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NATTIONAL, ADVISORY COMMITTEE FOR AERQNAUTICS

FECHNICAL NOTE Q. 1361

DEFORMATTON ANALYSIS OF WING STRUCTUBES
By Pavi Kuhn

SUMMARY

The elementeary theories of bending and torsion often do not
describe the stresses in alrcralft shell structures with adequate
accuracy; more refined stress theories have thersfore been developed
over a perlod of years. Theories of this natuwré are epplied to the
problem of calculating the deflections, particularly of wings.
Bending as well as torsional deflectione are discussed for wings
without or with cut-outs.: Whenever convenient, the formulas are
given in such a form that they yield corrections to be added to the
deflections calculated by means of the elementary theories. Exanples
shov that the deflection corrections usually are quite small; very
simple approximation formulas are therefore adequate for design
purposes when conventional structures under a reasoneably uniform
loading are being considered.

INTRODUCTI.ON

The elementary theories of bending and torsion are often nobt
sufficlently accurate for determining the stresses in airplane wings.
The bending stresses are modified by shear lag and the torsion
stresses, by the so-called bending stresses due to torsion. While
an appreciable amount of literature exists on these subjects, little
attention has been given to the resulting offects on the bending or
torgional deflections. This relative lack of attention was not
accldental. The deviations of the stresses from thosge. predicted by
the elementary theories are local, and local disturbances are leveled
off by the intégration processes necessary to calculate deflectlons.
The deviations of the deflections from those predicted by the elemen-
tary theories are therefore much smeller than the stress deviations,
and this fact, together with the fact that deflections were only of
subordinate interest in the past, accounts Tor the mmell smount of
attention given to deflection caleculations. HoweVer, the rapldly
increasing importance of deflection calculations mekes it desirable
to give some discusslon of the "problems.
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SYMBOLS

A uniform system of symbols is used herein to cover torsion as
well ag bending problems. Some of the symbols differ, therefore,
from those used in the references. Particular attention l1s called
to the fact.that the symbol b denotes the full wldth of the box,
vhereas it denoted the half-width of the box in all the references
dealing with shear lag. -

a _ length of bay

b 'width of box beam _

c width of ‘net section alongside cut-out (coaming stringer
. " %o corner flange) :

4 | N 'half-length of cut-ouf; half-length of-carry;throﬁgh bey

r o fréctiona defined by eguation (15) '

h B ”'H depth of box beam

hy depth of front spar

by depth of reaxr sper B}

k torque-division factor (fraction of torque carried by—

.. shear webs in cut-out bay) i o

n 'ff;’pidériﬁpm@er of any Etation or bay

p,'q'- '.'doeffiéients used-in torsion-bending anslysis (appendix A)

r lll order nnmber of root station or hay

q o shear flow (shear force per inch run)

t o thickness of sheet (when uged without subsoript denotes

thickness of. cover sheet of box beem)
tp1, th1, b Bee fim;fe >
w o width of cut-out

Wt coefficient used in torsion-bending enalyeis (appendix A)
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X, ¥, 2 coordinates (see figs. 1 and 2)
A area of corner flange in cross sectlon of box as

gimplified for torsion analysis
Acp cross-gsectional area of actual corner flenge

b area of corner flange In cross section of box as
' simplified for shear-lag emnalysls

Ay _ . area of longitudinal in cross-sectlon of beam as
simplified for shear-lag enalysis

(= é]:AS'I' except ab cu'b-out) -

A total cross-sectional area of all stringers on one
cover of box beam, including effective widths of sheei

Am Ap + Ap,
9N area enclosed by cross-section of torsion. box

Ay, Ap, A3z see figure 5

E Young's modulus

G shear modulus

I moment of Inertia

Jd torsion constant

X torsion-bending parameter (egquation (12)) or shear-lag

parameter (equation (26))

L length of box beam {root to tip)

M hending moment

P force or load

R radius of curvature of elast?.c line

Sy shear force in shear web (equals external shear force

minus vertical component of flange force)
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T torque {

X, ‘ correction force in corper flangs a.'l; sﬁation n

%‘ bending deflection of box beam calculated by elementary
theory (EMf aeflecticm)

&y ~additional bending deflection caused by shear lag in
cover

o additional bending deflection caused by shear deformation.
of shear web

0 structural parameter defined by equation (11)

b direct stress

T shear stress

(0] angle of twist of torsion box

Bubscripte: |

b pexrtaining to horizontal wall of box beem

c per'baining_ to net section -alongéié_.é c_u't;_-_oﬁ'b

<] effective

h ;pertaining to verticel wall of 'Box beam

r root

co cu‘b*oﬁt, cut~out bay

ct carry~through bey-

b full bay

L pertaining to longitudinale (stringers)

8 substitute

Sub~subscripts:

B bottom

¥ front

Downloaded from http://www.everyspec.com
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R rear

T ton

Superscripts

T _ caused.-by forqlie ,

X : causecl by X-force group

A ti1lde (~) denotes quan'!'i'bies ca_culated 'by elemen‘tary theory of
bending or torsion. ’ .

PREP ARATORY Dzscusszorx .

Elementary theories.- According to the. elementary theory of
torsion, a.torque T applied to a wing section such as shown in
flgure 1 produces a shear Fflow ' ) ’

. o .E=§-§; (1)

in the skin end an angle of 'bwist between 't'cro sections a d.lstance c'tx
apart :

The tilde (..;) is used :iﬁhroughout the present paper to indicate. stresses
or deflections caleulated by the slementary theorye.

L

According to the elementary theory of bending, & vertical
bending moment M applied to ths section shown in figure 1 produces
.bending stresses

Ll
o =

(3)

HE

: . . .
, (provided that principal axes are used) and the bending deflection 3
is obtalned. by integrating the familiar relation between the curvature
of the slasgtic line and the. 'beno.ing mompn'b

&

s
G
.

