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TECHNICAL NOTE NO. 469
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A SUVEARY OF DESIGN FORNULAS FOR BELMS HAVING
THIN WEBS IN DIAGONAL TENSION

By Paul Kuhn
SUMMARY

This report presents an explanation of the fundamen-
tal principles and a summary of the essential formulas
for the design of diagonal-~tension field beams, i.e., beams
with very thin webs, as developed by Professor Wagner of
Germany-.

INTRODUCTION

The necessity for designing structures to the small-
est possible weight for a given load factor has forced
airplane designers to deviate materially 'in some instances
from construction practices that have become standard in:
older branches of engineering. Diagonal-tension field
beams are one example of this trend away from established
practice. 3

Diagonal-tension field beams are a special develop-
ment of plate girders in which the shearing force is small
compared with the depth of the girder, so that the reguired
web thickness is very small., Such a thin web would buizkle
before it reached the ultimate shearing strcss. In sirue-
tural engineering, this buckling is prevented by attaching
stiffeners to the web, In many aeronautical structures,
however, the web is so thin tkhat an excessive number of
stiffeners would be reguired to develop a high shearing
stress before buckling. Therefore, a different solution
of the problem has been attempted. The flanges of the
beam are connected by a number of struts which act not as
web stiffeners, but as flange spacers. The web is thus
left free to buckle, the basic idea being tihat the web aft-
er Dbuckling cannot carry the shear in the beam by develop-
ing shearing stresses, but can and does carry the shear by
developing tensile stresses in the direction of the diag-
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onal buckles or folds; hence the name "diagonal-tension
field beams."

The choice between tle plate girdéer with a web safe
against buckling and a diagonal-tension field beam depends
on the relative magnitudes.of shearing force and depth of

where S 1is the total shear in pounds and h the depth
of the beam in inches, Wagner has estimated (reference 1,
p. 3) that a diagonal-tension field beam is probably pref-
erable if X is less than about seven, while a plate gird-
er with a shear-resistant web is preferable if K 1is more
than about eleven. In the intermediate region there is
little choice between the two.

beam. Using as a criterion the "index value"

Beams with an index value K of less than seven are
frequently found in aircraft structures. Instances are
found elsewhere than among beams in the narrower sense of
the word. The theory can also be applied to the shear
skin of monocoque fuselages, hulls, and floats; to the
skin of metal-covered wings, when the skin is used to
take the shear loads due to drag or torsion; and to the
bulkheads for monocogque wings, fuselages, floats, and hulls.
Attention is called to the fact that the use of a thin web
may be of advantage in truss-type assemblies because the
lateral support which the wedb contributes to the compres-
sion members may more than compensate for the increase in
weight due to the use of the web. ;

The theory of diagonal-tension field beams has been
treated by Professor Wagner, of Danzig, Germany, and his
publications have been made available to the American de-
signer in several N.A.C.A. Technical Memorandums. (See
references 1 - 5.) These translations, however, are dif-
ficult to follow and contain some errors. Consequently,
the present report has been prepared to explain the funda-
mental principles of diagonal-tension field beams, or
"Wagner beams" as we shall call them for brevity, and to
give the formulas essential to the design of such beams.
No attempt has been made to present the derivation of the
equations. Any person interested in the theoretical as-
pects of the subject may refer to the original articles
or their translations.
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FUNDAMENTAL FRINCIELES

When a frame as shown in figure 1 is loaded by a force
be in tension and the diagonal

P, the jdiasgonal
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D, ‘in compression.
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P has reached some definite small value,
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The diagonal

the load in

» Will become negligible as compared with the load in

Figure 2,

If the frame is converted . into a beam by replacing

" the diagonals with a very-thin-web,

plies. The compression stresses in the direction of D,
fold the web into corrugations as indicated in figure 2,
and the shear in the panel is carried by tensile stresses

in the direction of

Wagner beam. If the panel is sguare,

D,

b will continue to carry a load about equal to its buck-

D

a similar argument ap-

Such a panel with the web in di=-
agonal tension constitutes the fundamental unit of the

such as is shown in

figure 1, it is quiteobvious that. the folds will form at

an angle of approximately 45°,
gle, the direction of the folds is not so obvious,

If the panel is a rectan-

ory shows that it will still be apprroximately a5t provid-

ed that all edge members are stiff.

