MILITARY STANDARD

METHOD OF DIMENSIONING AND DETERMINING CLEARANCE FOR AIRCRAFT TIRES AND RIMS


```
    DEPARTMENT OF GEFENSE
    WASHINGTON; D. C. 20301
    i
    %
    *,
```

Method of Dimensioning and Detemining Clearance for Aircraft Tires and Rims $\mathrm{MH}-\mathrm{STD}=878 \mathrm{~A}$

1. This Military Standard is mandatory for use by all Departants and Agencies of the Department of Defense.
*2. Reconmended corrections, additions, or deletions 6houlr be addressed to the Aeronautical Systems Division; Attm: ASNPS-30, Wifht-Patterson Air Force Base, ohio 4543%
Paragraph 1 SCOPE 1
1.1 Purpose 1
2 REFERENCED DOCUMENTS 1
3 GENERAT REOUIREMENTS 1
3.1 Proportions and clearances 1
3.2 Definitions of figure 2 2
4 INTERNATIONAL STANDARDIZATION 4
4.1 International standardization agreement 4
FIGURES
FIGURE 1. Profile Proportions for Aircraft Landing Wheel Tires 5
2. Chart for Obtaining Radial Clearance C_{R} and Lateral 6Clearance C_{W}
3. Design Guide for Obtaining Dimension "A" 7
4. Aircraft Wheel Rim Proportions 8
TABLES
TABLE I. Growth factors 3

METHOD OF DIMENSIONING AND DETERMINING CLEARANCE FOR AIRCRAFT TIRES AND RTMS

1. SCOPE
2. 1 Purpose. This standard establishes the procedures for dimensioning and determining clearance for aircraft tires and rims.
3. REFERENCED DOCUMENTS
*2.1 The issue of the following documents in effect on the date of invitation for bids form a part of this standard to the extent specified herein.

SPECIFICATIONS

Military

MIL-T-5041 Tires, Pneumatic, Aircraft
MIL-R-7726 Repair and Retreading of Used Pneumatic Tires and Repair of Inner Tubes
(Copies of specifications, standards, drawings, and publications required by suppliers in connection with specific procurement functions should be obtained from the procuring activity or as directed by the contracting officer.)

3. GENERAL REQUIREMENTS

3.1 Proportions and clearances. The proportions and clearances of aircraft wheels and tires shall be in accordance with figure 1 . Figure 1 is based upon the following considerations:
(a) The dimensions of new, unused inflated tires after a 12-hour inflation period at rated pressure to remove initial tire stretch shall not exceed dimensions D_{o}, H, W, D_{S}, and W_{S}.
(b) Provisions shall be made for tire growth represented by dimensions W_{G}, $D_{G}, W_{S G}$, and $D_{S G}$. Tire growth is based upon the factors listed in table I.
(c) Minimum radial and lateral clearances beyond tire growth limits are derived from figure 2.
(d) Tire aspect ratios are obtained from figure 3.

MLL-STD-878A
22 October 1969
*(e) The maximum shoulder dimensions shown as H_{S} and W_{S} shall be 0.82 of the maximum section height for all tire types, 0.85 of the maximum section width for type III tires, and 0.88 of the maximum section width for types VII and VIII tires. Types III, VII, and VIII tires are described in MIL-T-5041 and MIL-R-7726.
(f) Radii: $\frac{W_{S}}{2}$ and $\frac{W_{S G}}{2}$ are drawn through their respective shoulder points tangentially to D_{0} and D_{G}, respectively. Radii below the shoulder points pass through the shoulder points and are tangential to W and W_{G}, respectively.
(g) Dimension A, the wheel width between flanges, shall be obtained from figure 3.
3.2 Definitions of figure 2. Clearance allowance between the tire and the adjacent parts of the aircraft should be based on the maximum overall tire dimensions, plus growth allowance due to service, plus the increase in diameter due to centrifugal force. Minimum distances to adjacent parts of the aircraft should be determined as follows:
(a) Determine maximum grown tire envelope (1.e., the dotted Ife labeled "Grown Inflated Tire" on figure 1).
(b) Obtain radial clearance C_{R} and lateral clearance C_{W} from the chart on figure 2.
(c) Determine distance to adjacent part as follows:
$R X(\min)=$ Radial distance from axle centerline (CL) to adjacent part $=\frac{D_{G}}{2}+C_{R}$

Wx (min) $=$ Lateral distance from the CL to adjacent part $=\frac{W_{G}^{2}}{2}+C_{W}$

Sx (min) = Clearance allowed between tire shoulder area and adjacent part $=\frac{C_{W}+C_{R}}{2}$

* TABLE I. Growth factors

Uassification		Growth factor	
T and RA type	Squatness ratio	G_{W}	G
T and RA (1960)	No recommended limits	1.03	2.06
Type III	No recommended limits	1.04	2.08
Type VII	0.78 and upwards	1.05	2.12
Type VIII	0.65 to 0.77	1.05	2.14

NOTES ON TABLE I:

*1. The general squatness ratios, aspect ratio $\frac{H}{W}$ of figure 4,i.e., mean section height/mean section width, are shown in table I but should be used as a design guide only.
2. For new design, the new inflated tire dimensions W, H, W_{S}, and H_{S} are factorized with the appropriate factors for T and RA types III, VII, and VIII tires. Tires of similar proportions shall also be classified as one of these three groups for growth determination.
3. Growth determination shall be as follows, using factors from table I:

$$
\begin{aligned}
& W_{G}=G_{W} \cdot W \\
& D_{G}=D+G_{H} \cdot H \\
& W_{S G}=G_{W} \cdot W_{S} \\
& D_{S G}=D+G_{H} \cdot H_{S} \\
& H=\frac{D_{0}-D}{2} \\
& H_{S}=\frac{D_{S}-D}{2}
\end{aligned}
$$

