16 March 1987

SUPERSEDING MIL—STD—199C 28 AUGUST 1981

MILITARY STANDARD

RESISTORS, SELECTION AND USE OF

FSC 5905

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

DEPARTMENT OF DEFENSE Washington, DC 20301

Resistors, Selection and Use of

MIL-STD-199D

1. This Military Standard is approved for use by all Departments and Agencies of the Department of Defense.

2. Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Commander, US Army Laboratory Command, ATTN: SLCET-R-S, Fort Monmouth, NJ 07703, by using the self-addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

.

FOREWORD

This standard provides selected standard resistors for use in the design of military equipment.

The application information and performance characteristics contained in this standard are offered for guidance and are not to be considered as mandatory. Additional application information will be added when coordinated with the three military departments.

Additional sections of this standard will be developed as standard resistors of a given specification family are selected and coordinated with the three military departments.

CONTENTS

			age
Paragraph	1.1 1.1 1.2	Scope	1 1 1
	2. 2.1	REFERENCED DOCUMENTS	2 2
	3. 3.1	DEFINITIONS	4 4
	4. 4.1 4.2 4.3 4.4	GENERAL REQUIREMENTS	6 6 6 6
	5.	DETAILED REQUIREMENTS	7
	6. 6.1 6.2	NOTES Intended uses Subject term (key word) listing	8 8 8
APPENDIX		GENERAL APPLICATION INFORMATION	9
Paragraph	10. 10.1 10.2	GENERAL	9 9 9
	20	REFERENCED DOCUMENTS	12
	30 30.1 30.2 30.3 30.4 30.5	GENERAL CHARACTERISTICS OF RESISTORS	12 12 13 14 16 18
	40. 40.1 40.2 40.3	SUPPLEMENTAL INFORMATION	20 20 20 20
		FIGURES	
Figure	1. 2. 3. 4.	Maximum working voltage and critical value of resistance Military resistor specification categories	4 10 15 28
		TABLES	
Table	I. II. III. IV. V.	Fixed resistor selection guidance table	21 23 24 25 26

£

٠

SECTIONS

Section	100	RESISTORS, FIXED 100.1
	101	Resistors, Fixed, Wirewound (Power Type)
		(Specification MIL-R-26) 101.1
	102	Resistors, Fixed, Film, Insulated
	100	(Specification MIL-R-22684) =
	103	Resistors, Fixed, Wirewound (Power Type, Chassis Mounted)
		(Specification MIL-K-18546)
	200	RESISTORS VARIABLE
	201	Resistors, Variable, Composition
		(Specification MIL-R-94) =
	202	Resistors, Variable, Wirewound (Low Operating Temperature)
		(Specification MIL-R-19) $ -$ 202.1
	203	Resistors, Variable (Wirewound, Power Type)
		(Specification MIL-R-22) \ 203.1
	204	Resistors, Variable, Wirewound, Precision
		(Specification MIL-R-12934) 204.1
	205	Resistors, Variable, Wirewound, Semi-Precision
	206	(Specification MiL-R-39002)
	200	(Specification MIL 9-27208). 206 1
	207	Resistors, Variable, Non-Wirewound (Adjustment Type)
		(Specification MIL R-22097) 207.1
	208	Resistors, Variable, Non-Wirewound
		(Specification MIL-R-23285) 208.1
	209	Resistors, Variable, Non-Wirewound, Precision
		(Specification MIL-R-39023)
	300	
	201	RESISIONS, FIRED, ESTABLISHED RELIABILITY
	301	Resistors, rixed, composition (insulated),
		(Specification MI) = R - 39008)
	302	Resistors, Fixed, Film, Established Reliability
		(Specification MIL-R-55182) 302.1
	303	Resistors, Fixed, Wirewound (Accurate),
		Established Reliability
		(Specification MIL_R-39005) 303.1
	304	Resistors, Fixed, Wirewound (Power Type),
		LSTADIISNEG KEILADIITTY (Specification MIL 20007)
	305	(Specification MiL-R-S900/)
	505	(Specification MIL-8-39017)
	306	Resistors Fixed Wirewound (Power Type Chassis Mounted)
		Established Reliability
		(Specification MIL-R-39009) 306.1
	307	Resistors, Fixed, Film, Chip, Established Reliability
		(Specification MIL-R-55342) 307.1
	308	Resistors, Fixed, Precision, Established Reliability
		(Specification MIL-R-122)
	400	RESISTORS VARIARIE ESTARIISHED DELTARTITY
	401	Resistors, Variable, Wirewound (Lead Screw Actuated)
		Established Reliability
		(Specification MIL-R-39015) 401.1
	402	Resistors, Variable, Non-wirewound (Adjustment Type),
		Established Reliability
		(Specification MIL-R-39035) 402.1
	500	
	501	Resistor Networks Fixed Film
		(Specification MIL-R-83401)
	502	Thermistor (Thermally Sensitive Resistors) Inculated
		(Specification MIL-T-23648)
		,

•

CROSS REFERENCE (Specification number to section number)

,

MIL-R-19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	202
MIL-R-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	203
MIL-R-26	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	101
MIL-R-94	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	201
MIL-R-122	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	308
MIL-R-12934-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	204
MIL-R-18546-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	103
MIL-R-22097-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	207
MIL-R-22684-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	102
MIL-R-23285-	-	-	-	-	-	-	-	-	~	-	-		-	-	-	-	-	-	-	-	-	-	-	-	208
MIL-R-27208-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	206
MIL-R-39002-	-	-	-	-	-	-	-	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	205
MIL-R-39005-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	303
MIL-R-39007-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	304
MIL-R-39008-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	301
MIL-R-39009-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	306
MIL-R-39015-	-	-	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	401
MIL-R-39017-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	305
MIL-R-39023-	-	-	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	209
MIL-R-39035-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	402
MIL-R-55182-	-	-	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	302
MIL-R-55342-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	307
MIL-R-83401-	-	-	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	501
MIL-T-23648-	-	-	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	502

1. SCOPE

1.1 Scope. This standard consists of the following:

- a. Selected standard resistor types, detailed by sections, chosen jointly by the Departments of the Army, the Navy, and the Air Force for use in the design and manufacture of military equipment under the jurisdiction of the Departments.
- b. Guides for the choice and application of resistors for use in military equipment.

Detailed requirements for resistors listed in this standard are covered in the applicable specification (see 2.1). When it has been determined that circuit requirements cannot be met by using resistor styles or characteristics listed in this standard, the design engineer shall, with the approval of the cognizant military activity, select from the applicable resistor specification styles or characteristics not listed herein.

- 1.2 Purpose of standard:
 - a. To provide the equipment designer with a selection of standard resistors for use in most military applications.
 - b. To control and minimize the variety of resistors used in military equipment in order to facilitate logistic support of equipment in the field.
 - c. To outline criteria pertaining to the use, choice, and application of resistors in military equipment.

2. REFERENCED DOCUMENTS

2.1 Government documents.

2.1.1 <u>Specifications</u>. The following specifications form a part of this standard to the extent specified herein. Unless otherwise specified, the issues of these documents shall be those listed in the issue of the Department of Defense Index of Specifications and Standards (DODISS) and supplement thereto, cited in the solicitation.

SPECIFICATIONS

MILITARY

*

*

MIL-R-19	-	Resistor, Variable, Wirewound (Low Operating Temperature), General Specification For.
MIL-R-22	-	Resistor, Variable (Wirewound, Power Type), General Specification For.
MIL-R-26	-	Resistor, Fixed, Wirewound (Power Type), General Specification For.
MIL-R-94	-	Resistor, Variable, Composition, General Specification For.
MIL-R-122	-	Resistor, Fixed, Precision, Established Reliability, General Specification For.
MIL-R-12934	-	Resistor, Variable, Wirewound, Precision, General Specification For.
MIL-R-18546	-	Resistor, Fixed, Wirewound (Power Type, Chassis Mounted), General Specification For.
MIL-R-22097	-	Resistor, Variable, Non-Wirewound (Adjustment Type), General Specification For.
MIL-R-22684	-	Resistor, Fixed, Film, Insulated, General Specification For.
MIL-R-23285	-	Resistor, Variable, Nonwire-wound, General Specification For.
MIL-R-27208	-	Resistor, Variable, Wirewound (Adjustment Type), General Specification For.
MIL-R-39002	-	Resistor, Variable, Wirewound, Semi-Precision, General Specification For.
MIL-R-39005	-	Resistor, Fixed, Wirewound (Accurate), Established Reliability, General Specification For.
MIL-R-39007	-	Resistor, Fixed, Wirewound (Power Type), Established Reliability, General Specification For.
MIL-R-39008	-	Resistor, Fixed, Composition (Insulated), Established Reliability, General Specification For.
MIL-R-39009	-	Resistor, Fixed, Wirewound (Power Type, Chassis Mounted), Established Reliability, General Specification For.
MIL-R-39015	-	Resistor, Variable, Wirewound (Lead Screw Actuated), Established Reliability, General Specification For.
MIL-R-39017	-	Resistor, Fixed, Film (Insulated), Established Reliability, General Specification For.

•

•

.

MIL-STD-199D

MIL-R-39023	-	Resistor, Variable, Non-Wirewound, Precision, General Specification For.
MIL-R-39035	-	Resistor, Variable, Non-Wirewound (Adjustment Type), Established Reliability, General Specification For.
MIL-R-55182	-	Resistor, Fixed, Film, Established Reliability, General Specification For.
MIL-R-55342	-	Resistor, Fixed, Film, Chip, Established Reliability, General Specification For.
MIL-R-83401	-	Resistor Networks, Fixed, Film, General Specification For.
MIL-T-23648	-	Thermistor (Thermally Sensitive Resistor) Insulated, General Specification For.

(Copies of specifications required by contractors in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

.

2.2 Order of precedence. In the event of a conflict between the text of this standard and the references cited herein, the text of this standard shall take precedence.

3. DEFINITIONS

3.1 <u>Rating and design application terms</u>. A list of common terms used in rating and design application of resistors is as follows:

- a. <u>Ambient operating temperature</u>. The temperature of the air surrounding an object, neglecting small localized variations.
- b. Contact resistance variation. The apparent resistance seen between the wiper and the resistance element when the wiper is energized with a specified current and moved over the adjustment travel in either direction at a constant speed. The output variations are measured over a specified frequency bandwidth, exclusive of the effects due to roll-on or roll-off of the terminations and is expressed in ohms or percent of total nominal resistance.
- c. <u>Critical value of resistance</u>. For a given voltage rating and a given power rating, there is only one value of resistance that will dissipate full rated power at rated voltage. This value of resistance is commonly referred to as the "critical value of resistance." For values of resistance below the critical value, the maximum (element) voltage is never reached and, for values of resistance above critical value, the power dissipated becomes lower than rated. Figure 1 shows this relationship.

FIGURE 1. Maximum working voltage and critical value of resistance.

- d. <u>Dielectric strength</u>. The ultimate breakdown voltage of the dielectric or insulation of the resistor when the voltage is applied between the case and all terminals tied together. Dielectric strength is usually specified at sea level and simulated high altitude air pressures.
- e. <u>Hot-spot temperature</u>. As defined in military specifications, the maximum temperature measured on the resistor due to both internal heating and the ambient operating temperature. Maximum hot-spot temperature is predicated on thermal limits of the materials and the design. The hot-spot temperature is also usually established as the top temperature on the derating curve at which the resistor is derated to zero power.
- f. <u>Insulation resistance</u>. The dc resistance measured between all terminals connected together and the case, exterior insulation, or external hardware.

- g. <u>Maximum (element) working voltage (E = \sqrt{PR})</u>. The maximum voltage stress (dc or rms) that may be applied to the resistor (resistance element) is a function of (1) the materials used, (2) the required performance, and (3) the physical dimensions. (See figure 1.)
- h. Noise. An unwanted voltage fluctuation generated within the resistor. Total noise of a resistor always includes Johnson noise 1/ which is dependent only on the resistance value and temperature of the resistance element. Depending on the type of element and construction, total noise may also include noise caused by current flow, and noise caused by cracked bodies and loose end caps or leads. For variable resistors, noise may also be caused by jumping of contact over turns of wire and by an imperfect electrical path between the contact and resistance element.
- i. Resistance temperature characteristic (temperature coefficient). The magnitude of change in resistance due to temperature, usually expressed in percent per degree Celsius or parts per million per degree Celsius (ppm/°C). If the changes are linear over the operating temperature range, the parameter is known as "temperature coefficient."
- j. <u>Resistance tolerance</u>. The permissible deviation of the manufactured resistance value (expressed in percent) from the specified nominal resistance value at standard (or stated) environmental conditions.
- k. <u>Stability</u>. The overall ability of a resistor to maintain its initial resistance value over extended periods of time when subjected to any combination of environmental conditions and electrical stresses.

1/ Johnson, J. B., "Thermal Agitation of Electricity in Conductors," <u>Physical Review</u>, Volume 32 (July, 1928, 97-109).

4. GENERAL REQUIREMENTS

4.1 Choice of resistor types. The variety of resistor types used in any particular equipment shall be the minimum necessary to obtain satisfactory performance. Where more than one type of resistor may be used in a given application (i.e., fixed, film, insulated versus fixed, film, insulated (high stability)), consideration should be given to cost and availability (use of strategic materials, multiple sources, etc.). The resistors identified in this standard meet all the criteria for standard types (see 1.1 and 4.4).

4.1.1 <u>Reliability</u>. Where quantitative reliability requirements specified as part of the equipment requirements are such that the use of parts with established reliability is dictated, such parts shall be selected from the established reliability sections (300 and 400) of this standard.

4.1.2 <u>Qualified sources</u>. After a preliminary selection of the desired resistor has been made, reference should be made to the applicable qualified products list for listing of qualified sources.

4.2 Item identification. A type designation for any resistor referenced herein may be constructed as indicated in the example given in the applicable section. The part number assignments, where applicable, are as specified in the section.

4.3 <u>Conflict of requirements</u>. In the event of conflict between technical requirements of resistors described in this standard and the applicable specification, the specification shall govern; however, this standard will be up-dated concurrently to reflect specification changes.

4.4 <u>Criteria for inclusion in this standard</u>. The criteria for the inclusion of resistor types in this standard are as follows:

- a. The resistor shall be the best type available for general use in military equipment.
- b. Coordinated military specifications shall be available (see 2.1).
- c. Resistors shall be in or shall have been in production.
- d. Where possible, the resistor shall remain in the section for a minimum of 1 year.

5. DETAILED REQUIREMENTS

5.1 The detailed requirements for standard resistor types are contained in the applicable specification and the applicable section of this standard.

÷

.

6. NOTES

6.1 Intended uses. General application notes are as indicated in the appendix.

6.2 Subject term (key word) listing.

```
Chip
Film
Lead-screw
Network
Non-wirewound
Resistance-temperature characteristic
Resistor
Thermistor
Yariable
Varistor
Wirewound
```

6.3 <u>Changes from previous issue</u>. The margins of this standard are marked with asterisks to indicate where changes (additions, modifications, corrections, deletions) from the previous issue were made. This was done as a convenience only and the Government assumes no liability whatsoever for any inaccuracies in these notations. Bidders and contractors are cautioned to evaluate the requirements of this document based on the entire content irrespective of the marginal notations and relationship to the last previous issue.

APPENDIX

GENERAL APPLICATION INFORMATION

* 10. GENERAL

Ξ.

10.1 Scope. The application information in this standard is designed to help the engineer select the resistors he will specify (application information pertaining to specific resistor types is contained in the applicable sections). As with other types of components, the most important thing a user must decide is which of the numerous types of resistors will be best for use in the military equipment he is designing. Proper selection in its broadest sense is the first step in building reliable equipment. To properly select the resistors to be used, the user must know as much as possible about the types from which he can choose. He should know their advantages and disadvantages, their behavior under various environmental conditions, their construction, and their effect on circuits and the effect of circuits on them. He should know what makes resistors fail. He should also have an intimate working knowledge of the applicable military specification. This appendix is not a mandatory part of the standard. The information contained herein is intended for guidance only.

10.1.1 Resistor types. All variable and fixed resistors, of the types widely used in electronic equipment, can be grouped into one of three general basic types. They are "composition" types, "film" types, or "wirewound" types. As the name indicates, the "composition" type is made of a mixture of resistive material and a binder which are molded into the proper shape and resistance value. The "film" type is composed of a resistive film deposited on, or inside of, an insulating cylinder or filament. The "wirewound" type is made up of resistance wire, wound on an insulated form. These basic types differ from each other in size, cost, resistance range, power rating, and general characteristics. Some are better than others for particular purposes; no one type has all of the best characteristics. The choice among them, therefore, depends on the requirements, both initial and long-term; the environment in which they must exist; and numerous other factors which the designer must understand. The designer must realize that the summaries of the following general characteristics are relative, not absolute, and that all the requirements of a particular application must be taken into consideration and compared with the advantages and drawbacks of each of the several types, before a final choice is made. Tables I, II, and III 2/ provide a selection guide for fixed and variable resistors included in this standard.

The military resistor specification categories are shown on figure 2.

- 10.2 Principal applications:
 - a. <u>MIL-R-19, RA, variable, wirewound (low operating temperature)</u>. Use primarily for noncritical, low power, low frequency applications where characteristics of wirewound resistors are more desirable than those of composition resistors.
 - b. <u>MIL-R-22, RP, variable wirewound (power type)</u>. Use in such applications as motor speed control, generator field control, lamp dimming, heater and oven control, potentiometer uses, and applications where variations of voltage and current are expected.
 - c. MIL-R-26, RW, fixed, wirewound (power type). Use where large power dissipation is required and where ac performance is relatively unimportant (i.e., when used as voltage divider or bleeder resistors in dc power supplies, or for series dropping). They are generally satisfactory for use at frequencies up to 20 kilohertz (kHz) even though the ac characteristics are controlled. Neither the wattage rating nor the rated continuous working voltage may be exceeded.
 - d. <u>MIL-R-94, RV, variable, composition</u>. Use where initial setting stability is not critical and long-term stability needs to be no better than ±20 percent.

2/ See tables on pages 21 through 27.

APPENDIX

FIGURE 2. Military resistor specification categories.

APPENDIX

- e. <u>MIL-R-122, RFP, fixed, film, established reliability</u>. Use in circuits requiring higher stability than provided by composition resistors or film, insulated, resistors and where ac frequency requirements are critical. Operation is satisfactory from dc to 100 megahertz (MHz). Metal films are characterized-by low temperature coefficients and are usable for ambient temperatures of 125°C or higher with small degradation. High precision, lower RTC than MIL-R-55182.
- f. <u>MIL-R-12934, RR, variable, wirewound (precision)</u>. Use in servo-mounting applications requiring precise electrical and mechanical output and performance. Used in computer, antenna, flight control, and bomb navigation systems, etc.
- g. <u>MIL-R-18546, RE, fixed, wirewound (power type, chassis mounted)</u>. Use where power tolerance and relatively large power dissipation is required for a given unit size than is provided by MIL-R-26 resistors, and where ac performance is noncritical (i.e., voltage divider or bleeder resistors in dc power supplies or series-dropping circuits).
- h. <u>MIL-R-22097, RJ, variable non-wirewound (adjustment type)</u>. Use for matching, balancing, and adjusting circuit variables in computers, telemetering equipment, and other critical applications.
- i. <u>MIL-R-22684, RL42...TX, fixed, film, insulated</u>. These film resistors have semi-precision characteristics and small sizes. The sizes and wattage ratings are comparable to those of MIL-R-39009 and stability is between MIL-R-39008 and MIL-R-55182. Design parameter tolerances are looser than those of MIL-R-55182 but good stability makes them desirable in most electronic circuits. See MIL-R-39017.
- j. <u>MIL-R-23285, RVC, variable, metal film, non-wirewound</u>. Use where initial setting stability is not critical and long-term stability needs to be no better than +5 percent. RVC resistors have low noise and long life characteristics.
- k. MIL-R-27208, RT, variable, wirewound (adjustment type). Use for matching, balancing, and adjusting circuit variables in computers, telemetering equipment, and other critical applications.
- 1. MIL-R-39002, RK, variable, wirewound, semi-precision. See MIL-R-27208.
- m. <u>MIL-R-39005, RBR, fixed, wirewound (accurate)</u>. Use in circuits requiring higher stability than provided by composition or film resistors, and where ac frequency performance is not critical. Operation is satisfactory from dc to 50 kHz. Replaces MIL-R-93, RB (wirewound (accurate)).
- n. MIL-R-39007, RWR, fixed, wirewound (power type). See MIL-R-26.
- o. <u>MIL-R-39008, RCR, fixed, composition (insulated)</u>. Use insulated resistors for general purpose resistor applications where the initial tolerance needs to be no closer than +5 percent and long term stability needs to be no better than +15 percent under fully rated operating conditions. Replaces MIL-R-11, RC (fixed, composition (insulated)).
- p. <u>MIL-R-39009, RER, fixed, wirewound (power type, chassis mounted)</u>. Use where power tolerance and relatively large power dissipation is required for a given unit size than is provided by MIL-R-39007 resistors, and where ac performance is noncritical (i.e., voltage divider or bleeder resistors in dc power supplies or series-dropping circuits).
- q. <u>MIL-R-39015, RTR, variable, wirewound (lead screw actuated)</u>. See MIL-R-27208.

APPENDIX

- r. MIL-R-39017, RLR, fixed, film (insulated). These film resistors have semiprecision characteristics and small sizes. The sizes and wattage ratings are comparable to those of MIL-R-39008 and stability is between MIL-R-39008 and MIL-R-55182. Design parameter tolerances are looser than those of MIL-R-55182 but good stability makes them desirable in most electronic circuits. Replaces MIL-R-22684, RL (fixed film (insulated)).
- S. MIL-R-39023, RQ, variable, non-wirewound (precision). Use in servo mounting applications requiring precise electrical and mechanical output and performance. Used in computer, antenna, flight control, and bomb navigation systems, etc.
- t. <u>MIL-R-39035, RJR, variable, non-wirewound (adjustment type)</u>. Use for matching, balancing, and adjusting circuit variables in computers, teleme-tering equipment, and other critical applications.
- u. MIL-R-55182, RNR, fixed, film (high stability). Use in circuits requiring higher stability than provided by composition resistors or film, insulated, resistors and where ac frequency requirements are critical. Operation is satisfactory from dc to 100 megahertz (MHz). Metal films are characterized by low temperature coefficients and are usable for ambient temperatures of 125°C or higher with small degradation. Replaces MIL-R-10509, RN (fixed, film (high stability)).
- v. <u>MIL-R-55342, RM, chip, fixed, film</u>. These chip resistors are primarily intended for incorporation into hybrid microelectronic circuits. They are designed for use in critical circuitry where stability, long life, reliable operation, and accuracy are of prime importance.
- W. MIL_R-83401, RZ, network, fixed, film. These networks are designed for use in critical circuitry where stability, long life, reliable operation, and accuracy are of prime importance. They are particularly desirable for use where miniaturization is important and ease of assembly is desired. They are useful where a number of resistors of the same resistance value are required in the circuit.
- x. <u>MIL-T-23648, Thermistor (thermally sensitive resistor) insulated</u>. These resistors exhibit a rapid change in resistance for a relative small temperature change. These resistors are used to measure temperature or to compensate for changes in temperature.
- 20. REFERENCED DOCUMENTS

Not applicable.

- 30. GENERAL CHARACTERISTICS OF RESISTORS
- 30.1 General characteristics of fixed resistors.
- 30.1.1 Fixed, composition resistors, RCR.
 - a. Nominal minimum resistance tolerance available for fixed, composition resistors is +5 percent. Combined effects of climate and operation on unsealed types may raise this tolerance to +15 percent from the low value (i.e., aging, pressure, temperature, humidity, voltage gradient, etc.).
 - b. High-voltage gradients will produce resistance change during operation.
 - c. High "Johnson" noise levels at resistances above 1 megohm preclude use in critical circuits of higher sensitivity.
 - d. RF will produce end-to-end shunted capacitive effects because of short resistor bodies and small internal distances between both ends.
 - e. Operation at VHF or higher frequency reduces effective resistance due to losses in the dielectric (the so-called "Boella" effect).

APPENDIX

- f. Exposure to humidity may have two effects on the resistance value: Surface moisture may result in leakage paths which will lower the resistance values or absorption of moisture into the element may increase the resistance. This phenomenon is more noticeable in higher ranges since it depends upon the resistance value.
- g. The resistance temperature characteristic is the highest for general purpose resistor styles covered by military specifications.

30.1.2 Fixed, film resistors, RNR, RLR, and RL; fixed, film networks, RZ; and fixed, film chips, RM.

- a. Low tolerance; high stability; low environmental changes; low temperature coefficient; spacing and weight saving; low noise.
- b. Nominal minimum resistance tolerance available is +0.1 percent for fixed, film resistors; and for the resistor networks, the nominal minimum resistance tolerance available is +1.0 percent.
- c. Maximum practical full-power operating temperature should not exceed 125°C for metal film RNR types; types RLR and RL resistors conform to the 70°C rating. Type RZ resistor networks and type RM resistor chips are continuously derated from 70°C to 125°C.
- d. Operation at RF (above 100 MHz) may produce inductive effects on spiral-cut type fixed, film resistors, and capacitive effects on the resistor networks.
- e. The resistance temperature characteristic is fairly low (+500 ppm/°C and +200 ppm/°C) for thick film types (RL and RLR) and very low (+25 ppm/°C) for metal film type (RNR); the resistance temperature characteristic is fairly low (+300 ppm/°C, +100 ppm/°C and +50 ppm/°C) for resistor networks (RZ) and resistor chips (RM).
- 30.1.3 Fixed, wirewound (accurate) resistors, RBR.
 - a. Fixed, wirewound, accurate resistors are physically the largest of all types for a given resistance and power rating, since they are very conservatively rated and are available in standard tolerances as low as +0.1 percent.
 - b. Because of the general method of construction (employing a plastic or ceramic bobbin), this type is subject to mechanical damage resulting from vibration, shock, and pressure.
 - c. Used where high cost and size are not important and operational climate can be controlled.
 - d. Application of voltages in excess of voltage rating may cause insulation breakdown in the thin coating of insulation between element coatings.
 - e. Operation above 50 kHz may produce inductive effects and intrawinding capacitive effects.
 - f. Resistance element is quite stable within specified temperature limits.
 - g. Use of good soldering techniques is extremely important, since higher contact resistance may cause overall resistance shifts far outside of resistance tolerance on low value units.
 - h. The presence of moisture may degrade coating or potting compounds.
- 30.1.4 Fixed, wirewound resistors (power type), RER, RE, RW, and RWR.
 - a. This type resistor is generally not supplied in low tolerances, since most applications of this type do not require accurate resistance.
 - b. The use of tapped resistors is to be avoided, because insertion of taps weakens the resistor mechanically, and lowers the effective power rating.

APPENDIX

30.2 General characteristics of variable resistors:

- a. All types of variable resistors should be derated for operation above their rated ambient temperature.
- b. Wirewound types should not be used in frequency-sensitive RF circuits due to introduction of inductive and capacitive effects.
- c. High humidity conditions may have a deleterious effect on unenclosed types due to resistance shift in composition types and winding-to-winding shorts in wirewound types.
- d. Composition elements may wear away after extended use, leaving particles of the element to permeate the mechanism, resulting in warmer operation, high-resistance shorts, etc. Wirewound types are subject to noise because of stepping of the contact from wire to wire.
- e. With either wirewound or non-wirewound resistors, good practice indicates the use of enclosed units to keep out as much dust and dirt as possible and to protect the mechanism from mechanical damage. The presence of oil through lubrication may cause dust or wear particles present to concentrate within the unit.
- f. Since the resistance is variable, it is necessary to provide some method of preventing movement of the wiper arm, other than those movements required during operation. For resistors which are not in continuous use, the short locked shaft with a slotted end is preferred. For continuous use, the high torque shaft will limit the amount of motion due to shock, vibration, and accidental movement. Where it is absolutely necessary to have a long shaft, a coupled extension is preferred to one long integral shaft. Regardless of the type of shaft, the use of oversize control knobs which permit high rotational torque will generally result in damage to the integral stop. Use the smallest size knob to reduce torque.
- g. When choosing a resistor, take care to ensure that the power rating of the unit will be sufficient to handle the higher current produced when the resistance is reduced, particularly if being used in series as a voltage dropping resistor.
- h. When a variable linear resistor is being used as a voltage divider, the output voltage through the wiper will not vary linearly if current is being drawn through it. This characteristic is usually called the "loading error." To reduce the loading error, the load resistance should be at least 10 to 100 times as great as the end-to-end potentiometer resistance.
- i. Lead screw actuated variable resistors can provide a high degree of accuracy in critical adjustments; however, the user should consider the effects of backlash in the lead screw position versus wiper position. The resistance obtained at an initial setting may change slightly under conditions of vibration and shock as the wiper settles into a new position. The magnitude of this change is allowed to be as high as 1 percent when new, and can increase with age up to about 3 percent or the equivalent of one-half turn of the lead screw. In extremely critical applications, it may be desirable to decrease the resistance value of the variable resistor, and add a suitable fixed resistance in series to obtain the same overall resistance, thus giving less critical adjustments but with a decrease in the adjustable range.

APPENDIX

30.3 Mounting guide.

30.3.1 <u>Stress mounting</u>. Improper heat dissipation is the predominant contributing cause of failure for any resistor type; consequently, the lowest possible resistor surface temperature should be maintained. Figure 3 illustrates the manner in which heat is dissipated from fixed resistors in free air. The intensity of radiated heat varies inversely with the square of the distance from the resistor. Maintaining maximum distance between heat-generating components serves to reduce cross-radiation heating effects and promotes better convection by increasing air flow. For optimum cooling without a heat sink, small resistors should have large diameter leads of minimum length terminating in tiepoints of sufficient mass to act as heat sinks. All resistors have a maximum can cause the resistor to malfunction. Resistors should be mounted so that there are no abnormal hot spots on the resistor surface. When mounted, resistors should not come in contact with heat-insulating surfaces.

FIGURE 3. Heat dissipation of resistors under room conditions.

30.3.2 <u>Resistor mounting for vibration</u>. Resistors should be mounted so resonance does not occur within the frequency spectrum of the vibration environment to which the resistors may be subjected. Some of the most common resistor packaging methods result in large resistor noise. Resistor mounting for vibration should provide (1) the least tension or compression between the lead and body, (2) the least excitation of the resistor in relation with any other surface, and (3) no bending or distortion of the resistor body.

30.3.3 <u>Circuit packaging</u>. Resistors that are crowded together and come into contact with each other can provide leakage paths (even well insulated parts) for external current passage. This can change the resultant resistance in the circuit. Moisture traps and dirt traps are easily formed by crowding. Moisture and dirt eventually form corrosive materials which can deteriorate the resistors and other electronic parts. Moisture can accumulate around dirt even in an atmosphere of normal humidity. Planning should be done to eliminate crowding of parts. Proper space utilization of electronic parts can reduce the package size and still provide adequate spacing of parts.

- 30.3.4 Summary. The following is a guide for resistor mounting:
 - a. Maintain lead length to a minimum. The mass of the point acts as a heat sink. (<u>NOTE</u>: Where low temperatures are present, leads should be offset (bent slightly) to allow for thermal contraction.)
 - b. Close tolerance and low-value resistors require special precautions (i.e., short leads and good soldering techniques) since the resistance of the leads and the wiring may be as much as several precent of the resistance of the resistor.

APPENDIX

- c. Maintain maximum spacing between resistors.
- d. For resistors mounted in series, consider the heat being conducted through the leads to the next resistor.
- e. Large power units should be mounted to the chassis.
- f. Do not mount high-power units directly on terminal boards or printed circuits.
- g. To provide for the most efficient operation and even heat distribution, power resistors should be mounted in a horizontal position.
- h. Select mounting materials that will not char and can withstand strain due to expansion.
- i. Consider proximity to other heat sources as well as self heat.
- j. Consider levels of shock and vibration to be encountered. Where large body mass is present, the body should be restrained from movement.

30.4 <u>Effects of circuit usage</u>. Resistors must be selected to be compatible with the conditions to which they are exposed. Numerous matters must be considered in this selection process. The most important are noted in the following.

30.4.1 Resistance value. This is initially determined by the circuit requirements, and may seem a trivial thing to mention. However, most resistor calculations that are made without reference to available resistors come out to a resistance value that is not standard. The design engineer should be aware of the standard resistance values that are available from manufacturers who adhere to this standard and various military specifications for resistors. These differ somewhat with the various types of resistors. It is usually a fairly simple thing to bring the exact calculated value in line with a standard value. In the case where this cannot be done, a parallel or series combination of resistors can usually be used. The design engineer should also remember that the resistance value of the resistor that gets into the physical circuit will differ from the value he has stated on his circuit schematic, and that this difference will change as time goes by. The purchase tolerance of the resistor to be used will allow it to differ from the nominal stated value, depending on the type of resistor specified. Furthermore, the temperature at which the resistor works, the voltage across it, and the environment in which it lives will affect the actual value at particular times. For example, the designer should allow for a possible variation of ±15 percent from the nominal value of a purchased ±5 percent composition resistor, if he expects his circuit to continue to operate satisfactorily over a very long time under moderate ambient conditions. Such a figure is a rule of thumb, based on many tests, and many resistors will remain much nearer their starting value; but if many are used, chance will ensure that some will go near this limit. A similar figure can be deduced from each variety of resistor used.

- 30.4.1.1 Summary.
 - a. Select a resistor for each circuit application from the lists of standard types and values.
 - b. Be sure that the circuit being designed will work with any resistor whose resistance value is within the limits set by tolerance plus voltage coefficient plus temperature coefficient plus drift with time. Failure to take these precautions can possibly mean that in equipment produced in quantity for the armed services, there may be some circuits that will not work under extreme conditions.
 - c. Various initial tolerances are available depending on the type of resistor. It should be remembered that initial accuracies become meaningless if the inherent stability of the resistor does not support the initial accuracy.

APPENDIX

d. During shelf life, as well as during operational life, any characteristic (i.e., resistance, inductance, power rating, dielectric strength, size, etc.) of any part may change value due to stresses caused by environmental changes of temperature, humidity, pressure, vibration, etc. Changes of character- istic caused by environmental stresses may be linear or nonlinear, reversible or nonreversible (permanent), or combinations thereof. Where a character- istic of the part undergoes a linear change during environmental stress, and the change reverses itself linearly when the environmental stress is removed so that the characteristic returns to its normal value, this rate of change in characteristic value (per unit change in stress value) is designated (x) coefficient, and is usually expressed in percent or ppm/°C.

30.4.2 <u>Power rating</u>. The minimum required power rating of a resistor is another factor that is initially set by the circuit usage, but is markedly affected by other conditions of use. As mentioned previously, the power rating is based on the hot-spot temperature the resistor will withstand, while still meeting its other requirements of resistance variation, accuracy, and life.

30.4.2.1 <u>Self-generated heat</u>. Self-generated heat in a resistor is, of course, calculated as $P = I^2R$. This figure, in any circuit, must be less than the actual power rating of the resistor used. It is the usual practice to calculate this value and to use the next larger power rating available in the standard. This calculation should, however, be considered only as a first approximation of the actual rating to be used.

30.4.2.2 <u>Rating versus ambient conditions</u>. The power rating of a resistor is based on a certain temperature rise from an ambient temperature of a certain value. If the ambient temperature is greater than this value, the amount of heat that the resistor can dissipate is correspondingly reduced, and therefore it must be derated because of temperature. The applicable section of this standard and all of the military specifications contain derating curves to be applied to the resistors covered.

30.4.2.3 <u>Rating versus accuracy</u>. Because of the temperature coefficient of resistance that all resistors possess, a resistor which is expected to remain near its measured value under conditions of operation must remain cool. For this reason, all resistors designated as "accurate" are very much larger physically for a certain power rating than are ordinary "nonaccurate" resistors. In general, any resistor, "accurate" or not, must be derated to remain very near its original measured value when it is being operated.

30.4.2.4 <u>Rating versus life</u>. If especially long life is required of a resistor, particularly when "life" means remaining within a certain limit of resistance drift, it is usually necessary to derate the resistor, even if ambient conditions are moderate and if accuracy by itself is not important. A good rule to follow when choosing a resistor size for equipment that must operate for many thousands of hours is to derate it to one half of its nominal power rating. Thus, if the self-generated heat in the resistor is 1/3 watt, do not use a 1/2-watt resistor, but rather a 1-watt size. This will automatically keep the resistor cooler, will reduce the long-term drift, and will reduce the effect of the temperature coefficient. In equipment that need not live so long and must be small in size, this rule may be impractical, and the engineer should adjust his dependence on rules to the circumstances at hand. A "cool" resistor will generally last longer than a "hot" one, and can absorb transient overloads that might permanently damage a "hot" resistor.

30.4.2.5 <u>Rating under pulsed conditions and under intermittent loads</u>. When a resistor is used in circuits where power is drawn intermittently or in pulses, the actual power dissipated with safety during the pulses can sometimes be much more than the maximum rating of the resistor. For short pulses, the actual heating is determined by the duty factor and the peak power dissipated. Before approving such a resistor application, however, the engineer should be sure (1) that the maximum voltage applied to the resistor during the pulses is never greater than the permissible maximum voltage for the resistor being used, (2) that the circuit cannot fail in such a way that continuous excessive power can be drawn through the resistor and cause it to fail also, (3) that the average power being drawn is well within the agreed-on rating of the resistor, and (4) that continuous steep wavefronts applied to the resistor during the total continuous steep wavefronts applied to the resistor.

APPENDIX

30.4.3 <u>High frequency</u>. For most resistors the lower the resistance value, the less total impedance it exhibits at high frequency. Resistors are not generally tested for total impedance at frequencies above 120 hertz. Therefore, this characteristic is not controlled. The dominating conditions for good high-frequency resistor performance are geometric considerations and minimum dielectric losses. For the best high-frequency performance, the ratio of resistor length to the cross sectional area should be a maximum. Dielectric losses are kept low by proper choice of the resistor base material, and when dielectric binders are used, their total mass is kept to a minimum. The following is a discussion of the high-frequency merits of these major resistor types:

- a. <u>Carbon composition</u>. This type exhibits little change in effective dc resistance up to frequencies of about 100 kHz. Resistance values above .3 megohm start to decrease in resistance at approximately 100 kHz. Above frequencies of 1 MHz, all resistance values exhibit decreased resistance.
- b. <u>Wirewound</u>. Wirewound resistors have inductive and capacitive effects and are unsuited for use above 50 kHz, even when specially wound to reduce the inductance and capacitance. Wirewound resistors usually exhibit an increase in resistance with high frequencies because of "skin" effect.
- c. Film type. Film-type resistors have the best high-frequency performance. The effective dc resistance for most resistance values remains fairly constant up to 100 MHz and decreases at higher frequencies. In general, the higher the resistance value the greater the effect of frequency.

30.5 Effects of mechanical design and ambient conditions. Since the operation of a circuit cannot be divorced from the physical configuration it assumes when assembled, some of the points that apply herein have already been discussed. It is well, however, to check this aspect of equipment design several times, so redundancies in the following paragraphs are deliberate for the sake of emphasis.

30.5.1 <u>Mechanical design of resistors</u>. Much trouble during the life of the equipment can be eliminated if the design engineer can be sure that the resistors he is specifying for his circuits are soundly constructed and proper equipment assembly techniques are utilized. The resistor types listed in this standard provide a great measure of this assurance and, in general, assure a uniform quality of workmanship. The areas detailed in 30.5.1.1 through 30.5.1.6 are included as indicators of sound product construction.

30.5.1.1 End-caps or terminations. The connection between the resistor element itself and the pigtails or leads that connect it into the circuit must be so good that no possible combination of conditions met in the proposed service can cause an intermittent connection. The military specifications cover this point, and provide tests to check for it. When resistors are handled in automatic assembly machines, this precaution is particularly important.

30.5.1.2 Effect of soldering. There are assembly techniques that affect resistor reliability. Resistors should never be overheated by excessive soldering-iron applications, and the resistor leads should not be abraded by assembly tools. No normal soldering practice, either manual or dip soldering, should damage the resistor physically or change its resistance value appreciably.

30.5.1.3 <u>Moisture resistance</u>. Moisture is the greatest enemy of components and electronic equipment. Usually a resistor will keep itself dry because of its own self-generated heat; this is, of course, only true when the equipment is turned on. If the equipment must stand for long periods under humid conditions without power applied, the engineer should determine whether his circuits will operate with resistance values which have changed from the "hot" condition, and whether the retrace of the resistance value during the warmup period will allow the equipment to work satisfactorily during this period. If it will not, he must see that a resistor adequately protected against moisture absorption is used. The resistor cannot be blamed for performing improperly if it is not designed for the use to which it is put. It is therefore up to the design engineer to analyze what is needed and to provide the resistor to meet these conditions. This standard and the applicable military specifications constitute a guide as to what various kinds of resistors will do under humid conditions.

MIL-STD-1990

APPENDIX

30.5.1.4 Method of mounting. Large resistors that are not provided with some adequate means of mounting should not be considered. Under conditions of vibration or shock, lead failure can occur, and the larger the mass supported by the leads the more probable a failure will be. Even when vibration or shock will not be a serious problem, ease of assembly and replaceability suggest that large components be mounted individually.

30.5.1.5 <u>Resistor body</u>. The body of the resistor must be sufficiently strong to withstand any handling it is likely to get. The specifications call out, through workmanship and packaging requirements, that it be shown by the manufacturer that his product will not crack, chip, or break in transit, on the shelf, or in the normal assembly process.

30.5.1.6 Insulation or coating. All resistors intended for use in reliable electronic equipment must be protected by an insulating coating. Sometimes this is a molded phenolic case, epoxy coating, or ceramic or glass sleeves. Wirewound power resistors use various cement and vitreous enamel coatings to protect the windings, and to insulate and provide moisture barriers. Not all of the coatings and insulations applied to commercial resistors are satisfactory for extreme variations in ambient conditions; the various military specifications include tests used to qualify the various manufacturers' products thus providing a greater confidence in the coating used.

30.5.2 Effects of ambient conditions. In the establishment of ratings for resistors, the design engineer has implicitly considered the mechanical design of the equipment. This may not have been realized, but it is so because the ambient conditions in which the resistor must operate determine to a large degree the power rating and mechanical construction of the resistor if long life -- or any life, under extreme conditions -- is desired.

30.5.2.1 <u>Resistor heating</u>. A very important question in the application of resistors is how hot will they get in service. In a piece of equipment the heat in a resistor comes from several sources; namely, (1) self-generated heat, and is the thing that can be easily calculated, and (2) the heat that the resistor receives from other resistors or other heat-producing components in the same immediate neighborhood by radiation, and is not so easily calculated. The important thing to remember is that under these conditions each resistor will be heated more than I²R would suggest; when much heat is produced, as in stacked wirewound resistors, the design engineer would do well not to freeze his design until he has measured a typical assembly with power on to see just how hot the resistors get. The same thing is true of the extra heating given the resistors by convection. This is another way of saying that high-ambient temperature will reduce the actual power rating of the resistor by reducing permissible temperature rise, a point that has been made several times before. The equipment designer must realize also that the heat being produced by "hot" resistors, diodes, and other resistors usually do not fail immediately when overheated. The effect of too much heat is a deteriorating one, weakening the component until at a later date it will unexpectedly fail. It is very easy to put a "heat bomb" in a piece of equipment that will not go off in normal production testing but will do so when the equipment gets into service and is being relied on to do its duty. It is also very easy to eliminate such troubles by strict and thoughtful attention to the problem of heating. A few rules have been given for use as guides to protect against these factors (see 30.3).

30.5.2.2 <u>High altitude</u>. With the exception of the dielectric withstanding voltage test at reduced barometric pressure, all tests in military specifications referenced herein are performed at ambient atmospheric pressure. This fact should be considered when the use of these resistors for high-altitude conditions is contemplated.

30.5.2.3 Flammability. It should be noted that military specifications referenced herein contain no requirements concerning the flammability of the materials used in the construction of these resistors. Users should take this into consideration when a particular application involves this requirement.

19

APPENDIX

40. SUPPLEMENTAL INFORMATION

40.1 Reliability. The established reliability specification provides for the establishment of a failure rate figure through the single parameter of load life only. Although, in most instances, the established reliability specification provides for more frequent moisture resistance, burn in, and other types of screening tests on a 100-percent basis, the failure rate figure (in percent per 1,000 hours) is based only on load life test results.

40.2 <u>Metric equivalents</u>. The metric equivalents (to the nearest .01 mm) which are provided in the individual sections are for general information only and are based upon 1 inch = 25.4 mm.

40.3 International standardization agreements. Certain provisions of the specifications referenced in this standard are the subject of international standardization agreements (see table IV). When amendment, revision, or cancellation of any of these specifications is proposed which will affect or violate the international agreement concerned, the preparing activity will take appropriate reconciliation action through international standardization channels including departmental standardization offices, if required.

.

