MIL-HDBK-217E
27 OCTOBER 1986
SUPERSEDING
MIL-HDBK-217D
15 JANUARY 1982

MILITARY HANDBOOK

RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

AMSC N/A

DEPARTMENT OF DEFENSE WASHINGTON DC 20301

RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

- 1. This standardization handbook was developed by the Department of Defense with the assistance of the military departments, federal agencies, and industry.
- 2. Every effort has been made to reflect the latest information on reliability prediction procedures. It is the intent to review this hand-book periodically to ensure its completeness and currency.
- 3. Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Commander, Rome Air Development Center, AFSC, ATTN: RBE-2, Griffiss Air Force Base, New York 13441-5700, by using the self-addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

FOREWORD

This revision, based upon recently completed studies, provides the following changes:

- l. An environmental factor $(\pi_{\text{E}}, \text{ GMS})$ in all failure rate models for equipment installed in missile silos.
 - 2. New failure rate models for:
 - a. Surface Acoustic Wave (SAW) Devices.
 - b. Semiconductor Lasers.
 - c. Helium/Cadmium Lasers.
 - d. Solid State Relays.
 - e. Time Delay Relays.
 - f. Thumbwheel Switches.
 - q. Integrated Circuit Sockets.
 - h. Meters.
 - i. Filters.
 - j. Vidicons.
 - k. Very Large Scale Integrated Circuits (VLSI).
 - Analog Microprocessors.
 - 3. Revised failure rate models for:
 - a. Magnetrons.
 - b. Circuit Breakers.
 - c. Incandescent Lamps.
 - d. Fuses.
 - e. Crystals.
 - f. Cathode Ray Tubes (CRTs).

CONTENTS

<u>Paragraph</u>		<u>Page</u>
1.	SCOPE	1-1
1.1	Purpose	1-1
1.2	Application	1-1
1.3	Computerized Reliability Prediction	1-1
2.	REFERENCED DOCUMENTS	2-1
2.1	Government documents	2-1
2.2	Nongovernment documents	2-7
3.	DEFINITIONS	3-1
4.	GENERAL REQUIREMENTS	4-1
4.1	The reliability problem	4-1
4.2	The role of reliability prediction in	4-1
	engineering	
4.3	Limitations of reliability predictions	4-2
5.	DETAILED REQUIREMENTS	5.1.1-1
5.1	Part stress analysis prediction	5.1.1-1
5.1.1.1	Applicability	5.1.1-1
5.1.1.2	Part quality	5.1.1-1
5.1.1.3	Use environment	5.1.1-2
5.1.1.4	Part failure rate models	5.1.1-6
5.1.1.5	Thermal aspects	5.1.1-7
5.1.2	Microelectronic devices	5.1.2-1
5.1.2.1	Monolithic bipolar and MOS digital devices,	5.1.2.1-1
	including shift registers, programmable	
	logic arrays (PLA) and programmable array	
	logic (PAL)	
5.1.2.2	Monolithic bipolar and MOS linear devices	5.1.2.2-1

Paragraph		<u>Page</u>
5.1.2.3	Monolithic bipolar and MOS digital	5.1.2.3-1
5.1.2.4	microprocessor devices Monolithic bipolar and MOS random access	5.1.2.4-1
	memories (RAMs)	
5.1.2.5	Monolithic bipolar and MOS read only	5.1.2.5-1
	memories (ROMs) and programmable read only memories (PROMs)	
5.1.2.6	Monolithic bipolar, MOS Analog Microprocessor	5.1.2.6-1
	devices	
5.1.2.7	Tables for the monolithic model Parameters	5.1.2.7-1
5.1.2.8	Example failure rate calculations for	5.1.2.8-1
	monolithic devices	
5.1.2.9	Hybrid microcircuit	5.1.2.9-1
5.1.2.10	Magnetic Bubble Memories	5.1.2.10-1
5.1.2.11	Surface Acoustic Wave (SAW) devices	5.1.2.11-1
5.1.3	Discrete Semiconductors	5.1.3-1
5.1.3.1	Transistors, Conventional, Group I	5.1.3.1-1
5.1.3.2	Transistors, Si & GaAs FET, Group II	5.1.3.2-1
5.1.3.3	Transistors, Unijunction, Group III	5.1.3.3-1
5.1.3.4	Diodes, General Purpose, Group IV	5.1.3.4-1
5.1.3.5	Diodes, Zener & Avalanche, Group V	5.1.3.5-1
5.1.3.6	Diodes, Thyristor and SCR, Group VI	5.1.3.6-1
5.1.3.7	Diodes, Microwave, Group VII	5.1.3.7-1
5.1.3.8	Diodes, Varactor, PIN, IMPATT, Step	5.1.3.8-1
	Recovery, Tunnel & Gunn, Group VIII	
5.1.3.9	Transistors, Microwave, Group IX	5.1.3.9-1
5.1.3.10	Opto-electronic Semiconcudtor Devices,	5.1.3.10-1
	Group X	

Paragraph		<u>Page</u>
5.1.3.11	Semiconductor Laser Devices, Group XI	5.1.3.11.1
5.1.3.12	Instructions for Use of Semiconductor Models	5.1.3.12-1
5.1.3.13	Examples of Use of Semiconductor Models	5.1.3.13-1
5.1.4	Tubes	5.1.4.1-1
5.1.4.1	All Types Except Traveling Wave Tubes and	5.1.4.1-1
	Magnetrons	
5.1.4.2	Traveling Wave Tubes	5.1.4.2-1
5.1.4.3	Magnetrons	5.1.4.3-1
5.1.5	Lasers	5.1.5-1
5.1.5.1	Helium/Neon Lasers	5.1.5-3
5.1.5.2	Argon Ion Lasers	5.1.5-4
5.1.5.3	Carbon Dioxide, Sealed Lasers	5.1.5-5
5.1.5.4	Carbon Dioxide, Flowing Lasers	5.1.5-6
5.1.5.5	Solid State, Nd: YAG Rod Lasers	5.1.5-7
5.1.5.6	Solid State, Ruby Rod Lasers	5.1.5-9
5.1.5.7	Tables and Figures for Laser Model	5.1.5-11
	Parameters	
5.1.5.8	Examples of Laser Failure Rate Prediction	5.1.5-20
5.1.6	Resistors	5.1.6-1
5.1.6.1	Composition Resistors	5.1.6.1-1
5.1.6.2	Film Resistors	5.1.6.2-1
5.1.6.3	Resistor Networks	5.1.6.3-1
5.1.6.4	Wirewound Resistors	5.1.6.4-1
5.1.6.5	Thermistors	5.1.6.5-1
5.1.6.€	Variable Wirewound Resistors	5.1.6.6-1
5.1.6.7	Variable Nonwirewound Resistors	5.1.6.7-1
5.1.6.8	Calculation for S, Taps, and Ganging	5.1.6.8-1
5.1.6.9	Example Failure Rate Calculations	5.1.6.9-1

<u>Paragraph</u>		<u>Page</u>
5.1.7	Capacitors	5.1.7-1
5.1.7.1	Paper & Plastic Film Capacitors	5.1.7.1-1
5.1.7.2	Mica Capacitors	5.1.7.2-1
5.1.7.3	Glass Capacitors	5.1.7.3-1
5.1.7.4	Ceramic Capacitors	5.1.7.4-1
5.1.7.5	Tantalum Electrolytic Capacitors	5.1.7.5-1
5.1.7.6	Aluminum Electrolytic Capacitors	5.1.7.6-1
5.1.7.7	Variable Ceramic	5.1.7.7-1
5.1.7.8	Variable Capacitor, Piston Type	5.1.7.8-1
5.1.7.9	Variable Air Trimmer Capacitors	5.1.7.9-1
5.1.7.10	Variable and Fixed, Gas and Vacuum Capacitors	5.1.7.10-1
5.1.7.11	Example Failure Rate Calculations	5.1.7.11-1
5.1.8	Inductive Devices	5.1.8-1
5.1.8.1	Transformers	5.1.8.1-1
5.1.8.2	Coils	5.1.8.2-1
5.1.8.3	Determination of Hot-spot Temperature	5.1.8.3-1
5.1.8.4	Prediction Methodology	5.1.8.4-1
5.1.8.5	Example Failure Rate Calculation	5.1.8.5-1
5.1.9	Rotating Devices	5.1.9.1-1
5.1.9.1	Motors	5.1.9.1-1
5.1.9.2	Synchros and Resolvers	5.1.9.2-1
5.1.9.3	Elapsed Time Meters	5.1.9.3-1
5.1.9.4	Example Failure Rate Calculations	5.1.9.4-1
5.1.10	Relays	5.1.10.1-1
5.1.10.1	Mechanical Relays	5.1.10.1-1
5.1.10.2	Solid State Relays	5.1.10.2-1
5.1.10.3	Hybrid and Solid State Time Delay Relays	5.1.10.3-1

Downloaded from http://www.everyspec.com

MIL-HDBK-217E

Paragraph		<u>Page</u>
5.1.11	Switches	5.1.11.1-1
5.1.11.1	Toggle or Pushbutton	5.1.11.1-1
5.1.11.2	Basic Sensitive	5.1.11.2-1
5.1.11.3	Rotary (wafer)	5.1.11.3-1
5.1.11.4	Thumbwhee 1	5.1.11.4-1
5.1.11.5-1	Circuit Breakers	5.1.11.5-1
5.1.11.6	Example Failure Rate Calculations for Switches	5.1.11.6-1
5.1.12	Connectors	5.1.12.1-1
5.1.12.1	Connectors, General	5.1.12.1-1
5.1.12.2	Printed Circuit Board Connector	5.1.12.2-1
5.1.12.3	Integrated Circuit (IC) Socket	5.1.12.3-1
	Prediction Procedure	
5.1.12.4	Example Failure Rate Calculations	5.1.12.4-1
5.1.13	Interconnection Assemblies	5.1.13-1
5.1.14	Connections	5.1.14-1
5.1.15	Meters	5.1.15-1
5.1.16	Quartz Crystals	5.1.16-1
5.1.17	Lamps	5.1.17-1
5.1.17.1	Lamps, Incandescent	5.1.17-1
5.1.17.2	Examples for Lamp Models	5.1.17-3
5.1.18	Electonic Filters	5.1.18-1
5.1.18.1	Examples for Electronic Filters	5.1.18-4
5.1.19	Fuses	5.1.19-1
5.1.20	Miscellaneous Parts	5.1.20-1
5.2	Parts Count Reliability Prediction	5.2-1
	Bibliography	A-1

TABLES

<u>Table</u>		<u>Page</u>
5.1.1-1	Major Part Categories for Stress Analysis	5.1.1-1
5.1.1-2	Parts with Multi-Level Quality Specifications	5.1.1-2
5.1.1-3	Environmental Symbol Identification and	5.1.1-3
	Description	
5.1.1-4	π Factors for Failure Rate Models Except	5.1.1-8
	Microelectronics	
5.1.2.7-1	π_{O} , Quality Factor	5.1.2.7-1
5.1.2.7-2	π_{l} , Learning Factor	5.1.2.7-2
5.1.2.7-3	π _E , Application Environment Factor	5.1.2.7-2
5.1.2.7-4	Technology Temperature Factor Tables	5.1.2.7-3
5.1.2.7-5	π_{T} vs. Junction Temperature for Hermetic ASTTL,	5.1.2.7-6
	CML, TTL, HTTL, DTL, ECL, FTTL & ALSTTL	
5.1.2.7-6	η_{T} vs. Junction Temperature for Hermetic	5.1.2.7-6
	LTTL & STTL; Nonhermetic ASTTL, CML, TTL,	
	HTTL, DTL, ECL, FTTL & ALSTTL	•
5.1.2.7-7	$\pi_{\mathcal{T}}$ vs. Junction Temperature for Hermetic	5.1.2.7-7
	LSTTL, PMOS, NMOS & HMOS; Nonhermetic LTTL	
	& STTL	
5.1.2.7-8	π_{T} vs. Junction Temperature for Hermetic	5.1.2.7-7
	CMOS, HCMOS, HTCMOS & CMOS/SOS Nonhermetic	
	LSTTL	
5.1.2.7-9	π_{T} vs. Junction Temperature for Hermetic	5.1.2.7-8
	IIL, I ³ L, ISL & MNOS	
5.1.2.7-10	π_{T} vs. Junction Temperature for Hermetic	5.1.2.7-8
	Linear	
5.1.2.7-11	π _T vs. Junction Temperature for Nonhermetic	5.1.2.7-9

<u>Table</u>		<u>Page</u>
5.1.2.7-12	π_T vs. Junction Temperature for Nonhermetic IIL, I 3 L, ISL, MNOS, CMOS, HCMOS, HTCMOS & CMOS/SOS	5.1.2.7-9
5.1.2.7-13	π_{T} vs. Junction Temperature for Nonhermetic Linear	5.1.2.7-10
5.1.2.7-14	π_V , Voltage Stress Derating Factor	5.1.2.7-11
5.1.2.7-15	$\pi_{ m V}$ for CMOS with V $_{ m DD}$ 12 to 20 Volts	5.1.2.7-12
5.1.2.7-16	C ₂ , Package Complexity Failure Rates	5.1.2.7-13
5.1.2.7-17	Cross Reference for Commercial Type to	5.1.2.7-14
	MIL-M-38510 Type	
5.1.2.7-18	Microelectronic Parameters	5.1.2.7-23
5.1.2.9-1	Die and Capacitor Chip Correction Factors	5.1.2.9-2
5.1.2.9-2	Base Failure Rates for Chip or Substrate	5.1.2.9-3
•	Resistors	
5.1.2.9-3	Interconnections Failure Rate (λ_I)	5.1.2.9-5
5.1.2.9-4	Package Failure Rate (λ_S)	5.1.2.9-7
5.1.2.9-5	Environmental Factor for Resistors,	5.1.2.9-8
	Interconnections and Packages	
5.1.2.9-6	Quality Factors, π _O	5.1.2.9-10
5.1.2.9-7	Density Factor, π_{D}	5.1.2.9-11
5.1.2.10-1	Device Complexity Failure Rates for C ₁₁ & C ₂₁	5.1.2.10-3
	Control and Detection Structure in Magnetic	
	Bubble Devices	
5.1.2.10-2	C ₁₂ & C ₂₂ Device Complexity Failure Rates	5.1.2.10-4
	for Memory Storage Structure for Magnetic	
,	Bubble Devices	

<u>Table</u>		<u>Page</u>
5.1.2.10-3	$\pi_{\mathrm{D}},$ Duty Cycle Factor, for Magnetic Bubble Devices	5.1.2.10-4
5.1.2.10-4	π_{W} , Write Duty Cycle Factor, for Magnetic Bubble Devices	5.1.2.10-5
5.1.2.11	π_{F} for SAWS	5.1.2.11-1
5.1.3-1	Discrete Semiconductor Generic Groups	5.1.3-1
5.1.3-2	Discrete Semiconductor Base Failure Rate	5.1.3-3
5.1.3.1-1	π_{E} for Group I Transistors	5.1.3.1-1
5.1.3.1-2	π_A for Group I Transistors	5.1.3.1-2
5.1.3.1-3	π_0 , Quality Factor for Group I Transistors	5.1.3.1-2
5.1.3.1-4	π_{R} for Group I Transistors	5.1.3.1-2
5.1.3.1-5	π_{S2} for Group I Transistors	5.1.3.1-3
5.1.3.1-6	$\pi_{\mathbb{C}}$ for Group I Transistors	5.1.3.1-3
5.1.3.1-7	Base Failure Rate for Silicon NPN, Group I Transistors	5.1.3.1-4
5.1.3.1-8	Base Failure Rate for Silicon PNP, Group I Transistors	5.1.3.1-5
5.1.3.1-9	Base Failure Rate for Germanium PNP, Group I Transistors	5.1.3.1-6
5.1.3.1-10	Base Failure Rate for Germanium NPN, Group I Transistors	5.1.3.1-6
5.1.3.2-1	π_F for Group II Transistors	5.1.3.2-1
5.1.3.2-2	π_A for Group II Transistors	5.1.3.2-2
5.1.3.2-3	π _C for Group II Transistors	5.1.3.2-2
5.1.3.2-4	π_0 , Quality Factor for Group II Transistors	5.1.3.2-2
5.1.3.2-5	Base Failure Rate for FET, Group II Transistors	5.1.3.2-3
5.1.3.3-1	π_{E} for Group III Transistors	5.1.3.3-1
5.1.3.3-2	π _O Quality Factor	5.1.3.3-2

<u>Table</u>		<u>Page</u>
5.1.3.3-3	Base Failure Rate for Unijunction, Group III Transistors	5.1.3.3-2
5.1.3.4-1	π_{F} for Group IV Diodes	5.1.3.4-1
5.1.3.4-2	π_0 , Quality Factor	5.1.3.4-2
5.1.3.4-3	π _R for Group IV Diodes	5.1.3.4-2
5.1.3.4-4	π_{A}^{C} for Group IV Diodes	5.1.3.4-2
5.1.3.4-5	π_{S2} for Group IV Diodes	5.1.3.4-3
5.1.3.4-6	π_{C} , Construction Factor	5.1.3.4-3
5.1.3.4-7	Base Failure Rate for Silicon, Group IV Diodes	5.1.3.4-4
5.1.3.4-8	Base Failure Rate for Gemanium, Group IV Diodes	5.1.3.4-5
5.1.3.5-1	π_{F} for Group V Diodes	5.1.3.5-1
5.1.3.5-2	π_{A} for Group V Diodes	5.1.3.5-2
5.1.3.5-3	π ₀ , Quality Factor	5.1.3.5-2
5.1.3.5-4	Base Failure Rate for Zener, Group V Diodes	5.1.3.5-3
5.1.3.6-1	π _F for Group VI Diodes	5.1.3.6-1
5.1.3.6-2	π_Q , Quality Factor	5.1.3.6-2
5.1.3.6-3	π_R for Group VI Thyristors	5.1.3.6-3
5.1.3.6-4	Base Failure Rate for Thyristors, Group VI Diodes	5.1.3.6-2
5.1.3.7-1	π _E for Group VII Diodes	5.1.3.7-1
5.1.3.7-2	π_0 , Quality Factor	5.1.3.7-2
5.1.3.7-3	Base Failure Rate for Si Detectors, Group VII Diodes	5.1.3.7-3
5.1.3.7-4	Base Failure Rate for Ge Detectors, Group VII Diodes	5.1.3.7-3
5.1.3.7-5	Base Failure Rate for Si Mixers, Group VII Diodes	5.1.3.7-4
5.1.3.7-6	Base Failure Rate for Ge Mixers, Group VII Diodes	5.1.3.7-4

<u>Table</u>		<u>Page</u>
5.1.3.7-7	Base Failure Rate for Si Schottky Detectors, Group VII Diodes	5.1.3.7-5
5.1.3.8-1	π_{F} for Group VIII Diodes	5.1.3.8-1
5.1.3.8-2	π ₀ , Quality Factor	5.1.3.8-2
5.1.3.8-3	π_R , Power Rating Factor	5.1.3.8-2
5.1.3.8-4	π _A , Application Factor	5.1.3.8-2
5.1.3.8-5	Base Failure Rate for Group VIII Diodes	5.1.3.8-3
5.1.3.9-1	π_0 , Quality Factor for Group IX Transistors	5.1.3.9-1
5.1.3.9-2	π_A , Application Factor, Group IX transistors	5.1.3.9-2
5.1.3.9-3	π _F , Factor for Operating Power & Frequency	5.1.3.9-2
5.1.3.9-4	π_{T} , Temperature Factor	5.1.3.9-3
5.1.3.9-5	π_{M} , Matching Network Factor	5.1.3.9-4
5.1.3.9-6	π_E , Environmental Factor	5.1.3.9-4
5.1.3.10-1	π_{E} , Environmental Factor for Group X	5.1.3.10-1
5.1.3.10-2	π_{T} , Temperature Factor for Group X	5.1.3.10-2
5.1.3.10-3	Base Failure Rate for Group X	5.1.3.10-3
5.1.3.10-4	π_{0} , Quality Factor	5.1.3.10-3
5.1.3.11-1	π_{E} , Environmental Factors for Group XI	5.1.3.11-3
5.1.3.11-2	Degradation Equation Parameters for Group XI	5.1.3.11-3
5.1.3.11-3	π_{T} , Temperature Factors	5.1.3.11-3
5.1.3.11-4	$\pi_{\mathbb{C}}$, Construction Factors	5.1.3.11-3
5.1.3.11-5	π_{A}^{T} , Application Factor	5.1.3.11-3
5.1.3.11-6	π_F , Pulsed Duty Cycle Factors	5.1.3.11-4
5.1.3.11-7	$\pi_{ m I}$, Forward Current Factor	5.1.3.11-4
5.1.4.1-1	$\pi_{ extsf{b}}$, Base Failure Rates for Tubes	5.1.4.1-1
5.1.4.1-2	π_b , Base Failure Rate for CW. Klystrons	5.1.4.1-3
5.1.4.1-3	π_b , Base Failure Rate for Pulsed Klystrons	5.1.4.1-4
5.1.4.1-4	π_{E} , Environmental Factor for All Tubes	5.1.4.1-5
5.1.4.1-5	π_L , Learning Factor for All Tubes	5.1.4.1-5

<u>Table</u>		Page
5.1.4.2-1	π _h , Base Failure Rate for TWTs	5.1.4.2-1
5.1.4.2-2	Environmental Factors for TWTs	5.1.4.2-2
5.1.4.3-1	Utilization Factors for Magnetrons	5.1.4.3-1
5.1.4.3-2	π_{F} , Environmental Factors for Magnetrons	5.1.4.3-2
5.1.4.3-3	Base Failure Rate for Pulsed Magnetrons	5.1.4.3-2
5.1.5.7-1	π_{F} , Environmental Factor for Lasers	5.1.5-11
5.1.5.7-2	π_0 , Gas Overfill Factor	5.1.5-11
5.1.5.7-3	π _B , Ballast Factor	5.1.5-11
5.1.5.7-4	λ _{MEDIA} Values for CO ₂ Sealed Lasers	5.1.5-12
5.1.5.7-5	λ _{COUPLING} Values for CO ₂ Flowing Lasers	5.1.5-14
5.1.5.7-6	π_{REP} , Repetition Rate Factor	5.1.5-15
5.1.5.7-7	π_{COOL} , Flashlamp Cooling Factor	5.1.5-15
5.1.5.7-8	π _C , Coupling Cleanliness Factor	5.1.5-16
5.1.6-1	Fixed Resistor Base Failure Rate Factors	5.1.6-3
5.1.6-2	Variable Resistor Base Failure Rate Factors	5.1.6-3
5.1.6.1-1	π_{F} , Environmental Factor, Composition Resistors	5.1.6.1-1
5.1.6.1-2	π_R , Resistance Factor, Composition Resistors	5.1.6.1-1
5.1.6.1-3	$\pi_0^{}$, Quality Factor, Composition Resistors	5.1.6.1-2
5.1.6.1-4	Base Failure Rate for Composition Resistors	5.1.6.1-3
5.1.6.2-1	π_{F} , Environmental Factor, Film Resistors	5.1.6.2-1
5.1.6.2-2	$\pi_{ extsf{R}}$, Resistance Factor, Film Resistors	5.1.6.2-2
5.1.6.2-3	π ₀ , Quality Factor, Film Resistors	5.1.6.2-2
5.1.6.2-4	Base Failure Rate for Film Resistors,	5.1.6.2-3
	MIL-M-22684 and MIL-R-39017	
5.1.6.2-5	Base Failure Rate for Film Resistors,	5.1.6.2-4
	MIL-R-10509 and MIL-R-55182	
5.1.6.2-6	π_{F} , Environmental Factor, Power Film Resistors	5.1.6.2-5

Table		Page
5.1.6.2-7 5.1.6.2-8 5.1.6.2-9 5.1.6.3-1 5.1.6.3-2 5.1.6.3-3 5.1.6.4-1	π_Q , Quality Factor, Power Film Resistors π_R , Resistance Factor, Power Film Resistors Base Failure Rate for Power Film Resistors π_T , Temperature Factor, Resistor Networks π_E , Environmental Factor, Resistor Networks π_Q , Quality Factor, Resistor Networks π_E , Environmental Factor, Accurate Fixed Wirewound	5.1.6.2-6 5.1.6.2-6 5.1.6.2-7 5.1.6.3-2 5.1.6.3-2 5.1.6.3-2 5.1.6.4-1
5.1.6.4-2 5.1.6.4-3 5.1.6.4-4 5.1.6.4-5	π_R , Resistance Factor, Accurate Fixed Wirewound π_Q , Quality Factor, Accurate Fixed Wirewound Base Failure Rate for Wirewound Accurate Resistors π_E , Environmental Factor, Power Fixed Wirewound	5.1.6.4-1 5.1.6.4-1 5.1.6.4-2 5.1.6.4-3
5.1.6.4-6 5.1.6.4-7 5.1.6.4-8	π_Q , Quality Factor, Power Fixed Wirewound π_R , Resistance Factor, Power Fixed Wirewound Base Failure Rate for Power Wirewound	5.1.6.4-3 5.1.6.4-4 5.1.6.4-6
5.1.6.4-9 5.1.6.4-10	Resistors π _E , Environmental Factor, Power Chassis Wirewound	5.1.6.4-7
5.1.6.4-11 5.1.6.4-12	π_Q , Quality Factor, Power Chassis Wirewound π_R , Factor, Power Chassis Wirewound Base Failure Rate for Wirewound Chassis	5.1.6.4-7 5.1.6.4-8 5.1.6.4-9
5.1.6.5-1 5.1.6.6-1 5.1.6.6-2	Mounted Resistors π_E Environmental Mode Factor, Bead, Disk & Rod π_E , Environmental Factor, Variable Wirewound π_R , Resistance Factor, Variable Wirewound	5.1.6.5-1 5.1.6.6-1 5.1.6.6-2

Downloaded from http://www.everyspec.com

MIL-HDBK-217E

<u>Table</u>		<u>Page</u>
5.1.6.6-3 5.1.6.6-4 5.1.6.6-5	π_Q , Quality Factor, Variable Wirewound π_V , Voltage Factor, Variable Wirewound Base Failure Rate for Leadscrew Wirewound	5.1.6.6-2 5.1.6.6-2 5.1.6.6-3
5.1.6.6-6 5.1.6.6-7 5.1.6.6-8	Trimmer π_E , Environmental Factor, Precision Wirewound π_Q , Quality Factor, Precision Wirewound π_C , Construction Class Factor, Precision	5.1.6.6-4 5.1.6.6-4 5.1.6.6-5
5.1.6.6-9 5.1.6.6-10 5.1.6.6-11	Wirewound π_R , Resistance Factor, Precision Wirewound π_V , Voltage Factor, Precision Wirewound Base Failure Rate for MIL-R-12934, Precision	5.1.6.6-5 5.1.6.6-5 5.1.6.6-6
5.1.6.6-12	Wirewound TE, Environmental Factor, Semiprecision Wirewound	5.1.6.6-7
5.1.6.6-13 5.1.6.6-14 5.1.6.6-15	π_Q , Quality Factor, Semiprecision Wirewound π_R , Resistance Factor, Semiprecision Wirewound π_V , Voltage Factor, Semiprecision Wirewound	5.1.6.6-7 5.1.6.6-8 5.1.6.6-8
5.1.6.6-16 5.1.6.6-17 5.1.6.6-18 5.1.6.6-19	Base Failure Rate for MIL-R-19 & MIL-R-39002 π_E , Environmental Factor, High Power π_Q , Quality Factor, High Power π_R , Resistance Factor, High Power	5.1.6.6-9 5.1.6.6-10 5.1.6.6-10 5.1.6.6-11
5.1.6.6-20 5.1.6.6-21 5.1.6.6-22	π_R , Resistance Factor, High Power π_V , Voltage Factor, High Power π_C , Construction Class Factor, High Power Base Failure Rate for MIL-R-22	5.1.6.6-11 5.1.6.6-12
5.1.6.7-1 5.1.6.7-2	π_{E} , Environmental Factor, Variable Nonwirewound π_{O} , Quality Factor, Variable Nonwirewound	5.1.6.7-1 5.1.6.7-1

Table		<u>Page</u>
5.1.6.7-3	π_R , Resistance Factor, Variable Nonwirewound	5.1.6.7-2
5.1.6.7-4	π _V , Voltage Factor, Nonwirewound Trimmers	5.1.6.7-2
5.1.6.7-5	Base Failure Rate for MIL-R-22097 & MIL-R-39035	5.1.6.7-3
5.1.6.7-6	π_{E} , Environmental Factor, Low Precision	5.1.6.7-4
5.1.6.7-7	π_0 , Quality Factor, Low Precision	5.1.6.7-4
5.1.6.7-8	π_R , Resistance Factor, Low Precision	5.1.6.7-5
5.1.6.7-9	π_V , Voltage Factor, Low Precision	5.1.6.7-5
5.1.6.7-10	Base Failure Rate for MIL-R-94	5.1.6.7-6
5.1.6.7-11	π _F , Environmental Factor, Variable Film &	5.1.6.7-7
	Precision	
5.1.6.7-12	π_0 , Quality Factor, Variable Film & Precision	5.1.6.7-7
5.1.6.7-13	π _R , Resistance Factor, Variable Film &	5.1.6.7-8
	Precision	
5.1.6.7-14	π_{V} , Voltage Factor, Variable Film & Precision	5.1.6.7-8
5.1.6.7-15	Base Failure Rate for MIL-R-23285	5.1.6.7-9
5.1.6.7-16	Base Failure Rate for MIL-R-39023	5.1.6.7-10
5.1.6.8-1	Calculation of S for Rheostats	5.1.6.8-1
5.1.6.8-2	Calculation of S for Potentiometers	5.1.6.8-2
5.1.6.8-3	π _{eff} , Loaded Potentiometer Derating Factor	5.1.6.8-4
5.1.6.8-4	π _{qanged} , Ganged Potentiometer Factor	5.1.6.8-5
5.1.6.8-5	π _{taps} , Potentiometer Taps Factor	5.1.6.8-5
5.1.7-1	Fixed Capactitor Base Failure Rate Constants	5.1.7-4
5.1.7-2	Variable Capacitor Base Failure Rate Constants	5.1.7-7
5.1.7.1-1	π_E , Environmental Factor, Paper & Plastic Film Capacitors	5.1.7.1-1
5.1.7.1-2	Base Failure Rate Tables for Capacitor Spec. and Style	5.1.7.1-1

<u>Table</u>		<u>Page</u>
5.1.7.1-3	π _O , Quality Factor	5.1.7.1-2
5.1.7.1-4	π _{CV} , Capacitance Factor	5.1.7.1-2
5.1.7.1-5	Base Failure Rate for MIL-C-25 & -12889 (85°C. rated)	5.1.7.1-3
5.1.7.1-6	Base Failure Rate for MIL-C-25 & -12889 (125 ⁰ C. rated)	5.1.7.1-4
5.1.7.1-7	π_{E} , Environmental Factor	5.1.7.1-5
5.1.7.1-8	Base Failure Rate Tables for Capacitor Spec. and Style	5.1.7.1-5
5.1.7.1-9	π_0 , Quality Factor	5.1.7.1-5
5.1.7.1-10	π _{CV} , Capacitance Factor	5.1.7.1-5
5.1.7.1-11	Base Failure Rate for MIL-C-11693 (85 ⁰ C. rated)	5.1.7.1-6
5.1.7.1.12	Base Failure Rate for MIL-C-11693 (125°C. rated)	5.1.7.1-7
5.1.7.1-13	Base Failure Rate for MIL-C-11693 (150°C. rated)	5.1.7.1-8
5.1.7.1-14	π _E , Environmental Factor	5.1.7.1-9
5.1.7.1-15	Base Failure Rate Tables for Capacitor Spec. and Style	5.1.7.1-9
5.1.7.1-16	π_{Q} , Quality Factor	5.1.7.1-10
5.1.7.1-17	π_{CV} , Capacitance Factor	5.1.7.1-10
5.1.7.1-18	Base Failure Rate for MIL-C-14157 & -19978 (65 ⁰ C. rated)	5.1.7.1-11
5.1.7.1-19	Base Failure Rate for MIL-C-14157 & -19978 (85 ⁰ C. rated)	5.1.7.1-12
5.1.7.1-20	Base Failure Rate for MIL-C-14157 & -19978 (125 ^O C. rated)	5.1.7.1-13
5.1.7.1-21	Base Failure Rate for MIL-C-19978 (170°C. rated)	5.1.7.1-14

<u>Table</u>		<u>Page</u>
5.1.7.1-22	π _E , Environmental Factor	5.1.7.1-15
5.1.7.1-23	Base Failure Rate Tables for Capacitor Spec. and Style	5.1.7.1-15
5.1.7.1-24	π _O , Quality Factor	5.1.7.1-16
5.1.7.1-25	π _{CV} , Capacitance Factor	5.1.7.1-16
5.1.7.1-26	Base Failure Rate for MIL-C-18312 & -39022 (85 ⁰ C. rated)	5.1.7.1-17
5.1.7.1-27	Base Failure Rate for MIL-C-18312 & -39022 (125 ⁰ C. rated)	5.1.7.1-18
5.1.7.1-28	π_{F} , Environmental Factor	5.1.7.1-19
5.1.7.1-29	Base Failure Rate Tables for Capacitor Spec. and Style	5.1.7.1-19
5.1.7.1-30	π_{O} , Quality Factor	5.1.7.1-20
5.1.7.1-31	π _{CV} , Capacitance Factor	5.1.7.1-20
5.1.7.1-32	Base Failure Rate for MIL-C-55514 (85°C. rated)	5.1.7.1-21
5.1.7.1-33	Base Failure Rate for MIL-C-55514 (125 ⁰ C. rated)	5.1.7.1-22
5.1.7.1-34	π_{F} , Environmental Factor	5.1.7.1-23
5.1.7.1-35	π ₀ , Quality Factor	5.1.7.1-23
5.1.7.1-36	π _{CV} , Capacitance Factor	5.1.7.1-23
5.1.7.1-37	Base Failure Rate for MIL-C-83421 (125°C. rated)	5.1.7.1-24
5.1.7.2-1	π _F , Environmental Factor	5.1.7.2-1
5.1.7.2-2	Base Failure Rate Tables for Capacitor Spec. & Style	5.1.7.2-1
5.1.7.2-3	πο. Quality Factor	5.1.7.2-2

Table		<u>Page</u>	
5.1.7.2-4	π _{CV} , Capacitance Factor	5.1.7.2-2	
5.1.7.2-5	Base Failure Rate for MIL-C-5 (70 ⁰ C. rated)	5.1.7.2-3	
5.1.7.2-6	Base Failure Rate for MIL-C-5 (85 ⁰ C. rated)	5.1.7.2-4	
5.1.7.2-7	Base Failure Rate for MIL-C-5 & -3900l (125 ⁰ C. rated)	5.1.7.2-5	
5.1.7.2-8	Base Failure Rate for MIL-C-5 & -39001 (150 ⁰ C. rated)	5.1.7.2-6	
5.1.7.2-9	π_{F} , Environmental Factor	5.1.7.2-7	
5.1.7.2-10	Base Failure Rate Tables for Capacitor Spec. & Style	5.1.7.2-7	
5.1.7.2-11	π _O , Quality Factor	5.1.7.2-7	
5.1.7.2-12	π _{CV} , Capacitance Factor	5.1.7.2-8	
5.1.7.2-13	Base Failure Rate for MIL-C-10950 (85°C. rated)	5.1.7.2-9	
5.1.7.2-14	•	5.1.7.2-10	
5.1.7.3-1	π_{F} , Environmental Factor	5.1.7.3-1	
5.1.7.3-2	Base Failure Rate Tables for Capacitor Spec. & Style	5.1.7.3-1	
5.1.7.3-3	π ₀ , Quality Factor	5.1.7.3-1	. ;
5.1.7.3-4	π _{CV} , Capacitance Factor	5.1.7.3-1	٠.
5.1.7.3-5	Base Failure Rate for MIL-C-11272 & -23269 (125°C. rated)	5.1.7.3-2	
5.1.7.3-6	Base Failure Rate for MIL-C-11272 (200°C. rated)	5.1.7.3-3	
5.1.7.4-1	π_{E} , Environmental Factor	5.1.7.4-1	
5.1.7.4-2	π_0 , Quality Factor	5.1.7.4-1	

<u>Table</u>		<u>Page</u>
5.1.7.4-3	π _{CV} , Capacitance Factor	5.1.7.4-1
5.1.7.4-4	Base Failure Rate for MIL-C-11015 & -39014 (85 ⁰ C. rated)	5.1.7.4-2
5.1.7.4-5	Base Failure Rate for MIL-C-11015 & -39014 (125 ⁰ C. rated)	5.1.7.4-3
5.1.7.4-6	Base Failure Rate for MIL-C-11015 & -39014 (150°C. rated)	5.1.7.4-4
5.1.7.4-7	π_{F} , Environmental Factor	5.1.7.4-5
5.1.7.4-8	Base Failure Rate Tables for Capacitor Spec. & Style	5.1.7.4-5
5.1.7.4-9	$π_0$, Quality Factor	5.1.7.4-5
5.1.7.4-10	π _{CV} , Capacitance Factor	5.1.7.4-5
5.1.7.4-11	Base Failure Rate for MIL-C-20 (85 ⁰ C. rated)	5.1.7.4-6
5.1.7.4-12	Base Failure Rate for MIL-C-20 (125 ⁰ C. rated)	5.1.7.4-7
5.1.7.5-1	π _E , Environmental Factor	5.1.7.5-1
5.1.7.5-2	π_{SR} , Series Resistance Factor	5.1.7.5-1
5.1.7.5-3	π _{CV} , Capacitance Factor	5.1.7.5-1
5.1.7.5-4	π_Q , Quality Factor	5.1.7.5-1
5.1.7.5-5	Base Failure Rate for MIL-C-39003	5.1.7.5-2
5.1.7.5-6	π_{F} , Environmental Factor	5.1.7.5-3
5.1.7.5-7	Base Failure Rate Tables for Capacitor Spec.	5.1.7.5-3
	& Style	
5,1,7,5-8	π_0 , Quality Factor	5.1.7.5-4
5.1.7.5-9	π_{CV} , Capacitance Factor	5.1.7.5-4
5.1.7.5-10	$\pi_{\mathcal{C}}$, Construction Factor	5.1.7.5-5
5.1.7.5-11	Base Failure Rate for MIL-C-3965 (85 ⁰ C. rated)	5.1.7.5-6

Downloaded from http://www.everyspec.com

MIL-HDBK-217E

<u>Table</u>		<u>Page</u>
5.1.7.5-12	Base Failure Rate for MIL-C-3965 & -39006 (125 ^O C. rated)	5.1.7.5-7
5.1.7.5-13	Base Failure Rate for MIL-C-3965 (175°C. rated)	5.1.7.5-8
5.1.7.6-1	π_{F} , Environmental Factor	5.1.7.6-1
5.1.7.6-2	π_0 , Quality Factor	5.1.7.6-1
5.1.7.6-3	π _{CV} , Capacitance Factor	5.1.7.6-1
5.1.7.6-4	Base Failure Rate for MIL-C-39018	5.1.7.6-2
5.1.7.6-5	π_{F} , Environmental Factor	5.1.7.6-3
5.1.7.6-6	π_0 , Quality Factor	5.1.7.6-3
5.1.7.6-7	π_{CV} , Capacitance Factor	5.1.7.6-4
5.1.7.6-8	Base Failure Rate for MIL-C-62	5.1.7.6-5
5.1.7.7-1	π_{F} , Environmental Factor	5.1.7.7-1
5.1.7.7-2	Base Failure Rate Tables for Capacitor Spec.	5.1.7.7-1
	& Style	
5.1.7.7-3	π_{0} , Quality Factor	5.1.7.7-1
5.1.7.7-4	Base Failure Rate for MIL-C-81 (85°C. rated)	5.1.7.7-2
5.1.7.7-5	Base Failure Rate for MIL-C-81 (125 ⁰ C. rated)	5.1.7.7-3
5.1.7.8-1	π_{F} , Environmental Factor	5.1.7.8-1
5.1.7.8-2	Base Failure Rate Tables for Capacitor Spec.	5.1.7.8-1
	& Style	
5.1.7.8-3	π_0 , Quality Factor	5.1.7.8-1
5.1.7.8-4	Base Failure Rate for MIL-C-14409	5.1.7.8-2
	(125 ⁰ C. rated)	
5.1.7.8-5	Base Failure Rate for MIL-C-14409	5.1.7.8-3
	(150 ^o C. rated)	
5.1.7.9-1	π_{E} , Environmental Factor	5.1.7.9-1
	-	

<u>Table</u>		<u>Page</u>
5.1.7.9-2	π _Q , Quality Factor	5.1.7.9-1
5.1.7.9-3	Base Failure Rate for MIL-C-92 (85 ⁰ C. rated)	5.1.7.9-2
5.1.7.10-1	π _F , Environmental Factor	5.1.7.10-1
5.1.7.10-2	Base Failure Rate Tables for MIL-C-23183	5.1.7.10-1
	Capacitor Styles	
5.1.7.10-3	π_0 , Quality Factor	5.1.7.10-1
5.1.7.10-4	π_{CF} , Configuration Factor	5.1.7.10-2
5.1.7.10-5	Base Failure Rate Table for MIL-C-23183	5.1.7.10-3
	(85 ⁰ C. rated)	
5.1.7.10-6	Base Failure Rate Table for MIL-C-23183	5.1.7.10-4
	(100 ⁰ C. rated)	
5.1.7.10-7	Base Failure Rate Table for MIL-C-23183	5.1.7.10-5
	(125 ⁰ C. rated)	
5.1.8.1-1	Transformer Base Failure Rate Model Constants	5.1.8.1-2
	vs. Insulation Class	
5.1.8.1-2	π_0 , Quality Factor	5.1.8.1-2
5.1.8.1-3	π _F , Environmental Factor	5.1.8.1-3
5.1.8.1-4	Base Failure Rates for Transformers	5.1.8.1-5
5.1.8.2-1	Coil Base Failure Rate Model Constants	5.1.8.2-2
	vs. Insulation Class	
5.1.8.2-2	π _O , Quality Factor	5.1.8.2-2
5.1.8.2-3	π _E , Environmental Factor	5.1.8.2-3
5.1.8.2-4	π _C , Construction Factor	5.1.8.2-3
5.1.8.2-5	Coil Base Failure Rates	5.1.8.2-4
5.1.8.3-1	Estimate of Average Temperature Rise	5.1.8.3-3
5.1.9.1-1	Bearing and Winding Characteristic Life	5.1.9.1-3

<u>Table</u>		<u>Page</u>
5.1.9.2-1	$\lambda_{\mbox{\scriptsize b}}$ for Synchros & Resolvers vs. Frame Temperature	5.1.9.2-1
5.1.9.2-2	$\pi_{_{\mathbf{S}}}$ for Synchros & Resolvers	5.1.9.2-2
5.1.9.2-3	π _N for Synchros & Resolvers	5.1.9.2-2
5.1.9.2-4	π _F for Synchros & Resolvers	5.1.9.2-3
5.1.9.3-1	λ_{b}^{2} for E.T. Meters	5.1.9.3-1
5.1.9.3-2	π_{T}^{T} for E.T. Meters	5.1.9.3-1
5.1.9.3-3	π_{E} , Environmental Factor	5.1.9.3-1
5.1.10.1-1	Prediction Procedure for Relays	5.1.10.1-1
5.1.10.1-2	Relay Failure Rate (λ_{T}) vs. Ambient	5.1.10.1-3
	Temperature	
5.1.10.1-3	π_L , Stress Factor vs. Load Type	5.1.10.1-3
5.1.10.1-4	Mil Spec. Quality, Environmental Mode Factors	5.1.10.1-4
5.1.10.1-5	Lower Quality, Environmental Mode Factors	5.1.10.1-4
5.1.10.1-6	$\pi_{\mathbb{C}}$, Contact Form Factor	5.1.10.1-5
5.1.10.1-7	π _{CYC} , Cycling Rate Factor	5.1.10.1-5
5.1.10.1-8	π _F , Relay Construction & Application Factor	5.1.10.1-6
5.1.10.1-9	π_0 , Quality Factor	5.1.10.1-7
5.1.10.2-1	π _E , Environmental Factor, Solid State Relays	5.1.10.2-2
5.1.10.3-1	π _E , Environmental Factor, Hybrid and Solid	5.1.10.3-3
	State Time Delay Relays	
5.1.11.4-1	π_{E} , Environmental Factor	5.1.11.4-2
5.1.11.4-2	π _C , Contact Form Factor	5.1.11.4-3
5.1.11.4-3	π _{CYC} , Cycling Rate Factor	5.1.11.4-3
5.1.11.4-4	π _I , Stress Factor	5.1.11.4-4
5.1.11.5-1	Configuration Factor, Circuit Breaker	5.1.11.5-2
5.1.11.5-2	π_{E} , Environmental Factor	5.1.11.5-2

<u>Table</u>		<u>Page</u>
5.1.12.1-1	Base Failure Rate for Connectors	5.1.12.1-2
5.1.12.1-2	Configuration, Applicable Specification, and Insert Material for Connectors	5.1.12.1-3
5.1.12.1-3	Temperature Ranges for Insert Materials	5.1.12.1-4
5.1.12.1-4	Insert Temperature Rise vs. Contact Current	5.1.12.1-5
5.1.12.1-5	Base Failure Rate vs. Operating Temperature	5.1.12.1-6
5.1.12.1-6	Mil Spec. quality, Environmental Mode Factor	5.1.12.1-7
5.1.12.1-7	Lower Quality, Environmental Mode Factor	5.1.12.1-7
5.1.12.1-8	π_p , Factor for Active Number of Pins	5.1.12.1-8
5.1.12.1-9	π _K , Mating/Unmating Factor	5.1.12.1-9
5.1.12.2-1	Prediction Procedure for PCB Connectors	5.1.12.2-1
5.1.12.2-2	Temperature Rise vs. Contact Current	5.1.12.2-2
5.1.12.2-3	Base Failure Rate vs. Operating Temperature	5.1.12.2-3
5.1.12.2-4	Mil Spec Quality, Environmental Mode Factors	5.1.12.2-4
5.1.12.2-5	Lower Quality, Environmental Mode Factors	5.1.12.2-4
5.1.12.2-6	π_{D} , Factor for Active Number of Pins	5.1.12.2-5
5.1.12.2-7	π _K , Cycling Rate Factor	5.1.12.2-6
5.1.12.3-1	π_{F} , Environmental Factor, IC Sockets	5.1.12.3-1
5.1.12.3-2	π _p , Contact Factor	5.1.12.3-2
5.1.13-1	λ _b , Base Failure Rate,	
	Interconnection Assemblies	5.1.13-1
5.1.13-2	π_0 , Quality Factor, Interconnection Assemblies	5.1.13-1
5.1.13-3	π_{S}^{T} , Wave Solder Application Factor	5.1.13-2
5.1.13-4	Environmental Mode Factor	5.1.13-2
5.1.13-5	$\pi_{\mathbb{C}}$, Complexity Factor	5.1.13-2
5.1.14-1	Base Failure Rate, λ _b for Connections	5.1.14-1
5.1.14-2	π _E , Environmental Factor	5.1.14-2

<u>Table</u>		Page
5.1.14-3	π_{T} , Tool Type Factor for Crimping Connections	5.1.14-2
5.1.14-4	π_0 , Quality Factor for Crimp Connections	5.1.14-2
5.1.15-1	π _F , Environmental Factors for Meters	5.1.15-2
5.1.16-1	π_{F} , Environmental Factors for Quartz Crystals	5.1.16-1
5.1.17-1	λ_{b} , Base Failure Rates for Lamps, Incandescent	5.1.17-1
5.1.17-2	π_{Π} , Utilization Factors for Lamps	5.1.17-2
5.1.17-3	π_{F} , Environmental Factors for Lamps	5.1.17-2
5.1.18-1	π_E , Environmental Factors for Electronic Filters	5.1.18-3
5.1.19-1	π_{F} , Environmental Factors for Fuses	5.1.19-1
5.1.20-1	Average Failure Rates for Miscellaneous Parts	5.1.20-1
5.1.20-2	π _E , Environmental Mode Factors for Microwave Ferrite Devices and Dummy Loads	5.1.20-3
5.2-1	Generic Failure Rate, λ_G , for Monolithic Bipolar and MOS Digital Devices including shift registers in Hermetic Packages	5.2-3
5.2-2	Generic Failure Rate, λ_G , for Monolithic Bipolar and MOS Digital Devices including shift registers in Nonhermetic Packages	5.2-4
5.2-3	Generic Failure Rate, λ_G , for Programmable Logic Arrays (PLA) and Programmable Array Logic (PAL) in Hermetic Packages	5.2-5
5.2-4	Generic Failure Rate, λ_G , for Programmable Locic Arrays (PLA) and Programmable Array Logic (PAL) in Nonhermetic Packages	5.2-6
5.2-5	Generic Failure Rate, λ_G , for Monolithic Bipolar and MOS Linear Devices in Hermetic Packages	5.2-7

Table		Page
5.2-6	Generic Failure Rate, λ_{G} , for Monolithic Bipolar and MOS Linear Devices in Nonhermetic	5.2-8
	Packages	
5.2-7	Generic Failure Rate, λ_G , for Monolithic	5.2-9
	Bipolar and MOS Digital Microprocessor Devices	
	in Hermetic Packages	
5.2-8	Generic Failure Rate, λ_G , for Monolithic	5.2-10
•••	Bipolar and MOS Digital Microprocessor Devices	
	in Nonhermetic Packages	
5.2-9	Generic Failure Rate, λ_{G} , for MOS Dynamic RAMS	5.2-11
	in Hermetic Packages	–
5.2-10	Generic Failure Rate, λ_G , for MOS Dynamic RAMS	5.2-12
·	in Nonhermetic Packages	
5.2-11	Generic Failure Rate, λ_G , for MOS Static RAMS	5.2-13
	in Hermetic Packages	
5.2-12	Generic Failure Rate, λ_{G} , for MOS Static RAMS	5.2-14
	in Nonhermetic Packages	
5.2-13	Generic Failure Rate, λ_G , for Bipolar Static	5.2-15
	RAMS in Hermetic Packages	
5.2-14	Generic Failure Rate, λ_{G} , for Bipolar Static	5.2-16
	RAMS in Nonhermetic Packages	
5.2-15	Generic Failure Rate, $\lambda_{ extsf{G}}$, for MOS ROM Devices	5.2-17
	in Hermetic Packages	
5.2-16	Generic Failure Rate, λ_{G} , for MOS ROM Devices	5.2-18
	in Nonhermetic Packages	
5.2-17	Generic Failure Rate, λ_G , for MOS PROM	5.2-19
	(UVEPROM, EEPROM, EAPROM) Devices in Hermetic	
	Packages	

<u>Table</u>		<u>Page</u>
5.2-18	Generic Failure Rate, λ_{G} , for MOS PROM (UVEPROM, EEPROM, EAPROM) Devices in	5.2-20
5.2-19	Nonhermetic Packages Generic Failure Rate, λ_G , for Bipolar ROM/PROM (Fusible Link and AIM) Devices in Hermetic	5.2-21
5.2-20	Packages Generic Failure Rate, λ_{G} , for Bipolar ROM/PROM (Fusible Link and AIM) Devices in Nonhermetic Packages	5.2-22
5.2-21	Generic Failure Rate, λ_G , for Monolithic Bipolar or MOS Analog Microprocessor Devices in Hermetic Packages	5.2-23
5.2-22	Generic Fackages Generic Failure Rate, λ_G , for Monolithic Bipolar or MOS Analog Microprocessor Devices in Nonhermetic Packages	5.2-24
5.2-23	π_Q , Quality Factors for Use with Tables 5.2-1 through 5.2-22	5.2-25
5.2-24	π_L , Learning Factor for Use with Tables 5.2-1 through 5.2-22	5.2-25
5.2-25	Generic Failure Rate, λ_{G} , for Discrete Semiconductors	5.2-26
5.2-26	π_0 , Quality Factors for Table 5.2-25	5.2-30
5.2-27	Generic Failure Rate, λ_{G} , for Resistors	5.2-31
5.2-28	Generic Failure Rate, λ_{G} , for Capacitors	5.2-35
5.2-29	$\pi_{\mathbb{Q}}$ Factor for Resistors & Capacitors	5.2-39
5.2-30	Generic Failure Rate, λ_G , for Inductive &	5.2-40

<u>Table</u>	·	<u>Page</u>
5.2-31	π _O Factor for Use with Table 5.2-30	5.2-44
5.2-32	Generic Failure Rate λ_G for Miscellaneous Parts	5.2-45
5.2-33	$\pi_{\rm F}$, Quality Factor for Use with Table 5.2-32	5.2-47
5.2-34	Ambient Temperature for all Parts	5.2-48
5.2-35	Junction Temperatures for Microcircuits	5.2-48
5.2-36	Model Parameters for Discrete Semiconductors	5.2-49
5.2-37	Model Parameters for Resistors & Capacitors	5.2-50
5.2-38	Model Parameters for Inductive & Electro-	5.2-51
	mechanical Parts	
5.2-39	Model Parameters for Miscellaneous Parts	5.2-53

FIGURES

FI GURE		PAGE
5.1.3.12-1	Conventional Derating Curve	5.1.3.12-
5.1.3.12-2	Multipoint Derating Curve for 1N3263 Power Diode	5.1.3.12-2
5.1.5.7-1	Examples of Active Optical Surfaces and Count	5.1.5-13
5.1.5.7-2	Determination of $\lambda_{PUMP/HOURS}$ for Xenon Flashlamps	5.1.5-17
5.1.5.7-3	Determination of $\lambda_{PUMP/HOURS}$ for Krypton Flashlamps	5.1.5-18
5.1.5.7-4	Determination of $\lambda_{\mbox{\scriptsize MEDIA}}$ for Solid State Ruby Lasers	5.1.5-19
5.1.8.3-1	Power Loss & Radiating Area Known: Estimate Average Temperature Rise	5.1.8.3-4
5.1.8.3-2	Power Loss & Case Symbol Known: Estimate Average Temperature Rise	5.1.8.3-5
5.1.8.3-3	Power Loss & Weight Known: Estimate Average Temperature Rise	5.1.8.3-6
5.1.8.3-4	Power Input & Weight Known: Estimate Average Temperature Rise	5.1.8.3-7
5.1.9.1-1	Thermal Cycle	5.1.9.1-5

1. SCOPE

- I.l <u>Purpose</u>. This handbook establishes uniform methods for predicting the reliability of military electronic equipment and systems. It provides a common basis for reliability predictions during acquisition programs for military electronic systems and equipment. It also establishes a common basis for comparing and evaluating reliability predictions of related or competitive designs.
- 1.2 Application. This handbook contains two methods of reliability prediction -"Part Stress Analysis" in Section 5.1 and "Parts Count" in Section 5.2. These methods vary in degree of information needed to apply them. The Part Stress Analysis Method requires the greater amount of detail information and is applicable during the later design phase when actual hardware and circuits are being designed. The Parts Count Method requires less information, generally that concerning quantities of different part types, quality level of parts, and the application environment. This method is applicable in the early design phase and during proposal formulation.
- 1.3 Computerized Reliability Prediction. RADC-ORACLE is a computer program developed to aid in applying the part stress analysis procedure of MIL-HDBK-217. Based on equipment environmental characteristics, piece part count, electronic stresses, submodule repair rates and system configuration, the program calculates piece part failure rates, equipment failure rates, mean-time-to-failure, availability and repair rates. ORACLE is available at cost to all DoD elements for their use or for use on a specific contract as government furnished property (GFP). Information may be obtained from RADC/RBET, Griffiss AFB NY 13441-5700.

2. REFERENCED DOCUMENTS

The documents cited in this section are for guidance and information.

2.1 <u>Government documents</u>. This handbook cites some specifications which have been cancelled or which describe devices that are not to be used for new design. This information is necessary because some of these devices are used in so-called "off-the-shelf" equipment which the Department of Defense purchases.

SPECIFICATIONS

FEDERAL

W-C-375	Circuit Breaker, Molded Case, Branch Circuit and Service
W-F-1726	Fuse, Cartridge, Class H (This covers renewable and nonrenewable)
W-F-1814	Fuse, Cartridge, High Interrupting Capacity
W-L-111	Lamp, Incandescent Miniature, Tungsten Filament
MILITARY	·
MIL-C-5	Capacitors, Fixed, Mica-Dielectric, General Specification for
MIL-R-11	Resistor, Fixed, Composition (Insulated) General Specification for
MIL-R-19	Resistor, Variable, Wirewound (Low Operating Temperature) General Specification for
MIL-C-20	Capacitor, Fixed, Ceramic Dielectric (Temperature Compensating) Established and Nonestablished Reliability, General Specification for
MIL-C-25	Capacitor, Fixed, Paper-Dielectric, Direct Current (Hermetically Sealed in Metal Cases), General Specification for
MIL-R-26	Resistor, Fixed, Wirewound (Power Type), General Specification for
MIL-T-27	Transformer and Inductor (Audio, Power, and High Power, and High Power Pulse) General Specification for
MIL-C-62	Capacitor, Fixed Electrolytic (DC, Aluminum, Dry Electrolyte, Polarized) General Specification for

MIL-C-81	Capacitor, Variable, Ceramic Dielectric (Trimmer), General Specification for
MIL-C-92	Capacitor, Variable, Air Dielectric (Trimmer), General Specification for
MIL-R-93	Resistor, Fixed, Wirewound (Accurate), General Specification for
MIL-R-94	Resistor, Variable, Composition, General Specification for
MIL-V-95	Vibrator, Interrupter and Self-Rectifying
MIL-C-3098	Crystal Unit, Quartz, General Specification for
MIL-C-3607	Connector, Coaxial, Radio Frequency, Series Pulse, General Specifications for
MIL-C-3643	Connector, Coaxial, Radio Frequency, Series NH, Associated Fittings, General Specification for
MIL-C-3650	Connector, Coaxial, Radio Frequency, Series LC
MIL-C-3655	Connector, Plug and Receptacle, Electrical (Coaxial Series Twin) and Associated Fittings, General Specification for
MIL-C-3767	Connector, Plug and Receptacle (Power, Bladed Type) General Specification for
MIL-S-3786	Switch, Rotary (Circuit Selector, Low-Current (Capacity), General Specification for
MIL-S-3950	Switch, Toggle, Environmentally Sealed, General Specification for
MIL-C-3965	Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte), Tantalum, General Specification for
MIL-C-5015	Connector, Electrical, Circular Threaded, AN Type, General Specification for
MIL-F-5372	Fuse, Current Limiter Type, Aircraft
MIL-R-5757	Relay, Electrical (For Electronic and Communication Type Equipment), General Specification for

MIL-R-6106	Relay, Electromagnetic (Including Established Reliability (ER) Types), General Specification for
MIL-L-6363	Lamp, Incandescent, Aviation Service, General Requirement for
MIL-S-8805	Switches and Switch Assemblies, Sensitive and Push, (Snap Action) General Specification for
MIL-M-10304	Meter, Electrical Indicating, Panel Type, Ruggedized, General Specification for
MIL-R-10509	Resistor, Fixed Film (High Stability), General Specification for
MIL-C-10950	Capacitor, Fixed, Mica Dielectric, Button Style, General Specification for
MIL-C-11015	Capacitor, Fixed, Ceramic Dielectric (General Purpose), General Specification for
MIL-C-11272	Capacitor, Fixed, Glass Dielectric, General Specification for
MIL-C-11693	Capacitor, Feed Through, Radio Interference Reduction AC and DC, (Hermetically Sealed in Metal Cases) Established and Nonestablished Reliability, General Specification for
MIL-R-11804	Resistor, Fixed, Film (Power Type), General Specification for
MIL-C-12889	Capacitor, By-Pass, Radio - Interference Reduction, Paper Dielectric, AC and DC, (Hermetically Sealed in Metallic Cases), General Specification for
MIL-R-12934	Resistor, Variable, Wirewound, Precision, General Specification for
MIL-C-14157	Capacitor, Fixed, Paper (Paper Plastic) or Plastic Dielectric, Direct Current (Hermetically Sealed in Metal Cases) Established Reliability, General Specification for
MIL-C-14409	Capacitor, Variable (Piston Type, Tubular Trimmer), General Specification for
MIL-F-15160	Fuse, Instrument, Power and Telephone
MIL-C-15305	Coil, Fixed and Variable, Radio Frequency, General Specification for

MIL-F-15733	Filter, Radio Inteference, General Specification for
MIL-C-18312	Capacitor, Fixed, Metallized (Paper, Paper Plastic or Plastic Film) Dielectric, Direct Current (Hermetically Sealed in Metal Cases), General Specification for
MIL-F-18327	Filter, High Pass, Low Pass, Band Pass, Band Suppression and Dual Functioning, General Specification for
MIL-R-18546	Resistor, Fixed, Wirewound (Power Type, Chassis Mounted), General Specification for
MIL-S-19500	Semiconductor Device, General Specification for
MIL-R-19523	Relay, Control, Naval Shipboard
MIL-R-19648	Relay, Time Delay, Thermal, General Specification for
MIL-C-19978	Capacitor, Fixed Plastic (or Paper-Plastic) Dielectric (Hermetically Sealed in Metal, Ceramic or Glass Cases), Established and Nonestablished Reliability, General Specification for
MIL-T-21038	Transformer, Pulse, Low Power, General Specification for
MIL-C-21097	Connector, Electrical, Printed Wiring Board, General Purpose, General Specification for
MIL-R-22097	Resistor, Variable, Nonwirewound (Adjustment Types), General Specification for
MIL-R-22684	Resistor, Fixed, Film, Insulated, General Specification for
MIL-S-22710	Switch, Rotary (Printed Circuit), (Thumbwheel, Inline and Pushbutton), General Specification for
MIL-C-23183	Capacitor, Fixed or Variable, Vacuum Dielectric, General Specification for
MIL-C-23269	Capacitors, Fixed, Glass Dielectric, Establilshed Reliability, General Specification for
MIL-R-23285	Resistor, Variable, Nonwirewound, General Specification for
MIL-F-23419	Fuse, Instrument Type, General Specification for
MIL-T-23648	Thermistor, (Thermally Sensitive Resistor), Insulated, General Specification for 2-4

MIL-C-24308	Connector, Electric, Rectangular, Miniature Polarized Shell, Rack and Panel, General Specification for
MIL-C-25516	Connector, Electrical, Miniature, Coaxial, Environment Resistant Type, General Specification for
MIL-C-26482	Connector, Electrical (Circular, Miniature, Quick Disconnect, Environment Resisting) Receptacles and Plugs, General Specification for
MIL-C-28748	Connector, Electrical, Rectangular, Rack and Panel, Solder Type and Crimp Type Contacts, General Specification for
MIL-R-28750	Relay, Solid State, General Specification for
MIL-M-38510	Microcircuits, General Specification for
MIL-C-38999	Connector, Electrical, Circular, Miniature, High Density, Quick Disconnect, (Bayonet, Threaded, and Breech Coupling) Environment Resistant, Removable Crimp and Hermetic Solder Contacts, General Specification for
MIL-C-39001	Capacitor, Fixed, Mica Dielectric, Established Reliabil- ity, General Specification for
MIL-R-39002	Resistor, Variable, Wire-Wound, Semi-Precision, General Specification for
MIL-C-39003	Capacitor, Fixed, Electrolytic, (Solid Electrolyte), Tantalum, Established Reliability, General Specification for
MIL-R-39005	Resistor, Fixed, Wirewound, (Accurate) Established Reliability, General Specification for
MIL-C-39006	Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte) Tantalum Established Reliability, General Specification for
MIL-R-39007	Resistor, Fixed, Wirewound (Power Type) Established Reliability, General Specification for
MIL-R-39008	Resistor, Fixed, Composition, (Insulated) Established Reliability, General Specification for
MIL-R-39009	Resistor, Fixed, Wirewound (Power Type Chassis Mounted) Established Reliability, general Specification for
MIL-C-39010	Coil, Fixed, radio Frequency, Molded, established Reliability, General Specification for

MIL-C-39012	Connector, Coaxial, Radio Frequency, General Specification for
MIL-C-39014	Capacitor, Fixed, Ceramic Dielectric (General Purpose) Established Reliability, General Specification for
MIL-R-39015	Resistor, Variable, Wirewound (Lead Screw Actuated) Established Reliability, General Specification for
MIL-R-39016	Relay, Electromagnetic, Established Reliability, General Specification for
MIL-R-39017	Resistor, Fixed, Film (Insulated), Established Reliabil- ity, general Specification for
MIL-C-39018	Capacitor, Fixed, Electrolytic (Aluminum Oxide) Established Reliability and Nonestablished Reliability, General Specification for
MIL-C-39019	Circuit Breakers, Magnetic, Low Power, Sealed, Trip-Free, General Specification for
MIL-C-39022	Capacitor, Fixed, Metallized Paper, Paper-Plastic Film, or Plastic Film Dielectric, Direct and Alternating Current (Hermetically Sealed in Metal Cases) Established Reliability, General Specification for
MIL-R-39023	Resistor, Variable, Nonwire Wound, Precision, General Specification for
MIL-R-39035	Resistor, Variable, Nonwire Wound (Adjustment Type) Estblished Reliability, General Specification for
MIL-P-55110	Printed Wiring Boards
MIL-R-55182	Resistor, Fixed, Film, Estblished Reliability, General Specification for
MIL-C-55302	Connector, Printed Circuit, Subassembly and Accessories
MIL-C-55514	Capacitor, Fixed, Plastic (or Metallized Plastic) Dielectric, Direct Current, In Non-Metal Cases, General Specification for
MIL-C-55629	Circuit Breaker, Magnetic, Unsealed, Trip-Free, General Specification for
MIL-T-55631	Transformer, Intermediate Frequency, Radio Frequency, and Discriminator, General Specification for

MI	L-C-81511	Connector, Electrical, Circular, High Density, Quick Disconnect, Environment Resisting, and Accessories, General Specification for
MI	L-C-83383	Circuit Breaker, Remote Control, Thermal, Trip-Free, General Specification for
ΜI	L-R-83401	Resistor Networks, Fixed, Film, General Specification for
MI	L-C-83421	Capacitor, Fixed Supermetallized Plastic Film Dielectric (DC, AC or DC and AC) Hermetically Sealed in Metal Cases, Established Reliability, General Specification for
ΜI	L-C-83723	Connector, Electrical (Circular Environment Resisting), Receptacles and Plugs, General Specification for
MI	L-R-83725	Relay, Vacuum, General Specification for
MI	L-R-83726	Relay, Time Delay, Electric and Electronic, General Specification for
MI	L-C-83733	Connector, Electrical, Miniature, Rectangular Type, Rack to Panel, Environment Resisting, 200 Degrees C Total Con- tinuous Operating Temperature, General Specification for
MI	L-S-83734	Socket, Plug-in Electronic Components, General Specification for

STANDARDS

MILITARY

MIL-STD-883 Test Methods and Procedures for Microelectronics

MIL-STD-975 NASA Standard Electrical, Electronic and Electromechanical Parts List

MIL-STD-1547 Parts, Materials and Processes for Space Launch Vehicles, Technical Requirements for

(Copies of specifications and standards required by contractors in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting officer.)

2.2 Nongovernment documents.

Institute of Electrical and Electronics Engineers (IEEE)

IEEE 91-84 Graphic Symbols for Logic Functions, Institute of Electrical and Electronics Engineers

(Application for copies should be addressed to: Institute of Electrical and Electronics Engineers, 345 East 47th Street, New York, NY 10017.)

3. DEFINITIONS

3.1 Acronyms. The following are definitions of acronyms used in this document:

AIM - avalanche induced migration

ALSTTL - advanced low power Schottky transistor transistor logic

ASTTL - advanced Schottky transistor transistor logic

CCD - charge coupled device

CML - current mode logic

CMOS - complementary metal oxide semiconductor

CMOS/SOS - CMOS fabricated on silicon on sapphire

DIP - dual in-line package

DTL - diode transistor logic

EAPROM - electrically alterable, programmable read only memory

ECL - emitter coupled logic

EEPROM - electrically erasable, programmable read only memory

EPROM - erasable, programmable read only memory

FET - field effect transistor

FTTL - fast transistor transistor logic

HCMOS - high speed CMOS

HMOS - high speed MOS

HTCMOS - high speed TTL compatible CMOS

HTTL - high speed transistor transistor logic

IIL - integrated injection logic

ISL - integrated Schottky logic

I³L - isoplanar integrated injection logic

IMPATT - impact avalanche and transit time

LED - light emitting diode

LSTTL - low power Schottky transistor transistor logic

LTTL - low power transistor transistor logic

MNOS - metal nitride oxide semiconductor

MOS - metal oxide semiconductor

NMOS - N channel metal oxide semiconductor

PIN - P intrinsic N

PMOS - P channel metal oxide semiconductor

PROM - programmable read only memory

RAM - random access memory

ROM - read only memory

SAW - surface acoustic wave

STTL - Schottky transistor transistor logic

TTL - transistor transistor logic

TWT - traveling wave tube

UV - ultra-violet

4. GENERAL REQUIREMENTS

4.1 The Reliability Problem

When it is proposed to design an electronic system to perform a complex and demanding job, it is assumed that the required investment will be justified according to the perfection by which the job is performed or by the large number of times which the system can do the job. This assumption cannot be justified when a system fails to perform upon demand or fails to perform repeatedly. Thus, it is not enough simply to show that a chasm can be spanned by a bridge; the bridge must continue to span the chasm for a long time to come while carrying useful loads.

In the design of complex electronic systems, such an assumption as mentioned above, is, in fact, not accepted. Instead, considerable effort is made to obtain reliable system performance. Unlike bridge building and other evolving technologies, it is recognized that the electronics art, especially complex military systems, is often in revolution. It is sometimes referred to as an exploding technology. Without time for orderly evolution of systems, applications of electronics suffer most from unreliability. The ratio of new to tried and true portions of electronic systems is relatively high; therefore, until the new becomes tried and true, its reliability must be suspect. As an inevitable but not suprising result, it can be concluded that reliability remains a special problem in electronics and will remain so, as long as the technology is in revolution rather than evolution.

Reliability is a consideration at all levels of electronics, from materials to operating systems, because materials go to make up parts, parts compose assemblies, and assemblies are combined in systems of ever increasing complexity and sophistication. Therefore, at any level of development and design, it is natural to find the influence of reliability engineering acting as a discipline founded to devote special engineering attention to the unreliability problem. Reliability engineering is concerned with the time degradation of materials, physical and electronic measurements, equipment design, processes and system analysis, and synthesis. None of these can be isolated from the overall electronics context, but must be carried on in conjunction with many other disciplines.

4.2 The Role of Reliability Prediction in Engineering

To be of value, a prediction must be timely. However, the earlier it is needed the more difficulties will be encountered. It is certainly true that the earlier a prediction has to be made about the unknown nature of a future event, the more difficult it is to make a meaningful prediction. As an example, it can be seen that the reliability of an electronic equipment is known with certainty after it has been used in the field until it is worn out and its failure history has been faithfully recorded. But

for purposes of doing anything about the reliability of this equipment, this knowledge has no value. Before this point, reliability cannot be known with certainty; but a great deal of knowledge about reliability can be accumulated over a short early period in the equipments' useful life. Even though the degree of certainty of knowledge is less, there is some opportunity to do something to influence the reliability of the remaining life portion.

Similarly, considering the various stages back through installation, shipment, test, production, test design, development, procurement, etc., less and less can be known with certainty about reliability. However, what is known or predicted becomes more and more valuable as a basis for taking action. After all, there is no value in simply knowing that a certain failure will occur at some specific time in the future. The value comes in having the opportunity to do something to prevent the failure from occurring. Once this is done the future is changed from what was predicted with certainty. Thus, prediction becomes part of a process of "designing the future".

An early prediction is made on the basis of very little knowledge in order to form a rational basis for doing something about changing the basis of the prediction. The process, in order to have any meaning at all, requires predicting, acting, measuring (or gaining new knowledge), then repredicting, acting again and remeasuring continually throughout a program of development.

The two trends in the prediction art are (1) to gain better records of class characteristics in more usable and realistic forms and (2) to develop improved techniques for applying the consequent knowledge to predictions in appropriate confidence settings. The current state-of-the-art in reliability predictions rests at the level of development of these data and techniques. Much room remains for advancing the state-of-the-art.

4.3 <u>Limitations of Reliability Predictions</u>

The art of predicting the reliability of electronic equipment has practical limitations such as those depending on data gathering and technique complexity. Considerable effort is required to generate sufficient data on a part class to report a statistically valid reliability figure for that class. Casual data gathering on a part class occasionally accumulates data more slowly than the advance of technology in that class; consequently, a valid level of data is never attained. In the case of many part classes, the number of people participating in data gathering all over the industry is rather large with consequent varying methods and conditions which prevent exact coordination and correlation. Also part reliability in the field use of equipment is difficult to examine due to the lack of

suitable data being acquired. Thus, it can be seen that derivation of failure rates (being mean values) is empirically difficult and obtaining valid confidence values is practically precluded because of lack of correlation.

The use of failure rate data, obtained from field use of past systems, is applicable on future concepts depending on the degree of similarity existing both in the hardware design and in the anticipated environments. Data obtained on a system used in one environment may not be applicable to use in a different environment, especially if the new environment substantially exceeds the design capabilities. Other variants that can affect the stated failure rate of a given system are: different uses, different operators, different maintenance practices, different measurement techniques or definitions of failure. When considering the comparison between similar but unlike systems, the possible variations are obviously even greater.

Thus, a fundamental limitation on reliability prediction is the ability to accumulate data of known validity for the new application. Another fundamental limitation is the complexity of prediction techniques. Very simple techniques omit a great deal of distinguishing detail and the prediction suffers inaccuracy. More detailed techniques can become so bogged down in detail that the prediction becomes costly and may actually lag the principal hardware development effort.

This revision of the Handbook includes two methods of reliability prediction - "Part Stress Analysis" in Section 5.1 and "Parts Count" in Section 5.2. These methods vary in degree of information needed to apply them. The Part Stress Analysis requires the greatest amount of detail and is applicable during the later design phase where actual hardware and circuits are being designed. The Parts Count Method requires less information, generally that dealing with quantity of different part types, quality level of the parts, and the application environment. This method is applicable in the early design phase and during bid proposal formulation. Both methods will be revised periodically and new prediction methods will be added as they are developed. Neither method applies to a nuclear survivability environment nor do they consider the effects of ionizing radiation.

The content of this Handbook has been approved by the Military Services and has been coordinated with appropriate segments of Industry. It provides a common basis for reliability predictions during acquisition programs for military electronic systems and equipments. It also establishes a common basis for comparing and evaluating reliability predictions of related or competitive designs. The failure rates and their associated adjustment factors presented herein are based upon evaluation and analysis of the best available data at the time of issue.

5. DETAILED REQUIREMENTS

5.1 Part Stress Analysis Prediction.

5.1.1 General Factors.

5.1.1.1 Applicability. This method is applicable when most of the design is completed and a detailed parts list including part stresses is available. It can also be used during later design phases for reliability trade-offs vs. part selection and stresses. This section contains failure rate models for a broad variety of parts used in electronic equipment. The parts are grouped by major categories and, where appropriate, are subgrouped within categories. The major categories are listed in Table 5.1.1-1. For mechanical and electromechanical parts not covered by this Handbook, refer to Bibliography item 47.

TABLE 5.1.1-1: MAJOR PART CATEGORIES FOR PART STRESS ANALYSIS

PART CATEGORY	SECTION
Microelectronics Discrete Semiconductors Tubes Lasers Resistors Capacitors Inductive Rotary Relays Switches Connectors Wire & Printed Wire Boards Connections Meters Quartz Crystals Incandescent Lamps Electronic Filters Fuses Miscellaneous	5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.1.10 5.1.11 5.1.12 5.1.13 5.1.14 5.1.15 5.1.16 5.1.17 5.1.18 5.1.19

5.1.1.2 Part Quality. The quality of a part has a direct effect on the part failure rate and appears in the part models as a factor, π_{Q} . Many parts are covered by specifications that have several quality levels, hence, the part models have values of π_{Q} that are keyed to these quality levels. Such parts with their quality designators are shown in Table 5.1.1-2. The detailed requirements for these levels are clearly defined in the applicable specification, except that definitions of microelectronic quality levels S-1, B-1, B-2, D, and D-1 are contained in Table 5.1.2.7-1.

TABLE 5.1.1-2: PARTS WITH MULTI-LEVEL QUALITY SPECIFICATIONS

PART	QUALITY DESIGNATORS
Microe lectronics	S, S-1, B, B-1, B-2 D, D-1
Discrete Semiconductors	JANTXV, JANTX, JAN
Capacitors, Established Reliability (ER)	D, C, S, R, B, P, M, L
Resistors, Established Reliability (ER)	S, R, P, M
Coils, Molded, R.F., Reliabiity (ER)	S, R, P, M
Relays, Established Reliability (ER)	R, P, M, L

Some parts are covered by older specifications, usually referred to as Non-ER, that do not have multi-levels of quality. These part models generally have two quality levels designated as "MIL. SPEC.", and "Lower". If the part is procured in complete accordance with the applicable specification, the π_Q value for MIL. SPEC, should be used. If any requirements are waived, or if a commercial part is procured, the π_Q value for Lower should be used.

The foregoing discussion involves the "as procured" part quality. Poor equipment design, production, and testing facilities can degrade part quality. The use of the higher quality parts requires a total equipment design and quality control process commensurate with the high part quality. It would make little sense to procure high quality parts only to have the equipment production procedures damage the parts or introduce latent defects. Total equipment program descriptions as they might vary with different part quality mixes is beyond the scope of this Handbook. Reliability management and quality control procedures are described in other DoD standards and publications. Nevertheless, when a proposed equipment development is pushing the state-of-the-art and has a high reliability requirement necessitating high quality parts, the total equipment program should be given careful scrutiny and not just the parts quality. Otherwise, the low failure rates as predicted by the models for high quality parts will not be valid.

5.1.1.3 <u>Use Environment</u>. All part reliability models include the effects of environmental stresses through the environmental factor, π_E , except for the effects of ionizing radiation. The descriptions of these environments are shown in Table 5.1.1-3. The π_E factor is quantified within each part

failure rate model. These environments encompass the major areas of equipment use. Some equipment will experience more than one environment during its normal use, e.g., equipment in spacecraft. In such a case, the reliability analysis should be segmented, namely, missile launch $(M_{_{\! l}})$ conditions during boost into and return from orbit, and space flight $(S_{_{\! l}})$ while in orbit.

TABLE 5.1.1-3 ENVIRONMENTAL SYMBOL AND DESCRIPTION

ENVIRONMENT	II _E SYMBOL	DESCRIPTION
Ground, Benign	G _B	Nonmobile, laboratory environment readily accessible to maintenance; includes laboratory instruments and test equipment, medical electronic equipment, business and scientific computer complexes.
Ground, Missile Silo	G _{MS}	Missiles and support equipment in ground silos.
Ground, Fixed	^G F	Conditions less than ideal such as installation in permanent racks with adequate cooling air and possible installation in unheated buildings; includes permanent installation of air traffic control, radar and communications facilities.
Ground, Mobile	G _M	Equipment installed on wheeled or tracked vehicles; includes tactical missile ground support equipment, mobile communication equipment, tactical fire direction systems.
Space, Flight	S _F	Earth orbital. Approaches benign ground conditions. Vehicle neither under powered flight nor in atmospheric reentry; includes satellites and shuttles.
Manpack	M _P	Portable electronic equipment being manually transported while in operation; includes portable field communications equipment and laser designations and rangefinders.

TABLE 5.1.1-3 ENVIRONMENTAL SYMBOL AND DESCRIPTION (Cont)

FINANCE S. 1. 1		ENTAL SIMBOL AND DESCRIPTION (COITE)
ENVIRONMENT	^я ЕмвоL	DESCRIPTION
Naval, Sheltered	N _S	Sheltered or below deck conditions, protected from weather; includes surface ships communication, computer, and sonar equipment.
Naval Unsheltered	N _U	Nonprotected surface shipborne equipment exposed to weather conditions; includes most mounted equipment and missile/projectile fire control equipment.
Naval Undersea Unsheltered	N _{UU}	Equipment immersed in salt water; includes sonar sensors and special purpose anti-submarine warfare equipment.
Naval, Submarine	^N SB	Equipment installed in submarines; includes navigation and launch control systems.
Naval, Hydrofoil	N _H	Equipment installed in a hydrofoil vessel.
Airborne, Inhabited, Cargo	A _{IC}	Typical conditions in cargo compartments occupied by aircrew without environment extremes of pressure, temperature, shock and vibration and installed on long mission transport aircraft.
Airborne, Inhabited, Trainer	A _{IT}	Same as A _{IC} but installed on high performance aircraft such as trainer aircraft.
Airborne, Inhabited, Bomber	A _{IB}	Typical conditions in bomber compartments occupied by aircrew without environment extremes of pressure, temperature, shock and vibration and installed on long mission bomber aircraft.
Airborne, Inhabited, Attack	A _{IA}	Same as A _{IC} but installed on high performance aircraft such as used for ground support.

TABLE 5.1.1-3 ENVIRONMENTAL SYMBOL AND DESCRIPTION (Cont)

ENVIRONMENT	П _Е SYMBOL	DESCRIPTION
Airborne, Inhabited, Fighter	A _{IF}	Same as A _{IC} but installed on high per- formance aircraft such as fighters and intercepters.
Airborne, Uninhabited, Cargo	^A UC	Bomb bay, equipment bay, tail, or where extreme pressure, vibration, and temperature cycling may be aggravated by contamination from oil, hydraulic fluid and engine exhaust. Installed on long mission transport aircraft.
Airborne, Uninhabited, Trainer	A _{UT}	Same as A _{UC} but installed on high performance aircraft such as used for trainer aircraft.
Airborne, Uninhabited, Bomber	A _{UB}	Bomb bay, equipment bay, tail or where extreme pressure, vibration and temperature cycling may be aggravated by contamination from oil, hydraulic fluid and engine exhaust. Installed on long mission bomber aircraft.
Airborne, Uninhabited, Attack	A _{UA}	Same as A _{UC} but installed on high performance aircraft such as used for ground support.
Airborne, Uninhabited, Fighter	A _{UF}	Same as A _{UC} but installed on high performance aircraft such as fighters and intercepters.
Airborne, Rotary Winged	A _{RW}	Equipment installed on helicopters; includes laser designators and fire control systems.
Missile, Launch	ML	Severe conditions related to missile launch (air and ground), and space vehicle boost into orbit, vehicle re-entry and landing by parachute. Conditions may also apply to rocket propulsion powered flight.

ENVIRONMENT	П S¥MBOL	DESCRIPTION
Cannon, Launch	c _L	Extremely severe conditions related to cannon launching of 155 mm. and 5 inch guided projectiles. Conditions apply from launch to target impact.
Undersea, Launch	^U SL	Conditions related to undersea torpedo mission and missile launch.
Missile, Free Flight	M _{FF}	Missiles in non-powered free flight.
Airbreathing Missile, Flight	M _{FA}	Conditions related to powered flight of air breathing missile; includes cruise missiles.

TABLE 5.1.1-3 ENVIRONMENTAL SYMBOL AND DESCRIPTION (Cont)

5.1.1.4 Part Failure Rate Models. Part failure rate models for microelectronic parts are significantly different from those for other parts and are presented entirely in Section 5.1.2. Another type of model is used on most other parts; a typical example is the following one for discrete semiconductors:

$$\lambda_p = \lambda_b (\Pi_E \times \Pi_A \times \Pi_{S2} \times \Pi_C \times \Pi_Q)$$

where

 λ_n is the part failure rate,

 λ_b is the base failure rate usually expressed by a model relating the influence of electrical and temperature stresses on the part.

II_E and the other II factors modify the base failure rate for the category of environmental application and other parameters that affect the part reliability.

The Π_E and Π_0 factors are used in all models and other Π factors apply only to specific models. The applicability of Π factors is identified in each subsection. An overall list of Π factors used in models other than microelectronics is presented in Table 5.1.1-4.

The base failure rate (λ_b) models are presented in each part subsection along with identification of the applicable model factors. Tables of calculated λ_b values are also provided for use in manual calculations. The model equations can, of course, be incorporated into computer programs for

machine processing. The tabulated values of λ_b are cut off at the part ratings with regard to temperature and stress, hence, use of parts beyond these cut off points will overstress the part. The use of the λ_b models in a computer program should take the part rating limits into account. The λ_b equations are mathematically continuous beyond the part ratings but such failure rate values are invalid in the overstressed regions.

All the part models include both catastrophic and drift failures and are based upon a constant failure rate, except for some rotary devices that show an increasing failure rate. Failures associated with connection of parts into circuit assemblies are not included within the part failure rate models. Information on connection reliability is provided in Sections 5,1.13 and 5.1.14.

5.1.1.5 Thermal Aspects. The use of this prediction method requires the determination of the temperatures to which the parts are subjected. Since parts reliability is sensitive to temperature, the thermal analysis of any design should fairly accurately provide the ambient temperatures needed in using the part models. Of course, lower temperatures produce better reliability but also can produce increased penalties in terms of added loads on the environmental control system, unless achieved through improved thermal design of the equipment. The thermal analysis should be part of the design process and included in all the trade-off studies covering equipment performance, reliability, weight, volume, environmental control systems, etc. For general guidance and detailed thermal analysis procedures, refer to Item 48 and 69 of Bibliography.

TABLE 5.1.1-4

IT FACTORS FOR PART FAILURE RATE MODELS EXCEPT MICROELECTRONICS

II FACTOR	DESCRIPTION		
	Common Factors - Used in all or many part categories		
ПЕ	Environment - Accounts for influence of undefined environmental variables including temperature variability. Related to application categories (Table 5.1.1-3).		
π_{Q}	Quality - Accounts for effects of different quality levels.		
Discret	e Semiconductors		
П _А	Application - Accounts for effect of application in terms of circuit function.		
π _R	Rating - Accounts for effect of maximum power or current rating.		
пс	Complexity - Accounts for effect of multiple devices in a single package.		
II _{S2}	Voltage Stress - Adjusts model for a second electrical stress (application voltage) in addition to wattage included within \$\lambda_b\$.		
П _F	Frequency and peak operating power factor, also pulsed duty cycle factor.		
п	Forward peak current factor.		
ПŢ	Temperature - Accounts for effects of temperature.		
Π _M	Matching networks - Accounts for effects of type of matching networks.		
Lasers			
u ⁰	Gas overfill factor.		
π _B	Ballast factor.		
II _{OS}	Active optical surface factor.		

TABLE 5.1.1-4 (Cont.) $\ensuremath{\pi}$ FACTORS FOR PART FAILURE RATE MODELS EXCEPT MICROELECTRONICS

Lasers	
πc	Cleanliness factor.
πREP	Factor to convert pulse rate to time for pulsed lasers.
[#] C00L	Flashlamp cooling factor.
Tubes	
π _C	Construction factor.
π _L	Learning factor.
π _u	Utilization factor.
Resisto	ors
π _R	Resistance - Adjusts model for the effect of resistor ohmic values.
πс	Construction Class - Accounts for influence of construction class of variable resistors as defined in individual part specifications.
π _V	Voltage - Adjusts for effect of applied voltage in variable resistors in addition to wattage included within $\lambda_{\rm b}$.
^π TAPS	Tap Connections on Potentiometers - Accounts for effect of multiple taps on resistance element.
Capacit	tors
^π SR	Series Resistance - Adjusts model for the effect of series resistance in circuit application of some electrolytic capacitors.
^π CV	Capacitance Values - Adjusts model for effect of capacitance related to case size.
πС	Construction Factor - Accounts for effects of hermetic and non- hermetic seals on CL & CLR capacitors.
^π CF	Configuration factor - Accounts for effects of fixed and variable constructions on CG capacitors.

TABLE 5.1.1-4 (Cont.) π FACTORS FOR PART FAILURE RATE MODELS EXCEPT MICROELECTRONICS

Induc	Inductive Devices		
πQ	Family - Adjusts model for influence of family type as defined by individual part specifications.		
π _C	Construction factor - Accounts for effects of fixed and var- iable constructions.		
Rotat	ing devices		
π _S	Factor related to size of synchros & resolvers.		
π _N	Factor related to number of brushes on synchros & resolvers.		
πΤ	Temperature factor for elapsed-time meters.		
Re 1ay	· ·		
π _C	Contacts - Accounts for contact quantity and form.		
тсус	Cycling - Accounts for time rate of actuation.		
πι	Load - Accounts for type of contact load.		
π _F	Family - Accounts for construction and application.		
Swite	hes		
π _C	Contacts - Accounts for contact quantity and form.		
тсүс	Cycling - Accounts for time rate of actuation.		
πL	Load - Accounts for type of contact load.		
Conne	Connectors		
π _P	Contacts - Accounts for quantity of contacts.		
πK	Cycling - Accounts for time rate of mating and unmating.		

TABLE 5.1.1-4 (Cont.) II FACTORS FOR PART FAILURE RATE MODELS EXCEPT MICROELECTRONICS

Meters	Meters	
пА	Application factor.	
Π _F	Function factor.	
Incande	Incandescent Lamps	
π _u	Utilization factor.	
ПА	Application factor.	

CAUTION

THE FAILURE RATES PRESENTED APPLY TO EQUIPMENT UNDER NORMAL OPERATING CONDITIONS, i.e., WITH POWER ON AND PERFORMING ITS INTENDED FUNCTIONS IN ITS INTENDED ENVIRONMENT. EXTRAPOLATION OF ANY OF THE BASE FAILURE RATE MODELS BEYOND THE TABULATED VALUES SUCH AS HIGH OR SUB-ZERO TEMPERATURE, OR ELECTRICAL STRESS VALUES ABOVE 1.0 OR AT O OR EXTRAPOLATION OF ANY ASSOCIATED MODIFIERS IS COMPLETELY INVALID.

MICROELECTRONIC DEVICES

MONOLITHIC

5.1.2 <u>Microelectronic Devices</u>. This section presents failure rate prediction models for nine major classes of microelectronic devices:

Monolithic Bipolar & MOS Digital Devices, Including	
Shift Registers, Programmable Logic Arrays	
(PLA) and Programmable Array Logic (PAL)Sect. 5.1	1.2.1
Monolithic Bipolar & MOS Linear DevicesSect. 5.1	1.2.2
Monolithic Bipolar & MOS Digital	
Microprocessor DevicesSect. 5.1	1.2.3
Monolithic Bipolar & MOS Random Access	
Memories (RAMs)Sect. 5.1	1.2.4
Monolithic Bipolar, MOS Read Only Memories (ROMS)	
& Programmable Read Only Memories (PROMs)Sect. 5.1	1.2.5
Monolithic Bipolar & MOS Analog	
Microprocessor DevicesSect. 5.1	1.2.6
HybridsSect. 5.1	
Magnetic Bubble MemoriesSect. 5.1	1.2.10
Surface Acoustic Wave (SAW) DevicesSect. 5.1	1.2.11

This revision of MIL-HDBK-217 has eliminated the use of terminology such as SSI, MSI, LSI and VLSI as descriptions of complexity for the models in this section. The Cl and C2 factors used in previous revisions represented the contribution to failure due to complexity, Cl for the chip contribution and C2 as part of the package contribution. A new Cl has been introduced, this reflects the contribution to the chip failure rate due to factors such as complexity, technology, and in some cases due to the programming of Programmable Read Only Memory (PROM). The old C3 package complexity failure rate has been retitled C2.

In the title description of each monolithic device type, Bipolar represents all TTL, ASTTL, DTL, ECL, CML, ALSTTL, HTTL, FTTL, LTTL, STTL, LSTTL, IIL, I and ISL devices. MOS represents all metal-oxide semiconductor microcircuits which includes MNOS, PMOS, CMOS, and NMOS fabricated on various substrates such as sapphire, polycrystalline, or single crystal silicon. From the I.C. chip standpoint, the hybrid model is structured to accommodate all of the monolithic chip types and various complexity levels.

Monolithic memory complexity factors are expressed in the number of bits in accordance with JEDEC STD 21A. This standard, which is used by all government and industry agencies that deal with microcircuit memories, states that memories of 1024 bits and greater shall be expressed as K bits, where 1K = 1024 bits. For example, a 16K memory has 16,384 bits, a 64K memory has 16,536 bits and a 1M memory has 1,048,576 bits. Exact numbers of bits are not used for memories of 1024 bits and greater.

MICROELECTRONIC DEVICES

MONOLITHIC

The monolithic device models, along with parameter descriptions and instructions for quantifying the parameters are presented in Sections 5.1.2.1 through 5.1.2.6. The tables used for quantifying the model parameters are presented in Section 5.1.2.7.

For devices having both linear and digital functions not covered by MIL-M-38510, use the linear model. Line drivers and line receivers are considered linear devices, but if any device exceeds 1,000 transistors, use the model in Section 5.1.2.6.

Models for magnetic bubble memories and a model for Surface Acoustic Wave (SAW) devices are listed after the hybrid section.

Table 5.1.2.7-17 contains cross reference commercial type parts to MIL-M-38510 type parts.

Table 5.1.2.7-18 contains the gate, transistor and bit counts for MIL-M-38510 devices. For linear devices not covered by MIL-M-38510, use the transistor count as determined from the schematic diagram.

For microprocessors, do not use the complexity tables. Microprocessors are classified by the number of bits in the data word. This notation is used in data sheets and application notes. For example, the 8080 is an 8 bit microprocessor, the 8086 is a 16 bit microprocessor, etc.

For digital devices not convered by MIL-M-38510, use the gate count as determined from the logic diagram. A J-K to R-S flip flop is equivalent to 6 gates when used as part of an LSI circuit. For the purpose of this Handbook, a gate is considered to be any one of the following functions: AND, OR, exclusive OR, NAND, NOR and inverter. When a logic diagram is unavailable, use device transistor count to determine gate count using the following expressions:

Bipolar: No. Gates = No. Transistors ÷ 3.0

CMOS: No. Gates = No. Transistors ÷ 3.75

Other MOS: No. Gates = No. Transistors ÷ 3.0

MICROELECTRONIC DEVICES

MONOLITHIC

5.1.2.1 Monolithic Bipolar and MOS Digital Devices, Including Shift Registers, Configurable Gate Arrays*, Programmable Logic Arrays (PLA) and Programmable Array Logic (PAL).

Part operating failure rate model ($\lambda_{\rm p}$):

 $\lambda_{\rm p} = \pi_0 \left(C_1 \pi_{\rm T} \pi_{\rm V} + C_2 \pi_{\rm E} \right) \pi_{\rm L} \text{ Failures/10}^6 \text{ hours}$

where:

 $\lambda_{\rm D}$ is the device failure rate in F/10⁶ hours

 π_0 is the quality factor, Table 5.1.2.7-1

 π_T is the temperature acceleration factor, based on technology (Table 5.1.2.7-4) and is found in Tables 5.1.2.7-5 thru 5.1.2.7-13.

 π_V is the voltage stress derating factor, Table 5.1.2.7-14.

 π_{F} is the application environment factor, Table 5.1.2.7-3.

Monolithic Bipolar And MOS Digital Devices Including Shift Registers and Configurable Gate Arrays*

For 1 to 100 gates, $C_1 = .01$

For >100 to 1,000 gates, $C_1 = .02$

For >1,000 to 3,000 gates, $C_1 = .04$

For >3,000 to 10,000 gates, $C_1 = .08$

For >10,000 to 30,000 gates, $C_1 = .16$

Programmable Logic Arrays (PLA) and Programmable Array Logic (PAL)

For 1 to 100 gates, $C_1 = 0.06$

For >100 to 1,000 gates, $C_1 = 0.12$

For >1,000 to 5,000 gates, $C_1 = 0.24$

C2 is the package complexity failure rate, Table 5.1.2.7-16.

MICROELECTRONIC DEVICES

MONOLITHIC

 π_{l} is the device learning factor, Table 5.1.2.7-2.

*For Configurable Gate Arrays, π_L = 10. If test data verifying the circuit design/performance of a discrete cell or gate is provided to the procuring activity, then π_L = 1 can be used. This data should consist of ac/dc parametric data. (See JAN microcircuit specification M38510/600 or M38510/605 for typical data requirements.)

MICROELECTRONIC DEVICES

MONOLITHIC

5.1.2.2 Monolithic Bipolar and MOS Linear Devices.

Part operating failure rate model (λ_n) :

 $\lambda_p = \pi_Q (C_{1}\pi_T\pi_V + C_2\pi_E) \pi_L \text{ Failures/10}^6 \text{ hours}$

where:

 λ_{D} is the device failure rate in F/10⁶ hours

 π_0 is the quality factor, Table 5.1.2.7-1

 π_T is the temperature acceleration factor, based on technology (Table 5.1.2.7-4) and is found in Tables 5.1.2.7-10 or 5.1.2.7-13.

 π_V is the voltage stress derating factor, Table 5.1.2.7-14

 π_{F} is the application environment factor, Table 5.1.2.7-3

For 1 to 100 transistors, $C_1 = 0.01$

For >100 to 300 transistors, $C_1 = 0.02$

For >300 to 1000 transistors, $C_1 = 0.04$

 C_2 is the package complexity failure rate, Table 5.1.2.7-16.

 π_l is the device learning factor, Table 5.1.2.7-2.

MICROELECTRONIC DEVICES

MONOLITHIC

5.1.2.3 Monolithic Bipolar and MOS Digital Microprocessor Devices.

Part operating failure rate model (λ_p) :

 $\lambda_p = \pi_Q (C_1 \pi_T \pi_V + C_2 \pi_E) \pi_L \text{ Failures/10}^6 \text{ hours:}$

where:

 $\lambda_{_{D}}$ is the device failure rate in F/10 6 hours

 π_{Ω} is the quality factor, Table 5.1.2.7-1

 π_T is the temperature acceleration factor, based on technology (Table 5.1.2.7-4) and is found in Tables 5.1.2.7-5 thru 5.1.2.7-13.

 π_V is the voltage stress denating factor, Table 5.1.2.7-14

 π_{F} is the application environment factor, Table 5.1.2.7-3

 C_1 is the circuit complexity failure rate based on bit count.

NOTE: Do not use Table 5.1.2.1-19 to determine microprocessor gate count. Microprocessors are classified by the number of bits in their data word, see page 5.1.2-2.

For microprocessors up to 8 bits, $C_1 = 0.03$

For 16 bit microprocessors, $C_1 = 0.06$

For 32 bit microprocessors, $C_1 = 0.12$

 C_2 is the package complexity failure rate, Table 5.1.2.7-16

 π_L is the device learning factor, Table 5.1.2.7-2

MICROELECTRONIC DEVICES

MONOLITHIC

5.1.2.4 Monolithic Bipolar and MOS Random Access Memories (RAMs).

Part operating failure rate mode (λ_n) :

 $\lambda_p = \pi_Q (C_1 \pi_T \pi_V + C_2 \pi_E) \pi_L \text{ Failures/10}^6 \text{ hours}$ where:

 $\lambda_{\rm p}$ is the device failure rate in F/10⁶ hours

 $\pi_{\mbox{\scriptsize Ω}}$ is the quality factor, Table 5.1.2.7-1

 π_T is the temperature acceleration factor, based on technology (Table 5.1.2.7-4) and is found in Tables 5.1.2.7-5 thru 5.1.2.7-13

 π_V is the voltage stress denating factor, Table 5.1.2.7-14

 π_{F} is the application environment factor, Table 5.1.2.7-3

C₁ is the circuit complexity factor based on bit count and technology.

MOS

For Dynamic RAMs up to 16K bits, $C_1 = 0.025$

For Dynamic RAMs >16K to 64K bits, $C_1 = 0.05$

For Dynamic RAMs >64K to 256K bits, $C_1 = 0.10$

For Dynamic RAMs >256K to 1M bits, $C_1 = 0.20$

For Static RAMS up to 4K bits, $C_1 = .05$

For Static RAMs >4K to 16K bits, $C_1 = .10$

For Static RAMs >16K to 64K bits, $C_1 = .20$

For Static RAMs >64K to 256K bits, $C_1 = .40$

(cont'd on next page)

MICROELECTRONIC DEVICES

MONOLITHIC

BIPOLAR

For Static RAMS up to 4K bits, C_1 = .05 For Static RAMS >4K to 16K bits, C_1 = .10 C_2 is the package complexity failure rate, Table 5.1.2.7-16 π_L is the device learning factor, Table 5.1.2.7-2

MICROELECTRONIC DEVICES

MONOLITHIC

5.1.2.5 Read Only Memories (ROMs) and Programmable Read, Only Memories (PROMs). Includes PROMs with Fusible Link Programming, Avalanche Induced Migration (AIM), Ultra-Violet Erasable (UVEPROMs), Electrically Erasable (EEPROMs) and Electrically Alterable (EAPROMs)

$$\lambda_{p} = \pi_{Q} (C_{1}\pi_{T}\pi_{V} + C_{2}\pi_{E}) \pi_{L}$$

where:

 λ_{p} is the device failure rate in F/10 6 hours

 π_{Ω} is the quality factor, Table 5.1.2.7-1

π_T is the temperature acceleration factor, based on technology (Table 5.1.2.7-4), and is found in Tables 5.1.2.7-5 thru 5.1.2.7-13

 π_V is the voltage stress derating factor, Table 5.1.2.7-14

 π_{F} is the application environment factor, Table 5.1.2.7-3

C₁ is the device complexity failure rate based upon bit count and technology.

