REVISIONS																				
SYMBOL DESCRIPTION										-	DATE APPROVAL									
Released												11/29/90 S. Naus								
A			RN	A02	0 i	ncc	rpc	rat	ed					1/0	7/9	1	Đ.	Ma	!Le_	
	:																			
SHEFT						REV	/ISI	LON	STA	TUS	5									
SH	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
REV	A							A												
SH	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
REV																				
OR	IGIN . Sa		OR ge/(GSF	С				DATE FSC:											
AP	PRO	VED		N/2	A							Specification for								
CO W	DE : B	311 . T	AP: hom	PRO as	VAL	/GS	FC	• .	11	Analysis (DPA)										
CO W	CODE 311 SUPERVISORY APVL W. B. Thomas III/GSFCE					11	11/29/90													
ADDITIONAL APPROVAL						S-311-M-70														
N G G	NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND 20771																			
C	AGE	CO	DE:	25	306						;					PA	GE	10	F 1	7

Title:	Specification for Destructive Physical Analy	/sis
	DESTRUCTIVE PHYSICAL ANALYSIS (DPA) OF EEE PARTS	
	GSFC S-311-M-70	
TND	EX	PAGE
1.		4
1.1	PURPOSE	4
1.2	APPLICATION	4
2.	APPLICABLE DOCUMENTS	5
2.1	GOVERNMENT DOCUMENTS	5
2.2	STANDARDS	5
2.3	OTHER DOCUMENTS	5
2.4	ORDER OF PRECEDENCE	6
3.	DEFINITIONS	7
4.	GENERAL REQUIREMENTS	8
5.	DETAILED REQUIREMENTS	9
	5.1. CAPACITORS	9
	5.2. MAGNETIC DEVICES	10
	5.2.1. INDUCTORS AND TRANSFORMERS	10
	5.2.2. RF COILS	10
	5.3. RESISTORS	10
	5.4. SWITCHES	12
	5.5. THERMISTORS	12
	5.6. CRYSTALS	12
	5.7. CONNECTORS	12
	2 2 2	

.

۰.

 Title:	Specification for Destructive Physical Analysis
	5.8. FILTERS
	5.9. RELAYS
	5.10. DIODES13
	5.11. TRANSISTORS
	5.12. MICROCIRCUITS14
	5.12.1. HYBRID14
	5.12.2. MULTICHIP14
	5.12.3. MONOLITHIC14
	APPENDIX A RADIOGRAPHIC EXAMINATIONS15
	APPENDIX B ENERGY DISPERSIVE X-RAY16
	APPENDIX C SCANNING ELECTRON MICROSCOPE 17

S-311-M-70	³ of 17	R EV

--- ·•

Downloaded from http://www.everyspec.com

SECTION 1

SCOPE

1.1 PURPOSE

The purpose of this document is to describe the general requirements for performance of destructive physical analysis (DPA) on samples of parts. This specification will identify the tests to be performed and the appropriate acceptance/rejection criteria to be used in the testing of electronic, electromagnetic, and electromechanical parts. The appendices in the back of this document are provided to give further guidance in the performance of destructive physical analysis.

1.2 APPLICATION

This standard is intended to be referenced in detailed part specifications, or other documents where DPA requirements are imposed, to assure that the practices, procedures, and criteria contained herein are uniformly applied.

S-311-M-70

4

REV --

Specification for Destructive Physical Analysis Title: Section 2 APPLICABLE DOCUMENTS 2.1 GOVERNMENT DOCUMENTS The following documents, of the issue in effect on the date of the invitation for bids or request for proposal, form a part of this standard to the extent specified herein. STANDARDS 2.2 MILITARY: MIL-STD-105 SAMPLING PROCEDURES AND TABLES FOR INSPECTION BY ATTRIBUTES MIL-STD-202 TEST METHODS FOR ELECTRONIC AND ELECTRICAL COMPONENT PARTS TEST METHODS FOR SEMICONDUCTOR DEVICES MIL-STD-750 MIL-STD-883 TEST METHODS AND PROCEDURES FOR MICROELECTRONICS DESTRUCTIVE PHYSICAL ANALYSIS FOR MIL-STD-1580 ELECTRONIC, ELECTROMAGNETIC, AND ELECTROMECHANICAL PARTS DOD-STD-1686 ELECTROSTATIC DISCHARGE CONTROL PROGRAM FOR PROTECTION OF ELECTRICAL AND ELECTRONIC PARTS ASSEMBLIES AND EQUIPMENT. 2.3 OTHER DOCUMENTS NASA: GUIDELINES FOR STANDARD PAYLOAD SPAR ASSURANCE REQUIREMENTS FOR GSFC ORBITAL PROJECTS GSFC PPL GSFC PREFERRED PARTS LIST NATIONAL BUREAU OF STANDARDS: 5 of 17 REV --S-311-M-70

