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NOTICE OF 
CHANGE INCH–POUND

MIL–STD–1797A
NOTICE 1
28 June 1995                 

DEPARTMENT OF DEFENSE
INTERFACE STANDARD

FLYING QUALITIES
OF

PILOTED AIRCRAFT

TO ALL HOLDERS OF MIL–STD–1797A:

1. MAKE THE FOLLOWING PEN AND INK CHANGES:

Cover

Delete “Military Standard” and insert “Department of Defense Interface Standard.”  Delete entire Distribution
Statement D and substitute:  “Distribution Statement A.  Approved for public release; distribution is unlimited.”

Page ii

Delete entire Export Control Warning and Destruction Notice.

Page 9

3.4.6, bottom of page.  Delete “⌅⇧” and substitute “⌅⇧ max ⇥⇤

Page 38

4.6.5.3, line 3, change to read: “system due to pilot action shall not exceed . . . ”.

Page 39

4.6.6.2, first sentence, change to read:  “Yaw control power shall be sufficient . . .”.

PAGE 58

20.3, sixth reference on page.  Delete “MIL–F–25140” and substitute “MIL–W–25140”.

DISTRIBUTION STATEMENT A.  Approved for public release; distribution is unlimited.
AMSC N/A           FSC 15GP
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Page 80

3.2, Requirement Guidance, Category B, line 3.  Delete “light–path” and substitute “flight–path”.

Page 96

4.1.4.1, Requirement Guidance, d.  Delete “Vo ��� ⇤⇥ ” and substitute “Vomin(PA)”.

4.1.4.1, Requirement Guidance, d, lines 2, 3, 4, and 6.  Delete “V s ” and substitute “V S”.

Page 101

4.1.4.2, Requirement Guidance, 2.e, first line.  Delete “what” and substitute “that”.

Page 103

4.1.4.3, Requirement Guidance, next to last paragraph, line 3.  Change to read: “. . .sea level while remaining 
. . . ”.

4.1.4.3, Requirement Guidance, next to last paragraph, line 7.  Change to read: “. . . (commonly used for
structural . . .”.

Page 122

Figure 8,  Change title to read:  “Definition of Levels which include atmospheric disturbances as well as failures
– Suggested by Carlson (AFFDL–TR–78–171).”

Page 137

5.1.11.2, Verification Guidance, last sentence.  Change to read:  “. . . will likely be at the boundaries of . . .”.

Page 139

4.1.11.4, Requirement Guidance, line 2.  Change to read:  “Recommended minimum time delay:  A default
value would be 1 second.”

4.1.11.4, Requirement Guidance, last sentence.  Change to read:  “Table IX and the paragraph following it are
excerpts.”

Page 144

4.1.11.5, Requirement Guidance, third paragraph, line 2.  Delete “C 1 ⇧
” and substitute “C

⇧
”.

Page 146

5.1.11.5, Verification Guidance, third paragraph, lines 2 and 3.  Change to read:  “. . .To these margins must be
added another nose–down control . . .”.

5.1.11.5, Verification Guidance, last paragraph, line 2.  Change to read:  “needed: ⌅� marg is the sum of
turbulence and sensor–noise components, ⌅� tran provides . . .”.

Page 159

4.1.12.11, line 3.  Change to read:  “. . . aircraft motion produced, be conveniently and . . .”.

Downloaded from http://www.everyspec.com



MIL–STD–1797A
NOTICE 1

3

Page 160

4.1.12.4 through 4.1.12.11, Requirement Rationale, first line.  Change to read:  “. . . directly to the flight control
system applies . . .”.

Page 167

4.2.1.1, Requirement Guidance, Equation, last term in numerator.  Change to read “e � � e s ”.

Page 169

4.2 through 4.2.1.1, Requirement Lessons Learned, third paragraph, line 1.  Change to read “. . . angle of
attack above that for zero 1/T h 1  or d � /dV.  These . . .”.

Page 175

4.2.1.2, Requirement Guidance, second and third expressions.  Change to read:

s  [       ;        ]M   [     ;      ]

M  Z   (1/T     )� � � � �

� ����

1

p p and

Phugoid

M    (1/T     )  e
2�

�� s

sp sp
Short Period

Page 177

4.2.1.2, Requirement Guidance, line 8.  Change to read “. . . can be ignored, leaving the a z / � es  numerator 
. . .”.

4.2.1.2, Requirement Guidance, last paragraph, line 4.  Change to read “. . . (LOES) of the � /F es  transfer
function . . . .”.

Page 184

4.2.1.2, Requirement Guidance, last line.  Change to read “. . . short–period approximation),”.

Page 187

4.2.1.2, Requirement Guidance, line 2.  Change to read “. . .  and 16 ft c, the specified Level 1 . . .”.

Page 194

Figure 25, approximately center of figure.  Delete “15,2” and substitute “1.5,2”.

Figure 25, legend box, P.R. Scale, second listing.  Delete “COPPER–HARPER” and substitute
“COOPER–HARPER”.

Figure 25, title.  Change to read: “Comparison of pilot ratings with Category A short–period frequency
requirements.”

Page 195

Figure 26, legend box, P.R. Scale, second listing.  Delete “COPPER–HARPER” and substitute
“COOPER–HARPER”.
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Page 196

Figure 27, legend box, P.R. Scale, second listing.  Delete “COPPER–HARPER” and substitute
“COOPER–HARPER”.

Page 197

Figure 29, legend box, P.R. Scale, second listing.  Delete “COPPER–HARPER” and substitute
“COOPER–HARPER”.

Figure 29, right edge of figure.  Delete “Boundaries from AGARD–CP–333” and substitute “Boundaries from
AGARD–CP–333, Gibson”.

Page 200

Figures 33 and 35, fourth diagonal line.  Delete “LEVELS 2” and substitute “LEVEL 2”.

Figure 35, legend in upper left hand corner, last line.  Delete “4,000     43” and substitute “4,000    431”.

Page 201

Figure 36.  Rotate the figure 90 degrees counterclockwise.

Page 219

Next to last equation.  Delete and substitute:

2
sp

n/
�

o
nz ss

q�

�

�
��

�

ss � ⌅ t

q ssVT/g
�

VT⌅ t

g

Page 259

Frequency–response magnitude and phase, second equation under Exact:  Delete and substitute:

= + tan –1 ( �� )�

Page 260

Equation at bottom of page.  Delete and substitute:

K  T  M     /2q q �� � √

Page 290

4.2.7.2.1, last sentence.  Change to read:  “. . . result in departure or exceedance of load factor limits.”

Page 294

4.2.7.3, Lessons Learned, lines 2 and 3.  Change to read:  “. . . It was possible to mis–set trim for takeoff so that
–24 deg deflection . . . .”.
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Page 303

Table XVII, last line of section a.  Change to read: “* For n L <3, (F s/n) � ��  is 28.0 . . . ”.

Page 305

Figure 101, center of figure, denominator, twice.  Delete “(n/d)” and substitute “(n/� )”.

Page 329

Table XVIII, last column heading.  Delete “d as/F as” and substitute “� as /F as ”.

Page 364

Figure 130, legend in lower right corner.  Delete “REFERENCE AFFDL–TR–65–227” and “REFERENCE
NASA–TND–2251” and substitute “AFFDL–TR–65–227” and “NASA–TND–2251”.

Page 366

5.3.1.2, Verification Guidance, second line of equation.  Delete “–sin (a + i t )” and substitute “–sin ( �  + i t )”.

Page 375

4.4.1.1, Requirement Guidance, fifth paragraph, line 6.  Change expression to read: “(M2cos2�  – 1)–1/2”.

Page 377

4.5.1.1, Requirement Guidance, first equation following second paragraph.  Change denominator in second
part of equation to read: “(1/T S) (1/T R) [ � d , � d ]”.

4.5.1.1, Requirement Guidance, second equation following second paragraph.  Change numerator in second
part of equation to read: “(A3s3 + A2s2 + A1s + A0)e � ⇧e ”.

Page 391

First equation, last term, right hand side.  Change to read: “–2 k 2
z  C L 1”.

Page 398

Figure 150, title.  Change to read: “Composite pilot ratings for spiral descent of simulated reentry vehicle (from
NASA–CR–778).”

Page 402

5.5.1.3, Verification Guidance, two large equations in middle of page.  Change the denominator inside the
large parentheses of both equations to read:

�

g   bk z���������
���

�
⇧
�

nr���� ����

⇧

2

�

�
�

�

�

z���������

4(W/S)k x
�

C
C y ⇧

�
C
����

2kz

C p����

n⇧
2 2

�
�

�

�

Page 404

4.5.1.4, Requirement Guidance, third paragraph, second line.  Delete “figure 154” and substitute “figure 156”.
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Page 418

Second equation, last term inside the square brackets on the right side.

⇧
�

C � a����

C
� a

Cy
�

�

� ⇧
�

C � a����

C
� a

Cy
�

�

Delete and substitute

Page 429

5.5.5, Verification Guidance, last equation, denominator.  Change to read:

r1 –
C �

Can �

C �
Ca n � r

C � a

Page 460

5.5.8.1, Verification Guidance, last two equations, bottom of page.  Change to read:

k   =  ⇥ /(mb  )  , 2
zzx x 22 2k   =  ⇥ /(mb  )  ,

Page 464

Lower right hand corner, top of second sketch.  Delete “X” and substitute “x”.

Page 466

4.5.8.4, Requirement Lessons Learned, line 2.  Delete “YF–15” and substitute “YC–15”.

4.5.8.4, Requirement Lessons Learned.  Combine the two paragraphs into one paragraph.

Page 476

4.5.9.2, Requirement Guidance, fifth line following table.  Change to read “Level 2:  One–eighth of the Level 2
values in table XXXVI.”

Page 491

4.5.9.3, Requirement Guidance, fifth line from bottom of the page.  Delete “(AGARD–C–333)” and substitute
“(AGARD–CP–333)”.

Page 498

Matrix equation, middle of page.  Change to read:
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⇥

2

–

–   C   sin     + C

C
⇧
�

bg
2VT

2
____ Cy ⇧ ⇤

C
r���

CL 1
y
2 c–__

b2 sin   tan� � ⌅ C
� a

⇧
2

y
2 c__

b2
sin   tan� �

2
kz

2
L 1�

r

1_
2

C
⇧
���

bg
2VT

2
____ Cy ⇧ ⇤

C
r___

CL1

2– 4k sin   tan� � ⌅ C
� a

sin  � �L1
�

n
n

xz
�

2

22
xzkn

� a

– 4 k

�

bg

T
2

___
V

– k

– tan

–   C    sin    + C

1

� ⇥z
2

� k �

�r

Sentence following the matrix equation.  Change to read:

where CL1 = W/(q� S), k2
y  = ⇥ y/(mc2 ), k2

z  = ⇥ z/(mb 2), k 2
x z =  ⇥ xz /(mb2 ); n y = C y⇧ ⇧ /CL 1.

Page 504

4.5.9.5.7, Requirement Guidance, third paragraph, line 2.  Delete “over look” and substitute “overlook”.

Page 505

4.6.1.1, Requirement Guidance, second and third equations, first term in denominator.  Change to read: 
“(s + 1/T S)

4.6.1.1, Requirement Guidance, first line following third equation.  Change to read “. . .deflection controls (pilot
controller deflection commands . . .”.

Page 526

5.6.1.1, Verification Guidance, fourth equation.  Change to read:

Cn� d � d �

� Vg
� �⇤C ⇧y �

1
����

2k  z
2

Cn r �
k  z

2
���

k  2x Cn ⇧

����

C
⇧

CL1
�

1
����

2k  z
2 p ⌅�

�

2(W/S)

�

�

�

�2

5.6.1.1, Verification Guidance, first and second sentences following last equation.  Change to read  “|��⇧ | d is
the ratio of amplitudes of the roll and sideslip envelopes in the dutch roll mode and CL1  = W/(qS).  The
dutch–roll envelope of roll rate, p, is shown in figure 228, from AFFDL–TR–69–72, for a step command.”

Page 529

Last equation, numerator of last term.  Change to read: C
� a

y �
C

⇧nC
⇧
� C

� r
/ Cn � r �

.
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Page 545

4.6.2, Requirement Guidance, footnote 11, second sentence.  Change to read: “The � ⇧ and ⌅⇧/k of figure 238
. . .”.

Page 546

Paragraph 3, line 3.  Change to read:  “. . .   For |��⇧ | d above some nominal value (�   5.0), . . .”.

Page 552

Second line following figure.  Change to read: “measurement of � 1.  The above–noted trend . . .”.

Page 572

5.6.4, Verification Guidance, first equation.  Change to read: � a � C
� r
� C
� �

�

a
�� � � rp � .

Page 578

5.6.5.1, Verification Guidance, last three equations.  Change to read:

Cy
�

⇧
 = Cy

⇧
 – Cy � r

Chr
⇧

/Chr � r

C�n
⇧
 = Cn

⇧
 – C n � r

Chr
⇧

/Chr � r

C �
⇧

 = C
⇧

  – C
� r

Chr ⇧
/Chr � r

Page 581

5.6.6, Verification Guidance, equation.  Change to read:

qSb Cn( � r, � a, � T, ⇧�  ⇧
⇤
, P, R, � , M ...) = ⇥z

⇤
�  – ⇥ xz (

⇤
�  + QR) + (⇥y  – ⇥x)PQ

Page 584

4.6.6.2, first sentence.  Change to read: “Yaw control power shall be sufficient to meet . . .”.

Page 589

First equation, delete and substitute.

� (k  –k c /b )cos�  + k    sin� /cos � ]

sin� /cos � �  C   cos�y
⇧

C
⇧

Cn ⇧
Cn

C

Cy
� r

� r

� r

C
� �

Cn � �

⇧

� a

� r

�
g
V 2V

b
sin� sin � /cos �  –C   cos� +2C cos � sin� tan�

p
�� � �

r z

�� ⇥ �� �⇤� � �����⇤� �� �� L

�

cos � sin� tan� � (k2–k2c2/b2
� sin� /cos � � k2 cos ��Cnp n r x � xz

Cyp yr
�

0

�

�

C

1

2
y
2 2 2 2

xz
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Second equation, delete and substitute.

CL 1  = W/( �qS), kx
2 = ⇥x /(mb2), ky

2 = ⇥y /(mc2), kz
2 = ⇥ z/(mb2), kx

2
z = ⇥x z/(mb 2)

First paragraph, line 4.  Change to read “hand column (0 C2 C3) T  (neglecting Cy p
 and Cy r

),”.

Fourth equation, delete and substitute.

(C[C�a�
gb sin ��������

2V 2
⌅ y⇧

Cn � r
� Cn⇧

C
� ry � � C3 y ⇧

C
� r
� C

⇧
C
� ry ��(C2

Page 603

Equation inside sketch.  Delete “z = x tan � ” and substitute “–z = x tan � ”.

4.8.1, Requirement Lessons Learned.  Switch the order of paragraphs 1 and 2.

Page 604

5.8.1, Verification Guidance, last sentence.  Change to read: “. . . the critical roll rate squared, p 2
cr , is”.

Page 642

5.8.4.3.1, Verification Guidance, four equations, one–third of the page down from the top.  Change to read:

L i

L i
�

�

⇥xz���
⇥ x N i

1 –
⇥ xz_____

⇥ ⇥x z

� N i

L i
=

+
⇥xz___
⇥

N i

1 –
⇥ xz_____

⇥ ⇥x z

,z C
i2 2 �

�

⇥xz___
⇥i

1 –
⇥ xz_____

⇥ ⇥x z

z
2

C
i

Cn

i
Cn

,
�

+
⇥xz___
⇥i

1 –
⇥ xz_____

⇥ ⇥x z

C
i

Cn
x� � � �

2

Page 664

Figure 266, top of figure.  Close the gap in the line under the “h”.

Page 665

Fourth and fifth equations.  Delete and substitute:

1 + (100    )

939[1 + (400    )  ]
[1 + (1000    ) ] [1 + �

� u ����� �

�
2

� ����� �
�

2v
�

�

�
�

1

1

200
�����������

�

(ft/sec)  per rad/ft
2

(ft/sec)  per rad/ft
2

(400 /3

Page 667

First and second sentence following third equation.  Delete and substitute:

where: � p = Ship pitch frequency, radians/second.

� s  = Ship pitch amplitude, radians.
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Page 674

Table LVI, second column, fourth entry, line 4.  Change to read: “components.  High–frequency spectral”.

Page 680

4.9.3, first equation.  Delete and substitute:

� g � qg �
wg����

x
�

� � p g �
wg����

y � r g �
v g����

x–

Page 693

First row, fourth column.  Change to read “iii, 1, 687”.

Second row, fourth column.  Change to read “687”.

Page 701

Column heading, fourth column.  Change to read “PAGE NO. IN THIS DOCUMENT”.
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2. THE FOLLOWING PAGES OF MIL–STD–1797A HAVE BEEN REVISED AND SUPERSEDE THE
PAGES LISTED:

NEW PAGE DATE SUPERSEDED PAGE DATE
iii 30 January 1990 iii REPRINTED WITHOUT CHANGE

iv – xiii 28 June 1995 iv – xxvii 30 January 1990

61 28 June 1995 61 REPRINTED WITHOUT CHANGE
62 – 75b 28 June 1995 62–75 30 January 1990

76 30 January 1990 76 REPRINTED WITHOUT CHANGE
107 30 January 1990 107 REPRINTED WITHOUT CHANGE

108 – 108q 28 June 1995 108 30 January 1990
109 28 June 1995 109 30 January 1990
110 30 January 1990 110 REPRINTED WITHOUT CHANGE
149 28 June 1995 149 30 January 1990
150 30 January 1990 150 REPRINTED WITHOUT CHANGE
151 28 June 1995 151 30 January 1990

152 – 152d 28 June 1995 152 30 January 1990
267 – 275 28 June 1995 267–275 30 January 1990

276 30 January 1990 276 REPRINTED WITHOUT CHANGE
281 28 June 1995 281 30 January 1990
282 28 June 1995 282 30 January 1990
421 30 January 1990 421 REPRINTED WITHOUT CHANGE

422 – 422a 28 June 1995 422 30 January 1990
569 30 January 1990 569 REPRINTED WITHOUT CHANGE
570 28 June 1995 570 30 January 1990

3. RETAIN THIS NOTICE AND INSERT BEFORE TABLE OF CONTENTS.

4. Holders of MIL–STD–1797A will verify that corrections, page changes, and additions indicated above
have been entered. This notice page will be retained as a check sheet. This issuance, together with appended
pages, is a separate publication. Each notice is to be retained by stocking points until the military standard is
completely revised or canceled.