MOS ROM

For devices up to 16K bits, $C_1 = 0.035$

For devices with >16K to 64K bits, $C_1 = 0.07$

For devices with >64K to 256K bits, $C_1 = 0.14$

For devices with >256K to 1M bits, $C_1 = 0.28$

MOS PROM (UVEPROM, EEPROM, EAPROM)

For devices up to 16K bits, $C_1 = 0.06$

For devices with >16K to 64K bits, $C_1 = 0.12$

For devices with >64K to 256K bits, $C_1 = 0.24$

For devices with >256K to 1M bits, $C_1 = 0.48$

BIPOLAR ROM/PROM (Fusible Link & AIM)

For devices up to 16K bits, $C_1 = 0.06$

For devices with >16K to 64K bits, $C_1 = 0.12$

MICROELECTRONIC DEVICES

MONOLITHIC

 $\rm C_2$ is the package complexity failure rate, Table 5.1.2.7-16 $\rm m_L$ is the device learning factor, Table 5.1.2.7-2

MICROELECTRONIC DEVICES

MONOLITHIC

5.1.2.6 Monolithic Bipolar or MOS Analog Microprocessor Devices*.

Part operating failure rate model (λ_p) :

 $\lambda_p = \pi_Q \pi_A (C_1 \pi_T \pi_V + C_2 \pi_E) \pi_L \text{ Failures/10}^6 \text{ hours}$

where:

 $\lambda_{\rm p}$ is the device failure rate in F/10⁶ hours

 π_{Ω} is the quality factor, Table 5.1.2.7-1

 π_{Δ} is the analog signal factor, = 1.24

 π_T is the temperature acceleration factor, based on technology (Table 5.1.2.7-4) and is found in Tables 5.1.2.7-5 thru 5.1.2.7-13

 π_V is the voltage stress derating factor, Table 5.1.2.7-14

 $\pi_{\mbox{\footnotesize{E}}}$ is the application environment factor, Table 5.1.2.7-3

 C_1 is the circuit complexity failure rate based on bit count

For signal processors up to 16 bits, $C_1 = 0.06$

 C_2 is the package complexity failure rate, Table 5.1.2.7-16

 π_l is the device learning factor, Table 5.1.2.7-2

* Analog microprocessor is defined as any microprocessor with on-chip circuitry capable of accepting or outputting an analog signal, also called signal processor.

MICROELECTRONIC DEVICES

5.1.2.7 Tables for the Monolithic Model Parameters.

TABLE 5.1.2.7-1. π_Q , Quality Factors

QUALITY LEVEL	DESCRIPTION	^π Q
S	Procured in full accordance with MIL-M-38510, Class S requirements. Class S listing on QPL-38510.	0.25
S-1	Procured in full compliance with the requirements of MIL-STD-975 or MIL-STD-1547 and have procuring activity specification approval.	0.75
В	Procured in full accordance with MIL-M-38510, Class B requirements. Class B listing on QPL-38510.	1.0
B-1	Fully compliant with all requirements of Paragraph 1.2.1 of MIL-STD-883 and procured to a MIL Drawing, DESC Drawing or other government approved documentation.	2.0
B-2	Not fully compliant with requirements of Paragraph 1.2.1 of MIL-STD-883 and procured to government approved documentation including vendor's equivalent Class B requirements.	5.0
D	Hermetically sealed parts with normal reliability screening and manufacturer's quality assurance practices. *Nonhermetic parts encapsulated with organic material must be subjected to 160 hours burn-in at 125°C, 10 temperature cycles (-55°C to 125°C) with end point electricals and high temperature continuity test at 100°C.	10.0
D-1	Commercial (or non-mil standard) part, *encapsulated or sealed with organic materials (e.g., epoxy, silicone or phenolic).	20.0

^{*} NONHERMETIC PARTS SHOULD ONLY BE USED IN CONTROLLED ENVIRONMENTS (e.g., GROUND BENIGN OR GROUND FIXED ENVIRONMENTS).

MICROELECTRONIC DEVICES

MONOLITHIC

TABLE 5.1.2.7-2. π_1 , LEARNING FACTORS

The learning factor $\boldsymbol{\pi}_{l}$ is 10 under any of the following conditions:

New device in initial production.
 Where major changes in design or process have occurred.

(3) Where there has been an extended interruption in production or a change in line personnel (radical expansion).

(4) For all new and unproven technologies.

The factor of 10 can be expected to apply until conditions and controls have stabilized. This period extends for four months of continuous production.

 π_1 is equal to 1.0 under all production conditions not stated in (1), (2) and (3) above.

TABLE 5.1.2.7-3. APPLICATION ENVIRONMENT FACTOR π_{F}

ENVIRON-	πΕ
MENT	
GB	0.38
G _{MS}	0.65
G_{F}	2.5
G_M	4.2
М _Р	3.8
N _{SB}	4.0
N _S	4.0
N _U	5.7
NH	5.9
N _{UU}	6.3
A_RW	8.5
AIC	2.5
A _{IT}	3.0

7	1
ENVIRON-	π _E
MENT	
AIB	5.0
A _{IA}	4.0
A _{IF}	6.0
Auc	3.0
A _{UT}	4.0
A _{UB}	7.5
A _{UA}	6.0
A _{UF}	9.0
S _F	0.9
M _{FF}	3.9
MFA	5.4
U _{SL}	11.
M,	13.
cĹ	220.
L	

MICROELECTRONIC DEVICES

MONOLITHIC

TABLE 5.1.2.7-4 TECHNOLOGY TEMPERATURE FACTOR TABLES (SEE NOTES BELOW)

		<u> </u>	
Techno logy	Package Type	π _T Table Number	A
ASTTL, CML,TTL, HTTL, FTTL, DTL, ECL, ALSTTL	Hermetic Nonhermetic	5.1.2.7-5 5.1.2.7-6	4635. 5214.
LTTL & STTL	Hermetic	5.1.2.7-6	5214.
	Nonhermetic	5.1.2.7-7	5794.
LSTTL	Hermetic	5.1.2.7-7	5794.
	Nonhermetic	5.1.2.7-8	6373.
IIL, I ³ L, ISL	Hermetic	5.1.2.7-9	6952.
& MNOS	Nonhermetic	5.1.2.7-12	9270.
PMOS, NMOS	Hermetic	5.1.2.7-7	5794.
& HMOS	Nonhermetic	5.1.2.7-11	8111.
CMOS, HCMOS, & HTCMOS CMOS/SOS	Hermetic 'Nonhermetic	5.1.2.7-8 5.1.2.7-12	6373. 9270.
Linear (Bipolar	Hermetic	5.1.2.7-10	7532.
& MOS)	Nonhermetic	5.1.2.7-13	10429.

NOTE 1. $\pi_T = 0.1(e^X)$

where

$$x = -A \left(\frac{1}{T_J + 273} - \frac{1}{298} \right)$$

A = value from above Table

 $T_{,j}$ = device worst case junction temperature (${}^{O}C$).

e = natural logarithm base, 2.718

MICROELECTRONIC DEVICES

MONOLI THIC

(Notes continued for Table 5.1.2.7-4)

NOTE 2. T₃, the worst case junction temperature, shall be measured or estimated using the following expression:

$$T_J = T_C + \theta_{JC}P$$

where:

 T_C is case temperature (°C.).

- θ_{JC} is junction to case thermal resistance (O C/watt) for a device soldered into a printed circuit board. If θ_{JC} is not available, use a value contained in a specification for the closest equivalent device or use the table on page 5.1.2.7-5.
- P is the worst case power realized in a system application. If the applied power is not available, use the maximum power dissipation from the device specification or from the specification for the closest equivalent device.

If T_C cannot be determined, use the following:

ENVIRO.	GB	G _{MS}	G _F	G _M	Mp	N _{SB}	N _S	NU	N _H	N _{UU}	A _{RW}	A _{IC}	A _{IT}	A _{IB}
T _C (°C.)	35	36	45	50	40	45	45	80	45	25	60	60	60	60
ENVIRO.	A _{IA}	A _{IF}	A _{UC}	: A _U	JT	A _{UB}	A _{UA}	A _{UF}	S _F	M _{FF}	M _{FA}	U _{SL}	ML	СL
T _C (°C)	60	60	95	95	,	95	95	95	45	60	50	40	60	45

MICROELECTRONIC DEVICES

MONOLITHIC

(Notes continued for Table 5.1.2.7-4)

 $\theta_{\rm JC}$ values for MIL-M-38510 devices. (From MIL-M-38510F, Appendix C.)

PACKAGE TYPE LETTER	MAX 0J-C (°C/W)	DESCRIPTION
A B C D E F G H I J K L M P Q R S V W	70 70 50 70 50 68 60 70 60 40 53 40 60 50 30 40 60 40	14-lead FP (1/4" x 1/4") 14-lead FP (3/16" x 1/4") 14-lead DIP (1/4" x 3/4") 14-lead FP (1/4" x 3/8") 16-lead DIP (1/4" x 7/8") 16-lead FP (1/4" x 3/8") 8-lead can 10-lead FP (1/4" x 1/4") 10-lead can 24-lead DIP (1/2" x "1-1/4") 24-lead FP (3/8" x 5/8") 24-lead DIP (1/4" x 1-1/4") 12-lead can 8-lead DIP (1/4" x 3/8") 40-lead DIP (1/4" x 1-1/16") 20-lead FP (1/4" x 1/2") 18-lead DIP (1/4" x 15/16") 22-lead DIP (3/8" x 1-1/8") 24-lead FP (1/4" x 3/8")

For other devices, or if $\theta_{\mbox{\scriptsize JC}}$ cannot be determined, use the following:

Package Type	Die Attach*	Number of Package Pins				
		<u><</u> 22 pins	> 22 pins			
Hermetic DIPs	Eutectic	30	25			
	Epoxy or Glass	125	100			
Nonhermetic DIPs	Eutectic	30	25			
	Epoxy or Glass	125	100			
Hermetic Flatpacks	Eutectic	40	35			
	Epoxy or Glass	125	100			
Hermetic Cans	Eutectic	30	NA			
	Epoxy or Glass	125	NA			

^{*} If the die attach method cannot be determined, assume that epoxy die attach is used for hermetically packaged CMOS and eutectic die attach for all other hermetic packages.

MICROELECTRONIC DEVICES

MONOLITHIC

TABLE 5.1.2.7-5: π_T VS JUNCTION TEMPERATURE FOR HERMETIC ASTTL, CML, TTL, HTTL, FTTL, DTL, ECL & ALSTTL

т _Ј (^o C)	^π T	T _J (°C)	π _T	T _J (°C)	π _T	T _J (OC)	π _T
25 27 29 31 33 35 37 39 41 43 45 47	0.10 0.11 0.12 0.14 0.15 0.17 0.18 0.20 0.22 0.24 0.27 0.29 0.32	51 53 55 57 59 61 63 65 67 69 71 73	0.35 0.38 0.41 0.45 0.49 0.53 0.58 0.63 0.68 0.74 0.80 0.87 0.93	77 79 81 83 85 87 89 91 93 95 97 99	1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.1 2.2	103 105 110 115 120 125 135 145 150 155 165	2.5 2.7 3.2 3.7 4.3 5.0 6.6 8.7 9.9 11.

TABLE 5.1.2.7-6: π_T VS JUNCTION TEMPERATURES FOR HERMETIC LTTL & STTL: NONHERMETIC ASTTL, CML, TTL, HTTL, FTTL, DTL, ECL & ALSTTL

T _J (°C)	π _T	τ _J (°C)	πT	, τ _J (°C)	π_{T}	T _J (°C)	π _T
25 27 29 31 33 35 37 39 41 43 45 47	0.10 0.11 0.13 0.14 0.16 0.18 0.20 0.22 0.24 0.27 0.30 0.33 0.37	51 53 55 57 59 61 63 65 67 69 71 73	0.41 0.45 0.50 0.55 0.60 0.66 0.72 0.79 0.87 0.95 1.0	77 79 81 83 85 87 89 91 93 95 97 99	1.4 1.5 1.6 1.7 1.9 2.0 2.2 2.4 2.6 2.8 3.0 3.3	103 105 110 115 120 125 135 145 150 155 165 175	3.8 4.1 4.9 5.8 6.9 8.1 11. 15. 18. 20. 27. 35.

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-7: π_{T} VS JUNCTION TEMPERATURE FOR HERMETIC LSTTL, PMOS, NMOS & HMOS: NONHERMETIC LTTL & STTL

T _J (°C)	π _T	T _J (°C)	πŗ	T _J (°C)	^π T	T _J (°C)	π _T
25 27 29 31 33 35 37 39 41 43 45 47	0.10 0.11 0.13 0.15 0.17 0.19 0.21 0.24 0.27 0.30 0.34 0.38 0.43	51 53 55 57 59 61 63 65 67 69 71 73	0.48 0.53 0.59 0.66 0.73 0.81 0.90 1.00 1.10 1.20 1.40 1.5	77 79 81 83 85 87 89 91 93 95 97 99	1.8 2.0 2.2 2.4 2.6 2.9 3.1 3.4 3.7 4.0 4.4 4.8 5.2	103 105 110 115 120 125 135 145 150 155 165	5.7 6.1 7.5 9.1 11. 13. 19. 27. 31. 37. 50. 67.

T _J (°C)	π _T	T _J (^O C)	^π T	T _J (°C)	π _T	τ _J (°C)	^π T
25 27 29 31 33 35 37 39 41 43 45 47	0.10 0.12 0.13 0.15 0.17 0.20 0.23 0.26 0.30 0.34 0.38 0.44	51 53 55 57 59 61 63 65 67 69 71 73	0.56 0.63 0.71 0.80 0.89 1.0 1.1 1.3 1.4 1.6 1.8 1.9 2.2	77 79 81 83 85 87 89 91 93 95 97	2.4 2.7 3.0 3.3 3.6 4.0 4.4 4.8 5.3 5.8 6.4 7.0 7.7	103 105 110 115 120 125 135 145 150 155 165	8.5 9.2 12. 14. 18. 22. 32. 46. 56. 66. 93. 129.

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-9: π_{T} VS JUNCTION TEMPERATURE FOR HERMETIC IIL, I 3 L, ISL & MNOS

T _J (°C)	π _T	τ _J (°C)	π _T	T _J (°C)	πŢ	т _Ј (^о с)	πΤ
25 27 29 31 33 35 37 39 41 43 45 47	0.10 0.12 0.14 0.16 0.18 0.21 0.25 0.28 0.33 0.38 0.43 0.50 0.57	51 53 55 57 59 61 63 65 67 69 71 73	0.65 0.74 0.84 0.96 1.1 1.2 1.4 1.6 1.8 2.0 2.3 2.5 2.9	77 79 81 83 85 87 89 91 93 95 97 99	3.2 3.6 4.0 4.5 5.6 6.9 7.6 8.5 9.4 10.	103 105 110 115 120 125 135 145 150 155 165	13. 14. 18. 22. 28. 35. 54. 81. 99. 120. 173. 247.

TABLE 5.1.2.7-10: $\pi_{\mbox{\scriptsize T}}$ VS JUNCTION TEMPERATURE FOR HERMETIC LINEAR

$T_{J}(^{O}C)$	π _T T,	J ^(OC) π _T	T _J (OC)	л _Т	τ _J (°C)	π _T
27 : 0 29 : 0 31 : 0 33 : 0 35 : 0 37 : 0 39 : 0 41 : 43 : 0 45 : 0	0.10 5 0.12 55 0.14 55 0.16 57 0.23 66 0.27 65 0.31 65 0.36 67 0.42 69 0.49 7	3 0.88 5 1.0 7 1.2 9 1.3 1 1.5 3 1.7 5 2.0 7 2.3 9 2.6 1 2.9	77 79 81 83 85 87 89 91 93 95 97	4.3 4.8 5.5 6.1 6.9 7.8 8.7 9.8 11.	103 105 110 115 120 125 135 145 150 155 165	19. 21. 27. 35. 45. 57. 91. 142. 175. 216. 323.

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-11: $\pi_{\mbox{\scriptsize T}}$ VS JUNCTION TEMPERATURE FOR NONHERMETIC PMOS, NMOS & HMOS

T _J (°C)	πŢ	T _J (°C)	π _T	T _J (°C)	π _T	TJ(OC)	π _T
25 27 29 31 33 35 37 39 41 43 45 47	0.10 0.12 0.14 0.17 0.20 0.24 0.29 0.34 0.40 0.47 0.55 0.65 0.76	51 53 55 57 59 61 63 65 67 69 71 73 75	0.89 1.0 1.2 1.4 1.6 1.9 2.2 2.5 2.9 3.3 3.8 4.4 5.0	77 79 81 83 85 87 89 91 93 95 97	5.7 6.5 7.4 8.4 9.6 11. 12. 14. 16. 18. 20. 22.	103 105 110 115 120 125 135 145 150 155 165	28. 32. 42. 55. 72. 93. 154. 248. 311. 390. 600. 907.

TABLE 5.1.2.7-12: π_{T} VS JUNCTION TEMPERATURE FOR NONHERMETIC IIL, I ^3L , ISL, MNOS, CMOS, HCMOS, HTCMOS & CMOS/SOS

T _J (°C)	π _T	T _J (°C)	π _T	T _J (OC)	πТ	T _J (OC)	π _T
25 27 29 31 33 35 37 39 41 43 45 47	0.10 0.12 0.15 0.18 0.23 0.27 0.33 0.40 0.49 0.59 0.71 0.85 1.0	51 53 55 57 59 61 63 65 67 69 71 73	1.2 1.5 1.7 2.0 2.4 2.9 3.4 4.0 4.7 5.5 6.4 7.5	77 79 81 83 85 87 89 91 93 95 97	10. 12. 14. 16. 18. 21. 24. 28. 32. 37. 43. 49.	103 105 110 115 120 125 135 145 150 155 165	63. 72. 100. 136. 184. 248. 439. 756. 982. 1269. 2081. 3337

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-13: $\pi_{\overline{\chi}}$ VS JUNCTION TEMPERATURE FOR NONHERMETIC LINEAR

T _J (°C)	π _T	T _J (°C)	π _T	T _J (oc)	π _T	T _J (°C)	π _T
25 27 29 31 33 35 37 39 41 43 45 47	0.10 0.13 0.16 0.20 0.25 0.31 0.39 0.48 0.59 0.73 0.90 1.10	51 53 55 57 59 61 63 65 67 69 71 73	1.7 2.0 2.5 3.0 3.6 4.4 5.2 6.3 7.5 9.0 11.	77 79 81 83 85 87 89 91 93 95 97 99	18. 21. 25. 30. 35. 41. 49. 57. 67. 78. 91. 106. 123.	103 105 110 115 120 125 135 145 150 155 165	142. 165. 236. 335. 472. 659. 1252. 2308. 3100. 4135. 7212.

MICROELECTRONIC DEVICES

MONOLITHIC

TABLE 5.1.2.7-14: π_V , VOLTAGE STRESS DERATING FACTOR

TECHNOLOGY	πγ
CMOS, V _{DD} < 12 volts	1.0
CMOS, 12 volts $\leq V_{DD} \leq 20$ volts	Equation 1 (below) or Table 5.1.2.7-15
CMOS/SOS and all technologies other than CMOS	1.0

 $V_{\overline{DD}}$ is the maximum supply voltage rating.

Equation 1: For operating supply voltage from 12 to 20 volts

$$\pi_{V} = 0.110 \ (e^{X})$$

where:
$$X = \frac{0.168V_s (T_J + 273)}{298}$$

 ${\bf V_S}$ is the operating supply voltage in actual application

 $T_{\rm J}$ is the device worst case junction temperature ($^{\rm O}$ C)

e is the natural logarithm base, 2.718

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-15: π_V FOR CMOS WITH 12 \leq $V_{DD} \leq$ 20 VOLTS

VS	<u></u>			T _J (°C)	
(V.)	. 25	50	75	100	125	150
12	.83	. 98	1.2	1.4	1.6	1.9
13	. 98	1.2	1.4	1.7	2.0	2.4
14	1.2	1.4	1.7	2.1.	2.5	3.1
15	1.4	1.7	2.1	2.6	3.2	3.9
16	1.6	2.0	2.5	3.2	4.0	5.0
17	1.9	2.4	3.1	3.9	5.0	6.3
18	2.3	2.9	3.8	4.8	6.2	8.0
19	2.7	3.5	4.6	5.9	7.8	10.2
20	3.2	4.2	5.6	7.4	9.8	12.9

MICROELECTRONIC DEVICES

MONOLITHIC

TABLE 5.1.2.7-16: C2, PACKAGE COMPLEXITY FAILURE RATES IN FAILURES PER 106 HOURS

		PACKAGE TY	'PE*		
Number of Functional Pins	Hermetic DIPs with Solder or Weld Seal, Leadless Chip Carriers (LCC)	Hermetic DIPs with Glass Seal	Nonhermetic DIPs	Hermetic Flatpacks with Axial Leads on 50 Mil Centers	Hermetic Cans
3					0.0003
4				0.0004	0.0005
6 8	0.0019	0.0013	0.0018	0.0008	0.0011
	0.0026	0.0021	0.0026	0.0013	0.0020
01	0.0034	0.0029	0.0034	0.0020	0.0031
12	0.0041	0.0038	0.0043	0.0028	0.0044
14	0.0048	0.0048	0.0051	0.0037	0.0060
16	0.0056	0.0059	0.0061	0.0047	0.0079
18	0.0064	0.0071	0.0070	0.0058	
22	0.008	0.010	0.009	0.008	
24	0.009	0.011	0.010	0.010	-
28	0.010	0.014	0.012		
36	0.013	0.020	0.016		
40	0.015	0.024	0.019		
64	0.025	0.048	0.033		
80	0.032				
128	0.053				
180	0.076				

^{*}If seal type for hermetic DIP is unknown, assume glass seal.

The tabulated values are determined by the following equations:

Hermetic DIPs with solder or weld seals, Leadless Chip Carrier (LCC)	$C_2 = 2.8 \times 10^{-4} (N_p)^{1.08}$
Hermetic DIPs with glass seals	$C_2 = 9.0 \times 10^{-5} (N_p)^{1.51}$
Nonhermetic DIPs	$C_2 = 2.0 \times 10^{-4} (N_p)^{1.23}$
Hermetic Flatpacks	$C_2 = 3.0 \times 10^{-5} (N_p)^{1.82}$
Hermetic Cans	$c_2 = 3.0 \times 10^{-5} (N_p)^{2.01}$

where:

 ^{N}p is the number of pins on a device package which are connected to some substrate location (3 \leq ^{N}p \leq 180).

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-17: CROSS REFERENCE FOR COMMERCIAL TYPE TO MIL-38510 TYPE

COMMERCIAL	M38510/	COMMERCIAL	M38510/	COMMERCIAL	M38510/
REF10	12403	LM139	11201	PAL 16R6A-2	50409
LM101A	10103	LM140H-05	10702	PAL16L8A	50401
LM102	10601	LM140H-12	10703	PAL16R8A	50402
10501	06001	LM140H-15	10704	PAL16L8A-2	50407
10502	06002	LM140H-24	10705	PAL16R8A-2	50408
10504	06201	LM140K-05	10706	1802D	47001
10505	06003	LM140K-12	10707	DG181A	11101
10506	06004	LM140K-15	10708	DG182A	11102
10507	06005	LM140K-24	10709	1832	47201
10509	06006	14013B	05151	DG184A	11103
10524	06301	14023B	05053	DG185A	11104
10525	06302	14093B	17701	1853	47401
10531	06101	PAL 14H4	50303	DG187-A	11105
10535	06104	PAL 14L4	50308	DG188A	11106
10576	06103	LM141H-05	10702	DG190A	11107
10597	06202	LM141H-12	107,03	DG191A	11108
LM106	10303	LM141H-15	10704	LM193	11202
10631	06102	LM141H-24	10705	LF198	12501
LM108A	10104	14502	17403	LM199A	12401
PAL10H8	50301	MC 14069	17401	LM199	12404
PAL10L8	50306	LF147	11906	DG200	12301
LM109	10701	LM148	11001	HI200	12301
LM110	10602	LM149	11002	2003	14103
LM111	10304	LM150K	11705	DG201	12302
LM117H	11703	LF151	11904	HI201	12302
LM117K	11704	1524	12601	PAL 20R4A	50504
LM118	10107	LM1524	12601	PAL2OR6A	50503
LM120H-05	11501	LF153	11905	PAL20L8A	50501
LM120H-12	11502	15482	00601	PAL2OR8A	50502
LM120H-15	11503	LF155	11401	LH2101A	10105
LM120H-24	11504	LF155A	11404	LH2108A	10106
LM120K-05	11505	1558	10108	LH2110	10603
LM120K-12	11506	LF156	11402	LH2111	10305
LM120K-15	11507	LF156A	11405	2114	23802
LM120K-24	11508	LF157	11403	2114A	23804
DAC1221LD	12707	LF157A	11406	2117	24001
LM124	11005	PAL16C1	50305	2117	24002
PAL 12H6	50302	PAL 16H2	50304	2117	24003
PAL12L6	50307	PAL 16L2	50309	2147	23801
LM129A	. 12402	PAL 16R4A	50404	2147H	23803
LM129B	12406	PAL 16X4	50405	2147H-3	23805
LM137H	11803	PAL 16A4	50406	2147H-2	23807
LM137K	11804	PAL 16R4A-2	50410	2148H	23806
LM138K	11706	PAL 16R6A	50403	2164	24401

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-17: CROSS REFERENCE FOR COMMERCIAL TYPE TO MIL-38510 TYPE (CONT'D)

COMMERCIAL	M38510/	COMMERCIAL	M38510/	COMMERCIAL	M38510/
2164	24402	DG300	11601	4014B	05752
2164	24403	DG301A	11602	4015A	05703
2316E	40301	3018A	10801	4015B	05753
24401	24401	DG302A	11603	4016A	05801
2500	12204	DG303A	11604	4016B	05851
2510	12205	DG304A	11605	4017A	05601
2516	22101	3045	10802	4017B	05651
25LS174	33106	DG305A	11606	40174B	17505
25LS175	33107	DG306A	11607	4018A	05602
2520	12206	DG307A	11608	4018B	05652
2532	22201	MC3101	15501	4019A	05302
0026	03501	MC3106	15502 15503	4019B 4020A	05352 05603
DS0026	03501	MC3111	40301	4020A 4020B	05653
MH0026 2600	03501 12202	MK34000 34069	17401	40208 4021A	05704
2616	40301	3516E	40301	4021A 4021B	05754
2620	12203	3636	21002	40218 4022A	05604
0P27A	13503	4000A	05201	4022A 4022B	05654
2700	12201	4000A 4000B	05201	4022B 4023A	05003
2708	22001	4001A	05202	4023B	05053
2716	22101	4001B	05252	4024A	05605
275180	20903	4002A	05203	4024B	05655
275181	20904	4002B	05253	4025A	05204
275191	21002	4006A	05701	4025B	05254
2732	22202	4006B	05751	4027A	05102
NMC2816	22601	4007A	05301	4027B	05152
28S166A	21002	4007UB	05351	4028A	05901
28S166A	21004	4008A	05401	4028B	05951
2901A	44001	4008B	05451	4030A	05303
2901C	44001	4009A	05501	4030B	05353
2905	44101	4009UB	05551	4031A	05705
2906	44102	4010A	05502	4031B	05755
2907	44103	4010B	05552	4034A	05706
2915A	44104	40106B	17702	4034B	05756
2916A	44105	40107B	17402	4041A	05505
2917A	44106	40109B	17404	4041UB	05555
2918	44201	4011A	05001	4043A	05103
29611	20402	4011B	05051	4043B	05153
29621	20805	4012A	05002	4048A	05304
29631	20904	4012B	05052	4048B	05354
29651 29651	20902 20908	4013A 4013B	05101 05151	4049A 4049UB	05503 05553
29681			05702	4050A	05504
29001	21002	4014A	03/02	HUSUA	05504
				<u> </u>	

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-17: CROSS REFERENCE FOR COMMERCIAL TYPE TO MIL-38510 TYPE (CONT'D)

TYPE (CONT'D)								
COMMERCIAL	M38510/	COMMERCIAL	M38510/	COMMERCIAL	M38510/			
4050B	05554	4564	24401	53\$841	20902			
TMS4050	23502	4564	24402	53\$841	20908			
TMS4050	23504	4564	24403	5400	00104			
4060A TMS4060	05X01 23501	4741 506	11003 19001	54L00 54H00	02004 02304			
TMS4060	23503	506A	19001	54800	07001			
4066A	05802	500A 507	19002	54500 54LS00	30001			
4066B	05852	507A	19003	54E300 54F00	33001			
4067B	17801	508A	19004	54ALS00	37001			
4069UB	17401	509A	19006	54HC00	65001			
4070B	17203	HPROM512	20101	5401	00107			
4070B	05353	51067	29103	54L01	02006			
4071B	17101	51067	29106	54H01	02306			
4072B	17102	52116	40301	5402	00401			
4073B	17003	MM5280	23505	54L02	02701			
40758	17103	MM5280	23506	54S02	07301			
40768	17501	5300-1	20301	54LS02	30301			
4077B	17204	5301-1	20302	54F02	33301			
40818	17001	MCM5303	20101	54ALS02	37301			
40828	17002	MCM5304	20102	5403	00109			
4085B 4086B	17201 17202	5305-1 5306-3	20401	54L03	02006			
4093B	17701	5306-1 53\$1680	20402 21001	54S03 54LS03	07002 30002			
4095B	17502	5351681	21001	5404	00105			
40968	17502	AD532S	13903	54C04	17401			
MKB4096	23602	5330	20701	54L04	02005			
MKB4096	23604	5331	20702	54H04	02305			
40978	17802	AD534T	13901	54504	07003			
40988	17504	AD534S	13902	54LS04	30003			
4099B	17601	5340-1	20801	54F04	33002			
4116	24001	5341-1	20802	54ALS04	37006			
4116	24002	53\$440	20601	5405	00108			
4116	24003	53\$441	20602	54\$05	07004			
4136	11004	5348-1 5340-1	20804	54LS05	30004			
4156 4213	11003 13904	5349-1 5352-1	20805 20601	5406 5407	00801 00803			
4502B	17403	5352-1 5353-1	20601	5407	01601			
4508B	17602	5380-1	20903	54508	08003			
45148	17301	5380-2	20903	54H08	15501			
4515B	17302	5381-1	20904	54H08	15504			
4532B	17303	5381-2	20904	54LS08	31004			
4555B	17304	53\$840	20901	54F08	34001			
4556B	17305	53S840	20907	54AL S08	37401 ·			
				<u> </u>				

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-17: CROSS REFERENCE FOR COMMERCIAL TYPE TO MIL-38510 TYPE (CONT'D)

		(CONT D)			
COMMERCIAL	M38510/	COMMERCIAL	M38510/	COMMERCIAL	M38510/
5409	01602	54116	01503	54F151	33901
54809	08004	5412	00106	54153	01403
54LS09	31005	54LS12	30006	545153	07902
5410	00103	54121	01201	54LS153	30902
54L10	02003	54L121	04201	54F153	33902
54H10	02303	54122	01202	54154	15201
54510	07005	54L122	04202	54155	15202
54LS10	30005	54LS122	31403	54LS155	32601
54F10	33003	54123	01203	54156	15203
54ALS10	37002	54LS123	31401	54LS156	32602
54HC10	65002	54LS124	31701	54157	01405
54ALS1000	38401	54125	15301	54\$157	07903
54ALS1002	38402	54LS125	32301	54LS157	30903
54ALS1003	38403	54LS725A	32301	54F157	33903
54ALS1004	38409	54126	15302	54\$158	07904
54ALS1005	38410	54LS126	32302	54LS158	30904
54ALS1008	38404	5413	15101	54F158	33904 00802
54H101	02205	54LS13	31301	5416	01303
54ALS1010 54ALS1011	38405 38406	54132 54LS132	15103 31303	54160 54LS160	31503
54ALS1011	38407	54L3132 54HC132	65005	54LS160A	31503
54H103	02206	54S133	07009	54161	01306
54ALS1032	38408	54ALS133	37005	54LS161	31504
54ALS1034	38411	545134	07010	54LS161A	31504
54ALS1035	38412	545135	07502	54162	01305
54107	00203	545138	07701	54LS162	31511
54LS107	30108	54LS138	30701	54LS162A	31511
54LS109	30109	54ALS138	37701	54163	01304
54F109	34102	54\$139	07702	54LS163	31512
54ALS109	37 102	54LS139	30702	54LS163A	31512
54\$11	08001	5414	15102	54164	00903
54HJ1	15502	54LS14	31302	54L164	02802
54LS11	31001	54\$140	08 10 1	54LS164	30605
54F11	34002	54145	01005	54165	00904
54ALS11	37402	54147	15601	54LS165	30608
545112	07102	54148	15602	54LS165A	30608
54LS112	30103	54LS148	36001	54LS166	30609
54F112	34103	54S15	08002	54LS168	31505
54ALS112A 54S113	37 103 07 103	54LS15 541 5 0	31002	54LS169	31506 31506
545113 54LS113	30104	-	01401 01406	54LS169A 5417	00804
545114	07104	54151 54S151	07901	54170	01801
54LS114	30105	54LS151	309.01	54170 54LS170	31902
J7E3114	30 103	0463131	30301	3763770	J1302

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-17: CROSS REFERENCE FOR COMMERCIAL TYPE TO MIL-38510 TYPE (CONT'D)

	ITPE	(CONTO)			
COMMERCIAL	M38510/	COMMERCIAL	M38510/	COMMERCIAL	M38510/
54LS173	36101	54H21	15503	54LS273	32501
54174	01701	54LS21	31003	54LS279	31602
545174	01705	54H22	02307	5428	16201
54LS174 54F174	30106 34107	54S22 54LS22	07007 30008	54LS28	30204 38402
54ALS174	37 20 1	54LS221	31402	54ALS28 54LS280	32901
54175	01702	5423	00402	54F280	34901
545175	07106	54LS240	32401	54LS283	31202
54LS175	30107	54F240	33201	54F283	34201
54F175	34104	54AL S240	38301	545287	20302
54ALS175	37 202	54LS241	32402	54\$288	20702
54180	01901	54F241	33202	54LS290	32003
54181	01101	54AL \$241	38302	54LS293	32004
545181	07801	54AL\$242	38506	54LS295B	30606
54LS181	30801	54AL S243	38507	54LS298	30909
54182	01102	54LS244	32403	5430	00101
545182	07802	54F244	33203	54L30	02001
54LS190	31513	54ALS244	38303	54H30	02301
54LS191 54192	31509 01308	5425 54S251	00403 07905	54S30 54LS30	07008 30009
54LS192	31507	545251 54LS251	30905	54LS30 54ALS30	37004
54193	01309	54F251	33905	54HC30	65004
54L193	02503	54S253	07908	5432	16101
54LS193	31508	54LS253	30908	54LS32	30501
54194	00905	54F253	33908	54F32	33501
545194	07601	54AL S253	3XX01	54ALS32	37501
54LS194	30601	54\$257	07906	54LS324	31702
54LS194A	30601	54LS257	30906	54LS348	36002
54F194	33601	54LS257B	30906	54F352	33909
54195 545195	00906 07602	54F257	33906	54F353	33910
54LS195	30602	54S258 54LS258	07907 30907	54365 54LS365	16301 32201
54LS195A	30602	54LS258B	30907	54366	16302
54LS196	32001	54F258	33907	54LS366	32203
54LS197	32002	54LS259	31603	54367	16303
5420	00102	54LS259B	31605	54LS367	32202
54L20	02002	5426	00805	54368	16304
54H2O	02302	54LS26	32 102	54LS368	32204
54520	07006	54LS261	31801	5437	00302
54LS20	30007	54LS266	30303	54LS37	30202
54F20	33004	5427	00404	54ALS37	38401
54ALS20 54HC20	37003 65003	54LS27	30302	54LS373	32502
340020	05003	54AL S27	37 302	54LS374	32503
L		<u></u>		<u> </u>	

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-17: CROSS REFERENCE FOR COMMERCIAL TYPE TO MIL-38510 TYPE (CONT'D)

COMMERCIAL	M38510/	COMMERCIAL	M38510/	COMMERCIAL	M38510/
			-		
54F374	34105	54\$51	07401	54H74	02203
54LS375	31604	54LS51	30401	54\$74	07101
54LS377	32504	54F521	34701	54LS74	30102
54F378	34108	5453	00503	54F74	34101
54F379	34109	54H53	04003	54ALS74	37 10 1
5438	00303	54F534	34106	5475	01501
54LS38	30203	5454	00504	54LS75	31601
54LS390	32701	54H54	04004	5476	00204
54LS393	32702	54L54	04102	54H76	02204
54LS395A	30607	54LS54	30402	54LS76	30110
5440	00301	54LS540	32404	54LS76A	30110
54H40	02401	54LS541	32405	5477	01502
54\$40	07201	54H55	04005	54L78	02104
54LS40	30201	54L55	04103	5479	00207
54ALS40	38407	54S570	20401	5480	00604
545412	42101	54S571	20402	5482	00601
5442	01001	54S572	20601	5483	00602
54L42	02901	54S573	20602	54LS83A	31201
54LS42	30703	54ALS574	37 104	54\$85	08201
54LS424	42201	54AL S576	37 105	5485	15001
54\$428	42301	54S64	07402	54LS85	31101
5443	01002	54F64	33401	54ALS857	37901
54143	02902	54LS640	32804	5486	00701
5444	01003	54ALS640	38501	54L86	02601
54L44	02903	54AL S641	38502	54S86	07501
5445	01004	54AL S642	38503	54L86	30502
5446	01006	54ALS643	38504	54F86	34501
54L46	02904	54ALS645	38505	54ALS874	37 106
5447	01007	54LS646	32804	54ALS876	37 107
54L47	02905	54LS648	32805	5490	01307
54LS47	30704	54S65	07403	54L90	02501
545472	20805	54LS670	31901	54LS90	31501
54\$473	20804	5470	00206	5492	01301
54S474	20802	54L71	02101	54LS92	31510
54\$475	20801	5472	00201	54C929	23901 -
5448	01008	54L72	02102	5493	01302
5449	01009	54H72	02201	54L93	02502
54LS490	32703	5473	00202	54LS93	31502
5450	00501	54L73	02103	54L93A	02502
54H50	04001	54H73	02202	540930	23902
5451	00502	54LS73	30101	5495	00901
54H51	04002	5474	00205	54L95	02801
54L51	04101	54L74	02105	54LS95	30603
<u> </u>		- · - · ·	· - •		

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-17: CROSS REFERENCE FOR COMMERCIAL TYPE TO MIL-38510 TYPE (CONT'D)

COMMERCIAL	M38510/	COMMERCIAL	M38510/	COMMERCIAL	M38510/
54LS95B	30603	6208	19008	7611	20302
5496 ·	00902	6216	19003	76160	21001
54LS96	30604	064	11903	76161	21002
55107	10401	6504	24501	76165	21005
55108	10402	6508	23901	7620	20401
55113	10405	6514	24502	7621	20402
55114	10403	6516	29102	76321	21101
55115	10404	65162	29101	7640	20801
SMJ5517	29101	65162	29104	7641	20802
SMJ5517	29105	65162	29105	76L42A	02906
5532A	13102	6518	23902	7642	20601
55325	13001	65262	29103	7643	20602
55326	13002	MCM6604A	23602	7644	20603
55327	13003	MCM6604A	23604	76L70	02805
5534A	13101	MCM6605	23601	7680	20903
SE5537	12502	MCM6605	23603	7681	20904
55450	12901	IM6654	21901	7684	20901
55451	12902	6665	24401	7685	20902
55452	12903	6665	24402	771	11904
55453	12904	6665	24403	77\$180	20903
55454	12905	6800	40001	77\$181	20904
55460	12906	6810	40201	77S184	20901
55461	12907	S6831B	40301	77\$185	20902
55462	12908	68A316E .	40301	77\$190	21001
55463	12909	68316E	40301	77S191	21002
55464	12910	071	11904	772	11905
555	10901	710	10301	774	11906
556	10902	LM710	10301	78MG	11701
557	10903	711	10302	78G	11702
IM5603A	20201	LM711	10302	78M05	10702
AD561	13301	714	13502	7805	10706
IM5623	20202	7181	01101	NC7810LC	22501
56831B	40301	072	11905	78M12	10703
AD571	13401	LM723	10201	7812	10707
AD584S	12801	MM7280	23505	78M15	10704
AD584T	12802	MM7280	23506	7815	10708
061	11901	074	11906	78M24	10705
6108	19007	LM741A	10101	7824	10709
6116	19001	LM747A	10102	7831	10406
6116	29101	7558	10108	7832	10407
6116	29104	7602	20701	79MG	11801
6116	29105	7603	20702	79G	11802
062	11902	7610	20301	79M05	11501
				<u> </u>	

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-17: CROSS REFERENCE FOR COMMERCIAL TYPE TO MIL-38510 TYPE (CONT'D)

		(CONT.D)		 -	
COMMERCIAL	M38510/	COMMERCIAL	M38510/	COMMERCIAL	M38510/
7905	11505	825185	20902	93L01	02907
79M12	11502	82S190	21001	9301	15206
7912	11506	82\$191	21002	9304	00603
79M15	11503	82S191B	21004	9308	01503
7915	11507	82S23	20701	93L08	04502
79M24	11504	8224	42201	9309	01404
7924	11508	82S2708	20905	93L09	04601
DAC-08	11301	8228	42301	93L10	02504
DAC-08A	11302	8250	15204	9311	15201
Z-80	48002	8251	15205	9312	01402
Z-80A	48001	8252	15206	93L12	04602
Z80ACPU	48001	8264	24401	9314	01504
Z-80B	48003	8264	24402	93L14	04501
Z80CPU	48002	8264-	24403	93L16	02505
Z80BCPU	48003	9093	03304	9317	15802
Z8001	52001	AM9130CFC	23701	93L18	04301
Z8001A	52003	AM9130AFC	23702	9318	15603
Z8002	52002	AM9130CDM	23703	932	03101
Z8002A	52004	AM9130CFM	23703	9321	15801
8080A	42001	AM9130ADM	23704	9322	01405
82510	23101	AM9130AFM	23704	93L22	04603
82510	23107	AM91L30CF	23705	93L24	04401
82S11	23102	AM91L30AF	23706	9324	15002
82511	23108	AM91L30CDM	23707	93L28	02803
825115	20803	AM91L30CFM	23707	9328	15902
8212	42101	AM91L30ADM	23708	933	03105
82\$123	20702	AM91L30 AFM	23708	9334	16001
825126	20301	AM9140CFC	23709	9338	15701
82S126A	20303	AM9140AFC	237 10	9341	01101
825129	20302	AM9140CDM	23711	93410	23001
82S129A	20304	AM9140CFM	23711	93411	23003
825130	20401	AM9140ADM	23712	93412	23109
825130A	20403	AM9140AFM	23712	93L412	23111
82S131 82S131A	20402	AM91L40CDC	23713	93415	23101
82S136	20404 20601	AM91L40AFC	23714	93L415	23103
82S137	20602	AM91L40CDM	23715	93415	23105
82S137A	20602	AM91L4OCFM AM91L4OADM	237 15	93415	23107
82S140	20801	AM91L40ADM AM91L40AFM	23716 23716	93417 93419	20301 23201
825141	20802	9218	40301	93419	
825180	20903	930	03001	9342 93L420	01102 23004
825181	20904	93L00	02804	93421	23004
825184	20901	9300	15901	93422	23110
1		3000	13301	75744	20110

MICROELECTRONIC DEVICES

TABLE 5.1.2.7- 17: CROSS REFERENCE FOR COMMERCIAL TYPE TO MIL-38510 TYPE (CONT'D)

COMMERCIAL	M38510/	COMMERCIAL	M38510/	COMMERCIAL	M38510/
93L422 93422A 93L422A 93L425 93L425 93425 93425A 93L425A 93L425A 93L427 93436 93438 93446 93448 93450 93451 93452	23112 23114 23115 23102 23104 23106 23108 23113 20302 20401 20801 20402 20802 20903 20904 20601	93453 93460 93461 935 93510 932510 93511 932511 936 9380 9382 9383 940 944	20602 20906 20905 03002 21001 21003 21002 21002 21004 03003 06604 00601 00602 03002 03102 03301	946 948 950 951 9LS51 9LS54 957 958 9601 9602 9614 9615 962 SBP9900A SBP9989	03004 03302 03303 03201 30401 30402 03103 03104 01204 01205 10403 10404 03005 46001 46501

*MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS

M38510/ XXXXXX	Vcc (V.)	Pd (W.)	Complexity	Νp	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Νp
TTL					ΠL				
00101-A	7.	0.04	1 G	14	00203-C	7.	0.22	16G	14
00101-8	7.	0.04	1G	14	3-40200	7	0.22	16G	15
00101-C	7.	0.04	1G	14	00204-F	7.	0.22	16G	16
00101-0	7.	0.04	1G	14 14	00205-A	7.	0.22	12G	14 14
00102-A	7.	80.0	2G	14	00205-B	7.	0.22	12G 12G	14
00102-B	7. 7.	0.08 0.08	2G 2G	14	00205-C 00205-D	7. 7.	0.22 0.22	12G	14
00102-0	7.	0.08	2G	14	00205-5 00206-A	7.	0.11	11G	14
00102-0	7.	0.12	3G	14	00206-R	7.	0.11	116	14
00103-A	7.	0.12	3G	14	00206-C	7.	0.11	116	14
00103-C	7.	0.12	3 G	14	00206-0	7.	0.11	116	14
.00103-D	7.	0.12	3 G	14	00207-A	7.	0.22	12G	14
00104-A	7.	0.16	4 G	14	00207-B	7.	0.22	12G	14
00104-B	7.	0.16	4 G	14	00207-C	7.	0.22	12G	14
00104-C	7.	0.16	4 G	14	00207-D	7.	0.22	12G	14
00104-D	7	0.16	4 G	14	00301-A	7.	0.20	2 G	14
00105-A	7.	0.24	6G	14	00301-B	7.	0.20	2G	14
00105-B	7.	0.24	6G	14	00301-0	7.	0.20	2G	14
00105-C	7.	0.24	6G	14	00301-D	7.	0.20	2 G	14
00105-0	7.	0.24	6G	14	00302-A	7.	0.40	4 G	14
00106-A	7.	0.12	3G	14	00302-В	7.	0.40	4 G	14
00106-В	7.	0.12	3G	14	00302-C	7.	0.40	4 G	14
00106-C	7.	0.12	3 G	14	00302-0	7.	0.40	4 G	14
00106-0	7.	0.12	3 G	14	00303-A	7.	0.40	4 G	14
00107-A	<u>7.</u>	0.16	4 G	14	00303-8	7.	0.40	4 G	14
00107-8	7.	0.16	4 G	14	00303-C	7.	0.40	4 G	14
00107-C	7.	0.16	4 G	14	00303-D	7.	0.40	4 G 4 G	14 14
00107-D	7.	0.16	4G	14	00401-A	7.	0.24 0.24	4 G	14
00108-A 00108-B	7.	0.24 0.24	6G 6G	14 14	00401-B 00401-C	7. 7.	0.24	4 G	14
00108-B	7. 7.	0.24	6G	14	00401-D	7.	0.24	4 G	14
00103-C	7.	0.24	6G	14	00401-B	7.	0.12	2 G	16
00108-5	Ź.	0.16	4 G	14	00402-F	7.	0.12	2G	16
00201-A	Ź.	0.11	8 G	13	00403-A	Ź.	0.12	2 G	14
00201-8	Ź.	0.11	86	13	00403-В	7.	0.12	2G	14
00201-C	7.	0.11	8 G	13	00403-C	7.	0.12	2 G	14
00201-D	Ź.	0.11	8G	13	00403-D	Ź.	0.12	2G	14
00202-A	7.	0.22	16G	14	00404-A	7.	0.18	3 G	14
00202-8	7.	0.22	16G	14	00404-B	7.	0.18	3 G	14
00202-C	7.	0.22	16G	14	00404-C	7.	0.18	3 G	14
00202-D	7.	0.22	16G	14	00404-D	7.	0.18	3G	14

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXX	Vcc (V.)	Pd (W.)	Complexity	Nр
TTL		_	<u> </u>		ΠL	•	· · · · · ·		
00501-A	7.	0.10	6 G	14	00803-8	7.	0.32	6G	14
00501-8	7.	0.10	6G	14	00803-C	7.	0.32	6G	14
00501-C	7.	0.10	6G	14	00803-0	7.	0.32	6G	14
00501-0	7.	0.10	6G	14	00804-A	7.	0.32	6G	14
00502-A	7.	0.10	6G	14	00804-8	7.	0.32	6G	14
00502-8	7.	0.10	6G	14	00804-C	7.	0.32	6G	14
00502-C	7.	0.10	6G	14	00804-0	7	0.32	6G	14
00502-0	7.	0.10	6 G	14	00805-A	7.	0.22	4G	14
00503-A	7.	0.07	5 G	13	00805-8	7.	0.22	4 G	14
00503-8	7.	0.07	5 G	13	00805-C	<u>7</u> .	0.22	4 G	14
00503-C	7.	0.07	5 G	13	00805-0	7.	0.22	4G	14
00503-0	7.	0.07	5 G	13	00901-A	7.	0.42	37 G	14
00504-A	7.	0.07	4 G	14	00901-8	7.	0.42	37G	14
00504-8	7.	0.07	4G	14	00901-C	7.	0.42	37 G	14
00504-C	7.	0.07	4G	14	00901-0	7.	0.42	37 G	14
00504-0 00601-A	7.	0.07	5G	14	00902-E	7.	0.40		16
00601-8	7.	0.28 0.28	21 G	14 14	00902-F	7.	0.40	39G 36G	15 14
00601-S	7. 7.	0.28	21G 21G	14	il 00903-A il 00903-8	7. 7.	0.32 0.32	36G	14
00601-0	7.	0.28	21G	14	00903-C	7.	0.32		14
00602-E	ź.	0.55	36G	16	00903-0	7.	0.32	36G	14
00602-E	7.	0.55	36G	16	00904-8	7.	0.37	62G	16
00602-1	7.	0.30	22G	16	00904-E	7	0.37	62G	16
00603-E	7.	0.30	22G 22G	16	00905-8	7.	0.36	47 G	16
30604-A	7.	0.17	14G	14	00905-F	7.	0.36	47 G	16
00604-8	7	0.17	14 G	14	00906-E	7	0.37	41 G	16
00604-C	7.	0.17	14G	14	00906-F	7.	0.37	41G	16
00604-0	7.	0.17	14G	14.	01001-E	7.	0.23	18G	16
00701-A	7.	0.26	4G	14	01001-F	7.	0.23	18G	16
00701-В	7.	0.26	4 G	14	01002-E	7	0.23	18G	16
00701-C	7.	0.25	4 G	14	01002-F	7.	0.23	18G	16
00701-0	7.	0.25	4 G	14	01003-E	7.	0.23	18G	16
00801-A	7.	0.32	6G	14	01003-F	7	0.23	18 G	16
00801-8	7.	0.32	6G	14	01004-E	7	0.34	18G	16
00801-C	7.	0.32	6G	14	01004-F	7.	0.34		16
00801-D	7.	0.32	6 G	14	01005-E	7.	0.34	18G	16
A-20800	7.	0.32	6 G	14	01005-F	7.	0.34	18G	16
00802-8	7.	0.32	6 G	14	3-8001C	7.	0.47	44G	16
00802-0	7.	0.32	6G	14	01006-F	7.	0.47	44G	16
00802-0	7.	0.32	6 G	14	01007-E	7.	0.47	44G	16
00803-A	7.	0.32	6G	14	01007-E	7.	0.47	44G	16

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
TTL					TTL				
01008-E 01008-F 01009-A 01009-B 01009-C 01009-D 01101-J 01101-Z 01102-E 01201-A 01201-B 01201-C 01201-D 01202-A 01202-B 01202-C 01202-D 01202-B 01202-C 01202-D 01203-F 01204-A 01204-B 01204-C 01204-D 01204-C 01204-D 01205-E 01205-F 01301-C 01301-D 01301-D 01301-C 01301-D 01302-B 01302-B 01302-B 01302-C 01303-F 01303-F 01303-F 01303-F 01303-F	777777777777777777777777777777777777777	0.47 0.47 0.47 0.47 0.47 0.80 0.80 0.80 0.80 0.22 0.22 0.17 0.17 0.17 0.18 0.14 0.14 0.14 0.29 0.27 0.27 0.27 0.27 0.50 0.50	37 G 37 G 37 G 34 G 34 G 34 G 34 G 63 G 63 G 63 G 63 G 63 G 63 G 60 G 10 G 20 G 8 G 8 G 14 G 26 G 26 G 25 G 25 G 25 G 60 G 58 G	16 16 14 14 14 14 14 14 14 14 14 14 14 14 16 16 16 16	01305-F 01306-E 01306-F 01307-A 01307-C 01307-D 01308-E 01309-F 01401-J 01401-L 01401-Z 01402-E 01402-F 01403-E 01404-F 01404-F 01406-F 01406-F 01501-F 01501-F 01502-A 01502-A 01503-J 01503-J 01503-Z 01503-Z 01601-A 01601-B 01601-C	7.7777777777777777777777777777777777777	0.50 0.50 0.50 0.27 0.27 0.27 0.49 0.49 0.38 0.38 0.27 0.29 0.25 0.28 0.28 0.28 0.28 0.63 0.63 0.63 0.63 0.63 0.63 0.20 0.20	60G 57G 15G 15G 15G 16G 16G 16G 17G 17G 17G 17G 17G 17G 17G 17G 17G 17	16 16 16 16 16 16 16 16 16 16 16 16 16 1
01304-F 01305-E	7.	0.50 0.50	58G 60G	16 16	01601-D 01602-A	7.	0.20 0.20	4G 4G	14 14

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXX	Vcc (V.)	Pd (W.)	Complexity	Νp
TTL					LTTL				
01602-B 01602-C 01602-D	7. 7. 7.	0.20 0.20 0.20	4G 4G 4G	14 14 14	02101-B 02101-C 02101-D	8. 8. 8.	0.01 0.01 0.01	8G 8G 8G	14 14 14
01701-E 01701-F	7.	0.44	36G 36G	16 16	02102-A 02102-B	8. 8.	0.01	8G 8G	14 14
01702-E 01702-F	7.	0.26 0.26	24G 24G	16 16	02102-C 02102-D	8. 8.	0.01	8G 8G	14
01801-E 01801-F	7. 7. 7.	0.77	100G 100G	16 16	02103-A	8.	0.02	14G	14 14 14
01901-A 01901-B	7.	0,27	14G	14	02103-B 02103-C	8. 8.	0.02 0.02	14G 14G	14
01901-C 01901-D	7. 7. 7.	0.27 0.27 0.27	14G 14G 14G	14 14 14	02103-D 02104-A 02104-B	8. 8. 8.	0.02 0.02 0.02	14G 16G 16G	14 14 14
LTTL			· · · · · · · · · · · · · · · · · · ·		02104-C 02104-D 02105-A	8. 8.	0.02 0.02	16G 16G	14 14
02001-A 02001-B 02001-C	8. 8. 8.	0.00 0.00 0.00	1G 1G 1G	14 14 14	02105-A 02105-B 02105-C 02105-D	8. 8.	0.02 0.02 0.02	12G 12G 12G	14 14 14 14
02001-D 02002-A	8. 8.	0.00	1G 2G	14 14	HTTL	8.	0.02	12G	
02002-B 02002-C	8. 8.	0.01 0.01	2 G 2 G	14 14	02201-A	7.	0.14	8G	14
02002-D 02003-A 02003-B	8. 8. 8.	0.01 0.01 0.01	2G 3G 3G	14 14 14	02201-B 02201-C 02201-D	7. 7. 7.	0.14 0.14 0.14	8G 8G 8G	14 14 14
02003-C 02003-D	8. 8.	0.01 0.01	3G 3G	14 14	02202-A 02202-B	7. 7.	0.27	16G 16G	14 14
02004-A 02004-B	8. 8.	0.02 0.02	4G 4G	14 14	02202-C 02202-D	7. 7.	0.27 0.27	16G 16G	14 14
02004-C 02004-D	8. 8.	0.02	4G 4G	14 14	02203-A 02203-B	7. 7.	0.27 0.27	12G 12G	14
02005-A 02005-B 02005-C	8. 8. 8.	0.02 0.02 0.02	6G 6G 6G	14 14 14	02203-C 02203-D 02204-E	7. 7. 7.	0.27 0.27 0.27	12G 12G 16G	14 14 16
02005-D 02006-A	8. 8.	0.02	6G 4G	14 14 14	02204-E 02204-F 02205-A	7. 7. 7.	0.27	16G 10G	16 16
02006-B 02006-C	8. 8.	0.02	4G 4G	14 14	02205-B 02205-C	7. 7.	0.21	10G 10G	14
02006-D 02101-A	8. 8.	0.02	4G 8G	14 14	02205-D 02206-A	7. 7.	0.21	10G 12G	14 14

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Nр
нтть					LTTL				
02206-B	7.	0.42	12G	14	02501-0	8.	0.07	15G	14
02206-C	7.	0.42	12 G	14	02502-A	8.	0.06	25 G	14
02206-D	7.	0.42	12G	14	02502-8	8.	0.06	25 G	14
02301-A	7.	0.20	1 G	14	02503-C	9.	0.06	25 G	14
02301-B	7.	0.20	1 G	14	02503-E	8.	0.13	48 G	16
02301-C	7.	0.20	1 G	14	02503-F	8.	0.13	48 G	16
02301-D	7.	0.20	16	14	02504-D	8.	0.06	25 G	16
02302-A	7.	0.40	2 G	14	02504-E	8.	0.17	38G	16
02302-B	7.	0.40	2 G	14	02504-F	3.	0.17	38G	16
02302-C	7.	0.40	2G	14	02505-E	8.	0.17	38 G	16
02302-D	7.	0.40	2G	14	02505-F	8.	0.17	38 G	16
02303-A	7.	0.59	3 G	14	02601-A	7.	0.04	4 G	14
02303-B	7.	0.59	3 G	14	02601-B	7.	0.04	4 G	14
02303-C	7.	0.59	3 G	14	02601-C	7.	0.04	4 G	14
02303-D	7.	0.59	3 G	14	02601-D	7.	0.04	4 G	14
02304-A	7.	0.80	4 G	14	02701-A	7.	0.02	4 G	14
02304-B	7.	0.80	√4 G	. 14	02701-8	7.	0.02	4 G	14
023 04- C	7.	0.80	4 G	14	02701-C	7.	0.02	4 G	14
02304-D	7.	0.80	4G	14]] 02701-D	7.	0.02	4 G	14
02305~A	7.	1.20	6G	14	02801-A	8.	0.02	37 G	14
02305-B	7. ·	1.20	6G	14	02801-B	8.	0.02	37 G	14
02305-C	7.	1.20	6G	14	02801-C	8.	0.02	37 G	14
02305-D	7.	1.20	6G	14	02801-0	8.	0.02	37 G	14
02306-A	7.	0.79	4 G	14	02802-A	7.	0.12	36G	14
02306-B	7.	0.79	4 G	14	02802-8	7.	0.12	36G	14
023 0 6-C	7.	0.79	4 G	14	02802-C	7.	0.12	36G	14
02306~D	7.	0.79	4G	14	02802-D	7.	0.12	36G	14
02307-A	7.	0.40	2 G	14	02803-E	7.	0.27	72G	16
02307-B	7.	0.40	2 G	14	02803-F	7.	0.27	72G	16
02307-C	7.	0.40	2 G	14	02804-E	7.	0.12	40G	16
02307-D	7.	0.40	2 G	14	02804-F	7.	0.12	40G	16
02401-A	7.	0.27	2 G	14	02805-A	7.	0.05	36G	14
02401-B	7.	0.27	2G	14	02805-B	7.	0.05	36G	14
02401-C	7.	0.27	2G	14	02805-C	7.	0.05	36G	14
02401-D	7.	0.27	2 G	14	02805-D	7.	0.05	36G	14
	·				02901-E	7.	0.12	18G	16
LTTL					02901-F	7.	0.12	18 G	16
			· · · · · · · · · · · · · · · · · · ·		02902-E	7.	0.12	18G	16
02501-A	8.	0.07	15G	14	02902-F	7.	0.12	18 G	16
02501-B	8.	0.07	15G	14	02903-E	7.	0.12	18G	16
02501~C	8.	0.07	15G	14	02903-F	7.	0.12	18G	16

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Nр	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
LTTL			***		DTL				
02904-E 02904-F 02905-E 02905-F 02906-E 02906-F 02907-E 02907-F	7. 7. 7. 7. 7. 7.	0.24 0.24 0.24 0.24 0.03 0.03 0.07	44G 44G 44G 18G 18G 18G 18G	16 16 16 16 16 16	03103-C 03103-D 03104-A 03104-B 03104-C 03104-D 03105-A 03105-B 03105-C 03105-D	8. 8. 8. 8. 8. 8. 8.	0.13 0.13 0.17 0.17 0.17 0.17 0.02 0.02 0.02	4G 4G 4G 4G 4G 2G 2G 2G 2G	14 14 14 14 14 14 14 14
03001-A 03001-B 03001-C 03001-D 03002-A 03002-B 03002-C 03002-C 03003-A 03003-B 03003-C 03003-D 03004-A 03004-B 03004-C 03004-D 03005-B 03005-C 03005-D 03101-A	888888888888888888888888888888888888888	0.05 0.05 0.05 0.05 0.14 0.14 0.14 0.14 0.14 0.14 0.09 0.09 0.09 0.09 0.07 0.07 0.07	2G 2G 2G 2G 6G 6G 6G 6G 4G 4G 4G 3G 3G 3G 2G	14 14 14 14 14 14 14 14 14 14 14 14 14	03201-A 03201-B 03201-C 03201-D 03301-A 03301-B 03301-C 03302-A 03302-A 03302-C 03302-C 03303-A 03303-A 03303-B 03303-C 03304-A 03304-B 03304-C 03304-D 03501-C	8888888888888888888222	0.18 0.18 0.18 0.07 0.14 0.14 0.14 0.14 0.14 0.80	6G 6G 6G 8G 8G 8G 8G 8G 8G 16G 16G 18T	14 14 14 14 14 14 14 14 14 14 14 14 14 1
03101-B 03101-C 03101-D	8. 8. 8.	0.13 0.13 0.13	2G 2G 2G	14 14 14	03501-M	22.	0.80	18T	12
03102-A 03102-B 03102-C 03102-D 03103-A 03103-B	8. 8. 8. 8.	0.10 0.10 0.10 0.10 0.13 0.13	2G 2G 2G 2G 4G 4G	14 14 14 14 14	04001-A 04001-B 04001-C 04001-D 04002-A	7. 7. 7. 7.	0.14 0.14 0.14 0.14 0.14	6G 6G 6G 6G	14 14 14 14

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
HTTL					LTTL				
04002-B	7.	0.14	6G	14	04502-J	7.	0.34	60G	24
04002-C	7 :	0.14	6G	14	04502-K	7.	0.34	60G	24
04002-D	7.	0.14	6G	14	04601-E	7.	0.15	16G	16
04003-A	7.	0.14	5 G	14	04601-F	7.	0.15	16G	16
04003~B	7.	0.14	5 G	14	04602-E	7.	0.14	17G	16
04003-C	7.	0.14	5 G	14	04602-F	7.	0.14 0.13	17G 19G	16
04003-D	7.	0.14	5G	14	04603-E	7.		19G	16 16
04004-A	7.	0.14	5G	14 14	04603-F	7.	0.13	190	16
04004-8	7. 7.	0.14 0.14	5 G	14	CMOS			<u> </u>	
04004-C 04004-D	7.	0.14	5G 5G	14	CHUS				
04004~D 04005~A	ź:	0.14	3G	14	05001-C	13.	0.20	4 G	14
04005-A	7.	0.08	3G	14	05001-D	13.	0.20	4 G	14
04005-B	ź:	0.08	3G	14	05001-D	13.	0.20	2G	14
04005-C	Ź.	0.03	3G	14	05002-C	13.	0.20	2G	14
04003-0		0.00	JU	17	05002-D	13.	0.20	2 G	14
LTTL					05003-A	13.	0.20	3 G	14
					05003-C	13.	0.20	3 G	14
04101-A	7.	0.01	6G	14	05003-D	13.	0.20	3 G	14
04101-B	7.	0.01	6G	14	05051-A	15.	0.20	4 G	14
04101-C	7.	0.01	6G	14	05051-C	15.	0.20	4 G	14
04101-D	7.	0.01	6G	14	05051-D	15.	0.20	4 G	14
04102-C	7.	0.01	5 G	14	05052-A	15.	0.20	2G	14
04103-A	7.	0.01	3G	14	05052-C	15.	0.20	2G	14
04103-B	7.	0.01	3 G	14	05052-D	15.	0.20	2G	14
04103-C	7.	0.01	3G	14	05053-A	15.	0.20	3G	14
04103-D	7.	0.01	3 G	14	05053-C	15.	0.20	3G	14
04201-A	8.	0.11	8 G	14	05053-D	15.	0.20	3G	14
04201-B	8.	0.11	8G	14	05101-A	13.	0.20	24 G	14
04201-C	8.	0.11	8 G	14	05101-C	13.	0.20	24 G	14
04201-D	8.	0.11	8G	14	05101-D	13.	0.20	24G	14
04202-A	8.	0.08	10G	14	05102-A	13.	0.20	.30G	16
04202-B	8.	0.08	10G	14	05102-C	13.	0.20	30G	16
04202-C	8.	0.08	10G	14	05102-D	13.	0.20	30G	16
04202-D	8.	0.08	10G	14	05103-A	13.	0.20	24 G	15
04301-E	7.	0.12	24G	16	05103-B	13.	0.20	24 G	15
04301-F	7.	0.12	24G	16	05103-D	13.	0.20	24 G	15
04401-E	7.	0.12	28 G	16	05151-A	15.	0.20	24 G	14
04401-F	7.	0.12	28 G	16	05151-C	15.	0.20	24G	14
04501-E	7.	0.18	30G	16	05151-D	15.	0.20	24G	14
04501-F	7.	0.18	30G	16	05152-A	15.	0.20	30G	14

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18 MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXXX	Vcc (V)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Nр
CMOS					CMOS				
05152-C	15.	0.20	30G	14	05353-A	15.	0.20	4G	14
05152-D	15.	0.20	30G	14	05353-C	15.	0.20	4 G	14
05153-A	15.	0.20	24G	14	1 05353-D	15.	0.20	4G	14
05153-C	15.	0.20	24 G	14	05354-E	15.	0.20	3 G	16
05153-D	15.	0.20	24G	14	05354-F	15.	0.20	3 G	16
05201-A	13	0.20	3G	12	05401-E	13.	0.20	58 G	16
05201-C	13.	0.20	3 G	12	05401-F	13.	0.20	58G	16
05201-D	13.	0.20	3 G	12	05451-E	15.	0.20	58 G	16
05202-A	13.	0.20	4 G	14	05451-F	15.	0.20	58G	16
05202-C	13.	0.20	4 G	14	05501-E	13.	0.20	6G	16
05202-D	13.	0.20	4 G	14	05501-F	13.	0.20	6G	16
05203~A	13.	0.20	2 G	12	05502-E	13.	0.20	6 G	16
05203-C	13.	0.20	2 G	12	05502-F	13.	0.20	6G	16
05203-D	13.	0.20	2G	12	05503-E	13.	0.20	6G	16
05204-A	13.	0.20	3 G	14	05503-F	13.	0.20	6G	16
05204-C	13.	0.20	· 3G	14	05504-E	13.	0.20	6G	16
05204-D	13.	0.20	3 G	14	05504-F	13.	0.20	6 G	16
05251-A	15.	0.20	3 G	1.4	05505-A	13.	0.20	12 G	14
05251-C	15.	0.20	3 G	14	05505-C	13.	0.20	12G	14
05252-D	15.	0.20	4 G	14	05505-0	13.	0.20	12G	14
05253-A	15.	0.20	2 G	14	05551-E	15.	0.20	6G	16
05253-C	15.	0.20	2 G	14	05551-F	15.	0.20	6G	16
05253-D	15.	0.20	2 G	14	05552-E	15.	0.20	6G	16
05254-A	15.	0.20	3 G	14	05552-F	15.	0.20	6 G	16
05254-C	15.	0.20	3 G	14	05553-E	15.	0.20	6G	16
05254-D	15.	0.20	3 G	14	05553-F	15.	0.20	6 G	16
05301-A	13.	0.20	3 G	14	05554-E	15	0.20	6 G	16
05301-C	13.	0.20	3 G	14	05554-F	15.	0.20	6 G	16
05301-D	13.	0.20	3 G	14	05555-A	15.	0.20	12G	14
05302-E	13.	0.20	12G	16	05555-C	15.	0.20	12G	14
05302-F	13.	0.20	12G	16	05555-D	15.	0.20	12G	14
05303-A	13.	0.20	4G	14	05601-E	13.	0.20	47 G	16
05303-C	13.	0.20	4G	14	05601-F	13.	0.20	47 G	16
05303-D	13.	0.20	4 G	14	05602-E	13.	0.20	57 G	16
05304-E	13.	0.20	24G	16	05602-F	13.	0.20	57 G	16
05304-F	13.	0.20	24G	16	05603-E	13.	0.20	132G	16
05351-A	15.	0.20	3G	14	05603-F	13.	0.20	132G	16
05351-C	15.	0.20	3 G	14	05604-E	13.	0.20	39G	16
05351-D	15.	0.20	3 G	14	05604-F	13.	0.20	39G	16
05352-E	15.	0.20	12G	14	05605-A	13.	0.20	81G	14
05352-F	15.	0.20	12G	14	05605-C	13.	0.20	81G	14

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18 MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
CMOS					CMOS				
05605-D 05651-E	13. 15.	0.20 0.20	81G 47G	14 16	05802-A 05802-C	13. 13.	0.20 0.20	4G 4G	14 14
05651-F	15.	0.20	47 G	16	05802-D	13.	0.20	4G	14
05652-E	15.	0.20	57 G	16	05851-A	15.	0.20	4G	14
05652-F	15.	0.20	57 G	16	05851-C	15.	0.20	4G	14
05653-E	15.	0.20	132G	16	05851-D	15.	0.20	4G	14
05653-F	15.	0.20	132G	16	05852-A	15.	0.20	4G	14
05654-E	15.	0.20	39G	16	05852-C	15.	0.20	4G	14
05654-F	15.	0.20	39G	16	05852-D	15.	0.20	4G	14
05655-A	15.	0.20	81G	14	05901-E	13.	0.20	38G	16
05655-C	15.	0.20	81G	14	05901-F	13.	0.20	38G	16
05655-D	15.	0.20	81G	14	05951-E	15.	0.20	38G	16
05701-A	13.	0.20	109G	14	05951-F	15.	0.20	38G	16
05701-C	13.	0.20	109G	14					
05701-D	13.	0.20	10 9 G	14	ECL				
05702-E	13.	0.20	55 G	16					
05702-F	13.	0.20	55 G	16	06001-E	7.	0.22	4G	16
05703-E	13.	0.20	58 G	16	06001-F	7.	0.22	4G	16
05703-F	13.	0.20	58G	16	06002-E	7.	0.22	4G	16
05704-E	13.	0.20	55G	16	06002-F	7.	0.22	4G	16
05704-F	13.	0.20	55 G	16	06003-E	7.	0.16	3G	16
05705-E	13.	0.20	263G	16	06003-F	7.	0.16	3G	16
05705-F	13.	0.20	263G	16	06004-E	7.	0.16	3G	16 16
05706-J	13.	0.20	56G	24	06004-F	7.	0.16 0.16	3G 3G	16
05706-K	13.	0.20	56G	24	06005-E	7. 7.	0.16	3G	16
05751-A	15.	0.20	109G 109G	14 14	06005-F 06006-E	7.	0.10	2G	16
05751-C 05751-D	15. 15.	0.20 0.20	109G	14	06006-E	7.	0.11	2G	16
05751-D 05752-E	15.	0.20	55G	16	06101-E	7.	0.16	24G	16
05752-E	15.	0.20	55G	16	06 10 1 - F	7.	0.16	24G	16
05753-E	15.	0.20	58G	16	06 101-E	. 7.	0.19	24G	16
05753-E	15.	0.20	58G	16	06 102-E	7.	0.19	24G	16
05754-E	15.	0.20	55G	16	06 103-E	7.	0.11	42G	16
05754-E	15.	0.20	55 G	16	06 103 - F	Ź.	0.11	42G	16
05755-E	15.	0.20	263G	16	06 104 -E	7 .	0.20	24G	16
05755-F	15.	0.20	263G	16	06 104-F	Ź.	0.20	24G	16
05756-J	15.	0.20	56G	24	06201-E	7.	0.22	4G	16
05756-K	15.	0.20	56G	24	06201-F	7.	0.22	4G	16
05801-A	13.	0.20	4 G	14	06202-E	7.	0.33	6G	16
05801-C	13.	0.20	4G	14	06202-F	7.	0.33	6G	16
05801-D	13.	0.20	4G	14	06301-E	7.	0.15	4G	16

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXX	Vcc (V.)	Pd (W.)	Complexity	Nр
ECL					STTL				
06301-F	7.	0.15	4G	16	07010-F	7.	0.14	1G	16
06302-E		0.13	4G	16	07101-A	7.	0.27	12G	14
06302-F	7.	0.13	4G	16	07101-B 07101-C	7.	0.27 0.27	12G 12G	14 14
STTL		<u> </u>	· · · · · · · · · · · · · · · · · · ·		07101-D 07102-E	7. 7.	0.27	12G 16G	14 16
07001-A 07001-B	7. 7.	0.20 0.20	4G 4G	14 14	07102-F 07103-A	7. 7. 7.	0.27 0.27 0.27	16G 16G	16 14
07001-C 07001-D	7. 7.	0.20	4G 4G	14	07103-8 07103-C	7. 7.	0.27	16G 16G	14
07002-A 07002-B	7. 7.	0.20	4G 4G	14 14	07103-D 07104-A	7.	0.27 0.27 0.27	16G 16G	14 14 14
07002-B 07002-C 07002-D	7. 7. 7.	0.20 0.20 0.20	4G	14 14 14	07104-B	7. 7. 7.	0.27	16 G	14
07002-B 07003-A 07003-B	7.	0.30	4G 6G	14	07104-C 07104-D	7.	0.27	16G 16G	14
07003-C	7. 7.	0.30	6G 6G	14 14	07105-E 07105-F	7. 7.	0.79 0.79	36G 36G	16 16
07003-D	7.	0.30	6G	14	07106-E	7.	0.52	24G	16
07004-A	7.		6G	14	07106-F	7.	0.52	24G	16
07004-8 07004-C	7. 7.	0.30	6G 6G	14	07201-A 07201-B	7. 7.	0.24	2G 2G	14 14
07004-D	7.	0.30	6G	14	07201-C	7.	0.24	2G	14
07005-A	7.	0.15	3G	14	07201-D	7.		2G	14
07005-8	7.	0.15	3G	14	07301-A	7.	0.25	4G	14
07005-C	7.	0.15	3G	14	07301-B	7.	0.25	4G	14
07005-D	7.	0.15	3G	14	07301-C	7.	0.25	4G	14
07006-A	7.	0.10	2G	14	07301-D	7.	0.25	4G	14
07006-C	7.	0.10	2G	14	07401-A	7.	0.12	6G	14
07006-D	7.	0.10	2G	14	07401-B	7.	0.12	6G	14
07006-D	7.	0.10	2G	14	07401-C	7.	0.12	6G	14
07007-A	7.	0.10	2G	14	07401-D	7.	0.12	6G	14
07007-B	7.	0.10	2G	14	07402-A	7.	0.09	5 G	14
07007-C	7.	0.10	2G	14	07402-B	7.	0.09	5 G	14
07007-D	7.	0.10	2G	14	07402-C	7.	0.09	5 G	14
07008-A	7.	0.06	1G		07402-D	7.	0.09	5 G	14
07008-B	7.	0.06	1G	14	07403-A	7.	0.09	5 G	14
07008-C	7.	0.06	1G	14	07403-B	7.	0.09	5 G	14
07008-D	7.	0.06	1G	14	07403-C	7.	0.09	5 G	14
07009-E	7.	0.06	1G	16	07403-D	7.	0.09	5 G	14
07009-F	7.	0.06	1G	16	07501-A	7.	0.55	4G	14
07010-E	7.	0.14	1G	16	07501-B		0.55	4G	14

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
STTL					STTL				
07501-C 07501-D 07502-E 07502-F 07601-E 07602-E 07602-F 07701-E 07701-F 07702-E 07702-F 07801-J 07801-L	7. 7. 7. 7. 7. 7. 7. 7.	0.55 0.55 0.42 0.42 0.70 0.70 0.70 0.33 0.33 0.41 0.41 0.99	4G 4G 8G 8G 47G 47G 41G 16G 18G 18G 63G 63G	14 16 16 16 16 16 16 16 16 24 24	08002-D 08003-A 08003-B 08003-C 08003-D 08004-A 08004-B 08004-C 08004-C 08101-A 08101-B 08101-C 08101-D 08201-E 08201-F	7. 7. 7. 7. 7. 7. 7. 7. 7.	0.23 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.48 0.48 0.48 0.60 0.60	3G 4G 4G 4G 4G 4G 2G 2G 2G 31G 31G	14 14 14 14 14 14 14 14 14 14 16 16
07801-Z 07802-E	7. 7.	0.99 0.99	63 G 19 G	24 16	LINEAR				
07802-F 07901-E 07901-F 07902-E 07902-F 07903-E 07903-F 07904-F 07905-E 07905-F 07906-E 07906-F 07907-E 07907-F 07908-F 07908-F 08001-A 08001-D 08002-A 08002-C	7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	0.99 0.39 0.39 0.43 0.43 0.47 0.47 0.55 0.48 0.55 0.55 0.23 0.23 0.23 0.23	19G 17G 16G 16G 15G 15G 15G 15G 15G 16G 16G 36G 36G 36G 36G 36G	16 16 16 16 16 16 16 16 16 16 16 14 14 14	10101-A 10101-B 10101-C 10101-D 10101-H 10101-P 10102-A 10102-B 10102-C 10102-D 10102-I 10103-C 10103-G 10103-H 10103-P 10104-C 10104-G 10104-H 10104-P 10105-E 10105-F 10106-E	22. 22. 22. 22. 22. 22. 22. 22. 22. 22.	0.35 0.35 0.35 0.33 0.33 0.35 0.35 0.35	23T 23T 23T 23T 23T 23T 23T 46T 46T 46T 46T 21T 21T 21T 21T 21T 29T 29T 29T 29T 29T 29T 29T 29T 29T 29	14 14 14 18 10 8 14 14 10 14 10 8 10 8 1

MICROELECTRONIC DEVICES

MONOLITHIC

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
LINEAR				_	LINEAR				
10106-F	22.	0.40	58T	16	10407-F	7.	0.22	9T	16
10107-C	22.	0.40	36T	14	10601-C	36.	0.40	19T	14
10107-G	22.	0.33	36T	8	10601-G	36.	0.35	19T	8
10107-H	22.	0.33	36T	10	10601-G	36.	0.35	19T	. 8
10107-P	22.	0.40	36T	8	10601-н	36.	0.33	19T	10
10108-G	22.	0.33	46T	8	10602-C	36.	0.40	19T	14
10201-A 10201-B	40.	0.35 0.35	20T	14	10602-G	36.	0.35	19T	8
10201-B	40. 40	0.35	20T	14 14	10602-H	36.	0.33	19T	7
10201-0	40.	0.40	20T 20T	14	10603-E 10603-F	36.	0.40	38T	16
10201-B	40.	0.35	20T	10	10003-F	36.	0.40 0.89	38T 19T	16
10201-I	40.	0.35	20T	10	10701-X	35. 35.	3.60	19T	3
10301-C	21.	0.40	9 T	14	10702-X	35.	0.89	18T	3
10301-G	21.	0.33	9T	8	10703-X	35.	0.89	18T	3
10301-H	21.	0.33	9T	10	10704-X	35.	0.89	181	3
10302-C	21.	0.40	18T	14	10705-X	40	0.89	18T	ă
10302-F	21.	0.35	187	16	10706-Y	35.	3.60	17T	3
10302-Н	21.	0.33	187	10	10707-Y	35.	3.60	177	3
10303-A	30.	0.35	13T	14	10708-Y	35.	3.60	17T	3 3 3 3 3 3 3 3 3 3
10303-G	30.	0.33	13T	8	10709-Y	40.	3.60	17T	3
10304-G	36.	0.33	23T	8	10801-A	15.	0.35	4T	14
10304-H	36.	0.33	23T	10	10801-C	15.	0.40	4T	14
10305-E	36.	0.40	46T	16	10801-D	15.	0.35	4T	14
10305-F	36.	0.35	46T	16	10801-M	15.	0.35	47	14
10401-A	7.	0.55	29T	14	10802-A	15.	0.35	5T	14
10401-B	7.	0.55	29T	14	10802-C	15.	0.40	5T	14
10401-C	7.	0.55	29T	14	10802-0	15.	0.35	5T	14
10401-0	7.	0.55	29T	14	10901-C	18.	0.40	23T	14
10402-A	7.	0.55	25T	14	10901-G	18.	0.30	23T	8
10402-8	7.	0.55	25T	14	10901-P	18.	0.37	23T	. 8
10402-C 10402-D	7.	0.55	25 T	14	10902-C	18.	0.40	46T	14
	7.	0.55	25T	14	10903-C	18.	0.40	23T	14
10403-E 10403-F	7. 7.	0.40 0.40	6T	16 16	11001-A 11001-C	22.	0.35		14
10403-F	7.	0.40	6T 35T	16	11001-C	22. 22.	0.40 0.35	88T 88T	14 14
10404-E	7.	0.40	35T	16	11001~D	22.	0.35	88T	14
10405-E	7.	0.40	8T	16	11002-C	22.	0.40	88T	14
10405-F	7.	0.40	8T	16	11002-D	22.	0.35	88T	14
10406-E	7.	0.22	9T	16	11003-A	22.	0.35	68T	14
10406-F	7.	0.22	9T	16	11003-C	22.	0.40	68T	14
10407-E	7.	0.22	9T	16	11003-0	22.	0.35	68T	14

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Nр	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Nр
LINEAR					LINEAR				
11004-C 11005-A 11005-C 11005-D 11101-A 11101-C 11101-I 11102-A 11102-C 11102-D 11102-I 11103-A 11103-B 11103-E 11104-A 11104-B 11104-E 11105-A	22. 36. 36. 36. 36. 36. 36. 36. 36	0.40 0.35 0.40 0.35 0.35 0.40 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.3	60T 102T 102T 102T 22T 22T 22T 22T 22T 22T 22T 22T 30T 30T 30T 30T	14 14 14 14 14 10 14 14 10 14 16 14	11401-P 11402-G 11402-H 11402-P 11403-G 11403-H 11403-P 11405-H 11405-H 11405-P 11406-G 11406-H 11406-P 11501-X 11502-X 11503-X 11504-X 11505-Y	22. 22. 22. 22. 22. 22. 22. 22. 22. 22.	0.40 0.33 0.33 0.40 0.33 0.33 0.33 0.33	19T 19T 19T 19T 19T 19T 19T 19T 19T 19T	8 8 10 8 8 8 10 8 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
11105-C 11105-D 11105-I	36. 36. 36.	0.40 0.35 0.35	15T 15T 15T	14 14 10	11506-Y 11507-Y 11508-Y	17. 20. 29.	3.60 3.60 3.60	21T 21T 21T	3
11106-A 11106-C	36. 36.	0.35 0.40	15T 15T	14 14	CMOS				
11106-D 11106-I 11107-A 11107-C 11107-D 11108-A 11108-C 11108-D 11201-A 11201-C 11201-D 11202-G 11202-P 11301-E 11401-H	36. 36. 36. 36. 36. 36. 36. 36. 36. 32.	0.35 0.35 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.33	15T 15T 30T 30T 30T 30T 30T 32T 32T 32T 16T 16T 84T 19T 19T	14 10 14 14 14 14 14 14 18 8 16 16 18	11601-C 11601-D 11601-I 11602-C 11602-D 11602-I 11603-C 11603-D 11604-C 11604-D 11605-C 11605-D 11606-C 11606-D 11606-I	15. 15. 15. 15. 15. 15. 15. 15. 15. 15.	0.40 0.35 0.25 0.40 0.35 0.25 0.40 0.35 0.40 0.35 0.25 0.40	42T 42T 42T 27T 27T 27T 54T 54T 54T 54T 38T 38T 38T 25T 25T	14 10 14 10 14 10 14 14 14 14 16 10 14

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-78: MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Nр	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
CMOS	· · · · · · · · · · · · · · · · · · ·				CMOS				
11607-C 11607-D 11608-C 11608-D	15. 15. 15. 15.	0.40 0.35 0.40 0.35	50T 50T 50T 50T	14 14 14 14	12301-C 12301-I 12302-E 12303-C 12303-I 12304-E	15. 15. 30. 15. 15.	0.40 0.35 0.40 0.40 0.35 0.40	36T 36T 72T 18T 18T 18T	14 10 16 14 10
11701-X	40.	0.89	17T	4	LINEAR		0.40		-10
11702-X 11703-X 11704-Y 11801-X 11802-Y 11803-X 11804-Y 11901-G 11901-P 11902-G 11902-G 11903-C 11903-C 11903-C 11904-G 11905-G 11905-G 11905-G 11905-G 11906-D 12201-H 12202-H 12203-H 12203-H 12204-H 12204-H 12205-H 12206-H	40. 40. 40. 40. 40. 40. 40. 40.	3.60 0.89 3.60 0.89 3.60 0.33 0.40 0.33 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.30 0.30 0.30 0.30 0.30 0.30	17T 26T 26T 23T 23T 30T 30T 33T 66T 66T 66T 132T 28T 28T 28T 28T 54T 54T 54T 124T 124T 124T 50T 40T 40T 40T 40T 30T 30T 30T 30T 31T 31T	433443388488844884488888888888888888888	12401-X 12401-Y 12401-G 12402-X 12402-Y 12402-G 12403-X 12403-G 12404-X 12404-Y 12404-G 12406-Y 12406-G 12501-G 12501-G 12501-E 12801-G 12801-G 12901-C 12901-C 12901-C 12901-P 12902-C 12903-P 12903-C 12904-C 12905-C 12906-C	30. 30. 30. 30. 30. 30. 30. 30.	0.12 0.14 0.18 0.12 0.14 0.18 0.12 0.14 0.18 0.12 0.14 0.18 0.33 0.33 0.40 0.40 0.33 0.27 0.21 0.27 0.21 0.27 0.21	19T 19T 19T 19T 19T 8T 8T 21T 21T 21T 19T 19T 19T 19T 10T 10T 10T 10T 14T 14T 14T 14T 18T 18T	248248248288888168814814814814814814814814814814814814814

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXXX	(V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
LINEAR					TTL				
12906 -P 12907 -C 12907 -P 12908 -C 12908 -P 12909 -C 12910 -C 12910 -P 13001 -E 13002 -E 13003 -E 13101 - G 13101 - P 13102 - G 13102 - P 13301 - Z 13401 - V 13901 - I 13901 - C 13902 - C 13903 - C	7. 7. 7. 7. 7. 7. 7. 7. 25. 22. 22. 22. 22. 22. 22. 22. 22.	0.21 0.27 0.21 0.27 0.21 0.27 0.21 1.40 1.40 1.40 0.33 0.40 0.50 0.50 0.50 0.33 0.40 0.33	10T 10T 10T 14T 14T 14T 14T 18T 18T 32T 32T 32T 21T 42T 42T 42T 42T 42T 42T 42T 42T 42T 42	8 14 18 14 18 16 16 16 18 18 16 16 16 17 10 14	15103-A 15103-B 15103-C 15103-D 15201-J 15201-L 15201-Z 15202-E 15202-E 15203-E 15203-F 15204-A 15204-B 15204-C 15204-D 15205-E 15205-F 15206-E 15206-F 15301-D 15302-C 15302-D	7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	0.18 0.18 0.18 0.27 0.27 0.27 0.27 0.20 0.20 0.20 0.14 0.14 0.14 0.14 0.19 0.19 0.19 0.19 0.30 0.35 0.35	4G 4G 4G 4G 21G 21G 21G 15G 15G 15G 15G 18G 18G 18G 4G 4G 4G	14 14 14 14 24 24 24 16 16 16 16 16 16 16 16 16 16 16 16 16
14103-E	50.	1.00	71	16	HTTL				
15001 -E 15001 -F 15002 -E 15002 -F 15101 -A 15101 -B 15101 -C 15101 -D 15102 -A 15102 -B 15102 -C 15102 -D	7. 7. 7. 7. 7. 7. 7. 7.	0.49 0.49 0.49 0.18 0.18 0.18 0.18 0.18	31G 31G 32G 32G 2G 2G 2G 6G 6G 6G	16 16 16 14 14 14 14 14	15501-A 15501-B 15501-C 15501-D 15502-A 15502-B 15502-C 15502-D 15503-A 15503-B 15503-C 15503-D 15504-A 15504-B	7. 7. 7. 7. 7. 7. 7. 7.	0.35 0.35 0.35 0.26 0.26 0.26 0.18 0.18 0.18 0.35 0.35	4G 4G 4G 3G 3G 3G 2G 2G 2G 4G 4G	14 14 14 14 14 14 14 14

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXXX	(V.)	Pd (W.)	Complexity	Νp	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
нпц					CMOS				
15504-D	7.	0.35	4G	14	17001-A	15.	0.20	4G	14
TTL		······································			17001-C 17001-D	15. 15.	0.20	4G 4G	14
15601-E 15601-F 15602-E 15602-F 15603-E 15603-F 15701-E 15701-E 15801-E 15801-E 15802-F 15901-E 15901-E 15901-E 15902-F 16001-F 16101-A 16101-D 16201-A	7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	0.39 0.39 0.33 0.42 0.42 0.74 0.74 0.28 0.28 0.40 0.47 0.47 0.47 0.47 0.47 0.42 0.42 0.42 0.42	31G 31G 29G 29G 24G 24G 98G 18G 18G 46G 40G 72G 72G 72G 59G 46 46 46	16 16 16 16 16 16 16 16 16 16 16 16 16 1	17002 - C 17003 - C 17003 - C 17003 - C 17101 - A 17101 - C 17102 - A 17102 - C 17102 - C 17103 - A 17103 - C 17103 - C 17201 - C 17201 - C 17201 - C 17202 - A 17202 - C 17202 - C 17203 - C 17204 - A 17204 - C	15. 15. 15. 15. 15. 15. 15. 15. 15. 15.	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	2G 2G 3G 4G 4G 2C 2C 3G 6G 6G 5G 4G 4G 4G 4G 4G	14 14 14 14 14 14 14 14 14 14 14 14 14 1
16201-8 16201-0 16201-0 16301-E 16302-E 16302-F 16303-E 16303-F 16304-E 16304-F	7. 7. 7. 7. 7. 7. 7.	0.32 0.32 0.28 0.28 0.55 0.55 0.28 0.16 0.16	4G 4G 7G 7G 7G 7G 8G 8G 8G	14 14 16 16 16 16 16 16	17204-0 17301-J 17301-K 17301-X 17301-Y 17302-J 17302-K 17302-X 17302-Y 17303-E 17303-F 17304-E 17304-F	15. 15. 15. 15. 15. 15. 15. 15.	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	4G 1 20G 1 20G 1 20G 1 20G 1 04G 1 04G 1 04G 34G 34G 34G	14 24 24 24 24 24 24 24 16 16 16

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
CMOS					CMOS				
17305-E 17305-F 17401-A 17401-C 17401-D 17402-A 17402-C	15. 15. 15. 15. 15. 15.	0.20 0.20 0.20 0.20 0.20 0.20 0.20	26G 26G 6G 6G 6G 6G	16 16 14 14 14 14	19001-X 19002-X 19003-X 19004-X 19005-E 19006-E	30. 30. 30. 30. 30.	1.20 1.20 1.20 1.20 0.73 0.73	52T 52T 36T 36T 28T 18T	28 28 28 28 16
17402-D	15.	0.20	6G	14	TTL PROM	<u>-</u>			
17403-E 17403-F 17404-E 17404-F 17501-E 17501-F 17502-C 17503-C 17503-D 17504-E 17504-F 17505-E	15. 15. 15. 15. 15. 15. 15. 15. 15.	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	12G 12G 32G 32G 52G 52G 20G 21G 21G 20G 20G 36G	16 16 16 16 16 14 14 14 16 16	20101-J 20101-K 20101-Z 20102-J 20102-K 20102-Z 20201-E 20201-F 20202-E 20202-F	7. 7. 7. 7. 7. 7. 7. 7.	0.58 0.58 0.58 0.58 0.58 0.72 0.72 0.72	512B 512B 512B 512B 512B 512B 1024B 1024B 1024B	24 24 24 24 24 24 16 16 16
17505-F 17601-E 17601-F 17602-J 17602-K 17602-Z 17701-A 17701-C 17701-D 17702-A 17702-C 17702-D 17801-J 17801-K 17801-Z 17802-Z 17802-Z 17803-E 17803-F	15. 15. 15. 15. 15. 15. 15. 15. 15. 15.	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	36G 76G 76G 56G 56G 56G 46G 66G 80G 80G 80G 92G 92G 91G 41G	16 16 16 24 24 24 14 14 14 14 24 24 24 24 26 16	20301-E 20301-F 20302-E 20302-F 20303-E 20304-E 20304-F 20401-E 20401-F 20402-E 20402-F 20601-V 20601-Z 20602-V 20603-E 20603-F 20701-E	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	0.74 0.74 0.74 0.74 0.74 0.74 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79	1024B 1024B 1024B 1024B 1024B 1024B 1024B 1024B 2048B 2048B 2048B 2048B 4096B 4096B 4096B 4096B 4096B	16 16 16 16 16 16 16 18 18 18 18 16 16

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Nр	
STTL PROM					CMOS EPROM					
20701-F 20702-E	7. 7.	0.74	256B 256B	16 16	21901-J	8.	1.80	4096B	24	
20702-F	7.	0.74	256B	16	NMOS EPRO	M				
20801-J 20801-K	7. 7.	1.00	4096B 4096B	24 24	22001-J	30.	1.80	8192B	24	
20801-X	7.	1.00	4096B	24	22101-J	6.	1.90	16384B	24	
20802-J	7.	1.00	4096B	24	22201-J	6.	1.00	32768B	24	
20802-K	7.	1.00	4096B	24	22202-J	6.	1.00	32768B	24	
20802-X	7.	1.00	4096B	24	22601-J	6.	1.00	163848	24	
20803-J	7.	1.00	4096B	24			 			
20803-K	<u>7</u> .	1.00	40968	24	TTL RAM				•	
20803-X	7.	1.00	4096B	24	00003			0.5.5.		
20804-Y	7.	1.00	, 4096B	20	23001-E	7.	0.80	256B	16	
20805 - Y	7.	1.00	4096B	20	23001-F	7.	0.80	256B	16	
20901-V	7.	0.72	8192B	18	23002-E	7.	0.80	256B	16	
20902-V	7.	0.72	8192B	18	23002-F	7.	0.80	256B	16	
20903-J	7.	1.40	8192B	24	23003-E	7.	0.80	256B	16	
20903-K 20904-J	7.	1.40	8192B	24	23003-F	7.	0.80	256B	16 16	
20904-0 20904-K	7. 7.	1.40 1.40	8192B 8192B	24 24	23004-E 23004-F	7. 7.	0.41 0.41	256B 256B	16	
20904-K	7.	1.40	8192B	24	23101-E	7.	0.94	1024B	16	
20905-K	7.	1.40	8192B	24	23101-E	7.	0.94	10248	16	
20906-J	ź.	1.40	8192B	24	23101-Y	7.	0.94	1024B	24	
20906-K	7.	1.40	8192B	24	23101-T	7.	0.94	10248	16	
20907-J	7:	1.40	8192B	24	23102-F	7.	0.94	1024B	16	
20907 - K	7.	1.40	8192B	24	23102-Y	7:	0.94	10248	24	
20908-J	7.	1.40	8192B	24	23,02-1		<u></u>	10270	<u>_</u>	
20908-K	7	1.40	8192B	24	LSTTL RAM	1				
21001-J	7.	1.00	16384B	24		- 				
21001-K	7.	1.00	16384B	24	23103-E	7,	0.41	10248	16	
21002-J	7.	1.00	16384B	24	23103-F	7.	0.41	1024B	16	
21002-K	7.	1.00	16384B	24	23103-Y	7.	0.41	1024B	24	
21003-J	7.	1.00	16384B	24	23104-E	7.	0.41	1024B	16	
21003-K	7.	1.00	16384B	24	23104-F	7.	0.41	1024B	16	
21004-J	7.	1.00	16384B	24	23104-Y	7.	0.41	10248	24	
21004-K	7.	1.00	16384B	24				 		
21005-J 21005-K	7: 7:	1.00 1.00	16384B 16384B	24 24	STTL RAM					
2,1000 11	•.		100070	• •	23105-E	7.	0.94	1024B	16	
			•	· [23105-F	7.	0.94	1024B	16	
]	23105-Y	7.	0.94	1024B	24	

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Nр	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
STTL RAM					STTL RAM				
23106-E 23106-F 23106-Y	7. 7. 7.	0.94 0.94 0.94	10248 10248 1024B	16 16 24	23201-Y 23201-Z	7. 7.	0.94 0.94	576B 57 6 B	28 28
23107-E 23107-F	7. 7.	0.94	1024B 1024B	16 16	NMOS RAM				
23107-Y 23108-E	7. 7.	0.94 0.94	1024B 1024B	24 16	23501-U 23501-W	20. 20.	1.00	4096B 4096B	24 22
23108-F 23108-Y	7. 7. 7.	0.94	1024B 1024B	16 24	23502-U 23502-V	20. 20.	1.00	4096B 4096B	24 18
23109-W	7.	0.94	1024B 1024B 1024B	22 24	23502-V 23502-U 23503-W	20. 20. 20.	1.00	4096B 4096B	24 22
23109-X 23109-Y 23110-W	7. 7.	0.94	10248	24	23504-U 23504-V	20. 20. 20.	1.00	4096B 4096B 4096B	24 18
23110-W 23110-X 23110-Y	7. 7. 7.	0.94 0.94 0.94	1024B 1024B 1024B	22 24 24	23505-W 23506-W	20. 20.	1.00 1.00	4096B 4096B	22 22
LSTTL RAM		<u> </u>			23601-W 23602-E	20. 20.	1.00	4096B 4096B	22 16
23111-W	7.	0.50	1024B	22	23603-W 23604-E	20. 20.	1.00 1.00	4096B 4096B	22 16
23111-X 23111-Y	7. 7.	0.50 0.50	1024B 1024B	24 24	23701-X 23702-X	7. 7.	0.60 0.60	4096B 4096B	22 22
23112-W 23112-X	7. 7.	0.50 0.50	1024B 1024B	22 24	23703-W 23703-X	7. 7.	0.69 0.69	4096B 4096B	22 22
23112-Y 23113-E	7. 7.	0.50 0.41	1024B 1024B	24 16	23704-W 23704-X	7. 7.	0.69 0.69	4096B 4096B	22 22
23113-F	7.	0.41	10248	16	23705-X 23706-X	7. 7.	0.39 0.39	4096B 4096B	22 22
STTL	<u> </u>	<u> </u>			23707-W 23707-X	7. 7.	0.44 0.44	4096B 4096B	22 22
23114-W 23114-Y	7. 7.	0.94 0.94	1024B 1024B	22 24	23708-W 23708-X	7. 7.	0.44 0.44	4096B 4096B	22 22
LSTTL					23709-X 23710-X	7. 7.	0.60 0.60	4096B 4096B	22 22
23115-W	7.	0.50	10248	22	23711-W 23711-X	7. 7.	0.69 0.69	4096B 4096B	22 22
23115-Y 23115-X	7.	0.50 0.50	1024B 1024B	24 24	23712-W 23712-X	7.	0.69 0.69	4096B 4096B	22 22
STTL RAM			10240		23713-X 23714-X	7.	0.39	4096B 4096B	22
23201-X	7.	0.94	576B	28	23715-W 23715-X	7. 7.	0.44	4096B 4096B	22 22