-Downloaded from http://www.everyspec.com

NBS SPECIALNOTES ON SEM EXAMINATION OFPUBLICATION 400-35MICROELECTRONIC DEVICES

2.4 ORDER OF PRECEDENCE

In the event of a conflict between the text of this standard and the references cited herein, the text of this standard shall take precedence. In the event of a conflict between this standard and a procurement specification, the procurement specification shall take precedence. However, nothing in this standard shall supersede applicable laws and regulations unless a specific exemption has been obtained.

6

Downloaded from http://www.everyspec.com

SECTION 3

DEFINITIONS

3.1 DEFECT

A defect is any nonconformance from specified requirements which affects form, fit, or function.

3.2 DESTRUCTIVE PHYSICAL ANALYSIS

A destructive physical analysis (DPA) is a systematic, logical, detailed examination of parts during various stages of physical disassembly, conducted on a sample of completed parts of a given lot, wherein parts are examined for a wide variety of design, workmanship, and processing problems that may not show up during normal screening tests. The purpose of these analyses is to determine those lots of parts, delivered by a vendor, which have anomalies or defects such that they could, at some later date, cause a degradation or catastrophic failure of a system.

3.3 LOT RELATED DEFECT

A lot related defect is an anomaly attributable to a variance in the design, manufacturing, test, or inspection process that is repetitive throughout a production lot.

3.4 PRODUCTION LOT

A production lot is a group of parts defined by the part specification or drawing, and identified with a lot date code.

3.5 SCREENABLE DEFECT

A screenable defect is one for which an effective, nondestructive screening test or inspection can be reasonably developed and applied to eliminate, with confidence, the nonconforming items from the lot.

S-311-M-70

Downloaded from http://www.everyspec.com

SECTION 4

GENERAL REQUIREMENTS

The general requirements of this specification are the same as those requirements outlined in MIL-STD-1580(USAF) Section 4.

In determining the level of testing and inspection methods, refer to the procurement document to verify the class of the part purchased. If no class has been specified in the procurement document then class B or equivalent class is to be assumed and parts are to be subjected to class B level of testing and inspection methods.

Change in the order in which tests are performed is permitted with prior approval from the governing activity.

Sampling is to be performed in accordance with paragraph 4.1 of MIL-STD-1580(USAF) or with the sampling plan specified in the applicable procurement document; the plan specified in the procurement document shall take precidence over other plans. Lots of 200 or less shall be sampled as outline in Table 1. Table 1 indicates the required number of samples to be subjected to destructive physical analysis per lot date code (LDC). If identical parts are received with different lot date codes, the parts will be separated by lot date codes and subjected to the sampling plan of Table 1.

Small Lot Sampling Plan

Lot Size per LDC	<u>Sample Size</u>
<5	1
5-15	2
16-50	3
>50	5

Table 1. Sample size for number of parts per lot date code.

S-311-M-70

REV A

Specification for Destructive Physical Analysis Title: SECTION 5 DETAILED REOUIREMENTS This section calls out the detailed requirements for destructive physical analysis of commonly used components. These requirements supplement the general requirements of section 4. Pre-DPA tests, such as functional tests and solderability tests, are assumed to have been satisfied by normal inspection and testing. 5.1 CAPACITORS 5.1.1 Capacitors, fixed ceramic type: MIL-C-20 MIL-C-123 MIL-C-39014 Follow procedure outlined in MIL-STD-1580(USAF) Section 5.1. 5.1.2 Capacitors, fixed, ceramic chip type: MIL-C-123 MIL-C-55681 Follow procedure outlined in MIL-STD-1580(USAF) Section 5.2. 5.1.3 Capacitors, fixed mica MIL-C-87164 type: MIL-C-39001 Follow procedure outlined in MIL-STD-1580(USAF) Section 5.3. 5.1.4 Capacitors, fixed, solid tantalum type: MIL-C-39003 Follow procedure outlined in MIL-STD-1580(USAF) Section 5.4. 5.1.5 Capacitors, fixed, tantalum foil type: MIL-C-39006 Follow procedure outlined in MIL-STD-1580(USAF) Section 5.5. 5.1.6 Capacitors, fixed, paper or plastic film type: MIL-C-19978 9 REV -of 17 S-311-M-70

