Downloaded from http://www.everyspec.com

MILSTD1778
12 AUGUST 1883

MILITARY STANDARD

TRANSMISSION CONTROL PROTOCOL

NO DELIVERABLE DATA REQUIRED BY THIS DOCUMENT

{PSC/SLHOTCTS

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

DEPARTMENT OF DEFENSE

WASHINGION, D.C. 20301
Transxission Control Protoerl
MIL-8TD-1778

1. This Military Standard is approved for use by all Depnrtmm:s and
Agencies of the Depar:nant of Defense,

2. Beneficial commants (recommandations, sdditions, delsations) and any
pertinent dats which may be of use in improving this document should be
addressed to: Defemse Communications Agency, ATIN: J110, 1860 Wieshle
Awnuoa, Reston, Virginia 22090, by using the salf-addressed Standardization
Document Improvement Proposal (DD Fom 1426) sppearing at the end of this
documsnt, or by lattear.

i1

L

—_

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

FOREWORD

This document spacifies the Tramsoiasion Control Protocol (TCP), & reliable
connaction=oriented trarnsport protocol for use 1o packet-sawitched communicae—
tioca networks and intarnstworks. The documsnt includes an overview with a
wodal- of oparation, a descripcion of services offered to users, aond & de=
scription of the architectural amd eoviromeental requiremears. The protocol

sarvica interfaces and mechaniseme are agpecified using sn extended state
aachine godel.

114

| MIL~STD-1778
12 August 1983

Paragraph 1.
1.1
1.2

1.3

2,
2,1
2.2

. « 9 b
NRBRNRNNRERNDRNN
»

L]
NMEBWMNMNBNRN
[-

-
»

" w &
s & ..
[)
W N

. " e o b @
L]
fo

*
&N

[- - - - - - - Y (VRVEVEV U RVEV RV EV RV RV]
’

[)
PP PP LWNNE

Downloaded from http://www.everyspec.com

CONTENTS

SCOPE ~ = = = = = = = = ~ = :
Purpose = = = = = = = = v = = =
Organization = = = =« =~
Application = = = = - =

REFERENCED DOCUMENTS= = = = = = =
Issues of documents = -~ = = = =
Other publicationgy = ~ = = = -

DEFINITIONS = ~ = = = = = = = = =
Definition of terng = ~ = = = =

GENERAL REQUIREMENTS~ = ~ ~ = = =

Gogl = = = = & = a2 s ma = e-

Hetwork layer provisiocos= = = =

TCP deslgn= = ~ = = =~ = = = = = ¢ = = = = = =
ICP mechanipas~ = = — = — = — = = = = = = = =

PAR mmchanisgn = = = = = = = =
Flow control machanigm= = = -
Multiplexing mechanism= = = -

DLP synchronlzation = = = = = = « = = = - -
UL modes ~ =~ =~ === = = = = = = = - -

Scenarilos = = « = v = v v = = =
Scanario notation = = = = = = -

SERVICES PROVIDED TO UPPER LAYER-

Service daescription = = = = = = = = = = =

Multiplexing service= = = = =
Connection management service
Connection eszablisbment -
Connection maintenance— - -
Counnection temination~ - -
Data transport service— - - -
Capabilities provided to ULPs
Error reporting service = =~ =

by TRP=-

UPPER LAYER SERVICE/INTERFPACE SPECIFICATIONS-
%‘l- e A S E e & W WS e A S E e W e ‘- e - - -

Interaction primitivase = = = = = =
Interaction primitive categories-—
Sarvice request primitives— = = - =

Parameter descriptions~ = = = = = = = = = =
Unspecified passive open- = = = = = = =

Fully specified pasaive open~ ~ =
Active open with datg = = = = ~ =

iv

J

= bt e bt
= s

14

B v R EEEU"Y LW NNN e

———

-

L]
u&’-‘*hb’rlbb"bbb&b

EEEEEEEEEDS PR

»
*

*
L]

L]
*

[]

L] []

] *

RVE XV SRR Uy

+

!'.

[]
O OO UEDEEWIWUWNNNM
L] »
M b

+
L4

[
P

¢« @ » o @
FRTRVETRTEV RV RV NV
)
e @
N

PO OOO?\ODOO{FOOO\OOGO\

.
(¥}

[-] a-cr-.a-mo-o
» [(VEVEVEV RVET
-

.
.

¢ e &

P e
L
w N

[]
*
*

6.5.6.1.5

6.5.6.1.6°

6.5.6.1.7
6.5.6.1.8
6.5.6.1.9

6.5.6.1.,10

Downloaded from http://www.everyspec.com

MIL-STD~-1778
12 August 1983

CONTENTS - Continued

Sepd~ ~ = - - - - - - -———— - - -
Allocate- = =~ = = = + = & = = = = == - -
Cloga = = = = = = = = « = Tememe==-
AbOft = = = = = = o o = s = = = = == - - -
Statug- - - - =~ -~ = - - il
Status responses= — ~ = - = - = - = - -
Sarvice response primitives = =« =« = « = = =
Open d -~ = -~ - s s s s s s cc -~
Open fallures = = = = = = = = = = = = = =~
Open succesg = = = = = = = -memm=---

Dalivmr = = « @« o & =& = = a o o o = o = =
Clﬂiq-'--—#-----------

f. mmte --------------- -
Status response — — = - = = = - - - - - -
Etl.'ot ------------ - - e e - -

Extended state aschine spocification
services provided to upper layer = = = = = =
Machine instantiation identifier— = = - - =
local connection namp = = = = = = -—- - -
State dlagrams— — ~ ~ =~ « « = - - = o - = -
Service state machine defined « = - = = =
State VEeCtOr™ = = = = = - = = = = = = = = =

Initial stale = = = = = = o = = = = = = = .

Sec tange sfruclure = = = = = = = = = = =
Data structures — — = = - - = - - e - -a-
State vector= = =« = = = = - & & = o = = =
Prom OlP= = = = = = = = = = = = - - - -
TOUP= = ~ = = = = = = = = = = - - -
Boent st~ « =+ = =+ = = = = = = == = = ==
Events and actions= = = = = = = = = - « « =
Bwn:/nctiom specifications= - - - = = -
State A = closed, otate B = closed- = =
Scate A = pagsive opan, state B =
clogsed = = = = = = = = o v === - - -
State A = active open, state B =
cloged = = = = = @a c v s ccac=e.
State A = passive open, state B =~
active opeg= = =~ = = = = = = --- -
State A = passive open, otate B =
passive open — = = - = = = = == = = =
State A = active open, ostate B =
acrive opeo = = = = = = = - m-----
State A = establighed, state B =

State A = established, stats B =
clogaing= = = = = = = = = & ¢ .= = ==
Statea A » cloging, state B = closing- -
State A = closed, atate B = estsb-

lighed = = = = ~ =~~~ === c == ~-

q

¥

39

41
LY.

MIL-3TD-1778
20 May 1983

Paragraph

oamocdoo
.

[- -

*

L]

[] L]

[] .

[]

VLU LBV LLG Lk L,
[]

oo TR OO OO
L]

WWLWW WWLWRNRNNE e e
[]

1]
L]
*

L
[]
L]
»

(- - - U\G\O.ﬂiﬂiﬂiﬂ\ﬂ\ oo

[- -
.

VRV R R
.

- - - -]
.

o [- -]
-

b L

L] a

o oo

» []

e Bt T I I BN)
e @ [] L]

MR NN

[] * B

G N

L]
WNRPNNNR
[]
PPN

Downloaded from http://www.everyspec.com

CONTENTS - Contimied

State A = closed, state B » closing~ =
State A = active, state B = estab~
lshed = = = = = = = = ---- - - -
State A = gctive, state B » closing~- -
Stata A = passive, state B = estab~
- ldshed= = = = = = = = = == 2 @ = 2=~
State A = passive, state B = closing -
D.cisiontmctiom-----------
Rooa in (state vector name)= - - -
ﬂum:undd(wﬂ----- -
Action procedures— = = = = = = = = -
Add to_send _queue (gv*)= = = -~ = - - =
Mai@ new len = = = = = ------ -
Error (local counection uame, error
description)= = = = = = = = = = = -
Load securlty- -~ = - === ==~ - -
Initialize (BY*) ~ « = = = = = = = = =
Open fail (local coanection nsme)- - -
Open_ ~1d (local connection name, gource
port, source address, destination

port, destination addr) = = = = = = =
Oped_success (local conmection uame) -
Report_timeout {(sv_*)= = = = =~ = - =
Requeue _oldest = = ~ ~ = = =~ - -

Terminate (local counection name,
dascription)= = ~ ~ = = = = = = = = =

Sec_range match~ = = = = = -—e—— = -

Record | open_paramsters (ULP identi-
fier, open mode)= - — — = = = = = =~ -
Try_to_deliver — — - = = A
SERVICES REQUIRED FROM LOWER LAYER = = = - = =
Goal = = = = = = = = == = = -_-—— === -
Service descriptions = = = = = = = = = = = =
Data transfar service- = = ~ = = = ----
GCenaralized network service = = = = - = -
Error reporting servicem = = = = = = = = =

LOWER LAYER SERVICE/INTERFACE SPECIFICATIONS -

Gogl = = == = = = = = = = = == - - - - -
Interaction primitives = « = = = = = « =~ = =
Service request primitives - = = = - - = =
NET SEND = = = = = = = - = - -~ - ==~
Service response ptini:ivea- -——- == - -
NET DELIVER= = = = = = = = = - -

HET_DELI‘VEB. @rror reportg= = = = = - =
Extended state machine epecification of
services required from lower layerm = = = =

vi

® s’

—
—
\
1

OO WD D OO O WD DD ‘0"0'0‘0OO;D\O\DQ\GHO'O\D!D!‘D\D\D\D\O\DO\O\D

htmh 8.3.1

8.3.2
8.3.3
8.3.4
8.3.‘. 1
8.3.4.2
8.3.5
8.3.6
8.3.6. 1
8.3.6.2

9.

[]
N

b
™

[]
SWRNMNNR
[]
N

*
*
[
+

.
N

» [
NNNRMBPDRNNNNNN NRNNNRNMBRMNRERNMNNOMBNRERRBMREBRNNPBRRRONNNM
.]
[P RVEC RV RT WarbpbuLuLLLLBWWNNRNRMDIDNNRPN
L] L]
.b-.-D'UNl-‘

ol
N

»
L]
[I
[]

s @

L]

L]
VPN

B:Dmﬂm

Downloaded from http://www.everyspec.com

CONTRNTS - Contimied

Machine iostantiation identifier
State dagram- = = = = =~ = = - =
State wCtoY = = = - = = = = = =
Data etructures~ = = = = = = ~ =
TO HEY = = = = = = = = = = - -
Fram HET = =~ = = = = = = = = =

Events and actions— = - - -
EVRNT = HET SEND (to NET)
m-m—----—-

ICP ESTITY SFECIFPICATION~ = = -
Coal- = === s mcece=-
Ovarviewv aof TCP mechanisme— -

Service support = = = = - -
Background and tarainology—

Busbaring od;nr --

Connaction sequanca variablss

Seni variables= < = = =
Bcn:l sequancs space = -

Recaive sequence space-
Current seymant’ varisbles
Connaction states = = = =

Plow control wvindow = = — ~
Shricking windowe - - = -~
Zaro windows— = = = = = =

MIL~STD=1778

12 August 198

at timms

bt b

Vindow updates with ocne—way data flow
Window ssnsgemeat suggestions = = = =
Vindow size vs. actual capacity - =

Suall windows - - ~ -~ -

Duplicatae and out-of-ordar dats del:ection
Incoming and unacceptable segmants—

"In ordar”

dats acceptance= = = =

“In window®™ data acceptances - - -~
Positive acknowledgment with recramm=

Acknowledgment generation
ACK wvalidation = = = - -
Ratramamigsion etratagies
Retrammuission timmouta -

Berrammaiazion cunns romnuala
ST alS LU0 qQUBUS Vaal

-
-
- - -
- e -

-

Checksumr- = v = = = = = = =
Puab = = = = = = = = - - - - - - -~
Utgant= = = = s e c c cmcc e oo ===~

UP timscut and ULP timsout

-act Loo-

s‘mt""‘--------—----

il

33391

63
65

&

66
66
67

69
69

69

69
&9

70

70
71

71
72

73
T4
74
75

75
75
75
76
76
76

76
17
77
17
17
78

78

T
rzy

79

* MIL-3TD-1778

12 August 1983

Paragreph 9.2.11

' 9.2.12
9.2.13
9'2.13.1
9.2.13.1.1
9.2.13.1.2
9.2-”.2
9.2.3’2.1
9.2,13.2.2
9.2.13,2.2.1
9.2,13.2,2.2
.2.13.2.2.3
9.2.13.2.2.4
9.2.13.2 .2.5
9.2.13.3
9.2,13.4
9.1. 1‘
9.2.14.1
9.2.14,2
9.2.14.2,1
9.2.14.2,2
9.2.16.2.3
9,2.14.,3
9.,2.14.3.1
9.2.15
9.2.15.1
9.2.15.1.1
9.2.15.1.2
9 .2.15-1.3
9.2.15.2
9.3
9.3.1
9.3.2
9.3.3
9.3.4
9=3=§
9.3.6
9.3.7
9.3.8
9.3.9
9.3.10
9.3.11
9.3.11.1
9.3.11.1.1

Downloaded from http://www.everyspec.com

CONTENTS - Contimmed

Precedence level- - -
Multiplexing~ = - = =

Connection opening mechanismg = = = = = = =
Connection open requests— = = = =~ = = = =

Pasaive open request—
Active open requegt = — = = = = = =
Three—way haodshake
Simplest handghake~ = = = = = = = =
Examples of counection initiations—
Simulranecus coanection initiatiom-

‘0ld duplicate SYN datection = = = = =

- _a

gair—-opan connactions -

Alternate casg 1= = = = = = = = =« = =

Alternate case 2

Initial sequence oumber selection = - - -
ISH genarator = = = =~ = = = = == o = = =
Connection closing synchronizacioo = = = =

Close Tequests—
FIN exchange examples = = =

Case 1: local ULP 4iniriates connection

Cage 2: TCP receives FIN from remote

TP~ = = = - - =~

Case 3: ULPs clome sinm.lt:aneausly— - -
Quiet time concept— = = = = = = = = = = =

"Reep quiet® concept—

Resetg= = — =~

Resat generation

When connection does not exigt= = — = =
When connection {s in any noo-

synchronized state

- e mm me e =k e W e W

When connaction is in a synchronized

Resat procsssing= = — = = = = = = = = = =

TCP header format

Sourca port ~

Destinscion port—
Sequance mmher

Acknowledgment oumber
Data affaalt ~ = = = =

Countrol flags ~ = -
Window = = =~ = - = =

Checksun~ -~ ~

Urgeut pointer—
Optioms = =~ =
Spacific option definitioms

-y Em W W g o o e an e A

- e e e e o W e e W W o W

End of option ligt- = = = = = = = = = =

viii

™)

Downloaded from http://www.everyspec.com

o

MIL-3TD-1778
12 August 1983
CONTENRTS = Countimued
Page
9.3.11.1.2 No—operatiop = = « = = = = = = = == = 93
9.3.11.1.3 Maxinum segment gite= = = = =~ ==~ = 9
9.3.12 P“ﬂw-------------——--— 93
9.4 Extended ecate machine spacification &
o TCP entity- = = = = = - = ce e e m—~= 93
9.4.1 Machine instantiscion identifier = - = = = 94
9.4.1.1 Socket pair identifier = = = = = = = = = 9%
9.4.1.2 Local connection nape— = = = = = = = = = 9
9.4.2 State diagraw = = = = ~ = - - - ---- 94
9.4.3 State VECLOT ™ = = = = = & o = = o o = =2 = o4
9.4.4 Data SLIUCLUT@E~ = = = = = = = = = = « = = 97
9.4,4,1 State VeCtOr = = = = = = = = = = =« = = 97
9.4.4.2 ’l‘u_m - - e o ow == - - - - wm e - - 98
9.4.4.3 ‘l'o_ULP----------------- 99
9-‘.‘.‘ to-m---------'—---'---- m
9.64.4.5 Prm_ﬂr---------------- }oo
9.4.4.6 Segment type - = = = = ~ = = == === = 101
9.h,.48,7 Supplamental type doclarationy = = = = = 101
9'6.5 Emtnlt---------------- 102
9.4.6 Events and actioms = = = = = = = = = = a = 103
9.4.6.1 Deciodon tablegm = - « = = = = — = = = ~ 103
%.4.6.1.1 State " closed = = = » = ¢ @ o = - - - 103
$.4.6.1.2 State = ligten = ~ = = = « = = = = = = {05
9.4.6.1.3 State = SYH_SERT -—— = = e s e e == 106
9.‘.6-1-& State = SYB_aRBCVD— - - e = - as s - - ma
9.6.6.1.5 - Scate = ESTAR= = = = = = o = = = = = = 109
9.4.6.1.6 Scate = CLOSE WAIT = = = = = = ==« = 111
9.‘&.6.1.7 Scate = Clalm. -ee- o ar m S m - - .- 113
9.4.6.1.8 State = FIN WAITl- = = = = = = = = = = 114
9.4.6.1.9 Stste = PIN WAIT2- - ~ - - - - --=- 116
9.4,6.1.10 State * last ACE — — = =« — = = = = = = 117
9.4.6.1.11 State = m-mf- --m e == e e e- 118
9.4.6.2 Decision functions = = « = = = = = = = = 120
9.4,6.2.1 . ACK 08 ~ = = = = = = = = =~ = = = = = = 120
9.4.6.2.2 ACK_status_testl - = - — = -eo=-- 120
9.4.6.2.3 ACK status test2 = = = = = = = = = =« = 121
9.4.6.2.4 .cmu‘-ch.ck -e- e e e e S e m e - 121
9.4.6.2.5 n“_&a'@- - W wm Em wmeweEm e oW ae- - 122
9.4.6.2.6 nu_on -------- s 123
9.4.6.2.7 nn_.een---—--——-—----- 123
9.4,6.2.8 omn_nd.- - e w W m e m e ew - - 124
FeBeDoko¥ 3v_prec ve s FeC—= = = = & & = = = = J2I
9.4.6.2.10 Reiuc:l_:ufe:—ige_opan -------- 124
9.4,6.2.11 Resources_suffice send -~ = = = = = ~ = 125
9.4.6.2.12 BST 00l = = = == @« = = &« = = = &« = = a = 128
9.4.6.,2.13 s.c:utgb- - w o E e ew W = m W S o= o= 125
9.4.6.2.14 Sec_prec_alloved = = = = = = = == == 126
9.4.6.2.15 Sec_range_match = — = - = = = = = = = 126

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

CONTENTS - Contimed

Paragraph 9.4.6.2.16 Sec_prec match - = -« - - = ~ - = -- -
9.4.6.2.17 Sm sggggg— ------- - - .- -
9.4.6.2.18 SYNon -~ = = - - - I
906o602-19 minmw-—--——-—-----
9lb.6l2.20 zero tecv Wndow— — = = = = = o - - - -
9.4.6.3 Action | procgdurgg ————————————
9.4.6.3.1 Dats mnagesent routines - = === = =
9.4.6.3.2 Acmt-----““‘-—"—---—-
9.4,6.3.3 Accept_pucr ———————— - - -
9.4,.6.3.4 Accgp: strategy= = = = = = = = = = = =
9.4.6.3.5 “In-order” _strategy~ - = = = = = = = =
$.4,8.3.0 Ack policy = = = = == = = & = = = = =
9.‘.6-3 .7 Check_“rr ——————————————
9.4,6.3.8 Cmpu:e_gheck_;um - e Emmm e meem - o-
9.‘06.3.9 conn-amn- - m S e W o o= - s e -
9.4,.6.3.10 Deliver = = @ =@ =« o o = = » == - = =
9-‘0603-11 Deliwr_poucy - - m A e e o e W o e
9-“-6.3.12 Diﬂpatch ———————————————
9.4.6.3.13 Da dd to_¢ gen = = = = = = @ = - - - -
9.4.6.3.14 m dd to PEOY = = = = = = = = - - - -
9.4.6.3.15 Dm couy frcn gend= = =~ = » = « - = = =
9.4.6.3,16 Dn remove frm FECY= = = = = = = = = =
S.4.6.3.17 Dn_remve_frm__se.nd ----------
9.4.6.3.18 BTror= = = = » = m o = = = = = = = = -
9.4.6.3.19 - Porsat _net params— = = = = = « = = = =
9.4.6.3.20 Cen dd ~ === - = - = - - e e - -
9.4.6.3.21 &n_j_an—- ---------------
9-‘.6-3-22 ng_lcn— - e oawr e owm m e om oW oW W oEm = e =
9.4.6.3.23 Gen_gyn- - - =% - e a--aa- P —
9-‘.6.3.24 Iﬂd—ﬂemrit’- -------- - e o m
9Dé.6l3025‘ Hﬁ'ﬁ_ﬁllﬁﬁﬁiaﬁ -_— e = e e = = e e =
9.4.6.3.26 Opgnl — = = = = = = — = - = = = - - = =
9.4.6.3.27 Openfail = = = = = = = = = = = = = = =
9.4,.6.3.28 P.rt_r“gg --- = - - - - - - - om - -

- 9.4.6.3.29 - Mu_Pzgc - e wm W w ow = - .
5.4.6.3.30 BRecord nyn --------------
9.4.6.3.31 Report_timeout (sv)= = = = = = - ~ =
9.4.6.3.32 Raquaue oldest (av)*)— = = = = ='= = =
90406.3-33 RBesat= » = = =« = = o) - - o -
9,4,6.3.34 B.enat_gglf --------------
9.4.6.3.35 Restart _time wait- - - = = = = = = =~ -
9.4.6.3.36 Retramsmit = = = = = = = = « = -——- -
9.4.6.3.37 Retransmit policy= = = = = = = = = = =
9.4,6.3,37.1 Retramsuisaion strategy= = = = = « =~
9.4,6,3.38 Sava____fin R I T B -
9-‘0603 -39 Savg_geml_dgcg ————————————
9.4.6.3.40 Send ack = = = - = - - - - -—-—---

Nt
LI TN

<3

‘l‘lrn,ﬂ'qlh .4.6.3.41

Appendix

9.4.0.3.42
9.4.6.3.4]
9.‘ .6.3.“
9.4.6.3.43
9.4.6.3.46

10.

10.1
10.2
10.3

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983
QUNTENTS - Continued

Page
Send new daty~ = = = = = - = = === = 15§
Send policy= === === ==-===-= 157
s.c-fln - e e W Wk S W Wk e W o W - - ua
Scart _tims wait- -~ = = = -~ = = === 138
EXECUTION ENVIRDNMENT REQUIREMENTS= = = = = = =« 160
Introduction = = = = = = = = = - -~ e m-aa 160
later—-process commumication - = = = = = = = = 150

APPENDICES
RETRANSMISSION STRATEGY BPFECTIVENESS - = = ~ ~ 161
DYHAMIC RETRANSMISSION TIMER COMPUTATION~ = = - 162
ALTEENATIVES IN SERVICE INTERPACR PRIMITIVES~ - 163 .

MIL~8TD-1778

12 August 1883

Figure 1

Table

rEbul

N v i o o) Sl

IVII1

. Example host protocol hierarchy = = = =

Downloaded from http://www.everyspec.com

CORTENTS - Contimaed

FIGURES

A simple connection opsning = = = = = =
A sinple coonection opening = = = = = =
Two-way dats transfer = = = = - = =~ - -
Two~wgy datas tramfear = = = = - = =
A graceful coanection close = =~ = = = =
A graceful counaction close = = = =
Split atacte model of TCP services — = = = = =
Composite TCP? sarvice state machine diagram

P 1nn-1 n-n‘n- atate _nh'ln- 2 veves ve—
e Vi wm‘:

Camplex sec_range gtructure = = = = = = a = =
TCP header format = = = - = = -
End of option list code =~ =~ = =
Ho~oparation option code - - -
Maximum segment size option - -~

TCP entity atate summary = -
Checksun check function = = =
Compute checkgum procedure - = = = = = =« = =~
TCP local service state machine summary = - -

TABLES

Active_open event in a closed state = = - = -
Active open with data event in a closed state
Full_passive open event in a ¢losed gstate - -
Unspecified passive open event in a cloeed
BLALE = & % = = = = . . - - - & - - - ---
Net_deliver event in a closed state — = ~ = =
Net deliver event in s listen state = = = = =
Close or abort event in a SYN_SENT state =~ -
Net deliver event in a SIN SENT state — = - -
Send event in a SYN RECVD state = = — = = = =
Net_deliver event in s SYR | RECVD state - — =
Send event in an estab state =~ - - = -—-———
NHet deliver event in an estab state — — = = =

Send event in a CLOSE_WAIT state = = = = = =
Net_deliver event in a CLOSE WAIT state - — -~
Net_deliver event in a closing state = = = =
Net_deliver event in a FIN WAIT1 state = - =
Net deliver event in a FIN WAIT2 state = - =
He::dclj.ver event in a LAST ACK atate - - = =
Net_deliver event in a TIME WAIT sctate - - =

]

PR e NN NERREEE |

4
-~

Downloaded from http://www.everyspec.com

T MIL-3TD-1778
12 August 1983

.1-.' M SCDP! .

1.1 Purpose. This standard-establishes criteria for the Transmission Com-
trol Protocol (TCP), a relifable comnactiov-oriented transport protocol for .
use in packat-switched and other commumication networks and interconnected
sats of such aetworks.

1.2 Organizatiom. This standard is organized into ten paragraphs. Beginm-
ning with paragraph 4, the TCP's.-rols is established in the evolving DoD)
protocol architecture ard the TCP's major services and nechanisms are also
introduced. Paragraphs 3 and 6 wore formally specify the sarvices TCP offere
to uppar layer protocols and the iaterface through vhich thoes services

are accessed: Similarly, paragraphs 7 and 8 specify the services required
of the lower lagyer protocol and the lower interface. Paragraph 9 specifies
the mechanisas supporting the TCP services and paragraph 10 outlines tha
functionality required of the exscution anviroament for successful TCP
apsration.

1.3 Application. The Tramsoission Control Protocol (TCP) and the Inter-
oat Protocol are mandatory for use io all DaDd packet switching networks
which coansct or have the potential for utilizing connectivity acrose nstwork
or subnstwork boundaries. HNetwork elamsnts (hosts, front—ends, bus interface
unite, gateways, aetc.) within such netvorks vhich are to bs ussd for inter-
astting dhall inplement TCP/IP. The ternm network as used harein includes
local Area Retworks (LANs) but not integrated weapons systems. Use of TCP/IP
within LANs is strongly encouraged psrticularly whare ¢ need is perceived for
squipmant interchangeability or oerwork survivabilicy. Use of TCP/IP in
woapoos systems is also encouraged where such usage does not dindnish astwork
perfornancs. i

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

2. REFERENCED DOCUMENTS

2.1 Issues of documents. The following documsnts of tha issua in affect
on date of invitation for bids or request for proposal, form.s part of this
. standard to the extent specified herein. (The provisions -of this paragraph
- are under comsideration.) .

2.2 Other publications. The following documants form a part. of this
standard to the extent specified herein. Unless otharwise indicated, the
issue in effect on date of invitation for bide or request for proposals shall
zpply. (The provisions of this paragraph are under comsidaratiom.)

T

)

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 Augnst 1933

- 3. DRFINITIONS

3.1 Dafinition of terms. The dafinition of terms used in this standard
shall comply with FED-STD~1037, Terms and definicions unique to MIL-STD-1778

L ™

b.

Ce

d.

f.

1.

.ars coutaioced herein.

Acknowlsdgment Bumber. A 32-bit field of the TCP basder contain~
ing the naxr .iqc'-nei mmbar expscted by the sander of the segment.

ACX, A&nuhdsnn: flag: a control Mt &{n the TCP hesder indicat-
1ng that the scknowledgmsnt nuaber field is significant for thie

segumnt .

Chacksum. A 16=dit field of tha TCP header carrying the one's
coaplemsnt besed checksum of both the hesder snd data in the

seguant .

connaction. A logical commmication path idsutified by & pair of
sockate.

datagram. A solf-contained package of data carrying encugh iofor-
mation to bs routad from source to destination without reliance
on sarlier exchangas betwesen sourca or dastination and the Crans-—
porting vetwork.

datagram sarvics. A dategram, defined above, delivered in such a

‘way that the recsiwer can daterxine the boundaries of the datagram

as it was entersd Dy the source. A dategram is delivered with
high probabilicty to ths desired destination, but 1t nxy possibly
ba lost. The esquence in wvhich datagrams ars entared into the
network by a source is not unecessarily preserved upon dslivery at
the destination.

Data Offset, A TCP hamiar field containing tha ousbaer of 32~bit
words in the TCP headsr.

Destination Address. The dastination address, ususlly the network
and E;_ t idencifiers. Although not carried in tha TCP header, this
vilos is passed to and recaived froa the cetwork protocol enticy
with gach segment.

Dastination Port. Tha TCP heodar field cootaining s 2-octat value
idantifying ths destiunation uppar level protocol of a segment's
datas.

-

EFiP. Elasctronic Fijle Tramafar Protocni. Slactromic omil.

FIN. A countrol bit of the TCP headar indicating that no oore data
wil]l be sent by che sender.

FIP., Pile Tramsfar Protocol

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

Pe

qe

Te

C.

1+ 1)

Ve

X

b L

aa.

local network. The network directly attached to host or gateway.

header. The collection of control information transmitted with
data betwean peer entities.

A

host. A computer, particularly & source or destination of messages
from the point of view of the communication network.

Identificstion. A value passed with each segment.to the network
protocol eatity (Internet Protocol). This identifying value
assigned by the sending TCP aide in asseabling the fragments of
a datagraa.)

internatwork. A set of interconnected subnetworks.

internet address. A four octet (32 bdt) source or destination
address composed of a Network field and a Local Address field.

internet datagran. The package exchanged between a pair of IP
modules. It is made up of an internet header and a data portion.

E. Intarnet Protocol
ISH. The Initial Sequence Numbar. The first sequence mumber used

for either sending or receiving on a connection. It is selected on
a clock based procedure.

MSL. Maximun Segmnf Lifetima, the time a2 TCP segmmnt can exist
in the ianternec~work gystem, Arbitrarily defined to be 2 mimutes,

Options. The optional set of fields at the end of the TCP header
used in a SYN segment to carry the maxioum segment size acceptable
to the sender.

packat network. A network bassed on packet—switching technology.

Measages are split into small units (packets) to be routed inde-

pendently on a store and forward basis. This packetizing pipelinesn

packat transmission to effectively use circuit bandwidth. -

Padding. A header field inserted after option fields to ensure
that the data portion begins on a 32-bit word boundary. The pad-

"ding field value is zero.

PUSH. A control kit of the TCP header occupying no sequence space,
indicacing that this segment contains data that must be pushed
through to the receiving ULP.

push service. A gervice provided by TCP to the upper level proto~
cols. A push directs TCP to segment, send, and deliver data
received up to that point as soon as flow control permita.

~—

bb.

CCe

dd.

£f.

ii.

i3

kk.

11,

.

nn.

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

receive next sequence number. The next sequence mumber a TCP s

- 4 4
cXpocCling Lo recalive.

receive window. This represents the sequence mmbers a TCP is
willing to receive. Thus, the TCP considers that segments over—
lapping the range RECV | NEX‘I’ to RECV_NEXT + RECV WND - 1 carry
acceptable data or control. Segments containing sequence numbers
eatirely outeide of this range are considered duplicates and dis—
carded.

Reserved. A 6-bit field of the TCP hesder that is not curreantly
used but mugt be zero.

RST. A control bt of the TCP header indicating that the connec~
tion aseociated with thie segment is to be terminated.

segment, The unit of data exchanged by TCP modules. This term
may also be uged to describe the unit of exchange between any
trangport protocol modules.

segment length. The amount of sequence mumber space occupied by
segmant, including aay controls which occupy sequence gpace.

send sequence. This i¢ the next sequence oumber the TCP will use
to send data on the counectiocn. It {s initially selected from an
initial sequence oumber curve (ISN) and is incremented for each
octer of date or eequenced control rransmitted.

send window. This represents the sequence mumbers which the
renote TCP is willing to receive. 1t is the value of the window
field epecified in segments from the remote (data receiving) TCP.
The range of new sequence mumbers which may be emitted by a TCP
lies between SEND_NEXT and SEND UNA + SEND WNDW - 1. (Retrams-
missions of aequence rumbers between SEND 1 UNA and SND_NEXT are
expected, of course.)

Sequence Number. A 32-bit field of the TCP header containiog the
sequence mumber of the 1) a sequenced control flag (1f present),
or 2) the first byte of data (if present), or, 3) for empty seg-
ments, the sequence mumber of the next data octet to be sent.

socket. An addreas which spectfically includes a port identifier,
that is, the concatenation of an Iaternet Address with a TCP port.

Source Port. The TCP header field containing a 2-octet value
identifying the source upper level protocol of a segment's data.

TCP segment. The package exchanged between TCP modules made up
of the TCP header and a text portion {which may be e__m_?:y)i

UDP. User Datsgran Protocol

Downloaded from http://www.everyspec.com

MIL-STD=1778
12 August 1983

00.

PP.

Tr.

ULP. Upper Level Protocol: any protocol above TCP in the layered
protocol hierarchy that uses TCP. This term includes presentation

layer protocols, session layer protocols, and user applications.

Urgent Polnter. A TCP header field containing a positive offpeet
to the sequence number of the segment indicating the position of
urgent data in the connection's data stream. This field ia
valid only vhen the URG flag is onmn. '

URG. A control bit of the TCP header indicating that the urgent
field contaime a valid pointer to urgent information in the
connection's data stream,

Window. A 2-octet field of the TCP header indicating the number
of data octets (relative to the acknowledgment mumber in the
header) that the segment sender is currently willing to accept.

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

4. GENERAL REQUIREMENTS

4.1 Goal. Omne goal of this standard is to avoid assuming a particular
system configuration. As a practical matter, the distribution of protocol
layers to specific hardware configurations will vary. For example, many
computer systems are connected to networks via froot-end computers which
housse TCP and lowar l-v.r nrarnecnl aafruars., Althnu:rh rmmnrinﬂ to focun on

- re=w=vee SYLSTSLT=

TCP implementations vhich are co-resident with the upper and lower layer
protocols, this apecification can apply to anmy configuration given appropriate
inter-layer protocols to bridge hardware boundaries.

=1

vide reliabl
a

cnnn J A Py s 4
A%l AGC GURDWL A LD

4,2 TCP defined. desigoad to
paire of processes in logically distinct hos on networks and eets of :ln—
terconnected networks. Thus, TCP serves as the btasis for DoD-wide inter-process
coamumication in comnunication eystems. TCP will operate auccessfully in an
enviroment where the loss, damage, duplication, or misorder data, and network
congestion can occur. This robustoess in spite of unreliable coxmmications
media makes TCP well suited to support military, govermental, and commercial
applications, TCP appears in the DoD protocol hierarchy at the transport
layer. Here, TCP provides connection-oriented data transfer that is reliable,
ordered, full-duplex, and flow controlled. TCP {e designed to support a wide
range of upper layer protocols (ULPs). The ULPs can channel contimous streens
of data through TCP for delivery to peer ULPs. TCP breaks the streams into
portions which are encapsulated together with appropriate sddressing and
control information to form a segment——the unit of exchange between peer TCPs.
In tarn, TCP passas segments to the network layer for transmission through the

Moo oeS

coamunication systen to the peer TCP.

LI I
I |
TCr uDP F--------

HOST INTERNET PROTOCOL

SUBNETWORK PROTOCOL

PIGURE 1. Example host protocol hierarchy.

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

4.3 Network layer provisions. The network layer provides for data transfer
between hosts attached to a communication system. Such systems may range from
a single network to interconnected sets of networks forming an internetwork,
The minimum required data transfer service is limited; data may be lost, dupli-
cated, misordered, or damaged in tramsit. Ag part of the transfer service
though, the network layer must provide global addressing, handle routing,
and hide network-specific characterlstics. As a rtesult, upper layer protocols
(including TCP) using the network layer may operate above a wide spectrum of
subnetwork systems ranging from hard-wire connections to packet-gwitched
or circuit-switched subnets. Additional services the network layer may
provide include selectable levels of transmission quality euch as precedence,
reliability, delay, and throughput. The network layer also allows data
labelling, needed in secure enviromments, to associate security information
with datﬂo

4.4 TCP design. TCP was specifically designed to operate above the Inter—
net Protocol EIP; which supports the interconnection of networks. IP's inter—
net datagram service provides the functionality described above. Originally,
TCP and IP were developed as a single protocol providing resource sharing
acrogs different packet networks. The need for other tramsport praotocols to
use IP's services led to their epecification as two distinct protocols.

4.5 TCP mechanisms. TCP builds its services on top of the network layer's
potentially unreliable ones with mechanisms such as error detection, positive
acknowledgments, sequence mumbers, and flow control. These mechanigms require
certain addressing and control information to be initislized and maintained
during dats tramsfer. This collection of information is called a TCP connec—
tion. The following paragraphse describe the purpose and operation of the
major TCP mechanisas.

4,5.1 PAR mechanism. TCP uses a positive acknowledgement with retransmis-
sion (PAR) mechanism to recover from the loss of a segment by the lower
layers. The strategy with PAR is for & sending TCP to retransmit a segment
at rimed intervals until a positive acknowledgement is returned. The choice
of retransmission interval affects efficiency. An interval that .is too .
long reduces data throughput while one that is too short floods the transmie~
sion media with superfluous segments. In TCP, the timeout is expected to -be
dynamically adjusted to approximate the segment round-trip time plus a factor
for internal processing, otherwise performance degradation may occur. TCP
uses a simple checksum to detect segments damaged in tranmait., Such segments
are discarded without being acknowledged. Hence, damaged segments are treated
identically to lost segmente and are compensated for by the PAR mechanism.
TCP assigns sequence oumbers to fdentify each octet (an eight bit byte) of
the data stream. These enable a receiving TCP to detect duplicate aond out-
of-order segments. Sequence mimbers are also used to extend the PAR mechanism
by allowing a gingle acknowledgment to cover many segments worth of data.
Thus, a sending TCP can still send new data although previous data has not
been acknowledged.

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

4.5.2 Flow control mechanisa. TCP's flow control mechanism enables a
receiving TCP to govern the asount of data dispatched by a sending TCP. The
mechanisn i based on a "window™ which defines a contiguous interval of
acceptable gsequence mumbered data. Ae dats is accepted, TCP slides the
wiodow upward in the sequence nuaber space. This window 18 carried in

every segment enabling peer TCPs to maintain up-to-date window information.

4.5.3 Multiplexing mechanisn. TCP employs & multiplexing mechanisu to
allov oultiple ULPs within a single hoat and sultiple proccesses in a ULP to
use TCP sicultaneously. This mechanisn associates identifiers, called porte,
to ULP's processes accessiog TCP services. A ULP connection 1s unigquely iden
tified with g sockat, tha concatenatioo of a port and an internet address.
Each connection is unigquely nsmed with a gocket pair. Thie naming schene
allows a aingle ULP to support connections to multiple remote ULPs. ULPs
which provide popular resources are assigned permanent sockets, called well-
known sockats.

4.6 ULP synchronization. When two ULPe wish to commmicate, they instruct
their TCPs to initialize and synchronize the mechanien information on each
to open the connection. However, the potentially unreliable network layer
can complicate the process of aynchronization. Delayed or duplicate segments
froo previous connection attempts might be mistaken for unew ones. A handshake
procedure with clock based sequence nuubers is used in connection opening to
reduce the possibility of such false coonections. 1n the eimplest handshake,
the ICP pair synchronires sequence muobers by exchanging three segmentas,
thus the naae three—wsy handshske. The scenario following the overview
depicts this exchange. The procedure will be discussed more fully in the
mechanisn descriptioos, Paragraph 9.2.

