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FOREWORO

-.

I

Design charts and tables have been developed for the
elastic torsional stress analyses of free prismatic shafts,
splines and sprinq bars with virtually all common industrially
encountered thick cross sections. Circular shafts with rect-
angular and circular }.eyways, external. splines, and milled
flats along with rectangular and X-shaped torsion bars are
presented.

A computer program (“SIIAFT”) was developed which provides
a finite difference solution to the governing (pOISS~N’S)
partial differential eq,lation which defines the stress functions
for solid and hollow shafts with generalized contours. Using
the stress function solution for the various shapes, and
prandtl’s membrane analogy, dimensionless design charts (and
tables) have L>een qenerated for transmitted torque and maximum
shearing stress. The desiqn data have been normalized for a
unit dimension of the cross section (radius or length) and are
provided for solid shapes.

The eleven solid shapes presented, along with the classical
circular cross section solution, provides the means for analyz-
ing 144 combinations of hollow shafts with various Outer and
inner contours. 1!o11ow shafts’may be analyzed by usinq the
computer program directly Or b.y using the sOlid shape. charts in
this paper and the principles .of superposition based on the
concept of parallel shafts. Stress/tOrque ratio curves are
presented as keinq more intuitively recognizable and useful
than those of stress alone.

sample problems illustrating the use of the charts and “.,:.
tables as desicm tools and the validity of the superrJositiOn” . ‘:’
concept are included.
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TORSIONAL ANALYSIS oF 5pLINED .5NILLED 51[AFT5

The elastic stress analysis of uniformly circular shafts
in torsion is a familiar and straiqhforward concept to design
engineers. As the bar is twisted, plane sections remain
plane, radii remain straiqht, and each section rotates about
the longitudinal axis. The shear stress at any point is pro-
portional to the distance from the center, and the stress vec-
tor lies in the plane of the circular section ancl is perpen-
dicular to the radius to the point, with the maximum stress
tangent. to the outer face of the bar. The torsional stiffness
is a function of material property, angle of twist, and the
polar moment of inertia of the circular cross-section. These
relationships are expressed as:

@ = T/J.G, or T = G.O.J

and S5 = T.r/J, or S5 = G.O.r

!ihere T = twisting moment or transmitted torque, G = Modulus
of Riqidity of the shaft material, O = angle of twist per unit
length of the shaft, J = polar moment of inertia of the (cir-
cular) cross-section, S5 = shear stress, and r = radius to any
point.

Rowever, if the cross-section of the bar deviates even
slightly from a circle, as in a splined shaft, the situation
changes radically and far more complex design equations are
required. Seqtions of the bar donot remain plane, but warp
into surfaces, and radial lines through the center do not re-
main straight. The distribution of shear stress on the section
is no longer linear, and the direction of shear stress is not
normal to a radius.

The governing partial differential equation, from Saint-
Vernant’s theory is

Downloaded from http://www.everyspec.com
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where @ = Saint- Venant’s torsion stress function. The prob-
lem then is to find a o function which satisfies this equation
and also the boundary conditions that @ = a constant along the
boundary. The O function has the nature of a potential func-
tion, such as voltage, hydrodynamic velocity, or gravitational
height. Its absolute value is, therefore, not important; only
relative values or differences are meaningful.

The solutions to this equation required complicated math-
ematics. Even simple, but commonplace, practical cross-sec-
tions could not be easily reduced to manageable mathematical
formulae, and numerical approximations or intuitive methods
had to be used.

One of the most effective numerical methods to solve
for Saint-Venant’s torsion stress function is that of finite
(Differences and the best intuitive method, the membrane ana-
loqy, came from Prandtl. [Ie showed that the compatibility
ecluation for a twisted bar was the “same” as the equation for
.a mem~)ranc stretched over a hole in a flat plate, then in-
flated. This concept provides a simple way to visualize the
torsional stress characteristics of shafts of any cross-
section relative to those of circular shafts for which an
exact analytical solution is readily obtainable. A computer pro-
qrarn called SIIAPT was written and applied to produce the dimension-
less desiqn charts. on the following pages.

The three-dimensional plot of @ over the cross-section is
a surface and, with O set to zero (a valid constant) alonq the
periphery, the surface is a domb or O membrane. The trans-
mitted torque (~) is proportional to twice the volume under the
membrane and the stress (Ss) is proportional to the slope of the
membrane in the direction Perpendicular to the measured slope.
Neqlectinq the stress concentration of sharp re-entrant cor-
ners, which are relieved with generous fillets, the maximum
stress for bars with solid cross sections is at the point on
the periphery nearest the center.

‘The dcsiqn data have been normalized for a unit dimension
(radius or lenqth) of the shaft cross-section and are in di-
mensionless format. The! data and charts may, therefore, be
used for shafts of any dimensions, materials and twist (loading) .