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS (CONT'D)

NMOS RAM 23716-W 23716-X 23801-V 23801-Z	7. 7. 7. 7.	0.44 0.44	40968	· · · · · · · · · · · · · · · · · · ·	CMOS				
23716-X 23801-V 23801-Z	7. 7.	0.44			 				
23801-V 23801-Z	7.			22	29101-X	7.	1.00	163848	32
23801-Z	7.	1 00	4096B	22	29102-J	7.	1.00	16384B	24
	,	1.20	4096B	18	29102-X	7.	1.00	16384B	32
ע פחטכני		1.20	4096B	18	29103-R	7.	1.00	163848	20
23802-V	7.	1.00	4096B	18	29103-Y	7.	1.00	16384B	20
23802-Z 23803-V	7.	1.00 1.20	4096B 4096B	18	29104-J 29104-X	7:	1.00	16384B	24 32
23804-V	7. 7.	1.20	4096B 4096B	18 18	29104-X	7.	1.00 1.00	16384B 16384B	24
23804-V 23805-V	7.	1.20	4096B	18	29105-X	7. 7.	1.00	16384B	32
23805-V	7.	1.20	4096B	18	29105-A 29106-R	7.	1.00	16384B	20
23807 - V	7.	1.20	4096B	18	29106-Y	Ź.	1.00	16384B	20
CMOS RAM					LSTTL				
23901-E	7.	0.20	1024B	16	30001-A	7.	0.02	4G	14
23901-F	7.	0.20	1024B	16	30001-B	7.	0.02	4 G	14
23902-V	7.	0.20	1024B	18	30001-C	7.	0.02	4G	14
			· · ·		30001-D	7.	0.02	4 G	14
NMOS RAM					30002-A	7.	0.02	4G	-14
					30002-8	7.	0.02	4 G	14
24001-E	20.	1.00	16384B	16	30002-C	7.	0.02	4 G	14
24001-F	20.	1.00	16384B	16	30002-D	7.	0.02	4 G	14
24001-Z	20.	1.00	16384B	18	30003-A	7.	0.04	6G	14
24002-E	20.	1.00	16384B	16	30003-B	7.	0.04	6G	14
24002-F 24002-Z	20.	1.00	16384B	16	30003-C	7.	0.04	6G	14
24002-Z 24003-E	20.	1.00	16384B	18	30003-D	7.	0.04	6G	14 14
24003-E 24003-F	20. 20.	1.00 1.00	16384B 16384B	16 16	30004-A 30004-B	7. 7.	0.04 0.04	6G 6G	14
24003-T	20.	1.00	16384B	18	30004-8 30004-C	7.	0.04	6G	14
24401-E	7.	1.00	65536B	16	30004-0	7.	0.04	6G '	
24401-Z	Ź.	1.00	65536B	18	30005-A	, . 7.	0.02	3 G	14
24402-E	Ź.	1.00	65536B	16	30005-B	Ź.	0.02	3 G	14
24402-Z	7.	1.00	65536B	18	30005-C	7.	0.02	3 G	14
24403-E	7.	1.00	65536B	16	30005-D	7.	0.02	3 G	14
24403-Z	7.	1.00	65536B	18	30006-A	7.	0.02	3 G	14
CMOS		.;			30006-В	7.	0.02	3 G	14
					30006-C	7.	0.02	3G 3G	14 14
24501-V	7.	0.20	4096B	18	30006-D 30007-A	7. 7.	0.02 0.01	3G 2G	14
24502-V	7.	0.20	4096B	18	30007-B	7 .	0.01	2 G	14
29101-J	7.	1.00	163848	24	30007-C	7.	0.01	2 G	14

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXXX	Ycc (Y.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Νp
LSTTL					LSTT <u>L</u>				
30007-D 30008-A 30008-B 30008-D 30009-B 30009-D 30101-A 30101-B 30101-C 30101-D 30102-B 30102-C 30102-D 30102-D 30103-E 30103-F 30104-A 30104-A 30104-B 30105-B 30105-B 30105-D 30105-B 30105-D 30105-B 30105-B 30105-B 30106-F 30107-F 30108-A 30108-B 30108-B 30109-E 30109-F 30109-E 30109-F 30109-F 30109-B 30109-B 30109-B 30109-B 30109-B 30109-B 30109-B 30109-B 30109-B 30109-B	777777777777777777777777777777777777777	0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.05	2G 2G 2G 2G 1G 1G 16G 16G 16G 16G 16G 16G 16G 16G	14 14 14 14 14 14 14 14 14 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16	30201-C 30201-D 30202-A 30202-B 30202-C 30202-D 30203-A 30203-B 30203-C 30204-A 30204-B 30204-C 30204-D 30301-A 30301-B 30301-C 30301-D 30302-A 30302-B 30302-C 30303-D 30401-A 30401-B 30401-B 30401-C 30401-D 30402-C 30401-D 30402-C 30402-D 30501-A 30501-B 30501-C 30501-D 30502-A 30502-B 30502-C	777777777777777777777777777777777777777	0.03 0.03 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.07	224444444444444444444444444444444444444	14 14 14 14 14 14 14 14 14 14 14 14 14 1

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
LSTTL					LSTTL				
30502-D	7.	0.06	4G	14	30903-E	7.	0.09	15G	16
30601-E	7.	0.13	47 G	16	30903-F	7.	0.09	15G	16
30601-F	7.	0.13	47 G	16	30904-E	7.	0.04	15G	16
30602-E	7.	0.12	41G	16	30904-F	7.	0.04	15G	16
30602-F	7.	0.12	41G	16	30905-E	7.	0.07	17 G	16
30603-A	7.	0.12	37 G	14	30905-F	7.	0.07	17 G	16
30603-B	7.	0.12	37 G	14	30906-E	7.	0.11	15G	16
30603-C	7.	0.12	37 G	14	30906-F	7.	0.11	15G	16
30603-D	7.	0.12	37 G	14	30907 - E	7.	0.11	15G	16
30604-E	7.	0.11	39G	16	30907-F	7.	0.11	15G	16
30604-F	7.	0.11	39G	16	30908-E	7.	0.08	16G	16
30 60 5-A	7.	0.15	36G	14	30908-F	7.	0.08	16 G	16
30605-8	7.	0.15	36G	14	30909-E	7.	0.12	15G	16
30605-C	7.	0.15	36G	14	30909-F	7.	0.12	15 G	16
30605-D	7.	0.15	36G	14	31001-A	7.	0.04	3 G	14
30606-A	7.	0.16	48 G	14	31001-B	7.	0.04	3 G	14
30606-B	7.	0.16	48 G	14	31001-C	7.	0.04	3 G	14
30606-C	7.	0.16	48 G	14	31001-D	7.	0.04	3 G	14
30606-D	7.	0.16	48 G	14	31002-A	7.	0.04	3 G	14
30607-E	7.	0.16	48 G	16	31002-B	7.	0.04	3 G	14
30607-F	7.	0.16	48 G	16	31002-C	7.	0.04	3 G	14
30608-E	7.	0.20	62 G	16	31002-D	7.	0.04	3 G	14
30608-F	7.	0.20	62G	16	31003-A	7.	0.02	2G	14
30609-E	7.	0.21	68 G	16	31003-B	7.	0.02	2 G	14
30609-F	7.	0.21	68 G	16	31003-C	7.	0.02	2 G	14
30701-E	7.	0.06	16G	16	31003-D	7.	0.02	2 G	14
30701-F	7.	0.06	16G	16	31004-A	7.	0.04	4 G	14
30702-E	7.	0.06	18G	16	31004-B	7.	0.04	4 G	14
30702-F	7.	0.06	18G	16	31004-C	7.	0.05	4G	14
30703-E	7.	0.07	18G	16	31004-D	7.	0.05	4 G	14
30703-F	7.	0.07	18G	16	31005-A	7.	0.04	4G	14
30704-E	Ź.	0.07	44 G	16	31005-B	7.	0.04	4G	14
30704-F	7.	0.07	44G	16	31005-C	7.	0.04	4G	14
30801-J	7.	0.19	63G	24	31005-D	7.	0.04	4 G	14
30801-K	7.	0.19		24	31101-E	7.	0.11	31 G	16
30801-L	7.	0.19	63G	24	31101-F	7.	0.11	31G	16
30801-Z	Ź.	0.19	63G	24	31201-E	7.	0.21	42G	16
30901-E	7.	0.06	17 G	16	31201-F	7.	0.21	42G	16
30901-F	7.	0.06	17 G	16	31202-E	7	0.21	42G	16
30902-E	7.	0.06	16G	16	31202-F	7.	0.21	42G	16
30902-F	7.	0.06	16G	16	31301-A	7.	0.04	2 G	14

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18 MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
LSTTL					LSTTL				
LSTTL 31301-B 31301-C 31301-D 31302-A 31302-B 31302-C 31303-A 31303-B 31303-C 31303-D 31401-E 31401-F 31402-E 31403-A 31403-B 31403-C 31403-D 31501-A 31501-B 31501-C 31501-D 31502-A 31502-C 31502-D 31503-E	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	0.04 0.04 0.04 0.12 0.12 0.12 0.12 0.08 0.08 0.08 0.01 0.15 0.15 0.06 0.06 0.06 0.06 0.06 0.08 0.08 0.08	2G 2G 2G 6G 6G 6G 4G 4G 20G 16G 10G 10G 10G 15G 25G 25G 25G 25G 60G	14 14 14 14 14 14 14 14 14 14 14 14 14 1	XXXXXXX LSTTL 31510-A 31510-B 31510-C 31510-D 31511-E 31512-E 31512-F 31512-F 31513-F 31601-E 31602-F 31603-F 31603-F 31604-F 31604-F 31605-F 31801-E 31901-E 31901-F 31901-E 31901-F 31901-B 31901-B	(V.) 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	0.08 0.08 0.08 0.08 0.18 0.18 0.19 0.19 0.07 0.07 0.07 0.07 0.07 0.20 0.20 0.20	26G 26G 26G 26G 26G 60G 58G 62G 24G 24G 86 59G 24G 59G 24G 59G 46G 305G 100G 43G 43G	14 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16
31503-F 31504-E 31504-F 31505-E 31505-F 31506-E 31507-E 31507-F 31508-E 31508-F 31509-F	7. 7. 7. 7. 7. 7. 7. 7.	0.18 0.18 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	60G 57G 57G 63G 63G 60G 50G 50G 48G 48G 59G	16 16 16 16 16 16 16 16 16	32001-C 32001-D 32002-A 32002-B 32002-C 32002-D 32003-A 32003-B 32003-C 32003-D 32004-A 32004-B 32004-C	7. 7. 7. 7. 7. 7. 7. 7.	0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08	43G 43G 42G 42G 42G 19G 19G 19G 25G 25G	14 14 14 14 14 14 14 14 14 14

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
LSTTL					LSTTL				
32004-D 32102-A 32102-B 32102-C 32102-D 32201-E 32201-F 32202-E 32203-F 32203-F 32204-E 32204-F 32301-C 32301-D 32302-C	7. 7. 7. 7. 7. 7. 7. 7.	0.08 0.02 0.02 0.02 0.02 0.13 0.13 0.12 0.13 0.12 0.13 0.11	25G 4G 4G 4G 7G 7G 7G 8G 8G 8G 8G 8G 4G	14 14 14 14 16 16 16 16 16 16 16 14 14	32702-A 32702-B 32702-C 32702-D 32703-E 32703-F 32801-C 32801-D 32802-C 32802-D 32803-R 32803-R 32803-S 32901-A 32901-B 32901-D	7. 7. 7. 7. 7. 7. 7. 7. 7.	0.14 0.14 0.14 0.14 0.14 0.30 0.30 0.30 0.30 0.52 0.52 0.15 0.15	66G 66G 66G 82G 82G 10G 10G 10G 18G 18G 46G 46G	14 14 14 16 16 14 14 14 20 20 14 14
32302-D 32401-R 32401-S 32402-R 32402-S 32403-R 32404-R 32404-S 32405-R 32405-R 32501-R 32501-S 32502-R 32502-R 32503-R 32504-R 32504-S 32504-S 32504-S 32504-F 32601-F 32602-F 32602-F 32602-F 32701-E	777777777777777777777777777777777777777	0.12 0.28 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.15 0.22 0.22 0.22 0.22 0.22 0.22 0.15 0.06 0.06 0.06 0.14	4G 10T 10T 10T 10T 10T 12T 12T 12T 12T 80G 80G 74G 80G 90G 15G 15G 15G 60G	14 20 20 20 20 20 20 20 20 20 20 20 20 20	ASTTL 33001-A 33001-B 33001-C 33001-D 33001-X 33001-Y 33002-A 33002-C 33002-C 33002-C 33002-C 33003-C	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	0.06 0.06 0.06 0.06 0.08 0.08 0.08 0.08	4G 4G 4G 4G 4G 6G 6G 6G 6G 3G 3G 3G 3G 3G 2G 2G	14 14 14 20 20 14 14 14 20 20 14 14 20 20 14

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXX	Vcc (V.)	Pd (W.)	Complexity	Nр	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
ASTTL					ASTTL	<u></u>			
33004-X 33004-Y	7. 7.	0.03 0.03	2G 2G	20 20	33905-F 33906-E 33906-F	7. 7. 7.	0.13 0.13 0.13	17G 15G 15G	16 16 16
LSTTL					33907-E	7. 7. 7.	0.14	15G 15G	16 16
33106-E 33106-F 33107-E 33107-F	7. 7. 7.	0.15 0.15 0.10 0.10	36G 36G 24G 24G	16 16 16 16	33907-F 33908-E 33908-F 34001-A 34001-B	7. 7. 7.	0.12 0.12 0.07 0.07	16G 16G 4G 4G	16 16 14 14
ASTTL					34001-C 34001-D	7. 7.	0.07	4G 4G	14 14
33201-R 33201-S 33202-R 33202-S 33203-R 33203-S 33301-A 33301-D 33401-D 33401-D 33401-D 33501-A 33501-B 33501-C 33501-D	7. 7. 7. 7. 7. 7. 7. 7. 7.	0.41 0.41 0.50 0.50 0.50 0.50 0.07 0.07 0.07 0.03 0.03 0.03 0.03 0.0	10G 10G 10G 10G 10G 4G 4G 4G 4G 5G 5G 5G 4G 4G 4G	20 20 20 20 20 20 14 14 14 14 14 14 14 14	34002-A 34002-B 34002-C 34002-D 34101-A 34101-B 34101-C 34102-E 34102-F 34103-E 34103-F 34501-A 34501-B 34501-D 34501-D 34501-D 34501-X 34701-R	7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	0.05 0.05 0.05 0.09 0.09 0.09 0.09 0.11 0.15 0.15 0.15 0.15	3G 3G 3G 12G 12G 12G 16G 16G 4G 4G 4G 4G 26G 26G	14 14 14 14 14 16 16 16 16 14 14 14 20 20
33601-E 33601-F	7. 7.	0.25 0.25	47 G 47 G	16 16	LSTTL				
33901-E 33901-F 33902-E 33902-F 33903-E	7. 7. 7. 7.	0.12 0.12 0.11 0.11 0.13	17G 17G 16G 16G 19G	16 16 16 16	36001-E 36001-F 36002-E 36002-F	7. 7. 7. 7.	0.11 0.11 0.14 0.14	29G 29G 30G 30G	16 16 16 16
33903-F 33904-E	7. 7.	0.13 80.0	19G 15G	16 16	ALSTTL				
33904-F 33905-E	7. 7.	0.08	15G 17G	16 16	37001-A	7.	0.07	4 G	14

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
ALSTTL					ALSTTL	·			
37001-B 37001-C 37001-D 37002-B 37002-C 37002-D 37003-A 37003-B 37003-C 37003-D 37004-A 37004-B 37004-C 37004-D 37005-E 37006-D 37006-C 37006-D 37101-B 37101-C 37101-D 37102-E 37103-E 37103-E 37103-E 37104-R 37104-R 37105-S 37106-L 37106-L 37107-K 37301-B 37301-D 37301-D 37301-D	7.	0.07 0.07 0.07 0.04 0.04 0.04 0.02 0.02 0.02 0.02 0.02	4GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	14 14 14 14 14 14 14 14 14 14 14 14 14 1	37302-A 37302-B 37302-D 37401-A 37401-B 37401-D 37402-B 37402-D 37501-A 37501-B 37501-C 37501-B 37501-E 37501-E 37501-E 37501-B 37501-C 37501-B 37501-C 37501-B 37501-C 37501-B 37501-C 37501-B 37501-C 37501-B 37501-C 375	7.	0.07 0.07 0.07 0.07 0.09 0.09 0.09 0.04 0.04 0.11 0.11 0.11 0.12 0.14 0.17 0.17 0.17 0.17 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04	3G 3G 4G	14 14 14 14 14 14 14 14 14 14 14 14 14 1

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXXX	Vcc (V)	Pd (W.)	Complexity	Np	M38510/ XXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np
ALSTTL	·				ALSTTL				
38404-D 38405-A 38405-B 38405-C 38405-D 38406-A 38406-B	7. 7. 7. 7. 7.	0.04 0.03 0.03 0.03 0.03 0.03	4G 3G 3G 3G 3G 3G 3G	14 14 14 14 14 14	38505-R 38505-S 38506-C 38506-D 38507-C 38507-D	7. 7. 7. 7. 7.	0.35 0.35 0.18 0.18 0.18	18G 18G 10G 10G 10G	20 20 14 14 14
38406-C	7.	0.03	3 G	14	NMOS	•			
38406-D 38407-A 38407-B 38407-C 38407-D	7. 7. 7. 7.	0.03 0.02 0.02 0.02 0.02	3G 2G 2G 2G 2G	14 14 14 14	40001-Q 40201-J 40301-J 42001-Q	7. 7. 7. 20.	1.00 1.00 1.00 1.70	1300G 1024G 16384G 1100G	40 24 24 40
38408-A 38408-B	7. 7.	0.06 0.06	4 G 4 G	14 14	STTL				
38408-C 38408-D 38409-A 38409-B 38409-C	7. 7. 7. 7.	0.06 0.06 0.07 0.07 0.07	4G 4G 6G 6G	14 14 14 14	42101-J 42101-K 42101-L 42201-E	7. 7. 7.	0.80 0.80 0.80 0.79	70G 70G 70G 70G	24 24 24 16
38409-D 38410-A	7. 7.	0.07 0.07	6G 6G	14 14	NMOS				
38410-8 38410-C 38410-D	7. 7. 7.	0.07 0.07 0.07	6G 6G 6G	14 14 14	42301-Z	7.	1.20	120G	28
38411-A	7.	0.08	6 G	14	LSTTL				
38411-B 38411-C 38411-D 38412-A 38412-B 38412-C 38412-D 38501-R 38501-S 38502-R 38502-R 38503-R 38503-S 38504-R 28504-S	7. 7. 7. 7. 7. 7. 7. 7. 7.	0.08 0.08 0.08 0.08 0.08 0.08 0.26 0.25 0.25 0.15 0.15 0.29	6G 6G 6G 6G 6G 18G 18G 18G 18G 18G	14 14 14 14 14 14 20 20 20 20 20 20 20 20	44001-Q 44001-Z 44101-T 44101-Z 44102-J 44103-R 44103-S 44104-J 44104-Z 44105-J 44106-R 44106-S	7. 7. 7. 7. 7. 7. 7. 7. 7.	1.60 1.60 1.00 1.00 1.00 1.00 1.00 1.00	537G 537G 77G 77G 85G 85G 77G 77G 77G 85G 85G 77G	40 42 24 24 24 20 20 24 24 24 24 20 20

MICROELECTRONIC DEVICES

TABLE 5.1.2.7-18: MICROELECTRONIC PARAMETERS (CONT'D)

M38510/ XXXXXX	Vcc (V.)	Pd (W.)	Complexity	Np	M38510/ XXXXXXX	Vcc (V.)	Pd (W.)	Complexity	Nр
LSTTL					STTL				
44201-E 44201-F	7. 7.	0.83 0.83	24G 24G	16 16	50401-R 50401-Y 50407-R	12. 12. 12.	0.10 0.10 0.10	98G 98G 98G	20 20 20
IIL					50407-Y 50501-L	12. 12.	0.10	98G 100G	20 24
46001-Y	6.	0.75	3100G	64	50501-3	12.	1.20	100G	28
CMOS					NMOS				
47001-Q 47201-J 47201-K 47401-E 47401-F	11. 11. 11. 11.	0.50 0.50 0.50 0.50 0.50	1375G 4096G 4096G 27G 27G	40 24 24 16 16	52001-Q 52001-X 52002-Q 52002-X 52003-Q	7. 7. 7. 7.	2.20 2.20 2.20 2.20 2.20	5833G 5833G 5833G 5833G 5833G	40 48 40 48 40
NMOS					52003-X 52004-Q 52004-X	7. 7. 7.	2.20 2.20 2.20	5833G 5833G 5833G	48 40 48
48001-Q 48002-Q 48003-Q	5. 5. 5.	1.00 1.00 1.00	2833G 2833G 2833G	40 40 40	CMOS				:
STTL					65001-C 65001-2	7. 7.	0.30 0.30	4G 4G	14 20
50301-R 50301-Y 50203-R 50302-Y 50303-R 50303-Y 50304-R 50305-R 50305-R 50306-R 50306-Y 50307-R 50307-Y 50308-R 50309-Y	12. 12. 12. 12. 12. 12. 12. 12. 12. 12.	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	34G 34G 36G 34G 34G 34G 34G 34G 34G 34G 34G 34G	20 20 20 20 20 20 20 20 20 20 20 20 20 2	65002-C 65002-2 65003-C 65003-2 65004-C 65004-2 65005-C 65005-2	7. 7. 7. 7. 7. 7.	0.30 0.30 0.30 0.30 0.30 0.30 0.30	3G 3G 2G 1G 1G 4G 4G	14 20 14 20 14 20 14 20

MICROELECTRONIC DEVICES

*MONOLITHIC

5.1.2.8 Example Failure Rate Calculations for Monolithic Devices.

Example One

Description: An 8192 bit N-channel MOS UVEPROM in a Ground, Fixed application, junction temperature of 55° C, procured to vendor equivalent B-2 quality level. The production line has been in continuous production. The device is a ceramic/metal DIP, solder seal hermetic package with 24 pins.

From Section 5.1.2.5, the operating failure rate model is:

$$\lambda_p = \pi_Q(C_1\pi_T\pi_V + C_2\pi_E)\pi_L$$
 Section 5.1.2.5 C_1 for 8192 bits = 0.06 Table 5.1.2.7-1 Quality Level B-2: $\pi_Q = 5.0$ Table 5.1.2.7-3 Ground, Fixed Environment: $\pi_E = 2.5$ Table 5.1.2.7-4 NMOS, Hermetic Package, corresponding to π_T Table 5.1.2.7-14 $\pi_V = 1.0$ Table 5.1.2.7-16 24 pin Hermetic DIP solder seal: $C_2 = 0.009$ Table 5.1.2.7-2 $\pi_L = 1$
$$\lambda_p = 5.0 \left[(0.06 \times 0.59 \times 1.0) + (0.009 \times 2.5) \right] 1.0$$

$$\lambda_p = 0.29 \text{ failures/} 10^6 \text{ hours.}$$

MICROELECTRONIC DEVICES

MONOLITHIC

Example Two

Description: Device type 54170 is being used in an airborne inhabited, trainer environment. The device is procured as quality level B-2 and has been in continuous production. The device is in a 16 pin, glass seal hermetic C-DIP package. The device has a worst case power dissipation of 0.77 watts.

The type number shows that the device is included in MIL-M-38510, described in slash sheet 18, type 01. The device is fabricated using TTL digital bipolar technology.

Table 5.1.2.7-19 shows a 100 gate complexity for this device. Since the device complexity is equal to 100 gates, the model in Section 5.1.2.1 applies:

$$\lambda_{p} = \pi_{Q}(C_{1}\pi_{T}\pi_{V} + C_{2}\pi_{E})\pi_{L}$$

Table 5.1.2.7-1 Quality Level B-2:
$$\pi_0 = 5.0$$

Table 5.1.2.7-3 Airborne Inhabited, Trainer Environment:
$$\pi_E = 3.0$$

Table 5.1.2.7-4 TTL, Hermetic Package, corresponding to
$$\pi_T$$
 Table 5.1.2.7-5: $T_C = 60^{\circ}C$

$$T_J = T_C + \theta_{JC}P = 60 + 50(0.77) = 99^{\circ}C$$

Table 5.1.2.7-5
$$\pi_T = 2.2$$

Table 5.1.2.7-14
$$\pi_V = 1.0$$

Section 5.1.2.1 For 1 to 1,000 gate complexity:
$$C_1 = 0.02$$

Table 5.1.2.7-16 16 pin hermetic DIP, glass seal:
$$C_2 = 0.0059$$

Table 5.1.2.7-2
$$\pi_i = 1.0$$

$$\lambda_{p} = 5.0 [(0.02 \times 2.2 \times 1.0) + (0.0059 \times 3.0)] 1.0$$

$$\lambda_n = 0.31 \text{ failures}/10^6 \text{ hours.}$$

MICROELECTRONIC DEVICES

MONOLITHIC

Example Three

Consider a Zilog Z80, 8 bit microprocessor in a 40 pin ceramic DIP with a metal lid. The device is installed in an airborne uninhabited trainer equipment and is operating at a case temperature of 95 $^{\circ}$ C. The device has been screened to full MIL-M-38510 Class B requirements. It dissipates 0.500 watts and has a case to junction thermal resistance of 40 $^{\circ}$ C/watt.

The microprocessor has been fabricated using NMOS technology.

From Section 5.1.2.3

$$\lambda_{p} = \pi_{Q}(C_{1}\pi_{T}\pi_{V} + C_{2}\pi_{E})\pi_{L}$$

Section 5.1.2.3 For 8 bit device: $C_1 = 0.03$

Table 5.1.2.7-1 $\pi_0 = 1.0$

Table 5.1.2.7-2 $\pi_1 = 1.0$ since the Z80 is a mature part

$$T_{\rm J} = T_{\rm C} + \theta_{\rm JC}^{\rm P} = 95 + 40(.5) = 115^{\rm O}$$

Table 5.1.2.7-7 For 115° C $\pi_{T} = 9.1$

Table 5.1.2.7-3 $\pi_F = 4.0$

Table 5.1.2.7-16 $C_2 = 0.015$

Table 5.1.2.7-14 π_V for V_{CC} of 5.V = 1.0

 $\lambda_p = 1.0 [(0.03 \times 9.1 \times 1.0) + (0.015 \times 4.0)] 1.0$

 $\lambda_{\rm p}$ = 0.33 failures/10⁶ hours

MICROELECTRONICS

HYBRID

5.1.2.9 Hybrid Microcircuit.

The hybrid failure rate model is:

$$\lambda_{p} = \left\{ \sum_{C} \lambda_{C} \pi_{G} + \left[N_{R} \lambda_{R} + \sum_{C} N_{I} \lambda_{I} + \lambda_{S} \right] \pi_{F} \pi_{E} \right\} \pi_{Q} \pi_{D}$$
(failures/10⁶ hour)

where:

 $^{\Sigma N}{}_{C}{}^{\lambda}{}_{C}{}^{\pi}{}_{G}$ is the sum of the adjusted failure rates for the active components, packaged resistors, and capacitors in the hybrid from Section 5.1.2.9.1

 N_{C} is the number of each particular component

 λ_{C} is the component failure rate

 π_G is the die correction factor Table 5.1.2.9-1

 $N_R \lambda_R$ is the number of (N_R) and failure rate contribution (λ_R) of the chip or substrate resistors (Section 5.1.2.9.2)

 $\Sigma N_I \lambda_I$ is the sum of the failure rate contributions of the interconnections (λ_I) from Section 5.1.2.9.3.

is the failure rate contribution of the hybrid package. (Table 5.1.2.9-4).

 π_E is the environmental factor for the film resistors, interconnections and package from Table 5.1.2.9-5.

 π_0 is the quality factor from Table 5.1.2.9-6.

 π_n is the density factor from Table 5.1.2.9-7.

 π_{F} is the circuit function factor

= 1.0 for digital hybrids

= 1.25 for linear or linear-digital combinations

MICROELECTRONICS

HYBRID

5.1.2.9.1 <u>Active Components and Capacitors</u>. The sum of the adjusted failure rates for the active components and capacitors shall be calculated as follows:

 N_C is the number of each particular component

 λ_{C} is the failure rate contribution for a particular component predicted using the correct model from the following sections in this handbook:

Integrated Circuits	Section 5.1.2
Discrete Semiconductors	Section 5.1.3
Packaged Resistors	Section 5.1.6
Capacitor	Section 5.1.7

When calculating λ_C for integrated circuits, use quality factor "B" and hermetic temperature factor " π_T ." For discrete semiconductors, use quality factor "JANTXV." For capacitors and resistors, use quality factor level "M." Use the environmental factor corresponding to the application environment of the hybrid, and assume a component ambient temperature equal to the temperature of the hybrid package.

If the maximum rated stress for a die is unknown, it shall be assumed to be the same as that for a discretely packaged die of the same type. If the same die has several ratings based on the discrete package type, the lower value will be assumed. Power rating used should be based on case temperature for discrete semiconductors.

 π_G adjusts the calculated discrete component failure rate to a transistor or diode die or capacitor chip failure rate. For packaged components, and IC dice, π_G = 1. Also, for IC dice let C_2 = 0 when calculating λ_C per the models in Section 5.1.2.

TABLE 5.1.2.9-1
DIE AND CAPACITOR CHIP CORRECTION FACTORS

Component	π _G
Integrated Circuits	1.0
Transistors	.4
Diodes	.2
Capacitor Chips	.8

MICROELECTRONIC DEVICES

HYBRID

5.1.2.9.2 <u>Chip and Substrate Resistors</u>. The failure rate contribution of the chip or substrate resistors used in the hybrid (either on chips or directly on the substrate) is calculated as the product:

 $N_R \lambda_R$

Where:

 N_{p} is the number of chip or substrate resistors

 λ_R is the failure rate of the chip or substrate resistors and is:

TABLE 5.1.2.9-2

BASE FAILURE RATES FOR CHIP OR SUBSTRATE RESISTORS

.00010	for T< 50°C
.00015	for 50 < T \leq 80 $^{\circ}$ C
.0002	for $80 < T \le 100^{\circ}$ C
.00025	for $100 < T \le 125^{\circ}C$
.0003	for 125 < T <u><</u> 150 ⁰ C

Where T is the hybrid package temperature.

MICROELECTRONICS DEVICES

HYBRID

5.1.2.9.3 <u>Interconnections</u>. The failure contribution of the interconnections is the product:

 $N_I \lambda_I$

Where:

 N_{T} is the number of interconnections

λ_I is the temperature dependent failure rate for the interconnections from Table 5.1.2.9-3.

<u>Interconnections</u>, as defined for this model are counted as one for every wire. Each beam lead or solder bump shall also be counted as one interconnection.

Only active (current carrying) interconnections shall be counted

A bond is considered bimetallic if any one of the bond interfaces involves more than one type of metal

Active die attach bonds (die to substrate bonds) are not counted as interconnections

Redundant interconnections shall be counted as only one interconnection

If an accurate count of the actual interconnections cannot be obtained, the following approximations may be made:

Component	Number of Interconnections
Each IC Chip Bonding Pad Each Transistor Each Diode Each Capacitor Each External Lead Each Chip Resistor	1 2 1 2 1 2

MICROELECTRONICS

HYBRID

TABLE 5.1.2.9-3

INTERCONNECTIONS FAILURE RATE (λ_1)

TEMPERATURE (C)*	λ _{I1}	^λ 12
25. 30. 35. 40. 45. 50. 55. 60. 65. 70. 75. 80. 85. 90. 95. 100. 105. 110. 115. 120. 125. 130. 135. 140. 145.	0.000174 0.000230 0.000302 0.000394 0.000508 0.000650 0.000826 0.00104 0.00130 0.00162 0.00201 0.00247 0.00302 0.00367 0.00444 0.00534 0.00639 0.00762 0.00904 0.0106 0.0125 0.0147 0.0171 0.0199 0.0231 0.0266	0.000174 0.000218 0.000271 0.000334 0.000410 0.000499 0.000604 0.000727 0.000871 0.00103 0.00123 0.00145 0.00170 0.00199 0.00231 0.00268 0.00310 0.00356 0.00409 0.00467 0.00531 0.00603 0.00682 0.00770 0.00866 0.00971

* Hybrid package temperature

 λ_{11} is for bimetal bonds (Gold-Aluminum)

 $\lambda_{\mbox{\scriptsize I2}}$ is for single metal bonds (Aluminum-Aluminum, Gold-Gold, etc) or solder

$$\lambda_{II}$$
 = .000174e $\left[(-5075) \left(\frac{1}{T+273} - \frac{1}{298} \right) \right]$ for $T \le 150^{\circ}$ C.

(cont'd on next page)

MICROELECTRONICS

HYBRID

$$\lambda_{I2} = .000174e \left[(-4056) \left(\frac{1}{T + 273} - \frac{1}{298} \right) \right]$$

T = package temperature (°C.)

If metal system is unknown, assume worst case (λ_{11}) .

MIL-HDBK-217E MICROELECTRONIC DEVICES

HYBRID

TABLE 5.1.2.9-4 PACKAGE FAILURE RATE $(\lambda_S)^*$

S	25 C 70 C	30C 80C	35 C 90C	40C 100C	45C 110C	50C 120C	55C 130C	60C 140C	65 C 150 C
1.75	0.0011 0.0113 0.0017 0.0167	0.0015 0.0174 0.0023 0.0257	0.0020 0.0261 0.0030 0.0385	0.0026 0.0383 0.0039 0.0566	0.0034 0.0551 0.0051 0.0815	0.0044 0.0778 0.0065 0.1151	0.0056 0.1081 0.0084 0.1599	0.0072 0.1478 0.0106 0.2186	0.0090 0.1990 0.0134 0.2944
2.25 2.50	0.0024 0.0235 0.0032 0.0319	0.0032 0.0362 0.0043 0.0491	0.0042 0.0543 0.0057 0.0736	0.0055 0.0798 0.0075 0.1081	0.0071 0.1148 0.0097 0.1556	0.0092 0.1622 0.0125 0.2199	0.0118 0.2253 0.0160 0.3054	0.0149 0.3079 0.0202 0.4175	0.0188 0.4148 0.0255 0.5624
2.75 3.00	0.0042 0.0420 0.0054 0.0537	0.0057 0.0645 0.0073 0.0825	0.0075 0.0968 0.0096 0.1239	0.0098 0.1421 0.0126 0.1819	0.0127 0.2045 0.0163 0.2618	0.0164 0.2890 0.0210 0.3700	0.0210 0.4014 0.0268 0.5138	0.0266 0.5487 0.0341 0.7024	0.0335 0.7390 0.0429 0.9461
3.25 3.50	0.0068 0.0673 0.0084 0.0827	0.0091 0.1034 0.0112 0.1270	0.0120 0.1551 0.0147 0.1906	0.0157 0.2278 0.0193 0.2800	0.0204 0.3279 0.0251 0.4030	0.0263 0.4633 0.0323 0.5694	0.0336 0.6435 0.0413 0.7908	0.0427 0.8797 0.0524 1.0810	0.0537 1.1848 0.0660 1.4560
3.75 4.00	0.0101 0.0999 0.0120 0.1191	0.0135 0.1536 0.0161 0.1830	0.0178 0.2305 0.0212 0.2746	0.0233 0.3384 0.0278 0.4032	0.0303 0.4871 0.0361 0.5804	0.0391 0.6883 0.0465 0.8201	0.0499 0.9559 0.0595 1.1390	0.0634 1.3067 0.0755 1.5569	0.0798 1.7600 0.0951 2.0971
4.50 5.00	0.0165 0.1629 0.0216 0.2138	0.0220 0.2503 0.0289 0.3286	0.0291 0.3757 0.0381 0.4932	0.0381 0.5517 0.0500 0.7242	0.0494 0.7940 0.0649 1.0424	0.0637 1.1219 0.0836 1.4728	0.0814 1.5582 0.1069 2.0456	0.1033 2.1300 0.1356 2.7963	0.1301 2.8690 0.1708 3.7663
5.50 6.00	0.0275 0.2713 0.0339 0.3347	0.0366 0.4170 0.0452 0.5143	0.0484 0.6258 0.0597 0.7720	0.0634 0.9191 0.0782 1.1336	0.0823 1.3228 0.1016 1.6317	0.1061 1.8691 0.1308 2.3054	0.1356 2.5959 0.1673 3.2020	0.1721 3.5485 0.2122 4.3770	0.2168 4.7795 0.2674 5.8954
6.50 7.00	0.0408 0.4030 0.0481 0.4753	0.0544 0.6193 0.0642 0.7304	0.0719 0.9295 0.0848 1.0962	0.0942 1.3650 0.1111 1.6097	0.1223 1.9646 0.1442 2.3170	0.1575 2.7759 0.1858 3.2737	0.2014 3.8554 0.2375 4.5468	0.2555 5.2702 0.3014 6.2153	0.3220 7.0985 0.3797 8.3714
7.50 8.00	0.0557 0.5505 0.0635 0.6277	0.0743 0.8460 0.0847 0.9647	0.0982 1.2697 0.1120 1.4478	0.1286 1.8646 0.1467 2.1262	0.1671 2.6838 0.1905 3.0603	0.2152 3.7920 0.2454 4.3239	0.2751 5.2666 0.3137 6.0055	0.3491 7.1993 0.3981 8.2093	0.4398 9.6968 0.5016 11.0572

*
$$\lambda_S = \left[0.0115 \ 1-e^{-(S^2/50)}\right] = \left[-5203 \left(\frac{1}{T+273} - \frac{1}{298}\right)\right]$$

T = Package Temperature $\binom{\circ C}{\circ}$

S = Seal Perimeter (inches)

MICROELECTRONIC DEVICES

HYBRID

TABLE 5.1.2.9-5: ENVIRONMENTAL FACTOR FOR RESISTORS, INTERCONNECTIONS AND PACKAGES

ENVIRON- MENT	π _E
G _B	0.20
G _{MS}	0.27
G _F	0.78
G _M	2.2
M _P	2.0
N _{SB}	1.0
N _S	. 1.7
NU	3.2
NH	3.1
N _{UU}	3.4
A_RW	4.5
AIC	1.5
A _{IT}	1.5
-	

ENVIRON-	π _E
MENT	
A _{IB}	2.5
A _{IA}	2.0
A _{IF}	3.0
A _{UC}	2.5
A _{UT}	2.5
A _{UB}	4.0
A _{UA}	3.0
AUF	4.0
SF	0.32
M_{FF}	2.1
M _{FA}	2.9
USL	6.1
ML	7.0
C	120.

MICROELECTRONIC DEVICES

HYBRID

5.1.2.9.4 Substrates and Metallization.

- 5.1.2.9.4.1 Hermetic Packages Enclosing More Than One Substrate. Each substrate shall be treated as a separate hybrid. Each substrate shall include its own density and function factor; however, only the largest substrate (area) or the substrate mounted on or serving as the package header (if all are of equal size) shall include a package factor. The hybrid failure rate will be the sum of the failure rates for the individual substrates.
- 5.1.2.9.4.2 <u>Multilayered Metallization</u>. The model is valid for up to seven layers of metallization.

MICROELECTRONIC DEVICES

HYBRID

TABLE 5.1.2.9-6: π_Q , Quality Factors

QUALITY LEVEL	DESCRIPTION	^π Q
S	Procured to the Class S requirements of MIL-STD-883, Method 5008, and MIL-M-38510 and Appendix G thereto (or MIL-STD-883, Methods 5004 and 5005 and MIL-M-38510) and listed in the MIL-M-38510 QML Supplement for Hybrid Microcircuits.	.25
S-1	Procured in full compliance with the requirements of MIL-STD-975 or MIL-STD-1547 and have procuring activity specification approval.	.4
В	Procured to the Class B requirements of MIL-STD-883, Method 5008, and MIL-M-38510 and Appendix G thereto (or MIL-STD-883, Methods 5004 and 5005 and MIL-M-38510) and listed in the MIL-M-38510 QML Supplement for Hybrid Microcircuits.	.5
B-1	Procured to the Class B requirements of MIL-STD-883, Method 5008, and MIL-M-38510 and Appendix G thereto (or MIL-STD-883, Methods 5004 and 5005 and MIL-M-38510). Includes MIL Drawing, DESC Drawing or other government approved documentation.	1.0
D	Hermetically sealed parts with manufacturer's normal reliability screening and quality assurance practices.	20.0

MICROELECTRONIC DEVICES

HYBR ID

TABLE 5.1.2.9-7: DENSITY FACTOR (π_D)

Density =
$$\frac{\text{Number of Interconnections}}{(A_S + .10)}$$

 A_{ς} = area of substrate (sq. inches)

$$\pi_D = .2 + .15 (\sqrt{Density})$$

Density	πD	Density	^π D
75.	0.78	160.	2.10
20.	0.87	165.	2.13
25.	0.95	170.	2.16
30.	1.02	175.	2.18
35.	1.09	180.	2.21
40.	1.15	185.	2.24
45.	1.21	190.	2.27
50.	1.26	195.	2.29
55.	1.31	200.	2.32
60.	1.36	205.	2.35
65.	1.41	210.	2.37
70.	1.45	215.	2.40
75.	1.50	220.	2.42
80.	1.54	225.	2.45
85.	1.58	230.	2.47
90.	1.62	235.	2.50
95.	1.66	240.	2.52
100.	1.70	245.	2.55
105.	1.74	250.	2.57
110.	1.77	255.	2.60
115.	1.81	260.	2.62
120.	1.84	265.	2.64
125.	1.88	270.	2.66
130.	1.91	275.	2.69
135.	1.94	280.	2.71
140.	1.97	285.	2.73
145.	2.01	290.	2.75
150.	2.04	295.	2.78
155.	2.07	300.	2.80

NOTE: The density term is intended as a measure of the mechanical complexity of the hybrid as a whole.

MICROELECTRONIC DEVICES

HYBRID

5.1.2.9.5 Prediction Example for Hybrid Microcircuits.

Microcircuit Description - Driver

Package:

Hermetic Flatpack 1.15 x .95 in. seal, .75 x .75 in.

substrate

Interconnections:

34 Gold-Aluminum, 4 solder

Active Components:

1 - LM106

 $1 - \mu A741$

2 - Si NPN Transistor, 60% stress ratio (power and voltage), linear application < 1 watt.

2 - Si PNP Transistor, 60% stress ratio (power and voltage), linear application < 1 watt.

2 - Si General Purpose Diode, 60% stress ratio (power

and voltage), small signal, metallurgically

bonded.

Passive Components: 2 - Ceramic Chip Capacitors, 60% stress ratio, 1000

17 - Thick Film Resistors

Environment:

Naval Unsheltered, 65°C package temperature

Screened to MIL-STD-883, Method 5008, in accordance with Appendix G to MIL-M-38510, not listed in QML. From Table 5.1.2.9-6, π_Q = 1.0

Example Calculation:

$$\lambda_{\mathsf{p}} = \left\{ \Sigma \mathsf{N}_{\mathsf{C}} \lambda_{\mathsf{C}} \pi_{\mathsf{G}} + \left[\mathsf{N}_{\mathsf{R}} \lambda_{\mathsf{R}} + \Sigma \mathsf{N}_{\mathsf{I}} \lambda_{\mathsf{I}} + \lambda_{\mathsf{S}} \right] \pi_{\mathsf{F}} \pi_{\mathsf{E}} \right\} \pi_{\mathsf{Q}} \pi_{\mathsf{D}}$$

Failure Rates for Components $(\lambda_{C}\pi_{C})$:

LM106 die, 13 transistors, page 5.1.2.2-1:

$$\pi_{Q} \left[c_{1} \pi_{T} \pi_{V} + c_{2} \pi_{E} \right] \pi_{L} \times \pi_{G}$$
1.0 $\left[0.01 \times 8.3 \times 1.0 \right) + \left(0 \times 5.7 \right) \times 1 = 0.08$

 μ A741 die, 23 transistors, page 5.1.2.2-1 (same model as LM106 above):

1.0
$$[(0.01 \times 9.2 \times 1.0) + (0 \times 5.7)]$$
 1 x 1 = 0.09

MICROELECTRONIC DEVICES

HYBRID

Si NPN transistor die, 60% stress ratio, page 5.1.3.1-1:

$$^{\lambda}_{b}$$
 $(^{\pi}E^{\pi}A^{\pi}Q^{\pi}R^{\pi}S2^{\pi}C)$ $^{\pi}G$ (.0029) 21 (1.5) 0.12 (1.0) 0.88 (1.0) 0.4 = 0.0039

Si PNP transistor die, 60% stress ratio, page 5.1.3.1-1 (same model as NPN transistor above):

$$(.0049)$$
 21 (1.5) 0.12 (1.0) 0.88 (1.0) 0.4 = 0.0065

Si general purpose diode die, 60% stress ratio, page 5.1.3.4-1:

$$^{\lambda}_{b}$$
 ($^{\pi}E^{\pi}Q^{\pi}R^{\pi}A^{\pi}S2^{\pi}C$) $^{\pi}G$ (.0019) 21 (.15) 1.0 (1.0) 0.7 (1.0) .2 = 0.0008

Ceramic chip capacitor, 60% stress ratio, 1000 pf., page 5.1.7.4-1:

$$^{\lambda}_{b}$$
 ($^{\pi}E^{\pi}Q^{\pi}CV$) $^{\pi}G$ (.0063) 12.4 (1.0) 1.0 (.8) = 0.06

Thick film resistor, Table 5.1.2.9-2:

.00015

Package, Table 5.1.2.9-4, seal perimeter = 4.2 in.

$$\lambda_{\varsigma} = .108$$

Interconnection, Table 5.1.2.9-3:

Au-Al: .00130 Solder: .000871

 $\pi_F = 3.2$, Table 5.1.2.9-5

 π_0 = 1.0, Table 5.1.2.9-6

Density = 38/(.563 + .10) = 57.3

 $\pi_D = 1.34$, Table 5.1.2.9-7

 π_F = 1.25 (for linear application, page 5.1.2.9-1)

$$\lambda_{p} = \{ .08 + .09 + 2 (.0039) + 2 (.0065) + 2 (.0008) + 2 (.06) + [17(.00015) + 34 (.00130) + 4 (.00087) + .108 (1.25) 3.2 \} 1.0 (1.34)$$

 $\lambda_{\rm p}$ = 1.3 failures/10⁶ hours.

MICROELECTRONIC DEVICES

BUBBLE MEMORIES

- 5.1.2.10 <u>Magnetic Bubble Memories*</u>. The magnetic bubble memory device in its present form is a non-hermetic assembly of two major structural segments:
- a. A basic bubble chip or die consisting of a memory or a storage area (e.g., an array of minor loops), and required control and detection elements (e.g., generators, various gates and detectors), and,
- b. A magnetic structure to provide controlled magnetic fields consisting of permanent magnets, coils, and a housing.

These two structural segments of the device are interconnected by a mechanical substrate and lead frame. The interconnect substrate in the present technology is normally a printed circuit board. It should be noted that this model does not include external support microelectronic devices required for magnetic bubble memory operation. The general form of the operating failure rate model is:

$$\lambda_p = \lambda_1 + \lambda_2$$

where:

 $\lambda_{\rm p}$ = operating failure rate in failures/10⁶ hrs.

 λ_1 = failure rate of the control and detection structure.

 λ_2 = failure rate of the memory storage area.

*See Bibliography Item No. 60

MICROELECTRONIC DEVICES

BUBBLE MEMORIES

5.1.2.10.1 Failure Rate of the Control and Detection Structure (λ_1) .

The expansion of λ_1 is:

$$\lambda_1 = \pi_0 \left[N_C C_{11} \pi_{T1} \pi_W + (N_C C_{21} + C_2) \pi_E \right] \pi_D \pi_L$$

where:

 π_0 = quality factor, Table 5.1.2.7-1

 N_C = number of bubble chips per packaged device

 C_{11} & C_{21} = device complexity failure rates for the control and detection elements, Table 5.1.2.10-1

 C_2 = package complexity failure rate, Table 5.1.2.7-16

 π_{T_1} = temperature acceleration factor. Use the values in Table 5.1.2.7-12. Use T_J = T_{CASE} + 10 (all in °C.)

 π_W = write duty cycle factor, Table 5.1.2.10-4

 π_F = application environment factor Table 5.1.2.7-3

 π_D = duty cycle factor, Table 5.1.2.10-3

 π_L = device learning factor, Table 5.1.2.7-2. Because this is a relatively new technology, justification should be given for use of π_L = 1.

5.1.2.10.2 Failure Rate of the Memory Storage Area (λ_2) .

The expansion of λ_2 is:

$$\lambda_2 = \pi_0 N_C (C_{12} \pi_{T2} + C_{22} \pi_F) \pi_1$$

where:

 π_0 = quality factor, Table 5.1.2.7-1

 N_C = number of bubble chips per packaged device

 C_{12} & C_{22} = device complexity failure rates Table 5.1.2.10-2.

 π_{T_2} = temperature acceleration factor. Use the values in Table 5.1.2.7-8. Use T_J = T_{CASE} + 10 (all in °C.)

MICROELECTRONIC DEVICES

BUBBLE MEMORIES

 $\pi_{\rm F}$ = application environment factor, Table 5.1.2.7-3

 π_1 = device learning factor, Table 5.1.2.7-2. Because this is a relatively new technology, justification should be given for use of π_1 = 1.

TABLE 5.1.2.10-1: C11 & C21, DEVICE COMPLEXITY FAILURE RATES FOR CONTROL & DETECTION STRUCTURE IN MAGNETIC BUBBLE DEVICES IN FAILURES PER 10 HOURS.

N ₁	c ₁₁	c ₂₁	Nl	c ₁₁	c ₂₁
4	.0017	.00014	500	.011	.00041
50	.0045	.00024	550	.012	.00042
100	.0060	.00028	600	.012	.00042
150	.0070	.00031	650	.013	.00043
200	.0079	.00033	700	.013	.00044
250	.0086	.00035	750	.013	.00045
300	.0093	.00036	800	.014	.00046
350	.0099	.00038	850	.014	.00046
400	.010	.00039	900	.014	.00047
450	.011	.00040	950	.015	.00047
			1000	.015	.00048

Tabulated values are determined from the following equations:

$$C_{11} = .00095(N_1)^{.40} \& C_{21} = .0001(N_1)^{.226}$$

where:

 N_1 = the number of dissipative elements on a chip (gates, detectors, generators, etc.) and is \leq 1000.

MICROELECTRONIC DEVICES

BUBBLE MEMORIES

TABLE 5.1.2.10-2: C_{12} & C_{22} DEVICE COMPLEXITY FAILURE RATES FOR MEMORY STORAGE STRUCTURE FOR MAGNETIC BUBBLE DEVICES IN FAILURES PER 10^6 HOURS.

NO. BITS IN (10 ³)	c ₁₂	c ₂₂	NO. BITS IN (10)	c ₁₂	c ₂₂
66	.0020	.00028	1049	.0045	.00064
92	.0022	.00031	2097	.0055	.00079
131	.0024	.00035	4194	.0068	.00097
262	.0030	.00042	8389	.0084	.0012
524	.0036	.00052			

Tabulated values are determined from the following equations:

$$C_{12} = .00007 (N_2)^{.3} & C_{22} = .00001 (N_2)^{.3}$$

where:

 $\tau_{\rm eff}$

 N_2 = the number of bits and is ≤ 9 (10)⁶.

TABLE 5.1.2.10-3: π_D , DUTY CYCLE FACTOR, FOR MAGNETIC BUBBLE DEVICES

D*	,0	. 1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
π_{D}	.10	. 19	.28	.37	.46	. 55	. 64	.73	.82	.91	1.0

* - The tabulated values are determined from

$$\pi_{D} = .90 + 0.1$$
 for $0 \le 0 \le 1.0$

D is the device duty cycle and is application dependent. It is a function of the usage the bubble device experiences during the time the power is applied to the equipment using the device.

Average device data rate for the application

manufacturer's maximum rated data-rate

where: the application data rate is averaged over the time that the power is applied to the using equipment.

MICROELECTRONIC DEVICES

BUBBLE MEMORIES

TABLE 5.1.2.10-4. THE WRITE-DUTY CYCLE FACTOR FOR MAGNETIC BUBBLE DEVICES.

D	DEVICES.			R/W	
	1	10	100	1000	>2154
1.0	10	5.0	2.5	1.3	1
.9	9.1	4.6	2.4	1.2	1
.8	8.2	4.2	2.2	1.2	1
.7	7.3	3.8	2.1	1.2	1
.6	6.4	3.4	1.9	1.2	1
.5	5.5	3.0	1.8	1.1	1
.4	4.6	2.6	1.6	1.1	1
.3	3.7	2.2	1.5	1.1	1
.2	2.8	1.8	1.3	1	1
.1	1.9	1.4	1.2	1	1
.05	1.5	1.2	1.1	1	1
<.03	1	1	1	1	1

Tabulated values are determined from the following equations:

$$\pi_W = \left(D \frac{10}{(R/W) \cdot 3} - 1\right) + 1 \text{ for } 1 \le R/W < 2154$$

= 1 for R/W <1 and R/W \geq 2154

where:

R/W = no. of reads per write

D = device duty cycle (see footnote in Table 5.1.2.10-3) For seed-bubble generator use table value divided by 4, or use 1, whichever is greater.

MICROELECTRONIC DEVICES

BUBBLE MEMORIES

5.1.2.10.3 Example Failure Rate Calculations.

Example One: Find the operating failure rate for a single chip 92K bit magnetic bubble memory, 40°C . case temperature, ground benign environment. The device has a 14-pin nonhermetic DIP enclosure with 10 pins connected, 1 major loop, 3 dissipative control elements (generate, replicate and detector bridge), and 144 transfer gates. Device has been in continuous production and is used at D = 1.0 and R/W = 10.

For control and detection structure, Section 5.1.2.10.1,

$$\lambda_1 = \pi_Q \left[N_C c_{11} \pi_{T1} \pi_W + (N_C c_{21} + c_2) \pi_E \right] \pi_D \pi_L$$

Table 5.1.2.7-1 Quality level D-1, $\pi_0 = 20$

Section 5.1.2.10.1 $N_C = 1$

Table 5.1.2.10-1 $N_1 = 1$ major loop + 3 dissipative elements + 144 gates = 148.

$$C_{11} = .007, C_{21} = .00031$$

Table 5.1.2.7-12
$$T_J = 40 + 10 = 50^{\circ}C., \pi_{T3} = 1.1$$

Table 5.1.2.10-4 D = 1, R/W = 10;
$$\pi_{\text{LL}} = 5$$

Table 5.1.2.7-16 Nonhermetic, 10 pins, $C_2 = .0034$

Table 5.1.2.7-3 For
$$G_R$$
, $\pi_F = .38$

Table 5.1.2.10-3 D = 1,
$$\pi_D$$
 = 1

Table 5.1.2.7-2
$$\pi_1 = 1$$

$$\lambda_1 = 20 \{ (1)(.007)(1.1)(5) \} + (1)(.00031) + .0034 \}$$
(.38)

$$= 20 (.0385 + .0014)$$

= $.80 \text{ failures}/10^6 \text{ hours}$.

MICROELECTRONIC DEVICES

BUBBLE MEMORIES

For magnetic storage area, Section 5.1.2.10.2,

$$\lambda_2 = \pi_0 N_C (C_{12} \pi_{T2} + C_{22} \pi_E) \pi_L$$

Table 5.1.2.7-1 Quality level D-1,
$$\pi_0 = 20$$

Section 5.1.2.10.1
$$N_C = 1$$

Table
$$5.1.2.10-2$$
 No. of bits = $92,000$,

$$c_{12} = .0022, c_{22} = .00031$$

Table 5.1.2.7-8
$$T_J = 40 + 10 = 50^{\circ}C., \pi_{T_2} = .53$$

Table 5.1.2.7-3 For
$$G_{B}$$
, $\pi_{E} = .38$

Table 5.1.2.7-2
$$\pi_1 = 1$$

$$\lambda_2 = (20)(1) [(.0022)(.53) + (.00031)(.38)](1)$$
= 20 [001166 + .0001178]
= .026 failures/10⁶ hours.

From Section 5.1.2.10,

$$\lambda_{D} = \lambda_{1} + \lambda_{2}$$

$$= .80 + .026$$

= .83 failures/ 10^6 hours.

MICROELECTRONIC DEVICES

BUBBLE MEMORIES

Example Two: Find the operating failure rate for a single chip I megabit magnetic bubble memory at 40°C. case temperature in a benign ground environment. The device has 2 generators, 8 detector elements, 512 replicate/swap gates, 4 boot loop gates and is contained in a nonhermetic DIP with 19 pins connected. The application requires 10 reads per write and a data rate equal to the maximum rated value of 100kHz. The device uses a seed generator and is in early production.

For control and detection structure, Section 5.1.2.10.1,

$$\lambda_1 = \pi_Q \left[N_C C_{11} \pi_{T1} \pi_W + (N_C C_{21} + C_2) \pi_E \right] \pi_D \pi_L$$

Table 5.1.2.7-1 Quality level D-1, $\pi_0 = 20$

Section 5.1.2.10.1 $N_C = 1$

Table 5.1.2.10-1 N₁ = 2 generators + 8 detector elements + 512 replicate/swap gates + 4 boot loop gates = 526

$$C_{11} = .012$$
 $C_{21} = .00041$

Table 5.1.2.7-12
$$T_J = 40 + 10 = 50^{\circ}C.$$
, $\pi_{T_J} = 1.1$

Table 5.1.2.10-4 D = 100kHz./100kHz. = 1, R/W = 10

 $m_W^2 = 5/4 = 1.25$ for seed bubble generator.,

Table 5.1.2.7-16 Nonhermetic, 19 pins, $C_2 = .0075$

Table 5.1.2.7-3 For G_B , $\pi_E = .38$

Table 5.1.2.10-3 D = 1, $\pi_D = 1$

Table 5.1.2.7-2 Early production, $\pi_1 = 10$

$$\lambda_1 = 20 \left\{ \left[(1)(.012)(1.1)(1.25) \right] + \left[(1)(.00041) + .0075 \right] \right\}$$
(.38)

= 20 (.0165 + .003) 10

= $3.9 \text{ failures/}10^6 \text{ hours.}$

MICROELECTRONIC DEVICES

BUBBLE MEMORIES

For magnetic storage area, section 5.1.2.10.2,

$$\lambda_2 = \pi_0 N_C (C_{12} \pi_{T2} + C_{22} \pi_E) \pi_L$$

Table 5.1.2.7-1 Quality level D-1, $\pi_0 = 20$

Section 5.1.2.10.1 $N_C = 1$

Table 5.1.2.10-2 No. of bits = $1049(10)^3$,

$$C_{12} = .0045, C_{22} = .00064$$

Table 5.1.2.7-8 $T_{.1} = 40 + 10 = 50^{\circ}C., \pi_{T2} = .53$

Table 5.1.2.7-3 For G_R , $\pi_E = .38$

Table 5.1.2.7-2 Early production, $\pi_1 = 10$

 $\lambda_2 = (20)(1)[.0045)(.53) + (.00064)(.38](10)$

= 20 (.002385 + .000243)10

= .53 failures/ 10^6 hours.

From Section 5.1.2.10,

$$\lambda_p = \lambda_1 + \lambda_2$$

= 3.9 + .53

= $4.4 \text{ failures}/10^6 \text{ hours}$.

SURFACE ACOUSTIC WAVE DEVICES

5.1.2.11 Surface Acoustic Wave (SAW) Devices. The part operating failure rate model $(\lambda_{\rm p})$ is:

 $\lambda_p = 2.1\pi_Q\pi_E$ failures/ 10^6 hours.

where:

 π_F = environmental factor (Table 5.1.2.11-1)

 π_{Q} = 0.1 for high quality part, subjected to 10 temperature cycles, (-55°C to 125°C) with end point electrical test

 $\pi_0 = 1.0$ commercial part

TABLE 5.1.2.11-1: ENVIRONMENTAL MODE FACTOR

ENVIRON- MENT	^π E.	ENVIRON- MENT	πE
G _B	1.0	A _{IB}	13.0
G _{MS}	1.4	A _{IA}	10.0
G _F	3.9	A _{IF}	15.0
G _M	11.0	A _{UC}	13.0
Mp	10.0	A _{UT}	10.0
N _{SB}	5.0	A _{UB}	20.0
NS	8.5	A _{UA}	15.0
NU	16.0	A _{UF}	20.0
N _H	16.0	S _F	1.6
N _{UU}	17.0	M _{FF}	11.0
A _{RW}	23.0	M _{FA}	15.0
AIC	7.5	U _{SL}	31.0
A _{IT}	7.5	ML	35.0
		C_	600.0

DISCRETE SEMICONDUCTORS

5.1.3 <u>Discrete Semiconductors</u>. The semiconductor transistor and diode sections present the failure rates on the basis of ambient or case temperature and includes the effect of various quality grades and adjustment factors on the failure rate. An analytical model of the failure rate is also presented.

The applicable MIL specification for transistors and diodes is MIL-S-19500. The quality levels (JAN, JANTX, JANTXV) are as defined in MIL-S-19500.

The general failure rate model for transistors and diodes is:

$$\lambda_p = \lambda_b \ (\pi_E \times \pi_A \times \pi_Q \times \pi_R \times \pi_{S2} \times \pi_C) \text{ failures/10}^6 \text{ hours}$$

where the various factors are defined in Section 5.1.1.

The various types of semiconductors require different failure rate models that vary to some degree from the basic model. The semiconductor generic groups are shown in Table 5.1.3-1. The specific failure rate model and the π factor values for each group are shown in the section dealing with that group.

TABLE 5.1.3.-1: DISCRETE SEMICONDUCTOR GENERIC GROUPS

	Part Type	Group
Α.	Transistors	
	Silicon NPN Germanium PNP Silicon PNP Germanium NPN	I
	Field Effect Transistors Unijunction	III
В.	Diodes and Rectifiers	
	Silicon (General) Germanium (General) Voltage Regulator (Zener, Avalanche) Voltage Reference (Temp. Comp., Zener, Avalanche)	IV
[Thyristors (Silicon Control Rectifiers)	VI
C.	Microwave Semiconductors and Special Devices	
	Detectors Mixers Varactors, IMPATT, GUNN, Step Recovery, Tunnel, PIN Microwave Transistors	VIII VIII
D.	Opto-Electronic Devices	Х
Ε.	Semiconductor Laser Devices	IX

DISCRETE SEMICONDUCTORS

The equation for the base failure rate, λ_h , is:

$$\lambda_b = Ae^X$$

where:

$$x \quad \text{is} \left(\frac{N_T}{273 + T + (\Delta T)S} \right) + \left(\frac{273 + T + (\Delta T)S}{T_M} \right)^p$$

- A is a failure rate scaling factor.
- e is the natural logarithm base, 2.718.
- N_T , T_M and P are shaping parameters.
- T is the operating temperature in degrees C, ambient or case, as applicable (see Section 5.1.3.11 for instructions)
- ΔT is the difference between typical maximum allowable temperature with no junction current or power (total derating) and the typical maximum allowable temperature with full rated junction current or power.
- S is the stress ratio of operating electrical stress to rated electrical stress (see Section 5.1.3.11 for S calculation).

The values for the constant parameters are shown in Table 5.1.3-2. The resulting base failure rates as functions of temperature and electrical stress are shown in tables for each part type in Sections 5.1.3.1 through 5.1.3.8. These tables are based on the typical maximum junction temperatures (fuly derated) of 100 degrees C for germanium (70 degrees C for microwave types), and 175 degrees C for silicon (150 degrees C for microwave types) devices as well as a value of 25 degrees C for the maximum temperature at which full rated operation is permitted. If device temperature ratings are different from these values, see Section 5.1.3.11 for S and T corrections to compensate for these differences. The values of ΔT for the device types stated above remain constant regardless of the values of $T_{\rm C}$ and $T_{\rm MAY}$.

The base failure rate tables contain failure rates up to full rated conditions. If a particular operating condition of S and T is high enough to fall into a blank portion of the table, the device is <u>over-stressed</u> and should not be used.

DISCRETE SEMICONDUCTORS

TABLE 5.1.3-2: DISCRETE SEMICONDUCTOR BASE FAILURE RATE PARAMETERS

		$\lambda_{f b}$ Constants							
Group	Group Part Type		N _T	T _M	Р	ΔΤ			
Transistors			<u> </u>						
I	Si, NPN Si, PNP	0.0189 0.0648	-1052 -1324	448 448	10.5 14.2	150 150			
'	Ge, PNP Ge, NPN	6.5 21	-2142 -2221	373 373	20.8 19	75 75			
III	FET Unijunction	0.52 3.12	-1162 -1779		13.8 13.8	150 150			
Diodes					<u></u>				
i IV	Si, Gen. Purp.	0.172	-2138	448	17.7	150			
	Ge, Gen. Purp.	126	-3568	373	22.5	75			
VI	Zener/Avalanche Thyristors	0.0068 0.82	-800 -2050	448 448	14 9.6	150 150			
	Microwave		<u> </u>	''					
VII	Ge, Detectors Si, Detectors Si, Schottky Det. Ge, Mixers Si, Mixers	0.33 0.14 0.005 0.56 0.19	-477 -392 -392 -477 -394	343 423 423 343 423	15.6 16.6 16.6 15.6 15.6	45 125 125 45 125			
AIII	Varactor, PIN, Step Recovery & Tunnel	0.93	-1164	448	13.8	150			
	IMPATT, Gunn	See Section 5.1.3.8							
Transistors IX				See Section 5.1.3.9					
Opto-Electronic X			ion 5.1.	3.10					
XI	AlGaAs DH Stripe			3.11					

DISCRETE SEMICONDUCTORS

CONVENTIONAL TRANSISTORS

5.1.3.1 Transistors, Group I

SPECIFICATION	STYLE	DESCRIPTION
MIL-S-19500		Si, NPN Si, PNP Ge, PNP Ge, NPN

Part operating failure rate model (λ_p) :

 $\lambda_p = \lambda_b \ (\pi_E \times \pi_A \times \pi_Q \times \pi_R \times \pi_{S2} \times \pi_C) \ \text{failures/10}^6 \ \text{hours}$ where the factors are shown in Tables 5.1.3.1-1 through 5.1.3.1-10.

TABLE 5.1.3.1-1: GROUP I TRANSISTORS ENVIRONMENTAL MODE FACTORS

ENVIRONMENT	π _E	ENVIRONMENT	π _E
Gp	1	A _{IB}	35
G _B G _{MS} G _F	1.6	AIA	20
G _C	5.8	AIF	40
G _M	18	AUC	15
M _P	12	A _{UT}	25
N _{SB}	9.8	A _{UB}	60
N _S	9.8	A _{UA}	35
NU	21	A _{UF}	65
NH	19	S _F	0.4
NUU	20	M _{FF}	12
A _{RW}	27	M _{FA}	17
AIC	9.5	U _{SL}	36
AIT	15	ML	41
		$c_{\overline{L}}^-$	690

DISCRETE SEMICONDUCTORS

CONVENTIONAL TRANSISTORS

TABLE 5.1.3.1-2: π_A FOR GROUP I TRANSISTORS

Application	πA
Linear Switch Si, low noise r.f., <lw.< td=""><td>1.5 0.7 15.0</td></lw.<>	1.5 0.7 15.0

TABLE 5.1.3.1-3: $\pi_{\mathbb{Q}}$ FOR GROUP I TRANSISTORS

ty Level	πQ
(V (0.12 0.24 1.2
	6.0
** :ic**_	

TABLE 5.1.3.1-4: $\ensuremath{\pi_R}$ FOR GROUP I TRANSISTORS

Power Rating (watts)	^π R
<pre>< 1 1 > 1 to 5 > 5 to 20 > 20 to 50 > 50 to 200</pre>	1.5 2.0 2.5 5.0

^{*}Hermetic packaged devices.
**Devices sealed or encapsulated with organic materials.

DISCRETE SEMICONDUCTORS

CONVENTIONAL TRANSISTORS

TABLE 5.1.3.1-5: π_{S2} FOR GROUP I TRANSISTORS

Voltage Stress, $S_2 = \frac{\text{Applied } (V_{CE})}{\text{Rated } (V_{CEO})} \times 100$

S ₂ (percent)	π _{S2} *
100	3.0
90	2.2
80	1.62
70	1.2
60	0.88
50	0.65
40	0.48
30	0.35
20	0.30
10	0.30
0	0.30

*
$$\pi_{S2} = 0.14(10)^{(.0133)S_2}$$
 for $S_2 \ge 25$
 $\pi_{S2} = 0.3$ for $S_2 < 25$

TABLE 5.1.3.1-6: π_C FOR GROUP I TRANSISTORS

Complexity (1)	^π C
Single Transistor Dual (Unmatched) Dual (Matched) Darlington Dual Emitter Multiple Emitter Complementary Pair	1.0 0.7 1.2 0.8 1.1 1.2 0.7

(1) Each transistor in a case must be treated individually for complexity factor. Its failure rate, λ_b , modified by other π factors and then multiplied by this complexity factor. If only one transistor of a pair is used, treat as an independent item with $\pi_{\mathbb{C}}$ = 1.0.

DISCRETE SEMICONDUCTORS

CONVENTIONAL TRANSISTORS

TABLE 5.1.3.1-7: MIL-S-19500 TRANSISTORS, GROUP I, SILICON, NPN BASE FAILURE RATE, $\lambda_{\rm b}$, IN FAILURES PER 106 HOURS

TEMP	•				POWER S	TRESS				
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
		· -						-		
0	.00049	.00060	.00071	.00084	.00099	.0012	.0014	.0017	.0021	.0027
10	.00056	.00067	.00079	.00093.	.0011	.0013	.0016	.0019	.0025	.0034
20	.00063	.00075	.00089	.0010	.0012	.0015	.0018	.0023	.0030	.0043
30	.00071	.00084	.00099	.0012	.0014	.0017	.0021	.0027	.0038	
40	.00079	.00093	.0011	.0013	.0016	.0019	.0025	.0034	.0049	
50	.00089	.0010	.0012	.0015	.0018	.0023	.0030	.0043		
60	.00099	.0012	.0014	.0017	.0021	.0027	.0038			
70	.0011	.0013	.0016	.0019	.0025	.0034	.0049			
80	.0012	.0015	.0018	.0023	.0030	.0043				
90	.0014	.0017	.0021	.0027	.0038					
100	.0016	.0019	.0025	.0034	.0049					
110	.0018	.0023	.0030	.0043						
120	.0021	.0027	.0038				ī			
130	.0025	.0034	.0049					•		
140	.0030	.0043								
150	.0038									
160	.0049									

DISCRETE SEMICONDUCTORS

CONVENTIONAL TRANSISTORS

TABLE 5.1.3.1-8: MIL-S-19500 TRANSISTORS, GROUP I, SILICON, PNP BASE FAILURE RATE, $\lambda_{\rm b}$, IN FAILURES PER 10^6 HOURS

TEMP	<u> </u>		,b.		POWER S	TPESS			•	
(OC)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
(0)	• '	• <u></u>	• · · · · · · · · · · · · · · · · · · ·	• 7				••		
0	.00065	.00082	.0010	.0012	.0015	.0018	.0021	.0026	.0033	.0044
10	.00076	.00095	.0012	.0014	.0017	.0020	.0024	.0030	.0040	.0056
20	.00088	.0011	.0013	.0016	.0019	.0023	.0028	.0036	.0050	.0077
30	.0010	.0012	.0015	.0018	.0021	.0026	.0033	.0044	.0065	j
40	.0012	.0014	.0017	.0020	.0024	.0030	.0040	.0056	.0092	
50	.0013	.0016	.0019	.0023	.0028	.0036	.0050	.0077		ļ
60	.0015	.0018	.0021	.0026	.0033	.0044	.0065			ļ
70	.0017	.0020	.0024	.0030	.0040	.0056	.0092			[
80	.0019	.0023	.0028	.0036	.0050	.0077				1
90	.0021	.0026	.0033	.0044	.0065					
100	.0024	.0030	.0040	.0056	.0092					
110	.0028	.0036	.0050	.0077						1
120	.0033	.0044	.0065							[
130	.0040	.0056	.0092							ſ
140	.0050	.0077								İ
150	.0065									
160	.0092									

DISCRETE SEMICONDUCTORS

CONVENTIONAL TRANSISTORS

TABLE 5.1.3.1-9: MIL-S-19500 TRANSISTORS, GROUP I, GERMANIUM, PNP BASE FAILURE RATE, $\lambda_{\rm b}$, IN FAILURES PER 10⁶ HOURS

TEMP	POWER STRESS									
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.0031	.0038	.0047	.0056	.0067	.0080	.0096	.011	.014	.017
10	.0041	.0050	.0060	.0071	.0085	.010	.012	.015	.019	.025
20	.0053	.0063	.0075	.0090	.011	.013	.016	.021	.028	.041
30	.0067	.0080	.0096	.011	.014	.017	.023	.031	.048	
40	.0085	.010	.012	.015	.019	.025	.036	.057		
50	.011	.013	.016	.021	.028	.041				
60	.014	.017	.023	.031	.048					}
70	.019	.025	.036	.057						
80	.028	.041								
90	.048									

TABLE 5.1.3.1-10: MIL-S-19500 TRANSISTORS, GROUP I, GERMANIUM, NPN BASE FAILURE RATE, $\lambda_{\rm b}$, IN FAILURES PER 106 HOURS

TEMP					POWER	STRESS	· · · · · · · · · · · · · · · · · · ·		······	
(°C)	.1	.2.	.3	.4	.5	.6	.7	.8	.9	1.0
0	.0077	.0095	.012	.014	.017	.020	.025	.030	.037	.046
10	.010	.012	.015	.018	.022	.026	.032	.040	.051	.067
20	.013	.016	.019	.023	.028	.034	.043	.055	.075	.11
30	.017	.020	.025	.030	.037	.046	.061	.084	.13	1
40	.022	.026	.032	.040	.051	.067	.095	. 15		
50	.028	.034	.043	.055	.075	.11				
60	.037	.046	.061	.084	.13					
70	.051	.067	.095	. 15						
80	.075	.11								
90	.13									

DISCRETE SEMICONDUCTORS

FET

5.1.3.2 Transistors, Group II

<u>SPECIFICATION</u>

STYLE

DESCRIPTION

MIL-S-19500

Silicon Field Effect Transistors, Gallium Arsenide FET

Part operating failure rate model (λ_p) :

 $\lambda_p = \lambda_b (\pi_E \times \pi_A \times \pi_Q \times \pi_C)$ failures/10⁶ hours

where the factors are shown in Tables 5.1.3.2-1 through 5.1.3.2-5.

TABLE 5.1.3.2-1: GROUP II TRANSISTORS ENVIRONMENTAL MODE FACTORS

ENVIRONMENT	π _E	ENV I RONMENT	πE
G _B	1	- A _{IB}	35
G _{MS}	1.4	AIA	30
G _F	4.0	A _{IF}	40
G _M	18	A _{UC}	10
M _P	12	A _{UT}	15
N _{SB}	6	A _{UB}	55
N _S	8.6	A _{UA}	50
UNU	21	A _{UF}	65
N _H	19	S _F	0.6
N _{UU}	20	M _{FF}	12
A _{RW}	27	M _{FA}	17
AIC	7.5	υ _{SL}	36
A _{IT}	9	M _L	41
			690

DISCRETE SEMICONDUCTORS

FET

TABLE 5.1.3.2-2: $\pi_{\mbox{\scriptsize A}}$ FOR GROUP II TRANSISTORS

Application	πA
Silicon Linear Switch High Frequency (>400 HMz & aver power <300 mW)	1.5 0.7 5.0
GaAs Low Noise Driver (≤100 mW)	0.7 50.0

TABLE 5.1.3.2-3: π_{C} FOR GROUP II TRANSISTORS

Complexity	^π C
Single Device	1.0
Dual Unmatched	0.7
Dual Matched	1.2
Dual Complementary	0.7
Tetrode	1.1

TABLE 5.1.3.2-4: π_0 FOR GROUP II TRANSISTORS

Quality Level	πQ
Silicon JANTXV JANTX JAN Lower* Plastic** GaAs***	0.12 0.24 1.2 6.0 12.0

^{*}Hermetic packaged devices.

**Devices sealed or encapsulated with organic materials.

***Must be burned-in for 168 hours at 125°C case temperature.

DISCRETE SEMICONDUCTORS

FET

TABLE 5.1.3.2-5: MIL-S-19500 TRANSISTORS, GROUP II, FET BASE FAILURE RATE, $\lambda_{\rm b}$, IN FAILURES PER 10 6 HOURS

TEMP					POWER	STRESS		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
(°C)	.1	.2 .	.3	.4	.5	.6	.7	.8	.9	1.0
0	.0092	.011	.014	.016	.019	.022	.026	.032	.040	.052
10	.011	.013	.015	.018	.021	.025	.030	.037	.047	.066
20	.012	.014	.017	.020	.024	.028	.034	.043	.059	.089
30	.014	.016	.019	.022	.026	.032	.040	.052	.076	
40	.015	.018	.021	.025	.030	.037	.047	.066	.11	
50	.017	.020	.024	.028	.034	.043	.059	.089		•
60	.019	.022	.026	.032	.040	.052	.076			
70	.021	.025	.030	.037	.047	.066	.11			
80	.024	.028	.034	.043	.059	.089				
90	.026	.032	.040	.052	.076					
100	.030	.037	.047	.066	.11					
110	.034	.043	.059	.089						
120	.040	.052	.076							
130	.047	.066	.11							
140	.059	.089								
150	.076									
160	.11									

DISCRETE SEMICONDUCTORS

UNIJUNCTION

5.1.3.3 Transistors, Group III

<u>SPECIFICATION</u>

STYLE

DESCRIPTION

MIL-S-19500

Unijunction

Part operating failure rate model (λ_p):

 $\lambda_p = \lambda_b \times \pi_E \times \pi_Q$ failures/10⁶ hours

where the factors are shown in Tables 5.1.3.3-1 through 5.1.3.3-3.

TABLE 5.1.3.3-1: GROUP II TRANSISTORS ENVIRONMENTAL MODE FACTORS

ENVIRONMENT	^π E	ENVIRONMENT	πE
G _B	1	A _{IB}	35
G _B G _{MS}	1.4	AIA	20
G _F	4	A _{IF}	40
G _M	18	A _{UC}	15
M _P	12	A _{UT}	25
N _{SB}	9.3	A _{UB}	60
N _S	9.3	A _{UA}	35
NU	21	A _{UF}	65
NH	19	S _F	1
N _{UU}	20	M _{FF}	12
ARW	27	M _{FA}	17
AIC	9.5	U _{SL}	36
AIT	15	ML	41
		C _L	690

DISCRETE SEMICONDUCTORS

UNIJUNCTION

TABLE 5.1.3.3-2: π_0 FOR GROUP III TRANSISTORS

And in case of the last of the	
Quality Level	ηQ
JANTXV	0.5
JANTX	1.0
JAN	5.0
Lower*	25.0
Plastic**	50.0
L	

MIL-S-19500 TRANSISTORS, GROUP III, UNIJUNCTION BASE FAILURE RATE, $\lambda_{\rm h}$, IN FAILURES PER 10^6 HOURS TABLE 5.1.3.3-3:

TEMP					POWER	STRESS				
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.0065	.0088	.012	. 105	.019	.025	.031	.040	.052	.073
10	.0080	.011	.014	.018	.023	.029	.037	.048	.065	.096
20	.0097	.013	.016	.021	.027	.034	.043	.058	.083	.13
30	.012	.015	.019	.025	.031	.040	.052	.073	.11	
40	.014	.018	.023	.029	.037	.048	.065	.096	.16	
50	.016	.021	.027	.034	.043	.058	.083	.13		
60	.019	.025	.031	.040	.052	.073	.11			
70	.023	.029	.037	.048	.065	.096	. 16			
80	.027	.034	.043	.058	.083	.13				
90	.031	.040	.052	.073	.11					
100	.037	.048	.065	.096	.16					
110	.043	.058	.083	.13						
120	.052	.073	.11							
130	.065	.096	. 16							
140	.083	.13								
150	.11									
160	.16									

^{*}Hermetic packaged devices.
**Devices sealed or encapsulated with organic materials.

DISCRETE SEMICONDUCTORS

DIODES, GENERAL PURPOSE

5.1.3.4 Diodes, Group IV

SPECIFICATION STYLE DESCRIPTION

MIL-S-19500 Silicon, General Purpose Germanium, General Purpose

Part operating failure rate model (λ_p) :

 $\lambda_{\rm p} = \lambda_{\rm b} \; (\pi_{\rm E} \times \pi_{\rm Q} \times \pi_{\rm R} \times \pi_{\rm A} \times \pi_{\rm S2} \times \pi_{\rm C}) \; {\rm failures/10^6 \; hours}$ where the factors are shown in Tables 5.1.3.4-1 through 5.1.3.4-8.

TABLE 5.1.3.4-1: GROUP IV TRANSISTORS ENVIRONMENTAL MODE FACTORS

ENVIRONMENT	π _E	ENV IRONMENT	π _E
G_{p}	1	A _{IB}	30
G _{MC}	1.4	A _{IA}	25
G _B G _{MS} G _F	3.9	AIF	35
G _M	18	A _{UC}	25
M _P	12	A _{UT}	30
N _{SB}	4.8	A _{UB}	50
N ^S	4.8	A _{UA}	40
N _U	21	A _{UE}	50
N _H	19	A _{UF} S _F	1
	20	M _{FF}	12
N _{UU} A	27	M _{FA}	17
A _{RW}	15	USL	36
A _{IC}	20	M _L	41
A _{IT}		C _L	690

DISCRETE SEMICONDUCTORS

DIODES, GENERAL PURPOSE

TABLE 5.1.3.4-2: $\pi_{\mbox{\scriptsize Q}}$ FOR GROUP IV DIODES

Quality Level	π _Q
JANTXV	0.15
JANTX	0.3
JAN	1.5
Lower*	7.5
Plastic**	15.0

TABLE 5.1.3.4-3: π_R FOR GROUP IV DIODES

Current Rating (amps)	πR
<pre>< 1 > 1 to 3 > 3 to 10 > 10 to 20 > 20 to 50</pre>	1 1.5 2.0 4.0 10.0

TABLE 5.1.3.4-4: π_A FOR GROUP IV DIODES

Application	^π A
Analog Circuits (<500 ma) Switching (<500 ma) Power Rectifier (> 500 ma) Power Rectifier (HV stacks) V max >600	1.0 0.6 1.5 2.5/junction

^{*}Hermetic packaged devices.
**Devices sealed or encapsulated with organic materials.

DISCRETE SEMICONDUCTORS

DIODES, GENERAL PURPOSE

TABLE 5.1.3.4-5: π_{S2} FOR GROUP IV DIODES

Voltage Stress,
$$S_2 = \frac{Applied (V_R)}{Rated (V_R)} \times 100$$

 V_R = diode reverse voltage

S ₂ (Percent)	π _{S2}
0 to 60	0.70
>60 to 70	0.75
>70 to 80	0.80
>80 to 90	0.90
>90 to 100	1.0

TABLE 5.1.3.4-6: $\pi_{\mbox{\scriptsize C}}$ CONSTRUCTION FACTOR

Contact Construction	π _C
Metallurgically Bonded	1
Non-metallurgically Bonded (spring loaded contacts)	2

DISCRETE SEMICONDUCTORS

DIODES, GENERAL PURPOSE

TABLE 5.1.3.4-7: MIL-S-19500 DIODES, GROUP IV, SILICON BASE FAILURE RATE, $\lambda_{\rm b}$, IN FAILURES PER 10^6 HOURS

TEMP		,		CURRENT	STRESS	- w 				
(°C)	.1	.2	.3	.4	•5	.6	.7	.8	.9	1.0
	00010	00015	00003	00000	00007	00040	20052	00000	2011	0016
0	.00010	.00015	.00021	.00028	.00037	.00049	.00063	.00082	.0011	.0016
10	.00013	.00019	.00025	.00034	.00045	.00058	.00075	.0010	.0014	.0021
20	.00017	.00023	.00031	.00041	.00053	.00069	.00090	.0012	.0018	.0031
30	.00021	.00028	.00037	.00049	.00063	.00082	.0011	.0016	.0026	
40	.00025	.00034	.00045	.00058	.00075	.0010	.0014	.0021	.0040	
50	.00031	.00041	.00053	.00069	.00090	.0012	.0018	.0031		
60	.00037	.00049	.00063	.00082	.0011	.0016	.0026			
70	.00045	.00058	.00075	.0010	.0014	.0021	.0040	-		
80	.00053	.00069	.00090	.0012	.0018	.0031				
90	.00063	.00082	.0011	.0016	.0026				•	
100	.00075	.0010	.0014	.0021	.0040					
110	.00090	.0012	.0018	.0031						
120	.0011	.0016	.0026							
130	.0014	.0021	.0040							
140	.0018	.0031								
150	.0026									
160	.0040									ļ
	1									
<u></u>	<u></u>									

DISCRETE SEMICONDUCTORS

DIODES, GENERAL PURPOSE

TABLE 5.1.3.4-8: MIL-S-19500 DIODES, GROUP IV, GERMANIUM BASE FAILURE RATE, $\lambda_{\rm b}$, IN FAILURES PER 106 HOURS

TEMP				CURRENT	STRESS					
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
										2255
0	.00038	.00053	.00072	.00098	.0013	.0017	.0023	.0030	.0040	.0055
10	.00059	.00080	.0011	.0014	.0019	.0025	.0033	.0045	.0061	.0088
20	.00089	.0012	.0016	.0021	.0028	.0037	.0049	.0069	.010	.016
30	.0013	.0017	.0023	.0030	.0040	.0055	.0077	.012	.020	
40	.0019	.0025	.0033	.0045	.0061	.0088	.014	.024		
50	.0028	.0037	.0049	.0069	.010	.016				
60	.0040	.0055	.0077	.012	.020					
70	.0061	.0088	.014	.024						
80	.010	.016								
90	.020									

DISCRETE SEMICONDUCTORS

ZENER AND AVALANCHE DIODES

5.1.3.5 Diodes, Group V

SPECIFICATION

STYLE

DESCRIPTION

MIL-STD-19500

Voltage Regulator and Voltage Reference (Avalanche and ZENER)

Part operating failure rate model (λ_p) :

 $\lambda_p = \lambda_b (\pi_E \times \pi_A \times \pi_Q) \text{ failures/10}^6 \text{ hours}$

For λ_b see pages 5.1.3-2 and 5.1.3-3. The other factors are shown in Tables 5.1.3.5-1 through 5.1.3.5-4.

TABLE 5.1.3.5-1: GROUP V DIODES ENVIRONMENTAL MODE FACTORS

ENVIRONMENT	π _E	ENVIRONMENT	π _E
G_D	Ī	A _{IB}	45
G _B G _{MS} G _F	1.4	AIA	25
G _E	3.9	A _{IF}	45
G _M	18	Auc	7.5
M _P	12	A _{UT}	10
N _{SB}	5.8	A _{UB}	70
N _S	8.7	A _{UA}	40
NU	21	A _{UF}	70
NH	19	S _F	7
N _{บU}	20	M _{FF}	12
ARW	27	M _{FA}	17
AIC	4.5	U _{SL}	36
AIT	6.5	ML	41
		ָר <u>ַ</u>	690

DISCRETE SEMICONDUCTORS

ZENER AND AVALANCHE DIODES

TABLE 5.1.3.5-2: $\pi_{\mbox{\scriptsize A}}$ FOR GROUP V DIODES

Ар	π _A	
Voltage Voltage (Temp	Regulator Reference Compensated)	1.0

TABLE 5.1.3.5-3: π_Q FOR GROUP V DIODES

Quality Level	πQ
JANTXV	0.3
JANTX	0.6
JAN	3.0
Lower*	15.0
Plastic**	30.0

^{*}Hermetic packaged devices.
**Devices sealed or encapsulated with organic materials.

DISCRETE SEMICONDUCTORS

ZENER AND AVALANCHE DIODES

TABLE 5.1.3.5-4: MIL-S-19500 ZENER DIODES, GROUP V, BASE FAILURE RATE, λ_b , IN FAILURES PER 10 6 HOURS

TEMP	<u> </u>			· · · · · · · · · · · · · · · · · · ·	POWER S	TRESS				
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.00042	.00049	.00055	.00063	.00070	.00079	.00090	.0010	.0013	.0016
10	.00047	.00053	.00060	.00068	.00076	.00086	.00099	.0012	.0015	.0020
20	.00051	.00058	.00065	.00073	.00082	.00094	.0011	.0013	.0018	.0026
30	.00055	.00063	.00070	.00079	.00090	.0010	.0013	.0016	.0023	1
40	.00060	.00068	.00076	.00086	.00099	.0012	.0015	.0020	.0031	
50	.00065	.00073	.00082	.00094	.0011	.0013	.0018	.0026		
60	.00070	.00079	.00090	.0010	.0013	.0016	.0023			
70	.00076	.00086	.00099	.0012	.0015	.0020	.0031			
80	.00082	.00094	.0011	.0013	.0018	.0026				
90	.00090	.0010	.0013	.0016	.0023					
100	.00099	.0012	.0015	.0020	.0031					
110	.0011	.0013	.0018	.0026						1
120	.0013	.0016	.0023							
130	.0015	.0020	.0031							
140	.0018	.0026								
150	.0023									
160	.0031			·					· · · · · · · · · · · · · · · · · · ·	

DISCRETE SEMICONDUCTORS

THYRISTOR

5.1.3.6 Diodes, Group VI

SPECIFICATION STYLE DESCRIPTION

MIL-S-19500 Thyristors

Thyristors Silicon Control Rectifier

Part oprating failure rate model (λ_p) :

 $\lambda_p = \lambda_b \times \pi_Q \times \pi_E \times \pi_R \text{ failures/10}^6 \text{ hours}$

where the factors are shown in Tables 5.1.3.6-1 through 5.1.3.6-4.

TABLE 5.1.3.6-1: GROUP VI DIODES ENVIRONMENTAL MODE FACTORS

ENVIRONMENT	^π E	ENVIRONMENT	π _E
G _R	1	A _{IB}	35
G _B G _{MS}	1.4	AIA	20
G _F	3.9	AIF	40
G _M	18	A _{UC}	15
M _P	12	A _{UT}	25
NSB	5.8	A _{UB}	60
N _S	8.7	A _{UA}	35
N _U	21	A _{UF}	65
NH	19	S _F	1
NUU	20	M _{FF}	12
A _{RW}	27	M _{FA}	17
AIC	9.5	ÜSL	36
AIT	15	M.	41
11		c	690

DISCRETE SEMICONDUCTORS

THYRISTOR

TABLE 5.1.3.6-2: π_Q FOR GROUP VI DIODES

Quality Level	^π Q
JANTXV	0.5
JANTX	1.0
JAN	5.0
Lower*	25.0
Plastic**	50.0

TABLE 5.1.3.6-3: π_R FOR GROUP VI THYRISTORS

Rated Average Forward Anode Current (amps)	λ _R
<pre>< 1 > 1 to 5 > 5 to 25 > 25 to 50</pre>	1 3 10 15

^{*}Hermetic packaged devices.
**Devices sealed or encapsulated with organic materials.

DISCRETE SEMICONDUCTORS

THYRISTOR

TABLE 5.1.3.6-4: MIL-S-19500 DIODES, GROUP VI, THYRISTORS BASE FAILURE RATE, $\lambda_{\rm b}$, IN FAILURES PER 106 HOURS

TEMP					POWER :	STRESS				
(°C)	.1	.2	.3	. 4	.5	.6	.7	.8	.9	1.0
0	.00067	.00097	.0013	.0018	.0025	.0033	.0044	.0059	.0081	.011
10	.00086	.0012	.0017	.0022	.0030	.0040	.0054	.0073	.010	.015
20	.0011	.0015	.0020	.0027	.0036	.0048	.0066	.0091	.013	.020
30	.0013	.0018	.0025	.0033	.0044	.0059	.0081	.011	.017	
40	.0017	.0022	.0030	.0040	.0054	.0073	.010	.015	.023	
50	.0020	.0027	.0036	.0048	.0066	.0091	.013	.020		
60	.0025	.0033	.0044	.0059	.0081	.011	.017			I
70	.0030	.0040	.0054	.0073	.010	.015	.023			
80	.0036	.0048	.0066	.0091	.013	.020				
90	.0044	.0059	.0081	.011	.017					
100	.0054	.0073	.010	.015	.023					
110	.0066	.0091	.013	.020						
120	.0081	.011	.017							
130	.010	.015	.023							
140	.013	.020								1
150	.017									
160	.023									

DISCRETE SEMICONDUCTORS

MICROWAVE DIODES

5.1.3.7 Diodes, Group VII

SPECIFICATION STYLE DESCRIPTION

MIL-S-19500

Microwave Detectors and Mixers, Silicon and Germanium Silicon Schottky Detectors

Part operating failure rate model (λ_p):

 $\lambda_p = \lambda_b \times \pi_E \times \pi_Q$ failures/10⁶ hours

where the factors are shown in Tables 5.1.3.7-1 through 5.1.3.7-7.

TABLE 5.1.3.7-1: GROUP VII DIODES ENVIRONMENTAL MODE FACTORS

ENVIRONMENT	π _E	ENV IRONMENT	π _E
G _R	1	A _{IB}	65
G _{MS}	1.7	AIA	50
G _F	6.4	A _{IF}	70
G _B G _{MS} G _F G _M	31	A _{UC}	50
M _P	35	A _{UT}	60
N _{SB}	8	A _{UB}	105
NS	11	A _{UA}	80
NU	33	A _{UF}	110
N _H	54	A _{UF} S _F	1
N _{UU}	58	M _{FF}	36
A _{RW}	78	M _{FA}	50
Aic	30	U _{SL}	110
A _{IT}	40	M _t	120
		c _L	2,000

DISCRETE SEMICONDUCTORS

MICROWAVE DIODES

TABLE 5.1.3.7-2: π_Q FOR GROUP VII DIODES

Quality Level	πQ
JANTXV	1.0
JANTX	2.0
JAN	3.5
Lower*	5.0

^{*}Hermetic packaged devices.

DISCRETE SEMICONDUCTORS

MICROWAVE DIODES

TABLE 5.1.3.7-3: MIL-S-19500 DIODES, GROUP VII, SILICON MICROWAVE DETECTORS BASE FAILURE RATE, $\lambda_{\rm b}$, IN FAILURES PER 10 6 HOURS

TEMP				-	POWER	STRESS			·	
(°C)	.]	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.036	.038	.040	.042	.044	.047	.051	.055	.063	.075
10	.037	.039	.042	.044	.047	.050	.054	.061	.072	.093
20	.039	.041	.043	.046	.049	.053	.059	.069	.087	. 12
20	.041	.043	.045	.048	.052	.058	.067	.083	.11	ı
40	.043	.045	.048	.051	.057	.065	.079	.11		
50	.044	.047	.051	.055	.063	.075	.099	. 15		
60	.047	.050	.054	.061	.072	.093	.14			
70	.049	.053	.059	.069	.087	.12				
80	.052	.058	.067	.083	.11					
90	.057	.065	.079	.11		•				ľ
100	.063	.075	.099	. 15						
100	.072	.093	. 14							
120	.087	. 12								
130	.11			=;						

TABLE 5.1.3.7-4: MIL-S-19500 DIODES, GROUP VII, GERMANIUM MICROWAVE DETECTORS BASE FAILURE RATE, $\lambda_{\rm b}$, IN FAILURES PER 10 6 HOURS

TEMP					POWER	STRESS				
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.061	.064	.066	.069	.072	.076	.081	.086	.092	.10
10	.067	.070	.073	.077	.082	.087	.094	.10	11	.13
20	.074	.078	.083	.088	.095	.10	.12	.13	.15	.18
30	.084	.090	.097	.11	.12	.13	.16	.19	•	
40	.099	.11	.12	.14	.16	.19				
50	.13	. 14	. 17	.20						
60	. 17	.21								

DISCRETE SEMICONDUCTORS

MICROWAVE DIODES

TABLE 5.1.3.7-5: MIL-S-19500 DIODES, GROUP VII, SILICON MICROWAVE MIXERS BASE FAILURE RATE, λ_b , IN FAILURES PER 10 6 HOURS

TEMP				 	POWER	STRESS	7			
(°C)	.1	.2	.3	. 4	. 5	.6	.7	.8	.9	1.0
0 .	.048	.051	.054	.057	.060	.064	.069	.076	.086	. 10
-10	.050	.053	.056	.060	.063	.068	.074	.084	.10	.13
20	.053	.056	.059	.063	.067	.073	.082	.096	.12	. 17
30	.055	.058	.062	.066	.072	.080	.092	.11	.16	
40	.058	.061	.065	.070	.078	.089	.11	.15		
50	.060	.064	.069	.076	.086	.10	. 14	.20		
60	.063	.068	.074	.084	.10	.13	. 19			
70	.067	.073	.082	.096	. 12	. 17				
80	.072	.080	.092	.11	.16					
90	.078	.089	.11	.15						
100	.086	. 10	.14	.20						
110	.10	.13	. 19							
120	.12	. 17								
130	.16									

TABLE 5.1.3.7-6: MIL-S-19500 DIODES, GROUP VII, GERMANIUM MICROWAVE MIXERS BASE FAILURE RATE, $\lambda_{\rm b}$, IN FAILURES PER 10⁶ HOURS

TEMP	POWER STRESS									
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.10	.11	.11	.12	.12	.13	. 14	. 15	.16	. 17
10	.11	.12	.12	.13	.14	.15	. 16	.17	.19	.22
20:	.13	.13	. 14	. 15	.16	. 18	.20	.22	.26	.30
30	.14	. 15	.17	.18	.20	.23	.26	.32		
40	. 17	.18	.21	.24	.27	.33				
50	.21	.24	.28	.34				•		
60	.30	.36								

DISCRETE SEMICONDUCTORS

MICROWAVE DIODES

TABLE 5.1.3.7-7: MIL-S-19500 DIODES, GROUP VII, SILICON SCHOTTKY DIODE DETECTORS BASE FAILURE RATE, $\lambda_{\rm h}$, IN FAILURES PER 106 HOURS

TEMP										
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.0013	.0013	.0014	.0015	.0016	.0017	.0018	.0020	.0022	.0027
10	.0013	.0014	.0015	.0016	.0017	.0018	.0019	.0022	.0026	.0033
20	.0014	.0015	.0016	.0016	.0018	.0019	.0021	.0025	.0031	.0044
30	.0015	.0015	.0016	.0017	.0019	.0021	.0024	.0030	.0041	
40	.0015	.0016	.0017	.0018	.0020	.0023	.0028	.0038		
50	.0016	.0017	.0018	.0020	.0022	.0027	.0035	.0054		
60	.0017	.0018	.0019	.0022	.0026	.0033	.0049			
70	.0018	.0019	.0021	.0025	.0031	.0044				
80	.0019	.0021	.0024	.0030	.0041					
90	.0020	.0023	.0028	.0038						1
100	.0022	.0027	.0035	.0054						
110	.0026	.0033	.0049							:
120	.0031	.0044								
130	.0041									

DISCRETEE SEMICONDUCTORS

VARACTOR, STEP RECOVERY, TUNNEL

5.1.3.8 Diodes, Group VIII

SPECIFICATION

STYLE

DESCRIPTION

MIL-S-19500

Varactor, PIN, IMPATT Step Recovery, Tunnel & Gunn

Part operating failure rate model (λ_{D}) :

 $\lambda_p = \lambda_b \times \pi_E \times \pi_Q \times \pi_R \times \pi_A \text{ failures/10}^6 \text{ hours}$

where: λ_b = 0.5 for IMPATT, 0.6 for Gunn, Table 5.1.3.8-5 for others and remaining factors are in Tables 5.1.3.8-1 through 5.1.3.8-4.