A 7 “'l” —ntlnn A MNP samn sAmo
s A Ve LRu Upc

or active. Hith a passive open a ULP imstructs its TCP to be “receptive”
to connectioos with other UlPs. With an active open a ULP instructs its
TCP to actively iniciate a three-way handshake to connect to another ULP.
Usually, an active open is targeted to a passive open. This active/passive
model supports eerver—oriented applications whare a permanent resource,
such as a date-base management process, can alwaye be accessed by remote
users, Howewver, the three—way handshake also coordinates two simultanecus
active opeos to open 2z coanection. Over an open coaonection, the ULP-pair
can exchange a continuous stream of data in both directioans, Normally, TCP
transparently groups the data into TCP segments for tramsmigsion at its own
convanience. However, a ULP can exercise a "push” service to force TCP to
package and sond data passed up to that point without waiting for additional
data. This mechanise is intended to prevent possible deadlock situations
wvhere a ULP waits for data interunally buffered by TCP. For example, an
interactive editor might wait forewer for a single ioput line from a terminal,
A push will forecs data through the TCPs to the gwalting process. TCP aleo
provides a means for a sending ULP to indicate to a recelving ULP that
"urgent” data appears 1{n the upcoming data stream. This urgent mechanisnm
can support, for example, interrupts or breaks. When data exchange is comr
plete the connectlon can be closed by either ULP to free TCP resources for
other counections. Connection closing can happen in two ways. The first,

en coneesrion in one né two Mf‘ﬂs. nagsive
-

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

called a graceful close, i8 based on the tlree-way handshake procedure to
complete data exchange and coordinate closure between the TCPs. The second,
called an abort, does not allow coordination and may result in loss of wn-

acknowledged data.

4,8 Scenario. The following scenario provides a walk-through of a connec-
tion opening, data exchange, and a connection closing as might occur between
the data base management process and user mentioned above. The scenario
glosses over many details to focus on the three—way handshake mechanism in
connection opening and closing, and the positive acknowledgment with retrans-
mission mechanism supporting reliable data transfer.
the network layer transfers the information between the TCPs. For the purposes
of this scenario, the network layer is assumed not to damage, loee, duplicate,
or change the order of data unless explicitly noted.

ized ioto three parts:

a. A simple connection opening in steps 1-7.

b. Two—way data transfer in steps 8-17.

c. A graceful connection close in eteps 18-25,

4,9 Scenario notation. The following notation 1is

Although not pictured, .

The scenario is organm

used in the diagrams:

{—— SEQ¥ 200 (-~ depicts information exchange
-=> ACK# 201 =-> between peer TCPs
: A depicts information passing
SEND DATA : across the interface batween
: DELIVER DATA g ULP and its TCF -
v :
ULP A ULP B
* 2. ACTIVE OPEN TO B * 1. PASSIVE OPEN
TCP A ' TCP B8

3. SYN SEQ #200

FI_GURE 2A. A siwmple connection opening.

a. ULP B (the DB manager) issues a PASSIVE OPEN to TCP B to prepare
for connection attempts from other ULPs in the systen.

b. ULP A (the user) issues an ACTIVE OPEN to open a connection to

ULP B.

¢. TCP A sends a segment to TCP B with an OPEN control flag, called a
SYN, carrying the first sequence mumber (shown as SEQ#200) it will

use for dataz gent to B.

10

£.

g

h.

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

ULP A ULrP B

?0. CONNECTION OPEN TO B Tl CONNECTION OPEN TO A

4, ACK £#201; S5YN SEQ #8550

TCP A TCP B

5. ACK #G6B1

PIGURE 2B, A pimple connection opening.

TCP B responds to the SYN by sending a positive acknowledgment,
or ACK, marked with next secquence mumber expected from TCP A. In
the same oegment, TCP B sends ite own SYN with the first sequence
munober for its data (SEQ#550).

TCP A responds to TCP B's SYN with an ACK ghowing the next sequence
minber expected from B.

TCP A now informs ULP A that a coorection is open to ULP B.

Upon receiving-the ACK, TCP B ifinforms ULP B that a connection has
been opened to ULP A,

ULP A ULP B

8. BEND DATA
10. DELIVER DATA

9. DATA SEQ #2201
TCP A TCP B

-l

11, ACK SEQ #221

FIGURE 3A. Two—way data transfer.

ULP A passes 20 octets of data to TCP A for transfer across the open
connection to ULP B.

TCP A packageo the data in a segment marked with current "A” sequence
ounmber.

After validating the sequence mumber, TCP B accepts the data and
delivers it to ULP B,

TCP B acknowledges all 20 ocrets of data with the ACK set to the
sequence numbor of the next data octet expected.

11

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

1.

.

Te.

ULP A uLP B

' 12. SEND DATA
14. DELVER DATA :
T

|
13. DATA GEG #5571
el

* 15. ACK #6878 XXOOOXXX

TCP A 6. DATA SEQ #651 Tere
18.
-t

17. ACK #8678
ri >

FIGURE 3B. Two—way data transfer.

ULP B passes 125 bytes of data to TCP B for transfer to ULP A.

TCP B packages the data in a segment marked with the "B" sequence
mumber.

TCP A accepte the spegment and delivers the data to ULP A.

TCP A returns an ACK of the received data marked with the sequence
number of the next expected data octet. However, the segment is
lost by the network and never arrives at TCP B,

TCP B times out wailting for the lost ACK and retransmits the segment.
TCP A receives the retransmitted segment, but discards it because
the data from the original segment has already been accepted. How-
ever, TCP A re—-seunds the ACK.

TCP B gets the second ACK.

ULP A ULFP B

18. CLOSETO B
’ 20. ULP A CLOSING

19. FIN SEQ #221
TCP A . TCP B

FIGURE 4A., A graceful coonection close.

ULP A clogses ite half of the connection by issuing a CLOSE to TCP A,

12

t.

Downloaded from http://www.everyspec.com !

MIL-STD-1778
12 August 1983

t marked with a CLOSE control flag, called a
1 —— -

Ame
aata.

-~
iy

TCP B gets the FIN and ifnforms ULP B that ULP A i5 cloeing.

ULP A uLrn

21.CLOSETO A
24. CONNECTION CLOSED

22. FIN SEQ #070. ACK #222
TCP A TCP B

-

23. ACK #6877

FIGURE 4B. A graceful coannection cloae.

. = - = .l 3] - .

ULP B completes it ta traosfer and closes its half of the connec-
ticn. TCP B sends an ACK of the first FPIN and 1ts own FIN to TCP A
to show ULP B's cloeing. TCP A gets the FIN and the ACK, then
responds with an ACK to TCP B, TCP A informs ULP A that the counec-
tion {8 closed. (Not pictured) TCP B recelves the ACK from TCP A
and informs ULP B that the connection is closed.

c

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

5. SERVICES PROVIDED TO UPPER LAYER

5.1 Goal. This section describes the services offered by the Transmission
Control Protocol to upper layer protocols (ULPs). The goals of this section
are to provide the motivation for protocol mechanisms and to provide ULPs
with a definition of the functions provided by this protocol. The services
provided by TCP can be organized as follows:

a. mnmultiplexing service

b. connection management services
Cc. data tramsport service

d. error reporting service

5.2 Service description. A description of each service follows

s O R B e a—— |

5.2.1 Multiplexing service. TCP shall provide
of processes within upper layer protocols. A process within ULP using
TCP services shall be identified with a "port™. A port, vwhen concatenated
with an internet address, forms a socket which uniquely namee a ULP through-
out the lanternet. TCP shall use the pair of sockets corresponding to a
connection to differentiate between multiple users.

A

!
.n
*
-
')
il
']
‘]
1]

-~ 4
gervices o muitipie pﬂirs

5.2.2 Connection management service. TCP shall provide data transfer capa-—
bilities, called connections, between pairs of upper layer protocols. A comr
nection provides a communication channel between two ULPs. Characteristics
.of .data tramsfer are specified in the data transfer service description.
Connection management can be broken into three phases: connection establish—
ment, connection maintenance, and connection termination.

5.2.2.1 Connection establighment. TCP sghall provide a means to open con-
nections between ULP-pairs. Connections are endowed with certain properties
that apply for the lifetime of the connection. These properties, including
gecurity and precedence levels, are specified by the ULPs at connection
opening. Conpnections can be opened in one of two modes: active or passive.
TCP shall provide a meanms for a ULP to actively initiate a connection to
another ULP uniquely named with a socket. TCP shall establish a connection
to the named ULP if:

a. no connection between the two named sockets already exists,
b. internal TCP resources are gsufficiesnt,

c. the other ULP exists, and has simultanecusly executed a match-
ing active open to this ULP, or previously executed a matching
passive open, or previously executed a "global”™ matching pas—
sive open. TCP shall provide a means for a ULP to listen for
and respond to active opens from correspondent UlPe. Corre—
spondent ULPs are named in one of two ways:

d. fully spacified: A ULP is wumiquely camed by a socket. A cor—
nection is established when a matching active open is executed
(as described above) by the named ULP.

14

N

e

Downloaded from http://www.everyspec.com

MIL~-STD-1778
12 August 1983

e. upspecified: No socket is provided. A connection is estab~
lished with any ULP executing a matching active open naming
this ULP.

5.2.2.2 Connection maintenance. TCP shall maintain established connections
supporting the data transfer service described in paragraph 5.2.3. Apd, TCP
shall provide a means for a ULP to acquire curreant coanection status wich
regard to connection name, data transfer progress, and connecrion qualicies,

5.2.2.3 Connection termination. TCP shall provide & means to terminate
establighed connections and tullify connection attempts. Established coo
nections can be teminsted in two ways:

a. Graceful Close: Both ULPs close their side of the duplex coor
nection, either simultaneously or sequentially, when date trans-
fer 18 conplete. TCP shall coordinate connection termination
and prevent lose of data in tramsit as promised by the data
tracefer eervice.

b. Abort: One ULP independently forces cloaurs of the connection.
TCP shall not coordinate connection termination. Any data in

transit may ba lost.

5.2.3 Data transport service. TCP shall provide dats transport over estab—
lighed conoections between ULP-pairs. The dats transport is full-duplex,
tipely, -ordered, labelled-with security amd precedence levels, flow controlled,
and error—checked. A more detailed description of each of the data transport
characteristices follows.

a. fuil-duplex: TCP shall support simultaneocus bdi-directional data
flow between the correspondent ULPs,

b. timely: When system conditionn prevent timely delivery, as
apecified by the ueer timecut, TCP shall notify the local ULP of
service failure and subsequently terminate the conanection.

c. ordered: TCP shall deliver data to a destination ULP in the
same sequence as it was provided by the source ULP.

od., "labelled: TCP shall agssociate with each connection the gecurity
and precedence levels supplied by the ULPs during coarection
establiphment. When this iaforwation is not provided by the ULP-
pair, TCP ghall assume default levels., TCP shall establish a
connection between a ULP-pair only if the security/compartment
information exactly msatches. If the precedence levels do not
match during connection, the higher precedence level is associ~
ated with the connection.

e. flow controlled: TCP shall regulate the flow of data acrogae the

connection to prevent, among other things, internal TCP conges-
tion leading to service degradation and failure.

15

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

£, error checked: TCP shall deliver data that is free of errors
within the probabilities supported by a slmple checksum.

5.2.4 Capabilities provided to ULPs by TCP. TCP shall provide two capabi-
lities to ULPs concerning data transfer over an established connection: data
gtream push and urgenr data signalling. '

s, data stream push: TCP ghall tramsmit any waiting data up to and
including the indicated data portions to the receiving TCP with~
out waltiog for additionsl data. The receiving TCP shall deliver

the data to the receiving ULP in the game manner.

b. urgent data signalling: TCP shall provide a means for a sending
ULP to inform a receiving ULP of the presence of significant, or
"urgent,” data in the upcoring data gtrean.

5.2.5 Error reporting service., TCP shall report service failure stemming
from catastrophic conditions in the internetwork eaviromment for which TCP
cannot compensate.

16

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

6. UPPBR LAYER SERVICE/INTERFACE SPECIFICATIONS

6.1 Goal. The goal of this section is to specify the TCP services provided
to upper layer protocols and the interface through which these .services .are ac
cepoed. The first part defines the interaction primitives and interface param—
eters for the upper ianterface. The second part contains the extended state
machine specification of the upper layer services and interaction discipline.

6.2 Interaction primitives. An interaction primitive defines the iaforma—
tioo exchanged between two adjacent protocol layers. Primitives are grouped
into two classes based on the direction of informarionn flew. Information
passed downward, in thie case from s ULP to TCP, is called a service request
primitive. Information passed upward, from TCP to the ULP, is called a
service response prinitive. Interaction primitives need not occur in pairs.
That 18, a service requeal: does not necessarily elicit a service “response”;

a service “response” may occur independently of & service request.

6.2.1 Interaction primitive categories. The information associated with
an interaction primitive falls into two categories: parameters and data.
Parameters describe the data and indicate how it is to be treated. The data
iteelf is neither examined nor modified. The format of the parameters and
data is implementation dependent and therefore not specified. TCP implemen-
tations may have different interaction primitives imposed by the execution
environment or systen design factors. In those cases, the primitives can be
mdified to include more information or additional primitives can be defined
to satisfy system requirements. HRowever, all TCPs must provide at least the
ioformation found in the interaction primitives specified below to guaraatee
that all TCP implementations can support the same protocol hierarchy. Addi-
tional primitives that affect the protocol mechanipgms may not be used.

6.3 Service request primitives. The TCP service regquest primitives enable
counection establishment, data tramsfer, and connection termination. The
request primitives are:

A. UOnapacified Pasglive Opan,

asalvw
b. Fully Specified Passive Open,
c. Active Open,
d. Active Open With Data,

e. Send,
fo Ml‘eate
g. Cloge,

k. Abort, and
i. Status.

6.4 Parameter descriptions. A description and list of parameters for each
service request follows. Optional service request parameters are followed by
"{optional},"”

6.4.1 Unspecified passive cpen. This service request primitive allows s
ULP to ligten for and respond to connection attempts from an unnamed ULP at
a specified security and precedence level. TCP accepts in an Unspecified
Pasasive Open at leasr. the following information:

17
F

MIL-STD-1778

Downloaded from http://www.everyspec.com

12 August 1983

source port
ULP timeout [optional]

ULP timeout action [optional]

precedence |optional)
security_range [optional]

6.4.2 Pully specified passive open. This service request primitive allows

a ULP to listen for and respond to connection attempts from a fully named

ULP at a particular security and precedence level.

TCP_ accepts in a Fully

Specified Passive Open at least the following information:

a.
b.
c.
d.
e.
f‘
g

6.4.3 Active open.

source port

destination port

destination address

ULP timeout [optional]

UL? timeout_action [optional]
precedence [optional]
security_range [optional]

This service request primitive allows a ULP to initiate

a connection attempt to a named ULP at a particular security and precedence
level. TCP accepte in an Active Open at least the following information:

a.
b.
c.
d.
e.
f.

g

6.,4.4 Active open with data.

source port

destination port

degtinatlon address

ULP timeout foptiomal] -
ULP timeout_action {optional)
precedence [optiomal]
security [optional]

This service request primitive allows a ULP

to initiate a connection attempt to a named ULP at a particular security end

precedence level accompanied by the specified data.
Open With Dats at least the following information:

6.4.5 Send.
across the named connection.
information:

source port
destination port
destination address
ULP timeout [optional]
ULP timeout action [optional]
precedence |optional]
security [optional]
data

data length

PUSH flag

URGENT flag

18

TCP accepts in an Active

This service request primitive causes data to be tramsferred
TCP accepts in & Send at least the following

" ——

Downloaded from http://www.everyspec.com

MIL-5TD-1778
12 August 1983

8. local connection name

b. data

¢. data length

d. PUSH flﬂs

e. URGENT flag

f. ULP timeout [optional]

8. ULP timeocut_action [optionsl]

6.4.6 Allocate. This service request primitive allows a ULP to igssue TCP
an Incremental allocation for receiwe data. The parameter, data length, is
dofined in eingle octet unita. This quantity 4a the additional number of

octets which the receiving ULP-is willing to accept. TCP accepts in an
Allocate at least the following fnformation:

a. local connection name
b. data length

6.4.7 Close. This service request primitive allows a ULP to iodicate that
it has completed dsta transfer acroes the named connection. TCP accepts in a
Cloge at least the following informatfon:

8. local connection name

6.4.8 Abort. This service request primitive allows a ULP to indicate that
the named connection is to be ifmmediately terminated. TCP accepts in an Abort
at least the following fnformation:

e

a. local connection name

6.4.9 Status. This service rejuast primitive allows a ULP to query for the
curreat status of the named connection., TCP accepts in a Status At least the
following information:

a. local connection name

6.4.9.1 Status responses. TCP returns the requested status information
in & Status Response, defined in Section 6.4.10.7.

6.4.10 Service response primitives. Several service response primitives
are provided to enable TCP to ioform the user of connection status; data
delivery, connection termination, and error conditfons. The respomse primi-
tives are Open 1d, Open FPailure, Open Success, Deliver, Closing, Terminate,
Status Response, and Error. Each ig fully defined in the following paragraphs.

6.4.10.1 Open id. This eervice response primitive fuforms a ULP of the
local coanection name assigned by TCP to the connection requested in one of
the previous service requests, Unspecified Open, Fully Specified Open, or an
Active Open. TCP provides in an Open Id at least the following information:

8. local connection name

b. eource port

c. destination port [4if known]

.ds destination address [i{f known]

19

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

6.4.10.2 Open failure. This service response primitive informs a ULP of
the failure of an Active Open service request. TCP provides in an Open
Failure at least the following information:

a. local connection name

6.4.10.3 Open success. This service response primitive informs a ULP of
the completion of one of the Open service requests. TCP provides in an
Open Success at least the following information:

a. local connection name

6,4.10.4 Deliver. This service response primitive informe a ULP of the
arrival of data across the named connection, TCP provides in a Deliver at
least the following information:

a, local connection name
bo d&ta

¢. data length

d. URGENT flag

6.4.10.5 Closing. This service response primitive informs a ULP that the
peer ULP has issued a CLOSE service request. Aleso, TCP has delivered all
data sent by the remote ULP. TCP provides in a Closing at least the following
information:

a. local connection name

6.4.10.6 Terminate. This service response primitive informs a ULP that
the named connection has been terminated and no longer exists. TCP generates
this respomse as a result of a remote connection reset, service fallure, and
connection closing by the local ULP., TCP provides in a Terminate at least
the following information:

a. local connection nape
b. description

6.4.10.7 Status response. This service response primitive returns to a
ULP the current status information associsted with a connection named in a
previous Status service request. TCP provides in a Status Response at least
the following information:

a. local connection name

b. source port

c. Bsource address

d. destination port

e. destination address

f. connection state

g. amount of data in octets willing to be accepted by the local TCP
h. amount of data in octets allowed to send to the remote TICP

i. amount of dats in octets awaiting acknowledgment

20

-

Downloaded from http://www.everyspec.com

MIL-STD~-1778
12 August 1983

j. enount of data in octets pending receipt by the local ULP
k. urgent state

l., precedence

m. gecurity

n. ULP timeout

& A 1IN R P v Thin
[+ 8

VeV e AW NS ik AVAEe (-} 3esvic% lwmm injemn a8 mp "F ulﬂdul

"ma aH
= ALy B

nrimdrico

FLL -
service requests relating to the named coanection or of errors relating to
the enoviroment. TCP provides in an Error response at least the following

information:

F-3
L=

a. local connection name
b. error description

6.5 Extended state machine gpecification services provided to upper layer.
TCP perforus in a distributed environment. Hence, an effective model of TCP
services can be comstructed through the composition of two extended state
wachines, called local service machines. Figure 5 shows a summary of this
“gplit-gtate” model. Each local machine 18 coupled with one ULP of the
ULP-pair. Each ULP provides stimuli to ite local service machine, in the
form of eervice requests, and receives the resulting reactions, as service
responses. Each local machine maintains a complete state record, called a
state vector, maintaining a local perspective of the state of the coanection.
At undetermined intervals, the local machines exchange information (denoted
by EXCHANGE), thus modelling conmmication delasy. An extended state machine

definition 18 composed of a machine identifier, & state diagram, a state

vector, @ set of data structures, an event ligt, aud an events and actions
correspondence. .

ULP A uLre
KIQUESTS REQUESTS
REEPONEER REECPONEES
LOCAL SERVICE LOCAL SERVICE
MACHDE A MACHINE B
STATE_VECTOR__A EXCHANGE STATE_VECTOR_B

TCP COMPOSITE SEAVICE MACHINE

FIGURE 5. Split-state model of TCP services.

21

Downloaded from http://www.everyspec.com

MIL~-STD-1778
12 August 1983

6.5.1 Machine instantiation identifier. Each local service machine 1a
uniquely identified by the values:

a. port of ULP A
b. addreas of ULP A
c. port of ULP B
d. address of ULP B

6.5.1.1 Local connection name. After the first open service request, a
ICP uges a sghorter name, called a local connection name, to identify a com-
nection in the interactions with its coresident ULP. The Unspecified Passive
Open service request does not designate the port and address of the remote
ULP and such “half~named” service machines are distinguished by local con
nection name, A fully-named service machine (if it exists) will be connected
to a remote open request rather than a half-named service machine with the
sate source port and source address. Then, if more than one half-naned
service machine existe, they are counnected to matching fully—named -Temote
open requests at random.

6.5.2 State diagrams. Because of the aplit-state model presented, both
the local service wmachine state dlagram aund the coamposite service machine
state diagram are presented., Figure 6 summarizes the service provided by
the composite TCP service machine as derived from the composition of two
local service machines. The boxes represant the state of the composite
service machine; the arrows represent state tracsitions resulting from the
service requests and service responses shown. The "EX" labels. represent
state changes resulting from the periodic exchanges between local service . -
machines. This diagram serves only as a guide and does not spupersede the
full definition of the composite service machine im Section 6.5. Abnormal
connection termination states are enclosed in the dotted box. These states
result from an Abort service request or from TCP service failure.

6,5.2.1 Service state machine defined. Figure 7 summarizes the definition
of the service state machine for the local service machine appearing in
Paragraph 6,5. This diagram presents the sequence of state changes from the
point of view of a single ULP accessing TCP's services. The boxes represent
the states of the state machine; the arrows represent state transitions
resulting from the gervice requests and service responses shown. Flease
note that the diagram is intended only as a summary and does not supersede
the formal definition of Paragraph 6.5,

6.5.3 State vector. The service machine vector of a local service machine
congists of the following elementa:

a. state — (CLOSED, ACTIVE OPEN, PASSIVE OPEN,
ESTABLISHED, CLOSING);

b. source port - identifier of the local ULP.

c. source address (sv. source addr) - the internet address naming
the location of the local ULP,

22

Downloaded from http://www.everyspec.com

MIL-STD-1778
i 12 August 1983
Lot Qoesio ——]
— vous
v b o
ca (<1}
Driass _l L |
I—i cLoetD LoD -—|
i VT i
R T .
e L] o O S W VS
I :
u P-----—-—---—- ————— w—_-‘
I ABNORAAL TIREMRATION STATES M.
L—.— i : :
) 1 i
| ' |
| | e)
o ! i
! 1
l . .
1 actme |
: - T :
0 prm AR el
W e WE ;
1 b PO i 1
1 PASSIVE |
1 ras 1
l H]
cre : 1
{ ACTIVL 1
| aosma |
b 2018 e 1
cLosma l| . aoxn “ i
cosmo —Mﬂl '
1 Ol :
| rAREVE
] |
| |
. !
| S el o d— — — Y -

FIGURE 6.

Composite TCP gervice atate machine diagreum.

ULP Service Requests

PO -

passive

opean,

LEGEND

either unspecified
or fully specified

active open

send
cloae

abort (forces to CLOSED)

TCP Internal Events
EX - exchange of state
information between local
gervice entitien

T - termination of service

due to service failure

OF - open fall, active open

request failed

ULP A, as shown by the notation PO/A, or AO/A.

[X]
w

: The first "actor” of the UlP-pair is defined to be

MIL-STD-1778
12 August 1983

AOD

, B

Downloaded from http://www.everyspec.com

CLOSED

AcTive ool paSSIVE
v AOORB ’
']
EX EX
H]
|
-b - . ESTAB ---J
‘ -------T‘----‘
8] c :
| I :
- e ' '
CLOSBING o or o @ EX = w o - CLOSED
FIGURE 7. TCFP local service-state:machipe.summary. .
TCP LOCAL SERVICE STATE MACHINE SUMMARY
- LEGEND

Service Requests

TCP Saervice Machine
Internal Events

> ...I...I.I.'.......>

PO -

AO -

pasasive open, EX - exchange between
either unspecified service entities

or fully specified T =~ termination of service
active open, due to service failure
with or without data

send

cloge

abort (always leads to CLOSED state)

24

d.

€.

f.

i.

1.

1+ 1Y

Q.

P-

3

t-

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

destination port - identifier of the remote ULP,

destination address - internet address identifying the location
of the remote ULP.

local coonection name - the shorthand identifier used in all
service responses and service requests except for open requests.

original precedence = precedence level opecified by the
local ULP in the open request.

actual precedence - precedence level negotiated at connectioan
opening and used during connection lifetimes.

security - security ioformation (in cludins security level,
compartment, handling restrictions and transmispion countrol code

dafined by ths local ULP.

A4

eec_ranges - security structure which specifies the allowed ranges
ino compartment, handling restrictions, transmission control codes
and security levels.

ULP timeout - the longest delay allowed for data delivery before
automatic connection terminaction.

ULP timeout_action - in the event of a ULP timeout, determines
i1f the connection is terminated or an error is reporced to the OLP.

open mode = the type of open requast issuad by the local ULP
including UNPASSIVE, FULLPASSIVE, and ACTIVE.

send queue - storage location of data sent by the local ULP
before transmission to the remote TCP. Each data octet ig .
stored with a timestanp indicating its time of entry.

send queue length - number of entries in the send queue made up
of data amd timestamp information.

send push — an offeet from the front of the send queue indicating
the end of push data.

send urgent - an offget from the front of the send queue indicat—
ing the end of urgent data.

receive queue — storage location of data received from the remote
TCP before delivery to the local ULP,

receive queue length - mumber of dates octets in the receive
queueu

receive push - an offset from the froat of the receive queue
indicating the end of push data.

25

\ Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

u. receive urgent ~ an offser from the froot of the receive queue
indicating the end of urgent data.

v. rteceive allocation - the mumber of data octets the local ULP is
currently willing to receive.

6.5.3.1 Initial state. A state machine's initial state is CLOSED with
NULL values for all other state vector elements.

-

implementation dependent. 1In the simplest case, 1
a quartet. For example:

6.5.3.2 Sec range structure. The structure of sec_ranges is largely
e t 1d t

(compartment) (handling restriction)(transmission control code)(sec_level range)

In a more complex scenario, the implementation could be tree structured, with
the mimber of branches being ((# compartments) x (# handling restrictions) x
(# transmission coatrol codes)). In Figure B8, each branch has its own
security level range.

P -

COMP 1

1 1 HANDLING
|] RESTRICTION
1
:
T - TRANSMISSION
BECURITY__LEVEL
! | L__ CONTROL CODE ATy
!]
| o
| 1 1
| | i
|]
| | TRANSMISSION
CONTROL CODE SECURITY__LEVEL
! Ny RANGE
1 HANDLING
RESTRICTION
Ny
COMP N,

FIGURE 8. Complex sec range structure.

M
=3

——

"

1
Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

6.5.4 Dats structures. For clarity in the events and actions section, data
structures are declared for the interaction primitives and their parameters.
A subset of ADA data coustructs, common to most high level languages, is
used. However, a data structure aay be partially typed or completely untyped
where specific formats or data types are ioplementation dependent.

6.5.4.1 State vector. The definition of the TCP sarvice aachine state
vector appears in paragraph 6.5.3. The service machine state vectors for
the twvo loca)l TCP sarvice aachines are declaved as:

sv_A : atate vector_type;
av_B : state_vector_type;

type atate vector_type is
record

state : (CLOSED, ACTIVE OPEN, PASSIVE OPEN,
ESTABLISHED, CLOSING);

source_addr : address type;

source_port : TWO_OCTETS;

destination addr : address type;

destination port : ‘I‘UO_OCI'BTS‘

len : len type;

sec : security_type;

sec_ranges : security structure;
nr!Mnn‘lJnrer : 0,.7;

origr : 0,
actual prec : 0..7;
ULP _timeout : time type; .
ULP timeout acl:ion ! integer;
open mode (UNPASSIVE FULLPASSIVE, ACTIVE);
send_queue ! timed gueue_type;
send _queue_length : integer;
send_push : ilnteger;
send_urg : integer;
recv_queue @ qucue_type;
recv_queue length : integer;
recv_push : integer;
recv_urg : integer;
recv_alloc : integer;
end record;

type timed queue_type 18 queue ‘(1..SIZE OF SEND RESOURCE) of
record
data octet : OCTET;

rimeatamn ¢ rimn '_‘y

- i W Anlgs LI P R

end record;

nme
=

type queue_type is queue (1..SIZB_OF RECV_RESOURCE) of
data octet : OCIET;
end record;

.27

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

type address type is FOUR_OCTETS;

type lcn_t:ype : undefined; --implementation dependent
type security struct : undefined; —-implesentation dependent

type time type : undefined; =-—implementation dependent

subtype OCTET is INTEGER range 0..255;
subtype TWO_ OCTETS is INTEGER range "Oee2%%16-)
subtype FOUR OCTETS is INTEGER range 0..2%%32-];

6.5.4.2 From ULP., The from ULP structure holds the interface parameters
and data associated with the service request primitives specified in Sectioun
3.1.1. Although the structure is composed of the parameters from all the
service requests, a particular service response will use only those structure
elements corresponding to its specified parameters. This atructure directly
corresponds to the from ULP structure declared in entity state machine Speci-
fication, paragraph 9.4.4.2. The from ULP structure is declared as:

type from ULP type is

record
requegt name : (Ungpecified Passive Open, F l Pasgive Onﬂn_
request _namc AWWREper llliec TaBglve Ure Pe

U £ ull Pa
Active Open':' Active Open_with data,
Send, Allocate, Close, Abort. Statua),

source_addr

source port

destination_addr

destination port

lcn .

timeout

precedence

security

sec_ranges

data
- data_length

push_flag

urgent flag
end record;

6.5.4.3 To ULP. The to ULP structure holds interface parameters and data
agsoclated with the service response primitiven, as specified in Section
6.4.10. Although the structure is composed of the parameters from all the

service requests, a particular service response will use only those structure
elements corresponding to its specified parameters. This structure directly
corresponds to the to ULP structure declared in paragraph 9.4.4.3 of the
mechanigm specification. The to_ULP structure is declared as:

type to ULP_type is
record
service response : (Open_ld, Open Fail, Open_Success,
o Deliver, Status_Response, Terminate,
Error);
source_addr
gource_port

28

—

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

destination addr

destination port

lca

data

data length

urgant flag

error_desc

status_block : status_block type;
end record;

am— e a bl aal -—- -
[1] u‘lvu LY -l-nﬂ

type sta
ecord
connection state
send window
receive_window
amount_ of unacked data
amount_ of unreceived data
urgant__state
precedence
pecurity
eec_ranges
timeout
timeout_action
e_ml_ record;

6.5.5 Ewvent list. The events for the.ICP service machine are drawn froo
the service request primitives defined ino Section 6.3. Optional pervice
request parameters are shown in brackets. The capitalized list of parameters
represent the actual values of the parameters passed by the service primitive,

The event lisc:
a., Unspecified Passive Open (SOURCE PORT,
. [, TIMEOUT) [TIMEOUT ACI'ION]
[,PRECEDENCB] [,SEC RANCES]),

b. Full Passive Open (SOURCE PORT,
DESTINATION PORT, DESTINATION ADDRESS,
(,TIMe0UT} T,TIMEOUT ACTION] T, mczmnm]
[,SEC mc;zsl).

c. Active Open (SOURCE PORT,
msnmnou PORT, DESTINATION ADDRESS
{ , TIMEOUT) { TIMEOUT ACI'IOH] [PRECEDENCE]
[, SECURIIY])‘

d. Active Open w/data (SOURCE_PORT,
DESTINATION PORT, DESTINATION ADDRESS
[,TIMEOUT] T, TIMEQUT " ACTION] T,PRECEDENCE]

{'s&%ﬂ}}’ ru"lu nA'r‘A‘ Lgm 'nm:u 'ITI.AP

URGENT_FLAG);

N
L -]

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

e. Send (LCN, DATA, DATA LENGTH, PUSH_FLAG, URGENT FLAG [,TIMEOUT]
[,TIMEOUT_ACTIOK]);

f. Allocate (LCN, DATA LENGTH)
g+ Close (LCN)
h. Abort (LCN)
i. Status (LCN)

j. NULL - Although no service request is issued by a ULP, certain
conditions within the TCP gervice machine produce a service
response.

6.5.6 Events and actions. For the purposes of this definition, the ULP and
TCP entities are identified with the capital letters "A" and "B.” The first
ULP to make a service request is labelled ULP "A"; 1its local service machine
18 TCP "A.™ The peer ULP and its TCP are labelled ULP B and TCP B, The service
requests are labelled with the identifier of the issuing ULP, such as Close/A.
The service responses are simiflarly labelled, such as Terminate/B. A service
request appearing with a "*" identifier may be 1ssued by either ULP A or ULP
B. The appropriate TCP handles the request updating its own state vector 1if
necessary. The service response corresponding to such a request is directed
to the appropriate ULP. When a eervice request is invalid for the curreat
stateof ‘the state machine, the service request appears without a parameter
list. 1In this service machine model, “simultaneous”™ services are treated as
unordered sequential events. Hence, CLOSE/A occurring “simultanecusly”™ with
CLOSE/B 1B represented as occurring sequentially without intervening events.
The order chosen for the event sequance should not alter the resulting state,
go that a sequence such as (CLOSE/A, CLOSE/B) should lead to the same state
as the (CLOSE/B, CLOSE/A) sequence. The STATUS event produces the same
service response from the TCP gervice machine in every state. Rather than
show these in each state, the STATUS request and STATUS RESPONSE response
are shown once here.

Event: STATUS (LCN)

Actions: STATUS_RESPONSE (LCN, SOURCE_PORT, SOURCE ADDRESS,
DESTINATION | PORT, IESTINATION ADDRESS,
PRECEDENCE , SECUB.I'I'Y CI)HHECTION STATE
RECEIVE | WINDOH SEND WINDOW,
AMOUNT | HAITING ACK, AHDUNT HAITING RECEIPT,
DRGENT] " MODE , TI!‘EOUT TIMEOUT A(.'I'ION),

6.5.6.1 Event/actions specifications. The following section is organized
by composite state. Mirror-image composite states, such as PASSIVE/ACTIVE
and ACTIVE/PASSIVE, appear as just one. Only one-way data transfer is repre—
sented by the service machine since the data transfer service is symmetric.
Thue, a definition of bi-directional data tramsfer can be provided by dupli-
cating the existing one—way definition. Certain conditioms, checks, and

30

1
Downloaded from http://www.everyspec.com

MIL-STD-~1778
12 August 1983

groups of actlions occur ian several places and have been formed into decision
functioos and action procedures. The decisions function definitions appear
in psragraph 6.5.6.2. The action procedure definitions appear in paragraph
6.5.6.3.

6.5.6.1.1 State A = closed, state B = closed.

Event: Unspecified Pasgive Open/A (SOURCE PORT (,TIMEOUT] [,TIMEOUT_ACTION]
(, PRRCEDENCE) [SEC R.AR@S])

Actions: record_open_paramtem (A, UNPASSIVE);
gv_A.lcn := apsign _new lco;
open id (av A.lcn. av_a.eource port, gv_A.goutce addr, NULL, NULL);
TRANSFER to_ULP to the ULP named by sv_A.aoutce_por:,
sv_A.state := PASSIVE OPEN;

Eveat: Full Passive Open/A (SOURCE_PORT,
DESTIRATION PORT, DESTINATION ADDRESS {, TIMEQUT)
[,TIMEOUT_ACTION| [,PRECEDENCE] [,SEC_RANGES))

Actions: record_open psrameters (A, FULLPASSIVE);
sv_A,lcn := ageign_new lcn;
open 1d(sv A.lcn, av A.source_pon:. sv_A.eource_addr,
av_A. desl:lna:ion__port. ov_A. destination addr).
TRANSFER to ULP to the ULP named by sv A.source_port,
8v_A.atate := PASSIVE OPEN;

Event: Active Open/A (SOURCE PORT, DESTINATION PORT, DESTINATION ADDRESS

{,TIMEOUT] {,TIMEOUT_ACTION] |,FEECE§ENCEi T,SEC_RANGES])
Actions: record open_parameters (A, ACTIVE);
ev_A.lcn :» apsign new lcn;
open_id(sv_A.lcn, v A.source_port sv_A.source addr,
sv_A.dsstination_port, sv_A.destination_addr);
TRANSFER to ULP to the ULP named by sv A.source_port,
sv_A.state e ACTIVE OPERN;

Event: Active Open with data/A (SOURCE_PORT,
DESTIRATION PORT, DESTINATION ADDRESS

[TIMEOUT] T,TIMEOUT_ACTION] |,PRECEDENCE]
(.SEC_RANGES] DATA, DATA_LENGTH, PUSH_FLAG,
URGENT FLAG)

Actioma: sv_A.lcn := assign new lcn;
open 1d(sv_A. len, av A.source_port, sv_A.source_addr,
ev_A.destination_port, 8v_A.destinatiocn_addr);
TRANSFER to ULP to the ULP named by av A.source_port'
1f (roos_tn(sv_A.send_queue)
then

k3]

Downloaded from http://www.everyspec.com

MIL-STD-1778
" 12 August 1983

add to_send queue(sv_A);

record | open_parameters(A, ACTIVE

sv_A.state :~ ACTIVE OPEN;
else
openfail (sv_A.lcn);
TRANSFER to_ULP to the ULP named by sv_A.source _port;

Yo
sy

Event: Close/A (LCN)
or Abort/A (LCN)
or Allocate/A (LCN, DATA__LENGTH);

Actions: error (sv_A.lcn, "Connection does not exist.");
 TRANSFER to_ULP to the ULP named by sv_A.source_port;

6.5.6.1.2 State A = passive open, state B = closed.

Event: Close/A (LCN)
or Abort/A (LON)

Actions: 1inftialize (sv A);
8v_A.state := CLOSED;
Event: Unspecified Passive Open/B (SO PORT [,TIMEOUT] [,TIMEOUT ACTION]
[,PRECEDENCE] [,SEC RAHGESE')

Actions: sv_B.lcn := ggsign new r lcn;
record _open_parameters - (B, UNPASSIVE),
open id (sv_B.lcn, sv_B.source port, sv_B.source_addr, NULL, NULL);
TRANSFER to_l "ULP to the ULP named by sv B.Bource_port.
sv_B.state := PASSIVE OPEN; .

