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Summary 

A systematic design-oriented, five-step approach to material selection is described: 1) establishing 
design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying 
specific cultural constraints to the selection process. At the core of this approach is the definition 
performance indices (i.e., particular combinations of material properties that embody the performance of a 
given component) in conjunction with material property charts. These material selection charts, which 
plot one property against another, are introduced and shown to provide a powerful graphical environment 
wherein one can apply and analyze quantitative selection criteria, such as those captured in performance 
indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these 
indices maximizes the performance of the component. Two specific examples pertaining to aerospace 
(engine blades and pressure vessels) are examined, both at room temperature and elevated temperature 
(where time-dependent effects are important) to demonstrate the methodology. The discussion then turns 
to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material 
property space, so as to enable innovation and increases in performance as compared to monolithic 
materials. Finally, a brief discussion is presented on managing the data needed for materials selection, 
including collection, analysis, deployment, and maintenance issues. 

1.0 Introduction 

The importance of weight reduction in aerospace systems has been a major factor from the very 
beginning. Consequently, the use of new materials (e.g., dual alloy turbine disks and composite materials 
(ceramic, metallic and polymer based)) and new types of structural concepts, particularly the thin-walled 
type (sized primarily based on buckling) have dominated. Clearly, from a designer’s perspective the 
primary function of a structure is to transmit forces through space with the minimum possible weight and 
cost to the customer. Typically the job of a designer is to balance a variety of functional requirements 
(i.e., types of loading conditions (tension, compression, bending, vibration, cyclic, etc.) with constraints 
(manufacturability, geometric limits, environmental aspects, maintainability, to name a few) so as to 
arrive at the “optimum” choice of structural concept and material selection for a given weight and/or cost 
(Figure 1). 

This task can often be a daunting one for both the inexperienced as well as experience practitioner 
due to the wide range of choices available. Further, depending upon the engineer's background, for 
example a materials versus mechanics oriented professional, their answer to the question of designing for 
suitable deflection, for example, maybe quite different. The materials oriented person would typically 
think they need a material with high stiffness (i.e., Young’s modulus (E)), whereas the structures oriented 
person would naturally think of high rigidity (e.g., EI, the product of Young’s modulus and the moment 
of inertia (I) given a beam in bending); the first being material property oriented and the other 
performance oriented. This diversity in perspective is precisely why a robust and systematic methodology 
for connecting material and application is required as will be presented and illustrated in this chapter. 
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2.0 A Systematic Approach to Materials Selection 

To ‘select’ means ‘to choose’. But from what? Behind the concept of selection lies that of the 
permissible set of entities from which the choice is to be made. Within an engineering enterprise, the 
permissible set of materials will probably be the ‘preferred’ list, specified by the “Materials Authority”. 
However, for truly ‘optimal’ materials selection, the permissible set of entities must include all materials: 
all metals, all polymers, all ceramics and glasses, all composites. We refer to this as the ‘Universe’ of 
materials. If some of these materials are left out, the selection is no longer optimal over all materials but is 
only optimal over some subset of them. If, for example, the choice is limited to metals from the start, then 
the selection can only be optimal over the single family of materials, that of metals. 

There is a second implication to the concept of selection. It is that all members of the permissible set 
must be regarded as candidates—they are, after all, viable choices—until, by a series of selection stages, 
they are shown to be otherwise. From this arise several key requirements of a data structure for the 
Selection database. The selection table must be comprehensive (includes all members of the permissible 
set). It should be structured—that is it must contain attributes that are universal (apply to all members of 
the permissible set of entities) and the attributes should be discriminating (have recognizably different 
values for different members of the permissible set). Similar considerations apply to any selection 
exercise (Cebon and Ashby 2000). 

In the universe of materials, many attributes are universal and discriminating: density, bulk modulus and 
thermal conductivity are examples. Universal attributes can be used for screening and ranking, the initial 
stage of any selection exercise. But if the values of one or more screening attributes are grossly inaccurate or 
missing, that material will be eliminated by default. It is important, therefore, that the database be complete 
having no holes or gaps in the records which would make a material fail a selection by default due to 
absence of data and be of high quality, meaning that the data in it can be trusted. This creates the need for 
data checking and estimation, which are tackled by methods described in Ashby (1998). 

There are four main steps, which we here call translation, screening/rejection, ranking, and supporting 
information (research and organizational cultural constraints) see Figure 4. The steps can be likened to those 
in selecting a candidate for a job. The job is first analyzed (i.e., essential skills and required experience of 
the candidate identified; “translation”) and advertised. Some of these are simple go/no go criteria like the 
requirement that the applicant “must have a valid driving license”, or “a degree in materials science”, 
eliminating anyone who does not (“screening”). Others imply a criterion of excellence, such as “typing 
speed and accuracy are priorities”, or “preference will be given to candidates with a substantial publication 
list”, implying that applicants will be ranked by these criteria (“ranking”). Finally references and interviews 
are sought for the top ranked candidates, building a file of supporting information (research and local 
cultural constraints)—an opportunity to probe deeply into character and potential. 

2.1 Methodology 

2.1.1 Step 1: Translation 

How are the design requirements for a component (defining what it must do) translated into a 
prescription for a material? Any engineering component has one or more functions: to support a load, to 
contain a pressure, to transmit heat, and so forth. This must be achieved subject to constraints: that certain 
dimensions are fixed; that the component must carry the design loads or pressures without failure; that it 
insulates or conducts; that it can function in a certain range of temperature and in a given environment; 
and many more. In designing the component, the designer has an objective: to make it as cheap as 
possible, perhaps, or as light, or as safe, or perhaps some combination of these. Certain parameters can be 
adjusted to optimize the objective giving the designer the freedom to vary dimensions that have not been 
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TABLE 2.—AEROSPACE APPLICATIONS/IDEALIZATIONS 
Application Idealization Loading Constraints 

Truss framework Tie Tension Strength 

Fuselages Cylinder 
Compression 

Tension 
Bending 

Buckling 
Strength 

Deflection 

Shafts Thin walled tube/Beam 
Torque 

Rotation 
Bending 

Bending 
Shear 

Vibration 

Combustion Chambers 
Thin walled Cylinder, 

Internal pressure 
Pressure 

Noise 
Thermal 

Oxidation 

Blades  
(Fan, Compressor, 

Turbine) 

Tie 
Beam 

Bending 
Tension 
Fatigue 
Thermal 
Creep 

Deflection, Strength, Vibration, 
Erosion, Temperature 

Disks  
(Compressor, Turbine) 

Disk 
Rotation, Thermomechanical 

Fatigue 
Strength, Ductility, Toughness, 

Oxidation 
Space Truss 
Framework 

Tie rod Axial Loading Strength, Buckling 

Nozzles Thin walled Cylinder 
Pressure 

Noise 
Thermal 

Strength, Vibration 

Wing Plate 

Bending 
Tension 
Twist 

Vibration 
Fatigue 

Buckling, 
Vibration, Strength 

Deflection 

Cryogenic Tanks Spherical Shell 
Internal Pressure 

Thermal 

Strength, low temperature 
Yield before break 
Leak before break 

2.1.1.2 Constraints 

Constraints are design requirements that must be satisfied: for example, the minimum working 
temperature of a material must be ≤ –20 °C; the strength must be ≥ 400 MPa; the fracture toughness must 
be ≥ 15 MPam, and so on. Constraints screen out unsuitable choices or enable rejection of specific 
materials for cause. 

