
[4] A. Wald, Sequential Analaysis, New York, New York: John Wiley \& Sons, Inc., 1947, p. 1.
[5] E. R. Generazio, "NASA/TM-2015-218696, Directed Design of Experiments for Validating Probability of Detection Capability of NDE Systems (DOEPOD)," March 2015.
[6] E. R. Generazio, "Design of Experiments for Validating Probability of Detection Capability of NDT Systems and for Qualification of Inspectors," Materials Evaluation, vol. 67, no. No. 6, pp. 730-738, June 2009.
[7] E. R. Generazio, "Validating Design of Experiments for Determining Probability of Detection Capability for Fracture CRitical Applications," Materials Evaluation, vol. 69, no. No.2, pp. 1399-1407, December 2011.
[8] Department of Defense, "MIL-HDBK-1823A, Nondestructive Evaluation System Reliability Assessment," 7 April 2009.

TABLE 3*

materal	Strucrune	fle name						$\begin{array}{\|l\|l} \hline \text { Best LCL } & \text { B } \\ \text { CLASS- } \\ \text { CIDTH } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Best LCL } \\ \text { CLASS- } \\ \text { LENGTH } \\ \hline \end{array}$								xpon \times								fase cal	$\underset{\substack{\text { rasee can } \\ \text { Rate }}}{ }$			$\begin{aligned} & \text { Length or Area } \\ & \text { per Inspection } \\ & \text { (in or in^2) }= \end{aligned}$	$\left.\right\|_{\text {Fase canl }} ^{\text {Foperanties }}$	False calt	Fases Cala flag	mLE Elag	$\begin{array}{\|l\|} \hline \text { NTIAC 90\% } \\ \text { POD occurs } \\ \text { at (inch) } \end{array}$	$\begin{array}{\|l\|} \hline \text { NTIAC 90/95 } \\ \text { occurs at } \\ \text { POD (inch) } \\ \hline \end{array}$			$\underset{\text { merio }}{\substack{\text { ¢ }}}$
22194 ¢T.87	pale	A1001al $\mathrm{ls}^{\text {a }}$	6a/15 514 PMCASE 14	0.6100	02000	0.9050				0.970		0.7100											0.5890	29								Nameme		0.2	0.27	0.61	1000	Et
2219 AT-87	plate	A1001ELX \times Ls	6 6a/15 516 PMCASE2	0.330	0.2000	0.9000				0.9790		0.6400	29																					0.185	025		0.961	Er
22984 T -87	pate	A1001C.LXLS		03360	0.0570	0.900				0.9790		0.5430																				vemea notiseat		0.3	0.4	0.48	1000	Er
229 AT:-87	pate	A1002al. \times LS	664155221 PMCASE 2	02980	0.0510	9002				0.9790	220	0.4890	${ }_{24}$																			mameat mobseat		0.2	0285		1000	Er
2219017.87	plae	A10028L \times LS		0.1000	0.0310	.9002				0.9790		${ }_{0}^{0.3360}$																				wemer notiseat		0.075	0.095	0.33	0.96	Et
22904 T. 87	pale	A1002C.Lx	$6,6 / 15$ 525 Pncase 14	0.153	0.036	0.9002				0.9790		${ }_{0} .5230$											1152	- 29								vemeq notiseat		0275	0.41	0.153	1.00	Et
$22194 \mathrm{AT} \cdot 87$	pate	A1003aL \times LS	64145527 PMCASE *	0.070	0090	9077				0.6100		0.260																				Naman wisisean		0.055	0.065	0.096	1000	ET
22194 T .87	pate	A1003ELLIS		0.030	0.0080	0.9001				0.6100		0.262																				vemanan mobieal	Number	0.04	0.05	0.06	1000	ET
$22194 \mathrm{AT} \cdot 87$	pate	A1003CLX $\times 1$.		0.083	0.008	0.900				0.6100		0.262																				memem notisealt		0.09	0.115	0.108	1.000	Et
229 AT: 87	pate	A2002al. $\times 1$.	6441553.3 PMCASE7				8853	2000	,										000	29												mameq notseat		0.29				Er
229941.87	pate	A20022L $\times 15$	64415 538PMCASE7				0.8608	0.2000	0.3720										1.100	${ }_{29}$												wemer notise alt						Et
221941.88	pate	A2002CLX $\times 15$	$6 / 4 / 15.33$ Pncast ${ }^{\text {P }}$	0.774	02000	0.9002				0.550		0.9880																				verser notise eut		0.095	0.17	0.474	1000	ET
Tibala	pate	A30014. \times x	$64 / 45$ S.40 PnCASE 14	0.250	0.040	0.9002				0.4870		${ }^{0.2750}$											0.225	-29								wemat Nobseant		0.175	021	0225	1000	ET
Tigav	pate	A30011日L \times Ls	6 6/415 5.4 PMCASE2	02650	0.0800	0.9002				0.4070		0.3150																				mameme		0.265	0.365		0.978	Er
Tigan	pale	A3001CLXLS		0.2270	0.020	0.9002				0.4070		${ }_{0} .355$											2350									mameat motisealt		0.18	0.21	0242	1000	Et
Tigalv	plate	A3003aLl \times LS	6 6415 5.43PMCASE7				0.879	0.027	02120										8140	${ }^{29}$												wemon notiseat		0275	${ }_{0.36}$			Et
Tiganv	pare	A3003ELLIS	664155.45 PMCASE7				0.7411	0.022	0.270										0.8120	29												wemat notiseat		0.49				ET
Tibala	pate	A3003C. $\times 1$.	64415 S4. 6 PMCASE7				0.7942	0.0310	0.240										0.8140	29												maner notise alt		0.585				ET
SS ans 35	nole	AA00011 1 LS	6a/115 5.48 PNCASE 6				0.8190	0.0750	0.175	0.2575	24						0.2575		0.5150	29												weme		0.12	0.195			ET
SSAMS 35	node	A400013x	$64 / 15$ 5.49PMCASE 14	0.1031	0.059	0.900				0.2575		0.192											0.1004											0.04	0.065	0.1031	1000	ET
SS AMS 355	nole	Aa00014x					5518	0.0070	0.559	0.2575	28						659		0.5150	29														0.095	0205			Et
SSAMS 355	nole	AA00015xis	614155.51 PM PCASE				0.593	0.0030	0.057	0.2575	28						0.063	${ }^{27}$														wemeat notiseat		0.035	0.065			Eт
SSAMS 355	node	A400016xLS		0.1031	0.059	9002				0.2575		0.192											0.1004									maner notise alt		0.025	0.045	1034	1.00	Et
SS Ans 35	nole	As50011 XIS	644155 55 PM PCASE 4				0.8855	0.0230	0.092	0.092					0.0092		0.0092		0.103	29												weme		0.075	0.095			Eт
SSAMS 35	node	A500013x ${ }^{\text {L }}$	$64 / 415.55$ PnCASE 6				0.7350	0.0050	0.020	0.046	28						0.039	27	. 022	29												maneme		0.03	0.06			Et
SS AMS 355	nole	A500014x ${ }^{\text {a }}$		0.059	0.0180	0.902				0.092		0.076											0.0572									vemen		0.03	0.035	0.5505	1.000	ET
SS AMS 355	nole	A500015xis	64115 S57 PMCAEE 5				0.5938	0.0030	0.057	0.2575	28						0.063	${ }^{27}$																0.035	0.065			Er
SS Ans 355	nole	As00016x. ${ }^{\text {a }}$		0.0610	0.055	0.9002				0.085		0.0681											0.058											0.03	0.04	0.06102	1000	Et
${ }^{2024 A 4.537}$	Repsplice	A6001axis	6 6/415 5.59 PMCASEE ${ }^{\text {P }}$	0.140	0.0180	0.8003				,8120		${ }^{0.290}$																						0.09	0.1	0.14	1.000	ET
2024 AT 37	lap splice	A6001arxis	6/4/15 600 PMCASE ${ }^{14}$	0.140	0.0180	.9002				0.8120		0.290											0.1060									mamme		0.09	0.095	0.114		
2024 AT 37	Rapsplice	A60018. $\times 1$.	664156.01 PMCASE 14	0.090	0.0140	0.902				0.8120		02780											0.039										Men	0.065	075	0.094		Et
2224 AT 37	lap splice	A6001. $\times 1$ LS		0.140	0.0180	0.9002				0.8120		0.290											0.1060									weman notisean		0.055	0.0	0.14		Et
2024 AT-37	lap splice	A60010.x.Ls	${ }^{64 / 415.609 P M C A S E E ~} 14$	0.1280	0.0200	0.9050				0.8120		0.372											0.1270									vemea notiseall		0.105	0.15	0.128	1000	ET
2024 T -37	lapsplice	A6001EXIS		0.1280	0.020	0.950				0.8120		${ }^{0.3720}$											0.1270									wame Notseat		0.055	- 0.1	0.128	1000	Et
2224 AT 37	lap splice	A6001Fx.5	6 6a/15 6.0 PM PCASE ${ }^{\text {P }}$	0.1200	0.0230	0.0950				0.8120		0.372																				venan notse alt		0.075	0.9	0.12		
2024 AT 37	Rap splice	A60016 x 1 Ls	64/156.077 PMCASE 4				0.8666	0.087	02760	0.8120	27				02760		02760																	016	0.185			ET
2204 AT $\cdot 37$	lap spice	A600168x	6/al15 609 PMCASE 6				0.8707	0.059	0.129	08120	27						0.320	${ }^{24}$	1.620	29												veneq wisiseall		016	0.185			Et
2024 AT 37	lap splice	A60014x ${ }^{\text {cis }}$	6 6al15 6.11 PMCASE 1*	0.1310	0.050	0.902				0.8120		0.3720																				vemon wobiseal		0.15	0.12	0.27		ET
2224 AT 37	lap spilce	A60011x 15		0.1310	0.0250	0.9002				0.8120		0.3720											1305	22								Naman woiseal		0.105	0.115	0.131	1000	ET
2024 AT 37	Ropsplice	A600113exis	6 6a/15 6.13 PnM CasE 14	0.1280	0.020	0.9050				,8120		0.3720											1230									vemeq notise eat		0.095	,	0.128	,	Et
2024 AT 37	lap splice	A6002axis		0.0980	0.0140	0.9002				0.8120		0.276											0.0330									Naman woiseal	Mester	0.075	0.095	0.094	1000	Er
22044 AT 37	la spalice	A60028x.1.	6a/15 6.15 PnCASE 2	0.1050	0.080	0.9002				0.8120		0.290	26																			vemman Nobiseat		- 0.1	0.2		1000	Et
22024 T-37	lap splice	A6002. X. ${ }^{\text {a }}$	66415617 PM CASE 1.	0.150	0.0180	0.9001				0.8120		0.290																				Naman (emsean	andem	0.07	0.0	0.105	1000	ET
202441 T.37	Rapsplice	A6002. $\times 1$ S	644156818 PMCAEEE ${ }^{\text {P }}$	0.1280	0.020	0.9050				0.822		0.3720																						0.105	0.115	0.128	1000	Et
202441.37	Rap spice	A60202R XIS	6 6a/15 6.19 PMCASEE ${ }^{14}$	0.150	0.030	0.907				0.8120		0.3220											0.153	- 29								vemmat		0.095	0.1	0.154	1.00	Et
2224 AT 37	lap spice	A6002exis	66415620 PMCASE 1.	0.1310	0.0250	0.9001				0.8220		0.3720																				Naman (exsean	andem	0.11	0.3	0.27	1000	Et
2024 AT 37	lapsplice	A6002erex	${ }_{6} 64115622$ PNCASE ${ }^{14}$	0.1880	0.0450	0.900				0.8120		0.3720											880	- 29								weman notiseat		011	0.125	0.186	1000	Er
2024 A1 37	Rapsplice	A6002Fxis	64415682 PnCASE 7				0.8190	0.070	0.290										1.620	29												vameq Notseat		- 02	0265			et
${ }^{2024 A T-37}$	lap splice	A60220x XLS	661156.29 PMCASE 14	0.1200	0.0230	9050				0.8120		0.3720											0.1190	22								Maman motasean	Men	0.05	0.05	0.12	1000	Et
2024 A1 37	lap splice	A6002HxLS	$64 / 4156.25$ PMCASE1*	0.220	0.0910	0.9001				0.8120		0.3720																				Naman wobsean	andem	0.12	0.135	0222	0.978	Et
220441.37	lap splice	А6ооннr.xis	6,415627 PNMCASE 1-	0.1300	0.0250	0.9050				0.8220		0.3720																				wemen notiseat		0.105	0.12	0.31	1.000	Et
2024 A 7.37	lap splice	A6002 X X	64415628 PMCASE 6				0.8800	0.020	0.1270	0.8220	27						02760		1620	${ }^{29}$												meneme		0.45	0.175			ET
2024 AT 37	Rap splice	A6003axis	$6 / 4 / 158.3$ PM PCASE $1 \cdot$	0.1054	0.019	9002				0.817		0290																				vemeqay Notseeal		0.085	0.095	0.1054	1000	Et
2224 AT 37	lap splice	A6003 . 1 LS	6 641156.3 PNCASE 1-	0.114	0.019	0.9050				0.817		0290																				Naman wobisean	Mespeneme	0.095	0.095	0.114	1000	ET
2024 41. 37	Rap splice	A6003cx xis	64415632 PMCASE ${ }^{\text {P }}$	0.036	0.0150	0.9002				0.817		0.276																				Naman motseal	Mesmen	0.065	0.08	0.1005	1000	et
2224 A1.37	lap splice	A60030. x\|s	6 6/415 6.3 P PMCASE 14	0.104	0.090	0.9002				0.817		0.290											0.1090									maneme		0.09	0.1	0.1054	1000	Et