4

Section	Туре	Styles available in standard	Power and Imax voltage I ratings	 Resistance tolerance (* percent) 	Ohmic range	Temperature range (°C) <u>1</u> /	Resistance temperature coefficient (ppm/°C)	Max body size (inches)	 Configuration (see fig. 4)
101 (MIL-R-26)	Wirewound (Power Type)	RW29 RW31 RW33 RW35 RW37 RW37 RW38 RW47 RW47 RW56	11 W 14 W 26 W 55 W 113 W 159 W 210 W 14 W	5, 10 " " "	1.1 to 5.6 kΩ 1.1 to 6.8 kΩ 1.1 to 18 kΩ 1.1 to 43 kΩ 1.1 to 91 kΩ 1.1 to .15 MΩ 1.1 to .15 MΩ 1.1 to .18 MΩ	25 - 350 "	*400 [\] (R<20Ω), *260 (R <u>></u> 20Ω)	1.812 x .500 1.562 x .594 3.062 x .594 4.062 x .906 6.062 x 1.312 8.062 x 1.312 10.562 x 1.312 2.094 x .563	D
102 (MIL-R-22684)	Film (Insulated)	RL42TX	2 W/500 V	2,5	10 to 1.5 MΩ	70 - 150	*200	.728 x .336	A
103 (MIL-R-18546)	Wirewound (Power Type, Chassis Mounted)	 RE77 RE80 	75 W 2/ 1 120 W 2/		.05 to 29.4 kΩ .1 to 35.7 kΩ	25 - 275 25 - 275	±30 (R>2 K), ±50 (R<2 K) ±30 (R≥2 K), ±50 (R<2 K)	3.594 x 1.781 x 2.843 4.594 x 2.219 x 3.031	 E E
301 (MIL-R-39008)	Composition (Insulated), Established Reliability	RCR05 RCR07 RCR20 RCR32 RCR32 RCR42	L.125 W/150 V .25 W/250 V .5 W/350 V 1 W/500 V 2 W/500 V	5, 10 1 " 1 " 1 " 1 "	2.7 to 22 MΩ 2.7 to 22 MΩ 1.0 to 22 MΩ 1.0 to 22 MΩ 1.0 to 22 MΩ	70 - 130 "	*6.5 percent to *25 percent at -55°C and *5 percent to to *15 percent at 105°C dependent on resistance resistance value	.160 x .066 .281 x .098 .416 x .161 .593 x .240 .728 x .336	А м п ц
302 (MIL-R-55182)	Film, Established Reliability	RNR50 RNR55 RNR60 RNR65 RNR70 RNR75 RNR75	1.05 W/200 Y 1.1 W/200 Y 1.1 W/200 Y 1.125/200 Y 1.25 W/250 Y 1.25 W/300 Y 1.25 W/300 Y 1.5 W/350 Y 1.5 W/350 Y 1.5 W/350 Y 1.5 W/350 Y 1.5 W/350 Y 1.5 W/350 Y 1.5 W/500 Y 1.4 W/750 Y 1.3 W/300 Y 1.6 W/300 Y 1.5 W/300 Y 1	.1, .5, 1	10 [°] to .796 MΩ 10 to 2.0 MΩ 1.0 to 4.02 MΩ 1.0 to 8.06 MΩ 1.0 to 15 MΩ 24.9 to 2 MΩ 4.99 to 100 kΩ	125 - 175	±25, ±50, ±100 " " ±25 ±5 -65 <u><t<125, 125="" <t<175<="" u="" ±10=""></t<125,></u>	.170 x .080 .281 x .140 .437 x 165 .656 x .250 .875 x .328 1.124 x .437 .320 x .345 x .120	A
303 (MIL-R-39005)	Wirewound (Accurate), Established Reliability	RBR52 RBR53 RBR54 RBR55 RBR56 RBR57 RBR71 RBR75	.5 W/600 V .33 W/300 V .25 W/300 V .15 W/200 V .125 W/150 V .75 W/600 V .125 W/150 V .125 W/150 V	.01,.05,.1,1 " " " " " " "	1.1 to .806 MΩ 1.1 to .499 MΩ 1.1 to .255 MΩ 1.1 to .150 MΩ 1.1 to .1 MΩ 1.1 to 1.37 MΩ 1.1 to 1.37 MΩ 1.1 to 71.5 kΩ	125 - 145	*90 (R <1Ω), *30 (1Ω <r<10ω), *15 (10Ω ≤R<100Ω), *10(R≥100Ω) " " " " " "</r<10ω), 	1.020 x .390 .770 x .390 .770 x .265 .520 x .265 .364 x .265 1.020 x .515 .343 x .281 .315 x .265	A e e e e e e e e E A
304 (MIL-R-390D7)	Wirewound (Power Type), Established Reliability	 RWR78 RWR80 RWR81 RWR82 RWR84 RWR89 	10 W 2 W 1 W 1.5 W 7 W 3 W	1.1, .5, 1 1.1, .5, 1 1	.1 to 39.2 kΩ .1 to 1.21 kΩ .1 to .464 kΩ .1 to .931 kΩ .1 to 12.4 kΩ .1 to 3.57 kΩ	25 - 275	*20 (R≥10Ω) "	1.842 x .406 .437 x .125 .281 x .105 .328 x .094 .937 x .343 .622 x .218	

TABLE I. Fixed resistor selection guidance table.

See footnotes at end of table.

21

Section	Туре	Styles available in standard	Power and max voltage ratings	Resistance tolerance (± percent)	Ohmic range	Temperature range (°C) <u>1</u> /	Resistance temperature coefficient (ppm/°C)	Max body size (inches)	Configuration (see fig. 4)
305 (MIL-R-39017) 	; Film (Insulated), Established Reliability 	RLR05 RLR07 RLR20 RLR32	.125 W/200 V .25 W/250 V .5 W/350 V 1 W/500 V	1, 2	4.7 to .3 MΩ 10 to 10 MΩ 4.3 to 3.01 MΩ 10 to 1.0 MΩ	70 <u>-</u> 150 "	±100 " "	.170 x .074 .281 x .098 .416 x .151 .593 x .205	А и и
306 {MIL-R-39009} 	Wirewound (Power Type, Chassis Mounted), Established Reliability	RER40 RER45 RER50 RER55 RER50 RER60 RER65 RER70 RER75	5 W 10 W 2/ 20 V 30 A 5 W 1 5 W 1 0 W 20 W 30 W		11 to 1.65 kΩ 11 to 2.80 kΩ 11 to 2.80 kΩ 11 to 19.6 kΩ .1 to 3.32 kΩ .1 to 5.62 kΩ .1 to 5.62 kΩ .1 to 5.62 kΩ .1 to 39.2 kΩ	25 <u>-</u> 275 0 1 1 1 1	*100 (R<1Ω), *50 (1Ω <r<19.6ω),< td=""><td>.662 x .677 x .351 .812 x .343 x .437 1.124 x 1.125 x .593 2.000 x 1.137 x .556 .652 x .677 x .351 .312 x .343 x .437 1.124 x 1.125 x .593 2.000 x 1.187 x .556</td><td>F 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0</td></r<19.6ω),<>	.662 x .677 x .351 .812 x .343 x .437 1.124 x 1.125 x .593 2.000 x 1.137 x .556 .652 x .677 x .351 .312 x .343 x .437 1.124 x 1.125 x .593 2.000 x 1.187 x .556	F 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
307 (M1L-R-55342) 	Film, Chip. Established Reliability 	RM0502 RH0505 9.40705 RH1005 RH1005 RH1505 RH2208	.02 W/40 V .15 W/40 V .10 Y/40 V .15 W/40 V .10 W/50 V .225 W/50 V	1, 5, 10 " " " "	5.6 to .1 MΩ 5.6 to .47 MΩ 5.6 to .1 MΩ 5.6 to .1 MΩ 5.6 to .1 MΩ 5.6 to 15 MΩ 	70 - 125 " " "	*100, *300 "" "	.055 x .035 x .010/.040 .05 x .05 x .04 .10 x .05 x .04 .15 x .05 x .04 .075 x .05 x .04 .230 x .035 x .010/.040	Т 11
303 303 (MIL-R-122) 	Resistor, Fixed Precision	M122*01 M122*03 M122*06 M122*10	3 W/300 V 3 W/300 V 10 W/200 V 15 W/200 V	.005,.01,.05 1, 5, 1.0 , "	10 to .1 MΩ 10 to .2 MΩ 10 to .5 MΩ 10 to .4 MΩ	-55° to +175°C -55° to 150°C -55° to +125°C -55° to +150°C	Resistance value ppm/°C 15 to greater, less than 10 *5 11 or greater, less than 5 *10 iless than 1 *50	.302 x .325 x .105/1.375 .302 x .325 x .105/1.375 1.5 x .250 x 1.5 x 1.92 .302 x .325 x 1.375 x .105	

TABLE I. Fixed resistor selection guidance table - Continued.

. .

1/ Full load ambient operating temperature and zero load temperature, respectively. $\overline{2}/$ Mounted on a metal chassis. $\overline{3}/$ Power rating at 70°C (full load ambient operating temperature).

APPENDIX

.

4

t L	1	l Styles	 Schematics	Pow	Power ratings 1/		Pasistance	Obric			erature		
Section	Type 	available in standard 	available in standard 	і Н І	K and M	l ICandi¥ I	tolerance (* percent)	l range	range {°C} <u>2</u> /	l Resistance tem Coefficio Coefficio ppm/C	ent Max body) (inche	/size es}	Configuration (see fig. 4)
501 (MIL-R-83401)	 Film (network) 	RZ010 	A 5 J 	.2/1.4 .1/1.3	.2/1.4 .1/1.3 .05/1.2	 .1/.7 	1.1,.5,1,2,5	10 to 1 ΜΩ 	70 - 125	*50, *100, * 	•300 .785 x .3	305 x .200	P
	1 	RZ020 	A B J	.2/1.6 .1/1.5	.2/1.6 .1/1.5 .05/1.4	.1/.8	.1,.5,1,2,5	 10 to 1 Ma 	70 - 125	±50, ±100, ±	•300 .876 x .3	305 x .200	R
	 	RZ030 	A B J	.05/.35 1.025/.325 .015/.35	.05/.35 .025/.325 .015/.35		.5, 1, 2, 5	 10 to 1 MΩ 	70 - 125	*50, *100,	±300 .385 x .3	305 x .075	Q
		RZ040	і С І Н І ІІ		.2/1.8 .11/1.8 .2/1.0	† 	1, 2, 5	 10 to 1 Ma 	70 - 125	±100, ±30	.598 x .1	103 x .350	S
		RZ050	1 C 1 d 1 G		.2/1.8 .11/1.8 .2/1.0		1, 2, 5	1 1 10 to 1 ΜΩ 1	70 - 125	±100, ±30		103 x .350	S
		RZ060	і І С І Н І G		.2/1.8	 	1, 2, 5	 10 to 1 Ma 	70 - 125 I	±100, ±3(.998 x .3	352 x .103	S
	 	RZ070	I C I H G	.12/.60	.12/.60 .07/.60 .12/.36	 	1.1,.5,1,2,5	27 to 1 Ma	70 - 125	±50, ±100,	*300 .598 x .3	103 x .195	S
		RZ080 	I C I H I G	.12/.84 .12/.48	.12/.84 .07/.84 .12/.48		.1,.5,1,2,5	27 to 1 Ma	70 - 125	±50, ±100, =	⊧300 .798 x .3	103 x .197	S
		RZ090	[С Н G	.12/1.08	.12/1.08 .12/.60 .07/1.08	 	1.1,.5,1,2,5	27 to 1 M.2 	70 - 125	i ±50, ±100, :	⊧300 .998 x .:	103 x .197	S
Section	Туре	i Styles Lavailable in standard	Power rating	 Thermal time constant	 Dissipa const	tion ant	Resistive tolerance	 Resistance ratio 	i Tei I I	mperature range (°C)	Max body size {inches}	Conf	iguration
502 (MIL-T-23648)	Thermistor	L RTHD6	.05 W	ხ ა s	ວິπw/	•c	5 percent	 680 ג min 4700 max	 _!	55 to 125	.30 x .150 x .126		M I
-	-	RTHOS	1.0 W	250 s	ໄ 10 ສW/	*c	5 percent	 180Ω min 1800Ω max		N	.028 x .50 x .35 x 1.50	ή·	W I
		RTH10	 1.5 W 	450 s	15 mW/	•c	5 percent	 68ລ min 330ລ max		11	.92 x .113 x 1.50 x .45		W I
		RTH22	0.5 W	60 s	រ 1 15 តា\/	*c	5 percent	10 Ω min 39 kΩ ma	x	ei	.16 x .43 x 1.25 x.028	1 	X I
<u> </u>		RTH42	0.25 W	60 s	2.5 m	w/*c	5 percent /	10Ω min 10 kΩ ma	x	14	.110 x 1.20 x .330 x .02	1 31 1	X

TABLE II. Special fixed resistor selection guidance table.

1/ Power rating at 70°C (full load ambient operating temperature). $\underline{Z}/$ Full load ambient operating temperature and zero load temperature, respectively.

Downloaded from http://www.everyspec.com

TABLE	III.	Variable	resistor	selection	guidance	table.
					-	

Section	Туре	Styles available in standard	Power rating (watts)	Taper data	Nominal total resistance	Temperature range (°C) <u>1</u> /	Resistance temperature coefficient (ppm/ [*] C)	Max body size (inches)	Configuration
1 201 (MIL-R-94)	Composition (Insulated)	R¥4 R¥6	2, 1 .5, .25	A, C A, C	50 to 5 MΩ 100 to 5 MΩ	70 - 120 70 - 120	111111 11111	1.156 x .750 .516 x .593	G G
202 (MIL-R-19)	Wirewound (Low Operating) Temperature)	RA20 RA30	2, 1,1 4, 2,2	A (lin), C (10% CW)	3 to 15 kΩ 3 to 25 kΩ	40 - 105 40 - 105		1.310 x .700 1.710 x .810	G G
203 (MIL-R-22) 	Wirewound (Power Type)	RP05 RP06 RP10 RP15 RP20 RP25 RP30	5 12.5 25 50 75 100 150	Linear " " " "	10 to 5 kΩ 1 to 3.5 kΩ 12 to 5 kΩ 11 to 10 kΩ 12 to 10 kΩ 12 to 10 kΩ 12 to 10 kΩ 12 to 10 kΩ	25 - 340 "		.525 x .687 .906 x .751 1.680 x 1.410 2.410 x 1.440 2.810 x 1.780 3.190 x 1.780 4.060 x 2.030	G " " "
204 (MIL-R-12934)	Wirewound, Precision	RR0900 RR1000 RR1100 RR1300 RR1400 RR2000 RR3000 RR3000 RR3200 RR3200 RR3200 RR3200 RR3500 RR3500 RR3500 RR3900 RR3900 RR3900 RR4100	$\begin{array}{c} 1.25\\ 2.0\\ 1.5\\ 2.0\\ 3.0\\ 4.0\\ 5.0\\ 6.0\\ 1.25\\ 1.50\\ 2.0\\ 4.0\\ 6.0\\ 1.5\\ 1.5\\ 2.0\\ 5.0\\ \end{array}$	Linear " " " " " " " " "	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	85 - 15J	±30, ±100	.880 x .812 .880 x 1.625 1.067 x .812 1.442 x 1.062 1.442 x 2.250 2.005 x 1.312 2.005 x 1.312 .906 x .750 1.093 x .750 1.468 x 1.062 2.031 x 1.156 3.031 x 1.156 .906 x 1.219 .890 x 1.500 1.844 x 2.094	
2J5 (MIL-R-39002)	Wirewound, Semi-Precision	RKO9	1.5	Linear	10 to 50 kΩ	85 - 135	±70 (R≥50Ω), ±200 (R<50Ω)	.515 x .650	J J
1 206 (MIL-R-27208)	Wirewound, (Adjustment Type)	RT26	.25		10 to 2 kΩ	85 - 150	±50	.185 x .270 x .270	К
207 (MIL-R-22097)	Non-Wirewound {Adjustment Type)	RJ24	.5		10 to 1 MΩ	85 - 150	±100, ±250	.375 x .375 x .150	ĸ
208 (MIL-R-23285)	Non-Wirewound	RVC6	.5	A, C	100 to 2.5 MΩ	125 - 175	+250	.516 x .469	J J
209 (MIL-R-39023)	Non-Wirewound, Precision	RQ090 RJ100 RQ110 RQ150 RQ160 RJ200 RQ210 RQ200 RQ200	1.0 2.5 1.25 1.50 3.5 2.00 4.5 3.00	Linear " " " " " " "	100 to 1 MΩ 100 to 1 MΩ 100 to 1 MΩ 100 to 1 MΩ 100 to 1 MΩ 1000 to 3 MΩ 1000 to 3 MΩ 1000 to 3 MΩ	70 - 125 "		.880 x .810 .880 x 1.88 1.067 x .810 1.442 x 1.06 1.442 x 2.50 2.005 x 1.31 2.005 x 2.90 3.005 x 1.31	Н В 9 9 8 9 10 11 11 11 11 11 11 11 11 11 11 11 11

. .

See footnotes at end of table.

24

APPENDIX

3

TABLE III. <u>Variable resistor selection guidance table</u> - Continued.

۲

4

Section	Туре	Styles available in standard	Power rating {watts}	Taper data	Nominal total resistance	Temperature range (°C) <u>1</u> /	Resistance temperature coefficient (ppm/°C)	Max body size {inches}	Config- luration (see fig. 4)
401 (MIL-R-39015)	Wirewound (Lead-Screw Actuated), Established Reliability	RTR12 RTR22 RTR24 	.75 .75 .75		10 to 10 kΩ 10 to 10 kΩ 10 to 5 kΩ	85 - 150	+50 "	1.260 x .200 x .330 510 x .197 x .510 .390 x .245 x .390	L K K
1 402 (MIL-R-39035) 	Non-Wirewound (Adjustment Type), Established Reliability 	RJR12 RJR24 RJR26 RJR28 RJR50	.75 .5 .25 .3 .25		10 to 1 MΩ 10 to 1 MΩ 50 to 1 MΩ 100 to 2 MΩ 100 to 1 MΩ	85 - 150 "	+50, +100, +250 # "	1.260 x .330 x .200 .390 x .195 x .420 .270 x .195 x .270 .510 x .110 x .180 .270 x .250	L X K L

 $\underline{1}/$ Full load ambient operating temperature and zero load temperature, respectively.

TABLE IV.	Military specification to NATO style cross reference.

		Louis ve Look	T				····
Military specification	Milítary type	NATO style	NEPR 1	Military specification	Military type	Equivalent NATO style	l NEPR
	-						<u> </u>
			· · · · · ·	T T T			······
MIL-R-26 (See section 101) 	RW29 RW31 RW33 RW35 RW37 RW38 RW47 RW47 RW56	NRW01 NRW02 NRW03 NRW04 NRW05 NRW06 NRW07 NRW09	5 " " " " "	MIL-R-55182 (See section 302) - Continued)))	RNR65H RNR65J RNR65K RNR70E RNR70H RNR70J RNR70K	NRNO2 NRN34 NRN54 NRN45 NRN03 NRN35 NRN55	6 " " " " "
MIL-R-39008 (See section 301)	RCR05 RCR07 RCR20 RCR32 RCR32 RCR42	NRCO6 NRCO2 NRCO3 NRCO4 NRCO5	2	MIL-R-39005 (See section 303)	RBR52 RBR53 RBR54 RBR55 RBR55 RBR57 RBR71	NR810 NR809 AR808 NR807 NR819 NR818 NR818 NR814	1 8 1 1 1 1 1 1
MIL-R-55182 (See section 302)	RNR50H RNR50J RNR50K RNR55E RNR55E RNR55J RNR55J RNR55S	NRN22 6 NRN31 " NRN51 " NRN42 " NRN21 " NRN32 " NRN32 "	6 " " " " "	MIL-R-39007 (See section 304)	RWR78 RWR80 RWR81 RWR84 RWR89	NRW53 NRW54 NRW55 NRW56 NRW56 NRW57	72 и и и и
	RNRGOL RNRGOH RNRGOJ RNRGOK RNRGSE	NRN43 NRN01 NRN33 NRN53 NRN44		MIL-R-39017 (See section 305)	RLR05C RLR07C RLR20C RLR32C RLR32C RLR42C	NRC16 NRC11 NRC12 NRC13 NRC15	4 1 4 1 "
			VARIABLE	RESISTORS			
MIL-R-94 (See section 201)	RV4S RV4T RV6S RV6T	NRVD6 NRV20 NRV10 NRV21		MIL-R-22 (See section 203)	RP05 RP06 RP10 RP15 RP20	I NRPOB I NPRO7 I NRPO2 I NRPO3 I NRPO4	
MIL-R-19 (See section 202)	RA20 RA30	NRAO8 NRA10	9 "		RP 25 RP 30	NRP05 NRP06	II II .

APPENDIX

APPENDIX

Style	Detail specification	Military specification	Section	Style	 Detail specification 	 Military specification 	Section
RA10	1	 MIL-R-19	202	RJR28	 5	MIL-R-39035	402
RA20	2		М	RJR50	4	1 "	i "
RA30	3	И		RK09	1	MIL-R-39002	205
RBR52	1	MIL-R-39005	303	RK11	1 3	1 "	["
RBR53	2	u	1 1	RLR05	1 5	MIL-R-39017	1 305
RBR54	3		n n	I RLRO7	1		
RBR55	4			RLR20	2		
RBR56	5			I RLR32	1 3		100
I RBR57	1 /			1 RL42IX	1 8	MIL-R-22684	1 102
RBR71	6	! "		RM0502		M1L-R-55342	1 307
1 RBR74	8			I RM0505			i "
RBR/5	9			RM1005	1 3	 	1
RBR/6	1 10			I RM1505	4		,
RBR80		1 1					і і н
L KEKSI			201			I MIL 0 55192	1 302
L RCR05	4	MIL-K-39008	1 301		1 1	[MIL-K-00102	
		1 4				1 1	 11
			1 11		1 5	н н	լո
	1 5	1 [1	н		1 6	1 1	1 u
RER40	2	MTI_R_39009	306	LI RNC75	1 10		, 1 "
RER45	2	"		I RNC90	9	1 11	j "
RER50	2		u u	RNR50	i 7		j ••
1 RER55	2	i "		RNR55	1	1 "	i "
RER60	1	, u	в.	I RNR60	3	l "	1 "
RER65	1	1 11	<u>н</u>	ii RNR65	5	1 "	۳ I
RER70	1	1 "	u	RNR70	6		"
RER75	1	1 ¹⁰	н Н	I RNR75	10	"	۱ "
RE77	1 2	MIL-R-18546	103	RP05	15	MIL-R-22	203
RE80	2			II RPO6	1	1 "	"
RFP01	1	MIL-R-122	308	RP07	2		
RFP03	3			RP10	3		
RFP06	6			RP11	4	¹⁷	"
(REP10	1 10			11 RP15			I
I RJRIZ		I MIL-R-39035	402	KMID		t u	
		ь 1 п	1 11	KP20 nD25		1 1 11	1 1
I KUKZO		1	8 1	Kr29 		I	
1	1			1 4 1 1			ι 1
					1		1

TABLE V. Detail specification number by style number.

ς.

ł

MIL-STD-199D

..

APPENDIX

Style	Detail specification	Military specification 	Section 	Style	Detail specification	Military specification 	Section
RP 30	9	MIL-R-22	203	RR4000	31	MIL-R-12934	204
RP35	10	19	"	RR4100	32	41	"
RP40				RTH06	1	MIL-R-23648	502
KP45		1		RTH08	2	н	
KP50				RTH10	3		! "
KP 55				RTH22	9		
KUU51	1 10	MIL-K-39023	209 [I RTH42	19		1
RUU90				RTR12	1	MIL-R-39015	401
RUU91				I RIR22	2		
RU100				I RTR24	3		
RUIIU 20150		H I		I RI10	2	MIL-R-27208	206
KU150			. !	RT26	10		
KU100			. !	I RT27	11	"	. "
RUZUU				RVC6	3	MIL-R23285	208
RUZIU			-	I RV2	4	MIL-R-94	201
RQ300				I RV4	5	1	
RRU900		MIL-K-12934	204	RV5	2	4	
RK1000				I RY6	3 1		
001100	1 34 1			I RWR78	. 7	MIL-R-39007	304
RK1100		13			. 8		4
DD1400	1 17 1	14	4 1	KWK81	9		
DD2000			я I		12 1		
002002	4 32	u	ы		10	u i	
002100		a			11 1		
RR2100	1 7 1	u i		1 RW29 to 391	3	MIL-R-26	101
RR2104	1 35 E	H		KW47	3 1	<u> </u>	"
002100	I 5 I 10	u		RW50	4		
RK3100		n		RZUIU		MIL-R-83401	501
002200	1 15 16	u 1	- a -	I KZUZU	2		4
RK3300				I RZ030 I	3		
RR3400		·· }		I KZ040	4	"	ч
883600		н 1	9	I KZ050	5	"	
DD3601			4	I KLUDU	<u>b</u>		и 1
RR3700	1 28 1	u i		1 KZU/U		······································	
RR3800	i 20 i	U I	u	IRZUOU 197000 1	0	·· · · · · · · · · · · · · · · · · · ·	
RR3900	30			KZUSU 2D\/7.	9 C		0.01
			-		0	мтс-к-94	201

TABLE V. Detail specification number by style number - Continued.

APPENDIX

FIGURE 4. Configurations.

MIL-STD-199D APPENDIX

FIGURE 4. Configurations - Continued.

Downloaded from http://www.everyspec.com

MIL-STD-199D

APPENDIX

FIGURE 4. <u>Configurations</u> - Continued.
SECTION 100

RESISTORS, FIXED

Sectio	<u>20</u>	۰.	Applicable specification
101.	Resistors, Fixed	, Wirewound (Power Type)	MIL-R-26
102.	Resistors, Fixed	, Film, Insulated	MIL-R-22684
103.	Resistors, Fixed Mounted)	, Wirewound (Power Type, Chassis	MIL-R-18546

100 (CONTENTS)

SECTION 101

RESISTORS, FIXED, WIREWOUND (POWER TYPE) STYLES RW29, RW31, RW33, RW35, RW37, RW38, RW47, AND RW56 (APPLICABLE SPECIFICATION: MIL-R-26)

1. SCOPE. This section covers power type, wirewound, fixed resistors. Included are general purpose radial tab_styles of 5- and 10-percent initial resistance tolerances with power ratings ranging from 11 to 210 watts at 25°C, derated to 0 power at 350°C (characteristics V and N). These resistors are not designed for high frequency applications where the ac performance is of critical importance. They are especially suited for use in electrical, electronic, communication, and associated equipment.

2. APPLICATION INFORMATION.

2.1 Style selection.

2.1.1 <u>Construction</u>. The construction of styles herein employs a measured length of resistance wire or ribbon of a known ohmic value wound in a precise manner where the pitch, effective wire coverage, and wire diameter are specification controlled. The continuous length of resistance wire (wire required to be free of joints, welds or bonds, and of uniform cross-section) is wound on a core or tube, usually of ceramic, and attached to end terminations (tabs or axial leads). The element assembly, including connections or terminations of the resistive element, are protected, insofar as necessary, by an enclosure or coating of insulating, moisture-resistant material (usually inorganic vitreous enamel or a silicone).

2.1.2 <u>Power rating</u>. These resistors have a power rating based on a continuous rated-wattage operation at an ambient temperature of 25°C, without exceeding a hot spot temperature of 350°C. If these resistors are to be operated at an ambient temperature greater than 25°C, the resistors should be derated in accordance with figure 101-1.

FIGURE 101-1. Derating curve for high ambient temperature.

101 (MIL-R-26)

2.1.3 <u>Resistance wire</u>. Wire size of less than .001 inch nominal diameter is not recommended for new design.

2.1.4 Derating for optimum performance. Because all of the electrical energy dissipated by a resistor is converted into heat energy, the temperature of the surrounding air becomes an influencing factor in the selection of a particular resistor for use in a specific application. The power rating for these resistors is based on operation at an ambient temperature of 25° C; however, in actual use, the resistors may not be operating at this temperature. After the desired resistance tolerance and the anticipated maximum ambient temperature have been determined, a safety factor of 2, applied to the wattage, is recommended in order to insure the selection of a resistor having an adequate wattage-dissipation potential, and one which will remain within specified tolerance limits.

2.1.5 <u>Choice of style</u>. Resistors to be used in equipment should be so chosen that, when mounted in the equipment, they will not operate at a temperature in excess of their rating. This should be applicable under the most severe conditions, as follows:

- a. In the maximum specified ambient temperature.
- b. Under conditions producing maximum temperature rise in each resistor.
- c. For a sufficient length of time to produce maximum temperature rise, or for the maximum specified time.
- d. With all enclosures in place.
- e. With natural ventilation only. (This should permit the use of any special ventilating provisions included as a standard part of the equipment.)
- f. At high altitude.

2.2 <u>Spacing.</u> When resistors are mounted in rows or banks, they should be so braced that, taking into consideration the restricted ventilation and heat dissipation by nearby resistors, no resistor in the rows or banks exceeds its maximum permissible hot-spot temperature. An appropriate combination of resistor spacing and resistor power rating must be chosen if this is to be insured.

2.3 <u>Soldering</u>. A solder with a minimum melting temperature of 350°C should be used for soldering. Care must be exercised in soldering low value and tighter tolerance resistors since high contact resistance may cause resistance changes exceeding the tolerance.

2.4 <u>Mounting</u>. Under conditions of severe shock or vibration, or a combination of both, resistors of all sizes described in this section should be mounted in such a fashion that the body of the resistor is restrained from movement with respect to the mounting base. It should be noted that if clamps are used, certain electrical characteristics of the resistor will be altered. The heat-dissipating qualities of the resistor will be enhanced or retarded depending on whether the clamping material is a good or poor heat conductor. Under less severe vibration conditions, axial lead styles may be supported by their leads only. The lead lengths should be kept as short as possible, 1/4 inch or less preferred, but not longer than 5/8 inch. The longer the lead, the more likely that a mechanical failure will occur. For mounting of tab-terminal resistors, use bracket assemblies specified on MS75009. Figure 101-2 provides an outline of these assemblies; see MS sheet for detailed information.

2.5 <u>Secondary insulation</u>. Where high voltages are present between resistor circuits and grounded surfaces on which resistors are mounted, secondary insulation capable of withstanding the voltage conditions should be provided between resistors and mountings or between mountings and ground.

2.6 <u>Coating materials</u>. Certain coating materials used in fabricating resistors furnished under MIL-R-26 may be subject to "outgassing" of volatile material when operated at surface temperatures over 200°C. This phenomena should be taken into consideration for equipment design.

FIGURE 101-2. Bracket assembly.

3. ITEM IDENTIFICATION (see figures 101-3 and 101-4).

3.1 <u>Type designation</u>. The type designation is used for identifying and describing the resistor as shown on figure 101-3.

FIGURE 101-3. Type designation example.

3.2 <u>Performance characteristics</u>. The performance characteristics of these resistors are as shown in table 101-1.

3.3 <u>Decade values</u>. The resistance values shall follow the standard decade of values as shown in the following:

	lecade of val	les
10	22 24 27	47 51 56
13	30	62 68
16 18	36	75 82
20	43 	91

.

.

4. DELETED STYLES. Resistors, styles RW55, RW67, RW68, RW70, RW74, RW78, RW79, RW80, and RW81, formerly covered in this section, have been intentionally deleted and are no longer standard items for new design. For new design, use styles RWR74, RWR78, RWR80, RWR81, RWR84, and RWR89 of MIL-R-39007 (see section 304).

1/ For styles RW35, RW37, RW38, and RW47, dimension "E" applies for at least 1/2 inch (12.70) from each end of the tube; the remainder of the core is not less than 1/4 inch (6.35) in diameter.

FIGURE 101-4. Fixed wirewound resistors (power type).

101 (MIL-R-26)

TABLE 101-I.	Performance	characteri	istics.

Features	 RW29 	RW31	RW33	RW35	 RW37 	R W 3 8	RW47	RW56
Resistance tolerance (*percent)	R<1Ω=10 R <u>></u> 1Ω=5	 See RW29 	See RW29	 See RW29 	See RW29 	 See RW29 	 See RW29 	See RW29
 Min resistance (ohm) 	0.10	0.10 	0.10	 0.10 	0.10	 0.10 	0.10	0.10
 Max resistance (kilohm) Characteristic V Characteristic N	 5.6 2.7	 6.8 3.3 	 18.0 8.1	 43.0 20.0	 91.0 43.0 	 150.0 75.0 	180.0 81.0	9.1
Resistance temperature characteristic (ppm/°C)	1 1			SEE FI	GURE 101	- 3		1
Power rating (watts) at 25°C	11 	14	26	55 	113	159	210	
<pre>Max percent change in I resistance (±) 1/ I Thermal shock Short-time overload Terminal strength Dielectric withstand- ing voltage High temperature exposure Moisture resistance Low temperature storage Shock (specified pulse) Vibration, high frequency Life (full load at 25°C) 2,000 hr</pre>	2 2 1 .1 2 2 2 2 2 N/A N/A 3	2 2 1 .1 2 2 2 2 N/A N/A N/A 3	2 2 1 -1 2 2 2 2 2 2 N/A N/A 3	 2 2 1 1 2 2 2 2 2 2 2 2 2 2	2 2 1 .1 2 2 2 2 N/A N/A 3	2 2 1 1 2 2 2 2 2 2 N/A N/A 3	2 2 1 .1 2 2 2 2 N/A N/A 3	
Insulation resistance (megohms) Dry (initial) Wet (after moisture resistance)	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000

...

 $\underline{1}$ / Total resistance change shall be considered as ± (_ percent +0.05 ohm).

SECTION 102

RESISTORS, FIXED, FILM, INSULATED

STYLE RL42 TX

(APPLICABLE SPECIFICATION: MIL-R-22684)

1. SCOPE. This section covers insulated, film, fixed resistors having a film resistance element and axial leads. These resistors are capable of full-load operation at an ambient temperature of 70°C and have a resistance-temperature characteristic of ±200 parts per million per degree Celsius (ppm/°C).

2. APPLICATION INFORMATION.

2.1 Style selection.

2.1.1 <u>Construction</u>. In these resistors, the resistance element consists of a film-type resistance element which has been formed on a substrate by one of several processes depending upon the manufacturer. The element is spiraled to achieve ranges in resistance value and, after lead attachment, the element is coated to protect it from moisture or other detrimental environmental conditions.

2.1.2 <u>Power rating</u>. These resistors have a power rating based on continuous, full-load operation at an ambient temperature of 70°C. If the resistors are to be operated at temperatures exceeding 70°C, the resistors must be derated in accordance with figure 102-1.

FIGURE 102-1. Derating curve for high ambient temperature.

2.1.3 Derating for optimum performance. After the maximum ambient temperature has been determined, a safety factor of two applied to the wattage is recommended in order to insure the selection of a resistor with an adequate wattage dissipation potential.

102 (MIL-R-22684)

2.1.4 <u>Resistance tolerance</u>. Designers should bear in mind that operation of these resistors under the ambient conditions for which military equipment is designed may cause permanent or temporary changes in resistance sufficient to exceed their initial tolerance. In particular, operation at extreme temperatures may cause relatively large temporary changes in resistance.

2.2 <u>Maximum voltage</u>. The maximum continuous working voltage of 500 volts should in no case be exceeded, regardless of the theoretically calculated rated voltage.

2.3 <u>Noise</u>. Noise output is uncontrolled by the specification but is considered a negligible quantity.

2.4 <u>Shelf life</u>. MIL-R-22684 estimates a change of resistance of .2 percent (average) per year under normal storage conditions ($25^{\circ} \pm 10^{\circ}$ C) with relative humidity not exceeding 90 percent).

3. ITEM IDENTIFICATION (see figures 102-2 through 102-4).

3.1 <u>Part number</u>. The part number is used for identifying the resistor as shown in figure 102-2.

M22684/08

1001

SPECIFICATION NUMBER: The number identifies the detail specification number (indicating MIL-R-22684/8).

DASH NUMBER: The applicable dash number is as indicated in table 102-I and corresponds to the type designation as per figure 102-3.

FIGURE 102-2. Part number example.

3.2 <u>Type designation (for reference only)</u>. The type designation is used for describing the resistor as shown in figure 102-3.

	<u>RL42 S 100 G TX</u>
STYLE: The two-letter symbol "RL" identifies in- sulated, film, fixed resistors; the two-digit number identifies the size and power rating.	
TERMINAL: The single-letter symbol "S" identifies solderable terminals.]]
RESISTANCE:The three-digit number identifies the nominal resistance value, expressed in ohms; the first two digits represent significant figures and the last digit specifies the number of zeros to follow. (See table 102-I and the following example.) $100 10 \text{ ohms}$ $EXAMPLE: 201 200 \text{ ohms}$ 	
RESISTANCE TOLERANCE: The single-letter symbol identifies the resistance tolerance as follows:	
G ±2 percent J ±5 percent	
TX IDENTIFICATION: The symbol "TX" is a Government designation signifying additional quality assurance requirements.]

FIGURE 102-3. Type designation example.

TABLE	102-I.	Part	number	designation.
			Traine C 1	deargnation

Das	h number	Nominal	Type desig-	l Dash	number	Nominal	Type desig-
Resistance	e tolerance	total	nation 1/) Resistance	tolerance	total	nation 1/
<u> </u>	J	<u> resistance</u>	<u> </u>	G	IJ	l resistance	1
[· · · · · · · · · · · · · · · · · · ·		Ohms	1		1	i Ohms	T
			1				1 I
1001	1002	1 10	RL42S100_TX	1127	1128	4,300	I RL42S432 TX
1003	1004	11	RL42S110 TX	1129	1130	1 4,700	RL42S472 TX
1005	1006	12	RL42S120 TX	1131	1132	l 5,100	1 RL42S512 TX
1007	1008	13	1 RL42S130 TX	1133	1 1134	5,600	RI 425562 TX
1009	1010	1 15	RL42S150 TX	1135	1136	6,200	RI 425622 TX
1011	1012	16	RL42S160 TX	1137	11138	1 6 800	RI 429682 TY
1013	1014	1 18	RL42S180 TX	1139	1140	1 7 500	PL 425752 TY
1015	1016	1 20	L RL425200 TX	1141	1 1142	8 200	PI 425822
1017	1 1018	22	RL42S220 TX	1143	1144	9 100	DI 420012 TX
1019	1020	24	RI 425240 TX	1145	1 1146	1 10,000	DI 425102 TA
1021	1022	1 27	RL425270 TX	1147	1148	1 11 000	1 DE 490112 TV
1 1023	1024	30	1 81 425 300 TY	1140	1 1150	1 12,000	1 NE463113 IN 1
1025	1 1026	i 33	RI 425330 TX	1151	1 1162	1 12,000	RL463123 A
1 1027	1 1028	36		1153	1 1152	1 15,000	KL465133 X
1 1029	1 1020	30	DLA25300 TX	1155	1 1104	1 15,000	KL425153 X
1 1025	1 1030	1 33		1155	1 1150	1 10,000	1 KL425103 1X (
1 1031	1 1034	1 43		1157	1 1158	1 18,000	RL42S183 X
1 1025	1 1034	1 4/	KL425470 X	1159	1 1160	20,000	I RL42S203 TX
1 1035	1 1030	1 51	RL42S510 X	1161	1162	1 22,000	RL42S223 TX
1 1037	1 1038	50	RL425560 IX	1163	1164	24,000	RL42S243 TX
1 1039	1 1040	62	RL42S620 1X	1165	1166	27,000	RL42S273 TX
1 1041	1 1042	68	RL42S680 TX	1167	l 1168	30,000	RL42S303 TX
1 1043	1 1044	75	RL42S750 TX	1169	1170	33,000	RL42S333 ⁻ TX
1 1045	1 1046	82	RL42S820_TX	1171	l 1172	36,000	RL42S363 TX
1047	1048	91	RL42S910_TX	1173	1174	I 39,000	RL42S393 TX
1049	1050	100	RL42S101 TX	1175	1176	43,000	RL42S433 TX
1051	1052	110	RL42S111 TX	1177	1178	47,000	RL42S473 TX
1053	1054	120	RL42S121 TX	1179	1 1180	51,000	RL42S513 TX
1055	1056	130	RL42S131_TX	1181	1182	56,000	RL42S563 TX
1057	1058	150	RL42S151_TX	1183	1184	62,000	RL42S623 TX
1059	1060	160	RL42S161 TX	1185	1186	68,000	RI 425683 TX
1061	l 1062	180	RL42S181 TX	1187	1 1188	1 75,000	RL125753 TX 1
1063	1 1064	200	RL42S201 TX	1189	1 1190	82,000	
1065	1066	220	RI 425221 TX	1191	1 1192		DI 120012 TV 1
1067	1068	240	RI 425241 TX 1			Magaha i	1 KL423312 1X 1
1069	1070	270	RI 425271 TX	1193	1 1194		
1071	1 1072	300 1	PI 425301 TX	1195	1 1194		KL423104 A DI420114 TV
1073	1074	330 1	DI 425301 TX	1195	1 1190		KL425114 X DL426124 TV
1075	1 1076	360 1	DI 429361 TY	1100	1 1200		
1077	1078	390 1	DI 12C301 TY 1	1201	1 1200		KL425134 (X)
1079	1 1080	1 430 I	DI 125131 TY	1201	1 1202		RL425154 X
1081	1082	470 I	DI 425431 TA	1203	1 1204		KL425104 IX
1083	1084	510		1205	1 1200	0.10	RL425184 IX
1085	1 1084 1	510		1207		0.20	RL42S204 IX
1087	1088	620 I	KL423001 1A 1	1209	1210	0.22	RL425224 TX
1007	1000	690 1	KL423021 (X)	1211	1212	0.24	RL425244_1X_1
1003	1090	000	KL425081 1X 1	1213	1214	0.27	RL42\$274 TX
1091	1092 [/50	RL425751 TX	1215	1216	0.30	RL425304 TX
1 1093	1094	820	RL42S821_TX	1217	1218	0.33	RL42S334 TX
1095	1096	910	RL42S911_TX	1219	1220	0.36	RL425364 TX
1097	1098	1,000	RL42S102_TX	1221	1222	0.39	RL425394 TX 1
1099	1100	1,100	RL42S112 TX	1223	1224	0.43	RL425434 TX
1101	1102	1,200	RL42S122 TX	1225	1226	0.47	RI 425474 TY
1103	1104	1,300	RL42S132 TX	1227	1228	0.51	RI425514 TY I
1105	1106	1.500 İ	RL42S152 TX	1229	1230	0.56	
1107	1108	1.600 i	RL42S162 TX	1231	1232	0.62	
1 1109	1110 İ	1.800	RL42S182 TX	1233	123/	0.02 1	DI 125601 TV
1111 İ	1112	2,000	RI 425202 TY	1235	1226		NL443004 1X 1
<u>i 1113</u>	1114	2,200	RI 425222 TY	1237	1220		RL425/34 1A
1115	1116 1	2 400	DI 429242 TY 1	1220	1240	0.02	KL425024 1X)
1 1117	1118	2,700	DI 420272 TV	1233 (1080	0.91	KL425914 1X
1 1110	1120	3,000	DI 125202 TV	1040	1242	1.0	KL425105 TX
1121	1122	3 300	RL4433U2 1A	1243	1244	1.1	KL42S115_TX
1 1122 1	1124	3,500	RL4423332 1A 1	1245	1246	1.2	RL42S125 TX
1125	1126	3,000	RL442302 1A	124/	1248	1.3	KL42S135_TX
1 1120	1140	3,900	KL425392_1X	1249	1250	1.5	RL42S155 TX
<u> </u>	!						- 1

 $\underline{1}/$ Complete type designation includes the letter "G" or "J" for applicable resistance tolerance.

STYLE RL42 TX

T					Dimensions				
		TA			В		L C		
	Style _		T M.V.	 Min	Max	 Min	May	l. I Nin	Max
i		1 11 11				1		1	
İ	RL42 ··· TX	.648	1.728	1,375	1.625	1.043	.047	1.300	.336
		i	1		l			1	I

NOTE: The end of the body shall be that point at which the diameter equals the nearest drill size larger than 250 percent of the nominal lead diameter. The leads are solderable to within .125 inch (3.18 mm) of the resistor body.

FIGURE 102-4. Fixed film resistors (insulated).

Band A <u>1</u> /		Band	Band B <u>2/</u>		Band C <u>3</u> /		Band D <u>4/</u>		nd E <u>5/</u>
Color	First signif- icant figure	Color	Second signif- icant figure	Color	 Multiplier 	l` Co1or	 Resistance tolerance (percent) 	 Color 	Termina]
	0	Black		Black	1	Gold	±5	Green	Solder-
Brown	ī	Brown	i 1 i	Brown	10	Red	±2	1	able
Red	2	Red	2	Red	100	l	1	1	1
Drange	3	Orange	3	Orange	1,000	l	1	I	1
(ellow	4	Yellow	i 4	Yellow	10,000	1	1	1	1
Green	5	Green	5	Green	100,000	1	1	1	}
Blue	6	Blue	6	Blue	1,000,000		1	1	1
Purple	i 7	Purple	1 7 1	Silver	0.01	1	1	1	1
Violet)	Ì	(Violet)	İ	Gold	0.1	l –	1	1	1
irav	i 8	Gray	i 8 i		1	1	Í	1	l
lhite	9	White	9		1	1	1	1	i

TABLE 102-II. Color code for film-type resistors.

1/ The first significant figure of the resistance value.

- 2/ The second significant figure of the resistance value.
- 3/ The multiplier. (The multiplier is the factor by which the two significant figures are multiplied to yield the nominal resistance value.)
- 4/ The resistance tolerance.
- $\frac{5}{1}$ Indicates a solderable terminal and is the "TX" indicator band (This band is approximately 1-1/2 times the width of other bands.).

Example of color coding 5100 ohms ±5 percent, solderable leads:

Band A, green; Band B, Brown; Band C, red; Band D, gold; Band E, green.

Downloaded from http://www.everyspec.com MIL-STD-199D

.

3.2 <u>Performance characteristics</u>. The performance characteristics of these resistors are as shown in table 102-III.

Features	Specification number
Power rating (at 70°C) (watts)	2
Min resistance (ohms)	10
Max resistance (megohms)	1.5
Max continuous working voltage (volts)	500
Resistance temperature characteristic (ppm/°C)	l ±200
Max percent change in resistance 1/: Temperature cycling Low-temperature operation Short-time overload Terminal strength Dielectric withstanding voltage Resistance to soldering heat Moisture resistance Life Shock, medium impact Vibration, high frequency	<pre>1 1 1 1 1 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2</pre>
Dielectric withstanding voltage (volts rms): Atmospheric	1,000 500
Insulation resistance (megohms): Dry Wet (after moisture resistance)	1,000 100

.

TABLE 102-III. Performance characteristics.

 $\underline{1}/$ Where total resistance change is 1 percent or less, it shall be considered as \pm (percent \pm 0.05 ohm).

NOTE: All leads are solderable in accordance with method 208 of MIL-STD-202.

102 (MIL-R-22684)

SECTION 103

RESISTORS, FIXED, WIREWOUND (POWER TYPE, CHASSIS MOUNTED)

STYLES RE77 AND RE80

(APPLICABLE SPECIFICATION: MIL-R-18546)

1. SCOPE. This section covers chassis-mounted, power-type, wirewound, fixed resistors having a wirewound resistance element and lug-type axial leads. These resistors are capable of full-load operation at an ambient temperature of 25°C when mounted on the specified chassis area. These resistors are suitable for use at high ambient temperatures where space limitations are important and the principle of heat dissipation through a metal mounting surface can be utilized. These resistors are not suitable for application where the ac characteristics are of critical importance; however, provisions have been made to minimize the inductance.

2. APPLICATION INFORMATION.

2.1 Style selection.

2.1.1 <u>Construction</u>. In general, the element construction is similar to the processes and materials discussed in section 101; however, in this type of resistor, the finished resistor element and termination caps are sealed by a coating material. The coated element is then inserted in a finned aluminum alloy housing which completes the sealing of the element from detrimental environments, and provides a radiator and a heat sink for heat dissipation. These resistors must be wound either inductively or noninductively and the type of winding is identified by the type designation symbol.

2.1.2 <u>Power rating</u>. These resistors have a power rating based on continuous, full-load operation at an ambient temperature of 25° C and with a specified chassis area. If the resistors are to be operated at temperatures exceeding 25° C, the resistors must be derated in accordance with figure 103-1. (See 2.1.3 for chassis area derating.)

2.1.3 <u>Chassis derating</u>. These resistors, as noted in 2.1.2, are assigned power ratings when mounted on test chassis areas at 25°C. Figure 103-2 provides the chassis area derating curves for these resistors.