W
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The bending deflection ¥ is increased by the so-called shear
deflection 8o arising from the shear strains in the vertical webs.
The method of calculating this deflection is well known and regqulres
no comments here.

Advenced. theories and their applicatlion to deflection
calculations.~ The elementary theorles of torsion and bending are

based on assumptions which are usually vioclated in actual wing
structures. The elementary torsion theory is valid only for a

shell of constant sectlon, subjected to & torque at each end in

the form of a shear flow that is distributed along the perimeter

in accordance with the theory and that leaves the end soctibdns free
to warp out of their originel plames, An actual wing has a variable
section and 1s subjected to distributed torque loads; as a result,
the tendency to warp differe from section to sectlon, and secondary
strosges are set up by the resulting interference ceffects. Similarly,
the elementary bending theory is strictly velid only if the applied
load 1s a pure bending moment. In actnal wing siructures, the
bending moments are produced by transverse loads, and the shear
streins in the covers produced by these loads violate the assumption
that plene cross sections remain plene. As in the torslon case,
interference effects between adjacent sectlons produce secondary
stresses.

Stress theories that take these interference effects into
account are unavoidably more complex and less general than the
elementery stress theories. They necessarily make use of simplifying
and restrictive assumptions, particularly regarding the cross sections,
in order to keep the mathematical complexity within bounds. The.
offect of these ampumptlons on the accuracy of the calculations can
be minimized (except in the regions around large cut-outs) by the
following procedurs: ;

(1) The elementary stresses are calculatsd for the actual
oross sections.

(2) The secondary stresses produced. by the intsrference effects
are calculated using cross sectlons simplified as much as necessary
or desirable.

In conventiocnal wing structures wlth reesonebly uniform loading
(constant sign of bending or torslomal moment along spen), adequate
sccuracy can often be obtalned even when highly simplified cross
sections are used. This remsrk applies to stress calewletions and
even more forcefully to deflectlon calculatlions, because any
stipulated accuracy of the deflections can bo achleved with a lower
order of accuracy in the stresses. Although this fact is quite well
mown it will be demonstrated later by means of an example for the
torsion case as well as for the bending case.
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Advenced stress theories of torsion and bending in shells have
been developed by a number of authors, striking different compromises
between accuracy, complexity, end gensrality. The stress theories
selected in the present paper as basis for calculating the deflections
are those of references 1l and 2. In references 3 and l; these theories
have been shown to be reasonsbly adequate for stress a.nalysis , and
consequently they are amply accurate for the deflection analysis of
conventional structures.

/TORSION ANALYSIS

Discussion of fund.axnentLase. The structure that will be
discussed as fundamentel example is a box of doubly symmetrical
rectangular cross section as shown in figure 2(2), with infinitely
closely spaced rigld bulkheads, bulli~in rigidly at one end and
subjected to a torque T at the free end. (See fig., 2(b).) The .
cross sectlon is an ldealized ons, that i1s, the walls are assumed
" to carry only shear stressosS.

According to the elementery theory, the shear stresses in
this box would be

";"-b = 5:1-)%—1}; .. (5)
and .
T .

end the angle of twist would be

3 =% (1)
wile.re
2,2 :
2b7h .
Ty n ®)
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According to theé theory of. torsion bending (reference 1), the
largest deviations from the elementary theory are found at the root .
because warping ie provented entirely at this estatlon. The ‘sheex
stresses at the root can be written in the form -

Ty =¥ @) NG
T = Fy (L4 ) | (10)
where
b _ b
1 = ;f_ - _2‘_ - (12)
Ty ,.Fh r

The terms ?bn{or ?hﬁ) represent correction btorms that must be
added to the stresses Tb(or Th) computed by the elementary theory
in order to obtain the true stresSes. In wing boxes, h/t, 1is

usually much smaller than b/tb, and 1n 18 consequently only little

lesa than wnlty. The correctlon terms are therefors nearly as large
as the stresses calculated by the elementary theory and are thus
obviously important.

The fundamental relations glven in reference 1 permit the

derivation of & differential equation Tor the angle of twist, which
appears as & functlon of the torsion-bending parameter

& D

Boxes epproximating the proportions found in wings have a length I
such that it 1s permissible to set
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For such proportions, the solutlon of the differentisl eguatlon

takes the form .
¢ = cp[ (l - e'Kx>] (23)

The angle of twist is plotted in figure 3, with 7 taken as unity
for simplicity. It is epparent that the' correction to the elementary
“theory, in regions not close to the root, 1is approximately a constant.

At the tip, with ¢ %X=m o,

¥ 2\’ . »
Petp * Poip (1 - ?ﬁ) (1k)

For conventional wings, XI, is of the order of 10, and the correction
term that must be added to the tip twlst calculated by the elementery
theory would therefore amount to sbout 10 percent if the wlng were

of constant section and if the torque were applied et the +ip.
Actual -wings ere tapered and carry & distributed torque, but these
two deviations from the simple case tend to offset each other-.in
their Influence on the twist curve; the calculation Just made -may
therefore serve as a rough lIndication of ths order of magnitude of
the btwlst correction. 'A stipuvlated maximum error of 2 percent in

the tip twist ~ vhich is about the best that can be reasonably
expected - can therefore be achleved with a permissible error of
about 20 percent in the twist correction. The use of highly
simplified cross sections for the calculation of the twist correction
is thus Justified in general.

Simplificetion of cross sections.- The simplified cross sectlion
(fig. 25 corresponding to an actusl cross section such ag shown in
figure 1 is obtained as follows:

(1) The thicknesses of the top and bottom cover tb and. - tb
respectively, are averaged by the formnla .