TABLE 3＊

materal	structure	fle name	${ }_{\text {chen }}^{\substack{\text { Anaysis } \\ \text { Daterime }}}$							$\begin{aligned} & \text { Best LCL } \\ & \text { CLASS- } \\ & \text { LENGTH } \end{aligned}$		xL\＃${ }^{\text {xm }}$			xs ${ }^{\text {\％}}$		xclit	xpoh	xoh ${ }^{\text {a }}$							．fase cal	$\underset{\substack{\text { rasee can } \\ \text { Rate }}}{ }$	False Call Length（in）			Forse	Fasse cals	False call fag	mLE lag		$\begin{array}{\|l\|} \hline \text { NTIAC 90/95 } \\ \text { occurs at } \\ \text { POD (inch) } \\ \hline \end{array}$			$\underset{\text { Merio }}{\substack{\text { ¢ }}}$
224AIT 37	lapsplice	A6003EXX	$61 / 156.35 \mathrm{PMC}$		0.1283	0.0360	0.9001				0.817		0.329																				maman	memeneme			0.14525	0.97	ET
2024 AT T－37	lap splice	Atoosex．lis	641456.37 PMC	CCASE 1^{-}	0.1054	0.0190	0．900				0.817		2990																				vemeq notiseat		0.08	0.09	0.1054	1000	Er
2024 AT 37	lap splice	Af003s．x．x．	${ }_{64 / 456,388 \mathrm{PM} \text { c }}$	CASE 2	02100	0.550	9000				0.817	0.5	0.510	29																			vemaq notiseat		0.9	0225		1.00	Er
22024 AT－37	lapsplice	A6003 \times xis	644156．39PM	CASE 2	208	0.0250	9002				0.817		03719																				wanme		0.4	0.165		1000	Er
$2024 \mathrm{AT} \cdot 37$	lapspice	A6033x ${ }^{\text {cs }}$	6／4156，40PMC		0.0982	0.0160	0.950				0.817		0290											0.0980	29								Neman wobisean	Wemen	0.08	0.0	0.0982		
2024 4 T． 37			64115 6，42PMC		0.096	0.040					0.8120		0.2780																				venea notuseal	den	0.08	0.095	0.094		
${ }^{2022447.37}$	lapspice	A600AXLIS	${ }^{\text {644156．42PMC }}$	CCASE 1．	0.0920	0.0170	－0．902				0.8120		0.2760																				Namemo nobiseat		0.08	0.095	0.094		et
22024 AT． 37	lap splice	A0008BXLS	64175 6：43PMC		0.140	0.088	0.901				0.8120													0.1070									mama		0.095	0.105	0.14	1.00	et
2024 AT． 37	lap splice	A6008Bx \times IS	614156.49 PMC	case ${ }^{-}$	0.1050	0.0180	0.9002				0.8120		0290																				vaman woisean	deat	0.07	0.055	0.105	1.00	Et
2024 AT 37	lapsplice	Asoact \times xis	${ }^{6} 61156.468 \mathrm{PC}$	case 5				5670	0.0010	0.1140	0.8120	27						0.176	${ }^{27}$														\％emea motseat		0.4	0.165			Et
2024 NT． 37	lapsplice	Asoaccrxis	64145648 PMC	CASE 5				0.600	0.0010	0.0980	0.8120	27						0.170	27															Uex	0.3	0.14			Et
22024 AT．37	lap splice	A60000x．x．	641156.49 PMC	CASE 14	0.1050	0.080	0.9001				0.8120		0.2910											0.1000									memem nobseat		0.09	0.1	0.105	1000	Er
2024 AT 37	lap splice	As002EXIS	$6,4156.50 \mathrm{Pm}$	CASE 14	0.330	0.050	．9902				0.8120		0.3720											0.135	${ }_{29}$								Wmanem notiseall		0.1	0.125	0.31	1.00	Et
2024 AT 37	lap splice	Ab0afexts	641156．52PMC	CASE 1－	0.1050	0.080	0.9001				0.8120		0.290																				Neman wotseal	Me Enegeme	0.065	0.075	0.05		et
	lapsplice	Asoofer xis	641156．53PMC		0.150	0.080	0.9001				0.8120		0.290											0.1020									Naman mobiseal	mesmeme	0.07	0.08			
22024 AT．37	${ }^{\text {ap spmpee }}$	A600046x XLS	64.156549 PMC	CASE ${ }^{\text {－}}$	O．1．300	0.0680	0．90011				0．8120		－0．2900																				为		0.15	0.185	0．1．09	10．909	
2024 AT 37	lap splice	A6004＋x	${ }_{6} 64156.56 \mathrm{PMC}$	CCASE 1－	0.1890	0.0660	0．9001				0.8120		0.3720																				Namme nombeal		0.135	0.16	0.189	0.97	ET
2024 AT 37	lap splice	A6004］xis	${ }_{6} 64156.57 \mathrm{PM}$	CCAE 14	0.1760	0.039	0.902				0．8120		0.3720											0.170									memen		0.105	0.12	0.176	1000	et
STEEL 4330	plate	Aroonlux	641156．58 PMC	CASEE 7				598	0.0000	0.0938										48000	29												wemeq notiseat						Et
STEEL 330	plate	A700日B $\times 15$	64157700 PM	CASE 7				0.6070	0.050	0.093										4.8060	29												wameq notiseall						Er
STEEL 4330	pate	Aroocicux	6，4157．03PMC	case 7				0.5493	0.0000	0.093										48060	29												vemeq nobiseat						ET
STEL 1330	pate	A70034LILS	644157.05 PMC	CASET 7				0.6356	0.0830	0.3500										4.8000	22																		Er
STEEL 4330	pate	A7003ELX \times Ls	6，4157．07PMC	case 6				0.5493	0.0010	0.1960	24030	28						16000		48060	29												wempan mobiseat						Et
STEL 1330	plate	A7003C．L． LS $^{\text {a }}$	641157.09 PM	CASE 6				0.6878	0.0520	0.2480	24830	28						16030		4.8060	29												wemen						ET
SSAMS 355	nole	A8001 \times x	644157.11 PM	CASE ${ }^{-}$	0.028	0.0050	0.9002				0.3425		0.161																						0.025	0.03	0.04009	100	Et
SS AMS 355	nole	A8002．．xis	641157．12PMC	Case ${ }^{\text {ax }}$	0.047	0.0090	0.922				0.325		0.161											0.014	29								Vememen		0.01	0.015	0.0146		Et
SS AMS 355	nole		641157.16 PMC		0.0147	0.0040	0.912				0.3425		0.161																				Naman woisean		0.01	0.015	0.01468		Et
SS AMS 355	nole	Aeoonlulis	64／15722PMC	CASE 14	0.087	0.090	0.9950				0.325		0.1684											0.0582	29										0.03	0.04	0．05873	1000	ET
SSAMS 355	nole	Aeoos．$\times 1$ L	64415723 PM	CASE 14	0.0575	0.080	0.9100				0.3425		0.168											0.0567	${ }_{29}$								wanem Notseeal		0.03	0.035	0.0575	1000	Et
SS AMS 355	nole	Ae00eLxx	64145724 PMC		0.087	0.090	0.9050				0.3425		0.1684											0.0581	29									$\begin{aligned} & \text { MLE Divergence } \\ & \text { Warning: Initial results } \\ & \text { listed. } \end{aligned}$	0.04	0.045	0.0873		ET
229 AT－87	stringer panel	A0001313．x．${ }^{\text {a }}$	64115726 PMC	CasE 6				0.768	0.0020	0.0650	0．0950	26						0.0800		0.1900	29														0.12				ET
229041.87	strinoer panel	A00013） Ns $^{\text {a }}$	6，41572727MC	case 6				0.844	0.0090	0.5690	0.680	26						0.680		1.360	29												wempa notiseat						et
229091.87	stinoer panel	A00233］．x．	64415729 PM	CASE 6				0.844	0.0090	0.055	0.0950	26						0.090	${ }^{26}$	0.1000	29												wememe		0.055	0.065			ет
221901 T．87	strinerer panel		64415738 PM	CASET 7				${ }_{0}^{0.8827}$	0.0190	0.579										1.3680	29														0.375	0.51			Et
221941.88	strinereranel	A003330．x．	641157322PM	CasE 6				0.7933	0.0020	0.0570	0.0950	26						0.076	26	0.190	29												vemer nobiseat		0.05	0.24			${ }_{\text {Er }}$
229941 T .87	stinioger panel	A003331 \times x	644157.34 PMC	case 6				0.799	0.0020	0.1950	0.680	26						0.6880	26	1.3680	29																		et
22904 T －87w 2319	wed LP	Aa0013）\times xs	$64 / 1573.35 \mathrm{MM}$	case 6				0.6070	0.0040	0.680	12710	26						12770	． 26	25420	29												vemen						et
2291.41 T．87we319	wed LP	AAOO23） Ls	641457．37PMC	case 7				0.769	0.0000	09380										2.542	${ }^{29}$																		Er
22904 H －87\％ P 2319	wed LP	Aa0033）\times Ls	$64 / 157$ 7．40 PMC	CasE 2	0.9450	0.050	9050				12710		11.560																									1000	Et
$2219 A T$ T－87w 2319	wedel LC	A8Bou（3）\times xs	64／1577．3PPM	CasE 7				0.6070	0.0030	0.2870										23760	29																		Et
	wed LIFC	A8Boz（3）\times Ls	64／157 7.4 PPM					0.6070	0.0330	0.2870	11880	26						11.880		23780	29																		Et
	weld LFC	ABoo3（3）\times xs						0.7206 0.847 0.	0.0060	0.1000										237600	229																		
2219 AT －87M 2319	wed Tre	Acoolilu \times xs	644157888 PM	CASE 7				0.847	0.5000	0.985										28700	29														0.45	0.67			er
$221941.8 .87 \times 239$	wedd tec		$64 / 157.49 \mathrm{PMC}$	CasE 6				0.769	0.0040	0.482	14350	26						0.9890	23	28700	29												何		0.465	0.74			et
221904 T．87w 2319	meda TeC	Acoos3 3 xs	${ }^{6414575009 M C}$	case 6				0.866	0.2000	1.076	14350	26						1.4350		28700													mamen		0.75				ET
2219 AT－877me39	wed liss Lec．	CA00013L Lxs	644157．52PMC	CASE 1－	0.3800	0.020	O50				1.5620		11190																					为	0.105	0.3	0.38	1000	ET
221941 T．87w2319	wed lush Lec．	（capore3u \times ss	${ }^{6414157.58 P M C}$	CASE ${ }^{-}$	0380	0.020	0.9050				1.5620		11190																				vemeq wobiseat		0.185	024	0.348	1000	Et
221941 －87wez319	wed luss LFC．	（ca003（3）\times s	6441580.6 PM	CasE 1＊	0.3880	0.020	0．9050				1.5620		11190											0.1000									Nemeat		0.11	0.135	0.348	1000	Et
2219 AT T．87w 2319	wed lish Trec．	EAEOOI3 2 Ls	64／15 810 PMC	CASE 14	02350	0.0570	0.950				0.4950		0.3000											02240									maneq Notseeal		0.185	0.23	0.235	1.00	Et
229 AT T－87m2319	wed flus TFC．	CAEOO23）	$64 / 158.11$ PMC	CASE ${ }^{\text {P／}}$	0.260	．088	0.050				0.450		0.3810	29										0.2530	${ }^{29}$								vaman wobisean		－ 02	023	0.267	1000	ET
2219 AT －87702319	wed flush TEC	CAEOO3（3）Ls	644158.11 PMC	CASE ${ }^{\text {He }}$	02350	0.0570	0.9050				0.4950		0.3000											0.130											0.005		0.235	1.00	Et
STEL 4330	pate	B100Aa．xis	64／158．12PMC	CasE 6				0.866	0.0090	0.0620	02100	28						0.2100		0.420	29												wemer motise al						мт
STEEL 2330	pale	B10014L \times LS	$64 / 158.14 \mathrm{PMC}$	case 6				0.8855	0.0500	0.230	20030	28						1.630		48060	29												wemen		0.695				mт
STEL 2330	pate	B100180．x	644158．15PMC	case 6				0.8772	0.0380	0.052	02100	28						0.2100		0.4200	29												men meme						мт
STEEL 1330	pale	B10018LX \times ls	${ }_{6} 61 / 158.17 \mathrm{PMC}$	case 6				0．872	0.052	0.230	24030	28						12270		8000	29												wememe		0.4				мт
STEEL 4330	Pate	B1001C．X．x．	$64 / 158.19 \mathrm{PM}$ C	CASE 2	0.060	0.0390	0.9002				0.2100		0.1173	14																								0.978	mt
STEEL 2330	pate		64／158．99PMC	CASE 2	0.2300	0.0630	0．9002				24030	2418	1.600																				Nameme		1037			1000	мт