The introduction of

additional struts in the panel (fig. 3) does not change
the direction of the folds if these struts are parellel to

the original end struts (reference 1, p. 10).

3

but the-
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. AFPLICATION OF ERINCIFLES TO A CANTILEVER BEAM

From the fundamental prineiples explained in the pre-
ceding section, it follows that, if the flanges and struts
of the cantilever beam shown in figure 3 are very stiff as
regards bending in the plane of the web, application of the
load P will cause the web to form folds at an angle Q,
which is approximately equal to 45°, The stress in the
web is chiefly tension which is uniform over the panel
and in the direction of the folds (reference 1, pp. 4-21);
consequently, the web may be considered to be cut into a
number of tension diagonals by cuts parallel to the wrin-
kles. If a section through the beam is taken at a distance
x from the right end, consideration of the equilibrium of
the resulting free body shows (reference 1, pp- 24-27) that
the tensile stress in the webd is

s BF 1 :
P O e i g
ht ‘sin 2a - . ()

where' t is the thickness of the web, and that the forces
in the tension and compression flanges- are

v

H_- T = E__J_[_ - / . : 1
T,0 "% cp? a . ger)
where the second term is due to the horizontal component

of the web tension. The vertical component of the web ten-
sion, acting along a length '@ of: the flange, gives the
force in the struts ' :

Y=~ 0 % tan a ey
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. Theoretical: calculations have shown that ‘a is usu-
ally 2 féw degrees :less than 45°% (reference I, p. 22).

" Observation of tést beams has shown that the unavoidable
irrezvlaritiés. in -material, riveting, etc., cause devid- -
tions from“-the theoretical value of . &.. Consequently, ‘it
is sufficiently accurate for design to assume the corven-

-ient value  « ='45°._;The preceding formulas therefore be-
come oot iy S : o

e

The spacing of the struts in a Wagner beam should
normally vary between one sixth and one half the depth of
the beam. If the spacing of the struts becomes greater
than the depth of the beam, o may become much less than
45°. 4 conservative procedure in this case is to compute
the forces in the tension flange and in the struts with
a = 45°, the force in the compression flange and the stress
in the web with o = at = taﬁd.g. In general, such wide

spacing is very impractical and should be avoided unless
strength is a minor consideration.

-

THE GENERAL CASE OF A BEAM WITH PARALLEL FLANGES

In the general case of a beam with parallel flanges,
the struts have an inclinatien f . and loads §g -are inp-

troduced at points other than at'tﬁe end of the beam (figs.
4a and 4b).

e

T

P
e
e
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Since angle sections or other open sections of small bend-
ing stiffness are often used for struts, the formulas are
derived under two assumptions: I - struts with infinite
stiffness against bending in the plane of the web; and II ~
struts with no bending stiffness. The effects of finite
bending stiffness of the flanges will also be considered.

1 - Beam with struts of infinite bending stiffness in
plane of web.- If the struts are rigid and well riveted to
the web, the web tension is constant in any bay between
two struts and changes by a constant amount proportional

to P, et any strut where a load P, is introduced (fig.

5). Wherever such a 1load is intreduced the force in the
strut varies linearly from V1 to V2 throughout the

length of the strut.

EAY TRANTS

The formulas for the case under discﬁssion are (ref-
erence 4, pp. Y and 8, and reference 1, pp. 33 and 34):

en Bt -
f = == ]
t sin 2a (1 - tan o cot PB) - (&%)
Hp ¢ = = % - % (cot a + cot B) (51)
. S T fl;;_iz d tan a 1 & Fn (6at)
1 h sin § (1 = tan @ cot B) + sin B
) .
Vo=- L "Ritang : (6b?)

2 h sin B (1 - tan a cot B)
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where S and M -~are:the shear and moment, respectively,
at the section considered, ,SL;and SR -are the shears in

the bays on the left and on the right of the strut consid-
‘ered, and Py 1is the external load ' applied at the strut.

