MIL-STD-198E

29 MAY 84

SUPERSEDING

MIL-STD-198D

8 NOVEMBER 1976

MILITARY STANDARD CAPACITORS, SELECTION AND USE OF

MII-STD-198F

DEPARTMENT OF DEFENSE Washington, DC 20301

Capacitors, Selection and Use of

MI L-STD-198E

- 1. This Military Standard is approved for use by all Departments and Agencies of the Department of Defense.
- 2. Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: US Army Electronics Command, Attn: DELET-R-S, Fort Monmouth, NJ 07703, by using the self-addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

FOREWORD

This standard provides selected standard capacitors for use in the design of military equipment.

The application information and performance characteristics contained in this standard are offered for guidance and are not to be considered as mandatory. Additional application information will be added when coordinated with the three military departments.

Additional sections of this standard will be developed as the standard capacitors of a given specification family are selected and coordinated with the three military departments.

Downloaded from http://www.everyspec.com

MIL-STD-198E

CONTENTS

			<u>Page</u>
Paragraph	1. 1. 1 1. 2	SCOPE	1 1 1
	2.	REFERENCED DOCUMENTS	2
	3. 3. 1	DEFINITIONS	4 4
	4. 1 4. 2 4. 3 4. 4	GENERAL REQUIREMENTS	6 6 6 6
	5.	DETAILED REQUIREMENTS	7
	6. 1 6. 2 6. 3 6. 4 6. 5	GENERAL APPLICATION INFORMATION	10 10 10 13 13
	7. 7. 1 7. 2 7. 3	SUPPLEMENTAL INFORMATION	19 19 19
		FI GURES	
Fi gure	1. 2. 3. 4.	Capacitor aging curves	12 16 19 20
		TABLES	
Tabl e	1. 11. 111.	Capacitor types available by dielectric	8-9 14 21-24
		SECTI ONS	
		RELI ABI LI TY	
Secti on		CAPACITORS, FIXED, MICA DIELECTRIC	100. 1
	101	Capacitors, Fixed', Mica Dielectric, Button Style (Specification MIL-C-10950)	101. 1
	102	Capacitors, Fixed, Mica Dielectric (Specification MIL-C-5)	102. 1
	200	CAPACITORS, FIXED, ELECTROLYTIC	200. 1
	201.1	Capacitors, Fixed, Electrolytic (Dry Electrolyte), DC, Aluminum, Polarized (Specification MIL-C-62)	201. 1
	L	NOT FOR NAVY OR USAF USE IN NEW DESIGN	

			<u>Page</u>
Secti on	<u>202</u>	Capacitors, Fixed, Electrolytic (Aluminum Oxide) (Specification MIL-C-39018)	202. 1
		USAF AIRBORNE APPLICATIONS REQUIRE PRIOR APPROVAL BY PROCURING ACTIVITY	
	300	CAPACITORS, FIXED, CERAMIC DIELECTRIC	300. 1
	301	Capacitors, Fixed, Ceramic Dielectric (General Purpose) (Specification MIL-C-11015)	301. 1
	400	CAPACITORS, VARIABLE (TRIMMER)	400. 1
	401	Capacitors, Variable, Ceramic Dielectric (Specification MIL-C-81)	401. 1
	402	Capacitors, Variable (Piston Type, Tubular Trimmer) (Specification MIL-C-14409)	402. 1
	500	CAPACITORS, VARIABLE, GAS OR VACUUM DIELECTRIC	500. 1
	501	Capacitors, Variable, Gas or Vacuum Dielectric, Ceramic Envelope (Specification MIL-C-23183)	501. 1
ESTABLI SHEE) R	ELI ABI LI TY	
	600	CAPACITORS, FIXED, GLASS AND MICA DIELECTRIC, ESTABLISHED RELIABILITY	600. 1
	601	Capacitors, Fixed, Glass Dielectric, Established Reliability (Specification MIL-C-23269)	601. 1
	602	Capacitors, Fixed, Mica Dielectric, Established Reliability (Specification MIL-C-39001)	602. 1
	700	CAPACITORS, FIXED, ELECTROLYTIC, ESTABLISHED RELIABILITY	700. 1
	701	Capacitors, Fixed, Electrolytic (Solid Electrolyte), Tantalum, Established Reliability (Specification MIL-C-39003)	701. 1
	702	Capacitors, Fixed, Electrolytic (Nonsolid Electrolyte), Tantalum, Established Reliability (Specification MIL-C-39006)	702. 1
	703	Capacitors, Chip, Fixed, Tantalum, Established Reliability (Specification MIL-C-55365)	703. 1
	<u>704</u>	Capacitors, Fixed, Electrolytic (Aluminum Oxide), Established Reliability (Specification MIL-C-39018)	704. 1
		USAF AIRBORNE APPLICATIONS REQUIRE PRIOR APPROVAL BY PROCURING ACTIVITY	
	800	CAPACITORS, FIXED, PAPER-PLASTIC OR PLASTIC DIELECTRIC ESTABLISHED RELIABILITY	800. 1
	801	Capacitors, Fixed, Plastic (or Paper-Plastic) Dielectric, (Hermetically Sealed in Metal Cases), Established-Reliability (Specification MIL-C-19978)	801. 1

Downloaded from http://www.everyspec.com

MI L-STD-198E

		<u>Page</u>
802 (Capacitors, Fixed, Metallized, Paper Plastic Film or Plastic Film Dielectric, Direct and Alternating Current (Hermetically Sealed in Metal Cases), Established Reliability (Specification MIL-C-39022)	802. 1
<u>803</u> (Capacitors. Fixed. Plastic (or Metallized Plastic) Dielectric, DC, in Nonmetal-Cases, Established Reliability (Specification MIL-C-55514)	803. 1
	FOR ARMY AND AIR FORCE USE ONLY NOT FOR NAVY USE	
804 (Capacitors, Fixed, Supermetallized, plastic Film Dielectric, (DC, AC, or DC and AC), Hermetically Sealed in Metal Cases, Established Reliability (Specification MIL-C-83421)	804. 1
900 CAP	ACITORS, FIXED, CERAMIC DIELECTRIC, ESTABLISHED RELIABILITY	900. 1
901 (Capacitors, Fixed, Ceramic Dielectric (General Purpose), Established Reliability (Specification MIL-C-39014)	901. 1
902 (Capacitors, Fixed, Ceramic Dielectric (Temperature Compensating), Established Reliability (Specification MIL-C-20)	902. 1
903 (Capacitors, Chip, Multiple Layer, Fixed, Ceramic Dielectric, Established Reliability (Specification MIL-C-55681)	903. 1
	CROSS REFFRENCE (Specification Number to Section Number)	
MI L-C-5 - MI L-C-20- MI L-C-62- MI L-C-81- MI L-C-1095 MI L-C-1101 MI L-C-1997 MI L-C-3900 MI L-C-3900 MI L-C-3900 MI L-C-3901 MI L-C-3901 MI L-C-3901 MI L-C-3902 MI L-C-5556 MI L-C-5556 MI L-C-5556 MI L-C-8342	15	

CROSS REFERENCE TO SECTION CHANGES OR DELETIONS

From MIL-STD-198D	To MIL-STD-198E
300	Del eted
301 (MIL-C-12889)	Del eted
400	300
401	301
500	400
501	401
600	500
601	501
700	600
701	601
800	700
801	701
802	702
803	703
804	704
900	800
901	801
902	802
	803
	804
1000	900
1001	901
1002	902
1003	903

Cross Reference Style to Specification

STYLE	SPECLEL CATLON	DESCRI PTI ON	I CLASS	STATUS	REPLACEMENT
CA	12889	Paper, By-Pass	Non-ER		19978
C B C C	10950 20	Mica, Button, Feed-Thru	Non-ER Non-ER		CCR
CCR	20	Ceramic, Encap., Temp. Comp. Ceramic, Encap., Temp., Comp.		i Fi	l
CDR	55681	Cerami c, Chi p	ER ER	À	İ
CE I	62	Aluminum Electrolytic	Non-ER	P I	39018
CFR	55514	Plastic, Non-Herm. Sealed	ER .		
CG	23183	Vacuum or Gas, Variable	Non-ER	l A	10000
CH CHR	18312 39022	Metallized Paper, or Plastic Metallized Plastic, Herm. Sealed	Non-ER I	 A	39022
CJ	3871	Aluminum, Motor Start	Non-ER	Ĉ	ELARS-463
CK I	11015	Ceramic, Encapsulated	Non-ER	PI '	39014
CKR	39014	Ceramic, Encapsulated	ER		
CKS I	123	Ceramic, Encapsulated and Chip	Hi-Rel	l A	l 39006
CLR	3965 39006	Tantalum, Foil and Wet Slug Tantalum, Foil and Wet Slug	Non-ER ER		39006
ČM.	5	Mica, Molded, Silvered, and RF	Non-ER	PI	39001
CMR I	39001	Mica, Silvered	l ER	Α	
CMS	87164	Mica, Silvered	Hi-Rel	А	
CN	91	Paper, Non-Metal Cases	Non-ER		55514
CP I	25 14157	Paper, Herm. Seal ed	Non-ER Non-ER		l 19978 19978
CPV I	19978	Paper or Plastic, Herm. Sealed Paper or Plastic, Herm. Sealed	Non-ER		COR
CQR	19978	Paper or Plastic, Herm. Sealed	ER I		0011
CRH !	83421	Me'tallized Plastic, Herm. Sealed	ER I	Α	
CRL	83500	Tantalum, Wet Slug	Non-ER		
Cs	26655	Tantalum, Solid, Herm. Sealed	Non-ER		39003
CSR I	39003 39003	Tantalum, Solid, Herm. Sealed Tantalum, Solid, Herm. Sealed	! ER Hi-Rel		
CT I	92	Air, Variable	Non-ER		
ČΤ̈́Μ	27287	Plastic, Non-Metal Case	Non-ER		55514
CU !	39018	Aluminum Electrolytic	Non-ER		CUR
CUR	39018	Aluminum Electroyltic	ER I		
CV ! CWR !	81 55365	l Ceramic, Variable ! Tantalum, Solid, Chip	Non-ER ER	A 1	
	49137	Tantalum, Solid, Chip Tantalum, Solid, Non-Herm. Sealed	Non-ER		
£¥	11272	Glass	Non-ER	1 1	23269
CYR !	23269	I Glass	ER I	Α [
CZ	11693	Metallized Paper or Plastic F.T.	Non-ER	l j	CZR
CZR PC	11693 14409	Metallized Paper or Plastic F.T. Piston Trimmer	ER I Non-ER I	A !	
10 1	14407	THE TOTAL THE HIRIDA	I MOHILER I	A !	
•		•		•	

A = Active for design C = Canceled I = Inactive for design PI = Partially Inactive for design

This cross reference is for general information only; some styles are not preferred standards and therefore not included in this standard.

SCOPE

- 1.1 <u>Scope.</u> This standard consists of the following:
 - (a) selected standard capacitor types, detailed by sections, chosen jointly by the Departments of the Army, the Navy, and the Air Force for use in the design and manufacture of military equipment under the jurisdiction of the Departments.
 - (b) Guides for the choice and application of capacitors for use in military equipment.

Detailed requirements for capacitors listed in this standard are covered in the applicable specification (see 2.1). When it has been determined that circuit requirements cannot be met by using capacitor styles or characteristics listed in this standard, the design engineer shall, with the approval of the cognizant military activity, select from the applicable capacitor specification styles or characteristics not listed herein.

1.2 Purpose of standard:

- (a) To provide the equipment designer with a selection of standard capacitors for use in most military applications.
- (b) To control and minimize the variety of capacitors used in military equipment in order to facilitate logistic support of the equipment in the field.
- (c) To outline criteria pertaining to the use, choice, and application of capacitors in military equipment.
- 1.3 <u>Notice to users.</u> This standard was written to aid in the selection of standard capacitors. The information contained herein is believed to be correct; however, the Government assumes no liability whatsoever for any inaccuracies. Contractors are cautioned to evaluate the requirements and part numbers in the individual specification sheets. MIL-STD-198 is intended as a guide only; see section 2 for a list of the applicable procurement specifications.

2. REFERENCED DOCUMENTS

2.1 <u>Issues of documents.</u> The following documents of the issue in effect on date of invitation for bids or request for proposal, form a part of this standard to the extent specified herein.

SPECIFICATIONS

MI LI TARY

TARY	
MI L-C-5	Capacitors, Fixed, Mica Dielectric, General Specification For.
MI L-C-20	Capacitors, Fixed, Ceramic Dielectric (Temperature Compensating), Established and Non-Established Reliability, General Specification For.
MI L-C-62	Capacitors, Fixed, Electrolytic (DC, Aluminum, Dry Electrolyte, Polarized), General Specification For.
MI L-C-81	Capacitors, Variable, Ceramic Dielectric, General Specification For.
MI L-C-10950	Capacitors, Fixed, Mica Dielectric, Button Style, General Specification For.
MI L-C-11015	Capacitors, Fixed, Ceramic Dielectric (General Purpose), General Specification For.
MI L-C-14409	Capacitors, Variable (Piston Type, Tubular Trimmer), General Specification For.
MI L-C-19978	Capacitors, Fixed, Plastic (or Paper-Plastic) Dielectric, (Hermetically Sealed in Metal, Ceramic, or Glass Cases), Established and Non-Established Reliability, General Specification For.
MI L-C-23183	Capacitors, Fixed or Variable, Vacuum or Gas Dielectric, General Specification For.
MI L-C-23269	Capacitors, Fixed, Glass Dielectric, Established Reliability, General Specification For.
MI L-C-39001	Capacitors, Fixed, Mica Dielectric, Established Reliability, General Specification For.
MI L-C-39003	Capacitors, Fixed, Electrolytic (Solid Electrolyte), Tantalum, Established Reliability, General Specification For.
MI L-C-39006	Capacitors, Fixed, Electrolytic (Nonsolid Electrolyte), Tantalum, Established Reliability, General Specification For.
MI L-C-39014	Capacitors, Fixed, Ceramic Dielectric (General Purpose), Established Reliability, General Specification For.
MI L-C-39018	Capacitors, Fixed, Electrolytic (Aluminum Oxide), Established Reliability and Non-Established Reliability, General Specification For.
MI L-C-39022	Capacitors, Fixed, Metallized, Paper-Plastic Film, or Plastic Film Dielectric, Direct and Alternating Current, (Hermetically Sealed in Metal Cases), Established Reliability, General Specification For.

MILITARY - Continued

MIL-C-55365 - Capacitors, Chip, Fixed, Tantalum, Established Reliability, General Specification For.

MIL-C-55514 - Capacitors, Fixed, Plastic (or Metallized Plastic)
Dielectric, DC or DC-AC, in Nonmetal Cases, Established
Reliability, General Specification For.

MIL-C-55681 - Capacitors, Chip, Multiple Layer, Fixed, Unencapsulated, Ceramic Dielectric, Established Reliability, General Specificatfon For.

MIL-C-83421 - Capacitors, Fixed, Supermetallized Plastic Film
Dielectric, (DC, AC, or DC and AC), Hermetically Sealed
in Metal Cases, Established Reliabfifty, General
Specification For.

(Copies of specifications, standard, handbooks, drawings, and publications required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting officer.)

3. DEFINITIONS

- 3.1 Rating and design application terms. A list of common terms used in the rating and design application of capacitors is as follows:
 - (a) Ambient temperature. Average or mean temperature of the medium (air, gas, liquid, etc.,) surrounding an object.
 - (b) Anode. Positive electrode of a capacitor.
 - (c) <u>Capacitance.</u> Property of a capacitor which determines its ability to store electrical energy when a given voltage is applied, measured in farads, microfarads, or picofarads.
 - (d) <u>Capacitance tolerance.</u> The part manufacturer's guaranteed maximum deviation (expressed in percent) from the specified nominal value at standard (or stated) environmental conditions.
 - (e) <u>Capacitive reactance.</u> Opposition offered to the flow of an alternating or pulsating current by capacitance, measured in ohms.
 - (f) <u>Capacitor</u>. Electronic component part consisting essentially of two conducting surfaces separated by an insulating (dielectric) material. A capacitor stores electrical energy, blocks the flow of direct current, and permits the flow of alternating or pulsating current to a degree dependent on the capacitance and the frequency.
 - (1) <u>Capacitor</u>, <u>liquid-filled</u>. A capacitor in which a liquid impregnant occupies substantially all of the case volume not required by the capacitor element and its connections. (Space may be allowed for the expansion of the liquid under temperature variations.)
 - (2) <u>Capacitor</u>, <u>liquid-impregnated</u>. A capacitor in which a liquid impregnant is dominantly contained within the foil- and paper-winding, but does not occupy substantially all of the case volume.
 - (3) <u>Capacitor</u>, <u>temperature-compensating</u>. A capacitor whose capacitance varies with temperature in a known and predictable manner.
 - (g) <u>Cathode.</u> Negative electrode of a capacitor.
 - (h) <u>DC leakage (DCL).</u> Stray direct current of relatively small value which flows through or across the surface of solid or liquid insulation when a voltage is impressed across the insulation.
 - (i) <u>Dielectric.</u> The insulating material (e.g.) air, paper, mica, oil, etc., between the plates of a capacitor.
 - (j) <u>Dielectric absorption.</u> Property of an imperfect dielectric whereby all electric charges within the body of the material caused by an electric field are not returned to the field.
 - (k) <u>Dielectric constant.</u> Property of a dielectric material that determines how much electrostatic energy can be stored per unit volume when unit voltage is applied. (It is the ratio of the capacitance of a capacitor filled with a given dielectric to that of the same capacitor having a vacuum dielectric.)
 - (I) <u>Dielectric strength.</u> Maximum voltage that a dielectric material can withstand withour rupturing. (The value obtained for the dielectric strength will depend on the thickness of the material and on the method and conditions of test.)

- (m) <u>Dissipation factor (DF).</u> The ratio of resistance to reactance, measured in percent.
- (n) <u>Electrolyte.</u> Current-conducting solution (liquid or solid) between two electrodes or plates of a capacitor at least one of which is covered by a dielectric film.
- (o) <u>Equivalent series resistance (ESR).</u> The square root of the difference between the Impedance squared and the reactance squared.
- (p) <u>Flashpoint of impregnant.</u> The temperature to which the impregnant (liquid or solid) must be heated in order to give off sufficient vapor to form a flammable mixture.
- (q) Impedance (Z). Total opposition offered to the flow of an alternating or pulsating current, measured in ohms. (Impedance is the vector sum of the resistance and the capacitive reactance, i.e., the complex ratio of voltage to current.)
- (r) Impregnant.A substance, usually liquid, used to saturate paper dielectric and to replace the air between its fibers. (Impregnation increases the dielectric strength and the dielectric constant of the assembled capacitor.)
- (s) <u>Insulation resistance (IR).</u> Direct current resistance between two conductors that are separated by an insulating material.

NOTE: Capacitors are commonly subjected to two insulation resistance tests. One test determines the insulation resistance from terminal to terminal while the other test determines the insulation resistance from one or more terminals to the exterior case or insulating sleeve.

- (t) <u>Power factor (PF).</u> The ratio of resistance to impedance, measured in percent.
- (u) Quality factor (Q). The ratio of capacitive reactance to resistance.
- (v) Radio interference. Undesired conducted or radiated electrical disturbances, including transients, which may interfere with the operation of electrical or electronic communications equipment or other electronic equipment.
- (w) <u>Ripple voltage (or current)</u>. The ac component of a uni-directional voltage or current (the ac component is small in comparison with the dc component).
- (x) <u>Stability.</u> The ability of a part to resist changes of characteristic values and (or) coefficients.
- (y) <u>Surge voltage (or current).</u> Transient variation in the voltage or current at a point in the circuit; a voltage or current of large magnitude and short duration caused by a discontinuity in the circuit.
- (z) Temperature coefficient (TC). Change in capacitance of a capacitor per degree change in temperature. It may be positive, negative, or zero and is usually expressed in parts per million per degree Celsius (ppm/°C).

4. GENERAL REQUIREMENTS

- 4.1 <u>Choice of capacitor types.</u> The variety of capacitor types used in any particular equipment shall be he minimum necessary to obtain satisfactory performance. Where more than one type of capacitor may be used in a given application (i.e., molded mica or glass types), consideration should be given to cost and availability (use of strategic materials, multiple sources, etc.). The capacitors identified in this standard meet all the criteria for standard types (see 1.1 and 4.4 and Table I).
- 4.1.1 <u>Reliability</u> Where quantitative reliability requirements are specified as part of the equipment requirements and are such that the use of parts with established reliability is dictated, such parts shall be selected from the established reliability sections of this standard.
- 4.1.2 <u>Qualified sources.</u> After a preliminary selection of the desired capacitor has been made, reference should be made to the applicable qualified products list for listing of qualified sources.
- 4.2 <u>Item identification.</u> A type designation for any capacitor referenced herein may be constructed as indicated in the example given in the applicable section. The part number assignments, where applicable, shall be as specified in he individual capacitor specification.
- 4.3 <u>Conflict of requirements.</u> In the event of conflict between technical requirements of capacitors described in this standard and the applicable specification, the specification shall govern; however, this standard will be up-dated concurrently to reflect specification changes.
- 4.4 <u>Criteria for inclusion in this standard.</u> The criteria for the inclusion of capacitor types in this standard are as followe:
 - (a) The capacitor shall be the best type available for general use in military equipment.
 - (b) Coordinated military specifications shall be available (see 2.1).
 - (c) Capacitors shall be in or shall have been in production.
 - (d) Where possible, only capacitors that will remain in this standard for a minimum of 1 year shall be included.

5. DETAILED REQUIREMENTS

5.1 The detailed requirements for standard capacitor types are contained in the applicable specification and the applicable section of this standard.

TABLE 1. <u>Capacitor types</u>

		1	CAPACITANCE		1
DIELECTRIC	APPLICABLE SPECIFICATION	ı Range I	l I Tolerance	 Stability after 2,000 hours life test	IDC rated Ivoltage I(Volts)
GLASS Fixed	I IMIL-C-23269(ER)	1.5 to 10,000 pF	1 1.25 pF to 5	1.5% or 0.5 pF which-	1100, 300,
Variable	 MIL-C-14409	10.3 to 1.2 pF 1thru 1 to 120 pF	1	(Cap. change vs	14 500 1125 to 11,250
MICA Button sytle	 MIL-C-10950			I I ≤15 or .5 pF which- Tever is greater	500
 General purpose	MIL-C-5 MIL-C-39001(ER)	1 1 to 91,000 pF	±1, ±2, or ±55 .5 pF, ±1, ±2, or	l≤5° or 1°pF which- lever is greater	1300 to 12,500 150 to 500
ELECTROLYTIC	I IMIL - C - 62	i	1-10, +50	1	1400 \$ 450
Tantalum (nonsolid)	MIL-C-39006(ER)		1-15: +30, +50, +75,		16 to 450
Tantalum (solid)	IMIL -C - 39003(ER)		1±5% to ±20% 1±5, ±10, or ±20%	. ≤2%	16 to 100
Aluminum oxide	I IMIL - C - 39018 (ER)	1.68 to 220,000 µF	1-10: +30, +50, +75	! ! <u><</u> 15%	1 15 to 350
Tantalum (solid) chip	 MIL-C-55365(ER)	1.068 to 100 µF	i ±5, ±10, or ±20%	} } 	13 to 50
PAPER-PLASTIC Polycarbonate	 MIL-C-19978(ER)	1.001 to 1 µF	 ±5 or ±10°.	<u><</u> 6°.	150 to 600
Paper % polyethylene terephthalate	 MIL-C-19978(ER)	1.001 to 1 µF	 +±2, ±5, or ±10%		1 1200 to 1 11.000
Plastic or metallized plastic	I IMIL-C-55514(ER)		 ±1, ±2, ±5, or ±10:	ſ	150 to 600
Polyethylene terephthalate	i IMIL-C-19978(ER)	1.001 to 10 µF	1 1*2, *5, or *10% 1		130 to 11,000
Metallized polycarbonate	 MIL-C-83421(ER)		1 1±.25, ±.5, ±1 1±2, ±5, or ±10%	! ! <u><</u> 2°; !	1 130 to 400
Metallized paper & polyethy- lene terephthalate	 MIL -C-39022(ER) 	1.01 to 10 μF	 ±10 or ±20% 		1600 & 80 1to 400 Yrms I
CERAMIC		12.2 to	1 *10. *20		1500
Fixed, general purpose		115,000 pF	i i + .5 pF, ±1, ±5,		11,600 I
Temp compensating	t	11,000,000 pF 11.0 to 168,000 pF	<pre>1*10 or *20 1*.1 pF, *.25 pF, 1*.5 pF *11, *21,</pre>	 ±3% or .5 pF whichever is greater	11,600 150 to 200
Variable	 MIL-C-81	il.5 to 7 thru	1±55 or ±105 1) 	1 1200 to 500
Fixed, chip	 MIL-C-55681(ER) 	1180,000 pF	! !±.1 pF, ±.25 pF, !±.5 pF, ±1°, ±2, !±5, ±10, or ±20	 	1 50 % 100 150 % 100 1
GAS or VACUUM Variable	 MIL -C -23183	1 15 to 750 thru 150 to 3,000 pF	<u> </u> 	 	1 1 12 % 3 kV

 $[\]underline{1}$ / Where "C" = Capacitance and "V" = Voltage.

available by dielectric.

	TEMPERATURE	I RELATIVE	I RELA	TIVE SIZE	1	DISSIPATION FACTOR	(<u>°</u>)
Operating temperature (in °C)	Temperature coefficient (in % or ppm/°C)	COST FOR EQUIV CV 1/ RATING		For equiv CV rating	1 160 Hz 1	1,000 Hz	
-55 to +125	i 1140 ±25, 105 ±25, or 0 ±25	i Medium	cv ²	l I Large	 	<.001	
	! ±20, ±50, ±75, ±100, ±150, +50 -0, and +50 ±50	I I Medium high I I	C	ı Large I) 	 	
	 ±100, -20 to +100, ±60, and Not specified		icv ²	l I Large	 	· · · · · · · · · · · · · · · · · · ·	1 < 1 . 2 1
-55 to +125	10 to +70, -20 to +100, 1±100, ±200, and Not specified	I Medium low	CV2	I Large		<.18	·<.12
	10 to +70, -20 to +100, and ±200	<u> </u>	C V 2	Large	 	<.1	<1,000
	1 Capacitance drops from 30 to 60% at -40°C	Medium	1 C V	ı Very ı small		; ;15 to 18% at 120 Hz; ;varies with V	!
-55 to +85,	Capacitance drops from 12	i High	cv	Very		110 to 325 at 120 Hz; Ivaries with C and V	i i
	Capacitance drops 10% max		cv	Very	i	13 to 8% at 120 Hz;	
derated to +125 -40 to -85,	1	ı Medium	icv	small Very	t	varies with V 110 to 355 at 120 Hz;	
derated to +125 -55 to +125	 		icv	small Very small	1	ovaries with C and V 14 to 10° at 120 Hz; Ovaries with V	! ! ! !
	I Capacitance change	l I High I	1 C V 2	l Large I	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	l Higheri l Higheri
-65 to +125	! !	l High 	cv ²	l Medium Large	. <.1	<.1	
-55 to +85 or +125	 	I I Medium I	c v ²	Small	! 	<2.0	
-65 to +85	1 - 7 to +5%	I High 	C V 2	I I Small I	· < . 6	<.6	
-65 to +100	 -2.5% to +1.2%	l I Medium I	1 C V 2	l I Small I	 <.15 	 <.15 	
	 Capacitance drops <10% at -55°C 	l I Medium I	1 C V ²	I I Small I	 	 	
	 Capacitance_change <+30,	l Very low	CV2+k	l I Small	i i	<2.5	(2.5
-55 to +85	1-80° at -55°C Capacitance_change <+30,	i Very low	VC ² +k	I Small	 	<2.5	2.5
	1-80° at -55°C 10 ±30, 0 ±60	ı ı Very low	1C V 2 + k	Small	 	0.15	.10
-55 to +85	l Capacitance change <-4.5, +2% at -55°C	l I Medium low I	1 C V ² + k 	l I Large I	 	 	0.2
-55 to +125	l	i I Low I	 CV 	l 1 Small 1	 	. <2.5	
	l 	I I	1	<u> </u>	I I	l 1	<u> </u>
-55 to +85	 	ı High I		l Large	 	<0.001	

6. GENERAL APPLICATION INFORMATION

- 6.1 <u>General.</u> The application information contained herein is designed to help the engineer select the capacitors he will specify (application information pertaining to specific capacitor types is contained in the applicable sections). As with other types of components, the most important thing a user must decide is which of the numerous types of capacitors will be best for use in the military equipment he is designing. Proper selection in its broadest sense is the first step in building reliable equipment. To select properly the capacitors to be used, the user must know as much as possible about the types from which he can choose. He should know their advantages and disadvantages; their behavior under various environmental conditions; their construction; and their effect on circuits and the effect of circuits on them. He should know what makes capacitors fail. He should also have an intimate working knowledge of the applicable military specification.
- 6.1.1 <u>Capacitor usage.</u> Capacitors are used as energy-storage components to accumulate energy through long periods of time and to discharge the energy over longer or shorter periods. Parallel RC circuits will maintain bias on the grid of a tube for long periods and, as in filter circuits, will smooth out pulsating direct current. By-pass capacitors are used to prevent the flow of direct current without impeding the flow of alternating current and the attenuate low frequency currents while permitting higher frequency currents to pass. In combination with resistors, capacitors are used to reduce radio interference caused by arcing contacts, and to increase the operational life of the contacts.
- 6.1.2 <u>Capacitor types.</u> Capacitors of the types widely used in electronic equipment can be grouped into one of six basic types; namely, (1) glass and mica, (2) electrolytic, (3) paper and plastic, (4) ceramic, (5) air, and (6) vacuum. These basic types differ from each other in size, cost, capacitance, and general characteristics. Some are better than others for a particular purpose; no one type has all of the best characteristics. The choice among them, therefore, depends on the requirements, both initial and long-term, the environment in which they must exist, and numerous other factors. The designer must realize that the summaries of the general characteristics contained in table I are relative, not absolute, and that all the requirements of a particular application must be taken into consideration and compared with the advantages and disadvantages of each of the several types before a final choice is made.
- 6.2 <u>Environmental effects on characteristics and life.</u> The characteristics and life of all capacitors are dependent on the environments to which capacitors are exposed. Effects of various environmental conditions on capacitors are as follows:

6.2.1 Temperature:

- (a) The temperature at which the dielectric operates is a function of the ambient temperature in which the capacitor is located; the heat which is radiated or conducted to the capacitor; the internal heating of the capacitor due to I2R losses in the conductors and dielectric; the physical construction and thermal conductivity of the materials inside the capacitors; the transfer of heat internally by conduction and convection to the container; and the heat lost from the container by convection, conduction, and radiation.
- (b) The insulation resistance decreases as the temperature increases. The power factor is a complex function of temperature. With polarized dielectrics, temperature-frequency combinations exist where there are large increases in power factor. This may not present any difficulties at low temperatures, since internal heating will raise the dielectric temperature and lower the power factor. An increase in power factor at high temperatures may cause thermal instability and must be considered.
- (c) The capacitance of polarized dielectrics is a complex function of temperature, voltage, and frequency; nonpolarized dielectrics exhibit less change than polarized materials. It is to be noted that as the ambient temperature is decreased, many dielectrics will exhibit a very large decrease in capacitance with a relatively small change in temperature.

MII-STD-198F

The increased power factor at this temperature may raise the dielectric temperature sufficiently to recover the lost capacitance; however, it must be considered that when the capacitor is initially energized while at low temperatures, the capacitance will be a small percentage of its nominal value, and if the internal heating is effective, the thermal time constant of the capacitor must be considered. A change in the distance between the conductors and the effective area of the conductor due to dimensional changes will cause a change in capacitance.

- (d) The dielectric strength of the dielectric decreases as the temperature increases.
- (e) The life of a capacitor, in general, decreases with an increase in temperature. Life as a function of operating temperature is a complex function and should be determined from life-test data. In the absence of this data, the familiar 10-C rule for a chemical reaction may be used as a rough approximation. This rule states that the life decreases by a factor of two for each 10 C rise in temperature. This rule, however, should never be used outside of the temperature range specified by the manufacturer, since chemical reactions of an entirely different nature may take place at extreme temperatures. This rule should not be applied to liquid and gaseous dielectric without further investigation.
- (f) The operating temperature and changes in temperature also affect the mechanical structure in which the dielectric is housed. The terminal seals utilizing elastic materials or gaskets may leak due to the set temperature characterisitics. The expansion and contraction of materials with different thermal coefficients may cause leaks at joints. Electrolysis effects in glass terminals increase as the temperature increases. The increase in internal pressure of liquids and gases may cause leaks. A decrease in internal pressure due to the lowering of the temperature may cause internal arc-over.
- (g) If the capacitor is operated in the vicinity of a component operating at high temperature, the flashpoint of the impregnant should be considered.

6. 2. 2 Pressure:

- (a) The dielectric strength of gases is a function of pressure, temperature, frequency, and humidity. Hermetically-sealed units must have terminals designed to operate satisfactorily at the required pressure.
- (b) The heat loss by convection of a capacitor is a function of pressure and must be considered.
- (c) Reduced pressure may produce leaks in hermetically-sealed units. An increase in pressure on the container of rolled capacitors in rectangular containers may increase the capacitance by decreasing the distance between the conductors.
- 6.2.3 <u>Shock and vibration.</u> The capacitors and mounting brackets, when applicable, must be of a design which will withstand the shock and vibration requirements of the particular application.
- 6.2.4 <u>Moisture.</u> Moisture in the dielectric will decrease the dielectric strength, life, and insulation resistance, and increase the power factor of the capacitor. In general, capacitors which operate in high humidities should be hermetically sealed. The effect of moisture on pressure contacts which are not gas-tight may result in a high resistance or open contact.
- 6.2.5 <u>Aging.</u> Capacitor aging is a term used to describe the negative, logarithmic capacitance change that takes place in ceramic capacitors with time. As one might expect, the more stable dielectrics have the lowest aging rates.

Temperature compensating dielectrics, such as MIL-C-20 and MIL-C-55681 components with a characteristic of 0 \pm 30 ppm/°C, over the operating temperature range of -55° to \pm 125°C, do not appear to age at all; however, all ceramic capacitors with high dielectric constants display an aging characteristic.

MII-STD-198F

General purpose dielectrics - particularly those with a capacitance change of \pm 15 percent (or greater) over the -55° to +125°C operating temperature range - comprise this high dielectric constant family and represent the group we are concerned with.

High K ceramic dielectrics with a barium-titanate formula exhibit a phenomenon known as Curie Point crystal-phase transformation. Simply stated, most of the tiny crystals that make up the ceramic micro-structure are of cubic symmetry at a temperature of 120°C and above. Below 120°C, these same crystals take on a tetragonal shape. The specific relationship between this crystal-phase transformation and aging is not clearly understood, but it is known that they are directly related. As the crystals change from cubic to tetragonal shape, stresses are set up in the dielectric and are subsequently relieved gradually. This electrical "aging" phenomenon seems to follow the same logarithmic patterns observed in mechanical models of stress relief. Each time the capacitor is heated to approximately 120°C (Curie Point), all of the negative capacitance change that may have taken place is recovered. Upon cooling, the aging cycle begins again. This recovery process is commonly referred to as "de-aging". The entire process of aging and de-aging is predictable and can be repeated infinitely.

Another important parameter that affects capacitor aging is the application of polarizing voltage. The application of a dc voltage approximately equal to the capacitor's rating will cause an abrupt negative capacitance change; however, when the voltage is removed, the capacitor does not return to its original polarized value. If this exercise were performed on a capacitor with a known aging characteristic and the results were plotted, the resultant curves would resemble those in figure 1.

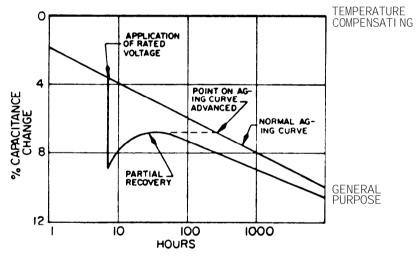


FIGURE 1. Capacitor aging curves.

The dc voltages and subsequent dielectric polarization of the capacitor micro-structure serve to relieve some of the stresses in the dielectric. This moves the point on the aging curve forward approximately 1.5 decades.

Most general purpose state-of-the-art dielectrics found in industry have aging rates varying from 1.5 percent to 4 percent.

In summary, the following points should be kept in mind when dealing with the phenomenon of ceramic capacitor aging:

- (a) The process is completely repeatable and predictable.
- (b) Capacitance change is negative and logarithmic in respect to time.
- (c) Application of dc bias can move a point on the curve forward in time.

This wide capacitance change, as a result of "shelf" aging and temperature cycling, illustrates why tight-tolerance high K ceramics are not common in the electronics industry.

MLL-STD-198F

- 6.2.6 <u>Capacitor tests.</u> The average component is a complex device. For this reason it is impossible for manufacturer to guarantee an exact minimum life of an individual capacitor; for example, under any given circuit or environmental condition of usage, all he can do is to provide statistical guides as to the probable minimum life or reliability of the unit when considered as a member of a large family of units.
- 6.2.7 <u>Capacitor misuse.</u> A capacitor may fail when subjected to environmental or operational conditions for which the capacitor was not designed or manufactured. The designer must have a clear picture of the safety factors built into the units, of the safety factors he adds of his own accord, and of the numerous effects of circuit and environmental conditions on the parameters. It is not enough to know only the capacitance and the voltage rating. It is important to know to what extent the capacitance varies with environment; how much the internal resistance of the capacitor varies with temperature, current, voltage, or frequency; of the effects of all of these factors on insulation resistance, breakdown voltage, and other basic capacitor characteristics which are not essential to the circuit but which do invariably accompany the necessary capacitance.
- 6.3 <u>Principal applications.</u> Some of the principal applications of the various types of capacitors are shown in table II.
- 6.4 <u>Capacitor selection.</u> The designer, in selecting a capacitor type for a particular function to be performed, must weigh numerous factors before coming to a final decision. Selection normally starts with the most important characteristic for the application, then selecting and compromising other characteristics.
- 6.4.1 Selection factors. The most important of these factors are noted below with some of the reasons why these factors are important.

6.4.1.1 Temperature effects:

- (a) Capaci tance:
 - (1) By variations in dielectric constant.
 - (2) By changing conductor area or spacing.
- (b) Leakage current, through change in specific resistance.
- (c) Breakdown voltage at high temperatures and effect of frequency on heating.
- (d) Current rating, when affected by heating.
- (e) Oil, gas, or electrolyte leakage through seals.

6.4.1.2 Humidity effects:

- (a) Leakage current.
- (b) Breakdown voltage.
- (c) Effect on power factor or Q.

6.4.1.3 <u>Barometric pressure effects:</u>

- (a) Breakdown voltage.
- (b) Oil, gas, or electrolyte leakage through seals.

MI L-STD-198E

Principal applications. APPLICATION TABLE II. Mica Ceramic Ceramic Trimmer Ceramic Trimmer Ceramic Primmer Priston Trimmer Plastic Vacuum Glass Aluminum
Met. Plastic
Solid Tantalum,
Chip
Plastic
Ceramic, Chip |Solid Tantalum |Wet Tantalum |Ceramic Established|Capacitor Reliability| Type MILITARY SPECIFICATION | |MIL-C-55514 | |MIL-C-55681 | |MIL-C-83421 |

14

MII-STD-198F

- 6.4.1.4 Applied voltage effects:
 - (a) Leakage current.
 - (b) Heating and Its accompanying effects.
 - (c) Breakdown of dielectric; effect of frequency.
 - (d) Corona.
 - (e) Insulation to case or chassis.

6. 4. 1. 5 <u>Vi bration:</u>

- (a) Capacitance change through mechanical vibration.
- (b) Mechanical distortion of elements, terminals, or case.

6.4.1.6 <u>Current:</u>

- (a) Effect on internal temperature rise and life of capacitor.
- (b) Ability of conductors to carry currents from a thermal viewpoint.
- 6.4.1.7 <u>Life.</u> Affected by all environmental and circuit conditions.
- 6.4.1.8 Stability. Also affected by all environmental and circuit conditions.
- 6.4.1.9 Retrace. After a capacitance change.
- 6.4.1.10. Size, volume, cost, and mounting method.
- 6.4.2 <u>Capacitor selection chart.</u> Table III lists the capacitor styles available in each specification represented in this standard. The data given is approximate and is meant as an aid in selecting capacitors only. The configuration drawing is not exact in all cases.
- 6.5 <u>Application data.</u> The following should be considered in the selection and use of a capacitor type:
 - (a) The capacitance tolerance that the circuit designer uses in order to design a circuit which will operate satisfactorily for the desired time requires (1) acceptable tolerances according to specification; (2) capacitance-temperature characteristics; (3) capacitance-voltage characteristics; (4) retrace characteristics; (5) capacitance-frequency characteristics; (6) dielectric absorption; (7) capacitance as a function of pressure, vibration, and shock; and (8) capacitor aging in the circuit and shelf storage.
 - (b) Capacitance between the capacitor terminals and case may be a consideration, as will stray capacitance and leakage currents. The terminal connected to the outside conductor is often identified by the manufacturer so that the circuit can minimize these effects.
 - (c) The capacitance-temperature characteristic can be compensated for by using more than one type of capacitor to obtain the required capacitance. The characteristics of other circuit components may also be used for compensation.
 - (d) The peak voltage which is applied to the capacitor should not exceed the rating in the applicable specification. The safety factor between the peak applied voltage, the test voltage, and the breakdown voltage is of a statistical nature. The same peak voltage, in general, may decrease with (1) aging, (2) an increase in temperature, (3) an increase of area of dielectric, (4) higher frequencies of applied voltage, (5) a decrease in pressure, or (6) the entrance of moisture into the capacitor. In many

applications, it is necessary to derate the capacitor from the specified voltage to provide the desired performance for the required time. it is to be emphasized that short-duration transient voltages cannot be neglected in capacitor applications.

- (e) The use of the self-healing properties of certain types of capacitors may not be desirable in circuits where intermittent failures and noise would be troublesome. Some types are not self-healing at low voltages.
- (f) Operation of capacitors above the corona-starting voltage will reduce the life and will produce noise. Liquid-impregnated dielectrics have a higher corona-starting voltage than dry solid dielectrics.
- (g) When a capacitor is operated at high voltages above ground, and when it is insulated from ground with supplementary insulation, one terminal should be connected to the case, since the division of voltage depends on capacitance between capacitor rolls and case and the capacitance between case and chassis.
- (h) The peak charge and discharge currents must be considered on the basis of the time constant of the circuit.
- (i) Internal heating and ambient temperature must be considered.
- (j) To determine the surface temperature rise of a capacitor, multiply the volt-amperes supplied to the unit by the power factor. This gives the watts lost in the capacitor. Dividing the watts lost by the surface area in square inches and referring to figure 2 will give the approximate surface temperature rise.

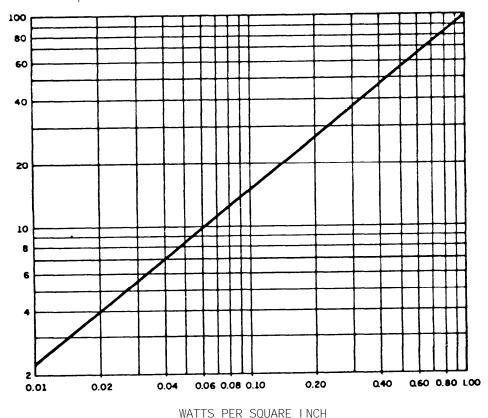


FIGURE 2. Temperature rise as a function of watts per square-inch-power dissipation.

- (k) Environmental conditions such as humidity, pressure, corrosive atmospheres, fungus growth, shock, and vibration must be considered.
- (I) The insulation resistance must be considered, especially at high temperatures.
- (m) In series operation on dc, balancing resistors should be considered.
- (n) The effective inductance of a large capacitor can be reduced by shunting it with a small capacitor.
- (0) The inductance of various types of capacitors varies over wide limits.
- (p) Since capacitors have inductance, the operation of capacitors in parallel in circuits with fast rise times or transients may result in transient oscillations.
- (q) Poor electrical contacts may open at low voltages and be noisy.
- (r) The stored energy in capacitors can be dangerous to personnel and equipment and suitable precautions should be taken.
- (s) Extended-foil paper capacitors are generally considered superior to inserted-tab types, having less inductance and less series-contact resistance. These are important factors in low voltage applications and in low signal-to-noise-ratio circuits.
- (t) Oil-or acid-filled units should not be subjected to severe mechanical stresses. Leakage of the fluid can destroy the capacitor together with adjacent components.
- (u) Liquid-filled units should not be used inverted because internal corona may result.
- (v) Nonhermetically-sealed capacitors may be previous to moisture by the process of "breathing."
- (w) Capacitors for ac and pulse operation require special ratings and tests; these are not covered in most military specifications.

7. SUPPLEMENTAL INFORMATION

7.1 Failure rates:

7.1.1 <u>Failure ratelevels.</u> The established reliability (ER) specifications provide for the establishment of failure rate levels through a life test at maximum rated conditions. The failure rate levels (in percent per 1,000 hours) are based only on the maximum rated life test. Failure rate levels referenced in this standard range from 1.0 to 0.001 percent per 1,000 hours and may be considered applicable over the time period specified in the applicable specification.

NOTE: Due to the reliability requirements of these specifications, processes and controls utilized in manufacturing the ER capacitors are necessarily more stringent than those required for non-ER items. MIL-STD-790, "Reliability Assurance Program for Electronic Parts Specifications," provides for monitoring and documentation for requirements.

- 7.1.2 <u>True product failure rates.</u> The applicable ER specification provides failure rate qualification sampling plans computed on the basis of 60- and 90-percent confidence levels and lot-by-lot acceptance procedures which give an adequate assurance that the qualified failure rate is being maintained. The true product failure rate of lots offered for acceptance will, on the average, be better than the certified level, since the supplier must maintain a lower average failure rate in order to obtain and retain qualification. For example: Using a confidence level of 90 percent (see figure 3), a supplier must supply parts with 0.022 percent to 0.282 percent failure rates, depending upon the number of allowable failures, in order to have 95-percent of his lots accepted. By the same token, at the "M" (1.0 percent) level, there is a 90-percent probability that the manufacturer will lose his qualification if he supplies parts with a failure rate of 1.0 percent. Figure 4 indicates the true product failure rate for a 60-percent confidence level.
- 7.2 <u>Metric equivalents.</u> The metric equivalent dimensions provided in each section are for general information only. These metric dimensions are rounded off to the nearest .01 millimeter (mm) and are based upon 1 inch = 25.4 mm.
- 7.3 International standardization agreements. Certain specifications (see table III) contain provisions which term the basis for international standardization agreements. Any proposed changes (amendment, revision, or cancellation) which would violate or affect the international standardization agreement concerned are effected as provided in the specification.

Custodians:
Army - ER
Navy - EC
Air Force - 11

Preparing activity: Army - ER

(Project 5910-1447)

Review activities: Army - MU Navy - AS, OS Air Force - 17, 85 DLA - ES

User activities: Navy - CG, MC Air Force - 19

Agent: DLA - ES

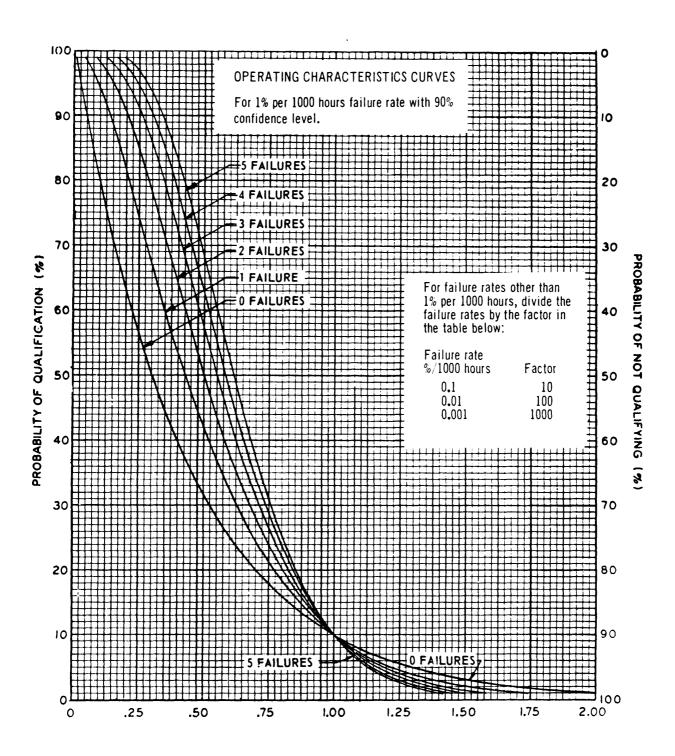


FIGURE 3. True product failure rates (90-percent confidence level).

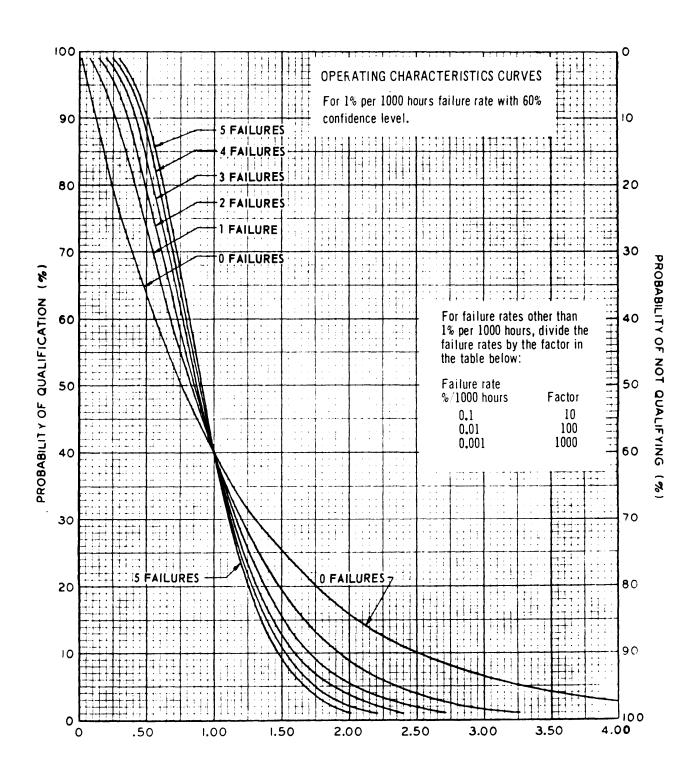


FIGURE 4. True product failure rates (60-percent confidenc level).

MIL-STD-198E

TABLE III. Capacitor selection chart.

			Capacitance	Capacitance	DC rated	Toperating temp	Tomponature			· • • • • • • • • • • • • • • • • • • •				
Section	Type	Style referenced in standard	range (pF)	tolerance (±)	voltage (Yolts)	range (-55° to + °C)	Temperature coefficent (ppm/°C)	Q or DF	Maximum bod			Equivalent NATO	NEPR no.	Configuration
IXED, MICA			<u> </u>	<u>i</u>		<u> </u>	(ppii/ c)		l Length	Width	Thickness or diameter	type	<u> </u>	<u> </u>
(101) MIL-C-10950	Fixed, Mica Dielectric, Button Style	CB50 CB55 CB56 CB57 CB60 CB61 CB62 CB65 CB65	5 to 1,500 5 to 470 680 to 1,000 1,200 to 2,400 15 to 470 680 to 1,000 1,200 to 2,400 5 to 470 680 to 1,000 1,200 to 2,400 1,200 to 2,400	1, 2, 5, or 10% 1, 2, 5, or 10% 1, 2, 5, or 10% 1, 2, or 10%	500 500 500 500 500 500 500 500 500	85 150 150 150 150 150 150 150 150	See 1/ See 1/ ±60 or ±100 See 1/ ±60 or ±100 ±60 or ±100	See section 101	.826 .755 .780 .860 .835 .860 .940 .711 .737		.790 .515 .515 .515 .510 .510 .510 .515 .515	NCM62 NCM56 NCM57 NCM60 NCM63 NCM64 NCM65 NCM58 NCM59	12	CB50 CB56, CB60, 61, 62 CB 66,
(102) MIL-C-5	Fixed, Mica Dielectric	CM15 CM20 CM30 CM35 CM45 CM50	430 to 510 560 to 1,000 1,100 to 3,300 3,600 to 15,000 47 to 1,800 2,200 to 27,000	1 or 2% 5% 5%	500 500 500 300 or 500 2,500 600, 1,200, or 2,500	150 150 150 150 125 to 150 150 150	±200, -20 to +200, 0 to +70 Not specified Not specified	 	.547 .796 .859 .859 .2.282 .2282	.313 .469 .859 .859 1.156 1.156	.219 .219 .281 .359 .359 .453	NCM01 NCM02 NCM03 NCM04	1	
Section	Туре	Style referenced in standard	Capacitance range (µF)	Capacitance tolerance (±)	DC rated voltage (Yolts)	loperating temp range (-55° to + °C)	DC leakage current	 Max impedance at low ambient temp	Maximum body Length	dimension: Width	s (inches) I Thickness or I diameter	 Equivalent NATO type	 NEPR no.	CM15, 20, 30, 35 CM45, 50
XED, ELECT	ROLYTIC					<u> </u>		<u> </u>	İ i		İ	l Gype		
(201) MIL-C-62	Fixed, Electrolytic (Dry Electrolytic), Aluminum 	CE13 CE71	1 to 68 150 to 1,000	-10, +50 -10, +50	400 & 450 450	-40° to +85°C -40° to +85°C 	31 to 262 390 to 1006	218 to 22,000 15 to 100	1.311 to 3.811 4.219		.655 to 1.155 1.438 to 3.063 	NECO1	80	
(202) IL-C-39018	 Fixed, Electrolytic (Aluminum Oxide)	CU15	3.9 to 680 .68 to 33	-10, +30, -10, +75 -10, +30, -10, +50	7 to 75 100 to 250		25° 85° 125° 4-24 12-72 12-72 8-36 12-108 12-108	4.4 to 510 61 to 3,000			.304 & .398 .304 & .398	NCUO2) 59	CE13 CE71 CU15 (see CE13 above)
Section	Type	Style referenced in standard	Capacitance range (pF)	Capacitance tolerance (±)	DC rated voltage (Volts)	Operating temp range (-55° to + °C)	Insulation (in med	resistance		y dimension Width	Thickness or	 Equivalent NATO type	NEPR I	
ED, CERAMI	С	·····		1		<u> </u>			<u> </u>	i	diameter			
(301) L-C-11015	Fixed, Ceramic-Dielectric, General Purpose	CK60 CK62 CK63 CK64 CK65 CK66 CK67 CK68 CK69 CK70 CK80 CK80 CK80	2.2 to 1,500 22 to 6,800 680 to 10,000 510 to 3,900 4,700 5,600 6,800 & 7,500 10,000 15,000 10 to 1,500 10 to 1,500	10 or 20% 10 or 20% 10 or 20% 20% 20% 20% 20% 20% 20% 20% 20% 10 or 20% 10 or 20%	500 & 1,000 500 & 1,000 500 & 1,000 1,600 1,600 1,600 1,600 1,600 1,600 500 & 1,000	85 & 125 85 & 125 85 & 150 85 85 85 85 85 85 85	>200,000 >200,000 >200,000 >200,000 >200,000 >200,000 >200,000 >200,000 >200,000 >20,000 >20,000 >20,000 >20,000	>150,000 >150,000 >150,000 >150,000 >150,000 >150,000 >150,000 >150,000 >150,000 >3,000 >3,000	.310 .590 .690 .770 .830 .930 .990 1.090 1.150 .781		.160 .160 .160 .207 .207 .207 .207 .370 .370 .370 .327	NCC46 NCC48 NCC49 	} 14	CK70 CK60 thru 69

 $[\]underline{1}$ / Temperature coefficent is ±60, ±100, -20 to ±100, and not specified.

MIL-STD-198E

Table III. Capacitor selection chart - Continued.

T																			
Section	 Type	Style referenced	Capacitance		acitance ch -55°C		5°C 85°C		DC rated voltage (Volts)	Operating temp.	Temperature coefficient (ppm/°C)	Maximum	body dime	nsions (inches)	Equivalent NATO	NEPR			
		in standard	Min Max (pF) (pF)	Min (Percent)	Max	Min	May	Q or DF		(6)	(ppiii/ C)	Length	Width	Thickness or	type	no.			
VARIABLE						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Tercent	/ <u> </u>		1		<u> </u>	<u> </u>	l diameter	.1				
(401) MIL-C-81 	Variable, Ceramic Dielectric	CV11	1.5 7.0 3.0 12.0 4.5 25.0 3.0 13.0 5.0 20.0 4.0 30.0 7.0 45.0	-4.5 -4.5 -4.5 -1.0 -1.0 -1.0	+2.0 +2.0 +2.0 +3.5 +3.5 +6.5 +6.5	-2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -4.0	+2.0 +2.0 +2.0 +2.0 -0.5 -0.5	<.2% <.2% <.2% <.2% <.2% <.2%	500 500 500 500 500	-55 to +85 -55 to +85 -55 to +85 -55 to +85 -55 to +85 -55 to +85		.87 .87 .87 .87 .87 .87	.67 .67 .67 .67 .67	.406 .406 .406 .406 .406	 				
	1 	CV21	2.0 6.0 4.0	+1.5 +1.5 +1.5 -4.5 -4.5 -4.5 -4.5 -1.0	+7.0 +7.0 +7.0 +7.0 +2.0 +2.0 +2.0 +3.5 +3.5	-4.0 -5.0 -5.0 -5.0 -2.5 -2.5 -2.5 -2.5	-1.0 -1.5 -1.5 -1.5 +2.0 +2.0 +2.0 -0.5	\(\langle \) 2%	500 500 500 500 500 500 500	-55 to +85 -55 to +85		.87 .87 .87 .87 1.33 1.33 1.33	.67 .67 .67 .67 .91 .91 .91	.406 .406 .406 .406 .406 .406	 		CV11		
		CV31	5.0 20.0 4.0 30.0 7.0 45.0 5.0 30.0 7.0 45.0 2.0 8.0 5.5 118.0 2.5 111.0 7.0 25.0 3.0 10.0 8.0 25.0 3.0 15.0 9.0 35.0 15.0 9.0 35.0 15.0 9.0 35.0 15.0 9.0 35.0 15.0 9.0 35.0 15.0 9.0 35.0 15.0 9.0 35.0 15.0 9.0 35.0 15.0 9.0 35.0 15.0 9.0 35.0 15.0	-1.0 -1.0 +1.5 +1.5 -4.5 -4.5 -1.0 -1.0 -1.0 +1.5 +1.5 +3.0	+6.5 +6.5 +7.0 +7.0 +2.0 +2.0 +3.5 +3.5 +6.5 +6.5 +7.0 +7.0 +14.0	-2.5 -4.0 -4.0 -5.0 -5.0 -2.5 -2.5 -2.5 -2.5 -2.5 -4.0 -4.0 -5.0 -5.0 -10.0	-0.5 -1.0 -1.0 -1.5 -1.5 +2.0 +2.0 -0.5 -0.5 -1.0 -1.5 -1.5 -1.5	\(\leq \).2%	500 500 500 500 500 350 350 350 350 350 350 350 200 200	-55 to +85 -55 to +85 -55 to +85 -55 to +85 -55 to +85 -55 to +85 -55 to +85 -55 to +85 -55 to +85 -55 to +85 -55 to +85 -55 to +85 -55 to +85 -55 to +85 -55 to +85 -55 to +85 -55 to +85		1.33 1.33 1.33 1.33 1.33 .33 .33 .33 .33 .33 .33 .33 .33	.91 .91 .91 .91 .91 .91	.406 .406 .406 .406 .39 .39 .39 .39 .39 .39 .39			CV21		CV31
(402) MIL-C-14409	Variable (Piston Type, Tubular Trimmer)	PC18 PC19 PC21 PC22 PC23 PC24 PC25 PC26	1.0						250	-55 to +125 -65 to +125 -65 to +125 -65 to +125 -65 to +125 -55 to +125 -55 to +125 -55 to +125 -55 to +125 -55 to +125 -55 to +125 -55 to +125 -55 to +125 -55 to +125 -55 to +125 -55 to +125 -55 to +125 -55 to +125 -55 to +125 -55 to +125 -55 to +125 -55 to +125 -55 to +125	±50 ±50 ±150 ±150 ±150 ±150 50 ±50 50 ±50 50 ±50 ±50	. 420 .565 .370 .440 .520 .630 .546 .546 .546 .240 .240 .329 .495 .536 .545 .545 .545 .545 .578 .578 .578 .801 .969 .558 .558		.328 .328 .328 .328 .328 .313 .313 .313 .313 .315 .110 .156 .156 .156 .279 .279 .279 .279 .279 .279 .279 .279				PC222 11	C24

Table III. Capacitor selection chart - Continued.

			Capacitano	e C	apacitance cha	inge from 25°C	<u> </u>	DC rated	Operating temp.	Temperature	T I Maximum body dime	ensions (inches)			
Section	Type	Style referenced in standard	 Min Ma	x Min	t -55°C Max	At 85°C Min Max	Q or DF	voltage (Volts) 	range (°C)	coefficient (ppm/°C)	 	Thickness or	NATO type	NEPR	CONFIGURATION
AR I ABL E	1	I	(pF) (F) (Percen	t) (Percent)	(Percent) (Percen	t)	<u> </u>		<u> </u>	Length Width	diameter			
(402) 11L-C-14409		PC38	0.6 1.8 0.6 5.8 0.6 9.8	.	1		>1,500 >1,500 >1,500 >1,500	750 750 1,250	-55 to +150 -55 to +150 -55 to +150	+50, -0 +50, -0	.718 .984	.328 .328			
		l PC39	0.8 16.0 1.0 16.0 1.0 36.0 1.0 52.0	 	 		>1,500 >1,500 > 750 > 550 > 350	1,250	-55 to +150 -55 to +150 -55 to +125 -55 to +125 -55 to +125	+50, -0 +50, -0 ±150 ±150 ±150	1.421	.328 .328 .328 .328 .328			PC39
	 	PC 4 0	1.0 175.0 1.0 120. 0.6 1.8 0.6 5.5 0.6 9.5	0 			> 250 > 250 >1,500 >1,500	1,000 1,000 750 750	-55 to +125 -55 to +125 -55 to +150 -55 to +150	±150 ±50 +50, -0 +50, -0	1.515 2.109 .672 .922	.328 .328 .328 .328	 		PC38, 48
		1	0.8 16.0 0.6 1.8 0.6 5.5 0.6 9.5		 		>1,500 >1,500 >1,500 >1,500 >1,500	750 750 750 1,250	-55 to +150 -55 to +150 -55 to +150 -55 to +150 -55 to +150	+50, -0 +50, -0 +50, -0 +50, -0 +50, -0	1.359 1.969 .656 .922 1.359	.328 .328 .312 .312			PC40
	 	l PC43	0.8 16.0 1.0 16.0 1.0 36.0 1.0 52.0		 		>1,500 > 750 > 550 > 350	1,250	-55 to +150 -55 to +125 -55 to +125 -55 to +125	+50, -0 ±150 ±150 ±150	1.953 .796 1.031 1.250	.312 .312 .328 .328 .328	 		年年
 	 	PC48	1.0 75.0 1.0 120. 0.8 5.5 0.8 11.0 0.8 16.0	0	 		> 250 > 250 >1,000 > 900 > 800	1,000 1,000 750 1,250	-55 to +125 -55 to +125 -55 to +125 -55 to +125 -55 to +125	±50 ±50 ±50	1.484 2.093 .718 .954 1.171	.328 .328 .328 .328	 		PC43 / /
] - -		 PC52 	0.8 23.0 1.0 38.0 0.8 5.5 0.8 11.0 0.8 16.0				> 700 > 500 > 1,000 > 900 > 800	1,250 1,250 750 1,250 1,250	-55 to +125 -55 to +125 -55 to +125 -55 to +125 -55 to +125	±100 ±100 ±50 ±50	1.421 2.015 .656 .906	.328 .328 .328 .312 .312			
 		l	0.8 23.0 0.8 38.0	1	i 	; 	> 700 > 700 > 500	1,250 1,250	-55 to +125 -55 to +125	±100	1.109 1.359 1.953	.312 .312 .312			PC42 PC52

TABLE III. Capacitor selection chart - Continued.

Type	 Style referenced in standard	Capacitance range (pF)	Capacitance	I DC rated	Operating temp.	I Tampana Ama								
I DY ADI F	ı ın standard	, <u> </u>	l tolerance) voltage	range	coefficient	i DC	eakage (μA)) Maximu	m body dimensions	(inches)	Equivalen		
	1	(pF)	(±)	(Volts)	(-55° to + °C)	coefficient (ppm/°C)	+25°C	·85°C +125°C	Length	Width	l Thickness or l diameter	NATO type	NEPR I	CONFIGURATION
ARIABLE									<u>·</u>		1 draweter		_11	
 Variable, Gas or Vacuum Dielectric, Ceramic Envelope 	CG60	5 to 750 7 to 1,000 20 to 2,000 50 to 3,000	102 102 102 102 102	i 3 kV I 3 kV I 2 kV I 2 kV	85 85 85 85 85	1	1 10 1 1 10 1 1 10 1		1 8.000 1 7.938 1 8.438 1 8.375	1 1 1 1	1 3.063 1 3.063 1 3.063 1 3.563			
and MICA, ER				<u> </u>	+	1	<u> </u>	1.		1	1	<u>i</u>		CG60
 Fixed, Glass Dielectric, Established Reliability (FR: 1.0 to .001) 	CYR10 CYR15 CYR20 CYR30 CYR13 CYR17 CYR22 CYR32 CYR32 CYR41 CYR51 CYR51 CYR52	.5 to 270 270 to 1,200 1,500 to 4,700 5,600 to 10,000 .5 to 270 330 to 1,000 1,200 to 1,800 2,200 to 5,600 .5 to 1,000 1 to 560 620 to 1,000 1,100 to 2,400	.25 pF to 5% 1 or 5% 1 or 5% 1 or 5% 1 or 5% 1 or 5% 1 or 5% 1 or 5% 1 or 5% 1 or 5% 25 pF to 5% 2.25 pF to 5% 2.25 pF to 5% 2 or 5% 1 2, or 5%	300 & 500 300 & 500 300 & 500 300 & 500 300 & 500 300 & 500 300 300 & 500 100 300 300 300	125 125 125 125 125 125 125 125 125 125	1 140 ±25 1 140 ±25 1 140 ±25 1 140 ±25 1 140 ±25 1 105 ±25 1 105 ±25 1 105 ±25 1 0 ±25 1 40 ±25 1 140 ±25 1 140 ±25			.391 .516 .796 .828 .422 .531 .828 .844 .315 .305 .305	1 .203 1 .297 1 .469 1 .235 1 .235 1 .328 1 .500 1 .859 1 .315 1 .210 1 .310 1 .310	1 .109 1 .156 1 .188 1 .188 1 .203 or .266 281 203 or .266 281 115 to .215 120 120 120			CYR10, 15, 20, 30 CYR13, 17, 22, 32 CYR52, 53 CYR41, 51
Fixed, Mica Dielectric, Established Reliability (FR: 1.0 to .001)	CMR03 CMR04 CMR05 CMR05 CMR06 CMR07 CMR08 1 to 400 1 to 390 1 to 390 430 to 4,700 5,100 to 20,000 22,000 to 91,000	1.5 pF, 2 or 5% 1.5 pF, 1, 2, or 5% 1.5 pF, 1, 2, or 5% 1.2, or 5% 1, 2, or 5% 1, 2, or 5% 1, 2, or 5%	50 to 300 100, 300, or 500 500 500 500 100, 300, or 500	125 150 150 150 150 150 150 150	#200, 0 to +70 -20 to +100 0 to +70 0 to +70 0 to +70	1	1	1 .270 1 .360 to .390 1 .450 to .470 1 .640 to .700 1 .780 to .830 11.420 to 1.500	1	1.110 to .190 1.190 to .220 1.170 to .220 1.200 to .350 1.280 to .450 1.310 to .500	NCM09 NCM05 NCM05 NCM06 NCM07		CMR03, 04, 05, 06, 07, 08	
LYTIC, ER					<u>'</u>			1	1	1	1	1	i	
Fixed, Solid Electrolyte, Tantalum, Established Reliability (FR: 1.0 to .001)	CSR13 CSR91 CSR21	.0047 to 330 µF .0023 to 160 µF 5.6 to 330 µF	5, 10, or 20% 1 0 or 20% 5, 10, or 20%	6 to 100	85, derated to 125)	.3-10	1	1.317 to .817 1.606 to 1.581 1.717 to .817		1 1.151 to .367 1.171 to .386 1.305 to .367	NCSO2	1 17 1	CSR13, 21
Fixed, Nonsolid Electrolyte, I Tantalum, Established Reliability (FR: 1.0 to .001) I	CLR25 CLR27 CLR35 CLR37 CLR79	1 to 580 μF .5 to 350 μF .15 to 160 μF .1 to 100 μF 1.7 to 1,200 μF	1-15: +30, +50, +75 1-15: +30, +50, +75 1	15 to 450 15 to 375	85, derated to 125 85, derated to 125) 	2-10 4 1-50 2 1-50 2	-100 4-100 -1000 2-1000 -325 2-325	 1.875 to 2.937 1.875 to 2.937 1.875 to 2.937 1.875 to 2.937 1.608 to 1.217		1 .219 to .406 1 .219 to .406 1 .219 to .406 1 .219 to .406 1 .219 to .406	NCLO1 NCLO2 NCLO3 NCLO4	16	CLR25, 27, 35, 37 CLR79
Chip, Fixed, Tantalum, stablished Reliability FR: 1.0 to .001)	CWRO2 CWRO3 CWRO4 CWRO6	.1 to 100 μF .068 to 100 μF .068 to 100 μF .1 to 100 μF	5, 10 or 20% 5, 10, or 20% 5, 10, or 20% 5, 10, or 20%	3 to 50 3 to 50 3 to 50 4 to 50	1 125 1 125 1 125 1 125 1 125		1-9.4 10)-94 15-141)-94 15-141	1.190 to .315	.070 to .175 .110 to .190 .110 to .190 .065 to .165	l .060 to .150 l .075 to .200 l .075 to .200 l .065 to .125	1 1 1		CWRO2 CWRO4 CWRO6
ixed, Electrolytic Aluminum Oxide) Stablished Reliability FR 1.0 to .001)	CUR13 CUR13 CUR17 CUR17 CUR19 CUR71 CUR91 8.2 to 1,000 µF 2.2 to 56 µF 47 to 12,000 µF 10 to 470 µF 50 to 16,000 µF 68 to 4,100 µF 210 to 220,000 µF	1 -10, +30; -10, +75 1 -10, +30; -10, +50 1 -10, +30; -10, +75 1 -10, +30; -10, +50 1 -10, +75 1 -10, +50 1 -10, +50	7 to 100 150 to 250 7 to 75 100 to 250 5 to 200 200 to 350 5 to 150	85, derated to 125; 85, derated to 125; 105; 105; 105; 105; 85; 105;	2 2 5 	9-196 174 5-171 150 0-204 300 23- 11.3 .45 mA 8.2	-1195) -722 -1220 300-1220 <u>2</u> / 8- 0 mA 2.13-	12.187 to 5.687 		.304 & .398 .304 & .398 .648 to 1.023 .648 to 1.023 .785 to 1.035 1.406 to 3.031	NCU01	1	CUR13, 17 CUR71, 91	
THE A THEFTHER PROPERTY OF THE TOTAL	Fixed, Glass Dielectric, Established Reliability (FR: 1.0 to .001) Fixed, Mica Dielectric, Established Reliability (FR: 1.0 to .001) YTIC, ER Fixed, Solid Electrolyte, antalum, Established eliability (FR: 1.0 to .001) ixed, Nonsolid Electrolyte, antalum, Established eliability (FR: 1.0 to .001) ixed, Nonsolid Electrolyte, antalum, Established eliability (FR: 1.0 to .001) ixed, Fixed, Tantalum, stablished Reliability FR: 1.0 to .001) ixed, Electrolytic (Aluminum Oxide) stablished Reliability ixed, Electrolytic (Aluminum Oxide) stablished Reliability	Fixed, Glass Dielectric, CYR10 Established Reliability CYR15 (FR: 1.0 to .001) CYR20 CYR30 CYR13 CYR13 CYR17 CYR22 CYR32 CYR32 CYR32 CYR41 CYR41 CYR51 CYR51 CYR52 CYR53 CYR52 CYR53 CYR53 CYR63 CYR64 CYR65 CYR68 CYR69 CYR69 CYR69 CYR69 CYR60 CMR06 CMR06 CMR07 CMR07 CMR07 CMR08 CYR07 CMR08 CMR07 CMR08 CYR13 CYR22 CYR53 CYR53 CYR53 CYR53 CYR53 CYR53 CYR63 CYR60 CMR08 CMR07 CMR08 CMR07 CMR07 CMR08 CMR07 CMR08 CMR07 CMR08 CYTIC, ER CYR13 CXR07 CMR07 CMR08 CYR13 CXR13 CXR13 CXR27 CXR27 CXR27 CXR27 CXR27 CXR27 CXR27 CXR37 CXR27 CXR37 CXR37 CXR37 CXR37 CXR37 CXR37 CXR37 CXR37 CXR37 CXR37 CXR37 CXR37 CXR37 CXR37 CXR37 CXR08 CXR02 CXR37 CXR08 CXR02 CXR06 CXR06 CXR06 CXR06 CXR06 CXR06 CXR07 CXR13 CXR13 CXR07 CXR13 CXR07 CXR08 CXR01 C	Interestric, Geramic Envelope	To 1,000	Tot 1,000	Total 1,000		To 1,000	Total	### Office Creation 10	100	To 1,000	The content of the	To 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

TABLE III. Capacitor selection chart - Continued.

						TABLE 111. Oup									
Section	Туре	Style referenced in standard	Capacitance range (µF)	Capacitance tolerance (±)	DC rated voltage (Yolts)	Operating temp range (-55° to + °)	Insulation resistance (in megohms)		Maximu	Maximum body dimensions (inches)			NEPR no.	CONFIGURATION	
							At 25°C	At high ambient temp	Length	Width	Thickness or diameter	type			
 FIXED, PAPER	R-PLASTIC or PLASTIC, ER					· <u></u>	<u>.</u>		···						
MIL-C-19978	Fixed, Plastic (or Paper- Plastic) Dielectric, Established Reliability (FR: 1.0 to .001) 	CQR07 CQR09 CQR12 CQR13 CQR29 CQR32 CQR32	.001 to 1.0 .001 to 1.0 .001 to 1.0 .001 to 1.0 .001 to 10 .001 to 10 .001 to 10	5 or 10% 2, 5, or 10% 2, 5, or 10% 2, 5, or 10% 2, 5, or 10% 2, 5, or 10% 2, 5, or 10% 2, 5, or 10%	50 to 600 200 to 1,000 200 to 1,000 200 to 1,000 30 to 1,000 30 to 1,000 30 to 1,000	125 -65 to +125°C -65 to +125°C -65 to +125°C -65 to +85°C -65 to +85°C -65 to +85°C	>150,000 > 25,000 > 25,000 > 25,000 > 25,000 >100,000 >100,000 >100,000	>5,000 >250 >250 >250 >25,000 >25,000 >25,000	.843 to 2.780 i.843 to 2.530 i.843 to 2.530 i.843 to 2.530 i.843 to 2.530 i.561 to 2.811 i.561 to 2.811 i.561 to 2.811		1.237 to 1.062 1.297 to 1.062 1.297 to 1.062 1.462 to 1.062 1.237 to 1.062 1.237 to 1.062 1.462 to 1.062			CQR07, 09, 29 CQR12, 32	
MIL-C-39022	Fixed, Metallized Dielectric, DC and AC, Established Reliability (FR: 1.0 to .001)	CHR09 CHR49 I	.01 to 2.2 .10 to 10	10 or 20%	600 80 to 400 (rms)	85 85	>25,000 >2,000	>3,000 >10 	.937 to 2.750 1 1.000 to 2.750		1.376 to 1.064 1.376 to 1.064			CHR09, 49	
MIL-C-55514	lFixed, Plastic (or Metallized Plastic) Dielectric, DC, Established Reliability (FR: 1.0 to .001)	CFR02 CFR04 CFR05 CFR06 CFR12	.001 to 1.0 .001 to 1.0 .001 to 50 .001 to 50 .001 to .15	1, 2, 5, or 10% 1, 2, 5, or 10% 1, 2, 5, or 10% 1, 2, 5, or 10% 1, 2, 5, or 10% 1, 2, 5, or 10%	100 to 600 50 to 400 50 to 400 50 to 400 25 to 300	85 & 125 85 & 125 85 & 125 85 85 85 & 125	>500,000 >500,000 >500,000 >500,000 >500,000	>10,000 >1,000 >7,000 >35,000 >7,000	3/ 1 .450 to 2.687 2.593 3/ 1 .450 to 2.593 3/ 434 to 1.966 210		.203 to 1.212 1 .140 to .722 .181 to 1.362 5 .140 to .812 .100			CFRO6A CFRO6R CFRO2, 05 CFRO4R CFRO4R CFRO4R CFRO4R CFRO4R CFRO4R	
MIL-C-83421	IFixed, Metallized Plastic Dielectric, DC, AC or DC and AC Established Reliability [FR: 1.0 to .001)	CRH01	.001 to 22 .001 to 10 .001 to 10 .001 to 3.9 .001 to 2	.25, .5, 1, 2, 5, or 10% .25, .5, 1, 2, 5, or 10% .25, .5, 1, 2, 5, or 10% .25, .5, 1, 2, 5, or 10% .25, .5, 1, 2, 5, or 10% .25, .5, 1, 2, 5, or 10%	30 50 100 200 400	-65 to +100 -65 to +100 -65 to +100 -65 to +100 -65 to +100	> 150,000 > 300,000 > 300,000 > 800,000 >1,500,000	>4,000 >10,000 >10,000	.530 to 1.905 .530 to 1.905 .530 to 2.405 .592 to 2.405 .592 to 2.405		1.190 to .690 1.190 to .690 1.190 to 1.020 1.190 to 1.020 1.190 to 1.020			CRH01, 02, 03, 04, 05	
Section	Type	Style referenced in standard	Capacitance range (pF)	Capacitance tolerance (±)	DC rated voltage (Yolts)	Operating temp range (-55° to + °)	I coefficient		;) ! Ma:	T I	nsions (inches) ickness or diameter	Equivalent NATO type	NEPR no.	CONFIGURATION	
FIXED, CERAM	IC, ER				···	·	··								
MIL-C-39014	Fixed, Ceramic, Dielectric, Established Reliability (FR: 1.0 to .001) 	CKR05 CKR06 CKR11 CKR12 CKR14 CKR15 CKR22	10 to 100,000 1,200 to 1,000,000 10 to 10,000 5,600 to 47,000 12,000 to 100,000 56,000 to 100,000 1 to 100,000 560 to 220,000	10 & 20% 10 & 20% 10 & 20% 10 & 20% 10 & 20% 10 & 20% 10 & 20% 1, 5, 10, or 20%	50, 100, or 200 50, 100, or 200 50 & 100 50 & 100 50 & 100 100 50, 100, or 200 50, 100, or 200			>100,000 >10,00 >10,00 >10,000 >10,000 >10,000 >10,000 >10,000 >10,000 >10,000 >100,000 >100,000 >100,000 >100,000 >100,000 >100,000 >100,000 >100,000 >100,000 >100,000 >10,000 >	000 .300 000 .170 000 .260 000 .400 000 .520 000 .280	.135	.100 .100 .100 .100 .150 .265 .098	NCC61 NCC62 NCC75 NCC70 NCC70 NCC72 NCC73	14	CKR05 CKR06 CKR22, 23	
MIL-C-20	Fixed, Ceramic Dielectric (Temperature Compensating), Established Reliability (FR: 1.0 to .001) 	CCR05 CCR05 CCR06 CCR07 CCR08 CCR75 CCR75 CCR76 CCR77	1 to 8.2 10 to 3,300 390 to 18,000 2,200 to 100,000 3,900 to 68,000 1 to 8.2 10 to 680 82 to 1,000 150 to 5,600 820 to 27,000	.1, .25 & .5 pF 1, 2 or 5% 1, 2 or 5% 1, 2 or 5% 1, 2 or 5% 1.1, .25, .5 pF, 1, 2, or 5% 1, .25, or .5 pF 1, 2 or 5% 1, 2 or 5% 1, 2 or 5% 1, 2 or 5% 1, 2 or 5%	200 50, 100, or 200 50, 100, or 200 50, 100, or 200 50, 100, or 200 200 50, 100, or 200 50, 100, or 200	125 125 125 125 125 125 125 125 125	0 ±60 0 ±30 0 ±30 0 ±30 0 ±30 0 ±30 0 ±60 1 0 ±30 1 0 ±30 1 0 ±30 1 0 ±30 1 0 ±30		.200	.200 .200 .300 .500 .500	.100 .100 .100 .150 .250 .100 .100 .100 .150			CCR75, 76, 77, 78	
MIL-C-55681	Fixed, Chip, Multiple Layer, Ceramic Dielectric Established Reliability (FR: 1.0 to .001)	CDR01 CDR02 CDR03 CDR04 CDR11 CDR12 CDR13 CDR14	1 10 to 180,000 1 10 to 180,000 1 10 to 180,000 1 10 to 180,000 1 10 to 180,000 1 1 to 1,000 1 1 to 5,100 1 1 to 5,100	5, 10, or 20% 5, 10, or 20% 5, 10, or 20% 5, 10, or 20% 5, 10, or 20% 1.1,.25,.5 pF, 1,2,5, or 10% 1.1,.25,.5 pF, 1,2,5, or 10% 1.1,.25,.5 pF, 1,2,5, or 10%	50 50,100,200,300 8 500	125 125	1	±20 >100,000 >10,00 ±20 >100,000 >10,00	.195 .195 .195 .195 .195 .195 .195 .195 .190 .195 .065 .065 .095 .140 .070 .070 .130 .130	.055 .055 .080 .080 .057 .057 .102			CDR01, 02, 03, 04, 11, 12, 13, 14		

25

Downloaded from http://www.everyspec.com

MIL-STD-198E

SECTION 100 CAPACITORS, FIXED, MICA DIELECTRIC

<u>Section</u>						<u>Appl</u>	i cabl e	speci f	<u>ication</u>
101	Capaci tors,	Fi xed,	Mica Dielectric,	Button	Styl e-		MI L-C	-10950	
102	Capaci tors.	Fi xed,	Mica Dielectric -				- MI L-C-	- 5	

Downloaded from http://www.everyspec.com

SECTION 101

CAPACITORS, FIXED, MICA DIELECTRIC, BUTTON STYLE

STYLES CB50, CB55, CB56, CB57, CB60, CB61, CB62, CB65, CB66, AND CB67

(APPLICABLE SPECIFICATION: MIL-C-10950)

- 1. SCOPE. This section covers button-style, mica-dielectric, fixed capacitors enclosed in metal cases.
 - 2. APPLICATION INFORMATION.
- 2.1 <u>Use.</u> These capacitors are small, high-quality units intended for use at frequenies up to 500 megahertz (MHz). Their principal uses are in tuned circuits, and in coupling and by-passing applications in VHF and UHF circuits. These capacitors are very stable with time and have high reliability in circuits where ambient conditions can be closely controlled to reduce failure from silver-ion migration. Due to this silver-ion migration, silvered-mica capacitors should not be used under dc voltage stresses when combined with exposure to continuous high temperature and humidity conditions for extended periods. Silver-lon migration can occur in a few hours when silvered-mica capacitors are simultaneously exposed to dc voltage stresses, humidity, and high temperatures.
- 2.2 <u>Construction.</u> These capacitors are composed of a stack of silvered-mfca sheets connected in parallel. This assembly is encased in a metal case with a high potential terminal connected through the center of the stack. The other terminal is formed by this metal case connected at all points around the outer edge of the electrodes. This design permits the current to fan out in a 360-degree pattern from the center terminal providing the shortest RF current path between the center terminal and chassis. The internal inductance is thus kept small. The use of relatively heavy and short terminals results in minimum external inductance associated permanently with the capacitor. The units are then welded and hermetically glass sealed with the exception of style CB50, which is resin sealed.
- 2.3 <u>Voltage rating.</u> These capacitors have a dc rated voltage of 500 volts. The dc voltage given is or continuous operation throughout the operating temperature range. At higher frequencies, the operating conditions are usually limited by the accurrent rather than the voltage.
- 2.4 <u>Operating temperature range.</u> Except for style CB50, which has an operating temperature range of -55° to $+85^{\circ}$ C all styles covered in this section are suitable for operation from -55° to $+150^{\circ}$ C.
- 2.5 <u>Mounting.</u> It is recommended that the capacitor body of styles CB55, CB56, and CB57 have adequate heat sink during mounting operation with high temperature solder.
- 2.6 <u>Temperature coefficient and capacitance drift.</u> Except for the $\mathbf{5-pF}$ units, these capacitors have a temperature coefficient of $\pm 100 \text{ppm/°C}$, -20 to $\pm 100 \text{ppm/°C}$, and -60 to $\pm 60 \text{ ppm/°C}$ with a capacitance drift of 0.3 percent or 0.3 pF (whichever is greater), °(0.1 percent ± 0.1 pF) and $\pm (0.1$ percent ± 0.1 pF), respectively. The 5-pF units do not have a specified temperature coefficient and capacitance drift.
- 2.7 <u>Dissipation factor (DF).</u> DF is measured at room temperature at a frequency of 1 MHz for capacitance values of 1,000 pF or less and 1 kilohertz for capacitance values greater than 1,000 pF. DF versus capacitance limits are shown on figure 101-1.

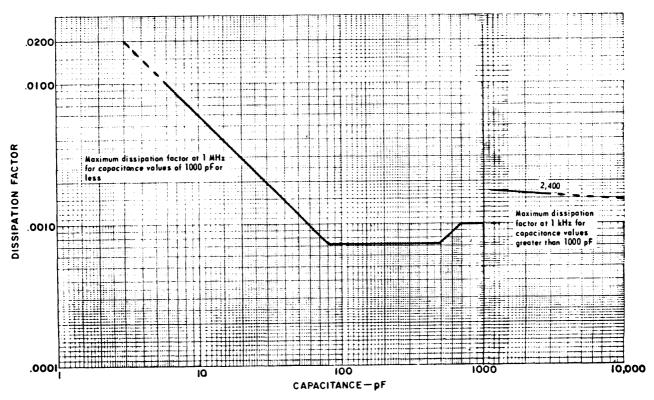


FIGURE 101-1. Dissipation factor vs capacitance.

2.8 <u>Insulation resistance.</u> The insulation resistance will be greater than the value shoen on figure 101.2

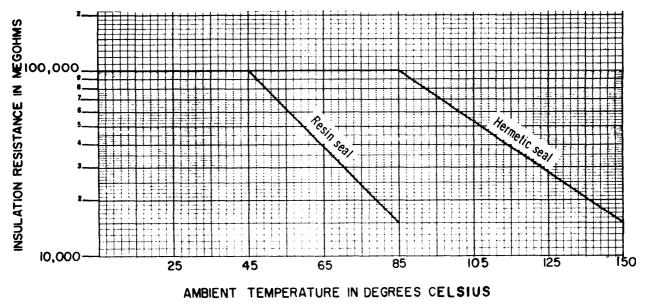


FIGURE 101-2. <u>Insulation resistance vs temperature.</u>

- 3. ITEM IDENTIFICATION (see figures 101-3 and 101-4).
- 3.1 <u>Part number.</u> The part number is used for describing the capacitors as shown in figure 101-3.

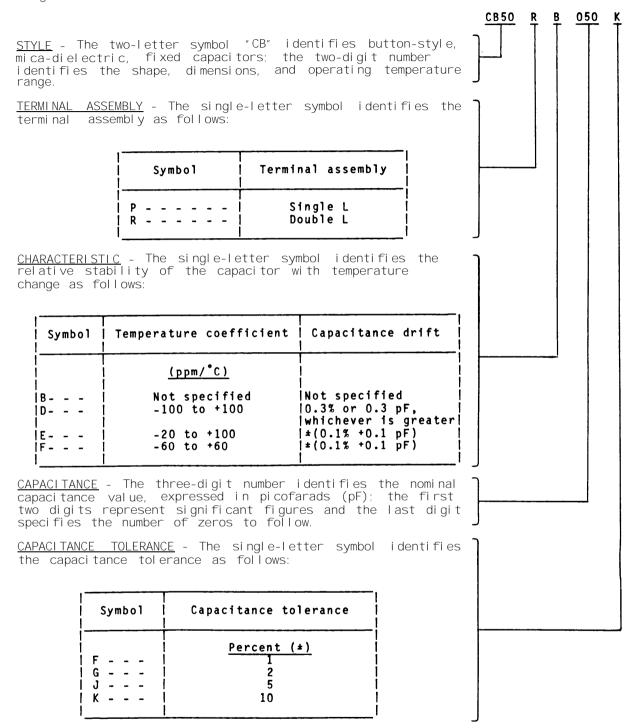
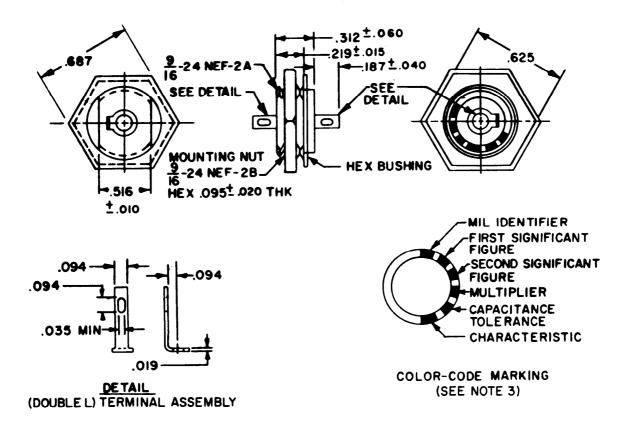



FIGURE 101-3. Part number example.

 $3.2~\underline{\text{Standard}}$ capacitors. The standard capacitors available in this section are shown in figure 101-4.

STYLE CB50

NATO TYPE DESIGNATION NCM62 (PER NEPR NO. 12)

INCHES	MM	I NCHES	MM
. 010	. 25	. 094	2. 39
. 015	. 38	. 095	2. 41
. 019	. 48	. 187	4. 75
. 020	. 51	. 219	5. 56
. 035	. 89	. 312	7. 92
. 040	1. 02	. 516	13. 11
. 060	1. 52	. 625	15.88
		. 687	17.45

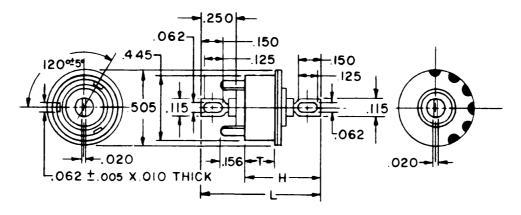
NOTES:

- 1. Unless otherwise specified, tolerance is ±.005 (.13 mm).
- 2. All dimensions are exclusive of sealing compound and color code.
- 3. Color-coded section does not exceed 240 degrees.

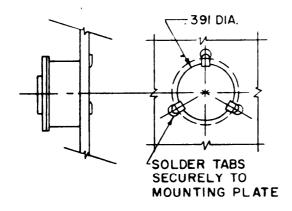
FIGURE 101-4. Button style, mica dielectric, fixed capacitors.

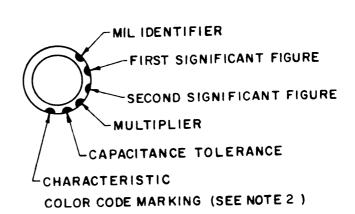
STANDARD CAPACITORS

STYLE CB50 (MI L-C-10950/4)


DOUBLE L TERMINAL ASSEMBLY (SYMBOL R) -- DC RATED VOLTAGE 500 VOLTS -- OPERATING TEMPERATURE RANGE -55° TO + 85° C

Part number 1/	Capacitance	Characteristic available at capacitance tolerance			
		± 1%	± 2%	± 5%	± 10%
		(F)	(G)	(J)	(K)
	pF				
CB50RB050K	5				В
CB50RD100K	10		ļ		D
CB50RD120K	12		İ		D
CB50RD150K	15				D
CB50RD180K	18				D
CB50RD220-	22			D	D
CB50RD270-	27			D	D
CB50RD330-	33			D	D
CB50RD390-	39			D	D
CB50RD470-	47			D	D
CB50R-560-	56	D, E	D, E		D
CB50R-680-	68	D, E	D, E		D
CB50R-820-	82	D, E	D, E		D
CB50R-101-	100	D, E	D, E		D
CB50R-121-	120	D, E	D, E		D
CB50R-151-	150	D, E	D, E		D
CB50R-181-	180	D, E	D, E		D
CB50R-221-	220	D, E	D, E		D
CB50R-271-	270	D, E	D, E		D
CB50R-331-	330	D, E	D, E		D
CB50R-391-	390	D, E	D, E		D
CB50R-471-	470	D, E	D, E	1	D
CB50R-561-	560	D, E	D, E	1	D
CB50R-681-	680	D, E	D, E		D
CB50R-821-	820	D, E	D, E		D
CB50R-102-	1,000	D, E	D, E	1	D
CB50R-122-	1, 200	D, E	D, E	ļ	D
CB50R-152-	1, 500	D, E	D, E		D


^{1/} Where applicable, the complete part number will include additional letter symbols to indicate characteristic and capacitance tolerance.


FIGURE 101-4. Button style, mica dielectric, fixed capacitors - Continued.

STYLES CB55, CB56, AND CB57

Standard	Dim	ensions (inches	NATO type designation	
style	L±.045(1.14)	H±.030(.76)	T±.015(.38)	(per NEPR No. 12)
CB55	.710 (18.03)	.415 (10.54)	.100 (2.54)	NCM56
CB56	.735 (18.67)	.440 (11.18)	.125 (3.18)	NCM57
CB57	.815 (20.70)	.515 (13.08)	.205 (5.21)	NCM60

MOUNTING SKETCH

NO	TES:							
1.	Unl ess	otherwi se	speci fi ed,	tol erance	İS	±. 010	(. 25	mm).

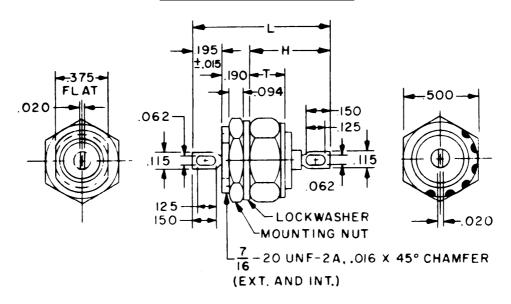
2. Color-coded section does not exceed 240°.

INCHES	MM	INCHES	MM
.005	.13	.150	3.81
.010	.25	.156	3.96
.020	.51	250	6.35
.062	1.57	391	9.93
.115	2.92	.445	11.30
.125	3.18	505	12.83
•173	J.10	# •JUJ	12.00

FIGURE 101-4. Button style, mica dielectric, fixed capacitors - Continued.

STANDARD CAPACITORS

STYLES CB55, CB56, AND CB57 (MIL-C-10950/8)


DOUBLE L TERMINAL ASSEMBLY (SYMBOL R) -- DC RATED VOLTAGE 500 VOLTS -- OPERATING TEMPERATURE RANGE -55° TO +150°C

Part number <u>l</u> /	Cap a citance	Characteristic available at capacitance tolerance				
		±1% (F)	±2% (G)	±5% (J)	±10% (K)	
	<u>pF</u>					
CB55RB050K	5		1		В	
CB55R-100K	10		ļ		D	
CB55R-150K	15			i	D	
CB55R-2 2 0-	22		İ	D	D	
CB55R-330-	33		ì	D	D D D	
CB55R-470-	47			D	D	
CB55R-680-	68	D,F	D,F		D	
CB55R-101-	100	D,F	D,F		D	
CB55R-151-	150	D,F	D,F		D	
CB55R-221-	220	D,F	D,F		D	
CB55R-331-	330	D,F	D,F		D D	
CB55R-471-	470	D,F	D,F		D	
CB56R-681-	680	D,F	D,F D,F		D	
CB 5 6R-821-	820	D,F	D,F		Ď	
CB56R-102-	1,000	D,F	D,F		D	
CB57R-122-	1,200	D,F	D,F		D	
CB57R-152-	1,500	D,F	D,F		D	
CB57R-182-	1,800	D,F	D,F		D	
CB57R-222-	2,200	D,F	D,F		D D	
CB57R-242-	2,400	D,F	D,F		ת	

^{1/2} Where applicable, the complete part number will include additional letter symbols to indicate characteristic and capacitance tolerance.

FIGURE 101-4. <u>Button style, mica dielectric, fixed capacitors</u> -Continued.

STYLES CB60, CB61, AND CB62

Standard	Г	imensions (inche	NATO type designation	
style	L (Ref)	H ±.030 (.76)	T ±.015 (.38)	(per NEPR No. 12)
CB60	.790 (20.07)	. 405 (10. 29)	. 125 (3. 18)	NCM 63
CB61	. 815 (20.70)	. 430 (10. 92)	. 150 (3.81)	NCM 64
CB62	.895 (22.73)	. 510 (12. 95)	. 230 (5.84)	NCM 65

				MIL IDENTIFIER
INCHES .015	MM .38	INCHES	MM 3.18	FIRST SIGNIFICANT FIGURE
.016 .020 .062	.41 .51 1.57	.150 .190 .195	3.81 4.83 4.95	SECOND SIGNIFICANT FIGURE
.094	2.39	. 375	9.53	MULTIPLIER
.115	2.92 I	.500	12.70	CAPACITANCE TOLERANCE
				CHARACTERISTIC
				COLOR CODE MARKING (SEE NOTE 2)

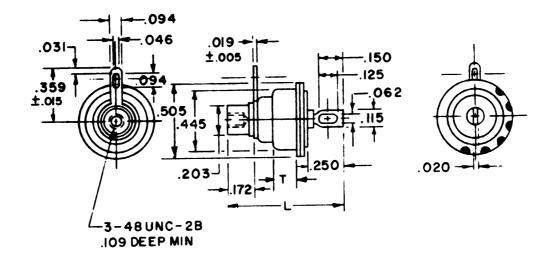
NOTES

- 1. Unless otherwise specified, tolerance is ±.010 (.25 mm).
- 2. Color-coded section does not exceed 240°.

FIGURE 101-4. Button style, mica dielectric, fixed capacitors - Continued.

STANDARD CAPACITORS

STYLES CB60, CB61, AND CB62 (MIL-C-10950/7)


DOUBLE L TERMINAL ASSEMBLY (SYMBOL R) -- DC RATED VOLTAGE 500 VOLTS -- OPERATING TEMPERATURE RANGE -55° TO +150°C

Part number <u>1</u> /	Capacitance	Characteristic available at capacitance tolerance			
 		±1% (F)	*2% (G)	*5% (J)	1 ±10% (K)
CB60R-050K CB60R-100K CB60R-150K CB60R-220- CB60R-330- CB60R-470- CB60R-680- CB60R-101- CB60R-151- CB60R-221- CB60R-331- CB60R-471-	pF 5 10 15 22 33 47 68 100 150 220 330 470	D,F D,F D,F D,F D,F D,F	D,F D,F D,F D,F D,F	D D D	B
CB61R-681- CB61R-821- CB61R-102-	680 820 1,000	D,F D,F D,F D,F	D,F D,F D,F		D D D
CB62R-122- CB62R-152- CB62R-182- CB62R-222- CB62R-242-	1,200 1,500 1,800 2,200 2,400	D,F D,F D,F D,F	D,F D,F D,F D,F		D D D D

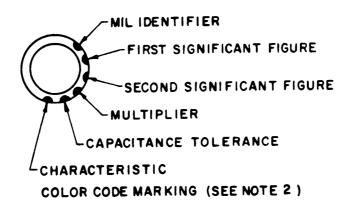

^{1/} The complete part number will include additional letter symbols to indicate characteristic and capacitance tolerance.

FIGURE 101-4. <u>Button style, mica dielectric, fixed capacitors</u> - Continued.

STYLES CB65, CB66, AND CB67

Stan dard	Dimension	NATO type designation	
style	L±.045(1.14)	T±.015(.38)	(per NEPR No. 12)
CB65 CB66 CB67	.666 (16.92) .692 (17.58) .770 (19.56)	.074 (1.88) .100 (2.54) .178 (4.52)	NCM59

NOTES:

- 1. Unless otherwise specified, tolerance is ±.010 (25 mm).
- 2. Color-coded section does not exceed 2400.

INCHES	MM	INCHES	MM
.005	.13	.115	2.92
-015	.38	.125	3.18
		.150	3.81
.019	.48	.172	4.37
.020	.51	V-:-	5.16
.031	.79	.203	
.046	1.17	.250	6.35
.062	1.57	.359	9.12
.094	2.39	.445	11.30
.109	2.77	.505	12.83

FIGURE 101-4. Button style, mica dielectric, fixed capacitors - Continued.

STANDARD CAPACITORS

STYLES CB65, CB66, AND CB67 (MIL-C-10950/9)

SINGLE L TERMINAL ASSEMBLY (SYMBOL P) -- DC RATED VOLTAGE 500 VOLTS -- OPERATING TEMPERATURE RANGE -55° TO +150° c

Part number <u>l</u> /	Capacitance	Characteristic available at capacitance tolerance			
		±1% (F)	±2% (G)	±5% (J)	±10% (K)
	pF				
CB65PB050K CB65PD100K CB65PD150K CB65PD200J CB65PD220- CB65PD330- CB65PD470- CB65P-680- CB65P-101- CB65P-151- CB65P-221- CB65P-331- CB65P-471-	5 10 15 20 22 33 47 68 100 150 220 330 470	D,F D,F D,F D,F D,F D,F	D,F D,F D,F D,F D,F D,F	D D D D,F D,F D,F D,F D,F	B D D D D D D
CB66P-681- CB66P-821- CP66P-102-	680 820 1,000	D,F D,F D,F	D,F D,F D,F	D,F D,F D,F	D D D
CB67P-122- CB67P-152- CB67P-182- CB67P-222- CB67P-242-	1,200 1,500 1,800 2,200 2,400	D,F D,F D,F D,F D,F	D,F D,F D,F D,F D,F	D,F D,F D,F D,F D,F	D D D D

^{1/2} Where applicable, the complete part number will include additional letter symbols to indicate characteristic and capacitance tolerance.

FIGURE 101-4. <u>Button style, mica dielectric, fixed capacitors</u> -Continued.

Downloaded from http://www.everyspec.com

SECTION 102

CAPACITORS, FIXED, MICA DIELECTRIC

STYLES CM15, CM20, CM30, CM35, CM45, AND CM50

(APPLICABLE SPECIFICATION: MIL-C-5)

- 1. SCOPE. This section covers mica-dielectric, fixed capacitors enclosed in case suitably protected against high humidity.
 - 2. APPLICATION INFORMATION.
- 2.1 <u>Use.</u> These capacitors are designed for use in circuits requiring precise high frequence filtering, bypassing, and coupling. They are used where close impedance limits are essential with respect to temperature, frequency, and aging -- such as in tuned circuits which control frequency, reactance, or phase. These capacitors are also useful as padders in tuned circuits, as secondary capacitance standards, and as fixed-tuning capacitors at high frequencies. They can also be employed in delay lines and stable low-power networks.

Due to the inherent characteristics of the dielectric (i.e., high insulation resistance and high breakdown voltage, low power factor, low inductance, and low dielectric absorption), these mica capacitors are inexpensive, small, and readily available and have good stability and high reliability.

2.2 <u>Construction.</u> Muscovite mica is the most commonly used material. It has a dielectric constant between 6.5 and 8.5 and can be split into thin sheets; it is nonporous and does not readily absorb moisture. Protection from moisture is provided to obtain high-capacitance stability and low losses. The two techniques used to form the capacitors covered in this section are by stacking the mica sheets through the silvered-mica process or by the use of tin-lead foil to separate the mica sheets. The molded units referenced in this section are fixed terminal capacitors; styles CM45 and CM50 employ the use of tin-lead foil.

Terminals are attached to the mica stacks by the use of pressure clips which have been solder-coated for maximum mechanical strength.

The molded case is made of a polyester material which also exhibits high insulation resistance and high resistance to moisture absorption and transmission. The molded case also imparts rigidity to the capacitor in the event the capacitor is subjected to vibration or shock.

- 2.3 <u>Voltage rating.</u> The dc voltage ratings are for continuous operation throughout the operating temperature range. At higher frequencies, the operating conditions are usually limited by the ac current rather than the voltage. Voltage ratings range from 300 to 2,500 volts. In addition to the limitations of operation placed on the capacitor by operating temperature range and ac current at high frequencies, the following conditions should be adhered to:
 - (a) Barometric pressure:
 - (1) Up to and including 1,200 volts (except 600 volts, style CM50) --- 0.315 inch of mercury (100,000 feet) up to normal atmospheric pressure.
 - (2) Above 1,200 volts (and 600 volts, style CM50) --- 3.44 inches of mercury (50,000 feet) up to normal atmospheric pressure.
 - (b) Relative humidity --- Up to 80 percent.
- 2.4 <u>Operating temperature range.</u> Style CM35 capacitors above 10,000 pF are suitable for operation over a temperature range of -55° to $+125^{\circ}$ C; all other styles are suitable for operation over a temperature range of -55° to $+150^{\circ}$ C.

2.5 <u>Temperature coefficient and capacitance drift.</u> The temperature coefficient and capacitance drift available in each style are as shown in table 102-1.

TABLE 102-L.	Temperature	coeffi ci ent	and	capaci tance	dri ft.

Style	Symbol	Temperature coefficient	Cap. drift
		ppm/°C	
CM15, CM20, CM30, and CM35	C E F	-200 to +200 -20 to +100 0 to +70	±(0.5% +0.1 pF) ±(0.1% +0.1 pF) ±(0.05% +0.1 pF)
CM45 and CM50	В	Not specified	Not specified

2.6 <u>Dissipation factor.</u> The maximum dissipation factor will not exceed the values shown on figure 102-1.

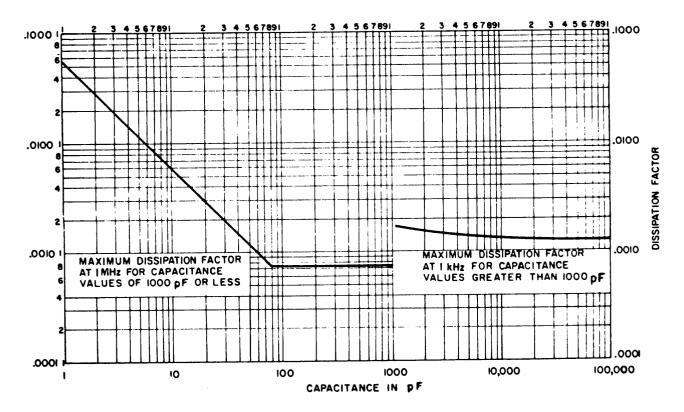


FIGURE 102-1. Dissipation factor.

- 3. ITEM IDENTIFICATION (see figures 102-2 and 102-3).
- 3.1 <u>Type designation.</u> The type designation is used for identifying and describing the capacitors as shown in figure 102-2.

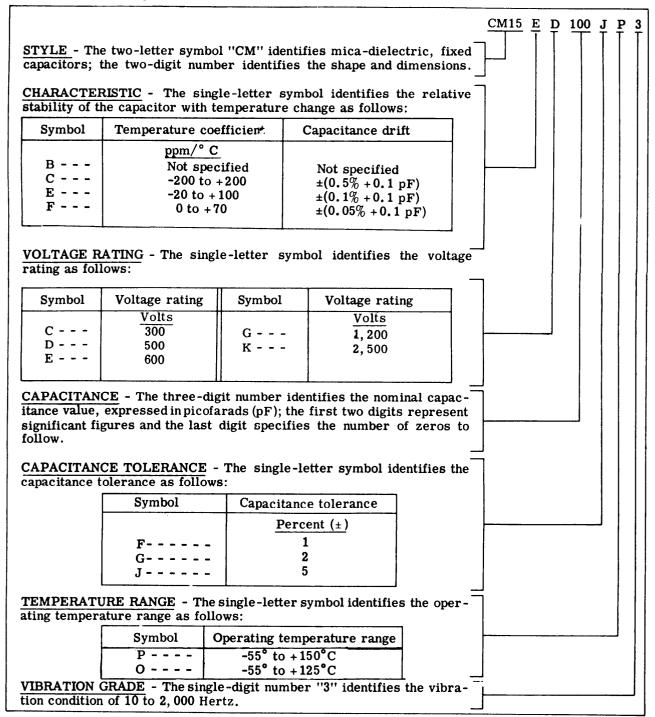
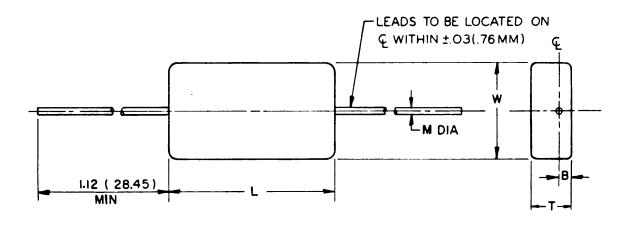



FIGURE 102-2. Type designation example.

3.2 <u>Standard capacitors.</u> The standard capacitors available in this section are as shown in figure 102-3.

STYLES CM15, CM20, CM30, AND CM35

Stand-	Dimensions (inches)										NATO type						
ard		В	М			_	L			1	N				T		designation
style	Mi	n	±.002 ±.05		M	in	М	ax	M	in	M	ax	M	in	M	ax	(per NEPR
L	In	MM	ln in	MM	In	MM	In	MM	In	MM	In	MM	In	MM	In	MM	No. 1)
CM15	.06	1.52	.025 (#22AWG)	.64	.48	12.19	.55	13.97	.27	6.86	.31	7.87	.14	3.56	.22	5.59	NCM01
CM20	.06	1.52	.032 (#20AWG)	.81	.67	17.02	.79	20.07	.41	10.41	.47	11.94	.16	4.06	_22	5.59	NCM02
CM30	.08	2.03	.040 (#18AWG)	1.02	.77	19.56	.86	21.84	.77	19.56	.86	21.84	.23	5.84	.28	7.11	NCM03
CM35	.08	2.03	.040 (#18AWG)	1.02	.77	19.56	.86	21.84	.77	19.56	.86	21.84	.28	7.11	.36	9.14	NCM04

FIGURE 102-3. <u>Mica dielectric</u>, <u>fixed capacitors</u>.

STANDARD CAPACITORS

STYLES CM15, CM20, CM30, AND CM35

DC RATED VOLTAGE 500 VOLTS -- OPERATING TEMPERATURE RANGE -55° TO +150°C -- CAPACITANCE TOLERANCE \pm 1 AND \pm 2 PERCENT

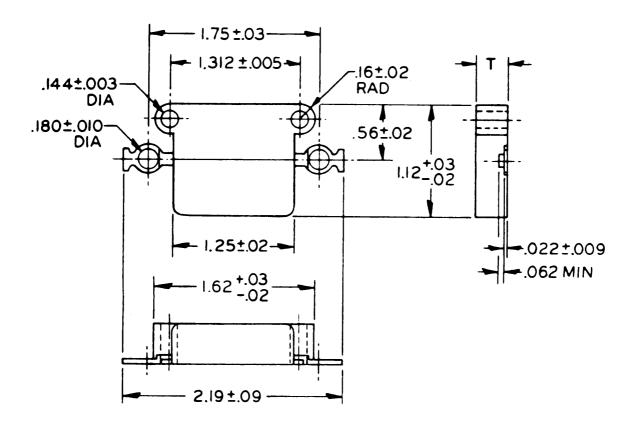

Style	Type designation	Capacitance available with characteristic
	 	Characteristics C, E, and F
		<u>pF</u>
CM15	CM15-D4313 CM15-D4713 CM15-D5113	430 470 510
CM20	CM20-D5613 CM20-D6213 CM20-D6813 CM20-D7513 CM20-D8213 CM20-D9113 CM20-D1023	560 620 680 750 820 910 1,000
CM30	CM30-D1123 CM30-D1223 CM30-D1323 CM30-D1523 CM30-D1623 CM30-D1823 CM30-D2023 CM30-D2023 CM30-D2023 CM30-D2023 CM30-D2023 CM30-D2023 CM30-D2023	1,100 1,200 1,300 1,500 1,600 1,800 2,000 2,000 2,200 2,400 2,400 2,700 3,000 3,300
CM35	CM35-D3623 CM35-D3923 CM35-D4323 CM35-D4723 CM35-D5123 CM35-D5623 CM35-D6823 CM35-D8223 CM35-C1033 CM35-C1133 CM35-C1233 CM35-C1333	3,600 3,900 4,300 4,700 5,100 5,600 6,800 8,200 10,000 1/ 11,000 T/ 2/ 12,000 T/ Z/ 13,000 T/ Z/ 13,000 T/ Z/

FIGURE 102-3. Mica dielectric, fixed capacitors - Continued.

 $[\]frac{1/}{2/}$ DC working voltage is 300 volts. $\frac{2}{2}$ Maximum operting temperature is +125°C.

MI L-STD-198E

STYLES CM45 AND CM50

	Dimension (inches)
Standard style	T +.03 (.76) 02 (.51)
CM45	.33 (8.38)
CM50	.42 (10.67)

INCHES	MM	INCHES	MM
.003	.08	.16	4.06
.005	.13	.180	4.57
.009	. 23	.56	14.22
.010	.25	1.12	28.45
.02	.51	1.25	31.75
.022	.56	1.312	33.32
.03	.76	1.62	41.15
.062	1.57	1.75	44.45
.09	2.29	2.19	55.63
.144	3.66		

FIGURE 102-3. Mica dielectric. fixed capacitors -Continued.

STANDARD CAPACITORS

STYLES CM45 AND CM50

OPERATING TEMPERATURE RANGE -55° TO +150°C -- TEMPERATURE COEFFICIENT AND CAPACITANCE DRIFT, NOT SPECIFIED -- CAPACITANCE TOLERANCE \pm 5 PERCENT

Style	 Type designation	Capacitance	DC rated voltage
1		pF	<u>Volts</u>
CM45	CM45BK470-3 CM45BK680-3 CM45BK680-3 CM45BK820-3 CM45BK121-3 CM45BK151-3 CM45BK151-3 CM45BK221-3 CM45BK271-3 CM45BK311-3 CM45BK391-3 CM45BK371-3 CM45BK391-3 CM45BK391-3 CM45BK391-3 CM45BK391-3 CM45BK391-3 CM45BK391-3 CM45BK391-3 CM45BK391-3 CM45BK391-3 CM45BK391-3 CM45BK391-3 CM45BK391-3 CM45BK391-3 CM45BK391-3 CM45BK391-3 CM45BK391-3	47 56 68 82 100 120 150 180 220 270 330 390 470 560 680 820 1,000 1,200 1,500 1,800	2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500
CM50	CM50BK2223 CM50BK2723 CM50BK3323 CM50BK3923 CM50BK4723 CM50BG5623 CM50BG6823 CM50BG8223 CM50BE1233 CM50BE1233 CM50BE1233 CM50BE1233 CM50BE2233 CM50BE2233	2,200 2,700 3,300 3,900 4,700 5,600 6,800 8,200 10,000 12,000 12,000 15,000 18,000 122,000	2,500 2,500 2,500 2,500 2,500 1,200 1,200 1,200 600 600 600

 $\underline{\text{1/}}$ Styles CM45 and CM50 capacitors are not to be used in Air Force applications where altitudes of 50,000 feet may be exceeded.

FIGURE 102-3. <u>Mica dielectric, fixed capacitors</u> - Continued.

Downloaded from http://www.everyspec.com

SECTION 200

CAPACITORS, FIXED, ELECTROLYTIC

Secti on

Applicable specification

Capacitors, Fixed, Electrolytic (Dry Electrolyte), DC, Aluminum, Polarized - - - - - - - - - - - MIL-C-62 201.

NOT FOR NAVY OR USAF USE IN NEW DESIGN

Capacitors, Fixed, Electrolytic (Aluminum Oxide) - - - MIL-C-39018 202.

USAF AIRBORNE APPLICATIONS REQUIRE PRIOR APPROVAL BY PROCURING ACTIVITY

Downloaded from http://www.everyspec.com

SECTION 201

CAPACITORS, FIXED, ELECTROLYTIC (DRY ELECTROLYTE), DC, ALUMINUM, POLARIZED STYLES CE13 AND CE71

(APPLICABLE SPECIFICATION: MIL-C-62)

NOT FOR NAVY OR USAF USE IN NEW DESIGN

- 1. SCOPE. This section covers single-section polarized, electrolytic (dry electrolyte), aluminum, dc, fixed capacitors.
 - 2. APPLICATION INFORMATION.
- 2.1 <u>Use.</u> Aluminum electrolytic capacitors provide the smallest volume, mass, and cost per microfarad of any type of capacitor with the exception of the tantalum electrolytic capacitor.