TABLE 3*

materal	Structure	fule name	$\underbrace{\text { caselio }}_{\substack{\text { Anaysis } \\ \text { Daterime }}}$				Best.ce	$\begin{array}{\|l\|l} \hline \text { Best LCL } \\ \text { CLASS- } \\ \text { WIDTH } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Best LCL } \\ \text { CLASS- } \\ \text { LENGTH } \\ \hline \end{array}$							xcle	xoh	$\times \mathrm{monh}{ }^{2}$	2xL			xss 4	xpodopt			$\xrightarrow{\text { Fasse cal }}$ Rate	$\xrightarrow[\substack{\text { Fases call } \\ \text { ength (in) }}]{\text { a }}$		$\begin{aligned} & \text { Length or Area } \\ & \text { per Inspection } \\ & (\text { (in or in } \wedge 2)= \end{aligned}$	$\|$Fasese alil Opporunites	false cals	False call flag	meklag	$\begin{array}{\|l\|} \hline \text { NTIAC 90\% } \\ \text { POD occurs } \\ \text { at (inch) } \end{array}$	$\begin{array}{\|l\|} \hline \text { NTIAC 90/95 } \\ \text { occurs at } \\ \text { POD (inch) } \\ \hline \end{array}$			
STELL 430	plate	B103AD. \times Ls	6a/15 820 PNCASE 6				0.8514	0.0060	0.063	0.2100	28						0.156	,	0.4200	,												Wempen Nobse all						мt
Steel 3330	plate	810934.x\|s	64115822 PNCCASE 2	02330	0.050	0.9001				24030	1	1.6030	28																			wempe Nombeal		026	0.465		1000	мт
STEL 4330	pate	8100380.x.s	64715 az3 PMCASE 6				0.881	0.0120	663	02100	- 28						0.2100	${ }^{28}$	0.420	- 29												vemems woble eal						мт
STELL430	pate	81033 X $\times 15$	64145825 PMCASES 2	0230	0.590	0900				24030	${ }_{27}$	1603	28																			vematanememean		011	${ }_{0} 135$		1000	wT
STEEL 3330	pate	B103sc..x	64115828 PMCASES 6				0.8813	0.012	0.063	0.2100	,						0.153	${ }^{23}$	0.420	29												mamme		0.045				мт
STELL 330	pate	B103sc. x\|s		0230	0.590	0.9001				24030		1.630																						0.12	0235	0234	1000	mr
SS AMS 355	nole	82001×1 x	64/115829PMCASE 6				0.8190	0.075	0.175	0.255	24						02575	${ }^{24}$	0.550	29												Weame wible eal		0.15	0.175			mт
SS Ans 355	nole	82022x 15		0.1031	0.056	0.9001				0.255		0.192											0.1008									wememe wobleseal		0.04	0.065	0.1031	1000	мт
SS AMS 355	note	82033x15	$64 / 158331$ PMCASE 5				0.3684	0.0010			28						0.063	27														Wempe Nobleeal	Me	0.005	0.07			
SSAMS 355			6 6415 83 Pr PMCASE 5				0.3684	0.0010	0.0512		28																							0.045	0.07			
SS AMS 355	nole	183011×15	64415832PMCASE 7				0883	0.0190	0.0868										0.1003	32												Wempan wobleal	Neam mat ens	0.24				mt
SS Ams 355	nole	830012x<	6a/15 83 PPMCASE 4				0.885	0.023	0.002	0.092					0.002		0.002		0.1003	329												wempe sobiseall		0.075	0.095			мт
SS AMS 355	nole	$88001 \times$ xis	6 6415 835 PrMCASE 5				0.472	0.000	0.063	0.325	28						0.0821	${ }^{26}$														wememe wible an		0.75	0.26			мт
22994 T.87	pate	C1001ALX \times	6 6415 838 PMCASE 7				0.8609	0.020	0.2610										1.950	- 29												zempe		0.35	0.63			${ }^{\text {pr }}$
229094.87	plate	cloosexx	6/4115 8.40 PMCASES 6				0.8388	${ }^{0.0550}$	0.320	0.970	28						0.6100	22	1.950	- 29												wememe woble ell		0.44	0.695			pr
229 AT.87	pate	cloorcux \times	6a/15 a/2 PNM Case 14	0.5390	0.2000	0.9774				0.9700		0.7100											0.530									wempe wobseal		0.315	0.61	0.538	1000	${ }^{\text {pt }}$
22994.8 .87	pale	C102024.x.s		0.290	0.049	0.9008				0.970		0.5430																						0.09	0.15	0.29	1000	pr
$22994.87^{\text {P }}$	pale	${ }^{\text {c1028L } \times \text { x }}$	61415 847 PMMCASE $1 \cdot$	0.1000	0.030	0.900				0.970		${ }^{0.3290}$																				wemens wotise ant		0.08	0.05	0.261	0.967	PT
22994T.87	pate	cloozcux		0.2980	0.0510	0.9001				0.970		0.5930																				vememen wobeean	Men memene	0.11	0.45	0.508	1000	
																																	vemm					
22904 T. 87	pate	C1003ALX \times Ls	6.44158 .51 PMCASEE 1 .	0.030	0.0080	0.9001				0.6100		02620																				men	deal	0.02	0.035	0.86	1000	PT
22994 T . 87	pate	cliosex.xis	64145856 PNCASE2	0.1020	0.0170	- 0.9001				0.6100		${ }_{0} 02200$	${ }_{10}$																			wempe wobleal		0.08	0.095	0278	1000	+
22994 T.87	plae	closacx \times x	$64 / 158.57$ PM Case 1	0.080	0.0130	0.9001				0.6100		${ }_{0} 0260$																				wempe wobean		0.06	0.07	0.086	0.978	¢T
227941.87	pate	c2002AL. 1 Ls	64145900 PMCASE7				0.7068	0.0520	0.5300										11000	- 29												wempe wobsealt						${ }^{\text {pt }}$
2299 NT.87	pale	C20282L X 1 S		0.530	0.060	0.9001				0.5500		0.5300											0.2800									wememe wobise all		0.095	0.17	0.534	1000	Pr
229 AT.87	pate		6 64159.03PNCASE 2	0.770	0.2000	0.9001				0.5500		0.480																				wempe wibueal		0.22	0.355		1000	pt
Tramav	pate	Cs301AL. \times LS	6al15909PMCASE 6				0.798	0.0180	0.199	0.4070	28						0.3000	${ }^{27}$	0.840	29												wempen mibeseal		0.75				${ }_{\text {pt }}$
Tramav	pate	C33013LX 1 S	64415906 PMCASE 2	0.1950	. 0560	002				0.0970		0.300	${ }^{17}$																			wempers mobiseall		0.12	0.175	0.32	1000	pt
Tigala	pate	c3001CLILS	6al15 907 PMCASE4				08788	0.0950	0.350	0.480	23				0.330		0.3290															wempe moteseal		0.4	0325			${ }_{\text {pr }}$
Tranav	pate	C39024. $\times 1$.	6a/159.08PMCASE 6				0.886	0.0580	02120	0.0070	18						0.3550	10	0.810	- 29												wemens wibeean		0.3	0.32			${ }^{\text {PT }}$
Teanav	pate	c3022Lx 1 S	664159.10 PMCASE 2	0.100	0530	0.9001				0.4070		0.300	17																			Wememe woble eal		012	0.165	0.315	1000	pr
tigav	plate	C30202LX 1 S	6a/159.11 PMCASE 14	02160	0.030	0.9001				0.4070		02650											0.130									vemome notusean	come	0.08	0.1	0216	1000	PT
Tisava	plate	C30303ALX	6 6al15912 PMCASE 7				0.895	0.1000	0.350										0.840	29												Uememe nobseal		0.185	0.465			${ }^{\text {pr }}$
Tigan	pabe	C30033LX 1 S	64115993PMCASE2	0.220	0.0520	0.9950				0.4070		0.300	${ }^{18}$																			Wempe wobleal		0.155	0.25		1.00	${ }^{\text {pr }}$
Tigan	pate	craoscax \times ¢	6/4159 914 PNCASES 2	0.262	0.052	0.9050				0.4070	${ }_{58} 0$	0.300	18																			wememe wobleeal		0.155	0305		1000	pr
SS Ans 355	nole	catoon1xis	6a/159915 PMCASE 6				0.8074	0.073	0.1752	0.2575	24						0.2575	${ }_{24}$	0.5150	29												vememe wise eal		0.33	0.195			${ }^{\text {pt }}$
SSAMS 355	nole	catoon2x	6/4159916 PMCASE 5				0.5493	0.0070	0.078	0.2575	28						0.058	27														wempes wotue eal		0.055	0.12			${ }^{\text {PT }}$
SSAMS 355	node	catoon 3 x	6/4159918 PMCASE 5				0.5938	0.0070	0.068	0.2575	28						0.0858	${ }^{27}$														wememe wibeeal		0.1	0.185			${ }_{\text {pr }}$
SS AMS 355	nole	catoon 4×1.5	641415919 PMCASE4				0.8868	0.0900	0.192	0.2575	19				0.192		0.192															wemes wobee an		0.135	0.225			¢T
SS Ans 355	node	C500011 X 15	6 64115920 PMCASE 4				0.8855	0.020	0.092	0.092					0.092		0.0092		0.1803													memen		0.085	0.1			${ }_{\text {pr }}$
SS AMS 355	nole	C50012x	6al15922 PMCASE4				0.885	0.023	0.092	0.092					0.092		0.002		0.1083													wempe wobleaut		0.055	0.105			${ }^{\text {pr }}$
SS AMS 355	nole	C50014x ${ }^{\text {c/ }}$	6a/15929PPMCASE4				0.885	0.023	0.092	0.092	,				0.092		0.002		0.1003	3												wempen wobleat		0.095	0.12			${ }^{\text {PT }}$
SSAMS 355	nole	c500016x.1.	61415928 PMCACAE 7				0273	0.0150	0.0008										0.135	522												wempe wobleseat		0.055				${ }^{\text {PT }}$
Stel 1330	pate	C6001ALX	64415927PMCASE 6				0.7942	0.0100	0.153	20830	28						1.630	${ }^{28}$	40800	- 29												Wempe wobleeal						${ }^{\text {pT }}$
STEL 4330	pate	C6013LX X	64415930 PrMCASE 6				0.792	0.0100	0.1153	24830	28						1.030	- 28	48000	29												wempe wobesean						${ }_{\text {PT }}$
STEEL 230	pale	csoocclux	64115932 PMCASEE 6				0.7982	0.0100	0.1153	2.4030	0						1.630	${ }^{28}$	4.8080	- 29												wempen woble eal						${ }^{\text {PT }}$
STEL 2330	pale	c602ALXL	61415933 PMCASE2	02500	.0700	0.902				20030		16030																				wempe Moblese all		0.1			1000	pt
Stel 4330	plate	C6028LX XLS	644159935 PMCASE1.	0.0560	0.0400	0.900				24030		1.6030																				veame woblesean		0.06	0.08	0.18	1000	PT
STEEL 4330	pate	c6002clux		02370	0.052	0.9950				24030		1.6030											0.190									vemome notuseal		0.055	0.05	0.23	1000	pr
STEL 4330	pate	C6003ALX $\times 1$	664159.37 PMCASE 2	02890	0.0580	0.9001				24030	271.	1.6030	28																			wempe wobseat		0265	0.6		1000	Pr
STEL 2330	pate	C6033LX \times S	64455938 PMCASE 2	02880	0.0880	0.9002				2.4830	24.1	1.6030	28																			wembe wibleseal		0.155	0255		1.00	PT
STEL 4330	pale	c603ccıx	6 6/415 9.40 PMCACE $*^{*}$	0.230	0.050	0.9001				24030		16030																				vememe woble eal		0.11	0.175	${ }^{023}$	1000	pt
STEL 3390	node	crooux xis	6/41159.41 PMCASE 5				0.5938	0.000	0.078	425	${ }^{28}$.0881	${ }^{26}$														vemome notuseal		0215	0.36			pr
STELC 2330	node	crooelx. ${ }^{\text {a }}$	6a/15 9,93PMCACASE 4				0.844	0.090	0213	3325	27				0213		0.192	${ }_{13}$														Nemome notisean	cemememen	0.35	0.58			pt
STEL 2330	nole	croos.x.x.	64/159945PNCASE4				0.779	0.0930	0.2512	0.325	27				0.2512		02512															Weame notusean		0.3	0.505			${ }_{\text {PT }}$
22991.88	striner ranel	couori30.xs	6al159947 PMCASE 2	0.0530	20	0.9050				0.0950	170	0.800	26																					0.075	0.2		100	${ }_{\text {pt }}$
2299 NT.87	stinger penel		6 6/15 9949PMCASE 2	02780	0.0050	0.9050				0.680		0.5700	${ }_{17}$																			wememe wible ent		0.45			1000	PT
229041 - 87	Striner eranel	caozez30.xs	6 64159 905 PMCASE7				0.8739	0.0030	0.038										0.190													wempe		0.08				${ }_{\text {pr }}$
2229017.87	strineer ranel		64145951 PNCCASE 2	02200	0.068	0.9050				0.6800	- 260	0.4700	${ }_{23}$																					0.355			1000	PT