TABLE 5.1.3.8-1: GROUP VIII DIODES ENVIRONMENTAL MODE FACTORS

ENVIRONMENT	^π E	ENVIRONMENT	πE
G _R	1	A _{IB}	45
G _B G _{MS} G _F	1.4	AIA	25
G _F	3.9	A _{IF}	45
G _M	18	A _{UC}	7.5
M _P	12	A _{UT}	10
N _{SB}	5.8	A _{UB}	70
N _S	8.7	A _{UA}	40
NU	21	A _{UF}	70
NH	19	S _F	1
ท _{ี่ยบ}	20	M _{FF}	12
ARW	27	M _{FA}	17
AIC	4.5	USL	36
AIT	6.5	M _L	41
4)		c į	690

DISCRETE SEMICONDUCTORS

VARACTOR, STEP RECOVERY, TUNNEL

TABLE 5.1.3.8-2: π_0 FOR GROUP VIII DIODES

Quality Level	π _Q
GUNN & IMPATT All other diodes	1.0
JANTXV	0.5
JANTX	1.0
JAN	5.0
Lower*	25.0

^{*}Hermetic packaged devices.

TABLE 5.1.3.8-3: π_R POWER RATING FACTOR

Power Rating	πR
PIN Diodes < 10W > 10W to 100W > 100W to 1000W > 1000W to 3000W All other Diodes	0.5 *1.3 *2.0 *2.4 1.0

^{*} π_R = .326(1n P) - .25 for 10 \leq P \leq 3000W.

TABLE 5.1.3.8-4: $\pi_{\mbox{\scriptsize A}}$ APPLICATION FACTOR

APP LI CATION	πA
Varactors Voltage Control Multiplier All other Diodes	0.5 2.5 1.0

DISCRETE SEMICONDUCTORS

VARACTOR, STEP RECOVERY, TUNNEL

TABLE 5.1.3.8-5: MIL-S-19500 DIODES, GROUP VIII VARACTORS, STEP RECOVERY, PIN & TUNNEL BASE FAILURE RATE, $\lambda_{\rm b}$, IN FAILURES PER 10⁶ HOURS

TEMP					POWER	STRESS	-			
(°C)	. 1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.016	.020	.024	.029	.034	.040	.047	.057	.071	.094
10	.019	.023	.027	.032	.038	.045	.053	.066	.085	.12
20	.022	.026	.031	.036	.042	.050	.061	.077	.10	. 16
30	.024	.029	.034	.040	.047	.057	.071	.094	. 14	
40	.027	.032	.038	.045	.053	.066	.085	.12	.19	
50	.031	.036	.042	.050	.061	.077	.10	.16		
60	.034	.040	.047	.057	.071	.094	.14			
70	.038	.045	.053	.066	.085	.12	.19			
80	.042	.050	.061	.077	.10	.16				
90	.047	.057	.071	.094	.14					
100	.053	.066	.085	.12	. 19					
110	.061	.077	. 10	. 16						
120	.071	.094	.14							
130	.085	.12	.19							
140	. 10	. 16								
150	. 14									
160	. 19									

DISCRETE SEMICONDUCTORS

MICROWAVE TRANSISTORS

5.1.3.9 Microwave Transistors, Group IX

SPECIFICATION

DESCRIPTION

MIL-S-19500

Bipolar microwave power transistor for frequencies above 200 MHz and average power \geq 1 watt.

Part operating failure rate model (λ_n) :

$$\lambda_{p} = \lambda_{B} \pi_{Q} \pi_{A} \pi_{F} \pi_{T} \pi_{M} \pi_{E}$$

where:

 $\lambda_{\rm R} = 0.10 \text{ failure/10}^6 \text{ hours}$

 π_{Ω} = quality factor, Table 5.1.3.9-1

 π_{Δ} = application factor, Table 5.1.3.9-2

 m_F = factor for frequency and peak operating power, Table 5.1.3.9-3

 π_T = temperature factor, Table 5.1.3.9-4

 π_{M} = matching network factor, Table 5.1.3.9-5

 π_F = environmental factor, Table 5.1.3.9-6

See bibliography items 42-46 for the model background.

TABLE 5.1.3.9-1: π_0 QUALITY FACTOR FOR MICROWAVE TRANSISTORS

	QUALITY LEVEL	π _Q *
	JANTXV with IR scan for die attach and screen for barrier layer pin- holes on gold metallized devices	1
	JANTX or Equivalent JAN or Equivalent	2
I	Lower Quality	10

^{*}These quality values apply to hermetically sealed devices only, and <u>do not</u> apply to devices sealed or encapsulated with organic materials.

DISCRETE SEMICONDUCTORS

MICROWAVE TRANSISTORS

TABLE 5.1.3.9-2: $\pi_{\mbox{\scriptsize A}}$ APPLICATION FACTOR

APPLICATION	π _A
Pulse Amplifier, Duty Factor < 5% Pulse Amplifier, Duty Factor > 5%, < 30% Pulse Amplifier, Duty Factor > 30% Continuous Wave Oscillator	1 2 4 4 4

TABLE 5.1.3.9-3: $\pi_{\mbox{\scriptsize F}}$ FACTOR FOR OPERATING POWER AND FREQUENCY

Enga		PEAK	OPERATIN	G POWER	(WATTS)			
Freq. (GHz.)	1 to 5	10	20	30	50	100	200	300
0.1 to 0.4 > 0.4 to 1.0 > 1.0 to 1.5 > 1.5 to 2.0 > 2.0 to 3.0 > 3.0 to 4.0	1 1.5 1.5 2.0 4.0 10.0	1 1.5 1.5 2.0 8.0 30	1 1.5 1.5 6.0 20	1 1.5 1.5 10	1 2 3 20	1 5 10	3 10	10

DISCRETE SEMICONDUCTORS

MICROWAVE TRANSISTORS

TABLE 5.1.3.9-4: π_T TEMPERATURE FACTOR

(See Note Below)

	V _C /BV _{CES} for Aluminum			V _C /BV _{CES} for Refractory Metal-Gold				
T (OC)	0.40	0.45	0.50	0.55	0.40	0.45	0.50	0.55
100 110 120 125 130 140 150 160 170 180 190	0.38 0.57 0.83 1.0 1.2 1.7 2.4 3.2 4.4 5.8 7.7	0.76 1.1 1.7 2.0 2.4 3.4 4.7 6.5 8.7 12. 15. 20.	1.1 1.7 2.5 3.0 3.6 5.1 7.1 9.7 13. 17. 23.	1.5 2.3 3.3 4.0 4.8 6.8 9.4 13. 17. 23. 31.	0.1 .14 .18 .20 .22 .26 .30 .34 .38 .42 .46 0.5	0.2 .28 .36 .40 .44 .52 .60 .68 .76 .84 .92	0.3 .42 .54 .60 .66 .78 .90 1.0 1.1 1.3 1.4	0.4 .56 .72 .80 .88 1.0 1.2 1.4 1.5 1.7 1.8 2.0

NOTES:

Tabulated values of $\boldsymbol{\pi}_T$ are derived from the following equations:

For Aluminum,
$$\pi_T = 3.96(10)^7 \left(\frac{V_C}{BV_{CES}} - .35\right) e^{-\left(\frac{5770}{T+273}\right)}$$
 for $100 \le T \le 200$
 $\pi_T = 7.58 \left(\frac{V_C}{BV_{CES}} - .35\right)$ for $T < 100$
For Refractory Metal-Gold, $\pi_T = 2 \left(\frac{V_C}{BV_{CES}} - .35\right)$ for $T < 100$
 $\pi_T = 0.08 \ (T-75) \left(\frac{V_C}{BV_{CES}} - .35\right)$ for $100 \le T \le 200$

where:

T is peak junction temperature ($^{\circ}$ C), V_{C} is operating voltage (volts), and BV_{CES} is collector-emitter breakdown with base shorted to emitter (volts).

DISCRETE SEMICONDUCTORS

MICROWAVE TRANSISTORS

TABLE 5.1.3.9-5: π_{M} MATCHING NETWORK FACTOR

INTERNAL MATCHING	π_{M}
Input & Output Input Only No Matching	1 2 4

TABLE 5.1.3.9-6: π_{E} GROUP IX TRANSISTORS ENVIRONMENTAL MODE FACTORS

ENVIRONMENT	πE	ENVIRONMENT	π _E
G_B	1	- A _{IB}	6
G _B	1.1	A _{IA}	3.5
G_{F}	2	A _{IF}	6
G _M	7.8	A _{UC}	5
M _P	7.4	A _{UT}	7
N _{SB}	3.6	A _{UB}	10
NS	4.7	A _{UA}	7
N	11	A _{UE}	10
NH	11	A _{UF} S _F	1
N _{UU}	12	M _{FF}	7.5
A _{RW}	16	M _{FA}	11
AIC	2.5	บ _{SL}	22
A _{IT}	3.5	MĹ	25
		c _L	250

DISCRETE SEMICONDUCTORS

OPTO-ELECTRONIC DEVICES

5.1.3.10 Opto-electronic Semiconductor Devices, Group X.

SPECIFICATION DESCRIPTION Light Emitting Diodes (LED) MIL-S-19500 Opto-electronic Coupler (Isolator) MIL-S-19500 LED Alpha-numeric Display None Phototransistor Photod iode

The part failure rate model λ_p , is: $\lambda_p = \lambda_b \pi_T \pi_E \pi_Q$ failures/10⁶ hours

where:

 $\lambda_{\rm h}$ = base failure rate in failures/10⁶ hours, Table 5.1.3.10-3

 π_T = temperature factor, Table 5.1.3.10-2

 π_F = environmental factor, Table 5.1.3.10-1

 π_0 = quality factor, Table 5.1.3.10-4

TABLE 5.1.3.10-1: GROUP X OPTO-ELECTRONIC SEMICONDUCTOR DEVICES, ENVIRONMENTAL MODE FACTORS

ENVIRONMENT	^π E	ENVIRONMENT	πE
G _R	1	A _{IB}	5.5
G _B	1.2	AIA	3.5
G _F	2.4	A _{IF}	8
G _M	7.8	A _{UC}	3
M _P	7.7	A _{UT}	5.5
N _{SB}	3.7	A _{UB}	8
N _S	5.7	A _{UA}	5.5
N _U	11	A _{UE}	10
NH	12	A _{UF} S _F	1
N _{UU}	13	M _{FF}	7.8
A _{RW}	17	M _{FA}	11
AIC	2.5	u _{SL}	23
AIT	3.5	M	26
11		cĹ	450

DISCRETE SEMICONDUCTORS

OPTO-ELECTRONIC DEVICES

TABLE 5.1.3.10-2: π_T OPTO-ELECTRONIC SEMICONDUCTOR DEVICE TEMPERATURE FACTOR

$$\pi_T = 8.01 \times 10^{12} \exp - \left[\frac{8111}{T_J + 273} \right]$$

where T_{J} is operating junction temperature in ${}^{o}\text{C}$.

 $\mathbf{T}_{\mathbf{J}}$ may be calculated by using the following equations:

 $T_J = T_A + (\theta_{JC} + \theta_{CA})$ P for device with heat sink, or

 $T_J = T_A + \theta_{JA}P$ for device without heat sink

 $T_{,1} = T_{,C} + \theta_{,1,C}P$ with or without heat sink

where:

 $(\frac{5}{1})$

10 15

20

25

30

35

40

45

70

 π_T

7.6

12

19

29

45

67

430

 T_{Λ} = ambient temperature in ${}^{O}C$.

 θ_{JC} = junction to case thermal resistance

 θ_{CA} = case to ambient thermal resistance

P = power dissipated by device

 $\theta_{.1\Delta}$ = junction to ambient thermal resistance

50 100 55 150 60 210 If information is not available to use the equation above, 65 300 use the following assumptions (T_{Δ} = ambient temperature):

 $T_{.1} = T_A + 20^{\circ}C$ 75 600 Discrete LED 80 840 $T_{\rm J} = T_{\rm A} + 30^{\rm O}\rm C$ LED Display 85 1200 $T_J = T_A + 30^{\circ}C$ 90 1500 Phototransistor 95 2100

Photodiode $T_J = T_A + 15^{\circ}C$ 100 2900 Single Isolators

105 3800 Photodiode Detector $T_J = T_A + 15^{\circ}C$ 110 5100 Phototransistor Detector $T_J = T_A + 20^{\circ}C$

Photoresistor Detector $T_A = T_A + 20^{\circ}C$

Dual Isolators

Photodiode Detector $T_J = T_A + 20^{\circ}C$

Phototransistor Detector $T_J = T_A + 30^{\circ}C$

Photoresistor Detector $T_J = T_A + 30^{\circ}C$

DISCRETE SEMICONDUCTORS

OPTO-ELECTRONIC DEVICES

TABLE 5.1.3.10-3: OPTO-ELECTRONIC SEMICONDUCTOR DEVICE BASE FAILURE RATE, $\lambda_{\rm h}$, IN FAILURES PER 106 HOURS

Device	λ _b	Device	λ _b
Single LED	.00065	<u> Alpha-Numeric Displays</u> *	
Photodiode Detector Phototransistor Detector Light Sensitive Resistor	.0010 .0055 .0025	l character l character w/logic chip 2 character 2 character w/logic chip	.00050 .00068 .00071 .00089
Dual Isolators Photodiode Detector Phototransistor Detector Light Sensitive Resistor	.0015 .0074 .0040	3 character 3 character w/logic chip	.00088 .0011
Phototransistor Photodiode	.0015 .0011	4 character 5 character 6 character 7 character 8 character	.0010 .0011 .0012 .0013 .0014
		9 character 10 character	.0015 .0016

^{*}The number of characters in a display is the number of characters contained in a <u>single</u> sealed package. For example, a 4 character display comprising 4 <u>separately</u> packaged single characters mounted together would be 4 one-character displays, not 1 four-character display.

TABLE 5.1.3.10-4: π_0 QUALITY FACTOR

QUALITY LEVEL	JANTXV	JANTX	JAN	LOWER*	PLASTIC**
π_{Q}	0.01	0.02	0.1	0.5	1.0

^{*}Applies to <u>all</u> hermetic packaged alpha-numeric displays and to NON-JAN hermetic packaged LED's and isolators.

^{**}Applies to all devices encapsulated with organic materials.

DISCRETE SEMICONDUCTORS

SEMICONDUCTOR LASER DEVICES

5.1.3.11 <u>Semiconductor Laser Devices</u>, Group XI

SPECIFICATION

DESCRIPTION

None

Aluminum gallium arsenide (AlGaAs), Double Heterojunction (DH), Stripe-geometry, Proton-isolated or Oxide-isolated structure, Optical Flux Density less than 3MW/CM²

None

Gallium Arsenide (GaAs), Single Heterojunction (SH), Stripe-geometry, Proton-isolated or Oxide-isolated structure, Optical Flux Density less than 3MW/CM²

None

Indium gallium arsenide/Indium gallium arsenide phosphorus (InGaAs/InGaAsP), DH, Stripe-geometry, Proton-isolated or Oxide-isolated structures, Optical Flux Density less than 3MW/CM²

The part failure rate model λ_D is:

 $\lambda_D = \lambda_D \pi_E$

where

 $\lambda_{\rm D}$ = total device failure rate (F/10⁶ hours)

 $\lambda_b = \text{average failure rate } (F/10^6 \text{ hours})$

m_F = environmental factor (Table 5.1.3.11-1)

The failure rate prediction procedure is as follows:

Step 1: Calculate the average failure rate (λ_b)

Step 1A: Calculate the average optical power output degradation rate using the following equation:

 $\tau_D = \tau_D \pi_T \pi_I \pi_C \pi_A \pi_F$

where

 τ_p = semiconductor laser optical power output degradation rate (%/1000 hours)

 $\tau_{\rm b}$ = base degradation rate (%/1000 hours) (Table 5.1.3.11-2)

DISCRETE SEMICONDUCTORS

SEMICONDUCTOR LASER DEVICES

 π_T = temperature factor = $\exp\left[\frac{-E}{(T+273)}\right]$, T = Case Temperature (°C) (Table 5.1.3.11~3) and where E = apparent activation energy/Boltzman's Constant (Table 5.1.3.11~2). π_t is valid for +25°C < T < +100°C

 π_C = construction factor (Table 5.1.3.11-4)

 π_A = application factor (Table 5.1.3.11-5)

 πF = pulsed duty cycle factor (Table 5.1.3.11-6)

 π_I = forward peak current factor (Table 5.1.3.11-7). (For Variable Current Sources use the initial current value). π_I is valid for 0 \leq I < 25 amps

Step 1B: Calculate the mean life of the device by the following procedure:

- 1) P_S = rated optical power output (mw)
- 2) define the required optical power output (Pr).
- 3) calculate the allowable degradation (D) as follows:

$$D(\%) = \frac{P_{S} - P_{r}}{P_{s}} \times 100$$

4) Mean life (U) = $D(\%)/\tau_D$

Note: Each laser must be replaced when it reaches P_r to make the calculated mean life (U) valid.

Step 1C: Calculate the average failure rate using:

$$\lambda_h = 1/U$$

Step 2: Calculate the average semiconductor laser failure rate using the equation:

$$\lambda_p = \lambda_b \pi_E$$

DISCRETE SEMICONDUCTORS

SEMICONDUCTOR LASER DEVICES

TABLE 5.1.3.11-1: ENVIRONMENTAL TABLE 5.1.3.11-3: TEMPERATURE MODE FACTORS, π_E

Environment	. #E
GB GMP B NS NH UW A I I A A UF A UF A	1 1.2 2.4 7.8 7.7 3.7 5.7 11 12 13 17 2.5 3.5 5.5 3.5 8 3 5.5 8 10 1 7.8 11 23 26 450

TABLE 5.1.3.11-2: DEGRADATION EQUATION PARAMETERS

Device Type	E	τ _b (x10 ⁵)
AlGaAs	4635	2.21
GaAs	4635	2.81
InGaAs/InGaAsP	5784	188

FACTOR, π_T

T _C	AlGaAs or GaAs	InGaAs/InGaAsP
(°C)	(χ10-6) π _T	(X10 ⁻⁸) π _T
20 25 30 35 40 45 50 65 70 75 80 85 90 95 100	0.14 0.18 0.23 0.29 0.37 0.47 0.59 0.73 0.90 1.1 1.4 1.6 2 2.4 2.8 3.4 4	0.27 0.37 0.51 0.70 0.94 1.3 1.7 2.2 2.9 3.7 4.7 6 7.7 9.6 12 15 18

TABLE 5.1.3.11-4: CONSTRUCTION FACTOR, π_C

Construction	πC
Facet Coat or Hermetic Package No Facet Coat or Hermetic Package	1.0

TABLE 5.1.3.11-5: APPLICATION FACTOR, π_A

Application	πд
Variable Current Source with optical feedback	1.0
Fixed Current Source	1.5

DISCRETE SEMICONDUCTORS

SEMICONDUCTOR LASER DEVICES

TABLE 5.1.3.11-6: PULSED DUTY CYCLE FACTOR, π_{F}

Duty Cycle	π _F *
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1	1.00 0.95 0.90 0.85 0.75 0.70 0.65 0.55 0.45

* $\pi_F = \sqrt{\text{duty cycle}}$

TABLE 5.1.3.11-7: FORWARD CURRENT FACTOR, π_I

		MENT I ACTO	, .
Forward Current, (Ma)	I	π _Ι *	
25,000 20,000 15,000 10,000 9,000 8,000 7,000 6,000 5,000 4,000 3,000 2,000 1,000 900 800 700 600 500 400 300 200 100 50		978 841 691 525 488 451 412 371 328 281 231 176 110 102 94 86 77 68 59 48 37 23 14	

 $*\pi_{I} = I^{0.68}$

DISCRETE SEMICONDUCTORS

5.1.3.12 Instructions for Use of Semiconductor Models.

5.1.3.12-1 <u>Device Ratings</u>. Transistors are normally rated at maximum power dissipation and diodes at maximum current permissible. Usually each device is given two temperature rating points:

- $\underline{1}$ T_{MAX} Maximum permissible junction temperature.
- Maximum ambient or case temperature at which 100 percent of the rated load can be dissipated without causing the specified maximum junction temperature to be exceeded. (Case temperatures are given primarily for power devices used on heat sinks.)

As the ambient or case temperature rises above the T_S value, the internal temperature rise (i.e., the power load) must be S decreased so that the T_{MAX} is not exceeded. This is illustrated in Figure 5.1.3.11-1.

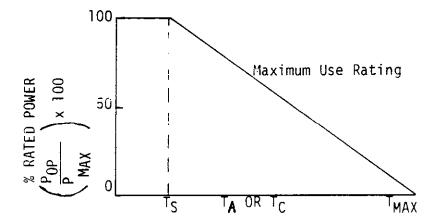


FIGURE 5.1.3.12-1. Conventional Derating Curve

Note:

 T_{ς} = temperature at which derating begins

 $T_{M\Delta X}$ = maximum rated junction temperature

 T_{Δ} = ambient temperature

 T_C = case temperature

DISCRETE SEMICONDUCTORS

 P_{OP} = actual power dissipated

 P_{MAX} = maximum rated power at T_{S}

Maximum junction temperature (T_{MAX}) is normally 175 or 200°C for silicon and 100°C for germanium devices. T_S is usually 25°C, but it can be higher.

Some devices have a multipoint derating curve as shown by the solid line in the example of Figure 5.1.3.12-2. The failure rate of a device with multipoint derating can be estimated with the present models by assuming the device to be linearly derated from T_S to T_{MAX} as shown by the dashed line. The use of this assumption will result in a predicted failure rate higher than that the device might actually experience, with the amount of error dependent upon the difference between the two rating values where $T_{S'}$ intersects the assumed and actual rating plots.

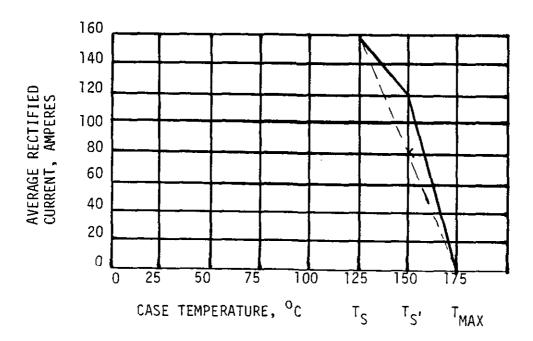


Figure 5.1.3.12-2 Multipoint Derating Curve for 1N3263 Power Diode

Since semiconductors may be rated based upon ambient or case temperatures, the following guidance is included for calculating base failure rates:

No Heat Sink Used and Ambient Rating Known - Calculate stress and temperature (if necessary) per paragraph 5.1.3. .2 and use base failure rate table.

DISCRETE SEMICONDUCTORS

- 2 No Heat Sink Used and Only Case Rating Known If device rating based upon ambient temperature cannot be determined, calculate the base failure rate as in 1 above and multiply by 10.
- 3 Heat Sink Used and Case Rating Known Calculate base failure rate as in 1 above.
- 4 Heat Sink Used and Only Ambient Rating Known If device rating based upon case temperature cannot be determined, calculate base failure rate as in 1 above.
- 5.1.3.12.2 Determining Appropriate Stress Ratio and Temperature. The base failure rate tables are based upon ambient or case temperature (T degrees C) and electrical stress ratio (S). The following instructions show the methods for calculating S. In some cases, the operating ambient or case T must be corrected before entering the failure rate tables. These corrections, where needed, are indicated in (7) below. Operating junction temperatures do not have to be calculated to use the models.
 - (1) Groups I, II & III Transistors.

a. Single device in case.

For Silicon,
$$S = \frac{P_{OP}}{P_{MAX}}$$
 (C.F.) For Germanium, $S = \frac{P_{OP}}{P_{MAX}}$

where:

 P_{OP} = actual power dissipated

 P_{MAX} = maximum rated power at T_{S}

C.F. = stress correction factor per (7) below

b. Dual device in single case (equally rated).

$$S = \begin{bmatrix} P_1 \\ P_S \end{bmatrix} + P_2 \quad \left(\frac{2P_S - P_T}{P_T \times P_S} \right)$$
 (C.F.)

where:

S = stress ratio of side being evaluated

 P_1 = power dissipation in side being evaluated

DISCRETE SEMICONDUCTORS

 P_2 = power dissipation in other side of device

 P_S = maximum power rating at T_S of one side of the dual device with the other side not operating (one side rating)

 P_T = maximum rating at T_S with both sides operating (both side rating)

 $\overline{\text{NOTE}}$: Specifications for dual devices in one case usually give a maximum rating for each device and a total power rating which is significantly less than the sum of individual ratings.

C.F. = stress correction factor per (7) below for silicon

C.F. = 1.0 for germanium

(2) Groups IV & VI General Purpose Diodes & Thyristors.

For Silicon,
$$S = \frac{I_{OP}}{I_{MAX}}$$
 (C.F.) For Germanium, $S = \frac{I_{OP}}{I_{MAX}}$

where:

 I_{OP} = operating average forward current

 I_{MAX} = maximum rated average forward current at T_{S}

C.F. = stress correction factor per(7) below

(3) Group V Zener Diodes

Zener diodes are rated for maximum current or power or both. Either rating may be used as follows:

$$S = \frac{P_{OP}}{P_{MAX}}(C.F.) \quad \text{or } S = \frac{I_{Z(OP)}}{I_{Z(MAX)}}(C.F.)$$

where:

 P_{OP} = actual power dissipated

 P_{MAX} = maximum rated power at T_{S}

 $I_{Z(OP)}$ = actual operating zener current

DISCRETE SEMICONDUCTORS

 $I_{Z(MAX)}$ = maximum rated zener current at T_{S} C.E. = stress correction factor per (7) below

(4) Group VII Microwave Mixer Diodes

- (5) Group VII Microwave Detector Diodes $S = \frac{P_{OP} \text{ (Operating Power Dissipation)}}{P_{MAX} \text{ (Rated Power at 25 degrees C.)}}$
- (6) Group VIII Varactor, Step Recovery, PIN, IMPATT, Gunn and Tunnel Diodes.

$$S = \frac{P_{OP}}{P_{MAX}} (C.F.)$$

where:

 P_{OP} = actual power dissipated

 P_{MAX} = maximum rated power at T_{S}

C.F. = stress correction factor per (7) below

DISCRETE SEMICONDUCTORS

- (7) Stress Correction Factor (C.F.) and temperature corrections for Silicon Devices.
 - a. Devices with T_S = 25 degrees C & T_{MAX} = 175 degrees C to 200 degrees C.

$$C.F. = 1$$

b. Devices with T_S >25 degrees C & T_{MAX} = 175 degrees C to 200 degrees C.

C.F. =
$$\frac{175 - T_S}{150}$$

c. Devices with T_S = 25 degrees C & T_{MAX} <175 degrees C.

C.F. =
$$\frac{T_{MAX} - 25}{150}$$

and enter λ_b table with T = T_A + (175 - T_{MAX})

or
$$T = T_C + (175 - T_{MAX})$$

d. Devices with T_S >25 degrees C & T_{MAX} <175 degrees C.

$$C.F. = \frac{T_{MAX} - T_{S}}{150}$$

and enter
$$\lambda_b$$
 tables with T = T_A + (175 - T_{MAX})

or
$$T = T_C + (175 - T_{MAX})$$

DISCRETE SEMICONDUCTORS

5.1.3.13. Examples of Use of Semiconductor Models.

5.1.3.13.1. Examples of Stress Ratio Calculations for Dual Transistors.

Example 1.

For a 2N2060

Ratings
$$P_S = 0.500 \text{ w}$$

 $P_T = 0.600 \text{ w}$

Given operating conditions

Side one
$$P = 0.1 w$$

Side two
$$P = 0.4 w$$

For side one

$$S = \frac{P_1}{P_S} + P_2 \left(\frac{2P_S - P_T}{P_T \times P_S} \right)$$

$$S = \frac{0.1}{0.5} + 0.4 \left(\frac{2 \times 0.500 - 0.6}{0.6 \times 0.5} \right)$$

$$S = 0.2 + 0.4 \left(\frac{0.4}{0.3} \right) = 0.2 + 0.4 (1.333)$$

$$= 0.2 + 0.5333$$

$$S = 0.733$$

For side two

S = 0.9333

$$S = \frac{0.4}{0.5} + 0.1 \left(\frac{2 \times 0.5 - 0.6}{0.6 \times 0.5} \right)$$

$$S = \frac{0.4}{0.5} + 0.1 (1.333) = 0.8 + 0.1333$$

DISCRETE SEMICONDUCTORS

Example 2.

For the same transistor as Example 1

Given operating conditions

Side one
$$P = 0 w$$

Side two
$$P = 0.5 w$$

For side one

$$S = 0 + 0.5(1.333) = 0.666$$

For side two

$$S = \frac{0.5}{0.5} + 0 (1.333) = 1.0$$

Though there is no dissipation in side one, because of the heating from side two, the stress ratio is still 0.666. If one side of a dual is not connected, treat as single transistor.

Example 3.

For the same transistor as Example 1

Given operating conditions

Side one P = 0.300 w

Side two P = 0.300 w

For either side

$$S = \frac{0.3}{0.5} + 0.3 (1.333)$$

$$S = 0.6 + 0.4$$

$$S = 1.0$$

DISCRETE SEMICONDUCTORS

5.1.3.13.2. Examples of Failure Rate Calculations

Example 1.

- Step (1) Given: Silicon NPN general purpose JAN grade transistor in linear service at 0.4 of its rated maximum power of 1 watt in fixed ground installation at 30 degrees C. ambient, rated for 1 watt at 25 degrees C. with $T_{MAX} = 175$ degrees C., and operated at 60 percent of maximum voltage.
- Step (2) Stress ratio, $S = \frac{P_{OP}(C.F.)}{P_{MAX}} = 0.4 \times 1.0 = 0.4$

C.F. = 1 for T_S = 25 degrees C. and T_{MAX} = 175 degrees C.

- Step (3) From Tb1 5.1.3.1-7 for T = 30 degrees C. and S = 0.4, λ_b = 0.0012 failures/106 hours
- Step (4) From Tb1 5.1.3.1-1 Fixed Ground, $\pi_E = 5.8$
- Step (5) From Tb1 5.1.3.1-2 for linear operation, π_A = 1.5
- Step (6) From Tb1 5.1.3.1-3 for JAN quality level, π_0 = 1.2
- Step (7) From Tb1 5.1.3.1-4 for 1 watt rating, $\pi_R = 1.0$
- Step (8) From Tb1 5.1.3.1-5 at 60 percent of rated voltage, π_{S_2} = .88
- Step (9) From Tb1 5.1.3.1-6, for single transistor, π_{C} = 1.0
- Step (10) Perform the calculation:

$$\lambda_{p} = \lambda_{b} (\pi_{E} \times \pi_{A} \times \pi_{Q} \times \pi_{R} \times \pi_{S_{2}} \times \pi_{C})$$

 $\lambda_{\rm p}$ = 0.0012 (5.8x.1.5 x 1.2 x 1.0 x .88 x 1.0)

 $\lambda_p = 0.011 \text{ failures/}10^6 \text{ hours}$

DISCRETE SEMICONDUCTORS

Example 2.

- Step (1) Given: Field effect transistor (FET), JANTX grade, operating at 80 milliwatts at 500 MHz in airborne inhabited fighter service at 60 degrees C ambient temperature. (Rated at 200 milliwatts, T_S = 25 degrees C. and T_{MAX} = 175 degrees C.).
- Step (2) Stress ratio, $S = \left(\frac{P_{OP}}{P_{MAX}}\right) C.F. = \frac{80}{200} \times 1.0 = 0.4$ C.F. = 1 for $T_S = 25^{\circ}C.$ and $T_{MAX} = 175^{\circ}C.$
- Step (3) From Tb1 5.1.3.2-5 for T = 60 degrees C. and S = 0.4, λ_b = 0.031 failures/106 hours
- Step (4) From Tb1 5.1.3.2-1 A_{IF} environment, $\pi_{F} = 40$
- Step (5) From Tb1 5.1.3.2-2 freq. >400 MHz, power <300 mw, π_{Δ} = 5.0
- Step (6) From Tb1 5.1.3.2-4 JANTX grade, $\pi_0 = 0.24$
- Step (7) From Tb1 5.1.3.2-3 single transistor, $\pi_{\rm C}$ = 1.0
- Step (8) Perform the calculation:

$$\lambda_{p} = \lambda_{b} (\pi_{E} \times \pi_{A} \times \pi_{Q} \times \pi_{C})$$
 $\lambda_{p} = 0.031 (40 \times 5.0 \times 0.24 \times 1.0)$
 $\lambda_{p} = 1.5$ failures/10⁶ hours

DISCRETE SEMICONDUCTORS

Example 3.

- Step (1) Given: Silicon diode, JAN grade, in ground mobile service operating at 0.4 rated maximum current, and at 30 degrees C. ambient in logic switching with 20 percent of rated voltage. Rated 1 amp. at 25 degrees C. with T_{MAX} = 200 degrees C., the device has a metallurgically bonded contact.
- Step (2) Stress ratio, $S = (I_{OP}/I_{MAX}) C.F. = (.4/1) 1.0 = .4$ C.F. = 1.0 for $T_S = 25$ degrees C. and $T_{MAX} = 200$ degrees C.
- Step (3) From Tb1 5.1.3.4-7 for S = 0.4 and T = 30 degrees C, $\lambda_{\rm b}$ = 0.00049 failure/10⁶ hours
- Step (4) From Tb1 5.1.3.4-1 ground mobile service, π_{E} = 18
- Step (5) From Tb1 5.1.3.4-2. JAN grade, $\pi_0 = 1.5$
- Step (6) From Tb1 5.1.3.4-3 for 1 amp, $\pi_R = 1.0$
- Step (7) From Tb1 5.1.3.4-4 logic switching, $\pi_{\Lambda} = 0.6$
- Step (8) From Tb1 5.1.3.4-5 20 percent rated voltage, $\pi_{S_2} = 0.7$
- Step (9) From Tb1 5.1.3.4-6 metallurgically bonded contacts, $\pi_c = 1.0$
- Step (10) Perform the calculation:

$$\lambda_{p} = \lambda_{b} (\pi_{E} \times \pi_{Q} \times \pi_{R} \times \pi_{A} \times \pi_{S_{2}} \times \pi_{C})$$
 $\lambda_{p} = 0.00049 (18 \times 1.5 \times 1.0 \times 0.6 \times 0.7 \times 1.0)$
 $\lambda_{p} = 0.0056 \text{ failures}/10^{6} \text{ hours}$

DISCRETE SEMICONDUCTORS

Example 4.

- Step (1) Given: Silicon dual transistor (complementary), JAN grade, rated for 0.25 W. at 25 degrees C., one side only, and 0.35 W. at 25 degrees C., both sides, with T_{MAX} = 200 degrees C., operating in linear service at 50 degrees C. ambient in a sheltered naval environment. Side one, NPN, operating at 0.1 W. and 50 percent of rated voltage and side two, PNP, operating at 0.05 W. and 30 percent of rated voltage.
- Step (2) For side one, stress ratio,

$$S = \left[\frac{P_1}{P_S} + P_2 \left(\frac{2P_S - P_T}{P_T \times P_S} \right) \right] (C.F.)$$

C.F. = 1.0 for T_S = 25 degrees C. and T_{MAX} = 200 degrees C.

$$S = \begin{bmatrix} 0.1 \\ \hline 0.25 \end{bmatrix} + 0.05 \left(\frac{2 \times 0.25 - 0.35}{0.35 \times 0.25} \right) (1.0)$$

S = 0.48

- Step (3) From Tb1 5.1.3.1-7 for T = 50 degrees C. and S = 0.48, λ_h = 0.0018 failures/10⁶ hours
- Step (4) From Tb1 5.1.3.1-1 naval sheltered, $\pi_F = 9.8$
- Step (5) From Tbl 5.1.3.1-2 linear, $\pi_{\Delta} = 1.5$
- Step (6) From Tb1 5.1.3.1-3, JAN grade, $\pi_0 = 1.2$
- Step (7) From Tb1 5.1.3.1-4 for .25 watt, $\pi_R = 1.0$
- Step (8) From Tb1 5.1.3.1-5 at 50 percent of rated voltage, $\pi_{S_2} = 0.65$
- Step (9) From Tb1 5.1.3.1-6 for complementary pair, $\pi_{C} = 0.7$
- Step (10) Perform the calculation for side one:

$$\lambda_{P} = \lambda_{b} (\pi_{E} \times \pi_{A} \times \pi_{Q} \times \pi_{R} \times \pi_{S_{2}} \times \pi_{C})$$

 $\lambda_{p} = 3.0018 (9.8 \times 1.5 \times 1.2 \times 1.0 \times 0.65 \times 0.7)$

 $\lambda_p = 0.014$ failures/10⁶ hours for side one

DISCRETE SEMICONDUCTORS

Step (11) For side two, stress ratio,

$$S = \frac{0.05}{0.25} + 0.1 \quad \left(\frac{2 \times 0.25 - 0.35}{0.35 \times 0.25}\right)$$

$$S = 0.37$$

- Step (12) From Tb1 5.1.3.1-8 for T = 50 degrees C. and S = 0.37, λ_b =0.0021 failures/106 hours
- Step (13) π_E , π_Q , π_R and π_C same as for side one
- Step (14) From Tb1 5.1.3.1-5 at 30 percent of rated voltage, $\pi_{S_2} = 0.35$
- Step (15) Perform the calculation for side two:

$$\lambda_{\rm P} = \lambda_{\rm b} \cdot (\pi_{\rm E} \times \pi_{\rm A} \times \pi_{\rm Q} \times \pi_{\rm R} \times \pi_{\rm S_2} \times \pi_{\rm C})$$
 $\lambda_{\rm p} = 0.0021 \ (9.8 \times 1.5 \times 1.2 \times 1.0 \times 0.35 \times 0.7)$
 $\lambda_{\rm p} = 0.0091 \ {\rm failures/10^6} \ {\rm hours} \ {\rm for side two}$

DISCRETE SEMICONDUCTORS

Example 5.

- Step (1) Given: Silicon diode, JANTX grade, in fixed ground service at 0.6 rated maximum current and 40 percent rated voltage in power rectifier operation at 60 degrees C. case temperature. Device rated at 5 amps, $T_{\hat{S}} = 100$ degrees C. case temperature and $T_{MAX} = 150$ degrees C. and has a metallurgically bonded contact.
- Step (2) Stress ratio, S = 0.6 (C.F.)

From Sec. 5.1.3.11.2 C.F. =
$$\frac{T_{MAX} - T_{S}}{150}$$
 = $\frac{150 - 100}{150}$ = 0.333

$$S = 0.6 \times 0.333 = 0.2$$

Temperature for
$$\lambda_b$$
 computation, $T = T_C + (175 - T_{MAX})$
 $T = 60 + (175 - 150)$
 $T = 85$

- Step (3) From Tb1 5.1.3.4-7 for T = 85 degrees C. and S = 0.2, $\lambda_{\rm b}$ = 0.00076 failures/106 hours
- Step (4) From Tb1 5.1.3.4-1 fixed ground, $\pi_E = 3.9$
- Step (5) From Tb1 5.1.3.4-2 JANTX grade, $\pi_0 = 0.3$
- Step (6) From Tb1 5.1.3.4-3 5 amps, $\pi_R = 2.0$
- Step (7) From Tb1 5.1.3.4-4 power rectifier, π_{Λ} = 1.5
- Step (8) From Tb1 5.1.3.4-5 at 40 percent of rated voltage, $\pi_{S_2} = 0.7$
- Step (9) From Tb1 5.1.3.4-6 for metallurgically bonded contacts, $\pi_{\rm C}$ = 1.0
- Step (10) Perform the calculation:

$$\lambda_{\rm P} = \lambda_{\rm b} \quad (\pi_{\rm E} \times \pi_{\rm Q} \times \pi_{\rm R} \times \pi_{\rm A} \times \pi_{\rm S_2} \times \pi_{\rm C})$$
 $\lambda_{\rm p} = 0.00076 \; (3.9 \; \text{x0.3} \; \text{x 2.0} \; \text{x 1.5} \; \text{x 0.7} \; \text{x 1.0})$
 $\lambda_{\rm p} = 0.0019 \; \text{failures/10}^6 \; \text{hours}$

DISCRETE SEMICONDUCTORS

Example 6.

- Step (1) Given: Microwave transistor, JANTX Equivalent quality, in mobile ground environment as a pulse amplifier at 20% duty factor with a peak power output of 30 watts at 1.5 GHz. The device package has input and output matching networks and uses refractory metal-gold metallization. V_C = 28 volts and BV_{CES} = 56 volts. The peak junction temperature is 140°C.
- Step (2) From Tb1 5.1.3.9-1 JANTX Equivalent, $\pi_0 = 2$.
- Step (3) From Tb1 5.1.3.9-2 pulse amplifier with 20% duty factor, $\pi_A = 2$.
- Step (4) From Tb1 5.1.3.9-3 1.5 GHz. & 30 watts, $\pi_F = 1.5$.
- Step (5) $V_C/BV_{CES} = 28/56 = 0.5$. From Tb1 5.1.3.9-4 $V_C/BV_{CES} = 0.5$, T = 140°C., and with refractory metal-gold metallization, $\pi_T = 0.78$.
- Step (6) From Tb1 5.1.3.9-5 input and output matching networks, $\pi_{\rm M}$ = 1.
- Step (7) From Tb1 5.1.3.9-6 mobile ground ($G_{\rm M}$), $\pi_{\rm E} = 7.8$
- Step (8) Perform the calculation:

$$\lambda_P = \lambda_B \pi_0 \pi_A \pi_F \pi_T \pi_M \pi_E$$

- = 0.1 (2) 2 (1.5) 0.78 (1) 7.8
- = 3.7 failures/ 10^6 hr.

DISCRETE SEMICONDUCTORS

Example 7

Step (1) Given:

A commercial quality plastic-encapsulated single optoisolator is used in a Ground, Benign application, junction temperature 65° C. The optoisolator uses a photodiode detector.

Step (2) Table 5.1.3.10
$$\lambda_p = \lambda_b \pi_T \pi_E \pi_0$$

Step (3) Table 5.1.3.10-3 Base Failure Rate
$$\lambda_b$$
 = .0010

Step (4) Table 5.1.3.10-2 Temperature Factor
$$\pi_T$$
 = 300

Step (5) Table 5.1.3.10-1 Environmental Factor
$$\pi_F$$
 = 1.0

Step (6) Table 5.1.3.10-4 Quality Factor
$$\pi_0 = 1.0$$

Step (7)
$$\lambda_p = 0.0010$$
 (300) (1.0) (1.0) = 0.30 failures per 10^6 hours

Example 8

Step (1) Given:

A discrete, hermetic light emitting diode (LED) procured in accordance with MIL-S-19500 is used in an Airborne, Inhabited, Trainer application environment. The device is a JAN quality part operating at a case temperature of 60 $^{\circ}$ C. Package case-to-junction thermal resistance θ_{JC} is 500 $^{\circ}$ C/watt. The device dissipates 50 mW.

Step (2) Table 5.1.3.10
$$\lambda_p = \lambda_b \pi_J \pi_E \pi_Q$$

Step (3) Table 5.1.3.10-3 Discrete LED, Base Failure Rate
$$\lambda_{\rm b}$$
 = 0.00065

Step (4) Table 5.1.3.10-1 Airborne Inhabited Trainer Environment
$$\pi_{\text{E}}$$
 = 3.5

Step (5) Table 5.1.3.10-2
$$T_C = 60^{\circ}\text{C P} = .05\text{w} \ \theta_{\text{JC}} = 500^{\circ}\text{C/watt}$$
 $T_J = T_C + \theta_{\text{JC}} \ P = 60 + 500(.05) = 60 + 25 = 85^{\circ}\text{C}$ From Table 2.2.10-3, $\pi_T = 1200$

Step (6) Table 5.1.3.10-4 JAN Quality Level
$$\pi_Q$$
 = 0.1

Step (7)
$$\lambda_p = 0.00065$$
 (1200) (3.5) (0.1) = 0.27 failures per 10^6 hours

DISCRETE SEMICONDUCTORS

SEMICONDUCTOR LASER DEVICES

Example 9

Step (1) Given:

A 10mW AlGaAs Double Heterostructure (DH) stripe geometry laser is used in a Ground, Fixed environment, case temperature is 55°C, it has a facet coat, it has a fixed current source, the application is continuous wave (DC), the forward current is 100ma, and the minimum acceptable optical power output is 5mw.

Step (2) Section 5.1.3.11 Step 1A, calculate the average optical output degradation rate $(\tau_{_{\rm D}})$

$$\tau_p = \tau_b \pi_T \pi_I \pi_C \pi_A \pi_F$$

Step (3) Table 5.1.3.11-2 $\tau_b = 2.21 \times 10^5 (\%/1000 \text{ hours})$

Step (4) Table 5.1.3.11-3 $\pi_T = 0.73 \times 10^{-6}$

Step (5) Table 5.1.3.11-7 $\pi_T = 23$

Step (6) Table 5.1.3.11-4 $\pi_C = 1.0$

Step (7) Table 5.1.3.11-5 $\pi_{\Lambda} = 1.5$

Step (8) Table 5.1.3.11-6 $\pi_F = 1.0$

Step (9) $\tau_p = 2.21 \times 10^5 (0.73 \times 10^{-6}) (23) (1.0) (1.5) (1.0) = 5.56 \%/1000$

Step (10) Section 5.1.3.11 Step 18, calculate the mean life of the device

Step (11)

Allowable degradation (D)

$$D(\%) = \frac{P_s - P_r}{P_s} \times 100 = \frac{10mw - 5mw}{10mw} \times 100 = 50\%$$

Step (12)

Mean life (U)

 $U = D(\%)/\tau_{D} = 50\%/5.56\%/1000$ hours = 8993 hours

DISCRETE SEMICONDUCTORS

SEMICONDUCTOR LASER DEVICES

- Step (13) Section 5.1.3.11 Step 1C, calculate the average failure rate (λ_b) λ_b = 1/U = 111 failures per 10⁶ hours
- Step (14) Section 5.1.3.11 Step 2, calculate the average semiconductor laser failure rate $(\lambda_{\rm p})$
- $\lambda_{\rm p} = \lambda_{\rm b} \, \pi_{\rm E} = 111 \, {\rm failures} \, 10^6 \, {\rm hours} \, (2.4) = 266.4 \, {\rm failures} \, {\rm per} \, 10^6 \, {\rm hours}$

TUBES

5.1.4 Tubes, Electronic Vacuum

5.1.4.1 All Types Except Traveling Wave Tubes (TWTs) and Magnetrons. The operating failure rate model () is:

$$\lambda_p = \lambda_b \times \pi_E \times \pi_L$$

where

 λ_p = tube operating failure rate in failures/10⁶ hr. λ_b = base failure rate in failures/10⁶ hr and is a function of tube type and operating parameters (see Table 5.1.4.1=1).

 $π_E$ = environmental factor (see Table 5.1.4.1-4). $π_L$ = learning factor (see Table 5.1.4.1-5).

TABLE 5.1.4.1-1: λ b, BASE FAILURE RATE FOR TUBES (includes both random and wearout failures)

TUBE TYPE	λ_b (f./10 ⁶ hrs.)
RECEIVER Triode, Tetrode, Pentode Power Rectifier	5 10
CRT	9.6
THYRATRON	50
CROSSED FIELD AMPLIFIER QK681 SFD261	260 150
PULSED GRIDDED 2041 6952 7835	140 390 140
TRANSMITTING Triode Peak Pwr<200 kW, Freq<200 MHz, Tetrode & Pentode Aver Pwr<2kW If any of above limits are exceeded	75 100 250
VIDICONS Antimony trisulfide (Sb ₂ S ₃) photoconductive material Silicon diode array photoconductive material	51 48

TUBES

TABLE 5.1.4.1-1 (Cont'd) λ_b , BASE FAILURE RATE FOR TUBES

TUBE TYPE				λ_b (f./10 ⁶ hr.)
TWYSTRON VA144 VA145E VA145H VA913A				850 450 490 230
PULSED KLYSTRON				
TYPE NO.	$\frac{\lambda_{b}}{}$	TYPE NO.	$\frac{\lambda_{b}}{}$	
4KMP10000LF 8568 L3035 L3250		L3403 SAC42A VA842 Z5010A ZM3038A	93 100 18 150 190	
If the pulsed kly listed above, use			:	
KLYSTRON Low Power (e. Continuous Wa	-	•		30
3K3000LQ 3K50000LF 3K210000LQ 1 3KM300LA 3KM50000PA 1 3KM50000PA1 1 3KM50000PA2 1 4K3CC 6 4K3SK 4K50000LQ 4KM50LB	64 19 10 20	TYPE NO. 4KM50SJ 4KM50SK 4KM3000LR 4KM50000LQ 4KM50000LR 4KM170000LA 8824 8825 8826 VA800E VA853 VA856B VA888E		
	ystron of	interest is n		

TUBES

TABLE 5.1.4.1-2 $\lambda_{\rm b}$, BASE FAILURE RATES FOR CW. KLYSTRONS*

			··	F (M	Hz.)			<i>,</i>
P (kW.)	300	500	800	1000	2000	4000	6000	8000
0.1	43	52	66	75	120	210	310	400
1.0	44	53	67	76	120	210	310	400
3.0	46	55	69	78	120	220	310	
5.0	48	58	71	81	130	220		
8.0	52	61	75	84	130			
10.	54	63	77	86	130			
30.	76	85	99	110				
50.	97	110	120	130				
80.	130	140	150					
100.	150	160						

*
$$\lambda_b = 1.09 P + .0461 F + 29$$

where: P = average output power in kW.
F = operating frequency in MHz.

The following are the limits that describe the region of validity for the λ_b equation. Values of P and F must satisfy <u>all</u> three limits:

 $0.1 \le P \le 100$

300 ≤ ≤8000

 $P \le 8.0(10)^6 (F)^{-1.7}$

TUBES

TABLE 5.1.4.1-3

\$\lambda_{b}\$. BASE FAILURE RATES FOR PULSED KLYSTRONS*

				F (GHz				
P (MW.)	0.2	0.4	0.6	0.8	1.0	2.0	4.0	6.0
.01	66	66	66	66	66	66	66	66
.30	66	66	67	67	67	68	70	71
. 80	66	67	67	68	68	71	75	80
1.0	67	67	68	68	69	72	78	84
3.0	68	70	71	73	75	84	100	
5.0	69	72	75	78	81	95	120	
8.0	71	75	80	85	90	110	160	
10.	72	78	84	90	95	120		
25.	81	95	110	120	140	210		

^{*} $\lambda_{b} = 2.94 \text{ FP} + 66$

where: F = operating frequency in GHz.

P = peak output power in MW.

The following are the limits that describe the region of validity for the λ_b equation. Values of P and F must satisfy <u>all</u> three limits:

 $.01 \leq P \leq 25$

0.2 ≤ F ≤ 6

 $P \le 490(F)^{-2.95}$

TUBES

TABLE 5.1.4.1-4

Environmental	Mode	Factors
THAT OFFICE !	11005	10000

ENVIRONMENT	П Е
# 5	0.5 0.6 1.0 9 18 7.6 7.6
NSB NS NH NH	13 28 30
ARW AIC AIT AIB	40 2 5.5 - 7.5

ENVIRONMENT	ПΕ
A A A A A A A A A A A A A A A A A A A	76.5 10 _2.5 _6.5 9.5 8 15 0.5 18 25 53 61 1,000

TABLE 5.1.4.1-5 π_L , LEARNING FACTOR FOR TUBES*

t (Yrs.)	1	2	3
π	10	2.3	1

*
$$\pi_L = 10(t)^{-2.1}$$
 for $1 \le t \le 3$
- = 10 for t < 1
= 1 for t > 3

Where t = number of years since introduction to military field use.

TUBES

5.1.4.2 <u>Traveling Wave Tubes (TWT)</u>. The operating failure rate for TWTs is:

$$\lambda_{\rm p} = \lambda_{\rm b} \Pi_{\rm E}$$
 in failures/10⁶ hr.

where:

 Π_r = environmental factor (see Table 5.1.4.2-2).

$$\lambda_b = 11 (1.00012)^P (1.16)^F$$
 (see Table 5.1.4.2-1).

where:

P = rated power (peak, if pulsed mode) in watts for .001<P<20,000

F = operating frequency in GHz. for 0.3<F<18. If the operating frequence is a band or two different values, use the geometric mean of the end points or of the two values for F.

TABLE 5.1.4.2-1. $\lambda_{\rm b}$, BASE FAILURE RATES FOR TWTS (f./10 6 hr

Р			F (Fr	eauen	су, G	Hz)			
(Power, watts)	0.1	1	2	4	6	8	10	12	14
0-10	11	13	15	20	27	36	49	65	88
100	11	13	15	20	27	36	49	бб	89
500	12	14	16	21	28	38	52	69	93
1,000	13	14	17	22	30	41	55	74	99
3,000	16	18	21	29	38	52	70	93	130
5,000	20	23	27	36	49	66	88	120	160
8,000	29	33	38	52	70	94	130	170	230
10,000	37	42	49	66	89	120	160	220	290
15,000	67	77	89	120	160	220	290	350	530
20,000	120	140	160	220	300	400	540	720	970

TUBES

TABLE 5.1.4.2-2
Environmental Mode Factors for TWTs

ENVIRONMENT	Π E	ENVIRONMENT	П
G G G G G M N N N N N N N N N N N N N N	1 1.3 10 18 6.3 6.3 6 28 30 40 5 9	A A A A A A A A A A A A A A A A A A A	E 9 20 6 10 18 10 25 0.2 18 25 53 80 1,000

MIL-HDBK-217E TUBES

5.1.4.3 Magnetrons. The operating failure rate for magnetrons is:

$$\lambda_D = \lambda_D \times \pi_U \times \pi_E \times \pi_C$$

where

 λ_D = total device failure rate (failure/10⁶ filament hours)

 π_U = utilization factor (see Table 5.1.4.3-1)

 π_E = environmental factor (see Table 5.1.4.3-2)

 $\pi_{\rm C}$ = construction factor

= 1, CW magnetrons (rated power < 5 Kw)

= 1, coaxial pulsed magnetrons

= 5.4, conventional pulsed magnetrons

 λ_b = base failure rate (f/10⁶ filament hrs)

= 18, CW magnetrons (rated power < 5 Kw)

= 19 $(f)^{0.73}$ $(P)^{0.20}$, pulsed magnetron (see Table 5.1.4.3-3)

where

f = frequency (GHz)
P = rated peak power (Mw)

TABLE 5.1.4.3-1: UTILIZATION FACTORS

Utilization (radiate hours/filament hours)	πυ
0.0	0.44
0.1	0.50
0.2	0.55
0.3	0.61
0.4	0.66
0.5	0.72
0.6	0.78
0.7	0.83
0.8	0.89
0.9	0.94
1.0	1.0

 $\pi_u = 0.44 + 0.56(R)$, R = radiate hours/filament hours

TUBES

TABLE 5.1.4.3-2: ENVIRONMENTAL FACTORS

Environment	πE	Environment	πĘ•
GB	1	AIA	13
G _{MS}	1.1	AIF	20
GF	2	Auc	5
GM	4	Aut	13
MP	36	A _{UB}	19
NSB	15	AUA	16
NS	15	AUF	30
NU	26	SF	1
NH	56	MFF	36
Nuu	60	MFA	50
ARW	80	USL	106
AIC	4	ML	160
AIT	11	c <u> </u>	2000
AIB	15	_	

TABLE 5.1.4.3-3: BASE FAILURE RATE FOR PULSED MAGNETRONS

P	F(Frequency, GHz)													
Power, Mw)	0.1	0.5	1	5	10	20	30	40	50	60	70	80	90	100
0.01	1.41	4.56	7.56	24.5	40.7	67.4	90.6	112	131	150	168	185	201	218
0.05	1.94	6.29	10.4	33.8	56.0	92.9	125	154	181	207	232	256	279	301
0.1	2.23	7.23	12.0	38.8	64.3	107	144	177	208	238	266	294	320	346
0.3	2.78	9.00	14.9	48.4	80.2	133	179	221	260	297	332	366	399	431
0.5	3.08	9.97	16.5	53.6	88.8	147	198	244	288	328	368	405	442	447
1	3.54	11.4	19.0	61.5	102	169	228	281	330	337	422	466	507	548
3	4.41	14.3	23.7	76.6	127	211	283	350	412	470	526	580	632	683
5	4.88	15.8	26.2	84.9	141	234	314	387	456	521	583	642	700	756

 $\lambda_{\rm b} = 19(\rm f)^{0.73} (\rm P)^{0.20}$

LASERS

5.1.5 <u>Lasers</u>. This section presents failure rate models for laser peculiar items used in the following six major classes of laser equipment (see Bibliography Item 40):

Helium/Neon & Helium/Cadmium	Section 5.1.5.1
Argon Ion	Section 5.1.5.2
CO ₂ Sealed	Section 5.1.5.3
CO ₂ Flowing	Section 5.1.5.4
Solid State, Nd:YAG Rod	Section 5.1.5.5
Solid State, Ruby Rod	Section 5.1.5.6

The models and failure rates presented in this section apply to the <u>laser peculiar items only</u>, i.e., those items wherein the lasing action is generated and controlled. In addition to the laser peculiar items, there are other assemblies used with lasers that contain electronic parts and mechanical devices (pumps, valves, hoses, etc.). The failure rates for these parts should be determined with the same procedures as used for other electronic and mechanical devices in the equipment or system of which the laser is a part. The electronic device failure rates are in other parts of this Handbook and the mechanical device failure rates are in Bibliography Item 47.

The laser failure rate models have been developed at the "functional," rather than "piece part" level because the available data were not sufficient for "piece part" model development. Nevertheless, the laser functional models are included in this Handbook in the interests of completeness. These laser models will be revised to include piece part models and other laser types when the data become available.

Because each laser family can be designed using a variety of approaches, the failure rate models have been structured on three basic laser functions which are common to most laser families, but may differ in the hardware implementation of a given function. These functions are the lasing media, the laser pumping mechanism (or pump), and the coupling method.

The general laser failure rate model is:

$$\lambda$$
LASER = λ MEDIA + λ PUMP + λ COUPLING

Examples of media-related hardware and influence factors are the solid state rod, gas, gas pressure, vacuum integrity, gas mix, outgassing, and tube diameter. The electrical discharge, the flashlamp, and energy level are examples of pump-related hardware and influence factors. The coupling function contributors are the "Q" switch, mirrors, windows, crystals, substrates, coatings, and level of dust protection provided.

LASERS

The λ PUMP term in the λ LASER equation is zero for helium/neon, helium/cadmium, argon ion, CO2 sealed and CO2 flowing lasers because the pumping mechanisms for these lasers contain no laser peculiar items. Pumping is accomplished with electronic parts and circuitry. Failure rates for these parts are not included in this section but they should be included in the reliability analysis of the system or equipment containing the laser. Also, some of the terms in the above general λ LASER equation have modifying factors depending upon the laser type. These factors are shown in the following subsections.

LASERS

5.1.5.1 Helium/Neon and Helium/Cadmium Lasers

$$\lambda_p = \pi E \lambda_{MEDIA} + \pi E \lambda_{COUPLING}$$

where

 $\lambda_{\rm D}$ = the laser failure rate in failures/106 operating hours.

πε = the environmental application factor, and its value is determined from Table 5.1.5.7-1.

*MEDIA = the failure rate contribution of the lasing media, and its value is 84 failures/10⁶ operating hours for helium/neon lasers, and 228 failures/10⁶ operating hours for helium/cadmium lasers.

ACOUPLING = is the failure rate contribution of the laser coupling hardware, and its value is 0.1 failures/106 operating hours.

It should be noted that the laser failure rate prediction model can be simplified and rewritten as:

 $\lambda_{\text{He/Ne}} = 84.1 \, \pi_{\text{E}}$

 $\lambda_{\text{He/Cd}} = 228.1 \, \pi_{\text{E}}$

LASERS

5.1.5.2 Argon Ion Lasers

 $\lambda_{AI} = \pi_{E} \quad \lambda_{MEDIA} + \pi_{E} \quad \lambda_{COUPLING}$

where:

λ_{AI} is the argon ion laser failure rate in failures/10⁶ operating hours.

π_E is the environmental application factor and its value is determined from Table 5.1.5.7-1.

MEDIA is the failure rate contribution of the lasing media, and its value is 457 failures/10⁶ operating hours for argon ion lasers.

is the failure rate contribution of the laser coupling hardware, and its value is 6 failures/10° operating hours for argon ion lasers. It should be noted that the predominant argon laser failure mechanism is related to the gas media (as reflected in λ_{MEDIA}); however, when the tube is refilled periodically (preventive maintenance) the mirrors (as part of $\lambda_{\text{COUPLING}}$) can be expected to deteriorate after approximately 10⁴ hours of operation if in contact with the discharge region.

It should be noted that the argon ion failure rate prediction model can be simplified and rewritten as:

$$\lambda_{AI} = 463 \text{ m}_{E}$$

LASERS

5.1.5.3 Carbon Dioxide, Sealed Lasers.

 $\lambda_{\rm CO_2}$ SEALED = $\pi_{\rm E}$ $\pi_{\rm O}$ $\pi_{\rm B}$ $\lambda_{\rm MEDIA}$ + $\pi_{\rm E}$ $\pi_{\rm OS}$ $\lambda_{\rm COUPLING}$ where:

 $^{\lambda}$ CO $_2$ SEALED is the carbon dioxide sealed laser failure rate in failures/ 10 hours.

^πE is the environmental application factor, and its value is determined from Table 5.1.5.7-1.

 π_0 is the gas overfill factor, and its value is determined from Table 5.1.5.7-2.

 $^{\pi}{}_{B}$ is the ballast factor, and its value is determined from Table 5.1.5.7-3.

MEDIA is the failure rate contribution of the lasing media, and its value is determined from Tbl 5.1.5.7-4 which is based on the empirical expression:

 $\lambda_{\text{MEDIA}} = 69 \text{ I} - 450 \text{ failures/10}^6 \text{ hr.}$

where: I = Current (ma.) through discharge tube, and \geq 10 ma. and < 150 ma.

 $^{\pi}$ OS is equal to the number of active optical surfaces and is determined from Figure 5.1.5.7-1.

ACOUPLING is the failure rate contribution of the laser coupling hardware; that is, lenses, mirrors, prisms, exit windows, etc.

Its value is 10 failures/10 operating hours for carbon dioxide sealed lasers.

The sealed carbon dioxide failure rate model can be rewritten as:

 λ_{CO_2} SEALED = $(\pi_{\text{O}} \pi_{\text{B}} \lambda_{\text{MEDIA}} + 10 \pi_{\text{OS}}) \pi_{\text{E}}$

LASERS

5.1.5.4 Carbon Dioxide, Flowing Lasers.

 $^{\lambda}$ CO₂ FLOWING = $^{\pi}$ $_{E}$ $^{\lambda}$ MEDIA + $^{\pi}$ $_{E}$ $^{\pi}$ OS $^{\lambda}$ COUPLING

where:

\$\lambda_{CO_2}\$ FLOWING is the carbon dioxide flowing laser failure rate in failures/10° operating hours.

TE is the environmental application factor, and its value is determined from Table 5.1.5.7-1.

 $^{\lambda}$ MEDIA is the failure rate contribution of the lasing media and its value approaches zero for carbon dioxide flowing lasers. This is because this type of laser is much less susceptible to leaks and long term gas decomposition than a sealed system. The flowing gas also acts as a purge in removing contamination and precluding its entrapment. Therefore, except for tube breakage (which has rarely been observed) optics deterioration appears the predominant failure mechanism and this is accounted for under $^{\lambda}$ COUPLING.

 π_{OS} is equal to the number of active optical surfaces and is determined from Figure 5.1.5.7-1.

COUPLING is the failure rate contribution of the laser coupling hardware; that is, lenses, mirrors, prisms, exit windows, etc. Its value is determined from Tb1 5.1.5.7-5 which is based on the empirical expression:

 $\lambda_{\text{COMPLING}} = 300 \text{ P} \text{ failures/10}^6 \text{ hr.}$

where P = laser beam average power output in kilowatts.

It should be noted that the carbon dioxide flowing laser failure rate prediction model can be simplified and rewritten as:

 $^{\lambda}$ CO₂ FLOWING = (300P) $^{\pi}$ E $^{\pi}$ OS

LASERS

5.1.5.5 Solid State Neodymium-Yttrium-Aluminum-Garnet (ND:YAG) Rod Lasers

 $^{\lambda}$ Nd:YAG = $^{\pi}$ E $^{\lambda}$ MEDIA + $^{\lambda}$ PUMP $^{\pi}$ E $^{\pi}$ C $^{\pi}$ OS $^{\lambda}$ COUPLING

where:

 $^{\lambda}{\rm Nd:YAG}$ is the solid state neodymium doped yttrium-aluminum-garnet rod laser failure rate in failures 10^6 operating hours.

 λ_E is the environmental application factor, and its value is determined from Table 5.1.5.7-1.

 λ_{MEDIA} is the failure rate contribution of the lasing media, and its value is 0.1 failures/ 10^6 operating hours for Nd:YAG lasers.

λρυΜΡ is the failure rate contribution of the pumping mechanism which, for solid state lasers, is highly affected by the flashlamp or flashtube contribution and can be expressed as:

$\lambda_{\text{PUMP}} = \pi_{\text{E}} \lambda_{\text{PUMP/HOURS}}$

where:

λ_E is the environmental application factor, and its value is determined from Table 5.1.5.7-1.

 $^{\lambda}$ PUMP/HOURS is the failure rate contribution of the flashlamp or flashtube in failures/ 10^6 operating hours, and its value is determined by converting pump pulses from failures per 10^6 pulses to failures/ 10^6 operating hours. The value for $^{\lambda}$ PUMP/HOURS is determined as indicated in Figures 5.1.5.7-2 or 5.1.5.7-3.

is the coupling cleanliness factor, and its value is to be determined from Table 5.1.5.7-8.

 π_{OS} is equal to the number of active optical surfaces and is determined from Figure 5.1.5.7-1.

 $^{\lambda}$ COUPLING is the failure rate contribution of the laser coupling hardware; that is, lenses, mirrors, prisms, exit window, etc. Its value is 16.3 failures/ 10^6 operating hours for solid state Nd:YAG lasers.

LASERS

It should be noted that the solid state Nd:YAG laser failure rate prediction model can be rewritten as:

$$\lambda_{\text{Nd:YAG}} = \pi_{\text{E}} (0.1 + \lambda_{\text{PUMP/HOURS}} + 16.3 \pi_{\text{C}} \pi_{\text{OS}})$$

LASERS

5.1.5.6 Solid State, Ruby Rod Lasers.

 $\lambda_{\text{RUBY}} = \pi_{\text{E}} \lambda_{\text{MEDIA}} + \lambda_{\text{PUMP}} + \pi_{\text{E}} \pi_{\text{C}} \pi_{\text{OS}} \lambda_{\text{COUPLING}}$

\$\lambda_{\text{RUBY}}\$ is the solid state ruby rod laser failure rate in failure/10^6 operating hours.

is the environmental application factor, and its value is determined from Table 5.1.5.7-1.

is the failure rate contribution of the lasing media in failures/10⁶ operating hours, and its value is determined by converting from failures per 10⁶ pulses to failures/10⁶ operating hours. The value for \$\lambda_{\text{MEDIA}}\$ is determined as indicated in Figure 5.1.5.7-4.

λρυμρ is the failure rate contribution of the pumping mechanism which for solid state lasers is highly affected by the flashlamp or flashtube contribution and can be expressed as:

 $\lambda_{\text{PUMP}} = \pi_{\text{E}} \lambda_{\text{PUMP}}$ HOURS

where:

π_E is the environmental application factor, and its value is determined from Table 5.1.5.7-1.

is the failure rate contribution of flashlamp or flashtube in failures/10° operating hours, and its value is determined by converting from failures per 10° pulses to failures/10° operating hours. The value for hours is determined as indicated in Figures 5.1.5.7-2 HOURS or 5.1.5.7-3 as applicable.

is the coupling cleanliness factor, and its value is to be determined from Table 5.1.5.7-8.

 π_{OS} is equal to the number of active optical surfaces and is determined from Figure 5.1.5.7-1.

LASERS

is the failure rate contribution of the laser coupling hardware; that is, lenses, mirrors, prisms, exit windows, etc. Its value is 16.3 failures/100 operating hours for solid state ruby lasers.

It should be noted that the solid state ruby failure rate prediction model can be rewritten as:

 $\lambda_{\text{RUBY}} = \pi_{\text{E}} \left(\lambda_{\text{MEDIA}} + \lambda_{\text{PUMP}} + 16.3 \, \Pi_{\text{C}} \, \Pi_{\text{OS}} \right)$ HOURS

LASERS

5.1.5.7 Tables and Figures for Laser Model Parameters. This section presents the tables and figures for quantitying the parameters of the laser failure rate models in Sections 5.1.5.1 through 5.1.5.6.

TABLE . 5. 1 . 5. 7-1

Environmental Mode Factors

 \mathbb{I}_{E} ENVIRONMENT GB 0.2 GMS 0.3 7 GF 5 G_{M} 2.3 Mp 1.1 NSB N N U 5 5 N_{H} 3.6 $^{\rm N}$ UU 3.9 5.2 ARW 3 4 AIT 6.5 AIB 5 A_{TA} 7 AIF Auc 5 AUT 6 AUB 10 ${\rm A}_{\rm UA}$ 8 AUF 10 SF 0.2 MFF 2.4 M_{FA} 3,3 7.0 USL 8 C^{Γ} M/A

TABLE 5.1.5.7-2

GAS OVERFILL FACTOR, π₀**

CO ₂ OVERFILL * PERCENT	По
0	1.00
25	0.75
50	0.50

* Overfill percent is based on the percent increase over the optimum CO₂ partial pressure which is normally in the range of 1.5 to 3 Torr for most sealed CO₂ lasers.

sealed CO, lasers. ** The equation for Π_0 is: Π_0 =-0.01 (% overfill) \div 1.

TABLE 5.1.5.7-3 BALLAST FACTOR, Π_R *

	 _
PERCENT OF BALLAST VOLUMETRIC INCREASE	ПÈ
0 50 100 150 200	1.0 0.58 0.33 0.19 0.11

*The equation for Π_B is: $\Pi_B = (\frac{1}{3}) \frac{\% \text{ Vol. Inc.}}{100}$

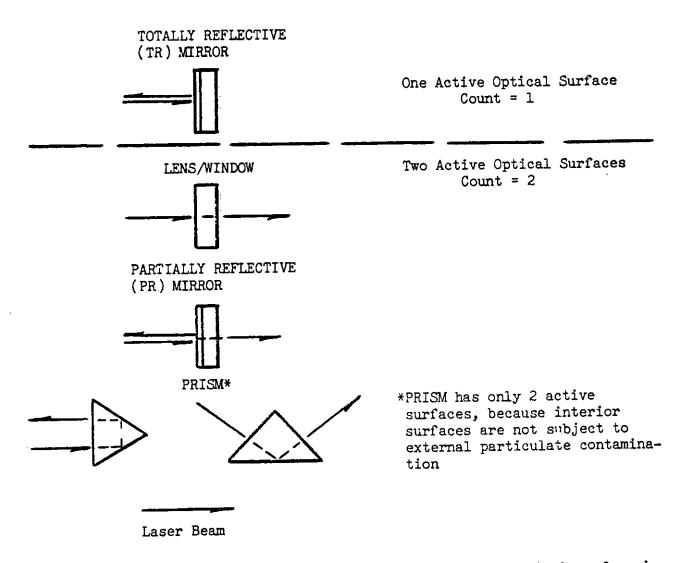

LASERS

TABLE 5.1.5.7-4 $\lambda_{\text{MEDIA}} \text{ Values for co}_{\text{2}} \text{ sealed lasers}$

Current, I* (in milliamperes)	λ MEDIA (failures/10 ⁶ hours)
10	240
20 30	930 1,620
40	2,310
50	3,000
100 150	6,450 9,900

^{*}The current I is tube current, and the values for I must be equal to or greater than 10 and equal to or less than 150 milliamperes.

LASERS

Only active optical surfaces are counted. An active optical surface is one with which the laser energy or beam interacts. Internally reflecting surfaces are not counted.

FIGURE 5.1.5.7-1. EXAMPLES OF ACTIVE OPTICAL SURFACES AND COUNT

LASERS

TABLE 5.1.5.7-5: $\lambda_{COUPLING}$ VALUES * FOR CO₂ FLOWING LASERS

Power	^λ COUPLING
(kilowatts)	(failures/10 ⁶ hours)
0.01	3
0.1	30
1.0	300

*NOTE:

The values shown are valid only for power levels up to one kilowatt. Beyond this range other glass failure mechanisms begin to predominate and alter the $\lambda_{\text{COUPLING}}$ values. It should also be noted that CO2 flowing laser optical devices are the primary source of failure occurrence. A preventive maintenance program on optical devices would greatly extend laser life; however, procedures must be tailored to the individual design of each system. Typical optical cleaning methods are as follows:

- 1. Use optical-quality pressurized gas (DUST-OFF, or equivalent) and a camel's hair brush to remove dust, nonsoluble particulates and nongreasy deposits.

 NOTE: Most pressurized air is contaminated and will degrade laser optics.
- Clean remaining deposits, for example fingerprints, and salty deposits, with an optical-coating compatible cleaning solution and a high quality lens tissue.

 NOTE: DO NOT USE BREATH. It contains acidic compounds and organisms that may degrade the glass and optic coatings.
- 3. Wash with a mild, neutral pH, clear detergent (Joy, or equivalent) 3 drops per liter of water, well mixed, and thoroughly rinse with distilled water.

 NOTE: DO NOT USE ammonia containing detergents that may react with the coating. Test any detergent for ammonia content.

4. Cautions:

- a. Use of special gloves for handling recommended.
- b Careful use of 20 to 30 percent alcohol solutions with sterile cotton swabs (change swabs frequently).

 NOTE: No not use methyl alcohol in the makeup of this solution. Specially denatured alcohol, for example type SD26a, with a strong ethanol (ethyl alcohol base), or equivalent can be used. The alcohol solution should be mixed in distilled water or equivalent to prevent the intoduction of a soluble salt deposit on the optics. Contact the optics manufacturer for other recommended cleaning procedures.

LASERS

TABLE 5.1.5.7-6

REPETITION RATE FACTORS, π_{REP}

Repetition or Pulse* Rate (pulses per second)	π _{REP}
1	3,600
5	18,000
10	36,000
15	54,000
20	72,000

*Note: Repetition rates for military solid state lasers are generally in the 1 to 20 pps range. Repetition rates other than shown have not been observed and corresponding $\pi_{\mbox{\scriptsize REP}}$ values certified.

TABLE 5.1.5.7-7 FLASHLAMP COOLING FACTORS, π_{COOL}

Cooling Media	πCOOL
Gas, Air	1.0
Gas, Inert	1.0
Liquid, Deionized Water	0.1
Liquid, Water-Glycol	0.1
Liquid, Fluorocarbon	0.1

LASERS

TABLE 5.1.5.7-8
COUPLING CLEANLINESS FACTOR

CLEANLINESS LEVEL*	π _C	
Rigorous cleanliness procedures, equipment, and trained maintenance personnel. Plus bellows provided over optical train.	1	
Minimal precautions during opening, maintenance, repair, and testing. Plus bellows provided over optical train.	30	
Minimal precautions during opening, mainte- nance, repair, and testing. No bellows provided over optical train.	60	

*NOTE: Although sealed systems tend to be reliable once compatible materials have been selected and proven, extreme care must still be taken to prevent the entrance of particulates during manufacturing, field flashlamp replacement, or routine maintenance/repair. Contamination is the major cause of solid state laser malfunction, and special provisions and vigilance must continually be provided to maintain the cleanliness level required. To values can vary from 1 up to 60.

LASERS

The empirical formula used to determine λ_{PUMP} for xenon lamps is: HOURS

$$\lambda_{\text{PUMP}} = \begin{bmatrix} \pi_{\text{REP}} \end{bmatrix} \begin{bmatrix} 2000 & \left(\frac{E_{j}}{dL}\right)^{8.58} \end{bmatrix} \begin{bmatrix} \pi_{\text{COOL}} \end{bmatrix} \text{ failures/10}^6 \text{ hr.}$$

XENON where:

 λ_{PUMP} is the failure rate contribution of the xenon flashlamp or flash-tube* in failures/10° operating hours. The flashlamps evaluated XENON herein are linear types used for military solid state laser systems.

TREP is the pulse or repetition rate factor used to convert from failures per 10⁶ pulses to failures/10⁶ operating hours, and its value is determined from Table 5.1.5.7-6.

is the flashlamp or flashtube input energy per pulse in joules, and its value is determined from the actual or design input energy parameter except that for input energy levels equal to or less than 30 joules, $E_{\rm j}$ = 30.

d is the flashlamp or flashtube inside diameter in millimeters, and its value is determined from the actual design parameter of the flashlamp utilized.

L is the flashkamp or flashtube arc length in inches, and its value is determined from the actual design parameter of the flashkamp utilized.

is the truncated pulse width in microseconds, and its value is determined from the actual design parameter of the pulse forming network (PFN) used to pulse the flashlamp or flashtube. Pulse tails do not affect reliability, and the maximum value of T is 100 microseconds for any truncated pulse width exceeding 100 microseconds. For shorter duration pulses, pulse width is to be measured at 10 percent of the maximum current amplitude.

is the cooling factor due to various cooling media immediately surrounding the flashlamp or flashtube, and its value is determined from Table 5.1.5.7-7.

*Note: Typical values for Xenon flashlamps in military Nd:YAG rangefinders and designators are E_j = 40 joules, d = 4 millimeters, L = 2 inches, and T = 100 microseconds. The repetition or pulse rate ranges from 1 to 20 pps, and the lamps are normally liquid cooled.

Figure 5.1.5.7-2. Determination of $^{\lambda}$ PUMP for Xenon Flashlamps HOURS

LASERS

The empirical formula used to determine λ_{PUMP} for Krypton lamp is: $\begin{bmatrix} 10^{(0.9 \frac{P}{L})} \end{bmatrix} \pi_{COOL} \text{ failures/10}^6 \text{ hr.}$

HOURS KRYPTON

where:

 λ_{PUMP} HOURS KRYPTON

is the failure rate contribution of the krypton flashlamp or flashtube in failures/10⁶ operating hours. The flashlamps evaluated herein are the continuous wave (CW) type and are most widely used for commercial solid state applications. They are approximately 7mm in diameter and 5 to 6 inches long. Average power is typically 4 KW.

is the average input power in kilowatts, and its value is determined from the actual design parameter for the flashlamp utilized.

L

is the flashlamp or flashtube arc length in inches, and its value is determined from the actual design parameter of the flashlamp utilized.

TCOOL

is the cooling factor due to various cooling media immediately surrounding the flashlamp or flashtube, and its value is determined from Table 5.1.5.7-7.

Figure 5.1.5.7-3. Determination of λ_{PUMP} for Krypton Flashlamps HOURS

LASERS

The empirical formula used to determine λ_{MEDIA} is:

$$\lambda_{\text{MEDIA}} = \begin{bmatrix} \pi_{\text{REP}} & 43.5 & \text{F}^{2.52} \end{bmatrix}$$
 failures/10⁶ hr.

where:

π_{REP}.

is the pulse or repetition rate factor used to convert from failures/10⁶ pulses to failures/10⁶ operating hours, and its value is determined from Table 5.1.5.7-6.

F

is the energy density in Joules per cm.²/pulse over the crosssectional area of the laser beam which is nominally equivalent to the cross-sectional area of the laser rod and its value is determined from the actual design parameter of the laser rod utilized.

Figure 5.1.5.7-4. Determination of λ_{MEDIA} for Solid State Ruby Lasers

LASERS

- 5.1.5.8 Examples of Laser Failure Rate Prediction.
- 5.1.5.8.1 Example of Failure Rate Calculation for He/Ne Lasers.
 - Given. A helium neon laser device to be used in a military ground mobile application.
 - Step 1 The failure rate model of Section 5.1.5.1 applies:

$$\lambda_{\text{He/Ne}}$$
 = 84.1 π_{E}

Step 2 - From Table 5.1.5.7-1 $\pi_{E} = G_{M} = 5.0$.

Step 3 - Calculate $\lambda_{He/Ne}$:

$$\lambda_{\text{He/Ne}} = 84.1 \text{ m}_{\text{E}}$$

= 84.1(5)

- = 421. failures/10⁶ hours in a ground mobile application.
- 5.1.5.8.2 Example of Failure Rate Calculation and Reliability Prediction for a Solid State, Nd: YAG Rod Laser.
 - Given. Nd: YAG laser designator using a xenon flashlamp which is cooled by an eutectic water-glycol solution. The laser is being used in the $A_{\rm UF}$ environment. Design parameters are:

Pulse or Repetition Rate = 10 pps Flashlamp input energy (per pulse) = 30 joules Flashlamp inside diameter = 4 millimeters Flashlamp arc length = 2 inches

Pulse width (including both tails) = 120 microseconds

Optical train enclosed in bellows

In addition, strict field maintenance, repair, and test procedures will be written, validated, and provided for use by trained specialists in appropriately clean and controlled facilities.

LASERS

Find: Airborne failure rate (A Nd: YAG)

Step 1 - The failure rate model of Section 5.1.5.5 applies:

$$\lambda_{\text{Nd:YAG}} = \pi_{\text{E}}$$
 (0.1 + λ_{PUMP} + 16.3 π_{C} π_{OS})
HOURS

Step 2 - From Tb1 5.1.5.7-1, $\pi_{E} = 10$ for A_{UF}

solid state Nd:YAG lasers.

Step 3 - Calculate λ_{PUMP} for Xenon flashlamps from HOURS

$$\lambda_{\text{PUMP}} = \pi_{\text{REP}} \left[2000 \left(\frac{E_{j}}{\text{dL}\sqrt{T}} \right)^{8.58} \right] \pi_{\text{COOL}}$$

From the given design parameters and Figure 5.1.5.7-2 notes:

$$3a - E_j = 30$$
 joules

d = 4 mm L = 2 in

T = 100 µs (refer to Figure 5.1.5.7-2

3b - From Table 5.1.5.7-7, π_{CGOL} = 0.1 for Liquid, Water-Glycol cooling media.

3c -
$$\lambda_{PUMP}$$
 = (36,000) $\left[2000\left(\frac{30}{4x2\sqrt{100}}\right)^{8.58}\right]$ (0.1)

HOURS
XENON

=1,500 failures/10⁶ operating hours

Step 4 - From Table 5.1.5.7-8, π_{C} = 1 for the most stringent cleanliness level (as is specified).

LASERS

Step 5 - From Fig 5.1.5.7-1, determine π_{OS} :

5a - Make parts list and count of optical train:

- (1) One totally reflective (TR) mirror
- (2) One Prismatic "Q" Switch
- (3) One partially reflective (PR) mirror
- (4) One exit lens or window

5b - Determine active optical surfaces:

- (1) One TR mirror = 1
- (2) One "Q" Switch = 2
- (3) One PR mirror = 2
- (4) One exit lens = 2

 π_{OS} , Active Optical Surfaces = 7 total

Step 6 - Calculate $\lambda_{\text{Nd:YAG}}$:

$$\lambda_{\text{Nd:YAG}} = \pi_{\text{E}} (0.1 + \lambda_{\text{PUMP}} + 16.3 \, \pi_{\text{C}} \, \pi_{\text{OS}})$$
HOURS

= 10 [0.1 + 1,600 + (16.3) (1) (7)]

= 17,000 failures/10⁶ operating hours.

RESISTORS

5.1.6 Resistors. This section includes the active resistor specifications and, in addition, some older/inactive specifications are included because of the large number of equipments still in field use which contain these parts. For each specification, the analytical model for the part failure rate, λ_p , is given followed by the quantitative values of the model elements. The following resistors are included:

```
Composition, Fixed
                 Resistors, Fixed, Composition (Insulated)
    MIL-R-11
                 Resistors, Fixed, Composition (Insulated)
    MIL-R-39008
                 Established Reliability
Film, Fixed
    MIL-R-10509
                 Resistors, Fixed, Film (High Stability)
    MIL-R-11804
                 Resistors, Fixed, Film (Power Type)
                 Resistors, Fixed, Film, Insulated
    MIL-R-22684
                 Resistors, Fixed, Film, Insulated,
    MIL-R-39017
                 Established Reliability
    MIL-R-55182 Resistors, Fixed, Film, Established Reliability
Network, Film, Fixed
    MIL-R-83401 Resistor Network, Fixed, Film
Wirewound, Fixed
    MIL-R-26
                 Resistors, Fixed, Wirewound (Power Type)
    MIL-R-93
                 Resistors, Fixed, Wirewound (Accurate)
                 Resistors, Fixed, Wirewound (Power Type,
    MIL-R-18546
                 Chassis Mounted)
                 Resistors, Fixed, Wirewound (Accurate).
    MIL-R-39005
                 Established Reliability
    MIL-R-39007
                 Resistors, Fixed, Wirewound (Power Type),
                 Established Reliability
                 Resistors, Fixed, Wirewound (Power Type.
    MIL-R-39009
                 Chassis Mounted) Established Reliability
Thermistor
    MIL-T-23648 Thermistor (Thermally Sensitive Resistor) Insulated
Non-wirewound, Variable
                 Resistors, Variable, Composition
    MIL-R-94
                 Resistors, Variable, Non-wirewound
    MIL-R-22097
                 (Lead Screw Actuated)
    MIL-R-23285
                 Resistors, Variable, Film
    MIL-R-39023
                 Resistors, Variable, Non-wirewound, Precision
                 Resistors, Variable, Cermet or Carbon Film
    MIL-R-39035
                 (Lead Screw Actuated) Established Reliability
Wirewound, Variable
    MIL-R-19
                 Resistors, Variable, Wirewound (Low Operating Temperature)
```

RESISTORS

The general model for resistors is as follows:

$$\lambda_p = \lambda_b (\pi_E \times \pi_R \times \pi_Q)$$
 failures/10⁶ hours

The general model for the variable resistors is as follows:

$$\lambda_{\rm p} = \lambda_{\rm b} (\pi_{\rm TAPS} \times \pi_{\rm R} \times \pi_{\rm V} \times \pi_{\rm C} \times \pi_{\rm E} \times \pi_{\rm Q})$$
 failures/10⁶ hours

The factors shown are defined in Section 5.1.1 and the following sections provide quantitative values related to specific types or classes of resistors. The general model used to quantify the λ_h term is as follows:

$$\lambda_b = Ae^{-B} \left(\frac{T + 273}{N_T} \right)^G e^{-B} \left(\frac{S}{N_S} \right) \left(\frac{T + 273}{273} \right) J^{-B}$$

where,

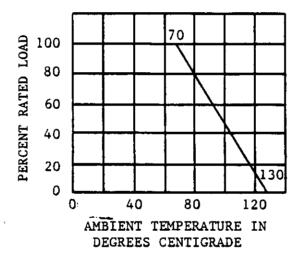
- A is an adjustment factor for each type of resistor to adjust the model to the appropriate failure rate level.
- e Is the natural logarithm base, 2.718
- T is the ambient operating temperature (degrees C)
- N_{τ} Is a temperature constant
- B is a shaping parameter
- G, H, J are acceleration constants
 - N_s is a stress constant
 - S is the electrical stress and is the ratio of operating power to rated power.

The quantitative values for the base failure rate model factors are given in Tables 5.1.6-1 and 5.1.6-2 for the different resistor types. The last column of these tables shows the table number that lists the resulting base failure rate values.

RESISTORS

TABLE 5.1.6-1 FIXED RESISTOR BASE FAILURE RATE (λ_b) FACTORS

Style	MIL-R Spec	A	В	N _T	G	N _s	Н	J	λ _b Table No.
RB	93	3.1(10) ⁻³	1	298	10	1	1.5	1	5.1.6.4-4
RBR	39005	3.1(10)	1	398	10	1	1.5	1	5.1.6.4-4
RC	11	4.5(10) -9	12	343	1	0.6	1	1	5.1.6.1-4
RCR	39008	4.5(10) ⁻⁹	12	343	1	0.6	1	1	5.1.6.1-4
RD.	11804	7.33(10) ⁻³	0.202	298	2.6	1.45	1.3	0.89	5.1.3.2-9
RE	18546	1.5(10)-4	2.64	298	1	0.466	1	1	5.1.6.4-12
RER	39009	1.5(10)-4	2.64	298	1	0.466	1	1	5.1.6.4-12
RL	22684	3.25(10) ⁻⁴	1	343	3	1	1	1	5.1.6.2-4
RLR	39017	3.25(10)	1	343	3	1	1	1	5.1.6.2-4
RN	10509	5.0(10) ⁻⁵	3.5	398	1	1	1	1	5.1.6.2-5
RNR	55182	5.0(10) ⁻⁵	3.5	398	1	1	1	1	5.1.6.2-5
RTH	Nа					See	Sec. 5	.1.6.5	
RW	26	1.48(10)	1	298	2	0.5	1	1	5.1.6.4-8
RWR	39007	1.48(10) ⁻³	1	298	2	0.5	1	1	5.1.6.4-8
RZ	83401				! 	See	Sec.5.	1.6.3	


TABLE 5.1.6-2 VARIABLE RESISTOR BASE FAILURE RATE ($\lambda_{\rm b}$) FACTORS

Style	MIL-R Spec	À	В	N _T	G	N s	н	J	λ Table b No.
RA	19	3.98(10) ⁻²	0.514	313	5.28	1.44	1	4.46	5.1.6. 6 -16
RK	39002	3.98(10) ⁻²	1.050	358	5.28	1.44	1	4.46	5.1.6.6-16
RJ	22097	1.90(10) ⁻²	0.445	358	7.3	2.69	1	2.46	5.1.6.7-5
RJR	39035	1.90(10) ⁻²	0.445	358	7.3	2.69	1	2.46	5.1.6.7-5
R.P	22	4.81(10) ⁻²	0.334	298	4.66	1.47	1	2.83	5.1.6.6-22
RQ	39023	$1.8(10)^{-2}$	1	343	7.4	2.55	1	3.6	5.1.6.7-16
RR	12934	7.35(10) ⁻²	1.03	358	4.45	2.74	1	3.51	5.1.6.6-17
RT	27208	6.2(10) ⁻³	1	358	5	1	1	1	5.1.6.6-5
RTR	39015	$6.2(10)^{-3}$	1	358	5	1	1	1	5.1.6.6-5
RV.	94	2.46(10) ⁻²	0.459	343	9.3	2.32	1	5.3	5.1.6.7-10
RVC	23285	2.57(10) ⁻²	1	398	7.9	2.45	1	4.3	5.1.6.7-15

RESISTORS

The ER resistor family generally has four qualification failure rate levels when tested per the requirements of the applicable ER specification. These qualification failure rate levels differ by a factor of ten. However, field data has shown that these failure rate levels differ by a factor about three, hence the \mathbb{I}_0 values have been set accordingly.

The use of the resistor models requires the calculation of the electrical power stress ratio, S = operating power/rated power, or per Section 5.1.6.8 for variable resistors. The models have been structured such that derating curves do not have to be used to find the base failure rate. The rated power for the S ratio is equal to the full nominal rated power of the resistor. For example, MIL-R-39008 has the following derating curve:

If a 1 watt resistor were being used in an ambient temperature of 90°C., the rated power for the S calculation would still be 1 watt, not 67% of 1 watt. Of course, while the derating curve is not needed to determine the base failure rate, it must still be observed as the maximum operating condition. To aid in determining if a resistor is being used within rated conditions, the base failure rate tables show entries up to certain combinations of stress and temperature. If a given operating stress and temperature point falls in the blank portion of the bas: failure rate table, the resistor is overstressed. Such misapplication would require an analysis of the circuit and operating conditions to bring the resistor within rated conditions.

RESISTORS

MIL-R-39008, RCR: MIL-R-11 RC

5.1.6.1 Composition Resistors

<u>SPECIFICATION</u>	STYLE	DESCRIPTION
MIL-R-39008	RCR	Insulated Fixed Composition Est. Rel.
MIL-R-11	RC	Insulated Fixed Composition

Part operating failure rate model (λ_p) :

 $\lambda_{p} = \lambda_{b} \times (\Pi_{E} \times \Pi_{R} \times \Pi_{Q}) \text{ (Failures/10}^{6} \text{ hours)}$

where the factors are shown in Tables 5.1.6.1-1 through -4.

TABLE 5.1.6.1-1

ENVIRONMENTAL MODE FACTORS

ENVIRONMENT	πε	ENVIRONMENT I	E _
GB 1.2 GMS 2.9 GMS 2.9 GF 8.3 MP 8.5 NS 8.5 NS 12 NU 13 NU 13 NU 13 NU 13 NU 14 ARW 3		AUT AUB AUA AUF MEF MFA USL CL	7 0 7 5 1 8.6 13 25 29
AIT AIB	3.5 5 3.5	TABLE 5.1.6. II _R , Resistance Fa	1-2 actor
AIA AIF AUC	6.5 5	Resistance Range (ohms)	ΠR
<u> </u>		Up to 100 K	1.0
		$> 0.1 M\Omega$ to $1 M\Omega$	1.1
		$>$ 1.0M Ω to 10 M Ω	1.6
		> 10MΩ	2.5

MIL-HDBK-217E RESISTORS

MIL-R-39008, RCR: MIL-R-11, RC

5.1.6.1 <u>Composition Resistors</u> (cont'd)

TABLE 5.1.6.1-3 Π_{Q} , Quality Factor

Failure Rate Level	ПQ
S	0.03
R	0.1
Р	0.3
М	1.0
MIL-R-11	5.0
LOWER	15.

RESISTORS

MIL-R-39008, RCR: MIL-R-11, RC

MIL-R-39008 & MIL-R-11 RESISTORS, FIXED, COMPOSITION, BASE FAIL-URE RATES, $\lambda_{\mbox{\scriptsize b}}$ TABLE 5.1.6.1-4:

TEMP			S, RATI	S, RATIO OF OPERATING TO RATED WATTAGE							
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0	
	00007	00000	00010	00013	.00015	.00017	.00020	.00024	.00028	.00033	
0	.00007	.00009	.00010	.00012							
10	.00011	.00013	.00015	.00018	.00021	.00025	.00030	.00036	.00043	.00051	
20	.00015	.00018	.00022	.00026	.00031	.00037	.00045	.00053	.00064	.00076	
30	.00022	.00026	.00031	.00038	.00046	.00055	.00066	.00079	.00096	.0011	
40	.00031	.00038	.00045	.00055	.00067	.00081	.00098	.0012	.0014	.0017	
50	.00044	.00054	.00066	.00080	.00098	.0012	.0014	.0018	.0021	.0026	
60	.00063	.00078	.00095	.0012	.0014	.0017	.0021	.0026	.0032	.0039	
70	.00090	.0011	.0014	.0017	.0021	.0026	.0032	.0039	.0048	.0059	
80	.0013	.0016	.0020	.0025	.0031	.0038	.0047	.0058			
90	.0018	.0023	.0029	.0036	.0045	.0056					
100	.0026	.0033	.0041	.0052	.0065						
110	.0038	.0047	.0060								
120	.0054										

RESISTORS

MIL-R-39017, RLR: MIL-R-55182, RNR MIL-R-22684, RL: MIL-R-10509, RN

5.1.6.2 Film Resistors

SPECIFICATION	STYLE	DESCRIPTION
MIL-R-39017 MIL-R-22684 MIL-R-55182 MIL-R-10509	RLR RL RN (R, C, or N) RN	Fixed Film, Insulated, Est. Rel. Fixed Film, Insulated Fixed Film, Est. Rel. Fixed Film, Insulated

Part operating failure rate model (λ_p):

$$\lambda_p = \lambda_b (\pi_E \times \pi_R \times \pi_Q)$$
 failures/10⁶ hours

where the factors are shown in Tables 5.1.6.2-1 through 5.1.6.2-5.

TABLE 5.1.6.2-1: ENVIRONMENTAL MODE FACTORS

ENVIRONMENT	^π E	ENVIRONMENT	π _E
G _B	1	A _{IB}	6.5
G _{MS}	1.2	AIA	6
G _F	2.4	AIF	9
G _M	7.8	Auc	7
Mp	8.8	A _{UT}	6.5
N _{SB}	4.2	AUB	15
N _S	4.7	A _{UA}	15
NU	14	A _{UF}	20
NH	14	S _F	0.4
N <mark>UU</mark>	15	M _{FF}	8.9
ARW	19	MFA	12
AIC	2.5	u'sL	26
AIT	3	M _L	30
4.1		շ՝	510

RESISTORS

MIL-R-39017, RLR: MIL-R-55182, RNR MIL-R-22684, RL: MIL-R-10509, RN

TABLE 5.1.6.2-2: $\pi_{\mbox{\scriptsize R}}$ RESISTANCE FACTOR

Resistance Range (ohms)	^π R
Up to 100K	1.0
>0.1M to 1M	1.1
>1.0M to 10M	1.6
>10M	2.5

TABLE 5.1.6.2-3: π_Q QUALITY FACTOR

Failure Rate Level	πQ
S	0.03
R	0.1
. Р	0.3
М	1.0
MIL-R-10509	5.0
MIL-R-22684	5.0
Lower	15.0

RESISTORS

MIL-R-39017, RLR: MIL-R-55182, RNR MIL-R-22684, RL: MIL-R-10509, RN

TABLE 5.1.6.2-4: MIL-R-22684 & MIL-R-39017 RESISTORS, FIXED, FILM (INSULATED) BASE FAILURE RATES, $\lambda_{\rm b}$

TEMP			S, RATI	O OF OPE	RATING T	O RATED	WATTAGE			
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.00059	.00066	.00073	.00080	.00089	.00098	.0011	.0012	.0013	.0015
10	.00063	.00070	.00078	.00086	.00096	.0011	.0012	.0013	.0014	.0016
20	.00067	.00075	.00084	.00093	.0010	.0012	.0013	.0014	.0016	.0018
30	.00072	.00081	.00090	.0010	.0011	.0013	.0014	.0016	.0018	.0020
40	.00078	.00087	.00098	.0011	.0012	.0014	.0016	.0017	.0019	.0022
50	.00084	.00095	.0011	.0012	.0014	.0015	.0017	.0019	.0022	.0024
60	.00092	.0010	.0012	.0013	.0015	.0017	.0019	.0022	.0024	.0027
70	.0010	.0011	.0013	.0015	.0017	.0019	.0021	.0024	.0027	.0031
80	.0011	.0013	.0014	.0016	.0018	.0021	.0024	.0027		
90	.0012	.0014	.0016	.0018	.0021	.0024	.0027			
100	.0013	.0015	.0018	.0020	.0023	.0027				
110	.0015	.0017	.0020	.0023	.0026					
120	.0017	.0020	.0023							
130	.0019	.0022								
140	.0022									

RESISTORS

MIL-R-39017, RLR: MIL-R-55182, RNR MIL-R-22684, RL: MIL-R-10509, RN

TABLE 5.1.6.2-5: MIL-R-10509 & MIL-R-55182 RESISTORS, FIXED, FILM, BASE FAILURE

RATES, λ_b

TEMP	1		S, RATI	O OF OPE	RATING T	O RATED	WATTAGE			
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.00061	.00067	.00074	.00082	.00091	.0010	.0011	.0012	.0014	.0015
10	.00067	.00074	.00082	.00091	.0010	.0011	.0012	.0014	.0015	.0017
20	.00073	.00082	.00091	.0010	.0011	.0013	.0014	.0016	.0017	.0019
30	.00080	.00090	.0010	.0011	.0013	.0014	.0016	.0017	.0019	.0022
40	.00088	.00099	.0011	.0012	.0014	.0016	.0017	.0020	.0022	.0025
50	.00096	.0011	.0012	.0014	.0015	.0017	.0020	.0022	.0025	.0028
60	.0011	.0012	.0013	.0015	.0017	.0019	.0022	.0025	.0028	.0032
70	.0012	.0013	.0015	.0017	.0019	.0022	.0025	.0028	.0032	.0036
80	.0013	.0014	.0016	.0019	.0021	.0024	.0028	.0031	.0036	.0041*
90	.0014	.0016	.0018	.0021	.0024	.0027	.0031	.0035	.0040	.0046
100	.0015	.0017	.0020	.0023	.0026	.0030	.0035	.0040	.0045	.0052
110	.0017	.0019	.0022	.0025	.0029	.0034	.0039	.0045	.0051	.0059
120	.0018	.0021	.0024	.0028	.0033	.0038	.0043	.0050	.0058	.0067
130	.0020	.0023	.0027	.0031	.0036	.0042	.0049	.0056	.0065	
140	.0022	.0026	.0030	.0035	.0040	.0047	.0054			
150	.0024	.0028	.0033	.0038	.0045					
160	.0026	.0031	.0036							
170	.0029									

^{*}Do not use MIL-R-10509 (Characteristic B) below this line. Points below are overstressed.