2

L

1
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DESICN CHARTS AND TABLES

Design charts and related data which support the elastic torsional

stress analyses conducted by Ml S. Dare shown in figures 2 through 25

and tables 2 through 25, respectively. The item nomenclature used in
the analyses is given in table 1.

These data are based on the stress function solution for various

shapes provided by the SHAFT computer program and on Prandtl’s

membrane analogy.

Since thedesign charts are dimensionless, they can be used for

shafts of any material and any dimensions.

I

I
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Table 1. Element nomenclature

TORSIONAL PROPERTIES

OF

SOLID, NON-CIRCULAR SHAF13

T

T=
e=

G.

R.

“d@f.
‘=’

s~ =

T.

Ss =

Ss .

Y

TRANSMITTED TOROUE, N m (lb i.. )

ANGLE OF TWIST PER UNIT LENGTH. rad/mm (,wUin.i

MOOULUS OF RIGIDITY OR MODULUS OF
ELASTICITY IN SHEAR, kPa (lb/in.2)

OUTER RADIUS OF CR OSSSECTION, mm (in. )

VARIABLES FROM CHARTS (OR TABLESI
RELATED TO VOLUME UNDER “SOAP FILM
MEMBRANE” AND SLOPE OF “MEMBRANE’”

SHEAR STRESS. kPa (lb/in.z)

2G 0 (V)R4
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Figure 2. Split shaft, torque.
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Table 2. Split shaft, volume factor (V)

Y/Ri Ri/llo

0.1 0.2 0.3 0.4 0.5 0.6— — — — — —

0.1 .3589 .2802 .2068 .1422 .0891 .0491

0.2 .3557 .2762 .2030 .1391 .0870 .0478

0.3 .3525 .2722 .1991 .1360 .0848 .0464

0.4 .3492 .2680 .1952 .1328 .0825 .0450

0.5 .3457 .2637 .1911 .1294 ,0801 .0436

0.6 .3423 .2593 .1869 .1260 .0777 .0421

0.7 .3387 .2548 .1824 .1223 .0750 .0405

0.8 .3350 .2499 .1776 .1183 .0722 .0387

0.9 .3312 .2447 .1725 .1139 .0689 .0367

1.0 .3269 .2389 .1665 .1087 .0649 .0340
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Figure 3. Split shaft, stress
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Table 3. Split shaft, stress factor (f)

Y/Ri Ri/Ro

0.2—

0.1 2.2140

0.2 2.2447

0.3 2.2767

0.4 2.3103

0.5 2.3461

0.6 2.3883

0.7 2.4233

0.8 2.4670

0.9 2.5142

1.0 2.5672

0.3—

2.2742

2.3162

2.3608

2.4082

2.4594

2.5142

2.5750

2.6423

2.7197

2.8140

0.4—

2.5771

2.6336

2.6942

2.7597

2.8304

2.9084

2.9955

3.0952

3.2141

3.3690

0.5—

3.2178

3.2977

3.3838

3.4771

3.5795

3.6930

3.8232

3.9744

4.1618

4.4218

0.6—

4.4650

4.5865

4.7182

4.8620

5.0233

5.2016

5.4082

5.6550

5.9691

6.4392
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Figure 4. Single keyway shaft, torque.
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Table 4. Single keyway shaft, volume factor (V]

A/B B/R

0.1—

0.2

0.3

0.4

0.5 .7682

0.6 .7676

0.7 .7668

0.8 .7658

0.9 .7647

1.0 .7633

1.2 .7621

1.5 .7592

2.0 .7560

0.2—

.7379

.7341

.7290

.7262

.7224

.7190

.7162

.7125

.7079

.7012

.6945

0.3—

.6994

.6900

.6816

.6725

.6663

.6592

.6533

.6480

.6424

.6347

.6260

.6200

0.4 0.5— —

.6472 .5864

.6316 .5648

.6173 .5459

.6043 .5294

.5941 .5152

.5848 .5032

.5762 .4931

.5686 .4849

.5619 .4783

.5531 .4697

.5449 .4649

.5424

11
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0.9

1.0

1.2

1.5

AIB =04

SHEAR STRE:

MAXIMUM AT

~ 2.0 ,/

I + I 1 1 I
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Figure 5. Single keyway shaft, stress
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Table 5. Single keyway shaft, stress factor (f)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.2

1.5

2.0

0.1—

.9899

.9767

.9602

.9393

.9124

.8773

.8651

.8300

.8083

0.2—

1.1867

1.1241

1.0303

1.0077

.9746

.9466

.9334

.9131

.8993

.8829

.8752

.:,.-. . . . .