TABLE 3*

TABLE 3*

TABLE 3*

materal	Structure	fle name			$\begin{array}{\|l\|} \hline \text { Xpod } \\ \text { CLASS. } \\ \text { LENGTH } \\ \hline \end{array}$	\|cele		Best.ce	$\begin{array}{\|l\|l} \hline \text { Best LCL } \\ \text { CLASS- } \\ \text { C } \\ \text { WIDTH } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Best LCL } \\ \text { CLASS- } \\ \text { LENGTH } \\ \hline \end{array}$		xL.. \times m		xm* ${ }^{\text {x }}$	xs ${ }^{\text {, }}$	xct	Xctel	on			2xL		xss 4 x	xoodope		, Fials cal	$\xrightarrow{\text { Fasse cal }}$	$\xrightarrow[\substack{\text { Fases call } \\ \text { Lengnt (in) }}]{\text { a }}$		$\begin{array}{\|l} \hline \text { Length or Area } \\ \text { per Inspection } \\ (\text { in or in^2) }= \\ \hline \end{array}$	\mid	Secal	False Call flag	MLE	$\begin{array}{\|l\|l\|} \hline \text { NTIAC 90\% } \\ \text { POD occurs } & \text { g } \\ \text { at (inch) } & \text { F } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { NTIAC 90/95 } \\ \text { occurs at } \\ \text { POD (inch) } \end{array}$			
219 AT-87me319	wedi fec	о8003(3) \times x	6/515 2.31 MaM	case 6				0.866	0.0850	02380	4350	${ }^{26}$						1076	20	28700	29												memat motaseant						UT
T.87w339	wed ment lec	cains	S15 232 am	case.	0 O50	Oose	690				02750		02150																				wamana Wotiseant	Me meame	003	0 S	005		ut
	wedd fush LLeC	ocoor(3) \s	65152327 AM	CASE ${ }^{-}$	03890	0.220	0.950				1.560		1.1190																				memme		018	0215	0.348	1000	ut
2219 AT -.87w2319	wed fush LFC	ecooz30 Xs	$6 / 51515243 \mathrm{MC}$	CASE2	0.550	0.0000	0950				02770	2602	02150	17																			Namea nombe ent		0.06	0.105		1000	ur
2219 ut. T /7w2319	weod fush L Lec	ocooz23 M \times s	6S515 2477 MMC	Case 1 -	0.390	0.0290	0.9950				1.5620		10610																						0.235	0.36	0.895	1000	ut
2219 AT T-87w2319	wedd fush L Lec	ocooz30) \times s	65515 250 AMC	CASE ${ }^{1}$ -	0.0730	0.0080	0.950				02780		0.2150																				memem mobseant		0.045	0.06	0.073	1000	ut
229.911 -.77w2319	wed fushtrec	ocoos3) xs	65515254 anc	CASE 1-	0.3980	0.029	0.950				1.562		11190																				wamay nobiseat		0.185	0235	0.348	1.000	ut
2219 AT T-87w232	wedd fust Trec	(0000130 X Xs	655153300 AMC	Case 6				0.760	0.020	0.150	0250	26						02150	26	0.430	29												wempa nobiseat						ut
	wed fust TFe	O00013) Ls	6/515 3.01 anc	CASE 6				0.760	0.0580	0.2970	0.450	26						04550	${ }^{26}$	0.9900	29												wememe		0.64				ut
	wed flust TFe	(00023(3) Xx	6515 3 O2aMC	CasE 6				0.8668	0.0390	0.1100	0.250	26						02150	${ }_{26}$	0.4300	29												wearea notise ent		0.13				ur
229.9 T 1 - 87 Tw2319	wed flust Trec	Ooooz(3) Lxs	655153.33 anc	case 6				0.820	0.0610	02390	0.450	26						0.459	${ }_{26}$	0.9900	29												wemen notiseat		0.37				ut
221.9 AT - 87 T W2319	wed flust Tre		655153.04 anc	CASE 7				0.352	0.020	0.060										0.3300	29												wemer weise ent						ur
2219 AT T-87w2319	wedd fuss TFC	(00033(3) \times xs	655153.55 AM	Case 7				02713	0.0010	0.1780										0.9900	29												mameat motiseant		0.005				ur
NT718 and faxwes.	Spate	E100AL \times x	6/515 3 307 aMC	CasE 6				0.509	0.0220	0.190	0.420	28						4.420		0.840	29																		vt
NT718 and haves	Spate	El0224. \times ¢	6515153.10 MMC	case 6				0.760	0.220	03010	0.4220	28						0.4220	${ }^{28}$	840	29												wamem nobiseat		0.595				vT
SS AMS 355	nole	E2006x. ${ }^{\text {a }}$	65153 3.14 AMC	Case 7				0.7206	0.0180	0.060										0.5150	29												maman motesean		028	0.75			$\mathrm{v}^{\text {v }}$
221941 T.87	pate	floounaxis	65153313 ma					0.6518	0.0100	0.527	0.809	28						0.809		1.6182	29												meman						RT
221941 T. 87	pate	Flooomax	6/5153.14an					0.472	0.0100	0.513	0.8091	${ }^{28}$						0.099		1.682	29												vemay wobseal	mesememe					${ }_{\text {RT }}$
221941 T. 87	Plate	Floooctaxis	6F5153316 amC	CASE 7				0.5938	${ }_{0} 0.0050$	0.4900										1.6182	2												为						${ }_{\text {RT }}$
221941 T 87	plate	F1002aAx ${ }^{\text {ces }}$	6/5153 377amC	Case 14	0.5933	0.0680	0.900				0.809		0.650											0.5700	20										0.605	0.75	0.58333	1000	${ }^{\text {RT }}$
221941 T. 87	pale	Flioozeax	65153519 AM	CASE ${ }^{-}$	0.673	0.200	0.917				0.809		0.7167																				memeq amiseant		0.48	0.555	0.6727	0.970	RT
221901 T .87	pale	F1002caxis	6/5153 32 AMC	CASE 2	0.5933	0.060	0.900				0.809	45	0.650	20																			memman motiseant		0.595			1000	${ }_{\text {RT }}$
2299 AT.87	pate	F1003axax	65515323 AM	Case 7				0.899	${ }_{0} 0.300$	0.809										16182	${ }^{29}$												wempa notise an		0.4	0.475			${ }_{\text {RT }}$
221904 T.87	pate	Flooseax	66515325 AMC	CASE 1^{-}	0.5045	0.050	0.900				8809		0.6000																				wanme notiseat		0.435	0.525	5333	1000	RT
221941 T .87	pate	F1003saxis	65515326 AMC	CASE ${ }^{\text {He}}$	0.600	0.0820	0.9002				0.809		0.6833											0.597											0.505	0.65	0.6	100	${ }_{\text {Rt }}$
229041 T .87	pate	F10061a0x \times s	66515328 AMC	CASE 7				0.039	0.0000	0.0370										0.0850	29												vemeat motiseat		0.128				${ }_{\text {RT }}$
221904 T. 87	pate	F106014. ${ }^{\text {lis }}$	651515330 MM	Case 7				0.028	0.020	02800										0.680	29												Naman wobsean						RT
221941 T.87	pate	F1000180 \times x	66515332 MMC	CasE 7				0.0064	0.0010	0.0270										0.0860	29												Naman wotaseal	meneme					${ }_{\text {RT }}$
27941.87		E06018 $\times 15$						0012		0050											2												Namam notaseal	Mis ineeme					
19at. 87		Fi000ntexs	65n5335anc																															memememe					
229041.87	pate	Finoorcoxis	655153.35 Ma	CasE 7				0.012	000	0.010										0.080	29												maney						RT
2219017.87	pate	Fi0601clux	$65 / 5153.35 \mathrm{MC}$					0.012	0.0010	0.590										0.680	29												Naman womesean						RT
2299 T. 87	pate	F1062atox \times S	65515337 AM	CASE 1*	0.330	0.0110	0.9001				0.030		0.0430											0.0420									weme		0.04	0.055		1.00	RT
2219 NT T. 87	pate	F10624LXIS	65515337 MNC	CASE 4				0.8931	0.2000	0.320	0.3720					0.320		0.320		0.6800	29														0.135	0.19			${ }_{\text {Rr }}$
221941.88	plate	F1000280x \times ¢	65515338 AMC	CASE 7				0.8887	0.0120	0.390										0.0880	29												wameat weise at		0.035	0.045			${ }_{\text {RT }}$
221941 T. 87	pate	F106028Lx $\times 15$	65515339 AM	CasE 1*	0.5300	0.2000	0.9152				0.970		0.7100											0.5370	- 29										0.345	0.465	0.53	1000	${ }_{\text {RT }}$
229041 T 87	plate	Fin602coxx	${ }_{6} 65153.3 .4 \mathrm{ANC}$	CASE 14	0.0380	0.0110	0.900				0.0730		0.0430											0.0420	29								vemeat		0.04	0.055		1000	${ }_{\text {Rt }}$
221901 T. 87	pate	F10602clx $\times 1 \mathrm{~s}$	6/515 3, 34 AMC	CCAEE4				0.837	0.2000	0.320	0.3720					0.3420		0.320		0.680	29												wempa notiseat		0.3	0.125			${ }_{\text {RT }}$
$2219 \mathrm{A1.87}$	pate	F1003abox \times IS	65153 3,3 anc	CASE 7				0.8637	0.0120	0.930										0.0880	29												weame		0.03	0.035			${ }_{\text {RT }}$
2219417.87	pate	F1063al.xis	65153,3,3a4C	CASE 4				0.893	0.2000	0.342	0.320	2				03420		0.320		0.6890	29												wemen		0.095	0.125			RT
221941 T. 87	pate	F106330.x ${ }^{\text {cs }}$	$6 / 5153.45 \mathrm{MM}$	CasE 1*	0.0380	0.010	0.9002				0.0930		0.0330											0.020	- 29										0.025	0.025		1000	${ }_{\text {RT }}$
221941 T .87	plate	F10633ExLis	6.51533 .54 ma	CASE 1*	02870	02000	0.923				0.3720		0.345							0.6800				0.283	- 29								vemen		011	0.15	0287	1000	RT
221941 T.87	pate	F1063scox 15	655153.46 AM	CASE 1*	0.0380	0.0110	0.9001				0.0380		0.0330											0.020											0.035	0.05		1000	${ }_{\text {RT }}$
229041 T 87	pate	F10603cLx $\times 1$	${ }^{6515153.479 M C}$	case 4				0.8931	02000	0.342	0.3200					3320		0.320		6800	${ }^{29}$												venime		0.4	0205			RT
221941.87	pate	F1220140xis	655153.48 ma	CASE 7				0.7206	0.060	0.1780										0.3560	29												maman wotesean	Mex					RT
221941 T. 87	pate	F122014.4xS	65515.550 MC	CasE 6				0.741	0.050	0.500	0.970	28						0.610		1.9580	29												Vaman woisean	mex					${ }_{\text {RT }}$
221941 T.87	pate	F1220130.x ${ }^{\text {cs }}$	${ }_{651515352 \mathrm{AM}}$	CASE 4				0.687	0.0620	0.178	0.1780	21				0.178	${ }^{21}$	0.1780		0.3500	29												wemen		0.4	0.17			${ }_{\text {RT }}$
221904 T. 87	pate	Fl22018Lx ${ }^{\text {cis }}$	65153535 MM	CASE 6				0.600	0.050	0.530	0.970	28						0.610		1.958	29														0.625				${ }_{\text {RT }}$
221904 T.87	pate	F12201co.x \times S	66515355 AM	CASE 7				0.622	0.043	0.190										0.3500	29														0.185				${ }_{\text {RT }}$
229041 T .87	pate	F12201cuxis	${ }_{6} 6515356 \mathrm{ma}$	CasE 6				0.687	0.020	0.5430	0.9790	28						0.610		1.958	29																		${ }_{\text {RT }}$
2219417.87	pate	F1222atax x	66515358 AM	CASE 4				0.883	0.0580	0.1780	0.1780	5				0.1780		0.1780		0.350	29														0.3	0.185			${ }_{\text {RT }}$
221904 T.87	plate	F122024LXIS	65515359 AM	CASE4				0.8008	0.072	0.580	0.970	28				0.580		0.568															mameme		0.62				${ }_{\text {RT }}$
221941 T .87	pate	F1220280x $\times 15$		CasE 7				0.873	0.075	0.190										0.350	${ }^{29}$														0.09	0.15			RT
229041 T 87	pate	F122028LX $\times 1$	${ }^{6 / 51515402 a M C}$	case 14	0.539	02000	9152				0.970		0.7100											0.5370									menteme		0.345	0.465	0.53	1000	RT
221941 T .87	pate	F12202cox $\times 15$	$6 / 515404$ anc	Case 7				0.873	0.0750	0.190										0.350	29														0.125	0.185			Rt
2219017.87	pate	F12202cLx ${ }^{\text {cis }}$	66515405 anc	CasE 6				0.4720	0.0020	0.150	0.970	28						0.490		1.580	29														0.005				${ }_{\text {RT }}$
221941 T. 87	pale	F1223aADXIS	655154077 MM	case 6				0.8788	0.047	0.1080	0.1780	28						0.1780		0.3560	29														0.08	0.1			${ }_{\text {RT }}$
229941 T 87	pala	F1223a4Lx $\times 1$	651515408 anc	CCASE 7				0.8888	0.3000	0.6100										12200	29														0285	0.375			RT