:_1__.1_&_1_,;_1_)

e

p GO

This method of averaging is indicated by theo consideration that a
uwnlt length dx of the two covers of thickness tb should ebsorb
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the éame amount of intermal work as a wunit length of the two actual
covers with the thicknesses th and th, respectively, or

In the same manner, averags values'of ty, b, Agp, end Agy are
obtained. :

(2) The cross-sectional evena A of the ideallzed corner Tlange
ls obtained by the formula .

A = Bgp + £yhty + TpAgn ' (15)

On the basils of the ususl assumption that the chordwise dletribution
of the bending (normal) stresses due to torsion ilg linear,

1
fl = f2= g

Shear-lag effects produce deviations from the linear sitress distri-
butions and reduce the factors below the value of one-sixth. The
theory of these effects is Inadequate at present, and experimental
date are scarce. In particular, little informetlon exists on ‘the
effects of teper, which appear to be powerful. On the basis of such
experimental data as exist, 1t ls tentatively suggested that the
following values be used: ‘ : :

1
fl‘n 4
fp = 04066 + 0.01 x 20 (2a< 10%) ¢~ ' (15a)
fp = 0.166 - (2a 5 109)

where 2o 1s the total taper angle of the cover in degrees.
Formulas (15a) are probably always sufficiently accurate for defor-
mation analysis, but mey be Inadequate sometimes for stress analysis.
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Calculation of twist correction.- After simplification of the
cross sections, the torsion box appears in the form shown in
figure 4(a)}. Within each bay, the cross section is assumed to be
constant, and the torgues &re assumed to be applled at the bulk-
heads. The bulkheads considered are those that have an effective
ghear stiffness Ggt of the same order of magnitude as that of
the cover sheet. _ o : :

Each cell of the box is subjected to & known btorgus and to
constraining forces arising from tiie two sdjacent cells. The con-
" ‘straining forces form self-equilibrated groups of four forces X
(fig. 4(b)). The magnitudes of the X-forces at the (bulkhead)
stations are calculated from a set of équations as explained in
reference 1 and summerized for convenience in appendix A.

Cell n 1is subJected to the action of group X, at the

outboard end and group X, at the inboard end. By the method of
Internal work, it can readily be shown (reference 5) that -these
two groups of forces twist the outboard bulkhead n-1 with
respect to the inboard bulkhead n through an engle

ke ) 6

: The gquantity &0, is the twist correction fo"::: cell nj; it is

negative,. that is, it reduces the twist calculated by the elementaxry
theory, vhen X, > X,.3, vhich is the normal case. The final angle

of twist of bulkhead n with respect to the root bulkhead r 1is

. n ne=n+l '_ o o
. (Pn:f, &S oo (a7)
uxr n=r

In a wing having no cub-outs and cerrying no large concenptrated
torques, the only X-group of appreciable magnitude appears at the
root station. If all other groups are assused to be zero, the
system of equations for determining them (appendix A) degenerates
into the single equation

Qpr + ﬁ)}& . (18)
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from which X,, can be found, end the twlst correctlon for the root
cell is :

wemsl AR @

The solution of equation (18) and the evaluation of expression (19)

is often all that is necessary to obtain an adequate estimate of the
twist correction for wings withouk large dlscontinuities of loadlng

or cross sectlon.

Cut-outs in torsion boxes.~ A large cut*out in & torsion box is
normally closed off by a bulkhead at each end. The cut-oub bay
considered as an independent structure cen carry only a negligible
torque, being an open section. However, when the cut-out bay is
supplemented by at least one full bay at each end asz indicated in
figure 5(&) 1t can carry torques beceuse sach of the walls can then
act as & beam bent in ite own plans, the adJacent full bays furnishing -
the "foundations" for these beams.

By means of suiteble silmplifying essumptloris, the problem of
analyzing the three-bay structure of figure 5(a) can be reduced to
one with a single statical redundancy as shown in reference 6. The
redvndancy chosen in this refersence is a fraction k ( torque-
division factor' ) that gives the part of the tobtal torque carried by
the vertical walls of the cut-out bay. The fraction lies between the
limits k=2 (no cut-out) amd k = 1 (full-width cut-out); for
convenience, the formula for k given in reference 6 is reproduced
in appendix B. The following formulas given hereln can be deduced
readily fram ‘the results given in’ the referense.

The magnitude of the X~group acting on each adjaceont full bay
at the Junctlon with the cut-out bay is glven by

= %’%’(21: -1) (20)

+

end consequently, by formula (16), each of these bays has a twist
correctlon

(2o BVe -1y (21)

& )

D0ge,
abeheG
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where the subscyript b denotes full bay. It should be noted that

the correction is positive, that is, the twist of a full bay is
increased by an adjacent cub-out bay.:

The relative twist between the end bulkheads of the cut-oub bey
can be written in the same form as that for full bays

Peo = Yoo * AP0 (22)

where the subscripts co denotes cut~-out bey. The "elementary"

twist $co is the twist that resulbts from tho deformations of the -
members of the cut~out bsy vhen the end bulkheads are prevented from.
warping out of thelr plarnes; the walls then act as beams restrained

by end moments in guch a manner that the tengsnts to the elastic curve
at the two ends of each beam »emain parallel. The twlst correction APpq
is the twist that would result 1f the members of the cub-out bay were
rigid and the end bulkheads vere warped out of their planes, the

amount of warping being determined by the torgue T end the X-group
acting between the cut~out bay and the adjacent full bay.

Application of the method of internal work to the stresses
given in reference 6 yields for the elementary twist

3 ”m[‘g x)? uke +(l:k)2'bd.
c-tbl TGt b T T GE ko

P w(2k - 1)° a3L :

L 2pg3 . a3 . b
mé-ic ~ Z»FArbhr ) .'5(1_ i _kﬂ R 7 ¥ J (23.)-

For a full-width cut~out, k = 1, .and all the terms containing
(1 - k) disappear. .