2.1.4 <u>Derating for optimum performance</u>. When the chassis area and the anticipated maximum ambient temperatures have been determined, a safety factor of 2 applied to the wattage is recommended in order to insure the selection of a resistor having an adequate wattage-dissipation potential.

2.1.5 <u>Choice of style</u>. Resistors to be used in equipment should be so chosen that, when mounted in the equipment, they will not be required to operate at a temperature in excess of their rating. This should be applicable under the most severe conditions as follows:

- a. In the maximum specified ambient temperature, limited chassis area.
- b. Under conditions producing maximum temperature rise in each resistor.
- c. For a sufficient length of time to produce maximum temperature rise, or for the maximum specified time.
- d. With all enclosures in place.
- e. With natural ventilation only. (This should permit the use of any special ventilating provisions included as a standard part of the equipment.)
- f. At high altitude.

103 (MIL-R-18546)

FIGURE 103-1. Derating curve for high ambient temperature.

2.2 <u>Spacing</u>. When resistors are mounted in rows or banks, they should be so spaced that, taking into consideration the restricted ventilation and heat dissipation by nearby resistors, none of the resistors in the row or bank exceeds its maximum permissible continuous operating temperature. An appropriate combination of resistor spacing and resistor power rating must be chosen if this is to be assured. In view of the chassis heat dissipation principle of these resistors, particular care must be exercised in order that the chassis temperature rise does not damage nearby components.

2.3 <u>Soldering</u>. A solder with a minimum melting temperature of 300°C should be used in soldering.

3. ITEM IDENTIFICATION (see figures 103-3 and 103-4).

3.1 <u>Type designation</u>. The type designation is used for identifying and describing the resistor as shown on figure 103-3.

3.2 <u>Performance characteristics</u>. The performance characteristics of these resistors are as shown in table 103-1.

3.3 <u>Decade values</u>. The resistance values shall follow the decade of values as shown in the following:

103 (MIL-R-18546)

	Resistanc	e values f	or the 10 to	o 100 decad	ie
10.00 10.20 10.50 10.70 11.00 11.30 11.50 11.80 12.10 12.40 12.70 13.00 13.30	Resistanc	e values fr 22.60 23.20 23.70 24.30 24.90 25.50 26.10 26.70 27.40 28.00 28.70 29.40	bor the 10 to 33.20 34.00 34.80 35.70 36.50 37.40 38.30 39.20 40.20 41.20 42.20	o 100 decad 47.50 47.50 48.70 49.90 51.10 52.30 53.60 54.90 54.90 57.60 59.00 60 40	1e 68.10 69.80 71.50 73.20 75.00 76.80 78.70 80.60 82.50 84.50 84.50 86.60 88 70
13.70 14.00 14.30 14.70 15.00	20.50 21.00 21.50 22.10	30.10 30.90 31.60 32.40	43.20 44.20 44.20 45.30 46.40	61.90 63.40 64.90 66.50	90.90 90.90 93.10 93.10 95.30 97.60

4. DELETED STYLES. Resistors, styles RE60, RE65, RE70, and RE75, formerly covered in this section, have been intentionally deleted and are no longer standard items for new design. For new design, use styles RER40, RER45, RER50, RER55, RER60, RER65, RER70, and RER75 of MIL-R-39009 (see section 306).

STYLE:The two-letter symbol "RE" identifies chassis- mounted, power type, wirewound fixed resistors; the two- digit number identifies physical size and power rating.CHARACTERISTIC:The single-letter symbol identifies the maximum continuous operating temperature and type of winding as follows:G (inductively wound)275°C max cont oper temp N (noninductively wound)RESISTANCE:The four-digit number identifies the nominal resistance value, expressed in ohms; the first three dig- its represent significant figures and the last digit	RE 7 7	G	1001
specifies the number of zeros to follow. For values less than 100 ohms, all digits are significant with the letter "R" representing the decimal point. (See 3.3 and the following example.)			
EXAMPLE:			
R1000.10 ohm 1R001.0 ohm 10011,000 ohms 100210,000 ohms			

FIGURE 103-3. Type designation example.

Style	A	В	C ±.031	 D 	 E <u>+</u> .094	F	G <u>+</u> .031	H ±.031
RE77	5.478	2.250 <u>+</u> .010	.375		3.500	.989 <u>+</u> .031	1.812	1.125
RE 80	7.000 <u>+</u> .125	2.500 <u>+</u> .015	.312	3.000 <u>+</u> .010	4.500	1.250 <u>+</u> .062	2.125	1.250
Style	J ±.031	К <u>+</u> .010	L ±.031	M <u>+</u> .062	N <u>+</u> .031	P	R <u>+</u> .010	s <u>+</u> .010
RE77	2.812	. 188	1.750	.770	. 188	12-24 UNC-2A		2.750
RE 80	3.000	.188	2.188	1.000	.250	1/4-20 UNC-2A	.875	3.875

NOTE: Mounting tabs apply to RE80 only.

FIGURE 103-4. Fixed wirewound resistors (power type, chassis mounted).

\103 (MIL-R-18546)

Features	Style	Style
	RE77	RE80
Max resistance-temperature $R \ge 2,000$ ohms characteristic in parts per million $R \ge 2,000$ ohms	30 50	30 50
Max ambient temperature at rated wattage	25°C 275°C	25°C 275°C
Min resistance (ohm) Characteristic G	0.0511 1.0	0.10 1.0
Max resistance (ohms) <u>1</u> / Characteristic G	29,400 14,700 75 30	35,700 17,400 120 75
Max weight (grams) Characteristic G	400 440	800 880
<pre>Max percent change in resistance (±) 2/ Temperature</pre>	0.5 0.2 0.5 1.0 0.2 1.0 0.2 1.0 1.0	0.5 0.2 0.5 1.0 0.2 0.2 0.2 1.0 1.0
Insuration resistance (megonins) (minimum). Dry	10,000 1,000 4,500 1,000	10,000 1,000 4,500 1,000
Terminal strength: Torque (inch-pounds)	 24 10, +0 -1/2 	 32 10, +0 -1/2

TABLE 103-I. Performance characteristics.

1/ Based on .00175 inch nominal diameter wire.
2/ Where total resistance change is 1 percent or less, it shall be considered as * { _____ percent +0.05 ohm).

SECTION 200

RESISTORS, VARIABLE

Sectio	<u>n</u>	Applicable specification
201.	Resistors, Variable, Composition	MIL-R-94
202.	Resistors, Variable, Wirewound (Low Operating Temperature)	MIL-R-19
203.	Resistors, Variable (Wirewound, Power Type)	MIL-R-22
204.	Resistors, Variable, Wirewound, Precision	MIL-R-12934
205.	Resistors, Variable, Wirewound, Semi-Precision	MIL-R-39002
206.	Resistors, Variable, Wirewound (Adjustment Type)	MIL-R-27208
207.	Resistors, Variable, Non-Wirewound (Adjustment Type) (Section Deleted)	MIL-R-22091
208.	Resistors, Variable, Non-Wirewound	MIL-R-23285
209.	Resistors, Variable, Non-Wirewound, Precision	MIL-R-39023

.

SECTION 201

RESISTORS, VARIABLE, COMPOSITION

* STYLES RV2, RV4, RV6, AND 2RV7

(APPLICABLE SPECIFICATION: MIL-R-94)

1. SCOPE. This section covers composition, variable resistors. These resistors are suitable for rheostat or potentiometer applications where stability and high precision are not required, and are capable of withstanding acceleration, shock, and high-frequency vibration. They are most useful in circuitry where high resistance values and low power dissipation are encountered in controlling volume, bias, tone, voltage output, and pulse width. Composition, variable resistors are useful only up to the low radiofrequency ranges.

2. APPLICATION INFORMATION.

2.1 Style selection.

ļ

2.1.1 <u>Construction</u>. These resistors have a composition resistance element shaped in an arc, and a contact bearing uniformly thereon, so that a change of resistance is produced between the terminal of the contact and the terminal at either end of the resistance element when the operating shaft is turned. The construction of the element is usually one of two types; a molded type which is a one-piece unit containing the resistance material, terminals, face plate, and the bushing, or a composition-film type constructed by spraying or painting a film of carbon resistance material onto the surface of a prepared form. A heat bonding of the element and form is then performed. The element is then contained in an enclosure which provides for environmental and mechanical protection.

2.1.2 Selection of a safe resistor style. The wattage ratings of these resistors

are based on operation at 70°C, mounted on a 16 gage steel plate, 4 inches square. This mounting technique should be taken into consideration when the wattage is applied during specific applications. When considering these resistors for potentiometer applications, it is necessary to bear in mind the fact that the load current as well as the "bleeder" current will be flowing through a part of the resistor and will contribute to the heating effect.

2.1.3 <u>Derating at high temperature</u>. When a resistor is to be used where the surrounding temperature is higher than 70°C, it should be derated in accordance with figure 201-1.

AMBIENT TEMPERATURE IN DEGREES CELSIUS

FIGURE 201-1. Derating curve for high ambient temperature.

2.1.4 <u>Derating for optimum performance</u>. After the anticipated maximum ambient temperature has been determined, a safety factor of 2 applied to the wattage is recommended in order to insure the selection of a resistor style having an adequate wattage rating with optimum performance.

2.2 <u>Soldering</u>. Care should be taken in soldering resistors, since all properties of a composition resistor may be seriously affected when soldering irons are applied to terminals for too long a period.

2.3 <u>Supplementary insulation</u>. These variable resistors should not be used at potentials to ground greater than 500 volts peak, or 200 volts peak for aircraft equipment, unless supplementary insulation is provided.

2.4 <u>Noise</u>. The noise level is quite high compared to other types of resistors. Thermal and mechanical noise level will normally decrease with the life of the resistor.

* 3. ITEM IDENTIFICATION (see figures 201-2, 201-3, and 201-4).

* 3.1 <u>Type designation</u>. The type designation is used for identifying and describing the resistor as shown on figures 201-2 and 201-3.

3.2 <u>Performance characteristics</u>. The performance characteristics of these resistors are as shown in table 201-1.

* 3.3 <u>Standard resistance values and rated continuous working voltages</u>. The preferred standard resistance values and rated continuous working voltages (RCWV) are as follows:

Resistance value	RCWV <u>1</u> /	(volts)	Resistance value	RCWV <u>1</u> /	(volts)
<u> </u>	тарет А	Taper C		laper A	l laper c
1		STYLE	RV2		
$\begin{vmatrix} 100\Omega \\ 150\Omega \\ 200\Omega 2/ \\ 250\Omega \\ 350\Omega \\ 350\Omega \\ 350\Omega \\ 1,000\Omega \\ 1,000\Omega \\ 1,500\Omega \\ 2,000\Omega 2/ \\ 2,500\Omega \\ 3,500\Omega \\ 3,500\Omega \\ 1,500\Omega \\ 1,5000\Omega \\ 1,5000\Omega \\ 1,5000\Omega \\ 1,500000 \\ 1,50000 \\ 1,5$	10 12 14 16 19 22 27 32 39 44 50 59 71 87 100	7 9 10 11 13 16 19 24 27 31 35 42 50 62 71	20,000Ω 2/ 25,000Ω 35,000Ω 50,000Ω 75,000Ω 150,000Ω 150,00Ω 150,00Ω 150,00Ω 2/ 150,00Ω 2/ 150,00Ω 150,00Ω 2/ 10,00Ω 2/ 10,00Ω 10,00	140 158 187 224 274 316 350 350 350 350 350 350 350 350 350 350	100 112 132 158 194 200 200 200 200 200 200 200 200 200 20
					200
1 1	 i	SITLE		• •	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 14 22 32 45 71 100 141 224	10 16 23 32 50 71 100 160	50,000Ω .10 MΩ .25 MΩ 1.0 MΩ 2.0 MΩ 2.5 MΩ 5.0 MΩ	316 445 500 500 500 500 500 500	224 316 350 350 350 350 350 350 350

See footnotes at end of table.

201 (MIL-F-94)

Resistance	RCWV <u>1</u> /	(volts)	Resistance	RCWV <u>1</u> /	(volts)
	Taper A	Taper C		Taper A	Taper C
<u> </u>	l	STYL	E RV6		<u>,</u>
100Ω 250Ω 500Ω 1,000Ω 2,500Ω 5,000Ω 10,000Ω 25,000Ω	7 11 22 35 50 71 112	5 8 11 16 25 36 50 80	50,000Ω .10 ΜΩ .25 ΜΩ .50 ΜΩ 1.0 ΜΩ 2.0 ΜΩ 2.5 ΜΩ 5.0 ΜΩ	158 224 350 350 350 350 350 350 350	112 160 200 200 200 200 200 200 200
T		RCWV	2RV7 3/ (volts	, 	I
	Reci	stance char	- acteristic con	nbination	[
<u> </u>			A		
 Resistance va	alue	Panel s	ection	Rear sec	ction
50Ω 100Ω 150Ω 200Ω 250Ω 350Ω 500Ω 750Ω 1,000Ω 1,000Ω 1,000Ω 2,500Ω 3,500Ω 2,000Ω 2,500Ω 3,500Ω 2,000Ω 2,500Ω 3,500Ω 5,000Ω 20,000Ω 15,000Ω 20,000Ω 15,000Ω 10,000Ω 15,000Ω 20,000Ω 15,000Ω 20,000Ω 15,000Ω 20,000Ω 15,000Ω 20,000Ω 15,000Ω 10,00Ω 15,000Ω 10,00Ω 15,000Ω 10,00Ω 15,000Ω 10,00Ω 1,0 MΩ 1,0 M		1 1 1 1 2 2 2 3 3 4 5 6 7 7 10 12 14 17 20 226 311 38 44 50 50 50 50 50 50 50	0 4 7 0 2 6 2 9 5 5 3 1 4 0 2 1 3 0 4 4 6 7 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 1 13 1 15 1 18 1 20 1 24 1 28 1 35 1 40 1 57 1 63 1 75 1 563 1 75 1 57 1 63 1 75 1 57 1 63 1 75 1 89 1 10 1 26 1 57 1 83 1 46 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 <td< td=""></td<>

RCWV at 70°C. For replacement purposes only. Not for new design. Rated continuous working voltage at 70°C. These are maximum values that would apply only when the other section has zero wattage dissipated. $\frac{1}{2}/\frac{3}{3}/$

Downloaded from http://www.everyspec.com MIL-STD-199D

FIGURE 201-2. Type designation example.

201 (MIL-R-94)

				_	 			
STYLE: The style is symbol "RV" preceded number. The first nu (2 cup) resistor, the variable resistors, and the symbol of the symbol.	s identified b and followed b mber identifies letters identif of the last num	y a two-letter y a one-digit a dual gauged y composition, ber identifies	2 R	<u>V7</u>	SD	103	102	A
The size and power rate <u>BUSHING</u> : The type of single letter in accor <u>TEMPERATURE AND MOISTU</u> The temperature and mo	ing of both cup bushing is id dance with MIL- <u>RE RESISTANCE C</u> isture resistance	s. entified by a R-94. HARACTERISTIC: ce characteris-						
OPERATING SHAFT: The lengths are identified first letter indicat accordance with MIL-P indicates operating s	operating sha by a two-letter es operating sl -94, and the baft length as	in accordance ft styles and r symbol. The haft style in second letter						
table 201.I. <u>RESISTANCE</u> : The no <u>expressed</u> in ohms is number. The first two figures and the last d zeros to follow. The designation is the wal	minal total re: identified by digits represen igit specifies first three digits	sistance value a three-digit nt significant the number of its in the type		<u>-</u>	 			
the mounting surface the resistance value o <u>RESISTANCE CHARACTERIS</u> resistance characteris by a single letter whi	and the next the f the second cup <u>TIC COMBINATIONS</u> tic combination ch describes a c	tor cup nearest nree digits is S: The is identified combination of						
Resistance characteris	IPanel section Resistance char	Rear section!			 			
/A		A						

FIGURE 201-3. Type designation example.

NOTE: Unless otherwise specified, tolerance is +.062 (1.57 mm).

FIGURE 201-4. Composition, variable resistors.

201 (MIL-R-94)

STYLE 2RV7

FIGURE 201-4. Composition, variable resistors - Continued.

STYLE RV6

SHAFT-AND PANEL-SEALED-LOCKING BUSHING TYPE

Inches	៣ ៣	Inches	m m 70	Inches	m m	
.001	.03	.031	.79	.245	0.22	
.002	.05	.062	1.57	.250	6.35	' <u>∽</u> .03I MAX, X 45
003	08	091	2.31	li .500	12.70	
.005	.13	. 094	2.39	531	13.49	125 ±.001
.010	.25	.125	3.18	.812	20.62	
.016	.41	,234	5,94	11		FLATTED SHAFT

NOTES:

 Unless otherwise specified, tolerance is ±.016 (.41 mm).
 When terminals are located symmetrically, the contact terminal is identified on the unit. The identifying mark is at the option of the supplier.

FIGURE 201-4. Composition, variable resistors - Continued.

-.094 ±.002

3.4 Linear and nonlinear tapers. Taper A is a linear resistance taper, which is one having a constant change of resistance with angular rotation, while taper C is a nonlinear resistance taper, which has a variation or lack of constancy in the change of resistance with angular rotation. (See figure 201-5.)

FIGURE 201-5. Clockwise taper.

3.5 <u>Shelf life</u>. An average resistance change (ΔR) of 20 percent per year under normal storage conditions is estimated.

3.6 <u>Temperature characteristic</u>. An average change of ±8 percent due to thermal cycling is estimated.

TABLE 201-1. Performance characteristics.

Features		Stv1	ρ	
	RAS I	RV4	T	2RV7
Type bushing	 Shaft and panel seal (S); Shaft and panel seal, locking (T)	 Snaft and panel seal (S); Shaft and panel seal, locking (T)	 Same as RV4 	Same as RV4
Switch	None	i None	None	None
Style shaft	 Slotted 5/3 inch (T bushing); 1/2 and 7/8 inch (S bushing)	 Slotted 5/8 inch (1 ⁹ bushing); 1/2 and 7/8 inch (S bushing)	 Slotted 5/8 inch (T bushing); 3/8 and 7/8 inch (S bushing)	Slotted 15/8 inch (T bushing); 11/2 and 7/8 inch (S bushing)
Style shaft	Flatted 7/d inch (S busning)	 Flatted 7/8 incn (S bushing)	 Flatted 7/8 inch (S bushing)	Flatted 17/8 inch (S bushing)
Minimum resistance, ohms: Taper A (linear) Taper C (10 percent Cd)	100 100	i 50 100	i 100 100	 50 50
Maximum resistance, megohms: Taper A (linear) Taper C (lò percent Cd)	 2.5 2.5	1 15 1	i 15 15	 5 1
Resistance characteristic	LJ percent resistance tolerance with linear taper (A) and LJ percent resistance tolerance with 10 percent CW taper (C)	10 percent resistance tolerance with linear taper (A) and 10 percent resistance tolerance with 10 percent CW taper (C)	Same as XV4	Same as 204
Power rating, watts (at 70°C): Taper A (linear) Taper C (10 percent CW)	 1/2	 2 1	 1/2 1/4 	 J-2 (punel), 1.5-0 (rear) taper A only
Torque: Operating	 1 inch-ounce min; 6 inch-ounces max 	 1 inch-ounce min; 6 inch-ounces max	 .5 inch-ounce min; 6 inch-ounces max 2 inch counds	 Same as R¥4
Stopping	la inch-pounds I	i 8 inch-pounds i	is inch-pounds	
lotal mechanical rotation, degrees: without switch	251 to 318	1 1304 to 320	 292 to 298	309 to 320
Electrical rotation,				
Without switch	251 to 318	309 to 320	292 to 298 	309 to 320
Resistant to moisture	Yes	Yes	Yes	Yes
Rotational life	25,000 cycles (S) bushing 500 cycles (T) bushing	25,000 cycles (S) busning 500 cycles (T) bushing	ISame as RV4 ISame as RV4	Same as RV4 Same as RV4
Max percent change in resistance (*): Load life (1,000 hr) Low temperature operation Low temperature storage Vibration (low frequency) Shock Vibration (high frequency)	10 percent 3 percent 2 percent 2 percent 2 percent 2 percent 2 percent	 1] percent 3 percent; 48 inch-ounces torque 2 percent 2 percent 2 percent 2 percent 2 percent	1 10 percent 13 percent; 30 inch-ounces torque 12 percent 12 percent 12 percent 12 percent 14 percent	10 percent 13 percent 12 percent 12 percent 12 percent 12 percent
. Moisture resistance	lk = 100 megohms; no mechanical damage	IR = 100 megohms; no mechanica] damage 	Same as RV4 	Same as RV4
Effect of soldering	No mechanical or electrical damage	No mechanical or electrical damage	Same as RV4	Same as RV4
Salt spray	Mechanically operative	Mechanically operative	Same as RV4	Same as R¥4

,

201.10

SECTION 202

RESISTORS, VARIABLE, WIREWOUND (LOW OPERATING TEMPERATURE)

STYLES RAZO AND RA30

(APPLICABLE SPECIFICATION: MIL-R-19)

1. SCOPE. This section covers low-operating temperature, wirewound, variable resistors. These resistors are designed primarily for noncritical, low-power uses where the characteristics of wirewound resistors are more desirable than those of composition. They have a hot-spot temperature of 105°C for continuous duty and may be used as bias controls and voltage dividers in test instruments, bridge circuits, etc. Designers are cautioned to give consideration to the frequency in such circuits where the inductance effects of these resistors might be undesirable.

2. APPLICATION INFORMATION.

2.1 Style selection.

2.1.1 <u>Construction</u>. These resistors have a resistance element of continuous length wire, wound on an insulating strip or core and shaped in an arc so that a contact bears uniformly on the resistance element when adjusted by a control shaft. Various functions are available as indicated on figure 202-2. The contact is insulated from the operating shaft and the resistor housing. The housing provides mechanical and environmental protection of the element.

2.1.2 <u>Selection of a safe resistor style</u>. The wattage ratings of these resistors are based on operation at 40°C, mounted on a 16-gauge steel plate, 4 inches square. This mounting technique should be taken into consideration when the wattage is applied during specific applications. When considering these resistors for potentiometer applications, it is necessary to bear in mind the fact that the lead current as well as the "bleeder" current will be flowing through a part of the resistor and will contribute to the heating effect.

2.1.3 <u>Nominal current rating</u>. The nominal maximum current rating of these resistors is as shown in table 202-I.

l 1 Taper	Maximum permissible current				
	High-resistance section	Low-resistance section			
Linear (A) Taper (C)	√W/R 0.745√W/R	 2.24√W/R			

TABLE 202-I. Maximum permissible current.

W = Rated nominal wattage for linear taper A resistors.

R = Nominal total resistance.

2.1.4 <u>Derating at high temperatures</u>. When a resistor is to be used in a circuit where the surrounding temperature is higher than 40°C, a correction factor must be applied to the wattage rating so as not to overload the resistor. This correction factor may be taken from the curve shown on figure 202-1. It should be noted that the continuous wattage rating for linear types is directly proportional to the amount of resistance element in the circuit.

2.1.5 <u>Derating for optimum performance</u>. After the anticipated maximum ambient temperature has been determined, a safety factor of 2 applied to the wattage is recommended in order to insure the selection of a resistor style having an adequate wattage rating, with optimum performance.

3. ITEM IDENTIFICATION (see figures 202-2 and 202-3).

3.1 <u>Type designation</u>. The type designation is used for identifying and describing the resistor as shown on figure 202-2.

3.2 <u>Performance characteristics</u>. The performance characteristics of these resistors are as shown in table 202-II.

3.3 <u>Preferred resistance values</u>. The preferred nominal total resistance values are as follows:

 	Ohms	0 hms	Ohms 	Ohms	
	3 6 8 10 15 20 25	35 50 75 100 150 200 250	350 500 750 1,000 1,500 2,000 2,500	3,500 5,000 7,500 10,000 15,000 *20,000 *25,000	
	1	1			ł

* Applicable to RA30 only. (See table 202-II for minimum and maximum resistance values available in taper C.)

Downloaded from http://www.everyspec.com

MIL-STD-199D

	RA20 T A SA 3	RO A
STYLE: The two-letter symbol "RA" identifies wirewound, variable resistors; the two-digit number identifies the size and power rating.		
BUSHING: The single-letter symbol identifies the type of mounting bushing as follows:		
T Locking bushing, shaft and panel seal S Standard bushing, shaft and panel seal		
SWITCH: The single-letter symbol "A" indicates the		
OPERATING SHAFT: The two-letter symbol identifies the operating shaft. The first letter "S" indicates a slotted shaft; the second letter indicates the operating shaft length as follows:		
 B 5/8 inch, screwdriver slotted (locking bushing type T) D 7/8 inch, knob (standard bushing type S) A 1/2 inch, screwdriven slotted 		
(standard bushing type S)		
RESISTANCE: The three-digit number identifies the nominal resistance value, expressed in ohms; the first two digits represent significant figures and the last digit specifies the number of zeros to follow. For values less than 10 ohms, the letter "R" represents the decimal point. (See 3.3 and the following example.)		
EXAMPLE:		
3RO 3.0 ohms 100 10 ohms 101 100 ohms		
RESISTANCE CHARACTERISTIC: The single-letter symbol identifies the resistance characteristic as follows:		
A Taper A (linear CW), ±10 percent resistance tolerance C Taper C (10 percent CW) ±10 percent resistance tolerance		

FIGURE 202-2. Type designation example.

STYLE RA20

SHAFT-AND PANEL-SEALED LOCKING BUSHING TYPE

FIGURE 202-3. Wirewound (low operating temperature), variable resistors.

SHAFT-AND PANEL-SEAL TYPE STANDARD BUSHING

SHAFT-AND PANEL-SEALED LOCKING BUSHING TYPE

3.4 Linear and nonlinear tapers. Taper A is a linear resistance taper, which is one having a constant change of resistance with angular rotation, while taper C is a nonlinear resistance taper, which has a variation or lack of constancy in the change of resistance with angular rotation. (See figure 202-4.)

FIGURE 202-4. Clockwise tapers.
TABLE	202-11.	Performance	characteristics.
		And the second s	

Features	Styl	e
	RA20	RA30
Type bushing and symbol	 Shaft and panel seal; standard (S), locking (T)	Same as RA20
Switch	l None	None
Style shaft	Slotted 5/8 inch (locking bushing) 1/2 and 7/8 (shaft and panel seal)	Same as RA20 Same as RA20
Minimum resistance (ohms): Taper A (linear) Taper C (lO percent CW)	3 10	 3 10
Maximum resistance (ohms): Taper A (linear) Taper C (lO percent CW)	15,000 5,000	25,000 7,000
Resistance characteristic	10 percent resistance tolerance with linear taper (A) and 10 percent resistance tolerance with 10 percent CW taper (C)	Same as RA20
Power rating (watts) (at 40°C):		
Taper A (linear) Taper C (10 percent CW)	2.0	4.0 2.2
Total mechanical rotation, degrees: Without switch	290 to 305	280 to 305
Electrical rotation, degrees:	290 to 305	280 to 305
Resistant to moisture	Yes	Yes
Dielectric withstanding voltage 	No breakdown, arcing, or mechanical damage. Leakage current not in excess of 10 milliamperes.	Same as RA20
Maximum percent change in resistance:	_	
Low-temperature storage Low-temperature operation Temperature cycling	4 percent 4 percent; 40 inch-ounces (torque) 4 percent. No mechanical damage. 	4 percent 4 percent; 40 inch-ounces 4 percent. No mechanical damage.
Load life Moisture resistance Rotational life (full load):	3 percent 10 percent	3 percent
25,000 cycles - S-bushing 500 cycles - T-bushing Shock	5 percent 5 percent 2 percent. No mechanical damage.	5 percent 5 percent 2 percent. No mechanical
Vibration	2 percent. No mechanical damage.	lamage. 2 percent. No mechanical damage.
nsulation resistance (min) (megohms):	100	
Wet (after moisture resistance) [100 3.5	100 3.5
1		i

.

1

SECTION 203

RESISTORS, VARIABLE (WIREWOUND, POWER TYPE)

STYLES RP05, RP06, RP10, RP15, RP20, RP25, AND RP30 (UNENCLOSED)

(APPLICABLE SPECIFICATION: MIL-R-22)

1. SCOPE. Resistors covered by this section are particularly adaptable to such applications as motor speed controls; generator field controls; lamp dimming; heater and oven controls; potentiometer uses; and applications where variation of voltage or current is required (such as voltage-divider and "bleeder" circuits).

2. APPLICATION INFORMATION.

2.1 Style selection.

2.1.1 <u>Construction</u>. These resistors have a resistance element of wire, wound on an insulating core and shaped in an arc. The wire and core are usually bonded to the base structure by a vitreous enamel. A contact arm bears uniformly on the resistance element when adjusted by a control shaft. Rotation is limited by stop, and electrical off positions are available. All styles in this section are classified as "unenclosed."

2.1.2 <u>Selection of a safe resistor style</u>. The wattage ratings of these resistors

are based on operation at 25°C, mounted on a 12-inch square steel panel, .063 inch thick (4 inch square x .050 for RPO5 and RPO6). This mounting technique should be taken into consideration when the wattage is applied during specific applications. When considering these resistors for potentiometer applications, it is necessary to bear in mind the fact that load current as well as the "bleeder" current will be flowing through a part of the resistor and will contribute to the heating effect.

2.1.3 Derating at high temperature. These resistors may be used at the full nominal wattage at an ambient temperature of 25°C. When a resistor is to be used where the surrounding temperature is higher than 25°C, a correction factor must be applied to the wattage rating so as not to overload the resistor. This correction factor may be taken from the curve shown on figure 203-1.

NOTE: Operation of these resistors at ambient temperatures greater than 125°C can damage the metal plating, the shaft lubricant, the insulation, etc., of the resistors.

FIGURE 203-1. Power-rating curves for continuous duty.

203 (MIL-R-22)

2.1.4 <u>Derating for optimum performance</u>. After the anticipated maximum ambient temperature has been determined, a safety factor of 2 applied to the wattage is recommended in order to insure the selection of a resistor style having an adequate wattage rating.

2.2 <u>Supplementary insulation</u>. These resistors should not be used at potentials above ground greater than 500 volts (250 volts for styles RP05 and RP06) unless supplementary insulation is used.

2.3 <u>Electrical off position</u>. Care should be exercised in specifying an electrical off position when resistors are required to break dc circuits having potentials in excess of 40 volts.

2.4 <u>Nominal maximum current rating</u>. The nominal maximum current rating of resistors is given as follows:

 $I = \sqrt{\frac{W}{R}}$

Where:

I = Nominal maximum current rating

W = Nominal wattage (entire element)

R = Nominal total resistance

The maximum current shall not be exceeded on any portion of the winding, under any conditions.

3. ITEM IDENTIFICATION (see figures 203-2 through 203-4).

3.1 Part number. The part number is used for identifying the resistor as shown in figure 203-2.

3.2 Type designation. The type designation is used for describing the resistor as shown in figure 203-3.

3.3 Performance characteristics. The performance characteristics of these resistors are as shown in table 203-I.

3.4 Preferred resistance values. The preferred nominal total resistance values are as follows:

Ohms	Ohms	Ohms
1.0 (RP06	15.0	500
and	25.0	1,000
RP15)	35.0	1,500
2.0	50.0	2,500
2.5	100	3,500
6.0	200	5,000*
8.0	350	10,000

Maximum value RP05.

NOTE: See table 203-I for minimum and maximum values applicable to each style.

Downloaded from http://www.everyspec.com

.

MIL-STD-199D

	M22/05	- 0001	$\frac{1}{T}$ $\frac{S}{T}$ $\frac{A}{T}$
SPECIFICATION NUMBER: The number identifies the de- tail specification number (indicating MIL-R-22/5).			
DASH NUMBER: The applicable dash number is as indi-	<u> </u>		
ELECTRICAL OFF POSITION: The single-digit number iden- tifies the electrical off position as follows:			
1 No electrical off position			
2 Electrical off position at end of rotation of control knob in a CCW direction			
3 Electrical off position at end of rotation of control knob in a CW direction			
SHAFT STYLE AND TYPE OF MOUNTING: The single-letter symbol identifies the style (slotted shaft) and type of mounting, as follows:			
S Standard bushing U Locking bushing			
SHAFT LENGTH: The single-letter symbol identifies the Tength of the operating shaft (±3/64 inch) as follows:			
A 1/2 inch, standard bushing (RP10, RP15,			
B 5/8 inch, standard bushing (RPO5 and PPO5), and locking bushing (RPO5 RPO5			
RP10, $RP15$, $RP20$, $RP25$, and $RP30$) D = -, $7/8$ inch, locking bushing ($RP05$); and standard bushing ($RP10$, $RP15$, $RP20$.			, d
RP25, and RP30)			•
RP15, RP20, RP25, and RP30)			
S = 3/8 inch, standard busning (KPU6)			

FIGURE 203-2. Part number example.

	RP05	- 1	SB	100	KK
<u>STYLE</u> : The two-letter symbol "RP" identifies power type, wirewound, variable resistors; the two-digit number identifies the size and power rating					
ELECTRICAL OFF POSITION: The single digit number in- dicates the existence and location of an electrical off position at one end of the resistance element as follows:					
1 No electrical off position					
2 Electrical off position at end of rotation of control knob in a CCW direction					
3 Electrical off position at end of rotation of control knob in a CW direction					
SHAFT AND TYPE OF MOUNTING: The two-letter symbol identifies the shaft style, type of mounting, and shaft length. The first letter indicates the style (slotted) and type of mounting ("S" standard bushing and "U" locking bushing). The second letter identi- fies the length of the operating shaft as follows:					
 A 1/2 inch, standard bushing (RP10, RP15, RP20, RP25, and RP30) B 5/8 inch, standard bushing (RP05 and RP06); and locking bushing (RP05, RP06, RP10, RP15, RP20, RP25, and RP30) D 7/8 inch, locking bushing (RP05); and standard bushing (RP10, RP15, RP20, RP25, and RP30) J 2 inch, standard bushing (RP06, RP10, RP15, RP20, RP25, and RP30) S 3/8 inch, standard bushing (RP06) RESISTANCE: The three-digit number identifies the nominal total resistance value, expressed in ohms; 					
and the last digits represent significant figures and the last digit specifies the number of zeros to follow. For values less than 10 ohms, the letter "R" represents the decimal point. (See 3.4 and the fol- lowing example):					
EXAMPLE:					
1RO 1.0 ohm 100 10 ohms 101 100 ohms					
RESISTANCE TOLERANCE: The two-letter symbol "KK" iden- tifies a resistance tolerance of ±10 percent.]				

FIGURE 203-3. Type designation example.

NOTES:

- 1. Terminal identification is for reference only.
- 2. These styles are supplied with one 1/4-32 UNEF-2B corrosion-resistant, hexagonal mounting nut having a nominal thickness of .062 (1.57 mm) and measuring .312 (7.92 mm) across the hexagonal flats; and one corrosionresistant, internal-tooth lockwasher having an outside nominal diameter of .402 (10.21 mm), inside nominal diameter of .262 (6.65 mm), and a nominal thickness of .013 (.33 mm). The locking nut for the locking-bushing type is .156 (3.96 mm) thick, and measuring .312 (7.92 mm) across the hexagonal flats; the thread size is 1/4-32 UNEF-2B.

FIGURE 203-4. Wirewound, variable resistors (power type).

-		<u>st</u>	YLE RP05	
	Part number <u>1</u> /	Nominal total resistance value (ohms)	Maximum current (amperes)	Type designation 1/ (for reference onTy)
	M22/15-0001 M22/15-0002 M22/15-0003 M22/15-0005 M22/15-0005 M22/15-0008 M22/15-0008 M22/15-0019 M22/15-0010 M22/15-0012 M22/15-0013 M22/15-0014 M22/15-0015 M22/15-0016 M22/15-0017 M22/15-0018	$ \begin{array}{c} 10\\ 15\\ 25\\ 35\\ 50\\ 75\\ 100\\ 150\\ 200\\ 250\\ 350\\ 500\\ 750\\ 1,000\\ 1,500 2/\\ 2,500 \overline{2}/\\ 3,500 \overline{2}/\\ 5,000 \overline{2}/\\ \end{array} $.707 .583 .447 .374 .316 .264 .223 .182 .158 .141 .158 .141 .118 .1 .082 .071 .056 .045 .037 .032	RP05100KK RP05150KK RP05250KK RP05500KK RP05500KK RP05101KK RP05101KK RP05251KK RP05251KK RP05251KK RP05501KK RP05502KK RP05352KK RP05502KK
		<u>st</u>	YLE RPO6	
	Part number <u>1</u> /	Nominal total resistance value (ohms)	Maximum current (amperes)	 Type designation <u>1</u> / (for reference only)
	$\begin{array}{c} M22/01-0001\\ M22/01-0003\\ M22/01-0004\\ M22/01-0005\\ M22/01-0006\\ M22/01-0008\\ M22/01-0009\\ M22/01-0010\\ M22/01-0010\\ M22/01-0011\\ M22/01-0012\\ M22/01-0014\\ M22/01-0014\\ M22/01-0016\\ M22/01-0016\\ M22/01-0016\\ M22/01-0018\\ M22/01-0018\\ M22/01-0018\\ M22/01-0018\\ M22/01-0018\\ M22/01-0018\\ M22/01-0020\\ M22/01-0021\\ M22/01-0021\\ M22/01-0023\\ M22/01-0024\\ \end{array}$	$ \begin{array}{r} 1.0\\ 2.0\\ 2.5\\ 3.0\\ 5.0\\ 6.0\\ 8.0\\ 10\\ 15\\ 25\\ 35\\ 50\\ 75\\ 100\\ 150\\ 200\\ 250\\ 350\\ 500\\ 750\\ 1,000\\ 1,500\\ 2,500\\ 3,500\\ \end{array} $	$\begin{array}{c} 3.53\\ 2.50\\ 2.23\\ 2.04\\ 1.58\\ 1.44\\ 1.25\\ 1.12\\ 0.91\\ 0.71\\ 0.62\\ 0.50\\ 0.41\\ 0.35\\ 0.29\\ 0.25\\ 0.25\\ 0.22\\ 0.19\\ 0.16\\ 0.13\\ 0.11\\ 0.091\\ 0.071\\ 0.060\\ \end{array}$	RP061R0KK RP062R0KK RP062R5KK RP063R0KK RP065R0KK RP066R0KK RP068R0KK RP06100KK RP06150KK RP06350KK RP06350KK RP06150KK RP06350KK RP06350KK RP06500KK RP06501KK RP06251KK RP06251KK RP06501KK RP06501KK RP06512KK RP06512KK RP06512KK RP06525KK RP06525KK RP06525KK RP0635KK

1/ The complete part number (and type designation) includes symbols indicating electrical off position, style of shaft and type of mounting, and length of operating shaft (see figure 203-2 for part number and 203-3 for type designation).

 $\frac{2}{1}$ Values based on use of wire size smaller than .0025 inch but not less than .0014 inch.

FIGURE 203-4. Wirewound, variable resistors (power type) - Continued.

203 (MIL-R-22)

NOTE: These styles are supplied with one 3/8-32 UNEF-2B corrosion-resistant, hexagonal mounting nut having a nominal thickness of .094 inch (2.39 mm) and measuring .562 inch (14.27 mm) across the hexagonal flats, and one internal-tooth lockwasher in accordance with MS35333-76. The locking nut for locking-bushing type resistors is .151 inch (3.84 mm) to .234 inch (5.94 mm) thick, .500 inch (12.70 mm) across the hexagonal flats; thread size is 3/8-32 UNEF-2B.

FIGURE 203-4. Wirewound, variable resistors (power type) - Continued.

203 (MIL-R-22)

STYLES RP10, RP15, AND RP20

	Par	t number	1/	 Nominal total	 Maximum	current (amperes)	l Typ	e designat	ion <u>1</u> /
	RP10	Style RP15 	Style RP20 	resistance value (ohms) 	Style RP10	Style RP15 	Style RP20	Style RP10	Style RP15	Style RP20
	M22/03-	M22/05-	 M22/07	1	1	 	 	RP10	 RP15	RP20
ļ	0025	0001		1.0	5.00	7.07		1ROKK	1ROKK	
1	0001	0002	0001	2.0	3.54	5.00	6.12	2ROKK	2ROKK	2ROKK
ļ	0002	0003	0002	2.5	3.16	4.47	5.50	2R5KK	2R5KK	2R5KK
ļ	0003	0004	0003	3.0	2.89	4.08	5.00	3ROKK	3ROKK	3ROKK
ļ		0005	1 0004	4.0		3.54	4.34		4ROKK	4ROKK
ļ	0004	0006	0005	5.0	2.24	3.16	3.87	5ROKK	5ROKK	SROKK I
ļ	0005	0007	0006	6.0	2.04	2.89	3.54	6ROKK	6ROKK	6ROKK
ļ	0006	0008	0007	8.0	1.77	2.50	3.06	8rokk	8ROKK	8ROKK
ļ	0007	0009	0008	10	1.58	2.24	2.74	100KK	l 100KK	100KK
ļ		0010	0009	12		2.04	2.50	1	120KK	120KK
ļ	0008	0011	1 0010	15	1.29	1.83	2.24	150KK	150KK	150KK
ļ	0009 1	0012	0011	25	1.00	1.41	1.73	250KK	250KK	250KK
ł	0010	0013	0012	35	0.85	1.19	1.46	350KK	350KK	350KK
ļ	0011	0014	0013	50	0.71	1.00	1.22	500KK	500KK	i 500kk [
ļ	0012	0015	0014	75	0.58	0.82	1.00	750KK	750KK	750KK
1	0013	0016	0015	1 100	0.50	3.71	0.87	101KK	l 101KK	101KK
ļ	0014	001/	0016		0.41	0.58	0.71	151KK	151KK	151KK
1	0015 1	0018	001/	200	0.35	0.50	0.61	201KK	201KK	201KK
ļ	0016	0019	0018	250	0.32	0.45	0.55	251KK	251KK	251KK
1	001/	0020	0019	1 350	0.27	0.38	0.46	351KK	351KK	351KK
ļ	0018 1	0021	0020	500	0.22	0.32	0.39	501KK	501KK	501KK
ļ	0019 1	0022	0021	750	0.18	0.26	0.32	751KK	751KK	751KK
ļ	0020	0023	0022	1,000	0.16	0.22	0.27	102KK	102KK	<u>102KK </u>
ļ	0021	0024	0023	1,500	0.13	0.18	0.22	152KK	152KK	152KK
ļ	0022	0025	0024	2,500	0.10	0.14	0.17	252KK	252KK	252KK
ļ	0023	0026	0025	3,500	0.08	0.12	0.15	352KK	352KK	352KK
ļ	0024	0027	0026	5,000	0.07	0.10	0.12	502KK	502KK	502KK
ļ		0028	0027	8,000		0.08	0.10	l -	1 802KK	802KK]
l		0029	0028	10,000		0.07	0.09		103KK	103KK
•				I	· · · · · · · · · · · · · · · · · · ·			1		

See footnote at end of table.

FIGURE 203-4. <u>Wirewound</u>, variable resistors (power type) - Continued.

STYLES RP25 AND RP30

Part number <u>1</u> /		Part number <u>1</u> / Nominal total			Maximum cur	rrent (amperes)	Type designation $1/1$		
Style RP25	Style RP30	resistance T lvalue (ohms) 	Style RP25	Style RP30 	Style RP25	Style RP30			
M22/08-	M22/09-				RP25	RP 30			
0001	0001	2.0	7.07	` 8 ₊ 66	2ROKK	2ROKK			
0002	0002	2.5	6.32	7.75	2R5KK	2R5KK			
0003	0003	3.0	5.77	7.07	3ROKK	3ROKK			
0004	0004	4.0	5.00	6.12	I 4ROKK	4ROKK			
0005	0005	5.0	4.47	5.48	5ROKK	5ROKK			
0006	0006	6.0	4.08	5.00	I 6ROKK	6ROKK			
0007	0007	8.0	3.53	4.33	1 BROKK	8ROKK			
0008	0008	10	3.16	3.87	100KK	100KK			
0009	0009	12	2.89	3.54	1 20KK	120KK			
0010	0010	15	2.58	3.16	1 50KK	150KK			
0011	0011	25	2.00	2.45	250KK	250KK			
0012	0012	35	1.69	2.07	350KK	350KK			
0013	0013	50	1.41	1.73	j 500KK	500KK			
0014	0014	75	1.15	1.41	j 750KK	750KK			
0015	0015	100	1.00	1.22	101KK	101KK			
0016	0016	150	0.82	1.00	151KK	151KK			
0017	0017	200	0.71	0.87	201KK	201KK			
0018	0018	250	0.63	0.77	251KK	251KK			
0019	0019	350	0.54	0.66	1 351KK	351KK			
0020	0020	1 500 I	0.45	0.55	501KK	501KK			
0021	0021	1 750 1	0.37	0.45	751KK	751KK			
0022	0022	1,000	0.32	0.39	102KK	102KK			
0023	0023	1 1.500 I	0.26	0.32	152KK	152KK			
0024	0024	1 2,500	0.20	0.25	252KK	252KK			
0025	0025	3,500	0.17	0.21	352KK	352KK			
0026	0026	5,000	0.14	0.17	L 502KK	502KK			
0027	0027	1 8,000 I	0.11	0.14	802KK	802KK			
0028	1 0028	110,000 I	0.10	0.12	1 10344	10344			

1/ The complete part number (and type designation) includes symbols indicating electrical off position, style of shaft and type of mounting, and length of operating shaft (see figure 203-2 for part number and 203-3 for type designation).

FIGURE 203-4. Wirewound, variable resistors (power type) - Continued.

2								
03 (MI)	Features	RP05	RP05	RP10	Style RP15	I RP20	RÞ25	RP 30
-R-2	 Max ambient temp at rated wattage	25°C	25°C	25°C	25°C	25°C	 25°C	25°C
2	 Max ambient temp at zero wattage = = =	1 340°C	340°C	1 340°C	340°C	340°C	 340°C	l 1 390°C
	Power rating (watts)	5.0	12.5	25	50	75	100	150
	Torque (operating)	0.25 inch-ounce min 3.0 inch-ounces max	 0.5 inch-ounce min 6.0 inch-ounces max	4 inch-ounces min 2.5 inch-pounds max	4 inch-ounces min 2.5 inch-pounds max	4 inch-ounces min 3 inch-pounds max	4 inch-ounces min 3 inch-pounds max	4 inch-ounces min 3 inch-pounds max
	 Electrical off position		1, 2, 3	1, 2, 3	1, 2, 3	1, 2, 3	1, 2, 3	1, 2, 3
	Total mechanical rotation	300 ±5°	300°, +5° -10°	290°, ±15°	300°, +10° -5°	 300°, +10°_5°	 300°, +15° -5°	 305°, +10° -15°
	Dielectric withstanding voltage: Atmospheric (volts rms) Reduced (volts)	500 250	2 500 250	1,000 550	 1,000 550	 1,000 550	 1,000 550	1,000 550
	 Min total resistance (ohms)	10	1.0	2.0	1.0	2.0	2.0	2.0
	Max total resistance (ohms)	5,000	3,500	15,000	1 10,000	10,000	 10,000	10,000
	Low temperature exposure (-55°C)	Torque <u><</u> 8 inch-ounces	Torque	 Torque <4 inch-pounds	 Torque <4 inch-pounds	 Torque <u><</u> 4 inch-pounds	! Torque <u><</u> 4 inch-pounds	 Torque <u><</u> 4 inch-pounds
	Max percent change in resistance: Life (1,000 hr) at 25°C full load Humidity (stead state) (96 hour) Acceleration Life (rotation): Standard bushing 5,000 cycles Locking bushing 500 cycles Shock Vibration: (high frequency)	5.0 10.0 N/A 5.0 2.0 2.0	5.0 10.0 See <u>1</u> / 5.0 2.0	5.0 10.0 5.0 2.0	5.0 10.0 5.0 2.0	5.0 10.0 5.0 2.0	5.0 10.0 5.0 2.0	5.0 10.0 5.0
	Salt spray (48 hour)	No corrosion	No corrosion	2.0 No corrosion	No No Corrosion	No No Norrosion	No No Corrosion	No No No

TABLE 203-I. Performance characteristics.