Eveut: Full Passive Open/B (SOURCE PORT,
DESTINATION PORT, DESTINATION ADDRESS
{,TIMEOUT] T,TIMEOUT ACTION} T,PRECEDENCE]
[,SEC RANGES])

Actiona: av B.len : 8 W_lcn;
record open parameters (B, FULLPASSIVE),
- open_id (sv_B.lcn, av_B.source_port, sv_B.source addr,
. sv_B.destination port, sv_B.destination_addr);
TRANSFER to_ULP to the ULP named by sv_B. source__port;
3 e TADCT !'D ﬂI'ltllI

sv B.state := PASSIVE OPER;

Event: Active Open/B (SOURCE PORT, DESTINATION i_PORT, DESTINATION_ ADDRESS
[, TIMEOUT] |, TIMEOUT ACI‘ION] (,PRECEDENCE] {,SECURITY])

32

.
— -

Actions:

Event:

Actions:

Bvent:

Actione:

Bvent:

Actionn:

Bveant:

Actious:

Downloaded from http://www.everyspec.com

MIL-S5TD-1778
12 August 1983

record open_parameters (B, ACTIVE);
sv_B.lcn :=~ as55ign new lcn;
open_id (sv_B.len, sv B.sourca_port ev_B.source addr,
sv_B. daatlmtion_port. av_B. destination L_addr);
TRANSFER to ULP to the ULP naned by sv B.aource_port,
sv_B.state e ACTIVE OPEN;

Active Open with data/B (SOURCE PORT,
DESTINATION PORT, DESTINATION ADDRESS
{,rIMB0UT] T, TIMEOUT _ACTION] T,PRERCRDENCE)
{,SECURITY] DATA, DATA_LENGTH, PUSH FLAG,
URGENT_FLAG

sv_B.lcn := assign nev lcn;
open id (sv_B. lcn, 8v B..ourca_port, sv_B.source_addr,
ov_B.destination port. sv_B. degstination _addr) ;
TRANSFER to ULP to the ULP naned by ev_B. nource_port:,
1f (rocs_in(sv_B.send_queue)
then
add_to_send_queue (sv_B);
record |_open_parameters (B, ACTIVE);
sv_B.atate := ACTIVE OPEN;
elee
openfail (sv_B.len);
TRANSFBR to_ULP to the ULP named by &v_B.source port;

——

Allocate/A (LCN, DATA LENGYR)

sv_A.recv_alloc := sv_A.recv_alloc + DATA LENGTH;

Full Passive Open/A ()
or Send/A ()

error {sv_A.lcn, “Illegal request.”);
TRANSFER to ULP to the ULP named by av_A.source_port;
Close/B ()

or Abort/B {)
or Send/B ()
or Allocate/B ()

error (ev_B.lcn, "Iliegal request.”);
TRANSFER to ULP to the ULP named by sv_B.source port;

"ot
w2

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

6.5.6.1.3 State A = active open, state B = closed.

Event: Close/A (LCN)
or Abort/A (LCN)

Actions: 1initialize (ev_A);
sv_A.state := CLOSED;

Event: Allocate/A (LCN, DATA LENGTH)

Actions: sv_A.recv_alloc := pv A.recv_alloc + DATA LENGTH;

Event: Send/A (LCN, DATA, DATA LENGTH, PUSH_FLAG, URGENT_ FLAG
[, TIHEOUT] {, TIMEOUT ACI‘ION])

Actiouns: 1f (room in(sv_A.send queue})
then 1f (TIMEOUT /= NULL)
then sv_A,ulp timeout := TIMEOUT;
‘add to send _queue (sv_A);
else ertor(sv_A.lcn. “Insufficient resources.”);
TRANSFER to ULP to the ULP named by sv_A.source_ port;

Event: Unspecified Passive Open/B (SOURCE PORT [,TIMEOUT] [.TIMEOUT AC'I'ION]
[, PRECEDENCE] [,SEC R.A.NGES])

Actions: sv B.lcn := assign new lem;
record_open_parameters (B, UNPASSIVE);
open_id (sv_B.lcn, sv_B.source port, sv_B.source addr, NULL, NULL);
TRANSFER to_l " ULP to the ULP named by 8v_] B. source_port,
sv_B.state G- PASSIVE OPEN;

Event: Full Passive Open/B (SOURCE_PORT,
DESTINATION PORT, DESTINATION ADDRESS
{,TIMEQUT] T TIHEOUT ACTION} [PRECEDENCE]
[,SEC_RANGES])

Actions: sv_B.lcn := assign new len;
record open_parametets . (B, PULLPASSIVE);
open_id (av +lcn, sv_B.source port, sv_B.source_ addr,
sv_] " B. dest:ination_)ort, sv_B.destination_addr);
TRANSFER to_ULP to the ULP named by sv B.source_port,
sv- B.gtate := PASSIVE OPEN;

Event: Active Open/B (SOURCE PORT,
DESTINATION PORT, DESTINATION ADDRESS
(,TIMEOUT] T, TIMEOUT "_ACTION] T,PRECEDERCE] {,SECURITY])

34

)

-

Downloaded from http://www.everyspec.com

MIL-STD~1778
12 August 1983

Actions: v B.lco := aspsign new len;
record _open_parameters (B ACTIVE);
open_id (sv_B.lcn, sv_B.source_port, sv_B.eource eddr,
ev_B.desctination port, sv_B.destination addr);
TRANSFER to ULP to the ULP naned by sv B.source_port,
sv_B.state - ACTIVE OPEN;

Event: Active Open with data/B (SOURCE. PORT,
DESTINATION PORT, DESTINATION ADDRESS
{ ,TIMBOUT] [,TIMBOUT_ACTION] 1,6RECEDENCE]
[,SECURITY] DATA, DATA . LENGTH, PUSH_FLAG,

URGENT_FLAG)

Actions: sv_B.lcn := assign_new lcn;
0pen id (sv_B. len, | 8v_] B. source_port, 8v_B.eource_addr,
av B, das:inacion_port, sv_B, destination _addr);
TRANSFER to ULP to the ULP pamed by ev B.source_yort,
1f (roow_: in-(av B.send_queus)

" then add to_send_queue (av_B);
record open_paramters {B, ACTIVE);
ev_B.stace := ACTIVE OPEN;
else openfail (sv_B.len);
* TRANSPER to_ULP to the ULP nomed by sv_B.source_ port;

Event: Pull Passive Open/A ()
or Active Open/A ()
or Active Open with data/A ()
Actions: error (sv_A.lcn, "Illegal request.”);
TRANSFER to ULP to the ULP named by sv_A.source port;

Event: Send/B ()
or Close/B ()
or Abort/B ()
Actions: error(sv B.len, "Illagal request.”);
TRANSFER to ULP to the ULP named by sv _B.eource_port;
Event: NULL

Actions: 1Internal Bvents

1) 1f timeout exceeded (sv_A)
then if (ULP TIHEOUT ACI'ION - 1)

35

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 Auvgust 1983

then openfail (sv A.lcn);
TRANSFER to | ULP to the ULP named by :5v_A.source port;
initialize (sv _A);
sv_A.state := CLOSED;

else
REPOR‘I‘_TIHEOU'I’ (av A);

6.5.6.1.4 State A = passive open, state B = active open.

Event: Close/*{LCN)
or Abort/*{LN)

Actioms: 1initialize (gv_*);
sv_*.gtate := CLOSED;

Event: Allocate/*(LCN, DATA LENGTH)

Actious: sv_%.recv_alloc :» sv_*.recv_alloc + DATA_LENGTH;

Event: Send/B (LCN, DATA, DATA LENGTH, PUSH FLAG, URGENT " FLAG
[TIHEOUT] [,TIMEOUT ACTIONIS

Actions: 1f (roam_in(sv_B.send queue) o e e
then
add _to send gqueue(sv_B);
1f (TIMEOUT /= NULL)™
then av_B.ulp timeout := TIMEOUT;

else
error {sv B.lecn, “Insufficient resources.");
TRANSFER to ULP to the ULP named by sv _B.source_port;

Event: Send/A ()
Actions: error (sv_A.lcn, "Illegal request.™);

TRANSFER to ULP to the ULP named by sv _A.gource_port;

Event: Full Passive Open/*()
or ActiveOpen/*()
or AcriveOpen with data/*()

Actlions: error (sv_*.lem, "Illegal request.”);
TRANSFER to ULP to the ULP named by 8v_*,.gource_port;

36

~——

Downloaded from http://www.everyspec.com

MIL-STD~1778
12 August 1983

Event: NULL

Actiona:

Internal Evente

1) Af not SEC_RANGE MATCH (sv_A);

then

else

OR,

openfail (sv_B.len);
TRANSFER to_l ULP to the ULP named by sv_B.source_ port; .
initialice (sv_n),)
sv_B.state := CLOSED;

—7Tske greater precedence level to model precedence negotiation;
—1f negotiation is not supported, mismatched precedence
~4s handled the same as mismatched security.
1f (sv_A.original_prec /= 8v_B.origlnal prec)
thean
8v_A.actual_prec 1= maximum (sv_A.original prec,
av B.original_prec),
av B.ac.tual_ptec := maxinun (sv_A.original prec,
8v B.or:l.ginal_prec).
1f (sv_A.open _mode = UNPASSIVE)
then
8v_A.destination addr := sv_B.source_addr;
8vV_4 " A des:ina:ion_port := gv_B.source_ port;
load security (ev_A);
BV i A.otate := ESTABLISHED‘
open_success (8v_A.lcn);
TRANSFER to_ULP to the ULP named by sv_A.scurce port;
ev_B.state T= ESTABLISHED;

open_success (sv_B.len);

TRANSPER to_ULP to the ULP paned by sv_B.source port;
if timeout_. exceeded (8v _B);
then 1if (ULP TIHKOUT ACTION = 1)

2) if timemt_excaeded(sv_ﬂ)

then

else

6.5.6.1.

openfail (sv_B.lcn);

TRANSPER to ULP to the ULP named by ev_B.len;
toitialize {sv_B);

sv_B.gtate := CLOSED;

REPORT TIMEOUT (sv_B);

5 State A = passive open, atate B = passive open.

Bvent: Allocate/*{LCN, DATA LENGTH)

PR R

37

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

Bvent:

Actions:

Event:

Actions:

6.5.6.

Event:

Actions:

Event:

Actions:

Event:

Cloae/*{LCN)
or Abort/*(LCN)

initialize (sv_%*);
ov_*,ptate := CLOSED;

FPull Paseive Open/%()

or ActiveOpen/*()

or ActiveOpen with data/*()
or Send/%()

error{sv_*.lcn, "Illegal request.”);
TRANSFER to ULP to the ULP named by sv *.source_port,

1.6 State A = active open, state B = active open.

Allocate/*(LCN, DATA LENGTH)

av_*.recv_alloc := gv_%*.recv_alloc + DATA LENGTH;
Cloge/*(LCN)
or Abort /*{.LCK)

initialize(sv_*); re T o

sv_%*.state = CLOSED;

Full Passive Open/*()

. or Active Open/%{()

Actions:

Event:

Actions:

or Active Open with data/*()

error(ev_*.lecn, "Illegal request.”);
TRANSFER | to ULP to the ULP named by sv *.source_port,

Send/*(LCN, DATA, DATA LENGTH, PUSH FLAG, URGENT FLAG
[-mmou'rl [,TIMEOUT Acnon}‘)'

1f (room in(ev_*.send queue)
then
add_to_send queue(sv *);
if (TIMEOUT /= NULL)
then sv_#%,ulp timeout := TIMEOUT;
else
error(sv *,1lcn, "Insufficient resources.");

TRANSFER -Eo_ULP to the ULP named by sv_*.source port;

38

“_/-

S

Event:

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

NULL

Actious: Internal Events

1)

OR,
2)

OR,
3)

if (sv_A.sec /= sv_B.sec)

then
openfail(sv_A.lcn);
Tramfer to ULP to the ULP named by sv_A.source_port;
openfail(sv_B.len);
Trapsfer to _ULP to the ULP named by sv_B.source port;
fonitialize(sv_A); 8v_A.state := CLOSED;
initialize(sv B); sv_B.state := CLOSED;

else ——take greater precedence level to model precedence negotiation;
=—1f negotiation not supported, mismatched precedence
~—1p handled just as miematched security
1f (sv_A.original_prec /= gv_B.original prec)
then
sv_A.actual prec := saximum(sv_A.original prec,
sv_B.original prec);
sv_B.actual_prec := maximunm(ev_A.original prec,
gv_B.original prec);
sv_A,state := ESTABLISHED;
sv_B.state := ESTABLISHED;
open success{ sv_A.lcn);
TRANSFER to_ULP to the ULP named by 8v_A.source_port;
open_ succesa(sv_B.len);
TRANSFER to ULP to the ULP named by sv_B.source_port;
1f timeout_exceeded (sv_A)
thean 1f (ULP_timeout_action = 1)

then openfail(sv_A.lecn);
TRANSFER to_| ULP to the ULP named by sv_A.source_port;
inftialize(av _A);
sv_A.state := CLOSED;

if timeout exceeded (sv_A)
then 1f (IJI.P timeout action - 1)
then °
openfail (sv B.len);
TRANSFER to ULP to the ULP named by ev _B.source_port;
initialize (sv_B);
sv_B.state := CLOSED:
elge
report_threat;

6.5.6.1.7 State A = eptablished, state B = established.

Event:

Send/*(LCN, DATA, DATA_LENGTH, PUSH FLAG, URGENT_ FLAC
{, TIHEOUT] ([, TIMBOUT ACTION]T

k1

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

Actioms: 1f {room_in(sv_*.send queue)
add to send queuetav W H
1f (TIMEOUT /= NULL)
then sv_*.,ulp timecut := TIMEOUT;
else
error(sv_*.len, "Insufficient resources.”);
TRANSFER to ULP to the ULP named by av_#*.source_ port;

Event: Allocate/*(LCN, DATA LENGTH)};

Actions: sv_*,recv_alloc := sv_%*.recv_alloc + DATA LENGTH;
if (sv *_recv _queue_ length > 0)
then try__to_deliver,

Event: Abort/*(LCN)

Actions: terminate(sv_*.lcn, "User abort.”);
TRANSFER "to_| ULP to the ULP named by sv *.aource_port,
1t11t18.llel 8V ®)'
sv_%.state := ‘CLOSED; ' |

Event: Close/*(LCN)
Actions: sv'_*.séﬁ:'f;;pﬂs‘t'lﬂ'- sv *.gend” queue length;
sv_*.state := CLOSIHG

Event: Full Passive Open/*{)
or Active Open/*()
or Active Open with data/*()

Actions: error(sv_*.lcn, "Illegal request.”);
TRANSFER to ULP to the ULP named by sv_*.source port;

-—For clarity, one-way data tramsport, from TCP A to TCP B 1is shown.
——Because the data transport service is symmetric, the following
~-text could be duplicated to represent bi-directional data transport.

1) if timeout_exceeded(sv_A)
then 1f (ULP_timeout_action = 1) T
then o
teminate(sv_A.len, “ULP timeout.”); :
TRANSFER to_| ULP to the ULP named by sv _A.source_port;
initialize(sv A);
sv_A.state = CLOSED;

AR

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

else

OR,

2) 1f (comditions exist such that no data can be exchanged
by local state machines)

then ’ .

terminate(sv_A.lcn, “Service faflure.");
TRANSFER to_| ULP to the ULP named by ev A.aourca_port.
temminate(sv _B.len, “Service fatlure.");
TRANSFER to m to the ULP named by sv_B.source port;
inttialize(sv A); 8v_A.state := CLOSH)
fnitialize(ov | _B); av_| ' B.atate := CLOSED;

(sv_A.send urg /= 0)
o
sv_B.recv_urg := (sv_B.recv_queue_length + sv_A. send_urg);

Dequeue some portion of data equal to "amount”

(amount may be >= 0) from sv_A.send queue

and append to sv_B.recv queue,

if (amount > 0)

then
ov_A.pend_queue_length := ev_A.send_queue_length — amount;
sv_B.reev_gueue_length := sv_B.recv_queue_length + apount;

1f (ev_Algend_urg =¢ amount)
then sv A.send | _urg := 0;
else av A.aend urg i= gv_A.send_urg - amount;

1f (av A,eeu_md puch o{ amannt)

then sv B.recv_puah t= gv B.recv_puah + sv_A,.send push;
ev_A.eend push := 0;

else sv_A.send _push := gv_A.send push - amount;

try_to_deliver;

6.5.6.1.8 State A = established, state B = closing.

Event: Send/A(LON, DATA, DATA _LENGTH, PUSH_FLAG, URGENT FLAG
[, T'I.HBOUT] (, TIMBOUT ACI'ION])

Actions: 1if (roow in(sv_A.send_queus)
add to send queue(sv A);
1f (TIMBOUT /= NULL)™
then sv_A.ulp timeout := TIMEOUT;
elge
error{ sv_A.len, "Insufficient resources.");
TRANSFER to ULP to the ULP named by av_A.source_port;

41

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

Event: Close/A({ LCN)

Actions: sv_A.send push := sv_A.send queue_length;
8v_A.state := CLOSING;

Event: Allocate/*(LGN, DATA LENGTE);

Actions: sv_*.recv_alloc := sv _*.recv_alloc + DATA LENGTH;

if (sv_*.Tecv_queue length > 0)
then try_to__deliver,

terninate(sv_* lcn, "User abort.™);
TRANSFER to_ULP to the ULP nasmed by sv_*.source port;

Event: Send/B()
or Close/B{)

Actions: error(ev_B.lcn, “Connection clﬁs:l.ng.");
. - TRANSFER to ULP to the ULP named by sv_B.source_port;

-

Eveat: Active Open/*{)
or Active Open with data/*()
or Full Passive Open/*()

Actions: error(sv_*.lcm, "Illegal request.”);
TRANSFER to ULP to the ULP named by sv_*.source port;

Event: NULL
Actiong: Internal Event's

1) if timeout_ exceeded(sv_%*)

then 1if (ULP timeout_. action = 1)

then
terminate(sv_*.lcn, "ULP timeout.™);
TRANSFER to ULP to the ULP named by sv _*.gource_port;
initialize(av_*);
gv %, gtate = CLOSED;

elee
report_timeout (sv_*);

-
[\

._‘_/

"

ey

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

2) if (comditions exist such that no data can be exchanged

e
~

by local state machines)

then
teminate(sv_A.lcn, “Service failure.”);
TRANSFER to_ULP to the ULP named by &V_A.source_pott;
terninate{sv_B.lcn, “Service failure.™);
TRANSFER to ULP to the ULP named by sv_B.source port;
ianttialize(sv_A); sv_A.state := CLOSED;
ifnitialiece(sv_B); sv_B.state := CLOSED;

if (contents sv_B.send queue have all been tramsferred

to sv_A. recv _queue and subsequently delivered to ULP A)
o closing(sv_A.len.);

TRANSFER to _ULP to the ULP naned by sv_A.source port;

——i A or 2tn vl nn-—‘rnu Aara Frarmwans I'f fr_ﬂ_n "‘p A to P B "H ni'rn.rn

T D I-‘-b: » Wit W Uﬂ‘o el &3 LEF - (=] -

-Bec.anse the data trans It service 15 sgyumetric, the following
~~text could be duplicated to represent bi-directional data traospott.
~—NRote that TCP B is still respousible to reliably transport any
~—dats remssiniog in sv_B.send queue.

if (the data exchange between local state machines has been triggered)
then
1f (sv_A.send_urg /= 0)

then
sv_B.recv_urg equal :» (sv_B.recv_gueue_length + av_A. send urg);

Dequeue some portion of data equal to “amount”
(amount may be >= 0) from ev_A.send_queue
and append to sv_B.recv_queue;

if (amount > 0)

theo
sv_A.send_queue_length := sv_A.send_queue_length - amouant;
av I\ recv_queue lnncth = gav B.recv queue 1enm:h 4+ amount:

1f (cv A.send _urg -(amount)
then av__A.aend_urg 1= 0;
else sv_A.send_urg := av_A.aetﬁ_utg - amount;

if (EV_A.EEtﬁ_puBh ={ amount)

then sv_B.recv_push := sv_B.recv_push + amount;
8v_A.send_push := 0;

else sv_A.gsend push := gv_A.send_push - amount;

try_to_deliver;

43

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

6.5.6.1.9 State A = closing, state B = closing. \

Event: Abort/*{ LCK)

Actions: ianitialize(sv *);
. sv_%*.state := CLOSED;
teminal:e(sv % _lcn, “User Abort.”);
TRANSFER to | ULP to the ULP named by sv _*.source_port;

Event: Allocate/*(LCN, DATA LENGTH);

Actions: sv_%*.recv_alloc := 8v ' *,.recv_alloc + DATA | LENGTH;
1f (sv_*.Tecv_queue_length > 0)
then t:ry_to_del.lver.

Event: Send/*{)
or Close/*()

Actions: error{sv_*.lcn, “Connection cloeing.”);
TRANSFER to ULP to the ULP naemed by sv_%*.source_port;

Event: Active Open/*()
" " "or Active Open with data/*())
or Full Passive Open/*()

Actions: error(sv_*.lcm, "Illegal request.”);
TRANSFER to_ULP to the ULP named by sv_*.source_port;

Event: NULL
Actions: Internal Events

1) —-For clarity, one-way data transport, from TCP A to TCP B is shown.
~-Because the data transport service is symmetric, the following
—text could be duplicated to represent bi-directional data transport.
—==Note that TCP B is still responsible to reliably transport any
—-data remaining in sv_B.send queue.

if (the data exchange between local state machines has been triggered)
then
1f (sv_A.send_urg /= 0)
then
sv_B.recv_urg equal := (sv_B.recv_queue_ length + 8v_A.send urg);

Dequeue some portion of data equal to "amount”

(amount may be >= 0) from sv_A.send_gqueue
and append to sv_B.recv_gueue;

&4

Sty

Downloaded from http://www.everyspec.com

MIL-STD=-1778
12 August 1983

1f (amount > 0)

then
ov_A.send_queue_length := sv_A.send _queue_length - amouat;
sv_B.recv_queue_length := sv_B.recv_queue length + amount;

if (ev_A.send_urg =< amount)
then sv_A.send_urg := 0;
else 8v_A.send_urg := sv_A.send urg = amount;

if (ev_A.send push =< amount)

then sv_B.recv_push := sv_B.recv_push + amount;
sv_A.send_push := 0;

else 8v_A.send push := sv A.send push - amount;

try_to_deliver;

OR,
2) 1f ((contents sv_B.send_queue have all been tramsferred
to gv_A.recv_queue and subsequently delivered to ULP A)
&
(coatents av_A.send_queue have all been tracsferred
to sv_B.recv_queue and subsequently delivered to ULP B))

then
teminate(sv_A.lcn, "Conrection closed.”);
TRANSFER to ULP to the ULP named by ev A.source_port.
teminate(nv B.lcn, “Connection closed.”™);
- TRANSFER to | ULP to the-ULP named by sv_B.eource_ port;
initialize(sv ' A); sv_A,state :~ " CLOSED;
1n1t1311:e(av_8), sv_B.state := CLOSED;

OR,
3) if timecut_exceeded(sv_*)

then 1f (ULP timeout action = 1)

then
termingte(ev_*.lcn, "ULP timeout."”);
TRANSFER to | ULP to the ULP named by sv_*.source_port;
:I.niti.alize(sv *);
sv_%.state := "~ CLOSED;

else
report_timeout (sv_*)

--The composite states, CLOSED/ESTABLISHED, CLOSED/CLOSING,
-=ACTIVE/ESTABLISHED, ACTIVE/CLOSING, PASSIVE/ESTABLISHED, AND
—PASSIVE/CLOSING, are rcached after abnormal

—connection termination caused by either an Abort requast or
-=-gervice failure. Because the service request liste for ULP A
-~already appear in other gtates, these lists are referenced rather
=~than duplicated.

45

Downloaded from http://www.everyspec.com

MIL-STD~1778
12 August 1983

6.5.6.1.10 State A = cloged, state B = established.

—ULP A's service request list appears in the CLOSED/CLOSED state.

Event: Send/B(LCN, DATA, DATA LENGTH, PUSE FLAG, URGENT FLAG
i, TIMEOUT] [, TIMEOUT Acnou]T

Actions: 1f (room in(sv_B.send queue))
1f (TIMEOUT /= NULL)
then sv_B.ulp timeout := TIMEOUT;
add_to_send queue(sv_B);
elge -
error{ ev_B.len, “Insufficient resources.”);
TRANSFER to ULP to the ULP named by sv_B.source_ port;

Event: Allocate/B(LCN, DATA LENCTH);

Actions: sv_B.recv_alloc :~ sv_B.recv_alloc + DATA LENGTH;
if (sv B.recv _queue length > 0)
then try_to__de.liver,

Event: Close/B(LCN)

Actions: sv_B.push := sv_B.send_queue_length;
sv_B.state := CLOSING;

Rwants Aklane
M'cllb‘ TRV L

/B{ 1LCN)

Actions: teminate(sv B.len, “User abort.”);
TRANSFER to ULP to the ULP named by sv_B. source_port,
inittalize(sv B);
sv_B.state := CLOSED;

Event: Pull Passive Open/B()
: Active Open/B()
Active Open with Data/B()

Actions: error{sv_B.lcm, "Illegal request.”);
‘TRANSFER to ULP to the ULP named by sv_B.source port;

Event: NULL
Actions: Interunal Events
1) terminata(ev B.J.cn, "Remote Abort.");
TRANSFER to ULP to the ULP naned by sv_B.source port;
1nitialize(sv B);
pv_B.state := CLOSED,

46

Downloaded from http://www.everyspec.com

MIL-STD~-1778
12 August 1983

OR,
2) if timeout_exceeded(sv_B)

then 1f (ULP timecut action = 1)

then
teroinate(sv_B.lcn, "User timeout.”);
TRANSFER to ULP to the ULP named by sv_B.source port;
intcialize(sv ' B);
sv_B.state := CLOSED;

else
report_timeout (ev_B);

6.5.6.1.11 State A = clogsed, gtate B = closing.

—7ULP A's service request liot appears in the CLOSED/CLOSED atate.

2 o mme &

Event: Abort/B{ LGN)

Actions: terminate(sv_B.len, "User Abort.");
TRANSFER to_| ULP to the ULP named by sv_B.source_ port;
iniclalize(av B);
sv_B.gtate := CLOSED;

Bvent: Allocate/B(LCN, DATA LENGTH);

‘Actions: bov_B.recv_alloc := sv_B.recv_alloc + DATA . LENGTH;
if (av B.recy _queue l.ength > 0) then try to _deliver;

Event: Close/B(LON)

L
or Send/B(LCN)

Actions: error(sv_B.lcn, “Connection closing.");
TRANSFER to ULP to the ULP named by sv_B.source port;

Event: Full Passive Open/B(LCN)
Active Open/B(LCN)
Active Open with Data/B{ LCN)

Actions: error(sv_B.lcn, "Illegal request.”);
TRANSFER to ULP to the ULP named by sv_B. sourca_port,

Event: KULL

Actions: Intermal Events

-
1) terminate(sv_B.lcn, "Remote Abort.”);

TRANSFER to_| ULP to the ULP named by ev_B.source_ port;
in.ltial:l.ze(sv_B).
ev_B.state := CLOSED;

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

OR,
2) if timeout exceeded(av B)

then 1f (ULP timeout . action = 1)

then
terminate(sv_B.lcn, “User timeout.”);
TRANSFER to_l ULP to the ULP named by sv B.aource_port.
initialize(. av B);
sv_B.state := ‘CLOSED;

else
report_timeout (ev_B);

6.5.6,1.12 State A = active, state B = astablished.

~=ULP A's Bervice request list appears in the ACTIVE/CLOSED state.

Event: Send/B(LCN, DATA, DATA LENGTH, PUSE_FLAG, URGENT FLAG
(, 'mmou'r] (, TIMEOUT Acrxom’)‘

Actions: 1if (room in(sv_B.send queue)
1f (TIMEOUT /= NULL)
then sv_B.ulp timeout :~ TIMROUT;
add to_t send queue(sv B);
elpe
errvor(sv_B.len, "Insufficient resources.”);
TRANSFER to ULP to the ULP named by sv_B.source port;

Event: Cloge/B(LCN)

Actions: ev_B.push := gv B.gend queue_length;
sv_B.st.ate := CLOSING;

Event: Abort/B{ LCN).

Actions: temminate(sv B.lcn, “User abort.");
TRANSFER to ULP to the ULP named by sv_B.sgource_port;

initialize(av_B);
avy ﬂ gtare !m anFn

Event: Allocate/B(LCN, DATA LENGTH);

Actions: s8v_B.recv_alloc := sv_B.recv_alloc + DATA LENGTH;
1f (8v_B.Tecv_queue_ length > 0)
then try_to_deliver,

Event: Full Passive Open/B{)
Active Open/B()
Active Open with Data/B()

48

N

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 Auguat 1983

Actions: error(sv_B.lcn, “Illegal request.");
TRANSFBR to ULP to the ULP named by av B.eource_port.

Bvent: NULL -
Actions: Intarnal Events

1) terminate(sv_B.lcn, "Remote Abort.~);
TRANSFER to ULP to the ULP named by ev _B.source port;
1n1tialj.r.e(nv B):

8v_B.state := (:I.OSEJ;

OR,
2) if timeocut exceeded(sv B)
ti i

.terminate(sv_B.lecn, “User timeout.”);
TRAN3SPER to ULP to the ULP named by sv_B.scurce port;
initialize(av_B);
8v_B.state :* CI..(‘JSEI‘J,
else
report_timeout (sv_B);

OR,
3) 1if timeout_exceeded(av_A)

then if (ULP_timeout_action = 1)

theo
temainate(sv_A.lcn, "User timeocut.");
TRANSFER to_| ULP to the ULP named by 8v_A.eource_port;
ianitialize(sv A);
sv_A.state := " CLOSED;

elee
report_timeout;

6.5.6,1.13 " State A = active, state B ~ cloaing.

—ULP A's service request gt appears in the ACTIVE/CLOSED state.

or Close/B()
Actiong: error(sv B.len, “Connection closing.”);
TRANSPER to ULP to the ULP named by 8v_B.aource_port;
Event: Allocate/B(LCN, DATA LENGTR);

Actions: sv _B.recv_alloc := ev_B.recv_. alloc + DATA LENGTH;
1f (av_B. Tecv _queue l.en.g:h >0)

:h@‘ try to deuver.

o
w

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

Event: Abort/B{ LCN)

Actions: terminate(sv_B.lcn, “User abort.”);
TRANSFER to | TULP to the ULP pamed by sv _B.source_port;
initialize(sv B),
sv_B.state := CLOSED;

Event: Full Passive Open/B()
or Active Open/B()
or Active Open with Data/B{)

Actions: error{sv_B.lcn, "Illegal request:");
TRANSFER to_ULP to the ULP named by sv_B.source port;

Event: NOUOLL
Actions: Internal Events

1) terminate(sv_B.lcn, “Remote Aborc.");
TRANSFER to 1 ULP to the ULP named by sv _B.source_port;
initialize(sv B);
sv_B.state ;= CLOSE);

OR,
2) 1f timeout_exceeded(sv_B)

the 1f (UI..P timout action = 1) -

then
terminate(sv_B.lcn, "User timecut.”);
TRANSFER to_| ULP to the ULP named by sv _B.gource_port;
1nitialize(av B);
gv B.state = CLOSED;

else
report_timeout (sv_B);

OR,
3) if timeout exceeded(sv_A)
the if (ULP_timeout action = 1}

then
terminate(sv_A.lcn, “User timeout.™); '
TRANSFER to_ULP to the ULP named by sv_A.source_port;
initislize(ev_A);
gv_A.state := CLOSED;

else

report_timeout (sv_4);

£ € £ 1 14 Ceo
6§.5.6.1.14 GState A

--ULP A's request list appears in the PASSIVE/CLOSED state.

50

! Downloaded from http://www.everyspec.com

MIL-STD~1778
12 August 1983

Event: Send/B(LCN, DATA, DATA LENGTH, PUSB_FLAG, URGENT FLAG
[, TII!EOUT] (, TIMEQUT A(.TION])

Actions: 1f (room in(sv_B.send queue)
if (TIHBOUT /= RULL)
thea sv_B.ulp tiamesout := TIMEQUT;
add_to und queue(av B);
else
error(sv B.lcn, “Insufficient resources.”);
TRANSFER to_ULP to the ULP named by sv_B.source port;

Bvent: Close/B{ LON)

Actioog: s8v_B.push := av B.send queue_length;
ov_B.state = CLOSING;

BEvent: Abort/B{ LCN)

Actions: teminate(sv B.lecn, “User abort.”);
TRANSFER to_| ULP to the ULP named by sv_B.source_port;
inttialize(av B);
8v_B.otate := CLOSED;

EBvent: Allocate/B(LCN, DATA_LENGTH);

Actions: s8v_B.recv_alloc := sv_B.recv_alloc + DATA LBHG'I'B

if (sv_B.recv _queue_ l.eng:h > 0)

then ti-y_l‘:o_u jeliver r;

Event: NULL
Actions: Internal Events

1) terminate(sv_B.lcn, "Remote Abort.");
TRANSFER to ULP to the ULP named "by av_B.esource_port;
1n1t1a1:l.ze(nv B);
ev_B.state := CLOS;

OR,
2) 1f timeout_exceeded(sv_B)

the 1f (ULP_timeout_ection = 1)

thea
temminate(sv B.lcn, “User timeout.”);
TRANSFER to | ULP to the ULP named by sv_B.source port;
initialize(ov ' B);
sv_B.state := GLOSED;

else
report_timeout (sv_B);

51

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

6.5.,6.1.15 State A = passive, state B = closing.

—{ULP A's request list appears in the PASSIVE/CLOSED state.
Event: Allocate/B{ LCN, DATA LENGTH);

Actions: sv_B.recv_alloc := sv_B.recv_alloc + DATA LENGTH;
1f (sv_B.Tecv_queue_length > 0)
then try_to_deliver;

Event: Abort/B(LCN)

L}

Actions: temminate(sv_B.len, “User abort.”);

TRANSFER to_ULP to the ULP named by sv_B.source_ port;

initialize(sv_B);
sv_B.state = CLOSED;

Event: Cl.ose/B(LCN)

or Send/B{ LCH)

Actions: error(sv_B.lcn, “Connection closing.");

TRANSFER to ULP to the ULP named by sv_B.source pott;

Event: Full Papaive Open/B{ LCN)
or Active Open/B{ LCN)
or Active Open with Data/B(LCN)

Actions: error(sv_B.lcn, "Illegal request.”);

TRANSFER to » ULP to the ULP named by sv_B.source port;

Event: NULL
Actiongs: Internal Events

1) terminate(sv_B.lcn, "Remote Abort.");
TRANSFER to_l ULP to the ULP named by sv_B.source_port;
initialize(sv _B);
ev_B.state := CLOSED;

OR,
2) 1f timeout_ exceeded{sv_B)
then if (ULP_tiweout_action = 1)
then
temeinate(sv_B.lcn, “User timeout.™);

TRANSFER tO ULP to the ULF named Dy 8V b.source_porl:,

initialize(sv B),

sv_B.state := " CLOSED;
else

report_timeout (sv B);

52

~—r’

L

Downloaded from http://www.everyspec.com

6.5.6.2.1 Room in (state vector name). The room in decieion function
campares the smunt of space available in the send qmue of the state vector
(named by the parameter) against the smount of data provided by the ULP 1o
an Active Open with Data or a Semd service request. The data effects of
this function are:

= Data exanined:

from ULP.dsta_length S1ZE_OF_SEND RBSOURCES
8v_*.gend_queue length .

— Return values:

FALSE = The eend_queue caanot accommodate all the data
provided in the service request.

THE - There is encugh room in the send queue for the data.

i1f (from ULP.data_length >
(SIZE_OF_SEND_RESOURCE - sv_*.send_queue_langth))
then returu (PALSE)
else return (TRUE);

6.5.6.2.2 Timeout exceeded (sv*). The timeout_exceeded -decision function .
compares the current time against the age of the- ‘data in the send _queue and
the specified ULP timeout limit to determine if the ULP timeout bas been ex-
ceeded. The data effects of this funection are:

- Data ecxanined: ev_*.ulp timeout ev_*.send_queue
= BRetura values:

PALSE - The data in the send queue does not exceed the ULP
defined timecut limit.

TRUE - Dats in the send_queue has exceeded the timeout limic.
~~The data at the front of the queue is the oldest.

1f (ev_*.send queue_length > 0)
then {f (CURR.ENT TIME > ev_%*.gend_queue(O)timeout + gv_*.ulp timeout)

then retura (TRUE)
else return (FALSE);

6.5.6.3 Action procedures. These routines appear in several places in
the service machine definition. The "*" can be replaced by either A or B for
delivery to the appropriate ULP.

A
w

Downloaded from http://www.everyspec.com \

MIL-STD-1778
12 Avgust 1983

6.5.6.3.1 Add to send queue (gv*). The add_to_send queue action procedure
enqueues the dats provided in an | Active Open with Data or Send request onto

the eend_queue of the state vector named by parameter. The data effects of
this procedure are:

= Data examined:

from ULP.data from ULP.urgent flag
from ULP.data length from ULP.push flag

~ Data modified:

sv_*.gsend queue sv_*.send push
ev_! " ®_gend |_queue length sv_*.send urg

Enqueue contents of from ULP.data to sv_*.send queue, stamping each
data octet with the current time;

sv_*.send queue length := sv *.send_queue_length + from ULP.data length;

if (from ULP.push flag = TRUE)
then gv_*.send_push := sv_*.send queue length;

if (from ULP.urgent flag = TRUE)
then sv_*.pend_urg := sv_*.send queué length;

6.5.6.3.2 Assign new lcn. The assign new len action procedure assigns a

local connection name not currently used for a new open request and subsequent
connection. The data effects of this procedure are:

— Data examined: Internal regources
none

——The proé.edure returns the value to be used as the new
—local connection name.

6.5.6.3,3 Error (local connection name, error description). The error
action procedure copies the local connection name and error description text
supplied by parameter into the to ULP structure. The service response field

iz assigned to ERROR for subsequent transfer to the ULP. The data effects
of the procedure are:

- Data examined: procedure parameters

- Data modified: to ULP.lcn, to ULP.error_desc, to ULP.service response

to ULP.lcn := local_connection name;
to | ULP.error desc := error description,
to_ULP setvice_response t= ERROR;

[
L

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

6.5.6.3.4 Load security, The security parameters (including security
ievel, compartment, transmission control code, and handiing restrictioms) in
an inconing segment are loaded into the state vector. The data effects of
this function .are:

- Data examined:

from NET.optioos [security)
= Data modified:

BV.gec

~=This would occur after a successful
-=gec_range wmatch,

ev.eec = from NET.options [security)
6.5.6.3.5 1Initialize (sv*). The ianitialize action procedure clears a.ll.

values of the etate vector named by parameter. The data effects of this
procedure are:

- Data examined: procedure parameter
- Data modified: all fields of sv_*

dequeve(sv_*.send queue,sv_*.send_queue_length);
dequeue(sv_*.recv_queue,sv_*.recv_queus_length);
sv_* = mll s tate_vector;

6.5.6.3.6 Open fail (local connection name). The open fail action pro-
cedure copies the local comnnection name supplied by parameter and the OPEN_
FAIL pervice response into the to ULP structure for subsequent transfer to
the ULP, The data effects of thie procedure are:

~ Data examined: procedure parameter
- Date modified: to ULP.lcn to_ULP.service response

to ULP.lcn := local_ connection_nsme;
to_| ULP.Bervice * _regponse := OPEH FAIL;

6.5.6.3.7 Open 1d (local connection name, escurce port, source address,
destination port, destination addr). The open_1id action procedure copies

the parameters and the OPEN_ID service response into the to ULP structure
for subsequent transfer to the ULP. The data effects of this procedure are:

- Data examined: procedure parameters

un
w

Downloaded from http://www.everyspec.com

MIL~STD-1778
12 August 1983
- Data modified:)
to_UlP.lcn to ULP.service response
to_ULP.source port to 1 ULP. dastination_yott
to_ULP.source addr to_ULP.destination_addr

to ULP.len := local connection name;

to Uw.source_port. - source_port‘

to DLP.source sddr := source addreaa,

to_| , ULP. deed.nation_port tm deatination_port,
to 1 , ULP. destination_addr := destination addr;
to_l ULP .eervice response t= QPEN _ID;

6.5.6.3.8 Open success (local connection name). The open_success action
procedure copies the local conmection name supplied by parameter, and the
OPEN_SUCCESS service response into the to ULP structure for subsequent transfer
to the ULP. The data effects of this procedure are:

- Data examined: procedure parameter
- Data modified: to ULP.lecn to ULP.service response

to UlP.lcn := local connection name;
to_l , ULP. service res onse := CPEN | SUCCESS;

£ 5 £ 1 Q0 Dannr ridmanut {av *‘!- The reno

VeleVsses Ak ATy e

Report timeout Por
informe the ULP that a ULP timeout has occurred
queue 1s* requeued :and the timeout time reset.

tt

The data effects of this function are:
- Data examined:
~ Data modified:

begin
error(sv_*.lcn, "ULP_timeout)
transfer to ULP to ‘the ULP named by sv_* source port;
req ueue_olch Bt(sv_%*);

end:

6.5.6.3.10 REQUEDE OLDEST (sv *);. The requeue_oldest action procedure
removes the oldest data from the send queuve and requeues the data, making it
the youngest.

The data effects of this procedure are:
- Data examined:

sv.*send queue

56

o

e

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

6.5.6.3,11 Terminate (local connection name, description). The terminate.
action procedure copies the local connection name and description supplied
by parameter, and the TEEMINATE service respouss into the to ULP structure
for subsequent tramsfer to the ULP. The dats effects of this procedure .are:

= Data examined: procedure parameters

~ Data modified:
to_UlP.service response to_ULP.lcn
to_ULP.error_desc

to ULP.lcn := local connection name;
to ULP.error desc := danctipt:lon‘
to_| , ULP.service _response := TERMIRATE;

6.5.6.3.12 Sec range match?! The sec_range match function checks if the
security paramsters (including security level, compartment, tranmsmission
control code, and handling restrictions) in the incoming segment fit within
the security raoges specified ia the esecuricy list.