2.1.1.3 Objectives 

Objectives are design criteria that must be maximized or minimized to optimize the performance of a 
component. Their function is to rank the materials and facilitate selection of the best candidates. For 
materials selection, the objectives can be used to generate ‘material performance indices,’ which are 
combinations of material properties that characterize performance in a given application (see Sec. 2.2). 
Typical examples are the specific stiffness of a material E/, and the specific strength f / (E is the 

Young’s modulus, f is the failure strength and  is the density). These particular indices can be used to 
select the optimum material for a light, stiff tie rod, or a light, strong tie rod, respectively. Many material 
performance indices have been derived and tabulated for standard design cases in mechanical, structural, 
thermo-mechanical, and electro-mechanical engineering (Ashby 2005). 

2.1.1.4 Free Variables 

Free variables are any parameters that are left open to the designer’s free choice. Examples are: cross-
sectional area, length, thickness, material type, color, etc. 
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2.1.2 Step 2: Screening/Rejection 

Unbiased selection requires that all permissible materials are considered to be candidates until shown 
to be otherwise. Rejection eliminates candidates that cannot do the job at all because one or more of their 
attributes lies outside the limits set by the constraints. As examples, the requirement that “the component 
must function in boiling water,” or that “the component must be transparent” imposes obvious limits on 
the attributes of maximum service temperature and optical transparency that successful candidates must 
meet. We refer to these as attribute limits. One should not be too hasty in applying attribute limits 
however, as it may be possible to engineer around them; for example, a component that gets too hot 
maybe cooled (or the geometry modified to enable use of the same material at lower stress, EI versus E), 
or one that corrodes may be coated with a protective film. An aerospace specific case in point is the desire 
by many an engineer to impose a minimum limit on fracture toughness and strain to failure (e.g., KIC > 
15 MPa/m2 and ef >2 percent) in order to ensure adequate tolerance to stress concentrations. This is most 
likely to be a rash step this early in the design process, as it would eliminate all polymers, ceramics and 
many composite materials from consideration. Since a more innovative designer may be able to put these 
materials to good use. Consequently, at this stage in the process the engineer needs to try to keep as many 
options open as possible. 

2.1.3 Step 3: Ranking 

Attribute limits do not, however, help with ordering the candidates that remain after the screening 
constraints have been applied. To do this we need optimization criteria. They are found in the material 
indices, a subset of the performance indices3 described in Section 2.2, which measure how well a 
candidate can do the job. Performance is sometimes limited by a single property, sometimes by a 
combination of them. For example, the best materials for buoyancy are those with the lowest density, ; 
those best for thermal insulation the ones with the smallest values of the thermal conductivity. Here 
maximizing or minimizing a single property maximizes performance. But as we shall see—the best 
materials for a light stiff tie-rod are those with the greatest value of the specific stiffness, E/, where E is 
Young’s modulus. The best materials for a spring are those with the greatest value of Ef /2  where f is 

the failure stress. The property or property-group that maximizes performance for a given design is called 
its material index. There are many such indices, each associated with maximizing some aspect of 
performance. These indices provide significant insight into the types of optimization strategies needed as 
well as selection guidelines for the given problem at hand. 

To summarize: material rejection (or screening) isolates candidates that are capable of doing the job; 
ranking identifies those among them that can do the job best. 

2.1.4 Step 4: Research 

The outcome of Steps 1 through 3 produces a ranked short-list of candidates that meet the constraints 
and that maximizes or minimizes the criterion of excellence; whichever is required (this is why in Figure 
4 we have used a funnel. 

You could just choose the top-ranked candidate, but what bad secrets might it hide? What are its 
strengths and weaknesses? Does it have a good reputation? What, in a word, is its pedigree? To proceed 
further we seek a detailed profile of each candidate: it’s supporting information (see Step 4 in Figure 4). 
Supporting information differs greatly from the structured property data used for screening. Typically, it 
is descriptive, graphical or pictorial: case studies or experience of previous uses of the material, details of 
its corrosion behavior in particular environments, information of availability and pricing, experience of its 
environmental impact. Such information is found in corporate documentation, handbooks, suppliers’ data 
sheets, CD-based data sources and the world-wide web. Supporting information helps narrow the short-
list to a few final choices, allowing a definitive match to be made between design requirements and 

                                                      
3They provide criteria of excellence that allow ranking of materials by their ability to perform well in the given application. 
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material attributes. Why are all these steps necessary? Without screening and ranking (material rejection), 
the candidate-pool can be enormous and the volume of supporting information overwhelming. Dipping 
into it, hoping to stumble on a good material, gets you nowhere. But once a small number of potential 
candidates has been identified by the screening-ranking steps, detailed supporting information can be 
sought for these few candidates, and the task becomes tractable. 

2.1.5 Step 5: Specific Cultural Constraints 

The final choice between competing candidates will, often, depend on local conditions: on in-house 
expertise or equipment, on the availability of local suppliers, and so forth. A systematic procedure cannot 
help here—the decision must instead be based on local/institutional knowledge. This does not mean that 
the result of the systematic procedure (describe above) is irrelevant. It is always important to know which 
material is best, even if, for local reasons (e.g., specific processing method for a possible material is to 
expensive), you decide not to use it.  

2.2 Material Performance Indices 

The screening and ranking process can be made quantitative by linking the technical (e.g., functional, 
geometric, material) and economic requirements of the design to the attribute profiles stored in a given 
database. The foundations of a robust and systematic ranking procedure are particular combinations of 
material properties that embody the performance of the component. These property combinations are 
called performance indices, as put forth by Ashby (2005). The performance, P, of a structural element is 
determined by three, typically independent, aspects: the functional requirements, F, the geometry, G, and 
the properties of the material, M, of which it is made. The performance P of the element can often be 
described by an equation of the form 

 P = f (F, G, M)  (1)

where P, the performance metric, describes some aspect of the performance of the component; (for 
example its mass, volume, cost, or life) and “f ( )” means “a function of”. Optimum design is the selection 
of the material and geometry that maximize or minimize P, according to its functional requirements. 

When this group of parameters can be assumed to be separable (that is, M, F and G are independent 
of each other), then the performance index is merely a product of three functions, f1, f2, and f3; 

 P = f1 (F)  f2 (G)  f3 (M)  (2)

where the product f1(F)  f2(G) has been defined as the structural efficiency coefficient (and incorporates 
both functional requirements and geometry), and f3(M) is defined as the material efficiency coefficient. 
With this significant simplification, the overall performance index can be maximized or minimized by 
selecting a material to minimize f3(M), independent of the details of the design. This enables the optimal 
subset of materials to be identified without solving the complete design problem. While this is clearly a 
simplification of the full coupled design problem, it can provide a great deal of insight in the preliminary 
design stage of a project. This powerful and general method is simple, provided one is able to clearly 
identify, from the outset, the objective(s) (what you are trying to maximize or minimize), the constraints, 
and which parameters are specified and which are free.  

When any component function is combined with specific constraints and objectives, a specific 
material index (Mp = f3(M)) is produced as illustrated in Figure 5. Therefore, it is possible to develop 
numerous material and structural indices that enable one to efficiently and accurately perform material 
selection for a variety of design functions (e.g., stiffness, strength, and vibration-limited designs, as well 
as damage-tolerant, electro-mechanical, thermal, and thermal-mechanical designs) on a number of 
fundamental structural components described in Table 2 (i.e., tie, beam, shaft, column, panel, 
cylinder/shell with internal pressure and rotating disks), see Appendix A and Ashby (2005) for additional 
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Therefore, the lightest beam or tie-rod that will safely carry the load F without failing is that with the 
largest value of this index, the “specific strength”. A similar calculation for a light stiff tie (one for which 
the stiffness S rather than the strength f is specified) leads to the previous index, given in Table 3. 