‘Figure 4 indicates how:.the angles o and p are meas-
ured. If there is any doubt as to whether the acute or
the obtuse value of [ should be used, a diagram of the
“beam should be drawn- and.the tension diagonals sketched in
for each panel, their slope depéending upon the direction
of the siear in the panel. Thé angle a . is always acute
and can be taken equal to p/2 wunless the struts are
spaced too far apart. If the angle a!', determined by a
tension diagonal from panel point to panel point (e.g.,

%3 to g}.min fig. 4a).becomnes less tHan g/2; then the

angle a' should be used in place of a for computing
. the stresses in the web and in the compression flange,
while the angle o = p/2 should be used for computing
the stresses in the tension flange and in the strut.

In formula (6a'), the negative sign for Pn must be

used if the load P, causes compression in the strut and
the positive sign of P, causes tension. The maximum

force in the strut is given either by (6a') or (6b'), de-
pending upon the sign of P,, and it occurs at the junc-
tion of the strut with that flange which would be cut

first by an arrow flying in the direction of the force E,.

II - Beams with struts of zero bending stiffness in
plane of web.~- A better general arproximation to actual
conditions is probably obtained by assuming the struts to
have negligible bending stiffness in the plane of the web.,
Under tais condition, the folds are not interrupted where
they cross the struts (fig. 6) and the web stress is con-
stant along the full length of any tension diagonal.

TR AT AT

e
Q
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Thus, at any section of the beam taken parallel to the

struts, the web:stress varies throughout the depth of the
beam. This case has been solved under the assumption that
all struts are loaded, and that the loads F, are propor-

tional to the spacing of the struts. Under this assump~
tion the force in the strut is constant throughout its
length. i F 2

The formula for the forces in the flanges is the same
as under the assumption of rigid struts. .The formulas for
the wedb tension at the strut and for the forces in the
struts become for this case (reference 4, p. 9),

- i g
ht sin 2a (1 - tan a cot B)

fgnpt = WSy

P e _ (71)
+ 2 dt sin® a
2 h-sin f (1 - tan:a cot B)
=K Pn =
et 15 o ‘ '
YT EIn B ' A (8%)

If loads P, are applied over only a portion of the
beam and are approximately proportional to the spacing of
the struts, the formulas can be used as good approximations
in the middle part of the loaded region of the beam. On
the borders of this region, or in general at:any place
where the loads F, are not proportional to. the spacing oif

the struts, each case must be given special consideration,
as indicated in the last example of the appendix.

III - Formulas for generzl use.- For practical pur-
poses, the two sets of formulas for rigid and for flexi-
ble struts may be simplified and combined into one set.
When the proper value of [ has been found as explained
in section I, the value of p/Z can be substituted for a.
FTurthermore, struts will be designed in most cases for the
average load they carry, the variation of this load along
the length of the column being disregarded. With this sim-
plification, the formulas for the force in a strut become
identical for the two cases. The only remaining differ-
ence between the two cases is the web tension; for rigid
struts the web stress is constant across sections parallel
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to the struts; for flexible struts, the wedb tension varies
linearly between the two values given by formula (4b)
across such sections of the beam.

The general formulas therefore become

£ =258 cot B (for stirsf struts) (4a)
kit 2
(8. + s.) P

f = _...L......ﬂt cot %:; 2 ’) é_ (fOI' flex~ (4b)

2 dt sin® 5 ible struts)

e R M S

Bpg =15 ~ § (cot 25 cot p) .

(8. # 8p) 4 - _®
v = e s — e e 6
n 3 BT Z sin B -

(for choice of sign in equation (6) see note regarding
equation (6aft).)

The decision as to whether a given strut should be
considered as being rigid, very flexible, or of some inter-
mediate stiffness must be left to the judgment of the de-
signer. In general, it can be said that even struts of
closed section do not approach the theoretical condition
of rigidity very closely.

IV - The effects of small bending stiffness of the

S ——— e T

in the flanges (fig. 7) which are superposed on the longi-

tudinal stress caused by HT or HC'
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The normal component of the web tension being considered
as a uniform load and the flange as a beam continuous over
the struts as supports, the maximum bending moment in the
flange occurs at the strut and has the magnitude

(ot)

- 2
e B

This expression is sufficiently exaet for calculating the

secondary stresses caused by bending of the flanges in

any Wagner beam of normal proportions (reference 5, p. 34);

i.e., in a beam where the struts are spaced from one sixth

to one half the depth of the beam,

If the bending stiffness of the flanges‘ié not infi-
nite and the spacing of the struts is increased, a point
is reached where only a part y & of the web is in tension

(fig. 8). IP __>1 \de K_

VL Ay v e
,// ,//'/ /// > '/ 4 /, ;
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7 /,-// ]r g / v g
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Figure 8.