RESISTORS

MIL-R-11804, RD

Power Film

SPECIFICATIONSTYLEDESCRIPTIONMIL-R-11804RDPower Film

Part operating failure rate model (λ_p):

 $\lambda_p = \lambda_b (\pi_E \times \pi_R \times \pi_Q) \text{ failures/10}^6 \text{ hours}$

where the factors are shown in Tables 5.1.6.2-6 through 5.1.6.2-9.

TABLE 5.1.6.2-6: ENVIRONMENTAL MODE FACTORS

ENVIRONMENT	πE	ENVIRONMENT	^π E
G _B	1	A _{IB}	7 5.5
G _{MS} G _F	1.2 2.4	A _{IA} A _{IF}	10
G _M	8.8 11	A _{UC} A _{UT}	8 15
N _{SB}	5.1	A _{UB}	20 10
N _S N _U	5.1 15	A _{UA} A _{UF}	25
N _H	18 19	A _{UF} S _F M _{FF}	1 12
^N uu ^A rw	25	M _{FA}	16
A _{IC} A _{IT}	3.5 6	U _{SL} M _L	34 39
11		cĹ	660

RESISTORS

MIL-R-11804, RD

TABLE 5.1.6.2-7: π_Q QUALITY FACTOR

Failure Rate Level	™Q
MIL-SPEC	1.0
Lower	3.0

TABLE 5.1.6.2-8: π_R RESISTANCE FACTOR

Resistance Range (ohms)	π _Ř
10 to 100	1.0
>100 to 100K	1.2
>100K to 1M	1.3
>1M	3.5

RESISTORS

MIL-R-11804, RD

TABLE 5.1.6.2-9: MIL-R-11804 POWER FILM, RESISTOR BASE FAILURE RATES, $\lambda_{\rm b}$

TEMP	1		S, RATIO OF OPERATING TO RATED WATTAGE								
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0	
0	.0089	.0093	.0098	.010	.011	.012	.013	.014	.015	.016	
10	.0090	.0095	.010	.011	.011	.012	.013	.014	.015	.017	
20	.0092	.0097	.010	.011	.012	.013	.014	.015	.016	.017	
30	.0094	.0099	.010	.011	.012	.013	.014	.015	.017		
40	.0096	.010	.011	.011	.012	.013	.015	.016	.017		
50	.0098	.010	.011	.012	.013	.014	.015	.016			
60	.010	.011	.011	.012	.013	.014	.016	.017			
70	.010	.011	.012	.013	.014	.015	.016				
80	.010	.011	.012	.013	.014	.015	.017				
90	.011	.011	.012	.013	.015	.016					
100	.011	.012	.013	.014	.015	.017					
110	.011	.012	.013	.014	.016						
120	.012	.012	.014	.015	.016						
130	.012	.013	.014	.015	.017						
140	.012	.013	.014	.016							
150	.013	.014	.015	.017							
160	.013	.014	.016								
170	.014	.015	.016								
180	.014	.015									
190	.015	.016									
200	.015										
210	.016										

RESISTORS

MIL-R-83401, RZ

5.1.6.3 Resistor Network.

SPECIFICATION STYLE DESCRIPTION

MIL-R-83401 RZ Resistor Networks, Fixed, Film

Part operating failure rate model (λ_p) :

$$\lambda_{\rm p}$$
 = .00066 (N_R × $\Pi_{\rm T}$ × $\Pi_{\rm E}$ × $\Pi_{\rm Q}$) failures/10⁶ hours

where:

N_R is the number of film resistors in use (do not include resistors that are not used)

 $\Pi_{\mbox{\scriptsize T}}$ is the temperature factor, Table 5.1.6.3-1

 $\Pi_{\rm F}$ is the environmental factor, Table 5.1.6.3-2

 II_0 is the quality factor, Table 5.1.6.3-3

RESISTORS

MIL-R-83401, RZ

TABLE 5.1.6.3-1. TEMPERATURE FACTOR, Π_{T}^{*}

T _p (°C.)	т	T _p (^o c.)	ПТ	† _P (°C.)	Π_{T}
25	1.0	60	4.2	95	13.3
30	1.25	65	5.0	100	15.4
35	1.56	70	5.9	105	17.8
40	1.92	75	7.1	110	20.
45	2.4	80	8.3	115	24.
50	2.9	85	9.8	120	27.
55	3.5	90	11.4	125	31.

TABLE 5.1.6.3-2 ENVIRONMENTAL MODE FACTORS

ENV I RONMENT	πΕ	ENVIRONMENT	πЕ	7
G G G M Z Z Z Z Z Z Z	1 1.2 2.4 7.8 8.8 4.2 4.7 14 14	AUB AUF AUF SF MFF A W M C L C L	15 15 20 1 8.9 12 26 30 510	
ARW AIC AIT AIB AIF AUC AUT	19 2.5 3 6.5 6 9 6	TABLE 5.1.6.3-3. QUALITY LEVEL MIL-SPEC Lower	QUALITY	FACTOR, π_0

MIL-HDBK-217E RESISTORS

MIL-R-39005, RBR; MIL-R-93, RB

5.1.6.4 Wirewound Resistors.

SPECIFICATION	STYLE	DESCRIPTION
MIL-R-39005 MIL-R-93	RBR RB	Accurate Fixed Wirewound, ER Accurate Fixed Wirewound

Part operating failure rate model (λ_p) :

$$\lambda_p = \lambda_b (\Pi_E \times \Pi_R \times \Pi_Q) \text{ (failures/10}^6 \text{ hours)}$$

where the factors are shown in Tables 5.1.6.4-1 through -4.

TABLE 5.1.6.4-1

Environmental Mode Factors

ENVIRON-ΠΕ MENT GB Ī 1.2 GMS GF GM MP 2.4 9.8 12 5.2 5.2 15 18 20 27 9 15 20 15 20 20 25 40 25 45 1.5 12.0 17.0 36.0 41.0

610.0

TABLE 5.1.6.4-2

 $\Pi_{\rm R}$, Resistance Factor

Resistance Range (ohms)	Π _R
Up to 10K	1.0
>10 K to 100 K	1.7
>100 K to 1 M	3.0
>1 M	5.0

TABLE 5.1.6.4-3 Π_0 , Quality Factor

Failure Rate Level	π_{Q}
S	0.03
R	0.1
P	0.3
м	1.0
MIL-R-93	5.0
LOWER	15.

RESISTORS

MIL-R-39005, RBR: MIL-R-93, RB

TABLE 5.1.6.4-4: MIL-R-93 & MIL-R-39005 RESISTORS, FIXED, WIRE-WOUND (ACCURATE)

BASE FAILURE RATES, λ_b

TEMP			S, RAT	10 OF OP	ERATING T	TO RATED	WATTAGE			
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.0033	.0035	.0037	.0041	.0045	.0050	.0057	.0065	.0075	.0086
10	.0033	.0035	.0038	.0042	.0047	.0052	.0059	.0068	.0079	.0092
20	.0034	.0036	.0039	.0043	.0048	.0054	.0062	.0072	.0084	.0099
30	.0034	.0037	.0040	.0044	.0050	.0057	.0066	.0076	.0090	.011
40	.0035	.0038	.0042	.0046	.0052	.0060	.0070	.0082	.0097	.012
50	.0037	.0039	.0043	.0049	.0055	.0064	.0075	.0088	.011	.013
60	.0038	.0041	.0046	.0052	.0059	.0069	.0081	.0096	.012	.014
70	.0041	.0044	.0049	.0055	.0064	.0075	.0089	.011	.013	.016
80	.0044	.0048	.0053	.0061	.0070	.0083	.0099	.012	.015	.018
90	.0048	.0053	.0059	.0068	.0079	.0094	.011	.014	.017	.021
100	.0055	.0060	.0068	.0078	.0092	.011	.013	.016	.020	.026
110	.0065	.0071	.0080	.0093	.011	.013	.016	.020	.025	.032
120	.0079	.0087	.0099	.012	.014	.017	.021	.026	.033	.042
130	.010	.011	.013	.015	.018	.022	.028			
140	.014	.016								
	1									

RESISTORS

MIL-R-39007, RWR; MIL-R-26, RW

SPECIFICATION	STYLE	DESCRIPTION	
MIL-R-39007 MIL-R-26	RWR RW	Power Type, Fixed Wirewound, EF Power Type, Fixed Wirewound	\

Part operating failure rate model (λ_p) :

$$\lambda_{p} = \lambda_{b} (\pi_{E} \times \pi_{R} \times \pi_{Q})$$
 failures/10⁶ hours

where the factors are shown in Tables 5.1.6.4-5 through -8.

TABLE 5.1.6.4-5
Environmental Mode Factors

ENVIRON- MENT	* E
G G G G M N N N N N N N N N N N N N N N	1 1.1 1.5 8.3 11 4.9 4.9 14 16
ARW AIC AIT AIB AIA AIF AUC AUT AUB AUA AUF	23 1.5 3.5 7.5 7 10 5.6 7 15 15

ENVIRON- MENT	πE
SF	0.6
MFF	11
MFA	15
USL	31
MU	36
CL	610

TABLE 5.1.6.4-6 π_Q , Quality Factor

Failure Race Level	π _Q
S	J.03
a	0.1
?	0.3
Ħ	1.0
MIL-R-26	5.0
LOWER	15.

RESISTORS

MIL-R-39007, RWR: MIL-R-26, RW

TABLE 5.1.6.4-7: RESISTANCE FACTOR π_{R}

MIL-R-	Resistance Range (ohms)							
39007 Style	Up to 500	>500 to 1K	>1K to 5K	>5K to 7.5K	>7.5K to 10K	>10K to 15K	>15K to 20K	>20K
RWR 71	1.0	1.0	1.2	1.2	1.6	1.6	1.6	NA
RWR 74	1.0	1.0	1.0	1.2	1.6	1.6	NA	NA
RWR 78	1.0	1.0	1.0	1.0	1.2	1.2	1.2	1.6
RWR 80	1.0	1.2	1.6	1.6	NA	NA	NA	NA
RWR 81	1.0	1.6	NA	NA	NA	NA	NA	NA
RWR 82	1.0	1.6	1.6	NA	NA	NA	NA	NA
RWR 84	1.0	1.0	1.1	1.2	1.2	1.6	NA	NA
RWR 89	1.0	1.0	1.4	NA	NA	NA	NA	NA

RESISTORS

MIL-R-39007, RWR: MIL-R-26, RW

TABLE 5.1.6.4-7 RESISTANCE FACTOR, π_R (CONT'D)

MIL-R-		·	Resi	stance Rai	nge (ohms)	
26	Uр	>100	>1K	>10K	>100K	>150K
Style			to 10K	100K	150K	200K
Style RW 10 RW 11 RW 12 RW 13 RW 14 RW 15 RW 20 RW 21 RW 22 RW 23 RW 24 RW 29 RW 30 RW 31 RW 32 RW 33 RW 34 RW 35 RW 36 RW 37 RW 38 RW 37 RW 38 RW 37 RW 36 RW 37 RW 67 RW 68 RW 67 RW 67 RW 68 RW 67 RW 67 RW 68	to 100 1.001.0001.000000000000000000000000	to 1.001.0001.000000000000000000000000000	to	to	to	to
RW 78 RW 79 RW 80	1.0 1.0 1.0	1.0 1.0 1.2	1.0 1.4 1.6	1.6 NA NA		
RW 81	1.0	1.2	NA	NA.	\	4

RESISTORS

MIL-R-39007, RWR: MIL-R-26, RW

TABLE 5.1.6.4-8: MIL-R-26 & MIL-R-39007 RESISTORS, FIXED, WIRE-WOUND, (POWER

TYPE) BASE FAILURE RATES, λ_b

TEMP	l		S, RAT	10 OF OP	ERATING	TO RATED	WATTAGE	.		
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 200 210 220 230 240 250 260 270 280 290 310 310	.0042 .0045 .0048 .0052 .0056 .0061 .0066 .0072 .0078 .0085 .0093 .010 .011 .012 .014 .015 .017 .019 .021 .023 .026 .029 .033 .037 .042 .047 .054 .069 .079	.0051 .0055 .0060 .0065 .0071 .0077 .0084 .0092 .010 .011 .012 .014 .015 .017 .019 .021 .023 .026 .029 .033 .037 .042 .047	.0062 .0068 .0074 .0089 .0089 .0097 .011 .012 .013 .014 .016 .020 .025 .025 .028 .032 .036 .040 .046 .052 .059 .068 .077 .088 .10	.0076 .0084 .0092 .010 .011 .012 .014 .015 .017 .019 .021 .024 .027 .030 .034 .038 .043 .049 .056 .064 .074 .084	.0093 .010 .011 .013 .014 .016 .017 .020 .022 .025 .028 .031 .036 .040 .046 .052	.011 .013 .014 .016 .018 .020 .022 .025 .028 .032 .037 .042 .047	.014 .016 .017 .020 .022 .025 .032 .037 .042 .048 .055 .063	.017 .019 .022 .025 .028 .032 .042 .048 .055	.021 .024 .027 .031 .035 .040	.025 .029 .033 .

^{*}Do not use MIL-R-39007 Resistors below this line. Points below are overstressed.

RESISTORS

MIL-R-39009, RER: MIL-R-18546, RE

SPECIFICATION	STYLE	DESCRIPTION
MIL-R-39009	RER	Power Types, Chassis Mounted, Fixed Wirewound, ER
MIL-R-18546	.RE	Power Type, Chassis Mounted, Fixed Wirewound

Part operating failure rate model (λ_p) :

$$\lambda_{p} = \lambda_{b} \times (\pi_{E} \times \pi_{R} \times \pi_{Q})$$
 failures/10⁶ hours

where the factors are shown in Tables 5.1.6.4-9 through -12.

TABLE 5.1.6.4-9
Environmental Mode Factors

ENVIRON- MENT	πE
G G G M N N N N N N N N N N N N N N N N	1 1.2 2.4 8.3 11 4.9 4.9 14 16
ARW AIC AIT AIB AIA AIF AUC AUT AUB AUA AUF	23 2.5 3.5 7.5 7 10 5.6 7 15 15 20

ENVIRON- MENT	πE
SF	1
MFF	11
MFA	15
USL	31
MI	36
CL	610

TABLZ 5.1.6.4-10 TQ, Quality Factor

Failure Rate Level	πq
S	0.03
a	0.1
P	0.3
Ж	1.0
MIL-R-18546	5.0
LOWER	15.

RESISTORS

MIL-R-39009, RER: MIL-R-18546, RE

Table 5.1.6.4-11 π_R Factor

Resistance Factor, $\pi_{_{\rm R}}$, for Characteristic G of MIL-R-18546 and Inductively Wound Styles of MIL-R-39009

			Resistance Range (ohms)						
Style	Rated Power (W)	Up to 100	>100 to 500	>500 to 1K	>1K to 5K	>5K to 10K	>10K co 20K	20K	
RE 60 RER 60	5	1.0	1.0	1.2	1.2	1.6	NA	NA	
RE 65 RER 65	10	1.0	1.0	1.0	1.2	1.6	N A	ИA	
RE 70 RER 70	20	1.0	1.0	1.0	12	1.2	1.6	NA	
RE 75 RER 75	30	1.0	1.0	1.0	1.0	1,1	1.2	1.6	
RE 77	75	1.0	1.0	1.0	1.0	1.0	1.2	1.€	
RE 80	120	1.0	1.0	1.0	1.0	1.0	1.2	1.6	

Resistance Factor, $\pi_{\rm R}$, for Characteristic N of MIL-R-18546 and Noninductively Wound Styles of MIL-R-39009

		Resistance Range (ohms)						
Style	Rated Power (W)	Up to 100	>100 to 500	>500 to 1K	>1K to 5K	>5K to 10K	>10K to 20K	>20K
RE 60 PER 40	5	170	1.0	1.2	1.6	NA	NA	NA
RE 65 RER 45	10	1.0	1.0	1.2	1.6	NA	NA	N A
RE 70 RER 50	20	1.0	1.0	1.0	1.2	1.6	NA	NA
RE 75 RER 55	30	1 0	1.0	1.0	1.1	1.2	1.4	N A
RE 77	75	1.0	1.0	1.0	1.0	1.2	1:6	NA
RE 80	120	1.0	1.0	1.0	1.0	1.1	1.4	NA

RESISTORS

MIL-R-39009, RER: MIL-R-18546, RE

MIL-R-18546 & MIL-R-39009 RESISTOR, FIXED, WIREWOUND (POWER TYPE, CHASSIS MOUNTED) BASE FAILURE RATES, $\lambda_{\rm b}$ TABLE 5.1.6.4-12:

TEMP			S, RATI	0 OF OPE	ERATING	TO RATED	WATTAGE		4	
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
			, , , , , , , , , , , , , , , , , , ,							
0	.0021	.0026	.0032	.0040	.0049	.0061	.0076	.0094	.012	.014
10	.0023	.0029	.0036	.0045	.0056	.0070	.0087	.011	.014	.017
20	.0025	.0032	.0040	.0051	.0064	.0080	.010	.013	.016	.020
30	.0028	.0035	.0045	.0057	.0072	.0092	.012	.015	.019	
40	.0031	.0039	.0050	.0064	.0082	.011	.013	.017	.022	
50	.0034	.0044	.0056	.0072	.0093	.012	.016	.020	.026	
60	.0037	.0048	.0063	.0082	.011	.014	.018	.023		
70	.0041	.0054	.0070	.0092	.012	.016	.021	.027		
80	.0045	.0060	.0079	.010	.014	.018	.024			
90	.0050	.0066	.0088	.012	.016	.021	.028			
100	.0055	.0073	.0098	.013	.018	.024	.032			
110	.0060	.0081	.011	.015	.020	.027				
120	.0066	.0090	.012	.017	.023	.031				
130	.0073	.010	.014	.019	.026					
140	.0081	.011	.015	.021	.030					
150	.0089	.012	.017	.024	.034					
160	.0098	.014	.019	.027						
170	.011	.015	.022	.031						
180	.012	.017	.024				>			
190	.013	.019	.027							
200	.014	.021	.030							
210	.016	.023								
220	.017	.026								
230	.019									
240	.021									
250	.023									
	I									

RESISTORS

MIL-T-23648, RTH

5.1.6.5 Thermistors

SPECIFICATION STYLE DESCRIPTION

MIL-T-23648 RTH Bead, Disk and Rod Type

The predicted failure rate is given as follows:

$$\lambda_p = \lambda_b \pi_E \pi_Q$$

where

 λ_h = .021 for bead type, style 24, 26, 28, 30, 32, 34, 36, 38, 40

= .065 for disk type, style 6, 8, 10

= .105 for rod type, style 12, 14, 16, 18, 20 22, 42

 π_F = values in Table 5.1.6.5-1

 π_0 = 1 for MIL-SPEC parts;

= 15 for lower quality parts.

TABLE 5.1.6.5-1: ENVIRONMENTAL MODE FACTORS

ENVIRONMENT	^π E	ENVIRONMENT	π _E
G _R	ĵ	A _{IB}	21
G _B G _{MS}	1.5	AIA	17
G _F	4.8	A _{IF}	42
G _M	25	Auc	6.4
M _P	17	A _{UT}	12
N _{SB}	7.9	A _{UB}	29
NS	14	A _{UA}	24
NU	19	A _{UF}	59
N _H	25	S _F	1
N _{UU}	27	M _{FF}	17
A _{RW}	37	M _{FA}	23
AIC	4.8	ป _{SL}	49
A _{IT}	8.6	M_	57
		c_{t}^{-}	950

RESISTORS

MIL-R-39015, RTR: MIL-R-27208, RT

5.1.6.6 Variable Resistor, Wirewound

SPECIFICATION	STYLE	DESCRIPTION
MIL-R-39015	RTR	Variable Lead Screw Activated
MIL-R-27208	RT	Wirewound, Established Reliability Variable Lead Screw Activated Wirewound

Part operating failure rate model ($\lambda_{\rm p}$):

 $\lambda_p = \lambda_b \times \pi_{TAPS} (\pi_E \times \pi_R \times \pi_Q \times \pi_V) \text{ failures/10}^6 \text{ hours}$

where the factors are shown in Tables 5.1.6.6-1 through 5.1.6.6-5 and 5.1.6.8-5.

TABLE 5.1.6.6-1: ENVIRONMENTAL MODE FACTORS

ENVIRONMENT	^π E	ENVIRONMENT	πE
G _B	1	A _{IB}	8
G _{MS}	1.2	AIA	6
G _F	2.4	AIF	10
G _M	9.8	A _{UC}	3
M _P	15	A _{UT}	8
N _{SB}	5.7	A _{UB}	15
N _S	5.7	A _{UA}	10
N _U	13	A _{UF}	20
NH	23	S _F	1
N _{UU}	25	S _F M _{FF}	15
A _{RW}	33	M _{FA}	21
A _{IC}	2.5	U _{SL}	45
A _{IT}	4	M _L	51
		ר <u>ר</u>	870

RESISTORS

MIL-R-39015, RTR: MIL-R-27208, RT

TABLE 5.1.6.6-2: π_R RESISTANCE FACTOR

Resistance Range (ohms)	πR
10 to 2K	1.0
>2K to 5K	1.4
>5K to 20K	2.0

TABLE 5.1.6.6-3: π_Q QUALITY FACTOR

Failure Rate Level	πQ
S R P M MIL-R-27208 Lower	.02 .06 .2 .6 3.

TABLE 5.1.6.6-4: π_V VOLTAGE FACTOR

Ratio of Applied* Voltage to Rated Voltage	πV
0 to 0.1	1.10
>0.1 to 0.2	1.05
>0.2 to 0.6	1.00
>0.6 to 0.7	1.10
>0.7 to 0.8	1.22
>0.8 to 0.9	1.40
>0.9 to 1.0	2.00

*^VApplied → RP Applied

R = total pot, resistance

 V_{Rated} = 40v for RT 26 and 27

 V_{Rated} = 90v for RTR 12, 22 and 24; RT 12 and 22

RESISTORS

MIL-R-39015, RTR: MIL-R-27208, RT

MIL-R-39015 & MIL-R-27208 RESISTORS, VARIABLE, WIREWOUND (LEAD SCREW ACTUATED) BASE FAILURE RATES, $\lambda_{\mbox{\scriptsize b}}$ TABLE 5.1.6.6-5:

(See Section 5.1.6.8 for stress ratio calculation)

TEMP	l		S, RAT	IO OF OP	ERATING	TO RATED	WATTAGE			
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.0089	.0098	.011	.012	.013	.015	.016	.018	.020	.022
10	.0094	.010	.012	.013	.014	.016	.017	.019	.021	.024
20	.010	.011	.012	.014	.015	.017	.019	.021	.024	.026
30	.011	.012	.013	.015	.017	.019	.021	.023	.026	.029
40	.012	.013	.015	.016	.018	.021	.023	.026	.029	.033
50	.013	.014	.016	.018	.020	.023	.026	.029	.033	.037
60	.014	.016	.018	.020	.023	.026	.029	.033	.037	.042
70	.016	.018	.020	.023	.026	.030	.033	.038	.043	.049
80	.018	.020	.023	.026	.030	.034	.039	.044	.050	.057
90	.021	.024	.027	.031	.035	.040	.046	.052	.060	
100	.024	.028	.032	.037	.042	.048	.055			
110	.029	.033	.038	.044	.051	.058				
120	.035	.041	.047	.054						
130	.044	.051	.059							
140	.056				•					

RESISTORS

MIL-R-12934, RR

Wirewound, Precision

SPECIFICATION STYLE DESCRIPTION

MIL-R-12934 RR Precision Wirewound

Part operating failure rate model (λ_p):

 $\lambda_{\rm p}$ = $\lambda_{\rm b}$ x $\pi_{\rm TAPS}$ x $\pi_{\rm Q}$ ($\pi_{\rm R}$ x $\pi_{\rm V}$ x $\pi_{\rm C}$ x $\pi_{\rm E}$) failures/10⁶ hours where the factors are shown in Tables 5.1.6.6-6 through 5.1.6.6-11 and 5.1.6.8-5.

TABLE 5.1.6.6-6: ENVIRONMENTAL MODE FACTORS

ENVIRONMENT	π _E	ENVIRONMENT	π _E
G _B	7	A _{IB}	10
G _{MS}	1.2	AIA	9.5
G _{MS} G _F	2.4	A _{IF}	. 15
G _M	11	A _{UC}	10
М _Р	24	A _{UT}	10
N _{SB}	8.4	A _{UB}	20
N _S	8.4	A _{UA}	15
N _U	14	A _{UF}	20
NH	37	S _F	1
N _{UU}	39	M _{FF}	24
A _{RW}	53	M _{FA}	34
A _{IC}	6.5	u _{SL}	71
A _{IT}	7.5	M,	81
		c L	1400

TABLE 5.1.6.6-7: π_0 QUALITY FACTOR

Failure Rate Level	π _Q
MIL-SPEC	2.5
Lower	5.0

RESISTORS

MIL-R-12934, RR

TABLE 5.1.6.6-8: π_{C} CONSTRUCTION CLASS FACTOR

Construction Class*	πс
RR09A2A9J103 3 4	2.0 1.0 3.0
5	1

^{*}Sample type designation to show how construction class can be found.

TABLE 5.1.6.6-9: $\pi_{\mbox{\scriptsize R}}$ RESISTANCE FACTOR

Resistance Range (ohms)	πŖ
100 to 10K	1.0
>10K to 20K	1.1
>20K to 50K	1.4
>50K to 100K	2.0
>100K to 200K	2.5
>200K to 500K	3.5

TABLE 5.1.6.5-10: π_V VOLTAGE FACTOR

Ratio of Applied Voltage to Rated Voltage*	πV
0 to 0.1	1.10
>0.1 to 0.2	1.05
>0.2 to 0.6	1.00
>0.6 to 0.7	1.10
>0.7 to 0.8	1.22
>0.8 to 0.9	1.40
>0.9 to 1.0	2.00

*VApplied → RP Applied

R = total pot, resistance

 V_{Rated} = 250v for RR0900, RR1100, RR1300, RR2000, RR3000, RR3100, RR3500

 V_{Rated} = 423v for RR3600, RR3700

 V_{Rated} = 500v for RR1000, RR1400, RR2100, RR3800, RR3900

RESISTORS

MIL-R-12934, RR

TABLE 5.1.6.6-11: MIL-R-12934 POTENTIOMETERS, WIREWOUND PRECISION BASE FAILURE

RATES, λ_b

(See Section 5.1.6.8 for stress ratio calculation)

TEMP	S, RATIO OF OPERATING TO RATED WATTAGE									
(°C)	. 1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	. 10	. 11	.11	. 12	. 12	.12	. 13	. 13	. 14	. 14
10	.11	.11	. 12	.12	. 13	. 14	. 14	. 15	. 15	. 16
20	. 12	. 12	. 13	. 14	. 14	. 15	. 16	. 16	. 17	. 18
30	. 13	. 13	. 14	. 15	. 16	. 16	. 17	.18	. 19	.20
40	. 14	. 15	. 15	. 16	. 17	. 18	.20	.21	.22	.23
50	. 15	. 16	. 17	. 18	.20	.21	.22	.24	.26	.27
60	. 17	. 18	. 19	.21	.22	.24	.26	.28	.30	.32
70	. 19	.20	.22	.24	.26	.28	.30	.33	.36	.39
80	.21	.23	.25	.28	.30	.33	.36	.40	.43	.48
90	.24	.27	.30	.33	.36	.40	.44	.49	.54	
100	.28	.31	.35	.39	.44	.49	.54			
110	.33	.38	.42	.48	.54	.61				
120	.40	.45	.52	.59		•				
130	.49	.56	.65							
140	.60									

RESISTORS

MIL-R-19, RA & MIL-R-39002, RK

WIREWOUND, SEMIPRECISION

SPECIFICATION	STYLE	DESCRIPTION
MIL-R-19	RA	Semiprecision
MIL-R-39002	RK	Semiprecision

(Note: MIL-R-39002 is not an established reliability potentiometer.) Part operating failure rate model (λ_D) :

$$\lambda_p = \lambda_b \times \pi_{TAPS} (\pi_R \times \pi_V \times \pi_Q \times \pi_E)$$
 (failures/10⁶ hours)

where the factors are shown in Tables 5.1.6.6-12 through -16 and 5.1.6.8-5

TABLE 5.1.6.6-12
Environmental Mode Factors

ENVIRON- MENT	π _E *
B S F. M. D. R G G G M. N. N. D. H. D N. N. N	1 1.2 2.4 16 17 7 7 7 N/A 27 29
ARW AIC AIT AIB AIA AUC AUT AUB AUA AUF	38 6.5 7.5 10 9.5 15 N/A N/A N/A N/A

ENVIRON- MENT	"E *
s f f f d l l l l l l l l l l l l l l l l	1 N/A N/A N/A N/A

*N/A: Not normally used.

TABLE 5.1.6.6-13 π_Q , Quality Factor

Failure Rate Level	π ₀
MIL-SPEC	2.0
LOWER	4.0

RESISTORS

MIL-R-19, RA: MIL-R-39002, RK

TABLE 5.1.6.6-14: π_{R} RESISTANCE FACTOR

Resistance Range (ohms)	^π R
10 to 2K	1.0
>2K to 5K	1.4
>5K to 10K	2.0

TABLE 5.1.6.6-15: π_V VOLTAGE FACTOR

Ratio of Applied Voltage to Rated Voltage*	π _V
0 to 0.1	1.10
>0.1 to 0.2	1.05
>0.2 to 0.6	1.00
>0.6 to 0.7	1.10
>0.7 to 0.8	1.22
>0.8 to 0.9	1.40
>0.9 to 1.0	2.00

*^VApplied =√RP Applied

R = total pot, resistance

 V_{Rated} = 50v for RA10

= 75v for RA20X-XC, F

= 130v for RA30X-XC, F

= 175v for RA20X-XA

= 275v for RK09

= 320v for RA30X-XA

RESISTORS

MIL-R-19, RA: MIL-R-39002, RK

TABLE 5.1.6.6-16: MIL-R-19 & MIL-R-39002 VARIABLE SEMIPRECISION WIREWOUND

RESISTORS, BASE FAILURE RATES, λ_{b}

(See Section 5.1.6.8 for stress ratio calculation)

TEMP			S, RAT	IO OF OP	ERATING	TO RATED	WATTAGE			
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.055	.059	.063	.067	.072	.077	.083	.089	.095	. 10
10	.058	.063	.069	.075	.081	.088	.095	. 10	.11	. 12
20	.063	.069	.076	.084	.092	.10	.11	. 12	. 13	. 15
30	.069	.077	.086	.095	.11	. 12	.13	. 15	. 17	. 19
40	.076	.086	.098	.11	. 13	. 14	. 16	. 18	.21	.24
50	.085	.098	.11	. 13	. 15	.18	.20	.24	.27	.32
60	.096	.11	. 13	.16	. 19	.22	.26	.31	.37	.44
70	.11	. 13	, 16	.20	.24	.29	.35	.43	.52	.63
80	. 13	. 16	.20	.25	.31	.39	.48	.60	.75	.93
90	. 16	.20	.26	.33	.42	.54	.69	.89	1.1	
100	. 19	.25	.34	.45	.59	.78	1.0			
110	.24	.33	.45	.62	. 85					
120	.31	.45								
130	.42									

RESISTORS

MIL-R-22, RP

WIREWOUND, POWER

SPECIFICATIONSTYLEDESCRIPTIONMIL-R-22RPHigh Power

Part operating failure rate model (λ_p) :

 $\lambda_{\rm p} = \lambda_{\rm b} \times \pi_{\rm TAPS} \times \pi_{\rm Q} (\pi_{\rm R} \times \pi_{\rm V} \times \pi_{\rm C} \times \pi_{\rm E})$ (failures/10⁶ hours) where the factors are shown in Tables 5.1.6.6-17 through -22 and 5.1.6.8-5.

TABLE 5.1.6.6-17
Environmental Mode Factors

ENVIRON- MENT	7 ∃ ★
B Mr. M. p. cl G G G M. n. n. n. n. n n. n. n	1 1.3 3.0 16 17 7 7 N/A 27
ARW AIT AIT AIF AUT AUT AUA AUF	38 6.5 7.5 10 9.5 15 N/A N/A N/A N/A

ENVIRON- MENT	π _E *
SF	1
MFF	N/A
MFA	N/A
USL	N/A
M	N/A
C	N/A

*N/A: Not normally used.

TABLE 5.1.5.6-18 π_0 , Quality Factor

Failure Race Level	π _Q
MIL-SPEC	2.0
Lower	4.0

RESISTORS

MIL-R-22, RP

TABLE 5.1.6.6-19: π_R RESISTANCE FACTOR

Resistance Range (ohms)	^π R
1 to 2K	1.0
>2K to 5K	1.4
>5K to 10K	2.0

TABLE 5.1.6.6-20: π_V VOLTAGE FACTOR

Ratio of Applied Voltage to Rated Voltage*	πV
0 to 0.1	1.10
>0.1 to 0.2	1.05
>0.2 to 0.6	1.00
>0.6 to 0.7	1.10
>0.7 to 0.8	1.20
>0.8 to 0.9	1.40
>0.9 to 1.0	2.00

*VApplied =√RP Applied

R = total pot, resistance

 V_{Rated} = 250v for RP06, RP10

= 500v for others

TABLE 5.1.6.6-21: $\pi_{\mbox{\scriptsize C}}$ CONSTRUCTION CLASS FACTOR

CONSTRUCTION CLASS	STYLE	^π C
Enc losed	RPO7, RP11, RP16	2.0
Unenclosed	All other styles are unenclosed.	1.0

RESISTORS

MIL-R-22, RP

TABLE 5.1.6.6-22: MIL-R-22 POWER WIREWOUND RESISTORS, BASE FAILURE RATES, λ_b (See Section 5.1.6.8 for stress ratio calculation)

TEMP			S, RAT	IO OF OP	ERATING	TO RATED	WATTAGE			
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.064	.069	.074	.079	.084	.090	.097	. 10	.11	. 12
10	.067	.073	.078	.085	.091	.098	.11	.11	. 12	. 13
20	.071	.077	.084	.091	.099	.11	. 12	. 13	. 14	. 15
30	.076	.083	.091	.099	.11	. 12	. 13	. 14	. 16	
40	.081	.089	.099	.11	. 12	. 13	. 15	. 16		
50	.087	.097	.11	. 12	. 14	. 15	. 17			
60	.095	. 11	. 12	. 14	. 15	. 17				
70	. 10	. 12	. 14	. 15	. 18					
80	. 12	. 13	. 15	. 18						
90	.13	. 15	.18							
100	. 15	. 17								
110	. 17									
120	.20									

RESISTORS

MIL-R-22097, RJ: MIL-R-39035, RJR

5.1.6.7 <u>Variable Nonwirewound Resistors</u> Nonwirewound Trimmer Resistors

SPECIFICATION	STYLE	DESCRIPTION
MIL-R-22097	R.J	Trimmer
MIL-R-39035	RJR	Trimmer, ER

Part operating failure rate model (λ_p) :

$$\lambda_{\rho} = \lambda_{b} \times \pi_{TAPS} (\pi_{R} \times \pi_{V} \times \pi_{Q} \times \pi_{E})$$
 (failures/10⁶ hours)

where the factors are shown in Tables 5.1.6.7-1 through -5 and 5.1.6.8-5.

TABLE 5.1.6.7-1
Environmental Mode Factors

ENVIRON- MENT	π <u>ε</u>
G B M P B B M N N N N N N N N N N N N N N N N N	1 1.2 2.9 11 18 5.7 5.7 15 27
ARW AIT AIT AIF AUT AUT AUB AUF	39 3 6 7 4.5 10 7.5 15 15

ENVIRON- MENT	T (E)
SF MFFA MFA .ML .ML	1 18 25 53 61 1,000

TABLE 5.1.6.7-2 π_Q , Quality Factor

Failure Rate Level	^π Q
s	.02
R	.06
P	.2
Ж	.6
MIL-R-22097	3.
LOWER	10.

RESISTORS

MIL-R-22097, RJ: MIL-R-39035, RJR

TABLE 5.1.6.7-3: π_R RESISTANCE FACTOR

Resistance Range (ohms)	π _R
10 to 50K	1.0
>50K to 100K	1.1
>100K to 200K	1.2
>200K to 500K	1.4
>500K to 1M	1.8

TABLE 5.1.6.7-4: π_V VOLTAGE FACTOR

Ratio of Applied Voltage to Rated Voltage*	π _V
0 to 0.8	1.00
>0.8 to 0.9	1.05
>0.9 to 1.0	1.20

*VApplied ■ Applied

R = total pot, resistance

 V_{Rated} = 200v for RJ & RJR26; RJ & RJR50

= 300v for all others

RESISTORS

MIL-R-22097, RJ: MIL-R-39035, RJR

TABLE 5.1.6.7-5: MIL-R-22097 & MIL-R-39035 NONWIREWOUND TRIMMER RESISTORS, BASE

FAILURE RATES, λ_b

(See Section 5.1.6.8 for stress ratio calculation)

TEMP			S, RAT	IO OF OP	ERATING	TO RATED	WATTAGE			
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.021	.022	.023	.023	.024	.025	.026	.027	.028	.029
01	.021	.022	.023	.024	.025	.026	.027	.028	.030	.031
20	.022	.023	.024	.025	.026	.027	.029	.030	.031	.033
30	.023	.024	.025	.026	.028	.029	.030	.032	.033	.035
40	.024	.025	.026	.028	.029	.031	.032	.034	.036	.038
50	.025	.026	.028	.029	.031	.033	.035	.037	.039	.041
60	.026	.028	.030	.031	.033	.036	.038	.040	.043	.045
70	.028	.030	.032	.034	.036	.039	.042	.044	.047	.050
80	.030	.033	.035	.038	.040	.043	.046	.050	.053	.057
90	.034	.036	.039	.042	.045	.049	.053	.057	.061	
100	.038	.041	.044	.048	.052	.056	.061			
110	.043	.047	.051	.055	.060	.066				
120	.050	.055	.060	.066						
130	.060	.066	.073							
140	.074									

RESISTORS

MIL-R-94, RV

Variable Composition Resistors

SPECIFICATION STYLE DESCRIPTION
MIL-R-94 RV Low Precision

Part operating failure rate model (λ_p) :

 $\lambda p = \lambda_b \times \pi_{TAPS}(\pi_R \times \pi_V \times \pi_Q \times \pi_E) \quad \text{failures/10}^6 \text{ hours}$ where the factors are shown in Tables 5.1.6.7-6 through -10 and 5.1.6.8-5.

TABLE 5.1.6.7-6
Environmental Mode Factors

ENVIRON- MENT	πE
m Mr. Mp. IQ G G G M N N N N N N N N N N N N N N N	1.1 1.3 17 21 33 21 32 34
ARW AIC AIT AIA AIA AIC AUC AUT AUB AUA AUF	46 35 55 55 55 74 46 66 9

ENVIRON- MENT	⁷⁷ E
6 등 등 의 기 기 6 등 등 의 기 기 6 등 등 의 기 기	1 21 29 62 71 1,200

TABLE 5.1.6.7-7

π₀, Quality Factor

Failure Race Level	πQ
MIL-SPEC	2.5
LOWER	5.0

RESISTORS

MIL-R-94, RV

TABLE 5.1.6.7-8: π_R RESISTANCE FACTOR

Resistance Range (ohms)	^π R
50to 50K	1.0
>50K to 100K	1.1
>100K to 200K	1.2
>200K to 500K	1.4
>500K to 1M	1.8

TABLE 5.1.6.7-9: π_V VOLTAGE FACTOR

Ratio of Applied Voltage to Rated Voltage*	π _V
0 to 0.8	1.00
>0.8 to 0.9	1.05
>0.9 to 1.0	1.20

*VApplied =√RP Applied

R = total pot, resistance

V_{Rated} = 500v for RV4X--XA&XB

= " " 2RV7X--XA&XB

= 350v for RV2X--XA&XB

" RV4X--XA&XB

" " RV5X--XA&XB

" " RV6X -- XA&XB

= 250v for RV1X--XA&XB

= 200v for all other types

RESISTORS

MIL-R-94, RV

TABLE 5.1.6.7-10: MIL-R-94 VARIABLE COMPOSITION RESISTOR, BASE FAILURE RATES, $\lambda_{\rm b}$ (See Section 5.1.6.8 for stress ratio calculation)

TEMP	N		S, RAT	IO OF OP	ERATING	TO RATED	WATTAGE			
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.027	.028	.030	.031	.032	.034	.035	.037	.038	.040
10	.028	.029	.031	.033	.034	.036	.038	.040	.042	.045
20	.029	.031	.033	.035	.037	.040	.042	.045	.048	.051
30	.031	.033	.036	.038	.041	.045	.048	.052	.056	.060
40	.033	.036	.039	.043	.047	.051	.056	.061	.067	.073
50	.036	.039	.044	.049	.054	.060	.067	.074	.082	.091
60	.039	.045	.050	.057	.065	.073	.083	.094	.11	. 12
70	.045	.052	.060	.069	.080	.093	.11	. 12	. 14	. 17
80	.053	.063	.074	.088	.10	. 12	. 15	. 17		
90	.065	.079	.096	. 12	.14	. 17				
100	.084	.11	.13	. 16						
110	.11	. 15								

RESISTORS

MIL-R-23285, RVC: MIL-R-39023, RQ

Variable Film and Precision Resistors

SPECIFICATION	STYLE	DESCRIFTION
MIL-R-39023	RQ	Nonwirewound, Precision
MIL-R-23285	RVC	Film

Part operating failure rate model (λ_p) :

 $\lambda p = \lambda_b \times \pi_{TAPS}(\pi_R \times \pi_V \times \pi_Q \times \pi_E)$ (failures/10⁶ hours) where the factors are shown in Tables 5.1.6.7-11 through -16 and 5.1.6.8-5.

TABLE 5.1.6.7-11

Environmental Mode Factors

ENVIRON- MENT	πE
B M Fr. M. Pr. B G G G M N N N N N N N N N N N N N N N N	1.2 2.9 11 18 7.2 7.2 15 27
ARW AIC AIT AIA AIF AUC AUT AUB AUA AUF	39 5.5 6.5 6.5 150 20 30 20 40

ENVIRON- MENT	# E
SF MFF MFA USL MCL	1 18 25 53 61 1,000

TABLE 5.1.6.7-12

 π_0 , Quality Factor

Failure Rate Level	^π Q
MIL-SPEC	2
Lover	4

RESISTORS

MIL-R-23285, RVC: MIL-R-39023, RQ

TABLE 5.1.6.7-13: π_R RESISTANCE FACTOR

Resistance Range (ohms)	^π R
to 10K	1.0
>10K to 50K	1.1
>50K to 200K	1.2
>200K to 1M	1.4
>1M	1.8

TABLE 5.1.6.7-14: π_V VOLTAGE FACTOR

Ratio of Applied Voltage to Rated Voltage*	π _V
0 to 0.8	1.00
>0.8 to 0.9	1.05
>0.9 to 1.0	1.20

*VApplied =VRP Applied

R = total pot, resistance

 V_{Rated} = 250**V** for RQ090, 110, 150, 200, 300

= 500**V** for RQ100, 160, 210

= 350V for RVC5, 6

RESISTORS

MIL-R-23285, RVC

TABLE 5.1.6.7-15: MIL-R-23285 VARIABLE FILM RESISTORS, BASE FAILURE RATES, $\lambda_{\rm b}$ (See Section 5.1.6.8 for stress ratio calculation)

TEMP			S, RAT	IO OF OP	ERATING	TO RATED	WATTAGE			
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.028	.029	.031	.032	.033	.035	.036	.037	.039	.041
10	.029	.030	.032	.033	.035	.037	.038	.040	.042	.044
20	.030	.031	.033	.035	.037	.039	.041	.044	.046	.049
30	.031	.033	.035	.037	.040	.042	.045	.048	.051	.055
40	.032	.035	.037	.040	.043	.046	.050	.054	.058	.062
50	.034	.037	.040	.044	.047	.052	.056	.061	.066	.072
60	.036	.040	.044	.048	.053	.058	.064	.071	.078	.086
70	.039	.044	.049	.054	.060	.067	.075	.084	.093	.10
80	.043	.048	.055	.062	.070	.079	.090	.10	.11	.13
90	.048	.055	.063	.073	.083	.096	.11	.13	.15	. 17
100	.055	.064	.075	.087	. 10	. 12	. 14	. 16	. 19	.22
110	.064	.076	.091	.11	. 13	. 15	.18	.22	.26	.31
120	.077	.094	.11	.14	. 17	.21	.25	.30	.37	.45
130	.096	. 12	. 15	. 19	.23	.29	.36	.44	.55	
140	.12	. 16	.20	.26	.33	.42	.53			
150	. 17	.22	.29	.38	.50					
160	.24	.33	.44							
170	.37									

RESISTORS

MIL-R-39023, RQ

TABLE 5.1.6.7-16: MIL-R-39023 VARIABLE NONWIREWOUND PRECISION RESISTORS, BASE FAILURE RATES, λ_{h}

(See Section 5.1.6.8 for stress ratio calculation)

TEMP	1		S, RAT	IO OF OP	ERATING	TO RATED	WATTAGE	•		
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.023	.023	.024	.025	.026	.027	.028	.030	.031	.032
10	.024	.025	.026	.027	.029	.030	.031	.033	.034	.036
20	.026	.027	.029	.030	.032	.033	.035	.037	.039	.041
30	.028	.030	.032	.034	.036	.038	.040	.042	.045	.047
40	.032	.034	.036	.039	.041	.044	.047	.050	.053	.057
50	.037	.039	.042	.046	.049	.053	.057	.061	.065	.070
60	.044	.047	.051	.055	.060	.065	.070	.076	.083	.090
70	.053	.058	.064	.070	.076	.084	.091	. 10	.11	. 12
80	.068	.076	.083	.092	. 10	.11	. 12	. 14		
90	.092	. 10	.11	. 13	. 14	. 16				
100	.13	. 15	. 17	. 19						
110	.20	.23								

MIL-HDBK-217E RESISTORS

5.1.6.8 <u>Calculation for S, Taps and Ganging.</u>

For potentiometers connected as rheostats, use Table 5.1.6.8-1.

For potentiometers connected conventionally, use Table 5.1.6.8-2.

TABLE 5.1.6.8-1

Calculation of S for Rheostats

The stress ratio (S) is defined as:

$$S = \frac{(I_{\text{op max}})^2}{\pi_{\text{ganged}} (I_{\text{max rated}})^2}$$

where:

I is the maximum current which will be passed through the rheostat in the circuit.

I \max rated is the current rating of the potentiometer.

If current rating not given, use:

$$I_{\text{max rated}} = \sqrt{P_{\text{rated}}/R_{P}}$$

where:

Prated is power rating of potentiometer.

 $\boldsymbol{R}_{\boldsymbol{p}}$ is potentiometer resistance.

 π_{ganged} is factor to correct power rating to account for multiple potentiometers ganged on a common shaft, as obtained from Table 5.1.6.8-4

RESISTORS

TABLE 5.1.6.8-2

Calculation of Stress Ratio for Potentiometers
Connected Conventionally

The stress ratio (S) is defined by the equation:

$$S = \frac{P_{applied}}{\pi_{eff} \cdot \pi_{ganged}} P_{rated}$$

where:

P applied

is the equivalent power input to the potentiometer when it is not loaded (i.e., wiper lead disconnected). Its value is computed as the square of the input voltage, divided by the potentiometer total resistance.

$$P_{\text{applied}} = \left(v_{\text{in}}^2 / R_p \right)$$

 P_{rated} is the power rating of the potentiometer.

^πganged

is a correction factor to correct for the reduction in effective rating of the potentiometer due to the close proximity of two or more potentiometers when they are ganged together on a common shaft. The values of $\boldsymbol{\pi}_{\text{ganged}}$ are obtained from Table 5.1.6.8-4.

 $^{\pi}$ eff

is a correction factor for the electrical loading effect on the wiper contact of the potentiometer. Its value is a function of the type of potentiometer, its resistance, and the load resistance.

RESISTORS

TABLE 5.1.6.8-2 (Cont'd) Calculation of Stress Ratio for Potentiometers

The value of π_{eff} can be obtained directly from Table 5.1.6.8-3 or calculated as follows: $\pi_{eff} = \frac{R_L^2}{R_L^2 + K_H \left(R_P^2 + 2R_P^R_L\right)}$							
R _L +	$R_{H} \left(R_{P} + 2R_{P}R_{L} \right)$						
R _L = load resistance (IF R _L is variable, use lowest value). R _L is the total resistance between the wiper arm and one end of the potentiometer.							
R = potentiom P	eter resistance.	!					
K _H is constand below.	K is constant dependent upon the style shown below.						
POTENTIOMETER MIL-SPEC	TYPE STYLE	K _H					
MIL-R-19	RA	0.5					
MIL-R-22	RP	1.0					
MIL-R-94	RV	0.5					
MIL-R-12934	RR1000, 1001, 1003, 1400, 2100, 2101, 2102, 2103	0.3					
MIL-R-12934	all other types	0.2					
MIL-R-22097	RJ11, RJ12	0.3					
MIL-R-22097	all other types	0.2					
MIL-R-23285	RVC	0.5					
MIL-R-27208	RT22, 24, 26, 27	0.2					
MIL-R-27208	all other types	0.3					
MIL-R-39002	RK.	0.5					
MIL-R-39015	RTR 22, 24	0.17					
MIL-R-39015	RTR12	0.3					
MIL-R-39023	RQ	0.3					
MIL-R-39035	RJR	0.3					

MIL-HDBK-217E RESISTORS

	K _H							
R _L / _{R_P}	0.5	1.0	0.167	0.2	0.3			
0.1	.02	.008	.05	.04	.03			
0.2	.05	.03	.15	.13	.07			
0.3	.10	.05	.25	.22	.16			
0.4	.15	.08	.35	.31	.23			
0.5	.20	.11	.43	.38	.29			
0.6	.25	.14	.49	.45	.35			
0.7	. 29	.17	.55	.51	.40			
0.8	.33	.20	.60	.55	. 45			
0.9	.37	.22	.63	. 59	. 49			
1.0	.40	. 25	.67	.63	.53			
1.5	.53	. 36	.77	74	.65			
2.0	.62	-44	.83	.80	.72			
3.0	.72	.56	.89	.87	.81			
4.0	.78	.64	.91	.90 '	.86			
5.0	.82	.69	.93	.92	.88			
10.0	.90	.83	.96	.96	.94			
100.0	. 99	.98	1.00	1.00	. 99			

MIL-HDBK-217E RESISTORS

TABLE 5.1.6.8-4

Ganged-Potentiometer Factor, π_{ganged}

Number of Sections	First Potentiometer Next to Mount	Second in Gang	Third in Gang	Fourth in Gang	Fifth in Gang	Sixth in Gang		
Single	1.0	Not Applicable						
Two	0.75	0.60	Not Applicable					
Three	0.75	0.50	0,60	0.60 Not Applicable				
Four	0.75	0.50	0.50	0.60 Not Applicable				
Five	0.75	0.50	0.40	0.50	0.60	Not Appli- cable		
Six	0.75	0.50	0.40	0.40	0.50	0.60		

TABLE 5.1.6.8-5

Potentiometer Taps Factor, π_{taps} (1

N _{taps} (2	π taps	N _{taps} (2	π taps	N taps	π taps
3 4 5 6 7 8 9 10 11	1.00 1.11 1.24 1.38 1.53 1.69 1.87 2.06 2.25 2.45	13' 14 15 16 17 18 19 20 21	2.67 2.88 3.12 3.35 3.59 3.85 4.10 4.37 4.64 4.92	23 24 25 26 27 28 29 30 31 32	5.20 5.49 5.79 6.09 6.40 6.72 7.04 7.36 7.69 8.03

(1 Model:
$$\pi_{\text{taps}} = \frac{3/2}{\text{taps}} + 0.792$$

(2 N_{taps} is the number of potentiometer taps, including the wiper and end terminations.

RESISTORS

:1.6.9 Example Failure Rate Calculations.

Example 1

Given: Type RCR fixed composition 12,000 ohm resistor per MIL-R-39008, level M rated at 0.5 watts is being used in airborne inhabited cargo environment.

The resistor ambient temperature is 60° C. and is dissipating 0.2 watts.

Step 1 - The failure rate information for this resistor is in Section 5.1.6.1 The part failure rate is: $\lambda p = \lambda_b \times \pi_E \times \pi_R \times \pi_Q \quad (failures/10^6 \text{ hrs.})$

Step 2 - Stress ratio, S = P_{APPLIED}/P_{RATED} = 0.2/0.5 = 0.4

Step 3 - From Table 5.1.6.1-4, entering with $T = 60^{\circ}C$. and S = 0.4, $\lambda_h = .0012 \text{ f./}10^6 \text{ hrs.}$

NOTE: If T & S were at values showing no λ , value (such as T = 90°C. & S = 0.8), the resistor would be operating above rated conditions. Re-design would be necessary to bring the resistor within rating.

Step 4 - From Tb1 5.1.6.1-1 $\pi_{E} = 3$ for $\Lambda_{\underline{i}C}$

Step 5 - From Tb1 5.1.6.1-2 $\pi_{R} = 1$ for 12,000 ohms.

Step 6 - From Tb1 5.1.6.1-3 $\pi_0 = 1$ for level M.

Step 7 - $\lambda_p = \lambda_b \times \pi_E \times \pi_R \times \pi_Q$ = 0.0012 (3) (1) (1) $\lambda_p = 0.0036 \text{ f./106 hrs.}$

Example 2

Given: Type RE77 fixed noninductive wirewound chassis mounted 5,900 ohm resistor per MIL-R-18546 rated at 75 watts is being used in a fixed ground environment. The resistor ambient temperature is 55°C and is dissipating 40 watts.

Step 1 - The failure rate information for this resistor is in Section 5.1.6.4 under MIL-R-18546 & MIL-R-39009.

The part failure rate is:

$$\lambda_{\rm p} = \lambda_{\rm b} (\pi_{\rm E} \times \pi_{\rm R} \times \pi_{\rm O})$$

RESISTORS

Example Failure Rate Calculations (Con't)

Step 2 - Stress ratio, S = $P_{APPLIED}/P_{RATED}$ = 40/75 = 0.53

Note that $P_{\rm RATED}$ is the full 75 watts and not a lower level as indicated by the derating curve in MIL-R-18546. Derating is accounted for in the base failure rate model and table.

Step 3 - From Tb1 5.1.6.4-12 entering with T = 55°C. and S = 0.53, λ_b = 0.0108

Step 4 - From Tbl 5.1.6.4-9 π_E = 2.4 fixed ground.

Step 5 - From Tb1 5.1.6.4-10 $\pi_Q = 5.0$ for MIL-R-18546.

Step 6 - From Tb1 5.1.6.4-11 $\pi_R = 1.2$ for RE77 non-inductive wound.

Step
$$7 - \lambda_p = \lambda_b \times \pi_E \times \pi_R \times \pi_O$$

= 0.0108 (2.4) (1.2) (5)
= 0.16 ./106 hrs.

Example 3

Given: Type RV1SAYSA505A variable 500K ohm resistor procured per MIL-R-94, rated at 0.2 watts is being used in a fixed ground environment. The resistor ambient temperature is 40°C. and is dissipating 0.06 watts. The resistance connected to the wiper contact varies between 1 megohm and 3 megohms.

Step 1 - The failure rate information for this resistor is in Section 5.1.6.7 under MIL-R-94. The part failure rate is: $\lambda_{\rm p} = \lambda_{\rm b} \times \pi_{\rm TAPS} \times \pi_{\rm R} \times \pi_{\rm V} \times \pi_{\rm O} \times \pi_{\rm E}$

Step 2: - Base failure rate, λ_h , requires the calculation of stress ratio, S, per Table 5.1.6.8-2 where:

$$S = \frac{P_{OP}}{\pi_{eff} \times \pi_{ganged} \times P_{RATED}}$$

 $\pi_{\rm eff}=0.62$ from Tb1 5.1.6.8-3 (K = 0.5 for MIL-R-94 and R_/R_p = 10 /500,000 from Tb1 5.1.6.8-2 R_ is 10 ohms, the lowest wiper load resistance).

RESISTORS

Example Failure Rate Calculations (Con't)

$$\pi_{\text{ganged}} = 1.0$$
, only 1 element used - no ganging.
Then
$$S = 0.06$$

$$0.62 (1.0) (0.2)$$
= .48

Step 3 - Base failure rate, λ , is determined from Tbl 5.1.6.7-1Centering with S^b = .48 and T = 40°C.

$$\lambda_{\rm h} = 0.046$$

Step 4 - Entering Table 5.1.6.8-5 with N = 3 for this part (no additional taps used),

$$\pi_{TAPS} = 1.0$$

Step 5 - π_V is determined from Table 5.1.6.7-9

This part type RV1SAYSA505A has a 250 volt maximum rating (see Table 5.1.6.7-9

$$V_{APPLIED} = \sqrt{R P_{APPLIED}}$$

$$= \sqrt{5 (10)^5 (0.06)} = 173 \text{ volts}$$

$$\frac{V_{APPLIED}}{V_{RATED}} = \frac{173}{250} = .69$$

 $\pi_{V} = 1.0 \text{ from Table } 5.1.6.7-10$

Step 6 - From Tb1 5.1.6.7-8 $\pi_{R} = 1.4$ for 500K ohms.

Step 7 - From Tb1 5.1.6.7-6 $\pi_E = 1.8$ for fixed ground environment.

Step 8 - From Tb1 5.1.6.7-7 $\pi_Q = 2.5$ for part procured per MIL-R-94.

Step
$$9 - \lambda_p = \lambda_b \times \pi_{TAPS} \times \pi_R \times \pi_V \times \pi_Q \times \pi_E$$

= 0.046 (1.0) (1.4) (1.0) (2.5) (1.8)
= 0.29 f./10 hours.
5.1.6.9-3

CAPACITORS

5.1.7 Capacitors. The following capacitors are included in this section:

Paper/Plastic Film

MIL-C-25	Capacitors, Fixed, Paper
MIL-C-11693	Capacitors, Fixed, Paper, Metallized Paper, Metallized Plastic, RFI Feed-Thru, Established Reliability and Non-Established Reliability
MIL-C-12889	Capacitors, Fixed, Paper, RFI Bypass
MIL-C-14157	Capacitors, Fixed, Paper-Plastic, Established Reliability
MIL-C-18312	Capacitors, Metallized Paper, Paper-Plastic, Plastic
MIL-C-19978	Capacitors, Fixed, Plastic (or Paper-Plastic), Established and Non-Established Reliability
MIL-C-39022	Capacitors, Fixed, Metallized, Paper-Plastic Film or Plastic Film Dielectric, Established Reliability
MIL-C-55514	Capacitors, Plastic, Metallized Plastic, Established Reliability
MIL-C-83421	Capacitors, Super-Metallized Plastic, Established Reliability

Mica

MIL-C-5	Capacitors,	Fixed,	Mica	
MIL-C-10950	Capacitors,	Fixed,	Mica,	Button Style
MIL-C-39001	Capacitors, Reliability	Fixed,	Mica,	Established

Glass

MIL-C-112/2	Capacitors,	Grass			
MIL-C-23269	Capacitors,	Fixed,	Glass,	Established	Reliability

CAPACITORS

Ceramic

MIL-C-20	Capacitors, Fixed, Ceramic (Temperature Compensating)
MIL-C-11015	Capacitors, Fixed, Ceramic (General Purpose)
MIL-C-39014	Capacitors, Fixed, Ceramic (General Purpose), Established Reliability
MIL-C-55681	Capacitors, Fixed, Ceramic, Chip, Style CDR-21
Electrolytic	
MIL-C-62	Capacitors, Fixed, Electrolytic (DC, Aluminum, Dry Electrolyte, Polarized)
MIL-C-3965	Capacitors, Fixed, Electrolytic (Non-solid Electrolyte), Tantalum
MIL-C-39003	Capacitors, Fixed, Electrolytic, Tantalum, Solid Electrolyte, Established Reliability
MIL-C-39006	Capacitors, Fixed, Electrolytic, Tantalum, Non-solid Electrolyte, Established Reliability
MIL-C-39018	Capacitors, Fixed, Electrolytic, Aluminum Oxide
MIL-C-83500	Capacitors, Fixed, Electrolytic, Tantalum, Non-hermetic
Variable Capacitors	
MIL-C-81	Capacitors, Variable, Ceramic
MIL-C-92	Capacitors, Air, Trimmer
MIL-C-14409	Capacitors, Variable, Piston Type, Tubular Trimmer

The general model for capacitors is as follows:

MIL-C-23183

$$\lambda_{\rm p} = \lambda_{\rm b} \ (\pi_{\rm E} \times \pi_{\rm CV} \times \pi_{\rm SR} \times \pi_{\rm Q} \times \Pi_{\rm c}) \ {\rm failures/10^6} \ {\rm hours}$$

where these factors are as defined in Sec. 5.1.7 The applicability of specific π factors is shown with each subsequent part type. The general model for capacitor base failure rates (λ_b) is as follows:

Capacitors, Vacuum or Gas, Fixed and Variable

CAPACITORS

$$\lambda_b = A \left[\left(\frac{S}{N_S} \right)^H + 1 \right] e^{B \left(\frac{T + 273}{N_T} \right)^G}$$

where,

- A is an adjustment factor for each different type of capacitor, to adjust the model to the proper failure rate.
- S represents the ratio of operating to rated voltage. Operating voltage is the sum of the applied D.C. voltage and the peak A.C. voltage.

 N_S is the stress constant.

e is the natural logarithm base, 2.718.

T is the operating ambient temperature in degrees Centigrade.

 N_{τ} is a temperature constant.

B is a shaping parameter.

G and H are acceleration constants.

Values of these constants for the various capacitor styles are shown in Tables 5.1.7-1 and -2.

CAPACITORS

FIXED CAPACITOR BASE FAILURE RATE (λ_b) CONSTANTS

				 				
STYLE	MIL-C-SPEC	A	В	N _T	G	N _S	Н	λ _b TABLE NOS
CA	12889	8.6 x 10 ⁻⁴	2.5	3 58	18.0	0.4	5	5.1.7.1-5
CB	10950							<u>!</u>
	Max Rated T=85°C	5.3 x 10 ⁻³	1.2	3 58	6.3	0.4	3	5.1.7.2-13
	Max Rated T=150°C	5.3 x 10 ⁻³	1.2	423	6.3	0.4	3	5.1.7.2-14
CC &	20							
	Max Rated T=85°C	2.6 x 10 ⁻⁹	14.3	358	1.0	0.3	3	5.1.7.4-11
	Max Rated T=125°C	2.6 x 10 ⁻⁹	14.3	398	1.0	0.3	3	5.1.7.4-12
CE	6 2	2.8×10^{-3}	4.09	3 58	5.9	0.55	3	5.1.7.6-8
CFR	55514							
	Max Rated T≈85°C	9.9 x 10 ⁻ 4	2.5	3 58	18.0	0.4	5	5.1.7.1-321
	Max Rated				}] [0.1.7.1-32
	T≈125°C	9.9×10^{-4}	2.5	398	18.0	0.4	5	5.1.7.1-33
СН	18312							
	Max Rated T=85°C	6.9 x 10 ⁻⁴	2.5	358	18.0	0.4	5	5.1.7.1-26
	Max Rated T≃125°C	6.9 x 10 ⁻⁴	2.5	398	18.0	0.4	5	5.1.7.1-27
CHR	39022	See Style CH						
CK	11015							
	Max Rated T=85°C	3.0×10^{-4}	1.0	358	1.0	0.3	3	5.1.7.4-4
	Max Rated T=125°C	3.0 x 10 ⁻⁴	1.0	398	1.0	0.3		5.1.7.4-5
	Max Rated T=150°C	3.0 x 10 ⁻⁴	1.0	4 2 3	1.0	0.3	_	5.1.7.4-6

CAPACITORS

TABLE 5.1.7-1 (Cont'd) FIXED CAPACITOR BASE FAILURE RATE (λ_b) CONSTANTS

				M		N		ўЪ
STYLE	MIL-C-SPEC	A	В	N _T	G	N _S	H	TABLE NOS
CKR	39014							
	Max Rated T=85°C	3.0×10^{-4}	1.0	358	1.0	0.3	3	5.1.7.4-4
	Max Rated T=125°C	3.0×10^{-4}	1.0	398	1.0	0.3	3	5.1.7.4-5
CL	3965							
	Max Rated T= 8 5°C	1.65 x 10 ⁻³	2.6	358	9.0	0.4	3	5.1.7.5-11
	Max Rated T=125°C	1.65×10^{-3}	2.6	398	9.0	0.4	3	5.1.7.5-12
	Max Rated T=175°C	1.65 x 10 ⁻³	2.6	448	9.0	0.4	3	5.1.7.5-13
CLR	39006							<u> </u>
	Max Rated T=125°C	1.65 x 10 ⁻³	2.6	398	9.0	0.4	3	5.1.7.5-12
	Max Rated T=17 5° C	1.65×10^{-3}	2.6	448	9.0	0.4	3	5.1.7.5-13
CM	5							
	Max Rated T=70°C	8.60×10^{-10}	16.0	343	1.0	0.4	3	5.1.7.2-5
	Max Rated T=85°C	8.60×10^{-10}	16.0	3 58	1.0	0.4	3	5.1.7.2-6
	Max Rated T=125°C	8.60 x 10 ⁻¹⁰	16.0	398	1.0	0.4	3	5.1.7.2-7
	Max Rated							
	T=150°C	8.60×10^{-10}	16.0	423	1.0	0.4	3	5.1.7.2-8
CMR	39001							
	Max Rated T=125°C	8.60 x 10 ⁻¹⁰	16.0	398	1.0	0.4	3	5.1.7.2-7
	Max Rated T=150°C	8.60 x 10 ⁻¹⁰	16.0	423	1.0	0.4	3	5.1.7.2-8
	2.5							
CP	25 Max Rated							
	T=85°C	8.6×10^{-4}	2.5	35 8	18.0	0.4	5	5.1.7.1-5
	Max Rated T=125°C	8.6 x 10 ⁻⁴	2.5	398	18.0	0.4	5	5.1.7.1-6

MIL-HDBK-217E CAPACITORS

TABLE 5.1.7-1 (Cont'd) FIXED CAPACITOR BASE FAILURE RATE (λ_b). CONSTANTS

				7		,		
	MIL-C-SPEC	A	В	N _T	G	NS	Н	λ _b TABLE NOS
CPV	14157							
	Max Rated T=65°C	5.0 x 10 ⁻⁴	2.5	338	18.0	0.4	5	5.1.7.1-18
	Max Rated T=85°C	5.0 x 10 ⁻⁴	2,5	3 58	18.0	0.4	5	5.1.7. ₁₋₁₉
	Max Rated T=125°C	5.0 × 10 ⁻⁴	2.5	398	18.0	0.4	5	5.1.7.1-20
CQ &	19978 Max Rated	;						
	T=65°C	5.0×10^{-4}	2.5	338	18.0	0.4	5	5.1.7.1-18
	Max Rated T=85°C	5.0 x 10 ⁻⁴	2.5	3 58	18.0	0.4	5	5.1.7.1-19
	Max Rated T=125°C	5.0 x 10 ⁻⁴	2.5	398	18.0	0.4	5	5.1.7.1-20
	Max Rated T=170°C	5.0 x 10 ⁻⁴	2.5	443	18.0	0.4	5	5.1.7.1-21
CRH	83421	5.5 x 10 ⁻⁴	2.5	398	18.0	0.4	5	5.1.7.1-37
CSR	39003							
	Max Rated T=125°C	3.75 x 10 ⁻³	2.6	398	9.0	0.4	3	5.1.7.5-5
CÜ	39018	2.54 x 10 ⁻³	5.09	398	5.0	0.5	3	5.1.7.6-4
CY	11272 Max Rated	-10						
	T=125°C	8.25×10^{-10}	16.0	398	1.0	0.5	4	5.1.7.3-5
	Max Rated T=200°C	8.25 x 10 ⁻¹⁰	16.0	473	1.0	0.5	4	5.1.7.3-6
CYR	23269	8.25 x 10 ⁻¹⁰	16.0	398	1.0	0.5	4	5.1.7.3-5
CŻ	11693 Max Rated T=85°C	1.15 x 10-3	2.5	3 58	18.0	0.4	5	5.1.7.1-11
	Max Rated T=125°C	1.15 x 10 ⁻³	2.5	398	18.0	0.4		5.1.7.1-12
	Max Rated T=150°C	1.15 x 10 ⁻³	2.5	423	18.0	0.4		5.1.7.1-13

MIL-HDBK-217E CAPACITORS

TABLE 5.1.7-2. VARIABLE CAPACITOR BASE FAILURE RATE (λ_b) CONSTANTS

	TABLE J.I./-	************************************	01111101	1011	JE 1712CO		<u> </u>) CONSTANT
STYLE	MIL-C-SPEC	 A	В	n _T	G	И _S	н	λ _b TABLE NOS
CG	23183 Max Rated T=85°C	1.12 × 10 ⁻²	1.59	358	10.1	0.17	3	5.1.7. ₁₀₋₅
CT	Max Rated T=100°C Max Rated T=125 ^O C 92	1.12 x 10 ⁻² 1.12 x 10 ⁻² 1.92 x 10 ⁻⁶	1.59	373 398- 358	10.1 !0.1 1.0	0.17 0.17 0.33	3	5.1.7.10-6 5.1.7.10-7 5.1.7.9-3
CV	81 Max Rated	3					_	- 1
	T=85°C Max Rated T=125°C	2.24×10^{-3} 2.24×10^{-3}		358 398	10.1	0.17		5.1.7.7-4 5.1.7.7-5
PC	14409 Max Rated T=125°C	7.3 x 10 ⁻⁷	12.1	398	1.0	0.33	3	5.1.7.8-4
	Max Rated T=150°C	7.3 x 10 ⁻⁷	12.1	423	1.0	0.33	3	5.1.7.8-5

CAPACITORS

MIL-C-25, CP; MIL-C-12889, CA

5.1.7.1 Paper and Plastic Film Capacitors.

SPECIFICATION	STYLE	DESCRIPTION
MIL-C-25	CP	Paper
MIL-C-12889	CA	Paper, RFI Bypass

Part operating failure rate model (λ_D) :

$$\lambda p = \lambda_b (\pi_E \times \pi_Q \times \pi_{CV})$$
 failures/10⁶ hrs

where the factors are shown in Tables 5.1.7.1-1 through -6

TABLE 5.1.7.1-1
Environmental Mode Factors

ENVIRON- MENT	πE
GB GMS GMP MPS MPS NS NS NH NH NUU	1 1.1 1.9 8.3 10 4.8 5.7 14 15
ARW AIC AIT AIB AIA AIF AUC AUT AUB AUA AUF	22 3.5 5 8 6.5 10 15 25 30 35

ENVIRON- MENT	^π Ε
SF	1
MFF	10
MFA	14
USL	30
ML	34
CL	570

TABLE 5.1.7.1-2
Base Failure Rate Tables for Capacitor

Spec and Style Spec λ_b Table No. MIL-C Style 5.1.7.1-5 12889 A11 CP04, 5, 8, 9, 5.1.7.1-6 25 10, 11, 12, 13; Char K CP25, 26, 27, 28, 5.1.7.1-5 29, 40, 41, 67, 69, 70, 72, 75, 76, 77, 78, 80, 81, 82; Char E, F

MIL-HDBK-217E CAPACITORS

MIL-C-25, CP: MIL-C-12889, CA

TABLE 5.1.7.1-3
TQ. Quality Factor

[™] Q
3
7

TABLE 5.1.7.1-4
TCV, Capacitance Factor

Capacitance *	[#] C∀
MIL-C-25 *: .0034uF. .15 * 2.3 * 16. *	0.7 1.0 1.3 1.6
MIL-C-12889 All	1.0

* TCV = 1.20 095 where C is uf.

CAPACITORS

MIL-C-25, CP: MIL-C-12889, CA

*TABLE 5.1.7.1-5: CAPACITORS, FIXED, PAPER, DIRECT CURRENT, BASE FAILURE RATE, λ_{b} (T = 85°C MAX RATED)

TEMP	S, RATIO OF OPERATING TO RATED VOLTAGE									
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.00088	.00090	.0011	.0018	.0036	.0075	.015	.029	.051	.086
10	.00089	.00092	.0011	.0018	.0036	.0077	.016	.029	.052	.088
20	.00092	.00095	.0011	.0018	.0037	.0079	.016	.030	.054	.091
30	.00097	.0010	.0012	.0019	.0039	.0084	.017	.032	.057	.096
40	.0011	.0011	.0013	.0021	.0044	.0092	.019	.035	.063	.11
50	.0013	.0013	.0016	.0025	.0052	.011	.022	.042	.075	.13
60	.0017	.0017	.0021	.0034	.0069	.015	.030	.056	.10	. 17
70	.0027	.0028	.0034	.0055	.011	.024	.048	.090	. 16	.27
80	.0060	.0062	.0074	.012	.024	.051	. 10	.20	.35	.59

^{*}See Table 5.1.7.1-2 for applicability to spec. and style.

CAPACITORS

MIL-C-25, CP: MIL-C-12889, CA

*TABLE 5.1.7.1-6: CAPACITORS, FIXED, PAPER, DIRECT CURRENT, BASE FAILURE RATE, λ_b (T = 125°C MAX RATED)

TEMP		٠	S, RAT	10 OF OPE	RATING	TO RATED	VOLTA	GE		
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.00086	.00089	.0011	.0017	.0035	.0074	.015	.028	.051	.085
10	.00087	.00089	.0011	.0017	.0035	.0074	.015	.029	.051	.085
20	.00087	.00090	.0011	.0017	.0035	.0075	.015	.029	.051	.086
30	.00088	.00090	.0011	.0018	.0035	.0075	.015	.029	.051	.086
40	.00089	.00092	.0011	.0018	.0036	.0076	.015	.029	.052	.088
50	.00091	.00094	.0011	.0018	.0037	.0078	.016	.030	.053	.090
60	.00095	.00098	.0012	.0019	.0039	.0082	.017	.031	.056	.094
70	.0010	.0011	.0013	.0020	.0041	.0088	.018	.034	.060	.10
80	.0011	.0012	.0014	.0023	.0046	.0099	.020	.038	.067	.11
90	.0014	.0014	.0017	.0028	.0056	.012	.024	.046	.081	. 14
100	.0019	.0019	.0023	.0037	.0076	.016	.033	.062	.11	.18
110	.0030	.0031	.0037	.0060	.012	.026	.052	.099	.18	.30
120	.0063	.0065	.0078	.013	.026	.054	.11	.21	.37	.62

^{*}See Table 5.1.7.1-2 for applicability to spec. and style.

CAPACITORS

CAPACITORS MIL-C-11693 CZ

SPECIFICATION	STYLE	DESCRIPTION
MIL-C-11693	CZ	Paper, Metallized Paper Metallized Plastic, RFI Feed-Thru. ER and Non-ER

Part operating failure rate model (λ_p) :

$$\lambda_p = \lambda_b (\pi_E \times \pi_Q \times \pi_{CV})$$
 failures/10⁶ hours

where the factors are shown in Tables 5.1.7.1-7 through -13.

TABLE 5.1.7.1-7

Environmental Mode Factors

ENVIRON- MENT	πЕ.
GB GMS GF GM MP NSB NS NU NH NU	1 2.4 8.3 10 4.8 8.8 14 15
ARW AIC AIT AIB AIA AIP AUC AUT AUB AUA	22 3.5 5 8 6.5 10 10 15 25 20
Sp Mpp Mpa USL Ml Cl	1 10 14 30 34 570

Table 5.1.7.1-8

Base Failure Race Tables
for Capacitor Spec. and Style

Spec. MIL-C	Style	Table No.
11693	Characteristic E, W	3.1.7.1-11
	Characteristic K	5.1.7.1-12
	Characteristic P	5.1.7.1-13

Table 5.1.7.1-9 π_Q , Quality Factor

Fzilure Race Level	[∓] 0
M	1.0
Non-ER	3.0
LOWER	10.

Table 5.1.7.1-10 π_{CV} , Capacitance Factor

Capacitance *	πcv
0.0031 มร์.	0.7
0.061 μF.	1.0
1.8 µF.	1.5

* TCY=1.40^{0.12}

where C is μF .

CAPACITORS

MIL-C-11693, CZ

*TABLE 5.1.7.1-11: CAPACITORS, FIXED, PAPER OR PLASTIC, DIRECT CURRENT, BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 85°C MAX RATED)

TEMP	S, RATIO OF OPERATING TO RATED VOLTAGE									
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
										
0	.0012	.0012	.0015	.0023	.0047	.010	.020	.039	.069	.12
10	.0012	.0012	.0015	.0024	.0048	.010	.021	.039	.070	.12
20	.0012	.0013	.0015	.0025	.0050	.011	.021	.041	.072	. 12
30	.0013	.0013	.0016	.0026	.0053	.011	.023	.043	.076	.13
40	.0014	.0015	.0018	.0029	.0058	.012	.025	.047	.084	. 14
50	.0017	.0018	.0021	.0034	.0069	.015	.030	.056	.10	. 17
60	.0023	.0023	.0028	.0045	.0092	.019	.039	.075	.13	.22
70	.0037	.0038	.0045	.0073	.015	.031	.064	. 12	.21	.36
80	.0080	.0083	.0099	.016	.032	.069	. 14	.26	.47	.79

^{*}See Table 5.1.7.1-8 for applicability to spec. and style.

CAPACITORS

MIL-C-11693, CZ

*TABLE 5.1.7.1-12: CAPACITORS, FIXED, PAPER OR PLASTIC, DIRECT CURRENT, BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 125°C MAX RATED)

TEMP			S, RAT	10 OF OP	ERATING 1	TO RATED	VOLTA	GE		
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.0012	.0012	.0014	.0023	.0047	.0099	.020	.038	.068	.11
10	.0012	.0012	.0014	.0023	.0047	.0099	.020	.038	.068	.11
20	.0012	.0012	.0014	.0023	.0047	.010	.020	.038	.068	.11
30	.0012	.0012	.0014	.0023	.0047	.010	.020	.039	.069	. 12
40	.0012	.0012	.0015	.0024	.0048	.010	.021	.039	.070	. 12
50	.0012	.0013	.0015	.0024	.0049	.010	.021	.040	.072	. 12
60	.0013	.0013	.0016	.0025	.0052	.011	.022	.042	.075	.13
70	.0014	.0014	.0017	.0027	.0055	.012	.024	.045	.080	. 13
80	.0015	.0016	.0019	.0031	.0062	.013	.027	.051	.090	.15
90	.0019	.0019	.0023	.0037	.0075	.016	.032	.061	.11	.18
100	.0025	.0026	.0031	.0050	.010	.022	.044	.083	. 15	.25
110	.0040	.0041	.0050	.0080	.016	.035	.070	. 13	.24	.40
120	.0084	.0087	.010	.017	.034	.072	. 15	.28	.49	.83

^{*}See Table 5.1.7.1-8 for applicability to spec. and style.

CAPACITORS

MIL-C-11693, CZ

*TABLE 5.1.7.1-13: CAPACITORS, FIXED, PAPER OR PLASTIC, DIRECT CURRENT, BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 150°C MAX RATED)

TEMP	S, RATIO OF OPERATING TO RATED							GE		
(₀ C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.0012	.0012	.0014	.0023	.0047	.0099	.020	.038	.068	.11
10	.0012	.0012	.0014	.0023	.0047	.0099	.020	.038	.068	.11
20	.0012	.0012	.0014	.0023	.0047	.0099	.020	.038	.068	.11
30	.0012	.0012	.0014	.0023	.0047	.0099	.020	.038	.068	.11
40	.0012	.0012	.0014	.0023	.0047	.010	.020	.038	.068	.11
50	.0012	.0012	.0015	.0023	.0048	.010	.020	.039	.069	. 12
60	.0012	.0012	.0015	.0024	.0048	.010	.021	.039	.070	. 12
70	.0012	.0013	.0015	.0024	.0049	.010	.021	.040	.071	. 12
80	.0013	.0013	.0016	.0025	.0051	.011	.022	.042	.074	. 12
90	.0013	.0014	.0017	.0027	.0055	.012	.023	.045	.079	.13
100	.0015	.0015	.0018	.0030	.0060	.013	.026	.049	.087	. 15
110	.0017	.0018	.0022	.0035	.0071	.015	.030	.058	.10	. 17
120	.0022	.0023	.0028	.0045	.0091	.019	.039	.074	. 13	.22
130	.0033	.0034	.0040	.0065	.013	.028	.057	.11	. 19	.32
140	.0058	.0060	.0072	.012	.024	.050	.10	.19	.34	.58
150	.014	.014	.017	.028	.057	.12	.24	.46	.82	1.4

^{*}See Table 5.1.7.1-8 for applicability to spec. and style.

CAPACITORS

MIL-C-14157, CPV; MIL-C-19978, 'CQ AND CQR

SPECIFICATION	STYLE	DESCRIPTION
MIL-C-14157 MIL-C-19978	CPV CQ and CQR	Paper and Plastic Film, Est. Rel. Paper and Plastic Film, ER and Non-ER

Part operating failure rate model (λ_p) :

$$\lambda_{\rm p} = \lambda_{\rm b} (\pi_{\rm E} \times \pi_{\rm Q} \times \pi_{\rm CV})$$
 failures/10⁶ hours

where the factors are shown in Tables 5.1.7.1-14 through -21.

TABLE 5.1.7.1-14
Environmental Mode Factors

ENVIRON- MENT	^π E
G G G M P B N N N N N N N N N N N N N N N N N N	1 1.2 2.4 7.8 9.2 4.4 5.7 13 14
ARW AIC AIT AIB AIA AIF AUC AUT AUB AUA AUF	20 2.5 3 5.5 3 8 3 9.5 20 10 30

ENVIRON- MENT	πE
SF	1
MFF	9.3
MFA	13
USL	27
ML	31
CL	530

Table 5.1.7.1-15
Base Failure Rate Tables
for Capacitor Spec and Style

Spec MIL-C	Style	λ _b Table No.
14157	CPV07 CPV09 CPV17	5.1.7.1-18 -5.1.7.1-20 5.1.7.1-19
19978	Char. P, L Char. E, F, G, M Char. K, Q, S Char. T	5.1.7.1-18 5.1.7.1-19 5.1.7.1-20 5.1.7.1-21

CAPACITORS

MIL-C-14157, CPV: MIL-C-19978, CQ and CQR

Table 5.1.7.1-16 TQ. Quality Factor

Failure Race Level	πQ
S	0.03
R	0.1
P	0.3
M	1.0
L	3.0
MIL-C-19978 Non-ER	10.0
LOWER	30.

Table 5.1.7.1-17
*CV, Capacitance Factor

Capacitance	· #CA	1
MTL-c14157: * :0017 μF027 " .20 " 1.0 " MTL-c-19978:**	0.7 1.0 1.3 1.6	* π _{CV} =1.6C ^{0.13} ** π _{CV} =1.3C ^{0.077} where C is μF.
.00032 .033 1.0 15.0	0.7 1.0 1.3 1.6	

CAPACITORS

MIL-C-14157, CPV: MIL-C-19978, CQ and CQR

*TABLE 5.1.7.1-18: CAPACITORS, FIXED, PAPER OR PLASTIC, DIRECT CURRENT, BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 65°C MAX RATED)

TEMP	S, RATIO OF OPERATING TO RATED VOLT								VOLTAGE		
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0	
0	.00053	.00054	.00065	.0011	.0021	.0045	.0092	.017	.031	.052	
10	.00055	.00057	.00069	.0011	.0022	.0048	.0096	.018	.032	.055	
20	.00061	.00062	.00075	.0012	.0025	.0052	.011	.020	.036	.060	
30	.00071	.00073	.00088	.0014	.0029	.0061	.012	.023	.042	.070	
40	.00094	.00097	.0012	.0019	.0038	.0080	.016	.031	.055	.092	
50	.0015	.0016	.0019	.0030	.0061	.013	.026	.050	.088	. 15	
60	.0034	.0035	.0042	.0068	.014	.029	.059	.11	.20	.33	

^{*}See Table 5.1.7.1-15 for applicability to spec. and style.

CAPACITORS

MIL-C-14157, CPV: MIL-C-19978, CQ and CQR \cdot

*TABLE 5.1.7.1-19: CAPACITORS, FIXED, PAPER OR PLASTIC, DIRECT CURRENT, BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 85°C MAX RATED)

TEMP			S, RATI	O OF OPE	ERATING 1	TO RATED	VOLTAG	SE		
(°C)	.1	.2	.3	.4 ,	.5	.6	.7	.8	.9	1.0
0	.00051	.00053	.00063	.0010	.0021	.0044	.0089	.017	.030	.050
10	.00052	.00053	.00064	.0010	.0021	.0045	.0090	.017	.030	.051
20:	.00054	.00055	.00066	.0011	.0022	.0046	.0093	.018	.031	.053
30	.00057	.00058	.00070	.0011	.0023	.0049	.0099	.019	.033	.056
40	.00063	.00064	.00077	.0012	.0025	.0054	.011	.021	.037	.062
50	.00074	.00076	.00092	.0015	.0030	.0064	.013	.024	.043	.073
60	.00099	.0010	.0012	.0020	.0040	.0085	.017	.033	.058	.097
70	.0016	.0016	.0020	.0032	.0064	.014	.028	.052	.093	. 16
80.	.0035	.0036	.0043	.0070	.014	.030	.061	.11	.20	.34

^{*}See Table 5.1.7.1-15 for applicability to spec. and style.

CAPACITORS

MIL-C-14157, CPV: MIL-C-19978, CQ and CQR

*TABLE 5.1.7.1-20: CAPACITORS, FIXED, PAPER OR PLASTIC, DIRECT CURRENT, BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 125°C MAX RATED)

TEMP			S, RATI	O OF OPI	ERATING	TO RATED	VOLTAG	SE		
(°C)	.1	•2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.00050	.00052	.00062	.0010	.0020	.0043	.0087	.017	.029	.049
10	.00050	.00052	.00062	.0010	.0020	.0043	.0088	.017	.029	.050
20	.00051	.00052	.00062	.0010	.0020	.0043	.0088	.017	.030	.050
30	.00051	.00053	.00063	.0010	.0021	.0044	.0089	.017	.030	.050
40	.00052	.00053	.00064	.0010	.0021	.0044	.0090	.017	.030	.051
50	.00053	.00055	.00066	.0011	.0021	.0046	.0092	.017	.031	.052
60	.00055	.00057	.00068	.0011	.0022	.0048	.0096	.018	.032	.055
70	.00059	.00061	.00073	.0012	.0024	.0051	.010	.020	.035	.059
80	.00067	.00069	.00083	.0013	.0027	.0057	.012	.022	.039	.066
90	.00081	.00083	.0010	.0016	.0033	.0069	.014	.027	.047	.079
100	.0011	.0011	.0013	.0022	.0044	.0094	.019	.036	.064	.11
110	.0018	.0018	.0022	.0035	.0071	.015	.030	.058	.10	. 17
120	.0037	.0038	.0045	.0073	.015	.031	.064	.12	.21	.36

^{*}See Table 5.1.7.1-15 for applicability to spec. and style.

CAPACITORS

MIL-C-14157, CPV: MIL-C-19978, CQ and CQR

*TABLE 5.1.7.1-21: CAPACITORS, FIXED, PAPER OR PLASTIC, DIRECT CURRENT, BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 170 C MAX RATED)

TEMP	1		S, RATI	0 OF OPI	ERATING T	TO RATED	VOLTAG	E		
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
								·		
0	.00050	.00052	.00062	.0010	.0020	.0043	.0087	.017	.029	.049
10	.00050	.00052	.00062	.0010	.0020	.0043	.0087	.017	.029	.049
20	.00050	.00052	.00062	.0010	.0020	.0043	.0087	.017	.029	.049
30	.00050	.00052	.00062	.0010	.0020	.0043	.0087	.017	.029	.049
40	.00050	.00052	.00062	.0010	.0020	.0043	.0087	.017	.029	.050
50	.00050	.00052	.00062	.0010	.0020	.0043	.0088	.017	.030	.050
60	.00051	.00052	.00063	.0010	.0021	.0044	.0088	.017	.030	.050
70	.00051	.00053	.00063	.0010	.0021	.0044	.0089	.017	.030	.051
80	.00052	.00054	.00065	.0010	.0021	.0045	.0091	.017	.031	.051
90	.00054	.00055	.00066	.0011	.0022	.0046	.0093	.018	.031	.053
100	.00056	.00058	.00069	.0011	.0023	.0048	.0097	.018	.033	.055
110	.00060	.00062	.00074	.0012	.0024	.0052	.010	.020	.035	.059
120	.00067	.00069	.00083	.0013	.0027	.0057	.012	.022	.039	.066
130	.00079	.00081	.00098	.0016	.0032	.0068	.014	.026	.046	.078
140	.0010	.0010	.0013	.0020	.0041	.0087	.018	.033	.060	. 10
150	.0015	.0015	.0018	.0030	.0060	.013	.026	.049	.087	. 15
160	.0026	.0027	.0032	.0052	.011	.023	.046	.087	.15	.26
170	.0061	.0063	.0075	.012	.025	.052	.11	.20	.36	.60
	1									

^{*}See Table 5.1.7.1-15 for applicability to spec. and style.

CAPACITORS
MIL-C-18312, CH;
MIL-C-39022, CHR

SPECIFICATION STYLE DESCRIPTION

MIL-C-18312 CH Metallized Paper, Paper-Plastic, Plastic MIL-C-39022 CHR Metallized Paper, Est. Rel

Part operating failure rate model (λ_p) :

 $\lambda_{\rm p} = \lambda_{\rm b} (\pi_{\rm E} \times_{\rm Q} \times \pi_{\rm CV})$ failures/10⁶ hrs.

where the factors are shown in Tables 5.1.7.1-22 through -27.

TABLE 5.1.7.1-22
Environmental Mode Factors

ENVIRON- MENT	πE
GB GMS GF GM MP NSB NU NH NU	1 1.2 2.4 7.8 9.2 4.4 5.7 13 14
ARW AIC AIT AIB AIA AIF AUC AUT AUB AUA AUF	20 2.5 2.5 5.5 3 8 3 9.5 20 10

ENVIRON- MENT	πΞ
SF MFF MFA USL ML CL	9.3 13 27 31 530

Table 5.1.7.1-23
Base Failure Rate Tables
for Capacitor Spec and Style

Spec MIL-C	Style	λb Table No.
39022	CHRO9 and CHR12 (50V raced) CHR49	5.1.7.1-26
	CHR09,12 (above 50 volt rated), CHR01, 10, 19, 29, 59	5.1.7.1-27
18312	Char R Char N	5.1.7.1-26 5.1.7.1-27

CAPACITORS

MIL-C-18312, CH: MIL-C-39022, CHR

Table 5.1.7.1-24 mg, Quality Factor

Failure Rate Level	πQ
S R	0.03
P . M:	0.3
L MIL-C-18312	3.0
Non-ER LOWER	7.0° 20.

Table 5.1.7.4-25 TCV, Capacitance Factor

Capacitance *	c _Δ .
0.0029 µF. 0.14 "	0.7
2.4 "	1.3

 $\pi_{\text{CV}} = 1.2c^{0.092}$

where C is μF .

CAPACITORS

MIL-C-18312, CH: MIL-C-39022, CHR

*TABLE 5.1.7.1-26: CAPACITORS, FIXED, PAPER OR PLASTIC, DIRECT CURRENT, BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 85°C MAX RATED)

TEMP	S, RATIO OF OPERATING TO RATED VOLTAGE									
(°C)	1.1	.2	.3	.4	.5	•6	.7	.8	.9	1.0
										0.50
0	.00070	.00073	.00087	.0014	.0028	.0060	.012	.023	.041	.069
10	.00072	.00074	.00089	.0014	.0029	.0061	.012	.024	.042	.071
20	.00074	.00076	.00091	.0015	.0030	.0063	.013	.024	.043	.073
30	.00078	.00081	.00097	.0016	.0032	.0067	.014	.026	.046	.077
40	.00086	.00089	.0011	.0017	.0035	.0074	.015	.028	.051	.085
50	.0010	.0011	.0013	.0020	.0041	.0088	.018	.034	.060	.10
60	.0014	.0014	.0017	.0027	.0055	.012	.024	.045	.080	.13
70	.0022	.0023	.0027	.0044	.0089	.019	.038	.072	. 13	.22
80	.0048	.0050	.0059	.0096	.019	.041	.084	. 16	.28	.47
					,					

^{*}See Table 5.1.7.1-23 for applicability to spec. and style.

CAPACITORS

MIL-C-18312, CH: MIL-C-39022, CHR

*TABLE 5.1.7.1-27: CAPACITORS, FIXED, PAPER OR PLASTIC, DIRECT CURRENT, BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 125°C MAX RATED)

TEMP		S, RATIO OF OPERATING TO RATED VOLTAGE								
(°C)	.1	.2	.3	.4	•5	.6	.7	.8	.9	1.0
0 .	.00069	.00071	.00086	0014	0020	0050	0.12	022	041	060
]			.0014	.0028	.0059	.012	.023	.041	.068
10	.00069	.00072	.00086	.0014	.0028	.0060	.012	.023	.041	.068
20	.00070	.00072	.00086	.0014	.0028	.0060	.012	.023	.041	.069
30	.00070	.00072	.00087	.0014	.0028	.0060	.012	.023	.041	.069
40	.00071	.00074	.00088	.0014	.0029	.0061	.012	.024	.042	.070
50	.00073	.00075	.00090	.0015	.0030	.0063	.013	.024	.043	.072
60	.00076	.00079	.00094	.0015	.0031	.0066	.013	.025	.045	.075
70	.00082	.00085	.0010	.0016	.0033	.0070	.014	.027	.048	.081
80	.00092	.00095	.0011	.0018	.0037	.0079	.016	.030	.054	.091
90	.0011	.0011	.0014	.0022	.0045	.0096	.019	.037	.065	.11
100	.0015	.0015	.0019	.0030	.0061	.013	.026	.050	.088	. 15
110	.0024	.0025	.0030	.0048	.0098	.021	.042	.080	. 14	.24
120	.0051	.0052	.0063	.010	.020	.043	.088	. 17	.30	.50

^{*}See Table 5.1.7.1-23 for applicability to spec. and style.

MIL-HDBK-217E CAPACITORS

CAPACITORS
MIL-C-55514, CFR

SPECIFICATION

STYLE

DESCRIPTION

MIL-C-55514

CFR

Plastic, Metallized Plastic, ER

Part operating failure rate model (λ_p) :

 $\lambda_p = \lambda_b \ (\pi_E \times \pi_Q \times \pi_{CV}) \ failures/10^6 hrs.$

where the factors are shown in Tables 5.1.7.1-28 through -33.

TABLE 5.1.7.1-28
Environmental Mode Factors

ENVIRON- MENT	^π E
GB GMF GMP MP NS NU NH NU	1 1.1 1.9 9.3 11 5 5.7 16 16
ARW AIC AIT AIB AIA AIF AUC AUT AUB AUA AUF	23 3.5 6.5 9.5 6.5 15 10 20 25 20 40

ENVIRON- MENT	πE
SF	1
MFF	11
MFA	15
USL	31
ML	36
CL	610

Table 5.1.7.1-29
Base Failure Rate Tables
for Capacitor Spec and Style

Spec MIL-C	Style	b Table Number
55514	Char. M, N	5.1.7.1-32
	Char. Q, R, S	5.1.7.1-33

CAPACITORS

MIL-C-55514, CFR

Table 5.1.7.1-30

II Q, Quality Factor Failure Rate Level II Q

S 0.03
R 0.1
P 0.3
M 1.0
LOWER 10.0

Table 5.1.7.1-31 Π_{CV} , Capacitance Factor

Capacitance*	псу
.0049 µF.	.7
0.33 µF.	1.0
7.1 µF.	1.3
38. µF.	1.5

* $\Pi_{CV} = 1.1c^{0.085}$ where C is uf.

CAPACITORS

MIL-C-55514, CFR

*TABLE 5.1.7.1-32: CAPACITORS, FIXED, PLASTIC, DIRECT CURRENT, BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 85°C MAX RATED)

TEMP			S, RAT	O OF OPE	ERATING	TO RATED	VOLTA	GE		
(°C)	1.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
			,							
0	.0010	.0010	.0012	.0020	.0041	.0087	.018	.033	.059	. 10
10	.0010	.0011	.0013	.0021	.0042	.0088	.018	.034	.060	.10
20	.0011	.0011	.0013	.0021	.0043	.0091	.018	.035	.062	.10
30	.0011	.0012	.0014	.0022	.0045	.0096	.020	.037	.066	.11
40	.0012	.0013	.0015	.0025	.0050	.011	.022	.041	.073	. 12
50	.0015	.0015	.0018	.0029	.0059	.013	.026	.048	.086	. 14
60	.0020	.0020	.0024	.0039	.0079	.017	.034	.064	.11	. 19
70	.0032	.0032	.0039	.0063	.013	.027	.055	.10	. 18	.31
80	.0069	.0071	.0085	.014	.028	.059	. 12	.23	.40	.68

^{*}See Table 5.1.7.1-29 for applicability to spec. and style.

MIL-HDBK-217E CAPACITORS

MIL-C-55514, CFR

*TABLE 5.1.7.1-33: CAPACITORS, FIXED, PLASTIC, DIRECT CURRENT, BASE FAILURE RATE, λ_b (T = 125°C MAX RATED)

TEMP	l.		S, RAT	S, RATIO OF OPERATING TO RATED VOLTAGE						
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.00099	.0010	.0012	.0020	.0040	.0085	.017	.033	.058	.098
10	.0010	.0010	.0012	.0020	.0040	.0086	.017	.033	.058	.098
20	.0010	.0010	.0012	.0020	.0041	.0086	.017	.033	.059	.099
30	.00 10	.0010	.0012	.0020	.0041	.0087	.018	.033	.059	.099
40	.00 10	.0011	.0013	.0020	.0041	.0088	.018	.034	.060	. 10
50	.0011	.0011	.0013	.0021	.0043	.0090	.018	.035	.062	.10
60	.0011	.0011	.0014	.0022	.0044	.0094	.019	.036	.064	.11
70	.0012	.0012	.0015	.0024	.0048	.010	.020	.039	.069	. 12
80	.0013	.0014	.0016	.0026	.0054	.011	.023	.044	.077	.13
90	.0016	.0016	.0020	.0032	.0065	.014	.028	.053	.094	. 16
100	.0022	.0022	.0027	.0043	.0087	.019	.038	.071	.13	.21
110	.0035	.0036	.0043	.0069	.014	.030	.060	.11	.20	.34
120	.0073	.0075	.0090	.015	.029	.062	.13	.24	.43	.72

^{*}See Table 5.1.7.1-29 for applicability to spec. and style.

CAPACITORS

MIL-C-83421, CRH

SPECIFICATION STYLE DESCRIPTION
MIL-C-83421 CRH Super-Metallized Plastic; ER

Part operating failure rate model (λ_p):

 $\lambda_p = \lambda_b (\pi_E \times \pi_Q \times \pi_{CV})$ failure/10⁶ hrs.

where the factors are shown in Tables 5.1.7.1-34 through -37.

TABLE 5.1.7.1-34
Environmental Mode Factors

ENVIRON- MENT	πE
GB GMS GF GM MP NS NS NU NH NU	1 1.3 3.7 7.8 9.2 4.4 5.7 13 14
ARW AIC AIT AIB AIA AUC AUT AUB AUA AUF MFFA USC MFC MFC C	20 4 4 5.5 4 8 9.5 10 20 10 30 1 9.3 13 27 31 530

Table 5.1.7.1-35

Failure Race Level	П q
\$	0.03
R	0.1
P	0.3
н	1.0
LOWER	10.0

Table 5.1.7.1-36 II CV, Capacitance Factor

* π_{CV} =1.200.092 where C is μ F.