1/ 10.0/contact arm, 3.0 total.

203.10

.

.

SECTION 204

RESISTORS, VARIABLE, WIREWOUND, PRECISION

STYLES RR0900, RR1000, RR1100, RR1300, RR1400, RR2000, RR2100, RR3000, RR3100, RR3200, RR3300, RR3400, RR3500, RR3700, RR3900, RR4000, AND RR4100

(APPLICABLE SPECIFICATION: MIL-R-12934)

1. SCOPE. This section covers precision, wirewound, variable resistors whose electrical output (in terms of percent of applied voltage) is linear with respect to the angular position of the operating shaft. These resistors are capable of full-load operation at maximum ambient temperature of 85°C and are suitable for continuous operation, when properly derated, at a maximum temperature of 150°C. These resistors are available with initial resistance tolerances of ± 1 and ± 3 percent.

2. APPLICATION INFORMATION.

2.1 Style selection.

2.1.1 <u>Construction</u>. These resistors have a resistance element consisting of a continuous length of resistance wire wound with precision on an arc or helix of insulating material. The moving contact is insulated from the operating shaft and maintains continuous electrical travel throughout the entire mechanical travel. The element and contact arm are enclosed in an environmentally resistant housing.

2.1.2 <u>Selection of a safe resistor style</u>. The wattage rating of these resistors is based on operation at 85°C, mounted on a 4-inch square, .250-inch thick alloy aluminum panel. This mounting technique should be taken into consideration when a wattage is dissipated during specific applications.

2.1.3 Derating at high temperature. These resistors may be used at the full nominal wattage at an ambient temperature of 85°C. When a resistor is to be used where the surrounding temperature is higher than 85°C, a correction factor must be applied to the wattage rating so as not to overload the resistor. This correction factor may be taken from the derating curve shown on figure 204-1.

FIGURE 204-1. Derating curves for high ambient temperatures.

2.1.4 <u>Derating for optimum performance</u>. After the anticipated maximum ambient temperature has been determined, a safety factor of 2 applied to the wattage is recommended in order to insure the selection of a resistor having an adequate wattage rating.

204 (MIL-R-12934)

2.1.5 <u>Resistance-temperature characteristic</u>. Consideration should be given to the temperature rise and ambient temperature of resistors under operation, in order to allow for the change in resistance due to resistance-temperature characteristic.

2.1.6 <u>Definitions</u>. Definitions of the special characteristics and parameters of these potentiometers are contained in MIL-R-12934.

3. ITEM IDENTIFICATION (see figures 204-2 and 204-3).

3.1 <u>Type designation</u>. The type designation is used for describing the resistor as shown on figure 204-2.

3.2 <u>Performance characteristics</u>. The performance characteristics of these resistors are as shown in tables 204-I and 204-II.

3.3 <u>Preferred values</u>. The preferred nominal resistance values are as follows:

T	Nomina	total	resistance value
T			-TT
	100	ohms	40,000 ohms
1	200	ohms	50,000 ohms
	500	ohms	60,000 ohms
1	1,000	ohmis	.100 megohm
1	2,000	ohms	.150 megohm
	5,000	ohns	l .200 megohm
	10,000	ohnas	l .250 megohm]
1	20,000	ohmis	
l			<u>ا</u> 1

•

The maximum value applicable to each style shall be as listed in tables 204-I and 204-II.

Downloaded from http://www.everyspec.com

MIL-STD-199D

······						
STYLE: The the t	wo-letter symbol "RR"	identifies]	<u> RR0900</u>	B 3 A T T T	9 G	10
precision, wirewo four-digit number	und, variable resisto identifies the physica	rs; and the al size.	i			
FUNCTION AND SHAFT bol identifies th shaft length (in i	LENGTH: The single- e type of function { nches ±1/32 inch} as	letter sym- linear) and follows:				
A 3/3/3/	8 (servo mounted): 4 (bushing mounted, s [.]	ingle turn)				
B 1/ 7/	2 (servo mounted): 8 (bushing mounted, s ⁴	ingle turn)				
C 5/ 1	8 (servo mounted): (bushing mounted, sing	gle turn;				
D 3/ 1-	8 multi-turn) 4 (servo mounted): 1/8 (bushing mounted,	single turn;				
8/4 E 7/	4 multi-turn) 8 (servo mounted):					
1- 7/3	1/4 (bushing mounted, 8 multi-turn)	single turn;				
F 1 1- 1 ((servo mounted): 3/8 (bushing mounted, multi-turn)	single turn;				
CLASS AND CENTER T	AP: The single-digit	number iden-				
at rated wattage, temperature); and	150°C maximum ambient center tap as follows	ent operating :				
3 Not a 5 Appli	pplicable cable	J				
RESISTANCE-TEMPERA Tetter symbol iden characteristic (in	TURE CHARACTERISTIC: tifies the resistance percent per C) as fo	The single- -temperature bllows:				
A ±.003 C ±.010		_				
ROTATIONAL LIFE CHA number identifies f tic (in cycles) as	ARACTERISTIC: The sir the rotational-life ch follows:	ngle-digit naracteris-				
9 500,00	00 single turn; 100,00)0 ten turn				
FUNCTION CONFORMITY TOLERANCE (RT) CHAI symbol identifies	Y TOLERANCE (FCT) AND RACTERISTIC: The sir the FCT and RT as foll	RESISTANCE ngle-letter lows:				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	percent FCT; ±3 percer percent FCT; ±3 perce 5 percent FCT; ±3 perce percent FCT; ±1 percer	nt RT ent RT cent RT nt RT				
$Y = \pm 0.10$ $Y \pm 0.02!$	percent FUI; ±1 perce 5 percent FCT; ±1 perc	ent RT				
RESISTANCE: The the nominal total resist The first two digit and the last digit to follow. (See 3.	nree-digit number iden stance value, expresse ts represent significa t specifies the numbe .3 and the following e	ntifies the ed in ohms. ant figures er of zeros example.)				

÷

.

FIGURE 204-2. Type designation example.

STYLES RR0900, RR1000, RR1100, RR1300, RR1400, RR2000, RR2100, AND RR3000

MAX TERMINAL RADIUS FOR TAPS. TERMINALS MAY BE LOCATED AT ANY TAPPING LOCATION ON PERIPHERY OF BODY

					Dime						•
Chulm		-									
Style	A	B		U	E Name	G	H		1	K]	
	+.000(.13) - 010(.25)		·0005	Max	max	Max	±•005 (13)	MIN	мах	мах	мах
PR0900	875	7500	1250	781	200	812	062	057	656	1.062	1050
1110300	(22 23)	(19.05)	(3 18)	(19.84)	(23 01)	(20 62)	(1.57)	(1.45)	(16 66)	(26.97)	103-
PP1100	1.002	0688	1250	(13.07)	1 125	012	062	(1.43)	701	1 100	100.
NN1100	1.002	.3000	(2 10)	.9/0 /24 77\	1.120	•01Z	.002	.037 (1.45)	./01 (10 PA)		1002
	(20.97)	(24.01)	(3.10)	(24.//)	(28.58)	(20.02)	(1.57)	(1.43)	(19.04)	(29.40)	
RR2000	2.000	1.8750	2500	1.875	2.031	1.312	.093	.073	1.375	2.250	90°
	(50.80)	(47.63)	(6.35)	(47.63)	(51.59)	(33.32)	(2.36)	(1.85)	(34.93)	(57.15)	
RR3000	3.000	2.8750	.2500	2.875	3.031	1.312	.093	.073	1.750	3.250	900
	(76.20)	(73.03)	(6.35)	(73.03)	(76.99)	(33.32)	(2.36)	(1.85)	(44.45)	(82.55)	
RR1000	.875	.7500	.1250	.781	.906	1.625	.062	.057	.656	1.062	105-
	(22.23)	(19.05)	(3.18)	(19.84)	(23.01)	(41.28)	(1.57)	(1.45)	(16.66)	(26.97)	
RR1300	1.437	1.3125	.2500	1.313	1.468	1.062	.093	.073	1.094	1.625	1000
	(36.50)	(33.32)	(6.35)	(33.35)	(37.28)	(26.97)	(2.36)	(1.85)	(27.79)	(41.28)	
RR1400	1.437	1.3125	.2500	1.313	1.468	2.250	.093	.073	1.094	1.625	100-
	(36.50)	(33.32)	(6.35)	(33.35)	(37.28)	(57.15)	(2.36)	(1.85)	(27.79)	(41.28)	
RR2100	2.000	1.8750	_2500	1.875	2.031	2.250	.093	.073	1.375	2.250	100-
	(50.80)	(47.63)	(6.35)	(47.63)	(51.59)	(57.15)	(2.36)	(1.85)	(34.93)	(57.15)	

NOTE: For dimension Y, see shaft length on figure 204-2.

FIGURE 204-3. Wirewound, precision variable resistors.

204 (MIL-R-22684)

STYLES RR3100, RR3200, RR3300, RR3400, RR3500, RR3700, RR3900, RR4000, AND RR4100

BUSHING MOUNT

i					Dii	mensions							
Style 	A max	B <u>+</u> .010 (.25)	C +.005 (.13)	D <u>+</u> .010 (.25)	F +.020 (.51)	i G Imin I	J +.010 (.25)	K max 	L <u>+</u> .005 (.13)	M 1. <u>+</u> .005 1 (.13)	N Max	P max 	R Threads (UNEF-2A)
RR3100	.906 (23.01)	.281 (7.14)	.125 (3.18)	.040 (1.02)	.250 (6.35)	.080 (2.03)	.040	.750 (19.05)	.312 (7.92)	_062 (1.57)	105*	.625 (15.88)	.250-32
RR3200	1.093 (27.76)	.281 (7.14)	.125 (3.18)		.250 (6.35)	.100 (2.54)	.040 (1.02)	.750 (19.05)	.312 (7.92)	.062 (1.57)	105*	.781 (19.84)	.250-32
RR3300	1.468 (37.29)	.4C6 (10.31)	.250 (6.35)		.375 (9.52)		.060 (1.52)	1.062	.531 (13.49)	.125 (3.18)	100*	1.094 (27.79)	.375-32
RR3400	2.031 (51.59)	.406 (10.31)	.250 (6.35)		.375 (9.52)		.060 (1.52)	1.156	.750 (19.05)	.125 (3.18)	90*	1.375 (34.93)	.375-32
RR3500	3.031 (76.99)	.406 (10.31)	.250 (6.35)	.050 (1.27)	.375		.060 (1.52)	1.156	1.000	.125 (3.18)	90°	1.750 (44.45)	.375-32
RR3700	.906 (23.01)	.281 (7.14)	.125 (3.18)	.040 (1.02)	.250 (6.35)	.080 (2.03)	.040 (1.02)	1.076 (27.33)	.312 (7.92)	.062 (1.57)	105*	.625 (15.88)	.250-32
RR3900	.906 (23.01)	.281 (7.14)	.125 (3.18)		.250 (6.35)			1.219	.312 (7.92)	.062 (1.57)	105*	.625 (15.88)	.250-32
RR4000	.875 (22.22)	.281 (7.14)	.125 (3.16)		.313 (7.95)			1.500	.302	.062 (1.57)	105*	.625 (15.88)	.250-32
RR4100	1.844 (46.84) 	.406 (10.31)	.250 (6.35) ±.002 (.05)		.313 (7.95)			2.094 (53.19)	.562 ((14.27)	.125 (3.18)	100*	1.375 (34.93)	.375-32

NOTE: For dimension H, see shaft length on figure 204-2.

FIGURE 204-3. Wirewound, precision variable resistors - Continued.

204 (MIL-R-12934)

TABLE	204-I.	Performance	characteristics.

Features	1RR0900	RR1100	Style RR2000	RR3000	RR1000	RR1300	RR1400	RR2100
 Shaft Diameter 	 .125 	.125	.250	.250	.125	.250	.250	.250
Cup Diameter	 7/8 	1-1/16	.2	3	7/8	1-7/16	1-7/16	2
Resistance range Maximum Minimum	 10 kΩ 100 kΩ 	20 kΩ 100 kΩ	50 kΩ 100 kΩ 1	100 kΩ 200 kΩ	50 kΩ 100 kΩ	40 kภ 100 kภ	200 kΩ 200 kΩ	250 kΩ 200 kΩ
Power rating, watts at 85°C 150°C	 1.25 0	 1.5 0	4 0	6 0	2 0	2 0	3 0	5
 Maximum continuous working voltage 	250	250	250	250	500	250	500	500
Rotational life (1,000 cycles)	500	500	500	500	100	500	100	100
Operating RPM	100 RPM							
 Maximum starting and running torque in inch-ounces, single turn, single cup Starting Running	 .30 .25	.50 .30	1.0 1.0	1.5	.7	1.0	1.0	
Travel (degrees) Electrical Mechanical	 350 360 	350 360	350 360	350 360	3,600 3,600	350 360 	3,600 3,600	3,600 3,600
 Stops Torque (inch-pound) 	 	[] [3		8	37.5
 Weight Basic (ounces max) 		1.25	 4 	 8	1.5	 1.5	 5 	
Insulation resistance								

TABLE	204-11.	Performance	characteristics.
-			· · · · · · · · · · · · · · · · · · ·

Style									
• Features	RR3100 	RR3200 	RR3300	IRR3400	RR3500	RR3700	I RR3900	RR4000	RR4 100
Shaft Diameter	.125	.125	.250	.250	.250	.125	.125	.125	.250
Resistance range Maximum Minimum	 10 kΩ 100 kΩ 	 20 kΩ 100 kΩ 	40 kΩ 100 kΩ	 60 kΩ 100 kΩ 	100 kΩ 200 kΩ	50 kΩ 100 kΩ	 100 kΩ 100 kΩ 	50 kΩ 100 kΩ	 250 kΩ 200 kΩ
Power rating, watts at 85°Ç 150°C	1.25 0	1.50 0	2 U	4 0	6 .0	1.50 0	1.50 0	2 0	5
Maximum continuous working voltage	250	250	250	250	250	423	500	300	500
Rotational life (1,000 cycles)	500	500 ·	500	500	500	350	200	100	100
Operating RPM	100 RPM								
Maximum starting and running torque in inch-ounces, single turn, single cup Starting Running	.30 .25	.50 .40	1.0 .75	1.0 1.0	1.5 1.0				
Travel (degrees) Electrical Mechanical	350 360	350 360	350 360	350 360	350 360	1,080 1,080	1,180 1,180	3,600 3,600	3,600 3,600
Stops Torque (inch-pound)						3	3	3	10
Weight Basic (ounces max)	1	1.25	1.60	4	8	0.8	1	1.44	8
Insulation resistance									

:

SECTION 205

RESISTORS, VARIABLE, WIREWOUND, SEMI-PRECISION

STYLE RK09

(APPLICABLE SPECIFICATION: MIL-R-39002)

1. SCOPE. This section covers semi-precision, wirewound, variable resistors having a resistance element of wire, wound linearly on an insulated form shaped in an arc, so that a contact bears uniformly on the resistance element when adjusted by a contact shaft. The electrical output (in terms of percent of applied voltage) is linear with respect to the angular position of the contact arm. These resistors are capable of full-load operation (when the maximum resistance is engaged) at a maximum ambient temperature of 85° C and are suitable for continuous operation, when properly derated, at a maximum temperature of 135° C. These resistors have a tolerance of ± 5 percent.

2. APPLICATION INFORMATION.

2.1 Style selection.

2.1.1 <u>Construction</u>. The construction of these resistors conforms, in general, to that specified in sections 202 and 203. However, due to the nature of these components, manufacturing and measurement techniques are more precise. The element which is of a precisely determined, continuous length of wire, is afforded environmental protection by a housing or enclosure. The rotating contact is electrically insulated from the shaft, bushing, or housing.

2.1.2 <u>Selection of a safe resistor style</u>. The wattage rating of these resistors is based on operation at 85°C, mounted on a 4-inch square, .050-inch thick, steel panel. This mounting technique should be taken into consideration when the wattage is applied during specific applications.

2.1.3 Derating at high temperature. These resistors may be used at the full nominal wattage at an ambient temperature of 85°C. When a resistor is to be used where the surrounding temperature is higher than 85°C, a correction factor must be applied to the wattage rating so as not to overload the resistor. This correction factor may be taken from the derating curve shown on figure 205-1.

FIGURE 205-1. Derating curve for high ambient temperature.

2.1.4 <u>Derating for optimum performance</u>. After the anticipated maximum ambient temperature has been determined, a safety factor of 2 applied to the wattage is recommended in order to insure the selection of a resistor having an adequate wattage rating.

2.2 <u>Resistance-temperature characteristic</u>. Consideration should be given to temperature rise and ambient temperature of resistors under operation, in order to allow for the change in resistance due to resistance-temperature characteristic. Resistance tolerance may easily be exceeded unless care is exercised.

2.3 <u>Supplementary insulation</u>. Where voltages higher than 250 volts rms are present between the resistor circuit and grounded surface on which the resistor is mounted, or where the dc resistance is so high that the insulation resistance to ground is an important factor, secondary insulation to withstand the conditions should be provided between the resistor and mounting or between the mounting and ground.

2.4 <u>Reduction of power rating</u>. When only a portion of the resistance element is engaged, the wattage rating is reduced in approximately the same proportion as the resistance.

3. ITEM IDENTIFICATION (see figures 205-2 through 205-4).

3.1 Part number. The part number is used for identifying the resistor as shown on figure 205-2.

	<u>M39002/01</u> -	0001
SPECIFICATION NUMBER: The number identifies the de- tail specification number (indicating MIL-R-39002/1).		
DASH NUMBER: The applicable dash number is as indi- cated in figure 205–4 and corresponds to the type de- signation per figure 205–3.		

FIGURE 205-2. Part number example.

3.2 Type designation. The type designation is used for describing the resistor as shown on figure 205-3.

3.3 <u>Performance characteristics</u>. The performance characteristics of these resistors are as shown in table 205-1.

3.4 <u>Resistance values</u>. The nominal total resistance values are as follows:

Ohmis	Ohmis	Ohmis 1
10 15 20 25 35 50 75	100 150 200 250 350 500 750	1,000 1,500 2,000 2,500 3,500 3,500 5,000 7,500 10,000

Downloaded from http://www.everyspec.com

MIL-STD-199D

		 RK09	SA	c T	s T	<u>101</u>
STYLE: The two-letter symbol "RK" identifies semi- precision, wirewound, variable resistors; the two- digit number identifies the physical size of the resistor.						
SHAFT AND TYPE MOUNTING: The two-letter symbol identifies shaft style, type of mounting, and shaft length. The first letter "S" indicates a slotted shaft style and standard bushing mounting; and the "U" indicates a slotted shaft style and locking bush- ing mounting. The second letter indicates the shaft length (±.031 inch) as follows:		 				
A500 înch B*625 înch						
*Available in standard bushing only.						
RESISTANCE-TEMPERATURE CHARACTERISTIC: The single_ letter symbol "C" identifies the maximum resistance- temperature characteristic (ref to 25°C) as follows:						
±200 ppm (under 50 ohms) ±70 ppm (50 ohms and over)						
TERMINALS: The single-letter symbol "S" identifies solder-lug type terminals.]		<u> </u>		_	
RESISTANCE: The three-digit number identifies the nominal total resistance value, expressed in ohms; the first two digits represent significant figures and the last digit specifies the number of zeros to follow. (See 3.4 and the following example.)		 				
EXAMPLE:						
100 10 ohms 101 100 ohms 102 1,000 ohms						

FIGURE 205-3. Type designation example.

205 (MIL-R-39002)

STYLE RKO9

Inches	mm	Inches	mm
.001	0.03	.125	3.18
.002	0.05	.187	4.75
.005	0.13	.250	6.35
.010	0.25	.310	7.87
.015	0.38	.380	9.65
.020	0.51	.500	12.70
.031	0.79	.650	16.51
.050	1.27	.870	22.10
.062	1.57		

LOCKING-BUSHING TYPE

NOTE: This style resistor is supplied with one mounting nut .062 inch (1.57 mm) thick which measures .312 inch (7.92 mm) across the hexagonal flats. For locking bushings, the locking nut is .125 inch (3.18 mm) thick and measures .312 inch (7.92 mm) across the hexagonal flats. Thread size is .250-32 UNEF-2B. An internal-tooth lockwasher is supplied and, when mounted, has a maximum thickness of approximately .045 inch (1.14 mm). Retainer rings, if used, are not thicker than .032 inch (0.81 mm).

FIGURE 205-4. Wirewound, semi-precision, variable resistors.

205 (MIL-R-39002)

		Part no. N	39002/01-		1
Nominal total	.500 inch s	otted shaft	.625 inch	slotted shaft	l Type
resistance (ohms)	Locking	Standard	Locking	Standard	designation 1/
	<u>bushing</u>	bushing	lbushing	bushing	
			l]	
10	0001	0028		0055	RK09CS100
15	0002	0029	!	0056	RK09CS150
20	0003	0030 !		0057	RK09CS200
25	0004	0031		0058	RK09CS250
35	0005	0032		0059	RK09C\$350
50	0006	0033		0060	RK09CS500
75	0007	0034		0061	RK09CS750
100	0008	0035		0062	RK09CS101
150	0009	0036		0063	RK09CS151
200	0010	0037		0064	RK09CS201
250	0011	0038	i	0065	RK09CS251
350	0012	0039		0066	RK09C\$351
500 I	0013	0040		0067	RK09CS501
750	0014 j	0041		0068	RK09CS751
1,000 j	0015 I	0042 [1	0069	RK09CS102
1,500	0016	0043	1	0070	RK09CS152
2,000	0017	0044 Í		0071	RK09CS202
2,500	0018 İ	0045		0072	RK09CS252
3,500	0019 j	0046	j	0073	RK09CS352
5,000 į	0020 İ	0047	i i	0074	RK09CS502
7,500	0021 İ	0048 İ	i i	0075	RK09CS752
10,000	0022 İ	0049 1	i i	0076	RK09CS103
-		; -	İ		

1/ Complete type designation includes additional symbols indicating type of mounting and shaft length (where applicable).

•

FIGURE 205-4. <u>Wirewound, semi-precision, variable resistors</u> - Continued.

Features	Style RK09
Max resistance-temperature characteristic in ppm/°C (Ref to 25°C) 50 ohms and over Under 50 ohms	*70 *200
Min nominal total resistance (ohms)	10
Max nominal total resistance (ohms)	10 kΩ
Max ambient temperature at rated wattage	85°C
Max ambient temperature at zero wattage derating	135°C
Power rating (watts)	1.5
Mechanical travel (degrees)	325 ±10
Actual effective-electrical travel (degrees)	320 ±10
Max noise (degradation)	500 Ω
Max independent linearity (initial)	3 percent
Max independent linearity (degradation)	150 percent
Min insulation resistance (megohms): Dry	1,000 100
Torque (starting) (ounces)	0.5 to 6.0
Salt spray	No evidence of corrosion ((mechanically operative)
Max percent change in resistance 1/: Moisture resistance	3.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0 3.0 3.0

TABLE	205-I.	Performance	requirements.
		-	

 $\frac{1}{}$ Where total resistance change is 1 percent, it shall be considered as ±(1 percent +0.05 ohm).

SECTION 206

RESISTORS, VARIABLE, WIREWOUND (ADJUSTMENT TYPE)

STYLE RT26

(APPLICABLE SPECIFICATION: MIL-R-27208)

1. SCOPE. This section covers lead-screw actuated, wirewound, variable resistors with a contact bearing uniformly over the surface of the entire resistive element, wound linearly, when positioned by a multiturn lead-screw actuator. These resistors are capable of full-load operation (when the maximum resistance is engaged) at a maximum ambient temperature of 85 °C and are suitable for continuous operation, when properly derated, at a maximum temperature of 150 °C. These resistors have a resistance tolerance of ± 5 percent.

2. APPLICATION INFORMATION.

2.1 Style selection.

2.1.1 <u>Construction</u>. These resistors have an element of continuous-length wire, wound linearly on an arc-shaped core. The sliding contact traverses the element in a circular path. The element is protected from detrimental environmental conditions by a housing or enclosure. The lead-screw head is insulated from the electrical portion of the resistor.

2.1.2 <u>Selection of a safe resistor style</u>. The wattage ratings of these resistors are based on operation at 85°C when mounted on a 1/16-inch thick, glass-base, epoxy laminate. Therefore, the heat-sink effect as provided by steel test plates in other specifications is not present. The wattage rating is applicable, when the entire resistance element is engaged in the circuit. When only a portion is engaged, the wattage is reduced directly in the same proportion as the resistance.

2.1.3 <u>Power rating</u>. These resistors may be used at the full nominal wattage at an ambient temperature of 85° C. When a resistor is to be used where the surrounding temperature is higher than 85° C, a correction factor must be applied to the wattage rating so as not to overload the resistor. This correction factor may be taken from the derating curve shown on figure 206-1.

FIGURE 206-1. Derating curve for high-ambient temperature.

206 (MIL-R-27208)

2.1.4 <u>Derating for optimum performance</u>. After the anticipated maximum ambient temperature has been determined, a safety factor of 2 applied to the wattage is recommended.

2.1.5 <u>High resistances and voltages</u>. Where voltages higher than 250 volts rms are present between the resistor circuit and grounded surface on which the resistor is mounted, or where the dc resistance is so high that the insulation resistance to ground is an important factor, secondary insulation to withstand the conditions should be provided between the resistor and mounting or between the mounting and ground.

2.2 <u>Mounting of resistors</u>. Mounting hardware should be used. Printed-circuit types are frequently terminal mounted, although brackets may be necessary for a high-shock and vibration environment.

2.3 <u>Stacking of resistors</u>. When stacking resistors, care should be taken to compensate for the added rise in temperature by derating the wattage rating accordingly.

2.4 <u>Resistance-temperature characteristic</u>. Consideration should be given to temperature rise and ambient temperature of resistors under operation, in order to allow for the change in resistance due to resistance-temperature characteristic. The resistance-temperature characteristic is measured between the two end terminals. Whenever resistance-temperature characteristic is critical, variation due to the resistance of the movable contact should be considered.

2.5 Noise. The noise level is low compared to non-wirewound types. Peak noise is specification controlled at initial value of 100 ohms maximum. However, after exposure to environmental tests (moisture, shock, vibration, etc.), a degradation to 500 ohms is allowed by specification.

2.6 Maximum weight. Maximum weight is 0.6 gram.

3. ITEM IDENTIFICATION (see figures 206-2 and 206-3).

3.1 <u>Type designation</u>. The type designation is used for identifying and describing the resistor as shown on figure 206-2.

3.2 Performance characteristics. The performance characteristics of these resistors are as shown in table 206-1.

3.3 Preferred nominal resistance value, maximum resolution, and rated working voltage. The preferred nominal resistance value, maximum resolution, and rated working voltage are as follows:

Nominal resistance value	Maximum resolution	Rated ac and dc working voltage
<u>Ohms</u>	Percent	<u>Volts</u>
10 20		1.41 2.00
100 200	1.05	4.47 6.33
500 1,000 2,000 1/	0.65 0.57 0.44	10.00 14.10 20.00

1/ Value based on the use of wire having no less than 0.001-inch nominal diameter.

Downloaded from http://www.everyspec.com

MIL-STD-199D

	RT26	C T	2 T	W T	<u>102</u>
STYLE: The two-letter symbol "RT" identifies lead-screw actuated, wirewound, variable resistors; the two-digit number identifies the physical size.					
RESISTANCE-TEMPERATURE CHARACTERISTIC: The single- letter symbol identifies the resistance-temperature characteristic as follows:					
C 50 ppm/°C (ref to 25°C)					
TEMPERATURE CHARACTERISTIC: The single-digit number "2" identifies the temperature characteristic as follows:					
85°C max ambient temperature at rated wattage 150°C max ambient operating temp					
TERMINALS: The single-letter symbol identifies the terminals as follows:					
P Printed circuit pins W Printed-circuit pins (edge-mounted) X Printed-circuit pins (edge-mounted, alternate configuration)					
<u>RESISTANCE:</u> The three-digit number identifies the nominal resistance value, expressed in ohms; the first two digits represent significant figures and the last digit specifies the number of zeros to follow. (See 3.3 and the following example.)					
EXAMPLE:					
100 10 ohms 101 100 ohms 102 1,000 ohms					

FIGURE 206-2. Type designation example.

4. DELETED STYLES. Resistors, styles RT12, RT22, and RT50, formerly covered in this section, have been intentionally deleted and are no longer standard items for new design. For new design, use styles RTR12 and RTR22 of MIL-R-39015 (see section 401).

NOTES:

1. Unless otherwise specified, tolerance is ±.005 (.13 mm).

2. The entire slot of the actuating screw is above the surface of the unit.

FIGURE 206-3. Wirewound, variable resistors (adjustment type, lead-screw actuated).

206 (MIL-R-27208)

TABLE 206-I. <u>Performance characteristics</u>.

Features	Style RT26
 Min nominal resistance value (ohms)	10
Max nominal resistance value (ohms)	2 kΩ
Max resistance-temperature characteristic (ppm/°C) (Ref to 25°C)	±50
 Max ambient temperature at rated wattage	85°C
l I Max ambient temperature at zero wattage derating	150°C
Power rating (watts)	1/4
Setting stability	1 percent + maximum resolution after environmental tests
Max percent change in resistance:1/Thermal shockMoisture resistanceAccelerationShock (specified pulse)Vibration, high frequencyResistance to soldering heatLow-temperature operationRotational lifeResistance tolerance (* percent)	1 1 1 1 1 1 1 2 2
Peak noise	500 ohms max after environmental tests
Insulation resistance (megohms): Dry	1,000 10
Dielectric withstanding voltage (volts rms) Atmospheric pressure, sea level Reduced barometric pressure, 70,000 ft	600 250
Immersion	No continuous bubbles
Operating torque	3 inch-ounces max
Actual effective-electrical travel	10 turns min 25 turns max

 $\frac{1}{}$ Where total resistance change is 1 percent, it shall be considered as \pm (1 percent +0.05 ohm).

NOTE: All leads are solderable in accordance with method 208 of MIL-STD-202.

* SECTION 207

RESISTORS, VARIABLE, NON-WIREWOUND (ADJUSTMENT TYPE)

STYLE RJ24

(APPLICABLE SPECIFICATION: MIL-R-22097)

1. SCOPE. This section covers multiturn adjustment type and single turn non-wire wound, variable resistors with a contact bearing uniformly over the surface of the entire resistive element, when positioned by an actuator. These resistors are capable of full-load operation (when the maximum resistance is engaged) at maximum ambient temperature of 85° C, and are suitable for continuous operation, when properly derated, at a maximum temperature of 150° C. These resistors have a resistance tolerance of ± 10 percent.

2. APPLICATION INFORMATION.

2.1 Style selection.

2.1.1 <u>Construction</u>. These resistors have an element of metal, Cermet type or carbon film (depending upon characteristic) deposited upon a ceramic or glass base. Depending upon style, the element is rectangular or shaped in an arc and the sliding contact maintains continuous contact when traversing the element in a straight line or circular motion. The element is protected from detrimental environmental conditions by a housing or enclosure. The lead screw head is insulated from the electrical portion of the resistor.

2.1.2 Selection of a safe resistor style. The wattage ratings of these resistors

are based on operation at 85°C when mounted on a 1/16-inch thick, glass base epoxy laminate; therefore, the heat sink effect as provided by steel test plates in other specifications is not present. The wattage rating is applicable when the entire resistance element is engaged in the circuit. When only a portion of the element is engaged, the wattage is reduced directly in the same proportion as the resistance.

2.1.3 Derating at high temperatures. These resistors may be used at full wattage at the applicable operating temperature. When a resistor is to be used where the surrounding temperature is higher than the applicable operating temperature, a correction factor must be applied to the wattage rating so as not to overload the resistor. This correction factor may be taken from the derating curve shown on figure 207-1.

2.1.4 <u>Derating for optimum performance</u>. After the anticipated maximum ambient temperature has been determined, a safety factor of 2 applied to the wattage is recommended in order to insure the selection of a resistor style having an adequate wattage rating, with optimum performance.

2.1.5 High resistances and voltages. Where voltages higher than 250 volts rms are present between the resistor circuit and grounded surface on which the resistor is mounted, or where the dc resistance is so high that the insulation resistance to ground is an important factor, secondary insulation to withstand the conditions should be provided between the resistor and mounting or between the mounting and ground.

2.2 <u>Mounting of resistors</u>. Resistors should not be mounted by their flexible-wire leads. Mounting hardware should be used. Printed-circuit types are frequently terminal mounted, although brackets may be necessary for a high-shock and vibration environment.

2.3 <u>Stacking of resistors</u>. When stacking resistors, care should be taken to compensate for the added rise in temperature by derating the wattage rating accordingly.

2.4 <u>Resistance-temperature characteristic</u>. Consideration should be given to temperature rise and ambient temperature of resistors under operation, in order to allow for the change in resistance due to resistance-temperature characteristic. This characteristic is measured between the two end terminals. Whenever the resistance-temperature characteristic is critical, variation due to the movable contact's resistance should be considered.

2.5 Noise. Peak noise is not specification controlled.

FIGURE 207-1. Derating curves for high ambient temperatures.

3. ITEM IDENTIFICATION (see figures 207-2 and 207-3).

3.1 <u>Type designation</u>. The type designation is used for identifying and describing the resistor as shown on figure 207-2.

3.2 <u>Performance characteristics</u>. The performance characteristics of these resistors are as shown in table 207-1.

207 (MIL-R-22097)

FIGURE 207-2. Type designation example.

207 (MIL-R-22097)

NOTES:

- The picturization of the styles above are given as representative of the envelope of the item. Slight deviations from the outline shown, which are contained within the envelope, and do not alter the functional aspects of the device are acceptable.
- 2. The entire slot of the actuating screw must be above the surface of the unit.
- 3. Unless otherwise specified, tolerance is ±.005 (0.13 mm).
- Dimensions are in inches.
 Metric equivalents are gi
- 5. Metric equivalents are given for general information only.
- 6. The three leads shall be stranded wire, AWG size 28 to 30, having a minimum length of 6 (152.4 mm); they shall be insulated with polytetrafluoroethylene, stripped .250 \pm .062 (6.35 \pm 1.57 mm) from the end, and color coded.

FIGURE 207-3. Style RJ24 resistor.

207 (MIL-R-22097)

207.4

3.3	Preferred	nominal	resistance	values	and maximum	n rated	working v	<u>oltages</u> .	The
prefer	red nominal	resista	nce values	and ma	ximum rated	working	voltages	are as	follows:

_ .

l Nominal	Rated working voltage
l resistance	RJ24
value	1
Т	T
0 hm s	Volts
1	
i 10	2.23
1 20	3.1
i 50	1 5.0
1 100	
200	10.0
1 200	
1 500	
1 1,000	22.3
2,000	1 31.0
1 5,000	50.0
10,000	/0./
1 20,000	1 100
25,000	111
50,000	158
l Megohms	1
1	
0.10	223
0.25	300
0.50	300
1.00	1 300
1	1

* 4. DELETED STYLES. Resistors, styles RJ11, RJ12, RJ22, RJ24, (except terminal L) RJ26, and RJ50, formerly covered in this section have been intentionally deleted and are no longer standard items for new design. For new design, use RJR12, RJR24 (except terminal L), RJR26, RJR28, and RJR50 of MIL-R-39035 (see section 402).

*

Features	Style RJ24			
Max resistance-temperature {Percent per °C) characteristic (Parts per million/°C) -	±0.025 ±250	F ±0.010 ±100		
Max ambient temperature at rated wattage	85°C	85°C		
Max ambient temperature at zero load derating	150°C	150°C		
Power rating (watts)	1/2	1/2		
Weight (grams, max)	1.3	1.3		
<pre>Max percent change in resistance (±): 1/ Contact-resistance variation 2/</pre>	3 2 2 1 1 3 2 Yes Yes No arcing, breakdown, or leakage current <1 mA 900 350	3 1 1 1 2 1 2 2 Yes Same as characteristic C 900 350		
Insulation resistance (megohms):		1 000		
Wet (after moisture resistance)	100	100		
Immersion (not applicable to terminal L)	No more than 3 bubbles	Same as Characteristic C		
Torque (operating) (stop is applicable to style RJ50 only)	 5 inch-ounces max 	5 inch-ounces max		
 Actual effective-electrical travel	 15 turns min 30 turns max 	15 turns min 30 turns max		

* TABLE 207-I. <u>Performance characteristics</u>.

<u>1</u>/

Where total resistance change is 1 percent, it shall be considered as ± (1 percent + 0.05 ohm). For characteristic C, contact resistance variation may be 3 percent or 20 ohms, whichever is greater. <u>2</u>/

•

SECTION 208

RESISTORS, VARIABLE, NON-WIREWOUND

STYLE RVC6

(APPLICABLE SPECIFICATION: MIL-R-23285)

1. SCOPE. This section covers non-wirewound, variable resistors. These resistors are suitable for rheostat or potentiometer applications where high precision is not required, and are capable of withstanding acceleration, shock, high-frequency vibration and 125°C operating temperature at rated load. They are most useful in circuitry where high resistance values and low power dissipation are encountered in controlling volume, bias, tone, voltage output, and pulse width.

2. APPLICATION INFORMATION.

2.1 <u>Construction</u>. These resistors have a film resistance element shaped in an arc, and a contact bearing uniformly thereon, so that a change of resistance is produced between the terminal of the contact and the terminal at either end of the resistance element when the operating shaft is turned. The construction of the element is metal-ceramic film fused onto a ceramic substitute. The element is then contained in an enclosure which provides for environmental and mechanical protection.

2.2 <u>Selection of a safe resistor style.</u> The wattage ratings of these resistors are based on operation at 125°C, mounted on a 16-gauge steel plate, 4 inches square. This mounting technique should be taken into consideration when the wattage is applied during specific applications. When considering these resistors for potentiometer applications, it is necessary to bear in mind the fact that the load current as well as the "bleeder" current will be flowing through a part of the resistor and will contribute to the heating effect.

2.2.1 <u>Derating at high temperature</u>. When a resistor is to be used where the surrounding temperature is higher than 125°C, it should be derated in accordance with figure 208-1.

AMBIENT TEMPERATURE IN DEGREES CELSIUS

FIGURE 208-1. Derating curve.
2.2.2 <u>Derating for optimum performance</u>. After the anticipated maximum ambient temperature has been determined, a safety factor of 2 applied to the wattage is recommended in order to insure the selection of a resistor style having an adequate wattage rating with optimum performance.

2.3 <u>Transient change in resistance</u>. It is suggested that when these resistors encounter shock, acceleration, and high-frequency vibration forces of the magnitudes enumerated in this section, that they be used only in applications where a 6-percent variation can be tolerated in the resistance at the contact arm, when the shaft is unlocked.

2.4 <u>Shaft-locking devices</u>. Suitable locking devices are commercially available which may be readily attached to any standard-bushing type of resistor covered by this section. These locking devices permit any degree of torque from normal up to complete locking of the operating shaft of the resistor. The locking-bushing type of resistor specified herein provides the shaft-locking feature without additional equipment.

2.5 <u>Maximum voltage</u>. The maximum continuous working voltage specified for each of the styles should in no case be exceeded, regardless of the theoretical calculated rated voltage.

2.6 <u>Supplementary insulation</u>. These variable resistors should not be used at potentials to ground greater than 500 volts peak, or 200 volts peak for aircraft equipment, unless supplementary insulation is provided.

2.7 <u>Noise</u>. The noise level is quite low compared to composition variable resistors.

2.8 Linear and nonlinear tapers. Taper A is a linear resistance taper, which is one having a constant change of resistance with angular rotation, while taper C is a non-linear resistance taper, which has a variation or lack of constancy in the change of resistance with angular rotation. (See figure 208-2.)

FIGURE 208-2. Clockwise taper.

3. ITEM IDENTIFICATION (see figures 208-3 and 208-4).

3.1 Type designation. The type designation is used for identifying and describing the resistor as shown on figure 208-3.

3.2 <u>Performance characteristics</u>. The performance characteristics of these resistors are shown in table 208-1.

3.3 <u>Preferred resistance values and rated continuous working voltages</u>. The preferred nominal total resistance values and rated continuous working voltages (RCWV) are as follows:

1		
Nominal L	RCW	V (at 125°C)
l total [
resistance	Taper A	l Taper C I
T		
100Ω I	7 V	i !
250Ω I	11 V	
1 500Ω I	16 V	
1.0000	22 V	. 16 ¥ . İ
2.500Ω I	35 V	Í 25 V
1 5,0000 L	50 V	i 36Ý
110,0000	71 V	i 50 v
125 0000	112 V	1 80 V
150,0000 L	158 V	i 112 v
	224 V	160 V
	250 V	200 V
	350 V	
	350 ¥	
	350 V	Į 200,¥
2.0 MΩ	350 V	
2.5 MΩ	350 Y	ļ
4 L		4 1

STYLE RVC6

NOTE: Unless otherwise specified, tolerance is \pm .016 (.41 mm).

FIGURE 208-4. Non-wirewound variable resistors.

Features	. R¥C6
Type bushing and symbol	Standard (N) Locking (L)
Style shaft	 Slotted 5/8 in. (L bushing) 3/8 and 7/8 in. (N bushing)
Maximum resistance-temperature coefficient in ppm/°C (referred to 25°C)	±250
Maximum ambient temperature at rated wattage	125°C
Maximum ambient temperature at zero wattage derating	175°C
Power rating (in watts)	1/2 watt (taper A) 1/4 watt (taper C)
Minimum resistance value (ohms)	100
Maximum resistance value (megohms)	2.5
Resistance tolerance (* percent)	10
Maximum percent change in resistance (±): Contact resistance variation Resistance to soldering heat	 3 percent 1 percent
1,000 cycles (max cycle for T)	2 percent 4 percent 5 percent 3 percent 2 percent 1 percent
High-temperature exposure	4 percent 2 percent 2 percent
Insulation resistance (wet)	i i 100 megohms min
Max weight (grams)	25
Operating torque: Minimum	 .5 inch-ounce min 6 inch-ounces max
Stop	3 inch-pounds
Total mechanical rotation	 202° +o 208°

٠

TABLE 208-I. Performance characteristics.

SECTION 209

RESISTORS, VARIABLE, NON-WIREWOUND, PRECISION STYLES R0090, R0100, R0110, R0150, R0160, R0200, R0210, AND R0300

(APPLICABLE SPECIFICATION: MIL-R-39023)

1. SCOPE. This section covers precision, non-wirewound, variable resistors whose electrical output (in terms of percent of applied voltage) is linear with respect to the angular position of the operating shaft. These resistors are capable of full-load operation at a maximum ambient temperature of 70°C and are suitable for continuous operation, when properly derated, at a maximum temperature of 125°C. These resistors are available with an initial resistance tolerance of ±10 percent.

2. APPLICATION INFORMATION.

2.1 Style selection.

2.1.1 <u>Construction</u>. These resistors have a resistance element usually consisting of carbon, cermet, or conductive plastic 1/ deposited on a plastic insulating base. The moving contact is insulated from the operating shaft and maintains continuous electrical travel throughout the entire mechanical travel. The element and contact arm are enclosed in an environmentally resistant housing.

2.1.2 <u>Selection of a safe resistor style</u>. The wattage rating of these resistors is based on operation at 70°C, mounted on a 4-inch square, .250-inch thick alloy aluminum panel. This mounting technique should be taken into consideration when a wattage is dissipated during specific applications.

2.1.3 Derating at high temperature. These resistors may be used at the full nominal wattage at an ambient temperature of 70°C. When a resistor is to be used where the surrounding temperature is higher than 70°C, a correction factor must be applied to the wattage rating so as not to overload the resistor. This correction factor may be taken from the derating curve shown on figure 209-1.

FIGURE 209-1. Derating curves for high ambient temperatures.

1/

Conductive plastic is a generic term covering a broad category of materials and manufacturing methods. It includes the "bulk" type compression molded materials and the oven cured thick films (screened, sprayed, dip coated, roll coated). All of these conductive plastic materials invariably utilize carbon as the resistive material together with a resin binder and an inert filler.

209 (MIL-R-39023)

2.1.4 <u>Derating for optimum performance</u>. After the anticipated maximum ambient temperature has been determined, a safety factor of 2 applied to the wattage is recommended in order to insure the selection of a resistor having an adequate wattage rating.

2.1.5 <u>Resistance-temperature characteristic</u>. Consideration should be given to temperature rise and ambient temperature of resistors under operation, in order to allow for the change in resistance due to resistance-temperature characteristic.

2.1.6 <u>Definitions</u>. Definitions of the special characteristics and parameters of these potentiometers are contained in MIL-R-39023.

3. ITEM IDENTIFICATION (see figures 209-2 and 209-3).

3.1 <u>Type designation</u>. The type designation is used for describing the resistor as shown on figure 209-2.

3.2 Performance characteristics. The performance characteristics of these resistors are as shown in table 209-1.

3.3 Preferred values. The preferred nominal resistance values are as follows:

-	Nominal	total	resistance value	-
	<u>Ohm s</u>		Megohms	T I I
	100 200 500	<u>1</u> /	.100 .200 .500	
İ	1,000 2,000 5,000	<u>2</u> /	1.000 2.000 2.000	
1	10,000 20,000 50,000		3.000	

1/ Not available for styles RQ150, RQ200, and RQ300.
2/ Minimum resistance value for styles RQ100, RQ160, and RQ300.

The maximum value applicable to each style shall be as listed in table 209-I.