This causes a reduction in MF to MF', where

(101")

The factors Y and C, are given in figure 9 as functions

of the nondimensional parameter

4
t
wd = 1,25 & sin a v/ (11
(Ip + Ig) b )
where IT and IC are the moments of inertia of the ten-

sion and compression flanges about their own centroidal
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axes. 7hen only a portion of the wed is in tension, equa-

tion (17), (4'), or (7') gives the average stress. The
maximum web stress is

il
f = fan X 6:

where O, is a factor giveﬁ by figure I (See reference
5, pp. 33-37, for equations (10'), (11'), and (12').)

4t the end of the beam, or at any point where an ex-
ternal load is applied, a bending moment analogous to Mp
is induced in the struts. ZEither these members must be
made sufficiently strong to withstand the bending moments
or disgonal members must be used in adjacent bays. Pig-
ures 3 and 8 show some of theé possible solutions.

THE C4SE OF THE BEAl WITH NONFARALLEL FLANGES

In structural design, it is generally assumed that in
a beam with nonparallel flanges the forces in the flanges
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are in the direction of the flanges. Hence, equation (2)
or (5) gives only the horizontal component of the flange
forces; the total flange forces and their vertical compo-
nents are easily computed from the horizontal components
and the inclination of the flanges.

.
4
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‘Figure 10.

The vertical components of the flange forces carry a

part of the shear. Accordingly, the shear Sg; carried by

the web is the difference between the total shear S and
the vertical components of the flange forces:

. M -
Sy = § - 1—l(tan6T+tamcsc) (131)

(See fig. 10.) This shear Sy 1is used to calculate the

web tension and the force in the struts, using the formu-
las given for beams with parallel flanges (reference 4, pp.
1-6) .

The web stress thus computed is the stress at the cen-
ter line of the beam. It varies along the depth of the beam
even though there are no intermediate loads applied at the
struts. Since the stress is constant along any tension di-
agonal, the web stresses at points A and B may be ob-
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tained by drawing the tension diagonals through them, mak-
ing an angle o with the center line of the beam, and cal-
culating the stresses for points A' and B!'. The same
method applies for a -beam with intermediate loads if the
struts have small bending stiffness, provided that the
Yoading of the. beam near the section investigated conforms
to the assumption underlying formula (7'); viz, that the
loads are proportional to the spacing of the struts. If
the struts have large bending stiffness, the tension may

be considered constant in any bay- and equal to the average
tension given by equation (1) or (4), using for h the av-
erage height of the bay.

The method here outlined for calculating the forces in
Wagner beams with nonparallel flanges is only approximate;
it should be used with caution when the inclination of the
flanges becomes large.

DEFLECTIONS OF WAGNER BEAMNS

For the computation of the deflection of Wagner beams,
the following approximate method is proposed by the author
until further data are obtained-

(1) Calculate the bending deflection of the beam by
standard beam-deflection formulas.

(2) Calculate the shear deflection of the web in the
following manner: : .

Imagine the beam replaced by a frame consisting
of the beam flanges, diagonals inclined at the angle
a, and vertical struts regardless of whether the
struts in the Wagner beam are vertical or inclined.

Assume the diagonals to be under a stress equal
to f &and compute the deflection of the substitute
frame due to elongation of the diagonals only.

(When the frame is divided into panels in the
manner prescribed there will usually be a short odd
panel left at the end, but this panel of odd size
can be neglected in the calculation of the shear de-
flection.)
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(3) Add the bending deflection and the shear deflec-
tion. : ; .