These capacitors are not suitable for airborne equipment applications since they should not be subjected to low barometric pressure and low temperatures at high altitudes. These aluminum electrolytic capacitors can be derated only for a short period since derating for any length of time may result in the necessity for re-forming. Even though they have vents designed to open at dangerous pressures, explosions can occur because of gas pressure or a spark ignition of free oxygen and hydrogen liberated at the electrodes. Provisions should be made to protect surrounding parts.

These capacitors are generally used where low frequency, pulsating, dc signal components are to be filtered out, such as in B power supplies up to 450 dc rated volts, at such points as plate and screen connections to B+, and as cathode by-pass capacitors in self-biasing circuits. These capacitors are designed for applications where accuracy of capacitance is relatively unimportant.

As a rule, for selection of cathode by-pass capacitors, a ratio of bias resistance to by-pass reactance of about 10 to 1 is allowed. Ratios up to 20 to 1 may be used in high-fidelity-amplifier work or where space and economical considerations permit. Electrolytic capacitiors provide the equipment designer with an unusually lightweight unit of high capacitance in a compact container.

2.2 <u>Construction.</u> The capacitor consists of aluminum foil rolled onto a porous spacer. The foil is approximately 0.003 to 0.005-inch thick. The spacer is impregnated with an electrolyte and separates the anode and cathode. The electrolyte is usually an aqueous solution of ammonium borate, boric acid, and glycol.

The metal cases are provided with an insulating sleeve which has an insulation resistance of at least 100 megohms.

It should be noted that the insulation resistance refers to the sleeve and not to the resistance between the terminals and the case. For style CE71 capacitors, the circuit diagram shows an indeterminate resistance between the negative terminal and the case since the electrolyte cannot be completely isolated. For proper performance, the case of all styles should be considered to be at the same potential as the negative terminal. The negative terminal is shorted to the case on style CE13 capacitors.

2.3 <u>Voltage rating.</u> The thickness of the oxide film shich is formed both initially on th foil and during the forming operations on the completed capacitor determines the maximum peak or surge voltage which may be applied. The dc rated voltages for capacitors listed in this section are 400 and 450 volts. For maximum reliability and long life, the dc rated voltage should not be more than approximately 80 percent of full rating so that surges can be kept within the full-rated voltage. The time of surge-voltage application should not be more than 30 seconds every 10 minutes.

- 2.4 <u>Operating temperature range.</u> These capacitors are suitable for operation over a temperature range of -40° to $+85^{\circ}$ C at rated voltage.
- 2.5 <u>Surge voltage</u>. The surge voltages given in figure 201-1 are voltages which the capacitor may withstand for short periods. This includes transients and surges due to applying voltage to a piece of cold electronic gear.
- 2.6 <u>Polarity.</u> These capacitors should be used only in dc circuits with polarity properly observed. If ac components are present, the sum of the peak ac voltage plus the applied dc voltage must not exceed the dc rating. The peak ac value should also be less than the applied dc voltage in order that polarity may be maintained even on negative peaks. Capacitors which have been subjected to voltage reversal should be discarded.
- 2.7 <u>DC Leakage.</u> Aluminum electrolytic capacitors have poor resistance -temperature characteristics. As the temperature is raised, the breakdown voltage decreases and the Leakage current increases.
- 2.8 <u>High temperature.</u> In planning the location of the capacitors with respect to other component parts, careful consideration should be given to the proximity of the capacitors to transformers, electron tubes, and high-current resistors because of the usual temperature rise involved in these components. Continued operation at temperatures above the normal rating will cause a permanent decrease in capacitance and an increase in series resistance.
- 2.9 <u>Low temperature.</u> The performance of these capacitors at subzero temperatures is mainly affected by the increase in series resistance and by a decrease in capacitance. These changes do not persist with the return of normal temperature conditions. At -40° C, these capacitors retain approximately 50 to 80 percent of their initial capacitance.
- 2.10 Maximum root -mean-square (rms) ripple current. When these capacitors are used for input -filtering purposes, the rms ripple (at+85°C and 120 Hz) should not exceed the value calculated from the following equation:

$$I_r = k \sqrt{C}$$

Where: I = Maximum rms ripple current in milliamperes.

k = See table 201 -I.

C = Nominal capacitance in microfarads.

TABLE 201-1. Values of "k".

Style	DC rated voltage	Case dia (in.)	''k''
CE13	400 and 450	Any	30

When operated at a frequency different from 120 Hz or at a temperature different from + 85°C, the value obtained from the equation should be multiplied by the appropriate value given in table 201 -II.

2.11 <u>Cleaning solvents.</u> Recommended solvents include all those free of halogen or halogen groups, such as toluene, menthanol, methylcellosolve, alkinox and water, and naphtha. Chlorinated or fluorinated hydrocarbon solvents are prohibited.

TABLE 201-II. Ripple current multipliers.

Frequency	Multipliers						
(Hz)	+85° C	+65° C	+55° C	+45° C	+40° C and below		
60	0.8	1.2	1.6	2.2	3.0		
120	1.0	1.5	2.0	2.8	3.0		
Above 120	1.1	1.7	2.2	3.0	3.0		

- 3. ITEM IDENTIFICATION (see figures 201-1 and 201-2).
- 3.1 <u>Type designation.</u> The type designation is used for describing the capacitors as shown in figure 201-1.

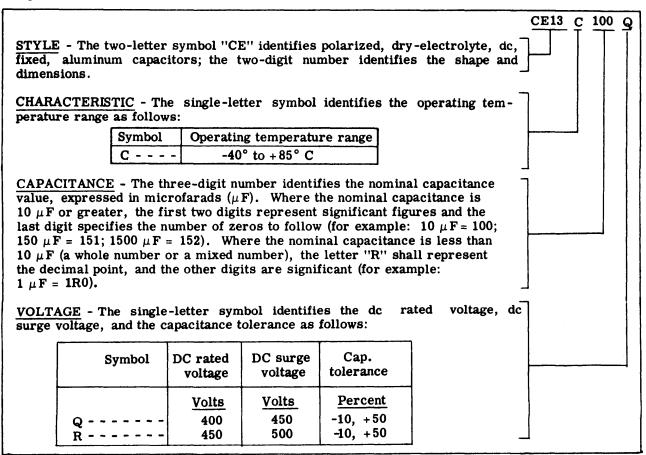
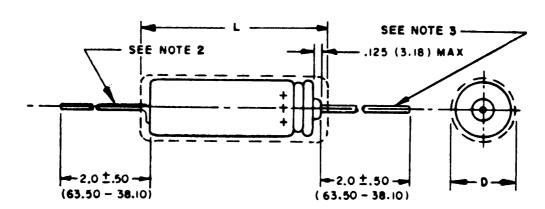
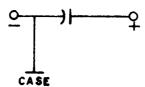




FIGURE 201-1. Type designation example.

3.2 <u>Standard capacitors. The</u> standard capacitors available in this section are shown in figure 201-2.

STYLE CE13

NOTES:

- 1. These capacitors are not intended to be mounted by their leads. They are provided with a supplementary means of mounting such as a tangential bracket or wraparound bands.
- 2. The negative lead need not be offset.
- 3. Leads are $.032\pm$ $.002(.81\pm.05$ mm) inch (20 AWG) for units with a diameter of .625(15.88 mm) inch or less and $.040\pm.002(1.02\pm.05$ mm) inch (18 AWG) for units with a diameter greater than .625(15.88 mm) inch.

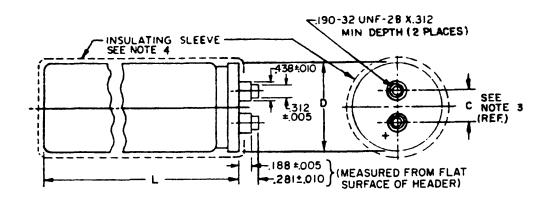
FIGURE 201-2. Electrolytic (dry electrolyte), aluminum, fixed capacitors.

STANDARD CAPACITORS

STYLE CE13

OPERATING TEMPERATURE RANGE -40° TO +85°C

 Type designation	DC rated	 Cap.	Cap.	 DC leakage		 Max	Case dim	ensions
 	voltage 	1 1 1	tolerance 	current 	DF impedance 		+.186 (4.72) L 062 (1.57)	 +.155 (3.94) D 031 (.79)
	Volts	μF	Percent	<u>μA</u>	Percent	<u>Ohms</u>	<u>Inches</u>	Inches
CE13C1000 CE13C1500 CE13C4700 CE13C6800	1 1 400 1 1	10 15 147 168	-10, +50 -10, +50 -10, +50 -10, +50	95 116 203 248	17 1 17 1 17 1 17	1,480 986 314 218	1.125 (28.58) 2.625 (66.68) 3.125 (79.38) 3.125 (79.38)	0.875 (22.23) 0.625 (15.88) 0.875 (22.23) 1.000 (15.40)
CE13C1ROR CE13C10OR CE13C15OR CE13C22OR CE13C33OR CE13C47OR CE13C68OR	1 450 450 	1.0 10 15 22 33 47 68	-10, +50 -10, +50 -10, +50 -10, +50 -10, +50 -10, +50 -10, +50	31 100 123 149 182 217 262	17 17 17 17 17 17 17 17	22,000 2,000 1,465 1,000 666 468 323	1.125 (28.58) 2.625 (66.68) 2.125 (53.98) 2.125 (53.98) 2.125 (53.98) 2.625 (66.68) 3.625 (92.08)	0.500 (12.70) 0.625 (15.88) 0.750 (19.05) 0.875 (22.23) 1.000 (25.40) 1.000 (25.40) 1.000 (25.40)


FIGURE 201-2. <u>Electrolytic (dry electrolyte)</u>, aluminum, fixed capacitors - Continued.

STANDARD CAPACITORS

STYLE CE71

OPERATING TEMPERATURE RANGE -40° TO +85°C

 Type designation	DC rated	 Cap.	Cap.	 DC leakage	!	Max	Case dimensions			
 	voltage 	 	tolerance 	current 	DF 	impedance 	 +.094 (2.39) L 062 (1.57)	+.063 (1.60) D 031 (.79)		
	<u>Volts</u>	μF	Percent	μ Α	Percent	0hms	Inches	Inches		
CE71C151R CE71C331R CE71C681R CE71C102R	 450 	150 330 680 1,000	-10, +50 -10, +50 -10, +50 -10, +50	390 577 829 1,006	16 16 16 18	100 45 22 15	4.125 (104.78) 4.125 (104.78) 4.125 (104.78) 4.125 (104.78)	1 1.375 (34.93) 1 2.000 (50.80) 1 2.500 (63.50) 1 3.000 (76.20)		

- Capacitors are mounted by means of a wraparound foot-type bracket.
 There is an indeterminate resistance between the metal case and the negative terminal.
- "C" dimension is as follows:
 - .500 for case diameter 1.375.

 - . 875 for case diameter 2.000. 1.125 for case diameter 2.500. 1.250 for case diameter 3.000.
- Insulating sleeve thickness does not exceed .016 inch and overlaps the ends of the capaci tor body.

FIGURE 201-2. <u>Electrolytic (dry electrolyte)</u>, <u>aluminum</u>, <u>fixed capacitors</u> - Continued.

SECTION 202

CAPACITORS. FIXED, ELECTROLYTIC (ALUMINUM OXIDE)
STYLE CU15

(APPLICABLE SPECIFICATION: MIL-C-39018)
USAF AIRBORNE APPLICATIONS REQUIRE
PRIOR APPROVAL BY PROCURING ACTIVITY

- 1. SCOPE. This section covers nonpolarized, electrolytic (aluminum oxide), fixed capacitors enclosed in metal cases, suitably protected against high humidity.
 - 2. APPLICATION INFORMATION.
- 2.1 <u>Use.</u> Aluminum electrolytic capacitors are intended for use in filter, coupling, and bypass applications where large capacitance values are required in small cases and where excesses of capacitance over the nominal value can be tolerated.

Aluminum electrolytic capacitors provide the smallest volume, mass, and cost per micro-farad of any type of capacitor with the exception of the tantalum electrolytic capacitor.

These capacitors are not recommended for airborne equipment applications since they should not be subjected to low barometric pressure and low temperatures at high altitudes. These aluminum electrolytic capacitors can be derated only for a short period since derating for any length of time may result in the necessity for re-forming. Even though they have vents designed to open at dangerous pressures, explosions can occur because of gas pressure or a spark ignition of free oxygen and hydrogen liberated at the electrodes. Provisions should be made to protect surrounding parts.

These capacitors are generally used where low frequency, pulsating, dc signal components are to be filtered out, and as cathode by-pass capacitors in self-biasing circuits. These capacitors are designed for applications where accuracy of capacitance is relatively unimportant.

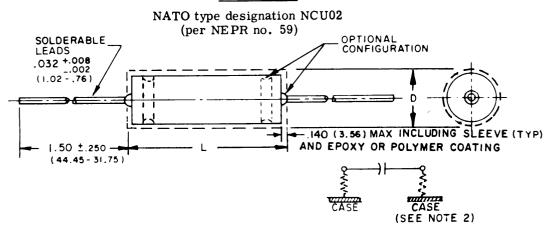
As a rule, for selection of emitter by-pass capacitors, a ratio of bias resistance to by-pass reactance of about 10 to 1 is allowed. Ratios up to 20 to 1 may be used in high-fidelity-amplifier work or where space and economical considerations permit. Electtrolytic capacitors provided the equipment designer with an unusually lightweight unit of high capacitance in a compact container.

2.2 <u>Construction.</u> The construction of these capacitors is basically the same as that specified in Section 201 (MIL-C-62). However, advancements in the manufacture of aluminum electrolytic capacitors have made possible an increased foil purity, improved oxide system, and an increase in etch ratios. Other contributing factors to the advancement in the manufacture of aluminum capacitors are an improved capacitor seal and the development of an electrolyte with a non-aqueous base.

The metal cases for these capacitors are provided with an insulating sleeve which has an insulation resistance of at least 100 megohms.

It should be noted that the insulation resistance refers to the sleeve and not to the resistance between the terminals and the case. The circuit diagram for style CU15 capacitors shows an indeterminate resistance between the outer-foil terminal and the case since the electrolyte cannot be completely isolated. For safer performance, the insulating sleeve should remain over the case for all applications.

2.3 <u>Voltage rating.</u> The thickness of the oxide film which is formed both initially on the foil and during the forming operations on the completed capacitor determines the maximum peak or surge voltage which may be applied. For maximum reliability and long life, the dc working voltage should not be more than approximately 80 percent of full rating so that surges can be kept within the full -rated working voltage. The time of surge-voltage application should not be more than 30 seconds every 10 minutes.


Style CU15 capacitors cover a voltage range of 7 to 250 Vdc at 85°C derated to 5 to 200 Vdc at 125°C .

- 2.4 <u>Operating temperature range.</u> Style CU15 capacitors are suitable for operation over a temperature range of -55° to $+85^{\circ}$ C, derated to $+125^{\circ}$ C.
- $2.5 \ \underline{\text{Derating.}}$ Style CU15 capacitors may be voltage derated in order to operate at temperatures up to +125° + 125°C. The percent of derating varies from approximately 20 to 33 percent depending on the particular voltage rating involved.
- 2.6 <u>Seal.</u> Even though these capacitors have vents designed to open at dangerous pressures, explosions can occur because of gas pressure or a spark ignition of free oxygen and hydrogen liberated at the electrodes. Provisions should be made to protect surrounding parts.
- 2.7 <u>Surge voltage</u>. The surge voltage is the maximum voltage to which the capacitor should be subjected under any condition. This includes transients and peak ripple at the highest line voltage.
- 2.8 <u>Polarization.</u> Nonpolarized capacitors, style CU15, should be used in applications where reversal of potential occurs. Polarized capacitors, styles CUR13, CUR17, CUR19, CUR71, and CUR91 (see Section 704) should be used only in dc circuits with polarity properly observed. If ac components are present, the sum of the peak ac voltage plus the applied dc voltage must not exceed the dc rating. The peak ac value should also be less than the applied dc voltage so that polarity may be maintained, even on negative peaks, to avoid overheating and damage.
- 2.9 <u>Cleaning solvents.</u> Recommended solvents include all those free of halogen or halogen groups, such as toluene, menthanol, methyl cellosolve, alkinox and water, and naphtha. Chlorinated or fluorinated hydrocarbon solvents are prohibited.

3. I TEM I DENTIFICATION

3.1 <u>Standard capacitors.</u> The standard capacitors available in this Section are shown in figure 202-1. (The figure gives the electrical characteristics, case sizes, and Military part numbers of capacitors which are standard for design.)

STYLE CU15

Case size	Dimensions Style CU15, L±.031(.79)	
A0	.938(23.83)	.281(7.14)
A7	1.438(36.53)	.375(9.53)
A8	2.125(53.98)	.375(9.53)
A9	2.750(69.85)	.375(9.53)

NOTES:

- 1. These capacitors are not intended to be mounted by their leads.
- 2. There is an indeterminate resistance between the outer-foil terminal and case.

FIGURE 202-1. Electrolytic (aluminum oxide), fixed capacitors.

STANDARD CAPACITORS STYLE CU15 (MIL-C-39018/2)

OPERATING TEMPERATURE RANGE -55° TO + 85°C, DERATED TO +125° C -- NONPOLARIZED, INSULATED

Canaci	DC rated voltage 85°C 125°C		DC surge		ESR		Maximum	DC			Dash number M39018/02-		
Capaci-					25°C	85°C	impedance	leakage		Case	Style CU15		
tance value	85°C	125 C	85°C	125°C	25 C	1 -	at -55°C	25°C	85°C	code		tance tole	
						and 125°C	and 120 Hz		and 125°C		-10 + 30	-10 + 50	-10 + 75
$\mu \mathbf{F}$	Volts		Volts		$\frac{\Omega}{1}$		$\overline{\Omega}$	$\mu \dot{A}$					
47	7	5	10	7	5.64	7.05	64	4	12	A0	0601		0701
220	7	5	10	7	1.21	1.51	14	10	30	A7	0602		0702
470	7	5	10	7	0.56	0.71	6.4	16	48	A8	0603		0703
680	7	5	10	7	0.39	0.49	4.4	24	72	A9_	0604		0704
39	10	7	15	10	6.80	8.50	77	4	12	A0	0605		0705
180	10	7	15	10	1.47	1.84	17	10	30	A7	0606		0706
330	10	7	15	10	0.80	1.00	9.1	16	48	' A8	0607		0707
470	10	7	15	10	0.56	0.71	6.4	24	72	_A9_	0608		0708
33	15	10	20	15	8.04	10.05	91	4	12	A0	0609		0709
120	15	10	20	15	2.21	2.76	2 5	9	27	A7	0610		0710
150	15	10	20	15	1.77	2.21	20	10	30	A7	0611		0711
270	15	10	20	15	0.98	1.23	11	16	48	A8	0612		0712
390	15	10	20	15	0,68	0.85	7.7	24	72	A9_	0613		0713
15	30	20	40	30	17.68	22.10	130	5	15	A0	0614		0714
56	30	20	40	30	4.74	5.92	36	9	27	A7	0615		0715
68	30	20	40	30	3.90	4.88	30	10	30	A7	0616		0716
120	30	20	40	30	2.21	2.76	17	15	45	A8	0617		0717
150	30	20	40	30	1.77	2.21	13	16	48	Λ8	0618		0718
_180	30	20	40	30	1.47	1.84	11	24	72		0619		0719
0.8	50	40	60	50	19.50	39.01	3 00	6	18	$\Lambda 0$	0620		0720
27	50	40	60	50	4.91	9.82	74	10	30	Λ7	0621		0721
56	50	40	60	50	2.37	4.74	36	16	48	Λ8	0622		0722
82 3,9	50	40	60	50	1,62	3.23	23	24	72	_A9	0623		0723
15	75	60	90	75	34.01	68.01	510	7	21	Λ0	0624		0724
	75	60	90	75	8.84	17.68	130	10	30	Λ7	0625		0725
18 39	75	60	90	75	7.37	14.74	110	11	. 33	Α7	0626		0726
56	75	60	90	75	3.40	6.80	5 1	16	48	Λ8	0627		0727
$\frac{-30}{2.2}$	75 100	60	90_	75	2.37	4.74	36	24	72		0628		0728
12	100	75 75	125	100	60.29	120.57	910	გ	12	Λ0	0629	0729	
22	100	75	125	100	11.05	22.10	170	16	48	Λ7	0630	0730	
33	100	75	125	100	6.03	12.06	91	18	54	Λ8	0631	0731	
1.8	150	100	125_	100	4.02	$\frac{8.04}{147.37}$	61	28	84	_49	0632	0732	
5.6	150 150	100	175	125	73.68	47.37	1100	10	30	Λ0	0633	0733	
8. 2	150	100	175	125	23.68	32.35	360	14	42	Λ7	0634	0734	
12	150	100	175 175	125 125	16.17 11.05	22.10	230	16	48	Λ7	0635	0735	
15	150	100	175 175		8.84	17.68	170	18	54	A8	0636	0736	
22	150 150	100	175 175	125	6.03	12.06	130	20	60	A8	0637	0737	
15	200	150	225	125			91 130	28	84	_A9	0638	0738	
.68	250	200	275	175 225	8.84	17.68		32	96	A 9	0642	0742	
3.3	250 250	200	275	225 225	195.04	390.09	3000	14	42	A0	0643	0743	
6.8		200	275	225 225	40.19	80.38	610	22	66	A7	0644	0744	
10	250 250	200	275	225 225	19.50	39.01	300 200	26 36	78 108	A8 A9	0645 0646	0745	
10	200	200	210	440	13.26	26.53	200	30	100	A9	0040	0746	

FIGURE 202-1. <u>Electrolytic (aluminum oxide)</u>, <u>fixed capacitors</u> - Continued.

SECTION 300

CAPACITORS, FIXED, CERAMIC DIELECTRIC

300(CONTENTS)

Downloaded from http://www.everyspec.com

SECTION 301

CAPACITORS, FIXED, CERAMIC DIELECTRIC (GENERAL PURPOSE)

STYLES CK60, CK62 THRU CK70, AND CK80

(APPLICABLE SPECIFICATION: MIL-C-11015)

1. SCOPE. This section covers ceramic dielectric, fixed capacitors designed for general-purpose use: ceramic feed-through and stand-off types.

2. APPLICATION INFORMATION.

2.1 <u>Use.</u> These capacitors are primarily designed for use where a small physical size with comparatively large electrical capacitcance and high insulation resistance is required. Ceramic capacitors are substantially smaller than paper or mica units of the same capacitance and voltage rating. General-purpose ceramic capacitors are not intended for precision use but are suitable for use as by-pass, filter, and noncritical coupling elements in high-frequency circuits where appreciable changes in capacitance, caused by temperature variations, can be tolerated. These units are not recommended for use directly in frequency-determining circuits. Typical recommended applications include resistive-capacitive couplig for audio and radio frequency, RF and intermediate frequency cathode bypass, automatic volume control filtering, tone compensation, volume-control RF bypass, antenna coupling, and audio-plate RF bypass. All of these applications are of the type where dissipation factor is not critical, and moderate changes due to temperature, voltage, and frequency variations do not affect the proper functioning of the circuit. For example: A cathode bypass for 100 megahertz (MHz), having a nominal capacitance of 680 pocofarads (pF), will give a capacitive reactance of 2.34 ohms. Since this reactance is very small compared with the cathode resistor, there would be no measurable effect on the 2.34-ohm value if the capacity should change by several percent due to a temperature variation, nor would a dissipation factor of 4 percent be noticeable.

Disk and thin-plated subminiature types are extremely compact and have an inherent low-series inductance due to their construction. The placement of the leads facilitates making close-coupled low-inductance connections and these capacitors are suitable for printed-circuit applications. High insulation resistance allows these capacitors to be used in vacuum-tube grid circuits; their extremely low leakage and small physical size make them suitable for use in transistor circuitry.

During circuit design, consideration should be given to the changes in dielectric constant caused by temperature, electric field intensity. applied frequency, and shelf aging.

- 2.1.1 <u>Humid operating conditions.</u> Ceramic dielectric materials are nonhygroscopic, effectively impermeable, and have practically no moisture absorption even after considerable exposure to humid conditions. Thus, these units are intended to operate, through their full temperature range, at relative humidities up to 95 percent.
- 2.2 <u>Construction.</u> A ceramic capacitor consists of a ceramic dielectric on which a thin metallic film, usually silver, has been fired at very high temperatures. Terminal leads are attached to the electrodes by a pressure contact or by soldering. Ceramic capacitors are encapsulated to protect the dielectric from the environment and to electrically insulate the capacitor. The disk types are covered by an insulating resin, plastic, or ceramic; the thin-plated subminiature types may be in dipped, molded, or preformed cases. The stand-off and feed-through units are made of ceramic tubes modified for their required mounting. Because the constituent materials have molecual r polar moments, the dielectric constants of some mixes reach hundreds (even thousands), of times the value of paper, mica, and plastic films. Thois results in ceramics having the largest capacitance-to-size ratios of all high-resistance dielectrics.

- 2.3 <u>Voltage rating.</u> These capacitors are available in a wide voltage range which varies with the capacitor style. The voltage range varies from 500 volts dc to 1,600 volts dc.
- 2.4 <u>Rated temperature.</u> The rated temperature (range) varies with the style as shown on figure 301-2.
- 2.5 <u>Soldering.</u> Care should be used in soldering the leads. Excessive heat may damage the encapsulation and weaken the electrode to terminal lead contact. Sudden changes in temperature, such as those experienced in soldering, can crack the encapsulation or the ceramic dielectric. Leads should not be bent close to the case nor should any strain be imposed on the capacitor body to avoid fracturing the encapsulation or ceramic dielectric.
- 2.6 <u>Dissipation factor.</u> For the recommended applications, the dissipation factor is negligibly low. The power factor decreases as temperature is increased; this provides an advantage where operation above room temperature is required.
- 2.7 <u>Dielectric strength.</u> Design engineers are advised not to put disk types where case insulation will be subjected to sustained potentials in excess of 750 volts dc or periodic potentials over 1, 250 volts peak. Supplementary insulation should be provided where these values are exceeded.
- 2.8 <u>Capacitance as a function of operating conditions.</u> The dielectric constant of these capacitors exhibits a considerable dependence on field strength. Large variations in capacitance may be experienced with changes in ac or dc voltages. The dielectric constant may decrease with time and may be as low as 75 percent of the original value after 1, 000 hours. The dielectric constant is dependent on frequency and decreases as the frequency is increased; it also decreases with temperature.
- 2.9 <u>Silver migration.</u> When the silver electrodes in the ceramic capacitor are exposed to high humidities and high dc potentials, silver ion migration may take place and short circuit capacitors after relatively short periods of time. Excessive moisture during periods of storage should be avoided since the encapsulation material may absorb moisture and silver ion migration may occur when the capacitors are later put into service.
 - 3. ITEM IDENTIFICATION (see figures 301-1 and 301-2).
- 3.1 <u>Type designation.</u> The type designation is used for identifying and describing the capacitors as shown in figure 301-1.

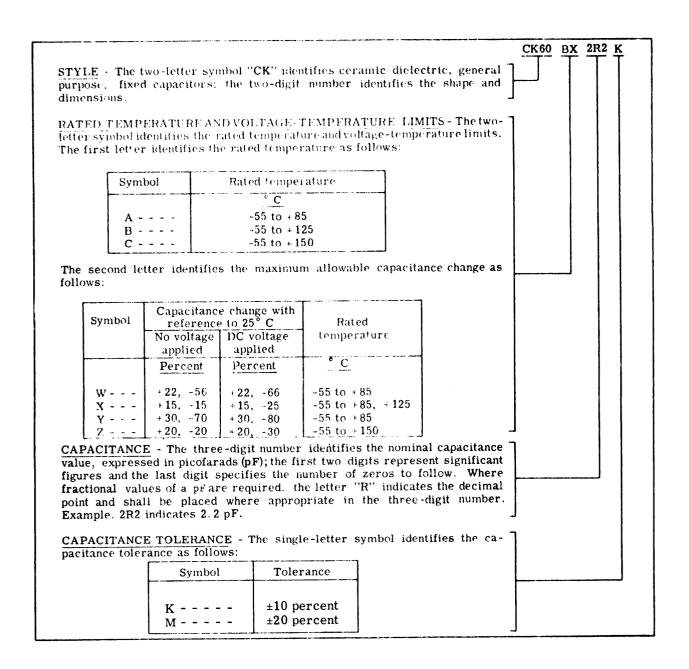
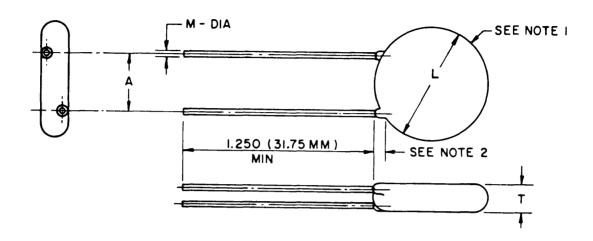



FIGURE 301-1. Type designation example.

3.2 <u>Standard capacitors.</u> The standard capacitors available in this section are shown in figure 301-2.

STYLES CK60. CK62. CK63. CK64. CK65. CK66. CK67. CK68. AND CK69

Style		L	T ±.040	(1.02)	А		M +.004(, 001 (
	Inches	MM	Inches	MM	Inches	MM	Inches	MM
CK 6 0	.280 ±.030	7.11 ± .76	.120	3.05	.250 ±.062	6.35 ±1.52	.025	.64
CK62	.550 ±.040	13.97 ±1.02	.120	3.05	.375 ±.062	9.53 ±1.52	.025	.64
CK63	.660 ±.030	16.76 ± .76	.120	3.05	A	A	.032	.81
CK64	.730 ±.040	18.54 ± .76	.167	4.24			†	†
CK65	.790 ±.040	20.07 ±1.02	.167	4.24				
CK66	.890 ±.040	22.61 ±1.02	.167	4.24				
CK67	.950 ±.040	24.13 ±1.02	.167	4.24				
CK68	1.050 ±.040	26.67 ±1.02	.330	8.38	•	1	•	•
CK69	1.110 ±.040	28.19 ±1.02	.330	8.38	.375 ±.062	9.53 ±1.52	.032	.81

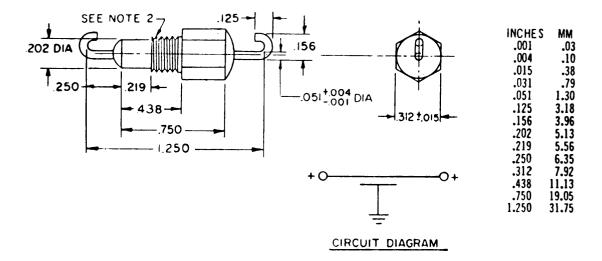
- Body configuration shown as maximum envelope; shape is optional.
 Insulating coating does not extend more than .125 (3.18 mm) along lead wires, measured from a tangent to the coating surface drawn perpendicular to the lead wires.

FIGURE 301-2. Ceramic dielectric (general purpose), fixed capacitors.

STANDARD CAPACITORS

TSTYLES CK60, CK62, CK63, CK64, CK65, CK66, CK67, CK68, AND CK69

Type designation	Capaci- tance	DC rated		erature and ve erature limit		
1		voltage	Temperature	Cap. chan reference		1
 	[] [No voltage applied	500 V applied	! ! !
	<u>pF</u>	<u>Volts</u>	-55° to +°C	Percent	Percent	Percent (*)
CK60BX2R2K	2.2	1,000 1,000	125 1 125	±15 ±15	+15, -25 +15, -25	10 10
CK60BX4R7K	4.7	1,000	125	±15	1 +15, -25	1 10
CK60BX6R8K	6.8	1,000	125	±15	+15, -25	1 10
CK60BX100K	10	1,000	125	±15	1 +15, -25	10
CK60BX150K	15	1,000	125	±15	+15, -25	10
CK60BX220K	22 33	1,000	125 125	±15 ±15	+15, -25 +15, -25	1 10
CK60BX330K CK60BX470K	33 47	1,000 1,000	125	±15 ±15	+15, -25 +15, -25	10
CK60BX680K	68	1,000	125	±15	+15, -25	10
CK60BX101K	100	1,000	125	±15	+15, -25	10
CK60BX151K	150	500	125	±15	+15, -25	10
CK60AX221K	220	1,000	85	±15	1 +15, -25	1 10
CK60AX331K	330 470	500 500	85 85		+15, -25 +15, -25	10 10
CK60AX471K	1 680	1,000	1 85 I	+22, -56	+22, -66	20
CK60AW102M	1,000	1,000	85	+22, -56	+22, -66	20
CK60AW152M	1,500	500	85	+22, -56	+22, -66	20
CK62AY220M	22	1,500	85	+30, -70	+30, -80	20
CK62AY470M	1 47 1	1,500	85 85	+30, -70 +30, -70	1 +30, -80	20
CK62AY101M	100 220	1,500 1,500	1 85 !	+30, -70 +30, -70	+30, -80 +30, -80	l 20 l 20
CK62AY471M	1 470	1,500	85	+30, -70	1 +30, -80	1 20
CK62BX821K	820	500	125	*15	1 +15, -25	10
CK62BX102K	1,000	500	125	*15	1 +15, -25	10
CK62BX152K	1,500	500	125	±15	+15, -25	1 10
CK62AW222K CK62AW332M	2,200 3,300	500 500	85 85	+22, -56 +22, -56	+22, -66 +22, -66	l 10 l 20
CK62AW682M	1 6,800	500	85	+22, -56	+22, -66	1 20
CK63CZ681K	680	500	150	±20	1 +22, -30	10
CK63AW472M	4,700	1,000	85	+22, -56	+22, -66	20
	10,000	500	85	+22, -56	+22, -66	20
CK64AW511M	510	1,600	85 95	+22, -56	+22, -66	
CK64AW681M CK64AW821M	680 820	1,600 1,600	85 85	+22, -56 +22, -56	+22, -66 +22, -66	20
CK64AW102M	1,000	1,600	85	+22, -56	+22, -66	1 20
CK64AW152M	1,500	1,600	85	+22, -56	1 +22, -66	20
CK64AW222M	2,200	1,600	85	+22, -56	+22, -66	20
CK64AW332M	3,300	1,600	85	+22, -56	1 +22, -66	20
CK64AW392M	3,900 4,700	1,600	85 85	+22, -56 +22, -56	+22, -66 +22, -66	1 20
CK65AW472M CK66AW562M	5,600	1,600	85	+22, -56	+22, -66	7 20
CK67AW682M	6,800	1,600	85	+22, -56	+22, -66	1 20
CK67AW752M	7,500	1,600	85	+22, -56	1 +22, -66	20
CK68AW103M	10,000	1,600	85	+22, -56	1 +22, -66	20
CK69AW153M	15,000	1,600	85	+22, -56	+22, -66	20


FIGURE 301-2. Ceramic dielectric (general purpose), fixed capacitors - Continued.

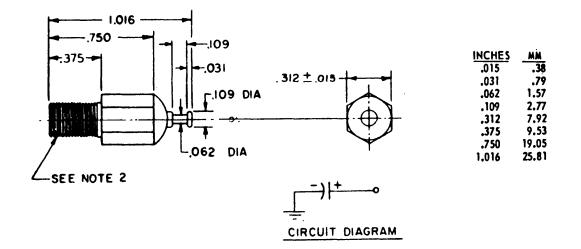
STANDARD CAPACITORS

STYLE CK70

RATED TEMPERATURE -55° TO +85°C

Type designation	Capaci- tance	DC rated	Voltage-tempera	 Capacitance	
·	† 	voltage 	Cap. change with re	tolerance	
	 		No voltage applied	500 V applied	
	pF	Volts	Percent	Percent	Percent (±)
CK70AX100K CK70AX330K CK70AX470K CK70AX680K CK70AX101K CK70AX471K CK70AX681K CK70AW102M CK70AW152M	10 33 47 68 100 470 680 1,000 1,500	1,000 1,000 1,000 1,000 1,000 500 500 500	±15 ±15 ±15 ±15 ±15 ±15 ±15 +22, -56 +22, -56	+15, -25 +15, -25 +15, -25 +15, -25 +15, -25 +15, -25 +15, -25 +22, -66 +22, -66	10 10 10 10 10 10 10 10 20 20

- 1. Unless otherwise specified, tolerance is \pm .031 (.79 mm).
- 2. Threaded portion is I/4-28UNF-2A and extends to within .047 (1.19 mm) of the shoulder
- mm) of the shoulder.3. A nut and an internal-tooth lockwasher are supplied with each capacitor.


FIGURE 301-2. Ceramic dielectric (general purpose), fixed capacitors - Continued.

STANDARD CAPACITORS

STYLE CK80

RATED TEMPERATURE -55° TO +85°C -- DC RATED VOLTAGE 500 VOLTS

Type designation	Capaci- l tance	Voltage-temperat	Capacitance	
-		Cap. change with ref	tolerance 	
	 	No voltage applied	500 V applied	
	pF_	Percent	Percent	Percent (±)
CK80AX100K CK80AX330K CK80AX470K CK80AX680K CK80AX101K	10 33 47 68 100	#15 #15 #15 #15 #15 #15	+15, -25 +15, -25 +15, -25 +15, -25 +15, -25	10 10 10 10 10 10 10
CK80AX471K CK80AX681K CK80AW102M CK80AW152M	470 680 1,000 1,500	±15 ±15 +22, -56 +22, -56	+15, -25 +15, -25 +22, -66 +22, -66	10 10 20 20

- Unless otherwise specified, tolerance is \pm .031 (.79 mm). Threaded portion is I/4-28UNF-2A and extends to within .047 (1.19
- mm) of the shoulder. A nut and an internal-tooth lockwasher are supplied with each capaci tor.

FIGURE 301-2. Ceramic dielectric (general purpose), fixed capacitors - Continued.

MI L-STD-198E

SECTION 400

CAPACITORS, VARIABLE (TRIMMER)

<u>Section</u>		Applicable specification
401.	Capacitors, Variable, Ceramic Dielectric	MI L-C-81
402.	Capacitors, Variable (Piston Type, Tubular Trimmer)	- MI L-C-14409

400 (CONTENTS)

SECTION 401

CAPACITORS, VARIABLE, CERAMIC DIELECTRIC
STYLES CV11, CV21, AND CV31

(APPLICABLE SPECIFICATION: MIL-C-81)

- 1. SCOPE. This section covers ceramic-dielectric, variable capacitors.
- 2. APPLICATION INFORMATION.
- 2.1 <u>Use.</u> These capacitors are small-sized trimmer capacitors designed for use where fine tuning adjustments are periodically required during the life of the equipment. Normally they are used for trimming and coupling in such circuits as intermediate frequency, radio-frequency, os-cillator, phase shifter, and disciminator stages. Because of their low mass, these units are relatively stable against shock and vibration which tend to cause changes in capacitance. Where a higher order of stability is required, air trimmers should be used. The minimum capacitance of these capacitors is not greater than the minimum value specified; however, the minimum capacitance value may be less than the minimum value specified. The maximum capacitance is not less than that specified and not greater than 50 percent more than the maximum value specified. Capacitance and adjustment are relatively linear.
- 2.2 <u>Construction.</u> Each unit consists of a single stator and a single rotor for each section, made of ceramic material impregnated with transformer or silicone oil. Pure silver is fired and burnished on the top of the base of the stator in a half-moon pattern. The rotor, usually of titanium dioxide, has pure silver contact points. The contact surfaces of both the stator and the rotor are ground and lapped flat, thus eliminating air space variations with temperature.

The principle of operation is similar to that of an air-dielectric tuning capacitor where the overlap of the stator and rotor determines the capacitance; in these units, the ceramic dielectric replaces the air dielectric. Rotors may be rotated continuously; full capacitance change occurs during each rotation. The approximate maximum capacitance point is indicated on the capacitor.

2.3 <u>Voltage rating.</u> DC voltage ratings (from sea level to an altitude of 100, 000 feet) are as follows:

CV11 and CV21 - 500 volts. CV31 - 200 and 350 volts.

- 2.4 <u>Operating temperature</u> range. These capacitors are suitable for operation over a temperature range of -55° to $+85^{\circ}$ C.
- 2.5 <u>Mounting.</u> These capacitors may be mounted close to a metal panel with little increase in capacitance. To avoid cracking or chipping of the ceramic mounting base, a resilient mounting (or mounting surface spacer) should be used.
- 2.6 <u>Capacitance change with temperature</u>. When measurements are made after the capacitors have reached thermal stability at each temperature setting (at a frequency between 0. 1 and 1.2 megahertz (MHz)), and with the capacitor set at 80 to 90 percent of maximum capacity, the changes of nominal capacitance from the value measured at + 25° C may vary from -4.5 to + 14.0 percent at -55° C or -10,0 to +2.0 percent at + 85° C or -10,0 to +2.0 percent at + 85° C may vary from -4.5 to + 14.0 percent at -55° C or -10,0 to +2.0 percent at + 85° C may vary from -4.5 to + 14.0 percent at -85° C or -10,0 to +2.0 percent at -85°

Since the temperature sensitivity is nonlinear over the capacitance range and varies greatly between units, these capacitors should not be designed into circuits as temperature compensating units.

The capacitance drift remains within 0.50 pF.

- 3. ITEM IDENTIFICATION (see figures 401-1 and 401-2).
- 3.1 <u>Type designation.</u> The type designation is used for identifying and describing the capacitors as shown in figure 401-1.

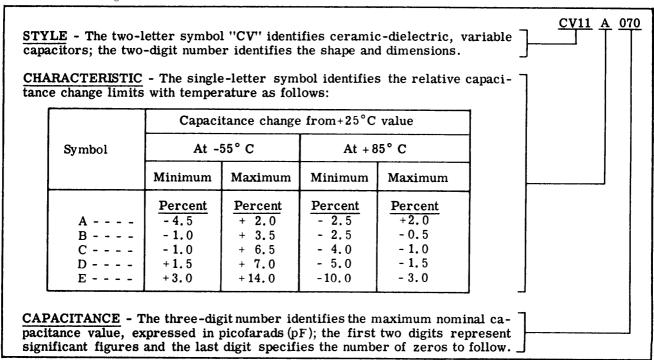
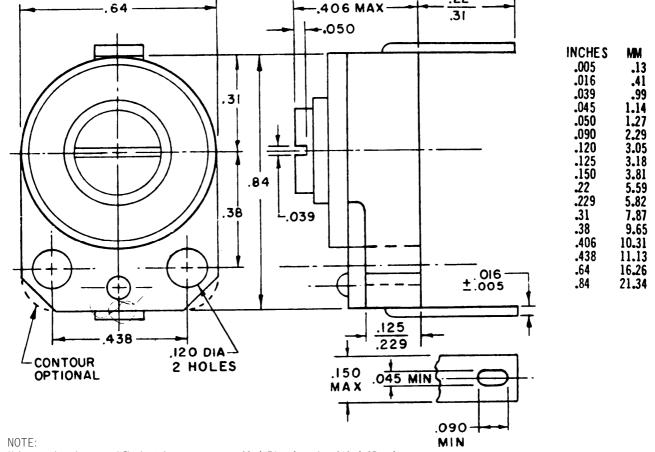



FIGURE 401-1. Type designation example.

3.2 <u>Standard capacitors.</u> The standard capacitors available in this section are shown in figure 401-2.

STANDARD CAPACITORS STYLE CV11 DC RATED VOLTAGE 500 VOLTS

· Type	i I Canac	itance	i I	Charact	eristic		 Symbol
designation		. • • • • • • • • • • • • • • • • • • •	Capacit	ance change	e from 25°	Cvalue	oy o v
	İ	-	At -55	*c	At +	85°C	
	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	<u> </u>
	pF	<u>pF</u>	Percent	Percent	Percent	Percent	! [
CV11A070	1.5	7.0	-4.5	+2.0	-2.5	+2.0	i a
CV11A120	3.0	12.0	1 -4.5	1 +2.0	1 -2.5	1 +2.0	1 A
CV11A250	4.5	25.0	-4.5	1 +2.0	-2.5	1 +2.0	A
CV11B130	3.0	13.0	-1.0	+3.5	-2.5	1 -0.5	! B
CV11B200	1 5.0	1 20.0	-1.0	+3.5	-2.5	-0.5	! B
CV11C300	1 4.0	30.0	1 -1.0	+6.5	-4.0	-1.0	l C
CV11C450	7.0	1 45.0	-1.0	+6.5	1 -4.0	1 -1.0	į C
CV11D060	2.0	6.0	+1.5	1 +7.0	-5.0	-1.5	! D
CV11D300	4.0	30.0	+1.5	1 +7.0	1 -5.0	1 -1.5	I D
CV11D450	7.0	1 45.0 I	+1.5 	1 +7.0	-5.0 	-1.5 	l D
	· <u>·</u>	<u></u>	<u> </u>	06 114 1	.22		·
	.64 ——		4	06 MAX	.31		

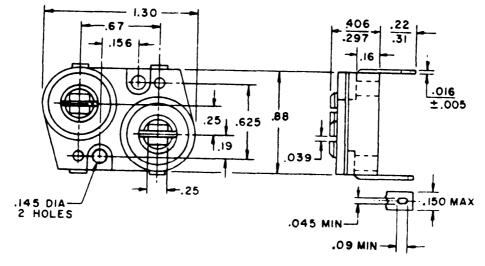
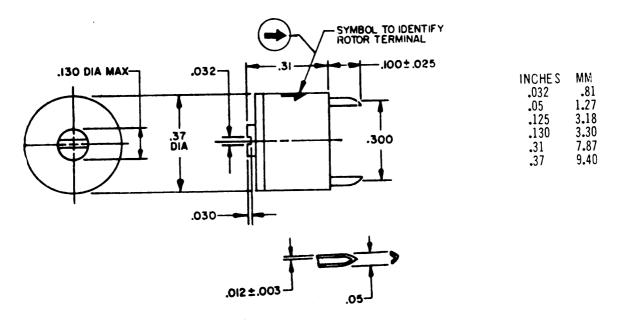

Unless otherwise specified, tolerances are $\pm.\,03$ (.76 mm) and $\pm.\,010$ (.25 mm).

FIGURE 401-2. Ceramic dielectric, variable capacitors.

STANDARD CAPACITORS STYLE CV21

DC RATED VOLTAGE 500 VOLTS

Type	 	itance	 	Charact	eristic		 Symbol
designation				ance change	e from 25°	Cvalue	
		•	At -55	•c	At +	85°C	
į	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	
	pF	pF	Percent	Percent	Percent	Percent	
CV21A070 CV21A120 CV21A200 CV21B130 CV21B200 CV21C300 CV21C450 CV21C450 CV21D300 CV21D450	1.5 3.0 4.5 3.0 5.0 4.0 7.0 5.0	7.0 12.0 20.0 13.0 20.0 30.0 45.0 30.0	-4.5 -4.5 -4.5 -1.0 -1.0 -1.0 -1.0 +1.5 +1.5	+2.0 +2.0 +2.0 +3.5 +3.5 +6.5 +6.5 +7.0 +7.0	-2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -4.0 -4.0 -5.0	+2.0 +2.0 +2.0 -0.5 -0.5 -1.0 -1.0	A A B B C C


NOTE:

MM .13 INCHES Unless otherwise specified, tolerances are $\pm .03$ (.76 mm) and $\pm .010$ (.25 mm). **INCHES** INCHES MM MM .005 .016 .039 .045 3.96 .31 .406 .156 7.87 .41 .99 1.14 .16 .19 .22 .25 4.06 10.31 4.83 5.59 6.35 .625 15.88 .67 17.02 22.35 .09 2.29 .88 .145 3.68 .297 7.54 .130 33.02 3.81 .150

FIGURE 401-2. Ceramic dielectric, varfable capacitors - Continued.

STANDARD CAPACITORS STYLE CV31

Type designation	Capacitance		DC rated	Capacita	Charac nce chang	teristic e from 25	Cvalue	Symbol
	Minimum	 Maximum	voltage	Minimum	55°C Maximum	At +	85 C Maximum	
	pF	pF	Volts	Percent	Percent	Percent	Percent	
CV31A080	2.0	8.0	350	-4.5	+2.0	-2.5	+2.0	A
CV31A180	5.5	18.0	350	-4.5	1 +2.0	1 -2.5	1 +2.0 1	A
CV31B110	1 2.5	11.0	1 350	-1.0	+3.5	1 -2.5	1 -0.5	В
CV31B250	7.0	25.0	350	1 -1.0	+3.5	-2.5	1 -0.5	В
CV31C100	3.0	10.0	350	1 -1.0	1 +6.5	-4.0	-1.0	С
I CV31C250	1 8.0	25.0	350	1 -1.0	+6.5	1 -4.0	1 -1.0	С
CV31D150	3.0	15.0	200	+1.5	+7.0	-5.0	1 -1.5	D
CV31D350	9.0	35.0	200	+1.5	+7.0	-5.0	i -1.5 i	D
CV31E600	15.0	60.0	200	1 +3.0	1 +14.0	-10.0	1 -3.0	Ē
1	1	1	<u> </u>	1	1	<u> </u>	<u> </u>	

NOTE: Unless otherwise specified, tolerances are $\pm .02$ (.51 mm) and $\pm .010$ (.25 mm).

FIGURE 401-2. Ceramic dielectric, variable capacitors - Continued.

SECTION 402

CAPACI TORS, VARI ABLE (PI STON TYPE, TUBULAR TRI MMER)
PC17, PC18, PC19, PC21, PC22, PC23, PC24, PC25, PC26,
PC30, PC32, PC38, PC39, PC40, PC42, PC43, PC48, and PC52
(APPLI CABLE SPECI FI CATI ON: MI L-C-14409)

- 1. SCOPE. This section covers sealed, piston-type, tubular trimmer, variable capacitors.
 - 2. APPLICATION INFORMATION
- 2.1 <u>Use.</u> These capacitors are small-sized, tubular-trimmer, variable capacitors designed or use where fine tuning adjustments are periodically required during the life of the equipment. Normally they are used for trimming and coupling in such circuits as intermediate frequency, radio-frequency, oscillator, phase shifter, and discriminator stages. Because of their low mass, these units are relatively stable against shock and vibration which tend to cause changes in capacitance. Capacitance change versus rotation is linear within \pm 10 percent. Backlash is virtyally nonexistent except on styles PC39 and PC43 which have a maximum backlash of 2 percent.
- 2.2 <u>Construction.</u> Styles PC19, PC25, PC26, PC30, and PC32 capacitors are rated at constructed of a series of concentric circular metal bands which interleaf and are variable by adjustment of the related depth of the interface. All other style capacitors are constructed of glass, quartz, sapphire, or alumina dielectric cylinders and metal tuning pistons. A portion of the cylinder is plated with metal to form the stator and the metal piston, controlled by a tuning screw, acts as the rotor for these variable capacitors. The overlap of the stator and rotor determines the capacitance. The self-contained piston within the dielectric cylinder functions as a low inductance coaxial assembly.
- 2.3 <u>Voltage ratings.</u> Styles PC25, PC26, PC30, and PC32 capacitors are rated at 250 V dc; styles PC21, PC22, PC23, and PC24 capacitors are rated at 500 V dc; styles PC38, PC42, PC48, and PC52 capacitors are rated at 750 and 1,250 V dc; styles PC39 and PC43 capacitors are rated at 1,000 V dc.
- 2.4 <u>Operating temperature range.</u> Styles PC21, PC22, PC23, PC24, PC25, PC26, PC30, PC32, PC39, PC40, PC43, PC48, PC52 capacitors are suitable for operation over a temperature range of -55° C to $+125^{\circ}$ C; styles PC38 and PC42 capacitors over a temperature range of -55° to $+150^{\circ}$ C.

- 3. ITEM IDENTIFICATION (see figures 402-1 and 402-2).
- 3.1 <u>Type designation.</u> The type designation is used for identifying and describing the capacitors as shown in figure 402-1.

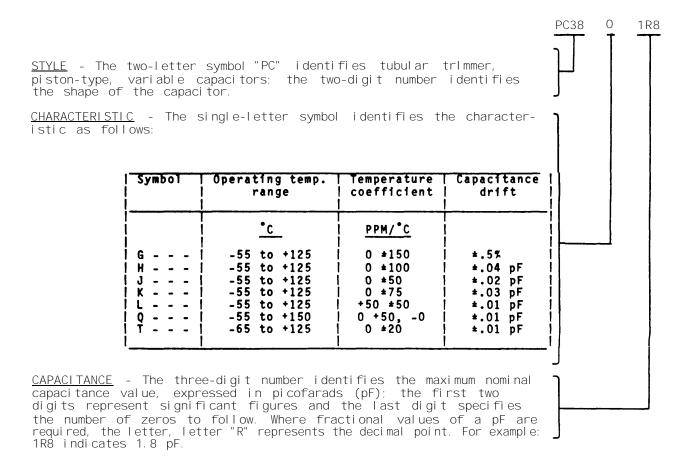
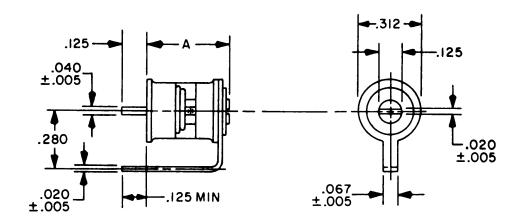


FIGURE 402-1. Type designation example.


 $3.2~\underline{\text{Standard}}$ capacitors. The standard capacitors available in this section are shown in figure 402-2.

STANDARD CAPACITORS

STYLE PC17 (MIL-C-14409/17)

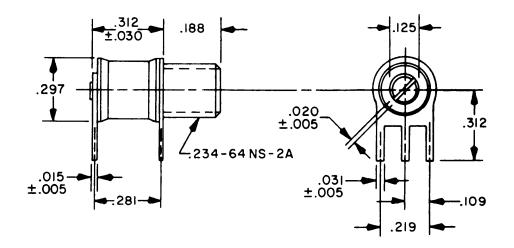
OPERATING TEMPERATURE RANGE -55°C TO +125°C -- DC RATED VOLTAGE 250 VOLTS -- TEMPERATURE COEFFICIENT O ±50 PPM/°C O ± 150 PPM/°C

Type designation	Capacitance range		Q minimum	Dimensions A ±.030
	Min	Max	,	
	pF	pF		
PC17J5R5 PC17J8R5 PC17G100 PC17G200 PC17G300 PC17G400	1.0 1.0 1.5 1.5 1.5	5.5 8.5 10 20 30 40	1,000 650 800 800 800 800	.390 .535 .340 .410 .490

I NCHES	MM	INCHES	MM
0. 005 0. 020 0. 040	0. 13 0. 51 1. 02	0. 067 0. 125 0. 280 0. 312	1. 70 3. 18 7. 11 7. 92

DTE:

Unless otherwise specified, tolerance is \pm .016 (.41 mm).


FIGURE 402-2. <u>Piston-type</u>, <u>tubular trimmer</u>, <u>variable capacitors</u>.

STANDARD CAPACITORS

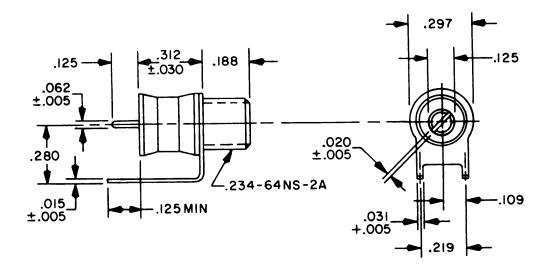
STYLE PC18 (MIL-C-14409/18)

OPERATING TEMPERATURE RANGE -55°C TO +125°C -- DC RATED VOLTAGE 125 AND 250 VOLTS -- TEMPERATURE COEFFICIENT 50 ± 50 PPM/°C

Type designation	Capacitance range 		Voltage rating 	Q minimum 	
	Min	i Max			
	pF	pF			
PC18L100 PC18L140	0.8	1 10 1 14	250 125	5,000 3,000	

I NCHES	MM	INCHES	MM	INCHES	MM
0. 005 0. 015 0. 020 0. 030 0. 031	0. 13 0. 38 0. 51 0. 76 0. 78	0. 109 0. 125 0. 188 0. 211 0. 219	2. 77 3. 18 4. 78 5. 36 5. 56	0. 234 0. 281 0. 297 0. 312	5. 94 7. 14 7. 54 7. 92

- Unless otherwise specified, tolerance is ± .016 (.41 mm).
 Solder, if used, shall be high temperature solder having a melting point of 300 +50, -5°C.


FI GURE 402-2. Piston-type, tubular trimmer, variable capacitors - Continued.

STANDARD CAPACITORS

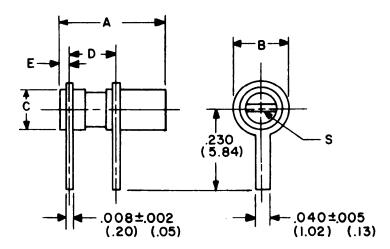
STYLE PC19 (MIL-C-14409/19)

OPERATING TEMPERATURE RANGE -55°C TO +125°C -- DC RATED VOLOTAGE 125 AND 250 VOLTS -- TEMPERATURE COEFFICIENT 50 \pm 50 PPM/°C

Type		itance	Voltage	Q
designation		nge	rating	minimum
	Min	Max	 	
	l pF	рF		
PC19L100	0.8	10	250	5,000
PC19L140		14	125	3,000

I NCHES	MM	INCHES	MM	INCHES	MM
0. 005	0. 13	0. 062	1. 57	0. 219	5. 56
0. 015	0. 38	0. 109	2. 77	0. 234	5. 94
0. 020	0. 51	0. 125	3. 18	0. 280	7. 11
0. 030	0. 76	0. 188	4. 78	0. 297	7. 54
0. 031	0. 78	0. 211	5. 36	0. 312	7. 92

- Unless otherwise specified, tolerance is ±.016 (.41 mm).
 Solder, if used, shall be high temperature solder having a melting point of 300 +50, -5 c.


FIGURE 402-2. Piston-type, tubular trimmer, variable capacitors - Continued.

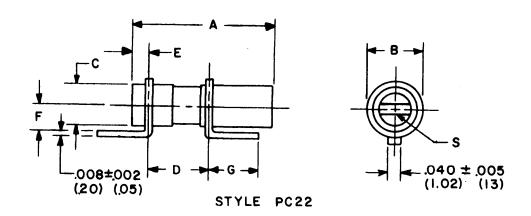
STANDARD CAPACITORS

STYLE PC21 (MIL-C-14409/16)

OPERATING TEMPERATURE RANGE -55°C TO +125°C -- DC RATE VOLTAGE 500 VOLTS -- TEMPERATURE COEFFICIENT 0 \pm 50 PPM/°C AND 0 \pm 75°C

Туре	j Cap	aci-	i I Q			Dimensions								
designation	tan ran	-	 	drift 	A	В	C	 D	E	 Depth	S	Longth		
	Min	Max	Min		(Max)		±.005 (.13)	±.010 (.25)	±.010 (.25)	1+.005	*. 005	±.005 (.13)		
	pF	l pF	1	pF		!	!	<u> </u>	İ	İ	Ţ	Ţ		
PC21J1R2	.3	1.2	5,000	.02 	.240 (6.10)	094	 .075 (1.90)	 .082 (2.08)	014	.020	1.010	045		
PC21J2R5	1 .4	2.5	14,000	.02	.240 (6.10)	1.140	1.118	.082 (2.08)	014	018	.015	075		
PC21J4R5	1.6	14.5	13,000 1	.02	.329 (8.36)	1.140	1.118	1.130	034 (.86)	018	015	075		
PC21K080	8.	8.0	1,500	.04	.495 .495 (12.57)	1 .140 !(3.56)	.118 (3.00)	.250 (6.35)	.036 (.91)	.018 (.46)	.015 (.38)	075		

NOTE: Unless otherwiuse specified, tolerance is $\pm .016$ (.41 mm).


FIGURE 402-2. <u>Piston-type</u>, <u>tubular trimmer</u>, <u>variable capacitors</u> - Continued.

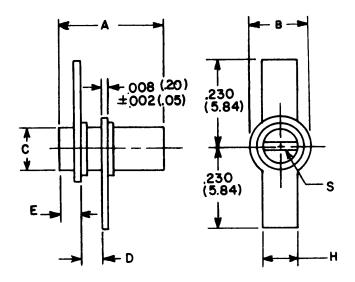
STANDARD CAPACITORS

STYLE PC22 (MIL-C-14409/16)

OPERATING TEMPERATURE RANGE -55°C TO +125°C -- DC RATED VOLTAGE 500 VOLTS -- TEMPERATURE COEFFICIENT O \pm 50 PPM/°C AND O \pm 75 PPM/°C

			1						Dimens	ions				
Type designation 	tai rai	aci- nce nge IMax I	!	Capaci- tance drift	A (Max)	B			E ±.010 (.25)	F	G	Depth *.005 (.13)		±.005
PC22J1R2	.3	11.2	5,000	.02	.240 (6.10)	.094 (2.39)	.075 (1.90)			.047		.020	1.010	.045 (1.14)
PC22J2R5	.4	12.5	4,000	.02	.240 (6.10)	.140 (3.56)	118	.082 (2.08)		.070 (1.78)		.018	1.015	.075 (1.90)
PC22J4R5	1.6	14.5	1 13,000		.329 (8.36)	.140 (3.56)	1118	.130 (3.30)		 .070 (1.78)		.018 (.46)	.015 (.38)	.075 (1.90)
PC22K080	1.8	18.0	1,500		.495 (12.57)	140 (3.56)				 .070 (1.78)		.018	1.015	.075 (1.90)

NOTE: Unless otherwise specified, tolerance is \pm .016 (.41 mm).


FIGURE 402-2. <u>Piston-type</u>, <u>tubular trimmer</u>, <u>variable capacitors</u> - Continued.

STANDARD CAPACITORS

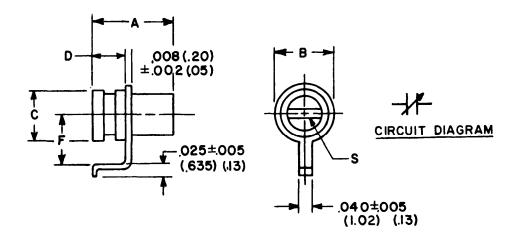
STYLE PC23 (MIL-C-14409/16)

OPERATING TEMPERATURE RANGE -55°C TO +125°C -- DC RATED VOLTAGE 500 VOLTS -- TEMPERATURE COEFFICIENT O ±50 PPM/°C AND O ±75 PPM/°C

	 			 	 			Dfi	mension	s			
Type designation	ta	aci- nce nge	i Q	Capaci- tance drift	i A !	B	C C 	 D ±.010	E ±.010	H 	Depth	S Width	Length
	Min	Max	Min	İ	(Max)	i !	(.13)		:	(.13) 	(.13)	(.13)	(.13)
PC23J1R2	.3	11.2	5,000	.02	.240 (6.10)	.094 (2.39)	.075 (1.90)	.056 (1.42)	018 (.46)	.040	.020 (.51)	.010 (.25)	045
PC23J2R5	.4	2.5	4,000	.02	.240 (6.10)	.140 (3.56)	1118		.018 (.46)	.093 (2.36)	.018 (.46)	.015 (.38)	 .075 (1.90)
PC23J4R5	.6	14.5	3,000	.02	.329 (8.36)	.140 (3.56)	.118	.060 (1.52)	.060 (1.52)	.093 (2.36)	.018 (.46)	.015 (.38)	.075 (1.90)
PC23K080	.8	8.0	1,500		.495 (12.57)	.140 (3.56)		.05 (1.3)	.148 (3.76)	.093 (2.36)	.018 (.46)	.015	075

NOTE:

Unless otherwise specified, tolerance is $\pm .016$ (.41 mm).


FIGURE 402-2. <u>Piston-type</u>, <u>tubular trimmner</u>, <u>variable capacitors</u> - Continued.

STANDARD CAPACITORS

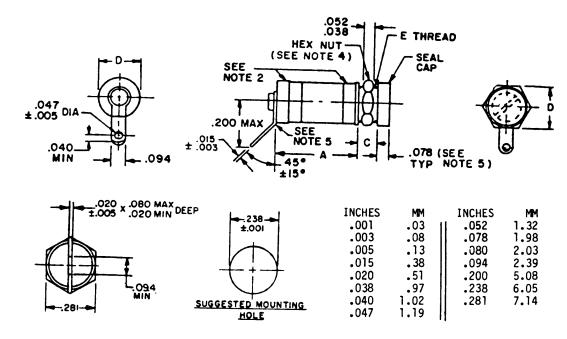
STYLE PC24 (MIL-C-14409/16)

OPERATING TEMPERATURE RANGE -55°C TO +125°C -- DC RATED VOLTAGE 500 VOLTS -- TEMPERATURE COEFFICIENT 0 ±50 PPM/°C AND 0 ± 75°C

 Type	 Cap	aci-	 Q	 Capacitance				Dimensi	ons			
designation	tan	ce	i ` ! !	drift 	A	B	C	i D	 F 	 Depth	S Width	Length
	Min	Max	i Min 	! !	 (Max) 	İ 1 1	±.005 (.13) 	±.010 (.25) 	1	±.005 (.13) 		±.005 (.13)
PC24J1R2	1.3	11.2	 5,000 	.02	.240 (6.10)	1 .094 1(2.39)	.075 (1.90)	.09 (2.3)	075 (1.90)	.020 (.51)	.010	.045
PC24J2R5	.4	2.5	14,000	.02	 .240 (6.10)	1.140	.118	.09 (2.3)	.110 (2.79)	.018	.015	.075
PC24J4R5	.6	4.5	3,000	.02	.329 (8.36)	.140 (3.56)	1.118	.16	.110 (2.79)	.018 (.46)	.015	075
PC24K080	8.1	8.0	1,500	.04	.495 (12.57)	1.140	1.118	.25	110	.018	.015	.075

NOTE:

Unless otherwise specified, tolerance is $\pm .016$ (.41 mm).


FIGURE 402-2. Piston-type, tubular trimmer, variable capacitors - Continued.

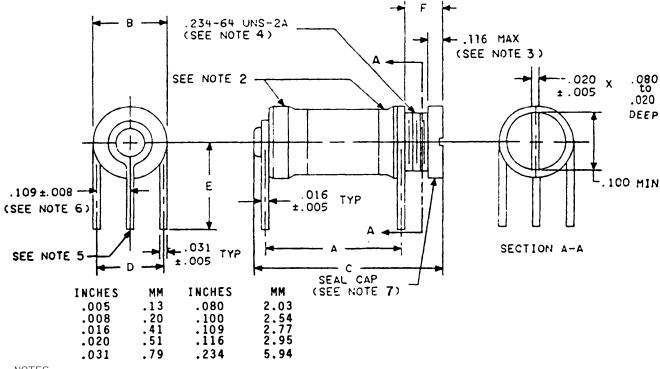
STANDARD CAPACITORS

STYLE PC25 (MIL-C-14409/12)

OPERATING TEMPERATURE RANGE -55° TO +125°C -- DC RATED VOLTAGE 250 VOLTS -- TEMPERATURE COEFFICIENT ± 50 PPM/°C

_						Dimensions		
l Type designation 	Capac	itance nge Max	l l Q l Min	±.020 (.51)	B ±.020 (.51)	C ±.016 (.41)	I D	E
İ	pF	pF		 	<u> </u>	<u> </u>	- 	<u> </u>
PC25J060	0.6	6.0	10,000	.281 (7.14)	.203	.141	.220 (5.59)	.190-64 UNS-2A
PC25J100	0.8	10.0	5,000	.288	.196 (4.98)	.118	.281	.234-64 UNS-2A
PC25J140	1.0	14.0	3,000	.288	.196 .198)	.125	.281	l .234-64 UNS-2A
PC25J200	1.0	20.0	1,500	.500 (12.70)	.196 (6.15)	1 .125	.281	 .234-64 UNS-2A

- 1. Unless otherwise specified, tolerance is \pm .016 (.41 mm).
- 2. Solder if used, shall be high temperature solder having a melting point of 300°c +50°C -5°C.
- 3. Bend-point of terminal at turret shall be within the radius of the turret cap: for style PC25T060, terminal may be perpendicular to body, .225 inches (5.72 mm) maximum length.
- 4. Round nut shall be furnished on parts with . 190-64 thread.
- 5. Seal cap shall be .062 (1.57 mm) typical for parts with .190-64 thread.

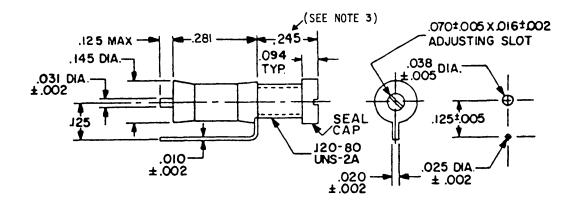

FIGURE 402-2. <u>Piston-type, tubular trimmer, variable capacitors</u> - Continued.

STANDARD CAPACITORS

STYLE PC26 (MI L-C-14409/13)

OPERATING TEMPERATURE RANGE -55° TO +125°C -- DC RATED VOLTAGE 250 VOLTS --TEMPERATURE COEFFICIENT ± 50 PPM/°C AND ± 20 PPM/°C

1	T			7		Dimens	ions		
Type designation	Capaci		l Q	A ±.025	B	T C	T D	I E	F
	Min	Max	Min	(.64)	{ 	l max		1]
İ	pF	pF		†	Ī	†		Ţ	1
PC26J060	0.6	6.0	10,000	.266 (6.76)			156	.250 (6.35)	.240 (6.10)
PC26T100	0.8	10.0	5,000	.297	.281 (7.14)	.578 (14.68)			.211 (5.36)
PC26T140	1.0	14.0	3,000	.297 (7.54)	.281 (7.14)	.578 (14.68)	.219	.500 (12.70)	.218 (5.54)
PC26T200	1.0	20.0	1,500	.562	.281	.801 (20.35)	.219		.196 (4.98)
PC26J300	1.0	30.0	800 	750 (19.05)	.281 (7.14)	.969	.219 (5.56)		.196 (4.98)


- Unless otherwise specified, tolerance is ±.016 (.41 mm). 1.
- If solder is used, the soldering of the turret cap to the cylinder, and of the cylinder to the base and to the base leads shall be accomplished with a high 2. temperature solder having a melting point of 300°C +50°C, -5°C.
- 3 .
- For type PC26J060, dimension shall be .094 ±.005 (2.39 mm ±.13 mm). For type PC26J060, thread shall be .190-64 UNS-2A. For type PC26J300 two terminals shall be used of same size and length as front
- 6. For type PC26J060, dimension shall be $.078 \pm .008 (1.95 \pm 20 \text{ mm})$.
- Seal cap shall be slotted.

STANDARD CAPACITORS

STYLE PC30 (MIL-C-14409/15)

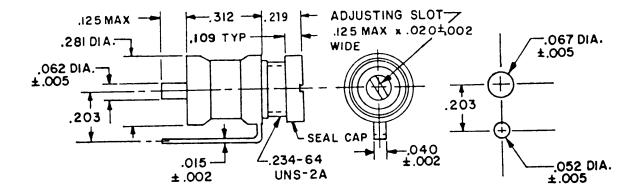
OPERATING TEMPERATURE RANGE -55° TO +125°C -- DC RATED TO 250 VOLTS -- TEMPERATURE COEFFICIENT ±50 PPM/°C

l Type	Capacita	nce range	Q
designation	Min	Max	Min
	<u>pF</u>	<u>pF</u>	
PC30J3R5 PC30J5R0	0.6	3.5 5.0	10,000 7,500

INCHES	MM		INCHES	MM
.002	.05	- []	.070	1.78
.005	.13	11	.094	2.39
.010	.25	- 11	.120	3.05
.016	.41	-11	.125	3.18
.020	.51	-11	.145	3.68
.025	.64	- 11	.245	6.22
.031	.79	-11	.281	7.14
.038	.97			

NOTES:

- 1. Unless otherwise specified, tolerance is ±.016.
- 2. Seal cap shall be slotted.
- 3. For type PC30J5RO, this dimension shall be .280 (7.11).


FIGURE 402-2. <u>Piston-type, tubular trimmer, variable capacitors</u> - Continued.

STANDARD CAPACITORS

STYLE PC32

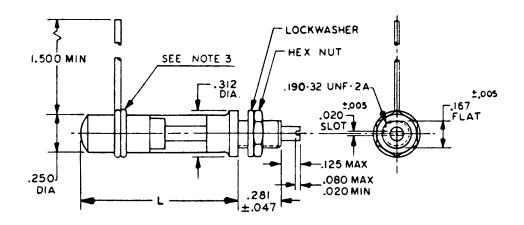
OPERATING TEMPERATURE RANGE -55° TO +125°C -- DC RATED TO 250 VOLTS -- TEMPERATURE COEFFICIENT ±20 PPM/°C

Type designation	Capacita Min	nce range Max	Q Min
	pF	pF	
PC32T140	1.5	14.0	3,000

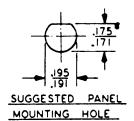
INCHES	MM	INCHES	MM
.002	.05	11 .109	2.77
.005	.13	11.125	3.18
.015	.38	11.203	5.17
.020	.51	11.219	5.56
.040	1.02	11.234	6.22
.052	1.32	11 .281	7.14
.062	1.57	11 .312	7.92
.067	1.70	11 700-	

NOTES:

- 1. Unless otherwise specified, tolerance is $\pm .016$ (.41).
- 2. Seal cap shall be slotted.


FIGURE 402-2. Piston-type, tubular trimmer, variable capacitors - Continued.

STANDARD CAPACITORS


STYLES PC38 AND PC48

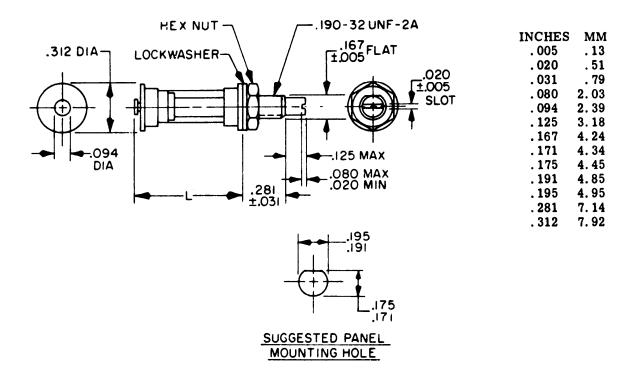
OPERATING TEMPERATURE RANGE -55° TO + 150° C (PC38) AND -55° TO + 125° C (PC48)

Style	Capacitance		DC rated	Q	Tomponotino	Camacita	Dimension	Wire
	Min	Max	voltage	*	Temperature coefficient	Capacitance drift	L ±.031 (.79 mm)	size (AWG)
	pF	pF	<u>Volts</u>		ppm/° C	pF	Inches	
PC38	.6 .6 .6	1.8 5.5 9.5 16.0	750 1,250 1,250 1,250	1,500 1,500 1,500 1,500	+50, -0 +50, -0 +50, -0 +50, -0	. 01 . 01 . 01 . 01	.359 (9.12) .625 (15.88) 1.062 (26.97) 1.656 (42.06)	24 22 22 22
PC48	.8 .8 .8	5.5 11.0 16.0 23.0 38.0	750 1,250 1,250 1,250 1,250	1,000 900 800 700 500	±50 ±50 ±100 ±100 ±100	. 02 . 02 . 04 . 04 . 04	.359 (9.12) .594 (15.09) .812 (20.62) 1.062 (26.97) 1.656 (42.06)	24 22 22 22 22 22

INCHES	MM	INCHES	MM
. 005	. 13	. 175	4.45
. 020	. 51	. 191	4.85
. 047	1.19	. 195	4.95
. 080	2.03	. 250	6.35
. 125	3.18	. 281	7.14
. 167	4.24	. 312	7.92
. 171	4.34	1.500	38.10

NOTES:

- 1. Unless otherwise specified, tolerance is ±.016 (.41 mm).
- 2. The flat on the mounting bushing extends to the mounting surface of the shoulder.
- 3. There are a minimum of one and one-half turns of wire around the body. These turns of wire are completely soldered to the body.


FIGURE 402-2. piston-type, tubular trimmer, variable capacitors - Continued.

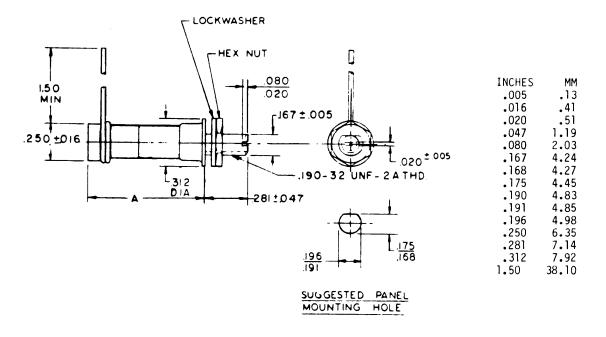
STANDARD CAPACITORS

STYLE PC39

OPERATING TEMPERATURE RANGE -55° TO + 125°C -- DC RATED VOLTAGE 1,000 VOLTS

Capac	itance	Dimension		Temperature coefficient	
Minimum	mum Maximum		L ±.031 (.79 mm)		
pF pF			Inches	ppm/°C	
1.0 1.0 1.0 1.0	16 36 52 75 120	750 550 350 250 250	.469 (11.91) .703 (17.86) .922 (23.42) 1.172 (29.77) 1.766 (44.86)	±150 ±150 ±150 ±150 ±50	

- 1. Unless otherwise specified, tolerance is \pm .016 (.41 mm).
- 2. The flat on the mounting bushing extends to the mounting surface or the shoulder.
- 3. The turnet cap is soldered to the cylinder with high temperature solder having a minimum melting point of 232°C.


FIGURE 402-2. Piston-type, tubular trimmer, variable capacitors - Continued.

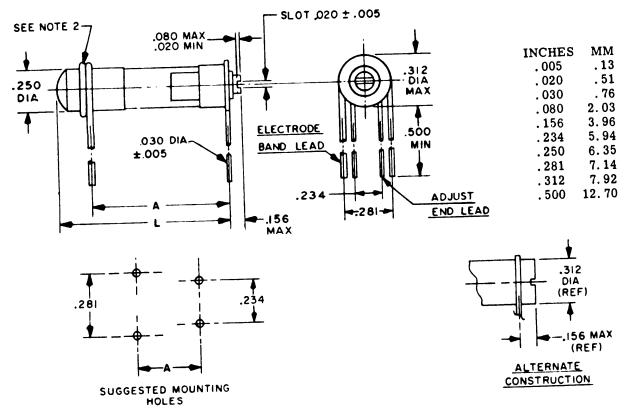
STANDARD CAPACITORS

STYLE PC40

OPERATING TEMPERATURE RANGE -55° TO +150°C -- DC TATED VOLTAGE 750 VOLTS -- TEMPERATURE COEFFICIENT +50, -0

Type designation		itance	Dimension A +.047,031	Q
destignation	Min	Max	(+1.19,79)	
	<u>p</u> F	<u>pF</u>		
PC40Q1R5 PC40Q5R5 PC40Q9R5 PC40Q160	0.6 0.6 0.6 0.8	1.8 5.5 9.5 16.0	.297 (7.54) .547(13.89) .984(24.99) 1.594(40.49)	1,500 1,500 1,500 1,500

NOTE: Unless otherwise specified, tolerance is \pm .016 (.41 mm).


FIGURE 502-2. Piston type, tubular trimmer, variable capacitors - Continued.

STANDARD CAPACITORS

STYLES PC42 AND PC52

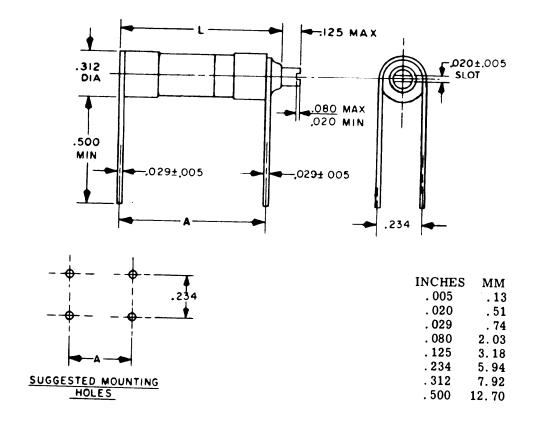
OPERATING TEMPERATURE RANGE -55° TO + 150° C (PC42) AND -55° TO +125° C (PC52)

			DC				Dimer	sions	Wire
Style	Capac	itance	rated voltage	Q	Temperature coefficient	Capacitance drift	A ± .031 (.79)	L (max)	size (AWG)
	Min	Max	, 020				11 1 1001 (1 1 1 1		
	pF	pF	Volts		ppm/° C	<u>p</u> F	Inches	Inches	
PC42	.6 .6 .6	1.8 5.5 9.5 16.0	750 1,250 1,250 1,250	1,500 1,500 1,500 1,500	+50, -0 +50, -0 +50, -0 +50, -0	. 01 . 01 . 01 . 01		. 656 (16.66) . 922 (23.42) 1. 359 (34.52) 1. 953 (49.61)	24 22 22 22 22
PC 52	.8 .8 .8	5.5 11.0 16.0 23.0 38.0	750 1,250 1,250 1,250 1,250	1,000 900 800 700 500	±50 ±50 ±100 ±100 ±100	. 02 . 02 . 04 . 04 . 04	1.016 (25.81)	1.109 (28.17) 1.359 (34.52)	24 22 22 22 22 22

NOTES:

- 1. Unless otherwise specified, tolerance is ±.016 (.41 mm).
- There are a minimum of one and one-half turns of wire around the body. These turns of wire are completely soldered to the body.
- 3. This style capacitor is designed for printed-circuit mounting.

FIGURE 402-2. Piston-type, tubular trimmer, variable capacitors - Continued.


402 (MIL-C-14409)

STANDARD CAPACITORS

STYLE PC43

OPERATING TEMPERATURE RANGE -55° TO +125°C -- DC TATED VOLTAGE 1,000 VOLTS

Capacitance		Dimensi			
Minimum	Maximum	L ± .062(1.57)	A ± .062 (1.57)	Q (Min)	Temperatur coefficien
pF 1.0 1.0 1.0 1.0	<u>pF</u> 16.0 36.0 52.0 75.0 120.0	Inches . 734 (18. 64) . 969 (24. 61) 1. 188 (30. 18) 1. 422 (36. 12) 2. 031 (51. 59)	Inches . 688 (17.48) . 922 (23.42) 1.141 (28.98) 1.375 (34.93) 1.984 (50.39)	750 550 350 250 250	ppm/°C ±150 ±150 ±150 ±150 ±50

- 1. Unless otherwise specified, tolerance is ±.016(.41 mm).
- 2. This style capacitor is designed for printed-circuit mounting.

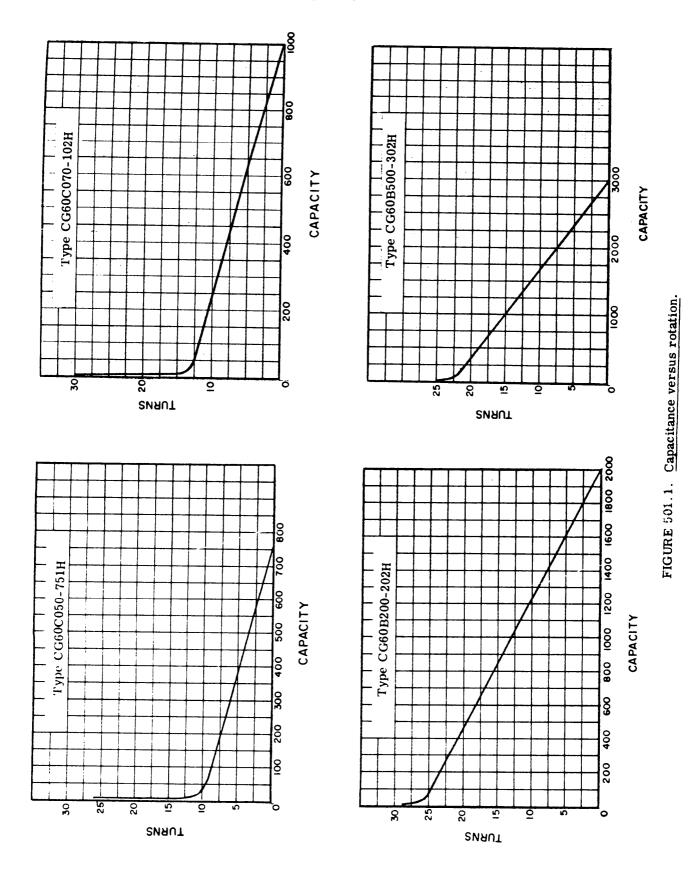
FIGURE 402-2. <u>Piston-type, tubular trimmer, variable capacitors</u> - Continued.

MI L-STD-198E

SECTION 500

CAPACITORS, VARIABLE, GAS OR VACUUM DIELECTRIC

Section


501. Capacitors, Variable, Gas or Vacuum Dielectric,
Ceramic Envelope- - - - - - - - - - - - - - MIL-C-23183

SECTION 501

CAPACITORS, VARIABLE, GAS OR VACUUM DIELECTRIC, ENVELOPE STYLE CG60

(APPLICABLE SPECIFICATION: MIL-C-23183)

- 1. SCOPE. This section covers gas or vacuum dielectric, variable capacitors
- 2. APPLICATION INFORMATION.
- 2.1 <u>Use.</u> These capacitors are Intended for use in high voltage applications. The voltage indicated for capacitors in this section is the 60-hertz test voltage at maximum capacity. This is the absolute safe maximum voltage the unit will withstand before breakdown occurs. The breakdown voltage is greater at capacities less than maximum, becoming as much as 300 percent greater at minimum capacity for lower voltage units. The breakdown voltage at radiofrequencies is the same for low frequencies up to about 2.5 megahertz (MHz), and becomes avout 10 percent lower at 30 MHz. The continuous duty operating voltage of these capacitors is dependent on the frequency involved, (lower for high frequency), the percentage Of the capacitor in use, and the duty cycle. The continuous duty rf rating of these capacitors is arbitrarily defined as that voltage and current that will bring the unit up to a steady 85°C without cooling. These capacitors will operate safely at a uniform temperature as high as 125°C and may be operated even higher under special conditions. It can be seen that the rating is quite conservative. The rating can further be increased by additional cooling such as blowers, large conductors to act as heat sinks, water cooling, etc. For example, water-cooled variables are available with current ratings that are four times normal. Care mst be observed not to apply excessive strain on units by the use of large conductors. Forced-air cooling must be applied uniformly to prevent heat strains. The dissipation factor is very low dosses even at very high frequencies. The heavy copper construction minimizes stray inductance and provides an excellent heat sink. Due to their low losses, and high heat dissipating capabilities, these capacitors will handle exceptionally high continuous currents at very high frequencies and high capacities, due to the low capacitive reactance, the continuous duty current will usually be reached at a voltage below the maximum rated voltage. Likewise at low frequencies and low capacities, due t
- 2.2 <u>Capacitance change versus rotation.</u> The capacitance change versus rotation is shown in figure 501.1.
 - 3. ITEM IDENTIFICATION (see figures 501-2 and 501-3).
- $3.1\ \underline{\text{Type}}$ designation. The type designation is used for identifying and describing the capacitors as shown in figure 501-2.
- $3.2 \ \underline{\text{Standard capacitors.}}$ The standard capacitors available ifn this section are shown in figure 501-3.

501 (MI L-C-23183)

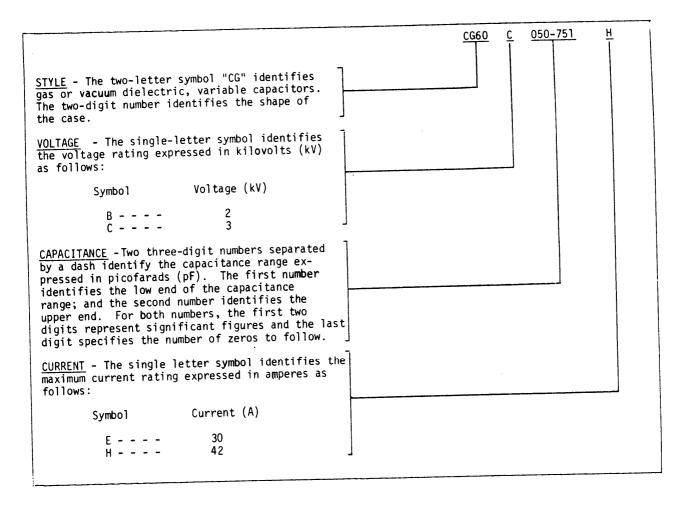
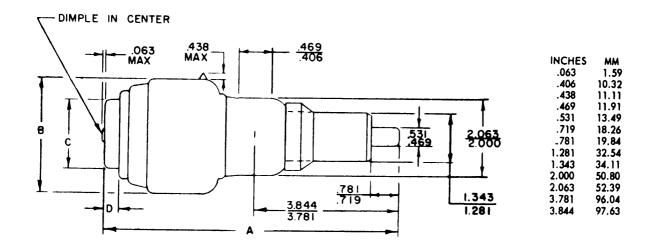



FIGURE 501-2. Type designation example.

STANDARD CAPACITORS

STYLE CG60 (MIL-C-23183/5)

OPERATING TEMPERATURE RANGE -55° TO + 85° C -- RATED CURRENT 42 AMPERES RMS

Туре	Voltage	Capaci-				Dimen	sions			
designation	peak	tance		A	I	3				D
		range	Min	Max	Min	Max	Min	Max	Min	Max
	kV	pF								
CG60C050-751H	3	5-750	7.500	8.000	2. 938	3.063	1.781	1.844	.344	. 406
CG60C070-102H	3	7-1,000	(190.50) 7.438	(203. 20) 7. 938	2.938	(77. 79) 3. 063	1.781	1.844	(8. 73) . 344	(10. 32) . 406
CG60B200-202H	2	20-2,000	(188. 91) 8. 063 (204. 79)	(201. 61) 8. 438 (214. 31)	2.938	(77. 79) 3. 063 (77. 79)	2.000	2.063	(8, 73)	(10, 32)
CG60B500-302H	2	50-3,000	8. 000 (203. 20)	8. 375 (212. 73)	3.438	3.563 (90.49)	2.000	2. 063	.719	(10. 32) . 781 (19. 84)

FIGURE 501-3. <u>Gas or vacuum dielectric, ceramic envelope, variable capacitors.</u>

SECTION 600

CAPACITORS, FIXED, GLASS AND MICA DIELECTRIC, ESTABLISHED RELIABILITY

<u>Section</u>	Applicable specification
601. Capacitors, Fixed, Glass Dielectric, Established Reliability	MI L-C-23269
602. Capacitors, Fixed, Mica Dielectric, Established	MI L-C-39001

Downloaded from http://www.everyspec.com

SECTION 601

CAPACITORS, FIXED, GLASS DIELECTRIC. ESTABLISHED RELIABILITY

STYLES CYR10, CYR13, CYR15, CYR17, CYR20, CYR22, CYR30, CYR32, CYR41, CYR51, CYR52, AND CYR53

(APPLICABLE SPECIFICATION: MIL-C-23269)

- 1. SCOPE. This section covers established reliability, glass dielectric, fixed capacitors enclosed in glass or vitreous enamel cases, suitably protected against environmental conditions. These capacitors have failure rate levels ranging from 1.0 to 0.001percent per 1,000 hours. The failure rate levels are established at a 90-percent confidence level and are based on full rated voltage at + 125° C.
 - 2. APPLICATION INFORMATION.
- 2.1 <u>Use.</u> These capacitors are intended for use in any equipment where known orders of reliability required, and are primarily designed as a substitute for mica-dielectric capacitors as a step toward conservation of critical mica. They are effective substitutes for mica-dielectric capacitors and can be employed for many applications where mica-dielectric capacitors are used, provided consideration is given to the differences in temperature coefficient and dielectric loss. They are capable of withstanding environmental conditions of shock, vibration, acceleration, extreme moisture, vacuum, extended life of 30,000 hours and more, and high operating temperatures such as experienced in missile-borne and space electronic equipment.
- 2.2 <u>Construction.</u> Glass-dielectric capacitors are composed of alternate layers of glass ribbon and the electrode material. After assembly, the units are sealed together by high temperature and pressure to form a rugged monolithic block. Since the terminal leads are fused to the glass case, the seal cannot be broken without destroying the capacitor. Although these capacitors are of monolithic structure, they are not necessarily hermetically sealed since the coefficient of thermal expansion of the terminals does not match that of the case. These construction features add up to the following advantages:
 - (a) Fixed temperature coefficient.
 - (b) High insulation resistance.
 - (c) Low dielectric absorption.
 - (d) Readily used where miniaturization is demanded.
 - (e) Ability to operate in environments involving high humidity and high temperatures.
- 2.2.1 <u>Phusical size.</u> The physical size of the glass-dielectric capacitor is smaller than, or approximates very closely, the size of the "postage-stamp" type mica-dielectric capacitor.
- $2.3~\underline{\text{Rated voltage.}}$ These capacitors are rated at 100, 300, or 500 volts depending upon capacitance value and style.
- 2.4 <u>Operating temperature range.</u> These units are suitable for operation over a temperature range of -55° to $+125^{\circ}$ C.
- 2.5 <u>Temperature coefficient and capacitance drift.</u> These capacitors are available in three temperature coefficients. For the axial-lead capacitors, the temperature coefficient is 140 +25 ppm/°C or 0 \pm ppm/°C (for style CYR41). For the axial-radial lead capacitors, the temperature coefficient is 105 \pm 25 ppm/°C. The capacitance drift is \pm 0.1 percent or 0.1 pF, whichever is greater, for all capacitors.

- 2.6 <u>Shock.</u> Glass capacitors are resistant to high G loads but they are susceptible to damage from mild mechanical shocks.
- $2.7~\underline{0}$. Glass-dielectric capacitors exhibit a much higher Q over a wider capacitance range than mica-dielectric capacitors. (See figure 601-1.)
- 2.8 Failure-rate level determination. The curves presented on figure 601-2 are the best engineering approximation of the reliability characteristics (random failures) for these capacitors when employed repeatedly, within their specification ratings, in complex electronic equipment. These reliability characteristics are based on ground-level severity experience. Failures are considered to be opens, shorts, or radical departures from initial characteristics. The failures are considered to be occurring in an unpredictable manner and in too short a period of time to permit detection through normal preventive maintenance. The curves shown on figure 601-2 are based on "catastrophic failures" and will differ from the failure rates established in the specification, since the established failure rates are based on "parametric failures" over long term life tests at rated conditions. As indicated, these curves are the best estimates based on "catastrophic failures"; however, they can provide an estimate of the relative effect of operating under conditions other than rated.

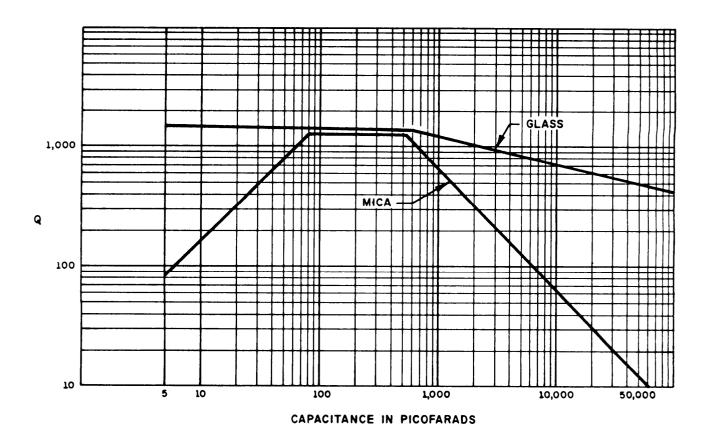


FIGURE 601-1. Capacitance and Q at 1MHz.

601 (MIL-C-23269)

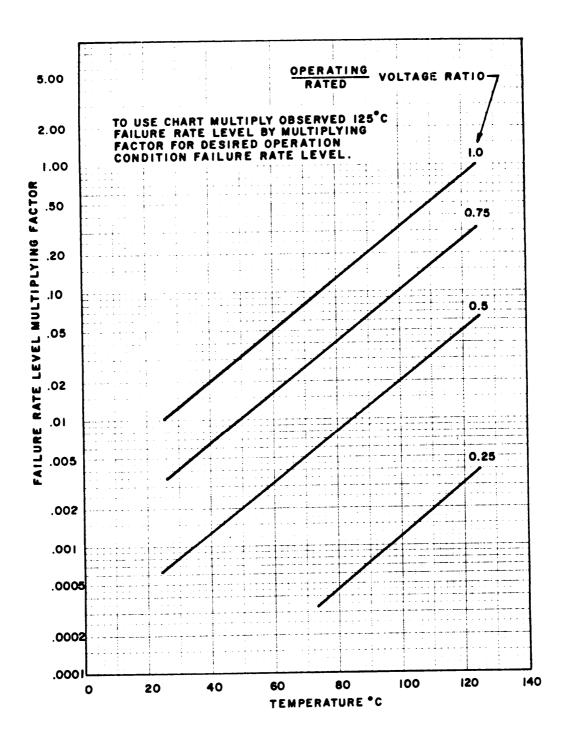
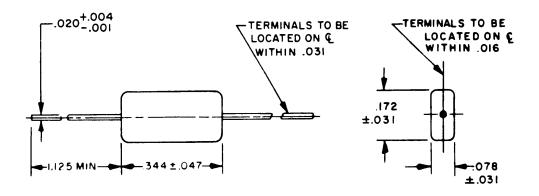
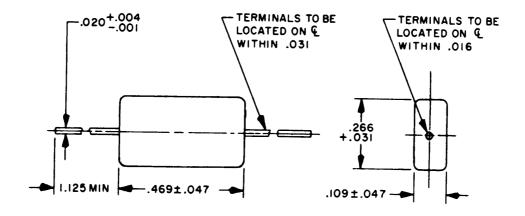



FIGURE 601-2. Failure rate level curves.

3. ITEM IDENTIFICATION.

3.1 <u>Standard capacitors.</u> The standard capacitors available in this Section are shown in figure 601-3. (The figure gives the electrical characteristics, case sizes, failure rate levels, and Military part numbers of capacitors which are standard for design.)

INCHES	MM
. 001	. 03
.004	. 10
.016	. 41
. 020	. 51
. 031	.79
. 047	1.19
. 078	1.98
. 172	4.37
. 344	8.74
1.125	2 8.58


FIGURE 601-3. B Established reliability, glass dielectric, fixed capacitors.

STANDARD CAPACITORS

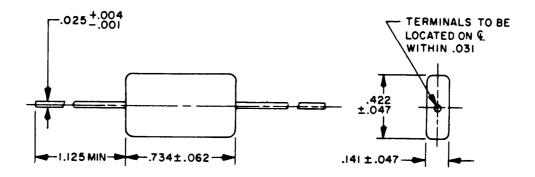
STYLE CYR10 (MI L-C-23269/1)

OPERATING TEMPERATURE RANGE -55° TO +125°C -- TEMPERATURE COEFFICIENT 140 ± 25 PPM/°C -- CAPACITANCE DRIFT 0.1% OR 0.1 PF, WHICHEVER IS GREATER

Capacitance value pF	DC rated voltage	Capacitance	Dash number M23269/01- FR level in %/1,000 hours				
рF		tolerance	M (1.0)	P (0.1)	R (0.01)	S (0.001)	
יומ די						<u> </u>	
<u> </u>	volts, dc	.0 95 m	3001	4001	5001	6001	
0.5	500	±0.25 pF			5002	6002	
1.0	1 7	±0.25 pF	3002	4002		6002	
1.5		±0.25 pF	3003	4003	5003		
2.2		±0.25 pF	3004	4004	5004	6004	
2.7		±0.25 pF	3006	4006	5006	6006	
3.3		±0.25 pF	3009	4009	5009	6009	
3.6		±0.25 pF	3010	4010	5010	6010	
3.9		±0.25 pF	3012	4012	5012	6012	
4.7		±0.25 pF	3015	4015	5015	6015	
5.6		±0.25 pF	3017	4017	5017	6017	
5.6		±5%	3018	4018	5018	6018	
6.8		±0.25 pF	3021	4021	5021	6021	
6.8		±5%	3022	4022	5022	6022	
8. 2		±0.25 pF	3025	4025	5025	6025	
8.2		±5%	3026	4026	5026	6026	
10		±0.25 pF	3029	4029	5029	6029	
10		±5%	3030	4030	5030	6030	
12		±0.25 pF	3033	4033	5033	6033	
12		±5%	3034	4034	5034	6034	
15		±2%	3037	4037	5037	6037	
15		±5%	3038	4038	5038	6038	
18		±2%	3041	4041	5041	6041	
18		±5%	3042	4042	5042	6042	
22		±2%	3045	4045	5045	6045	
22		±5%	3046	4046	5046	6046	
			3049	4049	5049	6049	
27		±1%		4051	5051	6051	
27		±5%	3051				
33		±1%	3055	4055	5055	6055	
33		±5%	3057	4057	5057	6057	
39	l i	±1%	3061	4061	5061	6061	
39		±5%	3063	4063	5063	6063	
47		±1%	3067	4067	5067	6067	
47		±5%	3069	4069	5069	6069	
56		±1%	3073	4073	5073	6073	
56		±5%	3075	4075	5075	6075	
68		±1%	3079	4079	5079	6079	
68		±5%	3081	4081	5081	6081	
82		±1%	3085	4085	5085	6085	
82		±5%	3087	4087	5087	6087	
100		±1%	3091	4091	5091	6091	
100		±5%	3093	4093	5093	6093	
120		±1%	3097	4097	5097	6097	
120		±5%	3099	4099	5099	6099	
150		±1%	3103	4103	5103	6103	
150	1	±5%	3105	4105	5105	6105	
180	1 1	±3% ±1%	3109	4109	5109	6109	
180	500	±5%	3111	4111	5111	6111	
	300	±3% ±1%	3115	4115	5115	6115	
220			1	1			
220	300	±5%	3117	4117	5117	6117	
270 270	300 300	±1% ±5%	3121 3123	4121 4123	5121 5123	6121 6123	

INCHES	MM
. 001	. 03
. 004	. 10
.016	. 41
. 020	. 51
. 031	.79
. 047	1.19
. 109	2.77
. 26 6	6.76
. 469	11.91
1.125	28.58

FIGURE 601-3. Established reliability, glass dielectric, fixed capacitors - Continued.


STANDARD CAPACITORS

STYLE CYR15 (MI L-C-23269/2)

OPERATING TEMPERATURE RANGE -55° TO + 125°C -- TEMPERATURE COEFFICIENT 140 ± 25 PPM/°C -- CAPACITANCE DRIFT O. 1% OR O. 1 PF, WHICHEVER IS GREATER

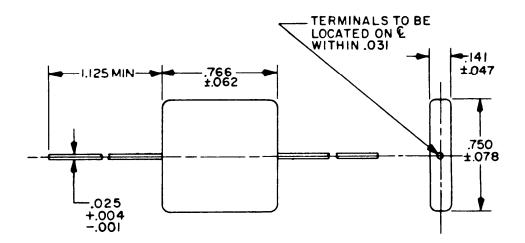
Capacitance	DC rated	Capacitance			er M23269/02 %/1,000 hou	
value	voltage	tolerance	M (1.0)	P (0.1)	R (0.01)	S (0.001)
pF	volts, dc		**************************************			
270	500	±1%	3007	4007	5007	6007
270	A	±5%	3009	4009	5009	6009
330	:	±1%	3013	4013	5013	6013
330		±5%	3015	4015	5015	6015
390		±1%	3019	4019	5019	6019
390		±5%	3021	4021	5021	6021
470	•	±1%	3025	4025	5025	6025
470	500	±5%	3027	4027	5027	6027
560	300	±1%	3031	4031	5031	6031
560	A	±5%	3033	4033	5033	6033
680	1 1	±1%	3037	4037	5037	6037
680		±5%	3039	4039	5039	6039
820		±1%	3043	4043	5043	6043
820	1	±5%	3045	4045	5045	6045
1,000		±1%	3049	4049	5049	6049
1,000		±5%	3051	4051	5051	6051
1,200	♦	±1%	3055	4055	5055	6055
1, 200	300	±5%	3057	4057	5057	6057

FIGURE 601-3. Established reliability, glass dielectric, fixed capacitors - Continued.

INCHES	MM
.001	. 03
.004	. 10
. 025	. 64
.031	.79
. 047	1.19
. 062	1.57
. 141	3.58
. 422	10.72
.734	18.64
1.125	28.58

FIGURE 601-3. Established reliability, glass dielectric, fixed capacitors - Continued.

STANDARD CAPACITORS


STYLE CYR20 (MIL-C-23269/3)

OPERATING TEMPERATURE RANGE -55° TO +125°C -- TEMPERATURE COEFFICIENT 140 ±25 PPM/°C -- CAPACITANCE DRIFT O. 1% OR O. 1 PF, WHICHEVER IS GREATER

Capacitance	DC rated	Capacitance	Dash number M23269/03- FR level in %/1,000 hours				
value	voltage	tolerance	M (1.0)	P (0.1)	R (0.01)	S (0.001)	
рF	volts, dc						
1,500	500	±1%	3031	4031	5031	6031	
1,500	4	±5%	3033	4033	5033	6033	
1,800		±1%	3037	4037	5037	6037	
1, 800	1	±5%	3039	4039	5039	6039	
2,200		±1%	3043	4043	5043	6043	
2,200]	±5%	3045	4045	5045	6045	
2,700		±1%	3049	4049	5049	6049	
2,700		±5%	3051	4051	5051	6051	
3,300	↓ •	±1%	3055	4055	5055	6055	
3, 300	500	±5%	3057	4057	5057	6057	
3,900	300	±1%	3061	4061	5061	6061	
3, 900	300	±5%	3063	4063	5063	6063	
4,700	300	±1%	3067	4067	5067	6067	
4,700	300	±5%	3069	4069	5069	6069	

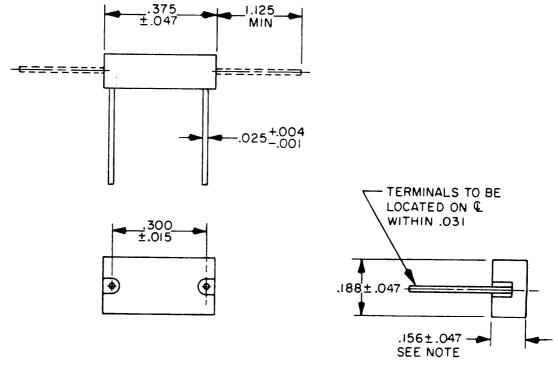
FIGURE 601-3. Established reliability, glass dielectric, fixed capacitors - Continued.

STYLE CYR30

INCHES	MM
. 001	. 03
.004	.10
. 025	. 64
. 031	.79
. 047	1.19
. 062	1.57
. 078	1.98
. 141	3.58
.750	19.05
.766	19.46
1.125	28.58

601-3. Established reliability, glass dielectric, fixed capacitors - Continued.

STANDARD CAPACITORS


STYLE CYR30 (MIL-C-23269/4)

OPERATING TEMPERATURE RANGE -55° TO + 125°C -- TEMPERATURE COEFFICIENT 140 ± 25 PPM/° -- CAPACITANCE DRIFT 0. 1% OR 0. 1 PF, WHICHEVER IS GREATER

Capacitance	DC rated			Dash number M23269/04- FR level in %/1, 000 hours			
value	voltage	tolerance	M (1.0)	P (0.1)	R (0.01)	S (0.001)	
nF 5.6 5.6 6.8 6.8 8.2 8.2 10.0 10.0	volts, dc 500 500 300 300	±1% ±5% ±1% ±5% ±1% ±5% ±1%	3016 3018 3022 3024 3028 3030 3034 3036	4016 4018 4022 4024 4028 4030 4034 4036	5016 5018 5022 5024 5028 5030 5034 5036	6016 6018 6022 6024 6028 6030 6034 6036	

FIGURE 601-3. Established reliability, glass dielectric, fixed capacitors - Continued.

STYLE CYR13

INCHES	MM	INCHES	MM
.001 .004 .015 .025 .047	.03 .10 .38 .64 1.19 3.96	.188 .219 .300 .375 1.125	4.78 5.56 7.62 9.53 28.58

NOTE;

For capacitance values above 130 pF, this dimension is .219 \pm .047.

FIGURE 601-3. Established reliability, glass dielectric, fixed capacitors - Continued.

STANDARD CAPACITORS

STYLE CYR13 (MIL-C-23269/5)

OPERATING TEMPERATURE RANGE -55° To + 125°C -- TEMPERATURE COEFFICENT 105 \pm 25 PPM°C -- CAPACITANCE DRIFT 0.1% OR 0.1 PF, WHICHEVER IS GREATER

Conscita	DC material	Capacitance	Dash number M23269/05- FR level in %/1, 000 hours				
Capacitance value	DC rated voltage	tolerance	M (1 0)	FR level in P (0.1)	%/1,000 hour R (0.01)	s S (0.001)	
		1010141100	M (1.0)	P (0.1)	K (0.01)	5 (0.001)	
pF_	volts, dc	.0.05.5	2001	4001	5001	6001	
0.5	500	±0.25 pF	3001	4001	5001		
1.0	•	±0.25 pF	3002	4002	5002	6002	
1.5		±0.25 pF	3003	4003	5003	6003	
2.2		±0.25 pF	3004	4004	5004	6004	
2.7		±0.25 pF	3006	4006	5006	6006	
3.3		±0.25 pF	3009	4009	5009	6009	
3.6		±0.25 pF	3010	4010	5010	6010	
3.9		±0.25 pF	3012	4012	5012	6012	
4.7		±0.25 pF	3015	4015	5015	6015	
5.6		±0.25 pF	3017	4017	5017	6017	
5.6		±5%	3018	4018	5018	6018	
6.8		±0.25 pF	3021	4021	5021	6021	
6.8		±5%	3022	4022	5022	6022	
8.2		±0.25 pF	3025	4025	5025	6025	
8.2		±5%	3026	4026	502 6	6026	
10		±0.25 pF	3029	4029	5029	6029	
10		±5%	3030	4030	5030	6030	
12		±0.25 pF	3033	4033	5033	6033	
12		±5%	3034	4034	5034	6034	
15		±2%	3037	4037	5037	6037	
15 15		±5%	3038	4038	5038	6038	
	j.	±3%	3041	4041	5041	6041	
18		±2 % ±5%	3041	4042	5042	6042	
18		±3% ±2%	3042	4045	5045	6045	
22			3045	4046	5046	6046	
22		±5%	3049	4049	5049	6049	
27		±1%	3049	4051	5051	6051	
27	1	±5%			5055	6055	
33		±1%	3055	4055			
33		±5%	3057	4057	5057	6057	
39		±1%	3061	4061	5061	6061	
39		±5%	3063	4063	5063	6063	
47		±1%	3067	4067	5067	6067	
47	1	±5%	3069	4069	5069	6069	
56	!	±1%	3073	4073	5073	6073	
56		±5%	3075	4075	5075	6075	
68		±1%	3079	4079	5079	6079	
68		±5%	3081	4081	5081	6081	
8 2		±1%	3085	4085	5085	6085	
82		±5%	3087	4087	5087	6087	
100		±1%	3091	4091	5091	6091	
100	1	±5%	3093	4093	5093	6093	
120		±1%	3097	4097	5097	6097	
120		±5%	3099	4099	5099	6099	
150		±1%	3103	4103	5103	6103	
150	•	±5%	3105	4105	5105	6105	
180	V	±1%	3109	4109	5109	6109	
180	500	±5%	3111	4111	5111	6111	
220	300	±1%	3115	4115	5115	6115	
220	300	±5%	3117	4117	5117	6117	
270 270	300	±1%	3121	4121	5121	6121	
270 270	300	±1% ±5%	3123	4123	5123	6123	

FIGURE 601-3. Established reliability, glass dielectric, fixed capacitors - Continued.

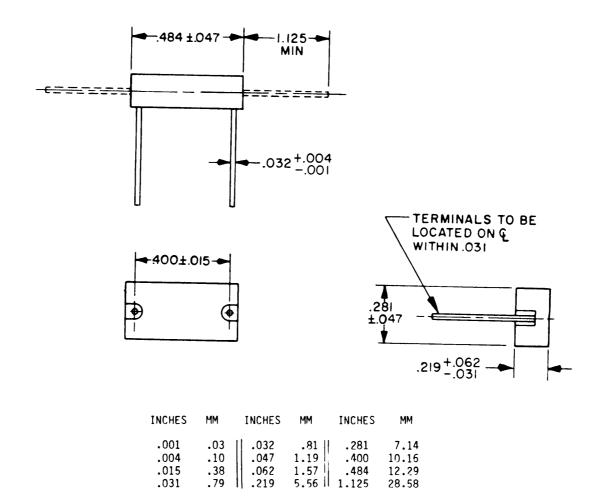
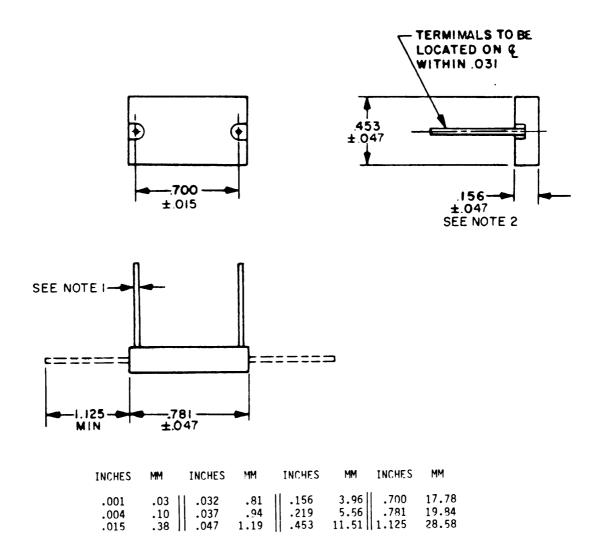


FIGURE 601-3. <u>Established reliability, glass dielectric, fixed capacitors</u> - Continued.


STANDARD CAPACITORS

STYLE CYR17 (MIL-C-23269/6)

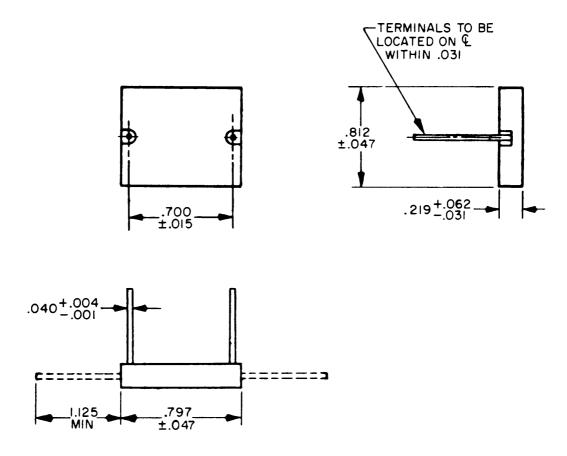
OPERATING TEMPERATURE RANGE -55° To + 125° C -- TEMPERATURE COEFFICIENT 105 \pm 25 PPM/°C APACITANCE DRIFT 0.1% OR 0.1 PF, WHICHEVER IS GREATER

					er M23269/06	
Capacitance	DC rated	Capacitance		FR level in	%/1,000 hour	:s
value	voltage	tolerance	М (1.0)	P (0.1)	R (0.01)	S (0.001)
рF	volts, dc					
330	500	±1%	3013	4013	5013	6013
330	•	±5%	3015	4015	5015	6015
390		±1%	. 3019	4019	5019	6019
390		±5%	3021	4021	5021	6021
470		±1%	3025	4025	5025	6025
470	500	±5%	3027	4027	5027	6027
560	300	±1%	3031	4031	5031	6031
560	A	±5%	3033	4033	5033	6033
680	1	±1%	3037	4037	5037	6037
680		±5%	3039	4039	5039	6039
820		±1%	3043	4043	5043	6043
820		±5%	3045	4045	5045	6045
1,000		±1%	3049	4049	5049	6049
1,000	300	±5%	3051	4051	5051	6051

FIGURE 601-3. <u>Established reliability</u>, <u>glass dielectric</u>, <u>fixed capacitors</u> - Continued.

- 1. Lead diameter is $^{+}$.004 for 1,200 and 1,500 pF capacitors values, and .037 $^{+}$.004 for 1,800 pF capacitance value
- 2. Dimension is .219 \pm .047 for 1,600 pF capacitance value.

FIGURE 601-3. Established reliability, glass dielectric, fixed capacitors - Continued.