	RQ090	A	<u>A</u>	1	3	A	A	101
STYLE: The two-letter symbol "RQ" identifies precision, non- wirewound, variable resistors; the number identifies the phys- ical size.								
RESISTANCE-TEMPERATURE CHRST., MAX AMBIENT TEMPERATURE, AND TAPS: The single-letter symbol identifies a ±5a max resist- ance change; 70°C (max ambient temperature at rated load), 125°C (max ambient temperature with zero load); and taps locat- ed at center of resistance element as follows:					-			
A Not applicable. B Applicable.								5
SHAFT LENGTH: The single-letter symbol identifies the shaft length (±1/32 inch) as follows:								
A								
MOISTURE RESISTANCE: The single-digit number identifies the moisture resistance characteristic (total ΔR) as follows:								
1 ±5 percent 2 ±10 percent 3 ±25 percent								
LIFE CHRST.: The single-digit number identifies the life chrst. (total number of revolutions and dither life (in hr)) as fol- lows:								
$1 2.5 \times 10^{5} \text{ rev}; 0.5 \text{ hr}$ $2 1 \times 10^{6} \text{ rev}; 2 \text{ hr}$ $3 5 \times 10^{6} \text{ rev}; 10 \text{ hr}$ $4 25 \times 10^{6} \text{ rev}; 50 \text{ hr}$				·				
FUNCTION-CONFORMITY TOLERANCE CHRST.: The single-letter symbol identifies the function-conformity tolerance (± percent) as follows:								
A 1.0 initial; 1.5 degraded B 0.5 initial; 0.75 degraded C 0.25 initial; 0.375 degraded D 0.10 initial; 0.15 degraded E 0.05 initial; 0.075 degraded F 0.025 initial; 0.038 degraded					<u> </u>			
OUTPUT-SMOOTHNESS CHRST.: The single-letter symbol identifies the peak-to-peak voltage (E_0/E_{1n}) (in percent) as follows:								
A 2.0 initial; 2.2 degraded B 0.5 initial; 0.7 degraded C 0.1 initial; 0.15 degraded D 0.025 initial; 0.04 degraded E 0.01 initial; 0.02 degraded								
RESISTANCE: The three-digit number identifies the nominal total resistance value, expressed in ohms; the first two digits represent significant figures and the last digit specifies the number of zeros to follow. (See 3.3 and the following example.)								
101 100 ohms EXAMPLE: 201 200 ohms 102 1,000 ohms								

FIGURE 209-2. Type designation example.

STYLES RQ090, RQ100, RQ110, RQ150, RQ160, RQ200, RQ210, AND RQ300

LANY TERMINAL RADIUS FOR TAPS. TERMINALS MAY BE LOCATED AT ANY TAPPING LOCATION ON PERIPHERY OF BODY

•	1				Dime	ensions					
Style	A +.005(.13) 010(.25)	B 0005 (.01)	C 0005 (.01)	D Max	E Max	G Max	H ±.005 (.13)	I Min	J Max	K Max	Max
RQ090	.875 (22.22)	.7500 (19.05)	.1250 (3.17)	.781 (19.84)	.906 (23.01)	.81 (20.6)	.062 (1.57)	.057 (1.45)	.656 (16.66)	1.062 (26.97)	105"
RQ100	.875 (22.22)	.7500 (19.05)	.1250 (3.17)	.781 (19.84)	.906 (23.01)	1.88 (47.7)	.062 (1.57)	.057 (1.45)	.656 (16.66)	1.062 (26.97)	105*
RQ110	1.062 (26.97)	.9688 (24.6)	.1250 (3.17)	.975 (24.76)	1.125 (28.57)	.81 (20.6)	.062 (1.57)	.057 (1.45)	.781 (19.84)	1.125 (28.57)	100*
RQ150	1.437 (36.50)	1.3125 (33.34)	.2500 (6.35)	1.313 (33.35)	1.468 (37.29)	1.06 (26.9)	.093 (2.36)	.073 (1.85)	1.094 (27.79)	1.625 (41.27)	
RQ160	1.437 (36.50)	1.3125 (33.34)		1.313 (33.35)	1.468 (37.29)	2.50 (63.5)			1.094 (27.79)	1.625 (41.27)	
RQ200	2.000 (50.80)	1.8750 (47.62)		1.875 (47.62)	2.031 (51.59)	1.31 (33.3)			1.375 (34.92)	2.250 (57.15)	
RQ210	2.000 (50.80)	1.8750		1.875	2.031 (51.59)	2.90 (73.7)			1.375	2.250 (57.15)	
RQ300	3.000	2.8750		2.875	3.031	1.31 (33.3)			1.750	3.250 (82.55)	90*

NOTE: For dimension Y, see shaft length (figure 209-2).

FIGURE 209-3. Non-wirewound, precision, variable resistors.

209 (MIL-R-39023)

1					Style		····	
Features 	 RQ090	 RQ100 	RQ110	 RQ150 	RQ160	 RQ200 	RQ210	RQ300
Shaft length	3/8,	1/2, 5/2	3, 3/4	3,	/8, 1/2,	5/8, 3/4	4, 7/8, 1	
Diameter	.125	.125	.125	.125	.250	.250	.250	.250
Cup diameter	7/8	7/8	1 1/16	1 7/16	1 7/16	2	2	3
 Resistance range Maximum	 1 ΜΩ 100	1 MΩ 1,000	1 ΜΩ 100	1 ΜΩ 100	3 MΩ 1,000	 1 ΜΩ 100 	3 MΩ 1,000	1 ΜΩ 100
Power rating at 70°C	1.0 0	2.5 0	1.25 0	1.5 0	3.5 0	2.0 0	4. 5	3.0 O
Maximum continuous working voltage	250	500	250	250	500	250	500	250
Maximum starting and running torque in inch-ounce (single turn, single cup) Starting	0.5		0.5 0.4	1.0 0.8		1.5 1.0		1.5 1.0
Travel (degrees) Electrical	320° 360°	3,600° 3,600°	340° 360°	340° 360°	3,600° 3,600°	350° 360°	3,600° 3,600°	350° 360°
Weight - Basic (oz, max)	1.0	1.5	1.25	3.0	5.0	5.0	8.0	10.0
Insulation resistance	<pre>1,000 megohms initial; 500 megohms degradation No damage, arcing, etc; 1 mA leakage current No mechanical or electrical damage *10 percent ΔR *10 percent ΔR 1/ 1/ 1/ No mechanical or electrical damage or momentary discontinuity greater than 0.1 ms *2 percent ΔR No appreciable corrosion</pre>							

TABLE 209-I.	Performance	characteristics.

1/ The change in output ratio shall not exceed the applicable degraded function conformity tolerance or 0.5 percent, whichever is greater.

SECTION 300

RESISTORS, FIXED, ESTABLISHED RELIABILITY

Section		Applicable specification
301.	Resistors, Fixed, Composition (Insulated), Established Reliability	MIL-R-39008
302.	Resistors, Fixed, Film, Established Reliability	MIL-R-55182
303.	Resistors, Fixed, Wirewound (Accurate), Established Reliability	MIL-R-39005
304.	Resistors, Fixed, Wirewound (Power Type), Established Reliability	MIL-R-39007
305.	Resistors, Fixed, Film (Insulated), Established Reliability	MIL-R-39017
306.	Resistors, Fixed, Wirewound (Power Type, Chassis Mounted), Established Reliability	MIL-R-39009
307.	Resistors, Fixed, Film, Chip, Established Reliability	MIL-R-55342
* 308.	Resistors, Fixed, Precision, Established Reliability	MIL-R-122

ł

SECTION 301

RESISTORS, FIXED, COMPOSITION (INSULATED), ESTABLISHED RELIABILITY STYLES RCRO5, RCRO7, RCR20, RCR32, AND RCR42

(APPLICABLE SPECIFICATION: MIL-R-39008)

1. SCOPE. This section covers established reliability, insulated, fixed resistors, having a composition resistance element and axial leads. These resistors provide life failure rates ranging from 1.0 percent to 0.001 percent per 1,00) hours at 50 percent of full-load operation at an ambient temperature of 70°C. The failure rates are established at a 60 percent confidence level and maintained at a 10 percent producer's risk. The failure rate is referred to operation at one-half rated wattage and temperature with a maximum change in resistance of ± 15 percent at 0 to 10,000 hours of life test.

2. APPLICATION INFORMATION.

2.1 <u>Construction</u>. In these resistors the resistance element consists of a mixture of carbon, insulating material, and suitable binders, either molded together or applied as a thin layer of conducting material on an insulated form. These resistors are covered by a molded jacket which is primarily intended to provide an adequate moisture barrier for the resistance element, as well as mechanical protection and strength. Due to the reliability requirements of MIL-R-39008, processes and controls utilized in manufacturing are necessarily more stringent. MIL-STD-790, "Reliability Assurance Program for Electronic Parts Specifications," provides for monitoring and documentation of these requirements.

2.2 Derating. Consideration must be given to the resistor's wattage rating. This is based on the materials used and is controlled by specifying a maximum hot-spot temperature. The amount of dissipation that can be developed in a resistor body at the maximum hot-spot temperature depends upon how effectively the dissipated energy is carried away and therefore, it is also a direct function of the ambient temperature. To be operated continuously at full rating, the resistor must be connected to an adequate heat sink, which means approximately 1/2-inch leads connected to average size solder terminals with no other dissipative parts connected to the same terminals or mounted closer than one diameter. Appropriate derating must be imposed at elevated temperatures. Power dissipation capabilities of a resistor are usually lower when mounted in equipment than under test conditions. Most of the generated heat is carried away by the resistor leads; therefore, when two resistors are connected to the same terminal, wattage ratings would be decreased approximately 25 percent. Close proximity of one resistor to another, or to any other heat generating part, further reduces the wattage rating. Conformal coatings and encapsulating materials are poor heat conductors. When resistors are packaged in this manner, exercise caution in selection of the power rating.

2.3 <u>Derating at high temperatures</u>. The power rating is based on operation at 70°C; however, when a resistor is to be used in a circuit where the surrounding temperature is higher than 70°C, a correction factor must be applied to the wattage rating so as not to overload the resistor. This correction factor may be taken from the curve shown on figure 301-1.

2.4 <u>Derating for optimum performance</u>. For optimum performance, two "rules of thumb" have been in practice in industry for these resistors - they are:

- a. After the anticipated maximum ambient temperature has been determined, a safety factor of 2 is applied to the wattage.
- b. Wattage is adjusted so that the hot-spot temperature does not exceed the following for the particular style.

120°C - RCRO5 and RCRO7 100°C - RCR20, RCR32, and RCR42 NOTE: It is recommended that either of the above techniques be considered in the application of these resistors.

FIGURE 301-1. Derating curve for high ambient temperature.

Maximum ambient operating temperature (100 percent rated wattage and 50 percent rated wattage for	Nominal resistance	 Maximum allowable change in resistance from resistance at 25°C ambient temperature					
FR determination)		At -55°C At +105°C (ambient) (ambient)					
70°C	1,000 Ω and under 1,100 Ω to 10,000 M Ω incl 11,000 Ω to 0.10 M Ω incl 0.11 M Ω to 1.0 M Ω incl 1.1 M Ω to 10 M Ω incl 11.0 M Ω and over	<pre>+6.5 percent +5 percent +10 percent +6 percent +13 percent +7.5 percent +15 percent +10 percent +20 percent +15 percent +25 percent +15 percent</pre>					

TABLE	301-I.	Resistance-temperature	characteristic.

2.5 <u>Peak voltages and pulsed operation</u>. When composition resistors are used under low-duty-cycle pulse conditions, the maximum permissible operating voltage is limited by breakdown rather than by heating. In such applications the peak value of the pulse should not exceed 2.5 times the rated rms working voltage or the maximum overload voltage per table 301-II, whichever is less. If the pulses are of sufficient duration to raise the resistors temperature excessively, the resistor must be derated even though the interval between pulses may be long enough to make the average heating small.

TABLE	301-II.	. Maximum	overload	voltag	e.
-------	---------	-----------	----------	--------	----

Power rating	Maximum overload voltage (dc or peak ac)
<u>Watts</u>	Volts
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200 400 700 1,000 1,000

2.6 <u>Noise</u>. Thermal agitation or Johnson noise and resistance fluctuation or carbon noise, present only when current is flowing, are characteristic of carbon composition resistors. Use of these resistors in low level high-resistance (1 megohm or more) circuits should be avoided. Noise which can be expected is approximately 3 to 10 microvolts per volt. A film or wirewound resistor will usually yield more satisfactory results.

2.7 <u>Moisture resistance</u>. When exposed to humid atmosphere while dissipating less than 10 percent of rated voltage (including shelf storage, equipment nonoperating, and shipping conditions), resistance values may change 15 percent.

2.8 <u>Maximum rated voltage</u>. The fact that there are voltage limits in the application of fixed composition resistors is often overlooked. These maximum rated applied voltages, which are imposed because of insulation breakdown problems, must be taken into consideration in addition to the limitations of power dissipation. Figure 301-2 illustrates the maximum voltages for various sizes (wattage ratings) of composition resistors.

2.9 <u>High frequency applications</u>. When used in high frequency circuits (100 kHz and above), the effective resistance will decrease as a result of dielectric losses and shunt capacity (both end-to-end and distributed capacity to mounting surface). High frequency characteristics of carbon composition resistors are not controlled by specification and hence are subject to change without notice. Typical values of impedance to dc resistance ratio and phase angle from 100 kHz to 100 MHz are shown in Figures 301-6 through 301-15 for 1/8 watt, 1/4 watt, 1/2 watt, 1 watt, and 2 watt type composition resistors. Circuit variations in mounting position and lead length can have a significant effect on the high frequency characteristics.

2.10 Voltage coefficient. When voltage is applied to carbon composition resistors, resistance values may change by 2 percent, or by 0.05 percent per volt for resistors above 1,000 ohms for style RCR05, 0.035 percent per volt for resistors above 1,000 ohms for styles RCR07 and RCR20, and 0.02 percent per volt above 1,000 for styles RCR32 and RCR42. The voltage coefficient for resistors below 1,000 ohms is not controlled by specification and these resistors should not be used in circuits which are sensitive to this parameter.

2.11 <u>Temperature-resistance</u>. The resistance-temperature variation of carbon composition resistors cannot be defined by a temperature coefficient since the variation is not only nonlinear but is a different shape for different resistance values. (See table 301-I.)

2.12 <u>Shelf life</u>. In general, these resistors exhibit resistance variations in shelf life as high as +15 percent due to moisture and temperature effects. When a closer life tolerance or higher accuracy is needed, resistors per MIL-R-55182 or MIL-R-39017, should be used.

RESISTANCE \sim OHMS FIGURE 301-2. Voltage limitations by style.

MIL-STD-199D

301 (MIL-R-39008)

301.4

2.13 <u>Soldering</u>. Care should be taken in soldering resistors, since all properties of a composition resistor may be seriously affected when soldering irons are applied too closely to a resistor body or for too long a period. The length of lead left between the resistor body and the soldering point should not be less than 1/4 inch. Heat-dissipating clamps should be used, if necessary, when soldering resistors in close quarters. In general, if it is necessary to unsolder a resistor to make a circuit change or in maintenance, the resistor should be discarded and a new one used.

2.14 Maximum weight. The maximum weight of each style is as follows:

RCR05 - - - - - 0.080 gram RCR07 - - - - - 0.300 gram RCR20 - - - - - 0.662 gram RCR32 - - - - - 1.533 grams RCR42 - - - - 3.000 grams

2.15 <u>Conditioning</u>. For conditioning purposes, all units furnished under MIL-R-39008 are conditioned at 100° C for 96 ±4 hours.

2.16 <u>Failure rate factors</u>. Failures are considered to be opens, shorts, or radical departures from initial characteristics occurring in an unpredictable manner, and in too short a period of time to permit detection through normal preventive maintenance. Failure rate factors applicable to this specification are stated in MIL-HDBK-217. The failure rate factors stated in MIL-HDBK-217 are based on "catastrophic failures" and will differ from the failure rates established in the specification, since the established failure rate is based on a "parametric failure" of ± 15 percent change in resistance to be expected at 0 to 10,000 hours of life tests

2.17 Life degradation. The curve on figure 301-3 was established from percent change in resistance requirements of MIL-R-39008.

2.18 <u>Out-of-tolerance resistors</u>. Resistance shifts due to absorption of moisture are inherent in carbon-composition resistors. Before being considered failures, out of tolerance resistors should be conditioned in a dry oven at a temperature of 100 ± 5 °C for the duration shown below prior to conducting resistance measurements.

Resistors which continue to be out of tolerance after the above conditioning process should be considered failures.

- 3. ITEM IDENTIFICATION (see figures 301-4 and 301-5).
- 3.1 <u>Type designation</u>. The type designation is used for identifying and describing the resistor as shown on figure 301-4.
- 3.2 <u>Performance characteristics</u>. The performance characteristics of these resistors are as shown in table 301-III.
- 3.3 <u>Resistance values</u>. The values shall follow the decade of values as shown in the following:

•	(ESIScance	values lor	the IU tu	The decad	e		
1	Resistance tolerance						
J (5.0)	К (10.0)	l J (5.0)	K (10.0)	j (5.0)	К (10.0)		
10 11 ! 12 13 15 16 18	10 12 15 18	 22 24 27 30 33 36 39 43	22 27 33 39	 47 51 66 68 75 82 91	47 56 68 82		

FIGURE 301-3. Life test degradation curve.

Downloaded from http://www.everyspec.com

MIL-STD-199D

	STYLE: The three-letter symbol "RCR" identifies established reliability, insulated, composition, fixed resistors; the two-digit number identifies the size and power rating.	RCR07	G	470	1	M
•	CHARACTERISTIC: The single-letter symbol "G" iden- tifies the resistance-temperature characteristics as shown in table 301-1.					
*	RESISTANCE: The three-digit number identifies the nominal resistance value, expressed in ohms; the first two digits represent significant figures and the last digit specifies the number of zeros to follow. For values less than 100 ohms, all digits are significant with the letter "R" repre- senting the decimal point. (See 3.3 and the fol- lowing example.)					
	EXAMPLE:					
i	2R7 2.7 ohms 100 10 ohms 105 1 megohm 226 22 megohms					
	RESISTANCE TOLERANCE: The single-letter symbol identifies the resistance tolerance as follows:					
	J ±5 percent K ±10 percent					
	M 1.0 percent/1,000 hr P 0.1 percent/1,000 hr R 0.01 percent/1,000 hr S 0.001 percent/1,000 hr					
Ł						

FIGURE 301-4. Type designation example.

STYLES RCR05, RCR07, RCR20, RCR32, AND RCR42

Standard		Dimensio	ons (inches)	
style	A	B±.125	С	D
RCR05	.145±.015	1.000	.015±.003	.062±.004
RCR07	$.250 \pm .031$	1.500	$.025 \pm .002$.090±.008
RCR20	$.375^{+}_{-}.041$	1.500	.031±.005	.138±.023
RCR32	$.562 \pm .031$	1.500	.040±.005	$.225 \pm .015$
RCR42	$.688 \pm .040$	1.500	.045±.003	.318±.018

FIGURE 301-5. Insulated, composition, fixed resistors.

	Style					
Features	RCR05	RCR07	RCR20	RCR32	RCR42	
Power rating (at 70°C): 100 percent load (watts)	 1/8 1/16	. 1/4 1/8	1/2	1 1/2		
Max operating voltage (volts)	150	250	350	500	500	
Resistance tolerance (± percent)	5, 10	5, 10	5, 10	5, 10	5,10	
Min resistance (ohms)	2.7	2.7	1.0	1.0	10	
Max resistance (megohms)	22	22	22	22	22	
Dielectric withstanding voltage (volts rms): Atmospheric pressure	 300 200	 500 325	700 450	1,000 625	 1,000 625	
Insulation resistance (min): Dry (initial) (megohms)	 10 kΩ 100	10,000 10,000	10,000 100	10,000 100	10,000 100	
Terminal strength (pull) (lbs)	2	5	5	5	5	
Voltage coefficient $\underline{1}$ / (max + ΔR percent/volt)	0.05	0.035	0.035	0.02	0.02	
Max percent change in resistance (±) 2/: Low temperature operation	3.0 3.0 4.0 15 2.5 1.0 3.0 2.0 10 8 15	3.0 3.0 4.0 15 2.5 1.0 3.0 2.0 10 8 15	3.0 3.0 4.0 15 2.5 1.0 3.0 2.0 1 10 8 15	3.0 3.0 4.0 15 2.5 1.0 3.0 2.0 10 8 15	3.0 3.0 4.0 15 2.5 1.0 3.0 2.0 10 8 15	

TABLE 301-III. Performance characteristics.

Applicable only to resistors of 1,000 ohms and over. Where total resistance change is 4 percent or less, it shall be considered as \pm (____ percent +0.05 ohm). 1/ <u>2</u>/

NOTE: All leads are solderable in accordance with method 208 of MIL-STD-202.

ı

1/2 WATT TYPE RCR20

FIGURE 301-11. Impedance to phase angle.

FIGURE 301-12. Impedance to dc resistance ratio.

I WATT TYPE RCR32

FIGURE 301-14. Impedance to dc resistance ratio.

SECTION 302

RESISTORS, FIXED, FILM, ESTABLISHED RELIABILITY STYLES RNR50, RNR55, RNR60, RNR65, RNR70, RNR75, AND RNC90 1/ (APPLICABLE SPECIFICATION: MIL-R-55182)

1. SCOPE. This section covers established reliability, film, fixed resistors, including both hermetically and nonhermetically sealed types. These resistors possess a high degree of stability, with respect to time, under severe environmental conditions, with an established reliability. These resistors provide life failure rates ranging from 1.0 percent to 0.001 percent per 1,000 hours. The failure rates are established at a 60-percent confidence level (initial qualification) and maintained at a 10-percent producer's risk. The failure rate is referred to operation at full-rated wattage and temperature with a maximum change in resistance of ±2.0 percent at 0 to 10,000 hours of life test.

These resistors are designed for use in critical circuitry where high stability, long life, reliable operation, and accuracy are of prime importance. They are particularly desirable for use in circuits where high frequencies preclude the use of other types of resistors. Some of the applications for which these film-type resistors are especially suited are as follows: high-frequency, tuned circuit loaders, television side-band filters, rhombic antenna terminators; radar pulse equipment; and metering circuits, such as impedance bridges and standing wave-ratio meters.

2. APPLICATION INFORMATION.

÷

2.1 <u>Construction</u>. In these resistors the resistance element consists of a metal film element on a ceramic substrate. The element is formed by the condensation of a heated metal under vacuum conditions. Following spiralling to increase the available resistance values and the attachment of leads, the element is protected from environmental conditions by an enclosure. Due to the reliability requirements of MIL-R-55182, processes and controls utilized in manufacturing are necessarily more stringent. MIL-STD-790, "Reliability Assurance Program for Electronic Parts Specifications", provides for monitoring and documentation of these requirements.

2.2 Derating at high temperatures. The power rating is based on operation at 125°C. However, when a resistor is to be used in a circuit where the surrounding temperature is higher than 125°C, a correction factor must be applied to the wattage rating so as not to overload the resistor. The correction factor may be taken from the curve shown on figure 302-1.

2.3 Derating for optimum performance. Because all of the electrical energy dissipated by a resistor is converted into heat energy, the temperature of the surrounding air is an influencing factor when selecting a particular resistor for a specific application. The power rating of these resistors is based on operation at specific temperatures; however, in actual use, the resistor may not be operating at these temperatures. When the desired characteristic and the anticipated maximum ambient temperatures have been determined, a safety factor of 2, applied to the wattage, is recommended in order to insure the selection of a resistor having an adequate wattage-dissipation potential.

2.4 <u>Design tolerance</u>. Combined effects of use and environment may result in a ±2 percent change from nominal value in a resistor of the preferred ±1 percent nominal resistance tolerance. Circuits, therefore, should be designed to accept this ±2 percent variation in resistance while continuing to operate properly.

2.5 <u>Moisture resistance</u>. Metal film resistors are essentially unaffected by moisture. The specification allows only a 0.4 percent change in resistance value as a result of exposure to a standard 10-day moisture resistance test.

1/ Third letter is variable, dependent upon lead material or capability (see 3.4).

302 (MIL~R-55182)

AMBIENT TEMPERATURE IN DEGREES CELSIUS

NOTE: These curves indicate the percentage of nominal wattage to be applied at temperatures higher than 125°C. However, at no time should the applied voltage exceed the maximum for each style.

FIGURE 302-1. Derating curves for high ambient temperatures.

2.6 <u>High frequency applications</u>. When used in high frequency circuits (400 megahertz and above), the effective resistance will decrease as a result of shunt capacity (both end-to-end and distributed capacity to mounting surface). High frequency characteristics of metal film resistors are not controlled by specification and hence are subject to change without notice.

2.7 <u>Pulse applications</u>. When metal film resistors are used in low duty cycle pulse circuits, peak voltage should not exceed 1.4 times the rated continuous working voltage (RCWV). However, if the duty cycle is high or the pulse width is appreciable, even though average power is within ratings, the instantaneous temperature rise may be excessive, requiring a resistor of higher wattage rating. Peak power dissipation should not exceed four times the maximum rating of the resistor under any conditions.

2.8 <u>Voltage coefficient</u>. The voltage coefficient for resistors of 1,000 ohms and above shall not exceed ±.005 percent per volt.

302 (MIL-R-55182)

2.9 Noise. Noise output is controlled by the specification but, for metal-film resistors, noise is a negligible quantity. In applications where noise is an important factor, fixed film resistors are superior to composition types. Where noise test screening is indicated, it is recommended that the noise test procedure of MIL-STD-202 be used for resistor screening.

2.10 <u>Mounting</u>. Under conditions of severe shock or vibration (or a combination of both), resistors should be mounted in such a fashion that the body of the resistor is restrained from movement with respect to the mounting base. It should be noted that if clamps are used, certain electrical characteristics of the resistor will be altered. The heat-dissipating qualities of the resistor will be enhanced or retarded depending on whether the clamping material is a good or poor heat conductor.

2.11 <u>Failure rate factors</u>. Failures are considered to be opens, shorts, or radical departures from initial characteristics occurring in an unpredictable manner, and in too short a period of time to permit detection through normal preventive maintenance. Failure rate factors applicable to this specification are stated in MIL-HDBK-217. The failure rate factors stated in MIL-HDBK-217 are based on "catastrophic failure's" and will differ from the failure rates established in the specification, since the established failure rate is based on a "parametric failure" of ±2.0 percent change in resistance to be expected at 0 to 10,000 hours of life tests at rated conditions.

2.12 <u>Screening</u>. All resistors furnished under MIL-R-55182 are subjected to conditioning through thermal shock and overload testing.

3. ITEM IDENTIFICATION (see figures 302-2 through 302-4).

3.1 <u>Type designation</u>. The type designation is used for identifying and describing the resistor as shown on figure 302-2 or figure 302-3.

3.2 <u>Performance characteristics</u>. The performance characteristics of these resistors are as shown in table 302-I.

3.3 <u>Resistance values</u>. Resistance values for the F (1.0 percent) and D (9.5 percent) tolerances shall follow the tabulation shown on page 302.4. Resistance values for tolerance B (0.1 percent), A (0.05 percent), T (0.01 percent), and V (0.005 percent) may be any value, but it is preferred that the values be chosen from the D tolerance values given in the tabulation.

3.4 <u>Terminal types</u>. Preferred lead types associated with the applicable characteristic are as follows:

ľ	Charac- teristic	Terminal designator	Specification indi- cates weldable	Specification indi- cates solderable
	C H E J K Y <u>1</u> /	N (Type N-2 of MIL-STD-1276), R C (Type C of MIL-STD-1276) N (Type N-2 of MIL-STD-1276), R C (Type C of MIL-STD-1276) C (Type C of MIL-STD-1276) C (Type C of MIL-STD-1276) C (Type C of MIL-STD-1276)	N–Yes R–No Yes R–No Yes R–No Yes Yes Yes	N - No R - Yes Yes N - No R - Yes Yes Yes Yes

1/ Applicable to style RNC90 only.

1	Symbol	Terminal	
	RNR <u>1</u> / RNC <u>2</u> / RNN	Solderable Solderable/weldable (type C of MIL-STD-1276) Weldable (type N-2 of MIL-STD-1276)	

Resistance tolerance.

D (0.5)	F (1.0)	D (0.5)	F (1.0)	D (0.5)	F (1.0)	0 (0.5)	F (1.0)
10.0	10.0	17.8	17.8	31.6	31.6	56.2	56.2
		18.0		32.0		56.9	
	1 10.2	18.2	1 18.2 1	32.4	32.4	5/.0 503	5/.0
10.5	10.5	18.7	18.7	33.2	33.2	1 59.0	59.0
10.6		18.9		33.6		59.7	
10.7	10.7	19.1	19.1	34.0	34.0	60.4	60.4
10.9		19.3		34.4		61.2	
<u>i ii.</u> U	11.0	19.6	19.6	1 34-8	34.8		61.9
	1 1 3	1 20 0	200	35.2	357	1 02.0	1 63 A 1
1 11.4	+++5	20.3		36.1		64.2	
11.5	11.5	20.5	20.5	36.5	36.5 İ	64.9	64.9 i
11.7		20.8		37.0		65.7	
1 11.8	11.8	21.0	21.0	37.4	37.4	66.5	66.5
1 12.0	1		 21 E	1 3/+9	 -	07.3	
1 12.1	1 12.1	21.5	21.5	1 30-3 1 38 8	30.3	1 69.1	
12.4	12.4	22.1	22.1	39.2	39.2	69.8	69.8
12.6		22.3	i i	39.7	i i	70.6	1
12.7	12.7	22.6	22.6	40.2	1 40.2	71.5	71.5
12.9		22.9		40.7		72.3	
13.0	13.0	23.2	23.2	41.2	41.2	73.2	73.2
13.2	1 1 2 2	23.4		41.7		1 /4.1)) 1 75 0
1 13.5	1 13.3	11 23.7	23.7	42.2	42.2	1 75.0	
13.7	13.7	24.3	24.3	43.2	43.2	76.8	76.8
13.8	1	24.6		43.7	i i	1 77.7	
14.0	14.0	24.9	24.9	44.2	41.2	78.7	78.7
14.2	1 1 1 2	25.2	 05 5	44.8	<u>-</u>	1 79.6	
1 14.5	14.3	11 25.5	25.5	45.3	45.3	80.6	1 80.6
14.5	14 7	1 25.0	26 1	45.9	1 I I 46 A I	1 01.0	 9.2 5
14.9		26.4		47.0	1	83.5	
15.0	15.0	26.7	26.7	47.5	47.5	84.5	84.5
15.2		27.1	!	48.1	i i	85.6	i i
15.4	15.4	27.4	27.4	1 48.7	48.7	86.6	86.6
1 15.6	15 0	27.7		49.3		87.6	
15.0	1 12.8	1 28.0	28.0	49.9	49.9	1 88.7	88.7
16.2	16.2	28.7	28.7	1 50.5	1 51.1	1 03.0	1 90 9
16.4		29.1		51.7		92.0	
16.5	16.5	29.4	29.4	52.3	52.3	93.1	93.1
16.7		29.8		53.0		94.2	l
1 16.9	16.9		30.1	53.6	1 53.6 L	95.3	95.3
17.2	1	11 30.5	1	1 54.2		1 96.5	
17.6	1 1/+4 	1 30.5	. 30.9	55.6	04.9	1 97.0	3/.0
	i		i _		i i		i i

.

.

ļ

i

Downloaded from http://www.everyspec.com

MIL-STD-1990

FIGURE 302-2. Type designation example for styles RNR50 through RNR70.

302 (MIL-R-55182)

STYLE AND FERMINAL TYPE: The three-letter symbol Identifies established reliability, film, fixed resistors of a specified terminal type; the two-digit number identifies number identifies the size and configuration. (See 3.4.) CMARACTERISTIC: The single-letter symbol identifies CHARACTERISTIC: the single-letter symbol identifies the characteristic (as specified in table 302-1) as follows: Y *5 ppm/°C; 125°C max ambient temperature at rated wattage RESISTANCE: Six characters identify the nominal re- sistance value, expressed in ohms five digits, all significant, and a single letter. The letter "R" represents the decimal point. For values 1,000 ohms or resetts the decimal point. For values 1 megohm, the letter "K" represents the decimal point. (See the following example.) EXAMPLE: SOR500 50,500 ohms 50K500 50,500 ohms SOK500 50,500 ohms 50K500 50,500 ohms SOK500 50,500 ohms 50K500 50,500 ohms SOK500 50,500 ohms 50K500 50,500 ohms SOK500 50,500 ohms 50K500 50,500 ohms SOK500 50,500 ohms<
CHARACTERISTIC: The single-letter symbol identifies the characteristic (as specified in table 302-1) as follows: Y *5 ppm/°C; 125°C max ambient temperature at rated wattage RESISTANCE: Six characters identify the nominal re- sistance value, expressed in ohms five digits, all significant, and a single letter. The letter is used simultaneously as a decimal point and a multiplier. For values less than 1,000 ohms, the letter "K" repre- resents the decimal point. For values 1,000 ohms or greater, the letter "M" represents the decimal point. (See the following example.) EXAMPLE: 50R500 50.5 ohms 50K500 50,500 ohms SM0500 50,500 ohms SM0500 50,500 ohms SM0500 50,500 ohms SM0500 50,500 ohms SM0500 50,500 ohms We are signed to be a stance to be a sta
Y ±5 ppm/°C; 125°C max ambient temperature at rated wattage RESISTANCE: Six characters identify the nominal re- sistance value, expressed in ohms five digits, all significant, and a single letter. The letter is used simultaneously as a decimal point and a multiplier. For values less than 1,000 ohms, the letter "K" repre- resents the decimal point. For values 1,000 ohms or greater but less than 1 megohm, the letter "K" repre- sents the decimal point. For values 1 megohm or greater, the letter "M" represents the decimal point. (See the following example.) EXAMPLE: 50R500 50,50 ohms 50K500 50,000 ohms MOS00 50,000 ohms MOS00 50,000 ohms MOS00 5,050,000 ohms MOS00 50,000 ohms MESISTANCE TOLERANCE: The single-letter symbol iden- tifies the resistance tolerance as follows: Y ±.005 percent resistance tolerance
RESISTANCE: Six characters identify the nominal re- sistance value, expressed in ohms five digits, all significant, and a single letter. The letter is used simultaneously as a decimal point and a multiplier. For values less than 1,000 ohms, the letter "R" rep- resents the decimal point. For values 1,000 ohms or greater but less than 1 megohm, the letter "K" repre- sents the decimal point. For values 1 megohm or greater, the letter "M" represents the decimal point. (See the following example.) EXAMPLE: 50R500 50.5 ohms 50K500 50,500 ohms SOR500 50,500 ohms 50K500 50,500 ohms SM0500 50,000 ohms 50K500 50,500 ohms SM0500 50,000 ohms 50K500 50,000 ohms RESISTANCE TOLERANCE: The single-letter symbol iden- tifies the resistance tolerance as follows: Y #.005 percent resistance tolerance Y #.005 percent resistance tolerance
EXAMPLE: 50R500 50.5 ohms 50K500 50,500 ohms 5M0500 5,050,000 ohms RESISTANCE TOLERANCE: The single-letter symbol iden- tifies the resistance tolerance as follows: V *.005 percent resistance tolerance
50R500 50.5 ohms 50K500 50,500 ohms 5M0500 5,050,000 ohms RESISTANCE TOLERANCE: The single-letter symbol iden- tifies the resistance tolerance as follows: V #.005 percent resistance tolerance
RESISTANCE TOLERANCE: The single-letter symbol iden- tifies the resistance tolerance as follows: Y ±.005 percent resistance tolerance
V ±.005 percent resistance tolerance
A = $- \pm .01$ percent resistance tolerance A = $- \pm .05$ percent resistance tolerance B = $- \pm 0.1$ percent resistance tolerance D = $- \pm 0.5$ percent resistance tolerance F = $- \pm 1.0$ percent resistance tolerance
LIFE FAILURE RATE DESIGNATION: The single-letter sym- bol identifies the life failure rate as follows:
M 1.0 percent/1,000 hr P 0.1 percent/1,000 hr R 0.01 percent/1,000 hr S 0.001 percent/1,000 hr

FIGURE 302-3. Type designation example for style RNC90.

STYLES RNR50, RNR55, RNR60, RNR65, RNR70, RNR75

							Inches
					_		.015 .016
ſ	Standard		Dimension	ns (ińches)		.020
	styles*	Α	<u> </u>	C ±.002	D	E Max.	.023
×	rnr50 <u>2</u> /	.150 ±.020	1.250 ±.266	.016	.065 ±.015	.225	.032
×	RNR55	.250 +.031 046	1.500 ±.125	.025	.109 ±.031	.379	.046
	RNR60	.375 ±.062	1.500 ±.125	.025	.125 +.040 031	.561	.065
	RNR65	.625 +.031 094	1.500 ±.125	.025	.188 +.062 031	.780	.094
	RNR70	.750 +.125 062	1.500 ±.125	.032	.250 ^{+.078} 031	.939	.125
[RNR75	1.062 ±.062	1.500 ±.125	.032	.375 +.062 031	1.186	• • • • •

icnes	man	Inches	nam
002	.05	.180	4.57
015	. 38	.188	4.78
016	.41	. 225 -	5.72
020	•51	.250	6.35
025	.64	.266	6.76
031	.79	.375	9.52
032	.81	.379	9.63
040	1.02	.561	14.25
046	1.17	.625	15.88
062	1.57	.750	19.05
065	1.65	.780	19.81
078	1.98	. 939	23.85
094	2.39	1.062	26.97
109	2.77	1.186	30.12
125	3.18	1.250	31.75
150	3.81	1.500	38.10

лıт

Inches

MM

17 Lead length for tape and reel packaging shall be 1 inch minimum.

For characteristics C, E, dimension $A = .180 \pm .020$. Third letter is variable, dependent upon lead material or capability. ź/

NOTES:

1. Maximum length is "clean lead" to "clean lead".

The end of the body is that point at which the body diameter equals the 2. nearest drill size larger than 250 percent of the nominal lead diameter.

FIGURE 302-4. Established reliability, film, fixed resistors.

302 (MIL-R-55182)

Inches	mm	Inches	mm
.002	.05	.110	2.79
.010	.25	.125	3,18
.015	.38	.150	3.81
.020	•21	.310	7.87
.025	.64	• 320	8.13
.050	1.27	.375	9.52
•075	1.91	.500	12.70
		1.375	34.92

NOTES:

1. Dimenisons are in inches.

2. Metric equivalents are given for general information only.

- 3. Resistance measurement point.
- 4. The lead measurement is made at the point of emergence from the body.

FIGURE 302-4. Established reliability, film, fixed resistors - Continued.

.

TABLE	302-1.	Performance	characteristics

.

Features	C (Hermetically sealed)	4 (Nonhermetically sealed)	(Hermetically sealed)	{Nonhermetically sealed}	(Nonhermetically) sealed)	(Nonhermetically sealed)
Max resistance-temperature characteristic: Percent.per degree C Parts per million/*C	±0.005 ±50	±0.005 ±50	*.0025 *25	*0.0025 *25	±0.01 ±100	±.0005 ≠5 1/
i Hax ambient temperature at rated wattage	l 1 125°C	125°C	125°C	125°C	125°C	125°C
 Max ambient temperature at zero wattage derating	175°C	175°C	175*C	175*C	175*C	175°C
 Power rating in watts and max dc or rms voltage at 125°C						
Style RNR50 Style RNR55 Style RNR50 Style RNR50 Style RNR55 Style RNR70 Style RNR70 Style RNR75	1/20 W, 200 V 1/10 W, 200 V 1/3 W; 250 V 1/3 W; 250 V 1/4 X, 300 V 1/2 W, 350 V Not available 	1/20 W, 200 V 1/10 W, 200 V 1/3 W, 250 V 1/4 W, 300 V 1/2 W, 350 V Not avaflable Not avaflable	1/20 W, 200 V 1/10 W, 200 V 1/8 W, 250 V 1/4 W, 300 V 1/2 W, 350 V 1 W, 750 V Not available	1/20 W, 200 V 1/10 W, 200 V 1/8 W, 259 V 1/4 W, 300 V 1/2 W, 350 V 1/2 W, 350 V 1 W, 750 V Not available	1/20 W, 200 Y 1/10 W, 200 Y 1/8 W, 250 Y 1/4 W, 350 Y 1/2 W, 350 Y Not available Not available	Not available Not available Not available Not available Not available Not available .3 W, 300 V
Power rating in watts and max dc or rms voltage		 			1	
Style RNR50 Style RNR55 Style RNR55 Style RNR55 Style RNR75 Style RNR75 Style RNR75 Style RNR75	1/10 W, 200 V 1/3 W, 200 V 1/4 W, 300 V 1/2 W, 350 V 1/2 W, 350 V 3/4 W, 550 V Not available Vot available	1/10 W, 200 W 1/8 W, 200 V 1/4 W, 300 V 1/2 W, 350 V 3/4 W, 500 V Not available Not available	11/10 4, 200 V 11/8 4, 200 V 11/4 4, 300 V 1/2 4, 350 V 3/4 4, 500 V 2 4, 750 V 0 4 available	1/19 W, 200 V 1/3 W, 200 V 1/3 W, 300 V 1/2 W, 350 V 3/1 W, 550 V 2 W, 750 V 2 W, 750 Y Not available	1/10 W, 200 V 1/9 W, 200 V 1/4 W, 300 V 1/2 W, 350 V 3/4 W, 500 V Not available Vot available	Not available Not available Not available Not available Not available Not available .5 W, 300 V
Min and max resistance values: 2/ Style RNRSO Style RNR55 Style RNR60 Style RNR65 Style RNR75 Style RNR75 Style RNR75	Min Max 19.0 .100 Ma 10.0 1.21 Ma 10.0 2.49 Ma 10.0 4.99 Ma 24.9 7.5 Ma Not available Not available	Min Max 49.9 .796 Ma 10.0 2.0 Ma '2.0 3/ 4.02 Ma 1.0 3/ 9.06 Ma 1.0 3/ 10.06 Ma 1.9 3/ 15 Ma Not available Vot available	Min Nax 10.0 .100 Mg 10.0 1.21 Mg 10.0 2.49 Mg 10.0 2.49 Mg 24.9 7.5 Mg 24.9 7.5 Mg 24.9 2.0 Mg Not available	Min Max (49.9 .796 Ma 10.0 2.0 Ma 10.0 4.02 Ma 10.0 8.06 Ma 10.0 15 Ma 49.9 5.0 Ma Not available	Min Max 10.0 .795 Ma 10.0 2.0 Ma 1.0 3/ 4.02 Ma 1.0 3/ 5.06 Ma 1.0 3/ 15 Ma Not available Not available	Min Max Not available Not available Not available Not available Vot available Not available 4.99 ka 100 ka
 Max percent change in resistance values: <u>4/</u> Temperature cycling Durmland	0.2	0.2	0.2	0.2	0.2	0.05
Low temperature operation Low temperature storage Terminal strength Dielectric withstanding voltage Resistance to soldering heat Moisture resistance Shock (specified pulse) Vibration, high frequency Life Yigh temperature exposure	0.15 0.15 0.15 0.1 0.2 0.2 0.2 0.2 0.2 See 5/ 0.5	0.15 0.15 0.15 0.1 0.1 0.4 0.4 0.2 0.2 0.2 0.5	0.15 0.15 0.15 0.1 0.1 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.5	0.15 0.15 0.15 0.1 0.1 0.4 0.2 0.2 0.2 See <u>5/</u> 0.5	0.15 0.15 0.15 0.1 0.15 0.1 0.1 0.2 0.2 0.2 0.2 0.5	0.05 0.02 0.02 0.02 0.02 0.05 0.05 0.01 0.02 See 5/ 0.05
Insulation resistance (dry)	10,000 Ma, min	[10,000 ΜΩ, min	10,000 Ma, min	10,000 Ma, min	10,000 Ma, min	10,000 Ma, mfa
 Insulation resistance (wet) 	100 Ma, min	100 ΜΩ, πin	100 MΩ, min	100 Ma, min	100 Ma, min	100 ΜΩ, πίn
 Resistance tolerance (* percent) 	1.0, 0.5, 0.1	1.0, 0.5, 9.1	1.0, 0.5, 0.1, as applicable to style	1.0, 0.5, 0.1, as applicable to style	1.0, 0.5	1.9, 0.5, 9.1, 0.05, 0.01, 0.005
•	1	1	1	1	1	1

^{302.9}

302 (MIL-R-55182) 2/

1/

.

.

Maximum resistance-temperature characteristic = ± 5 ppm/°C (\pm .0005 percent per degree C) up to and including 125°C and ± 10 ppm/°C (\pm .001 percent per degree C) from 125°C to 175°C. Resistance values are based on the .1 percent decade listed in this section. For other resistance tolerances, refer to 3.3.

<u>3/</u> Minimum resistance is 10 ohms for B (.1 percent) tolerance. 4/ Where total resistance change is 1 percent or less, it shall be considered as * (percent *0.01 ohm).
5/ The AR requirements shall be ±0.5 percent (qualification, 2,000 hr duration); ±2.0 percent (10,000 hr duration).
6/ The AR requirement shall be ±0.05 percent (qualification, 2,000 hr duration); ±0.5 percent (10,000 hr duration).

MIL-STD-199D

SECTION 303

RESISTORS, FIXED, WIREWOUND (ACCURATE), ESTABLISHED RELIABILITY STYLES RBR52, RBR53, RBR54, RBR55, RBR56, RBR57, RBR71, AND RBR75 (APPLICABLE SPECIFICATION: MIL-R-39005)

1. SCOPE. This section covers established reliability, accurate, wirewound, fixed resistors that have a maximum initial resistance tolerance of 1.0 percent and a high degree of stability with respect to time under specified environmental conditions. These resistors provide life failure rates ranging from 1.0 percent to 0.001 percent per 1,000 hours. The failure rates are established at a 60-percent confidence level (initial qualification) and maintained at a 10-percent producer's risk. The failure rate is referred to operation at full rated wattage and temperature with a maximum change in resistance of ± 0.2 percent at 0 to 10,000 hours of life test. These resistors are not designed for high-frequency applications where ac performance is of critical importance. They are especially suited for use in dc amplifiers, voltmeter multipliers, electronic computers, meters, and laboratory test equipment.

2. APPLICATION INFORMATION.

2.1 Style selection.

2.1.1 <u>Construction</u>. In these resistors, the resistance element consists of a precisely <u>measured</u> (by ohmic value) length of resistance wire, wound on a bobbin or core (usually of ceramic). The resistance wire is an alloy metal without joints, welds, or bonds (except for splicing at midpoint of a bifilar winding and at end terminals). In order to minimize inductance, resistors are wound by one of the following methods: reverse pi-winding or bifilar winding. The element assembly is then protected by a coating or enclosure of moisture-resistant insulating material which completely covers the exterior of the resistance element including connections and terminations. MIL-STD-790, "Reliability Assurance Program for Electronic Parts Specifications," provides for monitoring and documentation of the processes and controls used in manufacturing these resistors.