The data effects of this function are:
= Data exaained only:

from net.options {security) Su.sec_ranges

- . .

- Return values

NO == The values in the incoming

YES =- The values ip the incoming eegment are withio the
ranges specified in the atate vector.

6.5.6.3.13 Record open parameters (ULP identifier, open mode). The record_
open_ parameters action proccdure copies the values provided by the ULP in an
open request to the state vector, The data effects of this procedura are:

= Data examined:
from ULP.source_port from ULP.precedence
fron ULP.source_addr from ULP.security
fran ULP.timeout

= Data modified:

sv_*,oource_port sv_*.original prec
sv_*.source_addr 8v_".security
av_ * desl:ination_port 8v_*.timeout
8v_ o +destination addr sv_*.open_mode
——SBecord the socket—pair and counnection ioformation
=—provided in the open service request in the state_vector.

57

Downloaded from http://www.everyspec.com

MIL-STD-1778 -
12 Auguat 1983

sv_*.port := from ULP.source_port;
sv_*.addr := the address of This TCP;
sv_*.open mode := open mode;

—Record timeout, security, and precedence for ULP *
-=if provided, otherwise assign default values;

if (from ULP.gecurity /= NULL)
then sv_*.security := from ULP.security
else sv_*.security := DEFAUL‘I' SECURITY;

i1f (from ULP.sec.ranges /= NULL)
then sv_° *.sec _ranges := from ULP.sec_ranges
else §v_! - *, gec _ranges := DEFAULT SEC RANGES,

1f (from ULP.precedence /= NULL)

then sv *.original_prec i= from ULF.precedence
else av_*.original prec := DEFAULT ' PRECEDENCE;

else sv_".ulp_l:imeout := DEFAULT TIHBOUT

if (sv_*.open_mode /= UNPASSIVE)
then sv_*.destination port := from ULP. destination port;

4 vrree en w, o+ BV _%,destination addr := frum ULP, destinatlon_addr;

else sv:*.destination}ort := NULL;
8v_*.degtination_ addr := NULL;

6.5.6.3.14 Try to deliver. The try_to_deliver action procedure determines
from the receive allocation, the receive queue size, and the receive push
and urgent variables how much data to deliver to the loeal ULP. Thie pro-
cedure ie called from several places for both ULP A and ULP B in the service
machine definition, Where the sv_* notation is used, the sppropriate state
vector name should be replaced. The data effects of thie procedure are:

~ Data examined: sv_*.source_port

= Datra mndified:

to _ULP.date 8v_*.recv_push

to ULP.data length sv_*.recv_urg

to ULP.urgent_flag BV ; % recv alloc

to ULP.lcn sv_* re cv_queue__le ngth

8v_*, Tecv_queue

——The amount of dats delivered is based on the amount of pushed
-—data waiting and the receive allocation.

1f (sv_*.recv_push /= 0)

then ~—As much pushed data allowed by the recv allocation
~=1is delivered.

58

e

else

Downloaded from http://www.everyspec.com

MIL-5TD-1778
12 August 1983

if (av_*.recv_alloc > ev_*.recv_push)
then

to ULP.dats length := sv_*.recv_push;

sv_*.recv_push := 0;
else

to_ULP.data l.ength t» ov_*.recv_alloc;

sv .recv_push = gv '.recv_puah = to_| UiP.data langth.
-3ichout a PUSH, there 1s 0o guarantee of delivery.
~=Deliver some amount of data less than or equal to receive
—allocation (possibly none).

to _ULP,data_length := some value;

1f (to_ULP.data length /= 0)

then

-Update gtate vector elements and prepare data

——mrd naramarave far tln‘llnnl-v
RS MULAAR R AT AWVE WAL YL RS

to_ULP.lcn := sv_%*.lcno;

—~{Urgent data cannot be delivered followed by non—urgeant data.
—I1f “end-of-urgent” falls in data to be delivered, make
——two peparate deliveries.
1f ({(sv_%.recv_urg /= 0) and
(sv_*.recv_urg < to_ULP.data length))
then begin
——Deliver urgeant data alorne,
save := to ULP.data length;
to_ULP. data ._length := ev_*.recv_urg;
BV_ "¢, recv _urg = 0;
to_ULP.urgent_flag := falge;
Dequeuve to ULP.dats length octets from sv_*.recv_queue
and plnce in to_l ULP. data;
sv_*.recv_alloc 1= av _*.recv_slloc - to_ULP.data length;
sv__‘.recv_queue_length jm Bv__"'. recv_queue_ length -
to_| , ULP.data _length;

'!'DA MNMODED &a mD o el mn namad hy oo B amiammn .
&Sl o) ¥ 4 EN LU-U wir =i ASALUCAL U] UV owumbﬂ_’vnu.
==Prepare to deliver remaining nomrurgent data.
to_ULP.data length := save;

end;

==1f urgent dats follows the data being delivered, inform ULP.
1f (sv_*.recv_urg > to ULP.data_length)
then

to_ULP.urgent_flag := TRUE;

sv_*.recv_urg := sv_*.recv_urg - to ULP.data length;
else

to _ULP.urgent_flag := FALSE;

sv_%*.recv_urg := 0;

w
L 2

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

Pt

Dequeue to ULP.data length octets from sv_*.recv_queue
and place in to ULP.data;

sv_*,recv_alloc := sv %*.recv_alloc - to_ULP.data length;

Bv_*.Tecv_gueue length := sv_%*.recv_gqueue length -

to_ULP.data length;
TRANSFER to ULP to the ULP named by sv_*.source port;

60

S

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August]983

7. SERVICES REQUIBRED FROM LOWER LAYER

7.1 Goal, The goal of this section 15 to describe the ainiaun set of

-services required of the network layer protocol by TCP. The aservices required

are:

a. data tramfer service
b. pgoeneralized network service
¢. arror reporting service

7.2 Service descriptions. A description of each service follows.

7.2.1 Data transfer service. The lower layer protocol must provide data
tramsfeor botween TCP modules in a coommication system. BSuch a system may
consist of a single network or a set of interconnected networks forming an
internet. Datsa must arrive at a destination with noozero probmbility; sone
data loss may occur. The data transfer sarvice is not required to preserve
the order ino which portioms of data are supplied by the eource upon delivery
at the destination. Data delivered is not necessarily error—free. The lower
layer protocol must provide dats tramgfer throughout the systema. TCP oeed
only supply global addrescsing and control information with each portion of
data to be delivered. Routing and network specific characteriestics .are
handled by the network layer protocol. For example, TCP need not be sware
of current topology or packet size restrictions to tramemit eegments through
a particular network.

7.2.2 Generalized network service. The lower layer protocol must provide a
moone for TCP to select from the transmission service qualities provided by
the commmication system for each portion of data delivered. The tramsaission
quality parameteres must include precedence. Also, the lower layer protocol
must provide a means of labelling each portion of dats with security informs-
tion {ncluding security level, compartmentation, handling restrictions, and
transmission control code (i.a., closed 'user groups).

L

7.2.3 Error reporting service. The lower layer protocol must provide error
reporte to TCP indicating discontimuation of the above services caused by
catastrophic conditions in this or lower layer protocols.

61

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

8. LOWER LAYER SERVICE/INTERFACE SPECIFICATIONS

8.1 Goal. The goal of this section is to specify the minimal subnatwork
protocol services required by TCP .and the interface through which those
services are accessed. The first part defines the interaction primitives
and thelr parameters for the lower interface. ‘l\ge_'second part contains the
abstract machine epecification of the lower layePigervices and interaction
discipline. : b

8.2 Interaction primitives. An interaction primitive defines the purpose
aod content of information exchanged between two protocol layers. Two kinds
of primitives, based on the direction of information flow, are defined.
Service requests pass information downward; service responses pass informa=-
tion upward. These primitives need not occur in pairs, nor in a synchronous
manner. That is, a request does not necessarily elicit a “response™; a
“response” may occur independently of a request. The information associated
with an interaction primitive falls into two categories: parameters and
data. The parameters describe the dats and indicate how the data is to be
treated. The data is not examined or modified. The format of imteraction
primitive information is implementation dependent and so is not specified.
A given TCP implementation may have slightly different interfaces imposed
by the nature of the network or execution enviromment. Under such circum-
stances, the primitives can be modified to include more parameters or addi-
tional primitives can be defined. However, all TCPs must provide at least
the interface gpecified below to guarantee that all TCP implementations
can support the same protocol hierarchy.

8.2.1 Service‘request primitives. A gingle service request primitiwve is
required from the network protocol, NET SEND. '

8.2.1.1 RKET SEND. The NET SEND primitive contains complete control infor-
mation for each unit of data to be delivered. TCP passes in a NET SEND at
least the following information:

a. source address — address of TCP sending data.

b. destination address — address of the TCP to receiwve data.

c. protocol ~ identifier assigned to recipient TCP.

d. type of service indicators — relative transmission quality
associated with unit of data.

- precedence - one of eight levels: (PO, P1, P2, P3, P4, PS5,
P6, P7) where PO <= Pl <= P2 <= P3 (= P4 <= P5 {= P6 ¢(= P7.

- reliability one of two levels: (RO, Rl) where RO = normal
reliability and Rl = high reliability.

= delay - one of two levels: (DO, D1) where DO = normal delay
and Dl = low delsy.

62

—

i.

j.

Downloaded from http://www.everyspec.com

MIL~STD-1778
12 August 1983

= throughput - one of two levels: (TO0, Tl) where TO = normal
throughput and Tl = high throughput.

identifier — value distinguishing this portion of data fronm
others sent by this ULP,

don't fragment indicator - flag showing vhether the network
protocol can fragment data to accoaplish delivery.

time to live -~ value in seconds indicating maximum 1lifetime of
data withio the network.

data length ~ length of data being transmitted.

option data — options requested by TCP from those supported by
netvork protocol including at least security labelling. (The
Internet Protocol supports security labelling, source routing,
return routing, stream identification, and timestamping.)

data - present wvhen data length is greater than zero.

8.2.2 Service response primitives. A single service response primitive,

DELIVER, ie required of the network delivery service.

8.2.2.1 NET DELIVER. The NET DELIVER primitive contains the dats passed
by a source TCP in a NET_SEND, along with addressing, quality of service,
and option information. TCP receives in a NET _DELIVER at least the following

information:
8.
b.

Ce

d.

source address - addrese of eending TCP.

destination address - address of the reciplent TCP.

protocel - identifier assigned to TCP as supplied by the
sending TCP.)

type of service indicators - relative transmigsion qualirty
asgociated with unit of data.

~= precedence ~ one of eight levels : (PG, Pi, P2, P3, P4, P5,

P6, P7) where PO <= Pl (= P2 <= P3 (= P4 <= P5 <= P6 <= P7,

~ reliability - one of two levels: (RO, Rl) where RO = normal
reliability and Rl = high reliabilicy.

- delay - one of two levels: (DO, Dl1) wvhere DO = normal
delay aod Dl = low delay.

= throughput ~ one of two levels: (TO, Tl) where TO = normal
throughput and T1 = high throughput.

63

Downloaded from http://www.everyspec.com

MIL-STD~1778
12 August 1983

e. data length - length of received &ta {possibly zero).

f. option data - options requested by source TCP as supported by
the network including at least security labelling. (The Inter—
net Protocol supporte security labelling, source routing,
return routing, stream identificatioun, and timestamping
options.)

g. data — present when data length is greater than zero.

8.2.2.1.1 RNET DELIVER error reports. In addition, a NET DELIVER may com—
tain error reports from the network protocol either together with parsmeters
and data listed above, or, independently of that information. The details
of the error reports are network dependent.

8.3 Extended state machine aspecification of services required from lower
layer. The extended state machine in this section defines the behavior of
the entire network protocol service machine from the perapective of TCP.

This service machine 18 modelled as s “black box" whose internsal actioms are
hidden from the TCPs using the network protocol's services, The TCP—pair
provides stimuli, in the form of service requests, and receives the resulting
netwotk protocol reactions, in the form of service responses. An abstract
machine definition 18 composed of a machine identifier, a state diagram, a
etate vector, a set of data structures, an event list, and an events and
actions correspondence.

8.3.1 Machine instantiation identifier. Each upper interface -state machine
is uniquely identified by the four interaction primitive parameters:

a. 8source address

b. destination address
¢. protocol

d. identifier

One state machine instance exists for the NET SEND and NET DELIVER primitives
whose parameters carry the same values.

8.3.2 State diagram. The upper interface state machine has a single state
which never changes. No diagram is needed.

B8.3.3 State vector. The upper interface state machine has a single state
wvhich never changes. No state vector is needed.

8.3.4 Dats structures. For clarity in the events and actions section,
data structures are declared for the interaction primitives and their parame-
ters. A subset of ADA data constrycts, common to most high level languages,
ie used. BHowever, a data structure may be partially typed or completely
untyped where gpecific formats or data types are implementation dependent.

64

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

8.3.4.1 To NET. The to NET structure holds the interface parameters and
data associated with the KET SEND primitive specified above. Thise structure
direccly corresponds to the l:o NET structure declared in paragraph 9.4.4.4 of
the mechanisa definition. The to_NET structure is declared as:

type to NET type is
record
source_ addr
destination addr
protocol
type_of_service is
record
precedence
reliability
delay
throughput
end record;
identifier
tine to live
dont fragmnr.
l.ength
data
optiomm
end record;

8.3.4.2 Prom NET. The from NET structure holds interface parameters and
dats associated with the NET DELIVER primitive, as specified in paragraph
8.2.2, This structure d:l.recr.ly correeponda to the from NET structure declared
in paragraph 9.4.4.5 of the mechanism definition. The frcn RET aetructure 1e
declared as:

type from NET type is
. record _
source_addr
destination_addr
protocaol
type_of service 1is
record
precedance
reliabilicy
delay
throughput
end record;
length
data
options
error
end record;

65

MIL-STD-1778
12 August 1983

Downloaded from http://www.everyspec.com

8.3.5 Event list. The events are drawn from the interaction primitives
gpecified in Section 8.2, An event is composed of .a service request primitive
and an ahstract timestamp to indicate the time of event initiation. The event
list is as follows:

a. NET SEND(to_NET) at time t.

b. NULL - Although no service request is issued by TCP, certain conr
ditions within network layer or lower layers produce a service

response. These comditions can include duplication of data and
subnet errors.

8.3.6 Events and actions. The following section defines the set of pos-—
sible actions elicited by each event. .

803.601 EVENT =

NET SEND (to NET) at time t. Actions:

a. NET_DELIVER from NET at time tHN to TCP at destimation to_ NET,
destination addr with all of the following properties:

The time elapsed during data transmission satisfies the
time-to-live limit, i.e. N <= to NET.time to live.

The quality of data transmission is at least equal to the
relative levels specified by to NET.type of service.

if (to_NET.dont_fragment = TRUE) then network layer fragmen-
tation has not occurred in tramsit.

if (to NET.options includes loose source routing) then
from NET.data has visited in tramsit at least the gateways
naned by the source provided by NET SEND.

i1f (to_NET.options includes strict source routing) then
from ! NET.data has visited in transit only the gateways
named by source route provided by NET SEND.

if (to NET.optioms includes record routing) then the list
of nodes visited in transit is delivered in from NET.

if (to NET.options includes security labelling) then the
security label is delivered in from NET.

if (to_NET.options includes stream identifier) then the
stream identifier 1s delivered in from NET.

if (to NET.options includes internet timestamp) then the
internet timestamp is delivered in from NET,

66

—

.-

‘OR,

OR,

b.

Ce

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

NET _DELIVER to TCP source to_NET.source_ addr indicating one of
the following error conditions:

destination to_NET.destination_addr unreachable
protocol to NEBT.protocol unreachable

1f (to_NET.dont_fragment = TRUE) then fragmentation needed
but prohibdted

1f" (to_NET.options contains any option) then parameter prob-
len with option.

no action

8.3.6.2 EVENT = NULL. Actions:

OR,

b.

NET DELIVER to TCP at source to_NET.source addr indicating the
following error condition:

= .error conditions in network or lower layers

NET_OUELIVER fram NET at time t+N to TCP at destination to_NET.
destination addr with all of the following properties:

- The time elapsed during data tramsmission satisfles the
time-to-1ive limit, f.e. N <= from NET.time to live.

- The quality of data tramsaission is at least equal to the
relative levels specified by from NET.type of service.

- 1f (from NET.dont_fragment = TRUE) then network layer frag-
mentation has not occurred in traunsit.

- 1f (froo NET.options includes loose source routing) then
to_ NET. data has visited in transit at least the gateways
named by the source provided by NET_SEND.

- 1f (from NET.options includes strict source routing) then
to_NET. data has visited in trameit only the gateways named
by source route provided by NET SEND.

- 1f (from NET.options includes record routing) then the list
of nodes visited in transit is delivered in to_NBT.

= 1f (from NET.options includes security labelling) then the
security + 1label 18 delivered io to_NET.

67

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

- 1f (from NET.optioms includes stream identifier) then the
strean identifier 18 delivered in to NET.

- 1f (from NET.options includes intermet timestamp) then the
internet timestamp is delivered in to NET,

68

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

9. TCP ENTITY SPECIFICATION

9.1 Goal. The goal of this section 18 to define the mechanisms of each
TCP entity supporting the services provided by the TCP service machine. The
firet subsection motivates the specific mechanisms chogsen and diacusses
the underlying philosophy of those choices. The second subsection defines
the format and use of the TCP segment header fields. The last subsectiocn

specifies an extended state machine representation of the TCP eantity.

9.2 Overview of TCP mechanigma. The TCP mechanisms are motivated by TCP
services, described 1in Section 5:

a. noultiplexing service

b. connection management services
¢, data tramport service

d. error reporting service

9.2.1 Service support. Each service could be supported by any of several
mechanigsms. The selection of mechanisms 18 guided by deaign standards includ-
ing simplicity, generalicy, flexibility, and efficiency. The mechanism
descriptions {dentify the service or services supported and explain how the
oechanisms work, This overview begins with an introduction to some basic
terminology used throughout the TCP entity mechanisms discussiouns. The
mechanisms present in a TCP entity are:

a. flow coantrol windows

b. duplicate and out-of-order data detection ‘
¢c. pogitive acknowledgments with retransmission

d. checksunm

e¢. push

£. urgent

g. ULP timeout

b. ULP_timeout action

i. security and precedence

J. security ranges

k. wnmulti-addressing

1. passive and active open requests

m. three-way handshake for S5YN exchange
n. open request matching

o. three—way handshake for FIN exchange
p. resate

9.2.2 Background and terminology. This section presents the terminology
used in the oechanism descriptions. The concept of sequence nuobers and
sequence space, the variables maintained in a state vector (defined in pare-
graph 9.4.4.1) and segment hcoder fields (defined in Section 9.3) are intro-
duced. Also presented-is a liat of the states within the TCP state machine
(defined in Section 9.4).

Q.2 7% 1 Cannnannra mimhawra A Fimdnmantral nardan itn rha Aacion af rha P
A R BN U‘-“huu— LA A L & W &5 e Takd & R MALE BB & Clal BNl AW LS i - A “‘;U‘bll Tl - LR e &
entity is that every octet of data sent over a connection has a seguence

69

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

mumber. These sequence mumbers ‘are used by several mechanisms (data ordering,
duplicate detection, positive aclmowledgment with retransmission, and flow
control windows) to provide reliable, ordered data tramsfer. The sequence
mumber carried in g TCP header is:as four octet value designating the sequence
mumber of the first octet of data in the segment. Each successive data octet
is numbered sequentially. Thus, each segment is bound to as many consecutive
sequence mumbers as there are octets of data in the segment.

9.2,2.1.1 Numbering scheme. The mumbering scheme is extended to include
certain control inoformation as well. This 18 achieved by implicitly including
some control flags in the sequence space Boc they can be reliably transmitted
without confusion (i.e., one and only one copy of the control will be acted
upon). Control {nformation is not physically carried in the segment data
space. Consequently, we must adopt rules for implicitly assigning sequence
numbers to control. The “"SYN" and “"FIN" flags are the oanly controls requir—
ing this protection. These controls are used only at connection opening and
closing. For sequence mumber purposes, the "SYN" {s considered to occur
before the first actual data octet of the segment in which 1t occurs. When
.8 "SYN" tg present then SEG.SEQ is the sequence oumber of the "SYN.™ The
FIN is considered to occur after the last actual data octet in a segment in
which it occurs. The segment length (LENGTH) includes both data and sequence
space occupying controls. It is essential to remember that the actual sequence
number space, ranging from 0 to 2**32-1, is finite though very large. Because
the apace 18 finite, all arithmetic dealing with sequence mumbers must be
Detfomed ‘modul o 2**32. This unsigned arithmetic preserves the relationship

of sequence ouumbers aa. they wrap around Erom 2**32-1 to 0 again.

9,2.2,2 Connection aeguence variables. To maintain a connection, a TCP
entity records and updates connection etatus information in a state vector.
(This is also called & Transmission Control Block, or TCB.) Among the status
information stored in the state vector are sequence variables describing
the data exchange over the connection. A connection carriee data in two
directions, and so each TCP entity maintains sequence variables for both the
data it sends and the data it receives.

9,2,2.2,1 Send varifables. Send variables are used to track the status of
the send data stream with regard to acknowledgments, urgent data, pushed data,
window size and position, and the initial sequence mumber. This list 18 a
subset of the complete list of all send variables appearing in the state
vector definition, paragraph 9.4.3.

a. SEND NEXT - send next, the sequence mumber of the next octet
of data to be sent.

b. SEND UNA - pend unacknowledged, all octets up to but not
including this sequence muaber have been acknowledged.

¢. SEND WNDW - pend window, the mumber of data octets currently
allowed to be sent relative to SEND UNA,

d. SEND URG - send urgent point, the sequence number of the last
aoctet of urgent .data.

70

—

Downloaded from http://www.everyspec.com

MIL-5TD-1778
12 August 1983

e. SEND PUSH - send push point, the sequence number of the last
octet of pushed data.

f. SEND LASTUP]! - last window update one, the sequence mumber
carried by the incoming segment used for last window update,

g. SEND LASTUP2 - last window update two, the ackoowledgment mumber
carried by the i{incoming segment used for last window update.

h. SEND ISN - initial send sequence mumber, the sequence oumber
of the SYN sent on this connection.

These names correspond to the state vector elements defined in paragraph 9.4.3.

9.2.2.2.2 Send sequence space. If the space of send sequence numbers 1s
pictured as a mmber line, the following diagram shows the relationships among
some of the variables defined above.

l 2 3 4
I |
SEND_UNA SEND_NEXT SEND_URA
+ SEND_WNDW

1 - 0ld sequence mumbers which have been acknowledged

2 - gequence mumbers of sent but as yet unacknowledged data

3 - sequence numbers allowed for new data transmission
(i.e. the unused send window) i

4 - future sequence mumbers which are not yet allowed.

9.2.2.2.3 BReceive variables. The receive variables track the receive data
streanm in regard to acknowledgments, urgent data, pushed data, window size
ard position, and initial sequence mumber. These variables are a subset of
the state vector elemente defined in paragraph 9.4.3,

8. RECV NEXT - receive next, the sequence mumber of the next
data octet to be received.

b. RECV_WNDW - the number of dats octets that can currently be
received starting from RECV_NEXT.

c. RECV URG - receive urgent*point, the sequence omumber of the
last octet of urgent data.

d. RECV_PUSH - receive push point, the sequence number of the
lagt octet of pushed data.

e. RECV_ISN - inicial receive sequence mmber, the sequence
mumber of the SYN received from the remote TCP.

71

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

|
l
)
I
h
J
r
)

9.2.2.2.4 Receive sequence space. 1f the aspace i
ig pictured ss a mumber line, the following diagram shows t
among some of the variables defined .above.

1 2 . 3 :
| !
RECV_NEXT RECV_NEXT
+ RECV_WNDW

1 - old sequence mumbers which have already been accepted
2 - sequence nmumbers allowed to be received

(i.e., the receive window)
3 = future sequence mumbers not yet allowed

9.2.2.3 Current gegment var {ablag. TCP antirties commmicate in wunits of

exchange called segments. A segment is made up of a header, containing
addressing and control fnformation, and a text area, containing a portion of
the send or receive data streams. A formal definition of the segment header
format sppears in Paragraph :9+3. The following header fields and related values

_______ i, Vgppuuyy’ [s P — .l_.;-

ar e um:u Lll Llll: weoilalllbio Cl:ﬂcrl,l-’ LI o

a. SEG.SEQ segment sequence mumber, the sequence mumber carried in
the segment header. It may mumber the first octet of carried
data, number a sequence control flag, or (irn an empty segment)
iPdicate the next octet to be sent.

b. SEG.,ACK - segment acknowledgment mumber, the acknowledgment
from the sending TCP. That is, the next sequence number
expected from the receiving TCP,

¢, SEG.WNDW - gegment window, the current mumber of octets that
the seoding TCP will accept as counted from SEG.ACK.

[~
®

SEG.URGPTR - segment urgent pointer, the mumber of data octets

remaining before the end of the urgent data, as counted from
SEG.SEQ.

e. LENGTH -'aegmnt length, number of octets of header amd text
PR T A | [Thidn wal. g

4
carried in the segment. This value is supplied a8 &5 service

response parameter.

9.2.2,4 Connection states. A TCP connection progresses through three
phases: opening (or synchronization), maintenance, and closing. The three
phases are broken down further {nto states which represent significant stages
in the handshake mechanisms of connection opening and closing. These states
correspond to the values assumed by the primary element of the state vector
structure, sv.state, The TCP entity states are:

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 Aygust 1983

a. LISTEN - after a passiwe open request from the local ULP,
Tepresents waitiog for a connection request from a remote TCP
(in the form of a SYN segment).

b. SYN SENT - after an active open request from the local ULP
and having eent an open request (i.e., a SYN), represeunts
waiting for s matching connection open Tequest (1.e., another
SYN) from the remote TCP.

c. SYN RECEIVED - represents waiting for & conf.im:lng connection
request acknovledgment (i.e., the ACK of the SYN) after having
both received and sent connection requests.

d. ESTABLISHED - represents an open connection on which data can
be passed between UlPs in both directions.

e, FIN WAIT] - after a close service request from the local ULP,
repreeant.s waiting for either a close request (in the form
of a FIN segment) from the remote TCP, or an acknowledgment

of the close request already sent (1.3-. an ACK of the FIN),
Dara received from remote TCP ig delivered to the local OLP,

f. FIN WAIT2 - represents waiting for a connection terminatios
request (i.e., a FIN) from the remote TCP, Data received
fron remote TCF ia delivered to the local ULP.

g. CLOSE_WAIT - represents having received a connection clore
request (i.e., a PIN) from the remote TCP and waiting for a
connection clese request from the local ULP. Data sent by
the local ULP is gent to the remote TCP.

h. LAST ACK - represents having both sent and received a con-
nection close request, having acknowledged the remote close
rTequest, and waiting for the last acknowledgment froa the
remote TCP.

1. CLOSING -~ represents waiting for the acknowledgwant of & coo-
nection close request (1.e., an ACK of the FIN) from the remote
TCP.

J. TIME WAIT - represents walting for enough time to pass to
engure the remote TCF has received the acknowledgmeant of its
connect ion close request.

k. CLOSED - represents no coanection.

The full definition of the TCP etates, events, and processing appears in
Section 9.4,

9.2.3 Flow control window. TCP provides a flow control mechanism, called
a window, to enable a receiving TCP entity to govern the amount of data
transnitted by a sending TCP entity. A window is an "absolute”™ flow control

73

{ Downloaded from http://www.everyspec.com

MIL~STD-1778
12 August 1983

technique. Absolute flow control defines an interval of sequence oumbers
corresponding to the amount of data an entity 1s willing to accept. This
technique prevents ambiguity introduced by duplicate segments because per—
misgion to transmit 1g specified as a specific range of sequence numbers
rather than an incremeatal value. The receiving TCP maintaios the amount of
data allowed for acceptance in the receive variable RECV_WNDW. This value
is bound to the receive sequence space beginning at RECV |} | NEXT, the next
expected data octet. A TCP entity communicates its current receive window
to the remote TCP by placing the window in each outbound segment header in
the following manner. The window field of the segment header, SEG.WINDOW,
19 & positive integer value expressing the mimber of acceptable data octets.
The acknowledgment mumber in the segment header, SEG.ACK, associates that
quantity to the receive sequence space. Thus, the receilve window starts with
SEG.ACK and continues through the number of octets indicated by SEG.WINDOW.
As each incoming segment is validated by sequence mumber and acknowledgment
(QFFt‘innn 9.2, 23 and 9.2 A‘ the TCP entir records the window size in the

- - B y W R WD A 'I'Luuv- AT A-ll L=

send vari.abl.e SEND__HNDH.

9.2.3.1 Shrinking windows. A TCP entity is strongly discouraged.fram
“"shrinking” its receive window. A window 1s said to shripk when a TCP
entity advertises a large window and subsequently advertises a smaller one
without having accepted the difference in data. Such behavior complicates
the send date algorithms of the peer eatity. For example, a sending TCP
may act upon a large window allocation by sending all of the advertiesed
amount. When the window shrinks, data already sent becomes outside the
window. The sender must either set back the send variables and remove
" dats from the retransmigeion queuwe to “unsend” the data, -or else ignore
the gmaller window. The robustness principle mandates that although
a TGP entity does not shrick its own receive window, it will be prepared
for such behavior by other entities.

9.2.3.2 Zero windows. ¥indows can close, that 1s become zero in length,
when a receiving TCP has no more room to receive data, either because
the ULP has stopped accepting or because system respurces have been

temporarily exhansted. In this situation, the sending TCP normally would

not send data. And, if no data is generated by the other ULP, the sending
entity will receive no new window updates. Without special mechaniama,

zero windows could halt data transfer, With a zero gend window, a sending
ICP must be prepared to accept from the local and send to the,remote TCP at
least one octet of new data. Also, a sending TCP must transmit segments at
regular intervals into the zero window in order to guarantee that the re-
opeaing of the receive window will be reliably reported. The recommended
transmigsion interval in this situation is two minutes. With a zaro receive
window, a TCP entity receiving a segment with data must still send an acknowl-
edgment showing its next expected sequence number and current window even
though it does not accept the data. If the receiving TCP emits an empty ACK
segment when opening its receive window, it may resume receiving data more
quickly. Even with a zero receive window, & TCP must process the ACK, RST,
and URG fields of all acceptable incoming segments.

~d
~

Downloaded from http://www.everyspec.com

MIL-SID-1778
12 August 1983

9.2.3.3 Window updates with one-way data flow. In a connection with data
flowiog primarily io one direction, the window information will be carried
in pegments marked with the pame sequence rmumber. If such segments arrive
.out=of-order, they cannot be reordered. This gitustion is not serious, but
it does allow the windov information to occasionally be based on old reports
from the receiver. .A strategy to avoid this problen is to check both the
sequence nuaber and the acknowledgment mumber when deciding to update the
send window. That 1g, use the window information from segments carrying
either a higher sequence ouaber than previously scen, or the .eame sequence
mmber and the highest secknowledgment mumber. The highest sequence .oumber

of an incoming aegmant used for a windos undnrn ina recnrded in tha geand

variable SEND_LAS'IUPI. the highest acknwledgmnt oumber in SEND LASTUP2.

9.2.3.4 Windov management suggestions. A TCP eotity's method of managing
its window has sisnifl.cant iofluence on perfomnce. The following sections

discuss certain window management policlies and their effects.

9.2.3.4.1 WVWindow size ve. actual capacity. In geoeral, advertised window
size 18 based on the amount of available receive storage. Although indicating
large windows encourages tramsmiesions, false window promises can degrade per—
formance. If the windowv is largar than actual storage capacity, wmore data may
arrive than can be accepted. The excess data is discarded, causing its retrans-
oission, adding unnecessarily to the load on the communications system and the
sending TCP.

9.2.3.4.2 Small windows. Allocating very small windows causes data to be
transaitted in maoy emall ‘segments. Better performance may be .achieved using
fewar large segments. In ganaral, 1if both sending and receiving window manage—
ment algorithma actively attempt to combine small window allocations into

larger windows, the tendency toward gmall segmanta can be avoided. One

a== TII2UDE2 LR LRI F WY

uusgastion to avoid smail v:l.ndoua ia for a racelving TCP to defer updating

a window until an allocation 18 at least X perceant of the maximum allocation
poasible for the coonection (where X might be 20 to 40). Thus, the TCP could
send an ACK when a eegmnt arrives (without upda:irg the window 1nfomc:l.on),
and later send aoother ACK with the lacger viadow. Another suggestion is
for the sending TCP to svoid sending small segments by waiting until the
window ie "large™ before eending data. (Note that acknowledgments should

not be delayed or unnecessary retramsaiesions will result.)

95.2.4 Duplicate and out—of-order data detection. The network protocol
layer may duplicate or change the order of ascgments submitted by TCP for
transmiesion. To compensate, a TCP entity uses sequence numbars to detect
out-of-order amd duplicate segments. Duplicate segments are discarded.
Segmente arriving out of order may, depending on implementation choices, be
either dlecarded or saved for subsequent processing. The duplicate detection
and sequencing algorithms rely on the unique binding of segment dats to
sequence space. The algorithms are based on the assumption that all 24432
sequence mumber values are not cycled through bafore the segment data bound
to those esequence mumbers has been dalivered and acknowladged by the raceiver
and all duplicate copies of the segmeats have “drained” from the internet.
Without euch an assumption, two distinct TCP sagments could conceivably be

~i
(¥]

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 Auguat 1983

assigned the same or overlapping sequence mumbers, causing confusion at the
receiver as to which data is new and vwhich is old. A sending TCP euntity
keeps track of the sequence mumber of the next dats octet to send in the
variable SEND_NEXT. 1In each outgolng segment, the entity records the
sequence mumber of the first data octet in the gsegment header field, SEG.SEQ,
and advances SEND NEXT by the total amount of data carried in the segment.

A receiving TCP eutity keeps track of the sequence rumber of the next data
octet expected in the variable RECV_NEXT. That value and the variable RECV_
WNDW represent the receive window, or interval of acceptable data octets.
This interval is compared against incoming segment sequence numbers to
-determine their "acceptability.”

9.2.4.1 Incoming and unacceptable segments., An incoming segment is defined

to be acceptable if any error-free data it carries falls within the receive
window. IXIf the gegment does not carry deata, the segment gequence numher must

T mw S

fall within the receive window. When the receive window i8 zero, a segment
is acceptable if its Bequence mumber equals the next expected sequence oumber,
RECV_NEXT. The procesaing of unacceptable segments is discussed im 9.2.3.

9.2.4,1.1 “In order” data mcceprance. The control information, including
valid acknowledgment, window and urgent information, must be used from every
acceptable segment. However, the policy for taking (i.e., adding to the
receive queue) the data of an acceptable segment can be approached in two
ways. The first spproach takes only iwrorder data. That 1is, only data
octets with sequence numbers starrting at RECV.NEXT and continuing through to
either the end of the segment or the end of the receive window (whichever 1s
shorter) are taken, Thé data octets of acceptable segments with sequence
mumbers starting beyvond RECV.NEXT are not taken. This "imorder" approach
allows immediate acknowledgment and delivery to the .ULP.

9.2.4.1.2 "In window™ data acceptance. The second approach, called "imr
window™ data acceptance, takes any data falling within the receive window. If
the data is not contiguous with previously received data, it 1s saved for pro-
cessing until the intervening data arrives. Thus, acknowledgment and delivery
will be delayed until a contiguous interval of data arrives.

9,2.5 Positive acknowledgment with retransmission. Another mechanism
conpensating for network protocol behavior is positive acknowledgment with
retransmission, This mechanism replaces data lost or damaged in tramsit
through the use of sequence mumbers and acknowledgments. The basic strategy
with PAR 1is for a sending TCP to retransmit a segment at timed intervals until
a positive acknowledgment i1s returned. The mechanism requirements for segment
retransmission, acknowledgment acceptance, transmission intervals, and sequence
variable manipulat:[on are described below. The PAR strategy requitres TCP to
keep copies of all segments in order on a "retransmission queue,” As each
segment is sent, a segment copy is placed on the end of the queue. The re-
transmission queue holda the data octets whose sequence numbers begin with
SEND_UNA, the oldest unacknowledged sequence mumber, and ends with SEND NEXT,
the next octet to be sent. When all sent data has been acknowledged, SEHD UNA
equals SEND NEXT, and the retramgmission queue 1s empty. When data 1is placed
on the retransmission queue, a timer is set for the interval expected to

76

Downloaded from http://www.everyspec.com

MIL-STD=-1778
12 August 1983

elapse before its scknowlegment returns. When a eegment or an acknovledgment
is lost, the retransmission timer will expire and the TCP will retransait the
unacknowledged data. If the original segment was lost or discarded due to
daaage, the retramenitted segment 1s accepted as the original at the receiving
TCP. 1f the acknowledgment was lost, the recelving TCP discards the retrans—
mitted segment as a duplicate, but resends its acknowledgment.

9.2.5.1 Acknowledgment generation. Every TCP segment, excluding an inftial
SYN segment, muat carry an acknowledgwent iondicating curreant receive variable
information. Acknowledgments are carried in the TCP seguent header in a
four octet field designating the sequence oumber of the next expected data
octet. The acknowledgement mechanisn 18 cumulative so that an ACK of sequence
mumber X indicates that all octets up to but not {ncluding X have been received.
Thus, a TCP entity seta the ACK field of each outgoing segment to the value
of RECV_NEXT, implicitly stating that it -has succesefully received every
data octet up to that sequence number. An acknowledgment does not guarantee
that data hag been delivered to the ULP, but .only that the destination TCP
has taken the respoosibility to do so.

9.2.5.2 ACK validation. Incoming acknowledgments are coaopared with the
send variables to determine their “acceptability.”™ Ano “acceptsble ACK” ie
one for vhich the inequality bolds: SEND UNA = SEG.ACK =< SEND NEXT. In
other words, the acknowledgment refers to data equal to or beyond that already
acknowledged, and yet does not exceed -the sequence mmber of data yet to be
sent. I1f SEG.ACK < SEND UNA, {t is an old ACK and is unacceptable. If
SEG.ACK > SEND NEXT, it .acknowledges data not yet -eeat, .and 8o is unacceptable.
When an acceptable ACK equals SEND UNA, no new data is acknowledged but new
window information way be preseut. When an acceptable ACK 1is greater than
SEND UNA, it becomes the new value for SEND UNA.

9.2.5.3 Retransmission queue removals. Acknowledgments are not ounly used
to update SEND _WNDW and SEND UNA, chey are also processed with respect to
the retransmission queue. When an ACK arrives fully acknowledging a segment
on the retransmission queue, the segment copy is removed from the queus. An
ACK 1s said to fully acknowledge a segment copy on the retransmission queue
if the sum of the segment copy's sequance mumber and length is less-.than or
equal to the acknowledgment mumber of the incoming segment.

9.2.5.4 Retransmission strategies. A TCP ipplementation may employ one
of several retransmission strategies.

a. Pirst-only retramsmissioon — The TCP entity maintains one
retransmission timer for the entire queue. When the retrans-
miesion timer expires, it sends the segment (or a segment's
worth of data) at the front of the retransmission queue and

resets the timer.

b. Batch retransmission — The TCP entity maintains one retrams-
mission timer for the entire queue. When the retransmission
timer expires, it sends all the scgments on the retransmission
queue and resets the tiwer,

77

Downloaded from http://www.everyspec.com

‘MIL-STD-1778
12 August 1983

¢, Individual retramsmission — The TCP entity maintains .one-timer
for each gegment on the retransmission queue. As the timers
expire, the segments are retramsmitted individually and
their timers reset.

A brief diecussion of retramsmission strategy trade~offs and their relationmship
to the acceptance policy appears in Appendix A,

9.2.5.5 Retransmission timecuts. The value of the retransmission timer’

can have a large effect on the performance of both the connection and - -

the network. A timeout interval that is tooc ghort results in unnecessary
retransmissions, wasting both TCP processing time and ‘network resources,
while one that is too long resulte in poor throughput and poor response
time for the ULP. 1Ideally, the retransmiasfon interval should equal exactly
the time required for a segment to traverse the network to its destination,
be processed, and its ACK to travergse the network back to the source, Thise
sum 18 called the Round Trip Time (RTT) (see Appendix B), Realistically,
however, this valoe is rarely known or constant. Instead, an approximation
of this sum can be dynamically computed during the lifetime of a connection.