matrral	Structure	fule name		caseio				$\left.{ }^{\text {atco }}\right\|_{\text {a }} ^{\text {a }}$	$\begin{array}{\|l\|} \hline \text { Best LCL } \\ \hline \text { CLASS- } \\ \text { WIDTH } \\ \hline \end{array}$	$\begin{aligned} & \text { Best LCL } \\ & \text { CLASS- } \\ & \text { LENGTH } \end{aligned}$				xm4 $\mathrm{xs}^{\text {s }}$	xs ${ }_{\text {. }}$	cl		xoon	xoon ${ }^{\text {2 }}$		2xL*					$\tilde{F}_{\text {Fatace al }}^{\text {fuct }}$	$\xrightarrow{\text { rasec cal }}$ Rate			$\begin{aligned} & \text { Length or Area } \\ & \text { per Inspection } \\ & \text { (in or in^2) }= \\ & \hline \end{aligned}$	$\|$Fasese alat Opporunites	se cals	Fase call flag	mLE lag	$\begin{array}{\|l\|l} \hline \text { NTIAC 90\% } \\ \text { POD occurs } \\ \text { at (inch) } & \text { 口 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { NTIAC 90/95 } \\ \text { occurs at } \\ \text { POD (inch) } \end{array}$		$\begin{array}{\|l\|l} \substack{\text { potor } \\ \text { xopoo }} \end{array}$	${ }_{\text {Merro }}^{\text {d }}$
229091.87	pate	${ }^{\text {F1220380.xis }}$	651515410 anc	Case ${ }^{\text {H }}$	0.190	0.0330	09001				0.1780		${ }^{0.1485}$	29										0.180	0	,							Nameme		0.08	0.105	0.19	1000	Rt
2219 NT. 87	phate	FF22033L LLS	655154.11 AM C	CasE ${ }^{\text {an }}$	0.530	02000	0.929				0.6100		0.5600											${ }_{0} 0.520$	0								mamat		0.305	0.4	0.535	1000	RT
22904 T. 87	pate	F12203coxis	65515412 AM C	CasE ${ }^{\text {c }}$				0.8688	0.060	0.1260	0.1780							0.1780	17	0.3560	- 29												wemate mobseall		0.055	0.065			${ }_{\text {RT }}$
229091.87	pate	F12203C.Lx ${ }^{\text {cis }}$	651515414 anc	CasE 14	0.590	0.200	0.925				0.6100		0.5430											0.5185	s	,							wearex		0.3	0.45	0.519	1000	Rt
22194 T. 87	pale	F20022ax ${ }^{\text {a }}$	6 6515 4416 AMC	CasE 4				0.6518	0.0910	0.6545	0.654	22				0.655	22	0.6182		13091	29												maman mobseat						${ }_{\text {RT }}$
22904 T.87	pate	F200028Ax	6/515 417 ama	CasE 4				0.6511	090	0.6545	0.6545	22				0.6545	22	0.612		13091	22												Wempan motaseal						${ }_{\text {RT }}$
221941.87	plate	F20002CAx	65515418 anc	Case 6				0.7616	0.030	0.5182	0.654	27						0.538		13091	29												Wemane Notaseat						RT
221941.87	Patae	F20952a0.xis	65515420 amC	CasE 6				0.3684	0.0010	0.040	0.050	${ }^{28}$						0.050	${ }_{20}$	0.1000	- 29												mamen minsealt						${ }_{\text {Rt }}$
22904 T.87	pate	F20952a. $\times 15$	$6 / 5154.20$ ama	Case 7				0.5493	0.0380	0.3260										0.768	- 29												wempat motseat						${ }_{\text {RT }}$
221901 T.87	pate	F2085280.x\|s	655154.22 man	Case 7				0.9331	0.010	0.059										0.1000													weama notse oun		0.3				${ }_{\text {RT }}$
22904 T.87	pate	F209522. $\times 1.5$	6/515 422amca	CCASE 4				0.5493	0.040	0.380	0.380	${ }_{24}$				330	${ }^{24}$	\%380		0.760	- 29												weame notse out						${ }_{\text {RT }}$
2219 a 7.87	pale	F20s52COx\|s	665154.23 anc	Case 7				0.5619	0.020	0.0550										0.1080													wemat motiseall		0.095				${ }_{\text {RT }}$
221941 T. 87	pate	F20852CLXIS	65515424 AMC	Case 7				0.6383	02000	0.3800										0.780															0.505				${ }_{\text {RT }}$
229091.87	pate	F22202a0.xis	651515425 MaC	CCASE4				0.6518	0.020	0.140	0.140	22				0.140	${ }^{22}$	0.1360	${ }^{23}$	02880	- 29												weare		0.4	0.2			Rt
2219017.87	pate	F22202aLlis	6/515 427 7 Ma	Case 7				0.794	0.0270	0.4920										500													wemen notse ell						${ }_{\text {RT }}$
22904 T. 87	pate	F2220200x $\times 15$	$6 / 5154.28$ amc	CCASE 7				0.652	0.039	0.140										0.280	- 29												weman motse oul		0.4	0.195			${ }_{\text {RT }}$
221901 T. 87	pate	F222026L $\times 15$	655154.29 anc	Case 7				0.6058	0.020	0.4920										11000	- 29												wemar notisear						${ }_{\text {RT }}$
221941 T. 87	pate	f222020. $\times 15$	651515430 AMC	Case 7				0.769	0.0380	0.140										02880	- 22												memat notseoun		0.15				${ }_{\text {RT }}$
221991.87	pate	F22202CLXLS	651515431 AM C	CasE 6				0.741	0.020	0.4920	0.550	22						0.550		11000	- 29												wearem Notseant						${ }_{\text {RT }}$
Tigatav	pate	F30651a0x<L	65515 4,33aMC	Case 7				0.741	0.010	0.0510										0.200	- 29												wemat woise ent		0.05	0.11			${ }_{\text {RT }}$
Tigav	pate	F306514.4.LS	65151433 anc	CCASE 7				0.7206	0.2000	0.4070										0.81	- 29												meman		0.255	0.41			${ }_{\text {RT }}$
Thanav	pale	Fzossieoxls	665154.35 anc	Case 7				0.741	0.010	0.510										0.200	- 29												maman		0.05	0.095			${ }_{\text {RT }}$
Tiganv	pate	F306512ux $\times 1$	655154.35 ma C	CasEz 7				0.7206	02000	0.4070										0.810													weame		029	0.48			${ }_{\text {RT }}$
Tranav	pate	F306510. $\times 15$	$6 / 515154.37$ anc	CCASE 7				0.740	0.020	0.0510										0.200	- 29												weman motse oul		0.04	0.06			${ }_{\text {RT }}$
Tigalav	pate	F30651CLCLS	6F515 439anc	CCASE7				0.741	0.030	0.550										0.8120	- 29												wamean mobsealt		0.225	0.325			${ }_{\text {RT }}$
Tigave	pate	F30653a.x.Ls	$6 / 515154.40$ anc	case 6				0.791	0.0060	0.180	0.100	28						0.1000	${ }^{28}$	0200	- 22												weame						${ }_{\text {RT }}$
Tranav	pate		651515 ati anc	CCASE 7				0.8074	0.020	0.0910										0.840	- 29												meame						${ }_{\text {RT }}$