If the method pfoposed is applied to a cantilever
beam such as the one shown in figure 3, the following for-
mula is obtained for the deflection at the end of the beam:

3
= gl; + EBL SQEe. (141)
3BI Eth

where I 1is the moment of inertia of the beam.
EXPERINMENTAL CHECK OF ACCURACY OF FORMULAS

The results of strain-gage measurements on a beam
with parallel flanges and vertical struts are given in ref-
erence 3. The exparimental results check the calculated
values within about 5 percent for the stresses in the webd
and in the flanges. The experimentally obtained stresses
in the strut are much smaller than the calculated stresses.
This discrepancy is probably due to .the fact that the ac-
tual inclination of the .folds differs from:‘the assumed in-
clination. Examination of formulas (1'), (2'), and (31)
will show that an-error in a affects the force in the
strut much more than it affects the stresses in the webd or
those in the flanges.

It may be mentioned here that Professor Wagner sug-
zests the use of o = 40%. This is indeed a better aver=
age value, but attention has already been called to the
fact that the inclination of the folds is never quite reg-
ular. Furthermore, the gain in the average accuracy of
computing the force on the strut is'only of academic inter-
est, since the allowable stress for the struts is very un-
certain. The use of o = 45° in preference to a = 40°
is therefore recommended because it is simpler to use and
more conservative. : vt i '

The formulas for the cantilever beam with parallel
and rigid flanges, closely spaced vertical struts, and a
single load can be derived with very few basic assumptions.
Any complication such as ‘inclined struts, inclined flanges,
or intermediate loads necessitates additional assumptions
and decreases the probable accuracy of the formulas. How-
ever, it is believed that all the formulas are sufficient-
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ly accurate for airplane design purposes as long as the
proportions of the beam are not abnormal.

Formula (14') errs on the unsafe side. For loads up
to about 10 percent of the yield-point load, calculated
deflections should be multiplied by 4/3. For higher loads,
much higher correction factors may be necessary, but the
experimental evidence is insufficient to warrant any rec-
ommendations.

THE DESIGN OF WAGNER BEAMS

Omitting problems of detail design which are best
met in the shop, this discussion will confine itself to
allowable stresses. It seems advisable to deal with the
problem first from a simple but "theoretical" point of
view. Later it will be pointed out that practical consid-
erations may require considerable modlflcatlon of the "the~
oretical allowable stresses.

If the design is to be based on the ultimate strength,
the allowable stress for the web and the tension flange
should be the unltimate tensile strength of the material.

If the design is to be based on the yield strength, the
yield-point stress would, of course, be substituted.

The allowable stress for the compression flange de-
pends on the shape of cross section, the lateral support
of flange, etc., considerations which are beyond the scope
of this report and will not be discussed here.

The struts are, in effect, columns with lateral elas-
tic support, since the tension in the webd restrains the
struts from buckling out of the plane of the web. By a
series of calculations (referénce 4, PP. 15-23), Professor
Wagner has evaluated this effect on the theoretical buck-
ling strength of the struts. -On the further assumption
(reference 4, p. 24) that two columns fail at the same
stress if they have the same index.value K, Professor
Wagner's calculations yield a reduction factor C5 (see
fig. 11, computed from an approximation of the lower curve
in fig. 27 of reference 4), which is a function of the pa-

a
rameter } (cot o - cot p) ° @and by which the actual

length | of the strut is multiplied in order to obtain a
reduced length U

10 = @t (151)
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Figure 1l.
With this reduced length ;' and the actual cross section

of the strut, the allowable stress for the strut may be

'computed (reference 4, P 27) by standard formulas or ob-

tained from column charts for pin-ended columns. The al-
lowable .load on the strut is then obtained by multiplying
this allowable stress by the effective area, which is the
sum of the area of the strut and an adjacent strip of the
web. For duralumin, the effective width of this strip may
be taken ag 2w = 30 t; for stainless steel, 2w = 60 t
(reference 6),

The theoretical allowable stresses given may serve as
a guide for design until additional practical experience

‘has been gained. The following considerations should al-

ways be borne in mind, however, :as they may necessitate
appreciable changes in the allowable stresses.

1. The folds cause behding stresses which may lower
the ultimate strength and:the fatigue strength; the folds
themselves may impair the performance of the airplane.

2, The wrinkles form at low loads and reach an ap-
precdiable size under normal flight conditions (fig. 12a
taken from reference 2). 1If they appear on parts exposed
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to view during flight (wing covering), they will engender
a serious loss of confidence on the part of pilots and
passengers even though the structure is perfectly safe.
This consideration may perhaps seem unimportant, but the
scanty experience available at present indicates that it
may be very decisive.