STANDARD CAPACITORS

STYLE CYR22 (MIL-C-23269/7)

OPERATING TEMPERATURE RANGE -55° TO + 125°C -- TEMPERATURE COEFFICIENT 105 \pm 25 PPM/°C -- CAPACITANCE DRIFT 0.1% OR 0.1 PF, WHICHEVER IS GREATER

Capacitance	DC rated	Capacitance	Dash number M23269/07- FR level in %/1, 000 hours				
value	voltage	tolerance	M (1.0)	P (0.1)	R (0.01)	S (0.001)	
<u>pF</u> 1,200 1,200 1,500 1,500 1,800 1,800	volts, dc 300	±1% ±5% ±1% ±5% ±1% ±5%	3028 3030 3034 3036 3040 3042	4028 4030 4034 4036 4040 4042	5028 5030 5034 5036 5040 5042	6028 6030 6034 6036 6040 6042	

FIGURE 601-3. Estblished reliability, glass dielectric, fixed capacitors - Continued.

INCHES	MM	INCHES	MM	INCHES	MM	INCHES	MM
.001 .004 .015	.03 .10 .38	.031 .040 .047 .062	.79 1.02 1.19 1.57	.219 .700 .797	5.56 17.73 20.24	.812 1.125	20.52 28.58

FIGURE 601-3. <u>Established reliability, glass dielectric, fixed capacitors</u> - Continued.

STANDARD CAPACITORS


STYLE CYR32 (MI L-C-23269/8)

OPERATING TEMPERATURE RANGE -55° TO + 125°C -- TEMPERATURE COEFFICIENT 105 ± 25 PPM/°C -- CAPACITANCE DRIFT 0.1% OR 0.1 PF, WHICHEVER IS GREATER

Capacitance	DC rated Capacitance		Dash number M23269/08- FR level in %/1,000 hours				
value	voltage	tolerance	M (1.0)	P (0.1)	R (0.01)	S (0.001)	
<u>n</u> F	volts, dc						
2.2	500	±1%	3022	4022	5022	6022	
2.2	\	±5%	3024	4024	5024	6024	
2.7		±1%	3028	4028	5028	6028	
2.7		±5%	3030	4030	5030	6030	
3.3	•	±1%	3034	4034	5034	6034	
3.3	500	±5%	3036	4036	5036	6036	
3.9	300	±1%	3040	4040	5040	6040	
3.9	A	±5%	3042	4042	5042	6042	
4.7		±1%	3046	4046	5046	6046	
4.7		±5%	3048	4048	5048	6048	
5.6	•	±1%	3052	4052	5052	6052	
5.6	300	±5%	3054	4054	5054	6054	

FIGURE 601-3. Established reliability, glass dielectric, fixed capacitors - Continued.

STYLE CYR41

		Dimensions								
	 M 	 L max 	 W max 	T max						
CYR41	+.004 .025 001	.315	315	.115 (0.5 thru 470 pF) .165 (560 and 680 pF) .215 (820 and 1000 pF)						

INCHES	MM	INCHES	MM
.001	.03	.115	2.92
.004	.13	11 .165	4.19
.010	.25	11 .200	5.08
.015	.38	11 .215	5.46
.025	.64	11 .315	8.00
.031	.79	11 1.125	28.58

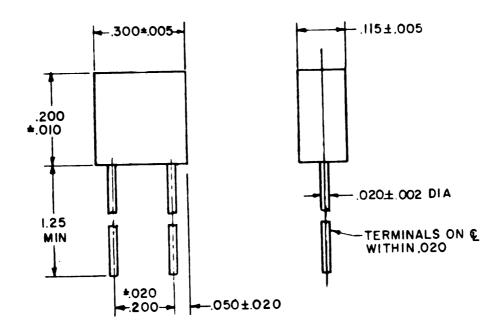
FIGURE 601-3. Established reliability, glass dielectric, fixed capacitors - Continued.

STANDARD CAPACITORS

STYLE CYR41 (MI L-C-23269/9)

OPERATING TEMPERATURE RANGE -55° TO +125°C -- TEMPRATURE COEFFICIENT O ±25 PPM/°C -- CAPACITANCE DRIFT O. 1% OR O. 1 PF, WHICHEVER IS GREATER

Com	Rated	Capacitance tolerance	Dash m	umber M2:	3269/09-	
Cap.	voltage	toler ance	M (1.0)	P (0.1)	R (0.01)	S (0.001)
(pF)	(volts, dc)		111 (11 1)	\		1
`*-'	, ,	1				
0.5	100	± 0. 25 pF	3001	4001	5001	6001
1.5	♦	1	3002	4002	5002	6002
2.7			3003	4003	5003	6003
3.3			3004	4004	5004	6004
3.9			3005	4005	5005	6005
4.7			3006	4006	5006	6006
5.6		•	3007	4007	5007	6007
6.8		± 0. 25 pF	3008	4008	5008	6008
6.8		± 5%	3009	4009	5009	6009
8.2		± 0. 25 pF	3010	4010	5010	6010
8.2		± 5%	3011	4011	5011	6011
10		± 0. 25 pF	3012	4012	5012	6012
10		± 5%	3013	4013	5013	6013
12		± 0. 25 pF	3014	4014	5014	6014
12		± 5%	3015	4015	5015	6015
15		±0.25 pF	3016	4016	5016	6016
15		± 2%	3017	4017	5017	6017
15		± 5%	3018	4018	5018	6018
18		± 0. 25 pF	3019	4019	5019	6019
18		± 2%	3020	4020	5020	6020
18		± 5%	3021	4021	5021	6021
22		± 0. 25 pF	3022	4022	5022	6022
22		± 2%	3023	4023	5023	6023
22		± 5%	3024	4024	5024	6024
27		± 1%	3025	4025	5025	6025
27		± 2%	3026	4026	5026	6026
27		± 5%	3027	4027	5027	6027
33		± 1%	3028	4028	5 02 8	6028
33		± 2%	3029	4029	5 029	6029
33		± 5%	3030	4030	5030	6030
39		± 1%	3031	4031	5031	6031
39		± 2%	3032	4032	5032	6032
39		± 5%	3033	4033	5033	6033
47		± 1%	3034	4034	5034	6034
47		± 2%	3035	4035	5035	6035
47		± 5%	3036	4036	5036	6036
56		± 1%	3037	4037	5037	6037
56		± 2%	3038	4038	5038	6038
56		± 5%	3039	4039	5039	6039
68		± 1%	3040	4040	5040	6040
68		± 2 %	3041	4041	5041	6041
68		± 5%	3042	4042	5042	6042
82		± 1%	3043	4043	5043	6043
82		± 2%	3044	4044	5044	6044
82		± 5%	3045	4045	5045	6045
100		± 1%	3046	4046	5046	6046
100		± 2%	3047	4047	5047	6047
100		± 5%	3048	4048	5048	6048
120	1	± 1%	3049	4049	5049	6049
120	♦	± 2%	3050	4050	5050	6050
120	100	± 5%	3051	4051	5051	6051
	<u> </u>	L		L		


FIGURE 601-3. <u>Established reliability, glass dielectric, fixed capacitors</u> - Continued.

STANDARD CAPACITORS

STYLE CYR41 (MIL-C-2326919) - continued

	Rated	Capacitance	Dash nun	nber M2326	39/09-			
Cap.	voltage	tolerance	FR level:	FR level in %/1, 000 hrs				
	·		M (1.0)	P (0.1)	R (0.01)	S (0.001)		
(pF)	(volts, dc)							
150	100	± 1%	3052	4052	5052	6052		
150	•	± 2%	3053	4053	5053	6053		
150		± 5%	3054	4054	5054	6054		
180	i i	± 1%	3055	4055	5055	6055		
180		± 2%	3056	4056	5056	6056		
180		± 5%	3057	4057	5057	6057		
220	1 1	± 1%	3058	4058	5058	6058		
220		± 2%	3059	4059	5059	6059		
220		± 5%	3060	4060	5060	6060		
270	[[± 1%	3061	4061	5061	6061		
270		± 2%	3062	4062	5062	6062		
270		± 5%	3063	4063	5063	6063		
330		± 1%	3064	4064	5064	6064		
330	1 1	± 2%	3065	4065	5065	6065		
330		± 5%	3066	4066	5066	6066		
390		± 1%	3067	4067	5067	6067		
390		± 2%	3068	4068	5068	6068		
390		± 5%	3069	4069	5069	6069		
470		± 1%	3070	4070	5070	6070		
470		± 2 %	3071	4071	5071	6071		
470		± 5%	3072	4072	5072	6072		
560	1	± 1%	3073	4073	5073	6073		
560	1	± 2%	3074	4074	5074	6074		
560	(± 5%	3075	4075	5075	6075		
680		± 1%	3076	4076	5076	6076		
680		± 2%	3077	4077	5077	6077		
680	1 1	± 5%	3078	4078	5078	6078		
820	1	± 1%	3079	4079	5079	6079		
820		± 2%	3080	4080	5080	6080		
820		± 5%	3081	4081	5081	6081		
1,000	1 1	± 1%	3082	4082	5082	6082		
1, 000		± 2%	3083	4083	5083	6083		
1, 000	100	± 5%	3084	4084	5084	6084		

FIGURE 601-3. <u>Established reliability</u>, <u>glass dielectric</u>, <u>fixed capacitors</u> - Continued.

MM
. 05
. 13
. 2 5
. 51
1.27
2.92
5.08
7.62
31.75

FIGURE 601-3. Established reliability, glass dielectric, fixed capacitors - Continued.

STANDARD CAPACITORS

STYLE CYR51 (MIL-C-23269/10)

OPERATING TEMPERATURE RANGE -55° TO +125°C -- TEMPERATURE COEFFICIENT 140 ±25 PPM/°C -- CAPACITANCE DRIFT 0.1% OR 0.1 PF, WHICHEVER IS GREATER

	Rated	Capacitance	Dash number M23269/10- FR level in %/1, 000 hrs					
Cap.	voltage	tolerance		1 in %/1, 0				
			M (1.0)	P (0. 1)	R (0.01)	S (0.001)		
(pF)	(volts, dc)							
1	300	± 0. 25 pF	3001	4001	5001	6001		
1.5	A	A -	3002	4002	5002	6002		
2. 2	l T l	I	3003	4003	5003	6003		
2.7	l l i	1 .	3004	4004	5004	6004		
3.0			3005	4005	5005	6005		
3.3		1	3006	4006	5006	6006		
3.6			3007	4007	5007	6007		
3.9		i i	3008	4008	5008	6008		
4.3			3009	4009	5009	6009		
4.7			3010	4010	5010	6010		
5.1		± 0. 25 pF	3011	4011	5011	6011		
5.1		± 5%	3012	4012	5012	6012		
5.6		± 0, 25 pF	3013	4013	5013	6013		
5.6		± 5%	3014	4014	5014	6014		
6. 2		± 0. 25 pF	3015	4015	5015	6015		
6.2		± 5%	3016	4016	5016	6016		
6.8		± 0. 25 pF	3017	4017	5017	6017		
6.8		± 5%	3018	4018	5018	6018		
7.5		± 0. 25 pF	3019	4019	5019	6019		
7.5	1 1	± 5%	3020	4020	5020	6020		
8.2		± 0. 25 pF	3021	4021	5021	6021		
8.2		± 5%	3022	4022	5022	6022		
9.1		± 0. 25 pF	3023 .	4023	5023	6023		
9.1		± 5%	3024	4024	5024	6024		
10		± 0. 25 pF	3025	4025	5025	6025		
10		± 5%	3026	4026	5026	6 02 6		
11		± 0. 25 pF	3027	4027	5027	6027		
11		± 5%	3028	4028	5028	6028		
12		± 0. 25 pF	3029	4029	5029	6029		
12		± 5%	3030	4030	5030	6030		
13		± 0. 25 pF	3031	4031	5031	6031		
13	1 1	± 2%	3032	4032	5032	6032		
13		± 5%	3033	4033	5033	6033		
15		± 0. 25 pF	3034	4034	5034	6034		
15		± 2%	3035	4035	5035	6035		
15		± 5%	3036	4036	5036	6036		
16	, , ,	± 0. 25 pF ± 2%	3037 3038	4037 4038	5037	6037		
16		± 2% ± 5%	3038		5038	6038		
16	.		3039	4039 4040	5039	6039		
18		± 0. 25 pF ± 2%	3040	4040	5040	6040		
18 18	1 1	± 2% ± 5%	3041	4041	5041 5042	6041 6042		
20	· []	±0.25 pF	3042	4042	5042 5043	6042 6043		
20		± 0. 25 pr ± 2%	3043	4043	5043	6044		
20		± 2 % ± 5%	3044	4044	5044	6044 6045		
20		± 0. 25 pF	3045	4046	5045	6046		
22		± 0. 25 pr ± 2%	3047	4047	5047	6047		
22		± 5%	3048	4048	5048	6048		
24		± 0. 25 pF	3049	4049	5049	6049		
24		± 2%	3050	4050	5050	6050		
24	300	± 5%	3051	4051	5051	6051		
			0001	1001	0001	0001		

FIGURE 601-3. <u>Estalished reliability</u>, <u>glass dielectric</u>, <u>fixed capacitors</u> - Continued.

601 (MI L-C-23269)

STANDARD CAPACITORS

STYLE CYR51 (MIL-C-23269/10) - Continued

Cap.		Capacitance	Dasii iluliil	er M23269	/ 10-	
.)	voltage	tolerance	FR level i	n %/1, 000	hrs	C /0 001\
	(volts, dc)		M (1.0)	P (0.1)	R (0.01)	S (0.001)
(pF)	(voits, ac)					
27	300	± 1%	3052	4052	5052	6052
27	Å	± 2%	3053	4053	5053	6053
27	Ţ	± 5%	3054	4054	5054	6054
30		± 1%	3055	4055	5055	6055
30		± 2%	3056	4056	5056	6056
30		± 5%	3057	4057	5057	6057
33		± 1%	3058	4058	5058	6058
33		± 2%	3059	4059	5059	6059
33		± 5%	3060	4060	5060	6060
36	1	± 1%	3061	4061	5061	6061
36		± 2%	3062	4062	5062	6062
36	ĺ	± 5%	3063	4063	5063	6063
39		± 1%	3064	4064	5064	6064
39		± 2% ± 5%	3065 3066	4065 4066	5065 5066	6065
39	1	± 3% ± 1%	3067	4066	5067	6066 6067
43	j	± 1% ± 2%	3068	4068	5068	6068
43		± 5%	3069	4069	5069	6069
47	{	± 1%	3070	4070	5070	6070
47	į	± 2%	3071	4071	5071	6071
47	1	± 5%	3072	4072	5072	6072
51	ļ	± 1%	3073	4073	5073	6073
51	j	± 2%	3074	4074	5074	6074
51	1	± 5%	3075	4075	5075	6075
56	1	± 1%	3076	4076	5076	6076
56	ł	± 2%	3077	4077	5077	6077
56		± 5%	3078	4078	5078	6078
62		± 1%	3079	4079	5079	6079
62	j	± 2%	3080	4080	5080	6080
62	Į.	± 5%	3081	4081	5081	6081
68	1	± 1%	3082	4082	5082	6082
68	ì	± 2%	3083	4083	5083	6083
68	i	± 5% ± 1%	3084	4084	5084	6084
75	1	± 1% ± 2%	3085	4085	5085	5085
75 75] .	± 2% ± 5%	3086 3087	4086 4087	5086 5087	6086 6087
82		± 1%	3088	4087	5087	6088
82	{	± 1 %	3089	4089	5089	6089
82	(± 5%	3090	4090	5090	6090
91		± 1%	3091	4091	5091	6091
91		± 2%	3092	4092	5092	6092
91		± 5%	3093	4093	5093	6093
100		± 1%	3094	4094	5094	6094
100	[± 2%	3095	4095	5095	6095
100	,	± 5%	3096	4096	5096	6096
110	1	± 1%	3097	4097	5097	6097
110		± 2%	3098	4098	5098	6098
110	j	± 5%	3099	4099	5099	6099
120		± 1%	3100	4100	5100	6100
120	*	± 2%	3101	4101	5101	6101
120	300	± 5%	3102	4102	5102	6102

FIGURE 601-3. <u>Established reliability, glass dielectric, fixed capacitors - Continued.</u>

601 (MI L-C-23269)

STANDARD CAPACITORS

STYLE CYR51 (MIL-C-23269/10) - Continued

(pF) (volts, dc) M (1.0) P (0.1) R (0.01) S (0.001)		Rated	Capacitance	Dash nur	nber M232	39/10-	
(pF) (volts, de) 130	Cap.	voltage	tolerance				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				M (1.0)	P (0.1)	R (0.01)	S (0.001)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(pF)	(volts, dc)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			- 07				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		300	± 1%				
150		A	± 2%				
150			± 5 o	1	i i		
$ \begin{array}{c} 150 \\ 160 $		1 1 1	± 1%	1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			± 2' 0				
160		l i	± 5%				
160		1 1 1	± 1 ′ n				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			± 2°0	1			
180			± 5%				
180		i i i	: 1%				
200	180		± 2 %				
200	180	i i		3114			6114
200	200		± 1%	3115	4115	5115	6115
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200		± 2°6	3116	4116	5116	6116
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200		± 5°°	3117	4117	5117	6117
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	220		± 1 0%	3118	4118	5118	6118
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	220		± 2%	3119	4119	5119	6119
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	220		± 5%	3120	4120	5120	6120
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			± 100	3121	4121	5121	
$ \begin{array}{c} 240 \\ 270 \\ 270 \\ 270 \\ 270 \\ 270 \\ 3126 \\ 270 \\ 3126 \\ 3125 \\ 4125 \\ 5125 \\ 6124 \\ 6124 \\ 6124 \\ 6125 \\ 6125 \\ 6125 \\ 6125 \\ 6125 \\ 6125 \\ 6126 \\ 6127 \\ 6$			± 2°0	3122	4122	5122	
270 ± 1 % 3124 4124 5124 6124 270 ± 2 % 3125 4125 5125 6125 300 ± 1 % 3127 4127 5127 6127 300 ± 2 % 3128 4128 5128 6128 300 ± 2 % 3129 4129 5129 6129 330 ± 1 % 3130 4130 5130 6130 330 ± 2 % 3131 4131 5131 6131 330 ± 2 % 3132 4132 5132 6132 360 ± 1 % 3133 4133 5133 6133 360 ± 2 % 3134 4134 5134 6134 360 ± 2 % 3135 4135 5135 6132 390 ± 5 % 3135 4135 5135 6136 390 ± 2 % 3134 4136 5136 6136 390 ± 2 % 3143			+ 5 0				
270			+ 1 %				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			+ 200				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		+ 1%	-	I		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			+ 200				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1 5 °C				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			+ 1%				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			+50%				1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		j j	+ 100	1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			+ 2/7	L	1	I	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1500				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1					1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			± Z 0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			± 2%				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				I			
560 ± 1% 3148 4148 5148 6148 560 ± 2% 3149 4149 5149 6149	1 (± 2° o		1	- 1	
560			± 5\0				
560		1					
		V	± 200				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	560	300	± 5 ¹⁷ 6	3150	4150	5150	6150

FIGURE 601-3. <u>Established reliability, glass dielectric, fixed capacitors</u> - Continued.

STANDARD CAPACITORS

STYLE CYR52 (MI L-C-23269/10)

OPERATING TEMPERATURE RANGE -55° TO +125°C -- TEMPERATURE COEFFCIENT 140 ±25PM/°C -- CAPACITANCE DRIFT 0.1% OR 0.1 PF, WHICHEVER IS GREATER

Cap.	Rated voltage	Capacitance tolerance	Dash number M23269/10- FR level in %/1, 000 hrs					
			M (1.0)	P (0.1)	R (0.01)	S (0.001)		
(pF)	(volts, dc)							
620	300	± 1 °o	3201	4201	5201	6201		
620	4	± 2 %	3202	4202	5202	6202		
620		± 5%	3203	4203	5203	6203		
680		± 1%	3204	4204	5204	6204		
680		± 2 %	3205	4205	5205	6205		
680		± 5°0	3206	4206	5206	6206		
750		± 1°0	3207	4207	5207	6207		
750		± 2 %	3208	4208	5208	6208		
750		± 5%	3209	4209	5209	6209		
820		± 1%	3210	4210	5210	6210		
820		± 2 %	3211	4211	5211	6211		
820		± 5%	3212	4212	5212	6212		
910		± 1%	3213	4213	5213	6213		
910		± 2 %	3214	4214	5214	6214		
910		± 5%	3215	4215	5215	6215		
1,000		± 1%	3216	4216	5216	6216		
1,000	• 1	± 2 %	3217	4217	5217	6217		
1, 000	300	± 5%	3218	4218	5218	6218		

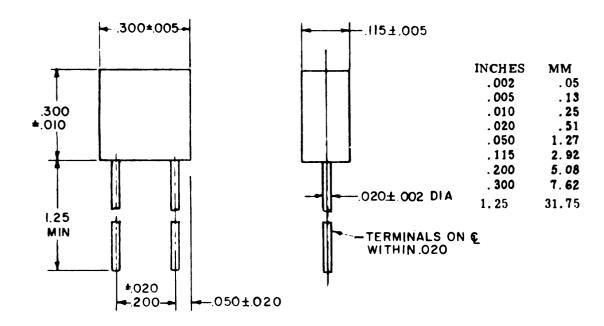


FIGURE 601-3. Established reliability, glass dielectric, fixed capacitors - Continued.

STANDARD CAPACITORS

STYLE CYR53 (MIL-C-23269/10)

OPERATING TEMPERATURE RANGE -550 TO + 1250 C -- TEMPERATURE COEFFICIENT 140 ±25 PPM/°C -- CAPACITANCE DRIFT O. 1% OR O. 1PF, WHICHEVER IS GREATER

Cap.	Rated voltage	Capacitance tolerance	Dash number M23269/10- FR level in %/1,000 hrs					
			M (1.0)	P (0.1)	R (0.01)	S (0.001)		
(pF)	(volts, dc)			1	1 1 1 1 1 1	3 (0.003)		
1. 100	300	± 1%	3301	4301	5301	6301		
1, 100	A	± 2%	3302	4302	5302	6302		
1, 100		± 5%	3303	4303	5303	6303		
1, 200		± 1%	3304	4304	5304	6304		
1,200		± 2%	3305	4305	5305	6305		
1, 200		± 5%	3306	4306	5306	6306		
1,300		± 1%	3307	4307	5307	6307		
1,300		± 2%	3308	4308	5308	6308		
1,300		± 5%	3309	4309	5309	6309		
1,500		± 1%	3310	4310	5310	6310		
1,500	į į	± 2%	3311	4311	5311	6311		
1,500		± 5%	3312	4312	5312	6312		
1,600		± 1%	3313	4313	5313	6313		
1,600		± 2%	3314	4314	5314	6314		
1,600		± 5%	3315	4315	5315	6315		
1,800	1 1	± 1%	3316	4316	5316	6316		
1,800	i i	± 2%	3317	4317	5317	6317		
1,800	1 1	± 5%	3318	4318	5318	6318		
2,000		± 1%	3319	4319	5319	6319		
2,000	1 1	± 2%	3320	4320	5320	6320		
2,000		± 5%	3321	4321	5321	6321		
2, 200		± 1%	3322	4322	5322	6322		
2, 200		± 2%	3323	4323	5323	6323		
2, 200		± 5%	3324	4324	5324	6324		
2, 400	1 1	± 1%	3325	4325	5325	6325		
2, 400	* [± 2%	3326	4326	5326	6326		
2, 400	300	± 5%	3327	4327	5327	6327		

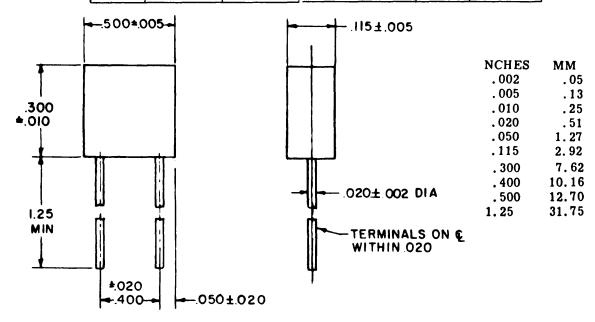


FIGURE 601-3. Established reliability, glass dielectric, fixed capacitors - Continued.

SECTION 602

CAPACITORS, FIXED, MICA DIELECTRIC, ESTABLISHED RELIABILITY

STYLES CMR03, CMR04, CMR05, CMR06, CMR07, AND CMR08

(APPLICABLE SPECIFICATION: MIL-C-39001)

- 1. SCOPE. This section covers established reliability, mica dielectric, fixed capacitors. These capacitors have failure rate levels ranging from 1.0 to 0.001 percent per 1,000 hours. The failure rate levels are established at a 90-percent confidence level and are based on full rated voltage at + 125° C or + 150° C, as applicable.
 - 2. APPLICATION INFORMATION.
- 2.1 <u>Use.</u> These capacitors are intended for use in any equipment where known orders of reliability are required. They will experience failures at a rate depending almost exclusively upon the manner in which they are used; e.g., (1) with the temperature remaining constant, the capacitor life is inversely proportional to the 8th power of the applied dc voltage, or (2) with the dc voltage remaining constant, life decreases approximately 50 percent for every 10°C rise in temperature. These capacitors have a life expectancy of 50,000 hours, or more, at rated conditions.
- 2.2 <u>Construction.</u> The construction details for these capacitors are as described in Section 102.
 - 2.3 Rated voltage. These capacitors are rated at 50, 100, 300, or 500 volts.
- 2.4 <u>Operating temperature range</u>. These capacitors are suitable for operation over a temperature range of -55° to $+125^{\circ}$ (or $+150^{\circ}$ C).
- 2.5 <u>Faillure-rate level determination</u>. The curves presented on figure 602-1 are the best engineering approximation of the reliability characteristics (random failures) for these capacitors when employed repeatedly, within their specification ratings, in complex electronic equipment. These reliability characteristics are based on ground-level severity experience. Failures are considered to be opens, shorts, or radical departures from initial characteristics. The failures are considered to be occurring in an unpredictable manner and in too short a period of time to permit detection through normal preventive maintenance. The curves shown on this figure are based on "catastrophic failures" and will differ from the failure rates established in the specification, since the established failure rates are based on "parametric failures" over long term life tests at rated conditions. As indicated, these curves are the best estimates based on "catastrophic failures"; however, they can provide an estimate of the relative effect of operating under conditions other than rated.
 - 2.6 General. For additional application information, see Section 102.
 - 3. ITEM IDENTIFICATION (see figures 602-2 and 602-3).
- $3.1 \, \underline{\text{Type}}$ designation. The type designation is used for identifying and describing the capacitors as shown in figure 602-2.
- 3.2 <u>Standard capacitors.</u> The standard capacitors available in this section are shown in figure 602-3.

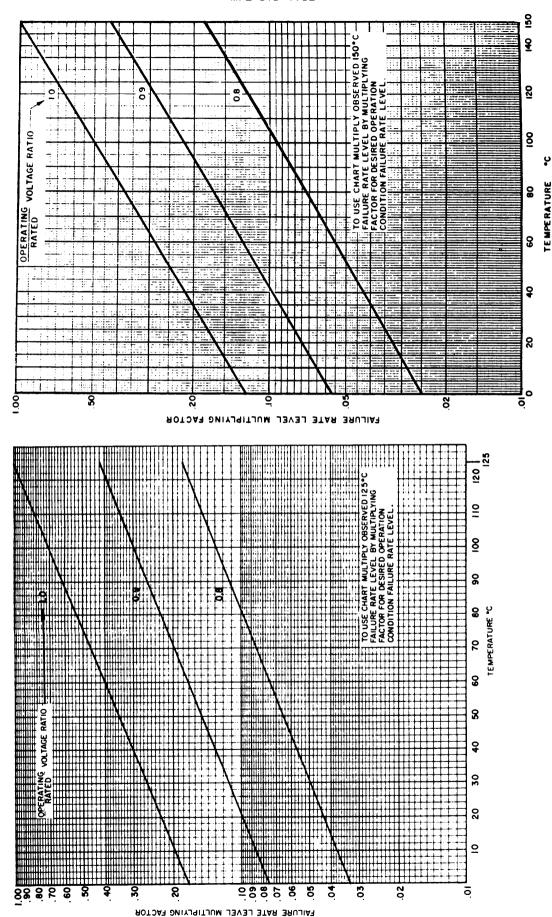


FIGURE 602-1. Failure rate level curves.

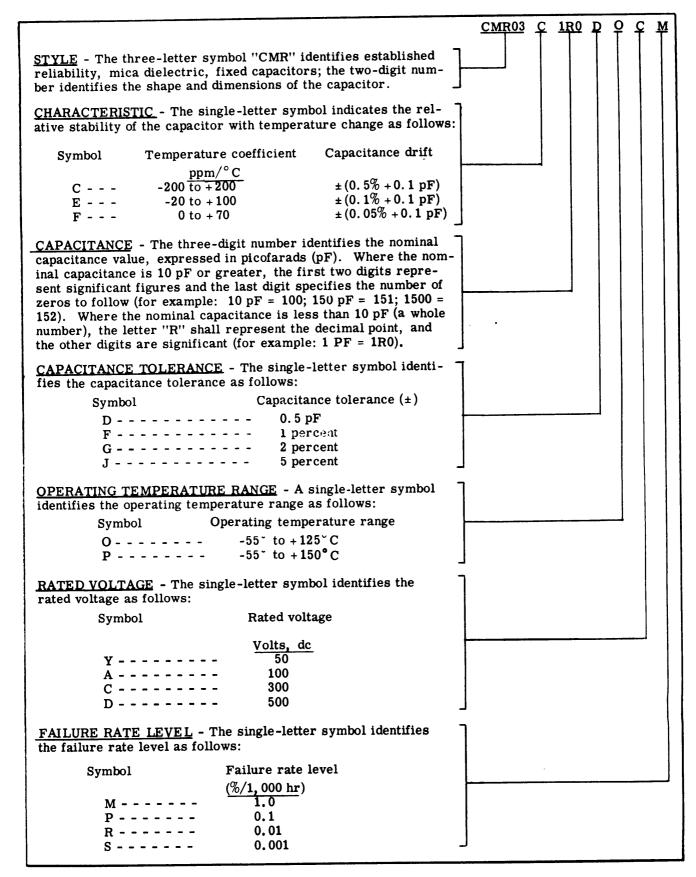
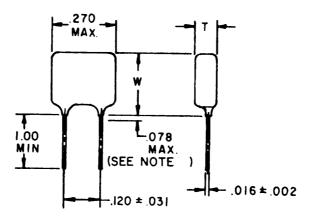



FIGURE 602-2. Type designation example.

STYLE CMR03

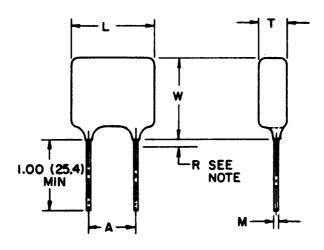
NOTE:

This area may not be solderable as it may be covered by a clear epoxy or resinous coating.

FIGURE 602-3. <u>Established reliability, mica dielectric, fixed capacitors.</u>

STANDARD CAPACITORS

STYLE CMRO3 (MI L-C-39001/5)


OPERATING TEMPERATURE RANGE -55°C TO +125°C

-		DC	Capacitance tolerance available	Dimension (in inches)					
Type	Cap.	rated		W maximum			T maximum		
designation $1/$	i value	voltage	avallable		100 V		300V	100V	50V
¦	n.F	volts		3001	1001	301	1 3001	1001	
	pF	<u> </u>					j	i	j j
CMRO3C1RODOC-	1.0	300	D	.190	i i		.110	i	i i
CMRO3C1R5DOC-	1.5	300		1			1 1 1		i i
CMRO3C2RODOC-	2.0		H .						í i
CMRO3C2R5DOC-	2.5	N					j "	i	i i
CMRO3C2R3DOC-	3.0	H	11	i •			, w .		i i
CMRO3C3R5DOC-	3.5		16				i *		i i
ICMRO3C4RODOC-	4.0		n	i " '				i	i i
ICMRO3C4R5DOC-	4.5		и				j •	i	i i
ICMRO3C5RODOC-	5.0						j •	i	i i
ICMRO3C6RODOC-	6.0	i •					j •		i i
CMRO3C7RODOC-	7.0		H	j "			j #	i	i i
CMRO3C8RODOC-	8.0	, •	w				j "	i	i i
CMRO3C9RODOC-	9.0	, ,	ıı ı				j #	i	i i
CMRO3C9RODOC-	1 10	i • i					, "	i	i i
CMR03C100D0C-	111		u				. .		
CMR03C120D0C-	12		н	i			i "		j i
CMR03C120D0C-	15	300, 100	H		.190		1.120	.110	
CMR03C180D0	1 18	300, 100	н	.200	- 11		1 7	1.110	i i
CMR03E200D0	1 20	300, 100		• • • • • • • • • • • • • • • • • • •			j "	1.110	i i
CMR03E220D0	22	300, 100, 50		, »		.190	, n	1.120	1.110
CMR03E240D0	24	1 "		, n		1 11		"	· · · ·
	•	1 #	G, J	, w	, .	, w	1.130		; • i
CMR03E270-0	27		G, U	} "	.200		1.130	' *	: " i
CMR03E300-0	1 30	 W	! !	#	1 "	! ! #	.		;
CMR03E330-0	33	[] #	н	.210	1 11		ļ	' •	
CMR03E360-0	36	! !	*	1 . 4) #			; w	i.120 i
CMR03E390-0	39		*		,		.140		1 . 1
CMR03E430-0	43 47	 H] #	! ! "	1.140	.130	;
CMR03E470-0	1 47 1 51	! !	H	h		. "	1.140	1.130	
CMR03E510-0	56		1.1	.220	' "		•	1.130	i • i
CMR03E560J0 CMR03E620J0	62			1.220	.210	.200	1.150	1.130	; , ;
	1 68		II	1.220	1 . 2 1 0	1 . 200		1.140	i
CMR03E680J0	75	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1.230	, "	,	160	1.140	;
CMR03E750J0 CMR03E820J0	1 82			1.230	.		1.160	1.140	i " i
CMR03F910J0	1 91	, ,	*	1.230		¦ "	1.170	1.140	 .130
	100	•		1.240	.220	j "		1.150	i - "
• • • • • • • • • • • • • • • • • • • •	1110		*	1.240	1.220	j "		1.150	j " i
	120	i "	*	250	1.220	j "	1.190	1.160	j "i
	1130	100, 50		i	1.230	.210	i	1.160	j • i
. •	1150	1 100, 30		 	1.230	, , ,		1.170	i.140 i
,	160	"		i	1.240			1.170	1.140
i	170				.240	i •			1.140
	1180				1.240	, w			1.140
	1200	1 11			250	.220			1.150
	1200	50				.220			1.150
	240	1 30 1 #		1		.220			1.160
	1240		и	;		1.230			1.160
, • •	•	! † #		i		.230			1.170
	300	<i>l</i> 1 H	; ; H	;		1.240		, 1	1.170
	330	1 "			 	1.240			1.180
•	1360	¦ "				1.240			1.190
• •	1390	i 1 *		1	•	1.250			1.190
1/ Where annli	1400	the complete		<u> </u>			addi tor	 	1.190 tter

1/ Where applicable, the complete type designation will include additional letter symbols to indicate the ec tared voltage, capacitance tolerance, and failure rate level.

FIGURE 602-3. Established reliability, mica dielectric, fixed capacitors - Continued.

STYLES CMRO4, CMRO5, CMRO6, CMRO7, AND CMRO8

NOTE:

The R dimension may not be solderable as it may be covered by clear epoxy or resinous coating.

FIGURE 602-3. Established reliability, mica dielectric, fixed capacitors.

MI L-STD-198E

			1	——————————————————————————————————————				~·····································
Copacitance				T	W, max	R, max	A	M, Dia
range (pF)	Min	Max	Min	Max			Spacing	+.002(.05)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					L		1.031(.79)	
1 to 24, incl	.300 (7.62)	.360 (9.14)	.100(2.54)	1.E CAROL (4.83)	.330 (8.38)	.125(3.18)	160 (2.81)	01/ (2/)
27	.300 (7.62)	.370 (9.40)	.100(2.54)	.190 (4.83)	.330 (8.38)	.125(3.18)	.150 (3.81) .150 (3.81)	.016 (.36) .016 (.36)
30 to 68, Incl	.300 (7.62)	.370 (9.40)	.100(2.54)	.190 (4.83)	.340 (8.64)	.125(3.18)	.150 (3.81)	.016 (.36)
75	.300 (7.62)	.370 (9.40)	.110(2.79)	.200 (5.08)	.340 (8.64)	.125(3.18)	.150 (3.81)	.016 (.36)
82	.300 (7.62)	.370 (9.40)	.110(2.79)	200 (5.08)	.350 (8.89)	.125(3.18)	.150 (3.81)	.016 (.36)
91 to 100, incl 110 to 120, incl	.300 (7.62) .300 (7.62)	.370 (9.40) .380 (9.65)	.110(2.79) .110(2.79)	.200 (5.08) .200 (5.08)	.350 (8.89) .350 (8.89)	.125(3.18) .125(3.18)	.150 (3.81) .150 (3.81)	.016 (.36)
130	.300 (7.62)	.380 (9.65)	.110(2.79)	.200 (5.08)	.360 (9.14)	.125(3.18)	.150 (3.81)	.016 (.36)
150 to 160, incl	.300 (7.62)	.380 (9.65)	.120(3.05)	.210 (5.33)	.360 (9.14)	.1 25(3.18)	.150 (3.81)	.016 (.36)
180	.300 (7.62)	.390 (9.91)		.210 (5.33)	.370 (9.40)	.125(3.18)	.150 (3.81)	.016 (.36)
200 to 390, incl	.300 (7.62)	.390 (9.91)		.220 (5.59)	.380 (9.65)	.125(3.18)	.150 (3.81)	.016 (.36)
	400(10.14)	450/11 40		LE CMR05	260 (0.14)		005 (5 70)	
1 to 62, incl 68 to 82, incl	.400(10.16) .400(10.16)	.450(11.43)	.090(2.29)	.170 (4.32) .180 (4.57)	.360 (9.14) .360 (9.14)	.125(3.18)	.225 (5.72)	.025 (.64)
91 to 100, incl	.400(10.16)	.460(11.68)	.095(2.30)	.180 (4.57)	.360 (9.14)	.125(3.18) .125(3.18)	.225 (5.72) .225 (5.72)	.025 (.64) .025 (.64)
110 to 130, incl	.400(10.16)	.460(11.68)	.095(2.30)	.180 (4.57)	.370 (9.40)	.125(3.18)	.225 (5.72)	.025 (.64)
150 to 180, incl	.400(10.16)	.460(11.68)	.110(2.79)	.190 (4.83)	.370 (9.40)	.125(3.18)	.225 (5.72)	.0 25 (.64)
200	.400(10.16)	.460(11.68)	.110(2.79)	.190 (4.83)	.380 (9.65)	.125(3.18)	.225 (5.72)	.025 (.64)
220 to 240, incl 270 to 330, incl	.400(10.16)	.460(11.68)	.110(2.79) .110(2.79)	.200 (5.08) .210 (5.33)	.380 (9.65) .390 (9.91)	.125(3.18)	.225 (5.72) .225 (5.72)	.025 (.64)
360 to 390, incl	.400(10.16)	.470(11.94)	.120(3.05)	.220 (5.59)	.400(10.16)	.125(3.18)	.225 (5.72)	.025 (.64)
				E CMR06				- ,,,,,,
430 to 470, incl	.550(13.97)	.640(16.26)	.090(2.29)	.200 (5.08)	.510(12.95)	.141(3.58)	.350 (8.89)	.032 (.81)
510 to 620, incl	.560(14.22)	.650(16.51)	.090(2.29)	.200 (5.08)	.510(12.95)		.350 (8.89)	.032 (.81)
680 to 910, incl	.560(14.22)	.650(16.51)	.100(2.54)	.210 (5.33)	.510(12.95)	.141(3.58) .141(3.58)	.350 (8.89)	.032 (.81)
1000 to 1100, incl	.560(14.22)	.650(16.51)	.110(2.79)	1.220 (5.59)	.520(13.21)	.141(3.58)	.350 (8.89)	.032 (.81)
1200 to 1300, incl	.570(14.48)	.660(16.78)	.110(2.79)	.220 (5.59) .230 (5.84)	.520(13.21) .520(13.21)	.141(3.58)	.350 (8.89) .350 (8.89)	.032 (.81) .032 (.81)
1500 1600	.570(14.48) .570(14.48)	.660(16.78)	.120(3.05)	.230 (5.84)	.530(13.46)	.141(3.58)	.350 (8.89)	.032 (.81)
1800 to 2000, incl	.580(14.73)	.670(17.02)	.130(3.30)	.240 (6.10)	.530(13.46)	.141(3.58)	.350 (8.89)	.032 (.81)
2200	.580(14.73)	.670(17.02)	.140(3.56)	.250 (6.35)	.530(13.46)	.141(3.58)	.350 (8.89)	.032 (.81)
2400	.580(14.73)	.670(17.02)	.150(3.81)	.260 (6.60)	.540(13.72)	.141(3.58)	.350 (8.89)	.032 (.81)
2700 3000	.590(14.99) .590(14.99)	.680(17.27) .680(17.27)	.160(4.06)	.270 (6.86) .280 (7.11)	.540(13.72) .550(13.97)	.141(3.58) .141(3.58)	.350 (8.89) .350 (8.89)	.032 (.81) .032 (.81)
3300	.590(14.99)	.680(17.27)	.180(4.57)	.290 (7.11)	.550(13.97)	.141(3.58)	.350 (8.89)	.032 (.81)
3600	.590(14.99)	.680(17.27)	.190(4.83)	.300 (7.62)	.560(14.22)	.141(3.58)	.350 (8.89)	.032 (.81)
3900	.600(15.24)	.690(17.53)	.200(5.08)	.310 (7.87)	.560(14.22)	.141(3.58)	.350 (8.89)	.032 (.81)
4300	.600(15.24)	.690(17.53)	.220(5.59)	.330 (8.38)	.570(14.48)	.141(3.58)	.350 (8.89) .350 (8.89)	.032 (.81) .032 (.81)
4700	.610(15.49)	.700(17.78)	.220(5.59)	LE CMR07	.580(14.73)	.141(3.58)	.330 (8.87)	.032 (.01)
5100	(90/17 27)	700/10 01\	.150(3.81)	.280 (7.11)	.860(21.84)	.141(3.58)	.425(10.80)	.040(1.02)
5100 5600 to 6200, incl	.680(17.27) .680(17.27)	.780(19.81)	.150(3.81)	.290 (7.11)	.870(22.10)	.141(3.58)	.425(10.80)	.040(1.02)
6800	.680(17.27)	.780(19.81)	.150(3.81)	.300 (7.62)	.870(22.10)	.141(3.58)	.425(10.80)	.040(1.02)
7500	.690(17.53)	.790(20.07)	.150(3.81)	.310 (7.87)	.880(22.35)	.141(3.58)	.425(10.80)	.040(1.02)
8200	.690(17.53)	.790(20.07)	.150(3.81)	.320 (8.13)	.880(22.35)	.141(3.58)	.425(10.80)	.040(1.02)
9100	.690(17.53) .700(17.78)	.790(20.07) .800(20.32)	.150(3.81)	.330 (8.38) .340 (8.64)	.880(22.35) .890(22.61)	.141(3.58)	.425(10.80)	.040(1.02) .040(1.02)
10,000 11,000	.700(17.78)	.800(20.32)	.200(5.08)	.350 (8.89)	.890(22.61)	.141(3.58)	.425(10.80)	.040(1.02)
12,000	.700(17.78)	.800(20.32)	.200(5.08)	.360 (9.14)	.890(22.61)	.141(3.58)	.425(10.80)	.040(1.02)
13,000	.710(18.03)	.810(20.57)	.200(5.08)	.370 (9.40)	.890(22.61)	.141(3.58)	.425(10.80)	.040(1.02)
15,000	.710(18.03)	.810(20.57)	.250(6.35)	.390 (9.91)	.900(22.86)	.141(3.58)	.425(10.80)	.040(1.02)
16,000	.720(18.29) .720(18.29)	.820(20.83) .820(20.83)	.250(6.35)	.410(10.41)	.900(22.86) .910(23.11)	.141(3.58)	.425(10.80)	.040(1.02)
18,000 20,000	.730(18.54)	.830(21.08)	.250(6.35)	.450(11.43)	.920(23.37)	.141(3.58)	.425(10.80)	.040(1.02)
				LE CMR08				<u> </u>
22,000	1.300(33.02)	1.420(36.07)		.310 (7.87)	.880(22.35)	.141(3.58)	1.050(26.67)	.040(1.02)
24,000	1.310(33.02)	1.430(36.32)		.320 (8.13)	.880(22.35)	.141(3.58)	1.050(26.67)	.040(1.02)
27,000	1.320(33.53)	1.430(36.32)	.180(4.57)	.330 (8.38)	.880(22.35)	.141(3.58)	1.050(26.67)	.040(1.02)
30,000	1.330(33.78)	1.440(36.58)	.180(4.57)	350 (8.89)	.890(22.61)	.141(3.58)	1.050(26.67)	.040(1.02)
33,000 36,000	1.330(33.78) 1.340(34.04)	1.440(36.58) 1.450(36.83)	.18J(4.57) .180(4.57)	.360 (9.14) .380 (9.65)	.890(22.61) .900(22.86)	.141(3.58)	1.050(26.67)	.040(1.02)
39,000	1.340(34.04)	1.450(36.83)	.220(5.59)	.400(10.16)	.900(22.86)	.141(3.58)	1.050(26.67)	.040(1.02)
43,000	1.350(34.29)	1.460(37.08)	.225(5.72)	.420(10.67)	.910(23.11)	.141(3.58)	1.050(26.67)	.040(1.02)
47,000	1.360(34.54)	1.470(37.34)	.250(6.35)	.450(11.43)	.910(23.11)	.141(3.58)	1.050(26.67)	.040(1.02)
51,000	1.370(34.80)	1.480(37.59)	.250(6.35)	.470(11.94)	.9 20(23.37)	.141(3.58)	1.050(26.67) 1.050(26.67)	.040(1.02)
56,000	1.350(34.29) 1.360(34.54)	1.460(37.08) 1.470(37.34)	.225(5.72)	.420(10.67) .450(11.43)	.910(23.11) .920(23.37)	.141(3.58)	1.050(26.67)	.040(1.02)
62,000 68,000	1.370(34.80)	1.480(37.59)	.260(6.60)	.470(11.94)	.9 20(23.37)	.141(3.58)	1.050(26.67)	.040(1.02)
75,000	1.360(34.54)	1.470(37.34)	.240(6.10)	.440(11.18)	.910(23.11)	.141(3.58)	1.050(26.67)	.040(1.02)
	1.370(34.80)	1.480(37.59)	.310(7.87)	.460(11.68)	.920(23.37)	.141(3.58)	1.050(26.67)	.040(1.02)
82,000		1.500(38.10)	.340(8.64)	.500(12.70)	.940(23.88)	.141(3.58)	1.050(26.67)	.040(1.02)

FIGURE 602-3. <u>Established reliability, mica dielectric, fixed capacitors.</u> - Continued

STANDARD CAPACITORS

STYLES CMRO4, CMRO6, CMRO7, AND CMRO8 (MIL-C-39001/5), OPERATING TEMPERATURE RANGE -55°C TO +150°C

 Style	 Type designation <u>1</u> /	 	 DC rated voltage	Capacitance tolerance available
		<u>pF</u>	<u>volts</u>	
CMRO4	CMRO4C1RODPD - CMRO4C1R5DPD - CMRO4C2R5DPD - CMRO4C3R5DPD - CMRO4C3R5DPD - CMRO4C3R5DPD - CMRO4C4R5DPD - CMRO4C5R0DPD - CMRO4C6R0DPD - CMRO4C6R0DPD - CMRO4C180JPD - CMRO4C111 - PD - CMRO4C11 - PD - CMRO4C11 - PD - CMRO4C11 - PD - CMRO4C11 - PD - CMRO4C	1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.0 7.0 8.0 9.0 10 12 15 18 20 22 24 27 30 33 36 39 43 47 51 56 62 68 75 82 91 100 1120 1100 1100 1100 1100 1100 1	500 500 500 500 500 500 500 500 500 500	D D D D D D D D D D D D D D D D D D D
	CMRO4F221-PD- CMRO4F241-PD- CMRO4F271-PC-	200 220 240 270	500 500 500 300	FGJ FGJ FGJ FGJ
	CMR04F301-PC- CMR04F331-PA- CMR04F361-PA- CMR04F391-PA-	300 330 360 390	300 300 100 100	FGJ FGJ FGJ FGJ

See footnote at end of figure.

FIGURE 602-3. <u>Established reliability</u>, <u>mica dielectric</u>, <u>fixed capacitors</u> - Continued.

STANDARD CAPACITORS

STYLES CMR04, CMR05, CMR06, CMR07, AND CMR08 (MIL-C-39001/5) OPERATING TEMPERATURE RANGE -55°C TO +150°C - Continued

 Style	 Type designation <u>1</u> /	Capacitance value	DC rated voltage	Capacitance tolerance (available
	1	pF	<u>volts</u>	
CMRO5	CMRO5C1RODPD - CMRO5C1R5DPD - CMRO5C2R0DPD - CMRO5C2R5DPD - CMRO5C3R0DPD - CMRO5C3R5DPD - CMRO5C3R5DPD - CMRO5C4R0DPD - CMRO5C4R5DPD - CMRO5C5R0DPD - CMRO5C5R0DPD - CMRO5C6R0DPD - CMRO5C7R0DPD - CMRO5C7R0DPD - CMRO5C180JPD - CMRO5C120JPD - CMRO5C120JPD - CMRO5C120JPD - CMRO5C120JPD - CMRO5C20JPD	1.0 1.5 2.0 2.5 3.5 4.0 4.5 5.0 6.0 7.0 8.0 9.0 10 12 15 18 20 22 24 27 30 33 36 39 43 47 51 56 62 68 75 82 91 100 110 120 130 150 160 160 160 160 160 160 160 160 160 16	500 500 500 500 500 500 500 500 500 500	D D D D D D D D D D D D D D D D D D D
1	CMR05F201-PD- CMR05F221-PD- CMR05F241-PD- CMR05F271-PC-	200 220 240 270	500 500 500 500	FGJ FGJ FGJ FGJ
1 1 1	CMR05F301-PC- CMR05F331-PA- CMR05F361-PA- CMR05F391-PA-	300 330 360 390	500 1 500 1 500 1 500 1	FGJ FGJ FGJ FGJ

See footnote at end of figure.

FIGURE 602-3. Established reliability, mica dielectric, fixed capacitors - Continued.

STANDARD CAPACITORS

STYLES CMRO4, CMRO6, CMRO7, AND CMRO8 (MIL-C-39001/5), OPERATING TEMPERATURE RANGE -55°C TO +150°C - Continued

 Style	 Type designation <u>1</u> /	 Capacitance value	 DC rated voltage	Capacitance tolerance available
[1	<u>pF</u>	volts	
CMRO6	CMRO6F431-PD-	430	500	FGJ
	CMR06F471-PD-	470	l 500	FGJ
!	CMR06F511-PD-	510	500	FGJ
	CMR06F561-PD-	560	500	FGJ
	CMR06F621-PD-	620	500	l FGJ
	CMR06F681-PD- CMR06F751-PD-	680 750	500	FGJ
	CMROGF/31-PD-	820	1 500 1 500	l FGJ I FGJ
i	CMR00F021-PD-	910	1 500	l FGJ
	CMR06F102-PD-	1,000	500	FGJ
	CMR06F112-PD-	1,100	500	FGJ
	CMR06F122-PD-	1,200	500	FGJ
	CMR06F132-PD-	1,300	500	FGJ
	CMR06F152-PD-	1,500	l 500 i	FGJ
	CMR06F162-PD-	1,600	500	FGJ
	CMR06F182-PD-	1,800	500	FGJ
	CMR06F202-PD-	2,000	500	FGJ
	CMR06F222-PD-	2,200	500	FGJ
	CMRO6F242-PD-	2,400 2,700	500 500	FGJ
	CMR06F272-PD-	3,000	500	FGJ FGJ
	CMROOF302-PD-	3,300	500 I	FGJ
	CMR00F352-PD-	3,600	500	FGJ
	CMR06F392-PD-	3,900	500 I	FGJ
	CMR06F432-PD-	4,300	500	FGJ
	CMRO6F472-PD-	4,700	500	FGJ
CMRO7	CMR07F512-PD-	5,100	500	FGJ
1	CMR07F562-PD-	5,600	500	FGJ
	CMR07F622-PD-	6,200	500	FGJ
	CMR07F682-PD-	6,800	500	FGJ
	CMR07F752-PD-	7,500	500	FGJ
	CMR07F822-PD-	8,200	500	FGJ
	CMR07F912-PD-	9,100	500	FGJ
	CMR07F103-PD-	10,000	500	FGJ
	CMRO7F113-PD-	11,000	500 500	FGJ
	CMR07F123-PD-	12,000 13,000	500 500	FGJ FGJ
	CMRO7F133-PD-	15,000	500 500	FGJ FGJ
	CMR07F153=PD= CMR07F163=PD=	16,000	500	FGJ
	CMR07F183-PD-	18,000	500	FGJ
	CMR07F203-PD-	20,000	500	FGJ

See footnote at end of figure.

STANDARD CAPACITORS

STYLES CMR04, CMR05, CMR06, CMR07, AND CMR08 (MIL-C-39001/5), OPERATING TEMPERATURE RANGE -55°C TO +150°C - Continued

 Style	Type designation <u>1</u> /	 Capacitance value 	DC rated voltage	Capacitance tolerance available
		<u>pF</u>	volts volts	1 !
CMRO8	CMR08F223-PD-	22,000	500	, FGJ
İ	1 CMR08F243-PD-	1 24,000	500	FGJ
	CMR08F273-PD-	1 27,000	500	j FGJ
i	1 CMR08F303-PD-	1 30.000	500	l FGJ
İ	I CMRO8F333-PD-	33,000	500	f FGJ
i	1 CMRO8F363-PD-	36,000	500	l FGJ
i	I CMRO8F393-PD-	39,000	500	FGJ
ĺ	I CMRO8F433-PD-	1 43,000	500	l FGJ
i	I CMRO8F473-PD-	47,000	500	i FGJ
i	CMR08F513-PD-	51,000	500	j FGJ
İ	[CMRO8F563-PC-	56,000	300	FGJ
İ	CMR08F623-PC-	62,000	300	FGJ
İ	CMRO8F683-PC-	68,000	300	f FGJ
1	CMR08F753-PA-	75,000	100	FGJ
ĺ	[CMRO8F823-PA-	82,000	100	l FGJ
	CMR08F913-PA-	91,000	100	FGJ

^{1/} Where applicable, the complete type designation will include additional letter symbols to indicate the dc rated voltage, capacitance tolerance, and failure rate level.

FIGURE 602-3. Established reliability, mica dielectric, fixed capacitors - Continued.

Downloaded from http://www.everyspec.com

Downloaded from http://www.everyspec.com

MI L-STD-198E

SECTION 700

CAPACITORS, FIXED, ELECTROLYTIC, ESTABLISHED RELIABILITY

Secti on		<u>Applica</u>	ble specification
701.	Capacitors, Fixed, Electrolytic (Solid Electrolyte) Tantalum, Established Reliability		MI L-C-39003
702.	Capacitors, Fixed, Electrolytic (Nonsolid Electroly Tantalum, Established Reliability		MI L-C-39006
703.	Capacitors, Chip, Fixed, Tantalum, Established Reliability	-	MI L-C-55365
704.	Capacitors, Fixed, Electrolytic (Aluminum Oxide), Established Reliability	-	MI L-C-39018
		1	

USAF AIRBORNE APPLICATIONS REQUIRE PRIOR APPROVAL BY PROCURING ACTIVITY

Downloaded from http://www.everyspec.com

SECTION 701

CAPACITORS, FIXED, ELECTROLYTIC (SOLID ELECTROLYTE), TANTALUM, ESTABLISHED RELIABILITY

STYLES CSR13, CSR91, AND CSR21

(APPLICABLE SPECIFICATION: MIL-C-39003)

1. SCOPE. This section covers established reliability, insulated, tantalum, solid-electrolyte, fixed capacitors, hermetically sealed in metal cases. These capacitors have failure rate levels ranging from 1.0 to 0.001 percent per 1,000 hours. The failure rate levels are established at a 60 percent confidence level and are based on operation at full rated voltage at $+85^{\circ}\text{C}$. When properly derated, these units will operate at $+125^{\circ}\text{C}$.

2. APPLICATION INFORMATION.

2.1 <u>Use.</u> These capacitors are intended for use in equipment where a known order of reliability is required. These electrolytic capacitors are the most stable and most reliable electrolytic available, having a longer life chatacteristic than any of the other electrolytic capacitors. Because of their passive electrolyte eing solid and dry, these capacitors are not temperature-sensitive; they have a lower capacitance-temperature characteristic than any of the other electrolytic capacitors. Their limitations are the relatively high leakage current, limited voltage range available (6 to 100 volts), and amaximum allowable reverse voltage of 15 percent of the rated dc voltage at +25°C to 1 percent at +125°C. CSR13 and CSR91 style capacitors are generally used where low-frequency pulsating dc components are to be bypassed or filtered out.

CSR21 style capacitors provide more stable capacitance, equivalent series resistance, and impedance than other tantalum capacitors at high frequency. They have heavier ripple current ratings than other types which make them particularly suitable for applications such as output filtering for switching regulator power supplies. Such uses require low impedance in series with the capacitors (see figure 701.4). Solid tantalum capacitors are used in electronic equipment where large capacitance values are required, where space is at a premium, and where there are significant quantities of shock and vibration. These capacitors are mainly designed for filter, by-pass, coupling, blocking, energy storage, and other low voltage dc applications (such as transistor circuit in missile, computer, and aircraft electronic equipment) where stability, size, weight, and shelf life are important factors. When designing transistor, timing, phase shifting, and vacuum-tube grid circuits, the dissipation factor and power factor should be taken into consideration. For bypassing resistors, a ratio of bias resistance to capacitive reactance of 10 to 1 is usually allowed. Ratios up to 20 to 1 may be used in high-fidelity amplifier work or where space and economical considerations permit. In circuits where linear amplification is required, the amount of capacitive reactance shunting a cathode resistor will depend on the percentage of degenerative feedback desired.

These capacitors are available as polarized and nonpolarized types. Polarized types should have their cases at the same potential as the negative lead; they should be used only in dc circuits with polarity observed. Nonpolarized types should be used where reversal of potential occurs.

2.2 <u>Construction.</u> A porous tantalum pellet or wire serves as the anode of a solid tantalum capacitor. The surfaces of the anode are electrochemically coverted to an oxide of tantalum which serves as the dielectric. These surfaces are coated with an oxide semiconductor which is the working electrolyte in solid form. This oxide semiconductor establishes contact with all of the complex surfaces of the anodized pellet and is capable of healing imperfections of the tantalum oxide dielectric film.

NOTE: In high impedance circuits, momentary breakdowns (if present) will self-heal; however, in low impedance circuits, their self-healing characteristics under momentary breakdown of the dielectric film will be nonexistent. The large currents in low impedance circuits will cause permament damage to the capacitor.

- 2.3 <u>Voltage rating.</u> These capacitors have a voltage rating over a range of 6 to 100 volts.
- 2.4 <u>Operating temperature range.</u> These capacitors are suitable for operation over a temperature range of -55° to $+85^{\circ}$ C.
- 2.5 <u>Voltage derating.</u> When propely derated, these units may be operated over a temperature range of -55° C to $+125^{\circ}$ C. The derated voltage at $+125^{\circ}$ C is approximately 66 percent of the full rated voltage.
- 2.6 Reverse voltage. These capacitors are capable of withstanding peak voltages in the reverse direction equal to 15 percent of their dc rating at $+25^{\circ}$ C; 10 percent at $+55^{\circ}$ C; 5 percent at $+85^{\circ}$ C; and 1 percent at $+125^{\circ}$ C.
- 2.7 Permissible ripple voltage. These capacitors may be operated with an impressed ripple (ac) voltage provided the capacitors do not exceed their heat-dissipation limits. Total heat-dissipation limits depend on the amibent operating temperature and the operating frequency. For example. A 10-µf capacitor of any voltage may be operated at 1.9 Vrms, 120 Hz, 25°C, or at 0.75 volts rnsm 120 Hz, 125°C. (See figure 701-1.) When this same capacitor is subjected to a ripple frequency of 1,000 Hz; the permissible ripple voltage must be reduced by the ratio of permissible ac at 120 Hz (see figure 701-2) as follows: 1.9 times 0.47/1.9 equals 0.47 Vrms at 25°C, 1,000 Hz; or 0.75 times 0.47/1.9 equals 0.19 Vrms at 125°C, 1,000 Hz sould not exceed the dc rated voltage and the peak of the ac ripple voltage should not exceed the dc rated voltage for the applicable ambient temperature. Permissible ac voltage determined from figures 701-1 and 701-2 may be applied when the dc voltage is zero or near zero, provided the negative [eal pf the ac voltage does not exceed the allowable reverse voltage limits of 1 percent of the rated voltage at +125°C. For CSR21 capacitors, ripple voltage is more often limited by restraints on reversal of voltage. Ripple current limitations are more significant because the degradation mode is thermal and must not be allowed to exceed the maximum levels specified for each rating, frequency, and ambient temperature. Figures 701-1 and 701-2 should be used with caution with regard to CSR21.

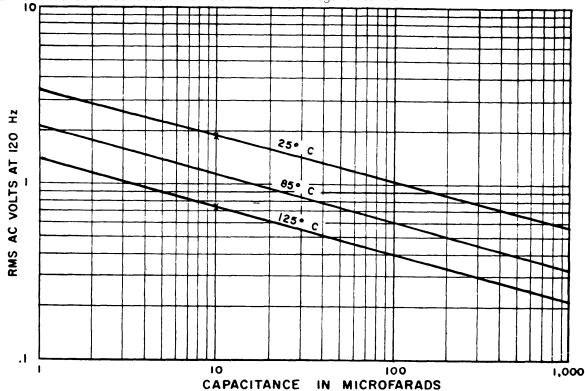


FIGURE 701-1. <u>Permissible ripple voltage versus capacitance and ambient temperature at 120 Hz.</u> 701 (MIL-C-39003)

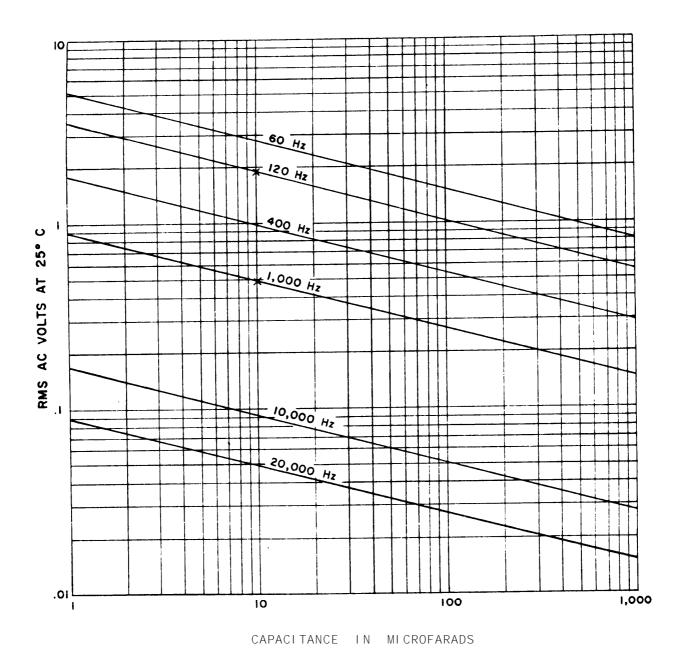
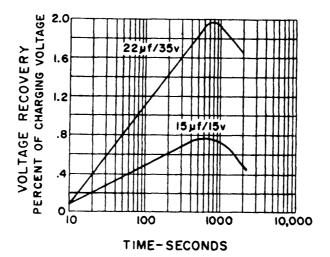


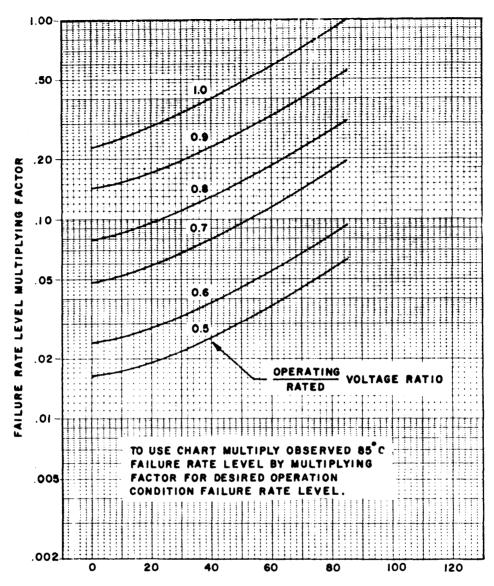
FIGURE 701-2. <u>Permissible ripple voltage versus capacitance</u> and frequency at 25° C.

2.8 Series and parallel networks:

- 2.8.1 <u>Series.</u> It is recommended that when these capacitors are connected in series, the maximum voltage across the network should not be greater than the lowest voltage rating of any capacitor in the network, or that voltage divider resistors be used to prevent over voltage on one or more units of the series capacitor group.
- 2.8.2 <u>Parallel.</u> To obtain a higher capacitance than can be obtained from a single capacitor, a number of units may be connected in parallel. However, the sum of the peak ripple and the applied dc voltage should not exceed the dc working voltage of the unit with the lowest voltage rating. The connecting leads of the parallel network should be large enough to carry the combined currents without reducing the effective capacitance due to series lead resistance.

2.9 <u>Dielectric absorption.</u> Dielectric absorption may be observed by the reappearance of potential across the capacitor after it has been shorted and the short removed. This characteristic is important in RC timing circuits, triggering systems, and phase-shift networks. The curves shown on figure 701-3 were established by charging capacitors for 1 hour at rated voltage and then discharging them through a dead short for 1 minute.




FIGURE 701-3. Typical dielectric absorption of solid-electrolyte tantalum capacitors at 25°C.

Voltage recovery was measured with a high-impedance electrometer at the intervals given on the curves. Increasing the ambient temperature shifts the curves to the left and decreases the amplitude but does not affect the shape. Shortening charge time, lengthening discharge time, or decreasing charging voltage results in reduction of the peak amplitude of the curve, but has little effect on its shape or relative position.

- 2.10 <u>Comparison with aluminum electrolytic.</u> Tantalum solid electrolytic capacitors differ from aluminum electrolytics in several important aspects; namely, substantially indefinite shelf life, superior low temperature characteristics, complete freedom from electrolyte leakage, and higher operating temperatures. However, because tantalum electrolytic capacitors generally are more costly than aluminum electrolytic capacitors, consideration should be given to the use of aluminum electrolytic capacitors if their performance characteristics and physical sizes are suitable and if the application will permit.
- 2.11 $\underline{\text{Mounting.}}$ Supplementary mounting means should be used where the application of these capacitors involves vibration frequencies above 55 Hz.
- 2.12 <u>Increased reliability.</u> Failure rate is a function of temperature, applied voltage, and circuit impedance. Increased reliability may be obtained by derating the temperature and applied voltage and increasing circuit impedances.

DC leakage current increases when either voltage or temperature is increased; the rate of increase is greater at the higher values of voltage and temperature. A point can be reached where the dc leakage current will avalanche and attain proportions that will permanently damage the capacitor. Consequently, capacitors should never be operated above their rated temperature and rated voltage for that temperature.

By increasing the circuit impedance, the leakage current is reduced. In life testing the solid tanatlum capacitor, the capacitance and dissipation factor are very stable over long periods of time and hence are not a suitable measure of deterioration. Leakage current variation is a better indicator of capacitor condition. In the life test in MIL-C-39003, a maximum impedance of 3 ohms is allowed. It is recommended that a minimum circuit impedance of 3 ohms per applied volt (1.5 ohms per volt for CSR21) be utilized to attain improved reliability.

NOTE:
multiply the value read from figure 701-4 by the following applicable multiplying factor:

Styles CSR13 a	nd CSR91	Style CS	R21
Circuit impedance Ohms/volt	Multiplying factor	Circuit impedance Ohms/volt	Multiplying factor
3 or greater	1.0	1.5 or greater	1.0
2	1.4	1	1.4
1	2.8	.5	2.8
0.9	2.9	.45	2.9
0.8	3.2	.4	3.2
0.6	4.0	.3	4.0
0.5	4.5	.25	4.5
0.4	5.1	.20	5.1
0.3	6.1	.15	6.1
0.2	7.5	.1	7.5
0.15	9.0	.075	9.0
0.10	12.0	.05	12.0

FIGURE 701-4. Failure rate level curves.

- 2.13 Failure-rate level determination. The curves presented on figure 701-4 are the best engineering approximation of the reliability characteristics (random failures) for these capacitors when employed repeatedly, within their specification ratings, in complex electronic equipment. These reliability characteristics are based on ground-level severity experience. Failures are considered to be opens, shorts, or radical departures from initial characteristics. The failures are considered to be occurring in an unpredictable manner and in too short a period of time to permit detection through normal preventive maintenance. The curves shown on figure 701-4 are based on "catastrophic failures" and will differ from the failure rates established in the specification, since the established failure rates are based on "parametric failures" over long term life tests at rated conditions. Figure 701-4 has been extracted from MIL-HDBK-217, "Reliability Stress and Failure Rate Data for Electronic Equipment." The curves have been modified from their original version in that the ordinate has been normalized in order to provide multiplier factors in place of discrete failure rate levels and in order that the multiplying factor for a failure rate at rated conditions is unity. As indicated, these curves are the best estimates based on "catastrophic failiures"; however, they can provide an estimate of the relative effect of operating under conditions other than rated.
- 2.14 <u>General.</u> When additional experience and data are obtained relative to the reliability of these units, such information will be added herein.

3. ITEM IDENTIFICATION.

3.1 <u>Standard capacitor.</u> The standard capacitors available in this section are shown in figure 701-5. (The figure gives the electrical characteristics, case sizes, failure rate. levels, and Military part numbers which are standard for design.)

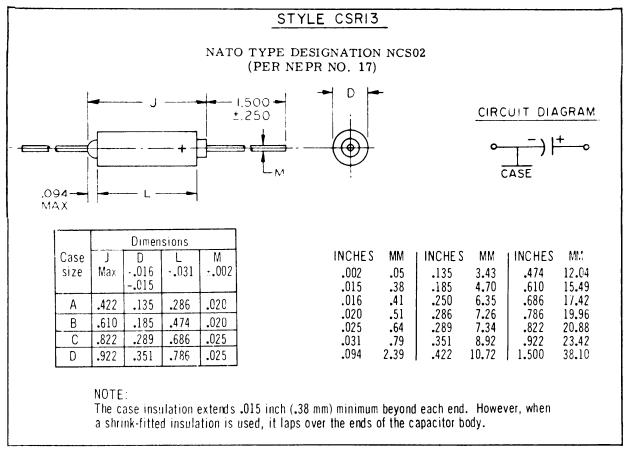


FIGURE 701-5. <u>Established reliability, tantalum, solid</u> <u>electrolyte, fixed capacitors.</u>

STANDARD CAPACITORS STYLE CSR13 (MIL-C-39003/1)

OPERATING TEMPERATURE RANGE -55° TO +85°C (DERATED TO +125°C)

DC	Cap.	Cap.	DC	leakag	e at	Dissipatio	n factor at	Case			r M3900	03/01- 1,000 hr)
rated voltage	(nom)	tolerance	+ 25°C	+ 85°C	+ 125°C	-55°C +25°C	+ 85°C + 125°C	size	M (1.0)	P (0.1)	(0.01)	S (0.001)
volts	$\mu \mathbf{F}$	percent	μ A	μ A	μ A	percent	percent	-				
6	5.6	5	.3	6.0	7.5	4	4	Α	5001	5201	5401	5601
6	5.6	10	. 3	6.0	7.5	4	4	A	2241	2481	2721	2961
6	6.8	5	. 3	6.0	7.5	6	6	A	5002	5202	5402	5602
6	6.8	10	. 3	6.0	7.5	6	6	A	2242	2482	2722	2962
6	6.8	20	. 3	6.0	7.5	6	6	A	2243	2483	2723	2963
6	47.0	5	1.5	24.0	30.0	6	6	В	5003	5203	5403	5603 2964
6	47.0	10	1.5	24.0	30.0	6	6	B	2244 2245	2484 2485	2724	2965
6	47.0	20	1.5 1.5	24.0 24.0	30.0 30.0	6	6 6	В	5004	5204	5404	5604
6	56.0 56.0	5 10	1.5	24.0	30.0	6	6	В	2246	2486	2726	2966
6	150.0	5	4.5	90.0	113.0	8	8	١ć	5005	5205	5405	5605
6	150.0	10	4.5	90.0	113.0	8	8	Č	2247	2487	2727	2967
6	150.0	20	4.5	90.0	113.0	8	8	C	2248	2488	2728	2968
6	180.0	5	5.5	110.0	138.0	8	8	С	5006	5206	5406	5606
6	180.0	10	5.5	110.0	138.0	8	8	C	2249	2489	2729	2969
6	270.0	5	6.5	130.0	163.0	8	8	D	5007	5207	5407	5607
[6	270.0	10	6.5	130.0	163.0	8	8	D	2250	2490	2730	2970
6	330.0	5	7.5	150.0	188.0	8	8	D	5008	5208	5408	5608
6	330.0	10	7.5	150.0	188.0	8	8 8	D	2251	2491 2492	2731 2732	2971 2972
6	330.0	20 5	7.5	150.0 6.0	188.0 7.5	4	4	-A -	2252 5009	5209	5409	5609
10 10	3.9 3.9	10	.3	6.0	7.5	4	4	A	2253	2493	2733	2973
10	4.7	5	.4	7.0	8.8	4	4	A	5010	5210	5410	5610
10	4.7	10	.4	7.0	8.8	4	4	A	2254	2494	2734	2974
10	4.7	20	.4	7.0	8.8	4	4	A	2255	2495	2735	2975
10	27.0	5	2.0	40.0	50.0	6	6	В	5011	5211	5411	5611
10	27.0	10	2.0	40.0	50.0	6	6	В	2256	2496	2736	2976
10	33.0	5	2.5	50.0	63.0	6	6	В	5012	5212	5412	5612
10	33.0	10	2.5	50.0	63.0	6	6	В	2257	2497	2737	2977
10	33.0	20	2.5	50.0	63.0	6	6	В	2258	2498	2738	2978
10	39.0	5	2.5	50.0	63.0	6	6	В	5013	5213	5413	5613
10	39.0	10	2.5	50.0	63.0	6	6 6	B	2259 5014	2499 5214	2739 5414	2979 5614
10	82.0	5 10	4.0	80.0	100.0	6	6	C	2260	2500	2740	2980
10	82.0 100.0	5	5.0	80. 0 100. 0	100.0 125.0	8	8	c	5015	5215	5415	5615
10	100.0	10	5.0	100.0	125.0	8	8	C	2261	2501	2741	2981
10	100.0	20	5.0	100.0	125.0	8	8	C	2262	2502	2742	2982
10	120.0	5	6.0	120.0	150.0	8	8	C	5016	5216	5416	5616
10	120.0	10	6.0	120.0	150.0	8	8	C	2263	2503	2743	2983
10	180.0	5	9.0	180.0	226.0	8	8	D	5017	5217	5417	5617
10	180.0	10	9.0	180.0	226.0	8	8	D	2264	2504	2744	2984
10	220.0	5	10	200.0	250.0	8	8	D	5018	5218	5418	5618
10	220.0	10	10	200.0	250.0	8	. 8	D	2265	2505	2745	2985
10	220.0	20	10	200.0	250.0	8 4	8 4	D A	2266 5019	2506 5219	2746 5419	2986
15	2.7	5	. 3	6.0	7.5	4	4	A	2267	2507	2747	5619 2987
15	2.7	10	.3	6.0	7.5	4	4	A	5020	5220	5420	5620
15 15	3.3	10	.4	8.0 8.0	10.0 10.0	4	4	A	2268	2508	2748	2988
15	3.3	20	.4	8.0	10.0	4	4	A	2269	2509	2749	2989
15	18.0	5	2.0	35.0	44.0	6	6	В	5021	5221	5421	5621
	1 -0.0	<u> </u>		1 20.0			l	<u> </u>	J			

FIGURE 701-5. <u>Estalished reliability</u>, <u>tantalum</u>, <u>solid electrolyte</u>, <u>fixed capacitors</u> - Continued.

STANDARD CAPACITORS STYLE CSR13 (MIL-C-39003/1) - CONTINUED

OPERATING TEMPERATURE RANGE -55° TO +85°C (DERATED TO +125°C)

DC	Cap.	Cap.	De	C leakag	e at	Dissipatio	on factor at	Case			er M390	03/01- (1,000 hr)
rated voltage	(nom)	tolerance	+25°C	+85°C	+ 125°C	-55°C +25°C	+ 85°C + 125°C	size	M (1.0)	P (0.1)	R (0.01)	S (0.001)
volts	$\mu \mathbf{F}$	percent	μ Α	μА	μ Α	percent	percent					
15	18.0	10	2.0	35.0	44.0	6	6	В	2270	2510	2750	2990
15	22.0	5	2.0	40.0	50.0	6	6	В	5022	5222	5422	5622
15	22.0	10	2.0	40.0	50.0	6	6	В	2271	2511	2751	2991
15	22.0	20	2.0	40.0	50.0	6	6	В	2272	2512	2752	2992
15	56.0	5	4.0	80. 0 80. 0	100.0	6 6	6 6	C	5023	5223	5423	5623
15 15	56.0 68.0	10 5	5.0	100.0	100.0 125.0	6	6	c	2273 5024	2513 5224	2753 5424	2993 5624
15	68.0	10	5.0	100.0	125.0	6	6	Č	2274	2514	2754	2994
15	68.0	20	5.0	100.0	125.0	6	6	Č	2275	2515	2755	2995
15	120.0	5	9.0	180.0	226.0	8	8	D	5025	5225	5425	5625
15	120.0	10	9.0	180.0	226.0	8	8	D	2276	2516	2756	2996
15	150.0	5	10.0	200.0	250.0	8	8	D	5026	5226	5426	5626
15	150.0	10	10.0	200.0	250.0	8	8	D	2277	2517	2757	2997
15	150.0	20	10.0	200.0	250.0	8	8	D	2278	2518	2758	2998
20 20	1.2 1.2	5 10	.3	6.0	7.5 7.5	4	4	A A	5027 2279	5227 2519	5427 2759	5627 2999
20	1.5	5	.3	6.0	7.5	4	4	A	5028	5228	5428	5628
20	1.5	10	3	6.0	7.5	4	4	A	2280	2520	2760	3000
20	1.5	20	.3	6.0	7.5	4	4	A	2281	2521	2761	3001
20	1.8	5	.3	6.0	7.5	4	4	A	5029	5229	5429	5629
20	1.8	10	.3	6.0	7.5	4	4	A	2282	2522	2762	3002
20	2.2	5	.4	8.0	10.0	4	4	A	5030	5230	5430	5630
20	2.2	10	.4	8.0	10.0	4	4	A	2283	2523	2763	3003
20	2.2	20	1.4	8.0	10.0	4 6	4 6	A	2284	2524	2764	3004
20 20	8.2 8.2	5 10	1.0	20.0	25.0 25.0	6	6	B	5031 2285	5231 2525	5431 2765	5631 3005
20	10.0	5	1.5	30.0	38.0	6	6	В	5032	5232	5432	5632
20	10.0	10	1.5	30.0	38.0	6	6	В	2286	2526	2766	3006
20	10.0	20	1.5	30.0	38.0	. 6	6	В	2287	2527	2767	3007
20	12.0	5	1.8	35.0	44.0	6	6	В	5033	5233	5433	5633
20	12.0	10	1.8	35.0	44.0	6	6	В	2288	2528	2768	3008
20	15.0	5	2.0	40.0	50.0	6	6	В	5034	5234	5434	5634
20	15.0	10	2.0	40.0	50.0	6	6	В	2289	2529	2769	3009
20	15.0 27.0	20 5	2.0	40.0 50.0	50. 0 63. 0	6 6	6 6	B	2290 5035	2530 5235	2770 5435	3010 5635
20	27.0 27.0	10	2.5	50.0	63.0	6	6	C	2291	2531	2771	3011
20	33.0	5	3.5	70.0	88.0	6	6	C	5036	5236	5436	5636
20	33.0	10	3.5	70.0	88. 0	6	6	c	2292	2532	2772	3012
20	33.0	20	3.5	70.0	88. 0	6	6	C	2293	2533	2773	3013
20	39.0	5	4.0	80. 0	100. 0	6	6	C	5037	5237	5437	5637
20	39.0	10	4.0	80.0	100.0	6	6	C	2294	2534	2774	3014
20	47.0	5	4.5	90.0	113.0	6	6	C	5038	5238	5438	5638
20	47.0	10	4.5	90.0	113.0	6	6	C	2295	2535	2775	3015
20	47.0	20 5	4.5	90. 0 110. 0	113.0	6 6	6 6	C	2296 5039	2536 5239	2776 5439	3016 5639
20 20	56.0 56.0	10	5.5	110.0	138. 0 138. 0	6	6	מ	2297	2537	2777	3017
20	68.0	5	7.0	140.0	175.0	6	6	D	5040	5240	5440	5640
20	68.0	10	7.0	140.0	175.0	6	6	D	2298	2538	2778	3018
20	68.0	20	7.0	140.0	175.0	6	6	D	2299	2539	2779	3019
20	82.0	5	8.0	160. 0	200.0	6	6	D	5041	5241	5441	5641
	.	1	'	<u> </u>	L	L	<u>i</u>	1	<u> </u>	•	<u> </u>	·

FIGURE 701-5. <u>Established reliability, tantalum, solid electrolyte, fixed capacitors</u> - Continued.

701 (MI L-C-39003)

STANDARD CAPACITORS STYLE CSR13 (MIL-C-39003/1) - CONTINUED

OPERATING TEMPERATURE RANGE -55° TO +85°C (DERATED TO +125°C)

DC	Cap.	Cap.	DC	Cleakag		·	on factor at	Case			er M390 evel (%/	03/01- 1,000 hr)
rated voltage	(nom)	tolerance	+25°C	+85°C	+ 125°C	-55°C +25°C	+ 85°C + 125°C	size	M (1.0)	P (0.1)	R (0. 01)	S (0.001)
volts	μF	percent	μ A	μА	μ A	percent	percent					
20	82.0	10	8.0	160.0	200.0	6	6	D	2300	2540	2780	3020
20	100.0	5	10	200.0	250.0	8	8	D	5042	5242	5442	5642
20	100.0	10	10	200.0	250.0	8	8	D	2301	2541	2781	3021
20	100.0	20	10	200.0	250.0	. 8	88	D	2302	2542	2782	3022
35	5.6	5	1.3	25.0	32.0	4	4	В	5043	5243	5443	5643
35	5.6	10	1.3	25.0	32.0	4	4	В	2303	2543	2783	3023
35	6.8	5	1.5	30.0	38.0	6	6	В	5044	5244	5444	5644
35	6.8	10	1.5	30.0	38.0	6	6	В	2304	2544	2784	3024
35	6.8	20	1.5	30.0 80.0	38.0 100.0	6	6 6	B	2305 5045	2545 5245	2785 5445	3025 5645
35	22.0	5	4.0	80.0	100.0	6	6	C	2306	2546	2786	3026
35 35	22.0 22.0	10 20	4.0	80.0	100.0	6	6	c	2307	2547	2787	3027
35	27.0	5	4.5	90.0	113.0	6	6	D	5046	5246	5446	5646
35	27.0	10	4.5	90.0	113.0	6	6	D	2308	2548	2788	3028
35	33.0	5	5.5	110.0	138.0	6	6	D	5047	5247	5447	5647
35	33.0	10	5.5	110.0	138.0	6	6	D	2309	2549	2789	3029
35	33.0	20	5.5	110.0	138.0	6	6	D	2310	2550	2790	3030
35	39.0	5	7.0	140.0	175.0	6	6	D	5048	5248	5448	5648
35	39.0	10	7.0	140.0	175.0	6	6	D	2311	2551	2791	3031
35	47.0	5	8.0	160.0	200.0	6	6	D	5049	5249	5449	5649
35	47.0	10	8.0	160.0	200.0	6	6	D	2312	2552	2792	3032
35	47.0	20	8.0	160.0	200.0	6	6	D	2313	2553	2793	3033
50	. 0047	5	. 3	5.0	6.3	2	4	A	5050	5250	5450	5650
50	. 0047	10	1 🕈	•	•	2	4	A	2314	2554	2794	3034
50	. 0047	20	1 1			2	4	A	2315	2555	2795	3035
50	. 005€	5	1 1			2	4	A	5051	5251	5451	5651
50	. 0056	. 10		1 1		2	4	A	2316 5052	2556 5252	2796 5452	3036 5652
50	. 0068	5				2 2	4	A	2317	2557	2797	3037
50	. 0068	10				2	4	Â	2318	2558	2798	3038
50	. 0068	20				2 2	4	A	5053	5253	5453	5653
50	. 0082	5 10				2	4	Â	2319	2559	2799	3039
50 50	. 008 2 . 01	5	1 1	}		2	4	A	5054	5254	5454	5654
50	.01	10				2	4	A	2320	2560	2800	3040
50	.01	20				2	4	A	2321	2561	2801	3041
50	.012	5				2	4	A	5055	5255	5455	5655
50	. 012	10				2	4	A	2322	2562	2802	3042
50	. 015	5				2	4	A	5056	5256	5456	5656
50	. 015	10		1		2	4	A	2323	2563	2803	3043
50	. 015	20				2	4	A	2324	2564	2804	3044
50	. 018	5				2	4	A	5057	5257	5457	5657
50	. 018	10				2	4	A	2325	2565	2805	3045
50	. 022	5				2	4	A	5058	5258	5458	5658
50	. 022	10		1 1		2	4	A	2326	2566	2806	3046
50	. 022	20				2	4	A	2327	2567	2807	3047
50	. 027	5		!!		2	4	A	5059	5259	5459	5659
50	. 027	10				2	4	A	2328	2568	2808	3048
50	. 033	5		1 1		2	4	A	5060	5260 2569	5460 2809	5660 3049
50	. 033	10	.3	5.0	6.3	2 2	4	A	2329 2330	2570	2810	3050
50	. 033	20		3.0	0.3	2	4	A	2330	2310	2010	1 3000

FIGURE 701-5. <u>Established reliability, tantalum, solid electrolyte, fixed capacitors</u> - Continued.

STANDARD CAPACITORS STYLE CSR13 (MIL-C-39003/1) - CONTINUED

OPERATING TEMPERATURE RANGE -55° TO +85°C (DERATED TO +125°C)

DC	Cap.	Сар.	DO	C leakag	e at	Dissipatio	on factor at	Case	ł .		er M390	03/01- (1,000 hr)
rated voltage	(nom)	tolerance	+ 25°C	+ 85°C	+ 125°C	-55°C + 25°C	+ 85°C + 125°C	size	M (1.0)	P (0.1)	R (0. 01)	(0.001)
volts	$\mu \mathbf{F}$	percent	μ Α	μ Α	μ A	percent	percent			-	<u> </u>	
50	. 039	5	. 3	5.0	6.3	2	4	A	5061	5261	5461	5661
50	. 039	10	4	4	4	2	4	Α	2331	2571	2811	3051
50	. 047	5				2	4	Α	5062	5262	5462	5662
50	. 047	10				2	4	Α	2332	2572	2812	3052
50	. 047	20				2	4	A	2333	2573	2813	3053
50	. 056	5				2	4	A	5063	5 263	5463	5663
50	. 056	10		!		2	4	A	2334	2574	2814	3054
50	. 068	5				2	4	Α	5064	5264	5464	5664
50	. 068	10				2	4	A	2335	2575	2815	3055
50	. 068	20				2	4	A	2336	2576	2816	3056
50	. 082	5				2	4	A	5065	5265	5465	5665
50	. 082	10				2	4	A	2337	2577	2817	3057
50	. 1	5				2	4	A	5066	5266	5466	5666
50	. 1	10				2	4	A	2338	2578	2818	3058
50	. 1	20				2	4	A	2339	2579	2819	3059
50	. 12	5				2	4	A	5067	5267	5467	5667
50	. 12	10				2	4	A	2340	2580	2820	3060
50	. 15	5				2	4	A	5068	5268	5468	5668
50	. 15	10				2	4	A	2341	2581	2821	3061
50 50	. 15	20 5				2	4	A	2342	2582	2822	3062
50	. 18	10				2 2	4 4	A	5069	5269	5469	5669
50	. 18 . 22	5				2	4	A	2343	2583	2823	3063
50	. 22	10				2	4	A	5070 2344	5270 2584	5470 2824	5670 3064
50	. 22	20				2	4	A	2345	2585	2825	3065
50	. 27	5				2	4	A	5071	5271	5471	5671
50	. 27	10				2	4	A	2346	2586	2826	3066
50	. 33	5				2	4	A	5072	5272	5472	567 2
50	. 33	10				2	4	A	2347	2587	2827	3067
50	. 33	20				2	4	A	2348	2588	2828	3068
50	. 39	5		i		2	4	A	5073	5273	5473	5673
50	. 39	10				2	4	A	2349	2589	2829	3069
50	. 47	5				2	4	A	5074	5274	5474	5674
50	. 47	10				2	4	A	2350	2590	2830	3070
50	. 47	20				2	4	Α	2351	2591	2831	3071
50	. 56	5				2	4	A	5075	5 27 5	5475	5675
50	. 56	10				2	4	A	2352	2592	2832	3072
50	. 68	5				2	4	A	5076	5276	5476	5676
50	. 68	10				2	4	Α	2353	2593	2833	3073
50	. 68	20				2	4	A	2354	2594	2834	3074
50	. 8 2	5	♦	5.0	V	2	4	A	5077	5277	5477	5677
50	. 8 2	10	.3		6.3	2	4	A	2355	2595	2835	3075
50	1.0	5	.4	8.0	10.0	2	4	A	5078	5278	5478	5678
50	1.0	10	.4	8.0	10.0	2	4	Α	2356	2596	2836	3076
50	1.0	20	.4	8.0	10.0	2	4	A	2357	2597	2837	3077
50	1.2	5	.4	9.0	11.0	4	4	В	5079	5279	5479	5679
50	1.2	10	.4	9.0	11.0	4	4	В	2358	2598	2838	3078
50	1.5	5	. 6	12.0	15.0	4	4	В	5080	5280	5480	5680
50	1.5	10	.6	12.0	15.0	4	4	В	2359	2599	2839	3079
50	1.5	20	. 6	12.0	15.0	4	4	В	2360	2600	2840	3080

FIGURE 701-5. <u>Estavblished reliability, tantalum, solid electrolyte, fixed capacitors</u> - Continued.

STANDARD CAPACITORS STYLE CSR13 (MIL-C-39003/1) - CONTINUED

OPERAWTING TEMPERATURE RANGE -55° TO +85°C (DERATED TO +125°C)

· DC	Cap.	Cap.	DO	C leakag	e at	Dissipatio	n factor at	Case			er M390 evel (%/	03/01- 1,000 hr)
rated voltage	(nom)	tolerance	+ 25°C	+ 85°C	+ 125°C	-55°C +25°C	+ 85°C + 125°C	size	M (1.0)	P (0.1)	R (0. 01)	S (0.001)
volts	$\mu \mathbf{F}$	percent	μ A	μ A	μ Α	percent	percent	<u> </u>				
50	1.8	5	.7	14.0	18.0	4	4	В	5081	5281	5481	5681
50	1.8	10	.7	14.0	18.0	4	4	В	2361	2601	2841	3081
50	2.2	5	.8	17.0	22.0	4	4	В	5082	5282	5482	5682
50	2.2	10	.8	17.0	22.0	4	4	В	2362	2602	2842	3082
50	2.2	20	.8	17.0	22.0	4	4	В	2363	2603	2843	3083
50	2.7	5	1.0	20.0	25.0	4	4	В	5083	5283	5483	5683
50	2.7	10	1.0	20.0	25.0	4	4	В	2364	2604	2844	3084
50	3.3	5	1.2	25.0	32.0	4	4	В	5084	5284	5484	5684
50	3.3	10	1.2	25.0 25.0	32.0	4 4	4	B	2365 2366	2605	2845 2846	3085 3086
50	3.3	20 5	1.2	30.0	32.0 38.0	4	4	В	5085	2606 5285	5485	5685
50 50	3.9 3.9	10	1.5	30.0	38.0	4	4	В	2367	2607	2847	3087
50	4.7	5	1.7	35.0	44.0	4	4	В	5086	5286	5486	5686
50	4.7	10	1.7	35.0	44.0	4	4	В	2368	2608	2848	3088
50	4.7	20	1.7	35.0	44.0	4	4	В	2369	2609	2849	3089
50	5.6	5	2.2	45.0	56.0	4	4	C	5087	5287	5487	5687
50	5.6	10	2.2	45.0	56.0	4	4	C	2370	2610	2850	3090
50	6.8	5	2.2	45.0	56.0	6	6	C	5088	5288	5488	5688
50	6.8	10	2.2	45.0	56.0	6	6	C	2371	2611	2851	3091
50	6.8	20	2.2	45.0	56.0	6	6	C	2372	2612	2852	3092
50	8.2	5	2.5	50.0	63.0	6	6	C	5089	5289	5489	5689
50	8. 2	10	2.5	50.0	63.0	6	6	C	2373	2613	2853	3093
50	10.0	5	2.5	50.0	63.0	6	6	C	5090	5290	5490	5690
50	10.0	10	2.5	50.0	63.0	6	6	C	2374	2614	2854	3094
50	10.0	20	2.5	50.0	63.0	6	6 6	C	2375	2615	2855	3095
50	12.0 12.0	5 10	3.0	60.0	75.0	6 6	6	C	5091 2376	5291 2616	5491 2856	5691 3096
50 50	12.0 15.0	5	4.0	60.0 80.0	75.0 100.0	6	6	c	5092	5292	5492	5692
50	15.0	10	4.0	80.0	100.0	6	6	c	2377	2617	2857	3097
50	15.0	20	4.0	80.0	100.0	6	6	Č	2378	2618	2858	3098
50	18.0	5	4.5	90.0	113.0	6	6	C	5093	5293	5493	5693
50	18.0	10	4.5	90.0	113.0	l 6	6	l c	2379	2619	2859	3099
50	22.0	5	5.5	110.0	138.0	6	6	D	5094	5294	5494	5694
50	22.0	10	5.5	110.0	138.0	6	6	D	2380	2620	2860	3100
50	22.0	20	5.5	110.0	138.0	6	6	D	2381	2621	2861	3101
75	. 1	5	. 3	5.0	6.3	2	4	A	5095	5295	5495	5695
75	. 1	10	🛉	1 1	†	2	4	A	2382	2622	2862	3102
75	. 1	20	1 1			2	4	A	2383	2623	2863	3103
75	. 12	5				2	4	A	5096	5296	5496	5696
75	. 12	10				2 2	4	A	2384	2624	2864	3104
75	. 15	5 10				2 2	4 4	A	5097 2385	5297 2625	5497	5697 3105
75 75	. 15	20				2	4	A	2386	2626	2865 2866	3105
75	. 13	5				2	4	A	5098	5298	5498	5698
75	. 18	10				2	4	A	2387	2627	2867	3107
75	. 22	5				2	4	A	5099	5299	5499	5699
75	. 22	10				2	4	A	2388	2628	2868	3108
75	. 22	20				2	4	A	2389	2629	2869	3109
75	. 27	5	1 1		•	2	4	A	5100	5300	5500	5700
75	. 27	10	. 3	5.0	6.3	2	4	A	2390	2630	2870	3110
			<u> </u>		L	<u> </u>	L	l	L	<u> </u>		

FIGURE 701-5. <u>Established reliability, tantalum, solid electrolyte, fixed capacitors</u> - Continued.

STANDARD CAPACITORS STYLE CSR13 (MIL-C-39003/1) - CONTINUED

OPERATING TEMPERATURE RANGE -55° TO +85°C (DERATED TO +125°C)

DC	Cap.	Cap.	DO	C leakag	e at	Dissipatio	n factor at	Case			6/1,000 hr)	
rated voltage	(nom)	tolerance	+25°C	+ 85°C	+ 125°C	-55°C + 25°C	+ 85°C + 125°C	size	M (1.0)	P (0.1)	R (0.01)	S (0.001)
volts	μ F	percent	μ A	μ A	μ A	percent	percent					
75	. 33	5	. 3	5.0	6.3	2	4	A	5101	5301	5501	5701
75	. 33	10	A	A	A	2	4	A	2391	2631	2871	3111
75	. 33	20				2	4	A	2392	2632	2872	3112
75	. 39	5		.		2	4	A	5102	5302	5502	5702
75 75	. 39 . 47	10 5				2 2	4	A	2393 5103	2633 5303	2873 5503	3113 5703
75	.47	10				2	4	A	2394	2634	2874	3114
75	.47	20				2	4	Â	2395	2635	2875	3115
75	. 56	5				2	4	A	5104	5304	5504	5704
75	. 56	10				2	4	A	2396	2636	2876	3116
75	. 68	5				2	4	· A ·	5105	5305	5505	5705
75	. 68	10			ĺ	2	4	Α	2397	2637	2877	3117
75	. 68	20				2	4	A	2398	2638	2878	3118
75	. 82	5	₩.			2	4	В	5106	5306	5506	5706
75	. 82	10 5	7.3			2 2	4	B	2399 5107	2639 5307	2879 5507	3119 5707
75 75	1.0 1.0	10	.4 .4			2	4	В	2400	2640	2880	3120
75	1.0	20	.4			2	4	В	2401	2641	2881	3121
75	1.2	5	.4	₩	- ♦	4	4	В	5108	5308	5508	5708
75	1.2	10	.4	5.0	6.3	4	4	В	2402	2642	2882	3122
75	1.5	5	. 6	10.0	13.0	4	4	В	5109	.5309	5509	5709
75	1.5	10	. 6	10.0	13.0	4	4	В	2403	2643	2883	3123
75	1.5	20	. 6	10.0	13.0	4	4	В	2404	2644	2884	3124
75	1.8	5	.7	10.0	13.0	4	4	В	5110	5310	5510	5710
75	1.8	10 5	.7	10.0 15.0	13.0 19.0	4 4	4 4	B	2405 5111	2645 5311	2885 5511	3125 5711
75 75	2.2 2.2	10	.8	15.0	19.0	4	4	В	2406	2646	2886	3126
75	2.2	20	.8	15.0	19. 0	4	4	В	2407	2647	2887	3127
75	2.7	5	1.0	15.0	19.0	4	4	В	5112	5312	5512	5712
75	2.7	10	1.0	15.0	19.0	4	4	В	2408	2648	2888	3128
75	3.3	5	1.2	20.0	25.0	4	4	В	5113	5313	5513	5713
75	3.3	10	1.2	20.0	25.0	4	4	В	2409	2649	2889	3129
75	3.3	20	1.2	20.0	25.0	4	4	В	2410	2650	2890	3130
75	3.9	5	1.5	20.0	25.0	4	4	В	5114	5314	5514	5714
75	3.9	10	1.5	20.0	25.0	4 4	4	B	2411 5115	2651 5315	2891 5515	3131 5715
75 75	4.7 4.7	5 10	3.0 3.0	60.0 60.0	75.0 75.0	4	4	C	2412	2652	2892	3132
75	4.7	20	3.0	60.0	75.0	4	4	c	2413	2653	2893	3133
75	5.6	5	3.0	60.0	75.0	4	4	č	5116	5316	5516	5716
75	5.6	10	3.0	60.0	75.0	4	4	Ċ	2414	2654	2894	3134
75	6.8	5	5.0	100.0	125.0	6	6	C	5117	5317	5517	5717
75	6.8	10	A	A	A	6	6	С	2415	2655	2895	3135
75	6.8	20				6	6	C	2416	2656	2896	3136
75	8.2	5				6	6	C	5118	5318	5518	5718
75	8.2	10				6	6	C	2417	2657	2897	3137
75 75	10.0 10.0	5 10				6 6	6	C	5119 2418	5319 2658	5519 2898	5719 3138
75 75	10.0	20				6	6	c	2419	2659	2899	3139
75	12.0	5	🕁		\downarrow	6	6	D	5120	5320	5520	5720
75	12.0	10	5.0	100.0	125.0	6	6	D	2420	2660	2900	3140

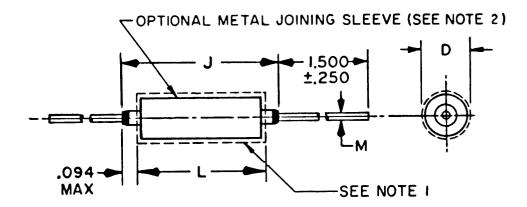
FIGURE 701-5. <u>Established reliability. tantalum. solid electrolyte.</u>
<u>fixed capacitors</u> - Continued.

STANDARD CAPACITORS STYLE CSR13 (MIL-C-39003/1) - CONTINUED

OPERATING TEMPERATURE RANGE -55° TO +85°C (DERATED TO +125°C)

DC	Cap.	Cap.	DC	leakag	e at	Dissipatio	n factor at	Case			er M390 evel (%/	03/01- 1,000 hr)
rated voltage	(nom)	tolerance	+25°C	+85°C	+125°C	-55°C +25°C	+85°C +125°C	size	M (1.0)	P (0.1)	R (0.01)	(0.001)
							7120 0		(2.0)	(0.1)	(0.01)	(0.001)
volts	μF	percent	μ Α	μA	μ A	percent	percent					
75	15.0	5	7.0	140.0	175.0	6	6	D	5121	5321	5521	5721
75	15.0	10	7.0	140.0	175.0	6	6	D	2421	2661	2901	3141
75	15.0	20	7.0	140.0	175.0	6	6	D	2422	2662	2902	3142
100 100	. 0047 . 0047	5 10	.3	5.0	6. 3 A	2 2	4	A	5122 2423	5322 2663	5522 2903	5722 3143
100	. 0047	20		T	T	2	4	Â	2424	2664	2904	3144
100	. 0056	5	1 1			2	4	A	5123	5323	5523	5723
100	. 0056	10	1 1 1			2	4	A	2425	2665	2905	3145
100	. 0068	5	1]			2	4	A	5124	5324	5524	5724
100	. 0068	10				2	4	A	2426	2666	2906	3146
100	. 0068	20	[2	4	A	2427	2667	2907	3147
100	. 0082	5	1 1 1			2 2	4	A	5125 2428	5325 2668	5525 2908	5725 3148
100 100	. 0082	10 5				2	4	A	5126	5326	5526	5726
100	. 01	10]			2	4	Â	2429	2669	2909	3149
100	.01	20				2	4	Ā	2430	2670	2910	3150
100	. 012	5	1 !	' i I		2	4	A	5127	5327	5527	5727
100	. 012	10	1 1 1			2	4	A	2431	2671	2911	3151
100	. 015	5				2	4	A	5128	5328	5528	5728
100	. 015	10				2	4	A	2432	2672	2912	3152
100	. 015	20	1 1			2 2	4	A	2433 5129	2673 5329	2913 5529	31 53 5 729
100 100	. 018 . 018	5 10				2	4	Â	2434	2674	2914	3154
100	. 022	5			1	2	4	Ä	5130	5330	5530	5730
100	. 022	10				2	4	Ä	2435	2675	2915	3155
100	. 022	20				2	4	A	2436	2676	2916	3156
100	. 027	5			1	2	4	A	5131	5331	5531	5731
100	. 027	10			1	2	4	A	2437	2677	2917	3157
100	. 033	5				2	4	A	5132	5332 2678	5532 2918	5732 3158
100	. 033 . 033	10 20				2 2	4	A	2438 2439	2679	2919	3159
100 100	. 039	5				2	4	Â	5133	5333	5533	5733
100	. 039	10				2	4	Ā	2440	2680	2920	3160
100	. 047	Š		1 1		2	4	A	5134	5334	5534	5734
100	. 047	10				2	4	A	2441	2681	2921	3161
100	. 047	20		}]		2	4	A	2442	2682	2922	3162
100	. 056	5		<u> </u>		2	4	A	5135	5335	5535	5735
100	. 056	10				2 2	4	A	2443	2683 5336	2923 5536	3163 5736
100	. 068 . 068	5 10			1	2	4	A	5136 2444	2684	2924	3164
100 100	. 068	20				2	4	Â	2445	2685	2925	3165
100	. 082	5		i I		2	4	Â	5137	5337	5537	5737
100	. 082	10				2	4	A	2446	2686	2926	3166
100	. 1	5		. 1		2	4	A	5138	5338	5538	5738
100	.1	10				2	4	A	2447	2687	2927	3167
100	.1	20		1 1		2	4	A	2448	2688	2928	3168
100	. 12	5				2	4	A	5139 2449	5339 2689	5539 2929	5739 3169
100 100	. 12 . 15	10 5	1 1	_ <u>↓</u>	. ↓ 1	2 2	4	A	5140	5340	5540	5740
100	. 15	10	.3	5.0	6.3	2	4	Â	2450	2690	2930	3170
100								<u> </u>		1		لتتتا

FIGURE 701-5. Established reliability, tantalum, solid electrolyte, fixed capacitors - Continued.


STANDARD CAPACITORS STYLE CSR13 (MIL-C-39003/1) - CONTINUED

OPERATING TEMPERATURE RANGE -55° TO +85°C (DERATED TO +125°C)

DC	Cap.	Cap.	DO	C leakag	;e	Dissipatio	on factor at	Case			er M390	03/01- (1,000 hr)
rated voltage	(nom)	tolerance	+ 25°C	+ 85°C	+ 125°C	-55°C + 2 5°C	+ 85°C + 125°C	size	M (1.0)	P (0.1)	(0.01)	S (0.001)
volts	μ F	percent	μ Α	$\mu \mathbf{A}$	$\mu \mathbf{A}$	percent	percent					
100	. 15	20	. 3	5.0	6.3	2	4	A	2451	2691	2931	3171
100	. 18	5		4	♦	2	4	Α	5141	5341	5541	5741
100	. 18	10				2	4	A	2452	2692	293 2	3172
100	. 22	5				2	4	A	5142	5342	5542	5742
100	. 22	10				2	4	Α	2453	2693	2933	3173
100	. 22	20				2	4	A	2454	2694	2934	3174
100	. 27	5				2	4	A	5143	5343	5543	5743
100	. 27	10 5				2	4	A	2455	2695	2935	3175
100 100	. 33 . 33	10				2	4 4	A	5144	5344	5544	5744
100	. 33	20				2 2	4	A	2456	2696	2936	3176
100	. 39	5				2	4	A A	2457 5145	2697 5 34 5	2937	3177
100	. 39	10				2	4	A	2458	2698	5545 2938	5745 3178
100	. 47	5				2	4	A	5146	5346	5546	5746
100	. 47	10				2	4	A	2459	2699	2939	3179
100	. 47	20				2	4	A	2460	2700	2940	3180
100	. 56	5				2	4	A	5147	5347	5547	5747
100	. 56	10				2	4	A	2461	2701	2941	3181
100	. 68	5				2	4	В	5148	5348	5548	5748
100	. 68	10				2	4	В	2462	2702	2942	3182
100	. 68	20	.3			2	4	В	2463	2703	2943	3183
100	. 82	5	.4			2	4	В	5149	5349	5549	5749
100	. 82	10	.4			2	4	В	2464	2704	2944	3184
100	1.0	5	.5			2	4	В	5150	5350	5550	5750
100	1.0	10	.5			2	4	В	2465	2705	2945	3185
100	1.0	20	.5		1 1	2	4	В	2466	2706	2946	3186
100	1.2	5	.5	5.0	6.3	4	4	В	5151	5351	5551	5751
100	1.2	10 5	.5	10.0	I	4	4	В	2467	2707	2947	3187
100	1.5 1.5	10	: 7	10.0	13.0 13.0	4	4 4	B B	5152	5352	5552	5752
100	1.5	20	.7	10.0	13.0	4	4	В	2468 2469	2708 2709	2948	3188
100	1.8	5	.7	10.0	13.0	4	4	В	5153	5353	2949 5553	3189 5753
100	1.8	10	.7	10.0	13.0	4	4	В	2470	2710	2950	3190
100	2.2	5	.9	15.0	19.0	4	4	В	5154	5354	5554	5754
100	2.2	10	. 9	15.0	19.0	4	4	В	2471	2711	2951	3191
100	2.2	20	. 9	15.0	19.0	4	4	В	2472	2712	2952	3192
100	2.7	5	1.1	15.0	19.0	4	4	В	5155	5355	5555	5755
100	2.7	10	1.1	15.0	19.0	4	4	В	2473	2713	2953	3193
100	3.3	5	1.5	30.0	38.0	6	6	C	5156	5356	5556	5756
100	3.3	10	1.5	30.0	38.0	6	6	C	5157	5357	5557	5757
100	3.3	20	1.5	30.0	38.0	6	6	С	5158	5358	5558	5758
100	3.9	5	1.5	30.0	38.0	6	6	С	5159	5359	5559	5759
100	3.9	10	1.5	30.0	38.0	6	6	С	5160	5360	5560	5760
100	4.7	5	2.5	50.0	63.0	6	6	C	5161	5361	5561	5761
100	4.7	10	2.5	50.0	63.0	6	6	C	5162	5362	5562	5762
100	4.7	20	2.5	50.0	63.0	6	6	C	5163	5363	5563	5763
100	5.6 5.6	5 10	2.5	50.0	63.0	6	6	C	5164	5364	5564	5764
100	6.8	5	2.5 2.5	50.0	63.0	6	6 6	C	5165	5365	5565	5765
100	6.8	10	2.5	50.0 50.0	63.0 63.0	6	6	C	5166 5167	5366 5367	5566 5567	5766 5767
100	6.8	20	2.5	50.0	63.0	6	6	C			! :	5767
	0.0	1	6.0	30.0	00.0	L	U		5168	5368	5568	5768

FIGURE 701-5. <u>Established reliability, tantalum, solid electrolyte, fixed capacitors</u> - Continued.

STYLE CSR91 (MIL-C-39003/4)

CIRCUIT DIAGRAM

		Dimensions								
Case	L	D	M	J						
size	±.031	+.010	±.002	Max						
		015								
w	. 575	. 161	. 020	. 750						
X	. 955	. 207	. 020	1.130						
Y	1.350	. 314	. 025	1.525						
Z	1.550	. 376	. 025	1.725						

INCHES	MM	INCHES	MM	INCHES	MM
. 002	. 05	. 161	4.09	.955	24.26
. 010	. 25	. 207	5. 2 6	1.130	28.70
. 015	. 38	. 250	6.35	1.350	34.29
. 020	. 51	. 314	7.98	1.500	38.10
. 025	. 64	. 376	9.55	1.525	38.74
. 031	. 79	. 575	14.61	1.550	39.37
. 094	2.39	750	19.05	1.725	43.82

NOTES:

- 1. The case insulation shall extend .015(.38 mm) minimum beyond each end. However, when a shrink-fitted insulation is used, it shall lap over the ends of the capacitor body.
- 2. Two style CSR13 capacitors placed "back-to-back" (negative terminal-to-negative terminal).

FIGURE 701-5. Established reliability, tantalum, solid electrolyte, fixed capacitors - Continued.

STANDARD CAPACITORS

STYLE CSR91 (MIL-C-39003/4)

OPERATING TEMPERATURE RANGE -55° TO +85°C (DERATED TO +125°C)

Rated	Capacitance	Capacitance	DC leakage	Dissipation	Case			number	
voltage	(nom)	tolerance	(max)	factor (max)	size			vel (%/1,	
	· · · · · · · · · · · · · · · · · · ·	7010142100	+ 25° C	+ 25°C	3120	M(1.0)	P(0.1)	R(0.01)	S(0.001)
Volts, NP	$\mu \mathbf{F}$	percent	μA	percent					
6	2.8	10	. 3	4	w	0221	0441	0661	0881
6	3.4	10	. 3	6	w	0222	0442	0662	0882
6	3.4	20	. 3	6	w	0223	0443	0663	0883
6	23.0	10	1.5	6	Х	0224	0444	0664	0884
6	23.0	20	1.5	6	Х	0225	0445	0665	0885
6	28.0	10	1.5	6	Х	0226	0446	0666	0886
6	75.0	10	4.5	8	Y	0227	0447	0667	0887
6	75.0	20	4.5	8	Y	0228	0448	0668	0888
6	90.0	10	5.5	8	Y	0229	0449	0669	0889
6	130.0	10	6. 5	8	Z	0231	0451	0671	0891
6	160.0	10	7.5	8	Z	0233	0453	0673	0893
6	160.0	20	7.5	8	Z	0234	0454	0674	0894
10	1.9	10	. 3	4	w	0235	0455	0675	0895
10	2.3	10	. 4	4	W	0236	0456	0676	0896
10	2.3	20	. 4	4	w	0237	0457	0677	0897
10	13.0	10	2. 0	6	x·	0238	0458	0678	0898
10	16. C	10	2.5	6	X	0239	0459	0679	0899
10	16.0	20	2.5	6	X	0240	0460	0680	0900
10	19.0	10	2.5	6	x	0241	0461	0681	0901
10	41.0	10	4.0	6	Y	0242	0462	0682	0902
10	50.0	10	5.0	8	Y	0242	0463	0683	0902
10	50.0	20	5.0	8	Y	0243	0464	0684	0903
10	60.0	10	6.0	8	Y	0245	0465	0685	0905
10	90.0	10	9.0	8	Z	0243	0467	0687	0905
10	110.0	10		8	z	0241	0468	0688	0908
10	110.0	20	10. 0 10. 0	8	Z	0248	0469	0689	0909
15	1.3	10	. 3	4	w	0250	0470	0690	0910
15	1.6	10	. 3 . 4	4	w	0250	0471	0691	0911
15	1.6	20	. 4	4	w	0251	0472	0692	0912
15	9.0	10	2.0	6	X	0252	0473	0693	0912
15	11.0	10		6	x	0253	0473	0694	
15	11.0	20	2.0	6	x	0254	0474	0695	0914 0915
			2.0	6					
15	28.0	10	4.0		Y	0256	0476	0696	0916
15	34.0	10	5.0	6	Y	0257	0477	0697	0917
15	34.0	20	5. 0	ϵ	Y	0258	0478	0698	0918
15	60.0	10	9. 0	8	Z	0259	0479	0699	0919
15	75.0	10	10. 0	8	Z	0260	0480	0700	0920
15	75.0	20	10. 0	8	Z	0261	0481	0701	0921
20	. 6	10	. 3	4	w	0262	0482	0702	0922
20	. 75	10	. 3	4 .	w	0263	0483	0703	0923
20	. 75	20	. 3	4 ,	w	0264	0484	0704	0924
20	. 9	10	. 3	4	w	0265	0485	0705	0925
20	1.1	10	. 4	4	w	0266	0486	0706	0926
20	1.1	20	. 4	4	W	0267	0487	0707	0927
20	4.1	10	1.0	6	Х	0268	0488	0708	0928
20	5.0	10	1.5	6	X	0269	0489	0709	0929
20	5.0	20	1.5	6	X	0270	0490	0710	0930

FIGURE 701-5. Established reliability, tantalum, solid electrolyte, fixed capacitors - Continued.