Capacitance *	II CV		
.0029 uF.	.7		
.14 µF.	1.0		
2.4 uF.	1.3		
23.0 µF.	1.6	1	

CAPACITORS

MIL-C-83421, CRH

TABLE 5.1.7.1-37: CAPACITORS, FIXED, PLASTIC, DIRECT CURRENT, BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 125°C MAX RATED)

TEMP	S, RATIO OF OPERATING TO RATED VOLTAGE									
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
		•								
0	.00055	.00057	.00068	.0011	.0022	.0047	.0096	.018	.032	.054
10	.00055	.00057	.00068	.0011	.0022	.0048	.0096	.018	.032	.055
20	.00056	.00057	.00069	.0011	.0023	.0048	.0097	.018	.033	.055
30	.00056	.00058	.00069	.0011	.0023	.0048	.0098	.018	.033	.055
40	.00057	.00059	.00070	.0011	.0023	.0049	.0099	.019	.033	.056
50	.00058	.00060	.00072	.0012	.0024	.0050	.010	.019	.034	.058
60	.00061	.00063	.00075	.0012	.0025	.0052	.011	.020	.036	.060
70	.00065	.00067	.00081	.0013	.0026	.0056	.011	.022	.038	.064
80	.00073	.00076	.00091	.0015	.0030	.0063	.013	.024	.043	.072
90	.00089	.00091	.0011	.0018	.0036	.0076	.015	.029	.052	.087
100	.0012	.0012	.0015	.0024	.0049	.010	.021	.040	.070	. 12
110	.0019	.0020	.0024	.0038	.0078	.017	.033	.063	.11	. 19
120	.0040	.0042	.0050	.0081	.016	.035	.070	.13°	.24	.40

CAPACITORS

MIL-C-5, CM, MIL-C-39001, CMR

5.1.7.2 MICA Capacitors.

SPECIFICATION	STYLE	DESCRIPTION
MIL-C-5 MIL-C-39001	CM CMR	MICA (Dipped), Est. Rel.

Part operating failure rate model (λ_p) :

 $\lambda_p = \lambda_b (\pi_E \times \pi_Q \times \pi_{CV}) \text{ failures/10}^6 \text{ hrs.}$

where the factors are shown in Tables 5.1.7.2-1 through -8.

TABLE 5.1.7.2-1
Environmental Mode Factors

ENVIRON- MENT	ПЕ
G B S G M P B N N N N N N N N N N N N N N N N N N	1 1.2 2.4 8.8 11 5 6.2 15 16
ARW AIC AIT AIB AIA AUC AUT AUB AUA AUF	23 3.5 4 8 4 10 15 15 35 15 40

ENVIRON- MENT	Πg
SF MFF MFA USL MCL	1 11 15 31 36 610

Table 5.1.7.2-2
Base Failure Rate Tables for Capacitor
Spec and Style

Spec MIL-C	Style		λ, Table b Number
5	Temp.Range	M N O	5.1.7.2-5 5.1.7.2-6 5.1.7.2-7 5.1.7.2-8
39001	Temp.Range (Temp.Range I	-	5.1.7.2-7 5.1.7.2-8

CAPACITORS

MIL-C-5, CM: MIL-C-39001, CMR

Table- 5.1.7.2-3

II Q. Quality Factor

Failure Rate Level	Π _Q
T S	0.01
R P	0.1
H H	1.0
Non-ER Dipped Non-ER Molded	3 6
LOWER	15.

Table 5.1.7.2-4 - II_{CV}. Capacitance Factor

Capacitance *	11 CA
2.1 pF.	.5
38 pF.	.75
300 pF.	1.0
.002 µF.	1.3
.0086 uF.	1.6
.029 µF.	1.9
.084 µF.	2.2

* $\pi_{\text{CY}} = 0.45$ ° where C is pF.

CAPACITORS

MIL-C-5, CM: MIL-C-39001, CMR

CAPACITORS, FIXED, MICA, BASE FAILURE RATE, λ_{b} (T = 70° C MAX RATED) *TABLE 5.1.7.2-5:

TEMP			S, RATI	O OF OPE	RATING T	O RATED	VOLTAG	E		
(°C)	1.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
					····					
0	.00030	.00033	.00041	.00058	.00086	.0013	.0019	.0026	.0036	.0049
10	.00047	.00052	.00066	.00093	.0014	.0020	.0030	.0042	.0058	.0077
20	.00075	.00083	.0011	.0015	.0022	.0032	.0047	.0067	.0092	.012
30	.0012	.0013	.0017	.0024	.0035	.0052	.0075	.011	.015	.020
40	.0019	.0021	.0027	.0038	.0056	.0082	.012	.017	.023	.031
50	.0031	.0034	.0043	.0060	.0089	.013	.019	.027	.037	.050
60	.0049	.0054	.0068	.0096	.014	.021	.030	.043	.059	.080
70	.0078	.0086	.011	.015	.023	.033	.049	.069	.095	. 13
]									

^{*}See Table 5.1.7.2-2 for applicability to spec. and style.

CAPACITORS

MIL-C-5, CM: MIL-C-39001, CMR

CAPACITORS, FIXED, MICA, BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 85°C MAX RATED) *TABLE 5.1.7.2-6:

TEMP			S, RATI	O OF OPE	RATING T	O RATED	VOLTAG	E		
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0 ,	.00017	.00019	.00024	.00034	.00051	.00075	.0011	.0015	.0021	.0028
10-	.00027	.00030	.00038	.00054	.00079	.0012	.0017	.0024	.0033	.0044
20	.00042	.00047	.00059	.00084	.0012	.0018	.0027	.0038	.0052	.0070
30	.00066	.00074	.00093	.0013	.0019	.0029	.0042	.0059	.0081	.011
40	.00 10	.0012	.0015	.0020	.0030	.0045	.0065	.0092	.013	.017
50	.0016	.0018	.0023	.0032	.0047	.0070	.010	.014	.020	.027
60	.0025	.0028	.0036	.0050	.0074	.011	.016	.023	.031	.042
70	.0040	.0044	.0056	.0078	.012	.017	.025	.035	.048	.065
80	.0062	.0069	.0087	.012	.018	.027	.039	.055	.076	. 10

^{*}See Table 5.1.7.2-2 for applicability to spec. and style.

CAPACITORS

MIL-C-5, CM: MIL-C-39001, CMR

*TABLE 5.1.7.2-7: CAPACITORS, FIXED, MICA, BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 125°C MAX RATED)

TEMP]		S, RATI	O OF OPE	RATING T	O RATED	VOLTAG	E		
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	•9	1.0
								22245		
0	.00005	.00006	.00007	.00010	.00015	.00022	.00032	.00045	.00062	.00083
10	.00008	.00008	.00011	.00015	.00022	.00033	.00048	.00068	.00093	.0012
20	.00011	.00013	.00016	.00022	.00033	.00049	.00071	.0010	.0014	.0019
30	.00017	.00019	.00024	.00034	.00050	.00073	.0011	.0015	.0021	.0028
40	.00025	.00028	.00036	.00050	.00074	.0011	.0016	.0023	.0031	.0042
50	.00038	.00042	.00053	.00075	.0011	.0016	.0024	.0034	.0046	.0062
60	.00057	.00063	.00080	.0011	.0017	.0025	.0036	.0050	.0069	.0093
70	.00085	.00094	.0012	.0017	.0025	.0037	.0053	.0075	.010	.014
80	.0013	.0014	.0018	.0025	.0037	.0055	.0080	.011	.016	.021
90	.0019	.0021	.0027	.0037	.0055	.0082	.012	.017	.023	.031
100	.0028	.0031	.0040	.0056	.0083	.012	.018	.025	.035	.047
110	.0042	.0047	.0059	.0084	.012	.018	.027	.038	.052	.070
120	.0063	.0070	.0089	.013	.018	.027	.040	.056	.077	. 10

^{*}See Table 5.1.7.2-2 for applicability to spec. and style.

CAPACITORS

MIL-C-5, CM: MIL-C-39001, CMR

CAPACITORS, FIXED, MICA, BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 150°C MAX RATED) *TABLE 5.1.7.2-8:

TEMP	1		S, RATI	O OF OPE	RATING T	O RATED	VOLTAG	E		
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
									····	
0	.00003	.00003	.00004	.00005	.00008	.00011	.00017	.00024	.00033	.00044
10	.00004	.00004	.00005	.00008	.00011	.00017	.00024	.00034	.00047	.00064
20	.00006	.00006	.00008	.00011	.00017	.00024	.00036	.00050	.00069	.00093
30	.00008	.00009	.00012	.00016	.00024	.00036	.00052	.00073	.0010	.0014
40	.00012	.00013	.00017	.00024	.00035	.00052	.00076	.0011	.0015	.0020
50	.00018	.00020	.00025	.00035	.00051	.00076	.0011	.0016	.0022	.0029
60	.00026	.00029	.00036	.00051	.00075	.0011	.0016	.0023	.0031	.0042
70	.00038	.00042	.00053	.00074	.0011	.0016	.0024	.0033	.0046	.0062
80	.00055	.00061	.00077	.0011	.0016	.0024	.0034	.0049	.0067	.0090
90	.00080	.00089	.0011	.0016	.0023	.0035	.0050	.0071	.0098	.013
100	.0012	.0013	.0016	.0023	.0034	.0050	.0073	.010	.014	.019
110	.0017	.0019	.0024	.0034	.0050	.0074	.011	.015	.021	.028
120	.0025	.0028	.0035	.0049	.0073	.011	.016	.022	.030	.041
130	.0036	.0040	.0051	.0072	.011	.016	.023	.032	.044	.060
140	.0053	.0059	.0074	.010	.015	.023	.033	.047	.065	.087
150	.0078	.0086	.011	.015	.023	.033	.049	.069	.095	.13

^{*}See Table 5.1.7.2-2 for applicability to spec. and style.

CAPACITORS

MIL-C-10950, CB

SPECIFICATION STYLE DESCRIPTION
MIL-C-10950 CB Button Mica

Part operating failure rate model (λ_p) :

$$\lambda_p = \lambda_b (\pi_E \times \pi_Q \times \pi_{CV})$$
 failures/10⁶ hrs

where the factors are shown in Tables 5.1.7.2-9 through -14.

TABLE 5.1.7.2-9
Environmental Mode Factors

ENVIRON- MENT	πE
G G G G M N N N N N N N N N N N N N N N	1 1.2 2.4 8.8 11 5 5.2 15 16
ARUTBAIFCTBAUAAUF FALAUAAUAAUF FALAUMAAUAAUF OM MUMCL	23 3.5 4 8 4 10 15 15 35 15 40 11 15 31 36 610

_ Table 5.1.7.2-10

Base Failure Rate Tables

for Capacitor Spec & Style

Spec MIL-C	Style	A Table b Number
10950	C250	5.1.7.2-13
	Other	5.1.7.2-14

Table 5.1.7.2-11 II CV, Capacitance Factor

Capacitance *	π _{CV}
8.0 pF.	.5
47. "	.75
162. "	1.0
509. " 1250. "	1.3
2650. "	1.9
5010. "	2.2

* $\pi_{\text{CV}} = .310^{0.23}$

where C is pF.

CAPACITORS

MIL-C-10950, CB

Table 5.1.7.2-12 T Q Quality Factor

Failure Rate Level	Π _Q
MIL-SPEC	5.0
Lower	15.0

CAPACITORS

MIL-C-10950, CB

*TABLE 5.1.7.2-13: CAPACITORS, MICA, BUTTON, BASE FAILURE RATE, λ_{b} (T = 85 $^{\circ}$ C MAX RATED)

TEMP			S, RAT	IO OF OP	ERATING	TO RATED	VOLTA	GE		
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
									·	
0	.0067	.0074	.0094	.013	.019	.029	.042	.059	.082	.11
10	.0071	.0078	.0099	.014	.021	.030	.044	.063	.086	. 12
20	.0076	.0084	.011	.015	.022	.033	.047	.067	.092	. 12
30	.0082	.0091	.011	.016	.024	.035	.051	.073	.10	. 13
40	.0090	.010	.013	.018	.026	.039	.056	.080	.11	. 15
50	.010	.011	.014	.020	.029	.043	.063	.089	. 12	. 17
60	.012	.013	.016	.023	.033	.050	.072	.10	. 14	. 19
70	.013	.015	.019	.027	.039	.058	.084	. 12	. 16	.22
80	.016	.018	.023	.032	.047	.070	.10	. 14	.20	.26

^{*}See Table 5.1.7.2-10 for applicability to spec. and style.

CAPACITORS

MIL-C-10950, CB

*TABLE 5.1.7.2-14: CAPACITORS, MICA, BUTTON, BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 150 $^{\rm o}$ C MAX RATED)

TEMP			S, RATI	0 OF OP	ERATING '	TO RATED	VOLTA	GE .		
(°C)	1.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	0058	.0064	.0081	.011	.017	.025	.036	.051	.071	.095
10	.0059	.0066	.0083	.012	.017	.026	.037	.052	.072	.097
20	.0061	.0067	.0085	.012	.018	.026	.038	.054	.074	.099
30	.0062	.0069	.0087	.012	.018	.027	.039	.055	.076	. 10
40	.0064	.0071	.0090	.013	.019	.028	.040	.057	.079	.11
50	.0067	.0074	.0094	.013	.019	.029	.042	.059	.082	.11
60	.0070	.0078	.0098	.014	.020	.030	.044	.062	.086	.11
70	.0074	.0082	.010	.015	.022	.032	.046	.066	.090	.12
80	.0079	.0088	.011	.016	.023	.034	.049	.070	.096	. 13
90	.0085	.0094	.012	.017	.025	.037	.053	.075	.10	. 14
100	.0093	.010	.013	.018	.027	.040	.058	.082	.11	15
110	.010	.011	.014	.020	.030	.044	.064	.091	. 12	. 17
120	.011	.013	.016	.023	.033	.049	.072	. 10	. 14	. 19
130	.013	.014	.018	.026	.038	.056	.082	. 12	. 16	.21
140	.015	.017	.021	.030	.044	.065	.095	. 13	. 18	.25
150	.018	.020	.025	.035	.052	.077	.11	. 16	.22	.29

^{*}See Table 5.1.7.2-10 for applicability to spec. and style.

CAPACITORS

MIL-C-11272, CY; MIL-C-23269, CYR

5.1.7.3 Glass Capacitors

SPECIFICATION	STYLE	DESCRIPTION
MIL-C-11272	CY	Glass Capacitors
MIL-C-23269	CYR	Glass Capacitors, Est. Rel

Part operating failure rate model (λ_p) : $\lambda_p = \lambda_b (\pi_E \times \pi_Q \times \pi_{CV})$ failures/10⁶ hrs.

where the factors are shown in Tables 5.1.7.3-1 through -6.

TABLE 5.1.7.3-1
Environmental Mode Factors

ENVIRON- MENT	πE
GB GF GF MP NSB NS NU NH NU	1 1.1 1.4 8.8 11 5 6.2 15 16
ARW AIC AIT AIB AIA AIF AUC AUT AUB AUF MFFA MFFA UMC L	23 3.5 4 8 4 10 15 15 35 15 40 1 11 15 31 36 610

Table 5.1.7.3-2
Base Failure Race Tables for Capacitor Spec and Style

Spec MIL-C	Style	\lambda, Table \\ \text{Number}
23269	All	5.1.7.3-5
11272	Temp. Range C	5.1.7.3-5
11272	Temp. Range D	5.1.7.3-6

Table 5.1.7.3-3

0, 442224) 12221	
Failure Race Level	πο
S	0.03
R	0.1
P	0.3
i m	1.0
L	3
Non-ER	3
LOWER	10.

Table 5.1.7.3-4

Total Capacitance Factor

Capacitance *	II CA
20 - 5	.5
.22 pF.	1 .75
3.9 "	1.0
30. •	1.3
200. "	1.6
870.	1.9
3000. "	-
	2.2
asoo. "	

* TCY = 0.520 0.14

where C is pf.

CAPACITORS

MIL-C-11272, CY: MIL-C-23269, CYR

CAPACITORS, FIXED, GLASS, BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 125 $^{\rm o}$ C MAX RATED) *TABLE 5.1.7.3-5:

TEMP]		S, RATI	O OF OPE	RATING T	O RATED	VOLTAG:	Е		
(°C)	1.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.00005	.00005	.00005	.00007	.00010	.00015	.00023	.00036	.00055	.00082
10	.00007	.00007	.00008	.00010	.00014	.00022	.00035	.00054	.00083	.0012
20	.00011	.00011	.00012	.00015	.00022	.00033	.00052	.00081	.0012	.0018
30	.00016	.00017	.00018	.00023	.00032	.00049	.00078	.0012	.0018	.0027
40	.00024	.00025	.00027	.00034	.00048	.00074	.0012	.0018	.0028	.0041
50	.00036	.00037	.00041	.00051	.00072	.0011	.0017	.0027	.0041	.0061
60	.00054	.00055	.00061	.00076	.0011	.0017	.0026	.0041	.0062	.0091
70	.00080	.00082	.00091	.0011	.0016	.0025	.0039	.0061	.0092	.014
80	.0012	.0012	.0014	.0017	.0024	.0037	.0058	.0091	.014	.020
90	.0018	.0018	.0020	.0025	.0036	.0055	.0087	.014	.021	.031
100	.0027	.0028	.0030	.0038	.0054	.0082	.013	.020	.031	.046
110	.0040	.0041	.0045	.0057	.0080	.012	.019	.030	.046	.068
120	.0060	.0061	.0068	.0085	.012	.018	.029	.045	.069	.10

^{*}See Table 5.1.7.3-2 for applicability to spec. and style.

CAPACITORS

MIL-C-11272, CY: MIL-C-23269, CYR

CAPACITORS, FIXED, GLASS, BASE FAILURE RATE, λ_{b} (T = 200 $^{\circ}$ C MAX RATED) *TABLE 5.1.7.3-6:

TEMP	1		`S, RATI	O OF OPE	RATING T	O RATED	VOLTAG	Ξ		
(°C)	. 1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.00001	.00001	.00001	.00001	.00002	.00003	.00004	.00006	.00010	.00014
10	.00001	.00001	.00001	.00002	.00002	.00004	.00006	.00009	.00014	.00020
20	.00002	.00002	.00002	.00002	.00003	.00005	.00008	.00013	.00019	.00028
30	.00002	.00002	.00003	.00003	.00005	.00007	.00011	.00018	.00027	.00040
40	.00003	.00003	.00004	.00005	.00007	.00010	.00016	.00025	.00038	.00056
50	.00005	.00005	.00005	.00006	.00009	.00014	.00022	.00035	.00053	.00078
60	.00006	.00007	.00007	.00009	.00013	.00020	.00031	.00049	.00074	.0011
70	.00009	.00009	.00010	.00013	.00018	.00028	.00044	.00068	.0010	.0015
80	.00013	.00013	.00014	.00018	.00025	.00039	.00061	.00096	.0015	.0022
90	.00018	.00018	.00020	.00025	.00035	.00055	.00086	.0013	.0020	.0030
100	.00025	.00026	.00028	.00035	.00050	.00077	.0012	.0019	.0029	.0042
110	.00035	.00036	.00039	.00049	.00070	.0011	.0017	.0026	.0040	.0059
120	.00049	.00050	.00055	.00069	.00098	.0015	.0024	.0037	.0056	.0083
130	.00069	.00070	.00078	.00097	.0014	.0021	.0033	.0052	.0079	.012
140	.00096	.00099	.0011	.0014	.0019	.0030	.0047	.0073	.011	.016
150	.0014	.0014	.0015	.0019	.0027	.0042	.0065	.010	.016	.023
160	.00 19	.0019	.0021	.0027	.0038	.0058	.0092	.014	.022	.032
170	.0027	.0027	.0030	.0037	.0053	.0082	.013	.020	.031	.045
180	.0037	.0038	.0042	.0053	.0075	.011	.018	.028	.043	.063
190	.0052	.0054	.0059	.0074	.010	.016	.025	.039	.060	.89
200	.0073	.0075	.0083	.010	.015	.023	.035	.055	.084	. 12

^{*}See Table 5.1.7.3-2 for applicability to spec. and style.

CAPACITORS

MIL-C-11015, CK; MIL-C-39014, CKR

5.1.7.4 Ceramic Capacitors.

SPECIFICATION	STYLE	DESCRIPTION
MIL-C-11015	CIX.	Ceramic, General Purpose
MIL-C-39014	CIXIR	Ceramic, General Purpose, Est. Rel.

Part operating failure rate model (\lambda_p):

 $\lambda_p = \lambda_b (\pi_E \times \pi_Q \times \pi_{CV})$ failures/10⁶ hrs.

where the factors are shown in Tables 5.1.7.4-1 through -6.

TABLE 5.1.7.4-1
Environmental Mode Factors

ENVIRON- MENT	πE
GG G G M N N N U H U	7.8 7.8 11 5.5 12.4 16
ARW AIT AIB AIF AUT AUB AUF AUF AUB AUF AUF CL	24 3 3 5 6 7.5 10 8 15 0.8 17 32 36 610

Table 5.1.7.4-2

Quality Factor

Q ¬,	
Failure Rate Level	ıī o
S	0.03
2	0.1
7	0.3
H	1.0
L	3
Non-CR	3
LOWER	10

Table 5.1.7.4-3

Capacitance *	п ст
.6.1 pF. 240. 3300. .036 µF. .24 1.1	.5 .75 1.0 1.3 1.6 1.9 2.2

* π_{CY} * .41 $C^{0.11}$ where C is pF.

CAPACITORS

MIL-C-11015, CK: MIL-C-39014, CKR

*TABLE 5.1.7.4-4: CAPACITORS, FIXED, CERAMIC (GENERAL PURPOSE), BASE FAILURE RATE, λ_h (T = 85°C MAX RATED)

TEMP	S, RATIO OF OPERATING TO RATED VOLTAGE									
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.00067	.00083	.0013	.0022	.0036	.0058	.0088	.013	.018	.024
10	.00069	.00086	.0013	.0022	.0037	.0060	.0091	.013	.019	.025
20	.00071	.00088	.0014	.0023	.0038	.0061	.0093	.014	.019	.026
30	.00073	.00091	.0014	.0024	.0039	.0063	.0096	.014	.020	.027
40	.00075	.00093	.0014	.0024	.0040	.0065	.0099	.014	.020	.027
50	.00077	.00096	.0015	.0025	.0042	.0067	.010	.015	.021	.028
60	.00079	.00099	.0015	.0026	.0043	.0068	.010	.015	.021	.029
70	.00081	.0010	.0016	.0026	.0044	.0070	.011	.016	.022	.030
80	.00083	.0010	.0016	.0027	.0045	.0072	.011	.016	.023	.031

^{*}Applicable to styles CKR 13, 48, 64, 72 of MIL-C-39014. Applicable to "A" rated temperature of MIL-C-11015 as shown in type designation, e.g., CK61AW222M.

CAPACITORS

MIL-C-11015, CK: MIL-C-39014, CKR

*TABLE 5.1.7.4-5: CAPACITORS, FIXED, CERAMIC (GENERAL PURPOSE), BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 125°C MAX RATED)

TEMP	į		S, RAT	O OF OPE	ERATING	TO RATED	VOLTAG	E		
(°C)	1.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
			2222		2224	0054	0000	0.10	017	000
٥ ،	.00062	.00077	.0012	.0020	.0034	.0054	.0082	.012	.017	.023
10	.00063	.00079	.0012	.0021	.0034	.0055	.0084	.012	.017	.023
20	.00065	.00081	.0013	.0021	.0035	.0056	.0086	.013	.018	.024
30	.00067	.00083	.0013	.0022	.0036	.0058	.0088	.013	.018	.024
40	.00068	.00085	.0013	.0022	.0037	.0059	.0090	.013	.018	.025
50	.00070	.00088	.0014	.0023	.0038	.0061	.0093	.013	.019	.026
60	.00072	.00090	.0014	.0023	.0039	.0062	.0095	.014	.019	.026
70	.00074	.00092	.0014	.0024	.0040	.0064	.0097	.014	.020	.027
80	.00076	.00094	.0015	.0025	.0041	.0066	.010	.015	.020	.028
90	.00077	.00097	.0015	.0025	.0042	.0067	.010	.015	.021	.028
100	.00079	.00099	.0015	.0026	.0043	.0069	.010	.015	.021	.029
100	.00081	.0010	.0016	.0026	.0044	.0071	.011	.016	.022	.030
120	.00084	.0010	.0016	.0027	.0045	.0072	.011	.016	.023	.031

^{*}Applicable to styles CKR05-12, 14-16, 17-19, 73, 74 of MIL-C-39014.

Applicable to "B" rated temperature of MIL-C-11015 as shown in type designation, e.g., CK61BX681M.

CAPACITORS

MIL-C-11015, CK: MIL-C-39014, CKR

*TABLE 5.1.7.4-6: CAPACITORS, FIXED, CERAMIC (GENERAL PURPOSE), BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 150°C MAX RATED)

TEMP			S, RAT	O OF OPE	RATING	TO RATED	VOLTAG	E		
· (°C)	.1	.2 ·	.3	.4	.5	.6	.7	.8	• .9	1.0
0	00050	00074	0011	0010	0000	0053	0070	011	0.16	
	.00059	.00074	.0011	.0019	.0032	.0051	.0078	.011	.016	.022
10	.00061	.00076	.0012	.0020	.0033	.0053	.0080	.012	.016	.022
20	.00062	.00078	.0012	.0020	.0034	.0054	.0082	.012	.017	.023
30	.00064	.00080	.0012	.0021	.0035	.0055	.0084	.012	.017	.023
40	.00065	.00082	.0013	.0021	.0035	.0057	.0086	.013	.018	.024
50	.00067	.00083	.0013	.0022	.0036	.0058	.0088	.013	.018	.024
60	.00068	.00085	.0013	.0022	.0037	.0059	.0090	.013	.018	.025
70	.00070	.00087	.0013	.0023	.0038	.0061	.0092	.013	.019	.026
80	.00072	.00090	.0014	.0023	.0039	.0062	.0095	.014	.019	.026
90	.00073	.00092	.0014	.0024	.0040	.0064	.0097	.014	.020	.027
100	.00075	.00094	.0014	.0024	.0041	.0065	.0099	.014	.020	.028
110	.00077	.00096	.0015	.0025	.0042	.0067	.010	.015	.021	.028
120	.00079	.00098	.0015	.0026	.0043	.0068	.010	.015	.021	.029
130	.0081	.0010	.0016	.0026	.0044	.0070	.011	.016	.022	.030
140	.00083	.0010	.0016	.0027	.0045	.0072	.011	.016	.022	.030
150	.00085	.0011	.0016	.0027	.0046	.0073	.011	.016	.023	.031

^{*}Applicable to "C" rated temperature of MIL-C-11015 as shown in type designation, e.g., CK61CZ471M.

CAPACITORS

MIL-C-20, CC/CCR

SPECIFICATION

STYLE

DESCRIPTION

MIL-C-20 MIL-C-55681 CC/CCR

Ceramic, Temperature Compensating

Ceramic, Chip

Part operating failure rate model (λ_n):

 $\lambda_p = \lambda_b \times (\pi_E \times \pi_0 \times \pi_{CV})$ failures/10⁶ hours

where the factors are shown in Tables 5.1.7.4-7 through -12.

TABLE 5.1.7.4-7 Environmental Mode Factors

πE
1.2 2.4 8.8
5 5 17 16 18
24 2.5 3.5 7.5 7 10 4.5 15 30 25
10 4.5 15 30 25
45 1 11 15 32 36 10

Table 5.1.7.4-8 Base Failure Rate Tables for Capacitor Spec and Style

Spec MIL-C		Style	λ _b Table Number
20	CC	20,25,30,32,35,45, 85,95 - 97	5.1.7.4-11
	CC	5-9,13-19,21,22,25 27,31,33,36,37,47, 50-57,75-79,81-83]
	CCR	05-09,13-19,54-57, 75-79,81-83,90	

Table 5.1.7.4-9

No, Quality Factor

Failure Race Level	π _Q
S R P M Mon-ER LOWER	0.03 0.1 0.3 1.0 3

Table 5.1.7.4-10 Acy, Capacitor Factor

Capacitance *	ΠC/
.25 pF. 7.4 " 81. " 720. " 4100. " .017 uF058 "	.5 .75 1.0 1.3 1.6 1.9 2.2

where C is pf.

CAPACITORS

MIL-C-20, CC/CCR

*TABLE 5.1.7.4-11: CAPACITORS, CERAMIC, TEMPERATURE COMPENSATING, BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 85°C MAX RATED)

TEMP	S, RATIO OF OPERATING TO RATED VOLTAGE									
(°C)	1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
^	00015	00010	22222	00040						
0	.00015	.00018	.00028	.00048	.00080	.0013	.0019	.0028	.0040	.0054
10	.00022	.00027	.00042	.00071	.0012	.0019	.0029	.0042	.0059	.0080
20	.00033	.00041	.00063	.0011	.0018	.0028	.0043	.0063	.0088	.012
30	.00049	.00061	.00094	.0016	.0026	.0042	.0064	.0094	.013	.018
40	.00073	.00091	.0014	.0024	.0039	.0063	.0096	.014	.020	.027
50	.0011	.0014	.0021	.0035	.0059	.0094	.014	.021	.029	.040
60	.0016	.0020	.0031	.0052	.0088	.014	.021	.031	.044	.059
70	.0024	.0030	.0046	.0078	.013	.021	.032	.046	.065	.088
80	.0036	.0045	.0069	.012	.019	.031	.047	.069	.097	. 13

 $[\]star$ See Table 5.1.7.4-8 for applicability to spec. and style.

CAPACITORS

MIL-C-20, CC/CCR

*TABLE 5.1.7.4-12: CAPACITORS, CERAMIC, TEMPERATURE COMPENSATING, BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 125 $^{\rm o}$ C MAX RATED)

TEMP	<u>.</u>		S, RATI	O OF OPE	RATING T	O RATED	VOLTAGI	Ξ		
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.00005	.00006	.00009	.00016	.00027	.00043	.00065	.00094	.0013	.0018
10	.00007	.00009	.00014	.00023	.00038	.00061	.00093	.0014	.0019	.0026
20	.000 10	.00013	.00019	.00033	.00055	.00087	.0013	.0019	.0027	.0037
30	.00014	.00018	.00028	.00047	.00078	.0013	.0019	.0028	.0039	.0053
40	.00021	.00026	.00040	.00067	.0011	.0018	.0027	.0040	.0056	.0076
50	.00030	.00037	.00057	.00096	.0016	.0026	.0039	.0057	.0080	.011
60	.00042	.00053	.00082	.0014	.0023	.0037	.0056	.0082	.011	.016
70	.00061	.00076	.0012	.0020	.0033	.0053	.0080	.012	.016	.022
80	.00087	.0011	.0017	.0028	.0047	.0075	.011	.017	.023	.032
90	.0012	.0016	.0024	.0040	.0068	.011	.016	.024	.034	.046
100	.0018	.0022	.0034	.0058	.0097	.015	.024	.034	.048	.065
110	.0026	.0032	.0049	.0083	.014	.022	.034	.049	.069	.094
120	.0037	.0046	.0071	.012	.020	.032	.048	.070	.099	. 13

^{*}See Table 5.1.7.4-8 for applicability to spec. and style.

CAPACITORS

MIL-C-39003, CSR

5.1.7.5 Tantalum Electrolytic Capacitors

SPECIFICATION	STYLE	DESCRIPTION
MIL-C-39003	CSR	Tantalum Electolytic (solid), Est. Rel.

Part operating failure rate model (λ_p) :

 $\lambda_{p} = \lambda_{b} (\pi_{E} \times \pi_{SR} \times \pi_{Q} \times \pi_{CV}) \text{ failures/10}^{6} \text{ hours}$

TABLE 5.1.7.5-1

Environmental Mode Factors

ENVIRONMENT	πE
G G M P M P	1 1.2 2.4 7.8 9.2
G G G G M P R R R R R R R R R R R R R R R R R R	4.4 4.9 13 14 15
	20 2.5 2.5 7.5
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	20 2.5 2.5 3 7.5 4.5 6 25 10 30 0.8 9.3
AUF SF MFF MFFA	30 0.8 9.3 - 13
C.T.	27 31 530

Table 5.1.7.5-2 Series Resistance, #5R for MIL-C-39003

Circuit Resistance (chms/volt)	™ SR
>0.8 to 1.0 >0.6 to 0.8 >0.4 to 0.6 >0.2 to 0.4 >0.1 to 0.2 0 to 0.1	.066 .10 .13 .20 .27

Table 5.1.7.5-3 TCV, Capacitance Factor

Capacitance *	* C₹
.003 uF.	0.5
.091 *	0.75
1.0	1.0
8.9	1.3
50. "	1.6

210. 710.

10, Quality Factor								
Failure Rate Level	" Q							
D	0.001							
1 c	0.01							
S	0.03							
R	0.1							
В	0.1							
P	0.3							
М	1.0							
) L	1.5							
LOWER	10.							

 $\pi_{CV} = 1.0c^{0.12}$ where C is uf.

- CAPACITORS

MIL-C-39003, CSR

TABLE 5.1.7.5-5: CAPACITORS, FIXED, ELECTROLYTIC (SOLID) TANTALUM, BASE FAILURE RATE, $\lambda_{\rm b}$

TEMP			S, RATIO OF OPERATING TO RATED VOLTAGE							
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
Ö	.0042	.0046	.0058	.0082	.012	.018	.026	.037	.051	.068
10	.0043	.0048	.0060	.0085	.012	.019	.027	.038	.052	.070
20	.0045	.0050	.0063	.0088	.013	.019	.028	.040	.055	.074
30	.0048	.0053	.0067	.0094	.014	.021	.030	.042	.058	.078
40	.0051	.0057	.0072	.010	.015	.022	.032	.046	.063	.084
50	.0057	.0063	.0079	.011	.016	.024	.035	.050	.069	.093
60	.0064	.0071	.0090	.013	.019	.028	.040	.057	.078	.11
70	.0075	.0083	.011	.015	.022	.032	.047	.067	.092	. 12
80	.0092	.010	.013	.018	.027	.040	.058	.082	.11	.15
90	.012	.013	.017	.023	.034	.051	.074	.11	. 14	
100	.016	.018	.023	.032	.047	.070	.10	. 14		1
110	.024	.027	.034	.047	.070	.10	. 15			
120	.039	.043	.054	.076	.11	. 17	.24			
	1									

MIL-HDBK-217E CAPACITORS

MIL-C-3965, CL; MIL-C-39006, CLR

SPECIFICATION	STYLE	DESCRIPTION
MIL-C-3965 MIL-C-39006	CL CLR	Tantalum, Electrolytic (Non-solid) Tantalum, Electrolytic (Non-solid) Est. Rel.

Part operating failure rate model (λ_p) :

 $\lambda_p = \lambda_b \quad (\pi_E \times \pi_C \times \pi_Q \times \pi_{CV}) \text{ failures/10}^6 \text{ hours.}$

where the factors are shown in Tables 5.1.7.5-6 through -13.

TABLE 5.1.7.5-6

ENVIRONMENTAL MODE FACTORS

ENVIRONMENT	π _E
の	1 1.1 1.4 10 11 — 5 6.7 15 16 17
WCTBAFCTBAF RITELLUUUUUFFAL AAAAAAAAASMMUMC	23 2.5 4 6.5 6 10 8.5 15 20 20 40
AUF SFFA MFFA USL C	40 1 11 15 31 36 610

TABLE 5.1.7.5-7
BASE-FAILURE RATE TABLES FOR CAPACITOR
SPECIFICATION AND STYLE

Spec MIL-C	Style	h Table No.
3965	CL24, 25, 25, 27, 34, 35, 36, 37	5.1.7.5-11
	CL20, 21, 22, 23, 30, 31, 32, 33, 40, 41, 42, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 64, 65, 66, 67, 70, 71, 72, 73	5.1.7.5-12
į Į	CL14, 16, 10, 13, 17, 18,	5.1.7.5-13
22008	ā.	5.1.7.5-12

CAPACITORS

CAPACTTORS
MIL-C-3965, CL;
MIL-C-39006, CLR

TABLE 5.1.7.5-8

Failure Rate Level	™ Q
s	0.03
R .	0.1
. P ·	0.3
M.	1.0.
L	1.5
Non-ER LOWER	3 10.

TABLE 5.1.7.5-9
* CV* CAPACITANCE FACTOR

Capacitanca *	*cr
.091 uF.	0.7
20.	1.0
1100.	1.3

 $= \pi_{CV} = .82c^{0.066}$ where C is μF .

CAPACITORS

MIL-C-3365, CL MIL-C-39006, CLR

Table 5.1.7.5-10 MIL-C-3965/MIL-C-39006 Construction Factor, $\Pi_{\rm C}$

Construction Type	п _С
Slug, All Tantalum	0.3
Foil, Hermetic*	1.0
Slug, Hermetic*	2.0
Foil, Non-Hermetic*	2.5
Slug, Non-Hermetic*	3.0

*Type of seal identified as follows:

1 MIL-C-3965 (CL) - Note last letter

in part number:

G - Hermetic

E - Non-Hermetic

Example: CL10BC700TPG is hermetic

MIL-C-39006 (CLR) - Consult individual
part specification sheet (slash sheet)

NOTE:

Foil Types - CL 20, 21, 22, 23, 30, 31, 32 33, 51, 52, 53, 54, 70, 71, 72, 73 CLR 25, 27,35, 37, 53,71, 73

Slug Types - CL 10, 13, 14, 16, 17, 18, 55, 56, 66, 67
CLR 10, 14, 17, 65, 69, 89

All Tantalum - CLR 79

CAPACITORS

MIL-C-3965, CL: MIL-C-39006, CLR

*TABLE 5.1.7.5-11: CAPACITORS, TANTALUM (NONSOLID), BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 85°C MAX RATED)

TEMP			S, RATI	O OF OPE	ERATING	TO RATED	VOLTA	GE		
(°C)	1.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
										
0	.0021	.0023	.0029	.0041	.0061	.0091	.013	.019	.026	.034
10	.0023	.0025	.0032	.0045	.0067	.0099	.014	.020	.028	.038
20	.0026	.0028	.0036	.0051	.0075	.011	.016	.023	.031	.042
30	.0030	.0033	.0042	.0059	.0087	.013	.019	.027	.036	.049
40	.0036	.0040	.0051	.0072	.011	.016	.023	.032	.044	.060
50	.0047	.0052	,0066	.0092	.014	.020	.029	.042	.057	.077
60	.0065	.0072	.0091	.013	.019	.028	.041	.058	.079	.11
70	.0098	.011	.014	.019	.029	.042	.062	.087	.12	. 16
80	.017	.018	.023	.033	.048	.071	. 10	. 15	.20	.27

^{*}See Table 5.1.7.5-7 for applicability to spec. and style.

CAPACITORS

MIL-C-3965, CL: MIL-C-39006, CLR

*TABLE 5.1.7.5-12: CAPACITORS, TANTALUM (NONSOLID), BASE FAILURE RATE, λ_b (T = 125 C MAX RATED)

TEMP	S, RATIO OF OPERATING TO RATED VOLTAGE									
(°C)	1.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
						· ··· · · · · · · · · · · · · · · · ·				
0	.0018	.0020	.0026	.0036	.0053	.0079	.011	.016	.022	.030
10	.0019	.0021	.0026	.0037	.0055	.0081	.012	.017	.023	.031
20	.0020	.0022	.0028	.0039	.0057	.0085	.012	.018	.024	.032
30	.0021	.0023	.0029	.0041	.0061	.0090	.013	.019	.026	.034
40	.0023	.0025	.0032	.0045	.0066	.0097	.014	.020	.028	.037
50	.0025	.0028	.0035	.0049	.0072	.011	.016	.022	.030	.041
60	.0028	.0031	.0040	.0056	.0082	.012	.018	.025	.034	.046
70	.0033	.0037	.0046	.0065	.0096	.014	.021	.029	.040	.054
80	.0041	.0045	.0057	.0080	.012	.017	.025	.036	.049	.066
90	.0052	.0058	.0073	.010	.015	.022	.033	.046	.064	
100	.0071	.0079	.010	.014	.021	.031	.045	.063		
110	.011	.012	.015	.021	.031	.045	.066			
120	.017	.019	.024	.034	.050	.073	.11			

^{*}See Table 5.1.7.5-7 for applicability to spec. and style.

CAPACITORS

MIL-C-3965, CL: MIL-C-39006, CLR

*TABLE 5.1.7.5-13: CAPACITORS, TANTALUM (NONSOLID), BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 175 C MAX RATED)

	TEMP			S, RAT	0 OF OPE	ERATING 1	TO RATED	VOLTA	GE		
	(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
(0	.0017	.0019	.0024	.0034	.0050	.0074	.011	.015	.021	.028
	10	.0017	.0019	.0024	.0034	.0051	.0075	.011	.015	.021	.029
;	20	.0018	.0020	.0025	.0035	.0052	.0076	.011	.016	.022	.029
	30	.0018	.0020	.0025	.0036	.0053	.0078	.011	.016	.022	.030
	40	.00 19	.0021	.0026	.0037	.0054	.0080	.012	.016	.023	.030
į	50	.0019	.0021	.0027	.0038	.0056	.0083	.012	.017	.023	.031
1	60	.0020	.0022	.0028	.0040	.0058	.0086	.013	.018	.024	.033
	70	.0021	.0023	.0030	.0042	.0062	.0091	.013	.019	.026	.035
8	30	.0023	.0025	.0032	.0045	.0066	.0098	.014	.020	.028	.037
•	90	.0025	.0027	.0035	.0049	.0072	.011	.016	.022	.030	
	100	.0028	.0031	.0039	.0054	.0080	.012	.017	.024	.034	
	110	.0032	.0035	.0044	.0062	.0092	.014	.020	.028	.039	
	120	.0037	.0041	.0052	.0073	.011	.016	.023	.033		
	130	.0046	.0051	.0064	.0090	.013	.020	.029	.040		
	140	.0059	.0065	.0082	.012	.017	.025	.037	.052		
	150	.0079	.0088	.011	.016	.023	.034	.049	.070		
	160	.011	.013	.016	.022	.033	.049	.071			
	170	.018	.019	.025	.035	.051	.076				
		I									

^{*}See Table 5.1.7.5-7 for applicability to spec. and style.

CAPACITORS

CAPACITORS MIL-C-39018, CU, CUR

5.1.7.6 Aluminum Electrolytic Capacitors.

SPECIFICATION STYLE DESCRIPTION

MIL-C-39018 CU Aluminum Oxide Electrolytic, ER

MIL-C-39018 CU Aluminum Oxide Electrolytic

Part operating failure rate model (λ_0) :

 $\lambda_{\rm p} = \lambda_{\rm b} \times \pi_{\rm E} \times \pi_{\rm Q} \times \pi_{\rm CV}$ failures/10⁶ hours.

where the factors are shown in Tables 5.1.7.6-1 through -4.

TABLE 5.1.7.6-1

ENVIRONMENTAL MODE FACTORS

πЕ **ENVIRONMENT** 1 1.2 12 12 -5.8 6.7 13 19 20 ARW AIC 27 9.5 AIT AIB AIA AIF 10 10 10 15 25 uc 30 AAASMMUMC 30 30 Ή. 1 12 17 36 41 690

TABLE 5.1.7.6-2 Π_0 , QUALITY FACTOR

по
0.03
0.1
0.3
1.0
3.
10

TABLE 5.1.7.6-3

**CV* CAPACITANCE FACTOR

Capacitance*	πςν
2.5 uF.	0.4
55.	0.7
400. "	1.0
1700. "	1.3
5500. "	1.6
14,000. "	1.9
32,000. "	2.2
65,000. "	2.5
120,000. "	2.8

" Ticy = .3400.18 where C is uf.

CAPACITORS

MIL-C-39018, CU, CUR

TABLE 5.1.7.6-4: CAPACITORS, FIXED ELECTROLYTIC, ALUMINUM OXIDE, BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 125°C MAX RATED)

TEMP	İ		S, RATI	10 OF OP1	ERATING	TO RATED	VOLTA	GE		
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.0055	.0059	.0067	.0083	.011	.015	.021	.028	.038	.050
10	.0065	.0068	.0078	.0097	.013	.017	.024	.033	.044	.058
20	.0077	.0081	.0093	.012	.015	.021	.029	.039	.052	.069
30	.0094	.0099	.011	.014	.019	.025	.035	.048	.064	.084
40	.012	.012	.014	.018	.023	.032	.044	.060	.080	.11
50	.015	.016	.019	.023	.030	.042	.057	.078	.10	. 14
60	.021	.022	.025	.031	.041	.056	.077	.10	.14	.18
70	.029	.030	.035	.043	.057	.078	.11	.15	.20	.26
80	.042	.044	.050	.063	.083	.11	. 16	.21	.28	.37
9 0 -	.064	.067	077	.095	. 13	- 77 -	24	.32	43	- *
100	.10	.11	. 12	. 15	.20	.27	.38	.51		
110	. 17	. 18	.21	.26	.34	.46	.63	.86		
120	.30	.32	.37	.46	.60	.82	1.1			

^{*}Do not use styles CU 16, 17 and 71 below this line.

CAPACITORS

CAPACITORS MIL-C-62, CE

> DESCRIPTION STYLE SPECIFICATION CE

MIL-C-62

Aluminum, Dry Electrolyte

Part operating failure rate model (λ_{D}) : $\lambda_p = \lambda_b \times \pi_E \times \pi_Q \times \pi_{CV}$ failures/10.6 hours where the factors are shown in Tables 5.1.7.6-5 through -8.

TABLE 5.1.7.6-5

ENVIRONMENTAL MODE FACTORS

ENVIRONMENT	пЕ
౽౽౽౽౽౾ౚౚౢౢౢౢౚ ౽ౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢ	1 1.2 2.4 12 12 5.8 6.7 13 19 20
	27 9.5 10 10 10
A I F A U C A U T A U B	
WCTBAFCTBAF FAL AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	25 30 30 30 40 1 12 17 36 41
c.f.	690

TABLE 5.1.7.6-5

Quality Level	[#] Q
MIL-Spec Lower	3 10
Lover	10

CAPACITORS

MIL-C-62, CE

TABLE 5.1.7.6-7
TOY, CAPACITANCE FACTOR

	Capacitance	[∓] C∇
3.2	μF.	0.4
62.	n	0.7
400.	1	1.0
1600.	a	1.3
4800.	■:	1.6
12,000.	*	1.9
26,000.	•	2.2
50,000.	#	2.5
91.000.	. •	2.8

* $\pi_{\text{CV}} = .32C^{0.19}$ where C is μF .

MIL-HDBK-217E CAPACITORS

MIL-C-62, CE

TABLE 5.1.7.6-8: CAPACITORS, ALUMINUM, DRY ELECTROLYTE, BASE FAILURE RATE, λ_b (T = 125 C MAX RATED)

TEMP			S, RATI	0 OF OP	ERATING	TO RATED	VOLTA	GE		
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.0064	.0067	.0074	.0089	.011	.015	.020	.026	.034	.045
10	.0078	.0082	.0090	.011	.014	.018	.024	.032	.042	.055
20	.0099	.010	.011	.014	.017	.023	.030	.040	.053	.069
30	.013	.014	.015	.018	.023	.030	.040	.053	.070	.091
40	.018	.019	.021	.025	.031	.041	.055	.073	.096	.13
50	.026	.027	.030	.036	.046	.060	.080	.11	. 14	. 18
60	.041	.042	.047	.056	.071	.093	. 12	. 16	.22	.28
70	.068	.070	.078	.093	. 12	. 15	.21	.27	.36	.47
80	. 12	. 13	. 14	. 17	.21	.28	.37	.49	.65	.85

CAPACITORS

MIL-C-81, CV

5.1.7.7 Variable Ceramic Capacitors.

SPECIFICATION MIL-C-81

STYLE

DESCRIPTION Variable Ceramic

Part operating failure rate model (λ_{D}) :

 $\lambda_{\rm p} = \lambda_{\rm b} \times (\pi_{\rm E} \times \pi_{\rm Q}) \text{ failures/10}^6 \text{ hours}$

where the factors are covered by Tables 5.1.7.7-1 through -5.

TABLE 5.1.7.7-1

Environmental Mode Factors

Environment	πE
Z N Z N Z A の D D D D D	1 1.3 3.4 9.8 17 7.9 7.7 20 25 27
ARW AIC AIT AIA AIF AUT AUB AUA AUF	36 3.5 4 10 10 15 25 70 65 75
SF MFF MFA USL ML CL	0.8 17 23 49 56 950

TABLE 5.1.7.7-2

BASE FAILURE RATE TABLES FOR CAPACITOP SPECIFICATION AND STYLE

ON ACTIO.	STECIFICATION AND STILE						
Spec MIL-C	Style	λ _b Table No.					
81	CV11,14,21/31, 32,34,40,41	5.1.7.7-4					
	CV35, 36	5.1.7.7-5					

TABLE 5.1.7.7-3 π_Q , QUALITY FACTOR

Quality Level	πQ
MIL-Spec	4
Lower	20

CAPACITORS

MIL-C-81, CV

*TABLE 5.1.7.7-4: CAPACITORS, VARIABLE, CERAMIC, BASE FAILURE RATE, λ_{b} (T = 85 $^{\circ}$ C MAX RATED)

TEMP	S, RATIO OF OPERATING TO RATED						VOLTA	AGE		
(°C)	.1	.2	.3	.4	•5	.6	.7	.8	.9	1.0
0	.0030	.0065	.016	.035	.066	.11	. 18	.26	.37	.51
10	.0031	.0068	.017	.036	.069	.12	.18	.27	.39	.53
20	.0033	.0073	.018	.039	.073	. 12	.20	.29	.41	.57
30	.0036	.0079	.020	.042	.080	. 14	.21	.32	.45	.62
40	.0041	.0089	.022	.047	.089	. 15	.24	.35	.50	.69
50	.0047	.010	.026	.055	.10	.18	.28	.41	.59	.80
60	.0058	.013	.031	.068	.13	.22	.34	.51	.72	.98
70	.0076	.017	.041	.088	. 17	.28	.45	.66	.94	1.3
80	.011	.023	.058	.12	.24	.40	.63	.94	1.3	1.8

^{*}See Table 5.1.7.7-2 for applicability to spec. and style.

MIL-HDBK-217E CAPACITORS

MIL-C-81, CV

*TABLE 5.1.7.7-5: CAPACITORS, VARIABLE, CERAMIC, BASE FAILURE RATE, λ_{b} (T = 125 $^{\circ}$ C MAX RATED)

TEMP	S, RATIO OF OPERATING TO RATED) VOLTAGE				
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0	
0	.0028	.0061	.015	.033	.061	. 10	. 16	.24	.35	.47	
10	.0028	.0062	.015	.033	.062	.11	. 17	.25	.35	.48	
20	.0029	.0063	.016	.034	.064	.11	. 17	.25	.36	.49	
30	.0030	.0065	.016	.035	.066	.11	. 18	.26	.37	.51	
40	.0031	.0068	.017	.036	.068	.12	. 18	.27	.39	.53	
50	.0033	.0071	.018	.038	.072	. 12	. 19	.29	.41	.56	
60	.0035	.0077	.019	.041	.077	.13	.21	.31	.44	.60	
70	.0038	.0084	.021	.045	.084	. 14	.23	.34	.48	.65	
80	.0043	.0095	.023	.050	.095	. 16	.25	.38	.54	.74	
90	.0050	.011	.027	.059	.11	. 19	.30	.44	.63	.86	
100	.0062	.013	.033	.072	. 14	.23	.36	.54	.76	1.0	
110	.0079	.017	.043	.092	. 17	.30	.47	.69	.98	1.3	
120	.011	.024	.059	.13	.24	.41	.64	. 96	1.4	1.9	

^{*}See Table 5.1.7.7-2 for applicability to spec. and style.

CAPACITORS

MIL-C-14409, PC

5.1.7.8 Variable Piston Type Capacitors.

SPECIFICATION MIL-C-14409

STYLE PC DESCRIPTION
Variable, Piston Type Tubular
Trimmer

Part operating failure rate model (λ_p):

 $\lambda_p = \lambda_b \times (\pi_E \times \pi_0)$ failures/10⁶ hours

where the factors are shown in Tables 5.1.7.8-1 through -5.

TABLE 5.1.7.8-1
Environmental Mode Factors

Environment	πE
8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2.9 9.3 14 6.9 7.2 8.4 22 24
A A I I B A A A A A A A A A A A A A A A	32 3 3 3 5 10 20 40 15 20 49 830

TABLE 5.1.7.8-2
BASE FAILURE RATE TABLES FOR
CAPACITOR SPECIFICATION AND STYLE

Spec MIL-C	Style	λ _b Table No.
14409	G, H, J, L, T	5.1.7.8-4
	Char. Q	5.1.7.8-5

TABLE 5.1.7.8-3

TQ' QUALITY FACTOR

Quality Level	[™] Q
MIL-Spec Lower	3 10

CAPACITORS

MIL-C-14409, PC

*TABLE 5.1.7.8-4: CAPACITORS, VARIABLE, PISTON TYPE, BASE FAILURE RATE, λ_b (T = 125 C MAX RATED)

TEMP	S, RATIO OF OPERATING TO RATED VOLTAGE									
(°C)	. 1	.2	.3	.4	.5	.6	.7	.8	.9	, 1.0
0 '	.0030	.0036	.0051	.0082	.013	.021	.031	.045	.063	.085
10	.0041	.0049	.0070	.011	.018	.028	.042	.061	.085	.11
20	.0055	.0066	.0094	.015	.024	.038	.057	.082	.11	. 16
30	.0075	.0089	.013	.020	.033	.051	.077	.11	.16	.21
40	.010	.012	.017	.028	.044	.069	. 10	. 15	.21	.29
50	.014	.016	.024	.037	.060	.094	. 14	.20	.29	.39
60	.019	.022	.032	.051	.082	.13	. 19	.28	.39	.52
70	.025	.030	.043	.069	.11	. 17	.26	.38	.53	.71
80	.034	.041	.059	.093	. 15	.23	.35	.51	.71	.96
90	.047	.055	.079	.13	.20	.32	.48	.69	. 96	1.3
100	.063	.075	.11	. 17	.27	.43	.65	.94	1.3	1.8
110	.086	. 10	. 15	.23	.37	.58	.88	1.3	1.8	2.4
120	. 12	. 14	.20	.31	.51	.79	1.2	1.7	2.4	3.3

^{*}See Table 5.1.7.8-2 for applicability to spec. and style.

CAPACITORS

MIL-C-14409, PC

*TABLE 5.1.7.8-5: CAPACITORS, VARIABLE, PISTON TYPE, BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 150 $^{\rm o}$ C MAX RATED)

TEMP	1		S, RATIO OF OPERATING TO RATED VOLTAGE								
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0	
0	.0018	.0022	.0031	.0050	.0081	.013	.019	.027	.038	.052	
10	.0025	.0029	.0042	.0067	.011	.017	.025	.036	.051	.069	
20	.0033	.0039	.0056	.0089	.014	.022	.034	.049	.068	.092	
30	.0044	.0052	.0074	.012	.019	.030	.045	.065	.090	. 12	
40	.0058	.0069	.0099	.016	.025	.040	.060	.086	. 12	. 16	
50	.0077	.0092	.013	.021	.034	.053	.079	.11	. 16	.22	
60	.010	.012	.018	.028	.045	.070	.11	. 15	.21	.29	
70	.014	.016	.023	.037	.060	.093	. 14	.20	.28	.38	
80	.018	.022	.031	.049	.079	. 12	. 19	.27	.38	.51	
90	.024	.029	.041	.066	.11	. 17	.25	.36	.50	.68	
100	.032	.038	.055	.087	. 14	.22	.33	.48	.67	.91	
110	.043	.051	.073	. 12	. 19	.29	.44	.64	.89	1.2	
120	.057	.068	.097	. 15	.25	.39	.59	.85	1.2	1.6	
130	.076	.091	. 13	.31	.33	.52	.78	1.1	1.6	2.1	
140	. 10	. 12	. 17	.27	.44	.69	1.0	1.5	2.1	2.8	
150	.13	. 16	.23	.37	.59	.92	1.4	2.0	2.8	3.8	

^{*}See Table 5.1.7.8-2 for applicability to spec. and style.

CAPACITORS

MIL-C-92, CT

5.1.7.9 Variable Air Trimmer Capacitors

SPECIFICATION MIL-C-92

STYLE

<u>DESCRIPTION</u>
Variable, Air, Trimmer

Part operating failure rate model (λ_p) :

 $\lambda_p = \lambda_b \times (\pi_E \times \pi_Q)$ failures/10⁶ hours:

where the factors are shown in Tables 5.1.7.9-1 through -3.

TABLE 5.1.7.9-1

Environmental Mode Factors

Environment	π _E
の	1 1.3 3.4 9.8 17 7.9 7.7 20 25 27
ARW AIC AIT AIA AUC AUC AUC AUA AUA AUF	36 3.5 4 10 10 10 25 70 65 75
AUC AUT AUB AUA AUF	15 25 70 65 75
SFFA MFFA USL C	1 17 23 49 56 950

Table 5.1.7.9-2

¯π Q,	Quality	Factor
-------	---------	--------

Failure Rate Level	πQ
MIL-Spec	5
Lower	20

CAPACITORS

MIL-C-92, CT

TABLE 5.1.7.9-3: CAPACITORS, VARIABLE, AIR, TRIMMER, BASE FAILURE RATE, λ_b (T = 85°C MAX RATED)

TEMP	}		S; RATIO OF OPERATING TO RATED VOLTAGE								
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0	
0	.0074	.0089	.013	.020	.032	.051	.076	.11	. 15	.21	
10	.010	.012	.017	.027	.044	.069	. 10	. 15	.21	.28	
20	.014	.016	.023	.037	.059	.093	. 14	.20	.28	.38	
30	.018	.022	.031	.050	.080	.13	. 19	.27	.38	.52	
40	.025	.030	.042	.067	.11	. 17	.26	.37	.52	.70	
50	.034	.040	.057	.091	. 15	.23	.35	.50	.70	.94	
60	.046	.054	.078	. 12	.20	.31	.47	.68	.94	1.3	
70	.062	.073	. 10	. 17	.27	.42	.63	.91	1.3	1.7	
80	.083	.099	. 14	.23	.36	.57	.85	1.2	1.7	2.3	

CAPACITORS

MIL-C-23183, CG

5.1.7.10 Vacuum or Gas Capacitors

SPECIFICATION MIL-C-23183

STYLE

DESCRIPTION
Vacuum or Gas, Fixed and
Variable

Part operating failure rate model (λ_p) :

$$\lambda_p = \lambda_b \times (\pi_E \times \pi_Q \times \pi_{CF})$$
 failures/10⁶ hours:

where the factors are shown in Tables 5.1.7.10-1 through -7.

TABLE 5.1.7.10-1

Environmental Mode Factors

Environment	ПE
2 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 1.3 3.4 10 18 8.7 7.7 24 28 30
ARW AICT AIF AUT AUT AUA AUF	40 6.5 10 15 10 25 40 65 105 150
S F F F M F A U S L C L	1 N/A N/A N/A N/A

Table 5.1.7.10-2

Base Failure Rate Tables for MIL-C-23183

Capacitor Styles

Style	λ _b Table No.
CG 20,21,30,31,32,40,41,42, 43,44,51,60,61,62,63,64,67	5.1.7.10-5
CG 65,66	5.1.7.10-6
CG 50	5.1.7.10-7

Table 5.1.7.10-3

In Quality Factor

Failure Rate Level	πQ
MIL-Spec	3
Lower	20

CAPACITORS

MIL-C-23183, CG

Table 5.1.7.10-4

**Top: Configuration Factor

Configuration	πСΣ
Fixed.	0.1
Variable	1.0

CAPACITORS

MIL-C-23183, CG

*TABLE 5.1.7.10-5: CAPACITORS, VACUUM OR GAS, FIXED AND VARIABLE, BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 85°C MAX RATED)

TEMP			S, RAT	IO OF O	PERATING	TO RATE	O VOLTA	AGE		
(°C)	1.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.015	.033	.081	. 17	.33	.56	. 88	1.3	1.9	2.5
10	.016	.034	.084	.18	.34	.58	.92	1.4	1.9	2.7
20	.017	.036	.090	. 19	.37	.62	.98	1.5	2.1	2.8
30	.018	.040	.098	.21	.40	.68	1.1	1.6	2.2	3.1
40	.020	.044	.11	.24	.45	.76	1.2	1.8	2.5	3.4
50	.024	.052	.13	.28	.52	.88	1.4	2.1	2.9	4.0
60	.029	.063	. 16	.34	.64	1.1	1.7	2.5	3.6	4.9
70	.038	.083	.20	.44	.83	1.4	2.2	3.3	4.7	6.4
80	.054	. 12	.29	.62	1.2	2.0	3.2	4.7	6.6	9.1

^{*}See Table 5.1.7.10-2 for applicability to spec. and style.

CAPACITORS

MIL-C-23183, CG

*TABLE 5.1.7.10-6: CAPACITORS, VACUUM OR GAS, FIXED AND VARIABLE, BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 100°C MAX RATED)

TEMP			S, RAT	IO OF OF	PERATING	TO RATE	O VOLTA	GE		
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0 •	.014	.032	.078	.17	.32	.54	.85	1.3	1.8	2.5
10	.015	.032	.080	. 17	.33	.56	.87	1.3	1.8	2.5
20	.015	.034	.084	. 18	.34	.58	.91	1.4	1.9	2.6
30	.016	.036	.088	. 19	.36	.61	.96	1.4	2.0	2.8
40	.018	.039	.095	.21	.39	.66	1.0	1.5	2.2	3.0
50	.020	.043	.11	.23	.43	.73	1.2	1.7	2.4	3.3
60	.022	.049	. 12	.26	.49	.83	1.3	2.0	2.8	3.8
70	.027	.058	. 14	.31	.59	1.0	1.6	2.3	3.3	4.5
80	.034	.073	. 18	.39	. 74	1.3	2.0	2.9	4.2	5.7
90	.045	.099	.24	.53	.99	1.7	2.7	3.9	5.6	7.7
100	.066	. 14	.36	.77	1.5	2.5	3.9	5.8	8.2	11.

 $[\]star$ See Table 5.1.7.10-3 for applicability to spec. and style.

CAPACITORS

MIL-C-23183, CG

TABLE 5.1.7.10-7: CAPACITORS, VACUUM OR GAS, FIXED AND VARIABLE, BASE FAILURE RATE, $\lambda_{\rm b}$ (T = 125°C MAX RATED)

TEMP			S, RAT	IO OF 0	PERATING	TO RATED	VOLTA	\GE		
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0	.014	.030	.075	.16	.31	.52	.82	1.2	1.7	2.4
10	.014	.031	.077	. 17	.31	.53	.83	1.2	1.8	2.4
20	.014	.032	.078	. 17	.32	. 54	.85	1.3	1.8	2.5
30	.015	.033	.080	. 17	.33	.56	.88	1.3	1.9	2.5
40	.016	.034	.084	. 18	.34	.58	.91	1.4	1.9	2.6
50	.016	.036	.088	. 19	.36	.61	.96	1.4	2.0	2.8
60	.018	.038	.095	.20	.39	.65	1.0	1.5	2.2	3.0
70	.019	.042	. 10	.22	.42	.72	1.1	1.7	2.4	3.3
80	.022	.047	. 12	.25	.48	.81	1.3	1.9	2.7	3.7
90	.025	.055	. 14	.29	.55	.94	1.5	2.2	3.1	4.3
100	.031	.067	. 17	.36	.68	1.2	1.8	2.7	3.8	5.2
110	.040	.087	.21	.46	.87	1.5	2.3	3.5	4.9	6.7
120	.055	. 12	.29	.64	1.2	2.0	3.2	4.8	6.8	9.3

5.1.7.11 Example Failure Rate Calculations.

Example 1

Given: A 400 V.D.C. rated capacitor type CQ09AlKEl53K3 is being used in a fixed ground environment, 55°C ambient temperature, and 200 Vdc applied with 50 Vrms @ 60 Hz. The capacitor is being procured in full accordance with the applicable specification.

Step 1 - The letters "CQ" in the type designation indicate that the spec is MIL-C-19978 (from Tbl 5.1.7-1) and that it is a Non-ER quality level. Also, the lst "K" in the designation indicates characteristic K.

Step 2 - The failure rate expression for this capacitor (see sec. 5.1.7.1) is

$$\lambda_{\rm p} = \lambda_{\rm b} \times \pi_{\rm E} \times \pi_{\rm O} \times \pi_{\rm CV}$$

Step 3 - Voltage stress ratio must account for both the applied DC volts and the peak AC voltage, hence,

$$S = \frac{200 + \sqrt{2} \quad (50)}{400}$$

$$\frac{200 + 71}{400}$$

= .68

Step 4 - Since this capacitor is style CQ09, characteristic K, use Table 5.1.7.1-20 for λ , (as directed by Tb1 5.1.7.1-15). With voltage stress of 0.68 and 55°C temperature,

$$\lambda_{\rm h} = .0094 \, {\rm f./10}^6 \, {\rm hrs.}$$

CAPACITORS

Step 5 - From Tables 5.1.7.1-14 and -16:

$$\pi_{E} = 2.4$$

 $\pi_{CV} = 1.0$

 $\pi_0 = 10$

Step 6 $\stackrel{\text{de}}{}$ λ_p $\stackrel{\text{de}}{}$ λ_b $\stackrel{\text{de}}{}$ $\stackrel{\text{de}}{}$ $\stackrel{\text{de}}{}$ $\stackrel{\text{de}}{}$ $\stackrel{\text{de}}{}$

- .0094 (2.4) (10) (1)
- .23 f./10⁶ hrs.

Example 2

Given: 6.8 uf CSR solid tantalum capacitor per MTL-C-39003 rated at 75 Vdc and level R reliability is being used at 40 Vdc, 75°C ambient temperature in an airborne uninhabited fighter environment. The effective resistance between the capacitor and the power supply is 80 ohms.

Step 1 - The failure rate from section 5.1 7.5. is

$$\lambda_p = \lambda_b \pi_E \pi_{SR} \pi_Q \pi_{GV}$$

Step 2 - The voltage stress ratio is

- = <u>40</u> 75
- .53

Step 3 - From 76] 5.1.7.5-5 with S = .53, T = 75° C,

Step 4 - π_{SR} is determined from Tb1 5.1.7.5-2 first calculating ohms/applied volts.

$$\frac{80}{40}$$
 = 2.0 ohms/volt.

CAPACITORS

Step 5 - From Tables 5.1.7.5-1, -3. and -4
$$\pi_{\rm E} = 30 \quad \text{for A} \qquad \Pi_{\rm CV} = 1.3$$

$$\Pi_{\rm Q} = 0.1 \quad \text{for R level quality.}$$
 Step 6 - $\lambda_{\rm p} = \lambda_{\rm b} \quad \pi_{\rm E} \quad \pi_{\rm SR} \quad \Pi_{\rm Q} \quad {\rm CV}$
$$= .028 \quad (30) \quad (0.1) \quad (0.1) \quad (1.3)$$

$$\lambda_{\rm p} = .011 \quad \text{f./10}^6 \quad \text{hr.}$$

INDUCTIVE DEVICES

5.1.8 <u>Inductive Devices</u>. This section describes the method of calculating the failure rates of certain inductive devices. The following inductive devices are included:

Transformers

MIL-T-27	Transformers and Inductors (Audio, Power, and High Power Pulse)		
MIL-T-21038	Transformers, Low Power Pulse		
MIL-T-55631	Transformers, IF, RF, and Discriminator		
Coils			
MIL-C-15305	Coils, Fixed and Variable, RF		
MIL-C-39010	Coils, Molded, RF, ER		

INDUCTIVE DEVICES MIL-T-27, MIL-T-21038, MIL-T-55631

5.1.8.1 Transformers.

SPECIFICATION	STYLE	DESCRIPTION
MIL-T-27	TF	Audio, Power, and High Power Pulse
MIL-T-21033	TP	Low Power Pulse
MIL-T-55631	-	IF, RF, and Discriminator

The general model for these devices is as follows:

$$\lambda_{p} = \lambda_{b} (\pi_{E} \times \Pi_{Q})$$

 $\lambda_{p} = failures/10^{6} hours$

 λ_{h} = base failure rate

 $\pi_{_{\rm F}}$ = environmental factor

 $\Pi_0 = \text{quality factor}$

The general model for the base failure rate:

$$\lambda_b = Ae^x$$
 where $x = \left(\frac{T_{HS} + 273}{N_T}\right)^G$

THS = Hot spot temperature in degrees C and e is natural logarithm base, 2.718.

 N_{π} = Temperature constant

G = Acceleration constant

A = Adjustment factor for different insulation classes

See Tables 5.1.8.1-1 thru 5.1.8.1-4 for equation constants. The models are valid only if $T_{\rm HS}$ is not above the temperature rating for a given insulation class.

INDUCTIVE DEVICES MIL-T-27, MIL-T-21038, MIL-T-55631

TABLE 5.1.8.1-1
Transformer Base Failure Rate Model Constants versus Insulation Class

SPECIFICATION		Insulation Class				
MIL-T-27	Q	R	s	V	Т	ซ
MIL-T-21038	Q.	R	s	T	U	٧
MIL-T-55631		A	В	c ·		-
Model		Maximum Rated Operating Temperature				
Constants	85°C	105°C	130°C	155°C	170°C	>170°C
A	0.00159	0.0018	0.00152	0.00458	0.00508	0.0065
N _T	329	352	364	409	398	477
G	15.6	14.0	8.7	10.0	3.8	8,4

TABLE 5.1.8.1-2 Quality Factor, π_{Q}

Family Type	Mil-Spec.	Lower
Pulse Transformers	1.5	5.0
Audio Transformers	3.0	7.5
Power Transformers and Filters	8.0	30.0
RF Transformers	12.0	30.0

INDUCTIVE DEVICES MIL-T-27, MIL-T-21038, MIL-T-55631

TABLE 5.1.8.1-3

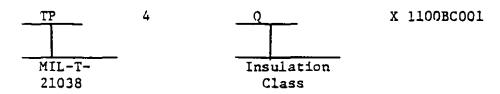
ENVIRONMENTAL MODE FACTORS

ENVIRONMENT	π _E
GBS GF:MP NNNHU	1 1.6 5.7 12 11
N N N N N N N N N N N N N N N N N N N	5.1 5.7 14 16 18
ARW AIC AIT AIB AIA AUC AUT AUB AUA AUF	24 4.5 6 6 6 9 6.5 6.5 7.5 7.5
AUC AUT AUB AUA AUF	6.5 6.5 7.5 7.5
SF MFF MFA USL CL	1 11 15 32 36 610

INDUCTIVE DEVICES MIL-T-27, MIL-T-21038, MIL-T-55631

Devices in accordance with the three specifications included in this section are identified by the classification scheme used in each specification. The following information will help in determining the Insulation Class and the Family Type if only the specification and type designation are known:

a. MIL-T-27. An example type designation per this specification is


The Insulation Class symbols are the same as used in Tables 5.1.8.1-1. The codes used for Family Type are

Power transformer + filter: 01 thru 09, 37 thru 41

Audio transformer: 10 thru 21, 50 thru 53

Pulse transformer: 22 thru 36, 54

b. MIL-T-21038. All parts in this specification are pulse transformers. An example type designation is

The Insulation Class symbols are the same as used in Table 5.1.8.1-1.

c. MIL-T-55631. The transformers are designated with the following types, grades, and classes

Type I - Intermediate frequency transformer.

Type II - Radio frequency transformer.

Type III - Discriminator transformer.

Grade 1 - For use when immersion and moisture resistance tests are required.

Grade 2 - For use when moisture resistance test is required

Grade 3 - For use in sealed assemblies.

Class 0 - 85° maximum operating temperature.

Class A - 105° C maximum operating temperature.

Class B - 125°C maximum operating temperature.

Class C - > 125°C maximum operating temperature.

NOTE: The class denotes the maximum operating temperature (temperature rise plus maximum ambient temperature).

INDUCTIVE DEVICES MIL-T-27, MIL-T-21038, MIL-T-55631

TABLE 5.1.8.1-4 $\label{transformer} \mbox{ TRANSFORMER BASE FAILURE RATES, $\lambda_{\mbox{\scriptsize b}}$, in f./10^6$ HRS. }$

	MAXIMUM RATED OPERATING TEMPERATURE					
THS	85°C	105°C	130°C	155°C	170°C	>170°C
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 180 180 180 180 180 180 180 180 180	0.0017 0.0017 0.0018 0.0019 0.0020 0.0021 0.0023 0.0025 0.0029 0.0034 0.0041 0.0053 0.0073 0.0108 0.0175 0.0319 0.0666	0.0019 0.0019 0.0019 0.0019 0.0020 0.0020 0.0021 0.0022 0.0023 0.0024 0.0026 0.0029 0.0032 0.0032 0.0042 0.0051 0.0064 0.0084 0.0116 0.0171 0.0271	0.0016 0.0017 0.0017 0.0018 0.0018 0.0019 0.0020 0.0021 0.0022 0.0023 0.0024 0.0026 0.0028 0.0030 0.0033 0.0033 0.0040 0.0052 0.0061 0.0072 0.0087 0.0107 0.0107	0.0047 0.0047 0.0047 0.0048 0.0048 0.0049 0.0050 0.0050 0.0051 0.0052 0.0053 0.0054 0.0056 0.0060 0.0062 0.0065 0.0068 0.0065 0.0068 0.0072 0.0068 0.0072 0.0088 0.0090 0.0109 0.0122 0.0138 0.0159 0.0186 0.0221	0.0064 0.0066 0.0067 0.0068 0.0069 0.0071 0.0072 0.0074 0.0076 0.0078 0.0080 0.0082 0.0084 0.0087 0.0090 0.0093 0.0099 0.0103 0.0107 0.0111 0.0116 0.0121 0.0126 0.0132 0.0138 0.0145 0.0152 0.0161 0.0152 0.0161 0.0169 0.0179 0.0190 0.0201 0.0214 0.0228	0.0066 0.0066 0.0066 0.0066 0.0066 0.0067 0.0067 0.0067 0.0068 0.0068 0.0068 0.0069 0.0070 0.0071 0.0072 0.0073 0.0074 0.0075 0.0075 0.0078 0.0078 0.0078 0.0078 0.0079 0.0081 0.0083 0.0085 0.0088 0.0088 0.0090 0.0094 0.0097 0.0101 0.0117 0.0124 0.0132

MIL-C-15305 MIL-C-39010

5.1.8.2 <u>Coils</u>.

SPECIFICATION	STYLE	<u>LESCRIPTION</u>
MIL-C-15305	_	Fixed and Variable, RF
MIL-C-39010	-	Molded, RF, ER

The general operating model for these devices is as follows:

$$\lambda_{p} = \lambda_{b} (\pi_{E} \times \pi_{Q} \times \pi_{C})$$

where: $\lambda_{\rm p}$ = Total failure rate in failures/10⁶ hours

 λ_{h} = Base failure rate

 π_{E} = Environmental factor

 π_0 = Quality factor

 π_{C} * Construction factor (fixed or variable).

The general model for the base failure rate:

$$\lambda_{b} = Ae^{x} \text{ where } x = \left(\frac{T_{HS} + 273}{N_{T}}\right)^{G}$$

where: T_{HS} = Hot spot temperature in degrees C and e is natural logarithm base, 2.718.

 $N_{_{\mathbf{T}}}$ = Temperature Constant

G = Acceleration Constant

A - Adjustment factor for different insulation classes.

See Tables 5.1.8.2-1 thru 5.1.8.2-5 for equation constants. The models are valid only if T_{HS} is not above the temperature rating for a given insulation class.

INDUCTIVE DEVICES MIL-C-15305 MIL-C-39010

TABLE 5.1.8.2-1

Coil Base Failure Rate Model Constants versus Insulation Class

Specification	Insulation Class				
MIL-C-15305	0	A	В	С	
MIL-C-39010		Α	В.	F	
Model Constants	Maximum Rated Operating Temperature				
30113 641163	85°C	105° C	125°C	150°C	
A	3.35×10^{-4}	3.79×10^{-4}	3.19×10^{-4}	9.63×10^{-4}	
N _T	329	352	364	409	
G	15.6	14.0	8.7	10.0	

TABLE 5.1.8.2-2 Quality Factor, π_Q

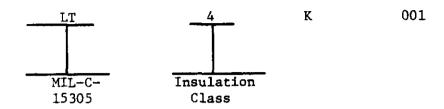
Eailure Rate Level	^π Q Factor
S	0.03
R	0.1
P	0.3
М	1.0
MIL-C-15305	4.0
Lower	20.0

INDUCTIVE DEVICES MIL-C-15305, MIL-C-39010

TABLE 5.1.8.2-3
Environmental Mode Factors

ENVIRON- MENT	πE
GB MS GF GM MP	1 1.3 3.6 12
NSB NU NH NUU	5.1 5.7 14 16 18
ARW AIC AIT AIB AIA AIF AUC AUT AUB AUA AUF	24 4.5 5.5 4.5 9.5 6.5 7.5 10
SF MFF MFA USL ML CL	1 11 15 32 36 610

TABLE 5.1.8.2-4 Construction Factor, π_{C}

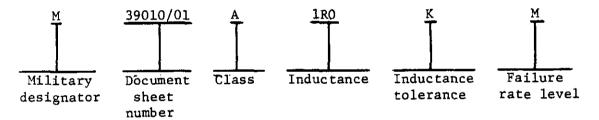

Construction	πC
Fixed	1
Variable	2

INDUCTIVE DEVICES MIL-C-15305 MIL-C-39010

TABLE 5.1.8.2-5 $\label{eq:coil} \text{COIL BASE FAILURE RATES, $\lambda_{\rm b}$, in f./10$^6 HRS. }$

INDUCTIVE DEVICES MIL-C-15305 MIL-C-39010

a. MIL-C-15305. All parts in this specification are r.f. coils. An example type designation is


The codes used for the Insulation Class are

Class B: 4, 5, 6

Class 0: 7, 8, 9

Class A: 10, 11, , 12

b. MIL-C-39010. An example type designation per this specification is

The insulation class symbols are the same as used in Table 5.1.8.2-1.

INDUCTIVE DEVICES

5.1.8.3 Determination of Hot Spot Temperature. The failure rate χ_p , of the inductive device is a function of the hot spot temperature of the inductive device. This hot spot temperature can be obtained by direct measurement or by approximation.

Although the latter method is normally used, there may be times when the direct measurement technique would be advisable.

5.1.8.3.1 Direct Measurement.

a) Average Temperature Rise, Change in Resistance Method as described in MIL-T-27 (4.8.14) or MIL-T-21038 (4.7.14)

$$\Delta T = \frac{R - r}{r}$$
 (t + 234.5) - (T - t)

where

ΔT = Temperature rise in degrees Celsius specified maximum ambient temperature

R = resistance of winding in ohms at temperature $(T + \Delta T)$

r = resistance of winding in ohms at temperature
 (t)

t = specified initial ambient temperature in degrees Celsius

T = maximum ambient temperature in degrees
 Celsius (at time of power shutoff);
 T shall not differ from t by more than
 5°C.

For transformers, rated voltage shall be applied to the primary with the specified loads across the secondaries. For inductors, rated d-c and a-c, current shall be applied to the windings.

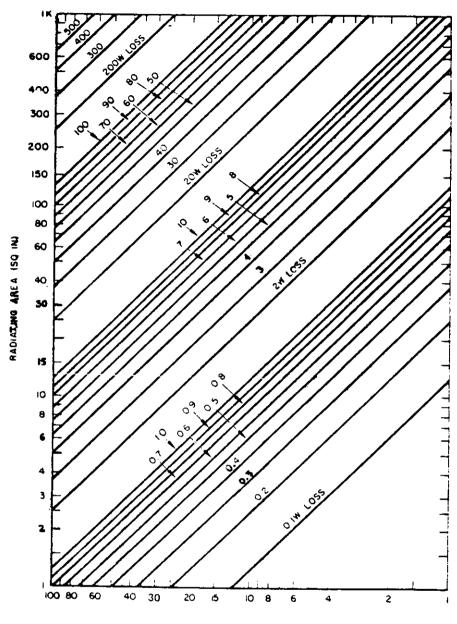
b) Hot Spot Temperature Rise

Approximate value by assuming temperature-rise of hot spot is 10 percent greater than highest average temperature-rise as measured or as estimated by approximate methods. See para 5.1.8.3.2.

INDUCTIVE DEVICES

Actual measurement requires burying of thermocouples or thermistors in coils; hence is not feasible to measure on completed part. However for developmental devices, this step should be seriously considered where temperature is significant.

5.1.8.3.2 Approximation. Approximation of the hot spot temperature can be determined by referring to Figures 5.1.8.3-1 through 5.1.8.3-4 which gives the average temperature rise. Use the figure which best correlates to the known input data. If Figure 5.1.8.3-2 is used to determine the temperature, use of a MIL-T-21038 transformer, case AF will give the most practical result. The hot spot temperature is then calculated as follows:


$$T_{HS} = T_A + 1.1 \text{ (ΔT)}$$
 $T_{HS} = \text{Hot spot temperature (C°)}$
 $T_A = \text{ambient temperature (C°)}$
 $\Delta T = \text{temperature rise (C°)}$

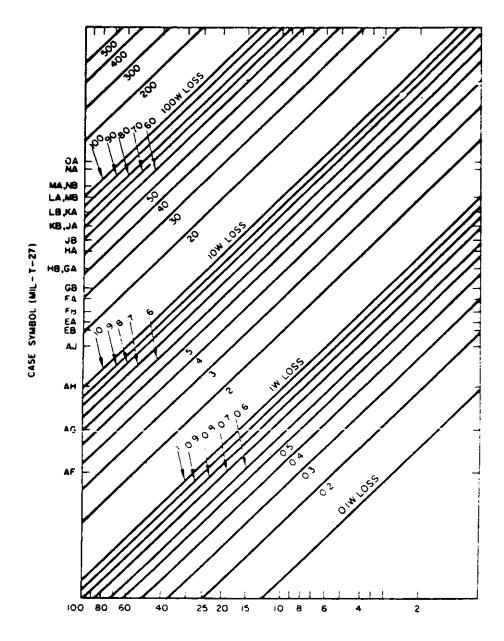
When using Figures 5.1.8.3-1 through 5.1.8.3-4 it is advisable to follow the order of precedence established via Table 5.1.8.3-1.

INDUCTIVE DEVICES

	ESTIMATE	TABLE 5.1.8.3-1 TE OF AVERAGE TEMPERATURE-RISE*	# A
Reference	Input Data	To Calculate Approximate Average Temperature-Rise**	Comment
Figure 5.1.8.3-1 (Step 1A)	Power loss (watts) Radiating surface area of case (sq in.)	Enter graph with radiating area on ordinate; locate intersection with appropriate line for power loss and read temperature-rise on abscissa.	Radiating area readings include heat losses due to both radiation and convection. This method preferred for MIL-T-21038.&
Figure 5.1.8.3-2 (Step 1B)	Power loss (watts) Case symbol per MIL-T-27	Enter graph with case symbol on ordinate; locate intersection with appropriate line for power loss and read temperature-rise on abscissa.	Case symbols represent standard case sizes.
Figure 5.1.8.3-3 (Step 1C)	Power loss (watts) Transformer weight (lb)	Enter graph with weight on abscissa; locate intersections with appropriate line for power and loss and read temperature-rise on ordinate.	This calculation is possible because of actual relationship between size and weight of conventional transformers.
Figure 5.].8.3-4 (Step 1D)	Power input (watts) Transformer weight (1b) Assumed 80 percent efficiency	Enter graph with weight on abscissa; locate intersection with appropriate line for power input and read probable temperaturerise on ordinate.	Note error possibility in efficiency assumption; use Figure 5.1.8.3-1 and 5.1.8.3-2 preferably.
**Graphs g: radiation it is pre	*Hot-Spot Temperature = Ambient Air Temperature rise (or measured coil temperature). **Graphs give predicted temperature rise in still radiation from other components; if forced air it is preferable to measure transformer tempera Measure power loss or input at normal use frequ	plus air cooli ture ency.	1.1 times average temperature and in absence of nearby heat ng or heat radiation is used, under operating conditions.

MIL-HDBK-217E INDUCTIVE DEVICES

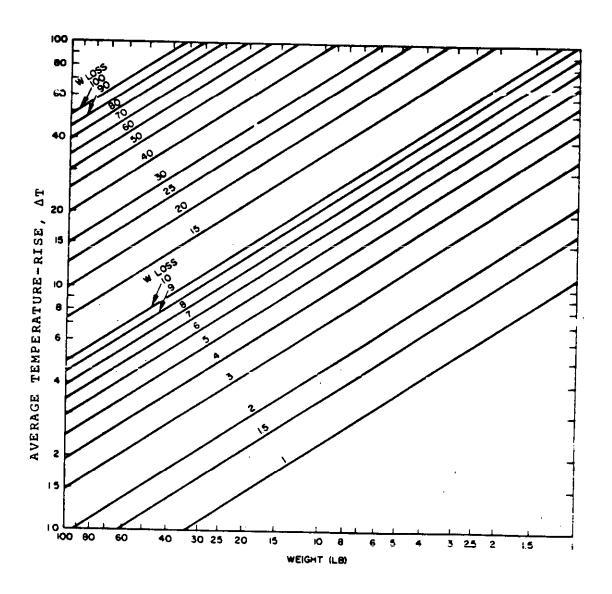
ΔT, AVERAGE TEMPERATURE_RISE (°C)


NOTE: Equation for curves is $\Delta T = 125 \text{ W} / \text{A}$

where: W_L = power loss (watts), ΔT is $^{\circ}C$.

A - radiating area (in 2).

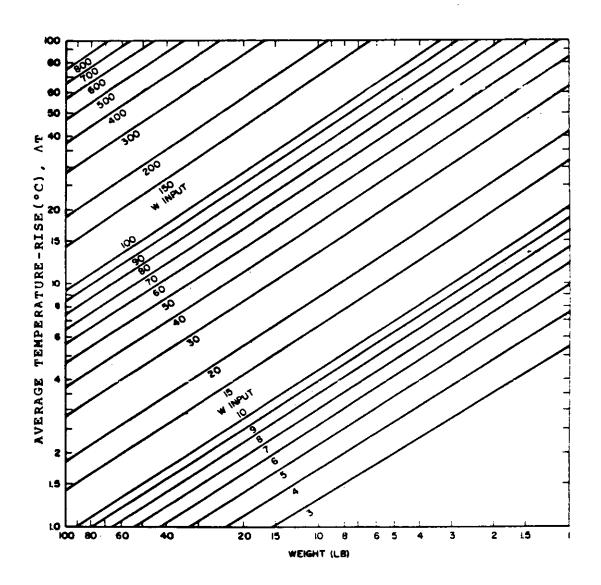
Figure 5.1.8.3-1 Power Loss and Radiating Area Known:
Estimate Average Temperature-Rise (Step 1A)


MIL-HDBK-217E INDUCTIVE DEVICES

AVERAGE TEMPERATURE-RISE(°C), AT

Figure 5.1.8.3-2 Power Loss and Case Symbol Known: Estimate Average Temperature-Rise (Step 1B)

MIL-HDBK-217E INDUCTIVE DEVICES



NOTE: Equation for curves is $\Delta T = 11.5 W_{L}/(WT.)^{.6766}$ where: ΔT is $^{\circ}C$,

W_L = power loss (watts)
WT. = weight (lbs.)

Figure 5.1.8.3-3 Power Loss and Weight Known: Estimate Average Temperature-Rise (Step 10)

INDUCTIVE DEVICES

NOTE: Equation for curves is $\Delta' = 2.1 \, \text{W}_{i}/(\text{WT.}) \cdot 6766$ where ΔT is $^{\circ}\text{C}$, W_{i} = input power (watts)

WT.= weight (lbs.)

Figure 5.1.8.3-4 Power Input and Weight Known: Estimate Average Temperature-Rise (Based on 80 Percent Efficiency) (Step 1D)

INDUCTIVE DEVICES

5.1.8.4 Prediction Methodology.

- $\pi_{\rm p}$; From Tb1 5.1.8.1-3 for transformers or Table 5.1.8.2-3 for coils.
- π_0 ; From Tb1 5.1.8.1-2 for transformers or Table 5.1.8.2-2 for coils.
- π_C ; For coils only from Table 5.1.8.2-4.
- λ_b ; 1) Determine Temperature rise by approximation method, see Tbl 5.1.8.3-1 or by measurement. See para 5.1.8.3.1 or 5.1.8.3.2.
 - 2) Calculate T_{HS} by para 5.1.8.3.2.
 - 3) Enter Table 5.1.8.1-4 or 5.1.8.2-5. to determine λ_p as a function of T_{HS} transformer class, and part type.
- $\boldsymbol{\lambda}_{p} \, ; \, \, \text{Calculate} \, \, \boldsymbol{\lambda}_{p} \, \, \, \text{from equation}$

 $\lambda_{p} = \lambda_{b} (\pi_{E} \times \pi_{0})$ for transformers or

 $\lambda_{p} = \lambda_{b} (\pi_{E} \times \pi_{Q} \times \pi_{C})$ for coils.

INDUCTIVE DEVICES

5.1.8.5 Example Failure Rate Calculation .

Given: Power transformer with type designation TF5SX03GA203 procured per the requirements of MIL-T-27. The transformer has a 6 watt power loss and will be used in a fixed ground environment with 40°C ambient temperature.

Step 1 - Determine average temperature rise, ΔT , using Figure 5.1.8.3-2 by entering with 6 watts loss and symbol GA (from type designation)

$$\Delta T = 14^{\circ}C$$

Step 2 - Determine hot spot temperature, T_{HS} , per para. 5.1.8.3.2.

$$T_{HS} = T_A + 1.1 \Delta T$$

= 40° + 1.1 (14°)
= 40° + 15.4°
= 55.4°C

Step 3 - Determine base failure rate, λ_b , using Table 5.1.8.1-4 entering with $T_{\rm HS}=55.4^{\circ}{\rm C}$ and Class S insulation (from type designation). Class S has $130^{\circ}{\rm C}$. max. rated operating temperature per Table 5.1.8.1-1.

$$\lambda_{\rm b} = 0.0023$$

Step 4 - Determine Π_Q from Table 5.1.8.1-2 Π_O = 8.0 for power transformer procured per Mil-Spec.

Step 5 - Determine π_E from Table 5.1.8.1-3 π_E = 5.7 for fixed ground environment.

Step 6 - Determine device failure rate using equation in para. 5.1.8.1 $\lambda_{p} = \lambda_{b} (\pi_{E} \times \Pi_{Q})$

 $= 0.0023 (5.7 \times 8)$

 $= 0.10 \text{ f/}10^{6} \text{ hr.}$

MOTORS

5.1.9 Rotating Devices

5.1.9.1 Motors. This section describes the method to be used for calculating failure rates of motors with power ratings below one horsepower. The types of motors that the predictive techniques were developed from include polyphase, capacitor start and run and shaded pole. Its application may be extended to other types of fractional horsepower motors utilizing rolling element grease packed bearings. The model is dictated by two failure modes, i.e., bearing failures and winding failures. Application of the model to D.C. brush motors assumes that brushes are inspected and replaced and are not a failure mode. Motors included using these models cover applications of electronic cooling using fans and blowers as well as other motor applications. Reference (44) contains a more comprehensive treatment of motor life prediction for motor applications where continuous operation at extremes of temperature, speed or load are anticipated. The reference should be reviewed when bearing loads exceed 10 percent of rated load, speeds exceed 24,000 rpm or motor loads include motor speed slip of greater than 25 percent.

The instantaneous failure rates, or hazard rates, experienced by motors are not constant but increase with time. The failure rate model for motors presented in this section is the average failure rate for the motor operating time period, t. The average failure rate, $\lambda_{\rm p}$, has been obtained by dividing the cumulative hazard rate by t, and can be treated as a constant failure rate and added to other part failure rates of this Handbook.

MOTORS

The failure rate model is:

$$\lambda_{p} = \left(\frac{t^{2}}{\alpha_{B}^{3}} + \frac{1}{\alpha_{W}}\right) \times 10^{6} \text{ (failures/10}^{6} \text{ hours)}$$

where

- λ_{p} = the average failure rate (failures/10⁶ hours)
 - t = motor operating time period, selected by the user, for which average failure rate is calculated (hours). Each motor must be replaced when it reaches the end of this operating period to make the calculated $\lambda_{\rm p}$ valid.
- α_B = Bearing Weibull Characteristic Life as determined from Table 5.1.9.1-1 for constant ambient temperature operation or Section 5.1.9.1.1 for cycled temperature.
- Winding Weibull Characteristic Life as determined from Table 5.1.9.1-1 for constant ambient temperature operation or Section 5.1.9.1.2 for cycled temperature.

Downloaded from http://www.everyspec.com

MIL-HDBK-217E

MOTORS

TABLE 5.1.9.1-1. BEARING & WINDING CHARACTERISTIC LIFE, α_B & α_W , vs. AMBIENT TEMPERATURE, T.

(°c.)	α _B * (HR.)	α _W * (HR.)	(°C.)	α _B .* (HR.)	α _W * (HR.)
-40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50	305 312 330 372 463 661 1080 1920 3570 6750 12600 22800 38800 59600 78300 85600 80200 68200 55200	1.9(10) ⁸ 1.2 " 7 7.4(10) 7 4.7 " 3.1 " 2.0 " 1.4 " 9.2(10)6 6.4 " 3.2 " 1.6 " 3.2 " 1.6 " 5.6 " 3.8 " 2.9 "	55 60 65 70 75 80 85 90 95 100 105 110 125 130 135 140	43800 34600 27300 21700 17300 13900 11200 9100 7430 6100 5030 4170 3470 2910 2440 2060 1750 1490	2.3(10) ⁵ 1.8 " 1.4 " 1.1 " 8.8(10) ⁴ 7.0 " 5.7 " 4.6 " 3.8 " 3.1 " 2.5 " 1.8 " 1.2 " 1.8 " 1.5 " 1.2 " 1.0 8.9(10) ³ 7.5 "

*
$$\alpha_{\text{B}} = \left\{ 10^{\left(2.534 - \frac{2357}{\text{T}+273}\right)} + 1 / \left[10^{\left(20 - \frac{4500}{\text{T}+273}\right)} + 300 \right] \right\}^{-1}$$

$$\alpha_{\text{W}} = 10^{\frac{2357}{\text{T}+273}} - 1.83$$

where T is ambient temperature in ${}^{\rm O}{\rm C}$.

MOTORS

5.1.9.1.1 Bearing Characteristic Life Resulting from Thermal Cycling

$$\alpha_{B} = \frac{\begin{pmatrix} h_{1} + h_{2} + h_{3} + ---- h_{m} \end{pmatrix}}{\frac{h_{1}}{\alpha_{B_{1}}} + \frac{h_{2}}{\alpha_{B_{2}}} + \frac{h_{3}}{\alpha_{B_{3}}} + --- h_{m}}{\frac{m}{\alpha_{B_{m}}}}$$

where: (See Figure 5.1.9.1-1)

 h_1 = time at temperature T_1

 h_2 = time to cycle from temperature T_1 to T_3

 h_3 = time at temperature T_3

 $h_{\rm m}$ = time at temperature $T_{\rm m}$

 α_{B_1} = bearing life at T_1 from Table 5.1.9.1-1

 α_{B_2} = bearing life at T_2 from Table 5.1.9.1-1

 $_{\rm m}^{\alpha}$ = bearing life at T from Table 5.1.9.1-1

$$T_2 = \frac{T_1 + T_3}{2}$$

from example of Figure 5.1.9.1-1,

$$T_{m} = T_{4} = \frac{T_{3} + T_{1}}{2}$$
 and $h_{m} = h_{4}$

MOTORS

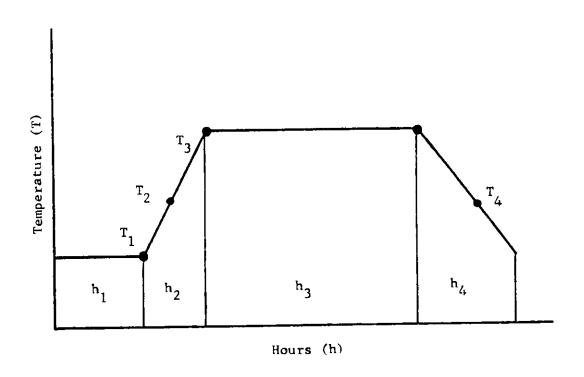


FIGURE 5.1.9.1-1 THERMAL CYCLE

MOTORS

5.1.9.1.2 Winding Characteristic Life Resulting from Thermal Cycling

$$\alpha_{W} = \frac{\frac{(h_{1} + h_{2} + h_{3} + - - - - h_{m})}{\frac{h_{1}}{\alpha_{W_{1}}} + \frac{h_{2}}{\alpha_{W_{2}}} + - - - - \frac{h_{m}}{\alpha_{W_{m}}}}$$

where: (See Figure 5.1.9.1-1)

 $h_1 = time at temperature T_1$

 h_2 = time to cycle from temperature T_1 to T_3

 h_3 = time at temperature T_3

 $h_{\rm m}$ = time at temperature $T_{\rm m}$

 w_1 = winding life at T_1 from Table 5.1.9.1-1

 $^{\alpha}$ w₂ = winding life at T₁ to T₃ from Table 5.1.9.1-1

 $^{\alpha}$ w_m = winding life at T_m from Table 5.1.9.1-1

$$T_2 = \frac{T_1 + T_3}{2}$$

from example of Fig 5.1.9.1-1, $T_{m} = T_{4} = \frac{T_{3} + T_{1}}{2}$ and $h_{m} = h_{4}$

SYNCHROS & RESOLVERS

5.1.9.2 Synchros & Resolvers. The part failure rate model (λ_p) is:

$\lambda_{\rm p} = \lambda_{\rm h} (\Pi_{\rm S} \times \Pi_{\rm N} \times \Pi_{\rm E})$ failures/10⁶ hours

where the factors are shown in Tables 5.1.9.2-1 thru 5.1.9.2-4 Synchros and resolvers are predominatly used in service requiring only slow and infrequent motion. Mechanical wearout problems are not serious so that the electrical failure mode dominates, and no mechanical mode failure rate is required in the model above.

TABLE 5.1.9.2-1 Ab FOR RESOLVERS & SYNCHROS VS. FRAME TEMPERATURE*

T(°C)	$^{\lambda}$ b(f/10 ⁶ hrs)	T(°C)	λb(f/10 ⁶ hrs)
30	.0083	85	.0325
35	.0088		.0407
40	.0095	90	.0523
40 45	.0103	100	.0690
50	.0114	105	.0937
55	.0126	110	.131
60 65	.0142	115	.191
65	.0162	120	.288
70 75	.0187	125	.453
	.0221	130	.744
80	. 0265	135	1.28

* $\lambda_b = .00535 e^{\left(\frac{T+273}{334}\right)^{8.5}}$

where T = frame temperature ($^{\circ}$ C) and e = natural logarithm base, 2.718. If frame temperature is unknown, assume T = 40 + ambient temperature.

SYNCHROS & RESOLVERS

TABLE 5.1.9.2-2 π_S FOR SYNCHROS AND RESOLVERS, BASED ON TYPE AND SIZE

		π _S	
DEVICE TYPE	Size 8 or Smaller	Size 10-16	Size 18 or Larger
Synchro	2	1.5	ı
Resolver	3	2.25	1.5

TABLE 5.1.9.2-3 $\pi_{\mbox{\scriptsize N}}$ FOR SYNCHROS AND RESOLVERS, BASED ON NUMBER OF BRUSHES

Number of Brushes	π _N
2	1.4
3	2.5
4	3.2

SYNCHROS & RESOLVERS

TABLE 5.1.9.2-4 ENVIRONMENTAL MODE FACTORS

ENVIRON- MENT	^π E
B G G G M N N N N N N N N N N N N N N N N	1.2 1.3 2.3 12 12 5.6 8.1 16 18 19
ARW	26
AIC	2.5
AIT	4
AIB	6
AIA	4
AIF	8.5
AUC	15
AUT	25
AUB	15
AUA	35
SF	1
MFF	12
MFA	17
USL	35
ML	40
CL	680

E.T. METERS

5.1.9.3 Elapsed Time Meters. The part operating failure rate model $(\lambda_{\rm p})$ is:

 $\lambda_{\rm p} = \lambda_{\rm b} \; (\Pi_{\rm T} \times \Pi_{\rm E}) \; {\rm failure/i} \; ^{\rm 6} \; {\rm hours}$ where the factors are shown in Tables 5.1.9.3-1 thru 5.1.9.3-3.