Custodian:
Army – AV
Navy – AS
Air Force – 11

Preparing Activity:
Air Force – 11

(Project 15GP–0111)
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FOREWORD

This standard is intended for use with fixed–wing aircraft supported primarily by aerodynamic force rather
than engine thrust.  It also covers the handling characteristics of aircraft under piloted control on the ground,
and may be used with powered–lift aircraft in aerodynamic flight (above the conversion speed, V�⇤⇥  ).  This
standard also applies to piloted transatmospheric flight when flight depends upon aerodynamic lift and/or air
breathing propulsion systems.  Flying qualities of military rotorcraft are specified in MIL–H–850l, while flying
qualities in V/STOL flight are the subject of MIL–F–83300.

For further background information, see Appendix C.
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5.1.1 Loadings—verification 45 90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.2 Moments and products of inertia—verification 45 91. . . . . . . . . . . . . . . . . . 
5.1.3 Internal and external stores—verification 45 93. . . . . . . . . . . . . . . . . . . . . . 
5.1.4 Flight Envelopes—verification 45 99. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.4.1 Operational Flight Envelopes—verification 45 99. . . . . . . . . . . . . . . . . . . . 
5.1.4.2 Service Flight Envelopes—verification 45 102. . . . . . . . . . . . . . . . . . . . . . . . 
5.1.4.3 Permissible Flight Envelopes—verification 45 104. . . . . . . . . . . . . . . . . . . . 
5.1.5 Configurations and States of the aircraft—verification 45 106. . . . . . . . . . . 
5.1.6 Aircraft Normal States—verification 45 107. . . . . . . . . . . . . . . . . . . . . . . . . . . 
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5.1.6.1 Allowable Levels for Aircraft Normal States—verification 45 108. . . . . . . . 
5.1.6.2 Flight outside the Service Flight Envelopes—verification 45 108a. . . . . . . . 
5.1.6.3 Ground operation—verification 45 108a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.7 Aircraft Failure States—verification 45 110. . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.7.1 Allowable Levels for Aircraft Failure States—verification 45 113. . . . . . . . . 
5.1.7.2 Aircraft Special Failure States—verification 45 113. . . . . . . . . . . . . . . . . . . . 
5.1.7.3 Probability calculation—verification 45 119. . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.7.4 Generic failure analysis—verification 45 125. . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.7.5 When Levels are not specified—verification 45 126. . . . . . . . . . . . . . . . . . . 
5.1.7.6 Failures outside the Service Flight Envelopes—verification 46 127. . . . . . 
5.1.8 Dangerous flight conditions—verification 46 129. . . . . . . . . . . . . . . . . . . . . . 
5.1.8.1 Warning and indication—verification 46 129. . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.8.2 Devices for indication, warning, prevention, and recovery
  —verification 46 129. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.9 Interpretation of subjective requirements—verification 46 130. . . . . . . . . . 
5.1.10 Interpretation of quantitative requirements—verification 46 133. . . . . . . . . 
5.1.11 General flying qualities requirements—verification 46 135. . . . . . . . . . . . . . 
5.1.11.1 Buffet—verification 46 135. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.11.2 Release of stores––verification 46 137. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.11.3 Effects of armament delivery and special equipment—verification 46 138
5.1.11.4 Failures—verification 46 142. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.11.5 Control margin—verification 46 146. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.11.6 Pilot–induced oscillations (PIO)—verification 46 151. . . . . . . . . . . . . . . . . . 
5.1.11.7 Residual oscillations—verification 46 153. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.11.8 Control cross–coupling—verification 46 154. . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.12 General flight control system characteristics—verification 46 157. . . . . . . 
5.1.12.1 Control centering and breakout forces—verification 46 157. . . . . . . . . . . . . 
5.1.12.2 Cockpit control free play—verification 46 157. . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.12.3 Adjustable controls—verification 46 158. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.12.4 Rate of control displacement—verification 47 162. . . . . . . . . . . . . . . . . . . . . 
5.1.12.5 Dynamic characteristics—verification 47 162. . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.12.6 Damping—verification 47 162. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.12.7 Transfer to alternate control modes—verification 47 162. . . . . . . . . . . . . . . 
5.1.12.8 Flight control system failures—verification 47 162. . . . . . . . . . . . . . . . . . . . . 
5.1.12.9 Augmentation systems—verification 47 162. . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.12.10 Auxiliary dive recovery devices—verification 47 162. . . . . . . . . . . . . . . . . . . 
5.1.12.11 Direct force controllers—verification 47 162. . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.13 General trim requirements—verification 47 166. . . . . . . . . . . . . . . . . . . . . . . 
5.1.13.1 Trim system irreversibility—verification 47 166. . . . . . . . . . . . . . . . . . . . . . . . 
5.1.13.2 Rate of trim operation—verification 47 166. . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.13.3 Stalling of trim systems—verification 47 166. . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.13.4 Transients and trim changes—verification 47 166. . . . . . . . . . . . . . . . . . . . . 
5.1.13.5 Trim for asymmetric thrust—verification 47 166. . . . . . . . . . . . . . . . . . . . . . . 
5.1.13.6 Automatic trim systems—verification 47 166. . . . . . . . . . . . . . . . . . . . . . . . . 
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5.2 Flying qualities requirements for the pitch axis—verification 47 169. . . . . . 
5.2.1 Pitch attitude dynamic response to pitch controller—verification 47 169. . 
5.2.1.1 Long–term pitch response—verification 47 169. . . . . . . . . . . . . . . . . . . . . . . 
5.2.1.2 Short–term pitch response—verification 47 258. . . . . . . . . . . . . . . . . . . . . . . 
5.2.2 Pilot–induced oscillations—verification 47 274. . . . . . . . . . . . . . . . . . . . . . . . 
5.2.3 Residual pitch oscillations—verification 47 276. . . . . . . . . . . . . . . . . . . . . . . 
5.2.4 Normal acceleration at pilot station—verification 47 279. . . . . . . . . . . . . . . 
5.2.5 Pitch trim changes—verification 48 281. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.2.6 Pitch axis response to other inputs—verification 48. . . . . . . . . . . . . . . . 
5.2.6.1 Pitch axis response to failures, controls free—verification 48 283. . . . . . . 
5.2.6.2 Pitch axis response to configuration or control mode change
  —verification 48 285. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.2.7 Pitch axis control power—verification
5.2.7.1 Pitch axis control power in unaccelerated flight—verification 48 287. . . . . 
5.2.7.2 Pitch axis control power in maneuvering flight—verification 48 289. . . . . . 
5.2.7.2.1 Load factor response—verification 48 291. . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.2.7.3 Pitch axis control power in takeoff—verification 48 294. . . . . . . . . . . . . . . . 
5.2.7.4 Pitch axis control power in landing—verification 48 296. . . . . . . . . . . . . . . . 
5.2.8 Pitch axis control forces—verification 48. . . . . . . . . . . . . . . . . . . . . . . . . 
5.2.8.1 Pitch axis control forces––steady–state control force per g

  —verification 48 315. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.2.8.2 Pitch axis control forces––transient control force per g

  —verification 48 325. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.2.8.3 Pitch axis control forces––control force variations during 

  rapid speed changes—verification 48 326. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.2.8.4 Pitch axis control forces––control force vs. control deflection

  —verification 48 334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.2.8.5 Pitch axis control breakout forces—verification 48 336. . . . . . . . . . . . . . . . . 
5.2.8.6 Pitch axis control force limits—verification 48. . . . . . . . . . . . . . . . . . . . . 
5.2.8.6.1 Pitch axis control force limits––takeoff—verification 48 338. . . . . . . . . . . . . 
5.2.8.6.2 Pitch axis control force limits––landing—verification 48 339. . . . . . . . . . . . 
5.2.8.6.3 Pitch axis control force limits––dives—verification 48 341. . . . . . . . . . . . . . 
5.2.8.6.4 Pitch axis control force limits––sideslips—verification 48 343. . . . . . . . . . . 
5.2.8.6.5 Pitch axis control force limits––failures—verification 49 345. . . . . . . . . . . . 
5.2.8.6.6 Pitch axis control force limits––control mode change—verification 49 346
5.2.8.7 Pitch axis trim systems—verification 49 348. . . . . . . . . . . . . . . . . . . . . . . . . . 
5.2.9 Pitch axis control displacements—verification 49 349. . . . . . . . . . . . . . . . . . 
5.2.9.1 Pitch axis control displacement––takeoff—verification 49 349. . . . . . . . . . 
5.2.9.2 Pitch axis control displacement––maneuvering—verification 49 351. . . . . 
5.3 Flying qualities requirements for the normal (flight path) axis

  —verification 49 355. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.3.1 Flight path response to attitude change—verification 49 355. . . . . . . . . . . . 
5.3.1.1 Transient flight path response to attitude change—verification 49 355. . . 
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5.3.1.2 Steady–state flight path response to attitude change—verification 49 366
5.3.2 Flight path response to designated flight path controller

  —verification 49 367. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.3.3 Flight path control power—verification 49 368. . . . . . . . . . . . . . . . . . . . . . . . 
5.3.3.1 Control power for designated primary flight path controller

  —verification 49 368. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.3.3.2 Control power for designated secondary flight path controller

  —verification 49 368. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.3.4 Flight path controller characteristics—verification 49 368. . . . . . . . . . . . . . . 
5.4 Flying qualities requirements for the longitudinal (speed) axis

  —verification 49 372. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.4.1 Speed response to attitude changes—verification 49 372. . . . . . . . . . . . . . 
5.4.1.1 Speed response to attitude changes–relaxation in transonic flight

  —verification 49 375. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.5 Flying qualities requirements for the roll axis—verification 49 390. . . . . . . 
5.5.1 Roll response to roll controller—verification 49 390. . . . . . . . . . . . . . . . . . . . 
5.5.1.1 Roll mode—verification 49 390. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.5.1.2 Spiral stability––verification 49 395. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.5.1.3 Coupled roll–spiral oscillation—verification 50 402. . . . . . . . . . . . . . . . . . . . 
5.5.1.4 Roll oscillations—verification 50 417. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.5.1.5 Roll time delay—verification 50 421. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.5.2 Pilot–induced roll oscillations—verification 50 422. . . . . . . . . . . . . . . . . . . . . 
5.5.3 Linearity of roll response to roll controller—verification 50 423. . . . . . . . . . 
5.5.4 Lateral acceleration at the pilot stations—verification 50 426. . . . . . . . . . . 
5.5.5 Roll characteristics in steady sideslip—verification 50 429. . . . . . . . . . . . . . 
5.5.6 Roll axis control for takeoff and landing in crosswinds

  —verification 50 430. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.5.7 Roll axis response to other inputs—verification 50 431. . . . . . . . . . . . . . . . . 
5.5.7.1 Roll axis response to augmentation failures—verification 50 431. . . . . . . . 
5.5.7.2 Roll axis response to configuration or control mode change

  —verification 50 433. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.5.8 Roll axis control power—verification 50 460. . . . . . . . . . . . . . . . . . . . . . . . . . 
5.5.8.1 Roll axis response to roll control inputs—verification 50 460. . . . . . . . . . . . 
5.5.8.2 Roll axis control power in steady sideslips—verification 50 462. . . . . . . . . 
5.5.8.3 Roll axis control power in crosswinds—verification 50 464. . . . . . . . . . . . . 
5.5.8.4 Roll axis control power for asymmetric thrust—verification 50 466. . . . . . . 
5.5.8.5 Roll axis control power in dives and pullouts—verification 50 468. . . . . . . 
5.5.8.6 Roll axis control power for asymmetric loading—verification 50 469. . . . . 
5.5.9 Roll axis control forces and displacements—verification 50. . . . . . . . . 
5.5.9.1 Roll control displacements—verification 50 474. . . . . . . . . . . . . . . . . . . . . . . 
5.5.9.2 Roll axis control forces to achieve required roll performance

  —verification 50 477. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.5.9.3 Roll axis control sensitivity—verification 51 493. . . . . . . . . . . . . . . . . . . . . . . 
5.5.9.4 Roll axis control centering and breakout forces—verification 51 496. . . . . 
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5.5.9.5 Roll axis control force limits—verification 51 497. . . . . . . . . . . . . . . . . . . . . . 
5.5.9.5.1 Roll axis control force limits in steady turns—verification 51 497. . . . . . . . 
5.5.9.5.2 Roll axis control force limits in dives and pullouts—verification 51 499. . . 
5.5.9.5.3 Roll axis control force limits in crosswinds—verification 51 500. . . . . . . . . 
5.5.9.5.4 Roll axis control force limits in steady sideslips—verification 51 501. . . . . 
5.5.9.5.5 Roll axis control force limits for asymmetric thrust—verification 51 502. . . 
5.5.9.5.6 Roll axis control force limits for failures—verification 51 503. . . . . . . . . . . . 
5.5.9.5.7 Roll axis control force limits for configuration or control 

  mode change—verification 51 504. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.6 Flying qualities requirements for the yaw axis—verification 51 525. . . . . . 
5.6.1 Yaw axis response to yaw and side–force controllers—verification 51 525
5.6.1.1 Dynamic lateral–directional response—verification 51 525. . . . . . . . . . . . . 
5.6.1.2 Steady sideslips—verification 51 529. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.6.1.3 Wings–level turn—verification 51 539. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.6.2 Yaw axis response to roll controller—verification 51 566. . . . . . . . . . . . . . . 
5.6.3 Pilot–induced yaw oscillations—verification 51 570. . . . . . . . . . . . . . . . . . . . 
5.6.4 Yaw axis control for takeoff and landing in crosswinds

  —verification 51 572. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.6.5 Yaw axis response to other inputs—verification 51 575. . . . . . . . . . . . . . . . 
5.6.5.1 Yaw axis response to asymmetric thrust—verification 51 575. . . . . . . . . . . 
5.6.5.2 Yaw axis response to failures—verification 51 579. . . . . . . . . . . . . . . . . . . . 
5.6.5.3 Yaw axis response to configuration or control mode change

  —verification 52 580. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.6.6 Yaw axis control power—verification 52 581. . . . . . . . . . . . . . . . . . . . . . . . . . 
5.6.6.1 Yaw axis control power for takeoff, landing, and taxi—verification 52 583. 
5.6.6.2 Yaw axis control power for asymmetric thrust—verification 52 584. . . . . . 
5.6.6.3 Yaw axis control power with asymmetric loading—verification 52 585. . . . 
5.6.7 Yaw axis control forces—verification 52 586. . . . . . . . . . . . . . . . . . . . . . . . . . 
5.6.7.1 Yaw axis control force limits in rolling maneuvers—verification 52 587. . . 
5.6.7.2 Yaw axis control force limits in steady turns—verification 52 588. . . . . . . . 
5.6.7.3 Yaw axis control force limits during speed changes—verification 52 590. 
5.6.7.4 Yaw axis control force limits in crosswinds—verification 52 591. . . . . . . . . 
5.6.7.5 Yaw axis control force limits with asymmetric loading—verification 52 592
5.6.7.6 Yaw axis control force limits in dives and pullouts—verification 52 593. . . 
5.6.7.7 Yaw axis control force limits for waveoff (go–around)—verification 52 594
5.6.7.8 Yaw axis control force limits for asymmetric thrust during takeoff

  —verification 52 595. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.6.7.9 Yaw axis control force limits with flight control failures

  —verification 52 596. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.6.7.10 Yaw axis control force limits––control mode change—verification 52 597. 
5.6.7.11 Yaw axis breakout forces—verification 52 598. . . . . . . . . . . . . . . . . . . . . . . . 
5.7 Flying qualities requirements for the lateral flight path axis

  —verification 52 601. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.7.1 Dynamic response for lateral translation—verification 52 601. . . . . . . . . . . 
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5.8 Flying qualities requirements for combined axes—verification 53 604. . . . 
5.8.1 Cross–axis coupling in roll maneuvers—verification 53 604. . . . . . . . . . . . 
5.8.2 Crosstalk between pitch and roll controllers—verification 53 606. . . . . . . . 
5.8.3 Control harmony—verification 53 608. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.8.4 Flight at high angle of attack—verification 53 612. . . . . . . . . . . . . . . . . . . . . 
5.8.4.1 Warning cues—verification 53 617. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.8.4.2 Stalls—verification 53 619. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.8.4.2.1 Stall approach—verification 53 621. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.8.4.2.2 Stall characteristics—verification 53 624. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.8.4.2.3 Stall prevention and recovery—verification 53 626. . . . . . . . . . . . . . . . . . . . 
5.8.4.2.4 One–engine–out stalls—verification 53 629. . . . . . . . . . . . . . . . . . . . . . . . . . 
5.8.4.3 Post–stall gyrations and spins—verification 53 632. . . . . . . . . . . . . . . . . . . . 
5.8.4.3.1 Departure from controlled flight—verification 53 636. . . . . . . . . . . . . . . . . . . 
5.8.4.3.2 Recovery from post–stall gyrations and spins—verification 53 647. . . . . . 
5.9 Flying qualities requirements in atmospheric disturbances

  —verification 53 656. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.9.1 Allowable flying qualities degradations in atmospheric disturbances

  —verification 53 656. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.9.2 Definition of atmospheric disturbance model form—verification 53 677. . . 
5.9.3 Application of disturbance models in analyses—verification 53. . . . . . 

6. NOTES 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.1 Intended use 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.2 Level definitions 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3 Reference document tree 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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30.  DEFINITIONS
3.1  Aircraft classification and operational missions. For the purpose of this standard, the aircraft
specified in this requirement is to accomplish the following missions: ____________.  The aircraft thus
specified will be a Class _____ aircraft. The letter –L following a class designation identifies an aircraft as
land–based; carrier–based aircraft are similarly identified by –C. When no such differentiation is made in a
requirement, the requirement applies to both land–based and carrier–based aircraft.

REQUIREMENT RATIONALE (3.1)

The very reason for procuring aircraft is to perform one or more missions. The class designation is used in
the handbook to help particularize the requirements according to broad categories of intended use.