2.2.1.1 Performance Index for Bending at Room Temperature 

Consider the case of a beam of section-area, A, length, L, subjected to bending, it must support a 
specified load F without failing and be as light as possible, see Figure 6. From strength of materials 
theory, the stress due to bending is 

 
Z

M

I

My
max   (6)

where I is the moment of inertia, y the distance from the neutral axis to outer edge of the beam, and Z is 
the section modulus. Failure occurs than if the load exceeds the moment, i.e., 

 fZZM  max   (7)

where again f is the stress at which failure of the material will occur. To enable the section shape to 
change for the same area of material, the section modulus Z is replaced by BZo where Zo is the section 
modulus for a square beam, i.e., Zo = A3/2/6, and B is the shape efficiency factor. The maximum shape 
factor can be considered to be a material property and used profitably in the selection of materials. Note, 
solid equiaxed sections (circles, squares, hexagons, etc.) all have efficiency factors close to 1; whereas 
efficient shapes like thin-walled tubes or I-sections can have shape factors of 50 or more. The physical 
limit to B is usually set by local buckling of the component.  

As before in the case of the tie rod, the mass can be decreased by reducing the cross-section, but there is 
a constraint: the section-area A must be sufficient to carry the bending stress, given a failure strength f; thus 
requiring that 

 

32

o
6 














fB

M
A   (8)

Finally, combining this constraint with the objective of minimum weight, m = LA, one obtains the 
following expression: 

  
32

23
32

o
6 















fB

LMm   (9)

Consequently, the best material and shape combination is that with the greatest value of the material 
index 

 
 





32

2
o fBM   (10)

2.2.1.2 Performance Index for Vibration at Room Temperature 

There are two ways to mitigate vibration of a mechanical system: by ensuring that the input does not 
excite a natural frequency, or, if this is not possible, by ensuring that the system is sufficiently well damped to 
avoid excessive motion at resonance. Here we consider the first of these. In many cases, the need is to avoid 
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The key material indices applicable for both thermal and mechanical issues of interest in the case of 
cryogenic tanks are shown in Table 5. Clearly it is desirable to use materials that possess high strength, 
high fracture toughness, and high stiffness, as well as low density and low permeation to liquid and 
gaseous hydrogen; however, no single material provides all these attributes simultaneously. 
Consequently, material performance indices associated with these properties, such as those given in Table 
5, must be used to identify the best material candidates for hybrid tank wall construction. Among these 
parameters, strength and density tend to dominate the design criteria. 
 

TABLE 5.—PERFORMANCE INDICES FOR THERMAL AND 
MECHANICAL COMPONENTS OF CRYOGENIC STORAGE TANK 

Function and constraints Performance index,  
maximize 

Thermal  
Minimum heat flux at steady state, fixed thickness  1/k 
Minimum temperature rise in specified time, fixed thickness  1/a 
Maximum energy stored for given temperature rise and time  k/α1/2 
Minimum thermal distortion  k/α 

Mechanical 
Strength-limiting design with minimum mass  σf /ρ 
Damage-tolerant design with minimum mass  KIc/ρ 
Deformation-limiting design with minimum mass E/ρ 
k = thermal conductivity  
a = thermal diffusivity (k/Cp) 
ρ = mass density  
Cp = specific heat  
α = coefficient of thermal expansion  
σf = strength  
KIc = mode I fracture toughness  
E = Young’s modulus  
Time, t = w2/2a with w = wall thickness.  

 
In the case of thin-walled spherical pressure vessels of radius R, the stress in the wall is given by  

 
t

PR

2
   (15)

And the mass of the thin-walled spherical tank is given by 

  tRm 24   (16)

From fracture mechanics we know that a crack will propagate by fast fracture when the stress intensity 
factor, which is a combination of the applied far field stress, , and crack length, 2c, reaches the fracture 
toughness of the material, KIc. This condition can be expressed by the following relation: 

 cYK c I   (17)

where Y is a parameter that takes on various values depending upon the changes in crack geometries and 
loading conditions (see Broek (1984) and Anderson (1995)).  

Consequently the internal pressure at which the working stress of the tank is below the critical stress 
that would cause a crack to propagate can be obtained by rearranging Eqs. (15) and (17) and substituting 
the results: 

 











cY

K

R

t
P cI2

  (18)
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Clearly, the largest pressure (for a given R, t and c) is obtained for the material with the largest fracture 
toughness since the pressure in Eq. (18) is proportional to KIc. Such a design, however, is not fail-safe, so 
additional conditions have been traditionally introduced to provide a greater level of safety. These are 
known as “yield-before-break” and “leak-before-break”. 

Yield-before-break requires that the stress to cause fracture be greater than that to yield the material, 
thus providing a state of detectable deformation prior to fracture. This condition is expressed as: 

 

2

I
2max

1














y

cK

Y
C   (19)

where the stress in Eq. (17) has been replaced by the yield stress, y, of the material. Consequently, the 
tolerable crack size, and thus integrity of the pressure vessel, is maximized by maximizing the following 
material index: 

 
y

cK
M


 I

4   (20)

Leak-before-break, typically utilized for large pressure vessels, requires that a stable crack be just 
large enough to penetrate both the inner and outer surfaces of the vessel (i.e. without fast facture) so that 
the leak caused by the presence of the crack can be detected. This condition is obtained by requiring that 
the unstable crack size exceeds the thickness (i.e., 2c > t) and that the wall thickness, t, contain the 
pressure, P, without yielding. This condition leads to the following: 

 













y

cK

RY
P

2
I

2

4
 (21)

Consequently, the pressure is carried most safely when the material index 

 
y

cK
M




2
I

5   (22)

is the largest possible.  
Both of these material performance indices, M4 and M5, can be maximized by choosing materials with 

low yield stresses, however, that could be problematic since the thickness and therefore the mass of the 
tank is inversely related to the yield stress, see Eqs. (15) and (16). Therefore for aerospace applications, 
which are typically weight critical, this demands that y/ be as large as possible since 

 





y

PR
m

32   (23)

These indices will be used latter to down select materials for use with lightweight pressure vessels. 

2.3 Material Property Charts  

Material property charts enable the condensing of a large body of information into a compact but 
accessible form. They reveal correlations between material properties that aid in checking and estimating data; 
and in conjunction with performance indices, constitute the backbone for tackling real design problems. They 
provide a convenient way of mapping out the areas of 'property space' occupied by each material class, and the 
sub-areas occupied by individual materials and provide a mechanism for surveying design-limiting properties 
(be it a single value or a combination of properties).  
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Utilizing the performance indices discussed in the previous section, enables the engineer to choose the 
chart axes so that function specific information can be displayed. For example, a chart of Young’s modulus 
(E) verses density (), see Figure 11, not only guides the best choice of material for the stiffness limited 
design of a tie rod, beam or a plate, (see Appendix A) but also shows the longitudinal wave velocity (E/)1/2 
and design for vibration. Similarly a plot of fracture toughness KIC against modulus E shows the critical 
strain energy release rate (toughness) GIC; a diagram of thermal conductivity () verses diffusivity (a) also 
gives the volume specific heat Cv; tensile strength (f) verses Young’s modulus (E) shows the elastic 
energy-storing capacity, f

2/E, to name a few.  
The most striking feature of the charts, as pointed out by Ashby (2005) is the way in which members of 

a material class cluster together, despite the wide range in various properties. For example, the modulus and 
density of metals (denoted by dark gray contour labeled Metals) in Figure 11, occupy a field that is distinct 
from that of polymers (denoted as lighter gray), or that of ceramics (lightest gray ellipse), or that of 
composites (hashed ellipse). The same is true of strength, toughness, thermal conductivity and the rest. Even 
though the fields sometimes overlap, they always have a characteristic place within the whole picture, due to 
the physical make up of the various materials. All charts have one thing in common, that some areas within 
the given material space are not populated. Some of these areas are inaccessible for fundamental reasons 
that relate to fundamental physics: the size and packing of atoms and the nature of the forces that bind their 
atoms together. But other areas are empty even though, in principle, they are accessible and if accessed 
would enable novel design possibilities. It is precisely this clustering, in combination with the material (or 
more generally the performance) indices that enable the rejection and ranking of various materials with 
respect to structural function. 