9.2.6 Checksum. The checksum mechanism supports error—free data transfer
service by enabling detection of segments damaged in tramsit. A checksum
value is computed for each outbound segment and placed in the header's
checksum field., Similarly, the checksum of each incoming segment is computed
and compared againat the value of the header's checksunm f£ield. If the values
do not match, the fncoming segment is discarded without being acknowledged.
Hence, 2 damaged segment appears the game as a lost ‘segment and is comperr
sated for by the PAR mechanism. TCP uses a simple one's complement algorithm
which covers the segment héader, the segment data, and a "“pseudo header,”

The pseudo header is made up of the source address, the destination address,
TCP's protocol identifier, and the length of the TCP segment (excluding the
peseudo header). By including the extra pseudo header information in the
checksum, TCP protects itself from misdelivery by the network protocol. The
checksum algorithm is the 16-bit one's complement of the one's complement sum
of all 16-bit words in the pgeudo hesder, segment header, and the segment
text, If a segment contains an odd mumber of octets, the last octet is padded
on the right with zeros to form a 16-bit word for checksum purposes. While
computing the checksum, the checksum field itpelf is replaced with zeros.

9,2,7 Pugh. The data that flows on a connection is conceptually a stream
of octets. A sending TCP is allowed to collect data from the sending ULP
and to segment and send the data at its own convenlence. The sending ULP
has no way of knowing if the data has been sent or is retained by the local
TCP or remote TCP while waiting for a more suitsable segment or delivery
size, This mechanism enables a ULP to push data through both the local and
remote TCP entitles. When “"push”™ flag 1s set in a SEND request, the sending
TCP segments and sends all internally stored data within flow control limits.
Upon recelpt of a pushed segment, the receiving TCP nust promptly deliver
the pushed data to the receivinmg ULP. Successive pushes may not be preserved
because two or more units of pushed data may be joined into a single pushed
unit by either the sending or receiving TCP. Pushes are not visible to the
receiving ULP and are not intended to serve as a record boundary marker.

78

e

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

9.2.8 Drgent. TCP provides a meams to communicate to a receiving ULP
that some point in the upconing data etream has been marked urgeat by the
sending ULP. Algo, the receiving TCP can indicate when all the currently
known urgent data has been delivered to the receiving ULP. ‘The objective
of the TCP urgeat mechanisn 18 to enable the sending ULP to stimulate the
receiving ULP to accept some urgent data. TCP does not define what the ULP
ie required to do with the urgent atate information, but the general notion
is that the receiving ULP will teke action to process the intervening data
quickly. The urgent mechanism permits a point in the data streaas to be
designated ap the end of urgent ioformation. Whenever this point 1s in
advance of the variable RECV_NEXT at the receiving TCP, that TCP must tell
the ULP to go into "urgent mode; "~ when the receive sequence munber catches
up to the urgent pointer, the TCP muat tell the ULP to go into “normal mode,”
If the poiat is updated while the ULP is in urgent mode, the update will be
invigible to the ULP. Note that urgent data cannot be dalivered together
with agy noo-urgent data that may follow. The mechanism employs an urgeat
field vhich 18 carried in all segments transuitted. The URG coatrol flag
indicates that the urgent field 15 meaningful. The urgent field oust be
added to the segoent sequence mumber to yield the sequence number of the
last octet of urgent data. The absence of this flag indicates that there
ies no urgent data outstanding. To eend an urgent indication the ULP must
also send at least one dats octet. If the sending ULP also indicates a
push, timely delivery of the urgent foformation to the destination process
is evhanced. When an urgent indication appears in a Send service request
but the send window does not allow data to be sent iomediately, the TCP

.8hould send an empty ACK segment with the new urgent information.

9.2.9 ULP timeout and ULP timeout action. The timeout allows a ULP to
set up a timeout for all data submitted to the TCP eantity. If.come data ig
oot guccessfully delivered to the destination within the timeout period, the
state of ULP_timeout_action 1s checked. If ULP_timeout _action 1s 1, the TCP
entity will terminate the connection. If it is O, the TCP entity 1nfoms
the ULP that a timeout has occurred, and then resets the timer. The timeout
appears as an optionsl parameter in the open request and the send request.
Upon receiving either an active open request, or a SYN segment after a
passive request, the TCP entity must maintain a timer set for the interval
specified by the ULP. As acknowledgments arrive from the remote TCP, the
timer is cancelled and set again for the timeout interval. As parameters
of the SEND request, timeout and timeout action can change during connection
ltfecime. If the timeout 1s reduced below the age of data waiting to be
acknowledged, the event dictated by ULP _timeout_action will occur. The
igplenentor may choose to allow additional optioms when informing the ULP
in case of a timeocut; for example, informing the ULP only on the first
timeout.

9.2.10 Security. TCP makes use of the Internet Protocol (IP) optionms to
provide security and precedence on a per connection basis. The security
and precedence parameters used in TCP are those defined in IP., Throughout
this TCP specification the term "security information” indicates the security
paraneters used in IP, fncluding security level, compartment, user group,
and handling reatrictions. In order for a TCP connection to be established,

79

Downloaded from http://www.everyspec.com

MIL-S5TD-1778
12 August 1983

the modules at ‘each end of the connection must agree on the security infor—
mation and precedence to be associated with the connection. During a passive
open, the option exists to pass a security structure of compartments, user
groups, and handling restrictions walid for that connection. The jmplementa-
tion of this data type is dependent on local security policy. PFor each
permutation, there exists a security-level raange composed of a high and low
link. If only one security level 18 required, the high and low limits would
be the same. If no security structure is passed, the implementacrion dependent
default structure is used. When an active open request contains security
parameters within the ranges aspecified by the pase:l.ve open, a connection is
egtablished. Those exact parameters are then used for the u.u‘unti“ﬁ of the
connection.

9.2.11 Precedence level. The precedence level of the connection is negoti-
ated through the exchange of lower bounds by each end during connection
opening. The higher of the two wvalues is assigned to the connection. If it
is imposaible for the end with the lower precedence to raise ite level to
the higher, or to get the eecurity information to match the connection
muet be rejected., The inability to match security inforuation or precedence
levels i imdicated by the receipt of segments after the connection opening
with the normatching information. The connection is then rejected by sending
a Teset. In addition to sending a reset, the connectioun attempt with mie—
matched security information may be reported or recorded in accordance with
local standard operating procedures. After the connection is established,
the TCP modules must mark outgoing segments with the agreed security informa—
tion and precedence level. Any incoming segment with security information
or precedence level not exactly matching that eof the connection causes the
temmination of the connection. A reset is sent to the remote TCP .and the
local ULP is informed of the error.

9.2.12 Multiplexing. TCP provides a set of addresses, called port identi-
fiers, to allow for many ULPs within a single host to use TCP communication
facilities simultaneously and to identify the separate data streams that a
ULP may request. Port identifiers are selected independently by each TCP
entity. To provide unique addresses, TCP concateuates an internet addrese
identifying its internet location to a port identifier creating a “"socket.”
Thus, sockets are unique throughout the internetwork and a pair of sockets
can uniquely identify each TCP connection. A socket may participate in many

connections to ddffarent fcrej‘gn anchata, TCPe ars free to aspociate portsg

with processes however they choose. However, several basic concepte are
uecegeary in any implementation, There are “well-known" sockets which &

TCP entity assoclates only with the “appropriate” ULP by some means. Well-
known socketa are a couvenient mechanism for a priori assoclating & socket
address with a atandard service. For ianstance, the "Telnet=Server™ process

is permanently assigned to a particular socket, aund other sockets are reserved
for File Transfer, Remote Job Entry, Text Generator, Echoer, and Sink processes
(the last three being for test purposes). ' A socket address might be reserved
for access to a "Look-Up~ service which would return the specific socket at
which a newly created service would be provided. The concept of a well-knowm
socket is part of the TCP specification, but the assignment of -sockets to
services is outside this specifieation.

80

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

9.2.13 Conoection opening mechanigas. Several mechanisms are used to
establish connections between two TCP entities. These mechanisus, including
open requests, sequence oumber synchronitstion, and initial sequance mumber
generation, are discussed below,

9.2.13.1 Connection open requesta. TCP provides a ULP with two ways of
opening a connection, called passiwe open requests and active open tequestes.
The open requests have certain paramscters including the local socket and
foreign socket naming the coonection.

9.2.13.1.1 Passive open request. With a passive open request, the TCP
eutity assigns a stote vector for the connection variables, returos a
local connection name, and becomes “receptive” to connections with other
ULPa. The foreign socket parameter in a passive open request may be either
fully epecified or unspecified. That is, when the foreign eocket parameter
1o get to g gpecific gocket value, only the ULP with that gocket identifier
can be connected., If the foreign socket is unspecified (denoted by all
zercs) any ULP can be connected. Such unspecified foreign sockets are
allowed only on passive open requeats. A service ULP that wished to provide
sarvices for unknown other ULPs would fsgue an unspecifed pasgive open
request, supplying its own well-known socket for the local socket.

9.2.13.1.2 Active open request. With an acrive open request, the TCP
entity not only aseigns a state vector and a local coonection name, but also
actively iunitiates the counection by sending & SYN segaent. A connection
15 initiated by the remdezrvous of an arriving segment cootaining a SYN aod a .
waiting state vector. The watching of local and foreign sockets deternines
vhen a connection has been initiated. There are two priancipal cases for
matching the sockets in ths local open requests to the foreign sockets in
arriving SYN segments. In the first case, the local open has fully specified
the foreign socket so the match must be exact., In the second case, the
local passive open has left the foreign socket unspecified so any foreign
gockat ie acceptable as long as the local sockats match. Other poseibilities,
left up to the implementor, {include partially restricted matches. If there

varal pnendine anean recussts with tha game local gockar an Faradon

active open will be matched to a fully specified open, 1f one exists, before
gelecting an unspecified pasaiwve open.

- S of] -
AW e

9.2.13.2 Three—way handshake., The “three—wvay hamdphske™ is the sechaniso
used to establish s connection. This procedure oormally is 1unitiated by one
TCP and respounded to by another TCP. The procedure aleo works if two TCPg
simultaneocusly initiate the procedure. When two ULPs wish to communicate,
they issue open requests as described above, instructing their TCPs to
initialize and synchronize the mechanism information on each side. Howewver,
the potentially unreliable network layer can complicate the process of
synchronication. Delayed or duplicate segments from previous connection
attenpte might be mistaken for new ones. A handshake procedure with clock
based sequence numbers {s used in connection opening to reduce the possibility
of such false connections.

o
-

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

9.2.13.2,1 Simplest handshake. In the simplest handshake between an
active open request and a passive open request, the TCP pair synchronizes
sequence mumbers by exchanging three segments. The actively opened TCP
entity emits a-segment marked with a synchronize control flag, called a
"SYN" segment, which is matched at the receiving TCP entity to the passive
open request. The receiving TCP entity emits its own SYN also carrying an
acknowledgment of the first SYN. That segment 18 responded to with an
acknowledgment. Thus, a three segment exchange establishes the connectiou.
When gimultaneous active open requests initiate the connection each TCP
receives a SYN segment which carries no acknowledgment after it has eent a
SYN. Each respond with an acknowledging segment and a connection is
established in four exchanges. Of course, the arrival of an 0ld duplicate
SYN pegment can potentially make it appear, to the recipient, that a
simultaneous connection initiation is in progress. Proper use of "reset”
segments will avoid ambiguity in these cases.

9.2,13.2,2 Examples of connection initiations. Several examples of con-
nection initiation follow. Although these examples do not show connection
synchronization using data carrying segments, this is perfectly legitimate,
80 long as the receiving TCP does not deliver the data to the ULP until it
i8 clear the data is valid (i.e., the data must be buffered at the recelver
until the connection reaches the ESTABLISHED state). The three—way handshake
reduces the possibility of false connections. It is the implementation of
a trade-of f between memory and messages to provide information for this
checking. The gimplest three~way handshake 1s shown in the scenario in
Section 4. Other examples.are..shown. below...The figures should be interpreted
in the following way. Each line is numbered for reference purposes. Right
arrows (-->) indicate departure of a TCP segment from TCP A to TCP B, or
arrival of a segment at B from A, Left arrows (<--) indicate the reverse.
Ellipsis (...) indicates a segment which is still in the network (delsyed).
An "XXX" indicates a segment which is lost or rejected. Comments appear in
parentheses. TCP states represent the state AFTER the departure or arrival
of the segment (whose contents are shown in the center of each line). Segment
contents are shown in abbreviated form, with gequence mumber, control flags,
and ACK field. Other fields such as window, addresses, lengths, and text
have been left out in the interest of clarity.

9.2.13.2.2.1 Simultaneous connection initiation. Simultaneous initiation
1s only slightly more complex than a three-way handshake. Each TCP cycles
from CLOSED to SYN-SENT to SYN-RECEIVED to ESTABLISHED. The principal reason
for the.three—way handshake is to prevent old duplicate connection initiations
from causing confusion. To deal with this, a epecial control meseage, reset,
is used. If the receiving TCP is in a nonsynchronized state (i.e., SYN-SENT,
SYN~-RECEIVED), it returns to LISTEN on receiving an acceptable reset. If
the TCP is in one of the synchronized states (ESTABLISHED, FIN-WAIT-1,
FIN-WAIT~-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT), it aborte the con-
nection and informs its ULP. This case is discussed under "half-open”
connections below.

82

\
Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

TCP A | TCP B
1. CLOSED ' CLOSED
2. ‘SYN-SENT —=> <SEQ=100><CTL=SYN>
3. SYN-RBABIVED <— <SEQ=300><CTL=SYN> <=~ SYN-SENT
4. e CSBQ=100><CTL=STNY --> SYN-RECEIVED

5. SYN-RECEIVED --> <(SEQ=100><ACK=301><CTL=SYN,ACK> ...
6. ESTABLISHED <-- <{SEQ=300><ACK=101><{CTL=SYN,ACK)> {— SYN-RECEIVED

9.2.13.2.2.2 0l1d duplicate SYN detection. As a simple example of recovery
from old duplicates, consider the following figure. At line 3, an old dupli-
cate SYN arrives at TCP B. TCP B caonot tell that thie is an old duplicate,
g0 it responds normally (line 4). TCP A datects that the ACK field is incor—
rect and returns a RST (reset) with its SEQ field selected to make the segment
believable. TCP B, on receiving the BST, returns to the LISTEN state. When
the original SYN finally arrives at line 6, the synchronization proceeds
normally. If the SYN at line 6 had arrived before the RST, a more complex
exchange might have occurred with RSTs sent io both directions.

TCP A TCP B
1. CLOSED LISTER
2. SYN-SENT ==> <SEQ=100><CIL=SYN> e
3. (duplicate) ... <SEQ=90><CTL=S5SYN> . —=> SYN-RECEIVED

4. SYN-SENT (== {SEQ=300><ACK~91>}XCTL=SYN ,ACK> <-— SYN-RECEIVED

5. SYN-SENT ~=> <SEQ=91><CTL=-BST) —=> LISTEN

6. R <Sm-1ooxm-m> "—.>’ SYN-RECEIVED
7. SYN-SENT <-- <SEQ=400><ACK=101><CTL=SYN ,ACK> <— SYN-RECEIVED
8. ESTABLISHED —)> <SEQ=1012<ACK=401)‘(mm —> ESTABLISHED

9.2,13.2.2.3 Half-open connections. An established connection is said
to be “half-open” if ooe of the TCPs has closed or asborted the connection
at ite end without the knowledge of the other, or if the two ends of the
connection have become desyanchronized owing to a crash that resulted imn
loss of nemory. Such connections will automatically become reset if .an

83

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

attempt is made to send data in elther direction. However, half-open com
nections are expected to be umusual, and the recovery procedure is somewhat
imvolved. 1f at site A the connection no longer exists, then an attempt by
the ULP at site B to send any data on it will result in the site B TCP
receiving a reset control message. Such & message indicates to the site B

TCP that something is wrong, and it 18 expected to abort the connection.
Asgume that two ULPs A and B are commmicating with one another when a

crash occurs causing loss of memory to A's TCP. Depending on the operating
system supporting ULP A's TCP, it is likely that some error recovery mechanism
exiats. When the TCP is up again, ULP A is likely to start again from the

baginning or from 8 recovery point. As a rnnn‘lf ULP A will nrnhﬂblv trv

Ly e ALl S ey WAy - e & se == A Rair e o - =y g

to OPEN the connection again or try to SEND on the connection it believes
apen., In the latter cage, 1t receives the error message "“connection not
open” from the local (ULP A's) TCP. In an attempt to establish the con—
"nection, ULP A's TCP will send a segment containing SYN., This scenario
leads to the example shown in figure 10. After TCP A crashes, the ULP
attempts to open the connection again, TCP B, in the meantime, thinks the
connection is open. When the SYN arrives at line 3, TCP B, being in a

synchronired state, sees rhe incoming segment cutside the window and responds
with an acknowledgment indicating what sequence it next expects to hear (ACK
100)., TCP A sees that this segment does not acknowledge anything it sent and,
being unsynchronized, sends a reset (RST) because it hae detected a half-open
connection. TCP B aborts at line 5, TCP A will contimue to try to establish
the connection; the problem ig now reduced to the basic three—way handshake.

TCP & TCP B
1. (CRASH) (send 300,receive 100)
2. CLOSED ESTABLISHED
3. SYN-SENT -~> <SEQ=400><CTL=SYN> =-=> (1?)
4. (1) <{—- <SEQ=300><ACK=100><CTL=ACK> {—— ESTABLISHED
5. SYN-SENT --> <SEQ=100><CTL=RST> ~-> (Aborc!l!)
6. SYN-SENT CLOSED
7. SYN-SENT ~-> <SEQ=400><CIL=SYN> -2

9,2.,13.2,2.4 Alternate case l. An interesting alternative case occurs
when TCP A crashes and TCP B tries to send data on what it thinks is a syn-
chronized connection. This is illustrated {in the next figure. In this
case, the data arriving at TCP A from TCP B (line 2) is unacceptable because
no such connection exists, sc TCP A sends a RST., The RST 18 acceptable so
TCP B processes it and aborts the connection.

84

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

TCP A~ TCP B
1. (CRASRH) (send 300, receive 100)
2. (1) {— <SEQ=300><ACK=100><DATA=] 0><CIL=ACK> <{-— ESTABLISHED
3. > <(SEQ=100><CTL=RST> —> (ABORTI!)
9.2.13,2.2.5 Alternate case 2. In the following figure, TCPs A and B
vith passive opens are waiting for SYNs. An old duplicate arriving at TCP B
(line 2) stire B into action. A SYN=-ACK is returmed (line 3) and causes TCP A

to generate a RST (the ACK in line 3 is not acceptable). TCP B accepts the
reset and returns to its passive LISTEN state.

TCP A _ 7CP B
1. LISTEN LISTEN

3. (1) == CSEQ=X><ACK=Z+]1><{CTL=SYN,ACE> <~= SYN-RECEIVED
4, ==> <{SEQwZ+]>(CTL=RST)> - ~—>» (return to LISTEN!)
5. LISTEN LISTEN

A variety of other cases 1is posgible, all of which are accounted for by the
reset generation and processing.

9.2,13.3 1Initial segquence nmumber selection. TCP imposes no restrictions
on a particular connection being used over and over again. A connection
is only named by a pair of sockets. New instances of a connection will be
referred to as incarnations of the connection. The problem that ariees
is how to identify duplicate segments from previous incarnations of the
connection. This problem becomes apparent if the connection ie being
opened and closed in quick succession, or if the connection breaks with loss
of memory and is then reestablished. To avoid confusion, segments from one
facatnation of a connection must not be used while the same sequence mumbers
mgy acill be present in the network fronm an earlier incarnation., This sust
be assured, even if a TCP crashes and loses all knowledge of the sequence
oumbers it has been using. Thus, a clock-based initial sequence cumber
generation procedure has been defined.

9.2.13.4 'ISH generator. When new connections are created, an initial
sequence mumber ?ISN) generator is employed which selects a new 32-bit ISN.
The generator is bound te a (possibly fieritious) 32-bit clock whose low
order bit is incremented roughly every 4 clcroseconds. Thus, the ISN
cycles approximately every 4.55 hours. Assuming segments will stay in the
network no more than the Maximun Segment Lifetime (MSL) and that the MSL is
less than 4.55 hours, ISHs will be unique.

85

Downloaded from http://www.everyspec.com

MIL-STD—-1778
12 August 1983

9.2.14 Connection closing synchronization. Connection closing is handled
gimilarly to connection establishment, The following mechanism, including
close request and fin exchange, support the reliable data transport and
graceful connectlon cloaing services.

9.2,.14,1 Close requests. A close request indicates that the local ULP
has completed its data transfer over the connection. A ULP may close a
counection at any time on its own initiative. Closing counoections is intended
to be a graceful operation in the sense that outstanding send requests will
be transuitted (and retramsmitted), as flow control permits, until all have
been serviced. Thus, it should be acceptable to make several send requests,
followed by a close request, and expect all the data to be sent to the
destination ULP., It should also be clear that ULPs should continue to accept
data on closing connections, since the other ULP may be trying to transmit
the last of its data. Thus, a close request means "I have no more to send”
but does not mean "I will receive no more.” It may happen (if the
upper level protocol is not well thought out) that the cloging side is unable
to get rid of all its data before timing out. In this event, a close turns
into abort request, and the cloeing TCP gives up. Because closing a connection
requires communication with the foreign TCP, connections may remain in the
closing state for a short time. Attempte to reopen the coanection before
the TCP replies to the close request will result in error responses. A
close service request also implies the push functiom.

9.2.14.2 PIN exchange examples. The FIN control flag in the segment
‘header 1s exchanged with the same synchronization wechaunilsm, the three-way
handshake, used for conaection opening. Fram the TCP entity perspective,
there are essentially three cases for FIN exchange. One, the local ULP in-
itiates connection closing with a CLOSE service request. Two, the remote
TCP entlity sends a FIN segment indicating that the remote ULP has iseued a
cloge request. Three, both ULPs simultanesusly issue close requests.

9.2.14.2.1 Case l: local ULP initiates connection close. In this case,
a FIN gegment can be constructed and placed on the outgoing segment queue.
No further gend requests from the ULP will be accepted by the TCP, and it
enters the PIN-WAIT-1 state. All segments preceding and including FIN will
be retransmitted until acknowledged. When the other TCP has both acknowledged
the PIN and sent a FIN of its own, the first TCP can ACK this FIN. Note that
a TCP receiving a FIN will ACK but not send its own FIN until ite ULP has
closed the connection also.

TCP A TCP B
1. ESTABLISHED : ESTABLISHED
2. (Close)
FIN-WAIT-! --> <SEQ=1000<ACK=300><{CTL=FIN,ACK> =—> CLOSE-WAIT
3. FIN-WAIT-2 (= <SBEQ=300><ACK=101><CTL=ACE> {— CLOSE-WAIT -
4, (Close)

TIME-WAIT <{-- <{SEQ=300><ACK=101><{CTL=FIN,ACK> <— LAST-ACK

86

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

5. TIME=WAIT -=> <{SEQ=101><CACE=301><CTL=-ACK> ==> CLOSED
6. (2 MsL)
CLOSED

9.2.14.2.2 Case 2: TCP receives FIN from remote TCP, If an unsolicited
FIN arrives from the network, the receiving TCP can ACK it and tell the ULP
that the connection 1s closing. The ULP will respond with a close request,
upon which the TCP can eend a FIN to the other TCP after sending any remaining
data. The TCP then waits until ite own PIN is acknowledged whereupon it
deletes the connection. If an ACK is not forthcoming, after the ULP timeout
the connection is aborted and the ULP is informed.

9.2.14.2.3 Case 3: ULPe close simultaneously. Simultaneous close requests
by both ULPs at each emd of a connection cause FIN gegments to be exchanged.

WYhen all segments preceding the FINs have been processed and acknowledged,

each TCP can ACK the PIN it has received. Both will, upon receiving these
ACKs, delete the connection.

TCP A TCF B
l. ESTABLISHED ESTABLISHED
2. (ULP A issues CLOSE) (ULP B issues CLOSE)

FIR-WAIT-1 —> <(SEQ=100><ACE=300><CTL=FIN,ACK> ... FIN=WAIT-!
<{-- <SEQ=300><ACK=100><CTL=FIN ACK> <--
«oo CSEQ=100><ACK=300><{CTL=FIN ACK> =-=->

3. CLOSING ==> <SEQ=101><ACK=301>CTL=ACK> «++ CLOSING
{-= <SEQ=301><ACK=101><CTL=ACK> {—
ees CSEQ=101><ACK=301><CTL=ACK> e
4, TIMB-WAIT TIME~WAIT
(2 MS5L) (2 MSL)
CLOSED CLOSED

9.2.14.3 Quiet time concept. While the clock-based 1SN generation prevents
overlap of sequence number use under normal conditions, special measures must
be taken in situations where a host crashes (or restarts), resulting in a
TCP's loss of knowledge concerning the sequence mumbers in use on active
connections, and the current ISN value. After crash recovery, a TCP aay
create eegments containing the same or overlapping sequence numbers as
those in precrash connection incarnations, causing confusion and misdelivery
at the receiver. Even hosts managing to remember the time of day used as a
basis for ISN selection are not fmmume to this problem, as the following
example illustrates:

“Suppose, for example, that a connection is opened
.starting with sequence oumber S. Suppose that this
coanection 1s not heavily used and that eventually the
inicial sequence number function (ISH(t)) takes on a

[+]
~d

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

value equal to the sequence number, say Sl, of the last
segment sent by thig TCP on a particular connection. Now
suppose, at this ingtant, the host crashes, recovers, and
establighes a new incarnation of the connectiocn. The
initial sequence oumber chosen is S] = ISN(t) —— last

used sequence mumber on the old incarnation of the con—-
nectioni If the recover occurs quickly enough, any old
duplicates in the network bearing sequence numbers in the
neighborhood of Sl may arrive and be accepted as new packets
by the receiver of the new incarmation of the connection.”

The problem is that the recovering host may not know for how long it crashed,
nor does it know whether there are still old duplicates in the system from
earlier connecrion incarnations.

9.2.14.3.1 “Keep quiet” conecept. One way to handle these situations is
to require that a TCP must "keep quiet”, that is, refrain from emitting
segmenta, for a maximum segment lifetime (MSL) before assigning any sequence
mumbers. This quiet time restriction allows the segments from earlier cou-

nection incarnations to drain from the network.

Por this specification, the MSL 18 assumed to be 2 minutes. This is an
engineering choice, and may be changed as experience dictates. TCP
implementors violating this restriction run the risk of causing some old
data to be accepted as new or new data rejected as old duplicates. Note
that 1f a8 TCP is reinitialized yet retains its lmawledge of sequence mumbers
in use, the quiet time restriction does not apply; however, care should be
taken to use saquence numbers larger than those recently used.

9.2.15 Resets. One of the control flags of the TCP header 1s the reset
flag. A segment carrying a reset flag set true is called a reset. Resets
are used to shruptly cloee estahlished connectiors, refuse connection attempts,
end respond to segments apparently not intended for the current incarnation
of a connection. The following paragraphs define the rules for reset genersa-
tion and for reset validation and processing.

9.2,15.1 Reset generation. Each paragraph below specifies when a reset
should be sent, the sequence mumber and, when needed, the acknowledgment
number necessary to make the reset segment acceptable to the remote TCP.
When either ULP of the communicating ULP-pair issues an Abort service
request, its local TCP informs the remote TCP with a reset segment carrying
a eequence number field equal to SEND NEXT. As a general rule, reset (RST)
nust be sent whenever a segment arrives which mpparently 18 not intended for
the current connection. A reset must not be sent if it is not clear that
this is the case. Specific examples of reset generation in response to
misdirected segments are presented in three groups of states:

9.2,15.1.1 When connection does not exist. When the connection does not
exigt (i.e., its state is CLOSED) then a reset is sent in response to any
incoming segment except another reset. In particular, SYNs addressed to
nonexistent connectilons are rejected in this manner. If such an incoming

[4 -]
o

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

segment has an ACK field, the reset segment takes 1fs sequence cumber from
the ACK field of the incoming segment; otherwise, the reset segment takes a
eequence tumber value of zero and an acknowledgoent cuaber equal to the sum
of the sequence mumber and text length of the incoming segment. The coo
nection remains in the CLOSED state.

9.2.15.1.2 Vhen connection ip in any nonsynchronized state. When the coo
nection is in any nonsynchronized state (LISTEN, SYN-SENT, SYN-RECEIVED), a
Treset 1o sent in the following cases: The incoming segment acknowledgms
something not yet eent (that is, the gegment carries an unacceptable ACK),
or an incoming segoment carries security information which does not exactly
watch that designated for the connection. Resets generated in the nonsynchro-
nized states are made acceptable as follows. When the incoming segment has
an ACK field, the reset segment takes its sequence rumber from the ACK field
of the incoming segment; otherwise, the reset segment carries a sequence
ousber equal to zero and acknowledgoent field set to the sum of the sequence
mnber and text length of the inconing segment. The counection remains in
the game state,

9.2,15.1,3 When connection ig in a \iynchronized state. If the connection
is in a synchronized state (ESTABLISHED, FIN-WAIT1, FIN-WAIT2, CLOSE-WAIT,
CLOSING, LAST-ACK, TIME-WAIT), aoy unacceptable segment (such as one with
an out-of-window sequence mumber or an unacceptable acknowledgment number)
must elicit only an empty acknowledgment segment containing the current send
sequence tumber (SEND NEXT) and an acknovledgment indicating the next sequence
oumber expected to be received (RECV NEXT). (Note that if the unacceptable
segment i{s an empty ACK segment, replying with an ACK may result in a cascade
of ACKs. In general, do not ACK an unacceptable empty ACK segment.) The
connection remains in the pame state. If an incoming scgment has security
ioformation or a precedence level which does not exactly match those designated
for the connection, a reset is sent; the connection enters the CLOSED state.
The reset segment takes 1ts sequence oumber from the ACK field of the incoaing

segrent.

9.2.15.2 Reset processing. 1o all states except SYN-SENT, all reset (RST)
segmente are validated by checking their sequence number fields. A reset
is valid 1f its sequence oumber is in the coanection'’s receive window. In
the SYN-SENT state (a RST received in response to an initial SYN), the RST
is valid 1f the ACK field acknowledgms the SYN. The receiver of a RST first
validates it, then changes state. If the receiver was in the LISTEN state,
it ignores it. If the receiver was in SYN-RECRIVED state and had previously
been in the LISTEN state, then the receiver returns to the LISTEN state;
otherwigse, the receiver sborts the connection and goes to the CLOSED state.
If the receiver was in any other gtate, it aborts the connection and advises
the ULP and goes to the CLOSED state.

9.3 TCP header format. A summary of the contents of a TCP header follows:
Note that each tick mark represents one bit position. Each field description
below includes its name, an abbreviation, and the field size. Where applicable,
‘the units, the legal range of values, and a default value .appears.

89

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

0 1 2 ' 3
01 2 345 66 78 9% 01 2 3 465686 7 8 9 0 1 2 3 458 7 8 901
4 31 2 3. 1.2 1 2 3 3 3+ 2 1 1 I L [S N N AN IV G SN G N | 1
T M T T | L AL IO AN i NN SN SN BN SEEND SN | I ¥
‘SOURCE PORT DESTINATION PORT
[N SR GHN N W DN SN (NN (U N SHN T PR S W Y W N SN (N S TN T NN S S N —

ACKNOWLEDGMENT NUMBER

] ' A 'l] 1 L L | L 1 [l L L 1) E 1 [1 2 ' 'l

DATA Y1glE ‘F
R g 1 w

OFFSET RESERVED A §1Y N WINDO

Ll 1 [SR U R B | 4 9 2 1 s 1 2 1 4 & il

CHECKSUM URGENT POINTER

U U TR TN NENN SHNN TN NEN GHNN NN TUNN DUV S G [W VN T R S | [T T N S |
OPTIONS

U | 3 1 1 1 i I L Ll 1 Lt [L b I I | L - 1 ' | | I

DATA

PIGURE 9. TCP header format.

9.3.1 Source port.

abbrev: SRC PORT f
The source port mmber.

9.3.2 Destination port.

abbrev: DEST PORT field size: 16 bits
The destination port number.

9.3.3 Sequence number. '

abbrev: SEQ field eize: 32 bits
units : octets range: 0 — 2#%32-}

Usually, this value represents the sequence number of the first datsa octet
of a segment. However, if a SYN 18 present, the sequence number is the
initial sequence rnumber (ISN) covering the SYN; the first data octet is then
numbered ISN+l1,

-1
[«

Downloaded from http://www.everyspec.com

MIL-8TD-1778
12 August 1983

9.3.4 Acknowledgment number.

abbrev: ACK field size: 32 bits
units: octets range: 0O - 2%#32-]

Pt

f the ACK costrol bt is 'set, this field contains the value of the next
equence mumber that the sendar of the segment is expecting to receive.
9

«3.5 Data offset.

abbrev: none field size: 4 bite
units: 32-bits range: 5 - 15 default: 5

Thie field indicates the mumber of 32 bit words ia the TCP header. From
this value, the beginning of the data can be computed. The TCP header
(even one including options) is an integral mumber of 32 bits long.
9.3.6 Raserved.
abbrev: none field size: 6 bite

Reserved for future use. Mugt be set to zero.

9.3.7 Control flags.

.abbrev: below fieid size: 6 bita(from left to right)

URG: Urgent Pointer field significant
ACK: Acknowledgment field significant
PSH: Push Punction

BST: Reset the connection

S5YN: Synchronize sequence mumbers
PIN: No more data from sender

These flags carry control information used for connection establighment,
connection termmination, and connection malatenance.

9.3.8 Window.

abbrev: WDV field size: 2 octets
units: octets range: 0 = 24%16-~] default: none

The number of data octets beginning with the one indicated in the acknowl-
edgment field which the sender of this segment is willing to accept.

9.3.9 Checksun.
abbrev: none field size: 2 octets
The checksum field 18 ‘the 16 bit one's complement of the one's complement
sum of all 16 bit words in the header and text. The checksum also covers a
96 bit pseudo header conceptually prefixed to the TCP header. "Thie pseudo

91

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

beader contaioe the Source Addrese, the Destination Address, the Protocol,
and TCP segment length. The checksum algorithm is defined in psragraph
9.2.6. .

9.3. iO Urgent pointer.

:abbrev: URGPTIR field size: 2 octeta
unitg: octets range: 0 - 2#%]16-1 default: 0O

Thipg field indicates the current value of the urgent pointer as a positive
of fset from the sequence mumber in this segment. The urgent polnter points
to the sequence mumber of the octet following the urgent data. This field
is only to be interpreted in segments with the .URG control bit set.

9.3.11 Options,

.abbrev: OPT field glze: wvariable

If present, options occupy space at the end of the TCP header and are a
miltiple of 8 bits in length. All options are included in the checksum. An
option may begin on any octet boundary. There are two cases for the formart
of an option:

a. A single octet of optiomkind.

b. An octet of option-kind, an octet of -optiorlength, and
the actual optiordata octets.

The option—length counts the two octets of option-kind and option—length as
well as the option—data octets. Note that the list of options may be shorter
than the data offset field might imply. The content of the header beyond

the End-of-Option option must be header padding (i.e., zero).

Currently defined options include (kind indicated in octal):

EKind Length Meaning

o - End of option list.

1 - No—Operation.

2 4 Maximum Segment Size.

9.3.11.1 Specific option definitions.

KIND = 0

FIGURE 10. End of option liet code,

92

—

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

This option code indicates the end of the option list. This aight not
coincide with the end of the TCP header according to the Data Offset field.
This ie used at the end of all options, not the end of each option, and

need only be used 1f the end of the options would not otherwise coincide
with the end of the TCF header.

9.3.11.1.2 No—-operation.

FIGURE 11. No-operation option code.

This option code may be used between options, for example, to align the
beginning of a subsequent option on a word boundary. There is no guarantee
that gsenders will use this option, sc receivers must be prepared to process
options even if they do not begin on a word boundary.

9.3.11.1,3 Maximum segment size.

| 00000010 [oooooaooi MAX SEG SIZE |

KIND = 2 LENGTH = 4

FIGURE 12. Maximun segment size option.

1f this option is preseot, then it commmicates the maxioum receive segment
gize at the TCP which gends this segment. This field must only be seant in
the initial connection request (i.e., in segments with the SYN control bit
set). If this option is not used, any segment size is allowed.

9.3.12 Padding.

abbrev: oaone field aize: variable

The padding is used to ensure that the TCP header ends and data begine on a
32 bit boundary. The padding is composed of zeros.

9.4 Extended state machine specification of TCP entity. The TCP protocol
entity 18 specified with an extended state machine made up of a set of states,
a set of tramsitions between etates, and a set of iuput events casusing the
state transitions. The following specification is made up of a machine
instantifation identifier, a state diagram, a state vector, data structures,
an event list, aund a corresponxdence between events and actions. In addition,
an extended state machine has an initial state whose value is assumed at
state machine iostantiation,

93

Downloaded from http://www.everyspec.com \

MIL-STD-1778
12 August 1983

9.4.1 Machine instantiation identifier. One state machine instance emxists
for each connection. A connection, and hence a gtate machine, is uniquely
named by either of the two machine instantiation identifiers that exist: the
socket pailr and the local connection name.

9.4,1.1 Socket pair identifier. TCP segments delivered by the network
and connection establishment service requests (Active Open, Active Open with
Data, Full Passive Open, and Unspecified Passive Open) carry and thus are
bound to a comnection with the following values:

a. source address

b. s8ource port

¢. destination address
d. destination port

9,4,1.2 Local connection name. A TCP entity assigns an identifier, &
local connection name, that appears in all service responses and all service
requests except for active and passive open requests.

9.4.2 State diagram. The following diagram summarizes the state machine
for the TCP emtity.

Please note the diagram is intended only as a summary and does not supersede
the formal definition that follows.

9.4.3 State vector. -The elements comprising the state vector of .a TCP
entity appear below. Each element name is followed by the name of the
corresponding record element in the state vector structure “sv” declared in
Section 6-3.4-1.

a. state name (sv.state): the current state of the entity state
machine froam the following list: CLOSED, LISTEN, SYN RECVD,
SYN_SENT, ESTAB, FIN WAIT1, FIN WAIT2, CLOSE WAIT, CLOSING,
LAST ACK, TIME WAIT.

b. source address (sv.source addr): the internet address naming
the location of the local ULP.

c. source port (sv.source port): the identifier of the local ULP,

d. destination address (sv.destination addr): the internet address

of the location of the the ULP at the other end of the connection.

e. destination port (sv.destination_port): the identifier of the
ULP at the other emd of the connection.

f. 1lcn (sv.lcn): local connection name, the identifier assocliated
with this end of the connection.

B. open mode (sv.open mode): the type of open request issued by
the local ULP, either ACTIVE or PASSIVE.

‘94

Downloaded from http://www.everyspec.com

-ACTIVE OPEN OR ACTIVE

MIL-STD-1778
12 August 1983

UNSGPECIFIED PASSIVE OPEN OR
FULLY SPECIFIED PASSIVE OPEN

OPEN WITH DATA
INIT SV; SEND r-e- CLOSED Y
SYN
CLOSE CLOSE
CLEAR 5V CLEAR SV
RECV SYN RECV SYN |
8YN GENT BYN RECVO ppo——
SEND SYN, ACK - \ssnn sYN. acx k
RECV ACK \
OF SYN \
N
“
RECV 8YN. ACX _ RECV FIN, ACK OF SYN
. 7
o ESTAB \ SO0 ACK
SEND ACK .
\
LN
CLOSE RECV FIN \\
BEND FIN SEND ACK
FIN WAIT M CLOSE WAIT
- _RELV b
RECV RECV FiN .
ACX OF AN SEND ACK BEND RN
RECV FIN. ACK
SEND ACK *
FIN WAIT 2 CLOSING . LAST ACK
wEc £ AcK X
RECV FIN, ACK RECY
RECV FIN SEND ACK ACK OF AN
SEND ACX
TIMEOUT _ ¢
& ; TIME WAIT CLOSED
2 MBL

FIGURE 13.

