INCH-POUND MS18229C(SH) 31 January 2017 SUPERSEDING MS18229B(SH) 30 October 1986

MILITARY SPECIFICATION SHEET

PLUG FOR O-RING GASKET

This specification sheet is approved for use by the Naval Sea Systems Command and is available for use by all Departments and Agencies of the Department of Defense.

The requirements for acquiring the product described herein shall consist of this specification sheet.

MS18229C(SH)

NOTES:

1. Each plug shall be marked on the hex head in accordance with MIL-STD-792 with one of the following material designators:

Ferrous metal	Designator
Carbon steel	CS
Stainless steel	SS
Corrosion resistant steel	CR
Non-ferrous metal	Designator
Copper nickel	CN
Nickel copper	NC
Tin bronze	TB
Titanium	TI

Material identification shall be specified by adding the appropriate designator to the dash number (see <u>table I</u>). The designator is only for identification purposes and does not replace pertinent material data required by the applicable material specification.

- 2. When non-ferrous designators are specified in accordance with Note 1 above, the notched hex corners (60-degree included angle, 0.030 to 0.045 deep) shall be provided.
- 3. Lockwire holes shall be specified by adding "L" after the material designator.
- 4. Lanyard retainer posts shall be specified by adding "Y" after the material designator or lockwire hole designator (if applicable).

FIGURE 1. Plug for O-ring gasket.

MS18229C(SH)

Dash no.	Tube OD	"T" straight thread (UN-2A)	A Hexagon across flats	B ±¹∕ ₆₄	C ±0.005	D ±0.002 0.003	E ± ¹ ⁄ ₆₄	F ±0.005	G ±0.015	O-ring AS 568	
02	1/8	$\frac{5}{16} - 24$	⁷ / ₁₆	¹⁷ / ₃₂	0.297	0.250	1⁄2	0.074	0.117	-902	
03	³ / ₁₆	³ / ₈ - 24	1⁄2	¹⁷ / ₃₂	0.297	0.313	⁹ / ₁₆	0.074	0.117	-903	
04	1⁄4	$^{7}/_{16} - 20$	⁹ / ₁₆	³⁹ / ₆₄	0.360	0.364	5/8	0.093	0.125	-904	
05	⁵ / ₁₆	¹ ∕₂ − 20	5/8	³⁹ / ₆₄	0.360	0.427	¹¹ / ₁₆	0.093	0.125	-905	
06	3/8	$\frac{9}{16} - 18$	11/16	¹¹ / ₁₆	0.391	0.482	3⁄4	0.097	0.148	-906	
08	1⁄2	³ ⁄₄−16	7⁄8	3⁄4	0.438	0.660	¹⁵ / ₁₆	0.100	0.156	-908	
10	5/8	% − 14	1	³ / ₁₆	0.500	0.773	1 ¹ / ₁₆	0.100	0.156	-910	
12	3⁄4	$1^{1/16} - 12$	11⁄4	1	0.594	0.945	1 ⁵ / ₁₆	0.130	0.203	-912	
14	7⁄8	$1^{3}/_{16} - 12$	13/8	1	0.594	1.070	1 ⁷ / ₁₆	0.130	0.203	-914	
16	1	$1^{5}/_{16} - 12$	11⁄2	1	0.594	1.195	1%/16	0.130	0.203	-916	
20	11⁄4	15/8 - 12	11 %	1	0.594	1.507	1 ¹⁵ / ₁₆	0.132	0.203	-920	
24	11/2	11/8 - 12	21/8	1	0.594	1.756	2 ³ / ₁₆	0.132	0.203	-924	
32	2	21/2 - 12	23⁄4	1	0.594	2.381	213/16	0.132	0.203	-932	
NOTES:											
1 Dimensions and sizes are in inches											

TABLE I. Dimensions and sizes for plug for O-ring gasket.

Dimensions and sizes are in inches. 1.

2. OD = Outer Diameter.

Example of part numbers:

MS18229-6CS - Plug, 3/8 Tubing, Carbon Steel

MS18229-6TIL - Plug, ³/₈ Tubing, Titanium, with Lockwire Hole (Hex Notches)

MS18229-6NCY – Plug, ³/₈ Tubing, Nickel Copper, with Lanyard Retainer Post (Hex Notches)

MS18229-6CRLY - Plug, 3/8 Tubing, Corrosion Resistant Steel, with Lockwire Hole, and Lanyard Retainer Post

CHANGES FROM PREVIOUS ISSUE. Marginal notations are not used in this revision to identify changes with respect to the previous issue due to the extent of the changes.

Custodian: Navy-SH Preparing activity: Navy-SH (Project 4730-2017-029)

Review activity: DLA-CC

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at https://assist.dla.mil.