Material property charts have numerous applications. One is the checking and validation of data, 
another concerns the development of, and identification of uses for, new materials which can fill in empty 
regions, see Section 3.2. But most important of all, the charts form the basis for the previously presented 
procedure for materials selection.  

On a log-log plot, a contour with a constant value of a material index plots as a straight line. For 
example, the performance index for a light-stiff plate is given by (Appendix A): 

  31
6 EM  

Taking logs of both sides: 

       loglog
3

1
log 6 EM  

or 

      6log3log3log ME   

Consequently each line in the family of straight parallel lines of slope 3, on a plot of log(E) verses 
log(), corresponds to a fixed value of M6. All materials that lie on a line of constant E1/3/ perform 
equally well as a light, stiff panel, while those above the line perform better (are lighter for a specified 
stiffness) than those below the line. 

Examining Figure 11 it can be seen that Mg-alloys, Al-alloys, Ti-alloys, steels and W-alloys all fall near a 
line with the same value of E/the index for displacement limited tie rod subjected to tensile loading, see the 
heavy solid line). This raises the question: Why do we use aluminum in the manufacture of airplanes and not 
steel? This is immediately obvious when one takes into account the appropriate material index for plates/shells 
subjected to bending, i.e., E1/3/, see Appendix A. This is plotted as a dashed line of slope 3, passing through 
the aluminum bubble on Figure 11. It can be seen that aluminum has a much higher value of E1/3/ than steel 
and therefore has superior performance for a light, stiff plate. Additional attribute limits (e.g., horizontal or 
vertical lines) can also be added to narrow the associated search window (e.g., E > 10 GPa or  > 2 Mg/m2), 
thereby producing a short list of candidate materials. Material property charts will be utilized in the next 
section for two case studies to illustrate the utility of these charts. 
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2.4.2 Case Study 2b: Pressure Vessels  

The storage of liquid hydrogen in a lightweight tank provides significant challenges. The low density of 
the hydrogen fuel results in the need for a larger volume storage vessel relative to other fuels. Mechanical tank 
loads are derived from 1) the difference in pressure within the tank and the ambient conditions, 2) fuel weight, 
3) vehicle acceleration loads, 4) fuel slosh due to aircraft maneuvers, and 5) the weight of the tank system and 
its supports. Fuel slosh is bound to be encountered as the aircraft maneuvers or as it encounters air turbulence 
during the flight. Furthermore, the internal tank pressure has to be maintained at a constant absolute pressure in 
order to maintain the hydrogen in a liquid state. The tank weight increases with increasing operating pressure. 
Typically, gaseous hydrogen is used as the pressurant for liquid hydrogen. Two important criteria for tank wall 
design include material selection and wall architecture, which are not mutually exclusive. Many options are 
available and their advantages and disadvantages are discussed in Mital et al. (2006) where guidelines are 
provided for choosing an optimum system. Here the discussion will be limited to selection of the tank wall 
material, based upon mechanical loading alone to illustrate the selection process.  

Clearly it is desirable to use materials that possess high strength, high fracture toughness, and high stiffness, 
as well as low density and low permeation to liquid and gaseous hydrogen; however, no single material provides 
all these attributes simultaneously. Consequently, once again material performance indices, associated with the 
functional requirements, such as those given in Table 5, must be used to identify the best material candidates for 
tank wall construction. Among the material parameters, strength and density tend to dominate the design criteria 
as the mass of the tank is inversely related to specific strength (see Eq. (23)). Figure 14 shows strength versus 
mass density for various engineering materials. In this case, materials in the upper left corner are preferable. 
Composite materials exhibit high specific strength relative to metals and are well suited to aerospace 
applications: continuous fiber reinforced polymer (CFRP) composites provide the highest strength yet lightest 
choice. However, the use of continuous fiber reinforced composite materials most likely will involve higher 
initial manufacturing costs and their permeability to hydrogen is a potential complication. As per Figure 14, the 
materials that have the sufficient strength and acceptably low densities are PMCs, CMCs and metallic materials. 
Ceramic materials offer high specific strength, but due to their low fracture toughness (see Figure 15), are not 
viable for a tank wall material. A potential lower cost alternative to CFRP may be discontinuous reinforced 
metallic composites (DRX), specifically discontinuous reinforced aluminum (DRA) as described by Miracle 
(2001). DRAs are essentially isotropic and can be manufactured using less expensive techniques such as 
casting. The DRX materials have the added benefit of extremely low (if not negligible) hydrogen gas 
permeability issues typically associated with PMC systems. However, during a detailed study, Arnold et al. 
(2007) showed that minimum gage thickness requirements kept DRA materials from outperforming PMC 
materials for this application. 

Two key material performance indices that are generally applicable to the design of high pressure vessels 
but may also be applicable to low pressure cryogenic storage tanks where described previously. These indices 
are 'yield-before break', M4 = KIc/σf, and the 'leak-before-break', M5 = KIc

2/σf and are illustrated in Figure 15. 
Utilizing the first index ensures that the stress required to propagate a critical flaw is greater than that to yield 
the material and the second criterion, ensures that the maximum pressure carried will result in a stable crack 
that will just enable a leak to occur prior to catastrophic failure. Figure 16 once again clearly illustrates the 
difference between treating material indices as independent quantities (a) versus considering the interaction of 
the material indices during the selection process (b); the latter resulting in a reduction in potential material 
candidates. In Figure 16 only a subset (aerospace materials) of the 'Material Universe' database available 
within CES Selector is examined for illustrative purposes. Here we see that if the assumed values of the 

material indices are   201  
 fM  and 10

2
I

5   y

cKM  only a finite set of viable materials; for example Ti, 

PMCs remain.  
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The most well-known and widely used constitutive relation/model is the generalized Hooke’s law 

 klijklij eC   (25)

which describes multiaxial time-independent, linear (proportional) reversible material behavior. Up to 
now we have only utilized uniaxial Hooke’s law: = E e. Extension into the irreversible regime is 
accomplished by assuming an additive decomposition of the total strain tensor, ij ,  

 th
ij

I
ijijij e    (26)

into three components, that is a reversible mechanical, eij, (i.e., elastic/viscoelastic); an irreversible, I
ij , 

(i.e., inelastic or viscoplastic); and a reversible thermal strain, th
ij  component. 

Equation (26) can also be rearranged... 

 th
ij

I
ijijije    (27)

Substituting expression (27) into Eq. (25) gives a stress strain relation that incorporates irreversible 
strains as well as reversible ones, that is: 

  th
ij

I
ijijijklij C    (28)

Numerous models describing the evolution of the inelastic strain have been proposed in the literature. 
Table 6 contains a few representative examples with a brief description of their required material 
parameters. 

The well known Norton-Bailey creep model (Skrzypek and Hetnarski, 2000) and its multiaxial 
generalization proposed by Odqvist (1936) followed by a coupled fully-associative unified 
viscoelastoplastic model has been formulated (Arnold and Saleeb (1994) and Saleeb et al. (2001)) with 
sufficient generality to permit systematic introduction of multiple mechanisms for both viscoelastic (time-
dependent reversible) and viscoplastic (time-dependent irreversible) response components. This general, 
multi-mechanism, hereditary deformation model has been shown to accurately represent a wide spectrum 
of material response under different loading conditions for the case of titanium alloys (Saleeb and Arnold 
(2001) and Arnold et al. (2001 and 2004). Examples include 1) rate-dependent (effective) material tangent 
stiffness during initial loading or any subsequent reversed loading, 2) pure transient response (e.g., in 
creep or relaxation) within the reversibility region, 3) an elastic behavior upon stress reversal, irrespective 
of the load level, as well as, 4) other response features common to ‘unified viscoplastic’ formulations 
(e.g., rate-sensitivity, creep-plasticity interaction, thermal recovery, etc.). The following generalized 
anisotropic material behavior constitutive model results; see Table 6 for definition of the associated flow 
and evolutionary laws:  

 qE I   )( ,  (29)

All of this is said to emphasize that although for mathematical convenience materials are often 
classified into specific idealized groups (e.g., linear elastic, plastic, viscoelastic, and viscoplastic), nothing 
can compel real materials, however, to behave according to these idealized models. And typically, when 
dealing with actual complex material behavior as represented in Figure 17, it is not sufficient to describe 
this behavior with simple single parameter relationships or point wise values (e.g., E, , y, H, etc.) which 
have worked so nicely for material selection at low homologous temperatures (e.g., typically at room 
temperature) where such complex path dependent behavior is suppressed. 

