NOT MEASUREMENT SENSITIVE

MIL-STD-1798A 15 April 2008

SUPERSEDING MIL-HDBK-1798A 24 September 2001 MIL-STD-1798 (USAF) 20 June 1988

DEPARTMENT OF DEFENSE STANDARD PRACTICE

MECHANICAL EQUIPMENT AND SUBSYSTEMS INTEGRITY PROGRAM

Reinstated after 15 April 2008 and may be used for new and existing designs and acquisitions.

AMSC N/A

AREA SESS

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

FOREWORD

1. This standard is approved for use by all Departments and Agencies of the Department of Defense.

2. The purpose of this standard is to establish programmatic tasks for the development, acquisition, modification, operation, and sustainment of the mechanical elements of airborne, support, and training systems. The Mechanical Equipment and Subsystems Integrity Program (MECSIP) consists of a series of disciplined, time-phased actions which, when applied in accordance with this standard, will help ensure the continued operational safety, suitability, and effectiveness of the mechanical systems throughout all phases of the weapon system life.

3. Comments, suggestions, or questions on this document should be addressed to ASC/ENRS, 2530 LOOP RD WEST, WRIGHT-PATTERSON AFB OH 45433-7101 or e-mailed to Engineering.Standards@wpafb.af.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at http://assist.daps.dla.mil.

CONTENTS

Paragraph

Page

1.	SCOPE	.1
1.1	Purpose	.1
1.2	Use	.1
1.2.1	Structure	.1
1.3	Program approach	.2
1.4	Program overview	
1.5	Applicability	
2.	APPLICABLE DOCUMENTS	.3
2.1	General	
2.2	Government documents	
2.2.1	Specifications, standards, and handbooks	
2.2.2	Other Government documents, drawings, and publications	
2.3	Order of precedence	
3.	DEFINITIONS	
3.1	Analysis	
3.2	Damage tolerance	
3.3	Demonstration	
3.4	Durability	
3.5	Durability-critical component	
3.6	Durability-noncritical component	.5
3.7	Economic life	
3.8	Nondestructive inspection (NDI)	
3.9	Integrity	
3.10	Maintenance-free operating period	.5
3.11	Mission-critical component	
3.12	Other/expendable components	
3.13	Required operational service life	
3.14	Safety-critical component	
3.15	Test	
3.16	Usage	
4.	GENERAL REQUIREMENTS	
4.1	Mechanical Equipment and Subsystems Integrity Program (MECSIP)	
4.1.1	Tailoring approach	
4.1.2	Implementing SOW	
5.	DETAILED REQUIREMENTS	
5.1	(Task I) Preliminary planning	
5.1.1	Program strategy	
5.1.2	Trade studies	
5.1.3	Requirements development	
5.1.4	Preliminary integrity analysis	
5.2	(Task II) Design information	
5.2.1	MECSIP Master Plan	
5.2.2	Design criteria	
5.2.3	Design service life/design usage	
5.2.4	Management of Aviation Critical Safety Items	
5.2.5	Material and process selection and characterization	
5.2.6	Product integrity control plan	
5.2.7	Corrosion prevention and control	

CONTENTS - Continued

Paragraph

Page

5.3 (Task III) Design analyses and development tests. 13 5.3.1.1 Load analyses 13 5.3.1.2 Design stress/environment spectra development. 13 5.3.1.3 Performance and function sizing analyses 13 5.3.1.4 Thermal/environmental analyses. 13 5.3.1.5 Stress/strength analyses 13 5.3.1.6 Durability analyses 14 5.3.1.7 Damage tolerance analyses 14 5.3.1.8 Vibration/dynamics/acoustic analyses 15 5.3.2 Development tests 15 5.3.2.1 Material characterization tests 15 5.4.4 (Task IV) Component development and systems functional tests 16 5.4.1 Functional tests 16 5.4.2 Strength testing 16 5.4.3 Durability testing 16 5.4.4 Vibration/dynamics/acoustics tests 17 5.4.6 Thermal and environment survey 17 5.4.7 Damage tolerance tests 17 5.4.8 Evaluation and interpretation of test results 17 5.4.1	5.0		40
5.3.1.1 Load analyses 13 5.3.1.2 Design stress/environment spectra development			
5.3.1.2 Design stress/environment spectra development. 13 5.3.1.3 Performance and function sizing analyses 13 5.3.1.4 Thermal/environmental analyses 13 5.3.1.5 Stress/strength analyses 14 5.3.1.6 Durability analyses 14 5.3.1.7 Damage tolerance analyses 14 5.3.1.8 Vibration/dynamics/acoustic analyses 15 5.3.2 Development tests 15 5.3.2.1 Material characterization tests 15 5.3.2.2 Design development tests 15 5.4 (Task IV) Component development and systems functional tests 16 5.4.1 Functional tests 16 5.4.2 Strength testing 16 5.4.3 Durability testing 16 5.4.4 Vibration/dynamics/acoustics tests 17 5.4.5 Damage tolerance tests 17 5.4.6 Thermal and environment survey 17 5.4.7 Maintainability/reparability demonstrations 17 5.4.8 Evaluation and interpretation of test results 17 5.4.9			
5.3.1.3 Performance and function sizing analyses 13 5.3.1.4 Thermal/environmental analyses 13 5.3.1.5 Stress/strength analyses 14 5.3.1.6 Durability analyses 14 5.3.1.7 Damage tolerance analyses 14 5.3.1.8 Vibration/dynamics/acoustic analyses 14 5.3.2 Development tests 15 5.3.2.1 Material characterization tests 15 5.3.2.2 Design development tests 15 5.4.4 (Task IV) Component development and systems functional tests 16 5.4.1 Functional tests 16 5.4.2 Strength testing 16 5.4.3 Durability testing 16 5.4.4 Vibration/dynamics/acoustics tests 17 5.4.5 Damage tolerance tests 17 5.4.6 Thermal and environment survey 17 5.4.7 Maintainability/reparability demonstrations 17 5.4.8 Evaluation and interpretation of test results 17 5.4.9 Integrated test plan 18 5.4.10 Final integrity analy		•	
5.3.1.4 Thermal/environmental analyses 13 5.3.1.5 Stress/strength analyses 14 5.3.1.6 Durability analyses 14 5.3.1.7 Damage tolerance analyses 14 5.3.1.8 Vibration/dynamics/acoustic analyses 15 5.3.2 Development tests 15 5.3.2.1 Material characterization tests 15 5.3.2.2 Design development tests 15 5.4.4 (Task IV) Component development and systems functional tests 16 5.4.1 Functional tests 16 5.4.2 Strength testing 16 5.4.3 Durability testing 16 5.4.4 Vibration/dynamics/acoustics tests 17 5.4.5 Damage tolerance tests 17 5.4.6 Thermal and environment survey 17 5.4.7 Maintainability/reparability demonstrations 17 5.4.8 Evaluation and interpretation of test results 17 5.4.9 Integrated test plan 18 5.4.10 Final integrity analysis. 18 5.4.11 Maintenance planning and task develop		•	
5.3.1.5 Stress/strength analyses 14 5.3.1.6 Durability analyses 14 5.3.1.7 Damage tolerance analyses 14 5.3.1.8 Vibration/dynamics/acoustic analyses 15 5.3.2 Development tests 15 5.3.2.1 Material characterization tests 15 5.3.2.2 Design development tests 15 5.4 (Task IV) Component development and systems functional tests 16 5.4.1 Functional tests 16 5.4.2 Strength testing 16 5.4.3 Durability testing 16 5.4.4 Vibration/dynamics/acoustics tests 17 5.4.5 Damage tolerance tests 17 5.4.6 Thermal and environment survey 17 5.4.7 Maintainability/reparability demonstrations 17 5.4.8 Evaluation and interpretation of test results 17 5.4.9 Integrated test plan 18 5.4.10 Final integrity analysis 18 5.4.11 Maintenance planning and task development 18 5.5.2 Preventive maintenance actions<			
5.3.1.6 Durability analyses 14 5.3.1.7 Damage tolerance analyses 14 5.3.1.8 Vibration/dynamics/acoustic analyses 15 5.3.2 Development tests 15 5.3.2 Development tests 15 5.3.2.1 Material characterization tests 15 5.3.2.2 Design development tests 15 5.4 (Task IV) Component development and systems functional tests 16 5.4.1 Functional tests 16 5.4.2 Strength testing 16 5.4.3 Durability testing 16 5.4.4 Vibration/dynamics/acoustics tests 17 5.4.5 Damage tolerance tests 17 5.4.6 Thermal and environment survey 17 5.4.7 Maintainability/reparability demonstrations 17 5.4.8 Evaluation and interpretation of test results 17 5.4.9 Integrated test plan 18 5.4.11 Maintenance planning and task development 18 5.4.12 Ainworthiness certification 18 5.5.1.1 Operational usage data <		•	
5.3.1.7 Damage tolerance analyses 14 5.3.1 Vibration/dynamics/acoustic analyses 15 5.3.2 Development tests 15 5.3.2.1 Material characterization tests 15 5.3.2.2 Design development tests 15 5.3.2.1 Material characterization tests 15 5.3.2.2 Design development tests 16 5.4 (Task IV) Component development and systems functional tests 16 5.4.1 Functional tests 16 5.4.2 Strength testing 16 5.4.3 Durability testing 16 5.4.4 Vibration/dynamics/acoustics tests 17 5.4.5 Damage tolerance tests 17 5.4.6 Thermal and environment survey 17 5.4.7 Maintainability/reparability demonstrations 17 5.4.8 Evaluation and interpretation of test results 17 5.4.9 Integrated test plan 18 5.4.10 Final integrity analysis 18 5.4.11 Maintenance acting/monitoring program 19 5.5.1 Component tracking/monito	5.3.1.5	o ,	
5.3.1.8 Vibration/dynamics/acoustic analyses 15 5.3.2 Development tests 15 5.3.2.1 Material characterization tests 15 5.3.2.2 Design development tests 15 5.4.4 (Task IV) Component development and systems functional tests 16 5.4.1 Functional tests 16 5.4.2 Strength testing 16 5.4.3 Durability testing 16 5.4.4 Vibration/dynamics/acoustics tests 17 5.4.5 Damage tolerance tests 17 5.4.6 Thermal and environment survey 17 5.4.7 Maintainability/reparability demonstrations 17 5.4.8 Evaluation and interpretation of test results 18 5.4.9 Integrated test plan 18 5.4.10 Final integrity analysis 18 5.4.11 Maintenance planning and task development 18 5.5.1 Component tracking/monitoring program 19 5.5.1 Component tracking/monitoring program 19 5.5.2 Preventive maintenance actions 19 5.5.2.1 <	5.3.1.6		
5.3.2 Development tests 15 5.3.2.1 Material characterization tests 15 5.3.2.2 Design development tests 15 5.4 (Task IV) Component development and systems functional tests 16 5.4.1 Functional tests 16 5.4.2 Strength testing 16 5.4.3 Durability testing 16 5.4.4 Vibration/dynamics/acoustics tests 17 5.4.5 Damage tolerance tests 17 5.4.6 Thermal and environment survey 17 5.4.7 Maintainability/reparability demonstrations 17 5.4.8 Evaluation and interpretation of test results 17 5.4.9 Integrated test plan 18 5.4.10 Final integrity analysis 18 5.4.11 Maintenance planning and task development 18 5.5.1 Component tracking/monitoring program 19 5.5.1 Component tracking/monitoring program 19 5.5.2.1 Flight-hour time change 20 5.5.2.2 Calendar time change 20 5.5.2.3 On-equipment repairs			
5.3.2.1 Material characterization tests 15 5.3.2.2 Design development tests 15 5.4 (Task IV) Component development and systems functional tests 16 5.4.1 Functional tests 16 5.4.2 Strength testing 16 5.4.3 Durability testing 16 5.4.4 Vibration/dynamics/acoustics tests 17 5.4.5 Damage tolerance tests 17 5.4.6 Thermal and environment survey 17 5.4.7 Maintainability/reparability demonstrations 17 5.4.8 Evaluation and interpretation of test results 17 5.4.9 Integrated test plan 18 5.4.11 Maintenance planning and task development 18 5.4.12 Airworthiness certification 18 5.5.1 Component tracking/monitoring program 19 5.5.2 Preventive maintenance actions 19 5.5.2.1 Flight-hour time change 20 5.5.2.2 Calendar time change 20 5.5.2.3 On-equipment repairs 20 5.5.2.4 Lubrication/cleanin	5.3.1.8	Vibration/dynamics/acoustic analyses	15
5.3.2.2 Design development tests 15 5.4 (Task IV) Component development and systems functional tests 16 5.4.1 Functional tests 16 5.4.2 Strength testing 16 5.4.3 Durability testing 16 5.4.4 Vibration/dynamics/acoustics tests 17 5.4.5 Damage tolerance tests 17 5.4.6 Thermal and environment survey 17 5.4.7 Maintainability/reparability demonstrations 17 5.4.8 Evaluation and interpretation of test results 17 5.4.9 Integrated test plan 18 5.4.10 Final integrity analysis 18 5.4.11 Maintenance planning and task development 18 5.4.12 Airworthiness certification 18 5.5.1 Component tracking/monitoring program 19 5.5.2 Preventive maintenance actions 19 5.5.2.1 Flight-hour time change 20 5.5.2.2 Calendar time change 20 5.5.2.3 On-equipment repairs 20 5.5.2.4 Lubrication/cleaning and ad	5.3.2		
5.4 (Task IV) Component development and systems functional tests. 16 5.4.1 Functional tests 16 5.4.2 Strength testing 16 5.4.3 Durability testing 16 5.4.4 Vibration/dynamics/acoustics tests 17 5.4.5 Damage tolerance tests 17 5.4.6 Thermal and environment survey 17 5.4.7 Maintainability/reparability demonstrations 17 5.4.8 Evaluation and interpretation of test results 17 5.4.9 Integrated test plan 18 5.4.10 Final integrity analysis 18 5.4.11 Maintenance planning and task development 18 5.4.12 Airworthiness certification 18 5.5.1 Component tracking/monitoring program 19 5.5.2 Preventive maintenance actions 19 5.5.2.1 Flight-hour time change 20 5.5.2.2 Calendar time change 20 5.5.2.3 On-equipment repairs 20 5.5.2.4 Lubrication/cleaning and adjustments 20 5.5.2.5 Overhaul of sy	5.3.2.1	Material characterization tests	15
5.4.1 Functional tests 16 5.4.2 Strength testing 16 5.4.3 Durability testing 16 5.4.4 Vibration/dynamics/acoustics tests 17 5.4.5 Damage tolerance tests 17 5.4.6 Thermal and environment survey 17 5.4.7 Maintainability/reparability demonstrations 17 5.4.8 Evaluation and interpretation of test results 17 5.4.9 Integrated test plan 18 5.4.10 Final integrity analysis 18 5.4.11 Maintenance planning and task development 18 5.4.12 Airworthiness certification 18 5.4.12 Airworthiness certification 18 5.5.1 Component tracking/monitoring program 19 5.5.1 Operational usage data 19 5.5.2 Preventive maintenance actions 19 5.5.2.1 Flight-hour time change 20 5.5.2.2 Calendar time change 20 5.5.2.3 On-equipment repairs 20 5.5.2.4 Lubricatoin/cleaning and adjustments 20	5.3.2.2	Design development tests	15
5.4.1 Functional tests 16 5.4.2 Strength testing 16 5.4.3 Durability testing 16 5.4.4 Vibration/dynamics/acoustics tests 17 5.4.5 Damage tolerance tests 17 5.4.6 Thermal and environment survey 17 5.4.7 Maintainability/reparability demonstrations 17 5.4.8 Evaluation and interpretation of test results 17 5.4.9 Integrated test plan 18 5.4.10 Final integrity analysis 18 5.4.11 Maintenance planning and task development 18 5.4.12 Airworthiness certification 18 5.4.12 Airworthiness certification 18 5.5.1 Component tracking/monitoring program 19 5.5.1 Operational usage data 19 5.5.2 Preventive maintenance actions 19 5.5.2.1 Flight-hour time change 20 5.5.2.2 Calendar time change 20 5.5.2.3 On-equipment repairs 20 5.5.2.4 Lubricatoin/cleaning and adjustments 20	5.4	(Task IV) Component development and systems functional tests	16
5.4.3Durability testing165.4.4Vibration/dynamics/acoustics tests175.4.5Damage tolerance tests175.4.6Thermal and environment survey175.4.7Maintainability/reparability demonstrations175.4.8Evaluation and interpretation of test results175.4.9Integrated test plan185.4.10Final integrity analysis185.4.11Maintenance planning and task development185.4.12Airworthiness certification185.4.12Airworthiness certification195.5.1Component tracking/monitoring program195.5.2Preventive maintenance actions195.5.2.1Flight-hour time change205.5.2.2Calendar time change205.5.2.3On-equipment repairs205.5.2.4Lubrication/cleaning and adjustments205.5.2.5Overhaul of systems205.5.2.6Replacement of original equipment215.5.2.7Replacement of obsolete equipment215.5.3Monitoring of repairs/overhauls215.5.3Monitoring of repairs/overhauls215.5.4Inspection criteria225.5.4.1Damage-tolerance-critical components225.5.4.1Damage-tolerance-critical components226.1Intended use236.2Acquisition requirements236.3Data requirements23	5.4.1		
5.4.3Durability testing165.4.4Vibration/dynamics/acoustics tests175.4.5Damage tolerance tests175.4.6Thermal and environment survey175.4.7Maintainability/reparability demonstrations175.4.8Evaluation and interpretation of test results175.4.9Integrated test plan185.4.10Final integrity analysis185.4.11Maintenance planning and task development185.4.12Airworthiness certification185.4.12Airworthiness certification195.5.1Component tracking/monitoring program195.5.2Preventive maintenance actions195.5.2.1Flight-hour time change205.5.2.2Calendar time change205.5.2.3On-equipment repairs205.5.2.4Lubrication/cleaning and adjustments205.5.2.5Overhaul of systems205.5.2.6Replacement of original equipment215.5.2.7Replacement of obsolete equipment215.5.3Monitoring of repairs/overhauls215.5.3Monitoring of repairs/overhauls215.5.4Inspection criteria225.5.4.1Damage-tolerance-critical components225.5.4.1Damage-tolerance-critical components226.1Intended use236.2Acquisition requirements236.3Data requirements23	5.4.2	Strength testing	16
5.4.4Vibration/dynamics/acoustics tests.175.4.5Damage tolerance tests.175.4.6Thermal and environment survey175.4.7Maintainability/reparability demonstrations.175.4.8Evaluation and interpretation of test results175.4.9Integrated test plan185.4.10Final integrity analysis.185.4.11Maintenance planning and task development185.4.12Airworthiness certification185.4.12Airworthiness certification195.5(Task V) Force management195.5.1Component tracking/monitoring program195.5.2Preventive maintenance actions.195.5.2.1Flight-hour time change205.5.2.2Calendar time change205.5.2.3On-equipment repairs205.5.2.4Lubrication/cleaning and adjustments205.5.2.5Overhaul of systems215.5.2.7Replacement of original equipment215.5.2.8Environmental regulations215.5.2.7Replacement of original equipment215.5.2.8Environmental regulations215.5.3Monitoring of repairs/overhauls215.5.3.1Field/Base-level maintenance225.5.4Inspection criteria225.5.4Inspection criteria225.5.4Inspection criteria225.5.4Inspection criteria226.1NOTES <td< td=""><td>5.4.3</td><td>o o</td><td></td></td<>	5.4.3	o o	
5.4.5Damage tolerance tests.175.4.6Thermal and environment survey.175.4.7Maintainability/reparability demonstrations.175.4.8Evaluation and interpretation of test results175.4.9Integrated test plan185.4.10Final integrity analysis.185.4.11Maintenance planning and task development185.4.12Airworthiness certification185.5.1Component tracking/monitoring program195.5.1Component tracking/monitoring program195.5.2Preventive maintenance actions.195.5.2.1Flight-hour time change205.5.2.2Calendar time change205.5.2.3On-equipment repairs.205.5.2.4Lubrication/cleaning and adjustments205.5.2.5Overhaul of systems205.5.2.6Replacement of original equipment215.5.2.7Replacement of original equipment215.5.2.8Environmental regulations215.5.2.9Overhaul of systems205.5.2.1Field/Base-level maintenance225.5.2.5Overhaul of original equipment215.5.2.6Replacement of original equipment215.5.3Monitoring of repairs/overhauls215.5.3.1Field/Base-level maintenance225.5.4.1Damage-tolerance-critical components225.5.4.1Damage-tolerance-critical components226.1NOTES <t< td=""><td>5.4.4</td><td></td><td></td></t<>	5.4.4		
54.6Thermal and environment survey1754.7Maintainability/reparability demonstrations1754.8Evaluation and interpretation of test results1754.9Integrated test plan1854.10Final integrity analysis1854.11Maintenance planning and task development1854.12Airworthiness certification1855.1Component tracking/monitoring program1955.1Component tracking/monitoring program1955.2Preventive maintenance actions1955.2.1Flight-hour time change2055.2.2Calendar time change2055.2.3On-equipment repairs2055.2.4Lubrication/cleaning and adjustments2055.2.5Overhaul of systems2055.2.6Replacement of original equipment2155.2.7Replacement of obsolete equipment2155.3.1Field/Base-level maintenance2255.4Inspection criteria2255.3.1Field/Base-level maintenance2255.4.1Damage-tolerance-critical components2255.4.1Damage-tolerance-critical components226.NOTES236.1Intended use236.3Data requirements23		•	
5.4.7Maintainability/reparability demonstrations175.4.8Evaluation and interpretation of test results175.4.9Integrated test plan185.4.10Final integrity analysis185.4.11Maintenance planning and task development185.4.12Airworthiness certification185.5(Task V) Force management195.5.1Component tracking/monitoring program195.5.2Preventive maintenance actions195.5.2Calendar time change205.5.2.1Flight-hour time change205.5.2.2Calendar time change205.5.2.3On-equipment repairs205.5.2.4Lubrication/cleaning and adjustments205.5.2.5Overhaul of systems205.5.2.6Replacement of original equipment215.5.2.7Replacement of obsolete equipment215.5.2.8Environmental regulations215.5.3.1Field/Base-level maintenance225.5.3.2Depot-level maintenance225.5.3.1Field/Base-level maintenance225.5.4Inspection criteria225.5.4Inspection criteria225.5.4Inspection criteria225.5.4Inspection criteria225.5.4Inspection criteria236.1Intended use236.2Acquisition requirements236.3Data requirements23			
5.4.8Evaluation and interpretation of test results175.4.9Integrated test plan185.4.10Final integrity analysis185.4.11Maintenance planning and task development185.4.12Airworthiness certification185.5(Task V) Force management195.5.1Component tracking/monitoring program195.5.2Preventive maintenance actions195.5.2.1Flight-hour time change205.5.2.2Calendar time change205.5.2.3On-equipment repairs205.5.2.4Lubrication/cleaning and adjustments205.5.2.5Overhaul of systems205.5.2.6Replacement of original equipment215.5.2.7Replacement of obsolete equipment215.5.2.8Environmental regulations215.5.3.1Field/Base-level maintenance225.5.3.1Field/Base-level maintenance225.5.4Inspection criteria225.5.4Inspection criteria225.5.4Inspection criteria225.5.4Inspection criteria225.5.4Inspection criteria226.NOTES236.1Intended use236.3Data requirements23	•••••		
5.4.9Integrated test plan185.4.10Final integrity analysis.185.4.11Maintenance planning and task development185.4.12Airworthiness certification185.5(Task V) Force management195.5.1Component tracking/monitoring program195.5.2Preventive maintenance actions195.5.2.2Calendar time change205.5.2.3On-equipment repairs205.5.2.4Lubrication/cleaning and adjustments205.5.2.5Overhaul of systems205.5.2.6Replacement of original equipment215.5.2.7Replacement of obsolete equipment215.5.3Monitoring of repairs/overhauls215.5.3.1Field/Base-level maintenance225.5.4Inspection criteria225.5.4Inspection criteria225.5.4Inspection criteria225.5.4.1Damage-tolerance-critical components225.5.4Inspection criteria225.5.4Inspection criteria236.NOTES236.1Intended use236.2Acquisition requirements236.3Data requirements23	-		
5.4.10Final integrity analysis.185.4.11Maintenance planning and task development185.4.12Airworthiness certification.185.5(Task V) Force management.195.5.1Component tracking/monitoring program195.5.1Operational usage data195.5.2Preventive maintenance actions.195.5.2.1Flight-hour time change205.5.2.2Calendar time change205.5.2.3On-equipment repairs.205.5.2.4Lubrication/cleaning and adjustments205.5.2.5Overhaul of systems.205.5.2.6Replacement of original equipment.215.5.2.8Environmental regulations.215.5.3Monitoring of repairs/overhauls215.5.3.1Field/Base-level maintenance225.5.3.2Depot-level maintenance225.5.4Inspection criteria225.5.4.1Damage-tolerance-critical components236.NOTES236.NOTES236.Acquisition requirements236.3Data requirements23		•	
5.4.11Maintenance planning and task development185.4.12Airworthiness certification185.5(Task V) Force management195.5.1Component tracking/monitoring program195.5.2Preventive maintenance actions195.5.2Preventive maintenance actions195.5.2Calendar time change205.5.2Calendar time change205.5.2Calendar time change205.5.2.3On-equipment repairs205.5.2.4Lubrication/cleaning and adjustments205.5.2.5Overhaul of systems205.5.2.6Replacement of original equipment215.5.2.7Replacement of obsolete equipment215.5.3Monitoring of repairs/overhauls215.5.3.1Field/Base-level maintenance225.5.4Inspection criteria225.5.4.1Damage-tolerance-critical components226.NOTES236.1Intended use236.2Acquisition requirements236.3Data requirements23		•	
5.4.12Airworthiness certification185.5(Task V) Force management195.5.1Component tracking/monitoring program195.5.1Operational usage data195.5.2Preventive maintenance actions195.5.2Calendar time change205.5.2.3On-equipment repairs205.5.2.4Lubrication/cleaning and adjustments205.5.2.5Overhaul of systems205.5.2.6Replacement of original equipment215.5.2.7Replacement of obsolete equipment215.5.2.8Environmental regulations215.5.3Monitoring of repairs/overhauls215.5.3.1Field/Base-level maintenance225.5.4Inspection criteria225.5.4Inspection criteria226.NOTES236.NOTES236.3Data requirements236.3Data requirements23		Maintenance planning and task development	18
5.5(Task V) Force management195.5.1Component tracking/monitoring program195.5.1Operational usage data195.5.2Preventive maintenance actions195.5.2Flight-hour time change205.5.2.1Flight-hour time change205.5.2.2Calendar time change205.5.2.3On-equipment repairs205.5.2.4Lubrication/cleaning and adjustments205.5.2.5Overhaul of systems205.5.2.6Replacement of original equipment215.5.2.7Replacement of obsolete equipment215.5.2.8Environmental regulations215.5.3Monitoring of repairs/overhauls215.5.3.1Field/Base-level maintenance225.5.4.1Damage-tolerance-critical components226.NOTES236.1Intended use236.3Data requirements23	-	Airworthingse cortification	10
5.5.1Component tracking/monitoring program195.5.1Operational usage data195.5.2Preventive maintenance actions195.5.2Flight-hour time change205.5.2.1Flight-hour time change205.5.2.2Calendar time change205.5.2.3On-equipment repairs205.5.2.4Lubrication/cleaning and adjustments205.5.2.5Overhaul of systems205.5.2.6Replacement of original equipment215.5.2.7Replacement of obsolete equipment215.5.2.8Environmental regulations215.5.2.8Environmental regulations215.5.3Monitoring of repairs/overhauls215.5.3.1Field/Base-level maintenance225.5.4.1Damage-tolerance-critical components226.NOTES236.1Intended use236.3Data requirements23	-		
5.5.1.1Operational usage data195.5.2Preventive maintenance actions195.5.2Flight-hour time change205.5.2.2Calendar time change205.5.2.3On-equipment repairs205.5.2.4Lubrication/cleaning and adjustments205.5.2.5Overhaul of systems205.5.2.6Replacement of original equipment215.5.2.7Replacement of obsolete equipment215.5.2.8Environmental regulations215.5.3Monitoring of repairs/overhauls215.5.3.1Field/Base-level maintenance225.5.4Inspection criteria225.5.4.1Damage-tolerance-critical components226.NOTES236.1Intended use236.2Acquisition requirements23			
5.5.2Preventive maintenance actions.195.5.2.1Flight-hour time change.205.5.2.2Calendar time change205.5.2.3On-equipment repairs.205.5.2.4Lubrication/cleaning and adjustments205.5.2.5Overhaul of systems.205.5.2.6Replacement of original equipment215.5.2.7Replacement of obsolete equipment215.5.2.8Environmental regulations215.5.3.1Field/Base-level maintenance225.5.4Inspection criteria225.5.4Damage-tolerance-critical components226.NOTES236.1Intended use236.2Acquisition requirements236.3Data requirements23			
5.5.2.1Flight-hour time change205.5.2.2Calendar time change205.5.2.3On-equipment repairs205.5.2.4Lubrication/cleaning and adjustments205.5.2.5Overhaul of systems205.5.2.6Replacement of original equipment215.5.2.7Replacement of obsolete equipment215.5.2.8Environmental regulations215.5.3Monitoring of repairs/overhauls215.5.3.1Field/Base-level maintenance225.5.4Inspection criteria225.5.4.1Damage-tolerance-critical components226.NOTES236.1Intended use236.2Acquisition requirements236.3Data requirements23			
5.5.2.2Calendar time change205.5.2.3On-equipment repairs205.5.2.4Lubrication/cleaning and adjustments205.5.2.5Overhaul of systems205.5.2.6Replacement of original equipment215.5.2.7Replacement of obsolete equipment215.5.2.8Environmental regulations215.5.3Monitoring of repairs/overhauls215.5.3.1Field/Base-level maintenance225.5.4Inspection criteria225.5.4Damage-tolerance-critical components226.NOTES236.1Intended use236.3Data requirements23			
5.5.2.3On-equipment repairs205.5.2.4Lubrication/cleaning and adjustments205.5.2.5Overhaul of systems205.5.2.6Replacement of original equipment215.5.2.7Replacement of obsolete equipment215.5.2.8Environmental regulations215.5.3Monitoring of repairs/overhauls215.5.3.1Field/Base-level maintenance225.5.4Inspection criteria225.5.4.1Damage-tolerance-critical components226.NOTES236.1Intended use236.3Data requirements23			
5.5.2.4Lubrication/cleaning and adjustments205.5.2.5Overhaul of systems205.5.2.6Replacement of original equipment215.5.2.7Replacement of obsolete equipment215.5.2.8Environmental regulations215.5.3Monitoring of repairs/overhauls215.5.3.1Field/Base-level maintenance225.5.3.2Depot-level maintenance225.5.4Inspection criteria226.NOTES236.1Intended use236.2Acquisition requirements236.3Data requirements23			
5.5.2.5Overhaul of systems205.5.2.6Replacement of original equipment215.5.2.7Replacement of obsolete equipment215.5.2.8Environmental regulations215.5.3Monitoring of repairs/overhauls215.5.3.1Field/Base-level maintenance225.5.3.2Depot-level maintenance225.5.4Inspection criteria226.NOTES236.1Intended use236.2Acquisition requirements236.3Data requirements23			
5.5.2.6Replacement of original equipment215.5.2.7Replacement of obsolete equipment215.5.2.8Environmental regulations215.5.3Monitoring of repairs/overhauls215.5.3.1Field/Base-level maintenance225.5.3.2Depot-level maintenance225.5.4Inspection criteria225.5.4.1Damage-tolerance-critical components226.NOTES236.1Intended use236.2Acquisition requirements236.3Data requirements23		•	
5.5.2.7Replacement of obsolete equipment215.5.2.8Environmental regulations215.5.3Monitoring of repairs/overhauls215.5.3.1Field/Base-level maintenance225.5.3.2Depot-level maintenance225.5.4Inspection criteria225.5.4.1Damage-tolerance-critical components226.NOTES236.1Intended use236.2Acquisition requirements236.3Data requirements23			
5.5.2.8Environmental regulations215.5.3Monitoring of repairs/overhauls215.5.3.1Field/Base-level maintenance225.5.3.2Depot-level maintenance225.5.4Inspection criteria225.5.4.1Damage-tolerance-critical components226.NOTES236.1Intended use236.2Acquisition requirements236.3Data requirements23			
5.5.3Monitoring of repairs/overhauls215.5.3.1Field/Base-level maintenance225.5.3.2Depot-level maintenance225.5.4Inspection criteria225.5.4.1Damage-tolerance-critical components226.NOTES236.1Intended use236.2Acquisition requirements236.3Data requirements23			
5.5.3.1Field/Base-level maintenance225.5.3.2Depot-level maintenance225.5.4Inspection criteria225.5.4.1Damage-tolerance-critical components226.NOTES236.1Intended use236.2Acquisition requirements236.3Data requirements23		Environmental regulations	21
5.5.3.2Depot-level maintenance225.5.4Inspection criteria225.5.4.1Damage-tolerance-critical components226.NOTES236.1Intended use236.2Acquisition requirements236.3Data requirements23			
5.5.4Inspection criteria225.5.4.1Damage-tolerance-critical components226.NOTES236.1Intended use236.2Acquisition requirements236.3Data requirements23	5.5.3.1	Field/Base-level maintenance	22
5.5.4.1Damage-tolerance-critical components226.NOTES236.1Intended use236.2Acquisition requirements236.3Data requirements23	5.5.3.2	Depot-level maintenance	22
6.NOTES236.1Intended use236.2Acquisition requirements236.3Data requirements23	5.5.4	Inspection criteria	22
6.1Intended use236.2Acquisition requirements236.3Data requirements23	5.5.4.1	Damage-tolerance-critical components	22
6.2Acquisition requirements236.3Data requirements23	6.	NOTES	23
6.2Acquisition requirements236.3Data requirements23	6.1	Intended use	23
6.3 Data requirements	6.2		