2.1.2 <u>Power rating</u>. These resistors have a power rating based on operation at an ambient temperature of 125°C. If these resistors are to be operated at an ambient temperature greater than 125°C, the resistor should be derated in accordance with figure 303-1.

2.1.3 <u>Resistance tolerance and wattage input</u>. When using resistors with low resistance values and a tolerance of 0.1 percent or less, the design engineer must consider the fact that the resistance of the leads and other wires connected to the resistor may exceed the tolerance. Where a resistor is used in a critical application that requires the initial tolerance to be 0.1 percent or less, it is also desirable to hold resistance changes within this tolerance during operation. Since the temperature characteristic can cause the resistance to change by more than 0.1 percent, the temperature rise in the resistor must be kept to a minimum if the resistor is expected to remain within the initial tolerance during use. It is to be noted that initial nominal resistance is measured at 25°C while full-load operating temperature is 125°C. Therefore, if this close tolerance of 0.1 percent or less is to be held, the power rating of the resistors shall be reduced as indicated in table 303-I.

TABLE 303-I. Resistance tolerance and wattage input.

Symbol	Resistance tolerance	Permissible percent of normal wattage <u>1</u> /
T	±.01%	50
A	±.05%	50
B	±0.1%	50
F	±1.0%	100

1/ These values represent the maximum wattage at which resistors should be operated at an ambient temperature up to 125°C.

2.1.4 Derating for optimum performance. Because all of the electrical energy dissipated by a resistor is converted into heat energy, the temperature of the surrounding air becomes an influencing factor in the selection of a particular resistor for use in a specific application. After the desired resistance tolerance and the anticipated maximum ambient temperature have been determined, a safety factor of 2, applied to the wattage, is recommended in order to insure the selection of a resistor having an adequate wattage-dissipation potential, and one which will remain within specified tolerance limits.

2.2 <u>Supplementary insulation</u>. Where high voltages (250 volts and higher) are present between the resistor circuit and the grounded surface on which the resistor is mounted, or where resistance is so high that the insulation resistance to ground is an important factor, secondary insulation between the resistor and its mounting, or between mounting and ground, should be provided.

2.3 <u>Soldering</u>. Care must be exercised in soldering these resistors, particularly in the lower resistance values and tighter tolerances, since high contact resistance might cause resistance changes greater than the tolerance.

2.4 <u>Mounting</u>. It is suggested that wire-lead-terminal resistors be mounted by restraining their bodies from movement when shock or high-frequency-vibration forces are to be encountered.

2.5 <u>Recommended maximum ambient temperature</u>. The maximum ambient temperature should not exceed 135°C for all styles.

2.6 <u>Terminals</u>. Weldable terminals ("U" terminals only) are type N-1 of MIL-STD-1276. Solderable terminals ("L" terminals only) have met the criteria for wire lead terminal evaluation in test method 208 of MIL-STD-202.
2.7

Maximum weight. The maximum weight of each style is as follows:

6.0 grams 5.0 grams RBR53 - - - - - - -2.5 grams RBR54 - - - - - - - -RBR55 - - - - - - 2.0 grams RBR56 - - - - - - 1.5 grams RBR57 - - - - - - 10.0 grams RBR71 - - - - - - 1.5 grams RBR75 - - - - - 1.5 grams RBR75 - - - - - - - -

2.8 <u>Screening requirements</u>. All resistors furnished under 41L-R-39005 are subjected to a 100-hour conditioning life test by cycling at rated wattage at 125°C followed by a total resistance measurement check and a visual examination for evidence of mechanical damage.

2.9 Resistive element wire size. Use of wire size of less than .001 inch diameter is not recommended for new design.

2.10 Failure rate factors. Failures are considered to be opens, shorts, or radical departures from initial characteristics occurring in an unpredictable manner, and in too short a period of time to permit detection through normal preventive maintenance. Falure rate factors applicable to this specification are stated in MIL-HDBK-217. The failure rate factors stated in MIL-HDBK-217 are based on "catastrophic failures" and will differ from the failure rates established in the specification, since the established failure rate is based on a "parametric failure" of ±.2 percent change in resistance to be expected at 0 to 10,000 hours of life tests at rated conditions.

3. ITEM IDENTIFICATION (see figures 303-2 and 303-3).

3.1 <u>Type designation</u>. The type designation is used for identifying and describing the resistor as shown on figure 303-2.

3.2 Performance characteristics. The performance characteristics of these resistors are as shown in table 303-11.

3.3 Resistance values. Resistance values for tolerances B (.1 percent), A (.05 percent), Q (.02 percent), and T (.01 percent) may be any value, but it is preferred that the values be chosen from the A or B tolerance values. Resistance values for the F (1.0 percent) tolerance shall follow the following tabulation:

Resistance	values	for	the	10	to	100	decade
	the second second second second second second second second second second second second second second second s			_	-		

A (.05) B (.1)	F (1.0)	A (.05) B (.1)	F (1.0)	A (.05) B (.1)	F (1.0)	A (.05) B (.1)	F (1.0)
10.0	10.0	17.8	17.8	31.6	31.6	56.2	56.2
1 10.1	[18.0		32.0		56.9	
10.2	10.2	18.2	18.2	32.4	32.4	57.6	57.6
1 10.4		1 18.4		32.8		58.3	
1 10.5	10.5	1 18.7	18./	33.2	33.2	59.0	59.0
	107 I	1 10.9	 101	33.0		59./	
1 10.9		1 19 3	13+1 13+1	34.0	I 34.0 1	1 60.4	60.4
1 11.0	11.0	19.6	19.6	34.8	34.8	61.9	61.9
11.1		1 19.8		35.2		62.6	
11.3	11.3	20.0	20.0	35.7	35.7	63.4	63.4
1 11.4		1 20.3	 _	36.1		64.2	[
	11.5	1 20.5	20.5	36.5	36.5	64.9	64.9
	11.8	1 20.8		37.0	 27.4	65.7	
12.0		21.0		37.4	L 3/.4 L 1 1	1 00.0	00.0
12.1	12.1	1 21.5	21.5	38.3	383	681	68 1
1 12.3		21.8	1	38.8		69.0	
12.4	12.4	22.1	22.1	39.2	39.2	69.8	69.8
12.6		22.3		39.7		70.6	
12.7	12.7	22.6	22.6	40.2	40.2	71.5	71.5
1 12.9		22.9		40.7		72.3	
1 13.0 1	13.0	1 23.2	23.2	41.2	41.2	73.2	73.2
1 13 2 1	133	1 23.4	237	41./		/4.1	
13.5		24.0	23.7	42.2	42.2	1 75 0 1	/5.0
13.7	13.7	24.3	24.3	43.2	43.2	76.8	76.8
13.8		24.6		43.7		77.7	
14.0	14.0	24.9	24.9	44.2	44.2	1 78.7	78.7
		25.2		44.8		79.6	!
1 14.3 1 1 14 5 1	14.3	1 25.5	25.5	45.3	45.3	80.6	80.6
1 14.5	14 7 1	1 25.8	26 1	45.9			
i 14.9 i		26.4		40.4	40.4	1 02.5	02.0
15.0	15.0 j	26.7	26.7	47.5	47.5	1 84.5 L	84 5
15.2		27.1		48.1		85.6	
15.4	15.4	27.4	27.4	48.7	48.7	86.6	86.6
15.6		27.7		49.3		l 87.6	
	15.8	28.0	28.0	49.9	49.9	88.7	88.7
1 10.0 1	16 2	28.4		50.5		89.8	
		20.7	20./	1 51.1 1 1 51 7 1	51.1	1 90.9	90.9
16.5	16.5	29.4	29.4	52.3	52.3	1 92.0 93.1	93.1
16.7	k	29.8		53.0		94.2	I
16.9	16.9	30.1	30.1	53.6	53.6	95.3	95.3
17.2		30.5	l	54.2	i Ì	96.5	
	17.4	30.9	30.9	54.9	54.9	97.6	97.6
1 1/.6	!	31.2	!	55.6	!	98.8	1
<u>ا ا</u>	<u> </u>	<u>i </u>	<u> </u>	<u> </u>			1

Downloaded from http://www.everyspec.com

MIL-STD-199D

		-	RBR52		50R50	A	M
	STYLE: The three-letter symbol "RBR" identifies accurate, wirewound, fixed resistors; the two-digit number identifies the size and power rating.			-		Ţ	Ť
	Single letter symbol identifies the terminal and ΔR requirement as follows:						
	L Solderable (tightened ΔR) U Weldable (tightened ΔR)						
*	<u>RESISTANCE:</u> 1/ The five-digit number identifies the nominal resistance value, expressed in ohms; the first four digits represent significant figures and the last digit specifies the number of zeros to fol- low. For values less than 1,000 ohms, all digits are significant with the letter "R" representing the decimal point. (See 3.3 and the following example.)						
	EXAMPLE: R1000 0.100 ohms 10R00 10.0 ohms 10000 1000 ohms 10002 0.1 megohm						
	INITIAL RESISTANCE TOLERANCE: The single-letter symbol identifies the resistance tolerance (25 +2°C) as follows:		·				
	T ±.01 percent A ±.05 percent B ±.1 percent F ±1.0 percent						
	LIFE FAILURE RATE: The single-letter symbol iden- tifies the life failure rate as follows:						
*	M 1.0 percent/1,000 hr P 0.1 percent/1,000 hr R 0.01 percent/1,000 hr						<u> </u>
<u>1</u> /	When a nondecade resistance value is required, the a used.	ct	ual resist	ance	value i	5	

FIGURE 303-2. Type designation example.

.

.

303 (MIL-R-39005)

Standard	Dimensions							
style	A +.020 (.51) 032 (.81)	R ±.030 (.76)	C ±.002(.05)	D ±.015 (.38)				
RBR52	1,000 (25,40)	1.250 (31.75)	.032 (.81)	,375 (9.53)				
RBR53	.750 (19.05)	1.250 (31.75)	.032 (.81)	.375 (9.53)				
RBR54	.750 (19.05)	1.250 (31.75)	.032 (.81)	.250 (6.35)				
RBR55	.500 (12.70)	1.250 (31.75)	.032 (.81)	.250 (6.35)				
RBR56	.344 (8.74)	.625 (15.88)	.032 (.81)	.250 (6.35)				
RBR57	1.000 (25.40)	1.750 (44.45)	.032 (.81)	.500 (12.70)				
RBR75	.295 (7.49)	.687 (17.45)	.025 (.64)	.250 (6.35)				

NOTES:

Envelope-essentially cylindrical, no square or rectangular sections.
 Dimension A is "clean lead" to "clean lead".

STYLE RBR71

FIGURE 303-3. Establish reliability, wirewound (accurate), fixed resistors. 303 (MIL-R-39005)

.

•

TABLE 303-II. Performance requirements

Features	RBR52	RBR53	RBR54	RBR55	RBR56	RBR57	RBR71	RBR75
Maximum resistance Less than 1 ohm temperature characteristic 1 to less than 10 ohms- in ppm/C 10 to less than 100 ohms (Ref to 25°C) 100 ohms and above-	*90 *30 *15 *10	+90 +30 +15 +10	±90 ±30 ±15 ±10	±90 ±30 ±15 ±10	±90 ±30 ±15 ±10	*90 *30 i *15 i *10 i	*90 *30 *15 *10	*90 *30 *15 *10
Maximum ambient temperature at rated wattage	125°C	125*C	125°C	125°C	125°C	125°C	125*C	125°C
Maximum ambient temperature at zero wattage derating	145°C	145°C	145°C	145°C	145°C	145°C	145°C	,145°C
Power rating in watts and maximum dc or rms voltage	1/2 watt 600 volts	1/3 watt 300 volts	1/4 watt 300 volts	.15 watt 200 volts	1/8 watt 150 volts	3/4 watt 600 volts	1/8 watt 150 volts i	1/8 watt 150 volts
Minimum resistance value (ohms): Resistance tolerance F	0,1	0.1 1 10	0.1 10	0.1 10	0.1 10	0.1 10	0.1 10	0.1
Maximum resistance (.001" dia wire) (megohms): Resistance tolerance T, A	1 .806 .806 .806	 .499 .499 .499 .499	.255 .255 .255	.150 .150 .150	.100 .100 .100	1.37 1.37 1.37	.100 .100 .100	.0715 .0715 .0715
Insulation resistance (megohms): Dry Wet	1,000	 1,000 100 	 1,000 100	1,000 100	1,000 100	1,000 100	1,000 100	1,000 100
Terminal and ΔR requirement	LandU	LandU	Land U	l Land ሀ	Land U	L and U	Land U	LandV
Maximum percent change in resistance (±): 1/ Conditioning	1 .01 1 .01 1 .01 1 .01 1 .01 1 .01 1 .01 1 .01 1 .01 1 .01 1 .01 1 .01 1 .01 1 .01 1 .01 1 .1 2 .1	1 .01 1 .01 1 .05 1 .1 .01 .1 .01 .01 .01 .01 .01 .01 1 .01 1 .01 1 .01 1 .01 1 .01 1 .1 1 .2 1 .1	 .01 .01 .05 .1 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .1 .2 .1	01 .01 .05 	01 01 05 1 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 05 1 01 05 1 01 05 1 01 05 1 01	.01 .01 .05 .1 .01 .01 .01 .01 .01 .01 .01 .01 .01	1 .01 .01 .05 .4 .01	.01 .01 .05 .1 .01 .01 .01 .01 .01 .01 .01 .01 .01
Resistance tolerance (* percent)	.01, .05, .1, 1	.01, .05,	.01, .05, .1, 1	.01, .05,	.01, .05, .1, 1	.01, .05, .1, 1	.01, .05,	.01, .05,

1/ Where resistance is less than 10 ohms, it shall be considered as $(_$ percent +0.1 ohm).

٢

SECTION 304

RESISTORS, FIXED, WIREWOUND (POWER TYPE), "ESTABLISHED RELIABILITY

STYLES RWR78, RWR80, RWR81, RWR82, RWR84, AND RWR89

(APPLICABLE SPECIFICATION: MIL-R-39007)

1. SCOPE. This section covers established reliability, power type, wirewound, fixed resistors, having axial leads. These resistors have a maximum initial resistance tolerance of ±1.0 percent. These resistors provide failure rates ranging from 1.0 percent to 0.001 percent per 1,000 hours. The failure rates are established at a 60-percent confidence level (initial qualification) and maintained at a 10-percent manufacturer's risk. The failure rate is referred to operation at full rated wattage and temperature with a maximum change in resistance of ±1.0 percent at 0 to 10,000 hours of life test.

2. APPLICATION INFORMATION.

2.1 <u>Construction</u>. The construction of these resistors employs a measured length of resistance wire or ribbon (of a known ohmic value) wound in a precise manner (pitch, effective wire coverage, and wire diameter are specification controlled). The continuous length of wire (wire required to be free of joints, bond, and of uniform cross-section) is wound on a ceramic core or tube and attached to end terminations. The element is then coated or enclosed by inorganic vitreous or a silicone coating to protect it from moisture or other detrimental environmental conditions. Due to the reliability requirements of MIL-R-39007, processes and controls utilized in manufacturing are necessarily more stringent. MIL-STD-790, "Reliability Assurance Program for Electronic Parts Specifications," provides for monitoring and documentation of these requirements. Resistors of this section have an added requirement for noninductive type winding. Resistors which are identified by the terminal and winding designator "N" or "Z" are noninductively wound by the Ayrton-Perry method.

2.2 Derating at high temperature. The power rating is based on operation at 25° C; however, when a resistor is to be used in a circuit where the surrounding temperature is higher than 25°C, a correction factor must be applied to the wattage rating so as not to overload the resistor. This correction factor may be taken from the curve shown on figure 304-1.

2.3 Derating for optimum performance. Because all of the electrical energy dissipated by a resistor is converted into heat energy, the temperature of the surrounding air becomes an influencing factor in the selection of a particular resistor for use in a specific application. The power rating for these resistors is based on operation at an ambient temperature of 25°C; however, in actual use, the resistors may not be operating at this temperature. After the desired resistance tolerance and the anticipated maximum ambient temperature have been determined, a safety factor of 2, applied to the wattage, is recommended in order to insure the selection of a resistor having an adequate wattage-dissipation potential, and one which will remain within specified tolerance limits.

2.4 <u>Choice of style</u>. Resistors to be used in equipment should be so chosen that, when mounted in the equipment, they will not be required to operate at a temperature in excess of their rating. This should be applicable under the most severe conditions, as follows:

- a. In the maximum specified ambient temperature.
- b. Under conditions producing maximum temperature rise in each resistor.
- c. For a sufficient length of time to produce maximum temperature rise, or for the maximum specified time.
 - d. With all enclosure in place.
 - e. With natural ventilation only. (This should permit the use of any special ventilating provisions included as a standard part of the equipment.)
 - f. At high altitude.

FIGURE 304-1. Derating curve for high ambient temperature.

2.5 <u>Spacing</u>. When resistors are mounted in rows or banks, they should be so spaced that, taking into consideration the restricted ventilation and heat dissipation by nearby resistors, no resistor in the rows or banks exceeds its maximum permissible hot-spot temperature. An appropriate combination of resistor spacing and resistor power rating must be chosen if this is to be insured.

2.6 <u>Soldering</u>. A solder with a minimum melting temperature of 350°C should be used for soldering. Care must be exercised in soldering low value and tighter tolerance resistors since high contact resistance may cause resistance changes exceeding the tolerance.

2.7 Mounting. Under conditions of severe shock or vibration, or a combination of both, resistors of all sizes described in this section should be mounted in such a fashion that the body of the resistor is restrained from movement with respect to the mounting base. It should be noted that if clamps are used, certain electrical characteristics of the resistor will be altered. The heat-dissipating qualities of the resistor will be enhanced or retarded depending on whether the clamping material is a good or poor heat conductor. Under less severe vibration conditions, axial lead styles may be supported by their leads only. The lead lengths should be kept as short as possible, 1/4 inch or less preferred, but no longer than 5/8 inch. The longer the lead, the more likely that a mechanica! failure will occur.

2.8 <u>Secondary insulation</u>. Where high voltages are present between resistor circuits and grounded surfaces on which resistors are mounted, secondary insulation capable of withstanding the voltage conditions should be provided between resistors and mountings or between mountings and ground.

2.9 Failure rate factors. Failures are considered to be open, shorts, or radical departures from initial characteristics occurring in an unpredictable manner, and in too short a period of time to permit detection through normal preventive maintenance.

304A (MIL-R-39007)

Failure rate factors applicable to this specification are stated in MIL-HDBK-217. The failure rate factors stated in MIL-HDBK-217 are based on "catastrophic failures" and will differ from the failure rates established in the specification, since the established failure rate is based on a "parametric failure" of ± 1.0 percent change in resistance to be expected at 0 to 10,000 hours of life tests at rated conditions.

2.10 Maximum weight. Maximum weight of each style is as follows:

Style	S and W terminal N and Z terminal and winding and winding
RWR78 RWR80 RWR81 RWR82 RWR82 RWR84 RWR89	12 grams13 grams1 gram1 gram.35 gram.70 gram.3 gram5 grams6 grams3 grams4 grams

2.11 <u>Screening</u>. All resistors furnished under MIL-R-39007 are subjected to a conditioning 100-hour life test by cycling at full load at 25°C. This shall be followed by a total resistance measurement and a visual examination for mechanical damage.

2.12 <u>Coating materials</u>. Certain coating materials used in fabricating resistors furnished under MIL-R-39007 may be subject to "outgassing" of volatile material when operated at surface temperatures over 200°C. This phenomena should be taken into consideration for equipment design.

2.13 Reactance (applicable to "N" and "Z" terminals and windings only). When resistors are tested under MIL-R-39007, they shall be within the maximum limits specified as follows:

	Maximum effect inductance	ive series - μΗ	Maximum effective parallel capacitance - pF
Styles <u>1</u> /	50Ω and below	Above 50Ω	All resistance values
RWR78 RWR80 RWR81	0.65 0.20 0.20	1.20 0.37 0.37	
RWR84 RWR89	0.30	1 0.60 0.37 	1.5 1.5

1/ Not applicable to style RWR82.

3. ITEM IDENTIFICATION (see figures 304-2 and 304-3).

3.1 <u>Type designation</u>. Type designation is used for identifying and describing the resistor as shown on figure 304-2.

3.2 <u>Performance characteristics</u>. Performance characteristics are shown in table 304-I.

3.3 <u>Resistance values</u>. Resistance values for tolerance B (0.1 percent) may be any value, but it is preferred that the values be chosen from the D tolerance values. Resistance values for the F (1.0 percent) and D (0.5 percent) tolerances shall follow the following tabulation:

Resistance tolerance.

D (.05)	F (1.0)	D (.05)	F (1.0)	D (.05)	F (1.0)	D (.05)	F (1.0)
10.0	10.0	17.8	17.8	31.6	31.6	56.2	56.2
10.2	10.2	18.0	18.2	32.4	32.4	1 56.9	57.6
10.4		18.4		32.8		58.3	
1 10.5	10.5	1 18.7	18./	33.2	33.2	59.0	59.0
10.0		1 10.9	 19.1	34.0	1 34.0	1 59.7	 60 4
10.9		19.3		34.4		61.2	
11.0	11.0	19.6	19.6	34.8	34.8	61.9	61.9
				35.2		62.6	
11.4		20.3		36.1	35./	1 64.2	03.4
11.5	11.5	20.5	20.5	36.5	36.5	64.9	64.9
11.7		20.8		37.0	,	65.7	
11.8	LL.8		21.0	3/.4	3/.4 1	1 66.5	66.5
12.0	12.1	21.5	21.5	38.3	38.3	68.1	68.1
12.3	1 1	1 21.8		38.8		69.0	i i
12.4	12.4	22.1	22.1	39.2	39.2	69.8	69.8
1 12.0	127	22.3		1 39.7		1 70.6	
1 12.9	1	1 22.9	22.0	40.2		1 72 3	/1.5
13.0	13.0	23.2	23.2	41.2	41.2	73.2	73.2
13.2		23.4		41.7		74.1	
13.3 12.5	13.3	23.7	23.7	42.2	42.2	1 75.0	75.0
1 13.5	13.7	24.0	24.3	42.7		76.8	 76 8
13.8		24.6		43.7		77.7	
14.0	14.0	24.9	24.9	44.2	44.2	78.7	78.7
14.2		25.2		44.8	 /E 2		
14.5		25.8		45.9	45.5	1 81.6	
14.7	14.7	26.1	26.1	46.4	46.4	82.5	82.5
14.9		26.4		47.0		83.5	l
1 15.0	1 15.0	26./	26./	4/.5	1 47.5	1 84.5	84.5
1 15.4	15.4	27.4	27.4	48.7	48.7	86.6	86.6
15.6		27.7		49.3		87.6	
1 15.8	15.8	28.0	28.0	49.9	1 49.9]	1 88.7	88.7
1 16.0		28.4	 28 7	50.5		89.8	
16.4		29.1	1	51.7	·	92.0	90.9
16.5	16.5	29.4	29.4	52.3	52.3	93.1	93.1
16.7		29.8		53.0		94.2	
1 10.9	I 10.9	1 30.L	30.1	54 2	53.0	1 95.3 96.5	95.3
17.4	17.4	30.9	30.9	54.9	54.9	97.6	97.6
17.6	1	31.2		55.6	-	98.8	
<u> </u>	<u> </u>	l	!	1	<u>i j</u> i	<u> </u>	1I

.

FIGURE 304-2. Type designation example.

STYLES RWR78, RWR80, RWR81, RWR82, RWR84, AND RWR89

	Dimensions (inches)									
Style	А	B, Min	С	D						
ŘWR78 RWR80 RWR81 RWR82 RWR84 RWR89	$\begin{array}{c} 1.\ 780 {\pm}.\ 062\ (45.\ 21 {\pm}1.\ 57)\\ .\ 406 {\pm}.\ 031\ (10.\ 31 {\pm}\ .\ 79)\\ .\ 250 {\pm}.\ 031\ (6.\ 35 {\pm}\ .\ 79)\\ .\ 312 {\pm}.\ 016\ (7.\ 92 {\pm}\ .\ 41)\\ .\ 875 {\pm}.\ 062\ (22.\ 23 {\pm}1.\ 57)\\ .\ 560 {\pm}.\ 062\ (14.\ 22 {\pm}1.\ 57)\end{array}$	1.500 (38.10) 1.500 (38.10) 1.500 (38.10) 1.500 (38.10) 1.500 (38.10) 1.500 (38.10) 1.500 (38.10)	$\begin{array}{c} .040 \pm .002 & (1.02\pm .05) \\ .0200\pm .0015 & (.51\pm .04) \\ .0200\pm .0015 & (.51\pm .04) \\ .020 \pm .002 & (.51\pm .04) \\ .020 \pm .002 & (.51\pm .05) \\ .040 \pm .002 & (1.02\pm .05) \\ .032 \pm .002 & (.81\pm .05) \end{array}$	$\begin{array}{c} .375 \pm .031 \ (9.53 \pm .79) \\ .094 \pm .031 \ (2.39 \pm .79) \\ .085 \pm .020 \ (2.16 \pm .51) \\ .078 \pm .016 \ (1.98 \pm .41) \\ .312 \pm .031 \ (7.92 \pm .79) \\ .187 \pm .031 \ (4.75 \pm .79) \end{array}$						

NOTE: Dimension A is "clean lead" to "clean lead".

FIGURE 304-3. Established reliability, power type, wirewound, fixed resistors.

TABLE 30	D4-I.	Performance	character	istics.

· · · · · · · · · · · · · · · · · · ·	_		· · · · ·			· · · · · · · · · · · · · · · · · · ·
Features	RWR78	RWR80	RWR81	RWR82 <u>1</u> /	RWR84	 RWR89
Max resistance-temperature.1 to .499 ohmcharacteristic in ppm/°C.499 to 1 ohms(Ref to 25°C)1 ohm to below 10 ohms10 ohms and above	+650 +400 ±50 ±20	+650 +400 ±50 ±20	+650 +400 ±50 ±20	+650 +400 ±50 #20	+650 +400 ±50 ±20	+650 +400 ±50
Min resistance $(ohm)2/ $	0.1 10	0.1 10	0.1	0.1	0.1 10	0.1
Max resistance 0.00175 inch or larger dia wire (K ohm) Max resistance 0.008 inch nominal dia wire (K ohm) Max resistance (noninductive "N" and "Z" types)(.001 dia wire)	6.98 39.2 19.6	.357 3.16 .604	.2 1.0 .232	.931 1.3	2.94 12.4 6.19	.931 4.12 1.78
Power rating (watts)	10	2	1	1.5	7	3
Max ambient temperature at rated wattage (°C)	25	25	25	25	25	25
Max ambient temperaturé at zero wattage derating (°C)	275	275	275	275	 275 	275
Max percent change in resistance: 4/ Conditioning- Temperature cycling - Short-time overload - Dielectric withstanding voltage - Moisture resistance - Terminal strength - Shock (specified pulse) - Vibration, high frequency - Life: Qualification (2,000 hr)- Failure rate determination (10,000 hr)- High temperature exposure -	0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.5 1.0 0.5 1.0 0.5	0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.5 1.0 0.5 0.1	0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.5 1.0 0.5 0.1	0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.5 1.0 0.5 0.1	0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.5 1.0 0.5 1.0	0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 1.0 0.5 0.5 0.1
Min insulation resistance (megohms) Dry (initial)	1,000 100	1,000 100	1,000 100	1,000 100	 1,000 100	1,000

1/ Not available with noninductive winding ("N" and "Z" types). 2/ For resistance tolerance B (.1 percent), minimum resistance is .499 ohm. 3/ Resistance values below 10 ohms do not require posiductive states. Resistance values below 10 ohms do not require noninductive windings. Inductively wound resistors at these low values exhibit reactances well within the limits established for noninductively wound resistors.

4/ Where total resistance change is 1 percent or less, it shall be considered as ±(percent +0.05 ohm).

SECTION 305

RESISTORS, FIXED, FILM (INSULATED), ESTABLISHED RELIABILITY

STYLES RERO5, RERO7, RER20, AND RER32

(APPLICABLE SPECIFICATION: MIL-R-39017)

1. SCOPE. This section covers established reliability, insulated, film, fixed resistors, having film-type resistance element and axial leads. These resistors have resistance tolerances of ± 1.0 and ± 2.0 percent. These resistors provide life failure rates ranging from 1.0 percent to 0.001 percent per 1,000 hours. The failure rates are established at a 60-percent confidence level (initial qualification) and maintained at a 10-percent producer's risk. The failure rate is referred to operation at full rated wattage and temperature (70°C) with a maximum change in resistance of ± 4.0 percent at 0 to 10,000 hours of life test. These resistor styles are used in applications requiring better stability, tolerance, and temperature coefficient requirements than carbon composition types. For applications requiring greater precision and tighter tolerances, the use of metal film or wirewound resistors is indicated.

2. APPLICATION INFORMATION.

2.1 <u>Construction</u>. In these resistors, the resistance element consists of a film-type resistance element (tin oxide, metal glaze, etc.,) which has been formed on a substrate by one of several processes depending upon the manufacturer. The element is spiraled to achieve ranges in resistance value and, after lead attachment, the element is coated to protect it from moisture or other detrimental environmental conditions. Due to the reliability requirements of MIL-R-39017, processes and controls utilized in manufacturing are necessarily more stringent. MIL-STD-790, "Reliability Assurance Program for Electronic Parts Specifications," provides for monitoring and documentation of these requirements.

2.2 <u>Derating at high temperature</u>. The power rating is based on full-load operation at an ambient temperature of 70°C. However, when a resistor is to be used in a circuit where the surrounding temperature is higher than 70°C, a correction factor should be applied to the wattage rating so as not to overload the resistor. This correction factor may be taken from the curve shown on figure 305-1.

FIGURE 305-1. Derating curve for high ambient temperature.

2.3 <u>Derating for optimum performance</u>. After the maximum ambient temperature has been determined, a safety factor of two applied to the wattage is recommended in order to insure the selection of a resistor with an adequate wattage dissipation potential.

2.4 <u>Resistance tolerance</u>. Designers should bear in mind that operation of these resistors under the ambient conditions for which military equipment is designed may cause permanent or temporary changes in resistance sufficient to exceed their initial tolerance. In particular, operation at extreme temperatures may cause relatively large temporary changes in resistance.

2.5 <u>Maximum voltage</u>. The maximum continuous working voltage specified for each style should in no case be exceeded, regardless of the theoretically calculated rated voltage.

2.6 Noise. Noise output is uncontrolled by the specification but is considered a negligible quantity.

2.7 Shelf life. MIL-R-39017 estimates a change of resistance of .2 percent (average) per year under normal storage conditions (25° \pm 10°C) with relative humidity not exceeding 90 percent.

2.8 Maximum weight. The maximum weight for each style is as follows:

RLR05 - - - - - - - .30 gram RLR07 - - - - - - .50 gram RLR20 - - - - - .75 gram RLR32 - - - - - 1.50 grams

2.9 <u>Frequency characteristics</u>. These resistors are virtually noninductive. A typical response curve is illustrated on figure 305-2.

FREQUENCY IN MHz PER SECOND

FIGURE 305-2. Response curve.

2.10 <u>Screening requirements</u>. All resistors furnished under MIL-R-39017 are subjected to a conditioning 1.5 x rated power for a duration of 24 hours at a test ambient temperature of 20°C to 45°C. The conditioning is followed by a total resistance check and a visual examination for evidence of arcing, burning, or charring.

2.11 Terminals. Resistors furnished under MIL-R-39017 have leads conforming to type C of MIL-STD-1276. These leads are considered both solderable and weldable.

2.12 <u>Failure rate factors</u>. Failures are considered to be opens, shorts, or radical departures from initial characteristics occurring in an unpredictable manner, and in too short a period of time to permit detection through normal preventive maintenance. Failure rate factors applicable to this specification are stated in MIL-HDBK-217. The failure rate factors stated in MIL-HDBK-217 are based on "catastrophic failures" and will differ from the failure rates established in the specification, since the established failure rate is based on a "parametric failure" of +4.0 percent change in resistance to be expected at 0 to 10,000 hours of life tests at rated conditions.

3. ITEM IDENTIFICATION (see figures 305-3 and 305-4).

3.1 <u>Type designation</u>. The type designation is used for identifying and describing the resistor as shown on figure 305-3.

FIGURE 305-3. Type designation example.

3.2 <u>Performance characteristics</u>. The performance characteristics of these resistors are as shown in table 305-1.

3.3 <u>Resistance values</u>. The standard resistance values specified shall follow the decade of values shown in the following tabulation:

Resistance va	lues fo	or the	10 to	100	decade.

G (2.0)	F (1.0)	G (2.0)	F (1.0)	G (2.0)	F (1.0)	 G (2.0)	F (1.0)
10.0	10.0		18.7		33.2	<u>-</u>	56.2
l			19.1		34.0	1	57.6
	1 10.5		19.6		34.8		59.0
		20.0	20.0		35.7		60.4
111.0	11.0		20.5	36.0	<u> </u>	l <u>-</u>	61.9
ļ	11.3		21.0		36.5	62.0	
	11.5		21.5		37.4	!	63.4
	11.8	22.0			38.3	· ·	64.9
12.0			22.1	39.0	1		56.5
	12.1		22.6		39.2	68.0	
	12.4		23.2		40.2	·	68.1
	12.7		23.7		41.2		69.8
13.0	13.0	· 24.0			42.2		71.5
	13.3 (24.3	43.0	}		73.2
	13.7		24.9		43.2	75.0	75.0
	14.0		25.5		44.2	1	76.8
	14.3		26.1		45.3		78.7
	14.7		26.7		46.4		80.6
15.0	15.0	27.0		47.0	[82.0	
	15.4		27.4		47.5		82.5
	15.8		28.0	ł	48.7		84.5
16.0			28.7		49.9		86.6
	16.2		29.4	51.0			88.7
	16.5	30.0			51.1		90.9
	16.9		30.1		52.3	91.0	
	17.4	l	30.9		53.6		93.1
	17.8		31.6		54.9 1		95.3
18.0			32.4 1	56.0			97.6
	18.20	33.0				1	
<u> </u>	<u> </u>	<u> </u>		1	<u> </u>	1	

-

С.

MIL-STD-199D

STYLES RLRO5, RLRO7, RLR20, AND RLR32

LEAD LOCATED AT TRUE POSITION WITHIN OIG DIA

Standard	Dimensions (inches)							
style	A	B Max	C <u>+</u> .002	D				
RLR05	.150 <u>+</u> .020	.187	.0'6 <u>+</u> .001	.066 <u>+</u> .008				
RLR07	.250 +.031 046	. 300	.025	.090 <u>+</u> .008				
RLR20	.375 <u>+</u> .041	.450	.032	.138 <u>+</u> .023				
RLR32	.562 +.031 042	.625	. 040	.190 <u>+</u> .015				

Inches	mm	Inches	mm	Inches	'mm	Inches	. mm
.001	.03	.023	.58	.064	1.63	.318	8.08
.002	.06	.025	.64	.066	1.68	.375	9.53
.006	.15	.031	.79	.090	2.29	.380	9.65
.008	.20	.032	.81	.125	3.18	.450	11.43
.015	.38	.040	1.02	.138	3.51	.562	14.27
.016	.41	.041	1.04	.150	3.81	.625	15.88
.018	.46	.042	1.07	.187	4.75	.688	17.48
.020	.51	.045	1.14	.190	4.83	.756	19.20
		.046	1.17	.250	6.35	1.250	33.75
				.300	7.62		

NOTES:

- Maximum length is "clean lead" to "clean lead".
 The end of the body is that point at which the body diameter equals the nearest drill size larger than 250 percent* of the nominal lead diameter. *150 percent for RLR07.
- Length is 1.250 (31.75 mm) ±.266 (6.76 mm) for style RLR05.
 Lead length for tape and reel packaging shall be 1 inch minimum.

FIGURE 305-4. Established reliability, fixed film resistors (insulated).

	· ····		Style	
Features	RLR05	RLR07	RLR20	RLR32
Resistance temperature coefficient (ppm/°C)	± 100	±100	±100	±100
Max ambient temperature at full rated wattage	70°C	/0°C	70°C	70°C
Max ambient temperature at zero load	150°C	150°C	1 1 150°C	150°C
Power rating (watts)	1/8	1/4	1/2	1
Min resistance (ohms)	4.7	10	1 4.3	10
Max resistance (megohms)	1	22.1	3.01	1.0
Max continuous working voltage (volts)	200	250	350	500
Max percent change in resistance (±): 1/ Conditioning	0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1.0 0.5 2.0 2.0 4.0	0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0	0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1.0 0.5 1.0 0.5 2.0 4.0	0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0
Barometric	200	250	250	350
Wet (after moisture resistance)	1,000 100	1,000 100	1,000 100	 1,000 100

TABLE 305-I. Performance characteristics.

 $\frac{1}{2}$ Where total resistance change is 1 percent or less, it shall be considered as $*(_percent +0.05 \text{ ohm})$.

SECTION 306

RESISTORS, FIXED, WIREWOUND (POWER TYPE, CHASSIS MOUNTED),

ESTABLISHED RELIABILITY

STYLES RER40, RER45, RER50, RER55, RER60, RER65, RER70, AND RER75

(APPLICABLE SPECIFICATION: MIL-R-39009)

1. SCOPE. This section covers established reliability, chassis-mounted, power type, wirewound, fixed resistors, having a wirewound resistance element and axial lugtype leads. These resistors utilize the principle of heat dissipation through a metal mounting surface with full rated wattage at 25°C. The initial resistance tolerance is ± 1.0 percent. These resistors provide life failure rates ranging from 1.0 percent to 0.001 percent per 1,000 hours. The failure rates are established at a 60-percent confidence level (initial qualification) and maintained at a 10-percent producer's risk. The failure rate is referred to operation at full rated wattage and temperature with a maximum change in resistance of ± 2.0 percent at 0 to 10,000 hours of life test. These resistors should not be used in circuits where their ac performance is of critical importance; however, provisions have been made in particular styles to minimize inductance.

2. APPLICATION INFORMATION.

2.1 Construction. The construction of these resistors employs a measured length of resistance wire or ribbon (of a known ohmic value) wound in a precise manner (pitch, effective wire coverage, and wire diameter are specification controlled). Series RER45, 50, and 55 have Ayrton-Perry, or Bifilar windings to reduce inductive effort. The continuous length of wire (wire required to be free of joints, bond, and of uniform cross-section) is wound on a ceramic core or tube and attached to end terminations. The finished resistor element and termination caps are sealed by a coating material. The coated element is then inserted in a finned aluminum alloy housing which completes the sealing of the element from detrimental environments, and provides a radiator and a heat sink for heat dissipation. Due to reliability requirements of MIL-R-39009, processes and controls utilized in manufacturing are necessarily more stringent. MIL-STD-790, "Reliability Assurance Program for Electronic Parts Specifications," provides for monitoring and documentation of these requirements.

2.2 Derating at high temperatures. The power rating is based on operation at 25°C when mounted upon the specified test chassis area (see MIL-R-39009 and figure 306-1). When the resistor is to be used in a circuit where the surrounding temperature is higher than 25°C or the chassis area is restricted, the wattage must be reduced so as not to overload the resistor. See figures 306-1 and 306-2 for derating factors.

2.3 Derating for optimum performance. When the chassis area and the anticipated maximum ambient temperatures have been determined, a factor of 2 applied to the wattage is recommended in order to insure the selection of a resistor having an adequate wattage-dissipation potential.

2.4 <u>Choice of style</u>. Resistors to be used in equipment should be so chosen that, when mounted in the equipment, they will not be required to operate at a temperature in excess of their rating. This should be applicable under the most severe conditions as follows:

- a. In the maximum specified ambient temperature, limited chassis area.
- b. Under conditions producing maximum temperature rise in each resistor.
- c. For a sufficient length of time to produce maximum temperature rise, or for the maximum specified time.
- d. With all enclosures in place.
- e. With natural ventilation only. (This should permit the use of any special ventilating provisions included as a standard part of the equipment.)
- f. At high altitude.

FIGURE 306-1. Derating curve for high ambient temperature.

MIL-STD-199D

Downloaded from http://www.everyspec.com

NOTE: The chassis derating curves are based on the full power ratings at an ambient temperature of 25°C. These curves are independent of the temperature derating curves.

FIGURE 306-2. Chassis-area derating curve.

MIL-STD-1990

2.5 <u>Spacing</u>. When resistors are mounted in rows or banks, they should be so spaced that, taking into consideration the restricted ventilation and heat dissipation by nearby resistors, none of the resistors in the row or bank exceeds its maximum permissible continuous operating temperature. An appropriate combination of resistor spacing and resistor power rating must be chosen if this is to be assumed. In view of the chassis heat dissipation principle of these resistors, particular care must be exercised in order that the chassis temperature rise does not damage nearby components.

2.6 <u>Soldering</u>. A solder with a minimum melting temperature of 300°C should be used in soldering.

2.7 Maximum weight. The maximum weight for each style is as follows:

 RER40
 3.3 grams

 RER45
 8.8 grams

 RER50
 16.5 grams

 RER55
 35 grams

 RER60
 3 grams

 RER65
 8 grams

 RER65
 8 grams

 RER70
 15 grams

 RER75
 32 grams

2.8 <u>Screening requirements</u>. All resistors furnished under MIL-R-39009 are subjected to a conditioning 100-hour life test by cycling at rated continuous working voltage at 25°C dissipating a wattage equal to the power rating (free air) of the resistor. The conditioning is followed by a total resistance measurement and a visual examination for evidence of mechanical damage.

2.9 Failure rate factors. Failures are considered to be opens, shorts, or radical departures from initial characteristics occurring in an unpredictable manner, and in too short a period of time to permit detection through normal preventive maintenance. Failure rate factors applicable to this specification are stated in MIL-HDBK-217. The failure rate factors stated in MIL-HDBK-217 are based on "catastrophic failures" and will differ from the failure rates established in the specification, since the established failure rate is based on a "parametric failure" of ± 2.0 percent change in resistance to be expected at 0 to 10,000 hours of life tests at rated conditions.

3. ITEM IDENTIFICATION (see figures 306-3 and 306-4).

3.1 <u>Type designation</u>. The type designation is used for identifying and describing the resistor as shown on figure 306-3.

3.2 <u>Performance characteristics</u>. The performance characteristics of these resistors are as shown in table 306-1.

3.3 Resistance values. The resistance values shall follow the decade values shown in the following tabulation:

Resist	tance values	for the 10	to 100 de	cade - F	(1.0%)
10.00	15.40	22.60	33.00	T	
i 10.20 i	15.80	23.20	33.20	47.50	68.10
10.50		23.70	34.00	48.70	69.80
1 10.70	i 16.20 i	I	34.80	49.90	71.50
11.00	16.50	24.30	35.70	1	73.20
1 11.30	16.90	24.90		51.10	75.00
1 11 50		25.50	36.50	52.30	76.80
1 11.00	1 17 90	26.10	37.40	53 60	78.70
11.00	17.00	26.70	38.30	54.90	80.60
1 12 10	1 1 2 2 0 1				
	1 10.20	27 40 1	30 20	56 20	82.50
	1 18.70	27.40	40 20	57 60	84.50
1 12.70			40.20		1. 65 20
13.00	19.60	28.70	41.20	1 59.00	
13.30	20.00	29.40	42.20	1 60.40	
13.70	20.50			1 61.90	1 90.90
14.00	21.00	30.10	43.20		
14.30	21.50	30.90	44.20	63.40	93.10
14.70	i I	31.60	45.30	64.90	95.30
15.00	22.10	32.40	46.40	66.50	97.60
				<u> </u>	<u> </u>

FIGURE 306-3. Type designation example.

STYLES RER40, RER45, RER50, RER55, RER60, RER65, RER70, AND RER75

Resistor style	▲ ±,062	B ±.010	C ±.031	D ±.010	E ±.062	F ±.062	G ±.062	H ±.031	J ±.031	K ±.005	L ±.031	M ±.062	N ±031	P ±.005	Q min	R
	(1.57)	(.25)	(.79)	(.25)	(1.57)	(1.57)	(1,5/)	(, / 9)	(.79)	(.13)	(.79)	(1.57)	(.79)	(.13)	AWG	<u> </u>
RER40	1.125	.490	.078	.444	.600	.266	.334	,245	.646	.093	.320	.133	.065	.050	16	.085
RER60	(28,58)	(12,45)	(1.98)	(11.28)	(15,24)	(6.76)	(8,48)	(6.22)	(16.41)	(2.36)	(8.13)	(3,38)	(1.65)	(1,27)		(2.16)
RER45	1.375	.625	.094	.562	.750	.312	.438	.312	.812	.094	.406	.203	.094	.085	12	.140
RER65	(34,93)	(15.88)	(2.39)	(14,27)	(19.05)	(7.92)	(11,13)	(7,92)	(20.62)	(2.39)	(10.31)	(5.16)	(2.39)	(2.16)		(3,56)
RER50	1.938	.781	.172	.7 19	1.062	.438	.531	.391	1.094	,125	.562	.281	.094	.085	12	.140
RER70	(49,23)	(19.84)	(4.37)	(18.26)	(26.97)	(11,13)	(13.49)	(9.93)	(27.79)	(3.18)	(14.27)	(7.14)	(2.39)	(2,16)		(3.56)
RER55	2.781	.844	.188	1.562	1,938	.438	.594	.422	1,156	,125	.625	,312	.094	.085	12	.140
RER75	(70.64)	(21.44)	(4.78)	(39.67)	(49.23)	(11.13)	(15,09))10.72)	(29.36)	(3,18)	(15.88)	(7.92)	(2,39)	(2.16)		(3.56)

FIGURE 306-4. Established reliability, wirewound (power type, chassis mounted), fixed resistors.

306 (MIL-R-39009)

TABLE	306-I.	Performance	characteristics.