TCP entity state summary.

LEGEND ==
recv = NET DELIVER of segment
send - NET_SEND of segment

2 MSL - 2 oax segment lifetimes

g¢v - ptate vector
init - initialize
clear — nullify

Note that the above figure is intended only as a summary and does not supercede

the formal definitions that follow.
95

MIL-STD-1778

Downloaded from http://www.everyspec.com

12 August 1983

h.

i.

k.

- T

Ne

Oa

Pe

Q.

o

B.

t.

Ue

origipal precedenoe (ev.original prec): one of eight levels of
- | "N -

- ea —f b . ak. Ta..t FTD
Uk’

spec.taj. handling requested by the 1o¢C

actual precedence (sv.actual prec): one of eight levels of
special handling negotiated duriug counnection establisbment
and verified throughout connection lifetime.

security (sv.sec): information (including security level, comr
partment, handling restrictionms, and tramsmission control code)
defined by the local ULP.

sec_ranges: security structure which specifies the allowed
ranges in compartment, handling restrictions, transmission
control codes and security levels.

ulp timecut (sv.ulp timeocut): the maximum delay allowed for
data tramenmitted on the coonection.

ULP timeout action: in the event of a ULP timeout, determines
if the connectior is terminated or an error is reported to the
ULP.

send unacknowledged sequence mumber (sv.send uma): oldest
unacknowledged send sequence mumber (i.e. left edge of send
wiondow).

send mext sequencd mifiber (sv.send ‘next): ~sequence mmber of
the next data octet to be sent.

send free sequence mumber (sv.send free): sequence number of
the first free octet in the send queue (i.e. the next octet to
be received fram the local ULP).

send window (sv.send wndw): allowed number of octets that may
be gent to the remote TCP relative to the send unacknowledged
sequence number.

send urgent sequence mumber {sv.send_urg): sequence mumber of
the last octet of urgent data in send stream.

send push sequence mumber (sv.send push): sequence mumber of
the last octet of pushed data in the send stream.

send last window update 1! (sv.send 1astupl) sequence number
of the incoming segment used for last window update.

send last window update 2 (sv.send lastup2): acknowledgment
mwbber of the incoming segmeat used for last window update.

send initial sequence number (sv.aend_isn): sequence mmber of
the original SYN sent.

0
o

Downloaded from http://www.everyspec.com

MIL-5TD-1778
12 August 1983

w. send fin flag (sv.send finflag): indicates that the local ULP
a A [y

x. send maxioum segment sire {av.eend max seg): wmaximunm eized
segment to be sent to the remote TCP on thie connection.

y. oend queue {ev.semd_queue): 1location of data received from the
local ULP and either awaiting acknowledgment, or awaiting trans-
aission. This area is accessed only by the date wmanagement
routines.

eg. receive next sequence mumber (ev.recv next): segquence ounher of
next data octet expected to be received.

aa. receive save sequence munber (sv.recv_next): seguence oumber
of next data octet to be delivered to the local ULP.

bb. receive window (sv.recv_wndw): allowed mumber of data octets
to be received from the remote TCP gtarting with the receive
next sequence oumber,

cc. receive alloc (sv.recv_alloc): the mumber of data octets that
will be accepted by the local ULP.

_urg): eequence number

cive stresm.

dd. Tecelive urgent aeqmnce mumber (gv.recv
o rece

Py Sy o a e e B e

QL Lhne LBBC OCtéEeL 01' urgeEnt. aava in

ee. receive push sequence mumber (8v.recv_push): sequence mumber of
the lasst octet of pushed date in receive atrean.

£f. receive initial sequence mumber (sv.recv_isn): sequence
mumber of the SYN received from remote TCP.

g8. receive fin flag (sv.recv_fioflag): indicates that fin has
been received from the remote TCP.

hh. receive queue (sv.recv_queue): location of data accepted from
reaote TCP before delivery to local ULP. This area is eccessed

only by the data management routines.

9.4.4 Data atructures. The TCP entity etate machine references certain
data areas corresponding to the state vector, the service requests and
responses on the upper interface, and the service requests and responses on
the lower ianterface. For clarity in the events and actions section, these
data struciures Aare declared in ADA. Howewer, A data @tfuctufé Gay bve par
tially typed or untyped where specific formats or data types are implements—
tion dependent.

9.4.4.1 State vector. The TCP entity state vector is defined in paragraph
4

9.4.1 above. The corresponding structure is daclared as:

97

MIL-STD-1778
12 August 1983

svi
t

record
agtate:

source_ addr:
gource

lcn:
open_mode:.

original prec:
actual_prec:
security type;

gec:
8ec_ranges:

ULP_timeout:

ULP_timeout
send una:

ort:
destination addr:
destination port:
integer;

_action:
sequence mumber_type;

Downloaded from http://www.everyspec.com

state vector type;
state_vector_type 18

(CLOSED, LISTER, SYN RECVD, SYN SENT
ESTAB, FIN | HAITI
CLOSE WAIT,CLOSING, LAST ACK, TIME WAIT

FIN WAITZ

- Tva wam

.
3

‘address _type;
'I'HO_OCTETS ;
address_type;
TWO_OCTETS;

(ACTIVE, PASSIVE);
precedence_type;
precedence type;

security struct;
integer;
integer;

sand next: nnqnnnnn n“mhnr runﬂ;
aend:free: gequence " number _type;
send_wndw: integer;

send_urg: sequence number type;
send push: sequence mumber type;
sebd_lastupl: sequence number_type;

send -lastup? :

‘sequence_mmber_type;

send_isn: sequence mumber type;
send finflag: boolean;
send max seg: integer;

send queue:
recv_next:
recv_save:
recv_wndw:
recv_alloc:
recv_urg:
recv_push:
Tecv_: ien:

o ry ﬂlIﬂIIﬂ '
LA

end record

9-4.&.2 From ULP.

timed queue_type;
sequence number_ type;
sequence mmber_ type;
integer;

integer;

sequence oumber_ type;

sequence number_type;

sequence_| ‘mumber _type;
Teev finflag.

boole: anj

The from ULP structure holds the service request

parameters and data assoclated with the service request primitives as

[S

epecified in paragraph 6.3.

The frun ULP structure is& declared as:

type from ULP_type is

record

requast_name:

(Unspecified Passive Open, Full Passive Open,
Active Open, Active Open with d.ata,
Send, Allocate, Close, Abort, “Status);

98

Downloaded from http://www.everyspec.com

MIL-STID-1778
12 Auguet 1983

aource it
destin;,:;on_addr
destination port
len
ULP_timeout
ULP timeocut_action
precedence
gecurity
sec_ranges
data
data length
push_flag
urgent_flag

end record;

9.4.4.3 To ULP. The to ULP structure holds service response parameters
and data as specified in paragraph 6.4. Although the structure is coaposed
of the parameters from all the service requests, a particular service
response will use only those structure elements corresponding to its specified
parameters. The to ULP structure ie decliared as:

type to ULP_type is
record
service response : (OPEN ID, OPEN_PAIL, OPEN_SUCCESS,
DELIVER, CLOSING, TEEMIRATE, .ERROR);
source_ addr '
source_port

destination_addr
dactinatian nore

[- RSP Rt) U Ay =it

lcn

data

data length

urgent flag

error_desc

status_block: satatus_block type;
_e.g_q_ record;

type otatus_block type is
" record ’

connection atate
send window
receive window
amount of unacked data
amount_of unreceived data
urgent_state
precedence
security
sec_ranges
ULP_timeout
ULP_timeout_action

end record;

99

Downloaded from http://www.everyspec.com \

MIL-STD-1778
12 August 1983

9.4.4.4 To NET, The to NET structure holds the service request parameters
and data associated with the NET SEND service request gspecified in paragresph
8.2. This structure directly corresponds to the to NET structure declared
in paragraph 8.3.2 of the lower layer service requirements section. The
to_NET structure is declared as:

e

type to KRET type is
record

source_addr
destination addr
protocol
type_of service is
record
precedence
reliability
delay
throughput
reserved
end record;
time to live
dont_fragment
length
seg: segment type;
options
end record;

9:4:4.5 Prom NET. --The from NET structure holds the service response
parameters and data assoclated with the RET DELIVER service respouse, asg
specified in paragraph 8.2.2, This structure directly corresponds to the
from NET structure declared in paragraph 8.3.3 of the lower layer service
requirements section. The from NET structure is declared as:

type from NET type is
record
source addr
destination_addr
protocol
type of service is
record
precedence
reliabilfity
delay
throughput
reserved
end record;
length
seg: segment type;
options
error
end record;

-t
[=]
[=]

Downloaded from http://www.everyspec.com

MIL-STD~1778
12 August 1983

9.4.4.6 Segment type. A segment type etructure bolds a TCP segment made
up of a header portion and a data portion .as specified in Section 9.3. A
seguent type structure is declared as:

type scgment type is
record

SOUTCE_pOTT H +H
destination_port : TWO ocrx'rs;
seq_mua : FOUR OC'I'BTS'
ack oum : POUR | . OCTETS;
data offset : BALF ' _OCTET;
resarved : SIX | BICHTES OCTET;

ci
si
-
[
]
[7+]

urg_flag : OHE BIT;

ack flag : ONB BIT;

push flag : ONE) ,_BIT;

mt flnw H gm;& 5_1_’1‘-

syn | fLug : ONE | BI‘!;

fin_flag : OHB BIT;

wndw t TWO ()_OCTETS;
checksum : THO__OCIBTS

urgptr : TWO_OCTETS;
options ¢ 18 array of OCTET;
padding : 18 array of OCTET;
data t 1e array of OCTET;

end record;

9.4.4.7 Supplemental type declarations.

type addrese_type is FOUR_OCTETS;

type sequence mumber type 18 POUR_OCTETS;
£ype precedence_type 1is INTEGER range 0..7;
type security type is

record
security_level : HALF_OCTET;
compartment : TWO_OCTETS;
hand 11 ng : TWO_OCTETS;

trans_control_ code : “THREE ,_OCTETS;
end record;

subtype OCTET is INTEGER range 0..255;

subtype HALF OCTET is INTEGER range O0..15;
subtype PIVE | , EIGHTHS OCTET 1is INTEGER range 0..31;
subtype TWO OCTETS {s INTEGER range 0..2%%]16-];
subtype TEIRBE OCTETS ia INTEGER range D--20'2b-l-

- e

aubtype FOUR OCI'ETS is INTEGER range O, .2#4232-];

NULL RBSEB.VE) ¢t constant FIVB EIGHTHS OCTKT = 0;
OPTIONLESS_HEAIBR : comstant INTEGER := S;
NORMAL : comstant INTEGER := 0;
NULL : constaut INTEGER := 0;

==NULL assumed to be outside the sequence mumber space.
DEFAULT PRECEDENCE : comstant INTEGER := 0;

101

MIL-STD~1778

Downloaded from http://www.everyspec.com

12 Auguat 1983

DEFAULT PRECEDENCE

NEPANTT TTMRATT

AP AAE Dl hi A A A LW AE

DEFAULT _TIMEOUT ACTION
DEFAULT SEC_LIST

ONE MINUTE TTL
THIS_ADDRESS

TCP_ID

constanr INTEGER

annmatrant THTRADD

WAL MO LG A AY A ASLEREER

constant INTEGER
security let;
constant INTEGER := 00111100(8);
coontant INTEGER; —impl. dependent
constant INTEGER; —rtaeference [5]

111000(RY
a4 LS AR

s l- L1

«d "i L 1]
= DO

9.4,5 Event list. The events for the TCP entity state machine are drawn
fram the service request primitives defined in the service definit{ion of

Section 6.2,

Optional service request parameters are shown in brackets.

The capitalized list of parameters represent the actual values of the
parameters passed by the service primitive. The event list:

-
o I N TN

d.

£.

h.

i.

k.
1.

Unapecified Paseive Open (SOURCE PORT,
[, TIMEOUT] [TIMEOUT AG[IOH]
[, Pxxcamncn] [,SEC mc:zs]).

Full Passive Open (SOURCE PORT,
MSTINATION PORT, DESTINATION ADDRESS,

oy il

T
l,l..i.mUUl] |,,u.n:-uu1 AULLUHI

{,PRECEDENCE] [,SEC_RANGES]);

Active Open (SOURCE PORT,

DESTINATION PORT, DESTINATION ADDRESS
[,TIME0UT] T, 'rzmou'r_Acnou]
[,PRECEDENCE) [,SECDRITY]);

Active Open w/data (SOURCE PORT,
DESTINATION PORT, DESTINATION ADDRESS
[, TIMEOUT] T,TIMEOUT_ACTION} T,PRECEDENCE]
[,SECURITY]); DATA, DATA_LENGTH, PUSH_
FLAG, URGENT FLAG);

Send (LCN, DATA, DATA LENGTH, PUSH FLAG, URGENT_FLAG [,TIMEOUT]);

Allocate (LCN, DATA LENGTH)

Close (LCN)

Abort (LCN)

Status (LCR)

NET_DELIVER (SOURCE_ADDRESS, DESTINATION ADDRESS, PROTOCOL,

TOS[precedence, reliability, delay, thrcmghput],
OPTIONS[mecurity], LENGTH, DATA)

ULP Timeout

Time Wait Timeout
102

Downloaded from http://www.everyspec.com

MIL-STD~1778
12 August 1983

9.4.6 Events and actions. This section is organized in three parts.
The first part contaims & decision table representation of state machine
-events and actious. The decision tables are organized by state; each table
corresponds to one event. The second part specifies the decigion functions
appearing at the top of each column of a decision table. These functions
exanine attributes of the event and the state vector to return a eet of
decision regsults, The results become the elements of each column. The
third part specifies action procedures sppearing at the right of every
row. Bach row of the decision table coabines the decision results to
deternine appropriate event processing. These procedures specify event
processing algorithms in detail.

9.4.6.1 Decision tables. The Status event can occur in any state except
closed; TCP's action is to return the curreant state vector information as
specified 1in the STATUS RESPONSE gervice response. 1f the primary state
vector element is not changed in the decision table row corresponding to an
event, the “primary” state remains unchanged. The checksun is asgumed to be
computed for all incoming segments. When the cooputed checksum does not
match the segment's header checksun field, the segment is discarded without
being acknowledged.

9.4,6.1.1 State = closed.

]

Legend
d = "don't care” condition

Bvent: Active Open (LOCAL PCRT, REMOTE PORT, REMOTE ADDRESS
[TIMBOUT] [TIMEOUT_ACTION) [PRECEDENCE} [SECURITY])

TABLE 1. Active open event in a closed atate.

Actionsi
RESOURCES SEC
SUFFIC PREC
OPENT ALLOWED
NO d ERROR {"INSUFFICIENT RESOURCES."}
YES NO ERROR {*'S8ECURITY/PRECEDENCE NOT ALLOWED."")
YES YES OPEN; GEN__SYN {ALONE): 8V. STATE = SYN_SENT

Event: Active Open with Data (LOCAL_PORT, REMOTE PORT, REMOTE ADDRESS,
[TIMEOUT} [TIMEOUT ACTION] |PRECEDENCE)
[SECURITY) DATA, DATA_LENGTH, PUSH_FLAG,
URGENT_FLAG)

103

MIL-STD-1778
12 August 1983

Downloaded from http://www.everyspec.com

TABLE 1I. Active open with data event in a closed state.

Actions:
SEC
SUFFIC PREC
OPEN? ALLOWED
NO d ERROR ("' INSUFFICIENT RESOURCES."”)
YES NO ERROR (**SECURITY/PRECEDENCE NOT ALLOWED.*}
YES YES OPEN; GEN_ SYN (WITH__DATA]: BV. STATE = §YN_SENT

Event: Full Passive Open (LOCAL PORT, REMOTE PORT, REMOTE ADDRESS,

[TIMEOUT] [TIMBOUT _ACTION] [PRECEDENCE] [SEC_RANGES])

TABLE 1II. Full passive open event in a closed state.

Actions:
RESOURCES SEC ‘
SUFFIC PREC
OPEN? ALLOWED
NO d ERROA {*INSUFFICIENT AESOURCES."")
YES NO ERROR (“*SECURITY/PRECEDENCE NOT ALLOWED."}
YES YES OPEN: BV, STATE = LISTEN

Event: Unspecified Passive Open (LOCAL PORT, [TIMEOUT]} [TIMBOUT_ ACTION]

[PRECEDENCE] [SEC_RANGES])

TABLE IV, Unspecified passive open event in s closed atate.
Actions:
RESOURCES SEC
SUFFIC PREC
OPEN? ALLOWED
ND d ERROR {"'INSUFFICIENT RESOURCES."")
YES NO ERROR (**SECURITY/PRECEDENCE NOT ALLOWED."")
YES YES OPEN: S§V. STATE = LISTEN

R

Roant: Cand)
Rvanr: Sand ()
or Close ()

or Abort ()
or Allocate ()

Actions: -error ("Connection dpes not exiet.”)
104

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

Event: HET DELIVER (SOURCB ADIRESS, mSTINAﬂON ADDRESS, PROTOCOL,
T0S{precedenca, reliability, dslay, throughput],

OPTIONS[esecurity], LENGTH, DATA)

TABLE V. Net deliver event in a closed state.

Actions:
RST ACK
on ON
? ?
NO NO RESET (SEG)
NO YES REGET {SEG)
YES d - = NO ACTION

9.4.6,1.2 8State = ligten.

Event: Close (LCN)
or Abort (LCN)

Actions: reset_self(UC); sv.state=CLOSED

Event: Allocate (LCN, DATA LENGTH)

Actions: new allocation

Bvent: Seod ()

Bvent: Active Open ()
or Active Open with data ()

ar Puyll Passive Osan ()
OF FUki rassive Vpen (/

or Unspecified Passive Open ()

Actions: error ("Connection already exists.”)

Bvent: HNET ﬁ?tﬁ?ﬁ (SOURCE ADDRESS, DESTIHATION ADDRESS, PROTOCOL,
'rOSlprecedence. reltabilicy, delay, throughputl.
OPTIONSlnecurity] LENGTH, DATA)

‘-n
w

Downloaded from http://www.everyspec.com

MIL-STD=-1778
12 August 1983

TABLE V1. Net deliver event in a listen state.

RST ACK SYN sEc SV PREC
ON ON ON MATCH vSs
7 ? ? SEG PREC
nNOD NO NO d d —— WNO ACTION
NO NO YES NO d RESET [SEG)
NO NO YES YES GREATER | RECORD__SYN; GEN__SYN [WITH_ACK);
OR EQUAL | SV. STATE = 5YN_RECVD
NO NO YES YES LESS RECORG__SYN: RAISE_ PREC: GEN_SYN (WITH_ACK)
SV. STATE = SYN_RECVD
NO YES d RESET (SEG)
YES d d d —— NO ACTION

9,4,6,1.3 State = SYN SERT,

Event: Close (LCR)
or Abort (LCN)

Actions: reset_self(UC); sv.state=CLOSED

Event: Send (LCN, DATA, DATA LENGTH, PUSH FLAG, URGENT FLAG {TIMEOUT])

[TIHBOUT ACI'ION]

TABLE VII., Close or abort event in a SYN SENT gtate.

Actions:
i .
RESOURCES
SUFFIC
SEND?
NO ERROR {“INSUFFICIENT RESOURCES. "}
YES SAVE_SEND_DATA
o _a o a1 _a_ fr Ay A A Y DRAAMNETN
LoveoL: AlLLOCALE \LuULDN, VAalLA LLIWlO)

Actions: new_allocat ion

Event: Active Open ()
or Active Open with data ()
or Full Pageive Open ()

or Unspecified Passive Open ()

Actions: error ("Connection already -exists.”)

106

-

—

[—

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983
Bvent: Retransxisson Timeout

Actions: retramsmit

Ewvent: ULP Timecout

Actions: 1f (ULP_timecut_sction = 1)
then open_fail; sv.state = CLOSED;
elge report_timeout;

Bvent: NET DELIVER (SOURG ADDRESS, DESTIRATION Anmss. PROTOCOL ,
TOS | precedence, reliability, delay, throughput].
OPTIONS{securicy], LENGTH, DATA)

TABLE VIII. Net deliver event in a SYN SENT gtate.

Actiona:
ACK RST SEC 8V PREC 8YN AN
SETATUS ON MATCH vSs ON ON
TEST 1 4 ? GEG PREC ? ?
NONE NO NO d d d RESET (8EG)
NONE NO YES d NO d — = NO ACTION
NONE NO YES GREATER YES NO RECORD__SYN; SEND__ACK (5V. RECV__ISN + 1): 5V, STATE =
OR EQUAL SYN__RECVD .
MNONE NO YES GREATER YES YES RECORD__8YN: SEND_ACK (8V, RECY__ISN + 1): SAVE_RN;
OR'EQUAL 5V, STATE « S§YN_RECVD
NONE NO YES LESS YES NO RECORD__SYN: RAISE__PREC: SEND__ACK {BV. RECV_ISN + 1}
SV. STATE = SYN__RECVD
NONE NO YES LESS YES YES RECORD__SYN: RAISE__PREC: SEND_ACK {SV. RECV_ISN + 1)
SAVE_FIN: 8V. STATE = SYN_RECVD
NONE YES d d d d - = KO ACTION
INVAL NO d d d d RESET (BEG)
INVAL YES d d d d — = NO ACTION
VALID NO NO d d d RESET (SEG)
VALID NO YES OREATER d d RESET (BEQG)
VALID NO YES LESS NO d — — NO ACTION
OR EQuAL
VALID ND YES LESS YES NO .| RAISE__PREC:; CONN_OPEN; SV, BTATE = ESTAD
OR EQUAL
VALID NO YES LESS YES YES RAISE__PREC: CONN_OPEN; SET._ FIN: 8V. STATE = CLOSE_WAIT
Oof EQUAL)
VALID YES d d d d OPENFAIL: 5V, STATE = CLOSED

107

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

9-4-601-4 State = SYN RECVD.

Event: Close (LCN)

Actiong: send finm; sv.state=FIN WAITI

Event: Abort (LCN)
Actioos: reset (CURRENT); reset_eelf(UA); sv.state=CLOSED

Event: Send (LCN, DATA, DATA LENGTH, PUSB_FLAG, URGENT FLAG [TIMEOUT)
[TIMEGUT ACTION]

A mBTD P

T o__ .3 a_ -
LADLE 1A oEHa evenr in a8 o1

Actions:

RESOURCES
SUFFIC
SEND?
NO ERROR {""INSUFFICIENT RESQURCES."")

YES SAVE_SEND__DATA

Evenr: Allocate (LCN, DATA LENGTH)
Actions: new_allocation
Event: Active Open ()
or Active Open with data ()
or Full Passive Open ()}
or Unspecified Passive Open ()

Actions: error ("Connection already exists.”)

Event: Retransmission Timeocut

Actions: retramsmit

Event: ULP Timeout

Actioms: 1f (ULP_ t:l.memt action = 1)
then reset (CURRENT); openfail; sv.state=CLOSED
else report_timeout;

=it
o
o

Downloaded from http://www.everyspec.com

.

MIL-STD-1778
12 August 1983

Event: NET_DELIVER (SOURCE_ADDRESS, DBSTIRATION ADDRBSS, PROTOCOL,
TOS[precedence, reliabiliry, delay, throughput],

e | T A S = F B

OPTIONS [security], LENGTH, DATA)

TABLE X. Net deliver event in a SYN RRCYD gtate.

SEC 8YN ACK TERD
starus | onr | matomr | mober | wabow | Tears | waecaw | seeu
INVAL NO d d d d d d SEND__ ACX {8V. RECV_ NEXT)
INVAL YES d d d d d d —— NO ACTION
VALID NO NO PASS d d d d REGET (SEQ) PARY__AESET; BV, STATE = LISTEN
VALID NO NO ACT d d d d RESET (BEG); OPENFAIL: SV. STATE = CLOSED
VALID NO YES d NO NONE d d ~ ~ NO ACTION
VALID KO YES d NO INVAL d d RESET (SEG)
VALID NO YES d NO VALID NO NO | CONN_OPEN; SV, STATE = ESTAB
VALID NO YES é NO VALD NO YEE | CONN_OPEN: SET__FIN; SV. BTATE =

CLOSE__WAIT

VALID NO YES d NO VALID YES d UPDATE; CHECKX__URG; EV. STATE = ESTAB
VALID NO YES d YES d d d RESEY {SEG); OPENFAIL: SV. STATE = CLOSED
VvALID vES ¢ PASS 4 g ¢ d PART_ RESET; V. STATE = LISTEN
VALID YES ¢ ACT d d d d OPENFAIL; SV. STATE = CLOSED

9.4.6. 1.5 state - Esm.

~

wan LCN)

Actions: send fin; sv.s tate=FIN WAITI

Event: Abort {LCH)

Actions: reset(CURRENT); reset self(UA); sv.state=CLOSED

109

Downloaded from http://www.everyspec.com

MIL-STD—-1778
12 August 1983

Event: Send (LCN, DATA, DATA LENGTH, PUSH FLAG, URGENT_FLAG [TIMEOUT]
[TIMEOUT 4 AC.'I.'ION]

TABLE XI. Send event in an estab state.

Actions:

RESOURCES
SUFFIC
SEND?

NO ERROR {“INSUFFICIENT RESOURCES.”)
YES DISPATCH

Event: Allocate (LCN, DATA LENGTH)
Actions: new allocation
Event: Active Open ()
or Active Open with data ()
or FPull Pasgive Open ()
or Ungpecified Passive Open ()

Actlons: error ("Connection already exists.”)

Event: Retramsmission Timeout

Actions: retransmit

Event: Ul?P Timeout

Actions: 4if (ULP_timeout action = 1)

then reset (CURRENT); reset -_8elf(UT); sv.state=CLOSED
else report_timeout

Event: NET DELIVER (SOURCE_ADDRESS, DESTINATION . ADDRESS, PROTOCOL,

TOS[precedence, reliability, delay, throughput],
OPTIONS[security], LENGTH, DATA)

110

Downloaded from http://www.everyspec.com

NIL-STD-1778
12 August 1983

TABLE XII. Ret deliver event in an estab state.

Actions:
A
? ? MATCH? | WNDOW | TEST 27
INVAL NO d d d SEND_ ACK ISV, RECV_ NEXT
INVAL YES] d d — = NO ACTION
VALID NO NO 4 d REGET (SEQG); RESET __SELF (SP): §V. STATE = CLOSED
VALID NO YES NO NONE | ~~ NO ACTION
VALID NO YES NO INVAL | SEND_ ACK (SV. RECV_NEXT)
VALUD NO YES ~ NO- vauD | urPpATE .
VALID NO Yts YES] RESET {SEQ): RESET __SELF {SFI: 5V. STATE = CLOSED
VALID YES] d d RESET_SELF (RA); V. STATE = CLOSED

9.4.6.1.6 State = CLOSE WAIT,

2 - s 1 sy hamma ¥ EHLISERTY e oA
o

vent: Seod (LCN, DATA, DATA LENGTH, PUSE FLAG, U

TIMEOUT ACTION] - -

TABLE XIII. Send event in a CLOSE WAIT state.

NO ERROR (" INSUFFICIENT RESOURCES."'}
YES DISPATCH

=
[
[

NIL-STD-1778
12 August 1983

Downloaded from http://www.everyspec.com

Event: Active Open ()
or Active Open vith data ()
or Full Passive Open ()
or Ungpecified Pagssive Open ()
Actions: error ("Comnnection already exists.”)
Event: Close (LCN)
Actions: send fin; sv.state=LAST ACK
Event: Abort (LCN)
Actions: reset(CURRENT); reset_self(UA); sv.state=CLOSED
Event: Retransmission Timeout -
Actions: retramsmit
Bvent: ULP Timeout
Actions: if (ULP_timeout_action = 1)
then reeset(CURRENT): raéset _6elf(UT); sv.state=CLOSED
else report_timeout
Evenr: NET DELIVER (SOURCE ADIRESS, DESTINATION ADDRESS PROTOCOL,
TOS[precedence. reliability, delay, :hroughput],
OPTIONS[security], LENGTH, DATA)
TABLE XIV., Net deliver event in a CLOSE WAIT state.
Actionsg:
SEQ# RST SEC SYN ACK ZERO FIN
STATUS ON PREC IN STATUS | RECV SEEN
T ? MATCH? | WNDOW | TEST 27 | WNDOW i
INVAL NOD d d d d d SEND_ ACK ISV. RECV_ NEXT)
INVAL YES d d d d d —— NO ACTION
VALID NO NO d d d d RESET (SEG); RESET__SELF {SP); 8V, STATE = CLOSED
VALID NO YES NO NONE d d —~— NO ACTION
VALID NO YES NO INVAL d d SEND_ ACK {SV, RECV_NEXT}
VALID NO YES NO VALID NO NO | UPDATE; ACCEPT
VALID NO YES NO VALID NOD YES | UPDATE; ACCEPT; SET__FIN; SV. STATE = CLOSE_WAIT
VALID ND YES (] VALID YES d UPDATE; CHECK _URG
VALID NQ YES YES d d d RESET {S8EG); RESET_SELF {5F): §V. STATE = CLOSED
‘VALID YES d d d d d RESET _SELF (RA}; SV STATE = CLOSED

Downloaded from http;://www.everyspec.com

MIL-STD-1778
12 August 1983

9.4.6.1,7 State = closing.

Event: Allocate (LCN, DATA LENGTH)
Actions: new_allocation
Bvent: Send ()

or Close ()
Actions: error {“Comnection cloging.”)
Bvent: Active Open ()

or Active Open with data ()

or Full Passive Open ()

or Unspecified Passive Open ()

Actions: error (Connection already exists.”)

Bveut: Abort (LCN)

Actions: reget (CURRENT); reget eelf(UA); sv.state=CLOSED;

Event: Retransmission Timemout -

Actiops: retramsomit

Event: ULP Timeout

Actioms: 1f (ULP timecut—action = 1)
reset (CURRENT); reset_pelf(UT); ev.state=CLOSED
else report_timeout

Event: NET DELIVER(SOURCE ADDRESS, DESTINATION ADDRESS, PROTOCOL,

TOS{ precedence. reliability, delay, throughput].
OPTIONS[Becurity), LENGTH, DATA)

113

MIL-STD-1778

12 August 1983

Downloaded from http://www.everyspec.com

TABLE XV, Net deliver event in a closing state.
Actions!
SEQ# RST SEC SYN ACK FIN
STATUS ON PREC N BTATUS | ACK'D
? ? MATCH? | WNDOW | TEST 27 ?
INVAL NO d d d d SEND._ ACK {SV. RECV_NEXT)
INVAL YES d d d d —— NO ACTION
VALID ND ND d d d RESET (SEG): RESET__SELF (5P); BV. ETATE = CLOSED
VALID ND YES NO NONE d —— NO ACTION
VALID NO YES NO INvaL d SEND._ACK {§V. RECV__NEXT)
VALID WO YES NO VALID NO | UPDATE
VALID NO YES NO VALID YES | START_TIME_WAIT: SV, STATE ~ TIME_WAIT
VALID NO YES YES 4 d RESET (SEQ); RESET__SELF [SF); 8V. STATE = CLOSED
VALID YES d d d d RESET_ SELF {RAI; SV. STATE = CLOSED

9.4.6.1,8 State = FIN WAITI1.

Event: Allocate(LCN, DATA LENGTH)

Actions: new_allocation

Event:

Actions: error(“Counection closing.”)

Send()

or Close()

Active

Oponfl }

bl L

or Active Open with data()

or Full Passive Open()
or Unspecified Pasaive Open()

Actions: error(“Connection already exists.”)

114

‘ﬂ/

Downloaded from http://www.everyspec.com

Bvant: Abort(LCN)

MIL-5TD~-1778
12 August 1983

Actions: reset(CURRENT); reset_self(UA); sv.state=CLOSED

. Event: Retransmission Timeout

Actionsg:

retransmit

Event: ULP Tiaesout

Actions:

1f (ULP_timeout actiocn = 1)
then reset{CURRENT); reset ._8elf(UT); sv.state=CLOSED
else report_timeout

Event: NET DKLIVER(SOURCB ADDRESS, DESTINATION ADmBSS PROTOCOL,
TOS[precedenc.e. reliabilicy, delay, throughputl.

OPT1O0RS [security], LENGTH, DATA)

TABLE XVI. NET deliver event in s FIN WAIT] state.

Actions:
stas RST st BYN ACK ZERD FiIN FIN
)L | | el | TS| iR | o6 |
’ NVAL NO a a P P d o SEND_ ACK {SV. RECV _NEXT]
INVAL YES d d d d [] d == ND ACTON
VALID NO NO o d o d o | RESET:RESEY_SELF (SP): SV. STATE = CLOSED
VALID NO vES NO NONE d a d — = NO ACTION
VALD NO Yes NO INVAL P ¢ o | senp_acx tsv. recv_nexn
VALID NO YES NO VALID NO NO NO | UPDATE: ACCEPT
VALID NO YES NO VALD NO NO YES | UPDATE: ACCEPT: SET_FIN: 8V. STATE = CLOSING
VALID NO YES NO VALID NO YES NO | UPDATE: ACCEPT: SV. STATE « AN_WAIT 2
VALID NO) NO vaup NO YES YES | UPDATE: ACCEPT: SET__FIN: START_TIME_WAIT:
BV. STATE = TIME_WAIT
VALID NO YES NO vALD ves NO da | uroare
VALID NO YES NO VALD YES YES o | UPDATE: SV. STATE = FIN_WAIT 2
VALID NO ves vES a] P @ | RESET (SEQ): RESET_SELF (8P
STATE = CLOSED
vALID ves 3 ¢ a 4 d @ | RESET_SELF (RAI: BV. STATE = CLOSED

115

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

9.4.601.9 State =~ FIN WAIT2.

Event: Abort{ LCN)

Actions: reset(CURRENT); reset_self(UA); sv.state=CLOSED

Event: Allocate(LQN, DATA LENGTH)
Actions: nevw_allocation
BEvent: Send()

or Close()
Actiong: error("Connection clesing."”)
Event: Active Open()

or Active Open with data()

or Full Passive Open()

or Unspecified Passive Open()

Actions: error("Connection already exists.”)

Bvent: Retramsmission Timeout

Actions: retransmit

Evenr: ULP Timeout

Actious: 1f (ULP_timeout action = 1)
then reset(CURRENT); reset_self(UT); sv.state~CLOSED
else report_ timeout

oNArD Ty
SOURCE ADIRESS, DESTINATION ADDRESS, PROTOCOL,

TOS{precedence, reliability, delay, throughputl},
OPTIONS[security], LENGTH, DATA)

-
VDAY DR

116

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

TABLE XVI1. NKet deliver event in a FIN WAIT2 state,

Actions:
scQs RSY SEC SYN ACK ZERO N
STATUS | ON PREC N s7atus | Rrecv oN
? ? MATCH? { wnpow | TEST 27 | whnDOW ?

INVAL NO d d d d BEND._ ACK (BV. RECV_ NEXT)

INVAL YES d 4 d d d — = NO ACTION

VALID NO ND ¢ d d d RESEY {8EQ): RESET__SELF (5P); BV. STATE = CLOSED
VALID NO vES NO NONE é d — - ND ACTION

VALID NO YES NO INVAL d d SEND_ ALK {SV. RECV_ NEXT)

VALID NO YES NO VALID NO N0 | uroATE: accerT

VALID NO ves NO VALD NO YES | UPDATE: ACCEPT: SET_ FIN; START__TIME__WAIT:

BV. ETATE = VIME_ WAIT

VALID NO YES NO vaLID YES o UPDATE

VALD NO YES YES d ¢ RESET (SEG!: RESET__SELF {5F); 5V. STATE = CLOSED
VALID YES YES d o d RESET_ SELF (RA): V. STATE = CLOSED

9.4‘6.1-10 State = mt ACK.

Event: Abort{ LI)
Actions: reset self(UA); sv.state=CLOSED

Event: Send()
or Close()
or Allocate()

Actioms: error("Connection closing.”)

Bvent: Actiwve Open()
or Active Open with data()
or Full Passive Open()

or Unspecified Passive Open()

Actions: error(“Connection already exists. ")

2117

MIL-STD-1778

12 August 1983

Bvent: Retransmission Timsout

Actlions: retransamit

Bvent: ULP Timeout

Downloaded from http://www.everyspec.com

Actioms: 1f (ULP_timeout_action = 1)
then reset (CURRENT); reset -_self(UT); sv.state~CLOSED

else report_ timeout

Event: NET DELIVER(SOUR(I ADIRESS, DESTINATION ADDRESS, PROTOCOL,
TOS[precedence. reliability, delay, throuy:put].
OPTIONS [security], LENGTH, DATA)

‘TABLE XVIII.

Net deliver event in a LAST ACK state.

Actions:
GEQF RST SEC S5YN ACK FiN
STATUS ON PREC IN STATUS | acx'D
? ? MATCH? | wnDOw | TEST 27 ?
INVAL NO d d d d SEND_ ACK {SV. RECV_. NEXT)
INVAL YES d d d d —— NO ACTION
VALID NO NO d d d RESET (SEG); RESET__SELF (SP); 8V, STATE = CLOSED
VALD ND YES NO NONE d — ~ NO ACTION
VALID NO YES NO INVAL d SEND._ ACK (SV. RECV. NEXT)
vALID NO YES NO VALID ND | - NDO ACTION
VALID NO YES NO VALID YES | RESET_SELF (UC) SV. STATE = CLOSED
VALID YES YES YES d d RESBET IGEG): RESET__GELF (5F}: SV. STATE = CLOSED
VALID YES d d d d RESET _SELF (RA); SV. STATE = CLOSED
904-6.1. 11 State = TIME WAIT.
Event: Abort{ LCN)
Actions: reset self(UA); sv.state=CLOSED

118

Downloaded from http://www.everyspec.com

MIL-STD~-1778
12 August 1983

Event: Seund()
or Close()
or Allocate()

Actions: error(~Connection closing.”)

Event: Active Open() .
or Active Open with data() -
or Pull Passive Open()

Actions: error("Connection already exists.”)

Event: Time Wait Timeout
Actions: reset_self(UC); sv.state=CLOSED

Legend
d = “don't care” condition

Event: NET_DELIVER(SOURCE ADDRESS, DESTINATION ADDRESS, PROTOCOL,
TOS[precedence, reliabilicy, delay, throughpul:],
OPTIONS [Racuri tvl LENGTH_, DATA)

TABLE XIX. Net deliver event in a TIME WAIT atate.

Actions:

8EQS RST 139 SYN ACK FIN
STETVE | S | mavenr| wivow | Tes123 | &

INVAL NO d d d d SEND._ ACK ISV. RECV_ NEXT)

INVAL YES d d d d —— NO ACTION

VALID NO NO d d d RESET (SEG); RESET__SELF (5P): V. STATE = CLOSED
VALID NO YES NO NONE d —= NO ACTION

vaLin NO YES No tNvaL d SEND_ ACX (SV, RECV.. NEXT)

VALID NO YES NO VALID NO| —— NO ACTION

VALID NO YES NO VALID YES| SEND_ACK (8V. RECV__NEXT): RESTART__TIME_WAIT
VALID ND YES YES d d RESET ISEG): RESET _SELF (SF); SV, STATE = CLOSED
VALID YES d d d d RESET_ SELF (RA); SV. STATE = CLOSED

119

\ Downloaded from http://www.everyspec.com

MIL-5TD-1778
12 August 1983

9.4.6.2 Decision functiona. The following functioos examine information
contained in interface parameters, interface data, and the state vector to
make decisions. These decisions can be thought of a8 further refinements
of the event and/or state. The return values of the functions represent
decisions made.

9.4.,6.2.1 ACK on?! The ACK on function determines whether the acknowledg-
ment field of the incoming segment is in uee. The data effects of this
function are:

a. Data examined only: from NET,seg.ack flag

b« Return values:
HO =~ indicates the ACK flag ie false and the ACK nmumber
should not be examined

YES — indicates that the ACK flag is true and the ACK number
is in use

"1f (from KET.seg.ack flag = TROE) -
then return {YES)
else return (NO);

9.46.6.2.2 ACK status testl? The ACK status testl function compares the
ACK mumber of the incoming segment with the current send variables to deter-
mine whether the ACK is .valid. This function is intended for use during
connection establishment when “old .duplicate” ACKs canmnot occur. The data’
effects of this function are:

a, Data examined only:
from NET.seg.ack mm sv.send_next
from N‘ET.seg.ack flag sv.gend una ‘

b. Return values:
NONE = no ACK sppears in the inconing segment
INVALID — the incoming segment carries an ACK which is
.outside the send window
VALID - the incoming begment carries an ACK inside the aend
window which should be used for update

-=During connection establighment, an ACK is valid 1if
=4t falls inside the send window because old ACEs do not
-—gxist for this connection incarnation.