CONTENTS - Continued

Paragraph		Page
6.5	Subject term (key word) listing	23
6.6	Responsible Engineering Office (REO)	
6.7	Changes from previous issue	
	Appendices	
A.1	SCOPE	
A.2	APPLICABLE DOCUMENTS	
A.3	DEFINITIONS	
A.3.1	Acronyms	
A.3.2	Milestone definitions	
A.4	GUIDANCE	
A.4.1	Key elements	28
B.1	SCOPE	36
B.2	APPLICABLE DOCUMENTS	36
B.3	DEFINITIONS	37
B.3.1	Acronyms	37
B.4	GUIDANCE	38
B.4.1	Objectives of a MECSIP Master Plan	38
B.4.1.1	MECSIP Master Plan for legacy weapon systems	38
B.4.1.1.1	Subtask 1: data gathering and task planning	40
B.4.1.1.1.1	Establish a reliability analyses team within the Engineering department	
	to develop and monitor the system management program	40
B.4.1.1.1.2	Establish the sustainment philosophy (i.e., preventive maintenance	
	versus current USAF philosophy of fly to fail)	41
B.4.1.1.1.3	Gather available maintenance data and design information	41
B.4.1.1.1.3.1	Review available data	41
B.4.1.1.1.3.1.1	Identify safety-critical components	41
B.4.1.1.1.3.1.2	Identify mission-critical components	41
B.4.1.1.1.3.1.3	Identify durability-critical items	42
B.4.1.1.1.3.1.4	Analytical Condition Inspections (ACIs)	42
B.4.1.1.1.3.1.5	Identify other/expendable components	
B.4.1.1.1.4	Review the -6 TOs for all inspection requirements	42
B.4.1.1.1.5	Review WUC Manual	
B.4.1.1.1.6	Review identified OEM-recommended time change items (TCIs)	
B.4.1.1.1.7	Ensure technical data is available for Field and Depot users	
B.4.1.1.1.8	Field/Base-level maintenance	
B.4.1.1.1.9	Depot-level maintenance	
B.4.1.1.1.10	Determine maintenance data requirements	
B.4.1.1.1.11	Establish Product Quality Deficiency Reporting (PQDR) procedures	
B.4.1.1.2	Subtask 2: development of a Functional Systems Integrated	
	Database (FSID)	
B.4.1.1.2.1	Design a tracking and monitoring program for system components	
B.4.1.1.2.2	Develop risk assessment and FMECA program	
B.4.1.1.2.3	Develop safety- and mission-critical component MAP levels	45

CONTENTS - Continued

Paragraph		Page
B.4.1.1.2.4	Develop a program to identify safety- and mission-critical items	
	which fail to meet the MAP (alerts)	45
B.4.1.1.2.5	Develop a program to allow Engineering to communicate with	45
D 4 4 4 0 C	Field personnel	
B.4.1.1.2.6	Develop HSC and ISO inspection tracking programs	45
B.4.1.1.2.7	Develop a tail number component tracking program for serial-number-	46
D 4 4 4 0 0	controlled components Develop a system to track enroute system reliability	
B.4.1.1.2.8 B.4.1.1.2.9		
B.4.1.1.2.10	Develop a program to track MICAP hours accessed to each component Develop a program to capture CANN actions by WUC	
B.4.1.1.2.10 B.4.1.1.2.11	Develop a program to identify and monitor MSIs	
B.4.1.1.2.12	Develop a program to identify each component with Not Mission Capable	
D.4.1.1.2.12	(NMC) (S)(M)(B)) status	
B.4.1.1.2.13	Develop a program to identify components causing aborts	
B.4.1.1.2.14	Develop a computerized Preview and In-depth analysis program	
B.4.1.1.2.15	Develop a program to identify Bad Actors	
B.4.1.1.2.16	Develop a program to perform routine health assessment of the aircraft	47
D.4.1.1.2.10	wiring system	48
B.4.1.1.3	Subtask 3: force management execution	
B.4.1.1.3.1	Monitoring of components' repairs and overhauls	
B.4.1.1.3.1.1	Fleet MTBF	
B.4.1.1.3.1.2	Serial number MTBF	
B.4.1.1.3.1.3	Enroute failures	
B.4.1.1.3.1.4	ISO/HSC inspections	
B.4.1.1.3.1.5	Not Mission Capable (NMC) (S)(M)(B)	
B.4.1.1.3.1.6	Aborts	
B.4.1.1.3.1.7	Bulletin boards	
B.4.1.1.3.1.8	Cannibalizations	
B.4.1.1.3.1.9	PQDRs	
B.4.1.1.3.2	Monitor component inspection and replacement criteria	
B.4.1.1.3.2.1	Work Unit Code (WUC) Manual	
B.4.1.1.3.2.2	Scheduled inspection requirements and replacement schedule	
B.4.1.1.3.2.3	Time changes	
B.4.1.1.3.2.4	Inspection work cards	
B.4.1.1.3.2.5	Program Depot Maintenance requirements	
B.4.1.1.3.3	Monitor data integrity	
B.4.1.1.3.3.1	Data entries	
B.4.1.1.3.3.2	Risk assessments	51
B.4.1.1.3.4	Perform analysis	. 51
B.4.1.1.3.4.1	Preview analysis	51
B.4.1.1.3.4.2	In-depth analysis	51
B.4.1.1.3.4.3	Analytical Condition Inspections	
B.4.1.1.4	Subtask 4: preventive maintenance actions	. 52
B.4.1.1.4.1	Lubricating or servicing	. 52
B.4.1.1.4.2	Operational checks	
B.4.1.1.4.3	Visual examination	52
B.4.1.1.4.4	Restoration	
B.4.1.1.4.5	Time change	. 53

CONTENTS - Continued

Paragraph

Page

B.4.1.1.4.6	Combination	53
B.4.1.1.4.7	"Common sense" approach	
B.4.1.1.5	Subtask 5: manage system's final five years prior to retirement	
B.4.1.1.5.1	Establish IPT	53
B.4.1.1.5.1.1	Supply	53
B.4.1.1.5.1.2	Establish liaisons at Primary Bases	<mark>54</mark>

TABLES

TABLE I.	Mechanical system integrity program life-cycle tasks7			
TABLE A-I.	Task I preliminary planning	29		
TABLE A-II.	Design information			
TABLE A-III.	Design analyses and development tests task completion criteria			
TABLE A-IV.	Component development and systems functional tests			
	task completion criteria	32		
TABLE A-V.	Force management			
TABLE B-I.	MECSIP Master Plan for legacy systems			

1. SCOPE.

1.1 Purpose.

The purpose of this standard is to describe the general process to achieve and maintain the physical and functional integrity of the mechanical elements of airborne, support, and training systems. The goal of this integrity program is to ensure the operational safety, suitability, and effectiveness (OSS&E) of a weapon system, while reducing total life cycle cost. The process described herein establishes a disciplined engineering process that will ensure the physical and functional integrity of the system being procured and sustained. This standard allows the process to be tailored in a competitive environment to meet specific equipment, subsystem, and/or system requirements. The Mechanical Equipment and Subsystems Integrity Program (MECSIP) is implemented in the planning process and continued until retirement of the system. The MECSIP Program will be established and maintained in accordance with this standard and/or tailored to satisfy specific program strategy.