(d) The chart on figure 2 does not cover twin tires or tires in tandem, and clearance allowances between tires should be determined as follows:
(1) Twin tires - The distance between the CL of tires shall be $1.18 \mathrm{~W}_{\mathrm{G}}$.
(2) Tandem tires - The distance between the axle CL of forward and rear tires shall be:
$\mathrm{D}_{\mathrm{G}}+0.20 \mathrm{~W}_{\mathrm{G}}$ for tires 10 inches in width and less. $\mathrm{D}_{\mathrm{G}}+0.15 \mathrm{~W}_{\mathrm{G}}$ for tires above 10 inches in width.

4. INTERNATIONAL STANDARDIZATION

*4.1 International standardization agreement. Certain provisions of this standard are the subject of international standardization agreement (ASCC: Air Standard 17/14). When amendment, revision, or cancellation of this standard is proposed, which will affect or violate the international agreement concerned, the preparing activity will take appropriate reconciliation action through international standardization channels including departmental standardization offices, if required.
(The margins of this standard are marked with an asterisk to indicate where changes from the previous issue were made. This was done as a convenience only and the Government assumes no liability whatsoever for any inaccuracies in these notations. Bidders and contractors are cautioned to evaluate the requirements of this document based on the entire content irrespective of the marginal notations and relationship to the last previous issue..)

```
Custodians:
Preparing activi:%:
    Army - AV
    Navy - AS
    Air Force - 11
    Air Force - 11
Project No. 2620-0035
Review activities:
    Army - AV
    Navy - AS
    Air Force - 70
```


GROWN INFLATED TTRE
W_{G} - MaxImum GROWN SECTION WIDTH
$D_{G}=$ MAXIMUM GROWN OUTSIDE DYAMETER
$W_{S G}=$ MAXIMUM GROWN SHOULDER WIDTH
$\mathrm{D}_{\mathrm{SG}}=$ MAXIMUM GROWN SHOULDER DIAMETER

NEW INFLATRED TIRE
$D_{0}=$ MAXIMUM OUTSIDE DIAMETER
H = MAXIMUM SECTION HEIGHT
$W=$ MAXIMUM CROSS SECTION WIDTH
$D_{S}=$ MAXIMUM SHOULDER DIAMETER
$H_{S}=$ MAXIMUM SHOULDER HEIGHT
WS = MAXIMUM SHOULDER WIDTH
A = WIDTH BETWEEN FLANGES

FIGURE 1. Profile Proportions for Aircraft Landing Wheel Tires

NOTES:

1. MINIMUM CLEARANCE DIAMETER EGUALS MAXIMUM GROWN DIAMETER PLUS $\left(2 \times C_{R}\right.$ i.
2. MINIMUM CLEARANCE WIDTH EQUALS MAXIMUAS GROW: WIDTH PLUS ($2 \times \mathrm{C}_{W}$).
3. MINIMUM CLEARANCE AT SHOULDER REGION EQUALS
$\frac{C_{R}+C_{W}}{2}$.
*FIGURE 2. Chart for Obtaining Radial Clerance C_{R} and Lateral Clearance C_{W}

NOTES:

1. THE MEAN OR NOMINAL DIMENSIONS H AND W PERTAIN TO A NEW UNUSED inflated tire.
2. WIDTH BETWEEN FLANGES (DIMENSION A ON FIGURE I) TO BE ADJUSTED TO NEAREST I/4 INCH.
3. EQUATION FOR LINE FROM 0.65 TO 0.90 ASPECT RATIO " Y " EQUALS $1.13-\frac{X}{2.5}$.

FIGURE 3. Design Guide for Obtaining Dimension "A"

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE $\mathbf{\$ 3 0 0}$

ASD/ENYES

Wright-Patterson AFB, OH 45433

STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL

INSTRUCTI: NSS: The purpose of this form is to solicit beneficial comments which will help achieve procurement of suitable products at reasonable cost and minimum delay, or will otherwise enhance use of the document. DoD contractors, govemment activities, 0^{*} nanufacturers/vendors who are prospective suppliers of the product are invited :c: submit comments to the govtimment. Fold on lines on reverse side, staple in comer, and send to preparing amivity. Comments submitted on this form do not constitute or imply authorization to waive any partion of the referenced document(s) or to amend contractual requirements. Attach any pertinent data which may be of use in improving this document. If there are additional papers, attach to form and place both in an envelope addressed to preparing activity.
DOCUMENT IDENTIFIER ANDTITLE

NAME OF ORGAR: I ATION AND ADORESS

DIRECT GOVERNMENT CONTRACT subcontract

1. HAS ANY PART OF THE DOCUIENT CRE TTED PROBLEMS OR REQUIRED INTERPRETATION IN PROCUREMENT USE?
A. GIVE PARAGFARH NUMGER ANO WOREING.
B. RECOMME :A "IONS FOR CORRECT" ; YHE DEFICIENCIES
2. COMMENTS O ANY DOCUMENT REQUIIEMENT CONSIDERED TOO RIGID
3. IS THE DOCUMENT RESTRICTIVE?
■ VESNO (It "Yes", in wh.: way?)

4. REMARKS

TELEPHONE NO.

DATE