Title:	Specification for Destructive Physical Anal	ysis
	Follow procedure outlined in MIL-STD-1580(U Section 5.6.	SAF)
5.1.7	Capacitors, fixed, metallized film type: MIL-C-87217	
	Follow procedure outlined in MIL-STD-1580(U Section 5.7.	SAF)
5.1.8	Capacitors, fixed, tantalum slug, wet electrolyte	
	type: MIL-C-39006/22 MIL-C-83500/01	
	Follow procedure outlined in MIL-STD 1580(U Section 5.8.	JSAF)
5.1.9	Capacitor, fixed, glass type: MIL-C-23269	
	Follow procedure outlined in MIL-STD-1580(U Section 5.9.	JSAF)
5.1.	Capacitor, variable, piston type, sealed and unsealed	
	Type: MIL-C-14409 Follow procedure outlined in MIL-STD-1580(1 Section 5.10	USAF)
5.2 MAGN	ETIC DEVICES	
5.2.	1 INDUCTORS and TRANSFORMERS type: MIL-STD-981	
5.2	Follow procedure outlined in MIL-STD-1580(Section 10.1 2 BF COILS	USAF)
J • E •	Follow procedure outlined in MIL-STD-1580(Section 10.2.	USAF)
5.3 RESI	STORS	
5.3.	<pre>1 Resistors, variable, wire wound type: MIL-R-39015 Follow procedure outlined in MIL-STD-1580(Section 13.1</pre>	USAF)
	10	

-

Specification for Destructive Physical Analysis Title: 5.3.2 Resistors, variable, nonwirewound MIL-R-39035 type: Follow procedure outlined in MIL-STD-1580(USAF) Section 13.2 5.3.3 Resistors, metallized film type: MIL-R-55182 MIL-R-39017 Follow procedure outlined in MIL-STD-1580(USAF) Section 13.3. Resistors, fixed, metal foil 5.3.4 type: MIL-R-55182 (RNC90) Follow procedure outlined in MIL-STD-1580(USAF) Section 13.4. 5.3.5 Resistors, fixed, chip type: MIL-R-55342 (RM) Follow procedure outlined in MIL-STD-1580(USAF) Section 13.5. Resistor networks 5.3.6 type: MIL-R-83401 Follow procedure outlined in MIL-STD-1580(USAF) Section 13.6. Resistors, wirewound, accurate 5.3.7 type: MIL-R-39005 Follow procedure outlined in MIL-STD-1580(USAF) Section 13.7. 5.3.8 Resistors, fixed, wirewound, power type: MIL-R-39007 MIL-R-39009 Follow procedure outlined in MIL-STD-1580(USAF) Section 13.8. 5.3.9 Resistors, carbon composition MIL-R-39008 (RCR) type: DPA not Required 11 REV -of 17 S-311-M-70

Titl	Le:	Specification for Destructive Physical Anal	ysis
5.4		SWITCHES	
	5.4.3	Switch, snap, action Follow procedure outlined in MIL-STD-1580(U Section 14.1.	SAF)
	4.4.	2 Switch, Thermal Follow procedure outline in MIL-STD-1580(US Section 14.2.	AF)
5.5		THERMISTORS	
	5.5.	1 Thermistor, glass bodied, hermetic type: MIL-T-23648 Follow procedure outline in MIL-STD-1580(US Section 15.1.	AF)
	5.5.	2 Thermistor, disc and bead encapsulated type: MIL-T-23648 Follow procedure outlined in MIL-STD-1580(U Section 15.2	I JSAF)
5.6		CRYSTALS	
	5.6.	1 Crystal units, Quartz type: MIL-C-3098 Follow procedure outlined in MIL-STD-1580(Section 7.1.	USAF)
5.7		CONNECTORS	
	5.7	1 Connectors, multipin, excluding conta Follow procedure outlined in MIL-STD-1580(Section 6.1.	cts USAF)
	5.7	.2 Connectors, multipin, with contacts Follow procedure outlined in MIL-STD-1580(Section 6.2	USAF)
	5.7	.3 Connectors, RF Follow procedure outlined in MIL-STD-1580(Section 6.3.	USAF)
		$\frac{12}{12} \circ f = 17$	DEU

· · · · ·

.