The product life cycle described herein is a "cradle-to-grave" process that applies equally to the design and sustainment phases. It applies to new development, modifications, upgrades, and sustainment. It applies equally to both development and non-development items, including those that are commercial off-the-shelf (COTS) items. For development items, the purpose of this process is to establish and sustain a design that meets the service life, mission, usage, and environmental requirements. For non-development items, the emphasis is on definition of the capabilities of the item when subjected to the intended service life, mission, usage and environments. If shortfalls are identified in the existing capabilities of a non-development item, the Program then has the necessary information to initiate the appropriate trades relative to the cost of the design change versus required performance, maintenance actions, total operating cost, and impact on mission, etc.

1.2 Use.

This standard cannot be used for contractual purposes until it is tailored with specific supplemental information pertinent to the equipment or system being procured. The information from this standard is intended for inclusion in the Request for Proposal (RFP) and contract Statement of Work (SOW). A SOW will be developed in accordance with procurement guidelines which covers the tailored tasks, subtasks, strategy, plans, and the effort to be accomplished. Once the system is fielded, the MECSIP Manager should tailor an appropriate integrity program based on the information contained in this standard and the integrity program established during the development phase.

1.2.1 Structure.

The supplemental information required is identified within the text of this standard. Electronic versions of this document contain active hyperlinks which appear in blue font. These hyperlinks provide the user a means to navigate within the document and to referenced Websites. The simplest way to return to the place of origin within a Microsoft Word[®] document is to click the "back arrow" on the "Web" toolbar. This toolbar can be displayed by selecting "View" and "Toolbars" on the menu bar, and then selecting the "Web" option. This same method can be employed in Adobe Acrobat[®] versions of a document: select "View" and "Toolbars" on the menu bar, and then select "Navigation." The "back arrow" and "forward arrow" allow the user to return to the place of origin after a hyperlink has been selected.

1.3 Program approach.

The MECSIP is an organized and disciplined engineering and management process to ensure the integrity (e.g., durability, safety, reliability, and supportability) of mechanical systems and equipment is achieved in development and maintained throughout the system's operational service life. The process consists of program-phased tasks which focus on the following:

a. application of a disciplined system engineering approach to design and development which emphasizes the determination and understanding of failure modes and consequences on operational performance;

b. comprehension of total system operational and support needs and the development of the resulting mechanical system and equipment requirements;

c. emphasis on realistic integrity requirements such as operational service life, usage, and natural and induced environments (including maintenance and support) as the basis for design, qualification, and airworthiness certification.

d. early trade studies to evaluate operation and support factors in concert with cost, weight, and performance; and to ensure compatibility between design solutions, support equipment needs, and maintenance concepts;

e. a disciplined design and development process scheduled to ensure early evaluation of material characteristics, manufacturing processes, and equipment response to design usage;

f. an integrated analysis and ground test program to evaluate design performance and integrity characteristics;

g. tests and demonstrations scheduled to ensure test findings are incorporated into the design in advance of major economic and/or production commitments;

h. controls on manufacturing as required to ensure quality and integrity of hardware throughout production;

i. development of force management requirements (including maintenance and inspection) based on the results of the development process;

- j. a program to measure actual usage and environment for the fielded equipment; and
- k. a tracking system for components and systems.

1.4 Program overview.

The effectiveness of any military force depends on the mission effectiveness and operational readiness of its weapon systems. A major factor affecting readiness and mission reliability is the integrity (including durability, safety, reliability, and supportability) of the individual systems and equipment comprising the total weapon system. The U.S. Air Force (USAF) adopted the "Weapon System Integrity Process" as the key vehicle to develop, achieve, and maintain required performance economically for the various elements of the weapon system to enhance equipment effectiveness and meet operational needs. The integrity process advocated here was adopted from the highly-successful Aircraft Structural Integrity Program (ASIP) first employed in the late 1950's. This process captures the generic features of ASIP and builds upon the evolution and experiences gained over the last five decades.

The MECSIP description in this standard is intended to illustrate the various tasks required to achieve specific performance and supportability requirements. The goal is to establish a complete understanding of performance; e.g., mission operability or functionality, service life,

endurance, weight, affordability, adaptability, and robustness of the system. Although MECSIP is generally applied at the system level, it can and will be tailored for single hardware components. The process described herein must also be tailored and applied to evaluate the capability of existing systems and equipment, including off-the-shelf components.

The MECSIP process consists of a strategy described in the Master Plan that provides mechanical systems and associated equipment with the required integrity throughout the operational service life.

1.5 Applicability.

This standard applies to all systems, equipment, and components whose primary function is mechanical in nature. Examples include: arresting gear, auxiliary power, crew escape, electromechanical elements of electrical power, wiring systems that conduct power or data between major components (composed of wires (metal or fiber optic), connectors, and sub-components), environmental control, fire protection, flight control, fuel, ground support, hydraulic, landing gear, life support, mechanical systems (e.g., door drives), pneumatic, training, and maintenance.

2. APPLICABLE DOCUMENTS.

2.1 General.

The documents listed in this section are specified in sections 3, 4, or 5 of this standard. This section does not include documents cited in other sections of this standard or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this standard, whether or not they are listed.

2.2 Government documents.

2.2.1 Specifications, standards, and handbooks.

The following specifications, standards, and handbooks form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE

Handbook

MIL-HDBK-516 Airworthiness Certification Criteria

(Copies of this document are available online at http://assist.daps.dla.mil/quicksearch/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094; [215] 697-2664.)

2.2.2 Other Government documents, drawings, and publications.

The following other Government documents, drawings, and publications form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEFENSE DEPARTMENTS AND AGENCIES JOINT INSTRUCTION

SECNAVINST 4140.2 Management of Aviation Critical Safety Items AFI 20-106 DA Pam 95-9 DLAI 3200.4 DCMA INST CSI (AV)

(Copies of this document are available online at www.dla.mil/dlaps.)

2.3 Order of precedence.

Unless otherwise noted herein or in the contract, in the event of a conflict between the text of this document and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. DEFINITIONS.

Definitions applicable to this standard are contained in the following subparagraphs.

3.1 Analysis.

Analysis is the diagnostic effort that illustrates contractual requirements have been achieved. This effort may include solution of equations, performance of simulations, evaluation and interpretation of charts and reduced data, and comparisons of analytical predictions versus test data. The normal reduction of data generated during ground and flight tests is not included. This effort is usually performed by the contractor.

3.2 Damage tolerance.

Damage tolerance is the ability of critical systems or equipment to resist failure or loss of function due to the presence of flaws, cracks, damage, etc., for a specified period of unrepaired service usage.

3.3 Demonstration.

Demonstration is an engineering effort performed to show contractual requirements have been met. Compliance or noncompliance is determined by observation only. Fit and function checks may be accomplished as demonstrations.

3.4 Durability.

Durability is the ability of the system or component to resist deterioration, wear, cracking, corrosion, thermal degradation, and the effect of foreign object damage, for a specified period of time.

3.5 Durability-critical component.

A durability-critical component is a component whose failure may entail costly maintenance and/or part repair and replacement which, if not performed, would significantly degrade performance and operational readiness. These components are not safety- or mission-critical, but may have a major economic impact on the system.

3.6 Durability-noncritical component.

A durability-noncritical component is one whose failure would result in a minor economic impact on the system but would require maintenance and/or repair or replacement to ensure continued performance. These components do not usually require special attention during production and could be maintained on either a corrective- or preventive-maintenance basis.

3.7 Economic life.

Economic life is the operational service period during which it is judged to be more economically advantageous to repair than replace a component, based on an evaluation of data developed during system development.

3.8 Nondestructive inspection (NDI).

Nondestructive inspection is an inspection process or technique that reveals conditions at or beneath the external surface of a part or material without adversely affecting the material or part being inspected.

3.9 Integrity.

Integrity is comprised of the essential characteristics of systems and equipment which allows specified performance, safety, durability, reliability, and supportability to be achieved under specified operational conditions over a defined service lifetime.

3.10 Maintenance-free operating period.

This phase is that segment of the required operational service life during which no preventive maintenance is required to ensure performance and operational readiness. The results of durability testing and analysis are used to determine the maintenance-free operating period.

3.11 Mission-critical component.

A mission-critical component is a component whose failure would: (a) prohibit the execution of a critical mission, (b) significantly reduce the operational mission capability, or (c) significantly increase the system vulnerability during a critical mission.

3.12 Other/expendable components.

Other/expendable components includes all components of a system not classified as safety critical, mission critical, durability critical, or durability noncritical. The failure of these components could be handled during routine maintenance and would not impact the mission, safety, or operational readiness.

3.13 Required operational service life.

The required operational service life is that operational life specified for the specific system, subsystem, or component—usually in terms of service or operation time.

3.14 Safety-critical component.

A safety-critical component is a component whose failure would cause loss of the air vehicle, injury to personnel, or extensive damage to critical equipment/structures which could adversely affect safety of flight or personnel.

3.15 Test.

Test is an empirical effort performed to prove contractual requirements have been met. Documented procedures, instrumentation, and known environmental conditions are normally applicable. Compliance or noncompliance is determined by observation, where practical, and evaluation of collected data. Most ground and flight empirical efforts associated with this procurement and acquisition qualify as tests. This effort is usually performed by the contractor.

3.16 Usage.

Usage is defined as the operational parameters critical to function, performance, and service-life of the system and equipment (e.g., missions, duty cycles, loading, environments, etc.).

4. GENERAL REQUIREMENTS.

4.1 Mechanical Equipment and Subsystems Integrity Program (MECSIP).

The overall MECSIP includes a program strategy Master Plan that defines the basic elements, tasks, subtasks, analyses, tests, and force management actions required to achieve and maintain product integrity throughout the operational service life.

The MECSIP program established and maintained in accordance with this standard shall be tailored to satisfy specific program strategies. Application of the MECSIP requires tailoring of the various tasks, subtasks, and elements contained herein. It is intended that a separate, tailored MECSIP will be developed for the various systems or equipment, and that it will be integrated into the overarching system acquisition plan. The MECSIP is most effective when applied early in the acquisition cycle, through implementation of the initial Task I elements described herein. Early implementation generally ensures system-level requirements are appropriately translated into requirements for individual system elements—including airborne, ground support, and training systems. Early implementation will also ensure important concept and performance trade studies are influenced. Table I summarizes the various MECSIP tasks described in this standard. Refer to Appendix A for the tailorable activities that encompass a typical MECSIP effort during a Weapons System development program. Refer to Appendix B for the basic Force Management actions of the Weapon System during the sustainment phase.

 TABLE I. Mechanical System Integrity Program life-cycle tasks.

TASK I	TASK II	TASK III	TASK IV	TASK V
Preliminary Planning (5.1)	Design Information (5.2)	Design Analyses and Development Tests (5.3)	Component Development and Systems Functional Tests (5.4)	Force Management (5.5)
 Program strategy (5.1.1) Trade studies (5.1.2) Requirements development (5.1.3) Preliminary integrity analysis (5.1.4) 	 MECSIP Master Plan (5.2.1) Design criteria (5.2.2) Design service life/ design usage (5.2.3) Management of Aviation Critical Safety Items (5.2.4) Material and process selection and characterization (5.2.5) Product integrity control plan (5.2.6) Corrosion prevention and control (5.2.7) 	 Load analyses (5.3.1.1) Design stress/ environment spectra development (5.3.1.2) Performance and function sizing analysis (5.3.1.3) Thermal/ environmental analyses (5.3.1.4) Stress/strength analyses (5.3.1.4) Stress/strength analyses (5.3.1.5) Durability analyses (5.3.1.6) Damage tolerance analyses (5.3.1.7) Vibration/ dynamics/ acoustic analyses (5.3.1.8) Material characterization tests (5.3.2.1) Design development tests (5.3.2.2) 	 Functional tests (5.4.1) Strength testing (5.4.2) Durability testing (5.4.3) Vibration/ dynamics/ acoustics tests (5.4.4) Damage tolerance tests (5.4.5) Thermal and environmental survey (5.4.6) Maintainability/ reparability demonstrations (5.4.7) Evaluation and interpretation of test results (5.4.8) Integrated test plan (5.4.9) Final integrity analysis (5.4.10) Maintenance planning and task development (5.4.11) Airworthiness certification (5.4.12) 	 Component tracking/monitoring program (5.5.1) Operational usage data (5.5.1) Preventive maintenance actions (5.5.2) Flight-hour time change (5.5.2.1) Calendar time change (5.5.2.2) On-equipment repairs (5.5.2.3) Lubrication/cleaning and adjustments (5.5.2.4) Overhaul of systems (5.5.2.5) Replacement of original equipment (5.5.2.6) Replacement of obsolete equipment (5.5.2.7) Environmental regulations (5.5.2.8) Monitoring of repairs/overhauls (5.5.3) Field/Base-level maintenance (5.5.3.1) Depot-level maintenance (5.5.4) Damage-tolerance critical components (5.5.4.1)

4.1.1 Tailoring approach.

The USAF will establish the requirement to scope, tailor, and implement the MECSIP, in addition to other applicable integrity programs, early in the acquisition process. This information will be provided with the Instructions To the Offeror (ITO) as part of the Request For Proposal (RFP) package. In the response to the RFP, the contractor shall define their application strategy and delineate program objectives, schedules, milestones, tasking requirements, and other information that concerns the tailoring and application of the requirements of this standard. Tailoring and application shall be one of the MECSIP Task I elements, as described in 5.1. The purpose for developing a program strategy and tailoring approach is to ensure appropriate program management and planning attention is given to the implementation of the MECSIP. Especially important is the need to ensure system technical requirements and design criteria reflect overall operational needs, and that proper integration, plans, tasking, and scheduling are provided throughout the acquisition.

4.1.2 Implementing SOW.

The MECSIP procurement is normally accomplished through SOW tasks. In accordance with procurement guidelines, a SOW shall be developed that covers the tailored tasks, subtasks, strategy, plans, and the effort to be accomplished.

5. DETAILED REQUIREMENTS.

5.1 (Task I) Preliminary planning.

Task I is intended to be accomplished either in advance of, or at the beginning of, the System Development and Demonstration phase (formerly known as the Engineering and Manufacturing Development phase). The purpose of Task I is to scope the tailoring, planning, and development strategy for applying the MECSIP. The tasks expected during this period for major weapon system procurements include the methods detailed in the subparagraphs which follow. Appendix A provides guidance specific to mechanical subsystems development milestones and technical reviews.

5.1.1 **Program strategy**.

A MECSIP Program strategy shall be developed early in the acquisition process to establish definitive objectives and definitive measures demonstrating objectives are achieved. The MECSIP strategy will support and be one of the elements of the overall acquisition strategy for the system. Areas such as materials, processes, manufacturing, testing, facilities, manpower, funds, interface, and schedules are all involved in the development of this strategy. Technology improvements and advancements necessary to achieve specific Program objectives must be defined, quantified, scheduled, and evaluated for cost benefits. The strategy will become progressively definitive as the acquisition strategy matures, and as it becomes possible to develop and weigh alternative approaches to satisfy system needs. Simply stated, the strategy should address the "what", "how", "when", and "with what" aspects of applying the MECSIP to full acquisition and deployment of the systems and equipment.

5.1.2 Trade studies.

As part of the early acquisition process, system engineering trade studies shall be conducted at both the system- and component-level, as appropriate. The purpose of these trade studies is to examine alternative approaches which satisfy the system operational safety, suitability, and effectiveness. Proper consideration must be given to supportability, reliability, maintainability, and cost, in addition to technical performance, when these trade studies are performed. The

use of new computer programs and technologies for component tracking and monitoring should be included in the trade studies.

5.1.3 Requirements development.

Part of the early acquisition process shall be devoted to the study and refinement of systemlevel requirements as they evolve from the consideration of operational needs, supportability goals, etc. As part of this refinement process, system requirements shall be evaluated, particularly in conjunction with the early trade studies. The objective is to enter into system development with optimized and balanced design requirements.

5.1.4 Preliminary integrity analysis.

The pre-development activity shall define the critical hardware design features affecting integrity, and the mitigation plans to resolve or address these features. The preliminary analysis should also attempt to predict or estimate the potential of the candidate system concepts to achieve performance and integrity goals. This requires an understanding of the physical concepts and failure modes, and requires a limited database that defines the candidate materials, processes, and technologies. These analyses are particularly important, since they typically support the early engineering trade studies. Preliminary analyses should include, but not be limited to, equipment sizing, estimates of component and system service life potential, failure modes analysis, classification of critical components, and identification of hidden failures.

5.2 (Task II) Design information.

This task encompasses the efforts required to identify and understand all technical criteria that will be applied to the initial design, development, materials, manufacturing processes, and production planning for each specific system or equipment application. The early definition of design objectives; the specification of subsystem design environments and usage; the identification of critical design failure modes; component and part functional criticality; and recommendations for materials selection and characterization, design analysis, and manufacturing process controls are accomplished as part of Task II. The objective is to ensure the operational and support needs are met. Tasking is initiated as early as is practical in the procurement. Several subtasks are iterated during the design development cycle and finalized later in the system development. Information in Task II shall be developed by the contractor based on instructions provided by the procuring activity in the ITO and supported by the results of Task I.

5.2.1 MECSIP Master Plan.

A Master Plan shall be developed to define and document the details for accomplishing all tasks and subtasks of the MECSIP. This plan shall be integrated into the Integrated Master Plan (IMP) and Integrated Master Schedule (IMS). The plan shall define overall strategy and the time-phased scheduling of the various integrity tasks for design, development, qualification, and force management of the specific system hardware. The plan shall include discussions of unique features of the Program, exceptions to this standard, a complete discussion of each proposed task, rationale for each task and subtask, and an approach to address and resolve all significant problems which can be anticipated in the execution of the plan. The development of the schedule shall consider other program interfaces, impact of schedule delays (e.g., delay due to test failures), mechanisms for recovery, programming, and other potential problems areas.

The plan shall include the time-phased scheduling and integration of system development tasks which support performance and integrity requirements for the equipment being acquired. The plan is intended to highlight programmatic concerns, schedules, analyses, functional tests,

development and verification tests, test data, evaluation criteria, contractor/vendor tasks, milestones, etc. The plan shall identify approaches for the analyses and tests, including descriptions of proposed analytical and test methods, assumptions, data criteria, etc. The plan shall include the design criteria to be used, the basis for criteria selection, and the relationship of criteria to overall system requirements. Within the plan is the technical, logistical, and rationale for selecting a design service life that is most practical. Finally, within the plan are identified environmental and usage parameters for Prognostics and Health Management (PHM) that affect service life.