From the geometry of the structure, the 'twist correction for
one-half of the cut-out bay (from the midpoint to a bulkhead) is

%A?co bh(T + "’X)
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which may be written
1 1, T 1, X
5000 = 58P0 * 5 AP0

By Maxwell's reciprocal theorem, or by direct comparison of the
formulas, and by use of formuwla (A3) of-appendix A, 1t can bo
seen that ‘

1 T
5 8o = Apy.

By definitioq
W = oL -

where p 1is thé coefficient given by formula (Al) of appondix 4,
and X is given by formula (20). The twist correction for the
entire length of the cut-out bay can therefore be written in the
form

P = PPey * %%Px (24)

It ordey to be consistent with all assumptions made, the torque
used in evaluating formulas (22) to (24) should be the torque acting
in the cut~oubt bay. The values of T for the two adjacent full
bays, however, should be calculated for the forgues actually ecting
in these bays. : '

When the cut-out is small, no closing bulkheads are provided
in general. In this case, the changes in stress distribution will
be confined to the cover area surrounding the cut-out (fig. 6).
For purposes of calculating deflectlions, the stress distribution:
may be approximated by assuming that the shear flow in the regions
with double cross~hetching is equal to zero, while the sheexr flow
in cross-hatched regions is twice the shear flow that would exist
if there were no cut-out. The angle of twlst betwesen the end .
gtations B can then be calculated by equating the external work |
done by the applied torque to the Intermal work. The following
equivalent procedure is convenient for practical application.
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" The actual sheet thicknmees +, in the reglons B-A and A-B of
figure 6 is replaced by an effective thickness 'bb s and the

actual sheet of thickness %, in the region A~A is replaced by an
effective sheet having a thickness tcg and extending unbroken over

the full width of the section from the front shear -web to -the rear
one. The effective sheet carries a uniform shear flow because it
contains no cut-out. The effective thicknesses are calculated

from the conditlon that the internal work ebsorbed by the fictitious
sheet carrying the uniform shear flow ¢q wmust be equal to the.
internal work ebsorbéd by the actual sheet carrying the nonuniform
shear flow deéscribed in the preceding paragraph. For the reglon A-A
of the cut-out, the condition is '

P -3 2

1.|.
b = ——-(2o - w) a+ %-—wa
"Cq e c
which yields,the relation .
%
Cq 1 gY -
Y 1+ 2¥ (e)
b

The torsion comstant J of the box with cubt-out can be calculated
by the standerd formula for a box without cut-out, using the
thickness tce in the region A-A and the thickness ’c«be in the

regions B~A and A-B.
The method descrlbed for small cut-outs can probebly be applied

without serious error as long as neither the width nor the length
of the cut-out exceeds one-half the width of the box.

Numerical examples for boxes with and without cut-outs are
glven in eppendix C.
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BENDING ANALYSIS

Digcussion of fundsmental case.- When a wing section. such as
that shown in figure 1 is subJjected to vertlcal loads producing
bending, shear stresses will arise In the cover gheets. The
elementary bending theory neglects the strains produced by these
shear stresses: the so-called shear-lag theories are rofined
theories of bending in vhich the effects of these strains are taken
into account. - The éngineering theory of shear lag developed in
reference 4 is based on the ube of simplified cross sections such
a8 that shown in Tigure T. A beam with such a cross section may
be used, therefore, as example to illustrate the relative importa.nce
of shear lag effects on stresses and on deflections. In order to
keep the formulas as simple as possible, the discussion wlll be
confined to a cantilever beam of constent section, fixed to a rigid
ebutment and subjected to a verticel load. B at the tip of each
shear web.

Reference 7 shows ‘that the énalytical golution of the stress
problem for such a beam is chavacterized by the shear-lag parameter

gt (1, L)
K = E.bs(AF+AL) (26)

vhich plays a similar role In the advanced bendlng theory as the
torsilon-bending parameter K gilven by eipression (12) in the
advanced torsion theory. The analytical formulas for the stresses
in the flange, in the central stringer, and in the cover sheet are,
respsctively, ' - -

qF =oidt IA_FKx ¢osh KL (27)
~ __8inh Kx l :
o = U(l Kx cosh IGL) . (28)

~ (7 _ cosh Kx ' ' |
TFT(I cogh ICL) . _ (29)
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with
§=t. ﬁ; . (30)
¥R 7L (31)

= T " hthg

where t 1s the thickmess of the cover sheet and Agp = & + .AL‘

For conventional wing structures tenh XK. % 1 and with this
simplification the stresses gt the root of the boam can be written
in the form . : ' L

op = '&'(1 * A:PL\L) ' - (32)
op, = 3'(1 - Ié—) ' (33)
T = 0

. The ‘deflection at the tip can be calculated from the work .
equation . : C

dos _ SF, oL + IE ' '
5P8 = /o gty A4x + L/@ 5o Ar, ax 'Jo saest & ,(319,
. ] ] ) N . ..

; If Op as well as op, are assumed to have the value "given

by the elementary theory, and the modulus G ie assumed to be
infinite, consistent with the basic assumption of the elementery
theory thet plane sections remain plane, the integration of
equation (34) yields the familler formula

~ pr3 3
¥ _BL3 _ _2pL
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If the values of oy, o, end T given by formulas (27), (28),

and (29), respectively, are substituted into equation (34), the
result of the integration is

3 i‘ 38, | )
PL T, tenh KT,
8 =351 + 1~ (36)

This expression shows that the shear-~lag correction to the elementary

3
deflection contains terms in (é—) and (%) , Vhereas the stress

corrections. to ) and. o contain only terms In I%L" The deflection

correction is therefore of the next higher order in I-%';— then the

stress correction, a fact that Justifies the use of less accurate
stress formulas for deflection anulysis than ars necessary for sitress
analysis.