0.3—

1.2273

1.1333

1.0624

1.0387

1.0098

.9953

.9843

.9749

.9684

.9655

.9667

13

,-,.:

0.4—

1.2538

1.1642

1.1155

1.0960

+;0820

1.0737

1.0699

1.0691

1.0721

1.0774

1.0799

0.5—

1.2832

1.2234

1.1962

1.1859

1.1848

1.1885

1.1944

1.2009

1.2120

1.2198
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Figure 6. Two keyway shaft, torque,
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Table 6. Two keyway shaft, volume factor (V)

Al B B/R

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.2

1.5

2.0

0.1—

.7524

.7511

.7496

.7477

.7454

.7426

.7404

.7346

.7283

0.2.

.6927

.6853

.6753

.6698

.6625

.6558

.6505

.6433

.6344

.6215

.6086

0.3

.6187

.6008

.5848

.5678

.5562

.5429

.5319

.5221

.5117

.4974

.4813

.4703

0.4 0.5.

.5226 .4195

.4944 .3831

.4688 .3517

.4457 .3246

.4277 .3014

.4112 .2818

.3962 .2655

.3829 .2522

.3713 .2416

.3559 .2276

.3416 .2197

.3373

15
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Figure 7. TWO keyway shaft, stress.
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Table 7.,..‘IWO ke~4a~ sh.a.ft,.stress factor (f)

,.
.

. . . .. . .
.,., ,..!,:!.”-”’~-”i !. ”’.:

0.1 0.2 0.3 0.4— ~ 0.5 ~— — — ?—,

0.2 1.4936 1.6578

0.3 1.2487 1.3642 1..4929

1.7501 :

1.6491 -.jj5

1.6313 :

1.6555

~.7027 c.

1.7623

1.8269
< @., v

1.8910

1.9502 ~
1

2.0422_j ~i,,

2.1024 ~

!
\

..l ,>!,

-; 01.
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.80
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TRANSMITTED TORQUE,

T=2”GOOW)R4

●

I I I 1 I I
.1 .2 .3 .4 .5

81R

I
Figure 8. Four keyway shaft, torque.
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Table 8. Four keyway shaft, volume factor (V)

A/B BIR

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.2

1.5

2.0

0.1.

.7214

.7190

.7161

.7124

.7080

.7024

.6982

.6870

.6748

0.2—

.6088

.5952

.5769

.5672

.5541

.5422

.5330

.5203

.5051

.4832

.4622

0.3

.4806

.4511

.4253

.3983

.3805

.3605

.3444

.3304

.3160

.2974

.2787

.2692

0.4 0.5.

.3361 .2114

.2965 .1705

.2624 .1384

.2333 .1140

.2119 .0962

.1935 .0842

.1783

.1662

.1572

.1482
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Figure 9. Four keyway shaft, stress
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● Table 9. Four keyway shaft, stress factor (f)

0.1 0.2 0.3— —
13.4,(...-. 0.5 ;
-.. —- I

●

0.2 :
..... :,..”. “ :2:7365 2;1206 2.4931,.. .,.,.. 1’ “- ,-

0.3 ‘i-.’3566-’ ‘ i.6214 ‘ 2.0014 2.5784
..J

0.4 ! “’” 1.3011 1.5460 1.9971 2.8271
, ..... . . ......

0.5 2“;’ i.0371 ,,,’1.2130 1.50’i6 2.0591 3.1882
‘ . .’,

0.6 ~.0252 ‘1.1979-’’,.; 1..5115 2.1568 3.6139
3 ~+,”

0.7 ,., , ~.0102 1’1.i737 ;1:5,175 2.2660 4.0368

0.8 \ .9910 l.lsii ~ 1.5382.
:,

2.3834
.

0.9 1.1493”’
~:.j i. “9661 :

““1,.5609 ““<.,2.4993
-...

1.0 .9331 1.1398 1.58’9 9..... . . ...?.? {03 o

1.2

1.5 [,2.

2.0

<:~,

{ .9232

+.8940
I
{ .8796
I

l..
I

1<

!

.! ,:,,,
I

I

I

! ,
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Figure 10. Single square keyway with inner fillets
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●
Table 10. Single square keyway with tight inner fillets

Stress factor(f)

Volume At keyway

!?@

At inner
factor(V) center(1) fillet(2)

0.1 .7703 .7804

0.2 .7206 .9715 .9777

0.3 .6504 .9941 1.0817

0.4 .5690 1.0735 1.1641

0.5 .4840 1.1977 1.2245

.,
——.

●

23

Downloaded from http://www.everyspec.com



MIL-HDBK-776(AR)
:15 September’.l98l

1.5
1.15 AIB = 2.0

//

TORSIONAL STIFFNESs ,:7., ., ,lP.:::: .-.: ‘- .,>-3,.?
‘TRANSMITTED TORQUE, -

9 .‘..

T=2”G”O(V)R4
1.10

—. -,.. .