==Check for presence of ack flag.
1f (from NET.eeg.ack flag = FALSE)
then return {(NONE)
else —Validate ACK against current send window

if (from NET.seg.ack mum ={ sv.send una)
or {from NET.seg.nck mm > sv.send | next)

120

.~

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

then return (INVALID) ~—present but unacceptable
else return (VALID); —present and imside send window

'9.4.6.2.3 ACK status test2! The ACE status_test2 function examines the
ACK musber of the inconing segmont agalmst the current send variables to
determine whether the ACK is valid. This function is intended for use after

connect oo establishment when old duplicate ACEKs can lagally occur. The
data effects of this function are:

a. Data exanined only:

e TP e mnle &

- - . &
ATGE SLL.OGE.E8CK_LaAGE 8

from |) NET.seg. nc.k

b. BReturn values:!
RONB — no ACK sppears in ths incoming segment
INVALID — the incoming segment carries an ACK for
something vhich has not yst been sent.
VALID — the inconing segment carries an ACK vhich either
falls in the wiodow (and ehould be used for update)

or duplicates a previous ACK.

—After a connection is established, an ACK ip valid if
==it ACKa something sent on thie connection incarumation.

=Cheek for presence of ack flag.
1f (from NET.seg.ack flag = PALSE)
then return (NONE)
else ~—Validate ACK against current eend window

if (from NET.seg.ack mum > sv.send next)

r 4 AW W'y — s . \ W

then return (INVALID) =—present but unacceptable

-y

else return (VALID); -—present and okay

9.4.6.2,4 -Checksum check? The checksum check function computes the check-
sun of an inconing segment and compares it against the checksun field in the
header of the incoming segment. The data effects of this function are:

a. Data examined only:
all fields of from NET.seg from RET.protocol
from NET.source_ addr from NET. length
fran NET. desl:lnation addr

121

MIL~-STD-1778
12 August 1983

9.4.6.2.5
field of the
viously sent

Downloaded from http://www.everyspec.com

b. Return values:
NO — indicates that the conpul:ed checksun does not match
the value in from NET.seg.checksum

YES = indicates that the computed checksum matches the
value in from NET.seg.checksum

=The checksum algoritlm 1s the 16 bit one's complement of the

——one's complement sum of all 16 bit words in the segment
—header and segment text. Lf a segment countains an odd mumber
-—of octets, the last octet 1is padded on the right with gzeros
—to form a i6-bit word for checksum purposes.

—=tmile computing the checksum, the -checksum fie.ld iteelf 18 replaced
—with zeros.

=~The checksum includes a 96~bit pseudo header prefixed to the
——actual TCP header. The pseudo header contains the

--gource address, the destination address, the protocol identifier
——gnd the length of the TCP segment (not counting the pseudo header)
—as passed by the NET DELIVER service primitive.

T T T
SOURCE ADDRESS

DESTINATION ADDRESS

. ZERO PROTOCOL SEGMENT LENGTH

—
L

FIGURE l4. Checksum check funetion.

—~The actusl computation is implementation dependent.

FIN ACK'd? The FIN ACK'd function examines the acknowledgment

incoming segment to determine whether this segment ACKs a pre-

FIN, The dats ef fecte of this function are:

A

b.

Data examined only:
from NET.seg.ack flag sv.send finflag

from NET.seg. ack mum sv.gend next

Return values:
NO — the incaming segment does not ACK the FIN

YES = the incoming segment does carry an ACK of the previously
sent FIN

=~The sv.send finflag indicates that the ULP has
-—iggued a CLOSE, The FIN's sequence number ls one less than

=BV HEIII next.

1f (sv.send finflag = TRUE)

then
122

\ Downloaded from http://www.everyspec.com

MIL-8TD~1778
12 August 1983

1f ((from NET.seg.ack flag = TRUE) and
(from HET.ae.s ack oua = gv.send next.))

‘then return (YBS)

else return (NO)

9.4.6.2.6 FIN on?! The FIN oo function determines whether the incoaing seg-
cant carries a FIN indicating the remote side has no more data to send. The
data effects of this function aret

a. Data exanined only: from NET.seg.fin flag

b. Return values:
NO — the segment does not contain a FIN
YES — the segment does carry a FIN

—The sagment header field seg.tin_tl.ag indicates the
—presence or absence of a FIN.

1f (from KET.seg.fin flag = FALSE)
then return (NO)
else return (YES);

9.4,6.2.7 PIN geen?! The FIN seen function exanines both the incoming seg-
ment and the sv.recv variables for the previous or curreant presence of a FIR
froz the remote TCP. This function 1s used in the established state because
a FIN may have been recorded during connection opening. The data effects of
this function are:

a. Data examined only:
from NET.seg.fin flag ev.racv_finflag

b. Return values:
HBO == Ho FIN has been received from the remote TCP in this
or previous segments. ;

YES — A FIN has been received, either in the incoming seg—
maaot or a previous seguent.

==fA FIN received during connection-.opening e saved 1o
——gv.recv_fioflag. A FIN 1is present in an
~—{ncoming segmant if from) NET.seg.fin flag 1s set true.

1f ((sv.recv_finflag = TRUE) or
(from HET.seg fin flag = TRUE))

then return (YES)

elae return (NO);

123

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

9.4.6.2.8 Open mode! The open mode function determines what kind of open
service request the local ULP issued. The data effects of this function
are: ‘

a. Data examined only: sv.open mode

b. Return values:
ACTIVE — the ULP requested an Active Open with or
without data for thie connection.
PASSIVE — the ULP request a8 Full Passive Open or an
Unspecified Pasasive Open for this connection.

=-The type of open request is recorded in sv.open mode.

1f (sv.open mode = PASSIVE)
then return (PASSIVE)
else return (ACTIVE);

9.4.6.2.9 Sv prec v seq prec? The gv_prec ve_seg prec function compares
the precedence recorded in the state vector against the precedence level of
the incoming segment. The data effects of this function are:

a. Data examined only:
sv.original prec from NET.type of service.precedence

b, Return values:
LESS - precedence in sv { segment precedence
EQUAL - precedence in gv = segment precedence
GREATER - precedence ia sv > segment precedence

if (sv.original prec < from NET.precedence)
then return (LESS)
elase 1f (sv.original prec = from N‘ET.precedence)
then return (EQUAL) .
else return (GREATER);

9.4,6,2,10 Resources suffic open? The resources puffic open function
examines the internal resources available i{n this TCP entity to detemine
whether another connection can be supported. The data effects of this
function are:

a. Data examined only: -—implementation dependent

b. Return values: '
KO == indicates that another connection cannot be supported
at this times.

YES = indicates that internal resources are sufficient to
support another connection

124

LIS

Downloaded from http://www.everyspec.com

MIL-5TD~1778
12 August 1983

=This function is based on the assumption that a TCP entity

—=has finite reccurces made up of tshla epace, storage capacity,
——and other implementation dependent areas. Although the amount
—of these resources may either be fixed at system configuration
=—or vary dynasmically according to system usage, more connections

—uay be requonsted than can be gupported by the entiry.

1f (enough resources are available for anotht;r connection)
then return (YBS)
else return (NO);

9.4.6.2.11 Resources suffic send? The resources_suffic send function
examines the resources of this TCP connection to determine if core data can
be accepted from the ULP for tramsfer. The data effects of this function
are:

8., Data exanined only: =-—iaoplementation dependent

b. Return values:
N0 = indicates that data cannot be accepted from the ULP
mr rhida +4me
YES — indicates that internal resources are sufficient to
accept and trauasfer more ULP data

=-This function is based oo the assumption that a TCP
——connection has finite resources. Although the gmount of
==these resources may be fixed at connection establighment,
—or vary over connection lifetime, at some point a sending
—UlP might exceed the TCP enticty's capacity.

if (enough reeources are available to handle this SEND)
then return {YES)
else return (NO);

9.4.6.2.12 RST on?! The RST on function examines the reset flag of the
incoming segment's heander to determine the presence of a BRBST. The data
effecte of this function are:

+8. Data examined only: from NERT.ono

b. Return valuesg:
RO = the inconing segment does not contain a RESET
YES — the incoming segment does carry a RESET

if (from NBT.seg.rst_flag = FALSE)
then return (NO)
else raturn (YES);
9.4,6,2,13 Bec match! The sec_match function compares the security pare-
meters (including security level, compartment, transmission control code,

125

Downloaded from http://www.everyspec.com !

MIL-STD-1778
12 Apgust 1983

and haendling restrictions) defined in the state vector agaimst those accom-
panying the incoming segment. The data effects of this function are:

a. Data examined only:
from NET.options[security] av.8ec

b. Return values:
NO ~= The values in the state vector do not match those of
the incoming segnent.

YES = The security information exactly matches that in the
etate wvector. :

—The security information is not carried in the segment header
—but 18 passed by the network protocol entity in the
—~NET DELIVER option parameter.

1f (from NET.options[security] = sv.sec)
then returan (YES)
else return (NO);

9.4,6.2.14 Sec prec allowed? The sec prec allowed function examines the
security and precedence information requested by a ULF in a connection open
Tequest and based on the. implementation enviromment (i.e., secure host,
wneclassified system, ete.) determines whether this TCP entity can support
them, The data effects of this function are:

a. Data examined only:
from ULP.precedence from ULP.security

b». Return values:
NO —- This TCP entity cannot support the requested security
and precedence.

YES == The security and precedence requested can be supported.
~=This decision is implementation dependent.
9.4.6.2.15 Sec range match? The sec_range match function checks if the
security parameters (including security level, compartment, transmission

control code, and handling restrictions) in the incoming segment fit within
the security ranges specified in the security list.

The data effects of this function are:
— Data examined only:

from net.options [eecurity) sv.sec_ranges

126

e

Downloaded from http://www.everyspec.com

MIL-STD=-1778
12 Auguat 1983

= Return values

NO == The values in the inconing segment are not within
the ranges apecified in the state wecotr.

YES — The values in the incoming segment are withn the
ranges epecified in the state vector.

9.4.6,2.16 Sec gre;: match? The se.c_yrec_natch function compares the prece-
dence level and aecuril:y information (including security level, coupartment,

tramnalesion coutrol cods, and handliog restrictions) defined in the state

vector against those of the incoming segment. The data effects of thig
function are:

a. Date examined only:
from RET.type ¢ of pervice.precedence sv.gec
from NET,options[security] sv.actual_prec

b. Return values:
NO == The security and precedence of the segment do not
match those of the state vector.

YES == The security and precedence DO match.

1f ((ov.sec = from NET.options[security]) ands
(av.actual_prec = fron » NET.type_of service.precedence))

then returno (YES)
else return (NO);

9.4.6.2,17 Seqf status? The seqf_status function compares the sequence
muober of the inconing segment agaimt the current recv variables in the
state vector to determine whether the segment contains dats in the recv
windov. The data effects of this function are:

a. Data exanined only:
from RET.seg.seq mun 8v.recv_wndw
8v.recv_next

b. "Return values:
VALID -— This sagment does not contain d.at:a within
the recv window,
INVALID —- This segment DOES contain data in the recv
wvindow.

==Due to zero langth recv window and zero length segments,
——this decision function oust examine four cases.
--Thegse cases are expressed 1n the following conditional

i ot Tl]
GO LUMLM.F e

-~

MIL-STD=-1778
12 August 1983

Downloaded from http://www.everyspec.com

if (from NET.length = 0)
then 1f Tav.recv wndw = ()
then

~—When the segoent .contains no dats, and the receive
—=window 18 closed, the segment sequence number
~aupt equal the next expected to be .acceptable.

if (from net.seg.seq num = gv.recv_next)

then return (VALID)

elge return (INVALID)

elne

~-When the segment contains no data and the receive
——window is open, the segment sequence mumber must
==~fall within the receive window.

1f ((sverecv_next ={ from NET.seg.seq num) and

{from NRT. sac.ooo mum { Ay, _pracv naxtrdgy_racvy

N e ----u‘-u-u M MY S &S ReY Altni T W VP A e
—

then return (VALID)
else return (INVALID)

S
S

else 1f (sv.recv_wndw = 0)

then

else

—=ihen the segment carries data and the receive
—=—window is closed, although uo data can be
—accepted, the control information 18 acceptable
—1if the segment sequence number exactly matches
=~the next expected.

if (from net.seg.seq mum '~ gv.Tecv_next)

then return (VALID)

else return (INVALID)

—#When the segment carries data and the receive window
=~{5 open, the segment is acceptable if any data
=-~falls within the receive window.
if

w=lines the front of the datn e within the wvindow?

s &S WEAL WA - -

(({(sv.recv_next =< from HET.seg.aeq_nun)
and (from » NET.seg.seq_mumn <
sv.recv_next+sv.recv_wndw))
or
—Does the back of the data lie within the window?
((sv.recv_next =< from NET.seg.seq mumtfrom NET.
length)
and (from NET.lengthr+from NET.seg.seq nmum <
8V.recv_mnext+sv. recv_wndw))
or
—Does the middle of the data lie within the window?
((av.recv_next > from net.seg.seq mm)
and { sv.recv_nextigv.recv_wndw <
{(from NET. lengthrfrom 1 NET.seg.s8eq_mum))))
then return (VALID)
else return (INVALID)

ks
Q

hL

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

9.4.6.2.18 SYN on! The SYN on function examines the SYN flag of the
incomicg segment. The data effects of this function are:

a. Data examined only: from NET.seg.syn_flag

b. Returno values:
KO = HNo STN is pregent in the incoming seg
YBS -~ A SYN is present in the segment.

1f (from NET.eeg.syn flag = TRUE)
then return (YES)
elae return (NO)

9.4.6.2.19 SYN io wndow? The SYN_in wndow function determines vhether an
incouing seguent contains a SYN, and if go, whether its sequence mumber lies
in the recv window. The data effects of this function are:

a. Data examined only:
from NET.eeg.voyn_flag 8V.recv_next
from NET.oeg.peq_mn 8v.recv_wndw

b. Return values:
NO == No SYN is present, or a SYN is present but it does

not fall in the recv window.

¥ES == A SYN is present and falls in the recv window.
—After a connection is establieched, no segments ghould contain
-—5YNs. However, certain situations may produce a SYN.
—=Shortly after a connection opeuns, & duplicate of the original
—=SYN may arrive. It will not.lie in cthe recv window, having
—already been accepted. Or, during & connection of long
-—duration, very very rare error conditions may produce a SYN

with
==the recv window. Thisg situatioo must be detected.

1f ((from NET.seg.syn _flag = TRUE) and
(from_NET.seg.eeq num >= sv.recv_next) and
(from_NET.seg.seq num < ov.recv_next + sv.recy_wndw))

then return (YES)
else return (NO);

9.4.6.2.20 Zero recv wndow? The zero recv_wndov function examines the
recv_variables to determine whether the recv window is zero, preveating the
acceptance of any data from the remote TCP. The data effects of this
function are:

a. Data examined only: sv.recv_wndw

=
[
o

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

b. Return values:
NO -— The recv window 18 not zero. Data can be asccepted.
YES — The recv window IS zero. No data can be accepted.

if (ev.recv_wndw = 0)
then return (YES)
else return (NO);

9.4.6.3 Action procedures. The following action procedures represent the
set of actions performed by a TCP entity state machine. They are called by
the state and event correspondence defined in Section 9.4.6. These proce—
dures have been organized and designed for clarity and are provided as guide-
lines. Although implementors can reorganize for better performance, the data
effects of the resulting implementations must not differ from those epecified
below., Certain aspects of the actions described in the following procedures
are subject to design choices. Specifically, the selection of strategies for
handling retransmissions, sending acknowledgments, segmenting data, accepting
data from the remote TCP, and delivering data to the ULP are governed by
:melenen:at:l.on dependent criteria. These strateglies are encapsulated in
"policy” procedures such as accept policy. A policy procedure discusses the
available approaches and returns information to an action procedure indicat-
ing eppropriate procesasing. The policy proceduree defined in the following
section are: accept policy, -ack policy, deliver_policy, retransuit_policy,
and send policy. The actions procedures invoke the execution environment
primitives, defined in Section 10, to pass messages between protocol lavels
(TRANSFER), to read current time (CU'RR.EN‘I‘_TIHE), and to set and cancel timers
(SET_TIMER, CANCEL TIMER).

9.4.6.3.1 Data management routines. Thie specification is intended to be
as detailed and accurate as possible without implying a particular iaplemanta-
tion approach or emnviromsent. However, a difficulty lies in the manipulation
of internal data storage areas which is, by nature, implementation dependent.
Thus, a set of data management routines are defined to manipulate the queues
for send and receive data while specific data structures (such as arraye,
linked lists, or circular buffers) remain undefined. The state vector can
record and send and receive variables in terms of sequence numbers because
the data routines correlate sequence oumbers to the physical position of
data within the data structures. The data management routines defined in
the following section are: dm add to recv, dm add to_send, dm copy_from
send, dm remove from send, and dm remove from recv.

9.4.6.3.2 Accept. The accept action procedure accepte data from the
incoming segment and places it in the receive queue. The amount of data
accepted 1s governed by the implementation dependent acceptance policy.
An ACK 18 generated for the accepted data according to the ACK policy which
18 implementation dependent. Alsc, some data may be delivered according to
implementation dependent delivery policies.

130

Downloaded from http://www.everyspec.com

MIL-STD~-1778
12 August 1983

\ The data effecte of this procedure are:
a. Data examined:
all fields in from NET sv.recv_alloc
b. Data'modified:)
all fields of to NET sv.recv_wndw
gv.recv_next sv.recv_push

8V.TECV_urg
c. Local variables: start_seq amount of fset

—The accept_policy procedure returus how much
——data is to be accepted, its beginning sequence mumber,
——and its location within the incoming segment.

accept_pol.lcy(asount, start_seq, offset)

1f (amount > 0)
then
do_add _to_recv(start_seq, amount, offset);

—Update the recv_next sequence mumber if neceseary.
1f (ev.rTecv_pext = start_seq)
then sv.recv_next := start_seq + amount;

) “—Record PUSH and URGENT iaformation.
1f ((from NBT.seg.push flag = TRUE) and
(ev.recv_yush < start_seq + amount))
then sv.recv_push := start_seq + amount;

1f ((from_NET.peg.urg flag = TRUE) and
(sv.recv _urg < from NET.seg.seq_mum + from NET.seg.urgptr))
then sv.recv_urg := from NET.seg.seq_num + froa , NET.seg.urgptr;

—Refer to ack_policy to deteraine whether an ACK should be
generated
—=at this point,
to_ack := ack_policy();
if (to_ack = TRUE)
then send_ack(sv.recv_next);

—1f the allocation allows, deliver data to the ULP.

1f (ev.recv_alloc > 0)
then deliver;
end;

9.4.6.3.3 Accept policy. As one of the policy procedures, accept policy
discusses the alternative gtrategies for accepting the data of incoming seg-
oents and returns to the calling procedure the mumber of data octets to be
) accepted, The parameters are: .

111
dd &

Downloaded from http://www.everyspec.com

MIL-STD~1778
12 August 1983

a. starting seq — sequence mumber of the first octet of data

to be accepted

b. quantity = the mumber of octets of data to be accepted

c. segment data offset - the position of the first data octet
within the incoming segment’s text to be accepted.

9.4.6.3.4 Accept strategy. A TCP implementation may use one of several
strategies to accept data within the receive window from an incoaing segment.

a. Accept in—order data only. The acceptance test is:
from NET.seg.seq_mum = 8v.recv_next
That is, the sequence number of the incoming segment must
exactly equal the next sequence mumber expected to be
received.
b. Accept any data within the receive window. The acceptance
test has several parts:
ev.recv_next = from NET.seg.seq_num
={ BV.Tecv _next + §v,rTecv

sv.recv_next = from NET.seg.seq mm + length
= BV.recv_next + sv.recv_wndw

That is, anoy portion of the text falling within the receivwe
window (i.e., in the interval between the next sequence
mumber expected to be received and the last sequence mumber
in the window) is accepted.

9.4.6.3.5 “In—order” strategy. The "ip-order” strategy allows a simple
acceptance test and 8 straightforward scheme for data storage. However, the
loss of a single segment can result in the remote TCP retraunsmitting every
succeeding segment. The "imthe—window"™ strategy requires a more involved
acceptance test and a sophisticated data storage scheme to keep track of
data accepted out of order. Also, as each segment is accepted, the data
storage must be checked so that a contiguous interval of out-of-order dats

can be recognired. This etrategy allows the remote TCP to retramsmit only

lost segments.

9.4.6.3.6 Ack policy. As one of the policy procedures, ack_policy discus—
ses the alternative strategles for acknowledging data accepted from incoming
segments amd returns to the calling action procedure a boolean vaiue indicat-
ing whether an acknowledgment should be sent. A TCP implementation may apply
one of two acknowledgment timing schemes.

a. When data is accepted from remote TCP, immediately geo—
erate an -empty segment containing current acknowledgement
ioformation and return it to the remote TCP.

132

Downloaded from http://www.everyspec.com

MIL=-STD=-1778
12 August 1983

b. When data 18 accepted froa remote TCP, record the need to

maltmemesladon doatva 4o thoe atada samd & Lom o el
OLCRIUUWLACUME UW3LE 4 Ll-.; DRLEWO VU“U‘. WB WasllL LUL Ol UUL

bound segment with data on which to piggyback the ACK.
However to avoid a long delay, set an “ack timer” to limit
the delay to a reasonable interval. Thus, if no ocutbound
sagannt with data is produced within the chosen ack timeout
ioterval, the tioer expires and an empty ACK segment is
generated and sent to the remote TCP. If a data segment is
produced before the riper expires, the timer is cancelled
and the need to acknowledge record is erased from the state
vector. (Note that no "ack timeout” event appears in this
standard. This event and the resulting call to the send ack
action procedure should be added if the thie approach is
t*eno)

The trade-off between the two approaches is processing time varsus control
overhead. The "automatic”™ ack approach is simple, but resulte in extra
segment generation. The “timed”™ ack approach requires more processing but
will reduce the ounber of segments generated on connections with two-way

data tramfer.

9.4.6.3.7 Check urg. The check urg action procedure examines the header
of the inconing segment to determine whether new urgent information 1
present. If so, the urgent pointer is recorded in the recv variables.
The date effects of this procedure are:

a. Data exanined:
from NET.eeg.urg flag fron NET.seg.dats_offset
from NET.seg.urgptr frcn NET.length
froa NET.seg.seq_cun

b. Data modified: av.recv_urg

begin
—Check urgent flag and urgent pointer.

if (from NET.seg.urg_flag = TRUE)

then —Check to see 1if s vew urgent pointer ig present.
1f (sv. recv_urg < from NET.seg.seq mum + from NBT.seg.urgptr)

rhan
waan

1f (sv.recv_urg < ov.recv_save)
then —If the ULP 1s not in “urgent mode”, it must be
-—inforned of tha presence of urgent inforaation.
=—inplementation dependent action
sv.recv_urg := from NET.seg.seq_nmuwm + from NET.seg.urgptr;
end;

9.4.6.3.8 Compute checksum. The compute checksun procedure computes the
checksun of an outbound segment and places the value in the header's checkoun

field.

The data effects of this fumection are:

[
|]
w

MIL-STD-1778

Downloaded from http://www.everyspec.com

12 August 1983

a. Data examined

all fields of to RET

T n "
- e
to NET.source_ addr to NET.length
. to_NET.destination addr

b. Data modified: to NET.seg.checksum

begin

«=The checksum algorithm 18 the 16-bit one's complement of the
-—one's complement sum of all 16-bit words in the segment
—header and segment text. If a segment contains an odd mumber
—of octets, the last octet is padded on the right with zeros
—to form a 16-bit word for checksum purposes. While computing
==the checksum, the checksum field itself 1s replaced with zeros.
—The checksum includes a 96-bit pseudo header prefixed to the
~—actual TCP header. As, the diagrams shows, the pseudo header
~=contaime the source address, the destination address, the
—=protocol identifier, and the length of the TCP segment

—({not counting the pseudo header).

' . Il 1

v 1 L]

SOURCE ADDRESS

DESTINATION ADDRESS

.ZERQ PROTOCOL BEGMENT LENGTH

L

FIGURE 15. Compute checksum procedure.

==The actual computation is implementation dependent.

end;

9.4.6.3.9

Conn open. The conn open action procedure is called just before

a connection enters the ESTABLISHED state. According te the ilmplementation

policy, the
any waiting

procedure updates the ACK and window information, delivers
data, and acknowledges any received data. The ULP is notified

of the newly opened connection with an OPEN_SUCCESS service response. The
data effects of the procedure are:

-~ Data examined: sv.len
- Data modified: to _UlP.service response to ULP.lcn

- Local variables: delivery amount need to_ack

begin

==Inform the ULFP.
to ULP.service response := OPEN SUCCESS;
to DLP.lcn := gv.lcn;
TRANSFER to_ULP to the ULP identified by sv.source_port;

134

Downloaded from http://www.everyspec.com

MIL-STD~-1778
12 August 1983

—The incowring segment countalned either a and an ACK of
=our SYN, or just an ACK. Io either case, use the new

—ACK to update the send variables.
update;

—Raped on inplementation dependent policies, deliver any waiting
——datas to the ULP.

delivery_aoount := deliver policy();

1f (delivery_smount > 0) then deliver;

==Baged on implemsntation dependent acking policy, ack the
—incoming aeg-enr..

need_to_ack := ack policy();

1f (oeed to _ack = TRUB) then send ack;

end; .

9,4,6.3.10 Deliver. The deliver action procedure moves data accepted from
the remote TCP ipto the to_ULP structure for delivery to the ULP, The amount
of data delivered 1s based on the recaive allocation, the amount of pushed
data, and the iapleoentation dependent delivery policy. The dats effecte of
this procedure are:

a. Dats exanined:

ev.recv_push gv.recv_next
8v.Tecv_urg ov.recv_finflag
8v.lecn sv.B0ourCe_port

b. Data modified:
8v.Tecv_save all fields of to ULP
sv.recv alloec

¢. Local varisbles: puched delivery_amount urgent_length

begin
—Does pushed data await delivery!?
1f (8v.recv_push > sv.recv_sawve)
than —Pushed data walts so coapute emount needing delivery.
1f (ev.recv_push > sv.recv_next)
then pushed := gv.recv_next = sv.recv_save
alaa pughed = gv.recv nunh - nv.rncv aave?

~-Is there soomugh allocation for all the pushed datat
1f (ev.recv_alloc < pushed)

then delivery amount := gv.recv_alloc

else delivary amount :* pushed;

else —No pushed data waite. Refer to the deliver policy
——t0o determine how auch data should be passed to the
—ULlP at this point.
delivery amount := deliver_policy();

~—Daliver computed amount of data to ULP, {including urgent
—iaforuation.

135

Downloaded from http://wwvv.everyspec.cbm

MIL-STD-1778 -
12 August 1983

1f (delivery amount > Q) =~

then begin
=—Check for "end of urgent™ in data which cannot be ‘dalivered
~=in the same delivery unit with subsequent non—urgent data.

1f ((sv.recv_urg > sv.recv_gave) and
(sv.recv_urg < sv.recv_save + delivery_ amount))

then —Deliver the urgent data alone first.
begin
urgent_length := sv.recv_urg = sv.recv_save;

dm remove from recv(sv.recv_save, urgent length);
to I , ULP.data length = urgent length;
—Note that 1mp1emntation dependent delivery umit

—size vestrictions are not handled.

to ULP.urgent_flag := TRUE;

to ULP.lcn := gv.lem;

to | ULP.service response = DELIVER;

TRANSFER to ULP to the ULP named by to ULP.soarce_port'

SV.Tecv_save != gv.recv_ urg;

BV, TeCV_; alloc = BV. recv_alloc - urgent__. length;
delivery amount := delivery amount — urgent length;
end; .

=-Move data without an end of urgent into to_UlP.data
=—and deliver to ULP.
dm remove_from_recv(sv.recv_save, delivery_amount);
to | , ULP.data 1engr_h H delivery amount;
~—Note that lmplementation chpendent delivery unit
~—pize restrictions are not handled.
to_ULP.lcn := sv.lcn;
if (sv.recv save < sv.recv_urg)
then to ULP.urgenc flag := " TRUE
else to_ULP.urgent_flag := FALSE;

TRANSFER to _ULP to the ULP named by sv.source port;

-—Update recv variables.
gv.Tecv_save := sV.recv_save + delivery_. amount.
BV.Tecv_ " alloc := sv.recv _alloc ~ delivery amount }

d, and this data clears

If t € uas <
—receive queue, the ULP must be notified.
1f ((Bv.recv_finflag = TRUE) and
(sv.recv_next = gv.recv_save))

"

136

-~

Downloaded from http://www.everyspec.com

MIL-STD~-1778
12 August 1983

then

of

gin

U .oervice_response := CLOSING;

to , ULP.lcn := ev.lcn,

TRANSFER to_ULP to the ULP named by sv.source port;
end;

end; ——of data delivery to ULP
end;
end;

9.4.6.3.11 Deliver policy. As one of the policy procedures, deliver_policy
discusses the alternative strategies for deliveriog data to the ULP, It
returos to the calling procedure the mumber of octets of data to be delivered.
Barring gero receive allocations and pushed data, the TCP epecification allows
an implementation to deliver data to the ULP at its own coovenience. Bowever,
performance considerations should be examined. Oa one hand, data available
for delivery should be delivered with reasonable promptness; it should not be
delayed indefinitely while waiting for a delivery units worth to arrive. On
the other hand, the data should not be delivered an octet at a time wastinog

both intermal "l ?""‘"‘"““"‘g tiz= amd exterual execution eovircament rescurces.

A reasonable coapromise can be achieved guided by system design criteria.

9.4.6.3.12 Digpatch. The dispatch action procedure accepts the data and
interface parameters passed by the ULP in a semd request, adds the data to
the send queue, and adjusts appropriate send variables. Depending on the
send policy, the procedure may segment and tramemit some portion of data to
the remote TCP. The dats effects of this procedure are:

a. Dats exanined:

fraa ULP.lcn from ULP.push flag

from ULP.data from ULP.urgent_flag

fron_ULP.datsa length from ULP.ulp timeocut
b. Data modified:

sv.send free sv.send_ next

sv.ulp timeout sv.send uns

sv.send_push sv.send wndw

sv.gend urg
begin
~—Save the data along with timestamp, starting at sv.aen:l | free,
==then update the send wvariables. .
add_to_send(sv.send_free, from ULP.data length, CURRENT TIME());
sv.send_free := sv.send free + from ULP.length;

1f (froo ULP.push flag = TRUBE)
then sv.eend push := sv.send_free;

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

if (from ULP.urgent_flag = TRUR)
then sv.send _urg := ev.send free;

=-Depending on implementation, the ULP timeout timer may

—need to be restarted when the interval is changed by the ULP,
1f ((from ULP.ulp timeout /= NULL)

—option exercised to set timeout and (from ULP.ulp timeout /=
sv.ulp timeocut)) then sv.ulp timeocut := frm_m.ulp_tinewt.

——Call the send new data procedure to determine if any
—newly received data can be sent at this time,

send new_data;

end; ~-nomzero send window processing
end;)

9,4,6.3.13 Dr add to send. As one of the data management routines, the
dm add_to_send procedure adds the data provided by the ULP in from ULP.data
to the send atorage area. The calling sequence 1s:

dn_add_to_send(seq_num, length, time)

seq_mm = the sequence mumber of the first octet

had ner nddad n t‘h

-
L= —F 9§ I.lb ERAL LA TLE -y

ae 8 age alsa

length = the mumber of octets to be sdded

time = the current time to be assoclated with each
data octet for later determination of data age
for the ULP timeout.

9.4,6,3,14 Dm add to recve As one of the data management routines, the
dm add to recv procedure copies data from an incoming segment, found in
from NET.aeg data, into the receilve storage area. This routine 1s called
as segments are validated and portions of their data are found te be in the
receive window. The calling sequence 1is:

dm_add _to recv(seq_mum, length, offset)
seq_mum = the sequence mumber of the first octet to be copled.

length = the number of data octet to be copied,

of fset = the location of first octet to be taken from the
data portion of the segment,

9,4.6.3,15 Dm copy from send. As one of the date management routines,
the dm copy from send procedure copies data from the send storage area inmto
to 1 ‘NET.geg.data. This routine 18 used as data 1is segmented and transmitted
initially, and as retrsusmissions are required,
The calling sequence is:

138

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

dn _copy_from send(seq_oum, length)

seq_mum = the sequence mumber of the first data octet to be
copied into to NET.peg.data

length = the number of octets to be copied

9.4.6.3.16 Do remove from recv. Ag one of the data management routines,
the d:_re:ove_frm_recv routine removes data from the receive storage area

and places it io the to ULP.data structure. This is called as data is
delivered to the ULP. The calling sequence 1s:

dn _remove from recv(seq mum, length)

seq_mum = the sequence muomber of the first octet to

T o

be removed and copied
length = the number of data octets to be removed and copied

9.4.6.3.17 Du remove from send. As one of the data manggement routiunes,
the do remove from send procedure deletes data from the send storage area.
This routine is called as data is acknowledged by the remote TCP and removed
from the retramsmission “"queue.” The calling sequence is:

dn remove from send(seq mum, length)
seq_tum = the sequence mumber of the first octet to be removed.
length = the ousber of data octets to be removed.
9.4.6,3.18 é_r_rg_g. The error procedure fills in the fields of to ULP with

the local connection name, the ERROR service response, and the error description
passed by paraneter. This information 1is passed to thes local ULP,

a. Data examined: sv.lcn 8v.source_port
b. Data modified: to ULP.len to_ULP.gervice_ response
to_ULP.error_desc

begin
—Construct an error message for the loecal ULP,

to_ULP.service response := ERROR;
to_ULP.lcn := gv.len;
to_ULP.error_desc := parameter;

TRANSFER to ULP to the ULP named by Sv.source port;
end;

L -

Downloaded from http://www.everyspec.com

MIL~5TD-1778
12 August 1983

9.4.6.3.19 Format net p_atnm. The format net_pnrm procedure fills in
the parameters used by the network protocol entity after the ealliﬁg procedure

filled in the outgoing segment beader. The size of the segment's text
portion is passed by parameter.

a. Data examined:

to NET,seg.data of fset

a8V, desr.ination -addr sv.source addr
ev.destination port 8V.S0urce port
b. Data modified:

to NET.identifier to_NET.type of service

to NET.protocol to_NET. length

to_NET.destination_ addr to_NET.source_addr

to NET.aeg source _port to_NET.destinatton port

to_l , NET. doat _fragment

begin
=-F1ill in the network parameters.
to NET.seg.source port . {= gv.gource_port;
to_NET.seg.destination port := sv.destination port;
to NET,source addr t= pv.source addr;
to_! , NET. destina:l.on addr t= gv,destination addr;
to NET.prol:ocol = TCP_ID;
to_NET. type_of service.precedence i~ av.actual prec;
to NET.type of service.reliability := NOKRMAL;
to_NET,type_of service.delay = NOEMAL;
to | , NET, type " of ._service.throughput := NORMAL; .
to_l , NET,identifier := gen 1d();
to NET.dont_fragment i» FALSE;
to NET.time to live := ONE MINUTE TTL;
to:NET.leng't_h - e to_i'BT.ﬂeg-.'da:a_offaet +
. parameter;
to_NET.options{security]) i= gv.sec;
end;

9.4.6.3.20 Gen id. The gen id action procedure returns an identifier to
the calling procedure to be passed to the network protocol entity when a
segaent 1s tramgmitted with a NET SEND primitive.

a. Data examined: --implementation dependent
b. Data modified: --none

begin
—The generation of the identifier is implementation dependent.
—The network protocol entity uses the identifier, along with
—-~addresging information, to distinguish between sending units
-=(i.e. datagrams) if fragmentation and resssembly are required.
—So, TCP wust generate unique identiffers for each segment 1if
~=the data is to be transmitted without confusion.

—

140

—

Downloaded from http://www.everyspec.com

MIL-5TD-1778
12 August 1983

==Also, if a retransmitted segment is accompanied by the
—idantifier used for its original tranomission, the network
—protocol entity may be sble to piete together parts of the
—voriginal and the retramoission to improve its performance.
—Note that if repackaging is performed during retransmission,
—the original identifier cannot be used.

and;

9.4.6.3.21 Gen isn. The geun isn procedure returns an initial sequence
rmumber to the calliog procedure for use during the three—-way handshake of
connection establishment,

a. Data exanined: =-—inplementation dependent
b. Data modified: - none -
——implenmsntation dependent action

9.4.6.3.22 Gen len. The gen len procedure returns a local connection name,
or len, to the calling procedure to be used as a shorthand identifier by TCP
and the local ULP io service requests and responses pertaining to a connection.

a. Data exanined: --.ﬁnplemntacion dependent
Data modified: - nome -

begin ’ -

—The generation of the lcn is implementation dependent.
—A TCP entity usually eupports many connections.

==If the lcn is &8 pointer or table index, service requests
==can be quickly matched to their state vector.

end;

9.4.6.3.23 Gen syn. The gen syn action procedure formsts and tramsmits a
segment containing a SYN to the remote TCP. As part of the SYN generation,
an initial sequence mumber ie selected. The procedure accepts one parameter
vhose values are ALONE, WITH ACK, and WITB DATA, indicating whether the
segment will contain an ACK or data. This procedure does not handle geuneratiog
a SYN carrying a FIN flag because the gpecified service ifnterface does not
support a transaction primitive described in Appendix C. However, 1f such
primitive were created, this procedure would have to be wodified to handle
it. The data effects of this procedure are:

a. Data examined:

sv.aource_port sv.recv_isn
sv.source_addr SV.recv_next
gv.destination port sv.send next
ev.destination_pddr sv.gend free
ev.recv_wodw sv.aend_push

sv.send urg

()
o~
[

MIL-STD-1778
12 August 1983

b.

Ce

begin

Downloaded from http://www.everyspec.com

Data modified:

sv.send fen sv.send next
all fields of to_ NET sv.gend una

Local wariasbles: amnount

—Generate the initial sequence mumher to be used for
—data sent to the remote TCP,

sv.send_isn := gen isn();

sv.send_next := sv.send_isn +1; ~-SYN uses the first seqf.
sv.send una := sv.send isn;

to_NET.seg.seq mum := sv.send isn;

~=Check parameter to determine exact type of SYH.
case parameter of

when

when

ALONE =>
to NET.seg.ack flag := FALSE;
to_l NET. aeg.wndw :m O ’

to_NET.eeg push flag:= FALSE;
to_NET.seg.urg_flag := FALSE;
amount := 0;

WITHE_ACK =>

to_NET.seg.ack_flag := TRUE;

to NET.seg.wndw i= gv.recv_wndw;
to NET.seg.ack mum := gv.recv_: ian + 1;
to NET.seg push flag := FALSE;

to NET.seg.urg flag := FALSE;

amount := 0;

WITH DATA =>
to NET.seg.ack flag := FALSE;
to_NET.seg.wndw = 0;

==The data supplied by the ULP ig in the send queve.
~~Bowever, the amount of data to accompany the SYN
~~1i8 determined by the send policy.

amount := eend poliey();

1f (amount > 0)

then dm copy from send(sv.send next, amount);
if (sv.send_puah - sv.send next + amount)
then to NET.seg.push flag te= TRUE;
sv.aend next = Bv.send next + amount;
else to NET.aeg push | flag := PALSE;

end case;

142

Downloaded from http://www.everyspec.com

MIL-STD=-1778
12 August 1983

—Add the urgent information regardless of data length.
if (sv.send_urg >= to_NET.seg.seq num)
then to NET.seg.urg flag := TRUE;
to_NET.seg.urgptr := sv.send urg -
to NET.seg.seq num; :
else to NRET.seg.urg flag := FALSE;

1f (MAX SEGMENT SIZE option used in this ioplementation)

then
to_NET.seg.options(1] tm 2 —Max header size
option kind
to NET.seg.options[2) 1= 4; —option length =
4 octets

to NET.seg.options[3..4] := MAX SEGMENT SIIE;
-'anl dep value
&t 1= 6;
else
to_NET.seg.data offser := OPTIONLESS HEADER;

format uet_ params(anount);

coapute_checksunm;

TRANSFBER to_NET to the network protocol eatity.
end;

9.4.6.3.24 Load security. The securicy paraseters (including security
level, compartment, trausmission control wcoc_le, and handling restrictions) ian
an incoming segment are loaded into the gtate vector.