STANDARD CAPACITORS

STYLE CSR91 (MIL-C-39003/4) - Continued

			DC leakage	Dissipation		I	Dash	number	
Rated	Capacitance	Capacitance	(max)	factor (max)	Case	Failu		vel (%/1,	000 hr)
voltage	(nom)	tolerance	+25°C	+ 25°C	size	M(1.0)	P(0.1)	R(0.01)	S(0.001)
Volts, NP	μF	percent	<u>μA</u>	percent					
20	6.0	10	1.8	6	x	0271	0491	0711	0931
20	7.5	10	2.0	6	х	0272	0492	0712	0932
20	7.5	20	2.0	6	l x	0273	0493	0713	0933
20	13	10	2.5	6	Y	0274	0494	0714	0934
20	16	10	3.5	6	Ÿ	0275	0495	0715	0935
20	16	20	3.5	6	Y	0276	0496	0716	0936
20	19	10	4.0	6	Y	0277	0497	0717	0937
20	23	10	4.5	6	Y	0278	0498	0718	0938
20	23	20	4.5	6	Y	0279	0499	0719	0939
20	28	10	5.5	6	Z	0280	0500	0720	0940
20	34	10	7.0	6	z	0281	0501	0721	0941
20	34	20	7.0	6	Z	0282	0502	0722	0942
20	41	10	8.0	6	Z	0283	0503	0723	0943
20	50	10	10. 0	8	Z	0284	0504	0724	0944
20	50	20	10.0	8	Z	0285	0505	0725	0945
35	2.8	10	1.3	4	X	0289	0509	0729	0949
35	3.4	10	1.5	6	Х	0290	0510	0730	0950
35	3.4	20	1.5	6	Х	0291	0511	0731	0951
35	11.0	10	4.0	6	Y	0292	0512	0732	0952
35	11.0	20	4.0	6	Y	0293	0513	0733	0953
35	13.0	10	4.5	6	Z	0294	0514	0734	0954
35	16.0	10	5.5	6	Z	0295	0515	0735	0955
35	16.0	20	5.5	6	Z	0296	0516	0736	095 6
35	19.0	10	7.0	6	Z	0297	0517	0737	0957
35	23.0	10	8.0	6	Z	0298	0518	0738	0958
35	23.0	20	8. 0	6	Z	0299	0519	0739	0959
50	. 0023	10	. 3	2	w	1171	1241	1311	1381
50	. 0023	20	. 3	2	w	1172	1242	1312	1382
50	. 0028	10	. 3	2 2 2 2	w	1173	1243	1313	1383
50	. 0034	10	. 3	2	w	1174	1244	1314	1384
50	. 0034	20	. 3	2	w	1175	1245	1315	1385
50	. 0041	10	. 3	2	w	1176	1246	1316	1386
50	. 005	10	. 3	2	w	1177	1247	1317	1387
50	. 005	20	. 3	2 2	w	1178	1248	1318	1388
50	. 006	10	. 3	2	w	1179	1249	1319	1389
50	. 0075	10	.3	2	w	1180	1250	1320	1390
50	. 0075	20	. 3	2	w	1181	1251	1321	1391
50	. 009	10	. 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	w	1182	1252	1322	1392
50	. 011	10	. 3	2	w	1183	1253	1323	1393
50	. 011	20	. 3	2	w	1184	1254	1324	1394 1395
50	. 013	10 10	. 3	5	w	1185 1186	1255 1256	1325 1326	1395
50 50	. 016	20	. 3 . 3	4	w	1186	1256	1326	1396
50	.016	10	.3	9	w	1188	1257	1328	1398
50 50	. 019	10	.3	5	w	1189	1259	1329	1399
50 50	. 023	20	.3	2	w	1190	1259	1330	1400
50 50	. 023	10	.3	2	w	1190	1261	1331	1400
50 50	. 028	10	.3	2	w	1191	1262	1331	1401
50 50	. 034	20	٠,٠	2	w	1192	1262	1332	1403
50 50	. 034	10	. 3	2	w	1193	1264	1334	1404
30		1. 10		, "	. **	1124	. 1607	1334	1303

FIGURE 701-5. <u>Established reliability</u>, <u>tantalum</u>, <u>solid electrolyte</u>, <u>fixed</u> <u>capacitors</u> - Continued.

STANDARD CAPACITORS

STYLE CSR91 (MIL-C-39003/4) - Continued

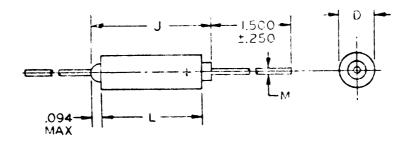
Rated voltage Capacitance (nom) Volts, NP μF 50 .05 50 .05 50 .06 50 .075 50 .075 50 .09 50 .11 50 .11 50 .13 50 .16 50 .16	percent 10 20	DC leakage (max) +25°C	Dissipation factor (max) +25°C	Case size	Failu: M(1.0)		number evel (%/1, R(0.01)	000 hr) S(0.001)
Volts, NP μF 50 .05 50 .05 50 .06 50 .075 50 .075 50 .09 50 .11 50 .11 50 .13 50 .16	percent 10 20	+25°C	+ 25°C	size				
50 .05 50 .05 50 .06 50 .075 50 .075 50 .09 50 .11 50 .11 50 .13 50 .16	10 20		percent				11(0.01)	3(0.001)
50 .05 50 .06 50 .075 50 .075 50 .09 50 .11 50 .11 50 .13 50 .16	20	,	1	1				
50 .05 50 .06 50 .075 50 .075 50 .09 50 .11 50 .11 50 .13 50 .16	20		2	w	1195	1265	1335	1405
50 .06 50 .075 50 .075 50 .09 50 .11 50 .11 50 .13	1	. 3	2	w	1196	1266	1336	1406
50 .075 50 .075 50 .09 50 .11 50 .11 50 .13 50 .16	10	. 3	2	w	1197	1267	1337	1407
50 .075 50 .09 50 .11 50 .11 50 .13 50 .16	10	.3	2	w	1198	1268	1338	1408
50 .09 50 .11 50 .11 50 .13 50 .16	20	. 3	2 2 2 2	w	1199	1269	1339	1409
50 .11 50 .11 50 .13 50 .16	10	.3	2	w	1200	1270	1340	1410
50 .11 50 .13 50 .16	10	.3	2	w	1200	1271	1341	1411
50 .13 50 .16	20	.3	2	w	1201	1272	1342	1412
50 . 16	10	.3	2	w	1202	1273	1343	1413
	10	.3	2	w	1203	1273	1343	1413
	20	. 3	2	w	1205	1275	1344	1415
50 19	10	. 3	2	w	1206	1275	1346	1415
50 23	10	.3	2	W	1200			
50 .23	20	.3	2 2	w	1	1277	1347	1417
	10		2		1208	1278	1348	1418
		. 3	2	w	1209	1279	1349	1419
1 1	10	. 3	2	w	1210	1280	1350	1420
50 .34	20	. 3	2	w	1211	1281	1351	1421
50 .41	10	. 3	2	W	0300	0520	0740	0960
50 .50	10	. 4		w	0301	0521	0741	0961
50 .50	20	. 4	-	w	0302	0522	0742	0962
50 . 60	10	.4	4	X	1212	1282	1352	1422
50 . 75	10	. 6	4	X	2001	2101	2201	2301
50 .75	20	. 6	4	X	2002	2102	2202	2302
50 .90	10	. 7	4	Х	1215	1285	1355	1425
50 1.1	10	. 8	4	X	1216	1286	1356	1426
50 1.1	20	. 8	4	X	1217	1287	1357	1427
50 1.3	10	1.0	4	X	1218	1288	1358	1428
50 1.6	10	1.2	4	x	1219	1289	1359	1429
50 1.6	20	1.2	4	X	1220	1290	1360	1430
50 1.9	10	1.5	4	Х	1221	1291	1361	1431
50 2.3	10	1. 7	4	X	1222	1292	1362	1432
50 2.3	20	1.7	4	x	1223	1293	1363	1433
50 2.8	10	2. 2	4	Y	1224	1294	1364	1434
50 3.4	10	2. 2	6	Y	1225	1295	1365	1435
50 3.4	20	2.2	6	Y	1226	1296	1366	1436
50 4.1	10	2.5	6	Y	1227	1297	1367	1437
50 5.0	10	2.5	6	Y	1228	1298	1368	1438
50 5.0	20	2.5	6	Y	1229	1299	1369	1439
50 6.0	10	3.0	6	Y	0303	0523	0743	0963
50 7.5	10	4.0	6	Y	0304	0524	0744	0964
50 7.5	20	4.0	6	Y	0305	0525	0745	0965
50 9.0	10	4.5	6	Y	0306	0526	0746	0966
50 11.0	10	5.5	6	Z	0307	0527	0747	0967
50 11.0	20	5.5	6	Z	0308	0528	0748	0968
75 . 34	10	. 3	2	w	0309	0529	0749	0969
75 .34	20	. 3	2	w	0310	0530	0750	0970
75 . 41	10	. 3	2	X	2008	2108	2208	2308
- 75 .50	10	. 4	2	Х	2009	2109	2209	2309
75 .50	20	. 4	2	x	2010	2110	2210	2310
75 . 60	10	. 4	4	Х	2011	2111	2211	2311
L	L	<u>-</u>		!		l		

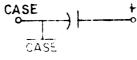
FIGURE 701-5. <u>Established reliability, tantalum, solid electrolyte, fixed capacitors</u> - Continued.

STANDARD CAPACITORS

STYLE CSR91 (MIL-C-39003/A) - Continued

	!		DC leakage	Dissipation	Case			number	
Rated	Capacitance (nom)	Capacitance tolerance	(max)	factor (max)	size			evel (%/1.	
voltage	(nom)	tolerance	+25°C	+ 25°C	3126	M(1.0)	P(0.1)	R(0.01)	S(0.001)
Volts, NP	μF	percent	<u>μΑ</u>	percent					
75	. 75	10	.6	4	х	2012	2112	2212	2312
75	. 75	20	. 6	4	х	2013	2113	2213	2313
75	. 90	10	.7	4	x	2014	2114	2214	2314
75	1.1	10	.8	4	х	2015	2115	2215	2315
75	1.1	20	. 8	4	X	2016	2116	2216	2316
75	1.3	10	1.0	4	X	2017	2117	2217	2317
75	1.6	10	1.2	4	х	0311	0531	0751	0971
75	1.6	20	1.2	4	X	0312	0532	0752	0972
75	1.9	10	1.5	4	X	0313	0533	0753	0973
75	2.3	10	3.0	4	Y	2003	2103	2203	2303
75	2.3	20	3.0	4	Y	2004	2104	2204	2304
75	2.8	10	3.0	6	Y	2005	2105	2205	2305
75	3.4	10	5.0	6	Y	2006	2106	2206	2306
75	3.4	20	5. O	6 6	Y Y	2007 0314	2107 0534	2207 0754	2307 0974
75 75	4.1 5.0	10 10	5. 0 5. 0	6	Y	0314	0534	0755	0975
75	5.0	20	5.0	6	ΙΫ́	0316	0536	0756	0976
75	6.0	10	5.0	6	ż	0317	0537	0757	0977
75	7.5	10	7.0	6	ž	0318	0538	0758	0978
75	7.5	20	7.0	6	ž	0319	0539	0759	0979
100	. 0023	10	. 3	2	w	0320	0540	0760	0980
100	. 0023	20	.3	2	w	0321	0541	0761	0981
100	. 0028	10	.3	2	w	0322	0542	0762	0982
100	. 0034	10	. 3	2	w	0323	0543	0763	0983
100	. 0034	20	.3	2	w	0324	0544	0764	0984
100	. 0041	10	.3	2	w	0325	0545	0765	0985
100	. 005	10	.3	2 2	w	0326	0546	0766	0986
100	. 005	20	. 3	2	w	0327	0547	0767	0987
100	. 006	10	. 3	2	w	0328	0548	0768	0988
100	. 0075	10	.3	2	w	0329	0549	0769	0989
100	. 0075	20	.3	2 2	w	0330	0550	0770	0990
100	. 009	10	.3	2	w	0331 0332	0551 0552	0771 0772	0991 0992
100	.011	10	. 3	2 2	w	0332	0552	0773	0992
100 100	.011	20 10	.3		w	0333	0554	0774	0994
100	. 013	10	.3	2 2	w	0334	0555	0775	0995
100	.016	20	3 .3	2	l ẅ	0336	0556	0776	0996
100	.019	10	.3	2	w	0337	0557	0777	0997
100	. 023	10	.3	2	w	0338	0558	0778	0998
100	. 023	20	.3	2	w	0339	0559	0779	0999
100	. 028	10	.3	2	w	0340	0560	0780	1000
100	. 034	10	.3	2	w	0341	0561	0781	1001
100	. 034	20	. 3	2 2 2 2 2 2	w	0342	0562	0782	1002
100	. 041	10	.3	2	w	0343	0563	0783	1003
100	. 05	10	. 3	2	w	0344	0564	0784	1004
100	. 05	20	. 3	2	w	0345	0565	0785	1005
100	. 06	10	. 3	2	W	0346	0566	0786	1006 1007
100	. 075	10	. 3	2	W	0347	0567	0787 0788	1007
100	. 075	20	.3	2 2	W	0348 0349	0568 0569	0788	1008
100 100	. 09	10 10	.3	2 2	w	0349	0570	0789	1009
100	. 11	20	. 3	2 2	w	0350	0570	0790	1010
100	L · 11	1 20	. 3	<u> </u>	L. <u>*</u>	0331	0311	0191	1011


FIGURE 701-5. Established reliability, tantalum, solid electrolyte, fixed capacitors - Continued.


STANDARD CAPACITORS

STYLE CSR91 (MIL-C-39003/4) - Continued

Rated	Capacitance	Capacitance	DC leakage	Dissipation	Case			number	
voltage	(nom)	tolerance	(max)	factor (max)		Failu	re rate l	evel (%/1.	000 hr)
Voltage	(HOIII)	tolerance	+25°C	+25°C	size	M(1.0)	P(0.1)	R(0.01)	S(0.001)
Volts, NP	μ F	percent	μΑ	percent					
100	. 13	10	. 3	2	w	0352	0572	0792	1012
100	. 16	10	. 3	2	w	0353	0573	0793	1013
100	. 16	20	. 3	2	w	0354	0574	0794	1014
100	. 19	10	. 3	2	w	0355	0575	0795	1015
100	. 23	10	. 3	2	w	0356	0576	0796	1016
100	. 23	20	. 3	2	W	0357	0577	0797	1017
100	. 28	10	. 3	2	W	0358	0578	0798	1018
100	. 34	10	. 3	2	Х	0359	05 79	0799	1019
100	. 34	20	. 3	2	Х	0360	0580	0800	1020
100	. 41	10	. 4	2	Х	0361	0581	0801	1021
100	. 50	10	. 5	2	Х	0362	0582	0802	1022
100	. 50	20	. 5	2	Х	0363	0583	0803	1023
100	. 60	10	. 5	4	Х	0364	0584	0804	1024
100	. 75	10	. 7	4	Х	0365	0585	0805	1025
100	. 75	20	. 7	4	X	0366	0586	0806	1026
100	. 90	10	.7	4	х	0367	0587	0807	1027
100	1.1	10	.9	4	Х	0368	0588	0808	1028
100	1.1	20	. 9	4	Х	0369	0589	0809	1029
100	1.3	10	1.1	4	X	0370	0590	0810	1030

FIGURE 701-5. <u>Established reliability, tantalum, solid electrolyte, fixed capacitors</u> - Continued.

CIRCUIT DIAGRAM

	Dimensions							
Case Size	L ±.031	D ±.016 015	M ±.002	J Max				
С	.686	.289	.025	.822				
U	.786	.351	.025	.922				

INCHES	MM	INCHES	11M	INCHES	MM
.002	.05	.094	2.39	.786	19.96
.015	.38	.250	6.35	.822	20.88
.016	.41	.289	7.34	.922	23.42
.025	.64	.351	8.92	1.500	38.10
.031	.79	.686	17.42		

NOTES:

- 1. Dimensions are in inches.
- 2. Metric equivalents are given for general information only and are based upon 1.00 inch = 25.4 mm.
- 3. The case insulation shall extend .015 (.38 mm) minimum beyond each end. However, when a shrink-fitted insulation is used, it shall lap over the ends of the capacitor body.

 4. Lead length may be a minimum of 1 inch long for use in tape and reel automatic insertion equipment, when specified.

FIGURE 701-5. Established reliability, tantalum, solid electrolyte, fixed capacitors - Continued.

STANDARD CAPACITORS

STYLE CSR21 (MIL-C-39003/9)

OPERATING TEMPERATURE RANGE -55°C TO +85°C (DERATED TO +125°C)

		<u> </u>				
09-		S 10.001	0301 0305 0304 0304 0306 0307 0308 0309	0311 0312 0313 0314 0314 0316 0316 0319 0320 0320	0323 0324 0325 0325 0327 0328 0330 0331	0333 0334 0335 0335 0337 0338 0339 0339 0340
M39003/09	1,000 hrs)	R 10.01	10201 10202 10203 10204 10206 10206 10208 10209	0212 0213 0214 0214 0215 0216 0220 0220 0221 0221	0223 0226 0226 0226 0227 0228 0229 0231 0231	0234 0234 0235 0235 0237 0238 0240 0241
ž <u>E</u>	9-6	0.1	10101 10102 10103 10104 10106 10107 10109 10110		10123 10124 10125 10126 10127 10129 10132 10132	0133 0134 0135 0137 0138 0140 0141 0142
Part	. 	Σ.0	10001 10003 100004 100005 100009 100009	10011 10012 10013 10014 10015 10016 10018 10019 10020 10020	10023 10024 10025 10026 10026 10027 10030 10031	10033 10034 10035 10036 10037 10038 10039 10040 10040
Case	N		0000000000	0000000000000	00000000	000000000
Derated	current 1 kHz 25°C (max)	« I	0004444888		33.11883.1183.33.33.33.33.33.33.33.33.33.33.33.33.3	2.1. 2.1. 2.1. 2.1. 2.1. 2.1. 8.1. 8.1.
Ripple current	40 kHz 25°C (max)	« I		23.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6	3.5.7.7.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
ESR 100 kHz	+25°C (max) 	Ohm s				
Dissipation factor	1 kHz +25°C	Percent	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	88 88 88 88 10 10 10	35000000000000000000000000000000000000	.
e at	+125°C	Ϋ́	113 113 113 113 113 1163 1163 1188 1188	100 100 125 125 125 150 150 226 226 226 226 250	100 100 125 125 226 226 226 250	63 63 63 63 63 63 64 64
leakage	+85°د	Ψ ₁	98 99 110 110 110 150 150 150	80 80 100 100 100 120 200 200 200	80 80 100 100 100 180 200 200 200	0.02.5.5.5.08.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.
00	+25°C	٧	2.4.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	44000000000000000000000000000000000000	4 4 5 5 5 9 9 10 10	2.5.5. 3.3.5.5. 3.5.5.
 Capaci- tance	tolerance 	Percent	20 20 5 5 10 20 20 20 20	20 20 20 20 5 5 10 10 10 20 20 20	20 10 10 20 20 10 10 10	20 10 20 20 20 10 10 10
 Capaci- tance		<u> </u>	150 1150 1150 1180 1180 1180 1180 1180 1	82 82 82 100 100 120 120 180 180 220 220 220	56 68 68 68 120 120 150 150	27 27 333 339 474 474
 DC rated	voltage 	Volts	νουοοοοοοο	5555555555	15 15 15 15 15 15 15	888888888

FIGURE 701-5. Established reliability, tantallium. solid electrolyte, fixed capacitor - Continued.

STANDARD CAPACITORS

STYLE CSR21 (MIL-C-39003/9) - Continued

OPERATING TEMPERATURE RANGE -55°C TO +85°C (DERATED TO +125°)

99-	\ \ \ \	0.001	0343	0345	0347	0349	0351		0353	0355	0350	0358	0360	0361	0363	0364	0366	0367	0369	0371	0372	0374	0375	0377	03/8	0380	0381	0383	0385
No. M39003/09. ure rate level (%1,000 hrs)	~	10.01	0243	0245	10248	10249	0251 0252		10253	10255	10257	10258	10260	10261	10263	10264 10265	10266	10267	10269	10271	10272	10274	10275	10277	10278	10280	10281	0283	10285
No. M ure ra (%1,000	a	0.1	0143	0145	1014/	10149	0151	_	10153	10155	10157	10158	10160	10161	10163	10164 10165 1	10166	10167	10169	10171	10172	10174	10175	10177	101/8	10180	10181	10183	10185 10185 1
Part	Σ	0:	0043	0045	0047	0049	0051 0052		0053	0055	0057	0058	0900	0061	0063	0065	9900	0067	00069	0071	0072	0074	0075	0077	9/00	00080	0082	0083	0085
Case size			۵۵ -		- -		000		ပ ပ			000			000		S	ပ ပ	<u>ں</u>	ں د			ပ ပ ပ	ى د	ں ں	ပ _	. ပ	0	
Derated ripple current	(max)	ı	2.2	2.2°	2.5 2.5	2.5	2.5		1.5	1.5	1.9	• •	1.9			2.2	9.	9.	<u>.</u> ر.	. 6	6.1	:::	1.1	1.3	1.4	1.4	1.4	1.7	1.7
Ripple current 40 kHz 40 kHz	3	ı	2.9	0.00	3.1	3.1			2.1	2.1	4.2	2.5	2.5	9.6	2.7	2.7	1.5	1.5	1.6	1.6	1.6		1.7	8.1.	9.1	1.9	2.0	2.3	2.3
ESR 100 kHz +25°C (max)	Ohms		.100	260.	.085	.085	.075		1.160	160	.145	28.5	81.3	21.8	011	911.	.300	.300	.275	250	.250	.230	.230	.210	38	190	.175	.160	. 160
Dissipation factor 1 kHz +25°C	Percent		७७	ω ω ι	മശ	9 &	ာထထ		य य	ਚ ਵ	1 4	· ເດ ແ	n n a n	w w	ល្ប	വ	8	m m	, m r	nm	m ~) M	ന ന	. m (m m	ω,	4 4	₹ ₹	r d
at +125°C] 4	 	138	175	200	200	7220		100	100	113	138	138	175	200	000	56	26 -	299	23	63	63	63	75	001	100	113	138	138
leakage	, 4		110	945	£ 6	200	2002		88	888	38	211	110	5 5 5	99	3 9	45	45	45	0, C	20	2 2	S S	368	≅ &	8	S S	110	110
DC DC	, 🛂	 	2.2			8 C	222		4 4	4,	6.4 0.7	5.5	2.5		. 00 (∞ ∞	2.2	2.5	2.2	2.5	2.5	2:5	3.5	· m •	4 4	4	. 4 . 5	5.5	
Capaci- tance tolerance	Percent		10	5 0 0	202	- 10	, 10 20 20		5 1	202	. O		28'		25.	 9 &	5	 01 	228	2	10	01	200	01	201	702	10	5 - 1	50
Capaci- tance	الد ع	 	26	898	- 68 - 82	1 82 100	001		22	22	27	33	33	39	47	4 /	5.6	5.6	8.9	8.2	8.2	39	12	12	15	15	18	25	52
JC rated voltage	Volts		88	2 2 2 2	2 8	88	288		35	32	35	322	35	35	322	35	95	 	888	5 58	20	3 23	28	: : : : : : : : : : : : : : : : : : : :	2 2	20	2 G	20	200

FIGURE 701-5. <u>Established reliability, tantalum, solid electrolyte, fixed capacitor</u> - Continued.

APPLICATION NOTES:

- 1. Rated ripple current is the rms value of the maximum allowable alternating current of a specified frequency, at which the capacitor may be operated continuously at a specified temperature. Derated ripple current for ambient temperature in accordance with the curve glven on figure 701-6.
- 2. For derating for frequency, use the derated ripple currents at 1 kHz given in table I. Below 1 kHz these same currents are applicable provided the peak ac voltage does not result in voltage reversal or exceeding the rated dc voltage. Between 1 kHz and 40 kHz the ripple current may be interpolated linearly with frequency. The ripple current at 40 kHz is applicable at and above 40 kHz.
- 3. Although CSR21 capacitors are rated to operate with the specified levels of rms ripple current, they are basically polar devices. Care must be exercised to asure that sufficient dc bias fi applied to prevent ac voltage reversal in excess of specified reverse voltage ratings.
- 4. When two or more CSR21 capacitors are used in parallel, ripple current may not divide equally as a result of unequal ESR'S of the capacitors. It is imperative that each capacitor be operated within the specified limit of rms ripple current.

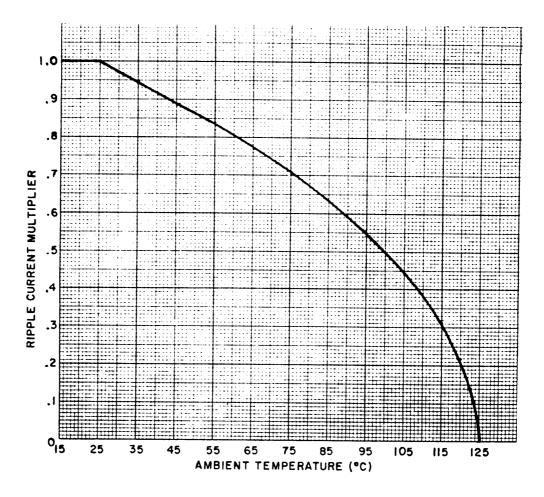


FIGURE 701-6. Ripple current derating with respect to temperature.

SECTION 702

CAPACITORS, FIXED, ELECTROLYTIC (NONSOLID ELECTROLYTE),
TANTALUM. FSTABLISHED RELIABILITY

STYLES CLR25, CLR27, CLR35, CLR37, AND CLR79

(APPLICABLE SPECIFICATION: MIL-C-39006)

- 1. SCOPE. This section covers established reliability, tantalum, electrolytic (nonsolid electroltye), fixed capacitors (insulated), polarized and nonpolarized, Capacitors covered by this section have failure rate levels ranging from 1.0 to 0.001 percent per 1,000 hours. The failure rate levels are established at a 60 percent confidence level and are based on full rated voltage at 85°C.
 - 2. APPLICATION INFORMATION.
- 2.1 <u>Use.</u> The use of these capacitors is determined by the two basic types of tantalum (foil and sintered slug) employed in their construction.
- 2.1.1 Foil types. The foil types are the most versatile of all electrolytic capacitors. They are available in plain or etched foil and in polarized or nonpolarized construction, which makes them suitable for many applications; however, the foil types are limited by their great variation of characteristics and design tolerances. They are not suitable for timing or precision circuits due to several factors leading to very wide design tolerances. Because of the difference in construction, etched-foil types have as much as 10 times the capacitance per unit area as the plain-foil types for a given size; therefore, the etched-foil type is generally the better choice between the two. In some cases the plain-foil type is a more desirable choice since it will withstand approximately 30 percent higher ripple current, has better capacitance-temperature characteristics, and has low power factor.
- 2.1.1.1 <u>Polarized (styles CLR25 and CLR35)</u>. The polarized foil types are essentially used where low-frequency pulasting dc components are to be bypassed or filtered out and for other uses in electronic equipment where large capacitance values are required and comparatively wide capacitance tolerances can be tolerated. When used for low-frequency coupling in vacuum-tube and transistor circuits, allowance should be made for the leakage current. This leakage current could cause improper positive bias to be applied across the grid circuits or excessive base, emitter, or collector currents. These polarized capacitors should be used only in dc circuits with polarity properly observed. If ac components are present, the sum of the peak ac voltage plus the applied dc voltage must not exceed the dc voltage rating. The peak ac voltage should also be less than the applied dc voltage so that polarity may be maintained, even on negative peaks, to avoid overheating and damage. Even though those units rated at 6 volts and above can withstand a maximum of 3 volts in the reverse direction, it is recommended that they not be used in circuits where this reversal is repetitious. Examples of where these units may be used are (1) in power supplies in which up to 300 volts dc are applied to the filter input (2) at plate and screen circuit decoupling connection points, and (3) for cathode resistor by-pass circuits. When used as cathode by-pass capacitors, a ratio of bias resistance to capacitive reactance of 10 to 1 is allowed. Ratios up to 20 to 1 may be used in high-fidelity amplifier work or where space and economical considerations permit. In circuits where linear amplification is required, the amount of capacitive reactance shunting a cathode resistor will depend on the percentage of degenerative feedback desired.
- 2.1.1.2 <u>Nonpolarized (styles CLR27 and CLR37).</u> The nonpolarized types are primarily suitable for ac applications or where dc voltage reversals occur. of these uses are in (1) tuned low-frequency circuits, (2) phasing of low voltage ac (3) computer circuits where reversal of dc voltage occurs, and (4) servo systems.

2.1.2 <u>Sintered slug type (style CLR79)</u>. These capacitors are limited to low voltage aplictions. Their primary use is in low voltage power supply filtering circuits. Their low leakage current (lowest of all the tantalum types) is not appreciable below +85°C; and at ordinary operating temperatures is comparable to good quality paper capacitors, yet they are much smaller in size. Style CLR79 capacitors are for dc applications only; however, they will withstand up to 3 volts of reverse bias.

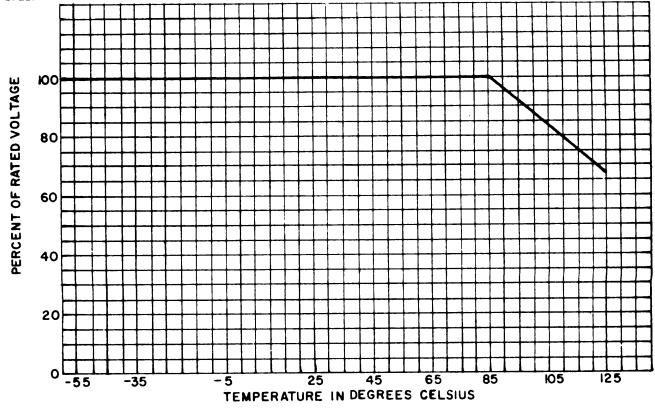


FIGURE 702-1. Voltage derating with temperature.

2.2 Construction:

- 2.2.1 Foil types. These capacitors consist of a tantalum foil, acting as the anlde, which is electromechanically treated to form a layer of tantalum oxide dielectric. Porous spacer material is used to form a conventional cylindrical capacitor section with axial tantalum wires on either end. The section is impregnated with a suitable electrolyte (usually a weak acid or base) and then sealed in a suitable container. Solderable leads were welded to the tantalum leads.
- 2.2.2 <u>Sintered-slug types.</u> These capacitors consist of a sintered-slug, acting as the anode, which is electrochemically treated to form a layer of tantalum oxide dielectric.

2.3 Physical size comparison:

- 2.3.1 <u>With paper capacitors.</u> These capacitors may utilize only 15 percent of the area normally required by a paper capacitor of the same capacitance value.
- 2.3.2 <u>With aluminum electrolytic capacitores.</u> The larger the dielectric constant the larger the capacitance which can be realized in a given space, thus a size advantage can be realized since the dielectric constant of tantalum oxide film is approximately 24 as compared to 8 for an aluminum oxide. Because of differences in foil and paper-thickness requirements, the actual size ratio will vary with different capacitances and voltage ratings and may be much more than 2:1 in favor of the tantalum capacitor.

2.4 <u>Voltage ratings.</u> The maximum dc rated voltages for styles included in this section are shown in table 702-1.

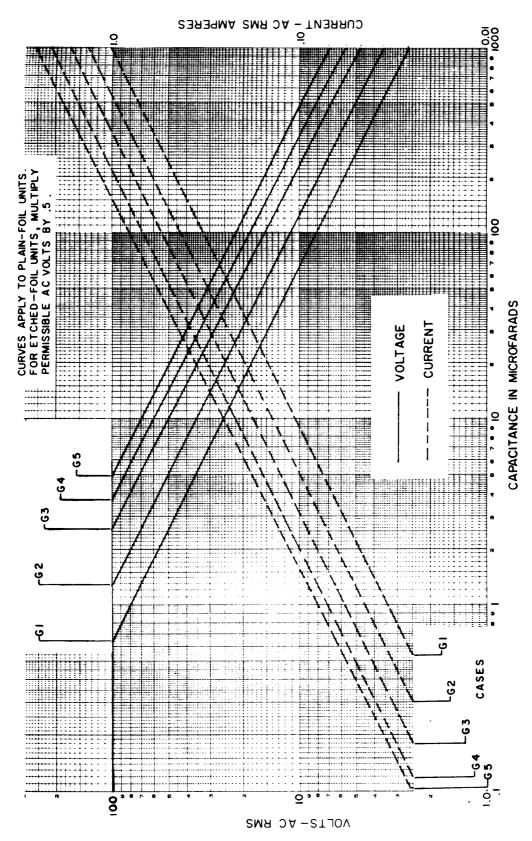

Style	Anode	Voltage range
		Volts
CLR25	 Etched foil	15 to 150
CLR27	Etched foil	15 to 150
CLR35	Plain foil	15 to 450
CLR37	Plain foil	1 15 to 375
CLR79	Sintered	6 to 125

TABLE 702-1. <u>Voltage ratings.</u>

- 2.5 <u>Operating temperatue range (with full rated voltage applied)</u>. These capacitors are suitable for operation over a temperature range of -55°C to+ 85°C.
- 2.6 <u>Derating.</u> These capacitors may be operated up to $+125^{\circ}$ C when properly voltage derated (see figure 702-1).
 - 2.7 <u>Series and parallel applications:</u>
- 2.7.1 <u>Series operation.</u> Whenever tantalum capacitors are connected in series for higher voltage operation, a resistor should be paralleled across each unit. Unless a shunt resistor is used, the dc rated voltage can easily be exceeded on the capacitor in the series network with the lowest dc leakage current. To prevent capacitor destruction, a resistance value not exceeding a certain maximum should be used; this value will dependon capacitance, average dc leakage, and capacitor construction. For example: For style CLR79, size T1 units will require a maximum resistance, in meghoms, equal to 3.4 divided by the square root of the capacitance (in μ F); size T2, 5.2/ \sqrt{C} ; size T3, 6.5/ \sqrt{C} ; and size T4, 7.5/ \sqrt{C} . Plain-foil types use 5/C and etched-foil use 15/C.
- 2.7 <u>Parallel operation.</u> To obtain a higher capacitance than can be obtained from a single capacitor, a number of units may be connected in parallel. However the sum of the peak ripple and the applied dc voltage should not exceed the dc rated voltage. The connecting leads of the parallel network should be large enough to carry the combined currents without reducing the effective capacitance due to series lead resistance.
- 2.8 <u>Stability and life.</u> Tantalum electrolytic capacitors have excellent life and shelf life characteristics. Life, at higher temperatures than with aluminum electrolytic, will show a comparatively lower decrease in capacitance. voltage applied, more than 10,000 hours of life can be expected at +85°C. All styles may be expected to operate at least 2,000 hours at +85°C with less than 10 percent loss of capacitance.

Because the more stable tantalum oxide film is less subject to dissolving the surrounding electrolyte than the film in an aluminum capacitor, shelf life of the tantalum unit is much longer, and less re-forming is required. After storage for long periods, the re-forming current is low and the time is comparatively short; it may be expected to take less than 10 minutes. These properties are affected by the storage temperature to a significant degree, being excellent at temperatures from -55°C to $+25^{\circ}\text{C}$; good at $+65^{\circ}\text{C}$; and relatively poor at $+85^{\circ}\text{C}$.

Some style CLR25 capacitors may exhibit capacitance change and dissipation factor changes when exposed to low dc bias levels (0 to 2.2 volts dc). Care should be exercised when applications require these voltage levels.

NOTE: See page 702.10, 702.12, 702.14, or 702.16 for case size definitions.

FIGURE 702-2. Maximum allowable ripple voltage for styles CLR25, 27, 35, and 37.

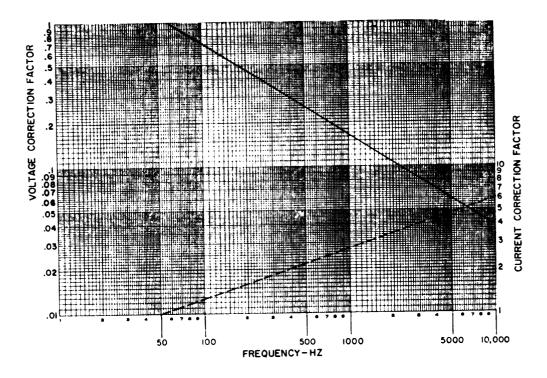


FIGURE 702-3. Correction factor for maximum allowable ripple voltage/current vs frequency for tantalum foil capacitors.

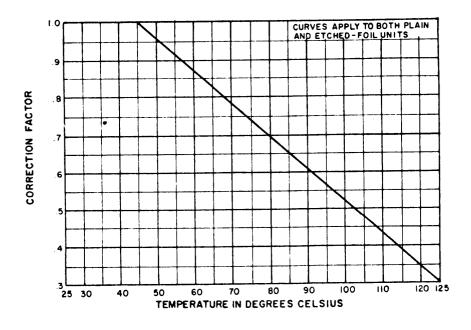


FIGURE 702.4. <u>Correction factor for maximum allowable ripple voltage/current vs temperature for tantalum foil capacitors.</u>

- 2.9 <u>AC ripple.</u> Tantalum foil capacitors are the only electrolytic capacitors capable of operaing continuously on unbiased ac voltages. The ac ripple capability curves on figures 702-2 and 702-3 are applicable for unbiased ac voltages on nonpolar units, and biased ac ripple voltages on polar units. Peak ac voltages up to 150 volts are permissible provided that the dc voltage rating is not exceeded. The only limitation is the I^2R heating effect. Due to higher power factor, etched foil capacitors have only half the ac capability of plain foil capacitors.
- 2.9.1 Foil types. Figure 702-2 indicates the maximum allowable rms voltage or current for tubular plain foil capacitors. For tubular etched foil types, use one-half the values shown on figure 702-2. All values referenced indicate allowable voltages and currents at $+25^{\circ}\text{C}$ and 60 Hz.

To determine ac capability at some other frequency, multiply the voltage or current values obtained from figure 702-2 by a correction value from figure 702-3.

To determine ac capability at some other temperature, multiply the voltage or current value from figures 702-2 and 702-3, if applicable, by a correction value from figure 702-4.

- 2.9.2 <u>Sintered slug type.</u> To determine ac capability of style CLR79 capacitors at some other frequency or tempeature, multiply the current values obtained from figure 702-10 by the correction value from table 702-11.
- 2.9.3 <u>Coomplex wave-shapes.</u> When complex ripple wave-shapes are involved, they on an should be measured on an oscilloscope or by some other method which will give the peak rating. These capacitors should be limited to operation at ripple frequencies between 60 and 10,000 Hz (above 10,000 Hz, effective capacitance rapidly drops off). At frequencies of only a few hundred kHz, these tantalum units act as practically pure resistance.
- 2.10 Failure-rate level determination (foil units only). The curves presented on figure 702-8 are the best engineering approximation of the reliability characteristics (random failures) for foil capacitors when employed repeatedly, within their specification ratings, in complex electronic equipment. These reliability characteristics are based on ground-level severity experience. Failures are considered to be opens, shorts, or radical departures from initial characteristics. The failures are considered to be occurring in an unpredictable manner and in too short a period of time to permit detection through normal preventive maintenance. The curves shown on figure 702-8 are based on "catastrophic failures" and will differ from the failure rates established in the specification, since the established failure rates are based on "parametric failures" over long term life tests at rated conditions. This figure has been extracted from MIL-HDBK-217, "Reliability Stress and Failure Rate Data for Electronic Equipment." The curves have been modified from their original version in that the ordinate has been normalized in order to provide multiplier factors in place of discrete failure rate levels and in order that the multiplying factor for a failure rate at rated conditions is unity. As indicated, these curves are the best estimates based on catastrophic failures"; however they can provide an estimate of the relative effect of operating under conditions other than rated.

3. ITEM IDENTIFICATION

3.1 <u>Standard capacitors.</u> The standard capacitors available in this section are shown on figure 702-9. (The figure gives the electrical characteristics, case sizes, failure rate levels, and military part numbers which are standard for design.)

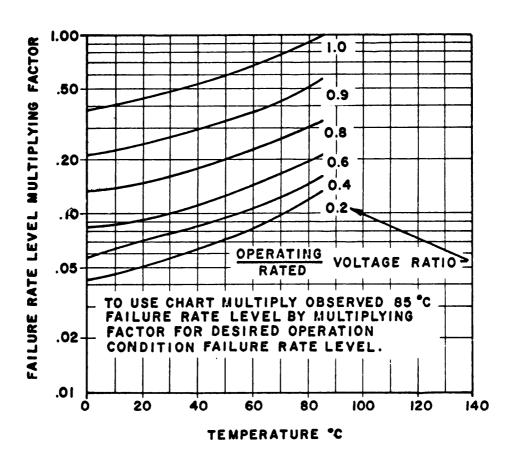
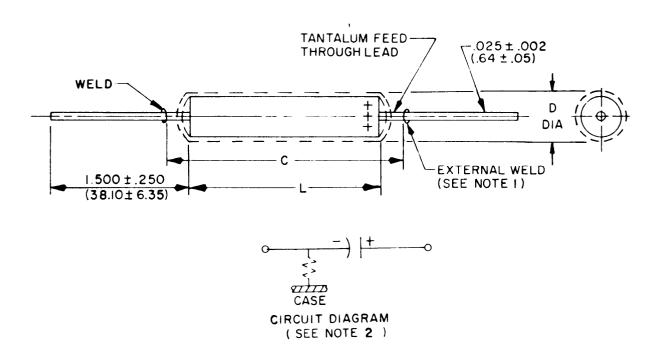



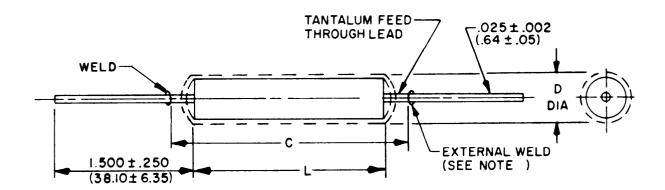
FIGURE 702-8. Failure rate level curves.

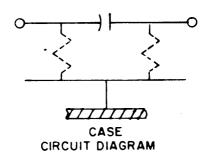
<u> </u>		Dimensions	
Case	L +.187(4.75)	D +.031(.79	С
size	031(.79)	016(.41)	Max
G1	.688 (17.48)	.188 (4.78)	1.188 (30.18)
G2	.969 (24.61)	.281 (7.14)	1.469 (37.31)
G3	1.438 (36.53)	.375 (9.53)	1.938 (49.23)
G4	2.125 (53.98)	.375 (9.53)	2.625 (66.68)
G5	2.750 (69.85)	.3 75 (9.53)	3.250 (82.55)

NOTES:

- 1. The weld is not enclosed in the end seal.
- 2. There is an indeterminate resistance between the metal case and the negative terminal.

FIGURE 702-9. Established reliability, tantalum, electrolytic (nonsolid electrolyte), fixed capacitors.


STANDARD CAPACITORS


STYLE CLR25 (MIL-C-39006/1)

POLARIZED, ETCHED FOIL -- OPERATING TEMPERATURE RANGE -55°C TO +85°C (VOLTAGE DERATED TO +125°C)

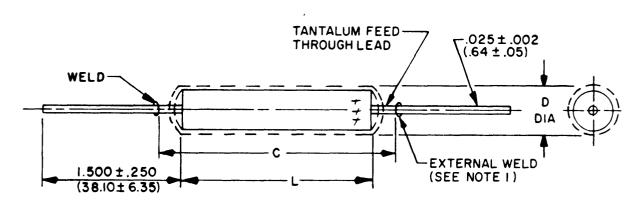
[Γ-					_						_	_							_	_									
0	S(0.001 			3328	3117	3119	3120	3329	3121	3122	3123	3331	3129	3130	3205	3132	2222	3332	3135	3136	3137	3333	3138	3139	3140	3141	3334	3142	3143	3144	C\$10 -
, ,	R(0.01)			3321	3088	3090	3091	3322	3092	3093	3094	3324	3100	3101	3204	3103	3104	3325 3105	3106	3107	3108	3326	3109	3110	3111	3112	3327	3113	3114	2115	2110
Failure rate level (%/1,000 hr)	P(0.1)			3314	9050	3061	3062	3315	3063	3064	3065	3317	3071	3072	3203	3074	30/5	3318	3076	3078	3079	3319	3080	3081	3082	3083	3320	3084	3085	3080	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	M(1.0)			3307	3030	3037	3033	3308	3034	3035	3036	3310	3042	3043	3201	3045	3046	3311	3048	3049	3050	3312	3051	3052	3053	3054	3313	3055	3056	3057	3030
Case	size			15	 25 	2 4		- 61	25	23		35	625	63	- 63 -	45.0		55	75	64	65	_ [5	C5	 	25	9	3	- 625 -		4.5	<u>.</u>
Impedance	(max)	LY SEALED	Ohms	220	55	/1	9	330	83	27	13	730	180	55	52	33	22	1000	110	47	33	1600	410	130	99	47	3000	750	220 130	S 5	46
Surge voltage	(3,58)	HERMET ICALLY	Vdc	17.2	17.2	17.2	17.2	28.8	28.8	28.8	28.8	20.02	57.5	57.5	57.5	57.5	57.5	2.98	2.08	86.2	86.2	115.0	115.0	115.0	115.0	115.0	172.0	172.0	172.0	172.0	0.2/1
Derated voltage	(125°C)		Vdc	10	01	9.5	22	15	15	15	15	15 C	8 8	3 R	90	8	္က	20	2 2	S G	20	65	65	9	65	99	100	100	100	001	001
eakage lax) 185 C & I	125°C		Ϋ́I	4	_ :	 26	8 8 8	4	13	- 우:	83	007			02	1 22	100	4 ;	13		901	4	12	37	75	100	4	13	ළ ළ :	8 9	001
max (max 25 C			μĀ	2	2 0	א ני	9 6	2	2	က	و و	2,	۰ ۷	n د	4	4	2	~	~ ~	o ve	9	2	2	1 2.5	2	7	2	2	ლ I	ر 	x
Cap.	ance		881	-1	7	7-	+75, -15	7	-1	-	7.	7-	! 7	17	-7	7	7	Τ΄	Π-	•	•	7		7	Ξ.	7	٦,	٦.	٦,	Γ.	٦.
Cap.		-	 <u> </u>	15.0	0.09	200.0	580.0	10.0	40.0	120.0	250.0	350.0	c	0.09	75.0	100.00	150.0	3.0	12.0	5.0	100.0	2.0	8.0	25.0	50.0	70.0	1.0	4.0	13.0	25.0	36.0
Rated voltage	(85°C)	-	Vdc	15	15	15		25	25	52	25	52	S &	20.05	20	20	<u>.</u>	75	75	75	75	100	100	100	100	100	150	150	150	150	55

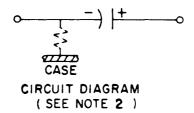
FIGURE 702-9. Established reliability, tantalum, electrolytic (nonsolid electrolyte), fixed capacitors - Continued.

<u> </u>		Dimensions	
Case	L +.187(4.75)		С
size	031 (.79)	016(.41)	Max
G1	.688 (17.48)	.188 (4.78)	1.188 (30.18)
G2	.969 (24.61)	.281 (7.14)	1.469 (37.31)
G3	1.438 (36.53)	.375 (9.53)	1.938 (49.23)
G4	2.125 (53.98)	.375 (9.53)	2.625 (66.68)
G5	2.750 (69.85)	.3 75 (9.53)	3.250 (82.55)

NOTE: The weld is not enclosed in the end seal.

FIGURE 702-9. <u>Established reliability, tantalum, electrolytic (nonsolid electrolyte), fixed capacitors</u> - Continued.


STANDARD CAPACITORS


STYLE CLR27 (MIL-C-39006/2)

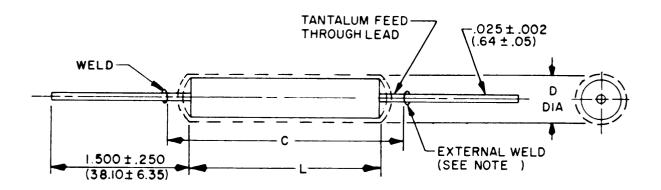
NONPOLARIZED, ETCHED FOIL -- OPERATING TEMPERATURE RANGE -55°C TO +85°C (VOLTAGE DERATED TO +125°C)

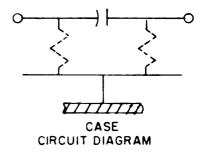
						_	- -			_						_				- -		-	_				_	_		_		
Li o I	S(0.001) 			2528	1313	1314	1315	2529	1316	1317	1318	1319	2531	1324	1325	1326	1327	2532	1328	1329	1330	1331	2533	1332	1 1333	1334	1335	2534	1336	1337	1338	1339
M39006/0 te level 00 hr)	R(0.01)			2521	1285	1286	1287	2522	1288	1289	1290	1291	2524	1296	1297	1298	1299	2525	1300	1301	1302	1303	5256	1304	1305	1306	1307	2527	1308	1309	1310	1311
T 6.24	P(0.1)			2514	1257	1258	1259	2515	1260	1261	1262	1263	2517	1268	1269	1270	1271	2518	1272	1273	1274	1275	2519	1276	1277	1278	1279	2520	1280	1281	1282	1283
	M(1.0)			2507	1229	1230	1231	2508	1232	1233	1234	1235	2510	1240	1241	1242	1243	2511	1244	1245	1246	1247	2512	1248	1249	1250	1251	2513	1252	1253	1254	1255
Case	size			15	3 5	25	65	- 6	25	63	7	e 65	61	C5	63	- 	- 65	61	- 25	63	- 54	65	- -	7	63	64	65	61	C2	— ლ	-	
Impedance	(max)	LY SEALED	Ohms	339	85	14	10	- 089	170	49	24	17	1335	339	113	57	41	2255	260	226	97	- 89	3385	845	283	135	97	6780	1693	959	283	188
Surge voltage	(3,58) 	HERMETICALLY	Vdc	17.2	17.2	17.2	17.2	28.8	8.82	1 28.8	8.82	1 28.8	57.5	57.5	57.5	57.5	57.5	86.2	1 86.2	1 86.2	86.2	86.2	115.0	115.0	115.0	115.0	115.0	172.0	172.0	172.0	172.0	172.0
Derated voltage	(125°C)		Vdc	10	91	20	10	15	15	15	15	15	30	8	8	8	30	20	ሜ	20	ଝ	20	9	65	65	65	65	100	100	100	100	100
Teakage max) 185 Ç & I	125°C 		ΥΠ	4 9			100	4	l 13	- 64 -	- 8	100	4	13	- 음 -	1 75 1	100	4	13	34	_ 8	1000	4	13	37	75	100	4	13	_ ⊗ _	- 8	001
DC leak (max) 25 C 18			Y ₁	~	۶ ۳ 	9	6	2	2	ლ —	9	12	2	2	<u>ო</u>	4	5	2	2	—	- 2	10	2	7	<u>س</u>	2	7	7	2	<u>س</u>	2	œ
Cap. toler-	ance		961	+75, -15																												
	-		-	Ţ! 	+ +		+ -	+	<u>'</u> +	' `	<u>'</u> +	<u>'</u> +	1 ,	'	+ ′	'	'	+ —	‡' —	+	+ ′	+ ′	÷'	¥ —	+	` `	÷'	÷ —	+	+'	+' -	¥ —-
Cap.			<u> </u>	010	 5 5	250	350	- 2	- SO	1 70	140	200	2.5	91	- 8	09	<u>8</u>	1.5	9	15	35	<u>-</u>	-	4	12	1 25	35	0.5	- 5	9	1 12	18
 Rated voltage	ا(35°د) ا		Λqc	15	 - - -	122	15	25	1 25	1 25	1 25	1 25	- 20	 22		_ &	_ &	1 75	1 75	7.5	1 75	1 75	100	100	100	100	100	150	150	150	150	150

FIGURE 702-9. Established reliability, tantalum, electroyltic (nonsolid electrolyte), fixed capacitors - Continued.

		Dimensions	
Case	L +.187(4.75)		С
size	031 (.79)	016(.41)	Max
G1	.688 (17.48)	.188 (4.78)	1.188 (30.18)
G2	.969 (24.61)	.281 (7.14)	1.469 (37.31)
G3	1.438 (36.53)	.375 (9.53)	1.938 (49.23)
G4	2.125 (53.98)	.375 (9.53)	2.625 (66.68)
G5	2.750 (69.85)	.3 75 (9.53)	3.250 (82.55)

NOTES:


- 1. The weld is not enclosed in the end seal.
- 2. There is an indeterminate resistance between the metal case and the negative teminal.


FIGURE 702-9. <u>Established reliability, tantalum, electrolytic (nonsolid eletrolyte), fixed capacitors</u> - Continued.

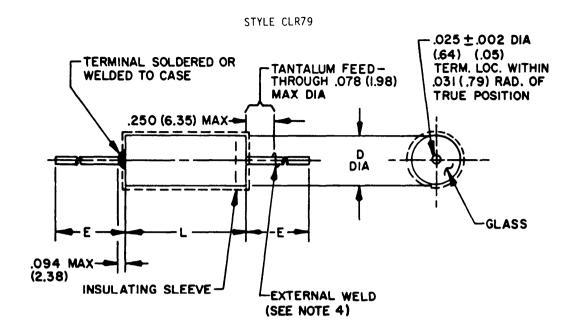
POLARIZED, PLAIN FOIL -- OPERATING TEMPERATURE RANGE -55°C TO +85°C (VOLTAGE DERATED TO +125°C) STYLE CLR35 (MIL-C-39006/3)

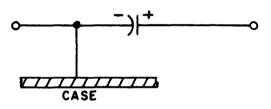
10 10 10 10 10 10 10 10	Pated	6	Can	1 DC Teakage	akage	Derated	Surge				Part No. Failure rat	#39006/0 :e level	3- for
18.0 1.0	voltage voltage (85°C)	· 	toler	2 S C	185 C L	voltage (125°C)	voltage (85°C)	Impedance (max)	Case	M(1.0)	(1/1,0 P(0.1)	00 hr) R(0.01)	5(0.001)
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,							HERMETICAL						
4.5 4.6 4.5 4.5 4.6 4.5 4.5 4.6 4.5 <td>Vdc</td> <td>L I</td> <td>**</td> <td>Y'I</td> <td>Ϋ́</td> <td>Vdc</td> <td>Vdc</td> <td>Ohms</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Vdc	L I	**	Y'I	Ϋ́	Vdc	Vdc	Ohms					
18.0 2.0 2 4 10 17.2 125 125 1350 1399 1447 1440	<u> </u>				^	9	17.2	495	15	2712	2724	2736	2748
155.0 2.70 2 10 10 17.2 41 65 1350 1399 144	5	18.0	*20	- ~	. 4	20	17.2	125	7	1349	1398	1447	1496
100.0 200 2 20 10 17.2 144 155 1551 1501 1505 15	15	1 55.0	02*	~	9	10	17.2	41	: ::::::::::::::::::::::::::::::::::::	1350	1399	1448	1497
100.0 2.00 2.0 1	15	110.0	2.5	₹	2 s	9:	17.2	R :	4 5	1351	140	1449	1490
1.0	15	1 160.0	02.		 څر	9:	7.7	744	3 5	1332	2725	2737	2749
35.0 20 10 15 28.8 64 1354 1403 1452 100.0 20 6 30 115 28.8 32 64 1356 1405 1452 100.0 20 6 30 115 28.8 32 64 1356 1405 1452 6.0 20 2 6 30 15 28.8 66 1356 1411 1465 1454 6.0 20 2 6 30 57.5 1487 61 141 1465 1446 1456 1456 1446 1456 1446 1465 1446 1465 1446 1465 1446 1465 1446 1466	25	3.0	02.	- ~	7 9	5.	28.8	186	325	1353	1402	1451	1500
76.70 27.70 4 27.70 15.70 78.8 3 64 1355 1444 1453 1646 1453 1410 1453 1404 1453 1401 1453 1404 1453 1404 1453 1401 1453 1401 1453 1401 1453 1402 1403 140	62	35.0	2.5				28.8	49	3	1354	1403	1452	1501
1.5 4.20 6 30 15 15 187 61 1356 1405 1404 1405	52	20.02	22*		28	15	28.8	35	64	1355	1404	1453	1502
6.0 4.20 1 4 30 57.5 1487 GL 13715 2772 1730 6.0 4.20 2 1.3 30 57.5 112 GL 1362 1412 1462 4.0 4.20 2 1.3 30 57.5 156 1364 1412 1462 4.0 4.20 3.8 3.0 57.5 156 1364 1412 1461 4.0 4.0 4.0 8.2 2.232 GL 1364 1462 1.0 4.0 4.0 8.0 5.2 2.232 GL 1364 1462 1.0 4.0 5.0 86.2 25.2 GL 1413 1462 1462 1.0 4.0 8.0 8.2 5.2 6.0 1414 1462 1.0 1.2 4 2.0 86.2 25.2 GL 1416 1462 1.0 1.1 1.1 1.1	25	100.0	* 50	9	98	15	1 28.8	l 23	99	1356	1405	1454	1503
20.0 x20 2 1 30 57.5 112 GZ 1362 1411 1460 20.0 x20 x20 4 26 30 57.5 112 GZ 1364 1411 1460 5.0 x20 x20 4 26 30 57.5 41 65 1414 1418 1462 5.0 x20 x20 1 4 50 86.2 558 GZ 1366 1415 1462 4.0 x20 2 13 50 86.2 558 GZ 1366 1418 1465 40.0 x20 4 36 86.2 558 GZ 1367 1416 1465 40.0 x20 4 36 86.2 57.6 47.0 47.0 47.0 3.0 x20 4 36 86.2 57.6 47.0 47.0 44.0 3.0 x20 4 36 </td <td>8</td> <td>1.5</td> <td>*50</td> <td></td> <td>4</td> <td>8</td> <td>57.5</td> <td>1487</td> <td>3</td> <td>2715</td> <td>1 2727</td> <td>2739</td> <td>2751</td>	8	1.5	* 50		4	8	57.5	1487	3	2715	1 2727	2739	2751
40.0 #70.0	<u>-</u>	0.9	*50 -	~ -	9:	ළ ස	57.5	372	35	1362	1411	1460	1510
55.0 #20 #20 \$1.5 #4 \$1.5 #4 \$1.5 \$1.5 \$1.5 \$1.5 \$1.6 \$1.5 \$1.6<	S 8	20.0	R 8	~ ~	13	3 8	57.5	717	3 5	1364	1413	1462	1511
1.0 2.0 2.0 86.2 22.2 CI 2716 2726 2746 4.0 2.0 86.2 558 G2 1366 1418 1466 4.0 2.0 86.2 158 G2 1366 1418 1466 2.0.0 2.0 86.2 598 G2 1366 1418 1466 2.0 2.0 86.2 598 G2 1368 1418 1466 0.0 2.0 6.5 115.0 733 G2 1369 1418 1466 0.0 2.0 2.0 86.2 56 115.0 273 1418 1466 0.0 2.0 2.0 115.0 172.0 1419 1469 1469 0.0 2.0 2.0 115.0 172.0 1445 1472 1471 0.0 2.0 2.0 110.0 172.0 1445 G1 1472 0.0 2.0 2.0	ያ s 	9,5	2 F	. .	97	3 8	57.5	. T		1365	1414	1463	1512
4.0 \$20 \$ 6 50 86.2 558 C2 1366 1415 1464 14.0 \$20 \$ 6 50 86.2 86.2 6 138 1417 1465 1417 1465 28.0 \$ \$ 6 5 115.0 2790 C1 1370 1468	ત્ર ક	22.0	R &	o	o 7	3 5	86.2	2232	33	2716	2728	2740	1 2752
14.0 ±20 ±2 13 50 86.2 159 63 136 146 146 40.0 ±20 ±2 13 50 86.2 56 65 115.0 279 64 136 1418 146 40.0 ±20 ±2 6 115.0 279 61 1271 279 174 179 146 9.0 ±20 ±2 6 115.0 273 63 137 1420 1469 10.0 ±20 ±2 6 115.0 273 63 137 1469 1469 10.0 ±20 ±2 6 115.0 172 142 147 147 1469 1469 20.0 ±20 ±2 6 115.0 172.0 1454 61 1472 1472 1472 1472 1472 1472 1472 1472 1472 1472 1472 1472 1472 1472 147	6/2		2.5		- ·	3 5	86.2	558	3	1366	1415	1464	1513
28.0 4.0 2.6 5.0 86.2 86.2 86.2 14.6 14	2 / 2		22.	۰ -	~ ~	2 2	86.2	159	33	1367	1416	1465	1514
40.0 ±20 6 38 50 86.2 56 115.0 1290 116.0 1290 118.0 1290 148.0 1467 1467 1467 1467 1467 1469 1468 1467 1469 1467 1469 1469 1469 1469 1469 1469 1469 1460 1469 1460 1460 172.0 1464 1473 1469	75	28.0	27.		292	3 53	86.2	8	2	1368	1417	1466	1515
9.8 +20 1 3.5 65 115.0 2790 61 2717 2729 2741 9.0 +20 +20 2 16 65 115.0 743 62 1371 1468 10.0 +20 +20 2 16 65 115.0 112 64 1372 1470 1468 20.0 +20 2 16 115.0 112 64 1371 1470 1468 30.0 +20 2 6 18 100 172.0 14464 61 2718 2730 2742 2.0 +20 2 6 100 172.0 1115 62 1375 1470 1470 2.0 +20 100 172.0 1115 62 1376 1472 1471 1.4 +20 100 172.0 1115 62 1376 1472 1471 1.5 +12 100 172.0<	75	2.5	2 *	و. ـ	38	S	86.2	26	- 65	1 1369	1418	1467	1516
3.0 *20 2 6 65 115.0 743 62 1370 1419 1468 20.0 *20 3 6 115.0 123 64 1372 1421 1409 20.0 *20 6 38 65 115.0 74 65 1373 1421 1470 1470 20.0 *20 6 138 65 115.0 474 65 1373 1422 1471 2.0 *20 2 4 100 172.0 1115 62 1374 1423 1472 7.0 *20 2 4 100 172.0 1119 62 1374 1473 14.0 *20 100 172.0 112 62 1375 1424 1473 17.0 *20 464 150 172.0 112 62 1474 17.0 *15 150 230.0 530.0 64 1444 <td>100</td> <td>9.0</td> <td>2 4</td> <td>-</td> <td>3.5</td> <td>99</td> <td>115.0</td> <td>2790</td> <td>13</td> <td>2717</td> <td>2729</td> <td>2741</td> <td>2753</td>	100	9.0	2 4	-	3.5	99	115.0	2790	13	2717	2729	2741	2753
10.0 \$20 \$2 \$3 \$6 \$6 \$115.0 \$125 \$65 \$1373 \$1422 \$1471 \$170 \$170 \$20.0	100	3.0	• * 50	2	9	9	115.0	743	35	13/0	1419	1468	151
30.70 *20 6 15.0 74 65 1373 1422 1471 30.70 *20 6 100 172.0 1444 61 2718 273 2742 2.0 *20 2 4 100 172.0 1115 62 1374 1422 1471 7.0 *20 3 13 100 172.0 139 63 1374 1422 1471 7.0 *20 4 100 172.0 115 62 1374 1422 1473 14,0 *20 1 100 172.0 115 62 1474 1473 20.0 *40 6 1 100 172.0 115 1426 1473 1.5 *15 1	100	10.0	¥50	~ -	13	69	115.0	523	3 5	1377	1421	1470	1519
0.5.0 2.5.0 4.6 100 172.0 4454 61 2718 2730 2742 2.0 4.20 2 4 100 172.0 1115 62 1374 1423 1472 7.0 4.20 2 6 100 172.0 1115 62 1376 1423 1472 7.0 4.20 4.20 100 172.0 1115 62 1376 1473 0.35 415 4.25 100 172.0 1112 63 1377 1474 1473 0.35 415 4.25 100 172.0 130 64 1475 1475 1.0 415 2.30.0 230.0 62 1378 1425 1475 1.0 415 2.30.0 230.0 63 1379 1475 1475 1.0 415 2.30.0 230.0 63 133 1445 1473 1.0 415	001	8.8	2.5 • • •	n 4	2 2	6.5	115.0	77	5 5	1373	1422	1471	1520
2.0 4.20 2 6 100 172.0 1115 62 1374 1423 1472 7.0 4.20 4 13 63 137 1473 1473 14.0 4.20 4 26 100 172.0 112 64 1375 1424 1475 20.0 4.20 4 126 100 172.0 112 65 137 1426 1475 1.5 4.15 4.6 136 100 172.0 130 67 1379 1478 1475 1476 1.0 4.15 1.6 4.0 230.0 230.0 63 1379 1478 1476 1.0 4.15 1.0 1.2 2.30.0 130 63 1477 1476 1.0 4.1 1.0 1.2 1.3 1.4 1477 1476 1476 1476 1476 1476 1477 1476 1477 1476 1477 <td>35</td> <td>20.0</td> <td>22.</td> <td>- ~</td> <td>3 4</td> <td>100</td> <td>172.0</td> <td>4454</td> <td>5</td> <td>2718</td> <td>2730</td> <td>2742</td> <td>2754</td>	35	20.0	22.	- ~	3 4	100	172.0	4454	5	2718	2730	2742	2754
7.0 *20 3 13 100 172.0 139 G53 1375 1474 1474 1474 1476 <td>25.</td> <td>2.0</td> <td>*50</td> <td>2 -</td> <td>9</td> <td>100</td> <td>172.0</td> <td>11115</td> <td>- C5</td> <td>1374</td> <td>1423</td> <td>1472</td> <td>1521</td>	25.	2.0	* 50	2 -	9	100	172.0	11115	- C5	1374	1423	1472	1521
14,0 \$20 4 \$26 100 172.0 1159 G4 1370 1425 1474 15,10 \$420 6 38 100 172.0 1159 G5 1377 1425 1474 1.5 \$415 \$16 64 150 230.0 4300 G2 1378 1428 1478 1.5 \$415 \$16 64 150 230.0 4300 G2 1378 1428 1478 15,0 \$415 \$16 \$150 230.0 4300 G4 1380 1428 1478 1.5 \$415 \$16 \$150 230.0 4300 G5 1381 1438 1478 1.5 \$415 \$16 \$40 \$200 230.0 2300 G4 1380 1478 1478 1.5 \$415 \$16 \$40 \$200 230.0 2300 G5 1381 1430 1478 1.0 \$415 \$10 \$200 345.0 2250 G2 1386 1437 1486 1.0 \$415 \$10 \$200 345.0 3250 G2 1387 1488 1.0 \$415 \$10 \$100 \$250 431.0 1800 G4 1392 1448 1.0 \$415 \$10 \$100 \$250 431.0 12810 G2 1392 1441 1490 1.0 \$415 \$10 \$150 \$300 518.0 G2 1394 1444 1493 1.0 \$415 \$10 \$150 \$300 518.0 G2 1396 1444 1493 1.0 \$415 \$10 \$100 \$300 518.0 G4 1395 1444 1493 1.0 \$415 \$10 \$100 \$300 518.0 G2 1396 1444 1493 1.0 \$415 \$10 \$100 \$300 518.0 G4 1395 1444 1493 1.0 \$415 \$10 \$100 \$300 518.0 G5 1395 1444 1493 1.0 \$415 \$10 \$100 \$300 518.0 G5 1395 1444 1493 1.0 \$415 \$10 \$100 \$300 \$518.0 \$65 1395 1444 1493 1.0 \$415 \$10 \$100 \$300 \$518.0 \$65 1395 1444 1493 1.0 \$415 \$10 \$100 \$300 \$518.0 \$65 1395 1444 1493 1.0 \$415 \$4	150	1 7.0	¥ 50	۳ —	13	100	172.0	319	g :	1375	1424	1473	1522
20.0 \$20.0 \$17.0 \$11.7 \$13.0 \$17.0	150	14.0	2°	→ .	92	100	172.0	159	.	13/6	1425	14/4	1523
0.35 #15 # 16 # 15 # 15 # 15 # 15 # 16 # 15 # 15 # 15 # 16 # 15 # 15 # 16 # 15 # 15 # 16 # 15 # 15 # 16 # 16 # 15 # 16 # 16 # 15 # 16 # 16 # 15 # 16	150	8.	8:	• •	æ :	995	1/2.0	211	3 5	27.19	2731	2743	2755
5.0 115 64 150 230.0 400 63 1379 1428 1477 10.0 415 126 146 150 230.0 130 64 130 1428 1478 1478 10.0 415 126 120 130 65 1381 1429 1478 1478 10.1 415 16 150 230.0 130 65 1381 1429 1478 1478 1.0 415 16 160 120 230.0 130 67 138 1438 148 148 1.0 415 16 100 200 345.0 2250 62 138 143 148 1.0 415 10 200 345.0 2250 63 138 143 1486 1.0 410 200 230 243.0 2250 64 138 1448 1486 1.0 10 <td< td=""><td>88</td><td>65.0</td><td>£13</td><td>. .</td><td>62</td><td>8 5</td><td>20.00</td><td>1300</td><td></td><td>1378</td><td>1427</td><td>1476</td><td>1525</td></td<>	88	65.0	£13	. .	62	8 5	20.00	1300		1378	1427	1476	1525
10.0	3 		*15	9 9	6 5	35	230.0	6	ខ -	1379	1428	1 1477	1526
15.0	8	10.0	*15	1 28	100	150	1 230.0	8 -	3	1380	1429	1478	1527
0,27 415	02 -	15.0	1 *15	₽	99	 	230.0	130		1381	200	1479	1528
1.0 415 10 20 345.0 1.25.0 63 138 1436 1485 7.0 415 12 100 200 345.0 225 138 1436 1485 10.0 415 16 100 200 345.0 225 138 143 1486 10.0 415 16 100 250 431.0 1890 16 138 143 1486 0.82 415 16 100 250 431.0 2810 62 1390 1439 1488 2.7 415 16 100 250 431.0 2810 62 139 1441 1490 4.0 41 450 64 132 431.0 450 64 139 1441 1490 8.2 415 16 100 250 431.0 450 64 139 1441 149 9.2 41 16 15	000	0.27	±15	9 9	₽ :	200	345.0	0000	35	13/2	56/7	1484	1533
7.0 #15 2.0 170 345.0 322 G4 1388 1437 1496 10.0 #15 \$60 250 120 345.0 225 139 1438 1488 0.22 #15 \$6 260 260 431.0 1890 G2 1392 1438 1488 2.7 #15 \$6 260 250 431.0 2810 G2 1392 1439 1448 2.7 #15 \$6 260 250 431.0 2810 G2 1392 1441 1490 8.2 #15 \$10 120 250 431.0 281 G5 1392 1441 1490 8.2 #15 \$10 \$120 \$20 431.0 \$281 G5 1392 1442 1491 9.5 #15 \$10 \$150 \$30 \$518.0 \$530 \$62 \$1392 \$1442 \$1491 9.5 #	<u> </u>	0.0	61 #	⊇ ⊱ 	R 2	88	345.0	052	35	1387	1436	1485	1534
10,0 415 50 250 250 345.0 225 65 1389 1438 1487 0,122 415 6 80 250 431.0 11800 62 1389 1438 1487 0,22 415 10 100 250 431.0 2810 62 1390 1439 1488 2,7 415 10 100 250 431.0 2810 62 1391 1440 1489 2,7 415 10 225 250 431.0 2810 64 1392 1441 1490 8,2 415 50 325 250 431.0 281 65 1393 1442 1491 0,15 415 10 150 300 518.0 5350 62 1395 1444 1493 2,2 415 20 400 300 518.0 5300 64 1396 1444 1493 3,9 415 50 1000 300 518.0 535 65 1397 1446 1495 6,8 415 50 1000 300 518.0 535 65 1397 1446 1495 6,8 415 60 1000 300 518.0 535 65 1397 1446 1495 6,8 415 60 1000 300 518.0 535 65 1397 1446 1495 6,8 415 60 1000 300 518.0 535 65 1397 1446 1495 6,8 415 60 1000 300 518.0 535 65 1397 1446 1495 6,8 415 60 1000 300 518.0 535 65 1397 1446 1495 6,8 415 60 1000 300 518.0 535 65 1397 1446 1495 6,8 415 60 1000 300 518.0 535 65 1397 1446 1495 6,8 415 60 1000 300 518.0 535 65 1397 1446 1495 6,8 415 60 1000 300 518.0 535 65 1397 1446 1495 6,8 415 60 60 60 60 60 60 60 6	96		- T	 3 %	242	88	345.0	322	3	1388	1437	1486	1535
0.22 ±15 6 80 250 431.0 11800 G1 2722 2734 2746 0.82 ±15 10 100 1250 431.0 100 162 1391 1440 1488 2.7 ±15 70 225 250 431.0 900 G4 1392 1441 1490 8.2 ±15 30 126 250 431.0 2810 G6 1392 1441 1490 10.15 ±15 30 126 250 431.0 281 G5 1392 1441 1490 10.15 ±15 30 300 518.0 12400 G1 1273 1735 1747 10.15 400 300 518.0 5350 G2 1334 1443 1493 2.2 ±15 100 300 518.0 580 G2 1344 1493 6.8 ±15 50 1000 300 </td <td>25</td> <td></td> <td>-15</td> <td>3.5</td> <td>250</td> <td>88</td> <td>345.0</td> <td>225</td> <td>-</td> <td>1389</td> <td>1438</td> <td>1487</td> <td>1536</td>	25		-15	3.5	250	88	345.0	225	-	1389	1438	1487	1536
0.82 \$15 10 100 250 431.0 2810 G2 1390 1443 1488 1488 12.7 415 10 125 431.0 900 G2 1391 1440 1489 1488 1485 126 250 431.0 450 G4 1392 1441 1490 1489 1485 1485 126 250 431.0 281 G5 1333 1442 1491 1490 1489 1485 1485 126 300 518.0 12400 G1 2723 2735 2735 2747 1491 1492 12.2 415 10 150 300 518.0 5350 G2 1394 1443 1492 1492 1491 1492 1492 1492 1492 1492 1493 1493 1494 1493 1494 1493 1494 1493 1494 1493 1494 1493 1494 1493 1494 1493 1494 1493 1494 1493 1494 1493 1494 1493 1494 1493 1494 1493 1494 1493 1494 1493 1494 1493 1494 1493 1494 1495 1494 1495 1494 1495 1494 1495 1494 1495 1494 1495 1494 1495 1494 1495	375	0.22	115	9	8	250	431.0	11800	5	2722	2734	2746	2758
2.7 #15 72 72.5 5.50 431.0 900 63 1391 1440 1490 1480 1440 1490 1440 1490 1440 1490 1440 1490 1440 1490 1440 1490 1440 1490 1440 1490 1441 1490 1441 1490 1491 1490 1441 1490 1441 1490 1401 1401 1401 1401 1401 1401 1401 1401 1401 1401 1402 1401 1402 1401 1402<	375	0.82	*15	9	9	250	431.0	2810	33	1390	1439	1488	1537
5.6 #15 53 1.250 2.20 431.0 281 65 133.1 1442 1491 1491 8.2 #15 \$6 120 326 183.0 21400 61 2723 2733 1472 1491 0.15 #15 #16 150 300 518.0 2350 62 1334 1443 1492 2.2 #15 10 150 300 518.0 5350 62 1334 1443 1493 2.2 #15 10 150 300 518.0 630 63 1395 1444 1493 3.9 #15 100 300 518.0 800 64 1396 1446 1495 6.8 #15 50 1000 300 518.0 535 65 1396 1446 1495	375	2.7	±15	2 :	522	88	431.0	00.5	35	1391	1441	1400	1539
8.2	3/5	0.0	C .	 S S	266	200	431.0	100	5 %	1393	1442	1491	1540
0.15	3/2	3.6	CT# -	3°	130	06.0 	10.10.	21400	3 5	2723	2735	2747	2759
2.2 4.5 20 4.00 300 518.0 1600 G3 1395 1444 1493 13.9 4.15 35 800 300 518.0 800 G4 1396 1445 1494 6.8 4.15 50 1000 300 518.0 535 G5 1397 1446 1495 1494 1494 1495	5.5	95.0	*15	- -	9.5	86	518.0	5350	25	1394	1443	1 1492	1541
3.9 *15 35 800 300 518.0 800 64 1396 1445 1494 6.8 *15 50 1000 300 518.0 535 65 1397 1446 1495	3	2.2	*15	2 2	400	000	518.0	1600	-	1395	1444	1493	1542
6.8 *15 50 1000 300 518.0 535 65 1397 1446 1495	- - - - -	3.6	±15	32	008	300	518.0	800	<u>5</u>	1396	1445	1494	1543
	55	9.9	*15	99	1000	300	518.0	1 535	- 65	1397	1446	1495	1544
	: -	-	_	_	_	_	_	_	_	_	_	_	_

FIGURE 702-9. Established reliability, tantalum, electrolytic (nonsolid electrolyte), fixed capacitors - Continued. 702 (MIL-C-39006)

		Dimensions	
Case	L +.187(4.75)	D +.031(.79	C
size	 031 (.7 9)	016(.41)	Max
G1	.688 (17.48)	.188 (4.78)	1.188 (30.18)
G2	.969 (24.61)	.281 (7.14)	1.469 (37.31)
G3	1.438 (36.53)	.375 (9.53)	1.938 (49.23)
G4	2.125 (53.98)	.375 (9.53)	2.625 (66.68)
G5	2.750 (69.85)	.3 75 (9.53)	3.250 (82.55)

NOTE: The weld is not enclosed in the end seal.


FIGURE 702-9. <u>Established reliability, tantalum, electrolytic (nonsolid electrolyte), fixed capacitors</u> - Continued.


STYLE CLR37 (MIL-C-39006/4)

NONPOLARIZED, PLAIN FOIL -- OPERATING TEMPERATURE RANGE -55°C TO +85°C (VOLTAGE DERATED TO +125°C)

	Cap.	~ ~	, ,	Derated voltage	Surge voltage	Impedance	Case	9 (0 1)7	Failure ra' (%/1,00	rate level	for
	ance	7 67	85 C &	(125 C)	(2 68)	(max)	Size	M(1.0)	11.0.1	K(0.01)	310.002/
					HERMETICA	HERMETICALLY SEALED					
	8 81	Y _A	Ϋ́Π	Vdc) Adc	Ohms					
2.5	‡ 50		2	01 5	17.2	893	150	2711	2722	2733	2744
	2 5	۰ <i>د</i>	• <u>-</u>	91	17.2	64	3 69	1246	1291	1336	1381
-	‡ 50	4	28	10	17.2	32	64	1247	1292	1337	1382
	¥50	- 2	 유 ' 	ខ្ល	17.2	23	 55	1248	1293	1338	1383
 -	¥ 50	 	m 4	15 16	28.8	148/		1249	1294	1339	1384
	22	2 ~		12	28.8	112	 35	1250	1295	1340	1385
	, 20 4	4	- 유 -	15	1 28.8	99	64	1251	1296	1341	1386
	25 * 20	- 2	ج 8	15	28.8	37		1252	1297	1342	1387
	P2 +			2 %	57.5	743	 5	1257	1302	1347	1392
	22*	۰ د	12	38	57.5	223		1258	1303	1348	1393
_	20 *	4	24	88	57.5	112	64	1259	1304	1349	1394
_	* 20	9	36	30	57.5	75	99	1260	1305	1350	1395
	2 *	-	4 ,	S (2	86.2	4460	 	2715	1 2/26	2/3/	1305
	2 £	~ c	- -	2 6	2.08	310		1071	1307	1352	1397
	*20 *20		242	S &	86.2	159		1263	1308	1353	1398
_	2 \$		36	ଝ	86.2	1112	- 65	1264	1309	1354	1399
	±20	_	3.5	65	115.0	5580		2716	1 2727	2738	2749
	22.4	2 c		65	115.0	148/	7 6	1266	1310	1356	140
	22.	7 4	24	69	115.0	223	35	1267	1312	1357	1402
	* 50	9	36	9	115.0	149	25	1268	1313	1358	1403
	4 2	-	- .	100	172.0	8909		2718	2729	2/40	2/51
	02 .	2 c	 	001	172.0	727	35	1221	1314	1361	1404
	22.	. 4	24	1001	172.0	319	- 68	1272	1317	1362	1407
_	* 50	9 –	- 36 -	100	1 172.0	1 223	99	1273	1318	1363	1408
	0Z ‡	4	52	150	230.0	14000		2719	2730	2741	2752
 S	7 50	æ <u>,</u>	35	93	230.0	00/2	75	12/4	1320	1364	1409
	÷15	100	100	50	28.5	88	25	1276	1321	1366	1411
	*15	97	190	35	230.0	560	32	1277	1322	1367	1412
~	*15	-	52	200	345.0	17500	5	1 2720	2731	1 2742	2753
17	* 15	10	<u>ج</u>	200	345.0	4500	7 02	1282	1327	1372	1417
_	±15	02	100	500	345.0	1500		1283	1328	1373	1418
_	* 15	32	175	500	345.0	643	4 5	1284	1329	13/4	1419
	*15 +15	ر م	- 520 - 520	200	345.0	23500	35	2721	1330	13/5	2754
	*12°		3 5	250	431.0	5620	7 25	1286	1331	1376	1421
	* 15	28	1 225	250	431.0	1880	63	1287	1332	1377	1 1422
~	± 15	35	520	250	431.0	006	64	1288	1333	1378	1423
_	¥]5	5	322	25	- T	-	-	200	4		5/5

FIGURE 702-9. Established reliability, tantalum, electrolytic (nonsolid electrolyte), fixed capacitors - Continued.

CIRCUIT DIAGRAM

		Dimensions	
Case	L +.155 (3.94) 016 (.41)	D +.031 (.79) 016 (.41)	E ±.250 (6.35)
T1 T2 T3 T4	.453 (11.51) .641 (16.28) .766 (19.46) 1.062 (26.97)	.188 (4.78) .281 (7.14) .375 (9.52) .375 (9.52)	1.500 (38.10) 2.250 (57.15) 2.250 (57.15) 2.250 (57.15)

NOTES:

- 1. Dimensions are in inches.
- 2. Metric equivalents are given for general information only and are based upon 1.00 inch = 25.4 mm.
- 3. Metric equivalents are in parentheses.
- 4. The weld is not enclosed in the end seal.

FIGURE 702-9. <u>Established reliability, tantalum, electrolytic (nonsolid electrolyte), fixed capacitors</u> - Continued.

STANDARD CAPACITORS

STYLE CLR79 (MIL-C-39006/22)
TANTALUM ANODE AND CATHODE
POLARIZED SINTERED SLUG--OPERATING TEMPERATURE RANGE -55°C TO +85°C (YOLTAGE DERATED TO 125°C)

1 1 1 1 1 1 1 1 1 1	1/ Rated	Cap	Cab.	(max)	, , ()	pation	Derated	Surge		_	change at		85°ເ	Case	Fai	lure rate	level tor	
1	voltage (85°C)		toler- ance		85°C 125°C	factor (max)	voltage (125°C)	voltage (+85°C)	Impedance (max)	ე_99-	J. 58+	+125°C	40 kHz ripple current	size	M(1.0)	(\$/1,0(P(0.1)	1 R(0.01)	1 \$(0.001)
10	ODA.	===	ue1	YI.	<u>4</u>	æl	Agc	Vdc	Ohms	,•I	41	.el	IIIA rilis					
# 10 10 110	- -	<u>8</u>	00 42		- 5	6	4	6.9	100	7 	1 +10.5	1 +12	820	F	1000	1220	0441	1 0661
# 15 9 100 +10.5 +12.5	· _	S 유 	101#	·	· —	6	_	_	100	_	+10.5	+12	820		0005	0222	0442	7 0000
# 10	_	음 -	 *	_	_	6 -	_	_	100		+10.5	+12	820	_	0003	0223	0443	5990
# 10 1 1 1 1 1 1 1 1 1		89 -	1 ±20		_	15	_	_	3	_	+14	ol+ -	096		4000	0224	445	1990
## 5	_	89 -	- * 10	_	_	15	_		9		_		200	- -	5000	6770	2446	5990
100 100	_	89	 ቲ		> '	15			3				96.	- ₽	0000	0220	0440	2990
# 10	_	140	1 * 20	_	<u>ء</u>	21	_	_	⊋;				1300	<u> </u>	200	0250	200	99
25 45 45 45 45 45 46 417.5 40 1375 40 0010 0230 0450 410 6.5 45 45 45 45 47.5 40 1375 40 0011 0230 0450 450 6.5 45 45 45 47.5 40 1375 40 0011 0230 0450 40 6.5 45 45 47.5 40 1375 40 0011 0231 0453 40 7.9 36 4.5 4.7 4.1	_	140	01#	_	ლ : — :	21			3.			•	1300		900	0520	0440	9990
10 10 10 10 10 10 10 10		- 140	₽	_	ص -	12			3 6	> ;	-	> C+	1376		000	0273	0450	529
# 10 6.5 45 45 5.5 45 4	_	1 270	+50 		6.5	45		_	52	* -	5.71.	024	13/5		0010	0630	045	259
#20 1		1 270	#10		6.5	45			52		17.5	07+	13/5	-	0012	0230	1452	100
#10 1 4	_	270	£.	> '	6.5	45			52		C / T +	91+	1800	T3	0013	0233	0453	0673
#50 7,59 36 20 # 14 +16 +17 <td>_</td> <td>330</td> <td>*50</td> <td>2 -</td> <td>6.7</td> <td>g :</td> <td></td> <td></td> <td>3 %</td> <td></td> <td>* T</td> <td>0T. +</td> <td>0.00</td> <td><u> </u></td> <td>0015</td> <td>0234</td> <td>0454</td> <td>1 0674</td>	_	330	*50	2 -	6.7	g :			3 %		* T	0T. +	0.00	<u> </u>	0015	0234	0454	1 0674
# 10		930	01.	 	6.7	3 2			0.5		+17	91+	1800		0015	0235	0455	1 0675
#10 13 55 56 64 17.5 70 1900 0017 0237 0457 #10 13 55 55 56 64 17.5 70 1900 0017 0237 0458 #10 13 55 56 56 64 17.5 70 1900 0018 0238 0458 #10 14 90 90 90 90 70 70 70 #10 14 90 90 90 90 90 90 #10 14 90 90 90 90 90 90 #10 14 90 90 90 90 90 #10 14 90 90 90 90 90 #10 14 90 90 90 90 90 #10 14 90 90 90 90 90 #10 14 90 90 90 90 #10 14 90 90 90 90 #10 14 90 90 90 90 #10 14 90 90 90 90 #10 14 90 90 90 90 #10 14 90 90 90 90 #10 14 90 90 90 90 #10 14 90 90 90 90 #10 14 90 90 90 90 #10 14 90 90 90 90 #10 14 90 90 90 90 #10 90 90 90 90 #10 90 90 90 90 #10 90 90 90 90 #10 90 90 90 90 #10 90 90 90 90 #10 90 90 90 90 #10 90 90 90 90 #10 90 90 90 90 #10 90 90 90 90 #10 90 90	_	330	£ :		٠.	ج ا			36	- -	+17 +	120	000	-	0016	0236	0456	9290
# 13 \$5 \$6 \$7 \$		200	07.		51.	22			67		+17.5	22	0061	_	0017	0237	0457	1 0677
#20 3 14 90 \$ 20 -80 +25 2265 14 900 0450 0450 145 14 90 0450 023 0450 145 14 90 0460 022 0240 0022 0240 0460 <td></td> <td>96</td> <td>2 4 </td> <td>-</td> <td></td> <td>6 4</td> <td></td> <td></td> <td>25</td> <td></td> <td>+17.5</td> <td>170</td> <td>1900</td> <td>•</td> <td>0018</td> <td>0238</td> <td>0458</td> <td>1 0678</td>		96	2 4 	-		6 4			25		+17.5	170	1900	•	0018	0238	0458	1 0678
10 3 14 90 90 90 90 100 90 100 1		200		• ~	7	3 8		_	202	\$ \$	+25	+25	1 2265		0019	1 0239	0459	6/90
±0 1 2 7.5 5 9.2 100 +10.5 +12 820 1002 0022 0042 0462 10463 10463 10463 10463 10463 10463 10464 1046		1300	27.7	۰ « 	14	2 S	-	>	50	3	475	+52	5265	1 T4	0050	0240	0460	0680
# 10	- α	1500	-102) -	-	2,7		9.2	001	4	+10.5	+12	820	11	0021	0241	0461	1 0681
±5 7.5 100 +10.5 +12 820 0023 0243 0463 ±20 14 +16 900 0024 0224 0246 0464 ±10 14 +16 900 0022 0224 0465 ±10 14 +16 900 0026 0246 0466 ±20 20 42 +17.5 +20 1220 0226 0246 0466 ±20 20 44 +17.5 +20 1220 0249 0466 0466 0466 0466 0466 0466 0466 0467 0467 0466	o - 	50	07-	- -	, -		, . 	;	100	-	+10.5	+12	820	_	1 0022	0242	0462	0682
# # # # # # # # # # # # # # # # # # #						7.5			001		+10.5	+12	820	_	1 0023	0243	0463	0683
+10 14 +16 900 ↓ 10025 00245 0465 +20 20 20 4.14 +17.5 +16 900 ↓ 10025 00245 0465 +20 20 20 4.14 +17.5 +16 900 ↓ 10025 00245 0466 +20 20 20 4.14 +17.5 +12 1220 1220 0028 0249 0466 +20 20 20 4.14 +17.5 +12 1220 1220 0247 0466 +20 20 20 4.14 +17.5 +12 1220 0028 0247 0466 +20 20 20 20 0469 0249 0466 +20 20 20 0469 0249 0466 +20 20 20 0469 0469 0469 +20 20 20 0469 0469 0469 +20 20 20 0469 0469 0469 +20 20 20 0469 0469 0469 +20 20 20 0469 0469 0469 +20 20 20 0469 0469 +20 20 20 0469 0469 +20 20 20 0469 0469 +20 20 20 0469 0469 +20 20 20 0469 +20 20 20 0470 +20 20 20 0470 +20 20 20 0470 +20 20 20 0470 +20 20 20 0470 +20 20 20 0470 +20 20 20 20 +20 20 20 20 +20 20 20 20 +20 20 +20 20 20 +20 20 20 +20 20 20 +20 20 20 +20 20 20 +20 20 20 +20 20 20 +20 20 20 +20 20 20 +20 20 20 +20 20 20 +20 20 20 +20 20 20 +20 20 +20 20 +20 20 +20 20 +20 20 +20 20 +20 20 +20 20 +20 20 +20 20 +20 20 +20 20 +20 20 +20			*50		_	14		_	69	_	+14	+16	006	_	0024	0244	0464	0684
+5 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 15	_	26	* 10	_	_	14	_	_	1 59	_	+14	+16	006	- ,	0025	0245	0465	6890
#20 20 1220		99	_ ጜ	_	_	14	_	_	65	- :	+14	+16	000	- 2	0056	0246	0466	0890
#10 20 20 20 20 20 20 20	_	120	¥50	_		20		_	<u>ያ</u> :	4-	c:/T+	0 2-	1330	7	700	0547	940	9890
#5 7 37 30 30 30 30 30 30		120	+10 -		-	200			3 3				1220		0000	0240	0469	6890
#10 7 37 37 30 4 1320 7 0031 0251 0471 37 30 4 1320 7 0032 0252 0472 30 4 1320 7 0033 0253 0472 30 4 1320 7 0034 0253 0473 30 4 1320 7 0034 0254 0474 4 4 4 4 4 4 4 4 4		25			• r	202			g ⊊ 				1320		0030	0250	\$ 20	0690
# 1 37 37 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	_	329	75 10 10 10 10 10 10 10 10 10 10 10 10 10			37			38			_	1320		0031	0251	0471	1 0691
#20 2 6 34 1033 0053 0073 0053 0473 1		220		>		37			· 유	-		_	1320	-	0032	1 0252	0472	0695
#10 6 34 0.054 0.044 0.054 0.054 0.054 0.054 0.054 0.054 0.055		26	¥50	7	ص 	34	_		1 25	-64	_	_	1745	13	0033	0253	0473	0693
#5 6 34 1003 0233 02475 14 46 10036 0255 0477 14 46 10037 0257 0477 14 46 10037 0257 0477 14 46 10037 0257 0477 14 46 10037 0257 0478 14 46 10037 0257 0257 0257 0257 0478 14 46 10037 0257 0257 0257 0257 0257 0257 0257 025	_	290	#10	_	9	34	_						1745	_	0034	0254	4,4	- 0694 - 7694
#20 14 46 1025 0037 0257 0477 1 1825 1 0037 0257 0478 1 1825 1 0138 0258 0478 1 1825 1 0138 0258 0478 1 1825 1 0138 0258 0478 1 1825 1 0138 0258 0478 1 1825 1 0138 0478 1 1825 1 182	_	- 530 -	¥	_	9	34			_				1/45	_	0003	0533	525	9690
14 40 1058 00478	_	430	+ 50		* :	9 4							1825		0032	0257	0477	7690
	-•	3	21.	-	+ •	9 4	•	•	•		•	- 1	1825	- -	100.48	00.58	2770	26080

See footnotes at end of figure.

FIGURE 702-9. Established reliability, tantalum, electrolytic (nonsolid electrolyte), fixed capacitors - Continued.

MIL-STD-198E

STANDARD CAPACITURS STYLE CLR79 (MIL-C-39006/22) - Continued

	-E-						_	_	_	_	_	-	-	_	_	_	_	_	_	_	_	_	_	_	-	- -					-	_		-							
	100.0)2			6666	36	0/01	0/02	0,03	0704	0.00	000	1 0707	0708	0709	07.10	1170	0712	0713	0714	0715	0716	1 0717	0718	0719	02.00	0721	22/0	0/23	1 0725	0726	1 0727	0728	0729	3	0731	0/32	0/33	0/34	0736	0737	0738
439006/22- ivel for	R(0.01)		0470	6.6	3 5	5	7840	0483	0484	0485	0486	0487	0488	0489	0490	0491	0492	0493	0494	0495	9640	0497	98	0499	0200	0501	2050	500	0505	020	0507	0508	0509	27.5	0511	2100	5150	\$1 CO	0515	0517	0518
Failure rate level for	(*/1,000 hr)		1 0360	6520	250	1020	7070	070	0264	0265	0566	0267	0268	0569	0270	0271	0272	0273	0274	0275	1 9/20	0277	0278	0279	0580	0281	7870	0203	0285	0286	0287	U288	0589	3	0291	2630	5670	2000	9620	0297	0238
Fatl	M(1.0)		0000	0000	2	100	2 2 2	2	4400	5	900	0047	0048	0049	0020	0021	0052	0053	0054	0055	0056	0027	0058	6900	0900	1900	2000	0064	900	9900	2900	8900	6900	000	1,000	7,00	00/3	1200	9200	2200	0078
Case	size			1 7	:=	:		_		_	-	T2	_	_		_	-	T3	_	_	_	 1	- ;		4 ;	 : -				- -	1 21	_					2-			-	-
2/ Max 85°c	40 kHz ripple current	SHL VIES	2330	2330	2	200	200	070	855	622	855	1200	1200	1200	1300	1300	1300	02/1	1720	1720	1800	0081	1900	7360	7360	8,5	8 5	850	820	820	1150	31	1150	0001	15.50 15.51	267	1480	200	1200	1500	1500
	+125°C	ره.	+25	+25	+12	121	1 :	71.	91.					_			_			→	- 750	92	\$;	621	52.	177	7.7	- 191	_	_	 -		- ç	0 00			1 91+	-191+	-50	- 20	-02+
Capacitance change at	J_\$8+		+25	+25	+10.5	+10.5	10.5		*			_				_			_	 ►.;	5./1+	17.5	6./1.	67.	101+	+10.5	+10.5	+14	_	_	_		+17.5	17.5	+17.5	+14	14	+14	+17.5	+17.5	+17.5
3		,•ı	 ₩	∓	-32	-32	-32	3,5	 ? 								 - :	 	 	 	 \$ 3	 * -	 •	 8 a	8 5	77	-24	-28	_ _ _	_ 	<u>-</u> -					-32	-35	-35	-26	1 -56 1	99
	Impedance (max)	Ohms	22	22	175	17.5	175	2 5	86	200	9	3 5	3 3	3 5	⊋ €	⊋ \$	⊋ ⊱	₹ 8	3 8	3 :	6 2	C 3	67	5.5	155	155	155	95	8	S :	75	67	r 05	3 5	3 3	35	35	35	æ	8	æ
Surge	(+85°C)	 	9.5	9.2	11.5	-	_	_		_														•	17.2	- ! :		_	_					_		_	_	_	_	- :	 •
Derated	(125°C)	왕	5	25		_	_	_														_	_	-•	• 0	: -	_	_						-	_	_	_	_	_	 	-
pation	(max)	.e l	3	9	9	9	9	13	3 6	2 =	12	5	12		3.5	3 6	ç, ç,	3 8	3 %	8 8	4	44	S	3 6	3 40	· co	2	01	01	2:	7.7	77	25	_		_	_	- -	43	E 4	
Kage ()	1125°C	<u> </u>	- 19	91 –	- 2	<u> </u>		_		•	• •				. ~			25	25	2 4	 2 -		_	·	7	· –	-	_	 	 • •		•		7		- 01	- 01 -	- 20	9:	9:	 4
Cakage (max)	3 67	<u> </u>	4	4	-	_	_	_	_	_						•	• ~					•	• 4	· •		_								_	-	~	_			_	• · ·
Cap.	ance	. 9	* 20	*10	02 2 0	* 10	¥	¥20	91#	£	, Ç	2°+	3 47	*2	2 #	£	? Ç	07#	4	£\$.	21,	ţ.	‡	¥10	£20	* 10	ጜ	2; *	01,	ខ្) -	ţ.	, Q;	* 10	ŧ	4 50	* 10	ŧ	2	2 •	ç
œ.		넯	820	920	8	-	-	47	47	47	901	86	001	8	88	2	35	25	250	36	366	380	250	220	12	15	15	E 3	25	36	2 8	22	83	23	120	170	170	2	270	0/2	2
Rated	(3.58)	일	∞	- ∶	_ =	_	_		_		_	_	_	_	_	_	_	_		_	_	_	_	-	12.	_			_			_	_	_	_	_	_	_			

See footnotes at end of figure.

FIGURE 702-9. Established reliability, tantalum, electrolytic (nonsolid electrolyte), fixed capacitors - Continued.

MI L-STD-198E

STANDARD CAPACITORS STYLE CLR79 (MIL-C-39006/22) - Continued

																				_			_						_		
	1 S(0.001)		0739	3.5	0742	0743	0744	0/45	0747	0748	0749	0751	0752	0753	0/54	0756	1970	0758	64/20	1920	0762	0764	1 0765	9920	0,68	0769	5,70	0772	0773	0774	
M39006/22- evel for	R(0.01)		0519	G 12.50	1522	0523	0524	0525	0527	0528	0529	0531	0532	0533	0534	0536	0537	0538	0539	0541	0542	954	0545	0546	2 8 7 85	0549	25	0552	0553	0654	
Part No. M39005/22 Failure rate level for	(\$/1,000 hr) P(0.1) R(0.		0299	0000	030	0303	0304	0302	030	0308	0309	0310	0312	0313	0314	0316	0317	0318	0319	0351	1 0322	0324	0325	1 0326	0328	0329	35	0332	0333	0334	3
Failu	M(1.0)		6200	2800	1000		0084	0082	008	8800	6800	260	0005	0003	9009	9600	2600	8600	660	0101	0102	5010	0105	0100	010	0100	0110	0112	0113	0114	
Case	size		7	4:	₫ -	_			> 21	_			-	<u></u>	_			>	* :	: = 	_		_	- i	<u> </u>	_		-	E	 E	2
2/ Max 85°c	40 kHz ripple current	MA THE	2300	2300	715	715	0038	008	1130	1130	1130	1215	1215	1420	1420	1450	1460	1460	1970	049	640	3 5	39	099	1025	1025	1195	1195	1450	1450	0041
	+125°C	 -e1	+25	425	? 9	j. Ž	+12	+12	+15	· –			_					-	425	123	: —		_			>	+15		+12	+12	77.
Capacitance change at	J _* 58+	-91	+55	+75	20 9	b æ	+10.5	+10.5	+10.5	- -								→	425	ç, ç	φ.	¥ 7	? -	_		->	+13	+13	+10.5	+10.5	10.5
ت		اهر	 육 	₹	-19	917	22	02-	2, 2,	: —	_		->	-35	-35	 29	 • •	2	2,7	2,4	9	97.5	\$?	2	*		_	-	-58	2 23	87-
	Impedance (max)	Ohms	23	23	250	220	140	140	140 70	2.2	0.	S	8 æ	88	38	88 8	32	32	54	275	275	275	175	175	65 5.5	65	9	83	3 3	\$	₹
Surge		/dc	17.2	17.2	28.8															→ 38 ×	; -										>
Derated	voltage (125°C)		 91 	100	15															-	 							_			>
Dissi- pation	factor (max)	.41	9	40	4	4 4	• ~	. ~	~ :	11	:=	1 21	22	25	52	52	8 8 7 8 7 8	88	35	32	• •	4 !			215	12	15	15	512	: 1	17
k age	185°C &	¥.	- 24	1 24	7			_			-	9 -	25	2 °		9	8 2	9 2	88	78 	-	_		-			∞	œ (æ <u>c</u>	17	- 15
DC Teakage	28.c	Y]	•	9	- -							_	<u>-</u> -	~	. – - –	_			. ~		 	_					_	-	• •	7 7	2
Cap.	toler-	uel	- C	*10 *10	02#	유 유 구	. £	101#	 Æ 8	07#	÷	02 #	2; -		*10	*	22	2 4	, Q	01#	2 2	Æ.	27		Q2 5	 	¥20	±10		2 2 2	\$
Cap.		4	540	540	2	22	3 €	22	22	R &	3 28	100	8 2	35	8 8	13	- 8	3 5	325	96°	xo cc	œ	51 2	12	\$?	. æ	8 :	3 5	38	100
IRated	voltage (85°C)	Adc		12	25															- 8	R -								_		>

See footnotes at end of figure.

FIGURE 702-9. Established reliability, tantalum, electrolytic (nonsolid electrolyte), fixed capacitors - Continued.

MI L-STD-198E

STANDARU CAPACITURS STYLE CLR79 (MIL-C-39U06/22) - Continued

See footnotes at end of figure.

FIGURE 702-9. Established reliability, tantalum, electrolytic (nonsolid electrolyte), fixed capacitors - Continued.

MI L-STD-198E

STANDARD CAPACITORS STYLE CLR79 (MIL-C-39006/22) - Continued

 -		_		_	_	_	_	_					_	_	_	_	_	_	_	_							. <u>-</u>	_		<u>-</u> -					_						_	_
	1100 013	1 3(0.001)		0816	0817	1 0818	0819	0850	083	0822	1 0823	0824	1 0825	0826	0827	1 0828	1 0829	0830	0831	1 0832	0833	0834	0835	0836	0838	0839	0840	0841	0842	250	0844	0846	0847	0848	0849	0880	1680	1 0852	252	0855	9580	_
re rate level for	hr)	K(0.01)		9690	0597	9650 0598	0599	0090	1090	000	0000	0000	0605	9090	2090	8090	6090	0610	0611	0612	0613	0614	0615	0616	0618	6190	0620	0621	0622	5790	0624	0626	0,627	0628	0629	0630	0631	0632	5590	0635	0636	
Failure rate level	(*/1,000 hr)	P(0.1)		0376	0377	0378	0379	0380	0381	2000	0383	0384	0385	0386	0387	0388	0389	0330	0391	0392	0393	0394	0395	0396	0397	0330	0400	0401	0402	0403	90404	9000	040	0408	040	0410	113	0412	33	111	0416	
Fail		M(1.0)		0156	0157	0158	0159	0160	1910	2010	0163	1164	0165	0166	0167	0168	0169	0170	0171	0172	0173	0174	0175	0176	2710	0170	0180	0181	0182	0183	0184	0105	0180	0188	0189	0190	1610	0192	0193	0194	0196	
Case	size				13	21	14	T4	 	 				•	T2	_	_	_	_	•	 -:2 	_	_		_,	→ †	7 4	=======================================	_	_			- 2	<u>-</u> -	_	_	_	- ;	_ · _ ·	_		
ຊະ ສະ ສະ	40 KHZ	ripple current	SILL AIR	1365	1365	1365	1850	1850	1030	20.7	525 525	015	010	610	058	0680	068	1000	1000	1000	1250	1250	1250	1335	1335	1335	1850	505	505	505	265	505	203	835 835	835	965	965	965	0471	1240	1335	;
	_	+125°C	ا ه.	+12	+15	+15	+30	+50	07. #		 P‡					_	-	+	+15	+15	+15	+12	+12	+15	415	+15	07+	 2 2	_	_	-						_				•	•
change at	-	ا 1 1 1 1 1 1 1	اه.	+10.5	+10.5	+10.5	+50	3 2	07.		₽.#	. 4	p –			_	-	+10 5		_			_			- 0€+	202	24			_			> ¥	, -		_	_			-	
		1 -55° 1	.81	-32	1 -37	-32	4	? \$	7	07-	91-	01-	7-17	7 2	91-	91	91-	77	2-74	-24	-16	-16	-16	-28	-58	87-		-16	- -		_						_		_		-20	}
	Impedance	(max)	Ohms	20	ç	3 %	3 ~	0.7	97	000	020	020	000	200	150	221	05.	8	S 5	8 8	S 9	} -				►?	600	5.5	950	950	200	000	200	105 200	86	001	100	100	3	0 8 9	8 2	2
	voltage		Vdc I	0.69	-	_		•	→ 3	7.08	_	_	_							_		_					•	115	-	_							_		_			-
Derated	voltage	(125°C)) Vqc	7	· -				- :	ر م														_				9	; -	_	_	_			_		_	_	_		-•	-
Dation	factor	(max)	۱۹,	13	1 2	2 -	51	0.	- -	2.5	2.5	2.5		3.5	3.5		۷ م	۽ م	91	25	90	n 0"	. 0	11	11	11	12	7 6	2 2	5	8	3	ლი : 	رم د 	n u	n œ	. ~	· so	7.5	7.5	ر: م د: م	0.0
(max)	85.0 8	1125°C	¥1		2 4	071	26	75	35	7					> u	n .		n ç	9 5	2.	120	12	12	17	1 17	17	36	ء م	-		_	_	>	4.	+ •	+ o	· •	6	12	12	12	7
DC leak	25°C) } 	Y ₁	^	10	,	y 0	ю « 	20	-	_	_	_			_					- -	7 -		_	_	-	o c	 	- 		-	_						-	1 2	_	_•	-
Cab.	toler-	ance	ا هد	+30	77	24		07.	*10	* 50	+10 +10	- 4	±20	• • 10	 t	07#	01#	£ 5	0Z# 1	07.		101#	 3 4	1 *20	#10	_ ጜ	#50 1	100	**	-	+50	+10	 ¥	±20 1	01#		-	 \$\$	+50	1 *10		07=
Cab.			닠	0,4	3 9	90	86.	3	140	3.5	3.5	3.5	8.9	9.9	8.5	51:	£ :	15	33	33	~ -	⊋ €		29	99	- 26	9: 	21.	2.5	2.5	4.7	4.7	4.7	= :	: :		22	1 22	ළ -	e -	ន ះ	-4
1/ Rated	lvoltane	(82,0)	Adc	- G	3 -				-	1 75	_	_														_	-	• •	2 - 		-	_	_				_		_		_•	<u> </u>

See footnotes at end of figure.

STANDARD CAPACITORS STYLE CLR79 (MIL-C-39006/22) - Continued

	1 5(0.001)	0857 0858 0858 0859 0859 0859 0859 0860 0861 0862 0864 0865 08667 0868 0867 0872 0873 0	0878 0879 0880
Part No. M39006/22-	00 hr) R(0.01)	0637 0637 0640 0640 0641 0643 0644 0644 0648 0648 0652 0653 0654 0656	6590 8590
Part No. M3900	(1,000 hr P(0.1) R(0	0417 0418 0420 0420 0422 0424 0424 0426 0426 0426	04439
Fai	M(1.0)	0197 0198 0199 0200 0200 0200 0200 0200 0200 0200	0218 0220
Case	size	22 — 23 — 24 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	44
2/ Max 85°C	40 kHz ripple	1335 1335 1335 1335 1335 1335 1335 1335	1800
	+125°C	~1 8 8 1 1 2 2 2 2 3 →	+15 +15
Capacitance change at	ວ _• 58+	.41 8 8 4 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	750 450
	J_95-		-25
	(Reax)	240 240 240 240 240 129 129 129 129 129 129 129 129 129	32
Surge	(2.58+)	115 Vdc	•
Derated	(125°C)	S → %	→
Dissi- pation factor	(max)	, , , , , , , , , , , , , , , , , , ,	6.5
185°C 3	1125°C	1133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6
DC leakage (max) 25°C 85°		<u> </u>	22
Cap. toler-	ance	**************************************	*10
Cap.	_ 		99
1/ Rated voltage	(82 C)	17.5	>

1/ Reverse voltage rating at 85°C is 3 Vdc, and at 125°C it is 2 Vdc. $\overline{2}/$ For ripple current limits at various temperatures, voltages, and frequencies, see table 802-11.

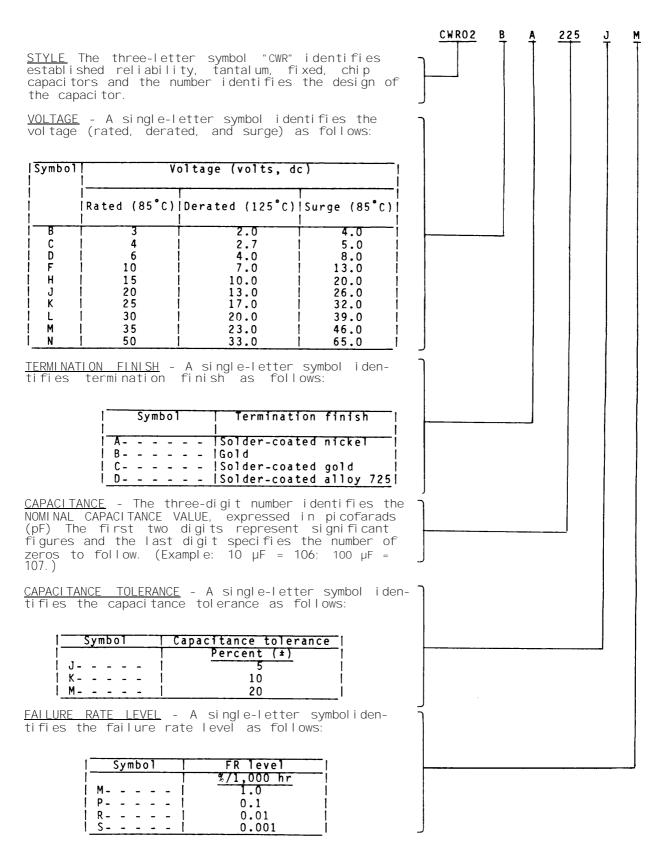
FIGURE 702-9. Established reliability, tantalum, electrolytic (nonsolid electrolyte), fixed capacitors - Continued.

STANDARD CAPACITORS STYLE CLR79 (MIL-C-39006/22) - Continued

											-				_		:			201	100 147		_
Frequency of Frequency of	15	120 Hz			800	800 Hz			-	l kHz			10 kHz	z		4	40 kHz				3117		
_				_				-				-	-	-	-	- -	-	-				- J. 301	1 25°C
ر ا<55°د	85°C	1 1105°C	 125°C	ງ <52	ງ 88	ງ 105 ເ	125°C	J 555	າ 2.58	105°C 1	1 1 1 2 8 2 1	125°C 105°C 125°C 105°C 105°C 125°C 125°C 125°C 85°C 105°C 125°C 25°C 85°C 105°C 125°C 25°C 85°C 105°C 125°C 25°C 85°C 105°C 125°C 25°C 85°C 85°C 105°C 125°C 25°C 85°C 105°C 125°C 25°C 25°C 85°C 105°C 125°C 25°C	35°C 1	05°C 1.	C - C - C - C - C - C - C - C - C -	ر55 د ا ا	85 C 11(2 5 6	7 62	6.	2 6	3 501	,
'-	_	-	_	_	-	_			+	+	T	-	-						 ¦		- 69		
 -			;	. 71	.43	:	:	1 .72	.45	 :	 :	 88.		- - !	 :		 3	 ¦		. —	_		
								7.2			;		1 19	- -		1.0	. 77				- 58.	;	 :
9.	.46	<u>-</u> -	:	.71		:	<u> </u>		 										 ;	1.1	96.	.65	:
	2	- 35		17.	79.	1.42	;	1.72	1 .62	.42								- }	_	_			_
3 	:								- 02	.52		88	. 85									 ≅	:
9. 	. 58				60.	7:-			_								- 0	. 1 77.	45		_	.85	.50
	· -	.46	1.27	1.71		. 55	1 .32	1.72	.72	- 25							-	-	-	-	-		
	09	.60 .46 .60 .52 .60 .58 .60 .58	.52	.52	.52 .3558 .4460 .46 .27	.46 .71 .52 .35 .71 .58 .44 .71 .60 .46 .27 .71	.4671 .55 .52 .3571 .62 .58 .4471 .69 .60 .46 .27 .71 .71	.46 .71 .55 .52 .42 .52 .45	.4671 .5572727272	.46 .71 .55 .72 .55	.46 .71 .55 .72 .55 .72 .55 .52 .55 .52 .55	.46 .71 .55 .72 .55 .72 .55 .72 .55 .72 .55 .72 .55 .72 .55 .72 .55 .72 .55 .75 .70 .52 .75 .70 .52 .75 .70 .55 .75 .70 .55 .75	.46 .71 .55 .72 .55 .88 .45 .72 .55 .88 .44 .71 .69 .52 .72 .72 .72 .55 .88 .44 .71 .69 .55 .72 .72 .75 .55 .88 .48 .71 .71 .55 .32 .72 .75 .55 .32 .88	.4671 .5572 .5588 .6788 .6788 .7672 .3588 .765271 .62 .4272 .70 .5288 .7688 .7688 .4471 .69 .5272 .70 .5288 .85 .86 .86 .86 .86 .86 .86 .86 .86 .86 .86	.4671 .5572 .5588 .6/52 .3571 .62 .4272 .62 .4288 .76 .52 .58 .4471 .69 .5272 .70 .5288 .85 .64 .60 .46 .27 .71 .71 .55 .32 .32 .32 .88 .88 .68	.4671 .5572 .5588 .6788 .6788 .76 .5588 .76 .5588 .76 .5588 .76 .5588 .76 .5588 .76 .5588 .76 .5588 .76 .5588 .78 .6472 .70 .5288 .85 .6480 .4080 .70 .70 .5288 .85 .68 .40	.46 77 55 72 55 88 .67 1.0 .52 .35 71 .62 .42 72 .62 .42 .88 .76 .52 1.0 .58 .44 .71 .69 .52 .72 .70 .52 .88 .85 .64 1.0 .60 .46 .27 .71 .71 .55 .32 .32 .72 .55 .32 .88 .88 .68 .40 1.0	.4671 .5572 .5588 .5/10 .87 .5588 .76 .5210 .87 .5588 .76 .5210 .87 .58 .4471 .69 .5272 .70 .5288 .85 .64 1.0 .97 .50 .46 .27 .71 .71 .55 .32 .72 .72 .75 .55 .32 .88 .88 .68 .68 .68 .40 1.0 1.0	.4671 .5572 .5588 .6/58 .5/88 .5/55 .5688 .5/58 .5/5 .5/58 .5/5/ .5/ .5/5/ .5/ .5/5/ .5/ .5/88 .5/ .5/5/ .5/ .5/ .5/5/ .5/ .5/88 .8/ .88 .8/ .6/1.0 .97 .73 .73 .5/ .5/88 .8/ .8/ .6/1.0 .9/ .7/ .7/ .7/ .5/ .5/ .3/ .3/ .3/ .3/ .3/ .3/ .3/ .3/ .3/ .3	.4671 .5572 .5588 .5688 .5689598950	.4671 .5572 .5588 .5688 .56	.4671 .5572 .5588 .6/98 .76 .5296 .4471 .69 .5272 .72 .72 .72 .72 .72 .72 .72 .72 .72	.4671 .5572 .5588 .5698 .76 .52969796

Downloaded from http://www.everyspec.com

SECTION 703


CAPACITORS, CHIP, FIXED, TANTALUM, ESTABLISHED RELIABILITY

STYLES CWRO2, CWRO3, CWRO4, AND CWRO6

(APPLICABLE SPECIFICATION: MIL-C-55365)

- 1. SCOPE. This specification covers established reliability, tantalum, fixed, chip capacitors. Capacitors covered by this section have failure rate levels ranging from 1.0 percent to 0. 001 percent per 1,000 hours. These failure rate levels are established at a 60-percent confidence level and are based on full rated voltage at +85°C.
 - 2. APPLICATION INFORMATION.
- 2.1 <u>Use.</u> These capacitors are primarily intended for use in thick and thin film hybrid circuits for filter, bypass, coupling, and other applications where the alternating current (at) component is small compared to the direct current (de) rated voltage and where supplemental moisture protection is available.
- 2.2 <u>Construction.</u> A porous tantalum slab serves as the anide. The surfaces of the anode are electrochemically converted to an oxide of tantalum which serves as the dielectric. These surfaces are coated with an oxide semiconductor which is the working electrolyte in solid form.
- 2.3 $\underline{\text{Voltage rating.}}$ These capacitors have a dc voltage rating over a range of 3 to 50 volts at 85°C.
- 2.4 <u>Operating temperature range.</u> These capacitors are suitable for operation over a temperature range of -55° to $+125^{\circ}$ C.
- 2.5 $\underline{\text{Voltage derating.}}$ The derated voltage at +125°C is approximately 55 percent of the full rated voltage.
- 2.6 <u>Mounting.</u> These capacitors are designed for mounting by reflow solder or conductive epoxy on circuit substrates.
 - 3. ITEM IDENTIFICATION.
- 3.1 <u>Type designation.</u> The type designation is used for describing the capacitors as shown in the type designation example on following page.
- 3.2 <u>Standard Capacitors.</u> The standard capacitors available in this section are shown in figure 703-1.

703 (MI L-C-55365)

TYPE DESIGNATION EXAMPLE.