,

1.00

v

.95

.90

.85

.8a

if!?-+liik/ 2!/”2
‘+2 . I_ ///

“’”’--//I /’”0

I 1 I I I

.1 .2 .3 .4 .5
BIR

o

Figure 11. Single spline shaft, torque.
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Table 11. Single spline shaft, volume factor (V)

A/B B/R

0.1—

0.2

0.3

0.4

0.5 .7845

0.6 .7852

0.7 .7857

0.8 .7862

0.9 .7866

1.0 .7869

1.2 .7890

1.5 .7907

2.0 .7953

0.2—

.7853

.7864

.7874

.7899

.7918

.79s0

.7976

,7996

.8071

.8174

.8407

0.3—

.7853

..7870

.7903

.7933

.7993

.8059

.8113

.8202

.8253

.8456

.8754

.9420

25

0.4—

.7865

.7906

.7968

.8035

.8143

.8270

.8390

.8560

.8712

.9117

.9800

1,1404

0.5—

.7878

.7944

.8048

.8189

.8362

.8580

.8832

.9110

.9433

1.0158

1.1561
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Figure 12. Single spline shaft, stress.
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Table 12. Single spline shaft, stress factor (f)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.2

1.5

2.0

0.1—

.6374

.6370

.6366

.6364

.6361

.6359

.6346

.6335

.630,7

0.2—

.6369

.6362

.6356

.6340

.6328

.6308

.6291

.6279

.6233

.6172

.6038

0.3—

.6369

.6358

.6337

.6317

.6280

.6239

.6205

.6152

.6120

.6004

.5842

.5525

0.4—

.6361

.6335

.6295

.6251

.6184

.6107

.6035

.5939

.5854

.5648

.5340

.4798

0.5—

.6352

.6309

.6241

.6152

.6047

.5920

.5781

.5638

.5483

.5173

.4104

.4331
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Figure 13. Two spline shaft, torque.
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Table 13. Two spline shaft, volume factor (V)

Al B B/l?

0.2

0.3

0.4

0.5

0.6

0
0.7

0.8

0.9

1.0

1.2

1.5

2.0

0.1—

.7850

.7863

.7874

.7883

.7891

.7897

.7940

.7973

.8066

0.2—

.7864

.7886

.7906

.7958

.7994

.8059

.8111

.8152

.8302

.8509

.8980

0.3—

.7865

.7899

.7965

.8026

.8145

.8278

.8386

.8565

.8668

.9078

.9682

1.1045

0.4—
.7889

.7970

.8095

.8229

.8446

.8701

.8945

.9288

.9595

1.0418

1.1818

1.5172

0.5—

.7914.

.8047

.8255

.8538

.8886

.9326

.9837

1.0400

1.1058

1.2547

1.5471
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Figure 14. Two spline shaft, stress.
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Table 14. TWO spline shaft, stress factor (f)

A/B B/R

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.2

1.5

2.0

0.1—

.6371

.6363

.6357

.6351

.6346

.6342

.6315

.6295

.6240

02&

.6362

.6348

.6336

.6303

.6281

.6241

.6209

.6184

.6097

.5981

.5740

0.3—

;6362

.6340

.6298

.6259

.6187

.6108

.6043

.5944

.5887

.5678

.5402

.4903

0.4—

.6346

.6294

.6215

.6131

.6004

.5862

.5732

.5564

.5421

.5088

.4632

.3937

0.5.

.6329

.6243

.6113

.5946

.5753

.5532

.5300

.5071

.4836

.4398

.3815

3,1
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Figure 15. Four spline shaft, torque.
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Table 15. Four spl ine shaft, volume factor (V)

A/B B/R

0.1—

0.2

0.3

0.4

0.5 .7859

0.6 .7885

0.7 .7906

0.8 .7924

0.9 .7940

1.0 .7954

1.2 .8040

1.5 .8106

2.0 .8292

0.2—

.7887

.7932

.7971

‘.8076

.8149

.8280

.8386

.8467

.8773

.9196

1.0180

0.3—

.7888

.7957

.8090

.8213

.8452

.8723

.8944

.9310

.9519

1.0378

1.1663

1.4739

33

0.4—

.7937

.8101

.8352

.8623

.9063

.9588

1.0090

1.0808

1.1455

1.3239

1.6438

0.5—

.7989

.8254

.8674

.9250

.9962

1.0877

1.1950

1.3158

1.4601

1.8021
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Figure 16. Four spline shaft, stress
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Table 16. Four spline shaft, stress factor (f)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.2

1.5

2.0

0.1—

.6369

.6358

.6349

.6341

.6334

.6328

.6293

.6265

.6192

0.2—

.6356

.6336

.6318

.6273

.6240

.6187

.6144

.6109

.5998

.5860

.5630

0.3.