Tranav	pale	F206530. $\times 15$	$6 / 5154.42 \mathrm{MMC}$	Case 6				0.887	0.0040	0.060	0.100	28						0.100		. 02000	- 29												wemen notse ealt						${ }_{\text {RT }}$
Thanav	pate	Fzocssel $\times 15$	655154.43 anc	Cass 7				0.741	0.0170	0.890										0.8140	129																		${ }_{\text {RT }}$
Tranav	pate	F30653coxis	6515154.45 Ma C	CasE 6				0.6350	0.030	0.020	0.1000	${ }_{28}$						0.100		000	- 29												weame notse out						${ }_{\text {RT }}$
Tramav	pate		$65 / 554.46 \mathrm{mac}$	Case 7				0.741	0.0750	03350										0.8480	12												weara notse out		0.73				${ }_{\text {Rr }}$
Tramav	plate	F3225140.x15	6.515154 .77 anc	Case 6				0.5938	0.0030	02550	0.352	28						0.320		0.700	- 29												weame						${ }_{\text {RT }}$
Tigan	pate	F322514.4.LS	$6 / 5154.49 \mathrm{MMC}$	case 6				0.5938	0.0300	02150	0.352	28						0.3200		0.7000	- 29												wemat notisearl						${ }_{\text {RT }}$
Tramav	pate	F3225180.xis	651515 452anc	CCASE 7				0.4182	0.0290	0.0970										0.190	- 29												wemar notseont		0.15				${ }_{\text {RT }}$
Tranav	pate	F322518LLS	651515453 MMC	CCase 7				0.2488	0.087	0.352										0.7000													wemen						${ }_{\text {RT }}$
Tramav	pate	F3225100x $\times 15$	651515.54 amic	Case 7				02486	0.087	0.3520										1090													memen notseall						${ }_{\text {RT }}$
Tranav	pate	F32251C.Lx $\times 1$	6.515154 .55 MaC	Case 7				0.2486	0.0870	0.3520										0.7000																			${ }_{\text {RT }}$
Tigave	pate	F322530. $\times 15$	65515456 mic	Case 6				0.6837	0.0150	0.250	0.3700	28						0.352	28	. 0.7000	- 29												wemen						${ }_{\text {RT }}$
Tisalv	plate		651515458 Man	CasE 6				0.6837	0.050	0.250	0.3700	28						0.352		0.7800	- 22												wemat notseant		0.005				${ }_{\text {RT }}$
Tranav	pate	F3225360.x\| 5	6.515154 .59 MaC	CasE 6				0.670	0.030	02470	0.3700	27						0.370		0.7400	- 29												wemea						${ }_{\text {RT }}$
Tigav	plate	${ }^{\text {F322533LLIL }}$	6/515 5.0a AMC	Case 6				0.670	0.0370	0.2470	0.3700	27						0.3700		0.740	29												wemen		0.365	0.695			${ }_{\text {RT }}$
Tisala	pate	F32253CD. X15	665155.014 Ma	case 6				0.741	0.050	0.058	0.1030	28						0.100		02080	- 29														018				${ }_{\text {RT }}$
Traav	pate	F22253C14 $\times 15$	651515.03 MaC	case 6				0.6070	0.0020	02120	0.370	${ }^{28}$						0.3700		0.7400																			RT
STEL 2330	pate	Fa0601axis	655155.54 MNC	Case 7				0.5993	0.0040	0.093										0.4960	029												memen Noise ail						${ }^{\text {RT }}$
STEEL 2330	pate	Fa6001. $\times 15$	65515 5.05anc	CCASE7				0.5293	0.0070	0.093										0.9850	- 29												mamen						Rt
Stel 1330	plate	Fa6000. X X	655155.06 AMC	CasE 7				0.4504	0.0070	0.168										0.9860	2												weare						${ }_{\text {RT }}$
STEL 4330	plate	Fa0603axis	655155.08 anc	CasE 6				0.687	0.0070	0.093	0.240	${ }^{28}$						0.1750	${ }^{28}$	0.480	- 22												wamar notse out		0.265				${ }_{\text {RT }}$
STEL 2330	pale	Fa60038. ${ }^{\text {c/ }}$	655155.99 MCO	Case 6				0.687	0.0070	0.093	0.2880	28						02880		. 0.9880	- 22												memen notse ealt		0.49				${ }_{\text {Rt }}$
Stel 4330	plate	Faterac. xis	6/5155.10 amC	case 6				0.7168	0.0080	0.093	02480	28						0.1750		0.9880	- 22														0265				${ }_{\text {RT }}$
STEL 2330	plate	F2aroiaxis	655155.12 anc	CasE 6				0.2486	0.0080	0.330	24030	${ }^{28}$						16030		48000	- 29												mamame						${ }_{\text {Rt }}$
STEL 2330	pate	F24501. $\times 15$	$6 / 5155.13$ anc	CasE 6				0.1383	0.3000	0.400	2.480	28						16030		48000	- 29												wearem Notseant						${ }_{\text {RT }}$
STEEL 230	plate	F24501. X1/	655155.16 anc	Case 6				0.228	0.0030	0.330	24030	2						16030		48000	- 29												wemat motseall						${ }_{\text {RT }}$
STEL 2330	plate	${ }_{\text {F24503axis }}$	655155.77 MM	CCASE 6				0.794	0.0880	0.350	24800	28						1.600		48000	- 29																		${ }_{\text {RT }}$
Stel 1330	plate	${ }_{\text {F245033 } \times 15}$	65155519 anc	Case 5				0.7616	0.053	0.3500	2.480	28						0.532	${ }^{28}$														weare		0.66				${ }_{\text {RT }}$
STEL 2330	plate	F22503. Xis	66515520 MMC	Case 5				0.792	0.080	0.350	2	28						0.532	${ }^{28}$																575				${ }_{\text {Rt }}$
221941.88	wedi lop	F500130. xs $^{\text {c }}$	$6 / 5155.2 \mathrm{AMa}$	case 6				0.866	0.0010	0.500	0.1600	26						0.150	${ }^{26}$	0.320	- 29														0.5				${ }_{\text {RT }}$
221941 T.87	wedilop	${ }_{\text {F50013 }}$ L \times x	${ }_{651515}^{524} 4 \mathrm{MNC}$	CCase ${ }^{\text {- }}$	11580	. 0580	0.950				12100		11750																				wemar notisear				1158	1.00	${ }_{\text {RT }}$
221941 T. 87	weld lop	F50023) xs $^{\text {c }}$	65515526 anc	Case 6				0.866	0.0070	0.500	0.160	26						0.150	26	0.320	29												Wemame wotaseall						Rt
221941 T .87	weda 0 P	${ }_{\text {F5022 } 3 \text { L } \times \text { x }}$	65155528 mac	Case 2	0.337	0.090	9050				12100		08250																								1156	1000	вt
221941.87	weld 0 P	F5003330.x ${ }^{\text {a }}$	655155.30 amC	CCASE 2	0.072		9050				0.1600																						Namane Notaseal	Numameme	0.005	0.05		1.00	RT
229941 . 87	weed lop	[50033LLx ${ }^{\text {d }}$	6/515 5:4 A AMC	CCASE2	0.8880	0.017	0.9050				12100		1079	14																			\%mane	mema min	0.005	0.05		1000	RT