TABLE 5.1.9.3-3
Environmental Mode Factors

TABLE	5.1	.9.3-1	λ_{h}	FOR	Ξ.	Τ.	METERS

TYPE	λ _b (f./10 ⁶ hr.)
A.C.	20
Inverter Oriven	30
Commutator 9.C.	30

TABLE 5.1.9.3-2 Π_{\uparrow} FOR E. T. METERS

Operating T (°C.) RATED T (°C.)	II.
0 to .5	. 5
.6	6
.8	.8
1.0	1.0

ENVIRON- MENT	πE
S G G G M M M M M M M M M M M M M M M M	1 1.2 2.5 12 12 - 5.6 8.8 16 18
ARW AIC AIT AIB AIA AIF	26 3 5 7.5 5
AUC AUT AUB AUA AUF	10 9.5 15 25 15 35
SF MFF MFA USL ML CL	1 12 17 35 40 N/A

ROTATING DEVICES

5.1.9.4 Example Failure Data Calculations

Example 1.

Given: Fractional horsepower motor operating in an ambient temperature of 120°C. Find failure rate for replacement of motors in 1000 hours.

Step 1. From Table 5.1.9.1-1 at 120° C.

$$\alpha_R = 2910 \text{ hours}$$

$$\alpha_{\rm w}$$
 = 15000 hours

Step 2. From Section 5.1.9.1,

$$\lambda_{p} = \left(\frac{t^{2}}{\alpha_{B}} + \frac{1}{\alpha_{W}}\right) \times 10^{6}$$

$$\lambda_p = \left(\frac{1000^2}{2910^3} + \frac{1}{15000}\right) \times 10^6 = 110. \text{ failures/}10^6 \text{ hours}$$

Example 2.

Given: Fractional Horsepower Motor operating at a thermal duty cycle of:

- 2 hours at 100°C ambient
- 8 hours at 20°C ambient
- 0.5 hours to change temperature

Find average failure rate for 4000 hours operating time.

Step 1. Tabulate operating temperatures:

$$T_1 = 100^{\circ}C$$
; $h_1 = 2 \text{ hours}$
 $T_2 = \frac{100 + 20}{2} = 60^{\circ}C$; $h_2 = 1 \text{ hour}$
 $T_3 = 20^{\circ}C$; $h_3 = 8 \text{ hours}$

ROTATING DEVICES

Step 2. Determine bearing and winding life from Table 5.1.9.1-1

$$T_1 = 100^{\circ}\text{C}$$
; $\alpha_B = 6100 \text{ hours}$; $\alpha_W = 31000 \text{ hours}$
 $T_2 = 60^{\circ}\text{C}$; $\alpha_B = 34600 \text{ hours}$; $\alpha_W = 180000 \text{ hours}$
 $T_3 = 20^{\circ}\text{C}$; $\alpha_B = 38800 \text{ hours}$; $\alpha_W = 1600000 \text{ hours}$

Step 3. Calculate bearing life and winding life from Sections 5.1.9.1.1 and : 5.1.9.1.2.

$$\alpha_{\rm B} = \frac{2 + 1 + 8}{\frac{2}{6100} + \frac{1}{34600} + \frac{8}{38800}} = 19500 \text{ hours}$$

$$\alpha_{W} = \frac{2 + 1 + 8}{\frac{2}{31000} + \frac{1}{180000}} = 146000 \text{ hours}$$

Step 4. Calculate average failure rate.

$$\lambda_{p} = \left(\frac{t^{2}}{\alpha_{B}^{3}} + \frac{1}{\alpha_{w}}\right) \times 10^{6}$$

$$\lambda_{p} = \left(\frac{(4000)^{2}}{(19500)^{3}} + \frac{1}{146000}\right) \times 10^{6}$$

$$\lambda_{p} = 9.0 \text{ failures/} 10^{6} \text{ hrs}$$

ROTATING DEVICES

Example 3.

Given: A size 18 synchro with 2 brushes and operating in a Ground Fixed service environment, with a frame temperature of 70°C.

Step 1. Approximate the frame temperature, if not known or cannot be measured, in the following manner:

Frame temperature = ambient + 40°C.

In this example the frame temperature is given as 70° C.

- Step 2. Derive the base failure rate, λ_b , by inserting the frame temperature into Tbl 5.1.9.2-1 for a value of 0.0187 failures/10⁶ hours.
- Step 3. From Tb1 5.1.9.2-2 Π_S for a size 18 synchro is 1.0.
- Step 4. From Tb1 5.1.9.2-3, Π_N for 2 brushes is 1.4.
- Step 5. From Tb1 5.1.9.2-4 $\Pi_{\mbox{\it E}}$ for Ground Fixed service environment is 2.3.
- Step 6. The total failure rate, $\lambda_{\rm p}$, is obtained by multiplying the $\lambda_{\rm b}$ term and II terms, as shown in the model:

$$\lambda_p = \lambda_b (\pi_S \times \pi_N \times \pi_E)$$

= 0.0187 (1.0 x 1.4 x 2.3) = 0.060 failures/10⁶ hours.

RELAYS

5.1.10 Relays.

5.1.10.1 Mechanical Relays

TABLE 5.1.10.1-1: Prediction Procedure for Relays

Part Specifications Covered

Military Specifications

- 1. MIL-R-5757
- 3. MIL-R-19523
- 5. MIL-R-19648

- 2. MIL-R-3106
- 4. MIL-R-39016
- 6. MIL-R-83725
- 7. MIL-R-83726*

Part failure rate model (λ_0)

 $(\lambda_p) = \lambda_b (\pi_E \times \pi_c \times \pi_{cyc} \times \pi_F \times \pi_Q)$ (failures/106 hours)

where the factors are shown in these tables:

 π_{c} - Table 5.1.10.1-4 & 5

 π_{C} - Table 5.1.10.1-6

 $\pi_{\rm F}$ - Table 5.1.10.1-8

 π_{cyc} - Table 5.1.10.1-7

 π_0 - Table 5.1.10.1-9

Note - Values of $\pi_{\mbox{cyc}}$ for cycling rates beyond the basic design limitations of the relay are not valid. Design Specifications should be consulted prior to evaluation of $\pi_{\mbox{cyc}}$.

^{* -} Prediction procedure does not apply to Class C (solid state) relays of this specification.

RELAYS

TABLE 5.1.10.1-1: Prediction Procedure for Relays (Cont'd)

Base	failure	rate	mode1	() b
	$\lambda_b = \lambda_T$	^π L		-
where	τ _L = e ²	e ^X		
	_			
	y = (١	
	x = (=	r + 27 N _T	<u>73</u> G	

T = Ambient operating temperature in °C

S = Operating load current/rated resistive load current

e = 2.718, natural logarithm base.

Constants	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	λ _T (125°C)	(Lamp)	$_{\rm TL}^{\rm T}$ (Inductive)	π _L (Resistive)
А	5.55 _x 10 ⁻³	5.4 x 10 ⁻³	-	-	, -
N _T	352.0	377.0	-	_	-
NS	-	-	0.2	0.4	0.8
G	15.7	10.4	-	-	-
Н	-	-	2.0	2.0	2.0

NOTE: Table 5.1.10.1-2 contains λ_{T} Table 5.1.10.1-3 contains π_{L}

RELAYS

TABLE 5.1.10.1-2 Relay Failure Rate (λ_T) vs Ambient Temperature

	Relay Temperature Rating			
T (°C)	85°C	125°C		
25 30 40 50 60 70 75 80 85 90 95 100 105 110 120 125	0.0060 0.0061 0.0065 0.0072 0.0085 0.0110 0.0130 0.0160 0.0210	0.0059 0.0060 0.0063 0.0066 0.0071 0.0079 0.0084 0.0090 0.0097 0.0110 0.0120 0.0130 0.0150 0.0150 0.0210 0.0250 0.0310		

TABLE 5.1.10.1-3 π_L - Stress Factor vs Load Type

	Load Type				
S	Resistive	Inductive	Lamp		
0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00	1.00 1.02 1.06 1.15 1.28 1.48 1.76 2.15 2.72 3.55 4.77	1.02 1.06 1.28 1.76 2.72 4.77 9.49 21.4	1.06 1.28 2.72 9.49 54.6		

S = Operating Load Current Rated Resistive Load Current

RELAYS

TABLE 5.1.10 .1-4 MIL SPEC

Environmental Mode Factors

TABLE 5.1.10.1-5
LOWER OUALITY
Environmental Mode Factors

ENVIRON- MENT	^π E
G G M P B N N N N N N N N N N N N N N N N N N	1 1.3 2.3 8.2 21 8 8 14 32 34
ARW	46
AIC	5.5
AIT	6
AIB	10
AIA	7.5
AUC	10
AUT	8
AUB	9
AUA	15
AUF	10
S _F	1
M _{FF}	21
MFA	29
USL	62
ML	71
CL	N/A

	
ENVIRON- MENT	^π E
G G G M P B B N N N H N N N N N N N N N N N N N N	2 2.3 4.6 25 63 24 24 38 96 100
ARW AIC AIT AIB AIA AUC AUT AUB AUA	140 9.5 15 20 15 25 20 25 40 30 45
SF MFF MFA USL ML CL	2 - 63 82 190 210 N/A

MIL-HDBK-217E RELAYS

TABLE 5.1.10.1-6: π_C Factor For Contact Form

Contact Form	πc
SPST DPST SPDT 3PST 4PST DPDT 3PDT 4PDT 6PDT	1.00 1.50 1.75 2.00 2.50 3.00 4.25 5.50 8.00

This table applies to active conducting contacts.

TABLE 5.1.10.1-7: π_{CVC} Factor For Cycling Rates

Cycle Rate (Cycles per Hour)	πcyc (MIL-SPEC)
	Cycles per Hour
≥ 1.0	10
< 1.0	0.1

Cycle Rate (Cycles per Hour)	Tcyc (Lower Quality)	
	(Cycles per Hour)	
> 1000	100	
	Cycles per Hour	
10-1000	10	
< 10	1.0	

RELAYS

TABLE 5.1.10.1-8 Failure Rate Factor ($\pi_{\rm F}$) For Relay Application and Construction Type

Contact	t Application Construction			^π F
Rating	Туре	Type	MIL-SPEC	Lower Quality
Signal current (low mv and ma)	Dry circuit	Armature (long) Dry reed Mercury wetted Magnetic latching Balanced armature Solenoid	4 6 1 4 7 7	8 18 3 8 14 14
0-5 amp	General purpose	Armature (long) Balanced armature Solenoid	3 5 6	6 10 12
	Sensitive (0-100 mw)	Armature (long and short) Mercury wetted Magnetic latching Meter movement Balanced armature	5 2 6 100 10	10 6 12 100 20
	Polarized	Armature (short) Meter movement	10 100	20 100
	Vibrating reed	Dry reed Mercury wetted	6 1	12 3
	High speed	Armature (balanced) and short) Dry reed	25 6	NA NA
	Thermal time delay	Bimetal	10	20
	Electronic time delay, non- thermal		9	12
	Latching, magnetic	Dry reed Mercury wetted Balanced armature	10 5 5	20 10 10
5-20 amp	High voltage	Vacuum (glass) Vacuum (ceramic)	20 5	40 10
	Medium power	Armature (long and short) Mercury wetted Magnetic latching TO ADD: "Mechanica	-	6 3 6
25 600	Control	latching" Balanced armature Solenoid	3 2 2	6 6 6
25-600 amp	Contractors (high current)	Armature (short) Mechanical latchir Balanced armature Solenoid	9	14 24 20 10

MIL-HDBK-217E RELAYS

TABLE 5.1.10.1-9: Quality Factor (π_Q) For Relay Application

Failure Rate Level	πġ
R	0.1
Р	0.3
M	1.0
L	1.0

For relays other than ER, use π_Q = 1.5

RELAYS

EXAMPLE

Given: A relay rated at 125°C is operated in a ground fixed environment with an ambient temperature of 30°C . The relay is double-pole, double-throw with a resistive load of 50 percent of rated load. The relay is expected to be cycled at an average of 5 cycles per hour. The relay is a balanced armature, general purpose relay with MIL-SPEC quality.

Find: The failure rate of the relay.

Step 1: From Table 5.1.10.1-2 λ_T is 0.006 failures/10⁶ hours, based on the ambient temperature of 30°C for 125°C rated relay.

Step 2: From Table 5.1.10.1-3 π_{\parallel} = 1.48 for a resistive load at 50 percent rating.

Step 3: From Table 5.1.10.1-5 π_E = 2.3 for ground fixed environment, MIL-SPEC.

Step 4: From Table 5.1.10.1-6 π_c = 3.0 for double-pole, double-throw contacts.

Step 5: From Table 5.1.10.0-7 $\pi_{\text{cyc}} = 0.5$ for 5 cycles $\left(\frac{5 \text{ cycles per hour}}{10}\right)$.

Step 6: From Table 5.1.10.1-8 π_F = 5.0 for a balanced armature, general purpose relay.

<u>Step 7</u>. From Table 5.1.10.1-9 $\pi_Q = 1.0$.

Step 8. The failure rate is determined by substituting the factors into the failure rate mathematical model:

 $\lambda_p = \lambda_b (\pi_E \times \pi_c \times \pi_{cyc} \times \pi_F \times \pi_0)$

 $\lambda_{b} = \lambda_{T} \pi_{A} = 0.006 \times 1.48 = 0.0089 \text{ failures/10}^{6} \text{ hours}$

 $\lambda_p = 0.00^{\circ} 9 (2.3 \times 3.0 \times 0.5 \times 5.0 \times 1.0) = 0.154 \text{ failures/} 10^6 \text{ hours.}$

RELAYS

5.1.10.2 Solid State Relays (SSR)

Specification

<u>Description</u>

MIL-R-28750

Relay, Solid State

The part failure rate prediction procedure is as follows:

Step 1: If a Parts List and/or Schematic Diagram are available.

Step 1A: Calculate a failure rate for each particular component in the SSR assembly using the correct model from the following sections:

Integrated Circuits	Section 5.1.2
Discrete Semiconductors	Section 5.1.3
Resistors	Section 5.1.6
Capacitors	Section 5.1.7
Inductive Devices	Section 5.1.8
Relays	Section 5.1.10
Interconnection Assemblies	Section 5.1.13

Step 1B: Sum the failure rate contribution for each component. The SSR failure rate (λ_D) then is:

$$\lambda_p = \sum_{i=1}^{n} \lambda_i$$

where

 λ_D = SSR failure rate (F/10⁶ hours)

 λ_1 = failure rate of each individual component (F/10⁶ hours)

Step 2: If a parts list but no schematic diagram is available, or if the part complement can be determined by other means (e.g., disection).

Step 2A: Calculate a failure rate for each component type and for the SSR as an assembly using the procedure discussed in Section 5.2.

RELAYS

Step 3: If no parts list or schematic diagram are available, calculate the SSR failure rate using the following model:

$$\lambda_p = \lambda_b \times \pi_Q \times \pi_E$$

where

 $\lambda_p = SSR$ failure rate (F/106 hours)

 λ_b = base failure rate = 0.4 F/10⁶ hours

 πE = environmental factor (Table 5.1.10.2-1)

 π_0 = quality factor

= 1, MIL-SPEC quality

= 3, lower quality

TABLE 5.1.10.2-1: ENVIRONMENTAL FACTOR

Environment	πЕ	Environment	πΕ
Gg	1	AIA	13
G _{MS}	1.3	AIF	25
GF	3.3	Auc	10
G _M	13	Aut	16
Mp	10	AuB	37
NSB	5.2	AUA	23
NS	7.1	Auf	42
NU	17	SF	0.85
NH	16	MFF	10
Nuu	17	MFA	14
ARW	23	USL	31
AIC	6.5	ML	35
AIT	9.5	CL	590
AIB	21		

RELAYS

5.1.10.3 Hybrid and Solid State Time Delay Relays (TDR)

Specification

Description

MIL-R-83726

Relay, Time Delay, Hybrid and Solid State

The part failure rate prediction procedure is as follows:

Step 1: If a Parts List and/or Schematic Diagram are available.

Step 1A: Calculate a failure rate for each particular component in the TDR assembly using the correct model from the following sections:

Integrated Circuits	Section 5.1.2
Discrete Semiconductors	Section 5.1.3
Resistors	Section 5.1.6
Capacitors	Section 5.1.7
Inductive Devices	Section 5.1.8
Relays	Section 5.1.10
Interconnection Assemblies	Section 5.1.13

Step 1B: Sum the failure rate contribution for each component. The TDR failure rate (λ_D) then is:

$$\lambda_p = \sum_{i=1}^{n} \lambda_i$$

where

 λ_D = TDR failure rate (F/10⁶ hours)

 λ_i = failure rate of each individual component (F/106 hours)

Step 2: If a parts list but no schematic diagram is available, or if the part complement can be determined by other means (e.g. disection).

Step 2A: Calculate a failure rate for each component type and for the TDR as an assembly using the procedure discussed in Section 5.2.

Step 3: If no parts list or schematic diagram are available and the TDR is a hybrid electronic TDR, calculate the TDR failure rate using the current model for electronic time delay relays (Section 5.1.10).

RELAYS

Step 4: If no parts list or schematic diagram are available and the TDR is an all solid state TDR, calculate the TDR failure rate using the model:

$$\lambda_D = \lambda_D + \lambda_R$$

where

 $\lambda_p = TDR$ failure rate (F/106 hours)

 λ_D = delay circuit failure rate (F/106 hours)

 λ_R = relay circuit failure rate (F/10⁶ hours)

Step 4A: Calculate the delay circuit failure rate (λ_0) .

$$\lambda_D = \lambda_b \times \pi_E \times \pi_0$$

where

 λ_b = base failure rate = 0.5 F/10⁶ hours

 π_E = environmental factor (Table 5.1.10.3-1)

 π_0 = quality factor

= 1, MIL-SPEC quality

= 4, lower quality

Step 4B: Calculate the relay circuit failure rate $({}^{\lambda}_{R})$ using the

procedure given in Section 5.1.10.2.

Step 4C: Calculate the total TDR failure rate (λ_p) .

 $\lambda_0 = \lambda_0 + \lambda_R$

MIL-HDBK-217E RELAYS

TABLE 5.1.10.3-1: ENVIRONMENTAL FACTORS

Environment	πΕ	Environment	πΕ
Gg	1	AIA	18
G _{MS}	1.5	AIF	35
GF	4.8	Auc	14
G _M	16	Aut	23
Mp	12	AUB	52
NSB	8.4	AUA	38
NS	8.8	AUF	5 9
พบ	20	SF	0.58
NH	18	MFF	12
NUU	20	MFA	17
ARW	26	USL	35
AIC	8.2	ML	40
AIT	13	CL	680
AIB	30		

SWITCHES

5.1.11 Switches.

5.1.11.1 Toggle or pushbutton (single body)

Part Specifications Covered

Description

Snap-action toggle or pushbutton

MIL-S-3950

MIL-S-8805

MIL-S-8834

MIL-S-22885

MIL-S-83731

Part operating failure rate model (
$$\lambda_p$$
):

$$\lambda_p = \lambda_b (\pi_E \times \pi_C \times \pi_{cyc} \times \pi_L) \text{ failures/10}^6 \text{ hours}$$

where factors are shown in:

 π_{F} Table 5.1.11.4-1

 $\pi_{\rm C}$ Table 5.1.11.4-2

 π_{CVC} Table 5.1.11.4-3

 π_1 Table 5.1.11.4-4

Base failure rate model (λ_b) :

Description	MIL-SPEC	Lower Quality
Snap action	0.00045	0.034
Non-snap action	0.0027	0.04

SWITCHES

5.1.11.2 Basic Sensitive

Part Specifications Covered

Description

MIL-S-8805

Basic Sensitive

Part operating failure rate model (λ_p) :

$$\lambda_p = \lambda_b (\pi_E \times \pi_{cyc} \times \pi_L) \text{ failures/10}^6 \text{ hours}$$

where factors are shown in:

 π_{F} Table 5.1.11.4-1

 π_{cyc} Table 5.1.11.4-3

 π_1 Table 5.1.11.4-4

Base failure rate model (λ_b) :

 $\lambda_b = \lambda_{bE} + \frac{n}{2} \lambda_{bC}$ (if actuation differential is >0.002 inches)

 $\lambda_b = \lambda_{bE} + \frac{1}{2}\lambda_b 0$ (if actuation differential is <0.002 inches)

n = the number of active contacts

Description	MIL-SPEC	Lower Quality
λ_{bE}	0.1	0.1
$\lambda_{ ext{bC}}$	0.0009	0.45
λ _{b0}	0.0018	1.25

SWITCHES

5.1.11.3: Rotary (wafer)

Part Specifications Covered

<u>Description</u>

MIL-S-3786

Rotary, ceramic or glass wafer, silver alloy contacts

Part operating failure rate model (λ_p) :

$$\lambda_p = \lambda_b (\pi_E \times \pi_{cyc} \times \pi_L) \text{ failures/10}^6 \text{ hours}$$

where factors are shown in:

 π_F Table 5.1.11.4-1

 π_{cyc} Table 5.1.11.4-3

 π_1 Table 5.1.11.4-4

Base failure rate model (λ_b):

 $\lambda_b = \lambda_{bE} + n \lambda_{bF}$ (for ceramic RF wafers)

 $\lambda_b = \lambda_{bE} + n \lambda_{bG}$ (for rotary switch medium power wafers)

n = the number of active contacts

Description	MIL-SPEC	Lower Quality
λ_{bE}	0.0067	0.1
λ_{bF}	0.00003	0.02
λ _b G	0.00003	0.06

SWITCHES

5.1.11.4 Thumbwheel

Part Specifications Covered

Description

MIL-S-22710

Switches, Rotary (Printed Circuit), (Thumbwheel, In-Line, and Pushbutton)

Part operating failure rate model (λ_p) :

$$\lambda_{\rm p} = (\lambda_1 + n\lambda_2) \times \pi_{\rm E} \times \pi_{\rm cyc} \times \pi_{\rm L} \text{ failures/10}^6 \text{ hours}$$

where λ_1 and λ_2 are base failure rate constants (unique values for MIL-SPEC and commercial quality grades)

 $\lambda_1 = 0.0067 \text{ failures/}10^6 \text{ hours, MIL-SPEC quality}$

= 0.086 failures/ 10^6 hours, lower quality

 $\lambda_2 = 0.062 \text{ failures/}10^6 \text{ hours, MIL-SPEC quality}$

= 0.089 failures/ 10^6 hours, lower quality

n = number of active contacts

 π_F = environmental factors (see Table 5.1.11.4-1)

 π_{cvc} = cycling rate factor (see Table 5.1.11.4-3)

 π_1 = load type factor (see Table 5.1.11.4-4)

CAUTION: This model applies to the switching function only. The model does not consider the contribution of any discrete components (e.g., resistors, diodes, lamp) which may be mounted on the switch. The failure rate of these devices must be calculated using the appropriate section of this handbook and added to the failure rate of the switch.

This model applies to a single switch section. This type of switch is frequently ganged to provide the required function. The model must be applied to each section individually.

SWITCHES

TABLE 5.1.11.4-1: ENVIRONMENTAL MODE FACTORS

ENVIRONME	NT ^{II} E
G _B	1
GMS	1.2
G _F	2.9
G _M	14
M _P	21
N _{SB}	7.9
N _S	7.9
NU	20
NH	32
Nuu	34
A _{RW}	46
AIC	8
AIT	8
AIB	15
AIA	15
AIF	20
A _{UC}	10
i A _{UT}	10
Aub	20
A _{UA}	20
A _{UF}	25
s _F	1
M FF	21
M _{FA}	29
υ _ς ,	63
ML	71
c _L	1,200

SWITCHES

TABLE 5.1.11.4-2: $\pi_{\mbox{\scriptsize C}}$ FACTOR FOR CONTACT FORM AND QUANTITY

Contact Form	^π C
SPST DPST SPDT 3PST 4PST DPDT	1.0 1.5 1.75 2.0 2.5 3.0
3PDT 4PDT 6PDT	4.25 5.5 8.0

TABLE 5.1.11.4-3: $\pi_{\mbox{\scriptsize cyc}}$ FACTOR FOR CYCLING RATES

Switching Cycles per Hour	^т сус
<pre>< l cycle/hour</pre>	1.0
> l cycle/hour	number of cycles/hour

SWITCHES

TABLE 5.1.11.4-4: π_L STRESS FACTOR FOR SWITCH CONTACTS

Stress	Load Type		
3	Resistive	Inductive	Lamp
0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	1.00 1.02 1.06 1.15 1.28 1.48 1.76 2.15 2.72 3.55 4.77	1.02 1.06 1.28 1.76 2.72 4.77 9.49 21.4	1.06 1.28 2.72 9.49 54.6

where
$$S = \frac{\text{operating load current}}{\text{rated resistive load}}$$

$$\Pi_L = e^{(S/.8)^2}$$
 for resistive.

$$= e^{(S/.4)^2}$$
 for inductive.

$$= e^{(S/.2)^2}$$
 for lamp.

NOTE: When the switch is rated by inductive load, then use resistive $\pi_{\hat{l}}$.

SWITCHES

5.1.11.5 Circuit Breakers

<u>Specification</u>	Description
MIL-C-55629 MIL-C-83383	Circuit Breakers, Magnetic, Unsealed, Trip-Free Circuit Breakers, Remote Control, Thermal, Trip-Free
MIL-C-39019	Circuit Breakers, Magnetic, Low Power, Sealed,
W-C-375	Trip-Free Service Circuit Breakers, Molded Case, Branch Circuit and Service
The part operating failure	rate model (λ_p) is:
$\lambda_{p} = \lambda_{b} \times \pi_{C} \times \lambda_{Q} \times \pi_{E}$. × π _u
where	
λ _p = circuit breaker f	ailure rate (failures/10 ⁶ hours)
λ _b = base failure rate	
= 0.020 failures/10	⁶ hours, magnetic circuit breakers
= 0.038 failures/10	⁶ hours, thermal circuit breakers
= 0.038 failures/10	⁶ hours, thermal-magnetic circuit breakers
$π_C$ = configuration fac	tor (see Table 5.1.11.5-1)
π_0 = quality factor	

q = quality

= 1.0, MIL-SPEC quality

= 8.4, lower quality

= environmental factor (see Table 5.1.11.5-2)

= a factor to account for a higher failure rate when the circuit breaker is also used as a power on-off switch for the equipment.

= 1.0, not used as a switch

= 10.0, used as a switch

SWITCHES

TABLE 5.1.11.5-1: CONFIGURATION FACTOR

Configuration	π _C
SPST	1.00
DPST	2.00
3PST	3.00
4PST	4.00

TABLE 5.1.11.5-2: ENVIRONMENTAL FACTOR

ENV IRONMENT	^π E	ENV IRONMENT	π _E
G _B	1	A _{IB}	10
G _{MC}	1.2	AIA	7.5
G _{MS} G _F	2.3	AIF	10
G _M	8.2	Auc	8
M _P	21	A _{UT}	9
N _{SB}	8	A _{UB}	15
N _S	8	A _{UA}	10
N _U	1.4	A _{UF}	15
NH	32	A _{UF} S _F	1
N _{UU}	34	M _{FF}	21
A _{RW}	46	M _{FA}	29
A _{IC}	5.5	U _{SL}	62
A _{IT}	6	M _L	71
		c _L	N/A

SWITCHES

5.1.11.6 Examples

Example 1

Given: A MIL-SPEC toggle switch is used in a ground fixed environment. The switch is a snap action switch and is single-pole, double-throw. It is operated on the average of one cycle per hour, and load current is 50 percent of rated and is resistive.

Find: The failure rate of the switch.

Step 1: The base failure rate (λ_b) is found in section 5.1.11.1 and is determined to be 0.00045 failures/ 10^6 hours.

Step 2: The environmental factor (π_E) for ground fixed environment is determined from Table 5.1.11.4-1 to be 2.9.

Step 3: The contact form factor (π_C) is determined from Table 5.1.11.4-2. For a single-pole, double-throw switch, π_C is 1.75.

Step 4: The cycling factor (π_{cyc}) is determined from Table 5.1.11.4-3 to be equal to 1.0.

Step 5: The stress factor (π_L) from Table 5.1.11.4-4 for 50 percent stress factor and a resistive load is determined to be 1.48.

Step 6: The failure rate mathematical model for toggle switches is:

$$\lambda_{\rm p} = \lambda_{\rm b} (\pi_{\rm E} \times \pi_{\rm C} \times \pi_{\rm cyc} \times \pi_{\rm L})$$

Substituting for these factors:

 $\lambda_{\rm p}$ = 0.00045 (2.9 x 1.75 x 1.0 x 1.48)

 $\lambda_{\rm p}$ = 0.0034 failures/10⁶ hours.

SWITCHES

Example 2

Given: A MIL-SPEC rotary switch is installed in an airborne inhabited, trainer environment. It has a medium power wafer, one deck, and six contacts. The switch is cycled an average of 5 cycles per hour, and the load current is 50 percent of rated current and is resistive.

Find: The failure rate of the switch.

<u>Step 1</u>: The base failure rate (λ_h) is determined from section 5.1.11.3.

$$\lambda_{b} = \lambda_{bE} + n \lambda_{bG}$$

Substituting the values from section 5.1.11.3

 $\lambda_{h} = 0.0067 + 6 (0.00003)$

 $\lambda_{h} = 0.00688 \text{ failures/} 10^6 \text{ hours}$

Step 2: The environmental factor (π_E) for airborne inhabited, trainer is determined from Table 5.1.11.4-1 to be 8.0.

Step 3: The cycling factor (π_{cyc}) is determined from Table 5.1.11.4-3 to be 5.0.

Step 4: The stress factor (π_L) is determined from Table 5.1.11.4-4 to be 1.48.

Step 5: The failure rate mathematical model for rotary switches is:

$$\lambda_{D} = \lambda_{b} (\pi_{E} \times \pi_{CVC} \times \pi_{L})$$

Substituting values determined in the formula:

 $\lambda_{\rm p}$ = 0.00688 (8.0 x 5.0 x 1.48)

 $\lambda_p = 0.41 \text{ failures/}10^6 \text{ hours.}$

SWITCHES

Example 3

Given: A MIL-SPEC 2AMP resistive rated thumbwheel switch is installed in an airborne inhabited, cargo environment at a 40°C ambient temperature. The switch has five active contacts. It is cycled an average of 2 cycles per hour, and the load current is 5 percent of rated current and is resistive. The switch has four 1/4watt, 10 ohm class M carbon composition (RCR) resistors mounted on the switch printed circuit card. The resistors are an integral part of the switch and cannot be removed and replaced if they fail.

Find: The failure rate of the switch as an assembly.

Step 1: Calculate switch failure rate

 $\lambda_1 = 0.0067 \text{ failures/10}^6 \text{ hours}$

 $\lambda_2 = 0.062 \text{ failures/}10^6 \text{ hours}$

n = 5

 $\pi_F = 8$

 $\pi_{\text{cyc}} = 2$

 $\pi_1 = 1.0$

 $\lambda_D = (\lambda_1 + n\lambda_2) \times \pi_E \times \pi_{CYC} \times \pi_L$

 $\lambda_{\rm D}$ = (0.0067 + (5 x 0.062)) x 8 x 2 x 1.00

 $\lambda_{\rm p}$ = 5.067 failures/10⁶ hours.

Step 2: Calculate resistors failure rate from section 5.1.6.1.

 $\lambda_{\rm p} = \lambda_{\rm h} \times \pi_{\rm E} \times \pi_{\rm R} \times \pi_{\rm O}$ failures/10⁶ hours

 λ_b = 0.00055 failures/10⁶ hours (40^oC, 0.4 stress)

 $\pi_F = 3$

 $\pi_R = 1$

 $\pi_0 = 1$

 $\lambda_{n} = .00055 \times 3 \times 1 \times 1$

 $\lambda_{\rm p} = 0.0016 \text{ failures/} 10^6 \text{ hours.}$

SWITCHES

Step 3: Calculate total switch assembly failure rate

 $\lambda = \lambda_{\text{switch}} + 4 \times \lambda_{\text{resistors}}$

 $\lambda = 5.067 \text{ failures/}10^6 \text{ hours} + 0.006 \text{ failures/}10^6 \text{ hours}$

 $\lambda = 5.073 \text{ failures/}10^6 \text{ hours.}$

CONNECTORS

5.1.12 Connectors

5.1.12.1 Connector, General (except printed circuit board types)

TABLE 5.1.2.1-1: PREDICTION PROCEDURE FOR CONNECTORS

Part Specifications Covered (Table 5.1.12.1-2 shows connector configurations)

Specification	Description	Specification	Description
MIL-C-24308 MIL-C-28748 MIL-C-28804 MIL-C-83513 MIL-C-83733	Rack & Panel	MIL-C-3607 MIL-C-3643 MIL-C-3650 MIL-C-3655 MIL-C-25516	Coaxial, RF
MIL-C-5015 MIL-C-26482	Circular	MIL-C-39012 MIL-C-55235 MIL-C-55339	
MIL-C-28840 MIL-C-38999 MIL-C-81511		MIL-C-3767 MIL-C-22992	Power
MIL-C-83723		MIL-C-49142	Triaxial, RF

Part failure rate model (λ_p)

The failure rate model (λ_p) is for a mated pair of connectors. For a single connector, divide λ_p by two.

$$\lambda_p = \lambda_b (\pi_E \times \pi_p \times \pi_K) \text{ failures/10}^6 \text{ hours}$$

where

$$\pi_F$$
 Table 5.1.12.1-6 and Table 5.1.12.1-7

$$\pi_{\rm p}$$
 Table 5.1.12.1-8

$$\pi_{K}$$
 Table 5.1.12.1-9

CONNECTORS

TABLE 5.1.12.1-1. Base Failure Rate

Base Failure Rate Model (λ_b)

$$\lambda_b = Ae^X$$

where
$$x = \frac{N_T}{T+273} + \left(\frac{T+273}{T_0}\right)^p$$

e = 2.718, natural logarithm base

T = operating temperature (°C)

= ambient + temperature rise(Tb1 5.1.12.1-4)

_	Insert Material			
Constants	А	В	С	D
A	0.02	0.431	0.19	0.77
To	473	423	373	358
N _T	-1592	-2073.6	-1298	-1528.8
, P	5.36	4.66	4.25	4.72

Calculated values of λ_{b} for selected operating temperatures are shown in Table 5.1.12.1-5.

CONNECTORS

TABLE 5.1.12.1-2: CONFIGURATION, APPLICABLE SPECIFICATION, AND INSERT MATERIAL FOR CONNECTORS

			ert Ma ble 5.		
Configuration	Specification	А	В	C	D
Rack and Panel	MIL-C-28748 MIL-C-83733 MIL-C-24308 MIL-C-28804 MIL-C-83513	X X X	X X X X		
Circular	MIL-C-5015 MIL-C-26482 MIL-C-28840 MIL-C-38999 MIL-C-81511 MIL-C-83723	X X X	X X X X X		X
Power	MIL-C-3767 MIL-C-22992		X X		X X
Coaxial Triaxial	MIL-C-3607 MIL-C-3643 MIL-C-3650 MIL-C-3655 MIL-C-25516 MIL-C-39012 MIL-C-55235 MIL-C-55339 MIL-C-49142		X X	X X X X X X X	

CONNECTORS

TABLE 5.1.12.1-3. Temperature Ranges of Insert Materials

Туре	Common Insert Materials	Temperature Range (°C)*
А	Vitreous glass, alumina ceramic, polyimide	-55 to 250
В	Diallyl phthalate, melamine, fluorosilicone, silicone rubber, polysulfone, epoxy resin	-55 to 125
С	Polytetrafluoroethylene (teflon) chlorotrifluoroethylene (kel-f)	-55 to 200
D	Polyamide (nylon), polychloroprene (neoprene), polyethylene	-55 to 125

^{*}These temperature ranges indicate maximum capability of the insert material only. Connectors using these materials generally have a reduced temperature range caused by other considerations of connector design. Applicable connector specifications contain connector operating temperature range.

CONNECTORS

TABLE 5.1.12.1-4. Insert Temperature Rise (°C) versus Contact Current

Amperes	Contact Size			
Per Contact	22 GA	20 GA	16 GA	12 GA
2 3 4 5 6 7 8 9 10 15 20 25 30 35 40	3.6 7.5 12.9 19.4 27.2 36.2 46.3 57.6 70.0	2.3 4.9 8.3 12.6 17.6 23.4 30.0 37.3 45.3 95.9	1.0 2.1 3.6 5.4 7.5 10.0 12.8 16.0 19.4 41.1 69.9	.36 .76 1.3 2.0 2.8 3.7 4.7 5.8 7.1 15.0 25.5 54.0 71.9 92.0

 $\Delta T = 0.989 (i)^{1.85}$ for 22 gauge contacts

 $\Delta T = 0.64 (i)^{1.85}$ for 20 gauge contacts $\Delta T = 0.274 (i)^{1.85}$ for 16 gauge contacts

 $\Delta T = 0.1 (i)^{1.85}$ for 12 gauge contacts

 $\Delta T = ^{\circ}C$ insert temperature rise

i = amperes per contact

NOTE: Operating temperature of the connector is usually assumed to be the sum of the ambient temperature surrounding the connector plus the temperature rise generated in the contact. If the connector is mounted on a suitable heat sink, the heat sink temperature is usually taken as ambient. For those circuit design conditions which generate a contact hot spot, this hot spot temperature rise is added to the ambient to obtain the operating temperature.

For RF coaxial connectors, assume $\Delta T = 5^{\circ}C$ except for high power RF application then use $\Delta T = 50^{\circ}$ C.

CONNECTORS

TABLE 5.1.12.1-5. Operating Temperature versus Base Failure Rate (λ_b) (Failures/10⁶ Hours)

Temperature	Insert Material*			
(°C)	А	В	С	D
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250	0.00006 0.00008 0.00009 0.00012 0.00014 0.00017 0.00020 0.00023 0.00028 0.00032 0.00032 0.00038 0.00044 0.00051 0.00059 0.00069 0.00069 0.00110 0.00133 0.00159 0.00190 0.00229 0.00279 0.00229 0.00279 0.00343 0.00426 0.00536	0.00025 0.00031 0.00044 0.00056 0.00075 0.00094 0.0012 0.0015 0.00231 0.00288 0.00362 0.00450 0.00556 0.00694 0.00869 0.01093 0.01756 0.02243 0.02894	0.0020 0.0027 0.0033 0.0049 0.0059 0.0073 0.0087 0.0106 0.0131 0.0161 0.0197 0.0246	0.0038 0.0048 0.0061 0.0078 0.0099 0.0125 0.0159 0.0202 0.0258 0.033 0.043 0.056 0.074

^{*}If a mating pair of connectors uses two types of insert materials, use the average of the base failure rates for the two insert types.

CONNECTORS

TABLE 5.1.12.1-6

MIL-SPEC Environmental Mode Factors

Environmenta	ו מטעפ ר
ENVIRONMENT	πE
G _B	1
GMS	1.1
G _F	1.2
G _M	8.3
M _P	8.5
NSB	4.1
N _S	5.3
N _U	13
N _H	13
NUU	14
A _{RW}	19
AIC	2-
AIT	3
AIB	4.5
AIA	4
AIF	6.5
Auc	5
A _{UT}	8
A _{UB}	10
AUA -	9.5
AUF	15-
S _F	1
M _{FF}	8.5
M _{FA}	12
น _{ระ}	-25
M, j	29
c.	490

TABLE 5.1.12.1-7

Lower Quality
Environmental Mode Factors

ENVIRONMENT	πΕ
G _B	1.5
G _{MS}	1.9
G _F	4.7
G _M	25
Mp	17
N _{SB}	8.1
N _S	11
N _U	27
NH	26
Nuu	28
A _{RW}	37
AIC	10
AIT	10
AIB	15
AIA	15
A _{IF}	20
AUC	15
AUT	15
A _{UB}	20
AUA	20
A _{UF}	30
S _F	1.5
M _{FF}	17
M _{FA}	24
U _C ,	50
M ^r	58
c _L	970

CONNECTORS

TABLE 5.1.12.1-8. Values of Failure Rate Multiplier, π_p , for Number of Active Contacts in a Connector

Number Of Active Contacts	πр	Number Of Active Contacts	πр
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 45 50 55 60	1.00 1.36 1.55 1.72 1.87 2.02 2.16 2.30 2.44 2.58 2.72 2.86 3.00 3.14 3.28 3.42 3.57 3.71 3.86 4.00 4.78 5.60 6.46 7.42 8.42 9.50 10.65 11.89	65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 165 170 175 180 185 190 195 200	13.20 14.60 16.10 17.69 19.39 21.19 23.10 25.13 27.28 29.56 31.98 34.53 37.22 40.07 43.08 46.25 49.60 53.12 56.83 60.74 64.85 69.17 73.70 78.47 83.47 88.72 94.23 100.00

For coaxial and triaxial connectors, the shield contact is counted as an active contact.

 $\boldsymbol{\pi}_{\boldsymbol{P}}$ is a function of the number of active contacts:

$$\pi_p = e^{\left(\frac{N-1}{N_0}\right)^q}$$

A contact is the conductive element in a connector which mates with another element for the purpose of transferring electrical energy.

where $N_0 = 10$

q = 0.51064

N = number of active contacts

CONNECTORS

TABLE 5.1.12.1-9. π_{K} Mating/Unmating Factor

Mating/Unmating Cycles (per 1000 hours)	πK
0-0.05	1.0
>0.05-0.5	1.5
>0.5-5	2.0
>5-50	3.0
>50	4.0

One cycle includes both connect and disconnect.

PCB CONNECTORS

5.1.12.2 Printed Circuit Board Connector.

Table 5.1.12.2-12 rediction Procedure for PCB Connectors

Specification	n Description		
MIL-C-21097 MIL-C-55302			
Part Failure Rate Model (\lambda_p)			
The failure rate, λ_p , is for a mating pair of connectors and is:			
$\lambda_{p} = \lambda_{b} (\Pi_{E} \times \Pi_{p} \times \Pi_{K})$ failures/10 ⁶ hours			
where the fa	where the factors are:		
n _E T	able 5.1.12.2-4 or 5		
прт	able 5.1.12.2-6		
π _K τ	able 5.1.12.2-7		

Base Failure Rate (λ_b)

$$\lambda_b = Ae^X$$
where $x = (\frac{T}{T+273}) + (\frac{T+273}{T_0})^P$

e = 2.718, natural logarithm base

T = operating temperature (°C)

= ambient + temperature rise (Table 5.1.12.2-2)

$$A = 0.216$$
 $T_0 = 423$
 $P = 4.66$
 $N_T = -2073.6$

 $\lambda_{\mbox{\scriptsize h}}$ values are shown in Table 5.1.12.2-3.

PCB CONNECTORS

TABLE 5.1.12.2-2. Connector Temperature Rise (°C) Versus Contact Current and Contact Size

Amperes/Contact	26 GA	22 GA	20 GA
1	2.1	0.99	0.64
2	7.6	3.6	2.3
3	16.0	7.5	4.9
4	27.3	12.9	8.3
5	41.2	19.4	12.6

$$\Delta T = 2.1 (i)^{1.85}$$
 for 26 GA
 $\Delta T = 0.989 (i)^{1.85}$ for 22 GA
 $\Delta T = 0.64 (i)^{1.85}$ for 20 GA

Note 1: ΔT = ^OC temperature rise i = amperes per contact

Note 2: The operating temperature of the connector is usually assumed to be the sum of the ambient temperature surrounding the connector plus the temperature rise generated in the contact.

PCB CONNECTORS

TABLE 5.1.12.2-3. Operating Temperature Versus Base Failure Rate (λ_b) in Failures/Million Hours

Temperature (°C)	λ _b
0	0.00013
10	0.00016
20	0.00021
30	0.00028
j 40	0.00037
50	0.00047
60	0.0006
70	0.0008
80	0.0009
J 90	0.0011
100	0.0014
110	0.0018
120	0.0022
130	0.0028
] 140	0.0035
150	0.0043
160	0.0055
170	0.007
180	0.0088
190	0.011
200	0.014

MIL-HDBK-217E PCB CONNECTORS

TABLE 5.1.12.2-4

MIL SPEC Environmental Mode Factors

Environmenta	ii mode rad
ENVIRONMENT	πE
G _B	1
G _{MS}	1.3
G _F	3.4
G _M	8.3
Mp	8.5
N _{SB}	4.1
N _S	5.7
N _U	13
NH	13
N _{UU}	13
A _{RW}	19
A _{IC}	3.5
A _{IT}	6.5
A _{IB}	9.5
A _{IA}	6.5
A _{IF}	15
A _{UC}	3.5
A _{UT}	6.5
A _{UB}	9.5
A _{UA}	6.5
A _{UF}	15
s <u>.</u>	ו
M _{FF}	, 8.5
M _{FA}	12
U _{SL}	25
M _L C _L	29
Cլ	490

TABLE 5.1.12.2-5

Lower Quality Environmental Mode Factors

ENVIRONMENT	II È
GB	1.5
G _{MS}	2.2
G _F	6.8
G _M	17
M _P	17
N _{SB}	8.2
N _S	12
Nυ	27
NH	26
N _{UU}	26
A _{RW}	37
AIC	7.5
A _{IT}	15
A _{IB}	20
A _{IA}	15
A _{IF}	30
A _{UC}	7.5
A _U ⊤	15
A _{UB}	20
A _{UA}	15
AUF	30
s_{F}	1.5
MFF	17
M _{FA}	24
U _c ,	50
WF	58
C _L	970

PCB CONNECTORS.

TABLE 5.1.12.2-6 Values of Failure Rate Modifier, π_P , for Number of Active Pins in a Connector

Ŋ	π _P	N	π _P
1	1.00	65	13.20
2	1.36	70	14.60
3	1.55	75	16,10
4	1.72	80	17.69
5	1.87	85	19.39
6	2.02	90	21.19
7	2.16	95	23.10
8	2.30	100	25.13
9	2.44	105	27.28
10	2.58	110	29.56
11	2.72	115	31.98
12	2.86	120	34.53
13	3.00	125	37.22
14	3.14	130	40.07
15	3.28	135	43.08
16	3.42	140	46.25
17	3.57	145	49.60
18	3.71	150	53.12
19	3.86	155	56.83
20	4.00	160	60.74
25	4.78	165	64.85
30	5.60	170	69.17
35	6.46	175	73.70
40	7.42	180	78.47
45	8.42	185	83.47
50	9.50	190	88.72
55	10.65	195	94.23
60	11.89	200	100.00

 $\boldsymbol{\Pi}_{\underline{P}}$ is a function of the number of active pins

$$\pi_{\mathbf{P}} = \mathbf{e} \left(\frac{\mathbf{N} - 1}{\mathbf{N}_{\mathbf{O}}} \right)^{\mathbf{q}}$$

where $N_0 = 10$

q = 0.51064

N = number of active pins

PCB CONNECTORS

TABLE 5.1.12.2-7. . Cycling Rate Factor π_{K}

Cycling Frequency	π
(Marings/1000 Hours)	K
0 - 0.05	1.0
> 0.05 - 0.5	1.5
> 0.5 - 5.0	2.0
> 5.0 - 50.0	3.0
> 50.0	4.0

A cycle is defined as the mating and unmating of a connector.

IC CONNECTORS

5.1.12.3 Integrated Circuit (IC) Socket Prediction Procedure.

SPECIFICATION

DESCRIPTION

MIL-S-83734

Sockets, Plug-in Electronic Components

The part failure rate model is:

$$\lambda_D = \lambda_D \times \pi_E \times \pi_P$$

where

 λ_p = total failure rate (f/10⁶ hours) λ_b = base failure rate = 0.00042 f/10⁶ hours

π_E = environmental factor (Table 5.1.12.3-1)

 πp = contact factor (Table 5.1.12.3-2)

TABLE 5.1.12.3-1: ENVIRONMENTAL FACTORS

Environment	πΕ	Environment	πΕ
GB	1.0	A _{IA}	10*
^{G}MS	1.3	AIF	13*
GF	3.1	Auc	10*
GM	17*	AUT	10*
Mp	11*	A _{UB}	13*
NSB	5.4	A _{UA}	13*
NS	7.3*	Auf	20*
NU	18*	SF	1.0
NH	17*	MFF	11*
Νυυ	19*	MFA	16*
ARW	25*	U _{SL}	33*
AIC	6.7*	ML	39*
AIT	6.7*	CL	650*
AIB	10*		:

^{*} It is recommended that I.C. sockets should only be used in this environment if socketed device is restrained.

1

MIL-HDBK-217E

IC SOCKETS

TABLE 5.1.12.3-2: CONTACT FACTOR

Number of Active Contacts	πр
6	2.02
8	2.30
10	2.58
14	3.14
16	3.42
18	3.71
20	4.00
22	4.31
24	4.62
28	5.26
36	6.66
40	7.42
48	9.06
50	9.50
64	12.93

$$\pi p = \exp\left(\frac{N-1}{N_O}\right)^q$$

where

 $N_0 = 10$

q = 0.51064

N = number of active contacts (active indicates electrical current current flow through the contact)

CONNECTORS

5.1.12.4 Example Failure Rate Calculations

Example 1.

Given: A MIL-SPEC connector, with 20 GA pins, uses insert material, type B. The connector has 20 active pins and is installed in a ground fixed environment with an ambient temperature of 20°C. The load current is expected to be 5 amperes, and the connector is expected to be connected and disconnected once every 200 operating hours.

Find: The failure rate of the connector.

Step 1. The insert temperature rise is determined to be 13°C derived from Table 5.1.12.1-4 for size 20 GA pins at 5 amperes.

The operating temperature is determined from:

Operating temperature = ambient temperature + insert temperature rise.

Operating temperature = $25^{\circ}C + 13^{\circ}C = 38^{\circ}C$.

Step 2. The insert material is type B. Utilizing Table 5.1.12.1-5, the base failure rate for type B insert material at 38°C is 0.00073 failures/ 10° hours.

Step 3. The environmental factor (π_E) for ground fixed is 1.2 as shown in Table 5.1.12.1-6. The pin density factor (π_D) is 4.0 as shown in Table 5.1.12.1-8 for 20 active pins. The π_K factor is 2.0 as determined from Table 5.1.12.1-9 for mating/unmating cycles of 5/1000 hours.

Step 4. The failure rate of the connector is found by substituting the values of λ_b , π_E , π_p , and π_K into the part failure rate model.

$$\lambda_{p} = \lambda_{b} (\pi_{E} \times \pi_{p} \times \pi_{K})$$

$$\lambda_n = 0.00073 (1.2 \times 4.0 \times 2.0)$$

 $\lambda_p = 0.0070 \text{ failures/}10^6 \text{ hours for a mated pair.}$

For a single connector, per Table 5.1.12.1-1.

 $\lambda_{\rm p} = .007/2 = 0.0035 \text{ failures/}10^6 \text{ hours.}$

CONNECTORS

Example 2.

Given: A lower quality connector, with 16 GA pins, uses insert material, type D. The connector has 10 active pins and is installed in an airborne inhabited, fighter environment with an ambient temperature of 40°C. The load current is expected to be 5.0 amperes, and the connector is expected to be connected and disconnected once every 20 hours.

Find: The failure rate of the connector.

Step 1. The insert temperature rise is determined to be 5.5°C, derived from Table 5.1.12.1-4, for size 16 GA pins at 5.0 amperes.

The operating temperature is determined from:

Operating temperature = ambient temperature + insert temperature rise. Operating temperature = $40^{\circ} + 5.5^{\circ}C = 45.5^{\circ}C$.

- Step 2. The insert material is type D. Utilizing Table 5.1.12.1-5 the base failure frate for type D insert material at 45.5°C is 0.0113 failures/10° hours.
- Step 3. The environmental factor (π_E) for airborne inhabited, fighter lower quality is 20 as shown in Table 5.1.12.1-7. The pin density factor (π_p) is 2.58 as shown in Table 5.1.12.1-8 for 10 active pins. The π_K factor is 3.0 as determined from Table 5.1.12.1-9 for 50 mating/unmating cycles per 1000 hours.
- Step 4. The failure rate of the connector is determined by substituting the values of λ_b , π_E , π_p , and π_K into the part failure rate model:

$$\lambda_{p} = \lambda_{b} (\pi_{E} \times \pi_{p} \times \pi_{K})$$

$$\lambda_n = 0.0113 (20 \times 2.58 \times 3.0)$$

 $\lambda_p = 1.75 \text{ failures/10}^6 \text{ hours for a mated pair.}$

For a single connector, per Table 5.1.12.1-1:

 $\lambda_{\rm p} = 1.75/2 = .88 \text{ failures/10}^6 \text{ hours.}$

CONNECTORS

EXAMPLE 3.

Given: A two-piece printed circuit board connector (MIL-C-55302) with 50 active pins will be utilized in a ground fixed environment in which the connector is expected to be connected and disconnected once every 300 hours of operation. Pin size is 22 gage. Ambient temperature will be 25°C, and the expected load current will be 2.0 amperes.

Find: The failure rate of the connector.

Step 1. Calculate the operating temperature by adding the temperature rise in the connector to the ambient temperature, 25°C.

From Table 5.1.12.2- $?\Delta T$ for 22 gage when 2.0 amperes are flowing = 3.6°C.

Operating temperature = ambient + heat rise. Operating temperature = $25^{\circ}\text{C} + 3.6^{\circ}\text{C} = 28.6^{\circ}\text{C}$.

- Step 2. From Tb1 5.1.12.2-3 λ_b is determined to be 0.00027 for 28.6°.
- Step 3. From Tb1 5.1.12.2-4, π_E for ground environment and MIL-SPEC quality is 3.4.
- Step 4. From Tb1 5.1.12.2-6 π_p for 50 pins is determined to be 9.5.
- Step 5. From Tb1 5.1.12.2-7 π_K for 3.33 matings/1000 hours is determined to be 2.0.
- Step 6. The failure rate of the connector is determined by substituting the values determined into the failure rate equation:

$$\lambda_{\mathbf{P}} = \lambda_{\mathbf{b}} (\pi_{\mathbf{E}} \times \pi_{\mathbf{P}} \times \pi_{\mathbf{K}})$$

$$\lambda_{\rm p}$$
 = 0.00027 (3.4 x 9.5 x 2)

 $\lambda_{\rm p} = 0.0174 \text{ failures/10}^6 \text{ hours.}$

INTERCONNECTION ASSEMBLIES

5.1.13 Interconnection Assemblies with Plated Through Holes (PTH).

For other assemblies not using PTH's use Section 5.1.14, Connections.

The failure rate model for plated through hole (PTH) assemblies is:

 $\lambda_{p} = \lambda_{b} \pi_{Q} \pi_{E} \left[n_{1} (\pi_{C}) + n_{2} (\pi_{C} + 13) \right]$ failures/10⁶ hours/assembly where

 $\lambda_{\rm p}$ = base failure rate, Table 5.1.13-1

 π_0 = quality factor, Table 5.1.13-2

 π_F = environmental factor, Table 5.1.13-4

 n_1 = quantity of wave soldered functional PTH's

 n_2 = quantity of hand soldered PTH's

 π_{Γ} = complexity factor, Table 5.1.13-5

TABLE 5.1.13-1: BASE FAILURE RATE λ_{h}

Techno logy	λ _b failures/10 ⁶ hours
Printed Wiring Assemblies	.000041
Discrete Wiring w/Electroless Deposited PTH*	.00026

^{*}Applies to two or less levels of circuitry

TABLE 5.1.13-2: QUALITY FACTOR π_0

Quality Grade	πQ
Manufactured to MIL-SPEC or comparable IPC Standards	1
Lower Quality	2

INTERCONNECTION ASSEMBLIES

TABLE 5.1.13-3 SOLDER APPLICATION FACTOR

Process	* Rework Percentage %	** ^π S
Wave Solder	0-6 7 10 15 20 25 30 35 40 over 40 unknown	0 0.1 0.5 1.2 1.9 2.6 3.3 4.0 4.7 6.0 6.0

* % = $\frac{\text{no. of reworked connections x } 100}{\text{total no. of soldered connections}}$ for most recent month.

** π_S = .14 (%) - .88

TABLE 5.1.13-5 COMPLEXITY FACTOR TO

The state of the s	
Number of Circuit Planes	π _C
<pre></pre>	1 1.3 1.5 1.8 2.0 2.2 2.4 2.6 2.7 2.9 3.1 3.2 3.4 3.5 3.7 1

For greather than 16 circuit planes,

 $\pi_{C} = .55 \text{ l.}^{63}$ = quantity of circuit planes

TABLE 5.1.13-4 ENVIRONMENTAL MODE FACTORS

Environment	
i i	πE
G _B	1
^L MS	1.3
∫ G _F	2.3
G _M	7.7
I M _P	6.9
N _{SR}	4.1
I N _S	5.3
l N _U	12
N _H	13
N _{UU}	14
A _{RW}	19
A _{IC}	2.5
I A _{IT}	4.5
A _{IB}	8
AIA	5.5
A _{IF}	10
A _{UC}	7.5
^A UT	15
^A UB	25
^A ua .	20
A _{UF}	35
S _F	ı
M _{FF}	8.7
^M FA	12
120	25
M _L	29
C ^L	500

INTERCONNECTION ASSEMBLIES

Example 1

Given: A plated through hole printed wiring assembly having 6 circuit planes and 700 PTHs is to be used in an uninhabited trainer airborne environment. 560 of the PTHs are filled by wave soldering and 140 by hand soldering. 8 percent of the wave solder connections require rework. All elements of the assembly are in accordance with military specifications.

Step 1 - The general failure rate expression is:

$$\lambda_{D} = \lambda_{D} \pi_{Q} \pi_{E} [N_{1}(\pi_{C} + \pi_{S}) + N_{2}(\pi_{C} + 13)].$$

Step 2 - From Table 5.1.13.-1 the base failure rate for printed wiring assemblies is:

 $\lambda_b = .000041 \text{ failures}/106 \text{ hr.}$

Step 3 - From Tables 5.1.13.-2 and 5.1.13.-4:

 $\pi_0 = 1$

 $^{\pi}$ E = 15 for AUT.

Step 4 ~ From Table 5.1.13 .-5 for 6 circuit planes:

 $^{\pi}$ c = 2.

Step 5 - From Table 5.1.13.-3 the application factor for wave solder with 8% rework is:

 $\pi_{\varsigma} = 0.2$

INTERCONNECTION ASSEMBLIES

Step 6 - From the example statement:

 $N_1 = 560$

 $N_2 = 140.$

Step 7 - Obtain the failure rate by substituting values into the model:

$$\lambda_{\rm p}$$
 = .000041 (1) (15) [560(2 + 0.2) + 140(2 + 13)]
= 2.0 failures/106 hours.

Example 2

Given: A discrete wiring with electroless deposited PTHs assembly having 2 levels of circuitry and 600 PTHs is to be used in a fixed ground environment. All PTHs are filled by wave soldering, 18 percent of which require rework. All elements of the assembly are in accordance with IPC specifications.

Step 1 - The general failure rate expression, all connections formed by wave solder (See Section 5.1.13.1) is:

$$\lambda_p = \lambda_b \pi_Q \pi_E [N_1(\Pi_C + \Pi_S)]$$
 because $N_2 = 0$

Step 2 - From Tables 5.1.13.-1, 5.1.13.-2, and 5.1.13.-4:

 $\lambda_b = .00026 \text{ failures}/106 \text{ hours}$

[™]n = 1

 $\pi_{\rm E}$ = 2.3 for Gg.

INTERCONNECTION ASSEMBLIES

Step 3 - From Tables 5.1.13.-3 and 5.1.13.-5:

 $\pi_{S} = 1.6 \ (18\% \text{ rework})$

 $\pi_{\mathsf{C}} = 1.$

Step 4 - Given in the example statement:

N = 600.

Step 5 - Obtain the failure rate by substituting the values into the model:

 λ_p = .00026 (1) (2.3) (600) (1 + 1.6)

= .93 failures/106 hours.

CONNECTIONS

5.1.14 Connections. The failure rate model in this section applies to connections used on all assemblies except those using plated through holes. The failure rate of the structure which supports the connections and parts, e.g., non-plated-through hole boards and terminal strips, is considered to be zero.

$$\lambda_{p} = \pi_{E} \sum_{i=1}^{n} \lambda_{bi} (\pi_{Ti} \times \pi_{Qi})$$

where:

 Π_{F} = environmental factor (Table 5.1.14-2)

 N_i = number of connections of the ith type

 λ_{bi} = base failure rate of the ith type connection (Table 5.1.14-1)

 π_{Ti} = tool type factor of the ith type connection (Table 5.1.14-3 for crimp type)

= 1 for all types except crimp

 II_{Qi} = quality factor of the ith type connection (Table 5.1.14-4 for crimp type)

= 1 for all types except crimp

TABLE 5.1.14-1 $\lambda_{\rm bi}$, BASE FAILURE RATE

CONNECTION TYPE	λ _{bi} (F/10 ⁶ hrs)
Hand Solder, w/o wrapping	.0026
Crimp	.00026
Weld	.00005
Solderless Wrap	.000035
Hand Soldered, w/wrapping	.00014
Clip Termination	.00012
Reflow Solder	.000069

CONNECTIONS

TABLE 5.1.14-2 ENVIRONMENTAL MODE FACTORS

Environment	^π E
G _B	1
) G _{MS}	1.1
G _F	2.1
G _M	7.3
Mp	7.3
N _{SB}	3.5
NS	4.4
N _U	9.9
N _H	11
עט א	12
A _{RW}	16
A _{IC}	2.5
AIT	4.5
AIB	5.5
A _{IA}	5
AIF	7.5
A _{UC}	3
A _{UT}	6
A _{UB}	7.5
I A _{UA}	7
^l A _{UF}	9.5
S _F	1
M _{FF}	7.3
l M _{FΔ}	10
l U _{Ci}	22
^M L	25
c^{Γ}	420
L	L

TABLE 5.1.14-3 TOOL TYPE FACTORS $\star\pi_{T}$) FOR CRIMP CONNECTIONS

Tool Type	π _{Ti}
Automated Manual	1 2

Notes: 1. Automated encompasses all powered tools not handheld.

2. Manual includes all handheld tools.

TABLE 5.1.14-4 QUALITY FACTORS (π_Q) FOR CRIMP CONNECTIONS

T			<u> </u>
Quality 0	irade	πQl	Comments
Automated		1.0	Daily pull tests recom- mended.
Manual To	ols:		
Uppe		0.5	Only MIL-SPEC or equivalent tools and terminals, pull test at beginning and end of each shift, color coded tools and terminations.
Stan	dard	1.0	Only MIL-SPEC tools, pull test at beginning of each shift
Lowe	r	10.0	Anything less than stand- ard criteria.

CONNECTIONS

Example Failure Rate Calculations

Example 1

Given: A solderless wrap wiring assembly is to be used in an inhabited cargo airborne environment. The assembly consists of 1560 wraps and 156 of the posts are connected to either the ground or voltage planes with reflow solder.

Step 1 - The general failure rate expression is:

$$\lambda_{p} = \pi_{E} \left[(N_{1} \lambda_{b1} \pi_{T1} \pi_{Q1}) + (N_{2} \lambda_{b2} \pi_{T2} \pi_{Q2}) \right]$$

where:

 $\lambda_{\rm hl}$ = solderless wrap base failure rate

 N_1 = quantity of solderless wraps

 II_{T1} = tool type factor for solderless wrap

 Π_{01} = quality factor for solderless wrap

 $\lambda_{\rm h2}$ = reflow soldered base failure rate

 N_2 = quantity of solder connections

 Π_{T2} = tool type factor for reflow solder

 Π_{02} = quality factor for reflow solder

CONNECTIONS

Step 2 - From Tables 5.1.14-1, 5.1.14-4, and the example statement:

$$\Pi_{E}$$
 = 2.5 for A_{IC}

$$\lambda_{b1} = .0000035 \text{ failures}/10^6 \text{ hours} \quad N_1 = 1560$$

$$\lambda_{b2} = .000069 \text{ failures/}10^6 \text{ hours} \qquad N_2 = 156$$

$$\pi_{T1} = \pi_{T2} = \pi_{QT} = \pi_{Q2} = 1$$

Step 3 - Obtain the failure rate by substituting values into the model:

$$\lambda_p = 2.5 \left[(.0000035) (1560)(1)(1) + (.000069) (156) (1)(1) \right]$$

= .041 failures/10⁶ hours.

Example 2

Given: A wrapped and soldered wiring assembly is to be used in a fixed ground environment. The assembly consists of 4000 wrapped and soldered connections.

Step 1 - The general failure rate expression is:

$$\lambda_p = \Pi_E \lambda_b N \Pi_T \Pi_0$$

Step 2 - From Tables 5.1.14-1, 5.1.14-2, and the example statement:

$$\Pi_{c}$$
 = 2.1 for fixed ground

$$\lambda_b = .00014 \text{ failures/}10^6 \text{ hours.}$$

$$\Pi_T = \Pi_Q = 1$$

$$N = 4000$$

CONNECTIONS

Step 3 - Obtain the failure rate by substituting the values into the model:

$$\lambda_p = (2.1)(.00014) (4000)(1)(1)$$
= 1.176 failures/10⁶ hours.

Example 3

Given: A clip termination wiring assembly is to be used in a sheltered naval environment. The assembly consists of 2400 clip terminations and 100 of the posts are connected to either the ground or voltage planes by reflow solder connections.

Step 1 - The general failure rate expression (See Section 5.1.13.2)

is:

$$\lambda_{p} = \Pi_{E}[(N_{1}\lambda_{b1}\Pi_{T1}\Pi_{Q1}) + (N_{2}\lambda_{b2}\Pi_{T2}\Pi_{Q2})]$$

where:

 $\lambda_{\rm hl}$ = clip termination base failure rate

 N_1 = quantity of clip terminations

 $\mathbf{\Pi}_{\texttt{Tl}}$ = tool type factor for clip terminations

 Π_{01} = quality factor for clip terminations

 $\lambda_{\rm h2}$ = reflow solder base failure rate

 N_2 = quantity of reflow solder connections

 Π_{T2} = tool type factor for reflow solder

 Π_{02} = quality factor for reflow solder

Step 2 - From Tables 5.1.14-1 and 5.1.14-2 and the problem statement:

 $II_F = 4.4 \text{ for } N_S$

 $\lambda_{b1} = .00012 \text{ failures/10}^6 \text{ hours} \quad N_1 = 2400$

CONNECTIONS

$$\lambda_{b2}$$
 = .000069 failures/10⁶ hours. N₂ = 100 Π_{T1} = Π_{T2} = Π_{Q1} = Π_{Q2} = 1

Step 3 - Obtain the failure rate by substituting values into the model:

$$\lambda_p = 4.4 [(.00012) (2400)(1)(1) + (.000069) (100) (1) (1)]$$

= 1.298 failures/10⁶ hours.

Example 4

Given: A reflow solder printed wiring assembly (no PTHs) is to be used in a space flight environment. The assembly consists of the printed wiring board and 300 reflow solder connections.

Step 1 - The general failure rate expression (See Section 5.1.13.2) is:

$$\lambda_{p} = \Pi_{E} \lambda_{b} N\Pi_{T}\Pi_{\tilde{U}}$$

Step 2 - From Tables 5.1.14-1, 5.1.14-2 and the example statement:

$$\Pi_{F} = 1 \text{ for } S_{F}$$

 $\lambda b = .000069 \text{ failures/}10^6 \text{ hours.}$

$$\pi_{\mathsf{T}} = \pi_{\mathsf{Q}} = 1$$

CONNECTIONS

Step 3 - Obtain the failure rate by substituting the values into the model:

$$\lambda_p = (1)(.000069) (300) (1)(1)$$
= .021 failures/10⁶ hours.

Example 5

Given: An assembly to be used in a fixed ground environment contains 200 crimp connections. The connections are applied with a handheld power tool of a standard quality grade.

Step 1 - The general failure rate expression is:

$$\lambda_p = \pi_E (N \lambda_b \pi_T \pi_Q)$$

Step 2 - From Tables 5.1.14-1 through 5.1.14-4 and the problem statement:

$$\Pi_c = 2.1$$

N = 200

$$\lambda_{\rm b} = .00026 \text{ f./}10^6 \text{ hr.}$$

 $\Pi_{\mathsf{T}} = 2$

 $\Pi_0 = 1$

Step 3 - Obtain the failure rate by substituting the values into the failure rate expression:

$$\lambda_p = (2.1)(200)(.00026)(2)(1)$$
= .22 f./10⁶ hr.

MIL-HDBK-217E METERS

5.1.15 Meters

5.1.15.1 Panel Meters

Specification

Description

MIL-M-10304

Meter, Electrical Indicating, Panel Type, Ruggedized.

The part operating failure rate model (λ_p) is:

$$\lambda_D = \lambda_D(\pi_A \times \pi_F \times \pi_Q \times \pi_E)$$

where

 λ_p = meter failure rate in failures/10⁶ hours

 λ_b = base failure rate = 0.090 F/106 hours

 π_A = application factor = 1.0, Direct Current

= 1.7, Alternating Current

 π_F = function factor

= 1.0, Ammeter

= 1.0, Voltmeter

= 2.8, Other (meters whose basic meter movement construction is an ammeter with associated internal conversion elements)

 π_0 = quality factor

= 1.0, MIL-SPEC quality

= 3.4, lower quality

 π_E = environmental factor (see Table 5.1.15-1)

METERS

TABLE 5.1.15-1 : ENVIRONMENTAL FACTOR

Environment	πε	Environment	πε
GB	1.0	AIA	42
G _{MS}	1.4	AIF	42
GF	3.8	Auc	50
G _M	24	A _{UT}	50
Mp	26	Aus	73
NSB	11	AUA	73
NS	14	Auf	73
NU	36	SF	2.1
NH	41	MFF	13
บบท	29	MFA	N/A
ARW	60	USL	N/A
AIC	21	ML	94
AIT	21	СĹ	N/A
AIB	42		

^{*} N/A - Not normally applied

METERS

5.1.15.2 Example Failure Rate Calculations

Example 1.

Given: A MIL-M-10304 panel AC ammeter used in an airborne cargo inhabited environment.

Step 1.

The failure rate of the meter is found by substituting the values of λ_b , π_A , π_F , π_O and π_E into the part failure rate model:

$$\lambda_D = \lambda_b (\pi A \times \pi F \times \pi O \times \pi E)$$
 failures/10⁶ hours

$$\lambda_D = 0.09(1.7 \times 1.0 \times 1.0 \times 21)$$
 failures/10⁶ hours

$$\lambda_D = 3.2 \text{ F}/10^6 \text{ hours}$$

Example 2.

Given: A commercial panel type frequency meter with a construction similar to MIL-M-10304 panel meters. The meter operates the same as a DC ammeter. It is used in a ground, mobile application.

Step 1.

The failure rate of the meter is found by substituting the values of λ_b , π_A , π_F , π_D and π_E into the part failure rate model:

$$\lambda_D = \lambda_D (\pi_A \times \pi_F \times \pi_O \times \pi_E)$$
 failures/10⁶ hours

$$\lambda_D = 0.09(1.0 \times 2.8 \times 3.4 \times 24)$$
 failures/10⁶ hours

$$\lambda_p = 21 \text{ F}/10^6 \text{ hours}$$

QUARTZ CRYSTALS

5.1.16 Quartz Crystals

Specification

Description

MIL-C-3098

Crystal Units, Quartz

The part operating failure rate model (λ_p) is:

 $\lambda_D = \lambda_D \times \pi_Q \times \pi_E$

where

 λ_p = quartz crystal failure rate (F/10⁶ hours)

 λ_b = base failure rate

 $\lambda_b = 0.013 \text{ (f)}^{0.23} \text{ failures/} 10^6 \text{ hours (f = frequency (MHz))}$

 π_0 = quality factor

= 1.0, MIL-SPEC quality

= 2.1, lower quality

 π_E = environmental factor (see Table 5.1.16-1)

TABLE 5.1.16-1: ENVIRONMENTAL FACTOR

Environment	πĘ	Environment	πЕ
Gg	1	AIA	17
G _{MS}	1.2	AIF	17
GF	2.6	Auc	19
GM	10	AUT	19
Mp	11	AUB	28
NSB	5.4	AUA	28
NS	6.5	AUF	28
NU	14	S _F	1
NH	16	MFF	11
Nuu	17	MFA	15
ARW	23	USL	30
AIC	9	ML	35
A _{IT}	9	CL	500
AIB	17		

LAMPS

5.1.17 Lamps

5.1.17.1 Lamps, Incandescent

SPECIFICATION

DESCRIPTION

MIL-L-6363

Lamps, Incandescent, Aviation Service

W-L-111

Lamp, Incandescent, (Electric, Miniature, Tungsten-

Filament)

The part operating failure rate model (λ_p) is:

$$\lambda_D = \lambda_D \times \pi_U \times \pi_A \times \pi_E$$

where

 λ_p = incandescent lamp failure rate (F/10⁶ hours)

 λ_h = base failure rate

 $\lambda_b = 0.074(V_r)^{1.29}$ f/106 hrs. ($V_r = rated\ voltage\ (volts)$) (see Table 5.1.17-1

 π_{ii} = utilization factor (see Table 5.1.17-2

 π_A = application factor

= 1.0, AC applications

= 3.3, DC applications

 πE = environmental factor (see Table 5.1.17-3

TABLE 5.1.17-1 : BASE FAILURE RATE

Vr	λb
5	0.590
6	0.746
12	1.825
14	2.23
24	4.46
28	5.45
37.5	7.94

LAMPS

TABLE 5.1.17-2:

UTILIZATION FACTORS

Utilization (Illuminate hours/ equipment operate hours)	πu
< 0.10	0.10
0.10 to 0.90	0.72
> 0.90	1.0

TABLE 5.1.17-3:

ENVIRONMENTAL FACTORS

Environment	πΕ	Environment	πΕ
GB	1	AIA	4.4
G _{MS}	1.1	AIF	4.4
GF	1.6	· · · AUC ·	4.8
GM	- 3.4	AUT	4.8
Мр	. 3.5	AUB	5.8
NSB	2.4	AUA	5.8
NS	2.7	AUF	5.8
NU	4.1	SF	1.4
NH	4.4	MFF	3.5
NUU	4.5	MFA	4.2
· A _{RW}	5.3	USL	6.1
AIC	3.2	ML	6.5
A _{IT} ′	3.2	cլ ´	27
AIB	4.4		

LAMPS

5.1.17.2 Examples For Use of Lamp Models

Example 1:

Given: A 6.3 volt incandescent lamp, used as a tail warning radar

indicator in the inhabited portion of a fighter aircraft. The voltage source is AC. The ratio of illuminate nours to

equipment operate hours is less than 5%.

Step 1: Calculate the base failure rate (λ_b)

 $\lambda_b = 0.074 (6.3)^{1.29} = 0.795 \text{ F}/10^6 \text{ hours}$

Step 2: From Table 5.1.17-2 ., $\pi_{U} = 0.10$

Step 3: From Table 5.1.17-3 AIF service, $\pi E = 4.4$

Step 4: Application factor AC service, $\pi_A = 1.0$

Step 5: Calculate the total lamp failure rate (λ_p)

 $\lambda_p = \lambda_b \times \pi_u \times \pi_E \times \pi_A$

 $\lambda_p = (0.795 \times 0.10 \times 4.4 \times 1.0) \text{ F}/10^6 \text{ hours}$

 $\lambda_p = 0.350 \text{ F}/10^6 \text{ hours}$

Example 2:

Given: A 12 volt incandescent lamp, used as a power indicator in a ground, fixed environment. The voltage source is DC. The ratio of illuminate hours to equipment operate hours is 1.0.

Step 1: Calculate the base failure rate (λ_b)

 $\lambda_b = 0.074 (12)^{1.29} \approx 1.83 \text{ F/106 hours}$

Step 2: From Table 5.1.17-2 , $\pi_u = 1.0$

Step 3: From Table 5.1.17-3 GF service, $\pi_F = 1.6$

Step 4: Application factor DC service, $\pi_A = 3.3$

LAMPS

Step 5: Calculate the total lamp failure rate (λ_p)

 $\lambda_p = \lambda_b \times \pi_u \times \pi_E \times \pi_A$

 $\lambda_p = (1.83 \times 1.0 \times 1.6 \times 3.3) \text{ F/}10^6 \text{ hours}$

 $\lambda_p = 9.66 \text{ F}/10^6 \text{ hours}$

ELECTRONIC FILTERS

5.1.18 Electronic Filters (Non-tunable) Prediction Procedure

Specification	<u>Description</u>
MIL-F-15733 MIL-F-18327	Filters, Radio Frequency Interference Filters; High Pass, Low Pass, Band Pass, Band Suppression, and Dual Functioning (Non-tunable)

The part failure rate prediction procedure is as follows:

Step 1: If a Parts List and/or Schematic Diagram are available.

Step 1A: Calculate a failure rate for each particular component in the filter assembly using the correct model from the following sections:

Integrated Circuits	Section 5.1.2
Discrete Semiconductors	Section 5.1.3
Resistors	Section 5.1.6
Capacitors	Section 5.1.7
Inductive Devices	Section 5.1.8
Printed Wiring Assemblies	Section 5.1.13
Crystals	Section 5.1.16

Step 1B: Sum the failure rate contribution for each component. The filter failure rate (λ_D) then is:

$$\lambda_p = \sum_{i=1}^n \lambda_i$$

where

 λ_p = filter failure rate (F/10⁶ hours)

 λ_i = failure rate of each individual component (F/10⁶ hours)

Step 2: If a parts list but no schematic diagram is available, or if the part complement can be determined by other means (e.g. disection).

Step 2A: Calculate a failure rate for each component type and for the filter as an assembly using the procedure discussed in Section 5.2.

ELECTRONIC FILTERS

Step 3: If no parts list or schematic diagram are available, calculate the filter failure rate using the following model:

$$y^{D} = y^{D} \times u^{D} \times u^{E}$$

where

 λ_D = filter failure rate (F/10⁶ hours)

λη = base failure rate

- = 0.0219 F/10⁶ hours for MIL-F-15733, ceramic-ferrite construction (styles FL 10-16, 22, 24, 30-32, 34, 35, 38, 41-43, 45, 47-50, 61-65, 70, 81-93, 95, 96)
- = $0.120 \text{ F}/10^6$ hours for MIL-F-15733, discrete LC components (styles FL 37, 53, 74)
- = 0.120 F/10⁶ hours for MIL-F-18327, discrete LC components (composition 1)
- = 0.265 F/106 hours for MIL-F-18327, discrete LC and crystal components (composition 2)

 m_E = environmental factor (Table 5.1.18-1)

 π_0 = quality factor

= 1, MIL-SPEC quality

= 2.9, lower quality

Downloaded from http://www.everyspec.com

MIL-HDBK-217E

ELECTRONIC FILTERS

TABLE 5.1.18-1: ENVIRONMENTAL FACTOR

Environment	^π Ε	Environment	πΕ
GB	1	AIA	8.8
G _{MS}	1.1	AIF	8.8
GF	2.1	Auc	10
G _M	6	AUT	10
Мp	6.4	AUB	13
NSB	3.7	AUA	13
NS	4.3	AUF	13
Nu	7.9	SF	1.7
NH	8.7	MFF	6.4
N _{UU}	9.2	MFA	8.2
ARW	11	UŞL	14
AIC	5.5	ML	16
AIT	5.8	CL	120
AIB	8.8		

ELECTRONIC FILTERS

5.1.18.1 Examples

Example 1:

Step 1: Given: A MIL-F-18327, Composition 1 band pass filter that is used in a ground, fixed environment. A parts list is provided with the following part complement:

RF Coil, MIL-SPEC - 4 each
Plastic Capacitor, MIL-SPEC - 5 each
Paper/Plastic Capacitor, MIL-SPEC - 2 each
Mica Capacitor, MIL-SPEC - 1 each
Printed Wiring Board, 2-Sided - 1 each
Solder Connections - 24 each

Step 2: From Section 5.2 calculate a failure rate for each componenet type.

Plastic (CRH) .0085 f/10 6 hours Paper/Plastic (CH) .049 f/10 6 hours Mica (CM) .011 f/10 6 hours RF Coil .011 f/10 6 hours PW board .0029 f/10 6 hours Connections .00017 f/10 6 hours

Step 3: From Section 5.2 calculate a failure rate for the filter assembly.

$$\lambda_p = (4 \times .011) + (5 \times .0085) + (2 \times .049) + (1 \times .011) + (1 \times .0029) + (24 \times .00017)$$

$$\lambda_p = 0.2025 \text{ f/}10^6 \text{ hours}$$

Example 2:

Step 1: Given: A MIL-F-18327, Composition I band pass filter that is used in a ground, fixed environment. No parts list or schematic diagrams are available and the part complement can not be determined.

Step 2: From Section 5.1.18 Step 3 Calculate a failure rate for the filter assembly.

$$\lambda_D = \lambda_D \times \pi_O \times \pi_E$$

Step 2A: $\lambda_b = 0.120 \text{ f/}10^6 \text{ hours}$

ELECTRONIC FILTERS

Step 2B: $m_Q = 1$

Step 2C: Table 5.1.18-1 π_E = 2.1, GF

Step 20: $\lambda_p = 0.120 \text{ f}/10^6 \text{ hours x 1 x 2.1}$

 $\lambda_{\rm p} = 0.252 \, {\rm F}/10^6 \, {\rm hours}$

FUSES

5.1.19 Fuses

SPECIFICATION	DESCRIPTION
W-F-1726 W-F-1814 MIL-F-5372 MIL-F-23419 MIL-F-15160	Fuse, Cartridge Class H Fuse, Cartridge, High Interrupting Capacity Fuse, Current Limiter Type, Aircraft Fuses, Instrument Type Fuses; Instrument, Power and Telephone (nonindicating), style FO1

The part operating failure rate model is:

$$\lambda_p = \lambda_b \times \pi E$$

where

 λ_p = total device operating failure rate (f/10⁶ hours)

 λ_b = base failure rate = 0.010 f/10⁶ hours

 π_E = environmental factor (see Table 5.1.19-1)

TABLE 5.1.19-1: ENVIRONMENTAL FACTORS

Environment	πЕ	Environment	πΕ
Gg	1.0	AIA	12
G _{MS}	1.2	AIF	12
GF	2.3	Auc	13
GM	7.5	Aut	13
Mp	8.1	AUB	18
NSB	4.4	AUA	18
NS	5.2	AUF	18
Nυ	10	SF	1.8
NH	12	MFF	8.1
Nuu	12	MFA	11
ARW	16	USL	20
AIC	6. 8	ML	22
AIT	6.8	CL	230
AIB	12		

MISCELLANEOUS

5.1.20 Miscellaneous Parts.

TABLE 5.1.20-1
FAILURE RATES FOR MISCELLANEOUS PARTS (FAILURES/10⁶ HOURS)

Part Type	Specification	Failure Rate
Vibrators	MIL-V-95	
60-cycle		15.0
120-cycle		20.0
400-cycle	-	40.0
Lamps		
		0.20
Neon Lamps		
		0.1 (per fiber·km)
Fiber Optic Cables (single fiber types only)		O.1 (per litter km)
Single Fiber Optic Connectors*		0.1
Microwave elements (coaxial &		
waveguide)		
Attenuators (fixed and variable)		
Fixed Elements (directional couplers, fixed stubs & cavities)		see resistors, type RD
Variable Elements (tuned stubs &		see coaxial connectors
tuned cavities)		

^{*}Caution: Excessive mating-demating cycles may seriously degrade reliability

MISCELLANEOUS

TABLE 5.1.20-1 (Cont'd)

FAILURE RATES FOR MISCELLANEOUS PARTS (FAILURES/10⁶ HOURS)

PART TYPE	FAILURE RATE
Microwave Ferrite Devices	
Isolators & Circulators (< 100W.)	0.1 x π _{E1} ***
Isolators & Circulators (> 100W.)	0.2 x π _{El}
Phase Shifter (latching)	0.1 x π _{E1}
Dummy Loads	
< 100W.	0.01 x π _{E2} ***
100W. to <1000W.	0.03 x π _{E2}
> 1000W.	0.1 × π _{E2}
Terminations (thin or thick film loads used in stripline and thin film circuits	0.03 x π _{E2}

^{*** -} See Table 5.1.20-2 for π_{E} values.

MIL-HDBK-217E MISCELLANEOUS

TABLE 5.1.20-2
ENVIRONMENTAL MODE FACTORS FOR MICROWAVE
FERRITE DEVICES AND DUMMY LOADS

ENVIRON- MENT	πEI	^π Ε2
G _B GF GM MP	1.2 2.4 8.8 7.7	1 1.2 2.4 8.8
и пп ин иг изв	3.7 6.2 12 12 13	5.1 5.1 15 18 19
ARW AIC AIT AIB AIA AIF AUC AUT AUB AUA AUF	17 3.5 4.5 7 6.5 10 4.5 6.5 9.5 7.5	25 3 5.5 8 5.5 10 8 15 20 15 30
SF MFF MFA USL ML CL	1 7.8 11 23 26 450	1 12 16 34 39 660

5.2 Parts Count Reliability Prediction. This prediction method is applicable during bid proposal and early design phases. The information needed to apply the method is (1) generic part types (including complexity for microelectronics) and quantities, (2) part quality levels, and (3) equipment environment. The general expression for equipment failure rate with this method is:

$$\lambda_{\text{EQUIP}} = \sum_{i=1}^{i=n} N_i (\lambda_{G}^{\pi}Q)_i$$
 (1)

for a given equipment environment where:

 λ_{EQUIP} = total equipment failure rate (failures/10⁶ hr.) λ_{G} = generic failure rate for the i th generic part (failures/10⁶ hr.) π_{Q} = quality factor for the i th generic part N_{i} = quantity of i th generic part n_{i} = number of different generic part categories.

The above expression (1) applies if the entire equipment is being used in one environment. If the equipment comprises several units operating in different environments (such as avionics with units in airborne inhabited $(A_{\underline{I}})$ and uninhabited $(A_{\underline{I}})$ environments), then equation (1) should be applied to the portions of the equipment in each environment. These "environment-equipment" failure rates should be added to determine total equipment failure rate. Environmental symbols are as defined in Table 5.1.1-3, page 5.1.1-3.

The quality factors to be used with each part type are shown with the applicable λ_{G} tables and are not necessarily the same values that are used in Section 5.1, Part Stress Analysis. Multi-quality levels are presented for microelectronics, discrete semiconductors, and for established reliability (ER) resistors and capacitors. The λ_{G} values for the remaining parts apply providing that the parts are procurred in accordance with the applicable parts specifications and, for these parts, $\pi_{Q}=1$. Microelectronic devices have an additional multiplying factor, π_{L} (learning factor) as defined in Table 5.2-9.

It should be noted that no generic failure rates are shown for hybrid microcircuits. Each hybrid is a fairly unique device. Since none of these devices have been standardized, their complexity cannot be determined from their name or function. Identically or similarly named hybrids can have a wide range of complexity that thwarts categorization for purposes of this prediction method. If hybrids are anticipated for a design, their use and construction should be thoroughly investigated on an individual basis with application of the prediction model in Section 5.1.2.9.

The failure rates for this procedure were calculated using the failure rate models of Section 5.1 The values used for the model parameters are shown in Tables 5.2-20 through 5.2-25. For the discrete parts a stress ratio of 0.5 was used.