REQUIREMENT GUIDANCE

The related MIL–F–8785C paragraphs are 1.3, 1.3.1 and 3.1.1.
Missions
The standard needs a specific mission statement to furnish guidance for interpreting qualitative requirements
as well as for consistent selection of quantitative requirements. Unfortunately, the word “mission” is used in
several contexts not only in this standard, but throughout the writings pertinent to acquiring a new weapon
system. In the broadest sense, “operational missions” applies to classifying the aircraft as fighter, bomber,
reconnaissance, etc., or to “accomplishing the mission” of bombing, strafing, etc. In 3.1 the object is to
introduce to the designer in general terms the function of the vehicle he is to design. It should be sufficient
for the procuring activity to refer to those paragraphs of the System Specification and Air Vehicle Specification
to define the overall performance requirements, the operational requirements, employment and deployment
requirements.
The operational missions considered should not be based on just the design mission profiles. However, such
profiles serve as a starting point for determining variations that might normally be expected in service,
encompassing ranges of useful load, flight time, combat speed and altitude, in–flight refueling, etc., to define
the entire spectrum of intended operational use. “Operational missions” include training and ferry missions.
The intended use of an aircraft must be known before the required configurations, loadings, and the
Operational Flight Envelopes can be defined and the design of the aircraft to meet the requirements of this
standard undertaken. If additional missions are foreseen at the time the detail specification is prepared, it is
the responsibility of the procuring activity to define the operational requirements to include these missions.
Examples of missions or capabilities that have been added later are in–flight refueling (tanker or receiver),
aerial pickup and delivery, low–altitude penetration and weapon delivery, and ground attack for an
air–superiority fighter or vice versa.
Once the intended uses or operational missions are defined, a Flight Phase analysis of each mission must
be conducted. With the Flight Phases established, the configurations and loading states which will exist
during each Phase can be defined. After the configuration and loading states have been defined for a given
Flight Phase, Service and Permissible Flight Envelopes can be determined and Operational Flight Envelopes
more fully defined.
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4.1.6  Aircraft Normal States.  The contractor shall define and tabulate all pertinent items to describe the
Aircraft Normal States (no component or system failure) associated with each of the applicable Flight Phases.
This tabulation shall be in the format and use the nomenclature of table II.  Certain items, such as weight,
moments of inertia, center–of–gravity position, wing sweep, or thrust setting may vary continuously over a
range of values during a Flight Phase.  The contractor shall replace this continuous variation by a limited num-
ber of values of the parameter in question which will be treated as specific States, and which include the most
critical values and the extremes encountered during the Flight Phase in question.

REQUIREMENT RATIONALE (4.1.6)

Definition of normal aircraft states is basic to application of the flying qualities requirements.

REQUIREMENT GUIDANCE

The related MIL–F–8785C paragraphs are 3.1.6.1 and 4.2.

It is possible that items not normally considered, such as setting or automatic operation of engine bypass
doors, can affect flying qualities.

The contractor is required to define the Aircraft Normal States for each applicable Flight Phase, in the format
of table II.  If the position of any particular design feature can affect flying qualities independently of the items in
table II, its position should be tabulated as well.  Initially, variable parameters should be presented in discrete
steps small enough to allow accurate interpolation to find the most critical values or combinations for each
requirement; then those critical cases should be added.  As discussed under 4.1.1 through 4.1.3, center–of–
gravity positions that can be attained only with prohibited, failed, or malfunctioning fuel sequencing need not
be considered for Aircraft Normal States.

REQUIREMENT LESSONS LEARNED

5.1.6  Aircraft Normal States—verification.  The contractor shall furnish a list of Aircraft Normal States in
accordance with the Contract Data Requirements List.

VERIFICATION RATIONALE (5.1.6)

Definition of normal aircraft states is basic to application of the flying qualities requirements.

VERIFICATION GUIDANCE

Definition of normal aircraft states is basic to application of the flying qualities requirements.

VERIFICATION LESSONS LEARNED
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4.1.6.1  Allowable Levels for Aircraft Normal States.  Flying qualities for Aircraft Normal States within the
Operational Flight Envelope shall be Level 1.  Flying qualities for Aircraft Normal States within the Service
Flight Envelope but outside the Operational Flight Envelope shall be Level 2 or better.   To account for the
natural degradation of pilot–vehicle performance and workload in intense atmospheric disturbances, the
requirements of 4.1.6.1 through 4.1.6.3 are adjusted according to 4.9.1.

4.1.6.2  Flight outside the Service Flight Envelopes.  From all points in the Permissible Flight Envelopes
and outside the Service Flight Envelopes, it shall be possible readily and safely to return to the Service Flight
Envelope without exceptional pilot skill or technique.  The requirements on flight at high angle of attack, dive
characteristics, dive recovery devices and dangerous flight conditions shall also apply in all pertinent parts of
the Permissible Flight Envelopes.

4.1.6.3  Ground operation.  Some requirements pertaining to taxiing, takeoffs, and landing involve operation
outside the Operational, Service, and Permissible Flight Envelopes, as at V S  or on the ground.  When
requirements are stated at conditions such as these, the Levels shall be applied as if the conditions were in the
Operational Flight Envelopes.

REQUIREMENT RATIONALE (4.1.6.1 – 4.1.6.3)

Levels of flying qualities as indicated in 3.3 apply generally within the Operational and Service Flight
Envelopes.  Some basic requirements, generally qualitative in nature, apply in both the Operational and
Service Flight Envelopes.  Provision must also be made for expected and allowable operation outside these
envelopes.

REQUIREMENT GUIDANCE

The related MIL–F–8785C requirements are paragraphs 3.1.10, 3.1.10.1, 3.1.10.3.1, 3.1.10.3.2, 3.1.10.3.3,
3.8.3, and 3.8.3.1.

Aircraft Normal States include both all–up operation and degradations/failures that are sufficiently probable to
be considered Normal.  See 4.1.7 and 4.1.7.1 for guidance on the latter.

Note that flying qualities which “warrant improvement” according to figure 6 nevertheless meet all the
requirements if they only occur outside the Operational Flight Envelope.

Where Levels are not specified, care should be taken in selecting requirements from this handbook that will
not overburden the designer.  We have tried to keep the impact of 4.1.6.1 in mind in writing the recommended
material to fill in the blanks, but qualitative words such as “objectionable” must be taken in the context of
relevance to operational use.

Since there are few requirements in Aircraft Failure States outside the Service Flight Envelope, implicit
assumptions for 4.1.6.2 are that:

Failures at these conditions are very rare, or

Not–so–rare failures at these conditions are manageable

Given one or more failures within the Service Flight Envelope which would have serious
consequences beyond, at a minimum the crew would be warned away from danger (4.1.8).

Similar assumptions apply for 4.1.6.3.  In any given case, their validity will need to checked.

REQUIREMENT  LESSONS   LEARNED

5.1.6.1  Allowable Levels for Aircraft Normal States – verification.  Verification shall be by analysis,
simulation, and test.  Final verification shall be by demonstration in the performance of the following tasks: 
                 .
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5.1.6.2  Flight outside the Service Flight Envelopes – verification.  Verification shall be by analysis,
simulation and test.  Final verification shall be by demonstration in the performance of the following tasks:
                                    .

5.1.6.3  Ground operation – verification.  Verification shall be by analysis, simulation and test.  Final
verification shall be by demonstration in the performance of the following tasks:                           .

VERIFICATION RATIONALE (5.1.6.1 – 5.1.6.3)

Compliance with quantitative, open–loop (pilot–out–of–the–loop) requirements can be shown by analysis
with data derived from flight test.  However, compliance with only the quantitative, open–loop requirements
does not guarantee that the required Levels of flying qualities have been achieved.  The quantitative,
open–loop requirements are based on historical data and research experiments with ground–based and
in–flight simulators.  Obviously, this data base has not evaluated each and every one of the infinite possible
combinations of aircraft physical and dynamic characteristics at every possible flight condition in every
possible task.   The criteria in the quantitative, open–loop requirements are based on interpolation between
and extrapolation beyond the configurations, flight conditions, and tasks that have been evaluated in the
existing data base.  Given the degree of generalization in this standard (all possible aircraft configurations
generalized into four Classes, all possible tasks generalized into three Flight Phase Categories, and all
possible flight conditions generalized into three Flight Envelopes) a certain amount of discrepancy between
Level boundaries and pilot–observed flying qualities is to be expected occasionally.  Furthermore, while the
most significant factors affecting flying qualities have been identified and Level boundaries established for
them, significant factor interactions, which have not been as well identified to date, may also cause
discrepancies between Level boundaries and observed flying qualities.  Other sources of such discrepancies
are pilot and task variabilities.  The pilots used to evaluate a configuration in a flight test program or a research
experiment, and the levels of task performance required for desired and adequate ratings, will certainly skew
the results.   Therefore, in order to insure that the aircraft has achieved the required Levels  of flying qualities,
the aircraft must be evaluated by pilots in high–gain, closed–loop tasks. (In the context of this document,
high–gain task means a wide–bandwidth task, and closed–loop means pilot–in–the–loop.) For the most part,
these tasks must be performed in actual flight.  However, for conditions which are considered too dangerous
to attempt in actual flight (i.e., certain flight conditions outside of the Service Flight Envelope, flight in severe
atmospheric disturbances, flight with certain Failure States and Special Failure States, etc.), the closed–loop
evaluation tasks can be performed on a simulator.

During the requirements definition process, the procuring agency, together with the contractor(s) and the
responsible test organization, should select several closed–loop tasks with which to evaluate the aircraft in
flight test.  During system development, ground–based and in–flight simulations should be used to get an
initial appraisal of how well the aircraft  will perform the tasks in flight.    The simulations can also be used to
train the test pilots and refine the tasks, performance objectives, and test procedures.  Handling qualities
evaluation during flight test should consist of four parts: 1) “open–loop” tasks such as steps, doublets, and
frequency sweeps for parameter identification to compare aircraft dynamic response to the open–loop
requirements, 2) capture tasks to familiarize the pilot with aircraft response and capture characteristics, 3)
Handling Qualities During Tracking (HQDT) for initial closed–loop handling qualities evaluation, and 4)
“operational” closed–loop tasks to obtain Cooper–Harper ratings.  The distinction between HQDT and
“operational” tasks is discussed in 5.1.11.6 Verification Guidance.

VERIFICATION GUIDANCE

A wide variety of closed–loop tasks have been developed for the evaluation of aircraft flying qualities.
Recommended tasks for the evaluation of flying qualities for Flight Phase Category A include air–to–air and
air–to–ground tracking, particularly the well–defined set of tasks known as HQDT, aerial refueling, close
formation flying, and captures.  Recommended tasks for the evaluation of flying qualities for Flight Phase
Category C are tracking tasks, including HQDT, close formation flying, precision landings (with and without
vertical  and  lateral  offsets),  takeoffs,  and  captures.  More detailed discussions of each of these
recommended  tasks  will  be  found in  subsequent paragraphs of this section and 5.1.11.6 Verification
Guidance.  Other   tasks which are critical to the mission that  the  aircraft  is  intended for may also be used as
evaluation tasks, such as terrain–following, weapons delivery, or LAPES.
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There are no recommended tasks for Flight Phase Category B because this Flight Phase Category generally
consists of low–gain (low–bandwidth) tasks.  Possible flying qualities problem in this Flight Phase Category
will normally be exposed in the more demanding tasks for Flight Phase Categories A and C, and by normal
operations during the flight test program.  Thus, special tasks for this Flight Phase Category are not normally
considered necessary.  However, Flight Phase Category B tasks are normally of much longer duration than
the tasks in the other Categories.  Pilot fatigue may become a significant factor in certain mission critical
Category B tasks, in which case an evaluation of this kind of task might be required.

Proof of compliance in these demonstration tasks will consist of pilot comments and Cooper–Harper (C–H)
ratings.  For Level 1, pilot comments must indicate satisfaction with aircraft flying qualities, with no worse than
“mildly unpleasant” deficiencies, and median C–H ratings must be no worse than 3.5 in calm air or in light
atmospheric disturbances.  For Level 2, pilot comments must indicate that whatever deficiencies may exist,
aircraft flying qualities are still acceptable, and median C–H ratings must be no worse than 6.5 in calm air or
light atmospheric disturbances.  For Level 3, pilot comments must indicate that the aircraft is at least
controllable despite any flying qualities deficiencies, and median C–H ratings must be no worse than 9.5 in
calm air or light atmospheric disturbances.  In moderate to severe atmospheric disturbances pilot comments
and C–H ratings must comply with the requirements of 4.9.1.

Actual task performance is not recommended for use as proof of compliance because it is even more subject
to pilot variability than pilot comments and C–H ratings.  The performance objectives suggested in the tasks
described below are not intended for use as proof of compliance, but, rather, for use with the C–H scale.
Specific definitions of desired and adequate performance objectives reduce pilot variability by insuring that all
of the evaluation pilots attempt to achieve the same level of performance.  In the performance objectives
suggested below, adequate performance is set at a level sufficient to successfully perform similar tasks in
operational service.  Desired performance is set at a more demanding level to insure that  system deficiencies
are exposed.  Although task performance is not recommended as proof of compliance, task performance
should be recorded and analyzed by the flight test engineers to insure that pilot ratings are reasonably
consistent with the level of performance achieved and that all pilots seem to be attempting to achieve the
same level of performance.

The evaluation of aircraft flying qualities is basically a subjective science, and human variability makes
analysis of the results a difficult proposition.  Nevertheless, there are steps that can be taken to reduce
variability in the results and insure a good evaluation.  First of all, it is absolutely necessary that more than one
evaluation be made for each test condition.  Studies of inter–pilot C–H rating variability have indicated that
three pilots is the minimum number of pilots for an adequate evaluation (CAL Report No. TB–1444–F–1 and
NADC–85130–60).  More pilots will increase confidence in the results, but NADC–85130–60 further
demonstrated that the point of diminishing returns was reached at about six.  Therefore, the recommended
number of pilots per test condition is three to six.  Careful selection of the evaluation pilots will also reduce the
variability in results.  All of the evaluation pilots must be test pilots trained in the use of the C–H scale and they
all must be experienced in the Class of aircraft under evaluation.  Furthermore, for acquisition purposes, it is
highly desirable that at least half of the evaluation pilots be military–employed test pilots.  (Use of operational
pilots to evaluate the aircraft during the development effort can often provide additional insights into the
handling qualities.  Such evaluations are strongly encouraged.  However, for the purpose of demonstrating
compliance with this requirement, the evaluation pilots should be trained test pilots.)

In order to insure that all of the pilots attempt to achieve the same level of performance, and thus insure
consistency and reduce the effects of pilot variability, it is extremely important to explicitly define the desired
and adequate levels of task performance to be used for the C–H ratings.  Best results are achieved with task
performance defined in terms of quantifiable objectives which the pilot can readily observe himself in real time.
Furthermore, consideration must be given to defining objectives that can also be recorded on some medium
so that the flight test engineer can confirm that pilot ratings are reasonably consistent with task performance.
Defining quantifiable and recordable task performance objectives and setting appropriate levels of desired
and adequate performance is the most difficult part of planning the flying qualities evaluation.  Guidance on
task objectives for each of the recommended tasks is given in subsequent paragraphs in this section and
lessons learned from past experience are provided in Verification Lessons Learned.

Another method to reduce the effects of variability is to use the “long–look” evaluation technique.     In this
technique the pilot continues or repeats the task until he is confident of his evaluation before he assigns a C–H
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rating.  (As opposed to doing it once and assigning a rating.)  The “long–look” approach allows the pilot a more
extensive appraisal of the test condition, it allows him to weed out the effects of unique events in a single run, it
allows him to get over the learning curve, and it allows him to clear his memory of characteristics he may have
observed in evaluation of a preceding condition.  Although the C–H rating is given only after multiple runs, pilot
comments must be provided during and after each run.  In order to insure that variability is not introduced by
pilots doing different numbers of repeat runs, the recommended procedure is to specify a minimum number of
runs to be performed before a rating can be given, and allow the pilot to make additional runs if he feels it is
necessary.

Pilot comments should be considered the most important data.  A C–H rating is only a summary of observed
flying qualities characteristics into a single number.  Pilot comments identify the specific deficiencies, if any,
that must be corrected.    Furthermore, the “long–look” technique filters the effects of deficiencies on the C–H
rating because, over several runs, the pilot learns to compensate for some deficiencies.  Since pilot
comments are given for every run, the comments will identify all observed deficiencies, even those which can
be compensated for.  Comments on succeeding runs provide guidance on the pilot’s ability to compensate for
the deficiencies and the final C–H rating indicates the relative significance of these deficiencies.  Therefore,
pilot comments must be recorded and analyzed for every test run.

Time and cost constraints prohibit piloted evaluation of every task in every possible aircraft configuration at
every possible point in the flight envelope.  The conditions that must be evaluated are the most common
operating conditions, operating conditions critical to the mission of the aircraft, and the worst case conditions,
especially those where the quantitative, open–loop flying qualities requirements are violated by wide margins.
For aircraft with multiple flight control modes, all mode transitions should be evaluated at common, mission
critical, and worst case conditions, especially mode switches which are done automatically, as opposed to
those deliberately switched by the pilot.  Furthermore, the degradation due to atmospheric disturbances
should be demonstrated by evaluation at different levels of disturbances.  Evaluation of the effect of severe
atmospheric disturbances may be performed in ground simulation.  When using simulation to predict the
degradation of flying qualities due to severe atmospheric disturbances, it will be necessary to correlate C–H
ratings gathered from simulation sessions in light to moderate turbulence with C–H ratings obtained from flight
test in light to moderate turbulence for the same task.

The following paragraphs discuss some recommended tasks and some suggested performance objectives
for each task.  BEAR IN MIND THAT THE PERFORMANCE OBJECTIVES ARE NOT REQUIRED AS
PROOF OF  COMPLIANCE.  THEY ARE INTENDED FOR USE WITH THE COOPER–HARPER SCALE TO
REDUCE PILOT VARIABILITY.  Most of these tasks are equally suitable for both the “operational” technique
and the HQDT technique (see 5.1.11.6 Verification Guidance).  The following list of tasks is not exclusive.  Any
closed–loop task, performed aggressively, may be used to evaluate an aircraft’s handling qualities and PIO
characteristics.  When developing a specification for a particular program, the procuring agency should
discuss possible tasks and performance objectives with other procuring agencies, Wright Laboratory,
AFFTC, and potential contractors.

 Capture Tasks

Capture tasks are intended to evaluate handling qualities for gross acquisition as opposed to continuous
tracking.  A wide variety of captures can be done provided that the necessary cues are available to the pilot.
Pitch attitude, bank angle, heading, flightpath angle, angle–of–attack, and g captures have all been done in
previous programs to evaluate different aspects of the aircraft response.  These capture tasks are done
almost precognitively by the pilot and are usually over so quickly that they do not lend themselves well to use
with the Cooper–Harper scale.  It can be done, of course, but it is not necessary.  Qualitative comments are
sufficient proof of compliance for these tasks.

These capture tasks can give the pilot a general impression of the handling qualities of the aircraft, but
because they do not involve closed–loop tracking they do not expose all of the problems that arise in
continuous control tasks.  Capture tasks should not be used as the only evaluation tasks.  As a minimum, an
offset precision landing task and some form of tracking task should also be used.  Capture tasks are ideal as a
pre–test before performing high–gain, closed–loop tasks because they serve to familiarize the pilot with the
aircraft response before attempting the more difficult (and sometimes more dangerous) high–gain,
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closed–loop tasks.  If hazardous motions result from the capture tasks at any flight condition, closed–loop
tasks should not be attempted at that flight condition, and the aircraft should be considered to have failed this
requirement at that condition.