The MECSIP Master Plan shall be a living document, updated periodically throughout the life of the system. The Master Plan shall be developed by the contractor early in system development and submitted in accordance with specific Program requirements. The document will be subject to USAF approval. It should organize the approach to include all elements of each specific system application. It should address contractor, subcontractor, and vendor equipment, as well as government-furnished equipment (GFE) and off-the-shelf (OTS) equipment. It shall be the responsibility of the contractor to address GFE and OTS equipment through an assessment approach consistent with this standard. The approach must ensure that system requirements are satisfied and that maintenance requirements can be defined and included in the overall force management plan.

It is the responsibility of the Program to establish and maintain the contractual requirement for the Master Plan during the sustainment phase of the Program. The plan shall include the actions contained in Task V and shall capture the knowledge and experience gained during the previous phases. Appendix A and Appendix B reflect the tailoring activities that encompass a typical MECSIP effort during all the Phases including the Force Management. The appendices are to be tailored by the Program and are not contractual in nature. The support concepts defined by the MECSIP shall be achievable through the system life cycle.

5.2.2 Design criteria.

The contractor shall translate the system requirements into specific design criteria to be used for material selection, equipment sizing, design, analysis, and test. The objective is to ensure criteria which reflect the planned usage of the systems are applied to the development and verification process so that specific performance, operational, and maintenance/support requirements can be met. The task of developing design criteria begins as early as is practical in the development cycle. The rationale for selecting design criteria must provide a justifiable basis for meeting design performance and service life, while also meeting cost and supportability requirements. Specific criteria shall be developed to support functional performance, durability, damage tolerance, strength, vibration/dynamic response, maintenance, integrity management, and other specified requirements.

5.2.3 Design service life/design usage.

Design criteria shall be derived to reflect component/system service life and usage as required in the individual system-level requirement documents. These criteria may reflect findings of system trade studies conducted early in the acquisition process (i.e., Task I). The operational service life requirements may be satisfied by a designed-in, maintenance-free operating period and scheduled preventive maintenance. In early trade studies, the contractor shall evaluate the impact of maintenance-free versus scheduled maintenance operating periods on cost, weight, performance, aircraft availability, and potential for maintenance-induced damage. The studies shall also consider the logistics and support requirements, the overall maintenance concept, and the implementation approach for component/system maintenance tracking. The tracking system must assist the MECSIP Manager in performing the duties listed in Task V. The result

of these trade studies will be used to define the design service life criteria for specific components as well as in-service maintenance required to achieve the specified total required operational service life. Establishment of designed-in scheduled preventive maintenance must be consistent with the operational, logistics, and support requirements. The approach to definition and development of the design service life and design usage will be included in the MECSIP Master Plan.

5.2.4 Management of Aviation Critical Safety Items.

As early as is practical, the contractor shall establish an approach to identify and classify critical hardware components for the specific system. This shall be accomplished per the Joint Instruction SECNAVINST 4140.2, AFI 20-106, DA Pam 95-9, DLAI 3200.4, DCMA INST CSI (AV); Management of Aviation Critical Safety Items. An item shall be identified as a Critical Safety Item (CSI) when failure of that item could result in loss or substantial damage to the air vehicle or weapons system, or death or serious injury to personnel. Damage sufficient to create a Class A accident or a mishap of severity category I constitutes "substantial damage". Items determined by the system prime contractor to be a "flight safety part," "flight critical part," or similar terminology shall be designated as CSIs unless determined otherwise by the responsible government engineering authority. Critical parts must be identified for application of specific criteria (e.g., durability and damage tolerance) related to materials, processing, manufacturing, maintenance tracking, etc. As a minimum, the following five categories (defined in section 3) shall be used:

- a. Safety-critical components
- b. Mission-critical components
- c. Durability-critical components
- d. Durability-noncritical components
- e. Other/expendable components.

This classification shall consider the Failure Modes, Effects, and Criticality Analysis (FMECA) for each specific system. Criteria and evaluation procedures shall be developed which consider overall safety, mission criticality, maintenance, supportability, cost, etc. The overall approach, analysis assumptions, and candidate component lists shall be documented in the MECSIP Master Plan.

5.2.5 Material and process selection and characterization.

The contractor shall identify and provide rationale for the materials and manufacturing processes to be used for each component of the system. Materials selection must be accompanied by an adequate database and supporting specifications to support design methodologies. Industry process specifications shall be used wherever possible to offer maximum benefit to the users to replace parts in aged systems and to establish second sources. The contractor shall document the complete rationale, trade studies, and evaluation criteria used in the final selection. The rationale shall consider prior operational experiences and technical data. Durability and damage tolerance controls for the design, manufacture, and quality assurance of identified safety-critical items are assigned based upon the consequence of failure and the desired reliability of the item's function. These controls include tracking of critical item environment and usage. Items supporting safety-critical functions will require traceability of material sources and process controls necessary to ensure a low probability of failure.

A plan shall be developed which describes the processes and procedures to be used to characterize and select materials and processes for all elements of the system. The plan shall

contain equipment requirements, available database(s) for proposed materials, additional test requirements, and the rationale to be used for final material and process selections. The plan should identify methods and criteria for vendor substantiation, test requirements for material and process characterization, etc. The contractor shall develop an approach to ensure minimum properties and processes as required to support the product integrity control plan (see 5.2.6). The material and process selection and characterization plan shall be included as part of the MECSIP Master Plan.

5.2.6 Product integrity control plan.

The contractor shall implement special controls to ensure the required integrity characteristics of critical parts throughout production and sustainment is achieved. Candidates for specialized controls are parts classified as safety-, mission-, and durability-critical, and items which have hidden failure modes. Specialized controls may be required for materials, processes, manufacturing, quality, nondestructive inspection, corrosion prevention, etc. As a minimum, this approach and plan shall include:

a. the critical parts list and selection rationale (see 5.2.4);

b. basic material properties, allowables, and process data used in the analyses and trade studies;

c. procedures to identify critical parts and special provisions on the component drawings;

d. nondestructive inspections to be performed on safety- and mission-critical components to support damage tolerance requirements;

e. special nondestructive inspection capability demonstration programs to be conducted in support of damage tolerance requirements (manufacturing and in-service capability);

f. acceptance/proof tests for individual components, as required;

g. material procurement specifications and process specifications to ensure critical parts have the required properties (e.g., strength, fracture toughness, fatigue);

h. requirements for material/part traceability for safety- and mission-critical components which require special processing and fabrication operations; and

i. all vendor and supplier controls for these items.

Economic trade studies shall be conducted to ensure the effective development and implementation of this plan. Environmental and usage parameters for PHM that critically affect service life should be identified within the plan. The product integrity control plan shall be one of the primary data items submitted under the MECSIP and shall be subject to USAF approval.

5.2.7 Corrosion prevention and control.

The contractor shall define the approach to the development, evaluation, and incorporation of corrosion-resistant materials, protective treatments, finishes, etc. The selection of materials, finishes, and protection schemes shall consider the service-life requirements, environmental impacts, and sustainment costs. Effects of corrosion on the mechanical and electrical properties of the materials shall be established, as well as the suitability of dissimilar materials not to induce damage (galvanic effects). The plan to accomplish these tasks shall be incorporated in the MECSIP Master Plan. Implementation of this plan shall be in accordance with the product integrity control plan. (See 5.2.6.)

5.3 (Task III) Design analyses and development tests.

Analyses and development tests shall be performed to support the design activity and to verify that the specific performance, function, and integrity requirements have been met. The early definition of design objectives; the specification of subsystem design environments and usage; the identification of critical design failure modes; component and part functional criticality; and recommendations for materials selection and characterization, design analysis, development testing, and manufacturing process controls are accomplished as part of Task III. These tasks should be conducted using methods which have been verified on prior Programs or which will be verified during system/component development. All analytical approaches and development test plans shall be described in the MECSIP Master Plan.

5.3.1 Design analyses.

Design analyses shall include, but are not limited to, the elements detailed in the subparagraphs which follow.

5.3.1.1 Load analyses.

These analyses are used to define the magnitude and distribution of significant static, dynamic, and repeated loads which the equipment encounters when operated within the envelope established by the specific system requirements and detailed design criteria. This analysis involves identifying the internal and external operating load sources as well as inertial effects imposed by accelerations, decelerations, angular velocities, external air loads, and gyroscopic moments. Where applicable, the loads analysis shall include the effects of temperature and system installation (e.g., dynamic response and deformation of the airframe or support structure). Repeated load sources imposed by the airframe shall be included, as applicable. When applicable, these analyses shall address flight and ground operation as well as maintenance, storage, and transportation.

5.3.1.2 Design stress/environment spectra development.

This analysis shall be used to develop the design stress/environment spectra for individual system elements. The design stress/environment spectra shall characterize the repeated operating loads, pressures, thermal cycles, vibration, acoustics, and chemicals in a format which accounts for the primary functional duty cycle and usage of the equipment. The intent is to develop a spectrum that characterizes the significant usage events which may affect primary failure modes (e.g., fatigue, cracking, stress, corrosion, cracking, wear, etc.) which the system elements will experience based on the design service life and usage. This spectra shall be used to assist in material selection, component sizing, and performance/life verification.

5.3.1.3 Performance and function sizing analyses.

Analyses shall be conducted to support sizing, configuration development, and to verify specific performance requirements.

5.3.1.4 Thermal/environmental analyses.

These analyses shall be conducted to determine the steady-state and transient thermal and chemical environments for individual elements of the system. Thermal and chemical environments shall be used in the design, analyses, and testing (e.g., strength, durability, damage tolerance, vibration/dynamics, etc.) of the individual components and/or systems.

5.3.1.5 Stress/strength analyses.

These analyses shall be conducted to determine the stresses, deformations, and margins of safety which result from the applications of design conditions, loads, and environments. These analyses are required for verification of strength.

5.3.1.6 Durability analyses.

These analyses shall be conducted to verify individual system components will meet the service life requirements when subjected to the operational usage and environments. Analyses shall be conducted early in the acquisition phase to support design concept development, material selection, and weight/cost/performance trade studies. Early analyses will enable identification of failure modes and sensitive areas, particularly those with potential for early fatigue, wear, environmental degradation, or thermal distress. Allowable limits for critical failure modes, cracking, wear, chafing, and environmental degradation must be defined as part of these analyses. Early analysis shall be emphasized to minimize occurrences of deficiencies during subsequent development and functional testing. Material and process data required to support analytical methods shall be generated in accordance with 5.3.2.1.

Durability analyses shall be used to predict the operational life with and without scheduled maintenance. The analyses shall consider material variability, initial manufacturing quality, and functional limits for each critical failure mode. Analyses shall show that adverse cracking, wear, delamination, or other damage formation will not occur within the required operational service life when subjected to the required usage and environments. Components shall be designed and analyzed using appropriate factors, to account for variations in material properties, processes, manufacturing, etc. A minimum factor of twice the required service life using nominal properties, tolerances, etc., will be applied for durability-critical mechanical components. Certain applications that use a high durability margin approach (e.g., door drive systems) require more stringent factors (e.g., landing gear minimum is 4 life factors, flight control actuators as high as 7). Recommended factor for safety-critical mechanical components is a minimum of four times the service life. Individual component analytical results should be used to prove the available economic life of the total system is at least equal to the required operational service life specified in the contractual documents.

5.3.1.7 Damage tolerance analyses.

Damage tolerance analyses shall be conducted early in the acquisition phase to support design concept development, material selection, and weight/cost/ performance trade studies. Early analyses will enable identification and cost-effective correction of structurally-sensitive areas which do not meet redundancy, leak before burst, or other damage tolerance characteristics. Material property data required to support analysis shall be developed in accordance with 5.3.2.1. Analytical methods shall be verified with test data. Damage tolerance analyses shall predict fail-safe operational life (including leak before break) and other features incorporated to satisfy damage tolerance criteria. Components shall be designed and analyzed to twice the required service life using nominal properties, tolerances, etc., to account for variations in material properties, processes, manufacturing, etc. The damage tolerance analyses apply to safety-critical and mission-critical components only as specified in the contractual documents.

5.3.1.8 Vibration/dynamics/acoustic analyses.

Dynamics analyses shall be conducted to establish component vibration and acoustic mode shapes and frequencies. An analytical dynamic model of the system and/or critical components shall be developed to identify critical system modes, potential forcing functions, and resonance conditions. In addition, the analyses shall show that the vibration levels are acceptable for the reliable performance of equipment throughout the design service life requirements.

5.3.2 Development tests.

The amount and type of tests required to support the design and development will vary. These shall include, but not be limited to, the tests described in the following subparagraphs.

5.3.2.1 Material characterization tests.

Material characterization data such as strength, fatigue, fracture toughness, crack growth rate, corrosion resistance, wear, and thermal stability are required to support the design and to meet specific integrity-related requirements. When the data is not available, material properties shall be established by test. Test specimens shall be fabricated to include critical manufacturing processes (e.g., forming, joining, assembly techniques). The test plan shall identify the vendor material characterization test requirements necessary to ensure minimum required properties in finished parts throughout production.

Materials property data must be statistically significant. All materials shall be procured to existing materials and process specifications. Any changes to the materials and process specifications may require retest. Material properties should be placed under configuration control by the contractor. Section thickness, thermal treatments, and manufacturing methods shall be the same as the production hardware.

Existing data obtained from literature sources or previous Program experiences may be used. However, for critical component application (see 5.2.4), these properties shall be verified using specimens fabricated from actual parts, as required.

Materials for critical systems and components (see 5.2.4) should be characterized to include the full range of design, operating conditions, and natural and induced environments. Cyclic loading and time-dependent properties should reflect the environmental and design usage defined in the contractual documents or as modified in this standard.

5.3.2.2 Design development tests.

Development tests shall be conducted to support component and system sizing, material selection, durability assessment, design concept trades, and analysis verification, and to obtain an early indication of compliance with specific performance requirements. Examples of design development tests are tests of coupons, small elements, joints, fittings and sealing concepts, controls, linkages, operating mechanisms, and major components—such as pumps, reservoirs, and actuators.

The scope of development tests shall be established in the MECSIP Master Plan and shall include rationale for the tests, description of the test articles, test duration, and criteria for interpretation of test results.

5.4 (Task IV) Component development and systems functional tests.

These tests are intended to verify the system integrity performance and to validate design verification analysis. Tests may be conducted on systems or individual components, in simulated system installation environments, or during flight and ground testing. All testing shall be planned, scheduled, and conducted in accordance with the overall system test plan and specific requirements. Instrumentation should be provided when test is used to validate design analysis. Tests shall include, but not be limited to, those described in the following subparagraphs.

5.4.1 Functional tests.

Full-scale component, system ground (e.g., iron bird, simulator), and/or flight tests shall be conducted to verify specific functional performance requirements. Examples of functional testing include fluid flow performance, leakage, brake performance, and flight control performance. When practical, these tests should be used to evaluate and verify equipment integrity. Failure Modes, Effects, and Criticality Analysis as well as Fault Detection testing on each subsystem are performed on simulators and on aircraft to validate control logic, redundancy, back-up, and emergency operations occur as designed.

5.4.2 Strength testing.

Testing of components, assemblies, and/or systems shall be performed to verify strength requirements. Thermal and other environmental effects shall be simulated along with load applications when these conditions impose significant effects on the component strength. Examples of strength testing include proof, burst, and leak before burst testing. Test results shall be used to evaluate design margins and growth capability.

5.4.3 Durability testing.

A test program shall be conducted to substantiate the overall durability of system components. Durability testing consists of component, assembly, and/or full system tests which simulate repeated loads and environmental conditions that represent design usage and design service life criteria.

Tests, particularly for expensive and long lead development items, shall be scheduled early in the test program to allow for identification and correction of critical areas and failure modes (e.g., cracking, wear, chafing, leakage, etc.). The durability test schedule should be established to support acquisition decisions which consider component criticality, risk mitigation, and lead time for all potential design issues during qualification. Testing milestones shall be established as part of the overall system test planning.

The results of durability testing shall be the basis for any design modifications, special inspections, and maintenance actions for critical components and installed systems.

Test duration requirements will vary depending on the specific application. Components shall be required to demonstrate a sufficient number (minimum two lifetimes) of design service lives to impart confidence that the component will achieve one lifetime in service. Test articles shall be selected which represent the production configurations. Test loadings and environments shall represent the significant elements of the design service usage spectrum. Truncation and simplification of the repeated loads and environments shall be substantiated by analysis and/or test to verify equivalency to the design usage spectrum.

All test results shall be evaluated and compared against the original analytical predictions for wear and life. When damage is worse than predicted, the affected parts shall be re-analyzed and appropriate corrective actions taken.

Safety- and mission-critical parts are replaced during service at one-half the demonstrated life.

5.4.4 Vibration/dynamics/acoustics tests.

These tests shall be conducted to verify the vibration, dynamics, and acoustics response characteristics of the installed system and/or critical system components. These tests shall account for aircraft equipment installation dynamic transmissibility.

5.4.5 Damage tolerance tests.

Damage tolerance tests should be performed when deemed appropriate for specific applications. These tests shall be conducted to verify the damage tolerance characteristics of safety-critical and mission-critical components. These tests are used to establish damage tolerance margins, crack growth rates, critical crack lengths, residual strength, fail safety, leak before burst, or other characteristics defined by the specific damage tolerance criteria. No testing will be necessary for relatively-simple geometries and well-characterized materials, if there is adequate confidence in the accuracy of the analysis. Coupon, element, or component-level testing shall be necessary for all other cases. The combination of analysis and test shall demonstrate two design service lives to impart confidence that the component will achieve one lifetime of service. An in-service inspection period shall be established at one-half the validated design service life. Components which satisfy damage tolerance through high durability margins shall be tested to the appropriate number of equivalent lives (typically four or more) necessary to gain high confidence that the component will achieve one lifetime of service.

5.4.6 Thermal and environment survey.

Temperatures, loads, and other environmental factors shall be measured during the component development and system functional and flight tests. These values shall be compared against predicted values to verify design criteria. Data obtained from these surveys will be used to adjust operational limits and maintenance actions as determined from analysis and tests. The information will also be retained as "lessons learned" to assist in the development of criteria for future applications. The plan and approach for conducting this survey shall be included with the MECSIP Master Plan.

5.4.7 Maintainability/reparability demonstrations.

The contractor shall conduct a program to develop and demonstrate maintenance procedures. The demonstrations may be conducted in conjunction with development and/or full system tests. Authorized repairs and repair limits shall be in accordance with the documented maintenance and logistics requirements. Testing will be conducted as required to validate the integrity of authorized repairs.

5.4.8 Evaluation and interpretation of test results.

The contractor shall describe the procedures to evaluate, interpret, and incorporate all test findings (e.g., cause, corrective actions, Program implications, maintenance projections, and costs). This evaluation shall define corrective actions required to demonstrate design requirements are met. Each problem (cracking, yielding, wear, leakage, etc.) that occurs during testing shall be evaluated. Inspections, disassembly, and destructive tear-down evaluations shall be conducted.

5.4.9 Integrated test plan.

All test requirements identified for the specific system equipment shall be defined, scoped, and scheduled in an integrated test package. This includes tests associated with development and full qualification, as well as any subsequently-scheduled growth or margin testing. Vendor and supplier tests shall be included in this plan. The contractor shall seek the most economical balance of requirements, verification, and test articles when integrated tests are compiled. The integrated test plan shall be incorporated into the overall system test plan.

5.4.10 Final integrity analysis.

The design analyses (Task III) for safety-, mission-, and durability-critical components shall be updated to account for significant differences between analyses, tests, and the thermal/environmental/load survey. These updated analyses shall provide data on operational limits to be used in maintenance, inspection, and repair times for critical components. These analyses and evaluation of test results shall be utilized to develop maintenance and inspection planning. Analyses to be updated shall include, but not be limited to, the following:

- a. durability;
- b. strength;
- c. damage tolerance;
- d. loads; and
- e. stress—environmental and thermal.

These final analyses shall be developed following completion of the design/development test and analysis phase and shall be submitted in accordance with specific Program requirements. This plan shall require USAF approval.