 
 
  

Downloaded from http://www.everyspec.com



NASA/TM—2012-217411 27 

TABLE 6.—EXAMPLES OF VARIOUS CONSTITUTIVE MODELS AND THEIR REQUIRED MATERIAL PARAMETERS 
Model Idealized 

material 
behavior 

Mathematical representation Required isotropic 
material parameters 

Ramberg-
Osgood 
(1943) 

Elastic 
Plastic 

n

y

I H 













  
y, H, n 

Norton-
Bailey 

[Skrzypek 
and Hetnarski 

(2000)] 

Uniaxial 
Creep 

I nA    

A, n 

Odqvist 
(1936) 

Multiaxial 
Creep 

'
2

( 1)/2

'
2

where 1 / 2( 1) and 1 / 2(3 )

1 / 2 with 1 / 3

I m
ij ij

n

ij ij ij ij kk ij

BJ S

m n B A

J S S S



 

  
     



 

A, n 

GVIPS 
 
 

Arnold et al. 
(1994,2004); 
Saleeb et al. 

(2001); 
Saleeb and 

Arnold 
(2004) 

Visco-
elastoplastic 
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And all three forth-order tensors, Eijkl, ijkl  and )(a
ijkl , are taken to be 

coaxial, that is, ijklsijkl NEE  , ijkla
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ijkl NMM )(
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ijkla
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Note Zm is the “generalized” inverse of ijkl ; see Saleeb and Wilt 

(1993) ; for further elaboration on this. 

2+ 2M reversible 
constants: 

Es, M(a), , a


and 
 

3+5N irreversible 
constants 
, n,  

H(b), R(b), m(b), (b), 
(b) 

 

where N defines the 
number of 

viscoplastic 
mechanisms and M 

the number of 
viscoelastic 

 
 
 
So what should we do when the application operates at elevated temperatures—throw up our hands 

and just select materials based on linear elastic behavior? Not necessarily as there are simplified (albeit 
less accurate) approaches for high-temperature performance that allow some inelastic (e.g., creep) 
behavior to be accounted for and therefore influence the material selection process. Four such approaches 
are: 1) maximum service temperature (as in Sec. 2.4), 2) allowable stress, 3) design for creep, and 4) 
deformation mechanism maps. In this section, a brief description of the maximum service temperature 
and allowable stress approaches will be discussed. This will be followed by a more detailed description of  
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how to account for creep behavior in the material selection process. It is strongly suggested, however, that 
a rigorous nonlinear analysis, with a proper constitutive model, e.g., the unified viscoplastic GVIPS 
model (Arnold et al., 1994, 2004; Saleeb et al., 2001, 2004), be conducted for the top material candidates 
to verify the validity/suitability of the chosen material for a given design application.  

3.1.1 Maximum and Minimum Service Temperature 

The simplest measures of tolerance to temperature are the maximum and minimum service 
temperatures, Tmax and Tmin. The former tells us the highest temperature at which the material can 
reasonably be used without oxidation, chemical change or excessive deflection or ‘creep’ becoming a 
problem (the continuous use temperature, or CUT, is a similar measure). The latter is the temperature 
below which the material becomes brittle or otherwise unsafe to use. These are empirical, with no 
universally accepted definitions; therefore caution should be used to fully understand the underlying 
assumptions and implications. For example, the minimum service temperature for carbon steels is the 
ductile-to-brittle-transition temperature—a temperature below which the fracture toughness falls steeply. 
For elastomers it is about 0.8 Tg, where Tg is the glass temperature. Below Tg elastomers cease to be 
rubbery and become hard and brittle. Examining Figure 18 wherein strength versus maximum 
temperature is plotted, it is apparent that polymers and low melting metals like the alloys of zinc, 
magnesium and aluminum offer useful strength at room temperature but by 300 °C they cease to be useful 
(as inelastic/softening behavior is exhibited)—indeed, few polymers have useful strength above 135 °C. 
Titanium alloys and low-alloy steels can have useful strength up to 600 °C; above this temperature high-
alloy stainless steels and more complex superalloys based on nickel, iron and cobalt are needed. The 
highest temperatures require refractory metals like tungsten or technical ceramics such as silicon carbide 
(SiC) or alumina (Al2O3).  

In Figure 12, the flexure strength versus maximum service temperature was utilized to identify 
potential candidate materials for three types of gas turbine engine blades: fan blades T < 300 C; 
compressor blades, T < 700 C; and turbine blades that operate above 700 C. In case study 1b, Ti-6-4 
was identified as a potential fan or compressor blade material whose maximum service temperature was 
given a range of approximately 350 to 420 C, see Figure 13. However, in a recent study (see Arnold et 
al. 2009) the complete time-dependent and rate-dependent temperature regimes for this material were 
experimentally mapped out. Results demonstrated that this maximum service temperature is too 
aggressive and should really be limited to 300 C, since only below this temperature can it be assumed 
that no rate-dependence and only a minor amount of time-dependence are present, see Figure 19. In 
Figure 19 the deformation response of Ti-6-4 over a wide range of temperatures is documented. Here, the 
variation of the moduli and experimentally determined threshold stress, κ, (that stress which truly 
delineates between the reversible and irreversible strain regimes) are plotted as a function of temperature 
(see Arnold et al. 2001). The modulus ES represents the “infinitely slow” modulus, i.e., the elastic 
modulus of the material if it was loaded at an infinitely slow strain rate, whereas the modulus ED 
represents the “dynamic modulus”, which is the modulus of the material if it is loaded “infinitely fast” 
(e.g., very high, ≥ 110–3) rate (i.e., all time dependence is locked into this modulus). As can be seen in 
Figure 19, at elevated temperatures there is a significant difference between the two modulus values, 
indicating that even in the so-called “elastic” range, there is significant time-dependence (reflected as rate 
dependent apparent moduli). Below a temperature of about 300 °C, the two moduli are approximately 
equal; indicating the response of the Ti-6-4 material is rate-independent but not necessarily time-
independent. Above 300 C, the response is rate-dependent and time-dependent even below the threshold 
stress. To appreciate the practical significance of this fact, the operating temperatures typically 
encountered in aircraft engines are also noted below the horizontal axis in Figure 19, as well as the 
occasional, higher-temperature regime encountered during over-temp maneuvers. Clearly, even when one 
is within the typical engine design range and expecting the material response to be reversible, or “elastic”, 
the material behavior (at least in the case of Ti-6-4) would in fact be rate-dependent and would generate 
an additional strain of /Es over time, where is the current applied stress that is less than or equal to 
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1971; Gittus, 1975; Frost and Ashby, 1982; Evans and Wilshire, 1985). Many constitutive equations for 
creep-rate have been suggested, some purely empirical, some science-based; most are a mix of the two. 
Those most widely used in engineering design when deflection is important, relate the steady-state strain-
rate ss  to the tensile stress  and the temperature T thus:  

   







RT

Q
Afss exp

,
  (30)

where A is a kinetic constant, Q an activation energy, R the gas constant and f () means “ a function of 
stress ”. The function f () can be approximated, over restricted ranges of stress, by the Norton-Bailey 
power law given in Table 6 and slightly rewritten here: 

 
n

o
o

n

o
ss

RT

Q
A 























.

exp 
,
  (31)

where the constant A, the activation energy Q, the exponent n and the characteristic strength constant o 
are material properties. Considerable experience has accumulated in the use of Norton’s Law, which has 
the appeal that it allows analytical solutions to a wide range of engineering problems (see, for instance, 
Finnie and Heller, 1959; Hult, 1966; Penny and Marriott, 1971). For this reason we shall use it here even 
though, from a scientific point of view, it lacks a completely respectable pedigree. Nor is it capable of 
accounting for creep/plasticity effects that more sophisticated unified viscoplastic models were developed 
to handle. 