For pitch captures, the aircraft is trimmed about a specified flight condition.  The pilot aggressively captures 5�

pitch attitude (or 10�  if the aircraft is already trimmed above 5� ).  He then makes a series of aggressive pitch
captures of 5�  increments in both directions.  He then continues this procedure with 10�  increments in both
directions, and then with 15�  increments in both directions.  Aircraft with more capability can continue the
procedure with larger pitch excursions.  If possible, the initial conditions for each maneuver should be such
that the aircraft will remain within ±1000 feet and ±10 knots of the specified flight condition during the
maneuver, however, large angle captures at high–speed conditions will inevitably produce larger speed and
altitude changes.  If the aircraft should get too far from the specified condition during a task, it should be
retrimmed about the specified condition before starting the next maneuver.

The other kinds of captures are usually done in a similar manner, with some minor differences.  G captures are
usually done from a constant–g turn and the increments are usually ±1g, ±2g, and ±3g, and larger increments
if the aircraft has greater capability.  Heading captures can be used to evaluate the yaw controller alone
(usually small heading changes of 5�  or less) or to evaluate coordination of yaw and roll controllers (larger
heading changes).

Bank angle captures are also commonly done using bank–to–bank rolls.  Starting from a 15�  bank angle, the
pilot aggressively rolls and captures the opposite 15�  bank angle (total bank angle change of  30� ) .  He then
rolls back and captures 15�  bank in the original direction.  This procedure should continue for a few cycles.
The procedure is then repeated using 30�  bank angles, and then repeated again using 45�  bank angles.
Aircraft with more capability can continue the procedure with larger bank angles.  A variation of this is to
capture wings–level from the initial banked condition.  Four–point and eight–point rolls, standard aerobatics
maneuvers, are also good tests of roll control.

Air–to–Air Tracking

The air–to–air tracking task consists of two phases: gross acquisition and fine tracking.  Gross acquisition
evaluates the ability to point and capture with moderate–amplitude inputs.  Fine tracking evaluates
continuous closed–loop controllability.  Two different kinds of targets have been used successfully in handling
qualities evaluations:  a real target aircraft and a target generated by a HUD (Head–Up Display).

If a real target is used, there are several possible target maneuvers which have been used in handling qualities
evaluations in the past.  In all cases the target aircraft begins the maneuver from straight and level flight in front
of the evaluation aircraft at a specific flight condition.  Throughout the maneuver the evaluation aircraft should
remain within �1000 feet of the test altitude and within �50 knots of the test airspeed.

The maneuver most commonly used is an S–turn.  The target aircraft initiates a level turn at a specified load
factor.  After a specified time period the target unloads, reverses, and begins a level turn in the opposite
direction at the specified load factor.  After a specified time period, the maneuver is terminated.

For gross acquisition, the evaluation pilot should allow the target aircraft to achieve a certain amount of
angular displacement before he initiates his maneuver to acquire the target.  Some programs have stated the
angular displacement explicitly (for example,  100 mils or 30� ) . Other programs have used the point at which
the target crosses the canopy bow to initiate gross acquisition.  Yet another option is to allow a specified
amount of time between the  target aircraft turn and the evaluation aircraft turn (3–4 seconds).  Commonly
used performance objectives for gross acquisition are time to acquire, the number of overshoots, and the size
of the overshoots.   Acquisition is defined as bringing the pipper (or whatever the pilot is using to track with)
within a certain radius of some specified point on the target (tail pipe, fuselage/wing junction, canopy, etc.) .
Time to acquire is the time it takes to bring the pipper within this radius  and keep it there.  Time to acquire is a
difficult objective to recommend specific values for in a general standard because it is not only a function of
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handling qualities, but also a function of the size of the initial angular displacement between pipper and target
point and of the maximum pitch rate performance of the aircraft under evaluation.  Programs must consider
both of these when determining what time to acquire to specify.  An overshoot is when the pipper moves past
the target point by some amount of angular displacement.  Some suggested performance objectives are
given in table LVIII.

An illustration of overshoot is shown in the sketch below,  which shows time histories of three theoretical gross
acquisitions.  Assume the desired criteria are:  no more than one overshoot greater than 5 mils and no
overshoots greater than 10 mils.  The thick continuous line would fail this criteria because it has one overshoot
greater than 10 mils (at about 0.5 seconds).  The thin continuous line also fails this criteria because it has  two
overshoots greater than 5 mils (around 0. 5 seconds and 0.9 seconds).  The dashed line meets this criteria
because it has only one overshoot that exceeds 5 mils but that overshoot is less than 10 mils.

ERROR
(mils)

1.0 2.0
TIME (sec)

10
0

–10
–20
–30
–40

For fine tracking, the time between reversals should allow for time to acquire plus time for extended tracking.
A minimum of at least 20 seconds between reversals is recommended.  The nominal range between the target
aircraft and the evaluation aircraft should be about 1500 feet, with excursions of no more than �500 feet from
nominal.    The performance objective for fine tracking is to keep the pipper within a certain radius of the target
point for a large percentage of the tracking time.  Some suggested performance objectives are given in table
LVIII.

For the long–look technique, this maneuver should be repeated a few times before giving a C–H rating.  On a
ground–based simulator the sequence of turns can continue uninterrupted until the evaluation pilot is
confident that he has a good evaluation of the aircraft.  This evaluation should be conducted at different
airspeeds, different altitudes, and with different load factors throughout the Operational and Service Flight
Envelopes.

Another common target maneuver is the wind–up turn.  In the wind–up turn, the target aircraft begins a turn
and slowly and smoothly increases the load factor to a specified maximum load factor.  The target aircraft
should attempt to maintain a specified rate of g increase, about .2 g/sec is recommended.  The maneuver is
terminated shortly after the maximum load factor is reached.  Gross acquisition in this maneuver is similar to
that for the S–turns.  For fine tracking, the rate of g increase should allow sufficient time for gross acquisition
and extended tracking time.  For the long–look technique this maneuver should be repeated a few times.  This
evaluation maneuver should be initiated from various altitudes and airspeeds throughout the Operational and
Service Flight Envelopes.

Other target–tracking maneuvers that have been used in the past are discussed in Verification Lessons
Learned.
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TABLE LVIII.  Suggested performance objectives for various evaluation tasks.

Suggested Tasks Suggested Performance Objectives
Air–to–Air and 
Air–to–Ground Tracking:
Gross Acquisition

Desired Performance
Time to acquire:  TBD
Overshoots:  no more than one greater than 5 mils, none to exceed 10 mils
No PIO
Adequate Performance
Time to acquire:  TBD
Overshoots:  no ore than two greater than 5 mils, none to exceed 20 mils

Air–to–Air and
Air–to–Ground Tracking:
Fine Tracking

Desired Performance
Keep the pipper within 5 mils of the target point for three continuous
seconds
No PIO
Adequate Performance 
Keep the pipper within 10 mils of the target point for three continuous 
seconds

Close Formation Desired Performance
Excursions no greater than �2 feet from the formation position
No PIO
Adequate Performance
Excursions no greater than �4 feet from the formation position

Aerial Refueling:
Boom Tracking

Desired Performance
Keep pipper within 5 mils of the boom nozzle for at least 50% of the tracking
time
No PIO
Adequate Performance
Keep pipper within 10 mils of the boom nozzle for at least
50% of the tracking time

Aerial Refueling:
Probe–and–drogue

Desired Performance
Hook–up without touching basket webbing in at least 50% of the attempts
No PIO
Adequate Performance
Hook–up in at least 50% of attempts

Offset Precision
Landing:  Approach

Desired Performance
Flightpath control:  Remain within �1 degree of glideslope angle or �1/2
dot on ILS
Airspeed control:  Maximum of 5 knots above approach speed, minimum
TBD
No PIO
Adequate Performance
Flightpath control:  Remain within �2 degrees of glideslope angle of �1 dot
on ILS
Airspeed control:  Maximum of 10 knots above approach speed, minimum
TBD, but not less than Vstall
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TABLE LVIII.  Suggested performance objectives for various evaluation tasks – Cont’d.

Suggested Tasks Suggested Performance Objectives
Offset Precision
Landing:  Touchdown
(Conventional aircraft)

Desired Performance
Touchdown zone: within �25 feet of aimpoint laterally, within –100 to +400
feet of aimpoint longitudinally
Speed at touchdown:  maximum of 5 knots above landing speed, minimum
TBD
Attitude at touchdown:  TBD
Sink rate at touchdown:  TBD
No PIO
Adequate Performance
Touchdown zone:  within �50 feet of aimpoint laterally, within –250 to + 750
feet of aimpoint longitudinally
Speed at touchdown:  maximum of 10 knots above landing speed, minimum
TBD
Attitude at touchdown:  TBD
Sink rate at touchdown:  TBD

Offset Precision
Landing:  Touchdown
(STOL aircraft)

Desired Performance
Touchdown zone:  within �10 feet of aimpoint laterally, within –25 to +75
feet of aimpoint longitudinally
Speed at touchdown:  maximum of 2 knots above landing speed, minimum
TBD
Attitude at touchdown:  TBD
Sink rate at touchdown:  TBD
No PIO
Adequate Performance
Touchdown zone:  within �25 feet of aimpoint laterally, within –100 to +400
feet of aimpoint longitudinally
Speed at touchdown:  maximum of 5 knots above landing speed, minimum
TBD
Attitude at touchdown:  TBD
Sink rate at touchdown:  TBD

Offset Precision
Landing:  Rollout and
Takeoff Roll

Desired Performance
Keep the nosewheel within �10 feet of the runway centerline
No PIO
Adequate Performance
Keep the nosewheel within �25 feet of the runway centerline

Takeoff Rotation Desired Performance
Attitude control:  Keep within �1 degree of takeoff attitude
Overshoots:  no more than one overshoot, not to exceed TBD degrees
No PIO
Adequate Performance
Attitude control:  Keep within �2 degrees of takeoff attitude
Overshoots:  no more than one overshoot, not to exceed TBD degrees
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TABLE LVIII.  Suggested performance objectives for various evaluation tasks – Cont’d.

Suggested Tasks Suggested Performance Objectives
Takeoff Climbout Desired Performance

Flightpath control:  Keep within �1 degree of specified climbout angle
Groundtrack:  Keep aircraft within �10 feet of runway centerline or within
�2 degrees of runway heading
No PIO
Adequate Performance
Flightpath control:  Keep within �2 degrees of specified climbout angle, but
not less than 0�

Groundtrack:  Keep aircraft within �25 feet of runway centerline or within
�5 degrees of runway heading

An alternative to using a real target aircraft is to do a HUD tracking task.   In this task, a target symbol (tracking
bars or a line–drawing of a target) is projected on the HUD which commands pitch and roll changes that the
evaluation pilot must follow.  The pitch and roll commands can be combinations of steps and ramps, a
smoothly–varying function (such as a sum–of–sines), or a simulated target aircraft maneuver (such as those
described above) .  The sequence of pitch and roll commands should be designed so as to keep the aircraft
within �1000 feet of the test altitude and within �50 knots of the test airspeed.  The sequence should be long
enough and complex enough that the pilot cannot learn to anticipate the commands.  Some example
sequences that have been used before are discussed in Verification Lessons Learned.

Air–to–Ground Tracking

The air–to–ground tracking task has two phases:  gross acquisition and fine tracking.  Gross acquisition
evaluates the ability to switch from one target to another.  Fine tracking evaluates the ability to continuously
track a target.

For this task, the aircraft flies at a specified glideslope and airspeed toward a group of widely–spaced targets
on the ground.  The airspeed and glideslope should be representative of the intended operational application
for the aircraft.  Initial range to the targets should allow time for acquisition and tracking of several targets.  The
targets should be from 60 to 180 feet apart perpendicular to the flight path and anywhere from 90 to 360 feet
apart parallel to the flight path.  The pilot aggressively captures the first target and tracks it for a specified
period of time (4 seconds is recommended), and then acquires and tracks succeeding targets.  The sequence
of targets to be tracked should be specified in advance.  As the aircraft approaches the targets the angular
displacement between the targets will increase.  Therefore, at long range the sequence should require
switching between the more widely–spaced targets (from one end of the group to the other end, for example).
As the range closes the sequence should require switching between targets which are closer together
(adjacent targets).  The last target switch should require a pitch up.  A minimum recovery altitude should be
specified at which the pilot must abandon the task.  This minimum altitude should consider the airspeed and
dive angle of the task and should allow plenty of margin for the pilot to pull out.  Suggested performance
objectives are the same as those for air–to–air tracking.  Some suggested performance objectives are given in
table LVIII.

Close Formation Task

While the tracking tasks put a lot of emphasis  on attitude control, close formation tasks put more emphasis on
flight path control.  The task consists of holding close formation with a  target aircraft as it maneuvers.  Both
wing and trail formations are used.  The performance objective is to maintain relative position between the
target aircraft and the aircraft under evaluation.  Specific objectives are difficult to recommend because the
pilot usually uses visual alignment of some part of his aircraft against the target aircraft to gauge his position,
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and, of course, this will vary with evaluation aircraft and target aircraft.  Some suggested displacements to use
for performance objectives are given in  table LVIII, however, consideration should be given to the nature of
the target maneuvers.  More relaxed performance objectives should be used for the more extreme target
maneuvers.  A procuring agency will have to determine for themselves what these numbers mean in terms of
visual alignment with the target aircraft in their program.

The target maneuvers used in this task are usually the same or similar to the ones used in the air–to–air
tracking task, including the ones mentioned in Verification Lessons Learned.  For the long–look technique the
task should be done a few times in the wing formation and then done a few times in trail formation and then
rated.  The pilot’s objectives in this task are outside visual references which are difficult to gauge and are
usually not recorded by any medium (unless a video camera is specially mounted for this task or an observer
is carried in one of the aircraft).

 Aerial Refueling

There are two types of aerial refueling:  probe–and–drogue and flying boom.  To date, evaluation tasks
associated with both types of aerial refueling have not been formalized as much as those for tracking and
precision landing tasks.  Some formalized tasks which have been used in previous programs are described
below.

For boom–type aerial refueling, the most frequently used evaluation task is some type of boom tracking task.
Two approaches have been tried.  The first approach is to track the nozzle of the boom with a waterline symbol
or a pipper on the HUD or windscreen.  The evaluation aircraft takes station in the pre–contact position about
50 feet aft and down on a 30 deg line from the tanker, which maintains steady, level flight with the boom
extended.  The boom may be held stationary or moved around slowly (no more than 1 deg/sec).  The tracking
time should be extensive for a good evaluation: two to four minutes is recommended.  The performance
objective is to keep the pipper or waterline symbol within a certain radius of the nozzle of the boom for a large
percentage of the tracking time.  Some suggested performance objectives for this approach are given in table
LVIII.

In the second approach the evaluation pilot attempts to keep the end of the boom visually aligned with some
point on the tanker aircraft.  The evaluation aircraft maintains the pre–contact position within about �10 feet.
In this approach the boom is held stationary.  The recommended tracking time is two to four minutes.  The
performance objective in this approach is to keep the end of the boom visually aligned within a clearly
discernible area on the tanker for a specified percentage of the tracking time.  It is difficult to recommend
performance objectives for this approach because they will depend on the type of tanker in use.  However, an
example of a project which used this approach with a KC–135 is given in Verification Lessons Learned.

For probe–and–drogue refueling actual hook–ups have been used as evaluation tasks.  In one such program,
the performance objective was the ratio of successful hook–ups to attempted hook–ups.  The task starts from
the standard pre–contact position.  When cleared for contact, the evaluation pilot establishes a 3–5 knot
closure rate towards the drogue and attempts to make contact.  If the drogue is successfully engaged, the
evaluation pilot stabilizes for approximately 30 seconds, and then establishes a 3–5 knot separation rate to
disconnect and return to the pre–contact position.  If the closure rate exceeds 5 knots, the probe tip passes the
outside edge  of the drogue basket, the probe tips the basket, or if a hazardous situation develops, the
hook–up attempt is aborted and the evaluation pilot returns to the pre–contact position before making another
attempt.  The performance objective is a certain percentage of successful hook–ups out of a specific number
of attempts.  Six to twelve is the recommended number of attempts.  Some suggested performance objectives
are given in table LVIII.
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Offset Precision Landing

The standard evaluation task for approach and landing is an offset precision landing.  There are up to three
phases in this task: approach, touchdown, and, sometimes, rollout.  The approach phase evaluates the ability
to control flightpath, airspeed, and attitude, including gear–down transients and large amplitude maneuvers. 
The touchdown phase evaluates the ability to control flightpath, airspeed, and attitude to a precise touchdown
in the presence of ground effects and through touchdown transients.  Rollout evaluates ground handling after
touchdown.

The approach phase evaluation begins about a mile out on final approach, with gear and flaps up, at the
required glideslope angle, but with a lateral offset from the runway centerline of about 150 to 300 feet, and a
vertical offset from the glideslope of about 100 to 200 feet.  Soon after the task begins the pilot lowers gear and
flaps to the landing configuration.  The pilot maintains precise flightpath angle and airspeed control throughout
the approach phase up to the offset correction point.  Some suggested performance objectives are given in
table LVIII.  Determination of performance objectives for flight path control should consider what cues are
available to the pilot.  Determination of performance objectives for airspeed control must consider the margin
between the recommended approach speed and V stall .

Lateral offsets of 200 feet or less should be corrected at 150 feet AGL.  Lateral offsets of more than 200 feet
should be corrected at 200 feet AGL.  The pilot should make an aggressive correction to the glideslope.
The correction should be completed with the wings approximately level by 50 feet AGL to avoid the possibility
of striking the ground.

The touchdown phase begins at about 50 feet AGL.  The pilot attempts to put the main wheels down inside a
designated touchdown zone at a specified landing speed, attitude, and sink rate.  The landing zone should be
clearly identifiable on the runway.  Performance objectives are the touchdown location, landing speed,
attitude, and sink rate at touchdown.  Some suggested performance objectives for conventional aircraft are
given in table LVIII.  Determination of performance objectives for airspeed control must consider the margin
between the recommended landing speed and V stall .  Similarly, performance objectives for attitude at
touchdown must consider aircraft geometry (to preclude wingtip or tail strikes, etc.) and landing gear
limitations (side force limits, etc.). Landing gear limitations must also be considered in the determination of
performance objectives for sink rate at touchdown.

Performance objectives for STOL and carrier–based aircraft should be more demanding.  Suggested
performance objectives for STOL aircraft are also given in table LVIII.