(1.189) (1.189) (1.189)

					• .		•	
$F_{ij} = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}$								
	SUD	-883 meth	od 202	testi 20.	ng in	accor	dance w	nth MIL
	con	structed	with a	in int	ernal	cavit	y shall	. be
	Fol	low proce	dure c	utlin	ed in	MIL-S	TD-1580	(USAF)
5	.11.1	Transis type:	tors MII	-5-19	500			
5.11		TRANSIS	TORS					
	Foll Sect cons sub STD-	type: ow proced ion 8.1. tructed w ected to 883 metho	MIL lure of Afte vith a PIND od 202	-S-195 utline r elec n inte testir 0.	00 d in trica rnal g in	MIL-SI l test cavity accord	TD-1580 cing, d y shall lance w	(USAF) evices be ith MIL-
5	.10.1	Diodes	1/77	-0-107	0.0			
5.10		DIODES						
	Foll Sect	ow proced ion 12.1.	ure ou	tline	d in 1	MIL-ST	D-1580	(USAF)
5.	9.1	Relays type:	MIL-	-R-610	6			
5.9		RELAYS						
	Foll Sect	ow proced ion 9.1.	ure ou	tlined	l in M	IIL-ST	D-1580(USAF)
. 5.	8.1	Filters, type:	EMI, MIL- MIL-	low pa F-2886 F-1573	iss , f 51 53	eed t	hrough	
5.8		FILTERS						
5.	7.4 Follo Secti	Connector w procedu on 6.4.	r, con ire ou	tacts tlined	in M	IL-STI	0-1580()	USAF)
		······						

-

Tit	le: Specification for Destructive Physical Analysis
5.12	MICROCIRCUITS
	5.12.1 Microcircuits, hybrid Follow procedure outlined in MIL-STD-883 Method 5009.1 para. 3.5
	5.12.2 Microcircuits, multichip Follow procedure outlined in MIL-STD-883 Method 5009.1 para. 3.5
	5.12.3 Microcircuits, monolithic Follow procedure outlined in MIL-STD-883 Method 5009.1 para. 3.4. Additional testing for non-standard parts to be done in accordance with GSFC PPL Table 10 PIND MIL-STD-883 method 2020

--

S-311-M-70

-

Downloaded from http://www.everyspec.com

APPENDIX A

RADIOGRAPHIC EXAMINATIONS

1. Radiographic examinations may be performed as an extension to normal DPA procedures for the purpose of determining defects which may be present within a component prior to opening that component. The following specifications or approved equivalent shall be used when performing radiographic examinations:

Integrated circuits	MIL-STD-883	method	2012
Transistors, Diodes	MIL-STD-750	method	2076
Passive Devices	MIL-STD-202	method	209

S-311-M-70

_

REV --

J

APPENDIX B

--Downloaded from http://www.everyspec.com

ENERGY DISPERSIVE X-RAY ANALYSIS

The purpose of this test is to help in the identification of certain defects or anomalies which may be present in a component. Energy dispersive X-ray analysis (EDXA) is used to determine the elemental makeup of a selected particle or item within a component. EDXA may be performed at the same time that SEM examinations are being performed. Actual operation of the EDXA unit shall be in accordance with manufacturer instructions and shall be performed by a properly trained operator. Results of this analysis shall be recorded and maintained with the results of SEM examination.

16 of 17

S-311-M-70

REV --

APPENDIX C

Downloaded from http://www.everyspec.com

SCANNING ELECTRON MICROSCOPE (SEM) EXAMINATION

The SEM examination is used as a compliment to the optical microscope during the internal examination process of a DPA procedure. It is used to look at wire bonds, metallization integrity, chip bonds, particles, oxide faults, or laser trim faults. The following Military Standards or approved equivalent procedures may be used to perform SEM examinations:

SemiconductorsMIL-STD-750method 2077Integrated circuitsMIL-STD-883method 2018

S-311-M-70

е

ţ

REV --