This conclusion can be corvoborated by the following calculation.
If op eand oy are teken to have the eolementery velue &, T the
elementary value T, end the modulus G is assumed to have its
actual finite value (although this is strictly speaking inconsistent
with the basic assumption of the elementery theory), the :Lntegration
of equation (34) yields the result .

PL” 3AL
& = 14—t (37)

3EI( Aﬂmz) |

This expression differs from the "exact" expression (36} only by a
3 .
term in (R_}:-L-) , or in other words, the vork equation (34) will give
_ o |

the deflection correctly up to terms in (é) if the stresses used

are those of the elementery theory instead of those of the shear-lag

theory, provided that shear strain energy 12 not neglected as is
done in the elementary theory.

For conventional wing structures, KL 18 of the order of 10.

e

Ir F‘L- = 1, <the shear-lag correction to the elementary tip deflectlon
is then very nearly 3 percent as shown by formula (36). Tor a
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miformly distributed load, the correction would be twice as largse,
or 6 percent. If Ay > Ar (heavy sper caps, light stringers), the

correction 1s small and may be practically negligible; however, if
the spar caps are light (AF < AL), the correction is of some

practical importance.

Simplification of cross sections.~ In wing structures, shear-lag
action is appreciable only for vertical loads; consequently, the
discussion will be conflined to vertical loads.

According to the shear-lag theory gilven in references 2 and b,
the cross sections are simplified to the form indicated in figure 7.
Only one cover 1s analyzed at a time; this fact is indicated '
symbolically in figure 7 by amitting the cover not being &nalyzed -
at the time (lower cover)., The crossrsectional areas Ap and Ay In

figure 7 are deflned by
by = Acp *+ ghty
4, ?%AST

The width ﬁs' is taken as'one-fourth of the actual width 3 between

spars. (the that in references 2, 4, and 7, the symbol b denoted
the half-width between spars.) The cross section is made symmetrical
gbout the vertical centerline by using average values of h and AF

Calculation of deflection corrections in wings without’ out-outs.
The box is divided into bays numbered as shown in figure 41&)
Within each bay, the cross section is assumed to be constant, and
. .the loads are assumed to be.applied at the stations dividing the bays.
' The bulkheads play no role in the shear-lag problem, and the bays
may therefore be chosen ln any convenient mamner; 1t is usually
advantageous to use short bays in the reglons near the root and near
large discontinuities of loading or cross section, and long bays in
the remaining’ part of the box. On account of symmetry, only half-.
sections are considered as indicated by the full lines in figurs T.

As & result of interaction between bayse, self-equilibrated
groups of X~-forces appear (fig. 8). The method of calculating
these forces is similer to thet shown in eppendix A for- the torsion-
bending forces and is summarize& In reference 2.
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The X~forces applied to the corner flangss cause stresses

pop = e ' _.._‘”(33)

© which constltute the shear-lag sitress corvections to the. elementary
stresses. At any glven station, the stress Aop cauges &. curvature
of the elastic line :

Lo

ET (39}

l‘?l""

which must be added to the curvature l/Rl caused by the elementary
stresses T that is given by formula (k). '

One possible procedure for deflectlon analysis 1s, therefore,

to plot the spanwiss curves of %gg for the upper and the lower
cover, add these two curves to the: M/EI curve, and integrate in
the femilier manner to obtain the total deflections (% +81). In
practice, 1t may be .preferable to plot only the sum of - %%E for -
the upper and lower cover and to Integrate the resultant curve in
order to obtaln separately the excess deflectlon ai cauged by

ghear lag; these deflections cen then be added to those- calculated
by the elementery theory. As previously mentioned, the deflections 8o

caused by shear gtrain of the webs can be calculated.independently and
added as .additional corrections vhen necessary.

In shell winge having no large'discontinuities of cirosd section
or loading, the shear-~lag sffect is concentrated in the reglon of the
root and depends chisfly on.the characteristlcs of the cross section
end the loading in the root bay. Simple approximsations can then be
used for the stress corrections in the root region, and the corre-
sponding formulas for the deflection corrections may be weed for the
purpose of meking a gulck estimate.. In conventilonal wing- structures,
the estimate will generally show the deflectlon correctlons to be so
small that a more elsbarste calculation iz not warranted.

A crose section at. X = E- from the Toot may be considered as

repregentative of the root regionm, and the shear-lag parameter K 1is
computed for this section by formula (26). If KL > 6, a condition
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which will be fulfilled in practically all conventional wings, and
if the loading is reasonebly uniform, the stress correctlon can be
written in the form

~Kx
o A8
Aop X PR (L KD . o

where d 18 the half=length of the carry-through bay and all
uantities appearing in the fractlon (exc%gf ¥} are measured at the
'representative" station. The factor e gives the decrease

of the correction with increasing distance from the root (x = 0);
within the carvy~through bay, ths correction may he assumed to have a
constant value equal to the root value. Avnplication of formula (39) .
and approximate integration consistent with tho ordex of accuracy of
formula (hO) gives the deflectlon coirrection for the tip of the beam

IS L e
quLLCI Kd K3 .

B h?EATAFKQ(:L + Kd)

51 (k1)

Because the correction is small, it willl be sufficiently
accurate to assume that 1t decreases linearly to zero at the station
lying at a distence 1/K from the root. It should be noted thet
Pormula (41) gives the correction caused by shear-lag action only
for one cover of the box. Also, AF’ X, and so forth, characterize

the half-sectlon; therefore, Sy must be taken as the shear force
in ono web.

If the stringers do not carry through at the root, the root
section must be considersd as a full-width cut-out, and the method
described. in the nsxt section is. applicable.