The rollout phase begins after touchdown.  The pilot steers from the touchdown point to the runway centerline
and thereafter stays on the runway centerline while bringing the aircraft to a stop.  For STOL aircraft a stopping
distance should be specified (usually set by mission performance requirements).  Some suggested
performance objectives are given in table LVIII.  Landing rollout should be evaluated with and without
crosswinds using rudder and nosewheel steering or differential braking.  Landing rollout might also be
evaluated under various runway conditions (dry, wet, icy, patched, etc.) .  Ground handling qualities should be
expected to degrade with degraded runway conditions in a similar manner to the way handling qualities
degrade with atmospheric disturbances, however, at this time there is no available guidance on how much
degradation to allow under various runway conditions.  The best that can be said at this time is that ground
handling should be Level 1 for normal runway conditions, and if the aircraft cannot be kept on the runway
under certain conditions, the aircraft should be considered uncontrollable for those conditions.  As is the case
in evaluations with atmospheric disturbances, dangerous runway conditions should only be tested in ground
simulation.

In flight test, bringing the aircraft to a full stop on the runway on every run is inadvisable due to cost and time
constraints.  Therefore, for the long–look technique, approach and touchdown should be evaluated by doing a
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few touch–and–goes before giving a C–H rating.  Rollout should be evaluated on the last landing, which is
brought to a complete stop.  On a ground–based simulator, the aircraft should be brought to a stop every time.
On ground–based simulators, pilots tend to be “lower gain” than they are in flight.  To counter this, light random
turbulence and fairly large discrete gusts should be introduced throughout the task.  In particular, a discrete
gust should be introduced after the offset correction.  Degradation with atmospheric disturbances (4.9.1)
should be evaluated by increasing the turbulence and the gusts and by adding crosswinds and wind shears.

Because this task is done in close proximity to the ground it should not be attempted if other evaluations
(analysis, ground simulation, or flight test) indicate a high probability of Level 3 handling qualities or hazardous
PIO tendencies.  Therefore offset precision landing tasks should be performed on a ground–based simulator
and approach handling qualities should be evaluated with other in–flight tasks (such as HQDT) before
attempting actual offset precision landings in flight test.  Obviously, if this task is considered too dangerous to
attempt, the aircraft is considered to have failed this requirement.

Takeoff

Takeoff tasks have not been done as often as landing and tracking tasks, so there is little practical experience
on which to base the task recommended here.  The task consists of three phases: takeoff roll, rotation, and
climb–out.  The takeoff roll evaluates ground handling from brake release to takeoff rotation.  The rotation
phase evaluates ability to control attitude during takeoff.  The climb–out phase evaluates ability to control
flightpath after takeoff, including leaving ground effect and gear transients.

The takeoff roll begins from takeoff condition at the end of the runway.  The pilot advances the throttles to a
specified setting and releases the brakes.  The task is to track the runway centerline as the aircraft
accelerates.  The suggested performance objectives for this phase are the same as those for landing rollout.
Some suggested performance objectives for the takeoff roll are given in table LVIII.

At a specified speed the pilot briskly rotates the aircraft to takeoff attitude.  Performance objectives in this
phase are attitude control, number of overshoots, and size of overshoots.  An overshoot in this case is defined
as any deviation above the specified takeoff attitude.  The purpose of the overshoot limit is to prohibit
over–rotation.  Some suggested performance objectives for takeoff rotation are given in table LVIII.
Determination of performance objectives for overshoot are dependent on aircraft geometry and the
recommended takeoff attitude.

After main wheel liftoff, the pilot maintains a specific flightpath angle and groundtrack.  He maintains this
flightpath until the landing gear has been retracted and all transients have settled out.  Some suggested
performance objectives for takeoff climbout are given in table LVIII.  Determination of performance objectives
for flightpath control should consider what cues are available to the pilot.  In most cases pitch attitude is used
as a substitute when flightpath angle is not an available cue.  The tolerance for adequate flightpath control
should not allow a negative flightpath angle.  For groundtrack control, heading angle may be used as a
substitute for deviation from runway centerline.

It would be impractical to evaluate takeoff roll with a long–look technique in flight test because the aircraft
would have to land and taxi back to the end of the runway each time.  However, rotation and climb–out could be
evaluated with a long–look technique by doing touch–and–goes.   On a ground–based simulator the entire
task could be done using a long–look technique.  As with the landing tasks, light random turbulence and
moderate discrete gusts should be used to increase the pilot’s “gain” on a ground–based simulator.
Degradation with atmospheric disturbances (4.9.1) can be evaluated on the ground simulator by increasing
the turbulence and gusts and by adding crosswinds and wind shears.

VERIFICATION LESSONS LEARNED

An important source of guidelines on the use of tracking techniques for handling qualities evaluation is
AFFTC–TD–75–1.  AFFTC–TD–75–1 discusses execution and analysis of results of both air–to–air and
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air–to–ground tracking techniques.  Many of the recommendations in AFFTC–TD–75–1 are also applicable to
other closed–loop handling qualities evaluation techniques.  Further discussions of the design and conduct of
handling qualities testing and the use of the Cooper–Harper scale can be found in CAL Report TB–1444–F–1,
NADC–85130–60, NASA TN D–5153, AIAA 89–3358, and AIAA 90–2822.

Some of the. most detailed descriptions of closed–loop evaluation tasks which have been used in the past can
be found in  USAFTPS and AFFTC handling qualities test plans and flight test reports.  Descriptions of several
tasks taken from USAFTPS Letter Reports can be found in AFFDL–TR–77–34 and AFFDL–TR–79–3126.
AFFTC handling qualities reports which contain descriptions of several closed–loop evaluation tasks include
AFFTC–TR–75–15 (the YF–16), AFFTC–TR–77–11 (the A–10), AFFTC–TR–77–23 (the YF–16 Control
Configured Vehicle (CCV)), AFFTC–TR–83–45 (the Advanced Fighter Technology Integration AFTI/F–16),
and AFFTC–TR–91–29 (the F–15 STOL and Maneuver Technology Demonstrator (S/MTD)).

Another source of closed–loop evaluation tasks is the Standard Evaluation Maneuver Set (STEMS).  The
results of this project are documented in WL–TR–93–3081, WL–TR–93–3082, and WL–TR–93–3083.  The
main products of this project were:  1) a process to develop handling qualities evaluation maneuvers, 2) an
initial set of 20 evaluation maneuvers tested in ground simulation, and 3) guidelines to help users select
appropriate maneuvers.  WL–TR–93–3081 describes the maneuver development process.
WL–TR–93–3082 provides descriptions of the initial set of evaluation maneuvers and a selection guide.
WL–TR–93–3083 documents the results of the ground simulation tests of the initial maneuver set.  The
maneuvers developed in this project were primarily aimed at evaluation of agility and high–angle–of–attack
flying qualities, however, there were some conventional flying qualities evaluation maneuvers as well.
AIAA–93–3645 provides a summary of the STEMS project.

Air–to–Air Tracking

Air–to–air tracking is one of the most commonly used handling qualities evaluation techniques.  Examples of
the use of this kind of task can be found in many handling qualities reports.  The task descriptions and
performance objectives recommended in Verification Guidance stem largely from numerous USAFTPS
projects conducted in the mid–1970s to the early 1980s using the variable–stability NT–33A.  The task
descriptions in these projects remained fairly similar throughout this period and are documented in
AFFDL–TR–77–34 and AFFDL–TR–79–3126.  In the earliest of these tests the performance objectives for
Cooper–Harper ratings were undefined.  The performance objectives gradually became better defined with
succeeding projects.  The performance objectives suggested in Verification Guidance reflect the objectives
used in the later projects.  Similar performance objectives were used on McDonnell–Douglas and Wright
Laboratory ground simulators during the development of the F–15 S/MTD (WRDC–TR–89–3036).

Some other target maneuvers which have been used in air–to–air tracking are a modified Lazy–Eight
maneuver, a constant–g barrel roll, and an unpredictable target maneuver.  Discussions of the use of the
modified Lazy–Eight and the barrel roll maneuver can be found in AFFDL–TR–79–3126.  The unpredictable
target is a target which is free to maneuver within certain restrictions.  Normally, it is restricted in airspeed
(typically within �50 knots of test condition), altitude (typically within �1000 feet of test condition), load
factor, and onset rate (typically restricted to no more than .5 g/sec).

One of the conventional evaluation tasks of the STEMS project was Tracking in Power Approach.  The task
was to track a target aircraft from approximately 1500 ft range in power approach configuration at approach
airspeed.  The target performed gradual S–turns with periods of straight flight between turns.  Constant
altitude was maintained during the maneuver.  The evaluation pilot selected specific aim points on the target
and tracked them during the maneuver.  In the simulation, different target profiles were required for different
Classes of aircraft.  For fighter aircraft, the target performed a 30�  heading change every 20 seconds.  For
transport aircraft, a 15�  heading change was performed every 15 seconds.  Desired performance was to keep
the pipper within �5 mils of the aim point for 50% of the task and within �25 mils for the remainder of the task,
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with no PIO.  Adequate performance was to keep the pipper within �5 mils of the aim point for 10% of the task
and within �25 mils for the remainder of the task.  This maneuver can be performed at a safe altitude before
attempting precision landings.

HUD tracking tasks have been used in a number of handling qualities research programs.   Some example
step–and–ramp tracking sequences are shown on figure 273. The sequences shown in a) and b) are pitch
tracking sequences that were used on the NT–33A in USAFTPS projects (USAFTPS Report 82B–4).  The two
sequences shown in c) are a combined pitch and roll tracking sequence used on the NT–33A and on
Calspan’s variable–stability LearJet in many recent projects (Calspan Report No. 7738–24).      Another type of
sequence in use is a sum–of–sines.  This is a frequency–based function driven by an equation such as:

=  K
n

i=1
A i sin(     t +    )⇧ ⇤⌅c ∑ i i

 where ⌅c  = the commanded pitch attitude (or bank angle)

K = the task gain

n = the number of sine waves

A i =  the amplitude of each sine wave

⇧ i ⇥  the frequency of each sine wave

⇤ i  = the phase of each sine wave

Such a function was used in a project on the LearJet (AFFTC–TLR–93–41) using 13 sine waves evenly
spaced in frequency between 0.1 and 30 rad/sec.  The HUD symbology usually used in HUD tracking tasks
are tracking bars, but with the computational power and electronic displays available today, it is worth
considering special flight test software to provide a more definitive target.

One advantage of HUD tracking tasks is that, if the HUD update rate and HUD dynamic characteristics are
duplicated in the simulators, the task itself can be identical between ground simulation, in–flight simulation,
and flight test, providing a greater degree of commonality between these three stages of evaluation.     Bear in
mind, though, that HUD dynamic characteristics will affect handling qualities more in these tasks than in tasks
such as formation flying or VFR landings.

Air–to–Ground Tracking

Previous flight test programs which have used air–to–ground tracking techniques include the A–10
(AFFTC–TR–77–11 and Brandeau, AFFDL–TR–78–171), YF–16 CCV (AFFTC–TR–77–23), and AFTI/F–16
(AFFTC–TR–83–45).  A very promising system for an air–to–ground tracking task called GRATE (Ground
Attack Targeting Equipment) was developed and tested by the Deutsche Forschungs–und Versuchsanstalt
fur Luft–und Raumfahrt (DFVLR) in the 1980s (Koehler, NASA CP 2428 and Koehler, AGARD–CP–452).
This task used a pattern of lights on the ground as a target.  The pilot acquires and tracks each light in turn as
the lights are illuminated in a specific sequence.  The Germans evaluated this task with an AlphaJet with great
success.  The task was also subsequently used successfully on a ground–based simulator (Biezad,
AFWAL–TR–86–3093).  In 1987 the Dryden Flight Research Center (DFRC) developed a derivative system
known as the Adaptable Target Lighting Array System (ATLAS).  This system has been tested with the NT–33
(USAFTPS–TR–88A–TM1), the X–29 (NASA  TM 101700), and the F–15 S/MTD.  An example of a typical
ATLAS array is shown on figure 274.  The ATLAS system is currently operational at DFRC at Edwards AFB.
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t (sec)

a)  Pitch tracking task

�  (deg)

�  (deg)

t (sec)

b)  Pitch tracking task

FIGURE 273.  Example step–and–ramp HUD tracking sequences.
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t (sec)

t (sec)
c)  Combined pitch and roll tracking task

� (deg)

� (deg)

FIGURE 273.  Example step–and–ramp HUD tracking sequences – continued.

Downloaded from http://www.everyspec.com



MIL–STD–1797A
APPENDIX A

108pNEW PAGE

Direction of flight

111 M 89 M 87 M
32 M

32 M
22 M
22 M
32 M

FIGURE 274.  Typical ATLAS light pattern (from NASA TM 101700).

Close Formation Task

Formation flying tasks were used in the evaluations of the YF–16 CCV (AFFTC–TR–77–23), the AFTI/F–16
(AFFTC–TR–83–45), and the F–15 S/MTD (AFFTC–TR–91–29 and WL–TR–92–3027).  The YF–16 CCV
evaluation included station keeping and position changes during straight and level flight and in “mild to
moderate” lazy–eight maneuvers.  Vertical and horizontal position changes of 500 feet and 50 feet were
made.

AFTI/F–16 formation tasks were done in close trail and wingtip positions.  The following descriptions are taken
from AFFTC–TR–83–45.

“The close trail evaluations were conducted with the AFTI/F–16 in a position ten feet below the lead
aircraft with zero to ten feet nose–to–tail separation.  The lead aircraft flew between 250 to 300 KCAS
while making gentle maneuvers.  This maneuvering included bank angle variations up to 30 degrees
and gentle climbs and descents.”

“The close formation evaluations were conducted with the AFTI/F–16 in a tight position off the wing of
the lead aircraft.  After a reasonable buildup, the AFTI/F–16 pilot flew as close to the lead aircraft as
was comfortable.  The lead aircraft flew either in level flight or through a series of lazy eight
maneuvers.  Bank angle changes ranged between ±90 degrees, pitch attitude ranged between �45
degrees, airspeed between 200 and 500 KCAS and load factor between one and five g’s.  In this task
the pilots attempted to maintain a precise position relative to the lead aircraft using fingertip formation
techniques.  The AFTI/F–16 would intentionally make lateral and vertical deviations in order to
evaluate the aircraft’s ability to return to the nominal position.”

In the F–15 S/MTD program a formation task was used to evaluate PIO tendencies in power approach.  The
pilot attempted to maintain formation with an A–37 while the A–37 performed random 0.25–g step inputs
(three to five foot vertical variations).

Aerial Refueling

Boom tracking with a HUD pipper or a waterline symbol has been done in several programs at AFFTC.  In
every case, however, it was done using the HQDT technique (described in 5.1.11.6 Verification Guidance),
where the objective was zero pipper error.  At this time there is no data to support the suggested performance
objectives for this task other than the fact that these objectives have been successfully applied in other kinds
of tracking tasks.
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Boom tracking using visual alignment with the tanker was proposed as a handling qualities task by the 4950th
Test Wing in a flight test project to develop an aerial refueling evaluation task for Class III aircraft.  The tanker
aircraft in their project was a KC–135.  The visual desired zone for their task was between the rivet lines on the
bottom of the KC–135.  The adequate zone was the edges of the fuselage.  A diagram of these zones is shown
in Figure 275.  In the test they used two different evaluation aircraft:  a C–135 and a C–18.  The performance
objective was the cumulative time the evaluation pilot could keep the boom nozzle aligned within the desired
zone during two minutes of tracking.  Four different levels of desired performance were tested:  30 seconds,
45 seconds, 60 seconds, and 75 seconds.  Adequate performance was defined as keeping the nozzle within
the adequate zone for the entire 2 minutes.  Unfortunately, the pilots considered both aircraft Level 2 for this
task because of the amount of compensation required.  The results for all four levels of desired performance
gave Level 2 C–H ratings for both aircraft, thus the C–H ratings give no indication of which is the best value to
use for desired performance.  The results do lend credence to their choice of adequate criteria, but this was
not a variable in the test.  Nevertheless, based on the performance achieved with both aircraft throughout the
project, the pilot consensus was that 60 seconds in the defined desired zone (or about 50% of the tracking
time) was “both attainable and realistic” and that the task was demanding enough to expose undesirable
handling qualities.  This project was documented in 4950–FTR–93–05.

Adequate
Zone

Desired
Zone

FIGURE 275.  Adequate and desired performance for 4950th              
boom tracking task (from 4950–FTR–93–05).

The STEMS project also tested a boom tracking task.  The task was to track the refueling probe of a tanker
from the pre–contact position.  The evaluation pilot can track a steady probe, periodically changing aim points
on the boom (such as the boom wingtips), or the boom operator can make small random horizontal and
vertical movements with the boom to create tracking errors.  Desired performance in the STEMS project was
to maintain the aim point within a 30–mil radius of the pipper for at least 50% of the task, with no objectionable
PIOs.  Adequate performance was to maintain the aim point within a 50–mil radius of the pipper for at least
50% of the task.
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Probe–and–drogue refueling was used as an evaluation task in an experiment with the NT–33A documented
in AFFDL–TR–74–9.  Standard probe–and–drogue refueling procedures were used.  However, adequate and
desired performance objectives were not explicitly defined for this project.  The performance objectives
suggested in Verification Guidance are taken from a USAFTPS study of response–types for
probe–and–drogue refueling performed with the NT–33A in October 1993.

A position–keeping evaluation task has been used extensively for tanker evaluations including the S–3 with a
buddy store, the KC–10, the KC–130, and the KC–135.  A detailed description of this test technique and
lessons learned from these test programs is provided in AGARD CP–519.

Offset Precision Landing

This is another task which is so widely used for handling qualities evaluations that descriptions of it can be
found in many handling qualities reports, particularly those that deal with approach and landing.  The
suggested performance objectives for the approach and touchdown phases are taken largely from Calspan
experience with the NT–33A and the Total In–Flight Simulator (TIFS).  Discussions of the use of this task can
be found in NASA CR 172491, NASA CR 178188, AFWAL–TR–81–3118, and AIAA 93–3816.

Some data on the size of the suggested landing zone was provided in a USAFTPS project which studied the
effect of different performance objectives on touchdown C–H ratings with three different Class IV aircraft:  the
F–15D, the F–16D, and the F/A–18B.  The experiment looked at three different desired landing zones:  25 feet
wide by 200 feet long, 50 feet wide by 400 feet long, and 75 feet wide by 600 feet long.  C–H ratings for each
aircraft and each landing zone were compared with the pilots’ qualitative appraisal of each aircraft.    For the
75x600 foot zone, all three aircraft received basically Level 1 C–H ratings.  For the 50x400 foot zone, the
F/A–18 received basically Level 1 C–H ratings, the F–15 had borderline Level 1/Level 2 C–H ratings, and the
F–16 got basically Level 2 C–H ratings.  For the 25x200 foot zone, all three aircraft received basically Level 2
C–H ratings.  The project report found the results from the 50x400 foot zone to be most representative of the
pilots’ qualitative opinions of each aircraft.