.6356

.6323

.6263

.6206

.6106

.6001

.5913

.5794

.5720

.5508

.5279

0.4—

.6332

.6256

.6142

.6019

.5848

.5670

.5516

.5344

.5199

.4989

0.5—

.6305

.6176

.5986

.5756

.5510

.5257

.5028

.4842

.47L4

35

Downloaded from http://www.everyspec.com



M
I
L
-
H
D
B
K
-
7
76
(
A
K
)

1
5
S
e
p
t
e
m
b
e
r
1
9
8
1

I

●
’

Downloaded from http://www.everyspec.com



MIL-HDBK-776(AR)
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●

●

Table 17. Square keyways and external splines, volume factor

BjR One keyway TWO keyways— Four keyways

0.1 .7633 .7426 .7024

0.2 .7125 .6433 .5203

0.3 .6424 .5117 .3160

0.4 .5619 .3713 .1572

0.5 .4783 .2416

0/R One spline Two splines—

0.1 .7869 .7897

0.2 .7996 .8152

0.3 .8253 .8668

0.4 .8712 .9595

0.5 .9433 1.1058

37
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Four splines

.7954

.8467

.9519

1.1455

1.4601
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Figure 18. Square keyways and external splines, stress
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Table 18. Square keyways & e%ternal splines, stress factor(f)

B/R—

0.1

0.2

0.3

0.4

0.5

B/R—

0.1

0.2

0.3

0.4

0.5

one keyway

.8773

.9131

.9749

1.0691

1.2009

One spline

.6359

.6279

.6120

.58S4

.5483

39

Two keyways

.8978

.9916

1.1625

1.4532

1.9502

Two splines

.6342

.6184

.5887

.5421

.4836

Four keyways

.9331

1.1398

1.5899

2.6030

Four splines

.6328

.6109

.5720

.5199

.4714
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o

0.1

0.2
0.29289

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Table 19

One flat

.7813

.7617

.7018

.6291

.s510

.4717

.3951

.3228

.2568

.1980

.1460

MIL-HDBK-776(AR)
15 September 1981

Milled shaft, volume factor (V)

Two flats Four flats

.7811 .7811

.7149 .6520

.5998 .4501
.2777

.4667

.3349

.2168

.1225

.0559

.0173

41
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Table 20. Milled shaft, stress factor (f)

H/ii—

0.1

0.2

0.29289

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

One flat

.7749

.8571

.9485

1.0593

1.1977

1.3725

1.5987

1.8975

2.3049

2.8935

Two flats Four flats

.8199 .8743

.9776 1.1848

1.7004

1.2045

1.5520

2.1237

3.1455

5.3129

11.5433
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Figure 2T. Rectangular shaft.
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MIL-HDBK-776(AR)
15 September 1981

Table 21. Rectangular shaft

volume
factor(v)

.05635

.1248

.2250

.3559

.5146

.6971

.8991

1.1167

Stress
factor(f)

5.2697

3.0928

2.0587

1.4805

1.1230

.8862

.7212

.6015
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v

TRANSMITTED TORQUE,

T=2. G.0(WR4 \

I 1 1 1 1
.1 .2 .3 A/R .4 .5

Figure 22. Pinned shaft, torque.
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MIL-HDBK-776(AR)
15 September 1981

Table 22. Pinned shaft, volume factor (V)

AIR One groove TWO grooves Four grooves
—

0.1 ,7700 .7558 .7280

0.2 .7316 .6803 .5855

0.3 .6760 .5738 .4062

0.4 .6087 .4521 .2374

0 0.5 .5349 ,3300 1118

Downloaded from http://www.everyspec.com



MIL-HDBK-776(AR)
15 September 1981

4.0

3.5

3.0

f

2.5

2.0

1.5

1.0
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OF CIRCULAR CUSPS, AT X
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Figure 23. Pinned shaft, stress.
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Table 23. Pinned shaft, stress factor(f)

A/R One groove Two grooves Four— grooves

0.1 1.1197 1.1374 1.1674

0.2 1.1804 1.2520 1.3800

0.3 1.2286 1.3939 1.7281

0.4 1.2894 1.6015 2.3912

0.5 1.3822 1.9211 3.8744
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MIL-HDBK-776(AH)
15 September 1981

Table 24. Cross shaft, volume factor (V)

Shape P

.00741

.05219

.1642

.3538

.5947

.8302

1.0058

1.0981

51

Shape M

.09907

.2120

.3767

.5714

.7639

.9247

1.0368

1.0981
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Fiqure 25. Cross shaft, stress
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Table 25. Cross shaft, stress factor(f)

x/s—

Shape P
At a At b

Shape M
At a At b

0.1 26.8826 .8.7805 4.0676 .7564

0.2 7.2946 2.7669 2.3702 .9225

0.3 3.5252 1.4172 1.5818 .8651

0.4 2.1192 .9709 1.1844 .7806

0.5 .7849 .9210 .7109

0.6 .6903 .7576 .6606

0.7 .6366 .6059 .6275

0.8 .6090 .4763 .6090

●
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ACCURACY o~ THE COUPUTERIZED SOLUTION