Calculation of deflections for wings with cut-outs.- The stress
in a strirnger interrupted by a cut-out drops to nearly zero at the

edge of the cut-out (£ig. 9) unless the cut-out is very small and
extremely heavily reinforced. It is common practice to compute the
stringer stresses near a cut-out by applyling the ordinary bending
theory to the cross section of the bhox after multiplying the cross-
sectlonal areas of the stringers by an effectivensss factor. The
procedure is simple and 1s well adapted to computing effective
momentas of inertla that are adequate in most cases for a deflection
enalysis by the standerd procedure of integrating the M/EI ocurve.
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- The most severe type of cut-out is the full-width cut-out at
the root of the wing, which is frequently encountered in practice
in the form of a zero~length cut-out (stiingers broken at the root
Joint) or in the form of a finite~ length cut-out (vheel well or gas
tank bay). Figure 10(a) ehows & free-body dlagram of the section
of' the cover between the outboard edge of the cubt-out and a
section A-A some distance farther out. Shear-lag calculations
on typicel wings show that the stringer stresses at the section A-A .
are reasonably close to those glven by the elementary theory when
the dlstance between the section A~A and the root is a rather small
fraction of the semispen. Undor these circumstances, the problem
can be simplified by removing the edge shears and increasing the
total force M/h at the section A-A to equal the force M/h at
the root. The beam problem is thus reduced to the problem of the
axially loaded panel (fig. 10(b)).

By definition, if the effectlive stringer area AL; were

attached dlrectly to the spar caps, the stress in the flange would
be the sdme as in the actual structure. The eouation defining Agg

1s therefore

OFfL, = OLAL
or
A
1, o
—° . L (42
= !

By the shear-lag theory of reference k, the values of op &and oy,
are computed for & substitute panel ag shown In figures 11 (with bg = E).

The formulas for such a panel are given in reference 7. Because the
penel lsg assumed to be long enough to have a regsonably uniform chord-
wise distribution of stress at station A-A (fig. 10(b)), or op =% oy,
at the corresponding station A-A of the substitute panel (fig. ll),
the formulas may be simplified by assuming that the panel is very
long. The formulae for the sitringer effsctivensss then becomes

A Ky '
‘. ' Le. B ar, 1~ e Kx (1'.3)

rm— 2 —-"- = ""—'—‘—'-""—"'—A o

S A P R <

vhere K is the shear-lag parameter defined by expression (26).
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The effectiveness factor is plotted in figure 12 against the
paramster

ok G’E @
b\

x! = %’\/2AL 0.3

In such a plot, the effectlveness factor depends only on.the
ratio Ap/Ar,, and inspesction of the figure chows that veriatlion of

this ratio changes the effectiveness appreciebly only when AF/AL
drops well below unity. This circumstence is fortunate,'because it

indicates that only smell errors will result If the factor is
applied to panels in wnich AP varies rapldly or is not accurately

¥nown. The first contingenoy erises 1n practice in ‘the structure
under consideration here. The second contingency arises in the
analysis of p&rtial-width cut-outs, which will be discussed later.

At the end vhere ‘the load is epplied the edge member must carry
the entire loed. With increasing distence from the end, however, the
loed carried by the edge member decreases rapldly because the stringers
take their sharo of the load. An edge member of constant sectlon
would theréfore be inefficlent, and in practice the member is
strohgly tepered. For the ideally tepered member (qF = congstent),

the ratlo Ar_ /A7, 1is identical with that shown in figure 12
for. AF[%I"”' In en actual structure, the taper would probably be

only an epproximation to the idsal taper but because the stringer
effectivensss is evidedtly very insemsitive to changes in the
ratio AF/AL, ‘the curve of Ar. /A, for Mp/Ar-—> e given in figure 12

is recommended for géneral use. The formula from which the curve is
- derived 1s . ' : ' .

fEQ =1 - e-Kx
where
BG-'b i
3
\l EbSAL EbAST (43a)

If a cut-out is nearly full width, it is obviously permissible
to consider all material that is continuous over the net sectlion as
being part of the corner flange; that is, shear-lag effects within
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this region are ﬁeglected. Formula (43) can therefore be applied
with the understending that Ap means the cross-sectlonal area of

all material not interrupted by the cut-out (upper part of £ig. 13),
Ay, means the cross-sectional ares of the materlal interrupted by

the cut-out, and the substitute width bg wused to calculate X by

formule (26) is taken as w/k. Alternatively, formula (43a) may be
used to eliminate any consideration of 4. The effective area ALe

1s assumed to be attached to the coeming stringer bordering the
cut~out (lower part of fig, 13) for the purpose of ¢omputing the
effective moment of inertia. As the cutrout becomes smaller and the
‘net section wider, the assumption that shear lag in the continuous
material may be neglected becomes more questlonable. However,
experimental resylts on axially loaded panels have shown (reference 8)
that this assumption gives tolerable accuracy, even for stress .
anelysis, except in very small cut- ‘outs; it should, thereforec, be
adequate for deflection analysis in all cases, because the effect

of a very small cut-out on the deflectlons is negligible.

A theoretical difficulty arisees when the -cut-out is so close
to the root that there is appreciable ihterference between the atress
disturbence produced by the-.cut-out and the disturbance caused by the
vroot. This condition may be said to exist when the distance x
betwesn the root and the inboard edge of the cut-out is such
that Kx < 0«4, where K 18 the shear-lag parameter defined by
formula (2h) for a sectlon halfway between the root and ths edge of
the cut-out. .For such cases, the following ayproximate procedure
is suggested' e )
) (1) Make allowance for the effect of the cut-out by
determining the effective area ALe' of the cut stringers as

described in the preceding paxragraph.