Additional data on the size of the suggested landing zone was provided in a project by the 4950th Test Wing
which studied the effect of different performance objectives on touchdown C–H ratings with three different
Class III aircraft:  the C–141A, the C–135A/E, and the C–18B.  The experiment looked at four different desired
landing zones:  20 feet wide by  200 feet long, 40 feet wide by 400 feet long, 60 feet wide by 800 feet long, and
80 feet wide by 1000 feet long.  C–H ratings for each aircraft and each landing zone were compared with the
pilots’ qualitative appraisal of each aircraft.  All three aircraft were considered Level 2 for the landing task.
The final report (4950–FTR–93–05) recommended the 40x400 foot zone.  For this zone, desired performance
was met 6 out of 12 times, and the pilot ratings comprised two C–H ratings of 3 and four C–H ratings of 4.
Interestingly, this suggested landing zone is very similar to the one recommended by USAFTPS for Class IV
aircraft.

The performance objectives for STOL aircraft are taken from experience on the F–15 S/MTD program.
Discussions of the tasks used in the S/MTD program can be found in AFWAL–TM–87–180–FIGC,
WRDC–TR–89–3036, AFFTC–TR–91–29, and WL–TR–92–3027.

Takeoff

The takeoff task described in Verification Guidance was taken from the F–15 S/MTD program.  This task was
only used as an  evaluation task on the McDonnell–Douglas and Wright Laboratory simulators.  It was not
used as an evaluation task in the flight test program.  Descriptions and results of the use of this task can be
found in AFWAL–TM–87–180–FIGC and in WRDC–TR–89–3036.
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4.1.7 Aircraft Failure States. The contractor shall define and tabulate all Aircraft Failure States which can
affect flying qualities. Aircraft Failure States consist of Aircraft Normal States modified by one or more mal-
functions in aircraft components or systems; for example, a discrepancy between a selected configuration
and an actual configuration. Those malfunctions that result in center–of–gravity positions outside the center–
of–gravity envelope defined in 4.1.1 shall be included. Each mode of failure shall be considered in all subse-
quent Flight Phases.

REQUIREMENT RATIONALE (4.1.7)

This tabulation is the starting point for a failure modes and effects analysis, which is necessary in a complex
aircraft to assure flying qualities adequate for mission effectiveness and flight safety.

REQUIREMENT GUIDANCE

The related MIL–F–8785C paragraph is 3.1.6.2.

Because of the exhaustive work often involved and low confidence in the failure probability calculations, there
is a tendency for the procuring activity to substitute a priori  list of specific failures.  If a design is far enough
along and not excessively complex, such an approach can work.  See the guidance for 4.1.7.1. However,
generally comprehensive reliability analyses will be required anyway.

Whether the approach to failure effects on flying qualities is probabilistic, generic or a combination, failure
possibilities of the specific aircraft must be catalogued thoroughly enough to assure adequate mission effec-
tiveness and flight safety.

REQUIREMENT LESSONS LEARNED

There is more to determining Failure States than just considering each component failure in turn. Two other
types of effects must be considered. First, failure of one component in a certain mode may itself induce other
failures in the system, so failure propagation must be investigated. Second, one event may cause loss of more
than one part of the system or can affect all channels:  a broken bracket, a single crack, a fire, an electrical
short, inadequate ground checkout, etc..  The insidious nature of possible troubles emphasizes the need for
caution in design applications.

5.1.7 Aircraft Failure States—verification. The contractor shall furnish the required data in accordance with
the Contract Data Requirements List.

VERIFICATION RATIONALE (5.1.7)

Definition of aircraft failure states is basic to the application of the flying qualities requirements.

VERIFICATION GUIDANCE

Generally, compliance will amount to identifying pertinent items from the list required by the reliability specifi-
cation, and checking for completeness.  Although the task may seem formidable, the alternative to a thorough
review is a certainty that something important will be overlooked.

VERIFICATION LESSONS LEARNED
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TABLE X.  Control–margin increments.

Flying Quality ⇤⌅      /⇤ n   = 57.3 CAP�/M   deg/g (for T     < 0.05)

Stabilization ⇤⌅         /⇤ n   = 57.3                                         deg/g (linear, 2 DOF)

Turbulence �    /�     fn of M   ,  M  , �        , �         ,  structural modes

– most severe at low q
– 3�    and �     for severe turbulence recommended

Sensor Noise �   /�     fn of K   , K   , �    , 1/T  , �       , �        , �

Flying Quality ⌅    /n    = 57.3 CAP/(M       T     ) for desired CAP

Stabilization ⌅       /n   < ⌅      /n   if FCS stability margins OK &           > �

⌅      /n   fn of 1/T     , 1/T       , �         , �

Turbulence �    /�    fn of 1/T   , �        , �        , M

– most severe at low q
– 3�     recommended for control margin

Sensor Noise �    /�     = K   K       fn (�   , 1/T   and, for low �         : �         , �         , � ⇥

– These parameters are not all independent
– 3�     recommended for control margin
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⇤ nc  is the commanded increment of normal acceleration
1/T⇥  is the unstable pole of the transfer function (negative; 1/sec)
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2  is the 2–deg–of–freedom product of the poles, 1/sec2
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 and � spc�

 are the closed–loop frequency and damping ratio of the short period mode
CAP is �
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, CAP� is �
. �
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� s  is the sensor bandwidth
Ks , KF are the sensor and forward–loop gains
� s , � w are the rms intensities of sensor noise and vertical gusts

� c  is the crossover frequency of the 
. �

⌅ /nc  transfer function
T eff  is the effective time constant of command–path plus forward–path control–loop elements (such as
prefilters and actuators)
Ta is the time constant of the actuator ram
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FIGURE 11.  Control margin requirements.
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4.1.11.6  Pilot–in–the–loop oscillations (PIO).  There shall be no tendency for pilot–in–the–loop
oscillations, that is, sustained or uncontrollable oscillations resulting from efforts of the pilot to control the
aircraft.  More specific requirements are in 4.2.1.2, 4.2.2, 4.5.2, and 4.6.3.

REQUIREMENT RATIONALE (4.1.11.6)

This general qualitative requirement, applicable to all axes, covers those axes of control for which there is no
data base for more specific requirements.

REQUIREMENT GUIDANCE

The applicable MIL–F–8785C requirements are paragraphs 3.2.2.3 and 3.3.3.

PIOs were a consideration in setting the boundaries of 4.2.1.2 and 4.5.1.3 through 4.5.1.5.

REQUIREMENT LESSONS LEARNED

Likely causes are equivalent time delay, control system friction, inappropriately–located zeros of aircraft
transfer functions, or nonlinearities such as rate limiting, hysteresis, and abrupt control system gain changes.
See the discussion under 4.2.2.  NORAIR Rpt No. NOR–64–143 discusses a number of possible PIO
mechanisms.

5.1.11.6  Pilot–in–the–loop oscillations (PIO) – verification.  Verification shall be by analysis, simulation,
and flight test.  Final verification shall be by demonstration in the following tasks:                                .

VERIFICATION RATIONALE

The need to use high–gain, closed–loop tasks to evaluate handling qualities, in addition to comparison with
open–loop requirements, is fully discussed in the Verification Rationale of 5.1.6.1 through 5.1.6.3.  An
additional reason, if any more are needed, is that most of the open–loop requirements assume a linear
system.  Pilot evaluation in high–gain, closed–loop tasks is at this time the best evaluation of the effects of
nonlinearities.  This is particularly important in the evaluation of PIO tendencies because nonlinearities,  such
as rate limiting, hysteresis, abrupt gain changes, and aerodynamic nonlinearities, are some of the common
causes of PIO.

VERIFICATION GUIDANCE

Pilot–vehicle analysis in the manner described in the discussion of the cited paragraphs should help in the
design stage.  Ground–based simulation may or may not show up any PIO tendencies.  Flight evaluation in
variable–stability aircraft is a valuable tool.  Final determination will come from flight test of the actual vehicle.

The recommended tasks to demonstrate compliance with this requirement are the tasks described in
Verification Guidance of 5.1.6.1 through 5.1.6.3 using the HQDT technique.   AFFTC makes a distinction
between HQDT and “operational” closed–loop evaluation tasks.  The key element of the HQDT technique is
that the pilot must attempt to totally eliminate any error in the performance of the task; he adopts the most
aggressive control strategy that he can.  Adequate and desired performance are not defined and
Cooper–Harper ratings are not recommended.  The reason for this is that, in the “operational” tasks, definition
of adequate and desired performance encourages the pilot to adopt a control strategy which best meets these
performance objectives.  In the case of a PIO–prone airplane, attempting to totally eliminate any deviation
may induce oscillations which reduce his performance, but by accepting small errors (reducing his gain) the
pilot may be able to avoid these oscillations and still meet the performance objectives (which, by their
definition, allow such a tactic).  The HQDT technique does not allow the pilot to do this, thus exposing any
possible handling qualities deficiencies.  HQDT could be considered a “stress test” of handling qualities.     For
this reason, the HQDT technique is considered the best test of PIO tendencies.

HQDT is not exclusively a PIO evaluation technique.  It is a general handling qualities evaluation technique.    It
is discussed in more detail here in the PIO requirement because it is a better PIO evaluation technique than
the “operational” technique.  On the other hand, the “operational” technique uses performance objectives
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more representative of operational use, and the C–H ratings provide a quantitative measure of flying qualities
which can be related to the required Levels.  Therefore, use of both techniques is recommended in the flight
test evaluation, as well as parameter identification techniques and capture tasks.  As mentioned in the
Verification Rationale of 5.1.6.1 through 5.1.6.3, the recommended parts of the handling qualities evaluation
are: 1) steps, doublets, and frequency sweeps for parameter identification and comparison to open–loop
requirements, 2) capture tasks for pilot familiarization with aircraft dynamic response and evaluation of gross
acquisition, 3) HQDT for initial handling qualities and PIO evaluation (HQDT may also provide good inputs for
frequency–domain analysis), and 4) “operational” tasks for handling qualities evaluation with C–H ratings.

The PIO tendency classification scale shown on figure 12 has been developed specifically for evaluation of
PIO tendencies.  It can be used with either the HQDT or the “operational” techniques.     Comparing the PIO
rating descriptions with descriptions of Levels of flying qualities, a rough approximation would be:  PIO ratings
of 1 or 2 would be Level 1, PIO ratings of 3 or 4 would be Level 2, and a PIO rating of 5 would be Level 3.  A PIO
rating of 6 would be extremely dangerous.

Do
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Motions Tend to
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Is
Task

Performance
Compromised?
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Oscillations

Pilot Initiated
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or
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FIGURE 12.  PIO tendency classification from AFWAL–TR–81–3118.
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 Tom Twisdale provides some guidance on possible HQDT tasks:

Probably any test maneuver that allows the evaluation pilot to aggressively and assiduously
track a precision aim point is a suitable HQDT test maneuver.  In HQDT testing, the test
maneuver is not nearly as important as the piloting technique.     It is the piloting technique that
increases the evaluation pilot’s bandwidth and makes possible a good handling qualities
evaluation.  For this reason there is no exclusive catalog of HQDT maneuvers.  The ones
discussed below have worked well, but others, perhaps better suited to a particular airplane,
may be invented as the need arises.

Air–to–Air HQDT

Air–to–air HQDT involves tracking a precision aimpoint on a  target airplane while using a
fixed, or non–computing gunsight.  There are three main variations of air–to–air HQDT:
constant load factor HQDT at a constant range of about 1500 feet; wind–up turn HQDT at a
constant range of about 1500 feet; and HQDT while closing on the target.

The purpose of a constant load factor air–to–air HQDT maneuver is to evaluate handling
qualities at a specific angle of attack.  The maneuver begins with the test airplane positioned
1500 feet behind and offset above, or below, or to the inside of the target.  The offset position
is helpful in avoiding jetwake encounters.  At the evaluation pilot’s signal the target pilot rolls
smoothly into a turn and slowly increases load factor until the test load factor is attained.  A g
onset rate of two seconds or so per g is satisfactory.  When the test load factor has been
attained the target pilot calls “on condition” and maintains the turn and the test conditions for
the specified period of time, which will depend on the test and analysis objectives.  During the
load factor build–up the evaluation pilot turns on the airborne instrumentation system and
positions the target airplane 50 mils or so from the pipper or aiming index at a clock position of
1:30, 4:30, 7:30, or 10:30.  After the target pilot calls “on condition” the evaluation pilot calls
“tracking” and drives the pipper toward the precision aim point to initiate the evaluation.
The evaluation pilot continues to track while using the HQDT piloting technique, until the
target pilot or other aircrew or the control room calls “time”.  However the maneuver is not
concluded until  the evaluation pilot calls “end tracking”.   At that time the target pilot rolls out of
the turn.

The constant load factor air–to–air HQDT maneuver may be a constant turn to the left or right,
or turn reversals may be included.  When reversals are included they should be performed at
constant load factor.  The evaluation pilot continues to track the precision aim point
throughout the reversal, always using the HQDT piloting technique.

The evaluation pilot should maintain a 1500–foot separation from the target airplane.
Variations of a few hundred feet either way are permissible, but range to the target should not
be allowed to exceed 2000 feet.     Range may be determined stadiometrically with adequate
accuracy.

The purpose of a  wind–up turn air–to–air HQDT maneuver is to quickly explore handling
qualities across a range of angle of attack.  The maneuver gets under way when the target
pilot establishes the test conditions and calls “on condition”.  The evaluation pilot positions
the test airplane 1500 feet behind and offset above, or below, or to the inside of the target.
The offset position is helpful in avoiding jetwake encounters.  The evaluation pilot turns on the
airborne instrumentation system and positions the target airplane 50 mils or so from the
pipper  or aiming index at a clock position of 1:30, 4:30, 7:30, or 10:30.  The evaluation pilot
then signals the target pilot to begin the maneuver.  The target pilot rolls smoothly into a turn
and slowly increases load factor at a g onset rate of five or six seconds per g.  As the target
airplane begins rolling into the wind–up turn, the evaluation pilot calls “tracking” and drives
the pipper toward the precision aim point to initiate the evaluation.  The evaluation pilot
continues to track while using the HQDT technique, until the target pilot attains the target load
factor and calls “target g”.  The target load factor is maintained until the evaluation pilot calls
“end tracking”.  At that time the target pilot may unload and roll out of the turn.
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The evaluation pilot should maintain a 1500–foot separation from the target airplane.
Variations of a few hundred feet either way are permissible, but range to the target should not
be allowed to exceed 2000 feet.  Range may be determined stadiometrically with adequate
accuracy.

In HQDT with closure, the evaluation pilot slowly closes on the target airplane while tracking.
The purpose of the closing HQDT maneuver is to help the evaluation pilot distinguish attitude
dynamics from normal and lateral acceleration dynamics. Attitude dynamics are evident at
any tracking range, but translation caused by normal and lateral acceleration become more
noticeable as the evaluation pilot closes on the target.

In a closing HQDT maneuver the target airplane may either fly straight and level, maneuver
gently in pitch and roll, or perform a constant load factor turn.  Gently maneuvering or a
constant load factor turn is often preferred because it helps to increase the evaluation pilot’s
bandwidth.  In –all other respects the closing maneuver is similar to a constant load factor or
wind–up tracking turn.

The closing HQDT maneuver can begin once the target pilot has established the test
conditions and calls “on condition”.  The evaluation pilot positions the test airplane 1500 feet
behind and above, below, or to the inside of the target; turns on the airborne instrumentation
system; and positions the target airplane 50 mils or so from the pipper or aiming index at a
clock position of 1:30, 4:30, 7:30, or 10:30.  The evaluation pilot then signals the target pilot to
begin the maneuver.  The target pilot flies straight and level; or begins to maneuver gently and
randomly in pitch and roll; or performs a constant load factor turn.  The evaluation pilot calls
“tracking” and drives the pipper toward the precision aim point to initiate the evaluation.      The
evaluation pilot continues to track, using the HQDT technique,  while slowly closing on the
target airplane.  The rate of closure will depend on the desired tracking time (which will
depend on the test and analysis objectives).  The evaluation pilot may find it easier to control
the rate of closure if the control room or the target pilot or other aircrew announce the elapsed
time in five second increments.  At the end of the specified tracking time, the target pilot or
other aircrew or the control room calls “time”.  However the maneuver is not concluded until
the evaluation pilot calls “end tracking”.

Power Approach HQDT

Power approach HQDT is air–to–air HQDT performed with the test airplane configured for
power approach.  This maneuver is designed to evaluate approach and landing handling
qualities at a safe altitude (10,000 to 15,000 feet), rather than a few feet above the ground
during a real landing.  Power approach HQDT may be flown with or without closure, however
closure is a desirable feature because it helps the evaluation pilot distinguish between
attitude and translation dynamics.

The target airplane may either fly straight and level or maneuver gently in pitch and roll.
Maneuvering gently is often preferred because it helps to increase the evaluation pilot’s
bandwidth.  In all other respects the power approach HQDT maneuver is similar to a closing
HQDT maneuver.

Closure during the maneuver is useful for distinguishing attitude dynamics from normal and
lateral acceleration dynamics.  Attitude dynamics are evident at any tracking range, but
translation caused by normal and lateral acceleration become more noticeable as the
evaluation pilot closes on the target.

Jet–wake encounters are a frequent source of difficulty during power approach HQDT
testing.  Simple geometry, together with a maneuvering target airplane, make jet–wake
encounters difficult to avoid.  The slow speeds introduce the risk that a jet–wake encounter
will precipitate a stall or departure, although this has never occurred.  There are two solutions
to the problem of jet–wake encounters.  One is to use a small propellor–driven airplane as a
target.  Excellent candidates are the T–34C or Beechcraft Bonanza, or similar airplanes.
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These airplanes can easily match the slowest speeds of most military airplanes, and they
produce very little propwash.  The second solution is to use a target that is programmed into a
flight test head–up display, similar to the head–up display used on the Calspan NT–33.

Air–to–Ground HQDT

Air–to–ground HQDT involves tracking a precision aimpoint on the ground with a fixed, or
non–computing gunsight.  Shallow or steep dive angles may be used.  Shallow dive angles
approximate strafing attack profiles and steeper angles approximate ballistic weapons
delivery profiles.