TABLE 5.2-1 GENERIC FAILURE RATE, $\lambda_{\mbox{\scriptsize G}}$, FOR MONOLITHIC BIPOLAR AND MOS DIGITAL DEVICES INCLUDING SHIFT REGISTERS IN HERMETIC PACKAGES (f/10⁶ hours)

DEVICE DESCRIPTION					APPLICATION	ATTON FNVTRONMENT	DAMENT					
NO. OF GATES	TECHNOLOGY	69	GMS	GF	E G M	d W	NS B	SZ	D N	X X	NUU	ARW
1 - 100	HIPOLAR MOS	0.0057	0.0075	0.0211	0.0331	0.0275	0.0301	0.0301	0.0670	0.0416	0.0400	0.0643
>100 - 1000	BIPCLAR MOS	0.0106	0.0137	0.0368	0.0573	0.0469	0.0517	0.0517	0_1218 0_1489	0.070, 0.070,	0.0666	0.1104
>1,000 - 3,000	AI POLAR MOS	0.0207	0.0265	0.0704	0.1094	0.0890	0.0984	0.0984	0.2366	0.1339	0.1253	0.2101
>3,000-10,000	BIPOLAR MOS	0.0569	0.0796	0.2427	0.3900	0.3330	0.3599	0.3599	0.7055	0.5084	0.5074	0.7668
>10,000-30,000	BIFOLAR MOS	0.0995	0.1348	0.3919	0.6227	0.5237	0.5701	0.5701	1,1976	0.7960	0.7789 0.7808	1.2749
		A10	AIT		AIA	AIF	AUC	AUT	8 N V	AUA	AUF	SF
1 - 100	AI POLAR MOS	0.0280	0.0310	0.0431	0.0408	0.0491	0.0794	0.0855	0.1067 0.1378	0.0976	0.1157	0.0114
>100 - 1000	BIPGLAR MOS	0.0506	0.0555	6.0755	0.0655	0.0855	0.1524	0.1624	0.1973	0.1825	0.2122	0.0208
>1,000 - 3,000	BIPCLAR MOS	0.0980	0.1073	0.1447	0.1260	0.1634	0.3011	0.3197	0.3851 0.5098	0.3571	0.4132 0.5378	0.0405
>3,000-10,000	BIPOLAR	0.2979	0.3370	0.4933	0.4151	0.5714	0.7244	0.8026 1.0518	1.0761	0.9584	1.1933	0.1177
>10,000-30,000	BIPOLAR MOS	0.5022	0.5616	0.7994	0.6805	0.9182	1,3365	1.4554 1.9538	1.8714 2.3698	1.6931	2,0496	0.22017
		J J K	MFA	USL	. F	כר						
1 - 100	BIPOLAR MOS	0.0364	0.0404	0.0711	0.0915	1.3380						
>100 - 1000	BIPOLAR MOS	0.0645	0.0693	0.1187 0.1201	0.1552	2.2052 2.2075						
>1,000 - 3,000	BIPOLAR MOS	00	0.1318 0.1388	0.2236	0.2942 0.3091	4.1350						
>3,000-10,000	BIPOLAR Mos		0.4837	0.8956 0.9015	1.1184	17.2391						
>10,000-30,000	BIPCLAR MOS	0.6686	0.7653	1.3795	1.7502	26.2427						

TABLE 5.2-2 GENERIC FAILURE RATE, $\lambda_{ extbf{G}}$, FOR MONOLITHIC BIPOLAR AND MOS DIGITAL DEVICES INCLUDING SHIFT REGISTERS IN NONHERMETIC PACKAGES (f/10⁶ hours)

DEVICE DESCRIPTION	_				APPLI(APPLICATION ENVIRONMENT	RONMENT					
NO. OF GATES	TECHNOLOGY	69	SHS	6 F	MS	A P	80 82	2 0	D.	Ŧ	OPN	ARK
1 - 100	BIPOLAR MOS	0.0061	0.0080	0.0222	0.0349	0.0282	0.0313	0.0313	***	0.0428	0.0401	0.0680
>100 - 1000	9 I P OL AR MOS	0.0115	0.0147	0.0391 0.0593	0.0608	0.0484	0.0540	0.0540	***	0.0730	0.0668	0.1178
>1,000 - 3,000	BIPOLAR Mos	0.0225	0.0285	0.0750	0.1164	0.0920	0.1030	0-1030	* * * * * * * * * * * * * * * * * * * *	0.1385	0, 1257	0.2250
>3,000-10,000	81 POLAR Mos	0.0604	0.0835	0.2519	0.4039	0.3388	0.3691	0.3691	***	0.5176	0.5083	0.7965
>10,000-30,000	BIPOLAR	0.1066	0.1426	0.4103	0.6507	0.5354	0.5886	0.5886	***	0.8144	0.7808	1.2749
		AIC	ALT	A18	A I A	AIF	AUC	AUT	AUB	AUA	AUF	SF
1 - 100	BIPOLAR MOS	0.0317	0.0347	0.0468	0.0408	0.0529	* * * * * * * *	* * *	**	* * * * * * * * * * * * * * * * * * * *	***	0.0125
>100 - 1000	BIPOLAR MOS	0.0580	0.0630	0.0829	0.0730 0.1583	0.0929	* * * * * * * * * * * * * * * * * * * *	**	**	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	0.0231
>1,000 - 3,000	BIPOLAR MOS	0.1129	0.1222	0.1596	0.1409	0.1783	***	***	*****	***	* * * * * * * * * * * * * * * * * * * *	0.0451
>3,000-10,000	BIPOLAR MOS	0.3277	0.3667	0.5230	0.4449	0.6012	**	* * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * *	28
>10,000-30,000	BIPOLAR Mos	0.5618	0.6212	0.8589	0.7400	0.9778	* * * * * * * * * * * * * * * * * * * *	* * *	****	******	* * * *	0.2201
		MFF	MFA	USL	Ę	נר						
1 - 100	BIPOLAR Mos	0.0402	0.0422	0.0718	0.0953	1.3391						
>100 - 1000	BIPOLAR	0.0720	0.0728	0.1201	0.1627	2.2075						
>1,000 - 3,000	BIPOLAR MOS	0.1390	0.1388	0.2265	0.3091	4.1397						
>3,000-10,000	BIPOLAR MOS	0.4371	0.4977	0.9015	1.1482	17.2484						
>10,000-30,000	BIPOLAR MOS	0.7282	0.7933	1.3911	1.8097	26.2611						

****** Nonhermetic Darts should NOT be used in this environment

TABLE 5.2-3 GENERIC FAILURE RATE, $\lambda_{\rm G}$, FOR PROGRAMMABLE LOGIC ARRAYS (PLA) AND PROGRAMMABLE ARRAY LOGIC (PAL) IN HERMETIC PACKAGES (f/10 6 hours)

DEVICE DESCRIPTION					APPLIC	APPLICATION ENVIRONMENT	ONMENT					
NO. OF GATES	TECHNOLOGY	89	SMS	9.9	X D	A M	MSB	S	DN	π×	O O N	ARW
1 - 100	BIPOLAR	0.0227	0.0255	0.0507	0.0717	0.0500	0.0597 0.0666	0.0597	0.2296	0.0712 0.0782	0.0494	0.1284
>100 - 1000	BIFOLAR MOS	00	0.0496	0.0960	0.1345	0.0919	0.1109	0.1109	0.4469	0.1299	0.0854	0.2386
>1,000 - 5,000	BIPOLAR Mos	0.0886	0.0985	0.1888	0.2637	0.1791	0.2168 0.2445	0.2168	0.8867	0.2523 0.280U	0.1629	0.4665
		714	AIT		AIA	AIF	AUC	AUT	AUB	AUA	AUF	SF
1 - 100	'BIPOLAR MOS	00	0.0951	0.1072	0_1011	0.1132	0.3856	0.3917 0.5786	0.4129	0.4038	0.4220	0.0410
>100 - 1000	SIPOLAR MOS	0.1787	0.1837	0.2037	0.1937	0.2136	0.7649	0.7748	0,8097 1,1836	1.1680	0.8247	0.0800
>1,000 - 5,000	BIPOLAR Mos	0.3543	0.3637	0.4011	0.3824 0.4717	0.4198	1.5260	1.5447	1.6101	1.5821	1.6381 2.3858	0.1589
		<u> </u>	MFA	USL	ML	נר						
1 - 100	BIPOLAR MOS	0.1005	0.0790	0.0936	0.1556	1.3676						
>100 - 1000	RIPOLAR Mos	0.1927	0.1465	0.1637	0.2834	2.2782						
>1,000 - 5,000	BIPOLAR Mos	0.3805	0.2861	0.3137	0.5506	4.2534						

TABLE 5.2-4 GENERIC FAILURE RATE, λ_{G} , FOR PROGRAMMABLE LOGIC ARRAYS (PLA) AND PROGRAMMABLE ARRAY LOGIC (PAL) IN NONHERMETIC PACKAGES ($f/10^6$ hours)

DEVICE DESCRIPTION	2		:		APPLIC	APPLICATION ENVIRONMENT	ENVIRONMENT					
NO. OF GATES	TECHNOLOGY	89	SMS	6.	1	A E	NS B	SZ	N.C.	NH	D DN	A 2 2
1 - 100	BIFOLAR	0.0253	0.0285	0.05	0.0822	0.0544	0.0666	0-0666	* * * * * * * * * * * * * * * * * * * *	0.0782	0.0502	0.1507
>100 - 1000	BIPOLAR	0.0498	0.0555		0.1555	0.1007	0.1247	0.1247	* * * * * * * * * * * * * * * * * * * *	0.1437	0.0868	0.2832
>1,000 - 5,000	BIPOLAR	0.0992	0.1102	0.2164	0.3057	0.1966	0.2445	0.2445	* * * * * * * * * * * * * * * * * * * *	0.2800	0.1658	0.5558
		AIC	A11	A I B	AIA	AIF	JNV	AUT	AUB	AUA	AUF	SF
1 - 100	BIPOLAR MOS	0.1144	0.1174	0.1295	0.1235	0.1356	* * * * * * * *	****	****	*****	* * * * *	0.0479
>100 - 1000	BIPOLAR Mos	00	0.2284	0.2483	0.2383	0.2583	* * * * * * * * * * * * *	* * * * * * *	* * * * * * * * * * * * * * * * * * * *	***	**	0.0938
>1.000 - 5.000	BIPOLAR	0.4437	0.4530	0.4904	0.4717	0.5091	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * *	***	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	0.1865
	•	MFF	MFA	USL	귍	ี่						
1 - 100	BIPOL'AR , MOS	0.1228	0.0895	0.0980	0.1779	1.3745						
>100 - 1000	BIPOLAR	0.2374	0.1674	0.1725	0.3281	2,2782						
>1,000 - 5,000	BIPOLAR MOS	0.4698	0.3281	0.3312	0.6399	4.2811						

******* Nonhermetic Darts should NOT be used in this environment

TABLE 5.2-5 GENERIC FAILURE RATE, λ_G, FOR MONOLITHIC BIPOLAR AND MOS LINEAR DEVICES IN HERMETIC PACKAGES (f/106 hours)

DEVICE DESCRIPTION					APPLICA	APPLICATION ENVIRONMENT	NMENT					
NO. OF TRANSISTORS	TECHNOLOGY	GB	GMS	GF	E9	£	NSB	N N	O.	Ŧ	nΩN	ARK
1 - 100	BIPOLAR MOS	0.0069	0.0086	0.0229	0,0358	0.0266	0.0306	0.0306	0.1217 0.1217	0.0404	0.0346	0.0712
>100 - 300	BIFOLAR	0.0125	0.0151	0.0377	0.0579	0.0407	0.0482	0.0482	0.2246	0.0615	0.0486	0.1146
>300 - 1,000	BIPOLAR	0.0234	0.0276	0.0653	0.0989	0.0662	0.0802	0.0802	0.4263	7660-0	0.0719	0.1949
	 	AIC	A17		AIA	AIF	AUC	AUT	AUB	AUA	AUF	SF
1 - 100	BIPOLAR	0.0404	0.0430	0.0532	0.0481	0.0584	0.2259	0.2310	0.2490	0.2413	0.2567	0.0147
>100 - 300	BIPOLAR	0.0726	0.0761	0.0901	0.0831	0.0971	0.4419	0.4489	0.4734	0.4629	0.4839 0.4839	0.0265
>300 - 1,000	BIPOLAR MOS	0.1351	0.1401	0.1600	0.1501	0.1700	0.8717 0.8717	0.8817	0.9166	0.9016	0.9315	0.0493
		3 7 6	MFA	USL	뉱	נו						
1 - 100	BIPOLAR	0.0476	0.0420	0.0636	0.0943	1.1404						
>100 - 300	BIPOLAR Mos	0.0824 0.0824	0.0663	0.0911	0.1461	1.5599						
>300 - 1,000	BIFOLAR MOS	0.1491	0.1108	0.1380	0.2398	2.2337						

TABLE 5.2-6 GENERIC FAILURE RATE, λ_{G} , FOR MONOLITHIC BIPOLAR AND MOS LINEAR DEVICES IN NONHERMETIC PACKAGES (f/10⁶ hours)

DEVICE DESCRIPTION					APPLI	APPLICATION ENVIRONMENT	RONMENT					
NO. OF TRANSISTORS TECHNOLOGY	S TECHNOLOGY	85	GMS	6.5	M9	d R	NS B	S	NO	HV	NON	ARM
1 - 100	BIPOLAR MOS	0.0110	0.0134	0.0374	0.0612	0.0345	0.0451	0.0451	* * *	0.0549	0.0355	0.1423
> 100 - 300	BIPOLAR MOS	0.0207	0.0246	0.0666	.0.1086	0.0566	0.0771	0.0771	***	7060°0	0-0503	0.2568
>300 - 1,000	OIPOLAR MOS	0.0399	0.0465	0.1231	0.2002	0.0979	0.1381	0.1381	***	0.1570	0.0753	0.4793
		AIC	AIT	A 18	AIA	AIF	AUC	AUT	AUB	- YAR	AUF	
1 - 100	BIPOLAR	0.1115	0.1140	0.1243	0.1192	0.1295	* * * * * * *	***	* * * * * * * * *	***	***	0.0292
>100 - 300	BIPOLAR	0.2148	0.2183	0.2323	0.2253	0.2393	***	* * * * * * * * * * * * * * * * * * * *	* * *	***		0.0554
>300 - 1,000	BIPOLAR	0.4195	0.4244	0-4444	0.4344	0.4543		* * * * * *	* * * * * *	***	* * *	0.1072
		MFF	MFA	n Sr.	ः ! इ	: : :	1	:				
1 - 100	BIPOLAR	0.1187	0.0673	0.0715	0.1654	1.1548			1			
>100 - 300	BIPOLAR MOS	0.2246	0.1170	0.1070	0.2882	1.5888						
>300 - 1,000	BIPGLAR Mos	0.4334	0.2122	0.1697	0.5241	2.2916						٠
		:										

****** Nonhermetic parts should NOT be used in this environment

TABLE 5.2-7 GENERIC FAILURE RATE, $\lambda_{\mathbf{G}}$, FOR MONOLITHIC BIPOLAR AND MOS DIGITAL MICROPROCESSOR DEVICES IN HERMETIC PACKAGES (f/10⁶ hours)

			•								:::::::::::::::::::::::::::::::::::::::	
DEVICE DESCRIPTION	ION			ļ	APPLICA	APPLICATION ENVIRONMENT	ONMENT					
NO. OF BITS	TECHNOLOGY	6B	S W S	. 6		d ¥	B S B	N S	D N	H 2	NUN	ARW
6 0	BIFOLAR	0.0173	0.0229	0.0645	0_1016 0_1069	0.0845	0,0925	0.0925	0.2040	0.1280	0.1234	0.1973
16	BIPOLAR	0.0330	0,0432	0.1188	0.1862	0.1536	0.1688	0.1688	0.3849	0.2321	0.2212	0.3601
32	BIPOLAR MOS	0.0705	0.0940	0.2664	0.4208	0.3510	0.3836	0.3836	0.8355	0.5321	0.5149	0.8180
		AIG	AIT	AIB	AIA	AIF	Y AUC	AUT	AUB	AUA	AUF	S
80	BIPOLAR	0.0852	0.0945	0.1319	0.1132	0.1506	0.2398	0.2585	0.3239	0.2959	0.3519 0.4454	0.0346
16	BIFOLAR	0.1602	0.1768	0.2435	0.2102	0.2768	0.4674	0.5007	0.6173	0.5674	0.6673	0.0655
32	BIPOLAR MOS	0.3492	0.3882	0.5845	0.4664	0.6227	0.9694	1.0475	1.3210	1.2038	1,4383	0.1414
		M.F.	MFA	USL	Æ	ช						
•c	BIPOLAR MOS	0.1113	0.1241	0.2213	0.2814	4.1291						
16	BIPOLAR	0.2068	0.2262	0.3935	0.5100	7.3647						
32	BIPOLAR MOS	0.4586	0.5146	0.9136	1.1697	17.2628						

TABLE 5.2-8 GENERIC FAILURE RATE, 16, FOR MONOLITHIC BIPOLAR AND MOS DIGITAL MICROPROCESSOR DEVICES IN NONHERMETIC PACKAGES (f/10⁶ hours)

DEVICE DESCRIPTION	CRIPTION		!	:	APPLI	APPLICATION ENVIRONMENT	RONMENT					
NO. OF BITS	TECHNOLOGY	. de	SMS		: 5	d.E	NSB	N.S.	NU	¥	ממא	ARK
80	BIPOLAR		0.0244	0.0679		0.0867	0.0960	0.0960	* * * * * * * *	0.1315	0.1237	0.2085
16	BIPOLAR	0.0357	0.0462	0.1257	0.1967	0.1580	0.1757	0.1757	* * *	0.2390	0.2219	0.3824
32	BIPOLAR MOS	0.0758	0.0998	0.2802	0.4418	0.3598	0.3974	0.3974	* * * * * * * * * * * * * * * * * * * *	0.5459	0.5253	0.8627
		AIC	AIT	AIB	AIA	AIF	AUC	AUT	AUB	AUA	AUF	SF
3 0	BIPOLAR Mos	0.1431	0.1057	0.1617	0.1057	0.1617	***	* * * * * * *	***	* * * * * * * * * * * * * * * * * * * *	***	0_0380
16	BIPOLAR	0.2658	0.1992	0.2991	0.1992	0.2991	* * * * * * * * *	**	* * * * * * * * * * * * * * * * * * * *	* *	* *	0.0724
32	BIPOLAR	0.5892	0.4329	0.6673	0.4329	0.6673	* * * * * *	***	* * * * * * * * * * * * * * * * * * * *	* * * * * * * *	* * *	0.1552
		HE E	MFA	USL	F.	C.L.						
€0	BIPOLAR	0.1225 0.2505	0.1293	0.2213	0.2926	4.1326						
16	BIPOLAR	0.2292	0.2367	0.3979	0.5323	7.3716	1					
32	BIPOLAR	0.5032	0.5356	0.9224	1.2143	17.2766	- 1					

****** Nonhermetic parts should NOT be used in this environment

MIL-HDBK-217E

TABLE 5.2-9 GENERIC FAILURE RATE, $\lambda_{\rm G}$, FOR MOS DYNAMIC RAMS IN HERMETIC PACKAGES (f/10 6 hours)

DEVICE DESCRIPTION	i				APPLIC	APPLICATION ENVIRONMENT	ONMENT					
NO. OF BITS	TECHNOLOGY	68	SW9	G.F.	5	d K	NSB	S	NO.	Ŧ	MUT	ARW
<= 16K	S O W	0.0119	0.0142	0.0328	0.0491	0.0361	0.0419	0.0419	0.1496	0.0534	0.0432	0.0928
>16K - 64K	MOS	0.0219	0.0250	0.0529	0.0767	0.0528	0,0634	0.0634	0.2701	0.0766	0.0541	0.1422
>64K - 256K	MO S	0.0410	0.0454	0.0882	0.1241	0.0789	1860.0	0.0987	0.5003	0.1120	0.0641	0.2249
>256K - 1M	MOS	0.0798	0.0869	0.1613	0.2228	0.1350	0.1733	0.1733	0.9661	0.1884	2060"0	0.3985
	1	AIC.	AIT	A 1 B	AIA	AIF	AUC	AUT	AUB	AUA	AUF	35
<= 16K	MOS	0.0565	0.0595	0.0716	0.0656	0.0777	0.2492	0.2552	0.2764	0.2675	0.2855	0.0231
>16K - 64K	MOS	0.1002	0.1037	0.1177	0.1107	0.1247	0.4830	0064-0	0.5145	0.5040	0.5250	0.0417
>64K - 256K	MOS	0.1829	0.1864	0.2004	0.1934	0.2074	0.9450	0.9520	0.9765	0.9660	0.9870	0-0220
>256K - 1M	MOS	0.3507	0.3547	0.3706	0.3627	0.3786	1.8719	1.8799	1.9077	1.8958	1.9197	0.1486
		NF F	MFA	USL	: =	73						
<= 16K	MOS	0.0650	0.0564	1610.0	0.1201	1.3497						
>16K - 64K	MO S	0.1100	0.0851	0.1032	0.1737	1.5751						
>64K ~ 256K	SOM	0.1927	0.1325	0.1293	0-2564	1.6104						
>256K - 1M	MOS	0.3619	0.2324	0.1923	0-4344	1.8942						

TABLE 5.2-10 GENERIC FAILURE RATE, $\lambda_{\rm G}$, FOR MOS DYNAMIC RAMS IN NONHERMETIC PACKAGES ($f/10^6$ hours)

NO OF BITS TECHNOLOGY GB GHS GF GH NP NSB NS NU NU NU	DEVICE DESCRIPTION	NO.				APPLIC	APPLICATION ENVIRONMENT	RONMENT	-				
MOS 0_02200 0_0233 0_0581 0_09912 0_05088 0_06672 0_06672 0_06977 0_0787 0_06550	NO. OF BITS	TECHNOLOGY		6MS	GF	W5	#b	NS8	NS	N N	I Z	NON	ARW
MOS 0_0380 0_0433 0_1895 0_1824 0_1377 0_12000 0_1300 0_20073 0_10735 0_0715 0_1895 0_1895 0_1895 0_1877 0_1800 0_18000 0_2000 0_2000 0_20071 0_1895	<* 16K	S O E	0-0200	0.0233	0.0581	0,0912	0.0508	0.0672	0.0672	0-6907	0.0787	0.0450	0.1995
MOS 0.0734 0.0821 0.1895 0.2924 0.1377 0.2000 0.2000 2.6647 0.2133 0.0715 MOS 0.1445 0.1602 0.3640 0.5594 0.2524 0.3760 0.3760 5.2951 0.3911 0.1051 MOS 0.1632 0.1662 0.1723 0.1844 1.8260 1.8322 1.8441 1.8623 MOS 0.26096 0.4131 0.3311 0.3241 0.4341 7.2522 7.2592 7.2837 7.2732 7.2942 MOS 0.4096 0.4131 0.4271 0.4241 1.2321 14.4863 14.4942 14.5102 14.5311 14.5102 14.5341 MOS 0.1716 0.0984 0.2094 0.2267 1.3751 1.2351 14.5102 14.5102 14.5102 MOS 0.41693 0.1325 0.3870 1.6257 MOS 0.4194 0.3008 0.1881 0.6831 1.7118 MOS 0.4194 0.3008 0.1881 0.6831 1.7118 MOS 0.4195 0.3008 0.3008 0.1881 0.6831 1.7118 MOS 0.4195 0.3008 0.1881 0.6831 1.7118 MOS 0.4195 0.3008 0.1881 0.6831 1.7118 MOS 0.4195 0.3008 0.41881 0.6831 1.7118 MOS 0.4195 0.3008 0.41881 0.6831 1.7118 MOS 0.4195 0.41881 0.4878 2.0068 MOS 0.4185 0.4185 0.4185 0.4185 0.4185 MOS 0.4185 0.4185 0.4185 0.4185 0.4185 MOS 0.4185 0.4185 0.4185 0.4185 0.4185 0.4185 MOS 0.4185 0.4185 0.4185 0.4185 0.4185 MOS 0.4185 0.418	>16K - 64K	MO.S	0.0380	0.0433	0.1035	0.1609	0.0821	0-1140	0.1140	1.3523	0-1273	0.0578	0.3556
MOS D.1445 D.1602 D.3540 D.5594 D.2524 D.3760 D.3760 S.2951 D.1951 D.1051	>64K - 256K	MOS	0_0734	0.0821	0.1895	0.2924	0.1377	0.2000	0.2000	2*99*2.	0.2133	0.0715	0.6516
MOS 0_1632 0_1662 0_1783 0_1723 0_1844 1_8260 1_8532 1_8441 1_8623 MOS 0_1632 0_1662 0_1783 0_1723 0_1844 1_8260 1_8532 1_8441 1_8623 MOS 0_16376 0_1676 0_1783 0_18241 0_1844 1_8260 1_8532 1_8441 1_8623 MOS 0_6096 0_6137 0_6277 0_6371 0_6347 7_2522 7_2592 7_2537 7_2732 7_2942 MOS 1_2042 1_2241 1_2321 1_44863 1_4942 1_45102 1_45102 1_45341 MOS 0_1776 0_0944 0_2267 1_3751 1_44942 1_45221 1_45102 1_45341 MOS 0_1776 0_1694 0_1881 0_6837 1_6257 1_64942 1_45221 1_45102 1_45341 MOS 0_6194 0_1308 0_1325 0_1887 1_6257 1_6257 1_6683 1_77118 1_67118 1_	>256K - 1N	MOS	0.1445	0.1602	0,3640	0.5594	0.2524	0.3760	0.3760	5.2951	0.3911	0.1051	1.2520
MOS 0-1632 0-16462 0-1783 0-1723 0-1844 1-8260 1-8320 1-8441 1-8623 MOS 0-3136 0-3171 0-3311 0-3381 3-6366 3-6436 3-6766 3-6786 3-6786 K MOS 0-6096 0-6131 0-6271 0-6201 0-6341 7-2522 7-2592 7-2837 7-2732 7-2942 MOS 1-2042 1-2241 1-2161 1-2321 14-4942 14-5102 14-5102 14-5341 MOS 0-1716 0-0944 0-2267 1-3751 A-64942 14-5102 14-5341 MOS 0-3234 0-1881 0-6831 1-7118 A-64942 14-5221 14-5102 14-5341 MOS 0-3234 0-1881 0-6831 1-7118 A-64942 14-5221 14-5102 14-5341 MOS 0-3234 0-1881 0-6831 1-7118 A-64942 14-5221 14-5102 14-5342			AIC	AIT	AIB	AIA	AIF	AUC	AUT	AUB	AUA	AUF	SF
MOS 0.3136 0.3171 0.3241 0.3381 3.6366 3.6436 3.6461 3.6576 3.6786 3.7718 MOS 0.6194 0.3008 0.1881 0.2878 2.0968 2.0968 0.3098 1.2878 2.0968	<= 16K	NO S	0-1632	0_1662	0.1783	0.1723	0.1844	1.8260	1.8320	1.8532	1.8441	1_8623	0.0485
K MOS 0.6096 0.6131 0.6271 0.6201 0.6341 7.2522 7.2592 7.2732 7.2732 7.2732 7.2732 7.2942 MOS 1.2042 1.2241 1.2161 1.2321 14.4863 14.4942 14.5102 14.5341 MOS 0.1716 0.0964 0.0944 0.2267 1.3751 1.2657 MOS 0.3234 0.1693 0.1325 0.3870 1.6257 MOS 0.21094 0.3008 0.1881 0.6831 1.7118 MOS 1.2153 0.5690 0.3098 1.2878 2.0968	>16K - 64K	¥0 &	0.3136	0.3171	0.3311	0.3241	0.3381	3.6366	3.6436	3.6681	3.6576	3.6786	0.0923
MOS 1_2042 1_2082 1_2241 1_2361 1_2321 14_4863 14_4942 14_5102 14_5341 MOS 0_1716 0_0984 0_2267 1_3751 MOS 0_3234 0_1881 0_6831 1_7118 MOS 0_6194 0_3008 0_1881 0_6831 1_7118 MOS 1_2153 0_5690 0_3098 1_2878 2_0968	>64K - 256K	NOS	9609-0	0.6131	0.6271	0.6201	0.6341	7.2522	7.2592	7,2837	7,2732	7,2942	0.1783
MOS 0_1716 0_0984 0_0944 0_2267 MOS 0_3234 0_1693 0_1325 0_3870 K MOS 0_6194 0_3008 0_1881 0_6831 MOS 1_2153 0_5690 0_3098 1_2878	>256K - 1M	M0 S	1.2042	1.2082	1,2241	1-2161	1.2321	14.4863	14.4942	14.5221	14.5102	14.5341	0.3513
MOS 0.1716 0.0984 0.0944 0.2267 MOS 0.3234 0.1693 0.1325 0.3870 K MOS 0.6194 0.3008 0.1881 0.6831 MOS 1.2153 0.5690 0.3098 1.2878			M FF	MFA	USL	귈	2		1		,		
MOS 0.3234 0.1693 0.1325 0.3870 K MOS 0.6194 0.3008 0.1881 0.6831 MOS 1.2153 0.5690 0.3098 1.2878	<= 16K	MOS	0.1716	0.0984	0.0944	0.2267	1.3751						
MOS 0.6194 0.3008 0.1881 0.6831 MOS 1.2153 0.5690 0.3098 1.2878	>16K - 64K	NO S	0.3234	0.1693	0.1325	0_3870	1.6257						
MOS 1.2153 0.5690 0.3098 1.2878	>64K - 256K	MOS	0_6194	0.3008	0.1881	0.6831	1.7118						
	>256K - 1M	MOS	1.2153	0.5690	0.3098	1.2878	2.0968						

****** Nonhermetic parts should NOT be used in this environment

TABLE 5.2-11 GENERIC FAILURE RATE, λ_{G} , FOR MOS STATIC RAMS IN HERMETIC PACKAGES (f/10 6 hours)

DEVICE DESCRIPTION	~				APPL ICATION	•	NVIRONMENT					
NO. OF BITS	TECHNOLOGY	89	SMS	99	#5	. C.	8 S B	8.8	2	x	NUU	A B.L
× 4 ×	SOF	0.0219	0.0250	6250*0	0.0767	0.0528	0.0634	0.0634	0.2701	0.0766	0.0541	0.1422
>4K - 16K	S O E	0.0414	0.0461	9060.0	0.1281	0.0826	0.1026	0.1026	0.5058	0.1177	0.0702	0.2331
>16K - 64K	S OM	0.0802	0.0876	0.1638	0.2270	0.1387	0.1773	0.1773	0.9718	0.1943	0.0965	6907-0
>64K - 256K	S O F	0.1573	0.1700	0.3078	0.4205	0.2473	0.3227	0.3227	1.8983	0.341/	0.1429	0.7463
		AIC	¥I¥	A 1 6	AIA	AIF	AUC	AUT	A UB	AUA	AUF	SF
X4 = 5	MO S	0.1093	0.1037	0.1265	0,1240	0.1247	0.5215	0.4900	2,0017	0.456>	0.5250	0.0417
>4K - 16K	¥0.5	0.1957	0.1893	0.2084	0.2124	0.2132	0.9917	0.9559	2.6767	7626.0	2566.0	0.0779
>16K - 64K	SOM	0.3648	0.3577	0.3792	0.3836	0.3845	1.9241	1.8838	3.8187	1.8536	1.9286	0-1495
>64K - 256K	NO S	0.6995	0.6915	0.7154	0.7204	0.7214	3.7807	3.7358	5.8893	3.7024	3.7857	0.2918
		a d E	MFA	151	ĦĹ	נר						
X7 =>	SOM	0.1100	0.0851	0.1032	0.1737	1.5751						
>4K - 16K	S O N	0.1965	0.1377	0.1400	0.2690	1,8235						
>16K - 64K	S OM	0.3657	0.2377	0.2032	0.4472	2.1122						
>64K - 256K	MOS	0.7004	0.4325	0.3190	0.7912	2,4762						

TABLE 5.2-12 GENERIC FAILURE RATE, λ_G, FOR MOS STATIC RAMS IN NONHERMETIC PACKAGES (f/10⁶ hours)

DEVICE DESCRIPTION	110N	· .	:			APPLICATION ENVIRONMENT	ROMMENT	•				
NO. OF BITS	TECHNOLOGY	89	GM S	ı	E 9	: • • • • • • • • • • • • • • • • • • •	NS.B	: SN	72	Ŧ	NUE	ARE
¥	MO S	0.0380	0.0433	0_1035	0.1609	0.0821	0-1140	0-1140		i		
. >4K - 16K	808	0.0738	0.0827	0.1920	0.2965	0_1414	0.7030	20,000			0.0578	0.3556
>16K - 64K	S O E	0-1449	0.1608	0.3665	0.5636	0.2562	0 1700	4400		1412.0	0.0776	0.6599
>64K - 256K	¥0.8	0.2868	0.3165	0.7131	1.0938	0.4822	0.7281	0.2281		0.3969	0.1113	1_2604
	!	1 1	:	:	1				,	22.5	0.1720	2.6333
	:) 	AIT	AIB	AIA	AIF	AUC	AUT	AUB	AUA	AUF	5
¥ 7 = >	MOS	0.3227	0.3171	0.3339	0.3374	0.3381		****	***	* * * * *		
>4K - 16K	S O H	0.6224	0,6160	0.6352	. 0.6391	0.6399	****	***	•			0.0923
>16K - 64K	SOM	1-2183	1.2111	1.2326	1-2371	1.2380	1.2380 ******	*****				26/1.0
>64K - 256K	MO S	5-4064	2.3964	2.4224	2.4273	2,4283					• • •	0.3522
		E	MFA	USL	<u> </u>	ะ						
X4 *>	FO S	0.3234	0.1693	0.1325	0.3870	1.6257						
34K - 16K	¥0\$	0.6232	0,3060	0.1987	0.6957	1.9248						
>16K - 64K	MOS	1.2192	0.5744	0.3207	1_3007	2.3149						
>64K - 256K	SOF	5.4074	1.1058	0.5540	2,4981	2.8816						
	•											

****** Nonhermetic parts should NOT be used in this environment

TABLE 5.2-13 GENERIC FAILURE RATE, A_G, FOR BIPOLAR STATIC RAMS IN HERMETIC PACKAGES (f/10⁶ hours)

DEVICE DESCRIPTION	!	; 	! 			APPLICATION ENVIRONMENT	NAME NT					
NO. OF BITS	TECHNOL 06Y	ei S	GMS	6.5	N S	ā. E	NSB	SN	O.A.	H Z	n n∧	3 4
, , , , , , , , , , , , , , , , , , ,	BIFCLAR 0.0196	0.0196	0.0225	0.0471	0.0680	0.0491	0.0576	0.0576	0.2024	6020-0	0.0535	3.1236
>4K - 16K	BIPCLAR	BIPCLAR 0.0374	0.0418	0.0816	0.1148	0.0791	0560-0	0.0950	0.3762	0.1121	2520.0	0.2043
		AIC	AIT	AIF	4 4	AIF	AUC	AUT	A UB	AUA	AUF	SF
×7 11 V	PIFCLAR	PIFCLAR 0.0907	0.0851	0.1019	0.1054	0.1061	0.3657	0.3342	1.8459	0.3100	0.3692	6520*0
>4K - 16K	PIPCLAR	0.1622	0.1551	0.1765	0.1765 0.1810	0.1819	0.6886	0.6483	2.5832	0.6183	0.6931	0.0673
		1 1 1 1 1 1 1 1	4 4	ารก	<u></u>	ฮ				,		
* * * * * * * * * * * * * * * * * * *	BIFCLAR 0.0	0.0914	0.0764	5660.0	0.3995 0.1551	1.5693				-		
>4K - 16K	RIPOLAR 3.	0.1631	0.1256	0.1436	9,2446	2.0300						

TABLE 5.2-14 GENERIC FAILURE RATE, $\lambda_{\rm G}$, FOR BIPOLAR STATIC RAMS IN NONHERMETIC PACKAGES (f/ 10^6 hours)

DEVICE DESCRIPTION	TION				APPL 10	APPLICATION ENVIRONMENT	RONMENT					
NO. OF BITS	TECHNOLOGY	85	GRS	49	#5	4	888	N S	3	H.	NUG	ARE
¥ 7 = >	BIPOLAR	0.0219	0.0250	0.0529	0.0767	0.0528	0.0634	0.0634	0.0634 0.0634 ******	0.0766	0-0541	0.1133
>4K - 16K	BIPOLAR	0.0418	1990-0	0.0931		0.0864	0.1065	0.1065	0_1323 0_0864 0_1065 0_1065 ******			
•		AIC	AIT	AIB	AIA	ALF	AUC	ÀÙT	AUB	Auk	Aus	
¥\$ #>	BIPOLAR	BIPOLAR 0.1093	0.1037	0.1205	,	0.1247	******	*****	***		0.1240 0.1247 states states system contests	0
>4K - 16K	BIPOLAR	BIPOLAR 0.1994	0.1923	0.2138		0.2191	* * * * *	* * * * * *	0.2191 ****** ******* *******			
		MFF	MFA	nsr	=	7					-	
A 4 K	BIPOLAR	0-1100	0.0851	0.1032	0	1.5751						
>4K - 16K	BIPOLAR	ં	0-1430	.2003 0.1430 0.1509 0.2818 2.0415	0.2818	2.0415						

MIL-HDBK-217E

TABLE 5.2-15 GENERIC FAILURE RATE, λ_{G} , FOR MOS ROM DEVICES IN HERMETIC PACKAGES (f/10 hours)

DEVICE DESCRIPTION			:		APPLIC	APPLICATION ENVIRONMENT	OHMENT				 	
NO. OF BITS	TECHNOLOGY	65	SWS	6 F	E S	, d. ±	NSB	SZ	n Z	X T	NO N	A RE
<= 16K	MOS	0.0172	0.0208	2650.0	0.0750	0.0562	9790.0	0.0646	0.2180	0.0836	0.0698	0.1426
>16K - 64K	MO S	0.0314	0.0364	0.0796	0.1169	0.0824	0.0977	0.0977	0.3909	0.1206	0.0899	0.2182
>64K - 256K	MO S	0.0583	0.0651	0.1291	0.1831	0.1191	0.1472	0.1472	0.7132	0.1701	0.1040	0.3340
>256K - 1K	#0 S	0.1146	0.1266	0.2447	0.3436	0.2176	0.2727	0.2727	1,3955	0.3085	0.1738	0.6219
		AIC	A11	A I B	41A	AIF	AUC	AUT	AUB	AUA	AUF	SF
<= 16K	WO S	0.0828	0.0878	0.1077	0.0978	0.1177	0.3533	0.3633	0,3982	0.3832	0.4131	0.0337
>16K - 64K	MOS	0.1459	0.1519	0.1760	0.1640	0.1881	0.6829	0.6950	0.7372	0.7191	0.7553	0.0603
>64K - 256K	Mos	0.2617	0.2677	0.2918	0.2798	0.3039	1.3297	1.3418	1,3840	1.3659	1.4020	0.1098
>256K - 1M	MOS	0.5098	0.5192	0.5565	0.5378	0.5752	2.6432	2.6619	2,7273	2.6993	2.7554	0.2148
		AF F	MFA	USL		د .						
<= 16K	NO S	0.0968	0.0870	0.1280	0.1875	2.2181						
>16K - 64K	MOS	0.1628	0.1313	0.1692	92220	2,7008						
>64K - 256K	*0.5	0.2785	0.1976	0.2058	0,3882	2.7503						
>256K - 1M	#O.S	0.5360	0.3660	0.3521	0,7060	7608-7						

TABLE 5.2-16 GENERIC FAILURE RATE, λ_{G} , FOR MOS ROM DEVICES IN NONHERMETIC PACKAGES (f/10 6 hours)

DEVICE DESCRIPTION	NON				APPLI(APPLICATION ENVIRONMENT	ROUMENT					
NO. OF BITS	TECHNOLOGY	9	GM S		#5	*	NSB	N.S	N.	H.N.	NUN	ARK
<= 16K	ROS	0.0285	0.0336	0.0851	0.1339	0.0768	0.1001	0,1001	*	2011	76.60	0.00
>16K - 64K	\$ OM	0.0541	0.0621	0.1506	0.2347	0.1236	0.1686	0.1686	***	1015	******	026250
>54K - 256K	NOS	0.1036	0.1163	0.2710	0.4188	0.2013	0.2891	0.2891	****	0.3120	0-1144	401.00
>256K - 1M	#0.S	0.2052	0.2292	0.5285	0.8149	0.3820	0.5565	0.5565	* * * *	0.5920	0_1946	1.8168
		AIC	AIT	AIB	AIA	AIF	AUC	AUT	PAC 9	AUA	Anc	9
<= 16K	SOM	0.2322	0.2372	0.2571	0.2471	0.2671	*****	***	*****	*		, 676
>16K - 64K	S O H	0.4446	0.4506	2727-0	0.4627	0.4868	***	**	•			7400-0
>64K - 256K	MO\$	0.8591	0.8651	0.8892	0.8772	0_9013	****					5151.0
>256K - 1M	S O E	1.7047	1,7140	1_7514	1.7327	1.7701	***		*		* * *	0.2517
		MF F	MFA	Pall								
<= 16K	308	0.2461	0.1459	0.1485	0.3369	2.2536						
>16K - 64K	NOS	0.4615	0.2492	0.2103	0.5712	2.7717						
>64K - 256K	MO S	0-8760	0.4333	0.2881	0.9852	2.8922						
>256K - 1M	H0.5	1.7309	0.8373	0.5166	1.9009	4.5931						

****** Nonhermetic parts should NOT be used in this environment

MIL-HDBK-217E

TABLE 5.2-17 GENERIC FAILURE RATE, λ_G, FOR MOS PROM (UVEPROM, EEPROM, EAPROM) DEVICES IN HERMETIC PACKAGES (f/106 hours)

DEVICE DESCRIPTION		-			71 100V	ADDITOTED TOTAL	Outstand.					
NO. OF BITS	TECHNOLOGY	89	GMS	GF	3.	d E	NS B	SZ	n.v	Ŧ	UUN	BOX
<= 15K	M 0 S	0.0268	0.0310	0.0674	0.0987	0.3693	0.0823	0.0823	0.3330	0.1012	0.0748	0.1840
>16K + 64K	\$0 .	0.0506	0.0569	0.1150	0.1642	0.1086	0.1331	0.1331	0.6211	0.1564	0.1003	0.3009
>64K - 256K	S OF	0.0967	0.1059	0.1998	0.2778	0.1714	0.2179	0.2179	1.1736	0.2408	0.1240	7667.0
>256K - 1K	S O S	0.1913	0.2083	0.3861	0.5329	0.3223	0.4142	0.4142	2,3163	1677.0	0.2138	0.9527
		AIC	AIT	A 16	AIA	AIF	JA4	AUT	AUA	AUA	AUF	SF
<= 16K	\$0\$	0.1242	0.1291	0.1491	0.1391	0.1591	0.5843	0_5943	0.6292	0.6142	C. 6441	0.0514
. >16K - 64K	\$ 0 \$	0.2286	0.2346	0.2587	0.2467	0.2708	1.1449	1.1570	1.1992	1.1811	1,2173	0.0957
>64K - 256K	\$ 0 x	0.4271	0.4331	0.4572	0.4451	2697-0	2.2537	2.2658	2,5080	2.2899	2,3260	0.1806
>256K - 1M	S O E	0_8406	6678.0	0.8373	0.8686	0906-0	4.4912	6605*7	4.5753	4.5475	4.6034	0.3562
		MFF	468	USL	귤	75						
<= 16K	S O W	0.1381	0.1106	0.1411	0.2298	2.2358						
>16K - 64K	MOS	0.2455	0.1787	0.1954	0.3551	2.7361						
>64K - 256K	S O E	0.4439	0.2923	0.2582	0.5536	2.8210						
>256K - 1M	S O E	0.8668	0.5553	0.4568	1.0368	4.4508						

GENERIC FAILURE RATE, $\lambda_{\rm G}$, FOR MOS PROM (UVEPROM, EEPROM, EAPROM) DEVICES IN NONHERMETIC PACKAGES (f/10⁶ hours) TABLE 5.2-18

DEVICE DESCRIPTION	NC				APPLIC	APPLICATION ENVIRONMENT	RONMENT					
NO. OF BITS	TECHNOLOGY	89	GMS	99	#5	. de	NS B	SN	D.W	#Z	NOW	ARK
<= 16K	504	0.0462	0.0530	0.1282	0.1997	0.1045	0.1431	0-1431	* * * * * * * * * * * * * * * * * * * *	0.1621	0.0793	00* 7*0
>16K - 64K	ROS	0.0895	0.1008	0.2366	3,3662	0.1791	0.2547	0.2547	* * * * *	0.2770	0.1089	0.8130
>64K - 256K	NOS	0.1744	0.1939	0.4430	0.6818	0.3124	0.4611	0.4611	*****	0,4840	0.1418	1.5236
>256K - 1M	S 024	0.3467	0.3842	0.8725	1-3409	0.6042	9006-0	9006-0	* * * * * * * * * * * * * * * * * * * *	0.9361	0.2495	3.0011
		AIC	AIT	A18	AIA	AIF	AUC	AUT	AUB	AUA	AUF	SF
<= 16K	MO S	0.3802	0.3852	0.4051	0.3952	0.4151	*****	*****	****	*****	******	0.1122
>16K - 64K	NO S	0.7407	0.7467	0.7708	0,7588	0.7829	* * * * * *	* * * * * *	*	* * * * * * *	****	0.2173
>64K - 256K	#0 S	1.4512	1.4573	1.4814	1,4693	1.4934		****	* * * * * * *	•	* * * * * * *	0.4238
>256K - 1R	NO S	2.8890	2.8983	2.9357	2.9170	5-9544	•	*	* * * * * *	*	****	0.8426
		MFF	MFA	nsr	¥	บ						
<= 16K	NOS	2765-0	0.2116	0.1763	6787"0	2.2966						
>16K - 64K	ROS	0.7576	0.3807	0-2659	0.8672	2.8577						
>64K - 256K	NO S	1.4681	0.6963	0.3992	1.5778	3.0642						
>256K - 1M	HOS	2.9151	1.3633	0.7388	3.0852	4.9372	<u>.</u>					

******* Nonhermetic parts should NOT be used in this environment

MIL-HDBK-217E

TABLE 5.2-19 GENERIC FAILURE RATE, λ_G, FOR BIPOLAR ROM/PROM (FUSIBLE LINK AND AIM) DEVICES IN HERMETIC PACKAGES (f/106 hours)

DEVICE DESCRIPTION	NC	:			APPLICA	APPLICATION ENVIRONMENT	ONMENT		<u> </u>		 	!
NO. 0F BITS	TECHNOLOGY	: , 85 :	S W S		E.M.	A P	NS B	SZ) X		N O N	ARW
<= 16K	BIPOLAR 0.	0.0242	0.0281	9090*0	0.0882	0.0649	0.0754	0.0754	0.2519	0.0945	0.0741	0.1416
>16K - 64K	BIPOLAR 0.	0.0445	9690"0	0960-0	0.1345	0.0919	0.1109	0.1109	0.4469	0.1299	0.0854	0.2386
		AIC	AIT AIB	AIB	AIA	AIF	AUC	AUT	AUB	AUA	AUF	7.5
<= 16K	BIFCLAR 0.	0.1148	0,1068	0.1307	0.1357	0.1367		0.4074	5.5609	0.3740	0.4572	0.0445
>16K - 64K	BIPOLAR 0.1917	0.1917	0,1837	_	0.2126	0.2136	0.8197	0.7748	2,9283	0.7414	0.8247	0.0800
	;	. <u>.</u>	MFA	USL	H	נו	אר כר	:	•			
<= 16K	BIPOLAR 0.	0.1158	0.1301	0.1367	0.2065	2.2289						
>16K - 64K	BIPOLAR D	0.1927	0.1465	0.1637	0.2834	2.2644						

TABLE 5.2-20 GENERIC FAILURE RATE, λ_G, FOR BIPOLAR ROM/PROM (FUSIBLE LINK AND AIM) DEVICES IN NONHERMETIC PACKAGES (f/10⁶ hours)

DEVICE DESCRIPTION	æ			!	4 [APPLICATION ENVIRONMENT	PPLICATION ENVIRONMENT					
NO. OF BITS	TECHNOLOGY	89	- SEG	 6 F	5	d M	GR RP NSB RS	8	D.R	HR	NUU	ARE
<= 16K	BIPOLAR	0.0268		0.0309 0.0672	0.0985	2690"0	0.0822 0.0822	0.0822	0.0822 ******	0.1011	0.0748	0.1835
>16K - 64K	BIPOLAR 0.	0.0498	0.0554	0.1095		0.1005	0.1245		0.1245 ******	0.1434	0.0868	0.2823
		AIC	AIT	A IB		AIA AIF	AIF AUC	AUT	4U9	AUA	AUF	SF
✓ 16 K	BIPOLAR 0.1	0.1237	0.1287	0.1486	0.1387		***	****			******	0.0513
>16K - 64K	BIFOLAR	BIFOLAR 0.2225	0.2275	0.2474	0.2375	0.2574	***	* * * * * *	* * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	0.0936
		·	MFA	MFA USL	1							
< a 16 €	BIPOLAR	0.1377	BIPOLAR 0.1377 0.1104	0.1410	0.2284	2.2357						
>16K - 64K	BIFCLAR 0.2	0.2365	0.1670 0.1723	0.1723	0.3272	2,2780						

****** Nonhermetic parts should NOT be used in this environment

TABLE 5.2-21 GENERIC FAILURE RATE, λ_{G} , FOR MONOLITHIC BIPOLAR OR MOS ANALOG MICROPROCESSOR DEVICES IN HERMETIC PACKAGES (f/10 hours)

DEVICE DESCRIPTION	10N				APPL 1CA	APPLICATION ENVIRONMENT	ONMENT			-		
NO. OF BITS	TECHNOLOGY GP		SAS	9	E 5	C. ∓	S S S S S	S] 2	I Z	מחא	ARE
1 - 100	BIFOLAR MOS	31FOLAR 0.0330 MOS 0.0357	0.0452	0.1188	0.1862	0.1862 0.1536 0. 0.1967 0.1580 0.	1688	0.1688	0.3849	0_2321 0_239J	0.2212 0.3601 0.2219 0.3824	0.3824
		AIC	AIT	d I A	AIA	AIF	AUC	AUT	AUB	AUA	AUF	SF
1 - 100	91PCLAR MOS	91°CLAR 0.1602 *05 0.1825	0.1768	0.2435	00	0.2991	0.4674	0.5007	0.6173	0.5674	0.5673 0.0655 0.8542 0.0724	0.0655
		46.6	MFA	USL	P.L	נר						
1 - 100	BIPCLAR	BIPCLAR 6.2068 Mos 0.2292	0.2362	0.3935	0.5100 0.5323	7.3647						
	-											

TABLE 5.2-22 GENERIC FAILURE RATE, λ_G, FOR MONOLITHIC BIPOLAR OR MOS ANALOG MICROPROCESSOR DEVICES IN NONERMETIC PACKAGES (f/106 hours.

DEVICE DESCRIPTION	T I ON				APPL I	APPLICATION ENVIRONMENT	ROMMENT					
NO. OF BITS	TECHNOLOGY	3	S. S.									
			,	<u>.</u> 9	E	ď	NSB	NS	NC	¥	MILT	0
4 4 400												
	BIPOLAR 0.0357 MOS 0.0551	0.0357	0.0462	0.1257	0.1967	0.1580	0.1757	0-1757	0-1757 ***********************************	0.2390	0.2219	0.3824
								: : : !				0-6385
		AIC	AIT	AIB	AIA	AIF		, 1				
1 - 100						1	2	-	¥08	AUA	AUF	F.
2	MOS	0.1825	0.1992	0.2658	0.2658 0.2325 0.5219 0.4885		0.2991 ****** ****************************	*****	***		* * * * * *	0.0724
							:	1			****	0.1332
		MFF	MFA	nsr	ä	-			,			
100						:						
2	MOS 0.4852	0-4852	0.2367	0.3979 0.5323 0.4331 0.7884	0.5323	7.3716						

****** Nonhermetic parts should NOT be used in this environment

 π_Q , QUALITY FACTORS FOR USE WITH TABLES 5.2-1 THROUGH 5.2-22 TABLE 5.2-23

μ	0.25	0.75		2	25	01	50	
QUALITY LEVEL	S	S-1	89	8-1	8-2	0	٦-١	

*See Table 5.1.2.7-1 for descriptions of quality levels.

TL, LEARNING FACTOR FOR USE WITH TABLES 5.2-1 THROUGH 5.2.22 TABLE 5.2-24

The learning factor π_L is 10 under any of the following conditions:

- New device in initial production. (3)
- Where major changes in design or process have occurred.
- Where there has been an extended interruption in production or a change in line personnel (radical expansion). $\widehat{\mathbb{C}}$
 - For all new and unproven technologies. (4)
- The factor of 10 can be expected to apply until conditions and controls have stabilized. This period can extend for as much as six months of continuous production.
 - $\mathfrak{n}_{\underline{\mathsf{L}}}$ is equal to 1.0 under all production conditions not stated in (1), (2), (3) and (4) above.

TABLE 5.2-25 GENERIC FAILURE RATE, λ_G, FOR DISCRETE SEMICONDUCTORS (f./10⁶ hours) (See Table 5.2-26 for π_Q Values)

	L.													
PART TYPE	AIA	A _{IB}	AIC	AIF	AIT	ARI	A _U A	AuB	AUC	AUF	A _{UT}	ىي	e _B	6 _{MS}
· IKANSISIORS	_													
Si NPN	690.	. 12	.033	. 14	.052	094	. 16	.27	.068	.29	Ξ.	2.0	800.	.0040
Si PMP	Ξ.	91.	.052	.22	.082	. 15	.26	44	Ξ.	.47	18	3.0	85.00	0062
Ge NPN	3.4	0.9	1.6	6.9	5.6	4.6	6.3*	*. =	2.7*	12.*	4.5*	9	066	7000
Ge PNP	1.3	2.3	.61	5.6	96.	1.7	2.4*	*.	1.0	* 4.	*.'	24.	920	040
Si FET	2.0	2.3	.50	5.6	. 59	7.8	4.4	8.4	.87	5.7	1.3	37.	048	240
Unijunction	4.8	8,3	2.3	9.5	3.6	6.4	12.	20.	5.0	22.	. 8	130.	9	
2100ES														33.
Si Gen Purpose	.026	.031	.016	.037	.021	.028	.060	.075	.037	.075	.045	55	00066	0000
Ge Gen Purpose	36	.43	.22	.50	.29	.39	*19.	*11.	.38*	*11.	.46*	4	.0042	
Zener & Avalanche	.088	91.	.016	. 19	.023	360.	8.	.31	.034	.3.	.045		.0027	.0038
Thyristor	.73	1.3	.35	1.5	55	86	3.8	3.1	87.	3.4	7.3	.61	.022	.031
Si Microwave Det	12.	15.	7.0	Je	7.3	18.	25.	33.	.96	34.	19.	‡	82.	<u></u>

*This value is valid only for electrical stress, S< 0.3 as defined in Section 5.13
**Bo not use in these environments since temperature normally encountered combined with
normal power dissipation are above the device ratings.
***Not normally used in this environment.

5.2-26

TABLE 5.2-25 GENERIC FAILURE RATE, ¹6, FOR DISCRETE SEMICONDUCTORS (f./10⁶ hours) (Contd) (See Table 5.2-26 for ¹0 Values)

PART TYPE	Α.	Ą	A. A. A. A.	A.	Ä	Ą	Ā	Ą	Ą	Ą	Å	A. A. A. C. G.	ۍ	ق.
,	<u> </u>		31	1		ž		90	3 ;	5 ;	1		֧֧֓֞֟֟֝֟֝֟֝֟֝֟֟ ֓֓֓֓֓֓֓֓֓֓֓֓֞֜֜֜֓֓֓֓֓֜֜֜֓֓֓֓֡֓֡֓֡֓֡֓֡֓֜֡֡֡֓֓	2 ;
Ge Microwave Det	* %	47.*		<u>*.</u>	¥.62	×./s	ţ	•	k i	:			745	-
Si Microwave Mix	.9	21.	9.7	23.	13.	22.	38.	45.	22.	48.	26.	‡	.25	.43
Ge Microwave Mix	£5.*	*.08	37.*	*.98	49.*	* '96	*	‡	į	‡	‡	**	0.7.0	1.2
Varactor, Step														
Recovery, Tunnel	8.2	15.	1.5	15.	1.2	8.9	17.	30.	3.2	8.	4.3	180.	.24	.33
Gunn & Impatt	15.	27.	27.	.27	3.9	16.	24.	42.	4.5	42.	6.0	410.	.60	.84
PIN	=	.61	1.9	.61	2.8	12.	23.	39.	4.2	39.	5.6	240.	131	.43
רבס	.14	.22	860'	.31	₹.	.67	09.	88.	.33	<u>.</u> .	.60	6.2	.0065	.0078
Single Isolator	1.2	1.8	.83	2.7	1.2	5.7	5.1	7.4	2.8	9.3	5.1	52.	550	990.
Bipolar Microwave														
Power Transistor	4.0	6.9	6.9 2.9	6.9	6.9 4.0 18.	18.	9.7	9.7 14.	6.9	14.	9.7	230.	67.	.87

*This value is valid only for electrical stress, 5< 0.3 as defined in Section 5.13
**Do not use in these environments since temperature normally encountered combined with normal power dissipation are above the device ratings.
***Not normally used in this environment.

TABLE 5.2-25 GENERIC FAILURE RATE, $\lambda_{\rm G}$, FOR DISCRETE SEMICONDUCTORS (f./10⁶ hours) (Contd)

					266	lable 5.2.	lable 5.2-26 for mg Values)	Values)					
PART TYPE	بق	.₹	M _F A	보	<u>.</u>	<u>م</u>	ž	₽¥	N _S 8	2	B _N	۶.	Ž,
TRANS IST ORS													
Si NPN	910.	.063	150.	.036	J4.	.032	.054	.028	.028	01.	.044	00100	.095
Si PNP	.025	.098	.080	950.	.22	.049	.083	.043	.043	.17	070.	.0015	5.
Ge NPN	.53	3.1	1.9	1.3	7.0	.93	1.7	8	88.	4.5*	1.0	.027	2.8
OF PAP	20	1.2	0.70	49	5.6	.35	.65	.33	.33	1.8*	.39	010	-
St FET	.22	1.2	8.	69.	2.7	19:	66.	.46	.32	2.0	.85	.029	8.
Unijunction	.73	. 4	3.4	2.4	9.8	2.0	3.4	1.7	1.7	7.7	2.7	91.	
530010													
Si Gen Purp	.003	610.	.015	010.	.043	.0087	.015	.0038	.0038	.035	.011	99000.	6.1
Ge Gen Purp	.025	.26	14	860.	65.	.062	. 12	.031	.031	.42*	.058	.0042	920.
Zener & Avalanche	210.	.063	.053	.038	. 14	.034	.056	.026	.017	01.	.050	.0027	91.
Thyristor	۵.	8.	.50	.36	1.5	.29	15.	.23	91.	1.2	.36	.033	01.
Si Microwave Det	7.3	7.3	10.	7.5	28.	6.7	Ξ,	2.2	1.6	<u>-</u>	10.	<u>8</u>	.87

*This value is valid only for electrical stress, S< 0.3 as defined in Section 5.13
**Do not use in these environments since temperature normally encountered combined with normal power dissipation are above the device ratings.
***Not normally used in this environment.

DISCRETE SEMICONDUCTORS (f./10⁶ hours) (Contd) TABLE 5.2-25 GENERIC FAILURE RATE, $\lambda_{\rm G}$, FOR

					See	Table 5.2-2	(See Table 5.2-26 for #n Values)	alues)					
OADT TVDE	ی	نی	٤	ž	¥	Σ	z [±]	¥S	[™] S8	2	NUU	ξ	USL
	<u></u>	E.	<u>.</u>		-		-		4 F	ţ	<u>6</u>	.42	21.
Ge Microwave Det	3.6	22.*	35.	25.	84.*	17.	31.	7.0	,			!	
3	-	5	5	ot.	39	9.1	15.	3.0	2.2	16.	14.	.25	.53
St Microwave Mix	<u>'</u>	<u>:</u>	<u>;</u>	<u>.</u>					1	;	;	ç	00
Ge Microwave Mix	6.2	38.*	. 69	42.	150.*	28.	52.	<u>;</u>	1.1	i.	33.	?	
Varactor, Step													
	,	c L	•	,	14	3.0	5.1	2.3	1.5	6.6	4.2	.24	9.0
Recovery, Tunnel	0.	٧.٠	0.	†	:	;					Ş	S	ç
Gunn & Impatt	2.3	Ξ.	٦٥.	7.2	25.	7.2	=	5.2	3.5	<u></u>	12.		. 77
3		1 1	£.	4.4	18.	3.9	9.9	3.0	2.0	13.	5.5	.31	12.
= 1	· ·	:	;	<u> </u>	-	073	11.	.078	.051	1.5	.038	.0065	.22
031	.033	- \ - -	72.		,					٤	3.3	230	0 ~
Single Isolator	.28	2.6	1.8	1.3	8.6	.62	4.	96.		<u>.</u>	. 32	ren.	
Bipolar Microwave												i	Ş
Power Transistor	1.9	9.0	Ξ.	7.6	29.	6.4	.01	4.4	3.4	16.	7.8	6/.	<u>.</u>

*This value is valid only for electrical stress, S< 0.3 as defined in Section 5.13
**Do not use in these environments since temperature normally encountered combined with normal power dissipation are above the device ratings.

TABLE 5.2-26 TQ, QUALITY FACTORS FOR TABLE 5.2-25

PART TYPES	JANTXV	JANTX	JAN	JAN NON-MIL HERMETIC	PLASTIC
MICROWAVE DIODES	0.3	9.0	1.0	1.4	1
MICROWAVE TRANSISTORS	0.25	0.5	1.0	2.5	
ALL OTHERS	0.1	0.2	7.0	5.0	10.0

TABLE 5.2-27 GENERIC FAILURE RATE, λ_G . (f./10⁵ hr.) FOR RESISTORS (See Table 5.2-29 for π_Q Values)

							THEMPOR									
RESISTORS, FIXED	0					USE ENV	ENV INUMMERAL			j						
CONSTRUCTION STYLE MIL-	STYLE	4	AIA	A ₁₈	AIC	AIF	AJT	ARW	AUA UA	A _{UB}	A _{UC}	A _{UE}	ÅUT	ىي	යු	ε S
		SPEC				;										T
Composition	RCR	39008	.0045	.0065	.0039	.0084	.0045	.025	.017	.024	.012	.036	.017	.36	.0005	9000.
. #	S S	=	.023	.032	610.	.042	.023	. 12	.083	. 12	.060	81.	.083	1.8	.0025	.0030
Film	RLR	39017	4600.	010.	.0039	-014	.0047	030	.028	.028	.013	.037	.012	69.	.0012	.0015
=	R	22684	.047	.051	.020	070.	.023	. 15	<u>4</u>	14	.064	8.	090.	3.5	7900.	.0074
3	RNR	55 182	.01	.012	.0045	910.	.0054	.034	.032	.032	.015	.043	410.	.78	4100.	.0017
I	Z.	10509	.054	.058	.022	8	.027	. 17	. 16	91.	.074	.21	690.	3.9	6900.	.0083
". Power	8	11804	1.70.	160.	.045	.13	.078	.32	7.	.27	Ξ.	.34	.2.	8.2	.012	.014
", Network	RZ	83401	.36	.39	.15	.54	<u>ss</u>	1.1	1.5	1.5	.59	2.0	.63	18.	.025	.030
Wirewound	RBR	39005	 55	67.	780.	61.	. <u>15</u>	.26	.27	44	.22	.49	72.	5.4	.0085	.010
Accurate	88	93	.73	.97	44	76.	.73	<u>.</u> .	J. 4	2.2	.097	5.5	1.4	27.	.043	150.
Wirewound	R. R.	39007	. 13	14	.027	<u>®</u>	.064	.42	.33	.33	.12	44.	.15	9.4	.014	.015
Power	3	26	.64	88.	14	16.	.32	2.1	1.6	1.6	19:	2.2	9/.	47.	690.	.076
Wirewound	RER	39009	.07.7	.082	.027	Ξ.	.038	.25	.20	.20	.075	.27	.094	5.5	.0080	.0095
Ch. Mount	#	18546	.38	.41	. 14	. 55	61.	1.3	1.0	1.0	.38	1.3	.47	28.	.040	.048

TABLE 5.2-27 GENERIC FAILURE RATE, $\lambda_{
m G}$, (f./10 6 hr.) FOR RESISTORS (Contd)

						(See Ta	Table 5.2-29 for	for mo values)	lues)						
RESISTORS, FIXED	1 xED						USE ENVIR	ENV IRONMENT							
CONSTRUCTION STYLE MIL-R-	STYLE	MIL-R-	S _p .	æ	ΣÚ	MEA	MFF	₹ ^a	, H	N _S	NSB.	N U	NUU	S _F	รู้ก
		SPEC													-
Composition	RCR	39008	.0021	110.	.038	.012	9200.	.0052	5600.	.0038	.0029	.033	.0048	.0005	.015
,	RC	=	.01	.054	91.	.058	.038	920.	.048	610.	.015	-17	•02 4 ·	.0025	.076
Film	RLR	39017	.0033	.012	.047	.017	.013	.011	610.	.0064	7500.	.027	.017	.0005	.034
=	J.	22684	.016	190.	.23	.085	.063	.057	.095	.032	.029	. 14	.086	.0025	.13
*	R.	55182	.0037	.014	.054	.019	.014	.013	.021	.0072	.0064	.031	610.	9000.	.038
=	€	10509	.018	070	.27	.097	2.70.	064	Ę.	920.	.032	. 16	.093	.0028	. 19
", Power	æ	11804	.030	Ε.	.51	.20	.15	.13	.22	.063	.063	12.	. 22 .	.012	4.
", Network	RZ	8340}	.087	.47	1.8	.52	.38	.27	.51	.17	.15	1,5	-26	.025	. 79
Wirewound,	RBR	39005	120.	.095	.40	91.	=	01.	. 16	.046	.046	. 18	91.	.013	.31
Accurate	88	93	· =	84	2.0	87.	. 55	.52	.80	.23	.23	.91	.82	.064	9,1
Wirewound	2 X	39007	.023	. 15	.65	.24	.18	. 16	.25	9/0.	.076	.32	.21	.0083	.45
Power	3	92	. 12	.75	3.3	1.2	.90	.81	1.2	.38	.38	1.6	1.1	.042	2.3
Wirewound	RER	39009	.022	1 60	.39	14	Ξ.	.093	. 15	.044	.044	.20	. 12	.0080	.26
Ch. Mount	B	18546	Ξ.	.45	. 2.0	.72	.53	.47	.72	.22	.22	66.	.60	.040	1.3

TABLE 5.2-27 GENERIC FAILURE RATE, λ_{G} , $(f./10^6$ hr.) FOR RESISTORS (Contd)

(See Table 5.2-29 for π_0 Values)

							360	100 62-23 10L	10 - 63 - 5	TO TAILUES)	(4)					
RESISTORS, VARIABLE	A8LE						USE ENV	ENV TRONMENT								
CONSTRUCTION	STYLE MIL	~	AIA	A _{I8}	A _{1C}	A _I F	AIT	ARW	A _{UA}	A _{U8}	Auc	AUF	A _{UT}	ىي	e ^B	S.
		SPEC														
Wirewound,	RTR	39015	=:	.15	.045	81.	270.	.60	.22	.33	.067	.44	81.	13.	.014	.017
Trimmer	F.	27208	25.	.72	.23	16.	36	3.0	-:	1.7	.33	2.2	.89	67.	0.00	.084
W.W. Prec.	æ	12934		Ξ.	7.1	17.	8.2	88	21.	28.	14.	28.	14.	1300.	.820	.98
W.W. Semi-	Æ.	61	4.5	4.7	3.1	7.1	3.6	<u>æ</u>	*	*	*	*	•		.30	.36
Prec.	ž	39002	4.5	4.7	3.1	7.1	3.6	38.	*	*	*	*	•	•	.30	.36
M. W. Power	98	22	3.8	4.0	5.6	6.0	3.0	15.	*	*	*	*	٠	*	.31	.40
Non-W.W.	85	39035	01.	. 16	070.	.23	¥.	8.	.27	04.	.20	99'	40	21.	.020	.024
Triamer	2	22097	25	18.	.35	1.2	70	4.5	1.3	2.0	86	3.3	2.0	110.	660.	. 12
Composition	8	94	9.7	9.7	5.3	13.	6.2	8.1	16.	16.	9.9	22.	9.9	170.	. 12	. 14
Non-M.W.Pre	\$	39023	%	1.2	.45	1.9	<u>8</u> 6.	5.1	3.8	5.7	9.1	7.5	3.8	.66	980.	01.
Film	RVC	23285	82.	١.١	-42	1.8	.78	4.7	5.9	4.4	1.5	5.9	5.9	<u>.</u>	560	Ξ.

*Not normally used in these environments

TABLE 5.2-27 GENERIC FAILURE RATE, λ_{G} , (f./10⁶ hr.) FOR RESISTORS (Contd)

						96()	(see lable 5.2-29 for mg values)	א ז סיי אי	a lues /		i				
RESISTORS, VARIABLE	ARIABLI	E					USE ENVI	ENV TRONMENT	•						
CONSTRUCTION STYLE MIL-R-	STYLI	E MIL-R-	步	₹	ا¥ع	MFA	±t.	₹a	Ψ	NS	N _{SB}	Ŋ	N _U U	SF	υ _{Si}
	i	SPEC												İ	
Wirewound,	RTR	39015	.037	. 18	.92	34	.24	.22	.35	.088	.088	18.	.32	.014	99.
Trimmer	RT	27208	61.	8.	4.6	1.7	1.2	:	1.8	.44	-44	1.5	1.6	.070	3.3
W.W., Prec.	85	12934	2.2	<u>:</u>	63.	33.	23.	20.	34.	7.7	7.7	21	29.	820	62.
W.W., Semi-	æ	6)	.85	3.7	*	*	*	5.5	9.5	5.5	2.5	*	7.5	.30	*
Prec.	¥	39002	.85	9.7	*	*		5.5	9.6	2.5	2.5	*	7.5	.30	*
W.W. Power	ď	22	1.0	6.4	*		*	5.5	9.1	2.4	2.4	*	8,1	.31	*
Non-W.W.	RJR	39035	190	.26	1.4	.54	,39	.37	15.	21.	. 12	14.	.55	.020	=
Trimmer	3	22097	.30	1.3	7.1	2.7	2.0	1.8	8.2	9.	.60	1.2	2.7	660.	5.4
Composition	8	94	.25	3.0	13.	4.4	3.2	2.8	4.5			5.7	3.8	. 12	8.2
Non-W.W.Pre	8	39023	62.	1.4	7.9	2.3	1.9	1.7	2.7	.71	.71	3.2	2.2	.086	4.9
Film	RVC	23285	.30	1.3	7.3	2.7	2.0	8.	2.8	.75	.75	2.3	5.6	.095	5.3

*not normally used in these environments.

TABLE 5.2-28 GENERIC FAILURE RATE, λ_G , (f.10⁶ hr.) FOR CAPACITORS (See Table 5.2-29 for π_Q Values)

CAPACITORS, FIXED	-1 XED						USE ENV	ENV IRONMENT								
DIELECTRIC	STYLE	J-11M	AIA	AIB	Aıc	AJF	AIT	ARN	AUA	A UB	A _{UC}	Α F	A _{UT}	ىي	8	6 _{MS}
		SPEC														
PAPER	9	25	.073	060.	.040	Ξ.	.056	.25	.25	.31	.13	.44	. 19	6.2	.01	.012
=	\$	12889	. 11	, 14	190.	.18	.088	.39	. 17.	.89	.35	1.2	.53	7.5	210.	.013
PAPER/PLASTIC CZR	C CZR	11693	.033	.040	.018	.050	.025	=.	Ξ.	14	.056	.20	.084	2.8	.0048	.0057
•	CPV	14157	9900.	.012	.0055	.018	.0055	.044	.024	.049	.0073	.073	.023	-	.0021	.0025
=	CQR	19978	9900.	.012	.0055	.018	.0055	.044	.024	.049	.0073	.073	.023	<u></u> :	.0021	.0025
a	SE E	39022	1600.	,017	5,007	.024	1600.	090.	.034	.067	010.	٥.	.032	1.5	.0029	.0034
=	5	18312	.063	. 12	.053	.17	.063	.043	.24	.47	0/0.	07.	.22	Ξ.	020	.024
PLASTIC	CFR	55514	.028	.04	.015	.065	.028	٥٢.	960°	. 12	.048	. 19	960.	2.5	.0041	.0045
*	CRH	83421	9600.	.013	9600.	.019	9600.	.048	.027	.053	.025	080	.027	1.2	.0023	.0030
MICA	CMR	39001	.0054	110.	.0047	.014	.0054	.031	.039	060.	.039	01.	.039	,45	.0005	9000.
=	5	5	.032	990`	.028	.084	.032	91.	.23	.54	.23	.62	.23	2.7	.0030	.0036
=	CB	10950	.40	86	.35	1.0	.40	2.3	9.1	3.8	1.6	4.3	1.6	57.	160.	г.
GLASS	CYR	23269	,0035	.0070	,0031	.0088	.0035	.020	.025	650.	.036	750.	.025	.29	.0003	.0003
Ξ	CΛ	11272	.011	.021	.0093	.026	.011	.060	5 /0.	81.	.075	.20	.075	.88	.0010	.0010

*Not normally used in these environments

TABLE 5.2-28 GENERIC FAILURE RATE, 1_G, (f.10⁶ hr.) FOR CAPACITORS (Continued)

Values)
႐ူ
for
5.2-29
Table
See

			:	İ		-	(פכר ומפור פוד בפינת	- 1							
CAPACITORS, FIXED	I XED						USE ENVI	ENVIRONMENT							
DIELECTRIC	STYLE	STYLE MIL-C	g.	6 ,	МFА	±.5 _W	سع	Ψp	₹.	s.	N _{SB}	D	M _M	۲.,	ηSΓ
		SPEC		İ	:										
PAPER	ე ე	25	.021	.094	.15	ι.	.38	٦.	.16	.062	.052	81.	.17	.011	.32
3	ద	12889	.025	. 15	.20	14	.60	.12	.20	5.00	.063	99'	. 18	.012	.37
PAPER/PLASTIC CZR	CZR	11693	210.	.042	.068	.049	.17	.048	.072	.042	.023	.082	570.	.0048	. 14
=	·CPV	14157	.0050	.017	,028	.020	890.	610.	.029	.012	2600.	.033	.031	.0021	950.
7	CQR S	19978	.0050	.017	.028	.020	890.	610.	.029	.012	7600.	.033	.031	.0021	950.
3	CH.	39022	6900.	.024	.038	027	.094	.026	.041	.017	.013	.045	.042	.0029	7.00.
±	¥	18312	.049	.17	.27	61.	99.	91.	.28	. 12	.089	.32	.30	.020	.54
PLASTIC	GF.R	55514	6/00.	.040	.063	.046	91.	.045	990.	.024	.021	080	690.	.0041	.13
· .	CRH	83421	.0085	610.	.030	.022	.075	.021	.032	.013	.010	.036	.034	.0023	.062
MICA	£	39001	8100.	.012	.014	010.	.049	.0067	.012	.0046	.0037	.045	9900.	.0005	.019
=	₹	5	.01	1.00.	.082	090.	.29	040	1.00.	.028	.022	.27	.034	.0030	Ξ.
=	CB	10950	.23	88.	1.4	1.1	3.6	1.0	1.5	.49	.47	1.7	1.5	160.	6.5
GLASS	CYR	23269	.0007	.0077	.0088	.0065	.032	.0043	.0077	0630	,0024	.030	.0037	.0003	.012
#	≿	11272	.0020	.023	.027	610.	560.	.013	.023	0600.	.0072	.088	110.	.0010	.037

*Not normally used in these environments

TABLE 5.2-28 GENERIC FAILURE RATE, A_G, (f.10⁶ hr.) FOR CAPACITORS (Continued) (See Table 5.2-29 for m_Q Values)

CAPACITORS, FIXED	XED						USE ENV	USE ENVIRONMENT								
DIELECTRIC	STYLE MIL	MIL-C	A ₁ A	AIB	AIC	AIF	A _{IT}	ARW	, Au	A UB	Auc.	4	A _{UT}	ىي	89	6 _M S
		SPEC				;										
CERAMIC	CKR	39014	.012	910.	210.	.023	.012	260.	.032	.040	030	090.	.032	2.3	. 0036	.0040
3	¥	11015	.036	.057	.036	690.	.036	.28	960.	.12	060.	<u>8</u> .	960.	6.8	110.	.012
I	SC.R	æ	.013	.014	.0048	610.	2900	.046	.085	01.	510.	SI .	.051	88	.0010	0100.
Ta, SOL	CSR	39003	.021	.049	.017	.052	.017	. 14	680.	.22	.040	.027	.054	3.2	.0055	9900.
Ta, NON-SOL	CL.R	39006	.046	050	910.	.077	.031	. 18	.20	02.	.083	.39	.15	4.0	1900.	.0067
:	ರ	3965	₹.	. 15	.057	.23	063	.53	. 59	. 59	.25	1,2	.44	12.	.018	020.
Al OXIDE]]]	39018	4.	4.		2.1	1.4	3.7	6.9	6.9	5.8	9.2	6.9	63.	.073	.087
¥	쁑	62	2.2	2.2	2.1	3.3	2.2	5.9	15.	.15	12.	19.	15.	84.	880.	=
CAPACITORS, VARIABLE	RIABLE															
CERAMIC	CV	18	4.6	4.6	1.6	4.6	1.8	17.	45.	48.	<u>6</u>	51.	17.	340.	.32	₹.
PISTON	PC	14409	.63	.74	æ.	:	.63	6.7	6.8	10.	3.4	14.	6.8	110.	960.	. 12
AIR, TRIMMER	5	26	8.5	8.5	3.0	8.5	3.4	3).	90.	97.	21.	100	35.	520.	.40	. 52
VACUUM	9	23183	17.	.92	Ξ.	43.	17.	. 69	170.	270.	100	390.	170.	*	1.2	1.6

*Not normally used in these environments

TABLE 5.2-28 GENERIC FAILURE RATE, 16, (f.10⁶ hr.) FOR CAPACITORS (Continued)

							(See Table	(See Table 5.2-29 for	r π _Q Values)						
CAPACITORS, FIXED	FIXED						USE EN	USE ENVIRONMENT							
DIELECTRIC	STYL	STYLE MIL-C	ىپى	. ₹	Æ, An	git E	£,	£_0	H.	₽ S	N _{SB}	P _N	N _U	<u>چ</u>	ار ام
,	SPEC				:										
CERAMIC:	CKR	33	.0059	.030	.056	.041	. 14	.040	650.	.020	610.	.050	.064	.0029	.12
პ •	11011	810. 21011	680.	. 17	. 12	.42	. 12	. 18	.061	950.	.15	91.	.0087	.35	•
" CCR	22	.0027	.017	020	.015	690.	.010	.018	9500.	.0056	.067	8600.	.0010	.030	
Ta, SOL	CSR	39003	.014	.055	.081	.058	.22	.053	.084	.029	.026	.13	.078	.0044	. 16
Ta, MON-SOL		CLR 39006	.0092	.077	. 10	9.00	.27	690.	Ξ.	.044	.033	. 16	860.	1000.	ଛ.
=	ថ	3965	.028	.23	.e.	.23	.83	12.	,32	.13	660.	.48	.29	810.	- 59
A1 OXIDE	3	39018	.22	1.7	1.8	1.3	5.6	86.	1.7	.61	.53	3.5	1.2	.073	5.9
" DRY	CE	62	.29	2.6	5.5	1.8	0.6	1.2	2.3	.82	.71	7.9	1.3	.088	3.7
CAPACITORS, VARIABLE	VARIABL	ш													
CERAMIC	ટ	<u>ھ</u>	1.2	4.5	8.8	6.5	26.	5.7	8.9	2.8	2.8	16.	7.9	.26	16.
PISTON	ρ	14409	.39	2.0	3.1	2.3	10.	1.6	5.9	96.	.92	3.2	1.7	860.	4.9
AIR, TRIMMER	د	26	1.8	8.4	15.	Ξ.	48.	7.9	14.	4.2	4.2	31.	8.0	.40	23.
VACUUM	ខ	23183 4.6	4.6	17.		*		23.	38.	:	Ξ.	70.	33.	1.2	*
				-											

*Not normally used in these environments

TABLE 5.2-29 $$^{\rm TQ}$$ FACTOR FOR RESISTORS AND CAPACITORS

δμ.,	s:-		w.	- .	.03
EVEL					
FAILURE RATE LEVEL		Σ	Δ.	œ	S

*For Non-ER parts (styles with only 2 letters in Tables 5.2-27 and 5.2-28), π_0 = 1 providing parts are procured in accordance with the part specification; if procured as commercial (NON-MIL) quality, use π_0 = 3. For ER parts (styles with 3 letters), use the π_0 value for the "letter" failure rate level procured.

TABLE 5.2-30 GENERIC FAILURE RATE, 1_G, FOR INDUCTIVE & ELECTROMECHANICAL PARTS (f./10⁶ hr.)

PART TYPE							ŧ	ENV IRONMENT					
ONCOLLONG	AIA	A _{IB}	A _{IC}	AIF	AIT	ARW	AuA	A _{UB}	Auc	AUF	AUT	ىي	g _B
Cont Wave	230	. 270 .	72	360	200	1400	290	340	96	540	230	36000	18
Coax Pulsed	260	650	170	860	480	3500	069	. 820	220	1300	260	86000	43
Conv Pulsed	3000	3500	930	47 00	2600	19000	3700	4400	1200	7000	3000	470000	230
INDUCTIVE]									
Low Pwr Pulse	.023	.023	810.	.035	.023	.094	.038	.038	.033	.051	.033	2.0	.0030
xfmr													
Audio Xfmr	.047	.047	.035	0.00	.047	61.	920.	9/0.	990.	01.	. 990"	4.0	.0060
High Power	91.	91.	14	.28	61.	.74	. 35	.35	.3	.47	.31	4	.020
Pulse & Power Tr	Transformer,	r, Filter											
R.F. Xfmr	19	91.	14	.28	. 19	.75	.31	.3	.27	14.	.27	16.	.024
R.F. Coils, Fix .0098	.0098	.012	.0087	020.	8600.	.052	610.	.021	.014	.029	.019	:	.0017
R.F. Coils, Var .020	.020	.024	710.	.039	.020	Ξ.	.037	.043	.029	.057	.037	2.2	.0034
MOTORS	1.7	7.1	7.1	7.1	7.1	7.1	35.	35	35.	35.	35.	*	1.6
RELAYS						:		1					
General Purp	-	1.5	£8.	1.5	.91	7.0	8.7	5.6	1.4	5.6	9.1	*	Ξ.
Contractor, HC	2.2	4.9	2.7	4.9	5.9	23.	5.7	8.5	4.6	8.5	5.1	*	.43
Latching	Ξ.	1.5	.83	1.5	16.	7.0	8	9.5	1.4	2.6	1.6	*	.13
Reed	1.0	1.4	.75	7.4	.82	6.3	2.0	3.0	9.6	3.0	8	*	=
Thermal Bi-met	2.4	3,3	1.8	3.3	2.0	15.	3.8	5.7	3.0	5.7	3.4	•	.29
Meter Movement	7.6	.01	9.6	10.	6.1	.	12.	18.	9.4	.8.	<u></u>	*	. 89
Solid State	5.2	8.4	5.6	. 01	3.8	9.5	3.6	15	4.0	17	6.4	240	.40
Time Delay Hyb & Sol St	14	23	6.7	28	. 00	25	28	41	=	47	18	580	06:
	1												

TABLE 5.2-30 GENERIC FAILURE RATE, λ_{G} , FOR INDUCTIVE & ELECTROMECHANICAL PARTS (f./10⁶ hr.) (Continued)

PART TYPE			: : : :				,	ENV IRONMENT					
i .	AIA	AIB	AIC	AIF	A _{IT}	AR.	4	an Ar	y CC	A.UF	A _{UT}	ىي	. B
Toggle & Push	510.	510,	.0080	.020	.0080	.046	.020	.020	010.	.025	010.	1.2	0100.
Button							,			,	•	ļ	
Sensitive	2.2	2:2	7.5	3.0	1.2	6.9	3.0	3.0	 5:	3.7	1.5	180.	5
Thumbwhee]	8.4	8.4	4.5	=	4.5	92	Ξ	=	5.6	14	9.6	9	95.
Other Rotary	4.9	4,9	5.6	9.9	9.6	15.	9.9	9.9	3.3	8.2	3.3	400.	.33
Circuit Breakers	, yn												
Thermal	98.	-:	.63	<u>-</u>	88.	5.2	-:	1.7	.9	1.7	1.0	#	=
Magnetic	.45	8.	.33	.60	.36	2.8	.60	06.	.48	8.	.54	*	.060
CONNECTORS													
Cir/Rack/Panel	21.	.13	.059	61.	.089	. 56	.36	.42	.21	.64	.34	5.1	.0055
Coaxial	-12	.13	.058	. 19	.087	.55	.34	.40	.20	9 .	.32	5.3	0900.
PCBs	960.	. 14	.052	.22	.28	960.	14	.20	.074	.32	Ţ.	5.6	.0027
I.C. Sockets	610.	610.	.013	.025	.013	.048	.025	.025	910.	.039	.019	1.3	6100.
Interconnect	.23	.33	01.	4.	61.	. 78	.82	1.0	£.	1.4	.62	21.	.041
Assemblies									:				
TUBES	See Section	ction 5.1.4											
LASERS	See Section	ction 5.1.5											
		1	The state of the s				1			1			-

*Not normally used in these environments

MIL-HDBK-217E

TABLE 5.2-30 GENERIC FAILURE RATE, $\lambda_{G^{\star}}$ FOR INDUCTIVE & ELECTROMECHANICAL PARTS (f./10⁶ hr.) (Continued)

PART TYPE	-		1		1		USE ENV	USE ENVIRONMENT						
SHOOTSHOW	S.	G _F	₽.	M _F A	MFF	æ-J	₹ª.	Į.	F _S	NS8	D _N	3	7-	, K
Cont. Wave	8	*	72	006	650	2900	650	1000	0.20	230	360	201.	βį	Ş
Coax Pulsed	84	98	170	2200	1600	0069	1600	2400	299	299	860	96.0	, £	3 2
Conv Pulsed	260	470	930	12000	8400	37000	8400	13000	3000	3000	47.00	14000	; ;	25000
INDUCTIVE														
Low Power Pulse	.0048	910.	.047	.052	.038	1 .	.034	.053	610.	710.	.078	190	0030	01
Xfmr										·	<u>.</u>		3	 :
Audio Xfmr	9600.	.037	760.	01.	970.	.28	690.	=	.037	.033	. 16	٥١.	0900	2,
High Power	.032	£.	.37	.38	.28	1.1	.24	.37	.13	. 12	.75	.32	020	69
Pulse & Power Transformer, Filter	ansformer	7, Filter												
R.F. xfmr	.038	. 15	.38	.41	.30	1.1	.28	.42	.15	.13	.62	. 4 0	.024	8.
R.F. Coils, Fix 0.0032	.0032	9900.	.026	620.	.021	670.	610.	.029	110.	.0094	.043	.028	.001	.056
R.F. Coils, Var	.0065	.013	.052	.058	.043	91.	.039	.059	.021	.019	.087	.057	4600	=
MOTORS	1.6	2.4	7.1	*	*	*	*	2.4	2.4	2.4	55.	4.5	*	
RELAYS														
General Purp	.16	.32	1.2	4.1	3.0	<u>-</u>	8.2	4.4	-:	-	5.6	4.4	.13	8.4
Contractor, HC	. 52	1.0	4.0	13.	9.6	35.	9.5	14.	3.6	3.6	8.4	₹.	.43	27.
Latching	91.	.32	1.2	4.1	3.0	Ξ.	2.8	4.4	-:		5.6	4.4	<u></u>	8.4
Reed	.13	.27	<u></u>	3.5	2.5	9.7	2.3	3.7	.92	.92	3.2	3.5	Ξ.	6.9
Thermal Bi-met	.35	69.	2.7	8.9	6.4	23.	6.1	9.5	2.4	2.4	5.6	9.4	.29	.8
Meter Movement	- -	2.1	8.2	27.	8.	72.	19.	30.	7.4	7.4	17.	29.	88.	26.
Solid State	.52	1.3	5.2	5.6	4.0	74	4.0	6.4	2.8	2.1	6.8	8.9	.34	12
Time Delay	E.	3.7	<u></u>	14	2	34	01	15	7.2	6.3	71	11	.63	30
Hyb & Sol St														

TABLE 5.2-30. GENERIC FAILURE RATE, $\lambda_{\rm G}$, FOR INDUCTIVE & ELECTROMECHANICAL PARTS (f./10 6 hr.) (Continued)

TOWA TOWA							USE ENV	ENV IRONMENT						_
ראא וויב	Ŝ.	.	æ	Z. Z.	¥ [±]	£		₹	N _S	N _{SB}	N _U	nn,	\$	고
SWITCHES Toggle &	.0012	.0029	.014	620.	.021	1.70.	120.	.032	6/00.	.0079	.020	.034	0100	.063
Push Button			,			:		•	-	,	0	-	ų	ď
Sensitive	.18	7.	2.1	4.4	3.2	:	3.2	8,4	7.	7.1	٠٠,	- ·	<u>.</u>	; ;
Thumbwheel	.67	1.6	7.8	91	15	40	15	82	4.4	4.4	=	<u>6</u>	8.	<u>ج</u>
Other Rotary	.40	.95	4.6	9.5	6.9	23.	6.9	Ë	5.6	5.6	9.9	=	.33	21.
Circuit Breakers												,	:	ı
Thermal	7	.26	.93	3.3	2.4	8.1	2.4	3.6	<u>.</u>	<u>6</u> .	9.	3.9	=	:
Magnetic	270.	. 14	.49	1.7	1,3	4.3	1.3	1.9	.48	.48	. 84	2.0	.080	3.7
CONNECTORS												2		
Cir/Rack/Panel	110.	710.	.25	₹.	٥.	.43	91.	∞.	.073	.057	÷.	2 .	.0055	57.
Coaxial	.012	710.	.24	14	6.	.42	.17	91.	.077	650.	.38	*	0900.	52:
PCBs	.0034	.024	.12	.070	.050	.22	870.	060.	040	.028	.20	.053	.0027	- 12
I.C. Sockets	.0025	0900	.033	.03	.021	.076	120.	.033	410.	010.	.035	.037	6100.	984
Interconnect	.049	.094	.32	.49	.36	1.2	.28	.53	.22	.17	.49	.57	.041	0.
Assemblies					:						1			
TUBES	See Sec	See Section 5.1.4	_											
LASERS	See Sec	See Section 5.1.5	2							-				

TABLE 5.2-31 TO FACTOR FOR USE WITH TABLE 5.2-30

	QUALITY LEVEL	
PART TYPE	MIL-SPEC	NON-MIL
MAGNET RONS	N/A	N/A
INDUCTIVE	-	m
MOTORS	_	o vz
RELAYS, SOLID STATE	_	· ~
RELAYS, TIME DELAY (HYBRID & SOLID STATE)	مندم -	٠ ٦
RELAYS, ALL OTHERS	***	r u
SWITCHES, TOGGLE & SENSITIVE		۶ ۶
SWITCHES, THUMBWHEEL	_	3 -
SWITCHES, OTHER ROTARY TYPES	_	· 5
CIRCUIT BREAKERS	_	ς α
CONNECTORS	_	· ~
INTERCONNECTION ASSEMBLIES		° 2

TABLE 5.2-32 GENERIC FAILURE RATE, λ_{G} , FOR MISCELLANEOUS PARTS (f./10 hr.)

PART TYPE							USE ENV	ENV IRONMENT					
	AlA	A ₁₈	A _{IC}	AIF	A _{IT}	ARW	A UA	A _{UB}	A _{UC}	A UF	A _{UT}	لی	8
SAWS	12	92	16	32	16	47	32	42	56	42	56	1300	2.1
QUARTZ CRYSTALS	.54	.54	.29	.54	.29	.74	06.	06.	٠61	.90	٠9.	16	.032
LAMPS,													
INCANDESCENT	,												
AC Applications	17	17	13	17	13	21	23	23	19	23	61	110	6.6
DC Applications	23	23	4	22	4	£	7.5	75	62	75	62	350	13
ELECTRONIC													
FILTERS													
Ceramic-ferrite													•
Construction	6[.	91.	٦١.	91.	. 12	.24	.28	.28	.22	.28	.22	5.6	.022
Discrete LC Comp													
Construction	-:	1.	99.	<u></u>	99.	1.3	1.6	1.6	1.2	1.6	1.2	14	-12
Discrete LC &													
Crystal Comp.													
Construction	2.3	2.3	1.5	2.3	1.5	2.9	3.4	3.4	2.7	3.4	2.7	32	.27
FUSES	. 12	. 12	890.	. 12	890.	. 16	. 18	. 38	.13	.18	.13	2.3	.010
METERS	See Section	tion 5.1.15											

TABLE 5.2-32 GENERIC FAILURE RATE, $\lambda_{\rm G}$, FOR MISCELLANEOUS PARTS (f./10 hr.)

PART TYPE	_													
	c	•					USE EN	ENVIRONMENT						
	₹	۱.	. ≥	A T	E.	æ"	∑	¥	χ. S	NSB	2	nn ¥.	SF	J.S.
SAWS	2.9	8.2	23	R	25	74	7	23	2	5	18	;		
QUARTZ CRYSTALS	.038	.083	.32	48	35	-	35	3 5	2 2	2	5	2	3.4	2
LAMPS,						:] 	19:	=	.45	.54	.032	96.
INCANDESCENT														
AC Applications	4.3	6.3	13	92	14	8	7	17	Ξ	•	. 20	٤	٠	;
DC Applications	7	12	4	24	45	. 2	. 7.	: 12	: ;	, , ,	2 (<u>∞</u> (e: ;	54
ELECTRONI C								; 	3	5	25	20	20	7.9
FILTERS				-										
Ceramic-ferrite										٠				
Construction	.024	.046	.13	86.	~	35	14	9	700	ò	2	ć	,	
Discrete LC Comp						}	-			700.	.	02.	.03/	 E
Construction	.13	.25	.72	86.	μ.	1.9	11.	0.0	23	77	4	-	ş	
Ofscrete LC &								•	<u> </u>	:	·	<u>:</u>	9.	-
Crystal Comp.														<u>, </u>
Construction	.29	8.	9.	2.2	1.7	4.2	1.7	2,3	-	ä	,	•	;	,
FUSES	.012	.023	.075	=	180	.22	8	10	750	200		; <u>:</u>	£ .	;
METERS	See Sect	See Section 5.1,15	-						300.	1	-	2	810.	8
														_

TABLE 5.2-33 TO FACTOR FOR USE WITH TABLE 5.2-32

PART TYPE	QUALITY LEVEL	
	MIL-SPEC	NON-MIL
SAWS	N/A	N/A
QUARTZ CRYSTALS	-	2.1
LAMPS, INCANDESCENT	N/A	N/A
FILTERS, ELECTRONIC	-	2.9
FUSES	N/A	N/A

TABLE 5.2-34 AMBIENT TEMPERATURE FOR ALL PARTS (EXCEPT MICROCIRCUITS)

ENVIRONMENT	AIA	AIA AIB AIC	AIC	A_{IF}	${\bf A}_{\rm IT}$	ARW	AIT ARM AUA AUB AUC AUF AUT CL GB GMS	AuB	Auc	A _{UF}	AUT	بی	6 _B	G _{MS}
T _A (°C.)	55	55	55	55	55	35	12	2	لا	71 71 40 30 30	נג	40	8	99
ENVIRONMENT	اول ا	5	Gm MFA	<u>#</u>	S	₹0.	Z.	S _S	N _{SB}	NSB NU NUU	2 3	S _F U _{SL}	15°	
T _A (°c.)	40	55	55 45 45	1	55	83	64	40	40	75	20 30 35	8	35	

TABLE 5.2-35 JUNCTION TEMPERATURES FOR MICROCIRCUITS

			į	1					*				1	
ENV IRONMENT	AIA	A 18	Arc	A _{IF}	AIT	A RE	A _{UA}	A BB	AIA AIB AIC AIF AIT ARM AUA AUB AUC AUF AUT CL GB GMS	A UE	A _{UT}	ىي	æ	æ SE
T ₃ (°C.)	70	70	70	70	02	07 07 07 07 07	105	501	105 105 105 105 55 45 46	105	501	55	45	46
ENV IRONMENT	G.	ა_Σ	A P	<u> </u>	.	<u>.</u>	z [∓]	*S	er G _M Mer Mer M. Mp NH MS NSB NU NUU Sr USL	z z	23	ν, L	uSt	
T _J (%)	55	69	09	70	2	60 60 70 70 50	55	55	55 55 90 35 55 50	96	35	55	90	

TABLE 5.2-36 MODEL PARAMETERS FOR DISCRETE SEMICONDUCTORS*

PART TYPE	ηн	TR.	152	ပ္	* Used JAN quality π_Q from Section 5.1.3.
TRANSISTORS			ı		a define of the state of the st
Si NPN	1.5	1.0	0.0	0.1	The Used I at 1 to 1 to 1 to 1 to 1 to 1 to 1 to 1
S1 PNP	1.5	1.0	1k.0	0.1	Used $\lambda_b = .0055$ (Phototransistor Detector)
Ge NPN	1.5	1.0	1.0	0.1	*** 1 = 1.5
Ge PNP	1.5	1.0	1.0	0.7	0°[a Wi
SiFET	1.5	i	1 7 1	0.	π_T computed using $f = T_A + 100$ and refractory metal
Unijunction	1	•	F		gold V/BV _{CES} = 0.5
0100ES					
Si Gen Purpose	1.0	٦.0	0.70	0.7	**** Used $\lambda_b = 0.6$
. r eg	1.0	1.0	0.70	1.0	ող = 1.0
Zener & Avalanche	1.0	;	1 1	;	
Thryistor	;	1.0	;	:	
Si Microwave Det	;	;	:	i	
	i	:	1	;	
Si " Mix	:	;	i	;	
z = 95	:	;	}	;	
Varactor, Step	1.0	0.7	;	;	
Recovery, Tunnel					
Gunn & Impatt ****	1.0	1.0		;	
NId	٥.٢	1.3	ì	:	
LED**		!	1	!	
Single Isolator**	;	:	į	;	
Bipolar Microwave	2.0	1	;	;	
Power Transistor***					

TABLE 5.2-37 MODEL PARAMETERS FOR RESISTORS & CAPACITORS

	QUAL ITY			QUALITY	TEMP.		
STYLE	LEVEL	E Cr	STYLE	LEVEL	۴ٍد√	RATING	
RCR	Σ	1.1	ಕಿ	MIL-SPEC.	-	125	
RC	M1L-R-11	z	3	=		85	
RLR	Œ	=	CZR	x	=	125	
RL	M1L-R-22684	=	CPV	Σ	2	=	
RNR	x	=	CQ.	Σ	=	=	
RN	M1L-R-10509	3	뜻	\$	8	s	
R)	MIL-SPEC,	٥٠١	ಕ	NON -ER	=	=	
RZ*	=	Ā	CFR	Σ	=	•	
RBR	X	1,7	CRH	2	=	=	
RB	MIL-R-93	=	£	=	=	=	
RWR	£	<u>.</u> .	చ్	MOLDED	£	s	
π. **	M1L-R-26	•	83	MIL-SPEC.	z	150	
REA	æ		CYR	T	•	125	
RE	MJL-R-18546	=	ζ	NON-ER	z	125	
RTR	Σ	1.4	CKR	Σ	=	=	
RT	M1L-R-27208	=	ర	NON-ER	=	=	
AR *	MIL-SPEC.	=	CCR	¥		=	
RA	=		CSR*	r	=	z	
K	Ŧ	=	CL R*	=	=	=	
RP*	MIL-SPEC.	1.4	*10	NON-ER	=	=	
RJR	Σ	1.2	3	=	1.3		
RJ	M1L-R-22097	•	끙	3	-	¥	
RV	MIL-SPEC.	=	5	=		85	
RQ	-	F	PC	=		125	
RVC	-	=	CT	4			
			* ප	=		85	
* - for RZ, NR	01 = 4N	for CSR	. TER = 0.4				
" RR #	= 1.5	ອ໌ •					
" RP, CLR	CLR & CL, Tr = 1	[[e	ur variable re:	" all variable resistors, π _ν = 1, π _{TADS} = 1	[

TABLE 5.2-38 MODEL PARAMETERS FOR INDUCTIVE & ELECTROMECHANICAL PARTS

					* Used snap-action type **Used \lambda = .000041	¶Q = 1.0	0 = SE	$\pi_{C} = 2.0$ (Assumed 6 circuit planes)						ПF	5 125		٠ •		125	100			raliure rate)	id state relay)
					ΔT(^O C.)	10				 				TC TCYC	3	3	٦ -	2		1			(Delay base	to λ _b for sol
ם ש	0.	<u> </u>	.72 5.4		Rated Temp (^O C.) Δ	130	2	-		=	125	=		LOAD TYPE T	Resistive	Inductive	Resistive	=	Inductive	Resistive	$\lambda_{\rm b} = .40 {\rm f./10^6 hrs.}$		λ_b = .50 f./10° hrs. (Delay base fallure rate)	λ_{R} - (Assumed equal to λ_{b} for solid state relay)
λ _b (f/10 ⁶ filament hrs.)	18	09	09	QUALITY	LEVEL	MIL-SPEC.	=	=		=	M1L-C-15305	<i>ک</i>	t = 15,000 hrs.	QUALITY	MIL-SPEC.		£	=	=	=	=		r.	
MAGNET RONS ABOVE	Cont. Wave	Coax Pulsed	Conv. Pulsed	INDUCTIVE DEVICES		Low power pulse transformer	Audio Transformer	High power pulse & power	transformer, filter	R.F. transformer	R.F. Coils, fixed	R.F. Coils, variable	MOTORS	RELAYS	Gen. Purpose	Contractor, high current	Latching	Reed	Thermal, bi-metal	Meter Movement	Solid State	Time Delay	(Hybrid & Solid State)	

TABLE 5.2-38 MODEL PARAMETERS FOR INDUÇTIVE & ELECTROMECHANICAL PARTS (Continued)

CONTACT FORM	Doct		n=1, activation diff. >002"	N=0	*7-11		_iL	- C			3 for A. A. A. A. A. A. A. A. A. A. A. A. A.	Apus Aus Aus Aus Aus Aus Aus G. M
LOAD TYPE	Resistive	=			} 	ر ا ا ا	MATEDIA	B 100 100 100 100 100 100 100 100 100 10			0.	
QUALITY	MIL-SPEC.	=		-	=	E	OUAL ITY	MIL-SPEC.			$N_1 = 500$, $N_2 = 0$	
SWITCHES	Toggle & Pushbutton	Sensitive	Thumbwheel	Other Rotary	Ckt Bkrs, Thermal	Ckt Bkrs, Magnetic	CONNECTORS	Circular, Rack & Panel	Coaxial	Printed Circuit Board	Interconnection Assemblies***	

TABLE 5.2-39
MODEL PARAMETERS FOR MISCELLANEOUS PARTS

PART TYPE	QUALITY LEVEL	DEVICE FACTORS
SAWS	N/A	
QUARTZ CRYSTALS	MIL-SPEC	f = 50 MHz.
LAMPS, INCANDESCENT	N/A	π_A = 1.0 (AC APPLICATIONS) π_A = 3.3 (DC APPLICATIONS)
		π1 = .72
		V _R = 28 VOLTS
FILTERS, ELECTRONIC	MIL-SPEC	
FUSES	N/A	

B IB L IO GRAPHY

The publications listed with "AD" numbers may be obtained from:

National Technical Information Service 5285 Port Royal Road Springfield VA 22151

The year of the publication of RADC documents is part of the RADC number, e.g., item I was published in 1969.

- 1. "Failure Rate Prediction for Complex Bipolar Microcircuits", RADC/TR-69-350. AD 861045.
- 2. "A System for Effective Transferral of Microelectronic Reliability Experience", by H. Lauffenburger and J. Fuchs, 8th R&M Symposium, July 1969.
- "A Bayesian/Classical Approach to Reliability Demonstration", RADC-TR-70-72, AD 871969.
- 4. "Effect of Operator Performance Variables on Airborne Equipment Reliability", RADC-TR-70-140, AD 873368.
- 5. "MOS Reliability Prediction Model", by M. Adam and D. Aaron, 9th R&M Conference, July 1970.
- "Reliability Investigation of Thermal Stress/Fatigue Failure in Multilayer Interconnection Boards", RADC-TR-70-192, AD 714702.
- 7. "Beam Lead Reliability", RADC-TR-70-227, AD 877310.
- 8. "Stress Induced Intermittent Failures in Encapsulated Microcircuits", RADC-TR-70-213, AD 715984.
- "Reliability Characterization and Prediction of Integrated Circuits", RADC-TR-70-232, AD 878235.
- "Reliability Evaluation of Plastic Integrated Circuits", RADC-TR-71-8, AD 722043.
- 11. "Procedural Guidelines for the Reliability Assessment of MOS Microcircuits", RADC-TR-71-178, AD 888286.
- 12. "Predicting Failure Rates of Yield Enhanced LSI", by W. Tees, Computer Design, February 1971.
- 13. "Reliability Physics Study of Microwave Solid State Devices", RADC-TR-71-184, AD 731794.
- 14. "Failure Mechanisms Studies on Multilevel Metallization Systems for LSI", RADC-TR-71-186, AD 731796.

- 15. "Bayesian Reliability Demonstration: Phase II, Development of Apriori Distribution", RADC-TR-71-209, AD 732283.
- 16. "Microcircuit Bond Screening Study", RADC-TR-71-294, AD 892498.
- 17. "Reliability of Ceramic Multilayer Boards", RADC-TR-71-299, AD 737373.
- 18. "Reliability Problems With Si $^{\circ}$ 2 Passivation and Glassivation", RADC-TR-72-55, AD 741765.
- 19. Electrical Characterization of Complex Microcircuits", RADC-TR-72-145, AD 748242.
- 20. "Reliability of Linear Integrated Circuits in Ceramic and Plastic Packages", RADC-TR-72-314, AD 907445.
- 21. "Contact Reliability Screening", RADC-TR-72-326, AD 755923.
- 22. "Ultrasonic Beam Lead Bonding Equipment", RADC-TR-73-27, AD 757561.
- 23. "Electro-Thermal Overstress Failure in Microelectronics", RADC-TR-73-87, AD 761792.
- 24. "Development of Microcircuit Bond-Pull Screening Techniques", RADC-TR-. 73-123, AD 762333.
- 25. "Reliability Evaluation of LSI Microcircuits", RADC-TR-73-127, AD 911826.
- 26. "Bayesian Reliability Demonstration: Phase III, Development of Test Plans", RADC-TR-73-139, AD 765172/2.
- 27. "Reliability Study Circular Electrical Connectors", RADC-TR-73-171, AD 765609.
- 28. "Reliability Evaluation of 54L20 Radiation Hardened Dual NAND Gates", RADC-TR-73-180, AD 765173.
- "Nichrome Resistor Properties and Reliability", RADC-TR-73-181, AD 765534.
- 30. "Dormancy & Power, On-Off Cycling Effects on Electronic Equipment & Part Reliability", RADC-TR-73-248, AD 768619.
- 31. "Use of Warranties for Defense Avionic Equipment", RADC-TR-73-249, AD 769399/7.
- 32. "Electrical Characterization of Complex Microcircuits", RADC-TR-73-373, AD 775740.

MIL - HDB K- 21 7E

- "Reliability Study of Polyimide/Glass Multilayer Boards", RADC-TR-73-400, AD 77194.
- 34. "Infrared Testing of Multilayer Boards", RADC-TR-74-88, AD 780550.
- 35. "Laser Reliability Prediction", RADC-TR-75-210, AD A016437.
- 36. "Reliability Model for Miniature Blower Motors Per MIL-B-23071B", RADC-TR-75-178, AD A013735.
- 37. "RCA TA8694 and TA8777 Microwave Power Transistor Reliability Investigation", AD A007587.
- 38. "Reliability Prediction of Microwave Transistors", RADC-TR-74-313, AD A003643.
- 39. "Reliability Study of Microwave Power Transistors", RADC-TR-75-18, AD A007788.
- 40. "Nonelectronic Parts Reliability Notebook", NPRD-1, AD A059901.
- 41. "Reliability/Design: Thermal Applications", MIL-HDB K-251, 19 January 1978.
- 42. "Development of Failure Rate Models for Semiconductor Optoelectronic Devices", FAA-RD-76-134, AD A029163.
- 43. "High Power Microwave Tube Reliability Study", FAA-RD-76-172, AD A0033612.
- 44. "Electric Motor Reliability Model", RADC-TR-77-408, AD A050179.
- 45. "Development of Nonelectronic Part Cyclic Failure Rates", RADC-TR-77-417, AD A050678.
- 46. "Passive Device Failure Rate Models for MIL-HDB K-217B", RADC-TR-77-432, AD A050180.
- 47. "Quantification of Printed Circuit Board Connector Reliability", RADC-TR-77-433. AD A049980.
- 48. "Failure Rate Models for Discrete Semiconductors", RADC-TR-78-3, AD A050181.
- 49. "Crimp Connection Reliability", RADC-TR-78-15, AD A050505.
- 50. "TIGER User's Manual", NAVSEC Report 6112B-130-76, June 1976. Copies available from NAVSEC, Code 6112B, Washington DC 20360.
- 51. "Implementation of Operational Procedures for Optimized Reliability and Component Life Estimator (ORACLE)", RADC-TR-77-49, AD A039344.

- 52. "Hybrid Microcircuit Failure Rate Prediction", RADC-78-97, AD A055756.
- 53. "Reliability Prediction Models for Microwave Solid State Devices", RADC-TR-79-50. AD A069386.
- 54. "LSI/Microprocessor Reliability Prediction Model Development", RADC-TR-79-97, AD A068911.
- 55. "A Redundancy Notebook", RADC-TR-77-287, AD A050837.
- 56. "Revision of Environmental Factors for MIL-HDB K-217B", RADC-TR-80-299, AD A091837.
- 57. "Traveling Wave Tube Failure Rates", RADC-TR-80-288, AD A096055.
- 58. "Reliability Prediction Modeling of New Devices", RADC-TR-80-237, AD A090029.
- 59. "Failure Rates for Fiber Optic Assemblies", RADC-TR-80-322, AD A092315.
- 60. "Improved Reliability Prediction Model for Field-Access Magnetic Bubble Devices", AFWAL-TR-81-1052.
- 61. "Printed Wiring Assembly and Interconnection Reliability," RADC-TR-81-318, AD A111214.
- 62. "RADC Thermal Guide for Reliability Engineers," RADC-TR-82-172, AD All 8839.
- 63. "Reliability Modeling of Critical Electronic Devices," RADC-TR-83-108, AD A135705.

Custodians:

Army - CR

Navy - EC

Air Force - 17

Preparing Activity:

Air Force - 17

Project No: RELI-0039

Review Activities:

Army - MI, AV

Navy - SH, AS, OS

Air Force - 11, 13, 14, 18, 19, 99

User Activities:

Army - AT, ME, GL

Navy - CG, MC, YD, TD

Air Force - 85

INSTRUCTIONS: In a continuing effort to make our standardination documents better, the DoD provides this form for use in submitting comments and suggestions for improvements. All users of military standardization documents are invited to provide suggestions. This form may be detached, folded along the lines indicated, taped along the loose edge (DO NOT STAPLE), and mailed. In block 5, be as specific as possible about particular problem areas such as wording which required interpretation, was too rigid, restrictive, loose, ambiguous, or was incompatible, and give proposed wordin, changes which would alleviate the problems. Enter in block 6 any remarks not related to a specific paragraph of the document. If block 7 is filled out, an acknowledgement will be mailed to you within 30 days to let you know that your comments were received and are being considered.

NOTE: This form may not be used to request copies of documents, nor to request waivers, deviations, or clarification of specification requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.

(Pold along this line)

(Pold along this line)

DEPARTMENT OF THE AIR FORCE.

RADC/RBE-2 Griffiss AFB NY 13441-5700

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 73236 WASHINGTON D. C.
POSTAGE WILL SE PAID BY THE DEPARTMENT OF THE AIR FORCE

Rome Air Development Center ATTN: RBE-2

Griffiss AFB NY 13441-5700

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

STAND	ARDIZATION DOCUMENT IMPROVEM (See Instructions — Reverse Side)	ENT PROPOSAL
	2. DOCUMENT TITLE	
1. DOCUMENT NUMBER MIL-HDBK-217E		Electronic Popinment
	Reliability Prediction of	
3a, NAME OF SUBMITTING ORGANIZ	ZATION	4. TYPE OF ORGANIZATION (Merk one)
		VENDOR
·		- 1
		. USER
b. ADDRESS (Street, City, State, ZIP C	ode)	-
		MANUFACTURER
	,	- I IIII
•		OTHER (Specify):
		<u> </u>
5. PROBLEM AREAS		·
a. Paragraph Number and Wording:		
		· ·
		ľ
		•
	,	1
		į
		1
,		ĺ
b. Recommended Wording:		
		i
		1
		i
		.
c. Resson/Rationals for Recommend	telas.	
c. Nesson/Nationals for Macommena	etion.	
		•
•		
•	• •	
•		
		i
6. REMARKS	,	"
•	•	
		4
		.
		ł l
		į.
		1
		i
		İ
7a. NAME OF SUBMITTER (Last, Firet,	MI) - Ontional	b. WORK TELEPHONE NUMBER (Include Area
	, may — Options	Code) - Optional
c. MAILING ADDRESS (Street, City, St	710.0	
ci maicing adunces (Street, City, St	ew, #17 Code) — Optional	S. DATE OF SUBMISSION (YYMMDD)
		1
		1