(2) If the stringers are continuous over the root Joint,
calculate the deflection correction for root effect on the
assumption that no cut-out-exists by one of the methods given for
wings without cut-outs. In view of the uncertainty produced by
the interference between cut-out effect and root effect, an
estimate by means of formula (41} should be adequate. Multiply

this deflectlion correctlon by the factor (1 - —) to obtaln
the final correction. .
If the stringers are dbroken at' the root Joint, apply the

method given for a full-width cub-out to the subﬁtitute structure
shown In the lower part of figure 13. This structure consists
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of the actual spar flanges, the actual continuous stringers
(including the coaming stringers), and the equivalent coaming
stringers that replace the actual cut stringers. The total
width of the net section (b - w) is substibuted for b in
formula (43a), or in the expression for =x' when figure 12
is used.

Fuselage snalysis.~ In fuselages, the root effects on bending
or torsional deflections are probabiy always negligible. The effect
of rectengular cut-outs way be dealt with by the same methods as those
for winge if the cut-outs are reasonably small (windows or hatches).
Special considerations mey be necessary if the cubt-outs are very
largse, particularly in the case of cargo doors in the side of the
Tuselage which Increase primarily the deflection &y of the sheer

web, and thus constitute a problem not treated. hereln.

Langley Memorial Aeronautical Laboratory
Neational Advisory Committee for Asronautics
Langley Field, Va., May 15, 1947
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APPENDIX A

Sumeary of Geheral Procedure for Torsion~Bending

Anelysis of Wing

The tring is divided into bays by .the main bullheads, a main
bulkhead being defined as one which hag a shear stliffness Gt of
the same order of magnitude as the top or bottom cover. The torgue
1s assumed to be applied at the bulkheads. Ths bays are numbered
as shown in figure k(a).

Compute for each bay the coofiiclents

Pn = ""23; 8%*(% *+ %) o (A1)
: a . 1 _l}__ - (Ae)
% = g5 * Boalin * )
T (b _h |
-l ) ()

In these expressions, a 1g the length of bay n, T 1is the
(accumulated) torque in the bay, and the remaining dimensional
texrms are defined by figure 2.

The flange forces X (fig. 4(b)) produced by the interaction
between adjacent-bays are calculated from the set of—equations

—-—

wg + wg

= {py t o)Xy + gp¥p =

0% - (P + D)%+ gk = wp 4wl

Y . ] * . * o o . ¢ o = . e . . . . .

' g (Ak)
0n¥n-1 = (Pp + Poe1)n + peaXney = = Vg + Wiy
d
UpFpay ” (?r + Actg)xr = wg
-

The positive directions of T and X are defined by the arrows
in figure 4(b).
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APPENDIX B

Determination of Constent k for Torsion Box with Cub-0Out

27

The constant k appearing in equetions (20) to (22), which
determines the division of the torque between the vertical walls

and the horizontel walls, is determined by the formula

10
lcn'
k='j’_c')_—"""
where '
_&1_1._ -
01 = %7 C ' =0
2b .
= T C =C
Co tpy 2 2
2
- bZ_ "
03—0’% C3' =C3
Ybd 1 1 a
Cl;."‘_"'"'" C’-l- =-<l+a>Ch_
atyo | 2
- 4hd v .11 + 8
C5-a'bh2 Cs ‘2(1 a/’>
2bh(, . & r _ 1
CG:d.'bBQ'+a> 06 '§C6
G pea2 - .
Cr = 78 —=x C =C
T 3EA102 7 7
2 2
o & a7 b ' _
Cs 3EA22+G> ‘8’ =08 5735
2 .
e af -
Cog = 35 A Co' =Cg
_ 326 ad Cin' = Zc
_ Ci10 = 3§ A, 10— 2¥10

The dimensions appearing in these expressions are

defined in figure 5. When the net section is very nerrow, the

(85)
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terms Cr and Cg, 07’ end Cp' -are replaced for greater con-
venience of computation by the terms

s =g'.t£.g-_2... o c l=c'

Ta 38T Ta ™ Ta
_Itu'_‘@ek.ig) c . 2G bd®

Ba ~ 3BasN ¢ Ba T 3m Axc

where I ' is' the moment of inertia of the net section (including
the epar cap) considered as a buem beilng bent in the plane of-the
cover. When the coefficients Cy, Cg, Cp', and Cg' are used,

an approxzimate allovence for tlhie stringsra in the net ssction
should be made by adding ome-sixth of thelr total area to the area

of the coeming stringer as well as to the area of the spar cap in
the cut-out bay. : T _
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APPENDIX C
Jumerical Examples

The numericel examples will be based on the box shown in
figure 14. In the calculations, G/E will be taken as 0.385

end G will be teken as 4 x lO6 psi.

Exemple 1.- The box is loaded with a uniformly distributed
torque of 400 pound-inches per inch. Find the angle of twist of
the box.

The distributed torque loading is replaced by a series of
concentrated torques, applied at the bulkheads and of such magnltude
that the torque in each bay is equal to that produced in the middle
of the bay by the distributed loading. The elementary twist ¢ is
computed by means of formulas (7) and (8) end is plotted in figure 15.

By formulas (15) and (15a)

A =2.468 + %-x 10 x 0.080 + o.066(o.ouo + Qﬁ%i 60 = 2.908 sq in.