The evaluation pilot trims the airplane at the specified dive entry altitude and airspeed, turns
on the airborne instrumentation system, calls “on condition”, and rolls or pitches to the
specified dive angle.  When the outer ring of the gunsight reticle crosses the precision aim
point, the evaluation pilot calls “tracking” and commences to  track the precision aim point
using the HQDT piloting technique.  The evaluation pilot continues to track until the recovery
altitude is reached, then calls “end tracking” and recovers from the dive.

A useful variation on the basic maneuver is to track two or more precision aim points, instead
of one.  For example, precision aim points may be positioned at each apex of an imaginary
isosceles triangle laid out on the ground.  This triangle has a base of 100 feet and a height of
375 feet (for 15 degree dive angles) or a height of 100 feet (for 45 degree dive angles) .
During the maneuver the evaluation pilot randomly switches from one precision aim point to
another, perhaps at a signal from the control room.

Boom Tracking HQDT

In boom tracking, the evaluation pilot tracks the nozzle on an aerial refueling boom.  This
maneuver is designed to explore aerial refueling handling qualities without the risk of close
proximity to a tanker and a refueling boom.

The tanker airplane establishes the test conditions of Mach number (or airspeed) and altitude
and maintains them during the test maneuver.  The boom operator positions the refueling
boom at zero degrees of azimuth and a midrange elevation angle.  When the test conditions
have been established the tanker pilot or the boom operator call “on condition”.  The
evaluation pilot moves the test airplane into position a short distance behind the nozzle (20 to
50 feet) and positions the nozzle about 50 mils from the pipper or aiming index at a clock
position of 1:30, 4:30, 7:30, or 10:30.  To begin the maneuver, the evaluation pilot turns on the
airborne instrumentation system, calls “tracking”, and drives the pipper toward the nozzle.
The evaluation pilot continues to track the nozzle, using the HQDT piloting technique, while
the boom operator randomly maneuvers the refueling boom in azimuth and elevation.  The
boom motion should be a combination of gentle and abrupt changes in rate and position.
After the specified period of tracking time (which will depend on the test and analysis
objectives) has elapsed, the control room or another crew member calls “time”.   The
maneuver is not concluded, however, until the evaluation pilot calls “end tracking”.

Formation HQDT

In formation HQDT, the evaluation pilot attempts to maintain a precisely defined position
relative to the lead airplane during a series of gentle maneuvers.     Properly done, formation
HQDT can highlight for the evaluation pilot the vertical and lateral translation dynamics of the
test airplane.  This maneuver is also useful for evaluating the throttle response of the
airplane.  Care must be taken not to force the evaluation pilot to fly too close to the lead
airplane.  Close proximity can increase bandwidth, but too close proximity can reduce it.      As
the separation between airplanes narrows, good and prudent pilots will reduce their
bandwidth to reduce the risk of collision.
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VERIFICATION LESSONS LEARNED

Attention to flying qualities per se during flight control design will take care of many potential problems.  PIOs
may occur early in the aircraft life as on the YF–16 high speed taxi test that got airborne before its first flight, or
later in service, as with the T–38 as more pilots got to fly it.  If PIO is not found readily, it should be sought during
the flight test program.
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4.2.2  Pilot–in–the–loop pitch oscillations.  There shall be no tendency for sustained or uncontrollable
pitch oscillations resulting from efforts of the pilot to control the aircraft.  The phase angle of the pitch attitude
frequency response to pitch stick force at the criterion frequency, � c , shall be greater than or equal to            .  If
this phase  angle  is  less than           , the phase parameter of normal acceleration at the pilot’s station, ⇧ , at the
same criterion frequency, shall be greater than or equal to               .  Furthermore, the requirements of 4.2.1.2,
4.2.8.1, 4.2.8.2, and 4.2.8.4 must be met.

REQUIREMENT RATIONALE (4.2.2)

The purpose of this requirement is to insure that abrupt maneuvers or aggressive tracking behavior will not
result in instabilities of the closed–loop pilot/aircraft system.  Any such tendency will degrade or even destroy
mission effectiveness and likely will be dangerous.

REQUIREMENT GUIDANCE

The related MIL–F–8785C requirement is paragraph 3.2.2.3.

Recommended values:

The recommended minimum phase angle of the pitch attitude frequency response to the pitch stick force at
the criterion frequency, � c , is –180� .

The value of � c  is determined as follows:

� c  = (0.24 rad–oct/dB–sec) S + 6.0 rad/sec

where S is the average slope of � (s)
Fes(s)  in dB/oct over the interval from 1 to 6 rad/sec.

If the phase angle of pitch attitude frequency response to pitch stick force is less than –160� , then the
recommended minimum value of the phase parameter of normal acceleration at the pilot’s station, ⇧ , at � c ,
is –180��

The phase parameter of normal acceleration at the pilot’s station, ⇧ , is defined by:

⇧⇥� c ⇤ ⌅ � Fes(j �   )c
(j �   )ca zp – (14.3 deg–sec/rad)  � c

where a zp  is  normal  acceleration at the pilot’s station.

A related requirement in 4.2.8.2.  Also, see 4.1.11.6 for a general PIO requirement.  The qualitative
requirement of MIL–F–8785C is generalized in view of uncertainties in the state–of–the–art of flight control
system design, a tacit recognition of the complexity of the PIO problem; no detailed specification is, at this
time, a guarantee against building a PIO–prone airframe/flight–control–system combination.

The requirement precludes PIO, PIO tendencies or general handling qualities deficiencies resulting from
inadequate pilot–vehicle closed–loop gain and phase margins.  PIO has occurred in the T–38A, A4D, and
YF–12 due to abrupt amplitude–dependent changes in aircraft dynamic response to pilot control inputs.
These effects can be of mechanical origin, e.g. bobweights coupled with static friction, or due to saturation of
elements within the control system, or due to compensation added to the automatic control system.  Other
known sources are short–period dynamics (e.g. large � sp T � 2 ), feel system phasing (e.g. effective
bobweight location not far enough forward), and sensitive control force and motion gradients.
AFFDL–TR–69–72 and Norair Rpt NOR–64–143 can furnish some insight.

The requirement above is popularly known as the Smith–Geddes PIO criteria.  It was proposed in its original
form in AFFDL–TR–77–57.  It was more fully developed as a general longitudinal response requirement in
AFFDL–TR–78–154, and further developed and extended to the lateral–directional axis in
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AFWAL–TR–81–3090.  No specific method for determining S was required in AFFDL–TR–78–154.  Smith
originally recommended a range of 2 to 6 rad/sec and computed S as the average of three linear
approximations of slopes between pairs of points one octave apart, i.e.:

S = 1
3 [ ]Fes

(4j)� – Fes
(2j)� +

Fes
(5j)� – Fes

(2.5j)� +
Fes

(6j)� – Fes
(3j)�

In AFWAL–TR–81–3090 the frequency range was extended to 1 to 6 rad/sec, and a similar formula was used
to compute S using five slopes instead of three, i.e.:

S = 1
5 [ Fes

(2j)� – Fes
(1j)� +

Fes
(3j)� – Fes

(1.5j)� +
Fes

(4j)�

]– Fes
(2j)� +

Fes
(5j)� – Fes

(2.5j)� +
Fes

(6j)� – Fes
(3j)�

This modification brought predictions of � c  more in line with observations based on Landing Approach
Higher Order System (LAHOS) data.  AFFDL–TR–78–154 advises using a consistent method to calculate S,
even when the slope of

� (s)
Fes(s)  varies considerably in the 1 to 6 rad/sec range.

The criterion frequency, � c , is an approximation of the crossover frequency of the pilot–vehicle system
during pitch attitude tracking.  This approximation is based on data from AFFDL–TR–65–15 shown on figure
276.  This figure shows crossover frequency as a function of forcing function bandwidth for different controlled
elements.  The equation for � c  was derived from this data as shown on figure 277, taken from
AFFDL–TR–78–154.  This equation was altered slightly in AFWAL–TR–81–3090 to the form recommended
in Requirement Guidance.  This modification was made in conjunction with the modifications in the calculation
of S to better fit the LAHOS data and F–15 CAS–off, supersonic PIO experiences.

The third parameter in this requirement, � ( � c ), is a phase parameter associated with the normal
acceleration sensed at the pilot’s station.  It consists of the aircraft phase angle of normal acceleration
frequency response plus a phase angle due to an assumed pilot response delay at the pitch attitude criterion
frequency, � c .  This parameter becomes important if there is too much phase lag in the pitch attitude
response to stick force;  thus the condition that this parameter be considered when the phase angle of the
pitch attitude response to stick force is less than –160 � .  This is a fundamental element of the Smith–Geddes
criteria, originally derived in AFFDL–TR–77–57, and was included in its original form in MIL–F–8785C and
MIL–STD–1797.  In the original form, �  was evaluated at � R  , where � R  was defined as any frequency
within the range of 1 to 10 rad/sec at which lightly damped (resonant) oscillations in pitch attitude could result
from turbulence inputs or from piloted control of the aircraft when used in the intended manner.  In
AFFDL–TR–78–154, � R  was replaced by � c  as defined above.  The concept behind this part of the
requirement is that, if the pitch attitude (� ) loop is resonant at � c , then the pilot may attempt to control normal
acceleration, a zp , instead of � .  The aircraft will be PIO prone if there is too much phase lag in this response.
The criteria for this requirement are based largely on correlation with the Neal–Smith data base
(AFFDL–TR–70–74).

The statement that requirements 4.2.1.2, 4.2.2, 4.2.8.1, 4.2.8.2, and 4.2.8.4 must also be met would seem to
be redundant, since these are already requirements.  However, recent history would seem to indicate that,
because the term PIO does not appear in these requirements, the importance of these requirements in
precluding PIO is not appreciated.  Many recent PIO incidents can be traced directly to problems addressed
by these requirements.  Therefore, these requirements are repeated here in the PIO requirement to insure
that their significance in precluding PIO tendencies is understood.
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Gibson’s views  of PIOs are taken directly from ICAS–86–5.3.4:

High order characteristics are associated with pilot–vehicle closed–loop handling problems
or PIO.  As this term has been used to describe low order problems, the differences should be
clearly understood.  The abrupt pitch bobble type is discontinuous, consisting of repeated
tracking corrections.  The sluggish pitch overdriving type is also discontinuous with input
pulses to stop the unpredictable excess in response.  Although the aircraft is not under
complete control, it is not out of control.

High order PIO is a continuous out of control attitude instability, the amplitude ranging from
small to large and potentially destructive.  Because the problem is due to inadequate
pilot–vehicle closed loop gain and phase margins, examination of the pitch attitude
frequency response identifies the cause and the solution.

Figure [76] shows the features which separate low and high–order pitch handling.  The area
of interest can be confined to the region of phase lags between 180 and 200 degrees which
determines the PIO frequency.  This arises from the success of the synchronous pilot
(NOR–64–143) in PIO analysis, assuming that any pre–PIO equalization is abandoned for a
pure gain behaviour in the undamped or divergent oscillation.  The correct frequency is
adopted instantaneously with the stick in phase with the pitch attitude error and 180 degrees
out of phase with the attitude.  The stick is not always moved so purely in practice, but very
often the pilot can be seen to apply the stick a little too quickly and then hold it while waiting for
the pitch rate reversal before also reversing the stick.

The tendency of a configuration to PIO can therefore be assessed without using a pilot model
by empirically establishing the range of characteristics found in actual PIO examples.
Enough have now been published to do this with considerable accuracy.  An important
feature at the PIO frequency is the response gain.  If this is small enough, dangerous
oscillation amplitudes cannot occur, and PIO has not been found where this is less than 0. 1
degrees per pound of stick force.  This is not a completely necessary condition but it is a
highly desirable design aim.

PIO’s have occurred most frequently, though not exclusively, in the landing flare.  The
connection with the commonplace stick pumping is well established.  This subconscious
excitation of pitch acceleration in the flare occurs near the same frequency as a PIO.  If the
attitude in the oscillation suddenly intrudes into the pilot’s awareness, a ready–made PIO is
already in existence.  The lower the frequency, the larger is the attitude oscillation at the usual
acceleration amplitude of about 6 deg/sec2, and the more likely the conversion becomes.
This indicates strongly the desirability of a high crossover frequency through the PIO region.

While an oscillation amplitude of less than 0.5–degrees in the flare will not usually be noticed,
the one significantly more than a degree is very likely to, this or the corresponding
pumping/PIO frequency is not an ideal parameter for correlation.  The most successful has
proved to be the rate at which the pitch attitude phase lag increases with frequency in the PIO
lag crossover region, equally applicable to the landing or to target tracking tasks.   By the
nature of the attitude frequency response, if the crossover frequency is low and the attitude
attenuates only slowly towards the crossover region, the phase rate is large.  If the frequency
is high and there is substantial attenuation, the phase rate is low.  The gain margin is
increased, the stick pumping amplitude is reduced, and the tendency to PIO is decreased
automatically by designing a low phase rate into the control laws.

This simple attitude parameter alone is almost sufficient to quantify the tendency to high
order PIO, and  it correlates well with available examples of high order PIO.  Figure [77]
shows the trends, with an accuracy good enough to allow  Level 1, 2, and 3 boundaries to be
drawn, if desired.  For the control law designer it is enough to aim for a phase rate of less than
100 degrees per cps and attitude response phase rate of less than 100 degrees per cps and
attitude response smaller than 0.1 deg/lb at the crossover.  These characteristics are a
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natural feature of low order aircraft whose attitude phase lag exceeds 180 degrees due to the
power control and so could in principle suffer from PIO, yet do not.    Early examples of
bobweight PIO were high–order in kind and are found to have had very large phase rates with
the stick free.

For most combat aircraft configurations, consideration of normal acceleration effects does
not improve the PIO analysis.  The g at the cockpit is usually attenuated and phase advanced
relative to the cg and will often not reach the 180 degrees lag necessary for piloted instability.
Human sensing of the g response is poor and at the initiation of the PIO the g may be
undetectable.  In large aircraft with the cockpit far ahead of the cg, the heave can have a
significant effect and has to be taken into account in the dominant requirement to optimize
the pitch attitude behaviour.

Although the attitude to stick force response gain is significant in PIO, there is little evidence
that a damper modifies the pilot’s stick phasing in a PIO and only the stiffness component
should be used.  Where PIO tendencies exist, they will be exacerbated by a high stick
stiffness.  Gradients of 5 to 8 lb/in with forces of 2 to 2.5 lb/g have proved to be extremely
satisfactory for [fly–by–wire] aircraft.  Designed to the phase rate and gain margin criteria
discussed above, the attitude gain phase rate and gain at the PIO frequency is only some 0.5
deg/in.  In AFFDL–TR–74–9, case 4D had high phase rate and low PIO gain margin.  With a
gradient of 22 lb/in and 6.7 lb/g it had an attitude gain of 7 deg/in at the PIO frequency.  Not
surprisingly it suffered from continuous pitch oscillations and severe tracking PIO, earning
ratings of 9 and 10.

The boundaries in the frequency response criteria of figure [75] are based directly on these
considerations and will eliminate high order PIO.  Low order PIO will also be eliminated by the
optimization criteria given above.

REQUIREMENT LESSONS LEARNED

The Smith–Geddes criteria has been used by AFFTC with considerable success for several years.  The
criteria has been used to analyze PIOs in the Space Shuttle, the F–15 with CAS–off, the AFTI/F–16, the
AFTI/F–111, the F–15 S/MTD, the YF–22, and the C–17.  Application of the criteria to the Space Shuttle was
documented in “Prediction and Occurence of Pilot–Induced Oscillations in a Flight Test Aircraft” by Twisdale
and Kirsten.   In an analysis of three PIOs in the Space Shuttle, the Smith–Geddes criteria correctly predicted
the PIO tendency and closely predicted the frequency of the PIO.  For a PIO in landing flare, the criteria
predicted a frequency of 3.5 rad/sec and the frequency of the observed PIO was 3.6 rad/sec.  In another PIO
at an altitude of 18,000 ft and a speed of 610 ft/sec, the criteria predicted a frequency of 3.3 rad/sec and the
observed frequency was 3.1 rad/sec.   In the final example, at a similar flight condition, a PIO occurred while
tracking a cockpit display.  When the display dynamics were added to the analysis, the criteria accurately
predicted the observed PIO frequency of 2.0 rad/sec.

A valuable lesson learned in the determination of the criterion frequency, � c , is found in a Northrop white
paper, “Evaluation of B–2 Susceptibility to Pilot–Induced Oscillations” by Margo L. Givens and Frank L.
George, presented at the Flying Qualities Working Group at the 1994 AIAA Atmospheric Flight Mechanics
Conference.

For the most part, the approach taken was as recommended by Ralph Smith in
[AFFDL–TR–78–154] which presented a straight forward process of evaluation.
Exceptions were made for criterion frequency selection.  The recommended method [in
AFFDL–TR–78–154] for criterion frequency selection is based on calculating an average
slope of the pitch attitude–to–controller Bode magnitude plot in the range of 2. 0 to 6. 0
rad/sec and then applying this value to the [� c ] formula.    This frequency range stipulation
was often inappropriate for the B–2 which has higher break frequencies than those systems
described in the [Smith–Geddes] documentation.  Because the validity of a [Smith–Geddes]
analysis is dependent on the correct selection of the criterion frequency, three other methods
of criterion frequency selection were evaluated.
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The first method, which has been used by Ralph Smith in the past, involved selecting
parameters for a pilot model, closing the pitch attitude loop, and obtaining an n z  to � gust
response power spectral density (PSD) in search of resonant frequencies which would be
defined as the criterion frequencies.  The implementation of this method was unproductive
because no resonant frequencies were found in the B–2 n z  PSDs.

The second method adapted the recommended � c  derivation formula to use the slope
calculated after the short period break rather than the average slope in the 2.0 to 6.0 rad/sec
frequency range.  This method worked quite well for most of the cases.  Because of the
occasional case which produced questionable results, a third method of frequency
determination was devised for use as a validity check on criterion frequencies derived using
method 2.

The third approach used typical B–2 pilot pitch stick input frequencies as the criterion
frequencies.  These frequencies were determined by calculating PSDs from stick, n z , and �
time histories of landings and refuelings extracted from flight test data.   It was found that the
� c  values calculated with the second method were consistent with these flight data pilot
stick input frequency ranges.