STYLE CWR02

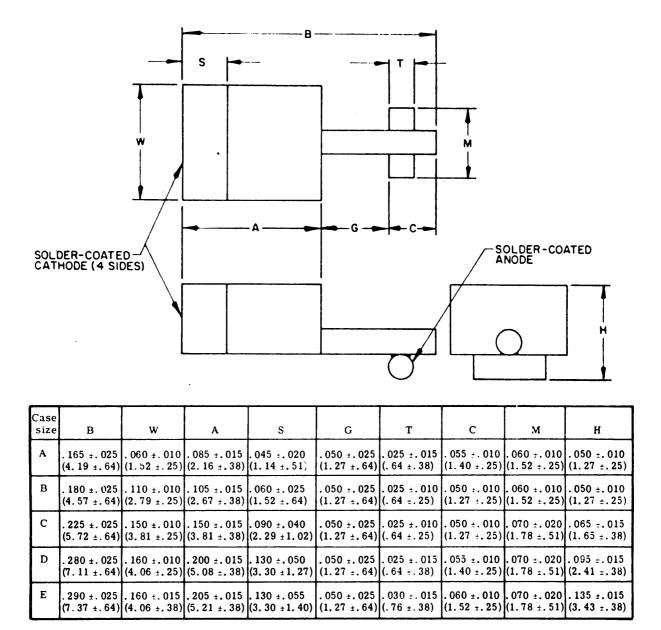


FIGURE 703-1. <u>Established reliability</u>, <u>tantalum</u>, <u>fixed</u>, <u>ship capacitors</u> (encapsulated and unencapsulated).

703 (MI L-C-55365)

STANDARD CAPACITORS

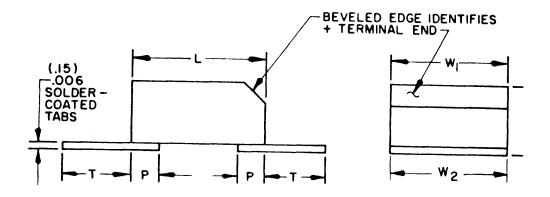
STYLE CWR02 (MI L-C-5536/1)

OPERATI NG TEMPERATURE RANGE -55° TO +125° -- TERMI NATI ON FI NI SH A -- CAPACI TANCE TOLERANCE ± 5 , ± 10 , OR ± 20 PERCENT

Type designation	DC rated voltage	Cap.	D C	Teakage	(max)	Dissipa	tion fac	tor (max)	Case
l	(85°C)	(nom)	+25°C	 +85°C	+125°C	+25°C	+85°C +125°C	-55°C	size
	Volts	! ! μ F	<u>μ</u> Α	 μ A	μ A	1 %	9,	<u>%</u>	
 CWRO2BA225	3	1 2 2	1.0	10	12.5	1	1	1	1.
CWR02BA475	i 3	1 2.2	1.0	1 10	12.5	4 4	6 6	1 8 1 8	I A
CWR02BA156	3	15.0	1.0	10	12.5	i 6	i 8	10	İĉ
CWR02BA476	3	1 47.0	2.8	28	35	6	8	10	İĎ
CWR02CA335	1 4	3.3	.5	5	6.3	1 6	1 8	1 10	Î A
CWR02CA475	4	4.7	.5	5	6.3	! 6	! 8	10	1 A
CWR02CA685	4	6.8	1.0	10	12.5	1 6	. 8	10	j B
CWR02CA106	. 4	10.0	1.0	10	12.5	6	! 9	12	B
CWR02CA156	4	15.0	1.0	10	12.5	6	9	12	İC
CWRO2CA336	! 4 ! 4	33.0 68.0	2.0 3.0	20 30	25 37.5	6	9	12	i c
CWR02CA486	1 4	100.0	3.0	i 30	37.5	6 6	9 9	1 12 1 12	D E
CWR02DA155	6	1.5	.5	5	6.3	4	1 6	1 8	Ä
CWR02DA225	6	2.2	.5	5	6.3	6	i 8	10	İÂ
CWR02DA335	6	3.3	1.0	10	12.5	1 4	j 6	8	İÄ
CWR02DA475	6	4.7	1.0	1 10	12.5	6	1 8	10	l B
CWRO2DA685	6	6.8	1.0	10	12.5	1 6	l 8	10	B
CWR02DA106	6	10.0	1.0	10	12.5	1 6	9	12	l C
CWR02DA226	6	22.0	2.0	20	25	1 6	9	12	C
CWR02DA336	6	33.0	3.0	30	37.5	1 6	8	10	l D
CWR02DA476	6	1 47.0	3.0	30	37.5	6	9	12	i D
CWR02DA686	6	68.0	3.0	30	37.5	6 4	9	12	E
CWRO2FA105 CWRO2FA155	10 10	1.0 1.5	.5 .5	5 5	6.3 6.3	1 6	8	8 10	A A
CWR02FA133 CWR02FA225	10	2.2	1.0	10	12.5	1 4	6	8	ÎÂ
CWR02FA335	10	3.3	1.0	10	12.5	6	8	10	l B
CWR02FA475	10	4.7	1.0	10	12.5	6	8	10	İB
CWR02FA685	10	6.8	1.0	10	12.5	6	8	10	l C
CWR02FA156	10	15.0	2.0	20	25	1 6	9	12	į c
CWR02FA206	10	20.0	3.0	30	37.5	6	9	12	l D
CWR02FA226	10	22.0	3.0	30 !	37.5	6	8	10	! D
CWRO2FA336 CWRO2FA476	10 10	33.0 47.0	3.0 3.0	30 30	37.5 37.5	6 6	9	12 10	l D l E
CWRO2FA476 CWRO2HA684	15	.68	.5	5 1	6.3	1 4 !	6	8	l A
CWR02HA004==	15	1.0	.5	5	6.3	4	6	8	l â
CWR02HA155	15	1.5	.5	5 1	6.3	6	8 1	10	i â
CWR02HA225	15	2.2	1.0	10 i	12.5	i š i	8	10	B
CWR02HA335	15	3.3	1.0	10	12.5	j ē j	9	12	İB
CWR02HA475	15	4.7	1.0	10	12.5	6	8	10	į c
CWR02HA106	15	10.0	2.0	20	25	6 !	9 !	12	! C
CWR02HA226	15	22.0	3.0	30	37.5	6	9 !	12	į D
CWR02HA336	15	33.0	3.0	30	37.5	6	9	12	ΙE
CWR02JA334	20	.33		5	6.3	4	6 1	8	! A
CWRO2JA474	20 20	.47 .68	•5 •5	5 5	6.3 6.3	4	6 ! 6 i	8 8	I A
CWR02JA004 CWR02JA105	20	1.0	1.0	10	12.5	4 1	6 1	8	I A
CWR02JA155	20	1.5	1.0	10	12.5	6	8	10	İB
CWR02JA225	20	2.2	1.0	10	12.5	4 1	6	8	İB
CWR02JA335	20	3.3	1.0	10	12.5	6	8	10	İĊ
				<u> </u>		<u> </u>			1

FIGURE 703-1. <u>Established reliability, tantalum, fixed, ship capacitors</u> (encapsulated and unencapsulated) - Continued.

STANDARD CAPACITORS


STYLE CWRO2 (MIL-C-55365/1) - Continued.

OPERATING TEMPERATURE RANGE -55° TO +125°C -- TERMINATION FINISH A -- CAPACITANCE TOLERANCE ±5, ±10, OR ±20 PERCENT

Type	DC rated		DC	eakage	(max)	Dissipa	tion fact	or (max)	T
designation	voltage	Cap.			,	j			Casel
I designation	(85°C)	(nom)		T		i	+85°C +125°C		sizel
	1		+25°C	+85°C	+125°C	+25°C	+125°C	-55°C	<u> </u>
	1	!		[!			!!
1	Volts	μF !	<u>μ A</u>	<u>μΑ</u>	<u>μ A</u>	! %	<u>%</u>	<u>%</u>	!!!
1						l			! !
CWRO2JA475	20	4.7	1.9	19	24	4	6	8	! C !
CWR02JA685	20	6.3	2.0	20	25	6	8	10	C
CWRO2JA106	1 20	10.0	3.0	30	37.5	6	9	12	D
CWRO2JA156	20	15.0	3.0	30	37.5	6	9	12	D
CWRO2JA226	1 20	22.0	3.0	30	37.5] 6	9	12	! E !
CWR02KA474	25	.47		5	6.3	! 4	6	8	A
CWR02KA684	25	.68		5	6.3	1 4	6	8	! A
CWR02KA105	25	1.0	1.0	10	12.5	4 6	6 8	8	l B i
CWR02KA155	25	1.5	1.0	10	12.5		•	10	
CWR02KA225	1 25	2.2	1.0	10	12.5	6 6	8 8	10	1 C 1
CWR02KA335	25	3.3	2.0	20	25		•	10	
CWRO2KA475	25	4.7	2.0	20	25	6	8	10	1 C
CWR02KA685	1 25	6.8	3.0	30	37.5	1 6	9	12	D
CWR02KA106	25	10.0	3.0] 30	37.5	6	9	12	E
CWRO2LA474	1 30	.47		10	12.5	4	6	8	B
CWRO2LA684	30	.68		10	12.5	! 4	6	8	B
CWRO2LA155] 30	1.5	1.0	10	12.5	6	8	10	i c
CWR02LA335] 30	3.3	2.0	20	25	6	8	10	I D
CWRO2LA685	30	6.8	3.0	30	37.5	6	1 8	10	! E
! CWRO2MA104	35	.10		5	6.3	1 4	6	8	! A
CWRO2MA224	35	.22		5	6.3	1 4	6	8	I A
CWRO2MA334	35	.33		5	6.3	1 4	6	8	i A
CWRO2MA474	35	.47		10	12.5	1 4	6	8	i B
CWRO2MA684	35	.68		10	12.5	4	6	8	i B
CWRO2MA105	35	1.0	1.0	1 10	12.5	1 4	6	8	! C
CWRO2MA155	35	1.5	1.1	11	1 14	4	1 6	8	1 C
CWRO2MA225	35	2.2	2.0	20	25	6	1 8	10	1 C
CWRO2MA335	35	3.3	2.3	23	29	1 4 1 6	1 6 1 8	8	D D
CWRO2MA475	35	4.7	3.0	30	37.5	1 6 1 6	8 8	l 10 l 10	l D
CWR02MA685	35	6.8	3.0	30	37.5		1 8 1 6		
CWR02NA104	[50	.10		l 5 l 5	6.3 6.3	4 4	1 6	8 8	A A
CWR02NA154	1 50	.15	.5	1 10	1 12.5	1 4	6	1 8 1 8	I A
CWRO2NA224	50	.22		•	1 12.5	4	1 6	1 8	I A
CWRO2NA334	50	.33		10	12.5	1 4	l 6	1 8 1 8	l B
CWR02NA474	50	.47		10 2 0	1 25	4	1 6	1 8	l C
CWR02NA684	50	1 .68	1 2.0	1 20	25	1 4	1 6	1 8	ic
CWR02NA105	50	1 1.0		1 20	1 25	1 6	1 8	1 10	1 C
CWR02NA155	1 50	1.5	2.0		37.5	1 6	1 8	10	1 0
CWR02NA225	50	2.2	3.0	30		1 6	1 8	10	l D
CWRO2NA335	50	3.3	3.0	30 30	37.5 37.5	1 6	1 8 1 8	1 10	! E
CWRO2NA475	50	4.7	3.0	1 30 1	1 3/.5	1 0		1 10 1	; E
1	<u> </u>	<u> </u>	<u> </u>	'	!	<u> </u>	!	<u> </u>	

FIGURE 703-1. <u>Established reliability, tantalum, fixed, chip capacitors</u> (encapsulated and unencapsulated) - Continued.

STYLE CWRO3 (ENCAPSULATED)

STYLE CWRO4

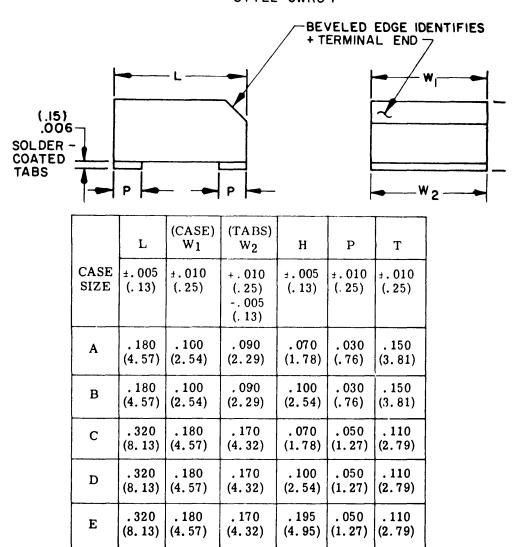


FIGURE 703-1. <u>Established reliability, tantalum, fixed, ship capacitors</u> (encapsulated and unencapsulated) - Continued.

STANDARD CAPACITORS

STYLE CWRO1 AND CWRO4 (MIL-C-55365/2)

OPERATI NG TEMPERATURE RANGE -55° TO +125° -- TERMI NATI ON FI NSH D -- CAPACI TANCE TOLERANCE \pm , \pm 10, OR \pm 20 PERCENT

Type	DC rated	C	DC	leakage	(max)	Dissipa	tion fac	tor (max)	Casel
designation	voltage (85°C)	Cap. (nom)					+85°C +125°C	-5.0	_ case _ size
	 	[+25°C	+85°C	+125°C	+25°C	+125 C	_55°C	 ¦
	 Volts	<u>μ</u> Ε	<u>μ</u> Α	μΑ	<u>μA</u>	<u> </u>	<u> </u>	<u>%</u>	ii
	1	i —	<u> </u>	i ===		i –	l	1	i i
CWR0-BD185	3	1.8	1.0	1 10	15	1 4	1 6	1 8	A
CWR0-BD225] 3	2.2	1.0	10	15	! 4	6	8	A
CWRO-BD395] 3	3.9	1.0	1 10	15	4 4	6	! 8 ! 8	B
CWRO-BD475 CWRO-BD126] 3] 3	4.7 12.0	1.0	! 10 ! 10	15 15	1 6	6 8	1 10	
CWRO-BD126	3	15.0	1.0	10	1 15	6	i 8	10	iči
CWR0-BD396	j 3	39.0	2.3	1 23	35	16	į 8	10	i D i
CWR0-BD476	3	47.0	2.8	28	42	6	. 8	10	D
CWR0-BD826	3	82.0	4.9	49	74	! 8	10	12	E
CWR0-BD107] 3	100.0	6.0	60	90	! 8 ! 4	10	1 12	E
CWRO-DD125 CWRO-DD155	6 6	1.2 1.5	1.0	10 10	15 15	1 4 I 4	6 6	l 8 l 8	A
CWRO-DD155	1 6	1 2.7	1.0	1 10 1 10	15	1 4	1 6	1 8 1 8	I B I
CWR0-DD275	6	3.3	1.0	1 10	15	1 4	6	1 8	İBİ
CWR0-DD825	6	8.2	1.0	i īŏ	15	1 6	i 8	10	iči
CWR0-DD106	6	10.0	1.2	12	18	6	8	10	C
CWR0-DD276	6	27.0	3.2	32	48	6	8	10	D
CWRO-DD336	6	33.0	4.0	40	60	1 6 1 8	8	10	
CWR0-DD566 CWR0-DD686	6 6	56.0 68.0	6.7 8.2	67 82	101 123	1 8	10 10	12 12	E
CWR0-DD888	10	0.82		10	15	4	6	8	Ä
CWR0-FD105	10	1.0	1.0	10	15	4	6	8	i à i
CWR0-FD155	10	1.5	1.0	10	15	4	1 6	8	I B I
CWR0-FD185	10	1.8	1.0	10	15	4	6	8	B
CWR0-FD225	10	2.2	1.0	10	15	4	6	8	B
CWR0-FD565 CWR0-FD685	10 10	5.6 6.8	1.1	11	17 21	4 6	l 6 l 8	8 10	
CWR0-FD126	10	1 12.0	2.4	24	36	6	8	10	i d i
CWR0-FD156	10	15.0	3.0	30	45	6	i 8	10	i Ď i
CWR0-FD186	10	18.0	3.6	36	54	6	8	10	j D j
CWR0-FD226	10	22.0	4.4	44	66	6	8	10	D
CWR0-FD336	10	33.0	6.6	66	99	6	8	10	E
CWR0-FD396 CWR0-FD476	l 10 l 10	39.0 47.0	7.8 9.4	78 94	117 141	6 1 6	8 8	10 10	E
CWR0-PD476	15	0.561		10	141	4	6	10	IAI
CWR0-HD684	15	0.68		10	15	4	6	8	i â i
CWR0-HD125	15	1.2		10	15	4	6	8	İBİ
CWR0-HD395	15	3.9	1.2	12	18	4	6	8	1 C
CWR0-HD475	15	4.7	1.4	14	21	4	6	8	C
CWR0-HD825	15	8.2	2.5	25	38	6	8	10	
CWR0-HD106 CWR0-HD276	15 15	10.0 27.0	3.0 8.1	30 81	45 122	6 6	8 8	10 10	D
CWRO-HD276	20	0.27		10	15	4	6	1 8	I A I
CWRO-JD334	20	0.331		10	15	4	6	8	i â i
CWR0-JD394	20	0.391	1.0	10	15	4	l 6	8	I A I
CWR0-JD474	20	0.47		10	15	4	6	8	A
CWR0-JD564	20	0.56		10	15	4	6	8	B
CWR0-JD684	20	0.68		10	15	4	6	8	B
CWRO-JD824	20	0.82	1.0	10	15	4	6	8	B
	l			l		·	l	l	1 1

FIGURTE 703-1. <u>Established reliability, tantalum, fixed, shiop capacitors</u> (encapsulated and unencapsulated) - Continued.

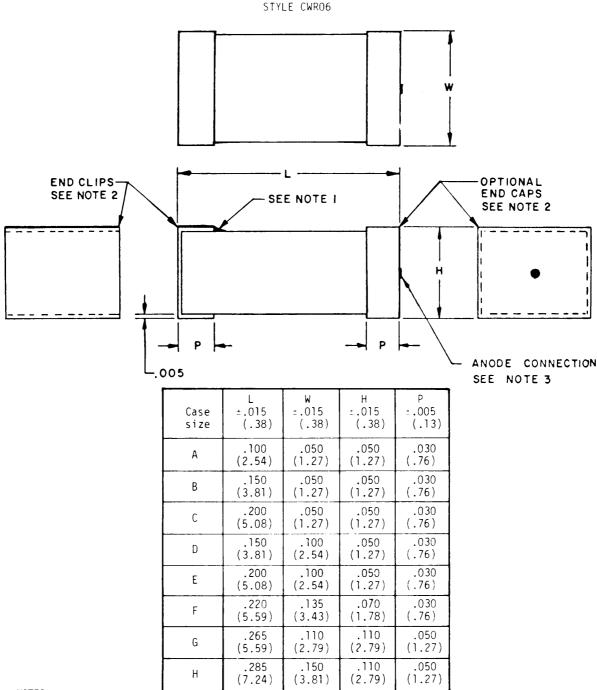
STANDARD CAPACITORS

STYLE CWRO3 AND CWRO4 (MIL-C-55365/2) - Continued

OPERATI NG TEMPERATURE RANGE -55° TO +125°C -- TERMI NATI ON FI NI SH D -- CAPACI TANCE TOLERANCE ± 5 , ± 10 , OR ± 20 PERCENT

Type	5°C	
(85°C) (nom)	5°C -5	lsiz
+25°C +85°C +125°C +25°C +12	25°C -5	
		5°C
<u>Volts μF μA μA μA %</u>	ľ	
	2	<u>%</u>
	1	l
CWRO-JD105 20 1.0 1.0 10 15 4		8 B
CWRO-JD185		8 C
, , , , , , , , , , , , , , , , , , , ,		8 1 0
CWRO-JD275		8 C
CWRO-JD335		8 C
CWRO-JD475		8 I D
CWRO-JD305	8 1	
CWRO-JD126	8 1	
CWRO-JD156 20 15.0 6.0 60 90 6	:	0 E
CWRO-JD136	8 1	
CWRO-JD226	8 1	
CWRO-MD104 35 0.10 1.0 10 15 4		8 A
CWRO-MD124 35 0.12 1.0 10 15 4	•	8 A
CWRO-MD154 35 0.15 1.0 10 15 4		8 A
CWRO-MD184 35 0.18 1.0 10 15 4	•	8 A
CWRO-MD224 35 0.22 1.0 10 15 4		8 A
CWRO-MD274		8 B
CWRO-MD334 35 0.33 1.0 10 15 4		8 B
CWRO-MD394 35 0.39 1.0 10 15 4		8 B
CWRO-MD474 35 0.47 1.0 10 15 4		8 B
CWRO-MD824 35 0.82 1.0 10 15 4	6	8 I C
CWRO-MD105 35 1.0 1.0 10 15 4		8 1 C
CWRO-MD125 35 1.2 1.0 10 15 4	6	8 C
CWRO-MD155 35 1.5 1.1 11 17 4	6	8 C
CWRO-MD185 35 1.8 1.3 13 20 4	6	8 I D
CWRO-MD225 35 2.2 1.5 15 23 4		8 D
CWRO-MD275 35 2.7 1.9 19 29 4		8 I D
CWRO-MD335 35 3.3 2.3 23 35 4		8 D
CWRO-MD395 35 3.9 2.7 27 41 4		8 D
CWRO-MD475 35 4.7 3.3 33 50 4	•	8 E
CWRO-MD565 35 5.6 3.9 39 59 4		8 E
CWRO-MD685 35 6.8 4.8 48 72 6	8 1	
CWRO-MD825 35 8.2 5.7 57 86 6	8 1	
CWRO-MD106 35 10.0 7.0 70 105 6	8 1	
CWRO-ND683 50 0.068 1.0 10 15 4		8 A
CWRO-ND823 50 0.082 1.0 10 15 4		8 A
CWRO-ND104 50 0.10 1.0 10 15 4		8 B
CWRO-ND124		8 B
CWRO-ND154		8 B
CMRO-MDIO+"= 00 0.10 1.0 10 1	:	8 B
CWRO-ND224 50 0.22 1.0 10 15 4 CWRO-ND274 50 0.27 1.0 10 15 4	: :	8 C
1 04110 11027 1 200 1 200 1 20 1 20 1 20 1	•	8 C
CWRO-ND334		8 C 8 C
CWRO-ND394	· ·	8 I C
CWRO-ND474		8 C
CWRO-ND364		8 1 6
CWRO-ND824 50 0.82 1.0 10 15 4		8 1 0
	į į	

FIGURE 703-1. <u>Established reliability, tantalum, fixed chip capacitors</u> (encapsulated and unencapsulated) - Continued.


STANDARD CAPACITORS

STYLE CWRO3 AND CWRO4 (MIL-C-55365/2) - Continued

OPERATING TEMPERATURE RANGE -55° TO +125°C -- TERMINATION FINISH -- CAPACITANCE TOLERANCE ±5, ±10, OR ±20 PERCENT

Type designation	DC rated voltage		T DC	Teakage	(max)	Dissipa 	tion fac	tor (max) Case
 	(85°C) 	(nom)	+25°C	+85°C	+125°C	+25°C	+85°C +125°C	-55°C	size
	Volts	<u>μ</u> F	<u>μ Α</u>	<u>μ</u> Α	! ! <u>μ</u> Α	<u>%</u>	<u>9</u>	<u> </u>]
 CWR0-ND105	50	1.0	1.0	10	15	4	6	8	ם
CWR0-ND125	50	1.2	1.2	1 12	1 18	1 4	1 6	1 8	ĺD
CWR0-ND155	50	1.5	1.5	15	23	1 4	6	1 8	İD
CWR0-ND185	j 50	1.8	1.8	1 18	27	4	1 6	1 8	l E
CWR0-ND225	50	2.2	2.2	22	33	1 4	6	8	ÌĒ
CWRO-ND275	50	2.7	2.7	27	41	1 4	1 6	ĺ 8	İΕ
CWR0-ND335	l 50	3.3	1 3.3	1 33	1 50	1 4	6	! 8	İΕ
 	[!	1	-	!	[!

FIGURE 703-1. <u>Established reliability, tantalum, fixed, chip capacitors</u> <u>(encapsulated and unencapsulated</u> - Continued.

NOTES:

- Cathode terminal may be epoxy coated on one surface for polarity identification. Anode and cathode terminals may be three sided clips or five sided caps; however,
- terminals shall be the same on both ends of the same chip.

 The anode terminal shall be identified by the riser wire connection, which May
- extend the case size .015 (.38 mm) maximum.
- These capacitors are designed for mounting by dip soldering, thermocompression bonding, reflow soldering, or other conventional means.
 When solder coated terminations are required, add .015 (.38 mm) to dimensions.

FIGURE 703-1. Established reliability, tantalum, fixed, chip capacitors (encapsulated and unencapsulated) - Continued.

STANDARD CAPACITORTS

STYLE CWR06 (MIL-C-55365/4)

OPERATING TEMPERATURE RANGE -55° TO +125°C -- TERMINATION FINISH A, B, OR C -- CAPACITANCE TOLERANCE ±5, ±10, OR ±20 PERCENT

Type designation	DC rated voltage	•	DC	leakage	(max)	Dissipa	tion fac	tor (max) (
		(nom)	+25°C	+85°C	+125°C	+25°C	+85°C +125°C	-55°C
	Volts	<u>μ</u> Ε	<u>μ A</u>	<u>μ</u> Α	<u>μΑ</u>	 <u>%</u> 	 <u>%</u> 	<u>%</u>
CWR06C-225	i 4	2.2	1.0	10	12	6	8	i 8 i
CWRO6C-475	1 4	1 4.7	1.0	10	12	l 6	1 8	1 8 1
CWRO6C-685	4	6.8	1.0	10	12	6	! 8	181
CWR06C-106	1 4	10.0	1.0	10	12	8	! 8	1 10 1
CWRO6C-156	4	15.0	1.0	10	12	8	10	12
CWRO6C-336	. 4	33.0	2.0	20	24	8	10	12
CWR06C-686	1 4	68.0	3.0	30	36	10	12	1 12
CWR06C-107	•	1100.0	4.0	40	48	10	1 12	12
CWRO6D-155	6	1.5	1.0	10	12	6	8	8
CWRO6D-335	1 6	3.3 4.7	1.0 1.0	l 10 l 10	12 12	6 6	8 8	8 8
CWRO6D-475 CWRO6D-685	1 6 1 6	1 4.7 1 1 6.8 1	1.0	1 10	1 12	6	1 8	1 0 1 1 8 1
CWRO6D-085	1 6	1 10.0	1.0	10	12	8	10	
CWRO6D-106	i 6	22.0	2.0	20	24	8	10	12
CWRO6D-476	i ĕ	47.0	3.0	30	36	10	i iž	12
CWR06D-686	i č	68.0	4.0	40	48	10	1 12	12 1
CWR06F-105	10	1.0	1.0	10	12	6	8	8
CWRO6F-225	10	1 2.2	1.0	10	12	6	1 8	1 8 1
CWRO6F-335	10	3.3	1.0	10	12	6	1 8	181
CWRO6F-475	10	4.7	1.0	10	12	6	8	8
CWRO6F-685	1 10	6.8	1.0	10	12	6	1 8	1 8 1
CWRO6F-156	10	15.0	2.0	20	24	8	8	10
CWRO6F-336	10	33.0	3.0	30	36	10	12	12
CWRO6F-476	10	47.0	5.0	50	60	10	12	12
CWRO6H-684	1 15	.68	1.0	10	12	6	8	8
CWRO6H-155	15 15	1.5 2.2	1.0	10 10	12 12	6 6	8 1 8	! 8 8
CWRO6H-225 CWRO6H-335	15	3.3	1.0	10	1 12	6	8	8 1
CWRO6H-475	15	1 4.7	1.0	10	12	6	i 8	8 1
CWRO6H-106	15	10.0	2.0	20	24	6	i š	8 1
CWR06H-226	j 15	1 22.0	4.0	40	48	8	1 8	10 1
CWRO6H-336	15	33.0	5.0	50	60	1 8	8	10
CWR06J-474	20	.47	1.0	10	12	6	1 8	8
CWR06J-684	20	.68	1.0	10	12	6	! 8	8 !
CWR06J-105	20	1.0	1.0	10	12	6	8	8 1
CWRO6J-155	20	1.5	1.0	10	12	6	8	8
CWR06J-225	20	2.2	1.0	10	12	6	8	8
CWRO6J-335	20	3.3	1.0	10	12	6	8	8
CWRO6J-685 CWRO6J-156	l 20 l 20	6.8 15.0	2.0 3.0	! 20 30	24 36	6 6	8 8	8 8
	1 20	1 22.0	4.0	1 40 1	36 48	6	1 8	1 8 I
CWRO6K-334	25	33	1.0	10	12	6	8	8 1
CWRO6K-684	25	68	1.0	10	12	6	8	1 8 1
CWR06K-105	25	1.0	1.0	10	12	6	8	8 1
CWR06K-155	25	1.5 i	1.0	10	12	6	8	l 8 i
CWR06K-225	25	2.2	1.0	10	12	6	8	8
CWRO6K-475	25	i 4.7	2.0	20	24	6	8	8 1
CWRO6K-685	25	6.8	2.0	20	24	6	8	8
CWR06K-106	25	10.0	3.0	30	36	6	8	8 !
CWRO6K-156	25	15.0	4.0	40	48	6	8	8
l	<u> </u>	ll		<u> </u>			1	

FIGURE 403-1. <u>Established reliability, tantalum, fixed, ship capacitors</u> (encapsulated and unencapsulated) - Continued.

STANDARD CAPACITORS

STYLE CWR06 (MIL-C-55365/4) - Continued

OPERATING TEMPERATURE RANGE -55° TO +125°C -- TERMINATION FINISH A, B, OR C -- CAPACITANCE TOLERANCE ±5, ±10, OR ±20 PERCENT

Type designation	DC rated voltage	Cap.	DC	leakage	(max)	Dissipa	tion fac	tor (max)	Case
l 	(85°C) 	(nom)	+25°C	+85°C	+125°C	+25°C	+85°C +125°C	_55°C	size
	<u>Volts</u>	μF	<u>μΑ</u>	 <u>μ</u> Α 	<u>μ A</u>	<u>%</u>	1 %	! <u>%</u> 	
CWR06M-224	35	.22	1.0	10	12	6	i 8	8	i a i
CWR06M-474	35	.47	1.0	1 10	12	1 6	1 8	8	1 B 1
CWR06M-684	35	.68	1.0	1 10	12	6	1 8	1 8	1 C 1
CWR06M-155	35	1.5	1.0	10	12	6	1 8	8	1 E 1
CWRO6M-335	35	3.3	1.0	10	12	6	1 8	1 8	1 F
CWRO6M-475	35	4.7	1 2.0	1 20	24	6	1 8	8	G
CWR06M-685	35	6.8	3.0	30	36	1 6	1 8	8	1 H [
CWRO6N-104	1 50	.10	1.0	10	12	1 6	1 8	1 8	A
CWRO6N-154	50	.15	1.0	10	12	6	1 8	1 8	A
CWRO6N-224	50	.22	1.0	10	12	6	! 8	8	B
CWRO6N-334	l 50	.33	1.0	10	12	6	8	1 8	B
CWRO6N-474	l 50	.47	1.0	10	12	6	8	8	C
CWRO6N-684	1 50	.68	1.0	10	12	6	1 8	8	D
CWR06N-105	1 50	1.0	1.0	10	12	6	1 8	8	E
CWRO6N-155	50	1.5	1.0	10	12	6	8	l 8	1 F 1
CWR06N-225	50	2.2	2.0	20	24	6	8	8	1 F 1
CWR06N-335	l 50	3.3	2.0	20	24	6	1 8	i 8	1 G 1
CWRO6N-475	1 50	4.7	3.0	30	36	1 6	1 8	8	1 # 1
		•					1		
	l			l		1	<u> </u>	l	<u> </u>

FIGURE 703-1. <u>Established reliability, tantalum, fixed, chip capacitors (encansulated and unencapsulated)</u> - Continued.

SECTION 704

CAPACITORS, FIXED, ELECTROLYTIC (ALUMINUM OXIDE), ESTABLISHED RELIABILITY

STYLES CUR13, CUR17, CUR19, CUR71, AND CUR91 (APPLICABLE SPECIFICATION: MIL-C-39018)

USAF AIRBORNE APPLICATIONS REQUIRE PRIOR APPROVAL BY PROCURING ACTIVITY

1. <u>SCOPE.</u> This section covers established reliability, aluminum oxide, electrolytic, fixed capacitors, insulated and polarized. Capacitors covered by this section have failure rate levels ranging from 1.0 to 0.001 percent per 1,000 hours. The failure rate levels are established at a 60-percent confidence Level and are maintained at a 10-percent producer's risk and are based on full rated voltage at 85°C.

2. APPLICATION INFORMATION.

2.1 <u>Use.</u> Aluminum electrolytic capacitors are intended for use in filter, coupling, and by-pass applications where large capacitance values are required in small cases and where excesses of capacitance over the nominal value can be tolerated. For polarized capacitors, the applied ac peak voltage should never exceed the applied dc voltage; the sum of the applied ac peak and dc voltages should never exceed the dc working voltage.

Aluminum electrolytic capacitors provide the smallest volume, mass, and cost per microfarad of any

type of capacitor with the exception of the tantalum electrolytic capacitor.

These capacitors are nonhermetically sealed and are not recommended for airborne equipment applications since they should not be subjected to low barometric pressure and low temperatures at high altitudes. All units are designed to provide operation to .2 inches of mercury (80,000 feet altitude), operating temperatures as low as -55°C, and shelf life of 10 years or greater. These aluminum electrolytic capacitors can be derated only for a short period since derating for any length of time may result in the necessity for re-forming. Even though they have vents designed to open at dangerous pressures, explosions can occur because of gas pressure or a spark ignition of free oxygen and hydrogen liberated

at the electrodes. Provisions should be made to protect surrounding parts.

These capacitors are generally used where low frequency, pulsating, dc signal components are to be filtered out, such as in B power supplies up to 350 dc working volts, at such points as plate and screen connections to B+, and as cathode by-pass capacitors in self-biasing circuits. These capacitors are

designed for applications where accuracy of capacitance is relatively unimportant.

As a rule, for selection of emitter by-pass capacitors, a ratio of bias resistance to by-pass reactance of about 10 to 1 is allowed. Ratios up to 20 to 1 may be used in high-fidelity-amplifier work or where space and economical considerations permit. Electrolytic capacitors provide the equipment designer with an unusually lightweight unit of high capacitance in a compact container. Failure mode of these types is typically gradual loss of capacity and increased dissipation factor at life times beyond the 10,000 hour 85°C life.

The 4-terminal axial leaded capacitor is designed for high frequency applications where low equivalent series resistance, inductance, and impedance are required. The advantage of 4-terminal construction over 2-terminal construction is that the impedance decreases above 10 KHz. Unlike 2-terminal capacitors, the dc current flows through the capacitor and contributes to the operating temperature. The temperature rise (T_L) due to the dc current may be determined from figure 704-1. The ability of the external leads to carry the desired current should be taken into consideration. Lead length and heat sink qualities of the printed circuit board and capacitor will affect the current capability.

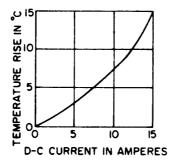


FIGURE 704-1. DC current vs temperature rise.

2.2 <u>Construction.</u> The construction of these capacitors is basically the same as that specified in Section 201 (MIL-C-62). However, advancements in the manufacture of aluminum electrolytic capacitors have made possible an increased foil purity, improved oxide system, and an increase in etch ratios. Other contributing factors to the advancement in the manufacture of aluminum capacitors are an improved capacitor seal and the development of an electrolyte with a non-aqueous, non-acid base.

The metal cases for these capacitors are provided with an insulating sleeve which has an insulation resistance of at least 100 megohms and will withstand 2000 volts dc minimum without breakdown.

- It should be noted that the insulation resistance refers to the sleeve and not to the resistance between the terminals and the case. The circuit diagram for styles CUR19, CUR71, and CUR91 capacitors shows an indeterminate resistance between the outer-foil terminal and the case since the electrolyte cannot be completely isolated. For safer performance, the insulating sleeve should remain over the case for all applications. The negative terminal is shorted to the case on styles CUR13 and CUR17 capacitors.
- 2.3 <u>Voltage rating.</u> The thickness of the oxide film which is formed both initially on the foil and during the forming operations on the completed capacitor determines the maximum peak or surge voltage which may be applied. For maximum reliability and long life, the dc working voltage should not be more than approximately 80 percent of full rating so that surges can be kept within the full-rated working voltage. The time of surge-voltage application should not be more than 30 seconds every 10 minutes.

Styles CUR13 and CUR17 have a 3-volt reverse voltage characteristic for units rated 10 volts or greater. Styles CUR19, CUR71, and CUR91 have a 1.5-volt reverse voltage characteristic.

Style	DC voltage range -55° to +85°C	Derated dc voltage range at +125°C	DC surge voltage range -55° to 85°C	Derated dc surge voltage at +125°C
CUR13	7 to 350	5 to 275	10 to 375	7 to 300
CUR17	7 to 350 <u>1</u> /		10 to 375	
CUR19	5 to 200 <u>1</u> /		7 to 250	
CUR71	5 to 350 <u>2/</u>		7 to 400	
CUR91	5 to 150 <u>1</u> /		7 to 200	

TABLE 704-1. DC voltage.

- 1/ DC voltage range -55° to +105°C. not derated to +125°C,
- 2/ DC voltage range-55° to +85°C, not derated to +125°C.
- 2.4 Operating temperature range. Style CUR13 capacitors are suitable for operation over a temperature range of -55° to $+85^{\circ}$ C, derated to $+125^{\circ}$ C. Styles CUR17, CUR19, and CUR91 capacitors are designed to operate over a temperature range of -55° to $+105^{\circ}$ C. Style CUR71 capacitors are suitable for operation over a temperature range of -55° to $+85^{\circ}$ C.
- $2.5\ \underline{\text{Derating.}}$ Style CUR13 capacitors may be voltage derated in order to operate at temperatures up to +125°C. The percent of derating varies from approximately 20 to 33 percent depending on the particular voltage rating involved.
- 2.6 <u>Surge voltage</u>. The surge voltage is the maximum voltage to which the capacitor should be subjected under any condition. This includes transients and peak ripple at the highest line voltage.
- 2.7 <u>Seal.</u> The capacitors listed in this standard are supplied using nonhermetic seals and even though these capacitors have vents designed to open at dangerous pressures, explosions can occur because of gas pressure or a spark ignition of free oxygen and hydrogen liberated at the electrodes. Provisions should be made to protect surrounding parts.

- 2.8 <u>Polarization.</u> Nonpolarized capacitors, style CU15 (Section 202), should be used in applications where reversal of potential occurs. Polarized capacitors, styles CUR13, CUR17, CUR19, CUR71, and CUR91 should be used only in dc circuits with polarity properly observed. If ac components are present, the sum of the peak ac voltage plus the applied dc voltage must not exceed the dc rating. The peak ac value should also be less than the applied dc voltage so that polarity may be maintained, even on negative peaks, to avoid overheating and damage.
- 2.9 Ripple voltage. The maximum permissible ripple voltages can be determined from figure 704-2 and table 704-11. The curves in figure 704-1 are based on operation at 60 Hz and 25°C. The appropriate multiplier from table 704-1 should be used where operation at other frequencies or temperatures is desired. Operation of these capacitors outside the limits of 60 to 10,000 Hz is not recommended.

100

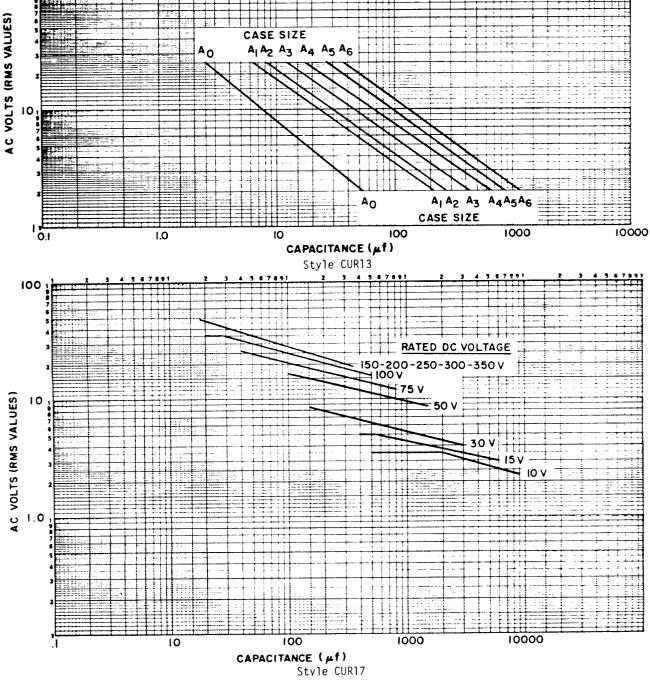


FIGURE 704-2. Maximum permissible ac voltage (rms).

TABLE 704-II. Ripple voltage multipliers,

	Multiplier											
Frequency		+25°C		5°C	+65		+85		+1,25°C			
(Hz)	CUR13	CUR17	CUR13	CUR17	CUR13	CUR17	CUR13	CUR17	CUR13	CUR17		
60	1.0	1.0	0.86	0.9	0.7	0.7	0.53	0.5	0.4			
120	0.66	0.6	. 57	. 54	.46	.42	. 35	. 3	.26			
400	.3	.2	. 26	.18	.21	.14	.16	.1	.12			
1,000	.17	.08	.15	.072	.12	.056	. 09	. 04	.068			
10,000	. 034	. 008	.029	. 007	.024	.006	.018	.004	.014			

2.10 Ripple currents. For capacitors covered by MIL-C-39018/1 (CUR13) and MIL-C-39018/3 (CUR17), the maximum permissible ripple current at 120 Hz and 85° C is shown in the rating table. The appropriate ate multiplier from the following table should be used to determine permissible ripple where operation at other temperatures or frequencies is desired.

Operation of these capacitors outside the limits of 60 Hz to 100 kHz is not recommended.

TABLE 704-III, Multipliers CUR13 and CUR17 capacitors.

ĺ	Temperature	Multiplier	Frequency	Multiplier					
1				O - 60V	61 - 200V	201 - 350V			
- 1	25°C, 45°C		60 Hz	0.85	0.83	0.80			
ı	65°C	1.2	120 Hz	1.0	1.0	1.0			
ı	85°C	1.0	400 Hz	1.1	1.15	1.3			
	<u>1</u> / 125°C	0.3	1 - 100 kHz	1.15	1.2	1.4			

1/ Not applicable to style CUR17.

For capacitors covered by MIL-C-39018/7 (CUR19), the rms ripple current which will result in a 10°C internal temperature rise (T_o), over the frequency range of 10 kHz to 1 MHz, is tabulated in the rating table. For other temperature rises and frequencies, the 10 kHz - 1 MHz ripple currents may be multiplied by the factors shown in table 704-IV.

TABLE 704-IV. Factors for determining ripple currents at various frequencies.

Frequency	Temperature rise									
rrequency	5°C	10°C	1 <u>5°C</u>	20°C	25°C	30°C				
60 Hz	0.35	0.50	0.65	0.75	0.85	1.00				
120 Hz	.45	.65	.80	. 95	1.10	1.30				
400 Hz	.50	.75	. 95	1.10	1.30	1.50				
1 kHz	.55	.80	1.00	1.15	1.35	1.60				
10 kHz - 1 MHz	. 65	1.00	1.25	1.45	1.70	2.00				

The operating temperature (T_c) is determined by obtaining the sum of the ambient temperature (T_c) the temperature rise due to the ripple current (T_B) , and the temperature rise due to the dc current (T_L) .

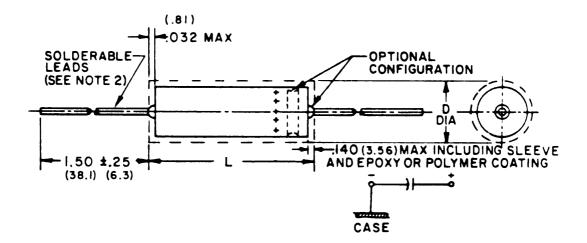
$$T_C = T_A + T_R + T_I$$

 $T_{C} = T_{A} + T_{R} + T_{L}$ The sum should not exceed the maximum rated temperature (+105°C).

Maximum ripple current at 120 Hz and 85°C for type CUR71 capacitors is shown in the rating table.

Maximum ripple current for type CUR91 capacitors is shown for 85° C and 120 Hz in the rating table. Use the multipliers from table 704-V to determine permissible ripple at other temperatures and frequencies.

TABLE 704-V. Multipliers	for CUR91 cap	paci tors.
--------------------------	---------------	------------


Temperature	Multiplier	Frequency	Multiplier				
1			5 - 50V	75-150V			
25°C	2.0	50 Hz	0.85	0.80			
45°C	1.7	60 Hz	0.90	0.83			
65°C	1.4	100 Hz	0.99	0.95			
85°C	1.0	120 Hz	1.0	1.0			
105°C	0.3	400 Hz	1.05	1.15			
		1 kHz - 20 kHz	1.10	1.20			

2.11 <u>Cleaning solvents.</u> Recommended solvents include all those free of halogen or halogen groups, such as toluene, menthanol, methylcellosolve, alkinox and water, and naphtha. Chlorinated or fluorinated hydrocarbon solvents are prohibited.

3. ITEM IDENTIFICATION.

3.1 <u>Standard capacitors.</u> The standard capacitors available in this Section are shown in figure 704-3. (The figure gives the electrical characteristics, case sizes, and Military part numbers of capacitors which are standard for design.)

Style CUR13 NATO type designation NCUO1 (per NEPR no. 59)

	Dimensions Style CUR13,	insulated
Case size	L ±.031 (.79)	D +.023 (.58) 015 (.38)
A0 A1 A2 A3 A4 A5 A6	.938 (23.83) .938 (23.83) 1.125 (28.58) 1.375 (34.93) 1.625 (41.28) 2.188 (55.58) 2.688 (68.28)	.281 (7.14) .375 (9.53)

- These capacitors are not intended to be mounted by their leads.
 Solderable leads .032 (.81) DLA ±.008 (.20) -.002 (.05)

FIGURE 704-3. Electrolytic (aluminum oxide), fixed capacitors.

STANDARD CAPACITORS STYLE CUR13 (MILL-C-39018/1)

OPERATING REMPERATURE RANGE -55° TP+85°C, DERATED TO +125°C -- POLARIZED, INSULATED

 Capaci-	DC 1	rated	DC s	surge tage	E S	SR	Maximum limpedance		DC akage	Maximum 1/ AC ripple]		number 39018/01	
tance value 	ļ		ļ	125°C	25°C	85°C	at -55°C and 120 Hz	 25°C 	85°C	current 120 Hz at 85°C	Case code 			olerance
 	 					and 125°C 		! ! !	125°C 		 	 -10+30 	-10+50	-10+75
<u>μ</u> Ε	 <u>Vo</u>]	ts	<u>Vo</u>	l ts	 	Γ Γ	<u>Ω</u>	Ι ! μ/	! A T	<u>mA</u>] 	1 [
220 270 390 560 820	7 7 7 7 7	5 5 5 5 5 5	10 10 10 10 10 10	7 7 7 7 7 7 7	1.21 .98 .68 .47 .32	1.23 85 59 40	17 12 8 5.5	3 3 4 5 7 10	18 18 24 30 42 60	290 3/ 360 3/ 520 3/ 750 3/ 1100 3/ 1350 3/	A2 A3 A4 A5	1001 1002 1003 1004 1005 1006		1101- 1102- 1103- 1104- 1105- 1106-
1 100 1 180 1 220 1 330 1 470 1 680 1 820	 10 10 10 10 10 10	7 7 7 7 7 7	15 15 15 15 15 15 15 15 15	10 10 10 10 10 10 10 10 10	2.65 1.47 1.21 .80 .56 .39 .32	1.84 1.51 1.00 .71 .49	25 20 • 14 9.6 6.6	2 3 3 4 5 7	12 18 18 18 24 30 42 60	285 3/ 438 3/ 527 3/ 696 3/ 892 3/ 1210 1490	A1 A2 A3 A4 A5	 1007 1008 1009 1010 1011 1012 1013		1107- 1108- 1109- 1110- 1111- 1112- 1113-
68 82 150 180 270 390 560 680	15 15 15 15 15 15 15 15	10 10 10 10 10 10 10 10 10 10	20 20 20 20 20 20 20 20	15 15 15 15 15 15 15 15 15 15	3.90 3.23 1.77 1.47 1.47 .98 .68 .47	4.04 2.21 1.84 1.23 .85 .59	55 30 25 17 12 8	2 2 3 3 4 5 7 10	1 12 1 12 1 18 1 18 1 24 1 30 1 42 1 60	181 3/ 219 <u>3</u> / 400 475 628 810 1100 1320	A0 A1 A2 A3 A4 A5	 1014 1015 1016 1017 1018 1019 1020 1021		1114- 1115- 1116- 1117- 1118- 1119- 1120- 1121-
33 - 47 82 100 120 150 220 330 390	30 30 30 30 30 30 30 30	20 20 20 20 20 20 20 20	40 40 40 40 40 40 40 40	30 30 30 30 30 30 30 30 30 30	5.64 3.23 2.65 2.21 1.77 1.20 .80	2.76 2.21 1.51 1.00	64 36 30 25 20 14	2 2 3 3 4 4 5 7	1 12 1 12 1 18 1 18 1 24 1 24 1 30 1 42 1 60	164 196 297 353 419 470 607 848 1000	A0 A1 A2 A3 A3 A4 A5	 1022 1023 1024 1025 1026 1027 1028 1029 1030		1122- 1123- 1124- 1125- 1126- 1127- 1128- 1129- 1130-
22 33 47 56 68 100 150 180	50 50 50 50 50 50 50 50	40 40 40 40 40 40 40	60 60 60 60 60 60	50 50 50 50 50 50 50	5.03 4.23 3.55 2.92 1.99 1.33	15.07 10.05 7.05 5.92 4.88 3.32 2.21 1.84	91 64 54 44 30 20	2 3 3 4 4 5 7	1 12 1 18 1 18 1 24 1 24 1 30 1 42 1 60	134 188 243 286 315 410 571 680	A1 A2 A3 A3 A4 A5	 1031 1032 1033 1034 1035 1036 1037 1038		1131- 1132- 1133- 1134- 1135- 1136- 1137- 1138-

FIGURE 701-4. <u>Elecrolytic (aluminum oxide)</u>, <u>fixed capacitors</u> - Continued.

STANDARD CAPACITORS STYLE CUR13 (MIL-C-39018/1) - Continued

OPERATING TEMPERATURE RANGE -55° TO +85°C, DERATED TO +125°C -- POLARIZED, INSULATED

 Capaci-		rated tage		surge tage	ESF	₹	Maximum impedançe at -55 C	l lea)C akage	Maximum <u>1</u> / AC ripple current	 Case	l M3	numbe 39018/0	
tance value 	 85°C	125°C	 85°C	125°C		 85°C		25°C	 85°C and 125°C	120 Hz at 85°C			tance t	colerance
						125°C					İ [-10+30	-10+50	-10+75
<u>μ</u> F	<u>Vo</u>	ts	 <u>Vo</u> 	l lts	 <u>Ω</u>	! !	<u>υ</u>	ι ! <u>μ/</u> !	1 \ T	<u>mA</u>	1 	 	 	
12 22 33	75 75 75	60 60 60	90	75 75 75	9.04	27.63 15.07 10.05	140 91	2 3 3	12 18 18	96 153 204	A1 A2	1039 1040 1041 1042	 	1139-
47 68 100 120	75 75 75 75 75	60 60 60 60	90 90 90 90	75 75 75 75	4.27 2.92 1.99 1.65	1 4.88 1 3.32	44 30	4 5 7 10	24 30 42 60	262 337 506 555	A4 A5	1042 1043 1044 1045		1142- 1143- 1144- 1145-
15 22	100 100 100 100 100 100 100	75 75 75 75 75	125 125 125 125 125 125 125	100 100 100 100 100 100 100		27.63 22.10 15.07 10.05 7.05	250 200 140 91 64	2 3 3 4 5 7	12 18 18 24 30 42 60	82 109 137 179 235 319 417	A1 A2 A3 A4 A5	 1046 1047 1048 1049 1050 1051 1052	 	1146- 1147- 1148- 1149- 1150- 1151- 1152-
8.2 12 18 22 33	150 150 150 150 150 150 150 150	100 100 100 100 100	 175 175 175 175 175 175 175 17	125 125 125 125 125 125 125 125	28.22 23.68 16.17 11.05 7.37 6.03 4.02 2.37	47.37 32.35 22.10 14.74 12.06 8.04	540 360 250 170 140 91	2 2 3 3 4 5 7	12 12 18 18 18 24 30 42 60	69 75 105 137 182 214 300 423	A0 A1 A2 A3 A4 A5	 1053 1054 1055 1056 1057 1058 1059	1154- 1155- 1156- 1157- 1158- 1159-	
3.9	200 200 200 200 200 200 200 200	150 150 150 150 150 150	 225 225 225 225 225 225 225 2	175 175 175 175	40.30 34.01 23.68 16.17 11.05 8.84 4.91 3.40	68.02 47.37 32.35 22.10 17.68 9.82	500 333 250 154 118 77	4 4 6 6 8 10 14 20	24 24 36 36 48 60 84 120	63 68 86 1113 148 177 271 353	A0 A1 A2 A3 A4 A5	 1061 1089 1062 1063 1064 1065 1066 1067	1189- 1162- 1163- 1164- 1165- 1166-	
	1250	200 200 200 200 200 200	 275 275 275 275 275 275 275 27	225 225 225 225 225 225 225 225 225	40.19 23.68 19.50 13.26 11.05	39.01 26.53 22.10 12.06	910 540 440 300 250 140	4 4 6 6 8 10 14 20	24 24 36 36 48 60 84 120	58 70 86 103 125 159 245 294	A0 A1 A2 A3 A4 A5	 1068 1090 1069 1071 1072 1073 1074	1190- 1169- 1170- 1171- 1172- 1173-	

FIGURE 704-3. Electrolytic (aluminum oxide), fixed capacitors - Continued.

STANDARD CAPACITORS STYLE CUR13 (MIL-C-39018/1) - Continued

OPERATING TEMPERATURE RANGE -55° TO +85°C, DERATED TO +125°C -- POLARIZED, INSULATED

 Capaci- tance		rated tage	DC surge voltage		ESR		Maximum impedance at -55 C and	<u>lea</u>	C kage 85°C	Maximum 1/ AC ripple current 120 Hz at	Case	<u>M</u> :	number 39018/0	<u> </u>
value 	85°C	125°C	85°C	 125°C 		85°C and 125°C	120 Hz	ĺ	and 125°C	1 85°C	 		-10+50	
<u>μ</u> F	Vo T	ts	Vo.	ts	<u>Ω</u>		<u>Ω</u>	<u>μ</u> /	A T	<u>mA</u>	1	[!	
1 1.5	300	! 225	325	250	 132.66	221.05	1300	16	96	42	AO	1075	1175-	·
2.2	300		325	250	90.43	150.71	1300	16	96	51	l AO	1091	1191-	l
3.9	300	225	325	250	51.01	85.02	640	20	120	71	A1	1076		
4.7	300	225	325	250	42.33	-		20	120	78		11092	,	!
5.6	300		325	250	35.53			22	132	84	,	1077		ļ
8.2	300		325	250	24.26			24	144	110	A3	1078		
10	300	•	325	250	19.89			26	156	130		11079		
16	300		325	250	12.43			30	180	185	A5	11080		!
18 	300 	225 	325 	l 250 l	11.05 	18.42	170	36 	216 	l 217 	A6 	1081		
1.0	1350	275	375	300	1199.0	331.57	2000	1 20	120	35	l AO	[1082	 1182-	
i 3.3	350		375	300		100.42		26	156	59	A1	1083	11183-	
•	350		375	300	51.01		•	28	168	70		11084		1
5.6	1350		375	300	35.53		540	32	192	90	1 A3	1085	1185-	
	350		375	300	29.26		440	34	204	107	A4	1086	1186-	
10	350	. –	375	300	19.89	33.16	300	38	228	148	A5	1087	1187-	
12	350	275	375	300	16.58	27.63	250	42	252	<u> </u> 174	A6	1088	1188-	!
	1	1	1	1	I			l	<u> </u>	1	<u> </u>		<u> </u>	1

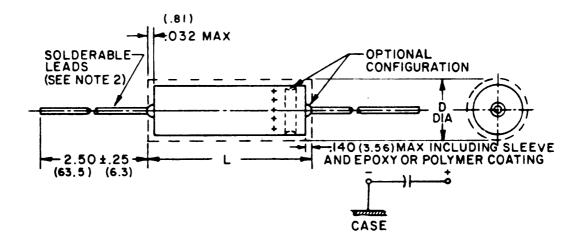

^{1/} The ripple current values shown are representive values not supported by test data.

FIGURE 704-3. <u>Electrolytic (aluminum oxide)</u>, <u>fixed capacitors</u> - Continued.

^{2/} The last letter in dash number will indicate FR level symbol ("M", "P", "R", or "S").

^{3/} Maximum current due to voltage limitations.

Style CUR17 NATO type designation NCU03 (Per NEPR no. 59)

	Dime	nsions
Case code D1 D2 D3 D4 D5 D6	L±.031 (.79) 1.125 (28.58) 1.125 (28.58) 1.125 (28.58) 1.125 (28.58) 1.625 (41.28) 1.625 (41.28) 1.625 (41.28) 1.625 (41.28)	D +.023 (.58)015 (.38) .625 (15.88) .750 (19.05) .875 (22.23) .625 (15.88) .750 (19.05) .875 (22.23) 1.000 (25.40)
E1 E2 E3 E4 E5 E6	2.125 (53.98) 2.125 (53.98) 2.125 (53.98) 2.125 (53.98) 2.125 (53.98) 2.625 (66.68) 2.625 (66.68) 2.625 (66.68)	.625 (15.88) .750 (19.05) .875 (22.23) 1.000 (25.40) .625 (15.88) .750 (19.05) .875 (22.23)
F1 F2 F3 F4 F5 F6	2.625 (66.68) 3.125 (79.38) 3.125 (79.38) 3.125 (79.38) 3.625 (92.08) 3.625 (92.08) 3.625 (92.08)	1.000 (25.40) .625 (15.88) .875 (22.23) 1.000 (25.40) .750 (19.05) .875 (22.23) 1.000 (25.40)

These capacitors are not intended to be mounted by their leads.
 For .625 inch diameter cases, the leads are .032 (.81) DIA +.008 (.20) -.002 (.05). For all other cases the leads are .040 (1.02) DIA +.008 -.002.

FIGURE 704-3. Electrolytic (aluminum oxide), fixed capacitors - Continued.

STANDARD CAPACITORS STYLE CUR17 (MIL-C-39018/3)

OPERATING TEMPERATURE RANGE -55° TO +105°C -- POLARIZED INSULATED

Capaci-		voltage	! ES		Maximum impedance	<u>l_1e</u>	OC akage	Maximum 1/ AC ripple		<u>M</u> :	numbe	3
tance value 	at 85°C 	85°C 	25°C	105°C	at -55°C and 120 Hz	25°C	 85°C 	current 120 Hz at 85°C	Case code 	Capaci		
1	! 	! 		! }	1	ļ 			İ	1-10.30	1-10.20	-10·/5
μF	Volts	Volts	! 	Ω 1	Ω	1	μ Α	mA]
680 1,000 1,500 2,200 3,300 4,700 6,800 10,000 12,000	7 7 7 7 7 7 7	1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10	.78 .53 .35 .24 .16 .11 .08 .05	.98 .66 .44 .30 .20 .14 .10 .07 .06		30 35 43 50 66 75 90	183 212 259 300 396 450 540 670	489 644 885 1220 1520 1930 2930 3850 4510	D2 D4 E1 D6 D7 F5	1201 - 1202 - 1203 - 1204 - 1205 - 1206 - 1207 - 1208 - 1209 -		1301- 1302- 1303- 1304- 1305- 1306- 1307- 1308- 1309-
470 1,000 1,500 2,200 3,300 4,700 6,800 8,200	10 10 10 10 10 10 10 10 10 10 10	15 15 15 15 15 15 15 15 15 15	.99 .46 .31 .21 .14 .10 .07 .06	1.13 .53 .35 .24 .16 .11 .08 .06	1.2 .85 .59	35 50 61 70 93 110 127 150	212 300 367 424 558 663 764 900	454 807 1130 1390 1950 2750 3570 4180	D4 E1 D6 E3 F5 F6	1210- 1211- 1212- 1213- 1214- 1215- 11216- 11217-		1310- 1311- 1312- 1313- 1314- 1315- 1316- 1317-
390 680 1,000 1,500 2,200 13,300 4,700 6,800	15 1 15 1 15 1 15 1 15 1 15 1 15 1 15	20 20 20 20 20 20 20 20 20 20	.85 .49 .33 .22 .15 .10 .07	1.02 .59 .40 .27 .18 .12 .07	0.8	38 49 61 75 86 114 136 156	232 296 367 450 519 687 821 936	478 689 1060 1420 1890 2380 3420 4360	D2 E1 E2 E6 E4 F6	1218- 1219- 1220- 1221- 1222- 1223- 1224- 1225-		1318- 1319- 1320- 1321- 1322- 1323- 1324- 1325-
150 220 330 470 680 11,000 11,500 2,200 2,700	30 1 30 1 30 1 30 1 30 1 30 1 30 1 30	40 40 40 40 40 40 40 40	2.21 1.51 1.00 .71 .44 .33 .22 .15	2.65 1.81 1.21 .85 .59 .40 .27 .18	4.0 2.7 1.8	33 47 51 54 69 86 110 122 136		296 390 536 609 957 1230 1680 2350 2560	D2 D4 D3 E5 E3 E7	1226- 1227- 1228- 1229- 1230- 1231- 1232- 1233- 1234-	 	1326- 1327- 1328- 1329- 1330- 1331- 1332- 1333- 1334-
100 150 220 330 470 680 11,000 11,500 1,800	50 50 50 50 50 50 50 50 	60 60 60 60 60 60 60 60	1.33 .88 .60 .40 .28 .20 .13 .09 .07	3.98 2.65 1.81 1.21 .84 .59 .40 .27 .22	1.8	37 46 55 66 79 90 111 147 196	222 276 335 396 474 540 670 883 1,196	241 322 417 580 619 946 1300 1920 2260	D2 D3 D5 E2 D7 E4 F4	1235- 1236- 1237- 1238- 1239- 1240- 1241- 1242- 1299-		1335- 1336- 1337- 1338- 1339- 1340- 1341- 1342- 1399-

FIGURE 704-3. <u>Electrolytic (aluminum oxide)</u>, <u>fixed capacitors</u> - Continued.

STANDARD CAPACITORS STYLE CUR17 (MIL-C-39018/3) - Continued

OPERATING TEMPERATURE RANGE -55° TO +105°C -- POLARIZED INSULATED

Capaci-		DC surge voltage 85°C	ES	R	Maximum impedance at -55 C	l le	DC akage	Maximum 1/	15222	M:	numbe	3
value 	at 85 C 	85 C 	25°C	1 105°C	at -55 C and 120 Hz	 25°C 	 85°C 	current 120 Hz at 85°C	Case code 	Capaci		olerance
] !	<u> </u>	 	[[! !		 	1 1	<u> </u>	! !	-10+30 	-10+50 	-10+75
l I μF	 Volts	 Volts	 	Ι Ω Ι	l Ω] [, [I μ A I	i I mA] 	 	
47 68 100	75 75 75	90 90 90	2.82 1.95	8.47 5.85 3.98	57 39 27	29 37 43	174 225 259	166 217 281	D2	1243- 1244- 1245-	 	1343- 1344- 1345-
150 220 330 470	75 75 75 75	l 90 l 90 l 90 l 90	.88 .60 .40 .28	2.65 1.81 1.21 .84	18 13 8.1 5.7	53 68 80 91	318 410 483 551	391 540 781 1010	E2 E7	1246- 1247- 1248- 1249-	 	1346- 1347- 1348- 1349-
680 820 	75 75 	l 90 l 90 l	.20 .16	.59 .49		110 122 	662 734 	1290 1520 		1250- 1251- 	 ! 	1350- 1351-
22 47 68	100 100 100	125 125 125	2.82 1.95	18.09 8.47 5.85	125 57 39	25 33 40	150 201 241	113 180 232	D2	1253- 1254-	1354-	
100 150 220	100 100 100	125 125 125	1.33 .88 .60	3.98 2.65 1.81	27 18 13 8.1	50 61 79	300 367 474	389 444 613	D7	1255- 1256- 1257-	1356- 1357-	
330 470	100 100 	125 125 	.40 .28 	1.21 .84 	5.6 	93 171 	563 670 	906 1150 	F7 	1259- 		
18 33 47		175 175 175	1 4.02	22.10 12.06 8.47	150 81 57	25 36 41	155 217 246	113 180 232	D4 D3	1262-	1361- 1362-	
68 100 150	150 150 150	175 175 175	1.95 1.33 .88	5.85 3.98 2.65	39 27 18	49 61 77	296 367 464	389 444 613	D7	1264- 1265-	1365-	
220 330	150 150 	175 175 	.60 .40 	1.81 1.21 	ĺ	86 114 	519 687 	906 1150 		1266- 1267- 	1366- 1367- 	
15 33 47	200 200 200	225 225 225		26.53 12.06 8.47	180 81 57	27 41 47	164 244 284	103 170 192	1 D3		1368- 1369- 1370-	
1 68 1 100 1 150	1 200 1 200 1 200	225 225 225 225	1.95	5.85 3.98 2.65	39 27 18	59 70 86	354 424 519	304 362 528	E5 D7	1271-	1371- 1372-	
220	1 200 1 200	225 225 225	.60 .49	1.81	12	109 120	657 722 	627 966	F4		1374-	
10 20	250	275	13.26	19.89	250 125	25 35	150	l 131	D4	1276	1377-	
33 39 68	250 250	275 275 275	3.40 1.95		80 65 40	45 50 67	270 300 402		F2 D7	1279- 1280-	1379- 1380-	
82 120 180	250	275 275 275	1.62 1.11 .74	3.32	35 25 15	80 94 111	480 564 666	374 548 712	F6	1281- 1282- 1283-	1382-	
l	<u> </u>	<u> </u>	1	1				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>

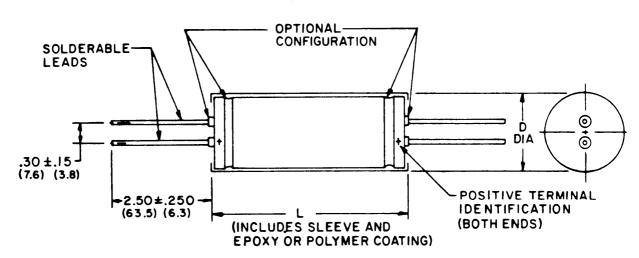
FIGURE 704-3. <u>Electrolytic (aluminum oxide)</u>, <u>fixed capacitors</u> - Continued.

Downloaded from http://www.everyspec.com

MI L-STD-198E

STANDARD CAPACITORS STYLE CUR17 (MIL-C-39018/3) - Continued

OPERATING TEMPERATURE RANGE -55° TO +105°C -- POLARIZED INSULATED


Capaci-	DC rated voltage at 85°C	IDC surge voltage 85°C	l ES	R	Maximum impedance at -55°C	1 e	OC akage	Maximum 1/ AC ripple current	 Case	M	h numbe 39018/0 tyle CU	3 R17
value 	 	 	25°C	105°C	and 120 Hz	25°C 	85°C 	120 Hz at 85°C	code 	1		-10+75
i 1	 		i	İ		i	i !			-10.30	1-10-50	1-10-75
μF	Volts	Volts		Ω	Ω	!	ļA	mA		 		
8.2	l 300	1 325	124.26	148.52	1 320	1 25	150	l ! 69	D1	 1284-	1384-	
1 15	300	325	13.26	-	1 170	35	210	114	D4	1285-	1385-	
27	300	325	7.37	14.74	93	48	288	166	D5	1286-	1386-	
47	300	325	4.23	8.47	54	63	378	275	E6	1287-	11387-	
68	300	325	2.93	5.85	37	77	462	355	E7	1288-	1388-	1
82	1 300	325	2.43	4.85	31	87	522	423	F3	1289-	1389-	
120	300	325	1.66	3.32	21	96	576	547			1390-	
150	300	325	1.33	2.65	17	1112	672	650	F7	1291-	1391-	'
5.6	350	375	35.53	71.05	450	25	150	57	DI	1292-	1392-	
20	350	375	9.95	19.89	1 125	42	252	150	E1	1293-	1393-	
27	350	375	7.37	14.74	93	53	318	208	F2	1294-	1394-	
47	350	375	4.23	8.47	54	66	396	248	D7	1295-	1395-	
56	l 350	375	3.55	7.11	45	75	450	332			1396-	
82	350	375	2.43	4.25	31	86	516	422			1397-	! '
120	350	375	1.66	3.32	21	112	672	581	F7	1298-	1398-	'

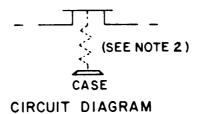

^{1/} The ripple current values shown are representive values not supported by test data.

FIGURE 704-3. <u>Electrolytic (aluminum oxide)</u>, <u>fixed capacitors</u> - Continued.

^{2/} The last letter in the dash number will indicate the applicable FR level symbol (M, P, R, or S).

Style CUR19

	Insulated dim	Insulated dimensions							
Case	L	Max	D	Typical weight					
size	Min		Max dia	(GRAMS)					
H1	1.625 (41.28)	1.843 (46.81)	. 785	20.3					
H2	2.125 (53.98)	2.343 (59.51)	. 785	26.8					
H3	2.625 (66.68)	2.843 (72.21)	. 785	33. 2					
H4	3.125 (79.38)	3.343 (84.91)	. 785	39.7					
H5	3.625 (92.08)	3.843 (97.61)	. 785	45.9					
J1	1.625 (41.28)	1.843 (46.81)	.910	26.9					
J2	2.125 (53.98)	2.343 (59.51)	.910	36.2					
J3	2.625 (66.68)	2.843 (72.21)	.910	45.4					
J4	3.125 (79.38)	3.343 (84.91)	.910	55.0					
J5	3.625 (92.08)	3.843 (97.61)	.910	64.0					
K1	1.625 (41.28)	1.843 (46.81)	1.035	34.3					
K2	2.125 (53.98)	2.343 (59.51)	1.035	45.9					
K3	2.625 (66.68)	2.843 (72.21)	1.035	57.2					
K4	3.125 (79.38)	3.343 (84.91)	1.035	68.5					
K5	3.625 (92.08)	3.843 (97.61)	1.035	81.9					

- These capacitors are not intended to be mounted by their leads.
 There is an indeterminate resistance between the metal case and the negative terminals.
- 3. Solderable leads , 040 (1.02) +.008 (.20) -.002 (.05) DIA.

FIGURE 704-3. <u>Electrolytic (aluminum oxide)</u>, <u>fixed capacitors</u> - Continued.

STANDARD CAPACITORS STYLE CUR19 (MIL-C-39018/7) OPERATING TEMPERATURE RANGE -55 TO +105°C -- POLARIZED, INSULATED CAPACITANCE TOLERANCE -10 TO +75%

DC rated voltage 105°C	Capaci- tance	DC surge voltage	ESR(Max) 120 Hz, 25°C	Impedance (Max) 25°C 10 kHz- 1 MHz	DC 16 25°C	eakage 85°C & 105°C	RMS ripple current <u>1</u> / 10°C rise 10 kHz-1 MHz	Case size	Dash number High 2/ frequency vibration
Volts	μF	<u>Volts</u>	<u>Ohms</u>	<u>Ohms</u>	<u>1</u>	1 <u>1</u> A	Amperes		
5	2,400	7	0.146	0.110	· 55	330	1.50	H 1	0201-
5	3,300	7	0.106	0.080	64	390	1.80	H 2	0202-
5	3,700	7	0.095	0.071	68	410	1.90	J 1	0203-
5	4,400	7	0.080	0.060	74	440	2.50	H 3	0204-
5	5,000	7	0.070	0.053	80	480	2.50	J 2	0205-
5	5,700	7	0.062	0.047	85	510	3.10	H 4	0206-
5	6,700	7	0.052	0.039	92	550	3.20	J 3	0207-
5	7,200	7	0.049	0.037	95	570	3.50	K 2	0208-
5	8,800	7	0.040	0.030	105	630	4.00	J 4	0209-
5	10,000	7	0.035	0.026	112	670	4.60	K 3	0210-
5	13,000	7	0.027	0.020	128	770	5.60	K 4	0211-
5	16,000	7	0.022	0.017	142	850	7.00	K 5	0212-
7.5	2,000	10	0.175	0.130	61	370	1.40	H 1	0213-
7.5	3,000	10	0.117	0.087	75	450	1.80	J 1	0214-
7.5	3,800	10	0.093	0.070	85	510	2.40	H 3	0215-
7.5	4,400	10	0.080	0.059	91	550	2.40	J 2	0216-
7.5	4,800	10	0.073	0.055	95	570	2.40	K 1	0217-
7.5	5,000	10	0.070	0.053	97	580	3.00	H 4	0218-
7.5	5,800	10	0.061	0.046	105	630	3.10	J 3	0219-
7.5	6,200	10	0.057	0.043	108	650	3.30	K 2	0220-
7.5	7,500	10	0.047	0.035	119	710	3.80	J 4	0221-
7.5	9,000	10	0.039	0.029	130	780	4.40	K 3	0222-
7.5	11,000	10	0.032	0.024	144	860	5.30	K 4	0223-
7.5	14,000	10	0.025	0.019	162	970	6.60	K 5	0224-
10	1,700	15	0.195	0.144	65	390	1.30	H 1	0225-
10	2,300	15	0.144	0.107	76	460	1.70	H 2	0226-
10	2,600	15	0.127	0.094	81	490	1.70	J 1	0227-
10	3,000	15	0.110	0.082	87	520	2.20	H 3	0228-
10	3,600	15	0.092	0.068	95	570	2.20	J 2	0229-
10	4,100	15	0.081	0.060	101	605	2.80	H 4	0230-
10	4,800	15	0.069	0.051	110	660	2.90	J 3	0231-
10	5,100	15	0.065	0.048	113	680	3.20	K 2	0232-
10	6,300	15	0.053	0.039	126	760	3.60	J 4	0233-
10	7,500	15	0.044	0.033	137	820	4.10	K 3	0234-
10	9,700	15	0.034	0.025	156	940	5.00	K 4	0235-
10	12,000	15	0.028	0.021	173	1040	6.20	K 5	0236-

FIGURE 704-3. <u>Electrolytic (aluminum oxide)</u>, <u>fixed capacitors</u> - Continued.

STANDARD CAPACITORS STYLE CUR19 (MIL-C-39018/7) -CONTINUED OPERATING TEMPERATURE RANGE -55 TO +105°C - POLARIZED, INSULATED CAPACITANCE TOLERANCE -10 TO +75%

DC rated voltage 105°C	Capaci- tance	DC surge voltage	ESR(Max) 120 Hz, 25°C	Impedance (Max) 25°C 10 kHz- 1 MHz	DC 1e 25°C	akage 85°C & 105°C	RMS ripple current <u>1</u> / 10°C rise 10 kHz-1 MHz	Case size	Dash number High <u>2/</u> frequency vibration
<u>Volts</u>	<u>μ</u> F	<u>Volts</u>	<u>Ohms</u>	<u>Ohms</u>		 μ Α	Amperes		
16 16 16 16	1,400 1,900 2,100 2,700	20 20 20 20	0.207 0.153 0.138 0.107	0.149 0.110 0.100 0.077	75 87 92 104	450 520 550 620	1.20 1.60 1.60 2.00	H 1 H 2 J 1 J 2	0237- 0238- 0239- 0240-
16 16 16 16	3,400 4,200 5,200 6,100	20 20 20 20 20	0.085 0.069 0.056 0.048	0.061 0.050 0.041 0.035	117 130 144 156	700 780 860 940	2.60 2.90 3.30 3.90	H 4 K 2 J 4 K 3	0241- 0242- 0243- 0244-
16 16 16	6,400 8,000 10,000	20 20 20	0.046 0.036 0.029	0.033 0.026 0.021	162 179 200	970 1070 1200	4.10 4.70 5.90	J 5 K 4 K 5	0245- 0246- 0247-
20 20 20 20 20	1,200 1,800 2,200 2,400	25 25 25 25	0.240 0.160 0.132 0.120	0.170 0.110 0.092 0.084	78 95 105 110	470 570 630 660	1.20 1.50 2.00 1.90	H] J] H 3 J 2	0248- 0249- 0250- 0251-
20 20 20 20	2,900 3,400 3,700 4,500	25 25 25 25 25	0.100 0.085 0.078 0.064	0.070 0.060 0.055 0.045	120 130 136 150	720 780 820 900	2.50 2.60 2.70 3.30	H 4 J 3 K 2 J 4	0252- 0253- 0254- 0255-
20 20 20	5,300 7,000 8,600	25 25 25	0.055 0.042 0.034	0.039 0.030 0.024	163 187 204	980 1120 1220	3.50 4.50 5.50	K 3 K 4 K 5	0256- 0257- 0258-
25 25 25 25 25 25	900 1,200 1,600 2,000 2,500	30 30 30 30 30	0.320 0.240 0.180 0.145 0.116	0.224 0.168 0.126 0.102 0.081	75 87 100 111 125	450 520 600 670 750	1.05 1.40 1.75 1.90 2.40	H 1 H 2 H 3 J 2 K 2	0259- 0260- 0261- 0262- 0263-
25 25 25 25 25	2,800 . 3,600 4,700 5,700	30 30 30 30	0.103 0.080 0.062 0.051	0.072 0.056 0.043 0.036	132 150 171 189	790 900 1030 1130	3.00 3.25 4.00 4.65	J 3 K 3 K 4 K 5	0264- 0265- 0266- 0267-
30 30 30 30	700 900 1,300 1,600	40 40 40 40	0.380 0.295 0.204 0.165	0.262 0.204 0.141 0.114	72 82 99 110	430 490 590 660	1.00 1.25 1.70 1.75	H 1 H 2 H 3 J 2	0268- 0269- 0270- 0271-

See footnotes at end of tabulation.

FIGURE 704-3. <u>Electrolytic (aluminum oxide)</u>, <u>fixed capacitors</u> - Continued.

STANDARD CAPACITORS STYLE CUR19 (MIL-C-39018/7) - CONTINUED OPERATING TEMPERATURE RANGE -55 TO +105°C - POLARIZED, INSULATED CAPACITANCE TOLERANCE -10 TO +75%

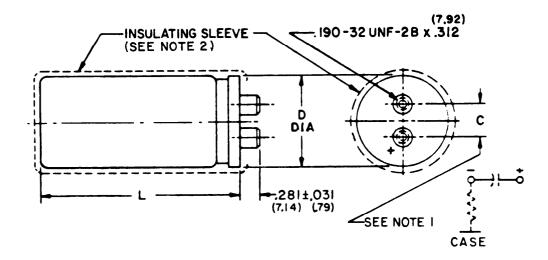
DC rated voltage 105°C	Capaci- tance	DC surge voltage	ESR(Max) 120 Hz, 25°C	Impedance (Max) 25°C 10 kHz- 1 MHz	25°C 85°C &105°C		RMS ripple current 1/ 10°C rise 10 kHz-1 MHz	Case size	Dash number High <u>2/</u> frequency vibration
<u>Volts</u>	<u>μ</u> F	<u>Volts</u>	<u>Ohms</u>	<u>Ohms</u>	<u>υ</u> Α		Amperes		
30 30 30 30 30	2,000 2,200 2,800 3,000	40 40 40 40	0.133 0.120 0.095 0.088	0.092 0.083 0.066 0.061	122 128 145 150	730 770 870 900	2.25 2.35 3.00 2.90	K 2 J 3 K 3 J 4	0272- 0273- 0274- 0275-
30 30	3,600 4,500	40 40	0.074 0.059	0.051 0.041	164 184	980 1100	3.60 4.40	K 4 K 5	0276- 0277-
40 40 40 40 40	550 700 900 1,200 1,500	50 50 50 50 50	0.480 0.380 0.295 0.220 0.175	0.322 0.255 0.197 0.147 0.117	74 84 95 110 120	440 500 570 660 720	0.90 1.15 1.20 1.55 2.05	H 1 H 2 J 1 J 2 K 2	0278- 0279- 0280- 0281- 0282-
40 40 40 40	1,700 2,300 2,900 3,600	50 50 50 50	0.155 0.115 0.091 0.074	0.104 0.077 0.061 0.050	130 150 170 189	780 900 1020 1130	2.15 2.60 3.40 4.10	J 3 J 4 K 4 K 5	0283- 0284- 0285- 0286-
50 50 50 50 50	300 400 530 700 870	75 75 75 75 75	0.430 0.325 0.245 0.185 0.150	0.280 0.212 0.160 0.120 0.098	61 71 82 94 104	370 430 490 560 620	0.93 1.15 1.25 1.60 2.10	H 1 H 2 J 1 J 2 K 2	0287- 0288- 0289- 0290- 0291-
50 50 50 50	1,000 1,200 1,600 2,000	75 75 75 75	0.130 0.108 0.081 0.065	0.085 0.070 0.053 0.042	112 122 141 159	670 730 850 950	2.15 2.80 3.40 4.25	J 3 K 3 K 4 K 5	0292- 0293- 0294- 0295-
75 75 75 75 75 75	200 260 350 450 570	100 100 100 100 100	0.650 0.500 0.370 0.290 0.230	0.384 0.295 0.218 0.171 0.136	64 70 81 92 103	380 420 490 550 620	0.78 1.00 1.10 1.40 1.85	H 1 H 2 J 1 J 2 K 2	0296- 0297- 0298- 0299- 0300-
75 75 75 75 75	650 850 1,000 1,300	100 100 100 100	0.200 0.153 0.130 0.100	0.118 0.090 0.077 0.059	110 126 137 156	660 760 820 940	1.95 2.25 2.95 3.55	J 3 J 4 K 4 K 5	0301 - 0302 - 0303 - 0304 -
100 100 100 100 100	130 170 230 300 380	125 125 125 125 124 125	1.000 0.765 0.565 0.435 0.340	0.530 0.405 0.300 0.230 0.180	57 65 76 86 97	340 390 460 520 580	0.70 0.90 0.93 1.20 1.55	H 1 H 2 J 1 J 2 K 2	0305- 0306- 0307- 0308- 0309-

FIGURE 704-3. <u>Electrolytic (aluminum oxide)</u>, <u>fixed capacitors</u> - Continued.

STANDARD CAPACITORS

STYLE CUR19 (MIL-C-39018/7) - CONTINUED

OPERATING TEMPERATURE RANGE -55 TO +105°C -- POLARIZED, INSULATED


CAPACITANCE TOLERANCE -10 TO +75%

DC rated voltage 105°C	Capaci- tance	DC surge voltage	ESR(Max) 120 Hz, 25°C	Impedance (Max) 25°C 10 kHz- 1 MHz	DC 1 25°C	eakage 85°C 105°C	RMS ripple current 1/ 10°C rise 10 kHz-1 MHz	Case size	Dash number High 2/ frequency vibration
Volts	υF	Volts	<u>Ohms</u>	<u>Ohms</u>		<u>μA</u>	Amperes		
100	430	125	0.300	0.159	104	620	1.60	J 3	0310-
100	550	125	0.235	0.125	118	710	2.10	K 3	0311-
100	700	125	0.185	0.098	132	790	2.65	K 4	0312-
100	850	125	0.150	0.080	147	880	3.15	K 5	0313-
150	70	200	1.850	0.780	51	310	0.65	H 1	0314-
150	90	200	1.450	0.610	58	350	0.80	H 2	0315-
150	120	200	1.080	0.455	67	400	0.83	J 1	0316-
150	150	200	0.860	0.362	75	450	1.10	K 1	0317-
150	200	200	0.650	0.273	87	520	1.40	K 2	0318-
150	300	200	0.430	0.181	106	640	1.80	J 4	0319-
150	380	200	0.340	0.143	120	720	2.35	K 4	0320-
150	470	200	0.280	0.096	133	800	2.85	K 5	0321-
200	50	250	2.600	0.780	50	300	0.60	H 1	0322-
200	85	250	1.530	0.460	65	390	0.75	J 1	0323-
200	100	250	1.300	0.390	71	430	0.95	J 2	0324-
200	150	250	0.865	0.259	87	520	1.25	J 3	0325-
200	200	250	0.650	0.195	100	600	1.67	K 3	0326-
200	250	250	0.520	0.156	112	670	1.90	J 5	0327-
200	320	250	0.405	0.122	126	760	2.50	K 5	0328-

^{1/} The ripple current values shown are representative values not supported by test data. See figure 704-1 and table 704-IV for temperature and frequency factors.
2/ The last letter in the dash number will indicate FR level (M, P, R or S).

FIGURE 704-3. <u>Electrolytic (aluminum oxide)</u>, <u>fixed capacitors</u> - Continued.

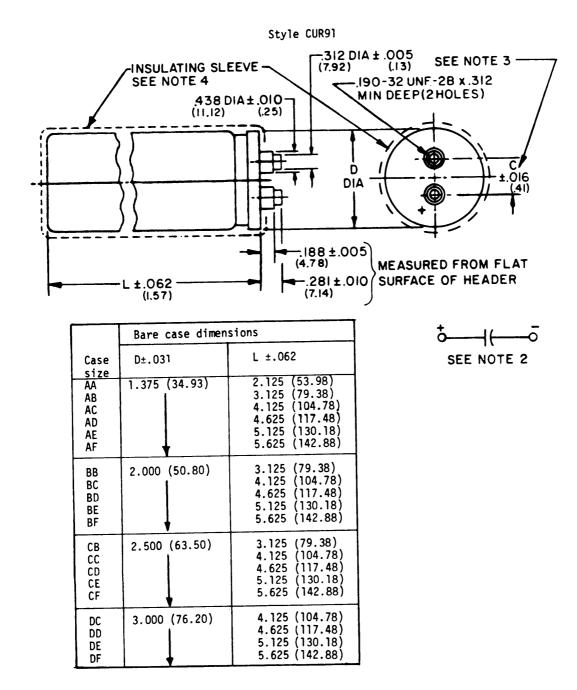
Style CUR71

	Dimer	sions			imensions
Case code	L ±.062 (1.57)	D ±.031 (.79)	Case code	L ±.062 (1.57)	D ±.031 (.79)
A0 B0 C0 D0 E0 F0 A1 B1 C1	2.125 (53.98) 3.125 (79.38) 4.125 (104.78) 4.625 (117.48) 5.125 (130.18) 5.625 (142.88) 2.125 (53.98) 3.125 (79.38) 4.125 (104.78) 4.625 (117.48)	1.375 (34.93) 1.375 (34.93) 1.375 (34.93) 1.375 (34.93) 1.375 (34.93) 1.375 (34.93) 2.000 (50.80) 2.000 (50.80) 2.000 (50.80) 2.000 (50.80)	E1 B2 C2 D2 E2 C3 D3 E3 F3	5.125 (130.18) 3.125 (79.38) 4.125 (104.78) 4.625 (117.48) 5.125 (130.18) 4.125 (104.78) 4.625 (117.48) 5.125 (130.18) 5.625 (142.88)	2.000 (50.80) 2.500 (63.60) 2.500 (63.60) 2.500 (63.60) 2.500 (63.60) 3.000 (76.20) 3.000 (76.20) 3.000 (76.20) 3.000 (76.20)

- NOTES:
 1. "C" dimension is .500 (12.70 mm) for case diameter of 1.375 (34.93 mm); .875 (22.23 mm) +.015 (.38mm) -.078 (1.98 mm) for case diameter of 2.000 (50.80 mm); 1.125 (28.58 mm) ±.016 (.41 mm) for case diameter case diameter of 2.5 (63.5 mm); and 1.250 (31.75 mm) \pm .016 (.41 mm) for case diameter of 3.0 (76.2 mm).
- 2. Insulating sleeve thickness does not exceed .016 (.41mm) and overlaps the ends of the capaci tor body.
- 3. These capacitors are to be mounted by means of a wraparound, foot-type bracket.

FIGURE 704-3. Electrolytic (aluminum oxide), fixed capacitors - Continued.

STANDARD CAPACITORS


STYLE CUR71 (MIL-C-39018/4) - Continued

OPERATING TEMPERATURE RANGE -55° TO +85°C -- POLARIZED, INSULATED -- CAPACITANCE TOLERANCE -10, +50%

DC rated voltage at 85°C	 Capaci- tance 	 DC surge voltage 85°C	Equiv ser resis 25°C	ies	Maximum impedance at -55°C and 120 Hz 		C kage 1 185°C	Maximum AC ripple current 1/ 120 Hz at 85 C		Part No. M39018/04- <u>2</u> /
Volts	μF	Volts	[[Ω	Ω Ω	i m	A	Amps	 	
200 200 200 200 200 200 200 200 200 200	150 220 330 470 680 11,000 1500 2,200 3,300 4,100	250 250 250 250 250 250 250 250 250 250	1.000 .700 .480 .320 .230 .200 .130 .090 .060 .048	1.000 .680 .480 .320	.90	.31 .39 .46 .55 .72 .82 1.00 1.20			A0	2219- 2220- 2221- 2222- 2223- 2224- 2225- 2226- 2227- 2228-
250 250 250 250 250 250 250 250 250	100 220 330 470 680 1,000 1,500 2,200 3,300	300 300 300 300 300 300 300 300 300	.400 .420 .300	2.000 .900 .600 .450 .310 .210 .140 .110 .075		.35 .43 .51 .62 .75		.60 1.10 1.40 1.90 2.50 3.00 3.70 5.20 7.70	A0	2229- 2230- 2231- 2232- 2233- 2234- 2235- 2236- 2237-
300 300 300 300 300 300 300 300 300 300	100 150 220 330 470 680 1,000 1,500 2,200 3,400	350 350 350 350 350 350 350 350 350 350	.900	1.850 1.250 .850 .850 .560 .400 .270 .190 .130 .130 .100	1.70 1.70	.32 .41 .50	16.00 17.28	.60 .90 1.10 1.40 2.00 2.60 3.50 4.20 5.80 6.70	A0 B0 C0 B1 C1 B2 C2 C3 E3 F3	2238- 2239- 2240- 2242- 2243- 2244- 2245- 2246- 2247- 2249-
350 350 350 350 350 350 350 350 350	68 150 220 330 470 680 1,000 1,500 1,800 2,200		[2.300 [1.100] [.700] [.480] [.340] [.230] [.160] [.130] [.110] [.090]	.800 .560 .400 .270 .180	4.00 2.70 1.70 1.50	.34 .42 .54 .61 .78	7.13	.50 .97 1.10 1.40 2.10 3.30 4.00 5.00 5.70 6.70	A0 A1 C0 C0 C1 C2 E2 D3 E3	2250- 2251- 2252- 2253- 2254- 2255- 2256- 2257- 2258- 2259-

 $[\]underline{1/}$ The ripple current values shown are representative values not supported by test data.

^{2/} The last letter in the dash number will indicate FR level (M, P, R or S).

NOTES:

- 1. Capacitors are mounted by means of a wraparound, footed-type bracket.
- 2. There is an indeterminate resistance between the metal case and the negative terminal.
- 3. "C" dimension is .500 (12.70 mm) for case diameter of 1.375 (34.93 mm); .875 (22.23 mm) for case diameter of 2.000 (50.80 mm) 1.125 (28.58 mm) for case diameter of 2.500 (63.50 mm); and 1.250 (31.75 mm) for case diameter of 3.000 (76.20 mm),
- 4. Insulating sleeve thickness shall not exceed .016 (.41 mm) and shall overlap the ends of the capacitor body.

FIGURE 704-3. Electrolytic (aluminum oxide), fixed capacitors - Continued.

STANDARD CAPACITORS STYLE CUR91 (MIL-C-39018/6) OPERATING TEMPERATURE RANGE -55 TO +105°C -- POLARIZED, INSULATED - CAPACITANCE TOLERANCE -10. +50%

DC rated Capaci-DC surge ESR(Max) Impedance DC leakage Maximum Case Dash vol tage AC ripple current 1/ tance voltage (max) (max) size number @ 105°C @ 105°C (nom) @ -55°C (120 Hz) 25°C 105°C 2/ 120 Hz @ 85°C Volts μF Volts Ohms 0hms mΑ **Amperes** 5 8,000 0.30 .045 1.28 2.70 6.0 0001-AA 5 17,000 7 .029 0.61 0.44 3.96 8.0 0002-AB 5 25,000 7 .023 0.41 0.53 9.2 4.77 AC 0003-5 29,000 7 .018 0.36 0.57 10.4 5.13 ΑD 0004-34,000 .015 0.31 0.62 5.58 11.6 AΕ 0005-5 7 37,000 .013 0.28 0.65 5.85 12.2 AF 0006-5 40,000 7 .019 0.28 0.67 6.03 12.6 BB 0007-5 60,000 7 .014 0.19 0.82 7.38 15.1 ВC -8000 5 7 67,000 .013 0.17 0.87 7.83 16.3 CB 0009-5 70,000 7 .012 0.16 0.89 8.01 16.3 BD 0010-5 80,000 7 .012 0.14 0.95 8.55 16.6 BE 0011-5 90,000 7 .010 0.13 1.00 9.00 16.9 BF 0012-5 100,000 7 .010 0.12 1.06 9.54 19.1 CC 0013-110,000 5 7 .010 0.11 1.11 9.99 21.5 CD 0014-5 130,000 .009 0.10 1.21 10.90 23.0 CE 0015-5 7 150,000 .008 .091 1.30 11.70 23.8 CF 0016-5 7 150,000 .010 .091 1.30 h1.70 24.1 DC 0017-5 170,000 .010 .091 1.38 24.7 12.40 DD 0018-5 7 200,000 .009 .084 1.50 13.50 26.6 DE 0019-5 220,000 7 .008 .084 1.57 14.10 26.8 DF 0020-10 5,000 15 .045 0.84 0.34 3.06 0021-6.0 AA 10,000 10 15 .028 0.42 0.47 4.23 8.2 AΒ 0022-10 15,000 15 .022 0.28 0.58 5.22 9.4 AC 0023-10 17,000 15 .018 0.25 0.62 5.58 10.4 ΑD 0024-10 20,000 15 .015 0.21 0.67 11.4 ΑE 0025-6.03 10 22,000 15 .015 0.19 0.70 ΑF 0026-6.30 12.2 24,000 10 15 .020 0.18 0.73 0027-6.57 12.2 BB .016 10 37,000 15 0.12 0.91 8.21 14.6 ВC 0028-10 42,000 15 .016 8.75 16.0 0.11 0.97 CB 0029-10 43,000 15 .013 0.10 0.98 8.85 15.4 BD 0030-10 48,000 15 .012 .093 1.04 9.35 16.3 BE 0031-10 55,000 15 .011 .081 1.11 9.99 ВF 0032-16.8 .011 64,000 10 15 .069 1.20 10.8 19.0 CC 0033-10 75,000 15 .010 .060 1.30 11.7 21.5 CD 0034-.009 86,000 10 15 .054 1.39 12.5 22.2 CE 0035-.051 10 94,000 15 .014 1.45 20.0 13.1 DC. 0036-

FIGURE 704-3. Electrolytic (aluminum oxide), fixed capacitors - Continued.

STANDARD CAPACITORS STYLE CUR91 (MIL-C-39018/6) - CONTINUED OPERATING TEMPERATURE RANGE -55 TO +105°C -- POLARIZED, INSULATED -CAPACITANCE TOLERANCE -10, +50%

DC rated voltage @ 105°C	Capaci- tance (nom)	DC surge voltage @ 105°C	ESR(Max)	Impedance (max) @ -55°C	DC leakage (max)		Maximum AC ripple current <u>l</u> /	Case size	Dash number
	, , , , , , , , , , , , , , , , , , ,			(120 Hz)	25°C	105°C	120 Hz @ 85°C		<u> </u>
Volts	<u>μ</u> F	<u>Volts</u>	<u>Oʻnms</u>	<u>Ohms</u>	mA		Amperes		
10 10 10 10	96,000 110,000 120,000 140,000	15 15 15 15	.010 .010 .010 .010	.051 .048 .045 .042	1.47 1.57 1.64 1.77	13.2 14.1 14.8 16.0	23.0 22.7 23.4 24.2	CF DD DE DF	003 7- 0038- 0039- 0040-
15 15 15 15 15 15	4,000 8,000 12,000 14,000 16,000 18,000	20 20 20 20 20 20	.043 .025 .024 .019 .017	1.04 0.52 0.35 0.30 0.26 0.23	0.37 0.52 0.64 0.69 0.74 0.78	3.31 4.68 5.73 6.19 6.61 7.01	6.5 8.7 9.0 10.7 12.0 13.6	AA AB AC AD AE AF	0041- 0042- 0043- 0044- 0045- 0046-
15 15 15 15 15	20,000 30,000 35,000 40,000 42,000	20 20 20 20 20 20	.018 .014 .011 .010 .012	0.22 0.14 0.12 0.11 0.11	0.82 1.00 1.09 1.16 1.19	7.39 9.05 9.78 10.5 10.7	13.0 15.2 17.1 18.2 18.2	BB BC BD BE CB	0047- 0048- 0049- 0050- 0051-
15 15 15 15 15	45,000 51,000 59,000 68,000 76,000	20 20 20 20 20 20	010. 010. 010. 900. 800.	.096 .087 .075 .066	1.23 1.31 1.41 1.51 1.60	11.1 11.8 12.7 13.6 14.4	19.5 20.7 21.8 23.1 24.5	BF CC CD CE CF	0052- 0053- 0054- 0055- 0056-
15 15 15 15	76,000 89,000 100,000 110,000	20 20 20 20	.010 .009 .009 .008	.060 .054 .051 .048	1.60 1.73 1.84 1.93	14.4 15.6 16.5 17.3	23.1 25.7 26.6 27.5	DC DD DE DF	0057- 0058- 0059- 0060-
20 20 20 20 20 20 20	2,800 5,100 8,600 10,000 11,000 13,000	30 30 30 30 30 30	.044 .026 .020 .019 .017 .016	1.47 0.81 0.48 0.41 0.37 0.32	0.35 0.48 0.62 0.67 0.70	3.19 4.31 5.60 6.04 6.33 6.88	6.1 8.5 9.9 11.0 11.7 12.0	AA AB AC AD AE AF	0061- 0062- 0063- 0064- 0065- 0066-
20 20 20 20 20	20,000 23,000 24,000 26,000	30 30 30 30	.013 .013 .016 .012	0.21 0.18 0.17 0.16	0.95 1.02 1.04 1.08	8.54 9.16 9.35 9.73	15.4 15.8 16.0 16.5	BC BD CB BE	0067 - 0068 - 0069 - 0070 -
20 20 20 20 20 20	30,000 37,000 43,000 47,000 54,000	30 30 30 30 30	.012 .012 .011 .010 .012	0.14 0.11 0.10 .090 .081	1.16 1.29 1.39 1.45 1.56	10.5 11.6 12.5 13.1 14.0	17.2 18.8 19.9 21.2 22.0	BF CC CD CE DC	0071 - 0072 - 0073 - 0074 - 0075 -

FIGURE 704-3. <u>Electrolytic (aluminum oxide)</u>, <u>fixed capacitors</u> - Continued.

STANDARD CAPACITORS STYLE CUR91 (MIL-C-39018/6) - CONTINUED OPERATING TEMPERATURE RANGE -55 TO +105°C -- POLARIZED, INSULATED - CAPACITANCE TOLERANCE -10. +50%

DC rated voltage	Capaci- tance	DC surge	ESR(Max)	Impedance (max)	DC leakage (max)		Maximum AC ripple	Case size	Dash number
@ 105°C	(nom)	@ 105°C		@ -55°Ć (120 Hz)	25°C	105°C	current <u>1</u> / 120 Hz @ 85°C		<u>2</u> /
<u>Volts</u>	μF	<u>Volts</u>	<u>Ohms</u>	<u>Ohms</u>		mA_	Ampères		
20 20 20 20 20	55,000 63,000 73,000 82,000	30 30 30 30	.009 .009 .009 .008	.078 .069 .063 .057	1.57 1.68 1.81 1.92	14.2 15.2 16.3 17.3	22.6 24.5 25.9 26.5	CF DD DE DF	0076 - 0077 - 0078 - 0079 -
25 25 25 25 25 25 25	2,500 5,500 7,500 8,700 10,000 11,000	40 40 40 40 40 40	.050 .031 .021 .020 .019	1.64 0.75 0.55 0.47 0.41 0.37	0.38 0.56 0.65 0.70 0.75 0.79	3.38 5.00 5.85 6.30 6.75 7.08	5.7 7.7 9.6 10.0 11.0	AA AB AC AD AE AF	0080 - 0081 - 0082 - 0083 - 0084 - 0085 -
25 25 25 25 25	17,000 20,000 20,000 23,000	40 40 40 40	.015 .012 .011 .011	0.25 0.21 0.21 0.18	0.98 1.06 1.06 1.14	8.80 9.54 9.54 10.2	14.5 16.1 16.8 16.8	BC BD CB BE	0086- 0087- 0088- 0089-
25 25 25 25 25 25	25,000 30,000 35,000 40,000 44,000	40 40 40 40 40	.011 .011 .010 .009 .015	0.17 0.14 0.12 0.11 0.10	1.19 1.30 1.40 1.50 1.57	10.7 11.7 12.6 13.5 14.2	17.4 19.6 20.7 22.1 19.4	BF CC CD CE DC	0090- 0091- 0092- 0093- 0094-
25 25 25 25 25	45,000 52,000 60,000 67,000	40 40 40 40	.009 .009 .009 .008	.093 .081 .072 .066	1.59 1.71 1.84 1.94	14.3 15.4 16.5 17.5	23.2 25.5 26.5 27.5	CF DD DE DF	0095- 0096- 0097- 0098-
30 30 30 30 30 30	2,200 4,400 6,600 7,700 8,800 9,900	45 45 45 45 45 45	.054 .033 .025 .020 .019	1.86 0.93 0.62 0.53 0.47 0.41	0.39 0.54 0.67 0.72 0.77 0.82	3.47 4.90 6.00 6.49 6.94 7.36	5.5 7.5 8.8 9.7 11.5	AA AB AC AD AE AF	0099- 0100- 0101- 0102- 0103- 0104-
30 30 30 30 30	10,000 15,000 17,000 18,000 20,000	45 45 45 45 45	.020 .015 .014 .016	0.41 0.28 0.24 0.23 0.21	0.82 1.00 1.07 1.10 1.16	7.39 9.06 9.64 9.92 10.5	12.0 14.3 15.1 15.8 15.9	BB BC BD CB BE	0105- 0106- 0107- 0108- 0109-
30 30 30 30 30	22,000 26,000 30,000 34,000 38,000	45 45 45 45 45	.012 .012 .010 .010 .015	0.19 0.16 0.14 0.12 0.11	1.22 1.32 1.42 1.51 1.60	11.0 11.9 12.8 13.6 14.4	17.0 18.6 20.3 21.0 19.2	BF CC CD CE DC	0110- 0111- 0112- 0113- 0114-

FIGURE 704-3. <u>Electrolytic (aluminum oxide)</u>, <u>fixed capacitors</u> - Continued.

STANDARD CAPACITORS STYLE CUR91 (MIL-C-39018/6) - CONTINUED OPERATING TEMPERATURE RANGE -55 TO +105°C -- POLARIZED, INSULATED - CAPACITANCE TOLERANCE -10, +50%

DC leakage Dash DC rated Capaci-DC surge ESR (Max) Impedance Maximum voltage tance voltage (max) (max) AC ripple Case number 25°C 105°C 0 -55°C @ 105°C @ 105°C current 1/ size (nom) 2/ 120 Hz @ (120 Hz) 85°C Amperes Volts μF Volts Ohms Ohms mΑ 39,000 0.11 CF 0115-30 45 1.62 14.6 21.8 .010 0116-45 1.74 15.7 23.3 DD 30 45,000 .010 .093 1.87 25.3 30 52,000 45 .081 16.9 DE 0117-.009 0118-30 58,000 45 .008 .075 1.98 17.8 27.0 DF 55 2.28 0.40 5.0 0119-40 1,800 .065 3.62 AA 40 3,700 55 1.11 0.58 5.19 8.0 ΑB 0120-.038 9.2 AC 40 5,500 55 .033 0.75 0.70 6.33 0121-40 6,400 55 0.64 0.76 6.83 10.7 AD 0122-.023 40 7,400 55 .020 0.56 0.82 7.34 11.6 ΑE 0123-55 0.50 0.86 7.73 12.4 AF 0124-40 8,200 .018 55 0.90 8.10 BB 0125 40 9,000 0.46 12.4 .019 13,000 55 0.32 1.08 9.73 14.7 BC 0126-40 .016 16.0 55 0.28 1.16 10.5 BD 0127-40 15,000 .014 15,000 55 0.28 1.16 10.5 16.8 CB 0128-40 .014 18,000 55 1.27 11.5 17.9 ΒE 0129~ 40 0.23 .013 BF 0.22 11.8 18.1 0130-40 19,000 55 1.31 .011 0.19 1.41 19.6 0131-40 22,000 55 .011 12.7 CC 55 25,000 1.50 21.0 CD 40 .010 0.17 13.5 0132-55 14.3 22.3 CE 0133-40 28,000 .009 0.15 1.59 55 1.70 15.3 22.2 DC 0134-40 32,000 .009 0.13 CF 33,000 55 23.1 0135-40 .010 0.13 1.72 15.5 37,000 55 16.4 17.7 24.2 40 .010 0.11 1.82 DD 0136-25.5 55 DE 0137-40 43,000 .009 0.10 1.97 48,000 55 .008 27.1 40 .090 2.08 18.7 DF 0138-.077 1.94 0.40 3.57 4.6 1,400 75 AA 0139-50 7.7 0140-50 2,900 75 .037 0.94 0.57 5.14 AB 75 0.64 0.70 8.8 0141-50 4,400 6.33 AC .027 50 5,100 75 .024 0.53 0.76 6.82 9.9 AD 0142-75 10.9 50 5,800 .021 0.47 0.81 7.27 ΑE 0143-75 50 6,600 .020 0.41 0.86 7.76 11.5 AF 0144-50 9,000 75 .018 0.30 1.00 9.05 13.0 BC 0145-.017 BD 0146-50 11,000 75 0.25 1.11 10.0 15.2 75 50 12,000 .016 0.23 1.16 10.5 16.4 CB 0147-75 0148-50 13,000 0.21 1.21 10.9 16.1 BE .014 15,000 .012 16.8 50 75 0.18 BF 0149-1.30 11.7 50 17,000 75 .012 0.16 1.38 12.4 19.1 CC 0150-50 20,000 75 20.4 CD 0151-.010 0.14 1.50 13.5 50 22,000 75 .009 0.12 1.57 14.2 21.6 CE 0152-50 25,000 75 .009 CF 1.68 15.1 22.4 0153-0.11

FIGURE 704-3. Electrolytic (aluminum oxide), fixed capacitors - Continued.

STANDARD CAPACITORS STYLE CUR91 (MIL-C-39018/6) - CONTINUED OPERATING TEMPERATURE RANGE -55 TO +105°C -- POLARIZED, INSULATED - CAPACITANCE TOLERANCE -10, +50%

DC rated voltage	Capaci- tance	DC surge voltage	ESR(Max)	Impedance (max)	DC 1	eakage ax)	Maximum AC ripple	Case size	Dash number
@ 105°C	(nom)	@ 105°C		@ -55°C (120 Hz)	25°C	105°C	current <u>1</u> / 120 Hz @ 85°C		<u>2/</u>
<u>Volts</u>	μF	<u>Volts</u>	<u>Ohms</u>	<u>Ohms</u>	!	mA_	Amperes		
50 50 50 50	25,000 30,000 34,000 39,000	75 75 75 75 75	.013 .011 .010	0.11 0.10 .082 .072	1.68 1.84 1.96 2.09	15.1 16.5 17.6 18.9	20.7 22.5 24.0 26.4	DC DD DE DF	0154- 0155- 0156- 0157-
75 75 75 75 75 75 75	820 1,600 2,300 2,600 3,000 3,300	100 100 100 100 100 100	.128 .068 .048 .044 .039	3.28 1.68 1.17 1.03 0.90 0.81	0.30 0.41 0.52 0.55 0.58 0.64	2.69 3.70 4.68 4.96 5.23 5.73	4.0 6.6 7.7 8.6 9.3 10.3	AA AB AC AD AE AF	0158- 0159- 0160- 0161- 0162- 0163-
75 75 75 75 75 75	3,700 5,400 5,700 6,200 7,100	100 100 100 100 100	.033 .021 .021 .020 .018	0.73 0.50 0.48 0.44 0.38	0.66 0.81 0.86 0.87 0.92	5.96 7.30 7.76 7.84 8.27	10.0 12.9 13.9 13.4 14.2	BB BC CB BD BE	0164- 0165- 0166- 0167- 0168-
75 75 75 75 75 75	7,900 8,500 10,000 11,000 13,000	100 100 100 100 100	.017 .015 .013 .011	0.30 0.32 0. 2 7 0.25 0.21	0.99 1.06 1.14 1.22 1.29	8.90 9.50 10.3 11.0	15.1 16.7 18.6 19.8 20.6	BF CC CD CE CF	0169- 0170- 0171- 0172- 0173-
75 75 75 75 75	13,000 15,000 17,000 19,000	100 100 100 100	.015 .013 .012 .010	0.21 0.18 0.16 0.14	1.27 1.36 1.48 1.54	11.4 12.3 13.3 13.8	19.4 20.7 22.1 23.7	DC DD DE DF	0174- 0175- 0176- 0177-
100 100 100 100 100 100	410 810 1,200 1,400 1,500 1,700	150 150 150 150 150 150	.200 .105 .074 .065 .058	6.58 3.33 2.25 1.93 1.79 1.59	0.24 0.34 0.42 0.45 0.47 0.50	2.13 3.02 3.82 4.05 4.27 4.48	3.5 4.8 6.3 7.3 7.8 8.2	AA AB AC AD AE AF	0178- 0179- 0180- 0181- 0182- 0183-
100 100 100 100 100	1,900 2,800 2,900 3,200 3,600	150 150 150 150 150	.048 .033 .045 .029	1.42 0.97 0.74 0.84 0.76	0.52 0.64 0.69 0.69 0.73	4.68 5.73 6.19 6.19 6.61	9.0 10.8 9.8 12.0 13.0	BB BC CB BD BE	0184- 0185- 0186- 0187- 0188-
100 100 100 100 100	4,100 4,400 5,100 5,900 6,500	150 150 150 150 150	.023 .025 .022 .020 .018	0.66 0.62 0.53 0.46 0.42	0.76 0.84 0.90 0.96 1.02	6.88 7.52 8.10 8.64 9.16	13.8 13.4 14.0 15.5 17.6	BF CC CD CE DC	0189- 0190- 0191- 0192- 0193-

FIGURE 704-3. <u>Electrolytic (aluminum oside)</u>, <u>fixed capacitors</u> - Continued.

STANDARD CAPACITORS

STYLE CUR91 (MIL-C-39018/6) - CONTINUED

OPERATING TEMPERATURE RANGE -55 TO +105°C -- POLARIZED, INSULATED -CAPACITANCE TOLERANCE -10, +50%

DC rated voltage @ 105°C	Capaci- tance (nom)	DC surge voltage @ 105°C	ESR(Max)	Impedance (max) @ -55°C (120 Hz)		leakage ax) 105°C	Maximum AC ripple current1/ 120 Hz @ 85°C	Case size	Dash number <u>2</u> /
Volts	μF	<u>Volts</u>	<u>Ohms</u>	<u>Ohms</u>		mA	Amperes		
100	6,600	150	.017	0.41	1.00	9.06	16.5	CF	0194 -
100	7,600	150	.017	0.36	1.11	10.0	18.2	DD	0195 -
100	8,700	150	.016	0.31	1.16	10.5	18.9	DE	0196 -
100	9,500	150	.015	0.29	1.23	11.1	19.6	DF	0197 -
150	210	200	.510	12.8	0.24	2.16	1.10	AA	0198 -
150	380	200	.280	7.08	0.34	3.09	1.90	AB	0199 -
150	550	200	.194	4.88	0.41	3.70	2.60	AC	0200 -
150	640	200	.168	4.18	0.49	4.37	3.30	AE	0201 -
150	720	200	.140	3.72	0.51	4.62	3.60	AF	0202 -
150	900	200	.130	2.98	0.52	4.68	3.60	BB	0203 -
150	1,300	200	.100	2.08	0.64	5.73	4.60	BC	0204 -
150	1,400	200	.090	1.92	0.66	5.96	5.20	CB	0205 -
150	1,700	200	.075	1.08	0.71	6.40	6.20	BE	0206 -
150	1,900	200	.060	1.42	0.76	6.82	6.70	BF	0207 -
150	2,100	200	.054	1.28	0.82	7.39	7.10	CC	0208 -
150	2,800	200	.044	0.96	0.95	8.59	9.10	CE	0209 -
150	3,100	200	.037	0.86	1.00	9.06	9.60	CF	0210 -
150	3,100	200	.038	0.86	1.02	9.21	9.50	DC	0211 -
150	4,200	200	.030	0.64	1.16	10.5	11.5	DE	0212 -
150	4,700	200	.026	0.58	1.23	11.1	12.2	DF	0213 -

^{1/} The ripple current values shown are representative values not supported by test data. See table 704-V for frequency and temperature factors.
2/ The last letter in the dash number will indicate FR level (M, P, R or S).

FIGURE 704-3. <u>Electrolytic (aluminum oxide)</u>, <u>fixed capacitors</u> - Continued.

Downloaded from http://www.everyspec.com

SECTION 800

CAPACITORS, FIXED, PAPER-PLASTIC OR PLASTIC DIELECTRIC, ESTABLISHED RELIABILITY

<u>Section</u>	<u>Applicable specification</u>
801.	Capacitors, Fixed, Plastic (or Paper-Plastic) Dielectric, (Hermetically Sealed in Metal Cases), Established Reliability MIL-C-19978
802.	Capacitors, Fixed, Metallized, Paper Plastic Film or Plastic Film Dielectric, Direct and Alternating Current (Hermetically Sealed in Metal Cases), Established Reliability MIL-C-39022
803.	Capacitors, Fixed, Plastic (or Metallized Plastic) Dielectric, DC, In Nonmetal Cases, Established Reliaiblity MIL-C-55514
	FOR ARMY AND AIR FORCE USE ONLY NOT FOR NAVY USE
804.	Capacitors, Fixed, Supermetallized, plastic Film Dielectric, (DC, AC, or DC and AC), Hermetically Sealed n Metal Cases. Established Reliability

Downloaded from http://www.everyspec.com

SECTION 801

CAPACITORS, FIXED, PLASTIC (OR PAPER-PLASTIC) DIELECTRIC, (HERMETICALLY SEALED IN METAL CASES), ESTABLISHED RELIABILITY

STYLES CQR07, CQR09, CQR12, CQR13, CQR29, CQR32, AND CQR33

(APPLICABLE SPECIFICATION: MIL-C-19978)

1. SCOPE. This section covers established reliability, plastic (or paper-plastic) dielectric, fixed capacitors, hermetically sealed in metal cases. These capacitors have failure rate levels ranging from 1.0 to 0.001 percent per 1,000 hours. The failure rate levels are established at a 90-percent confidence level and are based on operation at maximum rated voltage and maximum rated temperature.

2. APPLICATION INFORMATION.

2.1 <u>Use.</u> These capacitors are designed for use in circuit applications requiring high insulation resistance, low dielectric absorption, or low loss factor over wide temperature ranges, and where the ac component of the impressed voltage is small with respect to the dc voltage rating.

NOTE: These capacitors may be used where an ac component is present provided that (1) the sum of the dc voltage and the peak ac voltage does not exceed the dc voltage rating or (2) the peak ac voltage does not exceed 20 percent of the dc voltage rating at 60 Hz, 15 percent at 120 Hz; or 1 percent at 10,000 Hz. Where heavy transient or pulse currents are encountered, the requirements of MIL-C-19978 are not sufficient to guarantee satisfactory performance, and due allowance must therefore be made in the selection of a capacitor.

- 2.1.1 Polyethylene terephthalate (characteristic M capacitors). Characteristic M capacitors are intended for high-temperature applications similar to those served by hermetically-sealed paper capacitors, but where high insulation resistance at the upper temperature limits is required.
- 2.1.2 <u>Paper and polyethylene terephthalate (characteristic K capacitors).</u> Characteristic K capacitors are intended for applications where high insulation resistance is necessary.
- 2.1.3 <u>Polycarbonate (characteristic Q capacitors)</u>. Characteristic Q capacitors are intended for applications where minimum capacitance changes with temperature are required; these capacitors are especially suitable for use in tuned and precision timing circuits.
- 2.2 <u>Construction.</u> The present drive towards miniaturization, closer electrical tolerances, and higher operating temperatures is being met by the use of thin plastic-film dielectrics in the construction of capacitors. The greatest advantage of plastic-film dielectrics over natural dielectrics (such as paper and mica) is that the plastic film is a synthetic that can be made to meet specific requirements (such as thickness of dielectric and high heat resistance). Many plastic-film capacitors are not impregnated but are wound and encased "dry." Plastic dielectric capacitors have insulation resistance values far in excess of those for paper capacitors and, since they are nonabsorbent, their moisture characteristics are superior to those of mica.