To compare the SHAFT (computer) analysis of the torsion
of a solid circular shaft with the exact, classical textbook
solution, one quadrant of a unit-radius shaft was run with
two finite-different qrid spacinqs and the results of the
equations were compared, as-follows:

I Shear stress (max)

Equation Comparison SHAFT

Torque 2Ge(v)R’
2(V)Rh
2(V)R*
2V

~8(d~,R

ds

(d~)
ds

SHAFT

Torque (h=O.125 1.5546
(h=O.0625) 1.5669

Shear stress, (h=O.125) 1.0000
(h=O.0625) 1.0000

Area* (h=O.125) 3.13316
(h=O.0625) 3.13984

*

% >

Exact

1.5708
1.5708

1.0
1.0

3.14159
3.14159

Exact

GOJ
J
(n/2)R*
(n/2)

GeR

1.

Deviation (%)

1.03
0.25

0.
0.

0.268
0.056

‘used for internal program checking.

The mathematical model used in the .?~IAFTcomputer program
generation of this handbook is described in appendix A.

●
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PARALLEL SHAFT CONCEPT

The torsional rigidity of a uniform circular shaft, i.e. , the torque

required to produce unit (one radian) displacement, is:

C = _i_/6J = G-J

In the terminology of the membrane analogy, the torsional rigidity

of non-circular shafts is defined as:

C = T/e = 2. G+)(V) f(R)/13

The overall torsional rigidity of a system consisting of a-number
of shafts in parallel (fig. 26) is simply the sum of the torsional

rigidities of the individual component shafts.

N

z ci=c1+c2+c3+-. +cN
i=l

N N

z Tiei = ez Ti=e(Tl +T1+T~+.. +TN)
i=l i=l

The torsional rigidity of hollow shafts can be determined by re-

garding the configuration as a parallel shaft arrangement. The over-

all torsional rigidity can be obtained by subtracting the torsional

rigidity of a shaft having the dimensions of the tmre (or inner contour)

from that of a shaft having the dimensions of the outer contour. The

advantages of being able to apply the principles of superposition

(fig. 27-31) to combinations of concentric (inner and outer] shaft con-

tours are obvious. If, for example, design charts have been prepared

for 20 different shaft shapes, then 400 different solutions to all possible
combinations of inner and outer shaft contours (20 inner x 20 outer)

are available.
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I1,LU!;’I’RA’I’lVEDISIGN APPI,lCA’rT.ON

Find tl~c m~jxj.mum torque that may be transmitt,:d by the

,:ijc(]].ar:;lIaft with {he intc]-i.or splints (shown in Fig. 32)

2) Maxjl[,urnShear StrcsS S~ not to excccd 15,000 kPa (psi)

TOIIIUC T =1 T = E 2GG(V)R4 = 2G6 E (V)R4

Z (V)R4 = o.7854- (O.1O58-O.O491)

= 0.7854(1” circle)-O.0567(8 tooth spline)

= 0.7287

Condition 1:

(3= 2x(n/180)xl/18) = 0.001939(rad/in)

T = 2 (12x106)(0.001939)(0. 7287) = 33,~of)(in-lb)

Confliti.on 2:

S /T will be maximum at the outer contour, which is a
comple?c cil-cle (for which d$/ds = 1.0).

.S~/T = GO(d$/CIS)R/2GOZ(VR4))

= (dO/dS)R/2Z(VR4))

J (1.0)(1.0)/2(0.7287)) = 0.6862

T = Ss/0.6862 = 15,000/0.6862 = 21,860(in-lb)

Use T of 21,860(in lb) as maximum design Torque

62 ● 1
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.O”R

-—. .
(J.5”’r-i I

VR4=(7V4)R4

=(7774) 14 =0.7854

—

(From Table 15) VR4=(7T14)R4

‘2 V(R)4=2(0.8468) (0.5)4 =(7T/4)(o.5)4

=0.1058 =0.0491

Figure 32. Illustrative design application
,,. .

,., ... .. ... ,,..

.,:., .
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(,mor]lm) IllUStratiVe DESIGN APPLICATION

Find the maximum shear stress and angular twist per unit length produced by
an imposed torque of 20,000 lb–in. The double milled steel shaft (G=12xl(36Psi)

has a 4-spline inner hole as shown (Figure 33) .

ouTER rx)N’rouR: Double Milled Shaft

Ii/l{=0.1
V (T+LbLQ 19) = O.7149 (This is really V(R)4 where R=L.0)
f (’l’able20) = 0.8199

INNER CONTOUR : 4–Spl ine Shaft

A/B = 1.0, B/R = 0,1/0.5 = 0.2

V (Table 1.5)= 0.8467 (Really V(R)& for a 1.O”R shaft)