A very good summary report on PIOs is given in NOR–64–143.  The following paragraphs from that reference
discuss the causes of PlOs:

There are several ways of looking at the causes of a PIO.  One is to catalog all the PIO
situations ever recorded, including all the necessary subsystem details, etc., and then to say
that each combination of vehicle and subsystem when combined with the pilot was the cause
of a PIO.  Another way is to note that certain system phenomena such as
stick–force–to–control–deflection hysteresis often lead to PIO when other conditions are
right.  A third way, and one which seems to transcend the difficulties of the previous two, is to
say that certain inherent human physical limitations are the basic cause for any PIO.  This is
not to degrade the human pilot’s role but, instead, to  emphasize it, because it is unlikely that
any black–box could be devised which is as clever and effective in coping with
unmanageable controlled elements as a skilled pilot.  Were it not for the pilot’s versatile gain
adaptability, many flight conditions would be unstable.  But there is a limit to the rapidity with
which the human can adapt, and this can sometimes lead to a PIO.

When referred to the pilot, then, the basic causes of PIO seem to fall into the following
categories:

1. Incomplete pilot equalization

a. Incomplete training

b. Inappropriate transfer of adaptation (i.e., carry over of improper techniques from
another aircraft)

2. Excessive–demands on pilot adaptation

a. Required gain, lead, or lag lie outside the range of normal capabilities

b. Rate of adaptation is too slow to preclude oscillation

c. Inadequate capability to cope with system nonlinearities
3. Limb–manipulator coupling

a. Impedance of neuromuscular system (including limb) on control stick or pedals
changes feel system dynamics
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b.  Motion–induced limb force feedback (e.g., arm becomes a bobweight)

Table XIV, from NOR–64–143, lists some known PIO cases and their probable causes for then–current (early
1960s) aircraft.    The causes are equally relevant for modern aircraft, and the lessons learned from the cases
listed are valuable in preventing PIOs.

5.2.2  Pilot–in–the–loop oscillations – verification.  Verification shall be by analysis, simulation, and flight
test.

VERIFICATION RATIONALE (5.2.2)

It would be an easy matter for the engineers of the procuring agency to ascertain compliance with this
paragraph without relying on pilot/vehicle analysis methods.  For example, � c  and the specified phase lag
can easily be obtained from simulator or in–flight time histories (ground–based simulations will not show up
acceleration–dependent PIO tendencies).  Nonetheless, analytical estimates can – and should – be made by
the airframe manufacturer as part of the design evolution.  For flight evaluation, the PIO tendency
classification scale of figure 12 will be helpful.

VERIFICATION   GUIDANCE

The user should refer to AFFDL–TR–77–57, AFFDL–TR–78–154, and AFWAL–TR–81–3090 when applying
the quantitative requirement.  PIOs are associated with abrupt maneuvers and precise tracking as in
air–to–air gunnery, formation flying, flare, and touchdown. PIOs observed in flight are often not obtained in
ground–based simulators, even ones with some motion.  Tight, aggressive pilot control action will tend to bring
on any PIO tendencies.  High sensitivity to control inputs is often a factor.  Some pilots are more PIO–prone
than others, depending upon piloting technique.

VERIFICATION LESSONS LEARNED

These requirements are an attempt to catch and correct any PIO tendencies as early as possible in the
design, when changes are easiest and least costly to make.  They also have been found helpful in identifying
PIO tendencies in flight and determining fixes.
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4.2.3 Residual pitch oscillations. In calm air, any sustained residual oscillations shall not interfere with the
pilot’s ability to perform the tasks required in service use of the aircraft. For Levels 1 and 2, oscillations in
normal acceleration at the pilot station greater than ________ will be considered excessive for any Flight
Phase. These requirements shall apply with the pitch control fixed and with it free.

REQUIREMENT RATIONALE (4.2.3)

The requirement prohibits limit cycles in the control system or structural oscillations that might compromise
tactical effectiveness, cause pilot discomfort, etc. This requirement may be considered a relaxation of the
requirement in 4.2.1 for positive damping at all magnitudes of oscillation. Its intent is to recognize thresholds
below which damping is immaterial.

REQUIREMENT GUIDANCE

The related MIL–F–8785C requirement is paragraph 3.2.2.1.3.

The recommended value is 0.02g.  Given the proper data, this threshold could be made a function of
frequency in order to correspond more closely with human perception.

REQUIREMENT LESSONS LEARNED

Allowable normal acceleration oscillations have been decreased to 0.02 g from the 0.05 g of MIL–F–8785C.
This is based on flight test experience with the B–1 (AFFTC–TR–79–2), which encountered limit cycle
oscillations during aerial refueling, subsonic and supersonic cruise. A primary contributor was identified to be
mechanical hysteresis in the pitch system. According to AFFTC–TR–79–2, “Flying qualities were initially
undesirable due to this limit cycle.” Normal acceleration transients in cruise were about 0.05 – 0.12 g, as figure
94 shows. The limit cycle was eliminated by installation of a mechanical shaker (dither) vibrating at 20 Hz.

5.2.3 Residual pitch oscillations—verification. Verification shall be by analysis, simulation and flight test.

VERIFICATION RATIONALE (5.2.3)

Limit cycle amplitude depends on characteristics of the actual hardware and software, and so may be different
in simulations than in actual flight. Measurements of normal acceleration at the pilot’s station should be made
in the course of test flight to meet the other flying quality requirements.

VERIFICATION GUIDANCE

Residual oscillations are limit cycles resulting from nonlinearities such as friction and poor resolution.
Negative static stability will contribute and low damping may augment the amplitude. Thus high speed, high
dynamic pressure or high altitude may be critical. Residual oscillations are most bothersome in precision
tasks.

VERIFICATION LESSONS LEARNED
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4.2.5 Pitch trim changes. The pitch trim changes caused by operation of other control devices shall not be so
large that a peak pitch control force in excess of 10 pounds for center–stick controllers or 20 pounds for wheel
controllers is required when such configuration changes are made in flight under conditions representative of
operational procedure. Generally, the conditions of table IV will suffice for determination of compliance with
this requirement. With the aircraft trimmed for each specified initial condition, and no retrimming, the peak
force required to maintain the specified parameter constant following the specified configuration change shall
not exceed the stated value for a time interval of at least 5 seconds following the completion of the pilot action
initiating the configuration change.  The magnitude and rate of trim change subsequent to this time period
shall be easily trimmable by use of the normal trimming devices.  These requirements define Level 1.  For
Levels 2 and 3, the allowable forces are increased by 50 percent. __________

REQUIREMENT RATIONALE (4.2.5)

These frequently encountered pitch trim changes, if too large, can add to pilot workload at critical times during
a mission.

REQUIREMENT GUIDANCE

The related MIL–F–8785C paragraph is 3.6.3.1.

Table XV gives the recommended conditions (For aircraft with variable–sweep wings, additional requirements
should be imposed consistent with operational employment of the vehicle. Thrust reversing and other special
features also need to be considered). These are the trim changes that, when larger than the limits specified,
have been bothersome in the past.  Crossfeeds and feedbacks in the stability and control augmentation
system generally will reduce the magnitude of these trim  changes.  Wing downwash and vertical placement
of the engines are two of the determining factors. For thrust reversing, configuration–dependent
aerodynamics play an important role.

4.1.13 gives additional general trim requirements.

REQUIREMENT LESSONS LEARNED

The direction of the trim change can also be important, producing either helpful or unfavorable coupling. In
any case the magnitude should not be excessive.

5.2.5 Pitch trim changes—verification. Verification shall be by analysis, simulation and flight test.

VERIFICATION RATIONALE (5.2.5)

The evaluation should be made in the manner expected in operational practice, rather than necessarily
holding everything else constant.

VERIFICATION GUIDANCE

Initial trim conditions are listed in table XV.

VERIFICATION LESSONS LEARNED
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TABLE XV.  Pitch trim change conditions.

Initial Trim Conditions

 Flight Attitude Speed Landing High–lift Thrust Configuration Parameter
Phase Gear Devices Change to be held

& Wing constant
Flaps

 1 Approach h Normal Up Up TLF Gear down Altitude 
pattern and
entry speed airspeed*

 2 Up Up TLF Gear down Altitude
 3 Down Up TLF Extend high– Altitude

lift devices and and
wing flaps airspeed*

 4 Down Up TLF Extend high– Altitude
lift devices and
wing flaps

 5 Down Down TLF Idle thrust Airspeed
 6 V Down Down TLF Extend approach Airspeed

drag device
 7 Down Down TLF Takeoff thrust Airspeed
 8 Approach V Down Down TLF Takeoff thrust Airspeed

plus normal 
cleanup for wave–
off (go–around)

 9 Takeoff Down Take–off Take–off Gear up Pitch 
thrust attitude

10 Minimum Up Take–off Take–off Retract high– Airspeed
flap–retract thrust lift devices and
speed wing flaps

11 Cruise h Speed for Up Up MRT Idle thrust Pitch
and air– level flight attitude
to–air and
combat h

12 Up Up MRT Actuate de–
celeration
devices

13 Up Up MRT Maximum
augmented 
thrust

14 Speed for Up Up TLF Actuate de–
best range celeration

device

omax

omin

�
⇥�⇤

�
⇥�⇤

omin

* Throttle setting may be changed during the maneuver.                                            

Notes: – Auxillary drag devices are initially retracted, and all details of configuration not 
   specifically mentioned are normal for the Flight Phase.
– If power reduction is permitted in meeting the deceleration requirements established
  for the mission, actuation of the deceleration device in #12 and #14 shall be
  accompanied by the allowable power reduction.

�

�

�

�

�

�

�

�

�

�
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5.5.1.5  Time delay—verification.  Verification shall be by analysis, simulation and flight test.

VERIFICATION RATIONALE (5.5.1.5)

In the end, flight test data or a flight–verified analytical model should be used to verify compliance.

A control surface rate limit may increase the equivalent time delay or roll–mode time constant as a function of
the size of command.

VERIFICATION GUIDANCE

Appropriate values of ⇥�⇥ will require equivalent system matching, as discussed above. See guidance for
4.5.1.1.

VERIFICATION LESSONS LEARNED
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4.5.2  Pilot–in–the–loop roll oscillations.  There shall be no tendency for sustained or uncontrollable roll
oscillations resulting from efforts of the pilot to control the aircraft.  The phase angle of the bank angle
frequency response to roll stick force at the criterion frequency, ⇤ c, shall be greater than or equal to                   .
Furthermore, the requirements of 4.5.1.1, 4.5.1.3, 4.5.1.4, 4.5.1.5, 4.5.8.1, 4.5.9.2, and 4.5.9.3 must be met.

REQUIREMENT RATIONALE (4.5.2)

This roll–axis requirement is stated in addition to the general requirement of 4.1.11.6 to emphasize its
importance for the roll axis and to allow incorporation of a more quantitative requirement.

REQUIREMENT GUIDANCE

The related MIL–F–8785C requirement is paragraph 3.3.3.

Recommended values:

The recommended minimum phase angle of the bank angle frequency response to the roll stick force at the
criterion frequency, ⇤ c,  is –180� .

The value of  ⇤ c is determined as follows:

⇤ c = (0.24 rad–oct/dB–sec) S  + 6.0 rad/sec

where S is the average slope of (s)
Fas(s)
�  in dB/oct over the interval from 1 to 6 rad/sec.

This requirement is the Smith–Geddes PIO criteria extended to the lateral–directional axis.  The origins of the
Smith–Geddes criteria are traced in 4.2.2 Requirement Guidance, and discussions of the calculation of S and
⇤ c can be found there.  Application in the lateral–directional axis is similar to that in the longitudinal axis,
except that it is applied to � /F as  instead of to ⇥/F es .

The statement that requirements 4.5.1.1, 4.5.1.3, 4.5.1.4, 4.5.1.5, 4.5.8.1, 4.5.9.2, and 4.5.9.3 must also be
met would seem to be redundant, since these are already requirements.  However, recent history would seem
to indicate that, because the term PIO does not appear in these requirements, the importance of these
requirements in precluding PIO is not appreciated.  Many recent PIO incidents can be traced directly to
problems addressed by these requirements.  Therefore, these requirements are repeated here in the PIO
requirement to insure that their significance in precluding PIO tendencies is understood.

REQUIREMENT LESSONS LEARNED

The extension of the Smith–Geddes criteria to the lateral–directional axis was developed in
AFWAL–TR–81–3090.  In AFWAL–TR–81–3090, the lateral–directional criteria was used to analyze the
YF–16, the X–15, and the M2–F2 and M2–F3 lifting bodies and also compared with results from handling
qualities research projects with variable–stability aircraft:  an approach and landing evaluation with the NT–33
(AFWAL–TR–81–3116), an investigation of reentry vehicle lateral–directional dynamics on the NT–33
(WADD–TR–61–147), and one configuration from lateral–directional studies on the Princeton Navion
(Princeton University Report No. 727).  Most of the data support the PIO criteria, and, in those cases where
PlO was predicted but not encountered, handling qualities were usually poor.

See 4.2.2 for discussion of applicable considerations and data, in that case directed at longitudinal PIOs in
general.  The M2–F2 lifting body (NASA–TN–D–6496) encountered several divergent PIOs during flight
testing.  The primary cause was found to be the coupled roll subsidence/spiral mode (see Lessons Learned
for 4.5.1.3).
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Another cause of observed lateral PIO tendencies is the ⇥ � /⇥ d effect noted and explained in figure 158 and
also in Norair Rpt No. NOR–64–143.  Another prevalent cause is associated with control–surface rate
saturation.  In this case the pilot tries to apply lateral control at a rate greater than the maximum surface rate,
thereby getting out of phase if tight tracking is attempted.  The quantitative aspects of such rate–limiting are
given in the appendix of Norair Rpt No. NOR–64–143 and involve gain and phase decrements that are
functions of the ratio of commanded to saturation rate.

PIOs on recent aircraft have been related to roll responses which are both too low (F–18) and too high
(YF–16).  These cases are discussed under 4.5.8.1 and 4.5.9.3.  Control sensitivity, control surface rate
limiting, control surface saturation, and (equivalent) time delay are critical factors in roll PIO.

5.5.2  Pilot–in–the–loop roll oscillations – verification.  Verification shall be by analysis, simulation and
flight test.

VERIFICATION RATIONALE (5.5.2)

This requirement should apply to all flight conditions and tasks, and to all Levels, since zero or negative
closed–loop damping is to be avoided under all flight conditions and failure states.

VERIFICATION GUIDANCE

The existence of a PIO tendency is difficult to assess.     A high–stress task such as approach and landing with
a lateral offset, air–to–air tracking, or terrain following, may reveal PIO proneness.  Demanding tracking tasks,
aggressive control, sensitive response, proverse yaw, low dutch roll damping and long equivalent time delay
are factors varying with flight condition which may tend to incite roll PIOs.     Lateral acceleration induced on the
pilot in rolling may contribute.

VERIFICATION LESSONS LEARNED

In a number of cases optimization of p/F as  in a fixed–base simulator has resulted in gross oversensitivity in
actual flight.

Downloaded from http://www.everyspec.com



MIL–STD–1797A
APPENDIX A

569
REPRINTED WITHOUT CHANGE

2.  Multiply the result by N⌅
� rp /L⌅

� as, i.e., ⌅ rp� (3) = Y CF(3) �  N⌅
� rp /L⌅

� as

3.  Compare ⌅ �rp (3) with table XLIV

7. If 0.03 < |N⌅
� as/L⌅

� as| < 0.07, utilize the more conservative result from steps 5 and 6.

8. If the configuration does not meet the requirements, see figure 249 and table XLVII to
determine the type of expected piloting problems.

9. In the end, the transfer functions should be identified from flight data.

VERIFICATION GUIDANCE

The flight testing to obtain ⇥⇤ and ⇧ t command should  cover the range of operational altitudes and service
speeds.  As with roll rate oscillations (4.5.1.4), the critical flight conditions for compliance with this requirement
should in general become apparent during the roll performance testing of 4.5.8.1.  The most important flight
conditions for compliance demonstration of either alternative are those with low |⇧ /⇤ |d, less than 6.

An approximation for |⇧ /⇤ |d is

�(L ⇤ Y Lr ⇥

⇤

⇤ ⇤ ⇤�� � d � dLr (L ⇤ Y Lr ⇥⇤ ⇤
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4.6.3  Pilot–in–the–loop yaw oscillations.  There shall be no tendency for sustained or uncontrollable yaw
oscillations resulting from efforts of the pilot to control the aircraft in the air or on the ground.  Furthermore, the
requirements of 4.6.2 must be met.

REQUIREMENT RATIONALE (4.6.3)

This requiremnt, in addition to the general requiremnt of 4.1.11.6, is inserted to provide more specific criteria
for any task that might involve high–bandwidth control in yaw or lateral acceleration.  An example might be
yaw pointing for fine tracking.

REQUIREMENT GUIDANCE

The related MIL–F–8785C requirermnt is paragraph 3.3.3.

The statement that requirement 4.6.2 must also be met would seem to be redundant, since this is already a
requirermnt.  However, as with the corresponding requirements in the pitch and roll axes, because the term
PIO does not appear in requirement 4.6.2, the importance of this requirement in precluding PIO may not be
appreciated.  Therefore, requirement 4.6.2 is repeated here in the PIO requirement to insure that its
significance in precluding PIO tendencies is understood.

Due to the lack of a reliable quantitative measure, the requirement is written in terms of subjective evaluations.
It is of course hoped that meeting the (other) quantitative requirements of this standard will prevent a lateral
PIO.  This requirement is identical to the roll–axis requirement of 4.5.2.

This requirement should apply to all flight conditions and tasks, and to all Levels, since zero or negative
closed–loop damping is to be avoided under any flight condition or failure state.  High–bandwidth yaw–control
tasks are uncommon.    The  dynamic  yaw  response  requirement  (4.6.2.1)  is  designed  to account for the
need of rudder pedal in rolling, but may not cover all contingencies.   Some direct sideforce modes may involve
high–bandwidth yaw control; see AFWAL–TR–81–3027 and Sammonds, et al., for example.

REQUIREMENT LESSONS LEARNED

The pitch–axis PIO requirement, 4.2.2, discusses some causes of PIOs.  Factors known to contribute to
lateral–directional PIOs are large effective or equivalent time delays, excessive friction or hysteresis in the
flight control system, and the “⇥ � /⇥ d” effect described at length in AFFDL–TR–69–72 (See 4.5.1.4
discussion).  Depending upon the cause, ground–based simulation may or may not prove a useful
investigation technique – often it does not.

5.6.3  Pilot–in–the–loop yaw oscillations – verification.  Verification shall be by analysis, simulation and
flight test.

VERIFICATION RATIONALE (5.6.3)

A precision closed–loop task, performed aggressively, is needed.

VERIFICATION GUIDANCE

The existence of a PIO tendency is difficult to assess.  Therefore, no specific flight conditions or tasks are
recommended, though a high–stress task such as approach and landing with a lateral offset, terrain following,
air–to–ground tracking, or in–flight refueling (receiver) may reveal PIO proneness.

VERIFICATION LESSONS LEARNED
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