The data effects of this function are:
= Data examined:
from net_options [security]
- Data modified:
sv.8ec

==This would only occur after.s successful sec_range match.
sv.gec: = from-net.options [security]

9 ¢3.25 BNew allocation. The new sllocation action procedure takes the
new value provided by the ULF 1in an allocation service requut and adds
t rreat I'GCBIVB u..l.omr.wu. Ua:u WBlCLIB xor CIII.LB B-LLDCBIZI.DU ls

i OB cur
delivered to the ULP. The data effects of this procedure are:

a. Data exanined: from UlLP.data langth

b. Data modified: sv.recv_alloc

143

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

begin

-k Ad X -—— —--. & wa - -
——ndu il I-l= L&F Teceive nlluﬁtiﬁu

sv.recv_alloc := sv.recv_alloc + from ULP.dats length;
—Depending on inplementation dependent window management strategy,
~——this new receive allocation may be factored into a new
—value for the receive window.)
—1f data awaits this allocation, deliver it.
deliver;
end;

9.4.,6.3.26 Open, The opeu action procedure records the parameters from an
open service request (either Active Open, Fully Specified Passive Open, or
Unspecified Passive Open), assigns a local coannection name, and returns it
to the ULP in an OPEN ID service responae. The data effects of this procedure
are:

a. Data examined:
from ULP.request name

from | ULP.aOurce__port from ULP.precedence
from ULP,destination port from ULP.security
frcn ULP.destination addr froa | y ULP.sec ._ranges

from 1 » ULP.timeout
fran_U'I.P «timeout act ion

b. Data wmodified:

o sv.source_port sv.len
ev.gource_addr sv.original prec
sv.destination port sv.sec, 8V.sec_ranges
sv,dastinat iﬁﬁ_ﬁl‘lﬁf Ve I-IJ.P_I. imeout, 8V L'LP t 1"'@6&{_
action
to _ULP.service response to ULP,destination addr
to ULF.source port to_l , ULP.des l:ination__port
to ULP.source_addr to | , ULP.lco

begin
—Apsign 8 local connection name according to
-=implenmentation dependent algorithms
Bv.lcn := gen lend);

—-~The security, precedence, and timeout parameters are
—opptional, If they are not provided by the ULP, default
-—yalues are assigned. For security and precedence defaults

——in nonsecure environments, the lowest levels are generally used.
=—A timeout default is more arbitrary, but the current
-—sguggeated value is two minutes.

1f (from ULP.gecurity is present)

then sv.sec := from ULP.security
else sv.gec := DEFAULT SECURITY;

144

Ry

N

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

1f (from ULP.precedence is present)

then uv.oﬁginal_prec

else ov.original prec

= from ULP.precedence;
= IRFADLT "_PRECEDEKCE;

sv.actual prec := from | A ULP.precedence;

sv.actual prec

DEPAULT_PRECEIEN(E ;

1f (froa_UlP.timecut is present) -
then sv.ulp timeout := from ULP.timsout
else ov.ulp timeout := IBFAULT TIMEOUT;

1f (from ULP>timeout_action is present

P P ey

l:.mu BV.UI" :muut. uct:.nn- = fraa Ul‘o‘i]ﬁwt action

else ov.ULP timeout_action: = DEPAULT_TIMEOUT action

==The oource port i¢ provided in all open requests, The source
—address is the address of thie TCP entity.

sv.source_port := from ULP.source port;

ev.8ource_eaddr := THIS_ADDRESS;
~-The remainicg parameters vary according to open request type.

case froa |

when

wvhen

when

when

ULP.request name of

Unspecified Passive_Open =>

—This request does oot carry the destination
-gocket. It remains unassigned until a matching
==SIN from & remote TCP arrives.

sv.open_mode :~ PASSIVE;

sv.sec_ranges:~ from ULP.sec_ranges;

Pull_Paasive_Open -

sv.destination addr := from ULP.destinstion addr;
av dascination_porc s from | y_ULP. destination_pott,
sv.open mode :~ PASSIVE;

sv.8ec_ranges:~ from ULP.sec ranges;

Active_Open =>

sv.des:ination addr := from UlP.destination addr;
sv.destination_port := from ULP. destinstion port;
ev.open mode := ACTIVE;

Active Open With Data =>

sv.dastinati.on addr :=- from ULP.destination_addr;
ev.descination port := from ULP. destination_port;
sv.open mde := ACTIVE;

—Record data accompanying open request,

end case;

save_send_data;

145

Downloaded from http://www.everyspec.com

MIL-5TD-1778
12 August 1983

-—Return the local connection name assigned.

to_ULP.service response := OPEN_ID;"
to_ULP.source_port := sv.source_port;

to ULP.gource addr := sv.source addr;

to_l , ULP., descination addr := sv.deet:lnation_yort,
to_| ULP. deutination_porl: ;= gv.destination_ addr;
co_ULP len := gv.len;

TRANSFER to ULP to the ULP naned by sv.source port;
end; .

9.4,6.3.27 Openfail. The openfail action procedure informs the ULP that
the attempted connection could mot be opened. It alsc clears the state
vector., The data effects of the procedure are:

a. Data examined: sv.lcn sv.aource_port

bs Data modified:
all state vector elements
to_ULP.lcn to_ULP.service response

--Construct an OPEN FAIL message for the ULP.
to_| ULP.service response := OPEN_FAIL;
to_l ULP.lcn := sv.lcn;
TRANSFER to ULP to the ULP named by sv.source_port;

—The state vector is cleared without generating s ULP message.
reset_self (NO_REPORT);

9.4,6.3.28 Part reset. The part_reset action procedure clears the send
and recv variables without termminating the coonection. The data effects of
the procedure are!

a. Data examined: sv.open _mode

b. Data modified: all send and receive variables

begin
==The remote TCP addrese and port are cleared 1f the counection

—open mode was PASSIVE.
if (sv.open mode = PASSIVE)
then
sv.destination port := NULL;
ev.destination addr := NULL;

==Clear all variasbles set during the connection opening
——handshake.

dm_remove_from send(av.send una, QUEUE_SIZE);

dm remove from recv(sv.recv _free, QUEUE SIZE);

146

R

Downloaded from http://www.everyspec.com

sv.actual prec := NULL;

sv.recv isn = NULL;
8v,recv_next := NULL;
gv.recv vndw := NULL;
8v.recv_alloc := NULL;
sv.recv_push = NULL;
8v.recv_utg = RULL;
8v.recv_gave = NULL;
av.recv_finflag := NULL;
sv.oend_isn. := NULL;

end;

MIL-STD-1778
12 August 1983

sv.gend next := NOULL;
sv.send_una 1e NULL;
sv.send wodw := KULL;
sv.send push = NULL;
sv.send urg := NULL;
sv.send finflag := ROLL;
sv.send_free := NULL;
sv.send_hst:upl :+= NULL;
sv.eend lastup2 := NULL;
sv.send max seg :~ NULL;

9.4.6.3.29 Raise prec. The raise precedence action procedure raises the
precedence level recorded in the state vector to the level provided by the
remote TCP. paragraph 9.2.11 of the entity overview discusses precedence
negotiation during connection establighment. The data effects of this

procedure are:

a. Data examined: from NET.type_of_ service.precedence

b. Dats modified: eov.actual prec

A SYN from the remote TCP carries a precedence level
—grenl:er than that indicated by the local ULP.

af

——rrcccucncc is curtxcu 86 & sypc of ssrvics pu;uuusua-

sv.actual prec := from NET.type of service.precedence;

9.4.6.3.30 Record eyn. The record syn action procedure records the
coutrol information from the incoming segment containing a SYN flag.

The data effects of this procedure are:

a. Data examined: all fields of from NET

b. Data modified:

8V, recv_next ev.send_wndw
8vV.recv_urg ev.send una
8v.recv_isn sv.destination port
sv.send max seg sv.destination addr
gv.recy push

c. Local varisbles: start_seq amount offset

begin

==1f this half of the counnection was opened passively, the

—— &£ ——
==rewmote information should

S -AA-J rn the arata oamts
(¢~ Y ML DWW 'l;\.-bvb.

if (sv.open mode = PASSIVE)

then

sv.destination port
sv.deatination addr

147

i= from NET.seg.source_port;
t= from NET.gource addr;

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

—Record recv_data.
8v.recv 'lltn tm frm NET.se

sv.recv_next - ev.recv iso+l

—=Record send data.

1f (from NET.seg.ack flag = TRUE)
then sv.8end una := from RET.seg.ack mm;

—Record maximun segment size if present in option fileld.
1f ((from NET.seg.data offset > 5) --optionless header size

and (from NET.seg. ‘options[0] = 2)) —Max Seg Option K.i.nd
then

sv.send max seg := frun_NET.aeg.cmt:l.on[L.&];

—=1f data accompanied the SYN, apply the implementatiomn
—dependent data acceptance policy to detemine how much

——data should be saved, its poeition in the recv_queue,
—amnd its position in the incoming segment.

accept_poliéy(start_seq, amount, offset);
1f (emount > 0)

then
add_t:o_recv(etart_seq, amount, offset);

==Update the recv_next segquence rumber 1if necessary.
1f (sv.recv_next = start_seq)
then sv.recv pext := start_seq + amount;
else —record data position in receive storage area
—=implementation dependent action
=-Record PUSH and URGENT information.
if ((from NET.seg.push flag = TRUE) and
(sv.Tecv_push < start_seq + amount))
then sv.recv_push := start seq + amount;

if ((from NET.pseg.urg flag = TRUE) and
(sv.recv_urg < from NET.seg.seq num + from NE

then —record the new urgent data position
R

-~ m Ferres T e P Ty, o R
BV.TeCV_Urlg = ITGE nhi.SE8E.58] DG +BCR.UTEPLL,
end;

Fo
Y AL UMD BN

9.4,6.3.31 Report timeout (sv *). The report_timeout action procedure
informs the ULP that s ULF timeout has occurred. The oldest data in the send
queue 18 requeued and the Timeout time reset.

The data effects of this function are:
= Datas examined:
- Data modified:

148

h

\
Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

begin
error(av_*.len, “ULP_timeout)
transfer to_ULP to the ULP names by sv_* source port;
requeue_oldest (av_*);

-and}

9.4.6.3.32 Requeue oldest (s8v *). The requeue_oldest action procedure
renoves the oldest daa from the send queue and requeues the data making it

the youngest.

The data effects of this procedure are:
= Data examined:
sv.*send_queue

9.4,6.3.33 BRepet. The reset action procedure formats and sends a segment
with a reset flag to the remote TCP to terminate the connection. BRESET
segoents must be formatted so that the remote TCP finds the segments accept-
able. The procedure accepts one parameter indicating the format aof the
RESET segment to be sent. The parameter value “"SEG" indicates that the
incoming segment determines the format. If the segment contains an ACK,
this forms the basis of the eequence oumber in the RESET pegment, If the
segment does not contain an ACK, the RESET segment 18 made acceptable by
carrying an ACK of the incoming segment's text. The parameter value CURRENT
indicates that the RESET ie not the result of an incoming segment, but
because of a ULP abort request or the ULP timeout. In such situatioms, the
RESET segment is formed with s sequence number based on curreant state vector
values. The data effects of thie procedure are:

a. Data examined:

sv.gource_port sv.gec
av.aource__addt sv.actual prec
gv.destination port sv.send next
sv.destination addr 6V.recv_next

b. Data modified: -none

begin
—Based on the parameter, set the-sequence and ack ounbhers.
if (parameter = SEG)
then —Check the incoming segwent for ACK presence.
if (from KET.eeg.ack_flag = TRUE)
then
to_NET.seg.seq_num := from NET.seg.ack num;
to_NET.seq.ack flag := PALSE;
else
to_NET.seg.seq_nun := O3
to_NET.seg.ack flag := TRUE;
to NE'r.seg.ack nun := from NET.seg.seq_mum +
(from NET.length - from NET.seg.data_offset®4);

149

Downloaded from http://www.everyspec.com

MIL-STD~-1778
12 August 1983

else —parameter = CURRENT, so use current state vector values.
to NET.seg.seq oum i~ sv.send next;
to_NET.seq.ack flag := FALSE;

--Form a segment using current state vector data, set the
-—repet flag, and transmit to the remote TCP.
to NET.seg.rst_flag = TRUE;
to_NET.seg.syn_flag t= FALSE;
to NET.geg.urg_flag = FALSE;

to NET.seg.push flag t= FALSE;
to_NET.seg.fin flag := FALSE;
to_NET.seg.window = 0;

to_NET.seg.data offset := OPTIONLESS HEADER;
format_net params{ 0 H
compute checksum;
TRANSFER to_NET to the network protocol emtity;
end;

9.4.6.3.34 Reset self. The reset_self action procedure informs the ULP
that the connectiorn is terminating, and then Bets the state vector elements
to their initial values. The reset self procedure has one parameter indicating
the reason for connection termination. If the parameter equals NO_REPORT,
no service response is prepared for the ULP. All other values produce service
reaponses including RR for remote reset, NF for network failure, UT for ULP
timeout, SP for security or precedence mismatch, UC for user close, and UA
for user abort. The data effects of thie procedure are:

a. Data examined: sv.len
b. Data modified: all state vector elements

begin
if parameter /= NO REPORT
then begin

case parameter of

when RA =)
to ULP.error_desc := "Remote abort.”
when NF =)
to UlP.error desc := “Network failure.”
when SP => -
to ULP.error_desc := “Security/precedence mismatch.”
when UT =) '
to_ULP.error_desc := “ULP timeout.”
when UA =) .
to_ULP.error_desc := "ULP abort.”
when UC =) -
to ULP.error_desc := "ULP close.”
when SP =) .
to_ULP.error_desc := "Service failure.”
end case;

150

—

Downloaded from http://www.everyspec.com

MIL-5TD-1778
12 August 1983

to_ULP.lcn := sv.len;
- mn n-—i manmrnan *m TRIMTMNATR.

Co_wvia .BEIV ce : _Tegponse T LSRR ATG AN
TRANSFER to_| ULP to the ULP identified by BvV.source_ port;
end;
=-Regardless of the cause, clear all queues and initialize state
wactor.
part_reset; sv.len = NULL;
sv.source port := NULL; av.sec := NULL;
8v.gource_addr := NULL; sv.original prec := NULL;
ev.destination port := NULL; sv.actual prec :» NULL;
sv.destination addr := NULL; sv.ulp_timeout ¢= NULL;
end;

restarts the currently running “time wait” timer. This procedure 1s
called after s retrnmnittad FIN is seen from the remote TCP. The data
aeffects of this procedure are:

9.4.6.3.35 BRestart time wait. The restart time wait action procedure

b. Data wmodified: - oone -

—Cancel the exiotim timer and start it up from scratch.

cancel_timer(TIMB WAIT, sv.lco)
s:art_tiner(TI!B_HAI‘I‘ sv.lcn, TIME WAIT INTERVAL);

9.4,6.3.36 Retransmit. The retransmit actions procedure resends data
that has oot been acknowledged within the retransnission timeocut interval.
Because the amount of data resent is implementation dependent, thie deci-
eion is encapsulated in the retramsmit policy procedure. The data effecta
of this procedure are:

a. Data examined:

sv.gsend_uns sv.send_wudw
sv.send next sv.send max sveg
sv.send_push ev.send_urg
sv.send finflag sv.seond " free

o o— ~ e v arrelwe

-
U"t AN Y A LTS SRV WAL
— —

b. Data modified:
all fields of to NET
retransmission tioer

c. Local variasbles: retrame_amount start pt pushed amount

begin

~=Detemine hov much data should be retramsmitted to the
—rtenote TCP,

retrans_smount := retramsmit policy();

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

if (retrans_amount > 0)
then

begin
—wStarting fram the front of the retransmission gueue,
——gegment and retransmit data indicated by amount.

start_pt := sv.send una;
to_NET.seg.seq_mum i= start_pt;
to NET.seg.rat_flag := FALSE:

if (start pt = av.send ien)
then —The SYN is be:l.ng retramgmitted.

to NET.seg.ayn flag = TRUE;
if (av.recv isn = NULL) =-Has the remote TCP been heard from?
then to N'E‘r.aeg.ack flag := FALSE;

to NET.seg.wndw H ' H
else to NET.seg.ack mo != 8v.recv_next;
to NET.seg.ack - flag := TROE; _
to HET.seg.wndw = av.recv_wndw;
1f (MAX SEGMENT SIZE option used in this implementation)
then
to_NET.seg.options[1] t= 2; ~—See section 6.2.11
to HET.seg.opt:Lona[Z} i= 4; —for option format.

to__NET. seg.options{3..4] := MAX SEGMENT SIZE;
to NET.seg.data offset = 6;
else to NET.seg.data offset := OPTIONLESS HEADER;

elgse =-Normal data retransmission.
to NET.seg.ack num i= gv,Tecv_next;
to NE'I'.aeg.ac.k flag = TRUE;
to__NE'I. seg. syn_f lag := FALSE;
to NET.seg.data offset := OPTIONLESS HEADER;
to NET.seg.wndw : i= gv.recv_wndw;

-=Note that this section assumes that this segment's size
—i8 less than sv.send max seg.

—The end of pushed dats cannot be

s

--subsequent norr-pushed data.
—=Prepare and transmit data.
do_copy_from send(sv.send_una, retrans_amount);
==If pushed data within or followling data in this segment,

——set the PUSH flag to ioform remote TCP.
1f (sv.send_una = sv.send push)

152

Downloaded from http://www.everyspec.com

MIL-8TD-1778
12 August 1983

then to NET.seg.push flag := TRUE
alse to NEI.seg push flag := FALSE;
—1f urgent data lies within or follows data in this segument,
—tecord urgent data position in hepder.
1f (sv.send_urg > start_pt)
then to NET.seg.urg flag := TRUE;
to NET.seg.urgptr := sv.sond urg -~ etart pt;

else to_NBT.seg.urg flag := PALSE;
—If this segment contains that last octet of data from
-=tha ULP, set the FIN to inform the remote TCP,.
if ((sv.send finflag = TRUE) and

(sv.send_free = start_pt + retrans_smount))
then to HBT.neg.fin flag := TRIE
else to HBT.seg.fin flag := PALSE;

format_net_params(retrans amount);

ccnpul:e checksun;

TRANSFER to_NET to the network protocol entity;

end; —of preparation and retransmission of umpushed data.

end;

9.4.6.3,.37 Retransmit policy. As one of the policy procedures, retramsmit_
policy discusees the alternative gtrategies for retransmissions. It returns
to the calling action procedure the mumber of octets to be retramsmitted.
A TCP ioplementation may employ one of several retransmission strategies.

a. Pirst only retramsmission = Maintain one retramsmission
timer for the entire queus. When the retransmigaion timer
expirea, send the segment at the froot of the retransmio—
sion queuve. Initialize the timer.

b. Batch retramsmission - Maintain one retransmission timer
for the entire queue. When the retransmission timer
expires, send gll the segmente on the retramsmiassion
queue. Initialize the timer.

¢. Ipdividual retraocsmission — Maintain one timer for
each segment on the retracsmission queue, As the timers
expire, retramsmit the segments individually and reset
their timers.

9.4,6.3.37.1 Betrananission strategy. The first only retramsmission

atrategy lo efficient in terms of traeffic generated because only lost segments
are retramsaitted; but the atrategy can cause long delays. The batch retram-
umission creates more traffic but decreases the likelihood of long delays.
However, the actual effectiveness of either scheme depends in part on the
acceptance policy of the recefiving TCP. For example, suppose a sending TCP
sends three segments, all within the send window, to a receiving TCP., The
first segment 18 lost by the network., A receiving TCP uasing the "ip=order”
acceptance strategy discards the second and third segments. A receiving TCP

153

Downloaded from http://www.everyspec.com -

MIL-SID-1778
12 August 1983

using the “"inwindow™ strategy accepts the second and third aegments, but

does oot acknowledge or deliver any dats until the lost segment arrives.

Batch retramsmission fits better with the in-order aceeptance strategy -
because the receiving TCP has discarded all segments. The sooner all three
segments are retramgmitted, the better. Pirst-only retransaission fits
better with the ino-window acceptance policy because ounly the needed retrans=—
mission occurs because the receiving TCP has kept the pegments within its
receive window and awaits ouly the lost segment. The sending TCP may also
choose to repackage segments for retransmission.

9.4.6.3.38 Save fin. The save fin action procedure records the presence of
a FIN flag in an incoming segment received before a connection ia ESTABLISHED.
The FIN is processed only in the ESTABLISHED state. The data effects of the
procedure are:

a. Data examined: sv.recv_next
b. Data modified: sv.recv_fin: sv.recv_push
—Record FIN ie recv_variabls.
sv.recv_finflag := TRUE;
8v.recv_push := gv.recv_next; ==The PUSH function is assumed.
9.4.6.3.39 Save gend data. The save send_data actlion procedure saves the
data provided by the local ULP in a "Send™ or an “Active Open with Data”

service requeat isesued before the cunnec:ion is ESTABLISHED, The data effects
of the procedure are:

a. Data examined only:.
from ULP.data from ULP,length
from ULP.push flag from ! ULP.urgent_flag

b. Data modified:
sv.send_free 8v.send urg
sv.send push

beglin
~-Take the data and add it to the send queude.
dm_add to_send(sv.send free, from ULP.length);
ev.send free :* sv.gsend free + from ULP.length;

—Set the urgent and push information as needed.
1f (from ULP.push flag = TROE)
then Bv.aend_push t= gv.send_free;

1f (from ULP.urg_flag = TRIE)

then sv.send urg = sv.send_free;
end;

154

N

~—r

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

9.4.6.3.40 Send ack. The send ack procedure formats and sends an empty
th the ACK value imdicated by parameter. The data effects of

St L) FetOE:LTis <A L4 CLiELLT i

a. Data czamined:

sv.send next sv.source_port
8v.récv_next sv.destiaation port
8v.actual prec sv.sec

b. Data modified: all to NET.seg fields

begin
==The ACK field of the gegment 1s set to the parameter value.
to_NET.gseg.ack flag := TRUE;
to_NET.seg.ack mum := patameter;

—F1ll in the rest of the acgmnl: and network parameters.
to_NET.seg.seq_tum = sv.send_pext;

to_NET.seg.rst_flag = PALSE;
to NBI.se.g.syn flag = PALSE;
to | NET.seg. rmnh flag FALSE:
to NBT.eeg.t’in flag = PALSE;

to NBT.lag.dlta of fset := OPTIONLESS HEADER;

to_ NET. neg.\d.mlou = gv.recv_wodw;
= A 3D o maa memd memmmademas £t s e oo e
=algu opu Cll.l;]. (.’ GUU PIiTLULOUDHLD AULVIEELAVUL LV augL s

—Add in urgent information if needed.
1f (sv.eend_urg > to_NET.seg.seq_mun)
then —rtecord urgent data poeition in header
to NET.seg.urg_flag := TRUE;
to_NET.seg.urgptr i= sv.send _urg - to_NET.seg.seq_num;
elge to NET.seg.urg_flag := FALSE;

fornat_net params{ 0);
compute_checkaum;
TRANSFER to NET to the natwork protocol eaticy;

=-—Adjust ioplementation dependent ACK parameters such as
—ACK timer, or state_wector element for the last ACK'd octet.
~and;
9.4.6.3.41 Send fin. The send fin action procedure records a close request
and, 1if no date 15 waiting to be transmitted, formats and sends an eopty

segoent with the FIN flag set. If data is waiting and the window permits,
the PIN 15 sent aslong with ths data. The dsts effects of this procedure ars:

a. Dats examined: sv.seod next
b. Data modified: eov.send finflag sv.send push
==Record the CLOSE urvfce tequest. The CLOSE implies a PUSH.
sv.send_finflag := TRUE;
8v.eend pugh := gv.send next;

155

Downloaded from http://www.everyspec.com

MIL-3TD-1778
12 August 1983

—7The FIR ip sent along with any waiting data.
send_new_daia;

9.4.6.3,42 Send nev data. The send new data action procedure examines
‘the send window, the amount of pushed data, and segment size restrictions
to detemmine if any waiting data can be sent to the remote TCP. The data
affects of this procedure are:

a. Date examined:

sv.send_max seg gV. recv_next

sv.source port 8V.recv_wndw

sv.destination port sv.gend finflag
b. Data modified:

sv.send next sv.send push

sv.send free sv.send urg

8v. seu:l:'ndw all fields of to_NET

c. Loesl variables: send amoumt

begin
==The amount of data to be sent is determined by the
—sgend window, the amount of data waiting, the amount of
——pushed data, and segment size restrictioms.

if ({(ev.send_wndw /= 0) and (sv.send pext /= sv.send free))
then begin-

—Data can be sent, but how much?

—Check for pushed data, which must be sent as soon

"==ag the window allows.
begin
1f (sv.send push > sv.send next)
then —Pushed data awaits transmission

1f (sv.send_push < sv.send una + sv.send_wndw)

then =-all pushed data can be sent
send_amount := sv.send push — sv.send next;
to | ULP. seg. puah flag s= TRUE;

else —vend all pushed data allowed by send window
send amount := sv.send una + sv.send wndv - sv.gend me
to NET.seg push flag := FALSE;

elge —No puahed data vaiting. Refer to send poliey

—to determine amount (if any) to be sent.

send _amount := send policy();

to_NET.seg.push _flag := FALSE;

—How much data to send has been determined. Now
~=format and tramsmit the segwent.

1f (send amount > 0)

then begin

-
S
o

t

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

[
:«!
"
i

to KET.seg. seLmn

to llbl.c BBS.BC‘ e

0
:
o
q
o
;

to HB‘!‘..eg.ack flag te H

to_ﬂ'Bl'.seg syn_ , flag := PALSE;

to _NET.eeg.rst_flag := PALSE;

to NET.seg.data offset := OPTIONLESS HEADER;
to_NET.seg.window t= pv.recv_wndw;

=-Add security and precedence to header.
—The OLP may have already CLOSED. 1f so, and this
-=data includes the last octet, set the FIN.
1f ((ev.send finflag = TRUE) and

(av.aecd free = to NET.seg.seq_num + send amount))
then to NB‘r.aeg.fin flag t= TRUB

eleae _H'BT.neg fin_flag := PALSR;
182 (3‘-’533& urg > to st-e_g--M mm)
thea —record urgent data position in header

to_NET.seg.urg flag :~ TRUE;
to_NET.seg.urgptr := gv.send_urg — to_NET.seg.seq mmm;
else to_NET.seg.urg flag :+ PAL‘I!,

dn _copy from send(sv.send next, send amount);
ov.eend next := sv.gend next + gend smount;

format _net params(send amount);
coapute checkaum;
TRANSFER to_NET to the network protocol entirty;

~—Depending oo the rettansniaoion policy chosen for

=—an impletentation, a retramsaission timer

-—nay now need to be set for the newly gent data.
—4implementation dependent action

end; =—of preparation and transaission of data.

9.4.6.3.43 Send policy. Barring pushed data and zero receive windows,
the TCP entity is left to aegmut and transfer data at its convenience.
xm mnnet GI octets CMC nmtu.u m geut ngumng at BV.BBEH GExt I.B re=
turned to the calling procedure. The definition of “convenience” should be
iofluenced by design gosls. If the primary goal 1s low overhead in terms of
segment generation, then dats should be acaumulated until a maxinun segment's
vorth (defined by the remote TCP) is ready. However, if quick response 1s
the main goal, the TCP entity should segment and transmit data at regular
intervals to minimire delay. Ancther sspect of the send policy 1s related
to window management. Diecuseed in the paragraph 9.2.3, the handling of
small send windows may alter sending beshavior. The TCP entity may choose to
avoid gending into omall windows (where small is defined as a percentage of
segment alre or storage capacity) ‘te achieve better throughput.,

td

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

9.4.6.3.44 Set fin., The set fin action procedure records the presence of

————— . = & 4o Faemoa o mamata 'y
FIN in an incoming segment. The ULP is informed of the remote ULP

ar
CLOSE after all data from the remote ULP is delivered. The data effe.cts
of this procedure are:

a. Data examined: sv.recv_save 8v.recv_next
b. Data modified: ev.recv_finflag

sv.recv_finflag := TRUE;
sv.recv_push i= gv.recv_next;

——Racord the FIN's presence

* Iy

or use in rhe ESTABLISHED state.

—1f no data is waiting to be delivered, a CLOSING
—service response 1e issued to inform the local ULP of the

~-remote ULP's CLOSE request.

if (sv.recv_save = sv.recv_next)
and (no data is awaiting re-ordering)
then
to_ULP.service_response := CLOSING;
to | , ULP.lcn := sv.lecn;

TRANSFER to ULP to the ULP named by sv.source_port.
~end;

9.4,6.3.45 Start time wait. The start_time wait action procedure cancels
all other timers and sets the final "TIME | " WAIT" timer which allows time for

the final FIN acknowledgmeut to teach the remote TCP before clearinog the
state vector of this connection. The data effects of this procedure are:

a. Data examined: - none -
b. Data modified: - none -

begin
~—Igsue timer cancellation requests to the execution envirooment
—=corresponding to all current timers.
cancel_timer{ ULP TIMEOUT);
cancel timer(RETRANSMIT);

==Depending on implementation strategies, ACK timers and
——2ero window timers may also exist.

——5tart up the time wait timer for the appropriate duratiom—currently
-—guggested to be 2 minutes.

start_timer(TIME WAIT, TIME WAIT INTERVAL);
-end;

158

P

.
-~

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

9.4,6.3.46 Update. The update routine takes a new ACK from the incoming
segunent to update the send and receive variables. The data effects of thie
procedure are:

a. Data exanined:
fron NET.seg.ack oum from NET.seg.window
from NET.seg.seq nun
b. Data modified:
sv.send una ev.send_wndw
sv.send lastupl sv.send lastup?
begin
—Take only new ACKs, i.e. those greater than sv.send una.
if from NET.seg.ack mm > sv.send una
then begin =-update the retramsmiseion queue

do remove from send(sv.send_una,(from NET.seg.ack mm -
sv.send_una)); sv.send una := from NET.seg.ack num;

—Depanding on retransmiesion strategy, the retransmission
—timer may need resetting because of the new ACK,
—ioplementation dependent action

==The retranemiseion timeout interval may need adjustment
—to adapt to the round=trip time of the data just ACK=-ed.

=jonplementation dependent action

==The ULP timeout timer may need resetting due to the

==the successful delivery of the newly ACK—ed data.
—jiaplensentation dependent action

end;

—4A pev window is provided if either the sequence oumber of this
—pegment 10 newer than the one last used to update the wvindow, or
——(for l=way data tramsfer) the sequence oumber is the same but
==the ACK 1s greater.

1f ((sv.send lastupl < from NET.seg.seq_cum) or
A (sv.send_lastup2 { from NET.seg.ack mum))
then begin
sv.oend_wndv := (from NET.seg.ack oum + from NET.seg.window)
- sv.eend una;
sv.send lastupl := from NET.seg.seq num;
sv.send lastup? := from NET.seg.ack oum;

~—Because a new send window has arrived, try to send data.
send new _dacta;

and;
end;

Downloaded from http://www.everyspec.com

MIL-5TD~-1778
12 August 1983

10. EXECUTION ENVIRONMENT REQUIREMENTS

10.1 Introduction. Throughout this document, the enviroomental wodel
portrays each protocol entity acting as an independent process. Within this
model, the execution environment must provide two facilities: inter—process
commmication aod timing.

10.2 Inter—process commnication. The execution enviromment must provide
an inter—-process conmunication facility to enable independent processes to
pass units of information, called messages. For TCP's purposes, the IPC
facility is required to preserve the order of messages. TCP uses the IPC
facility to exchange interface parameters and data with upper layer protocols
across its upper interface and the network protocol across the lower iaterface.
Sections 6 and 7 specify these interfaces. In the service and entity specifi-
cations, this service is accessed through a the following primitive: TRANSFER

-~ paceBes & mesBage Lo & named Larget procEss.

10.3 Timing. The execution environment must provide a timing facility
that maintains 32-bit clock (possibly fictitious) with units no coarser
than 1 second. A process must be able to set a timer for a specific time
period and be informed by -the execution enviromment when the time period
has elapesed. A process must also be able to cancel a previously set timer.
Several TCP mechanisms use the timing facility. The positive acknowledgment
with retransuission mechanism uses timers to ensure that if data or acknow—
ledgments are lost, they are re—aent. The ULP timeout mechsanism uses the
timing facility to clock the delay between data transmission and acknowledg—
ment.” The time-wait mechanism uses a timer to allow enough time for a final
FIN acknowledgement to arrive at the remote TCP entity before connection
termination. Other uses for a timing facility are implementation dependent.
In the upper service and entity specification, the timing services are
accessed with the following primitives:

a. SET TIMER (timer name, t:lme_intewal) - allows a given interval of
time and an identifier to be specified. After the specified in

of o s Y
terval elapse, and timecut iodication and the identifier 1s re-

turned to the issuing process.

b. CANCEL TIMER (timer 1 name) — allows the timeout associated with
the identifier to be terminated.

c. CURRENT TIME - returns the current time.

Custodians: Preparing Activity:
Army = CR DCA-DC
Navy = OM (Project 1PSC—-0178-02)
Air Force = 90
Review Activities: Other Interest:
Army - SC, CR, AD NSA-NS
Navy - AS, YD, MC, OM, KD, NC, EC, SA TRI-TAC-TT

Air Force - 1, 11, 13, 17, 90, 99

160

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

APPENDIX A. RETRANSMISSION STRATEGY EFFECTIVENRSS

As noted fn the entity overview, Section 9.2, a ICP inplementation may employ
one of peveral retransmieseion strategles:

a. First-only retrammission -~ A TCP maintains one retransnisgsion timer
for the queue, retrangmitting the froot segment (or segment’s worth
of data) vhen the timer expires.

b. Batch retransmigsion = A TCP maintains one retransmiseion timer
for the queua, retramsmittiong all segments oo the gqueue when the
timer expires. '

ce Individusl retrammiseion — A TCP maintains one timer per segment

on the queue, retransmitting each segment when its "individual timer

expires.
The first-only retransmission etrategy is efficient in tems of traffic generated
because only lost segments are retransaitted; but the strategy can csuse long
delays. The batch retrameniseion creates more traffic but decreasses the
likelihood of long delays. The individual retransmission strategy is a
conpromige between delay and traffic but requires much more processing time
from the TCP entity. However, the actual effectiveness of each scheme depends
in part on the acceptance policy (paragraph 9.2.4) of the receiving TCP.

Por example, suppose a sendiong TCP sends three asegments, all within the send
window, to ‘a receiving TCP. ‘The first eegment is lost by the network. A
receiving TCP using the "in—order” acceptance strategy diecards the second
and third segments. A receiving TCP using the "inwindow™ strategy accepts
the second and third segments, but does not acknowledge or deliver aoy data
until the intervening segment arrives.

Batch retransmission performs better with the ip-order acceptance strategy
because the receiving TCP has discarded all segments. All cthree segments
mugt be retransmitted——the sooner the better. FPirst—only retransmigsion
performs better with the imrwindow acceptance policy because only the neces~
sary retransmissions occur since the receiving TCP has kept the segments
within its receive window and awaits only the lost segment.

Unfortunately, a sending TCP cannot know what acceptance policy is being
used by the receivinog TCP. Instead, the retransmission strategy must be
chosen according to implementation dependent and configuration dependent
design goals.

161

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 Auguat 1983

APPENDIX B, DYNAMIC RETRANSMISSION TIMER COMPUTATION

Because of the variability of the networks that compose the internetwork
system and the wide range of uses of TCP connectioms, the retramsaission
timeout should be dynamically determined. One procedure for determining a
retransmigsion time out is given here as an illustration. '

Measure the elapsed time between sending a data octet with a particular
sequence tumber amd receiving an acknowledgment that covers that sequence
oumber (Segmente sent do not have to match segments received). This meas—
ured elapsed time is the Round Trip Time. Next, compute a Smoothed Round
Trip Time (SRTT) as:

SRTIT = (ALPHA * SRTT) + ((1—-ALPHA) * RTT)

[+]]
&
g
o
A
<
=]
r
E
@
0
.
[]
r
ﬁ
"l
a
r
[a]
o
§
B
[+]
1]
Pes
(=]
-]
"
s
W
Q
[+
(a4

where:

UNBOUND = an upper bound on the timeout (e.g., ! minmute)
LBOUND = a lower bound on the timeout (e.g., 1 second)
ALPHA = a smoothing factor {(e.g., .8 to .9)

BETA = a delay variance factor (e.g., i.3 to 2.0)

[

~——

e

Downloaded from http://www.everyspec.com

MIL-STD-1778"
12 August 1983 -

APPENDIX €. ALTERNATIVES 1IN SERVICE INTRERPACE PRIMITIVES

The service primicives offered to the upper level protocol are specified in
paragraph 6.2. The service regquest primitives are:

~ Ungpecified Paseive Open,

=~ Fully Specified Passive Open,
= Active Open,)

= Active Open with Data,

= Send,

= Allocate,
- Stats,

-~ Cloge, and
= Abort

These primitives support the minimal services required of a TCP, However,
conbinations or modifications may offer additional services that are tailored
to the requirements of a particular set of upper level protocols. Several
examples are provided below,

If the protocol supporting TCP 1e¢°'the Internet Protocol and a TCP implenentas—
tion wishes to export IP's option eservices (including source routing, record
routing, stream identification and timestanmps), an addtional “options™ param—
eter would be required in all Open amd Send service requests.

An upper level protocol way need a reliable tramsaction service. That 18, a8
ULP may wish to open a connection, send a single message, and then close the
conuection., To access this service, the specified service interface requires
the ULF to issue st least two gervice primitives, an Open with Data and a

Cleone, to excercige thip service. A TCP may be designed with a service

primitive that combined the Open and Close to form a new primicrive, called

perhaps Tramsaction, which would include all the Open parameters, the data
to be transmitted, and the signal to close the connection after data delivery.

The upper layer service definicion (paragraph 6.3) does not allow a Passive
Open request to be followed by an Active Open request. Instead, the ULP
must first issue a Close or Abort request to cancel the Passive Open request,
then 1igsue an Active. Open request. A TCP may be designed to allow “conver—
sion” of open requests from passive to active. In this case, a ULP could
issue a Full Passive Open request followed by an Active Open or a Seund
request to actively initiate a connection. Thug, the local entity service
diagran (appearing in paragraph 6.4) changes to include a transition from the
PASSIVE to the ACTIVE state as shown in Figure 15.

183

Downloaded from http://www.everyspec.com

MIL-STD-1778
12 August 1983

AD L A PO
\ : Y
OF .
- — amm ---.. I _
ACTIVE PASSIVE
ADORES
H)
EX- EX
: R]
h ™

- H H ---J
Hl ESTAR -------T-----‘
|]
- 0 ’

* .. GOVERNMENT PRINTING QFFICE: 1933-803-034:44127

164

T

Downloaded from http://www.everyspec.com

STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL
{See Instructions — Reverse Side)

1{0}5?2:‘!5;17”&“?577 7/ 2 DOCUMENT TITLE

3a. NAME OF SUBMITTING ORGANIZATION

b, ADDRESS (Street, City. State, ZIF Coda)

4. TYPE OF ORGANIZATION (Merh one)

D VYENDOR
[uses

D MANUFACTURER

D OTHER (Specify):

5. PAOBLEM AREAS
a Parsgraph Numbaer and Wording:

b. Recommended Wording:

¢. Rsason/Rationsie tor Rscommendstion:

8. REMARKS

T

To. NAME OF SUBMITTER (Last, First, Mi} — Optional

b. WORK TELEPHONE NUMBER (Include Arsa
Code} — Optional

)

e MAILING ADDRESS (Street, City, Stowr, ZIF Code) — Dntl-onll

8. DATE OF SUBMISSION (YYMMDD)

PREVIDOUS EDITION IS OBSOLETE.