‘r= 2.C.0LV(R)4

~l,ere );V(R)4 = 0.7149(1)4 - 0.8467(0.5)4

= 0.6620

20,000 = 2 (12xI.O)0(0.6620)
and angular twist,El= 0.001259 radians/inch

F,,r ;]SUJ id double-milled shaft, the maximum shear stress is at the midpoint
of the flats:

Ss = T(f/R3) = 20,000 (0.8199)/(1)3
=,16,398 psi

fkcz.use of the inner hole, however, the V(R)4 term is reduced from O.7149 to

0.6620. ‘l’liemaximum shear stress is still at the midpoint of the milled flats:

adjusted f1
.. . ~.. —..-_

/

Ss = ‘r(f’/R3) = 20,000 (0.8199x 0.7149 ) 3
0.6620 (1)

= 17,708 psi

‘he effect of the inner hole is to increase the maximum shear stress by
7.99%.
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●
APPENDIX A

i4ATHE)mTICAL MODEL USED IN TllE S1lAFT cOMpuTER PROGRAM

As the term implies, boundary value problems are those
for which conditions are known at the boundaries. These con-
ditions may be the value of the problem variable itself, the
normal gradient or variable slope, or higher derivatives of
the problem variable. For some problems, mixed boundarY
conditions may have to be specified: different conditions
atdifferent parts of the boundary. The SHAFT computer code
solves those problems for which the problem variable itself
(the stress function) is known at the boundary.

Given sets of equally spaced arguments and corresponding
tables of function values, the finite difference analyst can
employ forward, central, and backward difference operators.
SHAFT is based upon central difference operators which approxi-
mate each differential operator in the partial differential
equation (PDE) .

The problem domain is overlayed with an appropriately

● selected grid. There are mariy shapes (and sizes) of over-
laying Cartesian and polar coordinate grids:

rectangular
square
equilateral-triangular
equilangular-hexagonal
oblique

Throughout the area of the problem, SIIAFT uses a con-
stant-size-square grid for which the percentage errors are of
the order of the grid size squared (hz). This grid (or net)
consists of parallel vertical lines spaced h units apart, and
parallel horizontal lines, also spaced h units apart, which
blanket the problem area from left-to-right and bottom-to-
top .

The intersection of the grid lines with the boundaries
of the domain are called boundary nodes. The intersections
of the grid lines with each other within the problem domain
are called inner domain nodes. It is at these inner domain
nodes that the finite difference approximations are applied.
The approximation of the partial differential equation with
the proper finite difference operators replaces the PDE with
a set of subsidiary linear algebraic equations, one at each

●
inner domain node. In practical applications, the method

67
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must be capable of solving problems whose boundaries may be
curved. In such cases, boundary nodes are not all exactly
h units away from an inner node, as is the case between ad-
jacent inner nodes. The finite difference approximation of
the harmonic operator at each inner node involves not only
the variable value of that node and at the four surrounding
nodes (above, below, left, and right) , but also the distance
between these four surrounding nodes and the inner node. At
the boundaries, these distances vary unpredictably. Compensa-
tion for the variation must be included in the finite
difference solution. SIIAFT represents the problem variable
by a second-degree polynomial in two variables, and employs
a generalized irregular “star” in all directions for each
inner node. In practice, one should avoid a grid so coarse
that more than two arms of the star are irregular (or.less
than h units in length). The generalized star permits, and
automatically compensates for, a variation in length.of any
of the Cour arms radiating from a node. For no vzl.iation in
any arm, the algorithm reduces exactly to the stzzldard
harmonic “computation stencil”.

At each inner domain node, a finite difference approxima-
tion to the qoverning partial differential equation (PDE) is
qeneratcd by SllArT. The resulting set of linear algebraic
equations is solved simultaneously by the program for the un-
known problem variable (stress function) at each node in the
overlaying finite difference grid. A graphics version of
the proqram also qenerates, and displays on the CRT screen,
iso-value contour maps for any desired values of the variable.
This way, a niore meaningful picture of the solution in the
form of stress concentration contour lines of different
values is made available to the engineer.

●

●✍
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BOUNDARY NODES
Overlaying finite
differertce GRID

tfiiYvariable is
known at the boundary)

— .-—

v

the

f thev=MIe tO be ~hxi

.INNER DOMAIN NODES
(value 0
found by finite difference
solution)

Figure A-1 . Finite difference grid,
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If the problem geometry is symmetric,
does not have to display and work with the
of the problem, he need only work with the

r the designer
entire picture
“repeating sec-

tion” . In essence, the graphics user may examine the problem
solution at will and redesign the problem (contour, boundary
conditions, equation coefficients, etc.) at the screen re-
solving the “new design” problem.

Consider the general

Where A,B,D are arbitrary

Vaf=A;~+B;~

expression:

constants.