5.4.11 Maintenance planning and task development.

Required maintenance actions (e.g., inspection, repair, or replacement) shall be developed to ensure the integrity and operability of the system for the required operational service life. Initial maintenance action requirements and times shall be based on engineering data to include updated analyses and test data in accordance with 5.4.10. These actions and times will be modified, as appropriate, according to information and experience from in-service operation.

The required maintenance action times shall be based on duty cycles and usage in accordance with the specific design criteria and system requirements. The initial maintenance plan shall be developed following completion of the design/development test and analysis phase and shall be submitted in accordance with specific Program requirements. This plan shall require USAF approval.

5.4.12 Airworthiness certification.

The final design analyses correlated to ground and flight testing are major steps to establish the air vehicle subsystems' airworthiness certification and are herein referred to as "certification analyses." The design analyses described in 5.3 shall be revised to account for differences revealed between analysis and test. Selected systems development and demonstration tests, the full-scale tests described in 5.4, and the interpretation and evaluation of test results shall be used in the air vehicle airworthiness certification effort. The certification analyses provide the engineering source data for the Technical Orders (TOs) that document the operational procedures, limitations/restrictions, and maintenance requirements to ensure safe operation. Approval of the certification analyses shall constitute a critical step in achievement of

airworthiness certification for the aircraft in accordance with procedures outlined in MIL-HDBK-516.

5.5 (Task V) Force management.

Force management includes those actions necessary to ensure that the performance, safety, reliability, and durability requirements established in Tasks I through IV are met and maintained throughout the entire life of the weapon system. The MECSIP Manager has overall responsibility to manage the health of the systems, regardless of the overhauling Depot. The MECSIP Manager shall be part of any management process that impacts the safety, suitability, effectiveness, reliability, and durability of a system or its components. The MECSIP Manager shall: 1) update and maintain the MECSIP Master Plan as necessary to reflect the needs associated with sustainment, 2) establish and monitor a component tracking program, 3) establish preventive maintenance actions, 4) establish repair/overhaul procedures, and 5) establish inspection criteria. Refer to Appendix B for the tailorable activities that encompass a typical MECSIP effort during the Force Management.

5.5.1 Component tracking/monitoring program.

Configuration management is a major constituent within life management as well as in support of OSS&E. The ability to track individual items during use plays a direct role in the fidelity of life management. Moreover, it provides the additional flexibility needed to accomplish trend analysis, identification, and elimination of "Bad Actors". In-service failure data shall be constantly monitored. Three years of data shall typically be collected before premature failures can be effectively identified. After three years, the MECSIP Manager's tracking program shall automatically provide notification if the Mean-Time-Between-Failure (MTBF) rate changes more than twenty-percent over an eighteen-month time period. The MECSIP Manager shall review the situation and determine if further engineering analysis is required. If an analysis is required and it exceeds the facilities or skills of the assigned personnel, contractual assistance may be used. The intent of the analysis is to increase the Component Time to Failure (CTTF) (the point at which a component experiences an inherent failure that requires its removal from the air vehicle) to an acceptable level. The tracking program shall provide periodic (typically monthly) failure listing for each system to alert the MECSIP Manager of potential failures. The MECSIP Manager shall establish a priority schedule for each system based on 5.2.4 (critical parts analysis and classification) and on current data. The MECSIP Manager shall rely on the Material Deficiency Report/Quality Deficiency Report system for alerts prior to the three years of collected data.

5.5.1.1 Operational usage data.

Weapon systems must have adequate instrumentation to monitor air vehicle usage, thus permitting continual updates to the CTTF predictions. The instrumentation shall monitor parameters such as landing gear and weapon bay door cycles, flight control actuation, electrical power distribution, and temperature differentials. The tracking program must be able to accept and utilize this data.

5.5.2 Preventive maintenance actions.

Preventive maintenance is designed to preclude component failure. Based upon the maintenance-free operating period established in Tasks III–IV, as well as available field data, a time-change or other preventive maintenance action can be planned during scheduled downtimes to prevent loss of scheduled missions and to ensure a high level of safety. A unit's mission profile may have a significant effect on the CTTF. For example, Bases which perform pilot training will generally have an increase in landing gear and flight control malfunctions,

thereby reducing their CTTF. The trade studies performed in Tasks I through III will help the MECSIP Manager select a tracking program that will best establish the CTTF. Similarly, there may be a need for redesign activity for production aircraft to reduce life cycle cost and meet mission reliability requirements. Failure Reporting, Analysis & Corrective Action System (FRACAS) reporting of failure events provides evidence of the need for redesign activity.

5.5.2.1 Flight-hour time change.

A flight-hour time change shall be considered for problematic components which are durability critical or have a hidden failure mode, and have an established, reliable CTTF. Components shall be replaced at or prior to the CTTF in conjunction with regularly-scheduled maintenance (Home Station Checks (HSC), major Isochronal (ISO) Inspections, Phase or Periodic Depot Maintenance). Prime candidates for time change are mechanical assemblies such as actuators, jackscrews, valves, pumps, tension regulators, and landing gear. Safety- and mission-critical components have their own unique set of requirements, which are defined in 5.5.4.1.

5.5.2.2 Calendar time change.

Calendar time change components are durability non-critical components whose failure would have a minor impact on the system but would still require maintenance for continued flight operations. These components, when identified, can be repaired or replaced during scheduled maintenance such as ISO Inspections, and Phase or Periodic Depot Maintenance. Similar to time change, these components are repaired or replaced on a calendar-inspection basis, not a flight-hour basis.

5.5.2.3 On-equipment repairs.

It may be more advantageous during the operational service life of a component to make minor repairs or replace an attaching Line Replaceable Unit (LRU) than to replace the component. Repairs may include replacement of the elastomeric seals, rod ends, bearings, wiring harnesses, etc. These repairs shall be identified in Task IV, and technical data relative to the repairs shall be made available for reference.

5.5.2.4 Lubrication/cleaning and adjustments.

The system may require periodic maintenance if it is to perform correctly. For example, the MECSIP Manager must ensure that proper wash and lube are scheduled to prevent corrosion, that wiring systems are secured to avoid damage or shorting during cleaning, and that any necessary adjustments (e.g., to flight controls or landing gear) are made during the scheduled maintenance. Wartime conditions do not preclude performance of these scheduled maintenance tasks.

5.5.2.5 Overhaul of systems.

As systems age, wear in individual components may lead to unreliable and eventually failed systems. The tendency is to replace the component in the system that has the most wear and to return the air vehicle to service. This type of "piece-meal" repair lasts only until the next component fails. Once a unit or system reaches this condition, the refurbishment of the entire unit or system to "like-new" condition becomes more economical than the continued removal of an air vehicle from service to accomplish what are essentially temporary repairs. Analysis and, eventually, repair history must provide the basis to distinguish parts of the system to be overhauled from those that are not. While entire system replacement may seem expensive, the cost must be compared to the time lost for air vehicle downtime. Items such as torque tubes, rod end bearings, quadrants, pulleys, wiring harnesses, and related electrical equipment are prime candidates for this type of maintenance. These items require little attention from the

MECSIP Manager in the beginning but must be part of the preventive maintenance actions as the air vehicle ages.

As systems are initially received for overhaul (first scheduled Depot maintenance), one or more lead-the-fleet (high time) units shall be selected for a complete disassembly and inspection. The purpose is to compare the degradation against that predicted. If degradation is found in areas not expected, or the degradation is more severe than predicted, appropriate actions shall be taken to prevent in-service failure and/or unscheduled maintenance.

5.5.2.6 Replacement of original equipment.

Many components are designed with a service life that exceeds that of the air vehicle. As a result, little or no preventive maintenance is required. Examples include actuating cylinders, electrical connectors, and bleed ducts. Wear-out mechanisms for other components become well defined as the system ages. Identification and correction of these components are becoming increasingly important as more aircraft continue to remain in service past their original design lives. In some cases, upgrades to the same equipment can easily be provided with advanced materials which will increase the component's life.

5.5.2.7 Replacement of obsolete equipment.

Some older aircraft may use antiquated equipment. Newer technology may enable replacement with improved reliability. An example of this would be the new fly-by-wire versus the mechanical linkage for flight controls. It may be cheaper and more feasible to replace these systems with the newer technology. The MECSIP Manager must be ready to make this type of decision based on collected data and trade studies.

5.5.2.8 Environmental regulations.

Environmental regulations shall be considered in the selection of materials. Changes in the environmental laws may also drive replacement programs. Any replacement material shall be analyzed and/or tested to ensure it meets the original design and service life requirements. For uncharacterized materials, characterization testing shall be conducted in accordance with 5.3.2.1. Asbestos seals and clamps are examples of items which must be replaced. Depleted uranium flight control counter-weights must be refurbished to prevent hazardous materials contamination. Paint, plating, cleaning, and corrosion control systems must be updated. The MECSIP Manager shall receive periodic briefings on environmental changes to ensure safe maintenance and operational procedures.

5.5.3 Monitoring of repairs/overhauls.

If a component fails, it can be either thrown away or returned for overhaul, based upon the results of a life cycle cost analysis. To "overhaul" a component is to return it to a "like-new" condition. To "repair" a component is simply to make it serviceable. The MECSIP Manager shall ensure serviceable items returned to Base supply have been "overhauled" or meet the intent of "overhaul." Unfortunately, it is difficult or impossible to restore a used part to a "like-new" condition. Parts which were not replaced during overhaul have some percentage of their original life consumed. Plating landing gear to build-up areas where corrosion was removed can affect the overall properties of the unit. It is the MECSIP engineer's responsibility to ensure that any degradation in overall condition is acknowledged and accounted for in the overhaul process. This activity requires an Individual Tracking System (IAT), serialization, tracking of parts, and monitoring of repairs.

5.5.3.1 Field/Base-level maintenance.

The MECSIP Manager shall either ensure each Field or Base has the proper "overhaul" capabilities (i.e.; test equipment, TOs, plating equipment, etc.) for a specific component, or prohibit performance of the overhaul at that location. This can be best accomplished by ensuring the Aircraft Scheduled Inspection and Maintenance Requirement TOs are current and enforced. If a component is repaired at the Field/Base level, then consideration shall be given to a requirement that the component be periodically returned to the Depot (e.g., after the third Field/Base-level overhaul) to ensure the reliability of the component continues to be met. The MECSIP Manager can recommend no Field/Base-level repairs, and establish regional repair facilities. The cost of training technicians and test equipment may prohibit Field/Base-level repairs and may lead to regional or "Queen Bee" facilities. The MECSIP Manager must have a list of contacts for each Field/Base and be aware of their capabilities. If an overhaul is performed, the master maintenance action log originated by the owner Depot must be updated.

5.5.3.2 Depot-level maintenance.

The Depot strongly influences the continued reliability of the components and systems. One-ofa-kind test equipment, special tools, and chemical plating are combined with special training to ensure components are returned to a "like-new" condition. Components which enter the Depot shall be overhauled and have the parts replaced, as indicated by the maintainability/reparability demonstrations contained in 5.4.7. The MECSIP Manager, in concert with ALC Engineering, is responsible for ensuring component reliability.

5.5.4 Inspection criteria.

The inspection criteria are established during Tasks III and IV. The list is constantly updated using data collected from operational units, personal contacts, Field/Base or Depot inspections, maintenance deficiency reports, or changes as a result of Engineering Change Proposals (ECPs). The inspection requirements shall establish the equipment to be inspected, its inspection schedule, and its inspection criteria. The inspection process is a key to ensuring the MECSIP process is effective. Computer programs must link all Fields/Bases which perform inspections, compile and list common deficiencies, and identify potential problem areas. Systems are generally modified based on inspection reports and maintenance man-hours annotated in the reports. The MECSIP Manager shall meet yearly with all major inspection chiefs to discuss improvements and new inspection criteria. The MECSIP Manager shall establish an electronic bulletin board to assist in the daily communication with Maintenance personnel and shall establish a list of contacts for each Field/Base.

5.5.4.1 Damage-tolerance-critical components.

Safety- and mission-critical components are categorized as damage-tolerance critical since failures cannot be tolerated. The components shall be inspected and/or replaced at some portion of their demonstrated service life to ensure failure-free operation. This is to account for flaws that may exist as the result of the material, manufacturing, and maintenance operations. The components are typically inspected at one-half the demonstrated life to assess the size of any existing flaws and to determine their impact on remaining component life. Inspections will not be required over one lifetime of service if the components are designed and validated to the appropriate number of multiple service lives (e.g., two lifetimes). The MECSIP Manager shall ascertain the demonstrated life for each damage-tolerance-critical component and establish any necessary inspection period. A replacement interval shall be established for components which cannot be inspected.

6. NOTES.

(This section contains information of a general or explanatory nature that may be helpful, but is not mandatory.)

6.1 Intended use.

Mechanical equipment and subsystems which provide power, control, and other contributory functions are essential elements of weapon systems. This standard is intended to be used to establish programmatic tasks for the development, acquisition, modification, operation, and sustainment of the mechanical elements of airborne, support, and training systems developed to perform combat and combat-support missions in environments unique to military weapon systems.

6.2 Acquisition requirements.

Acquisition documents should specify the following:

a. Title, number, and date of the standard.

6.3 Data requirements.

When this standard is used in an acquisition which incorporates a DD Form 1423, Contract Data Requirements List (CDRL), the data requirements identified below may be developed as specified by an approved Data Item Description and delivered in accordance with the approved CDRL. When the Defense Federal Acquisition Regulation Supplement (DFARS) exempts the requirement for a DD Form 1423, the data specified below may be deliverable by the contractor in accordance with the contract requirements. The deliverable data may include:

<u>Paragraph</u>	Data Requirements Title
5.2.1	MECSIP Master Plan
5.2.6	Product integrity control plan
5.4.10	Final integrity analysis
	Final Integrity/qualification Test report
	Failure Resolution Reports (TFRR)Test
5.4.11	Maintenance planning and task development.

The ASSIST database should be researched at http://assist.daps.dla.mil/quicksearch/ to ensure that only current and approved DIDs are cited on the DD Form 1423.

6.4 Supersession data.

This standard supersedes MIL-HDBK-1798A and MIL-STD-1798 (USAF).

6.5 Subject term (key word) listing.

Damage tolerance Critical safety item Durability Equipment, air vehicle Equipment, ground vehicle Flight-safety part

Flight-critical part Maintainability MECSIP OSS&E Overhaul Reliability Repair Safety Strength Supportability Systems, mechanical

6.6 Responsible Engineering Office (REO).

The office responsible for development and technical maintenance of this standard is ASC/ENFA, 2530 LOOP ROAD WEST, WRIGHT-PATTERSON AFB OH 45433-7101; DSN 785-8609, Commercial (937) 255-8609. Any requests for information that relates to government contracts must be obtained through Contracting Offices.

6.7 Changes from previous issue.

Marginal notations are not used in this revision to identify changes with respect to the previous issue due to the extent of the changes.

APPENDIX A

GUIDANCE FOR MECSIP TASK COMPLETION CRITERIA AT SPECIFIC PROGRAM MILESTONES

A.1 SCOPE.

This appendix provides guidance for developing the Technical Review criteria for various program milestones. Task I of the MECSIP has a requirement for criteria to be established for each MECSIP task for the program milestones. The intent of this appendix is to provide guidance specific to mechanical subsystems development milestones and technical reviews. Guidance is also provided to the designers of aircraft mechanical subsystems with a disciplined process for organizing their tasks for the development and verification of systems integrity. The focus of guidance provided by this appendix involves the definition and scheduling of the Integrity Program activities over five program-phased tasks. It is a summary of the types of activities that constitute the Mechanical Equipment and Subsystems Integrity design. This appendix is not a mandatory part of the standard. The information contained herein is intended for guidance only and is not to be placed on contract.

A.2 APPLICABLE DOCUMENTS.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-1521 Technical Reviews and Audits for Systems, Equipments, and Computer Software (*This standard is cancelled and is cited for reference only.*)

(Copies of this document are available online at http://assist.daps.dla.mil/quicksearch/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094; [215] 697-2664.)

U.S. AIR FORCE INSTRUCTIONS

Air Force Materiel Command Instruction

AFMCI 63-1201 Implementing Operational Safety Suitability and Effectiveness (OSS&E) and Life Cycle Systems Engineering

(Copies of USAF Instructions are available at www.e-publishing.af.mil.)

A.3 DEFINITIONS.

A.3.1 Acronyms.

- CDR Critical Design Review
- CI Configuration Item
- FRR Flight Readiness Review (equivalent to IFR)
- IFR Initial Flight Release
- PCA Physical Configuration Audit
- PDR Preliminary Design Review
- PRR Production Readiness Review
- SDR System Design Review (equivalent to SFR)
- SFR System Functional Review
- SRR System Requirement Review
- SVR System Verification Review

A.3.2 Milestone definitions.

Milestone definitions for the program milestones listed in Table A-I through Table A-V are provided below per MIL-STD-1521:

System Requirement Review (SRR): The SRR is a multi-functional technical review to ensure that all system and performance requirements derived from the Capability Development Document are defined and consistent with cost (Program budget), schedule (Program schedule), risk, and other system constraints. Generally this review assesses the system requirements captured in the system specification. The review ensures consistency between the system requirements and the preferred system solution and available technologies. It ensures a balance has been struck between requirements and solution approach risk—that there has been convergence on a system solution that has acceptable risk and that system requirements satisfy customer requirements. The assigned manager may convene an SRR prior to Program initiation or during Technology Development; the Program Manager may convene an SRR during System Development and Demonstration.

System Design Review (SDR) or System Functional Review (SFR): The SFR is a multidisciplined technical review to ensure the system under review can proceed into preliminary design, and that all system requirements and functional performance requirements derived from the Capability Development Document are defined and are consistent with cost (Program budget), schedule (Program schedule), risk, and other system constraints. Generally this review assesses the system functional requirements as captured in system specifications (functional baseline), and ensures all required system performance is fully decomposed and defined in the functional baseline. System performance may be decomposed and traced to lower-level subsystem functionality that may define hardware and software requirements.

Preliminary Design Review (PDR): The PDR is a multi-disciplined technical review to ensure the system under review can proceed into detailed design, and can meet the stated performance requirements within cost (Program budget), schedule (Program schedule), risk, and other system constraints. Generally, this review assesses the system preliminary design as captured in performance specifications for each configuration item (CI) in the system (allocated baseline), and ensures each function in the functional baseline has been allocated to one or more system configuration items. A series of PDRs are normally held in the System Development & Demonstration phase for new developments. A PDR is held for each CI or

aggregation of CIs in the specification tree. Individual CI PDRs should ensure a preliminary CI architecture is complete; a CI development specification is complete or the development specification approved; and that a preliminary allocated baseline is complete or the allocated baseline approved. A system PDR is held after completion of all CI and aggregate of CIs PDRs.

Critical Design Review (CDR): The CDR is a multi-disciplined technical review to ensure the system under review can proceed into system fabrication, demonstration, and test; and can meet the stated performance requirements within cost (Program budget), schedule (Program schedule), risk, and other system constraints. A series of CDRs are normally held in the System Development & Demonstration phase for new developments. A CDR is held for each CI and aggregation of CIs in the specification tree. A system CDR is held after completion of all CI or aggregation of CI CDRs. Even when the government elects not to bring the allocated baseline under configuration control by the time of this review, an assessment of the flowdown of requirements from the functional baseline to the lowest-level CI for each item in the specification tree should be included in the review. Any changes in the performing activity's draft allocated configuration documentation since the PDR are reviewed by the tasking activity and their impact on the functional baseline assessed and validated. This review assesses the system final design as captured in product specifications for each configuration item in the system (product baseline), and ensures each product in the product baseline has been captured in the detailed design documentation. Product specifications for hardware enable the fabrication of configuration items, and may include production drawings. Product specifications for software (e.g., Software Design Documents) enable coding of a Computer Software Configuration Item captured in product specifications for each configuration item in the system (product baseline), and ensures each product in the product baseline has been captured in the detailed design documentation. Product specifications for hardware enable the fabrication of configuration items, and may include production drawings. Product specifications for software (e.g., Software Design Documents) enable coding of a Computer Software Configuration Item.