3.2.2 Constitutive Equation for Creep Fracture 

When fracture rather than deflection is design-limiting, creep is characterized instead by the time to 
fracture, tf. It, too, can be described by a constitutive equation with features like those of Eq. (31). Here, 
again, a power law gives an adequate description over a restricted range of  and T: 

  

q

f
f

f
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f t
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Q
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
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







 0exp
,
  (32)

With its own values of kinetic constants B, activation energy Qf, exponent q and characteristic strength f. 

3.2.3 Constitutive Equation for Relaxation 

Relaxation requires a constitutive equation which combines creep (inelastic) and elastic response when 
total strain rate is held constant at zero. Consequently, from Eq. (29), and assuming tension it takes the form: 

 I
ssE  , (33)

where E is Young’s modulus, ss  is given by Eq. (31) and   is the rate of change of stress with time. It is 
important to realize however that although the form of the inelastic strain is the same as Eq. (33) the 
material constants take on completely different values since the relaxation spectrum is typically 
significantly shorter than that of steady state creep. For the bending of a beam (as in Figure 22) the 
equation becomes instead 

 c
S

F
 


,
  (34)

where F  is the rate of change of force F, S is the bending stiffness and c is the creep deflection rate of 
the beam. Similar expressions describe torsion and compression. 
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,  (37)

Thus the lightest tie which meets the constraints of F, T, t and  is that made of the material with the 
largest value of 

 










 DM 6 ,
  (38)

This has the same form as the previous elastic material index for a tie rod 

 



 yM1 ,
  (39)

with y replaced by D, defined above. Consequently it contains both temperature and time. 
The analysis of beams, shafts, pressure vessels (and the like) is a little more complex, but follows the 

same pattern. Consider, as an illustration, the cantilever beam of Figure 22(b) carrying a load F, but now 
at a temperature such that it creeps. The objective, as before, is to make the beam as light as possible; the 
constraints (again as before) are that its length L and the proportions, of its cross-section are fixed, and 
that it must support the load F for a time t at temperature T without deflecting more than . The design 
specification constrains the deflection rate,  : it must not exceed /t. The deflection rate   for a 
cantilever beam with end load F, creeping according to the constitutive Eq. (32) is  
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See Appendix B for complete derivation. Eliminating b and h between the equations m = AL and (40), 
using b = h and A = h2 gives 
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with D, which we call the design strength, given by 
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Equation (41) looks messy, but it is not as bad as it seems. For example the fully-plastic limit can be 
found by setting n = , thereby simplifying Eq. (41) to 
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which is identical with the mass of the plastic beam   3/243/1
y

FLLm 

 

if D is replaced by y. The 

design strength in creep, then, plays the same role as the yield strength in room-temperature plasticity. In 
fact, Eq. (43) is a good approximation to the more complex result of Eq. (41) over the entire range of 
values of the exponent n (3 < n < 20) normally encountered in metals and alloys. Inspection shows that 

the mass is minimized by maximizing the index M2 given earlier 


32

2
yM  with y replaced by D 

(remember that D contains temperature and deflection-rate). 

A parallel calculation for a panel (flat plate in bending) gives an equation 





3/2

7
yM  again with y 

replaced by D, appropriately defined. Similar expressions are derived for torsion and for internal 
pressure (Appendix B). Selection with the objective of minimizing cost rather than weight lead to 
identical results with  replaced by Cm, where Cm is the material cost per kg; and the objective of 
minimizing energy content is achieved by replacing this by qm, where qm is the energy content per kg. 

3.2.4.2 Fracture-Limited Design 

Consider next an application in which fracture, not deflection-rate, is design-limiting (Figure 20(b)). 
For a bending beam the largest stresses appear—and creep-fracture starts—in the outer fibers at the place 
where the bending moment M is greatest (Figure 22(c)). The time t to the onset of failure of the 
cantilever, using the constitutive relation of Eq. (32), is 
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Writing b = h, solving for the area A = bh and substituting in m = AL gives 
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with the design strength 
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The parallel with deflection-limited design is obvious; and once again the result reduces to that for full 
plasticity in the limit q = . The mass is minimized, as before, by maximizing the index of equation 





32

7
yM  with y replaced by this new, fracture-related D which depends on design life, t, and on 

temperature, T. Analogous calculations for ties and panels give equations 
 yM 1  and 





31

3
yM —only 

the definition of D is different. Similar expressions describe torsion and internal pressure (Appendix 
B.1), and are modified for cost or energy content by replacing  by Cm or qm as before. 

3.2.4.3 Relaxation-Limited Design 

A tensile cable, or a bolt, that is pretensioned to provide a bearing or clamping force F at an elevated 
temperature, relaxes with time by creep. The calculation is a standard one; elastic strain /E is replaced 
over time by creep. The total change in strain in the cable or bolt is zero, since its ends are fixed. The 
governing equation for the stress in the component was given earlier as Eq. (33). Integrating this with the 
boundary condition  = i at t = 0, gives 
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  (47)

where i is the stress to which the cable or bolt was originally tightened, and  is the stress to which it has 
relaxed in time t. In this case a constraint is specified by defining a characteristic relaxation time, tr, as the 
time required for the stress to relax to a specified fraction of its initial value. Inverting Eq. (47) gives: 
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Clearly the quantity in the square bracket can be thought of as merely a scaling factor, consequently 
the result is independent of the choice of /i. For illustrative purposes the ratio /i is taken to be 0.5 
and for n > 3 the term in square brackets is then close to unity; thus for simplicity it shall be neglected. 
The design specifies the minimum bearing or clamping load F. Writing  = F/A and substituting for A in 
equation m = AL, gives the mass of the cable or bolt which will safely provide a clamping load greater 
than F for a life tr; 
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with 
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The mass is minimized by selecting the material with the greatest value of D/, that is, the material index 

is once more that of equation 
 yM 1  replaced by this new D. 

Springs, too, relax their tension with time. Most are loaded in bending, when the constitutive behavior 
is that of Eq. (34). Taking a beam of length L as an example, we write, for the stiffness S: 
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  (51)

where I is the second moment of its area and C2 is a constant. Integrating with the boundary conditions F 
= Fi at t = 0 gives a result with the form of Eq. (47). Proceeding as before, we find for the minimum 
weight design of a leaf spring (or any spring loaded in bending), which must not relax its restoring force 

in time tr at temperature T, the index M7 is 



32

7
yM , with D (when n > 3) given by 
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  (52)

Abel and Ashby (1994) list results for other modes of loading. Similar calculations for ties and panels 

give equations 
 yM 1  and 




31

8
yM  again—only the definition of D is different. The earlier 

adaptations to cost or energy apply here as well. 
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3.2.5 The Selection Procedure 

Expressions for the indices M and the associated design strengths D are summarized in Appendix 0 
to B.3. The close parallel between these results and those for room temperature plasticity (equations


 yM 1 , 




32

7
yM  and 




31

8
yM ) suggests a selection procedure. The design temperature T and 

acceptable deflection-rate   or life, t, or relaxation time tr are identified. Using this information, values 
for the appropriate D are calculated from a database of creep properties for materials (it is necessary to 
capture the value of D at the value y to allow for the change of deformation mechanism to yielding at 
low temperatures). These are used to construct a chart of log (D) against log (). This is the creep-
equivalent of Figure 14, but is specific to the particular temperature, deflection-rate or life required by the 
design since these appear in the definition of D. The indices M1, M7 and M8 can be plotted onto it, 
allowing optimum selection for each application. 