, 	<u> </u>			
Features	RER60 (RER40) <u>1</u> /	RER65 (RER45) <u>1</u> /	RER70 (RER50) <u>1</u> /	,RER75 (RER55) <u>1</u> /
Imax resistance-temperature 20 ohms and above Imax resistance-temperature 20 ohms and above Imax resistance-temperature 1 to 19.60 ohms Imax resistance-temperature 1 to 19.60 ohms Imax resistance-temperature 1 to 19.60 ohms Imax resistance-temperature 1 to 19.60 ohms Imax resistance-temperature 1 to 19.60 ohms Imax resistance-temperature 1 to 19.60 ohms Imax resistance-temperature 1 to 19.60 ohms Imax resistance-temperature 1 to 19.60 ohms Imax resistance-temperature Below 1 ohm Imax resistance-temperature Below 1 ohm	±30 ±50 ! ±100	*30 *50 *100	*30 *50 *100	*30 *50 (*100
Max ambient temperature at rated wattage	25°C	25°C	25°C	25°C
 Max ambient temperature at zero wattage derating	275°C	275°C	275°C	275°C
Min resistance (ohm)	0.10(1.0)	0.10 (1.0)	0.10 (1.0)	0.10 (1.0)
Max resistance (ohms) (based on use of .001" wire)	3,320 (1,650)	5,620 (2,800)	12,100 (6,040)	39,200 (19,600)
Power rating (chassis mounted) in watts	 5 	10	20	30 30
 Power rating (free air) in watts	3	6	8	10
<pre>Max percent change in resistance (±): 2/ Conditioning</pre>	0.2 0.5 0.2 0.3 0.3 0.5 0.2 0.2 0.2 0.2 1.0 0.3 1.0 1.0 1.0 1.0 1.0 1.000 1,000	0.2 0.5 0.3 0.7 0.5 0.2 0.2 0.2 1.0 0.3 0.3 1.0 2.0 1.0 10,000 1,000	0.2 0.5 0.3 0.3 0.5 0.2 0.2 0.2 0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.000 1,000	0.2 0.5 0.3 0.3 0.5 0.2 0.2 0.2 0.2 0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.000
Dielectric withstanding voltage: Atmospheric pressure (volts)	1,000 500	1,000 500 5. +01/4	1,000 500 5. +01/4	1,000 500
	-, -, -, -, -, -, -, -, -, -, -, -, -,	-, -, 4/7	-, -, 1/7	, ug ∪ ug = 1/ 1

 $\frac{1}{2}$ Styles listed in parentheses are the minimum inductance versions of the styles not shown in parentheses. All values are identical except the min and max resistance values as noted.

.

2/ Where total resistance change is 2 percent or less, it shall be considered as ±(_percent +0.05 ohm).

.

;

SECTION 307

RESISTORS, FIXED, FILM, CHIP, ESTABLISHED RELIABILITY

STYLES RM0502, RM0505, RM0705, RM1005, RM1505, AND RM2208

(APPLICABLE SPECIFICATION: MIL-R-55342)

1. SCOPE. This section covers established reliability, fixed, film, chip resistors primarily intended for incorporation into hybrid microelectronic circuits. These resistors are uncased, leadless chip devices and possess a high degree of stability with respect to time, under severe environmental conditions. These resistors provide life failure rates ranging from 1.0 percent to 0.001 percent per 1,000 hours. The failure rates are established at a 60-percent confidence level (initial qualification) and maintained at a 10-percent producer's risk. The failure rate is referred to operation at full rated voltage and rated temperature with a maximum change in resistance of ±2.0 percent at 0 to 10,000 hours of life test.

2. APPLICATION INFORMATION.

2.1 <u>Construction</u>. The resistance element consists of a film element on a ceramic substrate. The element is formed either by deposition of a vaporized metal or the printing of a metal and glass combination paste which has then been fired at a high temperature. Resistance elements are generally rectangular in shape and calibrated to the proper resistance value by trimming the element by abrasion or a laser beam. Due to the reliability requirements of MIL-R-55342, processes and controls utilized in manufacturing are necessarily more stringent. MIL-STD-790, "Reliability Assurance Program for Electronic Parts Specifications", provides for monitoring and documentation of these requirements.

2.2 Derating at high temperatures. The power rating is based on operation at 70°C. However, when a resistor is to be used in a circuit where the surrounding temperature is higher than 70°C, a correction factor must be applied to the wattage rating so as not to overload the resistor. The correction factor may be taken from the curve shown on figure 307-1.

NOTE: This curve indicates the percentage of nominal wattage to be applied at temperatures higher than 70°C. This curve applies only to units mounted on a substrate; however, the applied voltage does not exceed the maximum for each style.

FIGURE 307-1. Derating curve for high ambient temperatures.

2.3 Derating for optimum performance. Because all of the electrical energy dissipated by a resistor is converted into heat energy, the temperature of the surrounding air is an influencing factor when selecting a particular resistor for a specific application. The power rating of these resistors is based on operation at specific temperatures; however, in actual use, the resistor may not be operating at these temperatures. When the desired characteristic and the anticipated maximum ambient temperatures have been determined, a safety factor of 2, applied to the wattage, is recommended in order to insure the selection of a resistor having an adequate wattage-dissipation potential.

307 (MIL-R-55342)

2.4 <u>Resistance tolerance</u>. Designers should bear in mind that operation of these resistor chips under the ambient conditions for which military equipment is designed may cause permanent or temporary changes in resistance sufficient to exceed their initial tolerances. In particular, operation at extremely high or low ambient temperatures may cause significant temporary changes in resistance.

2.5 <u>Voltage limitations</u>. Because of the very small size of the resistance elements and connecting circuits, there are maximum permissible voltages which are imposed. The maximum voltage permissible for each style is shown in table 307-I.

2.6 Noise. Noise output is not controlled by specification, but for these resistors, noise is a negligible quantity. In applications where noise is an important factor, resistors in these chips are superior to composition types. Where noise test screening is indicated, it is recommended that MIL-STD-202, method 308, be used.

2.7 <u>Moisture resistance</u>. These resistor chips are essentially unaffected by moisture. The specification allows only a 0.5 percent change in resistance value as a result of exposure to a standard 10-day moisture resistance test.

2.8 Electrostatic charge effects. Under relatively low humidity conditions, some types of film resistors, particularly those with small dimensions and high sheet resistivity materials, are prone to sudden significant changes in resistance (usually reductions in value) and to changes in temperature coefficient of resistance as a result of discharge of static charges built up on associated objects during handling, packaging, or shipment. Substitution of more suitable implements and materials can help minimize this problem. For example, use of cotton gloves, static eliminator devices, air humidifiers, and operator and work bench grounding systems can reduce static buildup during handling. Means of alleviating static problems during shipment include elimination of loose packaging of resistors and use of metal foil and anti-static (partly conducting) plastic packaging materials.

2.9 <u>High frequency application</u>. When used in high frequency circuits (200 megahertz and above), the effective resistance will be reduced as a result of shunt capacity between resistance elements and connecting circuits. The high frequency characteristics of these chips are not controlled.

2.10 <u>Mounting</u>. Under severe shock or vibration conditions (or a combination of both), resistors should be mounted so that the body of the resistor chip is restrained from movement with respect to the mounting base. If clamps are used, certain electrical characteristics may be altered. The heat-dissipating qualities will be enhanced or retarded depending on whether the clamping material is a good or poor heat conductor.

2.11 <u>Screening</u>. All resistor chips furnished under MIL-R-55342 are subject to 100 percent screening through a thermal shock test. This test is followed by a total resistance check and a visual examination for evidence of mechanical damage.

2.12 Failure rate factors. Failures are considered to be opens, shorts, or radical departures from initial characteristics occurring in an unpredictable manner, and in too short a period of time to permit detection through normal preventive maintenance. Failure rate factors applicable to this specification are stated in MIL-HDBK-217. The failure rate factors stated in MIL-HDBK-217 are based on "catastrophic failures" and will differ from the failure rates established in the specification, since the established failure rate is based on a "parametric failure" of ±2.0 percent change in resistance to be expected at 0 to 10,000 hours of life tests at rated conditions.

3. ITEM IDENTIFICATION (see figures 307-2 and 307-3).

3.1 <u>Part number</u>. The part number is used for identifying and describing the resistor as shown on figure 307-2.

3.2 <u>Performance characteristics</u>. The performance characteristics of these resistors are as shown in table 307-1.

3.3 <u>Resistance values</u>. Resistance values shall follow the decade of values as shown in the following tabulation:

307 (MIL-R-55342)

[Sta	ndard re	sistan	ce val	ues for	the 10 esista	to 100	decade	for 1.0	0%, 2.09	2, 5.0%,	and 10	.0%	
<u>†</u>					R	esista	nce tol	erance						
F (1.0)	G (2.0) J (5.0)	К (10.5)	F (1.0)	(2.0) J (5.0)	K (10.0)	F (1.0)	G (2.0) J (5.0)	K (10.0)	F (1.0)	ن (2.0) ال (5.0)	K (10.5)	F (1.0)	G (2.0) J (5.0)	K (10.0)
10.00	10.00	10.00 10.20 	17.80	18.00	 	30.90	 		51.10 52.30 	 		86.60 88.70	 	
10.50 10.70 11.00	 11.00	10.50 10.80	18.70 19.10 19.60	 	 	32.40	33.00	 33.00 	53.60	 56.00	 56.00	90.90 93.10 	91.00	
11.30 11.50	 	 	20.00	 20.00 	 	34.00	 	 	57.60	 	 	95.30 97.60 	 	
11.80	12.00	 	21.00	 22.00	 22.00	35.70 36.50 	 36.00 	 	60.40 61.90	 62.00	 			
12.70 13.00	 13.00	 	22.10 22.60 23.20	 	 	37.40 38.30	 39.00	 39.00	 63.40 64.90 	 	 			
13.30 13.70 13.70 14.00	 	 	23.70 24.30	 24.00 	 	39.20 40.20	 	 	06.50 68.10 	 68.00	 68.00 		 1 	
14.30	 	 	24.90 25.50 25.50	 	 	42.20	 43.00	 	69.80 71.50 73.20	 	 		 	
15.00 15.40 15.80	15.00 	 	26.70	 27.00 	27.00	44.20	 	 	75.00	75.00	 			
16.20	16.00 	 	28.00	 	 	46.40	47.00	 47.00 	78.70 80.60 	 82.00	 82.00			
16.90 17.40	 	(((29.40	 30.00 	 	49.90	51.00	 	82.50 84.40		 			

٠

FIGURE 307-2. Part number example.

Covers termination materials C, U, and R_ which are wrap around terminations.

. .

Covers termination materials S, W, D, and T. * Also applicable to termination C, U and R.

Termination material designation.

Туре	Material	Termination area	Code letters		
Solderable	Pretinned	One surface Wrap around	S R		
Weldable	Gold	One surface	W		
Solderable/Weldabl	e Palladium/silver	One surface Wrap around	D C		
Solderable/Weldabl	e Platinum/gold	One surface Wrap around	T		
Solderable	Base metallization barrier metal, solder coated	Wrap around	В		

¥

FIGURE 307-3. Established reliability, fixed film chip resistors.

Specification	Termination		Dimension	(inch)		Style
number		Α	В	C	D	
	R	.050 +.025 005			.016 ±.011	
MIL-R-55342/1	U	.050 +.011 005	.025 +.010 005	.010/.040	.015 +.005 010	RM0502
	S, W, T	•050 <u>1</u> /			.010 <u>1</u> /	
	R	.050 +.025 005			.016 ±.011	
MIL-R-55342/2	U	.050 +.011 005	.050 +.010 005	.010/.040	.015 +.005 010	RM0505
	S, W, T	.050 <u>1</u> /			.010 <u>1</u> /	
	R	.100 ^{+.025} 005			.021 ±.011	
MIL-R-55342/3	U	.100 +.011 005	.050 +.010 005	.010/.040	.017 +.008 007	RM1005
	S, W, T	.100 <u>1</u> /			.015 <u>1</u> /	-
	R	.150 +.025 005			.021 ±.011	
MIL-R-55342/4	U	.150 +.011 005	.050 +.010 005	.010/.040	.017 +.008 007	RM1 505
	S. W. T.	.150 <u>1</u> /			.015 <u>1</u> /	
	R	.225 +.025 005			.022 +.013	
MIL-R-55342/5	U	·225 +.011	.075 +.010	.010/.040	.020 ±.010	RM2208
	S, W, T	.225 <u>1</u> /			.015 <u>1</u> /	
	R	.075 +.025 005			.021 ±.011	
MIL-R-55342/6	. U	.075 +.011 005	.050 +.010 005	.010/.040	.017 +.008 007	RM0705
	S, W, T	.075 <u>1</u> /			.015]/	

1/ Tolerance is ±.005

NOTE: The pictorial views of the styles above are given as representative of the envelope of the item. Slight deviations from the outline shown are acceptable.

FIGURE 307-3. Established reliability, fixed film chip resistors - Continued.

TABLE 307-I. Performance characteristics.

Features	K	i M
esistance temperature characteristic, ppm°C	±100	± 300
aximum ambient temperature at rated wattage	70°C	70°C
aximum ambient temperature at zero power dc rating	125°C	125°C
aximum operating voltage for each resistor (volts)		1
M55342/1	40 40 40 40 40 50	40 40 40 40 40 40 40 50
ower rating (watts) at 70°C:		1
M55342/1	.020 .050 .100 .150 .225 .100	.020 .050 .100 .150 .225 .100
inimum and maximum resistance values (ohms):	Min	<u>Max</u>
M55342/1 Resistance tolerance B	100 10 10 10 5.6	.1 ΜΩ .1 ΜΩ .1 ΜΩ .1 ΜΩ .1 ΜΩ .1 ΜΩ .1 ΜΩ .1 ΜΩ
M55342/2 Resistance tolerance B	100 10 10 10 5.6	i i .2 ΜΩ i .294 Μ i .47 ΜΩ i 47 ΜΩ i 47 ΜΩ
M55342/3 Resistance tolerance B	100 10 10 10 5.6	 .3 ΜΩ 499 M 1 ΜΩ 1 ΜΩ

ŧ

.

Features	к	M
M55342/4		
Resistance tolerance B	100	1 5 Mo 1
Resistance tolerance F	10	I 1 Mo 1
Resistance tolerance G	10	1 47 Mol
Resistance tolerance J	10	4.7 Mo
Resistance tolerance K	5.6	4.7 M Ω
M55342/5		
Resistance tolerance B	100	1 Mo
Resistance tolerance F	10	2 MΩ
Resistance tolerance G	10	15 MΩ
Resistance tolerance J	10	15 MΩ
Resistance tolerance K	5.6	15 MΩ
M55342/6		
Resistance tolerance B	100	-3 MΩ
Resistance tolerance F	10	.499 MΩ
Resistance tolerance G	10	1 MΩ
Resistance tolerance J	10	1 MΩ
Kesistance tolerance K	5.6	1 MΩ
Maximum percent change in resistance (0.01 ohm		
additional allowed for measurement error):		
Thermal shock 1/	±.5 percent	±.5 nercent
Low temperature operation	±.25 percent	±.5 nercont 1
Short time overload	±.25 percent	±.5 percent i
High temperature exposure	±.5 percent	±1.0 nercent1
Resistance to bonding exposure	*.25 percent	±.25 percentl
Moisture resistance	±.5 percent	±.5 percent
Life (2,000 hours)	±.5 percent	±2.0 percent

TABLE 307-I. <u>Performance characteristics</u> - Continued.

 $\underline{1}$ / Maximum ambient temperature is 150°C.

SECTION 308

RESISTOR, FIXED, PRECISION

ESTABLISHED RELIABIILITY

(APPLICABLE SPECIFICATION: MIL-R-122)

1. SCOPE.

1.1 <u>Scope</u>. This section covers the general requirements for hermetically sealed, and nonhermetically sealed, high precision, low reactance, fixed resistors that possess a high degree of stability with respect to time under severe environmental conditions, with established reliability. Resistors covered in this section have failure rates ranging from 1 percent to 0.001 percent per 100 hours. Failure rates are based upon 60 percent confidence on basis of life tests.

2. APPLICABLE INFORMATION.

2.1 <u>Style selection</u>. Hermetically sealed resistor is one in which the resistive element is contained within a sealed enclosure of ceramic, glass, or metal, or combinations of both, where sealing is accomplished by material fusion, welding, brazing or soldering.

2.2 <u>Power rating</u>. Resistors shall have a reference power rating (100 percent) based upon continuous pull load operation at an ambient temperature of 125°C. However these resistors styles shall be capable of operating at anypoint under the applicable rating curve for the particular resistor style. At no time shall the voltage applied to the resistor exceed the maximum voltage for the selected resistor style.

2.2.1 <u>Derating per optimum performance</u>. Resistors shall have a power rating based upon continuous pull-load operation at an ambient temperature of 125°C. For temperatures higher than 125°C the load shall be derated in accordance with figure 308-1.

2.3 <u>Resistive tolerances</u>. Designers should bear in mind that operation of these resistors under ambient temperatures conditions for which military equipment is designed may cause permanent or temporary changes in resistance sufficient to exceed their initial tolerances. In particular, operation at extremely high or low ambient temperatures may cause significant temporary changes resistance.

2.4 Noise. When resistors are tested in accordance with MIL-STD-202, the current noise shall not exceed -32DB maximum.

2.5 <u>Moisture resistance</u>. Resistors are tested in accordance with MIL-STD-202, the change in resistance for nonhermetically sealed resistors shall not exceed $\pm(.05)$ percent $\pm.001\Omega$. For hermetically sealed resistors, the change in resistance shall not exceed $\pm(.01\Omega)$.

2.6 Storage shelf life. MIL-R-122 estimates a change of but not to exceed $*(.0025 \text{ percent } \pm .001\Omega)$ for hermetically sealed resistors and $\pm(.005 \text{ percent } \pm .001\Omega)$ for nonhermetically sealed resistors.

2.7 <u>Mounting</u>. Under conditions of severe shock or vibration (or a combination of both), resistors should be mounted in such a way that the body of the resistor is restrained from movement with respect to the mounting base. It should be noted that if clamps are used, certain electrical characteristics of the resistor will be altered. The heat-dissipative qualities of the resistor will be enhanced or retarded a depending on whether the clampling material is a good or poor heat conductor.

2.8 <u>Screening</u>. All resistors furnished under MIL-R-55182 are subject to conditioning through thermal shock, overload testing, and power conditioning.

308 (MIL-R-122)

2.9 Failure rate factors. Failures are considered to be opens, shorts, or radical departures from initial characteristics occuring in an unpredictable manner, and in too short period of time to permit detection through normal preventative maintenance. Failure factors are stated in MIL-HDBK-217. The failure rate factors stated in MIL-HDBK-217 are based on "catastropic failures" and will differ from failure rates established in the specification, since the established failure rate is based on a "parameter's failure" of ±20 percent change in resistance to be expected at 0 to 10,000 hours of life tests at rated conditions. Since MIL-HDBK-217 does not currently specify the reliability prediction for these resistors the model established for MIL-R-55182 should be used until these resistor styles are induced in the handbook.

3. ITEM IDENTIFICATION (see figures 308-2 and 308-3).

*

	<u>M122</u>	A	<u>01</u> M	<u>4775A75</u>
a. Military specification number		ļ		
b. The reactance is identified by a single accordance with table 308-I.	letter in			
c. Specification sheet			<u> </u>	
d. Resistance tolerance and life failure r a single letter in accordance with table 30	ate is iden 8-II	tified	by 1	
e. Resistance value, temperature character nominal resistance value expressed in ohms characters consisting of six (6) digits and represent significant figures and the lette temperature characteristic, decimal point 1 accordance with table 308-III. All digits symbol letter represents significant featur resistance values shall be specified. The decade shall follow the sequence specified 1.0 and 0.5. The resistance values for tol and 0.005 may be any value within specified	istic, and is identific one letter r symbol rep ocation, and preceeding es. Minimus standard va in table 301 erances 0.1 limits.	decima ed by symbo presen i mult and fo n and fo n and fo lues f 3-V fo , 0.05	l point seven (l. The ts the ipler i llowing maximum or ever r toler , 0.01,	: The 7) digits n the y ances

* 3.1 <u>Performance characteristics</u>. The performance characteristics of these resistors are as shown in table 302-VI.

1		Fre	quency		
	0 kHz		MHz	<u><</u> 100) MHz
Code	Limits <u>1</u> /	Code	Limits <u>1</u> /	Code	Limits <u>1</u> /
A B C D E	$\begin{array}{c c} < 1 \\ \hline < 3 \\ \hline < 10 \\ \hline < 30 \\ \hline uncontrolled \end{array}$	 F G H J K 	$\begin{vmatrix} < 1 \\ < 3 \\ < 10 \\ < 30 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$	L M N P S	$\begin{vmatrix} < 1 \\ < 3 \\ < 10 \\ < 30 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $

TABLE 308-I. Reactance.

1/ Maximum percentage change in the initial impedance at zero hertz (nominal resistance) due to all reactive components, for all frequencies, up to and including the frequency specified.

Tolerance % ±	1 % 1000 Hours 1 failure rate	Symbol
005	1.0	Δ
1 005		
1 .005		
1 005		
1 01	1 1 0	
.01		
1 .01		
.01	0.001	H H
1 .05	1.0	
.05	0.1	J
l .05	0.01	K I
.05	0.001	, L l
l 0.1	1.0	i M I
0.1	0.1	N I
0.1	0.01	0
0.1	0.001	P
i 0.5	1.0	0 1
0.5	i 0.1 i	R I
0.5	i 0.01	S I
0.5	I 0.001 İ	i T I
1 1.0	i 1.0	i i i
1 10	1 01	v i
	0.01	w i
1 1.40	I U.UUI I	A 4

TABLE 308-II. Resistance and failure rate designation.

TABLE 308-III. Resistance temperature characteristic and multipler.

RTC code <u>1</u> /	Decimal point 2/ multiplier	Symbol
Y Y	R	A
		C i
I B I B		E
	R I K I	G S
D D	R K	J K
l E I E	I R I K I	L I M I
F F	R K	N I P I
G G	і к (К і	R

 $\frac{1}{2}$ See table 308-IV for RTC codes. Z/ The decimal point and multiplier letter sybol representing the R(X1) multiplier in table 308-III is used to represent values less than 1000 ohms. The letter symbol representing the K(X1000) multiplier is used for all values greater than 1000 ohms.
TABLE	308-11.	Characteristic.

			Re	sistan	ice tem (r	peratu eferen pp	re cha ced to m/°C	racter 25°C)	istic			
1	Temperature °C											
I RTC	1	55	- 1	15	+6	5	+1	25	1 +1	50	+1	75
code	IMin	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
+		+	┦ ╁────	 	 	1	<u> </u>	 	1	 	<u>.</u>	+ +
İ Y	i-0	İ+5	-1.5	3.5	-4	1	-5	i o	-5.5	5	-7	-1
A	-2.5	2.5	-2.5	2.5	-2.5	2.5	-2.5	2.5	-3.5	13.5	1-4.5	14.5 Í
В	-5	5	i-5	5	1-5	5	-5	5	-6	6	1-7	17
1 C	-10	110	-10	10	-10	10	-10	10	1-12	ĺ12	i-15	115 Í
1 D	-2.5	2.5	1-1.5	11.5	-1.5	1.5	-2.5	2.5	-3.5	13.5	1-4.5	4.5
E	-5	5	1-2.5	2.5	-2.5	2.5	1-5	5	-6	6	1-7	17
1 F	-10	10	-5	15	-5	5	-10	10	1-12	12	j-15	15
l G	7	3.7	.7	2.3	-2.8	1.2	1-3.3	3	-4.1	-1.1	-4.5	-1.5
1	<u> </u>	1		<u> </u>	<u> </u>	<u>l</u>	1	<u> </u>	1			

.

standard reststande taracs for the 10 to 100 deca

	Resistance tolerance										
(0.5)	(1.0)	(0.5) 	(1.0)	(0.5) 	(1.0)	 (0.5)	(1.0)	1(0.5)	(1.0)	(0.5)	(1.0)
110.0	10.0	14.7	 14.7	121.5	21.5	31.6	31.6	46.4	46.4	1 68.1	68.1
10.1	l	14.9		21.8	l	132.0	1	47.0	1	1169.0	1 i
110.2	10.2	115.0	115.0	122.1	22.1	132.4	132.4 I	47.5	4.75	169.8	169.8 İ
10.4	l	115.2	1	122.3		132.8		48.1		170.6	1
10.5	10.5	15.4	115.4	1122.6	22.6	133.2	i 33.2	48.7	48.7	1171.5	171.5 İ
10.6		15.6	1	122.9		133.6		49.3		172.3	
10.7	10.7	115.8	115.8	123.2	i23.2	134.0	134.0 I	49.9	49.9	173.2	73.2
10.9	1	16.0	1	23.4		134.34		150.5		174.1	
11.0	111.0	116.2	16.2	123.7	23.7	134.8	34.8	51.1	İ51.1	1175.0	i75.0 i
111.1	1	16.4	1	24.0]	135.2		151.7	1	175.9	1 1
11.3	11.3	16.5	16.5	24.3	24.3	135.7	135.7 I	152.3	İ52.3	176.8	176.8 İ
111.4	I I	16.7	1	124.6		36.1		53.0	1	77.7	
11.5	11.5	16.9	16.9	24.9	24.9	136.5	36.5	53.6	53.6	178.7	178.7 İ
11.7		17.2	1	125.2	1	37.0		54.2		179.6	j j
11.8	11.8	17.4	17.4	25.5	25.5	37.4	37.4	154.9	54.9	80.6	İ80.6 İ
12.0	1 1	17.6		25.8		37.9		55.6		81.6	1 1
12.1	12.1	17.8	17.8	26.1	26.1	138.3	38.3	56.2	56.2	82.5	82.5
12.3		18.0	1	26.4	1	138.8		56.9		183.5	1 1
12.4	12.4	118.2	18.2	26.7	26.7	139.2	39.2	57.6	57.6	84.5	84.5
12.6		18.4	 	27.1		139.7	1- 	58.3	[85.6	1
12.7	12.7	18.7	118.7	127.4	27.4	140.2	40.2	159.0	59.0	186.6	86.6
12.9	1	18.9	l	127.7		40.7		59.7		87.6	1 1
13.0	113.0	19.1	19.1	28.0	28.0	41.2	41.2	60.4	60.4	88.7	88.7
13.2		19.3	1	28.4		41.7	-	61.2		189.8	
13.3	13.3	19.6	19.6	28.7	28.7	42.2	42.2	61.9	61.9	190.9	90.9
113.5	1 1	19.8	1	29.1		42.7		62.6		92.0	1 1
13.7	13.7	20.0	20.0	29.4	29.4	43.2	43.2	63.4	63.4	93.1	93.1
113.8		120.3		29.8		43.7		64.2		94.2	
14.0	14.0	20.5	20.5	30.1	30.1	44.2	44.2	64.9	64.9	95.3	95.3
14.2		120.8		1130.5		44.8		65.7		96.5	
114.3	114.3	21.0	121.0	1130.9	30.9	145.3	45.3	66.5	66.5	97.6	97.6
14.5		21.3		1131.2		145.9	!	67.3		98.8	
1	l	<u> </u>	<u> </u>	11	1	!!	<u> </u>	1	I		<u> </u>

		ę	Style	
	RFP01	RFP03	RFP06	RFP10
Power rating	1.3 watt 125°C	.3 watt 125°C	.10 watt 85°C	.15 watt 125°C
Minimum resistance	10 Ω	10Ω	10Ω	10 Ω
Maximum resistance	.200 MΩ	.200 MΩ	.500 MΩ	.400 MΩ
Maximum continuous voltage	300 V	1 300 V	200 V	200 V
Low temperature operation	±.01	+.01	±.01	±.01
Terminal strength	±.01	±.01	±.01	+.01
Dielectric withstanding voltage	±.01	±. 01	+.01	±.01
Resistranc to soldering heat	+.01	±.01	*. 01	±.01
Moisture resistance	±. 02	i *. 01	±.01	±.01
Life	±.2	±.2	±. 2	*.01
Shock	i *. 01	±. 01	±. 01	±.01
Vibration high frequency	±.01	±.01	±. 01	±.01
Dielectric withstanding voltage	i			
Atmosphereic	300	300	4 50	500
Barometeric	200	200	200	200
Insulation resistance (megohms)				
Dry	10.000	10.000	10,000	10.000
Wet	100	100	100	100

+-

.

TABLE 308-VI. Performance characteristics.

FIGURE 308-1. Power derating curve.

308 (MIL-R-122)

	11111	THCHES	
.002	0.05	.105	2.67
.010	0.25	.125	3.18
.015	0.38	.150	3.81
.020	0.51	.302	7.67
.025	0.64	.325	8.26
.030	0.76	.500	12.70
.0625	1.588	1.375	34.93
.075	1.91		

NOTES:

- 1. Dimensions are in inches.
- 2. Metric equivalents are given for general information only.
- 3. The lead measurements shall be made at the point of emergence from the body.
- Style and placement of the standoffs are optional.
 Centerline of terminal shall coincide with the centerline of the body
- within ±.010 inch. 6. Resistance measuring point shall be .5 \pm .125 inch for resistance values of 10Ω or more and .0625 \pm .025 inch for resistance values less than 10Ω .

FIGURE 308-2. Fixed resistors, precision.

Inches	mm	Inches	mm
.002	0.05	.125	3.18
.025	0.64	.250	6.35
.031	0.79	.325	8.26
.046	1.17	.500	12.70
.0625	1.588	1.500	38.10
.102	2.59		

NOTES:

- NOTES:
 Dimensions are in inches.
 Metric equivalents are given for general information only.
 The end of the body shall be that point at which the body diameter equals the nearest drill size larger than 250 percent of the nominal lead diameter.
 Maximum length is "clean lead to clean lead".
 Resistance measuring point shall be .5 ±.125 inch for resistance values of 10Ω or more and .0625 ±.025 inch for resistance values less than 10Ω.

FIGURE 308-3. Fixed resistors, precision.

SECTION 400

RESISTORS, VARIABLE, ESTABLISHED RELIABILITY

/

ø

Section		Applicable specification
401.	Resistors, Variable, Wirewound (Lead Screw Actuated), Established Reliability	MIL-R-39015
402.	Resistors, Variable, Non-Wirewound (Adjustment Type), Established Reliability	MIL-R-39035

SECTION 401

RESISTORS, VARIABLE, WIREWOUND (LEAD SCREW ACTUATED),

ESTABLISHED RELIABILITY

STYLES RTR12, RTR22, AND RTR24

(APPLICABLE SPECIFICATION: MIL-R-39015)

1. SCOPE. This section covers established reliability, lead-screw actuated, wirewound, variable resistors with a contact which bears uniformly over the surface of a linearly-wound resistive element, when positioned by a multiturn lead-screw actuator. These resistors are capable of full-load operation (when maximum resistance is engaged) at a maximum ambient temperature of 85°C and are suitable for continuous operation, when properly derated, at a maximum temperature of 150°C. The resistance tolerance of these resistors is ± 5.0 percent. These resistors possess life failure rate levels ranging from 1.0 to 0.001 percent per 1,000 hours. The failure rates are established at a 60-percent confidence level and maintained at a 10-percent producer's risk on the basis of life tests. The failure rate level refers to operation at full rated voltage at 85°C, with a permissible change in resistance of ± 3.0 percent plus the specified resolution as the criteria for failure.

2. APPLICATION INFORMATION.

2.1 Style selection.

2.1.1 <u>Construction</u>. These resistors have an element of continuous-length wire, wound linearly on a rectangular or arc-shaped core, depending upon the style. The sliding contact traverses the element in a circular or straight line, again dependent upon style. The element is protected from detrimental environmental conditions by a housing or enclosure. The lead screw head is insulated from the electrical portion of the resistor. Due to the reliability requirements of MIL-R-39015, processes and controls utilized in manufacturing are necessarily stringent. MIL-STD-790, "Reliability Assurance Program for Electronic Parts Specifications," provides for monitoring and documentation of these requirements.

2.1.2 <u>Selection of a safe resistor style</u>. The wattage ratings of these resistors are based on operation at 85 C when mounted on a 1/16-inch thick, glass base, epoxy laminate. Therefore the heat sink effect as provided by steel test plates in other specifications is not present. The wattage rating is applicable when the entire resistance element is engaged in the circuit. When only a portion is engaged, the wattage is reduced directly in the same proportion as the resistance.

2.1.3 <u>Power rating</u>. These resistors have a power rating based on full-load operation at 85°C (when the maximum resistance is engaged). When the resistor is to be used in a circuit where the surrounding temperature is higher than 85°C, the wattage must be reduced so as not to overload the resistor. (See figure 401-1.)

2.1.4 <u>Derating for optimum performance</u>. After the anticipated maximum ambient temperature has been determined, a safety factor of 2 applied to the wattage is recommended in order to insure the selection of a resistor style having an adequate wattage rating with optimum performance.

2.1.5 High resistances and voltages. Where voltages higher than 250 volts rms are present between the resistor circuit and grounded surface on which the resistor is mounted, or where the dc resistance is so high that the insulation resistance to ground is an important factor, secondary insulation to withstand the conditions should be provided between the resistor and mounting or between the mounting and ground.

2.2 <u>Mounting of resistors</u>. Resistors with terminal type L should not be mounted by their flexible-wire leads. Mounting hardware should be used. Printed-circuit types are frequently terminal mounted, although brackets may be necessary for a high-shock and vibration environment.

FIGURE 401-1. Derating curve for high-ambient temperature.

2.3 <u>Stacking of resistors</u>. When stacking resistors, care should be taken to compensate for the added rise in temperature by derating the wattage rating accordingly.

2.4 <u>Resistance-temperature characteristic</u>. Consideration should be given to temperature rise and ambient temperature of resistors under operation in order to allow for the change in resistance due to resistance-temperature characteristic. The resistance-temperature characteristic is measured between the two end terminals. Whenever resistance-temperature characteristic is critical, variation due to the resistance of the movable contact should be considered.

2.5 <u>Noise</u>. The noise level is low compared to non-wirewound types. Peak noise is specification controlled at an initial value of 100 ohms maximum. However, after exposure to environmental tests (moisture, shock, vibration, etc.,), a degradation to 500 ohms is allowed by specification.

2.6 <u>Resistive element wire size</u>. Use of wire size of less than .001 inch diameter is not recommended for new design.

2.7 <u>Terminals</u>. Terminal types P, W, X, and Y are considered to be solderable only. If weldable leads are required, they must be separately specified in the contract or purchase order.

2.8 <u>Screening requirements</u>. All resistors furnished under MIL-R-39015 are subjected to a 50-hour conditioning life test by cycling at 1 watt at 25°C followed by peak noise and total resistance measurements and a seal test for detection of leaks.

2.9 Failure rate factors. Failures are considered to be opens, shorts, or radical departures from initial characteristics occurring in an unpredictable manner, and in too short a period of time to permit detection through normal preventive maintenance. Failure rate factors applicable to this specification are stated in MIL-HDBK-217. The failure rate factors stated in MIL-HDBK-217 are based on "catastrophic failures" and will differ from the failure rates established in the specification, since the established failure rate is based on a "parametric failure" of ±3 percent change in resistance to be expected at 0 to 10,000 hours of life tests at rated conditions.

401 (MIL-R-39015)

3. ITEM IDENTIFICATION (see figures 401-2 through 401-4).

3.1 Part number. The part number is used for identifying the resistor as shown on figure 401-2.

FIGURE 401-2. Part number example.

3.2 <u>Type designation</u>. The type designation is used for describing the resistor as shown on figure 401-3.

3.2 Performance characteristics. The performance characteristics of these resistors are as shown in table 401-1.

3.3 <u>Preferred nominal total resistance values</u>. The preferred nominal total resistance values, maximum resolutions, and the applicable rated working voltage are as follows:

Nominal total resistance	Max res	olution (p	ercent)	Rated working voltage (ac or dc)
Ohms	RTRIZ	RTR22	RTR24	Volts
10	2.2	1.3	1.3	2.7 3.8
50	1.3	.80	.77	6.1
	1.1 0.9	1.51 1.42	1 .62	12.3
500	0.6	42	1.51	
1,000 I	0.5	1.30	30	38.7
5,000 1 *10,000 1	0.3 0.3	.26 .14	.25 	61.3 86.7

*Value based on the use of .001-inch nominal (.0009 absolute) minimum diameter wire (styles RTR12 and RTR22).

FIGURE 401-3. Type designation example.

STYLE RTR12

NOTES:

- 1. Unless otherwise specified, tolerance is ±.005 (.13 mm).
- 2. The three leads are stranded wire, AWG size 28 to 30, 6.00 (152.40 mm) minimum length; they are insulated with polytetrafluoroethylene, stripped approximately .250 \pm .002 (6.35 \pm .05 mm) from the end, and color coded.

FIGURE 401-4. Established reliability, lead screw actuated, wirewound, variable resistors.

STYLE RTR22

IERMINAL IYPE	ΈΡ	
---------------	----	--

Inches	mm	Inches	1016	Inches	mm
.002	.05	.028	.71	.172	4.37
.003	.08	.035	.89	.187	4.75
.005	.13	.045	1.14	.205	5.21
.006	.15	.050	1.27	.235	5.97
.007	.18	.060	1.52	.250	6.35
.010	.25	.073	1.85	.260	6.60
.015	.38	.078	1.98	.500	12.70
.020	.51	.093	2.36	.515	13.08
.025	.64	.100	2.54	.520	13.21

FIGURE 401-4. Established reliability, lead screw actuated, wirewound, variable resistors - Continued.

STYLE RTR22 - Continued

TERMINAL TYPE X

NOTES:

- Unless otherwise specified, tolerance is $\pm .005$ (.13 mm). 1.
- 2. The entire slot of the actuating screw is above the surface of the unit.
- з.
- For types P, W, and X, normal mounting means is by use of pins only. The three leads are stranded wire, AWG size 28 to 30, 6.00 (152.40 mm) minimum length; they are insulated with polytetrafluoroethylene, stripped approximately .250 (6.35 mm) \pm .062 (1.57 mm) from the end, and color coded. 4.
- Dimensions not shown are the same as type L. 5.

Established reliability, lead screw actuated wirewound, variable resistors - Continued. FIGURE 401-4.

	. 10				
. 009	. 23	. 040	1.02	. 182	4.62
. 010	. 25	.072	1.83	. 184	4.67
. 015	. 38	.075	1.91	.187	4.75
. 020	. 51	. 080	2.03	. 300	7.62
. 024	.61	.100	2.54	. 375	9.53
025	64	. 125	3.18	. 419	10.64
. 035	. 75	.150	3.81	. 420	10.67

FIGURE 401-4. Established reliability, lead screw actuated, wirewound, variable resistors - Continued.

401 (MIL-R-39015)

STYLE RTR24 - Continued

TERMINAL TYPE X

NOTES:

- 1.
- Unless otherwise specified, tolerance is \pm .005 (.13 mm). The entire slot of the actuating screw is above the surface of the unit. 2.
- The picturization of the styles above are given as representative of the envelope of the item. Slight deviations from the outline shown, which are contained within the envelope, and do not alter the functional aspects of the 3. device are acceptable.
- The three leads are stranded wire, AWG size 28 to 30, 6.00 (152.4 mm) minimum length; they are insulated with polytetrafluoroethylene stripped .250 \pm .062 Δ. $(6.35 \pm 1.57 \text{ mm})$ from the end, and color coded.
- Maximum weight is 1.3 grams. 5.

FIGURE 401-4. Established reliability, lead screw actuated, wirewound, variable resistors - Continued.

Nominal resistance	Maximum		Part number	<u>2/</u>	2/ Type designation			
	l rated ac and dc working voltage	M39015/1-	M39015/2-	M39015/3- '	l (for i RTR12D-	only) RTR24D-		
<u>Ohms</u>	Volts	RTR12 RTR22 RTR24						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.7 3.8 6.1 12.3 19.4 27.4 38.7 61.3 86.7	009 010 011 001 002 003 004 005 006 007	009 010 011 001 002 003 004 005 006 007	001 002 003 004 005 006 007 008 009	100- 200- 500- 101- 201- 501- 102- 202- 502- 103-	100- 200- 500- 101- 201- 501- 102- 202- 502- 103-	100- 200- 500- 101- 201- 501- 102- 202- 502- 	

- $\frac{1}{0.001-inch}$ For Navy use (styles RTR12 and RTR22), resistance values are based on the use of wire having no less than 0.001-inch nominal (0.0009 absolute) diameter.
- 2/ Complete part number (and type designation) includes additional symbols to indicate terminal type and failure rate level (see figures 401-2 and 401-3).
- 3/ For style RTR24, value based on use of wire having no less than 0.001-inch ±10 percent diameter.
- 4/ For RTR12 and RTR22, value based on the use of wire having no less than 0.001-inch nominal (0.0009 absolute) diameter.

NOTE: MIL-R-39015/1, /2, and /3 resistors, regardless of their failure rate designation, are substitutes for resistors of the same resistance value, tolerance, terminal characteristic, and resistance temperature characteristic specified in MIL-R-27208/8, /4, and /9, respectively.

FIGURE 401-4. Established reliability, lead screw actuated, wirewound, variable resistors - Continued.

4

,

401.10

,

.

MIL-STD-199D

TABLE 401-I.	Performance characteristics.

<u> </u>	Style					
Features	RTR12	RTR22	RTR24			
Max resistance temperature characteristic in ppm/°C (Ref to 25°C)	±50	 ±50	±50			
Max ambient temperature at rated wattage	85°C	85°C	85°C			
Max ambient temperature at zero wattage derating (see figure 401-1)	150°C	1 150°C	1 150°C			
Min nominal total resistance (ohms)	10	10	10			
Max nominal total resistance (ohms)	10 kΩ	10 kΩ	5 kΩ			
Power rating (watts)	3/4	3/4	3/4			
<pre>Max percent change in resistance (±): 1/ Conditioning</pre>	0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	$\begin{array}{c} 0.5 \\ 1.0 \\$			
Salt spray	No visible corrosion	Same as RTR12	Same as RTR12 			
Resistance to solvents	Remain legible	 Same as RTR12	Same as RTR12			
Immersion	No more than 3 bubbles	Same as RTR12	Same as RTR12			
Actual effective-electrical travel (turns)	17 min 27 max	20 min 42 max	15 min 30 max			
Dielectric withstanding voltage (volts rms): Atmospheric pressure, sea level	900 350	 900 350	900 350			
Operating torque (inch-ounce): Max	5.0 0.1	8.0 0.1	5.0			

1/ Where total resistance change is 1 percent or less, it shall be considered as $\pm(_percent +0.05 \ ohm)$ for values below 100 ohms.

SECTION 402

RESISTORS, VARIABLE, NON-WIREWOUND (ADJUSTMENT TYPE),

ESTABLISHED RELIABILITY

STYLES RJR12, RJR24, RJR26, RJR28, AND RJR50

(APPLICABLE SPECIFICATION: MIL-R-39035)

1. SCOPE. This section covers established reliability, adjustment type, nonwirewound, variable resistors with a contact which bears uniformly over the surface of a non-wirewound resistive element, when positioned by a multiturn lead-screw actuator. These resistors are capable of full-load operation (when maximum resistance is engaged) at a maximum ambient temperature of 85° C and are suitable for continuous operation, when properly derated, at a maximum temperature of 150° C. The resistance tolerance of these resistors is +10 percent. These resistors possess life failure rate levels ranging from 1.0 to 0.001 percent per 1,000 hours. The failure rates are established at a 60-percent confidence level and maintained at a 10-percent producer's risk on the basis of life tests. The failure rate level refers to operation at full rated voltage at 85° C, with a permissible change in resistance of +10 percent as criteria for failure.

2. APPLICATION INFORMATION.

2.1 Style selection.

2.1.1 <u>Construction</u>. These resistors have an element of continuous resistive material (cermet, metal film, etc.,) on a rectangular or arc-shaped core, depending upon the style. The sliding contact traverses the element in a circular or straight line again dependent upon style. The element is protected from detrimental environmental conditions by a housing or enclosure. The lead-screw head is insulated from the electrical portion of the resistor. Due to the reliability requirements of MIL-R-39035, processes and controls utilized in manufacturing are necessarily stringent. MIL-STD-790, "Reliability Assurance Program for Electronic Parts Specifications," provides for monitoring and documentation of these requirements.

2.1.2 <u>Selection of a safe resistor style</u>. The wattage ratings of these resistors are based on operation at 85°C when mounted on a 1/16-inch thick, glass base, epoxy laminate. Therefore the heat sink effect as provided by steel test plates in other specifications is not present. The wattage rating is applicable when the entire resistance element is engaged in the circuit. When only a portion is engaged, the wattage is reduced directly in the same proportion as the resistance.

2.1.3 <u>Power rating</u>. These resistors have a power rating based on full-load operation at 85°C (when the maximum resistance is engaged). When the resistor is to be used in a circuit where the surrounding temperature is higher than 85°C, the wattage must be reduced so as not to overload the resistor. (See figure 402-1.)

2.1.4 <u>Derating for optimum performance</u>. After the anticipated maximum ambient temperature has been determined, a safety factor of 2 applied to the wattage is recommended in order to insure the selection of a resistor style having an adequate wattage rating with optimum performance.

2.1.5 <u>High resistances and voltages</u>. Where voltages higher than 250 volts rms are present between the resistor circuit and grounded surface on which the resistor is mounted, or where the dc resistance is so high that the insulation resistance to ground is an important factor, secondary insulation to withstand the conditions should be provided between the resistor and mounting or between the mounting and ground.

2.2 <u>Mounting of resistors</u>. Resistors with terminal type L should not be mounted by their flexible wire leads. Mounting hardware should be used. Printed-circuit types are frequently terminal mounted, although brackets may be necessary for a high-shock and vibration environment.

FIGURE 402-1. Derating curve for high-ambient temperature.

2.3 <u>Stacking of resistors</u>. When stacking resistors, care should be taken to compensate for the added rise in temperature by derating the wattage rating accordingly.

2.4 <u>Resistance-temperature characteristic</u>. Consideration should be given to temperature rise and ambient temperature of resistors under operation in order to allow for the change in resistance due to resistance-temperature characteristic. The resistance-temperature characteristic is measured between the two end terminals. Whenever resistance-temperature characteristic is critical, variation due to the resistance of the movable contact should be considered.

2.5 <u>Contact-resistance variation</u>. The contact resistance variation shall not exceed <u>3 percent or 20 ohms for characteristic</u> C, and <u>3 percent or 3 ohms for characteristics</u> F and H, whichever is greater.

2.6 <u>Terminals</u>. Terminal types P, W, X, and Y are considered solderable only. If weldable leads are required, they must be separately specified in the contact or purchase order.

2.7 Screening requirements. All resistors furnished under MIL-R-39035 are subjected to a 50-hour conditioning life test by cycling at 3/4 watt at 25 C followed by contact resistance variation and total resistance measurements and a seal test for detection of leaks.

2.8 Failure rate factors. Failures are considered to be opens, shorts, or radical departures from initial characteristics occurring in an unpredictable manner, and in too short a period of time to permit detection through normal preventive maintenance. Failure rate factors applicable to this specification are stated in MIL-HDBK-217 (see MIL-R-22097 data). The failure rate factors stated in MIL-HDBK-217 are based on "catastrophic failures" and will differ from the failure rates established in the specification, since the established failure rate is based on a "parametric failure" of +5 percent change in resistance to be expected at 0 to 10,000 hours of life tests at rated conditions.

402A (MIL-R-39035)

3. ITEM IDENTIFICATION (see figures 402-2 and 402-3).

3.1 <u>Type designation</u>. The type designation is used for describing the resistor as shown on figure 402-2.