=D

I
I

.

lJsing central differences, the finite difference approxi-
mations to the partial differential operators of function f
at representative node O are:

e

af
.+(f,-f,)#$=2h

a; ~
J- (f,-f,)

Y I

azf I
~ (fla~ = ~x -2fo+f3)

I
I

I

I
Eor a square grid h =h = h and the harmonic operator Vzf
becomes:

x Y

h2V2f0 = [A (fl +f,) +B (fz +f,) - (A+B) 2fO]=h2D
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hX-h

r

COMPUTATION STENCIL

2 AT NODE O

+

B

T A ‘ -2(A+B)0 A ‘

FOR

h, =h
.

~,””, v’f=A~2+B:$C)

t“

●

●
Figure A-2. Harmonic operator for square star in X-Y grid.
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This finite difference equation at node zero involves the unknown

variable at node zero (fO) plus the unknown value of the variable at the

four surrounding nodes (fl , ft, f, , f,) , plus the grid spacing (h) The

five nodes involved form a four-arm star with node zero at the center.

This algebraic (or difference) equation could be conveniently visualized
,,blloon~,i connected in aas a four-arm computation stencil made up of five

four-arm star pattern and overlayed on the grid nodes. The value within

each balloon is the coefficient by which the variable (f) at that node is

multiplied to make up the algebraic approximation equation.

The numerical treatment of an irregular star (h, + hz+ h,# h,) re-

presents the function f near the representative node O by a second-degree

polynomial in X and Y:

f(X, Y) =fO +al X +a2Y+a~X2 +a4Y2 +asXY

Evaluating this polynomial at the neighboring nodes (1, 2, 3, 4)

produces the following set of equations:

fl =fO +alhl +azhlz

fz =fo+azhz +a, hzz

f,= fo-alh~+a, h~z

f, =fo,-ath, +a, h,z

which are tnen solved for a$ and a, which are necessary to satisfy the

harmonic operator V2f, since:

E= azf

ax
a, + 2a,X + a$Y, a~ . 2a,

gJ azf

ay
=az + 2a4Y+a~X, ~

ay

and

Vzf =A (2a3) + B (2a, )

= 2a4
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Performing the necessary algebraic operations, substituting results,
collecting terms, and using the following ratios.

b, . ‘# b2 . ‘$

b, . ‘f b, . ‘:

The harmonic operator becomes:

[

. .

h2’v2f0 = 2A f, + 2B
bl (bl+b~) bz (b2+b4)

f, +

2A
f~ +

20’
+ b~ (bl+b, ) b, (bi +b, )

f, +

2A
- (—

+ _2B

b, bz bz b, 1)f, = ~1~

-1

,., ,

.,>.
;,, . ... ! : .,1, ;1- : ., :
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IRREGULAR STAR AT NOOE O
a

NEIGHBORING NoDES(I,2,3,4. )

f@

W%-W / “
/ h =h,,h

] COMPUTATION STENCiL .

0
AT tiOOE O

FOR

20 Vzf.A~ +B~,. O
b. (b, ,b. ) i

\

\.

3

Figure A-3. Harmontc operator for irregular star in X-Y grid.
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APPENDIX .B

EXTENSION OF-MODEL TO HOLLOW SHAFTS

This would appear to be a slmPle matter of solving the
governing PDE over a multiply-connected boundary, were it
not for the uncertainty conqernlng boundary conditions. The
actual value of the problem-variable at the boundary was not
important in the torsion application, only the difference
in the problem variable at variOus., points mattered. The
problem variable at the boundary could be assumed to have
any value, as long as there was only one boundary. With

two or more boundaries the solution calls for a different
approach.

The stress function is obtained as the superposition’
of two solutions, one of which is adjusted by a factor (k).
This is the programmed solution to shafts with a hole.
The hole may be of any shape, size, and location. The two
solutions, to he combined, are shown in figure B-1: equa-
tions and boundary conditions. Once the contour integrals
are taken around the inner boundary of area A , the only
unknown, k, may be readily obtained. PThe con our integral,
which need not be evaluated around the’actual boundary,
may be taken around any contour that encloses that boundary,
and includes none other, (for example, see shaded area AB)
in figure B-1.

..,.
i.

,. ,,

.’, 1

‘F.S. Shaw, The Torsion of Solid and Hollow Prisms in the
Elastic and~ic Range by Relaxation Methods, Austral-
ian Council for Aeronautics, Report ACA-11, November 1944,
pp 8,11,23.

,., ., .,, ..~.,
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.

.,
,.:

V2*O=L2. ‘, ,.. .
“-,””~’2w;1= ~

,., ,,’. ., :..,’,. ,.
. . .-. .:~ ;:, ..., ,,

,. ,,

,.

I I I 1

m:’:.:.flI I I I I

-....-

. .,:

Figure B-1 . Mathematical approach to hollow shaft problem
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