DOEPOD CAPABILITIES DATA BOOK－SUMMARY
TABLE 3＊

materal	structure	flemame	${ }_{\substack{\text { and }}}^{\substack{\text { Anassis } \\ \text { Daterime }}}$		$\begin{aligned} & \text { Xpod } \\ & \text { CLASS. } \\ & \text { LENGTH } \end{aligned}$		LCL	Best．cic	$\begin{array}{\|l\|} \hline \text { Best LCL } \\ \hline \text { CLASS- } \\ \text { WIDTH } \\ \hline \end{array}$	$\begin{aligned} & \text { Best LCL } \\ & \text { CLASS- } \\ & \text { LENGTH } \\ & \hline \end{aligned}$		xL＊＊＊		xm＊		$\mathrm{xs}^{\text {t }}$	xct	xclit	xoon	xoon 4 2n		2xL＊\times		Xss 4 ．			｜rase	$\|$Fasese can Rate and	False Call Length（in）		$\begin{aligned} & \text { Length or Area } \\ & \text { per Inspection } \\ & (\text { in or in^2) }= \end{aligned}$		False calls	False call flag	MLEE fag	$\begin{array}{\|l\|} \hline \text { NTIAC 90\% } \\ \text { POD occurs } \\ \text { at (inch) } \end{array}$	NTIAC 90／95 occurs at POD（inch）			METHO
2219 AT． 87		${ }^{\text {F6001330xs }}$	$6 / 51515.999 \mathrm{mlc}$	Case7				0.6070	0.0050	0.1780											0.430	29												vememe notuseal						${ }^{\text {Rt }}$
2219 AT． 87	wedil Lec	F6013 3 \x	65515 5．50anc	CCASE7				0.600	0．0070	0											23760	1												vembem Notuse ent						Rr
22994 T．87	wedil Fec	F602330．xs	6.51515 .52 MaNC	CasE 7				0.579	0.022	0250											0.3300	29												vemper moteceut						${ }_{\text {RT }}$
229 AT．87	wedurc	F60233L \times Ls	$6.5 / 155.53 \mathrm{mlc}$	case 6				0.600	0.050	0.5030	11880	26							11880	${ }^{26}$	23760	－ 29												vemper Notuseal						${ }_{\text {RT }}$
22904 T． 87	wedil Lec	F609330．xs	6.51515 .55 manc	CCasE 4				0.866	0.062	0250	0.250						2150		0255		0.430	－ 29												weate Notusean						${ }_{\text {RT }}$
229 AT．87	wedil Fe	F60033L \times xs	$6 / 5155.56 \mathrm{mma}$	CASE 4				0.819	0.300	11880	11880	${ }^{14}$					11880	14	－0．9810	${ }^{26}$	23780	29												Notaseant						${ }_{\text {RT }}$
22994 T．87	weditic	F7001310．xs	651515.58 Man	CCAE 4				0.6070	0.020	02350	0.2350	23					0.235		0.230		0.4700	129																		Rt
22991 T．87	wedit fec	F700013 \times xs	6.51515 .59 anc	CasE 6				0.6070	0.130	02730	1．4350	26							14350	${ }^{26}$	28770	0												veresm wituseat						${ }_{\text {RT }}$
229 нT．87	wedi fec	Frooz30．xs	$6 / 5156.01$ anc	CASE 4				0.6070	0.020	02350	0.2350	23					2350		． 02350		0.4700	－ 29												vememe notuseat						${ }_{\text {RT }}$
2219 NT T． 87	wed fic	F70233 \times x 5	655156.03 anc	case 6				0.600	0.030	0.270	1．4350	26							1.4350	${ }^{26}$	28700	－ 29												vemme Notuseat						${ }_{\text {RT }}$
221941 T． 87	wedi fec	F7003310．xs	655150.5 anc	case 6				0.810	0.050	0.980	0.2350	26							0.230	${ }^{26}$	0.4700	－ 29												vememe notuseat						${ }_{\text {RT }}$
229941 T．87	wedi fec	F20033 $\$ \s & 655156068 Ma & CASE 6 & & & & 0.793 & 0.020 & 03060 & （14350 & 26 & & & & & & & 14350 & ${ }^{26}$	28700	29												vemenc wise eat						${ }_{\text {Rt }}$																		
22904 T．87	wedd lush Lec	F800130． Ns $^{\text {a }}$	6,5156608 anc	CASE 4				O．84a	0.0610	02780	0.2780	11					02760		0.2760		0.5520	2 29												vememe notuseat						${ }_{\text {RT }}$
2219 A1．87	wed lush Lec	F80013L \times Ls	$65 / 56$ 609 amC					0.873	0.600	15620											3.220	29												vemmen wisean	Memememe					RT
221904 T 87	wed lush Lec	Fsooz3ioxs	6／556 6114 Ma	case 4				0.8931	0.050	0.270		2					02780		0.2760		0.552	29												memme notuseat						${ }^{\text {RT }}$
221904 T ． 87	wedd lushicce	F8023（L） xs	65156.12 mm					0.888	0.5000	1.562	1.1620	5					15620		1.562		${ }_{3} .1200$	29												Nembere Notuse ent						Rt
221941．87	wedd lush LFC C	Feoos31）xs	65156.15 mm cis	CASE 4				0.883	0.0800	0.276	002780						02780		O2270		0.5520	29												membe						${ }_{\text {Rr }}$
229 AT．87	wed lish Lec	F80033L坟	$6 / 5156.17$ anc	CasE 1．	0.350	0.030	0.9050				1.5620		11190																					为				1.061	1000	${ }^{\text {Rt }}$
22994 T． 87	wedd lisht Trec	F9000cox．x	655156.18 anc	Case 7				0.5619	0.012	0.050											0.100													wemme Notuseat		0.095				${ }_{\text {RT }}$
221904 T .87	wed Iush Tce	Feori3ioxs		CaSE7 7																	0.430	29																		RT
																																			，memenemememe					
22194 T .87	wed lush frec	Foor 13 LT5		CASE7																	0.9000	29													Wemay mat eaus					RT
22904 T .87	wed dush Trec	F2002330．xs	$6 / 5156.19$ anc	CCAEE 4				0.368	0.0010	02150	02150	26					02150		02150		0.430	0												vemere wotue an	Men					${ }_{\text {RT }}$
22994T．87	wed lisut fec	F90233L起	65515620 MaC					0.3889	0.000	0.450	0.980	26					0.450		0.450		0.990	29												vemane nobseas	Etememe	05				
																																								${ }_{\text {RT }}$
22794 T －87	wed lish frec	F2003330．x		CCASE 4				0.3684	0.0010	2160	0.250	26					02150		2250		0.4300	－ 29												vemmen						RT
22794 T .87	wed lish TFC	F20033L Ls	$6 / 515622 \mathrm{AMC}$	CASE4				0.3684	0.0010	0.450	0.455	26					0.450		0.9550		0.990	－ 29												vempara Notuseat	comed	0.56				${ }_{\text {RT }}$
221941 T． 87	pale	61003saxis	65515623 AM c	CASE7 7				0.8514	0.093	0.633											1.633	29												vememe Notuseat		0.64				нт
221941.88	pale	61003abx．$\times 15$	655156.25 Mac	CCAEE 4				0.819	0.090	0.1260	0.1780	28					0.1260		0.1260															vempas Notuseat		0.095				нт
2219017.87	pate	61003aLlx \times S	6.5156 .26 anc	CCASE 1．	0.320	0.075	0.9008				0.6100		0.5350																					vemper wobleat		0.245	0.4	0.45	1.00	нr
2219 AT T． 87	pate	610038Ax．${ }^{\text {a }}$	$6 / 515627 \mathrm{AmC}$	case7				0.653	02000	0.683											16.82	229												wempe Noussean						нт
22919 NT ． 87	pate	61003880．x ${ }^{\text {c }}$	65515629 AMC	Case7				0.8074	4 0.030	0.1280											0.350	229												vemes Notse oat		1.05	0.17			нт
221941 T .87	pabe	C10038Lx $\times 15$	65515 6．30 AMC	case 6				0.792	0.050	0.250	0.6100	27							0.560		1220	29														0.46	${ }_{0} 63$			Hi
SS AMS 35	nole	62001×15	65156.31 anca	case ${ }^{\text {a }}$	0.0845	0.0260	0.9027				0.245		0.1694												0.0774									vemerse Notuseat		0.075	0.1	10.0852	1.00	нт

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Filow sample selection priority in the DOEPOD Manual. | first. |
| :--- |
| $* * S t i s$ |

rnate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $\#$ Satis |

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

*Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked. The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Follow sample selection priority in the DOEPOD Manual. Bable A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH funcion may be osciliatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH funcion may be osciliatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

Xm requirement oves the need meet the adjacent Xm requirement
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requirement.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH funcion may be osciliatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

Xm requirement eves the need meet the adjacent Xm requirement
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

ate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$

Xate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$

Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$

Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$

Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$

Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xmate requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xmate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$

Xmate requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$

Xmate requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$

Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Foilow sample selection priority in the DOEPOD Manual. Before adding flawed samples to satisfy elements of Table or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
rnate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xmate requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$

Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

ate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Follow sample selection priority in the DOEPOD Manual. Bable A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

rnate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
rnate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$

Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

ate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
ate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

Athough Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH funcion may be osciliatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH funcion may be osciliatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$