This is best understood through examples. Those of the next section are deliberately simplified to 
avoid unnecessary digression. The method remains the same when the complexity is restored. 

3.2.6 Case Study 

The example below illustrates the selection of materials for structures loaded at elevated 
temperatures, and which are limited by deflection. Components limited by fracture or by stress relaxation 
can be handled in a similar manner. Remember many other considerations enter the selection of materials 
for high-temperature use as well; for example resistance to oxidation, to thermal shock, and so on. Here 
we consider the selection for the initial short-list of candidates, of which these additional considerations 
would then be investigated. 

3.2.6.1 Case Study 1c: Fan and Turbine Blades for Gas Turbines 

A rotating blade of an aircraft turbine is self-loaded (Figure 20(a) and Figure 23); the centrifugal 
force caused by its own mass is much larger than that exerted by the gases which propel it. Adiabatic 
compression of the intake air can heat the compressor-fan blade to 400 C or more. The dominant mode 
of steady loading, therefore, is tensile, and proportional (for fixed blade proportions) to the density of the 
blade material. It could, then, be anticipated that the appropriate index is that for tensile loading, M1 of 

equation 
 yM 1 , with the design strength for tensile loading, D, replacing y, see Eq. (38).  

More detailed analyses add complexity, but confirm this result (Able and Ashby, 1994). The turbine 
blade is loaded in the same way, but is hotter: designers would like to go to 1000 C. The task is to select 
materials to maximize the safe angular velocity of the compressor or turbine blade, designed to operate 
for a life t of 1000 hr without extending by more than , which is required to be 1.0 percent of its length, 
for each of these temperatures, and at the same time to minimize the weight. 

The profile and section are determined by the blade design—neither is free. The mass is minimized 
by minimizing  

 



1

9M
,
  (53)

Figure 24 through Figure 26 show D creep strength, calculated for 400, 1000, and 1500 C, 

respectively, with a value of L
  and T corresponding to the design specification, plotted against density, 

. Selection lines plotting the appropriate indices are shown and the corresponding potential material 
selections are listed in Table 7 through Table 9. The sweet spot (desired location) for material selection 
being the upper left hand corner of the figures. 
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material the individual constituents will redistribute the local stress and strain fields to carry the globally 
applied fields most effectively. 

But how is one to compare a hybrid—a sandwich structure for example—with monolithic materials 
such as polycarbonate or titanium? To do this we must think of the sandwich not only as a hybrid with 
faces of one material bonded to a core of another, but as a “material” in its own right, with its own set of 
effective properties; it is these that allow the comparison.  

The approach adopted here is one of breadth rather than precision. The aim is to assemble methods to 
allow the properties of alternative hybrids to be scanned and compared with those of monolithic materials, 
seeking those that best meet a given set of design requirements. Once materials and configuration have 
been chosen, standard methods—optimization routines, finite-element analyses—can be used to refine 
them. But what the standard methods are not good at is the quick scan of alternative combinations. That is 
where the approximate methods discussed here pay off. 

The broad classes of hybrid can be considered in this way: 
 

 Cellular structures are combinations of material and space giving precise control of density, 
stiffness, strength and thermal conductivity. 

 Sandwich structures have outer faces of one material supported by a core of another, usually a 
low density material—a configuration that can offer a flexural stiffness per unit weight that is 
greater than that offered by either component alone.  

 Composites combine two solid components, one, the reinforcement, contained in the other, the 
matrix.  

 Coated materials enable the surface properties of the bulk material to be enhanced by addition of 
a thin surface layer. 

 
Continuum and micro-mechanical models can be used to estimate the equivalent properties of each 

configuration. These can then be plotted on material selection charts, which become comparison-tools for 
exploring unique combinations of configuration and material. Some examples follow later. 

3.3.1 Holes in Material-Property Space 

As previously described, material properties can be “mapped” as material property charts of which 
Figure 28 is an example (for an up-to-date survey see Ashby et al. 2010). All the charts have one thing in 
common: parts of them are populated with materials but other parts are not. Some parts of the holes are 
inaccessible for fundamental reasons that relate to the size of atoms and the nature of the forces that bind 
them together. But others are empty even though, in principle, they could be filled. 

3.3.1.1 Criteria of Excellence 

Is anything to be gained by developing materials (or material-combinations) that lie in these holes? 
To answer this a criteria of excellence is needed to assess the merit of any given hybrid. These are 
provided by the material indices, described above. If a possible hybrid has a value of any one of these that 
exceed those of existing materials, it achieves our goal. 

The axes of Figure 28 are Young’s modulus, E, and density . The property-combinations E/, E1/2/ 
and E1/3/ are measures of the excellence or material indices for selecting materials for light, stiff 
structures. A grid of lines of one index—E/—is plotted on the figure. The arrow lies normal to the index 
lines. If the filled areas can be expanded in the direction of the arrow (i.e., to greater values of E/) the 
materials so created will enable lighter, stiffer structures to be made. The arrow thus defines a vector for 
material development. 

One approach to filling holes—the long-established one—is that of developing new metal alloys, new 
polymer chemistries and new compositions of glass and ceramic so as to create monolithic materials that 
expand the populated areas of the property charts. But developing new materials can be expensive and 
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3.3.3 Mechanical Properties  

In Figure 31 the compressive stress-strain curve of a cellular solid is depicted. The material is linear 

elastic, with modulus E
~

 up to its elastic limit, at which point the cell edges yield, buckle or fracture. The 

foam continues to collapse at a nearly constant stress (the “plateau stress”, pl~ ) until opposite sides of the 

cells impinge (the “densification strain” d
~ ), when the stress rises rapidly. The mechanical properties are 

calculated in the ways developed below. 
Elastic Moduli of Bending-Dominated Foams: A remote compressive stress  exerts a force F  L2 

on the cell edges, causing them to bend and leading to a bending deflection , as shown in Figure 29. For 
the open-celled structure shown in the figure, the bending deflection scales as 

 
IE

LF

s

3
   (55)

where Es is the modulus of the solid of which the foam is made and 12
4tI   is the second moment of area 

of the cell edge of square cross section, t2. The compressive strain suffered by the cell as a whole is then  
= 2/L. Assembling these results gives the modulus  /

~
E of the foam as 

 s
s

ECE
2

2

~~




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





  (bending-dominated behavior)  (56)

Since sEE 
~  when s

~ , we expect the constant of proportionality C2 to be close to unity—a 
speculation confirmed both by experiment. Numerical simulation gives C1 = 0.7, the value used in the 
examples below. The quadratic dependence means that a small decrease in relative density causes a large 
drop in modulus. When the cells are equiaxed in shape, the foam properties are isotropic with shear 
modulus, bulk modulus and Poisson’s ratio via 

 
3

1~~~

8

3~
 EKEG   (57)

Elastic Moduli of Stretch-Dominated Lattices: The structure shown in Figure 30, is fully triangulated. 
This means that the cell edges must stretch when the structure is loaded elastically. On average one third 
of its edges carry tension when the structure is loaded in simple tension, regardless of the loading 
direction. Thus 

 s
s

ECE 











~~

3

 
(stretch-dominated behavior)  (58)

with C3 = 1/3. The modulus is linear, not quadratic, in density giving a structure that is stiffer than a foam 
of the same density. The structure of Figure 32 is almost isotropic, so we again approximate the shear 
modulus, bulk modulus and Poisson’s ratio by Eq. (57). 