Flight Readiness Review (FRR) or Initial Flight Release (IFR): The Flight Readiness Review (FRR) is a multi-disciplined product and process assessment to ensure the system under review can proceed into flight test with airworthiness standards met, objectives clearly stated, flight test data requirements clearly identified, and an acceptable risk management plan defined and approved. This review also ensures proper coordination has occurred between engineering and flight test and that all applicable disciplines understand and concur with the scope of effort that has been identified and how this effort will be executed to derive the data necessary to satisfy airworthiness and test and evaluation requirements. As such, this review shall include appropriate level of detail for each configuration to be evaluated within the flight test effort.

System Verification Review (SVR): The SVR (replaces the Functional Configuration Audit) is a multi-disciplined technical review to ensue the system under review can proceed into Low-rate Initial Production and Full-Rate Production within cost (Program budget), schedule (Program schedule), risk, and other system constraints. Generally this review is an audit trail from the Critical Design Review. It assesses the system final product, as evidenced in its production configuration, and determines if it meets the functional requirements (derived from the Capability Development Document and draft Capability Production Document) documented in the Functional, Allocated, and Product Baselines. The SVR establishes and verifies final product performance. It provides inputs to the Capability Production Document. The SVR is often conducted concurrently with the Production Readiness Review.

Physical Configuration Audit (PCA): The PCA is conducted around the time of the full-rate production decision. The PCA examines the actual configuration of an item being produced. It

verifies that the related design documentation matches the item as specified in the contract. In addition to the standard practice of assuring product verification, the PCA confirms that the manufacturing processes, quality control system, measurement and test equipment, and training are adequately planned, tracked, and controlled. The PCA validates many of the supporting processes used by the contractor in the production of the item and verifies other elements of the item that may have been impacted/redesigned after completion of the System Verification Review (SVR). A PCA is normally conducted when the government plans to control the detail design of the item it is acquiring via the Technical Data Package.

A.4 GUIDANCE.

A.4.1 Key elements.

Key MECSIP elements are embedded in the core process sections of AFMCI 63-1201. Specific guidance for the MECSIP tasks are included in Table A-I. Table A-I provides guidance for the common Task I, Task II, Task III, Task IV, and Task V described in section 5 of this document. The guidance provided in this section is intended to assist Programs in the structure of the MECSIP. Completion of the described integrity activities provides a basis for the development of the MECSIP.

TABLE A-I. Task I Preliminary Planning.

Program Milestone	Α	В				с		
Acquisition Phase	Technology Development	System Development and Demonstration				Production and Deployment	Operations and Support	
Reviews and Audits	SRR	SDR(SFR)	PDR	CDR	FRR(IFR)	SVR	РСА	
MECSIP TASK			TAS	SK I Preliminary	Planning			
Program strategy (5.1.1)	 Initial definition of: design objectives, identification of critical design failure modes, recommendations for materials selection and characterization, development testing, and manufacturing process controls 	Matrix defined with milestones consistent with MECSIP Master Plan and IMP/IMS	Matrix updated	Matrix updated	• Matrix updated	Matrix updated	• Matrix updated	
Trade studies (5.1.2)	 Initial assessment complete Trade studies and Program impacts defined 	Assessment revised to consider evolution of final mechanical system requirements	 Trade studies updated 	Assessment updated to reflect knowledge gained from detailed design	Assessment updated to reflect knowledge gained from test		Assessment updated to reflect knowledge gained from flight test	
Requirements development (5.1.3)	Concept for requirements management defined and coordinated	 Specific approach and tool defined Tool populated with initial requirements 	 Tool deployed and updated with latest requirements 	 Tool updated with latest requirements 	 Tool updated with latest requirements 	 Tool updated with latest requirements 	Tool updated with latest requirements	
Preliminary integrity analysis (5.1.4)	 Preliminary trade studies identified to determine the most cost-effective life requirements Preliminary Integrity analysis for sizing, strength, durability, and damage tolerance estimates Initial diagnostic capability estimates for critical items 	 Integrity analysis for sizing, strength, durability, and damage tolerance analysis for preliminary design completed 	 Integrity analysis for sizing, strength, durability, and damage tolerance analysis for preliminary design update 	 Integrity analysis of detailed design completed Diagnostic capability Completed for critical items 	 Integrity Analysis reviewed to ensure SDF criteria has been met 			

TABLE A-II. Design Information.

Program Milestone	A	В					С		
Acquisition Phase	Technology Development		System Deve	elopment and De	Production and Deployment	Operations and Support			
Reviews and Audits	SRR	SDR(SFR)	PDR	CDR	FRR(IFR)	SVR (FCA)	PCA		
MECSIP TASK	TASK II Design Information								
MECSIP Master Plan (5.2.1)	Initial MECSIP Master Plan and schedule estimate	Initial MECSIP Master Plan submitted	MECSIP Master Plan updated	MECSIP Master Plan updated	MECSIP Master Plan updated	MECSIP Master Plan updated	MECSIP Master Plan updated	MECSIP Master Plan (revisions)	
Design criteria (5.2.2)	Design criteria definition submitted Development of requirements	 Design criteria definition completed Development of requirements updated 	Development of requirements completed	Design criteria updated for test results			Design criteria updated for lessons learned	Design criteria updated for lessons learned	
Design service life/design usage material characterization (5.2.3)		Design service life and design usage completed	Reviewed/updated	Reviewed/updated	Reviewed/updated	Reviewed/updated			
Management of Aviation Critical Safety Items (5.2.4)	Assessment of safety, mission critical, and durability-critical approach	 Approach of safety, mission critical, and durability-critical completed 	Reviewed/updated	Reviewed/updated	Reviewed/updated	Reviewed/updated			
Material and process selection and characterization (5.2.5)	Material characterization impacting durability identified Selections of material data- base established	Material characteristics finalized	Component designs reflect accommodation of requirements Material characterization database updated	 Design analysis of components show that material properties meet the structural requirements Characterization completed 	Analysis updated with components test data for those environments deemed critical to safety of flight	Analysis updated with system test data for those environments deemed critical to safety of flight	Analysis updated for all required operation	Materials characterization updated for lessons learned incorporation	
Product integrity control plan (5.2.6)	Criticality control logic estimate Durability and damage tolerance methodologies estimate		 Integrity critical parts control plan estimate Preliminary integrity critical parts estimate Component failure mechanism assessments estimate 	Component failure mechanism assessments updated Critical hardware and software control plan estimate		Critical hardware and software control plan updated	Critical hardware and software plan managed	Critical hardware and software plan managed	
Corrosion prevention and control (5.2.7)	Initial characterization for corrosion control/ prevention plan	Materials characterization for corrosion control/ prevention plan updated	Materials characterized for corrosion control/ prevention updated	Corrosion control/prevention plan updated			•Corrosion control/ prevention plan implemented	Corrosion control/ prevention plan updated	

TABLE A-III. Design Analyses and Development Tests Task Completion Criteria.

Program Milestone	Α	В					С	
A agricition Dhase	Technology		Custom Dave	elopment and Der	n an atration		Production and	Operations
Acquisition Phase	Development		System Deve	Deployment	and Support			
Reviews and Audits	SRR	SDR(SFR)	PDR	CDR	FRR(IFR)	SVR	PCA	
MECSIP TASK TASK III Design Analyses and Development Tests								
Design analyses (5.3.1)	Analysis initiated	Component designs reflect accommodation of requirements Preliminary design analysis initiated	Component designs reflect accommodation of requirements Component failure mechanism assessment established	 Design system used to finalize design FMECA updated FRACAS implemented 	Analysis updated with subsystems test data for those environments deemed critical to safety of flight	Analysis updated and validated to provide identified flight limitations	Analysis updated with test data for all required operating environments Reliability and maintainability predictions updated FMECA updated FRACAS updated TOs validated	Mechanical subsystems monitored to provide basis for changes to operational hardware or upgrade programs
Load analyses (5.3.1.1)	 Initial 	 Update 	• Update	Update	Update	• Update	 Loads/environmental spectra survey documented 	
Design stress/environment spectra development (5.3.1.2)	●Initial	•Update	Update	Update	Update	Update		
Performance and function sizing analysis (5.3.1.3)	•Initial	•Update	Update	Update	Update			
Thermal/environmental analyses (5.3.1.4)	Installed location environments established Conduct initial analysis	Update installed location for subsystems equipment complete Develop Environmental Criteria Document (ECD)	Update to analysis Thermal profiles created for both ambient and operational transient conditions	• Update	• Update	• Update		
Stress/strength analysis (5.3.1.5)	 Initial 	•Update	Update	Update	Update	Update		
Durability analyses (5.3.1.6)		 Initial 	Update	Update	Update	Update		
Damage tolerance analysis (5.3.1.7)		●Initial	Update	Update	Update	Update		
Vibration/dynamics/acoustic analyses (5.3.1.8)			• Initial	Update	Update	Update		
Material characterization tests (5.3.2.1)	Initial development of material characterization tests defined	Initial development of material characterization tests conducted						
Design development tests (5.3.2.2)	Initial development tests defined Test rationale, test planning developed, test risk identified	Initial component development tests conducted	Components and subsystems development tests completed and data provided to designers to update design environment					

TABLE A-IV. Component Development and Systems Functional Tests Task Completion Criteria.

Program Milestone	Α	В					С		
Acquisition Phase	Technology Development		Production and Deployment	Operations and Support					
Reviews and Audits			PCA						
MECSIP TASK			TASK IV Compo	nent and Subsy	stem Testing				
Functional tests (5.4.1)	Test rationale, test planning developed, test risk identified	Component designs reflect accommodation of requirements	Component and subsystems tests conducted, Results compared to analytical predictions Analytical tools updated with test data	Component and subsystem tests completed Preparation made for full-scale testing	Component and subsystem tests used in planning and executing full- scale tests	Test results used to validate analysis			
Strength testing (5.4.2)	 Test risk analysis Test needs Test plans Component, rig, tests designed 	•Component designs reflect accommodation of requirements	Component and subsystems testing completed	Analysis updated with subsystem test data for those environments deemed critical to safety of flight	Aircraft TO established for full envelope flight testing				
Durability testing (5.4.3)	Test risk analysis Test needs Test plans Component, rig, tests designed		 Durability life test plan established. Components test conducted and analysis updated 	Full-scale durability test plan completed	Analysis updated with component and subsystems data for those environments deemed critical to safety of flight	• Final			
Vibration/dynamics/ acoustics tests (5.4.4)	Test risk analysis Test needs Test plans Component, rig, tests designed	Component designs reflect accommodation of requirements	Component and subsystems testing completed	Analysis updated with component and subsystems data for those environments deemed critical to safety of flight					
Damage tolerance tests (5.4.5)	Test risk analysis Test needs Test plans Component, rig, tests designed	Component designs reflect accommodation of requirements		Component and subsystems testing completed	Analysis updated with component and subsystems data for those environments deemed critical to safety of flight	• Final			
Thermal and environment survey (5.4.6)		Define initial environment	• Update	• Update		Update MECSIP report with actual values to establish baseline		Determine any significant changes due to usage and environment	

TABLE A-IV. Component Development and Systems Functional Tests Task Completion Criteria - Continued.

Program Milestone	Α	В				<u>.</u>	С	
Acquisition Phase	Technology Development		Production and Deployment	Operations and Support				
Reviews and Audits	SRR	SDR(SFR)	PDR	CDR	FRR(IFR)	SVR	PCA	
MECSIP TASK			TASK IV Compo	onent and Sub	system Testi	ng		
Maintainability reparability demonstrations (5.4.7)		Maintainability requirements established and allocated				Maintainability predictions validated	 Maintainability predictions updated 	
Evaluation and interpretation of test results (5.4.8)					 FRACAS issues analyzed 	FMECA updated FRACAS updated		
Integrated test plan (5.4.9)			 Test plan established 	Test plan complete		Testing complete, test plan reviewed for compliance		
Final integrity analysis (5.4.10)		Preliminary integrity analysis	Detailed design of life management subsystem completed			FMECA updated FRACAS updated TOs validated	 Estimated stress to actual compared for: Loads, usage, & environments life estimate Lead-the-fleet evaluation for service life TOs, and FRACAS updates Integrity analysis updated to establish life management baseline 	
Maintenance planning and task development (5.4.11)	Manufacturing plan initiated Baseline manufacturing process identified Quality system used to produce parts and components Identified	Define initial manufacturing and quality system	Update manufacturing and quality assessment	Implement manufacturing and quality planning	 Finalize baseline inspection capability and reparability 	Update inspection capability and reparability	Deviation and waiver tracking system established	Repair process controlled
Airworthiness certification (5.4.12)		 Initial plan 	•Update as needed	•Update as needed	Update as needed	Final airworthiness certification plan	Assurance	 Sustain

TABLE A-V. Force Management.

Program Milestone	Α	В					с	
Acquisition Phase	Technology Development		System Development and Demonstration					Operations and Support
Reviews and Audits	SRR	SDR (SFR)	PDR	CDR	FRR (IFR)	SVR	PCA	
MECSIP TASK				TASK V Force Ma	anagem	ent		
Component tracking/ monitoring program (5.5.1)		•Subsystem specific life tracking program identified	 Installed inspection and maintenance capability estimate Preliminary subsystem specific life tracking parameters updated 	 Installed inspection and maintenance capability completed Tracking of hardware estimate Life-limited items updated 		Individual component tracking system established	Tracking for accumulated stresses and life-remaining estimates Repairs/removals/ inspections/ overhauls Lead-the-fleet implemented Software transitioned to support	Risk assess tracking systems in place for: Repair/removals Inspections Overhauls
Operational usage data (5.5.1.1)			Initial tracking requirements defined	Update tracking requirements		 Finalize tracking requirements 		• Tracking systems in place for monitoring selected components
Preventive maintenance actions (5.5.2)			Initial preventive maintenance actions defined	Update preventive maintenance actions defined		Finalize preventive maintenance actions defined		Select preventive maintenance actions: Time change On-equipment repairs Lube cleaning adjustments Refurbish legacy equipment Replace interfacing components Replace obsolete equipment
Flight-hour time change (5.5.2.1)			Initial flight-hour time change defined	Update flight-hour time change defined		 Finalize flight- hour time change defined 		Implement preventive actions
Calendar time change (5.5.2.2)			Initial calendar time change defined	Update calendar time change defined		Finalize calendar time change defined		Implement preventive actions
On-equipment repairs (5.5.2.3)			 Initial on-equipment repairs defined 	 Update on-equipment repairs defined 		• Finalize on- equipment repairs defined		 Implement preventive actions

TABLE A-V. Force Management - Continued.

Program Milestone	Α	В					C	
Acquisition Phase	Technology Development	System Development and Demonstration					Production and Deployment	Operations and Support
Reviews and Audits	SRR	SDR (SFR)	PDR	CDR	FRR (IFR)	SVR	PCA	
MECSIP TASK				TASK V Fo	rce Manage	ement		
Lubrication/ cleaning and adjustments (5.5.2.4)			Initial lubrication/ cleaning and adjustments defined	•Update lubrication/ cleaning and adjustments defined		Finalize Iubrication/ cleaning and adjustments defined		Implement preventive actions
Overhaul of systems (5.5.2.5)			Initial overhaul requirements defined	•Update overhaul requirements defined		•Finalize overhaul requirements defined		 Track recorded degradation versus predicted Update maintenance requirements
Replacement of original equipment (5.5.2.6)								Track recorded degradation versus predicted Update maintenance requirements
Replacement of obsolete equipment (5.5.2.7)								 Trade studies Reliability assessment
Environmental regulations (5.5.2.8)	• Initial	•Update	• Update	•Update	• Update	•Update	• Update	Periodic reviews of environmental requirements Update maintenance requirements
Monitoring of repairs/ overhauls (5.5.3)				•Define		•Define		Monitor: fleet MTBF, serial number MTBF, ISO/HSC failures, MICAPs, air aborts, bulletin boards, PQDRs
Field/Base-level maintenance (5.5.3.1)				• Define		•Define		 Develop program to ensure component reliability
Depot-level maintenance (5.5.3.2)				• Define		•Define		 Develop program to ensure component reliability
Inspection criteria (5.5.4)				•Define	•Review/ update	•Update	• Define	Validate or update components inspection requirements
Damage-tolerance- critical components (5.5.4.1)			•Define	•Update	•Update	•Update	• Update	Validate or update damage tolerance components inspection requirements

APPENDIX B

TYPICAL FORCE MANAGEMENT MECSIP TAILORING ACTIVITIES

B.1 SCOPE.

This appendix defines the basic force management actions required to transition the weapon platform from the acquisition phase of the MECSIP to its sustainment phase. It is intended that MECSIP Managers use this appendix as a general guide for constructing and/or modifying their MECSIP Master Plan and supplement it as required by tailoring-in their own respective weapon system unique MECSIP requirements. The overall purpose is to achieve and maintain system safety and operational reliability throughout the weapon system's operational life cycle. This appendix is not a mandatory part of the standard. The information contained herein is intended for guidance only and is not to be placed on contract.

B.2 APPLICABLE DOCUMENTS.

U.S. AIR FORCE TECHNICAL ORDERS

TO 00-20-1	Aerospace Equipment Maintenance Inspection,
	Documentation, Policies, and Procedures
TO 00-20-2	Maintenance Data Documentation
TO 00-35D-54	USAF Deficiency Reporting, Investigation, and Resolution
TO 1-1-300	Acceptance/Functional Check Flight and Maintenance
	Operational Checks
TO 1- <i>XXX</i> -6	-6 TOs, Aircraft Scheduled Inspection and Maintenance
	Requirements

(Information about Technical Orders availability for military users is online at https://www.toindexs.wpafb.af.mil/, and http://www.pdsm.wpafb.af.mil/toprac/ and http://www.tinker.af.mil/library.)

U.S. AIR FORCE INSTRUCTIONS AND PAMPHLETS

Air Force Materiel Command Instructions

AFMCI 63-1201	Implementing Operational Safety Suitability and Effectiveness (OSS&E) and Life Cycle Systems Engineering
Air Force Pamphlets	
AFPAM 90-902	Operational Risk Management (ORM) Guidelines and Tools

(USAF Instructions and Pamphlets are available online at www.e-publishing.af.mil.)

AIR TRANSPORT ASSOCIATION OF AMERICA (ATA)

MSG-3 Publication Operator/Manufacturer Scheduled Maintenance Development

(Information about this document's availability is online at http://www.airlines.org/products/pubs.)

B.3 DEFINITIONS.

B.3.1 Acronyms.

AWP CANN CEI CP DCM ES ESA FMC FSID JEDMICS MAJCOM MAP MDC MEL MICAP MRRB MRT MSI NMC OEM PDM PIWG PQDR RAT RCMA REMIS SLA SOR SSHA TCI TCTO WDC	Configured End Item Conductive Path Defense Contract Management Equipment Specialist Engineering Service Authority Fully Mission Capable Functional Systems Integrated Database Joint Engineering Data Management Information and Control System Major Command Mean Acceptable Performance Maintenance Data Collection Mission Essential Listing Mission Impaired Capability, Awaiting Parts Maintenance Requirement Review Board Maintenance Requirement Review Board Maintenance Requirement Review Board Maintenance Significant Item Not Mission Capable Original Equipment Manufacturer Program Depot Maintenance Product Improvement Working Group Product Quality Deficiency Reporting Reliability Analyses Team Reliability Analyses Team Reliability and Maintainability Information System Service Level Agreement Source of Repair System Safety Hazard Analysis Time Change Item Time Compliance Technical Order When Discovered Code

B.4 GUIDANCE.

B.4.1 Objectives of a MECSIP Master Plan.

The objective of a MECSIP Master Plan is to describe the force management actions required to achieve and maintain product integrity throughout the operational service life of the weapon system. Some of the specific objectives of the MECSIP in the sustainment phase are to:

a. Sustain and evaluate the integrity of the weapon platform functional systems.

b. Acquire, evaluate, and apply operational usage data to provide a continual update of the serially-controlled components on the weapon platform.

c. Provide a basis for improving systems criteria and methods of design, evaluation, and substantiation for future weapon platform and modifications using principles of probabilistic analysis.

d. Restore component safety, reliability, and durability to their inherent levels when deterioration has occurred.

e. Provide a "one-person" ownership of the weapon platform and components as directed by OSS&E.