There are several types of plastic films available for use as a capacitor dielectric. They may be used individually or in a combination with other films and with paper in order to obtain the compromised advantages of the specific electrical characteristics of each individual film. The more common films include polyethylene terephthalate and polycarbonate. When properly applied, plastic dielectric films lead to the solution of many special capacitor problems.

Capacitors using polyethylene terephthalate film as the dielectric are perhaps the most common of the plastic film types on the market today. Some manufacturers use only on sheet of plastic film for those with low voltage ratings whereas at least two sheets of paper are used unconventional paper types. The principal advantage of polyethylene terephthalate dielectric capacitors is the high order of insulation resistance values available over the dielectric's temperature range of -55° to +125°C; however, for military applications, the high temperature limit is +85°C. Polyethylene terephthalate dielectric capacitors have an insulation resistance that is normally about 100,000 megohms per microfarad at room temperature and about 25,000 megohms per microfarad at +85°C. These insulation resistance values decrease considerably when polyethylene terephthalate dielectric capacitors are impregnated. However, ahigher volt per mil rating is possible by impregnation and the possibility of corona and catastrophic failures due to pin holes in the dielectric are minimized.

- 2.3 <u>DC voltage ratings.</u> The voltage ratings for these capacitors vary over a range of 30 to 1,000 volts.
- 2.4 <u>Operating temperature range.</u> Characteristic M capacitors are suitable for operation over a temperature range of -65" to +85°C; characteristic Q capacitors are suitable for operation over a temperature range of -55° to +125°C; characteristic K capacitors are suitable for operation over a temperature range of -65° to +125° C.
- 2.5 <u>Barometric pressure (flashover) for metal-cased tubular capacitors.</u> The dc voltage that may be applied to metal-cased tubular capacitors at altitudes other than 80,000 feet maybe obtained from figure 801-1, except that the dc voltage rating must not be exceeded.

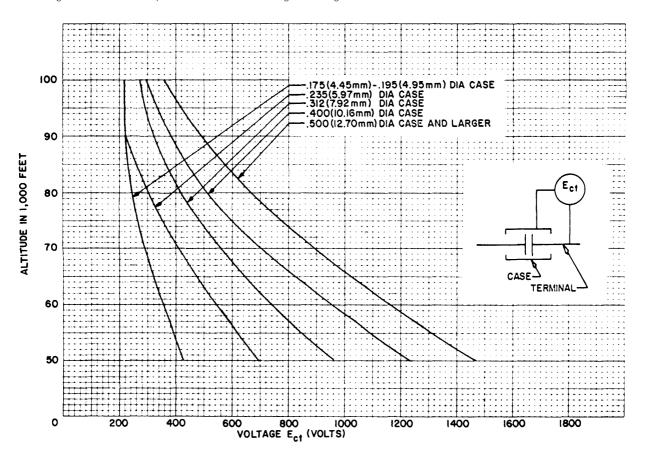


FIGURE 801-1. Permissible operating voltage at altitudes other than 80.000 feet.

- 3. ITEM IDENTIFICATION (see figures 801-2 and 801-3).
- 3.1 <u>Significant part number.</u> A significant part number is used for describing the capacitors as shown in figure 801-2.

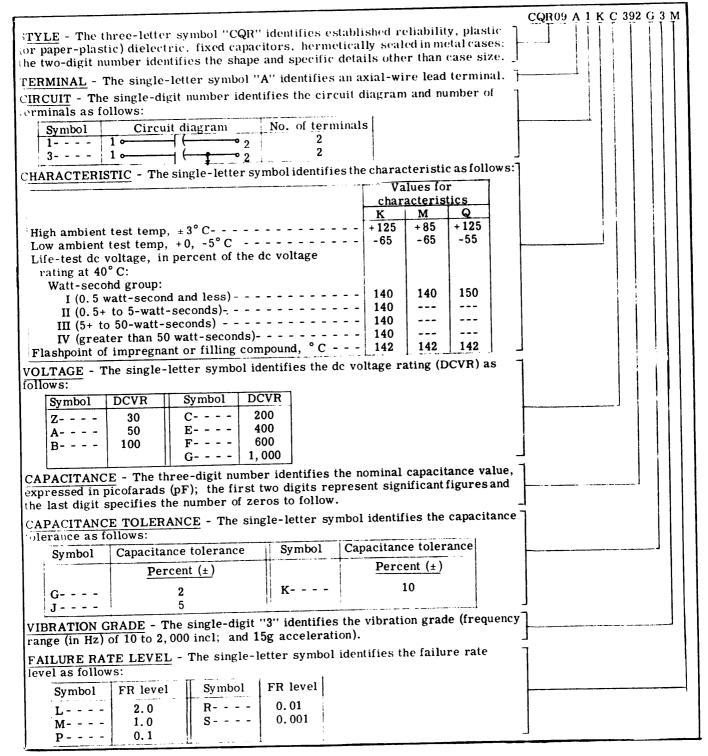
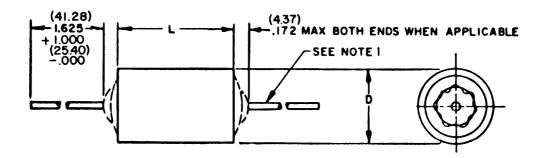



FIGURE 801-2. Significant part number example.

3.2 <u>Standard capacitors.</u> The standard capacitors availabelin this section are shown on figure 801-3.

801 (MIL-C-19978)

STYLE CQR07

NOTES:

- 1. Leads are of tinned solid wire, .020 (.51) for cases .175 (4.45) and .195 (4.95) in diameter; .025 (.64) for cases .235 (5.97) and .312 (7.92) diameter; and .032 (.81) for cases .400 (10.16) diameter and above. Tolerance on all lead wire diameters is +.004 (.10), -.001 (.03).
- 2. Capacitors with dimension L of 1.562 (39.67) or D of .562 (14.27) and larger, are not intended to be supported by their leads. These capacitors are provided with a supplementary means of mounting, such as a wrap-around band.

FIGURE 801-3. <u>Established reliability, plastic (or paper-plastic)</u> <u>dielectric, fixed capacitors.</u>

STANDARD CAPACITORS

STYLE CORO7 (MIL-C-19978/8)

CIRCUIT DIAGRAM 1 OR 3 POLYCARBONATE DIELECTRIC (CHARACTERISTIC Q) -CAPACITANCE TOLERANCE ± 5 OR ± 10 PERCENT -OPERATING TEMPERATURE RANGE -55° TO + 125°C

	Case dimensions (in inc				hes)	
Significant	DC	Capacitance	L + . 155	D + . 062 (1.57)		
part number 1/	voltage rating	(nom)	031	031 (.79)		
number 1/	lating		Circuit 1	Circuit 3	1	
	Volts	$\mu \mathbf{F}$				
	1				ŀ	
CQR07A-QA392-3-	50	.0039	.750 (19.05)	. 688 (17.48)	. 175 (4.45)	
CQR07A-QA472-3-	1	. 0047			.175 (4.45)	
CQR07A-QA562-3-	1	. 0056			. 195 (4. 95)	
CQR07A-QA682-3-	1 1	. 0068	1\.	V	. 195 (4. 95)	
CQR07A-QA393-3-		. 039	. 875 (22.23)	. 812 (20, 62)	. 312 (7.92)	
CQR07A-QA473-3-		. 047			.312 (7.92)	
CQR07A-QA563-3-]	. 056			. 400 (10. 16)	
CQR07A-QA683-3-		. 068		1		
CQR07A-QA823-3-		. 082			,	
CQR07A-QA104-3-		.1	1 275 (04 00)	1 210 /22 20\	!	
CQR07A-QA124-3-		. 12	1.375 (34.93)	1.312 (33.32)	:	
CQR07A-QA154-3-		. 15	1.375 (34.93)	1.312 (33.32)	. 562 (14.27)	
CQR07A-QA184-3-		. 18	1.125 (28.58) 1.125 (28.58)	1.062 (26.97) 1.062 (26.97)	. 302 (14.21)	
CQR07A-QA224-3-		. 22	1 ' '	1.312 (33.32)		
CQR07A-QA274-3-		.27	1.375 (34.93) 1.375 (34.93)	1.312 (33.32)		
CQR07A-QA334-3-		. 33	1.875 (47.63)	1.812 (46.02)	1	
CQR07A-QA394-3-		. 39	1.873 (41.03)	1.012 (40.02)		
CQR07A-QA474-3-		.56			. 670 (17. 02)	
CQR07A-QA564-3- CQR07A-QA684-3-		. 68			.670 (17.02)	
CQR07A-QA824-3-	!	. 82			.750 (19.05)	
CQR07A-QA105-3-	1 ,	1.0			.750 (19.05)	
CQR07A-QA103-3-	100	.0022	. 750 (19. 05)	. 688 (17.48)	.175 (4.45)	
CQR07A-QB272-3-	100	.0027	(20.00)	(2112)	.175 (4.45)	
CQR07A-QB332-3-	1	.0033		-	.175 (4.45)	
CQR07A-QB392-3-		.0039			.195 (4.95)	
CQR07A-QB472-3-	1 1	.0047			. 195 (4.95)	
CQR07A-QB562-3-		. 0056			235 (5.97)	
CQR07A-QB682-3-		. 0068		1		
CQR07A-QB822-3-		. 0082				
CQR07A-QB103-3-	1 1	.01		1		
CQR07A-QB183-3-	1	.018	. 875 (22.23)	. 812 (20. 62)	. 312 (7. 92)	
CQR07A-QB223-3-		. 022				
CQR07A-QB273-3-		. 027				
CQR07A-QB333-3-	1 1	. 033			1	
CQR07A-QB393-3-		.039			.400 (10.16)	
CQR07A-QB473-3-		. 047	1 100 100 200	4 000		
CQR07A-QB563-3-		. 056	1.125 (28.58)	1.062 (26.97)		
CQR07A-QB683-3-	1 1	. 068				
CQR07A-QB823-3-		. 082				
CQR07A-QB104-3-		.1	1 075 (04 00)	1 010/00 00	500 (14.05)	
CQR07A-QB124-3-		. 12	1.375 (34.93)	1.312 (33.32)	.562 (14.27)	
CQR07A-QB154-3-	}	. 15	1.375 (34.93)	1.312 (33.32)		
CQR07A-QB184-3-		. 18	1.625 (41.28)	1.562 (39.67)		
CQR07A-QB224-3-		. 22			070 (17.00)	
CQR07A-QB274-3-		. 27			. 670 (17.02)	
CQR07A-QB334-3-	V	. 33	l]	. 670 (17.02)	

See footnote at end of tabulation

FIGURE 801-3. Established reliability, plastic (or paper-plastic) dielectric, fixed capacitors - Continued.

STANDARD) CAPACITORS

STYLE CORO7 (MIL-C-19978/8) - CONTINUED

CIRCUIT DIAGRAM 1 OR 3 -- POL1 CAR130NATE; DIELECTRIC (CHARACTERISTIC Q) -- CAPACITANCE TOLERANCE ±5 OR ±10 PERCENT -- OPERATING TEMPERATURE RANGE -55° TO +125°C

G C.			Case	limensions (in inc	hes)
Significant part	DC voltage	Capacitance	L + . 15	D + . 062 (1.57)	
number 1/	rating	(nom)		1 (.79)	005 (. 13)
Humber 1	laing		Circuit 1	Circuit 3	1
	Volts	<u>μ</u> F			
CQR07A-QB394-3-	100	. 39	1.875 (47.63)	1.812 (46.02)	.750 (19.05)
CQR07A-QB474-3-		. 47	1.875 (47.63)	1.812 (46.02)	
CQR07A-QB564-3-		. 56	2.375 (60.33)	2.312 (58.72)	
CQR07A-QB684-3-		. 68	2.375 (60.33)	2.312 (58.72)	
CQR07A-QB824-3-		. 82	1.875 (47.63)	1.812 (46.02)	1.000 (25.40)
CQR07A-QB105-3-	٧.	1.0	1.875 (47.63)	1.812 (46.02)	1.000 (25.40)
CQR07A-QC102-3-	200	. 001	. 750 (19. 05)	. 688 (17.48)	.175 (4.45)
CQR07A-QC122-3-		. 0012		ì	. 195 (4.95)
CQR07A-QC152-3-		. 0015		į	,
CQR07A-QC182-3-		. 0018			
CQR07A-QC222-3-		. 0022			,
CQR07A-QC272-3-		. 0027		:	.235 (5.97)
CQR07A-QC332-3-		. 0033		• , ,	.235 (5.97)
CQR07A-QC822-3-		. 0082	. 875 (22, 23)	. 812 (20. 62)	.312 (7.92)
CQR07A-QC103-3-		. 01		(431 02)	.015 (1.02)
CQR07A-QC123-3-		.012			
CQR07A-QC153-3-		. 015			j
CQR07A-QC183-3-		. 018			. 400 (10. 16)
CQR07A-QC223-3-		. 022	1	•	. 100 (10. 10)
CQR07A-QC273-3-		. 027	1.125 (28.58)	1.062 (26.97)	
CQR07A-QC333-3-		. 033	1.120 (20.00)	1.002 (20.51)	
CQR07A-QC393-3-	1	. 039			
CQR07A-QC473-3-		. 047			
CQR07A-QC563-3-		. 056		1	.500 (12.70)
CQR07A-QC683-3-		. 068] !		
CQR07A-QC823-3-		. 082			.500 (12.70) .562 (14.27)
CQR07A-QC104-3-		. 1	\ \(\)		. 302 (14.21)
CQR07A-QC124-3-		. 12	1.875 (47.63)	1.812 (46.02)	i
CQR07A-QC154-3-		. 15	1.013 (41.03)	1.012 (40.02)	
CQR07A-QC184-3-		. 18	'		. 670 (17. 02)
CQR07A-QC224-3-	1 1	. 22	No		. 670 (17. 02)
CQR07A-QC274-3-		. 27	2.125 (53.98)	$2.062^{(52.37)}$.750 (19.05)
CQR07A-QC334-3-		. 33	2.125 (53.98)	2.062 (52.37)	.750 (19.05)
CQR07A-QC394-3-		. 39	1.875 (47.63)	1.812 (46.02)	1.000 (25.40)
CQR07A-QC474-3-		. 47	1.875 (47.63)	1.812 (46.02)	1.000 (23.40)
CQR07A-QC564-3-	!	.56	2.125 (53.98)	2.062 (52.37)	
CQR07A-QC684-3-	, j	. 68	2.125 (53.98)	2.062 (52.37)	N.
CQR07A-QE122-3-	400	. 0012	.750 (19.05)	. 688 (17.48)	. 235 (5.97)
CQR07A-QE152-3-		. 0012	.750 (19.05)	. 688 (17.48)	.235 (5.97)
CQR07A-QE392-3-		.0013	.875 (22.23)	.812 (20.62)	.312 (7.92)
CQR07A-QE472-3-		. 0047		.012 (20.02)	. 312 (1. 32)
CQR07A-QE562-3-		. 0056			
CQR07A-QE682-3-		. 0068			
CQR07A-QE822-3-		. 0082		,	. 400 (10. 16)
CQR07A-QE022-3-		. 01			. 400 (10.10)
CQR07A-QE123-3-		. 012	1.125 (28.58)	1.062 (26.97)	
CQR07A-QE123-3-	J	. 012	1.125 (28.58)		
CALLO14-AE100-9-	V .	.010	[1.120 (20.50)	1.062 (26.97)	

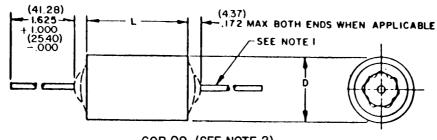
See footnote at end of tabulation.

FIGURE 801-3. <u>Established reliability</u>, <u>plastic (or paper-plastic)</u> <u>dielectric</u>, <u>fixed capacitors</u> - Continued.

801 (MIL-C-19978)

STANDARD CAPACITORS

STYLE CORO7 (MIL-C-19978/8) - CONTINUED


CIRCUIT DIAGRAM 1 OR 3 -- POLYCAR130NATF; DIELECTRIC (CHARACTERISTIC Q) -- CAPACITANCE TOLERANCE ±5 OR ±10 PERCENT -- OPERATING TEMPERATURE RANGE -55° TO + 125°C

Part Part				Case dimensions (in inches)			
Number 1			Capacitance	L + . 155	D + . 062 (1.57)		
Circuit 1 Circuit 3						005 (.13)	
CQR07A-QE183-3- CQR07A-QE233-3- CQR07A-QE233-3- CQR07A-QE333-3- CQR07A-QE333-3- CQR07A-QE333-3- CQR07A-QE333-3- CQR07A-QE333-3- CQR07A-QE333-3- CQR07A-QE333-3- CQR07A-QE333-3- CQR07A-QE333-3- CQR07A-QE333-3- CQR07A-QE124-3- CQR07A-QE124-3- CQR07A-QE334-3- CQR07A-QE334-3- CQR07A-QE334-3- CQR07A-QE334-3- CQR07A-QE334-3- CQR07A-QE334-3- CQR07A-QE334-3- CQR07A-QE334-3- CQR07A-QE334-3- CQR07A-QE334-3- CQR07A-QE334-3- CQR07A-QE334-3- CQR07A-QE334-3- CQR07A-QE334-3- CQR07A-QE334-3- CQR07A-QE334-3- CQR07A-QE334-3- CQR07A-QE334-3- CQR07A-QE332-3- CQR07A-QE332-3- CQR07A-QE332-3- CQR07A-QF122-3- CQR07A-QF122-3- CQR07A-QF322-3- CQR07A-QF322-3- CQR07A-QF322-3- CQR07A-QF323-3- CQR07A-QF323-3- CQR07A-QF323-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF323-3- CQR07A-QF323-3- CQR07A-QF323-3- CQR07A-QF323-3- CQR07A-QF323-3- CQR07A-QF323-3- CQR07A-QF323-3- CQR07A-QF323-3- CQR07A-QF323-3- CQR07A-QF323-3- CQR07A-QF323-3- CQR07A-QF323-3- CQR07A-QF323-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF323-3- CQR07A	number 1/	rating	(,			, i	
CQR07A-QE183-3-							
CQR07A_QE223-3		Volts	$\mu \mathbf{F}$				
CQR07A-QE273-3-	CQR07A-QE183-3-	400	.018	1.375 (34.93)	1.312 (33.32)	.400 (10.16)	
CQR07A-QE333-3-		1	. 022	1.375 (34.93)	1.312 (33.32)	.409 (10.16)	
CQR07A -QE333 - 3				1.125 (28.58)	1.062 (26.97)	.500 (12.70)	
CQR07A-QE683-3- CQR07A-QE683-3- CQR07A-QE683-3- CQR07A-QE683-3- CQR07A-QE683-3- CQR07A-QE683-3- CQR07A-QE683-3- CQR07A-QE683-3- CQR07A-QE104-3- CQR07A-QE124-3- CQR07A-QE124-3- CQR07A-QE124-3- CQR07A-QE124-3- CQR07A-QE124-3- CQR07A-QE184-3- CQR07A-QE184-3- CQR07A-QE24-3- CQR07A-QE24-3- CQR07A-QE24-3- CQR07A-QE24-3- CQR07A-QE24-3- CQR07A-QE24-3- CQR07A-QE394-3- CQR07A-QE394-3- CQR07A-QE394-3- CQR07A-QF122-3- CQR07A-QF122-3- CQR07A-QF122-3- CQR07A-QF222-3- CQR07A-QF222-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF333-3- CQR0			. 033			.500 (12.70)	
CQR07A-QE563-3- CQR07A-QE683-3- CQR07A-QE683-3- CQR07A-QE683-3- CQR07A-QE104-3- CQR07A-QE104-3- CQR07A-QE124-3- CQR07A-QE124-3- CQR07A-QE124-3- CQR07A-QE124-3- CQR07A-QE124-3- CQR07A-QE124-3- CQR07A-QE124-3- CQR07A-QE184-3- CQR07A-QE184-3- CQR07A-QE24-3- CQR07A-QE24-3- CQR07A-QE24-3- CQR07A-QE24-3- CQR07A-QE24-3- CQR07A-QE24-3- CQR07A-QE24-3- CQR07A-QE24-3- CQR07A-QE24-3- CQR07A-QE274-3- CQR07A-QE274-3- CQR07A-QE274-3- CQR07A-QE274-3- CQR07A-QE274-3- CQR07A-QE274-3- CQR07A-QE274-3- CQR07A-QE274-3- CQR07A-QE274-3- CQR07A-QE274-3- CQR07A-QE274-3- CQR07A-QE272-3- CQR07A-QE272-3- CQR07A-QF152-3- CQR07A-QF152-3- CQR07A-QF222-3- CQR07A-QF222-3- CQR07A-QF222-3- CQR07A-QF222-3- CQR07A-QF222-3- CQR07A-QF223-3- CQR07A-QF392-3- CQR07A-QF392-3- CQR07A-QF392-3- CQR07A-QF153-3- CQR07A-QF153-3- CQR07A-QF153-3- CQR07A-QF153-3- CQR07A-QF153-3- CQR07A-QF392-3- CQR07A-QF392-3- CQR07A-QF392-3- CQR07A-QF392-3- CQR07A-QF392-3- CQR07A-QF393-3- CQR07A-QF393-3- CQR07A-QF393-3- CQR07A-QF393-3- CQR07A-QF393-3- CQR07A-QF393-3- CQR07A-QF393-3- CQR07A-QF393-3- CQR07A-QF393-3- CQR07A-QF33-3- CQR07A-Q	CQR07A-QE393-3-		. 039	,		. 562 (14.27)	
CQR07A-QE563-3	CQR07A-QE473-3-		. 047	V]	
CQR07A_QE124-3- CQR07A_QE124-3- CQR07A_QE124-3- CQR07A_QE124-3- CQR07A_QE124-3- CQR07A_QE124-3- CQR07A_QE124-3- CQR07A_QE124-3- CQR07A_QE24-3- CQR07A_QE224-3- CQR07A_QE2334-3- CQR07A_QE334-3- CQR07A_QE334-3- CQR07A_QE334-3- CQR07A_QE344-3- CQR07A_QE344-3- CQR07A_QE344-3- CQR07A_QE344-3- CQR07A_QE344-3- CQR07A_QE344-3- CQR07A_QE344-3- CQR07A_QE344-3- CQR07A_QE344-3- CQR07A_QE344-3- CQR07A_QE344-3- CQR07A_QE344-3- CQR07A_QE344-3- CQR07A_QE344-3- CQR07A_QE324-3- CQR07A_QE324-3- CQR07A_QE32-3- CQR07A_QE33-3- CQR07A			. 056	1.375 (34.93)	1.312 (33.32)		
CQR07A-QE104-3- CQR07A-QE124-3- CQR07A-QE124-3- CQR07A-QE184-3- CQR07A-QE184-3- CQR07A-QE184-3- CQR07A-QE184-3- CQR07A-QE284-3- CQR07A-QE284-3- CQR07A-QE284-3- CQR07A-QE284-3- CQR07A-QE334-3- CQR07A-QE334-3- CQR07A-QE334-3- CQR07A-QE394-3- CQR07A-QE394-3- CQR07A-QF102-3- CQR07A-QF102-3- CQR07A-QF122-3- CQR07A-QF122-3- CQR07A-QF222-3- CQR07A-QF222-3- CQR07A-QF332-3	CQR07A-QE683-3-		. 068	1.375 (34.93)	1.312 (33.32)	V	
CQR07A-QE124-3-			. 082	1.625 (41.28)			
CQR07A - QE124 - 3				1.625 (41.28)		. 670 (17. 02)	
CQR07A-QE154-3			. 12	2.125 (53.98)	2.062 (52.37)	.750 (19.05)	
CQR07A-QE184-3- CQR07A-QE24-3- CQR07A-QE224-3- CQR07A-QE234-3- CQR07A-QE234-3- CQR07A-QE334-3- CQR07A-QE394-3- CQR07A-QE474-3- CQR07A-QE474-3- CQR07A-QE474-3- CQR07A-QE474-3- CQR07A-QE474-3- CQR07A-QE192-3- CQR07A-QF102-3- CQR07A-QF152-3- CQR07A-QF332-3- CQR07A-QF562-3- CQR07A-QF103-3- CQR07A-QF103-3- CQR07A-QF103-3- CQR07A-QF133-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF333-3- C			. 15	2.125 (53.98)	2.062 (52.37)		
CQR07A-QE274-3- CQR07A-QE334-3- CQR07A-QE394-3- CQR07A-QE394-3- CQR07A-QE474-3- CQR07A-QE474-3- CQR07A-QF102-3- CQR07A-QF102-3- CQR07A-QF122-3- CQR07A-QF122-3- CQR07A-QF122-3- CQR07A-QF122-3- CQR07A-QF122-3- CQR07A-QF122-3- CQR07A-QF222-3- CQR07A-QF222-3- CQR07A-QF222-3- CQR07A-QF222-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF132-3- CQR07A-QF132-3- CQR07A-QF132-3- CQR07A-QF132-3- CQR07A-QF132-3- CQR07A-QF132-3- CQR07A-QF132-3- CQR07A-QF132-3- CQR07A-QF133-3- CQR07A-QF133-3- CQR07A-QF133-3- CQR07A-QF223-3- CQR07A-QF223-3- CQR07A-QF133-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF333-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF334-3- CQR07A-QF334-3- CQR07A-QF	CQR07A-QE184-3-		. 18	2.625 (66.68)	2.562 (65.07)	1	
CQR07A-QE274-3- CQR07A-QE344-3- CQR07A-QE394-3- CQR07A-QE394-3- CQR07A-QE474-3- CQR07A-QE474-3- CQR07A-QF102-3- CQR07A-QF102-3- CQR07A-QF122-3- CQR07A-QF182-3- CQR07A-QF222-3- CQR07A-QF222-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF333-3- CQR07A-QF33-3- CQR07A-QF33-3- CQR07A-QF33-3- CQR07A-QF33-3- CQR07A-QF33-3- CQR07A-QF33-3- CQR07A-QF33-3- CQR07A-QF33-3- CQR07A				2.625 (66.68)		· ·	
CQR07A-QE394-3- CQR07A-QE474-3- CQR07A-QF102-3- CQR07A-QF102-3- CQR07A-QF122-3- CQR07A-QF152-3- CQR07A-QF152-3- CQR07A-QF182-3- CQR07A-QF222-3- CQR07A-QF222-3- CQR07A-QF332-3- CQR07A-QF472-3- CQR07A-QF472-3- CQR07A-QF682-3- CQR07A-QF103-3- CQR07A-QF103-3- CQR07A-QF153-3- CQR07A-QF153-3- CQR07A-QF153-3- CQR07A-QF153-3- CQR07A-QF153-3- CQR07A-QF153-3- CQR07A-QF223-3- CQR07A-QF153-3- CQR07A-QF223-3- CQR07A-QF153-3- CQR07A-QF233-3- CQR07A-QF233-3- CQR07A-QF233-3- CQR07A-QF233-3- CQR07A-QF233-3- CQR07A-QF233-3- CQR07A-QF233-3- CQR07A-QF233-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF563-3- CQR07A-QF563-3- CQR07A-QF563-3- CQR07A-QF683-3- CQR07A-QF683-3- CQR07A-QF683-3- CQR07A-QF683-3- CQR07A-QF683-3- CQR07A-QF104-3-	CQR07A-QE274-3-	,	. 27	2.125 (53.98)	2.062 (52.37)	1.000 (25.40)	
CQR07A-QE394-3- CQR07A-QE474-3- CQR07A-QF102-3- CQR07A-QF102-3- CQR07A-QF122-3- CQR07A-QF152-3- CQR07A-QF152-3- CQR07A-QF182-3- CQR07A-QF222-3- CQR07A-QF222-3- CQR07A-QF392-3- CQR07A-QF472-3- CQR07A-QF682-3- CQR07A-QF183-3- CQR07A-QF183-3- CQR07A-QF183-3- CQR07A-QF183-3- CQR07A-QF183-3- CQR07A-QF183-3- CQR07A-QF183-3- CQR07A-QF183-3- CQR07A-QF183-3- CQR07A-QF183-3- CQR07A-QF183-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF33-3- CQR07A-QF33-3- CQR07A-QF33-3- CQR07			. 33	2.125 (53.98)	2.062 (52.37)		
CQR07A-QE474-3- V .47 2.625 (66.68) 2.562 (65.07) CQR07A-QF102-3- 600 .001 .750 (19.05) .688 (17.48) .235 (5.97) CQR07A-QF122-3- .0012 .875 (22.23) .812 (20.62) .312 (7.92) CQR07A-QF182-3- .0018 .0018 .875 (22.23) .812 (20.62) .312 (7.92) CQR07A-QF182-3- .0018 .0018 .0018 .0018 .0018 .0019			. 39	2.625 (66.68)	2.562 (65.07)	'	
CQR07A-QF102-3- CQR07A-QF122-3- CQR07A-QF152-3- CQR07A-QF182-3- CQR07A-QF182-3- CQR07A-QF222-3- CQR07A-QF322-3- CQR07A-QF322-3- CQR07A-QF322-3- CQR07A-QF682-3- CQR07A-QF682-3- CQR07A-QF103-3- CQR07A-QF183-3- CQR07A-QF183-3- CQR07A-QF183-3- CQR07A-QF183-3- CQR07A-QF183-3- CQR07A-QF223-3- CQR07A-QF223-3- CQR07A-QF333-3- CQR07A-		l v		2.625 (66.68)	2.562 (65.07)	· ·	
CQR07A-QF122-3- 0012 .875 (22.23) .812 (20.62) .312 (7.92) CQR07A-QF152-3- 0015 .0015 .0018 .0018 .0018 .0018 .0018 .0018 .0018 .0018 .0018 .0018 .0018 .0022 .0020				750 (19.05)	. 688 (17.48)	.235 (5.97)	
CQR07A-QF152-3- CQR07A-QF222-3- CQR07A-QF222-3- CQR07A-QF222-3- CQR07A-QF332-3- CQR07A-QF332-3- CQR07A-QF562-3- CQR07A-QF682-3- CQR07A-QF103-3- CQR07A-QF103-3- CQR07A-QF103-3- CQR07A-QF123-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF333-3- CQR0		l i	. 0012			.312 (7.92)	
CQR07A-QF222-3- CQR07A-QF332-3- CQR07A-QF392-3- CQR07A-QF392-3- CQR07A-QF392-3- CQR07A-QF472-3- CQR07A-QF562-3- CQR07A-QF682-3- CQR07A-QF103-3- CQR07A-QF183-3- CQR07A-QF183-3- CQR07A-QF223-3- CQR07A-QF223-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF473-3- CQR07		[[. 0015			İ	
CQR07A-QF222-3- CQR07A-QF332-3- CQR07A-QF392-3- CQR07A-QF392-3- CQR07A-QF392-3- CQR07A-QF472-3- CQR07A-QF562-3- CQR07A-QF682-3- CQR07A-QF103-3- CQR07A-QF183-3- CQR07A-QF183-3- CQR07A-QF223-3- CQR07A-QF223-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF473-3- CQR07	CQR07A-QF182-3-]]			!		
CQR07A-QF332-3- .0033 .0039 .400 (10.16) CQR07A-QF392-3- .0047 .0047 .400 (10.16) CQR07A-QF562-3- .0056 1.125 (28.58) 1.062 (26.97) .400 (10.16) CQR07A-QF682-3- .0068		[. 0022				
CQR07A-QF392-3- CQR07A-QF472-3- CQR07A-QF562-3- CQR07A-QF682-3- CQR07A-QF822-3- CQR07A-QF103-3- CQR07A-QF123-3- CQR07A-QF183-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF393-3- CQR07A-QF473-3- CQR07A-QF473-3- CQR07A-QF563-3- CQR07A-QF683-3- CQR07A-QF683-3- CQR07A-QF683-3- CQR07A-QF683-3- CQR07A-QF683-3- CQR07A-QF683-3- CQR07A-QF683-3- CQR07A-QF104-3- CQR07A-QF104-3- CQR07A-QF104-3- CQR07A-QF104-3- CQR07A-QF104-3- CQR07A-QF104-3- CQR07A-QF104-3- CQR07A-QF124-3- .0039 .0047 .0056 .0056 .0056 .0070	CQR07A-QF272-3-	1 1	. 0027				
CQR07A-QF392-3- CQR07A-QF472-3- CQR07A-QF562-3- CQR07A-QF682-3- CQR07A-QF103-3- CQR07A-QF123-3- CQR07A-QF183-3- CQR07A-QF183-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF23-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF563-3- CQR07A-QF563-3- CQR07A-QF683-3- CQR07A-QF683-3- CQR07A-QF823-3- CQR07A-QF823-3- CQR07A-QF823-3- CQR07A-QF823-3- CQR07A-QF823-3- CQR07A-QF823-3- CQR07A-QF104-3- CQR07A-QF104-3- CQR07A-QF104-3- CQR07A-QF104-3- CQR07A-QF104-3- CQR07A-QF104-3- CQR07A-QF104-3- CQR07A-QF104-3- CQR07A-QF124-3- .0039 .0056 .01.125 .0068 .01.125 .0068	CQR07A-QF332-3-	1 1	. 0033				
CQR07A-QF472-3- .0047 .0056 1.125 (28.58) 1.062 (26.97) CQR07A-QF682-3- .0068 .0068 .0082 </td <td></td> <td>ł </td> <td>. 0039</td> <td></td> <td></td> <td>. 400 (10.16)</td>		ł	. 0039			. 400 (10.16)	
CQR07A-QF682-3- .0068 .0082 .0082 .0082 .500 (12.76 .500 (12.7		1	.0047		l 🐇		
CQR07A-QF682-3- .0068 .0082 .0082 .0082 .500 (12.76 .500 (12.7	CQR07A-QF562-3-]]	. 0056	1.125 (28.58)	1.062 (26.97)	1	
CQR07A-QF822-3- CQR07A-QF103-3- CQR07A-QF123-3- CQR07A-QF183-3- CQR07A-QF183-3- CQR07A-QF223-3- CQR07A-QF23-3- CQR07A-QF333-3- CQR07A-QF333-3- CQR07A-QF393-3- CQR07A-QF473-3- CQR07A-QF563-3- CQR07A-QF563-3- CQR07A-QF683-3- CQR07A-QF823-3- CQR07A-QF823-3- CQR07A-QF823-3- CQR07A-QF104-3- CQR07A-QF104-3- CQR07A-QF104-3- CQR07A-QF104-3- CQR07A-QF124-3-	CQR07A-QF682-3-	1	. 0068	1			
CQR07A-QF123-3- CQR07A-QF153-3- CQR07A-QF183-3- CQR07A-QF223-3- CQR07A-QF273-3- CQR07A-QF333-3- CQR07A-QF393-3- CQR07A-QF473-3- CQR07A-QF563-3- CQR07A-QF563-3- CQR07A-QF683-3- CQR07A-QF683-3- CQR07A-QF683-3- CQR07A-QF104-3- CQR07A-QF104-3- CQR07A-QF104-3- CQR07A-QF124-3- .012 .015 .022 .027 .027 .033 .039 .039 .047 .047 .056 .068 .068 .068 .082 .082 .082 .082 .082 .082 .082 .08			. 0082				
CQR07A-GF153-3- CQR07A-QF183-3- CQR07A-QF223-3- CQR07A-QF273-3- CQR07A-QF333-3- CQR07A-QF393-3- CQR07A-QF393-3- CQR07A-QF563-3- CQR07A-QF563-3- CQR07A-QF683-3- CQR07A-QF823-3- CQR07A-QF104-3- CQR07A-QF104-3- CQR07A-QF104-3- CQR07A-QF124-3- .015 .022 .027 .027 .033 .033 .039 .039 .047 .047 .056 .068 .082 .082 .082 .082 .082 .082 .082 .08	CQR07A-QF103-3-		. 01		[4	
CQR07A-QF183-3- CQR07A-QF223-3- CQR07A-QF273-3- CQR07A-QF333-3- CQR07A-QF393-3- CQR07A-QF563-3- CQR07A-QF563-3- CQR07A-QF683-3- CQR07A-QF823-3- CQR07A-QF104-3- CQR07A-QF104-3- CQR07A-QF124-3- .018 .022 .027 .033 .033 .039 .047 .047 .056 .068 .068 .082 .082 .082 .082 .082 .082 .082 .08	CQR07A-QF123-3-]]				.500 (12.70)	
CQR07A-QF223-3- CQR07A-QF273-3- CQR07A-QF333-3- CQR07A-QF393-3- CQR07A-QF393-3- CQR07A-QF563-3- CQR07A-QF563-3- CQR07A-QF683-3- CQR07A-QF823-3- CQR07A-QF104-3- CQR07A-QF104-3- CQR07A-QF124-3- .022 1.375 (34.93) 1.375 (34.93) 1.375 (34.93) 1.312 (33.32) 1.562 (39.67) 	CQR07A-OF153-3-				:	.500 (12.70)	
CQR07A-QF273-3- CQR07A-QF333-3- CQR07A-QF393-3- CQR07A-QF473-3- CQR07A-QF563-3- CQR07A-QF683-3- CQR07A-QF683-3- CQR07A-QF823-3- CQR07A-QF104-3- CQR07A-QF124-3- .027 .033 .039 .039 .047 .047 .056 .068 .068 .068 .082 .082 .082 .082 .082 .082 .082 .08	CQR07A-QF183-3-				:	.562 (14.27)	
CQR07A-QF333-3- CQR07A-QF393-3- CQR07A-QF473-3- CQR07A-QF563-3- CQR07A-QF683-3- CQR07A-QF823-3- CQR07A-QF104-3- CQR07A-QF124-3- .033 .039 .047 .047 .056 .068 .068 .068 .082 .082 .082 .082 .082 .082 .082 .08	CQR07A-QF223-3-			\ \\	V.		
CQR07A-QF393-3- CQR07A-QF473-3- CQR07A-QF563-3- CQR07A-QF683-3- CQR07A-QF823-3- CQR07A-QF104-3- CQR07A-QF124-3- .039 .047 .056 .068 .068 .068 .082 .082 .082 .082 .082 .082 .082 .08			1				
CQR07A-QF473-3- .047 CQR07A-QF563-3- .056 CQR07A-QF683-3- .068 CQR07A-QF823-3- .082 CQR07A-QF104-3- .1 CQR07A-QF124-3- .1 .047 .056 .670 (17.0) .670 (17.0) .670 (17.0) .670 (17.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .750 (19.0) .7	CQR07A-QF333-3-					1	
CQR07A-QF563-3- CQR07A-QF683-3- CQR07A-QF823-3- CQR07A-QF104-3- CQR07A-QF124-3- .056 .068 .082 y .670 (17.00) .750 (19.00)				1.625 (41.28)	1.562 (39.67)		
CQR07A-QF683-3- CQR07A-QF823-3- CQR07A-QF104-3- CQR07A-QF124-3- .068 .082 1.875 (47.63) 1.812 (46.02) .750 (19.09) 1.000 (25.40)		1 1		į.		*	
CQR07A-QF683-3- 068 y 3 .670 (17.05) CQR07A-QF823-3- 082 1.875 (47.63) 1.812 (46.02) .750 (19.05) CQR07A-QF104-3- 11 .12 1.000 (25.46)	CQR07A-QF563-3-		. 056		!	. 670 (17.02)	
CQR07A-QF104-31 .750 (19.0) CQR07A-QF124-312 .1000 (25.4)	CQR07A-QF683-3-		. 068	1	l v	. 670 (17. 02)	
CQR07A-QF124-3- 1.000 (25.4)	CQR07A-QF823-3-		. 082	1.875 (47.63)	1.812 (46.02)	.750 (19.05)	
				1	1	.750 (19.05)	
1 000000 00000 0 1 1 1 1 1 1						1.000 (25.40)	
	CQR07A-QF154-3-		. 15	, v			
CQR07A-QF184-318 2.625 (66.68) 2.562 (65.07)	•						
CQR07A-QF224-3- 2.625 (66.68) 2.562 (65.07)	CQR07A-QF224-3-	V	. 22	2.625 (66.68)	2.562 (65.07)		

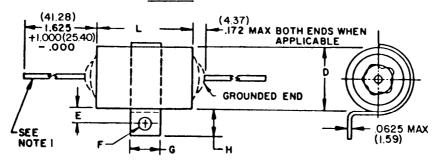
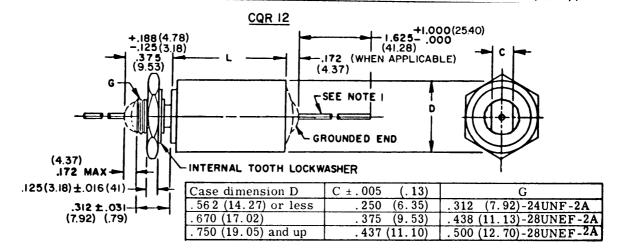

1/ Complete part number includes additional symbols to indicate circuit (1 or 3): capacitance tolerance (J or K): and failure rate level (M. P. R. or S).

FIGURE 801-3. <u>Established reliability, plastic (or paper-plastic)</u> <u>dielectric, fixed capacitors</u> - Continued.


STYLES CQR09, CQR12, AND CQR13

CQR 09 (SEE NOTE 2)

Case dimension D H	±.062	(1.57) G	±.062	(1.57) E	±.031	(.79) IF	±,005	(.13)]
Less than $.500(12.70)$.312	(7.92)	.250	(6.35)	.188	(4,78)	.144	(3.66)
1.500 (12.70) and up	.438	(11.13)	.500	(12.70)	.250	(6,35)	.156	(3.96)

NOTES:

- 1. On styles CQR09 andCQR12, leads are of tinned solid wire, .025 (.64) for cases .235 (5.97) and .312 (7.92) in diameter and .032 (.81) for cases .400 (10.16) diameter and above; on style CQR13, leads are of tinned solid wire, .032 (.81). Tolerance on all lead wire diameters is +.004 (.10), -.001 (.03).
- 2. Capacitors with dimension L of 1.562 (39.67) or D of .562 (14.27) and larger, are not intended to be supported by their leads. These capacitors are provided with a supplementary means of mounting, such as wrap-around band.
- 3. Mounting nuts and lockwashers are supplied.

FIGURE 801.3 <u>Established reliability</u>, <u>plastic</u> (or <u>paper-plastic</u>) <u>dielectric</u>, fixed capacitors - Continued.

STANDARD CAPACITORS

STYLES CQR09 (MIL-C-19978/9) AND CQR12 (MIL-C-19978/10)

CIRCUIT DIAGRAM 10R 3 -- PAPER AND POLYETHYLENE TEREPHTHALATE DIELECTRIC (CHARACTERISTIC K) -- CAPACITANCE TOLERANCE ±2, ±5, OR ±10 PERCENT -- OPERATING TEMPERATURE RANGE -65° TO + 125° C

			Case dimensions (in inches)			
Significant	DC	Capacitance	L + .155	D + . 062 (1.57)		
part	voltage	(nom)	031	005 (.13)		
number $1/$	rating	,	Circuit 1	Circuit 3		
	1					
	<u>Volts</u>	$\mu \mathbf{F}$	(10 07)	000 (15 40)	.235 (5.97)	
CQRA-KC392-3-	200	. 0039	. 750 (19.05)	. 688 (17.48)	.235 (5.91)	
CQRA-KC472-3	1	. 0047				
CQRA-KC562-3-		. 0056				
CQRA-KC682-3-	l	. 0068	0 - 5 (00 00)	010 (00 (0)	$.312^{\bigvee}(7.92)$	
CQRA-KC183-3-		. 018	.875 (22.23)	.812 (20.62)	.312 (1.92)	
CQRA-KC223-3-		. 022				
CQRA-KC273-3-		. 027	1			
CQRA-KC333-3-		. 033			400 (10.16)	
CQRA-KC393-3-		. 039]]	į ·	.400 (10.16)	
CQRA-KC473-3-		. 047	<u> </u>			
CQRA-KC563-3-		.056				
CQRA-KC683-3-		. 068	V	1 000 (00 0T)		
CQRA-KC823-3-	1	. 082	1.125 (28.58)	1.062 (26.97)		
CQRA-KC104-3-		.10	1.125 (28.58)	1.062 (26.97)		
CQRA-KC124-3-		. 12	1.375 (34.93)	1.312 (33.32)	1 1	
CQRA-KC154-3-	{	.15	1.375 (34.93)	1.312 (33.32)		
CQRA-KC184-3-	l 1	.18	1.125 (28.58)	1.062 (26.97)	.562 (14.27)	
CQRA-KC104-3-		.22	1.125 (28.58)	1.062 (26.97)	1 1	
CQRA-KC274-3-	1	.27	1.375 (34.93)	1.312 (33.32)		
CQRA-KC334-3-		.33	1.375 (34.93)	1.312 (33.32)		
CQRA-KC394-3-		.39	1.625 (41.28)	1.562 (39.67)]]	
CQRA-KC474-3-	1 1	.47		1	1	
CQRA-KC564-3-		.56			. 670 (17.02)	
CQRA-KC684-3-		. 68		Ų,	. 670 (17. 02)	
CQRA-KC824-3-	1 1	. 82	2.125 (53.98)	2.062 (52.37)	.750 (19.05)	
CQRA-KC105-3-	1	1.000	2.125 (53.98)	2.062 (52.37)	. 750 (19.05)	
CQRA-KE272-3-	400	.0027	.750 (19.05)	. 688 (17.48)	.235 (5.97)	
CQRA-KE332-3-	1	. 0033	.750 (19.05)	. 688 (17.48)	.235 (5.97)	
CQRA-KE123-3-		.012	875 (22.23)	.812 (20.62)	. 312 (7.92)	
CQRA-KE153-3-	}	. 015			.312 (7.92)	
CQRA-KE273-3-	1	. 027			. 400 (10.16)	
CQRA-KE333-3-		. 033		₩		
CQRA-KE393-3-		. 039	1.125 (28.58)	1.062 (26.97)		
CQRA-KE473-3-	1 1	. 047	1.125 (28.58)	1.062 (26.97)		
CQRA-KE563-3-		. 056	1.375 (34.93)	1.312 (33.32)		
CQRA-KE683-3-		. 068	1.375 (34.93)	1.312 (33.32)	\	
CQRA-KE823-3-	1	. 082	1.125 (28.58)	1.062 (26.97)	.562 (14.27)	
CQRA-KE104-3-		. 10	1.125 (28.58)	1.062 (26.97)		
CQRA-KE124-3-	1	. 12	1.375 (34.93)	1.312 (33.32)		
CQRA-KE154-3-	1	. 15	1.375 (34.93)	1.312 (33.32)		
CQRA-KE184-3-		.18	1.625 (41.28)	1.562 (39.67)		
CQRA-KE224-3-		. 22			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
CQRA-KE274-3-		. 27			. 670 (17.02)	
CQRA-KE334-3-		. 33		1	. 670 (17.02)	
CQRA-KE394-3-		. 39	2.125 (53.98)	2.062 (52.37)		
		.47	2.125 (53.98)	2.062 (52.37)		
CQRA-KE474-3-		.47	2.125 (55.96)	2.002 (02.01)	1.00 (20.00)	

See footnote at end of tabulation.

FIGURE 801-3. Established reliability, plastic (or paper-plastic) dielectric, fixed capacitors - Continued.

STANDARD CAPACITORS

STYLES CQR09 (MIL-C-19978/9) AND CQR12 (MIL-C-19978/10) - CONTINUED

CIRCUIT DIAGRAM 1 OR 3 -- PAPER AND POLYETHYLENE TEREPHTHALATE DIELECTRIC (CHARACTERISTIC K) -- CAPACITANCE TOLERANCE ±2, ±5, OR ±10 PERCENT -- OPERATING TEMPERATURE RANGE -65° TO + 125°C

Significant part number 1/	DC				hes)
number 1/	voltage	Capacitance	L + .155		D + . 062 (1.57)
number 1/	rating	(nom)	031	(.79)	005 (.13)
			Circuit 1	Circuit 3	
	Volts	μ F			
COD 4 K E100 2	600	0010	750 (10 05)	222 (17 42)	
CQRA-K F102-3-	600	.0010	.750 (19.05)	. 688 (17.48)	. 235 (5.97)
CQRA-KF122-3-	1	. 0012			
CQRA-KF152-3- CQRA-KF182-3-	i i	. 0015			
CQRA-KF222-3-		. 0018 . 0022			
CQRA-KF272-3-	[]	. 0022	. 875 (22.23)	912 (20 62)	210 (7 00)
CQRA-KF332-3-		. 0021	.013 (22.23)	. 812 (20. 62)	. 312 (7.92)
CQRA-KF392-3-	}	. 0039	1		
CQRA-KF472-3-		. 0047			
CQRA-KF562-3-	! !	.0056			
CQRA-KF682-3-		. 0056			
CQRA-KF822-3-		. 0082			
CQRA-KF103-3-		.0082			
CQRA-KF123-3-		.010			400 (10, 10)
CQRA-KF153-3-		.012			. 400 (10. 16)
CQRA-KF183-3-		.013			
CQRA-KF223-3-	ļ	.022			
CQRA-KF273-3-		. 022	1.125 (28.58)	1 062 (26 07)	
CQRA-K F333-3-		.033	1.125 (28.58)	1.062 (26.97)	
CQRA-KF393-3-		.039	1.375 (34.93)	1.062 (26.97)	
CQRA-K F473-3-		.039		1.312 (33.32)	
CQRA-KF563-3-		. 056	1.375 (34.93)	1.312 (33.32)	5 CO (1.4 OF)
CQRA-KF683-3-		. 068	1.125 (28.58)	1.062 (26.97)	. 562 (14.27)
CQRA-KF823-3-		. 082	1.125 (28.58) 1.375 (34.93)	1.062 (26.97)	
CQRA-KF104-3-	j l	. 10		1.312 (33.32)	
CQRA-KF124-3-		. 10	1.375 (34.93)	1.312 (33.32)	
CQRA-KF154-3-	1 1	. 12	1.625 (41.28)	1.562 (39.67)	
CQRA-K F184-3-		. 18			670 (17 00)
CQRA-KF224-3-		. 22			. 670 (17.02)
CQRA-KF274-3-]	. 27	2.125 (53.98)	$2.062^{1/2}(52.37)$. 670 (17. 02)
CQRA-KF334-3-		. 33	2.125 (53.98)	2.062 (52.37)	.750 (19.05)
CQRA-KF394-3-		.39	2.375 (60.33)	2.312 (58.72)	
CQRA-KF474-3-	1	.47	2.375 (60.33)	2.312 (58.72)	
CQRA-KG102-3-	1000	.0010	. 875 (22.23)	.812 (20.62)	.400 (10.16)
CQRA-KG122-3-	2000	.0010	.010 (22.23)	.012 (20.02)	.400 (10.10)
CQRA-KG152-3-		.0015			
CQRA-KG182-3-		.0018			
CQR A - KG222-3-	l l	. 0022			
CQRA-KG272-3-))	. 0022		Ì	
CQRA-KG332-3-		. 0033			
CQRA-KG392-3-		. 0039			
CQRA-KG472-3-		. 0047			
CQRA-KG562-3-	ļ	. 0056			
CQR A-KG682-3-		.0068			
CQRA-KG822-3-		. 0082			
CQRA-KG103-3-	J 1	.010	J 1	. J	. ↓ !

See footnote at end of tabulation.

FIGURE 801-3. <u>Established reliability</u>, <u>plastic (or paper-plastic)</u> <u>dielectric</u>, <u>fixed capacitors</u> - Continued.

801 (MIL-C-19978)

STANDARD CAPACITORS

STYLES CQR09 (MIL-C-19978/9) AND CQR12 (MIL-C-19978/10) - CONTINUED

CIRCUIT DIAGRAM 1 OR 3 -- PAPER AND POLYETHYLENE TEREPHTHALATE DIELECTRIC (CHARACTERISTIC K) -- CAPACITANCE TOLERANCE ±2, ±5, OR ±10 PERCENT -- OPERATING TEMPERATURE RANGE -65° TO +125°C

Significant			Case of	imension s (in inc l	ies)
part number 1/	DC voltage rating	Capacitan ce (nom)	L + .155 031	(3.94) (.79)	D + .062 (1.57) 005 (.13)
_			Circuit 1	Circuit 3	
	Volts	$\mu \mathbf{F}$			
CQR A - KG123 - 3 - CQR A - KG153 - 3 - CQR A - KG183 - 3 - CQR A - KG223 - 3 - CQR A - KG333 - 3 - CQR A - KG473 - 3 - CQR A - KG563 - CQR A - KG683 - CQR A - KG683 - CQR A - KG124 - 3 - CQR A - KG124 - 3 - CQR A - KG124 - 3 - CQR A - KG124 - 3 - CQR A - KG184 - 3 - CQR A - KG224 - 3 - CQR A - KG224 - 3 - CQR A - KG334 - 3 - CQR A - KG394 - 3 - CQR A - KG394 - 3 - CQR A - KG474 - 3 - CQR A -	1000	.012 .015 .018 .022 .027 .033 .039 .047 .056 .068 .082 .10 .12 .15 .18 .22 .27 .33	1.125 (28.58) 1.125 (28.58) 1.375 (34.93) 1.375 (34.93) 1.125 (28.58) 1.125 (28.58) 1.375 (34.93) 1.375 (34.93) 1.625 (41.28) 1.875 (47.63) 1.875 (47.63) 2.125 (53.98) 2.375 (60.33) 2.375 (60.33)	1.062 (26.97) 1.062 (26.97) 1.312 (33.32) 1.312 (33.32) 1.062 (26.97) 1.062 (26.97) 1.312 (33.32) 1.312 (33.32) 1.562 (39.67) 1.812 (46.02) 1.812 (46.02) 2.062 (52.37) 2.312 (58.72) 2.312 (58.72)	. 400 (10.16) . 562 (14.27) . 670 (17.02) . 750 (19.05) . 750 (19.05) 1.000 (25.40)

^{1/} Complete part number includes additional symbols to indicate style (09 or 12); circuit (1 or 3); capacitance tolerance (G, J, or K); and failure rate level (M, P, R, or S).

FIGURE 801-3. Established reliability, plastic (or paper-plastic) dielectric, fixed capacitors - Continued.

STANDARD CAPACITORS

STYLE CQR13 (MIL-C-19978/11)

CIRCUIT DIAGRAM 10R3 -- PAPER AND POLYETHYLENE TEREPHTHALATE DIELECTRIC (CHARACTERISTIC K) -- CAPACITANCE TOLERANCE ±2, ±5, OR ±10 PERCENT -- OPERATING TEMPERATURE RANGE -65° TO + 125°C

Significant	DC		Case	limensions (in inc	hes)
part number 1/	voltage rating	Capacitance (nom)		5 (3 . 94) 1 (. 79)	D + .062 (1.57) 005 (.13)
	1		Circuit 1	Circuit 3	000 (.10)
	Trolle a		Circuit	Circuit 3	
COD124 WG000 0	Volts	$\mu \mathbf{F}$			
CQR13A-KC392-3-	200	.0039	.750 (19.05)	. 688 (17.48)	.400 (10.16)
CQR13A-KC472-3- CQR13A-KC562-3-		.0047			
CQR13A-KC682-3-		.0056			
CQR13A-KC183-3-		.0068	$.875^{\checkmark}(22.23)$	010 (00 60)	
CQR13A-KC223-3-	1 1	.022	.013 (22.23)	.812 (20.62)	
CQR13A-KC273-3-		.027			
CQR13A-KC333-3-]	.033			
CQR13A-KC393-3-		.039			
CQR13A-KC473-3-		.047			
CQR13A-KC563-3-		.056			
CQR13A-KC683-3-		.068]	∫,	
CQR13A-KC823-3-]]	. 082	1.125 (28.58)	1.062 (26.97)	
CQR13A-KC104-3-		.10	1.125 (28.58)	1.062 (26.97)	
CQR13A-KC124-3-		. 12	1.375 (34.93)	1.312 (33.32)	
CQR13A-KC154-3-		.15	1.375 (34.93)	1.312 (33.32)	
CQR13A-KC184-3-		.18	1.125 (28.58)	1.062 (26.97)	$.562^{\circ}(14.27)$
CQR13A-KC224-3-		.22	1.125 (28.58)	1.062 (26.97)	ì
CQR13A-KC274-3-		. 27	1.375 (34.93)	1.312 (33.32)	
CQR13A-KC334-3-		.33	1.375 (34.93)	1.312 (33.32)	
CQR13A-KC394-3- CQR13A-KC474-3-	,	. 39	1.625 (41.28)	1.562 (39.67)	
CQR13A-KC564-3-		.47			√
CQR13A-KC684-3-		.56 .68			. 670 (17.02)
CQR13A-KC824-3-	1	.82	2.125 (53.98)	2.062 (52.37)	.670 (17.02)
CQR13A-KC105-3-	i i	1.000	2.125 (53.98) 2.125 (53.98)	2.062 (52.37)	.750 (19.05)
CQR13A-KE272-3-	400	.0027	.750 (19.05)	.688 (17.48)	. 750 (19.05) . 400 (10.16)
CQR13A-KE332-3-	1	.0033	.750 (19.05)	.688 (17.48)	1400 (10.16)
CQR13A-KE123-3-		.012	.875 (22.23)	.812 (20.62)	
CQR13A-KE153-3-	ŀ	.015		i` í	
CQR13A-KE273-3-		. 027			
CQR13A-KE333-3-		. 033	√	J	
CQR13A-KE393-3-		. 039	1.125 (28.58)	1.062 (26.97)	
CQR13A-KE473-3-		. 047	1.125 (28.58)	1.062 (26.97)	
CQR13A-KE563-3-		.056	1.375 (34.93)	1.312 (33.32)	
COR13A-KE683-3-		.068	1.375 (34.93)	1.312 (33.32)	500 1
CQR13A-KE823-3- CQR13A-KE104-3-		. 082 . 10	1.125 (28.58) 1.125 (28.58)	1.062 (26.97)	.562 (14.27)
CQR13A-KE124-3-		. 12	1.375 (34.93)	1.062 (26.97) 1.312 (33.32)	
CQR13A-KE154-3-		. 15	1.375 (34.93)	1.312 (33.32)	
CQR13A-KE184-3-		.18	1.625 (41.28)	1.562 (39.67)	
CQR13A-KE224-3-		.22	1.025 (11.20)	1.002 (00.01)	1
CQR13A-KE274-3-		. 27			. 670 (17. 02)
CQR13A-KE334-3-	1 1	. 33			.670 (17.02)
CQR13A-KE394-3-		.39	2.125 (53.98)	2.062 (52.37)	.750 (19.05)
CQR13A-KE474-3-	↓	.47	2.125 (53.98)	2.062 (52.37)	.750 (19.05)

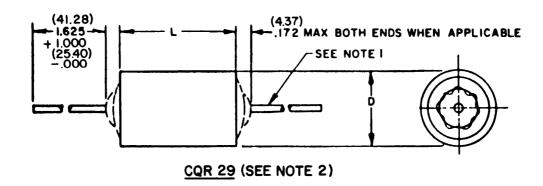
See footnote at end of tabulation.

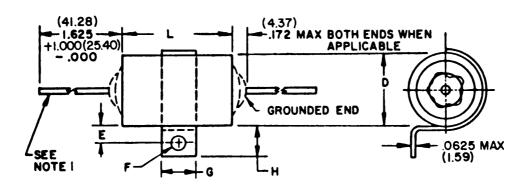
FIGURE 801-3. <u>Established reliability</u>, <u>plastic (or paper-plastic)</u> <u>dielectric</u>, <u>fixed capacitors</u> - Continued.

801 (MIL-C-19978)

MI L-STD-198E STANDARD CAPACITORS

STYLE COR13 (MIL-C-19978/11) - CONTINUED


CIRCUIT DIAGRAM 1 OR 3 -- PAPER AND POLYETHYLENE TEREPHTHALATE DIELECTRIC (CHARACTERISTIC K) -- CAPACITANCE TOLERANCE ±2, ±5, OR ±10 PERCENT -- OPERATING TEMPERATURE RANGE -65° TO +125°C


Oi wifi a aut	DC		Case d	imensio ns (in inc l	ies)
Significant part	voltage	Capacitance	L + . 155		D + . 062 (1.57)
number 1/	rating	(nom)	031	. (.79)	005 (.13)
_			Circuit 1	Circuit 3	
	Volts	μ F			
COD 104 K E109 9	600	.0010	.750 (19.05)	.688 (17.48)	. 400 (10. 16)
CQR13A-KF102-3- CQR13A-KF122-3-	000	.012	130 (19.00)	1000 (11.40)	. 400 (10. 10)
CQR13A-KF152-3-		.0015			
		.0013			
CQR13A-KF182-3-		.0022			
CQR 13A-K F222-3-		.0022	.875 ^V (22.23)	$.812^{\checkmark}(20.62)$	
CQR13A-KF272-3-		.0027	.015 (22.23)	.012 (20.02)	
CQR13A-KF332-3-		.0039			
CQR13A-KF392-3-		.0039			
CQR13A-KF472-3-					
CQR13A-KF562-3-		.0056			
CQR13A-KF682-3-	1	.0068			
CQR13A-KF822-3-		.0082			
CQR13A-KF103-3-		.010]	i i	
CQR13A-KF123-3-	1 1	.012			· ·
CQR13A-KF153-3-		. 015			
CQR13A-KF183-3-		.018	1		
CQR13A-KF223-3-		.022	V	 	
CQR 13A-K F273-3-		. 027	1.125 (28.58)	$1.062^{\circ}(26.97)$	
CQR 13A-K F333-3-	1	.033	1.125 (28.58)	1.062 (26.97)	
CQR13A-KF393-3-		.039	1.375 (34.93)	1.312 (33.32)	
CQR 13A-K F473-3-		.047	1.375 (34.93)	1.312 (33.32)	V
CQR13A-KF563-3-	1 1	. 056	1.125 (28.58)	1.062 (26.97)	.562 (14.27)
CQR13A-KF683-3-		. 068	1.125 (28.58)	1.062 (26.97)	
CQR13A-KF823-3-	1	. 082	1.375 (34.93)	1.312 (33.32)	
CQR13A-KF104-3-		.10	1.375 (34.93)	1.312 (33.32)	
CQR13A-KF124-3-		. 12	1.625 (41.28)	1.562 (39.67)	
CQR13A-KF154-3-		. 15			
CQR13A-KF184-3-		. 18	1		.670 (17.02)
CQR13A-KF224-3-		. 22	. ↓	l v	.670 (17.02)
CQR13A-KF274-3-		.27	2.125 (53.98)	2.062 (52.37)	.750 (19.05)
CQR13A-KF334-3-		. 33	2.125 (53.98)	2.062 (52.37)	
CQR13A-KF394-3-		.39	2.375 (60.33)	2.312 (58.72)	
CQR13A-KF474-3-	V	.47	2.375 (60.33)	2.312 (58.72)	
CQR13A-KG184-3-	1000	. 18	2.125 (53.98)	2.062 (52.37)	
CQR13A-KG224-3-		. 22			V
CQR13A-KG274-3-	1	. 27			1.000 (25.40)
CQR13A-KG334-3-		. 33		l √	1
CQR13A-KG394-3-		. 39	2.375 (60.33)	2.312 (58.72)	
CQR13A-KG474-3-	1 1	. 47	2.375 (60.33)	2.312 (58.72)	

1/ Complete part number includes additional suymbols to indicate circuit (1 or 3); capacitance tolerance (G, J, or K); and failure rate level (M, P, R, or S).

FIGURE 801-3. <u>Established reliability, plastic (or paper-plastic)</u> <u>dielectric, fixed capacitors</u> - Continued.

STYLES CQR29 AND CQR32

Case dimension D H	±.062	(1.57) G	±.062	(1.57) E	±.031	(.79) F	±.005	(.13)
Less than .500(12.70)	.312	(7.92)	.250	(6.35)	.188	(4.78)	.144	(3.66)
1.500 (12.70) and up	.438	(11.13)	.500	(12.70)]	.250	(6.35)	.156	(3.96)

CQR 32

NOTES:

- 1. Leads are of tinned solid wire, .020 (.51) for cases .175 (4.45) and .195 (4.95) in diameter; .025 (.64) for cases .235 (5.07 and .312 (7.92) diameter; and .032 (.81) for cases .400 (10.16) diameter and above. Tolerance on all lead wire diameters is +.004 (.10), -.001 (.03).
- 2. Capacitors with dimension L of 1.562 (39.67) or D of .562 (14.27) and larger, are not intended to be supported by their 1 cads. These capacitors are provided with a supplementary means of mounting, such as a wrap-around band.

FIGURE 801.3 <u>Established reliability</u>, <u>plastic (or paper-plastic) dielectric</u>, <u>fixed capacitors</u> - Continued.

STANDARD CAPACITORS

STYLES CQR29 (MIL-C-19978/I3) AND CQR32 (MIL-C-19978/14)

CIRCUIT DIAGRAM 1 OR 3 -- POLYETHYLENE TEREPHTHALATE DIELECTRIC (CHARACTERISTIC M) -- CAPACITANCE TOLERANCE ±2, ±5, OR ±10 PERCEN -- OPERATING TEMPERATURE RANGE -65° TO +85°C

	20		Case d	imensions (in inc	hes)
Significant	DC	Capacitance	L + . 155	(3, 94)	D + .062 (1.57)
part	voltage	(nom)		l (.79)	005 (.13)
number 1/	rating				1000 (120)
			Circuit 1	Circuit 3	
	Volts	$\mu \mathbf{F}$			
CQRA-MZ155-3-	30	1.5	1.625 (41.28)		.562 (14.27)
CQRA-MZ225-3-	1	2.2	1.875 (47.63)	1.781 (45.24)	. 670 (17.02)
CQRA-MZ335-3-	1	3.3	1.875 (47.63)	1.781 (45.24)	. 750 (19.05)
CQRA-MZ475-3-	l i	4.7	2.625 (66.68)		.750 (19.05)
CQRA-MZ685-3-	1	6.8	2.125 (53.98)	2.031 (51.59)	1.000 (25.40)
CQRA-MZ106-3-	<u> </u>	10.0	2.375 (60.33)	2.281 (57.94)	1.000 (25.40)
CQRA-MA102-3-	50	. 0010	. 500 (12.70)	.406 (10.31)	.175 (4.45)
CQRA-MA122-3-		.0012			
CQRA-MA152-3-		. 0015			
CQRA-MA182-3-		.0018			
CQRA-MA222-3-		. 0022			
CQRA-MA272-3-		. 0027			
CQRA-MA332-3-		. 0033			
CQRA-MA392-3-		. 0039			
CQRA-MA472-3-		. 0047	i i]	
CQRA-MA562-3-		. 0056			
CQRA-MA682-3-		. 0068			
CQRA-MA822-3-		. 0082			
CQRA-MA103-3-		. 010			
CQRA-MA123-3-		. 012			. 235 (5.97)
CQRA-MA153-3-		. 015			
CQRA-MA183-3-] !	. 018			
CQRA-MA223-3-	} }	. 022		}	010 (7 00)
CQRA-MA273-3-		. 027	!		. 312 (7.92)
CQRA-MA333-3-		.033			
CQRA-MA393-3-		. 039			
CQRA-MA473-3-		. 047	E00 144 07	400 (44 00)	
CQRA-MA563-3-		. 056	.562 (14.27)	.468 (11.89)	
CQRA-MA683-3-		. 068	.562 (14.27)	.468 (11.89)	
CQRA-MA124-3-	1	. 12	. 875 (22. 23)	.781 (19.84)	
CQR A - MA 194 3		. 15			100 (10 10)
CQR A - MA 184 - 3 -	ļ ļ	. 18			. 400 (10. 16)
CQR A - MA224 - 3 -		. 22			
CQR A - MA274 - 3 -		. 27	1 000 (25 40)	. 906 (23, 01)	
CQRA-MA334-3-		. 33	1.000 (25.40)		
CQRA-MA394-3-		. 39	1.125 (28.58)		
CQRA-MA474-3-		. 47	1.125 (28.58) 1.375 (34.93)	1.031 (26.19) 1.281 (32.54)	
CQRA-MA564-3- CQRA-MA684-3-		. 5 6 . 68	1.375 (34.93)	1.281 (32.54)	
		.82	1.125 (28.58)	1.031 (26.19)	.562 (14.27)
CQRA-MA824-3-			1.125 (28.58)	1.031 (26.19)	.562 (14.27)
CQRA-MA105-3- CQRA-MA125-3-	J	1.0 1.2	1.375 (34.93)	1.031 (26.19)	.562 (14.27)
L I	100	1.2	1.625 (41.28)	1.531 (38.89)	.670 (17.02)
CQRA-MB125-3- CQRA-MB155-3-	100	1.5	1.625 (41.28)	1.531 (38.89)	.670 (17.02)
CQRA-MB185-3-		1.8	1.625 (41.28)		. 670 (17.02)
CALL-Y-MP102-2-	V	1.0	1.020 (31.20)	1.001 (00.00)	.010 (11.02)

See footnote at end of tabulation

FIGURE 801-3. <u>Established reliability</u>, **plastic (or paper-plastic)** <u>dielectric</u>, <u>fixed capacitors</u> - Continued.

STANDARD CAPACITORS

STYLES CQR29 (MIL-C-19978/13) AND CQR32 (MIL-C-19978/14) - CONTINUED

CIRCUIT DIAGRAM 1 OR 3 -- POLYETHYLENE TEREPHTHALATE DIELECTRIC (CHARACTERISTIC M) -- CAPACITANCE TOLERANCE ±2, ±5, OR ±10 PERCENTOPERATING TEMPERATURE RANGE -65° TO +85°C

Significant	DC		Case d	imensions (in inc	hes)
part	voltage	Capacitance	L + . 155	(3.94)	D + . 062 (1.57)
number 1/	rating	(nom)	031	(.79)	005 (.13)
_			Circuit 1	Circuit 3	
	Volts	μ F			
1					
CQRA-MB225-3-	100	2.2	1.875 (47.63)	1.781 (45.24)	.750 (19.05)
CQRA-MB275-3-		2.7	2.125 (53.98)	2.031 (51.59)	.750 (19.05)
CQRA-MB335-3-		3.3	2.375 (60.33)	2.281 (57.94)	.750 (19.05)
CQRA-MB395-3-		3.9	1.875 (47.63)	1.781 (45.24)	1.000 (25.40)
CQRA-MB475-3-		4.7	2.125 (53.98)	2.031 (51.59)	
CQRA-MB565-3-	1	5.6	2.375 (60.33)	2.281 (57.94)	
CQRA-MB685-3-	200	6.8	2.625 (66.68)	2.531 (64.29)	V
CQRA-MC102-3-	200	. 0010	.750 (19.05)	. 656 (16. 66)	. 175 (4. 45)
CQRA-MC122-3- CQRA-MC152-3-		. 0012			
CQRA-MC182-3-		.0013			
CQRA-MC102-3-		.0018			
CQRA-MC272-3-		.0022			
CQRA-MC332-3-	}	. 0033			
CQRA-MC392-3-		. 0039			
CQRA-MC472-3-		. 0047			
CQRA-MC562-3-		. 0056	i		
CQRA-MC682-3-		. 0068			
CQRA-MC822-3-		. 0082			
CQRA-MC103-3-		. 010		Į,	
CQRA-MC123-3-		. 012	. 719 (18.26)	. 625 (15.88)	.195 (4.95)
CQRA-MC153-3-		. 015			. 195 (4.95)
CQRA-MC183-3-		. 018			. 235 (5.97)
CQRA-MC223-3-		. 022			
CQRA-MC273-3-		. 027			
CQR A - MC333 - 3 -		. 033			212 (- 22)
CQRA-MC393-3- CQRA-MC473-3-		. 039 . 047			. 312 (7. 92)
CQRA-MC563-3-		.056	.844 (21.44)	$.750^{1}(19.05)$	
CQRA-MC683-3-		. 068	(44.13)	. 100 (19.00)	
CQRA-MC823-3-		. 082			
CQRA-MC104-3-		.10		<u>, </u>	,,
CQRA-MC124-3-		. 12	$.812^{\vee}(20.62)$. 719^V(18.26)	.400 (10.16)
CQRA-MC154-3-		. 15	.812 (20.62)	.719 (18.26)	. 100 (10.10)
CQRA-MC184-3-		. 18	1.062 (26.97)	. 969 (24.61)	
CQRA-MC224-3-		. 22	1.062 (26.97)	. 969 (24.61)	
CQRA-MC274-3-		. 27	1.250 (31.75)	1.156 (29.36)	
CQRA-MC334-3-		. 33	1.250 (31.75)	1.156 (29.36)	↓
CQRA-MC394-3-		. 39	1.188 (30.17)	1.094 (27.79)	.500 (12.70)
CQRA-MC474-3-		. 47	1.188 (30.17)	1.094 (27.79)	.500 (12.70)
CQRA-MC564-3-		. 56	1.375 (34.93)	1.281 (32.54)	.562 (14.27)
CQRA-MC684-3-		. 68	1.375 (34.93)	1.281 (32.54)	
CQRA-MC824-3-		. 82	1.875 (47.63)	1.781 (45.24)	
CQRA-MC105-3-	<u> </u>	1.0	1.875 (47.63)	1.781 (45.24)	V

See footnote at end of tabulation.

FIGURE 801-3. <u>Established reliability</u>, <u>plastic (or paper-plastic)</u> <u>dielectric</u>. <u>fixed capacitors</u> - Continued.

STANDARD CAPACITORS

STYLES COR29 (MIL-C-19978/13) AND COR32 (MIL-C-19978/14) - CONTINUED

CIRCUIT DIAGRAME 1 OR 3 -- POLYETHYLENE TEREPHTHALATE DIELECTRIC (CHARACTERISTIC M) -- CAPACITANCE TOLERANCE ±2, ±5, OR +10 PERCENT -- OPERATING TEMPERATURE RANGE -65° TO +85°C

	20		Case di	mensions (in inc	nes)
Significant part	DC voltage	Capacitance (nom)	L + .155	(3. 9·1) (. 79)	D + .062 (1.57) 005 (.13)
number 1/	rating	(HOILI)	γ		003 (.13)
			Circuit 1	Circuit 3	
	Volts	$\mu {f F}$			
CQRA-ME102-3-	400	. 0010	. 812 (20. 62)	.719 (18.26)	.235 (5.97)
CQRA-ME122-3-	1	.0012	ì		
CQRA-ME152-3-	1	.0015			
CQRA-ME182-3-	1	. 0018		; {	
CQRA-ME222-3-	!	. 0022		i	
CQRA-ME272-3-		.0027			
CQRA-ME332-3-	1 1	. 0033			
CQRA-ME392-3-		. 0039			
CQRA-ME472-3-	1 1	. 0047	 	V	Ų l
CQRA-ME562-3-	1	. 0056	. 938 (23.72)	. 844 (21.44)	. 312 (7. 92)
CQRA-ME682-3-		. 0068			
CQRA-ME822-3-	İ	. 0082			
CQRA-ME103-3-		. 010			
CQRA-ME123-3-	1 1	. 012			
CQRA-ME153-3-		. 015	i 🕠 i	j,	
CQRA-ME183-3-		. 018	1.062 (26.97)	. 969"(24. 61)	
CQRA-ME223-3-		. 022	1.062 (26.97)	.969 (24.61)	V
CQRA-ME273-3-		. 027	. 938 (23.72)	.844 (21.44)	. 400 (10.16)
CQRA-ME333-3-		. 033	. 938 (23.72)	.844 (21.44)	
CQRA-ME393-3-	1 1	. 039	1.062 (26.97)	. 969 (24. 61)	
CQRA-ME473-3-	1	. 047	1.062 (26.97)	. 969 (24. 61)	
CQRA-ME563-3-	1	. 056	1.250 (31.75)	1.156 (29.36)	
CQRA-ME683-3-	1	. 068	1.250 (31.75)	1.156 (29.36)	
CQRA-ME823-3-	ľ	. 082	1.562 (39.67)	1.469 (37.31)	
CQRA-ME104-3-		. 10	1.562 (39.67)	1.469 (37.31)	. 562 (14.27)
CQRA-ME124-3-		. 12	1.281 (32.54)	1.188 (30.17)	. 562 (14.27)
CQRA-ME154-3-		. 15	1.281 (32.54)	1.188 (30.17)	
CQRA-ME184-3-]	. 18	1.531 (38.89)	1.438 (36.53)	
CQRA-ME224-3-		. 22	1.531 (38.89)	1.438 (36.53)	
CQRA-ME274-3-		. 27	1.906 (48.41)	1.812 (46.02)	
CQRA-ME334-3-		. 33			₩
CQRA-ME394-3-		. 39			. 670 (17.02)
CQRA-ME474-3-	1	. 47	2 150 (54 50)	0.000 (50.05)	. 670 (17. 02)
CQRA-ME564-3-		. 56	2.156 (54.76)	2.062 (52.37)	.750 (19.05)
CQRA-ME684-3-		. 68	2.156 (54.76)	2.062 (52.37)	
CQRA-ME824-3-	1	. 82	2.656 (67.46)	2.562 (65.07)	
CQRA-ME105-3-	V	1.0	2.656 (67.46)	2.562 (65.07)	.235 (5.97)
CQRA-MF102-3-	600	.0010	. 812 (20. 62)	.719 (18.26)	.233 (3.31)
CQRA-MF122-3-		. 0012			i
CQRA-MF152-3-		. 0015		i	
CQRA-MF182-3-		. 0018			
CQR A - M F272 - 3 -		. 0022		į.	
CQR A - M F272 - 3 -		. 0027	. 938 (23.72)	.844 (21.44)	. 312 (7.92)
CQRA-MF332-3-		. 0033	. 930 (23. (2)	.044 (21.44)	. 512 (1.92)
CQR A - M F472 3		. 0039			
CQRA-MF472-3- CQRA-MF562-3-		.0056			
CQRA-M F682-3-	1 !	. 0056		,	
CWRA-W F 002-3-	<u> </u>	. 5500	<u> </u>	<u> </u>	1

See footnote at end of tabulation.

FIGURE 801-3. <u>Established reliability</u>, <u>plastic (or paper-plastic)</u> <u>dielectric</u>, <u>fixed capacitors</u> - Continued.

STANDARD CAPACITORS

STYLES CQR29 (MIL-C-19978/13) AND CQR32 (MIL-C-19978/14) - CONTINUED

CIRCUIT DIAGRAM 1 OR 3 -- POLYETHYLENE TEREPHTHALATE DIELECTRIC (CHARACTERISTIC M) -- CAPACITANCE TOLERANCE ±2, ±5, OR +10 PERCENT OPERATING TEMPERATURE RANGE -65° TO +85°C

Significant	DC		Case d	imensions (in inc	hes)
part	voltage	Capacitance	L + .155	(3.94)	D + . 062 (1.57)
number 1/	rating	(nom)		(.79)	005 (.13)
1 2/	*b				.000 (.10)
			Circuit 1	Circuit 3	
	Volts	μ F			
		'			
CQRA-MF822-3-	600	0000	1 000 (00 07)		
CQRA-MF022-3- CQRA-MF103-3-	600	.0082	1.062 (26.97)	. 969 (24. 61)	. 312 (7.92)
CQRA-MF123-3-		.010 .012	1.062 (26.97)	. 969 (24. 61)	. 312 (7.92)
CQRA-MF153-3-		.012	. 938 (23.72) . 938 (23.72)	.844 (21.44)	. 400 (10. 16)
CQRA-MF183-3-	-	.018	1.062 (26.97)	.844 (21.44) .969 (24.61)	
CQRA-MF223-3-		.022	1.062 (26.97)	.969 (24.61)	
CQRA-MF273-3-		.027	1.312 (33.32)	1.219 (30.96)	
CQRA-MF333-3-		. 033	1.312 (33.32)	1.219 (30.96)	
CQRA-MF393-3-		.039	1.562 (39.67)	1.469 (37.31)	
CQRA-M F473-3-		.047	1.562 (39.67)	1.469 (37.31)	
CQRA-MF563-3-		.056	1.250 (31.75)	1.156 (29.36)	.562 (14.27)
CQRA-MF683-3-	1	. 068	1.250 (31.75)	1.156 (29.36)	.502 (14.27)
CQRA-MF823-3-	1	. 082	1.500 (38.10)	1.406 (35.71)	
CQRA-MF104-3-		.10	1.500 (38.10)	1.406 (35.71)	
CQRA-MF124-3-		. 12	1.875 (47.63)	1.781 (45.24)	
CQRA-MF154-3-		. 15	1	(1010)	
CQRA-M F184-3-	-	. 18			. 670 (17.02)
CQRA-MF224-3-		. 22		į.	. 670 (17.02)
CQRA-M F274-3-		. 27	2.125 (53.98)	2.031 (51.59)	.750 (19.05)
CQRA-M F334-3-	į .	. 33	2.125 (53.98)	2.031 (51.59)	
CQRA-MF394-3-		. 39	2.625 (66.68)	2.531 (64.29)	
CQRA-MF474-3-		. 47	2.625 (66.68)	2.531 (64.29)	
CQRA-MF564-3-		. 56	2.125 (53.98)	2.031 (51.59)	1.000 (25.40)
CQRA-MF684-3-	V	. 68	2.125 (53.98)	2.031 (51.59)	1.000 (25.40)
CQRA-MG102-3-	1000	.0010	. 938 (23.72)	. 844 (21. 44)	.312 (7.92)
CQRA-MG122-3-		. 0012			
CQR A MG152-3-		. 0015			
CQRA-MG182-3-		. 0018			i
CQRA-MG222-3- CQRA-MG272-3-		.0022			1
CQRA-MG332-3-		.0027			·
CQRA-MG392-3-		. 0033			.400 (10.16)
CQRA-MG472-3-		. 0047			.400 (10.16)
CQRA-MG562-3-		.0056	$1.062^{(26.97)}$	060 (24 61)	,
CQRA-MG682-3-		. 0068	1.062 (26.97)	. 969 (24. 61) . 969 (24. 61)	
CQRA-MG822-3-		. 0082	1.312 (33.32)	1.219 (30.96)	
CQRA-MG103-3-	i 1	.010	1.312 (33.32)	1.219 (30.96)	1
CQRA-MG123-3-	' I	. 012	1.562 (39.67)	1.469 (37.31)	, i
CQRA-MG183-3-		.018	1.562 (39.67)	1.469 (37.31)	,
CQRA-MG223-3-		. 022	1.250 (31.75)	1.156 (29.36)	.562 (14.27)
CQRA-MG273-3-		. 027	1.250 (31.75)	1.156 (29.36)	.002 (14.21)
CQRA-MG333-3-		.033	1.500 (38.10)	1.406 (35.71)	
CQRA-MG393-3-		. 039	1.875 (47.63)	1.781 (45.24)	
CQRA-MG473-3-	1	. 047	1.875 (47.63)	1.781 (45.24)	Ý

See footnote at end of tabulation.

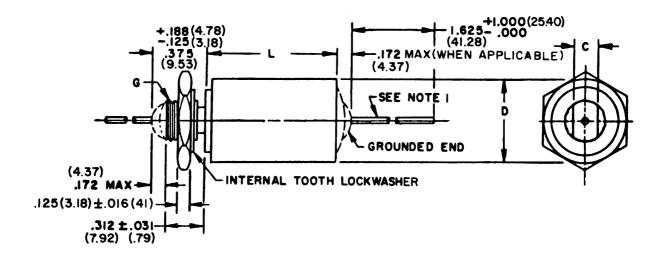
FIGURE 801-3. <u>Established reliability</u>, <u>plastic (or paper-plastic)</u> <u>dielectric</u>, <u>fixed capacitors</u> - Continued.

Downloaded from http://www.everyspec.com

MI L-STD-198E

STANDARD CAPACITORS

STYLES COR29 (MIL-C-19978/13) AND COR32 (MIL-C-19978/14) - CONTINUED


CIRCUIT DIAGRAM 1 OR 3 -- POLYETHYLENE TEREPHTHALATE DIELECTRIC (CHARACTERISTIC M) -- CAPACITANCE TOLERANCE ±2, ±5, OR +10 PERCENT -- OPERATING TEMPERATURE RANGE -65° TO +85°C

Significant DC			Case dimensions (in inches)		
Significant part number 1/	voltage rating	Capacitance (nom)		L + .155 (3.94) 031 (.79)	
_			Circuit 1	Circuit 3	
	Volts	μF			
CQRA-MG563-3- CQRA-MG683-3- CQRA-MG823-3- CQRA-MG104-3- CQRA-MG124-3- CQRA-MG154-3- CQRA-MG184-3- CQRA-MG224-3-	1000	.056 .068 .082 .10 .12 .15	1.875 (47.63) 1.875 (47.63) 2.125 (53.98) 2.125 (53.98) 1.875 (47.63) 1.875 (47.63) 2.375 (60.33) 2.375 (60.33)	1.781 (45.24) 1.781 (45.24) 2.031 (51.59) 2.031 (51.59) 1.781 (45.24) 1.781 (45.24) 2.281 (57.94) 2.281 (57.94)	. 670 (17.02) . 670 (17.02) . 750 (19.05) . 750 (19.05) 1.000 (25.40)

^{1/} Complete part number includes additional symbols to indicate style (29 or 32); circuit (1 or 3): capacitance tolerance (G, J, or K); and failure rate level (M, P, R, or S).

FIGURE 801-3. <u>Established reliability, plastic (or paper-plastic)</u> <u>dielectric. fixed capacitors</u> - Continued.

STYLE CQR33

Case dimension D	C ± . 005 (. 13)	G
. 562 (14.27) or less	. 250 (6.35)	.312 (7.92)-24UNF-2A
. 670 (17. 02)	. 375 (9.53)	.438 (11.13)-28UNEF-2A
. 750 (19.05) and up	. 437 (11.10)	.500 (12.70)-28UNEF-2A

NOTES:

- 1. Leads are of tinned solid wire, .032 (.81), +.004 (.10), -.001 (.03).
- 2. Mounting nuts and lockwashers are supplied.

FIGURE 801.3 <u>Established reliability, plastic (or paper-plastic) dielectric, fixed capacitors</u> - Continued.

STANDARD CAPACITORS

STYLE CQR33 (MI L-C-19978/15)

CIRCUIT DIAGRAM 1 OR 3 -- POLYETHYLENE TEREPHTHALATE DIELECTRIC (CHARACTERISTIC M) -- CAPACITANCE TOLERANCE ±2, ±5, OR ± 10 PERCENT OPERATING TEMPERATURE RANGE -65° TO +85°C

			Case d	imensions (in inc	hes)
Significant	DC	Capacitance	L + . 155	(3.94)	D + .062 (1.57)
part	voltage rating	(nom)		(.79)	005 (.13)
number 1/	Tacing		Circuit 1	Circuit 3	
			Circuit	Circuit	
	Volts	$\mu \mathbf{F}$			
	1				500 (14 05)
CQR33A-MZ155-3-	30	1.5	1.625 (41.28)	1.531 (38.89)	.562 (14.27)
CQR33A-MZ225-3-	1 1	2.2	1.875 (47.63)	1.781 (45.24)	. 670 (17.02)
CQR33A-MZ335-3-		3.3	1.875 (47.63)	1.781 (45.24)	.750 (19.05)
CQR33A-MZ475-3-	1 i	4.7	2.625 (66.68)	2.531 (64.29)	.750 (19.05)
CQR33A-MZ685-3-	1	6.8	2.125 (53.98)	2.031 (51.59)	1.000 (25.40)
CQR33A-MZ106-3-	<u> </u>	10.0	2.375 (60.33)	2.281 (57.94)	1.000 (25.40)
CQR33A-MA102-3-	50	.0010	.500 (12.70)	.406 (10.31)	. 400 (10. 16)
CQR33A-MA122-3-	1 1	.0012			
CQR33A-MA152-3-	1	. 0015			1 1 1
CQR33A-MA182-3-]	.0018			
CQR33A-MA222-3-		.0022	1		
CQR33A-MA272-3-		.0027			
CQR33A-MA332-3-]	.0033			
CQR33A-MA392-3-		.0039			
CQR33A-MA472-3-		.0047			
CQR33A-MA562-3-		.0056			
CQR33A-MA682-3-		. 0082			
CQR33A-MA822-3-		.010			
CQR33A-MA103-3- CQR33A-MA123-3-]	.012			
CQR33A-MA153-3-]	.015			
CQR 33A-MA183-3-		.018			
CQR33A-MA223-3-	1	.022			
CQR33A-MA273-3-		. 027			
CQR33A-MA333-3-	1 1	.033			
CQR33A-MA393-3-	1	.039			
CQR33A-MA473-3-		.047		!	
CQR33A-MA563-3-	1	.056	.562 (14.27)	.468 (11.89)	
CQR33A-MA683-3-		.068	.562 (14.27)	, , ,	
CQR33A-MA124-3-		. 12	.875 (22.23)	, , ,	
CQR33A-MA154-3-	1	. 15	1		
CQR33A-MA184-3-		. 18			
CQR33A-MA224-3-	1	. 22		1	
CQR33A-MA274-3-	1	. 27	 	 	
CQR33A-MA334-3-	1	. 33	1.000 (25.40)		j
CQR33A-MA394-3-		.39	1.125 (28.58)		
CQR33A-MA474-3-		. 47	1.125 (28.58)	1.031 (26.19)	
CQR33A-MA564-3-		.56	1.375 (34.93)		
CQR33A-MA684-3-	1 1	. 68	1.375 (34.93)		√
CQR33A-MA824-3-	1 1	. 82	1.125 (28.58)		.562 (14.27)
CQR33A-MA105-3-		1.0	1.125 (28.58)		.562 (14.27)
CQR33A-MA125-3-	\ \ V	1.2	1.375 (34.93)		.562 (14.27)
CQR33A-MB125-3-	100	1.2	1.625 (41.28)		. 670 (17.02)
CQR33A-MB155-3-		1.5	1.625 (41.28)	1 ' '	. 670 (17.02)
CQR33A-MB185-3-	<u> </u>	1.8	1.625 (41.28)	1.531 (38.89)	. 670 (17. 02)

See footnote at end of tabulation

FIGURE 801-3. <u>Established reliability, plastic (or paper-plastic)</u> <u>dielectric, fixed capacitors</u> - Continued.

801 (MI L-C-19978)

STANDARD CAPACITORS

STYLE CQR33 (MIL-C-19978/15) - CONTINUED

CIRCUIT DIAGRAM 1 OR 3 -- POLYETHYLENE TEREPHTHALATE DIELECTRIC (CHARACTERISTIC M) -- CAPACITANCE TOLERANCE ±2, ±5, OR ±10 PERCENT -- OPERATING TEMPERATURE RANGE -65° TO +85°C

Significant	DC		Case d	imension s (in inc l	nes)
part	voltage	Capacitance	L + .155		D + .062 (1.57)
number 1/	rating	(nom)	031	(.79)	005 (.13)
_			Circuit 1	Circuit 3	
	Volts	μ . F			
		 -		İ	
CQR33A-MB225-3-	100	2.2	1.875 (47.63)	1.781 (45.24)	.750 (19.05)
CQR33A-MB275-3-		2.7	2.125 (53.98)	2.031 (51.59)	.750 (19.05)
CQR33A-MB335-3-		3.3	2.375 (60.33)	2.281 (57.94)	.750 (19.05)
CQR33A-MB395-3-]	3.9	1.875 (47.63)	1.781 (45.24)	1.000 (25.40)
CQR33A-MB475-3-		4.7	2.125 (53.98)	2.031 (51.59)	
CQR33A-MB565-3-		5.6	2.375 (60.33)	2.281 (57.94)	
CQR33A-MB685-3-		6.8	2.625 (66.68)	2.531 (64.29)	y
CQR33A-MC102-3-	200	.0010	.750 (19.05)	. 656 (16. 66)	. 400 (10. 16)
CQR33A-MC122-3-		. 0012			1
CQR33A-MC152-3-		. 0015			
CQR33A-MC182-3-		. 0018			
CQR33A-MC222-3-		.0022			
CQR33A-MC272-3-		. 0027		1	
CQR33A-MC332-3-		. 0033			
CQR33A-MC392-3-		. 0039			
CQR33A-MC472-3-		. 0047			
CQR33A-MC562-3-		.0056			
CQR33A-MC682-3-		.0068			
CQR33A-MC822-3-		.0082			
CQR33A-MC103-3-		.010	· /	V	
CQR33A-MC123-3-		. 012	. 719 (18.26)	. 625 (15.88)	
CQR33A-MC153-3-		. 015			
CQR33A-MC183-3-		.018			
CQR33A-MC223-3-		.022			
CQR33A-MC273-3-		. 027			
CQR33A-MC333-3-		. 033			
CQR33A-MC393-3-		. 039			
CQR33A-MC473-3-		. 047	[./	
CQR33A-MC563-3-		.056	. 844 (21. 44)	.750 (19.05)	
CQR33A-MC683-3-		.068			
CQR33A-MC323-3-		. 082			
CQR33A-MC104-3-		.10	210/20 == 1		
CQR33A-MC124-3-		. 12	.812 (20.62)	.719 (18.26)	
CQR33A-MC154-3-		. 15	. 812 (20. 62)	.719 (18.26)	
CQR33A-MC184-3-		.18	1.062 (26.97)	. 969 (24. 61)	
CQR 33A MC224-3-		. 22	1.062 (26.97)	. 969 (24.61)	
CQR33A-MC274-3-		. 27	1.250 (31.75)	1.156 (29.36)	
CQR33A-MC334-3-		. 33	1.250 (31.75)	1.156 (29.36)	500 (10 - 11)
CQR33A-MC394-3-	.	. 39	1.188 (30.17)	1.094 (27.79)	.500 (12.70)
CQR 33A-MC474-3-		.47	1.188 (30.17)	1.094 (27.79)	.500 (12.70)
CQR 33A-MC564-3-		.56	1.375 (34.93)	1.281 (32.54)	.562 (14.27)
CQR 33A-MC684-3- CQR 33A-MC824-3-		. 68	1.375 (34.93)	1.281 (32.54)	
CQR 33A-MC824-3- CQR 33A-MC105-3-		. 82	1.875 (47.63)	1.781 (45.24)	
CON 334-MC103-3-	<u> </u>	1.0	1.875 (47.63)	1.781 (45.24)	V

See footnote at end of tabulation.

FIGURE 801-3. <u>Established reliability, plastic (or paper-plastic)</u> <u>dielectric, fixed capacitors</u> - Continued.

801 (MI L-C-19978)

STANDARID CAPICITORS

STYLE COR33 (MIL-C-19978/15) - CONTINUED

CIRCUIT DIAGRAM 1 OR 3 -- POLYETHYLENE TEREPHTHALATE DIELECTRIC (CHARACTERISTIC M) -- CAPACITANCE TOLERANCE ±2, ±5, OR ±10 PERCENT -- OPERATING TEMPERATURE RANGE -65° TO +85°C

	20		Case	dimensions (in inc	hes)
Significant part	DC voltage	Capacitance	L + .15	5 (3.94)	D + .062 (1.57)
number 1/	rating	(nom)		1 (.79)	.005 (.13)
number 1/	Tacing		Circuit 1	Circuit 3	
			0.1.0411.2		
	Volts	$\mu \mathbf{F}$			
	}				
CQR33A-ME102-3-	400	. 0010	.812 (20.62)	.719 (18.26)	.400 (10.16)
CQR33A-ME122-3-		.0012			
CQR33A-ME152-3-		.0015			
CQR33A-ME182-3-		.0018			
COR33A-ME222-3-		.0022			
CQR33A-ME272-3-	i i	.0027			i
CQR33A-ME332-3-		. 0033]		
CQR33A-ME392-3- CQR33A-ME472-3-		. 0047			
CQR33A-ME562-3-		.0056	. 938 (23.72)	. 844 (21.44)	
CQR33A-ME362-3-		. 0068	. 555 (25.12)	.011 (21.11)	
CQR33A-ME822-3-		.0082			
CQR33A-ME103-3-		.010			
CQR33A-ME123-3-		.012			
COR33A-ME153-3-		.015			
CQR33A-ME183-3-		.018	1.062 (26.97)	. 969 (24. 61)	
CQR33A-ME223-3-		. 022	1.062 (26.97)		
CQR33A-ME273-3-		. 027	.938 (23.72)	.844 (21.44)	
CQR33A-ME333-3-		. 033	. 938 (23.72)	.844 (21.44)	
CQR33A-ME393-3-		. 039	1.062 (26.97)	.969 (24.61)	
CQR33A-ME473-3-		. 047	1.062 (26.97)		
CQR33A-ME563-3-		. 056	1.250 (31.75)		
CQR33A-ME683-3-		.068	1.250 (31.75)	1	
CQR33A-ME823-3-		. 082	1.562 (39.67)		'
CQR33A-ME104-3-	i	. 10	1.562 (39.67)	1	1
CQR33A-ME124-3-	i	. 12	1.231 (32.54)		.562 (14.27)
CQR33A-ME154-3-		. 15	1.281 (32.54)		
CQR33A-ME184-3-		. 18	1.531 (38.89)		
CQR33A-ME224-3- CQR33A-ME274-3-		.27	1.531 (38.89) 1.906 (48.41)		
CQR33A-ME214-3-		.33	1.500 (40.41)	1.012 (40.02)	
CQR33A-ME394-3-		. 39			. 670 (17. 02)
COR33A-ME474-3-	1	.47			.670 (17.02)
CQR33A-ME564-3-		.56	2.156 (54.76)	2.062 (52.37)	.750 (19.05)
COR33A-ME684-3-		. 68	2.156 (54.76)		
CQR33A-ME824-3-		.82	2.656 (67.46)		
CQR33A-ME105-3-	Λ;	1.0	2.656 (67.46)		
CQR33A-MF102-3-	600	.0010	.812 (20.62)	.719 (18.26)	.400 (10.16)
CQR33A-MF122-3-		.0012			
CQR33A-MF152-3-		. 0015			
CQR33A-MF182-3-		.0018			
CQR33A-MF222-3-		.0022			
CQR33A-MF272-3-		. 0027	1 200 (20 ==:	1 044 04 411	
CQR33A-MF332-3-		. 0033	. 938 (23. 72)	. 844 (21.44)	
CQR33A-MF392-3-	{	.0039			
CQR33A - M F472 - 3 - CQR33A - M F562 - 3 -		.0047			
CQR33A-MF562-3-		. 0056			
CQR33A-M1F002-3-	7		<u> </u>	\ \\	1 · · · · · · · · · · · · · · · · ·

See footnote at end of tabulation.

FIGURE 801-3. <u>Established reliability, plastic (or paper-plastic)</u> <u>dielectric, fixed capacitors</u> - Continued.

STANDARD CAPACITORS

STYLE CQR33 (MIL-C-19978/15) - CONTINUED

CIRCUIT DIAGRAM 1 OR 3 -- POLYETHYLENE TEREPHTHALATE DIELECTRIC (CHATACTERISTIC M) -- CAPACITANCE TOLERANCE ±2, ±5, OR ±10 PERCENT -- OPERATING TEMPERATURE RANGE -65° TO +85°C

Cimuitiaant	DC		Case dimensions (in inches)				
Significant part	voltage	Capacitance	L + .155		D ÷ .062 (1.57)		
number 1/	rating	(nom)	031	(.79)	005 (.13)		
			Circuit 1	Circuit 3			
	Volts	$\mu \mathbf{F}$					
CQR33A-MF822-3-	600	.0082	1.062 (26.97)	.969 (24.61)	. 400 (10.16)		
CQR33A-MF103-3-	1	.010	1.062 (26.97)	.969 (24.61)			
CQR33A-MF123-3-		.012	. 938 (23.72)	.844 (21.44)			
CQR33A-MF153-3-		.015	. 938 (23.72)	.844 (21.44)			
CQR33A-MF183-3-		.018	1.062 (26.97)	.969 (24.61)			
CQR33A-MF223-3-		.022	1.062 (26.97)	.969 (24.61)			
CQR33A-MF273-3-		. 027	1.312 (33.32)	1.219 (30.96)			
CQR33A-MF333-3-		. 033	1.312 (33.32)	1.219 (30.96)			
CQR33A-MF393-3-		.039	1.562 (39.67)	1.469 (37.31)			
CQR33A-MF473-3-		. 047	1.562 (39.67)	1.469 (37.31)			
CQR33A-MF563-3-		.056	1.250 (31.75)	1.156 (29.36)	.562 (14.27)		
CQR33A-MF683-3-		. 068	1.250 (31.75)	1.156 (29.36)			
CQR33A-MF823-3-		.082	1.500 (38.10)	1.406 (35.71)			
CQR33A-MF104-3-		.10	1.500 (38.10)	1.406 (35.71)			
CQR33A-MF124-3-	1	. 12	1.875 (47.63)	1.781 (45.24)			
CQR33A-MF154-3-		. 15			. 1		
CQR 33A-M F184-3-		. 18			. 670 (17.02)		
CQR33A-MF224-3-		.22		ŀ	. 670 (17.02)		
CQR33A-MF274-3-		.27	2.125 (53.98)	2.031 (51.59)	.750 (19.05)		
CQR33A-MF334-3-		. 33	2.125 (53.98)	2.031 (51.59)	1		
CQR33A-MF394-3-		. 39	2.625 (66.68)	2.531 (64.29)			
CQR33A-MF474-3-		. 47	2.625 (66.68)	2.531 (64.29)			
Cର୍R33A-M F564-3-		.56	2.125 (53.98)	2.031 (51.59)	1.000 (25.40)		
CQR33A-MF684-3-	1	. 68	2.125 (53.98)	2.031 (51.59)	1.000 (25.40)		
CQR33A-MG823-3-	1000	. 082	2.125 (53.98)	2.031 (51.59)	.750 (19.05)		
CQR33A-MG104-3-	1 1	. 10	2.125 (53.98)	2.031 (51.59)	.750 (19.05)		
CQR33A-MG124-3-		. 12	1.875 (47.63)	1.781 (45.24)	1.000 (25.40)		
CQR33A-MG154-3-	1 1	. 15	1.875 (47.63)	1.781 (45.24)			
CQR33A-MG184-3-		. 18	2.375 (60.33)	2.281 (57.94)			
CQR33A-MG224-3-		. 22	2.375 (60.33)	2.281 (57.94)			

^{1/} Complete part number includes additional symbols to indicate circuit (1 or 3): capacitance tolerance (G, J, or K): and failure rate level (M, P, R, or S).

FIGURE 801-3. <u>Established reliability, plastic (or paper-plastic)</u> <u>dielectric, fixed capacitors</u> - Continued.

SECTION 802

CAPACITORS, FIXED, METALLIZED, PAPER PLASTIC FILM OR PLASTIC FILM DIELECTRIC, DIRECT AND ALTERNATING CURRENT (HERMETICALLY SEALED IN METAL CASE), ESTABLISHED RELIABILTIY

STYLES CHR09 AND CHR49

(APPLICABLE SPECIFICATION: MIL-C-39022)

1. SCOPE. This section covers established reliability, metallized dielectric (paper-plastic or plastic), fixed capacitors, hermetically sealed in metal cases. These capacitors have failure rate levels ranging from 1.0 percent to 0.001 percent per 1,000 hours. The failure rate levels are established at a 90-percent confidence level and are based on full rated voltage at the maximum rated temperature.

2. APPLICATION INFORMATION.

2.1 <u>Use.</u> These capacitors are primarily intended for use in power supply filter circuits, bypass applications, and other applications where the ac component of voltage is small with respect to the dc voltage rating and where occasional periods of low insulation resistance and momentary breakdowns can be tolerated.

NOTE: These capacitors may be used where an ac component is present provided that (1) the sum of the dc voltage and the peak ac voltage does not exceed the dc voltage rating, and (2) the ac voltage does not exceed 20 percent of the dc voltage rating or the value calculated from the following formual, shichever is smaller:

Vp. AC. =
$$\sqrt{\frac{(T_{dc} - T) Ae}{\pi f C D}}$$

Where: Vp. AC. = Peak value of ac component.

f = Frequency in Hertz of ac component.

D = 2 (maximum DF at applicable high test temperature).

C = Nominal capacitance in farads.

A = Exposed capacitor case surface area in square centimeters (cm), exclusive of portion occupied by terminal mountings.

 T_{dc} = Applicable high test temperature in degrees Celsius.

 $\mathbf{\tilde{T}}$ = Maximum ambient operating temperature expected within

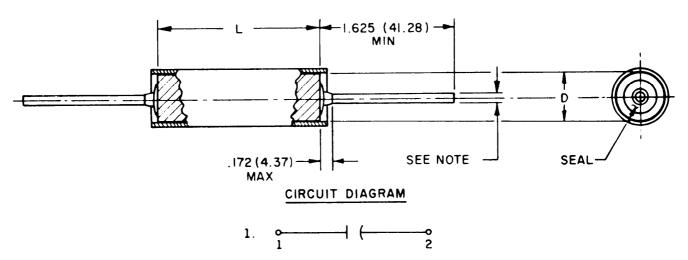
equipment containing capacitor.

e = Convection coefficient in watts per cm²/°C. (The value of "e" is approximately equal to 0.0006.)

2.2 <u>Construction.</u> The construction of metallized plastic capacitors differs from conventional plastic capacitors in that instead of having separate layers of metal foil (capacitor plates) and plastic dielectric, the metal comprising the capacitor plates is imposed directly on one side of the plastic dielectric by means of a metallizing process. This technique results in an overall size reduction for metallized plastic capacitors when compared to conventional plastic-foil capacitor types of equal ratings. This space saving is the outstanding feature of the metallized plastic capacitor. A 200-volt metallized plastic capacitor has 0.75 the volume of the conventional plastic construction; at 600 volts, this ratio increases to 0.8; above 600 volts, the metallized plastic capacitor provides no size advantage.

Another advantage resulting from the metallizing technique is that the capacitors are self-healing. The metallic film imposed on the plastic is very thin and if breakdown occurs, a tiny area of the thin film surrounding the breakdown point burns away, leaving the capacitor operable, but with a slightly reduced capacitance. In conventional plastic-foil type (where the foil is thicker), sustained conduction can occur on a breakdown causing a large area of the plastic surrounding the breakdown to be carbonized resulting in a permanent short-circuit.

802 (MIL-C-39022)


The breakdown of the metallized plastic capacitor can be either of two types; i.e., (1) a complete breakdown lasting for only a moment (momentary breakdown) or (2) a sharp reduction in insulation resistance lasting for an extended period of time, but eventually returning to normal (period of low insulation. The general characteristics of the metallized plastic type, aside from the breakdowns, are similar to the conventional plastic type except for a significantly lower insulation resistance, approximately in the order of 10 to 1.

- 2.3 <u>DC and ac voltage ratings.</u> Style CHR09 capacitors have a voltage rating of 600 volts dc; style CHR49 capacitors have voltage ratings from 80 + 400 volts ac, depending upon capacitance value and case size.
- 2.4 Operating temperature range. Styles CHR09 and CHR49 capacitors are suitable for operation over a temperature range of -55° +85 C.°
- 2.5 Prevention of corona. All metal parts, fittings, conductors, and attachments which operate at higher potential than other adjacent parts of the housing, should be carefully finished in order to insure that all sharp corners and edges are removed to minimize the possibility of corona discharge. Parts, from which the removal of sharp corners and edges would be impractical, such as conductors, should be spaced in such a manner as to prevent harmful corona discharges.
- 2.6 Mounting. Capacitors with dimension L or D of 1.375 or 0.672 inches, respectively, and greater, should not be supported by their leads. These capacitors should be provided with a supplementary means for mounting, such as a tangential bracket.

ITEM IDENTIFICATION

3.1 Standard capacitors. The standard capacitors available in this section are shown in figure 802.1. (The figure gives the electrical characteristics, failure rate levels, and Military part numbers which are standard for design.)

STYLE CHRO9

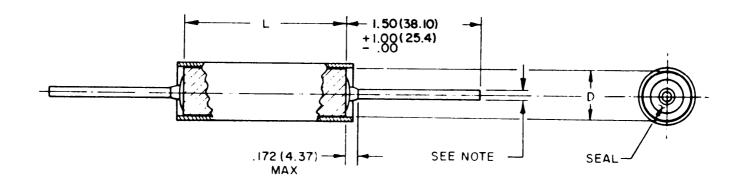
NOTE:

.020 \pm .002 for case diameters of .175 (4.45 mm) and .195 (4.95 mm) .025 \pm .002 for case diameters of .235 (5.97 mm) and .312 (7.92 mm) .032 \pm .002 for case diameters of .400 (10.16 mm) and over.

FIGURE 802-1. Established reliability, metallized paper (or polyester film) dielectric, fixed capacitors.

802 (MI L-C-39022)

STANDARD CAPACITORS


STYLE CHR09 (MI L-C-39022/1)

AXIAL-WIRE LEAD -- CIRCUIT DIAGRAM 1 -- OPERATING TEMPERATURE RANGE -55° TO +85°C -- DC RATED VOLTAGE 600 VOLTS


1 1	itance Capacitance Dimensions, nominal lue tolerance (inches)		l Dash number M39022/01- Failure rate level for (% 1,000 hr)				
value	tolerance	(Inc	nesi	ratture	rate le	7e1 107 (7	1,000 117
 μF	Percent	+.125 (3.18) 062 (1.57)	+.064 (1.63) 031 (0.79)		P (0.1)	R (0.01)	S (0.001)
0.010	10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20	0.812 0.812 0.812 1.125 1.125 1.125 1.125 1.125 1.375 1.375 1.375 1.625 1.625 1.844 1.875 1.875 2.625	0.312 0.312 0.312 0.312 0.400 0.400 0.500 0.500 0.562 0.562 0.562 0.670 1.000 1.000 1.000 1.000	1473 1474 1477 1478 1481 1482 1485 1486 1509 1510 1499 1490 1493 1494 1494 1197 1498 1501 1502 1505	1733 1734 1737 1738 1741 1742 1745 1746 1746 1769 1770 1753 1753 1753 1754 1757 1758 1761 1762 1765	1993 1994 1997 1998 2001 2002 2005 2006 2029 2030 2009 2010 2013 2014 2017 2018 2021 2022 2025 2026	2253 2254 2257 2258 2261 2262 2265 2266 2289 2270 2270 2273 2277 2278 2277 2278 2281 2282 2285 2286

FIGURE 802-1. <u>Established reliability, metallized paper (or polyester film)</u> <u>dielectric, fixed capacitors</u> - Continued.

STYLE CHR49 (UNINSULATED)

CIRCUIT DIAGRAM

NOTE:

.032 \pm .002 for case diameters of .312 (7.92 mm) .040 \pm .002 for case diameters of .400 (10.16 mm) and over.

FIGURE 802-1. <u>Established reliability</u>, <u>metallized paper</u> (or <u>polyester</u> film) dielectric, fixed capacitors - Continued.

STANDARD CAPACITORS

STYLE CHR49 (MIL-C-39022/7)

AXIAL-WIRE LEAD -- CIRCUIT DIAGRAM 1 -- OPERATING TEMPERATURE RANGE -55° TO +85°C

Capacitance	AC rated		 Dimension		 	Dash numb	er M39022/	07-
value	voltage	tolerance	(incl		Failure	rate lev	el for (%	1,000 117)
μF	 volts (RMS) 	 Percent 	L +.125 (3.18) 062 (1.57)	D +.064 (1.63) 031 (0.79)	M (1.0)	 P (0.1) 	 R (0.01) 	S (0.001)
10.00 6.80 4.70 3.30 2.20 1.50 0.01 0.15 0.22 0.33 0.47 0.68 1.00 2.20 1.50 1.00 0.68 0.10 0.15 0.22	80		2.625 1.875 2.375 1.875 1.625 1.625 0.875 1.125 0.875 1.125 1.375 1.125 1.375 1.125 1.375 1.875 1.875 1.875	1.000 1.000 0.750 0.750 0.670 0.562 0.312 0.312 0.400 0.400 0.562 0.562 1.000 1.000 0.750 0.750 0.750 0.750 0.562	1043 1042 1041 1040 1039 1038 1031 1032 1033 1034 1035 1036 1051 1050 1049 1044 1045 1046	1073 1072 1071 1070 1069 1068 1061 1062 1063 1064 1065 1066 1067 1082 1081 1081 1079 1074 1075 1076	1103 1102 1101 1100 1099 1098 1091 1092 1093 1094 1095 1096 1097 1112 1111 1110 1109 1104 1105 1106	1133 1132 1131 1130 1129 1128 1121 1122 1123 1124 1125 1126 1127 1142 1141 1140 1139 1134 1135 1136 1137
0.33 0.47 0.68 0.47 0.33 0.22 0.12 0.15 0.010 0.015 0.022 0.033 0.047 0.068 0.10	300 350 350 370 380 385 390 400 400 400 400 400 400 400 400		1.625 1.625 1.875 1.875 1.875 1.875 1.625 1.125 1.125 1.125 1.125 1.125 1.375 1.125 1.375	0.670 1.000 1.000 0.750 0.670 0.670 0.670 0.400 0.400 0.400 0.562 0.562	1048 1182 1181 1183 1180 1178 1179 1171 1172 1173 1174 1175 1176 1177	1078 1202 1201 1203 1200 1198 1199 1191 1192 1193 1194 1195 1196	1108 1222 1221 1223 1220 1218 1219 1211 1212 1213 1214 1215 1216	1138 1242 1241 1243 1240 1238 1239 1231 1232 1233 1234 1235 1236 1237

FIGURE 802-1. <u>Established reliability, metallized paper (or polyester film)</u> <u>dielectric, fixed capacitors</u> - Continued.

Downloaded from http://www.everyspec.com

MII-STD-198F

SECTION 803

CAPACITORS, FIXED, PLASTIC (OR METALLIZED PLASTIC) DIELECTRIC, DC, IN NONMETAL CASES, ESTABLISHED RELIABILITY

STYLES CFR02, CFR04, CFR05, CFR06, AND CFR12

(APPLICABLE SPECIFICATION: MIL-C-55514)

FOR ARMY AND ALR FORCE USE ONLY NOT FOR NAVY USE

- 1. SCOPE. This section covers established reliability, plastic (or metallized plastic) dielectric, fixed capacitors, enclosed in nonmetal cases. These capacitors have failure rate levels ranging from 1.0 to 0.001 percent per 1,000 hours. The failure rate levels are established at a 90-percent confidence level and are based on operation at maximum rated voltage and maximum rated temperature.
 - 2. APPLICATION INFORMATION.
- 2.1 <u>Use.</u> These capacitors are designed for use in circuit applications requiring high insulation resistance, low dielectric absorption, or low loss factor over wide temperature ranges, and where the ac component of the impressed voltage is small with respect to the dc voltage rating.

For military applications, in view of their limited long term moisture resistant characteristics, these capacitors should be used in potted or encapsulated circuit packaging systems. In addition, the life of the capacitors specified herein is primarily dependent upon the operating temperature and applied voltage. They should not be used above rated voltage or temperature.

NOTE: These capacitors may be used where an ac component is present provided that (1) the sum of the dc voltage and the peak ac voltage does not exceed the dc voltage rating or (2) the peak ac voltage does not exceed 20 percent of the dc voltage rating a 60 Hz; 15 percent at 120 Hz; or 1 percent at 10,000 Hz. Where heavy transient or pulse currents are encountered, the requirements of MIL-C-55514 are not sufficient to guarantee satisfactory performance, and due allowance must therefore be made in the selection of a capacitor.

- 2.1.1 <u>Polyethylene terephthalate.</u> These capacitors are intended for high-temperature applications similar to those served by hermetically-sealed paper capacitors, but where high insulation resistance at the upper temperature limits is required.
- 2.1.2 <u>Polycarbonate.</u> These capacitors are intended for applications where minimum capacitance changes with temperature are required; they are especially suitable for use in tuned and precision timing circuits.

2.2 Construction.

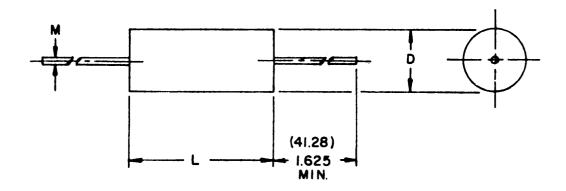
2.2.1 <u>Plastic film.</u> The present drive towards miniaturization, closer electrical tolerances, and higher operating temperatures is being met by the use of thin plastic-film dielectrics in the construction of capacitors. The greatest advantage of plastic-film dielectrics over natural dielectrics (such as paper and mica) is that the plastic film is a synthetic that can be made to meet specific requirements (such as thickness of dielectric and high heat resistance). Many plastinc-film capacitors are not impregnated but are wound and encased "dry." Plastic dielectric capacitors have insulation resistance values far in excess of those for paper capacitors and since they are nonabsorbent, their moisture characteristics are superior to those of mica.

MII-STD-198F

There are several types of plastic films available for use as a capacitor dielectric. They may be used individually or in a combination with other films in order to obtain the compromised advantages of the specific electrical characteristics of each individual film. The more common films include polyethylene terephthalate and polycarbonate. When properly applied, plastic dielectric: films lead to the solution of many special capacitor problems.