3. The factor C, for the design of the struts is
probably very conservative in most cases. Unfortunately,
tests on the buckling strength of the struts will not or-
dinarily be very conclusive, since the buckling occurs so
gradually that no one point can be designated as the point
of Failure.

In conclusion, it may be stated that the establishment
of rules more comprehensive than those indicated will bDe
possible only after considerable practical experience has
been gained.

Langley lemorial Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., June 1, 1938.
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APPENDIX
- Illustrative Problems
Probles d... :
Analyze the beam of figure 13. fhe material is dural-

umin; the allowable stress in the compression flange is as-
sumed to be 26,000 pounds per square inch.

i = N o=
ot iz 40 120" X Lo x on x 3/18M
4 s M
/ J -
/ Be- +
" 30 {ween 1 i)
; cen- =
¢ 7 l l troids Uld
4 ' ! s Mili_
7 <1M x 1" x 1/8" (One side only) 43" x 3" x 5/16V
v ' ‘ ' 0 v

. Mgure 13. 20,0008 bx

The stress in the web is (formala (1))

¢ = 2_X_20000

RO 53,300 _b./sq.ln.

The forces in the flanges are (formula (2))

20000 X 120 _ 1

Hp ¢ = + - =

T, ¢ %5 5 % 20,000
Hp = + 70,000 1b.

Hy = - 90,000 1b.

The stresses in the flanges are therefore

& F et & i
£y = + g 055 = 48,640 1b./sc.in.




Downloaded from http://www.everyspec.com

N.A.C.A. Technical ‘Note No. .469. 19
o s IO . prove
fc = - Y y.ey = = 25,400 ;b./gq.in.

The force on any strut.is (formula (3))
Vv = - 20,000 X %%.= - 6.J6% 1v;

Since B = 90°, a = 45°, and & = 0.33, fignre 11
gives C, = 0.40;- therefore the reduced column length
(formula (15')) is

1YV = 0.40 % 30 = 12 in..

The slenderness ratio is . 40;,therefore,

0.30
the allowable stress (referance 7, fig. 6) is

Fg = 27,800 1b./sg.in..
The effective width of sheet that acts with the strut

is 2w = 30 X 0,025 = 0.75 in.; therefore, the total ef-
fective area

Ae = 0RF ¥ 075 K- 0025 = 0,249 sq.1n.
and the allowable load

Pallow = 0.2849 X 27,800 = 6,920 1b,

The maximum bending moment in the flanges due to the
web tension is (formula (9'))

_ 20000 % 100, _
MF - 12 x ZO . —‘5’560 in."’lbo

The maximum total stress in the tension flange is
therefore

£

= 48,600 + 2960 X 0.56 . .54 .360 1b./sq.in.
T 0.54 /=

The maximum total stress in the compression flange is

£, = - 25,400 - 5860 X 2.15 _
2.90

- 29,510 1b./sq,in.
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This stress is above ‘the allowable stress specified for the
compression flange, but still below the yieid point. . In
view of the fact that the specifiel maximum stress is based
on considerations.of buckling, the purely local and com-
paratively small overstress appears admissible.

Formula (11) gives

; ; i
25
d = 186 % 10 % 090 J/ 0.0 = 1.1
A (0.54 + 2.90) % 30

Figure 9 shows that ) and C, are préctically

equal to unity for this value of «d; there is consequent-

ly no reduction in Mp, and the wzb stress is uniform.

When calculating the deflection, the moment of iner-
tia of the beam is computed approximately as

1= 3,64 % 8.68% + 1.44 % 21.82° = 923 in.*

The deflection formula (14') gives for low loads

p - 4( 20000 X 120% 4 X 20000 X 120 &

83\ 2 x 10 X 923 10 X 0.025 x 30/

[ME

(1.25 + 1.28) ='3.38 inches.
Problem 2.

Given-the beam of figure 13, but with a spacing
d = 20 inches of the struts, calculate the stresses in the
web and in the flanges. : A '

The average stress in the webl is, as.in the preceding
example, ‘
f = 53,200 1b./sq.in.

The direct stresses in the flanges also remain un-
changed

fy

fa

1l

48,600 1b./sg.in.

- 25,400 ‘1b./sq.4n.