Next, the coefficients 'p, g, and W are computed by
formulas (A1), (A2), and (A3),.respectively. In order to simplify
the numbers, all coefficlents are multiplied by G. Because

(Tn+l - Tn) is constant, only the difference .:Sx-%',,_l - WE) need be
computed in addition to the last coefficient =
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_ 0.385 x 60 1 ( 60 10 )
Pn = 3Ix2.908 *8xGolo.0k0 * 5.080 = 6033
_.0.385x 60 1 ( 60_ , __10 ) - 2.061
Y X 2 .908 8 x 60\0.0k0 © 0.080 ‘
T _ T 400 x 60 60 . __ 10 _
Yo+l T Yn T 8 % 60 x 1o(o.ouo o.oao) = €875
'WT = Wg = 1&.5( '+ ] - V"n) = 30,937
aa - .- 25 % O; 8 - '
o  R2x 00 | 3.310

Substitution of the foregoing terms into (Ah) yields the
following set of equations

12.066X;, + 2.061Xp =.6875

2.061X) - 12.066Xp + 2.061X3 = 6875
2.061%; - 12.066X3 + 2.061xu 6875
2.061X3 - 12.066Xh + 2.061X5 = 6875
2.061%y -~ 9.343X5 = 30,937

The solution of these equations is

Xy = =T09 pounds
X = -816
. X3 = =732
Xy = =134
X5 = 3282
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By formula (16)

1 [_60 10 ) -6
A1 =" - ~709 ~ 0) = 203 X 107 redians
"1 2x60x10xl+x106(9-01*0 0.080 ( )
&ps = 31 X 10-6
-6

£pg = -2k X 10

A9y, = -1T1 % 1076
&5 = =979 X 1076

These corrections are added to the elementary twilst cp to o'bcain
the twist ¢ shown in figure 15.

Example 2.- The box is loafed as in example 1. Find the angle
of twist of the box consicering all btwist uorrecttons negligi’ble
except thoss for the root bay.

By solving equation (18)

% = 30,937
3 ~ 6.033 + 3.310

= 3311 pounds

1 (60

- I _ . -6
95 =72 T% 60 % 10 % k& x 10610080 0-080,)3311 = "948 x 10 7 radtens

The twist ¢ computed by adding this correction o the elementary
twist © 1s elso shown in figure 15.

Example 3.- The box hes a full-width cut-out in the top cover
of bay 3. It is loaded as in exemple 1. Find the angle of twist
of the box considering all twist corrections to be negligible
excopt those for the root bay, the cut-out bey, and the bay on
elther side of the cut-out bay.

The torque-division factor, which must normally be computed by
means -of formula (A5), is k = 1 for a full-width cub-out.
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With the definitions of figure 5(b)

Ay = 2.908 sq in. (from exsmple 1)
A2—214-68--6>< 10 x 0.080 = 2.601 sqg in.

By formula (21)

60,000 x 30 60 i P
g = 2 % 602 % 102 % b x 106(0 okG O 080)(2 1) = 8)9 ¥ 10 ~ radians

&y = £

By formulas (24) and (20) end by taking the value of p fram
example 1

- -6 _§...2$._3.. __._33._ 60,000 x 30
A“’3"A‘P<:0"2x859><]‘0 * Box 10 % hxlos X 10

= 3527 X 10-6 radians

From exemple 2

£y = -oL8 x :LO"6 radians

By formule (23), teking 1/G outside the bracket,

5. = 60,000 ( L % 30 0

3 . -
+ 3 2282 i’g 30 ) ~ 1046 x 106 radiens

The twist of the box obtained by adding the elementary twists and the
corrections is shown in figure 16. For camperison, the twist of the
box without cut-out (example 2) is alsoc shown.
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Example 4.~ The beam of figure 14 is loaded by a distributed
vertical load of w = 50 pouvnds per inch applled along the elastic
axls. Calculate the tip @eflection including shear=-lag correction.

The simplified cross section is defined by

bp = 2468 + %x 10 x 0.080 = 2.601 sq in.

Ag, -21-(60 % 0.080 + 14 x 0.15) = 2.25 sq in..

4.851 sq in.

Ap

By formula (26)

Jo.385 x 0.0kl 1 . 1|2
=755 eEs 2.25)J = 0.0

Kd = 0.02917 X 25 = 0.729

I'-_-—-

2 ' .

By elementary theory

~ b '
wL* | wal3 _ wL3(L d)

®=8gr * 2ET " 2ET\:
. 3 N '
= 3 x X0 (320 + 25) = 13.38 in.
2 X 10.h x 10° x 242.55" y -

.

The shear force In one web at the distance b/2 from the root is

8y = =2'E>< 50 x 270 = 6750 pounds
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By formule -(1#1) , teking into account both covers "

6750. % 2.25 % 300{1 + 0.0729 - '0.3_1'1;"35"""
100 x 10.k x 106>< lp851><2 601 x 0. 000851(1+o .729)

51=2

O 762 in.

it

or 5.7 percent of %' -A more accurate calculatlon of 51 would be
pointless because the gain in accuracy would be less than the
probable accuracy of 5.
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Figure 3.- Elementary twist © and actual twist ¢ of box
beam with tip forque,
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(@) Convention for numbering stations and bays.
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(b) Convention for positive forces acting on a. bay,

Figure 4.- Gonvention for signs and numbering.
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(@) General assembly.
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(b) Exploded view of half - structure,

Figure 5.- Three-bay structure with cut-out bay.
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Figure 6,;ch with  small cut-out.
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Figure 7 - Cross section of
box idedlized for shear-
lag calculation,
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Figure 8.- Positive X-groups
caused by shear lag acting
cn a bay.
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Figure 9.- Stresses in stringers interrupted by cut-out,
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(@) Inboard end of beam cover. (b) Axially loaded panel,

Figure 10.- Infroduction of concentrated end loads.
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Figure I1.- Substitute single-stringer panel.
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Figure 12 - Stringer effectiveness in axidlly loaded panel,
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Figure [3.-Cut-out in cover of box beam.
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Figure 14.-Cross section of box beam for numerical examples.
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Figure 15.-Box beam for numerical examples,
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(b) Box with full-width cut-out in bay 3.

Figure  16.- Twist curves for numerical examples.
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