2. 2. 2 <u>Metallized plastic.</u> The construction of metallized plastic capacitors differs from conventional plastic capacitors in that instead of having separate layers of metal foil (capacitor plates) and plastic dielectric, the metal comprising the capacitor plates is imposed directly on one side of the plastic dielectric by means of a metallizing process. This technique results in an overall size reduction for metallized plastic capacitors when compared to conventional plastic-foil capacitor types of equal ratings. This space saving is the outstanding feature of the metallized plastic capacitor.

Another advantage resulting from the metallizing technique is that the capacitors are self-healing. The metallic film imposed on the plastic is very thin and if breakdown occurs, a tiny area of the thin film surrounding the breakdown point burns away, leaving the capacitor operable, but with a slightly reduced capacitance. In the conventional plastic-foil type (where the foil is thicker), sustained conduction can occur on a breakdown causing a large area of the plastic surrounding the breakdown to be carbonized resulting in a permanent short-circuit.


The breakdown of the metallized plastic capacitor can-be either of two types; i.e., (1) a complete breakdown lasting for only a moment (momentary breakdown) or (2) a sharp reduction in insulation resistance lasting for an extended period of time, but eventually returning to normal (period of low insulation). The general characteristics of the metallized plastic type, aside from the breakdowns, are similar to the conventional plastic type except for a significantly lower insulation resistance, approximately in the order of 10 to 1.

- 2.3 $\underline{\text{DC}}$ voltage ratings. The voltage ratings for these capacitors vary over a range of 50 to 600 volts.
- 2.4 <u>Operating temperature range.</u> Characteristics M and N capacitors are suitable for operation over a temperature range of -55 $^{\circ}$ to +85 $^{\circ}$ C; characteristics Q, R, and S capacitors are suitable for operation over a temperature range of -65 $^{\circ}$ to +125 $^{\circ}$ C.
- 2.5 <u>Mounting.</u> Capacitors covered by this specification should be mounted by a bracket of clamp, or they should be potted when vibration or shock are likely to be encountered in service. When a bracket or clamp is used, care should be taken to assure that the capacitor body is not deformed.
 - 3. ITEM IDENTIFICATION (see figures 803-1 and 803-2).
- 3.1 <u>Significant part number.</u> A significant part number is used for describing the capacitors as shown in figure 803-1.
- 3.2 <u>Standard capacitors.</u> The standard capacitors available in this section are shown in figure 803-2.

followed by a to	ne style is identified by wo-digit number. The terminal is identifing A R	ied by a single Axial wire-lea Radial wire-le	letter as follows: ad ead]
Symbol	Dielectric material	Electrode	Operating temp. range	
M	Polyethylene terephthalate Polyethylene terephthalate Polycarbonate Polycarbonate Poly-para-xylylene	Foil Metallized Foil Metallized Foil	-55° to +85°C -55° to +85°C -55° to +125°C * -55° to +125°C * -55° to +125°C *	
Symbol A B C D	100 Vdc G 200 Vdc H	nol Rated 600 75 150 25	voltage Vdc Vdc Vdc Vdc	
on the charge for +85°C of for +125°C be derated	tage derating at high acteristic as follows: only; characteristic G operation; and charaby 1/2 for +125°C op	ambient tempe Characteristic 2 capacitors sh cteristics R an eration.	ratures is dependent as Mand N are rated all be derated by 1/3 d S capacitors shall	3
farads (pF) is	identified by a three- nificant figures and th	digit number;	the first two digits	
<u>CAPACITANC</u> tified by a sing	E TOLERANCE - gle letter as follows: F	1 percent 2 percent 5 percent	e tolerance is iden-	
FAILURE RAT single letter a	FE LEVEL - The fast follows: M	- 1.0 - 0.1 - 0.01	el is identified by a	

FIGURE 803-1. Significant part number example.

STYLE CFR02

INCHES	MM	INCHES	MM
.03	.76	.250	6.35
.031	.79	.251	6.38
.046	1.17	.499	12.67
.062	1.57	.500	12.70

NOTES:

- Tolerance on dimenson "D" is $\pm .031$ (on diameters of .250 inch and 1. below); \pm .046 (on diameters of .251 through .499 inch); and \pm .062 (on diameters of .500 inch and above).
- Leads are of solid wire and are located on centerline within ±.062 but not less than .03 from edge of capacitor.

FIGURE 803-2. Established reliability, plastic (or metallized plastic) <u>dielectric</u>, in nonmetal cases, fixed capacitors - Continued.

STANDARD CAPACITORS

STYLE CFR02

		CHARACTE	ERISTIC M CAPA	CITORS			
Туре	Capaci -	Rated voltage	Capacitance	Din	Dimensions (in inches)		
designation	tance	(at 85° C)	tolerance available	D	L+.062(1.57)	M + . 005(. 13) 003(. 08)	
	<u>μ</u> F	volts, de					
CFR02AMB682	. 0068	100	G, J, K	. 172 (4.37)	. 438(11. 13)	. 025(. 64)	
CFR02AMB822	. 0082	100	•	1.172 (4.37)	. 438(11. 13)	. 025(. 64)	
CFR02AMB103	. 010	100	ļ	. 172 (4.37)	. 438(11. 13)	. 025(. 64)	
CFR02AMB123	. 012	100		. 172 (4.37)	.688(17.48)	. 025(. 64)	
CFR02AMB153	. 015	100		. 172 (4.37)	. 688(17.48)	. 025(. 64)	
CFR02AMB183	. 018	100		. 188 (4.78)	.688(17.48)	. 025(. 64)	
CFR02AMB223	. 022	100	1	. 188 (4.78)	. 688(17.48)	. 025(. 64)	
CFR02AMB273	. 027	100	ļ	. 203 (5.16)	. 688(17. 48)	. 025(. 64)	
CFR02AMB333	. 033	100	1	. 203 (5.16)	. 688(17.48)	. 025(. 64)	
CFR02AMB393	. 039	100	ļ	. 250 (6.35)	. 688(17. 48)	. 025(. 64)	
CFR02AMB473	. 047	100	}	. 250 (6.35)	. 688(17. 48)	. 025(. 64)	
CFR02AMB563	. 056	100		. 250 (6.35)	. 812(20. 62)	. 025(. 64)	
CFR02AMB683	. 068	100		. 250 (6.35)	. 812(20. 62)	. 025(. 64)	
CFR02AMB823	. 082	100		. 297 (7.54)	.812(20.62)	. 025(. 64)	
CFR02AMB104	. 10	100		. 297 (7.54)	.812(20.62)	. 025(. 64)	
CFR02AMB124	. 12	100		.360 (9.14)	.812(20.62)	. 032(.81)	
CFR02AMB154	. 15	100		.360 (9.14)		.032(.81)	
CFR02AMB184	. 18	100		(8.36)		. 025 (. 64)	
CFR02AMB224	. 22	100	ł	.329 (8.36)		. 025(. 64)	
CFR02AMB274	. 27	100		390 (9.91)	1. 188(30. 18)	. 032(. 81)	
CFR02AMB334	. 33	100		.390 (9.91)		. 032(. 81)	
CFR02AMB394	. 39	100		1.485(12.32)		. 032(. 81)	
CFR02AMB474	.47	100	·	1.485(12.32)		. 032(. 81)	
CFR02AMB564	. 56	100		[.500(12.70)		. 032(. 81)	
CFR02AMB684	. 68	100	' I	1.500(12.70)	1.562(39.67)	. 032(. 81)	
CFR02AMB824	. 82	100		1.548(13.92)	1.562(39.67)	. 032(. 81)	
CFR02AMB105	1.00	100		1.548(13.92)	1.562(39.67)	. 032(. 81)	
CFR02AMC102	.0010	200		1.172 (4.37)	.438(11.13)	. 025(. 64)	
CFR02AMC122	. 0012	200		1.172 (4.37)	.438(11.13)	. 025(. 64)	
CFR02AMC152	. 0015	200		1.172 (4.37)	.438(11.13)	. 025(. 64)	
CFR02AMC182	.0018	200		1.172 (4.37)	. 438(11.13)	. 025(. 64)	
CFR02AMC222	. 0022	200		.172 (4.37)	.438(11.13)	. 025(. 64)	
CFR02AMC272	.0027	200		. 172 (4.37)	. 438(11. 13)	. 025(. 64)	
CFR02AMC332	. 0033	200		1.172 (4.37)	.438(11.13)	. 025(. 64)	
CFR02AMC392	. 0039	200	Ì	1.172 (4.37)	. 438(11. 13)	. 025(. 64)	
CFR02AMC472	. 0047	200		1.172 (4.37)	. 438(11. 13)	. 025(. 64)	
CFR02AMC562	.0056	200		1.172 (4.37)	. 688(17.48)	. 025(. 64)	
CFR02AMC682	. 0068	200	l	1.172 (4.37)	.688(17.48)	. 025(. 64)	
CFR02AMC822	.0082	200		. 188 (4.78)	.688(17.48)	. 025(. 64)	
CFR02AMC103	.010	200		1.188 (4.78)	.688(17.48)	. 025(. 64)	
CFR02AMC123	.012	200	1	. 203 (5.16)	688(17.48)	.025(.64)	
CFR02AMC153	.015	200		203 (5.16)	688(17.48)	.025(.64)	
CFR02AMC183	.018	200	[. 234 (5.94)	.688(17.48) .688(17.48)	. 025(. 64)	
CFR02AMC223	.022	200		1.234 (5.94)			
CFR02AMC273	. 027	200		250 (6.35)	.812(20.62)	. 025(. 64)	
CFR02AMC333	. 033	200		250 (6.35)	.812(20.62)	. 025(. 64)	
CFR02AMC393	. 039	200	1	. 266 (6.76)	.812(20.62)	. 025(. 64)	
CFR02AMC473	. 047	200	▼	. 266 (6.76)	.812(20.62)	. 025(. 64)	
CFR02AMC563	. 056	200	G, J, K	. 297 (7.54)	. 812(20. 62)	. 025(. 64)	

FIGURE 803-2. Established reliability, plastic (or metallized plastic) dielectric, in nonmetal cases, fixed capacitors -Continued.

STANDARD CAPACITORS

STYLE CFR02 - Continued

		CHARACTI	ERISTIC M CAP	ACITORS			
Туре	Capaci-	Rated voltage	Capacitance	Dir	nensions (in in		
designation	tance	(at 85° C)	tolerance available	D			
	μF	volts, dc					
CFR02AMC683	. 068	200	G, J, K	. 297 (7.54)	. 812(20. 62)	. 025(, 64)	
CFR02AMC823	. 082	200	A		1.062(26.97)	. 025(. 64)	
CFR02AMC104	. 10	200		.329 (8.36)	1.062(26.97)	. 025(. 64)	
CFR02AMC124	. 12	200	ļ	390 (9.91)	1.062(26.97)	. 032(. 81)	
CFR02AMC154	. 15	200		390 (9 91)	1.062(26.97)	. 032(. 81)	
CFR02AMC184	. 18	200		390 (9 91)	1.188(30.18)	.032(.81)	
CFR02AMC224	. 22	200			1. 188(30. 18)	. 032(.81)	
CFR02AMC274	. 27	200			1. 188(30. 18)	.032(.81)	
CFR02AMC334	. 33	200			1. 188(30. 18)	.032(.81)	
CFR02AMC394	. 39	200			1.562(39.67)	. 032(. 81)	
CFR02AMC474	.47	200			1.562(39.67)	. 032(. 81)	
CFR02AMC564	.56	200			1.688(42.48)	. 032(. 81)	
CFR02AMC684	.68	200			1.688(42.48)	. 032(.81)	
CFR02AMC824	. 82	200			1.875(47.63)		
CFR02AMC105	1.00	200			1.875(47.63)	. 032(. 81)	
CFR02AME182	. 0018	400		172 (4.37)		. 032(. 81) . 025(. 64)	
CFR02AME222	. 0022	400		172 (4.37)	.688(17.48)	. 025(. 64)	
CFR02AME272	.0027	400		. 188 (4.78)		. 025(. 64)	
CFR02AME332	. 0033	400		. 188 (4.78)	. 688(17. 48)		
CFR02AME392	. 0039	400		. 203 (5.16)	. 688(17.48)	. 025(. 64)	
CFR02AME472	.0047	400		. 203 (5.16)	. 688(17. 48)	. 025(. 64) . 025(. 64)	
CFR02AME562	.0056	400		. 250 (6.35)	. 688(17. 48)	. 025(. 64)	
CFR02AME682	.0068	400		. 250 (6.35)	. 688(17. 48)		
CFR02AME822	.0082	400		. 250 (6.35)	· · · · · · · · · · · · · · · · · · ·	. 025(. 64)	
CFR02AME103	.010	400			. 812(20. 62)	. 025(. 64)	
	.010	400		. 250 (6.35)	. 812(20. 62)	. 025(. 64)	
CFR02AME123				266 (6.76)	.812(20.62)	. 025(. 64)	
CFR02AME153	. 015 . 018	400 400	İ	.266 (6.76) .313 (7.95)	.812(20.62)	. 025(. 64)	
CFR02AME183		400			. 812(20. 62)	. 025(. 64)	
CFR02AME223	. 022			313 (7.95)	.812(20.62)	. 025(. 64)	
CFR02AME273	.027	400		.360 (9.14)	.812(20.62)	. 032(. 81)	
CFR02AME333	.033	400		360 (9.14)	.812(20.62)	. 032(. 81)	
CFR02AME393	. 039	400			1.062(26.97)	. 032(. 81)	
CFR02AME473	.047	400			1.062(26.97)	. 032(. 81)	
CFR02AME 563	. 056	400			1. 188(30. 18)	. 032(. 81)	
CFR02AME683	. 068	400			1.188(30.18)	. 032(. 81)	
CFR02AME823	. 082	400			1. 188(30. 18)	. 032(. 81)	
CFR02AME104	.10	400			1. 188(30. 18)	. 032(. 81)	
CFR02AME124	.12	400			1.562(39.67)	. 032(. 81)	
CFR02AME154	. 15	400	ł		1.562(39.67)	. 032(. 81)	
CFR02AME184	.18	400			1.562(39.67)	. 032(. 81)	
CFR02AME 224	. 22	400			1.562(39.67)	. 032(. 81)	
CFR02AME274	. 27	400	}		1.688(42.48)	. 032(. 81)	
CFR02AME 334	.33	400			1.688(42.48)	. 032(. 81)	
CFR02AME394	.39	400	•		1.875(47.63)	. 032(. 81)	
CFR02AME474	.47	400	G, J, K	. 750(19. 05)	1.875(47.63)	. 032(. 81)	

FIGURE 803-2. Established reliability, plastic (or metallized plastic) dielectric, in nonmetal cases, fixed capacitors -Continued.

STANDARD CAPACITORS

STYLE CFR02 - Continued

		CHARACTE	ERISTIC M CAP	ACITORS		
_	_	Rated voltage	Capacitance	Dir	nensions (in in	ches)
Type designation	Capaci-	(at 85° C)	tolerance	D	L+.062(1.57)	+ . 005(. 13)
designation	tance	(at 85 C)	available	l D	L+.062(1.57)	^M 003(. 08)
	μF	volts, dc				
 CFR02AME564	. 56	400	G, J, K	040(22 00)	2.125(53.98)	022/ 01)
CFR02AME684	.68	400	4 ,			. 032(. 81)
			I	1.020(25.91)		. 032(. 81)
CFR02AME824	. 82	400			2.375(60.33)	. 032(.81)
CFR02AME105	1.00	400	' i	1. 150(29.21)		. 032(.81) . 025(.64)
CFR02AMF102	.0010	600		172 (4.37)		. 025(. 64)
CFR02AMF122	.0012	600		.172 (4.37)	1	. 025(. 64)
CFR02AMF152	. 0015	600		.172 (4.37)	1 : :	. 025(. 64)
CFR02AMF182	.0018	600		. 188 (4.78)	1:	. 025(. 64)
CFR02AMF222	. 0022	600		. 188 (4.78)		
CFR02AMF272	. 0027	600		.203 (5.16)		. 025(. 64)
CFR02AMF332	. 0033	600		.203 (5.16)	.688(17.48)	. 025(. 64)
CFR02AMF392	. 0039	600		.250 (6.35)	.688(17.48)	. 025(. 64)
CFR02AMF472	. 0047	600	}	. 250 (6.35)		.025(.64)
CFR02AMF562	. 0056	600		.250 (6.35)	.812(20.62)	. 025(. 64)
CFR02AMF682	. 0068	600		. 250 (6.35)		. 025(. 64)
CFR02AMF822	. 0082	600		.266 (6.76)		. 025(. 64)
CFR02AMF103	.010	600		. 266 (6.76)		. 025(. 64)
CFR02AMF123	. 012	600		.313 (7.95)		. 025(. 64)
CFR02AMF153	. 015	600		.313 (7.95)		. 025(. 64)
CFR02AMF183	.018	600		.360 (9.14)		. 032(. 81)
CFR02AMF223	. 022	600		.360 (9.14)		. 032(. 81)
CFR02AMF273	. 027	600			1.062(26.97)	. 032(. 81)
CFR02AMF333	. 033	600		.360 (9.14)		. 032(. 81)
CFR02AMF393	. 039	600			1. 188(30. 18)	. 032(. 81)
CFR02AMF473	. 047	600			1.188(30.18)	. 032(.81)
CFR02AMF563	. 056	600		.485(12.32)		. 032(. 81)
CFR02AMF683	. 068	600	ł ł	. 485(12.32)	1.188(30.18)	. 032(. 81)
CFR02AMF823	. 082	600	•	.500(12.70)	1.562(39.67)	. 032(. 81)
CFR02AMF104	.10	600	G, J, K	.500(12.70)	1.562(39.67)	. 032(. 81)
		CHARACTE	ERISTIC Q CAP	ACITORS		
CFR02AQB102	.0010	100	F, G, J, K	.231 (5.87)		. 025(. 64)
CFR02AQB122	.0012	100	• •	. 231 (5.87)		. 025(. 64)
CFR02AQB152	. 0015	100	}	. 231 (5.87)		. 025(. 64)
CFR02AQB182	.0018	100		. 231 (5.87)	. 453(11.51)	. 025(. 64)
CFR02AQB222	.0022	100		.231 (5.87)	.453(11.51)	. 025(. 64)
CFR02AQB272	.0027	100		.231 (5.87)	. 453(11.51)	. 025(. 64)
CFR02AQB332	.0033	100		.231 (5.87)		. 025(. 64)
CFR02AQB392	.0039	100	[.281 (7.14)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 025(. 64)
CFR02AQB472	.0039	100		.281 (7.14)		. 025(. 64)
CFR02AQB562	.0056	100		.281 (7.14)	.453(11.51)	. 025(. 64)
CFR02AQB682	.0058	100		.281 (7.14)		. 025(. 64)
CFR02AQB822		100		.281 (7.14)	.453(11.51)	. 025(. 64)
	.0082	100		.281 (7.14)	.453(11.51)	. 025(. 64)
CFR02AQB103	.010		1	.281 (7.14)	.453(11.51)	. 025(. 64)
CFR02AQB123	.012	100		.312 (7.92)	.453(11.51)	. 025(. 64)
CFR02AQB153	. 015	100	F, G, J, K	.328 (8.33)	.453(11.51)	. 025(. 64)
CFR02AQB183	. 018	100	F, G, J, K	1.020 (0.00)	1 . 100(11.01)	1

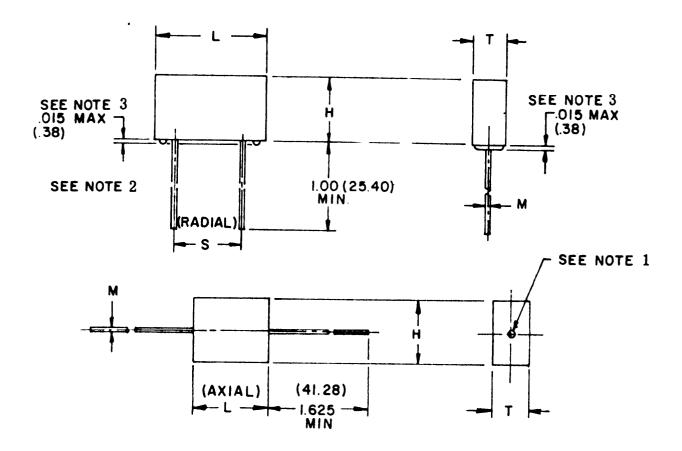
FIGURE 803-2. Established reliability, plastic (or metallized plastic) dielectric, in nonmetal cases, fixed capacitors -Continued.

STANDARD CAPACITORS

STYLE CFR02 - Continued

		CHARACTE	ERISTIC Q CAPA	ACITORS				
Туре	Capaci-	Rated voltage	Capacitance	Din	Dimensions (in inches)			
designation	tance	(at 85°C)	tolerance available	D	L1.062(1.57)	M ⁺ . 005(. 13) 003(. 08)		
	μF	volts, dc						
CFR02AQB223	. 022	100	F, G, J, K	. 266 (6.76)	.750(19.05)	. 025(. 64)		
CFR02AQB273	. 027	100	· 🐧 .	. 281 (7.14)		.025(.64)		
CFR02AQB333	. 033	100		.297 (7.54)		.025(.64)		
CFR02AQB393	. 039	100		.312 (7.92)		.025(.64)		
CFR02AQB473	. 047	100		.328 (8.33)	.750(19.05)	. 025(. 64)		
CFR02AQB563	. 056	100		359 (9.12)		. 032(.81)		
CFR02AQB683	. 068	100		.391 (9.93)		.032(.81)		
CFR02AQB823	. 082	100		359 (9.12)	. 875(22. 23)			
CFR02AQB104	.100	100	ĺ	.406(10.31)		. 032(.81)		
CFR02AQB124	.12	100		. 422(10.72)	.875(22.23)	. 032(. 81)		
CFR02AQB154	. 15	100		. 468(11.89)	.875(22.23)	. 032(. 81)		
CFR02AQB184	. 18	100		.406(10.31)		. 032(. 81)		
CFR02AQB224	. 22	100)	, , ,		. 032(. 81)		
CFR02AQB274	. 27	100			1.219(30.96) 1.219(30.96)	.032(.81)		
CFR02AQB334	. 33	100			1.219(30.96)	.032(.81)		
CFR02AQB394	. 39	100			1.219(30.96)			
CFR02AQB474	. 47	100		.625(15.88)		. 032(. 81)		
CFR02AQB564	. 56			, , ,		. 032(. 81)		
CFR02AQB684	. 68	100		1 '	1.219(30.96)	. 032(. 81)		
CFR02AQB824	. 82		•		1.594(40.49)	. 032(. 81)		
CFR02AQB105		100		688(17.48)		. 032(. 81)		
CFR02AQC102	1.00	100		719(18.26)		. 032(. 81)		
	. 0010 . 0012	200		231 (5.87)	. 453(11.51)	. 025(. 64)		
CFR02AQC122		200		1.231 (5.87)	.453(11.51)	. 025(. 64)		
CFR02AQC152	. 0015	200		. 231 (5.87)	. 453(11.51)	. 025(. 64)		
CFR02AQC182 CFR02AQC222	. 0018	200		. 231 (5.87)	.453(11.51)	. 025(. 64)		
_	. 0022	200		231 (5.87)	.453(11.51)	. 025(. 64)		
CFR02AQC272	. 0027	200		231 (5.87)	.453(11.51)	. 025(. 64)		
CFR02AQC332	. 0033	200		281 (7.14)	. 453(11.51)	. 025(. 64)		
CFR02AQC392	. 0039	200		281 (7.14)	.453(11.51)	. 025(. 64)		
CFR02AQC472	. 0047	200		281 (7.14)	. 453(11.51)	. 025(. 64)		
CFR02AQC562	. 0056	200		. 281 (7.14)	.453(11.51)	. 025(. 64)		
CFR02AQC682	. 0068	200		.312 (7.92)	. 453(11.51)	. 025(. 64)		
CFR02AQC822	. 0082	200		231 (5.87)	.750(19.05)	. 025(. 64)		
CFR02AQC103	.010	200		250 (6.35)	.750(19.05)	. 025(. 64)		
CFR02AQC123	. 012	200		. 266 (6.76)	750(19.05)	025(. 64)		
CFR02AQC153	. 015	200		281 (7.14)	.750(19.05)	. 025(. 64)		
CFR02AQC183	. 018	200		.312 (7.92)	. 750(19. 05)	. 025(. 64)		
CFR02AQC223	. 022	200		.328 (8.33)	.750(19.05)	. 025(. 64)		
CFR02AQC273	. 027	200		359 (9.12)	. 750(19. 05)	. 032(. 81)		
CFR02AQC333	. 033	200		391 (9.93)	. 750(19. 05)	. 032(. 81)		
CFR02AQC393	. 039	200	1	359 (9.12)	.875(22.23)	. 032(. 81)		
CFR02AQC473	. 047	200		.391 (9.93)	. 875(22.23)	. 032(. 81)		
CFR02AQC563	. 056	200		. 422(10.72)	. 875(22.23)	.032(.81)		
CFR02AQC683	. 068	200		. 453(11.51)	. 875(22.23)	. 032(. 81)		
CFR02AQC823	. 082	200		.500(12.70)	. 875(22. 23)	. 032(. 81)		
CFR02AQC104	. 10	200	1	. 438(11. 13)		. 032(. 81)		
CFR02AQC124	. 12	200	_ ▼	. 469(11.91)	1.219(30.96)	. 032(.81)		
CFR02AQC154	. 15	200	F, G, J, K	516(13.11)	1.219(30.96)	. 032(. 81)		

FIGURE 803-2. Established reliability, plastic (or metallized plastic) dielectric, in nonmetal cases. fixed capacitors -Continued.


STANDARD CAPACITORS

STYLE CFR02 - Continued

		CHARACTE	ERISTIC Q CAPA	ACITORS		
Туре		Rated voltage	Capacitance		nensions (in in	
designation	Capaci- tance	(at 85° C)	tolerance available	D	L±.062(1.57)	M ⁺ .005(.13) 003(.08)
	μ F	volts, dc				
CFR02AQC184	. 18	200	F, G, J, K	.547(13.89)	1.219(30.96)	. 032(. 81)
CFR02AQC224	. 22	200	•	1.625(15.88)	1.219(30.96)	. 032(.81)
CFR02AQC274	. 27	200		1 (,	1.594(40.49)	. 032(.81)
CFR02AQC334	. 33	200		,	1.594(40.49)	. 032(.81)
CFR02AQC394	. 39	200		. 688(17.48)	1.594(40.49)	. 032(.81)
CFR02AQC474	.47	200	ì	. 734(18.64)	1.594(40.49)	. 032(. 81)
CFR02AQC564	. 56	200		. 797(20. 24)	1.594(40.49)	. 032(. 81)
CFR02AQC684	. 68	200		.859(21.82)	1.594(40.49)	. 032(.81)
CFR02AQC824	.82	200		.859(21.82)	1.844(46.84)	. 032(. 81)
CFR02AQC105	1.00	200	F, G, J, K	. 938(23.83)	1.844(46.84)	. 032(.81)

FIGURE 803-2. Established reliability, plastic (or metallized plastic) dielectric, in nonmetal cases, fixed capacitors -Continued.

STYLE CFR04

NOTES:

- 1. Leads are of solid wire and are located on centerline within $\pm .062$ (1.57 mm) but not less than .03 (.76 mm) from edge of capacitor.
- 2. Symmetry of centerline of leads with respect to end of case is within $\pm .010$ (.25 mm).
- 3. Stand-off is not applicable to characteristics "M" and "Q"; it is optional for characteristic "S".

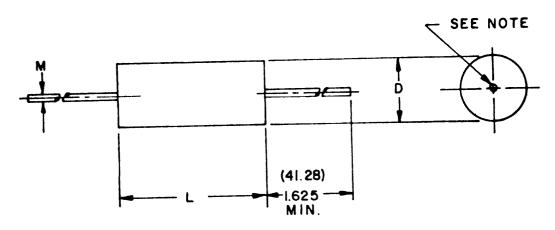
FIGURE 803-2. <u>Established reliability, plastic (or metallized plastic)</u> <u>dielectric, In nonmetal cases, fixed capacitors</u> - Continued.

STANDARD CAPACITORS

STYLE CFR04

	Dimension								
Case Size	H ±.030 (.76)	<u>1</u> / L ±.015 (.38)	T ±.015 (.38)	S ±.005 (.13)	M ±.002 (.05)				
A B D E F G H I J K L M N	.280 (7.11) .375 (9.53) .471 (11.96) .411 (10.44) .475 (12.07) .531 (13.49) .569 (14.45) .971 (24.66) .375 (9.53) .375 (9.53) .375 (9.53) .375 (9.53) .550 (13.97)	.500 (12.70) .500 (12.70) .500 (12.70) .800 (20.32) .800 (20.32) .800 (20.32) 1.130 (28.70) 1.130 (28.70) .600 (15.24) .750 (17.05) 1.000 (25.40) 1.500 (38.10)	.125 (3.18) .195 (4.95) .234 (5.94) .178 (4.52) .244 (6.20) .291 (7.39) .328 (8.33) .707(17.96) .295(15.24) .500(12.70) .600(15.24) .600(15.24)	.400 (10.16) .400 (10.16) .400 (10.16) .700 (17.78) .700 (17.78) .700 (17.78) 1.000 (25.40) 1.000 (25.40) .500 (12.70) .650 (16.51) .900 (22.86) 1.400 (35.56)	.020 (.51) .025 (.64) .032 (.81) .032 (.81) .032 (.81) .032 (.81) .032 (.81) .032 (.81) .025 (.64) .025 (.64) .032 (.81) .032 (.81)				

1/ Add+0.030 (.76) inch for overall lenghth of axial-wire lead capacitors.


FIGURE 803-2. <u>Established reliability, plastic (or metallized plastic)</u>
<u>dielectric, in nonmetal cases, fixed capacitors</u> - continued.

STANDARD CAPACITORS
STYLE CFR04

		Case size letter (see table for dimension					ions)
1	i .	M			Q	S	
Туре	Capacitance	Capacitance tol-		Capacitance tol-			Capacitance tol-
designation		erance av			nce avail	able	erance available
		G.J.K		F, G, J, K			F, G, J, K
	<u></u>	Rated voltage at 85°C					
	μF	200ν	400v	100v	200v	400v	50v
CFR04102	. 0010	_	D	-	-	D	A
CFR04122	. 0012	-	D	-	-	D	A
CFR04152	. 0015	-	D	-	-	D	A
CFR04182	. 0018	-	D	-	-	D	A
CFR04222	. 0022	- 1	D	-	- '	D) A
CFR04272	. 0027	-	D	-	-	D	A
CFR04332	. 0033	-	D	-	-	D	A
CFR04392	. 0039	- 1	D	-	-	D	A
CFR04472	. 0047	- 1	D	-	-	D	A
CFR04562	. 0056	-	D	-	D	E	i A
CFR04682	. 0068		D	-	D	E	A
CFR04822	. 0082		D	-	D	Е	A
CFR04103	. 010	D	E	- 1	D	F	A
CFR04123	. 012	D	E	-	D	F	В
CFR04153	. 015	D	E	D	E	F	В
CFR04183	. 018	D	F	D	E	F	В
CFR04223	. 022	D	F	D	E	G	В
CFR04273	. 027	l a l	F	E	F	G	В
CFR04333	. 033	E	G	E	F	Н	В
CFR04393	. 039	E	G	E	G	н	В
CFR04473	. 047	E	G	E	G	Н	J
CFR04563	. 056	F	н	F	G	Н	J
CFR04683	. 068	F	н	F	G	I	J
CFR04823	. 082	F	Н	F	H	1	J
CFR04104	. 100	_ F	Н	G	Н	I	J
CFR04-SA124	. 12						J
CFR04-SA154	. 15			NC	T		J
CFR04-SA184	. 18						K
CFR04-SA224	. 22			AVAILAE	BLE IN		K
CFR04-SA274	. 27						L
CFR04-SA334	. 33			CHARAC	TERISTIC	cs	L
CFR04-SA394	. 39						L
CFR04-SA474	. 47			M AND	Q		L
CFR04-SA564	. 56						M
CFR04-SA684	. 68						M
CFR04-SA824	. 82						N
CFR04-SA105	1.00						N

FIGURE 803-2. <u>Established reliability, plastic (or netallized plastic)</u> <u>dielectric, in nonmetal cases, fixed capacitors</u> - Continued

STYLE CFR05

INCHES	N n 1	INCHES	MM
.03	.76	. 203	5.16
.031	.79	.251	6.38
.046	1.17	.491	12.47
.062	1.57	.509	12.93

NOTE:

Leads are of solid wire and are located on centerline within $\pm .062$ but not less than .03 from edge of capacitor.

FIGURE 803-2. <u>Established reliability, plastic (or metallized plastic)</u>
<u>dielectric, in nonmetal cases, fixed capacitors</u> - Continued.

$\begin{array}{c} \textbf{Downloaded from http://www.everyspec.com} \\ \textbf{MI L-STD-198E} \end{array}$

STANDARD CAPACITORS

STYLE CFR05

CHARACTERISTIC R CAPACITORS Rated Capacitance Dimensions (in inches)								
! _		sions (in incl						
Type	Capacitance	voltage	tolerance		1 L ±.050	M 3/ T		
designation $1/$	(nom)	(at 85°C)	available	<u>2</u> /	(1.27)	axiāl		
<u> </u>			<u> </u>			<u> </u>		
	μF	volts, dc						
CFR05ARA102	.0010	50	F,G,J,K	1.150(3.81)	.400(10.16)			
CFRO5ARA122	.0012	50] " ! "	1.150 "	.400 "	1.020 "		
CFR05ARA152	.0015	50) " ! "	1.150 "	1 .400 "	.020 "		
CFR05ARA182	.0018	50	; " ; "	1.130	1 .400 "	1.020 "		
CFR05ARA222	.0022	50		1.150 "	.400 "	1.020 "		
CFR05ARA272	.0027	50	! " !	1.150 "	.400 "	.020 "		
CFR05ARA332	.0033	50		1.150 "	1.400 "	1.020 "		
CFR05ARA392	.0039	50	" "	1.150 "	1 .400 "	1.020 "		
CFR05ARA472	.0047	50) ")	1.150 "	1 .400 "	.020 "		
CFRO5ARA562	.0056	50		1.150 "	.400 "	1.020 "		
CFR05ARA682	.0068	50	, n	1.150 "	.400 "	1.020 "		
CFR05ARA822	.0082	50	"	1.150 "	1 .400 "	.020 "		
CFR05ARA103	.010	50	" "	1.150 "	.400 "	.020 "		
CFR05ARA123	.012	50	" "	1.130	.400 "	.020 "		
CFR05ARA153	.015	50	" "	.150	1.400 "	1.020 "		
CFR05ARA183	.018	50	" "	1 • 1 30	1 .400	1.020		
CFR05ARA223	.022	50		1 • 1 3 0	į •400	(.020		
CFR05ARA273	.027	50	; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;;	1.120	1 .400	1.020		
CFR05ARA333	.033	50		1.130	1 .400	1.020		
	.039	50	 H	1.120	1 .400	1.020		
CFR05ARA473	.047	50		1.130	i •400 !	1.020		
	.056	50	11	1.130	1 • 400	.020		
CFR05ARA683	.068	50		1.130	. 400	1.020		
CFR05ARA823	.082	50	n	1.120	1 .400	1.020		
CFR05ARA104	.10	50	11	1.130	1 .400	.020		
CFR05ARA124	.12	50	n .	1.130	1 • 400	1.020		
CFR05ARA154	.15	50		1.160(4.06)	1 • 400	.020		
CFR05ARA184	.18	50	" H	1.150(3.81)	.530(13.46)			
CFR05ARA224	.22	50	 H	1.150(3.81)	.530 " 530 "	. 020		
CFR05ARA274	.27	50	и .	1.160(4.06)	•930	.020		
CFR05ARA334		50	"	1.180(4.57)	1	.020		
CFR05ARA394	.39	50	11	1.190(4.83)	(• • • • • • • • • • • • • • • • • • •	.020		
CFR05ARA474	.47	50	"	1.200(5.08)	1 .330	.020		
CFR05ARA684	.56 .68	50 I	u .	1.220(5.59)	1 • 5 5 0	.020		
CFR05ARA824	.82	50	11	1.240(6.10) 1.260(6.60)	1 .330	.020		
CFR05ARA105	1.00	50			1 • 2 2 0	.020		
CFR05ARA105 CFR05ARA125	1.20	50 I	**	1.280(7.11)	1 . 3 . 3	.020		
CFR05ARA125	1.50	50	"	1.260(6.60) 1.280(7.11)	.680(17.27) .680(17.27)			
CFR05ARA185	1.80	50 I	11	1.290(7.11)	.000(17.27) .780(19.81)	•020		
CFR05ARA205	2.00	50 I	n	.290(7.37) .300(7.62)		.020 "		
CFR05ARA255	2.5	50 I		1.340(7.62)	. / 00	.020		
CFR05ARA305	3.0	50 1		.340(8.64) .370(9.40)	./00	.020(.51)		
ICFROSARA355 I	3.5	50 1	"	.400(10.16)	• / 00	.025(.64)		
ICFROSARA405 I	4.0	50 l	,,	.400(10.16) .370(9.40)	/ 00	.025 "		
1CFR05ARA455 1	4.5	50 l	1	.370(9.40) .390(9.91)	.950(24.13) .950(24.13)	.023		
CFR05ARA505	5.0	50 1			1.170(28.73)	.025		
CFR05ARA605	6.0	50 I	!			.025 "		
ICFROSARA805 !	8.0	50 I				.025 "		
ICFROSARA106 I	10.0	50			1.170 "	.032(.81)		
ICFROSARA126 I	12.0	50 1			:	.032 "		
CFR05ARA156	15.0	50	u u			.032 "		
CFR05ARA186	18.0	50	"		1.450(36.83)	.032		
1CFR05ARA206 1	20.0	50 l	ı			.032		
CFR05ARA256	25.0	50	"		1.450(36.83) 1.900(48.20)	.032		
CFR05ARA306	30.0	50						
CFR05ARA356	35.0	50 1	*		1.900	.032		
CFR05ARA406	40.0	50		.700(17.78)	1.300	.032 "		
CFR05ARA506	50.0	50	!! !		1.900	.032		
101 KUSAKASUU	30.0	20 I		.780(19.81)	1.900]	.032 "		

See footnotes at end of tabulation.

FIGURE 803-2. <u>Established reliability</u>, <u>plastic (or metallized plastic)</u> <u>dielectric</u>, <u>in nonmetal cases</u>, <u>fixed capacitors</u> - Continued

STANDARD CAPACITORS

STYLE CFR05 - Continued

			SITIC R CAPAC				
			Capacitance	<u> </u>	Dimens	ions (in incl	ies)
Type 1/ designation	Capacitance (nom) 	Rated voltagel (at 85°C)	tolerance available	! D 	2/	 L ±.050 (1.27)	M <u>3/</u> Axi a l
	μF	volts, dc		1			
05005400100	0010	100	F,G,J,K	1.150(3.81)	.400(10.16)	.020(.51)
CFR05ARB102		100	F,U,U,K	1.150	3.017	1 .400 "	1.020 "
CFR05ARB122		100	u	1.150	n	.400 "	.020 "
CFRO5ARB152		100	"	1.150	H		.020 "
CFR05ARB182 CFR05ARB222		100	"	1.150	н	.400 "	.020 "
CFRO5ARB272		100	*	1.150	н		.020 "
CFRO5ARB332		100	"	1.150	11	.400 "	.020 "
CFR05ARB392		100	"	1.150	н	.400 "	1.020 "
CFR05ARB472		i 100	"	.150	**	1 .400 "	1.020 "
CFR05ARB562	:	100	11	1.150	н	.400 "	1.020 "
CFRO5ARB682		100	"	1.150	11	.400 "	1.020 "
CFR05ARB822		100	"	1.150		.400 "	1.020
CFR05ARB103		100	"	1.150	"	1 .400 "	1.020
CFR05ARB123	.012	100	"	1.150	11 11	1 .400	1.020
CFR05ARB153	.015	100	"	1.150		1 •400	1.020
CFR05ARB183	.018	100	! "	1.150	11	1 .400	1.020
CFR05ARB223	.022	100	! "	1.150		1 .400	1.020
CFR05ARB273	.027	100	! "	1.150	11 14	1 .400	1.020
CFR05ARB333		100	! "	1.150		1 .400	1.020
CFR05ARB393	.039	100	"	1.150	"	1 .400	1.020
CFR05ARB473		100	"	1.150	"	1 .400	1.020
CFR05ARB563		100		1.160(4.06)	1 .400	1.020
CFR05ARB683	.068	100	! "	1.180(4.57)	1 .400	1.020
CFR05ARB823		100	"	1.150(3.81)		1.020
CFR05ARB104		100	! "	1.160(4.06)		1.020
CFR05ARB124		100	! "	1.170(4.32)	1 .330	1.020
CFR05ARB154	1 .15	100	l	1.190(4.83)	1 .530	1.020
CFR05ARB184		100	" "	1.200(5.08)	1 .530	1.020
CFR05ARB224		100	<u>"</u>	1.220(5.59)	1 .530	1.020
CFR05ARB274		100	} "	1.240(1 .530	1.020 " 1.020 "
CFRO5ARB334		100	; "	1.260(6.60) 7.37)	1 .550	1.020 "
CFR05ARB394		100	1 "	1.290(6.60)		
CFR05ARB474		100	1 "	1.260(7.37)		
CFR05ARB564		100	1 "	1.290(7.37)		
CFRO5ARB684		100	! !	1.310(7.87)		1.020 "
CFRO5ARB824		100	1	1.340(1.020 "
CFR05ARB105		100	¦ "	1.370(i	1.025(.64)
CFR05ARB125		100	i "		9.40)		
CFR05ARB155		100	¦ "		10.16)		
CFR05ARB185 CFR05ARB205		100		1.380(9.65)	11.170(28.73)	
CFRO5ARB255		100	; · #		10.67)		1.025 "
		100			11.43)		1.025 "
CFRO5ARB305		100	1 "	, ,	12.19)	• • • =	1.032(.81)
CFR05ARB355		100	"		13.21)		1.032 "
CFR05ARB405 CFR05ARB455		100	i u		13.97)		1.032 "
CFR05ARB495		100	, "		14.73)		1.032 "
CFR05ARB605		100		1.6201	15.75)	11.170 "	1.032 "
CFROSARB805		100	į "	1.630	16.00)	11.450(36.83)	
CFR05ARB106		100	į "			11.700(43.18)	
CFR05ARB106 CFR05ARB126		100	i "			11.900(48.20)	
CFR05ARB126 CFR05ARB156		100	"			11.900(48.20)	
CFR05ARB136		100				11.900(48.20)	
CEBO2468506 CEBO2468506		100	, ,			11.900(48.20)	
ここていいさんぶくりりょう	1 20'0'	r 200			-0.001	,	,

FIGURE 803-2. Established reliability, plastic (or metallized plastic) dielectric, in nonmetal cases, fixed capacitors - Continued.

STANDARD CAPACITORS

STYLE CFR05 - Continued

PF volts, dc	
designatTon (nom) (at 85°C) available D 2/ L ±.062 M (1.57) Axi	
μF volts, dc	
Lefro5ARC103 .010 200 F,G,J,K .176(4.47) .469(11.91) .025(.187(4.75) .469(11.91) .025(.187(4.75) .469(11.91) .025(.187(4.75) .469(11.91) .025(.187(4.75) .469(11.91) .025(.187(4.75) .469(11.91) .025(.187(4.75) .469(11.91) .025(.187(4.75) .469(11.91) .025(.187(4.75) .469(11.91) .025(.187(4.75) .469(11.91) .025(1.77(5.51) .469(11.91) .025(1.77(5.51) .469(11.91) .025(1.77(7.04)	3/
	a 1
CFR05ARC103 .010 200 F,G,J,K .176(4.47) .469(11.91) .025(CFR05ARC123 .012 200 " .187(4.75) .469(11.91) .025 CFR05ARC153 .015 200 " .203(5.16) .469(11.91) .025 CFR05ARC183 .018 200 " .217(5.51) .469(11.91) .025 CFR05ARC223 .022 200 " .235(5.97) .469(11.91) .025 CFR05ARC273 .027 200 " .255(6.48) .469(11.91) .025 CFR05ARC333 .033 200 " .277(7.04) .469(11.91) .025 CFR05ARC393 .039 200 " .298(7.57) .469(11.91) .025	
CFRO5ARC123	
CFRO5ARC123	
CFRO5ARC153 .015	.64)
CFR05ARC183 .018	
CFRO5ARC223 .022 200 " .235(5.97) .469(11.91) .025	
CFRO5ARC273 .027 200 " .255(6.48) .469(11.91) .025 CFRO5ARC333 .033 200 " .277(7.04) .469(11.91) .025 CFRO5ARC393 .039 200 " .298(7.57) .469(11.91) .025	"
CFRO5ARC273 .027 200 .255 6.48 .469 11.91 .025	"
CFRO5ARC333 .033 200 " .277 (7.04) .469(11.91) .025	"
CFRUSARC3931 .U39 2UU .298(7.57) .469(11.91) .U25	" "
CFR05ARC473 .047 200 " .313(7.95) .469(11.91) .025	11
[CFRUSARCS03 .USO 2UU .244(0.2U) .050(10.00) .U25	"
CFR05ARC683 .068 200 " .264(6.71) .656(16.66) .025	11
CFR05ARC823 .082 200 " .285(7.24) .656(16.66) .025	"
CFR05ARC104 .10 200 " .310(7.87) .656(16.66) .025	11
CFR05ARC124 .12 200 " .366(9.30) .656(16.66) .032(
CFRO5ARC154 .15 200 " .304(7.72) .781(19.84) .025(.64)
CFRO5ARC184 .18 200 " .329(8.36) .781(19.84) .032(.81)
CFR05ARC224 .22 200 " .359(9.12) .781(19.84) .032	11
CFRO5ARC274 .27 200 " .393(9.98) .781(19.84) .032	11
CFRO5ARC334 .33 200 " .431(10.95) .781(19.84) .032	"
CFRO5ARC394 .39 200 " .363(9.22) 1.031(26.19) .032	11
CFR05ARC474 .47 200 " .395(10.03) 1.031(26.19) .032	H
CFRO5ARC564 .56 200 " .427(10.85) 1.031(26.19) .032	н
CFRO5ARC684 .68 200 " .467(11.86) 1.031(26.19) .032	н
CFR05ARC824 .82 200 " .509(12.93) 1.031(26.19) .032	II .
CFR05ARC105 1.00 200 " .574(14.58) 1.031(26.19) .032	"
CFRO5ARC125 1.20 200 " 1.624(15.85) 1.031(26.19) .032	11
CFRO5ARC155 1.50 200 " .520(13.21) 1.531(38.89) .032	и
CFRO5ARC185 1.80 200 " .579(14.71) 1.531(38.89) .032	11
CFR05ARC205 2.00 200 " .607(15.42) 1.531(38.89) .032	11
CFRO5ARC255 2.5 200 1.670(17.02) 1.531(38.89) .032	H
CFR05ARC305 3.0 200 " .727(18.47) 1.531(38.89) .032	**
CFR05ARC355 3.5 200 " .779(19.79) 1.531(38.89) .032	H
CFR05ARC405 4.0 200 " .828(21.03) 1.531(38.89) .032	H
CFR05ARC455 4.5 200 " .796(20.22) 1.781(45.24) .032	**
CFR05ARC505 5.0 200 " .835(21.21) 1.781(45.24) .032	
CFRO5ARC755 7.5 200 " .870(22.10) 2.281(57.94) .032	н
CFR05ARC106 10.0 200 " .995(25.27) 2.281(57.94) .032	11

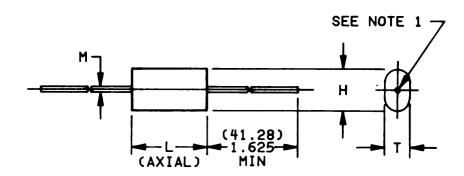
See footnotes at end of tabulation.

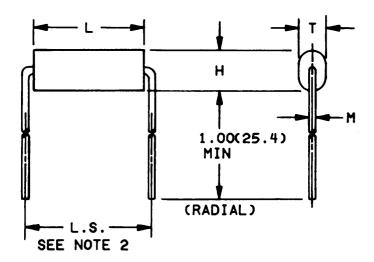
FIGURE 803-2. <u>Established reliability, plastic (or metallized plastic)</u> <u>dielectric, in onmental cases, fixed capacitors</u> - Continued.

STANDARD CAPACITORS

STYLE CFR05 - Continued

		CHARACTERIS	SITIC R CAPA			
			Capacitance	Dimens	sions (in incl	ies)
Type <u>1</u> /		Rated voltage				
designation	(nom)	(at 85°C)	available	D 2/	L ±.062	M 3/
	<u> </u>				(1.57)	Axial
	! -					
	<u>μ</u> Ε	volts, dc		j 	! !	
CFR05ARE103~-	.010	400	F,G,J,K	.301(7.65)	.469(11.91)	025/ 64)
CFRO5ARE123		400	, , , , , , , , , , , , , , , , , , ,	325(8.26)		
CFROSARE153		400	"	251(6.38)		
CFR05ARE183		400	"	1 .270(6.86)		
CFROSARE223		400	н	1 .294(7.47)		
CFRO5ARE273	· ·	400	"	1 .321(8.15)		
CFROSARE333		400	"	1 .350(8.89)		
CFRO5ARE393		400	"	377(9.58)		.032 "
CFR05ARE473	.047	400	"	1 .335(8.51)	781(19.84)	1.032 "
CFR05ARE563	.056	400	i "	1 .367(9.32)	.781(19.84)	1.032 "
CFR05ARE683	.068	1 400	į "	1 .395(10.03)		
CFR05ARE823	.082	400	"	.429(10.90)	781(19.84)	1.032 "
CFR05ARE104	.10	1 400	"	1 .367(9.32)	11.031(26.19)	1.032 "
CFR05ARE124	.12	400	"	.399(10.13)	1.031(26.19)	.032 "
CFR05ARE154	.15	400	"		1.031(26.19)	
CFR05ARE184		400	"	.479(12.17)	1.031(26.19)	.032 "
CFR05ARE224		400	"	.414(10.52)	1.531(38.89)	.032 "
CFR05ARE274		400	"		1.531(38.89)	
CFR05ARE334		400	"		1.531(38.89)	
CFR05ARE394		400	"		1.531(38.89)	.032
CFR05ARE474		400	! " !		11.531(38.89)	
CFR05ARE564	.56	400	" "		1.531(38.89)	
CFR05ARE684	•	400	, " , "		11.531(38.89)	
CFRO5ARE824		400	<u>"</u>		11.531(38.89)	
CFR05ARE105		400	["		11.531(38.89)	
CFROSARE125		400	! !		11.531(38.89)	
CFROSARE155	*	400	<u>"</u>		11.781(45.24)	
CFROSARE185		400			11.781(45.24)	1.032
CFR05ARE205		400	<u>"</u>	11.039(26.39)		
CFR05ARE255		400			2.281 (57.94) 2.281 (57.94)	1.032 "
CFR05ARE305		400		11.084(27.53)		1.032
CFROSARE355		400		11.166(29.62)		
CFR05ARE405		400 400		1.242(31.55) 1.236(31.39)		.032
CFRO5ARE455 CFRO5ARE505		1 400		11.300(31.39)		
CFRUDAKEDUD	1 3.U	1 400 1		1.300(33.02)		1.032
	} 1			! •	1 1	
	I	l	l	I	1	


^{1/} The complete type designation will include additional symbols to indicate capacitance tolerance and failure rate level.


FIGURE 803-2. Established reliability, plastic (or metallized plastic) dielectric, in nonmetal cases, fixed capacitors - Continued.

 $[\]frac{2/}{2} \ \, \text{Tolerances for dimension "D" are I .031 (.79 mm) for 0.250 inch-diameter (6.35 mm) and below; } \pm .046 (1.17 mm) for 0.251 (6.38 mm) through 0.499 (12.67 mm) inch-diameters; and <math>\pm .062 (1.57 mm)$ for 0.500 inch-diameters (12.70 mm) and above.

^{3/} Tolerances for dimension "M" are \pm .002 (.01 mm) on .040 (1.02 mm); +.005 (.13 mm), -.003 (.08 mm) on .032 (.81 mm) and .025 (.64 mm); and +.004 (.10 mm), -.001 (.03 mm) on .020 (.51 mm) and .016 (.41 mm).

STYLE CFR06

NOTES:

- Leads shall be of solid wire and located on centerline within ±.062 (1.57 mm) but not less than .030 (0.76 mm) from edge of capacitor.
 L. S. shall be (L + 2M) ±.030.

FIGURE 803-2. Established reliability, plastic (or metallized plastic) dielectric, in nonmetal cases, fixed capacitors - Continued.

STANDARD CAPACITORS

STYLE CFR06 - Continued

	in inches) L M 3/ +.050(1.27) Radial and005(.13) axial	384 (9.75) .016 (.41) .384 016 .
	Dimensions (i H *.050(1.27) +	.180 (4.57) .180 " .180
R CAPACITORS	T *.050(1.27)	.090(2.29) .090
CHARACTERISITIC F	Capacitance tolerance available	μ Υ΄ : : : : : : : : : : : : : : : : : : :
СНАБ	Rated voltage (at 85°C)	volts, dc 50 50 50 50 50 50 50 50 50 50 50 50 50
	Capacitance (nom)	00100 00112 00012 00022 00033 00033 00033 00047 0012 0012 0013 0027 0039 0047 0056 0082 0039 0047 0056 0082 0033 0033 0033 0033 0033 0033 0033
	Type designation 4/	CFRO6-RA102 CFRO6-RA122 CFRO6-RA122 CFRO6-RA122 CFRO6-RA182 CFRO6-RA222 CFRO6-RA222 CFRO6-RA322 CFRO6-RA322 CFRO6-RA322 CFRO6-RA322 CFRO6-RA322 CFRO6-RA322 CFRO6-RA322 CFRO6-RA322 CFRO6-RA322 CFRO6-RA332 CFRO6-RA133 CFRO6-RA133 CFRO6-RA133 CFRO6-RA133 CFRO6-RA133 CFRO6-RA124 CFRO6-RA124 CFRO6-RA124 CFRO6-RA124 CFRO6-RA124 CFRO6-RA124 CFRO6-RA124 CFRO6-RA134 CFRO6-RA134 CFRO6-RA134 CFRO6-RA134 CFRO6-RA134 CFRO6-RA134 CFRO6-RA134 CFRO6-RA334 CFRO6-RA334 CFRO6-RA334 CFRO6-RA334 CFRO6-RA334 CFRO6-RA334 CFRO6-RA334 CFRO6-RA334 CFRO6-RA334 CFRO6-RA334 CFRO6-RA334

FIGURE 803-2. <u>Established reliability, plastic (or metallized plastic)</u> <u>dielectric, in nonmetal cases, fixed capacitors</u> - Continued.

See footnotes at end of figure.

STANDARD CAPACITORS

STYLE CFR06 - Continued

		CH	CHARACTERISITIC	R CAPACITORS			
,			 Capacitance		Dimensions	(in inches)	
lype designation 4/	Capacıtance (nom) 	Rated voltage (at 85°C) 	tolerance available 	T ±.050(1.27) 	H *.050(1.27)	+.050(1.27) 005(13)	M 3/ Radial_and axial
	ᆈ	volts, dc					
CFR06-RA564 CFR06-RA684	.56	20 20	F,G,J,K	160(4.06)	250(6.35)	.510(12.95)	.020(.51)
CFR06-RA824	. 82	205	=		7.3	.510 "	" 020
CFR06-RA105	1.00	20	= :		8.1	.510 "	. 020
CFR06-RA125	1.20	20	= =		7.3	.660(16.76)	020
CFR06-RAI55	1.50	06	: =		ω. 	.660(16.76)	. 020
CFR06-RA105	7.00) 	=	240(5.84)	χα	760(19.30)	. 020
CFR06-RA255	2.50	20	=		370 9.40)	760(19.30)	050
CFR06-RA305	3.00	1 50	=		(10.41)	.755(19.18)	.025(.64)
CFR06-RA355	3.50	20	= :		430(10.92)	.755(19.18)	
CFR06-RA405	4.00		= =		.400(10.16)	.925(23.50)	025
CFKU0-KA435	4.50	000	=		. 420(10.67)	. 925(23.50)	
CFR06-RA605	00.9	20.00	=	280(7.11)	450(11.67)	1.145(29.08) 145(29.08)	
CFR06-RA805	8.00	205	=		\sim	1.145(29.08)	.025
CFR06-RA106	10.00	20	= :		1 .560(14.22)	1.138(28.91)	•
CFR06-RA126	12.00	20	= =	1.430(10.92)	600(15.24)	1.138(28.91)	.032 "
CFR06-RA186	18.00	S S	=		640(16.26)	1.136(26.91)	
CFR06-RA206	1 20.00	20	=	12	670(17.02)	1,418(36.02)	032
CFR06-RA256	1 25.00	09	=		670(17.02)	1.868(47.45)	.032 "
CFR06-RA306	30.00	20	=	14	1.730(18.54)		.032 "
CFR06-RA356	35.00	20	= :	14.9	760(19.30)		.032
80g	8.0	20	= :		30(21	_	.032
CFR06-RA506	20.00	20	=	1.750(19.05)	.910(23.11)	1.868 "	.032 "
_	_	_	_		_	-	
See footnotes at	end of figure	ď					

FIGURE 803-2. <u>Established reliability, plastic (or metallized plastic)</u> <u>dielectric, in nonmetal cases, fixed capacitors</u> - Continued

STANDARD CAPACITORS

STYLE CFR06 - Continued

_i								_	_		-			_					_					_					
		3/ _and ia		(.41)	= =	=	=	= :	= :	= =	=	=	=	=	= =	=	=	_	= :	= =	=	=		=	(.51)		= :		=
		M 3, Radial a		.016	.016	010.	.016	.016	.016	.016	.016	.016	.016	.016	.016	010	.016	.016	.016	.016	.010	010	.016	.016	.020	.020	.020	.020	.020
	es)	.27)		9.75)		=		=	= :		=	:	=	=			=	= :	=	= =	==	3 061	13.06)	3.06)	2,95)	:	= :	: :	=
	in inches)	+.050(1.		384	386.	+ oc -	384	.384	384	384	384	.384	.384	.384	384	384	384	.384	.384	384	204	304 514/	.514(1	514(.510(1	.510	.510	.510	.510
	~	.27)		4.57)				=	= :		=		_	-				=	= :	_ (4.83)	4 57)	4.83)	5.08)	5.59)	5.84)	6.35)	7.11)	8.13)
	Dimensions	H ±.050(1		.180	8.5	3 5	1.18	.180	.180	 86.	180	180	.180	.180	85	8 8	180	.180	.180	8	.130	180	198	.200	.220(.230(.250(.280(.320(
CAPACITORS		.27)		2.29)	= =		=	=		= =	=	:	=	=	= =	=	=	=	= :	= '	•	•		•	3.05)	•	•	4.57)	5.84)
R CAPAC		T ≠.050(1)060	060	200	60.	060	060.	96	060	060	060.	060.	96	060	060	060.	060.	86.	1001.		1000	.110	.120(.140	.160	.180	.230(
CHARACTERISITIC	Capacitance	tolerance available		F,G,J,K	= =	=	=	=	= :	: :	=	=	=	= :	= =	:	=	=	= :	: :	: =	=	=	=	= :	= :	= :	= =	=
CH		Rated voltage (at 85°C)	volts, dc	100	000	001	100	100	100	100	001	100	100	100	100	001	100	100	100	100	001	001	001	100	100	100	100	100	100
		Capacitance (nom)	占대	.0010	.0015	900.	.0027	.0033	.0039	.0047	8900	.0082	010	1 .012	.015	200	027	. 033	.039	740.	950.	000.	105	.12	.15	.18	.22	.27	39
	 ·	4/		2	2		22	2	2	2	2	 	3	3	 	- - -	, ,	3-1	3	 			4	4	4	4	4		
		Type designation		CFR06-RB102-	CFR06-RB152-	CFKUD-KB182-	CFR06-RB272-	CFR06-RB332-	CFR06-RB392	CFR06-RB472-	CFR06-RB682	CFR06-RB82	CFR06-RB103	CFR06-RB123-	CFR06-RB153-	CF KU6-KB183- CFDO6-PB223-	CFR06-RB273-	CFR06-RB333-	CFR06-RB393-	CFR06-RB473-	CFR06-RB563-	CFRUG-KB063-	CFR06-RB104	CFR06-RB124	CFR06-RB154-	CFR06-RB184	CFR06-RB224	CFR06-RB274	CFR06-RB394

FIGURE 803-2. Established reliability plastic, plastic (or metallized plastic)
dielectric in nonmetal cases, fixed capacitors - Continued.

See footnotes at end of figure.

MIL-STD-198E STANDARD CAPACITORS STYLE CFR06 - Continued

Type Capacitance Capacitan	e Rated voltage (at 85°C)	_				
(nom)	Kated voltag (at 85°C)	Capacitance		Dimensions (in inches	(in inches)	
<u>н</u> п		tolerance available	T *.050(1.27)	H *.050(1.27)	L .050(1.27)	M 3/ Radial and axial
	volts, dc					
CFR06-R8474 .47	100	F,G,J,K	.200(5.08)	300(7.62)	.660(16.76)	.020(.51)
	100	=	r.		(9/19/19/19)	
	100	= :	.230(5.84)	320(8.13)	760(19.30)	
	100	= :	9		(19.30)	.020
	100	=	_		.760(19.30)	. 020
CFR06-RB125 1.20 CFR06-RB155 1.50	100	= =	310(7.87)	410(10.41)	755(19.18)	.025(.64)
	100	=	·α	2 5	925(23.50)	
	100	=	9	440(11.18)	11.145(29.08)	025
_	100	=	.310(7.87)	12	1.145(29.08)	.025
CFR06-RB305 3.00	100	=	ω 	[12	11.138(28.91)	.032(.81)
	100		9.	13	.138	
	100	Ξ.	10.	14	1.138 "	.032 "
	100		.440(11.18)	15.4	1.138 "	.032 "
	100	=	1	16		.032 "
	100	=	.520(13.21)	.680(17.27)	1.138 "	.032 "
	100	=	13.	(17.	1.418(36.02)	.032 "
_	100	_ _	13.	17.	1.668(42.37)	.032 "
CFR06-RB126 12.00	100	=	.540(13.72)	.700(17.78)	1.868(47.45)	.032 "
_	100	=	.610(15.49)	1 (18.61)08/1	1.868 "	.032 "
_	100	=	.680(17.27)	840(21.34)	1.868 "	
CFR06-RB206 20.00	100	=	.720(18.29)	880(22.35)	1.868 "	.032 "

FIGURE 803-2. <u>Established reliability</u>, <u>plastic (or metallized plastic)</u> <u>dielectric</u>, <u>in nonmetal cases</u>, <u>fixed capacitors</u> - Continue.

STANDARD CAPACITORS

STYLE CFR06 - Continued

-																					
		M 3/ adial_and axial		.020(.51) .020(.51) .020(.51) .020(.51)	.020(.51)					.025(.64)							.032(.81) .032(.81)		.032(.81) .032(.81)	_ :	.040(1.02)
	in inches)	L .094(2.39) R .062(1.57)		.418(10.62) .418 " .418 "	.418	.542(13.77)	.542 "	.542 "	.538(13.67) .538(13.67)	13.6 16.8	663(16.8	16.6	.656(16.66)	23.0	" 906	218(30	.218 "	218 "	.468(37.29)	.718(43.6	.872(47.5
	Dimensions (H .062(1.57) -		.187(4.75) .203(5.16) .218(5.54) .234(6.94)				.296(7.52) .312(7.92)			_	· — ·	. 515(13.08)	~ ~	562(14.27)		.578(14.68) 1	18	.890(22.61) 1	01)	8
CAPACITORS		T 		.125(3.18) .140(3.56) .140(3.56) .156(3.96)	44.	. m	w. 4	.187(4.75)	<u>ئ</u> ئ	ດ ດ	່ທ໌ແ			~ ∞		9.5	.406(10.31)	10.3	.453(11.51) .500(12.70)	14.	./50(19.05) 1
CHARACTERISITIC N	Capacitance	tolerance available		A,		- 	= =		= =	= =	= =		 : <u>=</u> :	: =	= =	=	= =	= :	 : =	= :	
CHAR	,	Rated voltage (at 85°C)	volts, dc	700 700 700 700 700	500	500	700 700 700	 500 500	200	200	200	500	500 500 500 500	200 200	200	200	200	200	700 200	200	700
		Capacitance (nom)	占개	.010 .012 .015	.022	039	.047	.068	.10	.15	.22	333	. 4.	9ç. 89.			1.50	•		•	10.00
		Type designation 4/		CFR06-NC103 CFR06-NC123 CFR06-NC153 CFR06-NC183	CFR06-NC223 CFR06-NC273	CFR06-NC393	CFR06-NC473 CFR06-NC563	CFR06-NC683 CFR06-NC823	CFR06-NC104 CFR06-NC124	CFR06-NC154 CFR06-NC184	CFR06-NC224	CFR06-NC334	CFR06-NC394	CFR06-NC564 CFR06-NC684 [CFR06-NC824	CFR06-NC125	CFR06-NC155 CFR06-NC185	CFR06-NC225	CFR06-NC335 I CFR06-NC395 I	CFR06-NC475	CFR06-NC106

FIGURE 803-2. Established reliability, plastic (or metallized plastic) dielectric, in nonmetal cases, fixed capacitors - Continued.

STANDARD CAPACITORS

STYLE CFR06 - Continued

		CHA	CHARACTERISITIC	N CAPACITORS				
			Capacitance		Dimensions	(in inches)		
lype designation <u>4</u> /	Capacitance (nom)	Rated voltage (at 85°C)	tolerance available	T *.062(1.57)	H *.062(1.57)	L +.094(2.39) 062(1.57)	M 3/ Radial_ar axial	and I
	ᇳ	volts, dc						<u> </u>
CFR06-NC103 CFR06-NC123	.010	200	, c, s			418(10 418		
CFR06-NC153 CFR06-NC183	.015	200	= =	.140(3.56)	234(6.94)	418 "	020(51)
CFR06-NC223	.022	200	: :	4		.418 "		
CF RU6-NC2/3 CFR06-NC333	.033	700 700 700						
CFR06-NC393	039	200	= :	m		.542(13.77)	• •	 3:3:
CFR06-NC563 CFR06-NC563	.056	700 700 700	: =	.156(3.96)		.542 " .	. 020. 1	51) 51)
CFR06-NC683	890.	200	= :	4		545		
CFR06-NC823 CFR06-NC104	.082	200	= =	ນ ່ານ		1,0	•	51)
CFR06-NC124	.12	700	=			13.6 13.6	• •	64) 64)
CFR06-NC154	.15	200	= =	6		538(13.6	•	(4)
CFR06-NC224	.22	500	=	ດ້ທີ		16.8 16.8	.)520 025((4)
CFR06-NC274	.27	200	= :	9	.421(10.69)	.663(16.84)	0.025(.6	64)
CFR06-NC394	m 66.	200	: :	·		16.6	•	
CFR06-NC474	4.	200	: :	. ω	. —	16.6	• •	 3 <u></u>
CFR06-NC564	95.	200		<u>,</u> a	— -	23.0	•	 () ()
CFR06-NC824	.82	200	=	. 0			8.)250. .032(.8	81)
CFR06-NC105	1.00	200	= :	6	_		032(:::
CFR06-NC125	1.20	200	= =	6	—	1.218(30.94)	•	81)
CFR06-NC185	1.80	200		20	.5/8(14.68)	.218 218	032(
CFR06-NC225	2.20	200	=	10.	_	1.218 "	• •	81)
CFR06-NC335	3.30	200	= =	Ξ:	-	.468(37.2	•	81)
CFRU6-NC395	3.90	200		0(125)	co c	37.2	.032(.8	81)
CFR06-NC106	10.00	200	= =	ユニ	1.203(30.56)	1.872(47.55)	-	- (2)
	_		_			•		·

FIGURE 803-2. Established reliability, plastic (or metallized plastic)

dielectric, in nonmetal cases, fixed capacitors - Continued.

See footnotes at end of figure.

MIL-STD-198E STANDARD CAPACITORS STYLE CFR06 - Continued

Rated voltage (at 85°C)
volts, dc
400
400
96
004
400
400
4 00
400 400
6 00
400
60 00 00
400
004
400
400 004 004
400
400
400
004
000
9 6
004 004
000
400

FIGURE 803-2. Established reliability, plastic (or metallized plastic)
dielectric, in nonmetal cases, fixed capacitors - Continued.

803 (MIL-C-55514)

=1

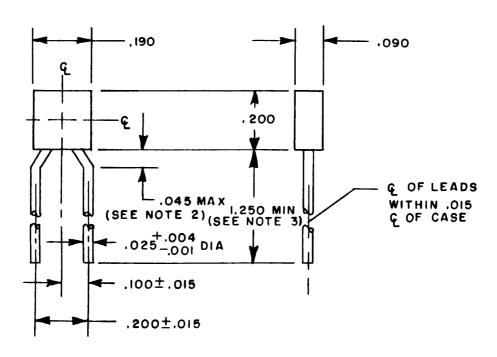
≥1

≈1

41

The complete type designation will include additional symbols to indicate capacitance tance tolerance and failure rate level.

Tolerances for dimension "D" are \pm .031 (.79 mm) for 0.250 inch-diameter (6.35 mm) and below; \pm .046 (1.17 mm) for 0.251 (6.38 mm) through 0.499 (12.67 mm) inch-diameters; and \pm .062 (1.57 mm) for 0.500 inch-diameters (12.70 mm) and above.


The complete type designation will include additional symbols to indicate terminal configuration, capacitance tolerance, and failure rate level.

Tolerances for dimension "M" are \pm .002 (.01 mm) on .040 (1.02 mm); \pm .005 (.13 mm), \pm .003 (.08 mm) on .032 (.81 mm) and .025 (.64 mm); and \pm .004 (.10 mm), \pm .001 (.03 mm) on .020 (.51 mm) and .016 (.41 mm).

STANDARD CAPACITORS

STYLE CFR12

NOT FOR NAVY OR ALR FORCE USE FOR ARMY USE ONLY

INCHES	MM	INCHES	MM
.001	.03	.090	2.29
.004	.10	.100	2.54
.015	.38	.190	4.83
.025	.64	.200	5.08
.045	1.14	1.250	31.75

- 1. Unless otherwise specified, tolerance is $\pm .010$ (.25 mm).
 2. For flush mounting .078 (1.98 mm) printed-circuit hole diameter is required to clear shoulder.
- 3. Lead length may be a minimum of 1 inch long for use in tape and reel packaging, when specified in the ordering data.
- 4. Dimensions are in inches.
- 5. Metric equivalents are given for general information only.

FIGURE 803-2. <u>Established reliability, plastic (or metallfzed plastic)</u> <u>dielectric, in nonmetal cases, fixed capacitors</u> - Continued.

STANDARD CAPACITORS

STYLE CFR12 - Continued

Type designation	 Capacitance 	Rated voltage 0 85°C	Cap tolerance	Type designation	 Capacitance 	Rated voltage @ 85°C	Cap tolerance
<u> </u>	1	 volts, dc				 volts, dc	<u> </u>
CFR12RRJ104	.10	25	F,J,K	i		1	F,J,K
CFR12RRJ823	.082	į į	11	CFR12RRH822	.0082	1 150	, , , , , , , , , , , , , , , , , , , ,
CFR12RRJ683	.068	j "	н	ICFR12RRH682	.0068	1 150	"
CFR12RRA563	.056	50	"	CFR12RRC562	.0056	200	"
CFR12RRA473	.047	, ,	н	CFR12RRC472	.0047	j "	"
CFR12RRA393	.039	j "	н	CFR12RRC392	.0039	1 "	"
CFR12RRA333	.033	"		CFR12RRK332	.0033	250	"
CFR12RRG273	.027	75		CFR12RRK272	.0027	1 "	"
CFR12RRG223	.022	75		CFR12RRK222	.0022	1 "	"
CFR12RRB183	.018	1 100		CFR12RRK182	.0018	"	"
CFR12RRB153	.015	i **		CFR12RRK152	.0015	j "	"
CFR12RRB123	.012	j "		CFR12RRK122	.0012	1 "	"
CFR12RRB103	.010	j "	"	CFR12RRK102	.0010	j " !	"
	1	1		[1	l

FIGURE 803-2. Established reliability, plastic (or metallized plastic) dielectric, in nonmetal cases, fixed capacitors - Continued.

Downloaded from http://www.everyspec.com

SECTION 804

CAPACITORS, FIXED, SUPERMETALLIZED, PLASTIC FILM DIELECTRIC, (DC, AC, OR DC AND AC), HERMETICALLY SEALED IN METAL CASES, ESTABLISHED RELIABILITY

STYLES CRH01, CRH02, CRH03, CRH04, AND CRH05

(APPLICABLE SPECIFICATION: MIL-C-83421)

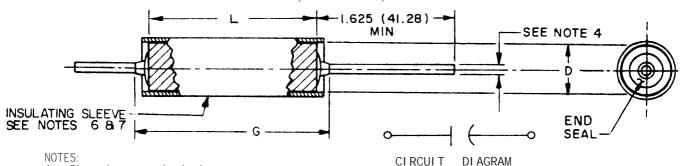
1. SCOPE This section covers established reliability, metallized, plastic film dielectric, fixed capacitors, hermetically sealed in metal cases. These capcitors have failure rate levels ranging from 1.0 percent to 0.001 percent per 1,000 hours. The failure rate levels are established at a 90-percent confidence level and are based on full rated voltage at the maximum rated temperature.

2. APPLICATION INFORMATION.

- 2.1 <u>Use.</u> Capacitors covered by this specification are primarily intended for use in circuit applications which require non-polar behaviour, relatively high insulslation resistance, low dielectric absorption, low capacitance change with temperature, and low capacitance drift over the temperature range. Styles covered by this specification are rated for continuous operation under ac sinusoidal conditions in addition to continuous operation under dc conditions. These capacitors can exhibit periods of low insulation resistance and should only be used in circuits that can tolerate occasional momentary breakdowns. They should not be used in high impedance, low voltage applications.
- 2.2 <u>Constryction.</u> Metallized plastic film capacitors differ from plastic foil types which have separate layers of metal foil (capacitor plates) and plastic dielectric. The metal comprising the metallized capacitor plates is a thin conductive coating on one side of the plastic dielectric by means of a metallizing process. This technique results in an overall size reduction for metallized plastic capacitors when compared to plastic foil capacitors of equal voltage rating and capacitance value. Typically, a 1 MF, 50 volts dc metallized ploycarbonate capacitor will occupy approximately one third the volume of a similar polycarbonate foil capacitor.

Another advantage resulting from the metallizing technique is that the capacitors are self-healing. Generally, the voltage breakdown occurs through a small hole or thin spot in the dielectric with the fault current melting away the conductive metal coating adjacent to the fault area. After clearing, the capacitors will continue to operate normally with the possibility of reduced insulation resistance, increased dielectric absorption and no significant change to capacitance value or dissipation factor. Clearing will occur only if there is sufficient energy available from the circuit and/or stored in the capacitor. Minimum stored energy in the range of 100 to 500 microjoules is recommended to insure clearing. Applications for these capacitors should be limited to circuits that will provide sufficient energy to insure clearing and are insensitive to momentary breakdowns (clearing actions). In the conventional plastic-foil types (where the foil is thicker), sustained conduction can oeeur on a breakdown causing a large area of the plastic surrounding the breakdowns to be carbonized resulting in a permanent short-circuit.

The breakdown of the metallized plastic capacitor can be either of two types; i.e., (1) a complete breakdown lasting for only a moment (momentary breakdown) or (2) a sharp reduction in insulation resistance lasting for an extended period of time, but eventually returning to normal (period of low insulation). The general characteristics of the metallized plastic type, aside from the breakdowns, are similar to the conventional plastic type except for a significantly lower insulation resistance, approximately in the order of 10 to 1.


2.3 Voltage rating.

2.3.1 DC voltage ratings. DC ratings are 30 Vdc to 400 Vdc from -55°C to +100°C.

- 2.3.2 AC voltage rating. ratings are 22 Vrms to 240 Vrms at 400 Hz from -55°C to +100°C Maximum ac current for each capacitor value and rating is shown in the table of figure 804-1, in the 40 KHz column. Opeation at frequencies above the below 40 kHz is permissible provided the rms voltage limit at 400 Hz or the rms current limit at 40 KHz is not exceed.
- 2.3.3 <u>Voltage derating above 100°C.</u> For operation beyond $+100^{\circ}$ C and up to $+125^{\circ}$ C, defated ac and dc voltage linearly from 100 percent at $+100^{\circ}$ C to 50 percent at $+125^{\circ}$ C.
- 2.3.4 Combined dc and ac voltage. The combined dc and ac peak voltage should not exceed the dc rating of the capacitor.
 - 2.4 <u>Temperature range</u>
 - 2.4.1 Storage. Storage temperature range is -65°C to +125°C.
- 2.4.2 <u>Operating.</u> Operating temperature range is -55°C to $+125^{\circ}\text{C}$ with voltage derating (see 2.3.3).
- 2.5 <u>Prevention of corona.</u> All metal parts, fittings, conductors, and attachments which operate at higher potential than other adjacent parts of the housing, should be carefully finished in order to insure that all sharp corners and edges are removed to minimize the possibility of corona discharge. Parts, from shich the removal of sharp corners and edges would be impractical, such as conductors, should be spaced in such a manner as to prevent harmful corona discharges.
- 2.6 <u>Mounting.</u> Capacitors with dimension L or D of 1.375 or 0.670 inches, respectively, and greater, should not be supported by their leads. These capacitors should be provided with a supplementary means for mounting, such as a tangential bracket.
 - 3. ITEM IDENTIFICATION.
- 3.1 Standard capacitors. The standard capacitors available in this section are shown on figure 804-1. (The figure gives the electrical characteristics, failure rate levels, and military part numbers which are standard for design.)

STYLES CRH01, CRH02, CRH03, CRH04, and CRH05

(MI L-C-83421/1)

- 1. Dimensions are in inches.
- 2. Metric equivalents are given for general information only and are based upon 1.00 inch = 25.4 mm.
- Metric equivalents are in parentheses.
- .025 ±.002 for case diameters of .312 (7.92 mm) and less. .032 ±.002 for case diameters Of .400 (10.16 mm) and .500 (12.70 mm). .040 ±.002 for case diamneters of .562 (14.27 mm) and over.
- See table I for additional dimensions.
- Insulating sleeve shall extend beyond the capacitor body. Insulating sleeve thickness shall not exceed .005 (.13 mm) inch.
- Plastic insulating sleeve shall be transparent; marking shall be applied to the capaci tor case.
- 8. Lead length may be a minimum of one inch for use in tape and reel packaging, when specified in the ordering data.

FIGURE 804-1. Established reliability, metalized plastic dielectric, fixed capacitors.

STANDARD CAPACITORS

					30 VOLTS	30 VOLTS (DC RATING	ING)							
	(10 10	Dimensions inches with mm in	1/ parentheses)			Dashr	Dash number	2/		AC ratings	(for si	to +100°C	operation $C = \frac{0.000}{3}$	on from
Capacitance				· -						0 to .4 kHz	-	4	-	4
value (nom) (in µF)	 L*.030(.76) 	+.020(.51) 000	G, max	£0.25	Capacitance 5 ±0.5 	tolerance val *1.0 *2.0 	ce value *2.0 	(3 u) 1 ±5.0 l	*10.0	Volts Current (in A) 	10A	its iCurrent (in A) 	ent lvolts A) 	ts Current (in A)
0.001	10.500(12.70)	0.170(4.32)	(0.700(17.78)	1001-	11002 -	1003-	1004 -	1 -	1006-	122.0	.001 22.0	0 1 001	01 22.0	ļ
0.0012		_	•	11007-	11008-	11009-	1010-	1011-	1012-	- - -				· - -
0.0018				1019-	11020-	11021-	1022-	_	1024-					010.
0.002				11025-	11026-	11027-	11028-		1030-			_	-	110.
0.0027				11037-	11038-		1040-		1042-			ō.	02	.015
0.0033				11043-	11044-	,	1046-	_	1048-	_		o. -	.002	1.018
0.0039				11049-	11050-		11052-	11053- 1	1054-		_		1 200	120.
0.0047				1055-	1056-	105/-	1058-		1066-				700	970.
0.0056				11067-	11068-		11070-		1072-					.031
0.0068				11073-	110/4-	11075-	-9/011	Г	-8/01		_	P.	04	1:03/
0.0082				11079-	1080-	1081-	11082-	11083- 1	1084-			o. (0.50	.045
0.012				1083-	1080-	108/-	11088-		1090-				010	990
0.015				- /6011	١.	1099-	11100-	_	1102		-	0.	80	180
0.018				11103-		11105-	11106-	_	1108-	_	-	0.	10 -	1.10
0.02				11109-		11111-	11112-		11114-		_	-	- 1	- 11
0.022	•		1	11115-	11116-	11117-	11118-	- 1	1120-	_	-	0.	12	.12
0.02/	10.562(14.27)		(0.762(19.35)	11121 -		11123-	11124 -	11125-	1126-	- ;		o.	.015	.15
0.033				1112/-	11128-	11129-	11130-		1132-				20 5	81.
7 70 0				11133-	1134-	11135-	11130-	1113/- 1	1138-		2.5		.021	22.
0.05				1145-	11146-	1147-	11148-	Ι.	1150-	.003	200). -	28	.28
0.056	→			11151-	1152-	11153-	11154-	-	1156-	30. –		· -	31	1.31
0.068	(0.687(17.45)	_•	10.887(22.53)	11157-	11158-	11159-	11160-		1162-			-	.037	.37
0.082	-			11103-	11104-	11105-	11100-	7	1108-	300		- -		ç).
1,0	-	10.193(4.90)		11109-	11176	-1111	11178-		1180					
0.15	10.562(14.27)	10 235(5 97)	10 762(14 35)	1181-	1170-	11183-	1184-		1186-					
0.18	10.687(17.45)	10.235(5.97)	10.887(22.53)	11373-	1374-	11375-	1376-	1377-	1378-	- 010		-	010	1.00
07.0	0.687(17.45)	10.235(5.97)	10.887(22.53)	11187-	11188-	11189-	-11190-	1511	1192-	10.	_		→ L off:	1.00

FIGURE 804-1. Established reliability, metallized plastic dielectric, fixed capacitors - Continued.

See footnotes at end of figure.

STANDARD CAPACITORS Style CRHOI (MIL-C-83421/1) - Continued

	i (in inches	Dimensions ches with mm in	1/ parentheses)			Dash	number	2/		AC rat	ratings (f	or si	oi da 1	3)eration	from
capacitance	_	0 .	-	-						0 to	.4 KHZ	- At	4 kHz		40 KHZ
(in uf)	, L*.030(.76)	1020(.51)	. G. max	+0.25	pacitance	tolerance	ce value	(10 %)	#16.0	Voltsi	Current (in A)	, Volts	(in A)	10/1	Current
	-	-		-		:			.				? = -		: :
0.22	0.687(17.45)	0.235(5.97)	0.887(22.53)	1193-	1194		١.		1100		, 10			۰	-
0.27	_		•	11199-	1200-	201-		- -	1204-	10.331	.015	0.22 1	115	٠.	1.02
0.33		_•	-	,1205-	1206-	1207-	1208-	1209-	1210-	· -	.018		. 18	16.0	1.32
0.47	- -	10 21217 021	- -	1241	11212-		.	.]	1216-	-	.021	_	, .21	5	1.46
0.50		-		1223-	1224-				1222-		920.		2.0	14.0	1.65
0.56	_			1229-	1230-				1234-	- <i>-</i>	.031		3.1		8 6
0.68	_	-	•	11235-	1236-	237-		-	1240-		.037	_	.37		2.04
78.0	0.813(20.65)		1.013(25.73)	1241-	11242-	١.	١.	1.	1246-	-	.045	_	1 .45	١.	1 2.05
2.0				124/-	1248-			-	1252-	_	.055	_	55	•	2.10
1.5		0.400(10.16)		1259-	1260-				1258-	_	900	_	99.	7.2	2.15
1.8	-	_		1265-	1266-	١.	١.	. 1 .	1270	- -	000	<u> </u> -	000	0.0	7 2 1
2.0		_	_	1271-	11272-			-	1276-	· -	.110		1.10	4.4	· -
2.2	→			1277-	11278-			-	1282-	-	.12	_	1.21	4.0	_
/:7	1.063(2/.00)	-	•	, 1385 -	, 1386-			-	1390-	_	.15	_	1.49	3.3	_
o. c	11.063(2/.00)	1	٠	1289-	1290-	١.	١.		1294-	-	.17	-	1.65	1 2.9	-
ء د م	1.063(2/.00)	\	11.263(32.08)	1295-	1296-			-	1300-	-	.18	-	1.82	1.2.7	_
v .	უ -	0.400(10.16)	11.5/5(40.01)	1301-	1302-			-	1306-	<u>-</u>	.21	_	2.14	2.3	_
0 5	- -	0 500(12./0)		1313-	1314		.1	-1	1318-	- -	92.	- 18.7	1 2.20	- 1.9	_
9.0		0.500(12.70)		1325	1320-			11323- 1	1324-	_	87.	1/./		- 1.8	
8.9	· -	0.562(14.27)		1331-	1332-				1336-		. 51	13.0			
8.0	-			1337-	1338-				342		4.4	11.0			
8.2	-	-	-	11343-	1344-	١.	١.	1347-	1348-	-	. 45	7.01			-
10.0	\	_	>	1349-	1350-		1352-	1353- 1	1354-	_	.55	8.8	_	88.	
12.0	11.8/5(4/.63)	. 0 562/14 271	12.075(52.71)	1379-	1380-		1382-	1383- 1	1384-	_	99.	7.3	_	.73	_
0.04	- -	0.305(14.5/0)		-1333-	- 1350-		1358-	1359- 1	1360-	-	.83	6.5	_	1 . 59	_
22.0		0.670(12.02)		1367-	1368-	1369-	1354-	1365- 1	1366-		1.10	4.0	-	44.	-
					,							٠			

See footnotes at end of figure.

FIGURE 804-1. Established reliability, metallized plastic dielectric, fixed capacitors - Continued.

Style CRHO2 (MIL-C-83421/1)

Capacitance tolerance to					SU VOLIS (UC KALING	101	(5)								
+ • • • • • • • • • • • • • • • • • • •	(in in	Dimensions with mm in	$\frac{1}{p}$ arentheses)			Dash	number	72				s i to		ration	rom
Color Colo		0.000						ו ו		0 to	4 kHz		L KHZ	Volte	O KHZ
0.170(4.32) 0.700(17.78) 2001- 2003- 2004- 2005- 2006- 36.0 .001 36	L*.030(.76)	000		±0.25	40.5 ±0.5 		1 *2.0	′L_	#10.0		in A)	3	(in A)	3	(in A)
1000 1000 1000 1000 1000 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1002 1002 1002 1002 1002 1002 1002 1002 1003	.500(12.70)	10.170(4.32)		12001-	12002-	12003-	12004 -	12005-	1 2006 -	136.0	. 001	36.0	.001	36.0	600.
10.00000000000000000000000000000000000			_	12007-	12008-	12009-	12010-	12011-	12012-	 			.001		.011
10.155 12035 12036 12037 12037 12037 12037 12037 12037 12037 12037 12037 12037 12037 12037 12037 12037 12037 12037 12040 12047 12042 120				12013-	12020-	12021-	12022-	12023-	12024-	 			.002		.016
1,000 1,00				12025-	-92021	12021-	-82021	-62021	12030-				200.	_	.018
10.103				12031-	12032-	12033-	12034-	- 5031	12036-				200.		020.
10.193(4.90) 10.762(19.35) 2055- 2055- 2055- 2055- 2055- 2056- 2068- 2069- 2008-	_			12037-	12044-	12045-	12040-	12047-	12048-				.003		.030
10.193(4.90) 10.13(25.5.3) 12.056				12049-	12050-	12051	12052-	12053-	12054-		-		.004	L	.035
10.193(4.90) 2061- 2062- 2063- 2064- 2065- 2066- 2066- 2066- 2066- 2067- 2077- 2077- 2077- 2077- 2077- 2077- 2077- 2077- 2077- 2077- 2078- 2088- 2088- 2088- 2088- 2089- 2090- 2091-			_	12055-	12056-	12057-	12058-	12059-	12060-	_	-	_	.004		.042
2067 - 2068 - 2075 - 2071 - 2078				12061-	12062-	12063-	12064-	12065-	12066-		_		.005		.045
10.762(19.35) 12074- 12075- 12076- 12084- 12087- 12088- 120		_		12067-	12068-	12069-	12070-	12071-	12072-	_			.005		.050
Continue Continue	V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			12073-	12074 -	2075-	12076-	12077-	12078-				900.		190.
10.193(4.90)	1/7.41)200.		•	12085-	12086-	12087-	12088-	12089-	12090-				600.		060
0.193(4.90) 12097 12098 12106 12101 12102 10002 10002 1016 12109				12091-	12092-	12093-	12094-	12095-	12096-	_	_		.011	_	.11
0.193(4.90)		-		12097-	12098-	12099-	12100-	12101-	12102-	-			.013	_	.14
12109- 2110- 2113- 2113- 2110- 2110- 2110- 2110- 2110- 2110- 2110- 2110- 2110- 2110- 2110- 2110- 2110- 2120- .0002 .0024 .0024 .0024 .0024 .0024 .0034 .00		10.193(4.90)		12103-	12104-	12105-	12106-	12107-	12108-	_	.002		.016	_	. 16
1212- 2115- 2116- 2117- 2128- 2120- 0.002 0.002 0.003 0.004 0.005 0.00				12109-	12110-	12111-	12112-	12113-	12114-	_	.002		.018		30.0
1.12 1.12				- 5112	- 9117	- /117	12118-	-6117	-07171	- } -}	200.		020.	-	02.
0.170(4.32) 0.887(22.53) 2133- 2135- 2135- 2136- 2137- 2138- 0.004 0.035 0.0170(4.32) 0.170(4.32) 2133- 2134- 2135- 2134- 2146- 0.004 0.005 0.	•	_	_,	12121-	12122-	12123-	12124-	12125-	12126-		700.		\$70.		30
0.170(4.32) 2139- 2140- 2141- 2142- 2143- 2144- .004 .045 .045 .005 .005 .045 .005 .	687(17 45)	10 170/4 32)		12133-	12134-	12135-	12136-	12137-	12138-		400		035		35
0.170(4.32)		10.170(4.32)		12139-	12140-	2141-	12142-	12143-	12144-	_	400.	_	.042	_	.42
0.193(4.90)		10.170(4.32)		2145-	2146-	12147-	12148-	12149-	12150-	-	.005		.045	_	.45
1.013(25.73) 2164- 2155- 2166- 2167- 2168- 0.006 0.007		10.193(4.90)		12151-	12152-	12153-	12154-	12155-	12156-	_	.005	_	050.	-	05.
1.013(25.73) 2163- 2164- 2165- 2166- 2167- 2168- .007 .074 32.0 .074 32.0 .013	>		>	12157-	12158-	12159-	12160-	12161-	12162-	_	900.	_	1 .061	34.0	. 58
1.013(25,73) 2169- 2171- 2172- 2173- 2174- .009 .090 30.0 3	(813(20.65)	_	•	12163-	12164-	12165-	12166-	12167-	12168-	_	.007		1 .074	32.0	99.
0.235(5.97) 0.887(22.53) 2175- 2176- 2177- 2178- 2189- .011 .11 30.0 .0235(5.97) 0.887(22.53) 2181- 2181- 2183- 2186- .013 .14 26.0	3.813(20.65)	-		12169-	12170-	12171-	12172-	12173-	2174-		600.		060	30.0	. 75
0.235(8.97) [0.384/(22.33) [2181- [2182- [2183- [2183- [2183- [2183- [3183-[3183- [318	0.687(17.45)	10.235(5.97)	10.887(22.53)	12175-	12176-	12177-	12178-	12179-	12180-		.011			30.0	06.
	0.68/(1/.45)	10.235(5.97)	10.88/(22.53)	2181-	2182-	2183-	2184-	2101-	2186-		510.	-	- -	25.0	1.3

See footnotes at end of figure.

Established reliability, metallized plastic dielectric, fixed capacitors - Continued. FIGURE 804-1.

STANDARD CAPACITORS Style CRHO2 (MIL-C-83421/1) - Continued

mnce L*.030(0.813(20 0.687(1) 0.687	in inches with mm in +.020(.51) .76)000 .65) 0.235(5.97) .65) 0.312(7.92) .45) 0.400(10.16)	1, G. max G. max 1.013(25.73) 1.013(25.73) 1.087(22.53) 1.013(25.73)	2193- 125- 125- 125- 125- 125- 125- 125- 125	Capacitance 5 #0.5 12194-12200-12200-12218-12218-12234-12236-12366-12366	a a a a a a a a a a a a a a a a a a a	3 3	10 10 10 10 10 10 10 10 10 10 10 10 10 1	*10.0 2198- 2204- 2216- 2216- 2222- 2228- 2234- 2246- 2246-	AC rat	ratings (for 65°C (10 A kHz 10 kHz	sinus to +10 olts	La La Tre	gperation f	from
		G. max 1.013(25.73) 1.013(25.73) 1.013(25.73) 0.887(22.53) 1.013(25.73)	#0.25 #0.25 #0.25 2199- 2205- 2211- 2211- 2211- 2221- 2223- 2229- 2235- 2255-			' a	10 (1) 10	*10.0 *10.0 2198- 2210- 2210- 2222- 2228- 2228- 2234- 2246-	1010	.018 .020 .024 .030	01ts 01ts	kHz Current (in A)		
		G, max 11.013(25.73) 11.013(25.73) 10.887(22.53) 10.887(22.53) 1.013(25.73)	*0.25 2193- 2199- 2205- 2211- 2211- 2211- 2213- 2229- 2235- 2235- 2235- 2235-		a a	å E	~[*10.0 2198- 2204- 2210- 2216- 2222- 2228- 2234- 2234-	<u></u>	.020 .024 .030	S	Current (in A)		40 KHZ
		1.013(25.73) 1.013(25.73) 10.887(22.53) 10.887(22.53) 1.013(25.73)					F	2198- 2204- 2210- 2216- 2222- 2228- 2234- 2240-	36.0	.018 .020 .024 .030	36.0			Current (in A)
		1.013(25.73) 1.013(25.73) 1.0887(22.53) 1.013(25.73)						2204- 2210- 2210- 2222- 2228- 2234- 2240-	 0 	. 020 . 024 . 030	0 0			
		10.887(22.53) 10.887(22.53) 11.013(25.73)						2210 - 2216 - 2222 - 2228 - 2234 - 2240 -		.024		30.	24.0	1.20
	_	1.013(25.73)						2216- 2222- 2228- 2234- 2240-	_	.030		24.	19.0	1.28
		1.013(25.73)					rI	2222- 2228- 2234- 2240-	-		_	30	18.0	1.48
					[2228- 2234- 2240-		.035		.35	17.0	1.66
			-		[2234 - 2240 -	- - -	.042		.42	15.7	1.85
				_		7	-1	-0477		.045		. 45	15.2	1.90
							Γ	744	- - - -	000		05.	14.4	2.01
		1 263(32,08)	_		2249-	2250-	2251	2252	- -	190.		19.	0.5	2.38
2.5.2	_	•	_	2254-		_		2252		* 000		* 6	0.21	9.7
1.5	_	_				2262-	,	2264-		2		80	0.0	2.30
_			[Γ	Γ.	Γ	Γ.	-0/22	-	7		355		26
	_		_	_	_	_	-	2276-	_	.16	_	1.62	9.9	3.00
2.3 (1.125(28.58)	(0.500(12.70)	11.325(33.66)		2278- 17	2279-	2280-	2281- 13	2882-	<u> </u>	.18	_	1.80	6.2	3.10
			2383-		7	-	_	2388-	_	. 20	_	1.98	5.8	3.20
		110.04)6/6.11			-1622	2582-	_	- 7622		.24		2.43	5.0	3.34
							-	2300-	_	.27	_	2.70	4.5	3.40
0.4	10 553(14 32)		-1057				2305- 15	2306-	_	.30	- - -	2.97	4.2	3.50
	17.41.306.01				_	-	-	2312-	-	.35	- -	3.51	3.7	3.60
	170.11,0/0.01		_	2320-	2321-	2322-		2324-		24.5	31.0	3.60	3.1	L
		>	12325-				_	2330-	_	.45	1 29.0	_	2.9	
6.8 11.875(47.63)		1 11 0 2 2 1 1 1	-	7332- 14				2336-		200	26.0	_	5.6	
<u> </u>	<u> </u>		1	7	_	.[-1	2342-		19.	21.2	_	2.1	
8.5				2350- 1	2351-	2352-	2353- 12	2348-		72	18.0		800	
10.0	-	-	2355- 12	-	_		-	2360-	- -	06	14.4	+	. 4	•
		_			_		_		-			-	:	•

See footnotes at end of figure.

FIGURE 804-1. Established reliability, metallized plastic dielectric, fixed capacitors - Continued.

MIL-STD-198E

STANDARD CAPACITORS Style CRHO3 (MIL-C-83421/1)

				1	TOO TOLIS (DC KALING	L KA L	1981								
	(in inc	Dimensions	1/ parentheses)			Dash	Dash number	2/			ratings (for 65°C	c to +100°C)	1 '	Speration 1	from
Capacitance		P		· -				ì		0 to	.4 kHz	At 4	KHZ	At	40 kHz
value (nom) (in µF)	 L*.030(.76)	+.020(.51) 000	G, max	Cap 6	Capacitance 5 *0.5 	tolerance val *1.0 *2.0 	ce value	(1n 2) #5.0	*10.0	[S]	Current (in A)	Volts	Current (in A)	Volts	Current (in A)
0.001	10.500(12.70)	10.170(4.32)	10.700(17.78)	3001-	3002-	13003-	3004 -	3005-	3006-	0.091	.001	9.09	.002	0.09	.015
0.0012				13007-	3008-	13009-	13010-	3011-	3012-		_		.002		.018
0.0018				3019-	3020-	3021-	3022-	3023- 1	3024-				.003		.027
0.002				13025-	3026-	13027-	13028-	13029- 1	3030-				.003		.030
0.0027				3037-	3038-	13039-	3040-	3041-	3042-	 	_		.004		.041
0.0033				13043-	3044-	3045-	13046-	13047-	3048-	- -		_	.005	_	050.
0.0039				13049-	13050-	13051-	13052-	13053-	3054-				900.	_	850. 1
0.004/				3055-	3050-	1305/-	3058-	3055	3066	 	_		200.		1/0.
0.0056	-		-	3067-	3068-	13069-	13070-	3071-	3072-				. 008		.084
0.0068	10.562(14.27)		10.762(19.35)	13073-	13074-	13075-	13076-	13077-	3078-				010.		61.
0.0082	10.562(14.27)		10.762(19.35)	3079-	3080-	3081-	3082-	13083-	3084-	·	-	_	.012	 	.12
0.01	10.68/(1/.45)		10.887(22.53)	13085-	3086-	13087-	13088-	3089-	- 0605		200.	_	.015	> (ç <u>ı</u> .
0.012				13091-	3092-	13093-	13094-	13095-	3096-		.002		.018	1 59.0	8 - -
0.015		> ,		3097-	13098-	3099-	13100-	3101-	3102-	_	.002		.022	58.0	.22
0.018		0.193(4.90)		13103-	3104-	3105-	3106-	13107-	3108-		.003	<u>-</u> .	.027	0.75	97.
0.02				3109~	3110-	3111-	3112-	3113-	3114-		.003		030	25.0	87.
770.0	-	-		-2115	3116-	1311/-	3118-	13119-	-0715	- - -	5003		550.		63.
770.0				13121-	13122-	13123-	13124 -	13125-	13126-		400.		140.	0.16	\$.
0.03		10 234/E 07)		3127-	13120-	13129-	- 05150	-12121	2130	 	500.		000	200.4	7.7
0.047	- -	•		3139-	3140-	3141-	3142-	3143-	3144-		200		070	47.0	. 55
0.050				3145-	3146-	3147-	13148-	3149-	3150-		800.		.075	46.0	.58
0.056	-		-	13151-	3152-	13153-	3154-	3155-	13156-	_	800.	_	.084	1 46.0	- 64
0.068	10.813(20.65)	•	(11.013(25.73)	13157-	13158-	13159-	13160-	13161-	13162-	_	.010	_	.10	1 42.0	. 71
0.082	10.687(17.45)	10.312(7.92)	10.887(22.53)	13163-	3164-	13165-	13166-	13167-	13168-	_	.012	_	.12	38.0	1 .78
0.10	10.687(17.45)		10.887(22.53)	13169-	13170-	13171-	13172-	13173-	13174-		.015		.15	1 36.0	06.
0.12	10.687(17.45)		10.887(22.53)	3175-	13176-	13177-	13178-	13179-	3180-	_	.018		81.	35.0	1.05
0.15	10.813(20.45)		(11.013(25.73)	3181-	3182-	13183-	3184-	13185-	3186-		.022	_•	.23	33.0	1.24
91.0	10.813(20.65)	-	11.013(25./3)	318/-	-8816	- 6916	- 06161	13191-	- 76761	- -	/70.	•	/7:	27.0) - -

See footnotes at end of figure.

FIGURE 804-1. Established reliability, metallized plastic dielectric, fixed capacitors - Continued.

STANDARD CAPACITORS Style CRH03 (MIL-C-83421/1) - Continued

				F	100 VOLTS (DC RATING	(DC RAT)	ING)								
	(in inc	Dimensions in inches with mm in	$\frac{1}{p}$ arentheses)	,		Dash	Dash number 2	2/		AC ra	ratings (for 65°C	s i		gperation 1	from
Capacitance value (nom)		0 1	-		300		' ' ' ' ' ' ' ' ' '				4 KHZ	Vt.	At 4 kHz	At	At 40 kHz
(in µF)	L*.030(.76)	000-	G, max	±0.25	5 *0.5	+1.0 +2.0	*2.0	1.0.5*	10.01		(in A)	S 10 A	(in A)	S O LES	current (in A)
0.20	10.813(20.65)	10.312(7.92)	11.013(25.73)	3193-	3194-	3195-	3196-	3197-	3198-	0.09	030	0 09	30	30.0	1.50
0.22	10.813(20.65)		11.013(25.73	13199-	_	3201-	3102-	_	3104-	- !-	.033	-	33	27.0	1.50
0.33	11.063(2/.00)		11.263(32.08)	13205-		3207-	3208-	3209-	3210- 3216-		.041		 	24.0	1.62
0.39		10.400(10.16)		13217-	Γ.	T.	-0226	Τ.	3222-	+	028		.59	0.22	2.15
0.47		_		13223-	13224- 1	_	13226- 1	_	3228-	_	.071		.71	1 21.0	1 2.47
5.0	-•			13229-	13220- 1	13231-	3232- 1		3234-	_	.075		.75	20.0	2.50
89	11 125128 SRI	10 500712 701	1 225/23 661	2235-	Ī	323/-	3238-	3239-	3240-	_ _ _	-084		.84	19.0	7.04
0.82	();	10.500(12.70)		3247-		3249-			3252				1.00	0.4	27.7
1.00		10.562(14.72)		13253-		3255-	3256-		3258-		15		1.50	12.0	3.00
1.20	-	10.562(14.72)		13259-		_		_	3264-		.18		1.80	11.0	3.25
1.50	11.3/5(34.93)	10.562(14.72)	11.575(40.01)	13265-	13266-	13267-		3269-	3270-		.23		92.2	10.0	3.75
٠,٠	11.3/3(34.93)	10.0/0(1/.02)	11.5/5(40.01)	132/1-		_		_	32/6-	<u> </u>	.30		3.00	- 8.1	4.10
2.6	11.3/5(34.93)		11.5/5(40.01)	13277-	13278-	_	3280-	3281-	3282-		.33		3.31	7.5	4.12
,,,,	100.7410.001	-	17.76 26.0.71	13603-	.[7	-[-1	3288-		7		4.05	0.0	4.40
) m				3269-		3297	3292-	3293-	3294-			-	4.51	0.4	1.51
. 6		10 750(14 05)		3301		3203			3300-		00.	0.00	? .	0.0	00.4
4.7				3313-	3314-	3315-		3317-	3318-		. 23	643	90	o. 4	9.0
5.0		-		3319-	13320-	3321-	Γ	_	3324-		./5	40.0		4	;
5.6	>	-	>	13325-	13326- 1	13327- 1	_	_	3330-	_	.84	36.0		3.6	_
8.9	12.375(60.33)	(1.000(25.40)	12.575(65.41)	13331-	13332-	3333-	3334-	_	3336-		1.02	29.0		3.0	_
0.8		_		13337-	13338-	3339-		-	3342-	_	1.20	25.0		2.5	_
10.0				3343-	3344-	3345-	3346-	3347- 1	3348-		1.23	24.4	•	2.4	•
,		•	•		2000			•			200		•		•

See footnotes at end of figure.

FIGURE 804-1. Established reliability, metallized plastic dielectric, fixed capacitors - Continued.

STANDARD CAPACITORS Style CRH04 (MIL-C-83421/1)

				7	TO VOLTS	200 VOLTS (DC RATING	LNG)								
	(in inc	Dimensions inches with mm in	1/ parentheses)			Dash	Dash number 2	2/		AC ratings	ings (for	r sinusoida C to +100°C		Speration 1	from
capacitance value (nom)		D - 020(- 51)			0000	- 1		:		. +	4 KHZ	V T	LJ		40 kHz
(in µF)	L*.030(.76)	000-	6, max	±0.25	5 1 ±0.5 1		*1.0 *2.0	* 2.0 · 1	0.0I*	2104	(in A)	\$104	(in A)	\$1 0 A	current (in A)
0.001	10.562(14.27)	10.170(4.32)	10.762(19.35)	4001-	4002-	4003-	4004-	4005-	4006-	120.0	100.	120.0	.003	80.0	.020
0.0012			_	4007-	4008-	14009-	14010-		4012-			_	.004		.024
0.0018				14019-	4020-	4015- 4021-	14016-		4018- 1				.004		.030
0.0022				14025-	4026-	14027-	4028-	4029-14	4030-				00.		040
0.0027				14037-	4038-	4039-	4040-		4042-				.008		.054
0.0039				14049-	4050-	14051-	4052-	Г	4054-	+	-	-	.012		970.
400.0				4055-	4056-	4057-	4058-		4060-		_ ;	_	.014	_	.094
0.0056				4067-	4062-	4063-	4064-	4065- 14	4066-		2005		.015		10
0.0068		-		4073-	4074-	14075- 1	4076-	Γ.	4078-	-	.002	- -	020		F.
0.0082		10.193(4.90)		4079-	4080-	4081-	4082-		4084-	_	.002		.025	_	.16
0.012		10.193(4.90)		14091-	4080-	408/-	4088-	4089- 14	4090-		500.		030	78.0	.20
0.015	•	10.235(5.97)		14097-	4098-	4099-	4100-	Τ.	4102-	-	.004		.045	76.0	. 29
0.018	10.687(17.45)		10.887(22.53)	4103-	4104-	4105- 1	14106-		4108- 1	_	.005		.054	74.0	.33
0.022				4115-	4116-	4117-	4118-	4113-	4114-		900		999	0.1/	٠. ود.
0.027		10.312(7.92)		4121-	4122-	4123-	4124-	Τ.	4126- 1	+	800.	<u> </u>	180	65.0	44
0.033				4127-	4128-	4129-	4130-		4132-	_	010		660.	62.0	.51
0.047				4139-	4134-	14135-	4136-	4143- 14	4138-		017		12	57.0	.59
0:020	200000			4145-	4146-	14147-	4148-	Τ.	4150-	+	.015	 -	: : :	56.0	, P.
0.030	(59.07)518.01		11.013(20.65)	4151-	4152-	4153-	4154-		4156-		.017	_	.17	56.0	.78
0.082				4163-	4164-	14165-	4166-	4167- 14	4168-		.025		.25	0.04	£ 6.
0.10		-		4169-	4170-	14171-	4172-	<u>۱</u>	4174-	-	030		.30	42.0	e: :
0.15	1.063(27.00)	10.400(10.16)	11.263(32.08)	41/5-	41/6-	41//- 4183-	41/8-	41/9- 14	4186-	-	.036	 -	5.4. 5.4.	36.0	1.20
		_		_	_		_	_	_	_	-	-			

See footnotes at end of figure.

Established reliability, metallized plastic dielectric, fixed capacitors - Continued. FIGURE 804-1.

STANDARD CAPACITORS Style CRHO4 (MIL-C-83421/1) - Continued

Ultimations i/ Capacitance tolerance value (in i) +.020 (.51) G, max ±0.25 ±0.5 ±1.0 ±2.0 ±10.0 ±1	(in inches with man in parentheses) L*.030(.76)000 L*.030(.76)000 L*.030(.76)000 L*.030(.76)000 Capacitance tolerance value (in .) L*.030(.76)000 L*.030(.76)00					2	DO VOLTS	ZOO VOLTS (DC RATING)	TNG)							
+.020(.51) +.020(.51) G, max +0.25 +0.55 +1.0 +2.0 +10	1.375(34.93) 0.400(10.16) 1.575(40.01) 4187 4188 4189 4190 42.0		(in in	Dimensions				Dash	ł	2/			문화	\perp	gperation from	rom
L*.030(.76) 000 G, max ±0.25 ±0.5 ±1.0 ±2.0 ±5.0 ±10.0 1.375(34.93) 0.400(10.16) 1.575(40.01) 4187 4188 4189 4189 4189 4189 4189 4189 4200 4210 4210 0.400(10.16) 1.575(40.01) 4187 4188 4189 4189 4200 4201 4200 4200 4201 4200 4200 4201 4200 4200 4201 4200 4200 4200 4200 4200 4201 4200	1.375(34.93) 0.400(10.16) 1.575(40.01) 4187 4188 4189 4190 4191 4192 120.0 0.654 10.400(10.16) 1.575(40.01) 4187 4188 4189 4209	pacitance		Q .	-							0 to .4 kHz	_	At 4 kHz	4	40 kHz
1.375(34.93) 0.400(10.16) 1.575(40.01) 4187- 4188- 4189- 4190- 4191- 4192- 120.01 4193- 4196- 4197- 4198- 4196- 4197- 4198- 4196- 4197- 4198- 4196- 4197- 4198- 4200- 4201-	1.375(34.93) 0.400(10.16) 1.575(40.01) 4187	(in uF)	L*.030(.76)	1.020(.51) 000 	E	1 ±0.25	acitance ±0.5 	toleran *1.0	ce value ±2.0 		*10.0	Volts Curren	t - Volts 	Current (in A) 	Volts	Current (in A)
0.400(10.16)	0.400(10.16)	0.18	11.375(34.93)	10.400(10.16)		4187-	4188-	4189-	4190-		4192-	L_	120.0	. 54	34.0	1.54
0.400(10.16) 4199- 4200- 4201- 4202- 4203- 4204- 4206- 4207- 4208- 4201- 4206- 4201- 4206- 4201- 4206- 4201-	1.875(47.63) 14.99- 4200- 4201- 4202- 4203- 4204- .066 .081	0.20	-	10.400(10.16)	_	14193-	4194-	14195-	4196-	_	4198-		<u> </u>	09.	33.0	1.65
U	4205- 4205- 4206- 4206- 4210- 4210- 1099 4211- 4211- 4212- 4212- 4215- 4216- 1099 1217- 4218- 4216- 4216- 4216- 4216- 1099 1217- 4218- 4216- 4216- 4216- 4216- 1218-	0.22		10.400(10.16)		4199-	14200-	14201-	14202-	-	4204-	990.	_	99.	32.0	1.76
4211- 4213- 4214- 4215- 4216- 4221- 4222- 4222- 4222- 4222- 4222- 4222- 4222- 4222- 4222- 4222- 4222- 4222- 4222- 4222- 4222- 4222- 4222- 4222- 4223- 4233- 4233- 4234- 4236- 4227- 4238- 4239- 4239- 4240- 4241- 4242- 4242- 4246	4211- 4213- 4214- 4215- 4216- 4216- 1.0099 4227- 4228- 4226- 4227- 4228- 1.12 4229- 4236- 4237- 4238- 4234- 1.15 4236- 4237- 4238- 4234- 4246- 4246- 1.15 1.875(47.63) 0.562(14.27) 2.075(52.71) 4247- 4248- 4249- 4256- 4256- 4256- 2.05 1.875(47.63) 0.670(17.02) 4259- 4260- 4261- 4269- 4269- 4266- 2.05 1.875(47.63) 0.670(17.02) 4269- 4260- 4261- 4269- 426	77.0		10.500(12./0)	_	4205-	4206-	1420/-	4208-	-	4210-	1.081	_	. 81	29.0	95.
4221- 4218- 4221- 4222- 4228	4223- 4225- 4226- 4227- 4222- 112 4229- 4235- 4236- 4236- 4236- 4236- 114 4229- 4236- 4236- 4236- 4236- 4236- 114 4235- 4236- 4236- 4236- 4246- 117 1.875(47.63) 2.075(52.71) 4247- 4248- 4246- 4246- 4246- 120 1.875(47.63) 2.075(52.71) 4247- 4248- 4246- 4266- 4267- 4268- 120 4269- 4269- 4269- 4269- 4268- 4268- 120 4269- 4269- 4269- 4269- 4268-	25.0		_		4211-	4212-	4213-	4214-	Ε.	4216-	660.	_	66	0.82 1	18.2
1.875(47.63) 0.562(14.27) 4225- 4235- 4225- 4226- 4234- 4228- 4226- 4231- 4223- 4234- 4231- 4223- 4234- 4231	1.875(47.63) 4229- 4229- 4229- 4228- 4228- 1.15 1.875(47.63) 0.562(14.27) 4229- 4229- 4231- 4233- 4246- 1.15 1.875(47.63) 0.562(14.27) 4241- 4249- 4249- 4246- 4246- 4258- 1.25 1.875(47.63) 0.562(14.27) 4247- 4248- 4249- 4246- 4258- 1.25 1.875(47.63) 0.562(14.27) 4241- 4249- 4249- 4258- 4258- 1.25 1.875(47.63) 1.000(25.40) 4289- 42	6.59				-/174	4218-	14219-	14220-		- 222	.12		1.17	27.0	2.63
1.875(47.63) 0.562(14.27) 4235- 4235- 4235- 4236- 4236- 4245- 4246	1.875(47.63) 0.562(14.27) 4235- 4237- 4238- 4239- 4246- 1.20 1.875(47.63) 2.075(52.71) 4241- 4242- 4243- 4244- 4245- 4246- 1.20 1.25	2.0				4229-	4224-	4225-	4220-		4228-	4.		1.4.	26.0	3.0
1.875(47.63) 0.562(14.27) 4247- 4248- 4248- 4248- 4248- 4248- 4248- 4248- 4248- 4248- 4248- 4248- 4248- 4248- 4258-	1.875(47.63) 0.562(14.27) 4241- 4242- 4243- 4244- 4245- 4246- 2.25 1.25	0.56	-	•		4935	4936	1237	1336	. [7868	?}	-	00.1	0.62	3
1.875(47.63)	1.875(47.63) 2.075(52.71) 4247 4248 4249 4256 4251 4255 1255	0.68	->	10.562(14.27)		14241-	14242-	14243-	4244-		4246-			1.01	20.02	3.17
4253- 4254- 4255- 4255- 4256- 4255- 4256- 4257- 4258- 4259- 4250	4253- 4256- 4256- 4257- 4258- 30 4259- 4266- 4261- 4262- 4263- 4264- 36 0.750(19.05) 4275- 4276- 4266- 4266- 4266- 4276- 4270- 36 4277- 4277- 4278- 4286- 4281- 4286- 36 4288- 4288- 4288- 4288- 4288- 36 1.000(25.40) 4301- 4302- 4304- 4306- 4306- 39 1.000(25.40) 2.575(65.41) 4313- 4316- 4316- 4318- 43	0.82	11.875(47.63)	-		14247-	4248-	14249-	14250-	-	4252-	. 25	-	2.05	18.0	3.70
4259 4260 4261 4262 4264 4265 4264 4265 4264 4265 4264 4266 4266 4269 4269 4260 4266 4266 4266 4266 4266 4266 4266 4266 4266 4266 4266 4266 4267 4266 4266 4267 4266	0.670(17.02)	1.0	1	_		4253-	4254-	4255-	4256-	· –	4258-	. 30		2.25	15.0	3.75
10.670(17.02)	1000(25.40) 14265- 1426- 1426- 1426- 14270- 145 14	1.2		A		14259-	4260-	14261 -	14262-	г	4264-	.36	-	19.5	13.5	4.05
1,200(25,40) 1,20	1000(25.40) 4277- 4278- 4278- 4276- 54 1 1 1 1 1 1 1 1 1	5		10.670(17.02)		14265-	14266-	14267-	14268-	_	4270-	45	-	3.20	1 12.0	4.50
4277 4278 4289 4281 4282 4288 4288 4288 4288 4288 4288 4288 4288 4288 4288 4288 4288 4288 4289 4289 4289 4289 4289 4289 4289 4289 4289 4289 4289 4289 4289 4289 4289 4289 4289 4380 4289 4380	4277- 4278- 4280- 4281- 4282- 60 4282- 60 4282- 60 4283- 4288- 4288- 4288- 60 4288- 4288- 4288- 4288- 4288- 4288- 60 60	æ.		10.750(19.05)		4271 -	14272-	4273-	4274-	_	4276-	54	110.0	3.74	11.0	5.00
4283- 4286- 4286- 4288	4283- 4285- 4286- 4288- 6588	2.0				4277-	14278-	14279-	4280-	_	4282-	09.	100.0	4.05	10.0	2.00
4289- 4290- 4291- 4292- 4293- 4294-	4290- 4290- 4299- 4299- 4299- 4299- 4299- 4299- 4300- .75 .81 .81 .81 .829- 4300- .300- .301- 4308- 4308- 4306- .90 .90 .375(60.33) 1.000(25.40) 2.575(65.41) 4314- 4316- 4316- 4317- 4318-	2.2				14283-	4284-	14285-	14286-	г	4288-	99.	1 90.5	4.20	1.6	2.00
	4295- 4296- 4297- 4299- 4300- .81	2.5				4289-	14290-	14291-	4292-	-	4294-	1 .75	0.08	4.31	1 8.0	2.00
1.000(25.40)	1.000(25.40) 4301- 4302- 4304- 4305- 4306- .90 .90	7.7		-		4295-	14296-	4297-	4298-	-	4300-	81	17.0	4.60	1.7.1	5.20
		0,5		11.000(25.40)		4301-	14302-	4303-	4304-	-	4306-	06.	0.07	5.04	1 0.7	5.57
1.000(25.40) 2.575(65.41) 4313- 4314- 4315- 4316- 4317- 4318- 🖈	1.000(25.40) 2.575(65.41) 4313- 4314- 4315- 4316- 4317- 4318- ♥ 1.20	٠,٠		11.000(25.40)		4307-	14308-	4309-	4310~	Г	4312-	66.	0.50	12.51	6.5	5.36
		3.9	(2.375(60.33)	11.000(25.40)		4313-	4314-	4315-	4316-	_	4318-	♦ 1.20	1 55.0	5.39	5.5	5.40

See footnotes at end of figure.