3.3.3.1 Yield Strength, Flexural Strength and Compressive Strength 

Strength of bending-dominated foams. When the structure of Figure 29 is loaded beyond the elastic 
limit, its cell walls may yield, buckle elastically or fracture as shown in Figure 32. Consider yielding first 
(Figure 32(a)). Cell edges yield when the force exerted on them exceeds their fully plastic moment. 
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Here a is the intrinsic flaw size of the cell edge material, KIc,s is its fracture toughness and ts,s is its tensile 
strength; wherein typically 10/ a .  

This behavior is not confined to open-cell foams. Most closed-cell foams also follow these scaling 
laws. At first sight, this is an unexpected result because the cell faces must carry membrane stresses when 
the foam is loaded, and these should lead to a linear dependence of both stiffness and strength on relative 
density. The explanation lies in the fact that the cell faces are very thin; they buckle or rupture at stresses 
so low that their contribution to stiffness and strength is small, leaving the cell edges to carry most of the 
load. 

Fracture toughness of stretch-dominated lattices: Lattices that contain long crack-like flaws 
compared to the cell size   fail by fast fracture if the stress intensity factor exceeds the critical value cK I

~ , 
which is the lesser of  
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  (65)

a/  is the ratio of the cell size of the foam to the flaw size in the material—again typically having a 
value of approximately 10. 

3.3.4 Thermal Properties 

Specific heat and thermal expansion: The specific heat pC
~

 of foams and lattices (units: J/kg.K) and 

the expansion coefficient ~ (units K–1) are the same as those of the solid of which they are made.  
Thermal conductivity: The cells in most cellular structures are sufficiently small that convection of 

the gas within them is completely suppressed. The thermal conductivity of the foam is then the sum of 
that conducted thought the cell walls and that through the still air (or other gas) they contain. To an 
adequate approximation 
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  (66)

where s is the conductivity of the solid and g that of the gas (for dry air it is 0.025 W/m.K). The term 
associated with the gas is important: blowing agents for foams intended for thermal insulation are chosen to 
have a low value of g. 

3.3.5 Electrical Properties 

Resistivity: The electrical resistivity, elec~  of foam is given by 
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 (67)

Dielectric properties: Insulating foams are attractive for their low dielectric constant, r
~ , falling 

towards 1 (the value for air or vacuum) as the relative density decreases: 
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material. This ‘supporting information’ includes details of corrosion, heat treatment, environmental 
impact and joining characteristics, as well as previous in-house experience in using the material. As the 
design of the component is finalized, detailed stress analyses and lifing calculations are needed, which in 
turn require very precise ‘allowable’ design values of the properties of a single material. 

 
 

TABLE 10.—MATERIAL INFORMATION NEEDS THROUGH A PRODUCT LIFE CYCLE 
Product life phase Materials information Engineering operation 

Design Selection data (typical props) 
Supporting information 
Environmental impact information 
Design ‘allowables’ 
Specific constitutive and failure 
models for detailed design 

Materials selection 
Environmental analysis 
Life cycle assessment 
Design calculations 
Stress analysis 
Lifing, simulation 

Manufacture Processing data Process modeling, 
Manufacturing simulation 

In-service Durability information Maintenance 
Predict remaining life 
Investigate failures 

End of life Environmental impact information 
Hazardous materials regulations 
Recycling information 

End of life policy implementation 

 
 

Next the component must be manufactured, which has its own data requirements for information 
about the processing characteristics of the raw material—the viscosity when molten, the strength at high 
temperature, the hardness, toughness, etc. Then when the component is in service, there is a need for 
material data for maintenance purposes (e.g., for manufacturing spare parts), for predicting the remaining-
life and for investigating service failures when they arise. Finally, at the end of life, the component may 
be recycled or disposed-of in some other way, therefore requiring knowledge of the environmental 
characteristics of the material—for example information about toxicity or degradation in landfill and 
associated legislative requirements—can be essential.  

All this is to make the point that having a multifaceted, “complete” material data source in a well 
organized, easily retrievable, information management system is a critically important and often 
unappreciated aspect of the entire engineering process. The value of a given database depends on its 
precision and its completeness, or in other words on its quality. Consequently, numerous procedures of 
checking and validating data have been devised, see for example Ashby (1998), Cebon and Ashby (2000) 
and Cebon and Ashby (2006) for discussion of checking methods, including property range and 
dimensionless correlations concepts.  

The material data lifecycle is described in Figure 35 wherein data is captured and consolidated from 
external sources, legacy databases as well as internal (possibly proprietary) testing programs. Next data is 
analyzed and integrated to create/discover useful information and then deployed (disseminated) to the 
people who need and use it. With the continual maintenance of the whole system (the data and 
information generated as well as the relationships, or links, between them) being the last yet essential 
stage of the data lifecycle. To support the various required activities throughout this data lifecycle 
requires the integration (preferably seamless) of a variety of software tools. These range from data input, 
reduction/analysis, visualization, reporting tools; material parameter estimation tools; product life 
management tools (PLM); to structural analysis codes that utilize a central database. These tools should 
enable material and structural engineers throughout the enterprise to input, manage and utilize 
information in as an efficient, reliable and user-friendly way as possible. An information management 
system that was conceived of by the Material Data Management Consortium [www.mdmc.net] and built  
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Appendix A.—Table of Material Indices 

Function and constraints 
Stiffness-limited 

design 
Strength-limited 

design 
Vibration-limited

design 

Tie (tensile strut)    

Stiffness, length specified; section area free  E/ρ 
 f  E/ρ 

Shaft (loaded in torsion)    

Stiffness, length, shape specified, section area free  G1/2/ρ 
 32

f   

Stiffness, length, outer radius specified; wall thickness free  G/ρ 
 f   

Stiffness, length, wall-thickness specified; outer radius free  G1/3/ρ 
 21

f   

Beam (loaded in bending)    

Stiffness, length, shape specified; section area free E1/2/ρ 
 32

f  E1/2/ρ 

Stiffness, length, height specified; width free 
All dimensions specified 

E/ρ 
----- 


 f

 
----- 

----- 
E/ρ 

Stiffness, length, width specified; height free  E1/3/ρ 
 21

f   

Column (compression strut, failure by elastic buckling)    

Buckling load, length, shape specified; section area free  E1/2/ρ 
 f   

Panel (flat plate, loaded in bending)    

Stiffness, length, width specified, thickness free 
All dimensions specified 

E1/3/ρ 
----- 


 21

f

 
----- 

E1/3/ρ 
E/ρ 

Plate (flat plate, compressed in-plane, buckling failure)    

Collapse load, length and width specified, thickness free  E1/3/ρ 
 21

f   

Cylinder with internal pressure    

Elastic distortion, pressure and radius specified; wall 
thickness free  

E/ρ 
 f   

Spherical shell with internal pressure    

Elastic distortion, pressure and radius specified; wall 
thickness free 

E/(1 – v)ρ 
 f   
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> 1 
ometry 
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b free  
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R free 
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R free 
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free 
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M; to minimize e
 

Design str

fD 0




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
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

fD 0




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1
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
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q
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1
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

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q

f
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1

0
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

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q
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1

0
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
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Index 




 DM  





32

DM





21
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


 DM  





32

DM





32

DM





21

DM




 DM  




 DM  

. 
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Repeating the calculation for a solid torsion bar gives 
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The definition of design strength remains the same as Eq. (B31). Inserting this in the last equation and 
solving for the section A = R2 gives, via Eq. (B11) 
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For all n > 3, C3  1 and the exponents simplify to give 
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The lightest shaft is that with the greatest value of 
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DM  (B39)

A similar calculation for a tube in which the thickness scales as the radius, such that t = R gives the 
same result, with the same definition for D. 
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