Xate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

*Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$

Xmate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
$* * T h e$
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $\#$ Satis |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
$* * T$ the
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
${ }_{* * * T h e}$.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

*Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
rnate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requiremen
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$

Xnate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
${ }_{* * * T h e}$.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
ernate Xm requirement removes the n
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

$* * T h e$
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$.
${ }^{* *}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH funcion may be osciliatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requirement.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

anate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved
first.
***The Aternate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
rnate Xm requirement removes the need to meet the adjacent Xm requiremen
${ }^{* *}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Foliow sample selection priority in the DOEPOD Manual. Bable A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xmate requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved
first.
$* *$.the Alternate $X m$ requirement removes the need to meet the adjacent $X m$ requiremen.
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xmate requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved
first.
**The Alternate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$

Xmate requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH funcion may be osciliatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

Xm requirement
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

rnate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

rnate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH funcion may be osciliatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$.
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$.
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $\#$ Satis |

***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
$* * T h e$
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

ate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xmate requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Foliow sample selection priority in the DOEPOD Manual. Bable A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
fernate Xm requirement removes the need to meet the adjacent Xm requiremen
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH funcion may be osciliatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

Xm requirement oves the need meet the adjacent Xm requirement
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH funcion may be osciliatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

rnate Xm requirement removes the need to meet the adjacent Xm requiremen
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

rnate Xm requirement removes the need to meet the adjacent Xm requiremen
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
ate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
$* * T$ the
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

$* * T h e$
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in 1 CLL below 0.90 Only largest 4 class lengths are shown

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

first.
$* * S t i s$

A*The Alternate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
$* * T h e$
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved
first.
$* *$. Alternate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
ternate Xm requirement removes the need to meet the adjacent Xm requiremen
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH funcion may be osciliatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
ernate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Filow sample selection priority in the DOEPOD Manual. Bable A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

Xmate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requiremen
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

*Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
**The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Foilow sample selection priority in the DOEPOD Manual. Before adding flawed samples to satisfy elements of Table or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
ernate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

Xmate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
${ }_{* * * T h e}$.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
**The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm req
**The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requid
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm req
**The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $\#$ Satis |

${ }_{* * * T h e}$.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm req
**The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requi
${ }^{* *}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
to meet the adjacent Xm requ
**The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
meet the adjacent Xm requiremen.
**The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requiremen
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

rnate Xm requirement removes the need to meet the adjacent Xm requiremen
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

*Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

rnate Xm requirement removes the need to meet the adjacent Xm requiremen
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked. The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

$* *$ The added nate requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requiremen
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

*Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
$* * T h e$
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

解nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
**The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
$* * T h e$
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm req
**The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$

${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requis
**The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

*Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked. The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xmate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH funcion may be osciliatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

$* * T$ the
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
$* * *$ The and requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $\#$ Satis |

$* * T$ the
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
$* * T$ the
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
$* * T$ the
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $\#$ Satis |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
${ }_{* * * T h e}$.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
rnate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
***The
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requirement
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requirement
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requirement
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
${ }_{* * * T h e}$.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requirement
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xmate requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$.
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

first.
$* * S t i s$

$* * T h e ~ A l t e r n a t e ~ X m$ requirement removes the need to meet the adjacent Xm requiremen
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Foilow sample selection priority in the DOEPOD Manual. Before adding flawed samples to satisfy elements of Table or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
ernate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

first.
$* * S t i s$

$* * T h e$ Alternate $X m$ requirement removes the need to meet the adjacent $X m$ requiremen.
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
rnate Xm requirement removes the need to meet the adjacent Xm requiremen
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
rnate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
enate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
enate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
ernate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
ernate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }_{* * * T h e}$.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requiremen
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xmate requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

anate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
enate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requirement.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Follow sample selection priority in the DOEPOD Manual. Bable A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
enate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
**The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
ernate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

rnate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
ernate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
ernate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
**The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
${ }_{* * * T h e}$.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
$* * * T h$ and Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

$* * T h e$
${ }^{* *}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$.
${ }^{* *}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
**The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
$* * *$ The an requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ add .
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH funcion may be osciliatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
$* * * T h$.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

*Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked. The class lengths sisted in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
ernate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xmate requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$.
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xmate requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xmate requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Follow sample selection priority in the DOEPOD Manual. Beable A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$

Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
nate Xm requirement removes the need to meet the adjacent Xm requirement
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$.
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xmate requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$.
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xmate requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xmate requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$.
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
rnate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
rnate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
ernate Xm requirement removes the need to meet the adjacent Xm requirement.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
${ }_{* * * T h e}$.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
rnate Xm requirement removes the need to meet the adjacent Xm requiremen
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $\#$ Satis |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

$* * T$ the
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH funcion may be osciliatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }_{* * * T h e}$.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requirement
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Follow sample selection priority in the DOEPOD Manual. Beable A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

rate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
rnate Xm requirement removes the need to meet the adjacent Xm requiremen
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requiremen
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$.
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requiremen
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requiremen
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

ernate Xm requirement removes the ne
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requiremen
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
ate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved

nate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $\#$ Satis |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
rnate Xm requirement removes the need to meet the adjacent Xm requiremen
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown

Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved | first. |
| :--- |
| $* * S t i s$ |

${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * T}$ The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fofore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { Befo } \\ \text { first. } \\ * S t i s ~}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.
The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90 . Only largest 4 class lengths are shown.

The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
anate Xm requirement removes the need to meet the adjacent Xm requiremen.
***The added class lengths are to be at the class length indicated or smaller to within the class width indicated in the companion chart

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Fefore adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved $\underset{\substack{\text { first. } \\ * \\ * \\ \text { Batis }}}{ }$
nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }^{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}$

* Although Xpod appears to have been reached at a point, there are Misses at larger class lengths this indicates that the POH function may be oscillatory. This needs to be checked.

The class lengths listed in Table A exhibited misses and resulted in LCL below 0.90. Only largest 4 class lengths are shown.
The class lengths listed in Table B exhibited no misses, and these class lengths provide alternate target Xpod points. Only largest 4 class lengths are shown
Before adding flawed samples to satisfy elements of Table A or Table B, it is recommended that the cause of the Misses be determined (human factors, unexpected flaw type, etc) and resloved first.

$*$
${ }_{* * * T h e}$ nate Xm requirement removes the need to meet the adjacent Xm requiremen.
${ }_{* * * T h e ~ a d d e d ~ c l a s s ~ l e n g t h s ~ a r e ~ t o ~ b e ~ a t ~ t h e ~ c l a s s ~ l e n g t h ~ i n d i c a t e d ~ o r ~ s m a l l e r ~ t o ~ w i t h i n ~ t h e ~ c l a s s ~ w i d t h ~ i n d i c a t e d ~ i n ~ t h e ~ c o m p a n i o n ~ c h a r t ~}^{\text {and }}$

Errata

NTIAC NDE Capabilities Book, 3rd Edition (November 1997) [NTIAC: DB-97-02]

DATA sets that do not appear to exist on the NTIAC CD:

B20011 (appears to be B2001)
B20012 (appears to be B2002)
B20013 (appears to be B2003)
G6001G (appears to be A6001G)
G6001GR (appears to be A6001GR)
G6002G (appears to be A6002G)
G6003G (appears to be A6003G)
G6004G (appears to be A6004G)
F40601AL (appears to be F40601A)
F40601BL (appears to be F40601B)
F40601CL (appears to be F40601C)
F40603AL (appears to be F40603A)
F40603BL (appears to be F40603B)
F40603CL (appears to be F40603C)
F42501AL (appears to be F42501A)
F42501BL (appears to be F42501B)
F42501CL (appears to be F42501C)
F42503AL (appears to be F42503A)
F42503BL (appears to be F42503B)
F42503CL (appears to be F42503C)
A4000(7) is listed in Mag Particle data index - should be B4000(7) with B4001L as the companion data set

DATA sets on the CD that are not listed in the index:
B1001AD (POD data not shown in book)
B1001BD (POD data not shown in book)
B1001CD (POD data not shown in book)
B1003AD (POD data not shown in book)
B1003BD (POD data not shown in book)
B1003CD (POD data not shown in book)

B4001L (see above)
B2001 (appears to be the missing B20011 above)
B2002 (appears to be the missing B20012 above)
B2003 (appears to be the missing B20013 above)

There are an additional 18 data sets (grouped) and not listed in the index:
DB001(3)D (POD data not shown in book)
DB001(3)L (POD data not shown in book)
DB002(3)D (POD data not shown in book)
DB002(3)L (POD data not shown in book)
DB003(3)D (POD data not shown in book)
DB003(3)L (POD data not shown in book)
DC001(3)D (POD data not shown in book)
DC001(3)L (POD data not shown in book)
DC002(3)D (POD data not shown in book)
DC002(3)L (POD data not shown in book)
DC003(3)D (POD data not shown in book)
DC003(3)L (POD data not shown in book)
DD001(3)D (POD data not shown in book)
DD001(3)L (POD data not shown in book)
DD002(3)D (POD data not shown in book)
DD002(3)L (POD data not shown in book)
DD003(3)D (POD data not shown in book)
DD003(3)L (POD data not shown in book)

DATA set duplicated:

F9000CD appears to be a duplicate identical to data file F20852CD

DATA Analysis integrity:

During validation of DOEPOD results on the entire NTIAC NDE Capabilities Book "DOEPOD(NTIAC)", some exceptions were noted in the results. There are 437 data sets and exceptions were identified in the 32 data sets listed below. The analysis results shown in the NTIAC NDE Capabilities Book, 3rd Edition (1997) [NTIAC: DB-97-02] for the data sets listed below are incorrect due to a data listing error. These data sets need to be re-run with data sorted.

A1001CL.XLS
A1002CL.XLS

```
A9003(3)L.xls
AA003(3)L.xls
AC001(3)L.xls
CB003(3)L.xls
CE032(6)D.xls
F10601AD.XLS
F10601BD.XLS
F10601CD.XLS
F10602AD.XLS
F10602BD.XLS
F10602CD.XLS
F10603AD.XLS
F10603BD.XLS
F10603CD.XLS
F12201AD.XLS
F12201BD.XLS
F12201CD.XLS
F12202AD.XLS
F12202BD.XLS
F12202CD.XLS
F12203AD.XLS
F12203BD.XLS
F12203CD.XLS
F32251AD.XLS
F32251CD.XLS
F32253AD.XLS
F32253BD.XLS
F8002(3)L.xls
G10003BD.XLS
G10003BL.XLS
```


OTHER:

C8003(3)L.xls - sample \#136 shows 3 trials with -1 in the HIT/MISS column C8003(3)D.xls - sample \#136 shows 3 trials with -1 in the HIT/MISS column

C3002: Sample \#16 shows 0.10" in depth. NASA CR 151098 pg 27. shows 0.010 ". Since the sample thickness is 0.063 " this NTIAC entry is incorrect.

The primary and secondary scales on abscissa axes in Chart 1 may be incorrect. Compare actual flaw sizes and inspection data on data sheets available in electronic distributions.