- f. Ensure the weapon platform is not subject to unscheduled maintenance.
- g. Accomplish all of the above at a minimum total cost to the taxpayers.

B.4.1.1 MECSIP Master Plan for legacy weapon systems.

A MECSIP Master Plan for a legacy weapon system can be divided into a series of five subtasks, described in Table B-I:

- a. Data gathering and task planning (B.4.1.1.1)
- b. Development of a functional systems integrated database (FSID) (B.4.1.1.2)
- c. Force management execution (B.4.1.1.3)
- d. Preventive maintenance actions (B.4.1.1.4)
- e. Management in the final five years prior to system retirement (B.4.1.1.5).

SUBTASK 1	SUBTASK 2	SUBTASK 3	SUBTASK 4	SUBTASK 5
Data Gathering and Task Planning (B.4.1.1.1)	Develop a Functional Systems Integrated Database (B.4.1.1.2)	Force Management Execution (B.4.1.1.3)	Preventive Maintenance Actions (B.4.1.1.4)	Manage System's Final Five Years Prior to Retirement (B.4.1.1.5)
 Establish a Systems Reliability Analyses Team (RAT) to assist in administration of sustainment efforts. Establish an IPT to form the sustainment philosophy. Gather OEM available maintenance data. Review available data and: Identify safety- critical components Identify mission- critical components Identify durability- critical items Identify other/ expendable components. Review the -6 TOs for all inspection requirements. Review the -06 Work Unit Code (WUC) Manual for accuracy. Identify OEM time change requirements. Ensure technical data for both on- and off-equipment repairs/overhauls is available and current. Determine Maintenance Data Collection system requirements. Establish PQDR procedures. 	 Design a tracking and monitoring program: a. Develop risk assessment and FMEA program b. Develop safety- and mission-critical component MAP levels c. Develop a program to identify safety- and mission-critical items not reaching the MAP (alerts) d. Develop a program to allow Engineering to communicate with Field personnel e. Develop HSC and ISO inspection tracking programs f. Develop a tail number component tracking program g. Develop a system to track enroute system reliability h. Develop a program to track MICAP hours assessed to each component i. Develop a program to track cannibalizations (CANNs) on each component j. Develop a program to identify and monitor MSI components k. Develop a program to identify and monitor MSI components k. Develop a program to identify and monitor MSI components m. Develop a program to identify each component scausing air aborts 	 Monitor component repairs and overhauls: a. Fleet MTBF b. Serial number MTBF c. Enroute failures d. ISO/HSC failures e. MICAPs f. NMC (S)(M)(B) g. Air aborts h. Bulletin boards i. CANNs j. PQDRs. Monitor component inspection and replacement criteria: a06 WUC Manual b. Scheduled inspection requirements and replacement schedule (-6 TOs) c. Time changes d. Inspection work cards e. PDM requirements. Monitor data integrity: a. G081 entries b. Risk assessments. Perform analysis: a. Preview b. In-depth c. Analytical Condition Inspection. 	 Implement preventive actions: a. Lubrication or servicing for the purpose of maintaining inherent design capabilities, or; b. Additional operational checks to a task to determine that an item is fulfilling its intended purpose, or; c. An intensive visual examination of a specific area to detect damage, or; d. An act of restoration carrying from cleaning or replacement to complete overhauls, or; e. A time change of the component if a specific life cycle can be determined, or; f. Any combination of the above. 	 Establish an IPT with MAJCOMs, SOR, DLA, Wing Office, and AMARC to determine the most effective course of actions to take for: a. Supply b. Maintenance. Establish communication with a liaison at each primary Base to assist the group Engineering team. Establish special procedures with MAJCOMs to allow the Wing Office to initiate lifetime procurement of components and spare parts for future requirements. Establish procedures with Item Managers to use the components and spare parts located at AMARC effectively. Establish special procedures with Item Managers to use the components and spare parts located at AMARC Establish special procedures with Item Components and spare parts located at AMARC

TABLE B-I. MECSIP Master Plan for legacy systems.

B.4.1.1.1 Subtask 1: data gathering and task planning.

The purpose of data gathering and task planning is to gather the data and tailor specific strategy for applying the tasks outlined in the MECSIP life cycle, Task V (Table I) to the respective weapon platform. At this stage, system engineers for all aspects of the weapon platform should understand their involvement and responsibilities. A clear chain of command and line of communication will be established at this stage.

B.4.1.1.1.1 Establish a reliability analyses team within the Engineering department to develop and monitor the system management program.

Air Force Materiel Command Instruction (AFMCI) 63-1201, Implementing Operational Safety Suitability and Effectiveness (OSS&E) and Life Cycle Systems Engineering, assigns the Chief Engineer the sole engineering responsibility for the weapon system and in effect gives him/her final authority over any component being used on the weapon system. This includes all supply, procurement, and maintenance facilities involved with any component repair/overhaul. Depots, Major Commands (MAJCOMs), and Using Activities act as key advisors for many areas, but the final decisions rest with the Chief Engineer. The Chief Engineer has designated the MECSIP Manager to act on his/her behalf for matters involving the management of the weapon platform functional systems. To accomplish this task, the MECSIP Manager will establish a Reliability Analyses Team (RAT) to assist him/her in developing a system management program. Establishment of a RAT composed of the proper mix of personnel is instrumental to a costeffective life cycle management program. The program will be Worldwide Web-based and only be available on the secure military network. The program will track and provide alert monitoring for all safety- and mission-critical components. Specifically, the program will:

- a. identify safety-critical components;
- b. identify mission-critical components;
- c. identify durability-critical controlling devices;
- d. identify serially-tracked components;
- e. monitor the MTBF for all safety- and mission-critical components;

f. list the "Top Ten" economic, maintenance, and supply Not Mission Capable (NMC) components;

- g. provide a method to perform Preview and In-depth analysis;
- h. provide a tail number management system;
- i. monitor the CANNs for each Work Unit Code (WUC);
- j. monitor the Mission Impaired Capability, Awaiting Parts (MICAPs) for each WUC;
- k. monitor the ISO and HSC major inspections;
- I. monitor the enroute Bases component failures;
- m. monitor aborts by WUC;
- n. provide an electronic bulletin board for each shop to improve communications; and

o. provide a program to assist in performing risk assessments and failure modes evaluations.

B.4.1.1.1.2 Establish the sustainment philosophy (i.e., preventive maintenance versus current USAF philosophy of fly to fail).

The USAF has kept some weapon platforms much longer than originally programmed and the reliability or downtime is below the acceptable standards. Additionally, the cost of sending Maintenance Recovery Teams (MRTs) to repair the aircraft off station may be greater than the cost to apply preventive maintenance. Preventive maintenance is any action performed periodically to maximize the probability that a component or system will achieve the desired level of safety and reliability. When safety or mission reliability is affected by a component or system, a Preview analysis will be performed to determine the functions of the components or systems and identify trends. In-depth analysis may be performed on key failure modes within selected components and systems. The In-depth analysis will include FMECA as well as risk assessments to ascertain the severity and probability of each occurrence. The risk assessment metrics will be used to begin the priority process for implementation. The use of logic trees on failure modes will assist in determining the preventive maintenance task to be performed. The best solution for dealing with a failure mode is determined by comparing each of the available options with the others. If an option is not immediately available (e.g., redesign, new technology), the analysis should evaluate current options for implementation and then compare the chosen option against the potential for further improvement. The cost of each possible solution plays a significant part in determining which one is ultimately selected. At times, the least expensive option will not be the best solution when the operational consequences are considered. Aircraft downtime and reliability must be part of the decision logic. Document all new preventive maintenance actions in TOs.

B.4.1.1.1.3 Gather available maintenance data and design information.

The Original Equipment Manufacturer (OEM) provided the initial design and testing information for many weapon platforms. Some of these documents are stored within the Program. Sometimes additional copies can be acquired from the OEM if a particular report cannot be located. Most drawings and manufacturing specifications can be accessed by qualified users through the Joint Engineering Data Management Information and Control System (JEDMICS) at https://webjedmics.dla.mil/. Ensure all required maintenance actions are incorporated in TOs.

B.4.1.1.1.3.1 Review available data.

Four different types of components must be identified: a) safety-critical components, b) missioncritical components, c) durability-critical items, and d) other/expendable components. The process of identifying the system components will use engineering best judgments based on anticipated consequences of failure.

B.4.1.1.1.3.1.1 Identify safety-critical components.

The identification of safety-critical components is accomplished using the results of mission reliability analysis, FMECA, functional hazard analysis, and system safety hazard analysis (SSHA). Engineering Service Authority (ESA) approval is required for identification of safety-critical components. A time change interval shall be imposed for all safety-critical components.

B.4.1.1.1.3.1.2 Identify mission-critical components.

Use the platform-specific Mission Essential Listing (MEL) and applicable WUC Manual to identify mission-critical components.

B.4.1.1.3.1.3 Identify durability-critical items.

Durability-critical items may or may not have any inspection criteria published. Durability-critical items are classified in two groups, legacy and interfacing subsystems:

a. Legacy items such as wiring, circuit breakers, rack mounts, depleted uranium, and engine indicators are generally designed for the original life of the aircraft and do not require any special maintenance. As the aircraft ages and service life extensions are granted, these items must be evaluated and deemed serviceable or a replacement program initiated.

b. Interfacing subsystems are items that are linked and associated such that changing one would cause the other to wear or weaken at a higher rate. Items like torque tubes, quadrants, rod end bearings, and hot air ducts should be replaced as a whole system or "system refurbishment" when replacement of one or more sections is required.

B.4.1.1.3.1.4 Analytical Condition Inspections (ACIs).

Both legacy and interfacing subsystems will require Analytical Condition Inspections (ACIs) to determine their conditions. The MECSIP Manager will select durability-critical subsystems upon which ACIs must be performed. The ACI will be in four parts:

a. Identify components to be inspected. Identify all items in the subsystem to be inspected. This process will include a review of all the critical items which comprise the subsystem that may have an impact on the system itself, or have been identified in previous reports as possible contenders.

b. Develop inspection criteria. Develop inspection criteria for each item identified as requiring inspection if no written criteria exist. Every item must be addressed and the criteria assigned must be a pass or fail-type inspection.

c. Perform the inspection. The inspection will be performed using the criteria outlined in the inspection phase.

d. Analyze the collected data. The inspection results will be analyzed and, if required, a program will be developed to refurbish that subsystem.

B.4.1.1.1.3.1.5 Identify other/expendable components.

Other/expendable components are all components of a system not classified as safety-, mission-, or durability-critical. The failure of these items could be handled during routine maintenance and would not impact mission, safety, or operational readiness.

B.4.1.1.1.4 Review the -6 TOs for all inspection requirements.

The -6 TOs, Aircraft Scheduled Inspection and Maintenance Requirements, list all scheduled and special inspections required (ISO, HSC, preflight, hard landings, high winds, hot brakes, etc.); Programmed Depot Requirements, if applicable; Functional Check Flights; Historical Documents (AFTO Form 95); Replacement Schedule (e.g., time changes); Base-level Repair Restrictions; and Work Cards for ISO, HSC, Preflight, Thru-flight, etc. The Scheduled Inspection section lists all requirements for the ISO, HSC, Preflight, Post-flight, and other inspections; and are numbered -6WC-1, -2, etc. The Special Inspection section lists inspection requirements that will be accomplished upon the accrual of a specified number of flying hours, equipment hours, a lapse of calendar time, or after occurrence of a specified or unusual condition. The Special Inspection section will be reviewed during the annual Product Improvement Working Group (PIWG) meeting. The Historical Documents section lists all items which require an AFTO Form 95, and provides a permanent record or history of events and conditions encountered

during the use of the equipment. The Replacement Schedule lists items replaced upon the accrual of a specified number of flying hours, equipment hours, or a lapse of calendar time, or after the occurrence of a specific or unusual condition. The Replacement Schedule will be updated when items are added or deleted during the PIWG meeting. The Base-Level Repair Restrictions section lists items by WUC and Noun for which Base-level (Intermediate Maintenance) repair restrictions are established and describes the repairs that are not authorized at Base-level for the items listed. All other repairs required to return an item to a serviceable condition can be accomplished at Base-level, consistent with resident capabilities.

B.4.1.1.1.5 Review WUC Manual.

This manual must be easy to interpret by the technicians and a WUC must exist for each item being monitored. The manual must reflect if a component is to be serially tracked, under warranty, has a scheduled time change, or requires special handing. Updating the WUC is the first step in accurate historical database maintenance.

B.4.1.1.1.6 Review identified OEM-recommended time change items (TCIs).

The primary objective of a TCI program is to achieve maximum utilization of components, consistent with the economic operation of the weapon systems, without jeopardizing flight or operational safety. Time change replacement requirements are prescribed only for those items that have a measured service life expectancy and that display an age-related failure pattern. Additionally, the item must fall into one or more of the following categories to be a valid candidate for time change (TO 00-20-1):

a. items whose failure due to location or function within a system would compromise safety of flight

- b. items whose failure would cause a mission to abort or cause excessive aircraft downtime
- c. items for which a failure might cause damage beyond economical repair
- d. items that have a predictable in-use service life.

All items selected by the OEM will be reviewed to ensure they meet time change criteria and the correct replacement schedule is being administered.

B.4.1.1.1.7 Ensure technical data is available for Field and Depot users.

Each safety- and mission-critical component will have both a Job Guide procedure (for onequipment maintenance) and a commodity TO (for off-equipment maintenance) for repair and overhaul procedures. If unavailable, the OEM and/or Equipment Specialist (ES) must establish one on a priority basis. Engineering and associated ESs have the responsibility for the technical content contained in these manuals and Job Guides. Additionally, the MECSIP Manager and Source of Repair (SOR) must ensure each Base that requests in-shop overhaul capability has the proper "overhaul" test equipment, facilities, and training, or restrict that Base from performing the overhaul.

B.4.1.1.1.8 Field/Base-level maintenance.

If a component is partially overhauled at the Base level, the component should be returned to the Depot before the fourth overhaul to ensure the reliability continues to be met. The AFTO Form 95 is the best tool for counting the overhauls and all components will have an AFTO Form 95. If the Field shops overhaul a component, the AFTO Form 95 must be annotated with the overhaul date and any special instructions. If the defective component is simply repaired, the

AFTO Form 95 will be so annotated (Overhauled—return to like-new condition; Repaired—brought back to a serviceable condition).

B.4.1.1.1.9 Depot-level maintenance.

Each component entering the Depot should have a Historical Record (AFTO Form 95) attached to the component or recorded against its serial number in a computer database. All maintenance actions should be annotated on the form to assist in maintaining the reliability of the component. Components entering the Depot will be overhauled and have the parts replaced, as required by the TO. If a part shortage occurs and a part that is listed for replacement during overhaul is not available, the ALC engineers may authorize the re-use of certain parts for one overhaul only. This must be annotated on the AFTO Form 95. If the Field shops return a part to the Depot after the forth overhaul, the Depot should perform a condition assessment to see if the part should be continued in-service or be disposed.

B.4.1.1.1.10 Determine maintenance data requirements.

Example: The G081 Maintenance Data Collection (MDC) is the system the Air Mobility Command (AMC) has chosen to use for the C-5. G081 has the capability to track components by WUC and serial number. If required, it provides for historical documentation for selected components using an AFTO Form 95. Additionally, an aircraft's NMC status and systems reliability data (i.e., maintenance man-hours, failure analysis, enroute failures, air abort data, and ISO and HSC documentation) can be extracted.

B.4.1.1.1.1 Establish Product Quality Deficiency Reporting (PQDR) procedures.

Overhauled components should remain serviceable for a predetermined amount of time and/or flying hours. When a component fails to meet any of the four requirements in TO 00-35D-54, a deficiency occurs. Technical Order 00-35D-54 gives specific instructions for the initiation of the PQDR report for all deficiencies. The MECSIP Manager's task is to monitor and evaluate PQDR for potential impact to the MECSIP Master Plan and ensure every Using Activity is aware of the consequences of not using the PQDR system.

B.4.1.1.2 Subtask 2: development of a Functional Systems Integrated Database (FSID).

NOTE: Unique information system solutions should not be constructed for Program requirements without first ensuring a Department of Defense or USAF enterprise information system solution does not already exist, is ready to deploy, or could easily be modified to accommodate the weapon system's MECSIP requirements.

B.4.1.1.2.1 Design a tracking and monitoring program for system components.

New ways of collecting data are often not required. The tracking and monitoring program typically need only incorporate data from existing data collection systems. This program should be able to perform a risk assessment on each WUC, establish a Mean Acceptable Performance (MAP) for each safety- and mission-critical component, develop an automatic alert system for each mission critical item, establish bulletin boards for better communications, track HSC and ISO discrepancies, develop a tail number tracking program to display location of serially-controlled components, analyze enroute failures, monitor MICAP conditions, monitor each component CANN, identify Maintenance Significant Items (MSIs), evaluate the health of the wiring system using maintenance data with a How Malfunction (HOWMAL) Code 689 – CP Malfunction (see B.4.1.1.2.16), and perform Preview and In-depth analyses.

B.4.1.1.2.2 Develop risk assessment and FMECA program.

Risk assessments must be performed on all components requiring attention. The assessment will not only indicate the severity of the problem, it will also be an indication of the probability. The purpose of the FMECA program is to identify and document the failure modes, effects, and criticality for each safety- or mission-critical component. The purpose of the risk assessments is to identify the mishap's probability of occurrence and its severity. Together they will help determine the significance of each failure in terms of safety, operations, and economics.

B.4.1.1.2.3 Develop safety- and mission-critical component MAP levels.

The MAP is derived by using MTBF data collected over many years. The MECSIP Manager calculates how much of the multi-year MTBF will be the acceptable level, or target, each component is expected to achieve. This number becomes the MAP and can be adjusted up or down as the MECSIP Manager desires. Each WUC's part number will be analyzed and a MAP assigned to it. If the MAP is too high or too low to allow an alert, the RAT will recommend adjustments to it using their best judgment.

B.4.1.1.2.4 Develop a program to identify safety- and mission-critical items which fail to meet the MAP (alerts).

A reliability alert must automatically be given for any component that fails to meet its MAP. The alert does not mean there is a problem; it means a problem may exist. Once the MECSIP Manager establishes the component's MAP, an automatic alert can be set at any number or percentage below the MAP. The program will measure reliability at the 18-month MTBF mark. After the 18 months, MTBF data is collected and stored and will be divided into the MAP. Any component that does not meet 80 percent of the MAP will be considered as failing the reliability test. To assist in making decisions, a three-month average will be compiled and used to show trends. The trend data is not used for any computations. Like the MAP, the alert is adjustable by the MECSIP Manager. The alert begins the investigation process.

B.4.1.1.2.5 Develop a program to allow Engineering to communicate with Field personnel.

Establish shop bulletin boards via the Internet to enhance communication between Engineering and Field shops (e.g., clarify a TO system; direct users to procedures in the TO). The bulletin boards will not be used by the Bases to ask for waivers or technical details for a specific aircraft condition. This will continue to be done via e-mail, faxes, or AFMC Forms 202. The Internet address should be available only to Mil Net users and be secured (HTTPS).

B.4.1.1.2.6 Develop HSC and ISO inspection tracking programs.

Isochronal Inspections are the biggest expenditure of unit funds and the discrepancies from one ISO to the next are not readily available to the Field shops and Program Engineering. Each Base enters their ISO and HSC data into the MDC system. The Program should list the "Top Twenty" WUCs for the components which require the most maintenance, display individual aircraft tail number data, and list the last five inspections on a common display screen.

B.4.1.1.2.7 Develop a tail number component tracking program for serial-numbercontrolled components.