3.2 Performance characteristics. The performance characteristics of these resistors are as shown in table 402-1.

3.3 <u>Preferred nominal total resistance values</u>. The preferred nominal total resistance values and the applicable maximum rated working voltages are as follows:

 Nominal resistance value 	Maxim vol	Maximum rated ac or dc working voltage per characteristic C, F, and H						
1 	RJR12	RJR24	RJR26	RJR28	RJR50			
Uhmis	T	ŀ	1	r	T			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.7 3.8 6.1 12.3 19.4 27.4 38.7 61.3 86.7 122.0 136.0 194.0	2.23 3.1 5.0 7.0 10.0 15.8 22.3 31.6 50.0 70.7 100.0 111.0 158.0	 3.54 5.0 7.07 11.1 15.8 22.3 35.4 50.0 70.7 79.0 111.0	1.73 2.45 3.88 5.48 7.75 12.2 17.3 24.5 38.8 54.8 77.5 86.6 122.5	1.58 2.23 3.54 5.0 7.07 11.1 15.8 22.3 35.4 50.0 70.7 111.1 15.8 12.3 135.4 9.0 111.0			
Megohms	ļ		ļ	1	i i			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	274 300 300 300	223 300 300 300 	158 200 200 200 200	173 274 300 300 300	 158 200 200 			

402 (MIL-R-39035)

.

FIGURE 402-2. Type designation example.

STYLE RJR12

NOTES:

- 1. Unless otherwise specified, tolerance is +.005 (.13 mm).
- The three leads are of stranded wire, AWG size 28 to 30, 6.00 (152.4 mm) minimum length; they are insulated with polytetrafluoroethylene, stripped .250 +.062 (6.35 +1.57 mm) from the end and color coded.
- 3. The picturization of the style above is given as representative of the envelope of the item. Slight deviations from the outline shown are acceptable.

FIGURE 402-3. Established reliability, adjustment type, hoh-wirewound, variable resistors.

STYLE RJR24

FIGURE 402-3. Established reliability, adjustment type, non-wirewound, variable resistors - Continued.

STYLE RJR24 - Continued

TERMINAL TYPE X

Inches	m	Inches	800
. 002	. 05	. 105	2.67
.006	.15	. 120	3.05
. 010	. 25	. 125	3.18
.015	. 38	. 135	3.43
. 020	, 51	. 170	4.32
. 024	.61	. 172	4.37
.025	. 64	. 187	4.75
.072	1.83	. 300	7.62
. 075	1.91	. 375	9.53
.080	2.03	. 419	10.64
. 100	2.54	. 420	10.67

NOTES:

- 1.
- 2.
- 3. 4.
- : Unless otherwise specified, tolerance is $\pm .005$ (.13 mm). The entire slot of the actuating screw is above the surface of the unit. For types P, W, and X, normal mounting means is by use of pin only. The three leads are of stranded wire, AWG size 28 to 30, 6.00 (152.4 mm) minimum length; they are insulated with polytetrafluoroethylene, stripped .250 $\pm .062$ (6.35 ± 1.57 mm) from the end and color coded. The picturization of the style above is given as representative of the envelope of the item. Slight deviations from the outline shown are 5. acceptable.

Established reliability, adjustment type, non-wirewound, variable resistors - Continued. FIGURE 402-3.

402 (MIL-R-39035)

STYLE RJR26

.

TERMINAL TYPE W

FIGURE 402-3. Established reliability, adjustment type, non-wirewound, variable resistors - Continued.

STYLE RJR26 - Continued.

NOTES:

- 1. Dimensions are in inches.
- 2. Metric equivalents are given for general information only.
- 3. Unless otherwise specified, tolerance is ±.005 (0.13 mm).
- 4. The entire slot of the actuating | screw must be above the surface of the unit.
- 5. The head of the lead screw actuator shall not extend beyond any edge of the surface upon which it is mounted.

.250

6.35

6. Mounting means are by use of pins only.

FIGURE 402-3. Established reliability, adjustment type, non-wirewound, variable resistors - Continued.

STYLE RJR28

TERMINAL TYPE P

Inches	mm	Inches	mm
. 010	. 25	. 090	2.29
.015	. 38	. 100	2.54
.018	.46	. 130	3.30
. 020	. 51	. 170	4.32
.025	. 64	. 200	5.08
. 040	1.02	. 400	10.16
. 055	1.40	. 500	12.70

NOTES:

- 1. Unless otherwise specified, tolerance is \pm .005 (.13 mm). 2. Terminal width is .025 (.64 mm) at mounting surface.
- The picturization of the style above is given as representative of the envelope of the item. Slight deviations from the outline shown are 3. acceptable.

FIGURE 402-3. Established reliability, adjustment type, non-wirewound, variable resistors - Continued.

402 (MIL-R-39035)

STYLE RJR50

TERMINAL TYPE P

Inches	साम
.001	.03
.002	.05
.010	.25
.015	. 38
.016	.41
.020	.51
.025	.64
.100	2.54
.110	2.79
.172	4.37
.250	6.35

NOTES:

- Unless otherwise specified, tolerances are \pm .005 (.13 mm) and \pm 0°30'. Mounting means are by use of pins only. 1.
- 2.
- The head of the actuating screw may or may not be flush with or recessed in the body. 3.
- The picturization of the style above is given as representative of the envelope of the item. Slight deviations from the outline shown are 4. acceptable.

Established reliability, adjustment type, non-wirewound, variable resistors - Continued. FIGURE 402-3.

			Style		
reatures	RJR12	RJR24	RJR26	RJR28	RJR50
Max resistance temperature characteristic in ppm/°C (Ref to 25°C)	 ±100, ±250	 ±50,±100, ±250	 ±50, ±100	±100, ±250	±100
Max ambient temperature at rated wattage (see figure 402-1)	85°C	 85°C	85°C	85°C	85°C
Max ambient temperature at zero wattage derating (see figure 402-1)	150°C	150°C	150°C	150°C	150°C
Min nominal total resistance (ohms)	10	10	50	100	10
Max nominal total resistance (megohms)	1.0	1.0	1.0	2.0	1.0
Power rating (watts)	3/4	1/2	1/4	0.3	1/4
Max percent change in resistance (±): 1/ Conditioning	1.5 to 2.0 1.0 to 2.0 1.0 to 2.0 1.0 1.0 1.0 1.0 1.0 1.0 to 2.0 1.0 to 2.0 1.0 to 2.0 3.0 2.0 3.0 5.0 +10 percent	1.5 to 2.0 1.0 to 2.0 1.0 to 2.0 1.0 1.0 1.0 1.0 1.0 to 2.0 1.0 to 2.0 3.0 2.0 *10 percent	1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 2.0 3.0 5.0 ±10 percent	1.5 to 2.0 1.0 to 2.0 1.0 to 2.0 1.0 1.0 1.0 1.0 to 2.0 1.0 to 2.0 3.0 2.0 3.0 5.0 ±10 percent	1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Insulation resistance (megohms): Dry Wet (after moisture resistance)	1,000 100	1,000 100	1,000 100	1,000 100	1,000 100
Max contact resistance variation	3% or 20 ohms (character- istic C) 3% or 3 ohms (character- istic F)	Same as RJR12	Same as RJR12 	Same as RJR12	Same as RJR12
Salt spray	No visible corrosion 	Same as RJR12	Same as RJR12	Same as RJR12	Same as RJR12

.

TABLE 402-I. Performance characteristics.

See footnote at end of table.

_	į		Style			
Features	RJR12	RJR24	RJR26	RJR28	RJR50	
Resistance to solvents	Remain legible	Same as RJR12	Same as RJR12	 Same as RJR12	Same as RJR12	
Seal	 3 bubbles max 	Same as RJR12	Same as RJR12	Same as RJR12	Same as RJR12	
Actual effective-electrical travel (turns) -	17 min 27 max	15 min 30 max	1 10 min 25 max	 5 min 15 max	215° min 	
Dielectric withstanding voltage (volts rms): Atmospheric pressure, sea level Reduced barometric pressure, 70,000 ft	 900 350	900 350	600 250	 900 350	600 250	
Operating torque (inch-ounce): Max	8.0	5.0	3.0	2.0	2.0	

TABLE 402-I. Performance characteristics - Continued.

 $\frac{1}{2}$ Where total resistance change is 1 percent or less, it shall be considered as \pm (percent \pm 0.05 ohm) for values below 100 ohms.

•

••

MIL-STD-199D

SECTION 500

RESISTORS, SPECIAL

Section	Applicable specification
501. Resistor Networks, Fixed, Film	MIL-R-83401
502. Thermistors (Thermally Sensitive Resistor)	MIL-T-23648

•

500 (CONTENTS)

•

MIL-STD~1990

SECTION 501

RESISTOR NETWORKS, FIXED, FILM

* STYLES RZ010, RZ020, RZ030, RZ040, RZ050, RZ060, RZ070, RZ080, AND RZ090

(APPLICABLE SPECIFICATION: MIL-R-83401)

1. SCOPE. This section covers fixed resistors in a resistor network configuration having a film resistance element and in a dual-in-line, single-in-line, or flat pack configuration. These resistors are stable with respect to time, temperature, and humidity, and are capable of full load operation at an ambient temperature of 70°C. These resistors are designed for use in critical circuitry where stability, long life, reliable operation, and accuracy are of prime importance. They are particularly desirable for use where miniaturization is important and where ease of assembly is desired. They are useful where a number of resistors of the same resistance value are required in the circuit.

2. APPLICATION INFORMATION.

2.1 Style selection.

2.1.1 <u>Construction</u>. In these resistors the resistance element consists of a film element on a ceramic substrate. The element is formed either by deposition of a vaporized metal or the printing of a metal and glass combination paste which has then been fired at a high temperature. Resistance elements are generally rectangular in shape and calibrated to the proper resistance value by trimming the element by abrasion or a laser beam. After calibration, the resistance element is protected by an enclosure or coating of insulating, moisture-resistant material (usually epoxy or a silicone).

2.1.2 <u>Power rating</u>. These resistors within a network have a power rating based on continuous, full-load operation at an ambient temperature of 70°C. A power rating is given for each resistor within the network and a power rating is given for the total network package. The package power is equal to the individual resistor power rating times the number of resistors within the network. If resistors within the network are to be operated at temperatures exceeding 70°C, the resistors must be derated in accordance with figure 501-1.

2.1.3 Derating for optimum performance. Because all the electrical energy dissipated by a resistor is converted into heat energy, temperature of the surrounding area is an influencing factor when selecting a particular resistor network for a specific application. The power rating of these resistor networks is based on operating at specific temperatures. However, in actual use, a resistor network may not be operating at these temperatures. When a desired characteristic and an anticipated maximum ambient temperature have been determined, a safety factor of 2 applied to the wattage is recommended to insure the selection of a resistor network with an adequate wattage-dissipation potential.

2.2 <u>Resistance tolerance</u>. Designers should bear in mind that operation of these resistor networks under the ambient conditions for which military equipment is designed may cause permanent or temporary changes in resistance sufficient to exceed their initial tolerances. In particular, operation at extremely high or low ambient temperatures may cause significant temporary changes in resistance.

2.3 Voltage limitations. Because of the very small spacing between the resistance elements and the connecting circuits, there are maximum permissible voltages which are imposed. The maximum voltage permissible for each network type is shown in table 501-I.

2.4 <u>Noise</u>. Noise output is not controlled by specification, but for these resistor types, noise is a negligible quantity. In an application where noise is an important factor, resistors in these networks are superior to composition types. Where noise test screening is indicated, it is recommended that MIL-STD-202, method 308, be used.

501 (MIL-R-83401)

NOTE: This curve indicates the percentage of nominal wattage to be applied at temperatures higher than 70°C. However, at no time shall the applied voltage exceed the maximum for each style.

FIGURE 501-1. Derating curve for high ambient temperature.

2.5 <u>Moisture resistance</u>. The resistors within the networks are essentially unaffected by moisture. The specification allows only a 0.5 percent change in resistance value as a result of exposure to a standard 10-day moisture resistance test.

2.6 <u>High frequency application</u>. When used in high frequency circuits (200 megahertz and above), the effective resistance will be reduced as a result of shunt capacity between resistance elements and connecting circuits. The high frequency characteristics of these networks are not controlled.

2.7 <u>Mounting</u>. Under severe shock or vibration conditions (or a combination of both), resistors shall be mounted so that the body of the resistor network is restrained from movement with respect to the mounting base. If clamps are used, certain electrical characteristics may be altered. The heat-dissipating qualities will be enhanced or retarded depending on whether the clamping material is a good or poor heat conductor.

2.8 <u>Screening</u>. All resistor networks furninshed under MIL-R-83401 are subject to 100 percent screening through a 100-hour overload test plus a thermal shock test. These tests are followed by a total resistance check and a visual examination for evidence of arcing, burning, or charring.

3. ITEM IDENTIFICATION (see figures 501-2 and 501-3).

3.1 <u>Part number designation</u>. The part number designation is used for identifying and describing the resistor as shown on figure 501-2.

3.2 <u>Performance characteristics</u>. Performance characteristics are shown in table 501-I.

3.3 <u>Resistance values</u>. Resistance values shall follow the decade of values as shown in the following tabulation:

501 (MIL-R-83401)

MIL-STD-1990

Sta	Standard resistance values for the 10 to 100 decade for 0.5%, 1.0%, 2.0%, and 5.0% resistance tolerances																
	Resistance tolerance													· 1			
			<u> </u>	_	- ·	r .		r—			·····	r					<u>`</u>
1 0	F	a	מו		6	l n	l F		ם ו	I F	6	i n	F	G	ו ו ח	F	ן פן
Ì	i	(2.0)			(2.0)		í	i(2.0)	ļ	i ·	(2.0)		i	i(2.0)	i	ļ	i(2.0)i
i(0.5)	(1.0)	J	(0.5)	i(1.0)	J	(0.5)	i(1.0)	ij	(0.5)	j(1.0)	J	(0.5)	i(1.0)	JJ	(0.5)	(1.0)	ן ז ו
1	i	(5.0)	i i	ĺ	(5.0)		1	(5.0)	ĺ		(5.0)	1	I	(5.0)			(5.0)
T	1	· · · · ·				[<u> </u>		[<u> </u>	T
110.00	10.00	10.00	15.00	15.00	15.00	22.30			32.80			47.00		47.00			68.00
10.10			15.20			22.60	22.60				33.00	47.50	4/.50) :	108.10	108.10	1 1
10.20	10.20		15.40	115.40)	22.90	!		33.20	33.20		48.10			169.00	1	} }
110.40			15.60			23.20	23.20		33.00	24 00		48.70	148.70		170 60	103.00	
110.50	110.50		15.80	12.80		23.40			134.00	134.00		49.30			70.00	171 50	
110.00	10.70		116.00	116 20	110.00	23.70	123.10	124 00	134.40	34 90		143.30	177,30		172 30	171.30	
110.70	110.70		16.20	110.20		24.00	21 30	124.00	135 20	1		50.50		51 00	73.20	73.20	
111 00			116 60	116 50		24.50	24.30		35 70	35 70		51 10	151 10		174.10	1	
111 10		11.00	16 70	110.30	1	124.00	124 00		1		36.00	51.70		· ·	75.00	75.00	75.00
	11 30		16 90	116 90	i	25 20		i	36.10			52.30	52.30		75.90		
111 40			17.20			25.50	25.50		36.50	36.50		53.00			76.80	176.80	i i
111.50	111.50		17.40	17.40	l	25.80		i	37.00	1		53.60	53.60	i i	77.70	i	i i
111.70			17.60		i i	26.10	26.10	i	37.40	37.40	j	54.20	j	Í	78.70	78. 70	i i
111.80	111.80		17.80	17.80	i '	26.40			37.90			54.90	54.90		79.60		
12.00	12.00	12.00	18.00		18.00	26.70	26.70		38.30	38.30		55.60		l	80.60	80.60	
12.10	12.10		18.20	18.20				27.00	38.80					56.00	81.60	l	
12.30			18.40			27.10					39.00	56.20	56.20				82.00
12.40	12.40		18.70	18.70		27.40	27.40		39.20	39.20	'	56.90			82.50	82.50	
12.60	l		18.90			27.70			39.70			57.60	57.60		83.50		
12.70	12.70		19.10	19.10		28.00	28,00	!	40.20	40.20		58.30			84.50	84.50	
112.90			19.30			28.40			40.70			59.00	59.00		85.60		
113.00	113.00	13.00	19.60	119.60		28.70	28.70		41.20	41.20		59.70	60 40	,	80.00		
113.20	12 20		130 00			29.10	20 40		41.70	112 20		61 20	100.40		07.00	 QQ 70	
112 50	112.30		20.00	120.00		29.40	129.40	1	42.20	42.20	[1 !	61 90	61 90		89 80	100.70	
113.00	13 70		20.30	20 50		23.00		30 00			43 00			62 00	90.90	190 90	
113.90	1		20.30			30.10	30.10		43.20	43.20		62.60	 			l	91.00
14.00	14.00		21.00	21.00		30.50			43.70		 	63.40	63.40		92.00	i	
114.20	1		21.30			30.90	30.90		44.20	44.20	l	64.20			93.10	93.10	i i
14.30	14.30		21.50	21.50		31.20			44.80			64.90	64.90	l	94.20		
(14.50	[]		21.80			31.60	31.60		45.30	45.30	i i	65.70			95.30	95.30	i i
14.70	14.70	İ			22.00	32.00			45.90			66.50	66.50		96.50		
14.90			22.10	22.10		32.40	32.40		46.40	46.40		67.30			97.60	97.60	
1	1				L		1	1	l	l	ļ	l	ļ		98.80		
1	1								[]		[(1 i		l	1

.

FIGURE 501-2. Part number example.

1/ All resistors are equal in value.

NOTES:

- The picturization of this style is given as representative of the envelope of the item. Slight deviations from the outline shown are acceptable. 1.
- Pin 1 locator is a dot, notch, or numeral 1 adjacent to pin No. 1 in the 2. shaded area.

FIGURE 501-3. Fixed film resistor networks.

501 (MIL-R-83401)

501.5

- - 1. The picturization of this style is given as representative of the envelope of
 - the item. Slight deviations from the outline shown are acceptable. 2. Pin 1 locator is a dot, notch, or numeral 1 adjacent to pin No. 1 in the shaded area.

FIGURE 501-3. Fixed film resistor networks - Continued.

501 (MIL-R-83401)

501.6

All resistors are equal in value. 1/ NOTES: The picturization of this style is given as representative of the envelope of

1. the item. Slight deviations from the outline shown are acceptable.

2.

Measurement made to edge of terminal. Measurement made at point of emergence of the lead from the body. 3.

FIGURE 501-3. Fixed film resistor networks - Continued.

The picturization of this style is given as representative of the envelope of the item. Slight deviations from the outline shown are acceptable. 3. Measurement made to edge of terminal.

- 4.
- Measurement made at point of emergence of the lead from the body. 5.

Pin 1 locator is a bevel or numeral 1 or a dot adjacent to pin No. 1 in the If standoffs are located on the body, a minimum of two standoffs are required 6.

as illustrated. As an option, additional standoffs may be located on the body If the optional lead configuration is used, standoffs on the body are not required.

FIGURE 501-3. Fixed film resistor networks - Continued.

501 (MIL-R-83401)

501.9

Inches	m m	11	Inches	m m
.003	.08	11	.030	.76
.004	.10	11	.040	1.02
.005	.13		.041	1.04
.008	.20	11	.049	1.24
.009	.23	11	.050	1.27
.010	.25		.082	2.08
.012	.30		.089	2.26
.013	.33	11	.100	2.54
.015	.38		.135	3.43
.017	.43	11	.342	8.69
.020	. 51	11	.783	19.89

STYLE RZ050 - Continued

NOTES:

- 1. Unless otherwise specified, tolerance is $\pm .005$ (.13 mm).
- 2. The picturization of this style is given as representative of the envelope of the item. Slight deviations from the outline shown are acceptable.

- Measurement made to edge of terminal.
 Measurement made at point of emergence of the lead from the body.
 Pin 1 locator is a bevel or numeral 1 or a dot adjacent to pin No. 1 in the shaded area.
- If standoffs are located on the body, a minimum of two standoffs are required as illustrated. As an option, additional standoffs may be located on the body of the resistor network. If the optional lead configuration is used, 6. standoffs on the body are not required.

FIGURE 501-3. Fixed film resistor networks - Continued.

FIGURE 501-3. Fixed film resistor networks - Continued.

Style RZ060--Continued

Inches Inches 339D mm .003 0.08 .030 0.76 .004 0.10 .40 1.02 .005 .049 0.13 1.24 .009 0.23 .050 1,27 .010 0.25 .052 1.32 .012 0.30 .074 1.88 .014 0.36 .089 2.26 .015 0.38 .100 2.54 .017 0.43 .135 3.43 .020 0.51 .342 8.69 .024 0.61 .983 24.97

SCHEMATIC H

SCHEMATIC G

NOTES:

- 1. Dimensions are in inches.
- 2. Metric equivalents are given for general information only.
- 3. Unless otherwise specified, tolerances are ±.005 (0.13 mm).
- 4. The picturization of the styles above is given as representative of the envelope of the item. Slight deviations from the outline shown, which are contained within the envelope and do not alter the functional aspects of the device, are acceptable.
- 5. Terminal centerline to centerline measurements made at point of emergence of the lead from the body.
- 6. Measurement made at point of emergence of the lead from the body.
- 7. Pin 1 locator shall be a bevel, numeral 1, or a dot adjacent to pin No. 1 in the shaded area.
- 8. If the standoffs are located on the body, a minimum of two standoffs are required as illustrated. As an option, additional standoffs may be located on the body of the resistor network. If leads with standoffs are used, standoffs on the body are not required.

FIGURE 501-3. Fixed film resistor networks - Continued.

FIGURE 501-3. Fixed film resistor networks - Continued.

Style RZ070 - continued

Inches	ជា ជ	Inches	m m
.003	.08	.024	.61
.004	.10	.030	.76
.005	.13	.040	1.02
.008	.20	.049	1.24
.009	.23	.050	1.27
.010	.25	.074	1.88
.012	.30	.089	2.26
.014	.36	.100	2.54
.015	.38	.135	3.43
.017	.43	.187	4.75
.020	.51	.583	14.81

NOTES:

- Dimensions are in inches.
 Metric equivalents are given for general information only.
 Unless otherwise specified, tolerances are ±.005 (.13 mm).
- 4. The picturization of the styles above is given as representative of the envelope of the item. Slight deviations from the outline shown, which are contained within the envelope and do not alter the functional aspects of the device, are acceptable.
- 5. Terminal centerline to centerline measurements made at point of emergence of the lead from the body.
- 6. Measurement made at point of emergence of the lead from the body.
- 7. Pin 1 locator shall be a bevel, numeral l, or a dot adjacent to pin No. 1 in the shaded area.
- 8. If the standoffs are located on the body, a minimum of two standoffs are required as illustrated. As an option, additional standoffs may be located on the body of the resistor network. If leads with standoffs are used standoffs on the body are not required.

FIGURE 501-3. Fixed film resistor networks - Continued.

Style_RZ080

1/ All resistors are equal in value.

FIGURE 501-3. Fixed film resistor networks - Continued.

Inches	m m	Inches	m m
.003	.08	.024	.61
.004	.10	.030	.76
.005	.13	.040	1.02
.009	.23	.049	1.24
.010	.25	.050	1.27
.012	.30	.074	1.88
.014	.36	.089	2.26
.015	.38	.100	2.54
.017	.43	.135	3.43
.020	.51	.187	4.75
		li .783	19.89

NOTES:

- 1. Dimensions are in inches.
- Metric equivalents are given for general information only.
 Unless otherwise specified, tolerances are ±.005 (.13 mm).
- 4. The picturization of the styles above is given as representative of the envelope of the item. Slight deviations from the outline shown, which are contained within the envelope and do not alter, the functional aspects of the device, are acceptable.
- 5. Terminal centerline to centerline measurements made at point of emergence of the lead from the body.
- 6. Measurement made at point of emergence of the lead from the body.
- 7. Pin 1 locator shall be a bevel, numeral l or a dot adjacent to pin No. 1 in the shaded area.
- 8. If the standoffs are located on the body, a minimum of two standoffs are required as illustrated. As an option, additional standoffs may be located on the body of the resistor network. If leads with standoffs are used standoffs on the body are not required.

FIGURE 501-3. Fixed film resistor networks - Continued.

FIGURE 501-3. Fixed film resistor networks - Continued.

501 (MIL-R-83401)

501.17

 $\underline{1}$ / All resistors are equal in value.

៣៣	Inches	៣៣
.08	.024	.61
.10	.030	.76
.13	.040	1.02
.23	.049	1.24
.25	.050	1.27
.30	.074	1.88
.36	.089	2.26
.38	.100	2.54
.43	.135	3.43
.51	.187	4.75
	.983	24.97
	m m .08 .10 .13 .23 .25 .30 .36 .38 .43 .51	m m Inches .08 .024 .10 .030 .13 .040 .23 .049 .25 .050 .30 .074 .36 .089 .38 .100 .43 .135 .51 .187 .983 .983

NOTES:

- 1. Dimensions are in inches.
- 2. Metric equivalents are given for general information only.
- 3. Unless otherwise specified, tolerances are ±.005 (.13 mm).
- 4. The picturization of the styles above is given as representative of of the envelope of the item. Slight deviations from the outline shown, which are contained within the envelope and do not alter the functional aspects of the device, are acceptable.
- 5. Terminal centerline to centerline measurements made at point of emergence of the lead from the body.
- 6. Measurement made at point of emergence of the lead from the body.
- 7. Pin 1 locator shall be a bevel, numeral 1, or a dot adjacent to pin No. 1 in the shaded area.
- 8. If the standoffs are located on the body, a minimum of two standoffs are required as illustrated. As an option, additional standoffs may be located on the body of the resistor network. If leads with standoffs are used, standoffs on the body are not required.

FIGURE 501-3. Fixed film resistor networks - Continued.

.

Ţ	Features	н	· 	X		М	···· {	Ŷ	,	с	
1	Resistance temperature characteristic, ppm/°C	* 50	 	*100	•	±30		±5	i0	±5	0
Ì	Maximum ambient temperature at rated wattage	70 [•] (; i	70°C		70 [•]		70)*C	70	*c
1	Maximum ambient temperature at zero power derating-	125	°C	125	C	125	°c	12	25°C	12	5°C
*	Maxiaum operating voltage for each resistor (volts): Style R2010		v v 4 <u>1</u> ∕	100 100 50 50 50 50 50	А А А А А А А	100 100 50 50 50 50	А А А А А А А А А	10 1.	00 Y 00 V 1/A	10 10 N	0 V 0 V /A "
-	Style R2080			30	¥ 11.6			F1			
*	Power rating (watts) at 70°C: Style RZ010 Schematic A Schematic B Style RZ020 Schematic A Style RZ020 Schematic B Style RZ030 Schematic A Style RZ030 Schematic A Style RZ030 Schematic B Style RZ030 Schematic A Style RZ040 Schematic G Schematic G Style RZ040 Schematic G Schematic G Schematic G Schematic G Style RZ050 Schematic G Schematic G Schematic G Style RZ060 Schematic G Schematic G Schematic G Style RZ070 Schematic G Style RZ070 Schematic C Schematic G Style RZ080 Schematic C Schematic G Style RZ090 Schematic G Style RZ090 Schematic G Style RZ090 Schematic G Style RZ090 Schematic G Style RZ090 Schematic G Style RZ090 Schematic G	IClement .2 .2 .1 N/A .2 .10 .2 .10 .2 .10 .2 .10 .015 .12 .12 .12 .12 .12 .12 .12	Network 1.4 1.3 N/A 1.5 1.5 .35 .35 N/A .35 .35 N/A .35 .35 N/A .35 N/A .36 N/A .36 .34 .34 .50 N/A .60	Element: 	Network 1.4 1.4 1.3 1.6 1.5 3.5 3.5 1.8 1.0 1.8 1.0 1.8 1.8 1.0 1.8 1.8 1.0 1.8 1.8 1.0 1.8 1.0 1.6 1.5 .35 .35 .35 .8 1.4 .8 1.0 1.6 .5 .35 .8 1.0 1.8 1.0 .6 .5 .35 .8 1.0 1.8 1.0 .0 .35 .35 .8 1.0 .8 1.0 .8 1.0 .8 1.0 .8 1.0 .8 1.0 .8 1.0 .8 1.0 .8 1.0 .8 1.0 .8 1.0 .8 1.0 .8 1.0 .8 1.0 .35 .35 .35 .8 1.8 1.0 .36 .36 .35 .35 .35 .35 .35 .35 .35 .35	IElement -2 -1 -2 -1 -05 -2 -105 -05 -05 -05 -05 -05 -05 -05 -05 -05 -05 -05 -2 1.11 -2 1.11 -2 1.12 -2 N/A 1.12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12	Network 1.4 1.4 1.5 1.5 1.5 35 35 1.8 1.0 1.0 1.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Element 	Network -7 -7 N/A N/A -8 -8 -8 -8 -8 -8 -8 -8 -8 -8	IElement: 1 1 N/A N/A N/A N/A I	Network 17 7 N/A N/A
*	Power rating (watts) at 25*C: Style RZ010 Schematic A Schematic B Style RZ020 Schematic A Style RZ030 Schematic A Style RZ030 Schematic A Style RZ030 Schematic A Style RZ030 Schematic A Style RZ030 Schematic A Style RZ030 Schematic A Style RZ040 Schematic A Schematic H Style RZ040 Schematic G Schematic H Style RZ050 Schematic G Schematic G Style RZ050 Schematic C Style RZ060 Schematic G Style RZ070 Schematic G Style RZ070 Schematic G Style RZ070 Schematic G Style RZ070 Schematic G Style RZ080 Schematic G Style RZ080 Schematic G Style RZ080 Schematic G Style RZ080 Schematic G Style RZ090 Schematic G Schematic H Schematic H Schematic G Schematic H	Element -25 -25 -25 -25 -25 -26 -25 -26 -25 -26 -25 -25 -25 -25 -25 -25 -25 -25	Network 1.75 1.625 N/A 2.0 1.875 N/A 406 4406 .44	Element. 225 125 125 125 .06 .25 .031 .019 .25 .14 .25 .15 .09 .15 .09 .15 .09 .15 .09 .15	Network 1.75 1.625 1.625 1.44 .20 1.875 1.68 .406 .45 1.25 1.05 1.35	Element 25 .25 .06 .25 .125 .06 .031 .019 .25 .25 .25 .25 .14 .25 .14 .25 .14 .25 .14 .25 .14 .25 .14 .25 .14 .25 .14 .25 .15 .09 .15 .09 .15 .09 .15	Network Network 1.75 1.625 1.625 1.64 2.0 1.875 1.66 .433 .406 2.25 1.25 2.25 2.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 .75 .45 1.05 .60 1.35 1.35 .75		Network 1875 1 N/A 1	Element 825 N/A N/A 1.25 N/A .125 N/A	Hetwork 1875 N/A

TABLE 501-1. Performance characteristics.

501.19

501 (MIL-R-83401)

MIL-STD-1990

.

See footnotes at end of table.

--

,

TABLE 501-1.	Performance	characteristics	-	Continued.
--------------	-------------	-----------------	---	------------

•

Features	<u> </u>	н — — — — — — — — — — — — — — — — — — —		<	[M	۲	/	1	:
IMininum and Maximum resistance values:	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max 1
1 Style RZ010 - <td< td=""><td>100 100 150 100 100 100</td><td> 70 kΩ 70 kΩ 51,5 kΩ 46.4 kΩ 46.4 kΩ 46.4 kΩ</td><td>10 10 10 10 10 10 27 27 27 27</td><td> 1 MΩ 1 MΩ 1 MΩ 1 MΩ 1 MΩ 1 MΩ 1 MΩ 1 MΩ 1 MΩ</td><td>1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 27 1 27 1 27</td><td> 1 ΜΩ 1 ΜΩ 1 ΜΩ 1 ΜΩ 1 ΜΩ 1 ΜΩ 1 ΜΩ 1 ΜΩ 1 ΜΩ</td><td> 1 kΩ 1 kΩ</td><td>.2 ΜΩ .2 ΜΩ</td><td>100 10</td><td>1 ΜΩ 1 ΜΩ </td></td<>	100 100 150 100 100 100	70 kΩ 70 kΩ 51,5 kΩ 46.4 kΩ 46.4 kΩ 46.4 kΩ	10 10 10 10 10 10 27 27 27 27	 1 MΩ 1 MΩ 1 MΩ 1 MΩ 1 MΩ 1 MΩ 1 MΩ 1 MΩ 1 MΩ	1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 27 1 27 1 27	1 ΜΩ 1 ΜΩ 1 ΜΩ 1 ΜΩ 1 ΜΩ 1 ΜΩ 1 ΜΩ 1 ΜΩ 1 ΜΩ	1 kΩ 1 kΩ	.2 ΜΩ .2 ΜΩ	100 10	1 ΜΩ 1 ΜΩ
Imaximum percent change in resistance: 2/ Inhemal shock Power conditioning Low temperature operation Short time overload Terminal strength Resistance to soldering heat Moisture resistance Shock (specified pulse) Vibration High temperature exposure Like Like High temperature storage	±	5 3/ 5 3/ 10 10 25 10 25 25 50 20 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 3/ 7 3/ 25 25 25 25 50 25 50 50 25	±. ±. ±. ±. ±. ±. ±. ±. ±. ±.	7 3/ 7 3/ 50 25 25 50 25 25 25 25 20 .0	$\begin{array}{c} \pm .2!\\ \pm .2!\\ \pm .1(\\ \pm .1(\\ \pm .1(\\ \pm .1(\\ \pm .1(\\ \pm .2(\\ \pm .2(\\ \pm .2(\\ \pm .2(\\ \pm .2(\\ \pm .2(\\ \pm .1(\\ \pm $		±	25 1 25 1 10 1 10 1 10 1 25 1 25 1 25 1 10 1 10 1
I Insulation resistance	10,000	megohas	10,000	megohas	10,000	megohas	10,000	megohins	10,000	megohms (
Resistance tolerance	±,] ±,{ ±1, ±2, ±5,	10% (B) 50% (J) .0% (F) .0% (G) .0% (J)	*. *.! *1 *2 *5	10% (B) 50% (D) .0% (F) .0% (G) .0% (J)	*. *. *1 *2 *5	10% (B) 50% (D) .0% (F) .0% (G) .0% (J)		0% (B) 0% (D) 0% (F) 0% (G) 0% (J)	±.] ±.5 ±1.	LO (B) i 50 (D) .0% (F)

1/ Not available (NA). Z/ Where total resistance change is 1 percent or less, it shall be considered as \star (percent $\star 0.01$ ohm). 3/ Maximum percent change for combined thermal shock and power conditioning tests.

×

MIL-STD-1990

SECTION 502

THERMISTORS, (THERMALLY SENSITIVE RESISTOR) INSULATED

(APPLICABLE SPECIFICATION: MIL-T-23648)

1. SCOPE.

1

1.1 <u>Scope</u>. This section covers the (negative and positive temperature coefficient) insulated thermistor which are use in temperature compensation circuits and control and measuring circuits.

2. APPLICATION INFORMATION

2.1 Style selection.

2.1.1 <u>Construction</u>. Thermistors are manufactured from oxides of nickle, manganese, iron, colbolt, copper, magnesium, titanium and other metals. Conductance of each grade is characteristic of the chemical proportions of each element and temperature. Thermistors shall be constructed so as to provide protection against exposure to humidity and temperature conditions by means of an enclosure or a coating of moisture resistant insulating material.

2.1.2 <u>Power rating</u>. Thermistors have a power rating based on continuous, full-load operation at an ambient temperature of 25°C. If thermistors are to be operated at temperatures exceeding 25°C, the thermistors must be derated in accordance with figure 502-1.

Style	Watts at 25°C
RTH 06	.5 W
RTH 08	1 W
RTH 10	1.5 W
RTH 22	.5 W
RTH 42	.25 W

FIGURE 502-1. Power ratings and derating curve.

2.1.3 Zero-power resistive tolerance. The zero-power resistance tolerance varies according to variations in temperature and shall be in accordance with table 502-1.

TABLE	502-I.	Resistance	tolerance	V S	temperature	for	each	resistance	tolerance

Sequence	{ Temperature (°C)	F + Percent	G * Percent	J * Percent	K ‡ Percent
1	-55	10	12	15	20
2	-15	i <u>š</u> i	6	9	14
3	0	3	4	7	12
4	25	1 1	2	5	10
5	50 -	3	4	7	12
6	j 75	5 1	6	9	14
7	1 100	7	9	12	17
8	125	10	12	15	20

502 (MIL-T-23648)

2.1.4 <u>Resistance temperature characteristic</u>. The resistance temperature characteristic of a thermistor shall fall within the requirements specified herein. For resistance temperature charactertistic ratio A, B, or C, use table 502-II. For ratio E, use table 502-III.

TABLE 502-II. Resistance temperature characteristic factors.

Temperature °C	Ratio 19.8 (A)	Ratio 29.4 (B)	Ratio 48.7 (C)
- 55	54.9	100	
-15	5.77	7.38	8.80
0	2.85	3.27	3.36
25	1.00	1.00	1.00
50	.405	.360	.320
75	1 .184	.148	.116
100	.0923	.0675	.047
125	.0503	.0340	.0205

ι

t

TABLE 502-III. Factors for determining resistance at various temperatures.

 Temperature °C 	10-68	82-150	180-560	680-1.8 ks	2 1.8 K-12 kg	15 K- 39 kΩ
- 55	.615	.582	.560	.550	.515	.481
-15	.790	.770	.755	.740	.730	.712
L 0	.863	.847	.838	.835	.825	.814
25	1.000	1.000	1.000	1.000	1.000	1.000
50	1.160	1.170	1.180	1.200	1.230	1.210
75	1.350	1.370	1.400	1.420	1.450	1.430
100	1.545	1.584	1.623	1.656	1.670	1.670
125	1.750 	1.800	1.860	1.920	1.960 	1.900

EXAMPLE: Given a thermistor with a 25°C resistance of 200 ohms, find the resistance at 75°C.

Select the factor opposite 75° C from the column headed by the resistance range containing 220 ohms. The factor 1.400 is thus selected from the column leaded 180-560. Multiply 220 ohms by the factor 1.400 to obtain the resistance at 75° C of 308 ohms.

2.3 Definitions

2.3.1 <u>Thermistor</u>. A device whose primary function is to exhibit a change in electrical resistance with a change in body temperature.

2.3.2 <u>Standard reference temperature</u>. The standard reference temperature is the thermistor body temperature at which nominal zero-power resistance is specified (25 C).

2.3.3 <u>Zero-power resistance</u>. The dc resistance value of a thermistor measured at a specified temperature with a power dissapation of the thermistor low enough that any further decrease in power will result in not more than 0.1 percent (or 1/10 of the specified measurement tolerance, whichever, is smaller) change in resistance.

2.3.4 <u>Resistance ratio characteristic</u>. The ratio of the zero-power resistance of a thermistor measured at 25°C to that resistance measured at 125°C.

2.3.5 <u>Zero power temperature coefficent of resistance</u>. The ratio at a specified temperature of the rate of change of zero power resistance with temperature to the zero power resistance of the thermistor.

2.3.6 <u>Negative temperature coefficient (NTC)</u>. A NTC thermistor is one in which the zero power resistance decreases with an increase in temperature.

2.3.7 <u>Positive temperature coefficient (PTC)</u>. PTC thermistor is one in which the zero power resistance increases with an increase in temperature.

2.3.8 <u>Dissipation constant</u>. The ratio, (in milliwatts per degree °C) at a specified ambient temperature, of a change in power dissipation in a thermistor to the resultant body temperature change.

2.3.9 <u>Thermal time constant</u>. The time required for a thermistor to change 63.2 percent of the total difference between its initial and final body temperature when subjected to a step function change in temperature under zero power conditions.

2.3.10 <u>Resistance-temperature characteristic</u>. The relationship between the zero-power resistance of a thermistor and its body temperature.

2.3.11 <u>Temperature wattage characteristic</u>. The relationship at a specified ambient temperature between the thermistor temperature and the applied steady state wattage.

2.3.12 <u>Current-time characteristic</u>. The relationship at a specified ambient temperature between the current through the thermistor and time, upon application or interruption of voltage to it.

2.3.13 <u>Stability</u>. The ability of a thermistor to retain specified characteristics after being subjected to designated environmental or electrical test conditions.

3. ITEM IDENTIFICATION. (see figures 502-3 and 502-4)

2

ì.

3.1 <u>Part number designation</u>. The part number designation is used for identifying and describing the resistor as shown in figure 502-2.

3.2 Performance characteristics. Performance characteristics are as shown in table 502-V.

3.3 <u>Resistance values</u>. Resistance values shall follow the decade of values as shown in table 502.IV.

F (1.0) G (2.0) J (5.0)	K (10.0)	F (1.0) G (2.0) J (5.0)	K (10.0)
10 11 12 13 15 16 18 20 22 24 27 30 33	10 12 12 15 18 22 27 33	36 39 43 47 51 56 62 68 75 82 91	39 47 56 68 82

TABLE 502-IV. Standard resistance values for the 10 to 100 decade for resistance tolerances 1, 2, 5, and 10 percent.

502 (MIL-T-23648)

3.4 <u>Failure rate factors</u>. Failures are considered to be opens, starts, or radical departures from initial characteristics occurring in an unpredictable manner, and in too short of period of time to permit detection through normal preventative maintenance. Failure rate factors applicable to this specification are stated in MIL-HDBK-217. The failure rate factors stated in MIL-HDBK-217 are based on "catastrophic faiures".

		A		B	- <u> </u>		<u>г</u> р	
·····			 		i		<u> </u>	
Maximum ambient temperature at rated wattage	2	5°C	.25	°C	25	°c	25	°C
Maximum ambient temperature at zero wattage derating	2	5°C	25	° C	25	°C	25	°c
Dissipation factor RTH06 RTH08 RTH10 RTH22 RTH42	5 10 15 -	mW/°C mW/°C mW/°C 	5 m 10 m 15 m 	W/°C W/°C W/°C -	5 mW 10 mW 15 mW 	/°C /°C /°C	 5 m 2.5 m	- - - W/°C W/°C
 Thermal time constant RTH06 RTH08 RTH10 RTH22 RTH42	80 250 450 - -	seconds seconds seconds 	80 s 250 s 450 s 	econds econds econds - -	80 se 250 se 450 se	conds conds conds	 60 se 60 se	- - conds conds
Power rating at 25°C RTH06 RTH08 RTH10 RTH12 RTH22 RTH42	.5 1.0 1.5 -	watt watts watts 	.5 1.0 1.5	watt watts watts - -	.5 w 1.0 w 1.5 w	att atts atts	 .5 wa .25 w	- - - tt att
Minimum and maximum resistance values	Min	Max	Min	Max	<u>Min</u>	Max	Min	Max
I RTHO6 I RTHO8 I RTH10 I RTH22 I RTH42 I Features	68 27 10 	560 180 82 	630 180 68 	4700 1800 330 	7.5 kΩ 2.2 kΩ 1 kΩ 	75 kΩ 22 kΩ 6.8 kΩ 	 10 10	 39 kΩ 10 kΩ
	+		r					
Moisture resistance RTHO6 RTH08 RTH10 RTH22 RTH22		5% 5% 5% 	5 5 5	% % - 	5	9 6 9 6 7 -	 5 3	%
Maximum percent change in resistive values: Short time load Low temperature storage High temperature storage Terminal strength Resistance to soldering heat Vibration, high frequency Life Thermal shock Immersion Shock High temperature exposure 100 High temperature exposure 100		ž ž ž ž ž ž ž ž	2 2 1 1 1 2 5 2 3 3 2 1	* * * * * * * * * * *				96 96 95 95 96 99 96 99 96 96 96 96 96 96 96 96 96

TABLE 502-V.	Performance	characteristics.
--------------	-------------	------------------

5

1

502 (MIL-T-23648)

Downloaded from http://www.everyspec.com

MIL-STD-199D

RTHO6 102 S G A STYLE: The style is identified by the symbol RTH followed by a two digit number. The letters identify general purpose thermistors and the number identifies the physical configuration. RESISTANCE RATIO: The resistance ratio is identifed by a one letter symbol as follows: $A = - - - 19.8 \pm 10$ percent $B = - - - 29.4 \pm 10$ percent C - - - 48.7 ±10 percent D - - - - 0.5 ±10 percent E - - - 0.55 ±10 percent LEAD TYPE: The single letter identifies the lead type as follows: S - Solderable W - Weldable ZERO POWER RESISTANCE: The zero power resistance at 25 C in ohms is identified by a three digit number. The first two digits represent significant figures and the last digit specifies the number of zeros to follow. (See 3.3 and the following example.) EXAMPLE: 100 - - - - -10 ohms 101 - - - - -100 ohms 102 - - - - -1,000 ohms 103 - - - - -10,000 ohms 104 - - - - -100,000 ohms ZERO POWER RESISTANCE TOLERANCE: The single letter identifies the zero power resistance tolerance as follows: F _ _ _ _ _ _ ±1 percent G - - - - -±2 percent л. - - - - -±5 percent ĸ ±10 percent - - -NOTE: Tolerance at 25°C. See 2.1.3 and 2.1.4 for tolerance deviations at other temperatures. NOTE:

4

٤.

FIGURE 502-2. Part number example.

STYLE	A	В	C	D
RTH22	1.25	.41±.02	.005±.003	.14±.02
RTH42	1.20	.285±.015	.020±.003	.106±.010

¥

NOTE: Dimensions are in inches.

FIGURE 502-3. Thermally sensitive resistor axial lead.

Style	A	В	С	D	E
RTH06	.020 ±.003	.18	6.35	1.50	.26
RTH08	.025 ±.003	.24	11.18	1.50	.36
RTH10	.032 ±.003	. 41	21.59	1.50	. 45

NOTE :

1.

Dimensions are in inches.

FIGURE 502-4. Thermally sensitive resistor radial lead.

Custodians: Army - ER Navy - EC Air Force - 11 Review activities: Army - AR, MI Navy - AS, OS, SH Air Force - 17, 80, 85 DLA - ES User activities: Army - AT, AV, ME Navy - CG, MC Air Force - 19 Preparing activity: Army - ER

Agent: DLA - ES

(Project 5905-1086)

502 (MIL-T-23648)

~

SIANL	(See Instructions –)	Reverse Side)
DOCUMENT NUMBER MIL-STD-199D	2. DOCUMENT TITLE RESISTORS, SELECTION	I AND USE OF
NAME OF SUBMITTING ORGAN	ZATION	4. TYPE OF ORGANIZATION (Mark one)
ADDRESS (Street, City, State, ZIP	Code)	USER USER MANUFACTURER OTHER (Specify):
PROBLEM AREAS	· · · · · · · · · · · · · · · · · · ·	l
α Paragraph Number and Wording:		
δ. Recommended Wording:		
c. Reason/Rationale for Recomme	ndation:	
REMARKS		
	rst MD - Optional	b. WORK TELEPHONE NUMBER (Include Area
a. NAME OF SUBMITTER (Last, Fi		Code) - Optional