1l

The paremeter ( 4 is twice that of the precedlng ex-
ample. (since & 1is doubled)

T L g
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which gives C1 = 0.95 and Cg = 0290
The maximum webdb stress is therefore

: 1 &y 1 G, ¥ : -

The maximum bending moment in the flahge is (formulas
(9t) and (10'))

20000 X 400
I ' = "0 2
*x b 12 X. 30

and therefore the bending stress in. the flange

= 21,100 in.-1b.

= 22100 X .0.56
fy = = 0i6a - 21,90 1b./sg.1a.
or the maximum total stress in the tensioh flange at the
inboard end .

fp = 48,600 + 21,900 = 70,500 1b./sq.in.

— ~''41,000 1b,/sq.in.

It will be necessary either to use stronger flanges or
to reduce the spacing of the struts at the inboard end of
the beam.

Problem 3.

Find the forces in the flanges, the forces on the
struts, the reduced column length, and the stresses in the
web for the beam shown in figure 1l4.

4,000 1ba.

' &5 o
. x s e sl
t =-0.065" ey W

X RANANY

\\ \\\‘\\ \ ‘.‘l\'\L\\‘.“ \u

2,000 1b." '{
. 20,000 1b.Y
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The struts at the end and under the 4,000-pound load
are to be considered as stiff; the other struts are to be
considered as flexible.

The inclination of the struts is B = 60% therefore,

.2

SOO. The moment

the inéliﬂati&n.of the folds-is a =
at the inboard end is

¥ = 20,000 X 120 + 2,000 X 11C + 4,000 X 82.7
= ‘2:950,000 %n.-1b.

The forces in the flanges at the inboard end (formula
(5)) are

. _ ., 2950000 _ 26000 el =
Hy o=+ 22290 290 (1.732 3 0.577)

Hp = + 83,360 1b.
Hg = = 128,380 1b.

the force in strut A is (formula (6'))

v. = - 20000 + 22000 , 10 , 2000
A 2 30 2 X 0.866

Il

= 5,860 1bs

(Note that the second term has a positive sign for ¥V, and
a negative sign for Vgz. Cf. note on formula (6a).)

The force in strut :B is

22000 + 25000 4 10 _ __4000
2 30 2 %X 0.866

VB=-

~ 10,310 1b.

z = i = 0.29
h (cot a - cot p) 30K 1.150
which gives C_ = 0.39 and
' 30
e 0 X e = 3.5 ta.
¥ LESR T e B8




\( Downloaded from http://www.everyspec.com

N.a4.C.A. Technical Note No. -469 . 23
The system of loads does not fulfill the assumption
} under which equation (4b) for the web stress with flexible
\ struts .is derived. Consequently, a special consideration
e is necessary in this case, 3 gl : &8
Assuming first that all struts are ‘rigid, formula (4a)
yields for the web stress -

s : St Y ‘— 2.X 20000 bty
th . £ = 2 e
in e end parnel 30 X 0.065 X MRS

‘= 85,600 1b./sq.in,
in the second panel from the end: f = 39,200 1b./sq.in.
in the third panel (and all others): £ = 46,300 1b./
' sg.in.

Considering strut A as flexible, equation (4b)
gives for the web stress at strut A

£ = 22000 + 20000 1 - 2000
30 X 0.065

1l

87,400 L 6,150

iy 45,§§o 1b./sq.in.

Lwta = 81,880 1b./sq.8n.

\

(

| The minimum wedb stress of 31,250 pounds per square .

| inch at the upper end of A4 - is probably too low, since if
the 20,000-pound load were the only load acting there would
be a uniform wed tension of 35,600 pounds per square inch
throughout the beam. This latter value should therefore
be considered as the minimum wed stress at strut A, occur-
ring at the upper end.

|

! The maximum web stress of 43,550 pounds per square

| inch occurs at the lower end of strut A, and should be used
for design. Actually the stress may be less, in view of
the argument given that the actual minimum stress at the
upper end is probably more than the theoretical value.

If, for the purpose of saving weight, the thickness
of the web is reduced in the end panel, a somewhat larger
margin should be provided here than in the rest of the
beam to take care of stress concentration due to flexibil-
ity of the end strut.
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Figure 12.- Cantilever Wagner beam with concentrated load at
tip under test.
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