The tail number component-tracking should be composed of the following:

a. List all aircraft information such as tail number, Base, model, last Program Depot Maintenance (PDM), last ISO, and last HSC.

b. List all MSIs by serial number, date installed and location, hours remaining until time change, and other information the MECSIP Manager may deem necessary.

c. List all major component structure repairs, flyable cracks, modifications, mission profiles and flying hours for each (damage hours), any waivers active and expired, and other structural information for each tail number with pictures attached.

The intent of the tracking program is to capture the history from cradle to grave for each aircraft being monitored. Additionally, this tracking program will enable the Maintenance superintendents, MAJCOMs, and Program Engineering to know immediately the remaining service life for each critical component using serial tracking, and history of major repairs for each aircraft.

B.4.1.1.2.8 Develop a system to track enroute system reliability.

Track the discrepancies at the major enroute Bases and, when trends allow, implement preventive maintenance actions. To accomplish this, the system should be looking at the NMC status (Supply (S), Maintenance (M), or Both (B))and When Discovered Codes (WDCs).

B.4.1.1.2.9 Develop a program to track MICAP hours accessed to each component.

The Mission Impaired Capability, Awaiting Parts condition occurs when parts must be shipped from lateral storage facilities, in combination with at least one of the following conditions:

1) Supply does not have enough spares in the system to satisfy scheduled/unscheduled maintenance; or

2) Supply does not have the capability to produce spares to keep up with demand (i.e., manpower, facilities, parts, poor scheduling); or

3) Maintenance is improperly troubleshooting the system and replacing parts at an unexpected pace.

The system should capture this data and display it by MICAP hours and number of aircraft disabled for *X* amount of days.

B.4.1.1.2.10 Develop a program to capture CANN actions by WUC.

The program should capture the CANN data and store it by WUC. This will aid in creating the "whole picture" for each component.

B.4.1.1.2.11 Develop a program to identify and monitor MSIs.

Develop a program to identify and monitor MSIs. Maintenance Significant Items are those items selected by the Program due to economic or operational impact to the Maintenance community. The Program will collect data and recommend candidates for inclusion in the MSI listing during PIWG meetings. The Program will collect and correlate data from all sources (i.e., G081, MICAPS, Awaiting Parts (AWP) documentation, NMC (S/M/B), PQDRs). Components which require Time Compliance Technical Order (TCTO) control or weapon system compatibility will

be classified as "MSI" and serially tracked. Components discovered to have a major impact on operational reliability or maintenance resources will be complied and presented to the annual PIWG conference for special tracking. Items approved by the PIWG will be classified as MSIs. If serial tracking and/or historical documentation is required, the -06 WUC Manual will then be annotated to alert Maintenance; and the -6, Special Inspections Technical Order, will be annotated to require an AFTO Form 95 Historical Document. Additionally, each item will receive a risk assessment (AFPAM 90-902), which includes a FMECA. Subsequent negative trends can be justification to recommend items be serially tracked and monitored under the Air Force Bad Actor Program IAW TO 00-35D-54, Chapter 7. The Program will use the MSI listing to identify candidates for the Bad Actor Program at the annual PIWG (see B.4.1.1.2.15).

B.4.1.1.2.12 Develop a program to identify each component with Not Mission Capable (NMC) (S)(M)(B)) status.

Not Mission Capable is a maintenance aircraft status reporting term. The last letter in the status report indicates if the cause for the NMC is (S) Supply, (M) Maintenance, or (B) Both. If any aircraft is NMC, the data collection system must be changed to reflect which WUC is causing the NMC and indicate "(S)", "(M)", or "(B)" as the reason. The information will be extracted from the data collection system and displayed on the MECSIP Program.

B.4.1.1.2.13 Develop a program to identify components causing aborts.

Aborts occur when a component critical to flight has failed. The system should capture the abort data and store it by WUC. If negative trends develop, the components causing the aborts will be placed on the MSI listing.

B.4.1.1.2.14 Develop a computerized Preview and In-depth analysis program.

A Preview analysis is simply a paper review of the data available. The main goal of the preview is to validate the data and determine if a "real" problem exists. If the paper trail was in error, the analysis can be closed. If a more vigorous analysis is required to identify the problem, an Indepth analysis should be performed. A Preview analysis will be performed on functional and potential failures. Functional failures occur when there is an actual failure during component operation. Most functional failures will require an In-depth analysis. Most potential failures will not require an In-depth analysis but will require extensive coordination with other agencies for resolution. If either failure mode warrants an In-depth analysis, it will be performed by the MECSIP Team.

B.4.1.1.2.15 Develop a program to identify Bad Actors.

The purpose of the Air Force Bad Actor Program is to identify serial-numbered items that enter the repair cycle at an abnormally high rate when compared to the total population of like assets, and to repair them or remove them from supply. The PIWG meeting is the forum where the Field and Depot personnel identify part numbers or WUCs for Bad Actor management as set forth in TO 00-20-1, chapter 6; and TO 00-35D-54, chapter 7. The Program will submit a listing of selected MSI components for possible submission to the Bad Actor Program. Selected WUCs will be documented in the -6 TO, section II, part D, IAW TO 00-20-2 and be serially tracked, assigned a Configured End Item (CEI) number, and be assigned an AFTO Form 95 to record historical data. (If an item being considered for Bad Actor management does not contain a serial number, the selection of that LRU should not be excluded if it is cost effective to inscribe a serial number on each component.) The PIWG team will assign a minimum number of service life hours each WUC must fail at or below to be declared a "Bad Actor". This minimum number of service life hours will be documented in the -6 TO, section II, Part D. When the WUC

component fails, the length of service life used will be compared with the minimum number assigned to it. If it is less than the minimum, the part will be submitted as a PQDR exhibit. When the Depot receives the component, every avenue will be exhausted to find the cause of the failure. If no cause can be found, it will be destroyed and become salvage.

B.4.1.1.2.16 Develop a program to perform routine health assessment of the aircraft wiring system.

Aircraft wiring is the system critical to power and data distribution between major components. A failure of the wires, wiring connectors, or wiring components, known as the Conductive Path (CP) external to LRUs can lead to mission failure, loss of mission capability, and, at the extreme, catastrophic loss of the aircraft as the result of fire or LRU malfunction. The health of the system should be assessed on a regular schedule using maintenance history data, inspection results, and special on-aircraft wiring assessments. A special "HOWMAL Code 689 – CP Malfunction" has been created and implemented in the three main maintenance data collection systems: IMDS, CAMS-FM, and REMIS. Maintenance technicians have been instructed to use this HOWMAL code to record all failures of wires, wiring connectors, or wiring components by part number, failure location, and the nature of the failure. Weapon System Engineers should analyze this data on a regular basis for adverse trends on selected conductive paths, at specific locations, evidence of repeated wire abrasion, insulation breakdown, corrosion, arcing, or overheating. Using this analysis, engineers should program appropriate corrective actions (replacement, modification, special training, increased inspection, etc.) to improve reliability and avoid catastrophic failures.

B.4.1.1.3 Subtask 3: force management execution.

Force management is a roadmap on how the fleet's components will be managed. No one indicator will be rated higher than the others. Generally it will require more than one tracking feature to initiate an investigation. The RAT will be responsible for monitoring each component's status.

B.4.1.1.3.1 Monitoring of components' repairs and overhauls.

The FSID must be monitored by personnel with extensive aircraft systems knowledge. Factors which assist the team to identify problem areas are: close personal contact with field units and overhauling Depots, PDM personnel, supply briefings, bulletin board inquiries, reliability status, and MAJCOM concerns. The computer program will help resolve problems by listing most of the information needed to make system decisions on a single computer screen. The following information is available for each WUC and is updated monthly.

B.4.1.1.3.1.1 Fleet MTBF.

Mean Time Between Failures is a parameter that historically has been used to define the reliability of components. Establish a MAP for each WUC. An alert should be generated when the current status drops below the MAP.

B.4.1.1.3.1.2 Serial number MTBF.

Mean Time Between Failure data captured by serial number is for individual components and is generally more reliable than fleet MTBF. The system should serially track MSIs, all Bad Actors, TCIs, and special-attention components.

B.4.1.1.3.1.3 Enroute failures.

The system should capture the enroute failures and, when possible and cost effective, analyze and recommend preventive maintenance actions.

B.4.1.1.3.1.4 ISO/HSC inspections.

All ISO discrepancy data should be stored in the system indefinitely. Display the last five ISO discrepancies for each tail number and display a "Top Ten" WUC chart for the worst performers.

B.4.1.1.3.1.5 Not Mission Capable (NMC) (S)(M)(B).

Not Mission Capable is used by the MECSIP Program to indicate the discrepancy that prevents the aircraft from being Fully Mission Capable (FMC).

B.4.1.1.3.1.6 Aborts.

Aborts are the results of component failures. All aborts will be investigated and the cause eliminated. Preventive maintenance will be applied where possible and/or overhaul procedures updated to ensure reliability is restored.

B.4.1.1.3.1.7 Bulletin boards.

Bulletin boards open communications between Engineering and Maintenance. The MECSIP will ensure all maintenance activities are reported in the total ownership of the weapon system. Use the bulletin boards to identify user complaints or concerns.

B.4.1.1.3.1.8 Cannibalizations.

Cannibalizations will be investigated for future preventive maintenance actions to correct the root cause.

B.4.1.1.3.1.9 PQDRs.

The PQDR is a tool which can identify internal quality problems. A RAT member should lead the PQDR program; Maintenance should be encouraged to PQDR every defective part; and results should be analyzed until a satisfactory answer is provided. Poor troubleshooting techniques will also be part of the RAT's investigation.

B.4.1.1.3.2 Monitor component inspection and replacement criteria.

The inspection requirements should establish the equipment to be inspected, its inspection schedule, and its inspection criteria. Replacement parts must meet the requirements listed in TO 00-35D-54.

B.4.1.1.3.2.1 Work Unit Code (WUC) Manual.

The WUC Manual is the initial resource to obtain data for the analysis process. This manual must have a five-digit code for each component being monitored and the nomenclature must be in the language the technicians use. When a component is to be time changed, serially tracked, or warranted, it will be identified with a special letter or asterisk.

B.4.1.1.3.2.2 Scheduled inspection requirements and replacement schedule.

The inspection requirements contained in the TOs are designed to direct the attention of Maintenance personnel to components and/or areas where defects are suspected to occur as a result of usage under normal operating conditions. Once an area is inspected and documented, the findings will be used to plan logistic and maintenance procedural support and provide coverage for routine cleaning, washing, etc. These inspections are not designed to lead to the detection of isolated discrepancies that are the result of carelessness, abuse, or poor maintenance practices. During accomplishment of the specified requirements directed by the WUC Manual, Maintenance personnel should observe both the equipment being inspected and the components in the surrounding area for defects or irregularities. The replacement schedule lists components whose expected service life has been determined. The failure of these items could compromise safety, mission accomplishment, or cause the failure or condemnation of high-value components. Items not listed in the WUC Manual will be known as "on condition" and will be replaced only when they fail. In conjunction with TO 1-1-300, the WUC Manual provides the conditions which require a Functional Check Flight, which is designed to assure the aircraft is operational and capable of mission accomplishments after completion of certain scheduled and unscheduled maintenance. The repair restrictions chapter lists items where Base-level repair restrictions have been established and describes the repairs which are not authorized. The historical documents section contains a listing of all aircraft components requiring an AFTO Form 95. This form provides a permanent record of events or conditions encountered during the use of the equipment. When a component is to be time changed, serially tracked, identified as a MSI or a Bad Actor, it will be identified in the WUC Manual. Any changes to the WUC Manual will entail a corresponding and mandatory change to the Reliability and Maintainability Information System (REMIS). The MECSIP Manager will review the ES' recommended changes to the manual before any changes are made.

B.4.1.1.3.2.3 Time changes.

Once an item has met the requirements for time replacement outlined in TO 00-35D-54, identified in the WUC Manual, and in the replacement schedule of the -6 TO, it must be periodically monitored to ensure the time schedule is still applicable.

B.4.1.1.3.2.4 Inspection work cards.

Inspection work cards provide the mandatory inspection requirements for the weapon platform. These work cards are prepared in checklist form and will be used in performance of inspections to ensure no item is overlooked. To afford efficient maintenance planning and assignment of work, these inspection requirements are arranged by work zones and separate work cards are used for those requirements to be accomplished by each type of mechanic or specialist. All work cards should be reviewed annually for accuracy.

B.4.1.1.3.2.5 Program Depot Maintenance requirements.

Depot maintenance is the most complex of all the scheduled maintenance programs. It requires the use of special test equipment, long-term storage of the aircraft, and a highly-trained workforce. Program Depot Maintenance work requirements are reviewed yearly during the Maintenance Requirement Review Board (MRRB) and each task is agreed to by all the MAJCOMs. The MECSIP Manager will be a team member of the MRRB and participate during the review. New initiatives for the PDM package must be adequately justified and should have a risk assessment performed IAW AFPAM 90-902. Most condition assessments will be done during PDM.

B.4.1.1.3.3 Monitor data integrity.

B.4.1.1.3.3.1 Data entries.

Training classes can be initiated by the working group to ensure each technician is aware the information entered will be used by Engineering to initiate preventive maintenance actions for unreliable components. Additionally, during each PIWG hosted by the Program, the RAT will brief the importance of accurate data and identify preventive actions initiated by previously-submitted data.

B.4.1.1.3.3.2 Risk assessments.

Risk decisions must be made at a level of responsibility that corresponds to the degree of risk; the significance of the mission and the timeliness of the required decision must be considered.

B.4.1.1.3.4 Perform analysis.

It is essential to establish the extent to which the analysis is expected to improve performance and to track the component to determine how well it improved relative to the total cost of the analysis before any analysis is actually begun. The analysis performed will be Preview, Indepth, or ACI.

B.4.1.1.3.4.1 Preview analysis.

A Preview analysis is simply a paper review of the data available. The main goal of the Preview is to validate the data and determine if a" real" problem exists. If the paper trail was in error, the analysis can be closed. If a more thorough analysis is required to identify the problem, an Indepth analysis should be performed. A Preview analysis will be performed on functional and potential failures. Functional failures occur when there is an actual failure during operation of the component. Most functional failures will require an In-depth analysis. Most potential failures will not require an In-depth analysis but will require extensive coordination and Service Level Agreements (SLAs) with other agencies to resolve. If either failure mode warrants an In-depth analysis, it will be performed by the RAT.

B.4.1.1.3.4.2 In-depth analysis.

If the Preview analysis indicates problems exist, then an In-depth analysis should be performed. The RAT, Depot Overhaul Facility, or Civilian Contractor will perform most In-depth analyses. Before a group is selected to perform the analysis, the person requesting the analysis will:

a. establish the objectives of the analysis (quantified wherever possible), and agree when and how the achievement is to be measured;

b. estimate how much time will be required to perform the analysis and what skills and facilities will be needed;

- c. establish the funding, site, and personnel to perform the analysis; and
- d. decide when, where, and by whom the recommendations will be implemented.

B.4.1.1.3.4.3 Analytical Condition Inspections.

Durability-critical and legacy and interfacing subsystems must have ACI to ensure the subsystems will remain serviceable until the next inspection date. Wiring, wiring connectors, wiring components, circuit breakers, pivot bearing, torque tubes, etc., deserve the same attention as the components they are designed to engage or operate. If possible, these

inspections should be performed during PDM due to the long aircraft downtime already scheduled.

B.4.1.1.4 Subtask 4: preventive maintenance actions.

The preventive maintenance action should begin with a logic tree decision analysis and be implemented with a "common sense" approach (see B.4.1.1.4.7) to improve reliability. The Air Transport Association of America (ATA) Publication MSG-3 outlines procedures to develop preventive maintenance requirements through the use of Reliability-Centered Maintenance Analysis (RCMA) for functional systems. Once RCMA identifies a preventive maintenance task to be performed, a "common sense" approach to the solution must be developed. Preventive maintenance includes:

B.4.1.1.4.1 Lubricating or servicing.

Any act of lubrication or servicing intended to maintain inherent design capabilities:

a. Lubrication: A lubrication task is the application of a lubricant to a component whose design specifies lubrication for proper operation. A lubrication task is appropriate only if the lubricant to be used is a non-permanent type and needs to be reapplied periodically.

b. Servicing: A servicing task entails the replenishment of consumables (e.g., fuel, oxygen, oil, and nitrogen) which are depleted during normal operations.

B.4.1.1.4.2 Operational checks.

Additional operational checks to a task to determine that an item is fulfilling its intended purpose:

Operational checks: system checked and serviced to ensure serviceability.

B.4.1.1.4.3 Visual examination.

An intensive visual examination of a specific area to detect damage:

a. Detailed inspection: An intensive visual examination of a specific structural area, system, installation, or assembly to detect damage, failure, or irregularity. Available lighting is normally supplemented with a direct source of good lighting at an intensity deemed appropriate by the inspector. Inspection aids such as mirrors or magnifying lenses may be used. Surface cleaning and elaborate access procedures may be required.

b. Surveillance inspection: A visual examination of a interior or exterior area, installation, or assembly to detect obvious damage, failures, or irregularity. This level of inspection is made under normally available lighting conditions such as daylight, hangar lighting, flashlight, or droplight and may require removal or opening of access panels or doors. Stands, ladders, or platforms may be required to gain proximity to the area being checked.

c. Special detailed inspections: An intensive examination of a specific item(s), installation, or assembly to detect damage, failure, or irregularity. The examination is likely to make extensive use of specialized inspection techniques and/or equipment. Intricate cleaning and substantial access or disassembly procedures may be required.

B.4.1.1.4.4 Restoration.

An act of restoration, ranging from cleaning or replacement to complete overhauls:;

Restoration: That work necessary to return the item to a specific standard. Since restoration may vary from cleaning or repairing to complete overhauls, the scope of each assigned restoration task has to be specified.

B.4.1.1.4.5 Time change.

A time change of the component if a specific life cycle can be determined:

Time change item: Items designated as TCI are replaced at specified intervals. The primary objective of a time change is to achieve maximum utilization of components consistent with the economic operation of the weapon system, support systems, and equipment without jeopardizing flight or operational safety. Time change item identifiers are only prescribed for those items that have a measured service life expectancy and display an age-related failure pattern.

B.4.1.1.4.6 Combination.

Any combination of the five actions listed above.

B.4.1.1.4.7 "Common sense" approach.

a. Easiest to hardest. The "common sense" approach provides a solution to the discrepancy in the minimum amount of time, improved overhauls versus redesign, critical interior components replaced at a 100-percent rate during overhaul, carcasses limited to the number of overhauls they can endure, and obligates the minimum amount of funds.

b. Experienced personnel. Only personnel experienced in component overhauls procedures as well as component performance while installed on the aircraft will be chosen to oversee or monitor the overhaul.

B.4.1.1.5 Subtask 5: manage system's final five years prior to retirement.

An Integrated Product Team (IPT) should be established to determine the most effective course of actions to take in the final five years prior to weapon system retirement.

B.4.1.1.5.1 Establish IPT.

Representatives from the MAJCOMs, SOR, DLA, and the Wing Office shall comprise the IPT which will establish supply and liaison procedures.

B.4.1.1.5.1.1 Supply.

The impact of drawdown in the supply system must be evaluated and planned for so that spares will be available as needed. Cannibalizations from depot condition "F" assets, Aerospace Maintenance and Regeneration Center (AMARC) pulls, and reuse of parts (repairs instead of overhauls) will likely provide spares in the event new spares are not available. Installation and usage records of in-service components will be relied upon for replacement actions.

B.4.1.1.5.1.2 Establish liaisons at Primary Bases.

Each Base that hosts or maintains the weapon platform will be required to provide a liaison for Maintenance and Supply to the MECSIP Manager. These individuals will have to be empowered by Defense Contract Management (DCM) to make decisions which involve either maintenance procedures or source of supply (new, repaired versus overhaul, and AMARC pulls).

MIL-STD-1798A

Custodians: Army – AV Air Force – 11 Preparing activity: Air Force – 11 (Project SESS-2007-001)

Review activities: Air Force – 70, 84, 99

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at http://assist.daps.dla.mil.