Established reliability, metallized plastic dielectric, fixed capacitors - Continued. FIGURE 804-1.

STANDARD CAPACITORS Style CRH05 (MIL-C-83421/1)

Continue Continue					7	DO VOLTS	400 VOLTS (DC RATING)	(NG)							
0.562(14.27) 0.193(4.90) 0.762(19.35) 5001 5002 5003 5004 55.0 5004 5005 5006 240.0 0.01 240.0 0.02 240.0		(in in	Dimensions with mm in	1/ Darentheses)			Dash		/2				I	gperation from	rom
1.6562(14.27) 0.193(4.90) 0.762(19.35) 5001- 5002- 5003- 5001- 5002- 5001- 5002- 5001-	Capacitance		D		-				ì		.4 KHZ	·L	۱.,	At	40 kHz
0.562(14.27) 0.193(4.90) 0.762(19.35) 5001- 5002- 5003- 5004- 5005- 5006- 5010- 5011-	value (nom) (in µF) 	 L*.030(.76) 	+.020(.51) 000 	=	tap 1 ±0.25	acitance ±0.5	tolerand *1.0	*Z.0	\vdash L $_{-}$	0.01*	VoltsiCurren (in A)	L	Current (in A)	Volts	Current (in A)
10.081(7.00) 1.263(12.6)	0.001	0.562(14.27)	0.193(4.90)		5001-	15002 -	15003-	5004 -	F	- 9005	L_	240.0	900. 1	1100.0	.025
0.687(17.45) 0.015 0.02	0.0012				5007-	5008-	5009-	5010-		5012- 5018-			700.		.030
10.0235(5.97) 15022- 15028- 15028- 15030- 1001	0.0018				15019-	15020-	15021-	15022-		5024-	.001		.011		.045
0.235(5.97) 5037 5038 5040 5041 5042 5042 5048 5048 5048 5048 5048 5048 5048 5048 5048 5048 5058	0.002		-		15025-	15026-	15027-	15028-	ļ. ,	5030- 5036-	.001		1.012		050
5043- 5044- 5055- 5046- 5047- 5048- 1002 5045- 5056- 5057- 5058- 5056- 1002 5056- 5056- 5057- 5058- 5056- 1003 5056- 5056- 5058- 5056- 5057- 5058- 5056- 1003 5061- 5068- 5069- 5070- 5071- 5072- 5071- 5078- 1003 5061- 5068- 5069- 5070- 5071- 5078- 1003 5061- 5068- 5069- 5070- 5071- 5078- 1003 5061- 5068- 5069- 5070- 5071- 5078- 1003 5061- 5068- 5069- 5071- 5078- 1003 5061- 5068- 5069- 5071- 5078- 1004 5061- 5068- 5081- 5071- 5078- 1004 5061- 5068- 5081- 5071- 5078- 1004 5061- 5068- 5081- 5071- 5078- 1004 5061- 5068- 5081- 5071- 5078- 1004 5061- 5068- 5081- 5071- 5078- 1004 5061- 5068- 5081- 5071- 5078- 1004 5061- 5068- 5081- 5071- 5078- 1004 5061- 5068- 5081- 5081- 5081- 5091- 1004 5061- 5068- 5081- 5081- 5091- 1004 5061- 5068- 5081- 5081- 5091- 1004 5061- 5068- 5081- 5081- 5091- 1004 5061- 5068- 5081- 5081- 5091- 1004 5061- 5068- 5081- 5081- 5091- 1004 5061- 5068- 5081- 5081- 5091- 1004 5061- 5068- 5081- 5081- 5091- 1004 5061- 5068- 5081- 5081- 5091- 1004 5061- 5068- 5081- 5081- 5091- 1004 5061- 5068- 5081- 5081- 5091- 1004 5061- 5068- 5081- 5081- 5091- 1004 5061- 5068- 5081- 5081- 5091- 1004 5061- 5068- 5081- 5081- 5081- 5091- 1004 5061- 5068- 5081- 5081- 5081- 5081- 5081- 5081- 5081- 5081- 5061- 5068- 5081- 5081- 5081- 5081- 5081- 5081- 5081- 5061- 5068- 5081- 5081- 5081- 5081- 5081- 5081- 5061- 5081- 5081- 5081- 5081- 5081- 5081- 5061- 5081- 5081- 5081- 5081- 5081- 5081- 5061- 5081- 5081- 5081- 5081- 5081- 5081- 5061- 5081- 5081- 5081- 5081- 5081- 5081- 5061- 5081- 5081- 5081- 5081- 5081- 5081- 5061- 5081- 5081- 5081- 5081- 5081- 5061- 5081- 5081- 5081- 5081- 5061- 5081- 5081- 5081- 5081- 5061- 5081- 5081- 5081- 5061- 5081- 5081- 5081- 5061- 5081- 5081- 5081- 5061- 5081- 5081- 5081- 5061- 5081- 5081- 5081- 5061- 5081- 5081- 5081- 5061- 5081- 5081- 5081- 5061- 5081- 5081- 5061- 5081- 5081- 5061- 5081- 5081-	0.0027		0.235(5.97)		5037-	5038-	5039-	5040-		5042-	. 002		016		890.
1.063(27.00) 1.263(32.08) 1.263(27.00) 1.263(32.08) 1.263(27.00) 1.26	0.0033		_		15043-	15044-	15045-	5046-	-	5048-	1 .002	-	1.020		1.083
0.687(17.45)	0.0039		· ·		5049-	5050 - 5056 -	5051 - 5057 -	5052- 5058-	5053- 1	5054 - 5060 -	.002		023		. 12
0.687(17.45)	0.005				5061-	15062-	5063-	15064-	_	2066-	.003	-	030		.13
0.887(17.45) 0.887(12.53) 50.74 50.75 50.76 50.77 50.78 004 0.813(20.65) 0.312(7.92) 1.013(20.65) 50.99 50.99 50.99 50.99 50.99 0005 0.813(20.65) 0.312(7.92) 1.013(20.65) 50.97 50.99 50.99 50.99 50.99 0005 0.813(20.65) 0.312(7.92) 1.013(20.65) 50.97 50.99 50.99 50.99 50.99 0005 0.813(20.65) 0.312(7.92) 1.013(20.65) 50.97 50.99 50.99 50.99 50.99 0005 0.813(20.65) 0.312(7.92) 1.013(20.65) 50.97 50.99 50.99 50.99 0005 0.813(20.65) 0.312(7.92) 1.013(20.65) 50.97 50.99 50.99 50.99 0005 0.813(20.65) 0.312(7.92) 1.263(32.08) 51.10 51.11 51.2 51.12 51.13 51.14 0.034 1.063(27.00) 1.263(32.08) 51.64 51.65 51.66 51.67 51.68 0.041 1.063(27.00) 1.263(32.08) 51.69 51.70 51.71 51.72 51.72 51.72 51.73 51.74 0.052 1.063(27.00) 1.263(32.08) 51.69 51.70 51.71 51.72 51.72 51.72 51.73 51.74 0.041 1.063(27.00) 1.263(32.08) 51.69 51.70 51.71 51.72 51.72 51.74 0.041 1.063(27.00) 1.263(32.08) 51.69 51.70 51.71 51.72 51.72 51.72 51.74 0.041 1.063(27.00) 1.263(32.08) 51.69 51.70 51.71 51.72 51.72 51.74 0.041 1.063(27.00) 1.263(32.08) 51.69 51.70 51.71 51.72 51.72 51.72 51.74 0.041 1.063(27.00) 1.263(32.08) 51.69 51.70 51.71 51.72 51.72 51.74 0.041 1.063(27.00) 1.263(32.08) 51.69 51.70 51.71 51.72 51.72 51.74 0.041 1.063(27.00) 1.263(32.08) 51.69 51.70 51.71 51.72 51.74 0.041 1.063(27.00) 1.263(32.08) 51.69 51.70 51.71 51.72 51.72 51.74 0.041 1.063(27.00) 1.263(32.08) 51.69 51.70 51.71 51.72 51.74 0.041 1.063(27.00) 1.263(27.00) 1.263(27.00) 51.71 51.72 51.72 51.74 0.041 1.063(27.00) 1.263(27.00) 1.263(27.00) 1.263(27.00) 1.263(27.00)	0.0056	-	_	- 1	15067-	15068-	15069-	5070-	5071-	5072-	.003	_	1.034	_	.14
0.813(20.65) 0.312(7.92) 0.312(7.92) 0.007 0	0.0068	∃ ~		•	15073-	5074-	5075-	5076-	5077- 1	5078-	400.		.041		7.5
0.813(20.65) 0.312(7.92) 1.013(20.65) 5092- 5093- 5094- 5095- 5096- 0.007 0.007 0.013(20.65) 5097- 5098- 5109- 5100- 5101- 5102- 0.013 0.013 0.312(7.92) 1.013(20.65) 5103- 5104- 5106- 5107- 5108- 0.013 0.01	0.01				15085-	5086-	5087-	5088-		5090-	900		090		. 25
0.813(20.65) 0.312(7.92) 1.013(20.65) 55094 55099 5100 5101 5102 0.009 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.012 0.013 0.0	0.012	-		~	5091-	15092-	15093-	5094-		- 9609	700.	_	1.072	-	.30
0.312(7.92) 5103- 5104- 5105- 5106- 5108- .011 .012 .012 .012 .012 .012 .012 .012 .013 .013 .013 .014 .013 .014 .015 .0	0.015	(0.813(20.65)	>	١.	- /6051	15098-	-66051	-0015	15101-	- 2019	600.	-	060.	94.0	35
1.063(27.00) 1.263(32.08) 5150- 5170- 5174- 5186-	0.018		10.312(7,92)		15103-	5104-	5105-	5106-	15107-	5108-	.011		11.	0.06	. 41
1.063(27.00) 1.263(32.08) 5169- 5170- 5177- 5178- 5119- 5120- .016 .020	0.02				15277-	152/2-	152/3-	152/4-	152/5-	52/6-	. 012		.12	88.0	44
5121- 5122- 5123- 5126	0.027				15115-	5116-	5117-	5118-	15119-	5120-	.016	-	.16	81.0	. 55
1.063(27.00)	0.033		_		15121-	15122-	15123-	15124-	_	-9715	1.020		. 20	78.0	. 65
0.400(10.16)	0.039		>		15127-	15128-	15129-	5130-	-	5132-	1.023	_	1.23	1 75.0	.73
1.063(27.00) 1.263(32.08) 5169- 5170- 5170- 5148- 5144- .030	0.047	-	10.400(10.16)		15133~	15134-	5135-	15136-	15137-	5138-	1 .028	-	1.28	1 71.0	. 83
1.063(27.00)	0.050				5139-	5140-	5141-	5142-	5143-	5144-	030		.30	1 70.0	86.5
1.063(27.00)	0.068	-		-	5151-	5152-	15153-	5154~		5156-	.041		4.	0.09	1.02
.10 1.063(27.00) 1.263(32.08) 5163- 5164- 5165- 5166- 5168- .060 .012 .013 .013 .013 .014 .015	0.082	11.063(27.00)		11.263(32.08)	15157-	5158-	15159-	5160-	_	5162-	040		. 49	50.0	1.03
7/0. -4/16 -5/16 -7/16 -1/16 -0/16 -6016 (80.32)(80.31) (00.72)(80.11)	0.10	11.063(27.00)		11.263(32.08)	15163-	15164-	15165-	15166-	15167- 1	5168-	090	•	09.	46.0	202.
	0.16	11.063(27.00)	>	11.263(32.08)	-69161	-0/16	-1/16	-7/16	-5/16	- 4/10	7/0.	• 	7/:	- 44 	45.1

See footnotes at end of figure.

FIGURE 804-1. Estabished reliability, metallized plastic dielectric, fixed capacitors – Continued.

STANDARD CAPACITORS Style CRHO5 (MIL-C-83421/1) - Continued

		Dimensions	1/							AC ratings	(for sinu	soldal ope	operation from	from
	(in inc	(in inches with mm in parenthese	parentheses)	- - -		Dash	Dash number	72/		 0 to .4 kHz	د	C to $+100^{\circ}C$) $\frac{37}{4}$		At 40 kHz
value (nom)		(+.020(.51)		Cap	Capacitance	toleran	tolerance value	(a ni)		Volts Current	Ι.	Current	Volts	Current
(in uF)	L*.030(.76)	000-	Б, шах	*0.25	±0.5	*1.0	*2.0	*5. 0	*10.0	(in A)		(in A)		(in A)
0 15	1 375(34 93)	10 400(10.16)	11.575(40.01)	15175-	5176-	14177-	15178-	15179-	5180-	1240.01.090	1 240.0	.83	40.0	1.50
8 6 6		10.500(12.70)		15277-	5278-	15279-	5280-	5281-	5282-	_	_	_	38.0	1.70
0.20		(0.500(12.70)		5181-	15182-	15183-	5184-	15185-	15186-	.12	_	1.03	0.78	1.85
0.22		10.500(12.70)		15187-	15188-	15189-	15190-	15191-	15192-	1 .13		1.10	1 35.0	1.93
0.27		10.562(14.27)		15193-	15194-	15195-	15196-	15197-	15198-	- 16	_	12.1	33.0	2.24
0.33	_		_	15199-	15200-	15201-	15202-	15203-	15203-	1 .20		1.32	1 32.0	1 2.65
0.39	11.875(47.63)		(12.075(52.71)	5205-	15206-	15207-	15208-	15209-	15210-	1 .23	_	1.48	32.0	3.14
0.47				5211-	15212-	15213-	5214-	5215-	15216-	1.28	_	1.68	31.0	3.64
0.50				15217-	15218-	15219-	15220-	15221-	15222-	1 .30		1.75	1 30.0	3.75
0.56	-	•		15223-	15224-	15225-	15226-	15227-	15228-	.34		1.92	1 29.0	4.05
0.68		(0.750(19.05)		15229-	15230-	5231-	15232-	15233-	15234-	14.	-	_	1 26.0	4.50
0.82	_	10.750(19.05)		15235-	15236-	15237-	15238-	5239-	15240-	64.	1 234.0	1 2.63	23.4	4.80
0.1		10.750(19.05)		15241-	15242-	15243-	15244-	15245-	15246-	09.	1 208.0	H	1 20.8	1 5.20
1.2	>	(1.000(25.40)	-	15247-	15248-	15249-	15250-	15251-	15252-	1.72	183.0	3.48	18.3	1 5.50
1.5	12.375(60.33)		(12.575(65.41)	15253-	15254-	15255-	15256-	15257-	15258-	06.	160.0	_	16.0	00.9
8.	12.375(60.33)		[2.575(65.41)	15259-	15260-	5261-	15262-	15263-	15264-	11.08	150.0	4	15.0	6.80
2.0	12.375(60.33)	-	12.575(65.41)	- 5925	-9925	-/975	-89251	12269-	15270-	11.20	140.0	00.6	14.0	00./

Dimensions are bare case sizes (see figure 804-1). \supseteq_1

The complete dash number will include the applicable FR level symbol (M,P,K, or S) as a suffix. 3/

For operation to +125°C, linearly derate from 100 percent at +100°C to 50 percent at +125°C.

FIGURE 804-1. Established reliability, metallized plastic dielectric, fixed capacitors - Continued.

SECTION 900

CAPACITORS, FIXED, CERAMIC DIELECTRIC, ESTABLISHED RELIABILITY

Secti on	Applicable specification
901.	Capacitors, Fixed, Ceramic Dielectric (General Purpose), Established Reliability
902.	Capacitors, Fixed, Ceramic Dielectric (Temperature Compensating), Established Reliability MIL-C-20
903.	Capacitors, Chip, Multiple Layer, Fixed, Ceramic Dielectric, Established Reliability MIL-C-55681

Downloaded from http://www.everyspec.com

SECTION 901

CAPACITORS, FIXED, CERAMIC DIELECTRIC, (GENERAL PURPOSE), ESTABLISHED RELIABILITY

STYLES CKR05, CKR06, CKR11, CKR12, CKR14, CKR15, CKR22, AND CKR23

(APPLICABLE SPECIFICATION: MIL-C-39014)

- 1. SCOPE. This section covers established reliability, general purpose, ceramic dielectric, insulated, fixed capacitors. These capacitors have failure rate levels ranging from 1.0 to 0.001 percent per 1,000 hours. The failure rate levels are established at a 90-percent confidence level and are based on operation at full rated voltage at the maximum rated temperature.
 - 2. APPLICATION INFORMATION.
- 2.1 <u>Use.</u> These capacitors are primarily designed for use where a small physical size with comparatively large electrical capacitance and high insulation resistance is required. Ceramic capacitors are substantially smaller than paper or mica units of the same capacitance and voltage rating. General-purpose ceramic capacitors are not intended for precision use but are suitable table for use as by-pass, filter, and non-critical coupling elements in high-frequency circuits where appreciable changes in capacitance, caused by temperature variations, can be tolerated. These units are not recommended for use directly in frequency-determining circuits. Typical recommended applications include resistive-capacitance coupling for audio and radio frequency, RF and intermediate frequency cathode bypass, automatic volume control filtering, tone compensation, volume-control RF bypass, antenna coupling, and audio-plate RF bypass. All of these applications are of the type where dissipation factor is not critical, and moderate changes due to temperature, voltage, and frequency variations do not affect the proper functioning of the circuit. For example: An emitter bypass for 100 megahertz (MHz), having a nominal capacitance of 680 picofarads (pF), will give a capacitance reactance of 2.34 ohms. Since this reactance is very small compared with the emitter resistor, there would be no measurable effect on the 2.34-ohm value if the capacity should change by several percent due to a temperature variation, nor would a dissipation of 4 percent be noticeable.

Disk and thin-plated subminiature types are extremely compact and have an inherent low-series inductance due to their construction. The placement of the leads facilitates making close-coupled low-inductance connections and these capacitors are suitable for printed-circuit applications. High insulation resistance allows these capacitors to be used in vacuum-tube grid circuits; their extremely low leakage and small physical size make them suitable for use in transistor circuitry.

During circuit design, consideration should be given to the changes in dielectric constant caused by temperature, electric field intensity, applied frequency, and shelf aging.

- 2.1.1 <u>Humid operating conditions.</u> Ceramic dielectric materials are nonhygroscopic, effectively impermeable, and have practically no moisture absorption even after considerable exposure to humid conditions. Thus, these units are intended to operate, through their full temperature range, at relative humidities up to 95 percent. Neverthe less, the termination materials under moisture conditions are subject to ionic migration which can cause capacitor failure (see 2.8).
- 2.2 <u>Construction.</u> A ceramic capacitor consists of a ceramic dielectric on which a thin metallic film, usually silver, has been fired at very high temperatures. Terminal leads are attached to the electrodes by a pressure contact or by soldering. Ceramic capacitors are encapsulated to protect the dielectric from the environment and to electrically insulate the capacitor. The disk types are covered by an insulating resin, plastic, or ceramic; the thin-plated subminiature types may be in dipped, molded, or performed cases. The feed-through units are made of ceramic tubes modified for their required mounting. Because the constituent materials have molecular polar moments, the dielectric constants of some mixes reach hundreds (even thousands), of times the value of paper, mica, and plastic films. This results in ceramics having the largest capacitance-to-size ratios of all high-resistance dielectrics.

- 2.3 DC voltage rating. These capacitors are available in a wide voltage range which varies with the capacitor style. The voltage range varies from 50 volts dc to 200 volts dc.
- 2.4 <u>Soldering.</u> Care should be used in soldering the leads. Excessive heat may damage the encapsulation and weaken the electrode to terminal lead contact. Sudden changes in temperature, such as those experienced in soldering, can crack the encapsulation or the ceramic dielectric. Leads should not be bent close to the case nor should any strain be imposed on the capacitor body to avoid fracturing the encapsulation or ceramic dielectric.
- 2.5 <u>Dissipation factor.</u> For the recommended applications, the dissipation factor is negligibly low. The power factor decreases as temperature is increased; this provides an advantage where operation above room temperature is required.
- 2.6 <u>Case insulation.</u> It is not intended that the case insulation be subjected to sustained voltage in excess of 150 percent of the dc rated voltage of the capacitor. Supplementary insulation should be provided where the case may come in contact with higher voltage.
- 2.7 <u>Capacitance as a function of operating conditions.</u> The dielectric constant of these capacitors exhibits a considerable dependence on field strength. Large variations in capacitance may be experienced with changes in ac or dc voltages. The dielectric constant may decrease with time and may be as low as 75 percent of the original value after 1,000 hours. The dielectric constant is dependent on frequency and decreases as the frequency is increased; it also decreases with temperature.
- 2.8 <u>Silver migration.</u> When silver electrodes in the ceramic capacitor are exposed to high humidities adn high dc potentials, silver ion migration may take place and short circuit capacitors after relatively short periods of time. Excessive moisture during periods of storage should be avoided since the encapsulation material may absorb moisture and silver ion migration may occur when the capacitors are later put into service.
- 2.9 <u>Operating temperature range.</u> These capacitors are suitable for operation over a temperature range of -55° to $+125^{\circ}$ C.
- 2.10 <u>Failure-rate level determination.</u> The curves presented on figure 901-1 are the best engineering approximation of the reliability characteristics (random failures) for these capacitors when employed repeatedly, within their specification ratings, in complex electronic equipment. These relliability characteristics are based on ground-level severity experience. Failures are considered to be opens, shorts, or radical departures from initial characteristics. The failures are considered to be occurring in an unpredictable manner and in too short a period of time to permit detection through normal preventive maintenance. The curves shown on figure 901-1 are based on "catastrophic failures" and will differ from the failure rates established in the specification, since the established failure rates are based on "parametric failures" over long term life tests at rated conditions. This figure has been extracted from MIL-HDBK-217, "Reliability Stress and Failure Rate Data for Electronic Equipment." The curves have been modified from their original versions in that the ordinate has been normalized in order to provide multiplier factors in place of discrete failure rate levels and in order that the multiplying factor for a failure rate at rated conditions is unity. As indicated, these curves are the bestestimates based on "catastrophic failure"; however, they can provide an estimate of the relative effect of operating under conditions other than rated.
 - 3. ITEM IDENTIFICATION
- $3.1~\underline{\text{Standard}}$ capacitors. The standard capacitors available in this section are shown in figure 901-2. (The figure gives the electrical characteristics, failure rate levels, and Military part numbers which are standard for design.)

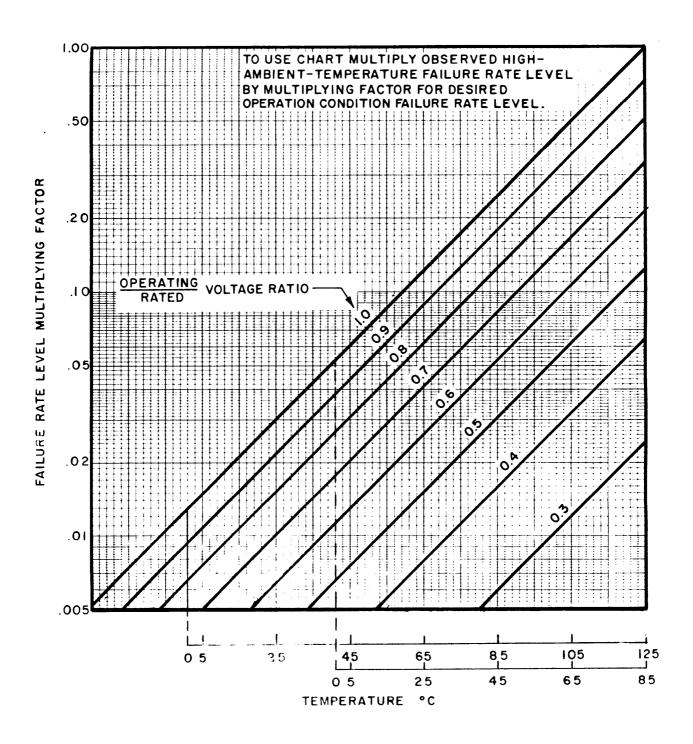
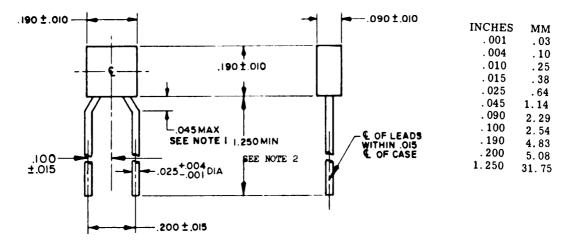



FIGURE 901-1. Failure rate level curves.

STANDARD CAPACITORS

STYLE CKR05 (MIL-C-39014/1) NATO TYPE DESIGNATION: NCC61

OPERATING TEMPERATURE RANGE -55° TO +125°C -- VOLTAGE TEMPERATURE LIMITS (CAP. CHANGE WITH REFERENCE TO +125°C) ±15 PERCENT WITH ZERO VOLTS APPLIED AND +25, -25 PERCENT WITH DC RATED VOLTAGE APPLIED

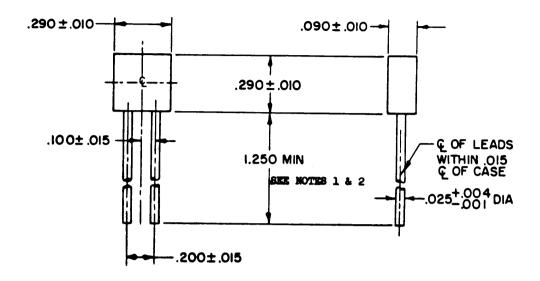
NOTES:

- 1. For flush mounting, a .078(1.98 mm) printed-circuit-hole diameter is required to clear shoulder.
- 2. Lead length may be minium of one inch long for use in tape and reel automatic insertion equipmet, shen specified.

DC		Ci			er M39014	
rated	Capacitance	Capacitance	Failure		el in % 1, (000 hours
voltage	value	tolerance	1.0(M)	0.1(P)	0.01(R)	0.001(S)
volts	рF	percent				
200	10	± 10	1201	1241	1281	1321
1	10	<u>-</u> 20	1202	1242	1282	1322
	12	± 10	1203	1243	1283	1323
i	15	± 10	1204	1244	1284	1324
1	15	- 20	1205	1245	1285	1325
1	18	± 10	1206	1246	1286	1326
l	22	± 10	1207 ·	1247	1287	1327
1	22	<u>-</u> 20	1208	1248	1288	1328
l	27	± 10	1209	1249	1289	1329
1	33	= 10	1210	1250	1290	1330
	33	± 20	1211	1251	1291	1331
	39	± 10	1212	1252	1292	1332
	47	= 10	1213	1253	1293	1333
	47	- 20	1214	1254	1294	1334
	56	± 10	1215	1255	1295	1335
į.	68	± 10	1216	1256	1296	1336
	68	₌ 20	1217	1257	1297	1337
l l	82	± 10	1218	1258	1298	1338
	100	± 10	1219	1259	1299	1339
	100	± 20	1220	1260	1300	1340
	120	: 10	1221	1261	1301	1341
	150	± 10	1222	1262	1302	1342
	150	20	1223	1263	1303	1343
	180	. 10	1224	1264	1304	1344
Ţ	220	± 10	1225	1265	1305	1345

FIGURE 901-2. Established reliability, general purpose, ceramic dielectric, fixed capacitors.

STANDARD CAPACITORS


STYLE CKR05 (MIL-C-39014/1) -Continued

OPERATING TEMPERATURE RANGE -55° TO +125°C -- VOLTAGE TEMPERATURE LIMITS (CAP, CHANGE WITH REFERENCEE TO +25°C) ±15 PERCENT WITH ZERO VOLTS APPLIED AND +15, -25 PERCENT WITH DC RATED VOLTAGE APPLIED

DC	1		P	art numbe	er M39014	/01-
rated	Capacitance	Capacitance			el in % 1, (
voltage	value	tolerance	1.0(M)			0.001(S)
Voltage			1.0(1/1)	0.1(1)	0.01(10)	0.001(5)
volts	pF	percent				
200	220	± 20	1226	1266	1306	1346
-;	270	± 10	1227	1267	1307	1347
	330	± 10	1228	1268	1308	1348
	330	±20	1229	1269	1309	1349
		± 10	1230	1270	1310	1350
1	390			1270		
	470	± 10	1231		1311	1351
	470	± 20	1232	1272	1312	1352
	560	± 10	1233	1273	1313	1353
	680	± 10	1234	1274	1314	1354
	680	± 20	1235	1275	1315	1355
	820	± 10	1236	1276	1316	1356
	1, 000	± 10	1237	1277	1317	1357
₩	1,000	± 20	1238	1278	1318	1358
100	1, 200	± 10	1239	1279	1319	1359
l 1	1,500	± 10	1240	1280	1320	1360
	1,500	± 20	1441	1481	1521	1561
	1,800	±10	1442	1482	1522	1562
	2,200	±10	1443	1483	1523	1563
	2,200	± 20	1444	1484	1524	1564
	2,700	± 10	1445	1485	1525	1565
1	3, 300	± 10	1446	1486	1526	1566
	3, 300	± 20	1447	1487	1527	1567
	3, 900	± 10	1448	1488	1528	1568
	4,700	± 10	1449	1489	1529	1569
ľ	4,700	± 20	1450	1490	1530	1570
	5, 600	± 10	1451	1491	1531	1571
	6, 800	± 10	1452	1492	1532	1572
		± 10 ± 20	1452			1572
	6, 800			1493	1533	
	8,200	± 10	1454	1494	1534	1574
	10,000	± 10	1455	1495	1535	1575
<u> </u>	10,000	± 20	1456	1496	1536	1576
50	12,000	± 10	1457	1497	1537	1577
İ	15,000	± 10	1458	1498	1538	1578
; 1	15,000	± 20	1459	1499	1539	1579
, ,	18,000	± 10	1460	1500	1540	1580
<u> </u>	22,000	± 10	1461	1501	1541	1581
i	22,000	± 20	1462	1502	1542	1582
	27,000	± 10	1463	1503	1543	1583
	33,000	± 10	1464	1504	1544	1584
1	33,000	± 20	1465	1505	1545	1585
	39, 000	± 10	1466	1506	1546	1586
	47,000	± 10	1467	1507	1547	1587
	47,000	± 20	1468	1508	1548	1588
	56,000	± 10	1469	1509	1549	1589
	68,000	± 10	1470	1510	1550	1590
	68, 000	± 20	1471	1511	1551	1591
	82,000	± 10	1472	1512	1552	1592
	100, 000	± 10	1473	1513	1553	1593
	100,000	± 20	1474	1514	1554	1594
			1			

FIGURE 901-2. Established reliability, general purpose, ceramic dielectric, fixed capacitors - Continued.

STYLE CKR06 NATO TYPE DESIGNATION: NCC62

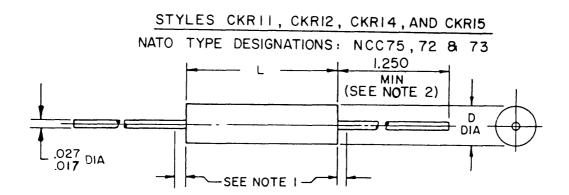
INCHES	MM
. 001	. 03
. 004	. 10
. 010	. 25
. 015	. 38
. 025	. 64
. 090	2.29
. 100	2.54
. 200	5. 08
. 290	7.37
1.250	31.75

NOTES:

- For flush mounting, a .078 (1.98 mm) minimum printed-circuit-hole diameter is required to clear shoulder.

 Lead length may be a minimum of one inch long for use in tape and reel automatic insertion equipment, when specified.

FIGURE 901-2. Established reliability, general purpose, ceramic dielectric, <u>fixed capacitors</u> - Continued.


STANDARD CAPACITORS

STYLE CKR06 (MI L-C-39014/2)

OPERATING TEMPERATURE RANGE -55° TO + 125°C -- VOLTAGE TEMPERATURE LIMITS (CAP. CHANGE WITH REFERENCE TO +25°C) ±15 PERCENT WITH ZERO VOLTS APPLIED AND +15, -25 PERCENT WITH DC RATED VOLTAGE APPLIED

DC			Part number M39014/02-			/02 -
rated	Capacitance	Capacitance	Failure rate level in % 1,000 hours			000 hours
voltage	value	tolerance	1.0(M)		0.01(R)	0.001(S)
volts	рF	percent	,			
200	1,200	± 10	1201	1241	1281	1321
1 1	1,500	±10	1202	1242	1282	1322
	1,500	± 20	1203	1243	1283	1323
	1,800	± 10	1204	1244	1284	1324
	2, 200	± 10	1206	1246	1286	1326
	2, 200	±20	1207	1247	1287	1327
	2,700	± 10	1208	1248	1288	1328
1	3, 300	±10	1209	1249	1289	1329
	3, 300	±20	1210	1250	1290	1330
	3, 900	±10	1211	1251	1291	1331
	4,700	±10	1212	1252	1292	1332
	4,700	± 20	1213	1253	1293	1333
	5,600	±10	1214	1254	1294	1334
	6, 800	±10	1215	1255	1295	1335
	6, 800	± 20	1216	1256	1296	1336
	8, 200	±10	1217	1257	1297	1337
	10, 000	± 10	1218	1258	1298	1338
	10, 000	± 20	1219	1259	1299	1339
100	12,000	± 10	1231	1271	1311	1351
1 1	15,000	1	1220	1260	1300	1340
	18,000	} }	1221	1261	1301	1341
	22,000		1222	1262	1302	1342
	27,000	1	1232	1272	1312	1352
	33,000	1 1	1223	1263	1303	1343
	39,000		1224	1264	1304	1344
	47,000] [1225	1265	1305	1345
	56,000		1226	1266	1306	1346
	68,000		1227	1267	1307	1347
	82,000		1229	1269	1309	1349
	100,000	{	1230	1270	1310	1350
50	120,000	++	1233	1273	1313	1353
	150,000		1234	1274	1314	1354
	180,000		1235	1275	1315	1355
	220, 000		1236	1276	1316	1356
	270,000	1 1	1237	1277	1317	1357
	330, 000		1238	1278	1318	1358
	390, 000		1239	1279	1319	1359
	470, 000		1240	1280	1320	1360
	560,000		1404	1408	1412	1416
	680, 000		1405	1409	1413	1417
]]	820, 000	i	1406	1410	1414	1418
	1, 000, 000		1407	1411	1415	1419
	1,000,000	<u> </u>	1401	1711	1410	1410

FIGURE 901-2. <u>Established reliability, general purpose, ceramic dielectric, fixed capacitors</u> - Continued.

[Style	Dimensions			
1	·	L	D	С	
ſ	CKR11	.160 ±.010	.090 ±.010	.019 ±.002	
	CKR12	.250 ±.010	.090 ±.010	.019 ±.002	
	CKR14	.390 ±.010	.140 ±.010	.025 ±.002	
	CKR15	.500 ±.020	.250 ±.015	.025 ±.002	

INCHES	MM	INCHES	MM
.002	.05	.090	2.29
.010	.25	.140	3.56
.015	. 38	.160	4.06
.019	. 42	.250	6.35
.020	.51	.390	9.91
.025	.64	.500	12.70
.027	.69	1.250	31.75

NOTE:

- 1. Nonconductive material does not extend beyond .010 (.25 mm) from end of capacitor body.
- 2. Lead length may be a minimum of one inch long for use in tape and reel automatic insertion equipment, when specified.

FIGURE 901-2. <u>Established reliability, general purpose, ceramic dieletric, fixed capacitors</u> - Continued.

STANDARD CAPACITORS

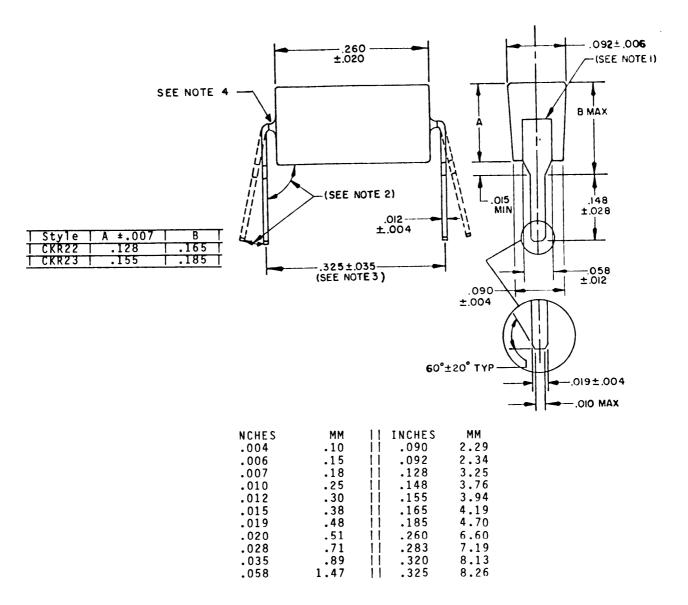
CKR12, CKR14, AND CKR15 (MIL-C-39014/5)

OPERATING TEMPERATURE RANGE -55° TO +125°C -- VOLTAGE TEMPERATURE LIMITS (CAP. CHANGE WITH REFERENCE TO +25°C) ±15 PERCENT WITH ZERO VOLTS APPLIED AND +15, -25 PERCENT WITH DC RATED VOLTAGE APPLIED

	DC	Conseitones	Canaditanda	Part number M39014/05-			
Style rated		Capacitance Capacitance		Failure rate level in % 1,000 hours			
	voltage	value	tolerance	1.0(M)	0.1(P)	0.01(R)	0.001(S)
	volts	<u>p</u> F	percent				
CKR11	100	10	± 10	2601	2801	2001	2201
	İ	10	± 20	2602	2802	2002	2202
[1	12	± 10	2603	2803	2003	2203
1		15	± 10	2604	2804	2004	2204
		15	± 20	2605	2805	2005	2205
		18	± 10	2606	2806	2006	2206
	1	22	± 10	2607	2807	2007	2207
		22	± 20	2608	2808	2008	2208
		27	± 10	2609	2809	2009	2209
		33	± 10	2610	2810	2010	2210
		33	± 2 0	2611	2811	2011	2211
l		39	± 10	2612	2812	2012	2212
		47	± 10	2613	2813	2013	2213
		47	± 20	2614	2814	2014	2214
		56	± 10	2615	2815	2015	2215
ĺ		68	± 10	2616	2816	2016	2216
į		68	± 20	2617	2817	2017	2217
		82	± 10	2618	2818	2018	2218
		100	± 10	2619	2819	2019	2219
		100	± 20	2620	2820	2020	2220
		120	± 10	2621	2821	2021	2221
		150	± 10	2622	2822	2022	2222
		150	± 20	2623	2823	2023	2223
	1	180	± 10	2624	2824	2024	2224
		220	± 10	2625	2825	2025	2225
	i	220	± 20	2626	2826	2026	2226
		270	± 10	2627	2827	2027	2227
J		330	± 10	2628	2828	2028	2228
		330	± 20	2629	2829	2029	2229
		390	± 10	2630	2830	2030	2230
		470	± 10	2631	2831	2031	2231
		470	± 20	2632	2832	2032	2232
		560	± 10	2633	2833	2033	2233
		680	± 10	2634	2834	2034	2234
		680	± 20	2635	2835	2035	2235
		820	± 10	2636	2836	2036	2236
İ		1,000	± 10	2637	2837	2037	2237
		1,000	± 2 0	2638	2838	2038	2238
		1,200	± 10	2639	2839	2039	2239
		1,500	± 10	2640	2840	2040	2240
		1,500	± 20	2641	2841	2041	2241
		1,800	± 10	2642	2842	2042	2242
		2,200	± 10	2643	2843	2043	2243
		2,200	± 20	2644	2844	2044	2244
	j	2,700	± 10	2645	2845	2045	2245
1	[[3, 300	± 10	2646	2846	2046	2246
ŀ	1	3, 300	± 20	2647	2847	2047	2247
1	j	3, 900	± 10	2648	2848	2048	2248
l]	4, 700	± 10	2649	2849	2049	2249
i	V 1	4,700	± 20	2650	2850	2050	2250

FIGURE 901-2. Established reliability, general purpose, ceramic dielectric, fixed capacitors - Continued.

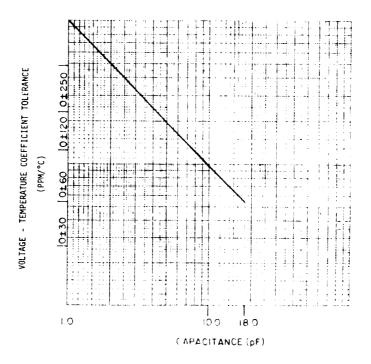
MI L-STD-198E STANDARD CAPACI TORS


STYLES CKR11, CKR12, CKR14, CKR14, AND CKR15 (MIL-C-39014/5) - Continued

OPERATING TEMPERATURE RANGE -55° TO +125°C -- VOLTAGE TEMPERATURE LIMITS (CAP. CHANGE WITH REFERENCE TO +25°C) ±15 PERCENT WITH ZERO VOLTS APPLIED AND +15, -25 PERCENT WITH DC RATED VOLTAGE APPLIED

	DC				Part number M39014 05 - Failure rate level in 7 1,000 hours				
Style	rated	1	-	Failure	rate lev	el in 🧏 1.	000 hours		
	voltage	value	tolerance	1.0(M)		0.01(R)	0.001(S)		
	volts	<u>p</u> F	percent						
CKR11	50	5, 600	± 10	2651	2851	2051	2251		
1	1 1	6, 800	± 10	2652	2852	2052	2252		
1		6, 800	± 20	2653	2853	2053	2253		
}	1 1	8, 200	± 10	2654	2854	2054	2254		
İ	1 1	10,000	± 10	2655	2855	2055	22 55		
		10,000	± 20	2656	2856	2056	22 56		
CKR12	100	5,600	± 10	2657	2857	2057	2257		
	1	6, 800	± 10	2658	2858	2058	22 58		
		6, 800	± 2 0	2659	2859	2059	22 59		
1		8, 200	± 10	2660	2860	2060	2260		
1		10, 000	± 10	2661	2861	2061	2261		
	<u>V</u>	10, 000	± 2 0	2662	2862	2062	2262		
	50	12,000	± 10	2663	2863	2063	2263		
		15,000	± 10	2664	2864	2064	2264		
·		15,000	± 20	2665	2865	2065	2265		
		18,000	± 10	2666	2866	2066	22 66		
		22, 000	± 10	2667	2867	2067	2267		
		22, 000	± 20	2668	2868	2068	22 68		
		27, 000	± 10	2669	2869	2069	22 69		
		33, 000	± 10	2670	2870	2070	2270		
]	33, 000	± 20	2671	2871	2071	2271		
	[39, 000	± 10	2672	2872	2072	2272		
		47, 000	± 10	2673	2873	2073	2273		
- Curriu	<u> </u>	47, 000	± 20	2674	2874	2074	2274		
CKR14	100	12,000	± 10	2675	2875	2075	2275		
		15,000	± 10	2676	2876	2076	2276		
		15,000	± 20	2677	2877	2077	2277		
		18,000	± 10	2678	2878	2078	2278		
		22, 000	± 10	2679	2879	2079	2279		
j		22,000	± 20	2680	2880	2080	2280		
		27,000	± 10	2681	2881	2081	2281		
ļ		33, 000 33, 000	± 10 ± 20	2682 2683	2882 2883	2082 2083	2282 2283		
		39, 000	± 10	2684	2884	2083	2284		
1		47, 000	± 10 ± 10	2685	2885	2085	2285		
	v I	47,000	± 20	2686	2886	2086	2286		
ŀ	50	56,000	= 10	2687	2887	2087	2287		
ľ		68, 000	± 10	2688	2888	2088	2288		
ļ		68, 000	± 20	2689	2889	2089	2289		
i		82,000	± 10	2690	2890	2090	2290		
İ	1 1	100,000	± 10	2691	2891	2091	2291		
j	<u>ا</u> ا	100, 000	± 20	2692	2892	2092	2292		
CKR15	100	56,000	± 10	2706	2906	2106	2306		
ļ	1	68,000	± 10	2707	2907	2107	2307		
	İ	68, 000	± 2 0	2708	2908	2108	2308		
	1	82,000	± 10	2709	2909	2109	2309		
i	{ [100, 000	± 10	2710	2910	2110	2310		
1	J 1	100,000	± 20	2711	2911	2111	2311		

FIGURE 901-2. Established reliability, general purpose, ceramic dielectric, fixed capacitors - Continued.


STANDARD CAPACITORS STYLE CKR22 AND CKR23

NOTES:

- 1. Leads shall be centered within $\pm .005$ inches (.13 mm). 2. The angle shall be 95° ± 10 -5°.
- The distance between the centers of the mounting holes will be $.300 \pm .010$ inches (7.62 I .25 mm).
- 4. Nonconductive material shall not extend beyond .030 inches (.76 mm) from the edge of the capacitor body.

FIGURE 901-2. Established reliability, general purpose, fixed capacitors - Continued. di el ectri c.

STANDARD CAPACITORS

STYLE CKR22

OPERATING TEMPERATURE RANGE -55° TO +125°C

	ure rate le	sh number evel (%/1,00		Capacitance (pF)	Capacitance tolerance	DC rated voltage	
1.0(M)	(0.1(P)	0.01(R)	0.001(S)	` 	1	(volts)	
Sty	yle CKR22,	see figure	901-2 for vo	ltage-temperatu	ure limits below	20 pF	
0001	0301	0601	0901	1.0	Т	7 200	
0004	0304	0604	0904	1.2	l D	"	
0007	1 0307	0607	1 0907	1.5	l D	i "	
0010	0310	0610	0910	1.8	l D	1 "	
0013	0313	0613	0913	2.2	į D		
0016	0316	0616	0916	2.7	ļ D		
0019	0319	0619	0919	3.3	j D	! "	
0022	0322	0622	0922	3.9	j D		
0025	0325	0625	0925	4.7	į D	! :	
0028	0328	0628	0928	5.6	ļ D	!	
0031	0331	0631	0931	6.8	l D		
0034	0334	0634	0934	8.2	į D		
0037	0337	0637	0937	10	į D	Ţ	
0038	0338	0638	0938	10	į J	, "	
0039	0339	0639	0939	10	i K	•	
0040	0340	0640	0940	12	l D	"	
0041	0341	0641	0941	1 12	l J	1 "	
0042	0342	0642	0942	1 12	l K	1 "	
0043	0343	0643	0943	1 15	l D	1 "	
0044	0344	0644	0944	1 15	l J	"	
0045	0345	0645	0945	1 15	l K	"	
0046	0346	0646	1 0946	18	l D	"	
0047	0347	1 0647	0947	18	l J	•	
0048	0348	0648	0948	18	l K		
	Style	 CKR22, Vol	tage-tempera	ture limits of	0 ±30 ppm/°C.		
0040	7 6246	7 0640	1 0040	1 29		200	
0049	0349	0649	0949	22	D 1	וַ צעט	
0050	0350			1 66	į v	I "	
0051	1 0221		I NOE1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	! "	
OOES		0651	0951	22	l K		
0052	0352	0652	0952	22 27	K D		
0053	0352 0353	0652	0952 0953	22 27 27	K D J		
0053 0054	0352 0353 0354	0652 0653 0654	0952 0953 0954	22 27 27 27	K D J K		
0053 0054 0055	0352 0353 0354 0355	0652 0653 0654 0655	0952 0953 0954 0955	22 27 27 27 33	K D J K		
0053 0054 0055 0056	0352 0353 0354 0355 0356	0652 0653 0654 0655	0952 0953 0954 0955 0956	22 27 27 27 33 33	K D K D		
0053 0054 0055 0056 0057	0352 0353 0354 0355 0356 0357	0652 0653 0654 0655 0656	0952 0953 0954 0955 0956 0957	22 27 27 27 33 33	K D J K D J K D J K D J K D T K T T T T T T T T		
0053 0054 0055 0056 0057 0058	0352 0353 0354 0355 0356 0357	0652 0653 0654 0655 0656 0657	0952 0953 0954 0955 0956 0957 0958	22 27 27 27 33 33 33	K D K D K		
0053 0054 0055 0056 0057 0058 0059	0352 0353 0354 0355 0356 0357 0358	0652 0653 0654 0655 0656 0657 0658	0952 0953 0954 0955 0956 0957 0958 0959	22 27 27 27 33 33 33 39	K D K D J J		
0053 0054 0055 0056 0057 0058 0059	0352 0353 0354 0355 0356 0357 0358 0359	0652 0653 0654 0655 0656 0657 0658 0659	0952 0953 0954 0955 0956 0957 0958 0959	22 27 27 27 33 33 33 39 39	j J K		
0053 0054 0055 0056 0057 0058 0059 0060	0352 0353 0354 0355 0356 0357 0358 0359 0360	0652 0653 0654 0655 0656 0657 0658 0659 0660	0952 0953 0954 0955 0956 0957 0958 0959 0960	22 27 27 27 33 33 33 39 39 39	i j I K I D		
0053 0054 0055 0056 0057 0058 0059 0060 0061	0352 0353 0354 0355 0356 0357 0358 0359 0360 0361	0652 0653 0654 0655 0656 0657 0658 0659 0660	0952 0953 0954 0955 0956 0957 0958 0959 0960 0961 0962	22 27 27 27 33 33 33 39 39 39 47 47	i J I K I D		
0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063	0352 0353 0354 0355 0356 0356 0357 0358 0359 0360 0361	0652 0653 0654 0655 0656 0657 0658 0659 0660 0661	0952 0953 0954 0955 0956 0957 0958 0959 0960 0961 0962 0963	22 27 27 27 33 33 33 39 39 47 47	J K D J		
0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063	0352 0353 0354 0355 0356 0357 0357 0358 0359 0360 0361 0362	0652 0653 0654 0655 0656 0657 0658 0659 0660 0661 0662	0952 0953 0954 0955 0956 0957 0958 0959 0960 0961 0962 0963 0964	22 27 27 27 33 33 33 39 39 47 47 47	J K D J K D		
0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 0064	0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363	0652 0653 0654 0655 0656 0657 0658 0659 0669 0661 0662	0952 0953 0954 0955 0956 0957 0958 0959 0960 0961 0962 0963 0964	22 27 27 27 33 33 33 39 39 47 47 47 47	J K D J K D		
0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 0064 0065	0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364	0652 0653 0654 0655 0656 0657 0658 0659 0669 0661 0662 0663 0664	0952 0953 0954 0955 0956 0957 0958 0959 0960 0961 0962 0963 0964 0965	22 27 27 27 33 33 33 39 39 47 47 47 56 56	J K D J K D J		
0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 0064 0065 0066	0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365	0652 0653 0654 0655 0656 0657 0658 06659 0660 0661 0662 0663 0664 0665	0952 0953 0954 0955 0956 0957 0958 0959 0960 0961 0962 0963 0964 0965 0966	22 27 27 27 33 33 39 39 47 47 47 56 56	J		
0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 0064 0065 0066	0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366	0652 0653 0654 0655 0656 0657 0658 06659 0660 0661 0662 0663 0664 0665 06664	0952 0953 0954 0955 0956 0957 0958 0959 0960 0961 0962 0963 0964 0965 0966 0967	22 27 27 27 33 33 39 39 47 47 47 56 56 56	J		
0053 0054 0055 0056 0057 0058 0059 0061 0062 0063 0064 0065 0066 0067 0068	0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367	0652 0653 0654 0655 0656 0657 0658 06659 0660 0661 0662 0663 0664 0665 06664	0952 0953 0954 0955 0956 0957 0958 0959 0961 0961 0962 0963 0964 0965 0966 0967 0968	22 27 27 27 33 33 39 39 47 47 47 56 56 68 68	J		
0053 0054 0055 0056 0057 0058 0069 0061 0062 0063 0064 0065 0066 0067 0068 0069	0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367	0652 0653 0654 0655 0656 0657 0658 06659 0660 0661 0662 0663 0664 0665 06664	0952 0953 0954 0955 0956 0957 0958 0959 0961 0961 0962 0963 0964 0965 0966 0967 0968 0969	22 27 27 27 27 33 33 33 33 39 47 47 47 47 56 56 68 68 68 68	J		
0053 0054 0055 0056 0057 0058 0069 0061 0062 0063 0064 0065 0066 0067 0068	0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367	0652 0653 0654 0655 0656 0657 0658 06659 0660 0661 0662 0663 0664 0665 06664	0952 0953 0954 0955 0956 0957 0958 0959 0961 0961 0962 0963 0964 0965 0966 0967 0968	22 27 27 27 33 33 39 39 47 47 47 56 56 68 68	J		

STANDARD CAPACITORS

STYLE CKR22 - Continued

OPERATING TEMPERATURE RANGE -55°C TO +125°C

Failu	Das ure rate le	h number evel (%/1,00	O houre)	Capacitance	Canacitance	l DC mated
				(pF)	Capacitance tolerance	DC rated voltage
1.0(M)	0.1(P)	0.01(R)	0.001(S) 	<u> </u>		(volts)
	Style CKR2	2, Voltage-	temperature	limits of 0 ±30	ppm/°C Cont	inued
0073	0373	0673	0973	100	T F	200
0074	0374	0674	0974	100	ļ J	"
0075	0375	0675	0975	100	! K	! "
0076	0376	0676	0976	120	j F	! "
0077	0377	0677	0977	120	Į J	["
0078 0079	1 0378 1 0379	1 0678 1 0679	l 0978 l 0979	120	i K	"
0079	0379	0680	0980	150) F	1 11
0081	0381	0681	0981	150	l U	"
0082	0382	0682	0982	180	, F	
0083	0383	0683	0983	180	i j	j "
0084	0384	0684	0984	180	i ĸ	i "
0085	0385	1 0685	0985	220	l F	j "
0086	1 0386	0686	1 0986	220	i j	j "
0087	0387	0687	ļ 0987	220	l K	"
0088	0388	0688	0988	270	! F	"
0089	0389	0689	0989	270	J	"
0090	0390	0690	1 0990	270	! K	["
0091	0391	0691	0991	330] F	! "
0092	0392	0692	0992	330	l J	! "
0093 0094	1 0393 1 0394	0693 0694	l 0993 l 0994	1 330 1 390	I K	"
0095	0395	0695	0995	390	1 F	1 11
0096	0396	0696	0996	390	י א	
0097	0397	0697	0997	1 470	, ,	j #
0098	0398	0698	0998	1 470	i i	1
0099	0399	0699	0999	1 470	i ĸ	<u> </u>
0100	0400	0700	1000	1 560	İË	100
0101	0401	0701	1001	560	l j	1 "
0102	0402	0702	1002	560	l K	1 "
0103	0403	0703	1003	680	ļ F	"
0104	0404	0704	1004	1 680	J	! "
0105	1 0405	0705	1005	680	! K	! "
0106 0107	1 0406 1 0407	0706 0707	1006 1007	820	F	- "
0107	0407	0707	1007	820 820	1 J	1 #
0109	0409	0709	1009	1,000	! K	
0110	0410	0710	1010	1,000	1 F	
0111	0411	0711	1011	1,000	i K	, ,
0112	0412	0712	1012	1,200	i F	<u> </u>
0113	0413	0713	1013	1,200	ì j	j n
0114	0414	0714	1014	1,200	i ĸ	j "
0115	0415	0715	1015	1,500	j F	j "
0116	0416	0716	1016	1,500	ļ J	† "
0117	0417	0717	1017	1,500	! K	! "
0118	0418	0718	1018	1,800	ļ F	! "
0119	0419	0719	1019	1,800	l j	} "
0120	0420	0720	1020	1,800	l K	! "
0121 0122	0421 0422	0721	1021	2,200	l F] "
0122	0422	0722 0723	1022 1023	2,200	l J	
0177	1 0763	1 0/23	1063	2,200	! K	!

STANDARD CAPACITORS

STYLE CKR22 - Continued

OPERATING TEMPERATURE RANGE -55°C TO +125°

Failu		h number vel (%/1,000	0 hours)	Capacitance (pF)	Capacitance tolerance	DC rated voltage
1.0(M)	0.1(P)	0.01(R)	0.001(\$)	1		(volts)
	Style CKR2	2, Voltage-	temperature	limits of 0 ±30	ppm/°C Cont	inued
0124	0424	0724	1024	2,700	T F	50
0125	0425	0725	1025	2,700	ļ j	! "
0126	0426	0726	1026	2,700	i K	
0127 0128	0427 0428	0727 0728	1027 1028	3,300 3,300	1 7	
0128	1 0428	0728	1029	3,300	i K	
0130	0430	0730	1030	3,900	į F	"
0131	0431	0731	1031	3,900	j j	j "
0132	0432	0732	1032	3,900	1 . K	1 "
0133	0433	0733	1033	4,700	F	
0134	0434	0734	1034	4,700	Į J	! "
0135	0435	0735	1035	4,700	i K	! "
0136	0436	0736	1036 1037	5,600	1 7	1
0137 0138	0437 0438	1 0737 1 0738	1037	5,600 5,600	1 V	'
0136	0439	1 0739	1039	6,800	F	,
0140	0440	0740	1040	6,800	i j	"
0141	0441	0741	1041	6,800	i K	į "
0142	0442	0742	1042	8,200	j F	"
0143	0443	0743	1043	8,200	J	"
0144	0444	0744	1044	8,200	! <u>K</u>	! "
0145	0445	0745	1045	10,000	ļ F	! "
0146	0446	0746	1046	10,000	J I K	1 11
0147	1 0447	1 0747 1	1047 	10,000		
	Style CKR	22, Voltage	-temperature	limits of ±15%	% (and +15%, -25	(%)
0148	0448	0748	1048	1 270	<u>i k</u>	200
0149	0449	0749	1049	330	į K	200
0149 0150	0449 0450	0749 0750	1049 1050	330 330		200
0149 0150 0151	0449 0450 0451	0749 0750 0751	1049 1050 1051	330 330 390	į K	200
0149 0150 0151 0152	0449 0450 0451 0452	0749 0750 0751 0752	1049 1050 1051 1052	330 330 390 470	į K	200
0149 0150 0151 0152 0153	0449 0450 0451 0451 0452 0453	0749 0750 0751 0752 0753	1049 1050 1051	330 330 390 470 470	į K	200
0149 0150 0151 0152	0449 0450 0451 0452	0749 0750 0751 0752	1049 1050 1051 1052 1053	330 330 390 470	į K	200
0149 0150 0151 0152 0153 0154	0449 0450 0451 0451 0452 0453	0749 0750 0751 0751 0752 0753	1049 1050 1051 1052 1053 1054	330 330 390 470 470 560 680	į K	200
0149 0150 0151 0152 0153 0154 0155 0156 0157	0449 0450 0451 0452 0453 0454 0455 0456 0457	0749 0750 0751 0752 0753 0754 0755 1 0756	1049 1050 1051 1052 1053 1054 1055 1056	330 330 390 470 470 560 680 680	K M K K K K	
0149 0150 0151 0152 0153 0154 0155 0156 0157 0158	0449 0450 0451 0452 0453 0454 0455 0456 0457	0749 0750 0751 0752 0753 0754 0755 1 0756 1 0757	1049 1050 1051 1052 1053 1054 1055 1056 1057	330 330 390 470 470 560 680 680 820 1,000	K M K K K K K	200
0149 0150 0151 0152 0153 0154 0155 0156 0157 0158	0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459	0749 0750 0751 0752 0753 0754 0755 1 0756 0757 0758	1049 1050 1051 1052 1053 1054 1055 11056 11057 1058 1059	330 330 390 470 470 560 680 680 820 1,000	K M K K K K K	100
0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159	0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460	0749 0750 0751 0751 0752 0753 0754 0755 0756 0757 0757 0758	1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059	330 330 390 470 470 560 680 680 820 1,000 1,200	K M K K K K K K K	
0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0160 0161	0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461	0749 0750 0751 0751 0752 0753 0754 0755 0756 0757 0757 0758 0759 0760	1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060	330 330 390 470 470 560 680 680 820 1,000 1,200 1,500	K M K K K K K K K	
0149 0150 0151 0152 0153 0154 0155 0156 0157 0157 0158 0159 0160 0161	0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462	0749 0750 0751 0751 0752 0753 0754 0755 0756 0757 0757 0758 0759 0760	1049 1050 1051 1052 1053 1054 1055 1056 1056 1057 1058 1059 1060 1061	330 330 390 470 470 560 680 680 820 1,000 1,200 1,500	K M K K K K K K K K M	100
0149 0150 0151 0152 0153 0154 0155 0156 0157 0157 0158 0159 0160 0161 0162 0163	0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462	0749 0750 0751 0751 0752 0753 0754 0755 0756 0757 0757 0758 0759 0760 0761 0762	1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062	330 330 390 470 470 560 680 680 820 1,000 1,200 1,500 1,500 1,800	K M K K K K K K K K K K	100
0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0160 0161 0162	0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 0464	0749 0750 0751 0751 0752 0753 0754 0755 0756 0757 0757 0758 0759 0760	1049 1050 1051 1052 1053 1054 1055 1056 1056 1057 1058 1059 1060 1061	330 330 390 470 470 560 680 680 820 1,000 1,200 1,500 1,500 1,800 2,200	K M K K K K K K K K K K	
0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0160 0161 0162 0163 0164	0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462	0749 0750 0751 0751 0752 0753 0754 0755 0756 0757 0757 0758 0759 0760 0761 0762	1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064	330 330 390 470 470 560 680 680 820 1,000 1,200 1,500 1,500 1,800	K M K K K K K K K K K K	
0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0160 0161 0162 0163 0164 0165 0166	0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0461 0462 0463 0464 0465 0466 0467	0749 0750 0751 0751 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0761 0762 0763 0764 0765	1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1065	330 330 390 470 470 470 680 680 680 820 1,000 1,000 1,200 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,700 1,700 1,700 1,700 1,700 1,700 1,300 	K M K M K K M K K M K K M K K M K K M K K M K K M K K M K K M K K M M K M M K M M K M M K M M K M M K M M K M M K M M K M M K M M K M M K M M K M M K M M K M M K M	100
0149 0150 0151 0152 0153 0155 0155 0156 0157 0158 0160 0161 0162 0163 0164 0165 0166 0167	0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0461 0462 0464 0465 0466 0467 0468	0749 0750 0751 0751 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0761 0762 0763 0764 0765	1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1065 1066 1067	330 330 390 470 470 470 560 680 680 820 1,000 1,000 1,200 1,500 1,500 1,500 1,500 1,500 1,500 1,700 1,700 1,700 1,700 1,700 1,300 	K M K M K K M K K M K K M K K M K K M K K M K K M K K M K K M K K M K M K K M K K M K K M K K M K K M K K M K K M K M K K M K K M K K M K M K M K K M K K M K M K K M K M K K M K M K K M K M K K M K M K K M K K M K K M M K M K M M K M M K M M K M M K M M K M M K M M M K M M M K M M	
0149 0150 0151 0152 0153 0154 0155 0156 0157 0160 0161 0162 0163 0164 0165 0166 0167	0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0461 0462 0463 0464 0465 0466 0467	0749 0750 0751 0751 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0761 0762 0763 0764 0765	1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1065	330 330 390 470 470 470 680 680 680 820 1,000 1,000 1,200 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,700 1,700 1,700 1,700 1,700 1,700 1,300 	K M K M K K M K K M K K M K K M K K M K K M K K M K K M K K M K K M M K M M K M M K M M K M M K M M K M M K M M K M M K M M K M M K M M K M M K M M K M M K M M K M	

STANDARD CAPACITORS STYLE CKR22 - Continued

OPERATING TEMPERATURE RANGE -55° TO +125°C

 Failu 		h number vel (%/1,00 0.01(R)	0 hours)	 Capacitance (pF) 	 Capacitance tolerance 	DC rated voltage (volts)
Style	CKR22, Vo	ltage-tempe	rature limit	s of ±15% (and	+15%, -25%) - C	ontinued
0171 0172 0173 0174 0175 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0188 0188 0189 0190 0191 0192 0193	0471 0472 0473 0474 0475 0476 0477 0478 0479 0480 0481 0482 0483 0484 0485 0486 0487 0488 0487 0488 0489 0491 0492 0493 0494	0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783 0784 0785 0786 0787 0788 0787 0788 0789 0790 0791 0792 0793 0794 0795	1071 1072 1073 1074 1075 1076 1077 1078 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1091 1092 1093 1094 1095	4,700 5,600 6,800 6,800 10,000 10,000 12,000 15,000 15,000 15,000 22,000 22,000 22,000 27,000 33,000 33,000 33,000 47,000 47,000 47,000 68,000 68,000 68,000 82,000 100,000		100

STANDARD CAPACITORS

STYLE CKR23

OPERATING TEMPERATURE RANGE -55°C TO +125°C

Dash number Failure rate level (%/1,000 hours)		Capacitance (pF)	 Capacitance tolerance	DC rated voltage		
1.0(M)	(0.1(P)	0.01(R)	0.001(\$)	·		(volts)
	Style	CKR23, Vol	tage-tempera	ture limits of	0 ±30 ppm/°C	
0258	0558	0858	1158	560	F	200
0259	0559	0859	1159	560	i î	, "
0260	0560	0860 0861	1 1160 1 1161	560 680	l K	, " , "
0261 0262	0561 0562	0862	1162	680	1 .1	
0263	0563	0863	1163	680	j ĸ	"
0264	0564	0864	1164	820	Î F	į "
0265	0565	0865	1165	820	l J	"
0266	0566	0866	1166	820	! K	! "
0267	0567	0867	1167	1,000	ļ F	! "
0268	0568	1 0868	1168	1,000		, ,
0269	0569	0869	1169	1,000	I K	" "
0270 0271	0570 0571	l 0870 l 0871	1170 1171	1,200 1,200	1 F	H H
0271	0572	0871	1172	1,200	i K	
0273	0573	0873	1 1173	2,700	i F	100
0274	0574	0874	1174	2,700	j	"
0275	0575	0875	1175	2,700	İ K	"
0276	0576	0876	1176	3,300	ļ F	1 "
0277	0577	0877	1177	3,300	ļ J	"
0278	0578	0878	1178	3,300	! K	! "
0279	0579	0879	1179	4,700	ļ F	50
0280	0580	0880	1180	1 4,700 1 4,700	l J	"
0281 0282	0581 0582	0881 0882	1181 1182	5,600	F	, ,
0283	0583	0883	1183	5,600	i i	
0284	0584	0884	1184	5,600	i ĸ	, "
0285	0585	0885	1185	6,800	Î F	, "
0286	0586	0886	1186	6,800	J	1 "
0287	0587	0887	1187	6,800	! K	! "
0288	0588	0888	1188	8,200	Į F	! "
0289	0589	0889	1189	8,200	l J	! "
0290 0291	0590 0591	0890 0891	1190 11191	8,200 10,000	I K	
0292	0592	0892	1192	10,000	j	
0293	0593	0893	1193	10,000	K	<u>"</u>
Sty1	e CKR23, V	oltage-temp	erature limi	ts of +15% and	+15, -25% - Con	tinued.
0196	0496	0796	1096	1,000	K	200
0197	1 0497 1 0498	l 0797 l 0798	1097	1,000	l M	" "
0198 0199	0498	0799	1098 1099	1,200 1,500	! K	
0199	0500	1 0799	1 1100	1,500	l M	, ,
0201	0501	0801	1101	1,800	i K	-
0202	0502	0802	1102	2,200	i ĸ	"
0203	0503	0803	1103	2,200	(M	"
0204	0504	0804	1104	2,700	! K	"
0205	0505	0805	1105	3,300	! K	! "
0206	1 0506	0806	1106	3,300	1 M	"

Downloaded from http://www.everyspec.com

MIL-STD-198E

STANDARD CAPACITORS

STYLE CKR23 - Continued

OPERATING TEMPERATURE RANGE -55° TO +125°C

Failu		h number vel (%/1,00	0 hours)	Capacitance	 Capacitance	DC rated
1.0(M)	.O(M) 0.1(P) 0.01(R)		1 0.001(S)	[(pF)	tolerance	voltage (volts)
Sty1	e CKR23, V	oltage-temp	erature limi	ts of +15% and	+15, -25% - Con	tinued.
0207	0507	0807	1107	3,900	T K	200
0208	0508	0808	1108	4,700	1 K	
0209	l 0509	0809	1109	1 4,700	1 M	
0210	0510	0810	1110	1 5,600	l K	"
0211	0511	0811	1111	6,800	1 K	j "
0212	0512	0812	1112	1 6,800	i M	į "
0213	0513	0813	1113	8,200	1 K	"
0214	0514	0814	1114	10,000	1 K	"
0215	0515	0815	1115	10,000	1 M	, "
0216	0516	0816	1116	12,000	l K	100
0217	0517	0817	1117	15,000	K	H
0218	0518	0818	1118	15,000	l M	, "
0219	0519	0819	1119	18,000	i K	į "
0220	0520	0820	1120	22,000	i K	j "
0221	0521	0821	1121	22,000	j M	j "
0222	0522	0822	1122	1 27,000	l K	į "
0223	0523	0823	1123	33,000	i ĸ	į "
0224	0524	0824	1124	33,000	i m	, "
0225	0525	0825	1125	39,000	İ K	į "
0226	0526	0826	1126	47,000	İ K	j "
0227	0527	0827	1127	1 47,000	j m	j "
0228	0528	1 0828	1128	1 56,000	i K	"
0229	0529	0829	1129	1 68,000	ĺ K	
0230	0530	0830	1130	68,000	j m	"
0231	0531	0831	1131	82,000	i ĸ	, "
0232	0532	0832	1132	100,000	i Ř	j "
0233	0533	0833	1133	100,000	j Ä	, "
0234	0534	0834	1134	1 120,000	i K	j 50
0235	0535	0835	1135	150,000	i ĸ	j ñ
0236	0536	0836	1136	150,000	i m	į »
0237	0537	0837	1137	180,000	i K	j "
0238	0538	0838	1138	220,000	i R	, "
0239	0539	0839	1139	220,000	i m	į "
= *	1		1	1	i	i
	İ	j	i	i	i	i

SECTION 902

CAPACITORS, FIXED, CERAMIC DIELECTRIC (TEMPERATURE COMPENSATING), ESTABLISHED RELIABILITY

STYLES CCR05, CCR06, CCR07, CCR08, CCR75, CCR76, CCR77, AND CCR78

(APPLICABLE SPECIFICATION: MIL-C-20)

1. SCOPE. This section covers established reliability, ceramic dielectric, fixed capacitors having zero temperature characteristics. These capacitors have failure rate levels of 1.0 and 0.1 percent per 1,000 hours. The failure rate levels are established at a 90-percent confidence level and are based on operation at maximum rated voltage at the maximum rated temperature.

2. APPLICATION INFORMATION.

2.1 <u>Use.</u> These capacitors are designed for use primarily where compensation is needed to counteract reactive changes, caused by temperature variations, in other circuit components. However, they can be used in any precision-type circuit where their characteristics are suitable, Ceramic capacitors are substantially smaller than paper or mica units of the same capacitance and voltage rating. They can be used where mica or paper capacitors have too wide a capacitance tolerance. The lead placement makes ceramic capacitors suitable for printed-circuit use.

By using these units, frequency drift in radio frequency, oscillator, and intermediate frequency (IF) circuits due to temperature effects can be compensated individually in each ciruit. In IF stages where the frequency variation is uniform, satisfactory operation can be obtained by designing the temperature-compensating capacitor into the oscillator circuit. RF circuit reactive changes caused by temperature variations cannot be compensated for in the oscillator circuit; in these cases, and shere more critical tuning accuracy is required, it is necessary that compensating capacitors be inserted directly into each circuit.

In RF circuits tuned by a variable capacitor, a shunt compensating capacitor of low value and high compensating characteristics may be used. In slug-tuned circuits, the total capacitance required can be provided by using a compensating capacitor having the desired temperature coefficient. In oscillator circuits, more linear tuning can be obtained by using proper temperature coefficients in both the series and the shunt capacitances of the tank circuit.

High insulation resistance makes these capacitors well suited to coupling applications between plate and grid circuits of electron tubes. Extremely low leakage and small physical size make them suitable for transistor circuit design. They are also useful in filter and by-pass circuits.

If possible, the temperature-time curve of the selected capacitor should be the exact opposite of the temperature-time curve of the coil (or other component) being stabilized. Combinations of different capacitance values and temperature coefficients can give more precise compensation than can be obtained from a single capacitor. Full consideration should be given to the physical placement of compensating, and compensated for, compments. Locations near hot transistors will cause much greater reactive variations than spots adjacent to a cool, external chassis.

Ceramic dielectrics are frequency sensitive; both the capacitance and the capacitance change with temperature will be different at different measuring frequencies. For extremely accurate compensation, the units should be measured at the proposed operating frequency.

2.1.1 <u>Humid operating conditions.</u> Ceramic dielectric materials are nonhygroscopic, effectively impermeable, and have practically no moisture absorption even after considerable exposure to humid conditions.

902 (MI L-C-20)

- 2.2 <u>Construction.</u> Physically, the most common types of temperature-compensating, ceramic-dielectric capacitors are small monolithic tubular and rectangular types covered by insulating resin, plastic, or ceramic. Because the constituent materials-have molecular polar moments, the dielectric constants of some mixes reach hundreds (even thousands) of times the value of paper, mica, and plastic films. This results in ceramic-dielectric capacitors having the largest capacitance-to-size ratios of all high-resistance dielectrics.
 - 2.3 Rated voltage. These capacitors have voltage ratings of SO, 100, and 200 volts.
- 2.4 <u>Operating temperature range.</u> These capacitors are suitable for operation over a temperature range of -55° to $+125^{\circ}$ C.
- 2.5 <u>Temperature coefficient.</u> Mixes of different temperature coefficients are made by varying the percentages of high-K dielectrics (such as titanium dioxide) in the low-loss ceramic. The temperature coefficient becomes increasingly more negative with the increase in dielectric constant. For example:

<u>Material</u>	<u>K</u>	Temperature coefficient
Titanium dioxide	85	- 750
Low-loss ceramic	6	+ 100

As a consequence, for any given size of capacitor, the relative capacitance will be high with a high negative temperature coefficient, and vice versa. With present day manufacturing methods, a high degree of reproducibility is obtained for the coefficients listed in this section.

The temperature coefficients are not linear with respect to temperature. Measurements taken at $+25^{\circ}\text{C}$ and $+85^{\circ}\text{C}$ will show a change of value which, when divided by 60 (the temperature differential), does not represent the change in capacitance to be expected for each degree change in temperature. The coefficient is therefore not exactly expressible by a single number.

- 2.6 <u>Dielectric strength.</u> It is recommended that supplementary insulation be used where the capacitor body will normally contact parts with a potential difference of more than 750 volts.
 - 3. ITEM IDENTIFICATION (see figures 902-1 and 902-2).
- 3.1 <u>Type designation</u>. The type designation is used for identifying and describing the capacitors as shown in figure 902-1.
- 3.2 <u>Standard capacitors.</u> The standard capacitors available in this section are shown in figure 902-2.

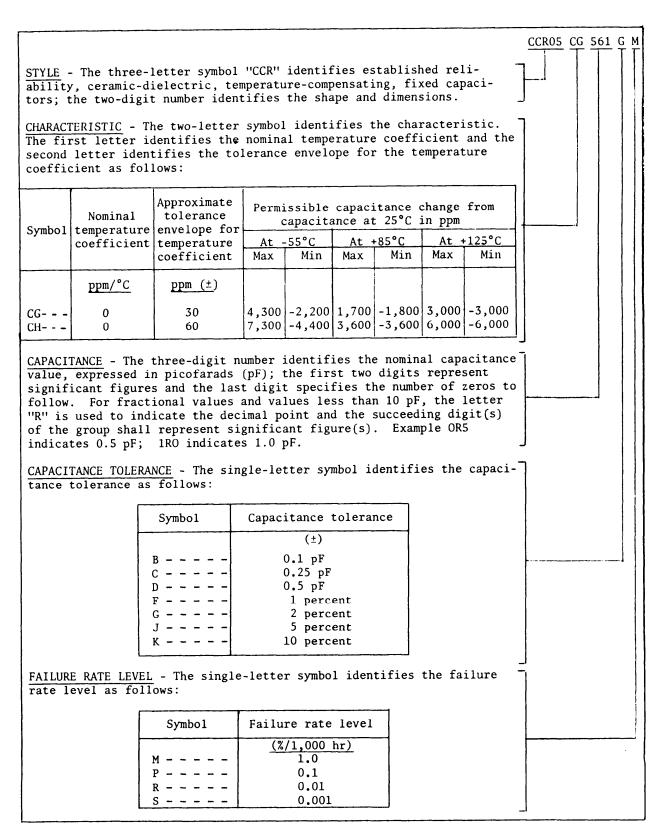
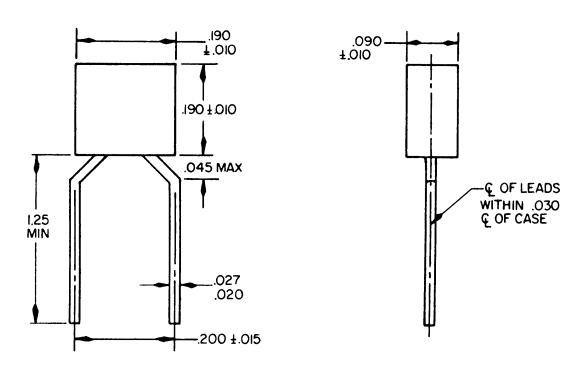



FIGURE 902-1. Type designation example.

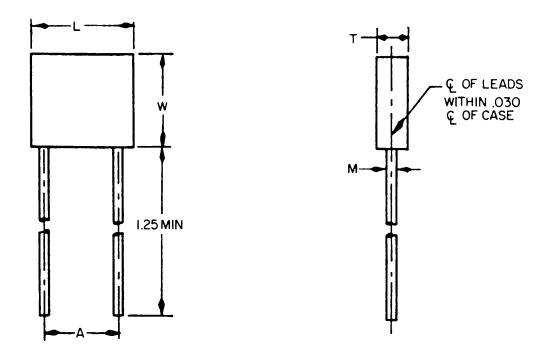
STYLE CCR05

MM
. 25
. 38
. 51
. 69
.76
1.14
2.29
4.83
5.09
31.75

FIGURE 902-2. <u>Established reliability, ceramic dielectric (temperature compensating), fixed capacitors.</u>

STANDARD CAPACITORS

STYLE CCR05


OPERATING TEMPERATURE RANGE -55°C TO +125°C -- FAILURE RATE LEVEL M (1.0%), P (0.1%), R (0.01%), OR S (0.001%)

Type designation $\frac{1}{}$	Rated voltage	Nom.	Cap.	Type 1/designation 1	Rated voltage	Nom. cap.	Cap.
	(volts,dc)	(pF)			(volts,dc)	(pF)	
CCR05CH1R0 CCR05CH1R2 CCR05CH1R5 CCR05CH1R8 CCR05CH2R2 CCR05CH2R7 CCR05CH3R3 CCR05CH3R9 CCR05CH4R7 CCR05CH5R6 CCR05CH6R8 CCR05CH00 CCR05CG120 CCR05CG120 CCR05CG120 CCR05CG170 CCR05CG180 CCR05CG270 CCR05CG330 CCR05CG330	200 200 200 200 200 200 200 200 200 200	1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 10 12 15 18 22 27 33	CD CD CD CD BCD BCD BCD BCD BCD FGJ FGJ FGJ FGJ FGJ FGJ FGJ FGJ	CCR05CG680 CCR05CG820 CCR05CG101 CCR05CG121 CCR05CG151 CCR05CG221 CCR05CG271 CCR05CG331 CCR05CG391 CCR05CG391 CCR05CG561 CCR05CG561 CCR05CG561 CCR05CG681 CCR05CG6821 CCR05CG122 CCR05CG122 CCR05CG122 CCR05CG182 CCR05CG182 CCR05CG222	200 200 200 200 200 200 200 200	68 82 100 120 150 180 220 270 330 360 390 470 560 680 820 1,000 1,200 1,500 1,800 2,200	FGJ FGJ FGJ FGJ FGJ FGJ FGJ FGJ FGJ FGJ
CCR05CG470 CCR05CG560	200 200	47 56	FGJ FGJ	CCR05CG272 CCR05CG332	50 50	2,700 3,300	FGJ FGJ

^{1/} Complete type designation will include additional symbols to indicate capacitance tolerance and failure rate level.

FIGURE 902-2. <u>Established reliability</u>, <u>ceramic dielectric</u> (temperature compensating), fixed <u>capacitors</u> - Continued.

STYLES CCR06, CCR07. AND CCR08

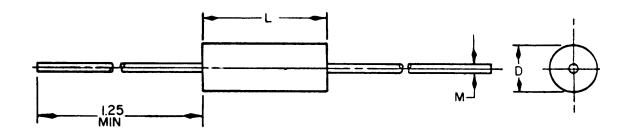
INCHES	MM	INCHES	MM
. 001	. 03	. 090	2.29
. 004	. 10	.140	3.56
. 010	. 25	. 200	5.08
. 015	. 38	. 240	6.10
. 020	. 51	.290	7.37
. 025	. 64	. 400	10.16
. 027	.69	. 480	12.19
. 030	.76	1.25	31.75

Standard	Dimension (inches)									
style	L	W	T ±.010	A	M					
CCR06	. 290 ±. 010	. 290 ±. 010	. 090	.200 ±. 015	. 020 to . 027					
CCR07	.480 ±.020	.480 ±.020	. 140	.400 ±.020	. 025 +. 004 001					
CCR08	.480 ±.020	.480 ±.020	. 240	.400 ±.020	. 025 +. 004 001					

FIGURE 902-2. <u>Established reliability, ceramic dielectric (temperature compensating), fixed capacitors</u> - Continued.

STANDARD CAPACITORS

STYLES CCR06, CCR07, AND CCR08


OPERATING TEMPERATURE RANGE -55°C TO +125°C -- TEMPERATURE COEFFICIENT O ±30 PPM/°C (CHARACTERISTIC CG) -- FAILURE RARE LEVEL M (1.0%), P (0.01%), R (0.01%) OR S (0.001%)

Type designation <u>1</u> / 	Rated voltage (volts, dc)	Nom. cap. (pF)	Cap. tol.	Type designation $\frac{1}{2}$	Rated voltage (volts, dc)	Nom. cap. (pF)	Cap. tol.	
! 	STYLE CCRO6							
CCR06CG391 CCR06CG471 CCR06CG561 CCR06CG681 CCR06CG102 CCR06CG122 CCR06CG152 CCR06CG152 CCR06CG182 CCR06CG222	200 200 200 200 200 200 200 200 200 200	390 470 560 680 820 1,000 1,200 1,500 1,800 2,200	FGJ FGJ FGJ FGJ FGJ FGJ FGJ	CCR06CG272 CCR06CG332 CCR06CG392 CCR06CG472 CCR06CG512 CCR06CG562 CCR06CG682 CCR06CG682 CCR06CG103 CCR06CG123 CCR06CG123 CCR06CG153	100 100 100 100 50 50 50 50 50 50 50	2,700 3,300 3,900 4,700 5,100 5,600 6,800 8,200 10,000 12,000 15,000 18,000	FGJ FGJ FGJ FGJ FGJ FGJ FGJ FGJ	
			STYLE	CCR07				
CCR07CG222 CCR07CG272 CCR07CG332 CCR07CG392 CCR07CG472 CCR07CG562 CCR07CG682 CCR07CG682 CCR07CG103 CCR07CG123 CCR07CG153	200 200 200 200 200 200 100 100 100 100 100 50	2,200 2,700 3,300 3,900 4,700 5,600 6,800 8,200 10,000 112,000 115,000	FGJ FGJ FGJ FGJ FGJ FGJ	CCR07CG183 CCR07CG223 CCR07CG273 CCR07CG333 CCR07CG393 CCR07CG473 CCR07CG563 CCR07CG683 CCR07CG683 CCR07CG6823 CCR07CG104	50 50 50 50 50 50 50 50 	18,000 22,000 27,000 33,000 39,000 47,000 56,000 68,000 82,000 100,000	FGJ FGJ FGJ FGJ FGJ FGJ FGJ FGJ	
STYLE CCRO8								
CCR08CG392 CCR08CG472 CCR08CG153	200 200 100	3,900 4,700 15,000			 100 50 50	18,000 56,000 68,000	GJK GJK GJK	

^{1/} Complete type designation will include additional symbols to indicate capacitance tolerance and failure rate level.

FIGURE 902-2. Established reliability, ceramic dielectric (temperature compensation), fixed capacitors - Continued.

STYLES CCR75, CCR76, CCR77, AND CCR78

MM	INCHES	MM
. 03	.090	2.29
. 13	. 140	3.56
. 25	. 160	4.06
. 38	. 250	6.35
.41	.390	9.91
.51	.500	12.70
.69	1.25	31.75
	.03 .13 .25 .38 .41	.03 .090 .13 .140 .25 .160 .38 .250 .41 .390 .51 .500

Standard	Dimension (inches)					
style	L	D	M			
CCR75	.160 ±.010	.090 ±.010	.016 +.005			
CCR76	$.250 \pm .010$.090 ±.010	. 015 to . 027			
CCR77	$.390 \pm .010$.140 ±.010	. 015 to . 027			
CCR78	.500 ±.020	.250 ±.015	. 015 to . 027			

FIGURE 902-2. <u>Established reliability, ceramic dielectric (temperature compensating), fixed capacitors</u> - Continued.

STANDARD CAPACITORS

STYLES CCR75, CCR76, CCR77, AND CCR78

OPERATING TEMPERATURE RANGE -55° C TO $+125^{\circ}$ C -- FAILURE RATE LEVEL M (1.0%), P (0.01%), R (0.01%) OR S (0.001%)

Type designation 1/	Rated voltage (volts, dc)	Nom. cap. (pF)		Type $\frac{1}{4}$ designation $\frac{1}{4}$	Rated voltage (volts, dc)	Nom. cap. (pF)	Cap. tol.
1			STYLE	CCR75			
CCR75CG1R0 CCR75CG1R2 CCR75CG1R5 CCR75CG1R8 CCR75CG2R2 CCR75CG2R7 CCR75CG3R3 CCR75CG3R9 CCR75CG5R6 CCR75CG6R8 CCR75CG100 CCR75CG100 CCR75CG100 CCR75CG100 CCR75CG100 CCR75CG100 CCR75CG100 CCR75CG100 CCR75CG100 CCR75CG100 CCR75CG100 CCR75CG100 CCR75CG100 CCR75CG100 CCR75CG100 CCR75CG100 CCR75CG100 CCR75CG100	200 200 200 200 200 200 200 200 200 200 200 200 200 200 200	1.0 1.2 1.5 1.8 1.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 10 12 15 18 22 27	BC	CCR75CG330 CCR75CG390 CCR75CG470 CCR75CG560 CCR75CG680 CCR75CG101 CCR75CG121 CCR75CG151 CCR75CG181 CCR75CG21 CCR75CG21 CCR75CG271 CCR75CG331 CCR75CG331 CCR75CG391 CCR75CG471 CCR75CG561	200 200 200 200 200 100 100 100 100 50 50 50 50	33 39 47 56 68 82 100 120 150 180 220 270 330 390 470 560 680	FGJ FGJ
	STYLE CCR76						
CCR76CG820 CCR76CG101 CCR76CG121 CCR76CG271 CCR76CG331 CCR76CG391	200 200 200 100 100 100	82 100 120 270 330 390	FGJ FGJ FGJ FGJ	CCR76CG471 CCR76CG561 CCR76CG681 CCR76CG821 CCR76CG102	100 100 100 50 50	470 560 680 820 1,000	FGJ FGJ FGJ FGJ FGJ

See footnote at end of figure.

FIGURE 902-2. Established reliability, ceramic dielectric (temperature compensting), fixed capacitors - Continued.

STANDARD CAPACITORS

STYLES CCR75, CCR76, CCR77, AND CCR78 - Continued

OPERATING TEMPERATURE RANGE -55° C TO $+125^{\circ}$ C -- FAILURE RATE LEVEL M (1.0%), P (0.01%), R (0.01%) OR S (0.001%)

Type designation 1/	Rated voltage (volts, dc)	Nom. cap. (pF)	Cap. Cap. tol. 	Type designation 1/	Rated voltage (volts, dc)	 Nom. cap. (pF)	Cap. tol.
 			STYLE	CCR77			
CCR77CG151 CCR77CG181 CCR77CG221 CCR77CG271 CCR77CG331 CCR77CG391 CCR77CG471 CCR77CG561 CCR77CG681 CCR77CG821 CCR77CG821 CCR77CG911	200 200 200 200 200 200 200 200 200 200	150 180 220 270 330 390 470 680 750 820 910	FGJ FGJ FGJ FGJ FGJ FGJ FGJ FGJ FGJ FGJ	CCR77CG152 CCR77CG182 CCR77CG222 CCR77CG272 CCR77CG332 CCR77CG392 CCR77CG472	100 100 100 100 100 100 100 50 50 50 50	820 1,000 1,200 1,500 1,500 1,800 2,200 2,700 2,700 1,300 1,300 1,300 1,400 5,600	FGJ
 			STYLE	CCR78			! !
CCR78CG821 CCR78CG102 CCR78CG122 CCR78CG152 CCR78CG182 CCR78CG222 CCR78CG272 CCR78CG332 CCR78CG392 CCR78CG472	200 200 200 200 200 200 200 200 200 100	820 1,000 1,200 1,500 1,800 2,200 2,700 3,300 3,900 4,700	FGJ FGJ FGJ FGJ FGJ FGJ FGJ FGJ	CCR78CG682 CCR78CG822 CCR78CG103 CCR78CG123 CCR78CG153 CCR78CG183 CCR78CG223	100 100 100 100 100 50 50 50	5,600 6,800 8,200 10,000 12,000 15,000 18,000 22,000 27,000	FGJ FGJ

^{1/} Complete type designation will include additional symbols to indicate capacitance tolerance and failure rate level.

FIGURE 902-2. Established reliability. ceramic dielectric (temperature compensating), fixed capacitors - Continued.

SECTION 903

CAPACITORS, CHIP, MULTIPLE LAYER, FIXED, CERAMIC DIELECTRIC, ESTABLISHED RELIABILITY

STYLES CDR01, CDR02, CDR03, AND CDR04

(APPLICABLE SPECIFICATION: MIL-C-55681)

- 1. SCOPE. This section covers established reliability, ceramic dielectric, multiple layer, fixed chip capacitors. These capacitors have failure rate levels of 1.0 to 0.001 percent per 1,000 hours. The failure rate levels are established at a 90-percent confidence level and are based on operation at maximum rated voltage at the maximum rated temperature.
 - 2. APPLICATION INFORMATION.
- 2.1 <u>Use.</u> Ceramic chip capacitors are intended to be used in thin or thick film hybrid circuits; therfore, they are not replaceable.
- 2.1.1 <u>Ambient operating conditions.</u> Designers are cautioned to give consideration to the change in dielectric constant with temperature, shelf aging, and electric-field intensity, and should recognize that the insulation resistance may vary with humidity and organic contamination of the ceramic chip surfaces.
- 2. 2 <u>Metallized terminations</u>. It should be noted that when pure silver is used for the terminations, silver migration between the terminations may occur under conditions of simultaneous application of high humidity and dc voltage. This produces a troublesome electrical leakage path across the capacitor chip. Addition of about 20 percent of palladium to the silver to form an alloy will retard the tendency toward silver migration. Complete overcoating of the silver termination by the lead-tin bonding solder also will retard the tendency toward silver migration. Addition of about 3 percent of silver to the lead-tin bonding solder will tend to reduce the leaching of the silver from a silver termination during the solder bonding operation.
- 2.3 <u>Effect on mounting reliability.</u> Voltage temperature limits, resistance to thermal shock, and reliability may be affected as a result of mounting on substrates with dissimilar coefficients of expansion from capacitor material. Care should be taken in the selection of substrate material.
 - 3. ITEM IDENTIFICATION (see figures 903-1 and 903-2).
- 3.1 <u>Type designation.</u> The type designation is used for identifying the capacitors as shown in figure 903-1.
- 3.2 <u>Standard capacitors.</u> The standard capacitors available in this section are shown in figure 903-2.

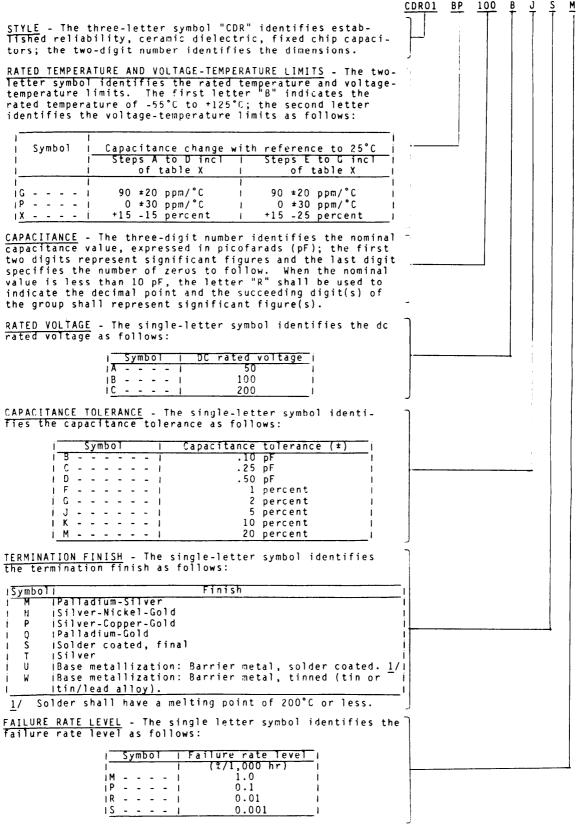
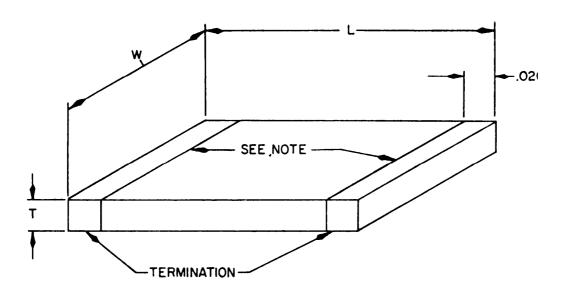



FIGURE 903-1. Type designation example.

STYLES CDR01, CDR02, CDR03, AND CDR04

Standard	Dimension (inches)				
style	L ±. 015 W ±. 015 T			Γ	
			Min.	Max.	
CDR01	. 080	. 050	. 020	. 055	
CDR02	. 180	. 050	. 020	. 055	
CDR03	. 180	. 080	. 020	. 080	
CDR04	. 180	. 125	. 020	. 080	

INCHES	MM
. 010	. 25
. 015	. 38
. 020	. 51
. 030	. 76
. 050	1.27
. 055	1.40
. 080	2.03
. 125	3.18
. 180	4.57

NOTE: For style CDR01, termination width shall be. 010 inch minimum; uncovered band width shall be. 030 inch minimum.

FIGURE 903.2 <u>Established reliability, ceramic dielectric, multiple layer, fixed chip capacitors.</u>

STANDARD CAPACITORS

STYLES CDR01, CDR02, CDR03, AND CDR04

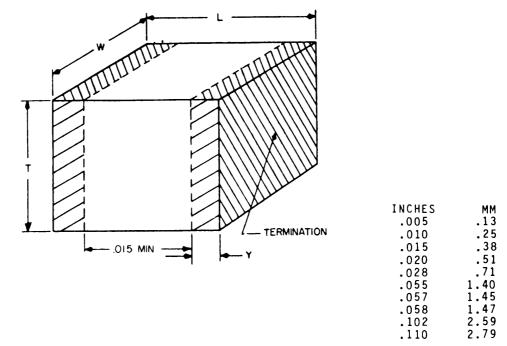
OPERATING TEMPERATURE RANGE -55° TO +125°C

Type designation $\frac{1}{2}$	Capacitance	Capacitance tolerance	Rated temperature and voltage- temperature limits	Rated voltage
	pF			volts, dc
CDR01BP100B	10	J, K	ВР	100
CDR01BP120BJ	12	J	ВР	100
CDR01BP150B	15	J, K	ВР	100
CDR01BP180BJ	18	J	ВР	100
CDR01BP220B	22	J, K	BP	100
CDR01BP270BJ	27	J	ВР	100
CDR01BP330B	33	J, K	BP	100
CDR01BP390BJ	39	J	ВР	100
CDR01BP470B	47	J, K	ВР	100
CDR01BP560BJ	56	J	BP	100
CDR01BP680B	68	J, K	BP	100
CDR01BP820BJ	82	J	BP	100
CDR01BP101B	100	J, K	BP	100
CDR01B-121B	120	J, K	BP, BX	100
CDR01B-151B	150	J, K	BP, BX	100
CDR01B-181B	180	J, K	BP, BX	100
CDR01BX221B	220	К, М	BX	100
CDR01BX271BK	270	K	BX	100
CDR01BX331B	330	K, M	BX	100
CDR01BX391BK	390	K	BX	100
CDR01BX471B	470	K, M	BX	100
CDR01BX561BK	560	κ, κ	BX	100
CDR01BX681B	680	к, м	BX	100
CDR01BX821BK	820	к, г	BX	100
CDR01BX102B	1,000	К, М	BX	100
CDR01BX122BK	1,200	K	BX	100
CDR01BX152B	1,500	K, M	BX	100
CDR01BX182BK	1,800	κ , Α	BX	100
CDR01BX222B	2,200	K, M	BX	100
CDR01BX272BK	2,700	K, M	BX	100
CDR01BX332B	3,300	к, м	BX	100
CDR01BX392AK	3,900	K	BX	50
CDR01BX472A	4,700	K, M	BX	50
CDR02BP221B	220	J, K	BP	100
CDR02BP271BJ	270	J	BP	100
CDR02BX392BK	3,900	ĸ	BX	100
CDR02BX472B	4,700	K, M	BX	100
CDR02BX562BK	5,600	K	BX	100
CDR02BX682B	6,800	K, M	BX	100
CDR02BX822BK	8,200	K	BX	100
CDR02BX103B	10,000	к, м	BX	100
CDR02BX123AK	12,000	K	BX	50
CDR02BX123AR	15,000	K, M	BX	50
CDR02BX183AK	18,000	K	BX	50
CDR02BX223A	22,000	K, M	BX	50

See footnote at end of tabulation.

FIGURE 903-2. <u>Established reliability, ceramic dielectric, multiple layer, fixed chip capacitors - Continued.</u>

STANDARD CAPACITORS SYLES CDR01, CDR02, CDR03, AND CDR04 - CONTINUED


OPERATING TEMPERATURE TANGE -55° TO +125°C

Type designation $1/$	 Capacitance 		Rated temperature and voltage- temperature limits	Rated voltage
1	<u>pF</u>			volts, dc
CDR03BP331B	330	J, K	ВР	100
CDR03BP391BJ	390	i j i	BP	i 100 i
CDR03BP471B	470	j j, k j	ВP	100
CDR03BP561BJ	560	j j	ВР	100
CDR03BP681B	680	j J, K	ВР	1 100
CDRO3BP821BJ	820	į j į	ВР	1 100 1
CDR03BP102B	1,000	j, K	ВР	1 100 1
CDR03BX123BK	12,000	1 K 1	ВХ	1 100
CDRO3BX153B	15,000	K, M	ВХ	100
CDR03BX183BK	18,000	K	ВХ	100
CDRO3BX223B	22,000	K, M	ВХ	100
CDRO3BX273BK	27,000	K	BX	100 1
CDRO3BX333B	33,000	I K, M I	вх	1 100 1
CDR03BX393AK	39,000	1 K 1	BX	50
CDRO3BX473A	47,000	K, M	ВХ	50
CDRO3BX563AK	56,000	K	BX	50
CDRO3BX683A	68,000	K, M	BX	50
CDRO4BP122BJ	1,200	! J !	BP	100
CDRO4BP152B	1,500] J, K	BP	1 100 1
CDR04BP182BJ	1,800	J	BP	100
CDRO4BP222B	2,200	J, K	BP	100
CDRO4BP272BJ	1 2,700	J	BP	1 100 1
CDRO4BP332B	3,300	J, K	BP	100
CDRO4BX393BK	39,000	1 K 1	ВХ	100
CDRO4BX473B	47,000	K, M	вх	100
CDRO4BX563BK	56,000	1 K 1	BX	100 !
CDRO4BX823AK	82,000	K	BX	50
CDRO4BX104A	100,000	K, M	BX	50 1
CDRO4BX124AK	120,000	1 K 1	BX	50
CDRO4BX154A	150,000	K, M	ВХ	1 50 1
! CDRO4BX184AK	180,000	1 K 1	BX	1 50 1
<u> </u>		1		

^{1/} Complete type designation will include additional symbols to indicate capacitance tolerance, m termination finish, and failure rate level, as applicable.

FIGURE 903-2. <u>Established reliability, ceramic dielectric, multiple layer, fixed chip capacitors</u> - Continued.

STYLES CDR11, CDR12, CDR13, AND CDR14

DIMENSIONS						
Style	L	W	T Min	Max	Υ Υ	
CDR11 CDR12 CDR13 CDR14	.055 ±.015 .055 ±.025 .110 ±.020 .110020 +.035	.055 ±.015 .055 ±.015 .110 ±.020 .110 ±.020	.028 .028 .028 .058 .058	.057 .057 .102	.010005 ±.010 .010005 ±.010 .015 ±.010 .015 ±.010	

FIGURE 903-2. <u>Established reliability, ceramic dielectric, multiple layer, fixed chip capacitors.</u>

STANDARD CAPACITORS

STYLES CDR11 AND CDR12 OPERATING TEMPERATURE RANGE -55°C TO +125°C

PF	ed age
CDR1-B-OR2AB	, dc
CDR1-B-OR2AB	0
COR1-B-OR3A	•
CDR1-B-OR5A	
CDR1-B-OR6A O.6	
CDR1-B-OR8A	
CDR1-B-OR8A O.8	
CDR1-B-OR8A	
CDR1-B-1R0A	
CDR1-B-1R1A	
CDR1-B-1R3A	
CDR1-B-1R3A	
CDR1-B-1R4A	
CDR1-B-1R6A	
CDR1-B-1R7A	
CDR1-B-1R7A	
CDR1-B-1R8A	
CDR1-B-2R0A	
CDR1-B-2R1A	
CDR1-B-2R2A	
CDR1-B-2R4A	
CDR1-B-2R7A	
CDR1-B-3R0A	
CDR1-B-3R3A	
CDR1-B-3R6A	
CDR1-B-4R3A	
CDR1-B-4R7A	
CDR1-B-5R1A	
CDR1-B-5R6A	
CDR1-B-6R2A	
CDR1-B-6R8A	
CDR1-B-7R5A	
CDR1-B-9R1A	
CDR1-B-981A	
CDK1-D-100A 10	
CDR1-B-110A	
CDR1-B-110A	
CDR1-B-130A	
CDR1-B-150A	
CDR1-B-160A	
CDR1-B-180A	
CDR1-B-200A	
CDR1-B-220A	
CDR1-B-240A	
CDR1-B-270A	

1/ See footnote at end of tabulation.

FIGURE 903-2. <u>Established reliability, ceramic dielectric, multiple layer, fixed chip capacitors</u> - Continued.

STANDARD CAPACITORS

STYLES CDR11 AND CDR12 - Continued OPERATING TEMPERATURE RANGE -55°C TO +125°C

Type designation <u>1</u> / 	Capacitance	Capacitance tolerance 	Rated temperature and voltage- temperature limits	Rated voltage
	<u>p F</u>	1	1	volts, dc
 CDR1-B-300A	30	F,G,J,K	BG, BP	50
CDR1-B-330A	33	i ii	1	"
CDR1-B-360A	36	"	" "	"
CDR1-B-390A	39	" "	! "	" "
CDR1-B-430A	4 3 4 7	" "	ii ii	" "
CDR1-B-470A CDR1-B-510A	51	11	<u>'</u>	"
CDR1-B-560A	56	"	"	"
CDR1-B-620A	62	"	j "	, " i
CDR1-B-680A	68	j	1 "	"
CDR1-B-750A	75	"	1 "	<u>"</u>
CDR1-B-820A	82	"	" "	" 1
CDR1-B-910A	91	" "	"	"
CDR1-B-101A	100	"	I ВР	"
CDR1-BP111A	110 120	1 11	DP	
CDR1-BP131A	130	"	"	n n
CDR1-BP151A	150	"	j "	" i
CDR1-BP161A	160	"	"	"
CDR1-BP181A	180	1 "	"	"
CDR1-BP201A	200	1 "	! "	"
CDR1-BP221A	220	"	" "	"
CDR1-BP241A	240	1 11) 	
CDR1-BP271A	270 300	"	, ,	"
CDR1-BP331A	330	1 11	"	н
CDR1-BP361A	360	ii ii	"	u j
CDR1-BP391A	390	į "	j "	"
CDR1-BP431A	430	"	"	"
CDR1-BP471A	470	! "	! "	14
CDR1-BP511A	510	1 11	"	"
CDR1-BP561A	560 630	" "	"	 II
CDR1-BP621A	620 680	1 11	· ·	н
CDR1-BP001A	750	"	n	"
CDR1-BP821A	820	п	"	" j
CDR1-BP911A	910	j "	i "	"
CDR1-BP102A	1,000	H	"	"
	-	1	1	

^{1/} Complete type designation will include additional symbols to indicate style, voltage-temperature limits, capacitance tolerance (shere applicable), temination finish (M for style CDR11, and S, U or W for style CDR12) and failure rate level.

FIGURE 903-2. Established reliability, ceramic dielectric, multiple layer, fixed chip capacitors - Continued.

STANDARD CAPACITORS

STYLES CDR13 AND CDR14 OPERATING TEMPERATURE RANGE -55°C TO +125°C

Type designation <u>1</u> /	Capacitance	Capacitance tolerance 	Rated temperature and voltage- temperature limits 	Rated voltage
	<u>pF</u>			volts, dc
CDR1-B-OR1EB	0.1	l B	BG, BP	500
CDR1-B-OR2EB	0.2	i B	1	j "
CDR1-B-OR3E	0.3	i B,C	j "	ļ "
CDR1-B-0R4E	0.4	l B,C	1 "	1 "
CDR1-B-OR5E	0.5	l B,C,D	1 "	! "
CDR1-B-OR6E	0.6	"	! "	! "
CDR1-B-OR7E	0.7	" "	" "	" "
CDR1-B-0R8E	0.8	" "	"	" "
CDR1-B-OR9E	0.9	" 	" "	' '' '' '' '' '' '' '' '' '' '' '' '' '
CDR1-B-1R0E	1.0	"	1 "] 11
CDR1-B-1R1E	1.1 1.2	1 "	11	! !
CDR1-B-1R2E CDR1-B-1R3E	1.3	1 11		j "
CDR1-B-1R4E	1.4	j "	į "	j "
CDR1-B-1R5E	1.5	į "	į "	"
CDR1-B-1R6E	1.6	į u	"	"
CDR1-B-1R7E	1.7	1 "	1 "	1 "
CDR1-B-1R8E	1.8	"	1 "	! "
CDR1-B-1R9E	1.9	"	<u>"</u>	! "
CDR1-B-2R0E	2.0	1 "	"	! "
CDR1-B-2R1E	2.1	" "		! " ! "
CDR1-B-2R2E	2.2	1 "	1 "	 "
CDR1-B-2R4E	2.4 2.7	"	1 11	! "
CDR1-B-2R7E	3.0		n n	¦ "
CDR1-B-3R3E	3.3	i "	i "	j "
CDR1-B-3R6E	3.6	<u>'</u> "	i "	j "
CDR1-B-3R9E	3.9	j "	j "	j "
CDR1-B-4R3E	4.3	į "	"	"
CDR1-B-4R7E	4.7	1 "	1 "	1 "
CDR1-B-5R1E	5.1	"	"	"
CDR1-B-5R6E	5.6	! "	"	! "
CDR1-B-6R2E	6.2	. "	;	! "
CDR1-B-6R8E	6.8	B,C,J,K	" "	, " , "
CDR1-B-7R5E	7.5	" "	" "	! " ! "
CDR1-B-8R2E	8.2 9.1		i	! "
CDR1-B-9R1E	10	 F,G,J,K	н	"
CDR1-B-100E	11	1,0,0,1	i "	j "
CDR1-B-120E	12	į "	į "	j "
CDR1-B-130E	13	j "	į "	j "
CDR1-B-150E	15	į "	1 "	! "
CDR1-B-160E	16	"	"	! "
CDR1-B-180E	18	1 "	! "	! "
CDR1-B-200E	20	! "	! "	! "
CDR1-B-220E	22	! "	"	"
CDR1-B-240E	24	" "	, ,	" "
CDR1-B-270E	27	! "		

^{1/} See footnote at end of tabulation.

FIGURE 903-2. <u>Established reliability, ceramic dielectric, multiple</u>
<u>layer, fixed chip capacitors</u> - Continued.

STANDARD CAPACITORS

STYLES CDR13 AND CDR14 - Continued OPERATING TEMPERATURE RANGE -55°C TO +125°C

Type designation <u>1</u> /	Capacitance	Capacitance tolerance 	Rated temperature and voltage- temperature limits 	 Rated voltage
	pF			volts, dc
CDR1-B-300E	30	F,G,J,K	BG, BP	500
CDR1-B-330E	33	, , , , , , , , , , , , , , , , , , , ,	j	j "
CDR1-B-360E	36	"	"	j "
CDR1-B-390E	39	"	1 "	1 "
CDR1-B-430E	43	"	!	"
CDR1-B-470E	47	! "	! "	! "
CDR1-B-510E	51	"	"	
CDR1-B-560E	56	F,G,J,K,M	! "	1 "
CDR1-B-620E	62] "	" "	" "
CDR1-B-680E	68	" #	1 11	! !
CDR1-B-750E	75	1 "	į	
CDR1-B-820E CDR1-B-910E	82 91	"	"	 "
CDR1-B-101E	100	1 11	"	! "
CDR1-B-111D	110	i II	i ii	300
CDR1-B-121D	120	"	"	390
CDR1-B-131D	130	"	i "	i "
CDR1-B-151D	150	j "	į "	j "
CDR1-B-161D	160	ľ	i "	1 "
CDR1-B-181D	180	"	"	1 "
CDR1-B-201D	200	1 "	1 "	ļ "
CDR1-B-221C	220	"	1 "	1 200
CDR1-B-241C	240	"	! "	! "
CDR1-B-271C	270	"	"	! "
CDR1-B-301C	300	! "	! "] " !
CDR1-B-331C	330	"	" "	'' "
CDR1-B-361C	360	<u>"</u>	! "	! <u>"</u>
CDR1-B-391C	390		" "	
CDR1-B-431C	430	"		i 1 11
CDR1-B-471C CDR1-B-511B	470 510	"	1 "	100
CDR1-B-561B	560	"		100
CDR1-B-621B	620	i "	i "	"
CDR1-B-681A	680	"	i "	50
CDR1-B-751A	750	i ii	<u>'</u>	, "
CDR1-B-821A	820	j u	i "	j "
CDR1-B-911A	910	i u	"	j "
CDR1-B-102A	1,000	į "	i "	j "
CDR1-BP112A	1,100	1	B P	"
CDR1-BP122A	1,200	i II	"	1 "
CDR1-BP132A	1,300	"	!	! "
CDR1-BP152A	1,500	"	! "	<u>"</u>
CDR1-BP162A	1,600	"	! "	"
CDR1-BP182A!	1,800	"	"	ı "

See footnote at end of tabulation.

FIGURE 903-2. <u>Established reliability, ceramic dielectric, multiple layer, fixed chip capacitors</u> - Continued.

STANDARD CAPACITORS

STYLES CDR13 AND CDR14 - Continued OPERATING TEMPERATURE RANGE -55°C TO +125°C

Type	Capacitance	Capacitance tolerance 	Rated temperature and voltage- temperature limits	Rated voltage
	pF		1	volts, dc
 CDR1-BP202A	2,000	F,G,J,K,M	ВР	50
CDR1-BP222A	2,200	j "	1 "	"
CDR1-BP242A	2,400	į "	1 "	"
CDR1-BP272A	2,700	į "	į "	i " i
CDR1-BP302A	3,000	į "	į "	"
CDR1-BP332A	3,300	į "	į "	i " i
CDR1-BP362A	3,600	j "	į "	i " i
CDR1-BP392A	3,900	j "	į "	"
CDR1-BP432A	4,300	į "	į "	! " !
CDR1-BP472A	4,700	į "	1 "	! "
CDR1-BP502A	5,000	į "	! "	! "
CDR1-BP512A	5,100	"	u	"

^{1/} Complete type designation will include additional symbols to indicate style, voltage-temperature limits, capacitance tolerance (where applicable), termination finish (M for style CDR13 and S, U or W for style CDR14) and failure rate level.

FIGURE 903-2. <u>Established reliability, ceramic dielectric multiple layer, fixed chip capacitors</u> - Continued.

Downloaded from http://www.everyspec.com

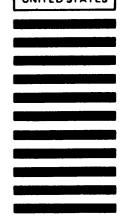
INSTRUCTIONS: In a continuing effort to make our standardization documents better, the DoD provides this form for use in submitting comments and suggestions for improvements. All users of military standardization documents are invited to provide suggestions. This form may be detached, folded along the lines indicated, taped along the loose edge (DO NOT STAPLE), and mailed. In block 5, be as specific as possible about particular problem areas such as wording which required interpretation, was too rigid, restrictive, loose, ambiguous, or was incompatible, and give proposed wording changes which would alleviate the problems. Enter in block 6 any remarks not related to a specific paragraph of the document. If block 7 is filled out, an acknowledgement will be mailed to you within 30 days to let you know that your comments were received and are being considered.

NOTE: This form may not be used to request copies of documents, nor to request waivers, deviations, or clarification of specification requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amond contractual requirements.

(Fold clong this line)

(Fold along this line)

DEPARTMENT OF THE ARMY


OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 12062 WASHINGTON D. C

POSTAGE WILL BE PAID BY THE DEPARTMENT OF THE ARMY

Defense Electronic Supply Center Attn: DESC-ESD Dayton, OH 45444 NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

	(See Instructions –	Reverse Side)
1. DOCUMENT NUMBER	2. DOCUMENT TITLE	
34. NAME OF SUBMITTING ORGANIZATION		4. TYPE OF ORGANIZATION (Mark one) VENDOR
b. ADDRESS (Street, City, State,	ZIP Code ¹	USER
		MANUFACTURER
		OTHER (Specify):
5. PROBLEM AREAS		
a. Paragraph Number and Word	Nng:	
b. Recommended Wording:		
· · · · · · · · · · · · · · · · · · ·		
		÷
c. Resson/Rationals for Recom	nmendation:	
3. REMARKS		
· ······		
A NAME OF BURNISHES L	Plana MP	1.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
d. NAME OF SUBMITTER (Last,	, First, MI) — Optional	b. WORK TELEPHONE NUMBER (Include A Code) — Optional
. MAILING ADDRESS (Street, Ci	ity, State, ZIP Code) - Optional	8. DATE OF SUBMISSION (YYMMDD)